entered l:I biaitase

$$
M V_{411} q 8: 4 \cdot 2
$$ A863.1.2

$$
253771
$$

Saturday, 13th July 1861.

present :
The Riget Hon. LORD Stanley, M.P., in the Chair.

Sir Probx Caltley, K.C.B.
Sir Ranald Martin, C.B., F.R.S. J. B. Gibson, Esq., C.B., M.D., D.G.A.M.D.

William Farr, Esq., M.D., F.R.S., D.C.L. John Sutherland, Esq., M.D.

Sir Alexander Murray Tulloce, K.C.B., examined.
553t. (Chairman.) We understand that you have made considerable inquiries into the vital and sanitary statistics of the army ?-Yes ; it has been my duty to do so for a number of years.
5535. Have you prepared a collection of those statistics which appears in the form of parliamentary papers, and is founded on the experience of some 17 or 18 years?-Yes, it is founded in some cases on the experience of 30 years.
5536. Not only with regard to home service, but with reference to the colonies?-Yes; but at home it is not founded upon more than about 17 years' experience; with respect to the colonies, the experience has been much louger. The information at home is not so complete as it is abroad, owing to the number of changes that are continually taking place among the troops from one town to another.
5537. Do you include India in the statistics which you have collected?-India was not included at the time the statistics of the troops in the colonies were published, as the home authorities had then no means of bringing about any changes they might consider uecessary; that rested with the East India Company.
5538. When was that inquiry set on foot ?-I commenced it in the year 1835, and it embraces the years from 1816 or 1817 down to 1836 ; but the results were not published until 1838. A continuation was subsequently prepared by me, bringing the results, so far as regards the United Kingdom, Mediterranean, and American stations, down to 1846 .
5.339. Have you examined into the causes of disease among troops resident in tropical climates?-Yes, so far as the medical returns have afforded me an opportunity.
5540. Do you find that the excess of the mortality in tropical climates has been considerable over the mortality in the same class and at corresponding ages in temperate climates ?-Very much so, indeed.
5541. I believe it was so especially in the West Indies?-Particularly so, the mortality there being about 8 per cent., and about 13 per cent. in Jamaica, instead of $1 \frac{1}{2}$, which is supposed to be the ordinary rate among troops in this country.
5542 . Is it within your knowledge that a very considerable reduction in that mortality has been effected?-A very considerable reduction indeed; in the West Indies it has been from 8 to 6 per cent., and in Jamaica from 13 to about 7 per cent. on the average of the 24 years subsequent to 1836.
5543. Are you cognizant of the causes which have led to that great diminution in the mortality? -The chief causes I believe to have been the improvements after the year 1836, when the attention of the Government was first called to the enormous loss at these stations. Certain changes were then effected, which you will find detailed in the Report upon the West Indies presented to Parliament in 1838. These consisted of a larger issue of freshi in lieu of salt provisions; an increase in the barrack accommodation; in the frequency of the reliefs; in the attention paid to the comfort of the troops, and to their recreation and amusements. In Jamaica a change also took place by removing the troops to the high lands, where they were beyond the reach, or supposed to be beyond the reach, of malaris.
5544. With regard to two of the remedies which you have mentioned, the issue of fresh instead of salt provisions, and providing better barrack accommodation, I apprehend that those are now carried out throughout the British empire? -Yes, the use of salt provisions are now restricted to one or two days in the week being only as much as will secure the consumption of the salt provisions required to be kept in store in most of our garrisons.
5545. Speaking from the experience which you have acquired in these investigations, what should you say are the principal causes, at the present time, of disease and mortality in the army, especially in tropical climates?-One of them is, that the cubic space allotted to each soldier is not sufficient. I am aware that great improvements are being made; but looking to what is now the rule, that is to say, 450 cubic feet for each soldier; I do not think that sufficient in a tropical climate.
.5546. How many cubic feet would you allow to each man ?-About 600 in a temperate climate, and something more in a tropical one.
5547. Would you allow 1,000 cubic feet?-That is more, I suspect, than could be given; a great deal depends upon the means of ventilation, which might render a smaller space sufficient, but I think it should not be under 800 cubic feet in a tropical climate, and as much more as can be spared.
5548. Is it essential that that space should be given, not merely vertically, but also in breadth? The cubic contents of the rooms should be calculated, and a certain proportion allotted to each, exclusive of the part above the ceiling. The Commissioners are no doubt aware that the heat in the upper part of a building in a tropical climate becomes very great indeed, unless there is an outer covering in addition to that of the barracks.
Another'source of disease, I apprehend, may arise from the want of sufficient variety in the soldiers' food by comking it in different ways. Until very lately they had no change; something between a soup and a stew was the only mode of dressing their meat.
5549. Do you think that the erection of barracks upon high situations, instead of low, is an important element in sanitary reform?-I think it a very important element; but I am aware that it cannot always be accomplished. For instance, in most of the West India islands, where white troops are chiefly employed, there is no elevated land above from 1,200 to 1,300 feet, and therefore you cannot attain a height sufficient to carry the men beyond the reach of malaria.
5550. In Granada there is no elevation, unless you go into the interior ?-There is no elevation at all in some places-as in Demerara, for instance-and therefore your power of diminishing the mortality by increasing the altitude is limited chiefly to such islands as Dominica, St. Lucia, and Trinidad ; and there, in order to get to a very considerable elevation, it is necessary to go a distance from the port, which is objectionable upon principles of defence.
5551. Even in the West Indies, where everything is on so much smaller a scale than in India, it is found that if you put the troops in the best sanitary position they are sometimes in a place where they are quite distant and pot immediately available for the
$\mathbf{R ~} \mathbf{~} \mathbf{3}$
purposes for which they are likely to be required ?Certninly.
With reference to other sources of disease within the tropics, I am much disposed to regard idlences as one of them, and that our troops might be more healthy if they worked more there; time hangs to heavily upon their hands. I do not mean that they should work in the middle of the day; but I think that the practice of requiring them to labour in the morning and in the evening might be adopted with benefit to their health, as as variety from the ordinary routine of drill. It has been found both in Martinique and Guadaloupe by the French Government that troops employed on fortifications during proper hours were more halthy than others. Of course, however, this requires to be done with great discretion, and under the strict superintendence of medical officers.
5552. Do you think with the present facilities for constructing light, extensive, and covered buildings, that there would be any difficulty in providing the men with workshops? -In tropical colonies there would be no difficulty whatever, because generally speaking the bamboo, from which you can form the posts, grovs extensively there ; it will also supply a very light framework for the roofs, which being covered with leaves, you may at a very small expense get any shelter you require merely for the purpose of exercise, or for workshops. Slight erections of this description are often made in the East Indies, for the purpose of furnishing temporary accommodation to the married people, and I think the same practice might be adopted with great advantage in the West Indies: Among other improvements, nothing appears more likely to be beneficial to the men than to have regimental gardens ; the spaces around the hospitals also are often covered with jungle, which might be converted into gardens for the use of the patients. Nothing of that kind has yet been done on any general scale; but there are some places in the West Indies where it has been attempted.
5553. Is there not a difficulty in carrying that out, on account of the frequent removal of the troops from stations? -Yes; that has prevented the system from being adopted to the extent that it might be in the West Indies. The objection was, that as "the "" men do not know when they will be removed, they "will not labour for the purpose of obtaining a crop is that may be of no use to ther.". "That objection was taken in the case of regimental gardens, but it might easily le obviated by arranging that a small fund should be appropriated to pay the men for their work, by selling to the different messes the vegetables raised, and which they would otherwise have to purchase at a higher price in the market.
5554. In other words, you would say that the gardens should belong to the station, and not to the regiment that happened to be quartered there at the time ?--Exactly. I think that the men generally are fond of gardening, and a very great proportion of them, after they are pensioned, become cultivators, and rery successful ones, too.
5555. With regard to the age at which recruits enlist, do you think that there is anything to be amended in that respect; do they join the army at too young an age?-Certainly they join the army too young jf you have to take them on a campaign immediately. If recruits be merely wanted for the ordinary purposes of drill, as in this country, I think that 18 is not a bad age to take them at, more especially when you consider that at the age of 21 they are often burthened with wives, and have acquired settled habits which do not tend to induce them to enter the army.
5556. Do you think, then, it is desirable that they should enlist at the age of 18 ; but that they should have two or three years: training in a temperate climate before they are exposed to a tropicul climate, or to the fatigues of a campaign ?-Certainly. :
5557. I suppose that the preliminaty training which is given to them is better given at home thah in India?
-It can be best given at home, and is given there. I wish much, as part of that training, that it should be made obligatory upon all recruits to learn to read and to write before being discharged from drill. It wis so ordered at one time, but there were doubts whether it could be legally enforced; but if it could be so arranged I am confident that it would be a vast advantage to the army ; there is no use in supplying books to those who cannot read.
5558. Do you think that the personal habits of the soldier have improved with regard to temperance and the state of health in which he keeps himself ?-I think they are very much improved. I have seen a very great change, both in the soldiers who are in the army, and in pensioners after they leave the army ; there has been a very great improvement indeed of late years.
5559. Does it not appear to you that, as compared with the ordinary class of labouring men, the same class as that from which the soldier is taken, there is a want of power to endure fatigue about the soldier when not hardened by actual service, such as you would not expect to find in him ; for example, take the number of cases of men who suffer and sometimes: die from going through a day's work, which would not appear to trained men very severe? -Certainly; I think it a great evil that the soldier is not'sufficiently trained to fatigue. I do not call it. any great fatigue to shoulder a musket or march with a knapsack. The description of fatigue which he requires to be trained to is that. Which could readily be found for him in building fortifications or in erecting public works.
5560. Setting apart the question of occupation, the actual daily labour of the soldier is not sufficient to keep him in good physical training ?-That is my impression, at least in most regiments, but there is a much greater degree of labour in some than in others; I think, too, that the drill of the recruits is made more severe to them than is necessary, considering that they have all their life to learn such details.
5561. Do you mean that they are sometimes overworked and disgusted at first ?-Yes; and the success. of the volunteers shows that there is no necessity for this, and that a knowledge of the mere military duties of a soldier can be acquired in a comparatively short space of time without such over-work.
5562. Do you think that to any considerable extent the health of the soldier is undermined by venereal disease? I-I have very little doubt that it is ; but from all I can learn, I doubt whether venereal disease is much more common in the army than in civil life; for instance, the ordinary proportion of venereal disease is somewhere about 120 cases among 1,000 men annually, at least it was so previously to the present year ; out of these many arise from want of cleanlinese; not more, probably than 100 are really attributable to venereal disease, which is only equivalent to each man being under treatment once every 10 years; and I do not think you will find among unmarried persons in civil life that a man goes through 10 years with only one attack of the disease. I may state as a further example, that I have made careful inquiries into the relative proportion of diseases of that description among officers and men, and I do not find any marked exemption in favour of the former, particularly after taking into account that some of them cure slight attacks without undergoing medical treatment, and others put themselves under civil practitioners, by whom no report is made as to the cause of their illness. Taking everyihing into account, I doubt very much whether venereal disease is much more common among the military than civilians; but civil practitioners could give a more correct idea upon the subject.
5563. Have you examined into the actual percentage of mortality in India?-Yes, and I submit the following summary on that bead, extracted from pi 180 of the minutes of my evidence before the Indian Organization Committee.

Table showing the Mortality in each of the Presidencies for a period of 39 jears, extracted from the War Office Returns.

Year.	Bexrais.		Madras.		; Bompar.	
	Strength.	Deaths.	Strength.	Deaths.	Strength.	Deathg.
1817	7,284	622	9,092	548	2,607	143
1818	6,203	384	9,306	903	3,645	352
1819	6,219	483	7,656	632	3,417	270
1820	6,156	439	7,043	411	3,076	404
1821	5,732	399	6,989	396	2,907	262
1822	5,899	365	6,949	491	3,164	318
1823	6,584	496	6,838	386	3,082	224
1824	6,894	937	7,388	1,068	2,562	147
$\rightarrow 1825$	6,669	1,086	6,919	1,187	3,178	957
1826	7,877	1,312	6,405	1,081	2,936	844
1827	8,035	583	7,061	656	3,063	171
1828	8,284	633	7,602	434	3,222	209
1829	8,555	618	7,680	290	3,978	117
1830	8,325	406	7,408	219	3,914	160
1831	8,347	431	6,976	268	3,845	94
1832	8,081	346	6,773	418	3,723	79
. 1833	7,569	403	6,241	571	3,583	129
1834	7,340	394	6,086	444	3,426	134
1835	7,655	272	5,881	215	3,415	102
1836	7,541	369	6,646	254	3,465	139
1837	6,878	355	6,078	362	3,226	148
1838	5,401	527	5,493	269	3,319	141
1839	7,645	499	5,792	405	3,422	380
1840	8,581	1,268	6,255	265	4,402	296
1841	9,438	1,020	5,411	223	5,418	601
1842	12,593	1,698	6,101	292	6,106	668
1843	11,003	1,028	7,699	. 427	6,066	468
1844	11,280	984	7,850	276	6,323	824
1845	11,108	2,213	7,535	851	4,710	337
1846	11,007	1,103	5,772	264	7,197	681
1847	12,349	781	6,040	227	5,556	139
1848	11,502	1,190	5,321	125	6,208	179
1849	14,703	1,306	5,014	159	6,619	310
1850	17,307	911	4,838	110	5,872	165
1851	17,071	849	4,162	88	5,774	194
1852	16,659	1,196	4,548	304	-5,688	194
1853	16,190	950	4,598	215	5,306	102
18.54	17,087	782	4,357	143	4,104	90
1855	14,980	532	8,209	80	4,423	80
Totala	377,980	29,970	249,012	15,462	165,947.	10,152

Summary of the above.

	Strength.	Deaths.	Ratio per 1,000.
Bengal	- 377,980	29,970	$79 \cdot 2$
Madras	- 249,012	15,462	$62 \cdot 9$
Bombay	- 165,947	10,152	$61 \cdot 1$
	792,939	55,384	70.0

These losses include some 200 or 300 men killed or dead of their wounds during the Mahratta, Pindaree, and other campaigns prior to 1824 ; also 3,750 who perished in the first, and about 1,000 in the second Burmese war, chiefly from sickness; also nearly a whole regiment lost at Cabul ; likewise the casualties during the campaigns of Sinde, of the Sutlej, and the Punjab, about 2,000 in all, and nearly 1,200 who died in the first Chinese war, all from sickness, with very few exceptions. The loss arising trom the climate of stations now usually occupied on the continent of India may therefore be reduced by about 8,000 or 9,000 men, or to an average of 60 per thousand annually, though the total loss from all causes has been at least 70 per thousand. Since the mutiny, I haye ascertained that the mortality, exclusive of casualties in the field, has been little more than half the above average.
5564. Have you any means of explaining to the Commission that remarkable decrease?-The only way in which I can explain it, is by the following sumnary, which I had framed in order to show whether there was any material difference between the loss sustained by troops who had been for some time in- India and those newly errived in the country.
"Mortality among "regiments which were in India prior to the mutiny'in 1857-8:-

" Deduct killed in action,
died of wounds, \&cc. in
the year 18 ä 8
" Died of sunstroke and
apoplexy
\(\left.\begin{array}{r}-190

-142\end{array}\right\} \quad-\quad\)| 332 |
| ---: |
| 332 |$-\quad-2,290$

" Upon a total strength of 53,637 men the mortality. by disease appears to have been $4 \frac{3}{10}$ per cent.
"In addition to the loss then recorded, the 13 regiments which returned home must have carried with then many men of broken constitutions, whose deaths would have áffected the Indian mortality, had they remained'
"Mortality among regiments sent out to India in 1857-8 :-

" Deduct 396 who were killed in
action and died of wounds, and
650 who died from sunstroke,
making - - $\quad 1,046$
Strength $-\overline{119,999}-\overline{5,799}$
"Being $4 \frac{8}{10}$ per cent. in that class of young men newly sent out to India, many of whom, I am sorry to say, were very inferior recruits; but the Government were glad to take any men at that time. Among the old and acclimatized men the loss, as above stated, was $4 \frac{3}{10}$ per cent., exclusive of invalids returning with their regiments, so that the mortality does not seem materially to affect one class more than the other when serving under similar circumstances.
"In order as far as possible to show what the loss would be had the men in neither case gone into action, or been exposed to the hardships of a campaign; I have taken out separately the strength and deaths among those corps which, so far as I can ascertain, did not take the field, and find them to be-
"Of 20 regiments which went out to India in 1857-8 un account of tine mutiny and were not in action :-

Sir
M. Tulloci 18 July 1861.
"Of eight regiments which were in India at the time of the mutiny and were not in action, the atrength and deaths were in-

" Being three per cent.
"The two classes approximate so nearly in the results that there seems no good reason why you should not send out to India young men between the ages of 18 and 21 , but if you take the field with them, a considerable proportion must be expected to porish from sunstroke, npoplexy; and the consequences of being too young for the fatigues of a campaign."
5565. (Dr. Farr.) You have, for various purposes, made extensive researches into the mortality in the army in India in the different presidencies and the different stations?-Yes; and the following are the results on that head as submitted to the Commission on the Organization of the Indian Army.

Abstract showing the Sickness and Mortality of the Troops of the Line at the under-mentioned Stations of the Indian
Presidencies, as nearly as can be ascertained from the Keturns forwarded to the Medical Board from 1817 to 1836 inclusive.

Stations.	$\begin{array}{\|c\|} \text { Period } \\ \text { of } \\ \text { Obser- } \\ \text { vation. } \end{array}$	Strength.	Admis. sions into Hospital.	Deaths.	$\xrightarrow[\text { per } 1,000 \text { of }]{\text { Ratio }}$	
					Admissions.	Deaths.
BENGAL.						
Fort Willian	$\begin{gathered} \text { Yrs. } \\ 17 \end{gathered}$	12,855	23,967	885	1,863	68.82
Chinsurah	7	4,165	6,030	234	1,067	53.91
Dhinapore;	9	6,845	14,251	484	2.081	70:70
Ghazeepore	14	10,936	16,383	440	1,554	51.05
Cawnpore -	19	25,701	46,471	1,405	1,808	58.16
Ag:z	4	2,701	8,071	49	1,859	$18 \cdot 14$
Berhampore	14.	13,342	20,404	853	1,045	63.03
Meorut	19	87,328	35,949	808	1,315	81.54
Kurnool	6	6,314	8,252	137	988	25'78
Hazarecbaugh	2	1,308	2,303	78	1,687	57.01
Boglipore -	4	2,604	4,333	224	1,691	87.36

MLADRAS.

Fort St. George	18	13,608	28,009	671	1,911	41.96
Cannanore	18	12,309	18,402	420	1,490	32.80
Trichinopoly	19	15,817	27,394	681	1,783	48.46
Secunderabad	18	13.089	35,455	854	2,555	61-26
Banralore -	91	21.870	34,538	672	1,579	30.78
Quilon	0	4,4,48	6,576	1.46	1,857	$30 \cdot 1$
Wallajahbad	5	2,303	4,480	218	1,868	$110 \cdot 9$
Bellary	10	7,504	14,011	353	1,087	47.8
arnoe	5	3,130	4,518	140	1,440	44.3

Colaha Bombay.	16	11,807	22,165	763	1,884	04.03
Poona	16	10,074	36,140	495	1,1919	$24 \cdot 78$
Telgaum	10	6,382	10,814	175	1,707	97-63
Deesa	4	2,083	2,870	14\%	1,073	63'69
Kirkee	10	6,207	9,417	168	1,521	$20 \cdot 09$
Karay	8	4,059	10,108	800	2,480	133.18

Dsstract showing the Sickness and Mortality of the Troops of
the Line at the under-mentioned Stations of the Indian Presi-
dencics, as nearly as can be ascertained from the Annual
Sanitary Reports forwarded to the War Office from 1838 to
1856 inclusive. 1856 inclusive.

Stations,	Period Oher vation	Strength.	Admis. sions into Hospital.	Deathe.	Ratioper 1,000 of	
					Admis-	Deaths.
BENGAL.						
Fort William	$\mathrm{Y}_{\mathrm{F}}{ }_{\text {m }}$					
Chingura		4,083	7,735	272	1,652	58.08
Chinsurali -	8	859	2,235	60	2,801	69.90
Dinapore -	18	10,915	20,158	003	1,8,47	88.73
Ghazeepore	5	3,002	5,638	276	1,878	91-94
Cawnpore -	10	8,885	20,473	790	8,278	88.90
Agta -	8	5,847	13,833	355	2,865	$60 \cdot 71$
Meerut	14	14,519	24,523	639	1,690	44.03
Kurnool -	5	3,434	8,051	268	2,344	78.04
Hazareebaugh	2	1,054	1,710	36	1,622	\$4.15
Allahabad -	2	938	2,325	108	2,479	115'14
Loodiana -	2	1,251	2,826	159	2,259	127•10
Umballa	10	13,773	20,627	850	1,497	$61 \cdot 71$
Kussowlie -	7	5,0.10	6,160	247	1,228	49.01
Ferozepore	5	4,445	7,817	245	1,759	$85 \cdot 12$
Jullundur -	8	4,273	7,380	160	1,727	$37 \cdot 44$
Lahore -	7	5,232	14,901	478	2,848	90.40
Rawul Pindi	4	3,359	6,276	146	1,868	$45 \cdot 46$
Peshawur -	5	8,182	26,384	588	3,225	71.86
Wuzeershad	4	6,889	11,486	408	1,600	$59 \cdot 22$
Dugshai -	3	2,618	3,726	69	1,4*s	$26 \cdot 38$
Subathoo -	3		1,524	29	1,630	81.02

MadRas.

Fort St. George	18	11,858	20,3018	313	1,754	23•03
Cannanore-	17	15,410	24,33:	438	1,011	31.65
Trichinopoly	11	7,028	14,599	237	1,013	31.07
Secunderalad	8	7,133	12,243	413	1,716	56.78
Eangalore -	17	17,183	24,016	418	1,402	24.39
Kamptee	7	6,014	12,440	287	2,068	47.72
Tennasserim Provinces.	0	9,165	16,218.	303	1,770	3s-01
Bellary	7	5,290	10,259	257	1,939	48.6

Colabs and Bombay.	7	3,646	7,806	218	2,165	60\%73
. Poona	18	13,663	28,541	451	2,089	8s.01
Belgaum	10	7,24	11,909	299	1,644	41:27
Deesa	7	7,473	12,262	230	1,041	33.45
Kirkee	14	9,131	17,218	23.4	1,896	25-63
Kurrachee	18	18,410	23,602	585	1,907	$47 \cdot 14$
Ahunednugker	8	1,154	2,765	66	2,300	57'19
Hyderabad	1	1,744	4,359	74	2,405	48.48
Aden -	8	3,983	4,934	238	1,230	34.64

Stations.	Period of Obser-vation.	Strength:	Admis sions into How pital.	Deaths.	$\begin{gathered} \text { Ratio } \\ \text { per } 1,000 \text { of } \end{gathered}$	
					Admissions.	Deaths.
BENGAL.						
Fort William: First period second period						
	17	12,835	23,967	885	1,863	${ }^{68 \cdot 89}$
	7	4,683	7,735	278	1,652	
Total -	24	17,063	31,703	1,157	1,807	$65 \cdot 98$
Chinsurah: First period second period Total -	7	4,155	6,930	20.4	1,067 8,601	58.01
	3	5,014	9,165	234	1,827	56.64
Dinapore: riast period Second period	${ }^{4}$	6,945	14,251	4×4	2.081	$70^{\circ} 70$
	13	10,913	21,158	303	1,847	82.73
Total	29	17.740	34,409	1,387	1,937	78.09
Ghazerpore: First period Sccond period	14	10,038	16,888	419	1,354	41.05
	5	3,0002	5,638	276	1,878	91.94
Total	19	13,938	23,620	793	1,816	52.01

These results do hot exhibit the loss at all the Indiun stations during the 39 years included in the.
first table, but at those only where regiments have been stationed for the whole or the greater part of A. M. Tulloc year ; they are also exclusive of the loss on marches, which is often very heavy; but it has been considered more advisable thus to found the results on incomplete data, than to incur the risk of adopting what might prove to be incorrect.
5566. What number of men do you think it would be necessary to send out in order to make good the excessive loss occasioned by death?-Suppose the army to consist of 80,000 men, upon that 80,000 men the loss would be 60 . per thonsand, therefore you would have to raise 4,800 men to supply that loss.
5567. In addition to the mortality at home incurred among the same men? -No, not in addition; you will always lose at least 2 per cent. in India. You can never expect to have as small a loss there as at home.
5568, (Chairman.) But supposing the Indian army to be only $70,000 \mathrm{men}$, the loss, according to your calculation, upon that number would be 4,200?-Yes.

5569: (Dr. Farr.) To what extent are you of opinion that that loss could be reduced?-It might, perhaps, be reduced to about 1,400 mou annually, but that is upon the supposition that you selected only healthy stations, and kept the troops there; I am aware, however, that this cannot be done. You must always occupy some unhealthy stations, and abide by the loss, which might be as much as 4 or 5 per cent., even with the best arrangements. But there is no necessity for the whole of the force in India, of $70,000 \mathrm{men}$, to be so exposed ; for example, suppose you kept 20,000 in unhealthy positions, the remaining 50,000 might be quartered in stations on the hills, or in localities known to be healthy. The loss there would be only about 2 per cent., or 1,000 annually; the loss on the remaining 20,000 exposed, at, say even 5 per cent., would be another 1,000 ; making a total loss of only 2,000 men a year, instead of 4,200; This country could, firom what I know of recruiting; be able to supply that number, and also to fill up the vacancies by invaliding, and the time expiring for which men had entered the service. But I question very much whether, during an active war, you could keep up 70,000 men in India, exposed to the mortality which has been usual during the last 40 years.
5570-1. Will you be good enough to state the full extent of our loss in India? I suppose you would not imagine that we should always be able to govern India without employing troops in the field, or without incurring losses as heavy as have already been incurred. Is it net, therefore, right to assume that the mortality would be represented rather by 70 per thousand than by 60 per thousand? - I do not think that you will ever have the same loss that. you have incurred in your campaigns as heretofore. I believe for instance, that in the first Burmese campaign 12 men at least died from disease or mismanagement for one that fell by the sword, which I hope is never likely to occur again.
5572. The ordinary mortality among men of the same age as those serving in the army in England is not more than 10 per thousand; I mean taking the civil population?-That is correct, and I should be glad indeed to see the mortality of the army reduced to one per cent. I think it quite possible to do it.
5573. If proper care be taken of the army, you do not think that it will naturally experience a higher rate of mortality than the general population of the country? -I think it ought to be reduced to : nearly the same, but there are advantages which the civil population enjoy over the military, which require to be taken into account. Among the men in our army in England, for instance, you have a vast number who have been serving in foreign climates, and perhaps one-half have there contracted disease which often occasions mortality in this country, whereas it is not 80 with the civil population.
5574. Cannet you eliminate that by taking, as an example, the Guards ?-Yes.
5575. Who experience really a higher rate of morn.-
tality than the troope of the line ?-Yes; but that is owing to causes comnecfed with their residence in the metropolis, and which do not extend over the whole force in the kingdom.
5576. At any rate, the heavy rate of mortality in India is a matter that you must consider of the greatest importance? - Yes; and too much attention cannot be paid to it, not merely on the score of humanity, but because if you ever have a European war there is likely to be the greatest difficulty in supplying the casualties which must occur in India among so large a body of men.
5577. Besides the loss by death, there is a great -loss, is there not, by invaliding?-Not nearly so great as is supposed; the proportion by invaliding is not very much.
5578. What does it amount to in 1,000 men ?-I think only about 15 or 20 annually.
5579. That would make the 60 or 70 per 1,000 , how much ?-Before adding them you must take into nccount that the medical officers have been in the habit of including as invalids men who have served their time.
5580. But cannot you separate them?-No. Having completed 21 years' service, which is the ordinary period in the army, they are discharged as worn out without any disease being' specified. You will find, in the different tables, that this class constitutes a large number; who, instead of being men likely to die, are, in many instances, very healthy indeed.
5581. What is the annual loss out of 1,000 men by death, invaliding, or disability ? - I should say about 75 per 1,000 , excluding casualties in the field.
5582. Do you consider that this mortality is necessurily connected with tropical climates?-To a certain extent; for instance, I think you will always be liable to it in the West Indies; because there, you cannot carry the men up to a sufficient elevation to avoid it.
5583. Have you any returns showing the mortality among the officers in the East Indies?-Yes, so far as regards the Bengal presidency, where out of 1,184 deaths among officers, the proportion occurring annually in each rank and at each age was as under :-

\cdots	$\left.\begin{array}{\|} \text { Colonels } \\ \text { arerage } \\ \Delta_{g e} \text { bl. } \end{array} \right\rvert\,$	Lisut.- Colonels arerage Ago 0.	Mnjora, average Age 40.		Liet teliants average 18 to 88.	Cornets nnd Engigns, avernge 18 tge 1833.	$\begin{gathered} \text { General } \\ \text { Average } \\ \text { of alile } \\ \text { Ages. } \end{gathered}$
Died annually per thousand of each rank	$\} 59 \cdot 4$	48.41	42.0	81.5	$27 \cdot 5$	23.4	31•8

5584. What age would represent the ordinary age of the soldiers in India?-I thiuk you might call the average age about 27.
5585. Assuming themortality to be 60 per thousand, omitting loss in war, what is the mortality among the officers at a corresponding age $;$ should you add anything oniaccount of the officers coming home ?-The mortality amiong the officers would, according to the returns, be about one-half of that which takes place among the troops at corresponding ages but it is probably reduced at least one-third by the facility of coming home, and it would be great advantage if" arrangements were made by which soldiers who had frequently suffered from tropical disease in the East Indies, could be removed to regiments serving in colonies where that kind of disease did not exist, precisely in the same way as an officer who finds that the clinate of India does not' suit lis constitution, exchanges into a regiment serving at the Cape of Good Hope, Australia, or America.
5586. Do you think that that could be practically carried out?-I think so; and a suggestion was made with that view by the Committee on Recruiting, of which I was a member.*

* See page avii of Report on Reorruiting Commissiour

5587. Can you furnish the Commission with any information about the mortality amongst civilians in the East Indies ?-Yes, I can. The civil service

	Above Boyears of age and 30 of service	Age .45 to 50 service 25 to 30 .	Age 40 to 45 service 20 to 25.	Age 35 to 40, service 15 to 20.	Age 30 to 35, service 10 to 15	Age 25 to 30 , service 5 to 10	Age service 1 to 6
Died annually per thousand of each class	$\} 48.6$	$36 \cdot 4$	35.4	23.4	16.6	20.8	19'9

has a much lower rate of mortality than the military. 5588. That is shown, I believe, by the fund accounts ?-Yes. For a period of 46 years, from 1790 to 1836, they supply the following results on this head:-

Between 10 to 15 years' service is the period when leave to Europe is most generally obtained, which may affect these results.
5589. Do you think that any addition should be made, as a correction, to that rate of mortality? Certainly.
5590. I mean by the removal of persons who would die if they remained in India ?-Yes ; but it is not that which causes the difference in the mortality between military and civilians so much as the nature of the duty. which an officer has to perform in the native force in the East Indies, to which these returns refer, by having to go upon detached parties, and to march through the country sometimes for months together, escorting stores or treasure from one part to another; the shifting of quarters also entails the necessity for an officer, whether of the native or European force, going through many unhealthy places; and I have no doubt that the difference between the mortality of officers and the mortality of civilians may be sufficiently accounted for by these circumstances.
5591. The civilians are generally stationed at one place? ?-Generally in one place ; at least they do not move about to the same extent as the military.
5592. In Calcutta?-No, in different stations.
5593. All over the country ?- Yes; their stations may in some instances be unhealthy; but, of course, they try to make them as healthy as they possibly can, and is selecting a" place for head-quarters, they endeavour to select the healthiest spots they can find.
5594. That is an element which may partly account for the low rate of mortality among them ?-Yes.
5595. Then it would not appear so unreasonable to assume that the mortality of Europeans in India need not be much greater than you have mentioned ?-Na; I should say it need not exceed 2 per cent., if you selected healthy stations and found employment for the men in various ways, and if you had any means of increasing the proportion of European marriages.
5596. Are you of opinion that marriage would reduce the mortality? -Yes, I think so ; but I am not an advocate for it upon military grounds.
5597. You have mentioned several circumstances which you, think might lead to a reduction of the mortality in the army: The greatest result, I believe, was obtained in Jamaica from removing the troops up to the high grounds ?-Yes.
5598. What was the elevation of that station ?It is about 3,500 feet at Newcastle.
5599. Until your researches, the troops had been kept upon one of the unhealthiest parts of the island? -Yes, in several parts which were notoriously so. -
5600. No attention had been apparently paid by the authorities to the immense mortality that took place there?-The fact had been before them that at Maroon town, which is upon high ground, although not so high as Newcastle, the mortality was considerably lower than in the plains, from yellow fever rarely prevailing there; but no return had been prepared showing the exact difference in the mortality from official sources.
5601. It had not made miach impression upon the Government ?-No.
5602. Is not the same thing likely to be the case in Indin. We have been told that we must keep a large force 'at Allahabad, where the mortality,: according to your table, is at the rate of 115 per 1,000?-Yes, I have no doubt of it. Allahabad is notoriously unhealthy; it is situated at the confluence of two rivers, where immense masses of mud. are exposed, besiden decayed vegetation ; and I am afraid that you cannot well avoid having a cortain number of troopis there; but there is no reason why they should not be changed more frequently.
5603 . Do you think it has generally been known that the mortality has been so high at Allahabad ?Ies, it has beep long known.' In Bengal I am sorry' to say that I can mention very few that are healthy, except hill stations. Meerut has been usually a healthy station; the mortality, upon an average of 40 years having been only about 35 per 1,000 , which is not high for Bengal. Madras shows the most favourable results with regard to health. At Fort St. George, with all the inconveniences of being the capital of the presidency; the mortality upon' an average of 34 years, has been only about 40 per 1,000; at Cannanore it has only been, upon an average: of 35 years, 32 per 1,000 ; Trichinopoly; where it is very hot, 40 per 1,000; and at Bangalore it has only becn, upon an average of 38 years, about 28 per 1,000 ; that is a station at which you might keep a very large proportion of troops in reserve at a very small cost of life.
5604: Yon would advocate the policy of keeping a large proportion of the troops at healthy stations, such as Bangalore? -Yes; and to relieve the men at the unhealthy stations from theri occasionally, so as to give the soldier a prospect, if he is at an un-healthy station, that he will in a sliort time get out of it. At Bangalore the supplies are abundant, and there is every facility for keeping a great number of troops. Poona, in the Bombay Presidency, is also healthy ; there, upon an average of 29 years, the loss has been only 28 per 1,000 ; it also affords great facilities for cantoning a large body of men; as likewise Kirkee, where, upon an average of 24 years, the loss has been only about 25 per 1,000 .
5605. Then there is the station at Kayra, at which the mortality seems to have been enormous? - It was, on the average of several years, 123 per 1,000 annually; till it had to be abandoned from its unhealthiness; but there is no doubt that you can find among all those stations some at which a large proportion of troops might be quartered without the great loss of life which takes place at present.
5606. Both on sanitary and on political grounds. You think it of the utmost importance to save the lives of the soldiers?-Yes.
5607: Do you, on military grounds, see any reason why a concentration of troops in healthy places should not be maintained?-No, now that you are getting railroads laid down; the difficulty before was that in the event of any sudden disturbance it would cost so much time to bring troops where they were wanted; but now, with the facilities afforded by railroads both in Bombay and Madras, there will shortly be little difficulty in doing so. Although in Bengal no stations in the low grounds or near rivers are healthy, there are a number on the hills, where the mortality is usually not above 2 or 3 per cent. From these the men could be brought down with great facility to the plains, and when brought down, every one would, from their superior efficiency, be worth two of those that you bad formerly in the plains.
5608. Our army in Indiä has been scattered all over the country in small detachments? -There has not been much conceutration at any particular part, and perhaps it could not, well have been otherwise considering the circumstances of the mutiny; but pow is the time to change all that, and the military authorities, I think, might fairly be called upon to
state what is the nutmber of men that they must keep at the unhealthy stations indicated by the preceding tables, and then all beyond those might be quartered in the healthy ones, subject to removal when wrated for relief or any great military or political object ; but it does happen that when the locating of a large force is left entirely to the authorities on the spot, a regiment may be brought to a particular place without due consideration as to whether it is healthy or not.
5609. Are the results as shown in these thbles generally known in India?-I do not think that they. are, unless they have been published since my examination before the Organization Committee'; there is no summary that I am aware of that has ever gono out to India.
5610. Practically you think that those results have not been much taken into account in selecting sta-tions?- Very probably not, but I do not think that the authorities have been in a position to do so up to this time ; however the country seems now so far settled that any great sanitary arrangements might be worked out with ease. Most of the high lauds too have adrantages for the location of troops in addition to health ; for example, the cost of feeding them at these elevated stations would be materially diminished, for the meat is usually very bad in the unhealthy parts of the country, and comparatively dear; whereas in the healthy' places there is usually plenty of grass, and wheat is abundant, so that you get bread cheaper. Att such stations too the labour of the men might be made available in reducing much of the cost at present incurred for accommodation. It affords a further and very important consideration in this question that unless some measures be introduced to lessen the mortality among the troops, the cost of transport to keep up the European army which it is contemplated to maintain in India will be enormous.
5611. What number of men should you have to send out every year to maintain an army of 70,000 men ?-The calculation I submitted to the Organizà tion Committee on that head was, that if each regiment had to be relieved once in 10 years, there would be 8,000 nen required for relieving the regiments alone every year.
5612. That is for 80,000 men ?-Yes ; 8,000 men would be required to relieve the regiments every 10 . years, and 8,000 men would come home with their regiments, making 16,000 passages to be provided besides those for 5,600 recruits who would be rebesides those for 5,600 recruits who would be re-
quired to replace the men who died, calculating the quired to replace the men who died, calculating the
deaths in 80,000 men at 70 per thousand. There would also be about 4,000 invalids and time-expired men, who had completed 10 years service, to be brought home ; and about 4,000 recruits to go out to replace them.
5613. (Chairman.) You are assuming the army in India to be maintained at 80,000 men ?-Yes.
5614. But do you think that that will be the pumber maintained ?-Yes, when 60,000 mon were named as the probable number of the army the Indian Government had a large European army of their own vernment had a that is to be amalgamated with our besides. Now that is to be amalgamated with our
Line army, and therefore I think there will not be fewer than 80,000 men, or between that and 70,000 , altogether in fiture.
5615. (Dr. Farr.) What is the average time occupied in the passage to India?-About three months and a half now.
5616. So that about 7,500 men would be constantly'. on the ses ?-Yes.
5617. Have you made any calculation as to the expense ? - The expense amounts to a very large sum indeed; so large that it would be between 250,000 l. and 350,000 . annuially, unless some means be ndopted of selecting healthy stations, and so reducing the mortality; if you did so, a great part of these men to be relieved would like India, and would remain at those healthy stations, and not wish to come home at all ; they would volunteer into other regiments, and in that way you would save the cost of transport. and in that way you would save the cost s 2

Sir
M. Tulloch,M. Tulloch $^{\text {K. }}$ K.C.B. is July 1861.

There would not be the same number of invalids, and probably a great part of the time-expired men would re-engage.
5618. Do these men who die serve, on the average, the full term of 10 years ?-No.
5619. So that you have more frequent changes than if the men enjoyed better health?-Yes.
5620. This economy in the transport of men, you think, might be fairly taken into account in considering the expense? -Yes ; and now that railroads are becoming general throughout India, there would be no difficulty in making the reliefs, which has been one great objection hitherto.
5621. (Sir R. Martin.) Of all the causes which reduce our armies through sickness and mortality, fever, I presume, you find to be the greatest cause in all tropical climates? -In some places; but it is dysentery in others.
5622. In Bengal it forms, does it not, by far the greater item? I have no doubt of it.
5623. Next in order of frequency, would stand dysentery, diarrhœea, and liver disease? - Yes. I think there is no doubt that those three diseases and fever will embrace nearly the whole of the mortality.
5624. None of those strictly tropical diseases are found to prevail in the mountain runges of tropical climates?-Dysentery prevails ; but it may be doubtful whether it originated there.
5625. It has been assumed that it has been generally carried thither from the plains, either directly in the instances of men suffering from bowel complaint, or by men in reduced health going from the plains to the colder regions, where they are seized with bowel disorders, but not tropical dysentery? -I am not aware of the distinction; I believe, however, that several regiments which have gone to the hill stations suffered from dysentery and diarrhoea; but in most cases their health had been affected before, and therefore it is a question whether the disease originated there, or if they brought with them a predisposition to it.
5626. If the latter, it would rather go to establish the fact that the mountain ranges are better calculated for the preservation of health than the cure of disease?-I believe those in Bengal are found to be so, but there is a considerable difference between that part and the Neilgherries, the country about Bangalore, and about Poona, in so far as those are extensive table lands, whereas in Bengal the stations I allude to are principally on mountains of very considerable elevation, with deep valleys intervening, where there are sources of malaria.
5627. Is not syphilis also a very powerful cause, directly and indirectly, both of sickness, mortality, and invaliding?-There can be no doubt of it ; but, as I have already stated, I do not think that venereal is so general as to account for any considerable proportion of the mortality.
5628. It would act more in an indirect way, by reducing the general health through the disease and through the remedies necessary for its cure? Yes.
5629. That is your opinion?-Yes; and it also adds very materially to the amount of invaliding? I know this by the number of men who are pensioned on account of disease which had obviously originated in syphilis.
5630. (Dr. Farr.) In the proportion of the whole number constantly sick in the army, does not syphilis constitute a large part of the actual sickness of the army ?-Yes; in all the returns that I have firmed, you will see what a number have been under treatment for that disease.
5631. Does not that form a very large proportion of the sickness in the army ?-Yes.
5632. What is the total amount of the sickness in the army?-Usually five per cent. at home; I have no exact statement of the numbers constantly sick from syphilis, but only of the number of cases oc. curring anuually, many of them I am aware are very lingering.
5633. So that it forms really a very cesential part of the sickness of the army?-Yes, no doubt of it ; but in India; you have no greater proportion of venereal disease, with a very large proportion of other sickness.
5634. Out of 120,000 men, for instance, in England and in India, how many are labouring under syphilis? - The proportion of cases in England, taken on the average of 10 years, would be about 60 per thousand annually. I cannot get the information for India without analysing the returns of venereal from that country, which would involve great labour:
5635. (Sir R. Martin.) Speaking of the stations on the plains generally throughout India, does it not happen, even at the healthiest of them, that in the course of a residence there the constitution of the European soldier becomes deteriorated ?-Certainly, and, what is worse, their spirits break down, and I have very little doubt that, in many instances, they resort to dissipation from no other cause than the apparent hopelessaess of getting out of an unhealthy station.
5636. It has been repeatedly stated before this Commission that the men sink in their frames, and especially in the chest ?-I cannot say that I have observed that; but I have observed among a great number of the men belonging to the East India Company, who have recently been discharged, a great deficiency of chest; whether it arises from that cause or not I cannot say, buit as compared with the men of other regiments, they are generally smallchested men.
5637. Another evil attending a residence on the plains of India is, that owing to the heat the men cannot take that amount of exercise which is necessary to preserve them in good muscular condition and in health ?-There can be no doubt of it; they cannot take that degree of exercise which is necessary.
5638. I believe you have made extensive observations on the question of acclimatization in hot cli-mates?-Yes.
5639. Will you be good enough to state the results of your observation on that subject?-My views were expressed as far back as 24 years ago, in the report upon the West Indies, when I had to go very fully into the question, before the military authorities would consent to bring about a change, then strongly advocated by me, and by which, instead of the troops being kept for 10, or sometimes for 12 years,-in the West Indies, they could be relieved every three years. This was objected to, not merely by military, but by medical men, on the ground that the oftener reliefs were effected the greater would be the tendency or the supposed tendency to sickness and mortality, owing to the want of acclimatization. I went over the returns for about 40 years, for the purpose of getting at all the facts on the subject of acclimatization, and the result is published in my report on the West Indies. It extends over two or three pages, and is supported by a calculation deduced from the returns of every regiment that had been in the West Indies for a period of 40 years, and which clearly showed that it was erroneous to suppose that any great mortality necessarily arose from the circumstance of the men being new to the climate. Upon that a great change was introduced, under which the troops were, in the first instance, sent to the Mediterranean to serve for three years, then to the West Indies to serve for three years, and then to America to serve for the remainder of the period, usually about four years. There were some financial advantages attending this arrangement as well as those connected with health. For instance, it had been found that when troops were sent direct to the West Indies, comparatively littlo service was got out of them before they died or were invalided; that when they were sent direct to America they deserted, sometimes as many as 200 or 300 in a year, and little service was got out of them either, as it was almost always the young soldiers who deserted. But by this
new arrangement the soldiers who were sent out to the Mediterranean had usually served for about two ycars in England, this, with three years in the Mediterranean, unade five years' service, and when they were sent to the West Indies to serve for three years more, of course those who died there had given a greater proportion of service than if they had been sent direct. By the time that the regiment reached North America most of them had thus given, as a minimam, about 11 years' service, after which, if a man deserted, he would, by sacrificing his prospect of pension, be rather a gain than a loss to the Government. That principle was adopted for reliefs, and I looked upon it with great apprebension for a long time, lest any evil consequences might arise, although I had done everything I could to ascertain that my premises were correct. But I am glad to say, after an experjence of 24 years, it is found that the mortality since this change has been only 6 per cent. in the West Indies instead of 8 per cent., as formerly; therefore I hold that point, as to acclimatization, to be clearly settled, more especially as in the West Indies there has been no very great change, by moving the troops to clevated localities, as in Jamaica, which could account for such reduced inortality.
3640. An opinion is generally entertained by the medical officers of the army that, when placed under more favourable sanitary conditions, the soldier residing in a warm climate has the functions of his body brought, as it were, to a balance which is favourable to bis condition, and that men so circumstanced have been more capable of encountering the great fatigues of long marches, and have been less subject to disease than new-comers. Do you believe in the doctrine so far as that goes ?-I do not think, so far as I can ascertain, that there is much difference between the two, or that the circumstance of a soldier's constitution being deteriorated by repeated attacks of disease during long residence, is likely to produce the result you speak of.
5641. You would say that a residence in an unhealthy climate must necessarily produce injury for every year's resideace?-Yes, and that is strongly borne out by the very returns I have already quoted to you regarding the officers of the Indian army, showing that the mortality usually increases with age and rank, but as the colonels, the lieutenantcoloncls, and majors have, as a general rule, lived longer in India than the rest, if length of residence would have saved them from the ordinary run of mortality, they ought to have sustained a lower rate than their juniors instead of a higher.
5642. The result of your investigations would lead you to reject the doctrine of acclimatization in toto? -Yes; I would certainly not attempt to found any sanitary measures upon it.
5643. (Dr. Gibson.) Has not the mortality among the troops in England been reduced below that of the cisil population of the same ages at our large stations, such as Aldershott? -I understand that it has been so, from some calculations that have been made by Dr. Balfour. I have not had the returns, but I have every confidence in his calculations, and I am happy to find that there is so great a change in the mortality of soldiers in this country, where great sanitary improvements have taken place.
5644. (Dr. Farr.) Are you aware of anything to account for that?-The great difference, as compared with former years, is that more attention is puid to the space that a man should have in barracks. I look upon that as the greatest of all the changes that have been effected. One can easily imagine this from the fuct that the lower classes of our population who live in towns, or in the more confined parts of them, die at very nearly the same rate as the military have hitlierto died; but those who live in healthier situations, and have a cottage to themselves, with the wind perhaps Blowing through every portion of it, are healthy, notwithstanding all they undergo; they are also exposed to all descriptions of
weather during agricultural operations, but it seems to do them no harm.
5645. To that you attribute the great decrease in the mortality, and the greatly improved health where people live so much in the open air ?-Yes; I think also a very great advantage is likely to be obtained by having separate buildings for a limited number of men, instead of their all being in one barrack. It has often surprised me that so much expense should be incurred, amounting, I believe, to about $80 i$. or 90l. a man,* in order to obtain enormous barracks, when soldiers would be much more likely to be healthy if in smaller buildings that would hold only 10 men each: This would avoid much of the disturbance at night; for if there liappens to be one drunken man in a barrack room, he is continually making a noise ; and if two or three come in wet, it is very inconvenient to all by creating damp in the room. It is also a very serious matter in a sanitary point of view, that if one man be seized with contagions disease, it may extend over a very large number, therefore I think that all our exertions should be not to build enormous barracks, but to have small and inexpensive ones, in the erection of which, owing to their simplicity, the services of the soldiens might perhaps be made useful.
5646. (Chairman.) But that is totally contrary to the present practice? -Yes, and I cannot understand how it happens that we pay more for the accommodation of the soldier in the present day than would build separate cottages with a room to himself; that this is the case, you will find if you refer to the cost of barracks.
5647. (Sir P. Cautley.) Does not it stand to reason that four small barracks for 100 men would cost more than one large barrack for 100 men?--So you would suppose, but I only look at the result; it depends entirely upon the mode of building. It is true that you have more walls in four barracks, but you have thicker walls for the 100 in a large barrack; you have ouly one roof, but you must have stairs, and all those additions come to be very expensive.
5648. (Chairman.) All that you desire with respect to quiet, and preventing the spread of contagion, would be sufficiently secured by dividing a large and extensive barrack by strong partition walls? - Yes, but you must carry them all the way up, which is very expensive.
5649. (Dr. Gibson.) Do you think that a building divided in that way would be as healthy as small detached buildings ?-No, and you will find that a small cottage containing four rooms could be built for somewhere about 150l. If you were to put two men into each of those rooms, you would have accommodation for eight men for a sum which at 5 per cent. would be only $7 l .10 s$. a year. I have returns as to barracks which show the expense to be nearly five times that sum in this country, and I have some from India which make it ten times as much.
5650. And the saving would be greater in India, or in any country where the Government had an unlimited command of men? - Yes; in India, I think that the greater part of the buildings could be erected by the men. When I was inquiring into the mortality in the West Indies, I pointed out the great advantage that it would be if the men could be removed to Maroon town, \dagger and an objection on the score of expense was raised. It was said that on the low grounds there were plenty of barracks which had been erected at an enormous cost, and it was a great pity that they should not be occupied. In order to get over the difficulty with regard to the expense, it was auggested that the troops at Maroon town should be employed in building huts for themselves, * A summary recontly prepared of the average cost of 10
barracks makea the rate 86. . 15 s . for each man and officer quartered in them.
\dagger See p. 103 of Report on Sickness, Mortality, 8cc. of Troops in the West Indies and Jamaica.

13 July 1861.
which was done. The 68th regiment was employed to build them, which they were very glad to do, that they might not remain in an unhealthy locality. Though only of wood, they lasted for about seven' years, and cost about 30 s . a hut. The men got nothing but a pair of shoes each for the tear and wear incident to such work, and the nails and iron work were furnished to them. This shows what soldiers can do for themselves. In Burmah we were obliged to build our own barracks. I grumbled much abont it at the time, but I have often thanked the general officer who forced me to this expedient. In India you have an abundance of wood, and everything to enabla you to build cheaply in those healthy stations, and the men could assist in the mornings and evenings.*

There is another advantage which I think might be attained by the men being located in the higher stations. It may be possible for them to be supplied with beer manufactured there, and I am afraid that if they are not so supplied, the enormous expense which is at present incurred in sending beer out to them from this country will ultimately have to be discontinued. I understand, from some returns that I have before me, that the East Indian Government are paying now very nearly 200,000 . a year for the cost of supplying beer to the troops; there is no difficulty, so far as I am aware, in brewing beer in India. Good hops and barley can be raised in the country, and a low equable temperature, such as is required for brewing, can be found at Bangalore, the Neilgherries, and various other places.
5651. (Sir P. Cautley.) Are you aware that it has been tried in Bengal and also at Mussourie ?-Yes; and that is the very reason why I advert to it.
5652. (Chairman.) You are probably aware that there is no difficulty in making beer in India, but the difficulty is to get the men to drink it?-Yes; because the beer you refer to was not made by profes.sional brewers, but by an officer who knew little about it, though anxious to do his best in so important a matter as the introduction of beer at a moderate rate.

[^0]5653. (Sir P: Cautley.) At.Mussourie the beer wap. brewed by a professional man $_{r}$ and his beer was very well liked by the officers, but the men did not approve. of it? - But they would have approved of it if they could have got no other.
5654. It will not bear carrying? - But if you had men upon the high lands you would not require to : send it to them, you would brew it on the spot; if, for instance, you had 10,000 at Bangaloge, you would brew the beer to be used by the men on the spot.
5655. The hops are all imported, and I was informed by Mr. Bowley, the person who brewed beer, that he had great difficulty, in certain parts of the process, in keeping up an equable temperature; the hops he obtained from England. They have been. within the last few years pressed into a very small compass, and there has been no great difficulty with regard to them?-Hops, I believe, will grow in India.
5656. But they do not flower perfectly ?-In that case they could be got from Europe ; any alternative seems better than the present costly system. I find, for instance, that in 1859, in Bengal alone, the quantity consumed amounted in one year to 73,000 hogsheads, and the sum it. cost the Government was 2,608,510 rupees, which is such an enormous expenditure that I am very much afraid it can not be continued.
5657. It was with reference to that point that I put the question when you mentioned that there would be great advantage by locating European troops on the hills on account of the cheapness of feeding them. When you come to consider that the beer has to be transported on men's backs, particularly up the Himalayan mountains, and that there is not the facility of obtaining meat there which you imagine, in all that line of country, so far as economy goes, these circumstances would seem to be rather against it ?-My argument was that the beer could at hill stations be brewed on the spot, consequently there would be no expense in carriage, and sheep are usually cReap and good in all mountainous countries where the temperature is low as in the Himalayan ranges.

5658: Most of the sheep that are served out in barracks are brought from below. They may be fattened up as well as they can? - The sheep at Bangalore are very fine, and at Poona they can be had at a very moderate rate.
The witness withdrew.
r. D. Siebe, C.E.

> Mr. Dantel Sirbbe, C.E., examined.
5659. (Chairman.) You are, I believe, the manufacturer of J. Harrison's patent ice-making machines? -Yes.
5660. What quantity of ice can be made with this machine? - A machine requiring a 10 -horse power engine to work it (consumption of coals about one ton in 24 hours) will produce four tons of ice in that time.
5661. What is the cost of manufacturing this ice in London ?-It is estimated by Mr. Harrison to be less than $10 s$. perton, including interest upon capital; such, I believe, would be the case upon a large scale, with a machine capable of producing from 10 to 20 tons per diem; my experience with a four-ton machine has led mee to estimate it at about $15 s$. per ton.
5662. Is it proposed to cool the air of rooms by this means?-Yes, by circulating cold water through pipes upon the same principle as rooms are warmed; the pipes being placed close to the ceiling to allow the cold air to descend, or by passing the air throngh the tubes of the refrigerator, and cooling it direct.
5663. (Sir P. Cautley.) What is the cost of the machine, including steam engine, and for what will it be delivered in Calcutta, Madras, or Bombay? The cost of a four-ton machine and steam engine, boiler, $\&$ c., is $1,650 l$. The cost of a ore-ton machine, steam engine, \&rc., is 650l. I am unacquainted with
the cost of shipment to India, having always delivered the machines to the merchants here in England, who attended the shipment.
5664. What materials are used or employed in the manufacture ?-Ether, chloride of sodium (ordinary table salt), and water.
5665. What amount of ether is expended during a day in the manufacture of four or five tons?-About two lbs. of ether are lost per day, depending entirely upon the soundness of the machine.
5666. What description of ether is necessary; and what is the price of ether ?-Sulphuric ether is preferable, which costs $1 s .8 \mathrm{~d}$. per 1 lb .
5667. What amount of salt is expended in the manufacture of four or five tons of ice; and ut what cost ?-It appeared so small, that I have not paid particular attention to it, but as far as I am able to judge, 56 lbs . would be amply sufficient. The price of salt is, I believe, 2s. per cwt.
5668. Can you explain shortly how a room would be cooled, and how kept cool by the use of the machine, say to 60°. Fahrenheit? -The machine could be placed in the basement of the building, or in an outhouse; and connected with the apartments by means of tubes; in the apartments rows of copper tubes could be attached to the ceiling, or what would perhaps be preferable, a false ceiling of sheet copper could be employed, a pump attached to the machine,
causing the cold water to circulate in either case. In cooling the air before entering the apartment, a blowing fan would be requisite to force it through the tuhes of the refrigerator, then conducted by means of wood or earthenware pipes to the apartmente, and means taken to diffuse it. generally without causing a draft.
5669. It is understood that only portions of the machine offer difficulty in repair; are valves' with spiral eprings attached or connected with it; from what catise are they likely to get out of order; is it merely from wear, or from accident? The only portions which are somewhat difficult to repair are the four vilves, two inlet and two outlet ; an ordinary mechanic, however, with the use of a small lathe, \&cc., could repair them. Ordinary wear and tear is the cause of their getting out of order, or the breaking of a spiral spring.

- 5670 . Supposing that a machine is erected at a place distant from the means of repair, what portions ought to be supplied in duplicate? -A spare set of the above-mentioned valves and springs, and spare brasses for the bearings, screws, bolts, \&cc.

5671. What is the-cost of these duplicates? About $50 l$.
5672. What establishment is requisite for the maintenance of the machine?-One skilled mechanic and three or four labourers.
5673. (Chairman.) Is there anything else you would like to add in explanation ?-No; except that before applying the machine for cooling rooms in India, I should advise experiments to be tried in England, in order to ascertain the best means of applying the cooling power. With regard to making ice, that has been thoroughly tested, and would, therefore, not require duy preliminary trials.
The witness withdrew.

ADDENDUM.

Extract from Supplement to the CalcuttaGazette, Saturday, 22 June 1861.

From the Military Finance Department, to the Secretary to the Government of India, Military Department,(dated Calcutta, the 23rd May 1861.)
Sir,-Wr bave the honour to submit, for the consideration of Goyernment, \& Report on the introduction of a new machine for making ice, of which we have been faroured with an inspection and demonstration of its capabilitiea, and the result appears to us to be so satisfactory, that we should not be doing our duty faithfully to the Government lid we not at least bring this prominently under notice.
2. Our attention has been directed to this matter in consequence of our being aware of the largely increased consumption of ice in hospitals and barracks in the varions
military stations in India, and the great difficulty and military stations in India, and the great difficulty and expense with which this necessary is at times procurable; and also in certain districts and seasons of the uncertainty the desire of Government not only to provide for its soldieris and others every necessary, but to provide such necessaries at the most reasonable cost, we introduce this subject as one well worthy of attention, as the Government has now become a large and certain consumer for the necessary to which this paper immediately relates, both with regard to its sanitary as well as its financial bearing.
3. By the courtesy of Mr. Calder, of the Firm of Messra. D. Wilson and Co., we have been enabled to test the properties of this machine, and the advantages which it affords of giving a steady and certain supply of ice throughout the year, no matter in what situation;-and we are of opinion year, no matter in what situation;-and we are or ophishment of an ice factory at most of the cantonments, if the ment of an ice factory at most of the cantonments, if the
Government would take the initiative in proposing the Government would take the initiative in proposing the
measure, and-offering its support on certain conditions; and measure, and-ofrering its support on certain conders; if the residents in cantonments will also take their part in its establishment and management, a course which we have,
but little doubt they would be glad to adopt, on being made aware of the opinion of the Government in reference hereto.
4. We would therefore suggest that inquiries should be aet on foot with a view to sseertain, in the first instance, what private means would be available towards the etablishment of these ice machines; information being at the same time given as to what might be the expected product and return to be derived therefrom, as illustrated in the following paragraphs.
5. It will be seen from the accompanying copy of letter

Total Rupees
 ,500, as per margin, for a No. 3 size machine; apparatus for working the same, and with an additional daily expense of rupees $14-4$, detailed of rupees 14-4, detailed
in the margin for proin the margin for pro-
duction of ice, 1000 lbs . of ice can be available of ice can be available lating upon the data set forth, the cost of ice thus obtained is less than one
piece (three pie) per lb., whereas ice procured from a private firm costs not less than one anns for the same quantity in Calcutta; therefore, comparatively, the cost of ice obtained by such a machine is to the cost of ice purchased from a private firm as 1 is to 44 , or in other words greater than four times the cost of the former, and irrespective of the harge for conveyance.
6. Although these data may be subject to variations according to locality, some of the items above mentioned in the margin may, by the circumstances of the country, be in excess of the price set against it; and, vice versà, others might be reduced. But on the whole they serve as a goad basis for calculating the probable expense that will be incurred for a pound of ice thus produced in any part of the country; and perhaps it may not be too wide an assumption if we assert that the rate per lb,, as above stated, is suscep tible of diminution. The item of allowance for the engineer being the only one capable of altering the case to any con siderable degree, we would therefore beg to bring to the notice of Government the fact that almost every regimen could furnish a man capable of working such a machine and suggest that advantage may be taken of this-should our suggestions be entertained-as it will afford the twofold benefit of causing a reduction of outlay and provide means of useful employment to the men.
7. In further explanation on this point, viz., the cost at which ice can be produced by the ice machine, we have the honour to append, for the perusal of Government, a detailed atatement drawn up by our colleague, LieutenantColonel Simpson, who, in company with Assistant Commissary General Captain R. C. Wroughton, inspected the working of the machine, which, by Mr. Calder's kindness, they were made thoroughly acquainted with, and have been enabled to report upon accordingly. . We would here observe, that the result have as to cost and quantity of ice produced daily may be considerably modified by the use of a No. 1 engine, which is capable of producing a larger quantity, and so as to be in an inverse ratio of the two items of cost and produce; and that this, in our opinion, would be a strong argument in favour of employing the larger description of machine.
8. In suggesting the establishment of ice-making machines, either directly by the Government or subsidized by it, we believe that we are bringing under notice not only a most useful but an economical measure. We consider that they would soon repay any advance made or cost incutred, in the great difference in price at which the ice would be supplied ; and that they would afterwards be self-supporting, and ene to certain degree proftable, wo have no doubt. On the whol 1 matter to the notice of cor its serious consideration, and we beg leave to recommend it accordingly. At the same time we would Mish to record our sense of the great courtesy exhibited by Mr. Calder in hrst pointing our attention to this matter, and afterwards in allowing so free access to and giving so full information respecting the machine.
P.S.-Since writing the foregoing letter, we have obtained from the Examiner, Commissariat Accounts, cartain data showing approximately the cost of ice supplied for hospitals in the Bengal Presidency during the season of 1860, which we append hereto, and to which we beg reference. The quantity actually delivered and the time of dow livery are not clearly stated, but the figures indicate that ice has been supplied at a much higher cost than that at which it might be expected to be obtained by the machine; and as it might be expected to be obtained by the S 4
D. Siebe
C.E. 13 July 1861

\qquad

\square

元

Mr. D. Siche, \cdot it is stated also that in many instances the quantities furC.E. nished have been so delivered, only when procurable, it is but fair to suppose that a much larger quantity would have 13 July 1861. been used could it have been obtained.

Appgndix.
Statement of Cost of Ice supplied for Hospital use, during the Season of 1860-61

From A. Calder, Esq, to Colonel G. Balfour, President, Military Finance Department.-(Dated Calcutta, the 9th April 1861.)

I have now the pleasure to send you sufficient data in respect to cost of ice machine, engine, \&ci., also the cost of a pound of ice produced by such a machine.

Such a machine is capable of producing at least 1,000 lbs. of ice per day.
The cost of such production per day is as follows :-
$\begin{array}{lllllrl}\text { Ether } & - & - & - & \text { Rs. } 1 & 0 \\ \text { Coal } & - & - & - & 3 & 8\end{array}$

$\begin{array}{llllllll}\text { Sall, } & \text { seers } & - & - & - & - & - & 0 \\ \text { Oil, } & 2 \text { pints } & - & - & - & - & 0 & 4\end{array}$
Two men's wages for ice machine $\quad-\quad$ - \quad ". 0 8:
$\begin{array}{llll}\text { Two men's wages for ice machine } \quad-\quad: \quad \geqslant & 0 & 8 \\ \text { Two ditto ditto for engine }\end{array}$
Two ditto ditto for engine
Engineer's wages per day
$\begin{array}{llll}\text { Engineer's wages per day } \\ \text { Wear and tear per day of machine and engine - } & 3 & 5 & 0 \\ \text { Interest of money per day }\end{array}$
Interest of money per day - - - $\quad 1.0$
$1,000 \mathrm{lbs}$. of ice cost - - „14. 4
which is less than one pice per lb. (please examine). The ether is imported in drum cases with gun-metal screw caps, quite safe, and no waste.

Our catalogue herewith, page 8, will give you a sketch of machine. Bear in mind, that it is essential to have a supply of good water.

Statement drawn up by Lieutenant-Colonel Simpson.

The statement of the patent Ice-making Machine furnished by Mr. Calder, of the firm of Messrs. D. Wilson and Co ., where the machine is now in daily operation, is satisfactory. On its receipt, I, in company with the Deputy Commissary General, Captain Wroughton, inspected the machine when working on the 10th April 1861.

1. I availed myself gladly of Captain Wroughton's experience and talents as a machinist and also because that officer had in 1859, when in London, thoroughly investigated the patent then just licensed. His opinion was at the time so favourable, that he had at one time determined to bring one out to India, but as his position then was uncertain, he was deterred by the risk he ran of not being able tain, he was deterred by the risk he ran
to superiniend its erection and working.
2. I may premise that the machine we inspected was found to be working under many disadvantages, the room containing it being adjacent to the hotel kitchen, and the engine in close proximity; moreover, the heat was streaming through an exposed roof, and while the condensation worked was of very high temperature, the wooden refrigerator was not jacketted, thus causing the ether to enter the evaporator at a high temperature, and the entrance of caloric into the refrigerator to be excessive.
3. Notwithstanding all these disadvantages and drawbacks, the production of ice was steady and complete.
4. It is considered there are few positions or climates in India where the powers of the 'machine could ha more severely tested, as there are in all places means of modifying intense heat, none of which were in the present instance applied, but, on the contrary, the heat of the climate was aggravated by the artificial heat gendered by the engine and the kitchen fires.
5. Having satisfied ourselves completely on this point, we assumed the production of ice under circumstances in any of the stations of India to be equal to that now realized by Messrs. Wilson and Co., and therefore Mr. Calder's calculation serves as a base on which to frame a financial statement.
6. The excess on expenditure over Mr. Calder's working estimate in distant up-country stations may be on the following items :-

Cther-cost of transit up-country $\quad=25$ per cent.
Coal or wood - - 50 "
The other iterns may be considered as constant or capable of diminution.
7. There is only one of any moment worthy. of notice, viz., the engineer.
8. Most European regiments would furnish more than one man capable of attending to the machine, which is in, deed very simple, consisting principally of a double cylinder and. pistons working two induction and two discharge and. pistons working two induction and two discharge vacuum complete. All therefore that is required is is steady man accustomed to engineering, and who will keep every part scrupulously clean.
9. We may, however, arrive at very large deductions in cost of production, rated by Mr. Calder at less than one pice per 1 lb , or say 35 seers per rupee.
10. This is by adopting No. 1 size machine, the out-turn being four-fold that of the one under review.
11. As the same (10 -horse power) engine would work No. 1 size we have no extra expenditure in coal.
12. The next charge is ether,-the leakage is but slightly increased by size, indeed, size is favourable to correctness increased by size, ind
of fit; but allowing

Total increase of No. 1 on No. 3
${ }^{\text {size }} \mathrm{Mr}$. Calder's estimate for"
No. 3 size
Cost of $4,000 \mathrm{lbs}$ of ice,$\quad-\quad-\frac{140}{26 \quad 20}$
produced daily by 12 hours' working, being at the rate of 30 lbs . per rupee, or more than $1 \frac{1}{\frac{1}{2}}$ maunds.
13. When therefore it is considered that this out-turn is a certainty, can be doubled by working night and day, and gives block ice of double value from its extra keeping properties to the pan-ice now made at stations in the northwest; the certainty of its superseding can only be effected by the relative price at which the two methods can be worked.
14. Now an eight seer share of ice generally costs 60 rupees per season in Northern India, and is supposed to secure to the fortunate holder a supply for six months in each season; but what with total and partial failures through unfavourable weather in December and January, on an average, less than half this period may be held to represent the usual benefit derived from the shares; but admitting the full six months' supply to be always forthcoming, the shareholder will receive in lieu of his rupees 60 , seers 1,456 , being at the rate of 24 seers per rupee; but the same quantity produced by a lst size engine would cost but rupees $22: 8$, besides lasting double the time in the ice basket. A small engine such as was, inspected would give a similar quantity for rupees 45
15. The buildings, \&c. must, however, be estimated for, and they are few and simple: a small two-roomed building with thick roof and enclosed verandahs is all that is re-

in its action, equal in its delivery, and economical in its cost.
19. What is now sought to be urged is, that in the pre sent unsettledness of things, and the late large expenses of the community, Government should come forward and advance freely for the purchase of engines, and repay itself from the issues of ice to hospitals.
9). There will be no risk, for the ice machine is destined to become " an institution," and to be felt as one of the first wants to be relieved by any Indian community; and as the manufacture of soda water, an article standing far below ice as a luxury, has already fallen in many instances into the hands of the natives, so likewise it is believed that ere long no city of any note will be without its ice engines (ice being an article most highly prized and relished by every native who can afford to purchase it), and the scenes of a Cabul bazaar to be re-acted in India by there being ice sold in every bazuar.

r. D. Sicha,
 C.E.

13 Jaly 1861.

Thursday, 17th October 1861.

PRESENT:

The Right Hon. LORD Stanley, M.P., in the Cair.
Sir Ranald Martin, C.B., F.R.S.
J. B. Gibson, Esq., C.B., M.D., D.G.A.M.D.

Wiliiam Farr, Esq., M.D., F.R.S., D.C.L.

Dr. Frederic John Modat, Surgeon Major, Bengal Army, examined

5674. (Chairman.) You have served, I believe, about 21 years in India? -I have.
5675. Has your service been chiefly in the presidency of Bengal ?-My service has been in the presidency of Bengal ; but I have been on duty as high up the country as Lahore. I was then engaged on inspection duty.
5676. Have you served with native or European tronps, or in what capacity have you served ?-I have served very little with troops. I firsi served with European troops in Fort William. I.was then with the 21 st Fusileers. I was subsequently in medical charge of the 47 th native infantry, and was afterwards attuched to the artillery at Dumdum. I was then transterred to the civil department, in which I have remained ever since. -
5677. You have published a report, I believe, on the state of the jails in India? -I have published several reports on that subiect.
5678. Have you served long enough with native troops to have acquired some practical knowledge of the manner in which they are housed, and the sanitary conditions under which they live at their stations?Quite so. I have seen them in almost every station, from Calcutta to Lahore, and in the Eastern Provinces.
5679. The native troops, hut themselves, do they not, receiving some assistance to enable them to do so from the Government? -That is generally the case ; in fact, it is almost universally so. The attempts which have been made to house them in barracks have been very unfavourably received by the native troops.
5680. For what reason?-Partly on account of their caste prejudices; for example, men of different castes and religions do not like to be associated tngether in the same room; in some cases from having their families -their women and childrenwith them; but in almost all cases, on account of the preference which the natiyes have for isolation and privacy-a home of their own.
5681. Is it the general custom for them to take their families along with them?-Not in the old Bengal army; it is so in the Madras army, and in some local regimente, but in the regiments of the Line, the old Sepoy regiments, they very seldom had their families with them.
5682. (Sir R. Martin.) Especially the high caste Miadoos?-Scarcely ever. My regiment contained an unusual proportion of Brahmins, and I do not think any of them had their families with. them, unless they had sufficient means to house them comfortably, and to isolate them in the way that they liked.
5683. The 47th regiment was a general service corps, was it not?-It was.
5684. And, therefore, there were fewer high caste men amongst them?-Not so ; for, curiously enough, in consequence of the great popularity of its commanding officer, it had, when I belonged to it, a larger proportion of high ceste men than any other general service corps. Colonel Pogson was a man who was well known in Oude, and very popular with natives. As a rule in the general service corps, there are comparatively few high caste men, in consequence of their oljection to cross the seas.
5685. (Dr. Gibson.) You have referred to barracks which have been built for native regiments?-Yes, at Akyab, in. Arracan, barracks were built for the local battalion, but the men would not live in them, although they would have been much more comfortable in every way thau in their huts; they still preferred pigging after their own fashion in the nuis. There is another place besides that which I have mentioned. At Dorunda they have built barracks, and the men have inhabited them; there they have not raised any very great objection to doing so that I heard of; that was on the south-east frontier.
5686. (Sir R. Martin:) In that case, caste was the sole obstruction, I presume ?-No, not with them; for they were almost all Mughs and Burmese; but the objection was equally strong amongst them.
5687. It has been found in many instances, that the low caste men give as much trouble about caste as men of a higher caste ?-The lower castes give a great deal more trouble, as they are more tenacious of such privileges as pertain to their respective castes; it is the case also in prisons.
5688. (Chairman.) In the huts are the men together, or are the huts generally small?-They are small, and they are generally occupied in this way ; each man has his own hut, and if there are any members of his own immediate family with him they live with him, but not otherwise.
5689. The men do not club together? - No.
5690. A native objects to go into a barrack because he prefers a home of his own, however small or uncomfortable it may be ? - Yes, and he likes it to be as similar to the one he has left behind him in his native village, as possible.
5691 . You are probably of opinion that the feeling in favour of that mode of living is not likely to alter? -I should say certainly not, with the present feelings of the natives as to caste, for they are probably more tenacious on thet score now even than they were before the mutiny and the issue of the Queen's Proclamation.
5691. Then you look upon it as a necessity, that where native troops are employed they must be allowed to hut themselves in their own way?-At present I am afraid it is so.

Tt

Dr.
F. J. Mouat.
17 Oct. 1861:
. Dr.
F. J. Mouat.

7 Oct. 1861.
5693. Of what material are the huts in general buill ?-They are generally built of mud : mud walls with grass roofs, or roofs covered with palm leaves.
5694. A thatch of palm leaves? -The thatch is unusually of grass; those built by Government are tiled where tiles are procurable, from their incombustibility.
5695. To what extent, as a general rule, does the Government or any authority interfere in the building of those huts, in order to see that the conditions are such as they ought to be ?-There is very little interference; in fact, the natives would not tolerate much inferference. In the matter of interference that of the officers appears to be confined to causing the huts to be built in regular lines, leaving a space between each, and the means of digging a trench for the purposes of drainage ; but with regard to the interior of the hut, there is no supervision of any kind exercised; in fact, none would be submitted to by the great majority of the Sepoys; they will not allow you to approach within their bounds, or to come within their doors.
5696. (Dr. Farr.) Do the huts consist of single rooms?--Yes ; except in the case of native officers, who have two, rarely more; they build a Zenana compound, which is a small space outside, in which the women can carry on their different occupations without being seen.
5697. Is there any attempt made to drain the ground round about the huts ? - Only by digging trenches.
5698. What becomes of all the dirt that accumulates round about a station?-They are'very dirty places, but people are employed by the cantonment officers to clean these places and remove all the filth, but at the best of times the native lines are dirty; and if left to themselves they never would clean them; they would accumulate every possible species of filth there.
5699. There is no objection, I suppose, to the enforcement of external cleanliness, provided the interior of the houses is not interfered with ?-Not the least objection.
5700. Is there any interference on the part of the Government for the purpose of seeing that there is a proper amount of space given to a hut ?-Not in the interior. The commanding officer generally possesses influence enough to see that they are built with tolerable uniformity and regularity, but beyond thatno interference is exercised; certainly there was not in my regiment, although the commanding officer was so popular that he could have done whatever he wished, yet he refrained.
5701. (Sir R. Martin.) Are there any other cases besides the question of hutting in which cante interferes with the sanitary arrangements in a native can-tonment?- Yes, there is with regard to their personal habits of ablution, and what they term their burri fudger and their defecations generally. In all such. matters it is very difficult to deal with the habits of these people.
5702. As regards their personal habits, they are generally cleanly, their ablutions are regular, are they not?-With the Hindoo Sepoy particularly so; cleanliness is one of the injunctions of his religion; but it is 'not so much so with the Mahomedan Sepoy, and still less so with the Madras Sepoy, and the Mugh is probably the dirtiest of all in his lines. On parade and on duty great personal cleanliness. is enforced.
5703. How is the water supplied to the native lines? -Invariably from tanks in the lower provinces; in some of the up-country stations it is procured from deep wells, but almost always from tanks and wells conlined, where there is good well water.
5704. The tank is used for bathing, is it not?There is generally a special tank set apart for that purpose; but there is in every cantonment one large drinking tank which is popular among them, and contains purer water, and a guard is placed over that in order to prevent bathing, and to prevent dogs and animals being washed in it.
5705. Then there is some attention paid to the purity of the water? -Yes, as far as such means as they have in cantonments go, the greatest possible attention is paid to it.
5706. Generally speaking, is the supply of water abundant?-In Lower Bengal it is very abundant always; the water is so near the surface that there the tanks are very rarely dry ; in the upper provinces at the dryest season of the year the water is usually impure, and contains salts from the soil.
5707. (Sir R. Martin.) But it is all conveyed, is it not, by hand labour?-For domestic use entirely. by that means; they carry it themselves; amongst the Mahomedans it is carried by bheesties or water carriers, who carry it in goat skins.
5708. (Dr. Farr. 2 How does the water get into the tanks? It is generally from the rain-fall during the rainy season, and partly from the drainage of the adjoining soil, .surface drainage; more rarely from springs in the soil.
5709. Does not the suface water which thas drains into these tanks often convey many impurities into them ?-No doubt of it ; after a heavy fall of rain the water is very muddy and dirty, and it takes 24 or 48 hours to subside and become clear.
5710. A tank in India is like a horse pond, is it not?-Yes, except that it is more uniformly deep, and the banks and sides are kept clean.
5711. (Chairman.) It is often lined with stone, is it not?-The old tanks, which. were constructed by the Mahomedans, were so, but not those of the present day ; they are simply excavated. In some places they are puddled with clay to prevent leakage, and there are generally brick steps constructed, ghauts as they are called, leading down to them, to enable the men to bathe and take water at all times.
5712. (Sir R. Martin.) Are not the tanks frequently filled also from neighbouring rivers?-In Calcutta they are, but I do not think there are any means of doing it in any other place that I have seen, except during high inundations in stations situated on the banks of great rivers. At Calcutta the Lal Diggie is periodically filled at high tide, and many other tanks in that city are filled from the aqueducts.
5713. (Dr. Farr.) The natives themselves attach importance to pure water, do they not? - Yes,
5714. And they ascribe many diseases to impurities in the water? Yes, at every station which is unpopular among them the diseases are ascribed first to the impure water, and next to bad air.
5715. Do you think that that opinion is well founded ?-Yes, I do.
5716. What diseases do you think may be more particularly referred to impure water ?-It is difficult to say what specific diseases are traceable to it alone, but worms and bowel affections are probably those most frequently so caused.
5717. Have you observed any instances in which disease could to your satisfaction be referred to impure water?-dn a marshy district I have no doubt that impure water has a tendency to produce diarrhoa, especially when, in a very dry season, the wells, and even the tank water, are more or less loaded with salts, diarrhœea is very rife in those cases, and the same thing occurs from water that is drunk from tidal rivers; for even in the hot season when the tides are very low, the water is to a certain extent brackish.
5718. (Sir R. Martin:) That description of water must necessarily disturb the bowels? -I think so ; it certainly has that effect upon Europeans. I accompanied a detachment of sailors to Assam during the mutiny, and the water was all taken in alongside from the river : a most frightful outbreak of cholera occurred within 24 hours after our embarkation, and the men attributed it to the water.
5719. On the score of caste do you think that the natives would object to the conveyance of the water in iron pipes?-They would at first, for they are very suspicious in all matters of this kind. I do not think that any permanent objection would arise to it.
5720. (Chairman.) That would be very much a
matter of tact and management, would it not?-Yes, quite 60 ; there are no people who are more amenable to tact and management. than the natives of India; you can do almost enything with them by quietly explaining matters to them, and not enforcing any -thing violently.
5721. Do you think that in practice there is any considerable mortality, or any considerable amount of disease among the native iroops which is to be ascribed either to the uncleanliness of their stations, to impure water, or to a deficient supply of water? The chief diseases which the natives are linble to ara endemic and epidemic diseases in the various parts of the country in which they serve, and no doubt those would be very much influenced by the quality of the water, and bad conservancy.
5722. What are the prevailing diseases among the native troops; do they suffer as much from cholera an the English do ?-Yes, in the epidemic outbreaks they suffer frightfully from cholera, fever, and dysentery, and whenever they are serving out of their own native localities, they appear to be just as liable to the devastating ravages of epidemic disease as Europeans are ; indeed I have never known so many men belonging to a European regiment to be in hospital at one time in such circumstances, as occurred in a native corps. I think that in one instance 900 men were sick out of a battalion a little more than 1,000 strong. This occurred at Dacces; shortly before the abandonraent of the native lines in that place.
5723. (Sir R. Martin.) The native army of Bengal, when quartered in the upper provinces, has always suffered much more than when serving in Bengal Proper, has it not ?-There are no natives of Bengal Proper in the regiments of the line. Up country Sepoys invariably after the second year's residence in Lower Bengal became sickly. They appear to be pretty healthy during the first year, they decline in the second year, and in the third they become very unhealthy. -
5724. The diet has a good deal to do with it, has it not ; as they take to eating rice, which is strange to them ?-Yes, but I do not think they take so much to that, as is generally supposed. Lord Ellenborough's order has enabled them to buy atta at very much the same price as they could obtain it for in the bazaars of the upper provinces. At the same time the native soldier is usually very penurious, and if he remits a large proportion of his pay to his family, he takes to the cheapest diet himself, rice, and that disagrees with those who have been accustomed to eat wheaten flour.
5725. A change from wheaten bread to rice has almost always been found prejudicial, has it not?Yea, invariably so ; up country men certainly suffer, and so do prisoners from the same protinces.
5726. (Chairman.) The diet of the Sepoy is entirely of his own choice, is it not?-Entirely 80 ; no influence is excrcised over him in that matter, but the Government try to procure for him the largest quantity and best quality of the food to which he has been accustomed. Great trouble is taken in the regimental bazaars by the commanding officers of regiments, for upon that the contentment and happiness of their men very greatly depend. In Arracan and Burmah I think the native troops suffered almost more than the European soldiery from endemic sources of disease, and in the eastern districts of Bengal regiments have been more than decimated by fever, dysentery, and cholera. The dietary doubtless had much to say to this.
5727. Regarding as inevitable the present objection of the natives to live in the barracks provided for them, and assuming that the hutting system must continue, is there any general regulation which you could suggest as calculated to diminish the mortality among the native troops? -If the huts were properly ventilated, built with greater regularity, with a sufficient amount of space, and if subsoil drainage were insisted upon as a practice, which it is not now, in addition to surface drainage, and the huts were made watertight, their heblth and condition would be improved.
5728. Thoserthings coulld be done in the first instance, when the hut was being erected, could they not, without any objection on the score of interference ?-The objection of the Sepoy woald be to the expense ontirely; if he had to paymore for it he would object very forcibly, but If it were tor be done at the same cost, lie would not care aboutait.
5729. (Sir R. Martin.) In lower Rangal would it not be a very great advantage if the fftts were raised off the ground ?-Yes, every native does that with his hut, but when' he does it tre makes a hole at the door, from which he procures the earth used in raising the floor, and this beoomes the receptacle bf all the refuse from his hut, so that any advantage that might result from raising the hat off the ground is counteracted by the filth which is deposited at its very door. The stench and effluvia are very great in native villages from this cause.
5730. Thëy would not object, I suppose, to so much interference on the part of sanitary police in the cantonments as should clear and level the ground ?-I should say not at. all, especially if the matter were simply explained to them, and that what was done was on purely sanitary grounds, and upon no other grounds.
5731. (Chairman.) What they would object to would be interference with a hut after it was built and occupied; and not while it was in course of erec-tion?-They generally build it themselves, and I think they might raise some objection, although I do not know that they would do so now, since more mixed castes are enlisted; any objection on their part would not be very strong if the Sepoy kuew that as a condition of his service he must submit to these regulations, and if they were explained to him beforehand.
5732. I presume that under the present cystem the amount of space occupied by native lines is enormous? -It is very large.
5733. Does that lead to much practical inconvenience, or do you think that improved healthiness is secured by the dispersion of the men over a larger area?-I think that improved healthiness is secured, and as ground in most cantonments is very cheap, the Government can procure any quantity they please at a comparatively small cost for the construction of native lines.
5734. (Sir R. Martin.) In point of fact too much has been heretofore conceded to the Sepoy on the score of caste, and which it is now found could be dispensed with ? - Yes, a very great deal too much, and many pleas of caste were admitted which were entirely erroneous.
5735. For example it has been found in China and within the garrison of Lucknow that the highest caste men wondd perform the most menial offices for their officers, and families without appearing to think that they were infringing upon the rules of their caste ?-I do not say without infringing upon the rules of their caste, but they do not object to do them, and in China they volunteeted to perform services which no Hindoo was ever known to perform before that time.
5736. But on their return to India no objection was made, I believe, to those men by their families on the score of caste ?-We can scarcely follow them into their villages; I rather think that they kept their own secret. The highest caste Brahmins have always told me that they had no objection themselves to do such things, but that their objection was on account of the treatment they received when 'these things became known in their own homes, and, in fact, on service they will do anything, because they are all in the same boat and no one dares to tell against the other ; the secret is kept, but the bond of caste is altogether loosened.
5737. They will go very far to serve their officers, and are very attentive to their wants?-They will do. anything for an officer who treats them kindly.
5738. (Chairman.) What is the mode of life among the native troops in the different stations; their military duties, I presume, do not occupy any large part

Fr. J. ${ }_{\text {Mfowat. }}$
17 Oct. 1861.

[^1]\qquad
of their time ?-The chief part of their time is occupied in lying on their backs upon their charpoys at the doors of their huts, smoking and slecping; they are fond of gossiping, and have no great occupation.
5739. In point of temperance and sobriety there is nothing to complain of ?-In the Bengal army there is nothing to complain of; but the Mughs and the Sikhs are very fond of drink, quite as fond of drink as the Europeans, and the low caste Hindoos are also rather fond of it. The so-called Christian drummers were scandalous in that respect; they were usually low Portuguese.
5740. 1 presume that if more occupation were found for the native troops they would not be very unwilling to do what was required?-A Sepoy would not be nnwilling, if he knew that it must be done as a condition of his service.
5741.. (Sir R. Martin.) They are fond of athletic exercises, are they not ?-Yes, they are, and once or twice in a week they wrestle and play among themselves; they have a kind of native gymnasium in the lines of nearly every regiment.
5742. (Chairman.) Is that practice encouraged by the officers? -It used to be so; and the old class of officers used not only to encourage it but they gave the men money towards it, and would, on festivals and holidays, be present to witness the exercises and games, and that had the effect of attaching the men very much to their officers. Some of the officers used to enter the lists and wrestle with the men, and sometimes beat their own best wrestlers, and they became very popular with them in consequence.
5743. (Dr. Farr.) You are aware that the mortality amongst the native troops, as it appears in the returns, is not high ?-It is about 1.60 per cent., I believe.
5744. That rate of mortality is much lower, is it not, than the mortality among the European troops? -It is very much lower.
5745. Sir Alexander Tulloch has stated before this Commission that about 70 Europeans in 1,000 died; but according to the returns, only 16 in 1,000 natives die?-Yes.
5746. Is that, in your opinion, a correct statement of the mortality among the native troops ? -No, I do not think it is.
5747. What is the fulacy that you perceive, if any, in that statement? There are several. The chief one is, that a man who has not served a sufficient length of time for a pension, if very sick, and if the sickness be of auch a kind to make it practicable to grant him leave, applies for leave to go home, and he goes home, where he dies from the effects of disease which he had contracted with his regiment ; such a case is not brought into the mortality register.
5748. Do you feel certain that such a case as that is not reported?-Quite certain; three or four cases of the kind occurred in my own regiment. I waited upon the superintending surgeon, and asked him if I was to introduce those cases into my mortulity register, when I heard of their deaths, and he directed me not to do so, as those men died away from the regiment, and not in hospital : they were ultimately struck off the rolls of the regiment from overstaying their leave.
5749. (Sir R. Martin.) A record of that kind is merely kept for military purposes?-Yes; it is not a record of deaths. It became accidentally known to me that these men died. One man died within five or six miles of the station. I rode out to see him, and tried to persuade him to come in again, but he would not; he preferred dying on the spot.
5750. When these men join a reginent, do they undergo any examination?-Yes; they are very carefully examined. The supply of recruits was unlimited, consequently all physical blemishes and dofects were_carefully examined into, and most of the commanding officers endeavoured to select the finest, the strongest, the healthiest, and the handsomest fellows they could get; the supply was practically unlimited.
5751. Are they always examined by a surgeon? They are invariably most strictly examined by a surgeon.
5752. Are the Sepoys fine healthy-looking men when they join a regiment ?-No; they are at first rather lean and hungry-looking; but the improvement in the physical condition of Sepoy when he once gets upon pay is remarkable.
5753. What length of time haye they to serve before they become entitled to a pension? -I am not aware of what it is at present ; they used to enlist for a short time, seven years, I think; a part of the army enlisted in order to become acquainted with their duties, and then to enter the service of neighbouring princes.
5754. Is there any limit to the time within which they are not entitled to a pension ?-Undoubtedly. I have not the regulations at hand to refer to, and I do not know exactly the period of service that is necessary, but it is a very long period.
5755. The wife becomes entitled to a pension, does she not?-Under some circumstances she does. For example, if a man is killed in battle, or he has served the full lengit of time to entitle him to a pension; but if he should die from uatural causes within the limit of time for which he would become entitled to a pension, she would get nothing.
5756. Practically, do the men remain long in the service? -The old class of Sepoys used to remain a considerable length of time in the service; it had become almost a hereditary profession with them, and the facility of replacing them was so great that very few inquiries were made after deserters ; and if they became discontented with a regiment, they left it.
5757. If they become ill, are they discharged?Not necessarily. There are regular medical committees held; the commanding officer cannot discharge them. There are special invaliding committees before which they appear, and the proceedings are conducted with great care and attention.
5758. For what diseases chiefly are the men inva-lided?-Rheumatism is one; and among the Sikhs I suspect that syphilis is the most prevailing cause; they are eaten up with it, worse even than the European soldiers. Among the Hindoo Sepoys it does not prevail to the same extent. The Mahomedans also suffer from it; but rheumatism, the seauelæ of fevers, the effects of dysentery, and various internal organic affections, are the diseases which usually cause invaliding.
5759. Is consumption a common disease among them? -There are so few post mortem examinations made that the fact is not generally ascertained; but I believe that consumption is more rife amongst them than has been established by actual examination of the bodies after death.
5760. In the cases where the men go home and die, and do not appear in the returns, what kind of diseases do they chiefly suffer from? Chiefly from the sequelæ of fevers, and a curious kind of atrophy, or wasting away of all the tissues. Without any actual apparent tangible or specific disense, they waste away, and become the most extraordinary living skeletons. I never saw human beings with so great a tenacity of life, and so little flesh upon their bones; -they were ultimately nothing but akin and bone.

57G1. Cholera and fevers either kill them immediately or they recover from them, I presume ?-Yes.
5762. But chronic diseases of that character would last so long that a man would be sent home, and probably die, and not appear in the returns?-The fact is that very many of the men do die at home, and all Hindoos prefer dying, if practicable, at some holy place, or on the banks of any of the sacred rivers.
5763. What allowance, in your opinion, is it necessary to make for that; how much, for example, would you add to the 16 per 1,000 ?-I think it would more than double that number. I believe that when they are serving in foreign countries the mortality among native troops is quite as great as ąmong Europeans.
5764. That mortality would appear, I suppose, in the returus ?-Yes.
5765. And does appear ? - Yes; but a great part of the mortality that occurs under other circum-
tances, so far as I know, never finds its way into the stances, so far least it used not to do so ; it may more recently have done so.
5766. After proper allowance has been made for that, still the mortality among those men would be much lower than the mortality among the Europeans ? Not so much 60 if they remained as the Europeans in India do until they die, or are eliminated by invaliding.
5767. If you raise the mortality from 16 to 30 per 1,000 that would not be half so high as the mortality among the Europeans? -But then you should add to that the number discharged by invaliding as unfit for service, and who die from the effects of diseases acquired while they are doing duty as soldiers.
5768. Upon the whole therefore you would say that they do not suffer to the same extent from disease as Europeans soldiers do ?-In ordinary circum stances, they do not.
5769. To what circumstance do you attribute that? -That they are serving in a tropical climate, which is their own native climate; that they bear exposure to heat better; that, as a body, they are certainly more sober; and that they suffer very much less from accidents, injuries, and acute inflammations of any kind ; inflammation runs a vers mild course with them.
5770. In some respects they are not so favourably circumstanced; for example, I suppose they are not so well fed ?-According to our notions they are never 80 well fed as the European soldier is.
5771. What is their pay as compared with the pay of the European soldier ? -I think it. is about onethird of the pay of the European soldier.
5772. But the native does not get meat, does he ?IIe can buy it.
5773. But he does not?-If a Hindoo, he generally does not. The Mahomedan buys meat; the lower classes certainly live upon meat. The Mughs and Burmese invariably.do, and upon fish.
5774. In the upper provinces they get flour, do they not? - Yes, and vegetables, milk, ghee, spices of various kinds, and sugar.
5775. Is the diet of the native soldiers well regulated ?-Yes, amongst those who have not expensive families to support; many of them are in capital physical condition.
5776. Have they sufficient means to support themsolves and their families?-In the Madras army they appear to have sufficient; they have an allowance there both for women and children.
5777. Would not some advantage be gained if they lived separately in huts, so that when epidemic dis eases prevailed they should not be spread through large rooms or wards? - As a sanitary measure pose aibly it might be so; but as a measure of discipline it entirely prevents the European officers from getting at a knowledge of anything that is occurring, for they can concoct anything under the sun, under the very poses of their officers, who may otherwise be looking very strictly after them; the native lines are a perfect Alsatia.
5778. If the huts were put in a good sanitary condition, and the dirt removed, would it not be an ad vantage that the men should live in separate huts rather than in large barrack rooms ?-I do not see that in a sanitary point of view. If they had sufficient space, and the barracks were properly constructed, and were well ventilated, I should prefer placing the single men in bärracks, both on the ground of discipline and on the ground of health. I do not think that they would suffer, as they are exposed to very few contagious diseases.
5779. At the present time the cubic space in a hut per man is very suall, is it not? -That depends upon the penuriousness of the man; it may be a place just capable of containing him, while another man may have comparatively a magnificent hut.
5780. (Dr. Farr.) What proportion of the men are married?-We know very little about their domestic economy; in India generally you may safely assume that every native is married.
5781. Does gyphilis prevail to a large extent?-

Among the Sikhs to an enormous extent; they do not carry their families with them; they are just as gregarious in their amours as the British soldier, and in that way one woman who is popular among them, may affect a whole company.
5782. Is there any communication between the native lines and the European troops ? - None whatever.
5783. Or in the field ?-There they are not in lines, they are in tents; but they do not mix much together. The best known example of the contrary occurred at Jellahabad, where the men of the 13 th light infantry and 35th native infantry fraternized entirely together.
5784. I suppose they would obtain their water from the same sources? -The water is always brought to the European soldier.
5785. But they would have it from the same source as the natives?-Yes.
5786. And if the water were infected by one class of troops it might injure the other? -Yes.
5787. (Dr. Gibson.) Do the natives use latrines and urinale? -None whatever; they are like the Israelites of old, they go and deposit their excreta on the plain; but they do not bury it as the Israelites did. 5788. And that gets washed into the tanks, does it not, when the rain falls? -Yes; a heavy shower of rain washes down all soluble matters through the natural percolation of the soil, and it must find its way to the tanks.
5789. (Chairman.) Is the evil you have described a remediable one in your opinion ?--No; I do not think that any compulsion would, in ordinary circum stances, make them go to a latrine. I know of no instance, except in Fort William, and there they did it ; but the latrine was placed over the fort ditch, and it became a source of the utmost abomination. I was appointed a member of a committee to examine into the sanitary state of that fort, and the ditch was most filthy; it was a reeking and abominable sever for the deposit of all the faccal matter of the garrison and this ditch surrounded Fort William in every and thisection ; bat there they were obliged to go to the latrines, because the police would apprehend them, and they were punished if they went on to the plain. They likewise defecate when they go to bathe in the river, and pollute the water, although there is a strict rule among themselves that they are not to do so in the tánks in which they bathe.
5790. (Dr. Farr.) You have made some reports upon the diseases and mortality among the prisoners in India? -Several.
5791. What is the rate of mortality among the prisoners who are admitted in a healthy state? Those who are admitted in a good state of health enjoy fair average health; but they are, generally speaking, a very dissipated class, and extremely sickly.
5792. What is the rate of mortality among the prisoners who are in confinement now? Last year I am afraid it has averaged 12 per cent. upon the average number who were in custody in Bengal.
5793. Can you furnish the Commission with any information about the rate of mortality among the native populations in the villages?-There is very little known that is reliable.
5794. Is the rate of mortality among them higher than it is in Europe ?-In some districts it undoubtedly is.
5795. (Sir R. Martin.) In damp malarious dis tricts, for instance? There the population is sickly and unhealthy ; you cannot go through such a district without noticing the anamic and emaciated appearance of the people.
5796. It differs very much, does it not, in different parts of the country ?-It does.
5797. Are not the most elevated districts the healthiest? - Certainly; in the Punjab, in Oude. and in Rohilcund is a very fine population. In some parts of Lower Bengal also the people are ingood case.
5798. (Dr. Gibson.) The natives deteriorate, do they not, when they are transported from one dis

Dr.
F. J. Mouat.

17 Oct. 1861.
trict to another ? They :. deteriorato Fery much indeed.
5799. If they go, for example, from a hot climate to a cold one?-Yes; in that case a native soldier is useless; he becomes half torpid in a state of cold; he wraps up his head to protect himself from the cold, and, as a sentry, is then utterly worthless:
5800. What diseases are produced by exposure to the cold ?-On the retreat from Cabul a large number of the natives of India lost the use of their hands and feet from the cold, and they were much more subject to frost bites than the other men, and also to internal congestious. They are accustomed to oil the surface of the body, which they could not do under such circumstances, and local congestions were caused, chiefly of the lungs; they also suffered from abdomina diseases; rheumatiom was also very frequent amongst them in such cases.
5801. You stated that a barrack had been constructed in which the native troops were quartered without any objection on their part? -Yes; I did not hear of their raising any great objection to it. That was at Dorundah, one of the stations at which the local battalion which had been there had mutinied, and these men were placed in barracks which were built in a healthy part of the station, but they were not, in my opinion, properly constructed.
5802. Were they built in the same way as European barracks are built? Tes; very much like those that are built at Hazareebagh now, with pent tiled roofs, and tiled fioors, to which the natives have a great objection, for they prefer mud and clay floors, and for them those floors are more healthy, I believe, than tiled, or brick, or stone floors, especially where the natives sleep on the ground.
5803. Were the barracks to which you refer occupied by one regiment or by more ?-They were occupied, I think, by three regiments in succession which went to that station.
5804. What was the result in that case?-There was no unusual sickness or mortality among them that I heard of. I was at the station at the time that the Inspector-General of Hospitals made his visit, und I went round with him ; the men seem to be healthy.
5805. Did they appear to be more healthy than if they were in their own lines?-Not more so, but I should say very much the same; there was a good average standard of health among them.
5806. (Chairman.) Is there anything which it occurs to you to suggest in addition to what you have already told us with respect to the native troops? I do not know exactly in what way you could improve their present condition ; they are well paid and well clothed, and, for their own purposes, well-fed,
and when discipline is strict, they are undoubtedly. well-behaved. I do not think it is possible to improve the condition of the Sepoy; I know that it was Lord Dalhousie's opinion that they had every, possible advantage given to them in the shape of pay and pension, and indulgencies of every sort, and this I also believe. They are better paid and better off than the same classes of the civil population. I certainly think it is neceseary that their officers should be acquainted with their language, and with their manners and customs, and that they should be men who :would be content to serve with natives, and take an interest in them, for unless they manage to make themselves personally liked by them, the bond of obedience is slight, and in that case any relaxation of discipline would be accompanied by an absence of cleanliness, and of all those conditions which are essential to a high standard of health.
5807. (Sir R. Martin.) The native soldier always looks to the individual officer, and never to a Department ?-Yes, he always did so in the old regiments before all power was concentrated in the Adjutant General's office ; the colonel then was the father of the regiment, and every one of the officers more or less associated with the men, and remained with them, and there was nothing on service that those men would not do for their officers.
5808. (Dr. Gibson.) What are the feelings of the natives towards the medical officers?-One of very great gratitude to those who are attenitive and kind to them; but if a medical man is careless and inattentive, nobody will go near him if he can help it.
5809. Are the natives generally treated by European medical officers?-It is generally so in the regular corps; in the irregular corps they prefer being treated in their own lines in the huts. If the case is a severe one, the men go to the regimental hospitals. In the lines the native doctor treats them. In very severe attacks of disease, and in all surgical cases, they themselves prefer the European medical officer, in whose skill and remedies they usually hare great confidence. This is always the case where the European surgeon does his own work, and does not leave his men too much in the hands of native doctors.
5810. (Sir R. Martin.) Generally speaking, you would say that their feeling is of the most kindly nature towards the surgeon? -Until the mutiny, I certainly should have said so, but at that time the medical officers suffered just as much as the other officers; the medical officer is generally very well liked, if he takes the slightest care of his men; he does not come in contact with them upon any question of discipline.
5811. (Chairman.) His business is to afford relief, and not to inflict punishment?-It is so.

The witness withdrew.
Dr. George Charles Wallicy, Bengal Army, retired, examined.
5812. (Chairman.) You have served, I believe, for 16 or 17 years in Bengal ?-I have served for nearly 17 years.
5813. Has your service been chiefly with native troops? - Yes.
5814. At what stations have you been?-I have been at a great number of stations; the chief ones were Barrackpore, Berhampore, Ferozepore, Loodiana, Kurnool, nind Meerut; I have been both in Lower Bengal and in the Upper provinces.
5815. You have served over the greater part of the Bengal presidency including the north-west?Yes, and at one station in Central India.
5816. Have you had, during your service, ample opportunities of observing the sanitary condition of the native troops generally?-Yes.
5817. For example, with regard to the manner in which they are quartered at the permanent stations? Yes.
5818. The Commission have been informed that the natives build their own huts, receiving some assistance from the Government for that purpose, but that there is no great interference on the part. of
the Government to compel them to observe any sanitary rules in building them, and that drainage is very much neglected ?-Drainage is completely neglected; the huts are very much huddled together, but drainage is utterly disregarded; ventilation is not properly attended to; and, in the rains, from want of drainage much inconvenience must be felt. In many of the stations the Sepoys rather encourange the growth of jungle round their very doors, and in Barrackpore I have seen large quantities of jungle, which was quite sufficient to stop any ventilation, growing up round their huts; the jungle consists of high grass and bushes, which they plant.
5819. Is that done for the sake of obtaining shelter or for what purpose? - I do not know that it is done for the sake of shelter, because it is not bigh euough for shelter, but it is sufficiently high to obstruct the circulation of air; the doors of the huts are also very low, and the men have to creep into them. The jungle is quite suffigient to obstruct all due circulation of air.
5820. I presume that the general outline of a station to be occupied by native lines is marked out
by the officers? - Yes, the gencral outline is marked out by them, but the rest is almost entirely left to the natives themselves.
5821. Roids I suppose are carried through? Yes, there are certsin lines of road running between. them for each company, but the arrangement of the huts is lett very much to the men themselves; in fact it depends chiefly upon how much a man chooses to lay out upon his hut.
5822. Is there for every man, or for every set of men, a certuin amount of space assigned ?-I think there is. 58:3. For instance, for every company? Yes, there is, generally for the average number.
5624. The huts are not placed at regular intervals, are they ?-Very often they are not, but lately they have been more regularly built.
ES25. Does the Government exercise any control over the choice of the materials and the amount of space that in allowed : the number of cubic feet? I do not think it does; the men can only get one set of materials, the bamboo and the straw, with a little mud put over it at times.
5826. Are these huts, for the most part, of a permanent character? $\mathbf{~ N o}$, they require renewal after a few ycars; they are left by one regiment, and then the next regiment that comes in takes them up. They are very slenderly built, merely bamboo with matting. They are of no value; I suppose that a hut does not cost ahove two rupees. The men sleep generally, except in the raios, outside; if they can possibly do it they have their bedsteads outside.
5s?7. Do you think that in that respect any impruvement is possitile, or that it would be oljjected to on tho part of the men?-I think that the objection ought not to be allowed. Aud in the same way with diit ; in all cases with native troops, when treating them medically, it is an absolute farce not to exercise cume kind of control over their diet while they are sick.
5828. Do you suppose that it would be possible to induce them to live in barracks after the manner of the European troops? -I thiuk it would be quite possible. I think that hitherto they have not done it hecuuse we have allowed them to do so much as they chose; but I do not think that they would object to it under certain restrictions, such as could easily be understood.
ix99. Do you rpeak upon this subject from any experience that you have had ?-Yes, I know that they did not object to ro, during an unhealthy season at İerhampore, into European barracks, indeed they were very glad to do it.
5830. The Commissioners understand that in the Bengal service there is not a very large proportion of the men who have their families with them, but that in Madras and Bombay the number is great?-I believe so.
5831. Assuming that it were possible to keep the lines in good sanitary order. do you think that that is a more unhealthy mode of lite than the soldier's lifo in lurracks?-I siond say so, certainly.
5832. Do you think that there is no incressed lialiility to disease when eeveral hundred men are plased in close proximity to each other ?-I think not with proper ventilation.
8833. Are not epidemies more liable to apread?Not if the ventilation is properly attended to ; indeed, I whould think less so than in the low huts.
5834. Except that it suits the habits and preju. dices of tho men, you do not think that there is any advantage ja the system of hutting?-No.
583j. (Sir R. Martin.) Altogether, you would give a preference to permanent barracks after the European fashion?-Yes, with certain modifications, in order to suit the natives.
58:36. (Chairman.) If that were impossible, do you think that much could be done in the way of improving the condition of the native lines?-I think that a rreat deal might be done in all our stations, loth in the selection of localities and in drainage, and in the water supply; more expecially, an improrenunt might be made in the quality of the water which they use chiefly in Lowar Beagal, and alwo in the Upper

\qquad
\qquad

[^2]\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

[^3] .
G. C. Wallich. fully coved, and the wes, 17 Oct. 1861. open spaces, a way from jungle of any kind.
5848. How would you bring the water down to the stations ?-There are plenty of open spaces to collect it in. A few miles of extent would be sufficient for the purpose.
5849. The water, I presume, differs in character according to the soil, and it is purer on the high grounds than on the olluvial plains? - Yes, at Raneegunge, for instance, the water is very pure in certain places, where there is a hard irony soil, but, below in the hollows, where there is a great quantity of mould, the wated is not so pure, and I know that it is surcharged with minute particles of living vegetable matter.
5850. Do you think that we know enough now of the effects of these olements to justify us in saying that the Government should incur considerable expense in supplying the troops with pure water ?Certainly.
5851. Which water could always be obtained in the ordinary seasons?-Yes; I cannot venture to say absolutely that these minute matters produce diseases but I think that we are justified in inferring that they do, in the absence of any other known cause; we talk of malaria, but we do not know what it is.
5852. A theory was started before this Commission of this kind, that these plants rather purify the water by disengaging the oxygen, in your opinion is that so?-No, it has been only very recently, within the last two years, that a number of very remarkable facts have come to light. Most of the scums and films resting on stagnant waters and damp surfaces generally which we see in this country and all over the world are actually derived from these minute living plants that I have been speaking of; they go on propagating, and thus repeating themselves for a certain number of generations, possibly for years; but at a certain time, and under certain conditions, an alteration takes place in the series of phases of development, and I think it is very probable that under certain conditions, of which we know nothing now, these same little organisms affect the human body, while at other times they would not affect it.
5853. Do you mean in some of ${ }^{\text {º }}$ their transforma-tions?-Yes.
5854. When passing into a state of decay? Yes, or, more correctly speaking, during the various changes they undergo.
5855. (Dr, Gibson.) Independently of that, the habits of the natives, who defecate all over the surface of the country, must necessarily cause the water in the tanks to become impure?-Yes, it is so ; in point of fact the natives have no idea of taking sanitary precautions. For instance, a man will eat and drink and perform his evacuations actually on the very same foot of water, standing in it, or close to it; he has no idea of impurity as long as it happens to be Ganges water.
5856. The European troops and also the native troops drink the water from these tanks?-Yes; there is nothing else for them, and the same canses will operate with Europeans in an increased degree.
5857. (Chairman.) Would not the practice of filtering the water be an effectual remedy for its impurities?-Yes ; but it would be difficult, I think, to do that upon a sufficiently large scale.
5858. Would that be more costly than storing up rain water ?-Yes, I think it would. At Barrackpore there is no other water but that which is taken from the tanks; it is pure looking water that you get from one particular tank; it is clean, but it is nevertheless full of living vegetable matter.
5859. (Dr. Gibson.) Do you think that filtration alone would so purify the water as to make it cafe to drink it?-Continued boiling would perhaps be the greatest safeguard; but many of those lower organisms will stand an iumeuse amount of heat, and then when they are placed under circumstances which are favourable to germination they will grow again.
5860. (Dr. Farr.) Are there any circumstances
that, in your opinion, would explain the different rates of mortality among the native troops and the European troops, as connected with the water supply? -I think that the climate, the water, and. the peculiar mode of life taken together, are sufficient to account for the great rate of mortality among Europeans.
5861. Do you happen to know the rate of mortality among the native troops?-No, not as an average; it varies so much.
5862. Have you made any calculations upon the subject?-Yes, but it is four years since I was in the country.
5863. In your experience what diseases chiefly prevail among the natives? - Dysentery, fevers, cholera, and rheumatism; the three first are the chief fatal diseases, and these I think will gventually be traced to impurities in the water.
5864. Have you reason to believe that we get in the returns an account of all the deaths which might be considered fairly returnable in a regiment ?-Yes ; certainly.
5865. Is it not the practice to send the men home when they become ill ?-Yes.
5866. Is that done to so large an extent that men are sent away who may die at home?-Yes, and I have protested against the practice of sending men away, because they are so sick that cure appears improbable.
5867. What are the diseases generally from which they suffer ?-Chronic dysentery and fevers.
5868. You do not mean acute fevers?-No; they do not send men array in that state; but I have seen men sent to their homes when they have been hardly able to crawl, and a couple of men have been told off to escort them.
5869. After they have been suffering from ague, for instance ?-Yes, or general debility. It is often the case, that when it appears they are beyond cure they are sent away.
5870. When the homes of the men are very distant what is done then? --Still they go away ; it is their great craving ; they themselves desire it.
5871. Do you know what term of service is required before they become entitled to a pension?-I really do not know that; but the rate of pension depends upon the period of service.
5872. Do they remain long in a regiment generally, or do they pass through it quickly? Some of them will remain for 20 or 30 years. In the majority of cases the natives do not seem to suffer from long service.
5873. Does consumption prevail much among them ?-Not much.
5874. Have you had many to treat for syphilis? Yes, in some stations; but all that depends upon the bazaars; in Lahore and in Meerut there is a great amount of syphilis.
5875. Are many of the men married ?-They are married, but very few of them have their families with them; a great many of them have women in the bazaars.
5876. Not living in the huts with them ?-Never, I believe.
5877. That is not the case among any class of native troops?-I have never seen them; certainly not among the higher orders of them, and I do not know of any case.
5878. It is not so common as to make any very great distinction between them and the European troops in that respect?-It is about the same; very few of them have their wives and families with them; they leave them at their villages.
5879. What would you suggest as the most likely way of diminishing the diseases which are prevalent among the natives?-I should recommend great care to be taken in the selection of cantonments, proper attention being paid to ventilation and drainage, and some limitation as to diet. When the men are maintained in hospital at a great expense to the Government, besides the loss of their services, they are getting medicine from the surgeon, whilst they are at the same time completely at liberty. to adopt any diet which they
choose. I remember a very marked case of a man who was under my care. I was sure that he was in. dulging in free djet, and I happened to pass by when the men were eating their dinner, and. I saw an immense pile prepared which this man was going to eat. I let him eat it, but immediately afterwards I gave him a violent emetic. This man was taking quinine at the time, and suffering from a most obstinate fever ; but there I suw an amount of food which it was even difficult to believe that a healthy. man could devour.
5880. (Chairman.) This arises, does it not, from the system of placing men in huts? The men are allowed to eat their dinner outside the hospital ; this man was a sick man.
5881. (Dr. Farr.) The Government allows a sick man to be supplied with expensive drugs, but gives you no control over his diet? Yee.
5882. And there is very little control over their huts?-None whatever ; there is no control. It is the duty of the medical man to report what he sees; but, unleas the officer commanding the .station has some fund at his disposal for the purpose of effecting alterations, it is of no use; the reports cannot be attended to.
5883. Then in that case you have no power of preventing disease ?-None whatever.
5884. You have only power to give them drugs when they are sick? Yes.
5885. You have no power to do anything else?No; you may represent a. thing, but it has been so much the custom to give in to all their prejudices; that no one would meddle with them.
5886. Very strict rules have been laid down for the guidance of European troops, and it is seen that they are strictly carried out? Yes; but the natives are invulnerable.
5887. Is there anything in caste that would prevent such interference as was necessary for a man's good? -I think it is one of those cases in which it becomes e matter of humanity aud of right to insist upon it.
5888. Do you think the Government, if they were to do so, could then get as many men as were required for the service? ?-If they made it. known "that they would not take men except under those conditions, I am sure that they would soon get over it, except, perhaps, in the case of the high caste men.
5889. You have mentioned several stations ; what stations do you think should be selected by preference, if the Government had the power to place the native troops where it chose; ought they to be placed upon the low or upon the high grounds ?-Most certainly upon the high grounds, without following the too general custom of selecting a post, because there is not the vestige of a tree vear it, for trees are beneficial instead of being otherwise, as long as they have not got a thick underwood beneath them.
5890. By whom are the stations selected $₹$-_Generally by committees, but a station is generally chosen in a military point of view; it is merely a choice between one half mile of ground and another.
5891. Has the medical officer anything to say to that ?-Very little indeed officially.
5892. Has he to give his opinion in writing on the eligibility of a station?-FIe has to sign the papers of the committee, but not to give his opinion in writing; he may protest if he likes, but he is overruled.
5893. Is the selection of stations not made so as expressly to secure the health of the men, but-generally rather for military reasons?-I think for the latter, and it is very difficult to do it entirely with regard to sanitary considerations, though a grest deal might be done no doubt.
5894. Sanitary considerations have not hitherto been thought so much of as you think they ought to be ?-I think not.
5895. You have no control, have you, over the clothing of the men ?-None whatever; all regimental clothing is laid down by rule, but out of the cantonment they may do whatever they like; in fact they very seldom wear anything except a small piece of cloth round them.
5896. (Chairman.) Do you think it is possible or expedient to interfere more than the authorities do at present with the personal habits of the natives?-I. think that when the services of the men are pur chased at a very, high rate, the Government are perfectly justified in exacting those services to the greatest possible extent, and where you do not do a man any harm or wound his religious feelings. I do not think that a man would object to measures of sanitary precaution, for instance, living in barracks, or a particular limitation as to diet, if he knew that the Government was determined not to employ men who would object to being so treated.
5897. As a rule the native troops are very sober, are they not?-They are very sober.
5898. With the exception of the Sikhs? -Quite so ; a great many of them eat opium and bang, which is Indian hemp; but very few of them drink.
5899. I take it, as a general conclusion from what you have said, that you think that the worst evil in the native lines is the impure quality of the water supply ?-Yes; and that the lines are badly arranged.
5900. There is a great want of sufficient drainage ? -Yes; and also a want of rentilation.
5901. Is there any suggestion that you would like to offer with regard ta the sanitary condition either of the native or European troops?-I think that a good deal might be done to improve the condition of the European troops in İndia by preventive measures, such as giving them quinine, when they are still in barracks or not actually in hospital. By having inspections so that when the medical officer thinks that a man is likely to become sick he should use preventive measures. I am sure that diseases, such as fever, cholera, and dysentery, do not attack a man unless he is in a particular condition of body, unless he is alrearly out of order. I think that a great many precautions might be taken in India to prevent disease by treating men before they are actually attacked by it. I think that that could be done by more careful inspections of European troops, for you constantly see men who have been for a long time looking unhealthy, flaccid, and pale, but they do not come into hospital, and those are the men who have these attacks.
5902. What kind of preventive measures would you suggest ?-L think that by giving one or two doses of ordinary medicine you may frequently prevent a man from being attacked by disease, or when his system is out of tone by giving him quinine, which is one of the most valuable preventives that can be used in India, not only as against the one or two specific diseases, but against other diseases.
5903. Is not that in the power of the medical officer of a regiment now? --Yes; but it is not done; in the first place quinine is a very expensive medicine, and a man cannot step out of his way to do what no one else has done.
5904. (Dr. Gibson.) In fact, it would be necessary to introduce some system to make your- suggestion generally useful; what would you recommend ?-I would suggest weekly inspections for the purpose of picking out the men who were not actually ill, but men who seemed to have a tendency to beeome ill.
5905. Are not inspections. made weekly ?-Yes but that is chiefly for syphilis; if you see a man who is really ill enough for hospital, he is picked out.
5906. Do you think that a weekly inspection would be sufficient for the purpose? I I think so, especially if the men were encouraged to say when they felt themselves slightly ill during unhealthy seasons or the continuance of epidemic diseases.
5907. Soldiers are not very much disposed to do thite
5908. Would not a daily inspection inferfere with the duties generally? Y-Yes.
5909. If a man is taken ill on a Monday morning, and he is not seen till the Saturday following, one would think that a weekly inspection would not be sufficient? $\mathbf{N o}$ o, but a man is sometimes for weeks and months not well ; he looses his appetite, he feels

Dr.
G. C. Wallich.
17 Oct. 1861.

listless and heavy, and he gets an attack of disease, which he probably would not have if his symptoms were earlier attended to, and he was treated as I have suggested.
5910. Would you take those men into hospital, or excuse them from duty? -No, I would merely give them a dose or two of medicine, and perhaps relieve them from duty for one day, while under the operation of the medicine.
5911. But would a single dose of medicine, do you think, be sufficient to restore a man to health ? - I am talking only as to a man being excused from duty.
5912. (Chuirman.) You have pointed out that the military system only recognizes a man being either well or ill ?-Yes.
5913. And that it often happens that a man without being positively ill is unwell and predisposed to illness, and that if the medical officer would deal with him in that state it might prevent his being attacked with illness?-Yes.
5914. You also suggest that a man should be encouraged to apply more often than he does now to the medical officer?-Yes.
5915. (Dr. Farr.) And you would treat him out of hospital ?-Yes.
5916. That would be a novelty, would it not?-Yes.
5917. Do you see any objection to treating certain diseases out of hospital ? - You could not treat disease in this manner. It is not disease that I mean when

Jou allow a man medicine and his diet is restricted" I merely allude to having the power of encouraging a man to come to you when he feels alightly ill, and to give him in such cases slight doses of medicine, without sending him into hospital or exempting him from all duty.
5918. Have you paid much attention to cholera ?Yes; I have seen most serious outbreaks of cholera. 5919. Is it preceded, in India, by premonitory diarrhoea ?-I think that it generally attacks men who are predisposed. You cannot tell what it originates from; but a healthy man is not generally. attacked with cholera, it is, generally speaking, the man who is out of sorts.
5920. And suffering from slight diarrhoea?-Yes, which merges into cholera. In cholera the only cases that are cured are those which are treated in the early stage.
5921. (Dr. Gibson.) In practice, is not that done? -Not often. The men have not an opportunity of coming in; they come into hospital after the first stage, which is often extremely short, and cholera cannot be treated successfuily except in the first stage, it is so rapid.
5922. Do not the medical officers encourage the men to come when they feel at all indisposed ?-Yes, and the men will come in when cholera is raging; during the prevalence of cholera it becomes doubly necessary to do so.

The witness withdrew.

Friday, 18th October 1861.

present :

The Right Hon. Lord STANLEy, M.P., in the Ceatr.

Sir Proby Catilet, K.C.b.
 Sir Ranald Martli, C.B., F.R.S.
 > J. B. Gibson, Esq., C.B., M.D., D.G.A.M.D. > Wrillam FARe, Esq., M.D., F.R.S., D.C.L.

 J. B. Gibson, Esq., C.B., M.D., D.G.A.M.D.

 J. B. Gibson, Esq., C.B., M.D., D.G.A.M.D.

 Wrlliam Farr, Esq., M.D., F.R.S., D.C.L.

 Wrlliam Farr, Esq., M.D., F.R.S., D.C.L.}Sergeant-Maj. W. Walker. 18 Oct. 1861.
5923. (Chairman.) How long have you served in India ?-20 years.
5924. In what presidency have you served ?-II have served in both the Bombay and Bengal presidencies, and also in South Arabia.
5925. At Aden? -Yes.
5926. In the course of your service have you had reason, at any time, to complain, or do you think there has been any inclination on the part of the soldiers to complain of the rations which have been supplied to them? -Not in the slightest degree; the soldier in India is better fed than he is in England.
5927. Does that remark apply to every station ?Yes, with the exception of when on field service. I have been speaking of garrison duty; the men then are better fed in India than they are in England. Of course, on field service they must put up with what they can get.
5928. Is there variety in their food? -Yes, they get roast, boiled, and baked, and altogether the different rations are far superior to what they get in England; I do not mean in the quality of the food, but it is far superior for the use of a man, because every soldier in England must confine himself, at the most, to two descriptions of food, either boiled meat or, if he chooses to pay for it, he may have a baked dinner; but every soldier in a company in India can order his own dinner to be prepared by the native cook, and the cook is bound to bring him that dinner; some get curry, some get baked meat, some get stews; and some get food of other descriptions; the soldier may make his choice of 20 different dinners.
5929. (Sir R. Martin.) Are fruits and vegetables abundant ?--Very abundant.
5930. (Dr. Fart.) During your period of service has there been any improvement made in the diet of the soldier?-Yes, a great deal, especially with regard to the bread, which, when I first went to India, was of a very inferior description to what I found it to be afterwards.
5931. Has any improvement taken place in the
supply of vegetables?-They are much the same as they were, but since the cultivation of the English species of potato in the hilly part of Bengal and Bombay they have been able to supply the troops a great deal better than they used to be. The potato was considered a dainty 20 years ago in India, but now potatoes are served out to a regiment in plenty.
5932. Did you get vegetables in sufficient quantities at the earlier period of your serviee in India?-No; in the first period of my service in India I did not know what the potato, was.
5933. Did you gat vegetables at all ?-We used to get carrots and pumpkins.
5934. Do you remember the date when the improvement was made in the diet of the soldier?-No : but I know this, that during the last 12 years in India the soldier has been liberally supplied with vegetables.
5935. Do you think that circumstance has had a good effect ?-Yes.
5936. It has pleased the soldier ?-Yes, and, in fact, the soldier has more vegetables supplied to him than he can make use of.
5937. With regard to the supply of liquor to the soldier, I believe beer is very abundantly supplied to him?-It is plentiful at every station, and of the best quality.
5938. Is it obtained at a moderate price? -Yes, the soldier can get it quite easily; and the price of beer is cheaper than it is in England; even reckoning the cost of carriage, it is only 3d. a quart, draught porter, which is issued to the troops ; but the Government is at a certain loss by the sale of it.
5939. (Chairman.) Have you seen anything of experiments which have been made to brew beer in India ?-No.
5940. You do not know how far the attempts have answered ?-No; I know that there was a brewery 20 years ago in Poona, but it was kept by a man who had been a .soldier; I forget his name now, but it failed to a great extent.
5941. (Sir P. Cautley.) Have' you been at Meerut in the Upper provinces?-I have marched through that district, but I never lay there.
5942. Yon have never had any beer that was made at Mussourie and Landour? -Not that I am aware of, but I have drunk beer all over India almost.
5943. (Dr. Farr.) Do you mean beer that was made in India?-I will not be sure of that; I could not vouch for that; but I dare say that a great part of it was, although they palmed it off for English beer.
5944. (Sir P. Cautley.) The men do not complain of the quality of the beer. generally speaking, do they?-They do not ; on the contrary, the men have always been perfectly satisfied with the supplies of ale. There is one thing that I may mention, that if the commanding officers of regiments did not take means to prevent even beer itself from being adulterated, there might be complaints made by the men, but which we have never had made in our regiment; but I have heard of complaints that have been made that the beer has been mixed with water, butit was drawn up in such a rapid manner, with perhaps 300 or 400 men coming for it as quickly as they could be served, the froth was on the beer, and the men would scarcely detect it, but if it was left to stand for a while, that would test its quality.
5945. (Sir R. Martin.) Does what you have stated apply to the beer which is supplied direct from the commissariat?-Yes, it applies to that; there is a non-commissioned officer who receives 5l. a month a non-commissioned officer who receives 5l. a month
from the Government, in addition to his pay, to look after the canteen, and perform the duty of that particular situation; of course, if he is dishonest, and he might be to a certain extent ; there is roguery in all trades, and if they are not looked after there are means of doing such a thing.
5946. (Chairman.) Buti I suppose that the men would pery soon find it out? -Yes, and they would report it immediately, but upon the main question about the liquor, I have never heard any complaints made of the quality of the liquor that is supplied by the ${ }^{\circ}$ Government to the "troops, and which is supplied at a reasonable price, the beer being cheaper than they could get it in England, and, if anything, of . a better quality.
5947. What quantity of spirits is a soldier allowed to draw ?-If he draws beer he is only allowed to draw one dram (speaking of the Bengal dram, there are 40 to a gallon); the liquor is made in one of the Government factories, and is of the best quality.
5948. (Sir R. Martin.) You speak of rum P•Yes.
5949. (Chairinan.) May a soldier draw that one dram at any hour of the day ?-No, he is not allowed to draw it until after 12 o'clock in the day; no spirits are allowed to be sold at any canteen or cantonment in India until after 12 o'clock. Should a man think proper to drink his quart of beer he is allowed one dram of spirits and no more.
5950. I suppose that means are taken to prevent a man from selling his dram of spirits to another? Yes, he drinks it at the table in the canteen-he must have a pass from his commanding officer to take away one dram from the canteen, and if liquor is found in the possession of any soldier in India without a. written pass from his commanding officer, he is immediately placed in confinement and called to account for it; neither is a civilian allowed to sell liquor to any soldier without a written authority from the officer commanding the station in which the civilian resides.
5951. (Sir R. Martin.) In the case of a man not consuming beer, how many drams is he permitted to have per day after 12 o'clock ?-Two drams, one after 12 o'clock in the day and one at night.
5952. (Chairman.) Does any considerable quantity of liquor get srauggled into the stations?-There are instances in which it is smuggled in, but that is of the worst deacription; it kills many aoldiers.
5953. From your experience do you think that there are a considerable number of men in every regiment who obtain smuggled liquor ? - -It used to be the case formerly, but recently the military police.
have been brought to stich perfection that it is almost impossible to smuggle a single glass of liquor into a station.
5954. (Sir P. Cautley.) But it is the fact, is it not; that they cannot prevent grog shops being established just on the outside of the cantonment? ?-The grog shops are there solely for the use of the natives; if a European soldier enter's one of them he is immediately made a prisoner, and if a native is seen to sell one drop of grog, or to give one drop of grog to a soldier, he becomes immediately liable to a very heary penalty ; one that would ruin him for a year.
5955. I presume that the soldiers are allowed to go out of the cantonment?-They are allowed to walk about the cantonment to a certain extent, the same as at Aldershott, but he is not allowed to purchase spirits; there is such a strict injunction laid upon the natives that. no rherchant would even give a bottle of beer. For example, in my rank, he could not give me a bottle of beer without I had permission to purchase it ; the orders are very stringent in India about that. I know that in the time of the late Sir Charles Napier the canteen regulations were altered; they used at that time to be kept open from daylight in the morning till tattoo in the evening, but you were only supposed to obtain a certain quantity of liquor, but then you had the whole day to get it in ; a man would, perhaps, get one or two glasses of grog before his breakfast, and Sir Charles glasses of grog before his breakfast, and Sir Charles
Napier stopped those morning drams altogether, and since that time, in the order that was issued, it is laid down that no soldier shall be allowed to take liquor of any description, more particularly spirits, before 12 o'clock in the day, and there has therefore been a great change in the system, but it caused men at first to run after. contraband liquor, and that is of the worst description, and kills almost anyone who uses it for any length of time.
5956. But you say that although there are grog shops outside the cantonments, and although the soldiers are allowed to walk outside the cantonments still the police is so well maintained that you do not think any considerable number of men find their way into those shops? - I am convinced of it.
5957. (Sir R. Martivi.) Do you refer to a military police or the ordinary police of the country under the direction of the magistrates?-The military police ; the ordinary police of the country, the black police, would not dare to interfere with the men, they would be afraid; they might report to the magistrate that they had seen a soldier in one of those shops, and the magistrate might take notice of it, but they would not dare to lay hands on a soldier, or take him into custody; indeed there is a very strict order in India against anything of that sort in order to prevent collision between the troops and the natives.
5958. (Chairman.) It has been stated by some witnesses that it would be better if no spirits wẹre issued to the men at all, and if nothing was given to them butbeer : what is your opinion upon that point? -I do not think that that would do; speaking from long experience in India I do not think it would do at all, for there are some men with whom a glass of spirits would much better agree thagn drinking beer, and with others it would be just vice versa, and I therefore think that it would not be a good thing to do away with spirits altogether in India. I think it would still further drive the men to seek for it elsewhere.
5959. As far as your experience has gone you do not think that there is much excess or drunkenness among the men? -Not so much as there used to be. 5960. (Dr. Farr.) But still I presume that cases of drunkenness do occur in some regiments ?-There is plenty of it every day in every regiment in India, and it will be the same as long as the British army is there; they obtain the liquor in the canteens through great neglect on the part of the non-commissioned officers, who frequently get punished for their rieglect; the men get more than they are allowed by the commanding officer; he issues an order that a man may tave so much supplied to himi,

Sergeant-Maj.
W, Walker: .18 Oct 1861.
through either improper favour being shown to him, or certain neglect on the part of the non-commissioned officer, he obtains more than he ought to have. There is a rule of this kind, a man, should he be punished by the commanding officer, there is a mark placed opposite to his name, so that the sergeants shall know that he is a defaulter ; the men come in by files, and there are two markers, one for each wing of a regiment; and when a man comes in he gives his name, or his regimental number, and the sergeant immediately looks to see if he is a defaulter, and if so he is confined at once for attempting to come there for liquor, he need not ask him whether he has been there before. If he is not a defaulter he gives him a mark for one glass, or a pint, and the man walks to the counter of the canteen, and a sergeant, or a servant under his superintendence, issues to the man the grog, or beer, and he is supposed to drink it himself; as soon as he drinks it he walks out ; there is a non-commissioned officer and a sentry at each door, and a man must go round and again pass the sergeant before he can get any more, and the sergeant would be strictly responsible that he did not drink two glasses at once ; so that it must be either neglect of the sergeant, erring intentionally by a gross neglect of his duty in allowing a man to go there, and have more than the regulated allowance, or else there might be one here and there who might mistake the name of a man, and do it in ignorance, or he might be one who was not well acquainted with every man in the regiment.
5961. Then cases of drunkenness do occur from neglects of that kind in the canteen ?-Yes.
5962. And not from the soldier getting native spirits?-No. There is another thing that I wish to mention, that in the hot season of the year the soldiers are not allowed to go near the canteen until sundown; they are confined to the barrack room during that season, which lasts from about the month of May until October; during that time they are strictly confined to the harracks during mid-day, and a noncommissioned officer will go round to each company and collect the names of the men who require beer for their dinner; a man may put himself down for a quart of beer, and the money is collected at the same time from the men and handed over to the noncommissioned officer; he then goes with a written pass signed by the senior non-commissioned officer of the company to the canteen sergeant, draws the liquor, and brings it up to the barrack, and issues it to the men at the dinner hour ; there may be men who get drunk in that way, because a man is allowed to take his quart away, and place it on the table and drink it with his dinner, and he may give his comrade a drink.
-5963. (Dr. Farr.) Is a quart of beer considered equivalent to a dram of spirits? -Yes.
5964. Can a man have beer without any spirits? If he drinks beer at all he can only have one dram, if he gets only one half pint of beer he can get only one dram of spirits.
5965. But he is not bound to have the dram at all, is he ?-No ; if he has it he pays for it, it is not served out as a ration; that practice is done away with now in India, and there is no such thing even on field service.
5966. What is the price of a dram of spirits ?Four pice, or one anna.
5967. How much beer can a man obtain for the money which he pays for a dram of spirits?-He pays six pice for a pint of beer, and three annas for a quart.
5968. Is it the fact that'a great number of the punishments of the soldier are incurred by him for crimes committed in a state of intemperance?-Yes; a great many.
5969. Do you consider that a great portion of the crimes committed by the soldier in India may be referred to the use of intoxicating drinks? - Yes.
5970. (Sir R. MLartin.) It used to be so in your earlier period of service, that much of the crime arose from drunkenness?-Fearfully so.
5971. But has not that greatly diminished lately? -Yes ; crime has diminished in India more so than in England; there are fewer prisoners in India. In my regiment we had fewer prisoners in India than in England.
5972. With regard to the issue of spirits ; if you began with a recruit, and gave him beer, might you not carry that on, and continue to issue beer to him throughout his course of service ?-That would be forcing a thing upon some men that they would not like to put up with; they would not think it right; they would consider that as taking a liberty with them that they would not like, and they would obtain liquor elsewhere. If you could effectually prevent a man from getting what you deprived him of, that would be right enough ; but it would be scarcely possible, I think, because there are such means through native serrants and other people going about, that if they wished to get a glass of grog, they would bave it in spite of all the authorities in the place; as long as they could. leave their barrack-rooms, they would get it if they put their heads to work.
5973. You think, probably, that it is best to leave it as it is to the will of the men ?-Yes, and to the discretion of the commanding officer.
5974. (Dr. Farr.) Suppose the men were supplied with tea, coffee, and wine, which they might purchase in the canteen, and spirits were suppressed, do you think the men would object to that? -The men, I am sure, would object to being deprived of the use of spirits, as a general tling.
5975. But they do not always drink spirits in England ?-No.
5976. Then why should they wish for it in India? -I do not know; but they generally prefer a glass of spirits on certain occasions, and now more especially when the soldier generally gets used to it during the campaigns, and they require a stimulant of some kind after a long march, and during a fatiguing march, and during hard work. I know that in the late mutiny, during one 30 mile march, without any food, from Lucknow to Cawnpore, the troops got as much as two glasses of grog given to them, by order of the general commanding, to get them along.

5977: That, no doubt, on medical grounds, was an advantage to them, but if they were to be convinced that spirits were injurious to their health, and did them, upon the whole, harm, would they, do you think, object to the substitution of other drinks? -If they could be convinced of that, decidedly not.
5978. (Sir R. Martin.) Do not even sober men like to have the choice of getting a dram of spirits occasionally?-I am sure that they do ; and I think that they would behave far better, if they thought that they were not deprived of it by force. I think, also, that it would be a good thing if ineetings were held, at which the saldiers were invited to attend, and where the medical gentlemen would point out to them, in a plain manner, the errors arising from drinking in India, and give the soldiers a lucid explanation of the injurious consequences. That would be better than all the general orders that might be issued ; the men generally might not go at first, but some few might go, and they would tell their comrades, and so it would pass on from one to another, and I think that that would be a very good way of bringing the men to consider their own safety, and of abstaining, to a certain extent, from driaking spirits.
5979. (Dr. Gibson.) Still you do not think it would be possible to convince the men of the injury they did themselves by the use of spirits?-I do not think you could; it might be possible to convince some men.
5980. (Sir R. Martin.) When men go into hospital sick from intemperance, does not the surgeon usually admonish them on the subject?-The surgeon reports the subject to the commanding officer, and the patient, when be comes out of the hospital, if he survires, is handed over to the commanding officer, to be dealt with by him, and he is then punished for tampering with his health. Any soldier who is pronounced by
the surgeon to be suffering from the effects of liquor, is considered a proper subject for the commanding officer to deal with, and that would appear against him; and when he is discharged, it will be a very serious bar to his obtaining a pension.
5981. (Dr. Gibson.) Does not the surgeon more frequently remonstrate with the man himself, rather than report him to the commanding officer?-Yes, I have known them many times to do that; but in a case of delirium tremens, which I was speaking of, the surgeon always enters the man as a prisoner at once. 5982. (Chairman.) Upon the whole, you do not think there is room for much improvement with regard to the canteen system ? - I think there is not much room for improvement in the system that is pursued at the canteen, indeed I am sure that it could not be improved. I am speaking, of course, of my own regiment ; I do•not know exactly whether we do not differ from some other regiments; some regiments may work in a very different way in their canteens, but I am speaking of the 1st battalion of Her Majesty's 17th regiment, and the 1 st battalion of the 8th.
5983. (Dr. Farr.) Who were your commanding officers in those regiments ?-My commanding officer in the 17th Regiment was the late Lieutenant-Colonel Pennicuick, who was killed at the battle of Chillianwallah, and Colonel Robertson commanded the 8th a portion of the time in India; the present Colonel Greathed commanded the regiment for a long time, and then Major-General Longfield.
5984. (Chairman.) Have you heard any complaints from the men as to their clothing, or of the way in which they are suppliod with their clothes and accoutrements? --No.
5985. There has been a considerable alteration in the clothing, has there not, in the last two or three years? -Yes, there has been great alteration; but there has been a greater alteration since we left India in the clothing of the army. It was much the same all the time that I was in India as to the farnishing of the clothing to the men; it was the khakee clothing that they used during the mutiny, a dust coloured khakee which they wore as uniform ; the men used to prefer purchasing it themselves, and they were never prevented doing so by the commanding officer if they could procure an article of the same pattern and of the same quality. Our commanding officer of the 8 th regiment never interfered with the men in that ; 'it was necessary that it should be of the regular pattern, and of the same material, but they could sit down and make it themselves.
5986. (Sir P. Cautley.) Theý could not purchase it so cheaply themselves, could they, as they could get it from the Government stores? -They might get the cloth very cheap, and if they chose to have it cut out and make it themselves it would be far better made than the article that they would be served with from the stores, because there would be more pains taken in the sewing and making up of it, although of a similar material, but the men had no complaints to make about the clothing.
5987. (Sir R. Martin.) For the hot weather, and during the rains that kind of dress was a great improvement, was it not, upon the old red jacket ? Very great, but the men had to wear the red jacket in the rains. It was a great improvement on the white clothing that used to be worn, and showed itself so in the mutiny ; the troops in India wore white calico, and the commanding officers immediately saw the utility of darkening it as much as possible, or of turning it into some colour to disguise the men as much as possible from the enemy, aud the khakee suit is almost an invisible suit, indeed it is the best clothing that. I have ever seen issued to the soldier for Indian service; it is unsightly, but it is of the best colour, and of the very best description for service.
5988. (Sir P. Cautley.) The movements of the men are less interfered with, are they not?-Yes, a great deal less ; the dress is very loose.
5989. (Dr. Farr.) Is fannel worn at all by the men ?-Yes.
5990. Flannel shirts? -Yes, each man is obliged to be in possession of two flannel shirts, and two flannel bands; he must have them as a portion of his kit.
5991. Those articles of clothing make him com. fortable? --Yes, they are mostly worn in the raing fortable ?- Yes, they are mostly worn in the rainy
eeason, and 2 man is punished if $h e$ is found to be. mounting guard without his cholera belt on ; it is irksome to many men, but they are obliged by the medical men to wear them.
5992. (Sir P. Cautley.) Have you found that the men suffered much from the tightness of the shoes? -No, the ammunition boot is the best boot that can be got for the soldier ; the Government boot that is served out.
5993. Do they generally fit well?-They are fitted in the quartermaster's store; you need not take them unless they fit you; the quartermaster is there and the officer of the company is there also with you, but you need not take the boots unless they fit you, if you do not find them easy,
5994. Can they get them altored if they do not fit them?-No.
5995. (Sir. R. Martin.) Do you consider the ammunition shoe the best for all seasons in India? Yes, I consider it the best boot for India; it protects the foot from the buirning soil; the soles are stronger than the native boots, and protect the feet, and in the wet season they keep out more wet than the Indian leather; the Indian shoes wear out in no time on the macadamized roads in India.
5996. The blue barrack trousers are generally approved of by the men ?-Yes, because they are easy to wash; that is the principal reason why they are approved of so much by the men.
5997. They are easy, are they not, for marching? -Yes, very good for that purpose, and as soon as a man comes in off a march he can wash them, wring them out, and hang them up, and have them clean to put on again in an hour.
5998. (Dr. Gibsnn.) Do you think canvass leggings would be good?-They could not be worn except in the cold season ; they would do very well for the cold season for drill purposes.
5999. But I mean on the march or in a campaign? -Yes; they are very serviceable then, on the march especially: In some parts of India, when marching through sand, it works up through the trousers, and gets into the boot, and down into the sock, and works about the feet and cuts the skin. The gaiters on the same principle as those which the Highlanders wear; they are very good, and much of the same description, either under the trousers or over them.
6000. (Sir P. Cautley.) What head-dress was considered the best ?-The best head-dress was one that we used in Colonel Greathed's brigade. We used it going from Delhi down to Cawnpore-a plain forage cap; the Kilmarnock-with a padded calico cover over it, and a turban fastened round it ; it was sword proof, and you could make a pillow of it.
6001. Hed it any flap behind it ?-Yes; which covered the back of the head from the sun, and it was light and comfortable; it fitted the head and sat easily.
6002. Do you think it was better than the shako? -Yes, far better ; for you could use it for a pillow at night; if you were on picket and you wished to lie down, it formed 2 pillow of itself.
6003. (Sir R. Martin.) Did the men find that it kepi their heads cool?-1 will not say that; but they liked it the best. I do not say that it was as cool as the helmet that we got under Lord Clive. The helmet is very light and cool, but it is not so comfortable to the men ; it is an awkward thing to have about, and it is liable to fall off if the men are out skirmishing. It does for parade or garríson work. 6004. (Sir P. Cautley.) The head-dress which you prefer is the turban, which is very nearly the same as prefer is the turban, whit is much the same as the native the native turban?-It is much the same as the uses.
turban; you can put the puggery to several uses. 6005. (Dr. Farr.) That is not generally used in
the army in India, is it? -It was used by the whole the army in India, is it ? -It was used by th
of the Delbi field force ; that was the first time that I saw it worn by the troops. From Calcutta the men were all served out with that helmet.
6006. (Chairman.) Is a stock worn by the men? The stock has been. discontinued in India altogether, except when parading in full dress in European clothing as they call it; but-which is only twice a year for general inspection.
6007. (Sir R. Martin.) Is the stock which is worn the same stiff leather material that it used to be, or has it been changed of late years? -It has been changed for one that is far better, like that which I have on.
6008. Is that the description of stock which is served out to the common soldier ?-Yes; I wear exactly the same as the private soldier does; this is the regulation btock, and the piece of leather which you perceive in front prevents its slipping up on the throat, and keeps it down.
6009. (Sir P. Cautley.) Do the men complain of the knapsack that is worn now because it impedes their motion ?-No ; they prefer it to one that was sent down last week to our regiment to be approved of-a new pattern. We tried it on some of the sharpest field days that we have had at Aldershot; we tried it on several of the men, but they did not approve of it. They liked it as far as this was concerned, an opening behind. There was a flap to cover the coat, so that in the rain it would prevent the coat getting wet. On picket, if it commenced to rain they could torn the flap down over their great coat till such time as they wished to put it on ; but the straps on the front pressed too tightly on the shoulders. One strap comes down to fasten on the waist belt, that draws the waist belt up, and draws the man into that position. That is the fault of it.
6010. (Sir R. Martin.) But.the knapsack is never carried by the British soldier in India?-No; except on general inspections; it was formerly, but is not now. Under Sir Charles Napier we did all our work in heavy marching order.
6011. (Sir P. Cautley.) Generally speaking the greater portion of the men's things are carried for them, are they not?-A soldier in India walks without his knapsack, with the exception of a general inspection, or when his colonel orders a marching order parade ; but there is no drill, no knocking about with the knapsack. He marches out sometimes in the cold season in marching order ; but, as a general rule, the knapsack is not used in India. The soldiers' articles are carried for them.
6012: Do you think that the equipment of the soldier as it is now is as good as it well could be? I think it is.
6013. (Chairman.) Have you heard any complaints made about it? -Not the slightest.
6014. Have you, in the course of your service, ever been quartered at a hill station ?-No.
6015. But you have probably seen and have been acquainted with many men who have been so quartered ?-Yes.
6016. Can you state to the Commission what is the general feeling among the men as to the hill stations, do they like them or not?-Yes; they invigorate the men \boldsymbol{s} it makes a striking alteration in a man. If a man has been sick with fever or anything at all, if he is sent to the hills and returns in a few months' time, he comes back quite a new man altogether.
6017. (Sir P. Cautley.) Do the soldiers like the hill stations? -Yes; and a great thing it would be in Bengal if this system could be adopted, if they could only mass the main body of the troops in the hot weather at the different stations in the hills, letting the regiments take its turn about for duty in the plains, in the strongest forts and places about, and let the native troope do the remainder of the work; but it would be a good thing, I think, to mass the troops there, and send them down, the same as they do in England, to the different camps for drill with the native troops during the cold season. If that were done it would be a great thing, I think it would be the best thing that ever was done for the
men, during the hot weather it the plains, cannotsleep at night from the heat ; they cannot do anything; they have no energy about them, and they go and get drink to put a little life into them; and they would not want it in the hills:
6018. They become dispirited and listless from the idleness of the cantonment? - Yes; they cannot go out, while, if they were in the hills they could walk about all day ; but they must stop inside the barrack down on the plains. It would be a great thing, I think, if that could be done, perhaps the greatest thing that ever was done for the army, and it is so considered by every soldier.
6019. Although confinement to the barrack in hot weather is necessary, still the men find it very irksome ?-Yes, they do ; they would rather be out in the sun, and some men might be out in the sun for years and years and never become sick, but upon others who go out in the sun, it would take an effect upon them.
6020. (Dr. Farr.) Will you be good enough to describe the daily life of the soldier when quartered on the plains in India; beginning with the morning, for example, what time does he rise ?-He must be up 20 minutes after gun-fire; but the time varies, sometimes at four o'clock, and sometimes at five o'clock, in hot weather, say half-past four. He must be up at five, as the parade is generally at half-past five or a quarter to six, and the parade must be over shortly after sunrise, a quarter past seven. Then there is breakfast ; after breakfust he amuses himself in the barrack room. Then there is a parade at half-past ten in side arms in the barrack room ; then he cleans his accoutrements; after that he has his dinner.
6021. He does not go to bed again ?-He can if he likes; that is, he must not go into bed, but he can lie on it; the bed is made up. Then the afternoon parade takes place; then he-has his supper, and after that he has nothing to do until the tattoo beats at eight or nine o'clock, as the case may be.
6022. Is he allowed to go out of barrack in the hot season?-Yes, at certain hours.
6023. He is not shut in ?-In the hot season, he must stop within the barrack between eight in the morning and four in the afternoon; if he is caught out of the barrack, he is liable to be confined, except he is on duty.
6024. How does he amuse himself during all that time? -Some of them read, some go to sleep, some play at dominos, but they are not allowed to gamble; cards are never allowed, but they may. play at dominos or chess, and backgammon.
6025. During the rainy season, what is the course of life in the plains? -There is very little change. The men cannot go out. It is exactly the same ; but the parade cannot be outside. There are three parades per day, and, as they cannot be outside, they have them inside the barrack. In the evening almost all the men stroll round about the barrack in some way. If they are delicate, they cannot walk very far; but you find them generally outside taking an airing. 6026. Do the men object to being shut up in the barrack in that way? -They like to walk about, and they have skittle alleys and ball courts, and places of that kind, when they can once get out.
6027. What evils do you think would arise from their being allowed to go about?-I think that it would be very injurious for the men to go ont in the middle of the day in hot weather or in the rains; it would never do, because they would get wet through, and where one man might be careful to change his clothing another man would be too lazy, and lie down in his wet clothing, and get rheumatism or fever, and perhaps lose his life.
6028. That is the state of things in the rainy season and in the hot weather ; what course of life do they lead in the cold season? ?-They are very comfortalle in the cold weather. They commenco with drilling in the morning ; there is none in the middle of the day, no matter whether it is the cold or the hot season. They are generally drilled in the evening again, say after four co'clock in the cold weather, and the men then have plenty of wusement,
cricket, and other games; but there is one thing that I think, would be very good for them in the atations, and that is to have more plunge baths for the men It is a bad thing not to have therm. There should be one close to each wing of a barrack, so that a man could go in hot weather under cover, to these plunge baths. It would be very easy to have for them a covered bath in the same way as in the model barracks at Agra, so that they could go to it without being exposed to the sun. There is nothing that the soldier likes so much in India as a plunge bath.
6029. (Sir P. Cautley.) Would you have the men paraded for that purpose? -No, I would let thera go as they thought proper, and I would have a aentry at each bath, to prevent the men stopping there too long, for you will find men who in the very hot weather would stop there for hours, and injure themselves, men who are just fresh from England.
6030. (Dr, Farr.) Then the men in the hills would escape many of the disadvantages of the hot season below ?-Yes; they would escape the whole of them. -
6031. In fact they would enjoy a climate nearly like that of the plains in the cold season? - Yes; they enjoy in the hills much the same sort of climate as that in England.
6032. Of what hills are you speaking? I-I speak of the large range of hills that divides Bengal from Affghanistan, the Himalayas.
6033. You have been at Poona? Yes; there is another splendid sanitarium there.
6034. You would prefer an elevated place, such as Poona and the stations around it, to the stations down on the plains in the Bengal presidency? Yes; but there is a vast difference between Poons or any part of the Bombay. presidency and Bengal. At Poona the men could play all day long, while at Agra and Calcutts you cannot move out without risk.
6035. The men enjoy health in Poona and in such stations almost as much as they do in England? Exactly the same; the only thing is when cholera sets in.
6036. But they suffer, do they not, from some disesses which they do not suffer from in England ?Yes.
6037. (Sir R. Martin.) But even the climate of Ponna is not so cool as the climate of the mountains? -No, although it is at a considerable elevation ; but in Bombay the heat is not felt the same as it is in Bengal. The plains in Bengal are the places where the main body of the British troops in India are, and there thousands of men die; I am convinced that their lives might be saved if they were massed upon the hills.
6038. Speaking of the cold weather in Bengal, do not the men complain in the long dull nights of the lights in the barracks being put out early in the night?-I do not think so; the men are not forced to go to bed till about a quarter past nine in the cold weather, they must be up at about half-past five o'clock in the morning if they have a day's work to do.
6039. You have not heard any complaints on the part of the men on that score ?-No, there is always une light allowed in one barrack room.
6040. (Dr. Gibson.) Is that a sufficient light to enable the men to read?-No; but it is so that the duty can be correctly done, so that the non-commigkioned officer could see anything that was going on ; if necessary, he would light another lamp, but one only is allowed in each barrack room for the purpose of the duty being performed.
6041. (Sir *P. Cautley.) Had you workshops in your regiment to give employment to the men?We have carpenters and shoemakers, and tailors. In the model barracks there are workshops for the different trades, but we never lay in one of those model barracks.
6042. Would it not be a very good way of ocenpying the men to give them the means of working at their different trades and aupplying them with tools? -It would be a most excelleut plan.
043. That plan has been adopted in the Purjab Sergeant-Maj. a good deal, I believe? ?-Yes.
6044. Did you see any of the barracks there that had at one end a workshop, and at the other a reading room? -Yes, I have seen the reading room in one of the barracks at Agra; in the North-west provinces ; at Agra they have i reading room, and the soldiers are under cover when going to the necessary, or to the wash-house; they can go without being exposed to the surn ; they are the only ones on that system that I have seen.
6045. (Sir R. Martin.) If the men had the benefit of their own work, would it not be an encouragement to their industry ?-Yes, a great encouragement.
6046. (Chairman.) Do you think that more could be done than has been done to provide the men with occupation?-If they were encouraged to work at their own trades as they do at Aldershott, it would be a good thing; the soldiers there do the whole of the work, and there are carpenters and stone masons, and they do it all themselves under a new regulation there in camp, and they take a pleasure in it ; it is a variation they consider to their daily life, and it would be the same in India. I think that they would take a pleasure in it, and there is nothing in India that tends so much to keep the soldier in health as to keep his mind employed; if he is allowed to lounge about and to lie down almost any man will get sick there.
6047. I suppose that in point of expense it costs less to employ native workmen than to employ soldiers ?-It is not a tenth of the cost, but the work is not done so well, except certain things; the native tailors, for instance, are generally very good, especially those who work for the ladies, making dresses and things of that sort; the soldiers' wives generally make their own, but the natives work far cheaper and far better than Europeans generally could do; they are very good with the needle, and very good at embroidery or anything of that sort
6048. (Sir P. Cautley.) Have you seen with any regiments means supplied for athletic exercises?Nothing of that sort.
6049. (Sir R. Martin.) No exercising grounds?I never saw anything of the sort in India, nothing but the skittle alley and cricket; it was on their own parade ground that they were exercising themselves at that. I saw nothing in the shape of the other. I understood from the question a particular piece of ground set apart for those public amusements.
6050. Yes ; the native regiments have them?Yes; but I never saw anything of that sort, and I think it would be very good if they had something of the sort supplied without putting the soldier to any expense, and a person appointed to look after it.
6051. It has been stated before this Commission that an experiment of that sort was made, and that the men took to it at once, but that they soon tired themselves completely, and left it off; they found that they got stiff, and they overdid the thing? -That might be so certainly, and they could scarcely keep it up in the hot weather.
6052. (Chairman.) Nor would it be desirable, I presume, that they should ?-I should say not. The medical officer would not allow it ; they will not mellow the men to be drilled in the middle of the day.
6053. (Dr. Farr.) Was there no garden attached to your regiment?-Yes.
6054. How did that work? We had several men' who were gardeners, and we let them off duty for the purpose of attending to this garden; any man was pullowed to walk in the garden as long as the thinga were not interfered with; and the commanding officer visited it, and made every inquiry, and saw that they had proper seed placed in it; we used to get a certain quantity of vegetables from the garden, in addition to what we received from the commissariat, and vegetables of the best description.
6055. Do you think it is an advantage to be able obtain good and fresh vegetables from a garden of your own?-Yes; good vegetables are the best thinga in India. ${ }^{-1}$

Uu4

Wergeant-Maj.
 W. Walker.
 -18 Oct. 1861.

6056. Do you think that it would be generally satisfactory to the soldiers if a garden were attached in that way to the stations? ?-Yes; if you could have it large enough to supply a little more; they are generally not large enough.
6057. Would there be any difficulty in finding men to work, and to do all that was required in the gar-den?-Not the slightest; there are many men who could do that.
6058. (Sir R. Martin.) There are plenty of gardeners and farm labourers?-Yes; in the hot season the men need nọt employ themselves during the heat of the day; a couple of natives could look after a very large garden in the heat of the day, and do anything that was required.
6059. (Dr. Gibson.) Would the men be inclined to work in a garden in addition to their usual duty ? -I would not say that the generality of men, who profess to be gardeners, would like to take to it as an amusement.
6060. (Dr. Farr.) Would they require to be paid for their labour?-I think they would be allowed to be relieved from all other duties.
6061. (Chairman.) If a regiment has taken an interest in its garden, and put it in good order, and they are afterwards removed to another station, what becomes of the garden then i' -It is left for the next regiment.
6062. In that case those who introduced the garden lose all their labour and trouble ?-Yes.
6063. (Dr. Farr.) Do you think that any allowance should be made to them, if they left their garden behind them, for the vegetables in it ?-Yes; and I have not the slightest doubt that an allowance would be made, but I have never heard it applied for.
6064. Would it not be an encouragement to them to cultivate it if a premium 'were given for a good garden ?-Yes, if he got publicly praised by the authorities.
6065. The two combined you perhaps think would secure attention being given to the garden ?-Yes, I think they would.
6066. (Sir R. Martin.) In every case you think that the soldier should understand that he is to have the full benefit of his own work ?-Yes, I think so.
6067. (Chairman.) What proportion of the soldiers are now allowed to get married?-Twelve per cent., that is the allowance ; we have eight.
6068. Do you think that there is any wish among the men that that number should be increased ?- \AA great many men wish to get married, but the difficulty is to get a sample of women. fit for soldiers' wives. Colonel Haines is adopting a most admirable plan, so that it is almost a matter of impossibility for any improper character to get into the ranks of our regiment; he is adopting a system by which a person who wishes to be married must bring forward very satisfactory references from a clergyman, of whatever persuasion they may be, before he will listen for one moment to the proposal, whether he keeps the regiment up to 12 per cent. of married men or not.
6069. Should you say, from what you have seen, that the married men are more comfortable than the unmarried men?-In India, yes; they are very comfortable indeed, far more so than they are in England. In England, no. There are many comforts for a married soldier in India that he cannot oltain in England, and a married soldier is therefore far better off in India than an unmarried soldier.
6070. (Dr. Farr.) In what respects?-He has quarters to himself in the first place, and he has the company of his wife, and there are many things of that description which make him better off than his unmarried comrades, and his wife is allowed (I do not know whether it is altéred now) 10s. a month by the Government, and each child 5s.
6071. (Sir P. Cautley.) Shillings or rupees; it used to be eight rupees ?-It is $5 s_{\text {, and }} 10 \mathrm{~s}$.; two rupees and a half for a child.
6072. (Dr. Farr.) Have they a detached hut? -Yes; they do not as in England live amongst the
men ; the married soldier has a place to himself in what is called the patchery.
6073. Has the woman any means of getting employment so as to support herself ?-No; they. have their own household duties to perform, or they may be servant to one of the officers' ladies, or anything of that sort, but native servants are generally preferred.
6074. Then the married soldier can live upon his pay ?-He can live comfortably, and save money if he is a saving man and has a careful wife.
6075. Does he dine with his wife ?-Yes; he has his food served out from the commissariat; he can get it or he can get six rupees and a half a month in lieu of his commissariat food, and provide his own food; he can get his pound of meat and pound of bread, his tea, coffee, and sugar every day, and his wife can cook it at the fire at home; or he can get six rupees and a half, if he chooses, in place of that. Some prefer that, as they can get meat so very cheap, except upon active service.
6076. What takes place then?-Then a soldier is separated from his wife, and he has to contribute a certain proportion of his pay through the officer commanding his company, from whom it goes to the paymaster, and to the officer in charge of the depôt, for her support.
6077. His wife does not accompany him?-Ne; no females are allowed on service, and a man's wife has her five rupees a month, and free ration for herself and half ration for each child, and her husband, if he is a private soldier, generally sends her five more out of his pry.
6078. (Sir R. Martin.) You would say that a married soldier is more comfortable in India than in any country in which you have served?-Yes.
6079. (Dr. Farr.) Have you observed that the married soldiers are healthier than the unnarried men? -Yes, I have always noticed that they are less liable to many diseases which are very prevalent in-India.
6080. They are not so frequently in hospital ?-No. - 6081. I mean not merely from the reiereal disease, but from other diseases? -Yes; there are fewer on the average who go into the hospital than of the single men.
6081. (Chairman.) They are more steady in their general conduct?-Yes, and more temperate.
6082. (Dr. Farr.) And their minds are more contented, are they not?-Yes, a great deal more so, especially those who have a family.
6083. Do you think that a. greater proportion of the soldiers should be allowed to marry in India ?Yes, I should say so.
6084. More than èight in 100 ?-Yes, if they could manage to have the troops stationed in the hills in India, then they might have an increase in the number of married soldiers. The children of the soldiers born in India are not at all, in comparison, the same as the children that are born in England; they are generally delicate, and they never seem to thrive in the same way as children do at home.
6085. Not even those that are sent to the hills?They seem quite different altogether; they are fine rosy cheeked children; but before they have been long down upon the plains, they dwindle away, and you see a difference in a very short time.
6086. (Sir R. Martin.) Have you seen any of the children from the Lawrence asylum in the hills?-I never saw one.
6087. (Chairman.) If a soldier is killed in action, or he should die, there is not much provision made for his widow, is there?-By a late regulation, I can only answer that whatever the rank of. the soldier was, either non-commissioned officer or private, his wife, for six months, received the pay allowed to women, and also the children's allowance, and then she was sent, if she did not get married again, at the expense of the Government, to her friends.
6088. (Dr. Farr.) You are aware that a great deal of sickness in the army arises from the venereal discase among the single men ?-Yes, that is very prevalent in India and very dangerous, a great number of men are destroyed by it.
6089. Have you seen their health injured, and is a great number of them out of the ranks in the hospitals in consequence? -More so than from any other complaint, except ferer.
6090. Although it does not kill them it disables them?-It disables a great many, and in many instances it kills them.
6091. Have you any suggestion to offer by which vou think the ravages of that disease might be dimi-uished?-I think it might be diminished by vigilant superintendence on the part of the authorities in charge of the different bazaars and places of that description.
6092. What do you mean by superintendence?There are native hospitals where these females reside for the purpose of their being received in, and there are native doctors.
6093. Under the superintendence of the Government?. They are paid by the Government; in all the cautonments occupied by the military those places are a part of the cantonment equally the same as soldiers' barracks.
6094. (Sir P. Cautley.) Are the names of the women registered ?-I do not know.
6095. (Dr. Farr.) What stations do you refer to? -To Poona, to Agra, and Jullundur, those I am aware of ; there is a place set apart for those people to live in. $609 \pi^{\prime}$. Are they under the same control ?-Yes, and they are supposed to be examined as to their state of health.
6096. By natives?-Yes, and a report made to the surgeon of the station, generally the staff doctor, as to the state of the women.
6097. Are the women who are ill sent away? They are supposed to be sent away immediately to the native hospital.
6098. Do you think that does any good?-Yes, I am certain that. it does if it is carried out, but the thing is this, that a great deal of the fault as to everything in India is in not having the orders carried out correctly.
G101. An order is given, but it is not always carried out?-Just so, and 1 know that if it was there would be less sickness; the intentions of the Government are, all very good, and if their orders were,carried out properly by subordinates there would be fewer complaints and less bother than there is.
6099. There is no lock hospital in the neighbourhood of these cantonments, I believe, for the treatment of these women under European surgeons?No, nothing of that kind; although they are allowed to accompany the army into the field they have nothing of that kind. Colonel Greathed sent them away from his army, and would not allow one, and the men were all very healthy, and it caused a vast improvement, but that was only for a short time.
6100. Upon the whole do you think that could be done generally? -No, I am sure that it could not, except for a short time, say a few months.
6101. What is your impression with regard to the climate of India as to its healthiness or unhealthiness ?-I think that the great cause of the sickness there is the bad drainage about the barracks, and the filth of the towns that the barracks are near.
6102. Is it the general opinion of the non-commissioned officers and men that India is a very healthy climate to live in ?-It is the impression of almost all soldiers until they try it, of those who have leeen there three-fourths would rather go back again.
6103. A regiment that had not been there at all would not object to go there? -No, it in just the contrary, they would sooner go to India than to the West Indies. I know that the Went Indien are dreaded by the soldier.
6104. They would as willingly go to India an to Canada, would they not? Yer.
6105. (Sir R. Marcin.) Thone who heve eerved in Indis generally, like to go back again, do they not? -Yep, I am convinced that three-fourthe of them do. -6109. (Dr. Farr.) They are aware that it in unhealthy, but they are not afraid to encounter the dangers of the climate $\bar{\xi}$-It in mo.
6106. (Sir P. Cautlry.) When a regiment is
ordered home, a great number of the men generally remain in the country, do they not?-Yes, 200 or
300 out of a regiment.
6107. (Dr: $_{0}$ Farr.) You are aware that a large portion of the army will be sent in future to India, and remain there for some years; do you think that will be acceptable or not to the men in the army?I do not suppose that the men will at first like it, but I am convinced that the men, when they have had a specimen of the duties of the soldier in India, aud especially if they have many old soldiers with them who have been in India, they will become satisfied; it is those who have never been in India who complain so loudly about it.
6108. Do you think that young men are not deterred from joining the ranks of the army by expecting that they will be sent to unhealthy places?-1 think that they are.
6109. If you were endeavouring to obtain recruits in any part of England, do you thiuk that would at all influence the young men ?-I should be so much afraid that it would, that I would not venture to say that they were likely to be sent to India. I do not think that I should be conferring a benefit upon the service if I did.
6110. You have seen a good deal of sickuess in India at various times ?- $\dot{Y} e s$, I have had the cholera myself twice; I had it at Delli, and I was one of the few that did recover, but we lost thousands of men altogether from cholera; very few of thens survived who were attacked; I was one of the tew that did by taking proper remedies in time.
6111. Fever is another disease from which the men suffer, is it not?-Fever is the more prevalent disease in India.
6112. The men suffer more from that, do they not; cholera kills them off, but they suffer from fever for many days and weeks, and even months? Yes, except the remittent fever, I think it is called; that is a dangerous ferer, and men die sometimes in a very short time from that.
6113. Dysentery is also another disease, and a very painful disease?-Yes.
6114. What effects have you observed theso diseases have on the physical condition of a regiment, does it make the men weaker, or less able to fight, or to do their duty after they have been in India some time and have suffered from these diseases?-I think that troops fresh from home always stand disease better; they always seem stronger and better able to withstand those sort of things; the longer a soldier has been in India, the less he is able to stand attucks of sickness.
6115. You think that an -injurious effect is produced upon men resident in India?-Tes, more so than upon strong fresh men just from home; I observed that in the 93rd Highlanders who were just from home; they used to bear the heat and work in the heat and sun better than our old hands that had been for 18 or 19 years in the country.
6116. Did you bring many men home with you from Indis who had served there for any length of time on the return of the regiment? -I dare say that we brought home 200 old soldiers.
6117. What was their condition?-Several of them died, and almost all of thein from one complaint after we came home, a complaint something like consumption.
6118. (Sir R. Martin.) A good many of them wasted away, did they not, from bowel complaint ?wasted away, did they not, fom ; they complained not eo much of the bowels as about the chest.
6119. (Dr. Farr.) Some of them, I suppose, completely recovered, but a great number were permanently dinabled?-Yes; I should say that the same reaults might have been expected had they remained in India; they were old soldiers.
in India; thry were old soldiers
6124, IInd they served 20 years in Indin?-A 6124. Ind they served 20 years in Indin?-A
great portion of them had served in the first battalion great portion of them had erred in the first battalion
of tho 17 th regiameut hefore volunteering into the first bettalion of the 8th regiment.
6120. What was the strength of the 8th regiment when it went out ? -I caunot eay.
6121. (Sir R. Martiz.) Do not men who have seived many years in Iudia dislike the climate of England:-Yes; they caunot stand the cold.

612\%. (Dr. Farr.) I suppose that the duties in India are generally not so heary as they are in England ?-No.
6128. The only thing which they have to complain of is the disoases to which they are liable?-Yes, and which are incidental to the climate.
6129. Have you any notion yourself as to the causes of those diseases?-I do not think that in many instances the barracks are sufficiently high and ventilated for the number of men that they contain in some of the stations that I have been in ; in others, and, indeed, in nlmost all the stations, there is no such thing as proper drainage, no sewers. At the corner of each barrack-room there is what they call a cesspool, where all the filthy water, soap suds, and all sorts of dirty water runs in ; it is ladled out by the natives at certain hours in the day or night when full, and sometimes there is a fearful smell from it in the hot weather, the sun being upon it; it almost etifles you.
6130. Do you think that is injurious?-I am certain of it; there is a bad smell even in the wash-houses, although they are kept clean.
6131. What is the state of the sleeping-rooms in the barracks at night during the hot weather? -They are very close, and there is a very bad smell, which any one can perceive that comes in from the air. If you go into a barrack room, there is a very bad smell.
6132. Particularly, if there is any prevalent disease, such as dysentery, or is there any difference?-No.
6133. Have you any complaint to make of the water in India?-The worst water that a soldier has in India is in Calcutta; it is not fit to use; indeed, it is dangerous. I am sure that there are more soldiers die in Calcutta than in any other station in Beugal; aud I am certain that most of them die from the frightfully bad water that they get there; men who do not take the trouble to purify it with alum and charcoal frequently become sick.
6134. (Dr. Gibson.) Is it obtained from tanks or wells? - From wells, I think.
6135. (Dr. Farr.) Have you any complaint to make against the water supplied to the men at the other stations?-No; the water is generally very good in India.
6136. (Sir P. Cautley.) The natives drink the same water, do they not, at Calcutta? $-I$ should say so ; but I am not sure of that.
6137. What is the state of the closets and urinals; is that satisfactory in India? -They are very well kept. 6138. Are they emptied frequently? They are emptied every uight ; they are supposed to be emptied hetore gun-fire in the morning; before the soldier wakes, everything is supposed to be cleared away, and that is almost alwass the case; sometimes it may be neglected, and in such instances the people who ought to have done it are punished by the quartermaster.
6139. (Dr. Gibson.) Are these places close to the barracks, or at some distance off?-The distance raries; they are never more than 40 or 60 yards from the barracks.
6140. Is there a covered way to them? -In very few instances. There is a covered way at Agra, and there is also in a barrack at Coluba in Bombay. Those are the only instances in which I have seen a covered way leadiug to those places.
614.1. (Dr. Farr.) In the hospitals are the soldien's, according to four experience, properly nttended to? -Ies; I think that that could not be better.
6142. Do Fou think there is no ground of complaint ?-None ; every care and attention are shown to the soldiers who are sick.
6143. (Dr. Gibson.) Do the men like the native murses ?-They are not so attentive as the European
orderlies; but the only thing that a soldier has to do, if he has any complaint to make, is to mention it to the medical officer, and these people are severely punished if there is the slightest neglect on their part, but they are hardly worked on service ; and with regard to the wounded, the soldiers have alriost all comrades for that purpose, they send for them from the regiment; but they do not let the natives. meddle with them, except to bring them their food.
6144. If a man is very ill is he attended by 2 native? -No; there is always a man belonging to his company who is sent to the hospital to superintend the natives in what they have to do. The soldier is well treated in hospital.
6145. The men have not confidence in the natives? Yes, they have confidence in them, but, perhaps, sometimes a man cannot talk to them; they therefore do not understand each other, and a man may want things that the natives do not understand anything about, and sometimes they will not understand. They do not take the same interest in an European that his own comrade does; they are merely working there for four rupees a month (sometimes four, and sometimes five, or whetever they may get), and they do not care who a man is, or what he is; they think that the easiest way they can get their wages the better for themselves, but by having a orderly there to look after these people, they are made to attend more on the soldier than they would do at other times. If any soldier has any complaint to make, if he is not properly treated by the orderlies, and speaks to the medical officer, the complaint is instantly attended to, und every satisfaction is given to him.
6146. Have the men ample means of washing in a hospital ?-Yes.
6147. Do they do that in the verandahs?-For those who are able to wash themselves there is a wash-house for them, for those who are not able to go outside they gencrally wash near the cot, and there are proper chatties, as they call them, to wash in, and the natives carry them away, and throw the water away into the cesspool. But drainage is the principal thing that I am certain is wanted. I am certain that the barracks in India, even in the plains of Bengal, could be made a great deal more healthy, provided they were properly drained, for after the rains there will be a pool of water standing in the lines for five or six days; that gradually dries up by the heat of the sun, but there is much smell from it, and I am certain that it must cause fever ; these things are often reported by the men and by the officers.
6148. (Chairvan.) Have you noticed that the men were more unhealthy than usual at the time this bad smell prevailed, or just after it ?-I have always noticed that the sick list takes one particular barrack room more than another, or one particular side of a barrack more so than it dues anoiher; from what cause I cannot say, but there is always more sickness in the rains than during any other period of the year in India.
6149. (Dr. Gibson.) What kind of barrack floor is most easily kept clean and dry? -The best floors for a barrack are a kind of freestone in large slabs; the floors in the Bombay presidency are chiefly of earth, with cow dung pat over once a week by the hands of the natives, and left to dry.
6150. Do the men consider them good floors? They do not like them.
6151. On what account ?-I think the principal reason is the dirt that is occasioned, and the trouble that it gives them, for the soldier cannot move about in his barrack room until it gets dry, and it takes a considerable time to get the cow dang dry.
6152. Does it smell ?-Yes, of course.
6153. (Chairman.) What is the use of the cow dang ?-I do not know ; it is the Indian custom; it is what the uatives use in their own huts.

The witness withdrew.

Observations by Miss Nigetingale on the Etidence contained in Stational Returns sent to her by the Rofal Concrisston on the Samitary State of the Army in India.

My Lord,

In compliance with the request sent to me by the Royal Commission on the Sanitary State of the Army in India, in Mr. Baker's letter of 1 lth October 1861, that I would make on the contents of certain MS. replies to queries addressed to sll Insian military stations any observations which might occur to me as bearing on the sanitary condition of cantonments and hospitals, I beg to transmit the following. In doing this, the difficulty of giving what every one might consider a fair representation of questions of such extent, by stating specific cases, has been great. Some will see no importance to health in the facts. Some will think the facts given the exception and not the rule. If there be an exception, i.e., if there be a single station in India with a grod system of drainage, water supply, and cleansing for itself and its bazaars, with properly planned and constructed barracks and hospitals, provided with what is necessary for occupation and health-a station where the men ane not encouraged to drink, and where they are provided with rational means for employing their time-to such a station these remarks do not apply. But I have not found it. Everywhere there are grievous sanitary defects, which, wherever they exist, can lead only to sickness and loss of life to the degree in which they exist. And let those who doabt whether this representation is true, taken as a whole, look at the stational reports for themselves.
In the papers sent me I find an amount of evidence showing the causes of disease in the Indian army, such as perhaps was never before brought together on any similar subject. It is shown in these papers that:--
I. Indian Stations are subject to the Diseares of Camps.

1. The prevailing diseases at Indian stations are zymotic diseases, connected with camps,--such as I mysclf have seen,-all of them, cholera, fevers, diarrhœea, dysentery; together with hepatic disease.
The main point of the Indian sanitary question is, indeed, camp disease, the causes of which are renderedi more intense by climate; and liver disease, occasioned to a great extent by over eating and over drinking. and sedentary habits, the result of these habits being, as in the former case, intensified by climate.
Stations have been chosen with as little regard to health as camps often have been. Many are in positions which the mere verbal description proves to be ansuitable. Or, at all events, little or nothing appears to have been done to render theme suitable. They are low, damp, or even wet, often mixed up with unhealthy native towns and bazaars abounding with nuisances.
II. Indian Stationg phesent the same Sanitary Defects ag Camps.
2. At all or nearly all the stations the usual causes of camp disease appear to exist. I will give examples of the more important of these as shortly as I can, as they exist at the larger British stations. These are:-
(1.) Bad water.
(2.) Bad drainage.
(3.) Filthy bazaara
(4.) Want of ventilation.
(5.) Surface overcrowding in barrack huts and sick wards.
(1.) Bad Water.

Hyderabad (in Sinde) eays "No doubt it (the water) swarme with animal life."
Where tests have been used, the composition of the water reada like a very intricate preecription, containing nearly all the chlorides, sulphates, nitrates, and carbonates in the pharmacopocia, besides silica and large quantities of organio matter (animal and vegetable), which the reports apparently consider nutritive, for few of them but "consider" the water "good" and "wholesome;" e.g., Fort William, Calcutta, says that the water for cooking, drinking, \&c., is carried from a tank filled by surface drainage, which tank is kept "perfectly "clean," and is "generally free" from "surface impurities." Many "city tanks are in a most filthy condi"tion, producing malaria." Sealkote calla its water "decidedly good,". while containing a considerable portion of sulphate of lime. Ghazeepore calla its water "good and sweet," and says that it "does not seem "contaminated by the amount of leaves that necessarily fall into open structures." Chunar says that its water is clear, sweet, and inodorous "if allowed to settle before it is drunk." Agra's water is "laxative," and "apt to disagree at first." Dinapore admits that its wells have been poisoned by infiltration from barrack privies. Nusseerabad says, "The flavour (of the water) varies according to the quantity of the salts." At Murree the quality is "considered inferior by native visitora, and to cause colic." "Boiling" and filtration through sand and charcoal are neceasary to "render it wholenome." At Hazareebaugh tank water, "on "standing, copiously deposits " and contains "organic matter in considerable quantity." Its well water for domestic use contains silicic, phonphoric, hydrochloric, and carbonic acids. But it is satisfactory to know that "persons particular about the quality of their drinking water" can " obtain their supply" from " several " good wells."

At Bangalore, the Clyoor tank, uned for drinking, is the nutlet fur the whole druinage of a most filthy bazaar, (125,000 inhahitanta) for that of our cavalry, infantry, and harne artiliery barracks, and of the greater proportion of the ntation. The commander-in-ehiff niyn, "the dinguatingly filthy nature of the source from "which the water used at Bangulore is tuken, has been lovonglet to notice acores of times hy me within the "lant 4 $4 \frac{1}{\lambda}$ years; but, we usual, nothing bee been done to remerly this mont crying evil." Eiven the wellis from which drinking water in taken are impure from *ownge. Thry we ippen i and "when they get dirty are "cleaned."

At Secunderabad, as much as 119 grs . of solid matter, and, as it would appear, 30 grs of organic matter At Secunderabad, as much as 19 grs. of solid matter, and, as it would appear, 30 grs of organic matter
per gallon, are found in some of the well and tank water. [Secunderabad and Poona are almost the only per gallon, are found in some of the well
stations which give a chemical analysis.]

At Surat " no one thinks of drinking the camp water."
At Asseerghur the same tank is used for drinking and bathing. "For the former the natives slightly clear
"away the surface." Asseerghur thinks that its water "smells good."
The application of chemical science to water supply appears hardly to be in its infancy in India.
The arrangements for raising and distributing water are everywhere, as Bombay Presidency remarks, the same as what they might have been " 1,000 years or more ago." Belgaum has attained the maximum of civilization under this antique systern. The water is there "raised in leather skins by bullocks, emptied into" "troughs, and thence conveyed by water-carriers."
At Kirkee "no such a thing as a pump is known;" Government pays 617 rupees per (hot) month to Evater-carriers.
Everywhere "each individual has his bheestie, and each regiment its set of bheesties."

\rightarrow
These water-pipes with a will are not always found to answer, for Fort William (which pays them 134l. per better to try water-pipes without a will? \dagger
It is singular that, while describing water sources, qualities, and modes of distribution which civilized cities have ceased to use, most of the reporters consider the water as good and fit for use. The practica result of this part of the eridence is that safe water supplies are yet to be found both for Indian cities and for British cantonments; and that many sources, as described in the returns, would in England be scouted as infallible causes of cholera in epidemic seasons.

Lavatories.
As for all means of cleanliness, bathing, except in a few cases where there are plunge baths, seems to mean washing the face, or throwing water over the body, for where there are lavatories there are no or ferv fittings, where there are fittings there is no water.
At Lucknow a small canal runs along the bath room, from which the bathers draw the water and throw it over themselves, being prevented by iron bars across from "lying at full length in it and soiling the whole supply." The bath at Mean Meer is a long shallow tank, "in which the man can lie down and bathe." Madras and Wellington are literally the only stations where anything like lavatories and baths, with Thor' Mout and at many other stations, each lavatory is a tub filled by a bheestie, in which all the The thers beig no bain ash, there being no basins.
of the kind of accommodation providect. a a lavatory at Aden, which affords rather a favourable specime cesspit, 8 feet deep, from which it is expected to "make away with itself," as it best can. Why camot civilized basins be provided for men to wash in and the foul water be properly drained away?

- Words convey such an inperfect idea of the actual state of things, that 1 obtained, by the great kindness of an Indian friend,
ilustrations taken from the life, which 1 have had cut in wood and transmit with this paper. I lave also had woodeuts prepared of harrack and hospital plans, from drawings contained in the papers sent me.
\dagger The reason usually
\dagger The reasou usuaily assigned for employing these human water-pipes in barracks is, that they are indispensable on field service. But so are tents; and yet nobody proposes to barrack men in tents in time of peace. Barracks are buitt for peace, and ought to be
supplied with reasonable and decent conveniences. Why should the bheestie and waterskin be preserved when the teut a supplied with reasonable and decent conveniences. Why should the bheestie end waterskin be preserved, when the teat is aban-
doned? Let the bhestie be for field serviee, if no better device san be discovered; but let some civilized method be adopted of supplying barracks, garrisons, and towns with this prime element of health and cleanliness. Besides, human labour is daify becoming of higher value in India, and it may be actually more expensive to use men as heasts of burthen now than to use the pplisnces of civilization.

Fig. 1.
Latatory. Adex.

Washing and bathing in barracks and hospitals will have to be conducted on quite a different scale from the present in India, if health and cleanliness are aimed at. If the facilities for washing were as great as those for drink, our Indian army would be the cleanest body of men in the world.

(2.) Bad Drainage.

This may be rendered no drainage whatever, in any sense in which we understand drainage. The reports speak of cesspits as if they were dressing rooms. As at Nusseerabad and Kolapore, "a small cesspit is " attached to each bathing room, urinal, or privy," and " to each married man's quarter there is a bathing " room with cesspit."
At the capital of the Bombay Presidency, where civilization has introduced a " main drain" 2 feet square, with a "flat bottom," this "main drain" is a "great nuisance," and the "stench at times scarcely to be endured." At Fort George, in Bombay, the "latrines are not drained except into an open ditch, which is always in a foul state."

Indeed, Bombay would gladly say, as the London woman said when asked to point out the drains, in the days when London drainage was in a similar state, "No, thank God, sir, we have none of them foul stinking "s things here."

At Madras (Fort St. George) the drainage hitherto is stated to be worse than useless. The main drain of the town is 80 yards distant from the European fort; the effluvia from it very offensive. The arrangements at the native lines, as described in the reports, are simply abominable. The old privies in Fort St. George are "as bad as they well could be."
At Bellary, a large station, there is no drainage except the fall of the ground.
At Secunderabad (Trimulgherry) there is no drainage of any kind. The fluid refuse evaporates or sinks into the subsoil. A nullah which intersects the cantonment stinks. The extent of the cantonment is so enormous, that it is said "to preciude any general surface draining," a statement which, if true, would , amount to this, that the occupation of ground by human beings must inevitably lead to disease, a statement as applicable, or rather much more applicable to the area of London than to that of Secunderabad, and yet London is drained both on the surface and below it.

Everywhere the system of "drainage" is that "cess-pits" are "emptied" when "filled," or "when "necessary," and their contents carried away by hand, as at Deesa and Belgaum. Generally they are close to the buildings.

At Hyderabad, in Sinde, in the native lines, the contents of the cesspits are "thrown about in close " vicinity to the cesspits." "Anything edible is immediately picked up by birds or dogs." There is "great " room for reform" in the native latrinea, the cleansing of which consists mainly in the liquid "sinking into " the subsoil, so that the earth in thoroughly saturated, and a noisome odour pervades the atmosphere." And yet it is added that the sanitary condition of the station is, "in every respect, satisfactory."

At Neemuch the "drainage of privies and urinals is only on the surface."
Often, as at Aden, it is expressly stated that it (viz., "all drainage") is "allowed to sink into the "subsoil," which (at Aden) we are told is so useful as to "absorb the contents.". The arrangement for enabling it to do this is shown in Fig. 1. Figs. 2 and 3 represent the usual construction of latrines. In Fig. 2 the contents are intended to be swept up and removed daily by hand,-a noisome and dangerous process, especially during epidemics. Fig. 3 shows the cesspool system of "cleansing," which means saturating the subsoil with filth, and endangering all the wells in the neighbourhood.

At Neemuch, which has attained the high pitch of civilization of building latrines for its bazaar, the
" latrines are too close to the houses, and are not used at present for lack of a proper establishment to keep
"them cleas." Therefore the people at Neemuch do like their neighbours in this respect, a proceeding which
it is impossible to describe farther. At Asseerghur a similar abomination appears to be practised on an
" open space of ground near the main guard and parade," which is "always offensive," and "ready to
" nurture epidemic disease."

$$
\text { Fig. } 2
$$

Latrine. Poona.

Fig. 3.
Infantry Barricks Latrine. Belgaum.
Plan.

At Asseerghur the "construction of sewers and drains has not as yet been considered." They "consider," on the contrary, that the sewage "will probably be removed by hand." "The refuse, in all cases, is thrown " over the fort wall." "One of the tanks" is called "unsavoury."
Almost everywhere it is said, as at Nusseerabad, Kirkee and Poona, and Dinapore, all of them large and important stations, " barracks and hospitals" are "only wet " or "damp" during the "rainy months," as if it were a proof of great and unusual precaution in construction which builds buildings to be dry in dry weather.
At Fort William it is stated that the fluid refuse is swept away by garrison aweepers and water carriers, with the aid of a fire engine ; that much of it evaporates; that the outlet is a foul ditch.

Dinapore also boasts of a foul ditch, often vary offensive. At Poonamallee the "foul ditch" surrounds the fort and encloses the hospital ; and "all fluid refuse sinks into the subsoil where it falls."
At Cawnpore is the singular statement, that the drains are "not intended" for draining cookhouses, privies, \&cc. Here, as elsewhere, the drainage is effected by hand; that is, everything that will not evaporate or sink into the ground is carried away to a distance in pails, skins, or carts, and emptied out.

Indian Drainage Stritim.

At Meerut the cesspools are cleansed "by opening the tops and'drawing out the fluid in buckets." It is said "they seldom require cleansing." We may infer from this what a condition of saturation the subsoil must be in!

Agra employs all the powers of nature, and none of its own, to get rid of its "fluid refuse;" evaporation, sinking into subsoil, \&eo. Nature, however, in dilatory, which renders "raised paths necessary between the " barracks." The water from the lavatories is collected in an open eesspool, from which it is spread over the ground. The hospital cess-pits are deep wells, never cleaned. It is "tried to keep them sweet by lime, but " in vain." (Probably.)
At Umballa the eurface water "disappeare with tolerable rapidity."
Mean Meer, the new station for Lahore, has no drains about the barracks. The water lies for hours. The lavatory cesspools sometimes overflow, saturate the groumd, and taint the atmosphere.
These cesspools, as in Fig. 3, were intended for saturating the ground with foul matter, and out of the ame ground the well water is taken.
Is not the whole history here of the late frightful cholera at Lahore?
And why cannot the refuse which does so mnch mischief by remaining be used to do good, and raise any amount of vegetables in soldiers' gardens?
Ferozepore tells the same story of no sewerage or drainage. Also at Ferozepore the lavatories are brick and mortar floors, "adapted for receining and draining off the water into the subsoil outside, so that the "men may freely bathe themselves !" There is no bath except the aforesaid floor. So at Peshawur and Sealkote is the ame want of all sewerage or drainage.
At Berhampore, with its square mile of cantonment, only one cart is allowed to remowe the contents of the privies to "holes a mile from barracks." The vicinity abounds in jheels and foul ditches, with putrid water.

Allahabad, one of our largest and most important atations, in one of the worst positions, as if that porition were not unhealthy enough by itself, trusts to aature again, has no drainage nor sewerage, and leaves its surface water to "evaporate," "percolate," and "run off."

Benares follows in the train. At Rangoon the drainage is supposed to run up-hill. For we are told that all sewerage and drainage are merely "trenches made without reference to slope."

Landour, which is a hill station, has every house damp for three months in the year. Yet their "spacious " lavatory, with brass basins," is not much used, "from the scanty supply of water in the dry season."
It is evidently quite ponsible to locate the whole aimy on hill stations and leave it more unhealthy than on the plains.
Nynee Tial, also a hill station, lets all its finid refuse flow down to plains below.
It is impossible to pursue this subject further. There are such much worse things in the Stational Reports than what I have chosen to give, that I must say to those who call my "bonnet ugly," "There are " much uglier bonnets to be had."
The system of water supply and drainage in India may be briefly defined as follows : they draw water from a well, not knowing whence it oamea, and if there be any means to drain off water it is into a cesspit, or into long, open, pervious drains, not knowing whither it goes. Where this is not done, all the fluid refuse is collected in open cesspits, and oarried away by hand labour or carts. Or else it is allowed to dispose of itself in the air or earth as best it can.

Thbse two ofpiclals repriberit the bybeth of water suptit and drainage in India for garbigone of water sows.
Drainage, in the senve in which we have found it necessary for health in this colder climate, is by no means considered neceseary for health in the hat climate of Indis; for, as in the anee of the water anpply, most of the reporters consider no drainage a sufficient guarantee for health.

(3.) Filthy Bazaars,

It is almost impossible to describe these. But one description will do for all, Except where the two Lawrences have been-there one can always recognize their traces-the bazaars are simply in the first suvage stage of social savage life.

No regular system of drainage, no public latrines, or if there are any, no sufficient establishment to keep them clean, no regular laying out of houses, overcrowding, bad ventilation, bad water supply, filth, foul ditches, stagnant water, jungle and nuisances, this is the account of all. The country round some.is stated to be "one immense privy."

At Neemuch, the Bazaar Superintendent maintains "strict supervision," and "punishes the inhabitants," ulthough the latrines cannot be used. The native houses are all move or less dirty, with dung-heaps close to them. The "disagreeable emanations" from the bazaar are felt in barracks.
In Dinapore some streets were impassable dunghills "last year," "until cleared." The elephant sheds and all the south of the station in a state disgraceful to any cantonment. The drains, deep holes of festering
 mud. No latrines, although "the population is as thick as can be;" until lately, only one filth cart, now three. At a neighbouring village the dead are buried within the huts.

At Agra it is a proof of "respectability" to have cesspools. The inhabitants (152,000) generally "resort to the fields."

English works, treating of sanitary improvement, insert sections of the bad drainage arrangements. But none contain such an illustration as this of how a woman is made to supply the place of a drain tile.
At Berhampore " nothing can be worse than the sanitary condition " of bazears." The native houses are dirty in the extreme. Dungheaps or deep holes full of stagnant water, the common cesspit of the houses, are close to them. The nuisance is felt even at barracks. The "Conservancy" establishment is quite unequal to its work.
At Muttra the bazaar is an accumulation of huts without order. "Drainage bad ; ventilation worse; water supply execrable." "All the wells brackish, from nitre," the earth being contaminated with all sorts of impurities. Latrines "hardly known." "In short, the " bazaar is a mass of filth."

At one hill station, Nynee Täl, where men are sent for their kealth (!) the stench is at times overpowering, from both bazaars being in a filthy and crowded state, no proper drainage or latrines, no means of preserving cleanliness, which causes nuisance even in the barracks. At another, Darjeeling, among other defects, the native villages, writes the medical officer, "are the most filthy" he has "ever entered, and " it is quite sickening to walk through them."
At Jubbulpore, where every hut is crowded, where there are no latrines, where cleanliness is almost impossible, the same causes produce the same results.
At Cannanore the native houses have dungheaps and cesspits within the compounds. Owing to the want of latrines, the "filth and indecency" are described to be what it is impossible to repeat. The dead are buried within the compounds of houses.
At Trichinopoly the water supply is bad, scanty and brackish. The bazaar is said to be "clean," while the open cesspits are described as an "intolerable nuisance," when the wind blows over them. The native houses are ruinous and not ventilated. Levelling, filling up, pulling down deserted huts, \&c., is urgently required, but not done.
Those who think I have given anecdotes and not fair illustrations, I refer again to the Stational Reports for further and fouler evidence.

These instances are enough to illustrate the subject. Bazaars are the real hot-beds of disease, and require sweeping reforms as much as or even more than the stations.
Native regimental bazaars, from which the soldiers procure supplies, are within military limits, and as much under military control as the ground on which the barracks stand, and ought to be kept in as good a sanitary state as the barracks will be when thoroughly improved.

(4.) Want of Ventilation.

The repoits generally say, ventilation good, if barracks not overcrowded. But as the barracks are almost always overcrowded, we must conclude ventilation is bad.

Or they say, ventilation sufficient, because doors are kept open during day, which is as much as to say, ventilation is sufficient, because it is not.
At Kirkee, there can scarcely be said to be any ventilation in barracks. There are pigeon holes in the roof, but during the rains, when ventilation is most wanted, these have to be covered with tarpauling. At Poona the weather side has to be "dammed up" during the monsoon. At Bombay it is said that ventilation is generally sufficient ; "at least there are no complaints,"" although "improvement in imperative."
At Kamptee the ventilation is described as "most faulty and deficient," although there are three openings in the roof of each barrack. The windows are unglazed. At Ramandroog, a hill station, the doors are venetianed in the upper half, "a great disadvantage in wet weather." Half glase doors are required. At Bellary there are no windowa. The doors are half venetian, half panel. At Trichinopoly, one of the very hot stations, the old artillery barrack is stified by having only doora.
At Dinapore, where the ventilation is entirely by doors and skylights, "which latter, however, do not
" open," one may safely say, ventilation not sufficient when doors are shut (at night). In the "permanent
"Hospital" at Dinapore, placed so that the "wind does not blow across". it, the ventilation is"only
" oufficient" when the doors are open.

At Allahabad the doors have to be closed in high winds, dust storms, \&cc; and the ventilation, although there are roof ventilators and amall windows over the doors, is generally insufficient. The hospitals of Allahabad, although they "face the wind," have " in most instances no windows, except openings over the doors, and in the roof" And the ventilation is pronounced. to be "very defective," especially when the doors have to be closed.

So at Dumdum.
At Agra ventilation is said to be sufficient, provided the verandahs are not occupied for sleeping.
But the rerandahs are oocupied for sleeping.
At Landour, where sick men are aent to get well, there is both overerowding and bad ventilation. There is no roof ventilation.

At Nynee Tal the eis in said to be "pure" inside the buts, which means that they are slways full of "smoke"

The cooling by tatties, i. e, air passing through damp vegetable matter, often tends to produce ague.
External ventilation is often also bad, not giving the barracks the benefit of the prevailing winds, as at Dinapore, Allahabad, and Berhampore. This is a point of primary importance in India. At Muttra, although there is abundent ridge ventilation, the entire length, it is insufficient at night, simply because the barrack is in a position which the wind cannot reach.

At Allahabad one-third of the station is below the level of the river.
Generally, very little attention appearn to have been paid to independent ventilation as a cardinal point of barrack construction. Doors and windows have been trusted to ; yet they are so placed that men are often exposed in bed to hurtful draughts, and if shut, the fresh air is also shut out. Sometimes there is no glass in the windows, and when these are shut there is darkness as well as foul air.
A knowledge of the proper application of sanitary appliances to building in India appears to be as yet in its infancy.
(5.) Surface Overcrowding.

The structure of Indian barracks varies much. But in one thing they almost all agree, viz., in crowding the men upon the floor.
. Fig. 4 represents a plan and section of a hut room at Deesa, no less than 200 feet long, intended for 80 men, at 1,116 cuibic feet per man. It is well constructed for ventilation, and is altogether one of the best plans in India. But for its 80 men, which is just four times too many for any room, it allows less than 59 square feet per man.

Fig. 4.
Europear Bariack. Deesa.
Plan.

Section on A.B.

Evea in the most recent barrack plans there is the same defect.
Fig. 5 gives a plan, elevation, and section of the new barrack, either erected or about to be erected, at Mhow. The eleration shows a magnificent and costly structure. But it is on two floors; it has double verandahs, the inner ones occupied by beds, so that there are fowr rows of beds, and 53 feet between the opposite windows; the ventilation of the whole interior is interrupted in rather an ingerious way by cross walls, and the men have 65 squame feet of spare each.

But even this is net the worst.
At Fort William, the Dalhousie barracks, which are said to be "perfect," have six rows of beds between the opposite windores, 216 heds by regulation in each room, and three floors of such rooms. While it is added " 900 men" (300 men per room) "are generally accommodsted in the barrack without inconvenient ". ovescrowding." What is convenient "overcrowding ?"
The cubic space generally looks large in India, but the height of the roomg being enormous, often greater than their width, the superficial area is comparatively amall. At Cawnpore the barrack moms are from 25

Fig. 5.
Infantry Bargace. Miow.
Plan.

to 30 feet high. The superficial area for 1,000 men in 10 rooms is only 41 square feet per man, for 140 men in two rooms 61 square feet per man, and for 240 men in two rooms 88 square feet.
Also, the cubic space pre-supposes the inner verandahs not to be occupied. But in some places, as at Cawnpore, they are invariably occupied from influx of troops beyond the accommodation; there are then four rows of beds between opposite windows.
In all the five barracks of Fort William the men put their cots in the verandahs in hot weather. Perhaps the wisest thing they can do.
At Dinapore again are two of these enormous barrack-rooms (827 feet long, for 308 men). The superficial area in these rooms is 94 square feet per man. But one may aafely say that 120 would be barely enough under such circumstances. Madras has two stories, of one room each, for 1,030 men, the upper of which rooms is stated in the return as nearly 2,125 feet long, (probably the longest room in the world), for more than 600 men, and the other, 1,483 feet. The superficial area per man is only between 60 and 70 feet in these overgrown monsters of barrack rooms. Secunderabad has 10 rooms, for 104 men each, with only. from 40 to 60 square feet per man. At Poonamallee there are two long rooms, with 300 men in each, of which the space given by the dimensions is so incredibly small (112 cubic feet and $8 \frac{1}{2}$ aquare feet per man,) that it is scarcely possible to beliere them given correctly. The verandah, it is said, is frequently used as sleeping quarters. (No wonder !)

At Meerut, for upwards of 4,000 men, the superficial area is only from 52 to 79 square feet per man, and the verandahs are occasionally used for sleeping on sudden influx of troops.

At Agra it is the same. So at Jullundur.
There is one barrack at Fort Govindghur, at Umritsir, in the Punjab, 8 plan and elevation of which are given at Fig. 6, which is a perfect nest of rooms one within the other, and has an open verandah

besides. The elevation looks promising enough; but the inside, with its double defences of windows and doors against the outer air, is about the leot place to put 70 men in. The distance between the opposite windows is 86 feet. The superficial ares in this case (better than in the other instances, but more than counterbalanced by the extreordinary construction) appears to be about 85 square feet per man.
The men are far too crowded in their Indian barracks. In almost every case there are too many men in the rooms for health.
The floors in most barracks are merely the ground bricked over, or they are of stone or of a kind of pinster.
At tome stations the floors are of earth, varnished over periodically with cow dumg : a prectice borrowed from the natives. Like Mahomet and the mountain, if men won't go to the dunghill tue dunghill, it appeara, comes to them.
To sum up: it is not economical for Government to make the soldiers as uncirilized as possible. Nature sends in her bill-a bill which always has to be paid-and at a pretty high rate of interest too.

III. Intemperance.

There is a good deal of intemperance among boldiers everywhere, but I very much doubt whether the same amount of tippling ever goes on in the British army in this country as appears to be encouraged by the eanteen system in India.

A soldier in India may buy at the canteen no less than a gallon of spirits in 20 days, or he may bave a quart of strong beer every day and one or two drams of rum or arrack.

It is easy to see what must be the effect of this on health in such a climate.
The gist of the atational returns amounts to this :-
Men all "temperate." The maximum daily allowance per man is three quarts porter, or two drams spirits and one quart porter, or one dram apirits and two quarts porter. This as at Mhow, the largest of our etations in the Bombay Presidency. Agre too issues to each man per diem, during the "cold season," 2 drams of rum and one quart of beer. But "no more than" two drams epirits, or "one quart (32 ors.) " porter and one dram (3 ozs .) spirits" per man per diem is the common allowance.
Sale of apirite "otrictly forbidden" in bazaar to soldiers; every man can nevertheless get as much as he likes in baraar, besides the above quantity. For, as might be expected, it is practically impossible to encourago and restrict an evil at the same time. Government sells the licence to sell drink in the basaar, and orders the men not to profit by it. The present law is like lighting a fire and charging it not to burn anything.
" No confirmed drunkards ;" cases admitted into hospital directly from intemperance, numerous ; indirectly, innumerable.

Arerage of habitual drunkards in some European regiments not less than 15 per cent.
At Fort William seren trials for habitual drunkenness in 8th Regiment in three months; in the 5th Pusiliers admissions into hoepital indirectly from intemperance, 17 in 100 ; direetly, 2 in 100 . Spirits, it is said by more than one report, are the curse of the European soldier in India; also, that the evil effect of spirit drinking was manifest during the last field service. In seven regiments in Madras in 1849 the percentage among different classes was (roughly) as follows :-

Again, it is said (Hazareebaugh), "soldiers as a body temperate," and
One-third of disease, and One-half of crime,
produced directly or indirectly by drink.
The long-cherished ides as to the necessity of apirits for the British soldier is, it is stated, thoroughly exploded. A man who drinks tea or coffee will do more work than a dram drinker, though considered sober. And why? Because we now know that tea and coffee prevent waste of the eystem under exertion; while spirits afford no more than temporary stimulus followed by exhaustion or collapse, both of which eonditions are powerful predisposing causes of disease, especially in an exhausting climate. It is an arron to sell spirits in canteens to prevent men obtaining worse spirits in bazaars. It creates craving, to be satisfied elsewhere. Again and again it is said that selling rum in canteens is an unmitigated curse to a regiment, destructive alike to health and discipline ; that it will be a " happy day" when nothing but beer, light wines, coffee, tea, lemonade, \&cc. are to be sold. Col. Greathed, than whom we have no better authority, says that he "should wish beyond everything to see the practice of supplying spirits in canteens abolished."
In one year (1859), at Allahabsd, there were 36 cases of delirium tremens, of which 5 were fatal.
At Umritair one-airtb of the admissioni are directly, and one-half indirectly, from drink. Its effect is "injurious to the last degree.".

At Chunar, though the men are "mostly temparate," yet, on a 10 years' average, one man in three (l) was admitted into hospital directly from drink, besides those indirectly, out of the admissions. The deaths were just twice, the crimes just 10 times as many among the intemperate as among the temperate.
It is a comfort to hear that at Secunderabad the "average number of confirmed drunkards varies." But 25 out of 26 cases admitted into hospital indirectly from drink (Secunderabad's statement) is really too bad. Though when it is added, that in this large station, occupied by nearly 3,000 men, there is so little for them to do that they "go out in search of liquor," it is the less aurprising. And the immense amount of epidemic dysentery that sweeps over the place occasionally, under such a system, is still less aurprising.

At Bangalore, one of the largest of our Madras stations, where numerous acute attacks of disease are brought on by the quantity of spirits drunk, notwithstanding its fine, healthy, temperate climate, 3,000 feet above the sea, it is stated that, probably, "not three men out of five go to bed perfectly sober," and when pay is issued hot two in five. That, of one-year soldiers, 1 per cent. is a drunkard; after two years, two per cent.; and so the proportion increases with length of residence, owing to their "idle, listless, objectless lives."/ In India, temperance is the exception and intemperanee the rule. "But Government " is to blame."/ It "bids them drink freely," and when the habit is confirmed "denounces them as a "disgrace to their country." "The habitual daily two drams ruin the health and habits of the aoldier, " who thinks that as long as he takes only what Government allow him, he cannot go wrong." The taste for spirits, it is said, is "not easily acquired by young soldiers." "The habit of spirits is maintained " by their authorized usa."
The temperate men, it is stated, all drink occasionally; impossible to say how much spirit is sold in the bazaars. At present the collectors encourage the sale as much as they can for the sake of the revenue. Under no circumstances, except extraordinary fatigue, glmost all agree, should any drink but beer, tea, or coffee be allowed; and the loss of revenue should be otherwise compensated for. Acquiring a taste for spirits should be discouraged in men by every means. It ahould be absolutely interdicted on the passage out, and malt liquor given instead, with good food, good water, and good accommodation. For want of these, about 10 per cent. of the recruits arriving from England at Kurrachee have in certain years suffered from scurvy.
"All spirit drinking is injurious to health." "Nine tenths of all the erime is casosed by it." "It is "directly or indirectly the root of all evil in the army." Such is the testimony borne in these reports.
In Burmah, when malt liquor could be had, health always improved. A marked change for the worse took place when spirit was issued instead.
Where beer was introduced, the "tremulous, yellow-skinned, emaciated" spirit drinker was ravely met with.
Madras presidency says that "health, efficiency, and discipline would be materiany improved by tea and "coffee in preference to spirits and malt liquor," "as has been proved when neither spirits nor malt liquor "could be had."
Barrackpore says that, if spirits were abolished, and dietary improved, the mortality among our men would be "extraordinaxily diminished."
Fatal cases (in sickness) mostly occur among intemperate men.
There is hardly a difference of opinion as to the necessity of abolishing the use of spirits in the Indian army. Men would be blind, indeed, to the mont glaring facts who would justify its continuance. The only plea on the other side in the reports is a very old one, which has been used to justify other vices besides dram drinking, viz., that, "if we do not give spirits in the canteen, which we all believe ta be bad for health and "discipline, the men will get worse spirits in the baraar." Thus the men are killed by liver disease on canteen spirits to save them from being killed by liver disease on bazear spirits, Government in either case benefiting pecuniarily, as is supposed, by the transaction. May there not be some middle course whereby the men may be killed by neither bazaar nor canteen spirits?
IV. Diet. Excess of Food.
4. It appears extraordinary to give the soldier the same amount and quality of diet in all seasons, in tropical as in temperate climates. And yet every day the soldier has 1 lb . animal food, 1 lb . bread, 1 lb . vegetables, 4 oz . rice, tea or coffee, and sugar, besides his spirits and beer, and any amount of extra animal food he may buy for breakfast and tea. Of all countries India is the one where men cannot be dieted the whole year round by the same rule without mischief. But only a few enlightened men appear to have any idea of what effect this extraordinary system of dietetics has on the soldier's health.
Surely we have sufficient knowledge of dietetics to be able now-a-days to vary our diet to suit climates and seasons, and to know that we cannot eat every thing every where. Sir John Lawrence says, in his evidence, that Ggvernment " might try to induce the men, by varying the ration with reference to has or cold weather, " to take more to vegetable dietu"

The menns of cooking are of the rudest order-a small square outhorse, sometimes without a chimney, often far from clean, is the regimental kitchen. As for boilers and ovens, cousidered indispensable at home, there are nonc. A few holes to put the fire in, and moveable utensils to hold over them, are all that India thinks it wants. There is of course no water laid on, and no drainage. Here as elsewhere is the ineritable cesspit, and sometimes there are two.
Fig. 7 is a plan of a double kitchen at Hazareebaugh. Fig. 8 is a by no means bad example at Belgaum. Both show the total want of civilized appliances. And although the cooking is not often complained of by the stations, there is very good authority for stating that the food is imperfectly cooked, or served up in a way which destroys the digestive organs, and leads to the use of stimulants to piomote digestion.

Fig. 7.
Cook-house. Hazareebator.

T. Want or Occupatto' and Exbrcise.
5. To understand the influence of this gystem of dieting and drinking, it must be remembered that, except moming and evening parades, and the man's turm on duty, he has nothing in the world to do. He can neither amuse himself, take exercise, nor turn his time to profit for himself, for there are no meens of doing any of these things. All the spare time people uaually give to active occupations he spends lounging in his hot barrack room, most of it on his bed.
The following graphic woodcut of the manner in which s soldier apends his day is from a drawing kindly sent me by an Indian officer of rank. (See page 12.)

India actually reverses the ordinary human day, for the men spend 18 hours of the 24 in or on their beds, and six hours only up or out. Indeed, Kamptee ways that "for many months of the year the men are con" fined to barracks for 20 out of 24 hours." And your imagination must fancy 100 to 600 men or more packed into the same room for eating and sleeping away these 20 hours,
This is an account of a coldier's day :-
bed till daybreak;
drill for an hour;
breakfart, served to him by native servants;
bed;
dinner, served to him by native servants;
bed;
tea, served to him by nstive servants;
drink;
bed;--and da eapa
So that the Briton exactry upends his mpare time between eating, drinking, lounging, or sleeping; and he eats meat always twice and sometimes three times a day.

All his meals are condensed into the hot hours of the day. And just when he wants one most, viz, before he goes out to his early morning work, he does not get it. Why not give him hot coffee before morning parades and beer, if he must have it, at dinner and it night? Not one report except Tonghoo but prays for the abolition of all this dram drinking; and it is said that the abstinent man is more enduring of fatigue and less obnoxious to disease than even the temperate mano. Spirits, it is said, should never be offered for sale, ss men ase induced to take spirita who never would if they were not so " handy." Trichinopoly anys that the sale of apirits ahould be abolished in canteens, bazaars, and within a circle of 10 miles round barracka.
If the men had employment, recreation, good tea, coffee, milk, more variety of food and of cooking, spirit drinking might be abolished. A good hot cup of coffee is the best stimulant for a soldier. As it is, the old soldiers often take a dram before morning parade, and nobody can prevent them.
The following piece of information is curious (the scene lies in the Madras presidency,) viz., that "the "canteen funds" (the profits derived out of the soldiers' drunkeniness) "are insufficient to provide "amusements to keep the men from drinking.". Also that where there is no library there are "plenty " of books which can be read till 8 p.m., when all lights are put out." Berbampore has a library and reading-room, but " neither lighted at night."
That want of occupation, lcading to drink, lays the seeds of disease among the troops, is acknowledged "Alcohol and unrefreshing day sleep," says Bangalore, "contribute to engender disease and accelerate mental " and physical decay." Ahmednuggur says that, for one man occupied in a barrack there are aix idle. Also, that when men are ectively engaged in the field in hot weather, there is little sickness or epidemic

- '

Daily Meaks of Occupation and Amubement. India passim.
disease among them. So unaccustomed is the soldier to ordinary exertion that, as might be expected, the short parades are talked of as injurious; as if they were long harassing marches; while, curiously enough, it is admitted that the soldier is never better than when he is exposed to the harass and fatigue of field service.
Kolapore and Belgaum say that, the more varied and agreeable a soldier's occupations, the better his health; that the troops require means of occupation and amusement to keep then out of the bazaars.
All the sensible reporters say that too much stress cannot be laid on the importance of using the utmost exertion to provide legitimate amusement and occupation for the men-workshops, shelter for athletic games, \&c. We must always remember that, in hot weather, the men, save those who can read, "have positively " nothing to do." Employment on public works "would be agreat boon;" "the work would be as cheaply " done as now ; it would occupy the soldier, and he would feel he was doing good." Savings banks wonld answer, "if workshops for trades were established." The usual account from a station is, no library, nor reading nor day room, no club, no garden, no workshops, no theatre, no gymnasia, no means of instruction or recreation whatever, no skittle grounds, or if there are any, not covered, no sufficient ahade for exercise. And the men are generally confined to barracks from $8 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. in hot weather.
Cawnpore actually orders the men to be confined to barracks for $10 \frac{1}{2}$ hours a day in hot weather; but the order "is'often disobeyed." At Chunar there is no restriction as to exposure to the sun. The "men " go about at all times, and, except when under the influence of liquor, do not appear to suffer from " exposure." Yet Chunar's mean temperature is 65° in December and 92° in June, its sun temperature as high as 120° in June. And yet the men do hot "suffer from exposure."
Agra, Ferozepore, and Umballa say that a large covered building for gymnostics, workshops, games, with a library, reading and coffee room, a theatre and plunge baths, "would draw many men from their cots, where "they idle and sleep all day." And Peshawur recommends that this building should be separate from barracks.

Dinapore recommends a farm yard to employ the men : an excellent idea,
Mean Meer (Lahore) suggests photography, modelling, and drawing as occupations for the men.
Sealkote (1,200 men), and Ghazeepore (850 men) may be offered as examples of the two opposite types of rational occupation and idleness.
Sealkote, indeed, is the only station, except Rangoon, which has anything like completeness: It has ball courts and skittle grounds. It has achools and regimental libraries. It has a well-lighted reading room, with chess, backgammon, dominoes, and 16 newspapers, \&c. It has a soldiers' garden, with seeds and tools provided by Government, who grant prizes for the best cultivation (soldiers' gardens, when they exist at all, are elsewhere worked by'natives). It has armourers'; saddlers', tailors'; shoemakers', and one watchmaker's shops. It has theatres; it has cricket and regimental clubs; it has foot ball, and it is particulanly fond of quoits. The saving bank of one of its regiments has $8,000 l$. It has sufficient shade for exercise. Yet Sealkote does not think it has done enough. And while other stations, whose men " lie in their cots all. "day," seem unaware that anything else is desirable, Sealkote wishes, that "workshops for every trade" were instituted, as they might be, and " strongly recommends" a gymnasium.
It is noteworthy that the health of the troops at Sealkote seems to require but little amendment, and that no complaint is made of its climate.

Rangoon has a ball court and skittle grounds ; schools, three libraries and dayrooms; soldiers' gardens; shops for trades; two theatres. But Rangoon says it requires lofty open sheds for gymnasia, and that Government should afford every aid in establishing good coffee rooms, independent of canteens, all amusements to be as near as possible, all canteens to be as far as possible, from the coffee rooms.

Now take Ghazeepore. Its whole means of occupation, instruction, and recreation, are one ball court and two skittle grounds. Its whole shade consists of the verandahs, under water during the rains. "Almost, " everything has yet to be done."
The large station of Allahabad (with accommodation for upwards of $4,000 \mathrm{men}$) is almost as ill off. Tonghoo, the only station which considers the quantity of spirits drawn as "conducive to health," and the amount of ". sickness, mortality, and crime occasioned by intemperance" as "trifing," has, as might be expected from this statement, absolutely no means of occupation and amusement for its men, and few of instruction. It appears to consider drinking and idleness the normal atate of things. At Bangalore (1,700 men) "day rooms, soldiers' clubs, workshops, theatre, gymnasia and gardens, are things unheard of." The "regimental library has no attraction for men who read with difficulty." This is the place where, as soon as "the noonday gun announces that the canteen is open, a rush is made for the raw spirit dram;"where "the canteen and the cot divide the hours unoccupied by the daily routine' of petty duties." What else can be expected? There is, of course, plenty of liver complaint here. .

But amusements are not all that is required. In conformity with all reason and experience, Sir Charles Trevelyan observes, that, however neceasary and useful chess and backgammon, ball courts, and skittle grounds, and even booke and newspapers may be, they only furnish some present diversion, and do not supply any strong pervading motive, such as induces men to submit to aacrifices, and to make persistent exertions in other lines of life. This motive is to be found only in the hope of rising to a higher and better poaition. He advocates a system by which every soldier who conducts himself well and cultivates himself so as to acquire a knowledge of the native languages and other necessary attainments, should be able to look forward to promotion as a matter of course, either in the army or in the commissariat, ordnance, or other military departments, or in the department of public works or police. The British soldier in India would then feel himself engaged in the serious business of life, at least as much as any of his countrymen of the same class at home. The army would take its tone from the active influential portion of the men. The amusements of various kinds provided for the soldiers would be more appreciated and would have a more wholesome effect, because they would take their proper place in subordination to higher interests.

This is no theory. It was actually carried out by, Sir C. Trevelyan at Madras. Men were first selected by competitive examination within the regiment. There was a second examination at Madras, and the result was the obtaining " of 20 men who were the pick of the whole army for the administrative service of " the Government in the civil and military departments:"

One element essential to placing soldiers in positions of civil usefulness is, of course, their learning the language of the country, necsesarily part of that voluntary education which they must have for competitive examination. Teaching the native langarges in regimental schoole would at once provide the men with interesting occupation and the prospect of future advantage. The War Office has already sent to all European regiments in the Madras Presidency a cheap edition of the New Testament and Psalma with a Clavis in Hindostanee, in futherance of this object.
Sir C. Trevelyan would ako encourage trades and handicrafts to the full extent consistent with the means of profitably disposing of the produce. And this is the mone necessary bepause all are not equal to the intellectual acquirements to which the previous remarks refer.

All officere who give ar opinion on the subject concur in recommending workshops.
Dumdum, in the total absence of all means for occupying the men, opens a small museum, with lectures, to which the men crowa, showing "that soldiens are ready to avail themselves of any means of rational " amusement in the erening in preference to spending all their time in the canteen."

Muttra again has no means of instruction, occupation, or amusement whatever, except a soldiers' garden, for which there are ho tools, although indented for a year ago. Carpentery, saddlery, and coopers' work are in great demand, ahd would benefit the men, as regards health, morals, and finance.

Lucknow is buiding everything that is required, except workshops.
Rawul Pindi has nothing but schools.
Barrackpore petitions for fives courts, a theatre, gymnasia, awimming baths, public reading of good biographies, trovels, and novels; for trades, such as clothing, accoutrements, barrack furniture, watch making, printifg, paper making, baking. It says that savings banke should be connected with workshops.

Darjeeling Yas a hospital reading room, and reader : a very good plan. But for its men out of hospital, at a hill station, where the rains fall incessantly for five months, there are no means under cover prorided and the med are pent up in barrack-rooms, to the great injury of their health. Darjeeling says, "there "should be restaurants where men could get coffee, tea, newspapers, magazines, and mix with men of other " regiment, instead of the discomfort of the everlasting barrack-room."
Hazardebaugh has a Government library, not lighted at night, a temperance reading room, well lighted, with upvards of 200 members (out of 1,080 men, for which number the station has accommodation), and, although it has armourers', shoemakers', and tailors' shops, it strongly recommends further means of occupation and amusement " $2 s$ the long days of the Indian hot weather hang heavily on the soldiers' " hands."
This part of the subject is by no means exhausted, but these examples and illustrations are quite sufficient to show the small amount, indeed, of physiological knowledge which has been practically applied to the Butish army in India.
Suppose any one wanted to try the effect of full diet, tippling, and wiant of exercise, in a hot climate, on the health of men in the prime of life, the Indian army method would be the process to adopt, in the certain expectation that every man exposed to it will be damaged in health.

While all this scientific "turkey stuffing" is practised, the men are carefully kept in barracks and not allowed to exercise themselves. And every body seems to believe that the way of making diseased livers in geese for Strasburg pies is the best way of keeping men's livers sound and of making efficient healthy soldiers for India. Wherever the régime is otherwise, as in the case of cavalry and artillery, who have some exercise, or where an enlightened officer allows his men to go shooting, there is, of course, improved health. But nobody learns the lesson.
People seem to consider that health is a natural production of India, instead of being the result of rational management. At the same time everybody says that India in "so unhealthy." Under this system of diet, regimen, drink, and idleness, it is indeed to be expected that cases sent to the hospita will be much more numerous, much more severe, and much less amenable to treatment and management than onder a seasible system.
VI. Hospitals.
6. The Indian hospitals, though planned on simple principles, admitting of admirable details, are, as a rule, exceedingly bad as regards points considered essential to health and administration, even in this country. What would be, e.g., thought in this country of a hospital without a watercloset, or bath, or means of personal cleanliness? Such a hospital would be considered as a mere makeshift till accommodation fitter for recovery could be provided.
The "means of ablution" in Indian hospitals, are often "a tin pot, with which the sick pour the water " over themselves." Or, as at Bombay, they "take water to bathe themselves from a trough." Elsewhere, they have "one tub, one basin, to 100 men." The means of washing, as at Ramandroog, a convalescent station, are "two shallow earthenware pie dishes," "on a form in a room" ("very chilly in damp" weather) "adjoining where the night stools are."
At Rangoon the "bathing accommodation" is "hitherto nothing but a tub of water, without basin, boap, or towel."
There may be a bath room. But © all apparatus is entirely wanting." The sick "can always, if they " please, get a skinfull of water thrown orer them by the water carriers," as at Hazareebaugh.
One may safely. say that when the sick are able to bathe in India, it is a sufficient test of their being able to leave hospital, as has indeed been discovered to be the case at some home stations.
At Nynee Tail the sick bathe in the lake. Darjeeling says, " in fact the inducements to remain dirty " are, especially in the case of sickly men, greater than those to be clean."
There does not appear to be a single well placed orderlies' or nurses' room in any of the hospitals, from which the sick can be seen at all times, and where the nurses themselves can be inspected. The surgeon's and "nurses"" quarters are sometimes three-quarters of a mile or a mile off, so that they (the medica and nursing attendants) are represented as spending their whole day in going backwards and forwards on the road.'
The hospital is generally surrounded by a "high prison-like wall." At Ghazeepore it is said. "c of course " all the buildings generally are most unsuitable for hospital purposes." Proper ventilation is represented,
as at Baroda, as "next to impossible." At Kolapore the rain beats in through the cowls, and "mbres the wards so damp that charcoal has to be used to dry them." The water for drinking may be brought, as at Bangalore, from a tank which receives the whole sewage of the cantonment, and which "just now is not " very clean," from which "hundreds of bullock loads of impure matter are removed year after year when the "tank is low and the smell from it most offensive." Or the water may be brought (cholera also being brought with it) from wells into which the said tank drains. The drainage may be by an open ditch into the tank, whence the hospital derives its water. Or the water supply may, perhaps, have to be carried from half a mile off, or even from two miles off, as at Madras. But "no improvement is required in this "respect." (!) The privies are everywhere either "highly offensive" or "not more offensive' than the " best of such places usually are in this country." Or the privies are "without seats," and are "kept pure " by burning salt in them." "Arrangements admit of improvement."
Scarcely ever is there any provision of aeparate wards for convalescents; although, in a country whose scourge is dysentery, to leave men convalescent from dysentery in the same place and under the same circumstances as those suffering from dysentery is just to ensurs as far as possible their not convalescing. The same may be said of fever and of bowel diseases generally. Convalescents pass their whole 24 hours in bed, except during their time of exercise (where they have means of exercise) on elephants, in sick carts, or doolies. They have not even a room to take their meals in, but eat their food upon their knees, sitting on their beds, "possibly with dying-men around;" or they are sent to barracks and put on barrack rations, and " marched out under a non-commissioned officer morning and evening for exercise."

Where there is no guard house the "men on guard occupy a corner of the hospital verandah, where "they eat, drink, and amoke at their discretion." No hospitals have dining rooms, although all ought to have them because of the pest of flies in India. Not one has a day room for men who can leave their beds.
The "sanitary state" is generally represented as "good," although at the same time we are told as in certain cases that the hospital is "unfit for accommodation of European patients;" or that "epidemic disease has appeared in it ;" that "sores become erysipelatous;" that, as at Bangalore, "one of the flags" in the Aloor being removed, "the smell from the opening, was so offensive that" the surgeon was "obliged to "run;" that "gangrene and phagedæna have appeared, when the hospital was crowded;" that the "privy " is a nuisance to one ward;" that thie "cesspools are always more or less offensive;" or that the "out" houses are in a very dirty and unwashed condition." At Muttra the contents of the latrines are "carted " away every morning for combustion in one of the many brick kilns which surround the station and help "to poison the air." At Madras the "sanitary state" is called "good," and the commander-in-chief himself adds, "if the vile stinking river Cooum were not.under the very noses of the patients." Both cholers and gangrene have appeared at times in the hospital. The latrines are placed to windward "unfortunately;" "tubs only aire used." The privy is washed daily, and charcoal "burned in it.". It is called "not offensive," the commander-in-chief again adding, "a year ago it was odiously offensive."
No wonder that it is stated, as at Bangalore, that "sick men are reluctant to come into hospital from " barracks," and that the medical officer does not want "convalescent wards," because he finds it better to send his convalescents to barracks, where they recover faster.
Irom some hospitals the "impurities" are removed by hand carriage to 30 yards from the hospital. In another, the privy is aid to be a "disgrace to the 19th century." One wonders to what century it would be a credit.
At most hospitala the bedsteads are of wood instead of iron, and the men break them to pieces in their "eforts to expel the vermin." As at Ramandroog, where men are sent for their health, "the building " awarms with bugs." And so of every barrack and hospital where these wooden bedsteads are used. One surgeon complains of the serious injury to his sick occasioned by want of sleep from vermin. The bedding is of hemp of straw, instead of hair, which latter it ought always to be in hospitals, and which is now the regulation in all Queen's hospitals. It appears from several reports that sheets are not provided except for dysentery and fever : and certtinly in no hospital deserving the name should the inspector-general feel himself called on to recommend that "a good mattress, a blanket, sheets, and pillow cases should be ". provided for every bed," as does the excellent inspector-general of the Madras Presidency.
Figs. 9, 11, are illustrations of the smaller class of regimental (British) hospitals. Fig. 9 shows the simpler form of construction, a single large ward, partially enclosed by other rooms for sick, all com munienting and having a common ventilation, the arrangement good and simple up to a certain point, and then marred in the details. There are privies in place of water-closets, with covered passages, to conduct foul air to the sick in certain states of the wind. Bangalore gives a reason for "the covered way to " the latrines," which we never should have thought of. It is a " covered place for exercise."

Fig. 9.

It will be seen that the hospital is entirely destitute of proper ward offices.
Fig. 10 shows the privy arrangements in plan and section. There is no drainage; the contents are carried away by hand.

Fig. 10.
EEuropean Infantry Hosptial Prify. Belaatm.

Fig. 11 shows a somewhat better construction of hospital, but there is the same defect in detail.
Fig. 11.
Artillert Hobpital. Belgaum.

Bither plan might answer for temporary camp purposes, in default of better, but that is all
Indian hospitals generally, so far as all conveniences and oomforts are concoaned, appear to be simply. camp hospitals; good, because the best possible for field eervice, but by no means good or the best possible for permanent stations.
There is no instance, except at Wellington, where the hospital, if on one floor, as is usual; is raised from the ground with any current of air beneath. These hospitals are atated, as at Bangalore, to be "always "damp in wet weather." And often the floor is merely the ground bricked over. Rangoon and Tonghoo live like the beavers, and raise their barracks and hospitals on piles, with free passage for air underneath The consequence is, that in those jungly swamps, they are more healthy than at most other Indian stations where the men aleep close to the ground.
As at Allahabad, Barrackpore, Dinapore, Meerut, Kurrachee, and Secunderabad, vast wards of from 100 to 150 beds, and even up to more than 200 beds, exactly the same as the barrack rooms, are in use.
The wards can never be said to be light or airy; "as a general rule, hospitals are badly lighted and "gloomy;" doors are more common than windows. And these doors, when closed, leave the ward, if not absolutely dark, yet absolutely dismal and close. Indeed a dark ward must always be a close ward. Or " light enters from a couple of panes in the doors near the top, and when closed darkness is almost complete." There is in Indian hospitals hardly a room light enough to perform a surgical operation. And operations, it is stated, have to be performed in verandahs.

The inner verandahs are generally used for sick wherever more room is wanted: the outer ones sometimes cut up for lavatories, destroying what ventiation there is.
The superficial area per bed is almost invariably too small, and the wards almost as invariably too high; the result to the sick being that, with an apparently sufficient cubic space; the surface overcrowding is excessive. One of the worst examples of this is the recently constructed hospital at Trimulgherry (Secunderabad) which consists of three wards, two of which contain no fewer than 228 beds each; the wards are 42 ft . high, and afford 1,001 cubic feet per bed, but the surface area per bed is only 24 square feet. This surface overcrowding is greater than I have ever seen it in the smallest or the largest temporary war hospitals. Such facts strike one very forcibly in connexion with the high mortality among sick entering these and similar hospitals.
All the defects of barracks re-appear and with worse consequences in the hospitals: viz., bad watersupply, bad ventilation, no drainage, (Ferozepore sqys, "drainage not necessary,") offensive latrines, so offensive indeed that the patients have sometimes to leave a particular ward, no means of bathing, and hardly any of cleanlinese.
There are besides, however, two grave defects not felt in barracks, but peculiar and fatal to hospitals.
These are the cooking and the attendance. It is in several reports complained that under the present system the cooks (natives or Portuguese), are nothing but "miserable pretenders," because the pay is so small; that the kitchens are no better than, but just the same as the barrack kitchens. They are often small open sheds, without chimneys, the smoke finding its way out as it can, and with but few utensils; sometimes the food is prepared on the ground. "But we are accustomed to this in India." It is added, that though common food is tolerably well prepared, there is nothing whatever that can be called sick cookery, nothing whatever to tempt the appetite or spave the digestion of the sick man, whom the hospital is for.

In hospitals at home, trained cooke of the army hospital corps are now in charge of the cooking, under the direction of the purveyor, who is responsible that the diets are properly cooked. In India the chief quality in native cooks appears to be the "pursuit of cooking under difficulties;" their ingenuity in bringing about an apparently good result, in a rude and often bad way; is frequently admired by the reporters, as if the end of cooking were "to make a pair of old boots look like a beefsteak."
In England where the grass-fed meat is mo much better than in India, it is found necessary to put the purveying of meat for hospitals under the charge of the purveyor, for the sake of always obtaining the best quality.

There does not appear to be ańy provision of this kind in India, where all is under the commissariap.
As to the attendants, they are just the same as would be supplied to idle liealthy men. Quantity, it would seem, is supposed to supply quality. In serious cases a "waiting man" is supplied "from the "battalion who is relieved daily." That is, he goes on guard for 24 hours, as in the guard room, so in the sick room. It appears that mounting guard in the sick room is disliked, and the guard sometimes neglects his patient.
As to supposing that any nursing is required, the thing is totally out of the question. There are neither trained orderlies nor female nurses.

A matron is sometimes "sanctioned," but "only for a complete battalion." If there are fewer sick they must do without. Every setere case, as has been stated, is allowed to have its comrade to itself in from the ranks, i.e, the case which requires the best nursing is to have the worst nurse. Something more in needed to make a nurse, as well as a surgeon, than mere kindness. Wherever the above comradepractice is found, we know beforehand that there can be no nursing, no discipline in that bospital, and any amount of drink.
There is generally one hospital serjeant and a "plentiful aupply of ward coolies.". The hospital serjeantis for discipline, and under him are 79 coolies and bheesties in cold weather, 240 in hot weather. This for - an European corps. The general impression, as regards the native attendants,* is that they are in some

- And here comes in egain the difficulty of difference in language. Our men dislike and despise the natives, and are regardèd by them in return mare as widd beasts than fellow creatures. The native, however, makes much more effort to learm the Briton's langugee than does the Britom to learn the native's. It is difficult to give an ides of the evireficta of the grose feolings of impatience relates to the country in the ranks of our army in India. The commonest atitampt at connersation gives it is of course worse.
and irritation, too often followed by personal illtrestment. Where the Briton is sick, it is of course worso. and happy life for them to India Every soldier ahould be required to learn something of the native language. And a somewhat had happy lite for them in India Every soldier showld be ranuired to learn somber standard should be fixed, the inducement to attain which ahould be:-1. A specifio pecuniary reward. 2. Eligibility for employment in the various departments of the public service.
sense kind, but "as a rule, very inattentive," and when there is any pressure of sick they are "lazy," and "apathetic," and the sick, it need hardly be said, neglected, and "averse to be.waited on by them." When at a hill station, as Landour, the hospital serjeant is taken at random from the sick men themselves, sent up for convalescence, it is needless to point out the consequences. This grievance has been repeatedly represented, but in vain.
Nynee Tăl has one hospital serjeant, one barber, one orderly, for its attendance.
Lady Canning introduced female nurses at Allahabad, who are mentioned (in the Stational Return of Allahabad) as being a great comfort to the sick. Wherever there are general hospitals there should be female nurses, but only under the organization laid down by the Medical Regulations of October 1850. It is a great mistake to put down a few woinen among a parcel of men (orderlies and patients) without exactly defining the women's duties and place.
Lastly there appears nowhere in India to be provided any means of drying hospital linen, even during the rains. It is often complained that the washing is very bad and that the native washermen tear the linen, and at one cavalry hospital this keeps two tailors constantly employed in repairing the rents and injuries; for native washing is done by beating the linen against large flat stones or wooden boards.
If the British military hospitals are such, what must be said of those for our native troops? Here the patients " diet themselves."
As regards construction, where native hospitals have been specially built, they resemble the smaller class of British hospital. One of the most complete of these is shown in Fig. 12. There are wards within wards, completely enclosed by other rooms, of which, although there are plenty, not one is suited for ward offices.

Fig. 12.
Kurnoos. Furt Morpital. (N.titife.)

Fig. 13 exhibits hospital construction reduced to the most extreme state of simplicity. It consists of single ward, with a few square holes on opposite sides, apparently without any glass. No ventilation and no ward offices whatever. But there is a dispensary and atore room exactly where they ought not to be.
But it must not be supposed that native hospitals are all as good as these. They are generally nothing but a shed, perhaps a "gun shed," or a "cattle shed," as at Kolapore, converted into a hospital, where the sick receive nothing but mẹdicine. The patients cook their own diets, eating and drinking what they please. Or when too ill to cook for themselves, an orderly friend is detailed for the purpose. There are no conveniences ; sometimes the sick go home to wash, or bathe themselves in a tank. Such are the "ward "offices usually provided for these establishments." In one native infantry hospital at Secunderabad it is tated that hospital gangrene frequently occurs from overcrowding, from the cachectic state of the patients, owing to the unhealthy character of their lines, and from a cesspoul in the hospital enclosure, which last is, however, being remedied.
At Rangoon, it is stated that the privies, for native regiments, are built of matting, "which is most "objectionable; as allowing the escape of noxious effluvis." Is it then desired to keep the "noxious "efluvia" in?
It is supposed that "caste" prejudices are such as to prevent native hospitals being properly built, and supplied with requisites for sick. But this bas to be proved by giving natives a properly constructed and provided hospital. There are plenty of "caste prejudices" in this country against good hospital construction; but good hospitul construction advances nevertheless.

Elevation.

At Loodiana, one native doctor, one cooly, one water carrier, one sweeper, are the attendants "sufficient "for the ordinary wants of the sick." The present arrangements for the female hospital are said to be "sufficient,".(which means none) (Loodiana is now a native station).

Vif. Hill Stations.

Sir Ranald Martin wisely and strongly urges that the whole subject of hill stations should undergo a thorough revision, for the purpose of deciding whether a portion of the army could not be always taking its turn as a reserve on the hills, thus to preserve its stamina.

Children too might be reared as well on the hills as at home. One of the native chiefs going over the Lawrence asylum (of 500 children) at Sunnawur, said to Sir John Lawrence that they looked like lion's cubs.
It strikes one, however, that it would not be safe to depend for improvement of the health of troops solely on occupying hill stations, with such an overwhelming amount of evidence as to the bad sanitary state of the stations on the plains, and evien of not a few of the hill stations themselves, such as Darjeeling, Landour, Nynee Täl.
"At some hill stations there is malarious fever; others predispose to diarrhcea." The barracks and hospitals at Kussowlie and Subathoo are defective both in plan and in structure. At Mount Aboo they are "bad barracks," built in a "malarious gully," and the men return suffering from intermittent fever and from scorbutic disease, the result of want of vegetables. Will it be credited that, at one of the two hill stations of the Madras Presidency, the privies are built on the edge of the kill, in order that the natural slope may gave us all the trouble of sewerage, the lavatories the same, which are emptied by "upsetting the tubs" down the hill; and that, at the other, with more than 900 men, the barrack square was an immense swamp for want of drainage. Low fever, from March to May, from which the men have suffered who were sent there for health, is attributed to this as if it were a meteorological observation. This refers to Wellington on the Neilgherries. Indeed the Neilgherry stations, the best in India, are in great danger of being permanently injured by sanitary neglects.

In fact, all that the hill station evidence proves is that healthy men, put under healthy conditions, will remain healthy, and vice versd.

Hill stations, it is aaid, are highly favourable to troops arriving in health, is lodged in good barracks; are unfavourable in some states of disease. Dry, spacious, well-ventilated barracks, in well-chosen positions, drained, supplied with wholesome water, and out of the way of nuisance and malaria, have been the great want of hill stations. And want of fresh vegetables and of pure water has produced much mischief. In the rains, the water is often loaded with " rotten vegetable matter causing diarrhoca.". [Is this supposed to supplement the want of vegetables?]

High authorities advocate sending certain invalids to sea-side sanitaria.
Hospitals at hill stations appear to be very much on a par with hospitals at plain stations, as far as can be learnt from Fig. 14, which represents the hospital at Darjeeling used for sick of the depòt. The arrangement is much that of a field hospital, with fire-places to suit the climate. At this hospital an open privy was placed in one corner of the verandah, which compelled the sick to evacuate the ward, and it took five years' writing to get it removed.
Hill climates, judiciously used, would no doubt be of great value. But they are by no means all that is required for the salvation of the Indian army. This must be brought about by sanitary measures everywhere, of which hill stations, if kept in a good eanitary condition (but not if kept in a bad condition) are one. This is the unquestionable result of the evidence.

When our troops went into a notoriously unhealthy district in China, they were not placed on hill atations. They were properly managed, and their sanitary condition provided for; and they had no larger proportion of "constantly sick," than the troops at home.

Fig. 14.
Julia Puear Hospital. Darjeeling.

ViII. Native Lines.

Native troops have no barrack accommodation, no doubt a most excellent thing for their health. They have hutting money (very little) and make their own huts, which are so badly built as to ensure thorough ventilation, being ofter indeed only open sheds in compartments. But little or no pains are taken to make them put up these huts in any regular order; they are crowded, or rather huddled, together and without drainage of any kind. They are always damp, and the men always sleep in malaria. When they have families the huts are too small because the hutting money is too small.
Native troops have no rations, and stint themselves of proper food in order to hoard their pay.
They are almost invariably temperate, and have little or no liver disease, whilst the British troops are decimated with it. So far as can be learned from disease statistics, native troops are far more moral than British.

Except schools, no means whatever of instruction, occupation, or amusement are provided for them.
They are, in fact, stipendiaries receiving a day's pay for a day's work, with their uniform, but they are not what we should understand by troops provided for by the State.
With regard to every appliance of civilized life the tale is even more absolutely nil than for British troops. There is absolutely no drainage or sewerage, no latrines. And the descriptions of what the surrounding country and bazaars are in consequence are absolutely impossible to repeat.
There are no lavatories nor baths.
There are no kitchens.
There is no sanitary police.
At Mangalore, one of the best of the native stations, "surface cleansing has hitherto been performed " aolely by the heavy rains." At Quilon, another, there is (as usual) no drainage, but ruinous buildings, harbouring the dead carcases of animals, and "on one occasion, of an old woman."
The water supply is of course as bad as, or worse than at European stations. ${ }^{8}$
At Kherwarrah, in Bengal, the water "has not unfrequently a filthy taste, and disagreeable organic " smell."
The degree to which native troops almost everywhere suffer from guinea worm would alone tell us what the water is. At this same Kherwarrah, one in every six has suffered (for 17 years) from guinea worm.
There is no "conservancy "establishment for cleanliness. At this same large station of Kherwarrah, "this is left very much to the jackal, vulture, and carrion crow" (beyond the lines). There are patrols to prevent nuisances, "except in specified localities." The lines are kẹpt clean, but the "sweepings are "deposited 30 yards to windward."
The most ordinary sanitary precautions are not taken. "Everffamily has its own cesspool; dung heaps "close to every hut," also holes for ordure. Animals are slaughtered to windward. The offal is thrown to dogs, jackals, and vultures. During the rains the stench from the offal, the increasing accumulation of years, is sometimes dreadful.

The native population is " decidedly unhealthy" from jungle, swampy ground, cramped, damp dwellings, (which shelter sheep; goats, and cattle, as well as men) bad food and water, neglected cesspools, middens, exuviz of men and animals, absence of drainage, opium eating, \&c.

What wonder if native troops suffer from quotidian, tertian, quartan, remittent, mid typhoid fevers (which alone constitute two fifths of the sickness and cause one-fourth of the deaths in some places) from acute and chronic dysentery, from sporadic and epidemic cholera, from simple and confluent small-pox, and from acute and chronic rheumatism.

The intelligent medical officer of Kherwarrah imparts a very important secret as to the unhealthiness of Indian stations when he says that none of them have had "fair play;" (not even such large British stations as Dumdum, Barrackpore, and Dinapore,) owing to the "utter' disregard of the commonest sanitary "precautions."

At Cochin, in the Madras Presidency, the water is unfit for use from privy infiltration. Drinking water is brought daily 18 miles. One tank is used for bathing and drinking. The sanitary condition of the bazaar is "as bad as it can possibly be." "Cleanliness is unknown.". There is " io drainage.". The "streets "are used as privies without hindrance." No regulation for cleaniiness is attempted. The old rampart was converted into a diter, now used as a public privy. Every odd corner is "in the most' disgusting " condition."

Rajeote, in the Bombay Presidency, might give similar instances of more or less neglect. . But it is needleas to follow this subject further. Everywhere there is the same ignoring of natural laws and the same penalties of disease and death.
The hospitals, again, combine all the disadvantages of civilization without any of its advantages. In one place the hospital was so overcrowded that for two years "gangrenous and spreading sores" were "frequent."" Another hospital was so much out of repair that "it would before long be a ruin," (the best thing that could happen to it). If there is a privg it is a "small room, with no place in which the excre"inent can go to be cleared away." If there is a lavatory or bath, it is "" two tubs out of repair," (doeb that mean that they cannot hold water?) If there is a kitchen, as at Mercara, it is under the same shed as a privy, and cannot be used for the stench. Indeed the medical officer. proposes that it should be turned into a privy. The sick generally cook under the nearest tree, and if unable to do so, a comrade cooks for them under the tree. Linen is washed and dried by caste comrades, or by the patients when not too ill. Each patient brings in his own bejding; generally his own bedstead.' "Each patient defers bathing, "according to custom, till he is cured when he retires to the nearest well, draws water, and undergoes the " bath of cure," i.e., when he no longer wante it. Every report begs for a bath room.
The general construction of native hospitals has been-described under the head of "Hospitals."

IX. Native Towns.

The description given of the native towns is astonishing.
Can it be possible that such a state of things exists after all these years of possession and unlimited authority?
So far as one can judge from the evidence, the sanitary state of entire large cities is as bad as, if not much worse than, was the state of the worst parts of our worst towns before there was any sanitary knowledge in the modern world at all.

What, for instance, is to be thought of the following?
At Bangalore, a station 3,000 feet above the sea, with the climate of a hill station indeed, and quite as healthy as any in Europe, where we have 1,700 men, we have allowed to grow up within our cantonment a native population of half a quarter of a million, without any of the arrangements of civilization whatever. Houses, tanneries, and slaughterhouses are crowded together without any plan. There are no public necessaries. The natives resort to open spaces. The Ulsoor tank, which may be said to be the receptacle of the sewage of the whote place, including our barracks and hospitals, is used for drinking. In dry seasons, the tank itself is a great nuisance. Even the wells are poisoned, " owing to the amount of filth pereolating " into them from bad drainage." There is a dirt heap at almost every door. In the better houses, where latrines exist, they are wella sunk in the ground within the house, which are closed up when filled and others opened. The filth from the cow-houses flows into open drains. There are no arrangements for stabling the bazaar horses, which with other domestic animals are kept in the houses. This bazaar is all close to our own barracks; and it is said that now nothing short of removal of the one or the other will remedy the evil. There is nothing, therefore, to astonish us in the fact that, in this, one of the healthiest stations and climates in the world, the mortality of our Eurqpean soldiers should have been 129 per $1,000 \dagger$ (including cholera) in one year.

In Hyderabad, not far from our largest Madras station (Secunderabad) all the promoters of zymotic diseases are at work, and cholera, amall-pox, diarrhoes, and dysentery are, it is stated, the most common of these.
But the capital of the Madras Preoidency is, perhaps, the most astounding. Its river Kooum is a Styx of most offensive effluvis. The air in Black Town and Triplecane is "losded with mephitic effluvia at night." The atmosphere around Perambore and Vepery is "perfectily poisoned."

At Kamptee, with its 70,000 souls, "all filth is throws into pits in the streets (!) of the cantonment." The poorer houses are huddled together without order, on ground intersected by nullahs, making the houses difficult of access. The cesapits "where accessible," are cleansed every 24 hours. The next information is curious. "Persons committing nuisances are closely watched and taken up daily." At Juulnah there are no dung-heaps nor cesspits "outside at least."

The native population around Fort William, Calcutta, is peculiarly unhealthy; fevers of all kinds, cholera and fatal diarrhcea are "remarkably prevalent.". The causes are "bad overcrowding," "bad drainage," foul drains, rank jungle, stagnant water, bad unwholesome drinking water, filth.

At Ahmednuggur it in acknowledged that almost every epidemic in the cantonment has its origin in the crowded, ill-ventilated, and dirty village of Bhingar (of 3,000 souls). The town itself of Ahmednuggur, with its 36,000 people and no latrines, usea "the very boundary of our camp" for thit purpose, and "the . " smell of ordure is very perceptible." At Poona, where is a city of 80,000 people, three quartiers of a mile off, a bazaar of 27,000 , quite close, ì village (Wanowrie) 100 yarde from officers' lines, where cholers first arose, there is the same story about "no latrines," "conservancy" establishiment far too small for the daily removal of filth, and nuisance experienced in barracks from this cause. Belgaum says of its bezans that there is "no want of cleanliness," and" that the public privies and cesspools aro at times very offensive." The town, with 18,000 people, is between the fort and the camp. It affects the general health of our station from its "bad conservancy". But, again, we are told there is "no want of cleanliness !"
At Kolapore, "one gweeper is maintained by Government" (for the bazaar), who collects the filth and thrown it into a nullah, 400 yards from camp, which is also the public necessary; "two peons "prevent nuisance being committed in camp "from 4 to 10 a.m. daily." At Bombay, with a town of from 400,000 to 600,000 souls, there is a municipal commission, with eanitary powers, and the result of its practical labours is as follows :-Native houses generally in a filthy condition; much ordure within precincts of buildings, where it haa been accumulating for years; native town proverbially unhealthy; nuisance, from wind blowing over it, experienced in Fort George and town barracks; washermen's tanks particularly obnoxious; site of alaughter-house as bad as can well be; sea breeze cut off by bazaars, \&c. \&c.

[^4]Dung heaps are a "never failing condition of native life in India."
At Baroda, the military hospital is close to a nullah used as a "necessary" by the natives, and as a "receptacle for the filth of the whole station." When cholera occurred, the hospital had to be evacuated. And yet it is added, with great naivete," the sanitary recommendations of the medical officers are always " attended to." .
At Dinapore the native towns are "disgracefully filthy," with "holes near all native houses."
At Cawnpore there is overcrowding and want of ventilation, with all manner of filth.
At Peshawur the streets are dirty, the houses densely crowded and ill ventilated. The population suffers from a "severe and fatal" typhoid remittent fever, which rises to an "epidemic" in certain districts, also from epidemic small-pox, \&c. \&c.

At Ghazeepore, in the latter months of 1859, there was a "fearful" fatality from "fever," due to a total want of sanitary arrangements.
At Berhampore there seems to be scarcely any epidemic which the native population has not. Among the causes: " holes full of stagnant foul water, close to almost every house, forming the usual cesspool of the neighbourhood." Utter neglect of ventilation and of all sanitary measures."

At Hazareebaugh cholera and small-pox are the " most common and fatal epidemics."
Only the presentable flowers are here. The stational reports are a garden to which those who doubt the truth of this representation, taken as a whole, and think it merely true as to particular facts, are again referred.

The stational reports generally state the native populations to be "healthy," or "remarkably healthy," and then give a list of every disease that flesh, under defective civilization, is heir to, to which they are subject endemically or epidemically. What must be the state of health of the natives when "unhealthy ?"

One remark, or rather inference, viz., native "caste" prejudices appear to have been made the excuse for European laziness, as far as regards our sanitary and hospital neglects of the natives. Recent railroad experience is a striking proof that "caste," in their minds, is no bar to inter-communication in arrangements tending to their benefit.

Sir C. Trevelyan justly says that a good sanitary state of the military force cannot be secured without making similar arrangements for the populations settled in and around the military cantonments; that sanitary reform must be generally introduced into India for the civil as well as the military portion of the community; that now is the time, for not only has the subject been worked out by actual experiment in England, but the improved financial state of India, the increased influx of Europeans, especially of engineers and mechanics, and the powers of local legislation lately conferred upon the subordinate governments, have given facilities which never existed before. The sanitary arrangements for towns will be conducted by municipal bodies, for the creation of which there is already a very good Act of the Government of India.
The mere passing of such an Act presupposes the impotence of "caste" prejudices; and nobody who understands the relation of bazaars and native towns to garrisons and cantonments can fail to see that the sanitary improvement of the Indian army involves the sanitary improvement and the advance of civilization in India, a work before which "caste" prejudices, and many other prejudices, will have to give way.

X. Absolute Perpection of Causes of Disease.

Our experience at home as to the results of sanitary improvement on the health of the army affords every reason to expect a very great improvement in the health of the Indian army, if proper sanitary measures be carried out. And it would require very strong evidence indeed to convince the people of this country that the epidemics which have devastated India arise from any other causes than those which the stational returns and the evidence prove to exist in what one may call a state of absolute perfection in the Indian towns, but which bave been removed with entire success in this country.
XI. Soldiers' Wives.
"Leave to marry" in the British army means that those only who marry with consent of the Commanding Officer have a claim to quarters in barracks. The proportion of quarters allowed by regulation at home is 6 married men per company of 100 , in addition to married serjeants. When going to India, 12 married couples per 100 men, together with a proportionate increase of wives of serjeants, are allowed to go with the regiment, n number which high authorities consider too small. There is a general opinion that the proportion of married people allowed to go to India should be raised. The question is mainly one of sea transport and barrack accommodation, neither of which would be very costly as compared with the benefits to health and discipline which all agree would result from increasing the number of married men, always the steadiest, most temperate, and best behaved in the regiment.
Throughout India, however, there is better provision of " married quarters" generally than on home stations. At most places they are reported as "sufficient," at some "insufficient," at others "very bad," and at a few there are none. Where they are insufficient or non-existent; the " married quarters" are men's barrack-rooms or huts, divided off by curtains or partitions. Only at a few places are married people placed in barrack rooms with unmarried soldiers, still this practice does exist. One of the consequences of "allowing" marriage in the army is certainly that decent healthy quarters should be "allowed" too. No time should be lost, for this is especially necessary in India.

In the matter of soldiers' wives there are two instances of striking contrasts (each happened during the mutiny) ; one, the destruction by dysentery of 64 wives and 166 children of British soldiers at Dumdum; the other, a request made to and complied with by Sir John Lawrence from an officer of a native regiment of guides regarding the native wives. "Mind you look after these women carefully, and do not let them be in "distress; several of their husbands, men of rank, have been killed." The request was loyally fulfilled and as loyally appreciated by the men.

At-Dumdum 554 women and 770 children were crowded together without care or supervision, and the proportion which fell victims to intemperance, immorality, filth, and foul air was more than six times, in either case, the ordinary mortality of womon and children in Bengal. The fathers and husbands were fighting or dead in our battles. This massacre killed as many as it is supposed fell by the hands of the mutineers.
It is singular that in no one part of the Dumdum report does the slightest allnsion occur to this tragedy, making one think that it cannot be an isolated case. And it appeara to have arisen solely from the absence
of any regulation ais to the care of soldiens wives and children in the husbands and fatherse absence. Families go to India, and as long as the regiment ramsins fixed things may go on pretty well; provided there are:decent meparate quarters and acareful kindly commanding: officer. But-send the regiment oni setiva mervice and there is aomy of caring for the families. They take their chance under circumatances whore they camot help thernselves. Or they are all huddled together, es at Dumdum; with this result, that while the husbanda were purishing the trurderers of English women and children in the upper provinces,' their own wives and children were being destroyed in vast numberg for want of care. . Why ?-Could it not be made a necessary part of army arrangements to appoint a " picked " married officer to act as guardian over these women and children, to see to their comfort and conduct, to their being properly lodged and cared for. The manner of providing for them out of their husbands' pay is a matter of detail easily settled. If only any one will take the trouble to do it the thing can- be done. But more than this, it ohould be made matter of regulation throughout the whole service. There should be personal responsibility somewhere: At Dumdum nobody was held responsible and nobody was punished for the result. If one-tenth of the calamity had happened in England, there would have beien coroners' inqueats over and over again, and public opinion, if not law, would: have panished some one. At. Dumdum the enquiry took place sfiter the destruction of hmman life had been'going on for momths.
SirJohn Lawrence expresses forcibly his practical opinion that there should be a "system," treating the ", mea sa mony shildren," in binding them to "remit" money for their families; but also providing guardianship for those familids when the "regiment is going on service," and so averting the "terrible " reaulte" of "abandoning the wives."
Why cannot what was done for the Sikhs by Sir John Lawrence be done by regulation and on aystem for our own country people?
There are ohooking illustrations of how oldiers' wives and children fare when the men are on foreign service, and how a man does not become a better soldier for knowing that his country does not care for -his wife and children while he is risking his life for his country: To the extent to which marriage is allowed in the army should all its necesary consequenoes be acted out.
But so fà from this being done; the principle everywhere has been the reverse. Even as regards illness, in -tome notorious instances moldiers' wives have expressed (and justly) the strongest indigiation that Government took more care of prostitutes in illness than it did of honeat wives'; that Government will pay to cure the prostitute to go on with her horrid trade, which destroys their husbands, and will not pay to cure the wives and children, or to make the married quarters more comfortable'; and it is true, although not 80 applicable to India, where there are female hospitals.

- Somie of these' hospitala' as at Kurrachee and Deess, Lacknow; Raneegunge and Ferozepore, appear to be vary complete, with female attendants. In the Madras Presidency, they are too often, as at Bangalore, Trichinopoly, and Kamptes, merely men' wards appropriated to women, and justly atated to be "objection"eble in every way.". Elsewhere they are rather bare. Indeed, as at Baroda, Kirkee, Poona, Darjeeling, the cick women and children "have to be attended at their own quarters," either because "there is no matron," or because the "ward is too mall," or \&c., \&c. Curiously enough, it is generally stated that the "present arrangement ig conducive to comfort." What arrangement? Of having no matron? While it is added, that a lying-in ward and a matron are "much wanted." At Darjeeling the women and children are treated in their own quarters, which " would be satisfactory enough if the married quarters were not so ". darls and damp they axe.". Nometimes it is naid that "the arrangemente are quite equal to those for * the men.?
. The construction of these hospitals appears to be the saine as that of rmall regimental hespitals.
The following plan and section of a female hospital at Mean Mear (one of the most recently builf in. India) shows that they require quite as much structural improvemennt. It is a nest of rooms within rooms; and the same may bè said of it that one of our engineers said of the Pacha's new fort on the Dardanelles, that "He would be much safer outside of it."

But, whatever defects there may be, in the hospital accommadation for soldiers', wives and families in India, at least prostitution is not encouraged, and its immorality systematically palliated by lock hospitals on any large scale, although recent attempts have been made to extend them. Lock hospitals, alas! existexist, I mean, and are advocated and supported on the principle of restoring the vicious to go on with their vice, the only institution I am aware of for this purpose. (Prisons and lock hospitals in England at least

Fry. 15.
Frmaye Hobpitaic Mran Mere.

aspire to reclaim the vicious.) And lock hospitals and police regulation are, alas ! sometimes recommended; just as if they could do any good. At Secunderabad, it is said, a lock- hospital hai been long in existence, with these "excellent results," viz., that 20 per cent. of admissions into (military) hospital are from the disease engendered by vice, which is five times as much as exists among the native troops. On the other hand, the enlightened medical officer at Kurrachee has entered a striking protest against the present lock hospitals, and has shown how utterly incompatible at once they are with morality, and how utterly usaless in practice. Indeed common sense is the same as moral sense in these as in other things. As in the kindred vice of drunkenness, Government licenses in order to control vice, and the soldier is more drunken than before.
Lately, in one of our own largest seaport towns,-and I understand it is not the only place where auch a measure is contemplated,-I was consulted as to the structure of a hospital where Government was going to pay for 15 and for 10 beds for fallen women for the army and for the navy. These are called the "War Office prostitutes" and the "Admiralty prostitutes." The title is just, and therefore the less agree: 'able. In this same town a hospital for soldiers' wives only lately exists, although it had been long, corgesponded about, although several women had been confined in barrack rooms, several had had feven in consequence, and one, at least, upon teatimony of the army medical officer, had died from it, as well as children.

With two, or at most three, exceptions, there is no accommodation for sick women and children at any home station.

As regards army prostitution, there is, as I have said, the same helplessness as with army drunkenness.
It is apparently never considered that they are both parts of the same vice, and that, so far as human agency is concerned, they both spring from the same causes.

India has its licensed "lal bazaars," and its licensed spirit selling. And both qre encouraged to the utmost by leaving the men utterly without rational employment for their time. The "lal bazaar" and the canteen both send men into hospital in abundance. While, instead of confronting both evils with the strong arm, and providing men with useful occupations and manly amusements, Government sets up lock hospitals under its authority, and makes ineffectual attempts to stop drunkenness by keeping the supply of drink, as far as it can, in its own hands, and so encouraging the evil by its own authority. The authority of Government is avouched for both evils. So long as this is the case, they will extend and flourish, and the tax payers in India and England will have to bear the cost.

XII. Statistics.

All that can be said under this head is that the statistical abstracts of sickness and mortality for the European troops of the Indian army afford no data of sufficient accuracy to enable us to judge of the sanitary state of the troops, while they are defective in some most important data required for estimating the exact sanitary condition of the stations. Prantically, these statistics are very much in the same condition as were those for Queen's troops before recent improvements were introduced. The facts may be in existence, but there are no means of rendering them easily accessible. The question of mortality and efficiency is one of even greater importance now than it was formerly, Beeing that the whole British army must pass through India in the course of its service.
The only way to keep a proper check over the sanitary condition of stations is to lay their sickness and mortality statistics annually before Parliament. This can be easily done by adopting the new statistical methods and forms at present in use for Queen's troops at home and on foreign service. These should be introduced over the whole of Indis, and the results published every year, together with those of the army at home.

XIII. Sakitary Servick.

In times past there has been no proper sanitary service in India. No doubt there has been more or less of cleanliness; because wherever Englishmen go they attend to this in one way or other. Otherwise there is just the same neglect of civilized appliances, of water supply, drainage, \&c., as used to exist in unimproved towns at home, notwithstanding repeated representations made by Sir Ranald Martin, and by other enlightened professional men. In India, as at home, no good will be done unless it be made some competent person's express business to look to these things.

Even with our habits of self-government; it has been found necessary for the central government to step in and assist local progress. It is certainly of far greater importance for the government of India to do so, seeing that there is no local self-government at all,
There is, it is true, a kind of local sanitary govermment by commissions at the seats of the three presidencies, the result of whose labours has hitherto been that no one of those three large and populous cities has as yet arrived at the degree of civilization in their sanitary arrangements at which the worst parts of our worst towns had arrived, before sanitary reform sprung up in England at all. Bombay, it is true, hasa better water aupply; but it has no drainage. Calcutta is being drained; but it has no water supply. Two of the eeats of Government have thus each one half of a sanitary improvement, which halves ought never to be separated. Madras has neither. As to barracks and cantonments, it is quite evident that both sanitary medical officer and sanitary engineer need to "be abroad:"

I am, my Lord,
Your faithful Servant,
FLORENCE NIGHTINGALE.
Right Hon. Lord Stanley, M.P,
President of the Royal Commission \quad Nov. 21, 1862. on the Sanitary State of the Indian Army.

Abstracts of Returns made to Questrons issued by the Rofal Commission on the Santary State of the Indian Army to Commandina, Engineering, and Medical Officers of the Army in India at Stations occupied by British and by Nattve Troops.

(Prepared by Dr. Sutherland.)

Witre a view of obtaining the fullest local information regarding the sanitary state of the troops serving in India, a series of questions, reprinted in the Appendix, was prepared and addressed to the commanding, engineering, and medical officers at every station, whether occupied by British or native troops.
Special reports on the matters referred to in these questions were also called for from the principal medical officers of each presidency.
Questions were sent to 42 stations, three of which are exclusively native, in the Bengal presidency. To the Madras presidency there were sent copies of questions to 74 stations, of which 31 were native; and to the Bombay presidency were sent sets to 59 stations, of which 34 were native. Of these 175 series of questions, replies, more or less fully given, have been received from 117 stations; viz., from 35 British and three native stations in Bengal; from 29 British and 20 native stations in Madras; and from 18 British and 12 native stations in Bombay.
The returns do not afford the means of estimating the precise number of troops accommodated at each station ; sometimes the accommodation is given numerically, at others, by regiments. Again, the stations had been occupied by the troops there, at the date the returns were made up, for very different periods of time, varying from a few months to several years.
But the questions were so framed as to draw out the largest amount of experience of the different classes of officers, not only as regards the stations they then were serving at, but also as regards those at which they had previously served. In this manner there has been collected together the Indian experience of nearly every regiment there at the time, on every point bearing on the soldiers' health, whether relating to climate, locality, barracks and hospitals, diet, habits, or duties.
These returns will be found to contain perhaps the largest amount of important sanitary information ever brought together, whether regarded simply as bearing on the health of the army, or in reference to the advancement of civilization and of public interests in India,

The nature of the questions, part of which were direct, part cross-questions, has necessarily led to the information being scattered throughout the replies. It has, therefore, been necessary to draw up a short abstract of the reports from each presidency, embodying the more important sanitary results of the inquiry. These abstracts by no means exhaust the information. Nearly every return, on the contrary, will repay careful consideration ; and when perused by the light of our present knowledge, they are found to show very clearly the causes which have hitherto decimated the British army in India, together with the local conditions and personal habits "which have favoured periodical outbreaks of pestilence among the native population. Although they do not expressly indicate the measures required for protecting health, the information they contain goes a long way towards this result by pointing out the causes of the evils.

Prevaiting Diseases among the Native Popolation, and their Catses.

There are no statistical data whereby the annual ratio of sickness and mortality to the native population at the different stations can be ascertained.

India appears to possess no system of registration whereby the exact state of health of the population can be known. The information, fherefore, on this subject, given in the stational returna, is of a very general nature, and is the result of inquiries made on the spot; and from nearly all the stations the information is of the same character. Everywhere the miasmatic class of diseases is the one which has attracted the notice of medical officers. Fevers, intermittent, remittent, and typhoid, cholera, dysentery, small-pox, spleen disense, diarrhoe, rheumatism ; such is the account of station after station. Epidemics, the result of imperfect ciarilization and removable causes, prevail in India at the present day as epidemics used to prevail in Europe in the middle ages. The work of civilization and sanitary improvement has yet to be initiated in this great country. The prevailing causes are everywhere the same : filth, stagnant water, damp, foul ditches, want of drainage, bad drinking water, "utter neglect of ventilation and of all sanitary measures," overcrowding of houses, foul air.

There is not a local cause of these epidemic diseases cited by the reporters which ddes not admit of mitigation or removal.
At almost every station the sanitary condition of the native population is intimately connected with the sanitary condition of the troops. The two are bound up together so closely that the sanitary improvement of the army must involve one of two courses, either the removal of the troops away from the civil population, or the sanitary improvement of stations, as one part of the sanitary improvement of native cities and towns, and of thopeountry.

Diseases among Troops.

The evidence on this subject shows that throughout the whole of India, malaria is the underlying condition of endemic and epidemic diseases. There is no station, either on plains or mountains, entirely free of it. It shows itself in the almost universal prevalence of fevers of the periodic type; generally intermittent in some form or remittent. Malaria is also concerned in the prevalence of dysentery and cholera; but there are other special predisposing causes of these diseases, quite sufficient to account for their existence even without attributing them to malaria.
Diseases of miasmatic origin occasion a very. large proportion of admissions to hospital among British troops, aud also of current mortality. The means of ascertaining the proportion for each station are
imperfect; and the discrepancies in the mortality returns for Queen's troops and for British troops of the Indian army serving at the same stations, are sufficient to show serious defects in the statistical methods employed.... Only from Bombay Presidency are there detailed returns of sickness and mortality ; and these show that the miasmatic deaths range from one half to about three-fourths of the entire mortality. The proportions 'in the other presidencies have been arrived at from other sources, and theise afford equally startling facts. In Madras presidency the miasmatic mortality is from one half to three-fourths of the total mortality. In the Bengal presidency the proportions at some of the stations are even higher. - At one station 14 out of every 16 deaths are occasioned by these diseases.' It follows from the facts, that diseases produced by malaria and by mitigable or removable conditions, local and personal, are in reality the causes of the high death rate in the Indian army. E.E.g. the mortality at Allahabad is $122 \cdot 75$ per 1,000 per annum ; but to this death rate miasmatic diseases contribute to the extent of $82 \cdot 34$ per 1,000 . The mortality at Fort

Again at Poonamallee, in. Madras presidency, the total mortality is 89.55 per 1,000 but the deaths from miasmatic disease amount to $69 \cdot 65$ per 1,000 .
At Fort St. George, Madras, the mortality is $34: 69$, and the deaths from miasmatic disease $16 \cdot 21$ per 1,000 .
At Belgaum, in Bombay presidency, although the total death rate is as low as $18: 33$ per 1,000 (a little more than the mortality from miasmatic disease at Fort St. George), miasmatic diseases contribute rolless than 10-15 per 1,000 of this proportion.

At Hyderabad (Sinde), miasmatic diseases pecasion a mortality of $26-62$ per 1,000 out of a totat annual mortality of $35: 85$ per 1,000 .

Generally, however, in the Bombay presidency, the miasmatic deaths bear a lower proportion to the total deaths than in the other presidencies.

At Baroda, an unhealthy station, they cause exactly one-third of the mortality.
For the whole of India, the highest total death rate, involving the greatest prevalence of miasmatic diseases, is to be found in Lower Bengal and at stations along the Ganges.'

The most fatal of all diseases in India is dybentery. During the 16 years preceding 1845, the deaths among British troops serving in Bengal from this one disease amounted to no lebs than $15 \frac{1}{2}$ per 1,000 per annum.. The mortality frem cholera during the same years amounted ta 13 per 1,000 ; from remittent fever, 8 per 1,000 ; from liver disease, $4 \frac{1}{4}$ per 1,000 ; the same mortality as from diarrhcea.

Fevers of the common continued, and typhoid types, generally considered the denizens of colder climates, afforded a mortality of 64 per 1,000 , and ague a mortality of somewhat less than 3 par 1,000 .

The deaths from apoplexy and sun-stroke are more than 17 times in proportion what they ars at bome; and the deaths from delirium tremens are 16 fold what they are among our home civil population. On the other hand, the mortality from consumption has been little more than one half in the Indian arony of what it is in the civil home population, and about one-fourth of what it was in the home army in the 10 years 1837-46.

The stational returns afford data for the tine only during which the regiments have been at the atations ; but the facts are of the same, nature. Everywhere there is a high prevalence of fever, chiefly intermittent and remittent, the particular type varying at different stations. Dysentery and cholera are much more frequent and severe at some stations than at others. At most of the station liver disease prevails to a considerable extent, attributed geperally to high temperature and variability of climate, combined with excess of eating, the abuse of stimulants, especially spirits, and want of exercise. Throughout Ludia venereal disease is a most serious cause of inefficiency. At some stations upwards of holf the sick in hospital are affected with it. Rheumatism is a common disease at many stations, It arises from variable temperature, but in many cases it is said to be the result of venereal disease: Small-pox occurs occasionally, but not to any great extent.

An analysis of the predisposing causes of thiig high sick and death rate brings out certain prominent facts of great importance, which may be classed under the following heads:-

Selection of Sties for Stualions.
Many of the etations occupy obviously unhealthy sites in low Gat districts, having very limited facilities for natural drainage, and surrounded by undrained; badly cultivated, jungly land. Others are situated on river banks, often swampy, and liable to partial overflow of water, especially during the rains. Little complaint is made of the soils; but there is a concurrence of opinion in farour of porous soils, as being more conducive to health than retentive soils.

So far as can be gathered from the returns; mere elevation above the level of the sea appears to have less influence on health than might have been anticipated. Some low stationsibhà o amaller death rate than others at a greater elevation. Elevation is nevertheless a very important element as regards health ; but it is only one element out of many, and its adv́antages may be neutralized by neglecting other conditions. The returns show that many ühealthy stations may be improved by drainage, and by attention to other sanitary requirements. Often the atmosphere over considerable districts is rendered more or less impure by absence or inefficiency of sanitary police, especially as regards bazaars, native towns, and native habits.

Few, if any, of the sites at present occupied by troops appear to have had a fair chance 'in this respect ; ahd although the evidence shows that abandoning some of the more unhealthy cantonments would be a very advisable measure, nevertieless the removable sanitary defects everywhere existing indicate how mich may be done in the way of improving even the worst of them.

Climates.
One of the most striking results of this inquiry is the absence of distinct allegations, against the Indian climates as being special causes of disease. There is a general concurrence as to the fact that certain aeasons are less healthy than others. Generally the most unhealthy seasons are the beginning and the end of the rains, at the periods when heat and moisture combine in producing more rapid decomposition land disengaging of malaria. There are complaints of heat, hot winds, damp, fogs, variability; and to these conditions, or to certain of them, a predisposing influence is in many cases attribuited. But the more frequent defects in the climate are those of a merely local nature, connected with unfortunate selection of sites for cantonments, and which might, in all probability, be avoided by selecting other sites at no great distance.
The reporters consider the climates at certain stations more conducive to health thani others ; but, as already stated, so far as medical experience is concermed, there is an absence of general complaint of positive unheal-

A

The evidence of the meteorological data is, with few oxceptions, very incomplete:
Wherever there are Government observatories there are, of course, reliable data, but the other stations are very imperfectly supplied with means of observation, whether as regards instruments or observers.
The majority of the stations appear to have only thermometers, and the' observations are not corrected. Only very general conclusions can; therefore, be deduced from them ; but such as they are, these observations indicate heat, combined with moisture and heavy rain fall, considerable variability and high sum temperature. Certain of the stations have excessively dry climates, while some of the mountain climater approximate closely to those of southern Europe.:
Generally, however, in the less healthy districts, the three elements of heat, moisture, and variability predominate.
The climates along the western coast and those along the outlying Himalayan ranges are marked by excessive rain fall.: 100 inches of rain per annum is not an tucommnn rain fall. In some districts it is half as much more $;$ and at one station, Chirra Poonjee, it amounts to the enormous quantity of 51 feet The greatest rain fall takes place where the monseon strikes the mountain ranges ; and a few miles to leoward the rain fall rapidly diminishes, and the climate becomes dry.. Fogs are common at these elevationa; alterrating with high temperature and powerful solar radiation; but there appear to be districts close at hand where the air becomes dry, and alear from its exceseive moisture having been discharged upon the first mountain ranges,

The difference is remarkable between the eagtern and westery coast climates; the latter are very wet, the former dry, but close, warm, and aometimes foggy.

Barrack Construction.

The great majority of barracks throughout India are constructed on one general principle. They consist of one long room, sometimes open from end to end, sometimes partially, divided by arches and open to the roof. This room is protected from the sun's rays by verandahs from 8 to 12 feet wide, generally single, i.e., one verandah surrounding the room, in the older class of buildings, but most frequently double, i.e., two verandahs, one within the other, in the more recent constructions. This latter form has the general appearance of a long Gothic church, having a central nave fiom 200 to 300 feet in length, and from 18 to as much as 40 feet in height, with side aisles opening from the nave by numerous arches. In the double verandahed barracks there are, of course, two of these aisles on each side the central nave.
With a few exceptional cases, all Indian barracks consist of one floor only. The foundations are raised from one to two or more feet above the ground level. There is generally a plinth of this height filled in with earth or rubbish, and the floor is laid on the top of the material, either of flags, brick, or composition.

No means are provided for cutting off the giound malaria by ventilation beneath the flooring; and as bedis are about 18 inches high, the men generaly steep withiṇ 3 or 4 feet of the ground; enveloped in malarious exhalation.
Nearly every barrack room is too large, and contains too many men. In the majority of instances the rooms are made to hold from 40 or 50 to as many as 100 men, and even to a quarter or half a regiment. The new barracks at Fort William have 306 men in a single room. The infantry barracks at Dinapore consist of rooms no leas than 826 feet, long, with 308 men per room. At Fort St. George, Madras, there is one room 2,124 feet long, which contains above 600 men,
The usual breadth of the centre aisle of a barrack is 24 feet; the side aisles are from 12 to 15 feet, and the outer verandahs from 8 to 12 feet. So that in all, from outer air to outer air the distance is from 50 feet to nearly 80 feet; or, as in the large rooms at Fort Willian, with 306 men per room, no less than 103 feet.
The idea which lies at the root of this form of construction is a good and simple one, the exror is in its mode of application. Wherever a large number of people are brought together under one roof there is always more or less riak to health. But in a country like India the risk becomes a positive danger. The great requirement during aleep is. pure air, which it. is practically impossible to obtain, where from, 100 to 500 or 600 men sleep in the same room. Subdivision is hence absolutely necessary to efficient ventilation.

Barracks for a quarter of a company would be very much more healthy than any larger rooms.
It would therefore appear that subdivision of barracks, to lodge the men under quite separate roofs, is one of the most urgent sanitary improvemonts required.
It appears that all the barrack rooms are dark. Windows for admitting light in the sense in which we use windows in England scarcely exist... There are doors or windows on opposite sides under the verandehs and mall cleristory windows in the centre aisle, but the form of construction, renders them insufficient for lighting, and there appears to be a general idea that, light and sun heat, are synonymous terms. The sabject is one, however, of such importance to health and comfort that it is worth while so to plan a building as to light it without heating it.
In the new barracks of Upper India there are glazed windows. But in many of the older. barracks, the windows, such as they are, are unglazed and hava merely solid shutters or jalousies, which, when shut, render the barrack dark.
$\because \Delta$ condition in all Indian barracks absolutely essential to health is that the aleeping rooms be raised above the influence of ground, malaria. The safest construction would be to raise the whole block 3 or 4 feet with free ventilation below; to raise the barfack two floors above the basement, to devote the lower floor to dining rooms, day rooms, librarias, \&ce, and to permit men to sleep only on the upper floor, or at all events never to allow men to sleep within from 5 to 10 or 12 feet of the ground level, in proportion as the barrack is situated on en elevated healthy site or on a low. pnhealthy one.
Sleeping rooms qhould haye enly single open verandahs, and these should never be used to.eke out the sleeping accommodation.
The external ventilation of many barracks is defective ; partly from surrounding buildings, partly from local position, but more frequently from the arrangement adopted.
Sometimes the barrack blocke interfere with each other's ventilation; and there are instances in which the prevailing winds blow against the end of long barrack rooms, driving the foul nir onwards among the men. A.t the best station the barraçk buildings are echeloned in such manner that the prevailing winds blow across the room. This arrangement is always the best for warm climates.

Internal ventilation is generally more or: leas provided for. Opposite doors and windows are often trusted to-one of the best methods, if properly managed. But we have already aeen that the diatance between the opposite doors and windows is frome two to three times too great to admit of thetr boing depended on; The wall apace between the windows and doori is much too narrow, and the mon while in bed are exposed to cold blasts passing over. them. The grrangement of beds in many barracke repders it impossible to ventilate
efficiently with doors and windows. It can be done with two rows of beds in the breadth of the room, but this is a rare arrangement in India. Generally there are four rows, sometimes even six rows, of beds between the opposite windows.

In the newer barracks ventilation is in some degree provided for by the cleristory windows already mentioned, or by louvres in the roof. Apparently the most efficient of the Indian methods of ventilation is where part of the side wall is filled up to the depth of two or three feet from the slope of the roof by open work, with louvres along the roof to admit of the escape of foul air.

In many instances the ventilation is described as sufficient; in many, it is insufficient. In some barracks there cannot be said to be any ventilation except the casual opening of doors and windows, while in some cases it is described as sufficient if the barracks are not overcrowded.

The cubic space per man in the newer barracks is not often below 1,000 feet. There are instances however in which it is under 600 cubic feet, and at several stations it is between 600 and 1,000 feet. From 1,500 to 1,800 cubic feet is a not unfrequent allowance of space in the newer barracks, and there are individual rooms in which the cubic space is as high as 2,000 feet per man. Compared with the regulation allowance of space at homd, the Indian amount is apparently magnificent. Bit the rooms of Indian barracks are generally so high that the cubic space is above the men's heads, and the surface overcrowding, a more important point, is often excessive. From 50 to $\mathbf{6 0}$ square feet of floor space is a not uncommon allowance for each man. In a number of instances it is from 60 to 80 . In a few rooms it is about 100 , but there are instances in which it is under 50. It sometimes does not exceed 40. The extent of superficial area usually allowed, in relation to the manner of arranging the beds, the occupation of the verandahs as sleeping accommodation, and the large number of men per room, result in what is really, as regards health, great overcrowding and impossibility of sufficient ventilation.

Lavatories.-Almost every barrack is provided with one or more ablution rooms. They are small square apartments detached from the barrack, often without fittings of any kind, never properly drained, sometimes connected with cesspits into which the waste water runs, to be absorbed by the soil or to be lifted out again and carried away by hand. Except in one or two recent barracks the ablution rooms are destitute of water supply unless carried by bheesties. Basins or tubs are usually supplied for washing. There is no proper bathing establishment anywhere, except at Fort St. George, Madras. At a number of stations plunge baths have been recently constructed, but at the majority of stations there are no means of bathing. Hence the appliances for personal cleanliness are almost everywhere deficient, especially when the nature of the climate is taken into account.

Cook-houses.-The cooking arrangements are quite peculiar to India. There is no cooking apparatus in the proper sense of the term. The kitchen is an out-building with a row of small fire-places, over which native cooks prepare the messes in copper pans. There is no water laid on, all has to be carried by hand. There is no drainage, the whole of the foul water either runs away on the surface or is led into open gutters or cesspits. The means of cooking are generally described as "sufficient," but it is satisfactory to know that at one or two stations improved apparatus has been constructed.

Water Supply.
Except at the new station at Wellington, and Fort St. George, Madras, there is no water supply for sanitary purposes in India, as it is understood in England; and Bombay is the only town to which water has been conveyed from a distance. Almost all the stations are supplied from shallow wells. At several, tank or river water is used. It seems rarely to be suspected that the water is unwholesome ; but the sources of supply ought to excite grave suspicion as to the purity of the water. Wherever anything like an account of the quality is given, the water is unquestionably bad and dangerous.

Water sources have been very rarely submitted to chemical analysis; but where they have been analysed, there is hardly one of them that would not be rejected for sanitary purposes at home.
There is scarcely such a thing as a pump or a water pipe in India. Water is usually raised in skins or buckets, and carried by water carriers sometimes a considerable distance, in one case two miles, to the place where it is to be used. It is poured out of the skin into earthen or wooden vessels, from which it is again drawn for drinking, cooking, or washing.

The whole arrangements are those of an infant state of society, and the quantity of water delivered for use, even if the quality were unobjectionable, would never, under such a system, be sufficient either for health or cleanliness.

The water supply of towns is derived from similar sources, tanks, wells, ot rivers. It is drawn for use and distributed in the same manner as at stations.
As there is no drainage, all the water carried into stations or towns must necessarily stay there; i.e., in the subsoil, unless it be removed by hand labour.

Many of the wells are polluted with sewage, a natural result of the state of the water supply and drainage.
It is now known that water drawn from shallow wells, in undrained inhabited areas, is one of the most common causes of epidemic diseases, especially cholera and dysentery. And beyond a doubt the condition of the water supply of towns and of stations exerts a powerful influence on the origin and progress of these diseases. In India, as elsewhere, there can be no drainage without extended water supply, extended far beyond the possibilities of mere labour to afford. And it would be a very questionable measure, indeed; to bring in more water without a complete system of drainage to carry it away.

Water pipes and drain pipes are but the two extremilies of one mechanism. One of them would be useless or injurious without the other.

The present system of water supply and drainage throughout India, for barracks, hospitals, cantonments, cities, and towns, is nothing more than that usually adopted in moveable camps, and which in the middle ages led to such disastrous loss of life from pestilence in Europe.

Drainage.

In the sense in which drainage is used in this country, for protecting the public health by removing filth and subsoil water, there is none whatever in India. The most that is aimed at is surface guttering, always a very imperfect expedient, even for the removal of surface water; and unless very carefully executed and well attended to, always a dangerous expedient. At many stations the whole of the rainfall either evaporates, runs off on the surface, if there be fall enough, or sinks into the subsoil. It appears to be generally presumed that because a soil is porous, therefore it requires no drainage, whereas a porous subsoil is the one which stands most in need, while it most readily admits, of efficient drainage. Once allow a porous subsoil to become saturated with the filth of a population, the sooner the site is abandoned the better. Only by very careful drainage can the public health be protected from this contingency in such a climate as that of India.

There appears to be no paving, and withont paving even surface drainage is impossible. In the vicinity of many stations there are large surfaces of what are called tanks, but which, in sanitary language, mean staguant water. Many of these ponds become partially dry in summer, exposing large surfaces of putrescent mud, very often the result of filth and foul drainage thrown into them. Some stations are placed in the vicinity of unwholesome nullahs (watercourses which become partially or entirely dry when the rains are over), often used as public necessaries by the native population. The surface is frequently excavated into hollows and water pits, producing malaria. Not a single barrack or hospital appears to be drained. The privies are either connected with cesspits or their contents are removed daily-by sweepers. The refuse water from kitchens, lavatories, \& cc., is either received into cesspits or allowed to run away upon the sarface. Usually these cesspits are shallow, and their contents are removed by hand labour, or they are simply soak wells to allow the foul water to saturate the subsoil. The smell from these arrangements sometimes pervades the air to a considerable distance, even into the barrack rooms. If such be the condition of the station drainage, what must be that of the native towns? In these the bad state of the drainage is simply an exaggeration of the state of things about the barracks. There are holes and gutters full of filth and foul water, close to the houses. No domestic conveniences; often cesspits within the houses and compounds ; few public necessaries, the mass of the population generally resorting to the fields and open spaces about the town.

Generally, as regards drainage, the description applicable to the condition of the drainage in districts in Europe where cholera and other epidemic diseases nsually prevail, would apply to the state of the drainage in and around Indian stations, with this important difference, however, that the defects are far more serious in degree in India than ever they are in our colder climates, while defects much less serious in degree would have a much more fatal effect in the higher temperature and moisture of India.

Intemperance.

In England the canteen regulations forbid the sale of ardent spirits in canteens. But in India, as in other warm climates where there are stations of the British army, spirits are allowed to be sold to the extent of six ounces per man per day to all applicants. And the profit made on it goes to what is called the canteen fund, speut in providing the soldiers with certain conveniences and amusements, which there are at present no other means of supplying. Malt liquor is also very generally sold in the canteens. And there is a system of interchange, whereby a man may obtain all spirits or all malt liquor ; or part one, part the other, in varying proportions.
On the voyage ont to India spirits are issued to the soldier. So that, what with the habit thus acquired and the subsequent facilities and encouragements to the use of intoxicating liquors held out in India, the British army in that country presents the' largest amount of drunkenness of, perhaps, any body of men in existence, as it certainly does of disense produced directly or indirectly by intemperance.

Take, e.g, the single disease of delirium tremens. The Bengal mortality statistics show that for the same numbers the deaths from this disease have been 16 times more numerous among British soldiers serving in that Presidency than among their civilian countrymen at home.
The stational returns from all parts of India show a large amount of disease constantly in hospital, the direct or indirect result of this system of dram drinking. The poisonous effects of ardent spirits appear to be more powerfully developed in India than in colder latitudes, producing in that country a marked predisposition to several diseases, popularly considered incident to the climate. Some medical officers indeed appear to consider that spirit tippling and drunkenness are the main causes of inefficiency and excessiye mortality in the Indian army. Almost all attribute the marked prevalence of hepatic disease among British troops to this habit; and there is an all but unanimous concurrence of opinion, both among commanding and medical officers, that it would be a great public good to prevent the sale of spirituous liquors altogether.

The reporters consider that it would be difficult to carry out such a reform as the prohibition of the sale of spirits in canteens without incurring what they consider the greater risk of driving the soldier to the use of poisonous bazaar spirits to satisfy his craving. But on the other hand some of the reporters are of opinion that this very craving is the reault of the systematic encouragement of dram drinking, held out by the Government.
The soldier considers that what the Government permits him to do cannot be wrong. And when his daily allowance of spirits from the canteen does not spffice him, he ekes it out by going to the bazaar. Whatever difference of opinion there may be on the practicability of the reform, the verdict is all but unanimous that the present system is ruinous to the soldier both morally and physically, And it is for the Government to find a way of making practicable that which all are agreed to be necessary.

Diet.
The dict of the European soldier in India consists of :-
1 lb . meat.
1 lb . bread.
1 lb. vegetalles.
4 oz . rice.
$2 \frac{1}{2}$ oz. sugar.
$\frac{8}{8}$ oz. tee or is oz. coffee.
The vegetables usually consist of potatoes, carrots, onions, cabbages, turnips, cauliflower, pumpkins, according to season. There appears to be a very general deficiency of potatoes. This diett is issued to the soldier at all the stations in India, irrespective of climate, altitude, or season.

The men not unfrequently supplement this ration by additions of unwholesomely fed pork, \&cc., and they generally eat meat two or three times a day, taking their heaviest meal in the hottest period. Not only ao, but they are allowed to draw porter with it and spirits after it. The regimen as a whole is what would be prescribed for healthy men, doing hard out-door work in a temperate climate. But there cannot be a doubt of the great risk to health likely to arise fiom it in such a country and climate as India, especially when we at the same time know that the soldier's life, at least in infantry regiments, is one not of hard work in the open air but of inaction and lounging in his hot elose barrack room.
In short the men are not dieted in accordance with sound physiological principle. And as one result, liver engorgement and functional diseases of other organs ensue. Observation of native habits in warm climates would show that the bulk of their diet consists of farinaceous and vegetable food; and a change to this kind of food is no less necessary for Europeans living in tropical climates. In India, the soldier should be encouraged by all means to increase. the proportion of vegetable material in his dict, and to diminish the amount of animal food in proportion to the requirements of the climate. And while this is done, work shoulu at the same time be found for him to enalile bim to digest what he eats.

Abstract

 In India there is no correspondence between the soldier's diet and drink and his mans of exerciee The regimen usually adopted is as follows :- After early drill the men return to barracks, where they are confined the whole doy till ovenig in their hot, close, crowded rooms; and during this period of confinement all or nearly all their food is eaten. A the great majority of stations they have nothing whatever to do in the heat of the daye There are no workshops in which they can employ themselves, and there are no sheds or other covered spaces in which they can play at games or take exercise. Such a thing as a covered gyminasium is unknown. .There are ball courts and skittle alleys, more or less numerous, but most of them useless in the heat of the day. Libraries and reading rooms have been generally provided; but for the soldiers who cannot read, there is no corresponding resounce to occupy their vacant time. At one station it is stated that as soon as the 12 o'clock gun fres the men rush out of their barrack rooms to get at the canteen to break the monotony of their day, adding the stimulus of drink to the other unhealthy ponditions naturally resulting from the system of diet and confinoment ia use. It is important to remark that the most healthy arms of the service, the cavalry and artillery, have some exercise, and that where men have been allowed to go out shooting no injury to health has followed. The evidence all points in one direction, viz., that the Indian army must be managed more in accordance with sound physiological principle. The men must be dieted according to climate and season, and not on one general inflexible rule, as at present. They must be provided with rational means for occupying their time, by supplying them with workshops, gardens to cultivate vegetables, covered spaces for games, and exercises, gymnastics, which ought to be made a paraile, and soldiers' clubs, with coffee rooms, on the plan now being introduced at home stations. Complaints of the want of sufficient means of occupying, the men are all but universal from every station in

 India.
Dress.

The soldiers' dress in India has of late years undergone great improvement, and is now generally considered well adapted to the season, climate, and duties. There are suggestions from certain stations regarding improvements in hesd-dress,' boots, \&xc. ; but these relate to points of detail. The opinion appears to be general that flapnel worn next the skin would be preservative of health, especially in variable climates:-

Doties.

Drills, parades, and marches take place in early morning, and are over for the day soon after sunrise. Sometimes there are short drills in the evening. -Guards are mounted, as at home, for 24 hours. : Except at one or two unhealthy stations, there is a concurrence of opinion that night gugrds are not prejudicial to health. All are agreed that young soldiers should not learn their drill in India (for this can only be done at a large sacrifice of health and life)-that drill should be perfected either at home, at some intermediate station, or on the hills.

Period of Service.

The reporters state that from 20 to 25 jears of age are the most suitable ages for young soldiers to proceed to India; that they should arrive in India in the cool season (November till February). From 10 to 12 years is considered a sufficient period of efficient service ; but certain of the returns state that, under improved sanitary conditions, a soldier may serve as long in India as anywhere else.

Hrif Stations.

Very few of the reporters have hiad experience of the effect of hill stations on the health of troops, and no satisfactory evidence of advantage having beer derived from residence at them is adduced but at the same time the sanitary condition of hill stations, as described, is by no means such as to conduce to health anywhere. There is evidence as to improvement in health of certain classes of invalids by hill residence ; but other classes are not only not benefited, but their health is injured by it. The reporters, however, with .few exceptions, are strongly in favour of selecting hill stations, either as head-quarters of regiments or as places to which detachments could be sent in rotation from the plains for recovering their stamina. The evidence, at the same time, proves the absolute necessity of placing all hill stations in the best possible sanitary condition:

Hospitals.
Every station has one or more hospitals, generally ond for each arm of the service. The sites on which they are placed partake of the general characteristics of the locality but the best positions appear to have been selected for the hospital. With few exceptions, the hospital sites are described as being well exposed to prevailing winds, and as having sufficient fall for drainage, as far ìs the general levels admit of. At two or three stations the hospital sites are bad, but perhaps not more unfavourable than those of the barracks.

The general construction is similar to the barrack construction. Almost all the hospitals are on one floor, raised a few feet above the ground, without ventilation beneath. There is a foundation wall and plinth filled in solid, and on this the ward floor is formed. The older class of hospitals resemble huts, each hut containing a ward with two or three smaller rooms, surrounded' outside by an open veraudah to keep off thè sun. The newer class of hospitals are built like the recent barracks, with a centre aisle and two aide aisles, with verandahs outside. The materials used are burnt or sun-dried brick, wattle and daub, or stone. The floors are flagged, or of brick, or of a species of lime concrete (called chunam). The roofs in the older class of hospitals are sloped and constructed of thatch nid tile. In the newer class the roofs are terraced and fiat. In most instances the material is considered good, and the walls and the roofs, together with the verandahs, sufficient to keep, the interiar of the hospital cool.

The ward dimensions do not appear to have been laid down on any general principle, either'as regards health or administration. They vary in length from 30 or 40 feet $u p$ to 200 feet and upwards' In one case, at Dinapore, the hospitar ward is no less than 633 feet long. The ectifral aisle is usually from 20 to 25^{\prime} feet wide. If there be single verindaha, these are usually from 10 to 12 feet wide, making the whole 'width of the hospital, from outer air to outer air, including walls, between 40 and 50 feet." If the verandahs are double, this dimension will be inoreased by 25 feet, making the entire widti" of these double verandahed wards from 65 to 75 feet." The length of the building is sometimes divided by cross arches into what are called separate warde, which form, however, in reality only ope ward, with the ventilation partially interrupted by cross-walls. The height of the wards varies from 15 to 24 feet and upwards; but; there are wards; as at Trimulgherry, as
high as 42 feet. The practical result of this great height is not that the sick have the benefit of large cubic space, but that the beds are overcrowded on the surface. The Trimulgherry hospital contains 486 sick, with only 24 square feet per bed.
The number of beds per ward varies from 15 to 20 , up to 80,100 , and in several cases to 150 and upwards. While in the Trimulgherry hospital there are two wards with 228 sick each : tenfold too many.

The cubic space per bed is large for a military hospital; but it scarcely exceeds the amount allowed in some wards of the larger London hospitals. Sometimes it is under 1,000 cubic feet per bed, but more generally it is from 1,000 to 1,500 or 1,700 cubic feet, or even more per bed. But on the other hand the ward proportions are such that, in nearly every instance, there is considerable surface overcrowding for the climate. The superficial area is sometimes as low as 24 square feet. Generally it is from 40 to 60 or 70 square feet. In a few instances the area is 100 square feet or a little over.

But there is scarcely a ward which gives the superficial area required for the more serious cases of disease in such a climate as India

So far as the evidence goes the ventilation provided would appear to be generally better in hospitals than in barracks. There are the usual opposite doors and windows, with ventilators in the ridge, openings in the walls; and cleristory windows in the double verandahed buildings.
The structural arrangements are the same as those for barracks. But the state of the hospital ventilation is less complained of, apparently because more attention is paid to it. But, considered in relation to the construction of the buildings, the size of the wards, and the number of sick in one room, it is very doubtful whether these hospitals are ever free of a "hospital atmosphere."
Their construction shows that the wards must be dark; and we know that light is an element, second only in importance to air, in the course of disease.
The structural arrangements for administration are very deficient. There are no properly placed nurse's rooms or sculleries, without which there can be no ward discipline or real administration. The medical offices are also frequently defective ; and there do not appear to be any means of performing operations more than are found in field hospitals.

There is no hospital draipage in India. In many cases even the roof water is allowed to sink into the ground, close to the wards. Any attempt at drainage is merely by surfuce gutters, leading outside the hospital wall, or to a ditch or nullah. There are no water-closets, only open privies in the back yard of the building, the contents of which are removed by sweepers. Sometimes the privies are over cesspits. All the arrangements are offensive; and during the prevalence of epidemic disease, especially of dysentery or cholera, they must be in the highest degree prejudicial.
There is no hospital water supply, except what is carried by hand labour, sometimes from a distance of ons or two miles. Little or nothing appears to be known of the quality of the water, and the means of distribution ensure the supply being limited, instead of being unlimited, the only safe condition of all hospital water supply.
The means of cleanliness as described are very deficient. There are few properly fitted lavatories, and few or no suitable baths. Washing the hands and face in any way, sometimes (indeed not unfrequently) in a little damp square room, with nothing but earthenware basins on the floor, or tin pots with wooden tubs instead of baths, and vessels for storing water, out of which the sick can help themselves; this appears to be considered sufficient for cleanliness in Indian hospitals. The improvements in these matters being introduced into civil and military hospitals in England appear to be unheard of in India.
The hospital kitchens are on the same plan as the barrack kitchens. They are in out-houses behind the hospital, and are provided with lov fire-places, on which the diets are cooked in the native fashion. The cooking is generally stated to be sufficient, but occasionally complaints are made of the cooks, and opinions expressed in favour of the whole system of hospital cooking being improved.

In all cases hospital linen is washed (and torn) by native washermen (dhobies) away from the building.
The sanitary condition of the hospitals is generally described as satisfactory. In some instances it is the reverse; and it is not o very favourable sign that the sick in hospital should suffer from epidemic diseases prevailing in the vicinity.
None bf the hospitals contain convalescent wards. Convalescents appear generally to be sent to barracks, or they are kept in hospital with the sick until able to return to duty. Wherever there is serious disense there should be separate accommodation for convalescents. In a climate where dysentery, cholera, and fever are the prevailing diseases, it is a certain method of delaying recovery to associate convalescing and sick men in the same wards; and Indian barracks with their dieting and facilities for obtaining drink, are not the best places to send convalescents for the purpose of avoiding this risk.

Attendance on sick is provided for in India by a subordinate medical department, and by ward coolics and by ward servants acting under the orders of the medical officers. There is a great subdivision of labour in the hospital duties, and consequently a very large number of attendants and servants in proportion to the sick. The hospital of an entire regiment has an ordinary establishment of 79 persons, increased in hot weather to no less than 240. In this are included water-carriers and mehters for removing hospital filth and refuse.

The sick are attended by native ward boys, and severe cases by comrades, obtained on requisition of the medical officer. There is a regimental hospital serjeant for discipline. No training appears to be given to medical officer. There is a regimental hospital serjeant for discipine. No training appears general hospital, stated to be a great comfort and benefit to the sick.
Notwithstanding the large staff attached to these hospitals (larger at times than the number of sick) there is strong evidence that the hospital administration is not good, and requires much improvement.

Nearly every station has one or more female hospitals; many of which have been specially constructed. But at some stations the female hospital accommodation is under the same roof with the male hospital ; and sometimes it consists of a male ward misappropriated for the purpose. At a few stations the sick wives and children of soldiers have to be attended in their own quarters. The specially built female hospitals have the same general structural defects as the male hospitals ; but the accommodation generally is described as "sufficient."

Native Lines

The sanitary defects of native lines are the same as those in British cantonments; but in a much-more aggravated degree, from the general neglect of all sanitary precautions among natives.
Native troops generally receive hutting money, and hut themselves on the ground appropriated to them, without regard to order or regularity.
The ground is undrained, or it is merely trenched, and full of excavated holes, the receptacles of all serts of filth.
The sanitary police is extremely imperfect.

A considerable extent of the surrounding ground is often covered with filth. The bazaars are very bad, the streets sometimes used as privies. Bad water, no drainage, overcrowding, dung-heaps and filth, appear to be their normal condition. No person can read these native returns without being convinced that the most virulent causes of local diseases and pestilences are in continual activity in and around the stations.

Although the system of hutting native troops could be so applied as to possess great sanitary advantages, these advantages are by no means realited.

The men are sometimes hutted separately in huts constructed of bamboo and matting. But sometimes the huts are merely long open sheds divided (pendals). Generally there is bare ground for the floor, and the men frequently sleep outside in hot weather. Native troops are always exposed to ground malaria in a concentrated form during sleep; and their huts can never be otherwise than damp, especially during the rainy season. . When more permanent materials are employed, such as sun dried bricks, ventilation is effected by a door and an opening in the wall, instead of a window. The ventilation could be materially improved by roof openings.

With all their disadvantages, these native huts and barracks are possessed of sanitary advantages of a most important kind. There need be no overcrowding, either in cubic contents or in superficial area, except, perhaps, where the soldier is married, in which case his wife and family live with him, but in which case he does not always build a larger hut. There are abandant means of natural ventilation; and the hute are not exposed to the great evil of European barracks, viz., crowding perbaps a quarter of a regiment in the same room. The water supply is the same as for European barracks, viz, wells, tanks, and rivers. Natives are said to be generally more particular about the quality of the water than are Europeans; but the reports nevertheless furnish sufficient evidence of unwholesome water being extensively used. At many stations where there are native troops, tank water is used, always more or less pollnted with surface drainage and filth washed in by the rains. Sometimes the same tank is used for drinking and bathing. The well water is often polluted by infiltration of putrid organic matter from a foul undrained subsoil. There are neither lavatories nor baths. There are no cook houses. Where there are privies, these are of the most offensive character, and sometimes they are cleansed by merely throwing the contents over the adjacent surface. But often there is no provision whatever made. The arrangements of a native station are those of an oriental camp, and entail great liability on the part of their occupants to periodic fevers and to any epidemics, especially those of bowel diseases, which may happen to prevail.

Native troops enjoy a remarkable exemption from liver disease, which is attributed to their temperate habits in eating and drinking. They suffer from venereal disease in a very low ratio, from a tenth to a twentieth part of the ratio of European troops. Rheumatism is frequent among them, arising apparently from damp, want of care in clothing, and rapid change of temperature. Intermittent fever is one of their nost common diseases.

The condition of the air, over some of these native stations, in still, warm, moist weather, is extremely offensive and unwholesome, and nuisance from it is experienced to some distance. This is the result of filth and want of drainage.
Native troops are allowed to diet themselves, a system which is attended with serious disadvantage in cases where the men stint themselves of proper food to save money. Their cooking is frequently very imperfect and unwholesome.

At a number of stations there are native schools; but with these exceptions there are no means provided, either for instruction, recreation, or exercise. In this respect the men appear to be left wholly to themselyes, without interference on the part of their officers.

Native hospitals are of more permanent construction than the barracks. They consist essentially of a single hut ward, with sometimes two or three smaller wards, built on the same goneral plan as British hospitals, but affording considerably less cubic space per man. This is generally from a third to a half of that allotted in British hospitals, and hence, as a rule, all native hospitals are overcrowded. The usual means of ventilation are doors and windows, often not glazed. It can never be enough, with so small a cubic space. Except this ward or wards, it cannot be said that the native sick accommodation has any other hospital characteristic. In all the other conveniences required for the treatment of sick there is entire deficiency. There are no suitable nurses' rooms, no ablution nor bath accommodation, patients being allowed to go home to wash or to bathe themselves in the nearest tank. There are no waterclosets or proper latrines. The substitutes for these ara indescribable, offensive, and injurious to health. There are no hospital kitchens, and no cooks. The patient or a friend does the sick cooking. There are no hospital diets. The sick diet themselves according to their own fancy. The attendance consists generally of an officer of the subordinate medical department, a serjeant, and comrades from the ranks. A native station hospital is simply a very inferior form of European camp hospital, in which the sick can be more conveniently visited than in their own lines, and where the medical officer has the power of giving them medicine. So far as can be learned from these returns, the present native hospital systern contemplates nothing more than this.

The sick wives and children of native soldiers present themselves to the medical officer for advice, or are attended in their own huts when too ill to come to him.

Considered as a whole, this native hospital system resembles nothing to which the name of hospital system can be applied.

Burlal of the Dead.

There are burial grounds at all stations occupied by British troops. These grounds are placed outside the cantonments, at a sufficient distance to prevent injury to health.

The surface area allowed, and the general method of conducting interments, is the same as in this country.
Native dead are disposed of according to religion and caste. . Mohammedans bury their dead in separate grounds, often at a considerable distance from human dwellings. Their method of burial is objectionable, and would give rise to nuisance if close to towns.
In certain cases. there are burial grounds within cities, which are complained of as being injurious, and a practice is mentioned of burying within compounds or in houses.

Hindoos burn their dead, often very imperfectly, and throw the remains into rivers.
There is no complaint of injury to the health of British troops from any of the existing practices, although occasioually nuisance arises from them.

BENGAL PRESIDENCY.

ABSTRACT OF SANITARY DETAILS IN RETURNS FROM PRINCIPAL STATIONS WHERE THERE

 IS ACCOMMODATION FOR BRITISH TROOPSReturns have been made from 35 stations in Bengal presidency, where there is accommodation for British troops. Of these stations 34 are included in the following abstract.
The stations least elevated above the sea level are Fort William and, farther up the river, Dumdum, which are only 18 feet abore the sea At these two stations there is accom 18 feet abore the sea, at theme swa sositions en accommodation for above 3,000 troops, in positions so low that or less astiurates the subsoil with water.

Along the valley of the Ganges, from Fort William as far as Lucknow, and close upon the river, there are upwards of 15,000 British troops located at elevations above the sea level varying from 80 feet to 368 feet. With scarcely an exception, these stations are on the same level as the surrounding country. Allahabad is partly 40 feet above the Ganges, but a third of the station is actually below the river. Berhampore is 3 feet below the level of the river Bhagirutty, which skirts the station.

The N.W. stations are on higher ground; Ferozepore, the lowest of them, is 720 feet above the sea level, and Rawul Pindi is 1,500 feet.
Between these two elevations there is accommodation for sbove 20,000 troops.

Hazareebaugh, one of the best stations of the Presidency, is situated on a table land in Lower Bengal, 1,900 feet above the sea. There are above 1,100 troops barracked at this atation. The cantonment site has the advantage of being 200 fcet above the level of the adjacent country.

Meerut and Agra are, one 100, the other 50 feet, above the surrounding levels; but with these exceptions the sta tions generally ars little, if at all, raised above the adjacent country.

There are four returns from hill stations at elevations from 7,000 to 7,800 feet above the level of the sea, but the accommodation provided at these is for not more than 1,200 men. The highest of these stations is Murree. They are all situated in the Himalayas, and are at present used as sanitaria.
There are 11 conaiderable stations on the banks of the river Ganges.
The subsoil is chiefly alluvium stid clay, more or less wet or marshy during the rains. The surrounding country is generally undulating or flat, and in several instances the means of natural drainage are deficlent.
The majority of the N.W. 'stations are situated on flat sandy ground, with more or less alluvium mixed with limestone nodules or conglomerate. In some districts the underlying rock is sandstone. The country round several of these stations is imperfectly cultivated, and there is not much wood for shade. The hill stations rest on mountain masses of gneiss, sandstone, and limestone. They are generally on ridges, with steep slopes or ravines falling from them, and have ample means of natural drainage and water supply, but they are subject to very heavy rain-fall and great dampness at certain seasons.

1. Mean maximum varies from $71^{0.4}$ in December to $93^{\circ} .8$ in May; mean minimum varies from $59^{\circ} \cdot 3$ in December to $80^{\circ} .8$ in June; mean daily range varies from $7^{\circ} .5$ in August to $18^{\circ} \mathrm{l}$ in December; mean sun temperature from $124^{\circ} .3$ in December to $135^{\circ} .9$ in October. Mean rainfall 64 inches; temperature high; atmosphere generally moist, at times very offensive and impure from malaria and effuvia near Calcutta, less so in Fort William Healthy .months, November to March; unhealthy, April, May, September, October, when prevailing diseases are fevers, intermittent, remittent, cholera, small-pox, dysentery Climate affects health and constitution of troops in garrison. Change from cold to heat extreme humidity, drying of country after rain, precede or accompany miasmatic disease.
Dinapore.

Cawnpore.
2. No meteorological observations; climate a medium between damp of Bengal and drough of N.W. Damp in rains; tolerably free of dust; morning fog November and December bronchitis and bowel disease and dysentery caused by cold nights; warm clothing required in winter, flannel in all seasons; men allowed to go out in cloudy weather; December to March most healthy months. Prevailing diseases, heat, apoplexy, fevers, dysentery, bowel and hepatic diseases. Fever follows drying up of country after rains.
3. Records destroyed during mutiny. Great fuctuations of temperature, humidity and pressure. Temperature extremely high during hot winds, and mortaity occurs from heak apoplexy, sunstroke, \&c.; most unhealthy months, April to September, when prevailing diseases are fevers, cholers, dysentery, rheumatism
Meerut.

AgRA.

Umbalea.

Loodiana

Ferozepore.

JULLUNDUR.

Mean Mefr.

Peshawur.

Shalkote.
4. Mean maximum temperature, 69° in December, 103° in May; mean minimum $49 \frac{3}{4}^{\circ}$ in January, $84 \Sigma^{\circ}$ in July; mean daily range, 9° in September, 31° in November; mean sun temperature 84° in December, 118° in May. Rainfall 17.89 inches. Climate goad; dry a great part of year; not variable; fogs very rare; much dust in dry seasons; no bad influence on health; most healthy months, December till March; most unhealthy months, August to October, when fevers intermittent, remittent, and continued; catarrh, diarrhoea, dysentery, and hepatitis prevail. Fevers most prevalent at end of rainy season ; small-pox in March and April. Great variation of temperature produces influenza, sometimes cholera.
5. Mean maxinum temperature varies from $73^{\circ} 3$ in January to $112^{\circ} 7$ in June; mean minimum temperature varies from $42 \frac{1}{3}^{\circ}$ in January to $83^{\circ} 3$ in June; mean daily range $18^{\circ} 4$ in July to $38^{\circ} 1$ in April; mean daily temperature $66^{\circ .9}$ in January to $97^{\circ} 1$ in June. Rainfall about $10 \frac{1}{2}$ inches. Climate from end of October to beginaing of April cool, clear, and healthy; very hot and dry, but not unhealthy till end of June; hot and moist till end of September, when fevers prevail ; much dust in hot season; much animal food not required; exposure to sun to be avoided in hottest season; flannel belt required. Healthiest months, November to April; unhealthiest, August to Óctober. Miasmatic fever, with dysentery, prevails; sunstroke frequent in May and June; liver .complaints prevail in hot and rainy season; chest affections in cold season.
6. Mean maximum temperature varies from 76° in December to 113° in June; mean minimum temperature 37° in December and January to 76° in June ; mean temperature $59^{\circ} 8$ in January to $96^{\circ} 6$ in June; maximum sun temperature 89° in December and January to 128° in October. Rainfall $26: 3$ inches. Climate generally healthy; dry and hot for three months; moist and hot for three months; temperate for two months; cold and bracing four months; neither variable nor foggy; more or less dusty from April till July; debilitating from April till October, during which less animal food and light clothing should be used ; flannel required during rains. February most healthy, July most unhealthy month; prevailing diseases, fevers, rheumatism, bowel and liver complaints.
7. No meteorological instruments. Climate very dry; heat very great April to October. Rainfall very variable; nights cold in cold season, sometimes freezing; fogs rare; dust frequent in hot weather ; healthiest months, November till April; unhealthiest, August to October. Prevailing diseases; fevers, intermittent and remittent; spleen; dysentery; diarrhcea.
8. Mean temperatures vary in different years; lowest mean maximum in 5 years, 62° in January ; highest mean maximum 115° in June; lowest mean minimum 41° in January; highest mean minimum 96° in May. Mean daily range varies remarkably in different years, 7° to 44° in same month; highest observed mean daily range 46° in November 1856 ; highest mean sun temperature 130° in July. In five years total rainfall, in October, November, December, 0.2 inch (in December 1858). Monthly rainfall varies in different years, from 4 to above 13 inches in same month. Climate dry, "free from any great variation" or miasma. Rain13 inches in same month. Chmate dry, "free from any great variation" or miasma. Rain-
fall has been increased by tree planting; climate particularly favourable to health; most fall has been increased by tree planting; climate particularly favourable to health; most
healthy, December to March; most unhealthy, August and September; prevailing diseases, intermittent fever, liver disease, "produced by exposure to heats and chills from sudden "change of temperature."
9. No meteorological instruments. Climate said to be good. July, August, September rainy season. Other montbs dry, with occasional dust and thunderstorms. September, October most unhealthy months. Prevailing disease, intermittent fever. Climate most healthy. Zymotic disease connected with a hot sun and cold damp nights.
10. No proper instruments. Mean temperature varies from 51° in January to 91° in August, the highest observed mean. Rainfall varies in different years: $9 \cdot 1$ to $21 \cdot 4$ inches. Climate dry. Wet bulb falls 19° in a room in hot weather; wet bulb falls 20° to 24° after rains. Fogs rare. Cold easterly winds in cold weather. Atmosphere dusty. Unhealthy, May to July. Fevers, hepatic, and bowel disease prevail. September, October also unhealthy. Malarial fevers prevail. Fever begins with hot weather. Heat brings hepatitis; extremes of temperature, dysentery.
11. Mean maximum temperature varies from $54 \frac{1}{3}^{\circ}$ in January, 106° in June. Mean minimum, from 414° in January, 89° in June. Mean daily range, from 4° to 38° in March. Mean sun temperature, from 683° in January, $113 \frac{1}{2}^{\circ}$ in July. Rainfall varies from 7 to 14 inches. Climate exceedingly trying, great alternations from heat to cold, from dryness to moisture. Tree planting appears to have equalized the temperature. Variableness chief element affecting health. Healthy, December to April. Most unhealthy in September and October, when fevers and bowel complaints prevail.
Stamions.
Ghazerporg.
Beriampore.

Hazaresbavgh.

Allagabad.
A great coat or cloak should be ready at all times. Flannel particularly required. Unhealthy, August to beginning of October. Rest of year healthy.
13. Mean maximum, varies from $73 \frac{1}{2}^{\circ}$ in December, 105° in May, Mean minimum, 56° in December, $82 \frac{3}{4}^{\circ}$ in July. Mean temperature, $64 \frac{33^{\circ}}{4}$ in December, $933^{\frac{30}{\circ}}$ in May. Mean daily range, 14° in July, 984° in March. Mean sun temperature, 90° in December, $125 \frac{1}{2}^{\circ}$ in May Rainfall, 47.32 inches. Climate not very variable. Cold season very bracing. Much dust in hot season. September, October, unhealthy from fevers of all kinds, dysentery, and chest affections. January to April most healthy. This applies to natives. No experience of European troops.
Berifamporz.
14. Mean maximum raries from $7^{\circ} 5^{\circ}$ in December to 100° in June. Mean minimum, from $51{ }^{\circ}$ in January to 78° in December. Mean temperature, 64° in January to 87° in June.
Mean daily range, from 13° in August and September, to 30° in March. Rainfall, 39.75 Mean daily range, from 13° in August and September, to 30° in March. Rainfall, 39.75
inches. Climate damp. Frequent fogs during cold weather, until 9 or 10 a.m. Heat very inches. Climate damp. Frequent fogs during cold weather, until 9 or 10 a.m. Heat very
oppressive April to beginning of June. N.W. winds healthy. Healthy, December to February. Unhealthy, August to November. Fevers intermittent, remittent, spleen, diarrhora, dysentery, liver and rheumatic affections then prevail. Endemic disease, with rapid prostration of strength, accompanies damp air and powerful sun acting on vegetable matter.
15. No proper instruments; only a thermometer. Mean temperature, $64^{0.85}$ in December, $87^{\circ} .3$ in July. Rainfall, $72 \frac{1}{4}$ inches. Climate, medium between Bengal and upper provinces, Air free of dust. Temperature, 8° or 10° cooler than most Indian stations. Climate variable, but excellently adapted for European troops, especially recruits. Flannel belts required in rainy season. Air cool, sun hot. September to November unhealthy; typhoid remittent, and intermittent fevers, and bowel complaints then prevail. December to April healthy.
16. No records; all destroyed in mutiny. Climate dry, March to June; wet, July to Novermber; cold, October to March. Rains regular. Dust storms in dry weather. Climate requires generous and varied diet, and clothing according to season. April to June, fever, requires generous and varied diet, and clothing according to season. April to June, fever,
dysentery, sunstroke, cholera. During rains, dysentery and cholers. In cold, fevers, chiefly dysentery, sunstroke, cholera. During rains, dysentery and cholers. In cold, fevers, chiefly
intermittent. November to March, most henlthy. East winds increase severity of cholera, 17. No proper instruments. No observations. Temperature, 1° or 2° lower than Calcutta 7. No proper instruments. No observations. cemperature, 1 or 2° lower than Calcutta.
Climate very moist. Thick mist nearly every morning for a month before hot season. Climate very moist. Thick mist nearly every morning for a month before hot season. Climate not ordinarily unhealthy, with proper precautions; healthiest months, Novem
January; unhealthiest, June to August, when cholera, dysentery, and fevers prevail.
18. Mean maximum temperature, $68^{\circ} .2$ in December to $98^{6.8} .8$ in May. Mean minimum, 582° 18. Mean maximum temperature, 68.2 in December to $98^{\circ} .8$ in May. Mean minimum, $58{ }^{\circ}$ daily range, $1^{\circ} .6$ in $\mathrm{July}, 13^{\circ} \cdot 3$ in January. Mean sun temperature, varies from $89^{\circ} .9$ in January, to $127^{\circ} 5$ in May. Rainfall, 37.35 inches. Climate, intermediate between Bengal and north-west provinces. Not subject to sudden change of temperature, but to considerable diurnal alternations. Atmosphere generally loaded with dust in hot winds. Climate on the whole salubrious. November to March healthiest; August to October unhealthiest malarious fevers, dysentery, hepatitis then prevail. High temperature and moisture in rainy season. Great dry heat, with still atmosphere, accompany these diseases

Landour.

19. No instruments. Mean temperature varies from 444° in January, $73^{\circ} 18$ in June. Rainfall, $92 \cdot 7$ inches. Climate very moist for some months, due to elevation. Diarrhcea (obstinate), dysentery, chest affections'of children prevalent.
Muttra,
20. No instruments or records. Climate produces heat apoplexy, hepatitis, continued fever: "Just now air over entire district a mass of dust, sometimes obscuring the sun." Diet of troops ought to be lighter; less meat, light puddings, plenty of fruit and vegetables. Healthiest months, October to March; sickliest, April and May, from continued fever and hepatitis.
Raneggunge,
21. No proper instruments. No astisfactory observations. Highest mean maximum tempera, ture, $96 \frac{1}{2}$ in May. Highest
subject to heavy dust storms.
Deler.
22. No records. Mean temperature varies from 92° in June, to 56° in January. Rains continue with intermissions from end of June to end of September. Rainfall, 10 inches and upwards. Hot winds, dust storms, April to June. Climate unusually dry; favourable to Europeans. Unhealthy months, September, October; from low fever.
23. No proper instruments. Mean temperature varies from 54° in January to 88° in August. Mean sun temperature, from 76° in January, to 109° in May and August. Rainfall, $44^{\circ} 36$ inches. Climate, comparatively very healthy; very dry for many months. Rain, July to September. Heat from middle of April to.October intense. In winter, thermometer falls to freezing point. Ice is formed in December and January, sufficient for six hot months Fogs very rare No damp, except after rain. Dust storms in hot weather render candles necessary to see with. Sickness increases after first rains. In hot months, animal food neces a day only should be civen; no apirits and no malt liquor in heat of day. Ligh clothing, with flannel next skin. December and January healthiest; September and October clothing, with Hannel next skin. December and andiest months. when intermittent fevers, diarrhoa, dysentery, liver disease, and unhealthiest months. when inter
Nyneg Tảg.
24. No proper instruments. Average temperature, from 484° in January, to 68° in June. Rainfall varies in different years from 68 to 144 inches. Climate excellent; damp in rains Rainfail varies in different years from $\mathbf{b s}$ to 144 inches. Cumate excellent; damp ind rains but dry and pure at other times. Too many trees. Residents have good health, Sun
powerful in summer. Winter months most healthy, and best adapted for invalids. No powerful in summe
25. No complete observations. Mean temperature from $58 \frac{2}{2}^{\circ}$ in December, to 91° in April and June. Cold weather begins in October. Water freezes in December and January, sometimes in February. Often heavy dews and showers of rain in winter. Hot weather from end of April till June. Dust storms frequent. Climate of Oude better than south of Ganges. Cold and hot seasons healthiest; unhealthiest, breaking up of rains. Most fever in June; least in January. $\begin{aligned} & \text { Bowel affections in heat and rain; catarre in } \\ & \text { Heat apoplexy in May and June; } 500 \text { cases occurred in Lucknow field force in May } 1858 .\end{aligned}$ 26. No records. Climate decidedly finest in plains of India. Winter clothing, generous diet No records. Climate decidedly finest in plains of India. Winter clothing, generous diet
necessary for seven months; light clothing, less stimulating food necessary for other five,
Rawul Pindi

Chunar.

With plenty of vegetables.
27. Instruments imperfect. Mean temperature, from 65° in December and January, to 92° in June. Mean sun temperature, from 84° in January, to 120° in June. Rainfall, 47

Stationg.	Replies.
	inches. Climate hot and healthy; hot and dry in hot. winds; hot and moist in raing season; pleasantly cold in cold season; no great variation; little subject to fog and dust. October to half December unhealthiest. Intermittent fever.
Roorices.	28. Climate very healthy, quite equal to that of England. September, October unhealthiest, from fever intermittent and mild continued.
Jhangi.	29. Recorda destroyed during mutiny. Climate healthy and bracing, except in hot weather. Cold season healthiest. Intermittent fever in August and September.
Barrackrqre.	30. No proper instruments. Temperature in hot season, 82° to 104° in shade; in rains, 80° to 96°; in cold season, 54° to 80°. Climate moist, warm, little variation; moderately healthy. Evenings in hot weather sultry and oppressive. Heary dews in mornings in cold weather. August to October unhealthiest. Diarrhca, dysentery, cholera, fevers, remittent and intermittent then prevail.
Morar Gwalior.	31. Mean maximum temperature, from 701° in. December to 106° in July. Mean minimum, from $56 \frac{1}{2}$ in December, to 86° in May. Mean temperature, $61 \frac{1}{2}^{\circ}$ in December, 96° in Juve. Mean daily range, from $3 \frac{1}{3}^{\circ}$ in September, to $18 \frac{1}{2}^{\circ}$ in February. Rain fall about 25 inches. Climate aalubrious, dry and hot. Too many trees. Air often loaded with dust. Healthiest, at end of cold weather. Unhealthiest, at end of hot and wet weather. In May and June, head and bowel affections and fever prevail. After rains fever and bowel complaints.
Jubrulpore.	32. No information. No instruments.
Darjeeling.	33. Mean maximum temperature, from $50^{\circ} \cdot 30$ January, to $64^{\circ} \cdot 97$ August. Mean minimum, $38^{\circ} 68$ January, $57^{\circ} .97$ July. Mean temperature, from 45° January, to $61^{\circ} .35$ August. Mean daily range, between $2^{\circ} \cdot 9 \mathrm{July}$, and $5^{\circ} 8$ November. Mean sun temperature, between 90° in December, and 104° in July. Average annual rain fall in 7 years 124 inches. Climate, temperate and damp; beneficial in debility after fever, or in simple debility. Not beneficial for serious organic disease or rheumatism. Spring water percolating the decajed vegetable matter produces diarrhcea after first rains.

III. PREVAILING DISEASES IMONG NATIVE POPULATION

AND THEIR CAUSES.
Fort Hilliam. | 1. Native population comparatively unhealthy- Prevailing diseases, intermittent, remittent, typhoid fevers ; cholera; dysentery ; bmall-pox; enlarged spleen, and fatal diarrhoea, remarkably prevalent. Causes.-Rank jungle; filth; stagnant water; damp; foul drains; bad drainage; bad, unwholesome, brackish drinking water; bad overcrowding; dirt, and bad diet.
2. "Generally healthy, especially the natives." Prevailing diseases: fevers, mall-pox, cholera, bowel complaints, palsy of the lower limbs. Causes.-Too much or too little rain; bad drainage; " holes near all native houses;" some native towns "disgracefully filthy."
Cawnpore.
3. "Generally healthy." Cholera; small-pox ; occasionally aggravated by overcrowding, want of ventilation \&c. prevail
Meerut.
4. "Considered healthy." Diseases : fever, diarrhce, 'dysentery, small-pox, spleen, cholera, not so frequent as elsewhere. Comparative healthiness attributable to porous soil, cultivation, and few sources of malaria, free ventilation.
Umballa.
Ferozepore.

Jullundur.

5. "Generally healthy." Prevailing diseases: endemic fever, spleen disesse; epidemics rare. District well drained by rivers; porous subsoil; few swamps.
6. "Particularly healthy." Prevailing diseases, venereal, giving rise to ulcers, cancers, diseased bones, leprosy, intermittent fevers, ; calculi. Healthiness attributable to dry atmosphere; absence of surface water and vegetation; pure drinking water; living much in open air.
7. "Nasence of surface water and vegetation ; pure drinking water; living much in open air. spleen rare. Healthiness attributable to regularity of rains.
Mean Meer.

Peshatur.
acute and chronic ophthalmia; ulcers and boils ; rheumatism ; venereal. Cheap food and fine climate favourable conditions. Dry seasons most healthy.
9. Prevailing diseases, fevers, intermittent; bowel complaints; rheumatism ; epidemic smallpox ; typhoid remittent fever (severe and fatal) epidemic, in certain districts. Spleen disease not common. Streets dirty, houses densely crowded, ill ventilated.
Sealkote.
10. "Healthy." Prevailing disease, rheumatism. Except small-pox, epidemics unknown; spleen disease not common. Healthiness attributable to absence of malaria and open dry country.
Ghazeeporz.
11. Prevailing diseases, fevers, intermittent, remittent; dysentery; diarrhces; small-pox; lung disease; spleen; attributed to " malarious nature of climate;", want of sanitary arrangements; poverty of food. October to December 1859, "fearful" fatality from "ferers."
Berhampore.

Nynee Tal.

Hazareebaugh.

Allahabad.

Rawul Pindi.

Dumbum.

Benares.
liver; spleen; lungs; cholera; small-pox. Causes. - Damp climate; rank vegetation ; " holes full of stagnant foul water, close to almost every house; forming the usual cesspool of the neighbourhood," "Utter neglect of ventilation, and of all sanitary measures ;" low level of country.
13. Generally healthy. Prevailing diseases, fevers, intermittent with spleen, and small-pox. Causes.-Sudden variations of temperature; dense underwood; living in hollows; want of free ventilation.
14. Natives, a poor puny race. General health; sverage. Prevalent diseases, fevers, intermittent; 4. a Vatives, a poor puny race. General heaith, average, Prevalent diseases, fevers, intermittent ;
spleen. Cholers; small-pox; most common and fatal epidemics. Causes.-Jungle; malaria; rice cultivation; poverty ; insufficient food.
15. On the whole healthy. Prevailing diseases, fever, intermittent, remittent; cholers; dysentery; paralysis of loins, caused by eating lathyr:as sstiras. "Comparative healthiness due to full occupation; aturadant fud and water."
16. Generally healthy. Epilemic small-pox almost every year at beginning of hot season; measles common, and calculus. Cnuses.-Objection to vaccinution; want of cleanliness in person, house and village, bard water.
17. Sickly in hot weather. Prevailing diseases, amall-pox; cholera, in hot weather; fever with spleen disease, at end of rains; cholers endemio in the district. Causes.-"Defect of "vaccination," lowness and dampness of native huts; bad food and vegetables; putrid fish. 18. Generally healthy. Prevailing diseases, mnlarious fevers; affections of spleen and bowels; " epidemics of small-pox, caused by inoculation, common in February and March.'3 "epidemics of small-pox, caused by inoculation, common in February and March." clothing, and efficient aanitary ref ulations enforced by city magistrate.

Stations.	Replies.
Landour.	19. Undoubtedly healthy. Small-pox occasional ; bad fever, or apleen, only in mountain valleys at a distance; goitre common. Healthiness attributable to pure bracing climate. Natives have inveterate filthy habits; seldom wash or change their clothes.
Raneegunge.	20. Generally healthy. Prevailing diseases, fevers, cholera in outbreaks. Causes.-Mode of living; neglect of all sanitary precautions in cases of sickness.
Ummitsir.	21. Generally healthy. Prevailing diseases, small-pox; chicken-poz; measles; cholera; intermittent fever. Causes.-"Utter ignoring of all sanitary sarrangements in city and country;" dirty babits; close, overcrowded, ill-ventilated buildings; exposure to night air ; moisture and malaria in rains.
Lucksow.	22. Health above average. Prerailing diseases: fevers, bowel, liver and spleen diseases; cholera at times. "Climate and good feeding" keep the people in health.
Chunar.	23. Generally healthy. Fevers, intermittent ; small-pox; cholera; spleen. General healthiness attributable to good water; equality of temperature.
Roorker.	24. Population healthy. Small-pox, very common and destructive in spring, when inoculation is practised ; cholera, occasional ; spleen, rare. Healthiness attributable to dry sandy soil and mild climate.
Jhansi. Barriceppore.	25. Generally healthy. Fevers and venereal ; small-pox, occasional ; cholera, almost unknown. 26. Moderately healthy. Intermittents; dysentery, acute and chronic; spleen; epidemic cholera; elephantiais.
. Delhi. .	27. Generally healthy. Fevers; spleen; ulcers; small-pox, less frequent from dry weather of late, more frequent after heavy rains; ulcers, prevalent, supposed to be caused by water. 28. Very healthy. No epidemics since 1858; attributable to dry climate and soil ; abundant
Morar Gwalion.	28. Very healthy. No epidemics since 1858; attributable to dry climate and soil; abundant and cheap food.
Jubbulyoue.	29. Healthy. Fevers, intermittent ; spleen ; bowel complaints ; rapid chest disease : attributable to frequent clange of temperature; numberless tanks; large tracts of jungle.
Darjekling.	30. Natives generally healthy and strong, living much in open air. Prevailing diseases : smallpox, the scourge of the hill population; fever; sometimes spleen; 'goitre, also common. Causes.-Native houses surrounded with all kinds of filth; atmosphere quite sickening in walking through the villages.

IV. PREVAILING DISEASES

AMONG EUROPEAN TROOPS
AND THEIR CAUSES.
Fort William. | Fevers, intermittent, quotidian, quartan, tertian, doubletertian, remittent, continued; dysentery, acute, chronic ; cholera, bilious, spasmodic; small-pox, benign, confluent; rheumatism acute, chronic. These diseases occasion from 60 to 65 per cent. of total sick, and from 75 to 80 per cent. of total deaths. Causes stated to be exposure and drink, bad drainage, and wack in hospital are venereal cases, "might be lessened by police regulation." Hepatic sick in hospital are venereal cases, migut be lessened police reguture and spirituous disease nine per cent. of total sick. Cause, high and variable temperature and spirituous prophylactics: 2. Fevers, remittent, quotidian, tertian ; dysentery, "prevalent and severe;" cholera almost
evert every year; rheumatism. Worst ventilated part of batrack most liable to cholera. To mitigate epidemic disease, bnzaars should be cleared away. Draining, filling up holes, and preventing flooding of station required. Venereal disease occasions 53 per cent. of total sick. Lock hospital would be advantageous. Increase of marriages greatly preferable.
Hepatic disease causes $6 \frac{1}{2}$ per cent. of total admissions, and 24 per cent of total deaths: Hepatic disease causes $6 \frac{1}{2}$ per cent. of tota
attributable to exposure and too full diet.
Cawnpore.
3. Fevers, intermittent, remittent; dysentery ; cholera; small-pox; rheumatism of miasmatic origin occasion about three-fifths of the admissions and four-fifths of the deaths. Admissions from hepatic disease about 35 per 1,000 of admissions. Cause, intemperate eating and drinking. Venereal cases form one-third to one-half the sick. Lock hospitals would be of little if any use.
Mereut.

Agra.

Umbalea.

Loodiana.
4. Fevers, intermittent, remittent, continued, occasion 56 per cent. of total admissions, and 25 per cent. of total deaths ; dysentery ; cholera; small-pox ; rheumatism. Hepatic disease, occasions 18 per 1,000 of total admissions. Causes.-Intemperance; exposure; long residence; malarial fever. Eight per cent. of total admissions are venereal cases: Lock hospitals "decidedly advantageous, if combined with police supervision."
5. Fevers, continued and miasmatic ; small-pox ; cholera; rheumatism; sun-stroke. Causes.climate; drinking spirits; sleeping close to ground. Liver disease. Causes.-Heat; exposure ; alcoholic liguors ; excess of diet. $8 \cdot 77$ per cent. of admissions are venereal cases. Lock hospitals, with inspection, recommended.
6. Fevers, quotidian, tertian, remittent ; dysentery; sheumatism. Proportion of hepatic cases two to three per cent. of the constantly sick. Causes of hepatic disease.-Fevers; exposure; intemperance; too high living; "too much animal food without exercise in hot weather." Proportion of venereal disesse to constantly sick $27 \cdot 38$ per cent. Inerease of marriages, lock hospitals, and inspection recommended.
7. Fevers, intermittent, quotidian, remittent occasion 28 per. cent. of admissions. Dysentery, acute; rheumatism. Causes.-Exposure to sun ; lying on damp ground. Venereal disease acute ; rheumatism. Cau
16 per cent. of total sick.

Ferozepore.

8. Fever, intermittent ; dysentery; rheumatism. Causes.-Intemperance; exposure; and not soldier's duties. Hepatic disease not very prevalent. Causes.-Exposure to heat; chills; intemperance; dysentery; and fever. 16 per cent. of admissions are venereal cases.
Jullundur.
9. Fevers, intermittent; dysentery; last year 16 per cent. European, $7 \frac{1}{2}$ per cent. native troops constantly sick from syphilis. Lock hospitals and inspection recommended.
Mean Mrer
10. Fevers, continued, intermittent, with apleen disease, remittent; dysentery, acute, chronic, bemorrhagic ; cholera, sporadic, epidemic; rheumatism; small-pox. Causes.-Heat ana extremes of temperature; want of exercise; ennui; sanitary defects in bazaars. Soldiers health always better uuder exertion in the field. Average occurrence of hepatic disease in proportion of 3.9 per cent. of total strength. Hard drinkers undoubtedly predispnsed to it. established. Returns showner diseases. Lock hospita, regies. Another report of later date established. Returns show a diminished per centage of cases. Another report of later date states that this procedure diminishes the severity, not the number of cases. It is ins" aidered advantageous," but supervision is difficult. It has been "conotantly tried

384
ABSTRACTS OF STATIONAL RETURNS:

Stations.	Replirs.
Peshawur.	11. Fevers, intermittent, quotidian, tertian, remittent, continued, occasion 44.9 per cent. of total
	admissions, and 22:8 of total deaths ; dysentery, acute, chronic; cholera; small-pox ; rheuma-
	tism. Zymotic discases occasion $51 \frac{1}{2}$ per cent. of total deaths. Fevers attended with extreme
	prostration. Hepatic disease not very prevalent. Abstinence from spirits the best prophy-
	lactic. Amount of syphilis varies from 1 to $28 \frac{1}{3}$ per cent: of strength. Lock hospital,

Sealkote.
12. Fever, ephemeral; dysentery ; rheumatism. Typhus or typhoid fever, cholera, small-pox, exanthemata, almost unknown. Less than 3 per cent. of admissions; less than 1 pe cent. of deaths due to epidemic and endemic disease. 2 per cent. of cases due to hepatic disease, caused by intemperance or climate. Syphilis occasions a quarter of the admissions. Lock hospitals and inspection recommended.
Ghazieppore.
13. Fevers quotidian, tertian, quartan, remittent, ephemeral; dysentery, acute, chronic cholera, "severely" in 1860, Causes.-Total want of healthy occupation; sanitary arrangements required
Berhampore.

Allahabad.

Dumbum.

Benares.

Hazareebaugif

Landour.

Muttra.

Ranemannaz.
UmRitsir.

Nyner Täl.
Rawul Pindi.

Lucknow.

Chunar.

Roorkee.

Jhansi.
Barrackpore.
14. Fevers, quotidian, tertian, quartan, remittent, continued; dysentery ; cholera ; rheumatiom. Causes.-Humidity and heat, acting on decaying vegetable matter; want of drainage want of cleanliness and ventilation in bazaars; stagnant water. Hepatic disease, 10 per cent. of admissions. Causes.-Intemperate habits; exposure to sun; malaria. Syphilis, 16 per cent. of admissions. No precaution can be suggested. Lock hospitals unnecessary
15. Fevers, intermittent, remittent, continued; dysentery; small-pox ; rheumatism; diarrhces; cholera, 50 per cent of the admissions are from fever. Admissions from hepatitis 5 per cent. of strength. Causes.-Climate; intemperance; quality of food; prophylactics, abolish ing use of spinits ; strict attention to cleanliness; clothing; duty; food; housing; recreation 9 per cent. of sick from syphilis. Much might be done by lock hospitals, registration, 9 per cent. of
police regulation.
6. Fevers, remittent, intermittent, continued; dysentery, acute, chronic; cholera; rheumatism occasion 57 per cent. of total treated; 99 per cent. of total deaths. Causes. Season and rainfall. Keeping from sun and spirits best preventive of hepatic disease. Little venereal disease. Lock hospitals recommended.
17. Fevers, intermittent, remittent, occasion 31 per cent. of the admissions, and 13 per cent. of the deaths ; dysentery occasions 6 per cent. of admissions, 17 per cent. of deaths; cholera per cent. of admissions, 17 per cent. of deaths. Causes.-High temperature and moisture. Hepatic disease occasions 7 per cent. of admissions. Causes.-Alternation of temperature Prophylactics, temperance ; proper clothing ; non-exposure to night air. Syphilis occasions 23 per cent. of admissions. Recommendations: prostitutes to be turned out of bazaars general native hospital at each atation. Lock hospitals objectionable as leading to licensed prostitution.
18. Fevers, continued, remittent, intermittent ; dysentery; diarrhœa ; rheumatism, these occasion 48 per cent. of total admissions, and 60 per cent. of total deaths. Causes.-Powerful sun; humidity; rank vegetation; malaria from decaying vegetable matter; listlessness of mind Hepatitis not common. One fourth of cases in hospital are syphilitic. Inspection (no by army medical officers) beneficial but immoral. Would refuse to sanction it. Not much gained by lock hospitals. They would not use them, unless compelled.
19. Hill station. Diseases : relapses of fever, intermittept, quotidian, and tertian, contracted in plains. Continued fever from exposure ; dysentery seldom, except from relapse; rheu matism occasional ; no cholera or small-pox; 12 per cent. of cases eent up are hepatic. Causes. -Climate; exposure; dram-drinking. Remedies: plenty of healthy exercise, athletic games, \&c.
20. Hepatic diseases 2.84 per cent. of admissions; much more in hot weather. Preventives avoiding exposure and chills, wearing flannel belts. Venereal disease is $14 \cdot 1$ per cent. of total sick ; to diminish it, no cantonment to be nearer than four miles to a city. Lock hospitals would then be advantageous. One in $3 \cdot 7$ admissions occasioned by fever, continued intermittent, by dysentery, small-pox, and rheumatism.

21. No information

22. Hepatic disease occasions 466 per cent. of total admissions, attributable to intem perance and dysentery ; complete withdrawal of spirits from canteens the best prophylactic Yenereal disease is 7 per cent. of constantly sick; increase of marriages suggested; lock hospitals not recommended. Prevailing diseases: fevers, continued, quotidian, tertian quartan; dysentery, sub-acute, chronic; cholers: small-pox; rheumatism. Admissions from which are 40 per cent., deaths 44 per cent. of total admissions and deaths
23. Hill station. Fever, quotidian; dysentery (from plains); rheumatism, acute; hepatic disease (from plains).
24. Hepatic disease about 4 per cent. of admissions, produced as readily by habitual free living and excess of animal food as by intemperance. Syphilis 16 per cent. of admissions inspection recommended. Prevailing diseases, fever, common, continued; dysentery cholera; rheumatism.
25. Hepatic disease 4 per cent. of total admissions. Preventives; good shelter and food healthy exercise and amusement, steady habits, and avoiding exposure. Syphilis, from 26 to 33 per cent. of total sick; lock hospitals recommended. Prevailing diseases; fevers, intermittent, remittent, continued; dysentery; small-pox; rheumatism, which occasion upwards of 50 per cent of the admissions, and 59 per cent. of the deaths. Causes, -Hot weather with rain, want of employment leading to debauchery
26. Hepatic disease one in 31. Causes.-Intemperance and exposure to sun; preventive discontinuance of spirits. Syphilis one in 31 ; inspection better than lock hospitals. Prevailing diseases, intermittent fever, mostly quotidian and tertian; dysentery (no amall
pox) ; cholera occasional ; intemperance, exposure, are the predisposing causes.
27. Hepatic disease l per cent. of cases. Causes; spirit drinking, malaria. Syphilis more than 50 per cent. of sick; inspection recommended. Troops suffer slightly from fever intermittent and continued (not from dysentery), cholera, small-pox occasional, rheumatism common. These diseases occasion about one-third of the admissions; and about three fourths of the deaths.
28. One case in 15 from hepatic disease. . Syphilis not prevalent. Prevailing disease; fever, intermittent; a few cases of dysentery.
29. Hepatio disease 2 per cent. of cases. Caises.-Alternations of temperature, intemperance, exposure. Prophylactics : use of flannel, temperance in eating and drinking, avoiding exposure. Syphilis 13 per cent. of total sick; lock hospitals not nearly of bo

Statione.	Replizg.
Delhi. ${ }_{\text {D }}$ Darjerling.	much use as in Europe. Prevailing disesses; fevers, continued, remittent, intermittent (most frequent) ; dysentery (frequent and dangerous) ; cholera; small-pox, rare; rheumatism, frequent. These diseases occasion about 38 per cent. of admissions, and 75 per cent. of deaths. Most frequent in great and close heat. Causes.-Crowding in barracks, bad ventilation, intemperance in eating and drinking, exposure, want of occupation. 30. Hepatic disease. Causes : climate, excessive eating and drinking, exposure, want of exercise of body and mind. Syphilis one-third of total sick ; inspection and lock hospital recommended. Prevailing diseases; fever, intermittent, remittent, continued; dysentery, acute, chronic, hæmorrhagic ; cholera; rheumatism. Cause; "exposure to night duty.". 31. Ague ; fever, remittent; rheumatism; and dysentery occur, but imported from plains. Never cholers or small-pox. Causes of soldiers' diseases in India : monotony, harassing duties, want of exercise, and incentives to it, discomfort of overcrowded unhealthy barrack rooms, his condition, generally, leading him to drink; all making him liable to any, epidemic or other morbid influence. Means of promoting health, although quite within our reach, have been sadly neglected.
Morar Gfaliori; \cdot Jubbulpobr.	32. Hepatic disease not unusually frequent. Causes.-Hot dry climate, too much animal diet, too few vegetables, ardent spirits. Prophylactics : malt liquor, potatoes, instead of native vegetables. Syphilis has been as high as 80 per cent. of the sick; seldom under 12 or 20; lock hospitals and police regulation recommended. Prevailing diseases : fever, chiefly intermittent; dysentery ; rheumatisme occasion 44 per cent. of admissions, No cholera or small-pox. 33. Hepatic disease 2 per cent. of cases. Causes.-Intemperance, excessive heat, overcrowding, bad ventilation. Syphilis 34 per cent. to 50 per cent. of oases ; impossible to guard against it near large bazaars or cities; lock hospitals and police regulations recommended. Prevailing diseases : fevers, ephemeral and intermittent; dyentery; rheumatism; no cholera or amall-pox.
v. SANITARY CONDITION OF BAZAARS AND NATIVE TOWNS.	
Fort William.	1. Surrounded on all sides by large and populous villages. Estimated population of Calcutta; 500,000 . Water and drainage bad. Rainfall flows slowly away or evaporates, causing humidity : filth, foul drains, stagnant water, jungle, and nuisances. 2. Bazaars overcrowded, badly drained, and filthy. Last year some streets were impassable dunghills until cleared; elephant sheds and all the south of the station in a state disgraceful to any cantonment. Meat market very bad in rains; drainage very deficient; no regular system. Drains in some places choked up; in others forming deep holes of festering mud. Ventilation very bad. No latrines, although the "population is as thick as can be;" compelled to sweep in front of their own houses; only one filth cart until lately, now three; paid for by inhabitants. Dead bodies sometimes buried within huts at Dugah. Some of the native towns are disgracefully filthy.
Cawnporr.	3. Large native town, $\frac{1}{4}$ mile distant. Bazaar drains generally good. Ventiation and water supply sufficient. Many parts crowded and ruinous. People compelled to keep space in front of premises clean. No dungpits or cesspools allowed.
Merrut.	4. Town a mile distant from lines. Bazaar drained, well ventilated, and supplied with water from wells. Cleanliness strictly enforced. Public latrines. . Native houses generally filthy, Dungheaps frequent. Pits for all kinds of refuse common.
Agra.	5. City, 152,000 inhabitants, a mile distant. Bazaar open, clean, ventilated, not crowded. Water from wells abundant, but rather saline. Native houses clean; but villages low, with narrow and irregular streets; dunghills at the outskirts; the "more respectable"' houses have cesspools. Inhabitants generally resort to the fields.
Umballa.	6. Large native city, 3 miles from station. Station bazaar regularly laid out in squares. Drainage might be improved. Clean on the whole, but crowded in parts. Defective water tupply. Two public latrines ; more required. 28 sweepers, paid by inhalitants. Native houses never perfectly clean. Fines levied for nuisance.
Loodiana. Firozbpore.	7. Town of Loodiana, with 50,000 inhabitants, adjoining station. 8. City, 14,000 inhabitants, 2 miles distanit. Bazaar not drained; all refuse removed. Water from wells. Latrines only partly used.
Jullundur.	9. City, 3 miles from cantonments. Bazaars generally clean and well drained. Free circulation of air; no overcrowding. Latrines.
Mean Mebr.	10. City of Lahore, 6 miles off. Suddur bazaar, 7,538 inhabitants, nearly 2 miles from centre of cantonments. Four or five other bazaars within cantonments, arranged with broad, roads at right angles ; kept clean. Drainage about to be improved. Plenty of good water from wells. Three latrines for bazaar, and ten others in different parts of cantonments.
Prehawur.	11. Large city, $1 \frac{1}{2}$ miles from station. Drainage of bazaar like that of station. Ventilation free. Water supply ample. Cleanliness strictly enforced; little crowding; drains not good, but kept clean. Villages round station not dirtier than usual ; probably have dungheaps within their enclosures.
Stalxote.	12. City 21 miles from atation. Bazaar well laid out. Good natural drainage. Plenty of good water. No crowding. Kept clean by sweepers. Native houses of dried mud, Public latrines provided.
Grazerpore. Brrhampore.	13. City a mile from station. Bazaar like all native villages, Surface drains. Streeta moderately wide ; kept clean. No latrines. Water supply good. Houses good and bad. 14. Town contiguous to station. Nothing can be worse than sanitary condition of bazaars; conservancy establishment far too linited. Native houses dirty in the extreme ; dungheape or deep holes full of stagnant water close to them, the common ceaspit of the house. Nuisance in barracks from holes full of dirty water and filth, and from elephant and bullock ahedeBad drainage.
Hazarerbaugh.	15. Town, 5 to 6,000 inhabitants. Bazaar open, well ventiated, clean. Sufficient water supply. No more than ordinary crowding. Good natural drainage. No latrines, and much nuisance along one road in consequence.
Allarabad. Dumpum. Benarge. Landour.	16. Town 73,000 inhabitants, 3 miles distant. No military these are generally kept clean. - 17. Bazaar not crowded. "Nothing to complain of" as to drainage, ventilation, cleanlineas, or water supply. A cart and six sweepers kept. Native houses generally pretty clean. 18. 186,000 inhabitants, between Ganges and cantonments. Bazaar tolerably clean. Many huts in rear, much crowded. "Well drained (surface)." Public latrines. 19. Small sweeping establishment, paid for by house tax; native houses in cantonments clean ; those in the neighbourhood not remarkable for cleanliness.

Stations.	$\cdots \cdots \cdots$ Replize
Muttra.	20. City three-quarters of a mile off. Bazaar an accumulation of huts, without order. "Drainage bad; ventilation worse; water supply execrable." "All the wells brackish, from nitre," the earth being contaminated with all sorts of impurities. Latrines "hardly known." "In short, the bazaar is a mass of filth."
Darjerling.	21. Bazaar well drained; houses too close, mostly built of mats and bamboos; generally surrounded by all kinds of filth. They are at a distance from depot; but the medical officer says, they are the most filthy villages he has ever entered, and it is quite sickening to walk through them.
Ranergunge.	22. Bazair not drained; kept clean; water from tanks, carried by water carriers; latrines (at a distance) ; native houses near station indifferent; pits and dirt heaps abound.
Umritsir: NyNE Ta	23. City $1 \frac{1}{2}$ miles distant; population 120,000; station bazaar tolerably clean ; native houses amall; no dung bills or cesspits.
Nynee Tal.	24. (Hill station.) Both bazaiars in a filthy and crowded state; no proper drainage, nor latrines ; stench at times overpowering; no means of preserving cleanliness; native houses small and badly ventilated; want of public latrines causes nuisance in barracks.
Rawdl Pindi.	25. City a mile from station ; three villages immediately on outskirts; a new station; bazaar well laid out, free ventilation; surface drains kept clean by sweepers; latrines (at a distance); no dung pits or cesspools.
Colucknow.	26. City of Lucknow, population 400,000 to 500,000 , and four other cities, from a mile to two miles from cantonments; bazaars only being formed, but with due regard to plan, drainage, \&ic.
	27. Town, 14,000 inhabitants, close to station; many native houses ruinous; bazaar in city kept clean and in good order.
Roorkee. Jhanby.	28. Bazaar $1 \frac{1}{2}$ miles from barracks; no information as to its state.
	29. City a mile off; bazaar new and incomplete, but well drained; public latrines, but police insufficient at present.
Barrackpore. Delifi. Morai Gwalior.	30. Bazaar clean, tolerably drained and ventilated; not overcrowded; water supply from tank; establishment of sweepers paid by tax on occupiers.
	31, Station inside city walls; bazaar being established.
	32. Town $2 \frac{1}{2}$ miles distant ; bazaar well drained and ventilated ; water from wells ; latrines constructed; five sweepers attend to cleanliness.
Jubiulpore.	33. Town 2 miles from station; drainage of bazaar insufficient; ventilation very bad; water supply good; cleanliness almost impossible; no latrines; every hut crowded; ruinous mud huts, with tiled roofs; no native will keep his house drains clean; unless obliged.
VI. BARRACK CONSTRUCTION.	
Fort William.	1. Fort William, 18 feet above sea level, 67 miles distant from the sea, contains five barracks occupied by soldiers. Site-Comparatively open, but ramparts, being 25 feet high, interfere with free ventilation ;
	Site.-Comparatively open, but ramparts, being 25 feet high, interfere with free ventilation ; temperature considerably raised by reflected sun heat.
	(1.) Dalhousie barracks.- 36 rooms for 631 non-commissioned officers and men; have held 900. There are 3 floors of barrack rooms, over a basement. Each floor consista of 3 long parallel rooms, from $81 \frac{1}{2}$ to 124 feet long, $64 \frac{1}{2}$ feet wide, 19 feet high, giving from 1,500 to 1,600 cubic feet, and from 79 to 85 square feet per man. The long rooms communicate by arches; each has two rows of beds; thus there are six rows of beds between the opposite windows, $64 \frac{1}{2}$ feet distant.
	The following Fig. 1 is a ground plan of a floor of the barrack, showing an arrangement

Fig. 1.-Plan of First Stóí Dalhougie Bariback, Fort Wilciam,
Showing the arrangement of cots in a portion so as to accommodate 900 men in all.

It is atated that this accommodation may be considered "perfect."
(2.) South barrack.-Thirteen rooms; 210 non-commissioned officers and men; at from 1,183 to 1,938 cubic feet, and from 64 to 108 square feet per man; length of rooms, $77 \frac{3}{4}$ to $98 \frac{1}{4}$ feet; breadth, $19 \frac{3}{4}$ feet; height, $18 \frac{1}{2}$ feet; from 16 to 26 men per room; these rooms are on second story.
(3.) North barracks.-Thirty-six rooms; 210 non-commissioned officers and men; 900 to 1,800 cubic feet per man; 50 to 100 square feet per man; 28 rooms at 7 men each; 1 room at 36 men each; which last room is in length, 239 feet; width, 15 feet; height, 18 feet.
(4.) West barracks.-Bomb-proof. Nine roomis ; 300 men; "one-half would be too many ;" 1,404 cubic feet per man ; 140 square feet per man ; centre room, length 200 feet, width 18 feet, height 10 feet
(5.) Queen's barracks.- 156 rooms for 108 married men and 12 non-commissioned officers, formed by dividing a lerge room by wooden bulk heads, 8 feet high; each family room being 22 feet long, 12 feet wide, 18 feet high.
In all the barracks, the windows are on opposite sides, with verandahs, in which many men place their cots in hot weather ; doors, one-third panel, two-thirds Venetian.
Floors, brick on edgé; covered with Chunar flags:
Materials, best burnt brick, set in lime mortar ; roof, polid brick, with concrete terrace ; © basements never used as barracks.
Iron cots.
2. Site:-Tolerably open, but ventilation obstrueted by vegetation.:
Statiors.

Two of the rooms are each no leas than 826 feet long, 35 feet wide, 17 or 18 feet high, with 308 men per room, giving from 1,597 to 1,690 cubio feet per man, and 94 square feet per man ; one room for 92 men, gives 1,729 cubio feet par man, 102 square feet per man : 11 rooms, with 16 men each, give 1,020 cubic feet per man, and 60 square feet per man
Doors on opposite sides ; no windows ; verandahs.
Materials, brick and lime for permanent barraciss, brick and, lime plinth for temporary barracks.
loors, $1 \frac{1}{2}$ to 2 feet above ground; no ventilation beneath; flooring, half-burnt brick
Chief permanent barrack bad, runs east and west, which is the prevailing wind; hence badly ventilated.
Fig 2 is $z_{\text {plan }}$ and section of part of the barracks at this station, showing a room no less than 826 foet long, having space for 308 men. It is next to impossible for barracks of this construction to be moderately healthy.

Fig. 2.-Puan of Wegt Wing Infantry Barracki, at Dinapórb.

Choss Section.

Cawnpore.
Bedsteads of wood; some few of iron:
3. Site.-Open ; free external ventilation.

Echelon barracks : ten ranges for 1,000 men ; 100 men per room; 1,235 cubic feet per man; 41 square feet per man; each room 168 feet long, $24 \frac{1}{2}$ feet wide, 30 feet high; 4 rows of beds between opposite windows, when the verandahs are used.
Foot artillery: 2 ranges; 120 men per room; 2,652 cubic feet per man; 88 square feet per man; each room 442 feet long, 24 feet wide, 25 feet high; four rows of beds between man; each yoom when the verandahs are used.
Dragoon barracks: 2 ranges; 140 -men; 70 men per room; 1,106 cubic feet per man; 61 Dragoon barracks:
square feet per man.
The cubic space presupposes inner verandahs not,ocoupied, but they have invariably been The cubic space presupposes inner
Macterials, brick and mortar, plastered and whitewashed
Floors of flagging laid on rammed earth and broken bricks ; raised 3 feet above ground; no Floors of flagging laid
veatiation be
Fig. 3 in a plen and section of the artillery barracks, showing the usual construction of double verandahed barracks, having terraced roofs. The plan also shows a long building divided by arches, which obstruct the ventilation. This enables us to judge of what must be the atate of the air when the verandahs are occupied,

Fig. 3.-Artillery Barricke, Cawnpork.

Agra.

5. Site--Open; few trees; temperature hot, from baked dry soil and ravines.

76 serjeants' quarters ; 23 barrack rooms for 1,776 non-commissioned officers and men ; rooms from 204 to 288 feet long, 12 to 24 feet wide, 20 to 28 feet high; 1,379 to 1,912 cubic feet per man; 60 to 79 square feet per man.
Doors on each side, with glazed fanlights; no windows.
Verandab, 12 feet wide, occasionally occupied as sleeping quaiters.
Materials, burnt brick and mortar; roofs thatched.
Floors, stone over brick, 3 feet above ground; no ventilation beneath; not sufficiently raised above malaria; should be two-storied.

Uhballa. \quad 6. Site.-Much tree regetation; regulations enforced to prevent its interfering with ventilation.
6. Site.-Much tree regetation; regulations enforced to 96 men per room ; 687 to 1,869 cubic
2,162 non-commissioned officers and men ; from 12 to 66 . feet per man; 51 to 118 square feet per man ; 4 rows of beds between opposite doors and windows, if inner verandahs nsed as sleeping places; there are actually 3 rows; no jalousies or jhilmils.
Materials, burnt brick and lime; tiled or thatched roofs; terraced verandahs.
Floors of burnt brick, objectionable; raised $1 \frac{1}{2}$ feet above ground; no passage of air beneath;

Ferozepote

Juclundur.

Mean Mere.

Peshawur.

Sealiote.

Ghazerpore.

BERHAMPORE

Hazaregbaugh.
ought to be raised on arches.
Wooden cots, ought to be iron
7. Site,--Open on all sides; receives benefit of prevailing winds.

Accommodation.- 948 non-commissioned officers and men.
Barrack rooms-Leng'h 95 to 100 feet; width, 24 to 44 feet; height, 20 feet 1,500 to * 1,680 cubic feet per man; 75 to 80 square feet per man.
Verandahs.- 12 feet wide.
Materials.-Burnt brick and mortar.
Floors.-Brick and mortar, 3 feet above ground; no ventilation below:
Story.-One; rows of beds between opposite windows, 4 .
Bedsteads.-Wooden frames.
8 Site.-Open to all winds.
Accommodation.-1,200 European, 3,000 native troops; 16 to 24 men per room; cubic space per man, 1,373 to 1,610 feet; square feet per man, 45 to 75 feet; windows on opposite sides; verandahs all round.
Materials.-Pucka and kutcha bricks, with lime and mud cement.
Roofs.-Thatch, tile, pucka.
Floors.-Brick on tile over concrete, raised 1 or $\dot{2}$ feet above ground; no ventilation beneath. Floors.-Brick on til
Bedsteads.-Wood.
9. Site.-Remarkably open.
Accommodation.-2,214 British, 1,365 native troops.
Barrack rooms 96 , with 16 men in each; cubic feet, 1,703 per man; square feet, 72 per man ; verandahs,. 96 , with 8 men in each. Iron-framed barracks, 4, with 52 men in each; cubic feet per man, 1,980 ; square feet, 80 . Dining-room for 104 men in each iron-framed barrack.
Materials.-Burnt brick and lime.
Floors.-Burnt brick on concrete, raised 3 feet above ground; no rentilation beneath. Burnt bricks are hotter than sun-dried bricks for barracks.
Bedsteads.-Wooden; strong and comfortable. Bedding stuffed with hempen fibre.
10. Accommodation.-2,651 British troops.

Site.-Open and freely exposed to winds. Temperature raised by reflected sun-heat.
Barrack rooms, 108, 16 to 24 men per room; cubic feet per man, 1,320 ; square feet per man, 66.
Verandahs sometimes occupied in winter.
Materials.-Burnt or unburnt brick.
Floors.-Brick, raised 2 to \boldsymbol{s} feet above ground; no passage of air beneath.
Bedsteads.-Wooden.
11. Site.-Open and freely exposed to the winds.

Temperature raised 2° to 3° by reflected sun-heat.
Accommodation.- 1,200 men; 100 men per range ; cubic space per man, 1,154 to 1,928 feet; square feet per man, 89 to 102 feet; double verandahs all round; distance between opposite windows, 50 fcet
Materials.-Sun-dried, brick-faced, with pucka brick.
Roofs.-Thatch and tiles.
Floors.-Brick, 3 feet above ground; no ventilation beneath; 3 rows of beds between opposite windows.
Cots.-Tape and string bottomed; the latter a " vile description of bed," sheltering bugs and all sorts of vermin.
Iron bedsteads required.
12. Site--Open; nothing to impede free ventilation.

Accommodation.-Old stables, fitted up as temporary barracks, 5 in number, each 460 feet long; 35 feet wide; 9, 11, 17 feet high ; from 160 to 250 men per room, cubic-feet per man, 850 to 2,108 feet; square feet per man, 62 to 99.
Verandahs on both sides.
Materials.-Pucka, with tiled roofs.
Floors, of old stables, partly kunkur, partly brick, raised i foot above ground; no ventilation below; neither doors nor windows. Bedding.-Charpoy, blanket, \&c.
13. Site.-Surrounded by jheels and wet ground ; barracks built in square; ventilation impeded by bazaars, \&c.; 3 upper storied and 8 lower-roomed barracks.
Accommodation.-One European, and one native infantry regiment; 24 to 100 men per room; cubic feet per man, 1,037 to 1,314 ; square feet per man, 70 to 82 feet; 4 rooms in each upper-roomed barrack used for dining and recreation; no windows, only Venetian doors. Materials.-Brick and mortar; flat terraced roofs.
Floors, terraced and tiled, $1 \frac{1}{2}$ feet above ground ; no ventilation below.
Bedsteads.-Iron and wood; mattresses, hemp.
14. Site.-Open, freely ventilated.

Accommodation.- 960 single men; 120 married ; 10 temporary barracks, 300 feet by 20 feet by 18 feet; 100 men each barrack, at 1,080 cubic feet per man; 63 square feet per man.

Allahabad.
15. Site.-One-third of the station below the level of river ; open and exposed to winds. Indigo cultivated close to Wellington barracks; a great nuisance. Much filth and nuisance from civil bazarars; too close to lines.
Accommodation:-2,515 British, 1,871 native troops.
Five soldiers' barracks, 100 men per room; cubic feet per man, 1,437 to 1,609 ; square feet per man, 73 to 80 ; rooms, 335 feet by 22 feet by 24 feet.
One barrack, 80 men per room ; $1 ; 528$ cubic feet per man; $82 \frac{1}{2}$ square feet per man; rooms for 40 married men; giving 4,032 cubic feet per family; and 248 aquare feet per family. Folding doors badly fitting; no windows.
Verandahs 15 feet wide; used on emergencies for sleeping.
Materials.-Burnt and sun-dried brick.
Roofs.-Thatch and tiles.
Floors.-Flagged ; no air beneath.
Wooden cots, with cordage bottoms; harbour vermin ; easily broken; iron cots infinitely better.
16. Site.-Tolerably open ; very low.

Aecommodation,-1,649 non-commissioned officers. and men; 31 to 209 men per room; latter room is 469 feet by 28 feet by 18 feet; 1,000 to 1,270 cubic feet per man; 64 to 71 square feet per man.
Verandahs on both sides; one often used for sleeping, leading inevitably to outbreak of sickness.
Materials.-Solid masonry and iron; leak badly.
Floors.-Chunar stones, raised 3 feet, with passage of air beneath.
Roofs.-Totally insufficient. There should be wooden floors.
Wooden cots.
Wooden cots.
17. Site.-Open ; external ventilation impeded by city; internal much obstructed by Suddur bazaar, Which requires removal.
Accommodation.-Seven companies infantry, 1 troop horse artillery. 8 barrack rooms; 38 to , 77 to 136 2 gquare feet, 242. Barrack rooms have doors on opposite sides.; no windows.
square feet, 242 . Bar
Verandahs 10 feet wide.
Verandahs 10 feet wide.
Materials,-Chunam stone laid in mortar.
Materials-Chunam stone laid in mortar.
Floorg, little raised above'ground; no air below.
Floors, little raised above ground
Wooden cots, with iron bands.
18. [Convalescent depit.]

Site open, and beneficially exposed to winds.
Accommodation.-Twelve barracks, 84 rooms. 228 non-commissioned officers and men; at from 888 to $I, 190$ cubic feet per man; 65 to 119 square feet per man; built of stone and lime. Thatched roofs.
Floors, terraced, a foot above kround; no ventilation below.
Wooden bedsteads: highly objectionable; harbour vermin, accumulate dust and dirt; iron ${ }^{-}$ bedsteads the best.
Muttra.
. Site encumbered with trees, interfering with ventilation, also the large filthy city of Muttra;
broken ground, filthy nullahs, stagnant water, and other nuisances.
Seven barracks s for 400 European troops ; with 40 to 104 men per room; 1,000 to 1,575
cubic feet per man; 60 to 75 square feet per man
Materials, chiefly unburnt bricks and cement.
Floors raised 2 feet above. ground; stone slabs over brick; no air below. -
Ordinary cots used.
Raneegenge.
20. Site open, exposed to salubrious winds. ccommodation. $-1,120$ European, 500 native troops; 20 torrack 108 men per room; at 918 to 1,760 cubic feet and 76 to 100 square feet per man; doors on four sides,

- 3 C 3

Fig. 5.-Misried Mex's Barbaci yor the Artillert Difision, Ferozepory.

Julleundur.
Mean Meer.
Prghawur.
Sealiotr.
Murree.
Ghazerpork.
Berhampork.
Hazareebaugh.
Allahabad.
Dumdem.
Bedares.
Landour.
.Muttiea.
Raneedunge. UmRITBIB.

Nyner TZl.
Mawul Pindi.
Lucenow.
Chunar.
Roorker.
Jhangi.
Barrackpore. Delhi.
Morar Gwalior.
Jebrulpore
Darjeeling
VIII. MILITARY PRISONS.
IX. VENTILATION of barracks. Fort Milliam.

Dinapore.

Cawnpore.

Mernut.

Infantry occupy corner rooms of barracks.
9. "Sufficient at present."
10. "Sufficient at prcsent."
11. "Sufficient."
12. Sufficient for all married non-commissioned officers and priyates to live separately.
13. No information
14. Separate barracks for families. "Sufficient."
15. Accommodation for' 120 married men and families.
16. Accommodation ample,
17. "Sufficient."
18. None. Either a barrack is divided into temporary quarters, or if under the same roof with unmarried men, the quarters are completely separated from them.
19. "Sufficient "accommodation in " married men's barracks."
20. Married people occupy separate-houses. In one or two instances, rooms in barracks, but quite apart from unmarried soldiers.
21. "Sufficient" for married non-commissioned officers. Married men of cavalry occupy old cavalry barracks. In artillery, married people occupy barrack rooms with the men.
22. None.
23. None. Married people occupy aame barracks as ummarried men, separated from them by a purdah or cloth.
24. None. Married men use the same barrack rooms as the rest, divided only by a partition. 25. None as yet.
26. Each family has 2 rooms, 18 feet by 12 , and 12 feet by 12.
27. Accommodation for 15 married people. Insufficient. Many occupy barrack rooms; some few rent housea.
28. "Sufficient."
29.' None.' Pendalls occupied temporarily'.

30, No information.
31. Married people reside in separate quarters.
32. Married quarters only temporary.
33. "Sufficient."
34. Sufficient as regards mère apace.

Several of the atations have no prison accommodation; or if it exist, it is of a temporary character. At those stations where there are prison cells, one-half of them are reported as "good;" and the other half as "bad," or " highly defective." The deficiencies are in construction and position. The cells too small, without proper ventilation or protection from sun heat. In some instances they are placed so as not to receive the benefit of winds; and they are so hot as to be uninhabitable during the hot months. Sometimes sickness arise from these defects. In one instance it is reported that the prone is required in the prison
speaking, the evidence shows that considerable improvement is accommodation in this presidency.

1. By numerous doors, 12 to 13 feet high and 6 feet apart, and openings at the ceiling. Cooling by punkahs. These arrangements, with the height of wards, 17 to 20 feet, said to be "quite "sufficient" for purity of air by night and day.
2. Doors and skylights, "t which latter, however, do not open." Ventilation sufficient during . Doors and skylights, "which latter, hawever, do not open. punkahs, the former apt to cause chills, rheumatism, and ague.
3. Doors, windows, and over-lights, near tops of walls; moveable on horizontal axes ; quite 3. Doors, windows, and over-hights, near tops of wails; moveable on hin
sufficient. Cooling during hot winds by tatties, which effect a reduction of temperature of sufficient. Cooling
4. By doors, windows, and openings in roof, generally sufficient. Cooling by tatties and punkahs.

Fig. 7.-Plak of Privy and Bath Rooif, Sealkote, attached to Barrack.
Barrack.

Ghazerpore.
12. Temporary drains, 1 to 3 feet wide, between barracks for surface water; not sufficient. No drainage from lavatories, cookhouses, \&ce. Fluid refuse mostly sinks into ground. Solid refuse removed by hand.
Bertampore. 13. Open concave drains, 2 to 3 feet broad, 6 inches deep; washed daily and sprinkled with lime; outlet into a large tank close to barracks. All lower barrack rooms damp, from being 1t feet below river level. Contents of privies carried to holes a mile from barracks; only one cart allowed; quite insufficient for a square mile of cantonment. Vicinity abounds in iheels and foul ditches, with putrid water.
Hazareebadgh
14. Drainage from washhouse removed by covered drain. Surface drainage vanishes rapidly. Refuse from privies, urinals, \&c. carted 2 miles away
Allarabad.
15. No drains or sewers; merely small channels a foot deep, 10 feet from barrack walls, for sur1. No drains or sewers ; merely smach wash-house into which waste water runs, and is absorbed. Floors of some buildings damp. Surface water partly evaporates, partly sinks into subsoil, Floors of some buildings damp. Surface water partiy evaporates, partly sinks feet diameter; partly runs off by natural drainage. Lavatory cesspools.
Dumdum.

Brnares.
16. No sewers. Open drains, 6 feet from buildings. Interval being a tile platform. Drainage passes by main drain into salt water marsh. Surface water and drainage from lavatories not efficiently carried away. Drainage from cookhouses, latrines, and urinals removed daily in carts, and buried in pits outside station. Cesspits, $2 \frac{1}{2}$ feet diameter, 5 feet deep. Lower floors of barracks damp, particularly in rainy season.

Landaur. . There is no sewerage at all." Drainage received into cesspools, $2 \frac{1}{3}$ feet diameter, 2 feet deep, close to privies and wash-houses, 30 yards from nearest well, only a few yards from barracks Muttra.

Ranemgunger.
18. On a ridge. Natural surface drainage sufficient. Every house more or less damp for 3 montha in the year.
19. Temporary drains $1 \frac{1}{2}$ to $4 \frac{1}{2}$ feet deep for surface water. All other drainage from lavatories, baths, wash and cookhouses, privies, and urinals carted away in vessels.
20. Surface drainage merely: Fluid refuse of barracks carried away in filth carts and buckets.

Stations.	Replizs.
Umritsir.	21. Surface water passes off by natural drainage. Filth removed by conservancy carts. Other
Nyner Täl.	fluid refuse evaporates. Cesspits 30 to 50 yards from men's quarters and hospital. 23. Natural drainage removes surface water, barracks being built on a hill side. Fluid refuse
Rawul Pindi.	flows down a steep declivity to plains below. No cesspits reyuired. 23. Trenches for surface water. No sewers. All sewage collected in masonry cesspools, and removed daily.
Lucknow. Chenar.	24. Only surface drainage. All fluid refuse received into cesspits or tubs, and removed daily. 25. No sewers. Open drains 9 to 18 inches wide and deep. Other drainage received into two
Roorkere.	26. Trenches for surface drainage. All filth and fluid refuse carried away in tubs.
Jidansi.	27. Surface drainage. Other drainage received into cesspits, 3 feet cube, and removed morning and evening.
Barrackpore.	28. Only surface drainage. Filth of all kinds removed by carts.
Delhi.	29. All refuse carried down to the river.
Morar Gwalior.	30. Surface drainage by open drains. All other drainage from washhouses, privies, urinals, and cookhouses conveyed into cesspools, and removed by carts. Cesspools "never less" than 50 yards from nearest well.
Jubbulpore.	31. Simply open drains. No sewers or cesspits. All refuse carried away: -
Darjeeling.	32. Open stone drains, by which most of the filth and refuse water are washed away; remainder, including that from privies, carried daily to a distance to cesspits, and earth and lime thrown over. Drainage imperfect.
WATER SUPPLY.	
Fort William.	1. Supply principally from river and tanks, partly from rain and wells, the last brackish and unwholesome. Water for cooking, drinking, \&c. is carried from a tank on the glacis (filled by surface drainage), at a cost of 134l. per annum. This tank is kept "perfectly clean," and is "generally free from foul drainage and surface impurities," but from careless habits of bheesties, water sometimes taken from nearer and impurer sources. Many city tanks in a most filthy condition, producing malaria. Amount of water for troops sufficient for drinking and washing, not for bathing. Proposed to supply Fort William from the Hooghly, the filtered water of which contains 9.4 grains of solid impurities in 40 oz . (above 29 grs . per gallon). This supply suid to be very perfect, but the river water is not good enough for use for 6 weeks annually.
Dinapore.	2. Supply from wells and from Ganges. Some years ago, barrack wells poisoned by infiltration from barrack privies. Well water clear and sparkling, but a little brackish; some of it contains sulphate, oxalate, and carbonate of lime, and some chlorides; in one well there is vegetable matter and ammonia. Water raised in leathern or iron buckets, and distributed by bheesties in leathern bags. River water after filtration the best.
Cawnpore.	3. Water derived from wells; only one tank. Not liable to pollution from leaves. Quantity abundant; no peculiarity of flavour; no chemical analysis; quality "good." Raised in leathern buckets and skins. Carried by bheesties to barracks, and kept in earthen vessels for use.
Mefrut.	4. Water from wells. Tanks used by natives; nuisance and malaria from some of them. Supply soft, excellent, unlimited. Raised by leathern buckets and bags, by hand or by cattle.
dgra.	5. Principally from wells ; occasionally from river. Well water very ealt, with few exceptions. Considered heating during rainy season. Contains large quantities of muriate and sulphate of soda and lime. It is laxative, and apt to disagree at first. Supply sufficient. Raised in leathern bags by bullocks, and carried in skins by bheesties for the use of Christian and Mussulman. Hindoos carry their water in brass or earthen jars.
Umbalea.	6. Water supply from wells; not liable to pollution; amount very limited; in hot weather most wells nearly dry; quality pure, as to sensible properties; hard; contains large quantity of carhonate of lime; no chemical analysis; not injurious to health; raised by Persian wheels and by hand ; distributed by masonry channels and by carriers.
Loodiana."	7. Entirely from wells; kept free from impurities; quality excellent; amount sufficient; no chemical analysis ; raised by lenther bags and distributed by carriers.
Ferozepore.	8. Water from wells; remarkably pure, but not free from some combination with earthy matters; soft, sufficient in quantity ; raised and distributed.in leather bags. No chemical analysis.
Juliundur. Man Merr.	9. Water from wells; abundant and wholesome; no chemical analysis. 10. Water from wells; filtered before drinking; not liable to pollution; generally good in quality, but some brackish, saline. $1,000 \mathrm{grs}$. of water contain :-carbonate of soda, 0.494 grs ; carbonate of lime, 0.14 ; carbonate of magnesia, 0.08 ; chloride of sodium, 0.095 ; sulphate of soda, 0.178 ; silica, 0.013 ; a small quantity of organic matter. Raised by Persian wheel or large ukins. Carried in leather skins for use.
Peghawur.	11. Water supply from river Barah by smull open canal; stored in tanks, filled daily; quantity about 15 cubic feet per second; colour from suspended matter varies from pale grey to deep red. No chemical analysis. Filtration required.
Sealeote.	12. Water from wells; not liable to pollution; very pure generally; some wells contain soda; hard, containing considerable proportion of sulphate of lime. "Very free from impurities." "Decidedly good." No chemical analysis; quantity abundant. Raised for use by rope and leathern bucket.
Murree.	13. Water derived from numerous springs and two reservoirs, one not liable to pollution, the other full of leaves and surface impurities; quality inferior; colour cloudy and muddy; taste and smell more or less carthy after rain; removable by filtration, but boiling sometimes necessary ; no chemicul aualysis; water soft; amount sufficient ; quality considered inferior hy native visitors, and to cause colic ; boiling and filtration through sand and charcoal render it wholesome.
Ghazeepore.	14. Water from numerous wells and from tanks (but not for drinking purposes); quality good and sweet, "and does not seem contaminated by the amount of leaves that necessarily fall "into open structures." Great nuisance from a large partially-drained tank. Amount sufficient; no chemical analysis. Raised by bucket and rope, and distributed by bheesties in skins.
Brrhampore.	15. Water from river, wells and tanks, chiefly from wells for European troops; supply almost unlimited; well-water tolerably pure, when filtered through charcoal; no chemical analysia. Raised in leathern buckets by hand labour.
Hazaregbaugh.	16. From wells and tanks; in some wells the water has a slightly saline taste, in others, it is pure; no chemical analysis, but tests show presence of silicic, phosphoric, hydrochloric, and carbonic acids ; hardness, $4 \cdot 5$; tank water alkaline; deposited copiously on standing;

Stations.	Replies.
Murree.	13. No information.
Ghazeepore.	14. Lavatory to each barrack ; water supplied from a reservoir behind; drainage to a reservoir, emptied twice a day by a filth cart.
Berhampore.	15. Each barrack has lavatories for men and women; water carried from tanks and wells in goat skins, poured into cisterns, and conveyed into rooms by pipes with cocks; drainage Into surface drains.
Hazareebaugh,	16. Ten double lavatories, one single; basins supplied by water-taps from cistern, and drained away by covered drain into main drain.
Allahabad.	17. Lavatories have cast iron basins, lined with porcelain, and a foot bath. Water supplied from wells by bheesties, and drained into cesspools. Fig. 8 shows the general arrangement of this class of ablution accommodation.
	Fig. 8.-Plan and Section of a Wabh-houss for Two Companies of Euroreang to be

attaceed to European Barracke at Allahabad.

Dumdum.
Benares.
Landour.

Mutira.

Raneegunge.
UMRITSIR.
Nynee Täl.
Rawul Pindi.
Lucknow.

Chunar.
Roorkee.
Jhansi.
Barrackiore.
Delif.
Morar Gwalior.

JUBBULPORE.
Darjeeling.
XIJI. DIET AND
COOKING.
18. Lavatories with metal basins, supplied with water from stop-cocks. No baths. 19. One lavatory per company, supplied with water from a well drained by branch drains. One plunge bath, another required.
20. Spacious lavatory with brass basins in a trough, but from the scanty supply of water in the dry season they are not much used, and the men wash in earthen vessels. Drainage to the slope of the hill.
21. Three temporary shed lavatories. One plunge bath.
22. No information.
23. Oblong building, with masonry stand for earthen jars and basins of water.
24. Hill station. No lavatories. Men wash themselves in verandahs.
25. No information.
26. Lavatories have a long masonry shelf for washing basins, also a set of small washing rooms, supplied by pipes from cisterns, receiving water from nearest well. A small canal runs the whole length of bath room, to supply water to the bathers, who can draw it in earthen or leathern buckets, and throw it over themselves. Iron bars across canal to prevent bathers " lying at full length in it, and soiling the whole supply." Drained to a drain ontside.
27. Lavatory for each barrack, except one. Water aupplied by bheesties, and runs out through Lavatory for each barrack, except one. Water aupplied by
the wall into the drains. No baths. River Ganges used.
the wall into the drains. No baths. River Ganges used,
28. Lavatories, small tiled sheds, with a wall having depressions to hold basins.
29. Lavatories not finished ; to be on the standard plan.
30. Wash-house for each barrack. No bath.
31. No information.
32. Lavatory for each company. Tubs or earthen vessels for holding water, supplied by bheesties from nearest well. Wash-hand basins, earthen or metal. Drainage into a cesspool 4 or 5 feet deep. Filth or refuse matter carried away from cesspool every morning.
33. Lavatories have tubs or half casks for water. Drained into a drain running round building. No baths.
34. Eight bath rooms to each barrack. Good water supply from a spring. Refuse water carried off by stone drain.

1. The ration in the Bengal presidency consists of bread I lb.s meat 1 lb ., vegetables 1 lb ., rice 4 oz., sugar 2 $\frac{1}{2}$ oz., tea $\frac{5}{7}$ oz., or coffee $1 \frac{3}{4}$ or $1 \frac{8}{7}$ oz., firewood for cooking. The ration is considered complete. Vegetables vary according to season, and consist of potatoes, carrots, onions, cabbages, turnips, sweet potatoes, cauliflower, and pumpkins. A larger supply of potatoes is required, and soldiers' gardens would, it is conceived, enable vegetables to be raised in sufficient quantities. Sometimes there is a scarcity of vegetables, and the men suffer frary eating too much animal food. It is suggested in one of the returns, that the diet acale of the navy is much better than that of the army. It consists of from 5 to $9 \frac{1}{2} \mathrm{oz}$. of animal food, and 26 ozs . of vegetable food, while the army scale in India contains no less than 16 oz . of animal food. Sometimes the men purchase milk, butter, fish, eggs, \&c., or fruit when in sesson. Complaint is made that mutton is not issued often enough, tnd that the vegetables are inferior in quality. The men have three meals a day; breakfast at 8 A.m.g vegetables are inferior in quality. The men have three meals a day; breakfast at 8 a.m.s.
consisting of tea or coffee, bread, often animal food; dinner at 1 p.m., and tea at 4 or 5 p.m.

Stations.	Replies.
\cdots	The cookhouses are small outbuildings, at a short distance from the barracks. They are provided with rude fireplaces, raised a little above the floor, often dark and hadly ventilated. No chimners, the smoke finding its way out as it likes. There are usually four messes in a company ; each mess has one copper boiler of eight gallons, one of seven, and one of two gallons, one frying pan, one gridiron, together with ladles, chopper, baskets, \&c. The ressels are usually tinned twice a month. In the hands of native cooks they admit of considerable variety of cooking, such as boiling, stewing, roasting, making curries, \&c. The cooking is stated generally to be "sufficient." Native cooks are engaged for the companies. They are paid by the soldiers for cooking, and also for such extras in addition to the ration as they may supply. The ration is counted as worth 3 annas 4 pice, or $5 d$. daily. The kitchens are generally surface drained to cesspits, from which the refuse is carried away daily; or the cesspit is sunk deep enough to be self-draining into the subsoil. Sometimes there is no drainage of any kind, the refuse water being merely thrown out on the surface of the ground. None of the cookhouses appear to have any water supply, except what is carried in skins or vessels by water-carriers. Fig. 9 gives the ground plan and elevation of a cookhouse at Benares, and shows the usual construction.

XIV.INTEMPERANCE. Fort Wilhiam.

Dinapore.

Cawnpore.

Merrut.

Agra.

Umballa.

Ferozepore.

Jullundur.

Mean Meer.

Fig. 9 gives the
construction.

Fig. 9.-Coomhodee, Bexares

The cookhouses are small outbuildings, at a short distance from the barracks. They ventilated whe rep it likes. There are usually four messes in a company ; each mess has one copper boiler of eight gallons, one of seven, and one of tro gallons, one frying pan, one gramoa, together with lades, chopper, baskets, onsiderable wariety of cooking such as boiling stewing roesting making curries 20. The cooking is stated generally to be "sufficient." Native cooks are engaged for the companies They are paid by the soldiers for cooking, and also for such extras in addition to the ration as they may supply. The ration is counted as worth 3 annas 4 pice, or $5 d$. daily. The kitchens are generally surface drained to cesspits, from which the refuse is carried away daily $;$
or the cesspit is sunk deep enough to be self-draining into the subsoil. Sometimes there is no drainage of any kind, the refuse water being merely thrown out on the surface of the ground. None of the cookhouses appear to have any water supply, except what is carried in skins or vessels by water-carriers.

1. Troops about as temperate as at other stations. Seven trials for habitual drunkennéss in 8th regiment in three months. In 5th Fusiliers 2 per cent. habitual drunkards. But average 8th regiment in three months. In 5 th Fusiliers 2 per cent. habitual drunkards. But averag
of habitual drunkards in European regiments in this country not less than 15 per cent. of habitual drunkards in European regiments in this country not less than 15 per cent
8th regiment, direct admissions from intemperance, to total admissions, 1 in 114.
8th regiment, direct admissions from intemperance, to total admissions, 1 in 114.
5th Fusiliers
8th regiment, indirect admissions
5th Fusiliers

Drunkenness punished as an offence. Spirits sold in regimental canteens, average daily consumption $\frac{1}{2}$ drams per man; not issued before dinner. To men in health apirits decidedly injurious in India. They are the curse of the European soldier in India. Beer in moderation greatly preferable. Would be most beneficial to health to suppress spirits altogether, allowing a ration of beer from the canteen instead, also to substitute tea, coffee, \&c.
2. Confirmed drunkards from 1 to $2 \frac{1}{2}$ per cent. Spirits sold in canteen, not in bazaar. Daily consumption 1 to $l \frac{1}{s}$ drams per man, 2 drams per day allowed. Spirits probably a a ration and abolish the and abolish the sale in canteens, substituting beer, cole \&, tea, de. Theriodicals.
3. Soldiers fairly temperate. Spirits sold in bazaar ; not conducive to health, efficiency, or dis. Soldiers fairly temperate. if cale could be abolished. Malt liquor, tea, and coffee preferable; cipline. Highly beneficial if sale could be
4. Soldiers temperate; rum sold at canteen. Native spirits occasionally smuggled into bar4. Soldiers temperate; rum sold at canteen. Native spirits occasionamy on payment. Spirits racks. Soldier allowed 2 drams per day, or less injurious; tea, coffee, \&c. better than either ;
injurious to health; malt liquors and wines less injurious to health; malt liquors and wines less injurious; tea, coffee, \&c.
beneficial to prohibit sale of spirits, and permit only beer, tea, cons usually temperate; spirits sold in canteen, forbidden in bazaar. During cold
5. Soldiers usually temperate; spirits sold in canteen, forbidden in bazaar. During cold
season, 2 drtms of rum; 1 quart of beer, issued to each man per diem. During hot season, 1 dram of rum, 1 quart of beer. This is the average daily consumption per man throughout the year. Evil effect of spirit drinking manifest during last field service spirits in excess the bane of European soldier; would be better to allow beer or porter
" but they will have spirits," and to abolish the sale would drive men to the basaar. 15 per
6. Soldiers temperate; 3 per cent. of adnissions caused directly by drunkenness, and 15 per cent. indirectly. Artillery consume three quarters of a gallon of spirits per month per man; hussars, $1 \frac{1}{2}$ drams per day; injurious to hea
7. Spoldiers generally temperate; frome 1 to 2 per cent. confirmed drunkards; spirits sold in 7. canteen. Each man consumes about 6 oz . rum and 1 pint malt liquer, or 30. rum and 2 pints mailt liquor per day. Spirits in moderation rather prejudicial by promoting dram drinking in excess. Advantageous to suppress the sale, if other opirits could not be obained Moderate use of beer healthy. Tea, lemonade, \&c., better than any. Th alre should be a were suppressed, beer, tea or coffee would mat
coffee shop, with reading room and workshops.
8. Soldiers temperate; no confirmed drunkards; spirits sold in canteen. Average consumption 8. Soldiers temperate; no confirmed. Injurious to health and discipline. Would be beneficial less than a dram per man per day. cofee, tes, \&c. Coffee should be issued before morning to abolish sale and subsinar and at night.
9. Saldiers temperate. Cousume a great deal of malt liquor in lieu of spirits. One out of 204 9. Soldiers temperate. Consume a great deal allowed per man per day, 2 drams of spirits, 1
admissions caused by drinking. Amount admissions caused by drinking. 2 pints. Would be more healthy without spirits. It tends to subvert pint of beer, or 1 dram and 2 pints. discipline and efficiency. Decidedy in favour of beer in place of spirita; but abstinent man discipline and efnciency. Dociles obnoxious to disease thap temperate man.
more enduring of fatigue and less 3

Stations.	Replige.
Peshawur. Sehakote,	10. Soldiers temperate; little more than 1 per cent of admissions directly from drink. Average consumption less than a dram per man per day. Would be unadvisable to abolish sale in canteen, as some old soldiers could not do without it. With sufficient malt liquor, sale of spirits could be suppressed.
Staliote.	11. Temperate ; about 3 per cent. confirmed drunkards. Average consumption of spirits, 1 dram a day. Some men never take' them. Spirits most injurious to health, and prejudicial to efficiency and discipline; should never be offered for sale, as men are induced to take spirits who never would, if they were not so handy. Under no circumstances, except extraordinary fatigue, should spirits be issued; only beer, tea, or coffee should be allowed; and the loss of revenue otherwise compensated for.
Ghazerpore.	12. On the whole temperate. Rum sold in canteen; none in bazaar. Two drams a day per man can be purchased. Sale of spirits in bazaar ought by all means to be abolished; but not injurious as sold in canteens. In moderation not injurious ; but good malt liquor preferable to spirits in any form. Coffee in the morning better for the soldiers in all points. Total abolition of spirits would not be advisable. No canteen. Spirits and beer issued at once from the tub.
Berhampore.	13. Soldiers usually temperate; 1 in 120 admissions produced directly, 1 in 10 indirectly by drink. Among temperate men, $45 \frac{1}{2}$ per cent. of sickness ; $34 \frac{1}{4}$ per cent. of crime. Among drunkards, $52 \frac{1}{2}$ per cent. of sickness ; $65 \frac{3}{4}$ per cent. of crime. Spirits injurious, except to old soldiers, who have indulged in them. Sale should be abolished in bazaars, and allowed under restrictions in canteen. Would be beneficial to substitute beer, except to those who have distance from canteens.
Hazareebaugh.	14. Soldiers as a body temperate; one-third of diseases and one-half of crimes, directly or indirectly from drink; but no statistics. Each man may purchase $\frac{1}{29}$ gallon of spirits per day. Aotual consumption in 1859, 64 gallons per man per year. Spirits decidedly injurious to health, and not conducive to efficiency or discipline. Abolish altogether sale of spirits in canteen and bazaar. Injurious even in moderation. Long cherished idea as to their necessity for the British soldier thoroughly exploded. A man who drinks tea or coffee will do more work than a dram drinker, though considered sober. It is an error to sell spirits in canteen to prevent men obtaining worse spirits in bazaars. It creates craving to be satisfied elsewhere. Selling rum in canteen is an unmitigated curse to a regiment, destructive alike to health and discipline. Even malt liquor not necessary to health in India, but not injurious, or less so than spirits. It will be a "happy day "when only coffee, tea, lemonade, \&cc. are drunk.
- Allahabad.	15. Soldiers temperate; about 1 per cent. confirmed drunkards. Out of 5,021 admissions in 1859, 36 were from delirium tremens (5 fatal); 25 from ebrietas. Many diseases, especially of liyer, indirectly from drink. Much sickness and mortality also indirectly. Spirits injurious to health. Entire substitution of malt liquor in canteens would be beneficial. Probable amount of spirits consumed less than a dram per man per day. But 1 quart of beer and 2 drams of rum may be purchased. Suppress sale of spirits, permit beer, coffee, tes, lemonade, \&c. only to be sold.
Dumdum.	16. Soldiers usually temperate. Out of 850 admissions, 2 were from delirium tremens; 10 ebrietas. Spirits sold in canteen. Drugged spirits in bazaar. Spirits injurious to health, most prejudicial to discipline. Would be beneficial to suppress -sale in canteens, and to permit only beer, coffee, tea, \&c. to be sold, with exceptions in special cases. Permit no native grog shops within 4 miles of cantonment.
Benares.	17. On the whole temperate. Spirits sold in canteen. Each man may purchase 2 drams a day. Average consumption last half-year, $\frac{1}{2}$ a dram and $\frac{1}{3}$ a pint of malt liquor daily per man. Spirits certainly injurious, and the great cause of sickness and crime in a regiment. Malt liquor beneficial. Prohibit sale of spirits in canteens, and permit only beer, coffee, tea, \&c. to be sold.
Landour.	18. Spirits sold in canteen, if allowed by surgeon. Extent 2 drams a day. In moderation conducive to health. Nothing deleterious to discipline or efficiency in issuing spirits in wellregulated canteens. Health, morality, and discipline, very much improved since use of mait liguor encouraged.
Muttra.	19. Artillery very intemperate; 10 per cent. confirmed drunkards. Caralry temperate; 1 admission in $91 \frac{1}{2}$ caused directly by intemperance; 2 drams of rum per man per day allowed in canteen. Any amount of bazaar spirits attainable. As a general rule, spirits not conducive to health or discipline; but could not be withheld from men accustomed to them. Suprress sale to all men under 30 years of age. Malt liquor better. Suppress spirits gradually, and permit only beer, coffee, tea, lemonade to be sold.
Ranergunge.	20. Troops temperate. Spirits sold in bazaar. No canteen. In moderation not injurious. But malt liquor the best beverage.
Umpitsir.	21. "Rather intemperate." Directly, one-sixth, indirectly one-half, of admissions from drink. Spirits sold in canteen, but not allowed in bazaar. Average consumption, 2 drams per man per day. Its effect on health "injurious to the last degree." Malt liquor and wines beneficial. Suppress spirits altogether, and permit beer, coffee, and tea to be sold; but it might be injudicious, as men who wanted spirits could get country liquor.
Nyner Tíl.	22. Temperate. One case deliriugn tremens last year. Men all invalids, require daily stimulant, 1 quart of beer and 1 dram of rum allowed daily. Amount specified conducive to health. Suppression of spirits generally would be beneficial, with exceptional cases.
Rawul Pindi.	23. Temperate; 7 out of 282 admissions directly, and 1 out of 282 admissions indirectly from drink. Rum sold in canteen; 2 drams a day allowed. 'More injurious to health than otherwise. Necessary on a march. If abolished, worse spirits would be got. Malt liquor preferable.
Lucernow.	24. Not much intemperance. Spirits sold in canteen, As a rule not conducive to health. Should he abolished, except in exceptional cases. Malt liguor and wine beyond doubt preferable. Bencficial to prohibit the sale in canteens, substituting beer, tea, coffee.
Chunar.	25. Soldiers mostly temperate. One man in 20 a confirmed drunkard. Admissions on a ten years' average, from drink, directly, 1 in 3 ; indirectly, 1 in $7 \frac{1}{2}$. In 6 years, among 12 total abstainers, no dea'hs, no crimes. Among 576 temperate men, deaths, 8.34 per cent. of strength; 4.12 of admissions. Crime, $42 \cdot 01$ of strength. Among drunkards, deaths $14 \cdot 21$ per cent. of strength; $8 \cdot 13$ per cent. of admissions. Crime, 426.87 per cent. of strength. 2 drams per man per day consumed. Impossible to state how much is sold in bazaar. Use

Stations.	Replies.
Rooriee.	of spirits, except in few cases, injurious and most destructive as regards efficiency and discipline. Malt liquor beneficial. Probibit sale of spirits, except in certain cases. Discourage by every means men acquiring a taste for it. Absolutely interdict it on passage out, giving malt liquor instead. 26. Soldiers generally temperate. Still much disease and crime from drinking of spirits. Sold both in canteen and bazaar." "All spirit drinking injurious to health." Almost all crime caused by it. Ought to be abolished in canteens and bazaars. At present collectors encourage eale as much as they can, for the sake of revenue. In Burmah, when malt liquor could be had, health always improved. Marked change for the worse when spirit was issued instead. Since beer was introduced, the tremulous, yellow-skinned, emaciated spirit-drinker rarely met with.
Jhansi.	27. Temperate. Spirit sold at canteen. Not injurious in moderation. Not conducive to health. Malt liquor and wine bencficial, being tonics. Spirits only temporary stimulants. Beer might be substituted by degrees for spirits, but would not be beneficial to prohibit sale to men accustomed to spirits.
Barrackpori.	28. Liquor too easily procured. A good deal of intemperance. A rather large number of confirmed drunkards. Fourteen to 15 per cent. of admissions directly from drink. Spirits, injurious to health. If entirely abolished among European troops, and dietary improved, \&c., mortality would be "extraordinarily diminished." Malt liquors, although not essential, not injurious. Decidedly beneficial to suppress spirits, though it would excite discontent at first. Men should have employment, recreation, good tea, coffee, milk, more variety of food and cooking.
Deleif.	29. "Inclined to be intemperate." Four men per company confirmed drunkards. Spirits sold in canteen. About three-fourths take one dram, one fourth two drams each per day; injurious. Moderate use of malt liquor or wine good. Not beneficial to suppress the sale of spirits, because country liquor would be bought instead.
Morar Gwalior.	30. Several intemperate men. . Liquor difficult to get at present. Less than 1 per cent. of admissions directly; more than $2 \frac{1}{2}$ per cent. indirectly, from drink. Spirit causes a good deal of sickness. Fatal cases occur mostly among intemperate men. Drunkenness much the prevailing crime at station. Spirite sold in canteen to the exteut of one dram with beer, two without, per diem. Ardent spirits, except as medicine, always injurious. Malt liquor much less so. Most beneficial to suppress sale of spirits, if men did not use native liquor. Recommended prohibition of distillation, except for medical or chemical purposes.
Jubbulpore.	31. As a rule intemperate. One in 200 a confirmed drunkard. Spirits sold in canteen, and illegally in bazaar. Some men take one dram, others two per diem. Old soldiers often take a dram before parade; injurious. Highly beneficial to abolish spirits. Malt liquor beneficial. No doubt a cup of good hot coffee most wholesome stinulant for a soldier. Entire suppression of spirits would undoubtedly increase health and efficiency of troops.
Darjeeling.	32. Soldiers temperate. No admission to hospital from intemperance. Each man not attending, hospital, or in hospital, may purchase daily 2 drams rum, or 1 dram of rum and 1 bottle "day." No hesitation whatever in saying that spirits are " decidedly and highly injurious" to troops, and anything but conducive to efficiency or good order. Would be, without doubt, beneficial to abolish altogether the use of spirituous liquors, if done gradually and wisely. The soldier would not be such a drunkard but for his condition. Better that condition, and the British army may become a sober one. Wine, malt liquor, and spirits all injurious in excess. Malt liquor least so. Use of tea, coffee, lemonade, \&c. would afford a striking contrast in the result to the other drinks mentioned. There should be restaurants where men could
XV. INSTRUCTION	discomfort of the everlasting barrack room.
A.ND RECREATION. Fort William.	1. There are at this station one ball court and eight skittle alleys; two regimental schools and a garrison school; one garrison library and regimental libraries; a theatre and a gymnasium. There are no day rooms, no soldiers' clubs, no gardens, no workshops. Cricket, foot-ball,", and quoits are played morning and evening. Present means said to be "sufficient." Savings banks decidedly most advantageous. Ground floors of barracks and verandahs afford ample shade for recreation.
Dinapore.	2. One fives court and four skittle grounds. A school, a library, and reading room, well lighted. A soldiers' garden, not used. Workshops insufficient. A station theatre. No gymnasia. Means not at all sufficient to keep the men occupied during wet weather and heat. A large covered space wanted for workshops, skittle grounds, ball alleys, quoits, \&c. A farmyard would be advantageous, as would also be the institution of savings banks. Men confined to barracks in hot weather; said to be "beneficial." No shade, but from verandahs.
Cawnporz.	3. A ball court and skittle grounds. Regimental achools, libraries, and reading rooms. Workshops for tailors, shoemakers, and armourers. Cricket and quoits. Theatre occasionally. No gymnasium. Means insufficient. Properly constructed skittle grounds, gyinnasia, and shooting galleries, and swimming baths required. Regimental savings banks in full operation. Men confined to barracks from $7 \mathrm{a} . \mathrm{m}$. to $5 \frac{1}{2} \mathrm{p} . \mathrm{m}$. in hot weather. "At least "there is an order to that effect, but it is often disobeyed." No shade whatever, except barrack verandahs.
Merrut.	4. Ball courts and covered skittle grounds. Schools and a theatre. No library, no day room, no soldiers' club. No gardens, no workshops, no gymnasia. Present means not sufficient to keep men occupied during wet or heat. Savings banks very advantageous. Men should have indoor employments at trades. Shade quite insufficient. : Men confined to barracks from $8 \mathrm{a} . \mathrm{m}$. to $4 \frac{1}{2}$ p.m. in hot weather. Less restriction in cold season, "and with the best " possible results."
Agri.	5. Double ball court, and three skittle alleys; schools, library, and reading room, indiferentiy lighted at night; soldiers' garden, worked by natives, supplies vegetables for mess; no soldiers' clubs, no day rooms, no workshops, no theatre in barracks, no gymnasium. Means insufficient for affording occupation in hot and wet weather. Men confined to barracks between morning and evening parades ; restriction said to be "necessary, but very irksome." A large covered building for gymnasium, workshops, games, \&cc., "would draw many men from their cots, where they idle and sleep all day." No sufficient shade. Savings banks useful for provident men.
Uybalia.	6. Ball courts and skittle grounds. Schools, library, and reading room, well highted. Soldiere garden. No day rooms, no soldiers' club, no workshops, no theatre, no gymnasia. Lofty 3 D 4

Stations.	Replee.

Loodiana.
Ferozepore.
spacious buildings for these purposes would add greatly to health, comfort, and amusement in hot weather. Part of building should be used for games ; part for library; reading room, coffee room, theatre, plunge baths. Shade not sufficient. Men confined to barracks from breakfast to 5 p.m., "beneficial."
7. No information.
8. Ball courts and skittle grounds. Schools, library, and reading room, sufficiently lighted. One soldiers' garden, theatre, and gymnasium. No day rooms, no workshops. These latter, with a coffee shop, would be an important inducement for men occupying themselves during the heat
Julfundur.
Mran Merr.

Peshawur.

Sraliotic.

Murrer. Ghazeepore.

Berhampore.

Hazarkbbaygh.

Allahabad.

Dumpum.

Benares.

Landour.

Muttra.

Ranergunge.

UMRITSIR.

Nynee Till.

Rawul Pindr.

Lucknow.

Chunar.
9. Ball courts and skittle alleys. A regimental schnol, library, and reading room, sufficiently lighted at night. One garden, a private theatre, not in use. No workshops, no gymnasia, no sufficient shade. There are savings banke; decidedly advantageous.
10. Skittle grounds. Schools, library, and reading rooms. Several theatres. Billiard room for serjeants. Cricket, chess, backgammon, bagatelle for men; No ball courts, no day rooms, no clubs, no gardens, no workshops, no gymnasia. Photography, modeling, and drawing suggested. No sufficient shade. Double fives court much needed. Men confined to barracks in heat of day. Savings banks have been of greatest use.
11. Ball court and skittle grounds. Schools, libraries, and reading rooms, well lighted at night. A theatre. No workshops, no gymnasia, no garden. There should be regimental gymnasia and reading rooms, separate from barracks. Men confined to barracks in hot weather from 10 a.m. to 4 p.m. Savings banks highly advantageous. No shade.
12. Ball courts and skittle grounds. Schools and regimental libraries. A reading room, very well lighted at night, provided with chess, backgammon, dominoes, and 16 newspapers and periodicals. A soldiers' garden, with seeds and tools provided by Government, who grant prizes for best cultivation. Armourers', saddlers', tailors', shoemakers', and one watchmaker's, shops. Theatres. Cricket and regimental clubs, foot balls and quoits; the latter a favourite game. A gymnasium strongly recommended.' Workshops for every trade might be instituted. Savings banks advantageous; that of one regiment has 8,000l. Sufficient shade for exercise. Present means sufficient, if properly used.
13. No information.
14. One ball court, two skittle grounds. No other means of instruction or recreation. "Almost everything in this way has yet to be done." Men confined to barracks from 8 a.m. to 5 p.m. No shade, except verandahs, which are too small and under water during the rains. 15. Five ball courts, two skittle grounds. Library and reading room, but neither lighted at night. A theatre is being fitted up. No schools, no day rooms, no soldiers" gardens, no workshops, no gymnasia, no sufficient shade. Men restricted to barracks from 8 a.m. to $5 \frac{1}{2}$ p.m. Savings banks advantageous.
16. Ball court and skittle grounds. Regimental school, Government library, not lighted at night. A temperance reading room, well lighted, and having upwards of 200 members. No gardens. Armourers', shoemakers', and tailors' shops. A small theatre. No gymnasium. Further means of amusement and occupation advisable, "as the long days of the Indian hot weather hang heavily on the soldiers' hands." Men can exercise in the verandahs.
17. Skittle grounds. Schools, libraries, and reading rooms, well lighted sometimes, but generally lighting defective. No ball courts, no day rooms, no clubs, no gardens, no workshops. All commanding officers concur in recommending the latter. No theatre, no gymnasium. Present means not sufficient for hot and wet weather. Soldiers confined to barracks from Present means not sufticient for hot and wet weather. Soldiers confined to barracks from
$8 \mathrm{am} . \operatorname{to} 5 \mathrm{p} . \mathrm{m}$; said to be "beneficial to bealth." Men exercise in verandahs. Savings 8 a.m. to 5 p.m. ; aaid to be
banks highly advantageous.
banks highly advantageous.
18. Fives courts and several skittle grounds. A school ; no library, nor reading room; no day room, nor soldiers' club; no gardens, no workshops, nor gymnasia; no theatre, except a barrack room, occasionally used. Present means "t totally insufficient for occupying the "men." Great success lately attended the opening of a smail museum, illustrated by lectures showing " that soldiers are ready to avail themselves of any means of rational amusement in " the evening, in preference to spending all their time in the canteen." No sufficient shade. 19. One ball court and three skittle grounds. Two schools. One library and reading room, sufficiently lighted at night. One day room. One garden, two workshops, a station theatre. No gymnasium. One gymnasium and more workshops required. Present means scarcely sufficient. No sufficient shade. Men confined to barracks from 8 a.m. to 5 p.m., " with sufficient. No sufficient shade. Men
"the very best effect on their health."
20. A ball court, four skittle grounds, school room, good library and theatre. No reading nor day rooms; no soldiers' gardens, no workshops, nor gymnasia. No restriction as to exposure required.
21. No means of instruction, occupation, or amusement whatever, except a soldiers' garden, for which there are no tools, although indented for a year ago. Carpentery, saddlery, and coopers' work are in great demand, and would benefit the men, as regards health, morals, and finance. No sufficient shade.
22. Only two skittle grounds, and no sufficient shade for exercise.
23. A ball court and two skittle grounds. Schools, library in an unsuitable room. No day room, no club, no gardens, no workshop, no theatre, no gymnasia. Men not sufficiently occupied during wet and heat. Restricted to barracks, which is supposed to be beneficial to health.
24. Two skittle grounds, one school, one library, well lighted; men confined to barracks in heat of day. Present means not sufficient to keep men occupied. No shade, except verandahs.
25. Nothing but schools, no ball courts, no skittle grounds, no day rooms, no gardens, no workshops, no theatre, no gymnasia, no library or reading room, except the barrack room,
Present means not sufficient; men confined to barracks during the day "with the best results."
26. The following means are being established :- ball courts and skittle grounds, schools, library and reading room, day room, gardens, theatre and gymnasia; but no workshops, which should be built, and then the means would be ample. Men restricted to barracks in hot months.
27. No ball court, one skittle ground under construction; two schools, a library and reading room, not kept open at night. No day rooms, no clubs, no gardens, no workshops, no theatre, no gymnasia. Present means insufficient. No restriction as to exposure in sun and rain, "Men go about at all times, and except, when under the intluence of liquor do not "appear to suffer from exposure." Shade insufticient. [N.B.-The mean temperature of

StATIONS.
ROORKEE. JHANSI.

Replies.
this station is 65° in December and January, and 92° in June; the sun temperature as high as 120° in June, and yet the men do not "suffer from exposure ".]
28. No information.
29. Schools, library and reading room, day room, one garden, and workshops. No ball courts; no skittle ground, no theatre, no gymnasia. Present means not sufficient; all the above no skittle ground, no theatre, no gymnasia. Present means not sufficient; all the above men restricted to barracks from $8 \mathrm{a} . \mathrm{m}$. to $5 \mathrm{p} . \mathrm{m}$. Savings banks advantageous.
30. Companies' skittle alleys, a school, library, and reading room, used as a day room. Present. means not sufficient. No gardens, no workshops. The following are required :-fives courts, a theatre, gymnasia, swimming baths, public reading of good biographies, travels, novels, \&c. Trades of various kinds, such as clothing, accoutrements, barrack furniture, watch making, printing, paper making, baking. Savings banks should be connected with 31. Skittle . No sufficient shade.

Delhi.
Morar Gwalior.

Jubbulpore. 31. Skitle grounds, schools, a hibrary and read
racks in hot weather. Shade not sufficient.
32. Company skittle grounds, regimental schools, library and reading room.. No doubt ball courts, clubs, gardens, workshops, theatre, and gymnasia will be introduced in due course. Shade insufficient.
33. One skittle ground, one school, one regimental library and reading room, one armourers' shop, one theatre. Means insufficient. No sufficient shade.
Darsezling. 34. Two skittle grounds in a very bad state of repair; one school, good library and reading - room, two gardens worked by natives. Tailors, shoemakers, tinsmiths work at their trades in barracks; only carpenters have a workshop. A hospital reading room and reader. Means insufficient. Rains fall incessantly for five months, and men are pent up in barrack rooms to the greatinjury of their health. Different kinds of recreation under cover should be provided for this.

XVI. DRESS.

XVII. DUTIES
XIX. HILL STATIONS

Fort William.

Dinapore.
Cawnforfa.
Mefrut.
Agera.

There are two kinds of dress in use, one for cold weather, the same as in England; the other consisting of khakee tunic and trowsers, wicker helmet for summer wear. Dress generally considered as suitable for climate and duties. The boots are complained of as being bad. Flannel is considered indispensable. Great coats are used on night guard. Surgeon Major Hare, 2d Bengal Fusiliers, gives in the Roorkee report some interesting information regarding the waterproofing of soldiers' clothing, which is worthy of consideration. At Peshawur, a wadded coat is issued for winter wear.
The routine of duties varies in different regiments and at different stations. They consist of drills, exercises; and guards; drills occupy one to one and a half hours in the early morning, drills, exercises; and guards; drills occupy one to one and a half hours in the early morning,
and half an hour to one hour in the evening; from peculiar circumstances they sometimes and half an hour to one hour in the evening; from peculiar circumstances they sometimes
do not recur every day. Guards last 24 hours, coming round sometimes every fifth day, do not recur every day. Guards last 24 hours, coming round sometimes every fifth day,
giving the men four successive nights in bed, sometimes only once a fortnight, or once in giving the men four successive nights in bed, sometimes only once a fortnight, or once in three weeks. With few exceptions, the reporters concur in stating that night guards are not injurious to health, if proper precautions are exercised as to clothing and shelter. From neglect of these, men coming off guard are often found affected with slight rheumatism or bowel complaint. No injury follows night guards properly conducted, even at unhealthy stations. One of the reports indeed states that they are not only not prejudicial, but rather beneficial in hot weather. A few of the reports state night guards to be directly injurious. There is no evidence that the men suffer in health from the usual drills, duties, sind exercises, except in the case of raw recruita. Grooming horses is said to be healthy. At all the stations the practice exists of contining men the whole day to barracks in hot weather; the confinement beginning as early in one case as $6 \frac{3}{2}$ a.m., and lasting till the approach of sunset.
All the reports concur in stating that, before a soldier is sent to India, he should be perfected in his drill at home; otherwise he will be sure to suffer from the climate. All the reports, with three or four exceptions, recommend that the soldier should be sent direct from home to Indis, instead of to any intermediate station. They all concur in stating that none but men whose constitutions are fully formed are - fitted for Indian service; and the ages metween 20 and 25 are, in general, considered the best ages for beginning such service. They further agree in this important point, that men should be sent from England so as To-arrive in India between November and February; there is a general concurrence as to the in ind to the propriety of exercising great
sending them direct to their regiments.
There is considerable difference as to the period of useful service a soldier may fulfil in India. The lowest period named is from three to five years; the highest from 15 to 25 India. The lowest period named is frem opinion in one stational report is that a soldier in India may serve as long as years. The opinion in one stational report is that a solder in his health. Under existing in any country out of his own, provided due care be taken of his heaith. sanitary conditions, the prevaing oping at certain stations.
from 10 to 12 or, perhaps, to 15 years at

Invalids leaving Indis should do so in time to reach England in early summer.

1. No experience. But consider hill climates beneficial to the weak and to men suffering from functional disease; but useless, or even hurtful, to organic disease. Troops on return to plains not more liable to fevers. At Kussowlie, Subathoo, Simla, and Dugshai, "white plainging " prevails, often causing serious losses in the regiments. Croup and diphtheria purging prevails, often causing serious losses in the regiments be located on hills, with also occur. Natives suffer from typhold Best elevations 4,000 to 8,000 feet, with good "ahort periods of service on plains." Best elevations 4,00 causes of diseases.
drainage, thorough ventiation, Bpace, and tho often want of room for exercise, and difficulty 2. No experience, but approve. But there is climate almost equal to the hills for health.
in feeding the men. Hazareebaugh has a climate a most equal from all corps and sent to the hills alternately.
2. No experience.
3. No experience. invigorating. Men residing on hills keep their stamina best and stand work better on the plains than other troops. Barracks at Landour imperfect. Elevations of 4,000 feet beyond plains influence of tropical climates, and less cloudy, but not so cold and bracing as higher the influence of tropical chel ground, good water, and easy access are desiderats.
elevations. Plenty of lever

Fig. 10-Priar of European Permanent Eobpital at Dimapore.
Total length of Ward 633 feet; 150 Beds.
Cross Section of Hospimal.

Accommodation.-Two wards for 128 and 150 beds respectively, at from 1,308 to 1,595 cubic feet and 77 to 88 aquare feet per bed.
Ventilation.-Wind does not blow across the permanent hospital. It does so in the temporary hospital; doors and skylights used in former; doors, openings, and roof ventilation in latter; ventilation sufficient in permanent hospital only when doors are open; sufficient at all times in the temporary one; tatties used for cooling.
Cleansing.-Limewashing twice a year, and every 3 months to the height of 6 feet.
Latrines over drains to the river bank; water supplied by hand; offensive in spite of use of lime and charcoal.
Lavatory and bath,-Shower and slipper baths; earthen dishes:for the feet; lavatory with basins; water supplied by bheesties, turned on by a cock; " means sufficient."
Hospital washing by dhobjes on river bank.
Storage ample'; dry in dry season, "but damp, as all places are at the station, during the "raing."
Bedding.-Iron or wooden frames; mattress and pillows of country hemp; sheets and country blankets; bedside carpet.
Cooking.-Ordinary Indian cookhouse, with potsa pans, frying-pans, and spits, "which enable "an Indian cook to prepare anything."
Attendance.-Hospital serjeants for discipline, 20 ward coolies and 1 superintendent per regiment, "generally very kind and attentive;"" a comrade in severe cases.
Sanitary state:-Generally good. No gangrene or pyæmia; cholara and fever have appeared
at times. Convalescents, Walk on the roof of hospital and by river side. Often rent out on elephants or in doolies to take the gir.
Female hospitals.-Two, with about 1,000 cubic feet, and 50 "to 60 vquare feet, per bed; female attendants; " present arrangements satisfactory."
Capripore. 3. Site open and freely ventilated:

Water supply "abundant and good."
Drainage.-Only by surface drains; all impurities are conveyed to a distance daily.
Construction.-Stone floors $3 \frac{1}{2}$ to 4 feet above ground; no ventilation beneath. Thatiched zoof with tiles. Double verandahs ; inner one used for sick when pecessary. Building on one floor.
Accommodation.-Three wards of 24 beds each, at 2,349 cubic feet and 87 square feet per bed. When verandahs used, number of beds doubled.
Ventilation by doors and pipes carried through thatch. Hospital receives full benefit of prevailing winds. Means "sufficient."
vailing winds. Means sufficient.
Cleansing, Walls and ceilings of wards cleaned and limewashed every six months or oftenér.
Latrines 40 yards from hospital ; consist of a shallow drain, and are offensive.
Latrines 40 yards rrom hospital; consist of a tha Latge of which are placed vessels for washing ; " neither sufficient nor convenient.".
Hospital washing done at a distance.
Hospital washing
Bedding.-Iron and wooden bedsteads; two mattresses.
Cooking. "tron and wooden bedsteads well performed:"?
Cooking "tolerably well performed!"
Attendance.-Hospital serjeant, o
Sanitary state "tolerably good."
Convalescents are taken out on elephants and in spring bullock carts. No shady walks ; no Convalescents are taken one would be advantageous.

Ventilation.-Hospital receives full benefit of prevailing winds. Doors, windows, and circular holes in side walls, and also in roof. Kuskus tatties, and thermantidotes used for cooling the air.
Cleansing.-Limewashing annually, or oftener if required.
Latrines adjoin hospital; supplied with water; 'contents removed 'in filth carts; urinal has a cesspool.
Lavatory and bath.-One bath in lavatory ; said to be "sufficient."
Hospital washing done by native washermen.
Storage sufficient.
Bedding.-Wooden bedsteads, hemp mattresses, sheets, and blankets ; iron bedsteads recommended.
Cooking.-Common Indian kitchen; diets properly cooked.
Attendance.-Hospital serjeant and natives; no nurses; orderlies for special cases.
Sanitary state "excellent." No hospital disease.
Convalescents.-No wards, but such would be advantageous; elephants and doolies used for airing.
Female hospitals.-Separate arrangements; "satisfactory."
5. Site open, healthy, and freely ventilated.

Water supply-ample from wells, though'generally very salt; several better wells used for drinking.
Drainage.-None except on surface; during hot and cold season the washing and bathing water spreads over ground and sinks into soil or evaporates. Main drain only runs after heavy rains.
Construction.-Hospital on single floor, raised $2 \frac{1}{3}$ feet, but no passage of air below; materials brick and mortar; thatched roof; double verandahs, inner one frequently used by aick or convalescents.
Accommodation.-TThree wards; 120 beds, at from 1,320 to 2,135 cubic feet, and from 55 to 73 square feet per bed.
Ventilation by ridge ventilators, open doors, tatties, and thermantidotes; also punkahs; "sufficient."
Cleansing.-Whitewashing quarterly or oftener,
Latrines over cesspits, into which close stools are emptied; very offensive.
Ablution and bath room.-Bathing tubs; "sufficient for the purpose and convenient;" a wash-house being constructed.
Hospital wasking done at a distance.
Hospptal soashing
Storage sufficient.
Bedding.-Bedsteads of wood, hemp mattresses and pillows; cotton sheets, woollen blankets, or wadded cotton " resais."
Cooking.-Kitchen same as in barracks;" "sufficient.".
Attendance.-Hospital serjeant for discipline; regular establishment for European corps at ordinary times consists of 79 individuals, to whom are added in hot seasons 161 bheesties and coolies, making in all 240.
Sanitary state.-Hospitals "as free from disease as ground floor hospitals of this construction "can be." All tropical hospitals should be two storied (the sick above).
Convalescents.-No wards; men sent to light duty in barracks $\&$ exercise by elephants and doolies ; seats in verandahs and arm chairs.
Female hospital.-One adjoining general hospital; "satisfactory."
Umballa.

- Loodiana.

6. Site open, freely ventilated, and healthy. That of native infantry hospital near foul nullahs. Water supply "wholesome, but very limited indeed." 8
Drainage by surface drains; all refuse water carried away.
Construction.-Hospitals on one floor, raised $3 \frac{1}{2}$ feet above ground; no passage of air beneath;
built of burnt bricks and lime; thatched or tiled; verandahs on both sides ; inner frequently used for sick ; built in 1845-6, and 1859.
Accommodation.- 31 wards ; 356 beds, at from 1,500 to 1,872 cubic feet, and from 72 to 108 square feet per bed.
Ventilation.-Hospitals receive benefit of prevailing winds. Ventilation by doors, windows, and in ridge; "sufficient;" tatties and thermantidotes used for cooling. .
Cleansing.-Limewashing once a year or oftener.
Cleansing.-Limewashing once a year or oftener.
Latrincs in rear of hospital ; shallow cesspits cleansed daily.
Lblution and bath room has brass and earthenware basins along the wall; tubs for bathing. Inexpensive improvements could be made.
Hospital washing done at a distance.
Storage not sufficient.
Bedding.-Wooden bedsteads, tow mattresses, sheets, and country blankets; iron bedsteads required.
Cooking by usual Indian method; "much-cannot be said in general in praise of the cooking, " but it is sufficient."
Attendance " ample and liberal."
Sanilary state "satisfactary."
Convalescents.-No wards, but they "would be useful, as enabling the surgeon to regulate diet, "exercise, and exposure of convalescents." Exercise by carts, elephants, and doolies. No "exercise, and
Female hospital.-In separate buildings. A privy required for each.
7. Site open, freely ventilated.

Water supply abundant and wholesome.
Drainage by open natural surface drains. All impurities removed by sweepers.

Fig. 11--Plas of the Hobpital for the Artillery Division, Ferozepore.

9. Site--Open and healthy.

Water supply.-Abundent and wholesome.
Drainage.-None; all filth removed in carts ; imperfect surface drains for roof water, which is not removed, but sinks into subsoil
Construction.-Mud walls; verandahs all round; thatched roofs; floors 3 feet above ground; Consiruction.- passage of air beneath. Built in 1847-48.
no passage of air beneath. Buit in 184,902
Accommodation. Thres wards; 58 beds, at 902 to 1,728 cubic fect, and 57 to 72 square feet
per bed.
Ventilation.-Free exposure to winds s ridge ventilation; no windows; cooling by punkahs entilation.-Free exposure
and tatties; "sufficient."
and tatties, ${ }^{\text {a }}$,
cleansing.-W Wals and ceilings drained," and "seldom offensive."
Latrines.-" Well drained," and "seldom offensive." ${ }^{\text {a }}$. Lavatories and
warm baths.
Warm baths.
Hospital washing
Storage sufficient.
Bedding.-Wooden bedtchen; cooking generally good.
Cooking.-Ordinary kitchen
Attendance.-"Sufficient."
Attendance.-"Sufficient,"","
Sanitary state__"Most healthy." :-
Convalescents_-No wards; "unnecessary." No provision for exercise, except hospital com-Convalescents.-No wards; und where there is no shade.
pound win

Stations.	\therefore Rkplieg
Mean Merr.	Female hospital. A ward for women and chilkhen, ¢ with an ayah, when necessary."
	10. Site.-Two European hospitals on sites open and good.: One occupies an area of $\mathbf{6 0 , 0 0 0}$ square yards. Tater supply,-Abundant and good from a well within enclosure
	Drainage of wash-houses and cook-houses, either into deep coverell cesspools or small shallow reservoirs, whence it is carried away daily; they are close to the hospital; surface drainage by small cut channels for roof and rain water.
	Jonstruction.--Solid masonry; floors raised 3h feet above ground; no ventilation below. Verandahe 10 feet broad; outer ones not used for sick; on one side divided into compartments for wash-houses. "This bad system is detrimental to ventilation." "Hospital built in 1854-55.

in 1854-65

qccommodation.-In E 1 hospital, 10 wards; 160 beds, at 1,728 cubic feet and 72 square feet
per bed. Verandahs are occupied by sick on pressure.
Tentilation.-Full exposure to prevailing winds; doors, windows, and ridge openings; not sufficient if hospital were crowded; cooling by thermantidotes, punkahs, and tatties. Fireplaces for warming.
Ileansing.-Partial whitewashing once a quarter.
"atrines.- Pans and moveable urinala; contents removed twige a day; "not ordinarily " offensive, if kept clean."
davatories and baths.-In compartments walled off in outer verandah; tables with basins drained into s cesspool. Slipper baths and tubs in hospital for tick.
Hospital washing done seven miles away.
Storage scanty.
Bedding.-Same as in barracks:
Cooking.-Low mud or brick fireplaces with side ledges, to support pans and kettles ; also brick fireplaces; "sufficient."
Attendance.-Hospital serjeant and two orderlies, with ward coolies; "enough."
Sanitary state.-"Splendid and commodious buildings." Improvements in cooling air ; in latrines, \&c., in progress; ventilation defective.
Convalescents.-No apecial wards; exercise by carts, elephants, and doolies.
Female hospital.-One within each hospital enclosure. Managed like the men's hospital.
Pesratuur.

Sealiote.
11. Sites.-Open ; free ventilation ; good drainage. No malaria.

Water supply.-A bundant and wholesome.
Drainage-All refuse water, and other impurities, carted away; surface drains for removing rain and roof water.
Construction.-Wards raised 2 feet above ground; no ventilation beneath; double verandahs, inner ones used for sick when necessary; hospital on one floor.
Accommodation:-Three hospitals; 21 wards ; 900 beds (including female hospital), at 1,320 cubic feet, and 66 square feet per bed.
Ventilation.-Opposite doors; swing windows; thermantidotes for cooling; fireplaces for warming.
Cleansing of walls and ceilings twice a year.
Latrines and wrinals.-Same as in barracks; cleqansed daily.
Lavatory and bath.-Incomplete and insufficient; no wash-houses; only a portion of outer verandah used; cold baths administered by leather bags or waterpots.
Hospital washing and drying out of station.
Storage crowded.
Bedding.-Same as in barracks, except that a chopped hemp mattress is allowed.
Cooking.-Kitcheds, temporary mud buildings without doors or windows; "insufficient," but cooking "sufficient."
Attendance.-Hospital serjeant; native servants; an orderly, when necessary.
Sanitary state.-Good, except for ablution.
Convalescents.-No wards required; exercise, in doolies or on elephants.
Female hospitals.-Separate buildings, with matron and native female servants; "very satis" factory."
12. Site.- Well ventilated and healthy.

Water supply.-Good.
Drainage.-Refuse water and other impurities removed in carts; surface drainage "ample" for removing roof water and rainfall.
Construction.-On one floor; brick masonry ; tiled roofs; double verandahs (inner ones might hold sick, if necessary) ; floors of brick, raised 3 feet above ground; no ventilation beneath. Built in 1852-53.
Acconmodation.-Ten wards; 160 beds, at 1,930 cubic feet and 78 square feet per bed.
Ventilation.-Free exposure to winds; ridge ventilators; windows opening in centre; cooling by punkahs and tatties; warming by fireplaces.
Cleansing.-Whitewashing twice a year ; four times to the height of 6 feet.
Latrines.-Usual construction; filth removed daily in carts.
Ablution and bath room attached to each wing ; plenty of water laid on from wells; baths in each room.
Hospital washing done at a distance.
Storage sufficient.
Bedding. - Wooden cots, "which so harbour bugs that they are constantly broken by the men
" in their efforts to expel the vermin, and the repeated repairs required are most expensive."
Cooking.-In kitchens similar to those of bariacks: : $;$
Attendance.-One hospital serjeant; more permanent hospital orderlies required; nurses not employed, but strongly recommended.
Sanitary state.-"Highly satisfactory.".
Convalescents' wards.-"Not necessary;" doolied and elephants used for exercise.
Feimale hospitals, "Excellent" and "perfectly satisfactory." Fig. 12 gives a plan of this building, and also the construction of the more recent female hospitals in the north-west.

Fig. 12--Hoapital foa Finalig, Beancotm

Fig. 13.-Standard Plan of taf Hogfitals at Hazareebayge.
Sketion on A. B.

Stations.
Rerliteg

Accommodation.-Six wards, 96 beds; 1,080 cubic feet, 60 square feet per bed.
Ventilation.-Hospital broadside to wind; wooden doors; no windows except fan-lights over doors; roof ventilators; glass doors, and Venetians suggested; cooling by punkahs; other means unnecessary; warming by open fireplaces..
Cleansing.-Limewashing once a year, or oftener on requisition.
Latrines.-On standard plan; contents removed 2 miles from barracks; lime and charcoal used.
Lavatory. - Water laid on to each basin; dirty water drained away by covered drains; "sufficient;" no baths ; "sick wash in the basins of the lavatory, and can always "afterwards, if they please, get a skin full of water thrown over them by the water-carriers." Hospital washing done by dhobies (5 allowed for a corps) at a distance.
Storage not dry enough; stores at present in the female hospital.
Bedding.-Iron-hooped cots; mattresses seldom sufficiently thick to prevent the patients feeling the hoops; pillows stuffed with country hemp; sheets and blankets.
Cooking.-Ordinary Indian arrangements; pay too small to secure services of cooks, "with "even moderate pretentions to the name;" plain roasting, boiling, \&c., all that can be expected. "No delicacy of any kind, likely to tempt the capricious appetite of a sick man, "could be prepared by these miserahle pretenders."
Attendance.-Usual arrangements; "European nurses, professionally trained, might be most advantageously introduced into the hospitals in this country."
Sanitary state "very good," "but more light. would be an advantage."
Convalescents.-No wards; convalescents sent back to barracks; no shaded walks, except verandahs; elephants used for exercising.
Female hospital. -One, 5 wards; 80 beds; 1,080 cubic feet and 60 square feet per bed; female attendants; arrangements very good and satisfactory.
Allahabad.
Water supply good and wholesome, filtered through sand and charcoal.
Drainage.-Very imperfect, inadequate during rains ; roof-water mostly sinks into subsoil, only shallow narrow surface drains.
Construction.-Floors level with ground; total want of ventilation beneath; materials, baked and sun dried brick ; thatch and tile roofs, insufficient for coolness ; verandahs $\mathbf{1 5}$ feet wide, sometimes used for sick; buildings on one floor.
Accommodation.-Four hospitals; 9 wards; 780 beds ; seven wards have 100 beds each, with from 990 to 2,033 cubic feet; and from 40 to 88 square feet per bed ; built in 1858-59.
Ventilation.-Hospitals face the wind; in most instances no windows, 'except openings over doors, and openings in roof; ventilation very defective, especially when doors have to be closed; tatties used for cooling; no means of warming.
Cleansing.-Limewashing on requisition.
Latrines of usual construction, cleansed daily.
Lavatory.-Cast-iron basins, lined with porcelain on benches; water supplied from welle by bhesties; distance from hospital too great; no baths.
Hospital washing by washermen, well done.
Storage.-Of small sun dried bricks, tolerably dry.
Bedding.-Wooden bedsteads, fragile; harbour vermin ; constantly requiring repairs.
Cooking.-Usual kitchen apparatus ; proper cooking stoves required; want of suitable apparatus for roasting and grinding coffee.
Attendance "ample;" besides usual provision, 6 European nurses in general hospital, found to add much to comfort of sick.
Sanitary state "good;" but cholera has occurred; hospitals merely temporary, and deficient in many requirements.
Convalescents.-No wards ; exercise on elephants ; no shade.
Female hospital.-None; wards set apart in other hospitals; female attendants allowed.
18. Site.-Generally healthy.

Water supply. - Wholesome, but not abundant.
Draingge.-By surface drains. Lavatory water conveyed away with roof water. Other foul water flows into e pit and is carried away daily.
Construction.-One-storied; raised on brick arches 3 feet above ground, with free ventilation beneath. Masonry walls. One hospital iron-framed. Verandahs used for sick when centre wards full.
Accommodation.-Main hospital, 20 wards; iron-framed hospital, 7 wards; native hospital, 6 wards; female hospital, 9 wards; total beds, 390, at from 1,072 to 1,637 cubic feet and 78 square feet per bed.
Ventilation.-Full benefit of prevailing winds. Numerous doors and windows. Ventilating skylights. Punkahs for cooling.
Cleansing.-Limewashing once a year, or on requisition.
Latrines.-Usual construction. Contents removed by cart every morning.
Lavatory.-Metal basins. Water laid on. Hot, warm, and shower baths.
Hospital washing.-Done by dhobies.
Storage.-Sufficient.
Bedding,-Wooden bedsteads. Iron bedsteads, with coir mattresses, are to be introduced. Cooking.-Usual arrangements. Cooks not highly paid, and of the worst description.
 No nurses.
Sanittary state.-Hospital has been remarkably free from disease.
Convalescents.-Wards not necessary. Weakly men carried out in sedan chairs. Little available ground for exercise.

Mottra.

Raneraunge.

21. Site.-Cavalry hospital good. Artillery hospital too near the city, with a dry nullah close to it.
Water supply:-Good.
Drainage.-No drains ; refuse water and other impurities collected in cesspools and removed daily.
Construction,-Burnt and unburnt bricks. Tiled and thatched roofs. Verandahs; inner ones very frequently used for sick. Single-storied. Floors $2 \frac{1}{2}$ feet from ground. No passage for air beneath.
Accommodation.- 3 wards, 48 beds; square feet per bed, 64 to 75 ; cubic feet per bed, 1,350 to 1,422; the new female hospital used for cavalry
Ventilation.-(External) of cavalry hospital good; of artillery hospital not so. No windowa;
doors opposite each other, with roof ventilators. Thermantidotes for cooling.
Clearsing.- Walls swept down weekly; whitewashed annually, or oftener.
Latrines.-Copper pans. Contents carted away every morning for combustion in one of the many brick-kilns that surround the station and help to poison the air. Privy drainage runs many brick-kil. No supply of water excent by bheesties.
Lavatory.-Earthen pans or basins, and earthen vessels filled with water; not convenient. . No means of bathing but a moveable warm and slipper bath.
Hospital washing done at the river.
Hospital washing don.
Storaje.-Sufficient.
Bedding.-Common cots, with tow mattresses, and pillows, \&c.
Bedding.-Common cots, with tow,
Cooking arrangements "sufficient."
Cooking arrangements "sufficient."
Attendance.-Insufficient ; more European supervision required. : "In times of increased Attendance.-Insuffient; more European supervision requires. and a source of complaint "s sickness, apathy and laziness of
"and discontent to the patient." enters from a couple of panes in the doors near the top; and, when closed, darkness almost complete. Windows wanted.
Consalescents.-No wards. Sick exercised on elephants, or in doolies.
Female Hospital.-One for cavalry (part of the old cavalry hospital); none for artillery. 29. Site.-Healthy.
22. Site.-Healthy.
Water supply.-Good, but has to be brought from a distance.

Drainage.-Roof water sinks into subsoil; no drains ; refuse water and other impurities are carried away in carts and bucketg.

Stations.

[^5]ROOEEEE.

Jhansi. Barragypork.

Debhi.

Morar Gwalioh.

MADRAS PRESIDENCY.

ABSTRACT OF SANITARY DETAILS IN RETURNS FROM PRINCIPAL STATIONS WHERE THERE IS ACCOMMODATION FOR BRITISH TROOPS

Replies to the questions issued by the Commission have been reccived from 49 stations in the Madras Presidency and ite dependencies, at 29 of which there is accommodation for European troops.
A number of these were occupied solely by antive troops at the time the returns were made.
The following abstract is confined to the more important stations where the largest number of European troops have been located.
The lowest stations are Fort St. George and Poonamallee on the level of the sea. The highest occupied purely as a military station is Bangalore, 3,000 feet above the level of military
There are two hill stations, Ramandroog and Wellington, the former 3,300 , the latter 6,000 feet above the sea.
About 8,500 men are barracked at elevations between the sea level and 1,000 feet above.
About 4,500 are placed at heights between 1,000 and d, 800 feet. Nearly 1,500 are barracked at Bangalore, at an altitude of 3,000 feet, and about 1,000 at the two hill stations.

The sea side stations of Fort St. George, Waltair, and Vizagapatam occupy mandy soils; the last is on a swampy tidal estuary.
The barracks and hospitals at St. Thomas' Mount are close under the hill, which rises 180 feet above them.
The higher atations are on granite and trap rock, sandstone, and limestone.
Bangalore is an undulating sandy table land, partly swampy.
The Neilgherries in the neighbourhood of Wellington are mountainous, and consist of schists and basaltic dykes.
The plain at Poonamallee is under water in the rains.
Rangoon and Tonghoo are both situated in low, jungly, marshy districts.
In many parts of the -Madras Presidency there are districts of country of a healthy character, and possessing climates similar to the best of the south of Europe. Very few mates similar to the best of the south of Europe. Very few healthy, while many are considered as decidedly conducive healithy,
to health.

. Stations	Elevation above		Accom-modation for British Troops.	Actual Occupa tion.	Mortality per 1,000per annumBritish Troops.	
	Sea.	Country.			Total.	Miasmatic Diseases
Secunderabad	$\begin{array}{r} \text { Foet. } \\ \mathbf{1 , 8 0 0} \end{array}$	$\begin{gathered} \text { Feet. } \\ \text { various } \end{gathered}$	1,961	2,978	59•74	
Vizagapatam	$\therefore 10$	0	810	310		
Waltair -	200	150				
Bellary - -	1,600	60	1,038	1,084	$48 \cdot 6$	
Madras - -	0	0	1,030		34-69*	$16 \cdot 21$
Fort St. George	675	0		248		
Bangalore -	3,000	0	1,689		23.69*	12.69
Cannanore -	20	0	1,094		21-25*	- $8 \cdot 86$
Trichinopoly	250.		1,095		$31 \cdot 07$	
Rangoon -	80	70	1,150	1,033		
Tonghoo - -	300	- 35	1,1,60	681		
Ramandroog -	3,300	1,000	50			
Kamptee -	900	0	1,396	1,396	3'-26 ${ }^{\text {e }}$	$23 \cdot 45$
Arcot - -	550	30	366			
Jaulinah - -	1,652		427		$10 \cdot 3$	
Poonamallee -	2	0	600		89-55*	69.65
$\left.\begin{array}{l}\text { Wellington } \\ \text { (Jackatalla) }\end{array}\right\}$	6,000	5,000	907		39-11*	21.93
St. Thomas' Mount	60	18	600		38.6	

Undulating ; rocky ; large tanks; granite and sand. On sea-shore ; close to tidal marsh ; alluvium and gravel. sand hills, with deep, clean, dry ravines ; close to sea Undulating ; dry ; black soil ; granite.
Flat ; sandy ; dry ; clay; resting on primitive formation.
Hilly ; alluvium ; part swampy; primitive rocks. Undulating; sandy and dry; part swampy in rain. On the sea-coast ; laterite with red gravel Alluvial ; granite and trap ruck.
Flat ; jungly ; swampy; clay; sandstone.; laterite. Flat ; marshy ; jungly; red sand; clay; laterite; iron ore.
Hilly ; covered with jungle ; a table land; scanty water supply ; exposed to winds; no cultivation.
Partly black soin; wet in rains; sandstone and imestone. artly cultivated; sandy; dry, broken ground, flooded in monsoon, producing river Pallar
Hilly ; trap rock ; red and black soil.
Plain ; under water in monsoon; sandy.
Mountainous ; schists ; ferruginous clay; basaltic dykes. Open ; small hills ; numerous tanks ; st. Thomas'Mount rises close behind barracks, and 180 feet above parade, impeding ventilation and increasing heat.

Stationg.	Replese.
II. LOCAL CLIMATES. Fort St. George.	On the whole favourable to health. From November to February cool, dry, pleasant. Temperature 76° to $78^{\circ} \mathrm{F}$. Air moist in May and October. Maximum temperature in May 99°. Minimum in December and January 65 . No violent changes. Heavy dew in December and January, with fog 2 or 3 feet above the surface. Air always damp during long-shore winds. Dusty during north winds. Dysentery during October rains. Hepatitis and fever in hot season. January and February the most healthy months; August and September the most unhealthy.
Secunderabad.	Remarkably dry. Rain falls on 50 days annually. Average annual fall, 28 inches. Very changeable. Great attention required to clothing and shelter. Mean maximum temperature of year 95° in May. Mean minimum 64° in December and January. Sun temperature 113° in May. Hot winds, excessive heat and parching, with occasional dust storms, from March till June, which are however the healthiest months. July, August, September, the most unhealthy, when hepatitis, dysentery, diarrhces, fever, continued, ephemeral, remittent and typhoid, prevail.
Vizagapatam and Waltair.	Climate healthy, rather relaxing. Damp and muggy in south-west monsoon. Usual tempe rature 92° F. in hot, 70° F. in cold season. Sea-breeze constant. Daily variations slight. Climate healthy. European troops should be healthy, if properly clothed and kept from liquor. Flannel should always be worn. In August and September some remittent fever; other months healthy.
Vellore.	No observations. Climate hot, but heaithy.

| . | Etations. | | Replisa. |
| :---: | :---: | :---: | :---: | :---: |

Bangalore.
Cantonment contains 124,660 natives, located chiefly in the general bazaar, situated on sloping ground, well adapted for drainage. Open stone drains on each side main streets; smaller lanes undrained. Houses crowded together. No public necessaries. Natives resort to open spaces. Tanneries and slaughter-houses, Sanitary state "very bad indeed." Neither sufficient ventilation nor drainage. Water supply not wholesome, "owing to the amount of "filth percolating into the wells from bad drainage." Houses crowded. Ventilation little within the precincts of the houses, which are closed up when filled, and others opened. In within the precincts of the houses, which are closed up when filled, and others opened. In
front of many native huts there is a dirt-heap at almost every door. Bazasars have been allowed to spring up too near the barracks, and now nothing short of removal of one or the allowed to spring up too near the barracks, and now nothing short of removal of one or the
other will remedy the evil. Filth from cowhouses flows into open drains. No arrangements other will remedy the evil. Filth from cowhouses flows into open drains. No arrangem
for stabling bazaar horses, which, with other domestic animals, are kept in the houses.
Cannanore.

Taichinopoly.

Kamptee.

Arcot.

St. Thomas' Móunt.
WELLINGTON
(Jackatalla.)
Ramandroog.
Poonamallee.
Jaulnam.
Bazaar not overcrowded. Drainage good. Water abundant. Cleanliness observed, but great want of latrines, leading to filth and indecency. Native houses have dungheaps and cesspits within the compounds. Cannanore itself is in a very bad sanitary state. Dead are buried within the compounds of houses.'
Drainage good. Water supply bad, scanty, and generally brackish. Bazaar usually clean, but open cesspits an intolerable nuisance when wind blows over them. Cleansing done by owners with help of Government carts. Several parts of the cantonment might be improved by pulling down walls, deserted huts, \&cc., filling up and leveling. Native houses very ruinous, and not ventilated.
Principal streets have olosed drains. Ventilation of bazaar imperfect. Crowding not allowed. Water derived from 220 wells; also from river. 34 latrines. A sweeper to each street and scavengers' carts. Butchers and others provide for removing of offal. "All filth is "thrown into pits in the streets of the cantonment." "Persons committing nuisances are a closely watched and taken up daily." Poorer honses huddled together without order, on ground intersected by nullahs, making houses difficult of sccess. Cesspits, "where "accessible," are cleansed every 48 hours. European bazaar; with 10,000 natives, is 500 yards from European infantry barrack.
Drainage of bazar sufficient. Ventilation, cleanliness, and crowding much the same as in others. Water supply "good." No latrines. Native houses good. "Dungheaps are not exposed."
Sanitary condition of bazaar bad. Crowded, narrow, badly ventilated
Bazaar well situated and well drained. Water supply plentiful. Cleansing by sweepers. Healthy.
No military bazaar. Civil bazaar crowded, and not kept as clean as it might be, nor the hill generally.
Native huts near station dirty and unwholesome. Nuisances among them, which, when to windward, are prejudicial to barracks. There should be a strict sanitary police over natives.
Bazaar crowded; drained only on surface. Clean. Water from wells. Houses generally good, but many most wretched. No dungheaps nor cesspits, "outside at least."
but miany most wretched. No dungheaps nor good open drainage."."Ventilation good." "Water supply abundant." Kept Bazaar has "good open drainage. Better arrangements for removal and deposit of night-soil
very clean. No public latrines. Beter required.
No cantonment bazaar. Houses of native followers very bad and dangerous. Commissariat bearers too poor to build houses; " live anywhere and anyhow." "Numbers always sick, "and numbers die or have to be sent away."
VI. BARRACK CONSTRUCTION

Fort St. Georgr.

European barrack, contains 2 rooms; lower, 1,483 feet long, 18 feet wide, $15 \frac{1}{2}$ feet high; apper, is slated at no less than 2,124 feet long, 20 feet wide, $14 \frac{2}{2}$ feet high, and contains appe 600 men. These two rooms accommodate 1,030 men, at 1,000 cubic feet, and from 64 to 69 square feet per man
Materials, brick and mortar. Floors of square brick and
No passage of air beneath.
Iron bedsteads.
Iron bedsteads.
Fig. 1 shows the ground plan of this barrack.
Fig. 1.-Plan of the Barracke, Fort St. George:

Secunderabad.
One hundred and eighteen rooms for 118 non-commissioned officers, and 30 rooms for 1,843 men. Numbers of men per room vary from 4 to $10,20,64,90$, and in 10 rooms there a 104 men per room. Cubic feet per man from 1,003 to 1,088 ; square feet No windows; but large double glass and Venetian doors on oppos Double verandahs ; inner on
Materials, brick in chunam.
Floors of granite. Height, $1 \frac{1}{2}$ to 4 feet above the ground. No passage of air beneath. Roofs tiled or terraced,

Fig. 2 shown the Madras artillery barracks at this station.
Fig. 2.-Plan of Madras Axtillery Barrackg, Secumderabad.

Vizagapatam and Waltair.

Cota wooden. Commander-in-Chief states that, for upwards of 4 years, he has attempted unsuccessfully to obtain iron cots.
At Vizagapatam, one barrack room for 72 men, at 560 cubic feet, and 43 square feet per man. Five temporary barracks at Waltair, giving about 800 cubic feet and 53 square feet per man. At Waltair, built of wattle and daub, with verandahs and thatched roof. At Vizagapatam, of brick, stone, and mortar. Those at Waltair liked by the men; cool and healthy. Those at.Vizagapatam, hot and close, objectionable in every way, ought to be rebuilt.
No passage of air beneath floors.
Bedsteads of wood, infested with bugs to a great extent. Iron should be issued.
Brllary.
Nine barrack ranges for men ; each consisting of one centre room for 64 men, and two inner verandahs for 18 men each. Cubic feet per man, 1,290 to 1,685 ; square feet, 64 to 105. Materials, stone. Floors of granite slabs, $2 \frac{1}{4}$ feet above ground, with no ventilation beneath. Construction commenced in 1843, completed in 1858.
Fig. 3 gives a plan and section of these barracks.
Fig. 3.-Nrw European Barbaces, Bellary.

Elevation.

Beds merely planks on wooden trestles. Bugs abound in all the barracks. Iron cota required.
Vkllore.
Bangaloore.
of tiles and cement, 6 inches above ground; no ventilation beneath.
Materials, atone, brick, and mortar.
Floors of flags or chunam; some raised above ground. No passage of air beneath,
All have verandahs ; never used as sleeping places.
Bedsteads of planks on wooden trestles. Iron would be bettor.
Whitewashing once a year inside, and once every two years outside, but oftener, if necessary.
Whitewashing once a year inside, and once every two years outside, but oftener, if necessary.
Barracks at the atation for horse artillery, for foot artillery, for cavalry, and for intrantry. Barracks at the atation for horse artillery, for foot artillery, for cavalry, and for intantry,
Horse artillery barracks in two ranges, containing 90 men each, at 000 cubic feet and 46 square feet per man. Foot artillery barracks consist of two ranges, 29 men in each, at 1,000 cubic feet and about 70 aquare feet per man. For cavalry eight ranges, 88 men each, at 1,000 cubic feet and 46 square feet per man:. Infantry barracka are in six ranges,

Statione.	Replies.
cunderabad.	"Sufficient."
Vizagapatam and Waltair.	Separate houses in the former. A building divided in separate quarters at the latter station.
Bangalori	Sufficient married quarters, built or sanctioned for the cavalry and artillery barracks. Insufficient and very bad for the infantry, but the barrack is condemned, and to be given up. Ir this case, some married people are in barrack rooms, but not with single men.
Cannanore.	Married people are quartered in a Christian village. . Separate ranges for them are very desirable.
Trichinopoly.	No separate quarters. A portion of the barrack accommodation has been given over for married people.
	Married quarters temporary. Most ob
	Ma
amandhoo	Sufficient for the present nu
Poonamallee. Jaulnah.	None. Married people occupy barrack rooms with single men, but separated by curtains. Not sufficient special quarters. Those who have none live in the patchery, which is private property, consisting of most miserable hovels, badly situated, devoid of ventilation, and untit for Europeans.
Rangoon 'Tonghoo	No special quarters. Artillery have a patchery. None, except for artillery, which are bad and not sufficiently roomy. Others sanctioned.
PRISON CELLS	The prison and cell necommodation appears to be of an inferior character. At Secunderabadand Wellington prisons are being built. At nearly all the other stations the cells are described as more or less bad and unwholesome; as being too small, badly ventilated, damp, or too hot, or tainted by the proximity of privies. At Kamptee the cells are away from the barracks, and there is no quarter for any one in charge. These cells are otherwise bad, and cannot be used. The prison and cell accommodation will require improvement at the same time
VIII. VENTILATION OF BARRACKS.	as the stations generally:
Fort St. Grorge. Secunderabad.	By opposite doors and windows. Venetian shutters to upper floor. Earthen tubes in roof. Half doors generally open night and day. Punkahs for cooling. Huts not ventilated. Ventiation by doors, windows, ridge ventilators, skylights, and upper wall ventilators; said to be sufficient to keep the air pure if the ventilators are kept open. Cooling.by tatties.
Vizagaratam and Waltair.	No means of ventilation at Vizagajatam, except windows and doors ; insufficient. At Waltair, ventilation insured by not oarrying wall up to roof; quite sufficient. Punkahs used for cooling at Vizagapatam; not required at Waltair.
Bellary.	No windows. Doors, half venetian, half panel. Openings for ventilation in side walls, nearly at top, having glass frames on pivots. Moveable fanlights above doors, sufficient. Punkahs used for cooling.
	None, except by doors and windows. No means of cooling the air.
	All the barracks have windows and doors. In new buildings, roof and floor ventilation; generally suffioient, but defective in some old buildings.
Y	By doors, windows, penthouses in roof, and ventilators in walls; not sufficient when doors and windows are shut. Punkahs not required.
Trichinopoly.	Ventilation in bombproofs by windows and doors; in old artillery barrack by doors.: Both insufficient. In other barracks, ridge ventilation, sufficient. Punkahs and tatties for cooling.
Amptee. Arcot.	Windows on opposite sides, unglazed. Three openings in roof of each barrack. "Ventilation " most faulty and deficient." Punkahs and tatties for cooling. Windows on opposite sides with ventilators above. "Sufficient." Cooling by punkahs and tatties.
St	By an opening in the roof. Windows and doors on both sides; sufficient. Cooling by punkahs.
$\mathbf{N} .$	Windows and doors opening to verandahs. Yentilating windows with ventilators 6 inches square. Sufficient. Warming by fire-places.
	Ventilators near ceiling. Windows, donrs, upper half renetianed; a great disadrantage in wet and windy weather. Half glass doors required. Warming by fire-places.
Poonamallee. Jaulnaf.	Windows on opposite sides. Small openings in roof. By no means sufficient. Doors, windows, ridge venfilators, and fanlights; good, and geuerally sufficient in horse artillery ; in native infantry and cavalry very deficient. Punkahs and tatties for cooling.
Rangoon.	Doors ; and windows on opposite sides. Also a narrow opening, 4 to 6 inches wide, along the top of side walls. Might be improved by having ridge ventilation all along.
Tonghoo.	Doors; windows; a space between the roof and the top of the wall, and ventilating boards at the floor.
RAINAGE.	
Fort St. George.	Fifty thousand rupees lately sanctioned for improving drainage of Fort St. George. Old privies "as bad es they well could be;" new-ones being constructed. Arrangements at native lines, as described, simply abominable. Drainage, in the proper sense, cannot be said to exist; such as it is, it is worse than useless. "No cesspits within the fort of any ."consequence." Main drain of town 80 yarcls distant. Lffluvia from it very offensive, with north-east wind.
Secunderabad.	Underyoing improvement, in old barracks, by built drains, 4 feet by 3 feet, to an outlet 476 yards distant. Artillery barracks druined by surface drains to a soldiers' garden 140 yards distant. No drainage of any kind at Trinulgherry. Fluid refuse evaporates, or sinks into subsoil. A nullah, which intersects the caritonment, at times very unpleasant. Extent of cantonment aaid to be st enormous as to preclude any general surface draining. Parades and lines kept clean by regimental followers ; bazaar by police.
Vizagapatam and Waltatr. Bellary.	At Vizagapatam, open surface drains to sea and back-water. At Waltair, drainage runs off by aurface; said to be sufficient. At Vizagapatam, water lies on surface, anless cleared. away. Chunam is spread over it at intervals. One or two bad drains near hospital. None, except the fall of the ground. Privies cleansed twice a day; contents thrown on the ground two miles away. Fig. 5 shows the structure of privies of this class.

Rangoon.
Tonghoo.

X. WATER SUPPLY.
 Fort St. Grorge.

Secunderabad.

Vizagapatam and
Valtaik.
g. 6 shows the artangement.
Fia. 6.-Privy, witi Cesspoor, Jaulinal

Exceedingly defective. Attended to by local prisoners. Nightsoil carted away to a distance.
All drainage by open surface drains to the Ulsoor tank, half a mile from most remote barrack Sufficient for surface water. Ground favourable for drainage. No swamps or decidedly
Sume wet ground. The tank which receives the drainage is largely used for drinking purposes by Open drains covered drains. Outlet into the sea 60 yards off. Drainage not sufficient. Daring to season, all floors damp. Drains badly constructed.
barrack. Sufficient for surface water. Artillery barracks not drained yards from nearest down slope into fields. Old diteh of fort, $2 \frac{1}{2}$ miles distant, extremely foul. Eight houses from them for treatment.
No drainage. Rain water which does not find its way through the bairack wall is left to mass of mud and filth, receive the cook-house drainage, and are emptied twice a doy Privies not drained. Everything carried away. "With a native population of 70,000 souls, there must be an immense deal of filth ; but every means are taken to prevent it" sewers. Surface drains. Sufficient for surface water, but not for cook-houses. Fluid 6 feet square; cleaned daily. Surface drains; only flushed by water from bath rooms and by rain. Insufficient, as the drains are frequently filthy. Contents carried to a very short distance from barracks and being rectified. Refuse from privies, \&c., carried away daily: being ennstructed. In the meantime, nightsoil and refuse conveyed in covered. carts to cesspits a mile distant.
on the edge of the hill, which acts as a natural drain.
No sewerage. Drainage insufficient. East wing of barracks damp in consequence. All fluid refuse "soaks into the subsoil, where it falls." Foul ditch surrounds the fort, which encloses the hospital; has been reported over and over again, without result.
on a piece of waste ground, 150 yards from barrack. Privies and urinals have cesspools fitted with tubs ; removed twice a day to a distance.

Open draing for surface water. Not sufficient where the ground is low, and on which water stands till it evaporatea, Barracks and hospitals damp in monsoon. Contents of privies removed to a distance in boxes daily.
Drainage natural. "No sewage required." Drainage of bath houses requires improvement. Privies very bad; only a cesspit. No means of cleaning them. Charcoal and lime ased for purifying them.
Water brought in pipes from Seven Wells, two miles distant, to covered cisterns in the fort. Native supply from wells and tanks. Some of it brackish, especially in Black 'Town. Almost all tank water has a disagreeable smell. Quality said to be "good." No chemical analysis. Water from numerous wells; generally, abondant; scanty after dry weather; in colour almost
clear, sometimes slightly opaque. Analysis of five wells and one tank given, showing from above 10 grains to above 119 grains of solid matter per gallon, and from above $2 \frac{1}{2}$ grains to about 30 grains of organic matter per gallon. Such water apparently not considered unbealthy, although the most fatal diseases at the station are those, of which bad water is known to be a predisposing cause. Water is raised for use in a skin bag, by a rope over a pulley, hauled up by bullocks, and discharged into a reservoir, whence it is conveyed by masonry conduits or skins (the usual way) to its destination.
From wells and tanks, former said to be clear and good. A tank near native infantry parade ground "very foul and bad." Amount of water very limited. Water raised from wells by rope and hand. Supposed that un unlimited supply might be brought in iron pipes from a distance of five miles. No analysis.

Spations.	
Bellary.	Prizcipally from wells. Two tanks; one dry for seven months, emitting unpleasant amells. Natives prohibited from bathing in one tank, but do so nevertheless. Quantity not known. Two wells, described as clear and pleasant, contain animalcules. Another said to contain none, contains a considerable quantity of vegetable matter. No analysis. Present supply uncertain; sometimes fails, as it did last year. It would be better to bring water 50 or 60 miles, which can be done.
Vellore.	Colourless and inodorous, but in most of the wells brackish." The harder water causes diarrhcea among new comers. Plenty of water for lavatory purposes. Water "too near the surface to "r require any mechanical contrivance for raising it."
Bangalore:	Wells and tanks, but water not stored. In monsoon time, all tanks full; become smaller in dry weather. All used by natives both for drinking and bathing. Ulsoor tank, used for drinking, is the outlet for the whole drainage of the most filthy bazaar, of the cavalry, infantry, and horse artillery barracke, and of the greater proportion of station. A great nuisance in dry season. Respecting this tank, the Commander-in-Chief remarks, "The disgustingly "filthy nature of the source from which the water used at Bangalore is taken has been brought " to notice scores of times by me within the last $4 \frac{1}{2}$ years, but, as usual, nothing has been "done to remedy this most crying evil." Water for Europeans is taken from wells, which are open, and "when they get dirty are cleaned." It is raised by hand or bullock labour, and carried on bullocks and water carts. To remedy these evils, it is proposed to bring a water supply 36 miles. No analysis.
Cannanore.	From wells ; generally free fromimpurities; quantity ample near some parts of the cantonment; in some seasons little or none near infantry lines; puckallies and bullocks employed for raising and distributing it; said to be "good ;" no analysis.
Trichinopoly.	Chiefly from wells, every one of which is more or less impregnated with lime. Water partly stored in open tanks, in some of which, used for drinking in town, natives bathe. Quantity abundant ; quality, clear, but most welle slightly brackish; some few sweet. Tank water neither clear nor good. Raised and distributed in the usual way; No analysis.
Kampter.	All from wells, of which there are neveral hundred ; quality various; mostly good, pure, and inodorous. River turbid during rains, foul and polluted with the refuse and filth of bazaar in dry season; used for cattle and for washing. No analysis. No better supply, except by damming the river.
Arcot.	Water derived from wells; tank not used for drinking; "probably produces malaria, and is "a nuisance." Wells sufficient for present supply; quantity sometimes runs short in hot season; quality, "clear, wholesome, and without smell," but no chemical or microscopio analysis. Supply raised by leather buckets and distributed by water carriers.
Str. Thomas' Mount.	From wells, not liable to pollution; supply abundant; water in some wells brackish, excellent in others; no analysis; raised for use by windlass and bucket. Tanks outside station, full in rains, probably producing malaria in dry weather.
Wellington.	About 9 cubic feet a second, distributed by pipes from a reservoir with a head of 70 feet; no analysis; soft.
Ramandroog.	From a large tank and springs; tank used for bathing and drinking; it is supplied by tbe drainage of the adjacent country, and is a receptacle for everything the waters may carry down. Amount and chemical composition unknown; quality "excellent;" distributed by bullocks with leather bags.
Poonamaliler.	From wells; unlimited in quantity, and "good;" contains alkaline carbonates; no analysis; raised and distributed for use "in country earthen pots."
Jaulnar.	From wells, Seo nullah and Koondulka river, and tank: River and tank water "good and "wholesome;" many wells brackish and saline, containing lime and nitre; no analysis; some wells good; supply scarce in dry weather; raised by manual labour and bullocks.
Rangoon.	Wells and tanks. Never dry, and brim-full during rains. Quantity ample, except in hot months. Quality "most excellent." When drawn, it is of a whitish colour, but soon deposits sediment and becomes comparatively clear. . Requires filtration. No anslysis.
Tonghoo.	From river and wells. Ample and "very good," but hard. Turbid in monsoon, and requires filtration. No analysis.
XI. ABLUTION AND BATH ACCOMMODATION.	
Fort St. George.	"Excellent and abundant baths and wash-houses:" 82 baths and two lavatories for men, and 19 baths and two lavatories for women and children. Water laid on. All well drained through latrines to aea. Fig. 7 shows this bathing establishment, which is the best in India. Fig. 7.-Bythe, Fort St. Gronob. (See plan of barrack, Fig. 1.)
Secunderabad. - Brllary. -	Lavatories have tubs, shelves for basins, and grated floors; also plunge baths. There are altogether 20 lavatories and five plunge baths. Water raised by bullocks and puckallies. At two barracks water runs off by drains. At Trimulgherry, with three baths and 10 wash. houses, there is no drainage. Nine lavatories and one large bath for men. Water obtained by channels from a well; the lavatories are drained into cisterns, whence the water is removed by hand.
$\left.\begin{array}{c} \text { Vizagapatan and• } \\ \text { Valtair. } \\ \text { VELLore. } \\ \text { Bangalore. } \end{array}\right\}$	No information. None. No information.

Fig. 8.-Plan and Section of Wabhing Roomb with Basing, Wrleington.

Ramandioog.
Poonamallege.
Jaulnag.

Rangoon.
Tonghoo.
XII. DIET AND

COOKING.

Wash-houses built on the edge of the hill; admit of easy drainage from their position. Water supplied by puckallies. No bath-house ; want much felt. Two bath-houses, one for men, one for women; also tubs. Stone trough at each corner of barracks for washing. Water supplied by puckallies.
Two lavatories to horse artillery; deficient in size and commodiousness; supplied by pucksllies with water. No plunge bath, only a bath room. Figs. 9 and 10 show the arrangements for cleanliness at Jaulnah and Palaveram, and by comparing the rude construction they present with the lavatory and bath plans at Wellington and Fort St. George, the difference between what ought not and what ought to be the provision for cleanliness in barracks will be selfevident.
Fto. 9.-Lhtatort and Bath Room, Jaulyaf,

Section on L M.

Fion 10-Tanatory at Palayrbame ${ }_{i}$

"There are lavatories, but no baths."
Ten wooden wash-houses for men (one per company). Water aupplied by bheestiea.
The ration in Madras Presidency consists of 1 lb . meat, 1 lb . bread, 1 lb . vegetables, 4 oz. rice, 15 oz . coffee or $\frac{0}{1} \mathrm{oz}$. tea, 2 oz. sugar, 1 oz . salt. The value is 3 annas 4 pice. The zame ration is issued at ell seasons and at all stations, irrespective of climate. The vegetables vary according to season. Potatoes seem to be most preferred by troops, but are not always to be had. Beef and mutton are issued at different intervals.
The usual Indian cooking apparatus is used, and the kitchens are often of a very rude character. Little complaint is made of the cooking, but notwithstanding this, improved cooking apparatus has been successfully tried at Fort St. George. The following Fig. 11 shows a common arrangement of barrack cook-houses in Madras Preaidency.

3 G 4 .

Tig. 11.-Plan of one of the Coof-rooms attadied to the Barraoks, Bellary.
 allowed two drams a day without porter, or one dram a day with one quart porter. Many do not drink spirits; some only a portion, and only after dinner. Consumption of spirits, as a general rule, considered injurious; but it would be prejudicial to prohibit sale in canteen; men would get worse spirits elsewhere.
Secunderabad.

Vigagapatam and
Walmair.

Bellary.

Vellore.

Bangalore.

Caxirant.

Trichinopoly.

Kamptes.
Average number of confirmed drunkards varies." In one regiment 7 per cent., in another 1 in 30 of the force. Admissions to hospital caused directly by intemperance, 1 in less than 24 ; indirectly, 25 out of 26 (1 in $\mathrm{J}_{\frac{1}{2} \frac{88}{81} \text {). Arrack and brandy sold in canteens. }}^{2}$. Spirits certainly injurious to health. Amount is not so injurious as the authority and sanction given to spirit drinking, and the desire it created for more. Present indiscriminate issue " most pernicious." Sale should be abolished; beer, tea, and coffee used instead.
Temperate, with few exceptions. Three confirmed drunkards out of 77 men in European light infantry. In European veterans, 10 per cent. $21 \frac{1}{1}$ per cent. of admissions to hospital from "ebrietas ;" 729 per cent. from delirium tremens. Spirits sold in canteen, and "a worse "description of liquor" sold to the men within s few yards of the barracks. One dram arrack, one pint beer, or two drams arrack, may be purchased daily at canteen. Spirits most injurious to health. "The habitual daily two drams ruin the health and habits of the soldier, " who thinks that, as long as he takes only what the Government allow him, he cannot no "who thinks that, as long as he takes only what the Government allow him, he cannot go
"wrong." "The sale should be altogether discontinued by Government." "The habit of "spirtt drinking, which it establishes, is what should be avoided." Malt liquor advantageous. "But health, efficiency, and discipline would be materially improved by tea and coffee in "preference to spirits and malt liquor;" "as has been proved when neither spirits nor "malt liquor could be procured." The only objection against this is that men, partial to spirits, would obtain it elsewhere. Committee propose that spirits be diluted with water, as one step to total abolition of spirit drinking.
Spirits sold in canteens. The less consumed, the better for health. Malt liquor or wine much less hurtful. Would be highly advantageous to abolish spirits in canteen and bazaar, restricting their use to"particular occasions. "The habit for spirits is maintained by their "authorized use."
Light wines and malt liquor at cheap rates "would be an incalculable boon to the soldier, and "a saving to the state." The taste for spirits, " not easily acquired by young soldiers," would die away.
Soldiers usually " temperate;" largest number of confirmed drunkards in artillery, 5 per cent. It appears that of one-year soldiers 1 per cent. is a drunkard; after two years the proportion rises to 2 per cent., and increases with length of residence, showing the evils of bad acquired habit. In artillery, l2 $\frac{1}{2}$ per cent. of the strength admitted annually to hospital, directly or indirectly from drinking.

In India temperance is the exception and intemperance the usual habit of European soldiers, arising mainly from their idle, listless, objectless lives. "But Government is much to " blame. It places the poisoned chalice to the lips, bids them drink freely," and when the babit is confirmed," denounces them as a disgrace to their country, their religion, and their " humanity." "Drinking to excess of ardent spirits is directly or indirectly literally the " humanity." "Drinking to excess of ardent spirits is directly or indirectly literally the "root of all evil in the army." It causes nine-tenths of the crime, and destroys health and
morals. "Unfortunately spirits are sold in canteens," "but any quantity can be obtained "in the bazaar." "It is the part of a civilized Government to devise means to check and "not to pamper this morbid appetite." "The fear of . punishment, but no moral control, "checks the consumption." Probably " not three men in five go to bed perfectly sober," and when pay is issued, not two in five. The witnesses, while all admitting the greatness of the evil, differ as to the possibility of entirely prohibiting the sale. All prefer malt liquor to spirits, but any suppression should include sale in bazaars as well as in canteens. Spirits might be issued under particular circumstances. All agree as to the necessity of providing proper amusements and occupations for the men, to keep them from drink.
"Very temperate; " only four admissions from drink out of 1,037. Arrack sold in canteen, but not allowed in bazaar; good malt liquor or wine decidedly preferable, but it would be injurious to suppress spirits, as men would find inferior intoxicating drink.
Usually temperate." In artillery, 6 to 8 per cent. of the men undergo confinement during the month for drunkenness. lig per cent, of admissions are directly or indirectly from intemperance. Spirits injurious to health, efficiency, and discipline ; sale should be abolished in canteens, bazaars, and within a circle of 10 miles round barracks. Spirits are an irritant poison; should be abolished in toto; wine and malt liquor are better, being cordials. Tea and coffee best of all.
A considerable number of intemperate men in artillery. ' Two per cent. confirmed drunkards in infantry. Two drams spirits per diem taken by five-eighths of artillery. Present.manner of issue undiluted, injurious. Better to suppress sasle of apirits in canteens and bazaars, and to substitute beer, tea, coffee, \&c.
Arcot.
Soldiers "temperate." In 11 months, out of 299 admissions, 2 from delirium tremens and 2 from ebrietas. Each man'allowed two drams a day; injurious; should be abolished if malt liquor could be supplied.

Stations,	Replics.
Arcot.	Schools; a good library; not open at night; day rooms. Means not sufficient. A large building proposed to contain shops; coffee rooms; game rooms, and reading room. No shade for exercise. Want of amusement makes restriction to barracks very wearisome. Skittle ground; no ball court; no gardens; no workshops; no theatre; no gymnasia; no library, but "plenty of books, which can be read till 8 p.pn. when all lights are put out." School and day rooms. No sufficient shade at barracks. "But there is at the infantry depot barrack; which is the hospital of the European corpe, when quartered at the barracks."
St. Thomas' Mount.	Ball courts and akittle grounds; but no workshops, theatre, nor gymnasia. Schools, library and reading room, lighted at night; but no day room or club.
Wellington.	No sufficient shade. No restriction on the men exposing themselves to oun or rain. One ball or raquette court ; four skittle grounds; a soldiers' garden. No workshops.
Ramandroog.	Theatre and gymnasia. School, library, and reading room; one coffee room. Ball court; ikittle ground; soldiers' garden, but no means of keeping it up; no theatre. Workshops and gymnasium very much wanted. No library; no reading or day room. Church, a miserable thatched mud building, yery damp in monsoon, and must be injurious to health.
Poonamalleg.	Ball courts and ekittle grounds. No day room ; no soldiers' gardens; no workshops; no gymnasia. Occasionally temporary theatre. Schools and garrison library open twice a week.
Jaulnah.	Ball court; skittle ground. No gardens; no workshops; no theatre; no gymnasis. Libraries. No schools; no day rooms. Means of instruction and recreation altogether insufficient. No shade for exercise. Tree planting required, also a large shed for exercise; and a swimming bath.
Rangoon. Tonghod.	At this station there is a ball court; skittle grounds; schools; three libraries; day rooms; soldiers' gardens; and shops for trades; two theatres; no gymnasium. Though the means are considerable, they are not sufficient. Lofty open sheds for gymnasis are required. No ball court or skittle ground. No soldiers' clubs. No workshops. School, library, and reading room. Also a theatre. Men grow a few vegetables. No gymnasium. Cricket, quoits, boxing glovés, rifle matches recommended.
XV. DRESS.	The evidence from all the stations, as regards dress, is that the changes introduced have been very important, and that the present dress is suitable as a whole. Several improvements in detail are suggested; such as improved helmets, a more uniform dye for the khakee dresses, the shades of which are so various that "no two soldiers are alike," fannel shirts, \&c. But there appears to be little to complain of as regards dress at present, at least as a whole.
XVI. DUTIĖS.	The duties are very much alike at the stations.. Drills, parades, \&c. early in the morning and in the evening. Guards at varying intervals according to the strength and the number of posts. Roll calls at various periods of the day, and occasionally at night when considered necessary for discipline. There is no evidence of men suffering in health when duties are properly carried out. Even night guards are not observed to injure health, provided the guard rooms be not overcrowded and be sufficiently ventilated. All concur in advising the thorough drilling of recruits at home, as recruit drilling in India is almost uniformly carried on at the cost of health, efficiency, and life.
XVII. PERIOD OF SERVICE IN INDIA. XVIII HILL	The recruiting age for India should according to the reporters lie between 20 and 25 years. One reporter advises 3 years' home service before aending the soldier to India at the age of 25. There is a difference of opinion as to whether soldiers should be sent out direct to India, or in the first instance to an intermediate station. A majority of the reporters advocate the latter course, or sending recruits on landing to the bills. The minimum period of service in India recommended is 10 years; but the reporters generally recommend 12,15 , or even 20 years' service. One reporter considers that with improved conditions as to health, soldiers can serve as long in India as anywhere else.
$\begin{aligned} & \text { XVIII. HILL } \\ & \text { STATIONS. } \end{aligned}$	
Fort St. George.	Unquestionably approve. Troops should be located on hills, with short periods of service on plains.
Secunderabad.	Most highly approve of hill stations for troops, but experience is still wanting as to the best manner of taking advantage of them.
Vizagapatam.	Less loses of life on hille than plains; no objection so far as health is concerned to locating troops on plains, with short visite to the hills to restore health. No experience of hill stations. The lower hill stations in Bengal are unhealthy at some seasons. Hill sanitaria admirably adapted for convalescents and ill-formed soldiers; but once acclimatized, inclines to the opinion that service on plains, under improved sanitary conditions as to stations, would be better than hill residence.
Banaalore.	Hill stations, such as the Neilgherries, better adapted as a sanitarium than for troops. Troops on returning to the plains are more liable to liver disease, dysentery, \&e. Men on going to the Neilgherries and other higher stations, are very apt to suffer from diarrhcea and febrile attacks.
Cannanore. Trichinopoly.	No experience of hill stations. Approve; but service should be on the plains, with short intervals spent on the hills; 6,000 feet sltitude, best adapted for this latitude.
Kamptie.	Advisable to locate troops on the hills, with short period of service on plains; 4,000 to 7,000 feet the best elevations. Men on going to hill stations ara occasionally liable to febrile attacks.
Arcor.	No experience, but approve of hill stations foy troops. , "

Fig. 13.-Plan of the Gbngrai Hogrital, Fort St. George.

[^6]Fig. 14.-Hospital at Trimulaherry.

Sxations.	Replicg.
	Ventilation.-All the hospitals are expused to prevailing winds. Ventilation only by doors and windows. Cleansing and limewashing whenever required. Latrines not drained. Tubs with metal linings used; removed by hand. Three of native infantry hospitals have cesspools. Lavatory and bath.-Madras artillery hospital has a portion of front verandah cut off, not sufficient, keeps front of hospital damp and dirty. Old barrack hospital has four bathrooms, each with a ledge and gutters for holding basins, "sufficient for sick." At Trimulgherry, a bath-room on each floor, inadequate. Some sick have to wash in verandahs. Baths consist of nothing but bathing tubs, "amply sufficient and convenient." Hospital washing by dhobies. Storage sufficient. Bedding.-Cots, iron and woodeu. Cooking.-Copper tin vessels, frying pans, earthen pots, \&c., suffcient and satisfactory. Attendance,-Hospital serjeant for each regiment. Nurse for female wards. Comrade allowed for "very sick men." Native females for women's wards. Native males for men in ample numbers. Sanitary state generally good, with one exception. The old artillery hospital amall, ill-ventilated, badly planned. Old infantry partakes of objectionable site of barracks. In one native infantry hospital, hospital gangrene frequently occurs from overcrowding, from the cachectic state of the patients, owing to the unhealthy character of their lines, and a cesspool in the hospital enclosure. The latter being remedied. Convalescents.-No wards; very much needed at this station, especially when dysentery and hepatitis prevail, and when diet and regimen require care. Exercise taken in sick carts and doolies. Fenced ground with shaded walks and seats much needed. Female hospital. - One attached to every European hospital. Satisfactory; but one of them
Vizagapatam and Waltair.	Vizagapatam.-Site.-400 yards from barracks; houses on three sides; a marsh on fourth side, from which unpleasant effluvium arises. Upper wards used for men, lower wards for women and children ; shut in and in every way objectionable. Native infantry hospital in a low spot, nearly on a level with the swamp, badly placed; air shut out by hedges and gardens. Waltair.-Site admirable; perfectly open to sea-breeze. Vizagapatam.-Water supply abundant for bathing, but for all other purposes watex is brought from a distance. Waltair has excellent water from well in hospital compound. Vizagapatam.-Drainage by open drains into a marsh. At native infantry hospital and at Waltair, no drainage, Vizagapatam and Waltair.-Construction.-Brick and mud, tiled roofs, and verandahs. Floors raised above the ground. No ventilation beneath. Vizagapatam.--Accommodation.-Ten wards for Europeans; 54 beds, at from 660 to 962 cubic feet, and from 58 to 74 square feet per bed. Waltair.-Accommodation.-Four men's wards; 29 beds, at about 900 cubic feet and 64 square feet per bed. Ventilation by doors and windows only. No means of cooling. Cleansing.-Limewashing on requisition. Latrines.-Tubs removed twice a day. Ablution and bath room.-Baths, tubs, and towels in a separate room; quite sufficient. Bedding.-Wooden bedsteads, sadly infested with bugs. Iron required: Cooking generally good. Commissariat responsible for this. In native hospitals men cook their own diets. When too ill to do so, an orderly friend is detailed for the purpose. Attendance sufficient. Sanitary state bad, both of garrison and native infantry hospitals. But there has been no hospital disease in them. Convalescents.-No wards. Take exercise on sea beach. Female haspital.-Wards are set apart and attended by a nurse. Confinements are attended in
Bellary.	Site.-A new hospital under construction. Healthy as regards elevation, natural drainage, absence of malaris, \&c.

Fig. 15.-Plan and Section of the Eubopzan Infantry Hogrital, Bangalork,

Section thaodgri A.

Accommodation:-Horse and foot artillery, 3 wards; cavalry, 5 wards, 77 beds, at 1,001 to 1,395 cubic feet, and 62 to 91 square feet per bed; infantry, 6 wards, 86 beds, at 1,000 cubic feet per bed.
Ventilation.-Artillery hospitals receive benefit of prevailing winds; others do not. Ventilation by doors and windows; very imperfect, subjecting wards to disagreable draug

Statione.	Replies.
-	requiring doors and windows to be closed in rain. "In artillery hospital, openinge in roof. No means of either cooling or warming. Cleansing.-Limewashing once a year, or oftener. Ceilings of cavalry hospital "seldom or " never whitewashed." Privies.-No drainage. Only tubs are used. Rather offensive. A cesspool attached to foot artillery hospital. "Are not more offensive than is unavoidable." Lavatory and bath.-The artillery hospitals use part of verandah for lavatories. The others have separate bath ronms. The cavalry ones small and badly ventilated. Tubs are used for bathing. All water has to be carried. Hospital linee washed by dhobies; "badly done and injured by the men employed." At cavalry hospital two tailors constantly employed mending the linen "from this cause." Storage at all hospitals insufficient. Bedding.-Wooden bedsteads, with difficulty kept free from vermin. Cooking.-Royal artillery cook-house too small, too close to wards. Cooking sufficient. Cavalry hospital diets cannot be sufficiently varied for want of proper cooking ranges. Infartry good and sufficient. Attendance.-The usual number of attendants. Of cavalry hospital it is said that the assistant apothecary has been changed 5 times in 2 years, the second dresser 8 times, the senior apothecary has just been taken away at a day's notice. System does not work well. Permanent subordinates much required. Sanitary state.-Horse artillery good, but site too low, and accommodation ineufficient. Foot artillery hospital has been abandoned. Cavalry hospital has been recently altered to improve it; "of very little use." A number of men were attacked in it with acute rheumatiam, and 9 were invalided. Much worse for this, and for dysentery, since the alterations. Infantry : no epidemic disease, but hospital too small, and such disease may be expected on increase of sick. Artillery hospital has wards too narrow to hold dining tables. No wards for serious cases. No covered places for exercise, " except the covered way to the latrines." No nurses' or apothecary's quarters, some of whom live a mile from the hospital, and "have "to go backwards and forwards all the day long." No way of regulating the temperature. Sick have to go down two steps to the close stools in the closed verandah. Hospital overcrowded. Scarcely raised above ground. Always damp in wet weather. It is so inferior that sick men are reluctant to come into it from barracks. "I have found that convalescents "come round more quickly in the barrack room than in this bad hospital." Infantry hospital, 2 wards, used as nurse's quarters and female ward; exposed to men, and leading to indecency. Convalescents.-No wards. No suitable grounds for exercise. Bullock convalescent carts allowed for artillery and cavalry hospitals. Female hospitals.-A ward in artillery hospital. A female hospital building for cavalry, of one ward, enclosed by verandah all round; partitioned off into four amall rooms for lying-in patient and female nurse. Too small and badly planned. In infantry hospital two men's wards occupied. Objectionable in every way. Fig. 16 , shows the female hospital, with the ward enclosed by other rooms.

Fig. 16.-Female Ward, Bangalorie.

Front Elevation.

With regard to the cavalry hospital, the Commander-in-Chief remarks that, though not a first-class building, it is not altogether so objectionable as represented, and that a new one cannot be built in the present state of Indian finance.
Site.-On a cliff; open to sea; healthy.
Water supply.-A buntant and wholesome.
Drainage.-By surface only. Over the cliff, about 110 yards from hospital.
Construction.- Wards raised $1 \frac{1}{\frac{1}{3}}$ to 4 feet above ground. No passage of air beneath. Walls of Construction.- Wards raised $1 \frac{1}{2}$ to 4 feet above ground. No passage of
laterite stone. Verandahs on all sides. One of them used for sick.
laterite stone. Verandahs on all sides. One of them used for sick.
Accommodation.- 14 wards, 104 beds, at 988 to 1,359 cubic feet, and 62 to 97 square feet per bed. V entilation.-Hospital receives full benefit of prevailing winds. Doors, windows, and openings in the walls. Always sufficient, except sometimes at night. Punkahs used; not liked by men. No means of warming required.
Cleansing and limewashing once a year.
Privies.-At a distance from wards. No drainage. Tubs used. Deodorized with charcoal, and removed at night.
Lavatory and bath.-One for each ward. Tubs for lavatory. No means of bathing, except tubs.
Storage.-Sufficient, but damp in wet season.
Bedding,-Bedsteads of wood. Iron ones preferable.

Stations.	\bullet	Repuizs.

Construction.-Lowest wards raised 5 feet above ground. No passage for air beneath. Matesials, brick and chunam. Jalousied verandah 10 feet wide; sometimes used for mick. A surface chunam drain for carrying away roof water.
Accommodation.-Four wands of 18 beds each, 2 wards of 4 beds each, 995 to 1,178 cubic feet per bed ; superficial area about 50 square feet per bed.
Ventilation.-Windows and ventilators in wall ; sufficient. Cooling by punkahs and tatties.
Cleansing and limewashing once a year.
Privies in small out-housen, over cesspits. Bed stools for bad cases.
Privies in small out-houses, over cesspits. Bed stoois for bad cases.,
Lavatory and bath.-Out-house containing a bath; "quite sufficient."
Storage sufficient.
Bedsteads.-Wood and iron.
Cooking by pots and pans. No apparatus.
Attendance.-"Sufficient."
Sanitary state "good." No epidemic disense.
Convalescents.-No wards. Exercise in sick carts and doolies. Seats in verandahs, and on top of hospital.

Wrhlington.

Ramandroog.
Site open and healthy.
Water supply by pipes ; plentiful and gopd.
Water supply by pipes ; plentifu and gopde
Drainage.-Sewage emptied into Wellinfton stream, 600 yards from privies. Sewers flushed several times daily
Construction.-Built of brick and morpr. Closed and open verandahs ; former occasionally used for sick; roof water carried awas in drains; floors raised, with free ventilation below.
Accommodation. When completed, 10 large wards, at 22 beds per ward, 1,145 to 1,513 cubic feet and 57 to 75 square feet per bed
Ventilation by windows, ventilating whadows and openings; sufficient; wards warmed by fireplaces.
Cleansing and limerrashing once in sif months, or oftener.
Privies properly drained.
Lavatory "good and sufficient." A/bath-room attached to each ward. A good sized washhouse for the sick who can walk ebout, supplied with water troughs, chatties, bathing tubs. Storage not sufficient. Purveyor's 申ore used for convalescent depott patients.
Bedsteads.-Wood, with tape bottoms; straw palliasse, sheets, blankets, pillow cases, quilted covers. Coir mattresses recommended.
Cooking.-Two kitchens ; means sufficient, but iron ranges desirable.
Attendance.-As usual; but five Eropean orderlies have been employed, which has "answered " admirably."
Sanitary state.-" Perfect," but accommodation should be increased. At present only 84 beds for 1,200 men, añd no special wards.
Convalescents.-No wards; desirable but not necessary; plenty of ground about the hospital for exercise, but not enclosed.
Female hospital.-A ward with nurse's quarters attached to hospital. Complete as to accommodation, but separate building would be better.
Site very healthy.
Water supply "abundant and wholesome."
Drainage.-None, except the hill slope, down which the bath water is emptied by natives, by upsetting the tube at a short distance from the building.
Construction.-FFloors granite, 2 feet above ground. No passage of air beneath. No surface drainage. Verandahs on both sides.
No account of accommodation.
V Entilation by windows; ventilators near ceiling; doors with Venetians, admitting damp in damp weather ; stone floors become damp ; bad for bowel disease; ventiation "sufficient," warming by fireplaces.
Cleansing.-Floors once a week, walls and ceilings once a year.
Privies and urinals.-None, only night stools; would be very offensive if there were many men in hospital; removed by natives.
Lavatory.-Two shallow earthenware pie-dishes, placed on a form in a room adjoining the ward where the night-stools are ; "sufficient, but decidedly inconvenient." Two tubs in same room for bathing. Hot water carried from cook-room. After being used, tubs carried out by natives and watar thrown away. In damp and cold weather the room is very chilly.
Storage.-None ; only a amall room at end of the building. "Insufficient by one half, and "not dry."
Bedsteads.-Low cots, with tapes. Cotton quilts and blankets.
Cooking.-Done in part of barrack cuok-house. Native cooks very ingenious in cooking with very meagre supply of utensils. "Sufficient."
Attendance.-"Sufficient."
Attencance.- "Sumcient. Sanitary state.-"Satisfactory;" but in cold damp weather convalescents from dysentery and bowel affections liable to relapses.
Convalescents.-All the men are. Plenty of shady walks for exercise.
Female hospital. - None. Very few women and children. Treated in their own quarters ; but a hospital is sanctioned.
Poonamallee. Site.-Not good. Surrounded by fort wall, excluding air; a dirty stagnant ditch, with shelving mud banks, outside.
Water supply.-Good.
Drainage.-None.
Construction.-An oblong square, floors on leyel of the ground, simply bricked over. No surface drainage; no guttering. Materials, brick; tiled roof. Verindahs.
Accommodation.-7 wards, 92 beds, at 480 to 600 cubic feet, and 48 to 60 square feet per bed.
Ventilation.-Imperfect.
glass, only shutters, like doors. Cooling by punkahs. glass, only shutters, like doors. Cooling by punkahs.
Cleansing and limewashing has not been done for 12 months.
Privies.-Sinall pucka buildings with wooden boxes.
Lavatory.-Not at all sufficient. Hip baths and some basing.
Storage.-Insufficient.
Bedsteads. - Wooden cots with cotton web bottoms.
Cooking.-Kitchens much too small. No ranges.: No means of yoast ing on baking.

UOMBAY PRESIDENCY.

ABSTRACT OF SANITARY DETAIIS IN RETURNS FROM PRINCIPAL STATIONS WHERE IS ACCOMMODATION FOR EUROPEAN TROOPS.

Returns have been received from 30 stations in this presidency. Of these 18 have accommodation for British troops; in most cases, conjointly with native troops.
The lowest of the stations is Bombay, which is at the level of the sea.
The loftiest (occupied by British troops) is Sattara, the elevation of which is 2,320 feet above the sea.
The comparatively healthy stations, Poona and Kirkee, havejan elevation of from 1,800 to 1,900 feet.
There is barrack accommodation for 2,945 men at Baroda, Kurrachee, Hyderabad, and Surat, at an elevation of less than 100 feet above the sea level.
About 1,400 men are barracked at elevations of between 100 and 1,000 feet, chiefly at Deesa and Aden.
There is accommodation for 6,722 men at elevations between 1,000 and 2,000 feet, including the large stations of Nussecrabad, Mhow, Ahmednuggur, Kirkee, and Poona.
At Belgaum and Sattara there are 1,500 men at elevations
of above 2,000 feet, the highest, as already stated, being Sattara.
Dharwar a native station on the Ghauts, is the loftiest
position occupied by troops in this presidency, and in 2,482 eet above the sea level.
The more important stations are situated along the line of the Ghauts, and west coast, at a distance of about 60 miles from the sea.
Kurrachee is on the sea shore.
Mhow and Hyderabad are inland, and most of the amall native stations are on the sea shore.
Most of the stations are situated on ground overlying trap or other igneous rock. The surface soils are generally sandy, porous, or dry. At some stations there are black loams and black cotton soil. In a few instances there are laterite and red soils. The surface of the country is generally undulating, sometimes flat. There is not much wood or vegetation, and in most cases the surrounding country is uncultivated, and not unfrequently barren.
At two or three stations the adjacent country is overflowed during monsoon.
In the following pages an abstract is given of the chief sanitary points, bearing on the health of the troops, at each of the more important European stations.
I. TOPO-

GRAPHY. MOR.-
TALITY.

Stations.	Elevation above		Acoomtion for BritiahTroops.	$\begin{aligned} & \text { Actual } \\ & \text { Occupar } \\ & \text { tion. } \end{aligned}$	$\begin{gathered} \text { Mortality per 1,000 } \\ \text { peri annum } \\ \text { British Troops. } \end{gathered}$		graphical Remarks.
	the Sea.				Total.	Miasmatio Disenses.	
Hyderabad	Feet.	$\begin{gathered} \text { Feet. } \\ \pm 0 \end{gathered}$	1,000	380	$35 \cdot 85$	$26 \cdot 62$	Undulating ; sandy ; dry ; alluvium ; calcareous hills.
Kurrachee	27	-	1,573	112 regt.	$33 \cdot 94$	21.32	Dry bed of a river; sandy; blue clay over conglomerates alt amamp of 5 dere mite ajacent
Neemuch*	1,476	0	109	932	$30 \cdot 3$	$11 \cdot 1$	Undulating; rocky ; red soil ; trap ; black soil.
Aden	123	123	490	521	$16 \cdot 17$	$4 \cdot 28$	On a volcanic crater ; overlooking sea.
Baroda*	90	0	240	400	$42 \cdot 3$	14.1	Flat ; sandy ; cultivated ; swampy in monsoon.
Deesa	400	0	800	1,112	26.41	$13 \cdot 21$	Flat; sandy; sloping to north ; river Bunnass bounds station.
Poona	1,800	0	1,728	1,685	26.43	$15 \cdot 24$	Barren ; dry; undulating; Moola river, $\frac{y^{2}}{}$ mile off; trap formation.
Kirkee \dagger	1,900	0	608	1 regt.	19.20	12.5	Barren ; dry ; undulating ; river Moola half a mile distant.
Nusseerabad*	1,500	55	786	1,647	37.8	12.4	Sandy plain ; large tank half a mile distant ; overflows at monioon.
Sholapore**	1,821	0	75	75	20.9	$12 \cdot 5$	Undulating ; gravelly soil ; over sandstone.
Surat**	33	0.	132	176	51.7	11.3	Flat ; swampy during monsoon; black soil on clay.
Mhow*	1,862	150	temp.	2,100	$28 \cdot 4$	11.5	Undulating ; black soil and pebbles resting on trap.
Belgaum -	2,200	0	984	$1 \frac{1}{2}$ regt.	18.43	10.15	Undulating ; laterite trap.
Kolapore -	1,797	60	468		-	-	Black soil; undulating ; trap rock; red earth.
Malligaum	1,300	20	116	128	-	-	Flat and dry ; black loam ; trap rock.
Bombay -	+	\pm +	1,073	693	$\left\{\begin{array}{l}58 \cdot 6 \\ 45 \cdot 68\end{array}\right.$	$40 \cdot 29$	On eea shore ; with muddy estuaries; trap with shell
Colaba -	+	+ $\}$	1,073		45.63	25.83	$\int_{\text {deaches. }}$ beer
Asseerghur*	800	+	100	1 regt	$13 \cdot 5$	-	Ravines with water ; trap rock.
Ahmednuggur*-	1,900	\pm	1,200	910	$27 \cdot 2$	$10 \cdot 4$	Hilly ; black soil overlying trap.
Kulladghee	1,750	0		-	-	-	Low hills, with brushwood; river Gutpurbah close to station.
Dharwar -	2,482	0	-	-			Undulating ; mica schists ; black cotton soil.
Sattara* -	2,320	0	520	640	18.9	11.17	Hilly ; black soil resting on trap.
Ahmedabad*	320	0	-	-	$20 \cdot 8$	$10^{\circ} 4$	Flat ; coltivated; flooded in monsoon; otherwise sandy and dry.

II. LOCAL CLIMATES.

Hyderabad (Sinde).

Kurrachee.
Neemuch.

The local climates and their effect on health vary considerably, and are dependent on elevation, exposure, latitude, and the nature of soils and subsoils.
At Hyderabad (in Sinde) the thermometer rises in May and June to $99^{\circ} \mathbf{F}$. The rain-fall is of very limited amount; the atmosphere exceedingly dry ; evaporstion rapid for seven months in the year; weather pleasant and bracing in December and January; depreasing and exhausting in hot season; predisposes Europeans to disease, but is not an exciting cause; changes of season unhealthy; malarious, fevers, with lassitude, debility, and chronic abdominal affections, prevail on the change from cold to heat; same diseases of inflammatory type on the change from heat to cold.
At Kurrachee the climate is good. Maximum heat, 86° to $94^{\circ} \mathrm{F}$. in May and June. December, At Kurrachee the climate is good. Maximum heat, 86 to 94 F. in May and June. Dece
January, and February are the cold months; other, months variable; fogs at times. The climate at Neemuch is cold, dry, and bracing from the middle of November to the middle of February. Heat increases till the middle of May, the mean maximum of the month - being $84^{\circ} \mathrm{F}$. Fiercéhot winds prevail. Great diurnal variation of temperature."

- The mortality at these etations is taken from Inspector-General Rooke's report (Appendix), and iriludes that of Queen's troops and European

The mortality at these stations is taken from Inspector-(General Rooke's report (Appendix), and inchudes that of Queen'e troops and
troops of the Indian Army. The mortality at the other stationsi sthat of Queen's infantry, given in the Statistical Tablea (Appendix). \uparrow Oavalry.

Stations.	Replies.
Aden.	Aden has a moist sea climate, equable throughout the year, with a mean temperature inMay, June, and July of from 90° to 94° F. Dust storms occasionally. May and September are the most unhealthy months.
Baroda. -	The climate of Baroda is moist and very damp in the rains; fogs in the end of November; hot winds and dust in the hot season; climate deleterious to the troops. From November till June is the most healthy period; the remainder of the year unhealthy.
Degsa.	At Deesu the mean maximum temperature is above $105^{\circ} \mathrm{F}$. in May; heat and dryness extreme; atmosphere often loaded with dust; little rain. Climate must be consjdered as rather healthy, but becomes exhausting after two years' residence. The healthy months are from November to April inclusive; remaining months unhealthy.
Poona and Kirker,	At Poona and Kirkee the climate is very favourable to health. The mean temperature of the hottest months, April, May, and June, varies from 83° to 88°; but the mean maximum temperature is nearly $95^{\circ} \mathrm{F}$. in April. Rain-fall moderate. There is almost total freedom from fogs; dampness in a mild degree only observable during rains. Great sensible variation of temperature between day and night. The unhealthy months are October, November, March, April, May, and June.
Nubberrabad.	The climate at Nusseerabad is dry during the hot and cold season; moist during the monsoon; foge rare; dust storms very freqeent in hot season. In May, June, and July the thermometer in the barracks ranges from 102° to $103^{\circ} \mathrm{F}$. During the monsoon it is from 78° to 86°. The cold during the cold months is very sensibly felt. Europeans may be all day in the open air without injury from the sun. September to December inclusive are the unhealthy months.
Sholapore.	At Sholapore the climate is warm and dry during the greater part of the year. The mean maximum temperature in April and May is 990; the lowest minimum is between 69° and 70°; daily range from 7° to 12^{3}. Rain-fall, variable, from 13 to 40 inches. Atmosphere pure. High winds at certain seasons. Climate, one of the healthiest in India. Unhealthy months, July, Auguet, December, and January.
Surat.	The climate is decidedly moist for nine months of the year, the sea being about 10 miles distant. Mean maximum temperature, above $100^{\circ} \mathrm{F}$. in March and April; mean minimum in January, 59°. Little or no fog. Occasional dust storms. October till the middle of December is the unhealthy season.
Mhow.	The climate of Mhono is good; dry and cool. The mean maximum temperature of April and May is 92° to 95°; the mean minimum in December and January is 65° to 67°. Rainfall, from 18 to 24 inches. Little dust. Health of troops affected during changes of season. - Monsoon month the most unhealthy.
Belgaum.	The climate is generally good, but variable. There is no excess either in dryness, moisture, heat, cold, fog, or damp. Dust storms occasionally. General influence of climate on health, good. Most healthy months, January, February, September, August, October, and July.
Kolapore.	Climate of Kolapore generally very temperate. Dry from November to February, Early mornings moist and fresh. In March, April, and May there is more moisture. Mean maximum temperature varying from 87° to 88°. Cool and refreshing breezes after sunset. Climate agreeable, though damp and cool during the rains. Altogether one of the healthiest in the Presidency. Diseases most prevalent in September, October, and Novemher.
Malligaum.	Climate is gerierally dry; very hot during May and June, when the mean maximum ranges from 100° to $104^{\circ} \mathrm{F}$. Mornings agreeable to 10 a.m. Cold weather pleasant, with very few fogs. Air pure; dust storms very raie. Troops generally healthy. October most unhealthy month.
Bombay.	Bombay has a sea climate, generally more or less moist, in the rainy seasons particularly so, and very debilitating, except in December, January, and February. Mean temperature highest in April, May, and June; ranging from 84° to 85°. Annual rain-fall, about 78 inches on 102 rainy days. Evaporation almost equals average rain-fall. From January to June is the most healthy period; remainder of year unhealthy.
Abserrghur.	Climate excellent; moderately dry and not very variablp. Its influence $6 n$ health of troops, excellent. Third quarter of jear is the most unhealthy.

III. PREVAILING DISEASES

AMONG NATIVE POPULATION,
and their causes.

Kurracher.

Negmuch.
Aden.
Nugsegrabad.
Sholapore.

Surat.
Ahmednuggur. Mhow. Belgaym.

Kolapore.
Malligatim.
Baroda.

Sattari.

Hyderabad. \mid Fevers (malarious), with spleen disease, amall-pox, measles, calculus. Causes.-Poverty, filth, slternate inundations and drying of soil.
Sickness occasional at beginning and end of hot season. Diseases, fevers, apleen, bowel, scurvy, ulcers: Causes.-Swampy margin of sea; bad drinking water, causing scurvy and diarrhoea.
Fevers prevail
Ulcers; small-pox; fevers.
Fevers; guinea worm ; small-pox ; dyentery; diarrhca; spleen; cholera occasional.
Diseases, quotidian, intermittent fevers; diarrhces; dysentery; guinea worm; cholera; small pox. Causes.-Neglect of sanitary precautions; impure water; slternations of temperature improper and insufticient food; abuse of intoxicating drugs.
Station, district, and native population generally unhealthr. Prevailing diseases, spleen small-pox ; cholera. Causes.-Want of cleanliness; filthy habits; imperfect drainage.
Intermittents; cholera; small-por.
Fevers; spleen; small-pox; cholera
Fevers, intermittent; bowel complaints; tulcers; bronchial disease; cholers; small-pox. Causes. -Imperfect ventilation; want of cleanliness of person and of dwellings; arrors in diet; disregard of all hygienic laws.
Intermittents, remittents; guinea worm ; tape, round, and thread worm, and itch; cholera, small-pox, measles.
Fevers; rheumatism; cholera. - leprosy; spleen discase. Causes-Want of cleanliness Cholera; intermittenta ; small-pox ; leprosy; spleen discase. Causes-Want of cleanliness ; water stagnant in every hollow till it evaporates.
Fevers, chiefly mild intermittent; sub-acute rheumatism; guinea worm; spleen disease rare; cholera.

Stations.	Replies.
Bombay.	Small-pox ; measles ; cholera, epidemic and sporadic. Causes.-Filth, and almost entire want of circulation of air.
Asseerghur.	District and native population essentially unhealthy; cholera and fever. Causes.-Excessive filthiness; total absence of all sanitary measures.
Deesa.	Diarrhce: ; fever, intermittent, remittent; spleen disease not cornmon; cholera " visited many villages in surrounding districts;" small-pox occasional; but " natives generally healthy" from "dry climate," sandy soil, and good water, absence of vegetation and of sudden changes of temperature.
Kirier and Poona.	Fevers, intermittent and remittent, prevailing at beginning ard end of rainy season; spleen disease rare; bowel complaints; eruptive fevers; small-pox; chicken-pox; measles prevailing in hot season ; catarrh and rheumatism in cold season. Population generally healthy, from elevation, trap subsoil, freedom from alluvial deposits, sea, breezes, good water.

IV. PREVAILING DISEASES

AMONG EUROPEAN IROOPS
Hyderabad. Prevailing diseases among the European troops are,-- fevers, quotidian, intermittent, remittent; dysentery, rheumatism, hepatitis. They are most prevalent in autumn. Curopean troops at Hyderabad have never seffered from epidemic cholera. Strict attention to all janitary measures is required. There should be no overcrowding of barracks.
Kuphachee.

NeEmuch.

Aden.

Batoda.

Derga.

Nusgerrabad.

Poona and Kirkee.

Sholapore.
Surat.
Ahmednuggur.

Mhow: Prevailing diseases : fevers, intermittent, remittent, and continued ; dysentery and rheumatism occasionally. These give 45 per cent. of the total admissions, and 33 per cent. of the total deaths. Hepatic diseases at the rate of about 3 per cent., caused by heat and the use of spirits; but also accompany severe fevers and dysentery. Pure air, disuse of spirits, proper clothing, and exercise, are the prophylactics required against hepatic diseases. Twenty per cent. of the sick of European regiments suffer from venereal disease. Prostitutes should be expelled from bazaars and marriage extended. No lock hospitals required. About 10 per cent. of recruits landed at Kurrachee from England suffer from scurvy; attributed to bad water and food, and inferior accommodation on voyage.
Prevailing diseases at this station are, fevers, intermittent, remittent; rheumatism, dysentery, and small-pox. Zymotic diseases are most prevalent during the hot weather and rains. No unusual atmosplieric conditions have been observed to accompany them.
The most frequent diseases among Europeans here are not those observed at other stations. Fevers, dysentery, rheumatism, cholera, happen occasionally, but in much smaller proportion Fevers, dysentery, rheumatism, cholera, happen occasionally, but in much smaller proportion
than elsewhere. The fevers are chiefly ephemeral and intermittent; they are most prevalent, together with diarrhcea, and dysentery, in September:
Fevers are very prevalent at this station; the continued form frequently occurs. Diseases of the stomach and bowels, including dysentery and diarrhoea, are not so frequent; but epidemic cholera has been prevalent. Fever appears about October, when vegetation is decaying, and there is moist muggy heat. Cholera appears about the end of the hot season, and seems connected with the eating unripe fruit by the troops. Hepatitis occasionally occurs ; small-pox and rheumatism not common.
The prevailing diseases here are, fevers, intermittent and remittent. Dysentery is not common. Diarrhcea most frequent in wet weather. Cholera excessively fatal. In the wet seasons fevers assume the above-mentioned types; and in the hot dry months the types are fevers assume the above-mentioned types; and in the hot dry montas the types are
ephemeral or continued. Liver disease is very common, and is attributed to excessive heat ephemeral or continued. Liver disease is very common, and is attributed to excessive heat
and sedentary habits. Venereal disease mounts to from 13 to 25 per cent. of the admissions. and sedentary habits. Venereal disease amounts to from 13 to 26 per cent. of the admissions. remittent, and continued, acute. and chronic dysentery, distinct and confluent amall-pox, and acute and chronic rheumatism also prevail. Cholera is comparatively rare. Precautionary measures required are, cleanliness of cantonments; abundance of pure water; sufficient accommodation for troops to prevent overcrowding; care as to rations; \&c. The principal causes of hepatic disease are, intemperance; atmospheric changes; exposure to draughts during perspiration after exercise. The preventive measures are, temperance; cool atmosphere; careful diet; avoidance of draughts. Guinea-worm prevalent, from drinking wate containing ova. Five-eighths of cases in hospital are venereal.
The most frequent diseases at these stations are, fevers, ephemeral and intermittent. Remittent are less prevalent. At Kirkee the tertian type is the prevailing one; dysentery diarrhœa, chqlera, rheumatism, syphilis, eruptive fevers also prevail, the latter chiefly at Poona. Acute dysentery is the result of chills, sometimes of intemperance. At the time of their prevalence, the atmosphere is generally close, muggy, and loaded with electricity. Hepatic disease also occurs, the result of climate and intemperance. Flannel next the skin, moderate exercise, and a limlted use of intoxicating drinks are required. Hepatitis is almost entirely absent from the native army, on account of their abstinence from spirituous liquors and their simple diet. Fourteen per cent. of total sick in hospital are venereal. Lock hospitals recommended.
Prevailing diseases, fevers, quotidian, intermittent,' some liver disease, and dysentery, but little cholers; some venereal disease. Lock hospitals not recommended.
Prevailing diseases, fevers, intermittent, remittent, continued; diarrhosand dysentery; very little venereal disease, or liver disease.
Prevailing diseases, fevers, ephemeral, remittent, continued, in the hot months, and intermittent after the monsoon. Dysentery occasions a large proportion of the mortality. Cholera occasional, rheumatism frequent. These, with diarrhœe, catarrh, throat affections, are the common diseases; liver disease prevalent also. Twelve and a half per cent. of total admissions are venereal; after fevers, it is the most common disease. Lock hospitals, to be of use, must have suitable establishments attached to them. Fevers are most prevalent in hot months and after the rains. Liver disease, during the hot months. Almost every epidemic in this cantonment has its origin in the crowded, ill-ventilated, and dirty village of Bhingar. It would be an immense advantage to have it removed. Want of occupation, leading to drink, lays the seeds of disease among the troops; for one man occupied in a barrack, there are six idle. Too great exertion cannot be used to furnish legitimste armusements and occupations. When men are actively engaged in the field in hot.weather, there is little sickness or epidemic disease among them.
Fevers, intermittent, remittent; continued, are the most prevalent diseases; dysentery and cholera also occur; rheumatism occasionally; liver diseases frequent; stimulating food and drink ore predisposing causes. Prophyluctics: improve the vegetable proportion of the ration, and substitute-malt liquor for spirits. Epidemis disease always aggravated
Statiose
by irregular habits, crowding in barracke, and inferior accommodation. Venereal disease from 60 per cent. of the sick down to 8 per cent. Lock hospitala and a good conservancy police should be established.
Belgaum. The troops here suffer from fevers, intermittent, remittent, continued, ephemeral, eruptive; dysentery, acute and chronic; cholera, sometimes mild, but often most severe; small-pox, mild and virulent; rheumatism, acute, chronic, idiopathic, syphilitic; catarrl affections frequently severe; zymotic diseases most prevalent in hot season, and beginning of monsoon, when weather is fot, close, and oppressive, with frequent calms. Bazaar and native dwellings greatly wanting in cleanliness and ventilation; housem close, crowded, confmed, and drainage bad, or very indifferent. European troops at present too crowded; their habite of exposure to sun, frequenting the bazaar, their irregularities and intemperance, tend to excite these diseases. To prevent them, the troops should have more space and ventilation; they should be provided with reading-rooms, and means of occupation and amusement to keep them out of the bazaars. The sanitary state of cantonment, bazaas and native population should be improved; streets widened, dwelings ventilated; impuritie removed; vaccination extended. Liver disease prevalent, occasioned by variable climate, exposure to sun, intemperance. Temperance, regularity, suitable clothing, avoidance of exposure, are requisite for preserving health. Venereal disease forms 11 per cent. of constantly sick. Lock hospitals, with proper police measures, might be useful; without these, lock hospitals have been useless, and generally abolished.
The more frequent zymotic diseases are intermittent, remittent fevers; epidemic cholera; small-pox; measles ; the former occur mostly at the termination of the rains; cholera and small-pox generally in hot weather. Liver disease occurs occasionally, and arises from continued exposure to high temperature and great change; addiction to spirits is a cause of the disease, malt liquor should be used instead. More 'active habits and daily swimming baths; lock hospitals recommended; the more varied and agreeable a soldier's occupations, the better his health; indulgence in intemperance is a cause of disease; present cesspools and urinals should be entirely abolished on account of nuisance.
Mafligaum.
Prevailing diseases: fevers of the common types, and diseases of stomach and bowels, intermittents most common; muggy hot damp weather predisposes to them. Causes among the troops: exposure to variations of climate, excess of duty, overcrowding of barracks. Prophylactics: daily bathing; flannel next skin; ventilation of barracks; keeping from exposure to sun. Liver disease not so common here as elsewhere; to avoid it are required, pare diet; no beer or spirits, little wine; exercise; flannel next the skin. Venereal disease $2 \frac{1}{2}$ per cent. of sick; lock hospitals, with police supervision, recommended.
Prevailing diseases: ephemeral, tertian, quotidian, remittent fevers;-small-pox; measles; cholera; dysentery. Fevers most frequent in August, September, and October; cholera from March till June. Senitary condition of station very indifferent; barracks built in low damp positions; bad drainage; crowded filthy natives' dwellings close at hand; regimental lines and bazaars should be kept thoroughly clean. A complete system of drainage is required; sheds for shelter and workshops for the men. Hepatic disease frequent; venereal varies. Lock hospitals abolished.
Asfeerghur. Most common diseases: intermittent, remittent, common continued fevers; acute and chronic dysentery ; acute rheumatism ; hepatic disease, 4 per cent. of the cases ; said to be attributable to the climate. Very little venereal disease. Prophylactics: efficient cleansing of station and vicinity good drainage, cleansing of water tanks, prevention of overcrowding in barracks.
V. CANTONMENT ${ }^{\circ}$

BAZAARS, AND THEIR
SANITARY STATE.
Hyderabad. Drainage of bazaar principally naturai; water bought by residents; no crowding; kept clean by sweepers; no dung-heaps perrnitted ; no nuisance in barracks from bazaars; native houses generally good. Native town of Hyderabad adjoins station.
Kurrachee. No dresinage in bazaars; filt removed daily, kept as clean as will allow. Bazaar very crowded ; more sweepers required. Native houses mostly good, with cesspits, but contents removed daily. No nuisan of Kurrachee, with 22,000 inhabitants, $2 \frac{1}{2}$ miles distant.

NeEmuch.

Sanitary condition of bazaar tolerably good, ventilation and drainage imperfect; water from wells good and sufficient; latrines too close to houses, not used, for lack of a proper establishment to keep them clean. People obliged to resort to surrounding country; bazaar sweepers paid by inhabitants; bazaar superintendent maintains "strict supervision," and "punishes the inhabitants." Latrines should be moved to a distance, with a sanitary police to attend to them; native houses more or less dirty, dung-heaps close to them; but not sufficiently near station to produce ill effects. Barracks "at east end of camp exposed to disagreeable emanations" from bazaar. "Could be prevented by removing bazaar posed to disagreeable emanations from end." Town of Neemuch, with 8,000 to 10,000 inhabitants, half a mile distant.
ADEN.
No drains near sudder bazaar, "not required, ground being elevated and dry." Ventilation good; water from wells ; one privy; no nuisance permitted "in unqุuthorized places." improved" No nuisance in barracks from it. Town of Aden, with $\mathbf{2 5 , 0 0 0}$ inhabitants, close to military limits.
Bazase well drained; badly ventilated; much crowded; streets clean, but very narrow for Bazaar well drained; badly ventilated; much crowded; streets clean, but rer removed daily.
want of space. Inhabitants required to keep their premises dlean, sweepings remer want of space. Inhabitants required to keep their premises dlean, sweepings remo Baty Baroda, Four peons allov
Bazaar a single street along river bank; surface drainage only; ventilation of houses defective on account of atructure and position; watcr abundant and good. Cleanliness defective except in main street, no latrines; natives resort to nullahs and river bank. Crowding in proportion to peverty People ill-fed, worse clad; general cleanliness enforced in bazaar proportion to poverty. People illed, worse clad e gene in India." Whether cesspits are Dung-heaps, as never-failing condition of native hfe in India." Nunce in native lines from in use or not "depends on nature of ground and weather. 9,000 inhabitants, inside cantonwind coming over native dwel
ments and extending outside. ventilation; water sufficient, from river; bazaar clean; latrines needed for baza
Stations.
"chowdrie" inspects bazaar daily, "conductor". four times a month ; dust carted to jungle; native houses of average construction; no dung-heaps or cess-pits; no nuisance. Poona.-Bazaar not well drained, nor can it be without more water; ventilation pretty good; crowding; water insufficient; bazaar tolerably clean; no latrines; "poorer classes have to go to a distance;" one havildar, one naique, and 20 peons superintend cleansing; filth and rubbish removed daily; establishment far too small for a population of 27,000; vegetation kept under, and drains cleaned; houses generally good, or being improved; no dung-heaps; no regularity of streets or houses; bazaar close to officers' quarters; nuisance in barracks from villages of Ghorepoore and Wanowrie; cholera occurred first in Wanowrie, 100 yards from officers' lines ; village of Kirkee so near that it is a nuisance--" should be removed; " city of Poona in a hole-(population 80,000)-three-quarters of a mile to windward of station of Poona.
Bazaar clean, well drained, and ventilated; water from wells not deficient; regulations as to cleanliness sufficient; but no paid establishment for the purpose; no dung-heaps or cesspits; town of Sholapore, with 60,000 inhabitants, a mile distant.
Bazaar drainage and ventilation "as good as possible," water from wells; bazaar very small, kept clean under regulations; few native houses; no dung-heaps or cess-pits; "when wind blows over native town, it is considered unhealthy; "north wind comes over bank, from which there are "noxious vapours;" south-west, the only healthy quarter; large and populous city of Surat forms north-east boundary of camp.
Nusbeerabad.
Station bazaar contains 15,000 people ; main and cross streets have covered drains, emptring into nullah on west ; part of bazaar much crowded; ventilation bad; 25 latrinee kept clean by sweepers; only one scavenger's cart allowed (for 15,000 people), five required; drinking water chiefly from tanks; 30 wells in bazaar, but only six contain drinkable water; in very dry seasons no drinking water procurable within a mile; each inhabitant responsible for cleanliness of street opposite his house; refuse collected in basket and removed by cart; no nuisance.
Abmednugger.

Mnow.
Surface drainage said to be "good;" water supply abundant ; cleanliness said to be "strictly enforced," but no latrines; no crowding; "two carts and two pairs of bullocks carry away the refuse daily, which is thrown from baskets into the cart, as it passes;" town of Ahmednuggur, with 36,000 people, skirts the camp; suburb of Bhingar, with 3,000 peóple, is a continuation of the camp; inhabitants of both "permitted to answer the calls of nature on the very boundary of the camp;" when wind blows over dwellings to cantonment, "smell of ordure very perceptible;" removal of filth from native privies not duly attended to.
Drainage of bazaar said to be "good," and water plentiful; external ventilation not good, because streets not well arranged ; houses said to be generally good; no dung-heaps or cesspits; no nuisance experienced; "conservancy carts" remove refuse.
Sattara.
Sanitary state of bazaar said to be in every point good; no native houses near; no nuisances; city of Sattara, with a population of 30,000 , two miles distant.
Belgaum.
Bazaar said to be "well drained; "ventiation, "as in all station bazaars," deficient; houses low and crowded; water said to be "good;" refuse removed by aweepers and carts, and burnt; "no want of cleanliness;" "public privies and cesspools at times very offensive;" native houses near station generally low, mean, and dirty looking, with dung-heaps and cess-pits near them, and within the enclosures. Shahpoor about a mile from the station; cess-pits near them, and within the enclosures. general health of atation, from "bad conservancy," but "no want of cleanliness."
Kolapore.
Cantonment bazaar said to be "clean, sufficiently drained, and not overcrowded ;" sanitary police under the bazaar superintendent; filth and refuse collected in baskets and taken away lects filth and throws it into a nullah; 400 yards from camp, where "the bazaar people resort for the purposes of nature;". "atagnant water" removed by sweepers every morning; "two peons" provent nuisance being committed in camp "from 4 a.m. to 10 a.m. daily," and all offerders are "fined." These arrangements hare hitherto proved sufficient: Kolepore, with 50,100 to 60,000 inhabitants, is about one mile, and Bhovra (a village) about pore, with 50,100 to 60,
Malligaum
Drainage and yentilation of bazaar said to be good, and water abundant; streets tolerably open; and cleansed by sweepers under the superintendent; no latrines; town of Malligaum three-quarters of a mile distant.
Asserrghur.
Sanitary condition of bazaars said to be "satisfactory;" "well ventilated, well supplied with water, and kept clean" by sweepers; but "a policeman ought to be entertained to enforce the regulations in the fortress bazaar;" native houses "built in all shapes and all sizes" in the "pettah ;" no nuisance.
Bombay.
Station close to town, which contains from 400,000 to 600,000 inhabitants; native town very defective in drainage, \&ce.; water can be obtained from Vehar waterworks ; municipal commission, consisting of deputy commissioner of police, officer of Bombay engineers, and an European inhabitant; the first and last elected by bench of magistrates ; engineer appointed by Government superintends the sanitary police; native houses generally in a filthy condition; much ordure within precincta of buildings, where it has been accumuisting for years; nuisance is experienced in town barracks and Fort George, by wind blowing over native houses; butchers' shambles and public neeessaries half a mile distant ; site of slaughnative houses; butchers' shambles and pubuc ae had as can well be, close to a proverbially unhealthy native town; see ter house as had as can well be, close to a proverbially unhealthy native town; se
breese cut of by bazaars, large buildings, \&c.; washermen's tanks particularly obnoxious.
VI. BARRACK CONSTRUCTION.

Hyderabad.
There are ten barrack rooms, holding 96 men each; with 1,849 cubic feet, and 86 superficial feet per man; each barrack has two non-commissioned officers' nooms at each end, with a lavatory projecting from the centre; double. verandahs and three rows of beds between the opposite doors and windows ; verandahs $8 \frac{1}{3}$ feet wide; barracks constructed of puckabrick and lipe; floors partly of brick, partly of stone, raised $2 \frac{1}{2}$ feet above ground; would . be a great improvement for barracks to be raised on arches, "from the well-known habit of maloris, in keeping towards the surface of the earth;" barracks "cleansed and limewashed twice a year."

\begin{tabular}{|c|c|}
\hline Stationes. \& Replimg. \\
\hline \& \begin{tabular}{l}
Figs 1, 2, and 3 show a plan, internal elevation, and section of the barracks; with three rows and apace for four rows of beds between the opposite windows; these figures illustrate the general construction of this class of barrack. \\
Construction. \\
Foundations and auperstructure are of burnt brick and lime. \\
Floor of large bricks set in lime. \\
Koof consists of teak trusses, purlins, mafters, battens, matting plastered over with mud and straw and single tiles on top. \\
Yoors (each 4 ft by 10 ft) are partly venetian and partly glazed. \\
Windows (each 4 ft . by 2 ft .) are fixed venetians. \\
Each roof is provided with three ventilators, 11 ft . long and 6 ft . broad. \\
Fig. 1.-Plat and Sectione of one of the European Barracks at Hyderabad (Sinde). \\
Fig. 2-Longittinal Section. \\
Fig. 3.-Cross Section.
\end{tabular} \\
\hline Kurrachre \& \begin{tabular}{l}
Twenty-two European barrack rooms; ten contain 100 men each, nine contain 47 men each, three contain 50 men each; cubic feet per man from 1,175 to 1,604 ; superficial feet per man from 654 to \(114 \frac{1}{2}\); each barrack has a verandah 10 feet wide and two rows of beds between opposite doors and windows; barracks constructed of stone and lime; floors of cut stone in permanent barracks, chunam and earth in others; floors raised from 3 feet to 3 I feet above ground, no passage of air beneath; walls and ceilings cleansed and limewashed every six months ; bedsteads consist of boards on iron trestles. \\
One room for 100 men, giving 1,008 cubic feet and 48 square feet per man; windows on opposite sides; verandah 10 feet wide; floors raised one foot above the ground, of stone, laid on rammed earth; no passage of air beneath; temporary barrack.
\end{tabular} \\
\hline Sholapore.

Aden.
a
a

- \& | Two barrack rooms for 40 men each, giving 984 cubic feet and 42 square feet per man; verandah (open) along one side and end of each; doors and windows on opposite sides; beds in two rows; floors raised above ground; no passage of air beneath; where not paved with stone, the floors are of clean gravel and sand, rammed; surface plastered once a week or oftener, with cow-dung; windows are ordinary plank shutters; bedsteads iron, or planks on iron trestles; buildings of burnt bricks and lime, with thatched roofs. |
| :--- |
| Six-rooms for Ewropean soldiers, containing. 46 men each, at from 1,346 to 1,452 cubic feet per man, and from 60 to 62 square feet per man; the Isthmus barracks are built of rubble and chunam, over an arched basement 12 feet high; front Bay barracks built of wattle and daub, and floors paved and raised two feet nine inches above ground; no passage of air beneath; whitewashing twice a year ; barrackes have verandahs; two rows of beds between opposite doors and windows. |

\hline Baroda. \& | Four temporary barracks for 60 men each; 933 cubic feet, 66 square feet per man; built of burnt brick and mortar, sun-dried brick and mud. Floors, some of brick, some of chunam, raised 4 feet above ground. No passage of air beneath, verandahs all round. Two rows of beds between opposite windows; walls and ceilinge washed, whenever required. Figure 4 shows the general construction of the temporary barracks at this station and elsewhere in the Presidency. |
| :--- |
| Fig. 4.-Temporary Barback at Baroda. |

\hline Sattara.
\vdots
Dresa. \& Thirteen barrack roome, for forty men each at 735 cubic feet and 50 square feet per man. Temporary wattle and daub walls; grass thatched roofs; flaors of beaten earth, raised one to five feet according to slope. No passage of air beneath. Verandahs all round. Eight barrack roome contain 70 men each, and 3 containing 80 each, with from 1,100 to 1,200 cubic feet and 59 aquare feet per man. Space between windows for two beds $6 \frac{1}{2}$ feet wide. 3 I 4

\hline
\end{tabular}

Stations.

Verandahs 10 feet wide on all sides ; used by soldiers to sleep in at their discretion; 2 rows of beds between opposite doors and windows; materials, burnt brick "and mortar; floors concrete, raised 2 feet above ground. No passage for air beneath. Limewashing done at no stated period. Bedsteads, iron trestles and boards.

Kirket and Poona.

Ahmidabad.

Nusserrabad.

Surat.

Ahmednuggur.

Mhow.
[Belgaum.

Aseizirghur.

Kolapore.

Malligaum.

Bombay:

Kirkee.-Sixteen barracks containing 36 men each, with from 1,034 to 1,487 cubic feet and 64 square feet per man. Open verandah to each barrack, 5 feet to 9 feet wide; never used as sleeping quarters, except on emergency. No glass windows, only wooden shutters ; materials of new barracks, burnt brick and lime; of others, burnt brick and mud; floors of the former paved; floors of the latter mud; floors of old barracks not raised above ground; new barracks raised 3 feet, but no passage of air beneath. Floors should be raised 14 feet above the ground.
Poona.-Thirtr-two barrack-rooms containing 40, 42, 84, and 96 men per room, at from 902 to 1,314 cubic feet and from 57 to 76 square feet per man. Some barrack rooms have closed verandahs; windows and doors on opposite sides. Closed verandahs sometimes used as bleeping quarters; materials brick and lime plastered; some floors are paved and raised 3 feet above ground; no passage of air beneath. Some of the barracks have.upper stories. Twelve barracks, 50 men each, at 756 cubic feet, 55 square feet per man y temporary, of sun-
dried brick and mud; chupper roofs, doors and windows of matting, nailed over jungle-wood dried brick and mud; chupper roofs, doors and windows of matting, nailed over jungle-wood
frames; mud walls plastered and white-washed inside and out. One barrack, 100 men, at 990 cubic feet, 56 square feet per man, of burnt brick and mud, glass windows, half-glazed doors. Floors earth and broken brick, raised one to $2 \frac{1}{2}$ feet above ground. No passage of air beneath.
Barrack accommodation, temporary, consists of 9 rooms, each containing 80 men, with 1,000 cubic feet and 50 square feet per man. Barracks have a single open verandah; windows and doors on opposite sides, beds being arranged in two rows between them. Foundations, plinth, and main walls stone and lime, plastered outside. Floors of flag stone, chunam, and moorum, raised from 1娄 to $2 \frac{1}{2}$ feet above ground; no passage of air beneath; verandahs: occasionally used as sleeping accommodation. Bedsteads of wood and of boards and trestles; cotton mattresses, which get damp during monsoon; bedstead harbour bugs.
Three barrack rooms, one for 63 men, and two for 25 men each; 480,540 , and 685 cubic feets and 58 and 60 square feet per man. Windows on opposite sides; beds ranged between Barracks of stone, or brick masonry; floors raised from 13 to 20 feet above ground; passage for air, but no thorough draught; no verandahs; floors, chunam and teak planks; bedsteads, wood. Barracks limewashed twice a year.
Twelve permanent barracks for artillery, 50 men in each, at 1,135 cubic feet and 51 square feet per man. Twelve temporary barracks for infantry, 50 men in each, at 807 cubic feet and 57 square feet per man. Majority of buildings have windows on opposite sides; beds arranged between them; verandahs 10 to 13 feet broad. Part of the broader verandahs taken in to barrack-room. Permanent barracks of brick; temporary, of wood framing, wattle and dauh walls; floors of moorum, raised 1 to 2 feet above ground; no passage of air beneath; walls limewashed once in six months, or oftener if necessary. Bedsteads, boards on iron trestles.
Barracks temporary. New stone barracks about to be built, apparently on the regulation plan. Two floors; windows and doors on opposite sides; each barrack to contain 264 men; distance between opposite windows, 50 feet; two intervening rows of piers and arches. Four (4) rows of beds between opposite windows. Construction bad as regards ventilation, agglomerating numbers together, and as to small superficial space.
Tyenty-eight barrack rooms, for from 36 to 72 men per room, at from 813 to 1,430 cubic feet, and from 59 to 89 square feet per man. Barracks long and narrow; with verandahs; windows and doors on opposite sides, two rows of beds between. Built of laterite and lime; double tiled roofs; raised from 0 to 8 feet above ground, but without passage for air beneath. Limewashed at no stated intervals. Fig. 5 shows the construction of the infantry barracks, and generally of the more simple forms of barracks in the Presidency.

Fig. 5.-Plan of Infantry Barraceg in Caarp (9 of this sort).

A A. Urinary. B B. Wash-house C. Barrack room. D D D D. Serjeants' room.
 E E. Verandah open in front.

New barracks in process of construction.
Two artillery barracks for 56 men each, with 811 cubic feet and 58 square feet per man; six infantry barracks for 54 men each, with 792 cubic feet and 56 square feet per man. Barracks, simple construction; one long room, with a serjeants' room at each end; wndows and doors opposite; open verandahs, 11 and 12 feet broad. Barracks built of timber framework; apace (between posts) burnt brick and mud; roofs single tiled; floors moorum, - 2 feet above ground; no ventilation beneath. Bedsteads, soms iron; some iron trestles with wooden boards; some of wood; last greatly disliked for the bugs.
Two barrack rooms, one for 90 men, with 1,170 cubic feet and 61 square feet per man; one wo barrack rooms, one for 26 men, with 643 cubic feet and 44 square feet per man. Barracks temporary; built of sun-dried brick; roof double tiled; floors moorum, raised one foot, but no passage of air beneath; windows on opposite sides; two glazed shutters; verandahs on both sides and at ends, 10 feet wide. Limewashing when required.
Three barrackg, viz.:-
Town.-Five rooms (on two floors), two of 71 men each, at 1,515 cubic feet and 132 square feet per man ; three of 106 men each, at 1,415 cubic feet and from. 107 to 126 square feet per man. Buildings, three sides of a square. Plan and arrangementa very bad; privies, bath rooms,

VII. MARRIED

QUARTERS

Hyperabad (Sinde)
Kurraches.
Neemucif.
Aden.
Baroda.
Deesa.
Kirieg.
Poona.
Nugseerabad.
Sholapore.

Surat.
Ahmednuggur.
MHOW.
Sattara.
Belaaum.
Kolapore.
Bombay.
Assemerici.
Malligaum.
"Quite sufficient."
"Sufficient."
Sufficient for present requirements of station.
Twelve married quarters for infantry; 24 more to be added; 12 for artillery at Front Bay, and
12 at Ras Tarshyne; 24 for infantry also there.
"Plenty."
84 for European regiment; 14 for troop, Horse Artillery.
"Sufficient, but extremely bad in construction, except part of superior non-commissioned officers' quarters."
"Sufficient."
Not yet quite sufficient, but will be provided.
"Such quarters as exist are not creditable to the Government. Suitable buildings have been estimated for, but no steps appear likely to be taken for securing the erection of the buildings."
Sufficient only for three married non-commissioned officers or men.
Eighty separate quarters for artillery ; none for infantry in temporary barracks.
In temporary patcheries.
Separate quarters.
"Not sufficient; some of the end verandah rooms occupied by married men, separate from the unmarried."
Sufficient; but of temporary description, and damp in monsoon."
No separate quarters in town barracks; lower story generally used. In Fort George, sufficient No separate quarters in town barracks; lower story generaly used. In Fort
in the front and rear verandahs. At Colaba and depót barracks, sufficient.
"None whatever." "Two married people of 28 th Regiment, and one of 95 th Regiment, occupy barrack rooms with single men."
"Ample and good." The following, Fig. 6, shows their usual construction :-
Fia. 6.-Barrack for Married Mef at Matigaly.

PRISON CELLS

At thres or four stations the cells are well situated, have sufficient space and rentilition, and are aid to be "healthy." At all the others the sites are more or less unhealtiy, the cubic contents too small for the climate, the ventilation insuffcicient, as , also the means of discipline. Many of this latter class of calls are "bad," or "very bad." At Bombay the military prison in part of a native gaol, situated in an unhealthy locality, and badly miintary prison is part or ar native gail, etituated of dysentery and cholera.
viil. ventilation
OF BARRACKS.
Hyderabad (Sinde). Barracks, guard-room, \&c. have ventilators in roof, sufficient to keep air pure night and Kupi day; admitted air cooled by punkahs and tatties.
KURRAChre. . . Ventilation by openings in roofs and fixed venetians in walls, by wird shafts, and by open Nremuch.

Nugsegrabad. doors and windows; sufficient for day and night. Sea breeze amp.e for coolness.
doors and windows, suffcient for day and ngick. ; guard-rooms, openings in roof. When Ventilators in side walls under wall-plate in barracks ; guard-rooms, openings in roof.
Ventilation doors and wind windows ;- amall apertures in wall near floor; eimilar apertures 5 feet
Ventilation by doors and windows; amall apertures in wall near floor; imilar apertures 5 feet

draughts in monsoon and cold weather. Air cooled by punkas and taties. also openings
Ventilation by teak wood trellis-work in the walls over cach door and window; als in roof; sufficient for day and night; sea breeze sufficient for coolness. Punkahs recently in roor; sumcient for day and night; sess in a regiment recently arrived from unhealthy Indian stations.
Baroda.
Derba.
-Kirkez and Poona.
Ventilation by openings in roof of barracks, sufficient; air cooled by punkahs and tatties.
Vent Ventilation of barracks by pu
Kirkee. In old barracks, including all, except two, there can zarcely be said to be any ventilation. Pigeon-holes in roof, but during raiss, when ventilation most needed, they have to be covered with tarpauling. New barracks ventilated ty louvre boards on sides; have to be covered with tarpauling. New barracks louvres in roof; on the whole good. Ventilation not sufficient to keep air pure by night; huts and gaard-rooms, no ventilation Ventilation not sufficient to keep air pure by night; huts and
whatever, except doors and windows ; po means of cooling air,

Stations.	Replies.
	Pooma.-Ventilation by doors and windows. Ensures " some degree of ventilation." Wanowrie barracks, upper story ventilated along ridge; other barracks have cowls, objectionable from leakage during rains; weather side has to be "dammed up" during monsoon. Ventilation in all barrack rooms insufficient; guard rooms ventilated by doors and windows. Arrangements independent of these required both at Kirkee and Poona.
Sholajore.	Ventilators of different descriptions fixed in ridge of roof of barracks and guard room. Sepoys ventilate their own huts. Air cooled by tatties.
Surat.	Ventilation by doors and windows; not sufficient: Air cooled by punkahs.
Aifímenúggur.	Ventilation in permanent barracks by cleristory windows at top of high walls. Temporary buildings have metal and wooden ventilators in ridge: Where walls low, ridge ventilation generally employed. Means aufficient, night and day. No means of cooling air required.
$\lambda^{\text {Mhow. }}$	Ventilation by openings in roof, aufficient by night and day for temporary barracks. No means of cooling air reguired.
Sattara.	No means of ventilation for barracks; insufficient, unleas windows always open. No meana of cooling air.
Brlgaum.	Small ventilators in ridge; sufficient when barracks not crowded. No means of cooling air.
Kolapore.	Ventilation as follows:-Outer walls only 6 feet high; space between top of wall and roof fitted with bamboo mat frames; sufficient by night and day, from the atrong breezes prevailing. No means of cooling air. Native infantry huts have no ventilation.
Malligatis.	Ventilation by openings in roof; sufficient for day and night, when windows always open. No means for cooling air.
Bombay.	Town barracks ventilated by iron, cowls on ridges; Fort George barracks by wooden cowls; also by openings high up in walls. Colaba barracks have lofty continuous ventilators with glazed shutters. Depôt barracks have cowls. Ventilation generally sufficient; "at least, there are no complaints." Improvement imperative. Air cooled by punkahs.
Assemrghur.	In new barracks opent ventilator in roof, and open arches into verandah; "decidedly suff.

IX. DRAINAGE.

Hyderabad. No drains or sewers for barracks; surface and other drainage conveyed into cesspools close to the buildings; emptied as soon as filled. Cesspits, 2 feet diameter, 3 feet deep. No drainage in the bazaar ; all filth carried away in carts to the kilns and burnt. Every house has a cesspit, emptied daily. Drainage of native lines "in every respect satisfactory;", received into cesspits; cleaned out every night; "contents carried in ekins on bullocks" backs to a distance." Privies cleaned twice a day. In native lines, contents of cesspits are "thrown about in close vicinity to cesspits." "Anything edible is immediately picked are thrown about in close vicinity to cesspits." "Anything edible is immediately picked up by birds or dogs." "Great room for reform" in native latrines; cleansing of which
consists mainly in the liquid "sinking into the subsoil, so that the earth is thoroughly consists mainly in the liquid sinking into the subsoil, "0 that the earth is thoroughy
saturated, and a noisome odour pervades the atmosphere." "On the whole, the sanitary condition of the station is satisfactory "!!
Mrow. No drainage or sewerage. Drainage received into cesspits 50 feet from nearest quarters, and removed by carts and bheesties.
Neemuch.

Aden.
Belgaum.
Drainage quite insufficient and of the very worst description; drainage of privies and urinals only on the surface. Lavatories have percolating cesspools; but soil does not admit of free percolation. These cesspits are within 15 yards of men's quarters. Cookhouses have only surface drainage; fluid refuse of barracks daily carried away by sweepers; bazaar drainage imperfect; latrines too close to the houses, and are not used at present for lack of a proper establishment to keep them clean. People obliged to resort to the surrounding country for the purposes of nature.
All drainage from barracks allowed to sink into subsoil,-very absorbent; cohtents of urinals and wash-houses received into cesspits, 10 ft . diameter, 6 or 7 feet deep; soil absorbs contents. Sudder hazzar not drained.

Baroda.

Kolatore.

Deexa.

Ahmednuggul.
Kirger and Pooya. daily.
Roof water carried off by shallow ditch excavated round buildings; no other drainage; fluid refuse of barracks received into cesspits in rear of cook-houses, 40 yards from barracks. Nullahs with stagnant pools on all sides of station, averaging 400 to 500 yards from barracks; lavatory drainage goes into an open ditch 7 or 8 yards from the room; latrines cleaned by swerepers.
No drains or sewers; fluid refuse received into cesspits; emptied by sweepers, and purified by lime; small cesspits attached to each bathing room, urinal, or privy. To each married man's quarters there is a bathing room, with cesspit.
Barracks drained by small square underground drains into circular cesspools, 2 feet diameter and 10 feet deep; emptied as found necessary. Drainage not sufficient; fluid refuse of barracks sinks into subsoil; bazaar has open channels or surface drains; no bazaar latrines. No drainage; night soil and all fluid refuse collected in cesspits, 3 feet by 3 , at the end of each barrack, and removed daily.
Kirkee.-No arrangements for draining barracks or for carrying away refuse water from wash-houses, cook-houses, privies, \&c.; all waste water, filth, \&c., removed to a specified locality by sweepers. In two new barracks, two small cesspits at end of each building; emptied daily; in other barracks, refuse water runs into tubs. Barracks and hospitala wet and damp during 3 rainy months.
Poona.-No drainage; barracks and hospitals damp during rains; other arrangements, Pona.-No drainage; barracks and hospitals namp during
same as at Kirkee; bazaar not drained ; no latrinea in bazaar.
same as at kirkee; bazaar not drained; no latrines in
Fig. 7 shows the usual latrine arrangements in barracks.
Fig. 7.-Plan, Elemation, and Sbetion of
the Regimental Privy at Kirkee.

Section on A B.

Stations.	Repligs.
Nugererabad.	None but surface drainage; always damp during monsoon. Each wash-house, cook-house, and urinal has its own cesspit; contents removed when required. Hospital cesspit 125 yards from men's quarters; barrack cesspit not 20 yards from quarters, 97 feet from hospital. Bazaar streets have covered drains, emptying themselves into a nullah west of bazaar.
Sholapore.	No sewers or drains whatever in vicinity of barracks; all refuse carried away; refuse water from men's lavatories thrown on surface, and evaporates.
Surat.	Barracks drained by 4 -inch tiles or 8 -inch brick and chunam sewers, to river from 100 to 350 feet distance. Latrines not drained. Contents carried away by hand.
Malligaum.	No drainage, except surface drainage into nullahs. Drainage of lavatories and urinals insufficient; received into a cesspit 40 feet from the men'a quarters.
Bombay.	Town barracks drained by sewers 250 feet long (to sea), $1 \frac{1}{2}$ feet broad, 5 to 12 feet in depth. At Fort George, latrines not drained except into open ditch, always in a foul state. Main drain of Colaba barracks 2 feet square, flat bottom. Great nuisance. At Byculla stench at times wremdurable. Drainage of native town very defective.
Asberrghut.	*Construction of aewers and drains has not as yet been considered. Sewage will probably be removed by hand." One of the tanks, west side of fort, unsavoury at certain seasons. Refuse in all cases thrown over fort wall. Open space of ground near mainguard and parade, used as a latrine, always offensive, ready to nurture epidemic disease.

X. WATER SUPPLY.

Hyderabad. \quad Water \quad upply derived principally from wells filled by the Indus during the inundation. Some wells brackish; majority good. A few wells during the hot weather become dirty and offensive from not being properly attended to. In others less used, pure water is always attainable. Chemical composition not known; water soft; dissolves soap readily. "No doubt it swarms with animal life." Supply abundant; stored in an open tank; full during

Kurracher.

Nremuch.

 inundation, almost dry during May and June. Not used for bathing.Water derived from wells; supply never known to fail. It is rather dull in colour, and has an earthy taste, but no amell. It contains chloride of sodium, sulphate of soda, sulphate of lime, sulphate of magnesia, carbonate of magnesia, carbonate of lime (quantities not given). The best wells contain nearly gon of saline matter; quality not good; injurious given). The best wells contain nearly sono of saine matter ; quality not good; injurious
to health; quantity sufficient; raised by Persian wheels and hand-buckets, and distributed to health; quantity sufficient; raised by Persian wheels and hand-buckets, and distributed
by water-carriers in skins and by casks in carts ; there are two or three tanks filled by by water-carriers in skins and by casks in carts; there are two or three tanks filled by
rain; beldom full, often dry. Water should be brought from the Mulleer river or the Indus.

Malligaum.

ADEN.

Baroda.

Assefrghur.

Deesa.

Boybay.

Kirere and Poona.

Nugserrabad. There are 39 wells, the water is hard, but good; the amount sufficient; it is raised and
distributed by water-carriers; the wells not liable to pollution. (No analysis.) of vegetable matter; no chemical analysis; most of water hard; raised and distributed by hand-buckets.
Supply derived from wells; amount of drinking water limited; will be shortly increased by a condensing machine; it is raised by bullock power and distributed on donkeys and camels. The composition of four wells shows a large amount, apparently from 60 to 80 grains per gallon, of impurity from chloride of sodium, chloride of magnesium, chloride of calcium, culphate of soda, nitrate of lime, carbonate of magnesia; there are also storage tanks.
Water from well; supply unlimited; clear, without taste or amell; soft, good quality, and contains no lime salts. The solid contents are mostly chloride of sodium, carbonate of soda, bicarbonate of soda, and a faint trace of lime. (No detailed analysis.) It is raised in leather buckets by manual and bullock labour, and distributed by water-carriers.
Water derived from tanks; same tank used for drinking and bathing. "For the former natives slightly clear away surface. Water, in the sweet well, for Europeans, is good; that in the tanks very bad." No chemical analysis. Water raised and distributed by " mussacks " of water-carriers.
Water, from wells, abundant, clear, agreeable, devoid of smell. Chemical composition not known. Drawn for use in leather bags, lowered over rollers, and pulled up by bullocks and distributed by bullocks and carriers.
Water, derived mostly from wells, contains for the most part a large quantity of lime and brackish ses salt in addition. (No detailed analysis.) Said not to be unwholesome; raised by ropes and buckets and Persian wheels, and distributed by water carts, puckallies, and bieesties. Vehar lake water, which has been conveyed to Bombay, conld be cing on. At Kirkee, wster supplied from seven wels, averaging the river, half a mile distant), contains cing 6 to 8 angs (water in solution, sometimes as much as 14 rom 6 to 14 grains of organic matter in suspension. Inorganic impurities consist of chlorides of sodium, magnesium, lime, sulphates of soda, magnesia, lime, nitrates of magnesia, lume, carbonates of magnesia, lime, silica; well water raised by leathern buckets and carried in leather skins by bheesties on bullocks. In cold weather Government pays 433 rupees, and in hot weather 617 rupees monthly to water-carriers. "No such thing as a pump inown at Kirkee," and "all the arrangements are what they may have been 1,000 years or more ago." At Poona water obtained from aqueduct, three tanks, and the river, from which it is forced by pumps into camp. In hot weather aqueduct dry, and has to be fed from wells; some water stored in tanks not drinkable. 280,450 square feet of camp tanks. No precautions, gainst drainage or surface impurities getting into tanks. During the hot weather water is insufficient in quantity; better supply absolutely necessary; well water raised by common leathern buckets, distributed in leathern skins by bullocks, and on the back
"Each individual has his bheestie, and each regiment its set of bheesties."
Water derived from wells and tanks; 2,899,125 square yards of tank surface within half a mile of station; nearly all tanks dry at end of hot season; European troops obtain drinking water from village wells 14 miles from barracks; 8 other wells in camp, water from which contains so large a proportion of salts as to ber unfit for use; water is clear, but brackish; "flavour varies according to quantity of salts," amount varying remarkably at different times. Several times water pronounced wholesome by natives was found to contain a of saline and vegeto-animal impurity, chiefly chlorides and sulphates (no detailed analysis). Water is raised by ropes and buckets, and is distributed by bheesties in "musanalks," and also by water carts.
Sholaporis. Water derived from wells, fed by percolntion from tanks, liable to dry up. Houses along the tank margins become most unhealthy; amount of good water limited, contains about 30 grains solid matter per gallon (no detailed analysis); raised and distributed in leathern reanels by bheeatien.

8 K 2

Fig. 9.-Infaxtry Plonge Bath,
Belgaty.-Plan.

Kolapore.

Washing places outside barrack verandahs; stone-paved floors; raised masonry platforms for hand basins; water kept in casks supplied by bheesties; waste water runs through urinal to a cesspool, emptied by sweepers; no baths; "flavatory arrangements altogether very to 2 cessp,
Malligaum.
Lavatory, with common basins and tubs for washing and bathing; water supplied by bhcesties; waste water passes through urinala by covered drain to covered cesspit.
Assegrghur. Bombay.

Town barracks; lavatory has stone floors, and yater su'pplied by bheestien. So also at Fort George and Colaba. - It is put into barrels ; drained away after use.
Stitions.
XII. DIET AND COOKING.

At all the European stations of the Bombay Presidency a complete ration is issued as follows :Bread, 1 lb . ; meat, 1 lb . ; rice, 4 oz.; sugar, $2 \frac{1}{2} 08 . ;$ tea, $\frac{8}{7}$ oz., or coffee, 19 oz.; salt, 1 oz.; vegetables, 1 lb .; firewood, 3 lbs. The stoppage is 3 annas 4 pice daily (about $5 d$. .), which is the sum a married soldier receives if he does not draw his ration. Beef is the usual meat ration, but where good mutton can be obtained it is served out twice a week. The limited ; sometimes the cannot be had. Cauliforrers; cabbage, and pumpkins constitute the ordinary vegtables; a small quantity of onions sometimes issued. Ration considered excellent as to quality, and is regularly inspected; but no change in the constituents is made to suit climates or seasons. Soldier is allowed to add additional meat and other things, often of very inferior quality. He has three meals a day, breakfast, 7 to $8 \mathrm{~m} . \mathrm{m}$.; dinner, 1 p.m. meat at the other two, and this in the hottest hours of the day.
Kitchens generally amall outhonses, with native fire-places and native utensils; no chimnies; lighting and ventilation often defective; no water supply; all water has to be carried by lighting and ventilation often defective; no water supply; all water has drainage, refuse water either escaping into cesspits or sinking into subsoil. Cooking by native cooks; meat is boiled, fried, stewed, and made into various messes; not dways very wholesome. Cooking seldom complained of, but might be improved, both as rways very wholesome. Cooking seldom complained of, but might be improved, both as regards apparatus, economy, and the results. The use of tea
Fig. 10, showing a plan and section of the cook rooms at Kolapore, will give a good general idea of the nature of the barrack kitchens and their drainage.
Fic. 10.-Plan of the Cook Roomb, Kolapore. ,

XIII. INTEMPERANCE

Hyderabad (Sinde). Soldiers "temperate;" "few confirmed drunkards;" "drunkenness always punished;" spirits sold in canteen and bazaar; in canteen "good," in bazaar" very bad,"" a cunning man may procure any amount;" "morning dram" depends on commanding officer, quite unnecessary; spirit drinking can be "done without;" is not conducive to discipline; abolition of spirit ration advised, as also restriction of sale in canteens; abolition of it in bazaars ; beer or wine not so deleterious, nor coffee, tea, lemonade, \&c. ; drunkenness should always be punished, and sufficient recreation and amusement provided for men.
Kurracher.
Soldiers "temperate;" about 1 per cent. confirmed drunkards; 1 per cent. of admissions into hospital from delirium tremens; drunkenneas punished; spirits sold in canteen and bazaar; prohibited to European soldiers in latter; spirit no part of ration; morning dram not allowed ; spirits "not conducive" to health or discipline; certainly often injurious; not allowed; spirits not conduce of beer and wine over spirits only one of degree (on health); sale of spirits should difference of beer and wine over spirita ofle, tea, \&c., should be permitted; should be done be prohibited in canteen; only beer, "offee, tea, ece, shoully, beginning with recruits; "no more than one dram" of spirits or one quart of gradually, beginning with recruits; ino more that
Neemuch. Soldiers "temperate;" "few confirmed drunkards;" "drunkenness always punished ;" spirits sold in canteen, but not permitted in bazaar to European soldiers; one dram a day allowed; use of spirits injurious to health, and "not conducive" to efficiency or discipline; abolition use of spirits injurious to to " habitual dram drinkers;" wine or beer beneficial as compared with spirits; with spirita; coffee, tea, \&c., beneficial; sal of and be a reading room and coffee shop away and only beer
Aden.
Soldiers "temperate;" no "confirmed drunkards;" drunkenness "calways punished ;" spirita sold in canteen and bazaar; average consumption, 3 dram per man per day ; no "morning dram;" spirits in moderation "do no obvious mischief;" amonot ale in canteen, because mischief ; bazaar spirit bad; sale shlu liquor good for health; tea, lemonade, soda water, bazaar apirits woul \&c., far better for health, efficiency, and disciplat, time.
spirit or one quart of malt liquor per man issued at one no. confirmed drunkards; a large Men, as a rule, " temperate;' sever amount of fever cases indirectly caused," on dram of arrack and one quart of porter per time;" drunkenness "always punished; one dram aninjurious to health or discipline; man can be purchased per diem; spirit in moderation not a jurious so irits; lemonade, soda but most of the crime attributable to it; malt lquor preferabere liquor would be bought water, \&c., not used; if spirits prohibited in canteen, worse hquor would secretly.
Nusgerabad.

Kirigr and Poona. Temperate; very few drunkards; drunkenness always punished; spirit sold in canteen, hut not to European soldiers in bazaar; one quart porter, two drams arrack and no porter ;-spirits in modition should not be abolished altogether; effect of malt liquor or wine apperit.
better for men to drink wholesome canteen spirit than bad drinkers; 10 others get drunk on Kirkee, usually temperate; only 3 out of 560 men habitital in 361 caused directly by intemovery available opportunity; one admission into perance; drunkenness always punished; spirits sold in canteen, but forbidden to soprits not perance; drunkeaneas per man per diem allowed; in moderation and diluted, ${ }^{9}$

XIV. INSTRUCTION

AND RECREATION.

Hyderabad (Sinde). One ball court; one skittle ground; one achool; one library and reading room; much too emall and insufficiently lighted; light paid for by men; long bullets; cricket. In hot weather, men, save those who can read, "have positively nothing to do;" no restriction on exposure to sun ; men always less anxious to expose themselves where no restriction; large airy workshops "would prove a boon to soldiers;" employment on public works "would also be a great boon;" work would be as cheaply done as now; it would occupy the soldier, and he would feel he was doing good; a good reading room, well lighted at night, and more suitablei books, a great want; all manly games should be encouraged; savings' banks answer admirably ; no shade except in north verandahs.

Kurracher.

Neemuch.

Aden.

Baroda.
Ball courts ; skittle grounds; schools ; library and reading room; workshops not efficient; theatre unaided by Government; means not sufficient ; no day rooms, nor soldiers' clubs, nor gardens, nor gymnasia; men restricted from exposing themselves to sun; trades and gymnastics should be encouraged; restriction on marriage should be removed; savings' banks would be an advantage; no shade from trees, only verandahs.
Skittle grounds; schools; library and reading room, former well lighted at night; day room ; soldiers' garden; no workshops; no ball courts; no theatre; no gymnasia; former about to be erected; two latter would be a great addition; no shade; men kept in barracks during hot months from 8 a.m. to 4 p.m.
One ball court; two skittle grounds; two schools; one library and reading room; gufficiently lighted at night ; no day rooms; no soldiers' clubs; no gardens; no workshops; no theatre; no gymnasia; no shelter from trees, only verandah; covered gymnasium much wanted; men kept in barracks during day ; savings' banks beneficial.
Small library and reading, room, not lighted at night; cricket; no ball court; no skittle ground ; no school; no day room; no club; no garden; no workshops; no theatre; no gymnasia. Workshops, especially for carpenters, much needed ; also more suitable booka for library. There are savinga' banks.

Stationg.	Replies.
Kiriee and Poona.	Kirkee.-Ball courts (not covered); schools; library; reading room. The following, though much required, do not exist:-No day roora; no club; no gardens; no workshops. There is no theatre; no skittle ground; no gymnasium. Persuasion and personal influence used to keep the men from exposing themselves. Foils, single sticks, \&c., much required. No sufficient shade. Savings' banks are advantageous. Poona.-Ball court (uncovered); skittle ground; schools; library and reading room; the latter, being attached to the schools, are objectionable, though sufficiently lighted. No day rooms; no clubs; no gardens; no workshops; no theatre; no gymnasia. The three latter much needed. Present means insufficient; men confined to barracks from 8 a.m. to 4 p.m.; asvings' banks beneficial; no shade except verandahs.
Nugseerabad.	One ball court; skittle grounds. "Schools and schoolmasters exist, but schools have to be built." Libraries. No proper reading rooms; no day rooms; no soldiers' clubs; no workshopa. There are gardens. A theatre, constantly used; a gymnasium ; races; jumping, and other gymnastics. Workshops for trades would be a great benefit. No sufficient shade.
Sholapore.	Ball court; skittle ground (uncovered); library (lighted at night); school (no trained schoolmaster). Gardens. No day. rooms; no soldiers' clubs; no workshops; no theatre; no gymnasia. Men restricted to barracks during day. Workshops a great desideratum; also gymnasia. A large open shed wanted. Savings' banks would be advantageous if workshops for trades were established. This would keep many men from canteen' No shade. Verandahs too limited.
Surat.	No ball court. A akittle ground and school. No library, nor reading, nor day room; no club; no garden; no workshops; no theatre; no gymnasia. Men confined to barracka from 8 to 5 in hot weather. No shade for exercise. Savings' banks are advantageous.
Ahmednuggur.	Ball courts; skittle ground; schools; library; reading room; gardens; workshops; theatre. No day rooms; no gymnasia; means sufficient, but not extensive enough. There are savings' banks. Soldiers kept in barracks during day. Shade sufficient for exercise, without injury to health.
M How .	Ball courts, skittle grounds (uncovered), school, library and reading rooms. No day room, club, nor gardens; no workshops nor gymnasium. A theatre. Savings' banks answer. Shade insufficient for exercise.
Sattara.	One school; theatre (barrack room); no ball court; no skittle ground; no library nor reading room; no gardens; no workshops; no gymnasia. All wanted. Savings' banks exist. Men restricted to barracks during day. No sufficient shade for exercise.
Brlgaum.	Ball court, skittle ground, cricket, schools, library, sufficiently lighted; no day room nor soldiers' club; some small gardens. Workshops much wanted; none properly so called. No theatre; no gymnasia. Two regiments at station; one restricted to barracks during day; the other under no restriction, except that the head be properly covered in going out, and men discouraged from exposing thernselves; latter rule preferable; too much confinement is bad. Well-behaved men should be allowed to go out shooting and coursing. Not sufficient shade for exercise. Sheds wanted. Savings' banks beneficial.
Kolapore.	Skittle grounds ; library, well lighted; small garden plots; station theatre; "has fallen down since the preparation of this report;" no ball courts; no adult school; no day room nor club; no workshops nor gymnasia. Artillery not restricted to barracks; permitted to expose themselves as they please, and to get up cricket matches. Infantry-men restricted to barracks, except on duty. Ball alley wanted and plunge baths, as "the men have no means of keeping themselves clean properly." Savings' banks exist; no shade except verandahs.
Malligaum.	No means of instruction or recreation whatsoever; savings' banks would be advantageous; no sufficient shade for exercise.
Asbererghur. \cdot Bombay.	Ball court out of repair; company library; theatre in a private house; no skittle grounds; no day room nor club; no workshops nor gymnasia; men restricted to barracks during day; savings" banks "would certainly be advantageous;" no shade except verandahs. No means of instruction or recreation at town barracks; at other barracks, ball courts; skittle grounds; schools; library and reading room; two barracks have no library ; no workshops; theatre occasionally; cricket; men restricted to barracks till 5 p.m.; regimental savings ${ }^{\text {a }}$ banks advantageous; no shade for exercise except verandahs.

XV. DRESS.

Besides the usual cloth and woollen dress, the soldier is provided with light khakee tunics and trousers, and a head dress to keep out the sun; it is said to be well suited to the climate and duties.

XVI. DUTIES.

With four exceptions, the replies from European stations advise that recruits should be thoroughly drilled at home before being sent to India; one of these four recommends that recruits should be drilled in a cool climate in India. Stational duties consist of drils, morning and evening, generally before sunrise and about sunset, from half an hour to an hour or more, according to season and weather; the number of nights in bed depends on the strength, and appears to vary from four to seven successively; guards last 24 hours, and are mounted at distances of from a few yards to two miles. Except at one station, night duties are not observed to have any injurious infuence on health; the number or calls varies in different regiments from two to seven; night roll calls are not unfrequent.

XVII. PERIOD OF
 SERVICE IN INDIA

In most of the reports it is recommended that the soldier shall not proceed to Indis under 20 years of age. The lowest age given in one report is 18 , and the highest 27 . Fully drilled soldiers at from 20 to 22 years would best suit the reguirements 10 years. In one by the reporters. The length of service, they consider, should not exceed 10 years. in one instance, seven Years are reckoned sufficient; in another, as many as long in India as in The Hyderabad Committee state that a Brish soldier may serve as as healthy as any in. "any other part of the world. Two-thirds of the Indian stations are as healthy as any in "Europe, provided the habits be adapted to the country." The stational reports concur as to the desirableness of the soldier arriving in India at the beginning of the cool

Stations. $|$\begin{tabular}{l}
Repues.

and of his being sent at once to his regiment, great care being exercised to keep him
from excess on landing. Invalids should leave for England so as to arrive in early summer.

\end{tabular}

XVIII. HILL STATIONS.

Hyderabad (Sinde). \quad Reporters have no experience of hill stations, but apprové. . Best elevation, 5,000 feet. "Acclimatization a myth, as generally understood.

Kurrachere.

Dersa.
Approve. "Hill station is to the plain as the open air to the hot-house."
Mount Aboo, 45 miles distant, over a level sandy plain. Ascent by bridle path in about two hours ; elevation, 4,000 to 5,000 feet. Climate favourable to residents and to children of Lawrence Asylum. Approve of hill stations, but they require care; scurvy, scorbutic dysentery, general cachexia, and anæmia have resulted from want of variety and deficiency dysentery, general cachexia, and anæmia have resulted from want of variety and deficiency
of vegetables in ration. "Last year a company of men returned from Mount Aboo after a of vegetables in ration. "Last year a company of men returned from Mount Aboo after a
year's residence, suffering from intermittent fever, caused by bad barracks and unhealthy malarious position." The men were "reduced and anæmic from malarious poison, and somewhat scorbutic from defect in diet. Mutton was the only meat issued for 12 months." "At some hill stations there is malarious fever ; others predispose to diarrhoea." Barracks and hospitals at hill stations of Kussowlie and Subathoo are defective in structure and plan. At Aboo the barracks were erected in a malarious gully.
Mirkeq and Poona.
Kirkee.-Hill stations should decidedly be selected for troops, "but only as a change of climate." Amount of barrack and hospital accommodation at hill stations totally insufficient. Best elevation, 4,000 feet above sea; but no experience.
Poona.-The same evidence.
Sholapore.
Surat.
No experience of hill stations ; but troops from hill stations are less liable to fevers, \&c. on returning'to plains. Weak men, on arrival at Mount Aboo, are liable to fever and diarrhcea. Better to locate troops in the hills, with short service on the plains.
Nusserfabad. Ahmednuggur.

Mhow.
Sattara.
Advisable to select hill stations for troops; but no experience.
Experience of hill stations very limited; but "under certain conditions, should think that hill stations would be beneficial to European troops." "There should be 12 months' residence." No experience of hill stations, but "undoubtedly it would be desirable to locate troops on the hills as much as possible."
No experience ; but approve of selecting hill stations for troops., Considers "any period of residence in hills, beyond the acquirement of moderate tonicity, would be injurious."
Belgaum. No experience of hill stations; but troops, on going to hills, are liable to head attacks, hepatic affections, and rheumatism; long residence in hilla and short residence on plains likely to be most conducive to hequth of troops.
Kolapore.

Bombay.

Asserrghur.

Residence at hill stations would lessen liability to fever, and diminish predisposition to climatic diseases of plains. Troops more liable to diarrhcea in Himalaya than at Bombar hill stations. Bowel complaints might be guarded against " by flannel, pure water, cleanliness, clearing jungle, thorough drainage, and a strict system of conservancy." Advisable that European troops be located periodically on hills, especially on high table lands. Europeans should pass one year in five in a more suitable climate.
Hill stations do well for healthy men, and for those simply debilitated from fevers, but are injurious for dysentery and structural disease. They are not beneficial throughout the year. Their peculiar diseases are, head affections, rheumatism, diarrhoea, and dysentery. Elevations above 4,000 feet are not suited to chest affections. Service in the plains, with shorter period of change to hills, might be expected to be the most advantageous to health.
No experience, but approve of hill stations.
XIX. HOSPITALS.

Hyderabad (Sinds). Site.-Open and healthy, 600 yards from barrack.
Water supply.-Wholesome and abundant.
Drainage.-Impurities carried away by open drains into cesspits ; thence removed by hand.
Construction.-Wards 3 feet raised above ground; no perflation of air beneath; roof water ro moved by open drain ; material, pucka-brick and lime; tiled roof; verandahs. Built 1854-5.
Accommodation.-Five wards; no regulation number of beds; cubic feet and auperficial feet per bed not given.
Ventilation.-No windows; doors with Venetian shutters, sufficient to keep wards cool and free of odour. In hot weather wet tatties are used, and punkahs.
Cleansing.-Walls and ceilings limewashed yearly, or oftener.
Latrines.-Over cesspits, cleansed and deodorized; no waterclosets.
Lavatory and bath.-None, except a tub and hip bath.
Hospital linen washed and dried in sun.
Storage sufficient and dry.
Bedding. -Wooden cots $2 \frac{1}{2}$ feet high, tape bottoms ; beds, chopped straw.
Cooking.-Means sufficient.
Attendance.-Ward boys. "A comrade can always be procured, or a nurse, on requisition."
Convalescents.-No ward and no exercising ground for convalescents. "An unwieldy and uncomfortable cart allowed " "for exercise of convalescents;" "little used."
Female Hospitals.-One with matron for each corps.
Kurrachef.
Site.-All hospitals; except one, too near to barracks; one very close to picket ground general hospital 200 yards-from bazaar. With these exceptions, sites pretty open, and "healthy as to drainage, elevation, \&c."
Water supply.-Abundant, but not.good.
Drainage.-None; all refuse removed daily by sweepera.
Construction.-Wards, except in one hospital, raised 3 : feet above ground; no passage for air beneath ; roof water not carried away ; sinks into subsoil; no surface drainage or guttering. Material of older hospitals, sun-dried brick; of new one; stone. General and native hospital double roofs and walls; others, single; veranduhs from 8 to 12 feet broad. In doublo-walled
Stations.
hospital verandahs are inside; used for sick when wards crowded, Fig. 11 gives a plan and section of the horse artillery hospital at this station, showing one inner ward eaclosed on Fig. 11.-Plan and Section or Horse Abtion

Accommodation.-Three European and two native (one ward each), containing, four, 100 beds each, and one 28 beds. Cubic feet per bed in European hospitals, 1,362 to 1,867; square feet, 68 to 97 . Cubic feet per bed in native hospitals, 316 to 633 ; square feet, 24 to 35 .
Ventilation.-By doors, windows, and openings in roof; windows open vertically in halves. Means sufficient in new hospital; not so in old; no means of cooling the air.
Clearsing.-Limewashing once in three months.
Latrines over cesspools; cleansed daily, and quicklime put in. "Not offensive, if carefully Latrises over cesspools; cleansed dail
kept." "Admit of improvement."
Ablution and bath room.-Sheds with tubs; slipper baths; neither sufficient nor convenient. Ablution and bath room.-Sheds with tubs;
Storage.-Sufficient and dry.
Bedding.-Iron bedsteads, but not universally so ; wooden cots in European and native hospital (1 foot 2 inches to 1 foot 6 inches high); harbour vernin; straw beds and pillows; sheets, blankets, quilts, acocording to season.
Cooking.-Portuguese cooks. "The younger and inferior cooks, being paid less, are found in hospitals."
Attendance.-Hospital serjeant in European hospital; 10 ward boys; one added for every eight patients above 80 , and one for every bed-ridden case, "and a comrade in extreme cases." Sufficient in number, inferior in kind. A havidar and comrades attend in native hospitals. Sanitary state.-Orily one hospital out of five "adequate." Phagedœena and gangrene have occurred from crowding; want of space great defect; better privies and baths and better ventilation required, also a matron to superintend cooking and distribution of diets. Suggeations of medical officers may be acted on or not by higher authority.
Convalescents.-No fenced ground, shaded walks, or seats for exercise; only vicinity of hospital, or verandah, or ambulance cart to exercise in. No. wards for convaleacents.
Ferale hospital.-Separate hospital for women and children, with matron; assistant matron, and ward women; satisfactory. No femsle native hospital.
Site.-Oper, on high ground, sloping away on all sides; healthy as to drainage, elevation, sbsence of malaris, \&c.
Water supply aufficient and wholesome.
Drainage,-Refuse collected in cesspools and carried away at night; night soil removed by Coweepers.
Construction.-Floors 3 feet above ground; no passage for air berieath; roof water allowed to run away by natural slope of ground; material, atone, lime, and brick; thick single walls and roofs; no verandahs; wards in two floors; originally built as a residency; rooms of various dimensions ; upper floor not used for sick.
Accommodation.-One ward, 30 to 35 sick; cubic feet per bed, 1,600 to 1,870 ; square feet, 62 to 72.
Ventilation.-No windows; all glass doors, with venetians; no other ventilation; other smaller wards have ventilators im roof; wet tatties used for cooling.
Cleansing.-Limewashing once in three months, or as often as required.
Latrines like those of barracks; over cesspit; emptied daily
Lavatories and baths.-Two similar to barrack lavatories, close to hospitsi; no bath-rooms ; "ten flat baths."
Hospital linen washed away from hospital.
Storage sufficient and dry.
Stations.
blanket, and coverlid; iron bedsteads should be substituted.
Cooking.-Two kitchens, close to hospital, not large enough ; usual Indian utensils; cooking properly done and sufficrently varied.
Attendance.-Ward coolies; "every severe case allowed a comrade."
Sanitary state.-"As good as can be expected in a private house." "Would be insufficient for increase of sickness." "Required" "cells" for insane patients, hot and shower baths quarters for medical officers
Convalescents.-No shaded walks, \&c. "sick carts drawn by bullocks and elephants." No wards for convalescents.
Female hospital.-A small temporary hospital for females; too small; insufficiently ventilated; otherwise unsuitable.

Kirgere.
Site.-In. every respect healthy.
Water supply.-From wells, principally brackish; better supply is being obtained.
Drainage, none: refuse water absorbed by soil
Construction.-Floors three to four feet above ground, paved with stone; no passage for air beneath ; roof water ainks into subsoil ; material, rubble and chunam, wattle and daub; walls and roof single, but thick; verandahs on two sides, used for sick when hospital crowded.
Accommodation. Three hospitals for Europeans; one ditto for natives; former contain in all
Accommodation.-Three hospitals for Europeans; one ditto for natives; former contain in all
four wards, with 10 , 12 , and 20 beds per ward; cubic feet, 900 to 1,872 ; square feet, 55 to 90 per man. In native hospital, cubic feet, 433 to 565 ; square feet, 38 to 51 per man
Ventilation.-Hospital exposed to prevailing winds; air renewed by windows; trellis-work
over doors and windows; open ventilators in roof; sufficient; punkahs used for cooling.
Cleansing,-Limewashing once a quarter; privies and urinals 40 to 50 feet from hospital drained by hand; no cesspits.
Ablution and bath room.-One room for washing and bathing; "sufficient."
Hospital linen washed and dried by washermen.
Storage sufficient, and dry.
Bedding.-Bedsteads, planks on iron trestles.
Cooking properly done; varied as much as possible.
Attendance.-European hospital serjeant, ward coolies; no inurses
Sanitary state of European hospitals "good ;" no epidemic.
Convalescents.-No convalescent ward; no provision for exercise.
Female hospital. - None; sick wives and children treated in quarters; sanitarium for females at Steamer Point.
Site to leeward of station ; much too close to river and horse lines.
Water supply abundant and good.
Drainage.-By a barrel drain to a nullah.
Construction.-Wards raised $1 \frac{1}{2}$ feet above ground; no ventilation beneath; no provision for carrying away roof water; hospital built of brick and mud; verandahs 8 feet broad all round.
Accommodation.-Four wards of 30 beds each, giving 1,042 cubic feet; 72 square feet per man. Ventilation.-No winds except those passing over station; proper ventilation next to impossible; windows, doors, and ventilators in roof; sufficient as to means; punkahs in hot weather and tatties.
Cleansing.-Limewashing whenever required.
Privies, same as barracks ; "properly cleansed."
Ablution and bath room, "very good;" "a large room; tinned copper washing basins;"
"a large tub kept constantly full by a bheestie for those men who are sufficiently well to svail themselves of it for bathing."
Hospital linen washed by dhobies.
Storage sufficient and dry.
Bedding.-Iron cots 18 inches high; sacking bottoms; straw mattress; coir recommended instead.
Cooking.—Utensils same as barracks; "well done, and means sufficient."
Attendance.-Hospital serjeant and ward boys; "serious cases have an European orderly."
Sanitary state most objectionable, as being close to a nullah.used as a necessary by the natives, and as a receptacle for the filth of the whole station; when cholera occurred, hospital had to be evacuated; " sanitary recommendations of medical officers always attended to."
Convalescents.-No exercising ground or seats; only verandahs; no wards; " not required convalescents live in their barrack rooms."
Female hospital, one; no matron, "therefore sick women and children attended at home; present arrangement sufficient."
Sife good and healthy.
Water supply, by bheesties, as may be needed.
Drainage.-No regular system, "not being allowed by Government regulation;" all refuse water and impurities carried away by sweepers.
Construction.-Floors three feet above ground; no ventilation below; roof water sinks into subsoil, which is porous; material, brick and lime; roof double tiled; walls single; floor paved; hospital cool ; verandahs.
Accommodation.-Two wards for 10 sick each; two for 12 each; two for 28 each; cubic feet per bed, 1,425 ; square feet per bed, 86 .
Ventilation.-Hospital receives full benefit of winds; ventilation by doors, windows, and roof ventilators; scarcely sufficient; air cooled by tatties and punkahs; stoves for dryness in monsoon required
Cleansing.-Limewashing every three months or oftener.
Privies washed out frequently and deodorized.
Ablution and bath room.-Tubs and basins alone; permanent lavatories with shower baths much needed.
Hospital linen washed by commissariat; means of drying much wanted.
Storage sufficient and dry.
Bedding. -Iron cots, with straw mattress ; cocoa-nut shreds recommended instead
Cooking properly done, and sufficiently varied.
Attendance.-Hospital serjeant, ward boys; "sufficient."
Sanitary state good; no hospital disease.

Fig. 12.-Artillezy Hosipitai, Sholhapore.

[^7]Stations.

Nussearabad.

Deesa.

Surat.

Female hospital.-One ward in regimental hospital of 8 beds, at 1,400 cubic feet ; 82 gquare feet per bed. Women prefer remaining in their own huts, and being attended there, with their, children, by medical officer; no resident matron allowed; "c present arrangement conducive to comfort."
No hospitai; only temporary accommodation in barracks and in the church bungalow; three buildings at present used by different arms.
Hrater supply, "good;" carried by bheesties:
Drainage by cesspits.
Construction.-Floor $1 \frac{1}{2}$ feet above ground; no ventilation beneath; roof water discharged on ground.
Accommodation in artillery hospital, one room, 14 beds, at 1,527 cubic feet; 76 square feet per bed; 4 verandahs; all used for sick, when necessary ; 3 small " bedrooms" 1 bed each. Ventilation.-Doors, windows, and openinge in walls; exposed to prevailing winds.
Cleansing.-Limewashing on requisition.
Privies cleansed daily.
Ablution and bath room, "insufficient;" four wooden tubs and four "gindees" to each, besides. 40 crockery basins; no baths.
Hospital washing by native washermen.
Storage insufficient.
Bedding, chiefly wooden bedsteads, some iron; straw mattresses and pillows, cotton sheets and coverlids; blankets.
Cooking, "sufficient;" sometimes want of good vegetables.
Attendance.-Usual regimental establishment.
Sanitary state.-No hospital diseases. Hospital should be larger; better raised; better Sanitary stat
fitted up.
fitted up.
Convalescents.-No wards ; convalescents sent to barracks and put on barrack rations; " marched out under a non-commissioned officer for morning and evening exercise."
Female hospital, none ; only two compartments of married quarters.
Site.-Two hospitals; European hospital on highest and best ground in cantonment, but too near officers' quarters, which obstruct the breeze; artillery hospital on lower ground; ven- . tilation similarly obstructed.
Water supply, abundant and wholesome.
Drainage by cesspools 10 feet deep; emptied as found necessary.
Construction.-Ward floors 18 inches above ground; no ventilation beneath; no surface drainage; roof water sinks into subsoil; material, burnt bricks and mortar; tiled roofs, which are hot; verandahs all round; sometimes used for aick. (The arrangement of parta in this class of hospitals is shown in the following, Fig. 13.)
Accommodation.-European hospital; two wards, sim beds. each; 1,822 cubic feet per bed; 104 square feet per bed. Four wards, 12 beds each; 2,005 cubic feet per man ; 114 square feet per man. Horse artillery hospital, two wards, 16 and 7 beds each, with 2,387 . to 1,445 cubic feet per man, 108 to 65 square feet per man.
Ventilation.-By doors, windows, punkahs, and ventilators in roof; generally sufficient.
Cleansing.-Limewashing when required.
Cleansing.- Limewas
Privies over cessuits.
Privies over cesspits.
Ablution and bath room.-In infantry hospital; sheds projecting from verandah, with tables, basins, chatties, and towels; sheds interfere with ventilation of wards; arrangements in artillery hospital insufficient; means of bathing, chatties, tin baths, and basins; not sufficient nor convenient.
Hospital washing.-By washermen.
Stornge.-Sufficient and dry.
Bedding.-Iron bedsteads; rice, straw, or cotton mattresses; "hair or cocoa-nut fibre preferable;" counterpanes, blankets, sheets.
Cooking.-By Portuguese; tolerable.
Attendance.-"Ample and sufficient;" orderlies from regiments employed "during epidemics or in particular cases of importance."
Convalescents.-Shaded walks for exercise; horse exercise; no wards; such necessary
Sanitary state.-"Excellent;" no hospital disease; but hospitals too small; no dead house; no guard house; "men on guard occupy a corner of front verandah, where they eat, drink, -and smoke at their discretion."
Female hospital.-One; arrangements aatisfactory.
Site--Castle hospital has native town on three sides; site not healthy; native hospital, private house; isolated and healthy.
Fater supply abundant, and "as good as can be got in the neighbourhood."
Drainage.-"Several drains;" all cleansed daily by' sweepers; native hospital cleansed by sweepers.
Construction.-Castle hospital, wards 21 feet abové ground; free ventilation beneath; lower ward of native hospital two feet above ground; floor, mud; roof water falls on ground and runs away; materiuls, castle hospital, brick and chunam masonry; floors, chunam; no verandahs.
no verandahs.
Accommodation.-Castle, one ward, 10 beds; 760 cubic feet per bed; 76 square feet per bed; one ward, eight beds; 870 cubic feet per bed; 72 square feet per bed. Native hospital, one ward, 12 beds; 1,077 cubic feet per bed; 83 square feet per bed; one ward, six beds; 989 cubic feet per bed; 82 square feet per bed.
Ventilation "good."
Cleansing.-Lime-washing once a quarter; no privies in" European hospital 3 'those of native Cleansing.-Lime-washing once a quarter; no pri
hospital cleansed daily, but "highly offensive."
Ablution and bath room.-Tubs "in sufficient quantities;" "means of bathing convenient and sufficient."
Hospital washing by native washermen.
Bedding.- Wooden cots ; straw mattresses; serge blankets:
Cooking.-Kitchen insufficient; cooking properly done.
Attendance.-Hospital serjeant; ward boys.
Sanitary state "good;" no epidemic disease; European hospital "unfit for accommodation of European patients;" "native hospital not sufficient;" "new hospital should be erected."
Convalescents.-No wards; no provision for exercise.
Female hospital.-None.

> Drainage into cesspits, whence liquid carried away by hand. Dren

Construction.-Floors four feet above ground; no ventilation beneath; roof water sinks into subsoil; material, brick, and tiled roof; cool ; verandahs occasionally used for sick; part of them also used "for eating meals in, there being no rooms for the purpose."
Accommodation.-One ward of 20 beds; 2,016 cubic feet per bed; 84 square feet per bed; two wards, 20 beds each; 1,843 cubic feet per bed; 77 square feet per bed.
Ventilation by double sets of windows, one above the other; "sufficient;" no means of cooling, "shutting the wards up by day in hot weather being sufficient."
Cleansing,-Limewashing every three months or oftener.
Privies drained into cesspools; contents removed by sweepers ; deodorizers employed.
Ablution und bath room.-"Bathing apparatus very simple;" copper hand basins; wooden tubs, with slipper baths for hot water; rooms being enlarged.
Hospital washing at a distance
Storage sufficient and dry.
Bedding.-Iron cots; straw mattresses ; bed clothes according to season.
Cooking "sufficient,"
Attendance.-Hospital serjeant ; ward boys; "orderly comrades."
Sanitary state, "good;" no gangrene or pyæmia; "cholera has appeared in it, as elsewhere."
Convalescents.-Dining room required; "anything is better than dining in the wards in India'; among other reasons, because flies, a pest of the first magnitude in India, are attracted by it; such dining rooms are required for all hospitals;" no shaded walks for exercise; no convalescent wards.

Meow.
Sattara.

Brlgaum.

Kolapore.
Female hospital.-One, with matron and assistant matron; accommodation not sufficient.
No proper hospital accommodation; present hospital will be abandoned as soon as any can be provided; all the arrangements temporairy.
site.- 150 yards from men's barracks; open; freely ventilated; otherwive objectionable. Water supply sufficient and wholesome.
Drainage.-Surface drains; sewage and refuse cleared away by sweepers.
Construction.-Floors $1 \frac{1}{2}$ feet above ground; no ventilation beneath; roof water carried away by trenches; material, wattle and daub; grass thatch roofs; earthen floors; walls too thin; verandahs on both sides; not sufficient.
Accommodation.-Four wards; 12, 20,26 beds each; $870,890,960$ cubic feet per bed; $60,61,66$ square feet per bed.
Ventilation by windows and openings ander eaves; not sufficient; no means of cooling.
Cleansing. -Whitewashing three or four times a year.
Privies cleaned by sweepers.
Ablution and bath room.-A washing room; "sufficient."
Storage sufficient and dry.
Bedding.-Iron bedsteads; rice straw mattress and pillows.
Cooking " properly done."
Attendance.-A hospital orderly, "with occasional help of a comrade."
Sanitary state" good;" no hospital disease; hospitals, " being only temporary, are defective in many points.'
Convalescents.-No shaded walks for exercise, nor seats; no wards.
Fernale hospital.-None.
Sites.-On the whole good.
Water supply.-Wholesome but limited, " being brought by water-carriers."s
Drainage.- No sewers, rain-water everywhere flows on the surface. European hospitals have cesspools, emptied when necessary ; sweepers carry away solid matter daily.
Construction.-Floors from 2 to 7 feet above ground; no ventilation beneath; roof water carried away in open gutters. Material, laterite and lime; verandahs on both sides, only used for sick when necessary.
Accommodation.-Artillery, 2 wards, 12 beds each, 843 . cubic feet, 60 square feet per bed; European infantry, 6 wards, 12 to 42 beds each, 892 to 1,598 cubic feet, 69 to 80 square feet per bed ; two native hospitals, one ward each, 32 beds, 792 cubic feet, 66 square feet per bed. Ventilation, doors and windows and through the roof; sufficient when not overcrowded. Cleansing.-Limewashing once a quarter.
Privies.-Cleansed once a day ; cesspools always more or less offensive.
Ablution and bath room.-No lavatory ; great want, only tubs and slipper baths and one shower bath.
Bedding. -Iron cots ; straw mattress ; straw or hemp pillow; cotton sheets; country blankets, of a very inferior description.
Cooking.-Kitchen arrangements sufficient.
Attendance.-"Sufficient."
Sanitary state.-One ward shut out from breeze ; privy, a nuisance to the other; epidemic disease has appeared; sores sometimes become erysipelatous; buildings too much crowded together.
Convulescents.-No shaded walks nor seats; no wards.
Female hospital.-One; sufficient.
Site.-Generally healthy.
Water supply.-Generally sufficient.
Drainage.-None; refuse water runs off, and is either absorbed or evaporated.
Construction.-Floors 3 to 5 feet above ground; no ventilation beneath; roof water falls on ground; part runs down the slope ; material, stone and lime; roofs double tiled, sufficient for coolness; verandahs, partly used as dispensary and store rooms ; only used for sick in extreme cases. Figure 14 shows the construction of a native hospital at this station, with the ward offices usually provided for those establishments.
Accommodation.- One ward, 32 beds, 1,056 cubio feet, 66 square feet per bed; artillery ward, 16 beds, 1,100 cubic feet, 69 square feet per bed ; native infantry, 60 beds, 541 cubic feet, 60 square feet per bed; the last originally a gun shed, then a cattle shed, lately converted into a native hospital.

Fig. 14.-Native Infantry Hospital, Kolapore.

Malligaum.
Site.-Healthy.
Water supply.-"Abundant and wholesome."
Drainage.-None; "no refuse water lodges in vicinity of hospital."
Construction:-Wards 1 foot above ground; flagged; no circulation of air ; roof water sinks into subsoil; material, burnt brick and lime; walls, double; roof, tiled; verandahs all round used for sick and convalescents.
Accommodation. 2 wards, 40 beds each, 829 cubic feet, 50 square feet per bed; 2 wards,
8 beds each, 872 cubic feet, 62 square feet per bed.
Ventilation by jhilmils, "sufficient."
Cleansing.-LLimewashing once in 6 months or oftener.
Privies over cesspits kept clean by sweepers.
Ablution and bath room.-None.
Bedding.-None allowed.
Bedsteads.-Wood.
Cooking done in a shed; all that is required.
Attendance.-Hospital orderly and cook; "a comrade if necessary."
Sanitary state, "good;" no deficiencies nor sanitary defects.
Convalescents.- No wards; take exercise in compound.
Female hospital.-None.
Bombay.
Sites.-Generally good, except at Colaba, where the hospital is on low ground.
Water supply.-Excellent from the Vehar waterworks.
Drainage.-Fort George, open drains into ditch, covered drains into cesspools; Colaba, open and covered drains to sea; depôt hospital, cesspools emptied when required; also into
construction.-Fort George lower ward, raised 6 feet above ground, free ventilation beneath; Colaba and depôt hospital raised 2 feet ; no ventilation beneath; roof water at Fort George falls or ground; at Colaba, it is collected in tank; materials, lime and stone masonry ; closed verandah, only used for sick on extraordinary occasions.
Accommodation.-Fort George, 8 wards, 3 to 15 beds, 1,788 to 2,223 cubic feet, 154 to 173 Accommodation.-Ford coorge, \quad square feet per bed; wards, Colaba, 56 beds in in 8 wards of 6 and 8 beds, 1,953 to 2,082 cubic feet, 156 to 166 square feet per bed; depôt hospital, 80 beds in 4 wards of 20 each, 2,079 cubic feet, 126 square feet per bed.
each,,
Ventilation.-Fort George, doors, windows, windows in roof, and punkahs; Colaba, roof Ventilation.-Fort George, doors, windows, windows in roof, and punkahs; Colaba, roof
ventilators, doors, windows, punkahs; depót hospital, the same ; ventilation "sufficient;" ventiators, doors, windows, punkahs; depost hospital, the
charcoal burners used for warming in damp chilly weather.
charcoal burners used for warming in dan
Cleansing. - Limewashing every 3 months.
Cleansing.-Limewashing every 3 months.
Privies.-Fort George, contents emptied twice a day into sea behind barracks; Colaba, the Privies.- Fort George, contents emptied twice a, day into sea behind barracks; Colaba, the
same; depót hospital, cesspits emptied daily; waterclosets said to exist at all the hospitala same; depot hospital, cesspits
from 10 to 30 feet from wards.
Ablution and bath room.-Fort George, 4 bathing places, "where the patients can bathe thernselves from water barrels;" "sufficient." Colaba, one lavatory ; patients "take water to bathe themaelves from wooden trough lined with zinc;" depôt hospital, two lavatories, water supplied in barrele or tabs ; "sick pour the water over themselves with a tin pot."
Storage.-Sufficient and dry.
Bedding.-Iron cots.
Cooking.-Appliances sufficient; diets should be more varied; "mutton might be allowed twice a week as a change."
Attendance.-Hospital serjeant; a nurse or native boy for each bedridden patient.
Sanitary state.-Generally good; no epidemic disease.
Convalescents.-No special provision for exercise; no wards; allowing conralescents in barracks "does not answer well ;" better kept in hospital till fit for duty.
Female hospital. -Arrangements quite equal to those for the men ; European female nurse or matron allowed; satisfactory.
Asserrgher.
Site.-In all respects healthy.
Water supply-One well only, "good," filtration required.
Drainage.-None. ${ }^{\text {Construction.-Floors }} 14$ feet above ground, no air beneath; roof water sinks into subsoil ; no Construction.-F gutters round; ma
pstients exercising.
patients exercising.
Accommodation. 6 wards, 1 to 8 beds each, 21 in all, 724 to 1,275 cubic feet, 60 to 100 Accommodation.-6
square feet per bed.

XX. BURIAL OF THE DEAD.

All the stations have European burial grounds, in which borial is conducted much as at home, These grounds have generally sufficient area; they are not too near cantonments, and are tolerably well kept. The grave space and depth vary, and are under no regulation. Sometimes the graves are too shallow. The dead of natives and camp followers are buried or burned according to caste. The native burial-grounds and places of cremation are generally at a sufficient distance from cantonments. The reports concur in stating that no injury to public health arises from the present practice of disposing of the dead. In terment usually takes place within 24 hours, and during epidemics at shorter periods.

ABSTRACT OF RETURNS FROM THE MORE IMPORTANT NATIVE STATIONS.

Stations.	Reptirs
BENGAL.	-
PRESIDENCY.	- . .
Kherwarrat.	Accommodation for seven companies native infantry; one troop native cavalry. The station is 1,200 feet above .the sea; surfounded by hills; open, freely exposed to the

The station is 1,200 feet above the sea; surrounded by hills; open, freely exposed to the
winds, which, when from the east, increass the frequency of intermittent fever, influenza, and chest diseases.
Surrounding country partly cultivated and under irrigation, which affects injuriously the health of the station; but it is the abuse, not the use, of it which does so. The soil is ferruginous, rich in organic matter, overlying trap rocks.
Water is derived frorh wells and from the nullah or river, Some of the wells are contaminated by leaves and percolation of foul drainage. Quantity, abundant. Quality, from native wells, semi-transparent, and " not unfrequently has a fishy taste and disagreeable organic " smell." It is always safest, even with the best wells, to boil or filter the water, as guinea worm is very common. No analysis. Water very hard. Raised by hand in vessels. The well in the lines is contaminated by percolation of the foul subsoil drainage from the village and bazaar.
Climate very hot and dry, and comparatively non-malarious from March till June 20th; thence till September 20 th cooler, but loaded with malarions exhalation.
Malarious fevers, apleen disease; \&c. prevail most in the unhealthy months. But, as a whole, Kherwarrah "is the healthiest station I have seen." "But none of the stations have had "fair play." "Nothing has struck me so much as the utter disregard which prevails "regarding the commonest aanitary precautions. A large proportion of the sickness at " Dumdum, Barrackpore, Dinapore, Ajmeer, and Kherwarrah, is owing to the absence of "c a properly organized and efficient executive annitary department."
There are no barracks; huts of mud or wattle and daub, imperfectly ventilated. Men sleep outside in hot weather. All barracks in India should be raised on arches.
No lavatories or cook-houses. Natives cook their own food and wash their own clothes.
There is no conservancy establishment for cleanliness: "beyond the lines, this is left very " much to the jackal, vulture, and carrion crow.* There are patrols to prevent nuisances, " except in specified localities." The lines are kept clean; but "the sweepings are deposited " 30 yards to windward."
The bazaar main street is kept clean. In all other places the most ordinary sanitary precautions are lost sight of." "Every family has. its own cesspool." "Dungheaps close to "every hut," and also holes for ordure. Huts overcrowded. "Nuisance is frequently "experienced in large stations from the wind blowing over native dwellings." Animals are slaughtered to windward. The offal is thrown to dogs; jackals, and vultures. During the rains, the stench from the offal, the increasing accumulation of years, is sometimes dreadful. The native population "is decidedly unhealthy, but chiefly from causes which "can be mitigated or removed,". such as jungle, manshy and swampy ground, small, cramped, damp, and unventilated dwellings, defective clothing, bad food and water, sheltering cattle, sheep, and goats under the same: roofs as themselves, neglected cesspools, middens, exuviæ of men and animals, absence of drainage, opium eating, spirit drinking, \&c. Prevailing diseases among natives are malarious fevers, splenic enlargement, splenic cachexia, diarrhos, cholera mall-pox, guinea worm.
Among the native troops hepatitis is rare, 35 cases and 1 death in 17 years. In the same amorg the native troops hepatifis is rare, 35 cases and death in 17 years. "Drinkers ${ }^{\text {period one in every six men suffered from guinea worm, caused by bad water. }}$, Drater never pet the disease.". The troops suffer from quotidian, tertian, quartan, remittent, and typhoid fevers; acute And chronic dysentery; sporadic and epidemic cholera; simple and confluent small-pox; acute and chronic rheumatism. Fevers alone constitute nearly 40 per cent, of the admissions, and about a fourth of the deaths. Cholera has occasioned 26 per cent. of the deaths. "We shall never' arrive at sanitary perfection in

| Statrons. | | Reprizs, |
| :---: | :---: | :---: | :---: |
| \therefore | " Indian military atations until anitary officers are vested with liberal, responsible, well
 " defined executive powers."
 The hospital is on an open site, with free ventilation and natural drainage. But malaria | | "" defined executive powers."

emanates from the nullah or river 30 pards to ind an Water supply abundant but or river, 30 yards to windward.
One ward, built of ant, but requires boiling and filtering. No drainage.
Tiled roof, through which hed bricks and mud.
A verandah gurrounds it hot air and radiant heat enter freely.
A verandah surrounds it. 56 beds, at 327 cubic feet, and 25 square feet per bed. 32 beds are kept in the verandah to diminish the over-crowding.
No windows ; only doors on opposite aides, which, with openings in the tiles, afford ventilation. Privy of sun-dried bricks; kept clean; matter removed in earthern vessels; charcoal.used.
No lavatory.
"Each patient defers bathing, according to custom, till he is cured, when he retires to the " nearest well, draws water, and undergoes the bath of cure." "It is a bad custom." There
should be a good bath room. Linen is washed and dried by caste comrades, or by the patients, when not too ill. There are wooden bedsteads. Bach sepoy brings his own bedding, under direction of the surgeon. There is a kitchen, but the patients or their friends cook outside, under the nearest. tree. No diet table. Dooly bearers wait on the sick, but their attendance cannot be exacted by regulation. Comrades are allowed "in "extreme cases."
By unremitting exertion the sanitary state of thre hospital is good, but during the past two years gangrenous and spreading sores have been frequent from overcrowding.
Sick wives and families are treated in their own huts.
Number of native troops-
Artilery, 16 officers, 122 privates.
Infantry, 96 officers, 800 privates.
Surrounding country hilly, basaltic, dry, 939 feet above the sea; freely exposed to winds. City of Nagpore two miles distant.
Climate good. Hot from March till June; wet till end of September, cool afterwards. Fevers prevail after rains. Hot season the most healthy.
Water supply from wells, moderate in quantity, said to be good; raised by a rope and nativa bucket.
Bazaars cleansed by sweepers. "A sanitary police to prevent nuisance would be of great use.", Population at Nagpore unhealthy. Severe epidemics of cholera, biliary remittent fever, and amall-pox often occur and prove fatal to large numbers of the inhabitants. Intermittent fever and dysentery also common. Causes: defective ventilation, insufficient drainage, overcrowding, want of cleanliness, drunkenness, and the use of bang and opium.
During five years, out of 640 sick of native troops in artillery hospital, not a single case of hepatic disease has occurred. In cavalry hospital, out of 3,054 cases there were eight of liver disease; when it occurs it is usually the consequence of fever and dysentery. 8.28 per cent. of the cases in the artillery from venereal. In the cavalry nearly 3 per cent. In the infantry 1.47 per cent. Remittent and intermittent fevers are endemic among the native troops; biliary remittent, epidemic. Dysentery, endemic. Cholers and amall-pox, epidemic. Intermittent fever causes 31 per cent. of the admissions and 13 per cent. of the deaths. Remittent little more than 1 per cent. of the admissions, but $6 \frac{1}{2}$ per cent. of the deaths. Nearly 22 per cent. of the deaths are due to cholera. Zymotic diseases occasion $45 \frac{1}{2}$ per cent. of the mortality. Severe night duty quickly increases the number of sick in hospital. Preof the mortality. Severe night duty quickly increases the bang and opium. This should be disposition to these diseases increased by the use of bang the " natives compelled to proprohibited. Infantry parade ground should be draine."
There are three hospitals, one for each arm. Sites of cavalry and artillery good. Parade ground in rear of infantry hospital almost a swamp in rainy season.
ground in rear of infantry hospital almost 102 beds, 30 of which have 706 cubic feet per bed. Accommodation conainder have 1,080 . No windows. Roof ventilators and gratings. No drainage. The remainder have 1,080 . No windows. or baith.
Chirra Poonjer.
Head quarters of Sylhet light infantry.
Situated on a small table land, surrounded by hills and valleys covered with dense jungle. Situated on a small table land, surrounded 4,118 feet above the sea, 3,000 feet above a glen to the east. Surrounding country movation 4,118 feet above the sea, 3, Station freely exposed to winds. Surface generally mountainous, sandy, and swampy. Station freely exposed to waill some sometimes lies on the eurface.
Burface. May. Lowest mean minimum $50^{\circ} 1$ in February. Diurnal variation from $4^{\circ} 8$ to $16^{\circ} 33 \mathrm{~F}$. Highest mean sun temperature $91^{\circ} 25$ in July.
Moisture excessive during six months of the year. Recorded rainfall for one year, 1859-60, $615 \cdot 26$ inches. Of this amount nearly 21 feet fell in the month of June. Climate cold but nvigorating. Native troops and European residents very healthy. Want of shelter and severe storms render persons who come from the plains liable to chest affections. Good shelter and warm clothing are necessary.
The sepoy huts are built of stone and mud, thatched with leares, and raised from 2 to 4 feet above the ground. The natural drainage good. But all the buildings are damp from the moist (not to say wet) atmosphere.
moist (not to say wet) atmosphere. from damming up a mountain stream, emits unpleasant smells.
No lavatories. Men wash in the streams. No cook-houses. All filth washed away by the rains.
rains. chief epidemics, committing great ravages, caused by the very filthy habits in houses and chief epidemics, come very bad food. The native troops suffer from intermittent fever, persons, and by the very bad foct during their periodical change of stations.
The best seasons for residence at Chirra Poonjee are spring and autumn. Great care is necelThe best seasons for residence at Chirra rare among native tróops. Very little venereal disease. sary in the rains, Laver diseasions from miasmatic disease are caused by intermittent fever, Six out of every seven admissity
The sepoys are temperate. No admissions, either directly or indirectly, from intemperance.
$\mathbf{3 ~ M}$

Stations. | Replies. |
| :--- |
| The hospital is 200 yards from the lines. Site good. Water abindant. Natural drainage |
| sufficient. One ward for 50 beds, at 490 cubic feet and 17 square feet per bed. Ventilation |
| by doors, windows, and fireplaces; not sufficient. Privy a mere mat house, with earthen |
| pots. No lavatory or bath arrangements. Water is carried to the sick by the water carrier. |
| Surgery and storage damp. No diet table for the sick. . |

MADRAS PRESIDENCY

Cochin.
Accommodation, 160 native troops.
Surrounding country low and sandy, 4 feet above sea level, surrounded by the sea and back-water.
Climate variahle, moist, chilly, occasionally sultry. Occasions rheumatic affections.
Water derived in part from wells, unfit for use from privy infiltration. Drinking water brought daily a distance of 18 miles. One tank used by sepoys for bathing and drinking.
Sanitary condition of bazaar "as bad as it could possibly be." "Cleanliness unknown." " No drainage." "Streets used as privies, without hindrance." No regulation for cleanliness attempted.
Engineers' Department removed old rampart, and converted its site into a ditch, now used as a public privy. Every odd corner "in the most disgusting comdition."
public privy Ever
Native houses filthy.
Most common diseases, elephantiasis arabum, small-pox, and cholera, attributable to the filthy condition and dirty habits of the civil population.
Barracks constructed of laterite in chunam, with tiled roofs. Huts of bamboo mats, with cudjan roofs. Floors 2 feet above ground. No ventilation bencath.
Diseases of Native Troops.-Liver, very rare; none for severnl years. Venereal, about 1.7 per cent. of totul sick. Among 160 men there were, in 1853,20 cases of ephemeral, quotidian, and contiuued fevers; two cases of uysentery ; two of cholera; nine of rheumatism; together constituting 26 per cent. of total admissions.
Troops temperate and cleanly in their habits.
Hospital contains five beds. Water supply good. No drainage. Have been unable to get the hospital limewashed, although applied for three times in 14 months. Hospital out of repair. hospital limewashed, although applied for three times in 14 months. Hospital out of repair.
"If left as it is, it would probably before long be a ruin." Privy, a small room, with no place in which the excrement can go to be cleared away; its drainage passes through an opening in the wall, and sinks into the ground. The place often very offensive. Lavatory and bathing arrangements consist of two tubs, out of repair. Attendants, one hospital orderly and a sweeper. If a sepoy is unuble to cook his own food, a comrade is told off.
Vellore.
Station 675 feet above the sea. Country consists of irregular chsins of hills. Part of the native lines subject to overflow of water from a nullah. Site faulty. "Selected on military and not sanitary grounds." An indigo factory close to the native lines creates nuisance. and not sanitary grounds." An indigo factory close to the native line
Subsoil, alluvium overlying primitive rock. Climate " hot but healthy."
Water from wells and a tank; the former brackish, apt to cause diarrhces in new comers. Tank water used for drinking.
The native town and bazarrs extensive and densely populated. "Natives appear perfectly " indifferent to the condition of their houses, few of which are without those hot-beds of " disease, dungheaps and cesspits." Vind blowing over these causes nuisance in the barracks. Drainage from the prison a constant source of annoyance, from the filthy habits of the followers.
No latrines in the bazaar. "Cleanliness is carefully attended to." Native population suffers occasionally from epidemic outbreaks. Fevers prevail after the drying up of the paddy fields.
Diseases among the troops are, ephemeral, quotidian, tertian fevers; a few cases of dysentery.
Diseases among the troops are, ephemera, quotidian, tertian fevers; a few cases of dysentery.
No cholera this year. Host rheumatic complaints due to renereal. "Epidemic influences,
"though not dependent on local circumstances, are yet so controllable by sanitary measures
"that too much attention cannot be paid to the observance of these."
Quilon.
The station is close to the sea, slightly elevated above it. Surrounding country flat, sandy, and well wooded. The parade ground is sometimes overflowed with water during the rains. Full exposure to sea and land winds; the latter, however, causing rheumatism and neuralgia.
During the rains the weather is close and muggy; parching in dry weather. January to March the most unhealthy months.
Water derived from wells, 15 to 20 feet below the surface in dry weather; close to the surface in wet weather.
Barracks mostly in a ruinous condition, without doors or windows, because they are to be given up. No.lavatories. No cook-houses. No privies or urinals. No drainage. Ruinous buildings interfere with the ventilation, and afford concealment for dead carcasses of animals. The dead body of an old woman was found on one occasion. Native huts wretched, huddled together, without cleanliness.
Prevailing native disenses, chiefly of the skin, attributable to want of proper diet.
Among the troops hepatitis is extremely rare. There are a few cases of venereal; but the principal disease is mild intermittent fever, with a few mild cases of dysentery. There has been no cholera. Small-pox is occasionally epidemic, and rheumatism rather prevalent.
These discases are most frequent in the hot weather. The general bazaar should be kept cleaner, and the refuse of stale fish removed more frequently.
There is so little intemperance among the native troops that no effect on disease can be shown. The hospital is built on a mound 8 feet above the parade ground. There is one ward for 30 beds at 620 cubic feet per bed. Ventilution by openings in the walls. No waterclosets or urinals. Privies cleaned regularly. No lavatory; large tubs used for bathing. Iron cots. There are no kitchens. Attendance by hospital orderlies.
Mangalohe.
Accommodation for two regiments of native infantry and one-third company of artillery.
Site, quarter of a mile from the sea, and 40 feet above the level. Surrounding country undulating, wooded, hilly, dry, with wet cultivation in the valleys. Tolerably open to the sea, shut in towards the land. No information as regards climate.
Water supply derived from wells; anid to be good end abundant. No analysis.
Nater supply derived from wells; said to be good and abundant, No analysis. "falling from May to September." Authority now granted "to entertain scavengers' carts "and sweepers." No public latrines. Cantonment patrolled to prevent nuisances.
Most frequent disease among natives, fever, with spleen enlargement.
Stations.

Among the troops hepatic disease is very uncommon. Constantly sick from venereal : only one per cent. of total sick. Most common diseases, quotidian fevers and rheumatism; the latter chiefly during land winds. More cleanliness would tend to mitigate zymotic disease at the station.
Drunkenness very rare among native troops.
There are no means of instruction, except schools; none of occupation or recreation whatever at any native station.
Hospital well placed; good water supply. Two wards, with space for 56 beds at 1,100 cubic feet and 77 squars feet per bed. Ventilation only by doors and windows. One privy for each ward, over a covered drain, down which lime is thrown; and it is flushed out with water every morning. No lavatories. One large tub for each ward for bathing. Hospital cots partly iron ; mostly wood. No bedding. A convenient cook-room, "used for medical "f preparations." Attendance by a hospital havildar, detailed from the effective strength. Orderlies also detailed. "Sufficient." Couvalescents are allowed to go to their own houses, parading once a day at hospital.
Accommodation for one regiment, native infantry,
Accommodation for one regiment, native infantry.
Station elevated 1,831 feet above the sea. Surrounding country flat; sparsely populated. Open to the prevailing winds. Surface soil, black cotton, resting on gravelly clay, with syenite and granite beneath.
Most of the well-water unwholesome from earthy salts, and too hard to be used with soap. Drinking water almost exclusively obtained from the river, $\frac{3}{4}$ mile distant. It is carried in chatties to the men by the females of their establishments; or by servants. When the river is dry, water is obtained by digging in its bed.
Climate dry, with oonsiderable diurnal range in cold weather.
Native population subject to occasional epidemics of cholera.
Among troops hepatic disease merely accidental. Has only met with 5 fatal cases among natives in 20 years' service. Out of 4,400 admissions, regimental records show 51 . from liver disease, with 6 deaths, in 9 years. During the same period there were $2 \% 5$ admissions from venereal. The chief diseases among native troops are fevers, cholera, rheumatism, dysentery. Intermittent the most common form of fever.
Men barracked in huts. No ventilation. The streets not wide enough. No lavatories. No means of cooking. No privies or urinals. Drainage, "nil;" only open trenches, in which " the fluid refuse of the barracks flows for a limited distance, and is chiefly disposed of by " evaporation."
Bazaar much in the same state as the men's lines. Dung heaps close to the houses. Hospital on a healthy site; well supplied with water for cleansing, but not fit for drinking. No drainage. Refuse water and other impurities flow into a cesspit with no outlet. Solid refuse removed daily. Wards have verandah. There are 3 wards, containing 40 beds, at 1,243 cubic feet per bed. Ventilation by doors, windows, and roof openings. Sufficient. There is a privy. No lavatory. Sick only furnished with water. Convalescents go home to bathe. "The process of washing, which, of their own accord, usually satisfies them while "s in a hospital, is of the most superficial and unsatisfactory nature to the views of an "European." There is a wooden tub and brick bath used remedially. Diets are prepared by the sick or their relatives. The kitchen is almost exclusively used for the preparation of poultices, \&c. The attendance consists of a standing hospital havildar and orderly. Others added, if necessary. "System operates very well, and seems to be sufficient for the pur"pose." Convalescents sent out with a non-commissioned officer. Native dressers attend the "followers;" medical officer admits dangerous cases into "the dissecting room" where the relatives attend on them.

Samulcottait
This station contains accommodation for one regiment of native infantry. It is situated in a valley with about 8 miles of flat land between it and the sea. The site is from 20 to 40 feet . The nearest river is about two miles distant. The station is freely exposed to theral level. The nearest river is about two miles distant. (with from 8,000 to 10,000 exposed to the winds. But "unfortunately a large native town (with fors., has been allowed to " grow up" , with bazaars and enclosures foiling winds carry impurity and contamination "grow up" close to it, "so that the prevailing winds carry impurity and contamination inco the chief parts of the cantonment for nine months in the year." Clisese to the can tonment is a belt of prickly pear, cut into open spaces for privies. "This is a very great "nuisance, of large extent, and likely to be provocative of cholera, or typhus." Irrigation from the Godavery, close to the station. I
"But the climate is cooler in consequence." "Samulcottah has (for the plains of monthly mean, 53° in December; daily range considerable femperature, 8° to 25°. Rainfall about 43 inches. Out of 50 Europeans only one child has died, and this not from the climate, in three years and four months.
The water supply is chiefly from a tank fed by the rains. Water is obtained by percolation The water supply is chiefly from a tank "good." The tank water is used by the sepoys. One from this tank into wells, said to be good lines, and "must always bring considerable ime of its feeders runs through the regimental lines, and "The mater tastes of decaying vegetation. Some of the wells cannot "purities with it." The water tastes of decaltetre and other salts." The water is raised and distributed by the ordinary leathern bucket, or Palmyra leaf.
and distributed by the ordinary place of arms.
There are no barrack
No privies or urinals.
No conveniences of any kind.
No convenien
No drainage.
No drainage. The most prevalent diseasea among native population are Country well cultivated. No marshes, fever at certain seasons. Native pop Heve double the pay they could secure a few years ago Sea breezes. . Population well off. Have double the pay they could secd by the use of putrid Among the native troops there has been some scorbutus, appar European. Prevailing diseases fish. Have only had one case of hepatitis, and that in an among sepoys: intermittent, remiten, and, and obstinate; some small-pox.
cold weather ; rbcumatism frequent, severe, and onder one roof; site open, well ventilated There are two hospitals, garrison and regimental, under one rool; site Hospital walls not and healthy. Water supply said to be abundant sind. Materials, brick. A verandah 8 feet high, with a sloping roof. Floor on level of groun from 294 to 386 cubic feet per 5 feet wide on one side. There are 2 wards for 30 beds at from bed.
Stations.

Windows are "of wood;" when shut there is darkness and no ventilation; "should be " glazed."
There is space for ventilation between wall and roof, but not sufficient for coolness.
Walls and ceilings limewashed once a month.
Privy a small room, cleaned by totties. No lavatory. Only one tub in the pendall; exposed to the weather. No other means of bathing.
Bedsteads of iron and wood.
There is a kitchen used for boiling water, arrowroot, \&c.
Natives have their food cooked and brought to them.
An assistant apothecary is the only attendant on the sick. Not sufficient.
Berhampore.
Sccommodaten 112 feet above the sea, 76 feet above the nearest lower ground
The sea is 8 miles distant, and the nearest marsh 3 miles distant.
Water pits and broken ground half a mile from the station, the effuvia from which are prejudicial to health
Country highly cultivated. A little irrigation half a mile distant produces no effect on health. The town of Berhampore half a mile from barracks. Subsoil, silicious rocks and gravel. Surface, loam.
Water from wells and tanks, Much of the tank water is unfit for drinking purposes. Well water generally not good.
Climate variable. Dry from March till the middle of June. Heat very great. September to November damp and most unhealthy from fever and beriberi. The most healthy months, February to May.
There are 820 huts, those for the privates are 11 feet 6 inches long, 9 feet broad, and 7 feet 7 inches high.
Ventilation by doors and windows ; no lavatories; no cookhouses; no privies, nor urinals.
Ventiation by doors and windows; no lavatories; no cookhouses; no privies, nor urinals.
No drainage. There are foul ditches in the native town, a mile distant. No means provided for surface cleansing. Refuse is deposited in front of the native houses. Bazaar said to be "drained and ventilated."
There is a good supply of water, " but it is not used for drinking." No latrines; no sanitary police ; no regulations for cleanliness in the bazaar. The place is dirty and crowded. The houses poor; dung heaps before them.
The native population suffers severely from epidemics, of cholera, and small-pox, generally once a year. Beriberi, rheumatism, syphilis, fever.
Among the troops, hepatic disease is exceedingly rare ; about 10 per cent. of the total sick are from venereal. The troops suffer constantly from quotidian and intermittent fever also from ephemeral fever, small-pox and chicken pox. Epidemic cholera occurs once a year; rheumatism frequent. About a third of the admissions to hospital, and rather more than a third of the deaths are from these miasmatic diseases. Cholera occurs all over the station;-the other diseases in the places where the general sanitary conditions are bad The use of narcotics and bad food are also predisposing conditions.
The hospital is half a mile from barracks, on a healthy site. Water supply "sufficient;" "considered good by the sepoys, but obtained from a tank used for washing as well as for "drinking." Refuse water removed by a common (surface?) "drain."
The hospital contains two wards, for 49 beds, at about 1,000 cubic feet per bed. Ventilation by doors and windows; "sufficient." Privies cleansed by sweepers. No lavatory. A bathing tub, hip bath, and foot tub allowed for the sick. No kitchen. Attendance, one hospital havildar, with an orderly comrade if necessary.
Mergara.
Accommodation for one regiment native infantry.
Elevation above the sea said to be 4,500 feet, and about 1,200 feet above the table land of Mysore.
Average height of barometer at 10 a.m., $\underline{26} 6$ inches. Thermometer $72^{\circ} \mathrm{F}$
Surrounding country hilly, partly wooded. Sea 40 to 50 miles distant.
The town of Mercara is in two parallel streets, about half a mile long. Population about 1,000. The sepoy huts are built near the fort. The ground falls in all directions.
Climate excellent. Thermometer falls to 62° F. before sunrise. During the day it is rarely $75^{\circ} \mathrm{F}$. The highest observed temperature is $7^{\circ} \mathrm{F}$. Rain falls for 6 months and fires are needed.
Water supply unlimited. Said to be pure; but no analysis. Drawn from a well by bucket and rope.
The sepoys hut themselves, receiving only two rupees hutting money (4 s . to build themselves s house). The huts are of mud, and with long rain and wind they often fall. The sepoys would be more healthy if they were better housed.
There is no drainage.
There are no lavatories, no latrines, no cook-houses.
Surface cleansing efficient.
Bazaar "well ventilated, drained, and kept clean."
Station and native population are healthy. Epidemics scarcely known. Prevailing diseases , fevers and bowel complaints. Hepatic disease is very rare
Among the troops 3 cases in 20 are from venereal disease.
Intermittent fever, diarrhœa, and rheumatism are the chief affections.
The hospital is 20 yards from the fort. Site freely ventilated. Water abundant and wholesome. A large cesspit has just been completed to receive the hospital drainage. "Cannot say how it will answer." Two wards ; no regulation as to cubic space per bed, and no beds. Those in use appear to have been removed from a small European barrack and are of wood, with tape supports. Floors 6 inches above the ground. No ventilation beneath. Materials brick and chunam. Verandahs 10 feet wide. Windows on three sides; afford sufficient ventilation. Privy close to the hospital, in part of a building intended for a cook room, but not used on account of the smell. No lavatory. Native sick wash in the open air "accord "ing to their custom." Or they go to their huts for ablution. There are bathing tubs.

BOMBAY PRESIDENCY.
Rajcote.
Accommodation for one regiment native infantry, one squadron cavalry, and a detachment of artillery.
Site about 450 feet above the sea level, and 100 feet above the country, which is a vast undulating stony plain. The town of Rajcote, with 7,000 inhabitants half a mile distant. The

Stations.	\cdot	\cdot	Rkpliks.

surface black soil; stony subsoil, with underlying sandstone and trap. Climate on the whote healthy. Highest mean maximum temperature $99^{\circ} 1$ in May. Lowest mean minimum $58^{\circ} \cdot 7$ in January. Mean daily range from $4^{\circ} 8$ to $21^{\circ} \cdot 3$.
Water supply from rivers, but chiefly from wells, which, unless constantly used, become very foul from pigeons' dung and rubbish from their nests. No analysis. Water is raised by leather bucket and rope, and distributed by bullocks.
The huts are constructed of unburnt bricks and mud, roofed with tiles. Dimensions various The huts are constructed of unburnt bricks and mud, roofed with tiles. Dimensions various.
No windows ot verandehs. Doors the only ventilators. Ventilation might be better. No No windows ot verandshs. Doors the only ventilators. Ventilation might be better. No
lavatories. No cook-houses. No latrines. Filth removed by sweepers. No drainage. Rainlavatories. No cook-hous
fall lies on the black soil.
Bazaar drained into a nullah. No artificial drainage. Ventilation indifferent. Water supply Bazaar drained into a nullah. No artificial drainage. Ventilation indifferen
"good." Great want of cleanliness. No latrines. Bazaar overcrowded,
Prevailing disease among native population: intermittent fever. Skin diseases not uncommon. Cholera occasional. Healthiness of population attributable to fine climate. Sickness, when prevalent, to filth of houses and streets, and entire want of ventilation
Among native troops there have been five cases of scorbutus in two years. No liver disease. Venereal disease has formed 2.9 per cent. of admissions. Prevailing diseases: ephemeral and intermittent fever, yielding together 67 per cent. of the admissions, and 26.6 per cent. of the deaths. Rheumatism; dysentery, rare. Neither cholera nor small-pox. Fevers occur in the transition from: wet to dry weather. Health of the troops might be improved if Government rations were issued, as they hoard their pay and do not procure sufficient food. Ventilation of huts is also required. Native troops temperate. No admissions directly or indirectly from intemperance. No means of instruction or recreation, except a library and gymkhana, supported by European officers.
There are two hospitals, with one ward in each. No limitation as to number of beds. Sites healthy. Water abundant. No drainage. Materials: sandstone and chunam. Verandahs Floors 18 inches above the ground. Ventilation by opposite doors and windows, sufficient when wards are not crowded. Privy 17 yards from hospital, cleaned out every morning No lavatory. Tepid baths available. Wooden cots; iron better. No kitchens or die tables. One hospital orderly, with servants. Comrades allowed when necessary. Native women will scarcely submit to any medical treatment. But sick children are frequently brought to the medical officer.
Seroor.
Accommodation for 400 irregular cavalry, 25 native commissioned, and 32 non-commissioned officers.
The station is 1,752 feet above the sea, and on the level of the adjacent country, open and exposed to winds. The most prevalent of which is the sea breeze.
Town of Seroor, with 7,000 inhabitants; contiguous to the lines.
Subsoil trap rock.
Climate dry except during monsoon. Influence on health favourable.
Highest mean maximum temperature, $107^{\circ} \mathrm{F}$. in April. Lowest mean minimum $50^{\circ} \mathrm{F}$. in December and January.
Water supply unlimited, from the river Goar. Water hard, but very good. No analysis
There are no barracks, only huts. Principal streets of bazaar kept clean, but the native house generally exhibit carelessness and negligence as to repair. Fever is usually prevalent. among the native population after the monsoon. Cholera and small-pox the most frequent epidemics. The comparative healthiness of Seroor is due to open situation and the absence of sources of malaria
Among the troops intermittent fever is prevalent: Cholera is epidemic in the hot season There is a little mild dysentery. Chronic rheumatism is the chief cause of admission into hospital during the cold months. 27 per cent. of the admissions and 18 per cent. of the deaths are due to fever. 4 per cent. of the admissions and 20 per cent. of the deaths are due to cholera. No admissions to hospital from intemperance. No case of drunkenness on record. There are 6 or 8 cases of venereal disease in the zear.
record. There are 6 or 8 cases or venereal disease ill ventilated site. Water from wells. No he hospital is a detached bungalow on an oper The hospital is built of burnt bricks. It is on drainage. Impurities removed by aweepers. The hospital is buile doors and windows. No lavatories or means of bathing.

Dhoolia.
Station in a valley 1,000 feet above the level of the sea. Partially cultivated. Black soil with moorum subsoil
Climate hot and muggy. Seems beneficial to health of native troops. Highest mean maximum, $101^{\circ} 39 \mathrm{~F}$. in May. Lowest mean minimum, $60^{\circ} 7$ in December. Mean sun temperature as high as $115^{\circ} \mathrm{F}$. in May.
Water supply from rivers and wells. Abundant. Colour, "rather blue." Soft and of good
quality. Accommodation consists of 372 native huts and pendalls (open sheds). Men place their bedding on the ground. Materials, burnt brick. Roofs, double tiled. Floors of moorum. Pendalls should have ventilators in the roof. No lavatories nor cook-houses. No privies or urinals. No drainage. Cleansing efficiently donc by sweepers; the refuse used for brickmaking.
Bazaar clean ; not crowded.
Most prevalent diseases at station, fevers, cholera, and spleen disease, Population said to be " healthy" from pure air and good water. .Diseases of native troops:-Liver, very insignificant: sick from venereal, 1 in 40 . Most common disease, quotidian fever. Fevers occasion about 55 per cent. of the total admissions. Cholera occurs every hot season. Troops temperate. No confirmed drunkards.
No means of instruction, except regimental schools. No means of recreation. Troops amuse No means of instruction, except regimental Not restricted to barracks, either for sun or rain. themselves with quoits and skittles. field works, road making, making their own clothes, boots, \&c., building huts.
boots, dc., building huts. Hospital consists of one centre room, with a verandah; have about 185 cubic fret per bed. bed. Verandah will hold 20 . No means of ventilation but doors and windows. No drainage. Accommodation too small. No means of ventiath. Common wooden bedsteads. Sepoys Privies cleansed daily. No lavatories or baths. Common cooking in an open shed. Attenbring their own bedaing, including to nurse when required.
Stations.
laterite, decomposed trap.
Climate consists of three seasons. Cold, December to February; hot, March to June; rainy, \checkmark June to October. Rheumatism and chest affections prevail in the rains.
Water derived from wells. Amount varies with the season. There are 77 wells for a population of 3,425 .
Accommodation consists of 358 huts; one per man. They are 18 feet long, 8 feet broad, and 10 feet high. They have a door and opening opposite for ventilation. Size too small for families ; and they are overcrowded.
No sewerage. Dampness pervades every building during the' monsoon. No lavatories. Cleansing tolerable.
Bazaar has only surface drainage to the nullahs. Water tolerably plentiful. Five labourers employed for cleansing. Dung or dirt heaps are common. Crowding considerable. Among the native population little disease in hot and cold seasons. In rainy season diarrhca, dysentery, and chest complaints ; cholera, choleraic diarrhcea, measles, small-pox occur at intervals. Fever " attributed to insufficient food, exposure, and hard labour." Cholera, measles, and small pox, "to unripe fruit, contagion and unknown causes, chiefly atmospheric."
Among the troops there is very little hepatic disease; no syphilis; quotidian intermittent occasions about 28 per cent. of the admissions, and rheumatism about 11 per cent.
The sepoys are temperate. No confirmed drunkards.
There is a native school, but no other means of instruction. No means of recreation, except plenty of shade.
Hospital on a good site; supplied with well water from two wells in the compound. No drainage. On one floor; no ventilation beneath the floor, which is composed of hard beaten earth, "cow-dunged every week." There are two wards containing 30 beds each, at 1,250 cubic feet per bed. Materials, laterite stone, with lime plaster.: A verandah 8 feet wide. No means of ventilation except the windows. Wards cleansed once a quarter. Privies are 75 feet from hospital. No drainage nor water. Cleansed by sweepers. No lavatory. There is a bath room, with means of heating water for each ward, but they are never used by native sick. Their usual way of bathing is to throw hot or cold water over themselves, Bedsteads of wood, infested with bugs. Iron ones should be introduced. Native sick use their own bedding. Two cook-rooms for castes to each wing. No apparatus. The síck either cook for themselves or a Brahmin cook does so. Attendance by an orderly from the corps, and a comrade when required.
Jacobabad.

Dharwar.
There is at this station accommodation for 2,400 native cavalry, and 1,600 native infantry. It has an elevation of 220 feet above the sea.
The surrounding country is desert, flat, sandy, and dry.
Climate said to be the driest in the world. The highest rainfall in any year since 1851 has been 8 inches; the lowest $2 \frac{1}{2}$ inches. Summer heat excessive. Mean temperature from April till end of October varies from 80° to $99^{\circ} \mathrm{F}$. The variation is very great, and the climate " totally unfit for European soldiers."
Water is brought in canals from the Indus, 52 miles distant, and stored in tanks. There are wells supplied by soakage of this water. It is raised by the Persian wheel and buckets. It is yellow at first, but becomes clear on standing. Amount sufficient. Quality not injurious to health.
Bazaar kept "scrupulously clean." Country thinly populated. Prevailing country fever: intermittent, quotidian, tertian, complicated in winter and spring with chest diseases; diarrhœa and dysentery; spleen disease common; chronic rheunatism frequent.
Among the troops there is little hepatic disease. Annual proportion of admissions from syphilis less than 15 per 1,000 of admissions. Endemic fever the chief disease. Dysentery not very frequent. Cholera unknown. Only one apparently sporadic case in six years. Smallpox rare. Chronic rheumatism and neuralgia "common."
Troops accommodated in pendalls, which give 612 cubic feet and 72 square feet per man. No windows. Each man has his own door. Men sleep out altogether in the hot weather and inside in the cold.
No lavatories; natives wash in the open air, with the aid of bheesties. No cook-houses. Each man has his own cooking arrangements. No privies or urinals. No drainage.
Hospital on one floor, built of brick and mud. Verandah all round. Hospital "used more "as a dispensary-only the worst cases requiring constant attendance being kept in it; "these are placed wherever it is coolest." Ventilation said to be "good.". Water supply from the same source as in barracks. No drainage. Refuse water and other impurities removed by sweepers. No privies. No kitchen. Men "make their own arrangements for "cooking." Men "supply their own bedsteads and bedding.". No attendance. "When "there are bad cases, the patient is allowed to have a comrade." No sanitary defects " to remark upon or improvements to suggest.": Accommodation for 900 native infantry.
Station 2,482 feet above the sea. Country barren hills; undulating. Said to be one of the healthiest stations in the Bombay Presidency. Clinate very good; not very hot; never very cold; occasionally foggy; equable. Geological formation, metamorphic clays, mica schists, \&c. Water derived from wells and tanks; said to be "very good and wholesome;" but said "ter derived from wells and tanks; said to be "very good and wholesome; but said
to give to guinea worm among the natives." Amount generally sufficient for "to give rise to guinea worm among the natives." Amount
The bazaar is crowded and narrow, with very imperfect ventilation. Said to be clean.
Prevailing diseases among natives are fevers, bowel complaints, rheumatism, guinea worm, cholera " every now and then:" scarcely any spleen disease.
There are no barracks. Liver disease very rare among native troops. About 8 per cent. of the cases of sickness are guinea worm, supposed to srise from the water. Venereal cases about 8 per cent. Intermittent fever is the most prevalent disease. There are a few cased of mild remittent; very little dysentery. But there is cholera in its most virulent form, and chronic rheumatism is common. Above 77 per cent. of the deaths have been due to cholera, and $4 \frac{1}{2}$ per cent, to dysentery. But the total mortality is small.
Hospitals, one floor buildings, with verandahs. Ventilation not very good in permanent hospital. Ridge ventilation in temporary hospital answers admirably. Contents of privies removed daily.

ADDITIONAL ADDENDA SUBMITTED BY SIR RANALD MARTIN.

On the Sanitary Management pf Etropean Troops in the East Indies, by T. E. Dempster, Deputy Inspector-General of Hospitals.

In the following notes, which I have now the honour to sulmit for the consideration of the Royal Commission, it is my design only to refer to subjects on which my personal experience has bad a direct bearing, and as this experience has been entirely confined to the Presidency of Bengal, it is only of the customs, climates, and diseases of that portion of the British Indian dominions that I shall presume to speak.
I have never held medical charge of troops on board ship, and therefore the only remark I shall venture to make regarding the sanitary management of soldiers on the voyage to India is, that the fresh European about to encounter the risks of a tropical climate should abstain from the use of ardent spirits in any shape on the voyage, and thạt stimulants of this kind should only be allowed under special circumstances, and with the express sanction of the medical officer in charge. A moderate allowance of some light wholesome malt liquor may, however, be substituted for the usual spirit ration.
In 1834-35, while in medical charge of the 4th Battalion Bengal European Artillery at Dum Dum. I witnessed such dire effects from the then common practice of landing European recruits in Calcutta in the hot and rainy seasons, that, although a much better system now obtains, I feel myself constrained to reiterate the caution, that all Europeans should leave England so as to ensure tneir arrival in Bengal during the cold weather. I consider the 15 th of November as the earliest safe date of arrival in Calcutta; this will leave three and a half good months, at least, for forwarding the new arrivals to some of the best up-country stations, whether in the plains or in the mountain ranges. Fresh troops may march in the cold season, not only with safety but with advantage. If expedition is required, I presume that good arrangements can now be made. for sending them on by railroad; but I strongly object to the river route, whether country boats or steamers be employed, for then it is scarcely possible to avoid overcrowding, or to ensure the requisite degree of cleanliness and ventilation. It is well known that large bodies of troops proceeding by the Ganges route are liable to suffer severely from cholera and other diseases, even in the cold season of the year.
The whole of my experience leads me fully to concur with Sir Ranald Martin in the opinion, that fresh European soldiers should be at first located in the hill districts, and that to wait until the constitutions of the men shall have suffered scrious deterioration by long exposure to the heat and malarious influences of the plains, and then to scad them to the hill stations, is just to reverse the proper order of things. I believe that a residence of two or three years in the hills during the hot and rainy seasons of three years in the hills during the hot and raing seasons of the cold weather, would greatly tend to acclimate the newlythe cold weather, would greatly tend to acchaate the newlyarrived European, teach him the habits and modes of life of the Indian soldier, and so render him more tolerant of the effects of the climate when
serve for a period in the plains.
The duty of keeping meteoro
The duty of keeping meteorological registers at hill stations was, unforturiately, imposed upon the resident medical offcers, that is, examination of instruments at regular stated periods was looked for from men whose professional duties rendered such regular examinations altogether impossible. At Darjeeling alone, an excellent set of meteorological instruments was placed under the general superintendence of the resident medical officer, but the observations were made and recorded hy an instructed subordinate staff. The Darjeeling register is, therefore, the only one really to be depended on; all the rest are loose and unsatisfactory in the highest degree. This defect bas, I believe, been recently remedied by the elaborate and scientific observations of tho German brothers Schlagintweit. Their observations on the meteorology of these regions is, doubtless, to be obtained at the India House, and may prove of great value to the present inquiry.

A briuf general account of the climate and course of the seasons at the Landuur Convalescent Depot', perhaps the most healthy of our hill stations, may not be without interest on the present occasion; and I shall commence my rapid sketch from March, the month in which convalescents
from the plains begin to congregate in the hills. March the beginning of the hot season below, is often cold and changeable st Landour, with sudden showers of rain or hail. With April begins the steady summer weather, which continues until about the 20 th of June, when the "chota bursāt"" or little rains set in. The maximum summer heat, in a perfect shade at Landour seldom rises above 74°, and the diurnal range of the thermometer rarely exceeds three or four degrees. Op the other hand, it should be borne in mind, that we are there under an almost tropical sun, whose rays reach us through a rarer and clearer medium than in the plain below; and I have ascertained by repeated experiments (with rude instruments it is true), that the heating power of the ray of the sun is almost as great at Landour as at Meerut; but then, there is no accumulation of reflected heat as in the plains. 'The lightest fleecy clouds break the force of the sun's ray; the slightest shade secures a cool retreat. At certain turns of the hills, where the bare rock is screened from the cool breeze, and is exposed to the direct rays of the sum, the heat is often very exposed to the direct rays of che sum, the heat is often very, oppressive; and this is especially the case in the "khuds," or steep mountain declivities, and narrow valleys. It thus appears that he who is content to remain chiety in the shade may enjoy, in the hot seasnn at Landour, one of the most equable and temperate climates in the world; but if he is much out in the sun, and especially if he descend into the neighbouring "khuds" and narrow valleys during the day, and return to the cold mountain tops at sunset, he will subject himself to great and trying alternations of temperature. Agreeable and salutary as such a climate may be to the healthy European, as compared with the burning plain below, he should never forget it is not the climate of his native land. These appear to me to be important considerations to the European resident in general, and to the European invalid in particular. During the summer months the night wind invariably blows from the north, or the direction of the great snowy range. For some time after sunrise it is usually calm, and where the oblique rays of the morning sun fall at right angles to the steep hill sides it is often very hot; but about 10 a.m. a cool refreshing breeze sets in from the south, or from the direction of the heated plain below, which continues until sunset. This cool wind, familiarly known as "the Dhoon breeze," occurs in summer with the same regularity as the well-known "sea breeze" on the Madras coast. But the explanation which accounts for the diurnal cool sea breeze will not serve in the present case. The cause is somewhat obscure. Rain seldom falls at Landour in summer; the sky is generally cloudless, but the atmosphere is often obscured with a dry mist, probably caused by minute particles of dust borne into the upper regions of the air from the hot plain below. Towards the latter third of June, the higher elevations first become enveloped in clouds, and then occur "the little rains" After an interval of variable duration the little xains. reguar periadical rainy season sets in, and continues with litle intermission untl ahout the September. This is the most dreary and unpleasant portion of the year in the hils. Rain Calls with a copious ness and persistency allogether unknown the Europe; the ir attans its maximor is wrent in dinse clouds. Some often for weeks toge the iodical ring break up and are time in September the per is by bre most delightul succeeded by a season which is by far the most delightful and salubrious of the whele year. The sun has now lost its power; the air is cool and bracing; and the atroosphere has a purity and transparency of which I can convey no adequate conception in words. It is from the commencement of this beautiful scason thut the invald usually dates his first real improvement in health. As the year advances towards its close the weather contimues clear and steady, but gradually becomes colder and colder until December
ad annary, when the thermometer often staads at or near
*The mcan elevations are comparatively free from this inconvenience, and are therefore much less damp in the rainy season. This causes Subathoo to be often resorted to in the rains by invald but they avoid it as rauch too hot in May and shermometer, in a good house with open doors, often ris
the freezing point. Seversl fals of snow occur during the winter months. The heaviest I ever witnessed took place at Landour on the 20th of February 1842. The first houses erected at Landour were placed on the highest eminences, and were constructed on the model of an ordinary Indian bungalow. These situations are now avoided as too cold and exposed. The favourite sites at present chosen are lower and exposed. The favourite sites at present chosen are lower
down on the southern face of the hills, and the plan of the down on the southern face of the hills, and the plan of the
buildings is more European, and better adapted to the buildings is more European, and better adapted to the
climate. The northern aspect of the hill is rejected as damp climate. The northern aspect of the hill is rejected as damp
and dreary in the rains, and sunless and often blocked up with snow in the winter season.*
Much has been said and written regarding the effects of the hill climate on the European constitution, and on the class of invalids likely to benefit by a residence at the hill sanitary depôts. All I have seen leads me to sum up the whole question in a very few words, viz., sound European adults, if moderately careful, retain their health and vigour unimpaired at good hill stations; and children, the offspring of pure European parents, are there as joyous, rosy, and of pure European parents, are there as joyous, rosy, and
active, as in any part of Europe. The young and naturally active, as in any part of Europe. The young and naturally. robust, although reduced by recent illness, and provided
they do not labour under serious organic disease, generally they do not labour under serious organic disease, generally
recover rapidly and completely in the hills. Slight and recover rapidly and completely in the hills. Slight and
recent cases of organic disease, especially if the spleen is the organ affected, often do well; but they require very careful management and a residence of two or more seasons at the sanitary depôts. On the other hand the old and worn out, the afflicted with organic disease of long standing, and those whose constitutions have been seriously impaired by long exposure to a high temperature, instead of deriving benefit will generally find their complaints aggravated by removal to the hills. Such, I believe, to be the general rules which to the hills. Such, I beheve, to be the general rules which
should guide our selection of cases to be sent to the hill should guide our selection of cases to be sent to the hill
stations, to which doubtless there may be some especial stations, to which doubtless there may be some especial
exceptions. Diarrhca is the endemic of these elevated regions, but assuredly it was not prevalent at Landour the year I had medical charge of that convalescent depott. The quality of the water of the hill springs and streams may have something to answer for, but I am inclined to believe that the well known cause of this complaint everywhere, viz., suppressed perspiration, is really principally to blame. Most of the European residents have previously had their vital energies reduced by disease or exposure to a high temperature; and on their arrival in the hills they are very liable to have their morbidly sensitive bodies first over heated, and then suddenly chilled, under the circumstances set forth above. The grand prophylactic I conceive to be flannel, and especially the broad tlannel abdominal binder, worn next the skin. If this should really turn out to be the common cause of bowel complaints at our present hill stations, the risk would be greatly reduced by keeping the men in well chosen localities at a lower elevation; but then certain classes of invalids would lose the curative effects of the cool hracing air of the upper regions.

European regiments which had previously suffered severely at unhealthy stations in the plains, are well known to have lost great numbers of men on being transferred to the hills. I think Her Majesty's 13th and 29 th regiments of foot will be found to have furnished striking instances of this nature. I am of opinion that it would have been more judicious to have sent such sickly corps to a healthy locality in the north-west provinces,-such as Meerut,-where there is good barrack accommodation, and ample supplies of excellent meat, bread, fruit, and vegetables.
The following precautions are recommended to be observed by all invalids from the plains proceeding to the more elevated hill convalescent depots,-such as Landour and elevated hill convalescent depots, such as Landour and
Darjeeling. The ascent should be made in a slow and Darjeeling. The ascent should be made in a slow and
gradual manner, and the patient should be provided with gradual manner, and the patient should be provided with
an ample supply of warm clothing,-including flannel shirt an ample supply of warm clothing,-including flannel shirt
and abdominal binder,-to put on as he comes into the and abdominal binder,-to put on as he comes into the
upper and colder regions. If the invalid is much reduced in strength, and especially if he is labouring under disease of internal organs, the whole ascent should not be accom. plished at once; but he should remain for a day or two at some convenient mean elevation, where proper shelter should be provided for the sick. It is at such half-way house that a complete change of clothing should be made before ascending to the highest point. Invalids often perform the whole journey from Rajpore, at the foot of the hills north of Deyrah, to the depôt hospital at Landour hills north of Deyrah, to the depot hospital at Landour
(about 7,600 feet above the level of the ocean), -in less than (about 7,600 feet above the level of the ocean), -in less than
four hours ! In this short space of time they exchange the

[^8]heat of the plains of India for an almost European climate, and a greatly reduced atmospheric pressure. That the robust and htalthy human frame should be able immediately to acommodate itself to such entirely new conditions, withont injury to its delicate and complex organism, is surely one of the wonders of nature. But when the body is surely one of the wonders of nature. But when the body
is enfeebled by sickness, and vital organs in a state of actual is enfeebled by aickness, and vital organs in a state of actual
disease, this sudden plunge into a cold and rare atmosphere disease, this sudden plunge into a cold and rare atmosphere
is too apt to chill the surface, disturb the balance of circulation, and cause congestion of weak internal organs. Nor is it surprishng that serious derangement, or even fatal mischief, should occasionally result from such an ordeal.
The same ge eral precautions should be observed by corps ascending the hills, more especially that one which relates to a prop\& change of clothing on attaining a certain altitude. I am persuaded that not a little of the blame that has been cast on the hill climate is fairly to be ascribed to a neglect of the above obvious and reasonable precautions.

I am well aware of the objections which may be urged to the proposal to locate a large proportion of our European troops in the hill districts of the Bengal presidency. These are:-The absence of extensive table land in the lower Himalayan ranges; the difficulty of finding a sufficient number of easily accessible sites, of the required elevations, among such rugged and precipitous mountains; the difficulty and expense of properly feeding European troops in such situations; and the dangerous character of the "Terrai" jungle to be traversed before some parts of the lower ranges can be reached. But I am convinced that many eligible sites may be discovered in this and other parts of the country, if searched for in a proper manner; and that all the other objections can be mainly obviated by and that all the other objections can be mamly obviated by
the construction of branch railroads up to the foot of the the cons.
But supposing the search for eligible sites in the hills to have been attended, with complete success, I nuch fear it will still be necessary, for years to come, to retain a considerable number of European troops in the plains, to overawe by their visible presence populous turbulent cities, or disaffected districts, and in such a case the sanitary management of Europeans in the plains of India must still remain a subject of vital importance.

Of all the deaths of European soldiers which I have witnessed in India the grest majority have occurred from diseases of undoubted malarious origin and their sequelæ. diseases of undoubted malarious origin and their sequela.
The first and most indispensable rule, therefore, for The first and most indispensable rule, therefore, for
preserving the health of the British soldier in the plains, preserving the health of the British soldier in the plains, as possible. And I would here especially direct attention to the fact, that there are few districts in the north-west and central provinces of Bengal which are either wholly good or wholly bad; that in almost every district unhealthy and comparatively healthy localities exist; and, that unhappily, we have too often chosen the former as a site for our European cantonments. This, I believe, to be especially true with respect to Cawnpore, Kurnool, Dinapore, Delhi, Ghazeepore, sic. Nearly all these stations are irremeGhazeepore, sc. Nearly all these stations are irreme-
diably vicious, and yet 1 believe good localities exist at no great distance from every one of them. The close praximity of some of the worst and some of the best localities, examined by the Canal Sanitary Committee, was one of the most curious and important facts elicited by that inquiry. With regard to rules for the selection of proper sites in the plains for standing camps or cantonments, I have nothing to add to what I have already written on this subject in the Appendix to the Report of the Canal Sanitary Committee, and in the note forwarded by Sir Ranald Martin to the Court of Directors.

A proper site being found, the next considerations are, accommodation, ventilation, personal and local cleanliness, clothing; food, use and abuse of stimulating drinks, exercise, and amusements; and on each of these important points I would offer such brief remarks as my experience in India suggests.

Barrack Accommodation:-Of the old style of barracks in the upper provinces, now so universally condemned, I need not here speak; they are, it is hoped, among the old things that have passed away. I have a personal knowledge of the new European barracks at Umballa, erected by Sir \mathbf{R}^{e} Napier, the horse artillery and infantry barracks at Meerut* and the new horse artillery barracks at Loodiana, all of which, if properly ventilated, I consider generally good. Which, if properly ventilated, I consider generally good.
Although all built of a single story, they are lofty and Although all built of a single story, they are lofty and
spacious, -stand on terraces raised from six to ten feet above the general level of the ground, and are supposed to afford about 1,000 cubic feet of air to each inmate. They have all deep double verandahs, the inner one being furnished

[^9]with well-fitting glass doors all round. I have not seen the new barracks erected in the Punjab under the auspices of the late Sir Charles Napier, but believe they ane still better than those above referred to. Such accommodation, with due attention to safe ventilation, leaves little further to desire as far as the unmarried soldier is concerned. . But wherever I have been the arrangements for the eccommodation of the married man and his family have been most defective. At Dinapore, so recently as 1856, I found the married men of Her Majesty's loth regiment living in a range of low out-houses, close to the public necessaries, and in a filthy ill-drained locality.
On my recommendation Government hired an ample private barrack for their accommodation; but had the married families themselves been consulted, I strongly suspect they would have mather remained and endured the inconveniences of the locality from which I caused them to be removed, for reasons to be noticed hereafter. At some stations a whole or portion of a barrack is assigned to the married inen of a regiment, and the space divided off into married men of a regis for each family by means of low eloth ecreens This expedient interferes with ventilation colh screens. This expedient interreres with ventisation ad cleanliess, and goes but a sinal At of ther places the decent privacy of a married family. At other places the separate compartments are formed with low siggt brick walls, which leave all the space sbove open, so as to permi the large barrack punka to 1 more of them. This is a somewhat better arrangement, both for decency and cleanliness. Constructed as upcountry barracks now are, and probably must continue to be, it is only by adopting such like expedients that the married families can be accommodated within the walls of the main buildings. But I have generally found that the married soldier is ready to submit to almost any other inconvenience to secure a detached lodging for his family, where his conversation is not overheard, and the ears of his wife and children are unsssailed by the too common ribaldry and obscenity of the adjoining " unmarried " barrack room. Many of the steady married men of the Company's European artillery obtained permission to reside in small detached private bungalows in the rear of the barracks. Such a group of bungalows or huts constitute what in Anglo-Indian barrack language is called a "Patchery," probably a corruption of the Hindoostance word "peechāree," " behind or in the rear." The desire of married men to remove their families from the contamination of barrack life is surely most right and praiseworthy, and, therefore, I think it would be well to place such families in small detached bungalows, at a convenient distance from the barracks. Such erections might be slight and not expensive, the chief points to be attended to being and not expensive, the chief points to roof, and a clear space in the direction of the prevailing roof, and a clear space in the direction of the prevailing
winds. All unthatched small buildings are altogether winds. All unthatched small buildings are altogether
uninhabitable by Europeans in the hot geason. The uninhabitable by Enropeans in the hot season. The
whole of this subject, viz.; the proper accommodation of Whole of this subject, viz.; the proper accommodation of
married soldiers, is worthy of far more attention than it has married soldiers, is worthy of far more attention than it has
yet received in India. Important as good barrack accomyet received in India. Important as good barrack accom-
modation unquestionably is, a well chosen locality is of modation unquestionably is, a well chosen locality is of
more importance still. I have met several striking inmore importance still. I have met several striking instances, in which the troops lodged in the very worst.
barrack suffered in unhealthy seasons far less than those living in the best, at the same station, simply: because the former had the advantage in certain local conditions.
Ventilation.-If the necessity of good ventilation is now fully recognised in Europe, its importance cannot be overestimated in India, where the exciting causes of endemic and epidemic disease are so much more active and virulent. I beg to submit a separate minute on cooling, agitating, and renewing the air of barracks and hospitals in the upper and renewing the Bir of barracks and the Bengal Presidency. I shall only further remark, in this place, that wherever the exigencies of the service may ohlige troops, for a time, to occupy an insufficient space, the grand antidote to contingent mischief is a good and safe system of ventilation.

Personal and local cleanliness are also sanitary considerations, the importance of which becomes greatly enhanced in a climate in which the gecretions from the surface of the modter so rapidly underques decomposition. All. AngloIndians of the upper classes, not actually ill, daily use Indians of the upper classes, not actually ill, daily use either a bath of some kind, or periorm equivalent spongings and ablutions of other parts of the body than mereiy the hands. and face. So essential is this generally considered to the "health and comfort of the European resident, that there is not a private house, or even staging bungalow anywhere to be found, which does not possess a bath room as an indispensable adjunct.: Until of late years, means. at his disposal of so keeping his-person clean. A
few of the men bathed in the neighbouring muddy tanks and rivers, but the great majority adhered to the good old English custom of washing the face and hards once a day, and the feet as seldom as possible. Some years ago, however, a movement set in in a different direction, and the necesssity of providing proper wash-houses for European barracks was generslly admitted. When I left Meerut, in 1854, admirable arrangements of this nature had just been completed for some of the barracks at that station. A wash-house for the artillery hospital was about to be commenced, but when I came away my simple and cheap expedients remained just as I had originally planned them. On joining the Dinapore division as superintending surgeon, in 1855, I found both barracks and hospitals absolutely destitute of regular wash-houses; and the one I got built for the Dinapore European hospital was the first thing of the kind ever erected in those provinces. When transferred to the Cawnpore circle, in 1856 , I found things precisely as at Dinapore; and 1 was surprised to learn that it had never been the custom to "indent" for soap for the personal use of the sick. Heretofore, s few tubs of water and a few "rack-towels" had been placed at one end of the hospital verandah, neither of which could be taken to the bedside of a patient anable to rise. I pointed out to medical officers that there was no occasion to wait the medical ofacers that there was no occasion to wait the erection of expensive wash-houses, and how simple a matter daily personal ablutions. It was only neans of performing daily personal ablutions. It was only necessary to clear out a side room or out-house, to procure a few rude long tables and benches, a supply of cheap country earthenware basins and water-pots, bar soap cut into squares, tin soap-dishes, a good stock of coarse country cotton towels, and the whole wes complete. All these articles I took upon myself, as superintending surgeon, at once to pass and sanction.

Bathing.-A good plunge or swimming bath is a troublesome and expensive affair, and as it can only be used with safety by the most bealtify, vigorous, and temperate of the men, I am inclined to dispense with it bath is comparatively safe, while it is, at the same time, simple and easily managed in the extreme. A number of water-pots of convenient size, and made of the very cheap water-pots of convenient size, and made of the very cheap country porous earthenware, are placed on a bench, or on the floor of the bathing room or tent. If a cold bath is to be used, the porous water-pots are filled the night before; a temperate bath is desired, the pots are filled just before being used. Tepid affusion is easily managed by adding the necessary quantity of hot water. But, in general, the pot of cold or temperate water is lifted up by the bather himself, and emptied over his head and naked body, a second, third, or fourth pot following in rapid succession. The body is then quickly dried and vigorously mubed with corse cotton towels; reaction speedily follows; and a safe, refreshing, and invigorating bath is completed.
During the hot season in the plains, such a bath as that above described,-if superintended by an intelligent noncommissioned officer,-may be used with comfort and benefit, under ordinary circumstances, by a majority of the men. I have given the above details to show how cheap and simple are the means, and how easily the arrangements can be made wherever there is a good well and a supply of earthenware water-pots, that is to say, in almost every inhabited part of the country. A spare tent can always be turned into a convenient enough bathing room in camp. The weak and sickly, the afflicted with organic disease of The wind, and the confirmed drunkard, must, of course, avoid cold affusion altogether. Still, they too should observe personal cleanliness, and wash parts of the body cautiously and in succession with tepid water. The condition of all such persons ought to be fully known to the medical officers of the regiment, who can, without much the men for the different kinds of ablutions. Very simple the men for the different kinds of ablutions. and efficient arrangements can also be made to enable an to wash the feet, nates, and genitals, in cold or tepid water; but I shall again advert to this point when 1 come on these of the prevention of syphilitio and other sores on these parts. Whatever is really conducive to strict personal cleanliness in a hot climate can never be deemed inining or unimportant, therefore I have no hesitation in here recommending for general adoption in the barracks, 8 decent and salutary oustom, borrowed from the natives of Indias and universally practised by all Anglo-Indians of the upper classes, viz., to wash with pure water whiently doing bowels are moved. Arrangements for
this are of the simplest possible nature.

Local Cleanliness.-Of late years attention has been muoh direatod in India to the neeessity of proper conser-
vancy arrangements, in and about barracks and military cantonments generally. Commanding officers are no longer content to see that nothing is done to offend the eye, but efficient establishments have been éntertained to regularly collect and remove all offensive matter to a safe distance. The habits of the natives in the sepoy lines, and in the regimental and station bazaars however, still present formidable difficulties to a complete conservancy system. The native of India, though cleanly in his own person, is disposed to leave all the rest to the care of such scavengers as the pigs, kites, vultures, \&c.
Food and Drink.-The English are notorious for adhering to their national customs and modes of life in all parts of to their national customs and modes of life in all parts of
the globe. When I visited the Mauritius in 1832, it was the globe. When I visited the Mauritius in 1832, it was
generally understood that the English residents, including generally understood that the English residents, including
the garrison, were then suffering much from various forms of tropical disease, while the French and Creole inhabitants of the island were comparatively healthy. The English, it was said, ate, drank, slept, and walked abroad pretty much. as they had been accustomed to do at home; but the French and Creoles, on the other hand, rose early for outdoor work or exercise, partook sparingly of concentrated foods and stimulant drinks, and in other respects adopted habits more suited to the tropical climate in which they were living. . Such was the story told, and the explanation given of it, on the spot; but whether strictly true or not, it unquestionably prints to a sanitary truth of grave import. I do not mean to assert that the Englishman in India should live precisely as the native of the country does, for the conditions are not the same, each differing from the other in race, inherited temperament, and acquired habits; but without pinning my faith to all the modern chemical theories of alimentary substances, I do maintain that both instinct and wide experience teach that the former cannot, with safety, either eat or drink in India as he did in England, and that the same quantity of animal food and stimulant drinks; taken with advantage by a working man stimulant drinks; taken with advantage by a working man positively injurious to the almost idle European soldier in positively injurious to the almost idle European soldier in
the burning plains of Hindostan. Of the recruits drawn the burning plains of Hindostan. Of the recruits drawn
from Ireland and $\operatorname{Scotland}$ it is certain that the majority from Ireland and Scotland, it is certain that the majority
must eat in the hot weather in India many times the bulk of animal food ever consumed in their native country while working hardest in the coldest season of the year. The same, however, cannot perhaps be said of the consumption of ardent spirits.

The raw materials supplied by the commissariat as food for the troops in India have been greatly :mproved of late years, and especially since the promulgation of Lord years, and especially since the promugation of Lord Dalhousie's orders on this subject. Not only are the beef, the vegetables of the season has been added to the soldier's ration. The power to reject inferior or unwholesome articles of food now rests entirely with the officers of European regiments. It was not so in former times. The present scale of barrack diet is ample, and not improper for men using active exercise in the cold weather; but I am strongly impressed that too large a quantity of concentrated "nitrogenous" aliment is consumed by men contined to an up-country barrack, and leading a life of monotonous inaction, during the long dreary months of the hot and rainy seasons in the plains. A good barrack dietary for the rainy seasons in the plains. A good barrack dietary for the
hot season is still, I think, a great desideratum ; and I am hot season is still, I think, a great desideraturn; and I am
persuaded that there is always to be found abundant persuaded that there is always to be found abundant
material, if properly dressed, to furnish such a variety of wholesome, palatable, but not too nutritious food, as would render it easy considerably to reduce the allowance of solid beef and mutton, without trenching on the real comfort of the men. Of good food there is now no deficiency, but a good wholesome system of cookery is still a great want. The soup and boiled beef have long disappeared from the mess tables of the Company's European troops, and their daily bill of fare presents a sufficient variety of dishes ; but the cookery is generally of a very objectionable character, all meat being made into rich pies, or hot curries, or fried with fat in common frying pans. Beyond this, their barrack culinary art does not at present go. While on the subject of food, I must not neglect to warn all concerned against the use of the flesh of the common village swine. The natives of India, as the Israelites of old, go beyond the camp to relieve the calls of nature, but they do not observe the salutary Mosaic injunction, to have a paddle on their weapon and "turn back and cover that which cometh from them." The ground so defiled is generally quickly cleared by herds of swine, literally fed upon human ordure, which they devour with eurprising greediness. The men of newly arrived European regiments, if not duly men of newiy arrived European regiment, are often delighted to find both pork and bacon so abundant and cheap everywhere; and much to the so abundant and cheap everywhere ; and much to the
horror of the high caste Hindoos and Mussulmans, and not
a little to the scandal of the old Anglo-Indian, a number of these disgusting country pigs have sometimes been permitted to follow in the rear of a British regiment as part of its "Hocks and herds." I need not eay that all such "ordure fed" pork and bacon should be strictly interdicted as unwholesome in the highest degree. Such food is looked upon by old European residents with as much disgust as by the Jews or Mussulmans. Strange to say, the Indian sheep too, if not watched and properly fed, is scarcely necessary to ascertain that sheep killed for the use of the necessary to ascertain that sheep killed for
men have been well and properly nurtured.

Consumption of Ardent Spirits. -This is a subject on which I have long looked with deep and painful interest. I have lived too long with European troops in India not fully to coincide with Dr. J. Johnston and Sir Ranald Martin when they say, "that as drunkenness leads in a moral point of view to every crime, so in a physical point of view, it promotes the invasion, and retards the cure of every tropical or other disease." In this sense, the abuse of ardent spirits has been the fertile source of a large amount of the moral and physical degradation I have witnessed arnong my countrymen in the East. Fully persuaded of this, I considered it my duty, so long ago as 1836, at Agra, to endeavour to establish a society among the men of the endeavour to establish a society among the men of the
4th battalion of artillery, the members of which pledged themselves to abstain altogether from the use of spirits in any shape; a fair number joined, and for a time it seemed to promise well; but the officers of the corpis looked coldly on, and the sckeme, after a trial, fell to the ground. Years afterwards a temperance movement was renewed at Meerut, in the 1st brigade, horse artillery, and this time the officers were its chiet promoters. The detestable morning dram was abolished altogether, and no spirits allowed until after dinner. This was a great step in the right direction, for I have never known either officer or man who could not dispense with a dram of raw spirits when he got up, who did not go to bed drunk, if he bad the means of doing so. The men were encouraged to receive a money compensation The men were encouraged to receive a money compensation
in lieu of spirit rations, or to drink a certain quantity of good ale or porter instead of rum. After a time I learnt that only 20 men of Major Dawe's troop (2nd troop, Ist brigade, horse-artillery,) drew spirit rations, and that all the rest either drank a moderate quantity of ale, or abstained from stimulants altogether. The effect of all this on the health, efficiency, and good conduct of the men was excellent. I had never before seen European troops in India in so good a condition in all respects. This treop had arrived from the sickly station of Loodiana with 50 per cent. actually in hospital; and after a residence of nearly four years at Meerut, where the above-mentioned reformation took place, they marched to Sealkote with a clean bill of health; no death having occurred among the men for a period of two years. I have no records to refer to at present, but the above is, I believe, substantially a true and faithful statement of what then took place. In congratulating ourselves on the results of this temperance movement, however, it is but fair to state that Meerut is one of our most healthy localities.

At the Landour convalescent depôt not a drop of spirits is allowed to the men unless prescribed by the medical officer in charge. This salutary regulation was originally enforced at the recommendation of a most admirable military surgeon, Dr. Robinson, then surgeon of Her Majesty's l3th foot, and for which he is said to have incurred so much odium, that some of the old confirmed drunkards attempted one night to cast him over the precipice. However, he carried his point, and I can fully testify to the great nenefit of this judicious regulation to the health of the convalescents. Although I am of opinion that the freshly arrived European does best to confine himself to pure cold water or slightly acidulated drinks, yet if good malt liquor is only to be considered a substitute for rum, I would advocate its use from the very first. After rum, I would advocate its use from the very first. After
several years' residence in India, good pale ale is often several years' residence in India, good pae ale is often
drank with advantage; and to the weak anæmic female in drank with advantage ; and to the weak anmmic female in
India, it is often one of the. real necessaries of life. My testimony on this point may be of more value from the consideration that I have no personal predilection for malt liquor, having never been able to drink it in my life. Beer or ale is however an expensive and bulky article to carry, as compared with spirits. Great care and attention is also required in transporting it up country, large quantities having become bad and undrinkable on reaching the commissarist stores at Meerut by the old modes of conveyance. But railroads should now be able mainly to obviate this, objection to supply the troops with ale or obviate instead of rum. A good wholesome beer is now porter instead of rum. A good wholesome beer is now
brewed in the hills; but as yet the price is too. high, and the quantity too limited for general regimental use.

Clothing.-If the European is out in the open air before sunrise in the cold season of the upper provinces, he will experience the sensation of cold even more acutely thai he ever did at home in ordinary winter weather, and will confess that good warm clothing is at least equally necessary in both situations. The temperature of the early morning air is not very low, it is true, as measured by the thermometer, probably from 36° to 40°; and, occasionally, it touches the freezing point; but the heat in a tent at $2 \mathrm{p} . \mathrm{m}$. of the same day will often be found from 70° to 80°. Even in the cold season it is found necessary to begin a march before sunrise, so as to reach the new ground before the sun is very high; and this extensive diurnal range renders the European system morbidly sensitive to the morning cold. I say the European system, for it has often excited my wonder on a march to see robust horse artillerymen dismount from their horses at the first halt benumbed with cold, and running up and down to restore the circulation in their extremities, while half naked native ehildren were playing about as if nothing unusual were the matter; but if a good supply of warm clothing is necessary in the cold, light cotton garments are equally indispensable in the hot, dry, and rainy seasons, And here I would especially urge the necessity, at such seasons, of keeping the soldier's neck in every situation as free and unincumbered as the neck of the British sailor is at all times. Nothing so much interferes with the comfort and free action of the whole body as any warm, tight, or stiff covering round the neck. Who has not experienced the elief of removing a hot neckcloth, and opening the shirt collar after being overheated? A turnover collar loosely tied with a narrow black band, is surely as graceful and seemly as any military stock ever invented.
Flannel.-A good deal of difference of opinion exists among experienced medical men as to the necessity of mong experienced medical men as to the necessity of
 he following as the result of my own experience. If the robust and heallay European has never worn ilannel at home, he may continue to dispense with it on his first arrival in India. The coarse flannel supplied for the use of the British soldier is very apt to irritate the skin, produce profuse perspiration, and so cause more harm than good, and this is especially the case if it be of the sort that shrinks on washing, and flannel in India must be well and frequently washed. But after a residence of a few years, when the system has been lowered and rendered sensitive to all atmospheric changes, a good light flannel shirt worn next the skin is unquestionably an excellent safeguard against contingent evil: A proper fabric of this kind is procurable by the more wealthy classes; but I have never seen any fiannel served out to the soldier in India that his officer could be induced to bear next his own skin in really hot weather. This is a point which I am sure calls for attention and remedy. 1 succeeded in effecting a sort of compromise with many of the men under my medical care, who had suffered from fever or bowel complaint, viz., by not insisting on the flannel shirt, and so inducing them to vear the fiannel abdominal binder, this I am persuaded was often attended with the best results.
Exercise and Amusement.-On these important subjects I have but a very few words to add to the excellent observations to be found in Sir. R. Martin's "Influence of Tropical Climates." The question is often asked, should the European soldier be strictly confined within the walls of his barrack during the heat of the day in the warm weather, or may he be permitted occasionally to walk broad, as in other and more temperare climates? The Itternative will be found a perplexing one. If you confine im to his berack rom a perplexing one. If you conin him to his b srrack-room, how is the uneducated man to get through the long dreary day? The offcer has walked or ridden out in the early morning ; on his return home he has looked in at "the coffee-shop" or reading-room, and has seen and conversed with persons not always before his eyes. During the day he visits his friends, spends some time at the billiard-room, or more profitably employs his time in reading, or other intellectual amusements at home. But the uneducated soldier, shut up in his barrack, has literally nothing to do but to lie down and try to sleep,* until the hour shall come for dinner, and the long-looked-

* If the barrack cots are taken up, as is sometimes the case to prevene hard measure, by all who reflect how often they themselves seek the horizontal position during the hot season.
for dram to relieve, for a short period, his utter vacuity of mind and lassitude of body. Rather than force men to lead such a life, is it not better, say many well-informed persons, to give the soldier a reasonable indulgence to walk abroad, even in the hest of the day, not buttoned up to the throat and in red regimental jackets as some martinets will have i^{2}, but in. loose white cotton clothes, open collars, and proper white covers to their caps. But where are the men to go? They have no acquaintances to visit, few out-door amusements to join ; and it is too likely they will find their way to the nearest bazaar, and add the dangers of intoxication and other debauchery to that of a erce tropical sun.
The whole case is truly a perplexing and pitiable one and loudly calls for the humane and judicious consideration of all interested in the welfare of the British soldier in the East

I have, \&c.
T. E. Dempster,

Late Superintending-Surgeon,
Bengal Establishment.

Addenda.

No. 1.
Prevention of Sxphilitic and other Diseases of the Genitals:
This is, in every point of view, a subject of importance to the health and general efficiency of a regiment. According to my experience, certain forms of disease of this class keep men longer from duty than any other complaint to which the soldier is especially exposed.
In India it is hardly possible for the European soldier to have intercourse with any females but those of a recognized and well-known class, whose numbers and names can at all and well-known class, whose numbers and names can at all not be difficult, through the agency of an intelligent subassistant surgeon or native doctor, quickly to detect the first appearance of disease amons them, and so to guard the men from contamination. When I first arrived in India the men from contamination. When I first arrived in India there were Lock hospitals at every large European military station, under the superintendence of one of the medical officers of the place, but the duty involved was a disgusting one, was ill or carelessly performed, and did very little good Such hospitals were abolished a great many years ago.
In conducting the usual medical examinations, I have often been shocked, especially in very hot weather, to observe the filthy state of the persons of many of the unmarried men; but they had a ready and reasonable excuse to offer. How could they keep their persons properly clean without indecent exposure, seeing that there were no private wash-houses and no place in which they could perform ablutions but an open barrack verandah? I am well satisfied that this state of things is one of the great predisposing causes of syphilitic disease,- for integuments in a state of irritation, and often partially excoriated by increased and unremoved natural secretions, are precisely in a condition to be at once inoculated by the slightest contact with venereal virus of any kind.

The remedies I propose are as follows :-
1st. To conduct the usual medical examinations of the unmarried men with much regularity and care.
2ndly. To subject the public women to a similar examination, through the agency of a sub-assistant surgeon or native doctor of trustworthy character, and who should be held responsible for any extensive undetected disease.
3rdly. To cause all the men to wash the genita/s in cold or tepid water, at regular stated periods, during the hot season, and to afford them the ready means of at once doing so after suspicious contact. A few simple verbal cautions may e communicated by medical officers to men who will ex pose themselves to such risks.
If all this were strictly attended to, 1 am persuaded twothirds of the disease, which at present renders so many of the men inefficient, might be effectually prevented
Of course, I have only dealt with the physical, not the Of course, I have only dealt with the physical, not the deration.
T. E. Dempeter,

Late Superintending Surgeon,
Bengal Establishment.

No. 2.
Note on the Ventilation and Cooling of Barracks and Husirtals in the N.W. Provinces of Bengal.

- Preliminary Remarks.-A brief description of things so well known in India as swinging Punkahs, Tatties, and Thermantidotes, may be necessary to those who have never rusided in that country.

The common house punkak is metely a long substantial wooden frame, covered with cloth, and suspended to the roof of an apartment by strong ropes. A deep, full, cloth fringe is usually attached to its lower edge, which greatly increases the volume of air displaced by its motion. The punkah is made to swing forwards and backwards by means of a thin strong cord attached to it in the manner represented below.

Punkah suspended to the beam of an apartment, with pulling cord attached.

The size and dimension of punkahs vary according of the size and proportions to the size and proportions of the apartments in which
they are to be used. All they are to be used. Al
Indian barracks and hospitals occupied by European troops have, during the hot season, punkahs auspended at short intervals, which are kept swinging oyer the heads of the men day and night, and are pulled by a class of native pulced by a clas "cof native, who are rulieved every four who are
hours.
hours. The relief afforded by the punkah in the hot weather, and especially during the hot oppressive nights of the rainy season can hardly be conceived by

"Kus kus" tattie applied to common doorway.
those who have never lived in such a climate.

Tatties are light bamboo Tatties are light bamboo frames, made accurately to fit a doorway, and into
which are neatly, but not too closely, arranged the slender roots of a fragrant grass, "kus kus." These roots readily absorb and retain moisture like a sponge, while they admit a strong current of air to pass freely through them. Hot dry air at a them. rature of from 105 to 108 rature of from 105 to 108
degrees (the average temdegrees (the average temperature of an up-country hot wind), passing through, a well-wetted " kus kus"
tattie, is instantly reduced tattie, is instantly reduced
to 76 or 78 degrees of Fahrenheit.

So long as a steady hot wind blows, these tatties afford the ready and effectual means of keeping our houses barracks, and hospitals at a very. moderate temperature; indeed, at such times nothing is easier than to make a large apartnent too cold to the feelings of an old Indian. The drier and stronger the hot wind, the greater is the cooling
power of the tattie. But when the wind becomes very light, or loaded with moisture, the effect of the tattie is either greatly diminished, or altogether lost. It is, therefore, in light winds or calma that the "thermantidote" becomes so useful, especially if the air is, at the same time, tolerably dry.

Thermantidome.

For several years past this cooling machine has been in common use in the north-west provinces of Bengal. It was common use in the north-west or rather first applied to its present use, by the invented, or rather first applied to its present use, by the late Dr. James Ranken, formerly Postmaster-General of Bengal. It is a mere modification of the old fanner or winnowing machine. Large openings are left in the sides
of the box, in which the fans (c, c, revolve, and into these of the box, in which the fans (c, c,) revolve, and into these openings "kus kus tatties" (B) are closely fitted and kept well watered.

Great improvements have been made of late years in the construction of thermantidotes. A moderate sized machine of this kind worked by a single man, will now throw a
stream of cold air so as to be perceptibly felt at the extreme end of a room thirty feet long. All bungalows, barracks and hospitals in the upper provinces of Bengal are furnished with well-fitting glass doors, all round the inner verandah which are kept closed during the day, so as completely to exclude the hot wind
P.S.-During the hot winds, a thermometer kept' in a deep well-shaded open verandah having a northern aspect, stands at 2 p.m. at from 105° to 108°; but if placed in the open plain, and under the small double roof used by the Royal Ergineers as a perfect shade, it will usually rise
to 116°. to 116°.

Transverse section of an Indian barrack or hospital.

4, main ward.
 B, в, inner verandahs enclosed with glass doors. c, c, outer verandahs, open.

An efficient and safe system of ventilation must ever form a subject of prime importance in the sanitary management of troops in. all parts of the world; but it must be borne in mind that, during the hot season in the upper provinces of Bengal, it is essential to the health and comfort of the European soldier that the air of barrack rooms and hospitals should not only be frequently renewed, but cooled and agitated at the same time.
The very simple and ingenious patent ventilator invented by Mr. McKennell, which is found to act so effectively in cold and temperate climates, I am sorry to say, must entirely fail during the hot season in the plains of upper India, except, perhaps, for a very short period in the twentyfour hours.
The action of thia ventilator essentially depends on the supposition, that the impure air of a crowded apartment is always much varmer than the external atmosphere; that the foul air, therefore, will always rise, and pass cut-through
s , present position of thermantidotes and tatties.
, present position of therm
c, old roof ventilator.
H, punkah bearn.
the inner tube of the apparatus fixed in or near the roof; and that a counter-current of pure cold air will be treated through the outer concentric opening, and freely descend towards the floor by its comparative gravity. But all these conditions will be found to be reversed in a barrack or hospital in the upper provinces during the hot season. There the internal air, however impure, will always remain colder than the external hot wind. Under such circumstances there can be no ascending stream of foul, no descending counter-current of pure cold air. Even in the rainy season, and after the cessation of the hot winds, the difference of temperature between the internal and external air will ever be too small to create active currents withous the aid of e me propelling force; and it will be remembered that air once breathed is specifically heavier than pure air at the same temperature.
A little before daybreak, and until sunrise, in the hot ceason there occurs a sudden-and considerable fall of aden and 3 N 3
temperature ; and during that short period the external air is decidedly cooler than that of an inhabited apartment. At this time such an apparatus as Mr. McKennell's would act well, and if properly proportioned to the size of the building, would probably cause the whole internal air of a barrack to be completely renewed before the wind begins to get hot, and it is necessary to shut the glass doors. In the cold weather in the plains and in the hill districts at all times, I believe, no other ventilators need be employed but during the hottest periods of the day and night othe means of ventilation must be resorted to. I have given above a brief account of the appliances and means in common use for this purpose, as well as for cooling and common use for this purpose, as well as for cooling and India. While a steady hot wind blows, an apartment of any size can be kept sufficiently cool and well ventilated by the application of the requisite number of well watered "kus kus' tatties. But then, as at present used, the stream of cold moist air must pass directly across the lower part of the barrack-room, and many of the in mates must be exposed to a thorough draught. The most delicate and sensitive persons delight in the "punkah;" but to lie, and especially to sleep, in a stream of cold moist air from a tattie or thermantidote is well known often to be attended with very serious consequences. The thermantidote, now very generally used in up-country barracks and hospitals, combines the advantages of a re frigerator and ventilator, even in light winds and calms. As it is now applied, the tube is carried across the inner verandah (an awkward arrangement, by which much power is lost), and opens either immediately below or a little above the cots of the men (see plan). I would retain both tatties and thermantidotes, but as I do not think it desirable ever to keep a harrack-room so cold as to subject the men to great alternations of temperature in passing out and in, and as I am convinced it is most desirable to avoid thorough draughts of cold moist air, I would remove both from their present position (which is nearly on a level with the barrack present position (which is nearly on a level with the barrack floor) to the top of the ruof of the inner verandah, as shown in the subjoined rude sketch plan. Any required number of thermantidotes placed in this position can be readily turned, and all the tatties kept constantly wet, by the simple machinery proposed by Mr. Moorsom in his plan for revol ving barrack "punkahs." The cold pure air from tatties and thermantidotes so placed would quickly descend by its own gravity, and be freely mixed up and dispersed through the whole apartment by the action of the punkahs, thics effectually renewing and cooling the air without subjecting any of the inmates to cold thorough drauerhts. The glas day (for there are no windows in Indian berracks) should be closed below, with the exception of a certain number in be closed below, with the exception of a certain number
proper positions to leeward, to serve as counter cpenings.
The only novelty in my scheme is the proposal to draw
The only novelty in my scheme is the proposal to draw
the supply of pure cold air from a considerable elevation, and not from the ground floors, as is at present the universal practice in India; and in this respect my plan entirely coincides with that of Mr. McKennell. By this arrangement I conceive we shall not only avoid all dangerous thorough draughts, but draw the supply of fresh air from a safer and purer source than from the malaria laden stratum nearest the ground. This appears to me to be a consideration of real importance in certain unhealthy localities.
T. E. Dempster

Late Superintending Surgeon,
Benintending Surgeon,
Bstablishment.

No. 3.

Remarks on some of the Prixcipal Military Cantonments of the Bengal Presidency at which I have either resided for considerable periods, or have carefully examined for special purposes.
The period of my service in India extended over 37 years, during which I was abeent only 18 months, on sick leave in Australia. I have, during my long Indian career, served with European or native troops at the following stations in the Bengal presidency, viz., Dum Dum, Barrackpore, Dinapore, Buxar, Allahabad, Secrora, Cawnpore, Agra, Kurnool, Almorah, Landour, Nusseerabad, Umballa, Loodiana, Muoltan, and Peshawur.

Peshavur.-I accompanied the field force under the command of Sir W. R. Gilbert, G.C.B., on our first occu pation of that city and district after the second Sikl campaign, and, as superintending surgeon of the Bengal column, I was nominated a member of the special committee of which Major-General Sir C. Campbell (now com Clyde) was president, assembled for the purpose of selecting an eligible site for a new cantonment.
1 beg to submit a copy of a memorandum drawn up by me on that occasion, and signed also by Dr. Straker, the
other medical member; together with a copy of a note on the same subject which I subsequently addressed to Sir W. R. Gilbert on the breaking up of the field force under his command.* The main object of the first of these docu-

- Note by the Medical Members of the Committee on the necessity of prohibiting Canal Iraigation within certain
limits round the Site of the New Cantonment, and Remargs on some other points connected with the Medicas. Topooraphy of Peghawur and its Vicinity.
The distance which secures safety from the effects of malaria varies according to certain circumstances, some of which can only be accurately ascertained after considerable experience. With such a stiff clayey soil, and with such anlimited facility of swamping the land which exist in the neighbourhood of Peshawur, we con opinion, essential to safety, under such conditions as here in our themselves, unless where any part of the city may intervene between the malarious locality and the ground occupied by the troops.
According to almost universal experience, there is no more ready mode of generating malaria in such a climate as this than by profusely irrigating a stiff retentive soil ; and therefore we believe it imperative not only to prohibit all canal irrigation within one mile of the cantonment pillars, but to take steps for securing the perfect drainage of the space included within this line.

Although the soil generally all round Peshawur has a large proportion of stife be very few natural swamps or stagnant pouls The water in the numerous streams and springs is generally in a state of rapid transition; and the fall of the country admits of easy and perfect surface drainage. These are the great saving local conditions we observe.*
There is an old but extensive musselman burying-ground, between the site of the new cantonment and the city. In is highly
desirable that no more dead be interred in this desirable that no more dead be interred in this situation.

That the site selected by the Committee was the one formerly occupied by the Sikh troops is alone a presumptive proof of its
relative salubrity. With the precautions above recommended it appears to us by far the best, in a sanitary point of view, of any locality available in the vicinity of Peshawur, bearing in mind other and equally important military considerations.

In occupying a new country with our troops, it is always important to come at the results of the experience of its inhabitants in all matters connected with health or disease. With this view we assembled ive of the most respectable and intengent of the them answers to the following questions:-

1. What are the prevailing diseases in the city of Peshawur
2. In the cold weather coughs, colds, and complaints of the throat and chest, \&c. are common. In the fall of the year inter mittent fever and bowel complaint are the most severe and prevailing diseases.
3. What is the most unhealthy season of the year?
4. The months of July, August and September. It is during ese months that fever and bowel complaints are prevalent
5. Is the mortality in the city generally considerable or is . 3. Fevers and bowel complaints are often very preval
6. Fevers and bowel complaints are often very prevalent, but lity is usually small.
Have you remart ed any peculiarities of t
indicate a healthy or unhealthy season?
7. If heavy rain falls in July, August and September, the seasnn is observed to be unhealthy. It seldom rains at Peshawur in these months; much rain usually falls at the present (April) season, and it is attended with no harm. If the prevailing winds are westerly in the three hot months, the season is unhealthy; but the reverse is year Numerous "falling stars" also indicate a sickly season
8. Of the past ten years how many do you consider to have been decidedly unhealthy?
9. There have been some severe and vety fatal visitations of cholera and small-pox during that time, but we remember no extensive mortality from the ordinary local diseases.
10. Did actual famine or great scarcity of food occur within that period?
11. There has been neither famine nor unusual scarcity of food in Peshawur during the past ten years; indeed, not for a long series of years.
12. Is enlargement of
13. The disease exists in the city, but is not very common or severe.
14. What class or classes of the people suffer most from disease?
15. The poor are ill lodged.
16. Is it considered necessary to health to avoid sleeping on the ground floor at particular seasons of the year?
17. During the very hot weather it is proper to sleep in the open air on the tops of the houses; at all other times of the year people sleep below. It is dangerous to sleep
18. What articles of food and what kinds of fruit are generally reckoned unhealthy?
19. None of the common articles of food are considered unwholesome. Of the fruits, the pomegranate, grapes, oranges, limes, water melon, small cucumbers, and a sort of plum "beer" are good and wholesome. Stone fruits generally, the melon, and is however good.

- These remarks only apply to the immediate neighbourhood of Peshawur. To the north of the fort and city the land suddenly becomes low and flat, and at about a mile from the walls in this direction commences the low marshy district noticed hereafter as the "Tuppa" or division of Dowdzace.
ments was to remonstrate against the practice of excessive irrigation in and about the new cantonment. In the second, I considered it my duty to point out the sanitary objections inseparable from any locality between Peshawur and the mouth of the Kyber Pass; to indicate a far more promising position in an opposite direction, and, if possible, to

11. What drinking water is reckoned most wholesome? Is the water of the running streams or that of wells preferred by those who can command either?
12. All who can obtain it, drink the water of the Bara river. A running stream from the Bara passes through the city, but purposes. The poor, who cannot afford to send for the Bara water, are obliged to use the water of wells, but this is the cause of much sickness among them.
13. What parts of the city do you consider most healthy ? 12. All parts of the city are nearly alike; but if there is is. What are the heat thy and unhealthy localities
14. What are the headthy and unhealthy localities outside the
15. The "Tappa" * of Dowdzaee, where much rice is cultivated, and where there is a great deal of marshy land, is very unhealthy; fever and enlarged spleen are there very common. Of the four "Tappas" round Peshawur, Dowdzaee and Dooba on the north are decidedly unhealthy; Kulleel and Momund on the west and south of the city are heaithy.
by the other, that Peshawur was mo the remark was contradicted by the other, that Peshawur was more healthy than Cabul. The given the correct substance of what the "hukeems" said The conversation took place in the presence of Lieut. Lake, through whose aid they were brought together
Before meeting the "hukeens," careful medical examinations and were conducted in the manner formerly practised by the late Canal Committee. The following are the results:-

Proportion of persons having had
fever during the past three $\left\{\begin{array}{l}1848, \\ 1847, \\ 16\end{array}\right.$ per cent.
do.
years
$\left.\begin{array}{c}\text { years } \\ \text { under of persons labouring } \\ \text { under disease - }\end{array}\right\}$
This corroborates the statement made by the "hukeems."
Two villages outside the walls were afterwards examined in the ame manner. 1st. Nowlay, situated on relatively low ground about

$\left.\begin{array}{c}\text { Proportion of persons labouring } \\ \text { under spleen disease }\end{array}\right\} \quad 5$ do
N.B.-Only a very small number of people could be got here for examination.
2nd. Thakal, situated about a mile to the west and a little to the north of the cantonment site, on rising ground, but having much broken ground and deep ravines immediately to the south and eastward.
Proportion of persons having had
fever during the past three
years. $\left\{\begin{array}{ccc}\text { 1848, } & \text { 40 } & \text { per cent. } \\ \text { 1847, } & \text { ps } \\ \text { 1846 } & \text { do. } \\ \text { Proportion of persons labouring } \\ \text { under spleen disease }\end{array}\right\}$
$\left.\begin{array}{c}\text { Proportion of persons labouring } \\ \text { under spleen disease }\end{array}\right\} \quad 1 \mathrm{~s}$ do.
These results are considerably less favourable than what were obtained within the wails. In Thakal the aspect of many of the thime two cases of considerable enlargement of the spleen. It should, however, be particularly borne in mind that both these villages are surrounded with luxuriant cultivation, and that all the fields bearing crops are copiously irrigated by canal streams.
In conclusion, we beg to say a few words regarding the important subject of drinking water. All classes agree in lauding the good qualities of the but that all well water is uniformly the reverse is not so obvious. The natives ascribe all diseases to the water they drink; and their notions on this subject are often fanciful and absurd.
The poor of the city drink from the well, and are comparatively sickly; but the poor are everywhere exposed to many causes of disease from which the better classes are exempt.
Before condemning the water of wells in every instance, it is desirable to procure an accurate chemical analysis of both kinds; advice so confidently stated to be founded on the experience of the inhabitants of these parts.

> (Signed) $\begin{gathered}\text { T. E. Dempsirgr, } \\ \text { Superintending }\end{gathered}$
> Superintending Surgeon,
> (Signed) $\begin{gathered}\text { C. D. Stanker, } \\ \text { Superintending Gurgeon, }\end{gathered}$

Peshawur, Srd April 1849.
(True copy.)
T. E. Dempster,

Late Superintending Surgeon,
Bengal Establishment.
Corf of a Mexorandum on the New Military Cantonsiynt at
Peshawur, fonwarded to Major-General Sir Waltrar R. Gil
aerf, conimandigg he lahore Division. 6th April 1849.
for political and military reasons, been restricted to the immediate

[^10]guard against the immediate erection of such costly and permanent buildings as would render a change of ground permanent buildings as would render a change of ground
hardly practicable, if, on trial, the site then chosen should hardy practicable, if, on trial,
prove decidedly objectionable.

I have never visited Peshawur since these papers were written, and cannot say whether or not our recommendations regarding irrigation have ever been attended to; but I have reason to believe that extensive and costly barracks and other buildings have been erected on the original site, and that the troops have, on many occasions, suffered most severely from fever and other malarious diseases. It is, however, very possible that military and political considera* tions alone may still render any change of ground not to be thought of.
Loodiana.-I resided four years at this station as surgeon of the lst brigade European horse artillery. It has now been entirely abandoned as a cantonment for European and native troops, and is not likely ever again to be fully occupied. Any minute description of that old cantonment, therefore, is hardly now called for; but as Loodiana is remarkable. in having been sometimes one of the most healthy, and at other times one of the most unhealthy stan tions in upper India, it may be both interesting and instructive if I can satisfactorily indicate the causes of these remarkable changes in its sanitary condition. This I shall

neighbourhood of difficulties.

 The position selected by the Committee is, undoubtedly, the very from objections in a thus prescribed; but it is by no means free from objections in a sanitary point of view. These have already be here repeated, viz., a stiff clayey soil, great abundance of may be here repeated, viz., a stiff clayey soil, great abundance of surseasons of the year. If it is probable that the state of the country will soon admit of the troops being removed from the immediate vicinity of Peshawur to the eastward of the city, and if a site for a permanent European cantonment can be pointed out in that direction, which shall be free from the medical objections insepaKable from any position betureen Peshauur and the mouth of the buildings until circumstances allow of the occupation of the best and most healthy locality. For some miles to the east of the cit he land is low, the soil clayey, and the face of the country generally much flooded with water. As we proceed farther to the eastward (on the Lahore road) the aspect of the country improves in all Peshawur, we come to an extensive well-cultivated tract which udging from its external features, appears as well suited to the location of European troops as any I remember to have seen in the Punjab. The country here is a fine open, fertile, and unusually dry plain, with a light permeable soil, and a gentle fall from north to south. In some parts the soil has a large admixture of sand which, however, little impairs its fertility. Although the present most obvious marks of the late heavy falls of rain are everywhere visible all round Peshawur, hardly a drop of surface water is to be perceived in this direction. Irrigation is generally practised, but obviously to a moderate extent with regard to the quantity of water used, and in other respects carried on under the most favourable conditions, viz., in a light permeable soil, with a perfect naturasurface drainage. The watercourses were, without exception surface drainage.
found perfectly dry, and presented sandy or dusty channels. It ts clear, therefore, that the whole country can be kept perfectly dry and well drained, even in the wettest seasons of the year. Perhaps the command of water for irrigation is here much greater after the rise of the larger rivers in the hot season; but it is obvious that no stream of water flows naturally in this direction, and that all, or any portion of the supply, can easily be excluded. The water
several of the wells which I examined is about eighteen feet from the surface (a good mean distance), and the country people assert that it is good and wholesome.
However favourable the mere external features of a place may appear, it ought never, in my opinion, to be hastily chosen as a proper position for Europeantrnops until authentic evidence of some
kind can be produced that its inhabitants are not unhealthy. 1 had no opportunity of making my usual medical examinations in the no opportunity or making my usuad and interrogated many of the country people, and several respectable travellers whom I met between Peshawur and Phubbé. The witnesses, in rhis case, could have had no collusion with each other; and I carefully shaped my questions so as to give no intimation of the nature of the answoexpected. Without a dissenting voice they al concurred of the nouncing the climate ("Huhwa Panee than Peshawur and its immediate neighbourhood. On the other hand, the inhabitants of the villages to the west of Peshawur uniformly stated that they were much afflicted with fever and bowed complaint in the hot weather, but at the same hat the mortality was small.
Should these statements of the people be hereafter fully confirmed
on carertul inquiry, the beautiful and extensive tract of land just on carerul (of whiry, the beautiful and extensive tract of land just sidered about the centre) will, I am persuaded, be found well deserving of the attention of Governal
cantonment for British troops.
(True copy.)
T. E. Dempsten,

Late Superintending Surgeon,
Peshawur Field Force.

- The wír and water.

3 N4
endeavour to do as briefly as possible. The old cantonment of Loodiana was built along the margin of the high ground overlooking an extensive tract of low, moist land, which formed the ancient bed of the Sutlej.: That river has now; passed over to the opposite high bank, and flows under. the Fort of Phillour, nearly seven miles from Loodiana. In the low ground immediately under the Loodiana bank ran, in ordinary seasons, a narrow but well-defined watercourse, the water in which flowed in a pretty strong stream all the year through, and which served to drain not only the cantonment itself, but the low ground immediately under it. The surrounding country is studded with elevations of fine loose sand, which is driven before the strong dry wind in the hot season, and has, of late jears, so advenced on the the hot season, and has, of late years, so advanced on the oantonment as often to cover a great part of its surface several inches deep, with a fine sand drift. Much of this sand found its way into the watercourse above mentioned; but, under ordinary circumstances, the force of the current was sufficient to keep its channel clear and prevent its beingchoked up. The periodical rains, so regular in the lower and central provinces of Bengal, are most irregular and precarious in the part of the country under consideration. The tirst year I was at Loodiana a fair quantity of rain fell; the watercourse above alluded to flowed continuously and with a rapid stream, and the season proved healthy. and with a rapid stream, and the season proved healthy. Next year a few showers only fell during the expected rainy
season; the watercourse became dry, and its channel comseason; the watercourse became dry, and its channel com-
pletely choked up and obliterated with drift-sand, which so pletely choked up and obliterated with drift-sand, which so
advanced on the station generally as to threaten the advanced on the station generally as to threaten the
destruction of all the arable land. But this year also proved remarkably healthy. The third year was different in all respects. Much rain fell at the usual season, but the now abundant drainage water, no longer finding an outlet through.its usual channel, spread itself over a large surface of the neighbouring low ground, where it formed extensive shallow stagnant pools, soon covered with an abundant crop of aquatic plants. For some time after the breaking up of of aquaiic plants. For some time after the breaking up of the rains the station continued healthy, and I was beginning
to hope we had escaped the danger, when, in the first week to hope we had escaped the danger, when, in the first week
of October, almost every inhabitant of the place was of October, almost every inhabitant of the place was
prostrated with fever. Next year an attempt was made to prostrated with fever. Next year an attempt was made to in from above a small stream of the Sutlej, as that river rose in the rainy season; but the scheme failed, the water so let in refused to confine itself to the old narrow channel, spread far and wide, and perhaps did more harm than good. That fourth season was quite as bad as the third, and the men of the first brigade horse artillery marched, in the ensuing cold weather, towards Meerut, prostrated by disease, ensuing cold weather, towards Meerut, prostrat
and having 50 per cent, actually in hospital.
There are some points deserving of particular attention There are some points deserving of particular attention
connected with these almost universal invasions of endemic fever:
lst. The type of the disease was very virulent, and a patient not immediately seen, and judiciously treated, ran great risk of dying in the cold stage.

- 2nd. The men of the horse artillery, all picked men from the whole body of artillery recruits, were, at that time, lodged in one of the best and most commodious barracks then built in those provinces, yet they suffered far more severely, than the European foot artillerymen, a decidedly inferior class in all respects, and who occupied a barrack of the oldest and most objectionable construction. The explanation I conceive to be as follows. Between the horse artillery barrack and low ground (the true source of the malarious poison) there was no effectual screen of trees or houses interposed; while, betwixt the foot artillery barrack and low ground there were not only more trees, but a considerable smoky native bazaar.
3rd. After a year's residence at Meerut I particularly remarked the curious fact, that the Loodiana fever hung more obstinately to the ofticers and their families than to the men and women of the corps generally; and this, I the men and women of the corps qenerally; and this, I
believe, may be accounted for by the consideration that the believe, may be accounted for by the consideration that the
former had lived in bungalows close to the verge of the high former had lived in bungalows close to the verge of the high
land, and had. probably received a more concentrated dose of the marsh poison.

The whole circumstances of the case above related appear to me strikingly to illustrate the conditions under which malaria is eliminated in the N.W. provinces of India, and farther to demonstrate the danger of locating troops either on the banks of large up-country rivers or on the margin of the low moist tracts of land which once served as the beds of such rivers.

Meerut.-I resided at this station from December 1850 to September 1854, holding, during that period, medical charge of the lst brigade European horse artillery and headquarters of the regiment of Bengal artillery.

Meerut is deserving of special attention, first, because it has, during a long series of years, proved one of our most healthy up-country stations; and, secondly, because it is an
example of a large up-country European military canton-1 ment, situated neither close to the banks of any large river, nor in the immediate vicinity of the low moist land in which such rivers once held their counge. It was here that the men of the lst brigade horse artillery and lst Bengal European fusiliers quickly regained a high state of health and efficiency, after having been completely prostrated by malarious disease at Loodiana and Lahore.
The cantonment is built on an open and generally fertile plain, and is about thirty miles from the nearest point of the Ganges. I have mislaid the notes I made regarding the Ganges. I have mislaid the notes I made regarding
the nature of the soil, but I believe I correctly describe it : when I say it is neither remarkably stiff and retentive, nor - when I say it is neither remarkably stiff and retentive, nor
strikingly loose and permeable, being generally a due adstrikingly loose and permeable, being generally a due ad-
mixture of humus clay and sand. The water in the subsoils is unusually near to the surface for an up-country station, averaging from 11 to $\$ 4$ feet in the cold season, and being considerably nearer during the periodical rains. This renders moderate well irrigation generally practicable in and about Meerut, and doubtless tends to moderate the temperature in the hot and dry season. The periodical rains are usually regular and copious, and the course of the seasons differs little from that experienced at Kurnool, Delhi, and Agra. As a general index to the climate and soil, I may mention that Meerut produces the bestand most abundant supply of strawberries, peaches, grapes, and European garden vegetables anywhere to be found in the Bengal presidency.

The general drainage of the country is good, but it was defective towards the north-west portion of the cantonment; and before I left Meerut in September 1854 the Government of Agra had undertaken the drainage of that quarter on regular and scientifio principles. Numerous unseemly irregular excavations in various parts of the station were then also being drained and filled up, or, where that was impracticable, converted into deep circumscribed tanks capable of holding water all the year through. These excavations had been chiefly formed by the removal of soil for the erection of barracks, bazaars, \&c.

The nature of the ground obliged the executiye engineer to carry the drainage from the European lines directly across the space occupied by the officers' bungalows. These drains were "pukka," that is, constructed with burnt bricks and lime, but all were open. The main shaft crossed at right angles the space between the European infantry and artillery lines, was conducted under the public mall, and finally discharged its contents into a natural channel on the other side. The urinous odour from these open drains was often side. The urinous odour from these open drains was often
most offensive during the hot weather, although they were most offensive during the hot weather, although they were
carefully washed out and sprinkled with lime once in the 24 hours. It was proposed either to cover in these drains altogether, or to keep them constantly flushed by a stream of water from wells in the European lines. Both these propositions involved considerable expense and trouble, and neither had been adopted when I left Meerut.
The only sanitary suggestion brought from Lombardy by Colonel Baird Smith, which had not previously been recommended by the canal committee, is the proposal to use a. stream of water from an irrigation canal for the purpose of constantly flushing the drains of cities and towns near to which such canals pass. This might, perhaps, be done with benefit at Meerut and elsewhere in the vicinity of the Ganges canal, provided always great care is taken to prevent this additional supply of water from percolating into and saturating the subsoils, a contingency which might exercise a most unfavourable influence on the salubrity of the whole locality.

Much attention has been paid of late years to conservancy arrangements in and about military stations, and such arrangements are as complete at Meerut as anywhere. I will here notice a difficulty in such matters peculiar to the East, and which will require both judgment and tact fully to meet. As remarked in another place, the native of India goes beyond the camp to relieve the calls of nature, and usually resorts for this purpose to some waste piece of ground in the immediate vicinity of the cantonment. The ordure is thus scantily spread over a large open surface; much is quickly removed by the pigs and kites, and in the hot and dry sensons what remains soon dries up and becomes inodorous. In the rains such "public fields" are necessarily much more offensive, but at all times they are less so than if the same quantity of ordure were collected together in common moist heaps. Public bazaar necessaries have been erected at Cawnpore and other places, but it is extremely difficult to induce the natives generally to use them. Let it be remembered that in all military stations there are probably 20 natives to every British soldier, and there are probably 20 natives to every British soldier, and
supposing the whole native population could be induced or supposing the whole native population could be induced or
compelled to use the public necessaries, I am persuaded that, unless the most efficient arrangements exist for quickly removing to a safe distance or otherwise disposing of all
offensive matter, more harm than good will accrue from forcing the native of India to depart from his natural and usual habits in this respect. During the long siege of Mooltan in 1848, I recommended that deep narrow trenches should be dug in the rear- of regiments and used as public necessaries; after a short interval one trench was covered up and another opened. This simple arrangement tended greatly to keep the entire camp sweet and wholesome.
Cawnpore.-I resided at this station for 12 months in $1856-57$, in the capacity of superintending surgeon of the Cawnpore division.
Cawnpore has long been notorious as one of the largest, hottest, and most unhealthy of our up-country military stations. The cantonment extends nearly seven miles along the edge of the high bank overlooking a very wide portion of the bed of the Ganges. This broad uregular river channel is wholly submerged in the periodical rains, but has nearly nine-tenths of its surface exposed to the action of the sun and air at all other seasons of the year. A main stream of the river flows close under the cantonment bank, and along both margins of this stream abundant crops of melons, cucumbers, \&c. are raised after the annual recession of the waters. The high bank on which the station is built is a solid mass of light coloured adhesive clay, containing, in many parts, much " kunkur," an impure vesicular limestone of recent formation well known in Upper India. The ground nearest the river bank is very broken and irreThe gran is everywhere traversed by deep rugged ravines. The "compounds," or spaces in which each bungalow stands, were until recently surrounded by high mud walls, stands, were until recently surrounded impeded ventilation and gave the whole station a which impeded ventiation and gave the whole station a
most unseemly appearance. In the hot winds the whole most unseemly appearance. In the hot winds the whole bare and devoid of vegetation, but in the rainy season becomes rapidly covered with a luxuriant crop of high grass, becomes rapidly covered with a luxuriant crop of high grass,
Trees, however, remain green all the year through. A magTrees, however, remain green all the year through. A magnificent new range of European barracks was in the course of erection at Cawnpore when the mutiny broke out. The manner in which the site of these barracks was determined on is a good example of how these things have usually been managed in India. The committee, I was credibly informed, assembled in the cold dry weather, and only saw the ground at that season. A high, dry, and apparently well-drained plain was observed about a mile and a half from the river bank, and, without one inquiry being made as to the sanitary state of the natives residing in its immediate neighbourhood or the condition of the ground during and after the periodical rains, this plain was fixed on as a proper site for one of the most costly ranges of European barracks ever erected in that part of the country.

I carefully examined the ground under consideration during and after the periodical rains of 1856. I found the soil stiff retentive clay, the surface covered with rank rass, and everywhere ankle-deep with water ; in fact, at this period of the year, it remained an extensive concealed Although the ground in question is well raised above the highest level of the river, and has deep trenches above from it the Ganges, the whole of the water canno cut fromed of from a surface which is either a dead level or be drained has a scarcely perceptible inclination in an tion, and where a retentive soil prevents the surface water from finding its way into, and being carried of by lower and more petmeable strata. Ali this tends to keep the locality long in the mid-condition betwixt moisture and dryness after the cessation of the rains; that is, in the very condition universally admitted to be most dangerous to health.
The native cavalry lines are on the same high open plain, and about half a mile to the south of the new European barracks. After the rains of 1856 fevers were more pre valent in these lines than in those of the native infantry, situated in an ill-drained locality, close to the crowded and filthy native city of Cawnpore.
Savada.-A large building situated about one mile south f the new barracks, and on the same plain, was formerly. occupied by the Cawnpore missionary establishment, but had been. abandoned (it was said) in consequence of the unhealthiness of the locality. The missionaries have removed to a position some miles to the west of the city and civil lines, and have, I have reason to believe, judiciousiy taken up the very best locality anywhere to be found in the neighbourhood of Cawnpore. Cholera may be said to be endemic at Cawnpore, and Sir A. Tulloch's tables will show what the mortality of European troops has been in past years.
The excessive heat of the climate, the nature of the soil, the broken and irregular character of some parts, the difficulty of completely draining others, and lastly, its close proximity to a most objectionable reach of the river Ganges, focality for European troops

Lucknow.- On the annexation of Oude the whole of the European and native troops holding military possession of that province were placed under my medical superintens dence, and it became my duty frequently to visit the cantonment, city, and residency of Lucknow during the years 1856-57. In November 1856 I was called upon by the officer commanding the Oude field force to examine the ground in the vicinity of Lucknow with a view of pointing out an eligible site for barracks for European troops, should circumstances render their permanent location in that quarter necessary; and the following is a copy of the report I drew up on that occasion :-
" An eligible site for the erection of permanent barracks for European troops may, in my opinion, be found in almost any part of a tract of ground comprising an area of almost any part of a tract of ground comprising an area of several square miles, and situated immediately to the north orth-east, and north-west of the old sepoy cantonment of Lucknow, I went over this ground on an elephant mmediately after rain so heavy and continued that it looded all the low parts of the province of Oude, and yet I found the ground almost uniformly dry and free from swamp. The low unmetalled country roads which pass, through it became perfectly free from water or 'poachy' uts a few hours after the cessation of heavy rain. This Consid is an excellent test of the good drainage of a country. Considered as a whole, the ground under notice has a gently undulating surface, and a light permeable but not unfertile soil. There are small sandy patches here and there, but generally it was covered with grass, or bearing fair grain crops. The natural surface drainage is excellent, and with a little artificial aid could be rendered perfect. A few pools of water had collected in isolated spots, and there are one or two larger 'Jheels' which are either easily drainable or convertible into deep wholesome tanks. The ground in question is at a safe distance both from the city and banks of the river Goomtee. The external features above enumerated usually characterise a healthy locality, and this character is corroborated by the following impor tant and indispensable evidence. 1st. The old cantonment of Lucknow is built on ground of precisely the same general character as that above described, and although little attention has been paid until lately to artificial drainage, its past medical statistics, as far as my examination and general repute go, will prove it to have been, in past years, one of our very healthy Indian stations. 2ndly. I made particular inquiries regarding the sanitary condition of the native inhabitants residing within the tract under consideration, and found them, even in the rainy season, generally healthy and free from endemic fevers. There is one village due north of the cantonment, immediately in front of which a considerable marshy pool had collected, in consequence of some obstruction to the natural drainage channel which runs past the village; here I exdrainage channel which runs past to find fevers if they were to be found prevailing pected to find fevers in ent testimony prove the inhabitants to be generally healthy.
"In my letter No. 224, dated 20th of August 1856, to the address of Brigadier Wheler, commanding the Oude field force, I fully stated my objections to quartering European troops in or in the immediate vicinity of a large crowded native city.
"(Signed) T. E. Dempiter,
"Cawnpore, 18th November 1856." "Superint. Surgeon."
In 1856 the men of H.M. 52 nd Foot were, for want of other accommodation, lodged in the King's mews within the city of Lucknow, where they suffered severely from an the city of Lucknow, where they suflar circumstances which invasion of cholera, under peculiar occupy too much space here fully to relate. At it would occupy too much space here fully to relate. At the recommendation of a medical committee, of which I was president, the regiment was removed into camp, and there kept during the remainder of the hot-and rainy seasons. After the second change of ground, cholera entirely disappeared, and, what was hardly to be looked for, the men continued during the rest of the year singularly free from the common diseases of the country and season. There can be no more striking proof than this of the general salubrity of the locality. Lucknow is only fitty miles from Cawnpore, and this short distance can, at all times, be easily passed by rail in a couple of hours. When the projected railroad from Cawnpore to Lucknow is completed, European troops will become as available for any sudden emergency at the one place as at the other. If , therefore the opinions I have above stated as to the comparative salubrity of these places should, on further careful inquiry, prove well founded, it will become a serious question to determine whether not only humanity but true economy demands that the European force considered indispensable in that part of India be henceforth placed at Lucknow instead of Cawnpore.

Delhi:-As a member of the canal sanitary committec, my attention was particularly directed to the eity and cantonment of Delhi, although 1 had never served at that station. The city itself was in 1847 the finest, most cleanly, and best ordered native town I had ever visited. It is, as is well known, situated close to the left bank of the Jumna, and is surrounded by a well kept wall and ditch. The troops were originally stationed within the city walls, but a good many years ago they were removed to the present position, lying to the north of the city. To remove troops from within the walls of a populous native town, and place them on an open and apparently dry inclined plain, seems, at first sight, a most judicinus measure; yet nothing could have proved more mischievous in a sanitary point of view. have proved more mischievous in a sanitary point of view. Looking at the ground then occupied by the native troops,
nothing very objectionable met the eye; indeed it was nothing very objectionable met the eye; indeed it was
singulakly free from shallow pools and open filthy ditches, singulasly free from shallow pools and open filthy ditches,
then too often seen in some other military cantonments. then too often seen in some other military cantonments.
Bad surface drainage and want of local cleanliness therefore were obviously not the causes of the notorious insalubrity of the Delhi cantonment. The ground in front of the Bells of Arms has a gentle slope towards the north nearly a mile in breadth, when it terminates by an abript fall of from 10 to 14 feet in the low "Khadir" land of the Jumna. Before selecting the present site, had the authorities thought of the simple and obvious expedient of inquiring into the physical condition of the inhabitants of the neighbouring villoges, the nature and probuble source of the present mischief would at once have become apparent.
Three villages stand near the edge of the low lanc in which the parade ground terminates. The fields cultivated by two of these villages are partially irrigated from the Delbi canal, but the third, situated to the north of the sapper lines, uses no irrigation. These old sapper lines were found so pestilential that the locality was abandoned altogether after a short trial. On examining the inhabitants of these three villages, the result was marvellous even to myself who had just gone over more than a thousand to myself who had just gone over more than a thousand
miles of irrigating canals. Will it be believed that from 85 miles of irrigating canals.
to 90 per cent. of these unfortunate creatures were found to 90 per cent. of these unfortunate creatures were found
afficted with enlargenent of the spleen? My own conviction is, that if subjected to a very minute and careful examination, not an individual would have been found perfectly sound. Within the city walls, and especially in the most dense and crowded quarters, I found comparatively few indications of pure mularious disease. This accords with what has been observed in other countries, viz., that the high walls and narrow crowded smoky streets of large cities often prove a safeguard against marsh miasma, although other causes of human disease may abound in although other causes of human disease may abound in
such situations. In the cantonment bazaar, and suburbs such situations. In the cantonment bazuar, and suburbs
outside the walls, a considerable amount of spleen disease outside the walls, a considerable amount of spleen disease
was found; but when we proceeded farther from the city, and cluse to the low "Khadir" land, the spleen test indicated the presence of marsh miasma in its highest intensity.
Some years afterwards Dr. G. Paton, now postmastergeneral of Bengal, and Dr. Balfour, civil surgeon of Delhi, Goth most reliable authorities, went over the same ground aud fully confirmed my examinations. On the authority of the latter medical officer, I state (what I was not at first aurare of), that the Delhi parade ground above described is aware of), that the Delhi parade ground above described is
artifial, baving been originally a swampy nullah bed, artificial, baving been onginally a swampy nullah bed,
the old outlet, or rather portion of the notorious Nujuffthe old outlet, or rather portion of the notorious Nujuff-
ghur Jheel, or shallow lake; and that murh more of the ghur Jheel, or shallow lake; and that murh more of the
ground in that direction is flonded in the rainy season than I suspected when I saw it. The whole locality is, in my opinion, altogether beyond remedy, and ought to be abandoned.
No one would think of placing European troops within the walls of a native city, unless under the most pressing emergency; and if it is imperative to retain a Europan force in the neighbourhood of Delli. I have reason to believe a comparatively safe position for them may be found some miles to the south of the city.
If the profession in this country should be inclined to suspect some exagreration on iny part in the statements I have put forward regarding the extraordinary amount of spleen disease existing in certain low moist localities in the north-west provinces of Bengal, I would refer them to page 55.4 , number XL., of the British and Foreign Me-dico-Chirurgical Review, in which they will find my general statements fully corrohorated by the result of examinations undertaken eight years after the publication of the Canal Sanitary Report, and carried out, altogether without my knowledge, by a medical officer specially apwithout my knowledge, by a medical ofticer specially ap-
pointed by the Government of Agra to investigate the pointed by the Government of Agra to investigate the
probable cause or causes of a virulent and fatal fever then probable cause or causes of a virulent and fat
raging in the " Zilla." or district of Allyghur.
Dinapore.-I held the office of supcrintending surgeon of the Dinapore division from September 1854 to March 1856.

The European barracks at Dinapore are peculiar, being neither built of more than one story, as in lower Bengal, nor in detached ground ranges, facing east and west, as in the upper provinces; but are constructed of a single story, and in the form of a large oblong parallelogram, the long side of which runs east and west. I have not at present the means of giving an accurate description of the size and dimensions of these buildings, and therefore I shall only remark in this place, that they have no open outer verandahs,* and no glass doors, but are furnished throughout with venctians or jalousies.
Dinapore, like Cawnpore, stands immediately on a bank of the Ganges overlooking a still wider expanse of low land, which is submerged in the rains, but has the greater part of its surface exposed to the action of the sun and air at all other times. The level ground occupied by the cantonment is of very limited extent, and is hemmed in by low irregular land, subject to inundation on the rivers Ganges and Sone attaining their highesti annual rise. The soil generally is a rich fertile mould. A deep nullah or natural watercourse runs immediately in the rear of the barrack square, which acts as a good and efficient drain so long as the Ganges remains at a moderate level;' but two or three times during the rainy season the water in the river rises higher than the level of the bed of the nullah, when, not only can no more drainage water run off by this channel, but the nullah itself, and all the deep ditches connected with it, become filled to overfowing. As the river again falls, the nullah is quickly emptied, but many of the ditches remain full of water for months afterwards. The nullah in question enters the Ganges at a point midway between the barrack square and "Sudder bazaar." It was proposed to narrow this month and fit it with flood gates to prevent the influx of the river water when at its highest; but there was a worse evil which this would not have remedied. The river Sone enters the Ganges about 12 miles to the west of Dinapore, and is subject to very high and sudden floods. Onee almost every rainy-season the Sone overflows its banks, and the water finds its way across the country to the low land lying immediately to the south-west of the cantonment, and this back water not only fills the nullab abovementioned, from an opposite direction, but occasionally floods more than half of the Sepoy parade ground to the west of the barrack square. In fine, I have long come to the conclusion that Dinapore is irremediably vicious as a position for European troops. Fever and dysentery of a setere type are generally prevalent at Dinapore in autumn, and a year seldom passes without an outl,reak of cholera.
In order to convey a general idea of the climate of this part of the Bengal Presidency, it will be necessary for me to say a few words regarding that of lower Bengal and of the north-west provinces.

The climate of Bengal proper differs in many important respects from that of the upper provinces, being much less hot in the bot weather, and much leas cold in the cold. At the hottest season of the year in the lower provinces the air is comparatively cool and moist, and the face of the country green, and generally characterized by a luxuriant tropical vegetation. Here there are no "hot winds," and "tatties" and "thermantidotes" are consequently all but useless. The periodical rains are far more copious and continued than in the north-west, and the temperature is seldom so low, at any time, as to render a "punkah" disagreeable during the dar, or a fire necessary at night. Here too the European can generally manage to sleep at night without being constantly fanned by the punkah. In the latitude of Arra, Delhi, Kurnool, \&c., a fierce dry bot wind blows during the day from about the 10 th of April until the latter end of June. At some places, as at Cawnpore, the hot wind continues during a great part of the night. The whole face of the country is at this time parched up and devoid of vegetation. To this succeeds a warm moist rainy season when the ground, lately so bare and apparently so sterile, becomes covered with luxuriant green crops within a period so short as to excite the astonishment of the newly arrived European. Although the temperature of the external air is so much greater in the hot winds than in the rains, it is in the latter season that the sensation of heat is most painfully experienced,-still air, loaded with moisture, and at a temperature exceeding 90°, becomes almost intolerable to the European; at such times the only relief is the constant action of the punkah day and night. This rainy season te:minates about the end of September, and is followed by October with its cool nights and hot and often oppressive days, the month of the year most fatal to the European constitution. The cold weather often dates from the 1st of November, but after the 15th of that month

[^11] midday sun.
it has decidedly set in all over the north-west provinces. From the latter date until the end of February the European officer sits with a fire in his apartment, sleeps at night ander blankets, and dons, especially in the early morning, apparel as warm and comfortable as he would wear in Eng and. The heating power of the ray of the unclouded sun, however, is often considerable even in the coldest season and violent exercise in the open air at mid-day irksome and oppressive.
The inhabitants of Bengal proper are a smail, effeminate, and unwarlike race; those of the north-west provinces, on the other hand, are comparatively large and robust in frame, and energetic and courageous in character.
The climate of Dinapore may be described as an unpleasant mean between these two extremes; for, in the warm weather the air is seldom hot and dry enough to render " tatties" useful, or sufficiently cool and moist to admit of open doors. The European barrucks have pun ahs but neither "tatties" nor glass doors, slthough in the houses of the officers both these last are considered ecessary to comfort
Hill Stations and Sanitaria.-I held medical charge of the 6lst regiment native infantry, at Almorah, for seven months in 1839.
Almorah is the native capital of the hill district of Kumaon, and is about 40 miles in the interior from the foot of the hills. I have retained no written memoranda regarding this station, and can only now describe it in somewhat vague and general terms. The Sepoy cantonment is, I believe, about 4,500 feet above the level of the sea; is situated on a broad, somewhat bare, and isolated eminence, but is nearly closed in by higher hills, some of which are heavily wooded. The course of the seasons is not very unlike that before so fully described when speaking of Landour; and the climate is generally agreeable to the leelings of the European, except in midsummer, when we experienced some unpleasantly hot weather. Almost every European, on his first arrival at Almorah, suffered from a slight attack of diarrhcea. This was universally ascribed to the quality of the water of the hill streams, and the residents senerally took care to boil and filter this water before drinking it. The cantonment was decidedly unhealthy in 1839 ; and not only the Sepoys, but the European officers and their families suffered much that year from intermit and their famil ent fever and dianca. Almorah; and at Hawulhaugh in the neighbourhood of Almorah; and at Hawulbaughan outpost about 800 feet lower than the cantonment-1 1 saw a litter of thorough-bred greyh
Simla is about 40 miles in the interior of the hill
Simla is about 40 miles in the interior of the hill district. Its elevation is nearly that of Landour, and the climate and course of the seasons closely resemble each other. The rock on which the station stands belongs, I believe, to the same series as at Landour, but is much more friable and disintegrated. The ground generally is covered with a rich black vegetable mould, and is heavily timbered, with a great variety of fine pines, Indian oak, \&cc. In the sainy season also the surface is covered with a heavy crop of rank grass and underwood. On some occasions a fatal low typhoid fever has appeared at Simla, the young having been its common victims.
Mussourie stands on a range of precipitous hills immediately adjoining Landour, and the account I have given of the one place will apply, in most particulars, to the other.

I have not staid beyond a very short period at Subathoo or Kussowlie, and will not therefore attempt any particular account of either
Darjeeling is a hill station in the Sikkim territory, to which invalids resort from all the lower and central prowinces. Like Simla-but unlike Landour, Mussourie, and Kusewlie it is situsted from 30 to 40 miles in the interior of the hill district
As superintending surgeon of the Dinapore division, I paid a short visit to Darjeeling, for the purpose of inspecting and reporting on the European sanitary depôt at that ing and reporting on the European banitary depot at that place. I have retained no copy of my ofticial report, and will only here state that I was well satisfied with the general arrangemente for the invalids, and with their barrack and
bospital accommodation, which is here infinitely superior to hospital accommodation, which is here infinitely superior to that of the Landour dep6t; but I particularly remarked and reported that both barracks and hospital were destitute of proper wash-houses. I also, on this occasion, recommended that proper arrangements should be made detaining for some time at the mean elevation of Kursian all the more weakly patients, before taking them up to the depot. This recommendation, I
adopted with considerable benefit.
The climate of Darjeeling is nearly as cool in summer as that of Landour, but the atmosphere is greatly more moist. Rain fulls every month of the year, and the periodical rainy eeason ie truly excessive. I visited the dep6t in
the dry month of April, and yet, in my journey to and from the station, I literally saw nothing beyond the mountain path on which I was travelling, for everywhere I was enveloped in a dense cloud, which wetted my clothes as if I had been exposed to a slight shower of rain. I was informed by the resident medical officer that croup and such like disesses of the air passages-often so fatal to the such hike other hill stations-are very rare at Darjeeling; young at uniformly moist was the general condition of the air that une seldom took cold by remaining in wet or damp air, that

The denot itself stands on a detached or damp clothes.
The depot itself stands a detached elevation, which is well raised above the general level of the rest of the station. This I suspect to have been an eror; for the barracks are generaly wrapt in a dense mist, while the houses of the

My own experience of Darjeeling is too plimited sunshine. My own experience of Darjeeling is too limited to enable me, of my own knowledge, to say anything regarding the effect of its climate on the European constitution

All the hill stations situated to the west of Hurdwar (the point at which the Ganges flows into the plains) may be reached from below without passing through any dangerous "Terrai" jungle ; but this, I have reason to believe, is not the case with the lower Himalayan ranges lying between Hurdwar and the Brahmapootra river. A "Terrai" jungle of ill repute must be crossed before reaching Darjeeling, but this can always be done with perfect safety, if care is taken to pass through this tract while the sun is well up, and during the hot and cold seasons of the year.

I cannot conclude this rapid sketch of the medical topography of some of the old military stations of the north-west and central provinces of Bengal without enumerating what the whole of my experience teaches me should be mainly kept in view in selecting a proper position for European troops in the plains, viz.:-
1st. To choose not only a dry, well-drained site for the cantonment, but to take care that such site itself is situated in a generally well-drained country, free from swamp and shallow pools, and not subject to, inundations of any kind at any season of the year.
2nd. To select, if possible, a light permeable soil, with a good natural surface drainage, and by all means to avoid a stiff retentive clay.
3rd. To avoid the banks of large up-country rivers, and the vicinity of the low moist "Khadir" land, once the bed of these rivers.
4th. To fix on no position until satisfactory evidence is obtained that the native inhabitants of the district have a healthy aspect, and are generally free from marks of having halitually suffered from malarious diseases. Wherever this is the case, it will be almost universally found that the drinking water they use is good and wholesome.
There are various other minor points to be attended to which I have fully noticed in the paper presented to the Court of Directors by Sir R. Martin.
Acclimatization.-On this most important subject I desire to speak with due caution and reserve. According to my own experience, troops fresh from Europe are most liable to suffer severely from a certain class of tropical diseases duringthe first two years of their residence in India; and this is especially the case if they are landed at an improper seasin, or sent, for the first year, to a very hot unhealthy locality. The diseases I allude to are acute dysentery, acute hepatitis, severe remittent fever, and sunstroke. But, I believe, much may be done by judicious management to correct or modify this evil. In 1853 I had medical charge of a considerable detachment of European artillery recruits at Meerut. They had been landed in Calcutta in the cold weather, and immediately marched up the country, under he command of an experienced officer; and when they reached the good locality of Meerut, they joined the head quarters of good localy of Meerut, they associated with old and experienced Indian soldiers. This detachment numbered 300 men, and though during the first hot and sainy seasons every one of them suffered a mild attack of fever, none died with the exception of a single individual ever, none died, whe the exception hopelessly -afficted with Who had reached the station hopelessly afficted with ubere After a period, varying in duration accordıng to disease. After a period, varying in duration accordng the newlythe locality, discipline, and general habits of the newly arrived men, they become far less obnoxious to the disease of the country, especially in their more acute and suddenly fatal forms,
This partial acclimatization, I think, takes place most quickly and surely among the recruits of the European local army, where the new arrival comes at once under the com mand of experienced Indian officers fully alive to the danger of all unnecessary exposure; and where he associate

- Cholera 1 have always looked upon as an exceptional disease, to which no.rule, that I am aware of, can apply
with a body of old Indian soldiers, among whom certain precautions and habits suited to the country and climate precautions and to so speak, traditional and hereditary. I am aware that the old Indian soldier has often been accused of showing an evil example to the men of newly arrived Queen's regiments, - by teaching bad local knowledge, and by exbibiting a proof, in his own person, that drunkenness and life in a hot climate are not aiways incompatible, whatever the doctor may say. To a certain extent this may be admitted to be sometimes true, especially where both officers and men are equally ignorant of the customs and language of the people. Stili, I firmly believe, that a knowledge of the country and climate is essential to the preservation of the health of the European in India; that servation of the health of the European in ine fore habits Englishmen of all people are most slow to adopt new habits
and mpdes of life however salutary, and that such necessary and mbdes of life however salutary, and that such necessary
accomomodation to new and adverse circumstances will take accommodation to new and adverse circumstances will take
place most surely and quickly among the officers and men place most surely and quickly among the officers and men
of a local army. Of all things it is essential that the meof a local army. Of all things it is essential that the me-
dical officer of a newly arrived corps should be a man of thorough local experience.
After a residence in the plains of India of about ten years, the Europesn soldier's constitution is liable to become slowly, but permanently, deteriorated, and he is then often found to be afflicted with chronic disease of the liver, spleen, or colon. But this period also may be lengthened or or colon. But this period also may be lengthened or shortened, according to the conditions above not iced. here
would go far to contirm or correct the opinions I bave would go far to contirm or correct the opinions I bave here
ventured to express, if a careful and extensive comparison ventured to express, if a careful and extensive comparison
were made, not only between the mortality, but invaliding, were made, not only between the mortality, but invaliding,
together with the ages and periods of Indian service of intogether with the ages and periods of Indian service of in-
ralids of the Queen's and old Company's European troops. ralids of the Queen's and old Company's European troops. after ten years' service, may often be looked upon as at his best for efficient duty in India; but I much fear this will rarely be found the case with the European private soldier; and it has often grieved me to see men described in the "invalid rolls," as "old and completely worn out," after from ten to fourteen years' service in the country.
Spirits and Mfalt Inquor. -Rum is the spirit supplied by Government to the European troops in the north-west provinces of Bengal. It is made in the country by contractors, proprietors of large sugar-works in those provinces. The spirit is first sent to the commissariat stores at Meerut, where it is kept for a time and tested and examined by a committee of medical officers before it is served out for the use of regiments. During the four years I remained at Meerut, I frequently sat as president or member of these committees on spirits or malt liquor. I have already expressed my cpinin n as to the sanitary side of the proposal pressed my epinin as to the sanit to to substitute whelesome malt hquor for the rum now served out to the men, or supplied for the use of their canteens;
but I clearly see and fully admit a great practical difficulty but I clearly see and fully admit a great practical difficulty
in the bulk of the former article, and the inconvenience in the bulk of the former article, and the inconvenience and expense of carrying a sufficient supply on the march,
especially during active service in the field. But if such service is undertaken in the hot season, I am persuaded it would tend greatly to the health of the men to abstain altogether from stimulants in any shape or form, except on special occasions, to be determined by their medical officers. But how British troops would submit to such regimen is another and more uncertain question. Good tea and coffee, served out early in the morning, and before tea and coffee, served out early in the morning, and before the commencement of a march, and again during the day
and at night, are the substitutes I would propose for stimuand at night, are the substitutes I would propose for stimu-
lant beverages of any kind. I am acquainted with officers, lant beverages of any kind. I am acquainted with officers, undergoing, with impunity, a great amount of futigue and exposure to the sun in the hat season, and who never taste spirits or beer while so exposed, but confine their drink entirely to cold tea. The sale of bazaar or country spirits is a fertile source of injury to the men and perplexity to their officers; and the clever'manner in which both sellers and buyers sometimes contrive to escape detection would be amusing, were it not so mischievous. For instance, when the lst brigade horse artillery were in camp at Umballa, our men were getting drunk in the most mysterious manner, although every reasonable precaution had been taken to prevent the irregular sale of liquor. Immediately in the rear of our camp was a "tope," or grove of trees, and under this shade was encamped an apparently respectable native traveller, with the female members of his family, in a covered "bylie," or bullock carriage. Around one side of this covered cart was a slight canvas enclosure, the usual arrangement for enabling respectable native women to cook and eat unseen while on a journey: It is rude, and in every way improper, to pry into the interior of such an enclosure or covered vehicle, and, for a long time, the presumed respectable native traveller remained undisturbed. At last a drunken soldier exposed the whole trick. The covered cart, instead of concealing respectable native females, held a
cask of spirits, and the enclosure was the place into which the men crept, one by one, to buy and drink the liquors. Country spirit is sometimes adulterated with datura, to add to its intoxicating power, and I have often seen it produce most serious and occasionally fatal effects.
The single objection I see to altogether prohibiting the distillation and sale of country spirits in all cantonments occupied by European troops is the considerable loss the revenue would suffer in that case. But this is a question solely for the consideration of the Governments.
Ale and Porter.-These articles are imported from England and sent up to Meerut in cask, where they are kept in store for a time, examined by a mixed committee, and if found good served out to regimental canteens. The ale or beer is, doubtless, generally of excellent quality when first imported; but it is a most delicate article, and if long exposed in cask to the heat of a country boat, it often goes bad before it can reach Meerut., Porter, however, is found to bear such carriage and exposure much better.
The large quantity of pale ale consumed by the upper classes in India is uniformly bottled in Calcutta, and sent into the interior in six or twelve dozen chests. I was president of a special committee assembled at Meerut in 1852 , I think, to examine and report on the quality of the kill beer brewed by Mr. Mackinnon, the intelligent and enterprising proprietor of the Mussourie brewery. Before the committee met I went myself to Mussourie, was very politely shown over the whole establishment, and then satisfied myself that the malt was made from a sort of barley called "chevalier," grown by Mr. Mackinnon himself in the hills, that the water used was selected with great care and judgment, and that the hops imported from England were of the best quality, as testified both by the specimens exhibited and the nature of the pockets or packages in which they were imported. This hill beer is much liked, brings a good price, and the demand for it is greater than Mr. Mackinnon's present establishment can supply. 'The local committee examined the beer in question at the beginning of the hot season and pronounced it good and wholesome in every respect ; but to test its power of keeping we put aside some bottles in a cool place, retained them there all the hot weather, and again assembled and opened the bottles in the ensuing cold season. The beer was still pronounced to be perfectly good, and although it was not well up, it remained clear and rransparent after being poured out and allowed to stand in the glass for 12 hours.
T. E.D.

No. 4.

Observations on the Establishment of the Scbondinatr Medical Department of Bengar.
Fully to explain the provision made in the Bengal Presidency for medical attendance on the sick of European regiments, it will be necessary to give a brief account of an establishment peculiar, I believe, to British troops serving in the East Indies, and in doing so I shall speak of things as they were when I left Bengal in 1857.
To each European regiment was attached a subordinate medical staff, consisting of one apothecary, one assistantapothecary, one hospital steward, one assistant-steward, and from two to three hospital apprentices. When properly controlled and well managed, these persons render the most valuable aid to the surgeon, who has often a heary sick list with numerous acute cases, in which life often depends on the patient being closely watched, and frequently reported on, by qualified attendants. Some of the young men of the department have had the advantage of attending the junior classes of the Calcutta Medical College, but generally speaking, their medical education has heretofore been mainly practical. They are liberally supplied with elementary treatises on medical subjecte, and before being pranounced qualified for promotion to the senior grades, they undergo an examination in English, Hindoostanee, arithmetic, elements of anatomy, pharmacy, uses and doses of the principal articles of the materia medica, treatment of the most common tropical diseases, minor surgery, preparation of official hospital returns, \&c. This examination bas not generally been of a very searching character. The regimental surgeon is supposed to superintend and guide the studies of the younger men, but this is a duty hehas seldom leisure to perform.
To the apothecary belongs the custody of the medical stores as well as the preparation and dispensing of the surgeon's daily prescriptions. He sees the patients at stated periods, and reports to the medical officers all fresh admissions or other cases requiring immediate attention. One subordinate remains on duty at all tinnes within the wards. Every thing connected with the bedding, clothing, and diet of the sick devolves on the steward and his assistants, but both apothecary's and steward's departments act strictly under the orders and supervision of the regimental surgeon.

The subordinate medical service, considering the class from which it is recruited, is fairly paid, and holds out a respectable and comfortable provision for life to the sons of deserving non-commissioned officers and such like public servants. It is open, however, to qualified Christian youth of all classes, but heretofore it has generally been filled by "Eurasians" or "country born" young men, regarding whom it is proper to say a few words. The "Eurasian " has a thorough knowledge of the language and customs of the people, and therefore can make himself most useful in communicating with and superintending the duties of the native hospital servants; but he is too often deeply tinged with the vices of the country, and wants the moral checks which exercise so wholesome a control over persons holding a relative position in England. I have met with some Eurasian subordinates of most unexceptional character, but I agree with Sir R. O'Shaughnessy in considering them, as a class, to be of a low moral standard.
All "indents" for "Europe and country" medicines, instruments, bedding, hospital clothing, wine, beer, and other requisites for the sick, are prepared by the subordinates, supervised by the regimental surgeon, and checked and sanctioned by the superintending surgeon (now deputy-inspector-general) of the division. It is, however, obvious that the real wants of the sick European soldiers in India can only be properly anticipated and provided for by a medical officer who has a competent knowledge, not only of the climate, but of the resources of the country and customs of the people; and it is well known that the surgeon fresh from Europe is often glad, in all such matters, to place himself for a period in the hands of a smart medical subordinate, who, while he saves his superior from all trouble, rarely fails to take full advantage of the opportunity thus afforded him. The amount of peculation which has been habitually practised in some regiments, would astonish the uninitiated. Valuable some regiments, would astonish the uninitiated. Vine, clothing, food, \&ce., have all been appropriated by drugs, wine, clothing, food, \&c., have all been appropriated by
fraudulent subordinates, to the serious loss of the Governfraudulent subordinates, to the serious loss of the Govern-
ment, and to the injury of the sick soldier.* In point of ment, and to the injury of the sick soldier. * in point of
intelligence and practical knowledge of their duties, a large intelligence and practical knowledge of their duties, a large
proportion of these subordinates are sufficiently well qualified proportion of these subordinates are sufficiently well qualinied
to render them most valuable hospital assistants, but what. to render them most valuable hospital assistants, but what.
we chiefly farther require are trustworthiness and integrity. we chiefly farther require are trustworthiness and integrity:
In such a climate as India it will be admitted that the In such a climate as India it will be admitted that the purely medical duties of the surgeon must often be greater than he has strength satisfactorily to perform; and it was in consideration of this, and to relieve him from other harassing minor services, that the aid of a subordinate
establishment was given. To take inventories of hospital establishment was given. To take inventories of hospital stores, to ascertain the real expenditure of the medicines,
and the condition of each particular article of bedding, and the condition of each particular arricle of erformed, involve an amount of time and personal labour which the surgeon of a European regiment in India can rarely bestow. On the other hand to solely intrust this duty to the present class of subordinates is in every way improper, for then the temptations thrown out by corrupt native commissariat underlings become so strong, and the facilities for peculation so great, that certain irregular gains will soon come to be looked upon as part of their regular and rightful perquisites. This state of things, I have good reason to suspect, is too common in the Bengal medical subordinate department.
department. The Lawrence Asylum in the hills might be turned to excellent account in supplying recruits for the subordinate medical service, and nominations to that branch might be held out to Christian youth of European parentage, as the reward of good conduct and proficiency. These lads, in addition to good moral training and European blood, will possess the advantage of speaking Hindoostanee fluently, although, happily, they will have been brought up apart from the common herd of native Indians. Such medical education as may be considered necessary to bestow on these young men should be conducted in a regular and systematic manner; and once posted to a regiment, they. should be removed from it as seldom as possible.
Native Hospital servants. - In addition to the establishment just noticed, each European regimental hospital is amply furnished with native "ward Coolies", cooks; "dhobies," or washermen; "bheesties," or water-carriers; sweepers, clothiers, and stewards' servants; indeed, nothing can be more liberal than the Indian Government has been in such matters.
Hospital sergeants.-I look upon this appointment as one of the most important in the non-commissioned ranks of a regiment. Some steady, sober, but soft and otherwise useless man, is too often considered by commanding officers as fit to fill this responsible situation-there cannot be a more

- I have in my possession a curious account of the manner in which some or these frauds are managed, cominute himself to privately and confidentially by an hospital subordinate himself.
grievous mistake. Much of the good order and discipline of every hospital will turn on the character, intelligence, and temper of the hospital sergeant; and when it is considered how much of the time of every British soldier in India is actually spent within the walls of an hospital, all reflecting officers will readily admit how important good order in that quarter must ever be to the discipline of a whole regiment. Every possible care must be taken to guard against the hospital being sought by the lazy and malingering as a place where they may escape disagreeable duties, and procure irregular indulgencies, which they could not obtain in barracks. An intelligent hospital sergeant, who strictly does his duty, will go far to prevent the hospital ever becoming a favourite resort for such characters. In the European local army, the hospital sergeant is never employed to write official returns, or to perform such like duties.
Hospital Orderlies have not hitherto been allowed in the European local army, but when a patient was seriously ill, it was the practice to permit an intimate comrade to attend on bim for a time, to perform such personal offices as could not be so agreeably rendered by a native servant. One great objection to this practice is, that these waiting men must necessarily have their food brought from the barracks, and this has often afforded the opportunity of passing in liquor and other improper articles, both to the paiients on whom they were waiting, and to others in the same ward. The food of these waiting men should never allowed to pass beyond the hospital guard room.

Preparation of Official Reports and Indents for Medicine, and other hospital requisites.
I have no means at present of stating the exact number, and nature of the daily, weekly, monthly, half-yearly, and annual reports and returns required in India from the surgeon of an European regiment, but they are in truth, legion; and if all were prepared by the medical officer him-
self, would occupy his whole time and attention self, would occupy his whole time and attention. It was long understood that the writing of all these documents was an important part of the duty of the hospital subordinates ; but about 15 years ago a dispute arose on the subject and a reference was made to army head-quarters, when it was decided that these persons had far more important duties to perform than to write "Queen's medical returns." From that hour forward, the relative position of the Queen's surgeon and his subordinates became materially changed. It was difficult for him to find other persons qualified by a knowledge of forms and medical terms to prepare such complicated returns with neatness and accuracy; and, in point of fact, these papers continued to be written by the subordinates, as heretofore, but now as a favour, or for a pecuniary consideration, and not as a duty.

The surgeon was personally responsible for the regular transmission of certain elaborate returns, and it was his duty to see that the sick under his charge were fully supplied with every requisite medicine and comfort; but he had no such personal interest in the cost which might be incurred by the Indian Government, to which he owed no direct allegiance, and from which he had nothing to hope. The "Company" paid for all, and the "Company" had its own officers to look after its own interests. Under such circumstances it is not surprising that some surgeons should content themselves by solely attending to the interests of their own sick, and should hardly consider that they were their own sick, and should kardly consider called upon minutely to watch their subordinates, and check petty peculations, when the result to themselves and check petty peculations, when strike writing in a body, might be, that the latter would strine wring in annual returns were urgently wanted. It is not therefore improbable, that a sort of tacit compromise sometimes took place between the parties. The returns were regularly forthcoming when required, and no particular regularly forthcoming when required, and no particular
questions asked as to "the quantities expended since the questions asked ans;", or, "the quantities required for the date of last indent; ;or, Whe quantities required sor the ensuing six months." Whenever a suspicion of such a
state of things existed, a superintending surgeon, who was state of things existed, a superintending surgeon, who was
held by his own Government strictly responsible for any held by his own Government strictly responsible for any
undue expenditure within his circle, was too apt to consider undue expenditure within his circle, was too apt to consider
$h i s$ chief daty to lie in curtailing such indents; and it nahis chief duty to lie in curtailing such indents; and it na
turally followed from this that, when a regimental surgeon turally followed from this that, when a regimental surgeon really wanted one pound of any article he asked for. All this was wrong. The checking officer should consider it one of his chief duties to know and grant everything necessary to the welfare and comfort of the sick; and the regimental surgeon should be held responsible that he not only asks for all his sick require, but asks for nothing more, and carefully guards against extravagance, culpable waste, or actual fraud. That the subordinates do assist the surgeon in making out all his returns, I believe to be a fact; and I am of opinion it should once more be declared to be their
duty so to do. The vast amount of this writing may. I duty 80 to do. The vast amount of this writing $\begin{array}{r}3 \mathrm{O}_{3}\end{array}$
conceive; be greatly curtailed with benefit to all concerned; the duties of subordinates shbuld be clearly and strictly defined, and these duties and no others demanded of them."

Carriage for the Sick und Wounded.

It is generally known that the sick of European regimente in India are carried on the march in a sort of country litter borne by bearers, called a "Dooly;" but it is not so well known that the army dooly of the several presidencies differs matcrially from each other, both in construction and in the practical uses to which it can be turned. During the siege of Mooltan and subsequent Sikh campaign, I had an excellent opportunity of comparing the merits of the Bengal and Bombay army dooly as a conveyance for the sick or wounded soldier in the field. At first sight, the Bengal dooly appears a very rude and primitive contrivance, and, in bespect to workmanship, a whole century behind the one in use in the Bombay army; but it will be found, on further inquiry, to combine the following useful qualities. It is light, and so slung on its bamboo pole as to be easily carried by the bearers. It can be readily converted into a most convenient and comfortable camp bed. It affords greater facilities for putting in, or taking out, a
very weak or severely wounded man than any contrivance with which I am acquainted. On the march, the very sick or severely wounded soldier, once comfortably placed in the Bengal dooly, need not be removed from it at all until he reaches his final destination. At the end of a day's march the top and cloth cover are quickly taken off, the dooly and its occupant placed in the hospital tent, and the pole withdrawn before the sides of the tent are laced on, leaving the patient undisturbed in a comfortable camp cot. In the morning; as soon as the walls of the tent are taken down, the pole, top, and cloth cover are again quickly replaced, and the dooly removed from under the tent, and ready to proceed in rear of the marching column, without the smallest fatigue or inconvenience to its tenant. A wounded man can be dressed nearly as easily in his dooly as on an ordinary hospital cot, the only drawback being that the patient is placed a little too low for the surgeon; but this can be remedied by putting a few bricks under each of the short legs. Finally, during very hot, very cold, or rainy weather, the dooly tops can be turned into a convenient shelter for the bearers. On active service, and where bearers are not to be replaced if they fall sick, this is no unimportant consideration.

Bengal army dooly with top, bamboo pole, and cloth cover adjusted.

Bengal army dooly, with top, pole, and cover reinoved, and ready to be used as a camp cot.

The Bombay dooly is a thing of greater pretensions altogether. It has a cane-bottom, immoveable top, and fixed painted canvass sides or panels, and the pole, which is fixed as in an ordinary palanqueen, cannot be withdrawn: the as in an ordinary palanqueen, cannot be withdrawn : the
frame is light, but substantial. When entire and in good order, this kind of dooly affords an excellent shelter for the sick, or for surgical instruments, medicines and dressings, in very stormy or rainy weather; but here its advantages stop. It is not so easily carried by the bearers as the Bengal dooly, in consequence of the lower point at which the pole is fixed. It cannat be used as a bed for the sick, unless left outside of the hospital tent altogether. A very weak or severely wounded man is placed in it with much difficulty, and being in, cannot be taken out again, without inflicting much suffering and fatigue. Moreover, it is hardly possible for a surgeon to dress a severe wound, or perform any operation on a patient lying in such a conveyance. Lastly, the
stiff-painted canvas panels are readily torn and injured by stumps of trees and such like obstacles, and when so injured, it is for the rest of the march or campaign, a less efficient it is for the rest of the march or campaign, a less efficient
protection against wind or rain than the Bengal dooly, with protection against wind or rain than the Bengal dooly, with its loose, not easily torn, but easily repaired cloth curtains. our Bengal dooly everything that can be desired. An additional good cloth to the curtains, or, better still, a dooly cover, entirely made of white country blanket, with a sufficient number of proper buttons to close the sides and fix the ends of the curtains in boisterous weather, would render it a complete protection against wind or rain, and so obviate its single defect. On field service, ten doolies, with six bearers each, are (if I remember right) allowed by the regulations for every hundred European soldiers; but on occasions of ordinary relief, only one half that number.

Bombay army dooly, as it must remain at all times.

* It will be proper here to explain that the "Company's"superintending surgeon had no authority to interfere with the hospital prartice of the surgeons of Queen's regiments,-his duties being contined to the regulation of the supply of medicine and hospital requisites of every description, and to matters affecting the general sanitary management of the troops within his "circle" or superintendence.

In addition to the convenient but expensive conveyance above described, other carriage is generally forthcoming as occasion requires, for another class of pauents often very numerous in the field, viz., foot-sore men, convalescents and all the slighter cases of sickness or injury. Elcphants with pads, camels with " kujawahs," or basket litters swung on each side, and country carts or "hackeries," spread with straw and fitted with a covering of slender reeds called "sirkee," have all been employed for this purpose. Elephants and camels can keep up with the marchpose. column, -a great advantage,-but the situation of a weak man on the pad of an elephant, or in a camel litter, is anvthing but arreeable; and except to the robust and healthy, either mode of conveyance becomes after a short healthy, fatiguing and irksome in the highest degree shor somewhat complicated litter proposed by $\mathbf{S i r} \mathbf{J}$. Login if placed on a perfectly steady and well-trained camel would placed on a perrecty but it is cany a som to but ined animals when required and a reative camel of all trained animals when required, and a restive camel, of all intractable brutes, is the most unmanageable by the European. In some kinds of country carts a weak man may lie or sit without much inconvenicnce, but their rate of travelling is so slow, that they are seldom up for hours after the camp is pitched, and all others have had their breakfast. So wearisome is this mode of conveyance to the European, that the men told off for the carts will generally be found to have walked the greater part of the way. It wes probably in consequence of the facility of procuring such questionable extra conveyance on sudden emergencies, that the authorities in India never thought of providing any description of ambulance or wheeled carriage for the sick and wounded in the field, similar to those in use in most modern European armies. It is true, that during the rains in India, -a season when an army rarely takes the field, - the condition of the country is ill adapted for wheeled carriages of any sort; but at all other periods of the year there are few countries in which they can be more conveniently employed. At our gun carriage agencies there are not only skilled workmen but abundant spare materials for the economical construction of such vehicles; and in every mounted corps there are always to be found horses, oot quite up to work with the guns or in the ranks, and yet well suited, for some years to come; to the slow, steady draft of a carriage for the sick. On an emergency, elephants or camels may be used, or, failing these, a puanticient number of draft bullocks can at all times be relied on.

I am the last to desire or advise the supersession of our admirable Bengal dooly, but it is not only a most expensive description of conveyance, but its use is entirely dependant on the presence and fidelity of a sufficient number of dooly bearers. I have known many hundreds of these persons to desert in a body during an important crisis of a campaign. Six bundred donly bearers, not including "sirdars," are at present required in the field for a European regiment 1,000 strong. This is not only a great expense to the State, but a great incumbrance to an army.

A certain proportion of well-designed and carefully constructed carriag es for the sick would enable us to dispense with a considerable number of dooly bearers, and would partially provide against the untoward contingency of their deserting in a body just as their services are most urgently required. Of course, I have often thought of a plan for such a* carOf course, I have often thought of a plan for such a car-
riage, but I have not sufficient confidence in my own mechanical knowledge to venture to submit it to the Commechanical knowledge to venture to subnit it to the Com-
mission; I am, however, satisfied that an ambulance for mission; I am, however, satissed that an ambulance for the sick in Indis should possess the following qualities:-
The springs, wheels, \&c., stould be so strong as not easily The springs, wheels, \&c., stould be so strong as not easily to break down on common country roads, while all other jarts should be as light as possible. The clumsy wheels of the up-country "Harkary," and the primitive manner in
which they are fitted to that conveyance are, I am assured, which they are fitted to that conveyance are, I am assured,
peculiarly adapted to the narrow nnmetalled roads and peculiarly adapted to the narrow unmetalled roads and unbeaten tracts on which they travel; and I know well, that such rude carts often arrive at the end of a march in perfect safety, when trim English built vehicles break down
on the road. A carriage for the sick in India should also on the road. A carriage for the sick in India should also afford proper shelter from the sun or rain, and, at the
same time, be soconstructed as to admit of a free circulation same time, be so constructed as to admit of a free circulation of air. The centre of gravity ahould be low, to prevent its
being readily upset, and to enable the patients to get in and being readily upset, and to enable the patients to get in and out quickly and easily, to lighten the draft, and to assist it over any unexpected obstacle. Such a carriage would, I
believe, often prove of much value in India, except, perhaps, during and immediately after the periodical rainy season.T. E. D.

No. 5.

Note on Bread.

Of all the articles of food consumed by the European soldier in India, none has given more dissatisfaction to the men themselves, or more trouble to their ofticers, than the bread formerly supplied by the commissariat. Ac cording to the old regulations, if the bread or any other barrack ration was objected to, a regimental committee was immediately assembled to examine and report upon it. If the article was pronounced unwholesome or of inferior quality, the commissariat officer had the power to demand a station committee, at which he personally attended, and this last committee not unfrequently reversed the decision of the former one; but whether reversed or confirmed the men had generally to wait many hours before they recived the disputed ration, or a proper substitute for it By Lord Dalhousie's new regulation (promulgated, I believe, in 1852-3), the decision of the regimental committee was made final; the standard of quality for the men's bread was declared to be the fine loaf eaten at the mess tables of the officers; 'and it was intimated that if the soldier should get bread or other articles of food of an inferior should the blame would henceforth rest with the officers themselves, to whom absolute power was now given to accept or reject all rations tendered by the commissarist
The natives of India neith the commissariat.
The natives of India neither make nor usa any kind of fermented bread themselves; but in every European military cantonment two descriptions of "English bread" were formerly known, viz., the fine, white, porous, but, rather tasteless loaf used by the upper classes, and the brown and somewhat heavy loaf of the barracks. This last was often agreeable enough to the taste when fresh, but after being kept some hours was apt to become sour and doughy. The native bakers maintain that a good light bread, suited to the European taste, cannot be made with the flour of the common Indian bearded wheat, but that "soojee" must invariably be employed. When the complaints and discussions on the subject of bread for the troops were at their height in 1852, a committee to inquire into the matter was assembled at Meerut, of which I was a member, and on that occasion I had the wheat ground, and the materials for the two kinds of bread prepared, in my own house, and under my own eye. The following are the results of the information I then obtained :-
To prepare the "soojee" for fine bread. - The whole wheat is placed in small separate heaps on the ground, gently sprinkled with pure water, and allowed to remain in this state from four to twelve hours according to the condition of the atmosphere, until the grain has become somewhat soft and swollen with the moisture. During this preliminary process some chemical change is doubtless effected on the gluten and starch of the wheat. The grain, after having been duly moistened, is ground in the common Indian handmill, and then quickly passed through a very coarse sieve, which separates the bran in a large unbroken form. .This bran is put aside and only used to feed poultry, cattle, \&c. The flour is next put by handfuls into very fine sieves suspended from the roof and vigorously shaken. By this process a fine, white, impalpable flour is separated and collected below. This fine flour is also rejected as a bread stuff; it is very white, is rich in gluten, but can only be turned to profitable account by the "hulwaees," or native confectioners, to whom it is usually sold. The residue of the flour, after these two siftings, is then subjected to the following curious manipulations, commonly performed by females :- A woman sits on the ground with a heap of the flour on her right; this she takes up by handfulls and places in a sort of broad shallow shovel made of "sirkee" grass, called a " sooph," and, by a very dexterous movement of the hands, she causes all the lighter and darker portions of the flour to fall on the ground immediately in front, while all the more round, solid, white particles are collected at the lower edge of the shorel, and are from time to time transferred to the ground on her left side. When the whole has undergone this manipulation, the heap on her left is the first " soojee" used in making the fine; white, porous loaf; that in front is called second "soojee," and of this last material the barrack loaf was entirely formed. If a very fine " soojee ${ }^{3}$ is required, it is subjected to two or more such siftings. This "soojee" is, I believe, identical with the article now sold in England under the name of semola or semoulina. "Toddy," or the fermented juice of the date tree, is the yeast commonly used by the Indian baker, but when that cannot be procured, other, but less efficient, ferments are occasionally employed. It was pretty generully supposed that the old barrack loaf was made of whole or unbolted wheaten flour; but, from the account given above, it will clearly appear
what an entirely different thing this second "soojee" is after the abstraction of the bran, fine impalpable flour, and fine "soojee,"-all rich in plastic, nutritious principles. The fine "soojee" is rich in gluten, and makes a light, digestible, and nutritious bread; but it may be doubted whether it is really to be preferred, as a barrack ration, to Whether it is really to be preferred, as a barrack ration, to
the well-baked brown loaf, made of whole or unbolted the well-baked

The bearded wheat of India is, I believe, very inferior in quality to the wheat of England, America, or Cape of Good Hope; but 1 know not if the difficulty experienced in making good bread with Indian wheat flour depends chiefly on the inferior quality of the grain, or is to be ascribed to want of skill on the part of the native baker.

Mr. Astell, formerly judge and magistrate of Bolundshuhur (a civil station about twenty miles to the west of Meerut), not only succeeded in growing good English wheat at that place, but baked and used in his own family an excellent household bread, made entirely with whole or unbolted English wheat flour. I have often seen and eaten unbolted English wheat flour. Thave often seen and e
this bread, and found it unexceptionable in all respects.

A good, wholesome, and nutritious barrack loaf is a matter of prime importance to the British soldier in the East, and if such bread as Mr. Astell succeeded in making could be supplied to the troops in sufficient quantity, it would go far to enable us to reduce, in the hot weather the present excess of the more concentrated nitrogenous aliments.
Now that India has its railroads, I know not whether it would be more convenient and economical to grow a good description of wheat in the upper provinces, or to import it from England, America, or the Cape; but this I do know, that a good wholesome household bread can be made in India of flour alone. The processes employed by native bakers with success in the plains answer very imperfectly at the bill stations, and this has proved a source of much trouble to the weak and dyspeptic at these places. The yeast used in the hills was probably the main cause of this failure, but if large bodies of European troops are henceforth to be kept in these regions, this subject will become one well worthy of particular attention.
T. E. D.

Obserfatiovs on the Rates of Mortality among the Troops in India, by Dr. Eatwell, Principal of the Médical College, Calcutta.

As regards vital statistics, there is great difficulty in forming any approximatively correct idea of the rates of mortality amongst the civil population in this country, owing to the absence of a correct census, and of any comprehensive system of registration of deaths. In this respect Bengal, though our oldest possession, is behind both the North-Western Provinces and the Punjab, in which censuses of a certain degree of accuracy have been taken. This want, however, results from the prejudices of the people, which can hardly be disregarded. In Calcutta even, there is but an imperfect census of the native population, calculated from the number of houses and allowing 8.7 persons lated from the number of houses and allowing $8 \cdot 7$ persons
for each house, and 5 persons for each hut. The general mortality tables of Calcutta, more especially of the native portion of the population, are also of necessity very imperfect, the only means of estimating the mortality amongst the general population being from the records kept in connexion with the different places of interment in the case of Europeans and Mussulmans, and at the regulated ghats on the river bank at which Hindoos bury their dead, or consign them to the stream. As regards the prevailing diseases amongst the native civil population tolerably correct information may be derived from the returns of dispensaries and of native hospitals throughout the country. These and of native hospitals throughout the country. These
institutions exist in all the chief toms of this presidency, and all furnish returns of the diseases treated at them. The gaol hospital returns will also furnish information on the same head, but in taking these returns as indices of sichness and mortality, it is requisite to bear in mind that incarceration itself modifies disease, and frequently gives an unusual rate of mortality to certain diseases, as cholera and dysentery. Still, I am of opinion that the returns of sickness and mortality in gaol hospitals are capable of affording much trustworthy and valuable information, at least as regards prevailing sickness in the localities in which they occur. prevailing sickness in the localities in which they occur. of years, may give a fair approximative idea of the prevailing discases of the locality, and of the mortality attending them, although there are some serious sources of error in such cases, which require to be recognized and eliminated from the inquiry. The men of a regiment frequently bring with them to a station constitutions peculiarly predisposed to disesse, through influences to which the men have been previously exposed. Thus, we found that the native troops who had been stationed long in the Siraits of Malacca became affected in China, through slight causes, with a most destructive form of hospital gangrene. The occurrence of this affection was attributed to an enfeebled condition of system engendered by employment of an incondfieient and almost exclusive fish diet. Again, at Barracksufficient and almost exclusive fish diet. Again, at Barrack-
pore, near Calcutta, it has be fuund by experience that sepoys pore, near Calcutta, it has be found by experience that sepoys years, and consequently native troops have not been allowed to remain beyond that period at Barrackpore without relief.
As regards medical topography, there is not, I believe, a station in India of which the topography has not been written by one or more medical otficers. The archives of the late Diedicad Board (now of the Director-General of the

Medical Department) must contain ample information under this head.
As regards climatology, a considerable amount of information must be in existence in the annual reports of military and civil medical officers in the archives of the DirectorGeneral. Such observations are probably, in many instances, imperfect and only approximatively correct, from the diffculty of procuring good instruments in this country, and of preserving them in constant efficient condition, and also of obtaining trustworthy assistants for conducting observations.

But the primary object of the Commission will, 1 presume, be the investigation of the causes of disease amongst European soldiers, and the suggestion of measures for their removal. You will find some exceedingly valuable information on the vital statistics of European troops in India in the last numbers of our "Indian Annals," in papers by Dr. Chevers and Dr. Macpherson; I forward by this mail copies of the journal containing the articles.
The question which, of all others, will demand the most careful investigation is that of the effect of different elevations on the health of troops. There appears to be an opinion in some quarters that elevations of from 5,000 to 6,000 feet are preferable to those of from 7,000 to 8,000 . Sir R. Martin, I see, is of opinion that elevations of from 2,000 to 3,000 feet should be tried. It is impossible to overrate the importance of this question. Not only is it one involving the proper outlay of an enormous sum of money, which will be required for the construction of barracks, but it involves the question whether there be in India a climate in which the European can be preserved in health and in vigour, and not be exposed to an excessive risk of succumbing to disease. Not only will the proper locating of our European troops depend upon a correct solution of this question, but the feasibility of colonising our hill districts with Europeans will hang on the same our hill districts with Europeans will hang on the same decision. I must say that I should regard with extreme suspicion all elevations below 3,000 feet in India, unless
they were table-lands, such as the district of Mysore, or they were table-lands, such as the district of Mysore, or
culminating ridges around which existed free circulation of air, and having their bases and the country around cleared and cultivated. According to my experience in the tropics the deadliest fevers occur about the bases of and at low elevations in hills. In India it is usual to attribute such fevers to the dense jungle which usually occurs in such situations. In China, however, the hill sides at Hong Kong and Amoy are bare of trees, yet the malarious fevers which I witnessed at those stations during some three years of residence in them, exceeded in malignity anything I have ever seen in Bengal.
I have learned to regard the hills and the bases of hills within the tropics always as suspicious and dangerous localities. Bengal itself is a vast swamp almost, from its extended rice cultivation, but it is a mistake to suppose that severe fevers prevail generally in the plains of Bengal. Agues and enlarged spleens are met with, but not to a great extent, except in limited localities, whilst severe remittent fevers are not generally common. In China I saw an immense emount of fever, and I was forcibly struck by the
imperceptible manner in which the intermittent fever glided into the remittent fever at the commencement of the hot season, and how the remittent in like manner faded into the intermittent on the setting in of the cold season. The atmospheric conditions which accompanied this change were an elevated temperature, and an atmosphere more or less stagnant for a portion of the day, and laden with moisture. Under such circumstances cuticular evaporation was very slight and the removal of animal heat by insensible perspiration imperfect. In this way animal heat would accumulate, and from the diminished necessity for its ge..eration, and perhapa from actually diminished supply of ge.seration, and pernapa from actualy diminished supply of carbons would accumulste in the blood until they became " "materies morbi", capable of setting pp an attack of fever which would consist in their chemical decomposition and which would consist in their chemical decomposition and elimination. i regarded the severe remittent fever of China as an intermittent produced by some external agency, and acting, according to my idea, on the ganglionic nervous system, and having at the same time a second element of disease, a materies morbi, existing in the blood and developed there by some imperfection in the processes of oxydation which are always going on in the economy. I believe that whenever you have an elevated temperature approacbing blood heat, withouta condition of atmosphere which shall ensure rapid evaporation from the surface, and consequently adequate cooling of the body, you will get severe fever dependent on blood poison generated in the blood itself. If there be a malarious influence present; the fever will be a remittent, if not, a continued fever. Our worst fevers in India are what are called jungle fevers, from the fact of their being constantly caught when traversing forests, but I an antisfied that such fevers may occur independently of the presence of forests, in low situations surrounded by hills, where stagnation of air and humidity are conjoined to elevated temperature, whilst our deadliest Indian jpngles are at the bases and on the sides of hills. Holding these views, \mathfrak{l} should insist, as conditions for escaping remittent fever, that the mean annual temperature of the locality should not exceed 60°, and that if during the summer months the thermometer ranged high there should be such a condition of atmosphere as regards dryness and prevalence of wind as should allow of the necessary cooling of the body. All stations on the sides of ranges, unless such rarges be swept parallel to their faces by continued winds and bave a dry parmosuhere, should in my opinion be at an elevation of not less then 7000 feet. I should certainly be disposed to less than 7,000 feet. 1 should certainly be disposed to regard locality as good guides to its the character of the flora of a constitution. There mis be local sources of disease but constrution. Tifficulty in escaping from the conces of disease, but I Gind difficulty in escaping from the conviction that a locality having a climate agreeing in mean annual temperature with that of temperate Europe, and having a flora rich in European forms, must (cateris paribus) be more suitable to the European constitution on the whole than a locality having a mean annual temperature approaching a tropical one, and a corresponding partiy tropical flora. But, the distrust which has recently arisen with reference to our hill stations in India, has been occasioned by the prevalence of a fatal form of diarrhcea und dysentery at certain of our Himalayan stations (Subathoo and Kussowlie, respectively 4,200 and 6,200 feet above the sea level). The investigation and determination of the real nature and cause of this complaint are of the greatest importance, since if it could be shown that the efficient cause of the disease was consequent on elevation or on physical conditions inseperable from elevation, the doom of our hill stations generally would be sealed. I send you an interesting and careful paper by Dr, Grant on this subject; and also a very able and valuable paper by Dr. Chevers, which will give you very full information on this point; also a second pamphlet by Dr. Grant, on the topography and medical history of Murree, a convalescent depotit in the district of Hazara. My own belief is, that the hill diarrhcea of the Himalayan stations depends on local agencies unconnected with elevation, and that it does not differ materially (as pointed out by Dr Grant) from the disease which decimated Her Majesty's 26th regiment at Chusan during the early occupation of that place Sufficient elevation of the floors of barracks, choice of material and construction to ensure their dryness, sufficient cubic pace in the barrack rooms for the number of inmates, means of renewing vitiated air, efficient drainage round barracka,
removal of all sewage matter to a distance, a proper supply fresh meat and of fresh vegetables, good pure water, and ensuring health clath; these appear to be the conditions for more of them it is gerally; and to the absence of one or origin. It should alwable that the hill diarrhoez owes its who have should always be borne in mind that patients Who have suffered from malarious fevers are apt to suffer from bowel complaints when exposed to cold, whether this be the result of change of season or locality. I had ample proof of this in China, and have remarked the same in India; the proneness of soldiers to bowel complaint in our Himalayan stations may frequently have depended on this ause, without the intervention of local causes.
The question of the influence of water in producing disease is nne of importance, and the present opportunity might with propriety be taken for investigating it completely. The natives generally have an idea that the water of a locality has a great intluence on its salubrity. The common expression of a native in speaking of a locality is that " the air and water are good;" which implies salubrity But this notion of the water being an efficient cuase of hease is not confined to the natives. On returning from Neilgherry Hills in the Madras Presidency a few month gream was informed on the spot that the water of a smul tween the main range valley at the foot of the bills be tween the main range and a low outer range invariably gave fever to anyone drinking it at a certain season of the year, and that orders had been given by the military authorities prohibiting soldiers on their way to the hills from drinking the water. The water was said oniy to be deleterious in the dry season when it was low. I had not an opportunity to make particular inquiries on the subject but have no reason to doubt the general correctness of the aformation as to orders having been given to prevent soldiers drinking of the stream. Ihave been informed tisat 3 similar opinion prevails at Peshawur, where severe remittent fevers occur at certain seasons of the year. In both localities we have valleys beneath mountain ranges. In Hong Kong in 1842 or 1843, a medical officer who had weet in the West Indies started the idea of the water being the efficient cause of the severe malarious fevers we experienced there, and a committee, composed of the superintending surgeon, the naval deputy inspector of hospitals, and a regimental surgeon, was appointed to investigate the question. I, at the time analysed roughly, with such means as 1 could command the uifferent drinking waters of the place (the memorandum on the subject having, I think, been sent to the Board of Ordnance at home), and I gave evidence on the subject before the committee. I formed a strong opinion against the water having anything to do with the production of the fever, not only from the condition of the water itself, but from the fact that I had onbserved that persons on board ohip at Amoy had enjoyed, at a distance of a few miles from the land, perfect immunity from the fever which struck down the whole garrison on shore, although whe water used vas the same in both positions; and also that the same fact was observable at Hong Kong though in a less marled degree, the ships in the latter place lying close to leeward of the high land, and the crews having close to leeward. of he high land, and the crews having greater facilities of in producing fever, I believe it to the influence of bad water in producing fever, I believe it to be an efficient agent in many instances in causing bowel complaints, and even cholera, in certain atmospheric conditions. I would suggest that a careful chemical examination be made of the water in all those localities in which severe fevers exist, and where the water has been cited, either on medical authority or on strong non-professional authority, as a probable cause of the (isease ; and, especially, that the water of the hil stations in which diarrhoa has largely prevailed (Kussowlie, Dugshai, Subathoo) be analysed and minutely examined.

The chemical portion of the investigation could not probsbly be entrusted to better hands than to Dr. R. D. Thomson's, whose experience in this branch of chemical investigation fits him for carrying out the chemical part of the inquiry with efficiency.
*
W. M. Eatwell,

Principal of the Calcutta Medical College.
Extract from a letter addressed to Dr. Farr,
Septermber 9, 1859.

Remarks by Lieut.-Colonel Ouchteriony on the Lightivg of Barracks in India.

Sin,
The itsomeness of military life in th July 1861. especially felt by the private soldier during that period of the day which intervenes between the setting of the sunfollowed as it is by almost instantaneous darkness-and the time fixed for retiring to rest. Reading, study, or application to the practice of a trade, are the resources offered; but the: efficacy is greatly impaired by the insufficiency and inferiority of the artificial light provided by Government for these and other barrack purposes.
The medium through which this is, I believe, almost universally supplied to Indian barrack rooms consists of a lamp formed by a cotton wick kept floating by means of cork buoys upon a surface of crude and oiten very opaque cork buoys upon a surface of crude and oiten very opaque
oil, poured upon water in a glass vessel. Much of the ilhuminating power of such a lamp is necessarily lost, owing to the unfarourable medium through which the downward rays are transmitted; and not only does waste ensue, but great detriment and injury to the visual organs of the men who essay to read by its light, driving many a well-disposed man from his book or slate to the canteen or to the dram shop.
Instead of th:s oil I would propose that gas should be the illuminating medium emplored; that, in effect, the oil the illuminating medium employed; that, in effect, the oil issued to the men in barracks should be burnt in the form
of gas instead of being consumed in nourishing the unof gas instead of heing consumed in nourishing the un-
steany tlame of a rude and imperfect lamp; and I am anxious to show, or to attempt to show that, far from being a source of enhenced cost to the State, it will be found productive of very great economy in a financial point of view, while at the same time tife comfort and moral advantage of the soldier are strikingly ministered to.
I will take leave, in the first place, to consider this question as one of economy.
The common lamp oil usually issued for barracks in India costs about is. $3 d$. per gallon, a quantity which would supply about 36 to 40 open wick lamps for three hours. From this same quantity from 100 to 120 cubic feet of the purest olefiant gas cquild be produced, sufficing for the consumption of 18 burners for three hours, at the rate of two cubic feet per hour per burner. Experiments by various eminent chemists have established that the illuminating power of coal was ignited in an ordinary burner is to that of a common opeo oil lamp with a single wick as 5 ta $1 \frac{1}{2}$; and as the intensity of oil gas is nearly double that of coal gas, it is safe to assume the proportion which its lighting power bears to that of an oil lamp at 8 to $1 \frac{1}{2}$, or $:: 16: 3$. it results from this that eight ordinary fish-tail- oil-gas It results from this that eight ordinary fish-tail- oil-gas
hurners would produce as much light as 40 common oil burners would produce as much light as 40 common oil
lamps; and as 48 cubic feet of gas would suffice to supply the former fur three hours, it is seen that if economy were exclusively studied, the supply of oil fur barracks could, if gas were employed, be diminished by one half.
But the economical result goes even further. The retorts manufactured for the conversion of oil gas will produce it from any unctuous or greasy matter introduced into them; and as barrack kit hens in tndia abound in such refurse, it is rad as barrack kit.hens in tndia abound in such refurse, it is
easy to perceive how extensive a saving might be effected if easy to perceive how extensive a saving might be effected if
all this were collected and employed in the production of gas.
Several valuable products also result from the manufacture. such as "lamp-black," and, in small quantities, tar. The cost of an apparatus constructed on the plan of Major Fitzmaurice, whose experiments I had recently an opportunity of witnessing at Woolwich Dockyard, would be as follows :-

1. For an apparatus to supply 50 burners, 1202. $: 2$ Do. do. 100 do. 2301., and upwards in proportion.

The manipulation of the apparatus is extremely simple, and could be undertaken by any moderately intelligent man possessing some little acquaintance with the mechanic's art, of whom every regiment in India possesses many.

No purification is required, and the gas, after passing through cold water to reduce its high temperature, is fit for use.
For heating the retorts in India, jungle wood would be used, the cost being in almost all parts of the country insignificant.

A great and important benefit may thus be conferred on tl: e truops employed in ludia without involving the State in any outlay beyond that at present incurred, save and except the cost of the apparatus to be furnished to each up-country barrack, -a cost which might, in fact, be soon covered by a
smali temporary diminution of the quantity of oil now issued for the men's use.

I feel sure, from the experiments I have witnessed, that if gas were employed, more than double the illuminating power might be elicited from the regulation allowance of oil; while the light produced would be of the purest, most oll; while the light produced would
brilliant, and most healthy character.
(Signed) J. Ouchteriony,
Lieut.-Colonel H.M.'s Madras Engineers.
T, Baker, Esq., Secretary to the Royal Commission
on the Sanitary State of H.M.'s Indian Army.
Remaris by Lieut.-Colonel Ouceterlony on the Practicability of brewing Malt Liquor in India for the Use of the Troops.

22nd July 1861.
All officers of experience must be sensible of the vast importance of introducing into the canteens of the European regiments serving in India a malt juquor of sufficiently good quality and moderate cost to induce the men to drink it at their meals in preference to the deleterious arrack now so generally consumed.
This desideratum can, I am convinced, be attained by the introduction of ale and porter to be brewed in that country. The quality of samples wwich have been produced, bearing in mind that the strength or bitterness of it can with perfect ease be increased in the process, exactly accor ding to the fancy of the consumers, has been very favourably reported by several officers and soldiers* by whom malt liquor brewed by myself in the Neilgherry hills was

- The under-mention ed Non-commissioned Officers and Private Soldiers of the 15th Hussars, who drank the Neilgherry Beer, are of opinion . Bangalora, 11th June 1849.
Regimental Serjeant Major Handley The beer is good but rather sweet, Troop Serjeant Major Mann and tastes very new.
" $\quad \cdots \quad$:, Saunders
Fery inditferent.
Good.
Good.
Passable; in my opinion requires to be kept some time
Serjeant Major"Heame Sitchell
Serjeant Major Hearne
Trumpet Major Westwood
Trumpet Major Westwood
* Somerville
* Southerland

Corporal Gaylor Mortimer
O : Smith .-.
Privates Theakston
Good.

",	Patrick H. Harris
\sim	Martiu-
\because	Asquith
$\ddot{\square}$	Foster -
"	Weekson
	Dickenson

Good, but too sweet.

- Very good.

Gery good
Good, but too new.
Good.
Good.
Good.
Good.
Gery good
Weak : $\quad=\quad-\quad$ Good. wants age.
Serienat Ivy Höloway:-: Good, but sweet (his x mark.)
Serjenat Major Hol
Serjeaut Ring
Opinin oice Good; sweet through its freshiess of the Beer brewed on the Neilgherries, and forwarded to the above Corps as a sample.
Very good.-E. Ashton.
Very good.-E. Ashton.
Very good.-P. Peek (his \times mark)
Very good.-P. Peek (his \times mark)
ery good. -Thomas Hale (his \times mark)
At present very good; I think it will not keep; I lived at an inn five
Jenrs.-William warren (his x mark).
Very good.-John Hill (his x mark).
Very good.- William Haynes (his x mark)
Very good; I think it would be better if a little older, say three months; 1 have heen a brewer, and am of opinion it. Would keep.William Hinan (his x mark),
Verb good beer; the best I have tasted in I
Very good. - Willian Tomes, (his x mark).
Verv pood; I was five years at a public house.- William Kelfe.
Indifferent; too sweet, not enough of hops; I think it would make mark's
Indifferent; too sweet and too new; might improve by keeping; Fas a brewer for eight years; not sufficiently hopped.-James Gregor Good - Henry Binge (his \times mark)

Very grod; I was four years a
Very good.-Isnae Whitfield.
Very good.-James Farren.
Commanding Mard Majesty's 51 st Light Lifantry.
" Lieutenant Colonel Milnes, , ith Regiment, reports that a After allow-
"" ing the beer to remain quiet in the canteen for sa week to get settled
" oflicers and privates from cach company (about 20 in number) who "Were in the habit of drinking beer, amonk whom this beer was divided at the rate laid down, three annas per bottle, and after drinking it I " satisfled with it, and said if such were supplied at the canteen they " would call for it in preference to that whick they now drank at four " annas per bottle. I woulid likewise observe that having myself pa-
"I a tumbler of thia bear I can pronounce it to be very good pleasans
a beer, and fully equal to the price charged. I observed odegree of

CAllilua GOUN 0 R

CURLEWISLAND

 NMn-Isiana abouk 30 mites south of Amberst If miles from the manitand of the Tenasserm cooust. opjen on the West is the Boys of Berigal

Recommended as a "Marine Sanitarium" and "tiatering Place" for" all India by D) PD. Hacpherson, Inspector Gemeratiof Hospitales Honorayy: Physician to HEM.
by ofder of Government tried, while the cost will be seen from the following statement of expense of brewing at Kotergherry.

which is about six annas and five pice per gallon, to which, if we add three annas and seven pice for carriage-per cart to Bangalore or Trichinopoly, and to cover incidental expenses, we have 10 annss per gallon for the cost to the men, when issued to them from the cask in canteen.

The importance, in my estimation, of this subject induced me when in Indis to persevere in experiments, in spite of numerous failures and at considerable expense, and I was most anxious to continue them, if I could only hope that they might eventually bring about the object at which I aimed, and that Government might be induced to look favourahly npon them, and give aupport to the scheme.

In the manufacture of fermented malt liquors there are so many expedients to which resort may be had to communicate to the product the peculiar character of quality which circumstances may render desirable, that I felt confident that having overcome the chief and great difficulty in the process, viz., the production of the finous fermentation without undue acceleration in its action; I should have been able, by the adoption of practical suggestions; to make beer able, by the adoption in the Neilgherry hills preserve its soundness and wholesorne taste for any length of time which it may be desired.

I'he beer which I manufactured there could not be considered by any means a fair sample of what might be produced on those hills, were the process to be carried on upon a large scale with proper utensils, and I must add, by persons more practically acquainted with its details than I could pretend to be.

- The necessary buildings for a Government brewery thene would cost a mere tritle; all the operative part of th process would be carried on by cooly labour, rendering but a very small fixed establishment necessary; the casks in which the beer and porter would be sent to the plains could be returned filled with sugar, and while every possible expense to Government would be covered by a very small per-centage on the prime cost, a stimulus would be given to the industry of the cultivators of barley and sugar-cane, which by causing an increase to the revenue of those provinces, must render such an establishment a source of absolute though indirect profit to the State.
The first beer I made was brewed solely from hill malt and the quality was in consequence very poor indeed ; bu upon observing that it had been hailed as a boon in England by the poorer classes and by the brewers, that the Legislature had accorded permission to the latter to employ raw sugar in their breweries, it occurred to me that if an article which is a staple commodity of India could thus be profitably returned to the East in a form which required only a low temperature, a simple process, and a trifling admixture of hops to produce, we had on the Neilgherries every element save the last, necessary to its exhibition at an infinitely small cost.
Even under the last head the difficulty appeared likely to ${ }^{3}$ vanish, since a supply of hop sets then sent out to me from the India House almost all struck, and grew with apparent vigour.

Excellent malting barley was also raised on waste lands on the Neilgherries from seed sent out for the purpose by the Honourable Court of Directors; and a sample of the crop having been sent home for insjection, it was pronounced in Mark Lane to have deteriorated from the original seed in quality only two per cent.

The question of establishing a brewery might, therefore; now be in a state that might induce some capitalist to enter upon the speculation, if aware of the great and increasing demand for this important article of consumption:among European troops stationed in the East.
(Signed) J. Ouchterlony.
T. Baker, Esq., Secretary to the Royal Commission
on the Sanitary State of H.M.'s Indian Army.
Retury of the quantity (hogsheads or gallons) of Malt Liquor sent to nDIA for the use of EDropean Trours, under Contract to Government; during the Years 1856, 1857,1858 , and

Years.	Porter.	Ale.	Total.	Cost.
	Hogsheads.	Hogsheads.	Hogsheads.	\& \quad s. $d_{\text {d }}$.
1856	20,249	685	20,934	89,214 17 -4
1857	36,742	11,180	47,920	202,893 112
1858	102,962-	48,509	151,36\}	736,557 18 3
1859	72,572	40,354	112,926	\$17,815 . 6.9

The amounts representig the cost of the malt haco comprise th treight to india,
price charged.
price charged
Rbturn of Pecemiary Loss incurred hy Government to almit of the place it withing the" issued to the Troons at a rate low eloush to

Years.	Bengal Army.	Madras Arms.	Bombay Army."
1855-66	277,212	No returns.	
1856-57	32,459	4,368	No returns
1857-58	39,859	4,857	received.
1858-59	No returns.	6,093	

Sketch of "Curlew Island," or Calagouk, with a Letter from Captain, Fraser, of the Engineers, whose duties in connexion with the erection of the Liget House on the Alguada Reef have taken him much to the Island.
Calagouk or Curlew Island in the Bay of Bengal, as a Sea Coast Sanitarium.
In the course of my inspections of the several stations of the army during the past three and half years, I have submitted to Government my views of the beneficial effects to the European constitution, in health aud in convalescence, from disease, of a residence on elevated mountain ranges, as a prophylatic remedy under peculiar states of the system. 1 pointed out during the progress of my tour, how peculiarly favoured the presidency of Madras is, in possessing elevated ranges contiguous to the chief military posts, and 1 selected certain places on the coast as the most eligible which came under my notice as a place of resort for invalids, whose health would appear to derive benefit by a residence there.

2nd. There are however certain disadvantages in all "sea coast localities situated on the main land and possessing no elevation, such as the absence of sea breeze and the dele terious effects of land wind passing over misamatic bresten-
ive tracts of low arid plains at certain seasons, from which an island of moderate dimensions is comparatively free when placed in the midst of the occan, possessing bays; sandy beaches and an undulating surface - a good water supply and capabilities for draining.
3rd. The subject of sanitaria for European troops_stationed within the tropics has engaged my special attention for many years-but hitherto I have in vain searched for a focality such as I have now adverted to. "There is no place answering the description contiguous to the vast line of coast between Bombay and Calcutta, and in the straits of Malacca; although the Island of Pen»ng certainly possesses very many advantaces, it has also its disadvanteges. It has no mated sendy bars, and the low land is so little above no prove of the sea that it is incajable of ettic ie it drainageHe lever 'she hill" which is upwards of 2 , (U) feet h'gh, is Hence the such an extent of forest and low land, that it cannot; such an exterich speaking, be viewed as a sea coast sanitarıum. It strictly speaking, be viewed as a sea coast sanita
is, moreover, too distant from our possessions in India to make it a place of general usefulness
4th. During my inspection of the Pegu Province, I arned that European invalids of all classes, when they require a change, are sent to the coast and thence transpurted to Madras, at a great cost to the State in money and purted to Madras, at a great cost to the State in money and in loss of service, and no place in Indis can be worse adapted for sick men than the depôt at Poonamallee, where these
invalids are sent (vide my report on that locality). There invalids are sent (vide my report on that locality). There
are insuperable obstacles to the establishment of mountain are insuperable obstacles to the establishment of mountain
sanitaria within, or contiguous to the British possession in sanitaria, within, or contiguous to the British possession in sible positions, both as regards difficulty of communication and distance from stations, insalubrity of intervening low country, want of population and supplies, en route. Our existing well tried sanitaria in India, ought, therefore, to be the sole place of resort for European invalids, whose constiutions bentefit by a residence on elevated localities, and to this end, as regards the Pegu Province, the object of Govern? ment should be to improve the communication from the ment should be to improve the commanicaion sem coast frontier stations to the ses, and to establish a sea coast
sanitarium in a convenient position for such as are likely to sanitarium in a convenient p
benefit by a residence there.
5 th . The wonderfully remarkable sanitary condition of all European residents in the interior and on the sea coast of Burmah, the extent of that coast and the group of islands which stud its shores from Amberat to the Mergui Archipelago, naturally direw my inquiries in that direction for an insular or marine station suitable for all India. I was thus brought into communication with Captain A. Fraser, of the Enyineers, Superintendent Alguada Reef lighthouse, now under construction, an officer fully acquainted with the sea board of Burmah. Duty obliging acquainted with the sea board of Burmah. Duty obliging
Captain Fraser to proceed in the direction of Mergui, he Captain Fraser to proceed in the direction of Mergui, he
very obligingly agreed to afford me an opportunity of personally inspecting the line of coast and islands contiguous -and on my solicitation he cheerfully acceded to co-operate with me in the important field of inquiry which engaged me-thus aiding me with much valuable practical experience in his professional capacity, acquired in a career of twenty years in selecting and laying out sites for the cantonment of troops and in the construction of barracks.

6th. Amherst was the first place we visited, and, in the absence of an island sanitarium, there is no douldt that it presents the most eligible site on the coast. In form it is a promontory of land washed on one side by the sea, and on promontory of land washed on one side by the sea, and on sea. It is well elevated, and possesses an open porous subsoil, beneath a clayey superstraturn. But it has the disadvantage of dense jungle and swampy ground to the north east and muddy water on the river and sea sides-yet with judicious clearing and draining, Amherst would doubtless, become a very desirable coast locality for invalids.

7th. Calagouk or "Curlew Island."
The Moscos, contiguous to the mouth of Tavoy river,
Tavoy Island, half way between Tavoy and Mergui, and
Tavoy Island, half way between Tavoy and Mergul, and
King's Island, opposite Mergui, came respectively under King 'siries.
our inquir
Of these the first which occupies the subject of this report is that in every respect the most suitable for a sanitarium.

8th. Curlew Island, the head quarters of the Alguada Reef Lighthouse establishment, is situated in the gulf of Martaban, thirty miles south of Amherst point, in latitude $15^{\circ} 52^{\prime}$, and in longitude $97^{\circ} 42^{\prime}$. It is eight miles long, exclusive of Cavendish Island, which lies at its extreme south end and which is half a mile in length,

The greatest breadth of the island is about one and a quarter miles; and on its highest part, which is about 500 feet above the sea, are the "remarkable trees," a point for navigators in making the coast, laid down in all charts.

9th. The base of the island is primary rock, the superstratum being a rich mixture of open porous soil, composed of sand and vegetable mould. Its formation is very peculiar \rightarrow the northern and southern portions differing considerably. The northern half, on the western side, is composed of a long granite ridge, with an average perpendicular drop to the sea, varying from 200 to 300 feet. To the least the
ground descends to the sea in gentle, or abruptslopes. The opposite side of the island is broken iuto alternate or isolated hills, with level well raised, the intervening spaces forming three bays; the first, Quarry Bay, where the stones are now being prepared for Alguada Lighthouse, is the deepest. At high water the beach is sandy, but at ebb-tide, an extensive mud flat, covered in places with mangrove, is exposed; the somewhat narrownes of the channel between the island and the main land on this side, tends to the accumulation of mud

10th. The southern half of the island differs entirely from the northern, inasmuch as both sides are broken into bays. To the west, Retreat Bay, Rocky Bay, Sea Bay and Fish Bay, are beautiful, hard, sandy beaches, well protected by high land on each side, and open to the ocean, with a fine rolling surf on the beach, and only divided from one another by projecting rocky points; and from the corresponding bays on the eastern side by well raised necks of sponding bays on the eastern side by well raised necks of and ascending north and south to the hills which divide the bays. The eastern bays look over Bentick Sound on the bays. The eastern bays look over Bentick Sound on
the distant main land, rising in bold outline on the horizon. the distant main land, rising in bold outline on the horizon. These very much resemble the western bays, in fact differ
only by the mud uncovering at half tides-the-rise and only by the mud uncovering at half tides-the rise and
fall at spring-tides being 22 feet. All the bays on the fall at spring-tides being 22 feet. All the bays on the eastern side are perfectly protected from the south-west monsoon, while during the north-east monsoon, the bays on the western side and the deep water close up to the ridge on the north, afford a free, open, and safe place for yachting and baating. The bays on both sides are peculiarly well suited for bathing, the water on the western side especially being always pure and clear.
llth. Ascending from Retreat Bay, the ridge referred to in paragraph 9 is reached. This ridge, and, indeed, the entire island, is clothed with fine primeval forest, with trees of immense dimensions and height. Under their overshadowing branches, a well shaded road might with ease be carried along the ridge, having the open ocean on one hand, with a view of the fine contour of the island itself, and the bold coast of the Tenasserim provinces in the distance beyond on the other; here and there, this ridge opens out into plateaus, forming beautiful sites for houses; and with the exception of a slight rise about the centre, the road would nearly run on an uniform level for a distance of five would nearly run on an uniform level for a distance of five
miles. The same road might thus be extended to the southward, encircling the bays and crossing the intervening points of land, and also to the northern part of the island, where there is a considerable space of garden and cultivable ground. The free percolation of air by means of these roads, judicious clearing for building sites, and the adoption of measures to facilitate the natural drainage, two or three years prior to the occupation of the island for sanitary purposes, are measures of the highest urgency and importance. 12th. The island has now been occupied by a large party of workmen since April 1860. Usually the pioneers or first settlers in every locality suffer considerably, especially when no prior arrangements have been made to guard against no prior arrangements have been made to guard against
disease. In the present case, a large body of natives of disease. In the present case, a large body of natives of
India, Burmah, and China, European officers and suborIndia, Burmah, and China, European officers and subor-
dinates, entered on operations of a harassing nature at the hottest season of the year. Quarry Bay, where they settled, is, sanitarily considered, by no means the best locslity to settle on, but the presence of good stone, and the facilities for shipping these to the reef, induced the superintendent to fix his head quarters here. I append a Return of the strength of the establishment, the prevailing diseases, and the mortality from the 30 th April 1860 to 30 th April 1861 , from which it will be observed that, everything considered, the sick and death rate have been upusually small. It must be borne in mind that the party for many months had little or no protection by night or by day, and that their huts occupied unwholesome sites in the midst of felled jungle; yet the report presents a gratifying immunity from the graver diseases. The fevers were chiefly of an ephemeral nature, the sick list being kept up by local injuries and their results, diseases not contracted on the island, and cutaneous affections from the want of antiscobutic articles of diet.

Daily Average per cent. of prevailing Diseases from 30th April 1860 to 30th April 1861.

-		May.	June.	July.	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	March.	April.	A rerages.
Strength -Dysentery -Ulcers - -Fever - -Ocher diseases		212	209	295	367	400	433	495	502	480	480	705	710	440
		-09	2.07	-	-	-	-	-10	$\cdot 36$	-	$\cdot 14$	-	-	0.23
		-07	$5 \cdot 1$	$8 \cdot 1$	4-1	$5 \cdot 5$	3.8	$2 \cdot 6$.	$3 \cdot 5$	$4 \cdot 1$	$2 \cdot 1$	$2 \cdot 08$	$3 \cdot 64$	3.38
		0.8	$1 \cdot 0$	0.9	$1 \cdot 10$	1.2	$3 \cdot 5$	3.4	4.9	4.1	$4 \cdot 1$	$2 \cdot 3$	$1 \cdot 55$	$2 \cdot 17$
	-	$5 \cdot 05$	$8 \cdot 61$	6.13	6.14	$2 \cdot 05$	8.01	$4 \cdot 25$	8.99	$8 \cdot 30$	16.74	11.99	22.22	6.13

There were nine deaths during the jear from diseases contracted on the island, viz. :-

Three from dysentery in January,
Three from fever from exposure,-one in July, one Three from accidents ane in January,
No desths oecurred amongst the Europeans.
13th. During my residence on the island, in the months of May and June, the climate was exceedingly agreeable. The nights were cool, and no punkahs were necessary during the day; in fact, a refreshing sea-breeze was present at all times in every part of the island visited by me during the day, and a blanket was always grateful at night. The average thermometer at this period during the day was 75°. during the hot weather it is 88°, and Captain Fraser speaks in glowing terms of the climate at all seasons as compared with that in Calcutts. Water of an excellent quality is procurable at a depth of 15 feet, and a perennial spring is sweet water flows through the centre of the island The rain fall, Captain Fraser thinks, is under that experienced on the main land opposite.

14th. One great advantage of this island is its proximity to Madras and Calcutta and to the principal stations in Burmah. The large town of Yea, and the village of lemyne, are on the opposite main land, from whence small boats with supplies are constantly arriving, and as it is on the direct line of communication between Calcutta and the ports of Tavoy and Mergui, with properly arranged communications, there need be no difficulty in furnishing it with supplies. China junks bring fruit and other articles to the island, and fish of an excellent quality is procurable at the bays.
15th. Besides affording many beautiful localities for private houses, abundance of apace is available for 1,000 men on eligible sites. But the planning and laying out of the island, sis as to turn it to the best advantage must be placed in the hands of a person well acquainted with its capabilities and who has an interest in the work. Captain Eraser's other duties constrain him to reside on the island for many months of the year;-we have gone together all for many months of the year;-we have gone together all
over it, and by his report, which accompanies this, it will be observed how fully he concurs with me in its capabilities, and that with the sanction of Government, he is willing to and that with the sanction of Government, he is willing to
undertake the superintendence of the preparatory improveundertake the superintendence of the preparatory improve-
ments above recommended. No one is better qualified to ments above recommended. No one is better qualisied to
undertaike this important duty than Captain Fraser, for, in undertake this important duty than Captain Fraser, for, in
addition to his practical knowledge as an engineer, he takes addition to his practical knowledge as an engineer, he takes a deep interest in the improvement of the place, with the
view to its future occupation as a marine sanitarium. I view to its future occupation as a marine sanitarium. I
beg, therefore, to recommend that Government avail thembeg, therefore, to recommend that Government avail them-
selves of the opportune residence of this able officer on the selves of the opportune residence of this able officer on the spot, and place a grant of money at his disposal, with full power to expend it to the best of his judgment. Mr. Cromarty, the surgeon in charge, an able and observant medica man, proffers his assistance in keeping careful
meteorological observations, or in. any other way that - Captain Fraser may employ him.

16th. As I have already observed, no place has come under my observations within these tropics, during a long period of close inquiry, possessing the numerous advantages for a "watering place" or a marine sanitarium which this island presents. The equability of its climate, its protected sandy bays and beaches, and its pure sea-water, with the sandy bays and beaches, and its pure sea-water, with the
whole expanse of the gulf in front, make it a peculiarly whole expanse of the gulf in front, make it a peculiarly
desirable locality for bathing purposes. The numerous desirable locality for bathing purposes. The numerous means of recreation that always present themselves on the sea-shore, its excellent water supply, well raised surface, eligible sites for buildings, and the fertility of its soil, its moderate dimensions, whereby the entire island can with ease be kept under aatisfactory hygienic control, and the facility of its approach at all seasons, and above all, its already proved excellent qualities as a sanitarium, under many disadvantages, mark it as a most promising locality, especially where structural disease is threatened, and demand that Government take an interest in its development. In conclusion, I may state that no case of sickness or death has occurred amongst a large number of women and children, families of the working residents, since the first occupation of the island.
An eye sketch of the island accompanies this Report
(Signed) D. Macpherson, M.D.,
Inspector-General of Hospitals,
Madras Establishment.
Office of Inspector-General of Hospitals
Curlew Island, Gulf of Mataban, 24th June 1861.

From Captain A. Fraser, Royal Engineers, Superintendent Alguada Reef Lighthouse, Curlew Island, (Calagouk,) Mth June 1861, to the Inspector-General of Hospitals,
Madras Army.
I have the honour to acknowledge the receipt of your letter, No. 32 , dated 27 th May 1861, in which you requested a passage in the steamer Setang to Tavoy and Mergui, and desired my co-operation in the prosecution of your inquiries as to a fit position for the establishment on this coast of a sanitarium for the European invalid soldier.
2. My duties calling me to Tavoy enabled me to do as you wished, and it has given me much pleasure to afford you such information as my experience on this coast enabled me to give. I have since read your report, received with your letter, No. 35, of this date, as regards Calagouk, or Curlew Island, and I go with you in every word you have said on its capabilities for the end you have in view, and am of opinion that it is superior in position, in accessibility, in its moderate and therefore controllable size, and in the preat variety of hill and dale, sandy beaches and perpendicular cliffs, to any place which I know on this coest for the purpose of forming a delightful and healthy residence
3. On the lst September 1860 I had the honour of Works Department ant to the Government in the Public Works Department on this very subject, and I submitted to you a copy of the paragraph of my letter which specially referred to it. The Government passed no orders on that part of my letter, probably because it only formed a part of my regular half yearly report, and the matter was not brought apecially to notice; and I have not since adverted to it, partly because the sickness of my workpeople, after last rains, was rather more than I had expected, partly because I felt that my remarks on such a subject would carry with them little weight, unsupported by eminent medical authority.
4. When you proposed to accompany me on my trip to Tavoy, I felt that I should have an opportunity of showing you the capabilities of this island, which I knew, from my own practical experience, were very great, and of securing, if I was right in my own judgment, that opinion which was alone necessary to cause the Government to appreciate the alone necessary to cause the Government to appreciate the
value of this island as a sea const sanitarium. My only value of this island as a sea coast sanitarium. My only doubt was as regards Tavoy island, which I thought might
be more suitable. I had never visited it, but had heard good accounts of it, and as one of my lighters had to go to good accounts of it, and as one of my lighters had to go to
Mergui, I was glad to tow her down, visiting with you that Mergui, I was glad to tow her down, visiting with you that it is in no way equal to Calagouk for the purpose you have in view.
5. You have explored this island in a more complete way than I myself have ever had time to do before; you have carefully exanuined into the cases of sickness which have occurred in the hospital, and I am very glad to see that you came to the conclusion that such disease as we have had does not arise from the unhealthiness of the island, but from the nature of the work and the peculiarity of our position. All places are more or less unhealthy in Burmah according to my experience, on their first clearance, and I have been obliged, to a great extent, to place my people with reference to the work they had to do, rather than to their sanitary condition. Had I had more time I might have placed them better, but the work I have now in hand is so far advanced, that it would be a pity to move, if it can be avoided; and with the adrice I have received from you, I have no doubt that next year we shall not suffer so much even from the light diseases which troubled us last season. The state of the hospital at this very time could scarcely be more satisfactory.
6. Those who come here and go no further than the small space upon which my establishment is settled, know nothing of the beauties or capabilities of Calagouk; and those who only look st the number of sick, without going into the causes of disease, or making themselves acquainted with the constant exposure of all hands, both at the reef and at this island, are apt to think the situstion unhealthy -but both the fever and the ulcers, the chief diseases from which we have suffered (the ulcers confined, however, only to the natives), may be traced to the nature of the work. Men come down here without any better clothing than they are accustomed to, and the constant cool wind which blows here gives them cold, and slight fever, and ague, while the constant working among sharp stones, causes bruises and abrasions of the skin, which, without a good vegetable diet, are apt to turn to ulcers. You are aware that the difficulties about vegetables can be overcome, for I know of no place which affords such facilities for gardening when the ground has been cleared. There would be no fever either, were sufficient time allowed for the malaria, con-

3 P3
sequent on the clesrance，to pass away before men were located here．
7．If the Government saw fit on your report to adopt this as a sea coast sanitarium，I do not see that much cash expenditure need be gone to．I should be most happy to take general charge of the work，and if I were allowed another assistant，a smart young infantry officer who has passed for the department，I could well work the thing out； according to your views，with 200 convicts（who could be kept separate from my own workpeople，to the south of the island）from Moulmein．These I have no doubt Lieutenant Colonel A．Fytche，the Commissioner of the Tenasserim and Martaban provinces，would willingly con－ sent to give，as it would tend so greatly to the general improvement of the provinces under his control－but in my opinion no large bodies of troops should be docated here till the third year after the clearance of the jungle， though it will be doubtless possible to erect private bunga－ lows at a much earlier date．

8．I have already done a little towards opening up the island－the quantity of wood I require for my steamer enables me to do so－I shall be truly happy if the Goverr．－ ment allow me to do more，as I shall feel that I shall be doing ment allow me to do more，as I shall feel that I shall be doing
that which will prove a lasting benefit to the European that which will prove a lasting
community and soldiery of India．
9．So accessible is Calagouk that，were it properly laid out，and well known，I feel sure its pure air and sea bathing，combined with the beautiful scenery，would induce all，whether from Calcutta or Madras，or the chief towns and stations of Burmah，to make it their resort for the renovation of health，whether of mind or body．
10．In conclusion，I beg to thank you most sincerely for the trouble you have taken，and the advice you have given， for the improvement of the sanitary condition of our present settlement，and I have no doubt that by carrying out the measures you have suggested，as far as our means will allow， we shall reap the benefit thereof by improved health next year．

Remares by Lieut．－Colonel J．E．Robertson，commanding lst Battalion，6th Royal Regiment．

Sin， Haying 7th August 1862. nonth on the of the Army in India would be wonderfully increased if a portion of it could always be stationed on some hill station．

The benefit that was experienced by the wing of my regi－ ment during the year it was stationed at Senchal，on the Darjeeling hills，was incalculable，as the following state－ ment，showing the admissions into hospital of the men of my regiment at Senchal and at Barrackpore in 1861，will prove．

Retunn showing the Sickness of the Wings of the 1st Battalion 6th Royal Regiment quartered at Barrackpore and Darjeeling during the Year 1861.

					${ }_{\substack{9 \\ 4}}^{\stackrel{y}{4}}$				$\begin{aligned} & \text { 号 } \\ & \text { 慁 } \\ & \underset{y y y}{*} \end{aligned}$	$\begin{aligned} & \text { g } \\ & \text { 点 } \\ & \stackrel{y}{\square} \end{aligned}$		㳦｜				－			－		
	\｛ Barrackpore	－－	－	492	12	11	3	7	4	17	2		－	－	－	30	－	30	116	$52 \cdot 9$	$10 \cdot 7$
January	－Darjeeling	－．	－	398	12	3	1	7	3	9	－				1	4	－	3	44	15＊	$3 \cdot 8$
	－$\{$ Barrackpore	－．	－	498	11	1	－	2	2	6	－		－	－	1	9		8	40	$45 \cdot 2$	9.
February	－${ }^{\text {D Darjeeling }}$	－－	－	387	2	－	1	5	2	1	1	－	－	1		4		－	17	$8 \cdot 5$	$2 \cdot 2$
March	－ Barrackpore	－－	－	479	9	5	4	2	9	22	2	－	－	－	1	6	－	9	69	$38 \cdot 8$	S． 1
March	－Darjeeling	－－	－	386	1	5	1	2	3	1	－	－		－	－	2	－		18	$9 \cdot 8$	$2 \cdot 5$
	－Barrackpore	－－	－	478	26	6	2	1	4	26	－	－	－	－	－	12	－	13	90	$51 \cdot 2$	$10 \cdot 7$
Apr	－ Darjeeling	－－	－	384	7	1	1	3	－	－	－	－	－	－	2	4	－	1	19	$8 \cdot 3$	$2 \cdot 2$
	－$\{$ Barrackpore	－－	－	472	17	6	1	1	－	27				－	－	7	－	18	78	$43 \cdot 4$	$9 \cdot 1$
Nay	－ Darjeeling	－－	－	389	6		－	1	2	1	－	－	－	－	5.	4	－	5	24	$14 \cdot 7$	3．7
	－ Barrackpore	－－	－	470	24	10	－	3	1	26	1	－	－	－	\cdots	1	1	14	81	38－3	$8 \cdot 1$
June	－Darjeeling	－－	－	388	4.	1	－	－	－	2	－	－	1	－	1		－	1	24	17．7	$4 \cdot 5$
	－$\{$ Barrackpore	－－	－	470	27	10	－	5	4	50.			－	－	－			38	144	61－6	$13 \cdot 1$
July	－ Darjeeling	－－	－	386	5	－	－	4	4	4	－	－	－	，	－	． 7	－	5	29	$27 \cdot 8$	$7 \cdot 2$
	－\｛ Barrackpore	－－	－	464	21	16	3	4	6	20	－	2	1	－	－		－		100	$59 \cdot 1$	$12 \cdot 7$
August	－ Darjeeling	－－	－	386	7	1	1	－	3	1	$\overline{1}$	－	－	－	－		－	2	22	$20 \cdot 1$	$5 \cdot 2$
September	－$\{$ Barrack pore	－－	－	457	28	11	2	4	2	15	1		－	－	－	3	－	10	76	$48 \cdot 6$	$10 \cdot 6$
September	－ Darjeeling	－	－	387	6	I	1	7	－	3	2	－－	－－	－	1	5	－		32	$21 \cdot 1$	$5 \cdot 5$
	－\｛ Barrackpore	－－	－	455	16	8	－	3	$\overline{7}$	16		1	－	－	－		－		56	$33^{3 .}$	$8 \cdot 1$
	－Darjeeling	－－	－	386	5	1	1	3	1	3	－	1	1	－	2	7	－		31	$16 \cdot 5$	$4 \cdot 2$
	－ Barrackpore	－	－	448	9	8	1	3			－	2		\cdots	1	2	－	19	60	33.	$7 \cdot 8$
November	－Darjeeling	－－	－	385	1	－	－	3	1	$-$	－	-1	1	－	1	3			12	$13 \cdot 2$	$3 \cdot 4$
	－$\{$ Barrackpore	－－	－	448	12	4	－							arch	to B	6	－		37	26.5	$3 \cdot 1$
Decembe	\｛ Darjeeling	－	－	385	－	－	－		No	spit	0	the	e ma	arch	to B	arra	kpor		－	－	－

N．B．－In 1860 the average proportion of officers absent from the Regiment on sick certificate was $9 \cdot 77$ per cent．，the proportion of men $3 \cdot 93$ per cent．

A regiment should be located on the hills during the hot weather and rains（or say，for one year，so that the men should enjoy the frost and snow，once in every four years． If a regiment，or even a wing of a regiment，was quartered on the hills， 1 consider that the convalescent establishments might be abolished，and that the invalids who are sent up periodically to the hills for change of air might be attached to the troops stationed there．This would be a great saving to Government，and the invalids would be equally well cared for．The climate of the Darjeeling hills is superior to that of England．The men are as robust as they are at home， and they should be required to perform the same offices for themselves as they would be in England or in the colonies． ＇l＇he mative establishment allowed by Government is not necessury on the hills，and if dispensed with would also be a great saving to the State．The soldiers should be obliged to cook，and their wives to wash for the men as ．they do at home．＇The expense of feeding the troops．in the
hills was very great in 1861；this was owing to the com－ missariat not being prepared for so large a number of men being stationed there，and also from the food being carried up on coolies＇backs．Roads are，however，now being cut through the hills，and the expense on that head will soon diminish．Soldiers suffer much from ennui on the bills（especially during the rains，when they cannot move hills（especially during the rains，when they cannot move
out of their rooms）and as exercise is indispensable to their out of their rooms）and as exercise is indispensable to their
health，workshops should bs encouraged as much as possi－ ble．The men could repair barrack furniture，barracks，and drains，which latter are constantly getting out of repair from the beavy rains which wash away portions of the road． Reading rooms，gymnastics；coffee rooms，\＆c．，are indis－ pensable at all hill stutions．
（Signed）J．E．Robertson，Lt．－Col．
To Sir R．Martin，C．B．，F．R．S．，

Dr: A. Campbell, late Civil Superintending Surgeon at Darjeeling, has informed me that during the Sikkim campaign in 1861 , the lst battalion of the 6th served under Lt.-Col. Gawler through February and March without attendants of any kind, and even without tents. The
regiment returned to Darjeeling in perfect health, and so remained until Dr. Campbell's departure six montiss subsequently.

Extract from Report of the Principal Inspector-General Medical Department, Fort Saint Greorger, 3rd February 1862, No. 18, to the Addutant General of the Army, Fort St. Georee.
The large military station of Secunderabad was some years since notorious for the prevalence of syphilitic diseases, but for some years past, a system has been in force, of sending diseased females to the Civil Dispensary for treatment, and the result was on the whole so satisfactory, as to lead Government to establish similiar regulations for other military cantonments. During the year under review, venereal disease at this large station was no doubt kept down by the existence of the Lock hospital. From the medical officer's report, the form of disease at this station is stated to be chiefly of a mild nature, and this has, no doubt, resulted from the care with which the diseased women have been treated, for some years past.
At Bangalore, a large number of women have been treated. The building is too small for the purpose of a hospital, and was over-crowded. An epidemic of cholera broke out amongst the inmates (the disease being prevalent at the time in the station) several of whom died. At this station there has been a lengthy correspondence in reference to the proper duties of the police, and of the officer in charge of the lock hospital, which it is unnecessary now to refer to, as under the new regulations, approved of by the military authorities and the acting Commissioner of Mysore, the institution is working well, and venereal disease diminishing amongst the European soldiery. The "voluntary system" has had a fair trial at Bangalore, and has utterly failed to check the ravages of syphilitic diseases. The large expenditure at Bangalore and Cannanore for perishable articles and diets in comparison with similar institutions elsewhere, will doubtless attract notice. The attention of the medical officer has been called thereto, and explanation requested.
The Lock hospital at Cannanore during the short time it has been in existence, has worked well, and a decrease in has been in existence, has worked well, and a decrease in the number of venereal admissions amongst the European
soldiers has been the result. The cost of dieting, however, soldiers has bee
has been high.
The hospitals at Trichinopoly, Wellington, Bellary, and Vizagapatam, it will be apparent from the observations of the various medical officers, have in the short space of their existence effected much good, and I have no hesitation in recommending the introduction of similar establishments wherever European troops are located, and especially in the severul stations of Burmah, where from the recent importation of numerous prostitutes from the Coromandel coast, venereal diseases are on the increase.
The good to be effected by Lock hospitals must, in a great measure, depend upon the cordial co-operation of all officers of Government concerned in promoting the welfare of European troops. The necessity for some well defined regulations touching the conditions on which prostitutes are pernitted to reside within range of European troops, is apparent. The regulations now in force at Bancalore appear to have been judiciously framed, and if acted up to, will leave little or nothing to be desired. Copy of these is appended. The rules appear to be well adapted for all stations where military and civil come into contact.

> Extracts from Reports of Medical Officers in charge of Look Hospitals. Look Hospitals.
Bangalore.-Stringent measures are quite as necessary here, as elsewhere, and unless some principle be adopted for the registration, examination, and treatment of the prostitutes who overrun this cantonment and garrison, it is quite impossible to preserve the troops from the maladies, which destroy the vigour and undermine the health of the soldiers at this station; whereas it is shown that the troops quartered at Brussels, where such stringent regulations exist, are preserved almost wholly free from the maladies which constitute one-third or more of the total sickness of the

English army. It therefore rests with the authorities to initiate some such principle of action without delay, undex the control of the officer commanding the division, and under properly defined police regulations, which do not at present exist.
Trichinopoly.-That the Institution has been attended with a fair portion of success, and has lessened the pre valence of venereal disease amongst European soldiers, is satisfactorily shown by comparing the admissions under that head, in the 2nd European light infantry, for the years 1859 and 1860, viz., 207 admissions in 1859, and 129 in 1860 ; showing in the past year a decrease of nearly onehalf. It is to be regretted that a similar comparative return of the European battery of artillery stationed here, cannot be obtained, owing to its more recent arrival.
Wellington.-The Lock hospital at Wellington was opened for the admission of patients June 7th, 1860 . Fism this period to December 31st, 157 cases have been treated making a daily average of $11 \frac{1}{2}$; of these 69 cases of primary syphilis have occurred, four of which were accompanied with byiti the remainder, 88 , were cases of ordinary ratifying to be able to state that since this Hospital has been established, venereal disease in ee this Hospital has very rare at this station. During the seven form has been vear 1860 , only 19 cases of ving the seven months. of the Year 1860 , only 19 cases of venereal were admitted into the primitiva, and six of gonorrhœa.

Rules for the Police and Lock Hospitals.

1. A Register of all prostitutes who cohabit with European soldiers, and who reside within the limits of the Cantonment, to be kept in the Police Office. This Register Cantonment, to be kept in the Police Office. This Register
to show the name, age, caste, and place of residence of each to show
2. A copy of the Register to be furnished to the officer in charge of the Lock hospital.
3. Whenever the officer in charge of the Lock hospital, or other medical officer, or an Officer commanding a regiment or company, has reason to believe that any woman, whose name is not in the Register, ought on account of her known habits, to have her name entered therein, he should send a Memorandum showing name. age, caste, and place of residence of such woman to the Superintendent of Police, who will be responsible that thorough inquiry is made into the case, and that her name is entered in the Register if she is found to be a prostitute who cohabits with European soldiers.
4. Neither the police nor the subordinates of the Lock hospital shall be permitted to call upon any woman to allow herself to be examined except at the Lock hospital, and no woman whose name is not in the Register, shall be taken to the Choultry or Lock hospital, except by the order of the Superintendent of Police.
5. There are at present about 108 women whose names are registered. One day in every week may be set apart, upon which one-fourth of the womien shall be compelled to attend at the hospital to be examined.
The Lock hospital peons, who should be furnished with a list of names, sided by the police at the various Tannahs, should be employed in personally warning each woman to should be employed in personaly warning each
attend on the day fixed at a certain hour, 7 A.M.
Any woman who neglects to obey this summons, shall
Any woman who neglects to obey this summons, shall be at once apprehended by the police, and taken to the Lock hospital. If she is infected, she will of course be detained, but if not, she will be sent to the Choultry to be
fined eight annas. fined eight annas.
Shouned any woman systematically neglect to attend when summoned, she will, after due warning, be expelled from the place.

Effects of the Climate of the Darjeeling Hills on the Constitution of Europeans. By J. C. Colicins, Esq., Civil Assistant-Surgeon.

In considering this subject; so important in its bearing on the question of the colonization of these Hills, I shal divide my remarks into three heads:-

1st.-The character of the climate. .

2nd.-The influence of the climate on the European constitution in its normal or healthy state.
Srd. The inthence of the climate on the European conatitution in its abnormal or unhealthy state- especially in
reference to the diseases to which Europeans are liable from a long residence in the plains of India.
1.-The Character of the Climate.

The climate of the station of Darjeeling, about 7,000 feet above the level of the sea, the mean average temperature of which is about 54° Fahr., and the average annual fall of rain 124 inches, may be taken, as a type of the climate of the whole district above 4,000 feet, allowing for the difference of temperature and moisture of the atmosphere at various elevations. The climate is essentially a temperate oneremarkable for its humidity, equability, and immunity from violent atmospheric phenomena and strong winds; there is, at all times of the year, more or less cloud and fog, and in the rains the atmosphere constantly attains the point of saturation. The amount of mist and cloud has, however, very much diminished of late years, in consequence of the extensive clearing of forest which has taken place on all sides for the purposes of cultivation.
The year may be conveniently divided into three seasons -the Spring, the Rainy Season, and the Winter.

The Spring commences in March and terminates about the end of May, the average temperature being about 55°, and the greatest variation in any 24 hours 12°. This season is marked by the usual characteristics of spring in Europe; the mornings are cold and bright, the days warm and balmy the birds fill the forests with their cheerful notes, and all nature is ready to burst into life. Storms of rain and hail are of frequent occurrence, accompanied by a considerable development of electricity. These showers of rain, always of a higher temperature than the surrounding atmo of a sphere, are most grateful and necessary after the long drought of the cold season-the country which had become
brown and parched is soon covered with the richest verdure. brown and parched is soon covered with the richest verdurs.
The atmosphere at this time is not generally clear, but filled during the day with a kind of dry mist, which circumscribes the view and diminishes the brilliancy of the sun indeed, often obscures it. The density of this mist is much increased by heing mixed with a quantity of smoke which comes up from the side of every mountain and valley where the jungle is being cleared by burning.

The Rainy Season commences at any time from the lst to the 15th of June and lasts until the end of September, during which period the average fall of rain is over 100 inches. The rains generally set in with lightning and thunder, but the atmosphere soon becomes calm, and the rain falls steadily for hours, and often for days together, not heavily, but quietly and continuously. There is generally an interval more or less clear morning and evening, and two or three breaks of fine weather occur in the season when the sun shines out so hot and bright as to remind one of its power in the plains below.
There is always at this season, of course, a large amouni of cloud, and the atmosphere is often saturated, the prevailing winds being south-east and east The average temperature during these months is 60°, and the greatest perature during these months is 60°, and the greatest
variation in any 24 hours 9°. The climate, from its excesvariation in any 24 hours 9 . The climate, from its exces-
sive moisture, is somewhat relaxing, but not unhealthy, especially as long as the sky is covered with clouds and fog, which ensure uniformity of temperature; but if there is an interval of bright clear weather, coughs, colds, and sorethroats are prevalent.

The Winter may be said to extend from the 1st of October to the end of February, when the temperature ranges between the freezing point and 55°-the average of the five month being 46°, and the greatest variation in any 24 hours 12° This is a truly delightful and enjoyable season. The days are bright, the nights cold, frosty, and brilliantly clear ; the air is crisp, bracing, and most pleasant to the feelings. In January and February, however, and sometimes in the latter end of December, the weather becomes thick and cloudy for a few days, and there is, generally, a slight fall of rain or snow; the latter remains only a few hours on the ground, being speedily dissipated by the brilliant sunshine, which is certain to succeed the fall.

It is not to be supposed, however, that because the nights are frosty and snow does fall once or twice in the year, that the winter is a severe one; on the contrary, compared with the European winter, it is very mild-to prove which, I need only mention that, at 7,000 feet, many English vegetables are in perfection. Peas and cauliflowers blossom beautifully, and I have plucked from my own garden in December or January, every year, one or two large well-ripened strawberries. I have appended to this paper an abstract of the Meteorological observations taken four times a day at the Observatory for each month in the year 1857, which gives a very fair ides of the climate.

2.-The effects of the Climate on the European constitution

 in its natural or healthy state.It would be difficult to imagine a climate more likely, on the whole, to be suitable to the maintenance of good health
in the European than that of Darjeeling. It is temperate, not. subject to any great extremes of heat or cold, is out of the influence of malaria, and is not productive of any peculiar class of disease liable to weaken the frame or destroy life. The water is excellent in quality, the mountain air purity itself, and such in reality it is found to be. European adults, both male and female, thrive admirably. The possibility of being in the open air at all times without inconvenience from the effects of the sun, induces habits of active exercise, which render the body muscular and vigorous; the skin is clear, the complexion ruddy, and corpulency is almost unknown either amongst the European or native community.
But it is for children more especially that the climate is peculiarly well adapted. They enjoy the most robust health -their rosy faces, exuberant spirits, and activity of mind and body, show that they cannot be in better physical condition.
Dr. Hooker writes thus:-"I believe that children's faces "afford as good an index as any to the healthfulness of a "climate, and in no part of the world is there a more active, " rosy, and bright young community, than at Darjeeling. "It is incredible what a few weeks of that mountain air " does for the India-born children of European parents "they are taken there sickly, pallid or yellow, soft and " flabby, to become transformed into models of rude bealth " and activity."
I cannot illustrate this part of my subject better than by mentioning an extraordinary fact respecting the health of the children at the Convent, which has come to my know ledge as medical attendant of that establishment. The institution was established 13 years ago, and has had a yearly average of 28 children and 11 adults resident within its walls; yet, during this period, not one death has occurred, nor has it been necessary to send away either child or nun for change of air on account of sickness.
To estimate this fact at its true value, it must be remembered, that very many of the children have arrived from the plains in a most delicate state of health from fever, spleen, dysentery, and diarrhœa, and that most of the nuns have been transferred from the Calcutta Convent as invalids, in some cases suffering from most serious disease. This very satisfactory sanatory condition of the establishment may perhaps, in some measure, be due to the excellent system of management adopted by the ladies at its head, but could not be obtained, under the most judicious and careful treatment, in any but a most healthful climate.
The following table, kindly furnished me by the Lady Superioress, exhibits the number of adults and children resident in the Convent for each year since its establish-ment:-

Convent Darjeeling, Established 1846.

3.-The effects of the Climate on the European constitution in its abnormal or diseased condition.
The indigenous diseases of Darjeeling are few, and generally mild in character, being chiefly those which affect the air-passages, as is the case in all damp climates. The diseases, however, which are most constantly met with, are those contracted in the plains, such as fever, dysentery, and diarrheea. I shall proceed to notice these under their respective classes, in reference to the influence of the climate in effecting their cure.
Fevers.-Fevers of all kinds come under treatment, but those of the intermittent type are the most common. They yield rapidly to careful treatment, and the effects of the climate, in restoring the patient to health, are most marked where no organio disease exists.

Eruptive Fevers.-Scarlet fever and measles I have not seen here, though I believe cases of both diseases have oc. curred in a mild form.

Small-pox is the scourge of the native population of these hills; it makes its appearance, more or less, almost every hills; it makes its appearance, more or less, simost every year about the middle of the winter, being introduced by inoculators from Nipal, who perambulate the whole district, spreading the loathsome disease wherever they go. Europeans do not often get it, as they are protected by vaccination, and are careful to avoid the infection.
Diseases of the Lungs.-Coughs and colds are prevalent at the changes of the seasons, but serere diseases of the lungs are seldom met with. I have not met with a serious case of pneumonia, or bronchitis, or pleurisy in the European, and but few cases amongst the natives, neither have I seen a bad case of croup or sore-throat.

One case only of asthma has come under my observation; it commenced in the plains, and was not at all benefited by a residence of many months in Darjeeling and its neighbourhood; the climate probably, from the rarity of its atmosphere and humidity, is not adapted for persons subject to this obstinate disease.
I have seen two fatal cases of phthisis pulmonalis, one in a half-caste, and the other in a young Lepcha woman, who had led a most dissipated life. The subject of the former case was educated in England, where tubercles became developed, and he was sent to this country for change.
I have treated many suspicious cases, and am of opinion that the climate, from its uniformity of temperature, is decidedly a good one for persons who have, what are called. delicate lungs.
Diseases of the Liver.-Where the disease is only functional, a residence of a few months in this climate is most beneficial, but where there is any considerable organic lesion, little improvement can be expected.
Diseases of the Stomach and Bowels.-Cases of dyspepsia rapidly recover with a sufficiency of exercise in the open air and careful diet. Numbers of the visitors of Darjeeling and careful diet. Numbers of the visitors of Darjee ing arrive suffering from dysentery and diarrhoea, and in the majority of cases derive immediate relief, children especially get rid of these diseases in a remariable manner, andy seldom suffer a relapse. Two cases of dysentery have only
proved very obstinate--these have existed on and off for proved very obstinate-these have existed on and off for three years, but such is the extraordinary effect of the climate
on the general health, that the patients have, during this on the general health, that the patients have, during this
period, attended to their respective occupations almost withperiod, attended to their respective occupations almost with-
ont interruption, and the disease in both cases seems nearly oot interruption, and the
to have worn itself out.
to have worn itself out.
Diarrhcea, in a mild form, occurs at the beginning of the rainy season, and is to be attributed to the use of impure water for drinking purposes; many of the springs dry up in the winter, and are only called into activity again when the rains commence, by the surface water, which percolates through all the decayed vegetable matter of the forests, and is consequently unwholesome.
This cause of sickness is easily avoided by using. water from the permanent springs, which is of the very purest description. Diarrhcea, in a severe form; is not a frequent disease here, and Darjeeling, in this respect, enjoys a very great and peculiar advantage over all the other Himalayan Sanataria, where it prevails to such an extent as to do away with much of the advantage to be otherwise derived from a residence at those stations. I have not met with a case in any way resembling the disease described, as it occurs at Simla and its neighbourhood, by Dr. A. Grant, in the lst Vol. of the Indian Annals of Medical Science.
Diseases of the Brain.-Persons afflicted with such comDiseases of the Brain.- Persons afflicted with such complaints should not come to Darjeeling for relief, or they will certainly be disappointed; the elevation is too great, and
the air too rare. In these cases, headache, a sense of fulthe air too rare. In these cases, headache,
ness, and vertigo, are always complained of:

Rheumatic Affections.-It would be supposed that the climate of Darjeeling, from its dampness, would be abundently productive of rheumatic affections, but my experience proves the contrary to be the case. In the dry seasons, proves the contrary to be the case. In the dry seasons,
there is no reason why they should prevail, whilst in the rains, the evaporation is so slight, that a complete wetting is scarcely ever followed by an attack of rheumatism.
I have seen many cases completely recover, and in one case of severe acute rheumatism, the cure was' remarkably rapid and permanent.

Spleen.-Cases of spleen usually do well here, provided the discase has not become hopeless. The accompanying fever soon disappears, the general health improves, and, as a natural consequence, the diseased organ resumes its normal state.
For the last three years the average mortality amongst the European community has been something over one per cent. per annum, that is, out of an average number of about 200 persons residing in the station, there have been seven deaths. This mortality, under any circumstances; small, becomes extraordinarily so when it is considered that the place may be justly compared to a large hospital; the visitors generally arrive either suffering from actual disease or very much debilitated from a long residence in the plains of Bengal; the majority also of the residents are invalid or retired officers who, though they enjoy good health here, have found it impossible to live in the plains.
If we, moreover, analyse this mortality, we shall find that neither of the deaths can be fairly attributed to the climate. They were as follows :-

No,	Diseasé.	Remarks.
1.	Phthisis pulmonalis -	Arrived in articulo mortis, and died is three days.
2.	Remittent fever, with bronchial complication.	Fever contracted in the plains. The disease of the lungs was of long standing.
3.	Serous apoplexy - -	The third attack seven days after child-birth.
4.	Intermittent fever; the spleen and liver enormously enlarged.	Died about six months after arrival.
5. 6. 7.	Small-pox $\quad=\quad-$ $\begin{aligned} & \text { Small-pox } \\ & \text { Small-pox }\end{aligned}-\quad-\quad-$	the same family; they were unprotected; the other members of the family having been vaccinated, recovered.

In conclusion, I have endeavoured to give a fair and unprejudiced account of the climate of Darjeeling, and its aduptability to the European constitution, founded on an experience of three years uninterrupted residence as
Assistant-Surgeon, and I can conscientiously say, that Assistant-Surgeon, and I can conscientiously although brighter and perhaps more pleasant climates may although brighter and perhaps more pleasant. cimates may be found, yet, in point of salubrity, I believe it to be unsurpassed, and I feel sure that the only thing required to make it a favourite place of resort for the European community of Calcutta, and Bengal generally, is a good road to the foot of the hills, with easy and rapid communication.
For statistics of health and mortality amongst the European soldiers at the Jellapahar Depôt, I must refer to the Reports of Drs. Withecombe and Domenichetti, published in No. VII. of the Indian Annals of Medical Science.
Darjeeling, February 1st, 1859.

Obserfations on Venereal Diseases, with Suggestions for the Amelioration of this Army Pestilence, by William Acton, Esq.

For many years past I have atternpted to call the attention of the public to the condition of our soldiers, who suffer so severely and frequently from venereal affections.
I append the following tables taken from my work on
" Prostitution, \&c." (pp. 38 et seq.):-

" Military Hobpital Expbrience.

"Admissions into Hospital for Venereal Affections among the " Dragoon Guards and Dragoons serving in the Enited " ${ }^{\text {Kingit. }}$
"From the © Statistical Reports on the Sickness, Mortality, and "I From the 'Statistical Reports on the "Invaliding annong the Troops in the Mediterranean, and British America,' presented to Parliament
" in 1839, I extract the following table:-

- 1000 . "Thus 181 per 1,000 , or about one man in five, appear to have ". been attacked. Primary ulcers on the penis were more numerous " than discharges from the urethra, the numbers being 3,559 "primary ulcers, 2,449 cases of gonorrne in 12 suffered from the forner, one in 18 from the latter, " once during the period."
The above table was printed in the last edition of my work ${ }^{\circ} \mathrm{On}$ the Diseases of the Generative Organs:" I work "On the Diseases of the Generative Or
extract the following table from a subsequent report on army diseases from 1837 to 1847 ：－
＂Admibsions into Hospital from Venereal Disease and Deaths ＂among the Dragoon Guards and Dragoons，the Foot ＂، Guards and Infantry of the Line，serving in the United
＂Kingdom from 1st April 1837 to 31st March 1847.

	Cavalry．	$\begin{gathered} \text { Foot } \\ \text { Guards. } \end{gathered}$	Infantry．	Total．	安	雨
Aggregate strength	84，374	40，120	160，113	254，597	－	－
Syphilis primitiva	1，3918	4，769	0，157	12.322	1	
Syphilis consecutiva	463	546	2.085	3，083	8	
Uleus penis yon syphill－	2，920	883	13，380	17，188	1	－
Bubo simplex	1，496	989	0，625	9，119	1	
Gonorrhoea ${ }^{-}$	8，725	2，198	12，488	18，911	－	
Hernia humoralis	1，119	658	2，768	4，345		
Ntrictura urethree	131	42	198	421	4	
Cachexia syphiloidea Phymosis et paraphymo－	${ }_{58}^{58}$	$\underline{23}$	87	12 287	2	
Total	11，205	10，043	45，135	65，683	17	\rightarrow
Number of men per 1,000 of strength admitted during 10 years．	206	250	277	257	－	463＊

That I might judge for myself，of the condition of venereal among the troops in London，durmg the last twelve－ montl，Mr．Bostock，surgeon－major to the Scots Fusilier Guards，kindly took me over his hospital，of the arrange－ ments of which I cannot too highly speak．I found， as I expected，that syphilis has been for many years，and continues to be，a very plague in the regiment．During the first few years after enlisting，many a promising young the first few years after enlisting，many a promising young
soldier is laid up in hospital with some of these affections． soldier is laid up in hospital with some of these affections． In spite of all the measures hitherto taken to induce men to apply early，large numbers are constantly being sent into hospital and found to be suffering from the severest forms of disease，inducing a long course of mercury，which de－ presses the vital powers and disposes to other complaints． After a long convalescence，and in spite of all the pre－ cautions that can be taken by the medical officers，such rnen become invalided，and no statistical tables can give any accurate idea of the number of good soldiers thus lost to the service．
The following figures will give some notion of the form of disease existing when I visited Mr．Bostock＇s wards ：－

$\begin{gathered} \text { November } \\ 1859 . \end{gathered}$					易			
Syphilis primi－	14	0	20	4	－	4	16	Strength
Syphilis con－	11	3	14.	8	－	8	6	ment
Uleus penis non	10	11	21	10	－	10	11	Guards
syphilitieum．								in London
Gonorricea－	9	6	15	？	－	9	0	during
Hernia humo－ ralis．	－	4	4	3	－	3	1	the month
Rubo－	18	＋	16	7	－	7	9	November
Phymosis		2	2	1	－	1	1	1859，
Total－	56	30	92	42		（2）	50	1，500．

To enable the Commission，however，to compare the diseases as they affect our household troops in London， I ，append the following table which Mr．Bostock has obligingly obtained for me：－

Venereal Affections in the three Regiments of Foot Guards during twelve Munths，from April 1，1858，to March 31， 1859.

Strength．	$\begin{gathered} \text { Scot } \\ \text { Fusiliers, } \\ 1,640 . \end{gathered}$	Cold－ stream 1，600．	Grena－ diers， 2，400．	Total， 5，601．	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { Groups. } \end{gathered}$	Average．
Non Specific．						
Gonorrhoza－	118	176	169	415		
Herria humora－	20	17	54	45	\} 819	1 in 10
Rubo－－	64	59	77	200		
Phymosis et para－ phymosis．	1	－	－	1	－	－

[^12]| Strength． | Scot Fusiliers， $1, \mathrm{Covo}$, | Cold． streams， 1，600． | Grena－ diers， 2，400． | Total， 5，600． | $\begin{gathered} \text { Total } \\ \text { itu } \\ \text { Groups. } \end{gathered}$ | Average． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Primary Symp－ toms． | | | | | | |
| Syphilis primitiva
 Ulcus penis non syphiliticum．＊ | 1104 | 540 19 | 656 39 | $\begin{array}{\|c} 1,200 \\ 167 \end{array}$ | $\} 1,367$ | 1 in 4 |
| Secondary Symp－ toms． | | | | | | |
| Syphilis consecu－ tiva． | 36 | 84 | 68 | 108 | 168 | 1 in 8 |
| Total treated | 465 | 875 | 954 | 2，294 | | |
| Total sick treated | 1，224 | 1，762 | 2，272 | 5，258 | | |

It appears from the above table that almost every man comes into hospital once a year，or，what amounts to the same thing，the same men enter several times；for we find 5,258 as the total sick treated out of a strength of 5,600 men．The remarkable fact appears that 2,294 of the 5,258 were afflicted with venereal disease．In other words，nearly half the cases admitted during 1859 depended upon some of its varieties；and the no less remarkable deduction from these statistics is，that，could we eradicate it we should at once remove half the complaints for which our London troops come into hospital．If we divide our tables into non－ specific and specific affeotions，we shall find that the non－ specific amount to 519 thus showing that one in 10 men specinc amount to 519 ，thus showing that one in 10 men suffers from gonorrhoea and its consequences．The same arrangement proves that every fourth man becomes affected with one of the forms of chancre．If we carry our inves－
tigation further，we learn that in the English army tigation further，we learn that in the English army secondary symptoms are very common，as out of 1,367 cases of primary syphilis，as many as 168 men subsequently suffered from constitutional syphilis，making it evident that one in eight cases of chancre is followed by secondary symptoms．

The frequency of this form of complaint is no less marked than its severity．Mr．Bostock pointed out to me a soldier in the hospital at Vauxhall，wbose body was covered with sores（tertiary ones），following the worst form of sloughing chancre．A case more severe than this could not have existed in the epidemic of the 14 th century．It had the character of those sores which occurred in our army during the last Peninsular war and were called by our troops the ＂Black Lion of Portugal．＂The frequent occurrence of swelled testicle among our foot guards is another notable fact．If in private practice we were to find that one out of three or even four cases of gonorrhoes was followed by this painful affection，a London surgeon＇s reputation would be lost ；but the fact is，that the soldiers conceal their venereal complaints as much as possible，and it becomes difficult for the surgeon to detect gonorrhoes，which is checked，or attempted to be checked，at its onset by injections．The too common result is，that a man enters hospital with swelled testicle．

The Remedies．

The question will be doubtless put to me by you，as it has been by others，＂Do you propose to introduce the ＂foreign system of examining public women into Lon－ ＂don？＂I disclaim at once any such intention．What－ ever may be my private opinion of its advantages under despotic governments，I am fully convinced that，however unobjectionable or even positively desirable they might privately think it，such a system would，from the great majority of influential men in and out of Parliament in the present day，meet with public opposition．Neverthe－ less，it is possible that the present agitation of the matter may，in the course of years，cause some modification of the foreign system to be introduced into this metropolis．

It is idle to deny that one of the greatest difficulties of attempting any remedy consists in the fear of injuring the very morality which a remedy proposes to protect．This fear is felt，and loudly proclaimed by a large number of well－meaning men，who，ill－informed on the causes and consequences of vice，and having their own feelings under consequences of vice，and having their own feelings under control，think that the mass of mankind can，and therefore is a kind of apathy that leads even the best men to shrink from action，or even discussion of what they admit is the monster social evil of the day，from a vague dread of some unforeseen moral result．I assume that you do not sympa－
－I an glad to flad that this supposed distinction betweon syphilia －I ann glad to flnd that this supposed distinction betweon syphilia primitray and ulcus penis nun syphiticum is no longer expected from the Director－Creneral，called upon his staft to register all venereal affeo－ tions under one of the following heads：－－Primary syphilis，secondary
do．，inflammation of the iris，genorrheea，bubo，swelfed testicle，stricture．
thize with this timidity. We may, therefore, dare here to ask, and endeavour to discover, if there be any remedies within our reach, other than the continental system of regular licensing and periodical inspection.

We must remember the class of men for whom we have to legislate. In reply to my inquiry, Dr. Robinson, battalion surgeon to the Scots Fusilier Guards, says :-"I am " now in a position to afford answers to the queries. The " serjeant-major quite concurs in the view I expressed to " you, viz., that young soldiers, whether good or bad, "addicted to drink, or otherwise well-conducted, are all, "with few exceptions, equally subject to syphilis in the "early Jears of their service. and accordingly find their "way into hospital." He (the serjeant-major) also agrees with me, that "habitual drunkards, and therefore the " mauvais sujets of the regiment, are more obnoxious to the " disease, by falling into the hands of prostitutes more " readily. 'This occurs, perhaps, at a later period, when
" men have sown, or ought to have sown their wild oats,
" and settled, as the better set do, into steady soldiers."
The Commission will remark that this picture is drawn by a friendly hand, and is supported by the preceding tables. Continental statistics prove that, as to the young soldier French or Austrian, Protestant or Catholic, - his leisure will in all countries be spent in riotous living This observation in all countries be spent in rotous living. This observation is not confined, of course, to soldiers alone. The indulcondition of life. In spite of education and religious oul conding incontinence is a very
But it is pread evil.
But it is our present business to consider, if (as I maintain) we are unable to do so completely, yet how we may, to some extent, guard the young soldier against the consequences of his evil passions, which, as shown in the above statistics, no fear of consequent disease or of permanent ill-bealth will induce him to restrain. In answer to the moral objections, I would submit that incontinence and resulting disease are such widely spread and destructive evils that no greater can arise from the introduction of any reasonable preventive measures. All must admit that our efforts have hitherto completely failed. As neglect will not succeed, we are justified in hoping that a scientific investigation will in this, as in other sanitary matters, assist us in devising plans for ameliorating an evil of great importance both in a social and a military point of view.
I stated above that I am in no way disposed to recommend the abrupt adoption of anything like the foreign system, of abating the evil. Nor are we reduced to this lternative. There are several measures which have only been partially tried, and which, were they thoroughly and effectually carried out, would tend towards that end. In the first place, I would offer facilities for local ablution in the different barracks in London. Within the last year I have visited one of the largest of them, and the want of proper accommodation in this respect is very great.
In an extensive underground, dark room, on a raised platform, were arranged large iron basins, in which soldiers might wash their faces by means of cold water drawn from a tap. The only other means of local ablution I could hear of in this, one of the latest erected barracks in. London, consisted of five baths, supplied from the waste water of the sisted of five bathe, supplied from the waste water of the but in some secluded part, say near the urinals, a few parbut in some secluded part, say near the urinals, a few partions similar to thie at retire daily, and finding the aside, where a soldier might retire daily, and, finding the water laid on, make use of a small zinc basin, and employ
local ablution, if so disposed, in as much privacy as can local ablution, if so disposed, in as much privacy as can exist in barrack life. I shall not stop here to discuss the difficulties attending the introduction of this system; suffice it to say, the plan has been tried and found.successful, or it was not long since in operation at the then East India recruiting depôt at Warley.
My friend Dr. Stewart, surgeon-major at that depbt, was kind enough to show me the arrangements there, and I would recommend those desirous of seeing a model establishment to visit it.
In a recent communication that officer wrote to me:Since the completion of these lavatory arrangements in proximity to the barracks, and the enforcement of theirdaily " use by all the men, as a matter of primary discipline, the - fresh cases of vencreal disease which come into hospital " are all of the most trifing description, chiefly excoria" are all of the most trifing description, chiefly excoria" cured, mas well as punished, by six days' hospital diet and - cured, as well as punished, by six days hospital diet and

- ings. The only severe cases admitted have been among
c men bringing the disease with them from the distric where they enlisted."
The arrangements, then, that have been found to answer 0 well at warley, might, I fancy, be introduced into other In all with equal advantage and facility
In an garrison towns of a moderate population I would suggest that the civil and military authorities should come to some understanding about rendering assistance to prostitutes who are publicly known to be diseased.* When soldiers accuse particular girls, or the medical officer finds a sudden outbreak of syphins traceable to a particular house or woman, on information being given to the civil authorities, they should by their agents ofer an asylum to the infected. Such assistance would, I presume, be thankfully accepted as prostitutes have no special interest in maintaining their own diseased condition.
If some such understanding as this existed, we should not again witness such disastrous outbreaks of syphilis as are continually happening wherever a body of troops is centred. Here again I can cite a precedent for my recommendation. Sir John Liddell, the Director-Ge neral of the Naval Medical Department, in a communica tion with which he has favoured me, says:-"The lock "wards at Portsmouth, which consist of 30 beds, are " always kept full by the women that present themselye ' at the hospital for admission, who require no other "recommendation than being syphilitic. The Admiralty
" have erected the wards at a expense of 1800 A and pay - 500 l a year for the maintenance of 20 beds, which pay ' medical officers at Haslar visit regularly The " authorities pay for the remaining 10 buarly. The army "conditions as our own remaining 10 beds under the same " extablish similar wards in am in hopes that we shal "Hospital at Chatham which is being erected. I am of opinion that which is being erected.
I am of opinion that were such fact 3 , figures, and opinions as I have given above-and they are but a portion of what are ready for collection-thoroughly ventilated, a degree of pressure would follow by professional as well as amateux army reformers, economists, and, in fact, all desirous of an efficient army, to warrant the outlay of public money in two shapes, upon the arrest of this pestilence. In the firsi place, I would begin by treating the women, who, it seems are no less potent agents of destruction than shot and steel. I would next advocate, with Dr. Stewart, a regulas organized system of ablution (compulsory rather than none f unmarried soldiers, with very few exceptions.
I have no hesitation in stating, that if these suggestion could be carried out, we should no longer find one in ever our men suffering from the primary symptoms of syphilis, complaint so miserably detrimental to the efficiency of the service.
I indulged a hope some time ago, that the agitation ir which I took an active part towards regulating prostitution would have been attended with good results, and thus hav somewhat diminished the evils we have to complain of Now, however, that the agitation has died away, I regre to find that we are again lapsing into our old apathetic system of looking with almost indifference on this nationa disgrace, and I fear we must wait years yed before we car hope for any general amendment in that direction. Bu your Commission, regarding the army and its title to pre servation from a professional point of view, may possibly servation from a professional point of view, may possibly doubt attract the attention and may perhaps prepare thi woubt attract the attention and may perhaps
(Signed) Wriliam Acton,
17, Queen Ann'Street.
To the Secretary of the
Royal Commission on the
Sanitary State of the Army in India.

[^13]
Memorandum.

During a long period of service in India with Her Majesty's 38 th, 16th, 44th, 62d, and 21 st Fusiliers, extending from 1822 to 1847, I had ample opportunities of witnessing the effect of venereal discases in both European and Native troops, being frequently in charge of lock hospitals. I have invariably noticed that just in proportion to the efficiency of these hospitals and their concomitants, the weekly inspection of the bazaar women, was the prevalence or diminution of venereal diseases.
On the abolition of lock hospitals venereal diseases, which were, if not entirely suppressed, reduced to a minimum, rapidly spread broadcast over the country, filling our hospitals with venereal cases, and seriously affecting the healths and efficiency of the troops; indeed the soldiers were so well awaye of the adrantage of the lock hospitals, that in one regiment (the 38th) the unmarried soldiers offered to contribute one rupee each monthly towards their re-esta blishment.

On an occasion of visiting my hospital (62nd regiment) at Moulmein, the late Bishop Wilson expressed himself shocked at the preventive measures used, thinking they gave an indirect encouragement to prostitution, but on
seeing my returns, and the good effect resulting from inspection of the bazaar women, and other preventive measures, he gave them his most unqualified approval.
On joining the 21st Fusiliers at Dinapore, in 1842, although lock hospitals and the inspection of bazaar women had long been abolished; the commanding officer approved of my having the native women belonging to the regimental bazaar brought weekly to the hospital for inspection and treatment. The same system was pursued at Kamptee in 1843, 1844, and 1845, at Agra and Cavnpore in 1846, and at Calcutta prior to the embarkation of the regiment for England in December 1847.
I have, therefore, no hesitation in stating that by the means of weekly inspections and treatment of the native women, I was enabled to greatly lessen or keep under the venereal diseases, as can be clearly proved by reference to the statistical returns of the corps.
(Signed) John Dempster,
Inspector-General Hospitals.
To Sir Ranald Martin, C.B., F.R.S.
London, 3rd March 1862.

Extract Bengal Militari Consultations, June 8, 1835, Nos. 15, 16, 17.

Minute by the Governor Gieneral:

Military Department, May 9, 1835.
I beg leave to lay before the Council the accompanying paper, presented to me by Mr. J. R. Martin, one of the presidency surgeons, the contents of which appear to me to merit attention, and such further proceedings as the Council may be disposed to authorize.
(Signed) C. T. Metcalfe.
(Enclosure No. 16.)

1. It is proposed that the medical boards at each presidency be directed to require from all medical officers, civil and military, serving under their orders, a report on the medical topography of the province, district, city, or cantonment, with the localities of which they may happen in course of service to be best acquainted, in which they may be. serving at the time.
2. The reports, when furnished from the various provinces, districts, and cities to be collected by a committee of surgeons at each of the presidencies chosen by the of surgeons at each of the presidencies chosen by the
medical board, and formed into a memorial, to be printed, medical board, and formed into a memorial, to be printed,
and a copy furnished to all staff surgeons and officers of the and a copy furnished to all staff surgeons and officers of the Quartermaster-General's Department; new additions of the
same to be made periodically as the knowledge of the medical topography of the country advances.
3. The following notices are chiefly from the work on military surgery, and that on medical topography, by the late Doctor Hennen, Inspector-General of the Medical Department of the Army in the Mediterranean, who justly considered that to the military surgeon especially, the subject is only second in importance to the right treatment of disease itself; and it were well for our armies if officers, of assease itself; and it were wed for our armies if officers, this fact, a knowledge of which would have prevented the this fact, a knowledge of which would have prevented the
sacrifice of many lives during almost every campaign that sucrifice of many lives during almost every campaign that
has been undertaken in India, a sacrifice much greater than has been undertaken in India, a sacrifice much greater than
that produced by the casualties of actual war; as familiar instances of which one need only adduce Arracan, during the late war with the Burmese, and that of the fatal island of Edam off Batavia, from which, as related by Johnson, the officer in command was warned by "an emineht surgeon on " the spot, but (without the shadow of reason, military or " political) his suggestions were disresarded or over-ruled ${ }^{2}$ The consequence was that (exclusive of senmen) from a wing of His Majesty's 12th regiment "only sixty-two rewing of His Majesty's " turned out of the wholc detachment. the re
4. To these I could add many facts that fell under my personal observation on actual service in this country and in Asia (and one such mistake was committed by one of the most intelligent officers, in other respects, I ever knew); but I need not multiply instances to show how necessary such information is to the safety of troops, and how often our officers are wanting in it; neither need I repeat well-known facts. to show how often this ignorance has caused enormous expense in money to Government, though
the abandonment of stations, after the horrible expense in lives had in the first instance been but too well proved.
5. But it is not in war alone that the neglect or ignorance of such subjects is pernicious. The choice of camps and cantonments, if ill-directed, leads to the most fatal' consequences; and out of instances beyond number, I shall only quences; and out of instances beyond number, I shall only
mention Berhampore, where, because quarters were once mention Berhampore, where, because quarters were once
fixed by some person very ill qualified for the duty, men fixed by some person very ill qualified for the duty, men
have ever since been crowded, and more Europeans have have ever since been crowded, and more Europeans have
already been lost there than would be sufficient to reconquer India.
6. Finally, the advantages to all classes of the community of having a record that points out the localities which to chose and avoid throughout the several provinces of India, would be of such obvious public benefit that I need no longer dwell on it ; and whilst surveys of all kinds are rarried on in every part of the country, something of the kind proposed might easily be executed; and as I feel conkind proposed might easily be executed; and as I feel confident it would be second to no survey in point of utility
especially to troops, so it would surpass all of them in especially to troops, so it would surpass all of them in
this respect, viz., that of being attended with little or no this
7. Among the objects of inquiry on which the reports should be particular in the details, I shall select from the works above mentioned a few of the most important ; many more may be added according to the talent for observation, or opportunities of the individual reporters; and, by following the arrangement about to be pointed out, a collection of the most useful information may be made in a very short time.

Topographical Details.

Ist. Situation, boundary, elevation, and mode of communication with the place described; general direction of the prevailing winds, \&c.; mountains.

2nd. Seas, rivers, lakes, wells, morasses, drainage, state of canals, \&c.; these are all matters of great importance, and comprehend a variety of details.
3rd. The climate, its physical character and medical effects, \&c., with the highest, lowest, and medium states of the thermometer, barometer, and hygrometer, \&c.

4th. The soil, its general nature, its eleration above the adjacent seas and other waters; nature of the waters; the periods of the year when noxious exhalations arise from the soil in greatest abundance, and the extent to which evaporation has procceded when these exhalations become most deletcrious, \&c.
5th. Vegetable, animal, and mineral products.
6ith. The state of agriculture.
7th. Roads and communications.
8th. The population, with description of the divellings in common use; the clothing, bedding, and furniture, fuel, diet, \&c. ; the employments, customs, amusements, \&c.; the morals, education, and cleanliness, \&c.; the peculiar modes of cure adopted by the inhabitants. \&c.; the police; the state of the poor; mode of rearing children.
9th. The diseases, endemic and epidemic, and those that may be hereditary; the diseases of particular classes of manufacturers, of prisons and poorhouses, Tables of marriages, births, diseases, and deaths.

10th. The diseases of cattle and others of the lower orders of animals.

11th. The diseases of plants and other articles used as the food of the people, and those of plants used by cattle. 12th. Longevity, with a general view of mortality among all ages and sexes.
l'Sth. Military surgeons should report,' in addition to the above:-
st. On the state of the barracks, their situation, the date of their erection, their form, whether built in square or parallel lines, or in detached houses, and whether of wood, brick, or stone; quality of supply of water, whether from springs, wells, or rivers.
2nd. Nature of the soil on which they are built, and of - that immediately around; their state in regard to damp, cold, or exposure to particular winds, and their eneral aspect; drainage of the grounds of the barracks
3rd. Size of the rooms in feet, as to height, length, and breadth; number of windows and doors.
4th. State of the bedsteads; how many the barracks will accommodate on the war, and on the peace establish. ment.
5th. State of the kitchens, waste-houses, \&c.
5th. State of the kitchens, waste-houses, \&c.
to state of the places of confinement, as to situation, dryness, \&c., and whether any particular disease has ever been traced to them
14 th . The hospital, the same questions as relating to the barracks.
lst. Distance of the hospital from the barracks, and whether there be a separate airing ground for the convalescents.
2nd. State of the store-rooms, the surgery, the washhouse, dead-house, \&c.
3rd. Whether any patients have ever laboured under any diseases that could fairly be attributed to the locality of the hospital.
P.S.-In the above I have only proposed the heads of the most important points for description, many more will suggest themselves to the intelligent observer of nature, who must, however, always recollect, that it is on the innate features of the conntry itself, and not on its mere geographical position, that its climate and salubrity depend ; and that a fuir estimate of the influence of detached spots upon the health of the troops or other inhabitants is what is most wanted for a topographical memoir.
(Signed) J. R. Martin,
Presidency Surgeon.

Ordered, that the following letter be written to the Medical Board.

No. 113.

(No. 17 to the Medical Board, June 8.)
From Colonel W. Casement, C.B., Secretary to the Government of India in the Military Department, to the Medical Board, dated June 8, 1835.
(Military Department.)
Gentlemen,
I am directed by Government to transmit the accompanying paper by Surgeon J. R. Martin, proposing that the medical officers at each presidency be required to furnish a report on the medical topography of the province, district, or city, with the localities of which they may be best acquainted, to be afterwards collated by a committee of surgeons, and formed into a topographical memoir; and to request that your Board will favour Government with your sentiments on Mr. Martin's proposition, stating whether information on all the points enumerated in his whether information on all the pois reports from medical paper should be required in the reports from mestions as in your opinion may tend to improve and more completely in your opinion may ten
2. Be pleased to return the enclosure with your reply. I have, \&c.
Signed) W. Casmment, Col
Secretary to the Government of India,
Council Chamber, June 8, 1835. Department

Extract Bengal Military Consultation.November 23, 1835.

No. 211 .

From the Members of the Medical Board to his Excellency the Honourable Sir C. J. Metcalfe, Bart., Governor General of India in Council, dated June 18, 1835.

Honolerable Sir,
We have duly had the honour of receiving a despatch, No. 113, dated the 8th instant, from Colonel Casement, C.B.,

Replying to a letter from Colonel Casement, Secretary to the Government of India, Military Department, dated 8th instant, forwarding a proposition from Mr. Surgeon Martin, relative to a topographieal description of the whole of India, and reports for the information of Government on the proposition.

Secretary to the Government of India in the Military Department, forwarding for our consideration and report a memorandum from Mr. Martin, Presidency Surgeon, suggesting that a topographical memgesting that a hopographical should be prepared
2. We prepared
2. We beg to assure your Excellency that we very highly apin Mr. Martin's we shall hail memoir, and that we shall hail with no small welcome every wish which it may be the pleasure of Goverament to make known to us in furtherance of its views.
3. The importance of medical topography; as mainly contributing to the general healthiness and consequent efficiency of its troops, is now admitted by the concurrent testimony of every European government, nor has the subject been wholly overlooked in this country; many facts of great local interest are to be found recorded in the writings of Hamilton, Breton, Wade, and others, and we have no doubt but that to these, the labours now contemplated are destined to add much very valuable information.
4. Mr. Martin's plan would, however, seem to embrace a far wider range of investigation, and we are compelled to confess ourselves less sanguine in anticipating a favourable result from the zeal and industry of our medical brethren, -should their labours not be confined to an investigation purely of a topographical nature.
5. Your Excellency need not be told, that to the task of forming a general idea of the statistics of India, a rare combination of talent is requisite, add to which, besides other advantages, the gifted individual must possess a degree of leisure which may enable him to give his individual attention to each subject under review, together with a facility of locomotion, which it is needless to say, is altogether incompatible with the duties of medical men in this country.
6. The opportunity enjoyed by medical men attached to corps, will of necessity be almost confined to the immediate neighbourhood of cantonments, or at most limited to the line of route between one station and another
7. To the civil surgeon, however, this objection dees not apply with equal force, and it is from him, in concert with the well-directed inquiries of the local authorities that we should be disposed to look for mass of material f om which th disposed tatistics of each particular locality might be gleaned

- 8. In conclusion, the Board have nothing better to propose than the formation of a Presidency Committee, together with subordinate local committees at all the principal stations, whose duty it should be to receive all communica tions, as well as to collect whatever has already been written upen each particular locality.

9. It may almost be unnecessary for us to say, that we shall be found ever ready to offer the best means in our power towards the successful termination of the labours of the committee; and further to add, that the records of our pffice will be found to contain scattered notices on the prevalence of disease, as connected with locality, which notices will not be held without their value, when it is considered that they are the result of experience on the spot, and in a manner corroborated by the fact of the superintending surgeon deeming them of sufficient importance to include them in his annual report.

We have, \&c.
(Signed) J. LongStaff,
First Member, Medical Board.
(Signed) - Swiney,
Second Member, Mcdical Board
Fort William, June 18, 1853.
P.S.-The enclosure received with Colonel Casement's letter under reply is herewith returned.

Ordered, that the following reply be given to the Medical Board.

No. 364.
From Colonel W. Casement, C.B., Secretary to Government of India, Military Department, to the Medical Board, dated November 23, 1835.
Gentlemen,
With reference to your letter, No. 211, of the 18 th June last, reporting on Mr. Martin's paper relative to topographical memoir of India, I am directed to forward a memorandum; copies of which your Board will be pleased to circulate to officers on the medical establisment of this Presidency.
2. In calling the attention of the service to the importance of this object, your Board should make no distinction whatever between those in the civil and military branches,
for it ought to be recollected, that it is chiefly for the care of its armies that surgeons are sent to India by the Home Government.
3. The subject of the present memorandum should be generally known to all medical officers, and in no countries are opportunities for observation more extended and various than in India.
4. Although but incidental to the main objects, the following subjects will prove highly important, and may be noticed with advantage by oflicers whose previous habits or opportunities for observation may have qualified them for phe task
lst. The population within the range of inquiry, with description of the dwellings in common use, the clothing, bedding, and furniture, fuel, diet, \&c. ; their employments, customs, kmusements, \&c.; the peculiar modes of cure adopted by the inhabitants; the state of the poor, and mode of rearing children.
2nd. 'lables of marriages, births, diseases, and deaths, when procurable without difficulty; due discretion being used in making such inquiries as may be necessary for the purpose amongst the natives.
$\because 3$ rd. The diseases of cattle and others of the lower order of animals.
4th. The disease of the plants and other articles used in the food of the people, and those of piants used by cattle. 5th. Longevity, with a general view of mortality among all ages and sexes.
6 th. States of thermometer, barometer, and hygrometer, \&c.
7 th. These and other questions affecting the subject will suggest themselves to your Board; and in calling on those under your orders for topographical memoirs, it should be impressed on their minds, that it is not on mere geographical position that climate and its salubrity depend, and that a fair estimate of the influence of detached spots on the health of the troops or other inhabitants is what is most wanted.

$$
\begin{array}{ll}
\text { I am, \&c. } \\
\text { (Signed) } & \text { W. Casement, Col., }
\end{array}
$$

Secretary to Government of India, Military Department.
Council Chamber;
November 23, 1835.

Supplementary Observations, ;

IT having been notified to me that remarks supplementary to iny evidence before H.M. Sanitary Commissioners on the Army in India would be acceptable, I beg to tender the following upon points of importance :-

On the simplest Means for purifying Water.
The first observation I have to offer relates to means for rendering water a more wholesome and grateful beverage than it usually is to European soldiers in e tropical climate.

In the first place, wherever the quality of the water is doubtful, or hard from the presence of bi-carbonate of lime, or whenever an epidemic, especially cholers or dysentery, prevails, water ought to be boiled (if not distilled) and be filtered before use.

The chemist is aware that the soluble bi-carbonate of lime may be at once reduced to an insoluble carbonate by mixing a solution of quick-lime (lime water) with water. holding the bi-carbonate in solution, which may thus be separated from it by filtration or gradual deposition. This is Dr. Clark's process, by which the water of the Kent waterworks is purifid. But it is not so well applicable in common use, where water from different sources varies so much in the quantity of earthy matter present, and where, on this account, and from carelessness, an excess of lime water (more injurious than the bi-carbonate) would often be used. Moreover, it is only by boiling that organized beings, animalcula, the larva of insects, and cells, vegetable and animal, can have their dangerous vitality destroyed, and be reduced to common organic proximate principles.

The filter.-Native red earthen spheroidal jars (j'halas) of from thirty to forty gallons capacity are procurable almost everywhere in India, and used to cost from eight annas to one rupee each. For a small advance on the usual price the potters would supply them thus modified-each filter would consist of two j 'halas, one placed over the mouth of the other, but supported by a wooden stand consisting of three or four diverging legs enclosing the lower jar, and having a boarded top with a circular hole in which the upper jar would rest, the lower jar being propped up on bricks, with its mouth close against the conical bottom of the upper jar, so as to be closed by it, and keep mosquitoes the upper jar, so as to be closed by it, and keep mosquitoes and other insects from entering and breening, and by has a hole near to the bottom, passing through a boss of baked clay for recciving a wooden tap or a cork. The upper jar has an inch hole in the centre of its bottom, about six inches above which there rests a circular moveable false bottom of baked clay perforated by small holes like a colander, and having flanged edges for strength. This bottom is divided into two halves, small enough to pass through the mouth of the jar, and then be fitted in their place. On the colander bottom is to be laid half an inch of coarse well-washed pebbles, the size of a pea; on that again a similar layer of smaller pebbles, and then a third again a similar layer of smaller pebbles, and then a third
layer sieved the size of wheat., Crushed vitrified brick will layer sieved the size of wheut. Crushed vitrified brick will
yield these several pebbles. On this upper layer must be yield these several pebhles. On this upper layer must be
placed one or two inches of river sand, previously heated red hot and well washed; on this sand must be spread two or three inches of coarsely ground charconl, the size of wheat. Above the charcond should lie another layer of sand, followed by pebbles, and these may be kept down by another earthen colander. The whole layers may occupy eight inches besides the colanders : the uppermost colander being about 15 inches above the bottom hole. In a -large j'hala there will remein above the filter a depth of three
by Julius Jeffreys, Esq., F.R.S.
feet or more for water, and the depth may be increased by mounting on the jar an earthen cylinder, in size like a large chimney. pot.
The mouth of the jar should be made with a massive edge, having round it a groove three-quarters of an inch deep to receive the lower edge of the cylinder; a circular disk of cotton cloth of several layers being previously placed upon the jar's edge, and then wedged into the groove by the cylinder. Jar's edge, and then wedged into the groove by the cylinder.
When the jar is filled with water up to the top of the cylinWhen the jar is filled with water up to the top of the cylin-
der a head of water is obtained, which presses with such der a head of water is obtained, which presses with such
force on the filter, that this may be of considerable thickforce on the filter, that this may be of considerable thick-
ness and closely packed,-points of much importance; most ness and closely packed,-points of much importance; most
filters being defective in not having over them a sufficient head of water. Some oozing of we over them a sumcient joint at the bottom of the cylinder will take place, and forms part of the design. This water trickling down the outer surfaces of both jars aids the porosity of the jars by encircling them with an evaporating surface of moisture which, if the jars stand in a thatched shed, well sheltered from the sun, but open to all currents of air, will bring the filtered water, in the course of a day, nearly down to the dew point. The top of the cylinder or jar should be always well closed with a lid.

Such filters are very easy of construction; they cost but a trifle; and the jars, with care, will last a long time. The filtering mass is easily accessible for periodical renewal of the charcoal and sand, and for well washing and sieving again of the gravel. Care must be taken that the circulor holes in the wooden stand carrying the upper j hala must be of such size, that when a cushion of cloth or straw is placed around it, it shall press against the jar at the level of or just around it, it shall press against the jar at the level of or just
below the false bottom or lower colander within, so as to below the false bottom or lower colander within, so as to
guard against the jar's being burst or crushed by the load guard against the jar's being burst or crushed by the load
within, which bears against that part of the vessel pressed within, which be
by the colander.
Method and Apparatus for economically converting Vapid Water into a grateful and refreshing Beverage.
Thus may be obtained water as good as can be commanded, without distillation, and also cool; but having been boiled, it will be as vapid as distilled water. It needs to be impregnated again with atmospheric air, or, still better, with carbonic acid to the small extent which forms the lately fashionable beverage, "Carrara water."

This may be easily and cheaply effected in India thus:Fruits yielding vegetable acids abound there, and at a low price. Their juice may be expressed rapidly and thoroughly by any press made on a right principle. I filled with lemon juice, in a short time, with the labour of a few coolies, twenty-five or thirty wine pipes of the largest size. The press was inexpensive, but space for the shortest descrippress was inexpensive, but sannot be here afforded.
Three casks and a few yards of small india-rubber tubing form nearly all the apparatus which would be needed. First, an acid barrel of, say, nine gallons (the hoops previously varnished to prevent their rusting) is set on end upon a stand five feet high. Near it, and suspended a foot lower than its bottom, a berrel of from 18 to 24 gallons is hung by cords reaching from each end of it to a horizontal bar (supported by walls or posts), three or four feet above it. This barrel is easily agitated longitudinally, each end striking against spring posts set in the ground From the top of this cask, near the bung-hole proceed two india rubber half-inch tubes to the first (the acid barrel), one tube entcring the top of this barrel, the other its bottom.

These tubes hang loosely enough to follow the movement of the larger, the gas-generating barrel, when it is agitated. The tube proceeding from the bottom of the acid barrel to the top of this barrel is compressible partially or completely by means of a fork astride of it, made of two slips of wood hinged together at one end like a lemon squeezer, and brought together at the other end by a cord or serew.
A third cask (a hogshead or butt) is to be suspended a few feet from the generating cask, at about the same level, and slung to a beam in the same manner, by ropes at each end of it, four or five feet long, but diverging to hooks in the beam, twice as far apart as the points of attachment to the cask. This divergence of the ropes will cause each end of the cask, as it is oscillated, to plunge alternately downward, which, with the blow against a padded spring post at each end, will cause a violent agitation of the liquid in the cask.

From the top of this cask a rubber tube proceeds to the top of the generating barrel, near to where the other tubes enter it from the acid barrel.
This is all the apparatus, I think, necessary for making Carrara water in quantity.
It is to be put in action thus:-The acid barrel is to be filled with any vegetable acid, as lime juice, or a strong decoction of any of the many acid or unripe fruits abounding in India; the lower tube from the barrel being previously closely compressed

Into the generating barrel should be poured, through the bung-hole, about twenty pounds weight of ground "kunkur," the common stalagmitic limestone of India; or better still, with ground chalk, of which vast quantilies are brought out to India as ballast. The bung-hole is then well closed.
The large impregnating cask is to be filled to about twothirds with the coolest water from the filters. A gallon or two of acid is allowed to run from the acid barrel into the generating cask, which is then well oscillated to favour its action on the limestone powder or chalk. Gas will immediately begin passing over into the impregnating cask, which is to be rapidly oscillated, that the gas may be absorbed as fast as it flows*in. As the water takes it in the flow of gas is to be increased by agitating the generating cask from time to time, and by allowing acid to flow into this cask fnore or less quickly through the tube from the acid barrel, partially compressed by the forked sticks.
There ought to be a pressure gauge screwed into one end of the impregnating cask to denote the tension, and a vent peg or flute-key valve to be opened when it should exceed the working pressure of the cask, which ought to be gasthe working pressure of the cask, which ought to be gas-
tight and strong enough to bear one and a half or two atmospheres.

A cask would answer made twice the substance of a wine cask, and with twice as many hoops, or a well hooped wine cask, if protected by a safety valve, and having each end supported by a stout plank, backed by a bar of wood, the two bars being drawn towards each other by means of two iron rods running lengthways outside the cask. The cask ought to be well charred on the inside before it is hooped together, otherwise the wood will for some time give an unpleasant flavour to the liquor.
Thus may be formed a grateful beverage, which, with the addition of syrup of ginger, orange, or lemon (all of them to be made in India for a trite), might equal capillaire in attractiveness. It will be observed that only one strong cask and two barrels, with a few yards of rubber tubing and of rope, constitute all the apparatus necessary tor making sixty or eighty gallons at a time. There is no forcing gas pump, no brass joints, no agitating apparatus with stuffing boxes, all of them liable to leak and get out of order ; and no cocks, saving one tap to the impregnating cask for drawing off the liquid. If lime or lemon juice be employed for generating the ges, and the limestone be fully saturated with the acid, the refuse citrate of lime would be saturated with the acid, the refuse citrate of lame would be worth perhaps one shilling a pound, which ought to pay the cost of the prepared beverage, and of the syrups, if this indulgence is added. As malic acid is said to be acquiring in England much yalue in dyeing, and must abound in the sweet fruits of India in theis unripe state, a malate of lime might prove an interesting product of the process, which, as well as the citrate of lime made at other times, if neglected by the commissariat as beneath its notice, might be allowed to form an encouraging perquisite to the soldiers who undertook to prepare the beverage for their comrades and themselves.

I have not at any time made so simple an apparatus as the above for impregnating water with gas; but an acquaintance with such chemical processes enables me to recommend it without any doubt of its answering well, if ordinary attention be paid to the directions for the construction and use of it.
I have in my evidence mentioned the low cost at which I succeeded in producirg sulphuric acid in Indis by placing
the acid chambers under ground, and by other provisions. If this acid should be employed, the acid barrel may still be made of wood, if it be well coated within with shell lac, which will for a long time bear the action of sulphuric acid of the degree of dilution best suited for generating carbonic acid from chalk or ground limestone; but a sraall leaden tube might have to be substituted for the vulcanized india-rubber one.
I do not think there will be found any simpler or cheaper means for quickly and surely impregnating a lange quanthe old apparatus of Dr . Wolf than the above. Neither latter in its matus of Dr. Wolf or of Dr. Noothe, or the large scale be at all comparable "Gasogene," would on a large scale be at all comparable with it in cheapness or for making the liquid agitation of the finids is essential for making the liquid take into its pores the gaseous one with adequate rapidity, especially where the water is not very cold; for it has to be borne in mind that at a temperature of 90° water is indisposed to take up any, carbonic acid spontaneously.
There is one other process by which I have no doubt carbonic acid might be obtained in an available form from materials costing scarcely anything, viz., by burning to gether in a stove, or chafing dish of suitable form, good charcoal and limestone, in the proportion, say, of one of the former to eight or ten of the latter, and drawing up the products into a large gasometer. These would consist of atmospheric air deprived of about half its oxygen and largely charged with carbonic acid, both that expelled from the imestone and that yielded by the combustion of the charcoal.
There would also be present a little carbonic oxide, resulting from the necessity of limiting the air feeding the combustion to not more than the double of the theoretical quantity necessary. When the mixed gases in the gasometer had cooled down they would have to be driven into the impregnating cask by a forcing pump, the incondensible nitrogen and oxygen being allowed to escape through the safety valve with such carbonic acid as was not taken up.
A gasometer for the purpose may be made of the thinnest sheet iron, with the lines of junction perfectly air-tight, without either lap-soldering or riveting, by employing a joint, I háve found very effective for all such purposes, and to require little labour or skill, while it gives to the whole the stiffness of a framing. But though the materials yielding the gas would cost less by this process than by using either vegetable or mineral acid to discharge it (unless, in either vegetable or mineral acid to discharge it (unless, in-
deed, the vegetable salt of lime resulting were sold), the deed, the vegetable salt of lime resulting were sold), the
apparatus would be so-much more cumbrous and costly apparatus would be so-much more cumbrous and costly
that I refer to this plan rather as a last resort, should acids that I refer to this plan rather as a last resort, should acids
at any place not be procurable, than as comparable with at any place not be procurable, than as comparable with
acid as a means of expelling the gas from a carbonate of acid as

On the making of Ice and cooling of Buildings by the Evaporation of Ether.-Mr. Harrison's Process.
The next subject upon which I venture some remarks is Mr. Harrison's freezing process, by the evaporation of ether,-an invention admirable in its design, and in the manner in which it is being given effect by the intelligent engineer who is making the machines, which promise to confer no small boon upon residents in the tropics.

Having, at Sir Proby. Cautley's suggestion, examined the machine with some attention, both as an instrument for freezing water, and, suitably modified, for cooling buildings as has been proposed, I am led to think the following observations, prompted by Indian experience, may place these questions in a light auggestive of considerations of some practical importance. For this view we need not here occupy ourselves with the capacity for latent heat of the ether employed, nor the capacity for heat of temperature of the brine; we need not look to these, the intermediate agents in the series but may direct attention only to the condensing water at the commencement of the series as the agent upon which falls the burden of absorbing all the heat agent upt wher by the water to be frozen at the end of the geries, where ice is to be the product or by the air to be serieg, wher the of is the cooling of buildings. In tempered, whe this duty the the large quity of the the large quantity of heat which the surrounding air will be constantly imparting at all points
apparatus working in a hot alurate . 8 , 80° or 85° must lose about 200° of heat (latent and thermometric) before it is firmly frozen; all of which heat must be taken up by the water condensing the ether. Again, as the ether is, I am informed, condensed in the machine at a pressure of about 26 inches of mercury, its condensing temperature will not exceed 90°. Now in the hot months water is not to be had below 80°, excepting from wells 30 or 40 feet deep. From these it may be obtained at, say, 70° or 75°. Sinco
the condensing current cannot, without a loss of time and effect, be detained agrainst the ether tubes long enough for the condensing cther to warm it up to its own condensing temperature of 90°, it will not in practice have more than 10 , or possibly 15 , degrees of cooling action more than 10 , or possibly 15 , degrees of cooling action
available. Therefore, to frceze a given quantity of water at available. Therefore, to frceze a given quantity of water at
the other end of the series, twenty times that weight of the other end of the series, twenty times that weight of
water must be employed at the commencement to condense water must be employed at the commencement to condense
the ether; and in practice much more, in order to absorb also the heat leaking into all parts of the apparatus from the air descending constantly over the apparatus as it is cooled by it. A supply of condensing water ought to be provided of at least 25 times the ice to be produced.
A large machine, making, as is stated, 1,000 pounds of ice an hour, woold require 25,000 pounds of condensing water, and working eight hours $200,000 \mathrm{lbs}$. To supply this large volume of water in the dry months, it might take from 10 to 15 common wells, a yard in diameter, and nearly one higrse power of the steam engine, for eight hours nearly one horse power of the stars it 40 or 50 fect, or eight. acting on forcing pumps, to raise it 40 or 50 fect, or eight.
pair of country bullocks attended by 16 men.* It would, pair of country bullocks attended by 16 men.* It would,
therefore, be an act of provident economy to employ the therefore, be an act of provident economy to employ the
condensing water afterwards for garden irrigation, the condensing water afterwards for garden irrigation, the
only cultivation taking place in the hot season. Of only cultivation taking place in the hot season. Of
shadlow surfuce waters, as of "j'heels" and tanks with a temperature approaching nearly that of boiling ether, a vast quantity would have to be carried through the condenser in order to absorb the heat.

For various reasons I think that small machines, on a scaie adapted to water power where it is available, or to that of cattle, would be preferable for the interior of India. The dispensing with a steam engine so troublesome to keep in dispensing with a steam engine so troublesome to keep in
order at a distance from engine factories, the more ready order at a distance from engine factories, the more ready
supply of condensing water for small machines, there being supply of condensing water for small machines, there being
many instead of a single one to rely on, which if out of order might suddenly deprive a large station of the supply of ice, would, I think, taken together, more than counterbalance the greater proportional absorption of atmospheric heat into small machines, \dagger and the greater friction in working the pumps as well as greater cost of cattle labour. Cattle tread-mills as employed in America would work the pumps in machines of an intermediate size with probably much advantage.

An apparatus devised many years ago, for both condensing and evaporating purposes, would, from its quick densing and evaporating , purposes, would, from its quick
sensibility, prove, I believe, especially adapted for the ice sensibility, prove, I believe, especially adapted for the ice
machines of all sizes, more particularly for the smaller machines. Although this apparatus has not as yet been constructed, or, indeed, described, I cannot doubt that it would prove very far cheaper in its construction and more effective in action than the forms of apparatus usually employed for surface condensation. \ddagger

With respect to the proposal to cool dwellings in India by these ether engines, suitably modified for the purpose, it has to be borne in mind that at the season and in the provinces in which the hot winds blow, water evaporating provinces in which the hot winds blow, water evaporating
upon tatties (the whole cooling power of which is available upon tatties (the whole cooling power of which is available
in lowering the temperature of the ventilating current) in lowering the temperature of the ventlating current)
would have to be rivalled by the water condensing the ether would have to be
in the machine.

That this condensing water would bear no comparison with the fomer in cooling power will at once be manifest. We have seen above, that in the hot months, water, in quantity, § is not to be had more than from 10 to 15 degrees below the temperature at which the ether is condensed;

[^14]and that practically not more than ten degrees of cooling action are available. Whereas when water evaporates from tatties into a hot wind entering the tatties at the temperature from 100° to 115° (that common in the hot winds), such water, evaporating at those temperatures, renders latent about $1,200^{\circ}$ of heat, all of which absorption of heat is effectual, and will cool a brisk wind in the moment of its permeating a tatty by 30°. Water at 75° or 80° evaporating on tatties is therefore at least a hundred times as effectual in cooling a ventilating current as it would provewhen acting by condensing. ether, or, in other words, to produce an equally cooling effect on a building with an equally large amount of ventilation, a hundred times as much water would have to be provided in the one case as in the other.
It will not be argued that the evaporating action of water might also be employed to condense the ether, for that would call for an impracticable multiplication of the metallic surfaces, and as the same current of wind would be needed to give effect to the evaporation in either case, to interpose an ether machine would be merely a circuitous and expensive way of cooling by "tatty" action. The machinecooling, if employed at all, must be effected, as in the freezing process, by condensing the ether by water acting in its liquid state as a current of convection conducting off and absorbing heat from the metallic surfaces transferring it from the condensing ether.
The waste of water running down from fairly managed tatties forms an inappreciably small proportion of that effectively evaporated, as I have repeatedly proved by exeffectively evaporated, as I have repeatedy proved by experiment; yet to cool the ventilating current of a large barrack, so prodigious is the quantity of water required,
that the bullocks, well-men, and "bheesties," (water that the bullocks, well-men, and "bheesties," (water
bearers), necessary for drawing the water from wells and conveying it to the tubs (where it is chucked on the tatties by boys with leathern mugs), constitute the chicf expense, while the demand on the wells at hand oftentimes exceeds their power of supply. The hundredfold greater quantity which the ether process would require could scarcely be obtained at krand excepting on the banks of rivers, and at a cost for draught (unless by steam power where fuel was cheap and machinery easily repaired), for which no advantages could compensate so long as tatties can act. But at those seasons and in those regions of India, where often only a moderate elevation of temperature exists, but is rendered very oppressive from the stagnation and peculiar temperament * of the atmosphere, great relief would be feit if the air of a barrack could be reduced only 10° or 15°, as from 85° or 95° to 75° or 80°. By no other means perhaps could this be effected so well as by the ether process. Where a reduction of only 10° or 15° in the temperature would materially mitigate the oppression of a stagnant and somewhat humid atmosphere, such as often prevails in Bengal, and where tatties are therefore unavailing, it may be well worth while to put in action the ether process, even though it should buing the atmosphere below its dew-point.

The interest and importance which attaches to the question hasing led me to consider how to apply the process in the most economical and effective manner for producing as well as cooling a current \dagger of ventilation, adequate for a wholesome supply to arge number of persons, I should feel tempted to intrude a description of the apparatus and arrangement which the conditions have suggested, did space permit it, and had not members of the commission, or others under their guidance, probably directed abler attention already to the question.

A floating River-power Water Mill, and A Hy-
draulic Machine for Working the Ether Prodraul
cess.

I cannot, however, refrain from remarking that there are already several stations on the banks of rivers where a brisk stream is passingbelow a lofty bank, and where it seems to me the following instrument might be rendered

[^15]very effectual for the object in view. It was contrived many rears ago (while I was conducting experiments on irrigation) for supplying the wide and elevated plains of rich but thirsty land through which the Ganges, Jumna, Gogra, Soane, Chumbul, and many another river cut their way, throughout western and central India.
It was my purpose at one time to have constructed this moveable engine of irrigation, and put it in action at different places, to demonstrate to the natives what a sponferent places, to demonstrate to the natives what a spontaneous source, in many a place, of power and of water they massive boats built at Philibeet, near Bareilly, are, massive boats buit at Philibeet, near Bareillyy, are,
or were, to be bought second-hand at five pounds each and or were, to be bought second-hand at five pounds each and
even less. -A pair of these placed parallel, fifteen or twanty even less. -A pair of these placed parallel, fifteen or twanty feet apart, are to be strongly bridged to each other by cross and diagonal spars or the stoutest bamboos. This tiwin boat is to be anchored near the shore at a spot where the stream is stiffest. The rush of water between these boats may, if desired, be increased by a spreading hoarding of planks or bamboo matting, well supported by bamboos, so tethered in front of them as to collect and direct into the channel between them a current of double width. The whole width of the channel between the boats is to be occupied by an undershot waterwheel having deep boards. From large drum or band wheel on the same axis with it proceeds a broad leather band obliquely upwards and backwards to a much smaller drum wheel, mounted on an axis at the top of a gallows or lofty frame. This frame is formed by two masts on each boat, converging towards each other, s they rise up to a yard or more above the level of the river bank, whatever its height may be.
This water-mill has not been constructed, but the hydraulic apparatus to be driven by if has, and with complete success. It is a modification of the Persian, or rather, Egyptian wheel and endless chain of buckets.
In the Persian wheel and buckets (generally earthen pots from ancient times employed in that country and throughout the rest of Asia, especially in Western India), the water is the rest of Asia, especially in Western Incia), the water is. Much of it is consequently spitt, and nearly all would be Much of it is consequently spilt, and nearly all would be carried down again into the well, were not a very slow motion
maintained; but so slow a motion necessitates the keeping maintained; but so slow a motion necessitates the keeping
in motion of a great load of water for a comparatively small in motion of a great load of water for a comparatively small
delivery. This centripetal delivery is a defect also perdelivery. This centripetal delivery is a defect also per-
vading, I believe, all the improved modifications of the machine employed to raise water in Europe.
Observing that the natives of India confine their employment of the Egyptian wheel and pots to raising water only at depths within about 20 feet, owing to the great weight of the pots and the water suspended; and that slow as the motion is a serious proportion of the water is spilt into the well again, I made an effort to improve this ancient machine, not only by adopting. a centrifugal instead of a centripetal delivery of the water, but more especially by making the buckets of the shape $\mathrm{B}, \mathrm{B}, \& \mathrm{c}$., seen edgeways in Fig. 1 and broadways in Fig. 2, and with their mouths C, C, \& c., at the outer side; and then attaching the buckets by cross rails $r r$, \&c., to the two endless ropes R, R, \& c, in suck mauner that the buckets shall hang entirely on the. in suck manner that the buckets shail hang entarely on the inner side of the ropes. The effect of these provisions will mmediately appear. The ropes travel round two equal ized grooved wheels A, A, Figs. 1 and 2, fixed on the same xis (at the top of the masts) which carries the bund wheel already named. These grooved wheels are fixed on the xis about on inch further apart than the breadth of the buckets, so that the buckets in ascending can pass between hem, and lie entircly witbin the line of their circumference. Now, if the ropes are travelling at, say, six miles an hour, the water in each bucket will have, of course, a momentum due to that velocity; but as each bucket comes into the position of the uppermost one, B, X, its back or central side e, which extends half-way towards the centre of the wheel (the radius of which does not exceed twice the width of the bucket), has its velocity retarded by one half, and moves only at the rate of three miles an hour. The water, however, which it contains being, as a liquid, free to move, obeys its own momentum of six miles an hour, and leaping out into the trough, T , is all secured before the bucket has even descended to a level with the axis of the wheel.
lf, on the other hand, the machinery should be moving very slowly, the whole water simply pours itself out into the trough before the bucket arrives at the position B l and at any intermediate velocities between that at which it will clear itself while the bucket is in the horizontal position B, X, and one so slow that it simply gravitates out f the bucket as the latter tilts towards a vertical position the clearance is equally he clearance is equally complete, and is due in part to This hydraulic apparatus was tried
This hydraulic apparatus was tried on a full scale, and nade as shown in the drawing. The principle of combining sudden retardation of the containing bucket with the centri ugal monentum of the water is incomparably more effective
than any form of a centripetal delivery of the fluid (having ucited even from the apathetic Hindoos expressions of sur mome seeing the water leap out of its bed at the right the buckets re taised buckets never touching it; and the water has to be raised only a few inches above the point of delivery. This, f pum of pumps, especially by water turbid with silt or sand, and an independence of all frame-work, confers on this apparatus breat advantages, even where the height is within that of sucking pumps, and still greater where lifting or forcing pumps would be required. It is also far cheaper than pumps, especially in India; and, I venture to think, so peculiarly adapted for irrigation, the purpose for which it was contrived, that at'a time when a cotton famine in England is spoken of as threatening to follow upon the heels of a famine of corr in India, in both of which cultivations de ective means of irrigation play a serious part, a description of this hydraulic apparatus may not be without interest, even should it not be made serviceable, as I should hope for rendering the ether process of Mr. Harrison economically available for the cooling of buildings.
Besides this apparatus tried on the full scale, a model wa made, in which, in lieu of two ropes travelling in grooved wheels, two endless leather bands were carried by band wheels, having as usual a slightly convex edge. • I think bands are preferable to ropes in grooves, which to avoid slipping must wedge themselves in a V-groove sufficiently to create a little resistance in its leaving the groove on the descending side of the reheel, causing some little wear and friction; whereas broad leathern bands (wetted as they would always be in passing through the water below) would always be in passing through the water below)
adhere to the surface of a wheel with ample force, and yet leave it with no resistance when detached by the peeling-off leave it with no resistance when detached by the peeli
action of a band leaving the clearing side of a wheel.
Whether double ropes or bands are employed, it is very necessary that there should be one or more of what may be ermed "compensating breaks" in the endless circuit, as seen at E, Fig. 2, where a stout bar F, F, crosses from one rope to the other, and at the middle of it a leathern strap E, loops up to it the front bar of the next bucket below it sufficiently for the strap to receive all the weight, and to cause a looseness in the ropes on each side of about an inch. However nearly the carrying wheels may correspond in their size, and the two ropes in their length, at least one such break in the circuits would he needed, otherwise there would be sure to result a slight inequality in the two circuits, which, being constantiy inareased by.repetition at every revolution of the ropes, would cause an entire derangement of the system; whereas any incquality is always corrected at the next break by its compensating or splinter bar action instantly equalizing afresh the lengths of the two circuits, and keeping all the cross bare horizontal. The ropes require only to be slackened a little in the looping up by the break-strap. They should not be severed, since they are wanted to check any tendency in the system of buckets below the break to twist sideways. The buckets are suspended to their cross bars by central pins P, P, P, are suspended to their cross bars by central pins P, P, P, any irregularity in the ropes, be slightly out of the horizontal, the buckets may hang true. This last provision, zontal, the buckets may hang true. This
though not necessary, may as well be made.*

With the exception of a brief yerbal reference to this hydraulic principle many years ago before the British Association for the Promotion of Science, and in addresses upon the resources of India before the Liverpool and Manchester Indian Associations, no other opportunity has been taken to call attention to this apparatus in England.

Returning to the employment of this hydraulic machine to give effect to the ether process, it is plain that the driving band proceeding from the large drum wheel on the axis of the great water wheel up to a smaller drum wheel on the axis of the hydraulic machine, would bring the whole power
of the water wheel to bear upon raising water to the top of the mast-frame of the boats. The trough T, there receiving

* It may be well to explain that the construction of the buckets is very simple and easy. Tio two ends of each bucket are formed ly yht
 Fix. 1. Peveces of very thin sheet iron sutficiently long. and about 18 or 00 incles wide, the distance of the end-boards apart, including their thickness, are lappen forns the front, back, and curved top, and bottom of the bucket, shutting it in all round, exceptinge at the mouth C. Strins of felt or paper tarred, or cemented with white lead, are placed betwent
the wood and iron during the nailing on, to make the work watertight. the wood and aron durige the nailing on, to make the work Tho dimensions named are about the sizes of the buckets which wore tricd. A few much larger were made, but not tried, as no water mili to
work theun was constructed. Such long buekets, or cyen harger ones, to worky a hundredweight of water cach, might suit mills us powerful as many of the river rapids of ndia coukd, set in motion.
Another mode was constructed what cheaper to make in India than those of wood and iron, though they would be much more costly in Empland. The pouches acted upou a semewhat different pr

the water, would be continued on a bamboo scaffolding to the top of the bank, and from thence the water might fiow in a pipe 80 well encircled with charcoal, and then covered in by earth, that it would reach the ether machine in a barrack at hand but slightly raised in temperature. Having flowed in copious volume through the condensing passages of the ether machine and fulfilled the duty of absorbing all that heat which, instead of oppressing the inmates of the barrack had been drawn out of their ventilating current by means of suitable apparutus adapted to Mr. Harrison's
ether process, the stream might then travel back towards the river, and pouring itself in its way over the bank into the cylinder of a turbine, or Barker's mill, might keep it in motion; and this mill might work the evaporating pump of the ether machine. At all large stations where a river flows under a high bank there are rapids offering to a capacious undershot water wheel abundant motive power, and of uninterrupted action which might therefore be employed during the day and till midnight in cooling the buiding, and from that time for eight or nine hours in making ice.

The power, moreover, would take effect twice over; first, in raising a superabundant supply of condensing water, and then by the descent of this water again, in aiding to work the evaporating pump through the medium of the turbine. In the rainy season when the rise of the river up the bank might render it necessary to remove the turbine, the undershot wheel might be well able to perform the double office of raising the condensing water necessary and working the evaporating pump. For the power of the wheel would in some places be increased by the greater force of the current, and the duty of raising the water at the same time much lessened by the higher level of the boat's floatation, bringing them nearer to that of the bank, and permitting the frame carrying the bucket-wheel axis to be shifted lower down the masts; the length of the band and number of the buckets being reduced in proportion There are multitudes of spots on the numerous rivers of India where, under a bank healthily and securely elevated high above the level of the water, the current runs per. petually with a force which requires the united force of the prews of two or three boats to tow the boats, ne at of time past the rapid-a rapid of ample width and depth to drive a five or six horse wheel, night and day, gratuitously. a five or six horse wheel, night and day, gratuitousiy.
The floating mill would not cost one-fifth, perhaps not a The floating mill would not cost one-ifth, pernaps not a tenth part as much as a steam engine of equal power, with all its fixtures and engine house, and in the repairs afterwards, even supposing it possible to have a steam engine always repaired on the spot. Supposing that river power or a single mill, of not more than three or four horse power, could only be found in one spot in the locality, these loating millis might be indefinitely multiplied at one or two hundred yards apart.
Since the river might thus afford an unlimited supply both of water 10° or 15° below that of the condensing ether, and of power to condense the ether (if need be, under a pressure equal to 35 inches of mercury, i.e., at a temperature above 101^{1}, should the river water rise to nearer 90°), and since all this supply of power and of water would cost nothing ; or, in other words, since all the elements of an unlimited cooling of barracks (each perhaps of the reduced size recommended by Sir John Lawrence), and of officers' dwellings, and also of an unlimited supply of ice, are offered by nature spontaneously, and require only the medium of Mr. Harrison's ingenious plan, and the simple but porserful floating mills to pive them effect, I cannot but think the question may be to qive them effect, I cannot but think the question may be found to merit the attention of the water mill was first contrived (nearly 30 years the time this water mill was first contrived (nearly yo years ago), and the hydraulic principle had been successfully tried
a year or two earlier, it has been impossible not to lament, a year or two earier, it has been impossible not to lament,
especially during periods of famine, that the thousand river especially during periods of famine, that the thousand river rapids of India should run unheeded and waste their power nder a desert bank. But how much additional cause will there be for regret if an oppressive atmosphere which they might be made to mitigate shall continue to act as an auxiliary to the pestilence which succeeds famine, and often revails without it.
It will, I hope, be understood that this plan is not proposed to compete with the cooling power of tatties when a dry hot wind is blowing at 110° or 115°, which must be cooled 30° or 35° before it can be admitted into a house, but that it is proposed to take effect during the much longer portion of the year when the temperature is below 100°, and there is neither wind nor dryness enough in the atmosphere to give effect to tatties. Also it is not supposed that the water which would condense a given quantity of ether from a state of vapour, would, in falling 30 feet, enable a Barker's mill to enforce the evaporation of a like quantity of ether. It is only proposed that the condensing water should, as far as it will go, perform the double office. To work the evaporating pump a large amount of power must be transferred from the water mills amount of power must be transferred firectly to the pumps, without the intervention of the directly to the pumps, without the intervention of the
hydraulic bucket apparatus. It may be worth while to remydraulic bucket apparatus. It may be worth while to remark that the ether condensing apparatus might itself be
sunk in the river. The stream flowing through the appasunk in the river. The stream flowing through the appaButus would at once do the work of condensation effectually. But the safety of the apparatus would be endangered. It would with difficulty be protected against drifting trees and wrecks, especially in the rainy season, when the river rose perhaps 20 feet, though, if fixed between the twin boats behind the water wheel which supplied power for driving the ether pumps, it might rise with the boats as the river rose. The pipe connecting it with the ether pumps on shore, as well as the return pipe for the condensed ether, would require to have each at least two universal joints, which must be narrowly watched lest they should leak ether vapour largely.

On Charcoal Instruments placed before the
Breath-Pagsages as Protectorg from Infection.
The next point upon which I think it becomes me to remark, is the proposal to employ in the form of a reapirator, the resolving, and, therefore, probably disinfecting
power of charcoal, as a preservative against the effects of malarious or otherwise impure atmospheres.
Having myself witnessed the fatality of the "oul" of the cerai jungles below the Himalayas, no one would rejoice more in the establishment, by adequate trial, of protective virtue in an intercepting medium of charcoal acting before the mouth and nostrils; and I much regret that an instrumental form should have been adopted which must render the charcoal worthless as a disinfector, that it should have been made subjectively a respirator-an article respired through.

It appeared to me, therefore, a duty, on the first appearance of this instrument, to invite the attention of the leading members of the profession to its construction as destructive of any specific virtue in charcoal, and to urge the necessity, before any reliance on a charcoal instrunent as a protector from infection could be entertained, that it should not be given the form of a respirator, but of it should not be given the form of a respirator, but of an instrument to be inspired through only; that for this purpose it should be so provided with valves as to transmit
through the charcoal the entering breath only, the outgoing through the charcoal the entering breath only, the out

Some months afterwards Dr. Forbes Watson described, in the Journal of the Society of Arts, an instrument answering these requirements as well, I think, as the case admits of, though I have not seen one. He informs me that its efficiency has not yet been tried. It is to be hoped that this, which may be named the charcoal inhaler or inspirator, will alone be trusted with a'trial, and not the charcoal respirator.
For it is very needful upon a sanitary question so closely connected with India as protection from malaria, that a warning should be pronounced against the placing of any reliance upon charcoal when respired through, as possessing any but a momentary disinfecting power.
On the Importance of Instruments for the Relief of Irritable Breath-Passages on Mulitary Duty.
This pulmonary question is not without an important sanitary application to Europeans in India, soldiers as well as others.
Persons with breathing organs unduly susceptible, on suddenly changing the relaxing climate of the plains for the keen though bracing air of the hills, are too likely, from the want of temporary protection of these organs until their systems are invigorated, to suffer attacks in them which, under such circumstances, are liable to run a rapid and fatal under such circumstances, are liable to run a rapid and fatal course. Such instances have occurred. And, on the other hand, I action of the rospirator of a accounts of benefit which sufferers in Europe are prompted by their feelings to which suff
It is well known that when pulmonary disease originates in India in the persons of Europeans, it is generally induced by previous disease in the liver. While the latter affection urges them to seek a temperate climate, the extreme susceptibility of the breath-passages when the hepatic irritation is extended to them (which suffer even in the cold weather of the plains), renders them quite unfit to cope with any but the summer air of stations on the hills. An officer of distinguished gallantry, and once of a fine constitution, on suffering from chronic liver disease induced by relapses of fever, proceeded to the hills, for a change of climate, in the month of March, but found a cough, which had commenced in the plains during sharp weather in January, rapidly aggravated, and he died in four months (in July 1828) of abscess in the lungs.
There can be little doubt such cases will frequently occur now that the British force in India is greatly increased, and a recourse to the climate of the hills will be more generally substituted for that detention in the-plains and repeated admission into hospital which necessarily terminates in an early destruction of many a constitution, which by better measures might be long sustained, and in no small propormeasures mig of cases thoroughly restored.

The change, of a transfer of irritation from the liver to the lungs on leaving the plains for the hills,- of destruction upon Scylla on escaping from Charybdis,-would greatly decrease if the principles upon which the real respirator is based were in all such cases given effect, not merely withoutdoors, ss they are, in ignorance of their virtues, for the doors, as they are, in lgnorance of their virtues, for the most part only employed, but within-doors al

It is not an opinion only with which the Commission is being here troubled, but the statement of an incontrovertible fact, that not in India only, but still more in other parts of the world, more particularly in the case of troops suddenly exposed to a Canadian winter, or, as in the Crimea, in
winter trenches, not to include real respirators in military winter trenches, not to include real respirators in military
stores for men with irritable breath-passages, is simply to stores for men with irritable breath-passages, is simply to
consign to death annually many a score of soldiers, and to consign to death annually many a score of soldiers
cause a loss of many a thousand pounds to the nation. Many men, not a few of them possessing great muscular power, and quite equal to military duty, suffer from a temporary or chronic delicacy of the chest, whose breathpassages cannot endure exposure to the conjoint chilling and drying action of air inhaled at all at a low temperature. It induces asthmatic or bronchitic symptoms, and an instinctively restrained admission of breath by contracting the nostrils and closing the teeth, whereas in marching or walking any distance the exercise demands an increased respiration. This diminution of the healthy volume of the breath lessens the irritating effect of keen air in proportion as the entrance of such alr is restrained; but any such partial advantage is purchased at the price of a partial suffocation, the whole blood suffers damage, and its effete matters cannot be evolved from it and thrown out by the lungs. cannot be evolved from it and thrown out by the lungs. The "' supplementary" portion of the " resident"* air of the chest gradually decreases, the lungs become condensed in a portion of their texture, on, from a plugging of certain tubes, emphysematous (broken-winded), and, where there is any. tendency to tuberculous disease, consumptive. To keep sending men so circumstanced into hospital, to have their lungs repeatedly patched up by drugs, however skilfully administered, and again exposed to their atmospheric enemy, is a system, religiously continued down from the earliest days of drug-treatment, which, most assuredly, cannot face the light of a sound pathology.

When the whole body is immersed in any climate warm and soft with mpisture, the lungs of such men are for the most part at ease, unless through their health suffering materially from the relaxing effects of the climate upon their bodies. Does it not stand to reason, when they are in a cold climate, that if you can supply such a soft atmosphere as the former to the lungs only, and wrap up the body warmly, they may best escape the injurious effects upon their susceptible breath-passages of this otherwise bracing climate?

In a normal state of health various natural agents exercise a beneficial stimulus on the system, any habitual aroidance of which may induce delicacy, i.e., too great sensibility towards it; but in an abnormal state, when any one of these agents, instead of healthily stimulating, causes the smallest distress in an organ, let it be the eye, ear, chest, or any other part, the more early, thoroughly, and uninterruptedly the suffering organ is protected against the irritant, the sooner is nature enabled to restore it to its normal state, fitted to thrive under what again becomes to it a healthy influence.

It has been objected that although since the expelled breath occupies a volume of 20 or 30 ounces, no appreciable quantity of its gases can be detained in an instrument in which there is not an inch of unoccupied space, the impurities in the moisture of the breath, which is freely condensed in the instrument, may, on returning with the entering current, prove injurious. The apparent plausibility of this objection will vanish on refiecting that any embarrassment of the respiration tends to accumulate effete matters in the system to a far greater extent than can any trifling return of them in respiring through a proper respirator; one of the most marked effects of which, when employed of the right temper, is to set the respiration free, inviting, through the softness given to it, full indraughts of air, the first inouthful of which would otherwise excite cough, and often a suffocutive asthmatic spasm in the breath-passages.
The condensation of distilled moisture from the breath is as essential a principle of the respirator as is its absorption of caloric. In an enfeebled and irritable state of the air passages, the natural evolution of moisture from them diminishes, and does not keep pace with that absolute demand of moisture, in obedience to physical law, which each entering breath makes directly upon the delicate membrane lining them, and, secondarily, upon the portion of it extended over the air cells,-a membrane requiring to possess such delicate texture that through its pores, the air and the blood in the vessels on either side of it. shall sustain the animal life by a barter of their elements, -a membrane of such delicate texture that a state allied to semi-liquidity is a necessary condition of its existence. To preserve this condition it has to lubricate itself perpetually with a thin fluid, which owes its unctuosity to mucus largely diluted; but which, when dried into obstructive phlegm, and still worse when into a solid state, becomes itself an irritant vieing with the air in exciting cough. It is the inexorable demand of the entering treath to be sup-

[^16]plied with moisture due to its rise in temperature, which alone causes this drying of the lubricant; a demand large in proportion as the air enters cold, and greater, therefore, even in the foggiest winter weather than in the driest summer. It is true that a cold fog is more distressing to many persons than a keen dry air; but such distress is caused by its sudden evaporation in the breath-passages robbing them of heat rendered thus latent and lost to temperature. But however foggy air may enter the lungs at a temperature of 30° or 40°, it will become dry by the moment it rises to 40° or 50°; and in rising up to near 100° will absorb 50 more degrees of moisture; whereas summer air dry at 75° will not, in rising to near 100 , demand more than 30 to 35 degrees of moisture.

In acute bronchitis or pneumonitis the supply of moisture falls so far short of the demand that it would much more often prove fatal did not nature take on providentially specific action, causing the membrane to throw forth quantities of soft phlegm in the one disease, and to plaster itself with a glutinous matter in the other (which it has constantly to discharge, indeed to maintain life through its pores). In sutch acute states a respirator is of little use, if, as is often the case, it cannot condense any moisture. Indeed, if the air of the room is by other means fully warmed, it may, while condensing no moisture, prove oppressive.
This specific action, often repeated in renewed attacks, is liable in some cases to be resolved into a chronic weeping, from the air-ward membrane, loading the passages with a watery fluid, as in watery cough, an abnormal substitute watery fluid, as in watery cough, an abnormal substitute
for the healthy evolution of moisture. In such cases the warmith but not the moisture of the respirator is needed. But these cases are the exception.

Climate-Chambers for the Lungs alone, for Hospital Use.

To meet the urgent need of an uninterrupted fomenting action which this breath membrane lies under, in common with every other air-ward surface, as that of the skin or eye, when inflamed, and in affording which it was plain from the first that the respirator (lacking moisture in such acute cases) must fall short, I was led to propose, 20 years ago, a construction which I think it right again to refer to briefly; for if such an apparatus were made portable and introduced into military hospitals (as indeed into others and into private practice), acute attacks in the chest would far less often terminate either fatally or in chronic disease. The proposal was, an apparatus which should perform the work of respirators, in that it would afford to the lungs artificial climates suited to them, without involving the whole body in atmospineres relaxing and oppressive to it; just as would be continuous immersion to the neck in a tepid or hot bath, where only a local fomentation or poultice was required. It is this immersion in the soothing element which is the great drawback to the soft insular climates in tropical and semi-tropical oceans, in which softness irritable breath passages would otherwise delight. For this end it was proposed the head alone should lie in a chamber of several cubic feet contents, formed of air-proof curtains, enclosing the neck. Through this chamber would flow gently an atmosphere compounded (in proportions to suit the particular
case) of hot and cold air and vapour of water (impregnated case) of hot and cold air and vapour of water (impregnated or not with medicaments as was thought desirable), such atmosphere being mixed previously in the feed pipe of the chamber by a conflux of these three constituents severally admitted from separate sources in the proportions determined. The proportions of vapour and of hot and cold air would be rariable in any degree, either by an attendant or by the patient himself, by merely tightening or easing certain endless cords, acting like that of a roller blind, but commanding valves instead.
The value of such an apparatus, especially in the acute stage of disease, could scarcely be exaggerated. It has, indeed, of late years become s not uncommon practice to keep, on the fire of a patient's chamber, a kettle with a long spout discharging steam into it, and with a boneficial effect, so great, considering the rude uncertainty of the operation and its affecting the whole room, as to be an carnest, though and its affecting the whole room, as to be an carnest, though
an imperfect one, of what might be the curative power an imperfect one, of what
of the complete apparatus.

Until such an apparatus shall be constructed it is much to be desired that the military hospitals of hill stations in India, as well as in other cold climates, should be supplied with kettles spouted from the top, the spout, which need not be long, terminating in a long flexible tube, which should be conveyed near to the face, but with its mouth so dirceted as not to endanger any gush of steam being blown against and scalding the face.
The more perfect apparatus, chambering a distinct climate for the lungs when in bed, might also be employed in cases of chronic delicacy, in lieu of sleeping with respirsm tors, when the luxury of such a chamber could be com-
manded at all times, but, in the absence of it, no cougher at night ought to neglect to wear a respirator. It has been worn with great relief by some who in the day time have actually not required the respirator out of doors, though this of course is not usually the case. Some judgment is required in selecting between the nasal, oral, and orinasal instruments, according as the nose, mouth. or both passages are breathed through in sleep. For night use the nasal is, with myself, the favourite instrument.
To this in-door employment of respirators no small number of persons within my own field of observation owe an exemption from attacks which would long since have proved fatal.

Cholera.-Suggestions, Curative and

Preventive.

The last subject upon which I desire to offer practical suggestions, based upon what appears to me may be beLeved with respect to the mysterious character of the disease, is Cholera. I would that the matter under this head partook of the pathological and practical certainty attaching to the preceding head, but here all that can be offered is bit conjectural and suggestive.
The deplorable severity with which the recent epidemic has fallen upon the British troops in India, in some localities carrytng off in a few days from a tenth to a fifth of the number present, and prompting the appointment of a fresh commission of inquiry into the nature of the disease, would leave without excuse any one who should at the present moment neglect to impart information having any promise of value, as being the result of considerable early experience in this disease, and subsequent reflection upon it.
In venturing the following remarks, I desire to be mindful that it is sanitary and not medical evidence which is sought by the Commission, that its objects are the prevention rather than the cure of disease. At the same time it will not, I hope, be considered out of place if theory shall be introduced, so far only as is necessary for giving weight to the suggestions which form the substance of these observations.

Having from an early period entertained the conviction that* the capillary vessels are not mere passive channels to the circulating fluids, but are scarcely less active and important in maintaining the circulation at the extremity of the vascular system than the heart is at its base, an opinion, I believe, now generally received, it has long appeared to me that there may be founded upon this doctrine a satisfac that there may be founded upon this doctrine a satisfacture of Asiatic cholera and that such an explanation may ture of Asiatic cholera, and that such an explanation may offer some clue towards the prevention and the treatment of the disease.
To be very brief, attention is invited to the great mucous surfaces of the body, which may be termed the airward and the food-ward ; the former being opposed to and having commerce with the air, namely the skin of the body's surface and the skin of the lungs' air passages; and the latter being opposed to and dealing with the ingesta, the food, namely the skin of the whole alimentary canal, from the upper orifice of the stomach to the lower one of the bowels. We find this large expanse of membrane, the air-ward and food-ward skins, to consist of a great development of the capillary system, namely, of multitudes of the extreme vessels filled with blood, (red or colourless, according to their size and duty), and also of innumerable extreme nerves charged with nervous influence, i.e., vital electricity, and therewith giving impulsion to the capillaries.

The flow of this vital electricity is, in their normal state, so admirably adjusted between the air-ward and food-ward membranes, that their respective circulations are duly balanced, and their respective functions rightly performed. A mutual nervous sympathy tends to preserve this balance; and a reciprocity of action to provide against any tempoand a reciprocity of action to provide against any tempo-
rary disturbance of it. With these truths, couched in other terms, the physiologist is familiar. They are clothed other terms, the physiologist is familiar. The present, as conducive to the explanation in hand.
While, then, such is the natural state, it will be readil While, then, such is the natural state, it will be readily conceived that through some morbific agency the healthy
distribution of the vital electricity over these two great distribution of the vital electricity over these two great
capillary surfaces might be utterly deranged, that the current capillary surfaces might be utterly deranged, that the current of nervous influence might desert the air-ward and become accumulated upon the food-ward surfaces; their nervous tissue, by a morbid vital induction, becoming surcharged with the influence withdrawn from the nervous tissue of the air-ward surfaces, becoming as in a state of positive vital electricity to the latter as in a negative state. All this is so reasonable, that but for the custodiary arrangements

* It is true that a contrary doctrine has been extensively accepted
thnurk the influence of able German physiologists, more especinlly of throub the inliuence of able German physiologists, more especinlly of
Muller. In papers in "The London Medical Gazete "in 184, and in a
work aiready referred to work already referred to on "The Statics of the Chest and Animal trine that the capillaries are passive vebsels is quito untenable.
of Providence, a more frequent occurrence of it might be expected.
When it did occur, what but the following would be the phenomena to be expected? A death-like state of the air-ward surfaces, their capillaries being empty and paralysed, and the circulation in them suspended; a cold and cadaverous skin, a ghastly countenance, a cold breath. On the other hand, intense congestion and irritability in the food-ward surfaces, the blood from without being in the in upon them by the inward impulse of the nervous driven in other words, the inward tension of the vital electricity To relieve this congestion, and as a consequence of the irritability (i.e., in obedience to the accumulated nee of the influence), either a great secretion of watery fluid (which influence), either a great secretion of watery fluid (which the absence of such secretion an specific character), or in the absence of sluch secretion an increase of the inward their own irritability, much action this fluid, and from their own irritability, much action of the stomach upwards and of the bowels downwards. The glandular viscera, the liver and kidneys especially, would in severe cases be also surcharged with blood, (a state to be found, I believe, after death in such cases, when the blood has not lost much bulk by a draining away of its watery portion, and as a consequence of such congestion, the secretion of bile and urine would be suppressed; though bile previously existing in the bile vessels of the liver might (as would seem, take plece in other affections also) be forced out of them into the gall bladder by the mere pressure against them of the turgid vessels forming the mass of the congested organ.

When a stoppage of the heart (death) puts an end to the circulation, and with it to the morbid nervo-electric tension inwards, the nervous influence,--the vital electricity,-might be expected, in diffusing itself outwards, to act again on the air-ward capillaries for a time, stimulating them to a false effort towards restored action. The corpse would then look less cadaverous than had the living man, the countenance would be less ghastly and the skin less sodden. Such a change I have myself noticed. Even heat might be developed at the surface as the consequence of this attempted restoration of action in the air-ward of this attempted restoration of action in the alr-ward capilary system. The occurrence of this startling phenosiology and pathology for an explanation. What other can they offer than this?
Such a view deives
Such a view derives much support from the fact that a disturbed state of what may be termed the inorganic electricity exterior to the human body, especially of the atmosphere around, is the most persistent of meteoric phenomena during a prevalence of epidemic cholera, and that it has led others to infer that electricity is in some way concerned as an agent in this disease.

A deficiency or disturbance of atmospheric electricity may sufficiently account for that rapid decomposition of organic matters and evolution of foetid gases which may be observed in such seasons. This electric state may determine the generation of a poison which, acting upon the air-ward surfaces, is the specific cause of their corpse-like state of suspended circulation, and it may prove a direct auxiliary to it by favouring an inward tension of the vital electricity.

Whatever view may be taken of the causes, the fact that in a confirmed attack of cholera the blood deserts the air-ward surface and becomes accumulated in the foodward, can scarcely be doubted by any one who has studied the disease by the bed side, more especially in cases of rapid collapse in full blooded persons, from whose circulation but little had been. detracted by discharges from the stomach or bowels.

The occasional extraordinary effect of copious blood letting, in removing the disease by relieving this inward congestion in cases in which to outward appearance the loss of an ounce of blood would appear hazardous, places this fact beyond a question. Almost the only case not fatal out of a large number which occurred in the worst week of a very fatol epidemic affecting H.M.'s 44th regiment, fresh from England in 1823, was that of a man of very large size and full blooded, who, within four hours of the attack, looked as if he had been drained of blood, although little fluid had passed from him in excess of what he had swallowed. No less than 50 ounces of blood were with difficulty obtained from him by two successive bleedings, each from both arms. Though on each occasion he appeared to have been killed by it, the lost pulse was gradually restored at the wrist, and his recovery was complete. Such critical treatment was only justified by the utter hopelessness of any other at that period. Though never able to perceive in choleraic collapse affecting Europeans much value in any other treatment, except indeed counter irritation, I have no doubt a fatal issue has not unfrequently been * Vid. Sir J. R. Martin, C.B., on Cholera, in

3 R 3
recipitated by blood letting when it failed to restore the balance of the circulation.
Having too often witnessed and experienced the failure of blood-letting, and of outward as well as inward stimulants, on reflecting upon the subject, about 20 years ago, the possibility occurred to me of relieving the inward pressure and promoting an outward flow of the circulation, sure and promoting an outward fow of the circulation,
and tension, by reducing the atmospheric pressure over a large tension, by reducing the atmospheric pressure over a large
portion of the body.* This impression having gained portion of the body,
strength, I had a pair of loose jack-boots made of strong sheet tin, each in two lengths meeting at the knee, and long enough to include the whole thighs, as well as the legs. Spare metal rings of different sizes were provided to fit round the thigh and round the mouth of each boot; and to close the junctions here and at the division of the boots at the knee, and make them air-tight, circular bands of ordi. nary india-rubber were made; vulcanized rubber, a better article for the purpose, not having been at that time introduced. The spaces inside the boots were made to communicate with each other and with an air-pump by means of nicate with each other and with an air-pump by means of
tubes, governed by stop-cocks. I tried this apparatus on tubes, governed by stop-cocks. I tried this apparatus on
myself, and found that a few strokes of the pump produced as much effect as I could bear without endangering syncope. This apparatus was laid aside for an opportunity of proposing a trial of it in cholera. On describing the plan, some time afterwards, to the late Dr. Baron of Cheltenham, he informed me that a French physician had recently proposed an apparatus for the leg on the same principle, though not for use in cholera; and Dr. Hensley, of Bath, subsequently showed me one of these he had brought from Paris. Finding the principle was before the medical world, though the apparatus was very limited in its extent of action contpared with that I had for some time possessed, I have hoped pared with that I had for some time possessed, I have hoped
that a proper trial of it in cholera would suggest itself to some medical body possessing the authority and opportunity for giving it effect.

Impressed with the conviction that the effects. upon the collapse in cbolera ought to be ascertained of an agent so powerful, and at the same time so entirely under control that its action could be revoked in an instant, by restoring the atmospheric pressure ; and not being aware that any trial has been afforded it in cholera, I venture to think it cannot be out of place, even before a Commission whose field is amongst prophylactics rather than therapeutics, to field is amongst prophylactics rather than therapeutics, to
tender this long-constructed apparatus for experinent in tender this long-constructed apparatus for experinent in
India, where this dire epidemic has been recently emptying military hospitals, and lending its powerful uid towards breaking down the spirits of a soldiery at no time very buoyant, unless when their senses are becoming lost in drink. The apparatus, though so long made, requires but little to put it in order. To ensure a due trial of it, I shall be happy to present it complete to the Royal Commissioners, the Council of India, or any medical authorities who, entertaining a like opinion with myself as to the expediency of a well-directed tentative effort, shall be prepared ency of a well-directed tentative effort, shall be prepared
to direct the application of it in a sufficient number of cases, to direct the application of it in a sufficient number of ca
to decide the question of its utility as a remedial agent.
to decide the question of its utility as a remedial agent.
The following suggestion, having a preventive object only may be viewed as falling more directly within the range of sanitary inquiry.

Amongst the, doubtless many, causes co-operating to produce the disease, it is manifest that such as have the atmosphere for their channel can only find access to the animal system by way of its air-ward tissues; and experience has ehown that comparatively slight differences as to exposure and other circumstances do oftentimes determine the accession of an attack, or an escape from it.
Twelve years ago, in a case of pulmonary disease, and more recently in one of tropical dysentery, and in another of serious renal derangement, the whole skin from head to foot, after a daily scouring, was so well plied with the limpid oil of almonds, in one of the cases rendered moderately stimulating by about a twelfih part of the essential oil of lemons, as to effect a considerable absorption of the oil, and at the same time to interpose, between the too sensitive skin and our raw atmosphere in winter, a film of oil to serve like a second scarf-skin. The rcsult, sufficiently encouraging in the dysenteric case, was in both the others so remarkable that, had the opportunity been offered of establishing the effect of such universal and persevering inunction, in a sufficient number of instances to justify an absolute conclusion as to its certain value, the publication of these cases would not have been neplected. Mention is only made of them now to raise the following suggestion above the position of an altogether untried idea.

[^17]I venture, then, to suggest that, whenever cholera, and perhaps also when dysentery are epidemic, it might be well to require all the men of a garrison, immediately after an carly scouring of the skin every morning, to rub themselves over from head to foot with a sweet limpid oil, such as oil of poppy seed, or almond, or even olive, well charged with oil of lemon or of limes. This process need not amount to much inunction of the oil (as was required in the cases instanced above), but should be sufficient for a protective coating with it.

There can be little doubt that, if a body of men could be deprived of their scarf-skin, their susceptibility to the influence of atmospheric poisons would be seriously aggravated; even the natural action of the atmosphere would be unendurable. So, on the other hand, the interposition between the atmosphere and the too-open pores of the skin in a tropical climate of the additional protection of a film of oil can hardly fail to retard the entry of atmospheric poisons, and especially their action upon the sensitive nervous tissue. Moreover we are not without examples in the matter. Every Moreover we are not without examples in the matter. Every
Hindoo who can afford it oils his skin after his daily abluHindoo who can afford it oils his skin after his dally ablu-
tions. It would be a point worthy of inguiry whether the greater susceptibility to cholera of the poorest classes in India may not be traced, in some degree, to their omitting to oil themselves regularly, as well as to their inferior diet and other causes.
To rouse the nervous tissue to resist depressing influences by gently stimulating it by aromatic oil added in small proportion to the bland oil, is a measure which may be left to commend itself to the judgment, especitlly as the trial cannot prove injurious in any case. Furthermore, the volatility and antiseftic properties of these essential oils is such that each person so treated would impregnate the atmosphere around him with an odorous vapour which might in some degree, prove protective to the lungs, and perhaps as stimulating to them as might be desirable withent appending before the mouth or nostrils an instrument impregnated with antiseptics, which few would consent to wear without a manifest necessity.

The oil of limes recommends itself, not only as an article easily and abundantly producible in India at, practically, a nominal cost; but especially as an aromatic, perhaps the most generally grateful of any. While an offensive odour, which may not in itself be poisonous, will often lend effeet to an inodorous poison ; so doubtless, on the other hand, grateful aromatic odours are not only antiseptic, bnt tend also to fortify the nervous tissue, more or lesi, against a - poisonous influence, a fact noticed from the earliest times, though, doubtless, formerly the subject of an over-strained reliance.

An apprehension that oiling the skin must tend to check the due action of its exhalent vessels would be ill-founded, especially in a tropical climate where they are liable to suffer exhaustion and relaxation on the one hand, or on the other to have their orifices and the scarf-skin over them obstructed by absolute exsiccation, producing more or less of the by absolute exsiccation, producing more or less of the
mummy-like skin of the "old Indian." If agglutination mummy-hike skin of the "old Indian." If agglutination
be guarded against by scouring off every morning the excretions and dried oil of the previous day before renewing the application (and the operations might be repeated at night), its tendency will be to keep the skin in a state of healthy freedom and moderate action, while a film of oil left on the surface cannot but aid the epidermis in checking the impression of depressive morbific influences on the nervous tissue, especially if that oily film be rendered antiseptic, slightly stimulating, and grateful through the presence of an aromatic.

Conchusion.

In concluding evidence so discursive in the range of its subjects, and in the exposition of them, I desire to explain that a large portion of it has been offered consequent upon my being favoured with a recent invitation to add any evidence I believed to be conducive towards the objects of the Commission; and that my endeavour has been to restrict my remarks to such as served to elucidate or strengthen the evidence. The fact that much of this matter is now published for the first time, will not, it is hoped, appear to presult from any doubt as to the reasonableness of the views result from any doubt as to the reasonableness of the views
and plans proposed, but, as is the truth, from an indisposiand plans proposed, but, as is the truth, from an indisposi-
tion to occupy public attention in fields from some of which I have, long since, professionally withdrawn, and with others of which (as mechanics and hydraulics) though very inviting to me, I have not been professionally connected. Relying upon the hope that amongst the many persons ably officiating at the various shrines of science concerned, and more constantly consulting her oracles, each useful truth would become elicited and be more influentially enforced than by myself, I have hesitated to intrude upon the public all that has been presented to my own observation as appearing to be such.

Reyarks and Collected Facts on the Climate of India; on the Geological Features of the Country; and some Tabclated Views of the Poptlation: to show the comparative density of inhabitants in proportion to area--By R. M. Martin, Esq.
Climate.

A country extending through 26° of latitude, and with elevations from the coast-level to the height of three or four miles above the sea, must necessarily possess great variety of temperature. About one-half of India is intertropical, comprising within its limits the three principal stations of Calcutta, Madras, and Bombay; in fact, all the country south of a line drawn from Burdwan on the east, through Bhopal, to the gulf of Cutch on the west, a distance from Cape Comorin of about 1,000 miles. All the region north of this line, and extending 800 miles from Cutch to Peshawur, is outside the tropic of Cancer; the area of the inter and extra-tropical territory is nearly alike. Mere distance from the equator will not convey an adequate idea of the climate of any district : other circumstances must be taken into account, such as elevation above the sea, aspect in reference to the sun and the prevailing winds, more or less vegetation, radiation of terrestrial heat, quantity of rain falling,* or siccidity of atmosphere, proximity to snow-covered mountains or great lakes, drainage, ventilation, \&cc.; \dagger all these, varying in collateral existence or in degree of operation, cause a variety of climate and thermometrical range, which latitude will not indicate. Regions mentiguous to the equator, at or near the sea-level, possess a high but equable temperature. The mercury, on Fahrenheit's scale, exhibits in the shade at Singapore, a flat islond in $1^{\circ} 17^{\prime}$ N., a heat of 73° to 87° throughout the year. As in $1^{\circ} 17^{\prime} \mathrm{N}$. , a heat of 73° to 87° throughout the year. As
we recede from the equator north or south, a wider caloric we recede from the equator north or south, a wider caloric range is experienced, not only throughout the year, but
within the limits of a single day. In the N.W. provinces
Meteorological Monthly Observations for different Parts of India, showing the Latitude, Number of Feet
Meteorological Monthly Observations for different Parts of India; showing the Latitude, Number of Feet
above the Level of the Sea, average Thermometer, and Rain in Inches.

Places, Latitude, and Elevationabove Sea.	Thrrmomberbe													
	Jan.	Feb.	March.	April.	May.	Jane.	July.	August.	Sept.	Ott.	Nov.	Deo.	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { oar } \\ \text { oear. } \end{gathered}\right.$	
Calcutta, $22^{\circ} 34^{\prime}, 18 \mathrm{ft}$.	69	73	78	87	88	83	82	82	82	82	71	68	$79 \ddagger$	
Madras, $13^{\circ} 5^{\prime}$, sea-level	78	78	82	88	92	87	88	86	86	84	82	78	83	
Bombay, $18^{\circ} 57^{\prime}$, sea-level §	77	77	80	82	85	85	81	84	79	84	84	80	84	
Tirhoot, $25^{\circ} 26^{\prime}, 26^{\circ} 42^{\prime}$, little $\}$	60	66	76	85	89	86	84	85	81	73	-	61	78	
Goorgaon, $28^{\circ} 28^{\prime}, 817 \mathrm{ft}$ -	70	72	80	-	104	98	85	84	89	87	75	66		
Delhi, $28^{\circ} 41^{\prime}, 800 \mathrm{ft}$ - -	53	62	70	79	82	82	82	80	80	73	62	56	72	
Rajpootana, \|	about 500 ft . -	70	78	82	82	74	90	85			-	90	66	
Nagpore, $211^{\circ} 10^{\prime}, 930 \mathrm{ft}$.	68	75	83	89	90	84	79	79	79	79	73	72	79	
Hyderabad, $17^{\circ} 22^{\prime}, 1,800 \mathrm{ft}$.	741	$76 \frac{1}{4}$	84	$91 \frac{1}{2}$. 93	88	81	$80 \frac{1}{4}$	79	80	761	742	81	
Bangalore, $12^{\circ} 58^{\prime}, 3,000 \mathrm{ft}$ -	71	73	79	78	79	75	74	74	74	71	71	70	74	
Hawilbagh, $29^{\circ} 38^{\prime}, 3,887 \mathrm{ft}$.	47	55	61	60	73	76	78	79	75	69	60	52		
Kotagherry, $11^{\circ}{ }^{2} 7^{\prime}, 8,600 \mathrm{ft}$.	59	60	61	62	62	64	64	65	64	62	60	59		
Ootacamund, $11^{\circ} 24^{\prime}, 7,300 \mathrm{ft}$.	54	56	60	64	64	59	56	56	56	56	55	53	57	
Mussoorie, $30^{\circ} 27^{\prime}, 6,282 \mathrm{ft}$.	-	-	-	-	77	70	68	68	67	61	56	-		
Landour, $30^{\circ} 27^{\prime}, 7,579 \mathrm{ft}$ -	41	46	55	65	68	66	68	66	64	57	46	47	-	
Darjeeling, $27^{\circ} 2^{\prime}, 8,000 \mathrm{ft}$.	40	42	50	55	57	61	61	61	59	58	50	43	53	
bain in minches.														
Calcutta	$0 \cdot 05$	0.48	$1 \cdot 77$	$3 \cdot 52$	$12 \cdot 86$	$3 \cdot 04$	$12 \cdot 44$	$8 \cdot 15$	$8 \cdot 19$	$3 \cdot 68$	0.06	2.57		
Nagpore -	$0 \cdot 40$	$0 \cdot 50$	$3 \cdot 84$	1.01	$0 \cdot 21$	6.25	14-93	$7 \cdot 51$	16.32		2.89	0.13	53.999	
Bangalore -			35	$4 \cdot 16$	5•89	$3 \cdot 24$	$5 \cdot 88$	$4 \cdot 13$	$13 \cdot 97$	5.10	$1 \cdot 30$			
Kotagherry -	2	3	6	10	2	2	4	2	2	10	2	5	50	
Ootacamund -	1.	1	2	5	6	8	7	6	7	9	5	3	60	
Darjeeling - -	1	-	1	2	9	26	25	29	15	8	-	-	122	

of India, and the S.E. bettlements of Australia, the mercury not unfrequently rises in the summer season to 90°, and even 100° rahr., and shows a fluctuation, in twentyfour hours, of $24^{\text {, }}$; but this extreme torridity, when the circumambient fluid seems to be aeriform fire-is but of frief a daration. Animal and vegetable life are re-invigorated, for a large part of the year, by a considerably cooler atmo" sphere. Indeed, at New York and Montreal, I found the heat of June and July more intolerable than that of Jamaica or Ceylon; but theu snow lies on the ground, at the former places, for several weeks in winter. Again, moisture with heat has a powerful and injurious effect on the human frame, though favourable to vegetation and to many species of animal life. Speaking from my own sensations, I have lain exhausted on a couch with the mercury at 80° Fahr. during the rainy season in Calcutta, Bombay, and Hong Kong, and ridden through the burning forests of Australia, on the sandy Arabian plains, and over the sugar-cane plantations of Cuba, with the mercury at 100° Fahr. So, also, with reference to elevation: in the East and West Indies, at a height of several thousand feet above the sea, I have enjoyed a fire at night in June; and yet, in April and September, been scorched at mid-day in Egypt, Northern China, and Eastern Europe. These observations are made with a view of answering the oft-recurring inane question, without referring to any locality," What sort of qusion, has India?" In order, however, to conver some ideat the thermometrical range, and the, to different stations, the following table hat different stations, the following table has been collated from different sources:-

[^18]| Yeara. | | | Sunrise. | $2 \cdot 40$ P.M. | Sunset. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 1841 \\ & 1842 \\ & 1843 \\ & 1844 \\ & 1844 \\ & 1846 \\ & 1847 \\ & 1848 \\ & 1849 \\ & 1850 \end{aligned}$ | - | - | 7897 | 89.0 | 82.4 |
| | - | . | 73.3 | ${ }_{87}^{88.0}$ | ${ }_{82.5}^{82.1}$ |
| | $=$ | - | $73 \cdot 3$ $72 \cdot 7$ | 87.6 97.6 | ${ }^{82.3}$ |
| | - | - | 73.7 | ${ }^{86} \cdot 9$ | 88.3 |
| | - | $=$ | 74.3 73.2 | 86.3 86.1 | ${ }^{81 \cdot 9}$ |
| | = | - | $73 \cdot 2$ 74 | 86.1 87.4 | ${ }_{82} 81.6$ |
| | - | - | 73.6 78.1 | ${ }^{86.7}$ | 81.8 $81 \cdot 4$ |
| | - | - | 73.1 | $86 \cdot 1$ | |
| | Mean | - | 73.4 | 87.2 | 82.0 | The annual fall of rain at Calcutta during sir veation

averazed 64 inches In the wet season evaporation veraked 64 inchex. In the wet season evaporation
\ddagger Amount of rain at Bomban for six years:--

1845 1846 1847

Averaye amnual fall during thisty yoars, $76{ }^{60 \cdot 0}$ inches. At Madras, average

 miles frou Indian Ocean. In 1826, and in 1831, the fall of 1

The monsoons or prevailing winds within the tropics, as on the Coromandel and Malabar coasts, are denominated the South-west and the North-enst; but, owing to modifying circumstances, the direction is in several places changed; at Arracan, the S.W. blows more frequently from the S ., and the N.E. more to the W. of N. Lower Bengal, including the country around Calcutta, has a climate more trying than that of any other part of India. November, December, and January are tolerably cool, and Europeans may walk out during the day. In February, March, April, and May the heat daily increases, until, during the last month especially, it becomes almost intolerable; not a cloud appears in the heavens to mitigate the burning rays of the sun, which seem to penetrate into the very marrow of an European, I have known men and beasts to drop dead in the streets of Calcutta. When the monsoon is on the eve of changing, before the chota bursaut (little rain) set in, the nights as well as the days are oppressive; respiration becomes labowell as the days are oppressive; respiration animated nature languishes: the horizon rious, and ail animated nature languishes : the herid glare, deepening to a liery red; the deathassumes a lurid glare, deepening to a liery red; the death-
like stillness of the air is occasionally broken by a low murlike stillness of the air is occasionally broken by a low mur-
muring, which is responded to by the moaning of cattle; dense, dark masses of clouds roll along the Bay of Bengal, accompanied with occasional gusts of wind; streaks of lightning, after sunset, glimmer through the magazines where the electric fluid is engendered and pent up; the sky becomes olvscured with mist, and louring; next, broad sheets of lambent flame illumine each pitchy mass, until the entire heavens seem to be in a blaze, while peal after peal of thunder reverberates from cloud to cloud, like discharges of heavy artillery booming through cavernous hills, or along heavy artillery booming through cavemous hills, or along
an amphitheatre of mountains; thin spray is scattered over an amphitheatre of mountains; thin spray is scattered over the coast by the violence of the increasing gale,-the rain
commences in large drops, augments to sheeted masses, and commences in large drops, augments to sheeted masses, and
sweeps like a torrent from the sky; the surf roars along the beach,-the wind howls furiously, screaming or groaning pitcously, and every element seems convulsed with the furious conflict: at length the S.W. monsoon gains the victory, and the atmosphere becomes puritied and tranquil. The monsoon is felt witis varying degrees of intensity at different parts of the coast; but at Madras and at Bombay the scene is one of aivful grandeur. During the rains the air is saturated with moisture, and the pressure on each square inch of the human frame causes extreme lassitude and mental depression; along the sea-shore the pernicious effects are mitigated by a sea-breeze, called the "Doctor," which sets in about $10 \mathrm{a} . \mathrm{m}$. and lasts until sunset. As the country is ascended above the ocean-level, varieties of climate are experienced; but on the plains of the Ganges and of the Indus, and in some parts of Central India, hot winds blow nearly equal in intensity to those which are felt in Australia. In few words, some idea may be conveyed of the climate of several districts :-

Bengal Proper,-iot, moist, or muggy for eight months-April. to November; remainder cool, clear, and bracing.

Behar,-cool in winter months ; hot in summer ; rain variable. Oude,-fluctuating temperature and moisture; therm. range 28 o 112°; rain, 30 to 80 inches.
mes ; therm. at night, 45°, but in i winter cool and frosty some30 to 80 inches.
Agra, -has a wide range of temperature; in mid-winter nightfrosts and hail-storms sometimes cut off the cotton crop and cover the tanks with ice; yet at noon in April, therm. reaches the height of 106° in the shade.
Ghazeepore, -range in coldest months, 58 to 71°-April, 86 to
96°; May, 86 to 95°; June 85 to 95°. July $86^{\text {to }} 96^{\circ}$ In the 96°; May, 86 to 95°; June, 85 to 95°; July, 86 to 96°. In the Dehra Doon-range 37 to 101°. In the year 1841, December mean 67 inches; of which in July, 25 ; August, 26 . 67 inches ; of which in July, 15 ; August, 26.
cuttack and opposite coast of Bay of Bengal,-ref
recre blowing continuousiy from March to July.
Berar,-moderate climate according to elevation.
Mrulras, - cold season of short duration in the Carnatic. Mercury in therm. higher than in Bengal, sometimes 100° Fahr. Heat tempered by sea breezes.
Arcot,-high temperature, 110° in the shade, sometimes 130° Fahr. Few sudden vicissitudes; storms infrequent.
Salen, fuctuating climate-in January 58 to 82°; March 66 to Trichinopoly, 一has
ry and close atmosphere, with much glare and intense radiation of heat.
Vizagapatam,-on the const hot, moist, and relaxing ; inland equally sultry, but drier.
Bellary is characterized by great aridity ; rain 12 to 26 inches; herm. falls in January to 55 or 50°; thunder-storms frequent in uminer months.

[^19]shade), 98°; min., 65°; mean, 81°; mean temperature during
monsoon, 77°; max., 89°.
Madura, -on the hills mild and genial in summer; therm. seldom below 50° or above 75°; in the plains, reaching 115° and even 130 .
oppressive. Mysore,-table land cool, dry, and healthy ; at Bangalore (3,000 ft. high), therm, range from 56 to 82°. The monsoons which deluge
the Malabar and Coromandel coasts, have their force broken by the the Malabar and Coromandel coasts, have their force broken by the Ghauts on either side, and genial showers preserve the Mysoreas verdure throughout the year.
Neilgherries,

Neilgherries,-the climate resembles that of the intertropical plateaux of America; at Ootacamund (height 7,30uft.), mean temperature rather above that of London, but ann. range very to perfection, but corn and vegetables thrive. Lower down the vales enjoy an Itatian clime ; at Coimbatoor (height 4,483 ft.), during the cold season, max., 59°; min., 31°; in April, average 65°; May, 64° Fahr. ; there are no sultry nights, a blanket being acceptable as bed-covering in all seasons. In the higher regions, the air beyond the zone of clouds and mists is clear and dry, as evidenced by the great distance within which sound is heard, and by the buoyancy of the human frame.
501080° Fahr annual raiu, at Mercara (4500 range, 2 to 6°; ann. June, about 40 inches. June, about 40 inches.
ann. rain, 120 to 130 incines. - -
Canara and the Concans, -beneath the Ghauts are not, tropically speaking, unhealthy, except where marsh and jungle prevail, when malaria is produced.

Bombay,-hot ; tropical heat diminished by sea-breezes.
Bronch,-December to March, cool ; average rain, 33 inches. In Goozerat, which is the hottest part of W. India, the westerly winds are burning in May, June, and July ;
nine months; average fall of rain, 30 inches.
nine months ; average fall of rain,
Mahratta country,-near the Ghauts the clouds are attracted from the Indian Occan, and a profusion of rain fails for three or four weeks without intermission, but often not extending 30 m . to the E . or S .
The Deccan tnble-land is salubrious; at Sattara, meau asn. temperature, 66°. Even in September I enjoyed the air of Poona, as a great relief from the sultry heat of Southern China. Ann. range
of therm., 37 to 94°; tall of rain, light and uncertain- 22 to 30 of therm., 37 to 94°; tall of rain, light and uncertain- 22 to 30 inches; among the Ghauts, 300 inches. Proceeding westward towards a modified temperature (at Meerut, therm. falls to 32° Fahr.), with occasional hot winds, which prevail as far as Sinde and the Punjab. Sinde is dry and sultry; at Kurrachee, 6 or 8 inches rain; at Hyderabad, 2 inches; at Larkhana, farther north, there was no rain for three years. Mean max. teumperature of six hottest months, 98° in the shade.
Punjal, -more temperate than Upper Gangetic plain; from Novernber to April, climate fine : summer heat, intense; hot winds blow with great violence, and frequent dust-storms in May July ; August and September sickly months. The Great Desert to the August and September sickly months. The Great Desert to the S. of the Punjab has a comparatively low temperature; at
Bickancer, in winter, ponds are frozen over in February ; but in summer the heat is very great; therm. 110 to 120° in the shade.
Candeish has a luxurious clinate like that of Malwah.
Cpper Assam has a delightful temperature; the heat bearable, and the cold never intolerable. Mean temperature of four hottest months, about 80°; of winter, 57°; mean anm. 67°; heavy rains, which commence in Marchand continue to October. The quantity which falls is unequal; at Gowhatty, it is about 80 ; at Chirra
Poonjee, 200 ; and in the Cossya country, 500 to 600 inches $=50 \mathrm{ft}$. At this hatter place there fell in 1850 no less than 502 inches $=49 \mathrm{ft}$.; in August, 1841 , there were 264 inches $=24 \mathrm{ft}$., in five successive days- 30 inches every 24 hours. [Let it be remembered that the annual fall in London is 27 ; in Edinburgh, 24 ; in Glasgow, 39 inches.] The eastern side of the Bay of Bengal, to the Straits of Malacca, is more genial and agreeable than that of the Coromandel coast : the greatest heat is in April; therm., at Mergui, 100°; the monsoon is mild, but violent to the northward.

Lower Assam and Arracan a climate similar to Lower Bengal.
This rapid sketch will indicate the yariety of climates in India; but it is in the loftier adjoining regions that the greatest extremes exist.
The Himalaya and Hindoo-Koosh slopes and valleys extibit a very varied temperature, and corresponding diversity of products, from the loftiest forest trees to the stunted lichens and mosses, when the last trace of vegetable poles, snow being equally perpetual does at the Arctic or Antartic Poles, snow being equally perpetuan sea, as at the extreme northern and southern parts of our globe. On the southern, or Indo-Gangetic side of the Himalaya, which rises like a wall from the sub-Himalaya, the snow-line commences at 18,000 to $19,000 \mathrm{ft}$. on some of the spurs or buttresses; on the northern side of the same range,-tableland of Tibet $10,000 \mathrm{ft}$., above the sea, the snow-line commences at 16 , 000 fl ., but in some places is not found at $20,000 \mathrm{ft}$. On the southern slope cultivation ceases at $10,000 \mathrm{ft}$; but on the northern side, cultivation extends is at $17,000 \mathrm{ft}$. Vegetation, to some extent, indicates the more or less severity of this mountain clime: the Deodar has its favourite abode at 7,000 to $12,000 \mathrm{ft}$-attains a circumference of 30 ft , and of abreat stature, and the wood will last, exposed to the weather, for 400 years. Various species of magnificent pines have a range of 5,000 to $12,000 \mathrm{ft}$. the arboraceous rhododendron, every branchlet terminated by a gorgeous bunch of crimson flowers, spreads at 5,000 to $8,000 \mathrm{ft}$; the horse-chesnut and yew commence at $6,000 \mathrm{ft}$., and end at $10,000 \mathrm{ft}$; the oak flourishes at 7,000 to $8,000 \mathrm{ft}$; maple, at 10,000 to $11,000 \mathrm{ft}$; ; ash, pophar, willow, rose, cytisus, at 12,000 , ceases on S. slope at $13,000 \mathrm{ft}$; on N . side fine torests of this tree at $14,000 \mathrm{ft}$. Juniper met with occasionally at latter-
named height ; the grape attains great excellence at Koonawur, $8,000 \mathrm{ft}$., but does not ripen beyond $9,000 \mathrm{ft}$; the currant thrives at 8,000 and 10,000 to 12000 ft .
raspberry, at 10,00 the decrement of heat in proportion to latitude and eleration is, as yet, imperfectly ascertained. Dr Hooker* allows one degree of Fahrenheit's thermometer for every dcgree of latitude and every 300 fL of ascent above the sea; at Calcutta, in 22° 34, the mean ann.temperature is about 79°; that of Darjceling, in Skkim, $27^{\circ} \Psi^{\prime} ; 7,450 \mathrm{ft}$. above Calcuta isatere with elevation is much less in summer than in winter: in January, $1^{\circ}=250 \mathrm{ft}$., between 7,000 and 13, coo ft ; in July, $1^{\circ}=400 \mathrm{ft}$; the decrement also less by day than by night. The decremental proportions of heat to height is roughly indicated by this skilful meteorologist,

$\begin{array}{lll}1^{\circ}=3.0 \mathrm{ft} & \quad " & 10,000 \text { to } 19,000 \mathrm{ft} . \\ 1^{\circ}=400 \mathrm{ft}\end{array} \quad \geqslant \quad 14,000$ to $18,000 \mathrm{ft}$.
This must be affected by aspect and slope of elevation; by quantity of rain falling, and permeability of soil to moisture; by mount of cloud and sunshine, exprial radiation, and other lecal intluences.
Within the tropics, in the northern hemisphere, the limit of perpetual congelation is 16,000 to $17,000 \mathrm{ft}$. above the sea; in lat $30^{\circ}, 14,\left(40 \mathrm{ft}\right.$. ; in $40^{\circ}, 10,000 \mathrm{ft}$; in $50^{\circ}, 6,000 \mathrm{ft}$. ; in $60^{\circ}, 5,000 \mathrm{ft}$. in $79^{\circ}, 1,000 \mathrm{ft}$; and in 80° and further north, at the sea level. perpequal frost.
At Kumaon, winter rigour is moderated by great solar radiation, and gomewhat tempered by contiguous snow-capped mountains, whence a diurnal current of air sets in as repularly as a sea-breeze on a tropical shure, and with a nearly equally invirorating effect until the beginning of April. Duriag the absence of snow for five unthe beginning of Aphis at sunrise, 40 to 55°; at mid-day 65 to 75° in the shade- 90 to 110° Fahr. in the sun. The heat of course diminishes as height increases, except during the cold season. At Almorah town, in $\varepsilon 9^{\circ} 30$, $5,400 \mathrm{ft}$. elevation, the therm. before sunrise is always louest in the valleys, and the frost more intens han on the hills of 7,000 fr. elevalin, while at noon the sun more powerful ; exireme range in 24 ho severy season ; the natives ay the greatest fall is every third year. On the Ghagor range between Almorah and the plains, snow remains so late as the month of May. At Mussoorie, 6,000 to $7,000 \mathrm{ft}$. high, the mean ann. heat is only 57° Fahr.; indeed, at $4,000 \mathrm{ft}$. hot winds cease, and egctation assumes an European chan Annual fall of rain morah, 40 to 50 inches.
The northernmost part of Nepal valley, between 27 and 28°, and uthern parts of Europe In winter a hoar similar to that of the southern parts of Europe. found, occasionaliy for three or four months, freezing the standing pools and tanks, but not severe enough to arrest the flow f rivers. In summer noon, the mercury stands at 80 to 870 Fals The seasons are very nearly like those of upper Hindoostan, ains set in earlier, and fom the s.E. are usually very cotions in ome places from the mountain torrents. In a few hours, the inhabitants, by ascending the sides of the enclosing mountains, may exchange a Bengal heat for a Siberian winter.
At Darjeeling the atmosphere is relatively more humid than at Calcutta ; the belt of sandy and grassy land, at the foot of the Himalaya, only 300 ft . higher than in Calcutta, and $32^{\circ} \mathrm{N}$. of hat city, is during the spring munths, March and April, 6 or $\%$ s relatively more humid ; this is reversed after the rains commence. The south wind, which brings all the moisture from the Bay of Bengal, discharges annually 60 to 80 inches of rain in traversing 60 m . of land; but the temperature is higher in advancing northwest from the Bay of Bengal, which may be caused and phe absence of any grat elevan in the tains. climate: at Cabul, which is considered to be very salubrious, and 6,396 ft. above the sea, the air is warmer in summer and colde in winter than that of England; and the diurnal therm. range is great, amounting to ${ }^{\circ}{ }^{\circ}$. June, Julg, and August are the horcury December, Janiary, and Februar zero Fahr. ; but the sun possesses sufficient power at mid-day to melt the surface of the snow, which, however, is agrain frozen at night. The seasons are very regular ; the sky is unclouded, the air bright and clear, with scarcely any rain; in November a few showers are followed by snow; and from the middle of March till the lst of May there is incessant rain, which mels the snow rapidly, and causes a sudden transition from winter to summer (with but little spring), when thunder and hail-storns
occur: earthguakes are not unfrequent during winter in the immediate vicinity of the lofty ranges, but are said to be unknown at Candaliar. Mrevailing winds, N.N.W. and W.; E. seldom; winter, calm; variable at breaking up of the season. \dagger
Cashmere valley, by its elevation ($5,000 \mathrm{ft}$.), has a cool climate; in winter the celebrated lake is slightly frozen over, and the ground covered with snow to the depth cf 2 ft.; hottest months, July and
August, therm. 80 to 85° at noon, when the air is sometimes August, therm. 80 to of circulation.
But it is in the loffier regions that the peculiarities caused by altitude are most observable: at-
Bussahir,-the climate varies from that of the intertropical at Rampoor, 3,260 ft. \dagger above the sca, to that of the segion of perpe-

[^20]tual congelation : in parts bordering on the table-land of Tartary the air is at one season characterized py aridity greater than that
of the most scorching parts of the torrid zone. In-October, and later in the year, when the winds blow with the greatest violence woodwork shrinks and warps, and leather and paper curl up as if held to a fire; the human body exposed to those arid winds in a few minutes show the surface collapsed, and if long left in this
coudition life becomes extinct. Yegetation with difficulty struggle against their effects. Gerand found tration with difficulty struggles a most desolate and dreary aspect; ; not a single tree, or blade of green grass, was distinguishable for near 30 m ., the ground being covered with a very prickly plant, which greatly resembled furze in its withered state. This shrub was almost black, seeming as if burnt; and the leaves were so much parched from the arid winds of
Tartary, that they might be ground to powder by rubbing them between the hands. ' Those winds are generally as violent as hurricanes, rendering it difficult for the traveller to keep his feet. The uniform reports of the inhabitants represent the year as continual sunshine, except during March and April, when there are some showers, and a few clouds hang about the highest mountains; but a heavy fall of rain or snow is almost unknown. The excessive cod and aridity on the most elevated suminits cause the snow to like smoke through the air by the tempestuous winds. The limit of perpetual congelation in Bussahir ascends to the northward. The direct rays of the sun are extremely hot at great elevations: insomuch, that Jacquemont found the stones on the ground on the table-land of Tartary, at an elevation of 15,000 or $16,000 \mathrm{ft}$., become so hot in sunshine, as to be nearly unbearable of the sun so oppressive that he was obliged to wrap his face in a blanket.
At Bulti or Little Tibet the atmosphere is very clear and dry. But though rain is almost unknown, snow falls, and lies from the depth of 1 to 2 ft . The cold in the elevated parts is intense in winter; on the high and unsheltered table-land of Deotsuh, it at that season totally precludes the existence in the lower parts in summer is considerable, the therm. ranging from 70 to 90° in the shade at noon.
At Ladakh the climate is characterized by cold and excessive aridity. The snow-line is so usually high in Spiti and Ruphsu, at the south-eastern extremity of Ladakh, as to slow the utter futility of attempting to theorise respecting the so-called isothermal lines, in the present scanty and imperfect state of our frem which they should be determined. Gerard says, respecting Spiti, in lat. 32°, that the marginal limit of the snow, which, upon the sides, of Chimborazo, occurs at $15,700 \mathrm{ft}$., is scarcely permanent in Thibet at 19,000 , and one summit, $22,000 \mathrm{ft}$. high, was seen by him to be free of snow on the last day in August. This alsence of snow probably results, in part, from the very small quantity of moisture kept suspended in the highly rarefied atmosphere, in part from the intense heat of the direct rays of the sun, the latter cause being in some degree de
pendent on the former. "Wherever we go," observes Gerard, "we pendent on the former. "Wherever we go, observe, in the beginning of September, at an elevation of $15,000 \mathrm{ft}$., a thermometer, resting upon the rocks, marked 158°; in another, at $14,500 \mathrm{ft}$., the instrument, placed on sand, marked 130°; and in a small tent, at an attributed to the rarefaction and tenuity of the atmosphere, from levation and the absence of moisture,-circumstances which allow of such immediate radiation of heat, that at the same moment there will be a difference of more than 100° between places only a few hundred yards asunder, occasioned by the one receiving, and the other being excluded, from the direct rays of the sun. A Ruphsu, at the elevation of $16,000 \mathrm{ft}$, it freezes every night, even at Midsummer; but the heat of the day so farcountervains the chat, that the Lake Chamoreril is free from ice during the ummer months. At Le, having an elevation of about $10,000 \mathrm{ft}$. frosts, with show and sleet, commence early in September and continue until May; the therm. from the middle of December to February, ranges from 10 to 20°; even in June, the rivulets are often, at night, coated with ice. Moorcrot, the sun's rays at midravels, found the therm, when ex July, to range from 134 to 144°. The atmosphere is in general dry in all parts of the country.
In the works of Gerard, Lloyd, Moorcroft, Vigne, Jacquemont, and Heoker, useful details are given on the meteorology of these lofty regions.
The climate of northern India is not inimical to the Luropean constitution, that of Bengal and other low districts is ery trying, especially to those who do not follow a strictly temperate course in all things; but there are some in stances of Englishmen living for a quarter of a century Calcutta, and on returning to England, enjoyis anothe quarter of a century of existence, preserving, to old age, vigorous mental and bodily frame.ll In the hot and mois parts of India, abdominal diseases, - in the warm and dry, hepatic action or congestion prevail. Exposure at night especially to malaria or the eflan animater causes heat and decomposing vegetable and animal matter, causes a bilious remittent (popularly called jungle ener), wecomes operates as a poison on the human rapidly fatal if not counteracted by mercury, arsenic, or some other poison, or unless the morbitic matter be expened, the patient have strength of frame to survive the fever
The direct rays of a nearly vertical sun, and even those also of the moon, cause affections of the frequently fatal, and when not so, require removal to the

Thornton's Gazetteer: Afyhanistam, \&re., voli.i., p. 120

3 S
temperate zone for their relief. The establishment of sanataria at elevated and healtlyy positions, has proved a great benefit to Anglo-Indians, who at Darjeeling, Simla, Landour, Mussoorie, Mount Aboo, the Neilgherries, and other places, are enabled to enjoy a European temperature and exercise-to check the drain on the system from the cutaneous pores being always open-to brace the fibres and tone the nerves, which become gradually relaxed by the ong continuance of a high temperature. As India becomes more clear and cultivated, and facilities for locomotion by railrouds and steam-boats are augmented, the health of Europeans will improve, and their progeny will derive a proportionate benefit; but it is doubtful whether there is any part of the low country where a European colony would permanently thrive, so as to preserve for successive generations the stamina and energy of the northern races.
The diseases that prevail among the Indians vary with locality; low, continued fever is most prevalent in flat, and rheumatism in moist regions. Leprosy and other skin disorders are numerous among the poorest classes. Elephantiasis, or swelling of the legs; beri-beri, or enlargement of the spleen; torpidity of the liver, weakness of the lungs, and ophthalmia, are common to all ranks and places; goitre is found among the hill tribes; cholera and intluenza sometimes decimate large masses of the people. Numerous maladies, engendered by carly and excessive sensuality, exist among rich and poor, and medical or chirurgical skill exist among rich and poor, and medical or chirurgical skil
are consequently everywhere in great request. The inhabiare consequently everywhere in great request. The inhabi-
tants of India, generally speaking, except on the plateau, and tants of India, generally ppeaking, except on the plateau, and
on the more elevated districts, have not the robust frames or well-wearing constitutions which result from an improved social state, or from the barbarism which is as yet free from the vices and defects of an imperfect civilisation; the inhabitants of the torrid zone do not generally enjoy a longevity equal to hose who dwell in the temperate climates of the earth.

Geology.

It will require many more years of scientific research before an accurate geological map can be laid down for India.* Immense tracts covered with impenetrable forests, the few Europeans in the country occupied with military and civil governmental duties, the lassitude of mind and body which, sooner or later, oppresses the most energetic, and the malaria which inevitably destroys those who attempt to investigate the crust of the earth, overrun with jungle, or immersed in swamp,--these and other obstacles jungle, or immersed in swamp,--these and other obstacles
render the prosecution of this science a matter of extreme render the prosecution of this science a matter of extreme
difficulty. All that can here be attempted is to collate the difficulty. All that can here be attempted is to collate the
best known data, and arrange them in outline, for refereace best known data, and arrange them

Representatives of all the series found in Europe and other parts of the world are traceable in India. Mr. Carter has industrinusly noted the observations of various investigators; and the following summary is partly abstracted from his compilation:-
Order Metamorthic Strata.-Gnciss, Mica Schiste, Chlorite Schiste, Hornblende Schiste, Quartz Rock, Micaceous Slate, Talcose Slate, Clay Slate, Granular Limestnne.

Gaciss.-Most general and abundant,-occurring in different parts of the llimalaya: Oodeypore ; near Baroda; Zillah Behar; Majmahal hills; Phoonda Ghait; Northern Circars ; and more or less throughout "peninsula " (? Deccan) to the Palghaut, and probably to Cape Comorin: it is frequently veined by granite, contains in most places specular iron ore: heds of garnets common every position varied in texture, compactness, and with more or less mica; colour-speckled, black, brown, reddish gray to white sometimes tinted green where chlorite replaces mica: when very fine-grained and decomposing, gneiss bears a close resemblance to fine-grained sandstone.
Mica Schiste.-Southern Mahratta country, and western extremities of Vindhya range, passes into micaceous slate at the Phoonda Ghaut: veined with 'quartz, but no granite: being associnted with gneiss and hornblende schistes, they pass into each other.
garnets. Hornblende Schiste, forms the sides of the Neilgherries, where it is from five to seven miles in breadth: garnets found in it.
Snuthern Matratta country, Nalem; and often passes into mica schiste on the Malabar coast.

Quartz Rock.-Hills between Delhi and Alwur, and between Ajmere and Oodeypore; mountains around Deybur Lake, Chittoor, and at the western part of the Vinithya range, with mica slate; southern Maliratta country; more or less in the granitic plains of
Hydrabad, and in the drooys of Mysore. The rock is compact and Hydrabad, a the Aimere mountains: and of a red violet, aray or brown colour ; brillinatly white in the Mahratta country. Mica is
-The late eminent geologist, J. R. Greenough, has made an excellent beginning by
he collected.
he Siected. valuable Summary of phe Geolomy of Jndia; hetreen the Ganges,

frequently disseminated throughout the rock in large masses; talc nd chlorite, occasionally.
Micaceour Slate and Chlorite Slate.-Both at the Phoorida Ghaut; the Indo-Gangetic chain, Kunawur; and in the Soolumbur range, Oodeypore.
Clay Slate, appears to be of great thickness, and considerable extent, viz., trom the Arravulli range, the lower part of which is composed of this formation; thence to Oodeypore, viâ the SooKistmah; southern Mahratta country Vallore to Malwa, on the Ghauts at Jungamanipenta, a ferruginous clay-slate overlies the trap at Mahableshwur. In the Arravilli it is massive, compace and of a dark blue colour. The Soolumbur range is almost entirely composed of this and chlorite slates. Micaceous passes into clay-slate at the Phoonda, and, farther south, the Saltoor passes (Western Ghauts). This also occurs at the Carrackpore hills (Behar), where the clay-slate is about twenty miles wide, and extends in the direction of the strata.*
Prutonic Rocks.-Granite, Diorite or Greenstone.
Granite.-Himalaya; Ajmere and around Jeypoor, traversing the mountains in veins and dykes; the Arravuili range consists chiefly of granite, resting on slate; Mount Ahoo; from Balmeer across the sands to Nuggur Parkur; the Gir; Girnar; between
Oodeypore and Malwah, are all varieties: it extends more or less Oodeypore and Malwah, are all varieties: it extends more or less Aouthward to the Nerbudda; on that river between Mundela and Amarkantak, Jubbulpore, Kalleenjur, Zillah Behar, Carrackpore hills; in Bhogulpore and Monghyr districts; near Baitool ; Nagpore territory; Cuttack; Orissa; Northern Circars; Hydrabad; between
the Kistnah and Godavery; Gooty ; Neilgherries; Malabar coast at Vingorla; Coromandel; between Madras and Pondicherry; ending at Cape Comorin. The granitic rocks vary in structure and composition, as they do in colour: thus there are syenitic, pegmatitic, and protogenic. It is gray at Ramteak in Nagpore, red generally in the Deccan, but at Vencatigherry (Mysore), and at Vingoria, gray; in the Neilgherries it is syenitic.
Greenstone.-Hazareebangh, Mahratta country, Mysore, Nellore, Chingleput, Madras, Trichinopoly, Salem, in the granitic plains of Hydrabad; and extensively throughout Southarn India. In the
Deccan the dykes may be traced continuously for twenty miles; Deccan the dykes may be traced continuously for twenty miles; miles from Dhonee, between Gooty and Kurnool, there is one $\mathbf{d 5 0}$ feet high, and 200 feet broad, passing through a range of sandstone and limestone mountains.
Silumian Rocks. - Greywacke. - Ghiddore, Rajmahal hills; Kumaon. It is a quartzose sandstone; yellow colour, resinous lustre, and compact splintery fracture.
Transition or Cambrian Gneiss, is of great extent in Bhagulpore district, composing two-thirds of the country between the Curruckpore and Rajmahal hills, and the greater portion of the southern ridges of the latter, group. It consists of qu
hornblende, felspar, mica, and garnet pebbles.
Oozitic.-Limestone.-Cutch; near Neemuch, Malwah; Bundelcund; on the river Sone; Fyzabad, on the Bheema; Kuladgee, in the southern-Mahratta country; on the Kistnah; and as far south as Cuddapah. Though its principal characters are its uniform lithographic texture, solidity, conchoidal smooth franture, and hard-ness,-dendritic surface, smoky gray colour, pas. Ag into dark smoky blue; and parallel thin stratification,-it differs when departing from its general composition, just as the shales differ which or less argillaceous, bituminous, or quartziferous; of different degrees of hardness, conrseness, and friability of structure ; and of all kinds of colours streaked and variegated. It is occasionally reined, and interlined with jasper and light-coloured cherts, which, near Cuddapah, give it a rough appearance; also contains drusy eavities, calcedonies, and cornelian, north of Nagpore : in the bed of the Nerbudda between Lamaita and Beragurh, near Jubbulpore, of a snow-white colour, and traversed by chlorite schiste. It is frequently denuded of its overlying sandstone and shales in
Southern India, and in this state is not uncommonly covered by trap, as near Ferozabad on the Bheema.
Thickness, 310 feet near Kurnool; 10 to 30 feet on the Bheema, with strata from 2 inches to 2 feet thick. In the part of the Himalaya examined by Captain Strachey, the secondary limestones and shales were several thousand feet in thickness, the upper portion being in some places almost made up of fragments of shells.
If the white crystalline marble generally of India is allowed to be metamorphic strata, this limestone exists in the Girnar rock of Kattwar; the lithographic form in Cutch, and between Neemuch
and Chittore; the white marble about Oodeypore, and northwards in the neighbourbood of Nusseerabad, Jeypoor, Bessona, and Alwar; in the neighbourbood of Nusseerabad, Jeypoor, Bessona, and Alwar;
a narrow strip about 150 m . long in Bundelcund; again about a narrow strip about 150 m . long in Bundelcund; Bidjyghur and Rhotasghur on the Sone; white marble in the bed of the Nerbudda, near Jubbulpore; in the hills north-east of Nagpore; near the junction of the Godavery and Prenheta rivers; thence along the Godavery more or less to Rajahmundry; Sholapore district; on the Bheema; of every variety of colour, and greatly disturbed and broken up about Kaludgee, in the sonthern Mahratta country; along the Kistnal, from Kurnool to Amarawattee; and more or less over the triangular area formed by the

[^21]latter place, Gooty, and the Tripetty hills. Chunam, an aryillarsous
limestore, used for building in Bengal, Behar, Eenares,
L. ocic ry in nodules in the alluvium, which, at Calcuta; is 5 en, to buf fec: thick. Near Benares, it contains tragnents of Iresh-w -er
shel!s. South of Madias, a dark clay abounds in marine shi is, used in preference fur lime-burning to those on the beach, as bcang frow from salt.
Sandstone--appears to be composed of very fine grains of oun rtz and more or less mica, united together byan argitlaceous mateina. hills ; Ceded Districts: in lat. $15^{\circ}, 15 \mathrm{~m}$. west of the Godavery; on the banks of the Kistiah; plains of the Carnatic, and cime districts watered by the Pennar river. It is present in the subbHimalaya range, and in the Fajnahal hills. All the tuwns on the sandstome. The plains of Beekaneer, Joudpore, and Jessulinere are covered with the loose sand of this formation. It borders on he northeru and western sides of the great trappean tract of Malwah, and forms the north-eastern boundary of the Western India volcane district.
Its thickness varies, either from original inequality or subsequent denudation. lis greatest depth, at present known, is in bidjishur ; and 1,300 feet at Rhotasphur ; at the scarps of the Materfa!'s over the Panna range, it does not exceed 360 or 400 fect ; from 3ion to 4 in fect is its thickness near Ryelcherroo and sundrogam, in the Ceded Districts. Its greatest height above the sea is on the banks of the Kistnah, s, colif feet. Organic remains the ereat trap deposit of the Western Ghauts, rests on a sandstone containing vegetable remains, chietly ferns.
Vubdavic kocxs. \dagger - Trap.-1 he largest tract is on the western side of India, and extends continuously from the basin of the Malpurba to Neemuch in Malwah; and from Balsar, about 20 mn . south of the mouth of the Taptee, to Nagpore. This is probably the most remiarkatle trap-for 455 m . N, to s .; length about 350 m . flube ; its breadth is about 335 m . N. to $\mathrm{W} . ;$ length about 350 m . Another portion extends trom Jubbulpore to Amarkantak, thence Another portion extends Nagpore. It constitutes the core of the Western Giauts, and predominates in the Mahadeo and Sautpoora
mountains.
Ifs two grand geological features along the Ghauts, where it has attianed the highest elevation, are Hat summits and regular strati-
fication. Fourteen beds have been numbered in Malwah, the lowest and larfest of which is 300 feet thich. These are equally numerous f not more so, along the Ghauts, but the scarps are of much greater magnitude. Besides its stratification, it is in many places columar: is in the beds of the Nerbudda and Chambul; and the hill-fort of singhur presents a surface of pentagonal divisions.
Wherever the effusions exist to any great extent, they appear to be composed of
Busuilt:-There are two kinds of this rock ; a dark blue-black, and a brown black: Both are semi-crystalline. Their structure is mi:ssive. stratitied, columnar, or prismoidal. Dark blu
basait oi Bumbay Ishand, brown-black that of the Deccan.
To this general description I may add what I have been enisled to glean of the specific structure of some of the principill positions:-
Himulnyas.-Formations primary ; the first strata, which is dowards the plain, consists of limestone, lying on clay-slate, and cruwned by slate, greywacke, or sandstone. Beyond the limestone tract, gneiss, clay-slate, and other schistose rocks occur; granite cenealiy composed of schistose rucks, but veined by granite to a reat cievation. kamet, however, is an exception, appearing to cons i,t of granite alone. Greenstone dykes rise through and intersect the regular rocks. Strata fractured in all directions ; slate as if crushed. and the limestone broken into
princhally accumbilated on the northern side
7 he formation of the lndo-Gangetic chain, in Kunauur, is mostly gheis and mica-siate; in some places, pure the Sutci, granite prevails, forming the Raldang peaks. Further north, it becomes largely iutermixed with mica-slate ; to the north-east changes into secondary limestone, and schistose rochs, abounding in marine exuvia. $\%$ In Kumaon, the Himalayas

are composed of crystalline gnciss, veined by granite; the range mationg the north custern boundary is bell of the principal chain in Nepani consists of tiwusust, horn tone, and conflomerate. The Sewalik the most southerly and luwest range of the Himalayan system) is of alluvial formation, consisting of beds of clay, sand-
stone with mica, conglomerate cenentcd by calcarcous stone with mica, conglomerate cen.ented by calcarcous matter, gravel, and rollcal stones of various rocks. The suppesition is, that quake. The geology of the sewalik is characterized by the occurrence of quantities of fossil remains.
Pimnjal.-Near the nurth-east frontier, in the vicinity of the Himalaya, is an extensive tract of rocks and deposits of recent formation; limestone, sandstone, gypsum, argillaceous slate; occasionally veins of quartz.
The Sall-range.-Gre
ne Sas clay, with deposits of limestone, sandstone, and red of chloride of sodium, or common The Sufied-Koh is primary, consisting of granite, quartz, mica, gneiss, slate, and primary limestone.
Che Suliman mountains are of recent formations, principally sandstone and secondary limestone, abounding in marine exuviz.-
Central India.-Arravulli range, generally primitive consisting of granite, quartz, and gneiss. Formation along banks of upper course of Nerbudda, trappean; lower down, at Jubbulpore, granitic at Bhera Ghur, channel contracted between white cliffs of magnesian limestone; at the junction of the 'luwah, there is a ledge of black limestone: at and near Kal Bhyru, slate of various sorts; basaltic rocks scattered over channel. Ranges enclosing Nemaur,
banks of rivers, and eminences in the valley, basaltic. Saugur and Nerbudda territory; eastern part, towards amarkantak, generally sandstone; from here it extends westward, forming the table-land bounding Nerbudda valley on the north, and is intermixed with marl, slate, and limestone. The volcanic tract commences about lon. 79°, and extends to about the town of saugor, which is situate east, may be coasidered to belong to the Vindhya; and the former east, may be considered to belong to the Vindhya; and the former rocks appear through the overlying bed. The Bindyachal hills are of horizontally-stratified sundstone; Pauna hilis, sandstone, intermixed, with schiste and quartz; and, to the west, overlaid by limestone.
Hest
Hestern Ghauts.-The great core is of primary formation, in-
closed by alternating strata of nore recent origin. These have closed by alternating strata of nore recent origin. These bave
been broken up by prodigious outbursts of volcanic racks; and from Mahableshwur northward, the overlying rock is exclusively of the trap formation ; behind Malabar they are of primitive tray, in many places overlaid by immense masses of laterite, or iron-
clay. The Vurragherry or Pulnag hills (Madura) are gneiss, straticlay. The Vurragherry or Pulnag hills (Madura) are gneiss, strati fied with quartz; in some places precipices of granite.
Nagpore. North-western and western part, volcanic basalt and trap. This terminates at the city of Nagpore, and the primitive, mostly granite and gneiss, rises to the surface.
Mysore.-The droogs, huge isolated rocks, scattered over the surface; vary in elevation from 1,000 to 1,500 feet; bases seldom exceeding 2 m . in circumference; generaly composed of granite, gneiss, quartz, and hornblende; in many places overiaid by
laterite.

Sorls.
Mainly determined by the geological character of each district, except in the deltas, or on the banks of rivers, as in the Punjab, where an alluvium is accumulated. The land in Lower Bengal is of inexhaustible fertility, owing partly to the various salts and earthy limestone with which the deposits from the numerous rivers are continually impregnated: it is generally of a light sandy
appearance. The alluvium of Sinde is a stiff clay; also that of Taujore, Sumbulpore, and Cuttack, by the disintegration of granitic rocks. A nitrous (saltpetre) soil is general in Behar; in the vicinity of Mirzapoor town, it is strongly impregnated with saline particles; and at many places in Vizagapatam. The regur, o_{3} cotton ground, which extends over a large part of Central India, and of the Deccan, is supposed to be formed by a disintegration of rap rocks; it slow y aroduced, in yearly succession, for centuries, the most exuusting crops. It spreads over the table-lands of the Ceded Districts and Mysore, flanks the Neilgherry and Salem hills, and pervades the Deccan, but has not been observed in the Concans. It is a fine, black, argillaceous mould, containing, in its lower parts, nodules, and pebbly alluvium, Kunkur (a calcareous conglome-
rate) fills up the cavities and fissures of the beds beneath it; and rate) I Ills up the cavies andighouring rocks are scattered over its angular Ir It contains no fossils. In some parts it is from 20 to 40 feet thick. Kuakur is common in the north-western provinces, the rocks often advancing into the channel of the Jumaa, and obstructing the navigation. In the western part of Muttra district, it is mixed with sand: in Oude, some patches of this rock, which undergo abrasion very slowly, stand 70 or 80 reet above the aeigh bashed away by the agency of water. Its depth, in the eastern part of Meerut district, is from one to 20 feet. In the Duoab, between the Ganges and Jumna, and in many parts of the N.W. provinces, there is a light rich loam, which produces excellent wheat;
at Ghazeepore, a light clay, with more or less sand, is favourable

[^22]for sugar and for roses. As the Ganges is ascended before reaching Ghazeepore, the soil becomes more granitic, and is then succeeded by a gravel of burnt clay, argite, and cinders, resembling what is
seen in basaltic countrics. Assam, which has been found so well adapted for the culture of tea, has for the most part a black loam reposing on a gray, sandy clay; in some places the surface is of a light yellow clayey texture. The soil usually found in the vicinity
of basaltic mountains is of a black colour, mixed with sand tegrated granite, where felspar predominates, yields much clay tegrated granite, where felspar predominates, yields much clay. more or less in Paniput, Rhotuck, and Hurriana districts : Jeypoor,

Cotton Soils.	$\begin{aligned} & \text { Vege- } \\ & \text { table } \\ & \text { matter. } \end{aligned}$		Iron.			Carb. lime.	Magnesia.	Alumina.	Silex.	Water and loss.	Remarks.
			Protox.	Deutor.	Tritox.						
Bundelcund -	2.00	0.33	-.	7•75	-	11.90	trace	3.10	74.0	$1 \cdot 00$	
Coimbatore -	2.30	traces	$4 \cdot 00$	-	-	$7 \cdot 50$	trace	$2 \cdot 80$	82:80	$0 \cdot 60$	$\left\{\begin{array}{c} \text { Gravel, mostly silex, } \\ \text { with some felspar, but } \\ \text { no kunkur. } \end{array}\right.$
Tinnevelly -	$0 \cdot 15$	$0 \cdot 20$	-	-	2.88	$19 \cdot 50$	$0 \cdot 15$	2.00	74.00	1-12	$\left\{\begin{array}{l} \text { Gravel, almost wholly } \\ \text { kunkur; some carb. } \\ \text { iron; half the soil of } \\ \text { gravel. } \end{array}\right.$

a brovn and rather sandy earth prevails; Trichinopoly is arid and sandy; and near Tavoy town, on the E. side of the Bay of Bengal, thereis a large plain, covered with sand.
The suil of Nagpore, in sometracts, is a black, heavy lonm, loaded with vegetable matter; red loam is found in Salem and in Mergui. Tingevelly has been found well suited for the cotton plant, and rubbish, and yellowish brickdust intermised we mixure of tue, kur. ${ }^{*}$ A chymical analysis of three of the best cotton soils in these districts gives the following results: \dagger —

Goozerat is generally termed the Garden of Western India. Wis one extensive plain, comprising many different soils; the chief varieties being the black or cotton soil, and the gorat, or light grain-producing soil. f The former is chiefly confined to Ibroach, and part of Surat N . of the Taptee; the latter prevails throughout Baroda, Kayra, and part of Ahmedabad, becoming more mixed with sand to the northward; black soil abounds to the westward of the Gulf, and in many of the Kattywar valleys. The numerous vegetable products of India attest the variety of soils which exist there.

Minerals.

Various metals have been produced and wrought in India from the earliest ages : the geological character of the different districts indicates their presence. So far as we have yet ascertained, their distribution is as follows :-
Fron.-Ladakh.-Mines in the north-eastern part of the Punjab, \S and in almost every part of Kumanon, where the requisite sinelt ing processes are performed, though on a small scale, and in a quality, believed to be inexhaustible. Rajmahal ; in gneiss. Lalpang, 16 miles south-west of Mirzapore city. Kuppudgode hills; in schistes, quartz, and gneiss: on the north-east side, one stratum of iron, 60 feet thick. Ramghur; hills abounding in iron, though not of the best quality. Hazareebaugh, in gneiss-flinty brown colour, pitchy lustre, and splintery fracture; 20 feet thick. Various parts of Palamow district; at Singra in inexhaustible quantities. Eastern part of Nagpore territory. Nine of good quality at Tendukhera, near Jubbulpore (were the navigation of the Nerbudda available, this would prove a most usetul article of
export for railways). Western extremity of Vindhya; in gneiss export for railways). Western extremity of Vindhya; in gneiss. iron-ore occur in the same district; in clacy-slate. In all the mountains of the Western Ghauts; in Malabar; in veins, beds, or masses, in the laterite (here extensively smelted). Salem, southern part (yields 60 per cent. of the metal fit for castings). Nellore district. In many places in Masulipatam. Rajahmundry; in sandstone hills. Vizagapatnim. Abundant in many parts of Orissa. Tenasserim provinces; occurs in beds, veins, and in rocks. Between the Salem and Gyne rivers, it is found in sandting the sea-coast ; the best is at a short distance north of Taroy town : it is there in two forms-common marnetic iron-ore; and massive, in granular concretions, crystallized, splendent, metallic, highly magnetic, and with polarity. The ore would furnish from 74 to 80 per cent. raw iron. In various places the process of smelting is rudely performed by the natives, but they produce a metal which will bear comparisou with the best Swedish or British iron.ll Tin.-Oodeypore,-mines productive. On the banks of the Barakur, near Palamow; in gneiss. Tenasserim provinces. Tavoy, hills: Pakshan river, soil in which the grains are buried, yields 8 or 10 feet of metal; at Tavoy, 7 feet: of superior quality in the vicinity of Mergui town.
Lead.-Ladakh. Kunnwur. Ajmere; in quartz rocks. Mairwarra. Eastern part of Nagpore. In the vicinity of Hazareebaugh Eastern Glanuts at Jungamanipenta; in clay-slate-mines here. Amherst province. Fine granular galena obtained in clay-slate, and clay limestone on the Touser, near the Dehra-Doon.

[^23]Copper.-Ladakh. Kunawur, in the valley of the Pabur. Kumann, near Pokree; but these mines are almost inaccessible, and at Dohnpur, σ_{i} Dhobri, Ganroli, Sira, Khori, and Shor Gurang Mairwarra. Oodeypore; abundant, it supplies the currency Southern Mahratta country, in quartz; also in a talcose form. Vencatigherry, North Arcot. Nellore district.** Sullivan's and Callag kiank Islands, in the Mergui Archipelago. This metal is most probably extensively distributed, and of a rich quality
Silver.-In the tin mines of Oodeypore. In the lead mine, near Hazareebaugh, and other places.
Gold.-Sands of Shy-yok, Tibet. Ditto Chenab, Huroo, and Swan Rivers, Punjab. Ditto Aluknunda, Kumaon. Throughout the tract of country W. of the Neilgherries, amid the rivers and even the river stones, when pounded, yield a rich product; it is usually obtained in small nuggets. In the iron sand of the streams running from the Kuppudfrode hills, and from the adjoining Sal toor range. Sumbulpore; in the detritus of rocks. In moderate quantities in several places in the eastern part of Nagpore. Many of the streams descending from the Ghauts into Malabar; and in tiful : near Gowhatty, 1,000 men used to be employed in collectin ore for the state. Various paris of Tenasserim provinces, but in small quantities. The geological structure of India indicates an abundance of the precious metals.

Coal.-The carboniferous deposits of the oolilic series in Bengal West of the Ganges and Hoognly, consist of coal, shale, and sand stone, but no limestone, and they appear chiefly to occupy the c!epressions of the granitic and metamorphic rocks which form thi part of India, becoming exposed in the banks or beds of water ments which have been produced by upheavalof the or in en whic they were deposited. The cosl occursin strata from an inch or les to 9 or 10 feet thickness, interstratified with shale and sandstone ; the whole possessing a dark black or blue colour, of a greater or less intensity. At Burdwan its character is slaty, the genera of plants are partly English, some Australian, some peculiar. The depth at the Curhurbalee field, situated 60 miles south of the Ganges, near Surajgurrah, is from 50 to 100 feet. Proceeding westerly, towards Palamow district, which contains many valuable and extensive helds, and where several shatts have been sunk, it has been seen Sone and Tiran, Yachete district. Hills in Ramghur, abounding in coal. Jubbul pore, 30 m . S. from Hoosinurabad ; in Shahpore in the same neigh bourhood : and abundantly along the valley of the Nerbudda Traces of it are said to exist in the diamond sandstone north-west of Nagpore, and it has been found in the Mahadeo mountains. In the Punjab, at Mukkud, on the left bank of the Indus, and in the localities of Joa, Meealee, and Nummul. The extremes of this coal formation, so far as have yet been discovered in India, are, the confluence of the Godavery and Prenheta in the south, in lat. 19°, and the salt range in about $9^{\circ} \mathrm{N}$. ; Cutch in the west, and
Burdwan in the east; and detached in Silhet, Pegu (recently found of excellent quality), and the Tenasserim provinces (plentiful, and possessing good properties). There are many other places, no doubt, in the country between Bengal and Berar, where this valuable mineral exists; traces of it have been observed is

The gray ore found in Dohnpur affords 30 to 50 per cent. of copper ; it is asence mining operations can be carried on without timbering or masonry. "e Mines discovered by Dr. Heyne, near Wangapadu. "A foorpath, paveit'with
stonex, led up the hill to the place which was shown me as one of the mines
 village (Wangapadu.) An open gallery cut into the rock dempustrated that
it had been formerly worked; and as the atones, which lay in abundance it had been formerly worked; and as the stones, which lay in abundance
near it, were all tinged or overlaid with mountain green, there could be no " dinut
p. 118,)
+F In excavating the disintegrating granite in the vicinity of Bangalore, to ascertain the extent to which the decomposing inturace of the atinspphere
will aflect the solid rock (ois., 30 to 35 f .) the contents of soil were fiequently
 the road to Seriugangstan, Lieutenant Baird Smith, , B. E, observed consider At Wynnad this matal was obiained from rich yellow earth in sumticien quantity to employ a nuinber of tabourers and to yield aome returia

Orissa, but it has not yet been found available for use; it is not mprobable that it extends across the delts of the Ganges so sinhet, the southern slope of the Himalaya: it has been questioned whether this is the older coal, or only lignite associated with nagelfue,where the Testa issues from the plain, its strata is highly inclined, and it bears all the other characters or the older formation. Anaysis of the following results:-Chirra Poonjee, slaty kind: specific gravity, 1-497; containing volatile matter, 36 ; carbon, 41 ; and a copious white ash, $\mathbf{2 3 = 1 0 0}$. Nerbudda (near Futtypore), near the surface, \rightarrow volatile matter, $10 \cdot 5$; water, 3^{-5}; charcpal, 20 ; earthy residue (red), $64=110$, Cossyau hills: specific gravity, $1 \cdot 275$; volatile matter or gas, $38 \cdot 5$; carboa or coke, $60 \cdot 7$; earthy impu1.9 fs ; volatile matter, 35.4 ; carbon, 50 ; ferruginous gravit, $14 \cdot 6=100$. Arracan : specific gravity, $1 \cdot 308$; volatile matter, $66 \cdot 4$; carbon, 33 ; ash, $0 \cdot 6=100$. Cutch ; charcoal, 70 ; bitumen, 20 ; gulphur, 5 ; iron, 8 ; calcareous earths, 2.
Nulphur.-Mouths of Godavery, and at Condapilly, on the Kistnah. Sulphate of alumina obtained from the aluminous rocks of Nepal; used by the natives to cure fresh wounds or bruises: silex, 1 : loss, 1. Sulphate of iron is procured in the Behar hills, and used by the Patna dyers; it yields sulphate of iron, 39 ; peroxyde of iron, 36 ; magnesia, 23 : loss, $2=100$.
Diamonds.-Sumbulpore has been celebrated for the finest diamonds in the world; they are found in the bed of the Mahanuddy. Masulipatam (near Ellore); and at Panna, in Bundelcund. Mr. H . W. Voysey described, in 1824 , the diamond mines of the Nulla Mulla mountains, north of the Kistnah,* which were formerly extensively worked.t
Rubies.-Sumbulpore; in the detritus of rocks.
Pearls.-Gulf of Manaar, near Cape Comorin, and on the coast of many of the islands in the Mergui Archipelago.
Huriate of soda (common salt) is found in rock and liquid form
various places. A salt lake, 20 m . long by is broad, is situgted at various plares. A sait lake, 20 m . long by is broad, is situated neighbouring country with salt after the drains are dried up. A salt lake in Berar contains in 100 parts,-muriate of soda, $20:$ muriate of lime, 10; muriate of magnesia, 6. Towards the sources of the ndus, salt lakes exist at 16,000ft. above the sea There are extenlakes are said to exist in the Himalaya.
Cornclian is found and worked in different pleces: the principal mines are situated at the foot of the western extremity of the Rajpeepla hills, close to the town of Ruttunpoor; the soil in which he cornelians are imbedded consists chiefly of quartz sand-reddened by iron, and a little clay. Agates abound in Western India: covered with heaps of rock crystal, as if cart-loads had been purposely thrown there, and in many parts of the great trappean disrict the surface is strewed with a profusion of agatoid fints, onyy, hollow spheroids of quartz, crystals, and zoolitic minerals. There re evidences of several extinct volcanoes in Cutch.
This is but an imperfect sketch of the minerals of India: doubtless, there are many more places where metals exist; but during the anarchy and warfare which prevailed prior to British supremacy, the very knowledge of their locality has been lost. At no distant day this subterranean wealth will be developed; and probably, when the gold fields of Australia are exhausted, those of India may be profitably worked.

Population.

From remote antiquity India has been densely peopled; but we know nothing certain of its indigenous inhatitants, - of accessions derived from immigration, or from successful invasions by ses and land,-of the progressive natural increase,-or of the circumstances which influence, through many generations, the ebb and flow of the tide of population. \ddagger There is direct testimony,

however, that before the Christian era the country was thickly inhabited by a civilized people, dwelling in a wellcultivated territory, divided into numerous flourishing states, with independent governments, united in federal alliance, and capable of bringing into the field armies of several hundred thousand men.
For more than a thousand years after the Greek invasion, we have no knowledge of what was taking place among the population of India, and but a scanty notice, in the eighth century, of the Arab incursions of the regions bordering on the Indus. Even the marauding forays of Mahmood the Ghaznevide, in the eleventh century, afford no internal evidence of the state of the people, save that derived from a record of their magnificent cities, stately edifices, immense temples, lucrative trade, and vast accumulations of wealth; the Hindoos were probably then in a more advanced state of social life, though less warlike, than during the Alexandrine period: they had gradually occupied the whole of India with a greatly augmented population, and possessed a general knowledge of the arts, conveniences, and luxuries general
of life.

During the desolating periods of Moslem forays, and of Mogul rule, there appears to have been a continued diminu tion of men and of wealth, which Akbar in vain essayed to check by some equitable laws. We have sufficient indirect and collateral evidence to show that whole districts wer depopulated, that. famines irequently occurred, and that exaction, oppression, and misgovernment produced thei wonted results in the deterioration of the country. No census, or any trustworthy attempt at ascertaining the num-
bers of their subjects, was made by the more enlightened bers of their subjects, was made by the more enightened
Mogul sovereigns, even when all their energies were directed to the acquisition of new dominions.

The English, until the last few years, have been as remis in this respect as their predecessors in power. An idea prevailed that a census would be vierved suspiciously as the prelude to a capitation tax, or some other exaction or inter ference with domestic affairs. In Bengal, Behar, and Orissa, which we have had under control for nearly a century, no nearer approximation has yet been made to ascertain the number of our subjects, than the clumsy and inaccurate contrivance of roughly ascertaining the houses and huts in a village or district, and then supposing a fixed number of mouths in each house (say five or sir). The fallacy of such estimates is now admitted, and rulers are beginning to see the value of a correct and full ceusus taken at stated intervals, in order to show the rates of increase or decrease, and to note the causes thereof. I believe that the Anglo-Indian Government have no reason to apprehend unpleasing disclosures if a decennial census be adopted for all the territories under their sway: the natural fecundity of the Hindoos would lead to an augmentation where peace and the elcments of animal sustenance exist and a satisfactory proof would be afforded of the beneficence of our administration, by the multiplication of human life. With these prefatory remarks, I proceed to show briefly ell that is at present known on the subject.

In the returns collected by Mr. Edward Thornton, head of the statistical department of the East India House, there must be erroneous estimates somewhere, otherwise there would not be so great a disproportion of mouths to each square mile, as appears between the British territories (157) and the other states (74)-105,000,000 on $666,000 \mathrm{sq} . \mathrm{m}$. and $53,000,000$ on 717,000 sq. m. Estimating the entire area, as above, at $1,380,000 \mathrm{sq} . \mathrm{m}$., and the population thereon at $158,000,000$, would give 114 to each sq . m Viewing India as including the entire region, from the Suluman on the west, to the Youmadoung mountains on the east, and from Cape Comorin to Peshawur, and estimating the area at $1,500,000 \mathrm{sq}$. m., and the number of inhabitants to each sq. m . at 130 , would show a population of $195,000,000$; which is probably not far from the truth. The Chinese census shows $367,032,907$ mouths on an are of $1,297,999 \mathrm{sq} . \mathrm{m}$. , or 283 to each sq. m. § In Englans the density is 333 ; Wales, 131 ; Ireland, 200 ; Scotlan
$100 . \|$ India, with its fertile soil, a climate adapted to

inhabitants, and with an industrious and comparatively civilized people, might well sustain 250 mouths to each sq. m., or $375,000,000$ on $1,500,000 \mathrm{sq}$. m. of area.*
The following table, framed from various public returns and estimates, is the nearest approximation to accuracy of
the population of each district under complete British rul it shows (excluding Pegu) a total of about $120,000,0$ (119,630,098) persons on an area of $829,084 \mathrm{sq} . \mathrm{m}$., or 14 to each sq. m.:

British Territories in Continental India-Area, Chief Towns, and Position.

* In illuat ration of this remak, the followify slatencint, revised iscom the Commisioners' Report on the Punjab,-of the population of Jullundhur Zilli
situated between the rivers sutiej and Bess,--is subjolncd, with he note appended by thie census officer, Mr. K. Temple, 25 th of October 1851 .

Noic.- This return certainly shews a considerable density of population. It may of course be expected that a small and fertile track like this, which onntain nountain, of cultivill, thould be more thicky peopled hal an extensive reqton hike he norh-wetern provinces, which embracea every vane-fourth more, 22 ; the popuiation of this district proportinnately exceedis that of 22 out oi 31 districts of the north-weatern provinces, and is less than that of nine. It al
 or Indian over kuropean population has become so

British Territories in Continental India-Area, Chief Towns, and Position.

British Territories in Continental India-Area, Chief Towns, and Position.

Provinces, Districts, \&\%.	Area h Square Miles.	Population.	Principal Town.	Position of Town.		Date Aequisition.
				Lat. N.	Long. E.	
Ulitra-Gangetic Districts:-				. 0.	0	
Arracan - -	15,104	321,522	Akyab - .-	2010	3254	1826
Assam, Iower	8,948	710,000	Gowhatty . -. -	$26 \quad 9$	9145	
Assam, Upper	12,857	260,000	Seebpore -	27 0	9440	
Goalpara -	3,506	400,000	Goalpara -	268	9040	1765
Cossya Hills - -	729	10,935	Chirra Ponjee .	$25 \quad 14$	9145	1826
Silchar - - -	4,000	60,000	Silchar -	2449	9250	1830
${ }^{\prime}$ Tenasserim, Mergui, Ye, \&ic.	29,168	115,431	Mergui	$12 \quad 27$	9842	1826
Pegu Province - -	.25,000	550,000	Prome -	1740	9617	1853

A more recent return (28th July 1855) from the East India House, gives the population of India thus :-
British States-Bengal, \&c., 59,966,284; N. W. Provinces, $30,872,766$; Madras, 22,301, 697 ; Bombay, 11,109,067; Eastern settlements, 202,540: total, 124,452,354.
Native States.-Bengal, 38,259, 362 ; Madras, 4,752,975; Bombay, 4.460,370: total, 47,473,207.
Foreign States.-French settlements, 171,217; Portuguese ditto, not known. Grand total, 172,096,778*.
The varying degree of density of population to area forbids reliance being placed on any mere "estimates," or "approximations to actual amount." Thus in Bengal, Behar, and Cuttack, the number of mouths to each square mile is stated to be-in Jessore, 359 ; Moorshedabad, 394 ; Bogulpore, 318 ; Patna, 506; Cuttack, 220; Dacca, 193; Chittagong, 324 : average of all, $324 . \dagger$ These are high ratios; but the soil is fertile, and the inhabitants very numerous along the banks of rivers. In Assam, on the N.E. frontier of Bengal, and along the rich valley of the Brahmapootra, the density is placed at only 32 to the square mile; in Arracan, at 21 ; ' 'enasserim provinces, at 4; on mile; in Arracan, at 21 ; (enasserim provinces, at 4; on
the S.W. frontier (Chota Nagpore, \&c.), at 8.5 ; in the the S.W. Trontier (Chota Nagpore, de.), at ere; in the Saugor and Nerbudda territories, at 109 ; in 44
lation provinces, Kumaon, Ajmeer, \&c., at 44.

The eensus of the Madras presidency shows, on an area of $138,279 \mathrm{sq} . \mathrm{m}$., a population of $22,281,527$, or 161 persons to each sq. m. In some districts the inhabitants are much more thinly scattered: for instance, at Kurnool, 84 ; at Rellary, 94 ; at Masulipatam, 104; the highest is the rich district of Tanjore, with 430 to each sq. m. Madras has a much less density than the British N.W. Provinces, which,
according to the return of 1852-3, shows the following results:+-

Districts.	Square M.	Population.	Moutlis to each sq. m.
Agra -	9,298	4,37:3,156	46.5
Allahabad -	11,971	4,526,607	378
Benares	19,737	9,437,270	478
Delhi	- 8,633	2,195,180	254
Merrut . -	9,985	4,522,165	4.3
IRohilcund	12.428	5,217,507	419
Total	72,052	30,271,885	420

By the two full censuses of Madras and the N.W. Provinces, we gain at last a fair estimate of the small number of Mohammedans, as compared with the Hindoos, in India: the Madras census of 1850-1 shows, on a total of $21,581,572$. that the adult Hindoos numbered $13,246,509$. Mohammedan adults and others, 1,185, , 554 : the children Mohammedan adults and others, 1,185,654: the children
-Hindoos, 6,655,216; Mohammedans and,others, 594,193 : -Hindoos, 6,655,216; Mohammedans and,others, 594,193 : ing $\mathbf{7 0 0 , 0 (0)}$)-

Class.	Males.	Females.	Total.
Hindoos	10,194,098	9,707,627	19,901,725
$\left.\begin{array}{c}\text { Mohammedans } \\ \text { and others - }\end{array}\right\}$	852,978	826,869	1,679,847
Total	11,047,076	10,534,496	21,581,572

The proportion of Moslems to Hindoos in Southern India, is as 1 to 10 .
The N.W. Provinces return, in 1852-3, shows-

Class.	Males.	Females.	Total.
Hindoos $\left.\begin{array}{c}\text { Mohammedans } \\ \text { and others - }\end{array}\right\}$ Total	13,803,645	11,920,464	25,724,109
	2,376,891	2,170,880	4,547,771
	16,180,536	14,091,344	30,271,880
London, 1861.		- R.	Martin.

d Views of the Mountains and Passes, their Position, Elevation, and Extent; also the Table-Lands, their Extent and'Height, and the Rivers.-To illustrate or exp Topographical Model of India coustructed by R. Montgomery Martin, Esq.

f Range.	Extent and Position of Extremities.	Elevation above the Sea.	General Remarks.	
or "abode of	This stupendous mass extends in an irregular curve over 22° of lon., from the defile above Cashmere, where the Indus penetrates into the plains of the Punjab, lon. 73°. 23^{\prime}, to the s . bend of the Sanpoo, lon. $95^{\circ} 23^{\prime}$. It is 1,500 m . long, with an akg. breadth of 150 m.	I. Dairmal, 26,629 ft.; 2. Bal Tal, 17,839 ; 9. Ser and Mer, 29,447; 4. Hanle, 20,000; 5. Gya, 24,764; 6. Porgyal, 22,600; 7. Raldang, 20,103; 8. St. Patrick, 22,798; 9. St. George, 22,654; 10. The Pyramid, 21,579; 11. Gangoutri, 22,906; 12. Jumnoutri, 21,155; 19. Kedarnath, 29,062 ; 14. Badrinath, 22,954 ; 15. Kamet, 25,550 ; 16. Nanda Devi, 25,749 ; 17. Gurla, 23,900; 18. Dhawalagiri, 27,600 ; 19. Gonsainthan, 24,740; 20. Junnoo, 25,311; 21. Kinchinjunga, 28,176; 29. Chomiomo, 19,000; 23. Kanehan Jhow, 22,000; 34. Chumalari, 23,929 ; 25. Three peaks on lower bank of Deemree, 21,$000 ; 26$. Kailas; 22,000. Average elevation, 18,000 to 20,000 ft. M. Everest, 29,002.	Limit of perpetual snow, or congelation on S. slope. 15,000 to Deep narrow valleys, separated by ranges running either parallel angles with the main ridge, contain the numerous soutces of flowing into the Ganges, the Indus, and the Brahmapootra.* face is towards the plain, and to the N. the chain supports the Jo land of Tibet. The greatet part of the giant peaks, which rise to tion of 25,000 or $28,000 \mathrm{ft}$., are situate not on the central axis, south of it. Viewed from l'atna, at a distance of about 150 m approach, are seen towering above the dark line of lower but mountains. \dagger With the exception of a strip of land at the fo mountains, the whole of Bootan presents a succession of the most rugged mountains on the surface of the globe. It is a series o separated only by the narrow beds of roaring torrents.	
sw, \ddagger Kouenlun, augh.	About 850 m : long. From Kara-korum, lat. 35°, lon. 77°; to Bamian, \|	lat. 34° 50^{\prime}, lon. $6 i^{\circ} 48^{\prime}$	1. Hindoo-Koosh, $35^{\circ} 40^{\prime}, 68^{\circ} 50^{\prime}, 21,000 \mathrm{ft}$, ; 2. Summit N. of Jelalabad, 20,248; 3. Koushan Pass, 15,200; 4. Khawak Pass, 13,200; 5. Akrobat, 10,200 feet. Laram Mountains, $35^{\circ} 20^{\prime}, 62^{\circ} 54^{\prime}$: about 60 m . from N. E. to S.W., dividing the valley of Suwat from that of Panjkora ; and Laspissor Mountains, S. of, and subordinate to, Hindoo-Koosh, about 50 m . from E. to W., $\mathbf{3 6}$, 70°-little known.	Limit of perpetual snow on S. slope (lat. 37°), 17,000 ft. The markable feature of Hindoo-Koosh is, that to the \mathbf{S}. it supports of Kabool and Koh-Damaun, 6,000 to $7,000 \mathrm{ft}$; while to the N low tract of Turkestan. Koondooz tovn, distant in a direct line of Hindoo-Koosh, only 900 ft . above the sea. The Hindoo-K distinct mountain system, its parallelism being from S.W. to N. that of the Himalaya is from S.E. to N.W.**
-	About 60 m. ,- - along lat. $94^{\circ} 30^{\prime}$, between lon: $67^{\circ} 30^{\prime}$, and $68^{\circ} 30^{\prime}$. At the S.W. extremity of Hindoo-Koosh with which it is connected by the transverse ridges of Kalloo and Hajeguk.	Variously estimated. According to Burnes and Lady Sale, $18,000 \mathrm{ft}$; Outram, $20,000 \mathrm{ft}$; Humboldt, 2,800 toises, or $17,640 \mathrm{ft}$; the most probable is $16,000 \mathrm{ft}$. Highest accessible point, $34^{\circ} 40^{\prime}, 67^{\circ} 30^{\prime} ; 13,200$ ft. Hajeguk Pass, $11,700 \mathrm{f}$.	It is a vast rounded mass, the culminating ridge ascending in lof covered with perpetual snow, stretching as far as the eye can reach to the W. it siaks into the mazy mountains forming the Huzareh h Supposed to be the Parapamissus of the Greeks.	

sections of the Himalaya furnish points of resemblance, in presenting almost insurmountable obstacles to communication between the countries which they divide, thereby separating the Botis or people of Tibe family of India. Major Cuuningham considers the distinction of climate not less positively marked, both ranges forming the lines of demarcation between the cold and dry elimate of Tibet, with its dearth of tre d humid climate of India, with its luxuriance of vegetable productions. Some analogy, moreover, may be traced between the drainage systems of the two sections; the one separating the waters of the Samnpo Ganges and its affluents; and the other intervening between the Indus, flowing at its northern base, and the subsequent tributaries of that river rising on its southern slope.
w of the Himalaya, especially at a sufficient distance for the snowy peaks to be seen overtopping the outer ridges, is very rare, from the constant deposition of vapours over the forest-clad ranges during a greater the haziness of the dry atmosphere of the plains in the winter months. At the end of the rains, when the south-east monsoon has ceased to blow with constancy, views are obtained, sometimes from a dista iiles.
ften been observed, the Koh Kosh, or mountain of Kosh, offers a plausible etymology for the Caucasus of the classical writers. It is supposed by Ritter and Wilford to. be the Mount mentioned by Pliny, unt zucasas, but slightly deviating from the Sanscrit Gravakasas (shining rock).
cable for its mass and elevation. Viewed from the Koushan Pass, distant ten miles south, its appearance is very sublime. The outline is serrated, being crowned by a succession of lofty peaks, with sides ir, and it is wrapped in a perpetual coyering of snow, in all parts not too steep to admit its lying.
eries appear to diverge from the apex of the plain, expanding "like the sticks of a fan."
ldt regards it as the "most striking phenomenon amongst all the mountain-ranges of the old world." He considers that it may be traced from Taurus, in Asia Minor, across Persia, then, in the Huzareh mous Koosh, and to the frontier of China.; and that it is distinct from the Himalaya. The two ranges, are physically discriminated by the depression down which the Indus flows, wlich, with its numerous irregularitie oelieve could have been hollowed out by the water's force even of that great river
elevated expanse of Pameer," to the north of Hindoo-Koosh, observes Humboldt, "is not only a radiating point in the hydrographical system of Central Asia, but is the focus from which originate its principal mo
s common to India, China, and Turkestan ; and from it, as from a central point, their several streams diverge." ; common to India, China, and Turkestan; and from it, as from a central point, their several streams diverge."

Tabulated Views of the Mountains and Passes, Table-Lands, and Rivers, \&c.-montinucd.

*	Extent and Position of Extremities,	Elevation above the Sea.	General Remarks.
wy or	Near Attock, lon. $72^{\circ} 16^{\prime}$ W. to lon. 69° 36^{\prime}, proceeding nearly along the parallel of lat. 33? 50^{\prime}; then sinking into a maze of hills stretching to the Kohistan of Kabool.	There are three ranges, running nearly parallel to the S. of the $\mathbf{K}_{\text {abool }}$ River; they rise in height as they recede from the river, the highest between $69^{\circ} 40^{\prime}$, and $70^{\circ} 30^{\prime}$, attaining an altitude of $14,000 \mathrm{ft}$.	Covered with perpetual snow. Generally of primary formation, of granite, quartz, gneiss, mica-slate, and primary limestone. Tl Rood, the Kara Su, and many other shallow but impetuous str down its northern face, and are discharged into the Kabool ri conveys their water to the Indus. The two lowest ranges are con pine forests ; the highest and most distant has a very irregular steep and rocky, yet furrowed by many beautiful vales.
amghan	Subordinate to Hindou-Koosh, running along its S. base, generally from N.E. to S.W.	Estimated at $13,000 \mathrm{ft}$. Oona Pass, $94^{\circ} 23^{\prime}$ and $68^{\circ} 15 \prime ; 11,320 \mathrm{ft}$. Erak Summit, $34^{\circ} 40^{\prime}$ and $68^{\circ} 48^{\prime} ; 12,480 \mathrm{ft}$.	Always covered with snow. Its south-eastern brow overhangs the region of Koh-Damaun and also Cabul; its northern fuce 1 southern boundary of the Ghorbund valley.
talks -	Separates the valley of Kabool from plain of Jelalabad ; and connects the HindooKoos with Sufied-Koh.	From 1,000 to $2,000 \mathrm{ft}$. above Kabool, and the highest part, $34^{\circ} 25^{\prime}$ and $69^{\circ} 30^{\prime} ; 8,000 \mathrm{ft}$. above the sea.	Four routes over this range practicable only for a man and horse; bund Pass, 4,000 British troops were destroyed in their retreat Cold intense during winter, the frost splitting the rocks into ments.
	Length, about 50 m . ; breadth, about 20 m . Between $33^{\circ} 30^{\prime}$ and $84^{\circ} 20^{\prime}$, and $71^{\circ} 10^{\prime}$ and $71^{\circ} 90^{\prime}$. They connect Hindoo-Koosh with Sufied-Koh.	Tartara suminit, highest point, 4,800 ft. Summit of Khyber Pass, 3,373 ft.	Appear at first irregularly grouped, but the distinet arrangement'o is afterwards ubservable. Four passes through this sange. generally consist of slate and primary limestone, with overlying s
	Lat. $39^{\circ} 22^{\prime}$, lon. $67^{\circ} 50^{\prime}$; 30 m . S.W. from Ghuznee.	Estimated at 13,000 ft.	
	Lat. $30^{\circ} 50^{\prime}$, lon, $66^{\circ} 90^{\prime}$	General elevation, about $8,000 \mathrm{ft}$. Highest part, $80^{\circ} 50^{\prime}$ and $66^{\circ} 90^{\prime}$; about $9,000 \mathrm{ft}$. Kojuck Pass, 7,457 ft.	Hounds the table lands of Shawl and Pisheen on the W., as the does to the E.
	Length, 150 m . Between $90^{\circ} 40^{\prime}$ and $82^{\circ} 40^{\prime}$, and $66^{\circ} 40^{\prime}$ and $68^{\circ} 20^{\prime}$; extending N.E. from the N. side of Pisheen valley.	General elevation, 9,000 ; above Pisheen, $\mathbf{3 , 5 0 0} \mathrm{ft}$. Tukatoo Hill, $\mathbf{3 0}{ }^{\circ} \mathbf{2 0 ^ { \prime }}$ and $66^{\circ} 55^{\prime} ; 11,500 \mathrm{ft}$.	Country, though generally rugged, fertile.
\cdots	Length, alsout 90 m . from C. Monze to lat. 26°.	Supposed to equal those of W. Sinde, viz., 2,000 ft. Highest part, about $25^{\circ} 30^{\prime}$.	In $25^{\circ} \mathbf{9}^{\prime}$ and $66^{\circ} 50^{\prime}$, they are crossed by the Guncloba Pass, de atony, and of easy ascent and descent.
Viz. -	60 to 70 m . S.W. from Sehwan to Dooba. Between $25^{\circ} 32^{\prime}, 26^{\circ} 20^{\prime}$, and $67^{\circ} 48^{\prime}$, $68^{\circ} 8^{\prime}$.	Steep-in fuw places less than $2,000 \mathrm{ft}$. -	The road from Sehwan to Kurrachee lies between them, and Keerts the W.
	Parallel with the Juttecl, more to the W., between $25^{\circ} 50^{\prime}, 20^{\circ} 40^{\prime}$, and about $67^{\circ} 40^{\prime}$.	Average beight, probably below 2,000 ft.	Imperfectly explored.
	Length, about 50 m . From Juttee, S.E. towards Hyderabad. Centre of range, $26^{\circ}, 67^{\circ} 50^{\prime}$.	IHighest part, $\mathbf{1 , 5 0 0}$ to $2,000 \mathrm{ft}$. Between Lukkee and Schwan the mountaing have a nearly perpendicular face, lowards the Indus, above 600 ft . high.	They are of recent formation, and contain a profusion of marin Huge fissures traverse this range, and hot springs and sulphureo tions are of frequent occurrence.
r Bolan	Length, abont 400 m . From Tukatoo to Arabian Gulf, forming the E. wall of Beloochistan table-land.	Average height, 5,000 to $6,000 \mathrm{ft}$. Kurklekee Mountaing, that part which borders on the Bolan Pass, from $29^{\circ} 20^{\prime}$ to $30^{\circ} 10^{\prime}$, and 67° to $67^{\circ} 30^{\prime}$, . Where the crest of Bolan Pass intersects them, 5,793 ft.	The range is crossed by the Bolan Pass, through which the route Shikarpore to Kandahar and Ghuznee; and though import military point of view, inferior in commercial interest to the farther N .
e^{\prime}	Length, about ' 350 m . From $33^{\circ} 40^{\prime}$, they run nearly S. in the 70th meridian of Jon. to the mountains about Hur. rund and Kahun, in lat. 29°.	Highest elevation, Takht-i-Suliman, called also Khaissa-Ghar, lat. $\mathbf{S 1 ^ { \circ }} \mathbf{~} \mathbf{3 5 ^ { \prime }}$; $11,000 \mathrm{ft}$.	E, face dips rather steeply to the Indus, but the W. declivity m gradual, to the tuble-land of Sewestan. Sides of mountains clot to the summits with dense forests; valleys overgrown with a indigenous trees, shrubs, and flowers.
וe	Stretch from the E. base of Suliman Mountains to Jhelum River, N.E. to G.W., in lon. $32^{\circ} 30^{\prime}$ to $93^{\circ} 30^{\prime}$.	Hlighest elevation, 2,500 ft. - - - -	Vegetation scanty; the bold and bare precipices present a aspect. About $92^{\circ} 50^{\prime}, 71^{\circ} 40^{\prime}$, the Indus makes its way down rocky channel, 350 yarda broad; and the mountalns have an abru to the river.

utry between Sufied-Koh and Hindoo-Koosh is hilly; breadth about 20 m . It is divided into a series of plains by cross ranges (Khyber, Kurkutcha, \&c.), whicl pass between Sufied-Koh and the outer ra 5h. These plains are generally barren and stony, and have a slope from E. to W. The Kabool river, which fiows through them, has to make its way by narrow passages. f Catmandoo, nearly of oval shape; length, N. to S., $12 \mathrm{~m} . ; \mathrm{E}$. to W., about 10 m . Bounded on the N. and S. by stupendous mountains. To the E. and W. by others. less lofty, the western end defined prit prige, callea Naga-Arjoon, which passes close behind Sumbhoo. Nath, and is backed by a more considerable one named Dhoahouk. To the eastward, the most remarkable hills are those of Ranichouk and M
aber of peaks which crown this muuntain is variously stated. According to Tod, there are six, the most elevated of which is that of Geruckuath, having on its summit an area of dnly ten feet in diamet y a shrine dedicated to Gorucknah ; each of the other peaks has its shrine. On a small table-land on the mountain, about 600 feet below its summit, is the ancient palace of Khengar, and numerol
from Indore (1,998 feet), gradual ; descent, to the Nerbudda, steep and abrupt.

Tabulated Views of the Mountains and Passes, Table-Lands, and Rivers, scc.-continued.

nge.	Extent and Position of Extremities.	Elevation above the Sea.	General Remarks.
tass	Length, 90 m. ; breadth. 85 m . 'Lie between $22^{\circ} 34^{\prime}, 24^{\circ} 54^{\prime}$, and $82^{\circ} 40^{\prime}$, $84^{\circ} 6^{\prime}$. Length, 105 m ; breadh, 95 m . Lie between $22^{\circ} 56^{\prime}, 23^{\circ} 54^{\prime}, 85^{\circ} 46^{\prime}$, $87^{\circ} 10^{\prime}$.	Rugged and mountainous, from 500 to 600 ft . above adjoining table-land of Chota Nagpore. Inperfectiy known. N. part described as marked by hills from 400 to 600 ft. About $23^{\circ} 35^{\prime}, 85^{\circ} 50^{\prime}$, a mountain conjectured at from 2,500 to $\mathbf{3 , 0 0 0} \mathrm{ft}$. Near the centre of district some hills about 900 ft .	Drained by the rivers Kunher and Rhern, with its feeder the Mo in a direction generally northerly. These rivers are mostly sha during the rains, when they become rapid torrents. Formation generally primitive, of either granite, gneiss, or si has been found near Jeria, $23^{\circ} 44^{\prime}, 86^{\circ} 25^{\prime}$; and iron-ore exis distance. The chain unites the \mathbf{N}. extremities of the W. and and forms the base of the triangle on which rests the table India. By the Moguls the enuntry to the N. was called Hin that to the S. the Deccan.
ins	Divides the Nerludda from the Taptee valleya, extending from 21° and 22°, and $73^{\circ} 40^{\circ}$, to 78°, when it becumes confounded with the Vindhya.	Avg. elevation, supposed, 2,500 ft. Asseerghur hill-fort, 1,200 ft. They form the northern base of the Deccanie table-land.	S. declivity towards Taptee abrupt; N. towards Nerbudda, g mountains rise into peaks, or swell into forms denoting a prim They are volcanic.
called Syadree rt ; and part.т.	Leneth, aboat 800 m . From about 21° 15^{\prime}, to $73^{\circ} 45^{\prime}$, and $74^{\circ} 40^{\prime}$, where they terminate almost precipitously, forming the N. side of the Gap of Palgatcheri.	Avg. height, $4,000 \mathrm{fl}$. About $21^{\circ} ; 2,000$ f. Mahableshwur, $18^{\circ}, 73^{\circ}$ $4 J^{\prime} ; 4,700 \mathrm{ft}$. Poorundher, 4,472 ft. Singhur, 4,162 ft. Hurreechundurghur, $3,894 \mathrm{ft}$. About $15^{\circ} ; 1,000 \mathrm{ft}$. Towards Coorg : Bonasson Hill, $7,000 \mathrm{ft}$. Tandianmole, 5,781 ft. Papagiri, 5,682 ft	Seaward face, though abrupt, not precipitous, but consists of terraces or steps. Chasms or breaks in the range give access lands, and are denominated ghauts or passes, a name which generally applied to the range itself. The core is primary, alternating strata of more recent origin. Scenery delightful displaying stupendous scarps, fearful chasms, numerous wate forests, and perennial verdure.
	Length, abput $50 \mathrm{~m} . ;$ breadth, about 20 mn ; a area from 600 to 70 sq . m. Between $11^{\circ} 10^{\prime}$ and $11^{\circ} 35^{\prime}$, and 76° 30^{\prime} and $77^{\circ} 10^{\prime}$.	Elevation from 5,000 to $8,000 \mathrm{ft}$. Dodabetta, $8,760 \mathrm{ft}$. Kudiakad, $8,502 \mathrm{ft}$. Kundah, $8,358 \mathrm{ft}$. Duvursolabeta, $8,380 \mathrm{ft}$. Beroyabeta, $8,489 \mathrm{ft}$. Murkurti, $8,402 \mathrm{ft}$. Ootacamund, lat. $10^{\circ} 50^{\prime} ;$, 7,361 ft. Gėneral surface, on undulating table-land.	The foundation racks are primary. Principal mineral,--iron or calcareous nor stratified rocks, nor organic remains are found are the precipices, that in many parts a stone dropped from th fall several thousand feet without striking anything. Neilgh " neil," blue, and " gherries," hills; blue bills.
	Length, about 200 m . From the Gap of Palgatcheri nearly to C. Comorin.	Elevation from 4,000 to 7,000 ft. A spacious table-land, 4,740 ft. A peaked summit, $6,000 \mathrm{ft}$. Another $7,000 \mathrm{ft}$. Varragherry ms., 5,000 to $6,000 \mathrm{ft}$. Near C. Comorin, in the extreme S., $2,000 \mathrm{ft}$. Several not measured.	The W. brow is, with little exception, abrupt ; on the E. side the gradual. Such a conformation would seem to indicate a volca ance along the W. precipitous face.
rs, along Const.	Length, about $1,000 \mathrm{~m}$. From Balasore, S.W. to Ganjam; thence to Naggery, near Madras; where it joins the range which crosses the country in a northcasterly direction, from the W. Ghauts, N. of the Gap of Palgatcheri.	Average elevation, about $1,500 \mathrm{ft}$. Cauvery Chain, $4,000 \mathrm{ft}$. Condapilly, $1,700 \mathrm{ft}$. W. of Madras, estimated, $3,000 \mathrm{ft}$. Hill seen from the Moghalbundi, between Pt. Palinyras and Chilka Lake, appearing in irregular scattered groups, 300 to $1,200 \mathrm{ft}$.	Granite constitutes the basis of the range ; and clay, hornblend primitive slate, or crystalline limestone, forms the sides of the and the level country, as far N. as the Pennar, appears to co debris, when the laterite formation covers a large surface. Kistnah, northward, the granite is often penetrated by trap and To Vizagapatam and Ganjam sienite and gneiss predominate, covered by laterite.
, viz.- .	Length, about 250 m . On the S.E. border of Assam, stretches to the mountain-range forming the N.W. boundary of Burmah. Centre, about $26^{\circ} 30^{\prime}$, lon. 95°.	In the Khaibund range, supposed $4,000 \mathrm{ft}$. Some peaks are almost inaccessible.	The country is a wild unexplored tract. The measures ado British Government to restrain the outrages committed by within British territory, have led to their submission.
and $\mathrm{Abor}^{\text {b }}$	Mountains N. of Assam, inhabited by Bhooteans, Duphala, and Abor tribes.	From 5,000 to 6,000 ft. above the surrounding level	The face of Assam presents an immense plain, stuaded with clu rising abruptly from the general level. The mountains on the posed generally of primitive rocks. Thase to the S., of metamorplic.
Himls -	On the N.E. frontier of Bengal - Estimated area, 7,290 sq. m. Between 259° and 26°, and 91° and 92°.	$\left.\begin{array}{l}\text { A confused assemblage, from } 1,000 \text { to } 6,000 \mathrm{ft} \text {. Estimated area, } 4,947 \\ \begin{array}{l}\text { kq. } m \text {. } \\ \text { Chirra Poonjee, } 4,100 \mathrm{ft}\end{array}\end{array}\right\}$	Character of country, wild. The rock formation is supposed to gneiss, or stratified granite.

Mountain Passes on the Indian Frontiers, from the Indus to the Iraifaddy-as far as known.-By R. Montgomeriy Martin.

and Position.	Lat. and Lou, of Extremities; Length and Breadth.	Heights, in Feet.	General Remsrka.	
Gompapa-Cutcr	Lat. $28^{\circ} 10^{\prime}$, lon. $66^{\circ} 12^{\prime}$; lat. $28^{\circ} 24^{\prime}$, lon. $67^{\circ} 27^{\prime}$,-About 100 m. Open spaces, connected by defiles.	Bapow, 5,250 ft. ; Peesee Bhent, 4,600; Nurd, 2,850; Bent-i- Jah, 1,850; Kullar, 750 ft.	Descent, 4,650 ft., average 46 ft . per m. Water abundant ticable for artillery.*	
Loochistan -	Lat. $29^{\circ} 30^{\prime}$, lon. $67^{\circ} 40^{\prime}$; lat. $29^{\circ} 52^{\prime}$, lon. $67^{\circ} 4^{\prime}$. 55 m .; $\frac{1}{2} \mathrm{~m}$. wide at entrance.	Entrance, $800 \mathrm{ft}$. ; Ab-i-goom, 2,540; crest, 5,793 ft.	Average ascent, 90 ft . per m. \dagger Ditto.	
Goolarer-De	Lat 32°, lon. $70^{\circ} 30^{\prime}$.-About 100 m . - -	20 m . from entrance road N.W., then $80 \mathrm{~m} . \mathrm{S} . \mathrm{W}$., then N.W. to Ghuznee.	Winding course. \ddagger	
Peshawce	Lat. $33^{\circ} 58^{\prime}$, lon. $71^{\circ} 30^{\prime}$ - -A bout 93 m . - - -	Crest, 3,973 ft. Ali-Musjid, 2,439 ft. - -	Rises gradualiy from the E., but has a ateep declivity	
Ifghanistan -	Lat. $34^{\circ} 50^{\prime}$, lon. $67^{\circ} 48^{\prime}$.-About I m. wide, bounded by nearly perpendicular steeps.	Bamian, $8,496 \mathrm{ft}$, over a zuccession of ridges from 8,000 to $15,000 \mathrm{ft}$.	Only known route over Hindoo-Koosh for artillery or carriages.\|	
Hindoo-Koosh	Lat. $35^{\circ} 87^{\prime}$, lon. $68^{\circ} 55^{\prime}$: over principal shoulder of Hindoo-Koosh peak.-Abcut 40 m. ; narrow.	Crest, $15,000 \mathrm{ft}_{\text {. }}$ - - - -	Road rocky and uneven descent, 200 fr . per m. entrances. 9	
Hindoo-Koosh or Shur-ji-La-	Lat. $35^{\circ} \mathbf{3 8}$, lon. 70°. -About 15 m . Lat. $34^{\circ} 10^{\prime}$, lon. $70^{\circ} 15^{\prime}$	Crest, $18,200 \mathrm{ft}$. Crest, $10,500 \mathrm{ft}$.	Ascent on N. side, an uniformly inclined plane.**	
- Cashmere - ha - Tibet	$\begin{aligned} & \text { Lat. } 34^{\circ} 10^{\prime} \text {, lon. } 74^{\circ} 30^{\prime} \\ & \text { Lat. } 32^{\circ} 44^{\prime} \text {, lon. } 77^{\circ} \mathrm{S1}^{\prime} \end{aligned}$	- - - - . -	Only pass into Cashmere practicable for an army.	
fimalaya --Himalaya	Lat. $32^{\circ} 25^{\prime}$, lon. $77^{\circ} 12^{\prime}$ Lat. $31^{\circ} 56^{\prime}$ lon. $78^{\circ} 24^{\prime}$	Crest 18,612 - source of Darbung, 15,000 ft.		
Himalaya	Lat. 31° 24', lon. $78^{\circ} 35^{\prime}=$	Crest, 17,948 ft. - - -	Extremely difficult.	

the Anglo-Indian detachment marched through it. It is preferable to the Bolan Pass in a military point of view,
wisus succession of ravines and gorges. The air in the lower part of the pass is in summer oppressively hot and unhealthy.
uous succession of ravines and gorges. The air in the lower part of the pass is in summer oppressiv
he Key of Afghanistan. At Ali-Musjid, merely the bed of a rivulet, with precipices rising on each side at an angle of 70°. Near Lamdee Khana, a gallery 12 ft . wide ; on one side a perpendicular wall, an precipice. It was twice forced by the British.
at commercial route from Kabool to Turkestan ; the several .Passes to the eastward are less frequented on account of their difficulty and their elevation,
quented east of Bamian ; impassable for wheeled carriages.
y frequented, yet may be considered the most practicable. Tamerlane crossed it on his march into Hindoostan.

Tabalated Views of the Mountains and Passes, Table-Lands, and Rivers, \&c.-continued.

ve Outer Himalaya range :-Sugla, $31^{\circ} 13^{\prime}$ lat., $78^{\circ} 29^{\prime}$ lon.-elevation, $16,000 \mathrm{ft}$; Kimlia, $31^{\circ} 15^{\prime}, 78^{\circ} 25^{\prime}, 17,000 ; \operatorname{Siaga}, 31^{\circ} 16^{\prime}, 78^{\circ} 20^{\prime}, 16,000 ; \mathbf{M a r g a}, 31^{\circ} 16^{\prime}, 78^{\circ} 21^{\prime}, 16,000 ; L^{\circ}$ arga, $91^{\circ} 16^{\prime}, 78^{\circ} 19^{\prime}, 15,000$; Nulgun, $31^{\circ} 19^{\prime}, 78^{\circ} 13^{\prime}, 14,891$; Rupin, $31^{\circ} 2^{\prime}, 78^{\circ} 10^{\prime}, 15,480$; Ghusul, $31^{\circ} 21^{\prime}, 78^{\circ} 8^{\prime}$, 15,851 ; Nibrung, $91^{\circ} 2 \varepsilon^{\prime}, 78^{\circ} 10^{\prime}, 16,085$; Gunas, $31^{\circ} 21^{\prime}, 78^{\circ} 8^{\prime}, 1$ 77 ; Sundru, $31^{\circ} 24^{\prime}, 78^{\circ} 2^{\prime}$, 16,000 ; Shatul, $31^{\circ} 25^{\prime}$ lat., $77^{\circ} 58^{\prime}$ lon., $15,555 \mathrm{f}$. In Kunawur there are fifteen passes, at elevations varying from 15,000 to $17,000 \mathrm{ft}$. best pass between Kumaon and Tibet, and is one of the principal channels of trade between Chinese Tartary and Hindoostan. or. Hooker, December l848. The distance to which the voice was carried was very remarkable : he could hear distinctly pvery word spoken at from 900 to 400 yards off. rade carried on over this pass between Ava and Arracan.

Bamisi India, their Source, Course, Discharge, and Length; Tributabifa or Congluents; and Estimated Area, in Square Miles, drained; Forty-nine Main Streams, having their Outiet in the and large Tributaries having their Outlet in other Rivers.-By R. Montgomery Martin.

	Source, Course, Discharge, and Length.	Tributaries, and their Length in British Miles; and Area drained.	General Remarks
cerbutiee at d Podda near	Gangoutri, Himalaya, 1,400 ft. above the level of the sea. N.W. to Johnioi ; W. and S.W., $19 \mathrm{~m} . ;$ S.W., 86 m ; S., 15 m ; S.E., 39 m .; S., 8 m. ; W., 24 m. ; S.W., 15 m. ; S., 180 m ; S.E. to Allalıabad, E., $\mathbf{2 7 0} \mathrm{m}$.; E. to Sikrigalee; S.E. remainder of course into Bay of Bengal, by numerous mouths. The Ganges gives off some of its waters to form the Hougly, and also anastumoses with the Megna.-Length, $1,514 \mathrm{~m}$.	Jumna, 860; Glıgra, 606; Gunduck, 450; Goomtee, 482; Sone, 465; Coosy, 925 ; Ramgunga, 373; Mahananda, 240; Karumnassa, 140; Koniae or Jumuna, 130 ; Aluknunda, 80 ; Bhillung, $50 \mathrm{~m} .-398,000 \mathrm{sq}$. m . drained, exclusive of Hooghly.	Navigable for river craft as far as Hurdwar, $1,100 \mathrm{~m}$ ply as far as Gurmukteesur, 393 miles above Allaha from Calcutta viâ Delhi, 950 miles; at Cawnpore, 1 Allahabad, the navigation is plied with great act breadth of the Ganges at Benares varies from 1,500 Mean discharge of water there, throughout the ye cub. ft. per second.
-	Formed by junction of Bhageeruttee and Tellinghee, two branches of Ganges. S. to Calcutta; S.W. to Diamond Harbour ; E. and S.W. into the sea at Saugor roadstead, by an estuary 15 m . wide.Length, 160 m. , by winding of stream.	Dammoodab, 350 ; Dalkissore, 170 ; Coossy, 240 ; Mor. 190.—About 49,000 sq. m. drained.	Formerly navigable for a line-of-battle ship to Char now, vessels drawing more than 17 ft ., not safe in p Calcutta to the sea, ly reason of shoals.
LLAB ("Blue	Tibet, behind Kailas range, to the N. of Kailas peak, $22,000 \mathrm{ft}$, above the sea. N.W. to Dras R.; more northerly to Shy-yok; W.N. W., 115 m , to Makpon-i-Shagaron; S.S.W. and S. to Attock; a little W, of S. to confluence with Puninud; S.W. to Khyrpoor; S. to	Eekung-Choo, 110 ; Hanle, 70; Zanskar, 150 ; Dras, 75; Shy-yok, S00; Shy-ghur, 70; Ghilgit; Cabool, 320; Sutlej, 850; Chenab, 765; Jhelum, 490; Ravec, 450 ; Punjnud, 60 m .--A bout 390,000 sq.	Navigable to Attock, 942 m . from sea, there from 50 wide; depth, 60 ft . Breadth and depth varies junction-with Punjnud; breadth, 1 to $30 \mathrm{mo}$. ; d 186 feet.

Seliwan; S.F. to Hyderabad; W. of S. to Arabian Sea, Indian Sehwan; S. F., to Hyderab
Ocean.-Length, $1,800 \mathrm{~m}$.

520; Sullej, 850 , Chenab, 765 ; Jhelum, 490 Lavee, 450; Punjnud, 60 m .-A bout $390,000 \mathrm{sq}$ m. drained.
wide; depth, 60 ft . Breadth and depth varies 186 feet.

$\begin{aligned} & \text { roorra - Mraina, } \\ & \text { te sea. } \end{aligned}$	N.E. extremity of Himalaya range ; lat. $22^{\circ} 9 \sigma^{\prime}$, lon. $97^{\circ} 2 \sigma^{\prime}$. S.W., 63 m. ; W., S.W., S.E., S.W., and E. to Bay of Bengal, through three mouths, Hatcia, Ganges, and Shebazpoor.-Lengh, 933 m .	Sanpoo, 1,000; Dibong, 140; Noh-Dihong, 100; Boree Debing, 150; Soobu-Sheeree, 180 ; Monas, 189 ; Bagnee, 150; Guddala, 160; Durlah, 148 ; Teesta, 313 ; Barak, 200; Goomtee, 140 m . In lat. $25^{\circ} 10^{\prime}$, lon. $89^{\circ} 49^{\prime}$, it gives off the Koniae.$305,000 \mathrm{sq} . \mathrm{m}$. drained.	The lranches of the Brabmapootra, together with tho Ganges, intersect Lower Bengal in such a variety of as to form a complete system of inland navigation.
Y - - -	E. extremity of Himalays, lat. $28^{\circ} 5^{\prime}$ lon. $97^{\circ} 58^{\prime}$. Nearly N. to S . through Burmah, and the recently acquired British territory of Pegu; into the Bay of Bengal, by numerous mouths.-Length, $1,060 \mathrm{~m}$.	Khyendwen, 470; Shwely, 180; Moo, 125 m.$164,000 \mathrm{sq} . \mathrm{m}$. drained.	The Bassein brancla affords a passage for the larges miles from its mouth. No river of similar ma
	E. declivity of W. Ghauts, near Nassik, $\mathbf{s , 0 0 0} \mathrm{ft}$ above the sea. S.E., 200 m. ; E. 100 m. ; S.E., $85 \mathrm{~m} . ;$ E., 170 m. ; S.E., 200 m. ; into Bay of Bengal, by three mouths.-Length, 898 m . N.B.-Where no tributaries or area drained are mentioned, it is becaus other is small, and imperfect	Wein-Gunga, 439; Manjera, 3s0; Poorna, 160; Pairs, 105 ; Inderaotee, $140 \mathrm{~m} .-190,000 \mathrm{sq} . \mathrm{m}$. drained. as regards the former, there are none of note; and the y defined.	In 1846, the sanction of the Court of Directors of E. given to the construction, at an expense of $47,500 \mathrm{~L}$, of sufficient height to command the delta, and to s rich alluvial soil of which that tract is composed, with of constant irrigation. The experiment of navigating very by steam has been entertained by the Madras gov and means for carrying it into effect are under conside
, or Kaisuna -	Mahableshwur table-land, Deccan, lat. $18^{\circ} 1^{\prime}$, lon. $73^{\circ} 41^{\prime} ; 4,500 \mathrm{ft}$. above the sea. S.E., 145 m. ; N.E., 60 m. ; S.E., 105 m. ; N.E., $180 \mathrm{~m} . ;$ S.E. to Chentspilly; S.E. 70 m . further ; then, parting into two army, one flowing S.E. 30 m ., the other S .25 m . into Bay of Bengal. Length, 800 m .	Beemah, 510 ; Toongabudra, 325 ; Gutpurba, 160; Mulpurba, 160; Warna, 80 ; Dindee, I10; Peedda Wag, $70 \mathrm{~m} . \sim 110,000 \mathrm{sq} . \mathrm{m}$. drained.	The Kistnah, in consequence of the rapid declivity of way and rockiness of its channel, cannot be navigated craft, even for short distances. An extensive system of in connection with this river is now in progreas, and estimated to cost $£ 150,000$.
	Amarkantak, a jungly table-land, lat. $22^{\circ} 39^{\prime}$, lon. $81^{\circ} 49^{\prime}$; from 3,500 to $5,000 \mathrm{ft}$. above the sea. Nearly due W ., with occasional bends, to Gulf of Cambay, by a wide estuary.-Length, 801 m .	Herrun; Samarsee,60; Suktba, 70m.-About 60,000 sq. m_{\star} drained.	The river, notwithstanding the great width of its bed parts of its upper, course, appears to he scarcely continuously navigable for any considerable distance sequence of the innumerable basaltic rocks scattered channel.
$\cdots-$	Arravulli Mts., near Pokur, lat. 26° 97', lon. $74^{\circ} 46^{\prime}$. S.W., nearly parallel with Arravalli range, into Runn of ${ }^{\circ}$ Cutel, by two mouths, principal in lat. $24^{\circ} 42^{\prime}$, lon. $71^{\circ} 11^{\prime}$.-Length, 320 m .	Rairee, 88 ; Sokree, 130 m. -About 19,000 sq. m. drained.	Bed full of micaceous quartoze ro the surrounding level.
	In a clunter of summits in the Arravulli range, lat. $24^{\circ} 47^{\prime}$, 10n. 73° 28'. S.W. into Runn of Cuteh, by several small channels,-Length, 180 m.	About 17,000 sq. m. draine	
- - - - -	Kattywar, lat. $22^{\circ} 10^{\prime}$, lon. $71^{\circ} 18^{\prime}$. S.W., into Indian Ocean, near Poorbunder, lat. $21^{\circ} 38^{\prime}$, lon. $69^{\circ} 46^{\prime}$.-Length, 135 m . Kattywar, lat. $21^{\circ} 31^{\prime}$, lon. $70^{\circ} 50^{\prime}$. Circuitous, but generally \mathbf{W}^{\prime}.,	$\}$ Area of peninsula, $18,950 \mathrm{~m} .-\cdots\{$	
$\cdots=-\}$	Kattywar, lat. $22^{\circ} 10^{\prime}$, lon. $76^{\circ} 31^{\prime}$, N.W., into Gulf of Cutch.Length, 60 m . Kaltywar, lat $21^{\circ} 15^{\prime}$, lon. $70^{\circ} 25^{\prime}$. E. into Gulf of Cambay.Length 60 m . Katy war, lat. 22°; lon. $71^{\circ} 20^{\prime}$. E. into Gulf of Cambay.-Length, 60 m . Kattywar, lat. $22^{\circ} 18^{\prime}$, lon. $71^{\circ} 30^{\prime}$. E., into Gulf of Cambay.Length 88 m .		The surface of Kattywar peninsula is generally undulat low ridges of hills, running in irregular directions. in the middlemost part is the highest, and here all tl take their rise, disemboguing themselves respectively Runn, the Gulf of Cutch, and the Gulf of Cambay.
$=$	Sautpoors Mis., near Mooltae, lat. $21^{\circ} 46^{\prime}$, lon. $78^{\circ} 21^{\prime}$. Generally W., to Gulf of Cambay.-Length, 44J m.	Poorna, 160 ; Girna, 160 ; Boree, 90 ; Panjar, 92 m .-About $25,000 \mathrm{sq} . \mathrm{m}$. drained.	It can scarcely be deemed a navigable stream, as at Sure from its mouth, it is fordable when the tide is out. It be navigable in the dry season for boats of light draught, Candeisb. The mouth is obstructed by numerous s
Make	Vindhya Mts., lat. $22^{\circ} 92^{\prime}, \operatorname{lon} .75^{\circ} 5^{\prime} ; 1,850$ ft. above the sea. N. W., 145 m. ; W. 25 m. ; S. W., 180 m. , into Gulf of Cambay.-Length, 350 m.	Amass, 90 ; Manchun, 55 mo . ${ }^{\text {- }}$	Navigable for 15 m . from its mouth. At 50 m . up wide ; bed; 400 yds. ; depth,- 1 ft :

Tabulated View of the Mountains and Passes, Table-Lands, and Rivers, \&c-continued.

Dit - -1 1 - -	Native state of Nowagudda, Int. $20^{\circ} 20^{\prime}$, lon. 82°. W., 30 m ; N.E., 110 mm ; S.E., 800 m ., to Bay of Bengal by numerous mouths. -Length 520 m . Palamow table-land, lat. $23^{\circ} 25^{\prime}$, lon. $84^{\circ} 13^{\circ}$. S.- E.-S. E., into	Hutsoo, 130; Aurag. 117; Tell, 1s0; Bang Nuddee, 60 m .-About 46,000 sq. m . drained.	From July to February, navigable for boata fur 460 m .
I - - -	Near Lolardugga, lat. $23^{\circ} 29^{\prime}$, lon. $84^{\circ} 55^{\prime}$. N.-E.-S.-S.W.-S.E.-E., into Bay of Bengal, by Dlumrah river.-Length, 345 m .	Sunk, 95 mm - About $26,000 \mathrm{sq} . \mathrm{m}$. are drained by Brabminy and Byturnee.	Sacred in the Hindoo mythology, more especially
ia)	Chota Nagpore table-land. N.E.-E.-S.E.-S.-S.E.-E.-S.E. -S., into Bay of Bengal.-Length, 280 m .	Karow, 80 m.-About 19,000 sq. m. drained.	
$\cdots \frac{\text { or Coladrne }}{}$	Near Blue Mountain, Youmadoung range, lat. 22° 27', lon. $92^{\circ} 51^{\prime}$. S., into Combermere Bay.-Length, 160 m .	Myoo ; Lemyo - - - - -	Navigable within a few miles of Arracan town, for ship: tons burden. 90 m . above Akyab, the stream is nar navigable only for canoes. 10 m . broad at its mouth.
	Burmah, lat. $21^{\circ} 40^{\prime}$, lon. $90^{\circ} 50^{\prime}$. S., into Gulf of Martaban.Length, $420^{\circ} \mathrm{m}$. N. of Yunnari province, China; about lat. $27^{\circ} 10^{\circ}$, lon. $98^{\circ} 57^{\prime}$. S., into Gulf of Martaban, by two mouths, formed by Pelewgewen Island.-Length, 430 m .	Yennan, 115; Saar, 120 m. Attaran or Wíeingo, 110; Thoung-yin Myit, 225; Meloun, 90 m .	It is a navigable river. For about 190 m . forms the b between the Tenasserim provinces and Pegu. It enters the British dominions about lat, $18^{\circ} 40^{\circ}$.
\therefore - -	Supposed to lie in the mountains to the N.E. of Tavoy, bctween the 14th and 15th parallel of latitude. S. to Metamio, lat. $14^{\circ} 13^{\circ}$; S.E. and S. to Tenasserin town ; N.W., into Bay of Bengal, by two mouths.-Length, 270 m .	Baing-Khiaung; Little Tenasserim; Kamaun Kliaung.	Upper part of course through a wild and uncultivat sometimes between ligh and perpendicular banks. wards apens on extensive plains. On many parte of exist forests of fine teak, and the valuable sappan wood
tary to Gamges -	Jumnoutri, Himalaya, lat. 31° I lon. $78^{\circ} 32^{\prime} ; 10,849 \mathrm{Af}$ above the sea. S.W.-S.E., to Ganges, at Allahabad.-Length, $860 . \mathrm{mm}$.	Tonse or Supin, about 100; Hindan, about 160; Hansoutee, 99; Bangunga, 220; Chumbul, 570; Sinde, 260; Betwa, 360 ; Cane, 230; Baghin Nuddee, 90; Seyngur, 210; Urrund Nuddee, 245 m ,-About $105,000 \mathrm{sq} . \mathrm{m}$, drained.	In consequence of its bed being obstructed by ahoals an navigation is not practicable for craft above Delhi, ex means of the canal. Its bauks are lofty and precipito ridges of rock in many places advance into the strear bining with its general shallowness and strong current t navigation extremely difficulf and dangerous.
ibutary to Ginazs -	N. of 'Kumaon, lat. $30^{\circ} 28^{\prime}$, lon. $80^{\circ} 40^{\prime}$, ' probably bẹtween 17,000 and $18,000 \mathrm{ft}$. S.E., 83 m. ; S.W., 70 m. ; S.E., 12 m. ; S., 30 m .; S., 23 m . further ; S.E., to Ganges, near Chupra.-Length, 606 m .	Raptee, 134 ; Kurnalli, 225 ; Bhyrvee, 70; Dhauli, 45 ; Goringunga, 60 m .-About 49,000 .sq. m. drained.	Butter describes it as navigable for the largest class ail seasons.
ributary to Ganaz	In a small lake or morass, 19 m . E. of the town of Pillebheet. Lat. $28^{\circ} 35^{\prime}$, lon. $80^{\circ} 10^{\prime} ; 520 \mathrm{f}$. above the sea. S. -S . E., into Ganges, 30 m . below Benares,-Length, 482 m .	- - - - - -	In the rainy season, boats of 1,000 or 1,200 mau burthen, are sometimes seen proceeding to Luckn
tary to Gangis	Amarkantak table-land, lat. $22^{\circ} 41^{\prime}$, lon. $82^{\circ} 7^{\prime}$; from $\mathrm{s}, 500$ to $5,000 \mathrm{ft}$ above the sea. $\mathrm{N}_{\mathrm{t}} 30 \mathrm{~m}$. ; N.W., $80 \mathrm{~m} . ; \mathrm{N}_{\text {., }} 40 \mathrm{~m}$. ; N.E., 125 m. ; E., 47 m ; $\mathrm{N}_{4} \mathrm{E}$., into the Ganges, 10 m . above Dinapoor.-Length, 405 m .	Koel, 140; Kunher, 130 ; Johila, 100 m.-Including the Phalgu and other rivers falling into the Ganges above Rajmabal, about $42,000 \mathrm{sq} . \mathrm{m}$. drained.	The navigation of the river is not considered available poses of important utility higher than Daudnagur, 60 the confluence with the Ganges.
rributary to Ganges	Near Dhawalagiri peak, Himalaya. S.-S.E.-S.W.-S.E., into Ganges, near Patna,-Length, 407 m .	Trisula-ganga, 100; Marachangdi, 100; Naling, $110 \mathrm{~m} .-$ About $40,000 \mathrm{sq} . \mathrm{m}$. drained.	Though navigable continuously through its whole cours wards from Bhelaunji, there are in the part of its nearer that place many sapids and passes, where, the being obstructed by rocks, navigation becomes diffic dangerous.
ributary to Jumm	Malwah, Iat. $22^{\circ} 26^{\prime}$, lon. $75^{\circ} 45^{\prime}, 8$ or 9 m . S.W. from Mhow, which is $2,019 \mathrm{ft}$, above the sea. It rises in the cluster called Janapava. N., $105 \mathrm{~m} . ;$ N.W., $6 \mathrm{~m} . ;$ S.E., $10 \mathrm{~m} . ;$ N.E., 23 m .; N.W., 25 m. ; N. to junction with Kalee Sind; N.E., 145 m.; S.E., 78 in., to Jumna.-Length, 570 m ., described in a form nearly segicircular, the diameter being only 330 m .	Chumbela, 70; Seepra, 120; Parbutty, 220; Kallee Sinde, 225; Banas, 320; Chota Kallee Sinde, 104 m. -About $56,000 \mathrm{sq} . \mathrm{m}$. drained.	It does not appear to be used for navigation, which is p incompatible with the average declivity of its bed (2 per m.), and still more so with the general rugged an character of its channel. Its average volume of wate considerable, that on its junction it has been known the united stream 7 or 8 feet in 12 hours.
ributary to Gnwas	Kumaon, lat. $30^{\circ} 6^{\circ}$, lon. $799^{\circ} 20^{\prime}$; about 7,144 ft. above the sea. S.E., 20 m ; S.W., 70 m. ; S. to Moradabad-S.E.-S., into Ganges.-Length, 379 m .	Kosee, 150 ; Gurra, 240 m.	Fordable at Moradabad, at 15 m . below confluence wit but not usually fordable below Jellalabad.
Gamars	Himalaya Mountains, lat. $28^{\circ} 25^{\prime}$, lon. $86^{\circ} 11^{\prime}$. S.W.-S.E.-S.-E.-S.E.-S., into Gangee.-Length, 325 m .	Arun, s10; Tambur, 95; Gogaree, 235; Dud Coosy, 50; Tiljuga, $40 \mathrm{~m} .-46,000 \mathrm{sq} . \mathrm{m} . \mathrm{dr}$.	Where narrowest, and when lowest, stream, 1,200 ft. 15 ft . deep. It is larger than the Jumna or the Gho

Tabulated Views of the Mountains and Passes, Table-Lands, and Rivers, \&c.-continued.

e.	Source, Course, Discharge, and Length.	Tributaries, and their Lengtí in British Miles, and Area drained.	General Remarks.
ributary to	Near Darjeeling, in the Sikkim hills, lat. $26^{\circ} 57^{\prime}$, lon. $88^{\circ} 20^{\prime}$. S., 40 m. ; S.W., 60 m. ; S.E., 50 m. ; S., 20 m. ; S.E., 40 m. ; S., 30 m .-Length, 240 m .	- - - - -	Navigable during the dry season for craft of 8 tc Kishengunge; for those of much larger burthei rains.
	In the Kymore range, lat. $24^{\circ} \mathbf{3 8 ^ { \prime }}$, lon. $83^{\circ} 11^{\prime}$. N. $-\mathbf{N}$.W., into the Ganges, near Ghazeepore.-Length, 140 m .		
o Ganges	Lat. 24°, lon. $80^{\circ} 30^{\circ}$. N.W.-E.N.E.-N., into the Ganges, a few miles below Allahabad.-Length, 165 m .	Satni, Behar, Mahana, Belun, and Seoti.-Including small streams, $18,000 \mathrm{sq}$. m. drained.	
ributary to	Lat. $90^{\circ} 93^{\prime}$, lon. $79^{\circ} 38^{\prime}$. N.W.-S.W.-W.-S.W., into the Bhageerutte, at Deoprayag.-Length, 80 m .	Doulee, 35; Visbnuganga, 25; Mundakni, 32; Pindur, 60 m.	At confluence with Bhageeruttee, 142 fe. broad; during the melting of the snow.
ary to Gangrs	Lat. $30^{\circ} 46^{\prime}$, lon. $78^{\circ} 55^{\prime}$. S.W., into the Bhageeruttee.-Length, 50 m .		Between 60 and 70 ft . wide in the beginning $\mathrm{o}: \mathrm{M}$ its mouth.
tributary to	Ramghur district, lat. $23^{\circ} 55^{\prime}$, lon. $84^{\circ} 53^{\prime}$. E. and S.E., to Burdwan ; S., to Diamond Harbour,-Length, 350 m .	Barrachur, $155 \mathrm{~m} .-\quad$ - \quad -	Crossed by a ferry 50 m . above its mouth. At Ra m . from mouth, 500 yds . wide, fordable, with a about 1 ft . deep in December.
to Hooghly-	Ramghur district, lat. $23^{\circ} 35^{\prime}$, lon. $85^{\circ} 58^{\prime}$. Circuitous, but generally S.E., into Hoogly.-Length, 240 m .	Comaree - -	It is crossed at Amednugghur, 80 m . from source, and 41 m . from mouth, by fords during the dry season during the rains.
ributary to	Pachete district, lat. $23^{\circ} 30^{\prime}$, lon. $86^{\circ} 94^{\prime}$. S.E.-S.-S.E., into Hoogly at Diamond Harbour.-Length, 170 m .	- - - -	Crossed at Bancoora, 50 m . from source, and at means of fords.
ry to Innus.	Near Kara-korum Pass. S.E.-N.W., into Indus, near Iskardo.Length, 300 m .	Chang-Chermo, 58 ; Nubra, 66 m.	
to Indes	Lat. $34^{\circ} 15^{\prime}$, lon. $68^{\circ} 10^{\prime}$, near Sir-i-Chusma, in Affgbanistan; clevation, $8,400 \mathrm{ft}$. Generally E., through the valley of Cabul, and plains of J ellalabad and Peshawur, into the Indus.-Length, about 320 m .	Punchshir, 120 ; Tagao, 80 ; Alishang, 120 ; SoorkhRood, 70; Kooner, 230 ; Suwat, 150 m.-About $42,000 \mathrm{sq} . \mathrm{m}$. drained.	Not navigable along the N. base of Khyber Mts. e and hides. Navigable for boats of 40 or 50 tons
ry to Indus	N. declivity of Barra-Lacha Pass, lat, $32^{\circ} 47^{\prime}$, lon. $77^{\circ} 33^{\prime}$, N.W.-W.-N.W.-N.E.-N.W.-N.E.; into the Indus, a few miles below Le.-Length, 150 m .	Trarap, 42 ; Zingchan-Tokpo, 22 m ,	
to Indus	Remote sources, Lakes Manasarowar and Rahwan IIrad, lat. $30^{\circ} 8^{\prime}$, lon. $81^{\circ} 53^{\prime} ; 15,200 \mathrm{ft}$. above the sea. N.W., 180 m ; S.W. through Bussalir ; W. to junction with Beas ; S.W. to Punjnud.- Length, 550 m ., to junction with Beas; 300 m . farther to Punjnud; total, 850 m .	Spiti, 120 ; Buspa, 52 ; Beas, 290 m.-About $29,000 \mathrm{sq} . \mathrm{m}$. , or, including Ghara and Beas, about 65,000 sq. m. drained.	At Roopur, 30 ft . deep, and more than 500 yds . wid as far as Filoor in all seasons, for vessels of 1 burthen.
lo Sutlej	On S. verge of Rotang Pass, lat. $32^{\circ} 24^{\prime}$, lon. $77^{\circ} 11^{\prime} ; 13,200 \mathrm{ft}$. above the sea. $S ., 80 \mathrm{~m} . ; W ., 50 \mathrm{~m}$. ; Wen a wide sweep to N.W. for $80 \mathrm{~m} . ;$ S., 80 m. , to Sutlej, at Endreesa. - Length, 290 m .	Parbati ; Sainj, s8; Gomati, $55 \mathrm{~m} . ;$ Ul ; Gaj.Ahout 10,000 sq, m. drained.	
'y to Indus -	Near Bara-Lacha Pass, lat. $32^{\circ} 48^{\prime}$, lon. $77^{\circ} 27^{\prime}$. N.W. to Murumurdwun ; S.W. to confluence with Jhelum, thence S.W. to Ghara, or contiauation of Sutlej.-Length, 605 m . to Jhelum, 765 m . to Ghara.	Suruj-Bhagur, 44 ; Murumurdwun, 86 ; Dharh, 56 m.-About 21,000; including Jhelum, 50,000; and with Ravee, 72,000 sq. m. drained.	Becomes navigable for timber rafts at Aknur. De: average rate of 40 ft . per m . for the first 200 m . elevation at Kishtewar, 5,000 ft.
Y to Chinar :	The Lidur, in N.E. mountains of Cashrmere, near Shesha Nag. Through valley of Cashmere, and into Punjab by Baramula gorge; S. to Chenab confluence, in lat. $30^{\circ} 10^{\prime}$, lon. $79^{\circ} 9^{\prime}$.-Length, 409 m .	Lidur, 50; Vishnau, 44; Sinde, 72; Lolab, 44; Kishengunga, 140; Kunihar, 100; Pirpanjal, 115 m .-About $280,000 \mathrm{sq} . \mathrm{m}$. drained.	Navigable for 70 m . through Cashmere. Naviga Indus to the town of Ohind.
to Capmaur -	Lat. $32^{\circ} 26^{\prime}$, Jon. 77°, in the Pirpanjal, or Mid-Himalaya range, to the W. of Rotang Pass. S.W., about 40 m .9 W. to Lahore; S.W. to junction with Cbenab.-Length, 450 m .	Nye, 20 ; Sana, 36 ; Chakki, 50 m.-About 22,000 sq. m. drained.	Tortuous cọurse ; fordable in most places for eight year.

utary to Brabma-	N. face of Himalayas, lat. $80^{\circ} 25^{\prime}$, lon. $82^{\circ} 5^{\prime}$. E., winding its way through Tibet, and washing the borders of the turritory of Lassa. It then turns suddenly S., and falls into the Brahmapootra, under the name of Diliong.-Length, about $1,000 \mathrm{~m}$.
Вrahma-	About lat. $89^{\circ} 59^{\prime}$, Jon. $88^{\circ} 50^{\prime}$. S.-S.E., in
ary to Branma=	It is an ottset from the Jeree, which leaves in lat. $94^{\circ} 49^{\prime}$, lon. $99^{\circ} 13^{\prime}$. W. tbrough Cachar and Silhet; S.W., into Megna.-Length, 200 m .
abma	Himalaya range, lat. $28^{\circ} 20^{\prime}$, lon. $91^{\circ} 18^{\circ}$. S., 40 m ; S.W., 110 m ; S.W., into Bralmapnotra.-l.ength, 189 m .
to Ifas^{-}	Burmah, lat. $26^{\circ} 28^{\prime}$, lon. $96^{\circ} 54^{\prime}$. Generally S., into Irawaddy, near the town of Anyenmyo.-L.ength, 470 in.
bnabta, P.	Maladeo Mountains. lat. $22^{\circ} 25^{\circ}$, lon. $79^{\circ} 8^{\prime}$. E., 80 m. ; S., 34 m ; S., 25 m. ; S.W., 80 m. ; S., 100 m .; into Godarery.-Length, 439 m .
to Weino	Suntpoora Mountains, lat. $21^{\circ} 44^{\prime}$, lon. $78^{\circ} 23^{\prime}$. Generally N.W. to S.E.-L.ength, about $2,50 \mathrm{~m}$.
tary to	Lat. $20^{2} 32^{\prime}$, lon. $76^{\circ} 4^{\prime}$, in Candeish. Very circuitous, but generally E., into Wurda.-Length, $\mathbf{S 2 0} \mathrm{m}$.
utary to Godivenv	Lat. $18^{\circ} 44^{\prime}$, Ion. $75^{\circ} 30^{\prime}$. S.E., S.W., into Godavery.-Length, 930 m.
ibutary to Kıstnais	Lat. $19^{\circ} 5^{\prime}$, lon. $73^{\circ} \cdot 93^{\prime}$, in the table-fand of the district of Ponna; $3,090 \mathrm{it}$. ab,ove the sea. S.E, into Kistnah.-Length, 510 m .
utary to	Lat. 14°, lon. $75^{\circ} 43^{\prime}$, junction of Toonga and Budra rivers. N.-N.E., into Kistnah.-Length, 325 m .
to $\mathrm{T}_{\text {aptee }}$	Lat. $21^{\circ} 35^{\prime}$, lon. $77^{\circ} 41^{\prime}$. S., 65 m .; W., $25 \mathrm{~m} . ;$ into the Taptec. -Length, 160 m .
tary to Taptre :	E. slope of W. Ghauts, lat. $20^{\circ} 57^{\prime}$, lon. $73^{\circ} 25^{\prime}$. E., 120 m ; N., 50 m ; into the Taptee.-Length, 160 m .
Cauyrry	Among the Kundah group, lat. $11^{\circ} 15^{\prime}$, lon. $76^{\circ} 4^{\prime}$. E into Cauvery. - Length, 120 m .
utary to Cauvery	E. slope of W. Ghauts, lat. $10^{\circ} 59^{\prime}$, lon. $76^{\circ} 44^{\prime}$. E., into Cauvery. Length, 95 m .
butary to Maba-	Lat. $23^{\circ} 18^{\prime}$, lon. $82^{\circ} 32^{\prime}$.
	Lat. $19^{\circ} 54^{\prime}$, lon. $82^{\circ} 41^{\prime}$. N.W., into Malunuddy.-Length, 150 m

Sanki-Sanpoo, Miamtsion, Zzangtsiou, Lalee Nuddee.

Navigable for craft of 6 or 7 tons as far up as Puharpour beyond the divergence of the Attres. Banks low and marsty along the vulley of the Cachar.

Deemree, of greater length than itself.
Myitia Klyoung, 170 m .
Pench Nuddee, 150; Kanhan Nuddee, $190 \mathrm{~m} .-$ --About $21,000 \mathrm{kq} . \mathrm{m}$. drained, exclusive of PayneGunga and Wurla.
Payne-Gunga, 320 m .-About $8,000 \mathrm{sq}$. m. drained.
Araun, 105 ; Koony, 65 m .-About 8,000 sq. m. drained.
Thairnya, 95 ; Narinja, 75; Munnada, $100^{\circ} \mathrm{m} .-$ About 11,000 sq. m. drained.
Goor, 100 ; Neera, 120 ; Seena, 170 ; Tandoor, 85 m . About $29,010 \mathrm{sq} . \mathrm{m}$. dramed.
Chinua Hugry ; Hundry, 225 m. ; Wurda.-About $28,000 \mathrm{sq} . \mathrm{m}$. drained.

Elevation at Bundara, lat. $21^{\circ} 12^{\prime} ; 872$ ft. alove the sea

Fordable, except at the height of the rains; then navig 100 m . alove its mouth.

Rocky obstacles to navigation in upper part of enurse ueak forests on banks.
Note.-Of the aboue-named rivers, 49 main streams fow to the sea; the chief trilntaries to these number 210; 30 flow for 200 m . and upuards; 63 have a course of 100 to 200 m .; and the remainder under 100 m .

Tabulatfd View of Revers in Afghanistan, and in the Countries adjacent to Inima on the North-mest, sofar as known.-By R. Montcomery Martin.

Tabulated Views of the Mountains and Passes, Table-Lands, and Rivers, \& c.-continued.

Length.	Source, Course, and Discharge.	Tributaries or Confluents, and their Length in English Miles.	General Remarks.
out 900 miles Iuar.-About	Valley of Bamian, about lat. $34^{\circ} 52^{\prime}$, lon. $67^{\circ} 40$. Easterly ; northerly; north-easterly; northerly; and north-westerly; into the Amoo or Jinoon River. Huzarch Mountains, lat. $34^{\circ} 50^{\prime}$, lon. $66^{\circ} 20^{\prime} ; 9,500 \mathrm{ft}$. above the	Inderaub, 65 ; and Khanah-i-had, 90 m. Sir-i-Jungle, 90 m.	
IUAY. - About	Huzarch Mountains, lat. $34^{\circ} 50^{\prime}$, lon. $66^{\circ} 20^{\prime}$; 9,500 ft. above the sea. Generally westerly to Herat, where it turns north-westerly, forming a junction with the Moorghaub; the united stream is ultimately lost in the desert of Khorasan.	Sir-i-Jungle, $90 \mathrm{~m} . \quad \bullet \quad \bullet$ -	At Herat, it was formerly crossed by a brick bridg out of thirty-three arches being swept away, comt intercepted in time of inundation, It is remark purity of its water.
0 miles -	Jhaiawan province, about lat. $27^{\circ} 23^{\prime}$, lon. $66^{\circ} 21^{\prime}$. Southerly, through Lus province into the Indian Ocean, in lat. $25^{\circ} 23^{\prime}$, lon. $66^{\circ} 2 \sigma^{\prime}$; near Sonmeance.		From the bund N, of Lyaree, the river has no be during the rains, the bund is swept away, and the dates the plain, which is here about 5 m . broad.
at 60 miles	Huzareh Mountains, about lat. $33^{\circ} 50^{\prime}$, lon. $65^{\circ} 20^{\prime}$. Generally southerly, as far as lat. 33°; afterwards south-westerly; into Lake Abistada, in lat. $32^{\circ} 42^{\prime}$, lon. $68^{\circ} 3^{\prime}$.	N.B.- The tributaries of these rivers, in the countries adjacent to India, are as yet very imperfectly	
70 miles	Sir-i-Bolan, Bolan Pass, lat. $29^{\circ} 51^{\prime}$, lon. $67^{\circ} 8^{\prime} ; 4,494 \mathrm{ft}$. above sea. Remarkably sinuous, but generally south-easterly; from a junction with the Nari River.	know,--as indeed are also the origin and courses of the rivers themselves, or the countries through which they flow.	Liable to inundations; and as its bed, in some pa the whole breadth of the ravine, travellers are frec taken by the torrent. Falls 3,751 ft. in 50 m ., fro Dadur.
150 miles -	A few miles S. of Kelat, in Beloochistan. South easterly, about 80 miles; north-easterly; and easterly; ultimately absorbed in the desert of Sbikarpore.		The Moola or Gundava Pass winds along its coursc.
miles - -	Huzareh Mountains, about lat. 33°, lon. 67°. South-westerly to 25 m . past Kandahar ; westerly remainder of course,-falls into the Helmund River.	Turnak	Where crossed 12 m . from Kandahar, it is, ordinari yards wide, from 2 to 3 ft . deep, and fordable; dations, becomes much increased. Greater part drawn off to fertilize the country.
160 miles -	Afghanistan, about lat. 33°, lon. $69^{\circ} 6^{\prime}$, at the foot of an offshoot from Sufied.Koh. S. ; W. ; and a little E. of S. to Goolkuts; thence E., N.E., and S.E., until absorbed by the sands of the Daman.	Zhobe, about 170 m	Its bed for a great distance forms the Goolairee \mathbf{P} middle route from Hindoostan to Khorasan, by Khan and Ghuznee : crosses the Sulliman range,

Table-Lands of British India-their Extent; Height, \&c.-By R. Montgomeny Martin.

	Locality.	Elevation, in Feet.	General Remarks.
	Extends by the Arravulii, Dongurpoor, Vindhya, Bindyachal, Panna, and Bandair ranges,-73 ${ }^{\circ}$ to 84°; about 700 m . long; breadth very various,--greatest from Amjherra to Ajmeer, 250 m . ; from Mhow to Mokundurra, 150 m. ; at Saugor and Dumoh, 75 m .; afterwards very narrow.	Highest towards S. and W.; average of Oodeypore, $2,000 \mathrm{ft}$. Malwah, 1,500 to $2,000 \mathrm{ft}$. Bhopal, $2,000 \mathrm{ft}$. Bundelcund, about $1,000 \mathrm{ft}$. Shahabad, 700 ft . Plain of Ajmere, $2,000 \mathrm{ft}$. Oodeypore town, $24^{\circ} 37^{\prime}, 73^{\circ} 49^{\prime}$; 2,064 ft--slope to N.E,, Banas River flowing in that direction; gradual fall also to valley of Chumbul River, where it rises to Malwah; Mhow, $2,019 \mathrm{ft}$. Dectaun, $1,881 \mathrm{ft}$. Dhar, $1,908 \mathrm{ft}$. Indore, $1,998 \mathrm{ft}$. Crest of Jaum Ghaut, 2,328 ft. Oojein, $1,698 \mathrm{ft}$. Adjygurb, $1,940 \mathrm{ft}$. Amjherra, $1,890 \mathrm{ft}$. Saugor, $1,940 \mathrm{ft}$. Rhotasgurl, 700 ft . Sonar River, source, $1,900 \mathrm{ft}$, From the Vindhya range the surface has a generally gradual, but in some places abrupt, descent; as at Mokundurra, and the Bindyachal hills, where rivers occasionally fall over tie brow in cascades. Shahabad district very rocky and uneven.	Tin and copper are found in Ood Bhopal the prevailing geologica appears to be trap overlying sandston are few and unimportant. -Wa plentiful. The mineral resources cund appear to be considerable,
$\mathbf{N}, \mathrm{Mr}-$	Supported as it were by a triangle formed by the Sautpoora or sub-Vindhya on the N., W. Ghauts on the W., and E. Ghauts on the E.;	Highest parts, those nearest W. Ghauts, and in centre of Mysoor. Mahabulishwar 189, $73^{\circ} 45^{\prime} ; 4,700 \mathrm{ft}$. Source of Kistnah, 4,500 ft. Source of Godavery, $9,000 \mathrm{ft}$. Poona, $\mathbf{2 , 8 2 3} \mathrm{ft}$. Source o Manjera, $\mathbf{3 , 0 1 9} \mathbf{f t}$. Rivers rising in ravines between spurs of \mathbf{W}.	Hypogene schists, penetrated and br prodigious outbursts of plutonic an rocks, occupy by far the greater 10

the Sautpoora range constituting the base. Length, from Sautpoora River to Salem, abnut 700 m ; ; breadth from Mahabelishwur to Sirgoojah, about 700 m . If Chouta-Nagpore be considered as part of this great table land, it may be said to extend nearly 250 m . farther in a north-easterly direction.

Between $22^{\circ} 30^{\prime}$ and $24^{\circ} 30^{\prime}$; and easterly, from about 85° to 82^{\prime}

At the foot of the Himalaya range, between Himalaya and the Terrai ; 500 m . long ; E. to W. 160 m . liroad; area, $54,500 \mathrm{sq} . \mathrm{m}$

Ghauts, wind their way through E. Ghants across the Deccan, the slope being in that direction. Plains of Nagpore, $1,000 \mathrm{ft}$,-slope to S.E.; drained by Wein-Gungn, which dills into Godavery. Hyderabad, $1,800 \mathrm{ft}$. Secunderabad, $\left.17^{\circ} 26^{\prime} 78^{\circ} 93^{\prime}, 18\right)^{\prime}$ falls into Godavery. Hycerabad, $1,800 \mathrm{ft}$. Secunderabad, $17^{\circ} 26^{\prime}, 78^{\circ} 93^{\prime}$; $1,887 \mathrm{fL}$
Beder, $17^{\circ} 53^{\prime}, 77^{\circ} 96^{\prime} ; 8,959 \mathrm{f}$. From the Wein-Gunga the surface rises towards N. E , Beder, $17{ }^{\circ}$, $71^{\circ} 32^{\prime} ; 81^{\circ} 40^{\prime}$, is $1,747 \mathrm{ft}$. Source of Mahanuddy, $2,111 \mathrm{ft}$; and Konwhere Rypoor, $21^{\circ}, 8150^{\circ}$, Nundy-droog, highest in Mysore, $4,856 \mathrm{ft}$; and Konkence on all sides, S. to Bangolore, $3,000 \mathrm{ft}$. ; E. to plains of Carnatic-Chittoor, 1,100
 $78^{\circ} 10^{\prime} ; 2,800 \mathrm{ft}$. Mysore town, $12^{\circ} 18^{\prime}, 76^{\circ} 42^{\prime} ; 2,450 \mathrm{ft}$. Seringapatam, $12^{\circ} 25^{\prime}$, $76^{\circ} 45^{\prime}, 2,412$-from bence, there is a gradual rise to Coorg, where Verajenderpetta is $3,599 \mathrm{ft}_{\mathrm{u}}$ and Merkara, 4,506 ft. From Bangalore, descent to S . by rather abrupt steps to plains of Salem, $1,400 \mathrm{ft}$., and Coimbatore, $1,483 \mathrm{ft}$. From Belgaum, $15^{\circ} 50^{\prime}, 74^{\circ} 36^{\prime}$, $2,500 \mathrm{ft}$, there is a gradual fall to the E. Bellary plains, $1,600 \mathrm{ft}$. Gooty plains $1,182 \mathrm{f}$.; Cuddapah town, 507 ft .; and E. part of Cuddapala district 450 ft .
Chota-Nagpore, 3,000 ft. ; hills running E. and W., but of little elevation ; Sirgonjah, mountainous, rising 600 to 700 ft . above level of Chota-Nagpore. Mynpat table-land, about 30 m . S. E. from Sirgoojah town ; area not ascertained-about 3,000 or $3,500 \mathrm{ft}$. Palamow dist., very mountalnous-htle known. Hazareebaugh town, 24,85 54; 1,750 ft. Slope of country to S., towards Sumbulpore-N. and E. parts of dist. very mountainous, but evel, and even depressed towards Malanuddy. Sumbulpore town, only 400 ft . Orissa cable-land then rises on the other side of Mahznuddy, in some places to 1,700 fi. backed by the chain of E. Ghants. Amarkantak, jungly table-land, $22^{\circ} 40^{\prime}, 81^{\circ} 50^{\prime} ; 3,500 \mathrm{f}$.
The surface generally consists of valleys varying from 4,000 to $6,000 \mathrm{ft}$ above Bengal plains. Khatinandoo (in an oval-shaped valley 12 m . long), $27^{\circ} 42^{\prime}, 85^{\circ} 18^{\prime}$; 4,628. Bhynturee, $29^{\circ} 84^{\prime}, 80^{\circ} 30^{\prime} ; 5,615 \mathrm{ft}$. Slope to S . drained by Ghogra, Gunduck, and Coosy.
uperficies of Southern India, The centr the Deccan is composed of waving d bich, at one time, present for miles a sh reen harsets, but in the hot season, be appearance of a desert, without a tree or o relieve its gloony sameness. The se brupt, is not precipitous but consist of ession of terraces or steps. On the Cor del side the slope to the sea is gentle, exlii he alluvial deposits borne down from the portions of the table-land.

The soil in the plains is generally fertile, prod abundant crops of wheat, barley, rice, excellent vegetables, cotton and sugar-cane uncultivated parts are overrun with a grass. A great part of the region is quit known to us.

The geological formation of the hilly tractstone, hornstone, and conglomerate. Veg productions of most temarkable state beauty, and variety. Climate resembles southern Europe.

Tabulatrd View of Table-Lands of Afghanistan and the Countrirs adjacent to India, ou the Norith-west.-By R. Montgomery Martin.

e.	Locality.	Elevation, in Feet.	General Remarks.
chanistan	From about Ghuznee or Sufied Koh, to Amran Mountains, N. to S. ; and from near Kandahar to the Suliman range.	Crest of highland of Ghuznee, Jat. $30^{\circ} 43^{\prime}$, long. $68^{\circ} 20^{\prime} ; 9,000 \mathrm{ft}$. Ghuznee, $33^{\circ} 34^{\prime}, 68^{\circ} 18^{\prime}$; 7,726. Yerghuttoo, $33^{\circ} 20^{\prime}, 68^{\circ} 10^{\prime} ; 7,503$. Mookur, principal source of Turnak River, $39^{\circ} 50^{\prime}, 67^{\circ} 37^{\prime} ; 7,091$. Abistada Lake, $32^{\circ} 35^{\prime}, 68^{\circ}$; 7,000. Punguk, $32^{\circ} 36^{\prime}, 67^{\circ} 21^{\prime}$; 6,810. Shuftul, $32^{\circ} 28^{\prime}, 67^{\circ} 12^{\prime}$; 6,514. Sir-i-Asp, $32^{\circ} 15^{\prime}, 66^{\circ} 54^{\prime} ; 5,97 s$. Kelat-iGiljic, $32^{\circ} 8^{\prime}, 66^{\circ} 45^{\prime} ; 5,773$. Julduk, $32^{\circ}, 66^{\circ} 28^{\prime}$; 5,596 . Hyduraie, $30^{\circ} 28^{\prime}, 66^{\circ} 51^{\prime}$; 5,259. Hykulzie, $80^{\circ} 32^{\prime}, 65^{\circ} 50^{\prime}$; 5,063. Teer-Andaz, $31^{\circ} 55^{\prime} ; 66^{\circ} 17^{\prime} ; 4,829$. Kandahar, $32^{\circ} 37^{\prime}, 65^{\circ} \mathbf{~ 2 8} ;$; 3,484 ft.	Afghanistan, for four-fifths of its extent, is a of rocks and mountains, interspersed with of great fertility, and in many places cont table-lands, cold, bleak, and barren. It surface as rugged as that of Switzerland mountain. summits of much greater General slope of the country, from N.E. to
rghanistan	Between Hindoo-Koosh on the N., and SufiedKoh on S.; and Huzarelt country on the W., and Khyber hills on the E.	Kurzar, near source of Helmund, $34^{\circ} 30^{\prime}, 67^{\circ}-54^{\prime} ; 10,939$ ft. Kalloo, $34^{\circ} 30^{\prime}, 67^{\circ} 56^{\prime}$; 10,883 ft. Youart or Oord, $34^{\circ} 22^{\prime}, 68^{\circ}$ $11^{\prime} ; 10,618$. Gooljatooe, $34^{\circ} 31^{\prime}, 68^{\circ} \cdot 5^{\prime} ;$ $10,500 \mathrm{ft}$. Shibbertoo, $94^{\circ} 50^{\prime}, 67^{\circ} 20^{\prime} ; 10,550 \mathrm{ft}$. Siah Sung, $34^{\circ} 94^{\prime}, 68^{\circ} 8^{\prime} ; 10,438$ ft. Gurdan Dewar, $34^{\circ} 25^{\prime}, 68^{\circ} 8^{\prime} ; 10,076 \mathrm{ft}$. Soktah, $34^{\circ} 40^{\prime}, 67^{\circ} 50^{\circ} ; 9,839 \mathrm{ft}$. Khawak Fort, $35^{\circ} 38^{\prime}, 70^{\circ} 5^{\prime} ; 9,300 \mathrm{ff}$. Topchce, $34^{\circ} 45^{\prime}, 67^{\circ} 44^{\prime} ; 9,085 \mathrm{ft}$. Chasgo, $33^{\circ} 43^{\prime} ; 68^{\circ} 22^{\prime} ; 8,697 \mathrm{ft}$ Bumian, $34^{\circ} 50^{\prime}, 67^{\circ} 45^{\prime} ; 8,496 \mathrm{ft}$. Luftasayn, $33^{\circ}{ }^{\circ} 49^{\prime}$, $67^{\circ} 55^{\circ} ; 8,186 \mathrm{ft}$. Killa Sher Mahomed, $34^{\circ} 16^{\prime}, 68^{\circ}{ }^{\circ} 45^{\prime} ;$; $8,0.51 \mathrm{fl}$. Kot.i-Asruf, $34^{\circ} 28^{\prime}$, $68^{\circ} 35^{\prime} ; 7,749 \mathrm{ft}$. Maidan, $34^{\circ} 22^{\prime}, 68^{\circ} 43^{\prime} ; 7,747 \mathrm{ft}$. Urghundee, $34^{\circ} 30^{\prime}, 68^{\circ} 50^{\circ} ; 7,628$ $71^{\circ} 22^{\prime} ; 2,483 \mathrm{ft}$. Jellaiabad, $34^{\circ} 25^{\prime}, 70^{\circ} 28^{\prime}$; $1,964 \mathrm{ft}$.	Slope from W. to E.; Cabul River flowi that direction ; lofty mountains enclosing of Jellalabad on N. and S. sides. Course of obstructed, and bed contracted by ridges o connecting them. City of Cabul surro by hills on three sides. Jellalabad, on a plain.

Tabulated Views of the Mountains and Passes, Table-Lands, and Rivers, \&c.-continued.

	Locality,	Elevation, in Feet.	-General Remarks.
ineen -	Between Hala and Amran ranges, on the N. frontier of Beloochistan.	Khojuck Pass, Amran Mts., $30^{\circ} 45^{\prime} ; 66^{\circ} 30^{\prime}$; 7,449 ft. Pisheen, from 5,000 to $6,000 \mathrm{ft}$. Shawl exceeds $5,000 \mathrm{ft}$. Town of Shawl, $5,563 \mathrm{ft}$. Dasht-i-Bedowlat, $30^{\circ} 57^{\prime}$; about $5,000 \mathrm{ft}$. Siriab, $30^{\circ} \mathbf{3}^{\prime}, 66^{\circ} 53^{\prime} ; 5,793 \mathrm{ft}$.	Wildest.parts of enclusing mountains wild sheep and goats; more acc yield pasture for herds and flock numerous. Dasht-i-Bedowlat (wr destitute of water.
\cdots	S. of Arghanistan	Kelat, $28^{\circ} E 3^{\prime}, 66^{\circ} 27^{\prime} ; 6,000 \mathrm{ft}$. Sohrab, $23^{\circ} 29^{\prime}, 66^{\circ} 9^{\prime} ; 5,800 \mathrm{ft}$. Munzilgah, $29^{\circ} 53^{\prime}$; $67^{\circ} ; 5,793 \mathrm{ft}$. Angeera, $28^{\circ} 10^{\prime}, 66^{\circ} 12^{\prime} ; 5,250 \mathrm{ft}$. Bapow, $28^{\circ} 16^{\prime}, 66^{\circ} 20^{\prime} ; 5,000$. Peesee-Bhent, $28^{\circ} 10^{\prime}, 66^{\circ} 35^{\prime} ; 4,600 \mathrm{ft}$. ; Sir-i-Bolan, $29^{\circ} 50^{\prime}, 67^{\circ} 14^{\prime}$; 4,494. Putkee, $28^{\circ} 5^{\prime}, 66^{\circ} 40^{\prime} ; 4,250 \mathrm{ft}$. Paeesht-Khana, $27^{\circ} 59^{\prime}, 66^{\circ} 47^{\prime} ; \mathbf{9}, 500 \mathrm{ft}$. Nurd, $27^{\circ}{ }^{\circ} 52^{\prime}$, $66^{\circ} 54^{\prime}$; 2,850. Ab-i-goom, $29^{\circ}{ }^{4} 46^{\prime}, 67^{\circ} 23^{\prime \prime}$; 2,540. Jungikoosht, $27^{\circ} .55^{\prime}, 67^{\circ} 2^{\prime}$; $2,150 \mathrm{ft}$. Bent-i-Jah, $28^{\circ} 4^{\prime}, 67^{\circ} 10^{\prime} ; 1,850 \mathrm{ft}$. Beebee Nanee, $29^{\circ} \mathbf{~} 99^{\prime}, 67^{\circ} 28^{\prime} ; 1,695 \mathrm{ft}$. Kohow, $28^{\circ} 20^{\prime}, 67^{\circ} 12^{\prime} ; 1,250 \mathrm{ft}$. Gurmab, $29^{\circ} 36^{\prime}, 67^{\circ} 32^{\prime} ; 1,081 \mathrm{ft}$. Kullar, $28^{\circ}{ }^{\circ} 8^{\prime}$, $67^{\circ} 15^{\prime} ; 750 \mathrm{ft}$.	Coast craggy, but not elevated; in s sandy shore; inland surface bec Most remarkable features of rugged and elevated surface, ba deficiency of water. It may be maze of mountains, except on which direction the surface des Great Desert on the S., where stretches along the sea-shore.
$\begin{gathered} \text { Bul } \\ \text { Littele } \end{gathered}$	Western Himalaya - - - - - -	Average elevation of Cashmere valley, between 5,000 and 6,000 ft. above the sea. Huramuk Mit. 13,000. Pir-panjal, 15,000. Small elevations in valley, 250 to 500 ft . Average of valles of Indus (N. of Caslimere vale), 6,000 to $7,000 \mathrm{fl}$. Slope from S.E. to N.W. Mountains on each side rising from 6,000 to $8,000 \mathrm{ft}$. higher.	Mountains enclosing Cashmere Ranges on each side of Bultistan bare, and nearly inaccessible; generally of gneiss; that of the and sand.

R. M. Martin.

149, Piccadilly, Lond

SANITARY STATISTICS

OF
THE BRITISH TROOPS OF THE EAST INDIA COMPANY'S ARMY, AND OF HER MAJESTY'S REGIMĖNTS SERVING IN INDIA.

SANITARY STATISTICS OF BRITISH TROOPS OF THE EAST INDIA COMPANY'S ARMY.

INDEX TO TABLES

INDIA.
 summary tables.

No. Table showing the Proporition per cent. of Deathe

1. Table and other Casuaitie to Strengti of tbe Euro pean Forcrs of the late East India Company in India (1800-56)
2. Do. do. for Madras (1770-99)
3. Do do for Bambay (1770-99) - . 539
4. Do. do. for Bengal in decennial Periods from $1800-$ 56 -
for Bengal in decennial Periods from 1800-
5. Do. do. for Madras - - - 534
6. Do. do. for Bombay - - - 534
7. Do. do. for Bengal for each of the Years 1800-56-535
8. Do. do. for Madras - - - 536
9. Do. do. for Bombay e e . - 537

No. Table showing the Mean Strength, Deatis, and Page. annual Rate of Mortality in the 10 Years, 1847 -56 , amongst the European Forces of the late Eabs Lidia Company in India - - a 53
12. Table of Strength of Effectives, distinguishing Age and Heriod of Service - - . - 538
13. Table of Deathe of Efiectives, do. do. - 538
14. Average Annual Mortality of Effectiveg at difprrent ages - - - - - 5
15. Average Anntil Mortaliti of Effrctives at different Periods of Service - - -
16. Average Anndal Mortality of Effectifes at dif- 539
17. Average Annual Mortality of Effectives at different Periods of Service, showing the Age on entering India

BENGAL.

summary tábles.

1. Table showing the Strength and Deaths in each of the Years 1846-56 in the different Corps
2. Table showing the Mortality and Station in each year of the different Corps
3. Table showing the Strength of the Fiffectives,* distinguishing Age and Period of Service - :- -541
4. Table showing the Deaths amongst the Effectives do. - 542
5. Table showing the Strength of the Non-Effectives do. - 542
6. Table showing the Deaths amongst the Non-Effectives, do. -
7. Table of Casualties amongst the Effectives (excluding the Town Major's List) distinguishing Periods of Service

543
8. A similar Table for the Town Major's List - - 543
9. A similar Table for the Non-Effectives - - 54t
10. Table showing the Mean Strength, Deaths, and Annual Late of Mortality amongst the Effectives and NonEffectives in each Year - -
11. Table showing the Strength, Deaths, and Average Annual Mortality, in the 10 Years, of Eiffectives and Non-Effectives at diffcrent Ayes
12. Average Annual Mortality amongst the Effectives in the 10 Years at different Periods of Service -
13. Average Annual Mortality amongst the Non-Effectives in the 10 Years, at different Periods of Service -545
14. Average Annaal Mortality amongst the Effectives in the 10 Years at diffirent Ages

545
15. Average Annual Mortality amongst the Non-Effectives in the 10 Years at different Ages
16. Average Annual Mortality in the 10 Years at differen Ages and Periods of Service, amongst the Effectives-546 17. Λ similar Table for the Non-Effectives, - - 546 17. Average Annual Mortality, at different Periods of Service of Effectives distinguishing their Age on entering India
18. Proportion per cent leaving the Corps annually in the 10 Years by Deaths, Discharges, \& $\mathrm{c} .$, and all Causes amongst the Iffectives (excluding the Town Major's List) at different Periods of Service - 546
19. A similar Table for the Town Major's List - - 547
20. A similar Table for the Non-Effectives - - 547
21. Proportion per cent. leaving the Corps annually in the 10 Years by Pensioning, Invaliding, \&c., \&c. amongst the Effectives (excluding the Town Major's List) ut different Periods of Service - $\quad .547$
22. A similar Table for the Town Major's List - - 547
23. A similar Table for the Non-Effectives
"Thn "Fffectives" consist of the Rengal Artillery 2 Regriments of Romigal Eurpean Infantry, and the Town Major's List; the Non Sfrectives" "couprise the Bengal 太uropean Peusioners, Invalids, aud,

BENGAL ARTILLERY.

24. Annual Rate of Mortality in each of the 10 Years - 548
25. Average Annual Mortality in the 10 Years at different Ages - - - - $\quad-\quad-548$ 26. Do. do. at diferent Periods of Service - 548 27. Strength in 3 Years (1849, 1851, and 1856,) at different Ages and Periods of Service - - - 548 28. Deaths in the 10 Years at different Ages and Periods of 29. Mortality in do., do. do. -549 30. Strength in 3 Years (1848,1851 , and 1856, at different Periods of Service and Age on entering India - 549 31. Deaths in the 10 Years do. do. - . 549 32. Mortality do. do. do. - -549
26. Proportion per cent. leaving the Corps annually in the 10 Years by Deaths, Discharges, and all Canses, at different Periods of Service -

549
34. Proportion per cent leaving the Corps annually in the

10 Years by Pensioning, Invaliding, \&ce., at different
Periods of Service 1st BENGAL FUSMIERS.
35. Annual Rate of Mortality in each of the 10 Years
36. Average Annual Mortality in the 10 Years at different

Ages - - - - - 550
37. Do. do. at different Periods of Service - 550 2nd BENGAL EUROPEANS.
38. Annaal Rate of Mortality in each of the 10 Years - 550 39. Average Annual Mortality in the 10 Years at different 40. Ages - - - - - - 3rd BENGAL EUROPEANS.
41. Annual Rate of Mortality in each of the 3* Years 1854 ${ }_{\text {Average Annual Mortality in the }}^{-56}{ }^{-5}{ }^{-}$Years at different Ages annal Mortaity in the Years at different 43. Do. do. at different Periods of Service - 551 TOWN MAJOR'S LIST.
44. Annual Rate of Mortality in each of the 10 Years - 551 45. Average Annual Mortality in the 10 Years at different Ages - - - - - 551 46. Do. do. at different Periods of Service - 552 EUROPEAN PENSIONERS.
47. Annual Rate of Mortality in each of the 10 Years. - 352 48. Average Annual Mortality in the 10 Years at different Ages - - - - -558 49. Do. do. at different Periods of Service - 552

- (This Regiment does not appaar on the Rolls until 183t)

EOROPEAN INVALDS.

No. Annual Rate of Mortality in each of the 10 Years $\begin{array}{r}\text { Pape. } \\ -552\end{array}$ 51. Average Annual Mortality in the 10 Years at different Ages - - - . - - - 552
do. at different Periods of Service - 553
MADRAS.

summary tables.

1. Table showing the Strength and Deaths in each of the Years 1847-56 in the different Corps
2. Table showing the Mortality and Station in each Yea of the different Corps
3. Table slowing the Strength of the Effectives, distin guishing Age and Period of Service -
Table showing the Deaths amongst the Effectives, do - 55
Table showing the Strength of the Non-Effectives do -55
4. Table showing the Deaths amongst the Non-Effectives, do. -
. Table of Casualties amongst the Effectives, distinguis \dot{h} ing Periods of Service
A similar Table for the Non-Effectives - - 557
5. Mean Strength, Deaths, and Annual Rate of Mortality Yeargst the Effectives and Non-Effectives in each
6. Strength, Deaths and Average Annual Mortality in the 10 Years, of Effectives and Non-Effectives at dif$\begin{array}{lll}10 & \text { Years, of Effectives and. Non-Efectives at dif } \\ \text { ferent Ages } & -\quad-558\end{array}$
7. Ayerage Annual Mortality amongst the Effectives in the 10 Years at different Periods of Service -55
8. A similar Table for the Non-Effectives - 558
9. Average Annual Mortality amongst the Effectives in the 10 Years at ditferent Ages - - - - 55
10. A similar Table for the Non-Effectives Ages and Periods of Service amongst the Effectives - 559
11. A similar Table for the Non-Effectives - - 55
12. Average Avnual Mortality at different Periods of . Service of Effectives, showing their Agc on entering India
13. Proportion per cent. leaving the Corps annually in the 10 Years by Death, Discharges, \&c., and all Causes amongst the Effectives at different Periods of Service -
similar Table for the Non-Effectives
14. Proportion per Cent. leaving the Corps annually in the 10 Years, by Pensioning, Invaliding, \&c., \&c amongst the Effectives at different Periods of Service - - - - - 56
15. A similar Table for the Non-Effectives - -560

> MADRAS ARTILLERY.
22. Annual Rate of Mortality in each of the 10 Years. - 560
23. Average Annual Mortality in the 10 Years at different Ages - -
24. Do. . do. at different Periods of Service - 561

EUROPEAN VETERANS
53. Annual Rate of Mortality in each of thé 10 Years $\quad \begin{array}{r}\text { Page } \\ -553\end{array}$ 54. Average Annual Mortality in the 10 Years at different. Ages
do at different Periods of Service - 553

1st MADRAS FUSILIERS.
25. Annual Rate of Mortality in each of the 10 Years - 561 26. Average Annual Mortality in the 10 Years at different Ages . - . . - - . 561 27. Do. do. at different Periods of Service - 561

2nd MADRAS EUROPEANS.
28. Anmual Rate of Mortality in each of the 10 Years - 56 29. Average Annual Mortality in the 10 Years at differcut. Ages - -- - - - -

3rd MADRAS EUROPEANS.

31. Annual Rate of Mortality in 3 Years -

- 502

32. Average Annual Mortality in 3 Years at different '
33. Do. do. at different Periods of Service - 562

EUROPEANS ATTACHED TO SAPPERS AND MINERS.
34. Annual Rate of Mortality in each of the 10 Years - 562 35. Average Annual Mortality in the 10 Years at diffcrent 36. Do. do. at different Periods of Scrvice - 563 EFFECTIVE SUPERNUMERARILS.
37. Annual Rate of Mortality in cach of the 10 Years - 563 38. Average Annual Mortality in the 10 Sears at different $\begin{array}{ccccc}\text { 39. } & \text { Do. } & - & - & - \\ \text { do, } & -563 \\ & \text { at different Periods of Service } & -563\end{array}$

EUROPEAN PENSIONERS.
40. Annual Rate of Mortality in each of the 10 Years - 563 41. Average Annual Mortality in the 10 Years at different 42. Ages Do. - do. at different Periods of Service - ${ }^{-}$- 564

EUROPEAN VETERANS.

[^24]BOMBAY.

15. Average Annual Mortality in the 10 Years at differennt Ages and Periods of Service amongst the Effec ves and Non-Effectives - - . . . 570
16. A similar Table for the Effectives - - - 571
17. A similar Table for the Non-Effectives - - 57
18. Average Annuad Mortality at different Periods of Service of Effectives showing their Age on entering Indja
19. Proportion per cent. leaving the Corps by Death, Discharges, \&e., and all Causes amongst the Effectives
and Non-Effectives at differcnt Periods of Service 20. A similar Table for the Effectives - - - 571 21. A similar Table for the Non-Effectives - - - 57 22. Proportion per cent. leaving the Corps by Pensioning, Invaliding, \&c., amongst the Effectives and Non-
Effectives at different Periods of Service - 572 23. A similar Table for the Effectives - $\quad-\quad . \quad-\quad . \quad-\quad . \quad 12$
24. A similar Table for the Non-Effectives

BOMBAY ARTILLERY.
25. Annual Rate of Mortality in each of the 10 Years - 573 26. Average Δ nnual Mortality in the 10 Years at different Ages - - - - - - 57 27. -- Do. do. at different Periods of Service $=573$

CONTENTS.

MISCELLANEOUS TABLES.

1. Table showing the Deaths and Average Annual Mortality from different Diseases in the 16 Years 183045 anongst the Non-Commissioned Officers and men of the entire Luropean Force in Benga, and he Deaths and Average Annual Mortality in the Years 1848-54 amongst the males aged 15-45 in
England - -576
Diagram to illustrate Table 1 (to face page 46.)
2. Table showing the Deaths and Average Annual Mortality from clifferent Diseases in the 8 Years 1830 -
37 , in the 8 Years $1838-45$, and in the 16 Years 1830-45, amongst the Non-Commissioned Officers and men of the entire European Force in Bengal - 577
3. Do. do. for Bombay - - - 578
4. Table showing the Deaths from different Diseases in each of the 8 Years 1830-37 amongst the Non-Commissioned Officers and men of the entire European Force in Bengal - . - . 579
5. A similar Table for the 8 Years 1838-45 - $\quad 580$
6. A similar Table for each of the 16 Years $1830-45$ in . Bombay - - . - - . - 581-2
7. Annual General Return of Sick and Wounded of the Honourable Company's Natrve Troops in the Bengal and North-Western Provinces (from 1st April 1852 to 31st March 1853)
-. -58 Deper Cent to Strength of Attacks, Remaining Sick, Deaths, Invalided, and Transferred from different Classes of Diseases of the late East India Company's Native Troops in the Bengal and North Western Provinces (1st April 1852, to 31st March 1853) - 583
8. Table showing the Proportion of Deaths to Strength amongst European and Native 'froops in Madras at -584 different Ages - - - - -58

SANIFARY STATISTICS, BRITISH ARMY IN INDIA.

The facts and calculations embodied in the following series of tables have been derived from the annual rolls of strength and casualties in the various regiments; these documents are transmitted periodically from the military officers in India to the Home Government, and are deposited at the India Office. The annual alphabetical long rolls of strength for each regiment contain the name age, personal description, date and place of attestation, and date of arrival in India of each man borne on the strength in each year. The annual casualty rolls contain the same particulars as the rolls of strength, with the addition of a column showing the nature of each casualty, whether by death, discharge, invaliding, or any other cause.
The period of service, and age of every man who has died in the different corps during the 10 years 1847-56, have been abstracted from the above-mentioned casualty rolls; but in getting the age and period of service of the streigata it has been deemed sufficient to take three enumerations only, in order to save time; and therefore the mortality has been deduced by dividing three-tenths of the total deaths by the total of the three enumerations of strength.

INDIA-Summary Tables.-1770-1856.

The Tables 1 to 10 show the mortality, \&c in each year, extending over a period of 87 years, from the year 1770 to 1856 . The facts for the earlier years up to 1800 are no dovot imperfect, but they have been abstracted from the books at the India. Office, by Messrs. Bremner and Bacon, with very great care, and they present the only results which can be obtained from the Annual Long and Casualty Rolls at the Indis Office.
The calculations have been carefully made by Mr. Lewis, and although they to a great extent check themselves, yet, as a mattes of precaution, Mr. Wiliams has checked the column of proportion of Total Casualties to Strength, and thus the accuracy of thi whole is ensured.*

General Register Office, April 18, 1860.

* Mrmorandum by Colonel Baker, explaining the Nature of the Casualty Rolls of the East India Company's European Troops Casualty Rolls are transmitted from India, monthly and annually, under orders which will be found at pages 362 and 366 of Paj and Audit Regulations of 1845, a copy of which, it is understood, has been furnished for the use of the Commission.

The annual rolls are compiled on the principle of accounting for every man become non-effective in the year.
They are verifled by the signatures of the commanding officers and adjutants of corps, and they are transmitted to the local Govermments through the respective Town Majors for eventual transmission home.

India Office, December 7, 1859
If the years in the period 1770 to 1799 , for which there are no Returns at the India Office, are supplied by taking for each of thi missing years the average of the Strength, Deaths, \&c., during the period, and thus completing the series of observations, it is estimated that during the 87 years, 1770 to 1856, out of a Total Strength of 857,895 European non-commissioned officers and men of the late East India Company's forces in India, 55,140 deaths have occurred, making the average annual mortality for thi period 6.4 per cent.

Mean. Strength of European Non-commissioned Officers and Men
in India during the 87 years $\quad-\quad-\quad-1770-1856=9,861$
$1770-1799=8,969$
$1800-1829=7,985$

No. 1.
Table showing the Proportion per Cent. of Deaths and other Casualties to Strengtr of the Edropean Forces of the late Eabt India Company during the Period 1800-56.

INDIA.

Years.	Aggregate Strength.	Casualties.			Proportion per cent. to Strength.		
		Deaths,	Other Casualties.	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
1800-56	588,820*	40,420	48,262	88,682	6.86	$8 \cdot 20$	15-06
$\begin{aligned} & 1800-29 \\ & 1830-56 \end{aligned}$	$\begin{aligned} & 239,557 \\ & 349,263 \end{aligned}$	$\begin{aligned} & 20,272 \\ & 20,148 \end{aligned}$	20,734 27,528	41,006 47,676	$\begin{aligned} & 8 \cdot 46 \\ & 5 \cdot 77 \end{aligned}$	8.66 $\times 7.88$	$\begin{aligned} & 17 \cdot 12 \\ & 13 \cdot 65 \end{aligned}$
BENGAL.							
1800-56	257,768	19,104	23,625	42,729	$7 \cdot 41$	$9 \cdot 17$	$16 \cdot 58$
$\begin{aligned} & 1800-29 \\ & 1830-56 \end{aligned}$	105,695 152,073	8,523 10,581	10,323 13,302	18,846 23,883	$\begin{aligned} & 8.06 \\ & 6.96 \end{aligned}$	$\begin{aligned} & 9 \cdot 77 \\ & 8 \cdot 75 \end{aligned}$	$\begin{aligned} & 17 \cdot 83 \\ & 15 \cdot 71 \end{aligned}$
MADRAS.							
1800-56	211,164	13,404	12,774	26,178	6.35	6.05	$12 \cdot 40$
$\begin{aligned} & 1800-29 \\ & 1830-56 \end{aligned}$	$\begin{array}{r} 92,291 \\ \mathbf{1 1 8 , 8 7 3} \end{array}$	$\begin{aligned} & 7,788 \\ & 5,621 \end{aligned}$	$\mathbf{5 , 9 1 1}$ $\mathbf{6 , 8 6 3}$	13,694 12,484	$\begin{aligned} & 8.43 \\ & 4.73 \end{aligned}$	6.40 5.77	$\begin{aligned} & 14.83 \\ & 10 \cdot 50 \end{aligned}$
BOMBAY.							
1800-56	119,888	7,912	11,863	19,775	6.60	$9 \cdot 90$	$16 \cdot 50$
$\begin{aligned} & 1800-29 \\ & 1830-56 \end{aligned}$	$\begin{array}{r} 41,571 \\ 78,317 \end{array}$	$\mathbf{3 , 9 6 6}$ $\mathbf{3 , 9 4 6}$	$\begin{array}{r}\mathbf{4 , 5 0 0} \\ \hline \mathbf{7 , 3 6 3}\end{array}$	8,466 11,309	9.54 5.04	10.83 9.40	$\begin{aligned} & 20 \cdot 37 \\ & 14.44 \end{aligned}$

* The aggregate strength is the sum of the mean annual strengths $=$ mean strength multiplied by the years under observation.

Table showing the Proportion per Cent. of Deaths and other Casualities to Strength in each of the Years 1770-1799, amongst the European Forces of the late Fast India Company.

Years.	Mean Strength in each Yean	Casualties during each Year.			Proportion per cent. to Strength.		
		Deaths.	Other Casualties.	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
1770	2,858	305	76	381	$10 \cdot 67$		13.33
1771	2,958	245	249	494	$8.57{ }^{-}$. $8 \cdot 71$	17-28
1772	3,837	242	414	656	$6 \cdot 31$	$10 \cdot 79$	17-10
1773	4,147	312	294	706	$7 \cdot 52$	9-50	$17 \cdot 02$
1774	4,335	253	273	526	$5 \cdot 84$	$6 \cdot 30$	$12 \cdot 14$
1775	4,322	243	454	697	5-62	10.50	$16 \cdot 12$
1776	4,141	304	384	688	$7 \cdot 34$	$9 \cdot 27$	16.61
175	4,102	266	502	768	$6 \cdot 48$	12.24	$18 \cdot 72$
1788	4,019	279	636	915	$6 \cdot 94$	15.82	22.76
1779	3,483	174	290	464	$5 \cdot 00$, 8.33	$13 \cdot 33$
1780	2,667	121	252	373	4.54	$9 \cdot 45$	13.99
1781	-	-	-	-	-	-	-
1782	2,535	231	330	561	$9 \cdot 11$	-1302	$22 \cdot 13$
1783	2,985	215	560	75	7-20	18.76	$25 \cdot 96$
1784	-	-	-	-	-	-	-
1785	-	-	-	-	-	-	-
1786	-	\cdots	-	-	-	1	-
1787	-	-	-	-	-	-	\cdots -
1788	-	一	-	-	-	-	-
1783	. -	-	-	-	-	-	-
1790	-	\cdots	\cdots	-	-	-	-
1791	-	-	-	-	-	-	-
1792	3,900	374	254	628	$9 \cdot 59$	6.51	16.10
1793	4,505	436	204	640	$9 \cdot 68$	$4 \cdot 53$	$14 \cdot 21$
1794	4,203	332	228	560	$7 \cdot 90$	$5 \cdot 42$	13.32
1795	3,746	234	183	417	6.25	4.89	11-14
1796	3,472	208	291	499	$5 \cdot 99$	$8 \cdot 38$	14.37
1797	3,555	225	347	572	$6 \cdot 33$	-9•76	$16 \cdot 09$
1798	3,693	175	531	706	$4 \cdot 73$	$14 \cdot 36$	$19 \cdot 09$
1799	-	-	-	-	-	-	-
$\left.\begin{array}{c} \text { Average } \\ \text { of the years } \end{array}\right\}$	3,669	259	343	602	7-06	- $9 \cdot 35$	$16 \cdot 41$

Note. - In consequence of the facts for the years in the above Table being imperfect, the results must be regarded as an approximation to the true mortality, \&ic. No returns could be found for the years 1781, 1784-91, and 1799.

> No. 3.-MADRAS.

Table showing the Proportion per Cent. of Deaths and other Cascalties to Strexgte in each of the Years 1770-99 amongst the European Forces of the late East India Coupant.

Tears.	Mean Strength in each Year,	Casualties during each Year.			Proportion per cent. to Strength.		
		Deaths.	Other Casualties.	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
17%	-	-	\cdots	\square	-	-	-
1771	-	-	-	-	-	-	-
1772	5,142	223	43	266	4.34	-84	5.18
1773	5,190	239	6	245	$4 \cdot 61$	$\cdot 12$	4.73
1784	4,491	226	12	- 238	$5 \cdot 03$	$\cdot 27$	$5 \cdot 30$
1775	3,823	155	- 16	171	4.05	- 42	$4 \cdot 47$
1776	3,828	173	23	196	4.53	-60	$5 \cdot 12$
17.7	3,870	158	135	293	$4 \cdot 08$	$3 \cdot 49$	$7 \cdot 57$
1778	3,936	247	109	- 356	$6 \cdot 28$	2-77	$9 \cdot 05$
1779	-	-	-	-	-	-	-
1780	4,983	99 !	74	173	1.99	1.49	$3 \cdot 48$
1781	6,043	103 *	55	158	1.70	-91	$2 \cdot 61$
1792	5,223	150	153	303	$2 \cdot 87$	$2 \cdot 93$	$5 \cdot 80$
1783	- -	-	-	-	-		-
1784	-	-	-	\cdots		-	-
1785	- 2,678	61	32	93	2.98	1-19	$3 \cdot 47$
1786	2,220	65	47	112	$2 \cdot 93$	$2 \cdot 12$	5.05
1787	2,943	186	23	214	$6 \cdot 32$.95	- $7 \cdot 27$
1788	4,175	166	76	242	3-98	$1 \cdot 82$	$5 \cdot 80$
1789	4,026	151	71	222	3.75	1:76	$5 \cdot 51$
1790	4,463	109	298	407	$2 \cdot 44$	$6 \cdot 68$	9-12
1791	5,465	299	550	849	$5 \cdot 47$	10.06	15.53
1792	- 5,923	299	579	878	$5 \cdot 05$	9.78	14.83
1793	6,126	199	355	554	3.25	$5 \cdot 79$	$9 \cdot 04$
1794	6,140	154	309	463	$2 \cdot 51$	$5 \cdot 03$	$7 \cdot 54$
1795	6,060	85	276	361	$1 \cdot 40$	4.55	$5 \cdot 95$
1796	6,124	341	380	721	$5 \cdot 57$	6.21	$11 \cdot 78$
1797	6,106	179	99	278	2.93	$1 \cdot 63$	$4 \cdot 55$
1798	1,558	51	69	120	3-27	$4 \cdot 43$	$7 \cdot 70$
1799	1,534	84	69	153	$5 \cdot 48$	$4 \cdot 50$	9-98
$\left.\begin{array}{c} \text { Average } \\ \text { of the years } \end{array}\right\}$	4,483	168	155	323	$3 \cdot 75$	$3 \cdot 46$	7•21

Note.-In consequence of the facts for the years in the above Table being imperfect, the results most be regarded as an approximation to true mortality, \&c. No returns could be found for the years $1770,1771,1779,1783$, and 1784

No. 4.-BOMBAY.
Table showing the Proportron per Cent. of Deaths and other Casoalties to Strengte in each of the Years 1770-99 amongst the European Forces of the late East India Company.

Yeara	Mean Strength in each Year.	Casualties during each Year,			Proportion per cent, to Strength.		
		Deaths.	Other Casualties	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
1770	313	12	5	17	$3 \cdot 83$	$1 \cdot 60$	$5 \cdot 43$
1771	312	12	12	24	$3 \cdot 85$	$3 \cdot 85$	$7 \cdot 70$
1772	319	18	31	49	$5 \cdot 64$	$9 \cdot 72$	15.36
1773	370	10	52	62	$2 \cdot 70$	14.06	16.76
1774	389	23	48	71	5.91	$12 \cdot 34$	18.25
1775 .	339	5	7	12	1.47	$2 \cdot 06$	3.53
1776	305	45	14	59	14.75	4.59	$19 \cdot 34$
1777	315	37	14	$5 i$	11.75	$4 \cdot 44$	16.19
1778	. 289	13	3	16	4.50	1.04	$5 \cdot 54$
1779	306	33	9	42	10.78	$2 \cdot 94$	13.72
1780	270	4	15	19	$1 \cdot 48$	$5 \cdot 56$	7.04
1781	292	28	14	42	$9 \cdot 59$	$4 \cdot 79$	14.38
1782	403	47	25	72	11.66	6. 20	17.86
1783	431	40	49	89	$9 \cdot 28$	$11 \cdot 37$	$20 \cdot 65$
1784	444	63	63	126	14.19	$14 \cdot 19$	28.38
1785	652	42	100	142	$6 \cdot 44$	$15 \cdot 34$	21.78
1786	1,039	61	48	109	$5 \cdot 87$	$4 \cdot 62$	10.49
1787	1,243	83	24	107	6.68	1.93	$8 \cdot 61$
1788	-	-	-	-	-	-	-
1789	1,129	63	162	225	$5 \cdot 58$	14.35	$19 \cdot 93$
1790	-	-	-	-	-	-	-
1791	1,030	164	70	234	15.92	$6 \cdot 80$	$22 \cdot 72$
1792	1,516	221	282	503	14.58	$18 \cdot 60$	$33 \cdot 18$
1793	1,841	148	109	257	8.04	$5 \cdot 92$	13.96
1794	1,714	160	328	488	$9 \cdot 33$	$19 \cdot 14$	28.47
1795	1.627	110	147	257	6.76	9.04	15.80
1796	1,582	96.	162	258	6.07	10.24	16.31
1797	1,592	82	173	255	$5 \cdot 15$	10.87	16.02
1798	, 1,491	104	173	277	6.97	11.60	18.57
1799	1,342	61	124	185	4.55	$9 \cdot 25$	13.80
$\left.\begin{array}{c} \text { Average } \\ \text { of the years } \end{array}\right\}$	818	64	81	145	$7 \cdot 82$	$9 \cdot 90$	17'72

Nore.-In consequence of the facts for the years in the above Table being imperfect, the results must be regarded as an approximation to the true mortality, \&c. No returns could be found for the years 1778 and 1790.

> No. 5.-BENGAL.

Table showing the Average Annoal Proportion per Cent. of Deaths and other Casualties to the Strengtr of the European Forces of the late East India Company, during the 57 Years 1800-56.

Years,	Average Annual Strength.	Average Annual Casualties.			Proportion per cent. to Strength.		
		Deaths,	Other Casualties.	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
1800-9	2,293.5	209.8	307•6	$517 \cdot 4$	$9 \cdot 15$	$13 \cdot 42$	$22 \cdot 57$
1810-9	3,587.1	$246 \cdot 3$	$236 \cdot 7$	483.0	$6 \cdot 87$	6:60	$13 \cdot 47$
1820-9	4,688.9	396.2	$488 \cdot 0$	$884 \cdot 2$	8.45	10.41	18.86
1830-9	5,016.1	301.5	$356 \cdot 4$	$657 \cdot 9$	6.01	$7 \cdot 11$	$13 \cdot 12$
1840-9	5,619'9	$446 \cdot 6$	$510 \cdot 3$	$956 \cdot 9$	7.95	$9 \cdot 08$	$17^{\circ} 03$
1850-6	6,530-4	$442 \cdot 9$	$662 \cdot 1$	1,105*0	6.78	$10 \cdot 14$	16.92
1800-56	4,522 2	$335 \cdot 1$	414.5	749•6	$7 \cdot 41$	9-17	16.58

No. 6.-MADRAS.
Table showing the Average Annual Proportion per Cent. of Deaths and other Castalties, to the Strengti of the Eurofean Forces of the late Eass India Company, during the 57 Years 1800-56.

Years.	Average Annual Strength.	Average Annual Casualties,			Proportion per cent. to Strength.		
		Deaths.	Other Casualties.	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
1800-9	2,623.4	$143 \cdot 8$	68.7	$212 \cdot 5$	$5 \cdot 48$	$2 \cdot 62$	8.10
1810-9	3,108.0	$301 \cdot 6$	$187 \cdot 0$	$488 \cdot 6$	9•70	6.02	15•72
1820-9	3,497-7	$332 \cdot 9$	$335 \cdot 4$	$668 * 3$	9-59	$9 \cdot 59$	$19 \cdot 11$
1830-9	3,507•6	$194 \cdot 5$	$227 \cdot 0$	$421 \cdot 5$	5.55	6.47	12.02
1840-9	4,598•4	$200 \cdot 1$	$262 \cdot 5$	$462 \cdot 6$	4.35	$5 \cdot 71$	$10 \cdot 06$
1850-6	5,401 $\cdot 9$	$239 \cdot 3$	281.1	$520 \cdot 4$	$4 \cdot 43$	$5 \cdot 20$	$9 \cdot 63$
1800-56	3,704•6	$235 \cdot 2$	$224 \cdot 1$	$459 \cdot 3$	6.35	6.05	$12 \cdot 40$

No. 7.-BOMBAY.
Table ghowing the Average Annual Proportion per Cent. of Deates and other Castalties, to the Strengte of the Elropean Forces of the late East Inita Company during the 57 Years 1800-56.

Yeurs.	Average Annual Strength.	Average Annual Casualties.			Proportion per cent. to Strength.		
		Deaths.	Other Casualties.	Total Casualties.	Deaths.	Other Casualties.	Total Casualties.
1800-9	952-3	80.5	$79 \cdot 0$	$159 \cdot 5$	$8 \cdot 45$	$8 \cdot 30$	16.75
1810-9	1,354.5	$134 \cdot 9$	$120 \cdot 8$	$255 \cdot 7$	$9 \cdot 96$	$8 \cdot 92$	$18 \cdot 88$
1820-9**	2,055-9	201.3	$278 \cdot 0$	479.3	$9 \cdot 73$	$13 \cdot 52$	$23 \cdot 31$
1830-9	2,289 6	106.1	193.0	299.1	4.63	$8 \cdot 43$	13.06
1340-9	3:125.0	21.3	$332 \cdot 7$	546.1	6.83	$10 \cdot 65$	$17 \cdot 48$
1850-6*	4,023.5	$125 \cdot 2$	351.0	$476 \cdot 2$	3•11	$8 \cdot 71$	$11 \cdot 82$
1800-56	2,179•8	$143 \cdot 7$	$215 \cdot 7$	$359 \cdot 4$	$6 \cdot 60$	9-90	$16 \cdot 50$

* The returns for the years 1827 and 1850 could not be found at the India Office when this Table was made.

No. 8.-BENGAL.
Table showing the Proportion per Cent. of Deatis and other Castalties, to Strength, in each of the Years 1800-56, amongst the Edropean Forces of the late East India Company.

Years.	Mean* Strength in each Year.	Casualties during each Year.			Proportion per cent. to Strength.		
		Deaths.	Other \dagger Casualties.	Total Casualties.	Deaths,	Other Casualties.	Total Casualtiea
1800	2,702,	211	181	392	7.81	$6 \cdot 70$	$14 \cdot 51$
1801	2,634	142	230	372	$5 \cdot 39$	8.74	$14 \cdot 13$
1802	2,519	224	288	512	$8 \cdot 89$	11.43	$20 \cdot 32$
1803	2,423	211	321	532	$8 \cdot 71$	13.25	$21 \cdot 96$
1804	2,177	492	126	618	22.60	5-79,	$28 \cdot 39$
1805	1,953	299	296	595	15-31	$15 \cdot 16$	30;47
1806	1,968	175	306	481	8.89	$15 \cdot 55$	$24 \cdot 45$
1807	2,038 .	102	270	372	$5 \cdot 00$	$13 \cdot 25$	$18 \cdot 25$
1808	2,103	108	278	381	$5 \cdot 14$	$12 \cdot 98$	$18 \cdot 12$
1809	2,418	134	785	919	$5 \cdot 54$	32-46	$38 \cdot 00$
1810	8,189	118	299	417	$3 \cdot 70$	$9 \cdot 38$	13.08
1811	3,345.	150	113	263	$4 \cdot 48$	$3 \cdot 38$	$7 \cdot 86$
1812	3,032	224	-62	286	$7 \cdot 39$	$2 \cdot 04$	9.45
1813	3,412	363	65	428	10.64	1.91	$12 \cdot 55$
1814	3,697	241	61	302	$6 \cdot 52$	$1 \cdot 65$	$8 \cdot 17$
1815	3,784	217	112	329	$5 \cdot 73$	$2 \cdot 96$	$8 \cdot 69$
1816	3,949	246	334	580	$6 \cdot 23$	$8 \cdot 46$	$14 \cdot 69$
1817	3,917	315	617	932	$8 \cdot 04$	$15 \cdot 75$	$23 \cdot 79$
1818	3,817	379	449	828	$9 \cdot 93$	$11 \cdot 76$	$21 \cdot 69$
1819	3,729	210	255	465	$5 \cdot 63$	6.84	$12 \cdot 47$
1820	3,829	834	251	585	$8 \cdot 72$	6.56	$15^{\circ} 28$
1821	4,086	351	246	597	$8 \cdot 59$	$6 \cdot 02$	14*61
1822	4,215	262	368	630	$6 \cdot 22$	$8 \cdot 73$	$14 \cdot 95$
1823	4,695	411	454	865	$8 \cdot 75$	$9 \cdot 68$	$18 \cdot 43$
1824	5,046	412	529	941	$8 \cdot 17$	$10 \cdot 48$	18.65
1825	4,965	472	721	1,193	$9 \cdot 51$	$14 \cdot 52$	24.03
1826	4,812	748	609	1,357	$15 \cdot 54$	$12 \cdot 66$	$28 \cdot 20$
1827	4,856	484	666	1,150	$9 \cdot 97$	13.72	$23 \cdot 69$ $15 \cdot 57$
1828	5,132	260	539	799 725	$5 \cdot 07$ $4 \cdot 34$	$10 \cdot 50$ 9.46	$15 \cdot 57$ 13.80
1829	5,254	228	497	725	4.34	9-46	13.80
1830	5,275	274	561	835	5.19	$10 \cdot 64$	$15 \cdot 83$
1831	5,314	340	. 526	866	$6 \cdot 40$	9.90	$16 \cdot 30$
1832	5,198	272	380	652	$5 \cdot 23$	$7 \cdot 31$	12.54
1833	5,04Y	370	298	668	$7 \cdot 34$	$5 \cdot 91$	$13 \cdot 25$
1834	4,998	-352	. 288	640	$7 \cdot 04$	$5 \cdot 76$	$12 \cdot 80$
1835	4,898	299	236	535	$6 \cdot 10$	$4 \cdot 82$	$10 \cdot 92$
1836	4,861	151	215	366	$3 \cdot 10$	4.42 6.03	$7 \cdot 52$ $10 \cdot 54$
1837	4,924	222	297	519	4.51 6.91	6.03	$10 \cdot 54$ 14.02
1838	4,895	338	348	686 812	6.91 8.35	$7 \cdot 11$ $8 \cdot 72$	$14 \cdot 02$ $17 \cdot 07$
1839	4,757	397	415	812	$8 \cdot 35$	$8 \cdot 72$	$17 \cdot 07$
1840	5,117	287	507	794	$5 \cdot 61$	$9 \cdot 91$	$15 \cdot 52$
1841	5,516	377	555	932	6.83	10.06	16.89
1842	5,593	600	577	1,177	$10 \cdot 73$	$10 \cdot 32$	21.05
1843	6,004	481	401	882	$8 \cdot 01$	6.68	$14 \cdot 69$
1844	6,025	466	419	885	$7 \cdot 73$	6.95	14.68
1845	5,641	481	398	879	8.53 10.48	7.06	$15 \cdot 59$ 19.99
1846	5,355	561	509	1,070 794	10.48 5.49	$9 \cdot 51$ 9.55	$19 \cdot 99$ $15 \cdot 04$
1847	5,279 $.5,669$	290 369	504	794 923	5.49 6.51	$9 \cdot 55$ $9 \cdot 77$	16.28
1848	$\mathbf{5 , 6 6 9}$ $\mathbf{6 , 0 0 0}$	369 554	554 679	923 1,233	6.23	11.32	20.55
1849	6,000						
1850	6,208	364	683	1,047	5.86	11.00 $8.0 i$	16.86 14.81
1851	6,353	432 260	509 480	941 740	$6 \cdot 80$ $.4 \cdot 11$	$8 \cdot 01$ $7 \cdot 58$	14.81 11.69
1852 1853	6,329 6,431	260 477	480 617	740 1,094	$\cdot 4 \cdot 11$ $7 \cdot 42$	$7 \cdot 58$ $9 \cdot 59$	$17 \cdot 01$
1853	6,431 6,623	477 $-\quad 47$	617 786	1,263	$7 \cdot 20$	11.87	$19 \cdot 07$
1855	6,623 $\mathbf{6 , 8 3 5}$	493 497	709	1,202	7.21	$10 \cdot 37$ $12 \cdot 27$	$17 \cdot 58$ 20.88
1856	6,934	597	851	1,448	8.61	12.27	$20 \cdot 88$
1800-56	257,768	19,104	23,625	42,729	$7 \cdot 41$	$9 \cdot 17$	16.58

- The mean strength for each year has been obtained by taking the mean of the two enumerations of strength at the beginning and end of each period during which the deaths and casualties occurred.
\dagger In the returns of casualties it has been observed that in the case of a man leaving his regiment in any year, from ill-health or otherwise, and rejoining it in the same year, two (or more) casualties are recorded on his account. This makes the casualties appear more numerous than they would be if only the cases of men leaving the regiment entirely were retarned. The returns are also not made for one ander and therefore it must be anderstood that the period of 12 months ending always on the same day, but the dates are frequently changed, and therefore books at the India Office.

No. 9.-MADRAS.
Table showing the Proportion per Cent. of Deaths and other Casuatmes to Strengith, in each of the Years 1800-56, amongst the Eúropean Forces of the late East India Company.

The deaths and casualties for the year 1800 occurred in the interval between the two enumerations,

No. 10.-BOMBAY.
Table showing the Profortion per Cent. of Deaths and other Casualties to Strengta in each of the Years 1800-56, amongst the European Forges of the late East India Company.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Years,} \& \multirow[b]{2}{*}{Mean Strength* in each Year.} \& \multicolumn{3}{|c|}{Casualties during each Year.} \& \multicolumn{3}{|c|}{Proportion per cent, to Strength.} \\
\hline \& \& Deaths. \& Other Casualties. \& \begin{tabular}{l}
Total \\
- Casualties.
\end{tabular} \& Deaths. \& Other Casualties. \& Total Casualties. \\
\hline 1800 \& 1,244 \& 149 \& 50 \& 199 \& \(11 \cdot 98\) \& 4.02 \& \\
\hline 1801 \& 1,202 \& 109 \& 45 \& 154 \& 9.07 \& \(4 \cdot 02\)
\(3 \cdot 74\) \& 16.00. \\
\hline 1802 \& 1,178 \& 84 \& 212 \& 296 \& \(7 \cdot 13\) \& 18.00 \& 25-13 \\
\hline 1803 \& 1,082 \& 69 \& 125 \& 194 \& \(6 \cdot 38\) \& 11.56 \& 17-94 \\
\hline 1804 \& 939 \& 85 \& 57 \& 142 \& \(9 \cdot 05\) \& 6.07 \& 15-12 \\
\hline 1805 \& 811 \& 84 \& 89 \& 173 \& \(10 \cdot 36\) \& 10.98 \& \(21 \cdot 34\) \\
\hline 1806 \& 746 \& 85 \& 60 \& 145 \& 11.40 \& \(8 \cdot 05\) \& \(19 \cdot 45\) \\
\hline 1807 \& 768 \& 47 \& 34 \& 81 \& 6.12 \& \(4 \cdot 43\) \& \(10 \cdot 55\) \\
\hline 1808 \& 784 \& 54 \& 64 \& 118 \& 6.89 \& \(8 \cdot 17\) \& \(15 \cdot 06\) \\
\hline 1809 \& 769 \& 39 \& 54 \& 93 \& \(5 \cdot 07\) \& 7.03 \& \(12 \cdot 10\) \\
\hline 1810 \& 771 \& 59 \& 72 \& 131 \& \(7 \cdot 65\) \& \(9 \cdot 94\) \& 16.99 \\
\hline 1811 \& 886 \& 65 \& 48 \& 113 \& \(7 \cdot 34\) \& \(5 \cdot 42\) \& 12-76 \\
\hline 1812 \& 969 \& - 89 \& \(210^{\circ}\) \& 299 \& 9-19 \& \(21 \cdot 68\) \& 30.87 \\
\hline 1813 \& 1,039 \& 183 \& 40 \& 223 \& 17-61 \& 3.85 \& 21.46 \\
\hline 1814 \& 1,252 \& 183 \& 96 \& 279 \& 14.62 \& \(7 \cdot 67\) \& \(22 \cdot 29\) \\
\hline 1815 \& 1,548 \& 124 \& 63 \& 187 \& 8.01 \& \(4 \cdot 07\) \& 12.08 \\
\hline 1816 \& 1,635 \& 134 \& 272 \& 406 \& \(8 \cdot 20\) \& \(16 \cdot 64\) \& 24-84 \\
\hline 1817 \& 1,699 \& 150 \& 182 \& 332 \& \(8 \cdot 83\) \& 10.71 \& \(19 \cdot 54\) \\
\hline 1818 \& 1,887 \& 155 \& 119 \& 274 \& \(8 \cdot 22\) \& \(6 \cdot 31\) \& 14.53 \\
\hline 1819 \& 1,859 \& 207 \& 106 \& 313 \& \(11 \cdot 14\) \& \(5 \cdot 70\) \& 10.84 \\
\hline 1820 \& 1,832 \& 201 \& 608 \& 809 \& 10.97 \& \(33 \cdot 20\) \& 44•17 \\
\hline 1821 \& 1,781 \& 217 \& 162 \& 379 \& \(12 \cdot 18\) \& \(9 \cdot 10\) \& 21.28 \\
\hline 1822 \& 1,783 \& 229 \& 138 \& 367 \& \(12 \cdot 84\) \& \(7 \cdot 74\) \& \(20 \cdot 58\) \\
\hline 1823 \& 2,010 \& 208 \& 236 \& 444 \& \(10 \cdot 35\) \& .11.74 \& 22.09 \\
\hline 1824 \& 2,160 \& 160 \& 239 \& 399 \& \(7 \cdot 41\) \& 11.07 \& \(18 \cdot 48\) \\
\hline 1825 \& 2,146 \& 163 \& 227 \& 390 \& \(7 \cdot 60\) \& 10.58 \& \(18 \cdot 18\) \\
\hline 1826 \& 2,155 \& 301 \& 399 \& 700 \& \(13 \cdot 97\) \& \(18 \cdot 52\) \& 32-49 \\
\hline 1827 \& - \& - \& - \& - \& - \& - \& - \\
\hline 1828 \& 2,251 \& 209 \& 317 \& 526 \& \(9 \cdot 29\) \& 14.09 \& \(23 \cdot 38\) \\
\hline 1829 \& 2,385 \& 124 \& 176 \& 300 \& \(5 \cdot 20\) \& \(7 \cdot 38\) \& 12.58 \\
\hline 1830 \& 2,500 \& 123 \& 406 \& 529 \& 4.92 \& \(16 \cdot 24\) \& 21-16 \\
\hline 1831 \& 2,556 \& 78 \& 135 \& 213 \& 3.05 \& 5.28 \& \(8 \cdot 33\) \\
\hline 1832 \& 2,546 \& 77 \& 136 \& 213 \& \(3 \cdot 02\) \& 5-34 \& \(8 \cdot 36\) \\
\hline 1833 \& 2,383 \& 86 \& 195 \& 281 \& \(3 \cdot 61\) \& \(8 \cdot 18\) \& 11-79 \\
\hline 1834 \& 2,176 \& 68 \& 103 \& 171 \& \(3 \cdot 12\) \& \(4 \cdot 73\) \& \(7 \cdot 85\) \\
\hline 1835 \& 2,134 \& 127 \& 203 \& 330 \& \(5 \cdot 95\) \& \(9 \cdot 51\) \& \(15 \cdot 46\) \\
\hline 1836 \& 2,148 \& 84 \& 132 \& 216 \& 3.91 \& \(6 \cdot 15\) \& \(10 \cdot 06\) \\
\hline 1837 \& 2,127 \& 106 \& 163 \& 269 \& \(4 \cdot 98\) \& 7-67 \& \(12 \cdot 65\) \\
\hline 1838 \& 2,123 \& 125 \& 158 \& 283 \& - \(5 \cdot 89\) \& \(7 \cdot 44\) \& \(13 \cdot 33\). \\
\hline 1839 \& 2,203 \& 187 \& 299 \& 486 \& \(8 \cdot 49\) \& \(13 \cdot 58\) \& \(22 \cdot 07\) \\
\hline 1840 \& 2,406 \& 239 \& 345 \& 584 \& \(9 \cdot 94\) \& 14.34 \& 24.28 \\
\hline 1841 \& 2,990 \& 132 \& 393 \& 525 \& \(4 \cdot 42\) \& \(13 \cdot 15\) \& 17.57 \\
\hline 1842 \& 3,372 \& 258 \& 297 \& -555 \& \(7 \cdot 65\) \& \(8 \cdot 81\) \& 16.46 \\
\hline 1843 \& 3,297 \& 265 \& 297 \& 562 \& 8.04 \& \(9 \cdot 01\) \& 17.05 \\
\hline 1844 \& 3,088 \& 391 \& 239 \& 630 \& \(12 \cdot 66\) \& \(7 \cdot 74\) \& \(20 \cdot 40\) \\
\hline 1845 \& 2,915 \& 147 \& 204 \& 351 \& \(5 \cdot 04\) \& \(7 \cdot 00\) \& \(12 \cdot 04\) \\
\hline 1846 \& 2,953 \& 274 \& 243 \& 517 \& \(9 \cdot 28\) \& 8.23 \& \(17 \cdot 51\) \\
\hline 1847 \& 3,146 \& 132 \& 470 \& 602
342 \& 4.20
2.68 \& \(14 \cdot 94\)
\(7 \cdot 17\) \& \(19 \cdot 14\)
\(9 \cdot 85\) \\
\hline - 1848 \& 3,472 \& 93

203 \& 249
590 \& 342
793 \& $2 \cdot 68$
$5 \cdot 62$ \& $7 \cdot 17$
$16 \cdot 34$ \& $9 \cdot 85$
21.96.

\hline - 1849 \& 3,611 \& 203 \& 590 \& 793 \& $5 \cdot 62$ \& 16.34 \& 21-96.

\hline 1850 \& - \& - \& - \& $\overrightarrow{77}$ \& - \& 5.72 \& 0.0

\hline 1851 \& 3,767 \& 124 \& 253 \& 377 \& $3 \cdot 29$ \& $6 \cdot 72$ \& $10 \cdot 0$

\hline 1852 \& 3,908 \& 119 \& 232 \& 351 \& $3 \cdot 05$ \& $5 \cdot 94$ \& $8 \cdot 99$

\hline 1853 \& 3,841 \& 96 \& 226 \& 322 \& 2.50 \& 5.88
11.95 \& 8.38
14.29

\hline $$
1854
$$ \& 3,892 \& 166 \& 465

437 \& 631
570 \& 4.27
$3 \cdot 14$ \& $11 \cdot 95$
$10 \cdot 31$ \& $16 \cdot 22$
$13 \cdot 45$

\hline $$
1855
$$ \& \[

4,240

\] \& \[

133
\] \& 437

493 \& $$
570
$$ \& \[

3 \cdot 14
\] \& $10 \cdot 31$

$10 \cdot 90$ \& $13 \cdot 45$
13.40

\hline 1856 \& 4,523 \& 113 \& \& \& 2.50 \& $10 \cdot 90$ \& $13 \cdot 40$

\hline 1800-56 \& 119,888 \& 7,912 \& 11,863 \& 19,775 \& $6 \cdot 60$ \& $9 \cdot 90$ \& 16.50

\hline
\end{tabular}

- The mean strength for each year has been obtained by taking the mean of the two onumerations of strength at the beginning and end of each period daring which the deaths, \&c. occurred.
In consequence of the returns not being made for one nniform period of 12 months eading always on the same day, the dates being frequently changed, it must be understood that the facts in the above Table, opposite each year, are the nearest approximation to the correct numbers for that year, which can be ascertained from the retarns at the India Office.

The returns for the years 1827 and 1850 could not be found at the time this Table was made.

No，11：$\quad \therefore$

Table showing the Mean Smengti，Deaths，and Anndal Rate of Mortality per Cent．，in the Ted Years 1847－56，amongst the Non－Commissioned Officers and Men of the Europeár Forces of the late East India Company in India．

Years	Mean Strength．			Deaths in each Year．			Annual Rate of Mortality per cent．		
	Total．	Effectives．	Non－Effectives．	Total．	Effectives．	Non－Effectives．	Total．	Effectives．	Non－Effectives，
1847	13，130	11，598	1，538	587	512	75	$4 \cdot 47$	$4 \cdot 42$	$4 \cdot 88$
1848	14，291	12，761	1，530	604	519	85	$4 \cdot 23$	$4 \cdot 07$	$5 \cdot 56$
1849	14，724	13，193	1，531	964	869	93	$6 \cdot 53$	$6 \cdot 59$	6.07
1850	14，931	13，397	1，534	676	607	69	$4 \cdot 53$	$\therefore 4.53$	$4 \cdot 50$
1851	15，324	13，802	1，528	770	688	82	5－02	4.98	$5 \cdot 39$
1852	15，552	14，067	1，485	688	545	93.	4．10	3－87	$6 \cdot 26$
1853	15，597	14，143	1，454	894.	785	109	$5 \cdot 73$	$5 \cdot 55$	$7 \cdot 50$
1854	16，124	14，690	1，434	976	882	94	$6 \cdot 05$	$\therefore 6.00$	$6 \cdot 56$
1855	16，822	15，381	1，441	833	758	75	$4 \cdot 95$	$\bigcirc 4.93$	$5 \cdot 20$
1856	17，079	15，583	1，496	884	787	97	$4 \cdot 94$	$5 \cdot 05$	$6 \cdot 48$
Aggregate of 10 years	\} 153,574	138，609	14，965	7，824	6，952	872	$5 \cdot 09$	$5 \cdot 02$	$5 \cdot 83$

No．12．－STRENGTH OF EFFECTIVES．＊
Table showing the Age and Period of Service of the Non－Commissioned Officers and Men of the Effectives o the European Forces of the late East India Company，for Three Years out of the Ten Years 1847－56．\dagger ．

Age．	Total．	Period of Service，Years．									
		Under 1 Year．	1	2	3	4	Under 5 Years．	5	10	15	$20 \text { and }$ upwards
Total	39，375	4，318	3，489	2，765	2，860	3，036	16，468	12，556	6，432	2，992	927
10－15	119	79	27	8	5	－	119	－	－	－	－
15	78	30	31	7	8	－	76	－ 2	\cdots	－	
16	64	20	16	5	13	7	61	3	－	－	－
17	60	12	11	7	9	6	45	$\therefore \quad 15$	－	－	－
18	88	23	17	10	14	15	79	${ }^{9}$	－	－	
19	503	393	61	9	9	13	485	17	1	－	－
10－20	912	557	163	46	58	41	865	46	1	－	－
20	10，046	3，045	2，437	1，749	1，300	663	9，194	814	38	－	－
25	13，694	655	819	919	1，421	2，081	5，895	7，398	378	21	2
30	8，749	55	65	50	69	238	477	3，883	4，038．	339	12
35	4，225	6	4	1	11	12	34	401	1，774	1，940	76
40	1，358	－	1	－	1	1	3	14	192	621	528
45 50	227	\rightarrow	－	－	－	－	－	－	11	$\begin{array}{r}58 \\ 8 \\ \hline\end{array}$	158 78
55 and ${ }^{50}$ upwands	80 84	二	二	二	－	\square	－	二	－	8 5	79 79

＊Exclading in each Presidency the 3rd European Regiments，which were not formed until 1854.
\dagger The period of 10 years $1847-56$ applies to Bengal and Madras only；at the time these Tables were made the Annial Long Roll fe the year 1850 for Bombay conld not be found，and consequently the year 1846 was taken for that Presidency in lieu of the year 185 making the period for Bombay 10 years 1846－49 and 1851－56．

No．13．－DEATHS OF EFFECTIVES．＊
Table showing the Age and Period of Servick of the Non－Coymissioned Officers and Men of the Effective of the Eurofean Forces of the late East India Coupany，in the Ten Years 1847－56．\dagger

Age．	Total．	Period of Service，Years．									
		Under 1 Year．	1	2	3	4	Under 5 Years．	5	10	15	20 and upwards．
Total	6，716	938	623	518	470	446	2，995	1，968	1，131	429	193
10－15	6	3	2	1	－	－	6	－	－	\square	－
15	2	－	2	－	－	－	2	\cdots	－	－	－
16	2	－	1	－	1	\cdots	2	－	－	\cdots	－－
17	5	－	1	\square	1	8	4	1	－	－	－
18	21	13	－	2	1	－	16	5	－	－	－
19	47	38	5	1	1	－	45	2	－	－	－
10－20	83	54	11	4	4	2	75	8	－	－	－
20	1，892	722	436	307	228	81	1，774	112	6	－	－
25	2，237	149	157	195	221	322	1，044	1，180	60	3	－
30	1，458	13	18	12	15	37	95	631	692	38	2
35	712	－	1	－	1	4	6	84	327	272	23
40	264	－	－	－	1	－	1	8	43	106	112
45	41	－		\cdots	－	－．	－	1	1	8	31
50	16	一	－	－	－	－	－	－	1	2	13
65 and upwards	13	－	－	－	－	－	－	－	1	－	12

＊Excluding in each Presidency，the 3rd Earopean regiments，they not having been formed until 1854.
\dagger See note to preceding table．

No. 14.-EFFECTIVES.
Average Annual Mortality per Cent. at different Ages amongst the Non-Coumissioned Officers and Men of the Eifectives of the European Forces of the late East India Companx, during the Ten Years 1847-56. (Deduced from Three Enumerations of the Strength and the Deaths in Ten Years).

Ages.	Mean Annual Strength in 3 Years.	Deaths in 10 Years.	Average Annual Rate of Mortality per cent.
Total - -	13,185	6,716	5-12
10-15	40	$6{ }^{\circ}$	1.51
15	26	2	-77
16	$\cdots 21$	2	-94
17	20	5	$2 \cdot 50$
18	29	21	7.16
19	168	47	$2 \cdot 80$
-10-20	304	83	$2 \cdot 73$
20-25	3,349	1,892	$5 \cdot 65$
25-30	4,564	2,237	$4 \cdot 90$
30-35	2,916	1,458	$5 \cdot 00$
35-40	1,408	712	$5 \cdot 06$
40-45	453	264	$5 \cdot 83$
45-50	76	41	5.42
50-55	27	16	6.00
55 and upwards	28	13	$4 \cdot 64$

No. 15.-EFFECTIVES.
Averige Annunc Mortality per Cent., at different Periods of Service, amongst the Non-Commissioned Officers and Men of the Effectives of the European Forges of the late East India Company, during the Ten Years 1847-56.

Period of Service.	Mean Annoal Strength in 3 Years.	Deaths in 10 Years.	Average Annual Rate of Mortality per cent.
Total -	13,125	6,716	$5 \cdot 12$
0-1 year	1,439	938	6.52
1-2	1,163	623	$5 \cdot 36$
2-3,	922	518	$5 \cdot 62$
3-4,	953	470	$4 \cdot 93$
4-5.	1,012	446	4.41
0-5 years	5,489	2,995	$5 \cdot 46$
5-10	4,186	1,968	$4 \cdot 70$
10-15	2,144	1,131	$5 \cdot 28$
15-20	997	429	$4 \cdot 30$
20 and upwards	309	193	6.25

No. 16.-EFFECTIVES.
Average Anndal Mortality per Cent., at different Ages and at different Periods of Service, amongst the Non-Commissioned Officers and Men of the Effectives of the Europlan Forces of the late East India Company, during the Ten Years 1847m56.

No. 17.-EFFECTIVES.
Average Annual Mortalipy per Cent., at different Periods of Service, amougst the Nun-Commiseloned Officers and Men of the Epfectives of the European Forces of the late East India Company, during the Ten Years 1847-56, showing the Age on entering India.

Period of Service.	Age on entering India.						
	10-20	15-25	20-30	25-35	30-40	35-4.5	40-50
0-5	2-60	5•79	$5 \cdot 31$	5.97	5.29	$10^{\circ} 00$	- -
5-10	4-19	4.58	$4 \cdot 88$	$6 \cdot 28$	$4 \cdot 29$	-	-
10-15	4.76	5.14	$5 \cdot 53$	6.72	2.73	-	-
15-20	3.42	4.21	5•12	$4 \cdot 14$	7-50	-	-
20 and upwards	$8 \cdot 52$	6.36	5'89	$5 \cdot 42$	$4 \cdot 56$	-	-

BENGAL.

No. 1.
Table showing the Strength and Deates in each of the Years 1846 to 1856 of the Non-Comanssioned Officers and Mre of the Eurofean Forges of the late East India Company in the Presidency of Bengal.

	- Bengal Artillery,*		1st Benged Fusiliers.		2nd Rengal Fusiliers.		3rd Rengal Europeans.		Town Major's List.		European Pensioners.		European Invalids.		European		Total.	
				$\begin{aligned} & \text { Deaths in the Year ending } \\ & \text { 31st August. } \end{aligned}$				$\begin{aligned} & \text { Deaths in the Year ending } \\ & \text { 81st Augubt. } \end{aligned}$		$\begin{aligned} & \text { Deaths in the Year ending } \\ & \text { 31st August. } \end{aligned}$				$\begin{aligned} & \text { Denths in the Year ending } \\ & \text { 31st August. } \end{aligned}$				
1846	2,710	270	638	155	. 746	38	-	-	602	49	144	14	258	26	110	9	5,208	561
1847	2,740	139	836	38	682	41	\sim	-	611	43	136	10	246	12	98	7	5,349	290
1848	3,248	143	855	114	779	32	-	-	627	42	180	12	259	20	91	6	5,989	369
1849	3,192	249	839	80	862	145	-	-	649	57	150	8	234	11	84	4	6,010	554
1850	3,260	167	995	65	1,032	62	-	-	635	45	172	8	233	11	79	6	6,406	364
1851	3,220	157	877	173	1,033	32	-	\cdots	722	45	160	6	214	16	73	3	6,299	432
1852	3,291	136	930	44	975	15	-	-	703	41	168	12	217	9	69	4	6,359	260
1853	3,395	183	908	134	1,013	55	-	-	739	60	165	14	217	24	66	7	6,503	477
1854	3,358	155	701	89	768	115	757	45	711	49	176	11	213	10	58	3	6,742	477
1855	3,306	130	814	57	741	206	904	35	726	38	169	8	229	16	39	3	6,928	493
1856	3,113	315	877	29	819	45	941	128	737	35	180	10	237	32	36	3	6,940	597
Total	34,833	2,044	9,270	978	9,430	786	2,602	208	7,468	504	1,750	112	2,557	187	803	55	68,733	4,874

- The first company of Bengal artillery was raised in 1749, and consisted of about six officers and 110 non-commissioned officers and men. In 1778 the artillery had become sufficiently strong to be formed into an independent brigade of one European regiment about 60 officers and 700 men), and three native battalions. The head-quarters werc at Fort William and the practice ground at Dum-Dum. In 1813 the head-quarters were removed to Dum-Dum, where barracks had been built, and the men were much gratified with the change from the narrow limits of a fortress to an airy, roomy cantonment.
. The strength of the European non-commissioned officers and men of the Beugal artillery on the lst December 1827 appears to have been about 3,000, which is nearly the average strength in the 10 years 1847-56.
In July 1845, the corps was re-organized preparatory to taking part in the Sikh war, and it was prominently engaged at the battles of Moodkee, Ferozeshuhur, Alival, Sobraon, Mooltan (January 1849), and Goojerat.
In 1854 the head-quarters of the artillery were removed from Dum-Dum to Meerut.

No. 2.
Table showing the Mortality per Ceht., in each of the Years 1847 to 1856, amongst the Non-Commissioned Officers and Men of the European Forces of the late East India Compant, in the Presidency of Bengal.

No. 3.-STRENGTH OF EFFECTIVES.*
Table showing the Strengtr of Non-Commissioned Officers and Men in the Bengal Artirlery, for the Three Years 1848, 1851, and 1856; 1st European Fusiliers for the Three Years 1847; 1851, and 1856; 2nd European Fosiliers, for the Three Years 1849, 1851, and 1856; and on the Town Major's List for the Three Years 1848, 1851, and 1856.

- The 3rd Bengal European regiment is excluded throughout ese Tables unless otherwise stated, as it was not formed until the year 185 -

No．4．－DEATHS OF EFFECTIVES．
Table showing the Number of Deaths of Non－Commissipned Officers and Men in the Bengal，Artillerx， 1st and 2nd European Fosiliers，and on the Town Major＇a List during the Ten Years 1847－56，

Age．	Period of Service．．\quad, \quad a														
	Total．	Months．							Yea						
		$0-$	3－	6－	9－	Under 1 Year．	1	2	1	4	Under 5 Years．	5－7	$10-$	15－	$\left\{\begin{array}{l} 20 \text { and } \\ \text { upwards. } \end{array}\right.$
Total－	3，800	162	105	169	182	618	390	304	294	269	1，875	1，076	． 520	216	113
10－15	3	\rightarrow	1		－	2		－		\cdots					
15	1	－	－	－	－	2	$\because 1$	－	$-$	－	1	－	－	－	－
16	2	－	－	－	－	－	． 1	－	1	-1	2	－	－	－	－
17	$\begin{array}{r}3 \\ 14 \\ \hline\end{array}$	－7	－	－	－	－ 11	－ 1	－	1	1	${ }^{3}$	－	－	－	－
18 19	${ }_{32} 14$	7 6	1	3 8	－ 7	11 25	－ 5	1 \cdots	－	二	\cdots	1	二	－	－
10－20	55	13	6	12	7	38	9	2	2		59	3			－
20－25	1，174	137	79	1125	137	478	280	179	147	43	1，127	41	6	二	－
25－30	1，329	12	19	28	35	94	86	116	134	200	630	673	23	3	－
30－35	716	－	1	4	3	8	15	7.	10	23	63	322	－ 311	18	2
35－40	357 135		二	－	二		－	－	1	.2	3	35	163	145	11
40－45	135 16	二	二	二	二	－	二．	－	－	\rightarrow	－	1	： 17	46	71 13
50－55	10	－	二	－	－	－	－	－	－	\square	－	－	二	2	8
55 and upwards	8	－	\square	－	－	－	－	－	－	\square	－	－	－	－	8

No．5．－STRENGTH OF NON－EFFECTIVES．
Table showing the Strength of Non－Commissioned Officers and Men of the European Pensioners for the Three Years 1848， 1851 ，and 1856；Invalids for the Three Years 1848，1851，and 1856；and Veteran Company for the Three Years 1848，1851，and 1853.

Age．	Period of Service，Years．											
	Total．	Under 5 Years．	5－	10－	15－	20－	25－	30－	35－	40－	45－	$\begin{gathered} 50 \text { and } \\ \text { nnwarde } \end{gathered}$ upwards.
Total ${ }^{-\cdots}$	1，413	－－	41	44^{-1}	191＊	355	249	195	140	105	28	$\cdots 65$
20－25	19	二	4	－1	－	二	－	二	－	二	二	二
－ $30-35$	55	二	17	19	12	6	1	二	二	二	二	7
35－40	138	－	－	16	93	22	7	－	－	－	－	－
40－45	312	－．	1	6	56	209	26	13	1	\checkmark	－	\rightarrow
45－50 $50-55$	300 235	－	1	2	18 ．	17	140 .58	31 99	8．	${ }^{6}$	－	\mp
$50-55$ $55-60$	235	－	$\underline{1}$	二	10.	17 7	11	99 39	30 71	17 25	3 3	$\overline{5}$
$55-60$ $60-65$	162 82	二	二	－	1	7	${ }_{3}^{11}$	39 7	71 16	${ }^{25}$	${ }^{3}$	5
65－70	52		－	－	－	－	3.	3	9	13	7	17
70－75	29	－	－	－	\cdots	－	－	3	5	4	4	13
$\left.\begin{array}{c}75 \text { and } \\ \text { upwards }\end{array}\right\}$	25	－	－	－	－	－	－	－．．	－	2	－	23

No．6．－DEATES OF NON－EFFECTIVES．
Table showing the Number of Deaths of Non－Commissioned Ofpicers and Men of the Eurorean Pensioners， Invialids，and Veterans in the Ten Years 1847－1856．

[^25]-No. 7.-CASUALTIES OF EFFECTIVES,
Nomber of Deaths, Discharges, and other Casualties amongst the Non-Commissioned Officers and Men of the Bengal Artillery, and 1st and 2nd Ecrofean Fưbiliéss, during the Ten Years 1847m56 at different Periods of Service.

							Peri	od of	Servi						
			Mon	ths,											
	Total.	$0-$				1 ynear.	1	2	3	4	Under	5-	10-	15-	$\begin{aligned} & 20 \text { and } \\ & \text { upwards. } \end{aligned}$
Deathe-	3,345	124	96	159	175	-554	378	286	282	254	1,754	980	429	143	39.
Lantina mitr Cobps. - \quad -	3,144	24	31	27	52	134	158	137	185	199	813	963	744	340	284
Pensioned $\quad \therefore$ -	154	-	-	-	-	$+$	-	1	-	1	2	2	2	13	135
Invalided to Eprope	835	T	2	6	22	31	59	50	61	70	271	259	180	81	44
" Chunar, or other parts ofIndia	381.	-	-	+	-	$-$	1	-	4	9	14	40	82	168	77
Sent to lonatic heylam	44	2	1	-	4	7	2	7	6	-	22	14	7	1	-
Discharged by purchase -	251	$:_{1}$	-	3	7	11	25	21	29	26	112	98	41	-	-
" : (time expired or otherwise)	296	6	13	5	2	26	11	8	7	12	64	85	127	16	4
Promoted " ${ }^{\text {a }}$ -	175	-	-	-	\square	$+$	1	1	4	5	11	32	20	4	8
Transferred to Town Major's List;	719	1	1	3	5	10	23	21	39	50	143	322	184	54	16
. to other corps	274	4	6	2	-	12	17	18	23	19	89	97.	87	1	-
Deserted --	107	8	8	8	12	36	19	8	12	6	81	13	12	1	-
Missing -	2	-	-	-	-	-	-	2	-	-	2	-	-	-	-
Other causes	6	1	-	-	-	1	-	-	-	1	2	1	2	1	-
Joming т	1,864	1,364	63		3	1,450	20	30	20	23	1,543	137	-110	59	15
Remanded from Town Major's list	201	-	1	-	- 1	: 2	3	4	5	4	18	66	63	46	8
From other corps : -	192	7	4	! 9	I	21	11	23 '	14	14	83	59	33	12	5
Enlisted in India -	28	118	1	-	1	120	1	-	-	3	124	3	1	-	-
" in Europe			1	-	-	1	-	-	-	$-$	1	-	1	-	-
Rejoined from desertion -	17	二	1	3	-	4	1	2	1	1	9	4	3	1	-
Entertained -	1,324	1,238	56	18	-	1,302	${ }^{4}$	1	-	1	1,308	5	9	-	2
Casualty not specified - - -													1		

- No: 8.-CASUALTIES-TOWN MAJOR'S LIST.

Nomber of Deatis, Discearges, and other Casualtifs amongst the Non-Commissioned Ofricers and Men of the Town Major's List during the Ten Years 1847-56 at different Periods of Service.

	Period of Service.														
	To					$\begin{aligned} & \text { Total } \\ & \text { under } \\ & \text { I year. } \end{aligned}$	1	2	3	4	$\begin{aligned} & \text { Total } \\ & \text { under } \\ & 5 \text { years. } \end{aligned}$	5 -	10-	15-	$\begin{gathered} 20 \text { and } \\ \text { upwards. } \end{gathered}$
Deatag	455	38	9	10	7	64	12	18.	12	15	121	96	91	73	74
Leanma tha Cózpg'	664	2	1	-2	-	5	14	18	20	22	79	140	146	92	207
Pensioned - -	92	-	-	-	-	-	-	-	-	-	-	$1{ }^{\prime \prime}$	2	3	86
Invalided to Earope	31	-	1	1	-	2	2	2	2.	1	9	11	7	3	1
n to Chunar, or other paris of India		-	-	-	-	-	-	-	-	-	-	-	-	2	-
Sent to lonatic asylum .		-	-	-	-	-	-	\cdots	-	-	-	-	2	-	-
Discharged by purchasa -	46	-	-	-	-	-	-	4	2	4	10	26	9	1	-
" (time expired or otherwise)	33	-	-	-	-	-	-	1	2	2	5	8	15	2	3
Promoted \quad -	191	-	-	-	-	-	-	-	-	-	-	2	15	24	90
Transferred to Town Major's list -		-	-	-	-	-	-	-	-	-	-	-	-	-	-
, to other corps	288	1	-	-	-	1	7	8	12	10	38	84	87	56	23
'Deserted -		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Missing --	2	-	-	-	-	-	-	-	-	-	-	-	-	-	2
Other causes	37	1	-	1	-	2	5	3	2	5	17	8	9	1	2
Jonime ram Corps	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Remanded from. Town Major's list		-	-	-	-	-	-	-	-	-	-	-	-	-	-
From other corps -		-			-	-	-	-	\cdots	-	-	-	-	-	-
Enlisted in Indis -		-		-	-	-	-	-	-	-	-	-	-	-	\cdots
$n \quad$ in Earope		-		-	-	-	-	-	-	-	-		-	-	-
Rejoined from desertion - $\quad . .0$ - \quad.	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Entertained				-			-	-	-	-	-				
Casualty not Epecified	5	-	-	T:	is.		\square	-	\square						

No. 9.-CASUALTIES OF NON-EFFECTIVES.
Nember of Deatis, Dincharges, and other Casualtifs amongst the Non-Commissioned Officers and Men of the Eurofean Pensioners, Invalids, and Veteran Company during the Ten Years 1847-56, at different Periods of Service.

	Total.	$\begin{aligned} & \text { Under } \\ & 5 \text { Years. } \end{aligned}$	5-	10-	15-	20-	25-	30-	35-	40-	45-	$50 \text { and }$ upwards.
Deatirs	305	-	5	16.	57	73	51	35	23	18	12	15
Leaing that Coinps	265	1	17	14	50	153	10	6	1	10	1	2
P'ensioned 1	29	-	-	-	1	22	2	2	1	1	-	-
Invalided to Europe	3	-	-	-	1	2	-	-	-	-	-	-
Chumar, or other parts of India	-	-	-	-	-	-	-	-	-	\square	-	-
Sent to Lunatic Asylum -	1	-	-	1	-	-	-	-	-	-	\cdots	-
Discharged by purchase -	-	-	-	-	-	-	-	-	-	-	-	-
" (time expired or otherwise) -	211	1	10	12	43.	123	7	3	-	9	1	2
Promoted - . -	5	-	1	-	1	3	-	-	-	-	-	
Transferred to Town Major's List	-	-	-	-	-	-	-	-	-	-	-	-
" other corps -	15	-	6	1	4	3	-	1	-	-	-	-
Deserted - . . -	-	-	-	-	-	-	-	-	-	-	-	-
Missing -	1	-	-	-	-	-	1	-	-	-	-	-
Other causes -	-	-	-	-	-	-	-	-			-	-
Jonning the Corrs	342	3	31	60	158	80	8	2	-	-	-	-
Remanded from Town Major's List	-	-	-	-	-	-	-	-	-	-	-	-
From other corps	. 342	3	31	60	158	80	8	2	-	-	-	-
Enlisted in India -		\bigcirc	-	-	-	-	-	-	-	-	-	-
" Europe -	-	-	-	-	-	-	-	-	-	-	-	-
Rejoined from desertion -	-	-	-	-	-	-	-		-	-	-	-
Entertained												
Casualty not specified	-	-	-	-	-					-	-	-

No. 10.
Table showing the Mean Strength, Deatis, and Annual Rate of Mortality per Cent. in the Ten. Yeary 1846-7 to 1855-6, amongst the Non-Commissioned Officers and Men of the European Forces of the late East Inma Company in Beigal.

Years ending (August 31st).	Mean Strength.			Deaths in eack Year.			Annual Rate of Mortality per cent.		
	Total.	Effectives.*	Non. Effectives.*	Total.	Effectives.	NonEffectives.	Total.	Effectives.	NonEffectives
1846-7	5,278.5	4,782.5	$496{ }^{\circ}$	290	261	29	5*49	$5 \cdot 46$	$5 \cdot 85$
1847-8	5,669	5,189	480	369	331 .	38	6.51	$6 \cdot 38$	7.92
1848-9	5,999:5	5,525.5	474	554	531	23	$9 \cdot 23$	$9 \cdot 61$	$4 \cdot 85$
1849-50	6,208	5,732	476	364	839	25 '	$5 \cdot 86$	$5 \cdot 91$	$5 \cdot 25$
1850-1	6,352 5	5,887	$465 \cdot 5$	432	407	25	6.80	6.91	$5 \cdot 37$
1851-2	6,329	5,878.5	$450 \cdot 5$	260	236	24	$4 \cdot 11$	$4 \cdot 01$	$5 \cdot 33$.
1852-3	6,431	5,980	451	$4: 7$	433	45	$7 \cdot 42$	7-22	9.93
1853-4	6,622 -5	6,175	447.5	477	453	24	$7 \cdot 20$	$7 \cdot 34$	$5 \cdot 36$
1854-5	6,835	6,393	448	493	466	27	$7 \cdot 21$	$7 \cdot 29$	6.11
1855-6	6,934	6,489.	445	597	552	45	$8 \cdot 61$	$8 \cdot 51$	$10 \cdot 11$
$\left.\begin{array}{c} \text { Average } \\ \text { of the } \\ 10 \text { years } \end{array}\right\}$	6,265 90	5,803•15	$462 \cdot 75$	$481 \cdot 3$	400.8	$30 \cdot 5$	6.88	6.91	6.59

Nore.-To get the mean strength, add the strength at the beginning of the year to the strength at the end of the year, and divide by 2 ; thus:-Strength on 31st August 1846 . (of Effectives)

$$
\begin{aligned}
& \begin{array}{r}
4,696 \\
-\quad 4869 \\
\hline
\end{array} \\
& \begin{array}{r}
\text { - } 4,869 \\
\hline 2) 9,565
\end{array} \\
& \text { 4,782.5 }=\text { Mean Strength 1846-7. }
\end{aligned}
$$

The deaths occurred in the interval between the two enumerations, and are recorded in the Casualty Roll for 1847
The Effectives in this Table comprise the Bengal Artillery, the 1st, 2nd, and 3rd Bengal Europeans, and the Town Major's List. The Non-Effectives comprise the European Pensioners, Invalids, and Veterans.

No. 11.
Table showing the Strfegti, Deaths, and Average Anneal Rate of Mortality per Cent in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the European Forces of the Late East India Company in Bengal at different Ages.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Ages.} \& \multicolumn{3}{|c|}{Strength.} \& \multicolumn{3}{|c|}{Deathsr} \& \multicolumn{3}{|l|}{Annual Rate of Mortality per cent}

\hline \& Total. \& Effectives. \& NonEffectives. \& Total. \& Effectives. \& NonEffectives. \& Total. \& Effectives. \& $$
\begin{gathered}
\text { Nor: } \\
\text { Effectives. }
\end{gathered}
$$

\hline Total - \& 18,384 \& 16,971 \& 1,413 \& 4,105 \& 3,800 \& . 305 \& 670 \& 0.72 \& 6.48

\hline ${ }^{10-15}$ \& 42
43 \& 42
43 \& - \& 3 \& ${ }^{3}$ \& 二 \& $2 \cdot 14$ \& $2 \cdot 14$ \& -

\hline 16 \& 26 \& 26 \& - \& 2 \& 2 \& - \& $\cdot 70$

$2 \cdot 31$ \& .70
2.31 \&

\hline 17 \& 26 \& 26 \& - \& 3 \& 3 \& - \& 3-46 \& $3 \cdot 46$ \&

\hline 18 \& : 51 \& 51 \& - \& 14 \& 14 \& - \& $8 \cdot 24$ \& 8.24 \& -

\hline 19 \& 203 \& 203 \& - \& 32 \& 32 \& - \& $4 \cdot 73$ \& $4 \cdot 79$ \&

\hline 30-20 \& 391 \& 391 \& - \& 55 \& 55 \& - \& 4.22 \& $4 \cdot 22$ \&

\hline 20-25 \& 6,100 \& 5,096 \& 4 \& 1,175 \& 1,174 \& 1 \& 6.91 \& $8 \cdot 91$ \& $7 \cdot 50$

\hline 25-30 \& 5,691 \& 5,672 \& 19 \& 1,330 \& 1,329 \& 1 \& $7 \cdot 01$ \& $7 \cdot 03$ \& $1 \cdot 58$

\hline 30-35 \& 3,478 \& 3,423 \& 55 \& 727 \& 716 \& 11 \& $6 \cdot 27$ \& $6 \cdot 28$ \& $6 \cdot 00$

\hline 35-40 \& 1,823 \& 1,685 \& 138 \& 390 \& 357 \& 33 \& 6.42 \& $6 \cdot 36$ \& 7-17

\hline 40-45 \& 846 \& 534 \& 312 \& 220 \& 135 \& 85 \& $7 \cdot 80$ \& 7.58 \& $8 \cdot 17$

\hline 45-50 \& 380 \& 80 \& 300 \& 71 \& 16 \& 55 \& $5 \cdot 61$ \& $6 \cdot 00$ \& $5 \cdot 50$

\hline 50-55 \& 270 \& 35 \& 235 \& 52 \& 10. \& 42 \& $5 \cdot 78$ \& 8.57 \& $5 \cdot 36$

\hline 55 and upwards \& 405 \& 55 \& 350 \& 85 \& . 8 \& 77 \& $6 \cdot 30$ \& $4 \cdot 36$ \& $6 \cdot 60$

\hline
\end{tabular}

No. 12.-EFFECTIWES.
average Annual Rate of Mortality per Cent. anonget the Non-Commissioned Officers and Men of the Effectives of the European Forces of the late East India Coirpany in Bengal, in the Ten Years 1847-56, at different Periods of Service.

Period of Service.	Mean Annual Strength. Strength.	$\begin{array}{\|c} \text { Deaths } \\ \text { in the } 10 \text { Years } \\ 1847-56 . \end{array}$	Average Annual Rate of Mortality per cent.
Total	5,657	3,800	6.72
$0-1$ years		618	7.81
1-2 2	527	390	7. 40
2-3 ${ }^{\text {\% }}$	492	304	$6 \cdot 17$
3-4 \#,	543	294	$5 \cdot 42$
-5	376	269	$7 \cdot 15$
0-5	2,730	1,875	6.87
5-10	1,681	1,076	$6 \cdot 40$
10-15	752	520	6.91
15-20	347	216	6.22
20 and upwar ${ }^{\text {d/ }}$	-147	113	$7 \cdot 69$

No. 13.-NON-EFFECTIVES.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Non-Effectives of the European Forces of the late East India Company in Bengal, in the Ten Years 1847~56, at different Periods of Service.

Period of Service.	Mean Anpual Strength.	$\begin{gathered} \text { Deaths } \\ \text { in the } 10 \text { Years } \\ 1847-56 . \end{gathered}$	Average Annual Rate of Mortality . per cent.
Total	471	305	6.48 -
5-10 Years	14	5	3.66
10-15	15	16	10.91
15-20	63	57	$8 \cdot 95$
20-25	118	73	$6 \cdot 17$
25-30	83	51	6.14
30-85	65	85	5:38
35-40 "	47	23	$4 \cdot 93$
40-45	35	18	$5 \cdot 14$.
, 45-50 "	9	12	12.86
50 \& upwards	22	15	$6 \cdot 92$

No. 14.-EFFECTIVES.
Average Annual Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the Effectives of the European Forces of the late East India Company in Bengal, in the Ten Years 1847-56, at different Ages.

Ages.	Mean Strength.	Deaths in the 10 Years 1847-56.	Arerage Annual Rate of Mortality per cent.
Total - -	5,657	3,800	$6 \cdot 72$
10-15	14	3	$2 \cdot 14$
15	14	1.	- 70
16	9	2	$2 \cdot 31$
17	9	3	3.46
18	17	14	$8 \cdot 24$
19	67	32	$4 \cdot 73$
10-20	130	55	$4 \cdot 22$
20-25	1,699	1,174	$6 \cdot 91$
25-30	1,890	1,329	$7 \cdot 03$
30-35	1,141	716	$6 \cdot 28$
35-40	562	357	, 6.36
40-45	178	135	$7 \cdot 58$
45-50	27	16	6.00 8.57
55^{50-55}	12	10 8	8.57 4.36
55 and upwards	18	8	$4{ }^{4} 36$

No. 15.-NON-EFFECTIVES.
Average Anneal Rate of Mortality per Cent. of the Non-Commisstoned Officers and Men of the European Penstoners, Invalids, and Veterans in the Ten Years 1847-56, at different Ages.

Ages.	Mean Strength.	Deaths in the 10 Years 1847-56.	Average Annnal Rate of Mortality per cent.
Total - -	471	, 305	6.48
20-	1.3	1	${ }_{1}^{3}$
25-	$6 \cdot 3$	1	1.58
30-	$18 \cdot 3$	11	6.00
35-	46.0	33	$7 \cdot 17$
40-	$104 \cdot 0$	85	$8 \cdot 17$
45-	$100 \cdot 0$	55	5.150
50-	$78 \cdot 3$	42	$\therefore 5 \cdot 36$
55-	$54 \cdot 0$	30	- $5 \cdot 56$
- 60-	$27 \cdot 3$	16	5.85
65-	$17 \cdot 3$	17	9-81
70-	$9 \cdot 7$	8	$8 \cdot 28$
75 and upwards	8:3	6	$7 \cdot 27$

No. 16.-EFFECTIVES.
Average Annual Mortality per Cent. at different Ages and at different Perions of Service amongst the NonCommisatuned Officers and Men of the Bengar Artifrert, 1st and 2nd Bengal Eurofean Regiments, and 'Cown Major's List, during the Ten Years, 1847-56.

Ages.	Years of Service.									
	$\begin{gathered} \text { Under } 1 \\ \text { Year. } \end{gathered}$	1-	$2-$	3-	$4-$	Under 5 Years.	5-	10-	15-	20 and upwards.
- 10-20	4.77	$5 \cdot 29$	1.94	$2 \cdot 00$	$2 \cdot 14$	$4 \cdot 27$	$3 \cdot 60$	-	-	-
20-25	$8 \cdot 22$	7.53	5.84	$5 \cdot 31$	$5 \cdot 97$	$7 \cdot 01$	$4 \cdot 94$	-8.57	-	-
25-30	$8 \cdot 10$	6.72	6.90	$5 \cdot 54$	$7 \cdot 51$	6.85	$7 \cdot 17$	8.41	6.00	-
30-35	6.15	16.67	10:00	$8 \cdot 33$	$7 \cdot 19$	$8 \cdot 63$	5.53	6.68	10.19	$8 \cdot 57$
35-40	-	-	-	6.00	20.00	$5 \cdot 00$	$5 \cdot 28$	$7 \cdot 19$	$5 \cdot 82$	8.05
40-45	-	-	-	-	-	-	$3 \cdot 75$	6.99	$6 \cdot 83$	$8 \cdot 55$
45-50	-	-	-	-	-	-	-	-	$2 \cdot 50$	$7 \cdot 22$
50-55	-	-	-	-	-	-	-	-	-'	6.86
55 and upwards	-	-	-	-	-	\square	-	--	-	$4 \cdot 36$

No. 17.-NON-EFFECTIVES.
Lortality at different Ages and at different Periods of Service amongst the Non-Commissioned Officers and Men of the Europein Pensioners, Invalids, and Veterans, in the Ten Years, 1847-j6.

No. 17 a.-EFFECTIVES.
Averige Annual Mortality pei Cent. at Different Periods of Service, amongst the Non-Commissioned Officers and Men of the Effectives of the Eurofean Forces of the late East India Company, during the Ten Years 1847-56; in the Presidency of Bengal, showing the Age on entering India.

Yeriod of Service.	Age on entering India						
	10-20	15-25	20-30	25-35	30-40	35-45	40-50
0.5	$4 \cdot 27$	$7 \cdot 01$	$6 \cdot 85$	$8^{*} 63$	$5 \cdot 00$	-	-
5-10	$4 \cdot 82$	$7 \cdot 17$	5.53	5.28	3.75	-	-
10-15	$8 \cdot 45$	6.68	7-19	6.99	-	-	-
15-20	9-26	$5 \cdot 82$	6.83	$2 \cdot 50$	-	-	-
20 and upwards	8.13	$8 \cdot 55$	7-22	$6 \cdot 86$	$4 \cdot 86$	-	-

No. 18.-_EFFECTIVES.

Table showing the Proportion per Cent. leafing the Corps annually in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the Bengal Artillery, and the 1st and 2nd Bengal. European Regiments.

Period of Service.	Proportion per cent. leaving the Corps annually.		
	From all Causes.	By Death.	Pensioned, Invalided, Discharged, transferred to Town Major's List, 8 E .
Years.			
.0-5	$9 \cdot 85$	6.87	$2 \cdot 98$
5-10	12.13	6.40	$5 \cdot 73$
10-15	$16 \cdot 81$	$6 \cdot 91$	9.90
15-20	16.02	6*22	$9 \cdot 80$
20 and upwards	27.01	$7 \cdot 69$	$19 \cdot 32$

No. 19.-TOWN MAJOR'S LIST.
Taple showing the Proportion per Cent. leaving the Corps anncally in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the Town Majore's List.

Period of Service.	Proportion per cent. leaving the Corps annually.		
	From all Causes. 0	By Death.	Pensioned, Invalided, Discharged, transferred to Town Major's List, Rc.
0-5	17.43	10.55	$6 \cdot 88$
5-10	13.54	$5 \cdot 51$	8.03
10-15	12.91	4.96	- 7.99
15-20	12:90	$5 \cdot 70$	$7 \cdot 20$
20 and upwards	. 29.74	$7 \cdot 79$	- 21.95

No. 20.-NON-EFFECTIVES.
Table showing the Proportion per Cent. leaving the Corps annually in the Ten Years 1847-56, amongst the Non-Conmissioned Officers and Men of the European Pensioners, Invalids, and Veterans.

Period of Service.	Proportion per cent. leaving the Corps annually,		
	From all Causes.	By Death.	Pensioned, Invalided, Discharged, transferred to Town Major's List, \&c.
Years.			
0-5	30.00	-	$30 \cdot 00$
5-10	16.10	8.66	12.44
10-15	20.45	10.91	$9 \cdot 54$
15-20	16.81	$8 \cdot 95$	$7 \cdot 86$
20-25	19.09	$6 \cdot 17$	12.92
25-30	$7 \cdot 34$	$6 \cdot 14$	$1 \cdot 20$
30-35	$6 \cdot 30$	$5 \cdot 38$	-92
35-40	$5 \cdot 14$	$4 \cdot 93$	- 1^{1}
40-45	$8 \cdot 00$	$5 \cdot 14$	$2 \cdot 86$
45-50	$13 \cdot 93$	12.86	$1 \cdot 07$
50 and upwards	$7 \cdot 84$	$6 \cdot 92$	-92

No. 21.-CASUALTIES OF EFFECTIVES.
(Bengal Artilleity, 1 st and 2nd Bengal Etropeans, in the Ten Yeurs 1847-56.)
Table showing : the Proportion per Cent. of Non Commissioned Officers and Men leaving the Corps annually from virious Causes.

Casualties.	Period of Service, Years.				
	0-	5-	10-	15-	20 and upwards.
Leaving the corps from various causes.	$2 \cdot 98$	5•73	9•90	9:80	$13 \cdot 32$
Pensioned - -	. 01	-01	-03	-37	9•19
Invalided to Earope	-98	$1 \cdot 54$	$2 \cdot 39$	$2 \cdot 33$	$2 \cdot 99$
Invalided to Chunar	- 05	-24	$1 \cdot 09$	$4 \cdot 84$	$5 \cdot 24$
Sent to Lunatic Asylum	. 08	-08	-09	- 03	
Discharged by purchase -	-41	- 58	- 55	-	-
Discharged (time expired or otherwise).	- 28	-5.1	1.69	- 46	-27
Promoted . - -	. 04	-19	- 27	- 12	- 54
Transferred to Town Major's list.	- 52	1.91	$2 \cdot 44$	1-56	$1 \cdot 09$
Transferred to other corps -	- 38	- 58	$1 \cdot 16$	-03	-
Deserted - - -	- 30	-08	- 16	-03	-
Missing -	-01	-	-	-	-
Other causes	-01	$\cdot 01$	-03	-03	-

No. 22.-CASUALTIES, TOWN MAJOR'S LIST.
Table showing the Proportion per Cent. of NonCommissioned Officers and Men ceaving the Town Major's List anncalicy, from various Causes, in the Ten Years 1847-56.

Casualties.	Period of Service, Years.				
	$0-$	5-	10-	15-	$\begin{array}{\|c} 20 \text { and } \\ \text { upwards } \end{array}$
Leaving the corps from various causes.	6.88	$8 \cdot 03$	$7 \cdot 95$	$7 \cdot 20$	$21 \cdot 95$
Pensioned -		$\cdot 06$	$\cdot 11$	$\cdot 23$	$9-12$
Invalided to Europe	$\cdot 78$	$\cdot 63$	$\cdot 38$	$\cdot 23$	$\cdot 11$
Invalided to Chunar	-	-	-	$\cdot 16$	-
Sent to Lunatic Asylum.	$-$	$\stackrel{-}{1-49}$	$\cdot 11$	-	
Discharged by purchase -	-87	$1{ }_{1}^{1 \cdot 49}$:49	-08	
Discharged (time expired or otherwise).	$\cdot 44$	-46	- 82	$\cdot 16$	$\cdot 32$
Promoted - -	-	$\cdot 11$	$\cdot 82$	1.88	9-54
Transferred to Town Major's list.-	-	$-$	-		
Transferred to other corps -	$3 \cdot 31$	$4 \cdot 82$	$4 \cdot 73$	$4 \cdot 38$	$2 \cdot 44$
Deserted -	二:	-	-	-	-
Missing -	$\stackrel{-}{1 \cdot 48}$	$\stackrel{-46}{ }$	-49	. 08	-21

No. 23.-CASUALTIES OF NON EFFECTIVES.
(European Pensioners, Invalids, and Veterans.)
Table showing the Proportion per Cent. of Non-Commissioned Officers and Men leaving the Corps annually, from various Causes, in the Ten Years 1847-56.

No. 24.-BENGAL ARTILLERY.
Annual Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the Bengal Artillery in each of the Ten Years 1847-56.

No. 25.-BENGAL ARTILLERY.

Average Annual Rate of Mortality amongst the Non-Commissioned Officers and Men of the Bengal Artillery, in the Ten Years 1847-56, at different Ages.

Ages.	Meau Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56	Averape Annual Rate of Mortality per cent.
Total -	3,193•6	1,774	5. 555
10-15	$9 \cdot 0$	2	$2 \cdot 222$
15	$7 \cdot 6$	1	$1 \cdot 304$
16	3.7	1	2.727
17	$2 \cdot 7$	1	3.750
18	6.7	1	1.500
19	16.0	5	3. 125
10-20	$45^{\circ} 7$	11	$2 \cdot 409$
20-25	918.7	492	5.385
25-30	1,176.7	650	$5 \cdot 524$
30-35	$630 \cdot 3$	342	$5 \cdot 426$
35-40	319.0	204	$6 \cdot 395$
- 40-45	98.7	70	$7 \cdot 095$
45-50	8.3	5	6.000
50-55	1.0	-	-
55 and upwards	$\cdot 2$	-	-

No. 26.-BENGAL ARTILLERY.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned. Officers and Men of thè Bengal Artillery, in the Ten Years 1847-56, at different Periods of Service.

Period of Service.	Mean Strength in 3 Years.	Deaths in the 10 Years, 1847-56.	Average Annua. Rate of Mortality per cent.
Total - -	3,193•6	1,774	5.555
0-1 years -	$436 \cdot 7$	277	6.344
1-2 ${ }^{\prime}$	214-3	177	8.258
2-3	357.0.	154	$4 \cdot 314$
3-4	$390 \cdot 3$	148	3.792
4-5	231.0	137.	5-931
0-5 years	1,629 3	893	$5 \cdot 475$
5-10 "	945-0	498	5. 270
10-15 \% $\quad \because$	$400 \cdot 3$	236	$5 \cdot 895$
15-20 " -	$171 \cdot 0$	114	6. 667
20 and upwards	$48 \cdot 0$	33	6.875

No. 27.-BENGAL ARTILLERY.-STRENGTH.
Abstract of Age and Period of Service in Indis of Non-Commissioned Officers and Men of the Bengal Artillery, for the Three Years 1848, 1851, and 1856.

Age

No. 28.-BENGAL ARTILLERY_-DEATHS.
Abstract of Age and Period of Service in India of Non-Commissioned Officers and Men of the Bengal Artillery, for the Ten Years 1847-56.

Age.	Period of Service.				
	Years.				
	Under 5 Years.	5-	10-	15-	20 and upwards.
Years. 10-	2	\cdots	-	-	-
15-	8	1	-	-	-
20-	485	6	1	-	-
25-	366	280.	3	1	-
30-	31	191	117	- 2	1
35-	J	18	103	79	3
40-		1	12	31	26
45-	, -	1	-	1	3

No.29.-BENGAL ARTILLERY.
Average Anndal Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Bengal Artillery, in the Ten Years 1847-56, at different Ages and at different Periods of Service.

$\Delta \mathrm{ge}$.	Period of Service.				
	Years.				
	Under 5 Years,	5-	10-	15-	20 and upwards.
$\begin{aligned} & \text { Years. } \\ & 10- \end{aligned}$	$2 \cdot 222$	-	-	-	-
15-	2.330	4.286	--	-	-
20-	5.470	$2 \cdot 368$	6.000	-	-
25-	5.599	$5 \cdot 440$	4.500	$6 \cdot 000$	-
30-	$7 \cdot 209$	$5^{5} 296$	$5 \cdot 270$	$4 \cdot 615$	30. 000
35-	3.750	$4 \cdot 500$	6.732	6.602	$8 \cdot 182$
40-	-	5.000	$7 \cdot 059$	$7 \cdot 561$	6.724
45-	-	一.	-	$2 \cdot 308$	\%•500

No. 30.-BENGAL ARTILLERY.-STRENGTH.
Age and Period of Serpige in India of the Non-Commissioned Officers and Men in the Bengal Artillerx, in the Three Years 1848, 1851, and 1856, showing the Age on entering India.

	Age on entering India, Years.				
Period of Service.	$10-20$				$15-25$
	$20-30$	$25-35$	$30-40$		
Years.					
$0-5$	130	2,660	1,961	129	8
$5-10$	83	1,544	1,082	120	6
$10-15$	25	668	459	51	-
$15-20$	18	359	123	13	-
20 and upwards	12	116	12	3	1

No. 31.-BENGAL ARTILLERY.-DEATHS.
Age and Period of Service in India, of the Non-Commissioned Officers and Men in the Bengal Artil. Lert, in the Ten Years 1847-56, showing the Age on entering India.

Period of Service.	Age on entering India,' Years.				
	10-20	15-25	20-30	25-35	30-40
Years.					
0-5	10	485	366	, 31	1
5-10	7	280	191	18	1
10-15	4	117	103	12	-
15-20	3	79	81	1	\cdots
20 and upwards	4	26	3	-	-

No. 32.-BENGAL ARTILLERY.
Average Annual Mortality per Cent. amonget the Non-Commissioned Officers and Men in the Bengar Artillery, in the Ten Years 1847-56, at differen Perions of Service, showing the Age on entering India.

Period of Service.	Age on entering India, Years.				
	10-20	15-25	20-30	25-35	30-40
0-5 years	$2 \cdot 308$	5.470	5-599	$7 \cdot 209$	3.750
5-10	$2 \cdot 530$	5.440	5. 296	$4 \cdot 500$	5.000
10-15 "	$4 \cdot 800$	$5 \cdot 270$	6. 732	7.059	-
15-20	$5 \cdot 000$	6.602	$7 \cdot 561$	$2 \cdot 308$	-
20 and upwards.	10.000	6.724	7.500	-	-
No. 33.-BENGAL ARTILLERY.					
Table showing amongst the Non-Commissioned Offi cers and Men of the Bengal Artillery, the Pro portion per Cent. leaving the Corps annually (1) by Deate, (2) from other Causes, in the Ter					

Period of Service.	Proportion per cent. leaving the Corps annually.		
	From all Causes.	By Death.	Pensioned, invalided discharged, transferre to Town Major's List \&c.
Years.			
$0-$	8.445	$5 \cdot 475$	2.970
5-	11.651	$5 \cdot 270$	6.381
10-	16.987	$5 \cdot 895$	11.092
15-	22-746	6-667	16.079
20 and upwards	60.416	6.875	53.541

No. 34._BENGAL ARTILLERY.-CASUALTIES.
'Cable showing the Proportion per Cent. of Nun.-Commisioned Officers and Men of the Bengat Artilferis feaving the Coris annualig, from various Causes, in the Ten Years 1847-56.

Casualties.	Period of Service, Years.				
	$0-$	$5-$	$10-$	15-	20 and upwards
Leaving the corps from vatious causes.	$2 \cdot 970$	6.381	$11 \cdot 092$	$16^{\circ} 079$	68.541
Pensioned -	$\cdot 012$	$\cdot 021$	050	760	$25 \cdot 208$
Invalided to Eurype	- 804	$1 \cdot 450$	2. 623	$2 \cdot 982$	$8 \cdot 333$
Invalided to Chunar	-031	233	1•524	8.538	$14 \cdot 583$
Seot to lunatic asylum	-086	-074	-125	- 058	
Discharped by purchase	- 552	-688	-550	-	
Discharged (time expired or otherwise).	-295	- 529	$1 \cdot 749$	- 585	-625
Promoted - . -	-008	-	-050	-058	$1 \cdot 667$
Transferred to Town Maj. list	-853	$3 \cdot 312$	4.296	2.982	3.125
Trasterred to other corps	-043	-0.32	-	-	-
Deserted -	-282	-042	$\cdot 125$	-058	
Missing -	-00	-	-	- 0	-
Other causes	-006	-	-	-058	- .

The table may be read thus :-Out of every 100 non-commissioned ficers and men of the Bengal artillery $11 \cdot 092$ left the corps annually after having completed 10 and under 15 years' service, viz.:- 050 were pensioned, $2 \cdot 623$ were invalided to Europe, $1 \cdot 524$ were invalided to Chunar, $1 \cdot 49$ were diseharged otherwise than by purchase, $4 \cdot 296$ were transferred to town major's list, and so on.

No. 35.-1st BENGAL FUSILIERS.
Anne.il Rate of Mortality per Cent. of the Non-Commisiginet Officers and Men of the 1st Bengai Fosiners, in each of the Ten Years 1847-56.

Years ending August 31 .	Mean Strength.	$\begin{aligned} & \text { Deaths } \\ & \text { in } \\ & \text { the Year. } \end{aligned}$	Annual Rate of Mortality per cent.
1846-7	737	38	5.156
1847-8	846	114	$13 \cdot 483$
1848-9	847	80	9.445
1849-50	917	6.5	7.088
18.50-1	936	173	18.483
1851-2	904	44	$4 \cdot 870$
1852-3	919	134	$14 \cdot 581$
1853-4	805	89	11.063
1854-5	758	57	$7 \cdot 525$
1855-6	846	29	3. 430
$\left.\begin{array}{c} \text { Average of the } \\ 10 \text { years. } \end{array}\right\}$	$851 \cdot 5$	$82 \cdot 3$	9'668

Nu. 36.-lst BENGAL FUSILIERS.
Average Annifl Rate of Mortality amonget the Non-Commissioned Officers and Men of the 1st Bengal Fushlers, in the Ten Years 1847-0́6, at differont Aoes.

A ges.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847~56.	Average Annual Rate of Mortality per cent.
Total	863.3	823	9-533
10-15	3.0	-	-
1.5	$3 \cdot 0$	-	-
16	$1 \cdot 0$	1	$10 \cdot 000$
17	$2 \cdot 7$	2	$7 \cdot 500$
18	$3 \cdot 3$	5	15-000
19	$40 \cdot 3$	19	4.711
10-20	$53 \cdot 3$	27	$5 \cdot 063$
20-25	374.0	401	10.722
25-30	$292 \cdot 7$	248	$8 \cdot 474$
30-35	$106 \cdot 3$	110	$10 \cdot 345$
35-40	$3^{1 \cdot 0}$	32	$10 \cdot 323$
40-45	$5 \cdot 3$	4	$7 \cdot 500$
45-50	7	1	$15 \cdot 000$
50-55	-	-	-
55 and opwaids	-	-	-

No. 37-1st BENGAL FUSILIERS.
Average Annual Rate of Mortality per Cent amongst the Non-Commissioned Orficers and Mer of the 1 st Bengal Fusinimes, in the Ten Years 1847-5 at different Perions of Service.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total -	$863 \cdot 3$	823	9-533
0-1 year	$176 \cdot 4$	151	$8 \cdot 563$
1-2 \#	$133 \cdot 3$	121	$9 \cdot 075$
2-3	36. 3	97	26.697
3-4 n	$68 \cdot 3$	106	$15 \cdot 512$
4-5	$113 \cdot 3$	54	$4 \cdot 765$
$0-5$ years	527.6	529	10.025
5-10 \%	258.7	201	7-771
10.15 "	$50 \cdot 7$	78	$15 \cdot 395$
15-20	$22 \cdot 0$	11	$5 \cdot 000$
20 and upwards	$4 \cdot 3$	4	9.231

No. 38.-2nd BENGAL FUSILIERS.
Annoal Rate of Mortality per Cent. of tbe Non Commissioned Officers and Men of the 2ni Bengal Fusiliers, in each of the Ten Years 1847-56.

Years ending August 31st.	Mean Strength	Deaths in each Year.	Annual Rate of Mortulity per cent.
$1846-7$	714	41	5.742
$1847-8$	730.5	32	4.381
$1848-9$	820.5	145	17.672
$1849-50$	947	62	6.547
$1850-1$	$1,032.5$	32	3.099
$1851-2$	1,004	15	1.494
$1852-3$	994	55	5.533
$1853-4$	890.5	115	12.914
r854-5	754.5	206	27.303
$1855-6$	780	45	5.769
Average of the	866.75	74.8	8.630
10 years			

No. 39.-2nd BENGAL FUSILIERS.
Average Annual Rate of Mortality amongst the NonCommissioned Ofyicers and Mex of the 2nd Bengal Fusiliers, in the Ten Years 1847-56, at different Ages.

Ages.	Mean Annual Strength, in 3 Years.	Deaths in the 10 Years $1847-56$.	Average Annual Rate of Mortality per cent.
Total	865.00	748	8.647
$10-15$.75	1	13.333
15	2.25	-	-
16	2.25	-	-
17	2.25	-	-
18	3.00	4	13.333
19	7.75	7	9.032
$10-20$	18.25	12	6.575
$20-25$	282.75	197	6.967
$25-30$	337.25	226	9.666
$30-35$	183.25	158	8.622
$35-40$	40.00	50	12.500
$40-45$	3.50	5	14.286
$45-50$	-	-	-
$50-55$	-	-	-
55 and		-	-

No. 40.-2ND BENGAL FUSILIERS.
Aferage annual Rate of Mortality per Cent. amongst the Non-Compissioned Officers and Men of the 2nd Bengal Fusulers, in the 10 Years 1847-56, at different Perions of Seryice.

$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { Service } \end{aligned}$	Mean Annual Strength. in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total	$865 \cdot 00$	748	8.647
0-1 jear	.118.75	126	10.611
1-2 n	$122 \cdot 25$	80	-6.544
2-3	$64 \cdot 50$	35	$5 \cdot 426$
3-4	50-50	28	5-545
4-5	40.50	63	$15 \cdot 556$
0-5 years	396.50	332	8.373
5-10	$358 \cdot 75$	281	$7 \cdot 833$
10-15	$88 \cdot 00$	115	$13 \cdot 068$
15-20	21.50	18	8.372
20 \& upwards	-25	2.	$80 \cdot 000$

No. 41.-3rd BENGAL EUROPEANS.
Anndal Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the 3rd Bengal Europeans, in each of the Years 1854 to 1856.

Years ending August 31.	Strength.	Deaths in each Year,	Annual Rate of Mortality per cent.
1846-7	-	-	\cdots
1847-8	-	-	-
1848-9	-	\cdots	-
1849-50	-	-	-
1850-1	-	-	-
1851-2	-	\square	-
1852-3	*	-	-
1853-4	757	45	$5 \cdot 945$
1854-5	904	35	3.872
1855-6	941	128	$13 \cdot 603$
$\left.\begin{array}{c} \text { Average of the } \\ 3 \text { years } \end{array}\right\}$	*67	69	7-994

No. 42.-3RD BENGAL EUROPEANS.
Average Annual Mortality per Cent. of the NonCommissioned Officers and Men of the 3rd Bengali Europeans, in the Three Years 1854, 1855, and 1856, at different Ages.

Age.	Strength in the 3 Years 1854-5-6.	Deaths in the 3 Years 1854-5-6.	Average Annual Rate of Mortality per cent.
Total -	2,602	208	$7 \cdot 99$
.10-15	3	-	-
15	3	-	- - -
16	5	\square	- -
17		-	-
18		7	?
19	209	7	$3 \cdot 35$
10-9.0	225	14	$6 \cdot 22$
20-25	1,637	142.:	8.67
25-30	515	39	$7 \cdot 57$
80-35	143	9	6.29
35-40	74	4	$5 \cdot 41$
40-45.	8	\bigcirc	- -
45-50.	-	\square	-
20-55	: \quad F	\div	\cdots -
55 and upwards			

No. 43.-3RD BENGAL EUROPEANS.
Average Annual Mortality per Cent. of the NonCommissioned Officers and Men of the 3rd Bengal Europeans, in the Three Years, 1854, 1855, and 1856, at different Periods of Service.

$\begin{aligned} & \text { Period } \\ & \text { of } \\ & \text { Service. } \end{aligned}$	Strength in the 3 Years 1854-5-6.	Deaths in the 3 Years 1854-5-6.	Average Annual Rate of Mortality per cent.
Total -	: 2,602	208	$7 \cdot 99$
0-1 year	846	77	$9 \cdot 10$
1-2 \quad	746	48	6.43
2-3 \%	579	60	10-36
3-4	33	-	
4-5	29	4	13•79
0-5 years	2,233	189	$8 \cdot 46$
5-10 \%	208	8	$3 \cdot 85$
10-15	102	6	$5 \cdot 88$
15-20	59	5	$8 \cdot 47$
20 and upwards	-	-	-

No. 44.-TOWN MAJOR'S LIST.
Anndal Rate of Mortality per Cent. of the NonCommissioned Officers and Men on the Town Major's List, in each of the Ten Years 1847-56.

Years - ending August 31.	Mean Strength.	Deaths in the Year.	Annual Rate of Morfality per cent.
1846-7	607	43	7*084
1847-8	619	42	$6 \cdot 785$
1848-9	638	57	$8 \cdot 934$
1849-50	642	45	$7 \cdot 009$
1850-1	679	45	$6 \cdot 627$
1851-2	716	41	5-726
1852-3:	724	60	$8 \cdot 287$
1853-4	725	49	$6 \cdot 759$
1854-5	719	38	$5 \cdot 285$
1855-6	732	35	4.781
$\left.\begin{array}{c} \text { Average of the } \\ 10 \text { years } \end{array}\right\}$	$680 \cdot 1$	$45 \cdot 5$	$6 \cdot 690$

No. 45.-TOWN MAJOR'S LIST.
Average Annual Rate of Mortality per Cent. of the Non-Commissioned Officers and Men on the Town Majon's List, in the Ten Years 1847-56, at different' Ages.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mor tality per cent.
Total	695:3	455	$6 \cdot 544$
10-15	1.0	-	
15	$1 \cdot 3$	-	-
16	$1 \cdot 3$	-	
17	$1 \cdot 4$.	-	\square
18	$3 \cdot 0$	4	13:333
19	$1 \cdot 7$	1	$6 \cdot 000$
- 10-20	$9 \cdot 7$	5	$5 \cdot 172$
20-25	$79 \cdot 3$	84	10.j88
25-30	$140 \cdot 3$	105	7-482
30-35	$189 \cdot 0$	106	5-608
35-40	161.3	71	$4 \cdot 401$
40-45	$69 \cdot 3$	56	$8 \cdot 077$
45-50	$17 \cdot 7$	10	$5 \cdot 660$
50-55	$10 \cdot 7$	10	$9 \cdot 375$
55 and	18.0		4-444

No. 46.-TOWN MAJOR'S LIST.
Average Annual Rate of Mortality per Cent. of the Non-Commissioned Officers and Men on the Town Major's List, in the Ten Years 1847-56, at different Periods of Service.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total -	695-3	455	6-544
0-1 years -	$21 \cdot 0$	64	30.476
1-2 \quad -	$21 \cdot 7$	12	$5 \cdot 538$
2-3 \%	$24 \cdot 6$	18	7-297
3-4 "	$23 \cdot 7$	12	$5 \cdot 070$
4-5	$23 \cdot 7$	15	6.338
0-5 years -	$114 \cdot 7$	121	10.552
5-10	174.3	96	5.507
10-15 "	$184 \cdot 0$	91	$4 \cdot 946$
15-20 \% -	128.0	73	$5 \cdot 703$
20 and upwards	94.3	74	$7 \cdot 845$

No. 47.-EUROPEAN PENSIONERS.
Anntal Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the European Pensioners in each of the Ten Years 1847-5.56.

Years ending August 31.	Mean Strength.	Deaths in the Year.	Annual Rate of Mortality per cent.
$1846-7$	140	10	$7 \cdot 143$
$1847-8$	133	12	$9 \cdot 023$
$1848-9$	140	8	$5 \cdot 714$
$1849-50$	161	8	$4 \cdot 969$
$1850-1$	166	6	$3 \cdot 614$
$1851-2$	164	11	$6 \cdot 707$
$1852-3$	167	14	$8 \cdot 383$
$1853-4$	171	11	$6 \cdot 433$
$1854-5$	173	10	$4 \cdot 624$
$1855-6$	175	$5 \cdot 714$	
Average ofthe	159	$9: 8$	6.164
10 years			

No. 48.-EUROPEAN PENSIONERS.

Average Anncal Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the European Pensioners in the Ten Years 1847-56, at different Ages.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total -	$157 \cdot 7$	98	6.216
20-	-7	-	-
25-	$\cdot 7$	1	$15 \cdot 000$
30-	1.7	2	12.000
35-	$3 \cdot 3$	2	6.000
40-	$17 \cdot 3$	11	$6 \cdot 346$
45-	$40 \cdot 7$	19	$4 \cdot 672$
$50-$	36.0	19	$5 \cdot 278$
${ }_{60-}$	28.7 11.0	14	4.884
60 -	11.0 9.0	10	9.091
${ }_{70}^{65}$	$9 \cdot 0$ $5 \cdot 3$	12 7	$13 \cdot 333$
75 and upwards	$4 \cdot 0$	1	$13 \cdot 125$ $2 \cdot 500$
,			

No. 49.-EUROPEAN PENSIONERS.
Average Annoal Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the Euro-: pean Pensioners, in the Ten Years 1847-56, at different Periods of Service.

$\begin{gathered} \text { Period } \\ \text { of } \\ \text { Service. } \end{gathered}$	Mean Annual Strength in 3 Years.	Deaths the 10 Y 1847-5	Average Annual Rate of Mortality per cent.
Total -	157.7	98	6.216
5-	$1 \cdot 3$	3	22:500
10-	$1 \cdot 6$	-	-
15-	$2 \cdot 7$	1	3.750
20-	$27 \cdot 0$	12	$4 \cdot 444$
25-	$42 \cdot 0$	23	$6 \cdot 667$
80	$31 \cdot 7$	16	$5 \cdot 053$
35-	$23 \cdot 8$	13	5.571
40-	$11 \cdot 7$	8	6.857
45-	$4 \cdot 7$	7	$15 \cdot 000$
50 and upwards	$11 \cdot 7$	10	$8 \cdot 571$

No. 50.-EUROPEAN INVALIDS.

Annual Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the Eugofean Invalids, in each of theTen Years 1847-56.

Years ending August 31.	Mean Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1846-7	252	12	4.762
1847-8	253	20	7-905
1848-9	247	11	. ${ }^{\text {: }} \mathbf{4 . 4 5 3}$
1849-50	234	11	$4 \cdot 701$
1850-1	224	16	7-143
1851-2	216	9	4-167
1852-3	217	24	$11 \cdot 060$
1853-4	215	10	$4 \cdot 651$
1854-5	221	16	$7 \cdot 240$
1855-6	233	32	13.734
$\left.\begin{array}{l} \text { A verage of the } \\ 10 \text { years } \end{array}\right\}$	231.2	16.1	6•964

No. 51.-EUROPEAN INVALIDS.

Average Annual Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the European Invalids, in the Ten Years 1847-j6, at different Ages.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years, 1847-56.	Average Annual Rate of Mortality per cent.
Total - -	$236 \cdot 7$	161	6.803
20-	$1 \cdot 3$	1	$7 \cdot 500$
25-	$5 \cdot 7$	-	- -
30-	16.7	9	$5 \cdot 400$
35-	41.3	30	7-258
40-	$81 \cdot 3$	71	$8 \cdot 730$
45-	$51 \cdot 3$	30	$5 \cdot 844$
50-	$25 \cdot 0$	12	$4 \cdot 800$
55-	$8 \cdot 7$	5	5-769
60-	$4 \cdot 0$	2	$5 \cdot 000$
65-	1.0	1	$10 \cdot 000$
$70-$	$\cdot 4$	-	-.
75 and upwards	-	-	-

No. ฮี2.-EUROPEAN INVALIDS.
Aferage Anntal Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the European Invalids in the Ten Years 1847-56, at different Periods of Service.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total.	236. 7	261	6.803
$5-$	12.3	8	1:622
10-	$12 \cdot 3$	16	12.973
15-	$60^{\circ} 3$	55	9.116
$20-$	$85^{\circ} 7$	56	6. 537
25-	$31^{\circ} 7$	17	$5 \cdot 368$
30-	- $17{ }^{\circ} 3$	7	$4 \cdot 038$
35-	- 8.0	4	7-924
40-	6.0	2	$3 \cdot 333$
45-	$2 \cdot 0$	2	10.000
50 and upwards	$1 \cdot 1$	-	-

No. 53.-EUROPEAN VETERANS.
Anneal Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the European Vererans in each of the Ten Years 1847-56.

$\begin{gathered} \text { Years } \\ \text { ending } \\ \text { August } 31 . \end{gathered}$	Mean Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1846-7	104	7.	6.731
1847-8	95		6.316
1848-9	88	4	$4 \cdot 545$
1849-50	82	6	$7 \cdot 317$
1850-1	76	3	3.947
1851-2	71	4	$5 \cdot 634$
1852-3	68	7	10. 294
1853-4	62	3	$4 \cdot 839$
1854-5	49	3	6. 132
1855-6	38	3	7×895
$\left.\begin{array}{c} \text { Average of the } \\ 10 \text { years } \end{array}\right\}$	$73 \cdot 3$	$4 \cdot 6$	6.276

No. 54.-EUROPEAN VETERANS.
Average Annual Rate of Mortality per Cent. of the Non-Comyissioned Officers and Men of the European Veterans in the Ten Years, 1847-56, at different Ages.

\cdots Ages. .	Mean' Annual Strength in $\mathbf{3}$ Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total :	$76 \cdot 7$	46	$6 \cdot 000$
20-	-	-	-
2.5-	-	-	-
30-	-	\cdots	-
35-	$1 \cdot 3$	1	$7 \cdot 500$
40-	$5 \cdot 3$	3	$5 \cdot 625$
45-	$8 \cdot 0$	6	7-500
50-	$17 \cdot 4$	11	6.364
55 -	16.8	11	$6 \cdot 600$
60-	$12 \cdot 3$	4	3-243
65 -	$7 \cdot 3$	4	$5 \cdot 455$
70-	$4 \cdot 0$	1	$2 \cdot 500$
75 and upwards.	$4 \cdot 3$	5	11.538

No. 55.-EUROPEAN VETERANS.
Average Annual Rate of Mortality per Cent. of the Non-Commissioned Officers and Men of the Edropean Veterans in the Ten Years 1847-56, at different Periods of Service.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total -	76.7	46	6.000
5-	-	-	-
10-	-7	-	-
15-	$\cdot 7$	1	$15 \cdot 000$
20-	$5 \cdot 7$	5	$8 \cdot 824$
25-	9-3	6	6. 429
$30-$	$16 \cdot 0$	12	$7 \cdot 500$
35-	$15 \cdot 3$	6	$3 \cdot 913$
40-	$17 \cdot 3$	8	$4 \cdot 615$
45-	$2 \cdot 7$	3	11.250
50 and upwards.	$9 \cdot 0$	5	5-556

MADRAS.

No. 1.
Table showing the Strengti and Deaths, in each of the Years 1846 to 1856 , of the Non-Commissioned Officers and Men of the Eurofean Forces of the late East India Company, in the Presidency of Madras.

			(ist Mndras		2nd European Light Infantry		3rd Madras Europeans.		Europeans attached to Sappers and Miners.		$\begin{aligned} & \text { Effective } \\ & \text { Supernumera } \\ & \text { ries. } \end{aligned}$		European Veterans.		EuropeanPensioners,		Total.	
Years																		踼
1846	1,828	89	799	17	862	21	-	-	49	2	281	14	229	8	440	43	4,488	194
47	1,678	79	904	15	823	31	-		50	2	279	7	223	15	443	16	4,400	165
1848	1,883	49	1,058	20	1,056	28			60	1	277	5	213	17	465	22	5,012	142
1849	2,049	64	1,104	34	1,104	45			66	2	279	13	213	8	473	39	5,288	205
1850	1,881	78	1,038	23	998	25	-	-	57.	1	280	12	229	9	456	19	4,939	167
1851	2,103	68	1,008	24	888	69			61	3	286	4	241	11	449	35	5,036	214
1852	2,264	106	1,026	66	1,041	20			61	5	291	13	249	21	442	28	5,374	259
1853	2,176	153	1,008	87	1,060	30	-	-	58	3	289	10	250	14	414	44	5,255	321
1854	2,242	97	931	69	977	32	281	79	59	2	290	7	234	18	382	29	5,396	333
1855	2,233	66	814	46	880	24	912	22	64	2	308	12	246	13	367	22	5,824	207
1856	2,063	57	752	25	941	28	897	15	75	5	317	8	264	8	360	28	5,669	174
Total	22,400	886	10,442	426	10,630	353	2,090	116	660	28	3,177	105	2,591	142	4,691	325	56,681	2,381

No. 2.
Table showing the Mortality per Cent., in each of the Years 1847 to 1856 , amongst the Non-Commissioned Officers and Men of the European Forces of the late East India Company in the Presidency of Madras.

No，3．－STRENGTH OF EFFECTIVES．＊
Table showing the Age and Perion of Service in India of Non－Commissioned Officers and Men of the Madras Artillery， 1 st Feslifers， 2 nd European Ligit Infantry，Europeans attached to Sappers and Miners，and Effective Scterntmeraries，on 1st January 1847，1852，and 1856.

Age．	Total．	Period of Service．									
		Years．									
		Cnder 1 Year．	1	2	3	4	Under 5 Years．	5－	10－	15－	20 and upwards．
Total．	12，565	824	847	446	7－8	1，186	4，081	3，917	2，772	1，359	433
10－15				$2{ }^{1}$			72	－	－	－	－
15	31	12	16	1	1	－	30	1	－	－	－
16	32	14	8	1	5	2	30	2	－	－	－
17	27	6	4	1	5	1	17	10	－	－	－
18	24	5	3	4	5	6	23	1	－	－	－
19	109	86	5	1	5	6	103	6	－	－	－
10－20	295	173	53	10	24	15	275	20	－	－	－
20－	2，224	539	583	276	309	227	1，934	276	14	－	－
25－	4，199	102	198	145	419	848	1，712	－2，316	165	4	2
30－	3，171	10	13	15	21	91	150	1，170	1，736	110	5
$35-$	1，792	－	－	－	5	5	10	132	748	871	31
4）－	674	－	－	－	－	－	－	3	101	332	238
45－	138	－	－	\cdots	－	－	－	－	8	30	100
$50-$	43	－	－	－	\cdots	－	－	－	－	7	36
55 and upwards	29	\sim	－	－	－	－	－	－－	－	5	24

＊Throughout the following tables relating to Madras，the Effectivis comprise the Madras Artillery，1st and 2nd Madras Europeans， the Europeans attached to the Sappers and Miners，and the Effective Supernumeraries（the 3rd Madras Europeans are excluded，unless other－ wise stated，inasmuch as the regiment was not formed until 1854）；the Non－Effectives comprise the European Pensioners and Veterans．

No．4．—DEATHS OF EFFECTIVES．

Table showing the Age and Period of Service in India of Nof－Commissioned Officers and Men of the Madras Artileery，list Febiliers，2nd Efropean Light Infantry，Elropeans attached to Sappers and Miners，and Effective Superndmeraries，during the Ten Years 1847－56．

Age．	Total．	Period of Service，Years．									
		Under 1 Year．	1	2	3	4	Under 5 Years．	$5-$	$10-$	15－	$\begin{aligned} & 20 \text { and } \\ & \text { upwards. } \end{aligned}$
Total．	1，655	203	115	109	75	81	583	460	399	150	63
10－15	3	1	1	1	－	－	3	－	－	－	－
15	1	－	1	－	－	－	1	－	－	－	－
16	－	－	－	－	－	－	－	－	－	－	－
17	1	－	－	－	－	1	1		－	－	－
19	4	5	－	1	\bigcirc	二	$\stackrel{2}{6}$	$\underline{2}$	－	二	二
10－20	－ 15	7	2	2	1	1					
20－25	3.55	164	74	59	36	11	344	11	－	二	－
25－30	466	30	36	46	37	61	210	239	17	－	二
30－35	439	2	2	2	1	6	13	174	236	16	－
35－40	243	－	1	－	－	2	3	33	119	81	7
$40-45$ $45-50$	102	－	二	二	二	－	－	1	24	47	30
45－50 $50-55$	24	Z，	二	二	－	－	二	－	1	$\underline{6}$	17 5
55 and npwards	5	二	－	－	－	－		－	1	－	5 4

No．5．－STRENGTH OF NON－EFFECTIVES
Table showing the Age and Period of Service in India of Non－Commisstoned Officers and Men of the European Veterans and European Pensioners，on the 1st January 1847， 4852 ，and 1856.

Age．	Total．	Period of Service，Years．											
		Under 5 Years．	5－	10－	15－	20－	25－	30－	35－	40－	45－	50－	$\begin{gathered} 55 \text { and } \\ \text { opwarde } \end{gathered}$
Total	1，981	4	9	32	333	494	496	288	170	77	52	11	15
20－	4	2	2	－	－	－		－	－	－	－	－	－
$25-$	10	1	7	1	1	－	－	－	－	－	－	－	－
$30-$	32	1	－	11	18	1	2	－	－	－	－	－	－
${ }_{40-}^{35-}$	2215 484	－	二	15 4	$\begin{array}{r}187 \\ \hline 97\end{array}$	7 313	${ }_{61}^{4}$	1	${ }_{3}$	－	二	二	－
45－	529	－	－	1	28	138	297	64	1	－	－		－
50－	290	－	－	二		－17	78	148	41	5	－	－	
55－	151	－	－	－			－ 20	33	63	21.	1	－	－
$60-$	113 78	二	二	－		8	20	10	30 19	11	16		
${ }_{70-}^{65-}$	78 44	二	二	二	－	－	$\stackrel{10}{3}$	${ }^{18}{ }_{6}$	19 8	${ }_{8}^{11}$	12	5	\square_{2}
75 and upwards	31	－	－	－	－	－	1	2	5	4	3	，	13

No. 6.-DEATHS OF NON-EFFECTIVES.

Tible showing the Age and Period of Service in India of Non-Commissioned Officers and Men of the European Veterans and European Pensioners during the Ten Years 1847-56.

Age:	Total.	Period of Service, Years.											
		Under 5 Years.	5-	10-	15-	20-	25-	30-	35-	40-	45-	50-	55 and upwards.
Total	416	1	1	6	46	118	108	64	28	24	10	4	6
$\begin{aligned} & \text { Years. } \\ & 20- \end{aligned}$	1	1	-	-	-	-	-	-	-	-	-	-	-
25-	2	-	1	-	1	-	-	-	-	-	-	-	,
30-	2	-	-	2	-	-	-	-	-	-	-	-	-
35-	38	-	-	3	27	7	1	-	-	-	-	-	- '
40-	106	-	-	1	13	76	15	1	-	-	-	-	-
45-	111	-	-	-	5	24	64	15	1	2	-	-	-
50-	57	-	-	-	-	9	19	23	6	-	-	-	-
55-	29	-	-	-	-	-	1	13	9	$6{ }^{\circ}$	\cdots	-	-
60-	20	-	-	-	-	1	3	2	2	8	2	2	-
65-	25	-	-	-	-	1	5	4	5	3	. 5	1	1
70-	12	-	-	-	-	-	-	4	3	4	1	-	-
75 and upwards	13	-	-	-	-	-	-	2	2	1	2	1	5

No. 7.-CASUALTIES OF EFFECTIVES.
Number of Deaths, Discharges, and other Casualties amonggt the Non-Comimssioned Officers and Men of the Madras Artiliery, 1st Madras Fusiliers, 2nd Edropean Light Infantry, Europeans attached to Sappers and Miners, and Effective Supernomeraries, for the Ten Years 1847-56, at different Periods of Service.

Nchber of Deates, Discrarges, and other Casualties amongst the Non-Commissioned Officers and Men of the European Veterans and Etropean Pensioners, for the Ten Years 1847-56, at different Periods of Serfice.

No. 9.
Table showing the Mean Strengith, Deaths, and Annual Rate of Mortality per Cent., in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the European Forces of the late East India Compary in Madras.

Years ending Dec. 31st.	Mean Strength:*			Deaths in each Year.			Annual Rate of Mortality per cent.		
	Total.	Effectives. \dagger	NonEffectives.	Total.	Effectives.	Non--Effectives.	Total.	Effectives.	NonEffectives.
1847	4,706	4,034	672	165	134	31	$3 \cdot 51$	3.32	$4 \cdot 61$
1848	5,150	4,468	682	142	103	39	$2 \cdot 76$	$2 \cdot 31$	$5 \cdot 72$
1849	5,113.5	4;428	- 685.5	205	158	47	$4 \cdot 01$	$3 \cdot 57$	6.86
1850	4,987-5	4,300	$687 \cdot 5$	167	139	28	$3 \cdot 35$	$3 \cdot 23$	$4 \cdot 07$
1851:	5,205	, 4,514-5	$690 \cdot 5$	214	168	46	4.11	$3 \cdot 72$	6.66
1852	5,314-5	4,637	677-5	259	210	49	$4 \cdot 87$	$4 \cdot 53$	$7 \cdot 23$
18.53	5,325-5	4,685-5	640	321	263	58	6.03	$5 \cdot 61$	$9 \cdot 06$
1854	5,610	4,995.5	614.5	333	286	47	$5 \cdot 94$	$5 \cdot 73$	$7 \cdot 65$
1855	5,746•5	5,128	$618 \cdot 5$	207	172	35	$3 \cdot 60$	3-35	$5 \cdot 66$
1856	5,622	4,972	650	174	138	36	$3 \cdot 09$	$2 \cdot 78$	$5 \cdot 54$
$\left.\begin{array}{c}\text { Average } \\ \text { of the } \\ 10 \text { years }\end{array}\right\}$	5,278•05	4,616.25	$661 \cdot 8$	$218 \cdot 7$	177•1	$41 \cdot 6$	$4 \cdot 14$	3.84	$6 \cdot 29$

-To get the Mean Strength, add the Strength at the beginning of the year to the Strength at the end of the year, and divide by 2 , thus :-Strength of Effectives on 1st January 1847 . - \quad - \quad - 4,734

$$
\begin{array}{r}
-\frac{3,734}{-\frac{4,334}{2(8,068}} \\
\hline 4,034
\end{array}=\text { Mean Strength in the year } 1847 .
$$

The deaths occurred in the interval between the two enumerations, and are recorded in the Casualty Roll for 1847.

+ The Effectivea in this Table comprise the Madras Artillery, the 1st, 2nd, and 3rd Madras Earopeans, the Europeans attached to the Sappera and Minens, and the Effective Supernumeraries. The Non-Effectives consist of the European Veterans and Eufopean Pensioners.
\qquad

No. 10.
Table showing the Strengti, Deaths, and Average Anvoan Ratre of Mortality per Cent., in the Ten Years, 1847-56, amongst the Non-Commissioned Officers and Men of the European Forces of the late East India Company in Madras, at different Ages.

Ages.	Strength.			Deatbs.			Average Annual Rate of Mortality per cent.		
	Total.	Effectives.	NonEffectives.	Total.	Effectives.	NonEffectives.	Total.	Effectives.	$\xrightarrow{\text { Non- }}$
Total	14,546	12,565	1,981	2,071	1,655	416	$4 \cdot 27$	$3 \cdot 95$	$6 \cdot 30$
10-15	72	72	-	3	3	-	$1 \cdot 25$	$1 \cdot 25$	-
15	$\begin{array}{r}131 \\ \\ \hline 3\end{array}$	31	-	1	1	-	$\cdot 97$	$\cdot 97$	-
17	27	27	-	1	-	-	1-11	1-11	-
18	24	24	-	4	4	-	$5 \cdot 00$	$5 \cdot 00$	-
19	109	109	-	6	6	-	$1 \cdot 65$	1-65	-
10-20	295	295	-	15	15	-	$1 \cdot 53$	d. 53	
20-25	2,228	2,224	4	356	355	1	$4 \cdot 79$	$4 \cdot 79$	$7 \cdot 50{ }^{1}$
25-30	4,209	4,199	10	468	466	2	3.34	- $3 \cdot 38$	6.00
30-35	3,203	3,171	32	441	439		$4 \cdot 13$	$4 \cdot 15$	$1 \cdot 88$
35-40	2,007	1,792	215	281	243	38	$4 \cdot 20$	$\bigcirc 4.07$	5:30
40-45	1,158	674	484	808	102	106	$5 \cdot 39$	$4 \cdot 54$	$6 \cdot 57$
45-50	667	138	529	135	24	111	6.07	$5 \cdot 22$	6.29
50-55	333	43	290	63	6	57	$5 \cdot 68$	4-19	$5 \cdot 90$
55 \& upwards	446	29	417	104	5	99	7-00.	$5 \cdot 17$	$7 \cdot 12$

No. 11.-EFFECTIVES.
Average Annual Rate of Mortality per Cent., in the Ten Years 1847 to 1856, amongst the Non-Commissioned Officers and Men of the Effectives of the Edropean Forces of the late East India Company in Madras, at different Periods of Service.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total	4,188	1,655	3-95
0-1 years	275	203	$7 \cdot 39$
1-2	282	115	$4 \cdot 07$
2-3	149	109	$7 \cdot 33$
3-4"	259	75	$2 \cdot 89$
4-5 "	395	81	$2 \cdot 05$
0-5 "	1,360	583	$4 \cdot 29$
5-10 "	1,306	460	$3 \cdot 52$
10-15 "	924	399	$4 \cdot 32$
15-20 ",	453	150	$3 \cdot 31$
20 and upwards	145	63	$4 \cdot 33$

No. 12.-NON-EFFECTIVES.
Average Annual Rate of Mortality per Cent., in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the Non-Effectives of the Edropean Forces of the late East India Company in Madras, at different Periods of Service.

Period of Service.	Mean Annual Strength in 3 Years.	$\begin{gathered} \text { Deaths } \\ \text { in the } 10 \mathrm{Y} \text { ears } \\ 1847-56 . \end{gathered}$	Average Annual Rate of Mortality per cent.
Total	661	416	$6 \cdot 30$
0-: years	1	1	$7 \cdot 50$
5-10	3	1	$3 \cdot 33$
10-15	11	6	$5 \cdot 63$
15-20 \quad	111	46	$4 \cdot 14$
20-25	165	118	7.17
25-30	165	108	6.53
30-35 ${ }^{\prime \prime}$	96	64	$6 \cdot 67$
35-40 \#	57	28	$4 \cdot 94$
40-45 "	26	24	$9 \cdot 35$
${ }^{45-50}$ "	17	10	$5 \cdot 77$
50-55 "	5	4	$10 \cdot 91$
55.8 upwards	5	6	$12 \cdot 00$

No. 13.-EFFECTIVES.

Average Annual Rate of Mortality per Cent., in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the Effectives of the European Forces of the late East India Company in Madras, at different Ages.

Ages.	Mean Annual Strength in 3 Years.	$\begin{aligned} & \text { Deaths in the } \\ & 10 \text { Years } \\ & 1847-56 \text {. } \end{aligned}$	Average Annual Rate of Mortality per cent.
Total -	4,188	1,655	3.95
10-15	24	3	1.25
15	10	1.	-97
16 17	119	1	1.71
18	8	4	1.11
19.	36	6	$1 \cdot 65$
10-20	98	15	1.53
20-25	741	355	$4 \cdot 79$
25-30	1,400	466	$3 \cdot 33$
30-35	1,057	439	$4 \cdot 15$
35-40	597	243	$4 \cdot 07$
40-45	225	102	$4 \cdot 54$
45-50	46	24	5-22
${ }_{50}^{50-55}$	14	${ }_{5}^{6}$	$4 \cdot 19$
55 and upwards	10	5	5-17

No. 14.-NON-EFFECTIVES:
Average Annual Rate of Mortality per Cent., in the Ten Years 1847-56, amongst the Non-Commissioned Officers and Men of the Non-Effectives. of the European Forces of the late East India Company in Madras, it different Ages.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years, 1847-56.	Average Annual Rate of Mortality per cent.
Total -	661	416	$6 \cdot 30$
$20-$	1	1	$7 \cdot 50$
25-	3	2	$6 \cdot 00$
30-	11	2	$1 \cdot 88$
35-	72	38	$5 \cdot 30$
40-	161	- 106	$6 \cdot 57$
45-	177	111	6.29
50-	97	57	$5 \cdot 90$
55	50	29	$5 \cdot 76$
60	38	20	$5 \cdot 31$
65.	26	25	$3 \cdot 62$
70-	15	12	$8 \cdot 18$
75 and upwards	10	13	$13 \cdot 58$

No. 15.-EFFECTIVES.
Avkrage Annual. Mortality per Cent., at different Ages and at different Periods of Service, ainongst the Non-Commissioned Officers and Men of the Effectives of the Edrofean Forces of the late Eabt India Company in Madras, during the Ten Years 1847-56.

No. 16.-NON-EFFECTIVES.
Average Annual Mortality per Cent., at different Ages and at different Periods of Service, amongst the Non-Commissioned Officers and Men of the Non-Effectives of the Edropean Forces of the late East India Company in Madras, during the Ten Years 1847-56.

Ages.	Years of Service.											
	Under 5 Years.	5-	10-	15-	20-	25-	30-	35-	40-	45-	50-	55 and upwards
20-25	$15 \cdot 00$	-	-	-	-	-	-	-	-	-	-	-
25-30	-	$4 \cdot 29$	-	30.00	-	-	-	-	-	-	-	-
30-35	-	-	$5 \cdot 45$	-	-	-	\square	-	-	-	-	-
35-40	-	-	6.00	4.33	30.00	$7 \cdot 50$	-	-	-	-	-	-
40-45	-	-	$7 \cdot 50$	4.02	$7 \cdot 28$	7.38	$5 \cdot 00$	-	-	-	-	-
45-50	-	-	-	$5 \cdot 36$	$5 \cdot 22$	6.46	7.03	30.00	-	-	-	-
50-55	-	-	-	-	15.88	$7 \cdot 31$	$4 \cdot 66$	$4 \cdot 39$	-	-	-	-
55-60	-	-	-	-	- .	1.50	11.82	$4 \cdot 29$	8.57	-	-	-
60-65	-	-	-	-	3.75	$4 \cdot 50$	$6 \cdot 00$	$2 \cdot 00$	8.57	3.75	-	-
65-70	-	-	-	-	30.00	$15 \cdot 00$	8.67	$7 \cdot 89$	$8 \cdot 18$	$9 \cdot 38$	10.00	-
70-75			-	-	- :	-	20.00	11.25	15.00	$2 \cdot 50$	-	-
75 and apwarda	-	-	-	-	-	-	30.00	12.00	$7 \cdot 50$	$20 \cdot 00$	10.00	11.54

No. 17-EFFECTIVES
average Anndal Mortality per Cent., at different Periods of Service, amongst the Non-Commissioned Officers and Men of the Effectives of the European Forces of the late East India Company in Madras, during the Ten Years 1847-56, showing the Age on entering India.

Period of Service.	Age on entering India.						
	10-20	15-25	20-30	25-35	30-40	35-45	40-50
0-5.	$1 \cdot 42$	$5 \cdot 34$	$3 \cdot 68$	$2 \cdot 60$	$9 \cdot 00$	-	-
5-10	1.32	$3 \cdot 10$	$4 \cdot 46$	7.50	$10 \cdot 00$	-	-
10-15	$3 \cdot 09$	$4 \cdot 08$	$4 \cdot 77$	713	$3 \cdot 75$	-	-
15-20	$4 \cdot 36$	$2 \cdot 79$	$4 \cdot 25$	$6 \cdot 00$	-	-	-
20 and upwards	6.77	$3 \cdot 78$	5.10	$4 \cdot 17$	$5 \cdot 00$	-	-

No. 18.-EFFECTIVES

Table showing the Proportion per Cent. leaving the Corps annually, in the Ten Years, 1847-56, from(1) All Causes, (2) Deate, and (3) other Causes, amongst the Non-Commissioned Officers and Men of the Epfectives of the European Forces of the late East India Company in Madras, at differequt Periods of Service.

Period of Service.	Proportion per cent. leaving the Corps annually.		
	From all Causes.	By Death.	Pensioned. invalided, discharged, transferred to other Corps, sce.
0-5. years	$8 \cdot 49$	4.29	$4 \cdot 20$
5-10 "	6.42	$3 \cdot 52$	$2 \cdot 90$
$10-15$	9.44	${ }^{4.32}$	5.12 8.87
15-20	$\begin{array}{r}12 \cdot 18 \\ \hline 1.10\end{array}$	$3 \cdot 31$ 4.33	$8 \cdot 87$
20 and upwards	$31 \cdot 10$	$4 \cdot 33$	$26 \cdot 77$

2vo．19．－NON－EFFECTIVES．
Table showing the Proportion per Cent．leaving the Cords annualict，in the Ten Years，1847－5G，from－ （i）All Causes，（2）Deatif，and（3）other Catses， amongst the Non－Commissioned Officers and Men of the Non Efrectives of the European Forces of the late East India Company in Madras，at different Periods of Service．

Period of Service．	Prpportion per cent．leaving the Corps annually．		
	From all Causes．	By Death．	Pensioned，inva－ lided，dis－ charged，trans－ ferred to other Corps，\＆ce．
0－5	$80 \cdot 65$	7－50	$73 \cdot 15$
5－10．	76.66	$3 \cdot 33$	$73 \cdot 33$
10－15	14.07	$5 \cdot 63$	$8 \cdot 44$
15－20	10.09	4．14	$5 \cdot 95$
20－25	22．72	7－17	15．55
25－30	$9 \cdot 61$	6.53	3.08
30－35	8.02	6.67	$1 \cdot 35$
35－40	5.47	$4 \cdot 94$	－53
40－45	9．35－	$9 \cdot 35$	－
45－50	$5 \cdot 77$	5：77	－
50－55	10.91	10．91	－．
55 and upwards	$12 \cdot 00$	$12 \cdot 00$	－

－No．20．－EFFECTIVES．
Table showing the Proportion per Cent．leaving the Corps annually；from various Causes，in the Ten Years，1847－56，amongst the Non－Commissioned．Of－ ficers and Men of the Effectives of the European Forces of the late East India Company in Madras．

Casualties．	Period of Service，Years．				
	$0-$	5 －	10－	15－	20 and upwards．
Leaving the corps from various causes．	4．20	2•90	5－12	$8 \cdot 87$	$26 \cdot 77$
Pensioned－	－12	$\cdot 15$	－47	$1 \cdot 21$	1700
Invalided to Europe $\quad-\}$	－03	－05	－81	3．71	3.99
Sent to lunatic asylum	－03	－07	－02	－02	－
Discharged by purchase	－32	$\cdot 30$	－08	－04	－
Discharged（time expired or otherwise）．	$1 \cdot 12$	1＊20	1.47	$1 \cdot 26$	－14
Promoted－－－	－01	－09	－ 04	． 51	3－78
Transferred to Town Major＇s list．	－	－	－	－	
Transferred to other corps－	$2 \cdot 13$	－99	$2 \cdot 19$	2－12	$1 \cdot 86$
Deserted－－	－43	－12	－04	－	
Missing－－	－01	－	－		
Other causes－．	－	－	－	\square	－

No．21．－NON－EFFECTIVES．
Table showing the Proportion per Cent．leaving the Corpa from various Cadses annually，in the Ten Years 1847－56，amongst the Non－Commissioned Officers and Men of the Non－Effectives of the European Forices of＇the late East India Company in Madras．

Casualties．			Period of Service，Years．								
			Total．	Under 5.	5－	10－	15－	$20-$	25－	． $30-$	35－
Leaving the corps from various causes		－	6.54	73．15	73．33	8.44	$5 \cdot 95$	－ $15 \cdot 55$	3.08	1．35	． 53
Pensioned－	－	－	$2 \cdot 01$	－	－	－	－63	$5 \cdot 83$	$1 \cdot 33$	$\cdot 62$	－35
Invalided to Europe－－－	－	\}	$3 \cdot 96$	$73 \cdot 15$	78.33	6.56	$4 \cdot 87$	8.57	$1 \cdot 27$	$\cdot 42$	－
Sent to lunatic asylum－	－	$\underline{-}$	－03	－	－	－	－09	－	－	$\cdot 10$	－
Discharged by purchase－－	－	－	$-$	二	$=$	－	－	－		－	－
Discharged（time expired or otherwise）	$:$	－	－03	－	二	二	二	－	${ }^{-06}$	－	－18
	－	－	－	二	二	－	－	二．	二	－	－
Transferred to other corps－	－	－	$\cdot 51$	－	－	1.88	$\cdot 36$	$1 \cdot 15$	$\cdot 42$	$\cdot 21$	二
Deserted－－	－	$-$	二	二	二		－	－	－	二	二
Missing ．－－	－	－	二	二	－	－	－	二	－	－	二
Other causes－－－，			－	－	－	－			－	－	－

No：22．－MADRAS ARTILLERY．
Table showing the Mean Strength，Deaths，and Annual Rate of Mortality per Cent．of the Non－ Commissioned Officers and Men of the Madras Artillery，in the Ten Years 1847－56．

$\begin{gathered} \text { Years } \\ \text { ending } \\ \text { December } 31 . \end{gathered}$	Mean Annual Strength．	－Deaths in each Year．	Annual of Mortality per cent．
1847	1，780．5	79	
1848	1，966	49	4.44
1849	1，965	64	$2 \cdot 49$ 3.26
1850	1，992	78	3．92
1851	2，183．5	68	3．11
1852	2，220	106	$4 \cdot 77$
1859	2，209	133	6.02
1854	2，237． 5	97	$4 \cdot 34$
1853	2，148	66	8.07
1856	2，001	57	$2 \cdot 85$
$\left.\begin{array}{c} \text { Average of } \\ \text { the } 10 \text { yeara } \end{array}\right\}$	2，070：25	$79 \cdot 7$	3．85

No．23．－MADRAS ARTILLERY．
Average Annoal Rate of Mortality per Cent． amongst the Non－Commissioned Officers and Men of the Madras Artillery，at different Ages，in the Ten Years 1847－56．

Ages．	Mean Annual Strength in 3 Years．	Deaths in the 10 Years 1847－56．	Average Annual Rate of Mortality per cent．
Total－	2，001－ 7	797	3－98
10－15	13.0	3	2－31
15	$7 \cdot 4$	－	－
16	$7 \cdot 0$	－	－
17	$7 \cdot 3$	1	1.36
18	$5 \cdot 3$	3	5．68
＇ 19	$7 \cdot 7$	1.	$1 \cdot 30$
10－20	47－7	8	1.68
20－25	425．0	215	$5 \cdot 06$
25＋30	，679．3	228	$3 \cdot 96$
30－35	$455 \cdot 0$	170	3．74
35－40	$276 \cdot 3$	115	$4 \cdot 16$
－40－45	104•7	50	478
45－50	11.0	9	$8 \cdot 18$
80－55	$2 \cdot 0$	1	5－00
55 and upwards	$0 \cdot 7$	1	$15 \cdot 00$

, No. 24.-MADRAS ARTILLERY.
Averagr. Annear Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Mapras Artillert, at different Periods of Service, in the Ten Years 1847-56.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years. 1847:56.	Average Annual Hate of Mortality per cent.
Total -	2,002	797	3.98
- 0-1 year	113	119	$10 \cdot 56$
1-2	240	76	$3 \cdot 18$
2-3	106	75	$7 \cdot 05$
3-4	167	44	$2 \cdot 63$
4-5	207	44	2.12
0-5 years	833	358	$4 \cdot 30$
5-10	560	189	$3 \cdot 38$
10-15	352	137	$3 \cdot 89$
15-20	204	89	$4 \cdot 36$
20 and upwards	53	24	$4 \cdot 56$

'No. 25.-1ist MADRAS EÚROPEANS.
Table showing the Mean Strength, Deaths, and Annual Rate of. Mortality per Cent. of the Non-

- Commasioned Officers and Men of the list Madras Euroreáns, in the Ten Years 1847-56.

$\begin{gathered} \text { Years } \\ \text { ending } \\ \text { December } 31 . \end{gathered}$	Mean Annual Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1847	981	15	1.53
1848	1,081	20	1.85
1849	1,071	34	9-17
1850	1,023	23	$2 \cdot 25$
1851	1,017	24	$2 \cdot 36$
1852.	1,017	66	6.49
1853	969.5	87	$8 \cdot 97$
1854	$872 \cdot 5$	69	$7 \cdot 91$
1855	783	46	$5 \cdot 87$
1856	760	25	$3 \cdot 29$
$\left.\begin{array}{l} \text { Average of } \\ \text { the } 10 \text { years } \end{array}\right\}$	$957 \cdot 50$	409	4.27

No. 26.-1st MADRAS EUROPEANS.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the 1st Madras Europeans, at different Ages, in the Ten Years 1847-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total	894	409	$4 \cdot 57$
10-15	$5 \cdot 7$	-	-
15	-7	1	$15 \cdot 00$
16	$1 \cdot 3$	-	-
17	$1 \cdot 3$	-	-
18	2	1	$5 \cdot 00$
19	21	1.	-48
10-20	32	3	-94
20-25	$150 \cdot 3$	48	$3 \cdot 19$
25-30	296	131	$4 \cdot 43$
30-35	$251 \cdot 7$	138	$5 \cdot 48$
35-40	$128 \cdot 7$	67	$5 \cdot 21$
40-45	31	21.	6.77
45-50	8	1.	$3 \cdot 33$
50-55	$1 \cdot 3$	-	-
55 and upwards	.-	-	-

No. $27 .-1$ st MADRAS EUROPEANS.
Ayerage Anneal Rate of Mortality per Cent. amongst the Non-Comyissionisd Ofricers and Men of the ist Madras Europeans, at differedt Periods of Service, it the Ten Years 1847-56.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per mant.
Total	894	409	$4 \cdot 57$
0-1 years	$74 \cdot 7$	31	$4 \cdot 15$
1-2 "	12	14.	11.67
2-3 "	$83 \cdot 3$	19	$5 \cdot 70$
3-4 "	$45 \cdot 3$	13	$2 \cdot 87$
4-5	78	12	$1 \cdot 54$
0-5 years	$243 \cdot 3$	89	$3 \cdot 66$
5-10 *	$340 \cdot 3$	164	4.82
10-15 ;	229	128	$5 \cdot 59$
15-20 "	$73 \cdot 3$	25	$3 \cdot 41$
20 and upwards	8	3	$3 \cdot 75$

No. 28.-2nd MADRAS EUROPEANS.
Table showing the Mean Strengtit, Deathe, and Annual Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the 2nd Madras Europeans, in the Ten Years 1847-56.
\(\left.$$
\begin{array}{c|c|c|c}\begin{array}{c}\text { Years ending } \\
\text { December 31. }\end{array} & \begin{array}{c}\text { Mean Annual } \\
\text { Strength. }\end{array} & \begin{array}{c}\text { Deaths } \\
\text { in each Year. }\end{array} & \begin{array}{c}\text { Annual Rate of } \\
\text { Mortality } \\
\text { per oent. }\end{array}
$$

\hline 1847 \& 939.5 \& 31 \& 3.30

1848 \& 1,080 \& 28 \& 2.59

1849 \& 1,051 \& 45 \& 4.28

1850 \& 943 \& 25 \& 2.65

1851 \& 964.5 \& 69 \& 7.15

1852 \& 1,050.5 \& 20 \& 1.90

1853 \& 1,018.5 \& 30 \& 2.95

1854 \& 928.5 \& 32 \& 3.45

1855 \& 910.5 \& 24 \& 2.64

1856 \& 941.5 \& 28 \& 2.97

\hline Average of \& \& \&

the 10 years\end{array}\right\}\)| 982.75 | 332 |
| :--- | :--- |

No. 29.-2nd MADRAS EUROPEANS.
Average Annulal Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the 2nd Madras Europeans, at different Ages, in. - the Ten Years 1847-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mor- . tality per cent
Total	935	932	$3 \cdot 55$
10-15	$5 \cdot 8$	-	-
15	$2 \cdot 3$	$\cdots \quad$.	-
16	$2 \cdot 3$	\cdots	-
17	$\cdot 4$	\cdots	-
18	$\cdot 7$	4	5.28
19	7-7	4	5:22
10-20	$18 \cdot 7$	4	$2 \cdot 14$
20-25	$149 \cdot 3$	85	- $5 \cdot 69$
25-30	380	94	$2 \cdot 47$
30-35	272-7	103	$3 \cdot 78$
35-40	98.3	89	$3 \cdot 97$
40-45	$15 \cdot 3$	6	$3 \cdot 91$
45-50	$\cdot 7$	1	$15 \cdot 00$
50-55	-	-	-
55 and upwards	-	-	\cdots

No．30．－2nd MADRAS EUROPEANS．
Average Annual $\dot{\text { Rate }}$ of Mortality per Cent． amongst the Non－Commissioned Officees and Men of the 2nd Madras Eoropeans，at different Periods of Senvice，in the Ten Years 1847－56．

Period of Service．	Mean Annual Streagth in 3 Years．	Deaths in the 40 Years 1847－56．	Average Annual Rate of Mor－ tality per cent．
Total ${ }^{\text {P }}$	935	$332{ }^{\prime}$	$3 \cdot 55$
0－1 years	83	49	$5 \cdot 90$
1－2＂	－ 19.7	2 S	$11 \cdot 19$
2－3	$1 \cdot 3$	14	${ }^{7}$
3－4	38	17	$4 \cdot 47$
4－5	101	23	$2 \cdot 18$
0－5．years	243	124	$5 \cdot 10$
5．10＂	359•3	87	$2 \cdot 42$
10－15	256．7	105	$4 \cdot 09$
15－20	75：7	16	$2 \cdot 11$
20－25＂，	－ 3	－	－

No．31．－3RD MADDRAS EUROPEANS．

Table showing the Mean Strengti，Deates，and Annual Rate of Mortality per Cent．of the Non－ Commissioned Officers and Men of the 3rd Madras Edropeans，in the Three Years 1854－56．

Tears ending Dec．31 st．	Mean Annual Strength．	Deaths in each Year．	Annual Rate of Mortality per cent．
1847 1848 1849 1850 1851 1855 1853 1854 1855 1856	-	-	-

No．32．－3RD MADRAS EUROPEANS．
Ayerage Annual Rate of Mortality per Cent， amongst the Non－Commissioned Officers and Men of the 3rd Madras Europeans，at different Ages，in the Three Years 1854－56．

Ages．	Mean Annual Strength in 3 Years．	Deaths in the 3 Years 1854－56．	Average Annual Rate of Mortality per cent．
Total－	$696 \cdot 7$	101	$4 \cdot 83$
10－15	$\cdots 13 \cdot 0$	1	$2 \cdot 56$
1.5	$4 \cdot 6$	－	－
16	$3 \cdot 0$	－	，一
17	$2 \cdot 7$	－	－
18	$1 \cdot 7$		？
19	61．7	12	6.49
10－20	86．7．	18	6.92
20－25	472：0	59	$4 \cdot 17$
25－30	$80 \cdot 3$	24	$9 \cdot 96$
30－35	$47 \cdot 0$	－	－
35－40	$10 \cdot 7$	＊－	－
40－45	－	－－	－
45－50	－	－	－
50－55	－	－	－
55 and upwards	－	－	－

No，33．－3Rd MADRAS EUROPEANS
Average Annoal Rate of Mortality per Cent． amongst the Non－Commissioned Officers and Men of the 3id Madras Europeans，＂at different Periods of Service，in the Three Years 1854－56．

Period of Service．	Mean Annual Strength in the 3 Years．	Deaths in the 3 Years 1854－56．	Annual Rate of Mortality per cent．
Total－	697	101	$4 \cdot 83$
0－1 year	292	－84	－ 9.60
1－2＂	277	17	－ 2.05
2－3 ，	70	－	\cdots
3－4＂	－	－	－
4－5＂，	2	－	－
0－5 year	641	101	$5 \cdot 25$
10－15	14	－	
15－20＂		－	$\cdots \quad-$
20 and upwards	－	\square	－

No．34．－MADRAS EUROPEANS attiched to SAPPERS and MINERS

Table showing the Mean Strengte，Deaths，and Annuar Rate of Mortality per Cent．of the Non－ Commissioned Officers and Men of the Madras Eurofeans attached to Sarpers and Maners，in the Ten Years 1847－56．

Years ending December 3ist．	$\begin{aligned} & \text { Mean Annual } \\ & \text { Strength. } \end{aligned}$	Deaths in each Year．	Annual Rate of Mortality per cent．
1847	55	2	3.64
1848	63	1	$1 \cdot 59$
1849	61.5	2	$3 \cdot 25$
1850	59	1	$1 \cdot 69$
1851	61	3	$4 \cdot 92$
1852	$59 \cdot 5$	5	$8 \cdot 40$
1853	58.5	3	$5 \cdot 13$
1854	$61 \cdot 5$	2	$3 \cdot 25$
1855	69.5	2	$2 \cdot 88$
1856	$74 \cdot 5$	5	$6 \cdot 71$
$\left.\begin{array}{c} \text { Average } \\ \text { of the } \\ 10 \text { years } \end{array}\right\}$	$62 \cdot 3$	－ $2 \cdot 6$	4：17

No．35．－MADRAS EUROPEANS ATtaceed to SAPPERS and MINERS．
Average＇Annual Rate of＇Mortality＇per Cent． amongst the Non－Commissioned Officers and Men of the Madras Europeans attached to Sappers and Miners，in the Ten Years 1847－56，at different Áges．

Ages．	Mean Annual Strength in 3 Years．	Deaths in the 10 Years 1847－56．	Average Annual Rate of Mortality per cent．
－Total	$62 \cdot 0$	＇26	$4 \cdot 19$
10－15	－	$\cdots \square$	－
16	－	－	－
－ 17	ー	\cdots	－
18	\div	－	－
． 19	－	－	－
10－20	－	一	－
20－25	$14 \cdot 3$	6	$4 \cdot 19$
25－30	$25 \cdot 0$	10	$4 \cdot 00$
30－35	$15 \cdot 7$	6	3.83
85－40	$6 \cdot 3$	4	6．82
；40－45	$\cdot 4$	－	
，45－50	－ 3	－	\sim
50－55	－	－	\cdots
55 and upwards	－	－	\div

No．36．－MADRAS EUROPEANS ATtached to sAPPERS añd MINERS．
Afrrage Anmeal Rate of Mortality per Cent． amongst the Non－Comyisioned Officers and Men of the Mapras Europeans attached to Sappers and Miners，in the Ten Years 1847－56，at different Periods of Service．

Period of Service．	Mean Annual Strength in 8 Years．	Deaths in the 10 Years 1847－56．	Average Annual Rate of Mortality per cent．
Total	$62 \cdot 0$	26	4．19
Fear．			
0－1	$4 \cdot 3$	4	$9 \cdot 23$
1－2	11.3	8	$2 \cdot 65$
2－3	$5 \cdot 1$	－．	－
3－4．	6.0	1	1.67
4－5	$7 \cdot 0$	3	4． 50
0－5	33． 7	11	$3 \cdot 27$
5－10	$18^{\prime} 7$	12	6． 48
10－15	8.3	3	$3 \cdot 60$
15－20	$1 \cdot 0$	－	－
20 and npwards	$\cdot 3$	－	－

No．37．－MADRAS EFFECTIVE SUPERNU－ MERARIES．
Table showing the Mean Strengtif，Deaths，and Annual Rate of Mortality per Cent．of the Non－ Commisstoned Officers and Men of the Madras Effective Superndmeraries，in the Tell Years 1847－56．

Years encing December 31st．	Mean Annual Strength．	Deaths in each Year．	Annual Rate of Mortality per cent
1847	278	7	2.52
1848	278	5	1.80
1849	279.5	13	4.65
1850	283	12	4.24
1851	288.5	4	1.39
1852	290	13	4.48
1853	289.5	10	3.45
1854	299	7	2.34
1855	312.5	12	3.84
1856	317	.8	2.52
Average of the		291.5	9.1
10 years			3.12

No．38．－MADRAS EFFECTIVE SUPERNU－ MERARIES．
Average Anntal Rate of Mortality per Cent． amongst the Non－Commissioned Officers and Men of the Madras Epfective Supernumeraries，at different Ages，in the Ten Years 1847－56．

$\Delta \mathrm{ges}$ ，	Mean Annaal Strength in 3 Years．	Deaths in the 10 Years 1847－56．	Average Annual Rate of Mortality per cent．
Total	295＊7	91	3.08
Years．			
10－15	－	－	二
16	－	－	－
17	二	－	
18	二	二	－
10－20			
20－25	$2 \cdot 3$	1	$4 \cdot 29$
25－30	193	3	$1 \cdot 55$
30－35	620	22	$3 \cdot 55$
35－40	$87 \cdot 7$	18	$2 \cdot 05$
40－45	73.3	25	3.41
45－50	31.0	13	$4 \cdot 19$
50－55	$11 \cdot 0$	5	4.55
55 and upwards	90	4	$4 \cdot 44$

No．39．－MADRAS EFFECTIVE SUPERNIT． MERARIES．

Average Annual Rate of Mortality per Cent． amongst the Non－Commissioned Officers and Men of the Madras Effective Supbrnumerabies，at different Periods of Service，in the Ten Years 1847－56．

Period of Service．	Mean Annual Strength in 3 Years．	Deaths in the 10 Years 1847－56．	Average Annual Rate of Mortality per cent．
Total＂：．$=$	295：7	91	$3 \cdot 08$
Years．		．	
0－1	－	－	
1－2	－－	－	－
2－3	$2 \cdot 3$	1	4．29
3－4	$2 \cdot 7$	－	－．．
4－5	$2 \cdot 3$	－	－
0－5	73	1	1．36
5－10	$27 \cdot 7$	8	2．89
10－15	78.0	26	3． 33
15－20	98．7－	20	$2 \cdot 03$
20 and upwards	$84^{\circ} 0$	36	$4 \cdot 29$

No．40．－MADRAS EUROPEAN PENSIONERS＇．
Table showing the Mean Strengte；Deathe，and Annual Rate of Mortality per Cent．of the Non－ Commissioned Officers and Men of the Madras Eurorean Pensioners，in the Ten Years 1847－56．

Years ending December 31st．	Mean Annual Strength．	Deaths in． each Year．	Annual Rate of Mortality per cent．
1847	454	16	$3 \cdot 52$
1848	469	22	$4 \cdot 69$
1849	464．5	39	$8 \cdot 40$
1850	$452 \cdot 5$	19	$4 \cdot 20$
1851	$445 \cdot 5$	35	$7 \cdot 86$
1852	428	28	6．54
1853	398	44	11.06
1854	374.5	29	．7－74
1855	363.5	22	6.05
1856	$365 \cdot 5$	28	7：66
$\left.\begin{array}{l} \text { Average of the } \\ 10 \text { years } \end{array}\right\}$	$421 * 5$	$28^{\prime 2}$	－6．69

No．41．－MADRAS EUROPEAN PENSIONERS．

Average Anntal Rate of Mortality per Cent． amongst the Non－Commissioned Officers and Men of the Madras European Pensioners，at different Ages，in the Ten Years 1847－56．

Ages	Mean Annual Strength in 3 Years．	Deaths in the 10 Years $1847-56$.	Average Annual Rate of Mortality per cent．
Total－	415.0	282	6.80
$20-$	1.0	1	10.00
$25-$	1.7	1	6.00
$30-$	4.3	2	4.62
$35-$	24.0	14	5.83
$40-$	82.7	62	7.50
$45-$	107.0	75	7.01
$50-$	71.7	37	5.16
$55-$	40.3	24	5.95
$60-$	34.0	18	5.29
$65-$	24.0	24	10.00
$70-$	14.3	12	8.37
75 and upwards	10.0	12	12.06

4 B2
"No. 42.--EUROPEAN PENSIONERS.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Madras European Pensioners, at different Priods of Service, in the Ten Years 1847-56.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years, 1847-56.	Average Annual Rate of Mortality per cent.
Total - -	415.0	282	$6 \cdot 80$
0-5 years.	$1 \cdot 0$	1	$10 \cdot 00$
6-10 "	$1 \cdot 7$	1	$6 \cdot 00$
10-15 "	$5 \cdot 3$	4	$7 \cdot 50$
15-20 "	$32 \cdot 3$	14	$4 \cdot 33$
20-25	$93 \cdot 7$	69	$7 \cdot 37$
25-30 \%	$112 \cdot 3$	79	7.03
30-35	74.8	48	6.46
35-40 "	$48^{\circ} 0$	26	$5 \cdot 42$
40-45 "	$22 \cdot 7$	23	$10 \cdot 15$
45-50 "	$16 \cdot 0$	10	$6 \cdot 25$
50-55 "	$9 \cdot 0$	8	$10 \cdot 00$
55 and upwards	$4 \cdot 7$	4	$8 \cdot 57$

No. 43.-EUROPEAN VETERANS.
Table showing the Mean Strengti, Deates, and Annual Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the Madras Eurorean Veterans, in the Ten Years 1847-56.

Years ending December 31st.	Mean Annual Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1847	218	15	6.88
1848	213	17	7-98
1849	221	8	3-62
1850	235	9	$3 \cdot 83$
1851	245	11	$4 \cdot 49$
1852	249.5	21	$8 \cdot 42$
1853	242	14	$5 \cdot 79$
1854	240	18	7-50.
1855	255	13	$5 \cdot 10$
1856	284.5	8	$2 \cdot 81$
$\left.\begin{array}{c} \text { A verage of the } \\ 10 \text { years } \end{array}\right\}$	$240 \cdot 3$	$13 \cdot 4$	5:58.

: No. 44.-EUROPEAN VETERANS.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Madras European Veterans, at different Ages, in the Ten Years 1847-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1847-56.	Average Annual Rate of Mortality per cent.
Total -	245-3	134	$5 \cdot 46$
20-		\cdots	\cdots - ${ }^{-}$
25	$1 \cdot 7$	1	$6 \cdot 00$
30-	6.3 .	-.	-
35-	$47^{\circ} 7$	24	$5 \cdot 03$
40-	$78 \cdot 7$	44	$5 \cdot 59$
45-	$69 \cdot 3$	36	$5 \cdot 19$
$50-$	$25 \cdot 0$	20	$8 \cdot 00$
$55-$	10.0	5	$5 \cdot 00$
60-	$3 \cdot 7$	2	5.45
65-	$2 \cdot 0$	1	$5 \cdot 00$
$70-$	$\cdot 3$	-	-
75 and upwards	$\cdot 3$	1	30:00

No. 45,-EUROPEAN VETTERANS.
Average Annual Rate of Moritality per Cent. - amongst the Non-Commissioned Officers and Men of the Madras European Veterans, at different Periods of Service, in the Ten Years 1847-56.

Periad of Service.	Mean Annual Strength in 3 Years.	Denths in the 10 Years 1847-56.	Average Annual Mortality per cent.
, Total - -	245-3	134	$5 \cdot 46$
0-5 years	-3	-	
5-10	$1 \cdot 3$	-	-
10-15	$5 \cdot 3$	2	$3 \cdot 75$
15-20	$78 \cdot 7$	32	$4 \cdot 07$.
20-25	71.0	49	6.90
25-30 "	$53 \cdot 0$	29	5.47
30-35	$21 \cdot 7$	16	7638
35-40 "	$8 \cdot 7$	2	$2 \cdot 31$
40-45	$3 \cdot 0$	1	$3 \cdot 33$
45-50 "	$1 \cdot 3$	-	-
50-55 "	- 7	1	$.15 \cdot 00$
55 and upwards	$\cdot 3$	2	$60 \cdot 00$

BOMBAY.

No. 1.
Table showing the Strength and Deaths in each of the Years 1845 to 1849,* and 1851 to 1856, of the Noncommissioned Officers and Men of the European Forces of the late East Lndia Company in the Presidency of Bombay.

Years ending 30th Sept.	Bombay Artillery.		Ist Bombay Europeans.		2nd Bombay Europeans.		3rd Bombay Europeans.		Town Major's Non-Effective List.		Total.	
	Strength on 30th Sept.	Deaths during the Year ending 30th Sept.	$\left\lvert\, \begin{gathered} \text { Strength } \\ \text { on } \\ 30 \text { th Sept. } \end{gathered}\right.$	Deaths during the Year ending 30th Sept.	$\left\|\begin{array}{c} \text { Strength } \\ \text { on } \\ \text { 30th Sept. } \end{array}\right\|$	Deaths during the Year ending 30th Sept.	Strength on 30th Sept.	Deaths during the Year ending 30th Sept.	Strength on 30th Sept.	Deaths daring the Year ending 30th Sept.	$\left\|\begin{array}{c} \text { Strength } \\ \text { on } \\ 30 \text { th Sept. } \end{array}\right\|$	Deaths during the Year ending 30th Sept.
1845	1,132	61	731	21	754	45	-	-	337	20	2,954	147
1846	1,138	103	669	113	777	33	-	-	- 368	25	2,952	274
1847	1,335	44	931	21	701	52	-	-	372	15	3,339	132
1848	1,327	31	875	34	1,039	20	一	-	363	8	3,604	93
1849	1,360	97	974	62	905	21	-	-	379	23	8,618	203
1850**	*	*	*	*	*	*	*	*	*	*	-	*
1851	1.461	54	1,053	25	1,048	34	-	-	353	11	3,915	124
1852	1,503	41	1,052	20	986	38	-	-	360	20	3,901	119
1853	1,527	39^{*}	972	21	915	30	-	-	366	6	3,780	96
1854	1,507	75	798	34	769	20	551	14	378	23	4,003	166
1855	1,471	66	861	20	915	26	847	8	383	13	4,477	133
1856	1,451	44	975	17	905	26	819	10	419	16	4,569	113
Total -	15,212	655	9,891	388	9,714	345	2,217	32	4,078	180	41,112	1,600

- At the time this Table was made, the Muster and Casualty Rolls for the year ending September 30th, 1850, could not be found.

No. 2.
Table showing the Mortality per Cent. in each of the Years 1846 to 1849, ${ }^{*}$ and 1851 to 1856, of the NonCommissioned Officers and Men of the European Forces of the late East India Company in the Presidency of Bombat.

* At the time this Table was made the Muster and Casualty Rolls for the year ending September 30th, 1850, could not be found.

No．3．－STRENGTH OF EFFECTIVES AND NON－EFFECTIVES．＊
Table showing the Age and Period of Srrvice of the Non－Commisioned Officelis and Men of the Bombay Autinimry，the 1st and 2nd Bombay Europeans，and the Town Major＇s Non－Effective List，fer the Three Years 1847，1852，and 1856.

Age．	Total．	．．Period of Service．													
		Months．				Years．									
		0－	3－	6－	9－	Total under 1 Year．	1	2	3	4	Total under 5 Years．	5－	10－	15－	$\begin{gathered} 20 \text { and } \\ \text { upwards. } \end{gathered}$
Total	10，990	167	150.	271	544	1，132	1，107	920	516	771	4，446	3，905	1，599	78.	255
10－15	7	－	1	－	－	1	2		－	－	7	－	－	－	
15	9	，	－	－	－	－	6	1	2	－	9	－	－	－	
16	15	1	－	－	2	3	4	5	1	2	15	－	－		
17	11	－	－	二	2	2	$\stackrel{2}{6}$	2	1	3	10	－ 1	－	－	－
18	20	－7	1	－	47	$\stackrel{4}{4}$	45	4	2	4	20	－	－	－	－
19	196	27	32	34	47	140		3	3	5	196				
10－20	258	28	34	34	54	150	65°	19	9	14	257	1	－		
20－25	2，816	121	96	196	352	765	767	573	172	226	2，503	310	3	－	
25－30	4，079	18	14	41	132	209	248	303	309	464	1，533	2，403	140	3	－
30－35	2，438	－	－	－	6	6	26	24	23	59	138	1，097	1，006	196	1
35－40	956	－	2	－	－	2	－	1	1	－ 7	11	90	415	434	6
40－45	301	－	－	－	－	－	1	－	2	1	4	4	32	140	121
45－50	99	－	二	－	－	二	－	－	－	－	－	－	3	10	， 86
$\stackrel{50-55}{55}$	37 6	－	二	二	二	三	二	二	二	二	－	－	二	2	35

＊The 3rd Bombay European Regiment is excluded throughout these Tables，unless otherwise stated．as it was not formed until the gear 1854. No．4．－DEATHS OF EFFECTIVES AND NON－EFFECTIVES．
Tarle showing the Age and Period of Service of the Non－Commssioned Officers and Men of the Bombay Artillery，the 1st and 2 ni Bombay Europeans，and the Town Major＇s Non－Effectife List，for the Ten Years 1846－49 and 1851－56．

Age．	Total．	I＇eriod of Service．													
		Months．				Years．									
		$0-$	3－	6－	9－	$\begin{aligned} & \text { Total } \\ & \text { under } \end{aligned}$ $1 \text { Year. }$	1	2	3	4	$\begin{gathered} \text { Total } \\ \text { under } \\ 5 \text { Years. } \end{gathered}$	5－	$10-$	15－	$\begin{aligned} & 20 \text { and } \\ & \text { upwards. } \end{aligned}$
Total	1，421	17	25	64	17	123	126	107	106	106	568	469^{-}	239	96	49
10－15	－	－	－	－	－	－	－	－	－	－	－＇	－	－	－	－
15	－	－	－	－	－	－	－	－	－	－	－	－	－		－
17	－ 1	二	二	二	二	二	二	二	二	二	二	$\overline{1}$	－	－	二
18	3	－	1	－	－	1	－	－	1	－	2	1	－		－
19	9.	－	2	4	2	8	－	－	－	－	8	1	－	－	－
10－20	13	－	3	4	，	9	$-$	$\overline{70}$	1	－	10	，	－	－	－
20－25	377	15	17	42	10	84	86	70	46	29	315	62	－	－	－
25－30	476	2	4	15	5	26	39	34	54	68	221	233	22		
30－35	3.11	－	1	3	－	4	1	3	4	9	21	154	159	7	－
35－40	149	－	－	－	－	－	－	－	－	－	－	17	55	70	7
40－4．5	45	－	－	－	－	－	－	\rightarrow	1	－	1	－	3	18	23
45－50	14	二	－	－	－	－	－	－	－	－	－	－	－	1	13
	5	二	二	－	二	－	二	－	－	－	二	二	－	二	5
55 and upwards															

No．5．－STRENGTII OF EFFECTIVES．
Table showing the Age and Perion of Service of the Non－Commissioned Officers and Mex of the Bompit Artillery，and the 1st and 2no Bombay Europeans，for the Three Years 184\％，1852，and 1856.

Age．	Total．	Period of Service．													
		Months．				Years．									
		0－	3－	6	9－	Total under 1 Year．	1	2	3	4	$\begin{gathered} \text { Total } \\ \text { under } \\ 5 \text { Years. } \end{gathered}$	5 －	10－	15－	20 and upwards．
Total	9，839	166	148	267	538	1，119	1，060	842	455	721	4，197	3，596	1，404	592	50
10－15	5	－	1	－	－	1	2		－		5			－	
15	4	－	－	－	－	－	2	－	2	－	4	－	－	二	－
16	6	1.	－	－	－	1	2	－	1	2	6	－	－	－	－
17	${ }_{13}^{7}$	－	－	－	1	1	c	－	－	3	${ }_{13}^{6}$	1	\div	－	
18 19	13 191	$\overline{27}$	1 32	－ 34	1 47	9 140	$\begin{array}{r}6 \\ 45 \\ \hline\end{array}$	1 2	－1	4	13 191	－	－	－	
10－20	226	28	34	34	49	145	59	6	4	18	225	1	－	－	－
20－25	2，526	120	96	195	351	762	738	553	161	220	2，434	299	3	－	
25－30．	3，823	18	17	38	132	205	． 237	270	277	434	1，423	2，267	131	9	－
30－35	2，155	－	－	－	6	6	25	14	12	51	108	966	9 Cl 5	176	－
35－40	748	－	$!$	－	－	1	－	－	1	4	${ }^{6}$		346	322	1
40－45	159	－	－	－	－	－	1	－	－	二	1	3	18	87	41
－ $\begin{aligned} & 45-50 \\ & 50-55\end{aligned}$	9 .	－	－	－	－	二	－	－	－	－	－	－	${ }^{1}$	1	4
55 and upwards	－	－	二．	－	二	二	二	－	二	－	－	－	二	1	－

No．6．－DEATHS OF EFFECTIVES．
Table showing the Age and Period of Sermice of the Non－Commissioned Officers and Men of the Bombat Artulery and the＇ 1 st and 2nd Bombay Europeans，for the Ten Years 1846－49 aud 1851－56．

No，7．－STRENGTH OF NON－EFFECTIVES．
Table showing the Age and Period of Service of Non－Commissioned Officers and Men on the Town Major＇s Non－Effective List，for the Three Years 1847，1852，and 1856.

Age．	Total．	Period of Service．													
		Months．				Years									
		$0-$	3-	$\begin{array}{l\|r\|} \hline & 9- \\ \hline \end{array}$		Total noder 1 Year．		2	3	4	Total under 5 Years．	5－	10－	15－	20 and upwards．
Total	1，151	1	2	4	6	$\cdots \cdot 13$	47	78	61	50	249	309	195	193	205
$\begin{gathered} 10-15 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \end{gathered}$	2 5 9 4 7 5	二	二	二	- - 2 -1 2 -	－	$\begin{array}{r}- \\ 4 \\ 2 \\ \hline-\end{array}$	2 1 5 2 3 1	二－－ \cdots - 2 2	二	2 5 9 4 7 5	二 二 二	二	二	二
$\begin{aligned} & 10-20 \\ & 20-25 \\ & 25-30 \end{aligned}$	32 90 256	$\underline{1}$	－	\square 1	5 1 -	5 3 4	6 29 11	14 20 33	5 11 32	2 6 30	32 69 110	$\overline{21}$ 136	－ 9	－ 1	－
30－35	283	－	－		－	－	1	10 ！	． 11	8	30	131	101	20	1
35－40	208	－	1	－	－	1	－	1	－	3	5	20	69	112	2
40－45	151	－	－	－	－	\cdots	－	－	2	1	3	1	14	53	80
45－50	90			$\stackrel{-}{-}$				－	\pm			－	2	6	82.
50－55	35	－				－		－	－	\cdots		－	－	1	34
55 and upwards－	6	－	－		－	－		－	－	－－	－	－		－	6

No．8．－DEATHS OF NON－EFFECTIVES：
Table showing the Age and Period of Service in India of Non－Commissioned Officers and Men on the Town Major＇s Non－Effective List，for the Ten Years 1846－49 and 1851－56．

－Age．	Total．	Period of Service．													
		Months．				Years．									
		－	8 －	6 －	$9-$	$\begin{aligned} & \text { Total } \\ & \text { under } \\ & \text { I Year. } \end{aligned}$	1	2	3	4	Total under 5 Years．	$5-$	10－	15－．	$\begin{aligned} & 20 \text { and } \\ & \text { upwards. } \end{aligned}$
Total	160	1	－	4	1	6	8	2	5	10－	81	${ }^{3}$	27	33	32
$10-15$ 15 16 17 18 19	二 $=$ $=$	二－ 二 二	二 二 二	二 二 二	二	二	$=$ $=$	二：	二 二 $=$	二 二 二	二 $=$ $=$ $=$	二	二 二 二	二	二
$\begin{array}{r}10-20 \\ 20-25 \\ 25-30 \\ 20-35 \\ 35-30 \\ 35-40 \\ 40-45 \\ 45-55 \\ 50-55 \\ 55 \text { and upwards } \\ \hline\end{array}$	7 34 34 38 37 18 13 5^{5} 1 ${ }^{\circ}$	－ $\bar{\square}$ $\overline{-}$	$=$ $=$ $=$ $=$ $=$	－ $\frac{1}{1}$ $\bar{\square}$	$=$ $=$ $=$ $=$ $=$	- 1 1	－ 4 - - $=$ $=$	二1	\square 4 	\square $\begin{aligned} & 3 \\ & 7 \\ & 1 \\ & - \\ & -\end{aligned}$.	12 17 17 2 \vdots $=$	\square 2 15 19 19	$\begin{array}{r}\text { 二 } \\ \hline 2 \\ 14 \\ 10 \\ 1 \\ = \\ \hline\end{array}$	$\begin{array}{r}- \\ \hline \\ \hline\end{array}$	$\begin{array}{r}\text {－} \\ \hline 2 \\ 12 \\ 12 \\ 12 \\ \hline 1\end{array}$
														B 4	

No. 9.-CASUALTIES AMONGST THE EFFECTIVES AND NON-GFFECTIVES
Number of Deathis, Discharges, and other Casualties amongst the Non-Commissioned Officers and Men of th Bombay Artillery, the lst and 2nd Bombay Edropeans, and the Town Major's Non-Effective List, fo the Ten Years 1846-49 and 1851-56.

No. 10.-CASUALTIES AMONGST THE EFFECTIVES.
Number of Deaths, Disgearges, and other Castalties amongst the Non-Commissioned Offictrs and Men of th Bombay Artillery and the 1st and 2nd Bombay Europeans, for the Ten Years 1846-49 and 1851-56.

	Total.					Total under 1 Year.	1	2	3	4	Total under 5 Years.	5-	10-	15-	$\begin{array}{r} 20 \text { and } \\ \text { upwards } \end{array}$
Deathe -	1,261	16	25	60	16	117	118	105	101	96	537	432	212	63	17
Leaving the Corps	2,172	54	24	47	29	154	230	115	175	150	824	598	455	161	134
Pensioned -	365	-	-	-	-	-	13	3	6	2	24	31	85	94	131
$\left.\begin{array}{l} \text { Invalided to Europe - } \quad \text { Chunar or other parts of India } \end{array}\right\}$	275	-	1	1	1	3	11	9	33	35	91	70	106	8	-
Sent to lunatic Asslum	17	-	-	1	1	2	-	1	1	9	7	5	4	1	-
Discharged by purehase	113	1	1	2	3	7	13	11	14	5	50	32	30	1	-
" (time expired or otherwise)	474	-	2	3	3	8	27	35	44	47	161	161	132	19	1
Promoted - -	1	$-$	-	-	-	-	-	-	-	-	-	1	-	-	-
Transferred to Town Major's list -	112	13	9	5	3	30	4	2	1	3	40	38	15	19	-
, to other corps	746	36	11	34	18	99	157	46	64	51	417	230	78	19	2
Deserted	69	4	-	1	-	5	5	8	12	4	34	30	5	-	-
Missing - -	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Other canses		-	-	-	-	-	-	-	-	-	-			-	
Joining time Corps	1,057	796	2	42	44	884	86	5	8	10	993	53	8	2	1
Remanded from Town Major's list	13	1	-	-	-	1	1	-	1	3	6	5	2	-	-
From other corps -	249	3	2	42	44	91	85	4	. 6	7	193	. 47	6	2	1
Enlisted in India	17	17	-	-	\bigcirc	17	-	-	-	-	17			-	-
, in Europe -	779	773	-	-	-	773	-		-	-	773		-	-	
Rejoined from desertion	4	1	-	-	-	1	-	1	1	-	3	1			
Entertained -	1	1	-	-	-	1	-	-	-	-	1		-		-
Casualty not specified - -	-	-	-	-	-	-	-	-	-	-			-	-	-

No. 11.-CASUALTIES.-NON-EFFECTIVES.
Number of Deaths, Discharges, and other Casjalties amongst the Non-Cominissioned Officers aud Men of the Town Major's List, for the Ten Years 1846-49 and 1851-56.

No. 12.
'Table showing the Mean Strength, Deaths, and Anndar Rate of Mortality per Cent, in the Ten Years 1846-49 and 1851-56, amongst the Non-Commssioned Officers and Men of the European Forces of the late East India Company in Bombay.

Tears ending 30th Sept.	Mean Strength.			Deaths in each Year.			Annual Rate of Mortaity per cent.		
	Total	Effectives.*	NonEffectives.	Total.	Effectives.	NonEffectives.	Total	Effectives	Non- Effectives.
1846	2,953	2,600•5	$352 \cdot 5$	274	249	25	$9 \cdot 28$	9.58	$7 \cdot 09$
2847	3,145.5	2,775.5	370	132	117	15	$4 \cdot 20$	$4 \cdot 22$	4.05
1848	3,471-5	3,104.0	367.5	93	85	8	2.68	$2 \cdot 74$	$2 \cdot 18$
1849	3,611	3,240	371	203	180	23	$5 \cdot 62$	$5 \cdot 56$	6.20
- 1850		*	*	-	-	*	*	*	-
2851	3,766.5	3,400-5	366	124	113	11	3. 29	3. 32	$3 \cdot 01$
1852	3,908	3,651 5	856.5	219	99	20	$3 \cdot 05$	$2 \cdot 79$	$5 \cdot 61$
1853	8,840.5	3,477 5	363	96	90	6	2.50	2.59	$1 \cdot 65$
$\therefore 1854$	3,891-5	3,519-5	372	166	143	23	4.27	4.06	$6 \cdot 18$
1855	4,240	3,859-5	$380 \cdot 5$	133	220	13	3.14	$8 \cdot 11$	$3 \cdot 42$
1856	4,523.	4,122	401	113	97	16	$2 \cdot 50$.	$2 \cdot 85$	3.99
$\left.\begin{array}{c} \text { Arerage } \\ \text { of the } \\ 10 \text { yeari } \end{array}\right\}$	8,735-05	3,365-05	$370 \cdot 0$	$145 \cdot 3$	$129 \cdot 8$	16	3.89	8.84	$4 \cdot 32$

No． 13.
Table showing the Strength，Deaths，and Average Annual Rate of Mortality per Cent．，in the Ten Years 1846－49 and 1851－56，amongst the Non－Commissioned Officers and Men of the Edropean Forces of the late East India Company in Bombay at different ages．

Ages．	Strength．			Deaths．			Average Annual Rate of Mortality per cent．		
	$i^{\text {Total．}}$	Effectives．	Non－ Effectives．	Total．	Effectives．	Non： Effectives．	Total．	Effectives．	Non－ Effectives．
Total	10，990	9，839	1，151	1，421	1，261	160	3． 88	$3 \cdot 84$	$4 \cdot 17$
10－15	7	5	2	－	－	－	－	－	－
－ 15	9.	4	5	－	－	$\cdots \cdots$	\rightarrow	－	－
16	15	6	9	\square	\square	－	－	－	－
17	11	7	4	1	1	\square	2－73	$4 \cdot 29$	－
18	20	13	7	3	8	－．．	$4 \cdot 50$	$6 \cdot 92$	－
19	196	191	5	9	9	－	$1 \cdot 38$	1－41	－
10－20	258	226	32	－ 13	13	－	$1 \cdot 51$	$1 \cdot 73$	－
20－25	2，816	2，726	90	377	363	14	$4 \cdot 02$	$3 \cdot 99$	$4 \cdot 67$
25－30	4，079	3，823	256	476	442	34	$3 \cdot 50$	$3 \cdot 47$	$3 \cdot 98$
30－35	2，438	2，155	283	341	． 303	38	4.20	$4 \cdot 22$	$4 \cdot 03$
35－40	956	748	208	149	112	37	$4 \cdot 68$	$4 \cdot 49$	$5 \cdot 34$
40－45	301	150	151	45	27	18	$4 \cdot 49$	$5 \cdot 40$	$3 \cdot 58$
45－50	99	9	80	14	1	． 13	$4 \cdot 24$	$3 \cdot 33$	$4 \cdot 33$
50－55	37	2	35	5	－	5	$4 \cdot 05$	$\stackrel{-}{-}$	$4 \cdot 29$
55 \＆opwards	6	－	6		－	1	$5 \cdot 00$	－	$5 \cdot 00$

No． 14.
Table showing the Strengtif，Deaths，and Average Annual Rate of Mortality per Cent．，in the Ten Years 1846－49 and 1851－56，amongst the Non－Commssioned Officers and Men of the European Forces of the late East India Company in Bombay at different Periods of Service．

．．．．Period	Strength．			Deaths．			Average Annual Rate of Mortality per cent		
Service．	Total．	Effectives．	Non－ Effectives．	Total．	Effectives．	Non－ Effectives．	Total．	Effectives．	Non－ Effectives．
Total－	10，990	9，839	1，151	1，421	1，261	160	3－88	3．84	4．17
$0-1$ years	1，132	1，119	13	123	117	6	$3 \cdot 26$	$3 \cdot 14$	$13 \cdot 85$
1－2 ${ }^{\text {\％}}$	1，107	1，060	47	126	118	8	$3 \cdot 41$	$3 \cdot 34$	$5 \cdot 11$
2－3 \％	920	842	78	107	105	2	$3 \cdot 49$	$3 \cdot 74$	$\cdot 77$
3－4	516	455	61	106	101	5	6．16	6.66	$2 \cdot 46$
4－5	771	721	50	106	96.	10	4－12．	$3 \cdot 99$	$6 \cdot 00$
0－5 years	4，446	4，197	249	568	537	31	3：83	3.84	3－73
5－10 \％	3，905	3，596	309	469	432	37	$3: 60$	$3 \cdot 60$	$3 \cdot 59$
－10－15＂	1，599	1，404	195	299	212	27	$4 \cdot 48$	$4 \cdot 53$	$4 \cdot 15$
15－20 \％＇	785	592	193	96	63	33	$3 \cdot 67$	3－19	$5 \cdot 13$
2086 upwards	255	50	205	49	17	32	$5 \cdot 76$	$10 \cdot 20$	$4 \cdot 68$

No．15．－EFFECTIVES AND NON－EFFECTIVES．
Aferage Annual Mortality per Cent，at different Ages and at different Periods of Service，amongst the Non－ Commissioned Oeficers and Men of the Effectives and Non－Effectives of the European Forces of the late East India Company in Bombat，during the Ten Years 1846－49 and 1851－56．

Ages．	Years of Service．									
	Under 1 Year．	1	2	3.	4	Under 5 Years．	5－	10－	15－	20 and upwards．
10－20	$1 \cdot 80$	－	－	3－33	－	$1 \cdot 17$	？	－	－	－
20－25	3．29	3．36	3． 66	$8 \cdot 02$	$3 \cdot 85$	$3 \cdot 78$	6.00	－	－	－
25－30	$3 \cdot 73$	4．72	3． 87	5.24	$4 \cdot 40$	$4 \cdot 32$	2．91	$4 \cdot 71$	－	－
30－35	20．00	$1 \cdot 15$	$3 \cdot 75$			$4 \cdot 57$	4.21	4.74		－
35－40	二	－	－	15．00	二	7.50	$5 \cdot 67$	3.98 2.81	4.84 $\mathbf{9} 86$	$35 \cdot 00$ 5.70
40－45	－	二	二	15．00	－	7.50	三	$\stackrel{2 \cdot 81}{-}$	$9 \cdot 86$ $8 \cdot 00$	$5 \cdot 70$ 4.58
（ $\begin{array}{r}40-60 \\ \hline \text { 50－55 }\end{array}$	$=$	－	－	－						$4 \cdot 29$
85 and upwards	－	－	－			－．	－	－		$5 \cdot 00$

No．16．－EFFECTIVES．
Average Anvial Mortality per Cent．，at different Ages and at different Periods of Service，amongst the Non－ Commisioned Officers and Men of the Effectives of the Eubopean Forces of the late East Indla Compant in Boxbay；during the Ten Years 1846－49 and 1851－56．

Ages．	Years of Service．									
	Under 1 Year．	1	2	3	4	Under 5 Years．	5 －	10－	15－	20 and upwards．
10－20	1.86	－	－7	$7 \cdot 50$	－	$1 \cdot 33$	？	一	－	－
20－25	$3 \cdot 15$	$\mathbf{3} \cdot 33$ 4.43	3.74 3.67			$3 \cdot 73$ $4 \cdot 30$	$6 \cdot 23$ $\cdot 988$	4．58	二	
25－30	3．66	$4 \cdot 43$	$3 \cdot 67$	$5 \cdot 42$	$4 \cdot 22$	$4 \cdot 30$	$2 \cdot 88$	$4 \cdot 58$	－	
30－35	$15 \cdot 00$	$1 \cdot 20$	6.43	10．00	4.71	$5 \cdot 28$	$4 \cdot 19$	$4 \cdot 81$	－68	－
35－40	－	－	－	－	－	－	$6 \cdot 86$	$3 \cdot 93$	$4 \cdot 29$	37.50
40－4．5	－	－	－	－	－	30．00	－	3．33	$4 \cdot 48$	$8 \cdot 05$
45－50	－	二	－	－	－	＝	二	－	二	7.50
${ }_{55}{ }^{\text {and upmards }}$	二	二	二	－	－	二	二	－	－	二

No．17．－NON－EFFECTIVES．
Average Anntal Mortalitr per Cent．，at different Ages and at different Periods of Service，amongst the Non－ Commistioned Officers and Men of the Non－Effectives of the European Forces of the late East India Company in Bombar，during the Ten Years 1846－49 and 1851－56．

Ages．	Years of Service．									
	Under 1 Year．	1	2	8	4	Under 5 Years．	$5-$	10－	15－	20 and upwards．
10－20	40－00	$4 \cdot 14$	$1 \cdot 50$	$2 \cdot 73$	$10 \cdot 00$	$5 \cdot 22$	${ }_{2} \cdot 86$	－	－	二
25－30	7.50	10．91	$\cdot 91$	3．75	$7 \cdot 00$	$4 \cdot 64$	$3 \cdot 31$	6.67	－	二
30－35	－	－	－	－	$3 \cdot 75$	$2 \cdot 00$	$4 \cdot 35$	$4 \cdot 16$	$4 \cdot 50$	－
35－40	－	－	－	－	－	－	$1 \cdot 50$	$4 \cdot 35$	${ }^{6 \cdot 43}$	$30 \cdot 30$
40－45	－	二	－	－	－	－	－	$2 \cdot 14$	2.83 5.00	$4 \cdot 50$
45－50	二	二	二	－	－	－	二	二	$5 \cdot 00$	4.39 4.41
$\underset{55}{ } \stackrel{50-55}{\text { and npwards }}$	二	二	二	二	二	－	二	＝	－	$4 \cdot 41$ $5 \cdot 00$

No．18．－EFFECTIVES．

Average Annoal Mortality per Cent．，at different Pemons of Service，amongst the Non－Commissioned Officfrs and Men of the Effectives of the European Forces of the late East India Company in Bombay， during the Ten Years 1846－49 and 1851－56，showing the Age on enteriag India．

Period of Sertice．	Age on entering India．						
	10－20	15－25	20－30	25－35	30－40	35－45	40－50
0－5 years．	$1 \cdot 33$	$3 \cdot 73$	$4 \cdot 30$	5．28	－	$30 \cdot 00$	－
5－10 ；	6.52	$2 \cdot 88$	$4 \cdot 19$	6.86	－	－	－
10－15	$4 \cdot 58$	4.81	$3 \cdot 90$	$3 \cdot 33$	－	－	－
15－20	－68	$4 \cdot 29$	$4 \cdot 48$	－	－		－
20 and npwarde	37－50	8.05	7－50	－	－	－	－

No．19．－EFFECTIVES AND NON－EFFECTIVES．
Table showing the Proportion per Cent．leaving the Conps annually in the Ten Years 1846－49 and 1851－56，from（1）all Causes，（2）Death，and（3） other Cadses，amongst the Non－Commissioned Offi－ cers and Men of the Effectives and Non－Effectives of the European Forces of the late East India Com－ pany in Bombay，at different Periods of Serince．

Period of Service．	Proportion per cent．leaving the Corps annually．		
	From all Causes．	By Death．	Pensioned，invalided， discharged，transferred to other Corps，\＆c．
0－5 y y ars	$9 \cdot 93$	3.83	6.10
5－10＂	8.95	$3 \cdot 60$	$5 \cdot 35$
10－15＂	14－16	$4 \cdot 48$	$9 \cdot 68$
15－20＂	11.05	$8 \cdot 67$	7－38
20 and apwards	31－29	$5 \cdot 76$	$25 \cdot 53$

No．20．－EFFECTIVES．
Tarle showing the Proportion per Cent．leating the Corps annually in the Ten Years 1846－49 and 1851－56，from（1）all Cadses，（2）Death，and（3） other Causes，amongst the Non－Commissioned Offi－ cers and Men of the Effectives of the European Forces of the late East India Company in Bombay at different Periods of Service．

Period of Service．	Proportion per cent．leaving the Corps annually．		
	$\begin{aligned} & \text { From } \\ & \text { all Causes. } \end{aligned}$	By Death．	Pensioned，invalided， discharged，transterred to other Corps，sc．
$0-5$ years	$9 \cdot 73$	3．84	5.89
5－10＂	8.59	$3 \cdot 60$	$4 \cdot 99$
10－15	14.25	$4 \cdot 53$	9．72
15－20 \＃，	11.35	3． 19	$8 \cdot 16$
20 and upwards	$90 \cdot 60$	10．20	$80 \cdot 40$

No．21．－NON－EFFECTIVES．
Table showing the Proportion per Cent．leaving the Coups annually in the Ten Years 1846－49 and 1851－56，from（1）all Causes，（2）Death，and（3） other Cadses，amongst the Non－Commissioned Offi－ cers and Men of the Non－Effectives of the European Forces of the late East India Company in Bombat， at different Pertods of Service．

Period of Survice．	Proportion per cent．leaving the Corps annually．		
	From all Causes．	By Death．	Pensioned，invalided， discharged，transferred to other Corps，\＆c．
0－5 years	$13 \cdot 37$	8．73	$9 \cdot 64$
5－10	$13 \cdot 20$	$3 \cdot 59$	$9 \cdot 61$
10－1．5 \＃	13.59	$4 \cdot 15$	$9 \cdot 38$
15－20＂	$10 \cdot 10$	$5 \cdot 13$ 4.68	$4 \cdot 97$
20 and upwards	16.83	$4 \cdot 68$	$12 \cdot 15$

No. 22.-EFFECTIVES AND NON-EFFECTIVES.
Table showing the Proportion per Cent. leafing the Corps annolley, from various Catbes, in the Ten Year 1846-4y and 1851-56, amongst the Non-Commissioned Officers and Men of the Effectives and Non-Effectives of the European Forces of the late East India Company in Bombay, at different Periode of Service,

No. 23.-EFFECTIVES.
Table showing the Proportion per Cent. leavivg the Corps annolliy, from various Causes, in the Ten Years 1846-49 and 1851-56, amongst the Non-commissioned Officers and Men of the Efrectives of the European Forces of the late East India Company in Bombay at different Periods of Service.

No. 24.-NON-EFFECTIVES.
Table showing the Proportion per Cent. leaving the Corps annually, from various Catses, in the Ten Years 1846-49 and 1851-56, amongst the Non-Commissioned Officers and Men of the Non-Effectives of the European Forces of the late East India Company in Bombat, at different Periods of Service.

No. 25.-BOMBAY ARTILLERY.
Table showing the Mean Strengti, Deaths, and Anntal Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the Bombay Abtillefy, in the Ten Years 1846-49 and 1851-56.

Years.	Mean Annual Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1846	1,135	103	$9 \cdot 07$
1847	1,236.5	44	$3 \cdot 56$
1848	1,331	31	2:33
1849	1,343.5	97	$7 \cdot 22$
1850	-	* .	*
1851	1,410.5	54	$3 \cdot 83$
1852	1,482	41	$2 \cdot 77$
1853	1,515	39	$2 \cdot 57$
1854	1,517	75	4.94
1855	1,489	66	$4 \cdot 43$
1856	1,461	44	$3 \cdot 01$
$\left.\begin{array}{r} \text { Average of } \\ \text { the } 10 \text { years } \end{array}\right\}$	1,392	59.4	$4 \cdot 27$

No. 26,-BOMBAY ARTILLERY.
Average Annual Rate of Mortality per Cent. amongst the Non-Comyissioned Officers and Men of the Bombay Artillery, at different Ages, in the Ten Years 1846-49 and 1851-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1846-49 and 1851-56.	Average Annual Rate of Mortality per cent.
Total	1,429•7.	594	$4 \cdot 15$
10-15	$1 \cdot 7$	-	-
, 15	$1 \cdot 3$	\cdots	-
. 16	$2 \cdot 0$	\square	-
17	$2 \cdot 3$	1	$4 \cdot 29$
18	$3 \cdot 3$	1	$3 \cdot 00$
19	$5 \cdot 7$	1	1-76
10-20	16.3	3	$1 \cdot 84$
20-25	$359 \cdot 7$	150	$4 \cdot 17$
25-30	$560 \cdot 3$	231	$4 \cdot 12$
30-35	314.3	132	$4 \cdot 20$
85-40	$138 \cdot 7$	65	$4 \cdot 69$
40-45	$37 \cdot 7$	13	$3 \cdot 45$
45-50.	2:0	-	-
50-55	- 7	-	\cdots
55 and upwards	-	-	-

No. 27.-BOMBAY ARTILLERY.
Average Annual Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Bombay Artillery, at different Periods of Service, in the Ten Years 1846-49 and 1851-256.

Period of Service.	Mean Annoal Strength in 3 Years.	Deaths in the 10 Years 1846-49 and 1851-56.	Average Annual Rate of Mortality per cent.
Total	1,429 7	594	4.15
$0-1$ years	173.3	56	$3 \cdot 23$
1-2	126	66	$5 \cdot 24$
2-3	161	62	3.85
3-4	110	51	$4 \cdot 64$
4-5 \quad n	93	45	$4 \cdot 84$
$0-5$ years	. 663.3	280	$4 \cdot 22$.
5-10 \quad.	486.7	192	$8 \cdot 95$
10-15	184	81	$4 \cdot 40$
15-10	$81 \cdot 7$	34	$4 \cdot 16$
2080 apwards	14	t	$5 \cdot 00$

No. 28.-1st BOMBAY EUROPEANS.
Table showing the Mean Strengty, Deaths, and annual Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the lst Bombay. Eurofeans, in the Ten Years 1846-49 and 1851-56.

Years.	Mean Annual Strength.	Deaths in each Year.	Annual Rato of Mortality per cent.
1846	700	113	16•14
1847	800	21	$2 \cdot 63$
1848	903	34	3-77
1849	924.5	62	$6 \cdot 71$
1850	*	*	*
1851	1,013.5	25	$2 \cdot 47$
1852	1,052.5	20	1.90
1853	1,012	21	$2 \cdot 08$
1854	885	34	$3 \cdot 84$
1855	829.5	20	2.41
1856	918	17	$1 \cdot 85$
$\left.\begin{array}{c} \text { Average of } \\ \text { the } 10 \text { years } \end{array}\right\}$. $903 \cdot 8$	36•7	$4 \cdot 06$

No. 29.-Ist BOMBAY EUROPEANS.
Ayerage Annual Rate of Mortality per Cent. amongst the Non-Commissioned Ofricers and Men of the Ist Bombay Europeans, at different Ages, in the Ten Years 1846-49 and 1851-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1846-49 and 1851-56.	Average Annual Rate of Mortality per cent.
Total -	986	367	3.72
10-15	-	-	-
15	$\stackrel{-}{-}$	-	\cdots
16	-	-	\cdots
17	-	-	-
18	$\cdot 6$	-	-
19	$39 \cdot 7$	5	$1 \cdot 26$
10-20	$40 \cdot 3$	5	$1 \cdot 24$
20-25	$309 \cdot 7$	140	$4 \cdot 52$
25-30.	$362 \cdot 7$	102	$2 \cdot 81$
30-35	201	84	$4 \cdot 18$
- 35-40	64	24.	3.75
- 40-45	$7 \cdot 7$	11	14•35
45-50	: 6	1	$15 \cdot 00$
. $50-55$	-	-	-
55 \& upwards	-	-	-

No. 30.-1st BOMBAY EUROPEANS.
Average Annual Mortality per Cent. amongst the Non-Commissioned Officers and Men of the 1st Bombay Eurofeans, at different Periods of Sertice, in the Ten Years 1846-49 and 1851-56.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1846-49 and 1851-56.	Average Annual Rate of Mortality per cent.
Total -	986	367	$8 \cdot 72$
$0-1$ year	176.8	42	$2 \cdot 38$.
1-2 \quad.	$92 \cdot 3$	30	3.25
2-3 "	$42 \cdot 3$	23	$5 \cdot 43$
3-4	6	88	?
4-5	80.3	26	3.24
0-5	$397 \cdot 7$	159	$4 \cdot 00$
5-10	374.7	121	3.23
10-15	142.3	59	4.15
15-20	69	18	$2 \cdot 61$
20 \& upwards	$2 \cdot 3$	10	$4 \cdot 29$

4 C 3

No. 31.-2nd BOMBAY EUROPEANS.
Tafle showing the Mean Strevgth, Deaths, and Anneil Rate of Momtality per Cent. of the NonCommissioned Officers and Men of the 2nd Bombay Euroreans, in the Ten Years 1846-49 and 1851-56.

Years.	Menn Annual Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1846	(765-5	83	$4 \cdot 31$
1847	- 739	52	$7 \cdot 04$
1848	870	20	$2 \cdot 30$
1849	972	21	$2 \cdot 16$
1850	*	*	*
1851	976.5	34	3.48
1852	1,017.	38	$3 \cdot 74$
1853	950.5	30	$3 \cdot 16$
1854	842	20	$2 \cdot 38$
1855	842	26	3.09
1856	910	26	$2 \cdot 86$
Average of the 10 years	\}. 888.45	30	$3 \cdot 38$

No. 32.-2nd BOMBAY EUROPEANS.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the 2nd Bombay Europeans, at different Ages, in the Ten Years 1846-49 and 1851-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1846-49 and 1851-56.	Average Annual Rate of Mortality per cent.
Total -	864	300	$3 \cdot 47$
10-15	-	-	-
15	-	-	-
16		-	-
17	$\cdot 4$	2	$60 \cdot 00$
18 19	.4 18.3	2 3	$60 \cdot 00$ 1.64
10-20	18.7	5	2.68
20-25	$239 \cdot 3$	73	$3 \cdot 05$
25-30	$351 \cdot 3$	109	3-10
30-35	203	87	$4 \cdot 29$
35-40	$46 \cdot 7$. 23	$4 \cdot 93$
40-45	4.7	3	6.43
45-50	$\cdot 3$	-	, -
50-55	-	-	, -
55 and upwards	-	-	-

No. 33.-2nd BOMBAY EUROPEANS.
Aterage Anndal Rate of Mortality per Cent. amongest the Non-Commissioned Officers and Men of the 2nd Bombar Europeans, at different Perions of Service, in the Ten Years 1846-49 and 1851-56.

Period of Service.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1846-49, and 1851-56.	Average Annual Rate of Mortality per cent.
Total -	864	300	$3 \cdot 47$
$0-1$ year	23	19	$8 \cdot 26$
1-2	135	22	$1 \cdot 63$
2-3	$77 \cdot 3$	20	$2 \cdot 59$
3-4	35-7	12	3.36
4-5 "•	67	25	3.73
0-5 years	838	98	$2 \cdot 90$
5-10.	$337 \cdot 3$	119	$3 \cdot 53$
10-15	$141 \cdot 7$	72	$5 \cdot 08$
15-20	46.7	11	$2 \cdot 36$
20 and upwards	$\cdot 3$	-	-

No. 34.-3RD BOMBAY EUROPEANS.
Table showing the Strength, Deatis, and Annoal Rate of Mortality per Cent. of the Non-Commissioned Ofricers and Men of the 3rd Bombay Europeans, in the Three Years 1854, 1855, 1856.

Years ending September 80th.	Annual Strength.	Deaths in each Year.	Annnal Rate of Mortality per cent.
1846	-		
1847	-		\cdots
1848	-	1 -	1 -
1849	-	: -	
1850	-	-	-
1851	-	-	. -
1852	;	-	; - -
1853	, -	-	-
1854	551	14	$2 \cdot 54$
1855	847	8	-94
1856	: 819	10	1-22
Average of the 3 years	739	$10 \cdot 7$	$1 \cdot 44$

No. 35,-3RD BOMBAY EUROPEANS.
Average Annual Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the 3rd Bombay Europeans, at different Ages, in the Three Years $1854,1855,1856$.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 3 Years 1854-5-6.	Average Annual Rate of Mortality per cent.
Total -	789	32.	$1 \cdot 44$
10-15	2	-	一
15 16	- 6	-	二
17	-	-	\cdots
18	-	-	-
19	$48 \cdot 3$	2	1.38
10-20	- 51	2	1.31
20-25	441.6	9	-68
25-30	178	15	$2 \cdot 81$
30-35	$49 \cdot 7$	4	$2 \cdot 68$
35-40	13.7	2	$4 \cdot 88$
40-45	5	-	-
45-50	-	-	. -
50-55	-	-	-
55 and upwards	-	-	-

No. 36.-3rp BOMBAY EUROPEANS.
Average Anneal Mortality per Cent. amongst the Non-Commissioned Officers and Men of the 3rd Bombay Europeans, at different Periods of Service, in the Three Years 1854, 1855, 1856.

Period of Service.	Mean Annual Strength in 3 Years	Deaths in the 3 Years 1854-5-6.	Average Annual Rate of Mortality per cent.
Total -	739	32	1.44
0-1 year	$239 \cdot 3$	13	1.81
1-2	$239 \cdot 3$	5	- 70
2-3 ,	133•7	2	-50
$3-4$	$6 \cdot 7$	-	-
4-5	$11 \cdot 3$	1	$2 \cdot 94$
$0-5$ years.	$630 \cdot 3$	21	$1 \cdot 11$
5-10 \%	$70 \cdot 0$	7	$3 \cdot 33$
10-15	$26 \cdot 0$	2	$2 \cdot 56$
15-20 ",	12.7	2	$5 \cdot 26$
20 and upwards	-	-	F

- No. 37.-TOWN MAJOR'S LIST.

Table showing the Mean Strengte, Deathes, and annual Rate of Mortality per Cent. of the NonCommissioned Officers and Men of the Town Major's Non-Effective List, in the Ten Years 1846-49 and 1851-56.

Years.	Mean Annual Strength.	Deaths in each Year.	Annual Rate of Mortality per cent.
1846	$852 \cdot 5$	25	7.09
1847	370	15	4.05
1848	867.5	8	$2 \cdot 18$
1849	371	23	6.20.
1850	*	*	*
1851	366	11	$3 \cdot 01$
1852	$356 \cdot 5$	20	$5 \cdot 61$
1853	363	6	$1 \cdot 65$
1854	-372	23	6.18
1855	$880 \cdot 5$	13	3-42
1856	401	16	3.99
$\left.\begin{array}{c} \text { Average } \\ \text { of the } \\ 10 \text { years } \end{array}\right\}$	870.0	16.	$4 \cdot 32$

No. 38.-TOWN MAJOR'S LIST.
Average Anndal Rate of Mortality per Cent. amongst the Non-Commissioned Officers and Men of the Town Major's Non-Effective List, at different Ages, in the Ten Years 1846-49 and 1851-56.

Ages.	Mean Annual Strength in 3 Years.	Deaths in the 10 Years 1846-49 and 1851-56.	Average Annual Rate of Mortality per cent.
Total -	383.7	160	417
10-15	$\cdot 7$	-	-
15	$1 \cdot 7$	-	-
16	8	-	-
17	1*3	-	-
18	$2 \cdot 3$	-	-
19	$1 \cdot 7$	-	-
10-20	$10 \cdot 7$	-	-
20-25	30	14	$4 \cdot 67$
25-30	$85 \cdot 3$	34	3.98
30-35	94.4	38	$4 \cdot 03$
35-40	$69 \cdot 3$	37	5.34
40-45	$50 \cdot 3$	18	3.58
45-50	30	13	$4 \cdot 33$
50-5.5	$11 \cdot 7$	5	$4 \cdot 29$
55 and opwards	2	- 1	$5 \cdot 00$

No. 39.-TOWN MAJOR'S LIST.
Average Anntar Mortatity per Cent. amongst the Non Commissioned Officers and Men of the Town Majoris Non-Effective List, at different Periods of Service, in the Ten Years 1846-49 and 1851-56.

\qquad

BENGAL-ENGLAND_Diseases.
Table 1.-Showing the Deaths and Anntal Rate of Mortality to $1,000,000$ Strengti, in the Sixteen Years 1830-45, amongst the Non-Commissioned Officers and Men of the whole of the European Fonces in the Presidency of Bengal; and the Deates and Annuar. Rate of Mortality to 1,000,000 Males living of the Age 10-45 in Evgland, in the Seven Years 1848-54.

Nors. - In calculating the mortality, a correction han been made for the disoases not specified by distributing them proportionally over the
denths from the various specilied causes.

PRESIDENCY OF BENGAL.-Diseases.
Table 2.-Showing the Number of Deatas by different Diseases, and the Average Anncar
Mortality to $1,000,000$ Strength, in the Sixteen Years 1830-45.

Notr-In oalculating the mortality a correction has been made for the causes not specifed, by distributing them proportioually over the various specified calues of death. The it
under the notice of the medical oflivers.

PRESIDENCY OF BOMBAY.-Diseases.
Table 3.-Showing the Deates and Annual Pate of Mortality to $1,000,000$ Strengtif, in the Sixteen Years, $1830-45$, by different Diseases amongst the Non-Commissioned Officers and Men of the whole of the European Forces in the Presidency of Bombay.

Strength in the 16 years, 1830-45

-45	-	-
-45	\vdots	\vdots

$\frac{-103,702}{-5,585}$

PRESIDENCY OF BENGAL.--Diseaseg.
Table 4.-Showing the Number of Deaths among the Non-Commissioned Officers and Men of the whole of the European Forces in the Presidenct of Bengal by different Disfases, for each of the 8 Years 1830-37.

Strength in 1830, 12,589; 1831, 12,590; 1832, 12,377; 1833, 11,081; 1834; 11,598; 1835, 11,364; 1838, 11 1; 598; 1837, 11,908.

Norp-In (qalculatinp the mortality a correction has been made for the causes not specifed, by distributing them proportionaly ovar the various the notice of the medical officera.

PRESIDENCY OF BENGAL.-Diseases.

Table 5.-Return showing the Number of Deaths among the Non-Commissioned Officers and Men of the whole of the Eurofean Forces in the Presidency of Bengal by different Diseases for each of the 8 Years 1839-45. ".

Strength in 1838, 11,221; 1839, 10,852; 1840, 13,506; 1841, 14,964; 1842, 17,695; 1843, 17,986; 1844, 16,548; 1845; 15,315.

Note-In ooleulating the mortnity a correction has green made for the cinues nnt specifed, by distributing them proportionally over the parious potice of the modical officurs.

PRESIDENCY OF BOMBAY.-Diseases.

Table 6.-Showing the Strength of the whole of the European Forces in the Presidencar of Bombay during each of the Tears 1830-45 inclusive, and also the Deaths from different Diseases in the same Years.

Table 6.-continued.

No．7．－Annual General Return of Sick and Wounded of the Honorable Company＇s Native Troops，in the Bengai and Norte－Western Provinces from 1st April 1852 to 31st March 1853.

	Classes of Diseases．																
	它											学	总			嵒	＋
Remained sick on lst April 1852. Admitted during the year （attacks）．	$\begin{array}{r} 1,180 \\ 82,864 \end{array}$	$\begin{array}{r} 87 \\ 592 \end{array}$	$\left\|\begin{array}{r} 136 \\ 2,603 \end{array}\right\|$	245	244 15,090	.2 587	38 464	8 104	389 5,242	308 8,461	759 17,837	310 7 7,515	28	45 \vdots 1,542	120 2,737	206 4,558	$\begin{array}{r} 3,848 \\ 145,469 \end{array}$
Total treated－－	84，044	679	2，739	259	15，334	589	502	112	5，631	3，769	18，596	7，825	30	1，587	2，857	4，764	149，317
Discharged cured during the year．		553	2，290	217	13，861	277	395	72	4，954	3，438	17，804	7，355	28	1，507	2，719	4，181	140，669
Transferred during the year－	1，348	11	133	13	510	5	25	9	269	83	157	120	－	13	34	258	2，988
Invalided duting the year－	38	－	16	1	87	－	5	1	40	8	11	）	2	3	1	17	298
Died during the year－－－	615	62	196	17	434	295	41	27	54	17	25	47	－	2		107	1，939
Remaining on 31st March	1，025	53	104	11.	442	12	36	8	314	223	599	295	－	62	103	201	3，483
Total treated－	84，044	679	2，739	259	15，334	589	502	112	5，631	3，769	18，596	7，825	30	1，587	2，857	4，764	149，317

$$
\begin{aligned}
& \begin{array}{l}
\text { Average monthly strength during the year - } \quad-\quad 123,143 \\
\text { Average daily sick }
\end{array} \\
& \text { Ratio per cent. of sick (attacks of sickness) to well } \quad-121 \cdot 25^{*} \\
& \begin{array}{lll}
\text { of deaths to disease ", } & - & - \\
\text { of deaths to strength ", } & - & -50
\end{array} \\
& \begin{array}{l}
\text { The average sick at the beginning and end of the term to } \\
100 \text { of mean strength was } \quad 2.97
\end{array}
\end{aligned}
$$

＊This means the proportion of attacks of sickness＋the sick remaining to 100 of mean strength．
The proportion treated to 100 strength was really 118.29 ；the number treated being nearly represented by the mean of the numbers admitted and discharged，including dead，during the year．

No．8．－Table showing the Ratio per Cent．to Strength of Attacks，Remaining Sick，Deaths，Invalided， and Thansferred，from different Classes of Diseases of the late East India Company＇s Native Troops in the Bengal and North－Western Provinces，from 1st April 1852 to 31st March 1853.

Classes of Diseases．	Ratio per cent．to Strength．				
	Attacks．	Remaining sick．＊	Deaths．	Invalided．	Transferred．
All discases－－	118．132	2．976	1.574	－192	2．426
Fevers－－	67－291	－895	－499	－031	1.095
Eruptive fevers－－－－	$\cdot 481$	－057	－ 050	－	－009
Epidemic cholera－－	$\cdot 477$	－006	－240	－	－004
Diseases of the stomach and bowels ：－	12．254	－279	－352	－071	－414
Diseases of the liver－．－	－199	－010	－014	－001	－011
Rheumatic affections	$4 \cdot 257$	－285	－044	－032	－218
Venereal affections	$2 \cdot 811$	－216	－014	－006	－067
Diseases of the eye	1•252	－043	－002	－002	－011
Diseases of the skin	$2 \cdot 223$	－091	\rightarrow	－001	－028
Abscess and ulcer	14＊485	－ 551	－020	－009	－127
Diseases of the brain	－ 377	－030	－033	－004	－020
Diseases of the lungs	2．114	－097	－159	－013	－108
Dropsies－－－－	－084	－004	－022	－001	－007
Other diseases－	$3 \cdot 701$	－ 165	－087	－014	－210
Wounds and injuries－－－	6．103	－246	－038	－006	－097
Punished－－－－－－	－023	－001	－	－001	－

＊The ration in this column are calculated from the mean of the numbers remaining sick at the beginning and at the end of the year thus ：－
．．．．．．．．Remaining sick（all diseases）on 1st April 1852

$$
\begin{aligned}
& \text { - 3,848 } \\
& \text { - 3,483 } \\
& \text { 2) } 7,331 \\
& \xrightarrow{\mathbf{3 , 6 6 5 \cdot 5}}
\end{aligned}
$$

Mean nambers remaining sick
Tiey are therefore only approximative results，serving to illustrate the utility of such information as might have been deduced from weekly enumerations of the sick remaining from the several diseases．The classification is defective，and this also impairs the utility of the Indian Returns．

MADRAS－1848．
No．9．－Table showing the Proportion per Cent．of Deaths to Strengti amongst Edropeaf and Native Trodps，at different Ages．

ars of Age	－	－	2			25			30			35			40			45			50			Above 50			
				Natires．			Nativer．			Natives．			Natives．		品曾品	Natives．			Natives．			Natives．			Natives．		
				Mindoos．			$\begin{aligned} & \text { oid } \\ & \text { 荷 } \\ & \text { } \end{aligned}$									$\begin{aligned} & \text { 安 } \\ & \text { 荷 } \\ & \text { 品 } \end{aligned}$			感				它宫		$\begin{aligned} & \text { 关 } \\ & \text { 总 } \\ & \text { 品 } \end{aligned}$		
－			＇877	${ }^{7} 75$	$\cdot 760$	1.667	－983	$\cdot 759$	1.886	1.023	1－086	2．150	1＇618	－869	3．411	1.509	1－088	$2 \cdot 000$	$1 \cdot 716$	1．868	－	1.858	－019	－	$1 \cdot 312$	1．168	$1 \cdot 728$
			5.405	1－562	${ }_{1}^{1.562}$	1.234 4.824	$\cdot 353$ 1.098	－694	3.813 2.010	－ 405	－555	$4 \cdot 320$	－ 1203	$1 \cdot 941$	$4 \cdot 761$ 8.419	1149	－	二	二	二	二	－	二	二	二	－	1.399 3.410
－	－		${ }^{5} 2 \times 2 \times 6$	$1 \cdot 400$	$1 \cdot 207$	1－823	4.761	1－779	${ }_{1}$	$1 \cdot 731$	$2 \cdot \overline{012}$	${ }_{1} 1694$	$7 \cdot 196$	${ }^{-} \cdot{ }_{552}$	$4 \cdot 815$	$1 \cdot 913$	2－222	－	3．184	4－166	二	$4 \cdot 819$	$1 \cdot 204$	二	$2 \cdot 857$	5．263	$1 \cdot 850$
－－				$\stackrel{3}{137}$	－ 2.83	－992	$\cdot 284$	$\cdot 436$	$1 \cdot 611$	1.028	1.323	$3 \cdot 174$	$2 \cdot 123$	1.013	4.878	1.538	$1 \cdot 282$	$33 \cdot 333$	－ 858	2.325	－		3.12 .5	－	8．080	7－142	1－325
－：			－ $\begin{aligned} & 2 \cdot 142 \\ & 1.015\end{aligned}$			2．631	－ 555	－671	1＇455	－ 424	$\cdot 913$	$2 \cdot 419$	${ }_{-}^{456}$	${ }^{\cdot} 769$	6．0．110	1－652	1－162	－	1．136	$4 \cdot 317$	二		6	二	二	－	$2 \cdot 177$
P Porce	－		${ }^{-819}$	－238	－ 830	${ }^{2} \cdot 6185$	－	${ }_{-} \cdot 234$	3．375	－988	${ }^{-685}$	2．369	310 1479	－ 11381	$\stackrel{4}{4} \cdot 8.898$	$1 \cdot 4 \pm 2$	$\cdot 732$	－	－ 1.293	8.157 1.219	二	5．555	1－20s	二	－	二	－ 8.679
	：		－	－309	－983	1－234	－762	－643	1•123	－689	－ $\mathrm{H} \times 2$	$2 \cdot 600$		－851	3．703	－	${ }_{-606} \cdot 6$	二	4.761 1.030	－869	二	$5 \cdot 769$	8．$\overline{202}$	二	－347	－	1－355
－	－		－	1.030	－		－887	$1 \cdot 9$	2．777	1．621	1－500	二	1－1：3	－854	二		－740	－		$1 \cdot \overline{666}$	二	二	22	二		－	－934
	：	－	－	8．053		－	$1 \cdot 123$ 1.444	1.694 $3 \cdot 636$	－	.785 1.678	二	－	$3 \cdot 305$	二	－	3．669	$3 . \overline{125}$	－－	$4 \cdot \overline{477}$	二	－	二	$\stackrel{-}{\square}$	－	－	二	－

No．10．－Table bhowing the Proportion per Cent．of Deaths to Strength amongst European and Native Troops，at different Peniods of Service．

'SANITARY STATISTICS OF HER MAJESTY'S REGIMENTS SERVING IN INDIA.

CONTENTS.

SUMMARY OF TABLES.

INDEX TO THE STATIONS.

4 E 2

MEMORANDUM.

The Admissions, Discharges, and Deaths of Her Najesty's Troops in India are entered regimentally in the Quartenly Returns of Sick, furnished by the Principal Medical Officer in each Presidency, and it has in consequence been found in muny instances impossible to allot them to the actual stations at which they may have occurred. Thus, the sick of a regiment are occasionally entered at the station of the head quarters, although from other evidence it would appear that some portion of the corps was on detached duty.

Regiments are often returved as occupying two or
more stations during the period, without the details of each station being kept separate; in such cases the numbers have been added to the Tables "Troops en route, \&c.," as not being assignable correctly to any station.

Several clerical errors have also been found to exist in the original documents, which there are now no means of correcting.

It will, therefore, be evident that it has only been possible to present in these Tables a near approximation to the desired stational information.

SANITARY STATISTICS OF HER MAJESTY'S REGIMENTS SERVING IN INDIA.

No. 1.
BENGAL.
Presidentlal Returns,-European Troops-Her Majesti's Regiments.-Non-Commissioned Officers and Men.
(a.)-SUMMARY OF ALL THE STATIONS.

Stations.		Number of Years under Observation.	Aggregate Strength.	Mean Number constantly Sick in Hospital.	$\begin{aligned} & \text { Admissions } \\ & \text { into } \\ & \text { Hospital. } \end{aligned}$	Discharged from Hospital.	Deaths in and out of Hospital
Meerut	-	10	11,936	101	20,674	19,989	450
Umballa			13,099	102	20,215	19,581	533
Ferozepore	-	"	7,941	76	16,827	16,2.5.5	446
Lahore	-	"	9,214	91	-22,631	21,770	725
Fort William Landour	-	"	6,077	54	11,453	11,105	577
${ }_{\text {Lem }}$ Landour ${ }^{\text {a }}$		"	1,103	15	2,188	2,098	30
Troops en roate, \&c.	-	"	25,426	181	41,614	41,498	1,309
Dinapore	-	9	7,018	72	13,406	12,773	446
Joilundar	-	"	6,472	62	12,788	12,684	230 !
Darjeeling	-	"	642	6	837	798	26
Wuzerabad	-	8	10,908	110	17,349	17,084	428
Rawul Pindi	-	"	7,136	70	17,317	17,073	215
Peshawur	-	\because	13,393	193	50,986	49,773	843
Kussomlie	-	"	3,521	34	5,928	5,739	135
Sealkote	-	7	4,562	47.	7,881	7,706	120
Agra -	-	"	3,790	40	7,836	7,559	160
Dum Dum	-	"	1,528	17	2,671	2,412	120
Cawnpore	-	"	4,973	73	12,932	12,473	455
Allahabad	-	"	816	7	1,122	1,078.	83
Chinsurah	-	6	692	5	829	805	25
Dugshai	-		4,311	58	7,620	960	165
Murree	-	"	425	13	958	922	38
Kurrachee	-	4	572	8	680	676	19
Subathoo	-	3	439	14	681	642	22
Govindghar	-	2	107	2	187	186	1
Berhampore	-	"	146	4	140	116	9
Basid Khail	-	1	43	-25	8	10	-
Gbazepore	-	"	404	31	722	668 .	19
Lucknow	-	"	628	89	836	840.	81
Totals	-	- -	147,322	1,525*25	299,316	291,273	7,800

ANNUAL AVERAGES.

'No. 2.

BENGAL.-CAVALRY.

Prestdential Rettrns --European Troops-Her Majesty's Regrments.-Non-Commissioned Qrficers and Men.
Aggregate Streugth $-\quad . \quad-\quad 14,681$

Return showing (c.) the Number of Attacks of Siceness; (x.) the Number Discearged to Duty; and (ㅍ.) the Number of Deaths by different Diseases.

No. 2.-Bengad ; Cavalry. Presidential Returns. European Troops; H. M. Regiments-continued.

No. 3.
BENGAL-INFANTRY.
Presidential Returns.-European Troops-Her Majesty’s Regiments.-Non-Commissioned Offickrs and Men.

$$
\text { Aggregate Strength }-\quad-\quad-\quad-\quad-132,643 .
$$

Return showing (c.) the Number of Attaces of Siceness; (2.) the Number of Disciarged to Duty ; and (r.) the Number of Deaths by different Diseases.

No. 3.-Bengal ; Infantry. Presidential Returns. European Troops; H. M. Regiments-continued.

No. 4.

BOM-BAY.

Presidential Returns.-Ebropean Thoops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

ANNUAL AVERAGES.

	Average Annual Strength.	Number constantly Sick.	Annual Average.		
			- Admitted.	Discharged.	Deaths.
Stations occupied during 10 years	2,835	-	5,020	4,990	70
" 9 "	1,178	-	2,157	2,103.	40
" 8.'	397	-'	822	812	19
-" 6 "	1,463	-	2,512	2,577	36
\# $\quad 5$	420	-	487	. 478	7
" 4 "	432	-	1,007.	1,009	15
. 1 "	854	-	2,207	2,072	53
$\left.\begin{array}{c}\text { Average annual Results for whole Presidency } \\ \text { of Bombay }\end{array}\right\}$	7,579	400	14,212	14,041	240

- Return showing the Average Daily Sice of the Troops serving in the Presidency of Bombay during the 10 Years 1847-56.

No. 5.

BOMBAY-CAVALRY.

Presidential Retcrns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Retiren showing (c) the Number of Attacks of Siceness; (\mathbf{z}) the Number Discharged to Dutt; and (玉) the Number of Deaths by different Diseases.

No. 5.-Bombay; Cavalry. Presidential Returns. European Troops; H.M. Regiments-continued.

No. 6.

BOMBAY.-INFANTRY.

Yresidential Returns-European Troops,-ILer Majesty's Regiments,-Non-Commissioned Officers and. Men.

Aggregate Strength \qquad - 49,038.

Retcin showing (c) the Number of Attacks of Sickness; (x) the Number Discharged to Dutt; and (\mathbf{F}) the Number of Deaths by different Diseases.

No．6．－Bomhay；Infantry．Presidential Returns．European Troops ；．H．M．Regiments－continued．

$\begin{aligned} & \text { 息 } \\ & \text { O } \end{aligned}$	Diseases．	Five Years， 1847 to 1851.			Five Years， 1852 to 1856.			Total for 10 Yeara．			Annual Ratio per 1000 Mean Strength．	
			$\begin{gathered} \text { (玉.) } \\ \text { No...is- } \\ \text { charged } \\ \text { to Duty. } \end{gathered}$	$\begin{array}{\|c} (\mathbf{P} .) \\ \text { No. } \\ \text { Oeaths } \\ \text { Deat } \end{array}$			$\begin{gathered} \text { (T.) } \\ \text { No. } \\ \text { Nof } \\ \text { Deaths. } \end{gathered}$		（ㅍ．．） No．dis－ charged to Duty． 1		Attacked．	Died．
II．	Order 1．－Diathetic Dis．											
	Gout - - - - Lumbago - - - Dropsy - - -	－ 114	709 47	$\xrightarrow{-1}$	1, 216 55	11 218 49	$\overline{-}_{8}$	\} 440	424	18	$8 \cdot 97$	$\cdot 37$
	Order 2．－Tubercular Dis．											
	Scrofula	283	280	1	154	149	2	）			－	
	$\underset{\text { Morbus Coxarius }}{\text { Phthisis }}$	6 107	8 51 51	－ 57	4 112	47	-36	\} 728	626	99	14．85	2.02
	Hæmoptysis ．－－	107 30	28	1	112 32	29	36 2					
．III	Order 1.											
	Cephalitis－－	89	89	－	372	368	1	7				
	Vertigo－－	3.	3	－	－	－	－					
	Apoplexy－	75	31	50	45	23	20					
	Paralysis－	62	56	8	97	86	11					
	Odontalgia－	19	22	－	18	18	－					
	Insanity Neuralgia －	$\begin{array}{r}103 \\ 16 \\ \hline\end{array}$	114 15	－	92 14 14	82 14	-1	\} 1,630	1，545	98	$33 \cdot 74$	$2 \cdot 00$
	Epilepsy	89	90	1	81	82	1					
	Otitis	234	235	－	174	172	－					－
	$\begin{array}{lll}\text { Chorea } \\ \text { Dysecea } & \text {－} & \text {－}\end{array}$	－17	－18	二	1 14		二					
	Brain Disease，\＆c．－	11	10	2	4	3	2					
	Order 2.											
	Trismus Idiopathicas－	1	－		－	－	－					
	Pericarditis－－	198	190	5	298	266	26					
	Aneurism－	2	1	1	36	24	12	\} 823	767	48	16．78	－98
	$\underset{\text { Vearix Disease，\＆c．}}{\text { Ve }}$	29 123	30 118	－ 3	81 55	82 56	二					
	Order 3.											
	Epistaxis－	11	10	1	8	9	－	）				
	Laryngitis－－	－	－	－	1	17	－					
	Bronchitis－－	186	178	9		172						
	${ }_{\text {Pleurisy }}^{\text {Prath }}$－	$\begin{array}{r}44 \\ 2 \\ \hline\end{array}$	46	1	$\begin{array}{r}73 \\ 1 \\ \hline\end{array}$	75	－1	\} 911	879	39	18.58	－79
	Hydrothorax－	2	2 120	-10	$\begin{array}{r}1 \\ 80 \\ \hline\end{array}$	76	-6					
	Pneumonia－	139 72	120 71	10 3	121	118	4	）				
	Order 4.											
	Dyspepsia－	1，594	1，593	2	1，716	1，701	3					
	Gastritis	28	28	，	42	40	$\stackrel{2}{2}$					
	Enteritis－	25	21	3	13	10						
	Peritonitis－－	27	21	5	13 40	7 29	5 4					
	$\underset{\text { Ascites }}{\text { Colonatis }}$－－	13	7	4	40	\sim_{-}^{29}	${ }^{4}$					
	Hernia－－	92	so	二	－45	49	二					
	Ileas and Colic	738	713	1	552	542	－					
	Prolapsus Ani－	11	11	－	11	$-^{12}$	－	10，997	10，734	203	$223 \cdot 74$	$4 \cdot 14$
	Stricture of Rectum－	－ 5		二		-2	二	10，097			22374	
	Stricture of Fistula Intestine－	－26	－22	二	18	2 18	二					
	Obstipatio－	489	490	1	261	261	2		－	．		
	Hzemorrhois－	298	312	－	208	208	－					
	Hepatitis－	2，106	1，995	108	1，564	1，487	49					
	Jaundice ${ }^{\text {Spleen Disease }}$	226	230		105		${ }^{5}$					
	$\begin{aligned} & \text { Spleen Disease } \\ & \text { Hæmatemesis - } \quad: \quad \text { - } \end{aligned}$	326 $\times 15$	332 15	$-^{2}$	439 9	437 8	－2		＊			
	Obder 5.											
	Nephritis	29	30	1	54							
	Enuresis	17	17	－	16	14	－					
	Ischuria－	－	－	－	30	31	二	\} 183	178＊	3	3．73	－ 06
			${ }^{29}$	二	－2	－2	二					
	Stone •－	1	1	－	－	－	－					
	Cystitis											

No. 6.-Bombay ; Infantry. Presidential Returns. European Troops; H.M. Regiments-continued.

No. 7.

MADRAS.
——,
Presidential Returns.-European Troops-Her Majesty's Reglaents.-Non-Conahissioned Officers and Men.

ANNUAL AVERAGES.

Na. 8.

MADRAS.-CAVALRY.

Presidential Retorns.-European Troops-Her Majesty's Regiments-Non-Commissioned Oruichrs and Men.

Aggregate Strength - - - - \quad 5,483.

Retern showing (c) the Number of Attacks of Sickness; (x) the Number Discharged to Duty ; and (F) the Number of Deates by different Diseases.

No. 8.-Madras ; Cavalry: Presidential Returns.' European Troops ; H. M. Regiments-continued.

No. 9.

MADRAS-INFANTRY.
Pregidential Returns,-European Troops-Her Majesty's Regments,-Non-Commsbioned Officers and Men,
Aggregate Strength • - . . 36,707

Return showing (c.) the Number of Attacks of Siceness ; (x.) the Number Dischabged to Dety; and (\mathbf{F}.) the Number of Deaths by different Drseases.

No. 9.-Miadras; Infantry. Presidential Returns. European Troops; H. M. Regiments-continued.

No. 9.-Madras ; Infantry. Presidential Returns. European 'Troops; H.M. Regiments-continued.

No. 10.

BURMAH.

General Retorns,-European Troops-Her Matesty's Regrments.-Non-Commissioned Officers and Men.
(A.)-SUMMARY.

Years.	REGIMENTS.	Annual Mean Strength daring the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
1852	Her Majesty's Troops -	1,635	169.25	4,328	. 3,679	376
1853	" "	1,703	$220 \cdot 25$	4,687	4,396	436
1854	" "	- 960	$54 \cdot 75$	1,326	1,304	30
1855	" "	- 1,845	$106 \cdot 5$	2,410	2,311	89
1856	"	- 2,223	185•75	3,667	2,470	111
	Total	- 8,366	736*	16,418	15,160	1,042

No. 11.

TROOPS ON FIELD SERVICE:

General Returns.-Edropran Troops-Her Majesty's Reginents.-Non-Commissioned Officers and Men.
(A.)-SUMMARY.

Year.	Kegiments.		$\left\lvert\, \begin{gathered} \text { Annual Mean } \\ \text { Strength } \\ \text { during the } \\ \text { Year. } \end{gathered}\right.$	Mean Number constantly sick in. Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths,
1848	Her Majesty's Troops	-	1,898	104	3,415	3,403	173
1849	"	-	2,702	127	5,322	4,654	484
1850	"	-	27	-	3	-	-
1852	" "	-	$176{ }^{\text {* }}$	8'75	138	168	1
1854	"	-	184	$5 \cdot 5$	244	314	6
1856	" \#	-	278	-	396	387	- 4
	Total	-	5,265	-	9,518	8,926	668

No. 12.
BURMAH.
General Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Aggregate Strength for 5 Years. \qquad - - 8,366.

Return showing (c.) the Number of Attaces of Sickness; (z.) the Number Discharged to Duty ; and (\mathbf{r}.) the Number of Deaths by different Diseases.

No. 12.-Burmah. General Returns. European Troops; H. M. Regiments-continued.

No. 13.

TROOPS ÓN FIELD SERVICE.

General Returns--European Troopg-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
Aggregate Strength for 6 Years - - - $\quad 5,265$

Return showing (c.) the Number of Attacks of Siceness ; (\mathbf{m}.) the Number Discharged to Duty ; and (5 .) the Number of Deaters by different Diseases.

No. 13.-Troops on Field Service. General Returns. European Troops ; H.M. Regiments-cont.

No. 14.

BENGAL_UMBALLA STATION.-CAVALRY.

Stational Returns,-Eurofean Troops-Her Majesty's Regments,-Non-Commissioned Officers and Men.
$\begin{array}{lll}\text { Aggregate Strength for } 10 \text { Years } \\ \text { Mean Annual Strength }\end{array} \quad: \quad . \quad . \quad 6,097$

Returis showing (c.) the Number of Aitacks of Sickness; (m.) the Number Discharged to Duty ; and (F.) the Number of Deaths by different Diseases.

No. 14.-Bengal ; Umballa Station ; Cavalry. Stational Returns. European Troops ; H. M. Regts.-cont.

BENGAL.—MEERUT STATION.-CAVALRY.

Stational Returns.-European Troops-Hfer Mayesty's Regments.-Non-Commissioned Officers and Men.

```
Aggregate Strength for 6 Years -
Mean Annual Strength
630
```

Return showing (c.) the Number of Attaces of Sickness; (\mathbf{x}.) the Number Discharged to Duty ; and (5.) the Number of Deaths by different Diseases.

4 H 3

No. 15.—Bengal ; Meerut Station ; Cavalry. Stational Returns. European Troops ; H. M. Regts._cont.

* No Cavalry separately accounted for at this Station during the years 1849, 1850, 1855, and 1856.

No. 16.
BENGAL -FEROZEPORE STATION,-CAVALRY.

Stational Retcrns.-Europeas Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Return showing (c.) the Number of Attacks of Sickness ; (x.) the Number Discharged to Duty ; and (x.) the Number of Deates by different Diseases.

No. 16.-Bengal ; Ferozepore Station; Cavalry. Stational Returns. European Troops ; H. M. Regta.-cont.

$\begin{aligned} & \text { 菢 } \end{aligned}$	Diseases.	One Year, 1848.*			Total for 1 Year.*			$\begin{gathered} \text { Annual Ratio per } 1000 \\ \text { of } \text { Mean Strength. } \end{gathered}$	
		(C.) No. of Attacks.	(ㅍ.) No. discharged to Duts.	$\begin{gathered} \text { (ㅍ.) } \\ \text { No. } \\ \text { of } \\ \text { of eaths. } \end{gathered}$	(C.) No. of Attacks.	(F.) No. discharged to Duty.	$\begin{array}{\|c} \text { (2F.) } \\ \text { No. } \\ \text { of } \\ \text { Deaths. } \end{array}$	Attacked.	Died.
III.	Order 2. Pericarditis	1	. -	-	1	-	-	$6 \cdot 13$	-
	Order 3.			:				*	
	Pleurisy Pneumonia	$\begin{aligned} & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	-	\} 4	3	-	24•53	-
	Order 4.				-				
	Dyspepsia. - - -	5	5	-			.		
	Enteritis - - -	1	-	-					
	Meus and Colic - - - -	4	4	-					
	Hæmorrhois Obstipatio	1	1	-	\} 30	26	1	$184 \cdot 06$	$6 \cdot 13$
	Hepatitis - . - -	10	9	1.					
	Jaundice	1	-	-					
	Spleen Disease, \&c. - - -	1	-	-					
	Order 6.								
	Phlegmon - - - -	13	10	-					
	Ulcer - - - - -	7	7		$\} 25$	22	-	153•37	-
	Skin Disease, \&c. - - -	5	5						
V.	Order 1.-Accident or Negligence.				.				
	Contusion - .. - -	9	10	-					
	Fracture	2	${ }_{2}$	-	\} 13	10	2	$79 \cdot 76$	$12 \cdot 26$
	Wounds, Incised - * -	2	2)				
	Order 5.								
	Punitus - - - - Observatio - - - -	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	- 2	-	\} 4	2	-	$24 \cdot 53$	-

* No Cavalry separately accounted for at this Station during the Years 1847, 1849, 1850, 1851, 1852, 1853, 1854, 1855, and 1856.

No. 17:

BENGAL-LLAHORE STATION.-CAVALRY.

Stationar Returns.-European Troops-Mer Majesty's Regiments.-Non-Commissioned Officers and Men.

Aggregate Strength for 2 Years	-	-	-	$\quad 1,059$
Mean Annual Strength	-	-	-	530

Return showing (c.) the Number of Attacis of Siceness; (x.) the Number Discharged to Dutt; and (r.) the Number of Deatzes by different Disfases.

No. 17.-Bengal; Lahore Station ; Cavalry. Stational Returns.' European Troops; H. M. Regts.-cont.

[^26]No. 18.

BENGAL.-EN ROUTE, \&c. \&c.-CAVALRY.

Stational Returns.-European Troops-Her Majesty's Regrments.-Non-Commissioned Officers and Men.

| Aggregate Strength for 3 Years |
| :--- | :--- | :--- | :--- | :--- |
| Mean Annual Strength |$\quad=\quad . \quad . \quad . \quad 825$

Return showing (c.) the Number of Attaces of Sickness ; (e.) the Number Disofarged to Dety ; and (x.) the Number of Deaths by different Diseases.

No. 18.-Bengal ; En Route, \&c. \&ec. ; Cavalry. Stational Returns. European Troops ; H. M. Regts.-cont.

* No Cavalry separately accounted for under this Heading during the Years 1847, 1850, 1851, 1852, 1853, 1854, and 1856.

No. 19.
BENGAL-WUZEERABAD STATION.-CAVALRY.
Stationak Returns.-European Troops-Her Majestr's Regments.-Non-Commissioned Officerg and Men.

Return showing (c.) the Number of Attacks of Sickness; (z.) the Number Discharged to Doty ; and (r.) the Number of Deaths by different Diseases.

No. 19.-Bengal ; Wuzeerabad Station ; Cavalry. Stational Returns. European Troops ; H. M. Regts.-cont.

* No Cavalry separately accounted for at this Station daring the Years 1847, 1848, 1853, 1854; 1855, and 1856.

No. 20.

BENGAL-SEALKOTE STATION.-CAVALRY.

Statlonal Returns.-European Troops.-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Mean Annual Strength


```
-- 158. .
```

Return showing (c.) the Number of Attacks of Siceness; (e.) the Number Discharged to Duty ; and (F.) the Number of Deathe by different Diseases.

No. 20.—Bengal ; Scalkote Station ; Cavalry. Stational Returns. European Troops; II. M. Regts.—cont.

* No Cavalry separately accounted for at this Station except during the Year 1850.

No. 21.

BENGAL_ALLAHABAD STATION.-CAVALRY.

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commisioned Officers and Men.

Mean Annual Strength $\quad . \quad-\quad-\quad-\quad-148$
Retcrn showing (c.) the Number of Attacks of Sickness; (\mathbf{x}.) the Number Discharged to Duty; *and (r.) the Number of Deatims by different Diseases.

* No Cavalry separately accounted for at this Station during the Years 1847 to 1855.

No. 22.
 BENGAL.-KURRACHEE STATION.-CAVALRY.

Stational Returns.-European Troops-Her Majesty's Regiments. - Non-Commissioned Offygers and Men.

Mean Annual Strength

- 156

Return showing (c.) the Number of Attacks of Sickness; (s.) the Number Discharged to Duty; and (F.) the Number of Deaths by different Diseases.

* No Cavalry separately accounted for at this Station during the Years 1847 to 1852, and 1854 to 1856. N.B.-Invalids are included in these Numbers, but the Returns do not enable them to be distinguished.

No 23.
BENGAL.-MEERUT STATION.-INFANTRY.
Stationar Returns,-European Troops-Her Majesty's Regiments,-Non-Commissioned Officers and Men.

```
Aggregate Strength for 10 Years - - . - 8,156
Mean Annual Strength
816
```

Return showing (c.) the Number of Attackis of Sickness; (E.) the Number Discharged to Duty ; and
(\mathbf{z}.) the Number of Deathe by different Diseases.

No. 23.-Bengal ; Mcerut Station ; Infantry. Stational Returns. European Troops ; II. M. Regts.-cont.

BENGAL--UMBALLA STATION,-INFANTRY.

Stational Returns.-European Troors-Her Majesty's Regiments.-Non-Coumissioned Ofbicers and Men.

Rettrn showing (c.) the Number of Attacks of Sickness; (x.) the Number Discharged to Duty ; and (\mathbf{x}.) the Number of Deaths by different Diseases.

No. 24.—Bengal ; Umballa Station ; Infantry. Stational Returns. European Troops; H. M. Regts.-cont.

No. 25.

BENGAL.-FEROZEPORE STATION.-INFANTRY.

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Orficers and Men:
$\begin{array}{lllll}\text { Aggregate Strength for } 10 \text { Years } & - & - & - & -7,778 \\ \text { Mean Annual Strength } & - & - & - & - \\ 794\end{array}$
Retcrn showing (c.) the Number of Attacks of Siceness; (\mathbf{x}.) the Number Discharged to Duty ; and (r.) the Number of Deates by different Diseases.

No. 25.-Bengal ; Ferozepore Station ; Infantry. Stational Returns. European Troops ; H.M. Regts.-cont.

No. 26.
BENGAL-LAHORE STATION-INFANTRY.
Stational Returns.-Edropean Troops-Her Majesty's Regiments.-Non-Commissioned Ofyicers and Men.

Aggregate Strength for 10 Years -	-	-	$-8,155$		
Mean Annual Strength	-	-	-	-	815

Return showing (c.) the Number of Attacks of Sickness; (e.) the Number Discharged to Duty ; and (5.) the Number of Deates by ufferent Diseases.

$4 L$

No. 26.—Bengal ; Lahore Station ; Infantry. Stational Returns. European Troops; H.M. Regts.—cont.

No. 27.

BENGAL-FORT WILLIAM STATION.-INFANTRY.
Stational Retorns.-Etropean Troops-Her Majesty's Regiments.-Non-Commissioned Ufficers and Men.

Aggregate Strength for. 10 Years -	-	-	$-6,077$
Average Annual Strength			

Return showing (c.) the Number of Attacks of Sickness; (z.) the Number Discharged to Duty; and (r.) the Number of Deatis by different Diseases.

No. 27.-Bengal ; Fort William Station; Infantry. Stational Returns. European Troops; II. M. Regts.-cont.

N.B.-Invalids are included in these Numbers, but the Returns do not enable them to be distinguished.

No. 28.

BENGAL-LANDOUR STATION.-INFANTRY.

Stational Retcrns_-Edropean Troops-Her Majesty's Regiments.-Non-Commisgioned Officers and Men.
$\begin{array}{llll}\text { Aggregate Strength for } 10 \text { Years - } \\ \text { Mean Annual Strength }\end{array} \quad \div \quad \div \quad \div 1,103$

Return showing (c.) the Number of Attacks of Siceness ; (x.) the Number Discrarged to Duty ; and (r.) the Number of Deaths by different Diseases.

No. 28.—Bengal; Landour Station ; Infantry. Stational Returns. Eiropean Troops ; H. M. Regtb.meont.

No. 29.
BENGAL--EN ROUTE, \&c. \&a-INFANTRY.

Stational Retorns.-Erropean Troops-Her Majesty's Regiments.-Non-Commishioned Officers and Men.

| Aggregate Strength for 10 Years | - | - | $-24,601$ |
| :--- | :--- | :--- | :--- | :--- |
| Mean Annual Strength - | - | - | - 2,460 |

Retcrn showing (c.) the Number of Attacks of Siceness; (m.) the Number Discharged to Duty; and (F.) the Number of Deates by different Diseases.

No. 29.-Bengal; En Route, \&c. \&c. ; Infantry. Stational Returns. European Troops; H. M. Regts.-cont.

N.B.-Invalids are included in these Numbers, but the Returns do not enable them to be distinguished.

No. 30.

BENGAL-DINAPORE STATION.-INFANTRY.

Stational-Returnsmeuroifan Troops-Her Majesty's Reginents.-Non-Commisioned Officerg and Men.

Aggregate Strength for 9 Years	-	-	-	-	7,018
Mean Annual Strength	-	-	-	-	779

Rettrn ehowing (c.) the Number of Attaces of Sickness; (e.) the Number Discharged to Duty ; and (\mathbf{F}.) the Number of Deaths by different Diseases.

No. 30.-Bengal ; Dinapore Station; Infantry. Stational Returns. European Troops; H.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Year 1855.

No. 31.

BENGAL-JULLUNDUR STATION -INFANTRY.
——

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

| Aggregate Strength for 9 Years | - | - | - | $-6,472$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Mean Annual Strength | | | | |

Return showing (c.) the Number of Attacis of Sickness; (m.) the Number Discharged to Dety ; and (z^{2}.) the Number of Deaths by different Diseases.

No. 31. Bengal ; Jullundur Station ; Infantry. Stational Returns. European Troops ; H.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Year 1847.

No. 32.

BENGAL-DARJEELING STATION.-INFANTRY.

Stational Returns.-European Troops-Her Majestr's Regiments.-Non-Commsíoned Officers and Men.

Return showing (c.) the Number of Attacks of Sickness; (2.) the Number Discharged to Duty ; and (F.) the Number of Deatis by different Diseases.

4 M 3

No. 32.-Bengal ; Darjeeling Station ; Infantry. Stational Returns. European Troops; H. M. Regts.-cone.

* No Troops separately accounted for at this Station during the Year 1847.

BENGAL-WUZEERABAD STATION.-INFANTRY.

Stational Returns.-Edrofean Troops-Her Majesty's Regiments.-Non-Commissiond Officers and Men.

$$
\begin{array}{llllll}
\text { Aggregate Strength for } 8 \text { Years } & - & - & - & -8,615 \\
\text { Mean Annual Strength } & - & - & - & - & -1,077
\end{array}
$$

Return showing (c.) the Number of Attacks of Sickness; (m.) the Number Discharged to Duty; and (\mathbf{x}.) the Number of Deates by different Diseases.

No. 33.-Bengal ; Wozeerabad Station ; Infantry. Stational Returns. European Troops; H.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Years 1847 and 1848

No. 34.
BENGAL.-RAWUL PINDI STATION.-INFANTRY.
Stational Returns--Edropean Troops-Her Majestr's Regiments.-Non-Commissioned Officers and Men.

Aggregate Strength for 8 Years	-	-	-	-	7,136
Mean Annual Strength	-	-	-	-	-
8982					

Retorn showing (c.) the Number of Attaces of Siceness; (z.) the Number Disciarged to Dutt; and (F.) the Number of Deaths by different Diseases.

No. 34.-Bengal; Rawul Pindi Station; Infantry. Stational Returns. European Troops ; H.M. Regts.-_cont.

- No Troops separately accounted for at this Station during the Years 1847 and 1848.

No. 35.

BENGAL.-PESHAWUR STATION.-INFANTRY

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commsisioned Officers and Men.

Return showing (c.) the Number of Attacks of Sicieness ; (e.) the Number Discharged to Duty ; and (F.) the Number of Deates by different Diseases.

No. 35.-Bengal ; Peshawur Station ; Infantry. Stational Returns. European Troops; H.M. Regts.-cont.

[^27]No. 36.

BENGAL-KUSSOWLIE STATION.-INFANTRY

Stational Returns.-Edrofean Troops-Her Majesty's Regiments.-Non-Commssioned Officers and Men.

Return showing (c.) the Number of Attaces of Siciness; (x.) the Number Disciarged to Duty; and (r.) the Number of Deaths by different Drseases.

No. 36.-Bengal ; Kussowlie Station ; Infantry. Stational Returns. European Troops; H.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Years 1849 and 1851.

No. 37.

BENGAL,-SEALKOTE STATION.-INFANTRY.
——
Stational Returns.-Edropean Troops-Her Majesty's.Regiments.-Non-Commissioner Officers and Men.

Return showing (c.) the Number of Attaces of Siceness; (x.) the Number Discharged to Dutt; and (F.) the Number of Deates from different Diseases.

- No. 37.-Bengal; Sealkote Station; Infantry. Stational Returns. European Troops; H. M. Regts.-cont.

* No Troops separately accopnted for at this Station during the Years 1847, 1848, and 1849.

No. 38.

BENGAL.-AGRA STATION.-INFANTRY.

Stational Returns.-Edropean Troops-Her Majesty's Regments_-Non-Commissioned Officers . and Men.

$$
\begin{array}{lllll}
\text { Aggregate Strength for } 7 \text { Years } & - & - & - & -3,790 \\
\text { Mean Annual Strength } & - & - & - & - \\
\hline
\end{array}
$$

Retdrn showing (c.) the Number of Attacis of Sickness; (s.) the Number Discharged to Duty; and (F.) the Number of Deaths by different Diseases.

No. 38.-Bongal; Agra Station; Infantry. Stational Return. European Troops; H.M. Regiments-cont.

* No Troops separately accounted for at this Station during the Years 1850, 1851, and 1856."

No. 39.

BENGAL-DUM DUM STATION.-INFANTRY.
Stational Returns.-European Troors-Her Majesty's Regiments-Non-Commissioned Officers and Men.
$\underset{\text { Mean Annual Strength }}{\text { Aggregate Strength for } 7 \text { Years }} \quad \therefore \quad \therefore \quad \div \quad 1,528$

Return showing (c.) the Number of Attacks of Siceress ; (m.) the Number Discharged to Duty; and (5.) the Number of Deates by different Diseases.

No. 39.-Bengal ; Dum Dum Station ; Infantry. Stational Returns. European Troops ; H. M. Regts.-cont.

* No Troops separately accounted for at this Station during the Years 1847, 1850, and 1851.

No. 40.

BENGAL-CAWNPORE STATION.-INFANTRY.
-
Stational Returns--Eubopean Troops-Her Majéstx's Regiments.-Non-Commissioned Officers and Men,

```
Aggregate Streagth for 7 Years - - - . 4,973
Mean Annual Strength - . . . . 710
```

Retcrn showing (c.) the Number of Attaces of Siciness; (e.) the Number Dibcharged to Duty; and (\mathbf{F}.) the Number of Deaths by different Diseases:

No. 40.—Bengal ; Cawnpore Station; Infantry. Stational Returns. European Troops; H. M. Regts.-cont.

* No Troops'separately accounted for at this Station during the Years 1848, 1849, and 1855.

No. 41.
(2) BENGAL-ALLAHABAD STATION.-INFANTRY.

Stational Retdrns.-Eubopean Troops-Her Majesty's Regidents-Non-Commissioned Officers and Men.

Return showing (c.) the Number of Atfacks of Siceness; (m.) the Number Bischarged to Dety ; and (r.) the Number of Deaters by different Diseases.

No. 41.-Bengal ; Allahabad Station; Infantry. Stational Returns. European Troops; H. M. Regts.icont.

* No Troopa separately accounted for at this Station during the Years 1851 to 1853.

No. 42.
BENGAL.-CHINSURAH STATION.-INFANTRY.
Stationar Returns.-Edropean Troops-Her Majesti'g Regiments.-Non-Comaissioned Officers and Men.

Retery showing (c.) the Number of Attaces of Siceness; (z.) the Number Discharged to Dety; and (\mathbf{P}.) the Number of Deaths by Different Diseases.

No. 42.-Bengal ; Chinsurah Station ; Infantry. Stational Returns. European Troops; M.M. Regte.-cont.

* No Troops separatcly accounted for at this Station during the Years 1848, 1850, i855, and 1856.

Rettran showing (c.) the Number of Attacks of Siceness ; (z.) the Number Discharged to Dutx ; and (r.) the Number of Deaths by different Diseases.

No. 43.-Bengal ; Dugshai Station ; Infantry. Stational Returns. European Troops; H. M. Regts.-conti

* No Troops separately accounted for at thin Station during the Years 1847, 1848, 1849, and 1856.

No. 44.

BENGAL.--MURREE STATION.-INFANTRY.
-
Stafional Returns.-Etropran Troops-Her Majesty's Regments.-Non-Comatssioned Officers and Men.

$$
\begin{aligned}
& \text { Aggregate Strength for } 6 \text { Years } \\
& \text { Mean Annual Strength }
\end{aligned} \quad-\quad=\quad=\quad: \begin{array}{r}
425 \\
\hline
\end{array}
$$

Eeturn showing (c.) the Number of Attaces of Siceness ; (\mathbf{m}.) the Number Discharged to Duti ; and (r.) the Number of Deatas by different Diseases.

No. 44.-Bengal ; Murree Station ; Infantry. Stational Returns. European Troops ; H. M. Regts.-cont.

* No Troops separately accounted for at this Station during the Years 1847 to 1850.

No. 45.
BENGAL-KURRACHEE-INFANTRY.

Stational Returns.-European Troops-Heh Majesty's Regments.-Non-Commissioned úpicers and Men.

Aggregate Strength for 4 Years	-	-	-	-416
Mean Annual Strength	-	-	-	-

Return showing (c.) the Number of Attacks of Siceness; (z.) the Number Discharged to Duty; and. (F.) the Number of Deatrs by different Diseases.

No. 45.-Bengal ; Kurrachee Station ; Infantry. Stational Returns. European Troops; H. M. Regts.acont.

* No Troops separately accounted for at this Station daring the Years 1847 to 1852.
N.B.-Invalids are included in these Numbers; but the Returns do not enable them to be distingaished.

No. 46.

EENGAL--SUBATHOO STATION.-INFANTRY.

Stational Returns.-European Truops-Her Majrsty's Requmants.-Non-Oommssioned Oifycers and Men.

Return showing (c.) the Number of Attaces of Siceness; (z.) the Number Discharged to Duty; and (r.) the Number of Deaties by different Diseases.

No. 46.-Bengal ; Subathoo Station; Infantry. Stational Returns. European Troops; H.M. Regts.-cont.

- No Troops separately accounted for at this Station during the Years 1847 to 1853 and 1856.

No. 47.
BENGAL.-GOVINGHUR STATION.-INFANTRY.
Stational Returns_European Troopg-Her Majesty's Regiments.-Non-Commishioner Officers and Men.

$$
\begin{array}{llll}
\text { Aggregate Strength for } 2 \text { Years } & - & - & - \\
\text { Mean Annual Strength } & - & - & - \\
\hline
\end{array}
$$

Return showing (c.) the Number of Attacks of Sickness ; (z.) the Number Discharged to Duty ; and (\mathbf{F}.) the Number of Deaths by different Diseases.

* No Troops separately accounted for at this Station during the Years 1847 to 1850 , and 1853 to 1856.

No. 48.
BENGAL-BERHAMPORE STATION.-INFANTRY.
Stational Returns.-Eutopean Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Aggregate Strength for 2 Years
Mean Annual Strength $-\quad-146$

Number of Attacks of Sickness; (z.) the Number Discharged to Duty; and (\mathbf{x}.) the Number of Deaths by different Diseases.

* No Troops separately accounted for at this Station during the Years 1847, 1848, 1850, 1851, 1852, 1853, 1854, and 1856.

No. 49.

BENGAL,-BAZID. KHAIL STATION.-INFANTRY.

Stational Returns.-European Troors-Her Majesty's Regiments.-Non-Commissioned Crifcers and Men.

Return showing (c.) the Number of Attacks of Siceness; (e.) the Number Dibcharged to Duty; aid (F.) the Number of Deaths by different Diseases.

* No Troops separately accounted for at this Station excepi during the Year 1854.

No. 50.

BENGAL, GHAZEEPORE STATION,-INFANTRY:
\qquad

Stational Returns.-Eurorein Troops-Her Majesty'z Regments.-Non-Combissioned Officers and Men.

Return showing (c.) the Number of Attacks of Sickness; (m.) the Number Discharged to Duty ; and (\mathbf{r}_{0}) the Number of Deaths by different Diseases.

No. 50.-Dengal ; Ghazeepore Station; Infantry. Stational Returns. European Troops; H.M. Rerts.-cont.

* No Troops separately accounted for at this Station except during the Year 1849.

No. 51.

BENGAL.-LUCKNOW.-INFANTRY.

Stational Retums-European Troops-Mer Majesty's Regiments.-Non-Commissioned Officers and Men.

Mean Annual Strength 629

Return showing (c.) the Number of Attacks of Sickness; (x.) the Number Disciarged to Duty; and (\mathbf{x}.) the Number of Deates by different Diseases.

No. 51.-Bengal ; Lucknow; Infantry. Stational Returns. European Troops ; H.M. Regts.-cont.

[^28]No. 52.

BENGAL-MEERUT.

Stational Returns.-European Troops-Her Majesty's Regments.-Non-Commissioned Ofricers i and Men.
(a.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admissions, Discharges, and Deates.'

No. 53.
BENGAL-UMBALLAA STATION.

Stational Returns.-Eubopean Troops-Her Majegti's Regiments.-Non-Commissioned Officers and Men.
(3.)-Returi showing for each Year the Regiments at the Station, Meak Strength, Number constantly Sick, Admission, Dibcharges, and Deaths.

No. 54.
BLENGAL.-FEROZEPORE STATION.
Stational Returns.-Erropfan Troops-Her Majesty's Regments-Non-Commissioned Officers and Men.
(a.)-Return showing for each Year the Regments at the Station, Mean Strengti, Number constantly Sick, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.				Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.			Strength.					
1847	53rd Foot	-	-	923	923	$90 \cdot 25$	1,648	1,602	69
1848	14th Dragoons	-	-	$163 \cdot 50$		24	379	313	12
1848	32nd Foot	-	-	301	\} 464 \{	25.5	912.	841	18
1849	10th Foot	-		$726 \cdot 5$) 791 \{	$69 \cdot 5$	1,161	1,198	41
1849	Detachments	-		$64 \cdot 5$		$8 \cdot$	133	122	11
1850	87th Foot	-		575	575	68,	1,872	1,827	62
1851	87th Foot	-	-	$890 \cdot 25$	\} $1,044\{$	95	1,779	1,616	61
1851	Recruits	-		$153 \cdot 25$	$\} 1,044\{$	12.25	446	456	10
1852	87th Foot	-	-	944.75		$62 \cdot 5$	1,291	1,254	24
1852	Detachments	-	-	7.25	\} $952 .\{$	-	14	14	-
1853	87th Foot	-	-	716	716	48	808	785	12
1854	70th Foot	-	-	748	748	66	1,665	1,417	17
18.55	70th Foot	-	-	$843 \cdot 75$		$74 \cdot 75$	1,479	1,630	7
1855	Detachments	-	-	16.	860	$11 \cdot 75$	53	53	-
1856	61st Foot	-	-	$234 \cdot 5$		$30 \cdot 75$	1,504	1,551	12
1856	70th Foot	-	-	$633 \cdot 75$		77	1,683	1,576	100
	Total -	-	-	7,941	7,941	$763 \cdot 25$	16,827	16,255	446
	Mean -	-	-	-	794	$76 \cdot 32$	1,682	1,625	$44 \cdot 6$

No. 55.-BENGAL-LAHORE STATION.

1847	10th Foot	:	-	894	894	86	1,884	1,795	77°
1848	10th Foot	-	-	480) $1,260\{$	$47^{\circ} 5$	733	693	22
1848	53rd Foot	-	-	780	$\} 1,260\{$	$66 \cdot 25$	1,340	1,290	71
1849	14th Dragoons	-	-	437		$49 \cdot 5$	772	761	24
1849	98th Foot	-	-	$701 \cdot 25$	\} 1,227	$67 \cdot 25$	1,659	1,542	59
1849	Detachments	-	-	89	\}	16.5	271	223	19
1850	14th Dragoons	-	-	622	\} $632\{$	73.75	1,285	1,238	30
1850	98th Foot	-	-	9.5	$\} 632\{$	5.	12	32	2
18.51	Detachments	-	-	902	902	99.25	3,652.	3,535	113
1852	96th Foot	-	-	836	836	$89^{\circ} 5$	3,611	3,562	58
1853	96th Foot	-	-	643	643	- 48	. 1,517	1,459 ${ }^{\circ}$	38
1854	10th Foot	-	-	919	919	$83 \cdot 25$	1,621	1,607	27
1855	10th Foot	-	-	677*75		$48^{\circ} 75$	884	854	15
. 1855	81st Foot	-	-	$243 \cdot 75$	\} 935	14^{*}	370	407	-
1855	Detachments	-	-	14)	$4 \cdot 50$	69	56	3
1856	81 st Foot	-	-	956.25) 0 ¢	$102 \cdot 5$	2,887	2,650	162
1856	Detachments	-	-	9-75		4	64	66	5
	Total -	-	-	9,214*25	9,214	905.50	22,631	21,770	725
	Mean -	-	-	-	921	91.55	2,263	2,177.	72

No. 56.

BENGAL-FORT WILLIAM STATION.
-
Stational Returis.-Edropean Troops-Mer Majesty's Regments.-Non-Commissioned Orficers and Men.
(3.)-Retdrn showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admissions, Discharges, and Deates.

Year.	Regiments or Detachments at the Station.			Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	$\begin{gathered} \text { Discharged } \\ \text { from } \\ \text { Hospital. } \end{gathered}$	Deatha.
	Names.		Strength.					
1847	9th Foot		118		$7 \cdot 25$	150	180	16
1847	39th Foot		$75 \cdot 5$		3.75	15	29	2
1847	94th Foot		117	805	10	145	199	1
1847	50th Foot		247-5	\} 805	$28 \cdot 25$	418	422	17
1847	General Hospital	-	$233 \cdot 75$		$10 \cdot 5$	366	301	18
1847	Detachments -		13.75		-	22	61	3
1848	18th Foot	-	$375 \cdot 5$		50'75	988	897	24
1848	21st Foot		-	\} 489	-	-	23	-
1848	50th Foot		-	?	-	-	38	\cdots
1848	General Hospital	-	113.5	$\int 4$	$6 \cdot 25$	223	261	9
1849	96th Foot	-	$29 \cdot 25$	-	$\cdot 25$	15	15	-
1849	70 th Foot		$463 \cdot 75$	$\} 769\{$	$55 \cdot 5$	1,381	1,296	86
1849	General Hospital	-	276.25)	$10 \cdot 5$	428	377	25
1850	70th Foot	-	664•5	T	$70 \cdot 75$	1,481	1,441	36
1850	Detachments -		$5 \cdot 25$	$\} 690$	2:25	14	12	2
1850	General Hospitals	-	20:25	$\}$	$6 \cdot 25$	69	85	8
1851	18th Foot -		$991 \cdot 5$	$\} 1,004\{$	$107 \cdot 5$	1,456	1,378	97
1851	General Hospital	-	13	$\}^{1,004}\{$	$1 \cdot 75$	77	77	1
1852	29th Foot		100	T	11	296	254	3
1852	80th Foot	-	$190 \cdot 75$	$\} 402\{$	$21 \cdot 75$	318	290	29
1852	Gencral Hospital	-	$101 \cdot 5$	$\}$	$6 \cdot 75$	232	227	9
- 1853	General Hospital	-	86	86	5	179	152	14.
1854	98th Foot	-	832	$7 \quad 1$	56.75	1,339	1,230	71
1854	Detachments -		37	$\} 904\{$		81	75	6
1854	General Hospital		35	$\}$	$5 \cdot 75$	132	126	15
1855	35th Foot .	-	96.75		9.25	167	216	4
1855	98th Foot	-	$165 \cdot 50$	$\} 355\{$	$15 \cdot 5$	86	158	4
1855	General Hospital	-	92:75	$\} \cdot\{$	$4 \cdot 5$	165	155	13
1856	53rd Foot		$557 \cdot 25$	1. 573 \{	$35 \cdot 25$	1,179	1,103	57
1856 .	General Hospital		$15 \cdot 5$	$\} 513\{$	1	37	27	8
	Total .	-	6,077•5	6,077	$543 \cdot 80$	11,453	11,105	577
	Mean - -	\because	-	608	$54 \cdot$	1,145	1,110	53

No. 57.

BENGAL-LANDOUR.

Stational Returns.-Edbopean Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(a.)-Return showing for each Year the Regiments at the Station, Mean Strength, Numbericonstantly Sick, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.		Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.	Strength.					
1847	H. M. Troops (Invalids) -	115	115	11.75	202	187	13
1848	Sanitary Depott -	10	10	$1 \cdot 5$	- 29	16	-
1849	" "	115	115	$21 \cdot 25$	162	147	13
1850	" " -	84	84	$10 \cdot$	98	90	- 8
1851	" »	87	87	$27 \cdot 75$	201	187	14
1852	" "	97	97	$31 \cdot 75$	245	243	4
1853	" \# - -	157	157	$12 \cdot 5$	370	359	\cdots
1854	" "	128	128	14.	322	316	5
1855	" "	144	144	$14 \cdot 25$	293	290	6
1856	" " - -	166	166	10.	266	258	7
	Total - -	1,103	1,103.	154.75	2,188	2,093	80
		-	110	15.47.	219	209	- 8

No. 58.
BENGAL.-TROOPS EN ROUTE, \&c.

1847	Sundry -	-	-	1,385	1,385	$124 \cdot 75$	2,179	2,208	60	
1848	$"$	-	-	--	3,763	3,763	$276 \cdot 75$	6,704	$.6,823$	240
1849	$"$	-	-	-	2,918	2,198	$234 \cdot 25$	5,742	5,236	360
1850	$"$	-	-	-	3,106	3,106	$269 \cdot 25$	4,930	5,027	145
1851	$\#$	-	-	-	2,614	2,614	137	3,133	3,183	76
1852	$"$	-	-	-	2,531	2,531	139	3,493	3,475	72
1853	$"$	-	-	-	2,856	2,856	$189 \cdot 25$	4,588	4,591	105
1854	$"$	-	-	-	1,561	1,561	113	3,682	3,814	79
1855	$"$	-	-	-	3,393	3,393	240	5,052	5,044	154
1856	$"$	-	-	-	1,200	1,200	92	2,111	2,086	108

No. 59.

BENGAL,DINAPORE STATION.
-
Stational Returns.-European Troofs-Her Majesty's Regiments.-Non-Commissioned Officers and. Men.
(3.)-Return showing for each Year the Regiments at the Station, Mean Strengta, Nomber constantly Sick, Admissions, Discharges, and Deaths.

No. 60.

BENGAL-JULLUNDUR STATION.

No. 61.

BENGAL-DARJEELING STATION.

Stational Returns.-Edropean Troops-Her Majesty's Regments.-Non-Commishoned Officers and Men.
(8.)-Return showing for each Year the Regiments at the Station, Mean Strength, Nomber constantly Sick, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Stations.			$\begin{aligned} & \text { Mean } \\ & \text { Strength } \\ & \text { during the } \\ & \text { Year. } \end{aligned}$			Dischargedfrom Hospital	Deaths.
	Names.		Strength.					
1848	Convalescent Depôt	-	21	21	3.5	32	21	1
1849	Convalescent Depôt	-	34	34	5	75	66	7
1850	80th Foot	-	$103 \cdot 5$	1 146 $\{$	4	104	99	4
1850	Convalescent Depôt	-	42.5	$\}^{146}\{$	$3 \cdot 75$	52	51	2
1851	80th Foot		$91 \cdot 25$	\} 173 \{	3.5	90	86	1
1851	Convalescent Depôt	-	82	$\} 173$	$5 \cdot 75$	109	103	3
1852	Convalescent Depôt	-	67	67	$4 \cdot 25$	69	66	3
1853	Convalescent Depồt	-	51	51	$5 \cdot 75$	79	74	2
1854	Convalescent Depôt	-	100	100	. $10 \cdot 25$	113	113	3
1855	Convalescent Depôt	-	17	17	1.75	33	38	-
1856	Convalescent Depôt	-	33	33	$2 \cdot 75$	81	81	-
	Total -	-	$642 \cdot 25$	642	$50 \cdot 25$	837	798	26
	Mean -	-	-	71	5.58	93	88	3

No. 62.

BENGAL.-WUZEERABAD STATION.

Stational Returns,-Edropean Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Tear.	Regiments or Detachments at the Station.				Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.			Strength.					
1849	9th Lancers	.	-	$485 \cdot 25$	$\} 1,655\{$	41	529	474	55
1849	24th Foot			$567 \cdot 25$		$34 \cdot 5$	1,026	1,045	24
1849	29th Foot - -			$599 \cdot 5$		111	980	1,033	60
1849	Detachments			$3 \cdot 5$		1	15	14	3
1850	9th Lancers			617$666 \cdot 25$	$\} 2,033\{$	$44 \cdot 25$	935	931	23
1850	24th Foot					60	1,417	1,384	38
1850	29th Foot			$746 \cdot 25$		77	2,069	2,029	52
1850	Detachments	-	-	$3 \cdot 25$		$\cdot 75$ $50 \cdot 25$	11	9	2
1851	3rd Dragoons			685$667 \cdot 75$		50.25	795	752	21
1851	10th Foot	-	-			57.25	1,125	1,126	26
1851	$\left.\begin{array}{lll\|c}24 \text { th Foot } & - & - & 706 \\ \text { Detachments } & - & - & 1.5\end{array}\right\}$					$75 \cdot 5$	1,262	1,252	5
1851						. 25	5	1	2
1852	3rd Dragoons	\bullet	-	$507 \cdot 75$	$\} 1,573\{$	$32 \cdot 5$	560	553	11
1852	10th Foot	-	-	$\begin{aligned} & 919 \cdot 5 \\ & 146 \end{aligned}$		$78 \cdot 75$	1,305	1,242	35
1852	24th Foot	-	-		$\} 1,573\{$	9	243	250	-
1853	10th Foot61st Foot			719.75	$\} \quad 912\{$	$54 \cdot 75$	941	862	18
1853				$192 \cdot 5$		8.75	306	310	4
1854	61st Foot	-	-	945	945	$56 \cdot 5$	-1,158	1,278	30
1855	61st Foot	-	-	990	990	48	1,092	1,082	118
1856		-	-	741	741	$41 \cdot 75$	1,575	1,457	
	$\begin{aligned} & \text { Total - } \\ & \text { Mean - } \end{aligned}$		-	10,910	10,908	$882 \cdot 75$	17,349	17,084	428
				-	1,363	110.32	2,169	2,136	53

No. 63.

BENGAL_-RAWUL PINDI STATION.

Stational Returns.-Edropean Tronps-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(a.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admissions, Discharges, and Deates.

No. 64.
BENGAL-PESHAWUR STATION.
Stationar Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(8.)-Retcrn shōwing for each Year the Regiments at the Station, Mean Strength, Number constantiy Sick, Admssions, Discharges, and Deaths.

No. 65.
BENGAL.-KUSSOWLIE STATION.

No. 66.

BENGAL.-SEALKOTE STATION.

Stational Returns,-Eurofean Troops-Her Majesty's Regiments,-Non-Commissioned Officers and Men.
(B.)-Return showing for each Year the Regiments at the Station, Mean Strength, Nomeer conitantly Sice, Admssions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.				Mean Strength during the Year.	Mean constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths
	Names.			Strength.					
1850	3rd Dragoons	-	-	$158 \cdot 25$		$9 \cdot 25$	165	214	2
1850	24th Foot	-	-	304	462 \{	$17 \cdot 75$	464	446	4
1851	24th Foot	-	-	240	240	$14 \cdot 75$	454	444	8
1852	24th Foot	-	-	847	847	$66 \cdot 25$	1,455	1,405	16
1853	24th Foot	-	-	874	874	$77 \cdot 75$	1,527	1,546	22
1854	24th Foot	-	-	716	716	45-75	906	846	15
1855	27th Foot	-	-	679	$\{$	$44 \cdot 25$	1,351	1,300	37
1855	Detachment	-	-	$51 \cdot 75$	$\} \quad 731\{$	6	184	188	3
1856	27th Foot	-	-	692	692	$48 \cdot 25$	1,375	1,317	13
	Total -	-	-	4,562	4,562	330	7,881	7,706	120
	Mean -	-	-	-	652	47•14	1,126	1,101	17

No. 67.

BENGAL-AGRA STATION.

1847	24th Foot	-	-	953	953	65•75	2,316	- 2,267	84
1848	24th Foot	-		872	872	$26 \cdot 75$	916	- 877	26
1849	Depôt -	-		23	23	$3 \cdot 75$	61	57	-
1852	75th Foot	-	-	85	85	$7 \cdot 25$	184	162	1.
1853	75th Foot	-	-	252	252	$24 \cdot 5$	575	549	14
1854	8th Foot	-	-	907	\} $\{$	$77 \cdot 25$	1,928	1,865	19
1854	Detachments	-	-	11.25	\} $918\{$	2•75	29	27	2
1855	8th Foot	-	-	687	687	$70 \cdot 5$	1,827	1,755	14
	Total -	-	-	3,790•25	3,790	$278 \cdot 5$	7,836	7,559	160
	Mean -	-	-	-	541	- 39.78	1,119	1,079	23

No. 68.

BENGAL-DUM DUM STATION.

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(8.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admishions, Discharges, and Deaths.

No. 69.

BENGAL-CAWNPORE STATION.

1847	21st Foot	775•75		$67 \cdot 25$	2,882	2,814	52
1847	62nd Foot	$24 \cdot 25$	$\} 800\{$	$\cdot 5$	1	-	1
1850	10th Foot ${ }^{\text {a }}$	$114 \cdot 75$		12.5	263	271	-
1850	96th Foot	935×25	\},159 \{	82	1,712	1,699	50
'1850	Detachments	109		-5	41	29	2
1851	70th Foot	918		114	2,090	2,031	57
1851	Detachments	112	$\} 1,030\{$	17.5	526	499	13
1852	70th Foot	937 75	\} 949 \{	110	2,386	2,300	46
1805	Detachments	4.5	$\} 942\{$	- 5	13	12	1
${ }^{-} 1853$	70th Foot	833	833	96.5	2,670	2,602	230
1854	Detachments	177	177	10:75	823	306	3
1856	Depôt	22	22	3.75	25	10	-
	Total -	4,973 $\cdot 25$	4,973	514.75	12,932	12,473	455
	Mean -	-	710	73.53	1,847	1,782	65

No. 70.

BENGAL.-ALLAHABAD STATION.

Spavondl Returns,-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(b.)--Leturn showing for each Year the Regments at the Station, Mean Strength, Number constantly Sick, Admissions, Discharges, and Deaths.

No. 71.

BENGAL.-CHINSURAH STATION.

1847	H. M. Troops, Depôt -	143	143	. 75	43	. 43	-
1849	96th Foot	$184 \cdot 5$	184	$6 \cdot 25$	185	133	13
1851	Recruits ; Detachments -	103	103	2	63	58	-1
1852	29th Foot -	77		6.25	176	203	3
1852	Detachment -*	84-25	\} $161\{$	4.	138	$\because 145$	2
1853	Recruits ; Detachment	72	72	7-75	189	181	6
1854	Detachments	29	29	1.5	35	$\therefore \quad 42$	-
	Total -	692'75	692	$28 \cdot 50$	829	805	25
	Mean -	-	115	4.6.	138,	134	4

BENGAL.-DUGSHAI STATION.

Stational Returns.-European Troors-Her Majesty's Regtments,-Non-Commbsioned Officers and Men.
(8.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admisbions, Discharges, and Deatus.

No. 73.
BENGAL-MURREE STATION.

1851	Convalescent Depôt	-	60	60	$9 \cdot 25$	92	89	3	
1852	Invalid Depôt	-	-	47	47	$10 \cdot 75$	127	123	6
1853	Invalid Depôt	-	-	53	53	$9 \cdot 5$	181	177	4
1854	Invalid Depốt	-	-	$99 \cdot 25$	99	12	142	129	8
1855	Invalid Depôt	-	-	100	100	$35 \cdot 5$	245	236	9
1856	Invalid Depôt	-	-	66	66	$12 \cdot 5$	171	168	8
	Total. -	-	-	$425 \cdot 25$	425	$78 \cdot 5$	958	922	38
	Mean	-	-	-	71	13	159	154	5

No. 74.
BENGAL-KURRACHEE STATION.

No. 75.

BENGAL-SUBATHOO STATION.

Stational Returns.-Eurorean Troops-Mer Majesty's Regiments.-Non-Commissioned Officers and Men.
(b.) -Return showing for each Year the Regiments at the Station, Mean Strengta, Number constantiy Sick, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.		Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admisgion - into Hospital during the Year.	Discharged from Mospital.	Deaths.
	Names.	Strength.					
1853	Detachments	4	4	: 5	10	5	-
1854	Detachments	318	318	$23^{\circ} 25$	458	427	4
1855	Detachments	117	117	$18 \cdot 25$	213	210	18
	Total -	439	439	42	681	642	22
	Mcan -	-	146	14	227	214	7

No. 76.

BENGAL-GOVINDGHUR STATION.

1851									
1852	Detachments	-	-	81	81	$3 \cdot 75$	185	181	-
Detachments	-	-	26	26	$\cdot 5$	2	5	1	
Total -	-	-	107	107	$4 \cdot 25$	187	186	1	
Mean -	-	-	-	53	2.12	33	93	.5	

No. 77.

BENGAL-BERHANIPORE STATION.

1849 1855	87th Foot Detachments Total -			$\begin{array}{r} 105 \\ 41 \end{array}$	105 41	$\begin{aligned} & 5 \\ & 2 \cdot 75 \end{aligned}$	62 78	80 86	9
1855				146	146	7-75	140	116	9
	Mean -	-	-	\cdots	73	3.87	75	58	$4 \cdot 5$

No. 78.

BENGAL-EASID KHAIL STATION.

Sta ziunal Returns.-Etropian Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(m.)-Return showing for each Year the Regiments at the Station, Mean Strengte, Number conitantly Sice, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.		MeanStrength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.	Strength.					
1854	75th Foot	43	43	- 25	8	10	-
	Total and Mean	-	43	'25	8	10	-

No. 79.

BENGAL-GHAZEEPORE STATION.

1849	26 th Foot		404	404	$31 \cdot 25$	722	668	19
Total and Mean	-	-	404	$31 \cdot 25$	722	668	19	

No. 80.

BENGAL.-LUCKNOW.

1856	52nd Foot	-	$628 \cdot 75$	$628 \cdot 75$	$39 \cdot 25$	836	840	81
Total and Mean .	-	-	628	39.25	836	840	81	

No. 81.

> BOMBAY.-KIRKEE STATION.-CAVALRY.

Stational Returns.-European Troopg-Her Majesty's Regiments.-Non-Commissioned Officers 1 and Men,

```
Aggregate Strength for 10 Years - _ - - - 6,559
Mean Annual Strength
656.
```

Return showing (c.) the Number of Attaces of Sickness; (m.) the Number Discharged to Duty; and (\mathbf{F}.) the Number of Deaths by diffęrent Diseases.

No. 81.-Bombay ; Kirkee Station ; Cavalry. Stationai Returns. European Troops; H.M. Regts, -oont.

No. 82.
BOMBAY.-DEESA STATION.-INFANTRY.
Stitional Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Return showing (c.) the Number of Attacks of Sickness ; (x.) the Number Discharged to Duty ; and (ㅍ.) the Number of Deaths by different Diseases.

No. 82.-Bombay; Deesa Station; Infantry. Stational Returns. European Troops ; II.M. Regts.-cont.

No. 83.

BOMBAY.-POONA STATION.-INFANTRX.

Stational Returns.-European Troopg-Her Majesty's Regiments.-Non-Commissioned Officers. and Men.
Aggregate Strength for 10 Years
Mean Annual Strength

Return showing (c.) the Number of Attacks of Sickness; (x.) the Number Discharged to Duty ; and (F.) the Number of Deatre by different Diseases.

No. 83.-Bombay; Poona Station; Infantry. Stational Returns. European Troops \mid H. M. Regts.-cont.

Retern showing (c.) the Number of Attaces of Sicicness; (z.) the Number Discharged to Doty; and (\mathbf{r}.) the Number of Deathe by different Diseases.

No. 84.-Bombay ; Kurrachee Station; Infantry. Stational Returns. European Troops ; H.M. Regts.--cont.

No. 84.-Bombay; Kurrachee Station; Infantry. Stational Returns. E/ropean Troops; H.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Year 1856.
N.B.-Invalids are included in these Nambers, but the Returns do not enable them to be distingaished.

No. 85.
BOMBAY.-COLABA.-INFANTRY.
Stational Retorns.-European Troops-Her Majesty's Regiments.-Non-Comamshoned Officers and Men.
Aggregate Strength for 8 Years
Mean Annual Strength

Return showing (c.) the Number of Attacks of Stcenesss ; (z.) the Number Discrarged to Duty; and (e.) the Number of Deaths by different Diseases.

No 85.-Bombay; Colaba Station; Infantry. Stational Return. European. Troops; H. M. Regte.-cont.

* No Troops separately accounted for at this Station during the Years 1853 and 1854

No. 86.

BOMBAY.-EN ROUTE, \&C.-INFANTRY.

Stational Returns-Edropean Troors-Her Majesty's Regments-Non-Commissioned Officers and Men.

Aggregate Strength for 6 Years Mean Aunual Strength

2,866

Retorn showing (c.) the Number of Attacis of Sickness; (z.) the Number Discharged to Duty; and (\mathbf{F}.) the Number of Deatis by different Diseases.

No. 86.-Bombay ; Troops en Route, \&c. ; Infantry. Stational Returns. European Troops ; H.M. Regts.-cont.

* No Troops accounted for ander this heading daring the Years 1851, 1852, 1854, and 1856.
N.B.-Invalids are included in these Numbers, but the Returns do not enable them to be distinguished.

No. 87.

BOMBAY.-BELGAUM STATION.-INFANTRY.

Stational Returns.-European Troops-Her Majesty's Regments.-Non-Commissionyd Officers and Men,

Aggregate Strength for 6 Years	-	-
Mean Annual Strength	$-\quad . \quad 0,915$	
986		

Return showing (c.) the Number of Attaces of Siceness; (m_{1}) the Number Discharged to Duty; and
(x.) the Numbet of Deates by different Diseases.

No. 87.-Bombay; Belgaum Station ; Infantry. Stational Returns. European Troops; II.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Years 1850, 1851, 1852, and 1853.

No. 88.
BOMBAY.-ADEN STATION.-INFANTRY.
Stational Returns._Ecropean Troops-Her Majesty's Regiments,-Non-Commibsioned Officers and Men,

Return showing (c.) the Number of Attacks of Sichiness; (z.) the Number Discharged to Duty; and ($\mathbf{x} \cdot$.) the Number of Deaths by different Diseases.

No. 88.-Bombay; Aden Station; Infantry. Stational Returns. European Troops; H.M. Regiments.-cont.

* No Troops separately accounted for at this Station during the Years 1847 to 1849, 1853 and 1854.

No. 89.
-
BOMBAY-HYDERABAD STATION.-INFANTRY.
Stational Reteras.-European Troops-Her Majesty's Regiments.-Non Commissioned Officere and Men.

Retcrn showing (c.) the Number of Attaces of Sickness ; (z.) the Number Discharged to Duty ; and ($\boldsymbol{F}_{\text {. }}$) the Number of Deathe by different Diseases.

No. 89.-Bombay; Hyderabad Station; Infantry. Stational Returns. European Troops ; H.M. Regts.-cont

* No Troops separately accounted for at this Station during the Years 1847, 1848, 1849, 1851, 1855, and 1856.

No. 90.
BOMBAY.—MOUNT ABOO.-INFANTRY.
Stational Returns,-European Troops-Her Majesty's Regiments,-Non-Comaissioned Officers and Men.

Mean Annual Strength

- 83

Return showing (c.) the Number of Attaces of Siceness ; (z.) the Number Discharged to Duty ; and (r.) the Number of Deatias by different Diseases.

*Troops only separately accounted for at this Station during the Year 1851.
4 X 3

No. 91.

BOMBAY.-BOMBAY-STATION.-INFANTRY.

Stational Retorns.-Eúropeañ Troops-Hier Majebty's Regiments.-Non-Commissioned Officers and Men.

Return showing (c.) the Number of Attacks of Siceness; (…) the Number Discharged to Duty ; and (5.) the Number of Deatas by different Diseases.

No. 91.-Bombay ; Bombay Station ; Infantry. SStational Returns. European Troops; H.M. Regts.-cont.

* Troops only eeparately accointed for at this Station during the Year 1849:

No. 92.
BOMBAY.-PESHAWUR STATION.-INFANTRY.

Stational Returng--European Troopg-Mer Majesty's Regiments.-Non-Commssioned Officers and Men.

Return showing (c.) the Number of Attaces of Sickness ; (x.) the Number Discharged to Dutiy; and (x.) the Number of Deates by different Diseases.

STATIONAI RETURNS -BOMBAY.
No. 92.-Bombay ; Peshawur Station ; Infantry. Stational Returns. European Troops. H. M. Regts.-cont

* Troops only separately accounted for at this Station during the Year 1849.

No. 93.

fOMBAY.-KTRKEE STATION.

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Comatssioned Officers and Meng
(i.) -Return showing for each Year the Regiments at the Station, Mean Strengte, Number constintly `Sick, Admissions, Discharges, and Deaths.

. Year.	Regiments or Detachments at the Station.			Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into - Hospital during the Year.	Discharged from Hospital.	Deaths.
	Nạmes.		Strength.					
1847	10th Hussars	\div - -	633	- 633		- 1,592	1,573	19
$1848{ }^{\circ}$	10th Hussars	- -	704	704		- 1,447.	- 1,547	9
1849	10th Hussars	$\because \quad-$	687	687		1,624	1,588	17
1850	10th Hussars	- -	652	652		1,486	1,473	28
1851	10th Hussars	- -	664	664		1,406	1,397	- 15
1852	10th Hussars	- -	676	676	-	. 1,666	- 1,644	6
1853	10th Hussars	- -	681	681		1,620	- 1,623	12
1854	10th Hussars	- -	$639^{\circ} 75$	640		- 1,298	1,309	11
1855	14th Dragoons	- -	537	537		: 830	$\cdots 752$	6
1856	14th Dragooins	- -	685	685		619	. 635	8
	Total	- -	6,558•75	6,559		13,588	13,541	131
	Mean	- -	656	656		- 1,359	- 1,354	13
			-					
				No. 94.	-	- -	- -	

BOMBAY.-DEESA STATION.

No. 95 .
BOMBAY.-POONA STATION.
Stational Returns-Eeropean Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(B.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admbsions, Discharges, and Deaths.

No. 96.-BOMBAY-KURRACHEE STATION.

No. 97.

BOMBAY:-COLABA STATION.

Stational Returns.-Etropean Thoops-Her Majesty's Regiments-Non-Commissioned Officerg. 1 and Men.
(8.)-Return showing for each Year the Regments at the Station, Mean Strengti, Number constantly Sick, Admissions; Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.			Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.		Strength.					
1847	17th Foot		114•75			170	205	4
1847	28th Foot		279-50	$394\{$		456	482	11
1848	28th Foot		41	41		8	58	1
1849	22nd Foot		570	570		1,327	1,282	37
1850	78th Foot	-	$399 \cdot 75$	400		771	769	30
1851	78th Foot	-	508	508		848	819	16
1852	78th Foot	-	525	525		1,218	1,177	28
1855	83rd Foot	-	277	277		623	602	- 8
1856	86th Foot	-	459	459		1,157	1,100	16
	Total	-	3,174	3,174		6,578	6,494	151
	Mean	-	-	397		822	812	19

No. 98.

BOMBAY.-EN ROUTE, \&c.

No. 99.
BOMBAY.-BELGAUM STATION.

Stational Returns.-European Troops-Hea Majesty's Regments.-Non-Commissioned Officers and Men.
(b.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station,				- Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.			Strength.					
1847	78th Foot	-		1,094•75	1,095		2,158	2,185	16
1848	78ih Foot - -			1,105	1,105		1,756	1,721	18
1849	78th Foot			806	806		1,099	1,094	22
1854	64th Foot			1,019	1,019 ${ }^{\text {' }}$		1,886	1,865	18
1855	64th Foot		-	1,083	1,083		1,413	1,404	21
1856	64th Foot			806•75	807		996	985	20
	TotalMean			5,914•5	5,915		9,308	9,254	115
				-	986		1,551	1,542	19

No. 100.

BOMBAY.- ADEN:STATION.

1850	Detachment, 78th Foot -	369	369	417	408	12
1851	Detachment, 78th Foot -	476	476	461	463	8
1852	Detachment, 78th Foot -	469	469	532	517	9
1855	Detachment, 86th Foot -	328.75	329	-465	444	4
1856	Detachment, 86th Foot -	460	460	561	563	1
	Total -	.2,102 75	2,103	2,436	2,395	34
	Mean	-	421	486	479	6

No. 101,

BOMBAY.-HYDERABAD STATION.

STATIONAL RETURNS. BOMBAF.

No. 102.

BOMBAY.-MOUNT ABOO STATION.

Stationay Returns.-Edropean Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(b.)-Return showing for each Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admtssions, Discharges, and Deaths.

No. 103.

BOMBAY.-BOMBAY STATION.

1849	22nd Foot	-	273	273		636	619
Total and Mean -	-	-	273				

No. 104.

BOMBAY.-PESHAWUR STATION.

1849	60th Foot							
Total and Mean -	-	-	-	498	498		1,470	1,359

No. 105.
MADRAS.-BANGALORE STATION.-CAVALRY.

Stational Returns.-Europran Troops-Her Majesty's Regiments.-Non-Commissioned Officere and Men.
Aggregate Strength for 8 Years \qquad $\begin{array}{r}7 \\ \hline\end{array} \quad-\quad 644$

Return showing (c.) the Number of Attacks of Sickness; (z.) the Number Discharged to Duty ; and (\mathbf{r}.) the Namber of Deates by different Diseases.

No. 105.—Madras; Bangalore Station ; Cavalry. Stational Returns. European Troops ; H. M. Regts.-cont.

*. No Cavalry separately accounted for at this Station during the Yeare 1855 and 1856.

No. 106.

MADRAS.-EN ROUTE, \&c,-CAVALRY.

Stationar Returas.-Elropean Troops-Her Majesty's Regiaments.-Non-Commissioned Officers and Men.

Retern showing (c.) the Number of Attaces of Sickness; (m.) the Number Discharged to Dety; and (F.) the Number of Deatis by different Diseases.

No. 106.-Madras ; Cavalry ; En Route, \&c. Stational Returns. European Troops; H. M. Regts_cont.

[^29]No. 107.
MADRAS.-CANNANORE STATION.-INFANTRY.
Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Offrcers and Men.

$$
\begin{array}{lllll}
\text { Aggregate Strength for } 10 \text { Years - } & - & - & -9,032 \\
\text { Mean Annual Strength } & - & - & - & - \\
\hline
\end{array}
$$

Return showing (c.) the Number of Attacks of Sickness; (x.) the Number Discharged to Doty; and (\mathbf{F}.) the Number of Deaths by differeut Diseases.

No．107．－Madras；Cannanore Station ；Infantry．Stational Returns．European Troops ；H．M．Regts．－conf．

	．－	\cdots－	安			．		，		E	Class．		
-•易						$\begin{aligned} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \hline \end{aligned}$ －•							
\approx－	1 I			N－	$\\|_{\cos }$	－	$\pm \square_{0} 1$		N0111	－！\％ore			
$\stackrel{\rightharpoonup}{\circ}$	11		1		1 nowe	－os	$0 \sim 1$		Non 1｜1｜	－1－1\％			
11	1 －	$\infty 1\|1\| 1\|1\| 1$	－	1111	1111	11	11111		$1 \ldots 11$	11100			
A 0	11		4		$-\infty$	$1 \sim$	1 Nour		＊or＊）				
$\stackrel{*}{*}$	11		$\stackrel{ }{*}$	二小＊＊＊	$\cdots 1$	10	Inoula			1䍐行が			
11	$\cdots \quad 1$	$\cdots \underbrace{}_{\sim} 1111$	1	1111	1111	11	11111		$10_{0} 11$	111%			
	$1 \quad 1$		0										
8	1 I	． 0	＊	－	\sim	$\stackrel{\square}{6}$	4	N0\％	－${ }^{\text {a }}$	${ }_{\infty}^{\infty}$			
1.	\cdots	， 0	；	1	1	1	1	¢	\cdots	ぃ			
$\stackrel{\square}{\vdots}$	11	－	$\stackrel{4}{4}$	H	－	$\stackrel{\square}{\infty}$		10 	$\begin{gathered} \text { O} \\ \stackrel{\text { ¢ }}{3} \end{gathered}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	C ¢ ¢ ¢		
1	$\stackrel{*}{*}$	－$\stackrel{\text { ® }}{\text { ¢ }}$	\because	1		I	1.	：	a゙	\because	불		

No. 108.
MADRAS.-BANGALORE STATION:-INFANTRY.
Stational Returns.-European Troops-Her Majesty's Regrments.-Non-Commissionel Oficers and Men.

Aggregate Strength for 10 Years -			
Mean Annual Strength	-	-	8,271

Return showing (c.) the Number of Attaces of Sicrness; (m_{o}) the Number Discharged to Dety; and (r.) the Number of Deaths by different Diseases.

No. 108.—Madras ; Bangalore Station ; Infantry. Stational Returns. European Tooops; H.M. Regts.—cont.

No. 109

MADRAS.-FORT ST. GEORGE STATION.-INFANTRY.

Stational Returns.-European Troops.-Her Majesty's Regiments.-Non-Comaissioned Officers and Men.

| Aggregate Strength for 8 Years |
| :--- | :--- | :--- | :--- | :--- |
| Mean Annual Strength |$\quad \because \quad: \quad=\quad$| 6,601 |
| :--- |
| 825 |

Return showing (c.) the Number of Attaces of Shceness; (z.) the Number Discharged to Duty ; and. (5.) the Number of Deaths by different Diseases.

No 109.-Madras ; Fort St. George ; Infantry. Stational Returns. European Troops ; I.M. Regts.-cont.

No. 110.

MADRAS.-EN ROUTE, \&e,-INFANTRY.

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.

Return showing (c.) the Number of Atraces of Siceness; (s.) the Number Discharged to Dutr; and (r.) the Number of Deates by different Diseases.

No. 110.-Madras; Intantry ; En RRoute, \&c. Stational Returns. European Troops; H. M. Regts.-cont.

* No Troops separately accounted for under this heading during the Years 1850, 1851, and 1856.
A.B.-Invalida are included in these Numbers, but the Returns do not enable them to be distinguighed.

No. 111.

MADRAS.-TRICHINOPOLY STATION.-INFANTRY.

Stamonal Returng.-Edropean Troopg-Hibr Majesty's Regments.-Non-Commtrgioned Ofyicers and Men.
$\underset{\text { Mean Annual Strengtl }}{\text { Aggregate Strength for }} 4$ Years $\quad=\quad-\quad: \quad: \quad 4,005$
Return showing (c.) the Number of Atrages of Sickness; (w.) the Number Discraraed to Dùty; and (F.) the Number of Deatis by differeat Diseases.

No. 111.-Madras ; Trichinopoly Station ; Infantry. Stational Returns. European Troops ; H.M. Regts.-cont.

* No Troops separately accounted for at this Station during the Years 1847 to 1849 and 1854 to 1856.

No. 112.

MADRAS.--SECUNDERABAD STATION.-INFANTRY.

Stational Returns.-European Troops-Her Majesty's Regments.-Non-Combisbioned Officers and Men.

```
Aggregate Strength for 3 Years - - - - - - - 3,022
```

Return showing (c.) the Number of Atpacks of Sickness; (m.) the Number Discharged to Duty; and (r.) the Number of Deathe by different Diseases.

No. 112.-Madras ; Secunderabad Station ; Infantry. Stätionàl Returns. Europ. Troops; H.M. Regts.-cont.

[^30]No. 113.
MADRAS-JACKATALLA STATION.-INFANTRY.
Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commishoned Officers and Men.
Aggregate Strength for 3 Years $\quad . \quad . \quad$
Mean Annual Strength
$\begin{array}{r}1,687 \\ \hdashline \quad 562\end{array}$

Return showing (c.) the Number of Attaces of Siceness; (x.) the Number Discharged to Dutt; and (r.) the Number of Deaths by different Diseases.

*Troops only separately accounted for at this Station during the Years 1854, 1855, and 1856.

No. 114.

MADRAS.-POONAMALLEE STATION.-INFANTRY.

Stational Retujens.-Etropean Troops-Her Majestre's Regiments.-Non-Commissioned Officers and Men.

$$
\begin{array}{lcccc}
\text { Aggregate Strength for } 2 \text { Years } & - & - & - & -201 \\
\text { Mean Annual Strength } & - & - & - & - \\
\hline
\end{array}
$$

Return showing (c.) the Number of Attacks of Sickness; (e.) the Number Discharged to Dety; and (r.) the Number of Deáths by different Diseases.

No. 114.—Madras ; Poonamallee Station ; Infuntry. Stational Returns. Europ. Troops; H. M. Regts.-ment.

[^31]No. 115.

MADRAS.-KAMPTEE STATION.-INFANTRY.

Stational Retobns.-Edropean Troops.-Her Majesty's Regiments,-Non-Commissioned Officers and Men.

Mean Annual Strength

767

Retorn showing (c.) the Number of Attaces of Sickness; (x.) the Number Discharged to Duty ; and (\mathbf{x}.) the Number of Deaths by different Diseases.

No. 115.-Madras; Kamptee Station; Infantry. Stational Returns. Europ. Troops; H.M. Regts.-cont.

- Troops only separately accounted for at this Station during the Year 1847.

No. 116.
MADRAS.-CANNANORE STATION.
Stational Reterns.-Etropean Troops-Her Majestr's Reginents.-Non-Commissioned Officers and Men.
(a.) -Retury showing for each Year the Regiments at the Station, Mean Strengiti, Nomber constantly Sick, Admissions, Discharges, and Deatirs.

No. 117.
MADRAS.-BANGALORE STATION.

No. 118.

MADRAS.-FORT ST. GEORGE STATION.

-

Stational Returns.-Eqmopean Troops-Her Majesty's Regiments.-Non-Commbsioned Ofyicers and Men.
(3.)-Retarn showing for each Year the Regiments at the Station, Mean Strengti, Number constantly

No. 119.

MADRAS.-EN ROUTE, \&c.

No. 120.
MADRAS.-TRICHINOPOLY STATION.

Stational Returns.-Edropean Troops-Her Majesty's Regiments.-Non-Comarssyoned Officers and Men.
(b.)-Retura showing for each Year the Regiments at the Station, Mean Strength, Nomber constantly Sick, Admissions, Discharges, and Deaths.

No. 121.
MADRAS.-SECUNDERABAD STATION.

1847	84th Foot	-	-	1,103	1,103	$69 \cdot$	1,860	1,799	39
1848	84th Foot	-	-	$1,129 \cdot 75$	1,130	$78 \cdot$	1,671	1,637	36
1849	84th Foot	-	-	789	789	$61 \cdot 25$	1,275	1,256	21
	Total -	-	-	$3,021 \cdot 75$	3,022	$208 \cdot 25$	4,806	4,692	96

No. 122.
MADRAS.-JACKATALLA STATION.

1854	74th Highlanders		642	642	31.	782	758	28
1855	74th Highlanders		602	602	$24 \cdot 25$	478	485	29
1856	74th Highlunders	-	443	443	17.25	355	337	11
	Total	-	1,687	1,687	$72 \cdot 5$	1,615	1,580	68
	Mean	\sim	-	529	24	538	527.	23

No. 123.

MADRAS.-POONAMALLEE STATION.

1847	63rd Foot	-	-	171	171	12	226	256	18
1848	63rd Foot	-	-	30	30	$1 \cdot 75$	71	108	1
	Total	\ddots	-	201	201	13.75	297	364	19
	Mean	-		-	100	7	148	182	9

No. 124.

MADRAS.-KAMPTEE STATION.

Stational Returns.-Edropean Troops-Her Majesty's Regiments.-Non-Commisioned Offioers and Men.
(3.).-Return showing for cach Year the Regiments at the Station, Mean Strength, Number constantly Sick, Admissions, Discharges, and Deaths.

Year.	Regiments or Detachments at the Station.		Mean Strength during the Year.	Mean Number constantly sick in Hospital.	Admissions into Hospital during the Year.	Discharged from Hospital.	Deaths.
	Names.	Strength.					
1847	4th Foot -	767	767	$41 \cdot 50$	1,023	1,025	27
	Total and Mean	-	- 767	41.5	1,023	. 1,025	27

No. 125.

TROOPS ON FIELD SERVICE IN BENGAL, MADRAS, AND BOMBAY.

1848	3rd Dragoons -	171	7	6	191	158	8
1848	14th Dragoons -	154		13	223	247	25
1848	10th Regiment -	172		23	356	414	21
1848	24th Regiment -	288	$\} 1,898\{$	6	339	332	17
1848	32nd Regiment -	588		47	1,606	1,556	84
1848	60th Regiment -	252		Not stated	374	392	7
1848	61st Regiment -	272		8	321	304.	11
1849	3rd Dragoons -	167		10	216	200	27
1849	9th Dragoons -	179		7	155	133	12
1849	14th Dragoons - .	157 -		10	220	137	10
1849	10th Regiment - -	188		17	464	379	25
1849	Detachment, 18th Regiment	41		2	35	27	2
1849	22nd Regiment - -	245	\}2,702 $\{$	14	510	391	9
1849	24th Regiment -	215		15	433	357	238
1849	29th Regiment -	208		27	696	547	81
1849	32nd Regiment -	279		14	377	409	21
1849	60th Regimęnt -	752		Not stated	1,818	1,682	38
1849	61st Regiment -	270		10	395	392	21
1850	Detachment, 96th Regiment	27	27	-	3	-	-
1852	3rd Dragoons - .	160	$\} \quad\{$	8	135	165	1
1852	Detachments -	16	$\} 176$	1	3	3	-
1854	53rd Regiment -	184	184	5	244	314	6
1856	64th Reginent -	278	278	Not stated	396	387	4
	Total	5,265	5,265	-	9,518	8,926	668
	Mean	-	877	-	1,569	1,688	111

No. 126.

BURMAH.

Stational Returns.-European Troops-Her Majesty's Regiments.-Non-Commissioned Officers and Men.
(8.) Retcrn showing for each Year the Regiments at the Station, Mean Strength, Ncmber constantly Sick, Admissions, Discharges, and Deates.

No. 127.

INVALIDING.

Retery showing the Number of Deaths occurring among Invalids of H.M. Troops on their Passage from India to Exgland during the 10 Yiears 1847 to 1856.

Yeur ending	Bengal.		Bombat.		Madras.		Total.		Per-centage of Deaths to the Number embarked.
	$\underset{\text { barked. }}{\text { Em- }}$	Died.	Em. barked.	Died.	$\underset{\text { barked. }}{\text { Em- }}$	Died.	$\begin{aligned} & \text { Em- } \\ & \text { barked. } \end{aligned}$	Died.	
31st March 1848	604	26	176	12	153	8	-933	46	$4 \cdot 94^{-}$
\% 1849	285	15	178	11	264	18	727	44	$6 \cdot 05$
" 1850	176	12	313	21	95	5	584	38	$6 \cdot 5$
, 18.51	163	5	580	19	158	8	906	32	$3 \cdot 54$
, 18.52	187	14	217	6	207	5	611	25	4-09
, 18Ј3	93	5	553	21	342	19	988	45	$4 \cdot 65$
" 1854	532	40	255	13	230	13	1,017	66	$6 \cdot 49$
" 1855	394	30	599	30	149	13	1,142	73	$6 \cdot 4$
" 1856	- 157	8	558	52	95	7	810	67	$8 \cdot 27$
" 1857	197	8	477	30	99	3	773	41	$5 \cdot 31$
	2,793	163	3,906	215	1,792	99	8,491	477	$\int_{0}^{5 \cdot 65}$
Annual Average	279		391	22	179	10	849	48	
Percentage of Deaths to the Number embarked from each Presidency -	$5 \cdots 3$		5•62		5.54		-		

INDIA-HER MLAJESTY'S TROOPS.

Return showing the Diseases of Invalids of H.M. Troops found unfit for Service, and Discharged at Chatham from 1847 to 1856.

Year ending	Cachexies and Scrofula.							出						管					Total.
31 March 1848	17	6	57	44	179	3	18	11	14	12	5	7	74	145	24	1	10	169	796
" 1849	11	16	37	19	65	1	1.	9	16	15	4	4	51	128	13	1	8	129	523
" 1850	14	5	26	25	63	1	7	5	19	9	4	4	40	18	12	-	17	95	364
" 1851	27	9	44	66	103	\div	8	8	14	12	9	5	36	15	7	2	14	146	525
" 1852	10	3	35	59	41	1	9	8	26	7	10	1	39	32	11	3	13	83	391
" 1853	25	19	68	39	11	2	8	10	27	16	4	7	83	148	22	6	12	65	578
" 1854	28	6	48	24	19	1	7	8	13	12	9	6	53	87	13	9	10	86	435
, 1855	12	- 3	16	14	11	-	5	4	19	16	4	-	23	46	6	\div	5	72	$25 t$
" 1856	9	13	40	12	15	-	4	6	20	16	. 6	7	107	64	11	6	5	36	37:
\% 1857	23	2	23	30	5	1	2	4	19	8	6	1	54	33	16	2	2	43	27.
Total - -	176	82	394	332	512	10	69	73	187	123	61	42	560	716	135	30	96	924	4,52:

No. 129.

PRESIDENCY OF BENGAL.

Return showing the Diseases of Invarids of H.M. Troops found unfit for Service, and Discharged at Chatham from 1847 to 1856.

31 March 1848	6	2	34	35	176	2	15	9	6	5	5	5	43	77	16	1	4	122	568
\# 1849	6	\% 9	19	15	'62	-	1	1	7	3	1	3	23	54	4	1	2	64	275
" 1850	5	2	10	19	11	-	2	1	5	2	-	-	8	9	3	-	5	44	126
" . 1851	5	2	4	42	40	-	3	3	4	-	2	1	3	-2.	2	-	1	20	134
1852	1	-	10	33	9	1	2	1	9	3	4	-	11	. 14	55.	2 d	8.	18	- 126
\# 1853	6	3	9	10	5	-	3	2	5	5	2	1	21	50	6	-	3	-13.	144
, 1854	5	-	14	10	: 8	-	2	2	2	2	2	2	9	31	1	2	3	34	119
". 1855	3	1	9	9	9	-	2	1	12	-	1	-	6	18	4	-	2	29	106
" 1856	4	4	14	8	8	-	1	3	9	10	5	1.	30	29	6	5	1	7	145
\#. 1857	'13		14	19	- 3	1	1	-	6	4	; 3	-	28	14	7	1	1.	24	139
Total - -	54	23	137	200	331	4	32.	23	-65	34.	25	13	182	298	54	12	25	364	1,874

No． 130.
PRESIDENCY OF BOMBAY．

Returin showing the Diseases of Invalids of H．M．Troops found unfit for Service，and Discharged at
Chatham from 1847 to 1856.

Year ending								$\begin{aligned} & \text { 崩 } \\ & \text { 品 } \end{aligned}$			哭								Total．
31 March 1848	8	2	8	4	3	i	2	－	5	． 4	－	1	21	34	2	－	3	23	121
＂ 1849	1	3	10	2	1	－	一．	6	2	3	2	－	13	26	1	－	2	21	93
， 1850	7	2	12	5	48	1	3	2	11	2	3	3	22	3	7	－	6	30	167
＂． 1851	17	6	36	18	63	－	4	3	8	9	4	3	26	13	3	2	8	68	291
＂ 1852	8	2	19	20	30	－	7	5	8	1	5	－	22	18	2	1	7	35	190
＂ 1853	9	15	42	26	5	2	5.	5	16	8	1	4	39	55	6	2	5	40	285
＂ 1854	19	5	26	13	8	1	3	5	7	6	7	2	35	45	9	7	3	44	245
＂ 1855	5	2	5	5	2	－	1	2	5	15	2	－	11	17	2	－	3	29	106
＂ 1856	3	6	18	4	4	－	2	2	7	6	1	6	55	22	3	1	3	20	163
＂ 1857	9	2	6	5	1	－	1	3	9	2	1	1	19	14	9	－	1	14	97
－Total	86	45	182	102	165	5	28	33	78	56	26	20	263	247	44	13	41	324	1，758

No． 131.
PRESIDENCY OF MADRAS．
Return showing the Diseases of Invalids of H．M．Troops found unfit for Service，and Discharged at Chatiam from 1847 to 1856.

STATISTICS OF REGIMENTS WHICH HAVE SERVED IN INDIA.

By the Digest of Services (such being the only means of obtaining the required information, so many years having elapsed) it appears that the Casualties of the Regiment, during 21 years in India, amounted to 15 officers and 1,051 men.

Soame G. Jenyns, Lieut.-Col., commanding 13th Light Dragoons.

| 4th Quers's Own
 Regment or
 Hussars,
 artived in India,
 May 12, 1822. |
| :---: | :---: | :---: |

F. Connwarils, Major, commanding 4th Q. O. Hussars.

16th Regment of Lancers, arrived in India, January 1823.	Apr. 1,1846	329 $329 *$	The whole of the regimental records lost at the action of Buddewal on the 21 st January 1846.

* Strength on departure from India.

Chables Foster, Lieut.-Col., commanding 16th Lancers.

16 th Regiment of	1828-29	698	58	-	157	7	Fort William. . .
Foot,	1830	818	64	6	64	17	Fort William.
	1831	794	54	6	21	14	Fort William and Chinsurah.
arrived in India,	1832	737	- 41	6	-	1	Chinsurah.
November 23,1828.	1833	682	56	4	-	1	Chinsurah.
	1834	669	44	5	-	47	Chinsurah, on the March, and Cawnore.
	1835	837	26	6	109	100	Cawnpore.
	1836	856	45	7	46	120	Cawnpore.
	1837	827	45	36	42.	9	Cawnpore.
	1838	707	45	74	1	7	Cawnpore.
	1839		37	-75	2	166	Cawnpore.
	1840	447	52	-	2	108	Dinapore and Calcutta.
Average	-	71919 ${ }^{1}$	473 ${ }^{3}$	$188^{\text {9 }}$	37	$49 \frac{1}{7}$	

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths in India.	Number of Men sent from India to England.	Reinforcements.		
					By Transfer.	$\left\lvert\, \begin{gathered} \text { By } \\ \text { Drafts. } \end{gathered}\right.$	
15th "The King'a ’		506	\square	-	-	-	Bombay.
Regiment of	Apr. 1, 1840	634	25	-	101	527	On march.
Hussars,	" 1841	744	21	4	-	147	
	" 1842	762	18	6	24	23	
arrived in India,	" 1843	720	21	13	-	3	
September 19, 1859;	" 1844	711	13	12	1	23	Right wing marched September 6, 1844, en
November 9, 1859 ; February 4, 1840;	" 1845	721	11.	12	-	42	route for Arcot. Rejoined bead-quarters November 20, 1844.
	" 1846	688	32	21	-	30	Bangalore, Madras, E.I.
left India,	" 1847	659	24	21	-	23 \}	
February 27, 1854.	" 1848	682.	7	35	\square	78	
	" 1849	670	11	30	1	46	
	" 1850	703	11	19	-	67	
	" 1851	683.	17	31	-	47	Squadron, as escort to his Excellency the
	" 1852	673	6	26	-	40	
	". 1853	739	21	-	29	81	1850, en route for Secunderabad. Rejoined
	Feb. 27,1854	513	19	39	-	8)	149 men volunteered to 12th, 3 to 9th Lancers.
Average -	-	68612 ${ }^{2}$	$17 \frac{2}{15}$	$17 \frac{1}{15}$	$10{ }_{15}$	47	

It will be observed that the strengths subsequent to 1840 do not agree with the increase and decrease, as men became non-effective otherwise than by "Death," and "Sent to England.
F. W. Fitzwaram, Lieut.-Col., commanding 15th, "The King's," Hussars

$15 t$ Battalion,	Apr. 1, 1842	1,007	102	3	6	139	Poona and Kurrachee and Sukkur.
22nd Regiment of Foot,	" 1843	981	215	16	-	102	Sinde and Kurrachee, on field service, engaged in the battles of Meeanee and Hyderbad.
arrived in India,	, 1844	871	68	51	5	200	Poona.
May 21, 1841;	" 1845	936	40	45	23	32	Poona and Kolapore, on the march and field service.
left India, March 23, 1855.	" 1846	989	37	50	3	36	Kolapore and Poona. . .
	" 1847	938	97	42	-	-	Poona and Bombay.
	" 1848	958	27	50	224	119	Poona.
	" 1849	1,152	45	73	1	122	Poona and Bombay, on the march to
	" 1850	1,081	67	22	12	26	Bombay and Kurrachee, on the march to
	" 1851	1,049	27	17	5	64	Dugshai, Himalayas.
	" 1852	1,045	27	49	9	53	Dugshai, Rawul Pindi, on the march to
	" 1853	988	45	37	3	40	Rawul Pindi and Peshawur, on the march to
	Mar'23, 1854	$\begin{aligned} & 978 \\ & 729 \end{aligned}$	38	59	2	61	Peshawnr, on the march to Kurrachee.
	Mar.23, 1855	729	57		-	-	
Average - -	-	978.71	63.72	39.57	20.92	71	- :

The casuals not accounted for in columng 4 and 5 occurred through desertion, volunteers, transfers, discharges, \&c.
J. H, Grafam, Major, commanding lst Bat. 22nd Regt.

14th (King's)	Apr. 1, 1842	449	8	-	150	\square	Kirkee.
Regiment of	" 1843	689	39	7	-	100	Kirkee.
Hessars,	" 1844	713	17	13	-	60	Kirkee, and field service Kolapore.
	" 1845	693	21	25	-	35	Kirkee, Kolapore, and on march to the Punjab.
arrived in India,	" 1846	632	47	39	$\bar{\square}$	28	On march to the Punjab, Umballa.
September 6, 1841;	". 1847	641	71	17	10	75	Umballa.
	" 1848	669	42	9	5	96	Lahore. Field service, Punjab Campaign.
left India,	$\cdots \quad 1849$	622	82	10	$-$	50	Field service, Punjab Campaiga, Lahore.
February 11, 1860.	, 1850	683	35	14	2	110	Lahore.
	" 1851	693	41	13	2	70	On march to Meerat. Meerut.
	" 1852	708	27	17	1	66	Meerut.
	$\cdots \quad 1853$	739	14	26	27	56	Meerut.
	$\cdots \quad 1854$	734	15	27	-	38	Meerut.
¢	" 18.55	720	17	19	-	26	On march to Kirkee: Kirkee.
	$\cdots \quad 1856$	688	7	25	-	-	Kirkee. .
	" 1857	656	7	26	1	-	Field service to Persia; Kirkee; and field service in India.
	1858	206	18	6	-	60	On field service.
	" 1859	630	62	36	-	28	On field service; Kirkee.
	Feb. 11, 1860	395	11	20	-	12	Kirkee.
Average	-	$655 \cdot 15$	$30 \cdot 11$	$18 \cdot 7$	10.8	47-17	

R. H. Gall, Bt. Lieut. Col., commanding 14th (King's) Hussars.

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths	Number of Men	Rein men	force- ts.	
			India	from India to England.	$\left.\begin{array}{\|c\|} \text { By } \\ \text { Trans- } \\ \text { fer. } \end{array} \right\rvert\,$	$\underset{\text { Drafts. }}{\text { By }}$	
29th Regiment of Foot,	July 29, 1842	1,004	$\bar{\square}$	-	-	-	Chinsurah. Ghazeepore. Ghazeepore. Ghazeepore and Meerut. Kussowlie, and Sutlej Campaign; 141 killed and died of wounds.
	Apr. I, 1843	998	106	-	-	24	
	\% 1844	944	158	-	24	183	
arrived in India, July 29, 1842;	"' 1845	987	260	21	9	93	
	\% 1846	835	223	61	132	68	
	" 1847	918	49	27	149	199	
	\% 1848	1,162	176	8	1	38	Kussowlie. Kussowlie and Ferozepare. Wuzeerabad, and Punjab Caimpaign, 48 killed and died of wounds.
September 30, 1859.	3 1849	1,006	112	86	3	235	
	- 1850	1,039	54	35	17	10	Wuzeerabad and march to Meerut. Meerut.
	$\cdots 1851$	963	72	12	7	100	
		1,012	51	26	5	62	Cawnotere, on march from Meerut to Dinapore. Dinapore.
	" 1853	998	86	41	12	69	
	" 1854	955	52	36	27	16	Moulmein, Burmah.
,	" 1855	907	68	23	2	137	
	" 1856	849	71	22	2	-	Thayetmyo, Burmah.
\cdots		$\}\} \begin{aligned} & 949 \\ & .913 \\ & 824\end{aligned}$	69	37	1	13797	
			37	26	2		Thayetmyo, Burmah, 1 Wing Calcutta Thayetmyo, Burmah, 1 Wing Calcutta Thayetmyo and Bengal (latter part of Indian Mutiny); on passage to England.
			17	-	2	-	
Average -	-	1,015	97	27	23	86	

- E. H. Westropp, Lieut.-Col., commanding 29th Regiment.

78 th Reamentio 0	Apr. 1, 1843	1,035	29	-	-	-	Poona.
Hiohlamders,	\% 1844	$-$	-	-	-	44	Kurrachee, Sinde.
	" 1845	-	400	105	-	51	Hydrabad, Sinde.
					100	638	Poona.
July 30, 1842.	" 1847		258	,	168	23	Belgaum.
	" 1848	\} -	258*	- $\{$	-	27	Belgaum.
	\# 1849				-	30	Belgaum.
	\# 1850				-	2	1 Wing Bombay, 1 Wing Aden.
	\% 1851	-	-	-	-	83	1 Wing Bombay, 1 Wing Aden.
	" 1852	-	-	-	-	80	1 Wing Bombay, 1 Wing Aden.
	" 1853	-	-	-	1	67	Poona.
	" 1854	-	-	-	-	11	Poona
-	" 1855	-	-	-	-	77	Poona.
	" 1856	914	-	$\bar{\square}$	1	59	Prona.
	" 1857	928	-	29	1	98	Mohumra, Persia, field service.
	" 1858	756	223	91	1	16	Busseratgunge, Oude, Bengal, field service.
	" 1859	540	48	18	-	-	Mhow.
Average -	-	-	-	-	16	7613 ${ }^{\frac{1}{7}}$	

This return cannot be filled up completely in consequence of several books and documents having been destroyed by fire at Cawnpore in November 1857.
J. A. Ewart, Colonel, commanding 78th Highlanders.

18 t Battalion,	Aug. 4, 1842	1,195	35	\square	27	25	Stationed at Fort William, Calcutts.
10te Regment of	April 1, 1843	1,052	105	2	3	34	Stationed at Fort William, Calcutta.
Foor,	". 1844	986	60	77	5	58	Right wing removed to Chinsurah, February 2, 1844. Regiment marched to Meerut, November
arrived in India, August 4, 1842 ; left India, April 29, 1859.	". 1845	.980 1,041	89	2	43	38	15, 1844. Stationed at Meerut from January 31,1844 to December 16, 1845.
	" 1846		103	23	124	179	Left Meerut, December 16, 1845; with the army of the Sutlef, from January 8, 1846 to March 83, Meerut, April 15, 1846 . Left M eerut, October 27, 1846; arrived at Ferozepore, November 20, 1846; marched again on December 23, 1848 to Lahore. Stationed at Lahore from Jarfuary 2, 1847, to July 27, 1848.
	$\because 1847$	955	99	117	69	111	
	1) 1848	1,024	92	44	4	133 .	Engaged with the army of the Punjab before Mooltan from August 12, 1848, to January 28, 1849.
	\# 1849	1,054	76	28	2	181	Engaged with the Grand Army, under Sir Hugh Gough, from January 22,1849 , until the arrival of the regiment in quarters at Ferozepore on Aprils, 1849.
	" 1850	1,097	53	86	3	4	The refiment left Ferozepore, February 4, 1850, and marched into quarterg at Wuzeerabad, February 17, 1850.
	3 : 1851	996	44		5	74	Stationed at Wubeerabad.
	" 1852	985	44.	59	7	77	Stationed at Wuzeerabal.
	" 1853	991		7	15	93	Thie regiment marched from Wuzeerabad, November 16, 1853, and marched into quarters at Mean Meer, November 22, 1853. -
	" 1884						
					5		Left Mean Meer, Ootobar 18, 1856, and marched into quarters at Dinapore, January 21, 1856,
	\% ${ }^{1856}$		33	45	4	93	Stationed at Dinspore.
							5 C

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Name of Regiment, with liate of Arrival in Iudia; and of Departure from India:} \& \multirow{3}{*}{\begin{tabular}{l}
Military \\
Year.
\end{tabular}} \& \multirow[t]{3}{*}{Strength on Arrival, at the Beginning of each Year, and on Departure from India.} \& \multicolumn{4}{|l|}{During the Military Year.} \& \multirow[t]{3}{*}{Stations at which the Regiment served a Month . or more in each Year, and Remarks.} \\
\hline \& \& \& Deaths \& Number of Men \& Reinf men \& \begin{tabular}{l}
orce- \\
ts.
\end{tabular} \& \\
\hline \& \& \& India. \& \begin{tabular}{l}
from \\
India to \\
England.
\end{tabular} \& By
Trans fer. \& \[
\begin{gathered}
\text { By } \\
\text { Drafts. }
\end{gathered}
\] \& \\
\hline \multirow[t]{4}{*}{1 gt Battalion, 10th Rechment of Foote-cont.} \& \multirow[b]{3}{*}{\begin{tabular}{|r|r|}
\hline pr: \\
\(\#\) \& 1,1857 \\
1858 \\
\\
\& 1859
\end{tabular}} \& \multirow[b]{4}{*}{898
796

591} \& \multirow[b]{4}{*}{30
128

64} \& \multirow[b]{2}{*}{49} \& \multirow[b]{2}{*}{-} \& \multirow[b]{2}{*}{70} \& \multirow[t]{3}{*}{The battalion was stationed at Dinapore; varioun detachments being engaged in the suppression of the mutiny, in the surroumding districts. The whole regiment was subsequently pngased in the suppression of the mutiny from December 24 to June 19, 185\%, when the hemi-quarters inarched into Dinapore.}

\hline \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \&

\hline \& " 1859 \& \& \& 61 \& 3 \& 23 \& Left Dinapore for embarkation on February 10, 1859
Head-aunrters,

\hline A verage - \& - \& 972\% \& 64.4 \& $44 \frac{1}{17} 7$ \& 18- $\frac{8}{18}$ \& $69 \frac{2}{18}$ \& harked at Calcutta, March 17, 1859, on board the King Phillip. The remaining o companics em. barked at Calcutta on April $29,1859$.

\hline
\end{tabular}

Strength on einbarkation, 521 nonacommissioned officers, rank and file ; 176 men volunteered.
II. E. Longden, C.B., Colouel and Lieut.-Col., commanding 1st Bat. 10th Regt. of Foot.

Francre Fane, Lieut.-Col., commanding 25th Regt.

8Gti Rofal Regiment of Foot,	Aug.31, 1842	1,052	135	05	-	19	Bombay and Belgaum. Attacked by cholera on arrival at Bombay.
	, 1843	936	35	19	1	120	Belgaum, Kurrachee, and Ḣydrabad.
arrived in India,	" 1844	999	83	34	9	118	Kurrachee and Hydrabad.
Angust 31, 1842;	" 1845	1,006	32	52	104	$8 \pm$	Kurrachee.
left India,	" 1846	1,099	264	19	32	7	Kurrachee. Attacked by cholera after a march of 1,300 miles.
April 18, 1859.	, 1847	.854	42	22	123	258	Poona and Deesa.
	" 1848	1,167	30	-	2	30	Deesa.
	", 1849	1,163	30	31	1	21	Deesa.
-	" 1850	1,113	34	44	6	14	Deesa and Poona.
	" 1851	1,053	11	39	12	41	Poona.
	- 1852	1,050	10	48	2	14	Poona.
	". 1853	931	21	52	10	132	Poona, Kurrachee, and Mydrabad.
	\% 1854	920	19	54	24	30	Hydrabad, Kurrachee, and Aden.
	" 1855	897	22	45	3	105	Kurrachee, Bombay, and Aden.
	$\cdots 1856$	$937{ }^{\prime}$	17	37	3	64	Bombay and Aden.
	" 1857	937	40	22	2	99	Divided into 7 detachments throughout the Roublay Presidency:
	4. 1858	977	90	100		240	With Central India Field Force under Sir Hugh Rose. Gwalior, and march to Bombay.
-	Apr. $\begin{array}{r}\text { \% } \\ \text { 18, } 1859\end{array}$	727 728	5	-	-	二	Bombay. Arrived at Gosport, August 20, 1859.
Average -	-	. $976{ }^{\frac{8}{16}}$	51%	3978	186	774	

R, M. Best, Lieat,Col., commending 8Gth Regt.

Name of Regiment, with Date of Arrival in India, and of Departure from ${ }^{\text {- }}$ India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on' Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			$\begin{gathered} \text { Deaths } \\ \text { in } \\ \text { India. } \end{gathered}$	Number of Men sent from India to England.	Reinforcements.		
					$\begin{array}{\|c\|} \hline \text { By } \\ \text { Trans- } \\ \text { fer. } \end{array}$	$\left\lvert\, \begin{gathered} \mathrm{By} \\ \text { Drafts. } \end{gathered}\right.$	
9th Queen's Rotal Regiment of Laxcers, arrived in India during September and October 1842 ;	Apr. $\overline{1,1843}$	653 609	$\overline{84}$	二	二	$\overline{40}$	Calcutta. Passage by boats on the Ganges to Cawnpore.
	" 1844	693	65	-	-	150	Cawnpore. Wing of the regiment on field
	\%. 1845	690	62	-	-	68	Cawnpore.
	$\cdots \quad 1846$	696	36	6	4	54	Cawnpore, and on the Sutlej campaign.
	" 1847	707	41	6	24	45	Meerut.
left India, April 29, 1859.	" 1848	720	15		1	51	Meerut.
	" $\quad 1849$ $\#$ 1850	705 663	${ }_{68}^{23}$	12	-	33	Meerut and Punjab Campaign. Wuzeerabad.
	" 1851	683	24	17	1	${ }_{83}{ }^{\text {* }}$	Wuzeerabad, and march to Umballa. Umballa.
	" 1852	682	13	20	2	63	
	" 1853	649	${ }^{29}$	28	13	56	Umballa.
	" 18.1854	639 695	18 16	26 10	8	${ }_{84}^{61}$	Umballa.
	" 1856	693	17	14	1	84 33	Umballa. Umballa.
	" 1857	611	13	23	1	-	Umballa.
	" 1885	547 399	107 41	50	1	$\left.\begin{array}{l}51 \\ 95\end{array}\right\}$	On field service during Indian Mutiny.
Average	-	$651 \cdot 72$	39.58	13.35	$3 \cdot 82$	59.11	

W. Drysdale, Lieut.-Col., commanding 9th Lancers.

$\begin{aligned} & \text { 53id Regiment of } \\ & \text { Foot, } \end{aligned}$	$\begin{gathered} \text { Apr. 1, } 1845 \\ \# 1846 \end{gathered}$	1,029 837	214 116	$\overline{6}$	14 195	35 46	Chinsurah and Cawnpore. Cawnpore, Agra, and on service with the Army of the Sutej
arrived in India, December 30, 184!.	, 1847	898	66	32	135	101	Umbalia and Ferozepore.
	" 1848	1,083 *	79	34	39	66	Ferozepore and Lahore.
	" 1849	910	58	${ }^{32}$	-	159	Lahore, and on service with the Army of the Punjab.
	" 1850	848	27	10	-	64	Rawul Pindi.
	". 1851	854	13	${ }^{23}$	-	68	Rawul Pindi.
	" 1852	880	63	17	-	65	Rawul Pindi. Standing Camp, and on the march to Peshawur.
	, 1853	949	58	26			Peshawur.
	" 1854	993	34	31	-	94	Peshawur, and on the march to Dugshai.
	" 1855	1,165	47	${ }^{36}$	195	71	Dugsbai and Standing Camp, Umballa.
	" 1856	1,108	57	28	-	35	Dugshai, on the march, Dum Dum, and Fort William.
	" 1857	1,093	35	22	-	79	Fott William.
		961	${ }^{106}$	-	-	247	
	" 1859	863	13	15	-	20	On field service and Lucknow.
	" 1860	807	64	9			Lucknow, on the march, and Calcutta.
Average	-	$954 \frac{14}{10}$	${ }^{6518}$	20118	${ }^{36}{ }^{18}$	7514	

F. Evglisk, C.B., Lieut.-Col., commanding 53rd Regt.

There are no documents at the depôt of a date prior to January 1, 1845.

1. Dennion Pedder. Captain, commanding Depot, 39th Regt.

lst Battalion, 60th Regt. Royal	Oct. 15, 1845	1,000	99	-	-	37	Landed in India October 16, 1845, to Poona; from Poona to Kurrachee, February 11, 1848.
Ruples,	Apr. 1, 1846	938	45	33	-	82	Kurrachee. Kurrachee.
arrived in India, October 15, 1845;	71847 $\#$	925	31	$\stackrel{50}{-}$	-	205	Kurrachee. From Kurrachee to active service in the Punjab October 8, 1848; capture of Mooltan; battle of Goozerat.' No recorda for this year.
Left ${ }^{\text {India, }}$,	" 1849	1,079 $\mathbf{1 , 0 5 3}$	19 27	19	-	28 20	Peshawur. Kussowlie.
March 17, 1860.	" 1851	-959	45	51	1	91	From Kussowlie to Jullundur in Septembar 1851. 5 D

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths in India.	Number of Men sent from India to England.	Reinforcements.		
					$\begin{gathered} \text { By } \\ \text { Trans- } \\ \text { fer. } \end{gathered}$	By Drafts.	
lat Battalion, 60th Regimfet of Royal Riflegcont.	Apr. 1, 1852	933	47	59	1	104	Jullundur.
	" 1853	899	34	45	3	123	Jullundur.
	\% 1854	918	26	46	42	55	From Julluneur, December 19, 1854, to Umbalia, where it arrived on December 29 , for the purpose of joining a Camp of Exercise under comraand of Major-General Fane; returned to Julhindur, March 1855.
	" 1855	913	10	48	5	93	From Jullundur to Meerut on the 1st, and arrived on December 28, 1855, in course of relief.
	" 1856	949	54	76	6	59	Meerut.
	" 1857	882	194	2	1	102	From Meerut on May 27, 185\%; towards Delhi ; engafed at the Hindun, May 30 to 31, Allipore on June 7. Engayed with the mutinous sepoys, June 18; encamped before Delhi on that date; sicge operations before Delhi from June 8 till September 13. Assault and capture of the city on September 14, 1857. Stationed at Delhi till the end of December 1857.
	" 1858	789	43	137	5	290	To Meerut on January 1, 1858. Campaign in Rohilcund in April 1858; actions of Bagawalla and Nugeena; relief of Moradabad; action on the Dajura; assault and capture of Bareilly ; relief of Shahjehanpore; attack and destruction of Mahumdee and Shahabad; action of Bung-tra-Gong; served in Oudh in October 185s; actions of Pusgaon, Rissoolpoor ; capture of Mittowlie; action at Biswah; in the field to end of year.
	$\text { " } 1859$	900	61	127	6.	35	From service in the field to Camp at Seetapore, March 1, 1859. From Seetapore on March 21, 1859, to Benares, where it remained till September 20, 18 Fig .
	" 1860	452	-	-	-	-	From Benares to Calcutta on Soptember 21, 1859 and remained at Fort William, Calcutta, until March 17, 1860, when it embarked for England on board the Ship "Aliquis."
Average -	-	1,258.9	$73 \cdot 5$	74.4	7	$132 \cdot 4$. \quad.

C. N. North, Lieut.-Col., and Major commanding 1st Battalion, 60th Royal Rifles.

J. P. Redmond, Lieut.-Col., commanding 61st Regt.

Ist Battalion, 8th,	- 19.7	869	-	-	$\bar{\square}$	-	Poona and Bombay.
	Apr. 1, 1847	1,022	10	-	49	31	
Regiment of Infantry,	". 1848	1,010	9	4	99	7	Poona and Bombay.
Ingantry,	\% 1849	1,144	33	11	3	150	Per steamer to Kurrachee, and left wing marched to Hyderabad.
arrived in India,	\% 1850	1,029	46	86	-	30	Kurrachee and Hyderabad.
August 2, 1846 ;	" 1851	1.851	14	8	-	46	Kurrachee and Iyderabad.
	" 1852	1,020	30	48	-	52	Both wings marched to Deesa.
left India,	" 1853	987	27	48	-	43	Deesa.
May 4, 1860.	" 1854	932	18	75	-	-	Marched to Agra.
	" 1855	977	18	1	21	98	Agra.
	" 1856	854	29	98	12	-	Marched to Jullundur.
	" 1857	891	40	70	1	119	Jullundur.
	" 1858	845	175	-	-	174	At the siege of Delhi various operations and relief of Lucknow and Umballa.
	" 1859	870	56	88	4	148	Agra, Futtyghur and Subjugation of Oude.
	" 1860	475	29	99	7	90	Futtyghur. March from Futtyghur to Cal-
	May 4, 1860	319	9	209	-	1	Calcutta.
Average	-	1,021 $\frac{8}{14}$	3213	60848	14	702	

Fand. P. Hanks, Colonel, Liqut.-Col. commanding lst Bat, The King's Regt

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths	Number of Men	Reinforcements.		
			India.	from India to England.	$\xrightarrow[\text { Trans }]{\text { By }}$ fer.	By Drafts.	
8th Regiment, arrived in India, August 2, 1846 ;	Apr. 1, 1846	869	$\overline{10}$	-	-	-	November and December, Poona January to December, Poona. January to October, Poona; October to December, Kurrachee.
	" 1847	1,022	10	$-$	49	31	
	" 1848	1,010	9	4	99	-	
	" 1849	1,144	33	11	3	150	
left India, May 4, 1860.	" 1850	1,030	46	86	-	30	January to December, Right Wing, Kurrachee; Left Wing, Hyderabad.
	\% 1851	1,051	14	8	-	46	January to December, Deesa. January to December, Deesa.
	" 1852	1,020	30	48	-	52	
	" 1853	987	27	48	-	43	January to November, Deesa; December, on the march.
	" 1854	932	18	75	-	-	January, on the march ; Febroary to December, Agra.
	" 1855	977	18	1	21	98	January to October, Agra; November and December, on the march.
	18556 " 1857	854 891	29	98 70	12	-19	January to December, Jullundur. January to December, in the Field.
	" 1857	889	40 175	70	1	$\begin{aligned} & 119 \\ & 174 \end{aligned}$	January and February, on the March; March to July, Agra; August to October, Futtyghar; November and December, in the
	\% 1859	870	56	88	4	148	January to December, Futtyghur January to May, Calcutta.
	M" 1860	475	29	99 9	7	90	
	May 1,1860		9	209	-	,	
Average -	-	1,021	39	60	14	70	

Fred. P. Haines, Colonel, N. Wg., Com. 1st, 8th Foot.

10th Royal-	-	640	-	-	-	-	
Regiment of	Apr. 1, 1847	644	10	-	-	14	Kirkee, East Indies.
Hussars,	" 1848	708	17	29	-	110	Kirkee, East Indies.
	" 1849	721	9	7	1	29	Kirkee, Tast Indies.
arrived in India,	" 1850	667	19	60	-	25	Kirkee, East Indies.
August 22, 1846;	" 1851	674	25	31	-	65	Kirkee, East Indies.
	" 1852	676	15	51	-	67	Kirkee, Kast Indies.
left India,	" 1853	689	6	64	5	78	Kirkee, East Indies.
February 1, 1855.	" 1854	645	12	75	-	43	'Kirkee, East Indies.
	$\left\{\begin{array}{l} \text { Jan. 10, } \\ \text { Feb. 1, } \end{array}\right\} 1855$	672	12	38	-	77	Marched in two wings for Bombay, 1st wing Dec. 28, 1854, 2nd wing Jan. 12, 1855.
Average - -	-	$693 \cdot 7$	13.88	44*37	- 66	56.44	

V. BAEER, Lieut.-Col., commanding 10th Royal Hussars.

let Batralion, 24th Regiment of	$\text { Aug. 28, } 1846$	$\left.\begin{array}{r} 924 \\ 1,015 \end{array}\right\}$	49	5	139	7	Dum Dum, Ghazepore, Allahabad, and Agra.
24ta Reanment of	Apr. 1, $\%$ $\%$ 1848	1,185	88	18	109	173	Agra, Punjab campaign, Chillianwallah.
	" 1849	${ }^{1} 896$	288	15	1	$18\}$	Agra, Punjab campaign, Chillianwallah.
arrived in India, August 28, 1846.	\% 1850	1,103	39	56.	2	318	Wuzeerabad.
	" 1851	1,015	60	36	6	10	Wuzeerabad and Lahore.
	" 1852	1,021	26	36°	1	67	Wuzeerabad.
	" 1853	1,008	19	41	2	58.	Sealkote.
	" 1854	1,049	27	54	58	74	Sealkote. Per
	" 1855	1,062	33	23	41	32	Sealkote and Peshawur.
- \quad.	" 1856	1,049	37	32	13	${ }^{46}$	Peshawur and Nowshera. Peshawnr, Rawul Pindi, Shelum, Wozeer
	" 1857	952	79	34	2	12	abad, Fort Attock, Fort Phillour, Fort Govindghur, Jullundur, Umritsur, Goo-
	" 1858	. 954	105	-	2	106	gana. The regiment (in detachments) was on the march from May 1857 to May
	" 1859	1,141	27	89	6	297	1858. Ferozepore (in pursuit of Tantia Topee).
	" 1860	1,058 633	16	46 96	22 5	10 1	Ferozepore. Ferozepore, and march to Kurrachee (via
	" 1861	633		96			Mooltan).
Average	-	1,07719	60-4	$38 \frac{17}{18}$	$27 \frac{14}{26}$	82.7	

N.B.-Men discharged or "volunteers" to other corps not accounted for, there being no column for the same.

Emmond Woderodse, Lieut.-Col., commanding 1st Bat. 24th Regt.

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has .served a Month or more in each Year, and Remarks.			
			Deaths	Number of Men	Reinf	forceats.				
			India.	from India to England.	$\begin{array}{\|c\|} \text { By } \\ \text { Trans- }- \\ \text { fer. } \end{array}$	Drafts.				
32mi Regiment Infantry, arrived in India, September 9, 1846 ; left India March 24, 1859.	Sept. 9, 1846 Apr. 1, 1847	$\begin{array}{r} 943 \\ 1,114 \end{array}$	$\overrightarrow{37}$	7	$\overline{137}$	$\overline{1}$	Chinsurah to November 26, 1846, when the regiment marched en route for Meerut, and arrived February 19, 1847 (quartered in barracks). Meerut to February 14, 1848 , when it marched en route to Umballa, and arrived March 1, 1818 (quartered in barracks).			
	" 1848	1,202	$76{ }^{\circ}$	5	42	128	Umballa to May 14, 1848. Ferozepore from May 27 to August 10, 1818 . On field service before Mooltan and Goozerat to March 22; 1849. En route to Jullundur to March 31, 1849. En route to Jullundur to April 17, 1849, after which quartered in barracks.			
		1,075	125	-						
	" 1850	1,114998		6025	3	15621	Jullundur (in barracks). Jullundur till November 19, 1851. On march to Peshawur till February 8, 1852; were quartered in barracks whilst stationed there. Employed on field service in Rannazye valley from March 10 to 27, 1852.			
	" 1851									
	$\begin{array}{ll} " & 1852 \\ " & 1853 \end{array}$	1,021	31	26	4	44	Peshawur. Employed on field service in Rannazye valley from May 2 to June 1852.			
		919	87	59	-	53	Peshawur to January 8, 1854. On march to Kugsowlie till March 6, 1854, from that time headquarters at Kussowhe, and left wing at Subathoo (both in barracks).			
	\% 1854	925	26	-	3	70	Head-quarters, Kussowlie; Left wing, Suhathoo, to August 27, 1854; the whole regiment at kussowhe till December 12, 1854. At camp of exercise, Umballa, from December 16, 1854 to March 4, 1855. Head-quarters, Kussowlie; Left wing, Snbathoo, remainder of the year.			
	" 1855	-	$\left\{\begin{array}{l}\text { Returns lost in Lucknow, and } \\ \text { copies for the period from } \\ \text { Jan. } 1 \text { to Dec. 31, 1855, } \\ \text { could not beobtained from } \\ \text { Horse Guards. }\end{array}\right\}$				Head-quarters, Kussowlie. $\}$ In barracks. Left wing, Subathoo. Head-quarters, Kussowlie; Left wing, Subathoo, till April 3, 1856; the whole reyiment, Kussowlie, till October 30, 1856; on march to Lucknow till December 27, 1857 ; were quartered in barracks with one company at Cawnpore, with women and children.			
	\% 1856	909								
	" 1857	742	82	32	4 33		Lucknow ${ }_{1}$ with one rompany at Cawnpore; on field service in the neizhbourhood of Lucknow from May 15 to June 30; employed in defence of the Residency from June 30 to November 22 ; on field service remainder of year.			
	" 1858	510	384	32	2	185	On field service in the Allahabad and Oude districts till January 27,1859 : in camp at Allahabad till February 12, 1859; en route (bullock train) to Chinsurah till February 28 ; at Chiusurah in barm racks till embarkation for England on March 23 , 1859.			
	Mar. 24, 1859	341	63	65	2	58	Sailed for England.			
Average - -	-	${ }^{908}{ }_{15}$	$93 \frac{1}{2}$ T	$28 \frac{3}{1}$	18	$69 \frac{5}{12}$.			

G. G. C. Stapylton, Lieut.-Col., commanding 32nd Lt. Infantry.

32nd Rzgiment,	Apr. 1, 1846	943	-	-	-	\cdots	October and November, Chinsurah ; December, on the March.
arrived in India, September 9, 1846 ;	" 1847	1,114	37	7	137	1	January and February, on the March; March to December, Meerut.
left India, March 24, 1859.	" 1848	1,202	76	5	42	128	January and February, Meerut ; March to May, Umballa; June to August, Ferozepore; September to December, Camp before Mooltan.
	" 1849	1,075	125	\cdots	1	15	Junuary, Camp before Mooltan; February to April, on the March; May to December, Jullundur.
	, 1850	1,114	68	60	3	156	January to December, Jullundur. -
	" 1851	. 998	45	25	-	21	January to November, Jullundur ; December, on the March.
	$\text { " } 1852$	1,021	31	26	4	44	January to April, Peshawur; May, in the Field; June to December,' Peshawar.
	$\text { » } 1853$	919		59	-	53	January to December, Peshawur.
	$\because \quad 1854$	925	26	-	-	70	January and February, on the Mareh; March to December, Kussowlie.
	$\text { ๆ } 1855$	909	Return copi Jan	lost in for the y to	uckno eriod fi st De	, and m 1st ember	January to March, Umballa; April to Decem ber, Right Wing, Kussowlie; Left Wing, Subathoo.
	$\text { " } 1856$	909		could n he Hors	be ob Guard	tained	January to October, Kussowlie; November and December, on March.
	$\text { " } \quad 1857$	742				33	January to November, Lucknow; December, Cawnpore.
	" 1858	510	384	32	2	185	January to December, in the Field.
,	\% 1859	341	63	65	2	85	January, Camp Morawon ; February, Allahabad; March, Chinsurah.
Average -	-	$908 \frac{8}{\frac{2}{3}}$	$93 \frac{1}{1}$	$28 \frac{1}{17}$	18	69 ${ }^{\frac{8}{15}}$.

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on. Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths in India.	Number of Men sent from. India to England.	Re-inforcements.		
					By Transfer.	$\underset{\text { Drafts. }}{\mathrm{By}}$	
96th Regiment of Foot,	Apr. 1, 1850	1,014 891	60 121	4 53	1	199	Calcutta and Ghazeepore. Marched from Ghazeepore to Cawnpore.
arrived in India,	\# 1850	891	121	53	4	208	Cawnpore. Marched from Cawnpore to Lahore.
April 26, 1849 ;	" 1851	933	122	63	6	94	Lahore.
	" 1852	973	69	48	2	150	Mean Meer.
left India, ${ }_{\text {, }}$	1853	937	44	44	5	110	Mean Meer. Marched for Dinapore, Novem.
December 31, 1854.	$\text { \% } 1854$	*954	58	Nil.	5	Nil.	ber 1853 . Dinapore and Chinsurah.
	Dec. 31, 1854	633		633			Embarked for England in December 1854.
Average -	-	9501	7.53	423	$3 \frac{3}{6}$	152\%	

* 279 men volunteered for further service in India.
E. W. Scovelr, Colonel, commanding 96th Regiment,

Under "Sent Home" all men discharged in India are included. Under" Transfers" all men joining in India other than drafts. Under' "Drafts" Recruits. This return does not show the numbers transferred from the regiment to other corps or deserters.
H. de R. Pigotr, Captain commanding Depôt 83rd Regiment.

64TH (2ND Stap-	May 17, 1849	1,103	78	4	\cdots	14	Poona and Kurrachee.
PORDSHIRE)	Apr. 1,1850	1,035	14	28	-	-	Kurrachee.
Rrgiment of In-	" 1851	993	-	-	-	-	Kurrachee.
FANTRY,	" 1852	1,012	50	52	2	76	Kurrachee. ${ }^{\text {² }}$
	\% 1853	989	-	-	-	-	Kurrachee and Belgaum.
arrived in India,	" 1854	-	-	-	-	-	Belgaum -. - $\begin{gathered}\text { Returm books for thess } \\ \text { years and } 1851 \text { were lost }\end{gathered}$
May 17, 1849;	" 1855	-	-	\cdots	-	二	
	" 1856	-	-	77	6	72	
left April $9,1861$.	" 1857	1,088	237	77 115	6 100	72 430	On Field Service in Bengal.
April 9, 1861.	\% 18858	852 1,228	39 24	115	100	- 2	Kurrachee.
	" 1860	+993	12	452	7	60	Kurrachee.
	181861	596		of E	kati		Kurrachee.
Average of Returns given	\} -	988 ${ }^{\text {¢ }}$	649	136	18	939	. .

Under "Number of men sent from India to England" men transferred to other regiments are included. Under "Drafts" recruita are included.

Name of Regiment, with Date of Artival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Station at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths in India	Number of Men sent from India to England	Re-inforcements.		
					$\begin{gathered} \text { By } \\ \text { Trans- } \\ \text { fer. } \end{gathered}$	$\begin{gathered} \mathrm{By} \\ \text { Drafts. } \end{gathered}$	
70 th Regiment of Foor,	May 17, 1849 Apr. 1, 1850	979 935	129	4	1	$\overline{96}$	Calcutta and on march.
	" 1851	1,000	48	1	5	125	Fort William and Cawnpore.
arrived indundia,	" 1852	963	67	36	6	81	Cawnpore.
May 17, 1849.	" 1853	950	40	32	1	74	Cawnpore.
	" 1854	808	243	23.	94	102	Cawnpore and Ferozepore (on march).
	" 1855	882	17 8	14	12	97 5	Ferozepore.
	" 1856	896 745	8 117	58	5	52 38	Ferozepore.
	" 1858	963	82		2	302	Ferozepore and Peshawur (on march). Peshawur.
	" 1859	975	59	71	12	153	Peshawur, Nowsheras, and Rawul Pindi (march).
	Feb. $\begin{array}{r}1860 \\ 1861\end{array}$	$\begin{aligned} & 915 \\ & 884 \end{aligned}$	$\begin{aligned} & 18 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 \\ & 77 \end{aligned}$	3	$\begin{array}{r} 36 \\ 131 \end{array}$	Rawul Pindi and Allahabad and on march. Allahabad.
Average -	-	910	72	32	7	107	

W. Cooper, Capt., commanding 70th Depôt.

A. H. Cobre, Major, commanding 87th Fusiliers.

75th Regiment of Foof,	$\begin{aligned} & \text { Aug. 10, } 1849 \\ & \text { Apr. 1, } 1850 \end{aligned}$	988 956	188	1	二	-	Calcutta and Allahabad. Umballa.
	" 1851	1,033.	50	-	1	132	Umballa.
arrived in India,	" 1852	1,041	30 +18	14.	2	69	Umballa. Left wing in Agra.
August 10, 1849.	$7 \quad 1853$ 1854	${ }_{994}^{941}$	118 31	24 26	${ }^{78}$	61 97	Umballa. Cholera. .
	", 1854	994	${ }^{31}$	26 30	19	65	Meshawar
	" 1856	976	46	43	9	138	Rawul Pindi.
	" 1857	937	22	62	5	48	March to Kussowlie.
	", 1858	816	228	-	3	104	Field service in front of Delhi and Lucknow, 1857-58.
	" 1859	1,091	39	37	124	147	Meerut.
	", 1860	1,039	27	73	11	73	Allahabad.
	", 1861	951	57	71	9	99	Calcutta.
Average	-	1,058	78	31	17	86	- .

T. C. Dunbar, Bt. Major, commanding Depôt 75th Regt.

52nd Regiment of	Oct. 1, 1853	1,067	19	-	54	9	Calcutta, Umballa.
Light Infintry,	Apr. 1, 1854	1,106	59	5	9	14	Umballa, Meerut.
	, 1855	1,041	40	24	2	34	Meerut, Lucknow.
$\begin{aligned} & \text { arrived in India, } \\ & \text { October 1, } 1853 . \end{aligned}$	" 1856	1,002	103	75	1	56	Lacknow, Cawapore, Delhi, Sealkote.
	" 1857	871	63	-	-	212	
							turns Por July, September, and October 1857, and March 1858, have not been received at the depot ;
	, 1858	888	2.5	94	22	417	Jullundur, Sealkote.
	" 1859	1,204	12	19	12	-	Sealkote.
	" 1860	1,131	13	96	63	49	Sealkote, Jhansi.
	1861	1,076	-				Jhansi.
Average	-	1,108	$44 \frac{5}{13}$	$411+1$	$21+8$	${ }^{105}{ }^{\frac{1}{15}}$	

-Arthur Henlet, Capt., commanding Depôt 52nd Lt. Infantry.

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths in India.	Number of Men sent from India to England.	Re-inforceinents.		
					$\begin{gathered} \mathrm{By} \\ \text { Trans- } \\ \text { fer. } \end{gathered}$	$\left\lvert\, \begin{gathered} \mathrm{B} \\ \text { Drafts } \end{gathered}\right.$	
81bt Regiment of Foot, grrived in India, October 7, 1853.	Apr. 1, 1854	1,063	29	1	13	1	Calcutta. On march. Meerut. Meerut. On march. Meean Meer. Mean Meer. Visited by cholera, August and September 1856. Mean Meer, 150 men on field service for short periods, but continuously ou duty and exposed on picket ip cantonments. On march. Nowshera Nowshere. On march. Peshawur., 350 men on field service for short period. No rain at Peahawur, 1858-9. Regiment healthy. Peshawur. On march. Harul Pindi. Rawul Pindi.
	" 1855	1,047	77	-	43	26	
	" 1856	1,022	16	10	7	53	
	$\text { " } 1857$	1,047	170	1	1	26	
	$\text { \# } 1858$	1,044	32	-	-	221	
	" 1859	1,074	41	59	94	28	
	$\text { Mar. 31, } 1861$	$\} 1,034$	26	94	200	35	
Average - -	-	1,047	55	23	51	77	

C. Skerry, Capt., 81st Regt., commanding Depôt

43id Regiment of	Feb.11,1854	1,056	-	-	-	-	
Light Infantri,	Apt. 1, 1854	1,118	7	-	24	45	Madras, 2 months.
	" 1855	1,230	43	34	158	39	Madras, 11 months : Bangalore, 1 month.
arrived in India,	" 1856	1,181	24	33	3	8	Bangalore, 12 months.
February 11, 1854 ;	" 1857	1,094	50	43	-	30	Bangalore, 12 months.
	" 1858	1,041	31	28	1	6	Bangalore, 9 months; on field service, 3 months.
still serving in India.	n 1859	979	116	30	3	85	On field service, 7 months; Calpee, 3 months; Saugor, 2 months.
	" 1860	950	26	69	11	78	Saugor, 9 months ; on march, 2 months; Madras, 1 month.
	" 1861	969	11	141	12	197	Madras, 12 months.
Average - .-	-	1066.44	38. 50	$47^{\prime} 25$	26.60	61	

H. J. Berners, Lieut., commanding Depôt 43rả Light Infantry.

74th Regment of	M arch 1854	730					Head-quarters mapehed from Madras to Trichin-
Highlanders,	Apr. 1, 1854	828	7	-	-	78	opoly, January 19, 1854. Left wing from Madras to Trichinopoly arrived March 171854 Head
	" 1855	1,004	63	17	262	5	quarters from Trichinopoly to Jackatalla, March
arrived in India,	" 1856	994	25	36	1	59	16, 1854. Head-quarters from Jackatalla, to Bel-
March, 1854.	" 1857	978	22	34	-	48.	lary, July 22, 1857. Left wing from 'Irichinopoly to Jackatalla (date not known at Depot). Lefl
	" 1858	972	18	41	-	63	wing from Jawkatalla to Cannaniore, (date not
	" 1859	1,065	40	26	2	131	known at Depot). Left ming from Cantianore to
	" 1860	911	27	90	6	33	Bellary, Jnnuary 1838. Head-quarters from Bel-
	" 1861	932	13	100	31	140	to Bellary, Pebruary $23,1859.0$
Average -	-	934 ${ }^{\text {8 }}$	267	497	602	69ㄷg	

Portions of the Regiment on field service during Indian Mutiny; strength and dates not known at the Depôt. H. W. Pacmer, Capt., commanding Depôt 74th Highlanders.

27th Innisitiling	April 1, 1855	770	7	-	20	-	Allahabad, and on march.
Rrgiment of Foot,	Mar. 31,1856	718^{*}	50	2	7	255	Sealkote.
	\% 1857	930	33	14	2	111	Sealkote, Peshawur, and Nowshera
arrived in India; October 12, 1855;	\% 1858	988	140	30	1	105	Peshawur, Nowshera, and march from Nowr-
	-						sherra to Attock and Rawul Pindi.
	" 1859	935	34	82	7	240	Umballa.
the regiment remains in India.	1860	1,040	12	11.	28	-	Umballa.
	" 1861	1,042	22	82	75	135	Umballa and Morar Gwalior.
	June 30, 1861	1,107	4	24	2	-	Morar Gwalior.
Average -	-	941	37	30	17	105	

Name of Regiment, with Date of Arrival in India, and of Departure fiom India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure trom India:	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarkg.
			Deaths in Indía.	Number of Men sent from India to England.	Re-inforcements.		
					By Transfer.	By Dratts Drafts.	
35ti Regiment of Foot, arrived in India, November 14, 1854.	$\begin{gathered} \text { Nov. 14,1854 } \\ \text { April 1, } 1855 \\ \Rightarrow \quad 1856 \end{gathered}$	$\begin{aligned} & 642 \\ & 681 \\ & 655 \end{aligned}$	1452	1515	-66	-	Dum Dum. Dum Dum, 4 months. Dum Dum, 5 months; Calcutta, 6 months; Moulmein, 1 month.
		656			-		
	$\begin{array}{rr} " & 1857 \\ -" & 1858 \end{array}$	$\begin{array}{r} 933 \\ \hdashline \quad 934 \\ 959 \end{array}$	6666	164		75365	Moulmein, 12 months. Moulmein, 3 months ; on march, 2 months; Barrackpore, 7 months.
					-		
	\% 1859		$\begin{gathered} 187^{*} \\ 38 \end{gathered}$	35	20	204 ${ }^{\text {2 }}$	Dinapore, 8 months; field service, 4 months. Dinapore, 6 months; on march as escort of Governor-General, 3 months; Meerut, 3 months. Meerut, 12 months.
	" 1860			62.	72	104	
	\% + 1861	1,162	19	56	183	100	
Average - -		946	63.18	33. 71	48.71	$127^{\circ} 42$	

* 101 killed in action.
A. Tispali, Brevet Major, commanding Depôt 35th Regiment.

Gth (Carabineers) Dragoon Geards,	April 1, 1857	635	2	-	-	-	On line of march from Calcutta to Meerut, arrived March 11, 1857.
	" 1858	632	71		3	65	Meerut when in quarters. On field service.
arrived in India, November 22, 1856;	" 1859	661	28	45	2	100	Meerut. On field serviee. Muttra, February 5, 1859.
	" 1860*	659	13	34	14	42	Muttra to January 9, 1860. Meerut.
left India, March 18, 1861.	$\text { Mar.18,1861 } \dagger$	510	9	43	5	50	Meerut. On line of march for Calcutta from January 20, 1861.
Average -		619	${ }^{3} 30$	30	7	64	.

- 11 men discharged in India not noted in the above.
$\dagger 15$ men discharged in India, 3 men transferred, 134 men volunteered to corps in India, not counted in the above numbers. H. Ricemond Jones, Colonel, commanding 6th Camabineers.

12 th Regiment	Apr. 1, 1857	610	$\begin{array}{r}3 \\ \hline\end{array}$	-	-	61	Head Quarters and Right Wing, Bangalore and Secunderabad; Left Wing, Kirkee, Secunderabad, Saugor. Employed on field service in Central India from December 1857 to April 1859.
Royal Lancers,	" 1858	644	20	4	-	61	
arrived in India,	" 1859	608 404	52 34	41	23	57 89	
December 11, 1856.	" 1861	404	34	45	23	83	
Average -	-	534	274	221	$5 \frac{3}{4}$	518	

T. Oakes, Lieut.-Col., commanding 12th Royal Lancers.

Egerton Milman, Colonel.

$1 \mathrm{lft} \mathrm{Batt}. \mathrm{5ty} \mathrm{Regt}$.	Apr.1, 1858	856	165	2	1	1	Chinsarah, Allumbagh, and Cawnpore.
Fusiliers,	" 1859	663	88	48	3	298	Calpee and Allahabad.
arrived in India,	" 1860	828	104	76	6	150	Allahabad and Calcutta.
July 4, 1857;	Mar. 9,1861	805	38	419**.	3	211	Calcutta.
left India, March 9, 1861.	,	562	-	-	-	-	Strength on March 9, 1861, on learing India.
Average - -	-	782 ${ }^{4}$	98\%	1361	31	165	: - • \quad -

[^32]The Battalion was on ficld service from July 1857 to April 1858, from June to August 1858, and from October 1858 to February 1859. On the March from January to March 1860 from Allahabad to Calcutta.
W. C. Master, Lieut.-Col., commanding lst Batt 5th Regt. Fusiliers.

Name of Regiment, with Date of Arrival in Indis, and of Departure from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Reginent has served a Month or more in each Year, and Remarks.
			Deaths in India	Number of Men sent from India to England.	Re-inforcements.		
					By Trans fer.	By Drafts.	
90th Regiment of Ligit Infantry,	$\text { Apr. 1, } 1858$	1,036	149	34	-	-	Incomplete in consequence of several of the Monthly Returns having been destroyed en
arrived in India July 21, 1857.	" 1859	130	140	82	4	201	route țo the Depôt." Lucknow and in camps in parious parts of Oudh. On field service.
	$\begin{array}{ll} & 1860 \\ " & 1861 \end{array}$	$\begin{aligned} & 858 \\ & 929 \end{aligned}$	$\begin{aligned} & 32 \\ & 25 \end{aligned}$	$\begin{aligned} & 48 \\ & 51 \end{aligned}$	10 7	184 131	Seetapore, Oude. Seetapore, and one month at Allahabad.
Average =	-	$738 \frac{1}{4}$	861	53		129	;

* During the first year the Regiment was on active service, and upwards o 90 men out of the 149 were killed or died of woumds.
L. H. Irbx, Captain, commanding Depôt 90 th Light Infantry.

J. Trent, Captain, commanding Depôt 33rd Regiment.

R. F. Holmes, Brevet Major, commanding Depôt 89th Regiment.

1gr Battalion, 23rd Regiment of Hoyal Welsh Fubiliers,	Apr. 1,1858	947	31	21	-	20	Fort William, Calcutta. Allahabad, line of march. Camp Cawnpore, field service. Camp Goorn Gunge, field service. Camp Ramgunge, field service. Camp Bunteerah, field service. Lucknow, field service.
arrived in India, October 1, 1857.	\# 1859	1,191	107	58	15	391	Lucknow, field service. Camp Newabgange, field service. Camp on the Gogra, field service. Cantonments, Lucknow, field service. Lucknow, field sevice.
	" 1860	1,046	53	61	18	1	Old cantonments, Lucknow. Lucknow. New cantonments, Lacknow."
-	" 1861	1,166	23	53	232	72	New cantonments, Lucknow. Lacknow.
Average - -	-	1,087-50	$53 \cdot 50$	48-25	66.25	$121 \cdot 0$	

C. Monseld, Capt., commanding Depôt, 1st Battalion, 23rd R. W. Fusiliers.

W. F. J. Rodd, Capt., commanding Depút 1st Batt. 1st Foot

42ND	Nov. 1, 1857	876	-	-	-	-	Barielly. Thilleebheet. Camp Madho Thanda
Rofal Highland	Apr. 1, 1858	771	20	1	-	-	Barielly. Agra.
Regt, of Foot,	\# 1859	961	123	22	19	238	- .
arrived in India,	" 1860	1,009	20	76	12	166	
November 1, 1857.	" 1861	990	23	40	11	100	
Average - -		932-75	$46 \cdot 5$	34-75	10.5	126	. .

Fran. E. H. Farquharson, commaniding Depôt 42nd Royal Highland B. W.

$95 t h$ Regt. Foot,		725	B	-	-	-	Stationed at Bombay November and part of
arrived in India,	1 Apr. 1858	714	8	3	-	-	December 1857. Remainder on field service.
Ist Division, Sep-	" 1589	1,047	50	24	-	408	On field service.
tember 27, 1857 ;	" 1860	1,037	32	42	5	76	Field service to May 1859. Stationed at Nee-
2nd Division, Novvember 1, 1857.	$\text { " } \quad 1861$	985	38	39	8	96	much to April 1860. Neemuch to November 1860. March to Poona from 1860 to January 1861. Poona February to April 1861.
Average -	-	883 ${ }^{\text {g }}$	25\%	218	19	116	

George Carmichael, Bt.-Major, commanding Depot 95th Regiment.

88ta Reaiment of Foot,	Apr. 1, 1858	960	31	13	-	4	On march, on field service, Bhithoor, Akbarpore.
arrived in India,	" 1859	916	118	41	8	211	Akbarpore, Cawnpore, on field service, Lucknow.
November 2, 1857.	" 1860	961	43	85	37	79	On march, Delhi.
	\% 1861	$\left\{\begin{array}{r}925 \\ 1,048\end{array}\right\}$	85	49	47	168	Delhi.
Average -	-	962-\%	62	41.1	$30 \cdot 2$	152.2	

Men trinsferred to other corps, discharged in India, deserted, and rejoined from desertion, are not shown in this Return, no column bing provided for thern.

Name of Regiment, with Date of Arrival in India, and of Departare from India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has 6 served a Month or more in each Year, and Remarks.
			Deaths	Number of Men	$\underset{\substack{\text { meini }}}{ }$	forcents.	
			India.	from India to England.	By Transfer.	Brafts.	
2nd Battalion, Rifle Brigade,	Nov., 1857	847	-	-	-	-	
	Apr. 1, 1858	886	20	12	-	72	Cawnpore, field service, period not known. Newabgunge, Sultanpore, field service, period not known. Baraitch, Lucknow, field service, period not knowh. Marched to Subathoo. Subathoo.
arrived in India, November 1857.	" 1859	1,043	113	29	2	299	
	\% 1860	1,106	48	80	99	120	
	" 1861	1,133	18	68	9	146	
Average	\pm	1,003	49•75	47:25	$27 \cdot 50$	159•25	*

A. F. WARREN, Bt.-Major, commanding Depôt, 2nd Bat. Rifle Brigade.

3rd Battalion, Rifle Brigade,	Apr. 1, 1858	966 945	21	-	-18	$\overline{282}$	Field service. \because
arrived in India, November 1857.	\% 1859	1,069	141	30	10	112	Field service to September.**
	" 1860	1,156	29	32	8	38	At Agra fromi September 1859. Agra.till April 1861. Marched to Bareilly.
	1861	1,047	79	30	1		
Average - -	-	1,036	67-5	23	$9 \cdot 3$	108	\because

Cladde T. Bourchier, Bt. Maj., tonfmanding Depôt, 3rd Bat. Rifle Brigade.

3rd Regiment of	Apr. 1, 1858	553	4	-	-	-	Kirkee.
Dragoon Guards,	, 1859	701	16	25	-	191	Camp Burhampore.
arrived in India,	", 1860	663	30	36	18	15	Mhow.
November 9, 1857.	" 1861	657	14	15	3	25	Mhow.
Average -	-	. 643	16	19	5	43	

C. Hagart, Col., commanding Cavalry Depôt, Canterbury.

C. Hagarf, Col., commanding Cavalry Depôt, Canterbary.

38th Regiment of foot,	$\begin{aligned} & \text { Apr. 1, } 1858 \\ & \text { Mar. 31, } 1859 \end{aligned}$	$\begin{array}{r} 1,005 \\ 982 \end{array}$	21 176	38	2	- 294	Calcutta, Allahabad, \&c. On the march. Lucknow, on feld service. Rae-Bareilly can
	\# 1860	1,059	40	82	26	61	tonments.
arrived in India,	1861	1,014	22	59	32	131	Rae-Bareilly,Allahabad. Onmarch to Dinapore.
November 16, 1857.	Apr. 1, 1861	1,089			-	-	Dinapore.
Average	-	1,015	85	61	21.	162	
Ift Battalion,	Apr. 1, 1858	1,023	10	4	-	33	Calcutta, on march, Barrackpore.
19ta Regr. Foot,	, 1859	1,108	87	60		257	Barrackpore, on march, Dinapore, field service, Muttaharee.
arrived in India, November 18, 1857.	" 1860	965	65	64		3	Muttaharee, field service, Dinapore, on march. Benares.
	, 1861	905	40	97.	16	60	Benares.
Average	-	1,000	$50 \frac{1}{2}$	$56 \frac{1}{4}$		884	

Ames Goren, Captain 1st Batt., 19th Regt., commanding Depôt.

18 TBatt 20thRegt.	Nov.19,1857	816	-	-	-	-	Field service and on march.
Fоot,	Apr. I, 1858	796	19	1	-	-	Lucknow and Nawabgangee.
arrived in India,	" 1859	1,015	123	58	-	407	Gondah.
November 19, 1857.	" 1860	964	56	82	3	97	Gondah.
	" 1861	975	17.	68	8	125	Gorruckpore.
Average -	-	838.5	59.4	$42 \cdot 3$	$3 \cdot 3$	151.2	

Name of Regiment, with Date of Arrival in India, and of Departure fiom India.	Military Year.	Strength on Arrival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths	Number of Men	Re-inforcements.		
			in India.	from India to England.	$\begin{array}{\|c\|} \hline \text { By } \\ \text { Trans- } \\ \text { fer. } \end{array}$	$\underset{\text { Drafts. }}{\text { By }}$	
97th Rear. Foot,	Apr. 1, 1858	816	5	$\bar{\square}$	-	-	Calcutta and on march.
arrived in India, November 22, 1857.	Mar. 31, 1859	799	139	39	4	445	Lucknow, on field service and on march.
November 22, 1857.	" 1860	1,018	93	68	14	66	Banda, and on March.
1	July 31.1861	986 979	35	70 2	21	140	Jubbulpore. - Jubbulpore.
Average -		918.6	$55^{\circ} 6$	35.8	8.0	130.2	

C. K. Jones, Capt., commanding Depôt 97th Regiment.

Ric. Harbord, Capt., commanding Depôt 7th Royal Fusiliers.

93rd Regiment of		1,078	80	9	-	3	In the field during the Indian muting
Highlanders,	Apr. 1, 1858	992	97	66	6	76	$\}$ (Bengal).
	" 1859	911	42	42	22.	220	On the march to Subathoo.
arrived in India,	" 1860	1,069	41	70	27	113	Rawul Pindi, East Indies.
	" 1861	1,098	1	14	-	-	Rawal Pindi, East Indies,
Average -	-	1,009 ${ }^{\text {a }}$	521	$40 \frac{1}{1}$	181	98	

F. G. Dawson, Bt. Maj., commanding Depôt 93rd Highlanders.

* No casualty return received from the Senci troops, from one dated December 10, 1857, until one dated January 1, 1859.
C. Magart, Col., commanding Cavalry Depôt, Canterbury,

Alex. W. Cobham, Capt., commanding Depòt 44th Regiment.

Name of Regiment， with Date of Arrival in India， and of Departure from India．	Military Year．	Strength on Arrival， at the Beginning of each Year， and on Departure from India．	Doring the Military Year．				Stations at which the Regiment has served a Month or more in each Year，and Remarks．
			Deaths in iIndia．	Number of Men sent from India to England．	Re－inforce－ ments．		
					$\begin{gathered} \text { By } \\ \text { Trans- } \\ \text { fer. } \end{gathered}$	By Drafts．	
79 th Regiment of Fоot，	Apr．1， 1858	973	11	－	－	－	Calcutta，and on the march＇viâ Allahabad to Lacknow．
arrived in India，	» 1859	949	165	55	11	215	Field service，Oude，and Rohilcund（hot
December 1， 1857.	＂ 1860	967	25	49	27	129	weather campaign）． Lahore，Punjab．Arrived April 1859.
	＂ 1861	1，016	12	48	19	133	Lahore and Ferozepore．
	Aug．1， 1861	1，041	6	12	29	－	Ferozepore．＊．
Average－	－	989	44	33	17	95	

G．T．Scovell，Capt．，79th Highlanders，Commanding Depói＂

Thomas Biggs，Capt．，commanding Depôt 3rd Batt．60th Rifles．

							On march from date of arrival to May 1858 ； at Neemuch to September 1858；on march to January 1859 ；at Mhow from January 1859 until the present date．Several detach－ ments have been from time to time marching， and on field service．The dates are not known at the depot．
72md Regiment of Higelanders，	Dec．10， 1857	883		－	－	－	
	Apr．1， 1858	877	6	－1	－	－	
	＂ 1859	1，061	48	11	4	242	
December 10， 1857.	＂ 1860	892	23	100	6	28	
December 10， 1857.	1861	968	15	47	2	180	
Average	－	936年	23	521	4	． 150	

T．Besr，Capt．，commanding Depôt 72nd Highlanders．

A．Torrens，Capt．，commanding Depôt 66th Regt．

C．Hagart，Col．，commanding Cavaliy Depôt，Canterbury．

$\begin{gathered} \text { Service Comparx, } \\ 69 \mathrm{Tr} \text { Foot, } \\ \text { arrived in India, } \\ \text { December 26, } 1857 . \end{gathered}$	Apr． 1,1858 $\#$ $\#$ $\#$	779 790 969 974 1,010 966	$*$ -3 29 38 9 1	\square 1 62 76 41	\square - 17 4 1	$\begin{array}{r}\text {－} \\ \hline 212 \\ 92 \\ 124 \\ \hline\end{array}$	Sowgher，Burmah．
Average－：	－	9214	119	30	3总	71	

＊Date of latest return received from India

W. W. J. Broce, Capt., commanding Depôt 94th Regiment.

80th Reginent of Infantiey, arrived in India,	Jan. 18, 1858	826*	1	-.	-	-	Whole Regiment on line of march from Calcutta to Allahabad, January and February 1858 . Head Quarters and Left Wing marched to Futtyghur in March 1858; Right Wing on ficld service in l'uttypore District during March 1805.
arrived in India, January 18, 1858.	Apr. 1, 1858	$808 \dagger$	174	42	22	249	Right Wing on field service in Futtypore District, April and May 1858; Head Quarters and left Wing on field service in Futtyghur and Rohileund, and Oude Districts during April, May, and June 185 S . Whole Regiment stutioned at Cawnpore from July to September 1858; Head-Quarters and Right Wing on ficld service in Oude from October 18:3 to January 1859; Left Wine at Cawnpore, October 1858 to Janunry 1859; whole Reximent stationed at Campore, February and Maroh 1859.
	" 1859	$858 \ddagger$	67	68	10	117	Whole Regiment stationed at Cawnpore from April to Decainber 1859; on line of march from Cawnpore to Saugur January 1860. Stationed Head Quarters and Right Wing at Sxugur, Lent Wing at Nowgong, from February to March 1860.
	" 1860	838§	22	57	16	282	Stationed Head Quarters and Right Wing at gangur, Left Wing at Nowgong, from April 1880 to March 1881.
	" 1861	1,038	-	-	-	-	
Average - -	-	$873 \cdot 6$	81.12	49-80	14•76	197-52	

Name of Regiment, with Date of Arrival in India, and of Departure from - India.	Military Year.	Strength on Arrival, -at the Beginning of each Year, and on Departure from India	During the Military Year.				Stations at which the Regiment has
			Number Deaths of Men in sent from India. India to England.		Re-inforcements.		
					$\begin{gathered} \text { By } \\ \text { Trans- } \\ \text { fer. } \end{gathered}$	$\underset{\text { Drafts }}{\underset{\text { By }}{ }}$	served a Month or more in each Year, and Remarks.
Servick Compantes, 56th Regiment of Infanaty, arrived in India, Head-quarters, Jan. 20, 1858, Left Wing. Dec. 31, 1857.	Apr. 1, 1858	794	3	*		-	On-march from Bombay to Belgaum from January 29, 1858, to March 1, 1858. Belgaum. On marcli from Belgaum to Poona from February 2L 1860, to March 16, 1860. Marched from Poona to Colaba in the month of December 1860 .
	" 1859	792	21	12	9	214	
	" 1860	976	51	60	27	102	
	, 1861	924	30	110°	7	152	
	July 31, 1861	936	17	10	3	-	
Totals - -	-	4,222	122	292	47	468	
	-	$5 \ddagger$	$3 \frac{7}{19} 4$	37 $\frac{7}{12} \ddagger$	$3 \frac{7}{2}+$	3 $\frac{1}{12}+$	
Average -	-	884.4	34.04	81-48	13-11	$130 \cdot 6$	

* This column includes 5 men sent to the Cape of Good Hope for discharge in the year ended March 31 , 1860 , and 3 in that ended March 31, 1861.
\dagger Rejoined from desertion; surrendered while serving in another corps in India.
By these numbers the totals have been divided in the determination of the average
In additicn to the increase and decrease of the regiments above shown, 4 recruits have been enlisted st the head-quarters of the Service Ccmpanies in the year ended March 31, 1861 ; 6 men transferred to other corps in India in the year ended March 31, 1859 64 in that ended March 31, 1860, and 5 in that ended March 31, 1861 ; and 6 men discharged in India in the year ended March 31, 1860, and 6 in that ended March 31, 1861.
W. G. Margesson, Capt., commanding Depôt 56th Regiment.'

54th Regr. Foot, arrived in India, January 28, 1858.	Jan. 28,1858	905	-	-	-	-	Allahabad, and on the march. Camp, Sultanpore, on field service. Cawnpore. Cawnpore.
	Apr. 1, 1858	841	29	52	1	16	
	, 1859	1,057	141	42	1	403	
	" 1860	1,004	47	50	8	52.	
	" 1861	1,011	52	63	32	93	
Average - -	-	963.60	67-25	51.75	$10 \cdot 50$	$141 \cdot 00$. ${ }^{\text {a }}$

F. G. C. Probart, Capt. commanding Depôt 54th Regiment.

17 th Regiment of Lancers,	Jan., 1858.	486	-	-	-	-	Kirkee. Kirkee, to September 1, 1858. On field service to April 1859.
	Apr. 1, 1858	486	-	-	-	-	
	". 1859	568	21	8	-	110	
arrived in India, January 1858.	, 1860	599	74	23	4	131	On field service to June 1, 1859. At Morar to January 1860. On march to Secunderabad from February 1860. Secunderabad.
	" 1861	632	28	36	21	70	
Average --	-	571	$30 \frac{3}{4}$	163 ${ }^{4}$	$6 \frac{1}{4}$	$7 \frac{3}{4}$	

Jomm C. H: Gibsone, Col, Commandant Cavairy Depôt, Maidstone.

718 tag Higland	Feb. 5, 1858	833	-	-	-	-	-
Light Infantry,	Apr. 1, 1858	832	1	-	-	- 18	Field service with Central India F. F.
arrived in India,	, 1859 $" \quad 1860$	967 907	65 40	19 110	9	218 -118	Gwalior.
February 5, 1858.	" 1861	868	106	76	4	150	Sealkote. Marched from Gwalior on December 20, 1860, and arrived at Sealkote on
Average	-	893	53	51.4	3.2	121.2	

15 men have been discharged, 32 transferred to other corps, and 1 man deserted in India.
W. F. Segrave, Capt., 7 1st, commanding Depôt.

* The regiment furnished detachments to Nassick, Asseerghur, Mulligaum, Mabableshwur and Jaulnah during the mutiny from

[^33]| Name of Regiment, with Date of Arrival in India, and of Departure from India. | Military
 Year. | Strength on Arrival, at the Beginning of each Year, and on Departure from India. | During the Military Year. | | | | Stations at which the Regiment has served a Month or more in each Year, and Remarls. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Deaths | Number of Men | Tie-inforcements. | | |
| | | | India. | from
 India to
 England. | By Transfer. | $\underset{\text { Drafts. }}{\substack{\text { By } \\ \hline}}$ | |
| 1st Battafion, 6th | Apr. 1, 1858 | 690 | 9 | - | 4 | 340 | Calcutta and on march. |
| Regt. of Foot, | Mar.31, 1859 | 679 | 148 | 121 | | | Sesseram. On field service. Benares. Azimghur. |
| arrived in India, | \% 1860 | 798 | 43 | 53 | 7 | 26340 | Azimghur. Benares. Benares. Barrackpore |
| February 20, 1858. | , 1861 | 951 | 32 | 87 | | | |
| | July 31, 1861 | 863 | 6 | - | 3 | - | Barrackpore. |
| Average - - | - | 796.2 | $\begin{array}{r}47.6 \\ +\quad \\ \hline\end{array}$ | $52 \cdot 2$ | $4^{\circ} 0$ | 129.6 | |
| *.. | | | | | | | |
| 92nd Regtamet of | Apr. 1, 1858 | +1002 | 20 | 12 | - | 343 | Bombay, Minow (on field service). |
| Hyghlanders, | - ${ }^{\text {a }} 1859$ | $\therefore 1,150$ | 65 | 60 | 13 | 20 | Mhow, Camp Jhansi. |
| arrived in India, | ., '1860 | $\therefore .991$ | 22 | 44 | 1 | 95 | Camp Matha, Dugshai, Camp Umballa. |
| March 6, 1858. | " 1861 | -1019 | | - | - | - | Camp Umballa, Camp Dugshai.' |
| A verage | - | '1,063 | 35 | 38 | 4 | 152 | |

F. MaclBand, Bt-Major, 92nd Highlanders, commanding Depôt.

J. Cassidx , Capt., commanding Depôt 68th Lt. Infantry.

2no Battalion, 60th Regiment of Ruyal Rifilis,	Apr. 1, 1859 Feb. 28, 1860	743 742	72 58	44 108	72	76 278	Calcutta 1 month, on march and in the field 2 months, Arrah 6 months, Benares 1 month. Benares 9 months, on march 1 month.
Ruyal Rifles, 836 men on May 15 ,	Feb. 2S, 1860		58				
1858 , and 347 men on Nov. 14, 1858; left India, February 28, 1860.	" 1860	$9+2$	-	-	-	-	Strength on departure.
Average per cent. -	\cdots	730	9	10	5	25	

Atholl Lidoell, Capt, commanding Depût 2ad Batt. 60th Riffes.

57 th Regt. Foot, arrived in India, June 8, 1858 ; left India, November 26, 1860.	Apr. 1, 1859	833	17	10	6	79	Bumbay, Almednugger. Ahmednuggur, Poona, Poona	
	Mar. 31,1860	886	30	71.	28	148		
	Nov.26, 1860	884	*21	12	6	80		-
Average	-	867	23	31	13	102		

. There are 5 men included in this number who died at the depot at Poona after the departure of the Service Companies for New Zealand.
T. W. J. LLoyd, Capt., commanding Depôt 57 th Regt.

H. F. S4NDwith, Capt., commanding 46th Depôt.

Jonn C. H. Gibsone, Col., Commandant, Cavairy Depôt, Maidstone,

J. R. Lovett, Capt., commanding Depôt 48th Regimont.

Transfers given and desertera are not included in the above seturn.
C. Paerost, Capt., commanding Depôt 31st Regiment.

* Seventeen killed in action or died of wounds received in action at storming of Beyt Fort, and occupation of Dwarka, October 1859.

> S. Hackett, Capt., commanding Depôt 28th Regiment.

67th Regiment of Infantrit, arrived in India, December 16, 1858.	Dec. 16, 1859	763	32	41	38	52	Barrackpore. Embarked for field service in China September 21, 1859. Streagth 780 men.
Average - -	-	-	-	-	-	-	

H. Colletter, Bt. Major, 67th Regiment, commanding Depôt.

L. J. Nunn, Capt., commanding Depôt 99th Regiment.

G. J. Ambrose, Lieut.-Col., commanding lst Batt., 3rd Foot.

1 l (Batt. 4 triking's	Jan. 30,1859	816	-	-	-	-		
Own Regt. Foot,	Apr. 1,1859	814	2	-	-	-	Ahmedabad, 2 months.	
arrived in India,	" 1860	991	37	67	1	298	Ahmedabad, 12 months.	
January 30, 1859; at present in India.	" 1861	933	50	41	40	60	Ahmedabad, 10 months; months.	Kurrachee,
Average -	-	$812 \cdot 67$	$29 \cdot 67$	96	$19 \cdot 67$	117:33		

Avg. E. H. Ansell, Capt., commanding Depôt lst Batt., 4th King's Own Regiment.

73Rd Regiment of Foot,	-	765	96	42	3	134	Calcutta to beginning of July, Benares to 29th September, field service from 29th September to end of year.
arrived in India, April 24, 1858;	Apr. 1, 1859	765	49	37	7	135	April, May, and June, field service; July to end of October, Lucknow; November to March, Dinapore.
left India,	" 1860	765	34	8	8	259	Dinapore. . $\quad:$
April 20, 1861.	", 1861	704	4	10	-	-	Chinsurah: *
	Apr. 20,1861	616	-	-	-	-	Strength on departure from India
Average -	-	999娄	61	321	43	176	$\cdots \cdot \cdots$

G. H. Smafy, Col, commanding 7Srd Regiment.

Name of Regiment, with Date of Arrival in India, and of Departure from India.	Military Year.	Strength on Artival, at the Beginning of each Year, and on Departure from India.	During the Military Year.				Stations at which the Regiment has served a Month or more in each Year, and Remarks.
			Deaths in India.	Number of Men sent from India to England.	Re-inforcements.		
					By Trans fer.	By Drafts	
3bd Regiment of Husbars.	This return cannot be filled up, there being no record in possession of the regiment at the present time giving the information; the documents that would have done so were given into the Adjutant-General's office in India, and the hospital records (64 vols.) sent to Fort Pitt, Chatham, on the return of the regiment from India in 1853.						

H. Monceton, Lieut.-Col. commanding 3rd (King's Own) Hussars.
63rd Rear. Foot. \mid The 63rd Regiment returned from India in 1847.
C. A. Hand, Capt., 63rd Regiment, commanding Depôt.
62no Regr. Foor. \mid The 62nd Regiment arrived in England from India in 1847.
S. G. Carter, Capt., commanding Depôt 62nd Foot.

| 65Tn Regr. Foot. | Regiment at home since arrival from Gibraltar. |
| :--- | :--- | :--- |
| 50TH Reg. Infantry. | In consequence of the want of necessary documents, this return cannot be completed. |

> C. F. Youne, Lieut., commanding Depôt j0th Regiment.
> E. Jeffreys, Col., 5th Depôt Battalion.

49 th Reor. of Foor. $\begin{aligned} & \text { The 49th Regiment has not been in India since 1843, and no records are with the Regiment from which } \\ & \text { this return could be filled up. }\end{aligned}$
Clement A. Edwards, Col., commanding 49th Regiment.

41 st Regr. of Foot. | The 4lst Regiment returned from the East Indies in July 1843, and there are no documents now extant that |
| :---: |
| can give the information required by this return. |

H. W. Mehedith, Major, commanding 41st Welch Regiment.	
26 th or Camerontan Regiment of Foot.	26th Regiment has not been in. India since 1843, this return is blank in consequence of there being no documents with the Regiment to give the information required.
F. Carex, Lieut.-Col., commanding 26th Cameronians.	
Depôt, ist Batt. 17th Rea. of Foot.	The Ist Battalion, 17th Regiment, has not served in India since the Year 1847.

P. MPherson, Captain, commanding Depót 1st Battalion 17th Regiment.

J. E. MacDonnell, Ensign, 1st Battalion, 9th Foot, commanding Depôt.

1st Battalion, 2nì Queen's Royal Reg. of Infantry.	The Regiment not having been in Indis since the year 1846, there is no record in possession of the Depôt companies to give the required information.
	F. Connor, Captain, commanding Depôt, 1st Battalion, 2nd Queen's. T. Andison, Lieut-Col., commanding 1st Battalion, 2nd Queen's Royal Regiment.

Table showing the Admissions into and Deaths in Hospital among the Troops of the Line during Five Years, 1850-54. Prepared by Dr. Graham Balfour.

ion all the Regiments came to the Hill Stations from Peshawur. The amount of Dysentery and Diarrhœa at Peshawur and, the Hill Stations respectively, was a

[^34]

REPORT UPON`THE METEOROLOGY OF INDIA IN RELATION TO THE HEALTH OF THE TROOPS THERE STATIONED,
 By James Glaisher, Esq., F.R.S., \&rc., Secretary to the British Meteorological Society.

Sir,
Blackheạth, May 9, 1863.
In the Report upon the meteorology of India, and its relation to the health of troops resident there, which I have the honour to submit to you; I have endeavoured to indicate at different seasons of the year the heights at which the English climate is most nearly approached, and the several investigations it was considered desirable to carry out.
On reducing 'all the observations I had at first at my command, I found the results too few, and too discordant to place any confidence in them; I then sought for additional observations, and first for all observations which have been made in fixed observatories in India, next for all others I could find in all the libraries at my command, and from every available source.

All the information possessed by the India Office, the Army Medical Department, were placed at my disposal, and my best thanks are due to many gentlemen, particularly. to Dr. Gibson, C.B., Dr. Balfour, F.R.S., Dr. Logan, Sir Ranald Martin, C.B., F.R.S., and Colonel Sykes, M.P., who gave me all the assistance in their power, and placed all gave me all the assistan
their MSS. in my hands.
When all the observations thus collected were reduced I had local information at many places, but which I found was scarcely available for the purposes of your Commission, I then sought to combine the results in various ways with the view of their general application, but generally failed to satisfy myself; but finally I determined the change of temperature for one degree of longitude, and for one degree of latitude, by means of which I was enabled to calculate with a near approximation to the truth, the three most important elements of research of high day, low night, and mean temperature of the air in every month for every part of India, even where no observations had been made.
Having succeeded so far it became necessary to ascertain the effect of elevation upon temperature in every month of the year, in each of the three presidencies, and it was found that there was no certain difference in the law of decrease of temperature with height in one part of India from another in the same month, but that the law was different in the different months. In the winter months the decrease of mean temperature for elevations up to 1,000 feet are small, amounting to 11° only, but this difference increases from March to $4 \frac{1}{2}^{\circ}$ in August, and then decreases gradually month by month to January.
The reduction of temperature at heights exceeding 1,000 feet are smaller in the winter months than in the summer months, the former being about two-thirds of the latter.
These results are remarkable and important ; they do not confirm a constant decrease of temperature for a constant increase of elevation, but on the contrary give results varying both with the elevation and season of the year.
And these results are not in accordance with those I have recently obtained in the balloon experiments, in which a recently obtion of temperature of 1° is found for an average difference of height of 137 feet for the first 1,000 feet, the sifference of height of 137 feet for the first 1,000 feet, the space gradually increasing to 400 feet for the same decline
of temperature of 1° in the twelfth 1,000 feet. The of temperature of l° in the twelfth 1,000 feet. The law of decrease of temperature is therefore app
different in India from that found in England.
The general agreement of the results from different parts The general agreement of the results from different parts
of India in the same season surprised, but enabled me, with some confidence, to calculate the extremes and mean temperature at any elevation with almost equal accuracy with those at low elevations.
The mountain climates throughout India include portions where the sun's direct heat, the extremes and mean temperature of the air, differ but little from those of England, and where doubtless the health of Europeans may certainly be preserved to a high degree.
The next important step was to determine the heights at which these temperatures would be reached.
For this purpose I first determined the average meteoro-
logical elements at Greenwich as a standard for Eng land
The next step was to determine the monthly exces of temperature in every part of India over that in England in every month, and then to ascertain the heights at which the excess would be counteracted.
These heights are calculated for high day, low night, and mean temperature. In some instances they will be found to be at a height not always attainable, but those nearest approaching would doubtless be attended with the greatest probability of continued health to the troops.
So far as I am able to judge from the discussion of all the observations, the climate of the hill stations in India is dry enough, the temperature low enough, and the sky clear enough, without any excess of rain for Europeans.
From the Tables in the Report it will be seen that a heights of 5,000 to 6,000 feet the mean annual temperature would be about 10° higher than England, with a smaller daily range, offering I think a healthy climate;- except in exceptional cases where local circumstances exist to counteract the favourable meteorological conditions.
The observations of solar radiation have been too few and they are too discordant to be used safely; for the most part no mention has been made of the kind of instrument used and no information given upon its situation. There is reason to believe that the instrument has been in some cases placed near the soil, others at some distance from it and in others in close proximity to painted wood and highly heated bodies.
The best conclusions I can draw from the observation are that in the Madras Presidency the average solar radiation for the year is about 100°; in Bombay it exceeds 100°, and in Bengal reaches 105°; but at Fort William, Calcutta, the average for the year is 132°.
This certainly seems to be too high; these reading decrease from 15° to 20° for heights reaching to 5,000 feet and is also less in the vicinity of the sea.
The observations for the humidity of the air have been far too few. There has been unfortunately a prejudice in India against the uap of the dry and wet bulb thermometers, particularly in elevated districts, and there have been very few observations made on the dew point by any hygrometer. This is greatly to be regretted, as bearing in a most impor tant degree on this question in India, I took a series of simultaneous observations of the dry and wet bulb thermo meter with Daniell's and Regnault's hygrometers in the recent balloon experiments, and I find the results by the use of the dry and wet bulb thermometers are nearly iden tical with those as found by the direct use of either Daniell's or Regnault's hygrometer up to great heights in the atmosphere, and therefore the dry and wet bulb thermometers may be used with confidence in India to any height where man may be resident.
The observations upon the direction of the wind are limited and do not agree at the different stations, and I do not feel that the discussion of the observations enables me to add any additional information upon this head.
I have now to the utmost of my means collected every observation made in India, and discussed them with the view of rendering the results applicable for the purposes of this Commission.

The results derived are as decided as could possibly be expected, and may be used with some confidence, as the calculated temperature, when compared with the observed temperature at places where the longest and best series of observations have been made, are found to be accordant
I cannot help expressing a hope that future meteorological observations in India may be carried out under some general system on a uniform plan, both with respect to instruments, their position, and general instructions.

I have, \&c.
James Glaisher.
T. Baker, Esq.,

Secretary to the Commission of Inquiry into the
Sanitary State of the Army in India.

Report upon the meteorology of india.

INDEX.

SECTION I.-On Atmospheric Pressure.
Remarks on
page
Table I., showing the mean monthly reading at Madras - 784
Tabie II., showing the mean monthly reading at Bombay -. 785
SECTION II.-On the Maximum Temperature of the Air.
Table IUI., showing the mean monthly maximum temperature of the air at different latitudes
Effect of an increase of 1° of North latitude
Tablir IV., showing the effect of an increase of 1° of East longitude
Formula for calculating maximum temperature in different parts of India
Thble V., showing the observed decrease with increase of
elevation - - - - - -
Tabre VI., showing the calculated decrease with increase of elevation up to 9,000 feet

SECTION III.-On the Minimum Temperature of the Air.
Tabce VIl., showing the mean monthly minimum temperature in different latitudes

Effect of an increase of 1° of North latitude
Tabre VIII. Effect of an increase of 1° of East longitude Formule for calculating the minimum temperature
Table IX., showing the observed decrease for increase of elevation
Table X., showing the calculated decrease with increase of elevation

SECTION IV.-On the Mean Daily Range of Temperature.
Table XI., showing the mean daily range of temperature at different elevations

- 789

Remarks on daily range - - - 759
SECTION V.-On the Obserted Mean Temperature of the Air.
Remarks on
789
Table XII., showing the monthly temperature at Madras - 7×9
Table XlIL., showing the monthly temperature at Bombay - 790
Table XIV., showing the monthly temperature at different latitudes
Effect of on increase of 1° - 791
Table XV., showing the effect of an increase of 1° of East longitude

Formule for calculating mean temperature at different places in India
Table XVI., showing the observed decrease for an increase
of elevation - - - - - .
Tabie XVIL, showing the calculated decrease for an increase of elevation - - 792
SECTION VI.-On the Calculated Mean Temperature of the Air.
Tasle XIX. to XXI., showing the calculated mean temperature of the air at different places in India
Tablr XXII., showing the comparison of the observed and calculated mean temperature of the air at different places Remarks on the results
Table XXIII., showing the mean monthly results of meteor-
ological elements at Greenwich
Talle XXIV, showing the excess of mean temperature in India over that of England Remarks following Table XXIV.
Tanle XXV., showing the height in feet at different parallels of latitude, where the mean temperature is the same as that of England -

Remarks following Table XXV.
Jigh Day Temperature.
Table XXVI., showing the calculated mean monthly bigh day temperature of the air in India Remarks following -
Table XXVII, showing the excess of Indian high day temperature over that of England
Tasle XXVIIl., showing the height in feet in Iudia, where the maximuin temperature is the same as in England-... 7

> Low Night Temperature.

Table XXIX, showing the calculated mean monthly minimum of the air in India

Table XXX., showing the excess of Indian low night over page that of England

797
Table XXXI., showing the beight in feet in India where the minimum temperature is the same as in England - . 797

SECTION VII.-On the Hygrometrical States of the Air in India.
Remarks on

- 797

Tables XXXII. and XXXIII., showing the monthly temperature of the dew point at Madras and Bombay. -
Table XXXIV., showing the mean monthly amount of vapour in a cubic foot of air at Madras
TAble XXXV., showing the mean monthly anount of vapour
in a cubic foot of air at Bombay - - - -
Table XXXVI., showing the mean monthly amount required
to saturate a cubic foot of air at Madras - . -
Table XXXVII., showing the mean monthly amount required to saturate a cubic foot of air at Bombay
Tables XXXVIII. and XXXIX, showing the mean degree
of humidity at Madras and Bombay - - - -
Table XL., showing the mean monthly hygrometrical values
at Madras and Bombay - - - - -
Table XLI., showing the average bygrometrical state of the
air at Greenwich - - -
Table XLII., showing the hygrometrical states of the atmo-
sphere at different stations, or small groups of stations near together

802
SECTION VIII.- On the Full of Rain.
Remarks on, and its distribution over India - - - 804
Remarks un CTimats * - - . . - 305
Singapore - - - - ${ }^{-}$- - 805
Penang, Mergui, Tavoy, Shway Ghem, Martaban,
Bunnah, Tonghoo
Rangoon, British Burmah, Thyet Myo, Cuttack, Seetabuldee
806.

Dera Isinael Khan, Fort William, Calcutta $\quad-\quad-806$
Dum Dum and Barrackpore
Raneegunge, Hazareebaugh, Berhampore, Goonah,
Chunar, Hamerpore
Chirrapoongee, Deera, Shinghotty, Benares - - 808
Allahabad, Jhansi, Dinapore, Ghazeepore, Lucknow,
Roy Bareilly, Fyzabad, Gondah, Seetapore
Goruckpore, Azringhur, and Morar

| Seepree, Kherwarrah, Shahjehanpore, Darjeeling, Agra, | |
| :--- | :--- | :--- | :--- |
| Delhi - | |

| Meerut, Nynee Tal - - |
| :--- | :--- | :--- |
| Roorkee, Dera Ghazee Khan, Cmbala, Landour, Mean |
| 10 |

Roorkee, Dera Ghazee Khan, Cmballa, Landour, Mean
Meer, Kussowlie
Ferozepore, Loodiana, Jullundur - . . . 811
Punjab, Kangra, Sealkote, Jhelum, Rawul Pindi $\quad .811$

Murree, Peshawur, Nowshera -
Aden, Jacobabad, Vingorla, Dharwar -
-

$\begin{array}{lll}\text { Aden, Jacubabad, Vingorla, Dharwar - } & -812 \\ \text { Belgaum, Kulladghee, Kolapore, Rutnagherry - } & -813\end{array}$
Belgaum, Kulladghee, Kolapore, Rutnagherry - - 813
Sattara, Dapoolee, Poorundhur - - . - - 813

Poona, Kirkee, Colaba, Surat	-	-	-	-814
Baroda, Rajcote, Ahmedabad	-	-	-	-

Baroda, Rajcote, Ahmedabad -		
Ahmednuggur, Kurrachee, Sholapore, Seroor	-	-814

Mulligaum, Dboolia, Mhow, Neemuch - - - 815

Deesa, Hyderabad, Nusseerabad -
Palumeottah, Trichinopoly, Wellington, Salem -
-

Palamcottah, Trichinopoly, Wellington, Salen - Bellary, 816
Bangalore, Hurtyhur, Ramandroog, Kurnool, Bellary,
Secunderabad - 817
Quilon, Cochin, Tellicherry, Cannanore - - - 817
Mercara, French Rocks, Mangalore, Arcot, Vellore, Pala-
veram, St. Thomas' Mount - - - - 8
Poonamallee, Nellore, Masulipatam - $\quad-\quad-81$
Guntoor, Sauulcottah, Viziunagrum, Berhampore,
Jaulnah -
Kamptee, Hoshingabad - . - . - 819
Maximwin Temperature of the Air.
Tables XLIII. to XLV., showing the mean monthly maximum
temperature of the air in India at places whose clevations are less than 1,000 feet $\quad \bullet \quad . \quad-820-1$

Tables XLVI, to LII., showing the mean monthly maximum temperature of the air in India at place; whose elevations are above 1,000 feet are above 1000 feet - 821

Minimum Temperature of the Air.

Tanles LIIL, to LV., showing the mean monthly minimum temperature of the air in India at places whose elevations are less than 1,000 feet - - . . . 823 Tables LVI, to LXII., showing the mean monthly minimum temperature of the air in India at places whose elevations are above 1,000 feet

Daily Range of Temperaturs.
Tables LXIII. to LXV., showing the mean daily range of temperature at places in India whose elevations are less than 1,000 feet.
Tables LXVI. to LXXI, showing the mean daily ran -827 temperature at places in India whose elevations are above 1,000 feet - - . - . - - 828-30

Temperature of the Air.

Tables LXXII. to LXXIV., showing the mean monthly temperature of the air at places in India whose elevations are below 1,000 feet
Tables LXXY. to LXXXII, showing the mean monthly temperature of the air at places in India whose elevations are above 1,000 feet 882
Temperature of the Dew Point.

Table LXXXIII, showing the mean temperature of the dew point at different places in India
Amount of Vapour and Degree of Humidity.

Table LXXXIV., showing the mean monthly amount of vapour in a cubic foot of air at different places in India Table LXXXV., showing the mean monthly amount of vapour required to saturate a cubic foot of air at different places in India
Table LXXXVL, showing the mean monthly degree of humidity at different places in India -

Fall of Rain.

Table LXXXVII, showing the monthly and annual falls of rain at places on the West coast of India - - - 8
Table LXXXVIII., showing the monthly and annual falls of rain at places on the East coast of India
Tables LXXXIX. to CV., showing the monthly and annual falls of rain at places in the interior of India $\quad-840$ Reading of the Barometer.
Tables CVI. to CVIII., showing the mean monthly and yearly reading of the barometer at different places in the Presidencies of Madras, Bombay, and Bengal - - -847

> Temperature of the Air, Madras Presidency.

Table CIX., showing the monthly, quarterly, half-yearly, and yearly maximum temperature of the air at stations in the Presidency at Madras
Table CX., showing the monthly, quarterly, half-yearly, and yearly minimum temperature of the air
Table CXI, showing monthly, quarterly, half-yearly, and yearly daily range of temperature . - . . TAbe CXII., showing the monthly, quartefly, half-yearly, and yearly mean temperature of the air
Table CXIII., showing the monthly, quarterly, and yearly mean readings of the $d r y$ and wet bulb thermometers -

Hygrometrical States of the Air.

Table CXIV., showing the mean monthly, quarterly, halfyearly, and yearly mean temperature of the dew point
Tasle CXV., showing the mean monthly, quarterly, halfyearly, and yearly a mount of vapour in a cubic foot of aiz Table CXVL, showing the mean monthly, quarterly, halfyearly, and yearly amount of vapour required to saturate a cubic foot of air

Table CXVII., showing the mean monthly, quarterl, half- ${ }^{\text {PLG }}$ yearly, and yearly degree of humidity

Solar Radiation.
Tanhe CXVIII, showing the mean monthly, quarterly, halfyearly, and yearly Sun temperature

Temperature of the Air, Bombay Presidency.

Table CXIX., showing the mean monthly, quarterly, halfyearly, and yearly maximum temperature
Table CXX., showing the mean monthly, quarterly, half yearly, and yearly minimum temperature
Table CXXI, showing the monthly, quarterly, half-yearly, and yearly mean daily range of temperature
Tancis CXXII., showing the monthly, quarterly, half-yearly, and yearly mean temperature -
Tance CXXIII, showing the monthly, quarterly, half yearly, and yearly mean readings of the dry and wet bulb thermometers - -

Hygrometrical States of the Air.
Table CXXIV., showing the mean monthly, quarterly, halfyearly, and yearly temperature of the deve point
TABLe CXXV., showing the mean monthly, quarterly, halfyearly, and yearly a mount of vapour in a cubic foot of air Table CXXVI., showing the mean monthly, quarterly, halfyearly amount of vapour required to saturate a cubic foot of air -
Table CXXVII, showing the mean monthly, - - - 890 half-yearly, and yearly degree of humidity - - - 898

Solar Radiation.

Table CXXVIII., showing the mean monthly, quarterly, half-yearly sun temperature -

Temperature of the Air, Bengal Presidency.
Table CXXIX., showing the mean monthly, quarterly, halfyearly, and yearly marimum temperature
Table CXXX., showing the mean monthly, quarterly, halfyearly, and yearly minimum temperature - - Table CXXXI., showing the mean montbly, quarterly, halfyearly, and yearly daily range of temperature -
abse CXXXII., showing the mean monthly, quarterly, Table CXXXII., showing the mean monthly, quarteriy, half-yearly, and yearly $C X X X I I$, showing the mean montlly, quarterly, half-yearly, and yearly readings of the dry and wet bulb thermometers -

Hygrometrical States of the Air.

Table CXXXIV., showing the mean monthly, quarterly, half-yearly, and yearly temperature of the dew point
Table CXXXV., showing the mean monthly, quarterly, halfyearly, and yearly amount of vapour in a cubic foot of air -
Table CXXXVI., showing the mean monthly, quarterly, half-yearly, and yearly amount of vapour required to saturate a cubic foot of air
Table CXXXVII, showing the mean monthly, quarterly, half-yearly, and yearly degree of humidity

Solar Radiation.

Table CXXXVIII, showing the mean monthly, quarterly, half-yearly, and yearly Sun temperature

Fall of Rain.

Table CXXXIX., showing the monthly, quarterly, halfyearly, and yearly falls of rain in the Madras Presidency - 920 Table CXL., showing the monthly, quarterly, half-yearly, and yearly falls of rain in the Bombay Presidency -
Tasle CXLI., showing the monthly, quarterly, half-yearly, and yearly falls of rain in the Bengal Presidency

REPORT UPON THE METEOROLOGY OF INDIA.

Section I.-On Atmospheric Pressure or corrected Reading of the Barometer.

Throughout India the daily increase and decrease in the reading of the barometer takes place with great regularity. At abont 4 o'clock in the morning a minimum reading occurs, it then turns to increase, and at about 10 o'clock A.M. occurs, it then turns to increase, and at about 100^{\prime} clock A.M.
a maximum ; it decreases till about 5 p.m. when a second a maximum; it decreases till about 5 P.M. When a second
minimum pressure takes place, and a second maximum minimum pressure takes place, and a second maximum
pressure is attained at about 11 p.m. The maximum pressure is attained at about 11 p.m. The maximum
reading therefore occurs one or two hours before noon or midnight, and the minimum reading at about one or two hours before sunrise or sunset.
The actual reading is greater at its morning maximum than at its evening maximum, and generally lower at the evening minimum than at the morning minimum. The time of evening maximum remains pretty nearly constant.

The difference between the mean daily readings of the barometer on two consecutive days; seldom exceeds $0 \cdot 2$ inch, the whole daily range is generally less than $0 \cdot 1$ inch. The daily ranges are somewhat larger in winter than in summer.
The barometer reading is highest in January; and decreases gradually till June, and increases gradually from July to December all over India.
The decrease of readings from January to June is 0.26 inch in the Presidencies of Madras and Bombay, and about $0 \cdot 44$ inch in that of Bengal. The increase from July to December is about the same amount in the respective presidencies.
The mean atmospheric pressure is subjected to very little change from year to year, as will be seen from the two following series of observations taken at the Observatories of Madras and Bombay.

Table I. showing the Mean Monthly Reading of the Barometer at Madras.

(continued.)

Monthe.		Years.												
		1814.	1815.	1816.	1817.	1818.	1819.	1820. ${ }^{\circ}$	1821.	1822.	1823.	1824.	1825.	1826.
January	-	in. $29 \cdot 91$	$\begin{gathered} \text { in. } \\ 30 \cdot 07 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 13 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 17 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 12 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 08 \end{gathered}$	$\operatorname{in}_{30 \cdot 04}$	$\begin{gathered} \text { in. } \\ 30 \cdot 10 \end{gathered}$	$\mathrm{in.}_{30 \cdot 15}$	$\begin{gathered} \text { in. } \\ 30 \cdot 17 \end{gathered}$	${ }_{\substack{\text { in. } \\ 30.18}}$	in.	in.
February	-	$30 \cdot 00$	$30 \cdot 00$	$30 \cdot 10$	30-13	$30 \cdot 10$	$30 \cdot 11$	$30 \cdot 06$	$30 \cdot 15$	30-15	$30 \cdot 16$	$30 \cdot 13$	$30 \cdot 15$	29.94
March	-	$23 \cdot 97$	$29 \cdot 95$	30.01	30.04	$30 \cdot 04$	$30 \cdot 00$	$29 \cdot 87$	30.08	30.08	30.07	$30 \cdot 10$	30.10	$29 \cdot 92$
April	-	$29 \cdot 87$	29-90	29.95	30.02	$30 \cdot 04$	29-82	29:98	30.06	30.08	$30 \cdot 00$	30.04	$30 \cdot 04$	$29 \cdot 80$
May -	-	29.83	$29 \cdot 85$	$29 \cdot 86$	$29 \cdot 34$	30.09	$29 \cdot 86$	29.38	29.93	29.90	29-92	$29 \cdot 92$	29.96	29•77
June -	-	29.79	29.83	$29 \cdot 84$	29-90	29.85	29-89	$29 \cdot 91$	29.94	29-91	29-89	$29 \cdot 87$	29-91	29-75
July -	-	$29 \cdot 80$	29•79	$29 \cdot 85$	$29 \cdot 90$	29.87	$29 \cdot 83$	29-95	$29 \cdot 93$	29-88	29-89	$29 \cdot 93$	$29 \cdot 92$	29-75
August	-	$29 \cdot 80$	29-88	$29 \cdot 86$	29.89	$29 \cdot 80$	$29 \cdot 88$	29-94	29-94	29-91	29-92	29-96	29-93	29:67
September -	-	$29 \cdot 85$	29-87	$29 \cdot 90$	29-90	$29 \cdot 89$	29-90	30.05	29-94	29.93	29-94	29-99	29-99	$29 \cdot 82$
October	-	29.88	29-95	$30 \cdot 03$	$29 \cdot 98$	$29 \cdot 68$	29.93	30.03	$30 \cdot 06$	30.00	30.06	30.03	$30 \cdot 03$	$29 \cdot 90$
November -	-	29.98	$29 \cdot 90$	$30 \cdot 04$	29.99	30.02	29-99	30.12	30.12	30.06	30.12	30.07	30.05	29-94
December -	-	30.01	$30 \cdot 05$	$30 \cdot 10$	30.11	$29 \cdot 89$	30-11	$30 \cdot 07$	$30 \cdot 17$	30.11	30. 12	30.20	30.12	30.01
Means	-	29.89	29-92	$29 \cdot 97$	$29 \cdot 99$	$29 \cdot 95$	29-95	29-95	30.03	30.01	30.02	30.03	30.03	$29 \cdot 85$
(continued.)														
Months.		Years.												
		1827.	1828.	1829.	1830.	1831.	1832.	1833.	1834.	1835.	1836.	1837.	1838.	1839.
January	-	$\begin{gathered} \text { in. } \\ 30 \cdot 00 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 01 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29 \cdot 99 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 10 \end{gathered}$	in.	in.	$\begin{gathered} \text { in. } \\ 90 \cdot 07 \end{gathered}$	$\begin{gathered} \text { in. } \\ 29 \cdot 99 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 00 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 07 \end{gathered}$	$\begin{gathered} \text { in. } \\ 30 \cdot 03 \end{gathered}$	$\underset{\text { in. }}{29 \cdot 92}$	$\begin{gathered} \text { in. } \\ 29 \cdot 99 \end{gathered}$
February	-	$29 \cdot 95$	$29 \cdot 99$	$29 \cdot 97$	30.02	29.97	$29 \cdot 97$	$29 \cdot 97$	$29 \cdot 96$	29-98	30.03	30-00	29-99	$29 \cdot 97$
March	-	29-97	$29 \cdot 91$	$29 \cdot 96$	$29 \cdot 93$	29-96	$29 \cdot 90$	$29 \cdot 91$	$29 \cdot 92$	29-92	29.98	$29 \cdot 92$	29-92	$29 \cdot 92$
April -	-	$29 \cdot 90$	29-86	29-84	29-90	29.82	$29 \cdot 84$	$29 \cdot 86$	$29 \cdot 87$	29-91	$29 \cdot 92$	29-72	$29 \cdot 84$	$29 \cdot 84$
May -	-	29.79	29-79	29.74	$29 \cdot 82$	$29 \cdot 70$	$29 \cdot 73$	29-66	29-78	29-76	$29 \cdot 79$	29.81	29.77	29.72
June -	-	29-70	29-72	29-72	29.63	$29 \cdot 67$	$29 \cdot 66$	29.75	29.72	29-76	29-75	$29 \cdot 77$	29.71	$29 \cdot 69$
July -	-	29.74	29:73	$29 \cdot 76$	$29 \cdot 75$	29.70	$29 \cdot 68$	29•72	29.72	$29 \cdot 77$	29.76	29.74	$29 \cdot 74$	29.72
August	-	29.78	29:75	29-79	29-78	$29 \cdot 71$	29-75	29-77	$29 \cdot 75$	29-78	29:75	29-76	29-72	29-74
September	-	$29 \cdot 81$	$29 \cdot 81$	$29 \cdot 81$	$29 \cdot 81$	29•70	29.79	29-78	29.80	29-84	29-81	29.82	29.77	29-79
October	-	$29 \cdot 92$	$29 \cdot 86$	$29 \cdot 85$	29.82	29•76	$29 \cdot 87$	$29 \cdot 88$	29.83	$29 \cdot 88$	29-95	$29 \cdot 85$	$29 \cdot 90$	$29 \cdot 85$
November -	-	$29 \cdot 97$	$29 \cdot 94$	$29 \cdot 96$	29.93	$29 \cdot 87$	30.01	30.00	29.99	$30 \cdot 01$	$29 \cdot 94$	29.87	$29 \cdot 92$	29-92
December	-	30.02	30.02	$30 \cdot 00$	30.02	30.05		29-96	30-01	30.06	29-97	29-99	29-98	30.05
Means	-	29.88	$29 \cdot 86$	$29 \cdot 86$	29-87	29.83	\cdots	$29 \cdot 86$	$29 \cdot 86$	$29 \cdot 89$	29.89	29-85	29:85	$29 \cdot 84$

Table I. showing the Mean Monthly Reading of the Barometer at Madras-continued.

The change in the atmospheric pressure from month to month is very constant in different jears, and the mean annual pressure is subjected to but very little change from year to year as before remarked.
In the Appendix will be found the monthly readings of the barometer at different stations scattered over India in Tables CVI. to CVIII. at pages 847 and 848 ; but, as I do not know the direct influence which the variations of atmospheric pressure can produce on human life, particularly where the changes are so limited in extent, and as the barometric observations bear no comparison to the immense influence of heat, it is scarcely requisite to dwell upon them at greater length in the present inquiry; I there fore proceed to consider the average temperature of the air over India, in relation to its maximum by day, its minimum by night, its daily range, and its mean value.

Section II.
On the observed high day temperature of the Air. Deduced effect of a change of 1° of latitude. Deduced effect of a change of 1° of longitude. Deduction of formulae to calculate high day temperature at low elevations over India. Law of decrease of high day temperature with elevation.

On observed High Day Temperature of the Air.
The mean monthly, quarterly, half-yearly, and yearly observed maximum temperatures of the air will be found in the Appendix in each presidency arranged in the order of latitude for sll stations at which this element has been observed. See Tables CIX., CXIX., and CXXIX.
Determination of the effect of a change of 1° of Latitude on High Day Temperature of the Air.
Tables XLIII., XLIV., and XLV., pages 820 and 821 , were formed of the results of this element from stations whose elevations above the level of the sea are less than 1,000 feet, in the presidencies of Madras, Bombay, and Bengal respectively. By taking the means of the numbers in each month of these groups of stations, the first three columns of the next table were formed, showing the mean of all the maximum temperatures of stations of low elevations in each presidency, with a corresponding mean longitude and latitude, and the numbers in the last three columis are found by taking the
successive differences between the numbers in the first three columns.

Table III. showing the Mean Monthly Maximum Temperature of the Air at different Latitudes

Montrs.	Mean Maximum Temperatureof groups			Difference of Mean Maximum Temperature of groups		
				Δ and $B \mid B$ and $C \mid A$ and C Difference of Latitude of		
	A	B	C			
Lat. - Height	$\left\lvert\, \begin{aligned} & 14^{\circ} 49^{\prime} \mathrm{N} \\ & 79^{\circ} 29^{\prime} \mathrm{E} \\ & 126 \text { Feet. } \end{aligned}\right.$	$\begin{aligned} & 21^{\circ}{ }^{\circ} 22^{\prime} \mathrm{N} . \\ & 71^{\circ} 44^{\prime} \mathrm{E} \cdot \\ & 215 \mathrm{~F} \text { Feet. } \end{aligned}$	$20^{\circ} 49^{\prime} \mathbf{N}$. 527 Feet.		$\begin{gathered} 5^{\circ} 87^{7} \\ \text { and } \\ 8^{\circ}{ }^{\circ} 44^{\prime} \\ \text { of Long } \end{gathered}$	$\begin{gathered} 12^{0} 0^{\prime} \\ \text { and } \\ 1^{1} 6^{\prime} \\ \text { of Long. } \end{gathered}$
January						
January	88 8:	86	76	-	-10	-9
	89	91	85	+2	-8	-4
April :		98 98	${ }_{98}^{93}$	+5 +5	- ${ }^{8}$	+
June :	${ }_{92}$	${ }_{95}^{99}$	97	+	-	+ +5
July -	88	98	${ }_{89}^{98}$	+ 4	+1	+ 5
August-	88 87	88 88	89	+0 +1	+1 +1	+1 +8 +8
September	88	${ }_{90}^{88}$	87	+1 +4	± 8	+1 +1
November	83	87	79	+ 4	-8	- 4
December	82	88	71	+1	-12	-11/

The numbers in the fifth and sixth columns are affected by the influence of a great difference of longitude, whilst hose in the last column show the effect of a difference of 12° in latitude and of one degree only in longitude; the effect f the latter may possibly be neglected, and, if so, the of the latter may possibly be neglected, and, if so, the in the different months :-
n the different months:-
In January a decrease of $0^{\circ} \cdot 7$ for an incrase.
In February a decrease of $0^{\circ .7}$
In March a decrease of $0^{\circ} \cdot 3$
In April an increase of $0^{\circ} \cdot 2$ n May an increase of $0^{\circ} \cdot 3$ In June an increase of $0^{0.4}$ In July an increase of $0^{\circ} \cdot 4$ n August an increase of $0^{\circ} \cdot 1$ In September an increase of $0^{\circ} \cdot 2$ In October an increase of $0^{\circ \cdot 1} 1$
In November a decrease of $\theta^{\circ} \cdot 3$ In December io decrease of $4^{\circ} \cdot 1$

5"a

Determination of the effect of a change of 1° of Longitude on

 High Day Temperature in India.Turning our attention to the influence of longitude on high day temperature, we find that in the presidency of Madras south of latitude 15° there are not sufficient stations available for this investigation; and, with the exception of Cannanore and Madras, which differ in latitude by $1^{\circ} 12^{\prime}$ and in longitude by about 5°, with 10 years' observations at the former, and at the latter, there are no means of finding the montily coefticient. In the other parts of India, the investigation was treated in every way as described in section for mean temperature, and the following tables formed.
Tabie IV. phowing the effect of an Increase of 1° of East
Longitude on High Day Temperature.

The values in the second column imply that the high day temperatures in the winter months are nearly alike at those stations in the presidency of Madras, but that they differ very much in the summer months, from each other, and indicate that those situated to the east are of higher and indicate that those situated to the east are of higher
temperature than those to the west. The numbers in this temperature than those to the west. The numbers in this
column have only been formed, however, from the observations at Cannanore and Madras; they are therefore of little value, and can be viewed as indications only; but as such they show that the higher temperature on the Coromandel coast over that on the Malabar coast in the summer months is due, if not entirely, to a very great extent, to excess of high day temperature.

The results from the other parts of Madras, were not very accordant; but I have no information for the most part on the instruments used, and their situation in observation. on the instruments used, and their situation in observation. The general result is, that the effect of longitude is
insensible in themonths from June to August; that in the other months, stations situated to the west have higher day temperature than those to the east, amounting in the winter months to a little more or less than $\frac{1}{2}$ a degree for 1° of longitude.
By combining the results an approximation to the high day temperature in India may be found as follows:-

At places south of 15° of north latitude.
From the very small range of daily temperature in the presidency of Madras, south of latitude 15° (see Section IV., page 788, and Table LXIII., page 827,) the bigh day
temperature may be readily found by applying additively the one half of the mean daily range (Section IV.) to the monthly mean temperature of the air for the latitude. (See Section VI., page 792.)

At places situated between the latitudes 15° and 20° the high day temperature may be approximately determined by the use of the following formulæ:-

(lat. 212) $\times 1.1-$ (long. -72) $\times 0.6$
At the places situated between the latitudes 20° and 25°, by the use of the following formulæ :-

December 71. - (lat. -27) $\times 1 \cdot 1$ - (long. $-80 \frac{1}{2}$) $\times 0.6$
At places situated to the north of latitude 25°, the high day teimperature may be approximately determined by the use of the following formula.
January $\cdot \frac{0}{73}$ - (lat.-27) $\times 0^{\circ} 7$ - (long. $-80 \frac{1}{2}$) $\times 8.4$ February $\quad 76-$ (lat. -27) $\times 0.7-$ (long. $-80 \frac{1}{2}$) $\times 0.4$ March $85-$ (lat. -27) $\times 0.3-$ (long. $-80 \frac{1}{2}$) $\times 0.4$ April $\quad 93+$ (lat. -27) $\times 0 \cdot 2-$ (long. $-80 \frac{1}{2}$) $\times 0.5$ $\begin{array}{lll}\text { Apri } & \left.93+(\text { lat. }-27) \times 0 \cdot 2-\text { (long. }-80 \frac{1}{2}\right) \times 0.5 \\ \text { May } & \left.98+(\text { lat. }-27) \times 0.3-\text { (long. }-80 \frac{2}{2}\right) \times 0.3\end{array}$ June $\quad 97+$ (lat. -97) $\times 0.4$
$\begin{array}{ll}\text { July } & 93+(\text { lat. }-27) \times 0.4 \\ \text { August } & 89+\text { (lat. }-27 \text {) } \times 0.1\end{array}$
August $\quad 89+$ (lat. -27) $\times 0.1$
September $89+$ (lat. -27) $\times 0 \cdot 2-$ (long. $-80 \frac{1}{2}$) $\times 0.1$ October $87+$ (lat. -27) $\times 0.1-$ (long. -801) $\times 0.4$ November 79 - (lat.-27) $\times 0.3-$ (long. -80_{2}^{2}) $\times 0.5$ December 71 - (lat.-27) $\times 1 \cdot 1-\left(\operatorname{lon} \times .-80 \frac{1}{2}\right) \times 0.6$
Determination of the Influence of Elevation on High Day Temperature in India.
For this purpose Tables XLVI. to LII., pages 821 to 893 , were formed, of stations whose elevations are between 1,000 and 2,000 feet, and those between 2,000 and 3,000 feet, and of higher elevations in steps of 1,000 feet, in each presidency, from Tables EIX., CXIX., and CXXIX. : their means were taken corresponding to a mean height, latitude, and longitude, and these results were compared with either observed or calculated values in the same latitude and longitude at the level of the sea; a series of differences of temperature due to elevation were thus obtained, whose means are shown in the next table.

Table V. showing the observed Mean Decrease of High Day Temperature with Increase of Elevation.

	Months.		Presideney, Number of Stations, and Mean Elevation.							
			Bombay. Mean of 9 Stations, $1,450 \mathrm{ft}$	Madras. Mean of 3 Stations, $1,524 \mathrm{ft}$.	Bombay. Mean of 3 Stations, $2,176 \mathrm{ft}$.	Madras, Bangalore, 2,874 ft.	Bengal, Cherrapoongee, $3,591 \mathrm{ft}$.	Bombay. Mean of 3 Stations, $4,018 \mathrm{ft}$.	$\begin{gathered} \text { Madras, } \\ \text { Wellington, } \\ 5,880 \mathrm{ft} . \end{gathered}$	Bengal, Darjeeling. $6,473 \mathrm{ft}$.
			\bullet	-	-	-	-	-	-	-
January	- -	- -	- 2	$-$	- $4 \frac{3}{3}$	$-4 \frac{1}{4}$	- 13	-11	- 161	- 23
February	- -	- -	- 2	1	- 2 2	- $3 \frac{1}{2}$	- 12	- 11	- $21 \frac{1}{2}$	- 25
March -	-:	-	-1	-2	-1	$-{ }^{2}$	- $18 \frac{1}{4}$	-. 91	- 19	- 23
${ }_{\text {April }}^{\text {May }}$ -	- :	-	0 -3	$=1^{\frac{1}{1}}$	$=4^{\frac{1}{3}}$	- ${ }^{4 \frac{4}{2}}$	$-20 \frac{3}{2}$ $=237$	- 117 -145	- 234 -20	- 33 -35
June	- :		- 6	$=7$	-8	-7	- $25 \frac{1}{2}$	二14.	- $17 \frac{1}{1}$	- 32
July -	-	- -	- 8	- 6	- 7	- 3	- 192	- 1812	- 129	- 29
August -	- -	- -	- 5	- 5	-7	- 7	- 18	-17	- 13	- 24
September		- -	- 6	-4	-8.	- 5	- 17.	- 16	- 12	- 24
October	-	- -	- 5	-5	${ }^{6}$	-4	- 14	- 16	- 12	- 26.
	- -			- 8	- 4	- 5	-151	- 131	- 169	- 29
December	-	- -	-3	-1.	-8	-4	$-14 \frac{1}{3}$	- 14	- 10	- 19

The results, as found for the same elevation in the diffe ent presidencies, ere sufficiently accordant to show that the decrease for the same elevation is the same everywhere. The results from Chirrapoongee are, however, discordant, The results rrom Chirrapoongee air, he mean temperature as was found to be values precisely the same as those for By treating these (mean temperature (see Section V., page 789,) the following most probable values were found.

Table VI. showing the calculated Decrease of High Day Temperature in India with an Increase of Height up to 9,000 feet above the level of the sea, for every month.

Mortira	Height in Feet.								
	1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	0,000
	-	-	-	-	-	\bigcirc	-	-	-
January	14	4	8	112	15	${ }_{9}^{19}$	${ }^{234}$	${ }^{273}$	${ }_{37}^{32}$
February	8	4	6	117	172	21	267	38,	37 40
March -	$1 \frac{1}{4}$	${ }_{3}^{37}$	8	113	$\stackrel{17}{21}$	${ }_{27}^{27}$	884	341	
May :	${ }_{1}^{17}$	3 4 $4{ }^{\text {a }}$	${ }_{10}^{8}$	15	${ }_{201}^{21}$	878	${ }_{36}^{81}$	4414	${ }_{53}{ }^{4}$
May -	4	88	133	18	-23	974	33	38	43
July.	4	$8{ }^{8}$	133	174	22	294	80 3	$34 \frac{3}{3}$	39
August -	3	7	104	143	18	21.	2545	29\%	33
September	3^{31}	${ }^{69}$	101	134	17	24.	24	${ }_{30}^{284}$	384.
October	3							30 263	${ }_{30}^{34}$
November	${ }^{2}$	${ }_{5}^{54}$	${ }_{88}^{82}$	12	15	185	${ }_{81}^{234}$	${ }_{23}^{263}$	${ }_{26}{ }^{\text {8 }}$

From these the approximate high day temperature may be determined at any elevation in India, when the fame element is known at a lower elevation.

Séction III

On observed low night temperature in India. Deduced effect of a change of 1° of latitude. Deduced effect of a change of 1° of longitude. Deduction of formula to calculate low night temperature at low elevations over India. Law of decrease of low night temperature with elevation.

On the observed Low Night Temperature of the Air in India.
The mean monthly, \&c., and yearly observed minima temperatures of the air will be found in the Appendix, arranged in the order of latiturle, in each presidency, for all stations where this element has been determined. See Tables CX., CXX., and CXXX.

Determination of the effect of a change of 1° of Latitude on Low Night Temperature of the Air.
Tables LIII. to LV. contain the results from those stations in each presidency, whose elevations are below 1,000 feet. Their means have been taken and treated exactly as in the case of the maximum temperature, and thus the in the case of the m
next table was formed.

Table VII. showing the Mean Monthly Minimum Temperature of the Air at different Latitudes.

Mortirs.	Mean Minimum Temperature of groups			Difference of Mean Minimum Temperature of groups		
				D and E E and F D and F		
	D	\pm	F	Corresponding to a Difference of Latitude o		
Lat. Height	${ }^{14^{\circ}}{ }^{49^{\prime}} \mathbf{N}$ 126 Feet.		$\begin{aligned} & 28^{\circ} 49^{\prime} \mathrm{N} . \\ & 80^{\circ} .33^{\prime} \\ & 527 \text { Feet. }^{2} \end{aligned}$		$5^{\circ} 27^{\prime}$ and $8^{\circ}{ }^{\circ}{ }^{4}$ of Long	$\begin{aligned} & 180^{\circ} 0^{\prime \prime} \\ & \text { and } \\ & 1^{\circ} 6^{\prime} \\ & \text { of Long. } \end{aligned}$
January -	70	59		- ${ }^{11}$		-17
February	78	${ }_{82}$	69		8	4
March -	76	69	65	-7	- 4	-11
April -	80	75	74	- 5	-1	- 6
May	88	81	${ }_{81}^{81}$	-1.	$\begin{array}{r}0 \\ +\quad 8 \\ \hline\end{array}$	- 1
June -	81 80	${ }_{79} 81$	838	- ${ }_{-1}^{0}$	+8 +8	+8 +8 +8
Aurust -	79	78	79	-1	+1	0
Septumber	78	77	79	-1	± 2	± 1
October	77	73	71	- 4	-8	- 6
Nonvember	78 70	64 69	60 56	-9	-4	-18
Decenimber	70					

The effect of latitude upon low night temperature is here shown to be very decided, and large in amount in the winter months. It is small in amount, and almost insensible, in the summer months., It seems to be uniform in each month all over India; and the following are the most
probable changes in this element for an increase of one degree of north latitude in each month :-

In January a decrease of 1.4° for an increase of 1° of north latitude.
In February a decrease of 1.2°
n March a decrease of $1: 0^{\circ}$
In April a decrease of 0.5°
In May
In June
In July
no sensible change, the low night tem In August:
n October a decrease of 0.5° for an increase of 1° of north latitude.
In November a decrease of $1 \cdot 0$
In December a decrease of $1 \cdot 2^{\circ}$
"
From these values, which from their general agreement in all latitudes must be near the truth, it appears that, from November to March, the , nights at northern stations are much colder than at southern stations, generally exceeding a degree of temperature in amount for every degree of greater north latitude. In the months of April and October they are still colder, but to about one-balf of the amount in the other months. Whilst in the remaining period of the year, viz, from May to September, there seems to be no sensible difference in the low night tempera ture throughout the whole of India.
Determination of the effect of a change of 1° of Longitude on the Low Night Temperature.
I now proceed to determine the effect of a change of 1° of longitude upon the low night temperature.
For this purpose the investigation was proceeded with in precisely the same way as in the analogous investigations of the maximum temperature, and the following are the results obtained.

Table VIII. showing the effect of an increase of 1° of East Longitude on Low Night Temperature.

Montre.	Latitudes N .			
	South of 15°.	15° to 20°.	20° to 25°.	25° to 80°.
	-	-	-	-
January	-1.6	0.2 +0.2	+ 0.2	0.2 +0.4
Mabruary -	-1.7 -1.4	+0.2 +0.1	+0.4 +0.2	+0.4 +0.8
April -	- 0.8	+0.8	$+0.2$	+ 0.2
May -	-0.3	$+0 \cdot 1$	+0.1	+0.1
June - - -	+0.3	+ 0.1	+ $0 \cdot 1$	$+0.1$
July - - -	+0.5	+ 0.8	+ 0.2	
August	+0.3			+ $\begin{array}{r}\text { +1 } \\ +0.1\end{array}$
September	0.0 -0.8	+0.1 +0.1	+0.2 +0.1	+0.1 +0.1
November -	-0.5	+ 0.2	+0.2	+ 0.8
December - -	-1.0	$+0.3$	$+0.3$	$+0.3$

From the agreement in these results, I think much conf dence may be placed in them.
The greatest changes are in those latitudes south of 15° amounting to a decrease of low night temperature to mor than $1 \frac{1}{2}^{\circ}$ for each degree of greater east longitude in th months of January and February; decreasing to a litt less than $1^{\frac{1}{2}}$ in March, to $\frac{3}{4}^{\circ}$ in April, and to 4° in May : a change then takes place, and, for the months fron June to September, those places with greater east longitud are from $\frac{1}{4}^{\circ}$ to $\frac{1}{2}^{\circ}$ warmer for each degree of longitude. I September, longitude seems to exercise no infuence on thi element, and in October, the lower night temperature, as a the beginning of the year sets in, and which by Decembe amounts to 1 of lower temperature for one degree of eas longitude. These results, however, can be looked upon a indications only.
The same general laws prevail in higher parallels of lat tude viz, north of 15°; and the results agree very wre together, and the rent parallels of latitude.
As both the coefficients in latitude and longitude a stations north of 15° are moderately satisfactory, the mea monthly low night temperature at station hundred feet of the surface. may be calculated from th following formulæ:-

An approximation to the low night temperature at an place in India may he found as follows:-

At places south of 15° north latitude.
From the very small range of temperature in the pres dency of Madras south of paralle of lily found by applyir the half of the monthly daily range.

At places situated between the latitudes 15° and 20° ， the low night temperature may be approximately deter－ mined by the use of the following formulx ：－
In January $\left.\stackrel{\circ}{59-\left(\text { lat．}-21 \frac{\circ}{2}\right) \times{ }^{\circ} \cdot 4}+\left(\text { long．}-7{ }^{\circ}\right)^{2}\right) \times 0^{\circ} \cdot 2$ In February $62-$（lat．$-21 \frac{1}{2}$ ）$\times 1 \cdot 2+$（long．-72 ）$\times 0 \cdot 2$ In March 69 （（lat．$-21 \frac{1}{2}$ ）$\times 1 \cdot 0+$（long．-72 ）$\times 0 \cdot 1$ $\begin{array}{ll}\text { In March } & 69-\text {（lat．}-21 \frac{1}{2} \text { ）} \times 1 \cdot 0+\text {（long．}-72 \text { ）} \times 0.1 \\ \text { In April } & 75-\left(\text { lat．}-21 \frac{1}{2}\right) \times 0.5+\text {（long．}\end{array}$ $\begin{array}{lll}\text { In April } & 75-\left(\text { lat．}-21 \frac{1}{2}\right) \times 0.5+(\text { long．} & 72) \times 0.3 \\ \text { In May } & 81 & + \text {（long．} \\ & 82) \times 0.1\end{array}$

In May	81	（long．－72）
		（long．-72 ）\times
In June	81	

In July
In August 78

+ （long．-72 ）$\times 0.2$
In September $77 \quad \begin{aligned} & \\ &+ \text {（long．} \\ & \text {（long．} 72 \text { ）} \times 0.1\end{aligned}$
In Octoben $73-$（lat．$-21 \frac{1}{2}$ ）$\times 0.5+$（long．-72 ）$\times 0.1$
In November $64-$（lat．$-21 \frac{1}{2}$ ）$\times 1.0+$（long．-72 ）$\times 0.2$
In December 59－（lat．－21立）$\times 1 \cdot 2+$（long．－72）$\times 0.3$
At places situated between the latitudes 20° and 25° ，the low night temperature may be approximately determined by the use of the following formule ：－

In January
In February
In March
In April
In May
In June
$\begin{array}{ll}\text { In July } & 82 \\ \text { In August } \\ 79\end{array}$
In August 79
In September $79+$（long．$-80 \frac{1}{2}$ ）$\times 0$.
In October $71-$（lat．-27 ）$\times 0.5+$（long．$-80 \frac{1}{2}$ ）$\times 0.2$
In November $60-$（lat．-27 ）$\times 1 \cdot 0+$（long．$-80 \frac{1}{2}$ ）$\times 0.2$
In December 55－（lat．－27）$\times 1 \cdot 2+$（long．－80는）$\times 0 \cdot 3$

At places situated to the north of latitude 25° ，the low night temperature may be approximately determined by the use of the following formula ：－
 In February 59 －（lat．-27 ）$\times 1.2+$（long．$-80 \frac{1}{2}$ ）$\times 0.4$
 $\begin{array}{ll}\text { In March } & 65-(\text { lat．}-27 \text { ）} \times 1 \cdot 0+\text {（long．－801 }) \times 0.2 \\ \text { In April } & 74-\text {（lat．－27）} \times 0.5+\text {（long．}-80 \frac{1}{2} \text { ）} \times 0 \cdot 2\end{array}$ $\begin{aligned} \text { In April } & 84-(\text { lat．}-27) \times 0.5+(\text { long．}-801) \times 0.2 \\ \text { In May } & 81\end{aligned}$ $\begin{array}{lll}\text { In May } & 81 & \text {＋（long．}-801 \text { ）} \times 0 . \\ \text { In June } & 83 & +\left(\text { long．}-80 \frac{1}{2}\right) \times 0 .\end{array}$ $\begin{array}{llll}\text { In June } & 8.3 \\ \text { In July } & 82 \\ & \quad \cdots & \left.+ \text {（long．}-80 \frac{1}{2}\right) \times 0 \\ & \left.+ \text {（long．}-80 \frac{1}{2}\right) \times 0 .\end{array}$ $\begin{array}{lr}\text { In August } 79 & \text {＋（long．}-80 \frac{1}{2} \text { ）} \times 0 \\ \text { In September } 79 & + \text {（long．}-80 \frac{1}{2} \text { ）} \times 0\end{array}$ In October 71 －（lat．-27 ）$\times 0.5$＋（long．$-80 \frac{1}{2}$ ）$\times 0.1$ In November $60-$（lat．-27 ）$\times 1.0+$（long．$-80 \frac{1}{2}$ ）$\times 0.2$ In December 55 －（lat．－27）$\times 1.2+$（long．$-80 \frac{1}{2}$ ）$\times 0.3$

Determination of the influence of Elevation on Low Night

 Temperature in India．For this purpose Tables LVI．to LXII．，pages 825 and 826，were formed of results from stations whose elevations exceed 1,000 feet，and less than 2,000 feet ；and the remain－ der for each increase of 1,000 feet．
The means of each of these groups were collected together， corresponding to a mean geographical position，and these results combined with those calculated for the same latitude and longitude at the level of the sea；and the difference between these gave a series of numbers showing the indi－ vidual effect of elevation on low night temperature．The means of groups of these were taken in each presidency， and the results are shown in the next table．

Table IX．showing the observed Mean Decrease ofoLow Night Temperature with Increase of Elevation．

Monthe．			Presidency，Number of Stations，and Mean Elevation．							
			Bombay． Mean of 9 Stations， 1，450 feet．	Madras． Mean of 3 Stations， 1，524 feet．	Bombay． Mean of 3 Stations， 2，176 feet．	Madras． Bangalore， 2，874 feet．	Bengal． Cherra－ poongee 3，591 feet．	Bombay． Mean of 3 Stations 4，018 feet．	Madras． Wellington， 5,880 feet．	Bengal． Darjeeling 6，473 feet．
			－	－	－	－	－	－	－	\bigcirc
January	－－	－－	0	－ 0 年	－31	－14	－ 3	-5	－ $13 \frac{1}{2}$	－14
February		－－		－4	－ 3	－12 ${ }^{\frac{1}{2}}$	－103	－ 5	－16	－20
March－	－－	－	＋ 01	－ $3 \frac{1}{2}$	－ 5	－88	－101	－ 5	－16	－19
April－	－－	－－	$+1$	－4	－ 5	－ 10	－103	－ $9 \frac{1}{2}$	－20	－24
May－	－－	－－	－4	－ 2	－ 6	－10	－15	－ 14	－17	－28
June－	－－	－－	-6	－4	－ 7	－12	－17	－16	－16	－25
July－	－－	－	－4	－ 6	－ 6	－10	－14	－15	－18	－24
August	－－	－－	－5	${ }_{5}^{6}$	-7	－10	－12	－14	－14	－21
September	－－	－	－ 5	－5	－88	－88	－12	－13	－19	－23
October	－－	－	－ 2	－ 5	－7	－9	$-16 \frac{3}{4}$	$-10 \frac{1}{2}$	－14	－． 21
November	－－	－	＋ 01	－ $0 \frac{1}{1}$	－ 5	－8	－131	－6	$-12 \frac{1}{2}$	－16
December	－－	－－		－ 1	－4	－101	－ 9 星	－ 7	－88	－16

These values，as in both the other elements，are eridently the same at different parts of India，or，in other words，the effect of elevation on the low night temperature is the same in all latitudes，and lessens those at low elevations by the same amount．The values at Bangalore in the winter months are too large．
The numbers in the preceding table were treated precisely as those in the preceding section，and the following are the final results．

Table X．showing the calculated Decrease of Low Night Temperature in India，with an Increase of Height up to 9,000 feet above the level of the ses，for every month．

Montus．	Height in Feot．								
	1，000．	2，000．	3，000．	4，000．	3，000．	6，000．	7，000．	8，000．	9，000．
	\bigcirc								
January	11	3t	8	${ }^{1} 10$	1174	$\xrightarrow{18}$	${ }_{20}^{15}$		${ }_{26}^{19}$
March ：	1.	4	6.	${ }^{9}$	13	103	19	234	96it
April		${ }_{6}^{4}$	${ }^{8}$	${ }_{1}^{13}$	${ }_{174}^{174}$	${ }^{\text {\％}}$	235		${ }_{41}^{334}$
June	${ }_{3}$	6	14.4	144	18	21	26	${ }_{311}$	$3{ }^{4}$
${ }^{\text {July }}$－	${ }^{3}$	${ }_{68}$	94	${ }_{1}^{138}$	18	213	2：4	${ }_{2}^{28}$	384
Aurust		${ }_{6}^{68}$	10^{44}	$\stackrel{13}{138}$	18		哭：	$\xrightarrow[27]{25}$	
Oclober	2	${ }_{6}^{6}$	${ }_{9}$	124	154	19	23，	$2{ }_{2}^{27}$	（30\％
Novemher	${ }_{0} 1$	$\stackrel{3}{32}$	${ }_{6}^{68}$	${ }_{8}^{97}$	112	15	174	$\stackrel{20}{181}$	29\％

These numbers are satisfactory，and leave but little doubt on the mind as to their general accuracy，and may be used with some confidence in deducing the low night tempera－ ures all over India．

Section IV．
Determination of the Mean Daily Range of Tempera－ ture of the Air at different Elevations in each of the Presidencies of Madras，Bombay，and Bengal．：

Determination of the Mean Daily Range of Temperature of

 the Air at different Elevations in each of the Presiden－ cies of Madras，Bombay，and Bengal．The monthly and other periodic range of temperature at all the stations will be found in the Appendix，arranged in the order of latitude，for all the stations in each presidency．See Tables CXI．CXXI．，and CXXXI．
Tables LXIII．to LXV．contain the mean daily range of temperature at stations in each presidency，arranged in the order of latitude，of less than 1,000 feet elevation，and Thbles LXVI to LXXI，at atations whose elevation exceeds 1,000 feat．The means of each these tables，with the corresponding mean latitude and longitude，have been taken，and in this way the following table has been formed．

Table XI. showing the Mean Daily Range of Temperature of the Air, in the three Presidencies of Madras, Bombay, and Bengal, at

From these values, it seems that the daily range of tempe- tween $]^{\text {h }}$ p.m. and $1{ }^{2}{ }^{\text {a }}$ p.m. in the months of January rature in the presidency of Madras is always small, in the winter months being but little more than one-half of that in the other presidencies, the variations in which are from 19^{2} to 22^{3}. In Madras in the summer months the daily ranye is somewhat smaller than in the winter months; in the other presidencies it becomes much smaller, till, in of daily ths of July, August and September, the 19° only of daily temperature is nearly alike, and from 9° to 12° only at all parts of India. By comparing the daily range at different elevations together in the same presidency no 3,000 feet, they are larger, whilst at Wellington, at 6,000 feet, they are smaller; but no information is given as to the position of the instruments. In Bombay the results at 1,665 feet seem to be a little smaller than those at 214 feet, whilst those at 2,320 feet, are very nearly the same as those at the lowest elevation. The numbers in the next two columns, at 4,500 and 4,200 feet respectively, agree with each other; but then those at Mount Aboo, at 4,000 feet, are twice as large. The same remark applies to the numbers in the last three columns. Upon the whole it seerns that the range of temperature at the higher elevations differs but little from those at the lower elevation in the same parallel of latitude.

Section V.

On the observed mean temperature of the Air. Monthly mean temperature at Madras for 55 years. Monthly mean temperature at Bombay for 12 years. Jieduced effect of a change of one degree of latitude. Deduced effect of a change of one degree of longitude. Deduction of formula to calculate mean temperature at low elcvations over India. Law of decrease of mean temperature with elevation.

On thr observed Mean Temperature of the Air.
In Madras the highest temperature of the day occurs about $0^{\mathrm{b}} \cdot 30^{\mathrm{m}}$ p.m. in the months of April and May; be-

Table XII. showing the Mean Monthly Temperature of the Air at Madras.

Monthe.	Ybars.																
	1796.	1797.	1798.	1799.	1800	1801.	1802.	1803.	1804.	1805.	1806	1807.	1813.	1814.	1815.	1816.	1817
	-	-	-	-	-	-	-	。	-	-	-	-	-	0	-	\bigcirc	
January	75	\cdots	75	75	76	76	76	76	79	76	75	76	77	74	73	73	74
February -	78	\cdots	80	77	78	77	79	78	81	78	76	74	78	76	78	73	76
March -	80	81	81	81	81	84	84	82	82	81	80	73	80	78	78	\%	78
April -	83	84		83	85		85	84	86	82	83	80	85	83	87	80	81
May	87	88	.	88	86		86	86	89	88	86	83	90	80	90	${ }^{88}$	87
Jone -	85	89	89	88	87	87	90	88	90	89	85	89	87	91	85	89	88
July -	83	86	87	83	83	84	87	86	89	${ }^{84}$	86	88	87	89	84	85	87
August -	82	87	84	85	84	86	85	87	85	84	84	84	${ }_{84}^{84}$	${ }^{86}$	85	83	85
September	83	84	84	83	8.3	83	87	86	85	83	86	84	83	${ }^{83}$	85	82	82
October -	81	81	83	83	82	82	83	83	83	81	83	80	82	$8{ }^{82}$	80	81	81
Novenber -	78	79	78	75	80	78	79	79	81	80	${ }^{81}$	38	78	78	77	79	77
December -	75	76	76	76	75	76	75	77	77	77	76	77	\% 4	75	74	75	77
Means	81		\cdots	81	81	-•	83	82	84	82	82	80	84	81	81	80	81

Table XII. showing the Mean Monthly Temperature of the Air at Madras-continued.

From this table we gather that the lowest and highest monthly temperatures at Madras in 55 years-
In January were 71° in 1819 , and 79° in $1804 \& 1828$, show-
ing a variation in this month of 8°.
In February were 73° in 1816 , and 81° in $1804 \& 1825$, show-
ln ebr aryiation in this month of 8°.
In March were 73° in 1807 . and 84° in 1801, 1802, \& 1822,
In March were 73° in 1807 . and 84° in 1801,
showing a variation in this month of 11°.
In April were 79° in $1821, \& 1835$, and 87° in $1815 \& 1845$,
n April were 79° in 1821, , 1835 , and 8°
showing a variation in this month of 8°.
In May were 80° in 1814, and 90° in 1813 , $1815,1818,1849$,
showing a variation in this month of 10°.
In June were 83° in $1826 \& 18: 35$, and 91° in 1814, showing a variation in this month of 8°.

In July were 81° in $1834 \& 1835$, and 90° in 1824, showing a variation in this month of 9°.
In August were 78° in 1832 , and 88° in 1824 , showing a rariation in this month of 10°.
In September were 81° in 1834, 1835, \& 1836 , and 88° in 1824, showing a variation in this month of 7°.
In October were 79° in 1835, and 84° in $1823,1825,1826$, 1829, 1839, 1850, showing a variation in this month of 5°.
In November were 75° in 1799, and 81° in 1804, 1806, 1823 1824, 1823, 1829 , showing a variation in this month of 6°. In December were 74° in $1813,1815,1835,1836$, and 80° in 1822, showing a variation in this month of 6°.

Table XIII. showing the Mean Monthly Temperature of the Air at Bombay.

And from the Bombay table we learn that the variation in temperature--

In June in 12 years amounted to 4°. In July
In August
In September
In September In October
In November.
In December
In Decembe
", \quad,"
," ..," \qquad
",

On OBserved Mean Temperature of the Air at different Stations
The mean monthly, quarterly, and other periodic values of this element will be found in the Appendix, for all the ations in each presidency arranged in the order of latitude. See Tables CXII., CXXII., and CXXXII.
Determination of the effect of a change of 1° of Latitude on the observed Mean Temperature
Tables LXXII. to LXXIV. contain the monthly mean temperature of the air at stations less than 1,000 feet in elevation above the level of the sea, in each presidency. The mean of all in each month has beed taken, a mean geographical position, and mean elevation determined and the results are contained in the first three columns of the following table.
The numbers in the 4 th column are the differences between those in the lst and 2nd, columas; those in the 5th column, the differences between those in the $2 n d$ and 3rd columns; and those in the last column are formed from the numbers in the lst and 3rd columns.
Table XIV. showing the Mean Monthly Temperature of the Air at different Latitudes.

From the agreement in the numbers in the last three columns of this table, it is evident that one general law prevails throughout the whole extent of India; but from the difference of signs in the different months, as well as the different amounts with the same sign, it is evident that the difference of temperature for difference of latitude is very different at different seasons of the year.
The following are the most probable values for an increase of one degree of north latitude.

In January	a decrease of 1.0
In February	a decrease of 0.8.
In March	a decrease of 0.5.
In April	no change.
In May	an increase of 0.3.
In June	an increase of 0.4.
In July	an increase of 0.3.
In August	an increase of 0.2.
In September an increase of 0.1.	

In August an increase of $0 \cdot 2$.
In September an increase of 0. .
In October a decrease of 0.2 .
In November
a decrease of 0.5 .
From these results it appears that from October to March the temperature is lower at northern stations than at southern, and from May to September they, are warmer. In April the temperature seems to be very nearly the same at all stations, and there is but little difference in this respect in September. The greatest differences are in December and January, and which exceed 30° in amount between the extreme south of the presidency of Madras, and north of that of Bengal.
Determination of the Change of Mean Temperature in India
in every Month for a difference of 1° of Longitude in
different parallels of Latitude
The next investigation necessary is to determine the effect of longitude on the mean temperature : for this purpose the mean temperatures month by month of all those stations situated in or near the same latitude were compared to gether ; in other cases, where the difference of latitude would make a sensible diference in the result, the preceding corrections for latitude have been applied to the results of one station to reduce them to the latitude of the other, and in this way a seriea of differences. in almost every latitude were found, which were wholly due to longitude
These were grouped together, their means taken, the resulta laid down on a diagram, and a curved line made to pass through or near them, giving weights proportionate to
the number of results from which each point was found and in this way the following series of values were obtained Table XV. showing the Effect of an Increase of 1° of Eas Longitude, in the different parallels of Latitude in India.

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{Montirs.} \& \multicolumn{4}{|c|}{Latitudes N. -} \\
\hline \& South of \(15^{\circ}\). \& \(15^{\circ}\) to \(20^{\circ}\). \& \(20^{\circ}\) to \(25^{\circ}\). \& North of \(25^{\circ}\) \\
\hline January \& - 0.7 \& \(-0.3\) \& \(-0.2\) \& - \\
\hline February - \& -0.7 \& \(\begin{array}{r} \\ -\quad 03 \\ \hline\end{array}\) \& - 0.2 \& - 0.1 \\
\hline March \& \(-0.6\) \& -0.8 \& - 0.1 \& \(=0.1\) \\
\hline April \& +0.2
\(+\quad 0.3\) \& - 0.3 \& - 0.1 \& - 0.1 \\
\hline May \({ }^{\text {June }}\) \& (
\(+\quad 0.3\)
\(+\quad 0.8\) \& \(\underline{-} \begin{aligned} \& 0.1 \\ \& 0.0 \\ \& 0\end{aligned}\) \& -0.2
\(=0.1\) \& 0.0
\(-\quad 0.2\) \\
\hline July - \& + \(1 \cdot 2\) \& 0.0 \& \& - 0.2 \\
\hline August - \& +1.2 \& - 0.1 \& \(-0.1\) \& - 0.2 \\
\hline September \& (\& \& \& - 0.1 \\
\hline \begin{tabular}{l}
October - \\
November
\end{tabular} \& \(\begin{array}{r}\text { (} \\ +\quad 0.3 \\ \hline 0.2\end{array}\) \& \(=\)
-

0.3
0.3 \& $=0.1$
$=0.1$ \& $=0.1$
$=0.2$

\hline December \& - 0.7 \& - 0.3 \& - 0.2 \& $\begin{array}{r} \\ -\quad 0.2 \\ \hline .0 .2\end{array}$

\hline
\end{tabular}

From the general accordance of the individual results, I think considerable confidence may be placed in these values. The numbers in the column applicable to places situated south of 15°, are remarkable, and show that the stations on the Malabar coast differ very much from those on the Coromandel coast in their monthly values the former being of much higher temperature in the winte months, and of lower in the summer months the chang taking place between the months of April and May, and again between October and November.
In the next parallel, viz., between 15° and 20°, these particulars are much modified, those stations situated to the west being of higher temperature in winter, and differing west being of higher temperature in winter, and differing
but little from each other in the summer. In latitudes exceeding 20° the effect of longitude seems to be small, exceeding 20° the effect of longitude seems to be small, the western stations being of somewhat higher temperature.
With the knowledge we possess of the mean temperatures With the knowledge we possess of the mean temperatures
at moderate elevations, as found in groups G, H, and K , in at moderate elevations, as found in groups \mathbf{G}, H, and K , in
Table XIV., and with the coefficients in latitudes and longiTable XIV., and with the coefficients in latitudes and longitudes, as found from Table XIV., and as contained in
Table XV., we are ensbled to calculate the mean temperature Table XV., we are enabled to calculate the mean temperature
of all places in India at the same elevations, dependent upon their geographical position, by the following formula :-

Formula for calculating the mean temperature of places situated south of 15° of north latitude, in the presidency of Madras, at moderate elevations.
 20° of north latitude, at moderate elevations.

January
February
March
April.
May
May
June
June
August
August October October November 81 + (lat. -21) $\times 0.1$ (long. $\times 0.2-$ (long. -72) $\times 0.2$ November 77 - (lat. -21) $\times 0.5$ - (long. - 72×0.2
December 72 (lat. -21) $\times 1.1$ (long. 72) $\times 0.3$
Formulx for calculating the mean temperature of places
Formulæ for calculating the mean temperature of places
situated in India, between the parallels of 20° and 25° of situated in India, between the parallels.

January

February
March
April
May
June
July
August
September
October
November
December
$7^{\circ}-($ lat. -21$) \times 1^{\circ} \cdot 0-$ (long. $\left.-7 \frac{9}{2}\right) \times 0^{\circ} \cdot 3$
$73=$ (lat. -21) $\times 0.8$ - (long. -72) $\times 0.3$
$83=($ lat. -21$) \times 0.8=($ long. -72$) \times 0.3$
${ }_{89}^{85}+(1 \mathrm{lot},-1) \times 0.4=$ (long. $-72 \times \times 0.3$
$89+($ lat. -21$) \times 0.4-($ long. -72$) \times 0.1$
87 + (lat. -21) $\times 0.3$
$87+($ lat. -21$) \times 0.3$
87 + (lat. -21$) \times 0.3$
$83+$ (lat. -21) $\times 0.2-$ long. -72) $\times 0.1$
$82+$ (lat. -21) $\times 0.1-$ (long. -72) $\times 0.2$

- (lat. -21) $\times 1 \cdot 1-\underset{5 G 4}{ }$

Formule for calculating the mean temperature in India Determination of the Influence of Elevation on Mean Tempe－
rature of the Air in India． north of 25° of north latitude，at moderate elevations．
January $\quad 63-($ lat．-26$) \times 1^{\circ} 0-($ long．-81$) \times 0^{\circ} \cdot 1$ February 69 －（lat．-26 ）$\times 0.8$－（long．-81 ）$\times 0.1$ March $\quad 76$－（lat．-26 ）$\times 0.5$－（long．-81 ）$\times 0.1$
March
$\begin{array}{ll}\text { April } & 85 \\ \text { May } & 91+(\text { lat．}-26) \times 0.3 \text {－（long．}-81 \text { ）} \times 0.1 \\ \times 0.1\end{array}$ $\begin{array}{ll}\text { May } & 91+(\text { lat．}-26) \times 0.3-\text {（long．}-81 \times 0.1 \\ \text { June } & 91+(\text { lat．}-26) \times 0.4-\text {（long．}-81 \text { ）} \times 0.2\end{array}$ July $\quad 87 .+$（lat．-26 ）$\times 0.3$－（long．-81 ）$\times 0.3$ Nugust $85+$（lat．-26 ）$\times 0.2-$（long．-81 ）$\times 0.2$
 September
October
79 November $71-$（lat．-26 ）$\times 0.5-$（long．-81 ）$\times 0.3$
December $63-($ lat．-26 ）$\times 1 \cdot 1-$（long．－81）$\times 0.2$

rature of the Air in India．

The determination of the correction for elevation is very important：for this purpose all the stations in each presi－ dency were collected together whose elevations above the sea were from 1,000 to 2,000 feet in one group，from 2,000 to 3,000 in another group，and of higher elevations，step by step of 1,000 feet，in Tables LXXV．to LXXXII．；the mean of each group was taken and compared with the mean tempe－ rature for each geographical position at the level of the sea； and in this way a series of differences between these results were found due to each．separate elevation；these were again grouped，and their means are shown in the following tables．

Table XVI．showing the observed Decrease of Mean Monthly Temperature of the Air，with Increase of Elevation．

Montis．	Iresidency，Number of Stations，and Mean Elevation．															
	$\left\|\begin{array}{c} \text { Bombay. } \\ \text { Monn } \\ \text { Stations, } \\ \text { 1,37s ft. } \end{array}\right\|$	Madras． Mean of Stations $1,584 \mathrm{ft}$.	$\left\|\begin{array}{c} \text { Bombay } \\ \text { Mofn } \\ \text { oft } \\ \text { Stations, } \\ 2,176 \mathrm{ft} \end{array}\right\|$	Madras． Secun－ derabad， 2，288 ft．	Madras． Bangar lore， 2，874 ft．	Bengal． Cherra－ poongce， $3,604 \mathrm{ft}$ ．	Bombay． Mean of 2 Stations， 3，960 ft．	Bengal． Uttra Mullay， 4，091 ft．	Bengal． Khat－ mandu， 4，141 ft．	Madras． Mercara 4，374 ft．	Madras． Wel－ lington， $5,880 \mathrm{ft}$ ．	$\begin{gathered} \text { Bengal. } \\ \text { Nynee } \\ \text { Thal, } \\ 5,891 \mathrm{ft} . \end{gathered}$	$\begin{gathered} \text { Bengal. } \\ \text { Kot- } \\ \text { gurh, } \\ 6,125 \mathrm{ft} . \end{gathered}$	Bengal． Dar－ jeeling， 6，401 ft．	Madras． Ootaca－ mund， 7，235 ft．	Madras． Doda betta， $8,614 \mathrm{ft}$ ．
												${ }^{\circ}$				
January	－ 18	－1	－${ }^{8}$	－${ }^{8}$		－ 7					－ 18	-14 -19	－ 18	－ 17	－${ }_{25}^{24}$	－${ }^{28}$
Yeberruary：	－ 0.	－	－88	－ 8	－ 6	－ 10	－ $\begin{array}{r}\text { ¢ } \\ \hline-18\end{array}$	－${ }^{5}$	-16 -17 $=18$	－ 9	-17 16	－ 19 -20 20	－ 20	二25	-25 -23 -23	－ 29
April	－ 1	－ 8	－${ }_{2}$	－ 1	－ 8	－17	－ 11	－ 17	－ 18	-12	二 ${ }^{81}$	－ 23		－ 29	－22	－ 29
May－	－ 2	－8	－${ }_{8}$	－${ }^{2}$	－${ }^{\mathbf{7}}$	二20	二 18	－${ }^{24}$	－ 20	二 ${ }^{14}$	－ 18	－${ }^{24}$	－ 25	-33 -80 80	－25	－ $\begin{array}{r}\text {－} \\ -82 \\ \hline 88\end{array}$
June．	－${ }^{4}$	－${ }^{5}$	－ 8	－${ }^{6}$	－${ }^{-10}$	二 17	－ 19	二28	－11	－ 16	－ 15	－ 20	－ 28	二 23	－．25	－ 29
Aukust	$=8$	－ 5	－ 7	－9	－989	－ 16	－ 17	－ 20	－ 11	－ 17	－ 12	－ 19	－ 19	－${ }^{24}$	－ 25	－ 80
September	－${ }^{4}$	－ 5	－7	－${ }^{5}$	－ 8	－ 14	－12	－ 18	－ 14	－ 14	－ 12	－	二20	二23	二 23	－${ }_{28}^{29}$
	－ 8	－5	－6	－4	－88	－ 14	－ 12	－7	－15	－ 11	－ 18	－${ }^{15^{\circ}}$	－18．	－ 19	－23．	－27
November	－88	－${ }^{2}$	－ 7	－8	－ 7	＝ 12	－12	－2	－15	－ 14	－ 9	－ 9	－	－ 17	－25	－ 28

From these numbers it is very clear that there is no marked difference in the effect of elevation in different parts of India，or in other words，whatever may be the mean tem－ perature due to the latitude and longitude on the plains， the effect of elevation is to depress this by the same amount．By looking over these numbers，the results in the summer months at Cherrapoongee seem to be too large， and those at Uttra Mullay are wholly discordant，being much too small in the winter，and much too large in the summer months．
By taking the means of these results be ow 2,000 feet， in one group，those between 2,000 and 3,000 feet in another， and so on，another table of mean values was formed．These were laid down on a diagram，with feet as abscissæ，and degrees of temperature as ordinates，and a curved line was made to pass through or near every point，and the value for every 1,000 feet of elevation was read from the curved line；and thus the next table was formed，giving the most probable amount of depression of temperature with eleta－ tion，as can be found from the observations．

Table XVII．showing the calculated Decrease of Mean Monthly Temperature of the Air with an Increase of Elevation up to 9，000 feet．

Montre．	Height in Feet．								
	1，000．	2，000．	3，000．	4，000．	6，000．	6，000．	7，000．	8，000．	9，000．
	\bigcirc	－	－	－	－	－	－	－	－
January	11	4	$6{ }^{6}$	10	12	167	204	25	283
February	17	83	6	$10\}$	14	192	24	274	301
March－	14	34	ct	10 H	15	19	－3 3	2 it	29
April	2	4	8	134	184	$2 \pm$	24	274	80
May－	$\stackrel{9}{2}$	．	103	154	194	23	25.3	274	30
Jute－	3	${ }^{6}$	11	154	19519	23	204	30	8，
July－	3	${ }^{69}$	10	${ }_{13}^{134}$	17	201	234	274	304
Ankust－	4	7	108	1.6	171	201	2．4	274	$31 \frac{1}{1}$
Septumber－	$8 \frac{81}{2}$	${ }_{6}^{64}$		${ }_{1}^{13}$	16	19	23	24	30
Oetomer ${ }_{\text {a }}$ November		8	$\stackrel{9}{8}$	124	${ }_{18}^{154}$	19	207	254	89
November	${ }_{2}^{24}$	6	${ }_{7}^{7}$	114	18，	18.	${ }_{22}^{21}$	244	28 291

These numbers I cannot but think are satisfactory，and better than at one time I thought possible to be found． By their application to the numbers in the general table the mean temperature of every month，in every place in India can be approximately determined，and I think with sufficient accuracy for the purposes of this Commission． If the height of the place whose temperature is desired be not exactly an even 1,000 feet，the amount can be taken out at sight．

The next table is formed by dividing the numbers on the top of each column by every number under it，and thus determining the number of feet of elevation required in every month，for the different heights，for a decrease of 1° of mean temperature．From this table the corrections to any particular altitude can be found by dividing the altitude in feet by the numbers in this table．

Table XVIII．ahowing the Average Increase of Elevation for a Decrease of 1° of Mean Temperature．

Moxtrs．	1，000	2，0	3.000	4，000	5，000	000	7，000	000	9，000
January	607	500	444	400	408	364	337	320	319
Pebruary	570 570	${ }_{578}^{578}$	4	${ }_{8 \times 1}^{391}$		${ }_{316}^{303}$	${ }_{248}^{298}$	294	${ }^{298}$
	610	600	375	296	274	273	2×3	291	310
May	610	400	286	258	254	261	272	289	300
June	3，33	333	273	25.	256	261	24.	${ }^{267}$	${ }^{273}$
Ju	286	${ }_{298}^{298}$	${ }_{3}^{309}$	${ }_{298}^{298}$	294	${ }_{29}^{296}$	295	${ }_{29}^{294}$	${ }_{2}^{243}$
$\xrightarrow{\text { Aupust }}$	288	${ }_{818}^{267}$	348	$\xrightarrow{298}$	${ }_{296}^{24}$	$\xrightarrow{2 \times 9}$	${ }_{304}^{288}$	${ }_{304}^{249}$	${ }^{286}$
Octoler	${ }_{83}$	${ }_{839}$	3：3	920	318	316	315	${ }_{814}$	sil
Noveniber	stis	833	343	833	833	32，4	826	823	321
December	500	500	387	356	339	324	318	311	305

Section VI．

On the calculated mean temperature of the Air． Comparison of the observed and calculated mean temperature．Meteorological elements of the climate of England．Excess of the mean monthly tempera－ tures of India over that of England．Elevation necessary to have the same temperature month by month in India as in．England，in different parts of India．Calculated high day temperature in India， its excess over that in England，and elcvation neces－ sary in India，to have the same as that in England． Calculated low night temperature in India，its excess over that in England，and．clevation necessary in India，to have the same as in England．

In Section V．，page 791，the formule for calculating the mean temperature of the air at any place in India are deduced，so far as it is dependent upon geographical position alone，and at low elevations；and the following three tables have been calculated from them．

Cable XIX. showing the Calculated Mean Monthly and Annual Temperature of the Air in India, for every Two Degrees of Latitude from 8° North to 34° North, and for every Degree of East Longitude, in the Presidency of Madras, South
of Latitude of 15° at low elevations.

Mostrs.	Latitudes North.																															
	$\frac{8^{\circ}}{\substack{\text { Longit } \\ \text { tude } \\ \text { E. }}}$						12°						14°							15°												
			Longitudes	Longeitudes							$\underset{\substack{\text { Longitudes } \\ \text { E. }}}{ }$																					
	7°	${ }^{78}$					78°	77°	7^{80}	${ }^{\circ} 79^{\circ}$	75°	78°	77°	78°	79°	80°	74°	75°	76°	77°	780	79°	80°	73°	74°	75°	76°	77°	78°	79°	80°	i°
	$\left\lvert\, \begin{aligned} & 84 \\ & 85 \\ & 87 \\ & 88 \\ & 85 \\ & 85 \\ & \hline 79 \\ & 79 \\ & 80 \\ & 80 \\ & 82 \\ & 88 \\ & 85 \end{aligned}\right.$	8 83 84 88 88 85 85 88 88 80 81 81 81 82 82 84 84		8 82 84 85 85 88 87 87 82 79 79 79 79 78 81 83 8 8	$\begin{array}{\|l\|} \hline 0 \\ 81 \\ 83 \\ 85 \\ 85 \\ 88 \\ 88 \\ 83 \\ 81 \\ 89 \\ 79 \\ 80 \\ 80 \\ \hline \end{array}$		\circ 81 83 88 88 88 88 88 78 78 79 80 80 80 82	80 80 82 84 86 86 86 83 89 79 79 80 80 80 80 81	\circ 79 79 84 84 86 86 84 81 81 81 81 80 79 80 80	\circ 9 89 84 84 85 85 87 84 82 82 82 81 81 81 79 80 80	78 80 83 85 87 87 85 83 83 82 82 79 79 79	\circ 7 79 79 82 84 84 87 85 83 83 83 82 82 79 79 79	80 80 88 85 86 86 88 87 77 77 78 78 79 79 81	79 82 84 84 88 88 83 79 79 79 80 79 79 78	78 81 84 84 88 86 84 79 79 79 80 80 89 79 79	7 77 89 83 85 80 85 81 81 81 80 80 78 78 78	$\begin{array}{\|l} \\ 77 \\ 80 \\ 80 \\ 83 \\ 85 \\ 87 \\ 87 \\ 85 \\ 82 \\ 82 \\ 81 \\ 81 \\ 78 \\ 77 \end{array}$			$\begin{aligned} & 78 \\ & 88 \\ & 80 \\ & 80 \\ & 80 \\ & 85 \\ & 79 \\ & 78 \\ & 77 \\ & 79 \\ & 79 \\ & 78 \\ & 79 \end{aligned}$		77 81 83 80 80 80 84 70 78 79 79 79 80 78 78	76 76 80 82 88 86 85 80 80 79 80 80 80 78 76	75 79 82 85 85 88 86 82 82 81 81 80 88 78 78	75 79 82 85 87 87 86 83 83 81 80 80 77 75		73 77 80 84 87 87 88 85 8. 8. 83 81 81 74 74	\circ 78 78 79 79 84 88 88 89 88 88 85 88 84 88 77 73				
$\begin{aligned} & \text { Mesg annual tem- } \\ & \text { perature of the } \\ & \text { gir. } \end{aligned}$	83	83	82	82	82	82	82	82	82	82	82	88	81	81	81	81	81	83	82	80	81	81	81	81	81	81	81	31				
$\left.\begin{array}{l} \text { Difference bet } \\ \text { tween the hot- } \\ \text { test and coldest } \\ \text { Monthe. } \end{array}\right\}$	8	3	11	9	7			7	7.	8	9	10	-	7	8	. 10	10	11	12	10	9	9	10	11	12	13	15	17				

Table XX. showing the Calculated Mean Monthly and Annual Temperature of the Air for every Two Degrees of North Latitude from 16° to 26°, and every Four Degrees of Longitude between 72° and 92° East.

Table XXI. showing the Calculated Mean Monthly and Annual Temperature of the Air for every 2° of North Latitude from 28° to 34°, and every four degrees of Longitude from 72° to 92°

Months.	Latitudes North.															
	28°						30°				32°			34°		
	Longitudes E.						Longitudes E.				Longitudes E.			Longitudes E.		
	72°	70°	80°	84°	88°	92°	72°	76°	80°	84°	72°	76°	80°	70°	74°	78°
	63	62	61	61	60	60	60	59	59	58	58	57	57	56	55	55
February -	68	68	67	67	66	66	67	66	66	66	65	64	64	64	63	63
March	75	75	75	74	74	74	75	75	74	74	74	73	73	73	72	72
April - -	85	85	85	84	84	84	86	85	85	85	86	85	85	86	85	85
May - -	89	90	91	91	90	90	93	92	92	98	94	93	93	94	93	93
June - - -	92	92	91	91	90	89	95	94	93	93	95	94	93	96	95	94
July - - -	87	87	87	86	86	85	90	89	88	83	91	90	89	91	90	89
August - - -	85	85	85	84	84	83	88	87	86	86	88	87	86	89	88	87
September . -	84	84	84	83	88	83	85	85	84	84	${ }^{86}$	85	85	86	85	85
Oetober - - -	79	79	79	78	78	78	79	79	78	78	79	78	78	78	77	77
November - -	73	72	70	69	69	68	71	70	69	69	70	69	68	69	68	67
December - -	60	60	61	61	60	59	61	60	59	59	58	57	56	56	55	54
$\left.\begin{array}{c}\text { Mean Annual Temperan } \\ \text { ture of the Air - }\end{array}\right\}$	78	78	78	77	77	77	78	78	. 78	78	79	78	77	78	77	77
$\left.\begin{array}{ccc} \hline \text { Difference between the } \\ \text { hottest } & \text { and } & \text { coldest } \\ \text { Months } & - & - \end{array}\right\}$	32	32	30	30	30	31	35	35	34		37	37	37	40	40	40

\therefore The numbers in these talles are under the influence of aspect，the effect of soil，and difference of gcological con－ dition；and it is very likely，indeed almost certain，that the above numbers at the low latitudes，owing to the aspect of the stations situated at the southern extremity of Madras， are too small；and it is very likely also that at stations situated within the influence of the sea，they may be some－ what too great in the summer，and too small in the winter what too great in the summer，and too small in the winter latitude．The comparisons are shown in the following table
TABLe XXII．showing the Observed and Calculated Mean Monthly Temperatures of the Air，and the Difference between them，at different Stations in India，between Latitudes 12° and 31° ．

Montes．	Camusnore．			Madras．			Vingorla．			Bombay．			Calcuitta			Lucknow．			Ferozepore．		
		$\begin{aligned} & \text { 要 } \\ & \vdots \\ & \text { 首 } \end{aligned}$			$\begin{aligned} & \text { 要 } \\ & \text { 若 } \end{aligned}$		$\begin{aligned} & \text { すi } \\ & \text { B } \\ & \text { 中 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 岕 } \\ & \text { स } \\ & \text { 曾 } \end{aligned}$		$\begin{aligned} & \text { 范 } \\ & \text { E. } \\ & \text { O. } \end{aligned}$			＇ 芯 0 0								宫
	요	81	－ 1	76	$7{ }^{7}$	0	78	75	－§	74	72	－	70	$\stackrel{\circ}{8}$	－${ }^{\circ}$	$\stackrel{\circ}{8}$	${ }_{83}$	－8．8	$\stackrel{\circ}{59}$	${ }^{\circ} 9$	0
Febriary－	88	83	＋1	78	78	0	79	77	－2	76	75	－1	75	71	－4	88	68	－ 0	${ }_{6} 8$	66	－8
Marela	84	85	＋1	80	81	＋ 1	82	88		80	82	＋2	83	77	－6	79	76	－3	76	74	－2
Auril		86	0 +1	83	88	＋ 1	${ }_{85}^{88}$	85	＋2	${ }_{88}^{83}$	85	+8 +8 +8	88	84	－4	88	－81	-3	81	85	＋ 4
May－－	－ $\begin{aligned} & 85 \\ & 80\end{aligned}$	86 82	+1 +2 +1	87 87	${ }_{8}^{87}$	－ 0	${ }_{81}^{85}$	88	+2 +4 +8	${ }_{83}^{86}$	88	+8 +8 +8	${ }_{87}^{89}$	888	－	${ }_{90}^{91}$	${ }_{90}^{91}$	0	94 95	$\stackrel{93}{95}$	－ 0
June－	－ 79	78	＋1	85	84	-1	79	85	+6 +6	81	86	＋5	85	85	0	88	87	－ 1	90	90	0
Aukust	－ 79	78	－1	84	84		79	82	＋8	81	82	＋1	85	83		84	85	＋ 1	86	87	$+1$
Septembor	－ 79	79	0	84	83	－ 1	${ }^{79} 1$.	81	＋ 2	80	82	＋ 2	85	82		85	84		86	85	－1
Octoher－	－ 81	80	－ 1	82	88	0	$8{ }^{8 .}$	82	＋	82	82		84	79	－5	79	79	－ 0	79	79	θ
November	－ 82	80	－ 2	79	79		79	80	＋1	79	79	－00	78	73	－ 6	70	70	－${ }^{0}$	68	69	$+1$
December	81	82	$+1$	77	78	＋ 1	78	78	0	76	74	－2	72	65		60	62	$+2$	58	69	＋1

By looking over the several columns of differences，it will be seen that those at Cannanore and Madras are small，and therefore that the calculated and observed values are very nearly accordant；at Vingorla and Bombay，the calcu－ nearly accordant；at Vingorla and Bombay，the calcu－ a difference owing to some extent to the direct influence of the sea；at Calcutta the calculated numbers in the winter are too small；at the remaining two stations，viz．，Lucknow and Ferozepore，the differences are generally small．

Upon the whole，however，the accordances are as good as could be expected，considering that the observations upon which the calculations are based are not equally good，in fact in some cases suspicion reigned over the observations but there was not sufficient evidence to reject them，and where erroneous they have exercised an injurious influence
over the results．It seems to me upon the whole that they are sufficiently near for the purposes of the Commission，and more to be depended upon than any observations taken at any place for a short period，or where no information is given as to the character of the instruments，their position， given as to the character of the instruments，their
or care and regularity in making the observations．
or care and regularity in making the observations．
It now becomes necessary to determine those elevations in the different parallels of latitude，where European troops could be placed with the greatest probability of continued health．These localities would be those whose meteoro－ logical conditions，particularly in temperature，approached most nearly those of England．

The following are the average value of meteorological ele－ ments as deduced from＇ 20 years＇observations at the Royal Observatory at Greenwich．
Table XXIII．showing the Monthly Means of Results for Meteorological Elements at the Royal Observatory，Greenwich， in the Years 1841－1860．

1841 to 1860. Montis．	Mean reading of the Baro－ metor．	－Temperature of the Air．							Mean Tempe－ rature of Dew－ point．	Hygrometrical Deductions．					Rain．	
		$\left.\begin{array}{c} \text { Highest } \\ \text { in } \\ \text { Years. } \end{array}\right]$	Lowest in Years．	$\begin{gathered} \text { Range } \\ \text { in } \\ \text { Month. } \end{gathered}$	Mean of all the Highest．	Mean of all the Lowest	Mean daily Range．	Mean Temp．		Mean Elastic Force of Vapour．			Mean degree Humi－ dity．	Mean weight of 9 foot of Air．	Num－ ber of Rainy Days．	Amount collect－ ed on Gromad
	29．7．7	57.0	4.0	53.0	49.2	33.7	9.5	38.3	35.4	in．	${ }_{2}{ }_{2}$	${ }_{0}^{81}$	69	${ }_{5} \mathrm{grs}$	11	in 1 8
February	$29 \cdot 787$	$62 \cdot 3$	7.7	54.6	$44 \cdot 7$	$33 \cdot 8$	$11 \cdot 5$	38.4	34.4	－201	2.8	$0 \cdot 4$	85	554	10	1.6
Mareh	${ }^{29} \cdot 793$	$71 \cdot 5$	$13 \cdot 1$	58.4	$50^{\circ} \cdot 8$	$35 \cdot 8$	14.7	41.7	$3{ }^{3} \cdot 4$	＇216	$8 \cdot 5$	0.6	82	550	102	1.5
April－	$29 \cdot 735$	79.0	25.3	${ }^{63} 7$	${ }^{56 \cdot 8}$	38.6	18.2	46^{-3}	89．9	－247	$2 \cdot 9$	0.8	79	542	10%	1.8
May－	29．783	$88^{8 .}$	28.3	57.9	${ }^{64.4}$	$44^{4} \cdot 8$	20.2	52.8	45.6	－300	3.4	$1 \cdot 1$	76	533	112	$2 \cdot 1$
Junt－	49.748	9.95	36.2	58.3	78	59.2	21.0	59.8 61.9	50.8	－373	\％${ }^{2}$	1.5	74	631	$10 \frac{1}{1}$	1.9
July－	29.804	93.3	38.9 40.0	5	78.8	63＇2	20．6	61.9 61.8	53.9	－417	$4 \cdot 6$	1.6	76	528	114	2.7
August	29.788	92°	40.0	52.0	78.8	53.4	19.4	61.3	${ }^{64 \cdot 1}$	－423	4.7	1.5	${ }^{77}$	528	11	2.4
Spptermber	29．829	$8{ }^{86.4}$	32.0 20.5	54.4	${ }_{67.4}^{67.4}$	$48 \cdot 9$	18.5	56.9 50.8	51.1	－ 314	4.8	1.0	81	584	$11 \frac{1}{4}$	$2 \cdot 4$
Ortuber ${ }^{\text {November }}$	299690	${ }_{6}^{81} \cdot 0$	28.5 19.4	54.5 46.9	58.3 49.3	$43 \cdot 7$ 37	14.6 11.6	50.8 43.4	46.0 40.1	$\cdot 318$ $\cdot 255$ -29	8.6 8.9	0.6 0.4 0	87 89	5.39 547	13.	2.8 8.4
November Deceaber	近 29.738	68.3 62.8	19.4 8.0	46.9 64.8	49.3 45.0	37.7 35.5	11.6 8.5	${ }_{40}^{4.1}$	40.1 38.9	－255	8.9 2.6	0．4	89 89	647 653	122	8.4 1.9
Heans	29.775	$77 \cdot 6$	23.8	54.4	68.0	42.8	$15 \cdot 7$	$40 \cdot 2$	48.7	296	$3 \cdot 3$	0.8	82	641	122	22.3

Table XXIV．showing the Excess of Mean Temperature in India over that at Greenwich．

From this table we learn that at all places south of latitude 22° the excess of temperature from October to May is between 30° and 40°, and from June to September between 20° and 30°.

That between the latitudes 22° and 26° the greatest excesses are from February to May, being between 30° and 40°, and from June to January being generally between 40°, and 30°
From the latitude 28° to that of 34° the greatest excesses are from March to June, being between 30° and 40°, and from July to February the least, being for the most part between 20° and 30°, but st the extreme stations it is less than 20°

In January the excess is as large as 38° south of 15°, decreasing gradually to 17° in latitude 34°, showing lower mean temperature at northern stations by 21°.
In February the excess is as large as 41° south of 15°, decreasing gradually to 25° in latitude 34°, showing lower mean temperature at northern stations by 16°.
In March the excess is as large as 40° south of 15°, decreasing gradually to 30° in latitude 34°. showing lower mean tempersture at northern stations by 10°.

In April the excesses are very nearly the same in all places, showing mean temperature alike everywhere.
In May the excess is about 34° south of 18°, and increases going northwards to 40° in latitude 34 , showing higher mean temperature at northern stations by 6°.

In June the excess is about 27° south of 18°, and increases going northwards to 36° in latitude 34°, showing higher mean temperature at northern stations by 9°.

In July the excess is about 21° south of 18°, and increases going northwards to 28° in latitude 34°, showing higher mean temperature at northern stations by 7°
In August the excess is about 22° south of 20°, and increases going northwards to 27° in latitude 34°, showing higher mean temperature at northern stations hy 5 .
In September and October the excesses are nearly alike at all places, showing mean temperatures nearly alike everywhere.
In November the excess is about 36° south of 15°, and decreases going northwards to 25° in latitude 34°, showing lower mean temperature at northern stations by $1^{\circ} 1^{\circ}$.
In December the excess is about 37° south of 15°, and decreases going northwards to 15° in latitude 34°, showing lower mean temperature at northern stations by 22°.

The differences between the temperatures of stations in Madras and those situated north of Bengal are thus shown to be very great in the months of January ard December, the former exceeding the latter by as much as 21° and 22°, whilst in summer the differences are the other way, those stations in Madras being of lower temperature than those in Bengal by $\dot{5}^{\circ}$ to 9°.

In Section V., Table XVIII., the difference of vertical height for a decrease of one degree is given, and if the numbers in Table XXIV. be multiplied into these differences, the heights would be found; which would give the same as the average temperature for the same month in England. These heights are shown in the next table.

Table XXV. showing the Height in Feet, at different parallels of Latitude in India, in every Month, where the Mean Temperature is the same as that of England.

Montes,	Elevation in Feet in India necessary to have the same Mean Temperature as in England.										
	Latitudes.										
	South of $.15^{\circ}$	16°	18°	20°	22°	24°	26°	28°	30^{5}	32°	34^{3}
January -	$\stackrel{\mathrm{ft} .}{12,100}$	$\begin{gathered} \mathrm{ft} . \\ 11,200 \end{gathered}$	$\underset{10,500}{\text { ft. }}$	$\begin{aligned} & \text { ft. } \\ & \mathbf{9 , 9 0 0} \end{aligned}$	ft . 9,300	ft . $8,600$	$\begin{gathered} \mathrm{ft} . \\ \mathbf{8 , 0 0 0} \end{gathered}$	$\underset{7,300}{\mathrm{ft.}}$	ft . 6.700	$\underset{6,100}{\text { ft. }}$	ft. 5,400
February	12,200	11,000	10,400	10,100	10,100	9,800	9,200	8,600	8,300	7,700	7,500
March -	12,400	11,800	11,800	11,500	11,200	10,900	10,600	10,300	10,300	9,600	9,300
April -	11,700	11,100	11,100	11,100	11,700	11,700	11,700	11,700	11,700	11,700	11,700
May -	10,200	9,900	10,200	11,100	10,800	10,800	11,100	11,400	11,700	12,000	12,000
June	7,400	7,100	7,400	7,600	8,200	8,500	8,500	8,700	9,500	9,600	9,300
July	6,100	6,700	- 7,000	7,300	7,000	7,000	7,000	7,300	7,900	8,200	8,200
Angust -	6,300	- 5.700	5,700	6,300	6,600	6,900	6,900	6,900	7,400	7,400	7,700
September	7,500	6,600	7,200	7,200	7,800	7,800	8,100	8,100	8,400	8,100	8,400
October -	9,600	9,300	9,300.	9,000	9,300	9,000	9,000	9,000	9,000	8,700	8,400
November	11,600	11,200	11,200	10,900	9,600	9,300	9,000	8,700	8,700	8,300	8,000
December	11,300	10,700	10,100	9,400	8,200	7,600	7,000	6,400	6,100	5,200	4,600
Means -	- 9,900	9,400	9,300	9,300	9,200	9,000	8,800	8,700	8,800	8,600	8,400

From these numbers it seems necessary that the heights above the sea be different is the different seasons, as well as in the different latitudes, to obtain the same approximate mean temperature month by month, as would be obtained in England.

By grouping the numbers together, we learn that the same approximate mean monthly temperature as in England would be obtained,--

South of Latitude 20°,
From October to May, at a beight of about $11,000 \mathrm{ft}$.
From June to September, at a height of about $6,500 \mathrm{ft}$.
Between Latitudes 20° and 26°,
From February to May, at a height of about $11,000 \mathrm{ft}$.
From June to January, , $, 8,000 \mathrm{ft}$.
North of Latitude 28°,
In January and December, at a height of about $5,000 \mathrm{ft}$. In February and from July to November, at a height of about $7,500 \mathrm{ft}$.
From March to June, at a height of about $11,500 \mathrm{ft}$.
In the lowest line of the Table the mean height is given at which the same mean annual temperature would be obtained as in England, though at this, fixed height the monthly temperature would be somewhat differently distributed
From them we find that the same mean annual temperature as in England would be obtained,-

South of Latitude 20°,
At an elevation of about $9,500 \mathrm{ft}$
At this height the months from October to May would be somewhat warmer, and those from June to September somewhat colder than in England.

Between Latitudes 20° and 26°,
The same annual temperature would be obtained as in England, at a height of about $9,000 \mathrm{ft}$.
The months from October to January would be very nearly the same as in England, those from February to May somewhat colder, and those from June to September somewhat warmer.

Between the Latitudes 26° and 30°,
The same annual temperature as in England would be obtained, at the height of about $8,700 \mathrm{ft}$.
At this elevation the months of January, February, June, July, August, September, October, November, and December, would differ but little from those in England, whilst the remaining three months, viz., March, April, May, and June would be somewhat warmer.

North of Latitude 30°,
The same annual temperature as in England would be btained at an elevation of $8,500 \mathrm{ft}$.
At this elevation January and December would be some degrees colder than in England; the months of February and those from July to November, would be nearly the same as in England, whilst those of March, April and May would be somewhat warmer.
As these heights cannot be everywhere attained, and other circumstances may prevent their use, the heights most desirable are those which approach the most nearly to those mentioned.
By reference to the following investigations it will be seen that the elevations necessary to obtain the same high day temperatures as in England are always less than those to obtain the same mean temperature, and the elevations necessary to obtain the same low night temperature as in necessary to obtain the same low night tempera

England are much greater in the southern latitudes than those for mean temperature in the same parallels; that at latitude 25° they are very nearly the same; and that in extreme north latitudes they are of less altitude.

If, therefore, the altitudes found be adopted as necessary for the mean temperature, they would answer quite well for the maximum temperature, which would be somewhat of lower high day temperature than in England; and the low night temperature would be somewhat of higher low night temperature than in England.

In Section II., page 786, are given formulæ for calculating high day temperature at different parts of India in ever month, and the following table has been calculated from them.

Table XXVI. showing the Calculated Mean Monthly High Day Temperatures of the Air in India, for every two degrees of- Latitude from 16° to 34°, and 80° of Longi-- tude.

Montits.	Latitudes.									
	10°	18°	20°	22°	29°	26°	28°	30°	32^{3}	34°
	Longitudes.									
	80°	80°	80°	80°	80°	80°	80°	80°	80°	80°
January	82	80	79	77	75	74	72	71	69	${ }^{6} 8$
February -	87	85	${ }_{84}$	$\times 0$	78	77	75	\square_{74}	73	72
March	90	89	8	87	86	85	85	85	83	83
April -	93	93	98	93	93	93	93	94	$9 \cdot$	94
May -	45	96	96	97	97	98	98	99	99	100
June - -	93	94	94	95	98	97	97	48	99	100
July -	90	91	91	91	93	98	93	94	95	96
August -	87	88	88	89	89	89	84	90	91	93
Soptomber	86	$8{ }^{\text {b }}$	87	88	88	89	89	89	90	10
Octainer -	86	87	87	87	87	87	87	88	88	83
November -	85	8	\$3	81	80	79	79	78	78	77
December -	84	82	80	77	75	72	70	68	6	13
$\left.\begin{array}{c} \text { Mean annual } \\ \text { himh day } \\ \text { tumpenture } \\ \text { of the air. } \end{array}\right\}$	88	88	87	87	86	86	86	86	85	85
$\left.\begin{array}{c} \text { Difference bee } \\ \text { tweenhotest } \\ \text { and condest } \\ \text { wonths. } \end{array}\right\}$	13	16	17	20	22	26	28	31	33	37

The high day temperature for other longitudes may be found from these-

By adding if longitude be less than 80°, and by subtracting if more than 80°,-
In January, February, March, and October 0.4° for every degree of longitude from 80°
In November $0 \cdot 5^{\circ}$ for evcry degree of longitude from 80°.

In April 0.3° for every degree of longitude from 80°.
In September $0 \cdot 1^{\circ}$ for cvery degree of longitude from 80°.
In December 0.6° for every degree of longitude from 80°.

In the months of May to August there is very little difference in high day temperature in different longitudes.

By taking the difference between the high day temperature in England, and the numbers in the preceding Table, the next table is formed.

Table XXVII. showing the Excess of High Day Temperature in India, in every Month, over English High Day Temperature.

Montirs.		Excess of Maximum Teinperature of the Air over that at Greenwich.									
		Latitudes.									
		16°	18°	20°	20°	29°	28°	28°	30°	32°	84°
	-	-	-	-	-	-	-	-	-	-	
January	43	39	37	38	34	32	31	29	28	26	9
February	45	43	40	39	35	33	32	30	29	28	27
March -	50	40	39	38	37	36	35	35	34	33	83
April -	57	35	36	36	38	38	36	36	37	37	37
May -	64	31	32	32	33	33	34	34	35	3.	36
June -	71	22	${ }^{23}$	23	24	25	26	28	27	2.8	29
August	73	14	15	176	${ }_{18} 17$	18	19	19	20	18	${ }^{23}$
September -	67	19	19	20	21	21	2 S	22	22	23	23
Oetober -	58	28	29	29	29	29	29	29	30	30	30
November	49	36	35	34	32	31	30	30	29	29	29
Deccmber -	45	39	37	35	32	30	27	25	23	21	19

The greater heat by day in India over England-
In January is 39° in latitude 16°, decreasing to 25° at latitude 34°.

In February is 42° in latitude 16°, decreasing to 27° at latitude 34°.

In March is 40° in latitude 16°, decreasing to 33° at latitude 34°.

In April is nearly alike at all places, amounting to 36°.
In May is 31° in latitude 16°, increasing to 36° at latitude 34°.

In June is 22° in latitude 16°, increasing to 29° at latitude 34°.

In July is 16° in latitude 16°, increasing to 22° at latitude 34°.
In August is 14° in latitude 16°, increasing to 19° at latitude 34°.
In September is 19° in latitude 16°, increasing to 23° at latitude 34°.

In October is nearly alike at all places.
In November is 36° in latitude 16°, decreasing to 28° at latitude 34^{1}.
In December is 39° in latitude 16°, decreasing to 18° at Iatitude 34°.
In Section II., Table VI., the effect of elevation on high day temperature is given for every 1,000 feet, by means of which, combined with Table XXVII., the heights in the different monthe have been found, at which a close approximation to Euglish bigh day temperature would be obtained. The results are shown in the next table.

Table XIVIII. showing the Height in Feet, at different parallels of Latitude in India, in every Month, where the Mean Maximum 'Temperature is the same as that of England.

These heights follow closely, but are less than those required for Mean Temperature.

The low night temperatures may be inferred from these for other places, by adding if the longitude be less than 80°, or subtracting if greater than 80° -
In January, July. and November $0^{\circ} \cdot 2$
In February $0^{\circ} \cdot 2$ south of 20°, and $0^{\circ} \cdot 4$ north of 20°,
In March $0^{\circ} \cdot 1$ south of 20°, and $0^{\circ} \cdot 2$ north of 20°,
In April $0^{\circ} \cdot 3$ south of 20°, and $0^{\circ} \cdot 2$ north of 21°,
In May, June, August, September, and Octoher, $0^{\circ} \cdot 1$,
n December $0^{\circ} \cdot 3$,
By taking the difference between the low night temperature in England, and the numbers in the preceding table, the next table is formed.

Table XXX. showing the Excess of Low Night Temperature in India, in every Month, over English Low Night Temperature.

Morres.		Excess of Minimum Temperature over that at Greenwich.									
		Latitudes.									
		16°	18°	20°	22°	24°	26°	28°	30°	32	34
	\bigcirc	\bigcirc									
January	34	35	${ }^{32}$	29	26	23	20	18	15	12	
March -	33 35	${ }^{37}$	35 39	${ }_{37}^{33}$	32	30	${ }_{31}^{27}$	25	22	20	1
April:	${ }_{39}$	41	39 40	37	${ }_{38}^{35}$	33 37	31 88 81	$\stackrel{29}{35}$	${ }_{33}^{27}$	25	${ }_{3}^{23}$
May -	44	38	38	37	37	${ }_{37}$	${ }_{37}$	${ }_{37}$	${ }_{37}$	${ }^{32}$	${ }_{3}$
Juna -	50	32	32	32	83	33	33	3 3	33	33	33
${ }_{\text {July }}{ }_{\text {Augist }}$	53 53	$\stackrel{28}{28}$	23	48	29	29	29	29	39	29	29
Septenber	63 49	26 29	30	26	26	26 30		$\stackrel{36}{30}$	38	218 80	${ }_{30}^{20}$
October	44	33	32	31	30	${ }_{29}$	23	27	${ }_{28}$	8	30
November -	38	34	32	30	27	${ }_{25}$	23	21	19	17	15
December -	36	32	29	27	25	23	20	18	15	13	1

The greater heat by night in India, over that in England, herefore,-
In January is 35° in latitude 16°, decreasing regularly to 9° in latitude 34°.
In February is 37° in latitude 16°, decreasing regularly to 18° in latitude 34°.
In March is 40° in latitude 16°, decreasing regularly to 23° in latitude 34°.
In April is 41° in latitude 16°, decreasing regularly to 31°
in latitude 34°.
$\begin{array}{ll}\text { In May } & \text { is } 38^{\circ} \text { and nearly alike everywhere. } \\ \text { In June } & \text { is } 32^{\circ}\end{array}$
$\begin{array}{ll}\text { In June } & \text { is } 32^{\circ} \\ \text { is } 28^{\circ}\end{array}$
In August is 26°
In October is 33° in latitude 16°, decreasing to 23° in latitude 34°.
In November is 34° in latitude 16°, decreasing to 15° is titude 34°.
In December is 32° in latitude 16°, decreasing to 11° in In Section
In Section III., page 788, Table X., the effect of elevation on low night temperature is given for every 1,000 feet; by means of which, combined with Table XXX., the heights in the different parallels of latitude have been found at which low night temperature approximate to that of England may be obtained. The results are contained in the next table.

TAble XXXI. showing the Height in Feet at different Parallels of Latitude in India, in every Month, where the Mean Minimum Temperature is the same as that of England.

Monthe.				Latitudes.									
				16°	18°	20°	22°	24°	, 26°	28°	30°	32°	34°
January		-	-	$\begin{gathered} \mathrm{ft} . \\ 17,000 \end{gathered}$	$\underset{15,500}{\mathrm{ft}}$	$\begin{gathered} \text { ft. } \\ 14,000 \end{gathered}$	$\stackrel{f t .}{12.500}$	$\begin{gathered} \text { ft. } \\ 11,000 \end{gathered}$	ft. 9,500	$\begin{aligned} & \text { ft. } \\ & 8,500 \end{aligned}$	$\begin{gathered} \mathrm{ft} . \\ 7,000 \end{gathered}$	$\underset{5,600}{\mathrm{ft.}}$	$\begin{gathered} \mathrm{ft} . \\ \mathbf{4 , 2 0 0} \end{gathered}$
February	-	-	-	12,200	11,500	11,000	10,700	-10,000	9,200	8,600	7,600	7,000	6,400 ${ }^{\text {6, }}$
March	-	-	-	13,100	12,900	12,200	11,600	11,000	10,400	9,800	9,200	8,500	7,900
April -	-	-	.	10,800	10,600	10,300	10,000	9,800	9,600	9,300	8,800	8,600	8,400
May -	-	-	-	8,500	8,500	8,300	8,300	8,300	8,300	8,300	8,300	8,300	8,300
June -	-	-	-	8,400	8,400	8,400	8,700	8,700	8,700	8,700	8,700	8,700	8,700
July -	-	-	-	8,000	8,000	8,000	8,300	8,300	8,300	8,300	8,300	8,300	8,300
August	-	-	-	8,300	8,300	8,300	8,300	8,300	8,300	8,300	-8,300	8,300	8,300
September	-	-	-	8,600	8,800	8,800	8,800	8,800	8,800	8,800	8,800	8,800	8,800
October	-	-	-	10,700	10,300	10,000	9,700	8,900	9,000	8,700	8,300	8,000	7,300
November	-	-	-	13,600	12,800	12,000	10,800	10,000	9,600	8,400	7,600	6,800	6,000
December	-	-	-	13,400	12,800	11,400	10,600	9,800	8,200	7,800	6,600	5,800	5,000
Means	-	-	-	11,000	10,700	10,200	9,900	9,500	9,000	8,600	8,100	7,700	7,300

[^35]The amount of water mixed with a certain mass of air in the invisible shape of vapour.
The amount of water required to eaturate a certain mass of air, and

The degree of humidity of the air.
Before treating of the observations to determine these elements, I will speak of each separately.
The temperature of the dew point, or that degree of temperature to which the temperature of the air must be reduced so that the air becomes saturated by the quantity of water mixed with it in the invisible shape of vapour.
If, therefore, the temperature of the air be higher than that of the dew point, the air is not saturated; if these temperatires be alike the air is saturated; and if the temperature should decline, some rain must fall.
The amount of water necessary to saturate a mass of air, say, one cubic foot, varies with its temperature. At 32° air is saturated by a little more than 2 grs.; at 42°, by 3 grs.; nt 49°, by 4 grs.; at 56°, by 5 grs. ; at 61°, by 6 grs.; a 66°, by 7 grs ; at 70°, by 8 grs .; and so on, till at about 100° the capacity of air for moisture is such that 20 grs . nearly can be held in solution before the air is saturated.

The difference between the amount of water in the air and that amount which could be in the air at that temperature shows the amount short of saturation.

The degree of humidity of the air expresses the ratio between the amount of water then mixed with it and the greatest amount possible to be held in solution at its then temperature, upon the supposition that the latter or saturated air is represented by 100 , and when deprived of all
moisture by 0 . Thus, suppose the water mixed with a certain mass of air to be one-half of the quantity which could be present in the same mass of air at its then temperature, the degree of humidity would in such a case be reprerature, the degree of humidity would in such a case be repre-
sented by 50 , and would imply that there were present 50 hundredth-parts of the quantity of water which would then saturate the air. At the temperature of 32° the degree of humidity would be 50 when one grain of water was mixed with a cubic foot of air; whilst at 100° it would require 10 grs . to be present in the same mass of air to have the same degree of humidity.

The best series of hygrometrical observations in my possession made in India, are those at the observatories of Madras and Bombay.
From these it seems that the atmosphere is least moist upon the average of the whole year about two hours after noon, but this varies at different times of the year. The most moisture in the 24 hours is at a little before six. in the most moisture in the 24 hours is at a little before six in the mornin, and the air is in a mean state about 9 or 10 o'clock both in the morning and evening. The daily curve of humidity is very nearly the opposite to that of temperature, the dryest time being about 1 or 2 p.m., at about the time of maximum temperature, and the wettest about sunrise, or minimum temperature; except in the month of June and July, when the moisture is greatest about midnight; ind in August and September the increase of moisture after midnight is very small.
The monthly values of the hygrometrical elements at Madras for 18 years, and at Bombay for 12 years, are shown in the following tables:-

Table XXXII. showing the Mean Monthly Temperature of the Dew Point at Madras

Months.	Years.																	
	1833.	1834	1835.	1836.	1838.	1839.	1840.	1841.	1842	1843.'	1844.	1845.	1846	1847.	184	1849	1850.	
	-	-	-	。	-	-	-	-	-	-	-	-	-	-	-	-	-	-
January -	64	65	70	68	-	69	66	70	73	71	66	67	66	66	65	67	67	67
February	68	68	72	68	-	69	69	70	70	70	68	69	69	69	66	67	66	68
March	69	68	75	69	-	73	72	74	74	73	72	73	72	70	70	70	68	71
April -	72	73	79	73	-	76	77	78	79	76	76	76	75	75	76	\%5	73	76
May	73	77	78	71	-	76	75	78	77	77	76	73	76	73	73	74	73	76
June	71	78	78	70	-	74	73	76	74	75	73	72	72	71	71	72	69	73
July -	71	79	78	72	-	73	73	74	73	73	73	. 71	72	72	31	71	70	73
August -	73	79	78	74	-	75	75	77	74	75	73	71	73	72	71	73	72	74
September	74	79	79	74	-	77	76	77	79	77	73	74	73	70	73	71	72	75
October -	74	76	76	69	74	74	74	73	76	77	73	73	74	74	73	73	74	74
November	71	74	74	-	74	71	72	73	73	72	67	69	69	71	71	71	69	71
December	70	71	69	-	69	68	69	70	69	71	70	21	67	69	69	66	67	69
Means	71	74	75	-	-	73	72	74	74	74	72	71	71	71	31	31	70	72

Table XXXIII. showing the Mean Monthly Temperature of the Dew Point, at Bombay.

Monthe.	Years.												Means.
	1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	
	-	-	-	-	-	-	-	-	-	-	。	-	-
January	65	64	63	62	60	56	56	62	63	66	65	64	64
February -	62	65	66	63	64	64	64	60	65	63	66	65	64
March	71	69	69.	69	68	68	67	68	69	70	70	70	68
April	72	73	72	70	73	71	71	72	70	73	71	74	73
Mny - -	76	75	73	74	73	73	74	74	76	75	76	78	75
June -	78	75	79	77	76	76	76	77	77	65 ?	76	75	76
July - -	77	76	77	77	77	75	\% 6	77	77	76	75	78	76
Angust ${ }^{\text { }}$ -	75	75	75	76	75	75	74	76	7.4	74	76	76	74
September -	74	74	76	74	73	74	74	76	74	73	74	74	74
Octoher	75	76	74	75	74	74	74	74	75	73	73	74	74
Norrmber -	67	69	74	67	67	67	68	69	68	67	67	67	67
December -	- 64	67	62	66	63	64	62	67	64	65	62	66	64
Means	- 71	72	72	71	70	70	70	71	71	70	71	72	71

Table XXXIV. showing the Mean Monthly Amount of Vapour in a Cubic Foot of Air at Madras.

Monthe.	Years.																	䓫
	1853.	1834.	1835.	1836.	1838.	1839	1840.	1841	1842.	1843	1844.	1845.	1846.	1847	1848.	1849	1850	
	$\mathrm{grs}^{\text {crs. }}$	grs.	grs.	grs.	grs.	grs.	grs.	grs.	grs.	grs.	grs.	grs.	grs.	grs.				
January -	${ }^{6 \cdot 1}$	${ }_{7}^{6 \cdot 6}$	$7 \cdot 8$	7.4	-	7.2	$6 \cdot 8$	$8 \cdot 0$	$8: 6$	8.2	$6 \cdot 8$	$7 \cdot 1$	$6 \cdot 8$	6.8	$6 \cdot 6$	$7 \cdot 1$	${ }_{7}{ }^{\text {cher }}$	$7 \cdot 2$
February	$7 \cdot 3$	$7 \cdot 3$	$8 \cdot 4$	$7 \cdot 4$		$7 \cdot 6$	$7 \cdot 5$	$7 \cdot 8$	$8 \cdot 0$	$8 \cdot 0$	$7 \cdot 3$	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 6$	6.9	6.8	$6 \cdot 9$	$7 \cdot 3$
March -	${ }^{7 \cdot 6}$	$7 \cdot 4$	${ }^{9 \cdot 5}$	7.7		8.6	$8 \cdot 8$	$9 \cdot 1$	$9 \cdot 1$	$8 \cdot 8$	$8 \cdot 4$	$8 \cdot 6$	$8 \cdot 4$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 2$	$8 \cdot 1$
April	8.5	$8 \cdot 6$	$10 \cdot 6$	$8 \cdot 8$		$9 \cdot 4$	$9 \cdot 7$	10.2	$10 \cdot 8$	$9 \cdot 4$	$9 \cdot 5$	$9 \cdot 3$	$9 \cdot 0$	$9 \cdot 0$	$9 \cdot 5$	9-0	$8 \cdot 5$	$9 \cdot 4$
3ay	$8 \cdot 5$	$9 \cdot 6$	$10 \cdot 3$	8-1	-	$9 \cdot 3$	$9 \cdot 1$	10.3	$9 \cdot 1$	$10 \cdot 0$	$9 \cdot 3$	$8 \cdot 4$	9-3	$8 \cdot 6$	$8 \cdot 4$	$8 \cdot 7$	8.6	9-3
June	8.1	10.3	$10 \cdot 2$	7.8		8.8	8.6	.9.5	8.8 8.5	9.2	8.4	$8 \cdot 3$	$8 \cdot 1$	8.1	$7 \cdot 8$	$8 \cdot 1$	$7 \cdot 5$	8.5
July ${ }_{\text {August }}$ -	$7 \cdot 9$ $8 \cdot 6$	$10 \cdot 7$ 10.7	$10 \cdot 1$	${ }^{8 \cdot 4}$	-	8.7	8.7	8.8	$8 \cdot 5$	8.7	$8 \cdot 5$	$8 \cdot 1$	$8 \cdot 3$	$8 \cdot 3$	7.9	$8 \cdot 1$	$8 \cdot 1$	$8 \cdot 7$
August September	8.6 8.9	10.7 10.7	10.1	9.0		9.4 9.9	$9 \cdot 2$	$9 \cdot 9$	8.9	$9 \cdot 2$	8.7	$8 \cdot 1$	8.7	$8 \cdot 3$	$8 \cdot 1$	$8 \cdot 5$	$8 \cdot 3$	8.9
October -	8.9	(10.7	10.7 9.5	${ }_{7} 9$	8.9	9.9 8.9	9.7 8.9	10.0 8.8	10.5 9.5	10.0 9.8	8.6 8.6	8.9 8.6	8.5 8.9	7.8 9.1	8.7	$8 \cdot 1$	$8 \cdot 3$	9-1
November	$8 \cdot 2$	$8 \cdot 9$	$9 \cdot 2$		8.9	$8 \cdot 2$	$8 \cdot 4$	$8 \cdot 7$	8.7	$8 \cdot 5$	8.6 7.2	$8 \cdot 6$ 7 7	8.9 7.6	$9 \cdot 1$ 8.0	8.6 8.0 8.	$9 \cdot 1$ 8.1	8.9 7.6 7	8.9
December	$7 \cdot 8$	$8 \cdot 2$	$7 \cdot 6$	-	7.7	7.3	7.5	8•0	$7 \cdot 7$	$8 \cdot 2$	8.0	8.2	$7 \cdot 1$	$7 \cdot 7$	$7 \cdot 5$	6.9	$7 \cdot 1$	$8 \cdot 2$ $7 \cdot 5$
Means	8.0	$9 \cdot 0$	$9 \cdot 5$	-	-	$8 \cdot 6$	$8 \cdot 6$	$9 \cdot 9$	$9 \cdot 8$	$9 \cdot 0$	$8 \cdot 3$	$8 \cdot 2$	$8 \cdot 2$	$8 \cdot 1$	$8 \cdot 0$	$8 \cdot 0$	7•8	8.4

Table XXXV. showing the Mean Monthly Amount of Vapour in a Cubic Foot of Air, at Bombay.

Montus.	$Y_{\text {EARS }}$.												Means.
	1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	
January	grs. 6.6	gra.	$\underset{6 \cdot 2}{\text { grs. }}$	$\underset{5}{\text { grs. }}$	grs.	grs.	grs.	${ }_{\text {grs. }}^{6.1}$	${ }_{6 \cdot 2}^{\text {grs. }}$	grs. 6.8	$\mathrm{c}_{6 \cdot 6}^{\text {grs. }}$	${ }_{6 \cdot 6}^{\text {grs. }}$	${ }_{\text {grs. }}^{6 \cdot 4}$
February	$6 \cdot 0$	6.6	$6 \cdot 8$	6.2	6.4	6.4	$6 \cdot 4$	$5 \cdot 5$	6.7	$6 \cdot 3$	$6 \cdot 9$	$6 \cdot 6$	6.4
March	$8 \cdot 0$	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 6$	$7 \cdot 4$	$7 \cdot 4$	$7 \cdot 1$	$7 \cdot 4$	$7 \cdot 6$	$7 \cdot 9$	$7 \cdot 9$	$7 \cdot 3$	$7 \cdot 4$
April	8.4	8.6	8.4	7.9	8.6	$8 \cdot 2$	$8 \cdot 0$	$8 \cdot 5$	$7 \cdot 9$	$8 \cdot 7$	8.2	889	8.6
May -	$9 \cdot 4$	$9 \cdot 2$	$8 \cdot 7$	8.9	8.7	8.5	8.8	$8 \cdot 8$	$9 \cdot 5$	$9 \cdot 0$	$9 \cdot 5$	$10 \cdot 1$	$9 \cdot 0$
June -	10-1	$9 \cdot 4$	$10 \cdot 7$	$10 \cdot 0$	$9 \cdot 7$	$9 \cdot 4$	$9 \cdot 4$	$10 \cdot 0$	$10 \cdot 0$	$6 \cdot 5$	$9 \cdot 7$	$9 \cdot 2$	$9 \cdot 7$
July -	$9 \cdot 8$	$9 \cdot 5$	9.8	$9 \cdot 9$	$9 \cdot 8$	$9 \cdot 4$	$9 \cdot 5$	$9 \cdot 8$	$9 \cdot 9$	$9 \cdot 5$	$9 \cdot 4$	$10 \cdot 1$	$9 \cdot 5$
August -	$9 \cdot 3$	$9 \cdot 3$	$9 \cdot 3$	$9 \cdot 5$	$9 \cdot 3$	$9 \cdot 3$	$9 \cdot 1$	$9 \cdot 5$	8.9	$9 \cdot 1$	$9 \cdot 5$	${ }_{9}{ }_{5}$	${ }_{9} \cdot 1$
September -	$9 \cdot 0$	9.1	$9 \cdot 5$	$9 \cdot 1$	8.8	$9 \cdot 1$	$9 \cdot 1$	$9 \cdot 5$	9-1	$8 \cdot 8$	$9 \cdot 0$	$9 \cdot 1$	$9 \cdot 1$,
October -	$9 \cdot 4$	$9 \cdot 5$	$9 \cdot 1$	$9 \cdot 1$	$8 \cdot 9$	$8 \cdot 9$	$7 \cdot 9$	8.9	$9 \cdot 1$	$8 \cdot 6$	$8 \cdot 6$	$9 \cdot 1$	$8 \cdot 9$
November -	$7 \cdot 2$	$7 \cdot 6$	$8 \cdot 6$	$7 \cdot 0$. $7 \cdot 4$	$7 \cdot 0$	$7 \cdot 2$	$7 \cdot 2$	$7 \cdot 2$	$7 \cdot 2$	$7 \cdot 1$	7.2	$7 \cdot 2$
December -	6.4	$7 \cdot 1$	$5 \cdot 9$	6.8	6.2	6.4	$5 \cdot 9$	7-1	6.5	6:6	$6 \cdot 0$	6.8	6.4
Means	$8 \cdot 3$	$8 \cdot 3$	$8 \cdot 4$	8.2	$8 \cdot 1$	7.9	$7 \cdot 0$	$8 \cdot 2$	8.2	$7 \cdot 9$	$8 \cdot 2$	$8 \cdot 4$	$8 \cdot 2$

Table XXXVI. showing the Mean Monthly Amount of Vapour required to saturate a Cubic Foot of Air at Madras.

Table XXXVII. showing the Mean Monthly Amount of Vapour required to saturate a Cubic Foot of Air at Bombay.

Montrs.	Years.												
	1847.	1848.	1849.	.1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Means.
	grs $2 \cdot 8$	grs. $3 \cdot 3$	grs. $2 \cdot 6$	grs. $2 \cdot 6$	grs.	gra. $3 \cdot 5$	grs. 3.5 3.5	${ }_{\text {grs. }}^{\text {gre }}$	grs. $3 \cdot 2$ $3 \cdot 2$	$\xrightarrow{\text { grs. }}$	$\xrightarrow{\text { grs. }}$	grs. $2 \cdot 2$	grs.
January - -	$2 \cdot 8$ $3 \cdot 1$	$3 \cdot 3$ -2.8	$2 \cdot 6$ 2.9	3.2	3.3	$3 \cdot 3$	$3 \cdot 3$	$3 \cdot 9$	$3 \cdot 3$	$3 \cdot 7$	$3 \cdot 4$	$2 \cdot 8$	$3 \cdot 3$
February - -	$3 \cdot 1$ $2 \cdot 6$	$2 \cdot 8$ $3 \cdot 0$	2.9 3.0	$3 \cdot 0$	$3 \cdot 6$	3.6	4.6	3.6	$3 \cdot 0$	$3 \cdot 8$	3.8	$3 \cdot 2$ $3 \cdot 5$	3.6 3.4
April	$3 \cdot 3$	$3 \cdot 4$	$3 \cdot 3$	$3 \cdot 8$	$3 \cdot 4$	$3 \cdot 8$	$4 \cdot 4$	$3 \cdot 9$	$3 \cdot 8$	$4 \cdot 1$	3.8	$3 \cdot 5$	$3 \cdot 4$
May -	$3 \cdot 0$	$3 \cdot 6$	$4 \cdot 1$	$3 \cdot 5$	$4 \cdot 1$	$4 \cdot 7$	$4 \cdot 8$	4•8	3.7	$4 \cdot 2$	$3 \cdot 7$	$3 \cdot 1$	$4 \cdot 2$
June - -	$1 \cdot 2$	$2 \cdot 3$	0.6	$2 \cdot 4$	$2 \cdot 3$	3.0	$3 \cdot 0$	$2 \cdot 4$	$2 \cdot 4$	$5 \cdot 5$	$2 \cdot 3$	3:6	$2 \cdot 3$ $1 \cdot 8$
July -	1.2	$1 \cdot 8$	$1 \cdot 2$	1.8	$1 \cdot 2$	$2 \cdot 3$	1.8	$1 \cdot 2$	$1 \cdot 8$	1.8	$2 \cdot 3$	$1 \cdot 2$	$1 \cdot 8$
August -	1.7	$1 \cdot 7$	$1 \cdot 7$	$1 \cdot 8$	$1 \cdot 7$	$1 \cdot 7$	$2 \cdot 2$	1.8	2.8	$2 \cdot 2$	$1 \cdot 1$	$1 \cdot 8$	$2 \cdot 9$
September -	$1 \cdot 6$	$2 \cdot 2$	$1 \cdot 1$	$2 \cdot 2$	$2 \cdot 2$	$2 \cdot 2$	$2 \cdot 2$	1.8	2.2	2.2 2.7	1.6	2.2	1.2 2.8
Oetober -	$2 \cdot 3$	$1 \cdot 8$	$2 \cdot 2$	$2 \cdot 9$	$2 \cdot 8$	$2 \cdot 8$	8.8	2.8 3.6	$2 \cdot 9$ 4.1	$2 \cdot 7$ $3 \cdot 4$	$2 \cdot 7$ 2.9	$2 \cdot 2$ $3 \cdot 4$	$2 \cdot 8$ $3 \cdot 4$
November -	$2 \cdot 5$	$3 \cdot 0$	$2 \cdot 7$	4.0 2.9	$3 \cdot 6$ $3 \cdot 2$	$4 \cdot 0$ $3 \cdot 3$	$3 \cdot 6$ $4 \cdot 1$	3.6 2.9	4.1 3.8	3.4 2.8	$2 \cdot 9$ $3 \cdot 1$	3.4 2.9	$3 \cdot 4$ $3 \cdot 3$
December -	$3 \cdot 3$	$2 \cdot 9$	± 1	$2 \cdot 9$	$3 \cdot 2$	$3 \cdot 3$	$4 \cdot 1$	$2 \cdot 9$	$3 \cdot 8$	2.8			
Means	$2 \cdot 4$	$2 \cdot 7$	$2 \cdot 5$	$2 \cdot 8$	$2 \cdot 9$	$3 \cdot 2$	$3 \cdot 4$	$3 \cdot 0$	$3 \cdot 1$	$3 \cdot 3$	$2 \cdot 8$	$2 \cdot 7$	$2 \cdot 9$

5 H 4

Table XXXVIII. showing the Mean Degree of Humidity at Madras.

Montris.	Years.																	
	1833.	1834.	1835	1836.	1838.	1839.	1840	1841.	1842.	1843.	1844	1845	1846.	1847.	1848.	1849.	1850.	Means.
January -	63	70	89	84	-	75	71	79	89	84	71	71	71	71	70	71	71	75
February	71	71	89	79	-	71	75	75	79	79	71	71	71.	71	67	67	67	71
March -	71	67	94	79	\cdots	76	75	80	80	80	72	72	72	68	68	68	64	72
April	68	76	100	80	-	76	76	85	85	76	72	69	68	68	72	68	64	76
May	64	69	80	61	-	69	65	80	65	80	69	58	69	61	58	59	61	69
June -	61	80	90	61	-	65	61	72	65	72	58	61	58	61	53	58	52	64
July -	58	95	90	72	-	68	68	65	64	68	64	61	64	64	58	61	55	68
August - 1	72	95	90	85	-	80	72	85	72	72	68	61	68	64	61	64	61	72
September	76	95	95	80	-	85	80	80	90	80	72	72	64	61	68	61	64	76
October -	76	85	90	68	76	72	76	80	85	90	76	72	76	80	72	72	72	76
November	79	89	94	-	89	79	84	84	84	80	67	71	71	75	75	72	71	79
December	75	84	84	-	79	71	75	79	79	84	79	79	71	79	75	67	75	75
Means	69	81	91	-	-	74	73	79	79	78	69	68	67	68	66	65	65	72

Table XXXIX, showing the Mean Degree of Humidity at Bombay.

Montis.		Years.												
		1847.	1848.	1849.	1850.	1851.	1852.	1853.	1854.	1855.	1856.	1857.	1858.	Means.
January	-	70	67	70	69	65	57	57	63	66	71	70	74	70
February -	-	66	70	71	66	67	67	67	58	67	63	67	70	67
March	-	75	71	71	71	67	67	60	67	71	68	68	71	67
April	-	72	72	72	68	72	68	64	68	68	68	68	72	69
May - -	-	76	72	68	72	68	64	65	65	72	68	72	76	68
June	-	90	80	95	80	80	76	76	80	80	54	80	72	80
July -	-	90	85	90	85	90	80	85	90	85	85	80	90	85
August -	-	85	85	85	85	85	85	80	85	76	80	90	85	80
September -	-	85	80	90	80	80	80	- 80	85	80	80	85	80	83
October -	-	80	85	80	76	76	76	68	. 76	76	76	76	80	77
November -	-	75	71	76	63	67	63	64	67	64	67	71	67	67
December -	-	67	71	59	71	66	67	59	71	63	70	66	71	67
Means -	-	78	76	77	74	74	71	69	73	72	71	74	76	73

The monthly temperatures of the dew point have varied
in- January from 64° to 73° at Madras, and from 56° to 65°
at Bombay.
February. from 66° to 72° at Madras, and from 60° to 66°
at Bombay.
March from 68° to 75° at Madras, and from 67° to 71° at Bombay.

April from 72° to 79° at Madras, and from 70° to 74° at Bombay.
May from 71° to 78° at Madras, and from 73° to 78° at Bombay.
June from 69° to 78° at Madras, and from 65° to 78° at Bombay.
July from 70° to 79° at Madras, and from 75° to $\overline{78} 8^{\circ}$ at Bombay.
August from 71° to 79° at Madras, and from 74° to 76°
at Bombay. Srom 70° to 79° at Madras, and from 73° to 76°
at Bombay.
October from 69° to 77° at Madras, and from 73° to 76°
at Bombay.
November from 67° to 74° at Madras, and from 67° to 74°
at Bombay.
December from 66° to 71° at Madras, and from 62° to 67° at Bombay.
Thus the change in this element one year with another $-\infty$
In January amounts to 9° at both places.
In February
In March
In April
In May
In June
In July
In August
In September
In October,
In November
In November

$"$	6°
$"$	7°
$"$	7°
$"$	9°
$"$	9
$"$	8
$"$	9
$"$	1

The mean monthly amount of vapour in a cubic foot of air varied in-
January from 6.1 grs. to 8.6 grs . at Madras, and from
5.0 grs . to 6.8 grs . at Bombay.

February from 6.8 glv . to 8.4 grs . at Madras, and from $5 \cdot 5 \mathrm{grs}$, to $6 \cdot 9 \mathrm{grs}$, at Bombay.

March from $7 \cdot 2$ grs. to $9 \cdot 5$ grs. at Madras, and from $7 \cdot 1 \mathrm{grs}$. to 8.0 grs at Bombay.
April from 8.5 grs. to 10.8 grs. at Madras, and from 7.9 grs to 8.9 grs at Bombay.

May from 8.1 grs. to 10.3 grs. at Madras, and from 8.5 grs to 10.1 grs. at Bombay.

June from 7.5 grs . to $10 \cdot 2 \mathrm{grs}$, at Madras, and from 6.4 grs. to 10.7 grs. at Bombay.

July from 7.9 grs. to 10.7 grs. at Madras, and from $9 \cdot 4$ grs. to $10^{\circ} 1$ grs. at Bombay.

August from $8 \cdot 1$ grs. to 10.7 grs . at Madras, and from 8.9 grs. to 9.5 grs at Bombay.

September from $7 \cdot 8$ grs. to $10 \cdot 7 \mathrm{grs}$, at Madras, and from $8 \cdot 8$ grs. to $9 \cdot 5$ grs. at Bombay.
October from $7 \cdot 6 \mathrm{grs}$. to 9.8 grs . at Madras, and from $8 \cdot 6 \mathrm{grs}$. to 9.5 grs . at Bombay.
November from $7 \cdot 2 \mathrm{grs}$. to $9 \cdot 2 \mathrm{grs}$. at Madras, and from $7 \cdot 0$ grs. to $8 \cdot 6$ grs. at Bombay.
December from 6.9 rrs. to 8.2 grs. at Madras, and from $5 \cdot 9 \mathrm{grs}$. to $7 \cdot 1 \mathrm{grs}$. at Bombay.

Thus the change in this element one year with anotherIn January amounts to 2.5 grs. at Madras, and to $1 \cdot 8 \mathrm{gr}$. at Bombay.
In February amounts to 1.6 gr . at Madras, and to 1.4 gr . at Bombay.

In March amounts to 2.3 grs . at Madras, and to 0.9 gr . at Bombay.

In April amounts to 2.3 grs . at Madras, and to 1.0 gr . at Bombay.
In May amounts to 2.2 grs . at Madras, and to 1.6 gr .
at Bombay.
In June amounts to 2.7 grs . at Madras, and to 4.3 grs , at Bombay.
In July amounts to 2.8 grs . at Madras, and to 0.7 gr . Bombay.
In August amounts to 2.6 grs . at Madras and to 0.6 gr . at Bombay.
In September amounts to $2.9^{\circ} \mathrm{grs}$, at Madras, and to 0.7 gr at Bombay.

In October amounts to 2.2 grs . at Madras, and to 0.9 gr . at Bombay.

In November amounts to 2.0 grs . at Madras, and to 1.6 gr . at Bombay.

In Decernber amounts to $1 \cdot 3 \mathrm{gr}$. at Madras, and to $1 \cdot 2 \mathrm{gr}$. at Bombay.

The mean monthly amount of vapour required to saturate cubic foot of air varied in-
January from 1.0 gr . to 3.6 grs . at Madras, and from
$2 \cdot 2 \mathrm{grs}$ to 3.6 grs , at Bombay.
February from $1 \cdot 0 \mathrm{gr}$, to $3 \cdot 4 \mathrm{grs}$. at Madras, and from
2.8 grs. to 3.9 grs. at Bombay.

March from 0.5 gr to $3 \cdot 8 \mathrm{grs}$. at Madras, and from
$2 \cdot 6$ grs. to $4 \cdot 6$ grs. at Bombay
grs. to 4.6 grs. at 4.7 grs. at Madras, and from 3.3
grs. to 4.4 grs. at Bombay.
grs. to 4.4 grs . at Bombay.
May from 2.5 grs. to 6.1 grs. at Madras, and from
$3 \cdot 0$ to grs. to $4 \cdot 8$ grs. at Bombay.
3.0 to grs . to 4.8 grs . at Bombay.
June from 1.8 gr to 7.0 grs. at Madras, and from
J une from 1.8 gr . to 7.0
0.6 gr . to 5.5 grs at Bombay.
July from 0.6 gr . to 5.9 grs . at Madras, and from $1 \cdot 2 \mathrm{gr}$. to $2 \cdot 3 \mathrm{grs}$. at Bombay.
August from 0.6 gr . to 5.3 grs . at Madras, and from $1 \cdot 1 \mathrm{gr}$. to $2 \cdot 8 \mathrm{grs}$ at Bombay.
September from $0 \cdot 6$ gr, to $5 \cdot 1$ grs. at Madras, and from
$1 \cdot 1$ gr. to $2 \cdot 2$ grs. at Bombay.
October from 1.1 gr . to 3.7 grs . at Madras, and from
1.8 gr. to 3.8 grs. at Bombay.

November from 0.5 gr, to 3.4 gas. at Madras, and from
$2 \cdot 5$ grs. to $4 \cdot 1$ grs. at Bombay.
December from 1.5 gr . to 3.4 grs , at Madras, and from
$2 \cdot 8$ grs. to $4 \cdot 1$ grs. at Bombay.
Thus the change in this element one year with another-
In January amounts to $9 \cdot 6^{\circ}$ grs. at Madras, and to
1.4 gr . at Bombay.

In February amounts to $2 \cdot 4 \mathrm{grs}$, at Madras, and to
$1 \cdot 1 \mathrm{gr}$. at Bombay.
In March amounts to 3.3 grs . at Madras, and to 2.0 grs at Bombay.

In April amounts to $4 \cdot 7$ grs. at Madras, and to $1 \cdot 1$ gr. at Bombay.
In May amounts to $3 \cdot 6 \mathrm{grs}$. at Madras, and to $1 \cdot 8 \mathrm{gr}$. at Bombay.

In June amounts to ${ }^{\prime} 5 \cdot 2 \mathrm{grs}$. at Madras, and to $4 \cdot 9 \mathrm{grs}$. at Bombay.

In July amounts to $5 \cdot 3 \mathrm{grs}$. at Madras, and to $1 \cdot 1 \mathrm{gr}$. at Bombay.

In August amounts to $4 \cdot 7 \mathrm{grs}$ at Madras, and to $1 \cdot 7 \mathrm{gr}$. at Bombay.

In September amounts to $4 \cdot 5$ grs. at Madras, and to $1 \cdot 1 \mathrm{gr}$. at Bombay.

In October amounts to $2 \cdot 6 \mathrm{grs}$. at Madras, and to 2.0 grs. at Bombay.

In November amounts to 2.9 grs at Madras, and to 1.6 gr . at Bombay.

In December amounts to 1.9 gr. at Madras, and to 1.3 gr. at Bombay.

The mean monthly degree of humidity of the air has varied in-
January from 63 to 89 at Madras, and from 57 to 74 at Bombay.
February from 67 to 89 at Madras, and from 58 to 71 at Bombay.
March from 64 to 94 at Madras, and from 60 to 75 at Bombay.
April from 64 to 100 at Madras, and from 64 to 72 at Bombay.
May from 58 to 80 at Madras, and from 64 to 76 at Bombay.
June from 52 to 90° at Madras, and from 54 to 95 at Bombay.
July from 55 to 95 at Madras, and from 80 to 90 at Bombay.
August from 61 to 95 at Madras, and from 76 to 90 at Bombay.
September from 61 to 95 at Madras, and from 80 to 90 at Bombay.

October from 68 to 90 at Madras, and from 68 to 85 at Bombay.
November from 67 to 94 at Madras, and from 63 to 76 at Bombay.
December from 67 to 84 at Madras, and from 59 to .71 at Bombay.
Thus the change in this element one year with another. In January amounts to 26 at Madras, and to 17 at Bombay. In February
In March
In April
In April In May In June In August In September In October In Novernber
In December
$\begin{array}{ll}" & 22 \\ " & 30 \\ " & 36 \\ " & 22 \\ " & 38 \\ " & 40 \\ " & 34 \\ " & 34 \\ " & 22 \\ " & 27 \\ " & 21\end{array}$
$\begin{array}{lrr}", & 15 & " \\ " & 8 & , \\ " & 10 & \\ " & 10 & \\ " & \\ " & \\ " & 10 & \\ " & \\ " & 17\end{array}$

Table XL. showing the Mean Monthly Hygrometrical Values at Madras and Bombay.

The numbers in the second and third columns show the monthly temperature of the dew point, and thoser in the fourth and fifth columns its depression below the temperature of the air at Madras and Bombay respectively; this depres sion is generally small. It is nearly uniform throughout the year at Madras, but differs at Bombay, where it is much larger in the winter than in the summer months. The numbers in the next two columns show the very large quantity of water mixed with the air, and which is differently distributed at the two places: the numbers in the next two columns show the amount of water needed to caturate a cubic foot of air ; and a great difference exists between the amount at the two places in the summer months: and the last two columns show the monthly degree of humidity.

At Madras the driest month is June, and the most humid November. At Bombay the driest period of the year is from November to May, there being but little difterence in the monthly degrees of humidity in the intervening months.

A great change takes place from April to May, and the air is very humid from June, the most so in July, and continues humid till October, when a considerable change takes place. The contrust in respect to the humidity between Madras and Bombay is very remarkable; in the summer months, at Madras the air is least moist, and is the most so in winter, while the reverse of this takes place at Bombay.

The average yearly results are shown in the bottom line of the several tables.

The variation of the mean annual temperature of the dew point is from 71° to 74° at Madras, and from 71° to 72° at Bombry.
Amount of water in a cubic foot of air, is from 7.8 grs . to 8.9 grs . at Madras, and from 7.0 grs . to $7 \cdot 4 \mathrm{grs}$. at Bombay.

Amount required to saturate a cubic foot of air, is from
$1 \cdot(\mathrm{gr}$. to $4 \cdot 3 \mathrm{grs}$. at Madras, and from 2.4 grs . to 3.4 grs . at Bombay.
Degree of humidity of the air, is from 65° to 79° at Madras, and from 69° to 78° at Bombay.
Thus the variations of the hygrometrical states of the air at the same place varies a good deal from year to year, and also varies very much at different places in the same year. Therefore no valuable deductions can be made from the observations I have collected. See Tables CXIV. to CXVII., CXXIV. to CXXVII., and CXXXIV. to CXXXVII.

The monthly and other periods of the several hygrometrical results will be found in the Tables LXXXIII, to LXXXVI. The monthly values are collected together in the following tables, arranged in the order of latitude, the following tables, arranged
By looking over the results in these tables, there is no regular increase or decrease with either latitude or longitude in any section. The effect of elevation is everwhere clearly shown by the almost proportional lower reading of the dew point, less water present with the air, a nearer approach to saturation, and a higher degree of humidity; but very little can be inferred or used beyond these deductions. In no can be inferred or used beyond these deductions. In no instance, as before remarked, has a direct determination of -
the dew point been made at high elevations; but in every case where such observations have been made, the dry and wet-bulb thermometers have alone been used.

Table XLI. showing the Average Hygrometrical State of the Air as deduced from 20 years' observation at the Royal Observatory, Greenwich.

The average hygrometrical states of the air at different stations, or at small groups of stations near together, where their results have been accordant with each other, have been taken, and the general state of the moisture of the air over India will most readily be seen by glancing the eye over the following tables. At the same time their differences from England may also as readily be seen by comparing them with those of England, which are shown in the preceding table.

Table XLII, showing the Hygrometrical States of the Atmosphere at different Stations, or at small Groups of Stations near together.

(continued.)

Table XLII. showing the Hygrometrical States of the Atmosphere at difforent Stations-continued.

(continued.)

Mowris.	-	Calcutta and Fort William.								Darjeeling.			
		Lat. $28^{\circ} 34 \mathrm{~N}$. Long. $88^{\circ} 25^{\prime}$ E.				$\frac{\text { Lat. } 85^{\circ} 21^{\prime} \mathrm{N} . \text { Long. } 82^{\circ} 18^{\prime} \mathrm{E} .}{1,550 \text { feet. }}$				$\begin{gathered} \text { Lat. } 27^{\circ} \boldsymbol{2} \mathrm{N} . \text { Long. } 88^{\circ} 10^{\prime} \mathbf{E} . \\ 7,000 \text { feet. } \end{gathered}$			
		\bigcirc	grs.	grs.		\bigcirc	grs.	grs.		\bigcirc	grs.	grs.	
January -	-	62	$5 \cdot 9$	$2 \cdot 5$	69	50	$4 \cdot 1$	$3 \cdot 0$	58	38	$2 \cdot 6$		77
February	-	64	6.4	3.5	64	54	$4 \cdot 5$	$3 \cdot 8$	55	41	$2 \cdot 9$	0.5	85
March -		72	8.3	. $3 \cdot 9$	68	57	$4 \cdot 9$	$4 \cdot 8$	50	45	$3 \cdot 4$	0.8	80
April	-	76	$9 \cdot 5$	$4 \cdot 3$	69	60	$5 \cdot 4$	$7 \cdot 2$	43	48	$3 \cdot 8$	0.9	80
May	-	79	10.4	3.5	75	67	$7 \cdot 1$	6.8	55	54	$4 \cdot 7$	0.7	87
June.		81	$11 \cdot 0$	$2 \cdot 6$	80	65	6.8	6.8	50	59	$5 \cdot 6$	$0 \cdot 4$	94
July -		80	$10 \cdot 7$	1.9	85	69	$7 \cdot 4$	$5 \cdot 2$	60	60	$5 \cdot 8$	0.4	94
${ }^{\text {August - }}$		80	$10 \cdot 8$	1.5	87	75	$9 \cdot 3$	1.7	85	60	$5 \cdot 8$	0.4	94
September	-	81	$11 \cdot 0$	1.6	87	71	$8 \cdot 2$	$2 \cdot 9$	74	58	$5 \cdot 4$	0.4	94
Octaber -	-	76	9.7	$2 \cdot 4$	80	63	$6 \cdot 3$	3.4	64	49	$3 \cdot 9$	$1 \cdot 3$	75
November		69	$7 \cdot 7$	$2 \cdot 6$	75	53	$4 \cdot 5$	$3 \cdot 1$	59	43	$\stackrel{3 \cdot 1}{2 \cdot 8}$	$1 \cdot 1$	74
December	-	61	6.0	2.6	69	53	$4 \cdot 5$	$2 \cdot 2$	68	40	$2 \cdot 8$	0.5	84
Means		73	8.9	$2 \cdot 7$	75	61	$5 \cdot 9$	$4 \cdot 1$	60	49	$4 \cdot 1$	0.7	84

(continued.)

Мохтнs,	Benares and Meerut.				Landour.				Peslawur.			
	Lat. $27^{\circ} 9^{\prime} \mathrm{N}$. Long. $88^{\circ} \mathrm{s} 0^{\prime} \mathrm{E}$.				Lat. 390 27^{\prime} N. Long. $78^{\circ} 10^{\prime}$ E.				Lat. $34^{\circ} 2 \sigma^{\text {N }}$. Long. $71^{\circ} \mathrm{m}{ }^{\prime} \mathrm{E}$ E.			
	585 feet. -				7,000 feet.				1,056 feet.			
	-	grs.	${ }_{\text {gra. }}$		-	grs.	grs.		-	grs.	grs.	
January -	51	$4 \cdot 2$	${ }_{2} \cdot 3$	65	27	$1 \cdot 7$	$1 \cdot 6$	49	39	$2 \cdot 7$	$1 \cdot 3$	67
February	54	4.7	$2 \cdot 6$		32	$2 \cdot 1$	$1 \cdot 1$	65	43	$3 \cdot 1$	1.4	69
March -	58	$5 \cdot 3$	$4 \cdot 9$	55	36	$2 \cdot 4$	$2 \cdot 8$	45	56	$4 \cdot 9$	1.5	77
April	58	$5 \cdot 1$	8.5	38	41	$2 \cdot 9$	$3 \cdot 9$	42	66	$7 \cdot 0$	$2 \cdot 4$	74
May	71	$8 \cdot 1$	6.8	54	53	$4 \cdot 4$	$3 \cdot 9$	53	62	$6 \cdot 0$	6.4	48
June	77	$9 \cdot 7$	$5 \cdot 8$	62	57	$5 \cdot 1$	$3 \cdot 7$	58	72	$8 \cdot 1$	$7 \cdot 2$	53
July	- 82	$11 \cdot 7$	$2 \cdot 0$	86	63	$6 \cdot 3$	$1 \cdot 7$	78	74	8.8	$6 \cdot 9$	56
Angust	- 75	$9 \cdot 5$	$3 \cdot 1$	74	64	$6 \cdot 6$	0.9	88	74	8.9	$5 \cdot 5$	61
September	77	$10 \cdot 1$	$2 \cdot 1$	82	59	$5 \cdot 5$	$1 \cdot 5$	78	65	6.4	6.8	49
October -	73	$8 \cdot 8$	$1 \cdot 3$	87	46	3.4	1.8	65	56	$5 \cdot 0$	$3 \cdot 5$	57
November	61	5.8	$2 \cdot 3$	72	34	$2 \cdot 3$	1.7	57	45	3.3	$2 \cdot 5$	58
December	- 51	$4 \cdot 2$	$2 \cdot 0$	67	29	1.8	$1 \cdot 5$	54	39	$2 \cdot 7$	1.3	67
Means	66	$7 \cdot 2$	$2 \cdot 1$	67	44	$3 \cdot 7$	$2 \cdot 2$	61	57	$5 \cdot 6$	3.9	61

The places whose hygrometrical state seems to be the nearest to that of England are Dodabetta and Darjeeling. Landour, at the same elcvation as Darjeeling, has the same annual temperature of the dew point, and the amount of water mixed with the air is nearly the same, but the amount of water required to saturate a cubic foot of air is three times as large as in England, and therefore the air is very much less humid than in England.
At all the other stations, the dew point is a great deal ligher than in England, the water present in the air is everywhere greater, and the water required to saturate the air is also greater, so that the air is upon the whole year much less humid than in' England, and particularly so in the winter months.

At some stations it is also less humid all the year round, as at Madras a little less; at Bellary and Secunderabad, always much less; and at Rajcote, Kurrachee, Deesa, Hyderabad, and the country intervening and adjacent, very much less : this part of India is the least humid of any, and at the extreme northern station of Peshawur.

At other stations, such as Belgaum and Sattara; Mahableshwur, Dapooilee, Bombay, Thyet Myo, Calcutta, and adjacent country, and so up to Benares and Meerut, the air is more humid in the summer months, and less humid in the winter months, than in England.
Upon the whole it seems that the heights ranging for the same hygrometrical states of the air as in England, differ but little if any from those ranging for the same tern. perature of the air as in England.

Section VIII.

On the Fall of Rain in India.

On the Fall of Rain in India.

The monthly, quarterly, half-yearly, and yearly falls of rain in the three presidencies, arranged in the order of latitude, will be found in the Tables.CXXXIX. to CXLI., pages 920 to 943 .
An inspection of the tables will show the fall of rain in every month : the most remarkable are at Mercara 55 inches in July; at Mahableshwur 92 inches in July, followed by 72 inches in August; at Malcolm Pait 72 inches in July. In the southern part of the coast rain seems to fall in every month; whilst in the northern parts, little or none falls in the months from November to April.
The following tables have been arranged in three divi-sions:-
1st. Those stations situated in the order of latitude on the west coast, forming Group I.
2nd. Those stations situated in the order of latitude on the east coast, forming Group II.
3rd. Groups of stations near to each other in the interior of the country, within certain limiting parallels of latitude and longitude, forming Groups III. to XIX.
By an inspection of the monthly falls of rain at stations in Group I., 'Table LXXXVII., it will be seen that generally the heaviest falls occur in June and July, but chiefly in the latter month. The largest fall in the table is 92 inches in July at Mabableshwur, with 42 inches in the preceding and 72 inches in the following months; thus in June, July, and August, the fall at this station is no less than 221 inches. At Mugust, he fall at this station is no less than 221 inches. At 187 inches, 72 of which fell in July. At several of the other stations the amount in this month is greater than 30 inches, at a few it exceeds 40 inches, and at Mercara in July the amount is 56 inches. These amounts exceed the annual fall at the extremity of the peninsula. In contrast, the fall of rain at Kotri and Kurrachee is exceedingly small; the largest in one month was 14 inch at Kotri; and 1 inch at Kurrachee.
In this group most singular differences therefore occur, starting from Cape Comorin and Vaurioor, at the sonthern extremity of Madras, the fall is small, amounting in the year only to 25 or 23 inches. Passing up the coast to year only to the or 28 inches. Passing up the coast to
Trevandrum the fall increases to 65 inches, to 85 at Quilon, Trevandrum the fall increnses to 65 inches, to 85 at Quilon, to 105 at Cochin; then at all the stations on the const south of 17° north latitude, the fulls exceed 120 inches, excepting at Vingorla, which was about $1 \frac{1}{2}$ inch less, whilst at Mercara the fall was as large as 143 inches. Passing still higher up the const the falls exceeded $1: 0$ inches, till at Mahubleshwur, the fall is no less than 254 inches. This station is at an elevation of 4,500 feet, in latitude $17^{\circ} 59^{\prime} \mathrm{N}$. and Inngitude $734^{\circ} \mathrm{E}$. Still passing northwards, at Bombay the fall is decreased to 73 inches, but at Tanna a little more north the fall is as large as 105 inches. Passing still more north the fall diminishes in amount; at Baroda it amounts to 35 inches only, at Rajcote to. 27 inches, at Ahmedabad it is 24 inches; and following the saine direcAhmediabad it is 24 inches; and following the saine direc-
tion, we come to the driest part of India, where scarcely any
rain falls at all; at Kotri, for instance, in latitude $23^{\circ} 54^{\prime} \mathrm{N}$., and longitude 683° E., less than 2 inches fall in the year, and at kurrachee less than 5 inches.
We thus see that there are very remarkable discrepancies in the fall of rain on the Malabar coast, varying in amount from 28 inches at Cape Comorin to 143 inches at Mercara; and stations situated near together give very different results, so much so that no grouping of means can be taken, as applying to any extent of coast line.
An inspection of the tables forming Group II., Table LXXXVIII., will show the fall of rain monthly at several stations on the east coast of India. The largest in the table in one month is 32 inches in November at Nellore; the next in order 193 inches at Poonamallee, also in November; and south of latitude 14° the heaviest falls of rain seem to take place in this month; whilst on the opposite coast the heariest falls occur in July: north of this parallel, viz., 14°, the heaviest falls occur in July and August, the largest of which, $14 \frac{1}{4}$ inches, took place at Yooree.
Starting again from Cape Comorin, with its fall of 28 inches, and passing up the east or Coromandel coast, the fall of rain increases in amount, but to a much less extent than on the Malabar coast ; at Palameottah it amounts to 56 inches, at about Madras to 50 inches, reaching to 60 inches at Nellore: at more northern stations it varies between 34 inches and 50 inches; at Balasore, on the coast, in latitude $211^{\circ} \mathrm{N}$. and longitnde $87^{\circ} \mathrm{E}$., the fall amounts to 31 inches only; and at a little higher up, and inland, at Midnapore to $22 \frac{3}{3}$ inches.
These falls exhibit a great contrast to the very large falls on the opposite coast, but the same wide differences in the amount collected at adjacent places are shewn on this coast as was found to be the case on the western coast.

Group III., Table LXXXIX., includes all those stations from which I have returns, which are situated between the Malabar and Coromandel coasts, south of latitude 15°.
In this part of the country rain falls generally to smail amounts in every month of the year, varying in amount from $20 \frac{1}{2}$ inches at Combatore to 37 inches at Shenkottals. The average fall at the several stations, omitting that at Dodabetta is 284 inches. At Dodabetta, from two years' observations, at an elevation of 8,640 feet, the annual fall amounts to 101 inches, of which 20 fall in April, and about 12 inches in each of the last three months of the year.

By comparing the falls in this portion of the country with those at places on the adjacent coasts similarly situated with respect to latitude, we learn the following particulars:-

On the Malabar coast, with a mean longitude of about $75^{\circ} 50^{\circ}$, the annual rain-fall varies from 105 to 143 inches, of which the greater part falls in the months from May to September.
In the central portion of the district, with a mean longitude of about $77 \frac{1}{3}^{\circ}$, the annual fall varies from 21 to 37 inches, spread almost equally over the year.
On the Coromandel coast, with a mean longitude of about 79°, the annual fall varies from 42 to 56 inches, October and November being the wettest months.

Group IV., Table XC., includes stations in Bombay situated between latitudes $15^{\circ} 50^{\prime}$ and $17^{\circ} 40^{\circ} \mathrm{N}$., and longitudes 74° to $77^{\circ} \mathrm{E}$.

The heaviest falls in this group, as in Group I., take place in the months of June, July, and August, but to a much less amount than in that group. The largest falls were at Belgaum; in the three months ending August the fall amounts to 31 inches, of which 15 inches were in July. The next in amount is Sattara, a station of very nearly the same elevation as Belgaum, in July nearly 12 inches, fall. Within this group rain generally falls during nine months of the year, the three months December to February being nearly free from rain.

The annual fall at Belgaum is about $51 \frac{1}{2}$ inches, and the average of the other stations is about 30 inches.

Group V., Table XCI., is comprised between the latitudes $15^{\circ} 50^{\prime}$ and $18^{\circ} 50^{\prime} \mathrm{N}$., and longitudes 77° and $78 \frac{1}{2}^{\circ} \mathrm{E}$.

At Kurnool, within this group, the largest monthly fall is in July, viz. 17 inches, and in the three months ending August at the same station 40 inches, the annual fall amounting to 72 inches nearly. At Bellary and Seroor the fall is about 21 inches, whilst at Secunderabad it amounts to 344 inches. The mean of these three stations gives 254 inches, as the average fall of rain over this part of the country.

Group VI., Table XCII., is comprised of stations in Rombay between latitudes 18° and 183° N., and longitudes 733° and $74 \frac{1}{2}^{\circ} \mathrm{E}$.
The mean annual fall of rain at the two lower stations is 244 inches, whilst at the third station, Poorundhur, at the height of 4,200 feet, it amounts to 721 inches, of which 23 inches fall in July, and nearly 50 inches in the three months ending August.

Group VII., Table XCIII., consists of three stations only, between the latitudes $19 \frac{1}{2}^{\circ}$ and $21^{\circ} \mathrm{N}$., and longitudes $73 \frac{4}{4}^{\circ}$ and $75 \frac{1}{2}$ E.
These results differ very much, varying from $28 \frac{1}{2}$ inches at Nassik to three times as much at Dhoolia, viz., $83 \frac{1}{4}$ inches, whilst at Aurungabad the amount is intermediate, viz., 44 inches. The mean of the three is 521 inches nearly. The 4 inches monthly fall is 21 inches, in July, at Dhoolia; in the four months ending September the fall at this station he four to 66 inches At Malligaum, a station between mounts to 66 ic hut nearer to the latter then the former Nassik and Dhoolia, hut nearer to the latter than the former tation, a small fall of rain in the year is reported to take place, but I have been unable to obtain sufficient informaion to speak decidedly upon this point.
Group VIII., Table XCIV., comprises stations situated to the east of Group VII., between the latitudes 21° and $234^{\circ} \mathrm{N}$., and longitudes 78° and $80^{\circ} \mathrm{E}$.
At all the six stations comprising this group, the heaviest falls occur in July. The four wet months are June to September. The results agree pretty well together. The mean annual fall is about 40 inches.
Group IX., Table XCV., is comprised of stations between the latitudes $23 \frac{1}{2}^{\circ}$ and $25 \frac{1}{2}^{\circ} \mathrm{N}$., and from longitudes 69° to $75^{\circ} \mathrm{E}$.
This group of stations includes Mount Aboo, at the beight of 4,000 feet, where the fall of rain in the four months ending September amounts to 62 inches, 26 of which fall in July.
The annual fall at the other stations varies from 16 to 34 inches, and averages 24 inches in the year. The fall at Mount Aboo in the year is 65 inches nearly, the excess of 41 inches is due to its elevation.
Group X., Table XCVI., is comprised of stations between latitudes 20° and $27 \frac{1}{2}^{\circ} \mathrm{N}$., and longitudes $91 \frac{4}{4}^{\circ}$ and $93^{\circ} \mathrm{E}$.
The fall of rain throughout this extent of country is very large, and it includes that remarkable station at which, so far as I know, the heaviest falls of rain take place at any place in India, viz., Chirrapoongee, at an elevation of 4,500 feet: the fall of rairs at this station in April is 22 inches; in Nay 62 inches, in June 195 inches, in July, 121 inches, in. August 1031 inches, in September 75 inches nearly, and in October 29 inches; within the seven amounting to a fall of no less than 608 inches : there, none falls in November and December, and less than 5 inches in the first three months of the year. Very heavy falls take place at some of the other stations: at Akyab 59A inches fell in June; at Sylhet the falls are very heavy, and but one month, viz., November, is free from-rain.
The annual fall of rain at eight other stations, omitting is 210 inches, and Chirrape, is 78 inches; at Sylhet the
Group XI., 'Table XCVII., comprises stations situated W. of the last group, and nearly parallel to it, between latitude 232° and $264^{\circ} \mathrm{N}$., and longitudes 894° and $911^{\circ} \mathrm{E}$.

These stations yield results of a similar character to those of Group IX., Table XCV., the fall is large at all of them, and not differing very greatly from each other. The falls in June are the heaviest, varying from 19 inches to 43 inches. No rain falls in the last two months of the year, and but little in the first four months. The average fall from the six stations is 934 inches, and for the district of country between $91 \frac{1}{4}$ and $91 \frac{3}{4}$ may very fairly be assumed to have a fall varying from 78 to 92 inches; and if so, the very large area of 5° of longitude and 7° or 8° of latitude, partakes of these very heavy falls.
In Group XII., Table XCVIII., stations are situsted to the west of the last group, and comprise the country between latitudes $22 \frac{1}{2}^{\circ}$ and $23 \frac{1}{4}^{\circ} \mathrm{N}$. and longitudes $88 \frac{1}{2}^{\circ}$ and $89 \frac{1}{4}^{\circ} \mathrm{E}$.
This-space includes Calcutta, immediately round which rain falls heavily in the four months ending September, mounting to very nearly the annual fall. Some rain, how ever, seems to fall in every month at Calcutta, the average annual amount is about 60 inches. At two stations in the same longitude, a little to the N., the average annual fall is about 38 inches, and perhaps the mean fall within the above limits may be considered as about 491 inchea. At Midnapore, a station nearly in the same parallel of latitude as Calcutta, but $1 \frac{1}{2}^{\circ} \mathrm{W}$. of it, the fall of rain in one year 1851, was $22 \frac{3}{4}$ inches only.
Group XIII., Table XCIX., consists of four stations only, between latitudes 244° and $264^{\circ} \mathrm{N}$., and longitudes 85° to $85 \frac{1}{2} \mathrm{E}$ E.
The fall of rain at these stations is small, amounting to an sverage in the year less than 30 inches: the fourth station, riz., Uttra Mullay, has a fall of 230 inches, but this increased amount is accounted for by its height of 4,600 feet. At this station rain falls in every month of the year, in October o the amount of 50 inches
Group XIV., Table C., includes stations between latitudes $25 \frac{1}{4}^{\circ}$ and $233^{\circ} \mathrm{N}$., and longitudes 87° and $883^{\frac{3}{3}} \mathrm{E}$.

The results of these four stations agree pretty well among themselves, and the average fall may be considered for this part of the country as 45 inches.
Group XV., Table Cl., is comprised of three stations, situated a little to the north and west of Calcutta, between Thes 23^{4} and 23° N., and longitudes $88^{\circ} \mathrm{E}$. one-half only of the fall at Calcutta; the average annual one-haif only of
fall is $30 \frac{1}{2}$ inches.
Group XVI., Table CII., comprises five stations, situated N.E. and W. of Calcutta, between the latitudes 232° and $24 \frac{1}{4}^{\circ} \mathrm{N}$., and longitudes $85 \frac{1}{2}^{\circ}$ and $88 \frac{1}{2}^{\circ} \mathrm{E}$.
The results, with the exception of that from Bauliah, the extreme north station of the group, are accordant with each other. The heaviest monthly falls are in June and July and the average fall for the year from all the stations is $46 \frac{1}{2}$ inches. At Darjeeling, a station some degrees N . of Bauliah, in latitude $22^{\circ} 25^{\prime} \mathrm{N}$., and longitude $87^{\circ} 19^{\prime} \mathrm{E}$. at an elevation of 7,000 feet, the fall of rain in the year amounts to 124 inches, a small amount for its elevation.

Group XVII., Table CIII., includes stations between latitudes 25° and $263^{\circ} \mathrm{N}$, and longitudes $81 \frac{130}{4}^{\circ}$ and $83 \frac{1}{2}^{\circ} \mathrm{E}$
There are five wet months within these limiting parallels; the largest fall, $61 \frac{3}{4}$ inches, is at Goruckpore, the height of which I do not know; the mean of the five stations is 42 inches, and is probably near the truth for this part of the country.

Group XVIII., Table CIV., comprise those stations within the latitudes 26° and $30 \frac{1}{2}^{\circ} \mathrm{N}$., and longitudes $763^{3}{ }^{\circ}$ and $793^{\circ} \mathrm{E}$.

Within these limits there are 12 stations, one of which, Nynee Tal, is 6,400 feet in height, and, as was to be expected, yields the largest rain-fall in the group. In the four wet months, June to September, at this station, the falls amount to $79 \frac{1}{2}$ inches, of which 23 inches fall in July and 29 in August. The fall for the year is 96 inches.

The station Meerut, within this group, seems remarkable for its small fall of rain, 18 inches only in the year, but this result is entitled to but little weight, as the observations result is entitled to but little weight, as the observations
are for one year only, and I cannot learn anything about are for one year only, and I cannot learn anything about
the position of the gauge, and the same remarks apply to Roorkee. The mean of all, excepting Nynee Tal, give $30 \frac{1}{4}$ inches as the amnual fall of rain for this district.
A little greater elevation than Nynee Tal, viz. 7,000 feet, and situated N.E. of it, in latitude $30^{\circ} 27^{\prime} \mathrm{N}$. and longitude $78^{\circ} 10^{\prime} \mathrm{E}$., the annual fall of rain at Landour is 93 inches nearly.
Group XIX., Table CV., is comprised of three stations, between the latitudes $30^{\circ} 34^{\prime}$ and $30^{\circ} 57^{\prime}$ N., and longitudes 74° and 784° E., and the four extreme north stations are added to the group.

The three stations are Mean Meer, Loodiana, and Ferozepore: rain falls in small amounts in the first nine months of the year, and none or to very small amounts in the remaining three months, the annual falls are $16 \frac{1}{2}$ inches, $16 \frac{1}{2}$ inches, and $18 \frac{1}{4}$ inches, respectively, giving a mean annual fall of 17 inches only.

In nearly the same longitude as Mean Meer, but at a little more than a degree greater north latitude, the fall at Punjab amounts to nearly 57 inches in the year, 23 inches of which fall in July.

At Meera, which is in $32^{\circ} 37^{\prime}$ N. and $70 \frac{1}{2}$ E., the annual fall of rain is 50 inches nearly, 23 inches of which fall in July.

At the two extreme north stations, viz., Rawul Pindi, in latitude $33^{\circ} 34^{\prime} \mathrm{N}$. and longitude $73^{\circ} 5^{\prime}$ E., at an elevation of 1,500 feet, the fall returned for the year 1859 was $17 \frac{1}{3}$ inches only; and at Peshawur, in latitude $34^{\circ} 20^{\prime} \mathrm{N}$. and longitude $71^{\circ} 29^{\prime}$ E., and at an elevation of 1,056 feet, the angitude fall of rain is less than 14 inches.

Remarks on the Climate of Stations in the Presidency of Bengal.

Bengal Presidency.

Lies between latitude 20° and $31^{\circ} \mathrm{N}$., and longitude 74° and 91° E., and is within the basin of the Ganges. This presidency is much the largest of the three into which India is divided. It includes the districts of Assam, Cachar, Arakin, the Tenasserim provinces, and the possessions in Arakin, the F Masserim ara, Penang, Singapore, \&c.; the most the straits of Malacca, as Penithin one degree of the Equator. The high table lands and high districts lie to the west and north. The climate presents every variety.

Straits Settlements.-Singapore.
Latitude; $1^{\circ} 16^{\prime} \mathrm{N}$. Longitude, $103^{\circ} 53^{\prime} \mathrm{E}$.
Height above sea, 30 ft .
The nearest hill of any height is Bukel Timee, 5 or 6 miles distani from the station, which is open and freely
exposed to the winds. Λ gentle brceze almost daily moderates the heat; the land or jungle wind is the coldest; the sea breeze being sensibly warmer, and often produces lassitude, and sometimes fever

The climate is moist, moderately hot; not variable; and is damp from the constant rain and its proximity to the sea. Dust is seldom troublesome.

Straits Settlements.-Penang.

Latitude, between 514^{\prime} and $5^{\circ} 29^{\prime}$. N.
Longitude, $100^{\circ} 25$ E.
Height above sea, a few feet.
A hill $2,500 \mathrm{ft}$. in height, is 4 miles distant. The station, is exposed to the sea breeze only, which is generally light and healthy.

It rains frequently, though not constantly, all the year round, this, with the sea air, and occasional light breezes, renders the climate decidedly good. In comparison with India generally the thermometer averages 5° or 10° less. These good effects are somewhat counteracted by the relaxing nature of the climate, owing to a powerful sun coning nature of the climate, owing to a powerful sun con-
verting the moisture into steam, and to the remarkable verting the moisture into steam, and to the remarkab
absence of motion in the air, particularly in the evening.

Mergui.

Latitude, $12^{\circ} 27^{\prime} \mathrm{N}$. Longitude, $98^{\circ} 42^{\prime} \mathrm{E}$. Height above sca, 200 ft .
There are bills of some height on the opposite bank of the river.

The station is open to both land and sea breezes. The former blow from May to October, and the latter during the other months of the year.

The climate is considered the best in Burmah. The air is moist and the temperature variable. The nights are always cool, and hence sleep is refreshing.

Tavoy.

Latitude, $14^{\circ} 7^{\prime} \mathrm{N} . \quad$ Longitude, $98^{\circ} 18^{\prime} \mathrm{E}$
Height above sea, 12 ft .
The nearest mountain is the Ox's Hump, between 30 and 40 miles east of the station, which is exposed to a sea breeze during the earlier months, and to a cold easterly land wind towards the end of the year.

Shuay Gheen, Martaban, Province Burmah.

Latitudes, $18^{\circ} 6^{\prime} \mathrm{N} . ; 16^{\circ} 30^{\prime} \mathrm{N}$.
Longitudes, $96^{\circ} 46^{\prime}$ E.; $97^{\circ} 40^{\prime} \mathbf{E}$. Height above sea, 125 ft .
There are mountains about 20 miles distant from the station, which is freely exposed to all winds. The sea breeze is occasionally felt.
The climate is dry only during the months of February, March, April, and the early part of May. It is very damp during the rest of the year, and being never very hot or very cold, its variability is not great. Fogs are rare During the dry season the air is loaded with smoke and particles of burnt matter, from the jungles being on fire on all sides.

Tonghoo.

Latitude, $18^{\circ} 57^{\prime} \mathrm{N}$., 40 miles from Burmese frontier.
Longitude, $96^{\circ} 30^{\prime}$ E., 160 miles from the coast.
Height above sea 300 ft .
The nearest range of mountains are distant about 12 miles.

From November to February cold northerly land winds prevail. During the cold season dysentery cases are aggravated, and during the southerly winds fevers prevail.

The climate for a tropical one is good; from November to February the nights and mornings are cold; during the day it is dry and hot, with heavy dews at night, and fogs in the morning. From the lst of March till the end of May it is hot and sultry. From June to October close and damp. During the hot season the station is enveloped in clouds of dust. .

Rangoon. British Burmah.

Latitude, $26^{\circ} 48^{\prime}$. N. Longitude, $96^{\circ} 10^{\prime}$ E. Weight above sea varies from a few feet to 80 ft . There are no mountains within 100 miles of the station, which is open and freely exposed; there are no ungenial cold, variable, or land winds; the sea breeze blows freely at certain seasons.

The climate is dry from the middle of October until the middle of May. Ileary dews and mists prevail during January, February, and March. The day heat is excessive from Narch till May, but a refreshing sea breeze generally sets in about 4 p.m.; the nights and mornings are cool. The temperature usually varies about 90° in the 94 hours.

Thyet Myo.

Latitude, $20^{\circ} 18^{\prime}$ N. Longitude, $92^{\circ} 46^{\prime}$ E.' Height above sea 240 ft .
There is a range of small hills, 3 miles S.S.W. of the station, which is open where houses are built, but the jungle grows close up to the confines, and therefore it is not freely exposed to the winds. There is no sea breeze.
not freely exposed to the winds. There is no sea breeze.
The character of the climate, as compared with Indian The character of the climate, as compared with Indian
stations generally, is that of greater moisture of atmosphere stations generally, is that of gre
and more clouded state of sky.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 84° in December to 101° in April.
The low night temperature varies from, 53° in January to 78° in May, August, and September.
The mean annual temperature of the air is abott 80 ; the mean daily range 19°.
The annual fall of rain is about 48 in., of which 17 in. fall in the month of June, and 33 in. in the three months, Jane, July, and August.

Cuttack.

Latitude, $20^{\circ} 28^{\prime} \mathrm{N}$. Longitude, $85^{\circ} 55^{\prime} \mathrm{E}$. Height above sea, 80 ft .
A range of mountains extends within 20 miles of the station, which is, generally speaking, fully exposed to the winds. The land wind is prevalent during the N.W., and a sea breeze during the S.W. monsoon. The latter, by a sea breeze during the S . Wodifying the temperature during the hot season, exercises modifying the tem
a salutary effect.
The following are the approximate mean monthly values The following
The high day temperature varies from 76° in December to 96° in May.
The low night temperature varies from 61° in December to 81° in June.
The mean annual temperature is about 79°; mean daily range 13°.

Seetabuldee.

Latitude, $21^{\circ} 10^{\prime} \mathrm{N} . \quad$ Longitude, $79^{\circ} 9^{\prime} \mathrm{E}$. Height above sea, 939 ft .
The nearest mountain is Ramakonab, 25 miles distant from the station, which is open and freely exposed to the minat.

The climate is good. It is hot from March 15 to June 15; wet till September 30, and during the remainder of the year moderately cool.

The following are the approximate mean monthly values of temperature :-

The high day temperature varies from 74° in December to 99° in May.

The low night temperature varies from 61° in January to 92° in May.

The mean annual temperature is about 82°, mean daily range 8°.
The annual fall of rain is about 47 in , of which 13 in . fell in June, $12 \frac{1}{2}$ in. in July, and 11 in. in August, making $43 \frac{1}{2} \mathrm{in}$. in the three months.

Latitudes, 22° to 34°.

Dera Ismael Khan.

Latitude, $22^{\circ} \mathrm{N}$. Longitude, $71^{\circ} \mathrm{E}$.
This station is situated at the northern extremity of the Dera, and on the right bank of the Indus.

There is considerable variation of climate between the different seasons in this part of the trans-Indus country. During the warm weather, for five or six months of the year, the heat is generally intense, and of a dry character, while during the winter months the weather is sometimes extremely cold; a sharp cutting wind blowing from the W. over the snow-covered tops of the Saliman range. The rainy season is of very short duration, and but little rain falls during the year.
The following are the approximate mean monthly values of temperature.
The high day temperature varies from 81° in January to 97° in May.

The low night temperature varies from 62° in January to 84° in June.
The mean annual temperature is about 80°, mean daily range 14°.

Fort William, Calcutta.

Latitude, $22^{\circ} 34^{\prime} \mathrm{N}$. Longitude, $88^{\circ} 25^{\prime} \mathrm{E}$. Height above sea, 18 ft .
Nearest elcvation, the Rajmahal Hills, 130 miles distant,
During the cold season the prevailing N. and N.W. winds are bracing and invigorating. In the hot weather
the prevailing S. and S.S.F: winds are from the sea, and their usual beneficial effect is much lower. The temperature of the station is high, but the extremes of heat are moderated by contiguity to the ocean, rivers, and lakes. The atmosphere is generally moist. The elevation of the thermomete during the hot, and depressions during the cold seasons, are not so great as up the country, and the climate is more equable though more humid.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 77° in December to 94° in May.
The low night temperature varies from 59° in December to 81° in June
The mean annual temperature of the air is about 82°; mean daily range 13°
The annual fall of rain is about 61 inches, of which 40 inches fell in three months ending August.

Dum Dum.

Latitude, $22^{\circ} 38^{\prime}$ N., 8 miles from Calcutta.

$$
\text { Longitude, } 88^{\circ} 30^{\prime} \text { E., } 10 \text { miles from Barrackpore. }
$$ Height above sea, 18 ft

Nearest mountain is Parisnath, 121 miles from the station, which, as a general rule, is not exposed to cold or variable winds, but is under the influence of the N.E. and S. W. monsoons; the latter is the sea-breeze.

The climate of Dum Dum, as of all Lower Bengal, is very moist. The weather is not very cold, as in the N.W. proyinces, and never so hot, dry, and trying, even in the bot season, as up the country. There is a thick mist nearly every morning, hanging over the station, for a month before the hot season commences. There is no dust at any time sufficient to render the air impure, or other admixture affecting the atmosphere unfavourably.

The temperature about Calcutta is more tropical than in several of the districte of India further south.
The following are the approximate mean monthly values of temperature :-

The high day temperature varies from 72° in December to 97° in May

The low night temperature varies from 58° in January to 82° in June and July.

The mean annual temperature of the air is about 78°; mean daily range 14°.
The fall of rain averages about 60 in . in the year.

Barrackpore.

Latitude, $22^{\circ} 45^{\prime} \mathrm{N}$. Longitude, $88^{\circ} 23^{\prime} \mathrm{E}$.
This station is situated on the left bank of the Hooghly, 16 miles above Calcutta.
The rainy season commences generally about the 20th of June.

The following are the approximate mean monthly values of temperature.
The high day temperature varies from 72° in December to 97° in May.

The low night temperature varies from 58° in January to 82° in June and July.
The mean annual temperature of the air is about 78° mean daily range 14°.

Raneegunge.

Latitude, $23^{\circ} 35^{\prime}$ N. 126 miles N.W. of Calcutta, Longitude, $87^{\circ} 10^{\prime} \mathrm{E}$.
Height above sea, 370 ft .
Nearest mountain 30 miles distant from the station, which is open and freely exposed to the prevailing winds. The climate is good, with no great or unusual variability, but is subject to heavy storms of sand and dust.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 71° in December to 97° in May.
The low night temperature varies from 56° in January to 82° in June and July.
The mean annual temperature of the air 78°; mean daily range 14°.
The annual fall of rain is about 60 in .

Hazareebaugh.

Latitude $24^{\circ} \mathrm{N}$. Longitude, $85^{\circ} 24^{\prime} \mathrm{E}$.
Height sbove the sea, 1,900 feet. Elevated table land. With the exception of the little detached hills from 300 to 600 feet high, there are no considerable mountains, or higher table-lands in the vicinity.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 72° in December to 97° in May.

The low night temperature varies from 56° in January to 83° in June.
The mean annual temperature is about 78°; mean daily range 14.
The annual fall of rain is about 53in
Berhampore.
Latitude, $24^{\circ} 5^{\prime} \mathrm{N} .118$ miles from Calcutta.
Longitude, $88^{\circ} 17^{\prime} \mathrm{E}$.
Height above sea, 76 ft
The Ragmahal range of hills are 40 miles distant from the station, which is exposed to land winds from the W and N.W., from October to March, and to E. and S.E from April' to September. Squalls with rain from the N.W frequently occur in April and May, and their effect is always beneficial.
The climate is damp. There are frequent fogs in the early mornings, especially during the cold weather. The heat is very oppressive during April, May, and June, but is often reduced for two or three days at a time, by squalls often reduced
from the N.W.
The temperature of this station is recorded as low as 44° in January, but in June it is as high as 109°.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 75° in Decembe to 100° in June.
The low night temperature varies from 51° in January to 77° in Deceraber.
The mean annual temperature of the air is 77°; mean daily range 22°.
The annual fall of rain is about 50 inches, of which $30 \frac{1}{4}$ inches fall in the three months ending August, and 11 inches in three months ending November, the wettest month is July, the rain fall amounting to $13 \frac{1}{2}$ inches.

Goonah.

Latitude, $24^{\circ} 39^{\prime} \mathrm{N}$. Longitude, $77^{\circ} 17^{\prime} \mathrm{E}$.
Height above sea, $1,800 \mathrm{ft}$.
450 miles from the sea.
192 ", ". Mhow.
191 "" ". Agra.
During the hot season the"wind blows from the S.W. generally; during the rainy season the S.E. is prevalent and during the cold season, the N.W. The west wind is hot, the east wind damp, and the N.W. cold and dry. During the prevalence of the hot winds there is generally a lull from sunset to sunrise. Previous to the setting in of the rainy season calms often occur, and the heat then is oppressive.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 76° in January to 97° in May.

The low night temperature varies from 57° in January to 83° in June. -
The mean annual temperature is about 79°; the mean daily range 14°.
The annual fall of rain is about 30 inches.

Chunar.

Latitude, $25^{\circ} 5^{\prime} \mathrm{N} ., 16$ miles from Benares.
Longitude, $83^{\circ} \mathbf{E}$
Height above sea, 250 ft .
The nearest table-land is 12 $\frac{1}{2}$ mile distant from the station, and is about 200 ft . above its level.
The fort in which the troops are mostly located, from its great elevation, is freely exposed to winds. The rest of the station is open to winde only from the river side. The station is very little exposed to cold or variable winds, or to land winds, except in the fort ; it is, however, exposed to the river breeze, which is pleasant, and generally healthy but sometimes induces colds and fevers at the termination of the rainy season.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 76° in January to 103° in June.
The low night temperature varies from 53° in December to 81° in June.
The mean annual temperature is 80°; mean daily range 22°.
The annual fall of rain is about 50 inches; of whick 36 inches fall in three months, June, July, and August.

Hameerpore.
Latitude, $25^{\circ} 10^{\prime} \mathrm{N}$. Longitude, $74^{\circ} 43^{\prime} \mathrm{E}$.
Distant 40 miles from Cawnpore.
". 84 Lucknow.
In the hot season the weather is yery sultry indeed, but enipered to a great degree by the presence of trees. Dust
storms frequently occur ; during the cold season the nights
and mornings are sometimes very cold, fires being acceptable.
The following are the approximate mean monthly values
of temperature :-
'The higls day temperature varies from 77° in December to 90° in June.
The low night temperature varies from 57° in January to 83^{c} in June.
The mean annual temperature is about 79°; mean daily range 15°.
The annual fall of rain is about 30 inches.

Chirrapoongee; Khasia Hills.

Latitude, $25^{\circ} 14^{\prime} \mathrm{N}$. Longitude, $91^{\circ} 45^{\prime} \mathrm{E}$. Height above sea, $4,118 \mathrm{ft}$.
The station is open, and freely exposed to every wind.
The climate is healthy, but the moisture is excessive during six months of the year. The temperature is equable; during the rainy and cold seasons, however, it is foggy. The air is cold and invigorating, and there is no impurity from dust.
The following are the approximate mean monthly values of temperature: -

The high day temperature varies from 58° in December to 74° in May.
The low night temperature varies from 47° in December to 68° in July.
The mean annual temperature is about 64°; inean daily range 9°.

The average full of rain is about 613 inches, of which 490 fall in the three months ending August; the wettest month is June, the full being about 243 inches.

Dehree.

About six miles to the E. of the Kivmore Hills. This station is situated on the Grand Trunk Road, 86 miles from Benares:

Shinghotty.

This is a station on the Grand Trunk Road, for the reception of troops passing along by bullock train.
I'he climate seems good for Europeans. The cool season is pleasant, and during the hot season there is always cool air at night.

Benares.

Latitude $25^{\circ} 17^{\prime} \mathrm{N} ., 74$ miles E. of Allahabad. Longitude, $83^{\circ} 4^{\prime}$ E. Height above sea, 270 ft .
The Hill fort of Rhotasgurb is on the nearest higher ground.
The station is not exposed to cold or variable winds. The prevailing winds are east and west, the latter being the more prevalent throughout the year; sulden vicissitudes are rare.
The climate of Benares, like its gengraphical position, is mtermediate between that of Bengal and the North-western Provinces. The cold is less intense, and the heat less scorching than that of the North-west Provinces, and it is much drier than liengal. It is not sulject to sudden changes of temperature, but there are considerable diurnal alterations, especially at the coumencement of the cold season. The atunosphere is generally loaded with dust seasin.
during the hot westerly winds.
The following are the approximate mean monthly values of temperature:-

The high day temperature varies from 68° in December to 99° in May.

The low night temperature varies from 59° in December to $8 \mathrm{~s}^{\circ}$ in May.

The mean annual temperature is about 78°; mean daily range 7°.
The annual fall of rain is about 37 inches, of which 29 fall in the six months, A pril to September.

Allahabad.

Latitude, $25^{\circ} 27^{\prime}$ N. Longitude, $81^{\circ} 50^{\prime} \mathrm{E}$. Height above sea, 36 fft .
Due south from this, running enst and west, are the Kymore Ilills, upwards of 2,010 tt. in height. From Miryapore, on the Ganges, a branch of this range, in some places $1,000 \mathrm{ft}$. hish, is within 15 miles.
In the dry season the air is frequently heavily laden with dust, and dust storms, at times violent, occur.

The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 71° in December to 98° in May.
The low night temperature varies from 54° in January to 83° in June.
The mean annual temperature is abput 78°; the mean daily range 15°.
I'he annual fall of rain is about 35 inches.

Jhansi.

Latitude, $25^{\circ} 32^{\prime} \mathrm{N}$. Longitude, $78^{\circ} 34^{\prime} \mathrm{E}$.

Height above sea, 765 ft .
The surrounding country is void of vegetation and the soil rocky:

The prevalent winds are W. and S.W.
The climate is one of peculiar and intense heat.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 73° in December to 98° in May.
The low night temperature varies from 55° in January to 83° in June.
The mean annual temperature is about 79°; mean daily range 15°.
The annual fall of rain is about 35 inches.

Dinapore.

Latitude, $25^{\circ} 38^{\prime} \mathrm{N} ., 375$ miles from Calcutta. Longitude, $85^{\circ} 1^{\prime} \mathrm{E}$.
Height above sea, 212 ft .
Nearest mountain, Burhee, distant 120 miles from the station, which is tolerably open. The prevailing winds are the east before and during the rains, April to September, and the west for the rest of the year.
The climate is generally a medium one, between the damp of Bengal and the drought of the N.W. provinces. It is of Bengal and the drought of the N. . provinces. It is tolerably dry in the cold weather, yet not so much as to
wither up the grass; neither is the heat in Apri, May, and June, nor the cold in November, December, and January, so great as in the north-west. It is tolerably free from dust, and moderately variable only. Fog occasionally in November and December.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 69° in December to 98° in May.
The low night temperature varies from 53° in January to 83° in June.
The mean annual temperature is about 78°; mean daily - range 15°.

The annual fall of rain is about 30 inches.

Ghazeepore.

Latitude, $25^{\circ} 49^{\prime} \mathrm{N}$. Longitude, $80^{\circ} 48^{\prime} \mathrm{E}$.
The station lies on the bsuns of the Ganges.
The nearest mountain range is the kyanore, 70 miles from the station, which is open. 'The wind varies much between the E., N.W., and W. The station is quite out of the influence of the sea breeze.
The climate is nut very variable; the cold season is bracing. During the hot season, when the wind is from bracing. it is dry and hot, and there is much dust in the air. The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 74° in December to $1\left(15^{\circ}\right.$ in May.
The low night temperature varies from 56° in December to 83° in July.
The mean annual temperature is about 82°; mean daily range 20°.

The annual fall of rain is about 47 inches.

Lucknow, Roy Bareilly, Fyzabad, Gondah, Seetapore.

Latitudes, $26^{\circ} \mathrm{N}$. Longitudes, $81^{\circ} \mathrm{E}$.
Heights above sea, 360 ft . about.
The distance of Lucknow from the nearest hills is 100 miles; Roy Bareilly, 150 miles; Fyzabad, 70 niles; Gondah, 50 miles; and Seetapore, 70 miles.
The climate of the provinces, as in most other parts of India, is divisible into the cold, hot, and rainy seasons. The cold season sets in at the beginning of October, and is at its height in December, when the night temperature is low enough to freeze water. Ice is also made in Jnunary, and sometimes even so late as towards the end of February. The cold season ends in March. Heavy dev often falls in the winter months, and there are not unfrequent showers of rain. The hot season sets in towards the end of April, of rain. hot winds blow throughout May and June till the and hot winds blow throughout May and June till the
rains commence, which they commonly do at the end of rains commence, which they commony do at the end of
June. During this seasion dust stornis are frequent, and
often very violent, and while it lasts the air in the day is more or less charged with fine dust.
The following are the approximate mean monthly values
of temperature :-
The high day temperature varies from 66° in December to 100° in May.
The low night temperature varies from 53° in January to $8 \cdot 2^{\circ}$ in June and September.
The mean annual temperature is about 79°; mean daily range 16°.
The annual fall of rain averages from 30 to 40 inches.

Goruckpore.

Latitude, $26^{\circ} \mathrm{N}$. Longitude, $82^{\circ} \mathrm{E}$.
Contiguous on the west to the Oude territory.
The hot westerly winds which are generally so prevalent in the more westerly stations in April, May, and June, seldom occur at Goruckpore
From its proximity to the lower range of the Himalaya, much rain usually falls in this district; the fall, however, is not confined to the regular rainy season of other stations, s there is rain throughout the year, though in greater abundance during the season from June to September.
The following are the approximate mean monthly values of the elowing a
The high day temperature varies from 71° in December to 98° in May.
The low night temperature varies from 53° in Jonuary to 83^{\prime} in June.
The mean annual temperature is about 78°; mean daily range 15°.
The annual fall of rain is about 63 inches,

Azringhur.

Latitude, $26^{\circ} 10^{\prime}$ N. Longitude, $83^{\circ} 15^{\prime}$ E. 69 miles N.E. of Benares.
44 miles N.W. of Ghazeepore.

Morar.

Latitude, $26^{\circ} 15^{\prime}$ N., 75 miles from Agra. Longitude, $78^{\circ} \mathrm{E}$.
The hot westerly wind generally commences here in April, at first blowing only during the day, but afterwards continuing during the greater part of the night. Frequent dust storms occur during this season of the year, accompanied with rain, hail, and thunder; they come on suddenly, and though severe are but of short duration. The hot winds cease about the middle of June, and are succeeded by the rains, which continue till September, the verage annual fall being 50 inches.
The following are the approximate mean monthly values of temperature :-
'The high day temperature varies from 73° in December to 98° in May.
The low night temperature varies from 54° in January to 83° in June.
The mean annual temperature is about 79°; mean daily rance, 15°.
The annual fall of rain is about 50 inches.

Seepree.

Latitude, $26^{\circ} 21^{\prime}$ N. Longitude, $84^{\circ} 30^{\prime}$ E.
Height above sea, $1,700 \mathrm{ft}$.
70 miles south of Givalior, on the high road from Agra to Bombay.
'The station is open on all sides. The prevailing winds are,-in the cold season, N.W.; in the hot season, W.; and in the rainy season, S.E.; but variable.

The climate of Seepree is good; cool and pleasant throughout the year; while Morar is parched and dried up, excessively hot, and requiring punkahs night and day, Seepree is green and fresh to a degree seldom seen in India, Seepree is green and fresh to a degree seldom
and so cool that a punkah is seldom required.
The following are the approximate mean monthly values of temperature:-

The mean high
cember to 97° in May.
Ther to 97° in May. The mean low night

- ture

The mean annual temperature is about 78°; mean daily range, 15°.
The annual fall of rain is about 35 inches.

Kherwarrah.

Latitude, $26^{\circ} 42^{\prime}$ N. Longitude, $79^{\circ} 12^{\prime} \mathrm{E}$. Height above sea, $1,200 \mathrm{ft}$.
The nearest mountain is the Kummulnath, about 30 miles distant from the station, which is open, and much
exposed to land winds, but not immediately to the erabreeze. The land wind from the east is unhealthy. . During March, April, May, and till the 20th June, the climate is hot and dry; from the 20th June till the 20 th September, the temperature is lower, more equable, and the air loaded with exhalations; from the 20 th of Septeniber to the $?($ th of November the vicissitudes are of daily occurrence. 'l'he air is cold, the weather variable, and fogs prevail.
The following are the approximate mean monthly ralues of temperature :-
The high day temperature varies from 74° in January and December to 103° in May.
The low night temperature varies from 52° in December to 84° in May.
The mean annual temperature is about 78°; m an daily range 18°.
The annual fall of rain is about 27 inches; of which, 20 fall in the three months, June to August; 12 inches fall in the month of July.

Shalijehampore.

Latitude, $27^{\circ} \mathrm{N}$. Longitude, $80^{\circ} \mathbf{E}$.
This station is situated between the provinces of Rohilcund and Oude.
The N. and E. wind often blow for weeks together in the hot season. They are very unhealthy from blowing over an extent of jungle.
The climate is fitful, and the rains are less prolonged and regular than at other stations.
The following are the approximate mean monthly values f temperature:-
The high day temperature varies from 71° in Dccember to 98° in May.
The low night temperature varies from 53° in January to
3° in Jume. 3° in June.
The meau annual temperature is about 78°; mean daily range, 16°.
The annual fall of rain is about 32 inches.

Darjeeling.

Latitude, $27^{\prime} 2^{5} \mathrm{~N} .36$ miles from nearest part of the plains. Longitude, $88^{\circ} 18^{\prime} \mathrm{E}$.
Height above sea, $7,000 \mathrm{ft}$. to $7,600 \mathrm{ft}$
The station is situated on the western side of a mountain, surrounded by much more elevated mountains at a coniderable distance.
The station is open and freely exposed to the wind ; but there is very little. It chieHy blows from the S. and S.E., and its effect is beneficial.
The climate is temperate and damp; there is much fog and mist in the rainy season.
The following are the approximote mean monthly values of temperature:-
The high day temperature varics from 50° in January to 65° in June, August, and September.
The low night temperature varies from 39° in December, January, and February, to 58° in July, August, and September.
The mean annual temperature is about 54°; mean daily range, 10°.
The annual fall of rain is about 124 inches.

Agra.

Latitude, $27^{\circ} 11^{\prime} \mathrm{N} . \quad$ Longitude, $77^{\prime} 53^{\circ} \mathrm{E}$. Height above sea, 800 ft .
Nearest mountain land is at Futterpore Seckra.
The station is not exposed to cold or variable winds.
The climate from the end of October to the beginning of April is cool, clear, and healthy; it is very hot and dry, and not unhealthy, till the end of June, when exposure to the sun must be avoided. Till the end of September it is hot and moist.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 73° in December to 98° in May.
The low night temperature varies from 53° in Junuary to 83° in June.

The mean annual temperature is about 78°; mean daily range, 15°.
The annual fall of rain is about 28 inches.
Dellii.
Latitude, $28^{\circ} 39^{\prime}$ N. Longitude, $77^{\circ} 18^{\prime}$ E.
Height above sea, 800 ft .
The climate is malarious and unhealthy for Europeans. Delhi is considered one of the hottest places in India. The hot winds blow with great fury for three or four months in the year. The rainy and cold seasons are tolerably agreeuble, but all the year round it is infected with hordes of small but all the year round it is infected with horde

- flies, which with the dust, form one of its plagues. The rains commence generally in the latter end of June, and last, with many internissions, to the end of September, sometimes extending to November, and vary in quantity as much as in duration. In some seasons so low a quantity as 10 inches has been measured.
The following are the approximate mean monthly values
of temperature :-
The high day temperature varies from 70° in December, to 99° in May.
The low night temperature varies from 50° in January, to 83° in June.
The mean annual temperature is about 78°, mean daily range 17°.
'The annual fall of rain, 25 inches.

Meerut.

Latitude, $28^{\circ} 59^{\prime} \mathrm{N}$. Longitude, $77^{\circ} 46^{\prime}$ E.

Height above sea, 900 ft .

Nearest mountains, Sewalek range, 70 miles from the station, which is open, and freely exposed to cold winds in the months of November, December, January, and February. There are land winds also, generally from east or west, the latter being the more prevalent and healthy.
'The climate is good, being dry for a great portion of the year and not variable. Fogs are very rare. There is much dust during the dry seasons.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 69° in December to 103° in May.
The low night temperature varies from 50° in January and November to 85° in July.
The mean annual temperature is 77°; mean daily range 19°.
The annual fall of rain is about 18 inches; the rain fall at this station is not very remarkable, it being about the quantity which falls in a dry year on the east coast of England.

Nynee Täl.

Latitude, $29^{\circ} \because 0^{\circ} \mathrm{N}$. Longitude, $79^{\circ} 30^{\circ} \mathrm{E}$. Height above sea, $6,400 \mathrm{ft}$.
The station is in a valley in the heart of the mountains, it is perfectly open, and exposed to winds which are bracing and conducive to health.
The climate is excellent. In the rains the air is damp;
but at other times it is remarkably dry and pure.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 64° in January to 83° in May.
The low night temperature varies from 28° in January to 59° in July.
The mean annual temperature is 60°; mean daily rance 29°.
The annual fall of rain is about 96 inches; of which 67 fall in the three months ending with August; the wettest month is August, the fall being 29 inches.

- Roorkee.

Latitude, 29° E3 3^{\prime} N. Longitude; $77^{\circ} 57^{\prime}$ E.
The Himalaya mountains, are distant about 40 miles from the station, which is generally very open. A cool wind in the hot weather blows at nights from the north, and is pleasant and healthy.

The following are the approximate mean monthly values of temperature :-
'Ihe high day, temperature varies from 69° in December to 99° in May.
The low night temperature varies from 50° in January to 83° in June.
The mean annual temperature is about 78°; mean daily range 17°.
The annual fall of rain is about 10 inches.
Dera Ghazee Khan.
Latitude, $30^{\circ} 4^{\prime} \mathrm{N}$. Longitude, $70^{\circ} 54^{\prime} \mathrm{E}$.

Height above sea, 200 ft .

The nearest mountains are the Sooliman range, 40 miles west of the station, which is not exposed to cold or variable winds, or to land or sea breezes.

As a rule very little rain fulls in the district, and the climate may be said to be dry, though the air is always more or less charged with moisture from the proxinity of canals, irrigated ficlds, and the river Indus. For the same reason
also the temperature is lower, and the air freer from dust than in other parts of the district, beyond the influence of the cultivation.

The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 73° in December to 99° in May.
The low night temperature varies from 51° in January to 83° in June.
The mean annual temperature is about 78°; mean daily range 18°.
The annual fall of rain is about 15 inches.
Umballa.
Latitude, $30^{\circ} 23^{\prime}$ N. Longitude, $76^{\circ} 44^{\prime} \mathrm{E}$. Height above sea, $1,050 \mathrm{ft}$.
The nearest mountain land is the Himalaya, 35 miles from the station, which is not exposed to cold or variable winds, or to the sea breeze, and the hot land winds that prevail at one season of the year, are not unhealthy.
The climate is generally a healthy one. It is dry and hot for three months of the year, moist and hot for athree more, temperate for two, and cold and bracing for the remaining four. It is neither variable nor foggy; the remaining four. It is neither variable nor foggy; the
atmosphere, however, of the entire district is more or less atmosphere, however, of the entire d
affected by dust from April till July.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 76° in December to 113° in June.
The low night temperature varies from 37° in January and December to 76° in June and August.
The mean annual temperature is 79°; mean daily range 39°.
The annual fall of rain is about 26 inches.
Landour (Convalescent Depôt).
Latitude, $30^{\circ} 27^{\prime} \mathrm{N}$. Longitude, $78^{\circ} 10^{\prime} \mathrm{E}$.
. Height above sea, $7,000 \mathrm{ft}$.
The station is exposed to winds from the plains, and more frequently from the interior hills.
The climate of Landour, like that of most hill stations, is very moist for some months of the year, but there is no peculiarity in the nature of the atmosphere excepting that due to elevation.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 69° in December to 99° in May.
The low night temperature varies from 50° in January to 83° in June.
The mean annual temperature is about 78°; mean daily range 18°.

The annual fall of rain is about 93 inches.
Mean Meer.
Latitude, $30^{\circ} 34^{\prime}$ N., 6 miles S.E. of Lahore. Longitude, $7^{\prime} 4^{\circ} 4^{\prime} \mathrm{E}$. Height above sea, 1,128 ft.
The nearest mountain range is 100 miles distant from the station, which is remarkably open. A cold N.E. wind blows during the cold months, which augments considerably the sensation of cold.
The climate is dry. The thermometer in a northerlycovered verandah stands at 107° at 4h. p.m. in hot weather; after a dust storm the fall may be 19°. Fogs during the cold weather are rare. During the hot weather the air is loaded with dust.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 64° in January to 98° in May.
The low night temperature varies from 45° in January to 82° in June.
The mean annual temperature is 75°; mean daily tange 19°.
The annual fall of rain is about 16 inches, of which 13 fall in the six months ending September.

Kussowlie.

Latitude, $30^{\circ} 54^{\prime} \mathrm{N}: \quad$ Longitude, $77^{\circ} 3^{\prime} \mathrm{E}$,
Height above sea, $6,650 \mathrm{ft}$.
The station of Kussowlie is situated on the lower range of the Himalayas, and is free without undue exposure to the wind, from almost every quarter.
The climate is very good, except during the S.W. monsoon.
The annual fall of rain is about 70 inches.

Ferozepore.

Latitude, $30^{\circ} 55^{\prime}$ N. Longitude, $74^{\circ} 35^{\prime}$ E.

 Height above the sea, 720 ft .The nearest mountain is Kangra, 90 miles from the station, which is open to the land winds but no sea-breeze. During the summer months frequent dust storms arise with great violence from every quarter, without rain, loading the atmosphere with dust, which on subsiding leaves the air pure, and contributes greatly to the healthiness of the station.
The climate is dry ; free from any great variation. From December to March inclusive are the most healthy months, and August and September the most unhealthy. Fevers, particularly those of an intermittent kind, are the prevailing diseases, and in severe hot weather Europeans may suffer, though rarely, from attacke of heat apoplexy.
Rain falls less frequently than in the generality of other stations, except those of Sinde.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 72° in January to 106° in June.

The low night temperature varies from 47° in January to 84° in June.

The mean annual temperature is 78°; mean daily range, $0 \mathscr{O}^{\circ}$

The annual fall of rain is about 14 inches.

Loodiana.

Latitude, $30^{\circ} 55^{\prime} \mathrm{N}$. Longitude $75^{\circ} 54^{\prime} \mathrm{E}$ 。

Height above sea, 900 ft .

Nearest mountains, the Himalayan range, 70 miles N.E. of the station, which is exposed sometimes to hot land winds from the west, but most frequently from the east.

The climate is dry and the heat great from April to October. In the winter season the nights are cold, and it sometimes freezes to season the mights are cold, and During the hot season the air is frequently laden with dust During the hot
The following are the approximate mean monthly values of temperature :-
The bigh day temperature varies from 69° in December to $9 y^{\circ}$ in May.
The low night temperature varies from 48° in January to 83° in June.
The mean annual temperature is about 78°; mean daily range 18°.

The annual fall of rain is about 17 inches.

Jullundur.

Latitude $31^{\circ} 21^{\prime} \mathrm{N}$. Longitude, $75^{\circ} 31^{\prime} \mathrm{E}$. Height above the sea, 937 ft .
The nearest mountains are 28 miles north; a broken ridge, extending for 70 miles N., and varying from 2,000 to $5,000 \mathrm{ft}$. above the level of the sea.

The station is open to all the winds that blow, and their effect upon health is good.
The climate is good, with only three months of rainy season, July, August, September; the other months are generally dry, with occasional dust and thunderstorms; the nights become cold about October.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 70° in December to 99° in May.
The low night temperature varies from 49° in January to ${ }^{\circ}$ 83° in June.
The mean annual temperature is about 78°; mean daily range 18°.
The annual fall of rain is about 57 ins.

Punjab.-Umritsir and Gorindgurh.

Latitude, $31^{\circ} 40^{\prime} \mathrm{N}$. Longitude, $74^{\circ} 45^{\prime} \mathrm{E}$.
Height above sea, 900 ft .
The station is open, and freely exposed to the prevailing winds. The prevailing winds blow about N.W. and S.E. those from the N. and W. are generally designated the hot winds, during the months of April, May, and June, and prevail generally, with occasional intervals, the whole year.
The S.E. winds prevail in the rainy months, July, August September, and part of October. The N.W. winds are healthy, even when the heat is excessive, and this can be easily accounted for, by the air being so dry and free from moisture. The S.E. winds are loaded with moisture, and When they begin to blow, towards the end of June, are indicative of the rainy season, and certainly act, from this
cause alone, on the general health, as well as being th medium through which malaria is conveyed to the limes. The following are the approximate mean monthly values of temperature :-
The high day temperature varied from 61° in January to 2° in June.
The low night temperature varied from 44° in December to 86° in June.
The mean annual temperature is about 73°; mean daily ange 13°.
The annual fall of rain is about 57 inches; of which $52 \frac{1}{4}$ inches fall in the six months ending September; the heaviest fall occurred in the month of July, viz., 23 inches.

Kangra.

Latitude, $32^{\circ} 5^{\prime} \mathrm{N}$. Longitude, $76^{\circ} 18^{\prime} \mathrm{E}$. Height above plains, 2,500 feet.
The European soldiers have had uninterruptedly good health at this station. Its situation is favourable in good way, and conducive to health, sheltered and shaded by the surrounding hills, yet in an elevated position, 2,500 ft above the level of the plains, and open to the snowy $2,500 \mathrm{ft}$. of the Kooloo Hills, from which cool breezes blow to nigh time nearly all the year round.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 68° in December to 99° in May.
The low night temperature varies from 47° in January to 83° in June.
The mean annual temperature is about 78°; mean daily range 18°.
The annual fall of rain is about 25 inches.

Sealkote.

Latitude, $32^{\circ} 29^{\prime}$ N., 63 miles N.N.E. of Lahore. Longitude, $74^{\circ} 33^{\prime} \mathrm{E}$. Height above sea, 900 ft .
Nearest mountain land 30 miles from the station, which is open, and freely exposed to the winds.
The climate of this station is remarkably healthy, and suited to the European constitution; very variable, June, July, and August being very hot. Monsoon not very Juy, and August being very hot. Monsoon not very ary, and for five months of the year. The air is particularly ary, and for five months of the
free from dust and impurities.
The following are the approximate mean monthly values of temperature :-
The bigh day temperature varied from 63° in January to 98° in June.
The low night temperature varied from 51° in January and February to 81° in June.
The mean annual temperature is about 75°; mean daily ange 17°.
The annual fall of rain is about 29 inches.

Thelum.

Látitude, $32^{\circ} 56^{\prime}$ N. Longitude, $73^{\circ} 47^{\prime} \mathrm{E}$
Height above sea, 1,000 feet. 100 miles N.N.W. from Lahore. 66 miles S.S.E. from Rawul Pindi.
The station is generally surrounded by high ground
The climate appears to be a desirable one for six months of the year, from November to May. The temperature during the hot season is high, averaging from 80° to 90° but not so oppressive as at Lahore. The station of Rawu Pindi appears for convalescents more favourable than this station.
tation.
Jhelum, is conveniently situated on the Grand Trunk road, between Peshawur and Lahore.

The following are the approximate moan monthly values of temperature :-
The high day temperature varies from 68° in December to 100° in May.
The low night temperature varies from 45° in January to 83° in June.
The mean annuai temperature is about 78° : mean daily range 18°.

Rawul Pindi.

Latitude, $53^{\circ} 34^{\prime}$ N., 50 miles from Attock.
Longitude, $75^{\circ} 5^{\prime} \mathrm{E}$., 20 miles from Himalaya's lower range.

Height above sea, $1,500 \mathrm{ft}$.
There is a range of mountains 15 miles distant from the station, which is open and freely exposed to the wiads. The 5 K. 2
winds that prevail are wholesome dry winds, generally from the N.W.; the S.E. winds indicate rain.
The climate of Rawul Pindi has been proved by 10 years' experience to be decidedly the finest in the plains of India.
The following are the approximate mean monthly values of temperature :-
The high dny temperature varies from 68° in December to 100° in May.
The low night temperature varies from 46° in January to 83° in June.
The mean annual temperature is about 79°; mean daily range 18°.
The annual fall of rain is about 18 inches.

Murree.

Latitude, $34^{\circ} \mathrm{N}$. Longitude, $73^{\circ} \mathrm{E}$. Height above sea, $7,800 \mathrm{ft}$.
The upper portion of Murree is open and freely exposed to every wind; the lower part is sheltered from N.E. and E. winds. During the winter and spring months N. and N.E. winds prevail, and their effect upon health is invigorating. During the summer months W. and N.W. winds prevail, and bring with them dense fogs and rains.
This station is a sanitarium.

Peshawur.

Latitude, $34^{\circ} 20^{\prime} \mathrm{N}$. Longitude, $71^{\circ} 29^{\prime} \mathrm{E}$. Height above sea, $1,056 \mathrm{ft}$.
The mountain of Tarturrah, about 10 miles distant from the station, which is situated where it is freely exposed to such winds as circulate in the valley. It is not exposed to cold or variable winds, but during the cold season the wind blowing off the snow is naturally sharp, but it has no injurious effect on health.
The climate of Pesharvur is exceedingly trying to weak constitutions, chiefly owing to the great changes from heat to cold and from dryness to moisture; it is this variability of climate that affects the health of the troops. The air of climate that affects the
is generally free from dust.
is generally free from dust.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 60° in January to 102° in June.
The low night temperature varies from 44° in January to 81° in July.

The mean annual temperature is about 74°; mean daily range 19°.
The annual fall of rain is about 14 inches.

Nowshera.

Latitude, $34^{\circ} \bumpeq 0^{\prime} \mathrm{N}$. Longitude, $73^{\circ} 54^{\prime} \mathrm{E}$.
This station is nearly equidistant between Attock and Peshawur. It is situated in a valley on the right bank of the Cabul river, and is surrounded by high land.

The climate is dry and hot. It is subject to dust storms. In August 1858 the station was entirely submerged by In August : 1858 the station was entirely submerged by the overfow of the Indus, causing the destruction of all
the private bungalows and the native lines; from its low situation such inundations are not unlikely, either from the overllow of the Cabul or Indus rivers.

Remares on the Climate of different Stations in the Presidency of Bombay.

Bombay Presidency.

Lies between latitude 14° and 29°, and between longitude 66° and 77°, comprising a narrow strip of the peninsula on the W. and N.W. sides. This presidency is the smallest of the three into which India is divided. A part of the great table land of the Deccan belongs to it, and to the north of them a part of the Malwah table land bounded N.W. by the Arrawulli mountan range, which separate the basins of the Ganges and Indus. Among the hill ranges and upon the higher tracts there are many fine valleys and plains. The climate for the most part is pretty gond, owing to the influence of the sea, and the extended goond, owing to the influence of the sea, and the extended coast, and elevated land of the interior, except in Scindia,
some low tracts on the west, in the neighbourhood of some low tracts on the west, in the neighb
Bombay, the Indus delta, and part of Guzerat

- Aden.

Latitude, $12^{\circ} 45^{\prime} \mathrm{N}$. Longitude, $45^{\circ} 15^{\prime} \mathrm{E}$. Height above sea 123 ft . (the cantonment).
There are high and lofty hills in the distance.
The station is exposed to no cold winds. With S.W. monsoon from May to September the heat is excessive. At the other seasons a fresh cool sea-breeze blows constuntly.

From its vicinity to the sea the climate is equable throughout the year, and in general there is much moisture in the atmosphere. The temperature is pretty high, and the sun's rays are always very powerful. At times, especially during the hot months, clouds of dust envelop tae camp.

Jacobabad.
Height above sea, 220 ft .
The nearest mountain is 60 miles distant from the station, which is perfectly open. It is exposed to fresh dry cold winds in the winter months, and in the summer to Giery hot winds.

The climate during the greater part of the year is the driest in the world. The heat in summer is excessive, rendering it quite unfit as a station for European soldiers.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 77° in January to 109° in June.

Low night temperature varies from 44° in January to 90° in June.

Mean annual temperature is about 81°; mean daily range 27°.
Annual fall of rain is about $8 \frac{1}{2}$ inches.

Bombay Presidency.

Stations on or near the coast ranging between $15^{\circ} \mathrm{N}$. and $19^{\circ} \mathrm{N}$.

Vingorla.

Latitude, $15^{\circ} 50^{\prime} \mathrm{N} ., 215$ miles S. of Bombay.
Longitude $73^{\circ} 41^{\prime} \mathrm{E}$.
Height above sea, 20 ft .
A few small hills only within sight of the station; it is well exposed to the sea breeze, a compound of the west, which are the prevailing winds. The land wind, which is that from the E.N.E., is usually of short duration.
There is no considerable variation in the climate. It is never very cold, and the heat is moderate, but from heary dews it is occasionally damp at night.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 82° in August and September to 88° in April and May.
Low night temperature varies from 72° in January to 80° in May.
The mean annual temperature is about 85°; mean daily range 9°.
Annual fall of rain is about 118 inches; of which 41 inches fall in the month of July, and 115 inches in the six months, April to September.

Dharwar.

Latitude. $15^{\circ} 50^{\prime} \mathrm{N}$. Longitude, $75^{\circ} 10$ E. Height above sea, $2,482 \mathrm{ft}$.
There ia no mountain near the station, which is exposed to the sea breeze. The land or east wind blows from December to February.
The climate is good from November to February; it is dry and cool. There is a great deal of moisture in the air dry and cool. There is a great deal of moisture in che From from March to June when the rains commence. From
February to June the climate is generally hot by day but cool at night. The climate is never very cold; fog prevails occasionally in the mornings of the hot season.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 77° in August and September to 92° in March.
Low night temperature varies from 61° in January to 77° in May.
The mean annual temperature is about 80°; mean daily range 13°.

Annual fall of rain is about 34 inches, of which 20 a inches fall in the three months, June to August, 9.7 inche s falling in August.

Belgaum.

Latitude, $15^{\circ} 52^{\prime} \mathrm{N}$. Longitude, $74^{\circ} 42^{\prime} \mathrm{E}$. Height above sea, 2,260 ft
70 miles from the coast, 30 miles from Western Ghauts. During the monsoon the wind blows from the W.; in the cold season the prevailing wind is from the E., and during the hot season from the same quarter, veering horrever to the W. during the latter part of the day.

The heat is greatest during April and May, but a sea breeze generally rises during the afternoon, continuing throughout the night.
The following are the approximate mean monthly values of temperature :-

High day temperature varies from 78° in August to 97° in April.
Low night temperature varies from 57° in January and December to 66° in April, May, June, and July.
The mean annual temperature is about 74°; mean daily range 23°.

Annual fall of rain is about 50 inches; about 15 inches fall in July, and 34 inches in June, July, and August.

Kulladghee.

Latitude, $16^{\circ} 11^{\prime}$ N., 71 miles E.N.E. of Belgaum. Longitude, $75^{\circ} 33^{\prime} \mathrm{E}$. Height above sea, $1,750 \mathrm{ft}$.
The nearest mountain is 50 or 60 miles distant from the station, which is open and freely exposed to winds.

The climate throughout the year may be considered tolerably good. It is dry, with the exception of the monsoon months.
The following are the approximate mean monthly values of temperature :-

High day temperature varies from 85° in December to 104° in April.

Low night temperature varies from 60° in January and December to 74° in March, April, and May.
The mean annual temperature is about 81°; mean daily range 24°.

Annual fall of rain is about 24 inches.

Kolapore.

Latitude, $16^{\circ} 42^{\prime}$ N., 185 miles S.E. from Bombay. Longitude, $74^{\circ} 18^{\prime}$ E., 70 miles S. of Sattara.

$$
\text { Height above sea, } 1,797 \mathrm{ft} \text {. }
$$

The nearest mountain is three miles distant from the station, which is open and freely exposed to the prevailing winds. They are generally strong; the land or N.E. wind blows from November to February. The sea breeze or S.W. wind commences in March, and blows during the greater part of the day and night.

During the cold season, from November to February, the climate is dry, the winds blowing generally from the N. and E.; dews fall in the early morning, which are moist and fresh till an hour after sunrise. The climate generally is temperate, there is no severe cold during any of the seasons. The atmosphere is not rendered impure by dust, except very temporarily, and the climate is good.
The following are the approximate mean monthly values of temperature : -

High day temperature varies from 77° in January, July, August, and December to 89° in May.

Low night temperature varies from 67° in January and December to 77° in May.
The mean annual temperature is about 76°; mean daily range 9°.

Annual fall of rain is about 39 inches; $6 \frac{1}{2}$ inches fall in July, and $12 \frac{1}{2}$ inches in three months, June, July, and August.

Rutnagherry.

Latitude, $17^{\circ} \sigma^{\prime}$ N. Longitude, $73^{\circ} 20^{\prime}$ E. Height above sea, 150 ft .
The nearest mountains are the Syndree range of Ghauts, at a distance of 30 miles from the station, which is open to all winds. The heat of the summer months is moderated by fresh northerly sea breezes. The climate is damp during the monsoon, and dry in the forenoon during the prevalence of land winds from November to February. The climate may be described as generally moist, warm, and relaxing, with an annual range of about 20°, and a diurnal range not exceeding $1 z^{\circ}$. It is not affected by dust, and other admixtures affecting the atmosphere.

The following are the approximate mean monthly values of temperature :-
High day temperature varies from 84° in August to 93° in May.
Low night temperature varies from 70° in Jonuary and December to 77° in May, June, and September.
The mean annual temperature is about 81°; mean daily range 14°.
Annual fall of rain is about 127 inches; $41 \frac{1}{2}$ inches fall in June, and $93 \frac{1}{2}$ inches in June, July, and August.

Sattara.

Latitude, $17^{\circ} 40^{\prime}$ N., 60 miles from coast. Longitude, $74^{\circ} 2^{\prime}$ E.
Height above sea, $2,320 \mathrm{ft}$.
The fort hill is distant about $1 \frac{1}{2}$ mile from the station which is open; subject to land winds (E. and N.E.) and to the sea breeze (W.S.W.), the latter modified by distance from the ocean ; both prevail with tolerable regularity, from the ocean; both prevail with to
The climate generally considered is good for three months. The air is hot and dry, hut not very exhausting. In the The air is hot and dry, hut not very exhausting. In ture
rains it is fresh, not damp or chilly, and the temperature rains it is fresh, not damp or chilly, and the temperature
very equable. The cold in the winter months is not very equable.
invigorating.

The following are the approximate mean monthly values of temperature:-
High day temperature varies from 74° in August to 92° in April.
Low night temperature varies from 63° in December to 75° in April and May.
The mean annual temperature is abont 76°; mean daily range 12°.

Annual fall of rain is about 38 inches; about 13 inches fall in July, $25 \frac{1}{4}$ inches fall in June, July, and August.

Dapoolee.

Latitude, $17^{\circ} 48^{\prime} \mathrm{N} .55$ miles N. of Rutnagherry. Longitude, $73^{\circ} 16^{\prime} \mathrm{E}$.
Height above sea, 600 ft .
The nearest table land is that of the Deccan.
The station is not exposed to cold or variable winds, nor freely to land winds, but fully to sea breezes.
Treely to land winds, but fully to sea breezes.
The climate is divided into three seasons; lst, the cold The climate is divided into three seasons; 1st, the cold
season, from December to the end of February; 2nd, the season, from December to the end of February; 2nd, the
hot season, from March till June, increasing in heat; and hot season, from March till June, increasing in heat; and
the 3rd, or rainy season, from June till October. October the 3 rd, or rainy season, from June
and November are close hot months.
and November are close hot months.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 80° in August to 93° in April.
Low night temperature varies from 61° in January and December to 76° in May.
The mean annual temperature is about 81°; mean daily range 18°.
Annual fall of rain is about 122 inches; 97 inches fall in June, July, and August, of which 4 $\frac{1}{2}$ inches fall in July.

Poorundhur (Sanitarium).
Latitude, $18^{\circ} 12^{\prime}$ N. Longitude $73^{\circ} 54^{\prime}$ E.
Height above sea, $4,200 \mathrm{ft}$.
The climate of this station is good and equable, the monthly mean temperature of the year ranging from 60° to 80°. The year is divided into the three seasons, hot, rainy or monsoon, and the cold. The hot season begins in March, and terminates about the middle of June; the station at this season is marked by the general absence of hot winds, and the almost total exemption from hot nights, a cool fresh breeze from the N.W. generally blowing from sunset to sunrise. The rainy season extends from June to sunset to sunrise. The rainy season exther, the absence of all sunshine for weeks together, combined with the impossibility of the men taking exercise without getting wet sibility of the men taking exercise without geting wet through, tend to produce an injurious insuence two breaks depression of spirits. During this seasontinue for a week or generally occur in the weather, and continue or more beauten days; and then it is the cold season a strong dry wind tiful clim
prevails.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 68° in August to 83° in April.
Low night temperature varies from 59° in December to 71° in April.

The mean annual temperature is ahout 67°; mean daily range 9°.
Annual fall of rain is about 72 inches; 23 inches fall in July, and about 50 inches in the three months ending August.

Poona.

Latitude, $18^{\circ} 30^{\prime} \mathrm{N}$. Longitude, $7^{\circ} 4^{\circ} 0^{\prime} \mathrm{E}$. Height above sea, $1,800 \mathrm{ft}$.
The nearest mountain is Singhur, 13 miles distant from the station, which is open and freely exposed to the winds. From November to February cold land winds prevail, with occasional sea breezes; from March to June hot, scorching, variable winds; and for the rest of the year the prevailing winds are from the sea.
The climate is good; there is almost a total freedom from fogs, and dampness is only observable during the raius, and then mild in degree. Dust storms are rare.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 78° in August to 95° in April.
Low night temperature varies from 58° in January and December to 74° in May.
The mean annual temperature is about 77°; mean daily range 18°.

Annual fall of rain is about 22 inches.

Kirkee.

Latitude, $18^{\circ} 30^{\prime}$ N., 70 miles S.E. of Bombay: Longitude, $74^{\circ} 15^{\prime} \mathrm{E}$., 50 miles E. of the coast. Height above sea, 1,900 feet.
The nearest mountain is Surghur, 15 miles distant from the station, which is open and freely exposed to winds. From November to February cold land winds prevail, with occasional sea breezes; from March to June there are hot, scorching, variable winds, and for the rest of the year the prevailing winds are from the sea. The cold and rainy seasons are beneficial to the health of the troops, but the hot senson is injurious.
The climate is good. There is almost a total absence of fog; dampness is only observable in the rains, and then is mild in degree. Dust storms are very rare, and do not affect perceptibly the purity of the atmosphere.

Colaba.

Latitude, $18^{\circ} 53^{\prime} \mathrm{N}$. Longitude, $72^{\circ} 52^{\prime} \mathrm{E}$.
The climate is equable, neither so hot in summer nor so cold in winter as most other places in India. The greatest temperature noted during the 10 years, 1850 to 1860 , was 97°; the lowest on record was 53°, in February 1847. January is the coolest month; December and February somewhat less so, are much alike; then November and March ; April and May are the hottest months. The monsoon months, June to September, vary little in temperature.
The land winds (S.E.) prevail during the dry season. A S.W. wind or sea breeze prevails during the monsoon months, sometimes with great strength.

Wet-bulb thermometer.

The temperature of evaporation or wet-bulb thermometer increases, though irregularly, from the month of January to July, and falls from July to December. About the middle of June the sun attains its extreme southerly declination, and the rain, which falls in torrents, keeps the atmosphere saturated with humidity.
In June and July the temperature of evaporation coincides with the mean annual temperature of air. The presence of clouds in the sky has the effect of increasing the temperature of evaporation.

Bombay Presidency.

Stations on or near the sea-coast, ranging between $21^{\circ} \mathrm{N}$. and $25^{\circ} \mathrm{N}$.

Surat.
Latitude, $21^{\circ} 10^{\prime} \mathrm{N}$., 150 miles N. of Bombay.
Longitude, $72^{\circ} 52^{\prime} \mathrm{E}$., 130 miles S. of Ahmedabad.

Height above sea, 33 ft .

The nearest mountain is Songhur, 42 miles E. of the station.
From March to October the sea breeze prevails, and during the remainder of the year the land wind is predominant.

For ahout nine months in the year the climate may be said to be decidedly moist, the wind coming from the direction of the sea, which is 10 miles distant. It is never very cold, and the temperature rises considerably, as elsewhere, during the months of April and May. There is but little if any fog in the camp, though it is sometimes observed on the other side of the river, which is a lower level. There are occasional dust storms, but, generally speaking, the atmosphere is fine.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 78° in January to 108° in May.
The low night temperature varies from 59° in January to 80° in May and June.
The mean annual temperature is about 82°; mean daily range 20°.

Baroda.

Latitude, $22^{\circ} 16^{\prime}$ N., 68 miles S.E. of Ahmedabad, 81 miles \mathbf{N}. of Surat.

Longitude, $73^{\circ} 14^{\prime}$ E., 166 miles W. of Mhow.
Height above sea, 90 ft .
The hill fort of Powagurh, distant 26 miles, is the only high ground within sight of the station, which is so encumbered with trees, that it is not sufficiently exposed encumbered with trees, that it is not sufficiently exposed
to the breeze, which blows from the direction of the sea for to the breeze, which blows from the direction of the sea for
the greater part of the year; from November to March the land wind blows from the E. and N.E.
The climate is very damp in the rains; at other times comparatively moist. Fogs prevail till the end of November, and during the hot season winds and dust prevail; it is never very cold.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 84° in January to 105° in May.
The low night temperature varies from 56° in February to 83° in May.
The mean annual temperature is about 81°; mean daily range 21°.

The annual fall of rain is about 35 inches; about 16 inches fall in July, 30 inches generally fall in June, July, and August.

Rajcote.

Latitude, $22^{\circ} 18^{\prime} \mathrm{N}$., 125 miles S.W. of Ahmedabad.
Longitude, $70^{\circ} 50^{\circ} \mathrm{E} ., 150$ miles W. of Baroda.

Height above sea, 450 ft .

The nearest mountain is the Girnar, 56 miles to the S.W. of the station, which is thoroughly open to the sea breeze, which blows steadily during eight months of the year. From November to February the winds are northerly and north-easterly.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 78° in January to 99° in May.
The low night temperature varies from 59° in January to 83° in May and June.
The mean annual temperature is about $\mathrm{S} 1^{\circ}$; mean daily range 15°.
The annual fall of rain is about 27 inches; 21 inches fall in June, July, and August, of which $8 \cdot 3$ and $8 \cdot 9$ inches fall in July and August respectively.

Ahmedabad.
 Latitude, $23^{\circ} \mathrm{N}$. Longitude, $72^{\circ} \mathrm{E}$.
 Height above sea, 320 ft .

Nearest mountain, Aboo, is 150 miles distant from the station, which is exposed to hot and cold winds from the station, which is e
W.S. and N.E.
The climate is dry, except during the monsoon. Sand storms occasionally occur during the hot season.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 78° in January to 108° in May.
The low night temperature varies from 60° in December to 86° in May.
The mean annual temperature is about 83°; mean daily range 18°.
The annual fall of rain is about 27 inches; 11 inches fall generally in July, very little rain fulls during the first and last three months of the year.

- Ahmednuggur.

Latitude, $23^{\circ} 34^{\prime}$ N., 91 miles N. of Baroda. Longitude, $73^{\circ} 1^{\prime} \mathrm{E}$.

Height above sea, $1,900 \mathrm{ft}$.

The nearest hill is six miles distant, and is 617 feet elevation above the station, which, generally speaking, if well exposed to the prevailing winds. It is singularly exempt from variable winds; and is freely exposed to the exempt from variable winds; sum temperature.
The climate is dry, like that of the Deccan generally, which is attributable to the great elevation. Occasionally dust storms occur during the hot months, March, April, and May.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 90° in December to 98° in April and May.
The low night temperature varies from 59° in January and December to 76° in May.
The mean annual temperature is about 77°; mean daily range about 18°
The annual fall of rain is about 25 inches.
Kurrachee.
Latitude, $24^{\circ} 51^{\prime} \mathrm{N}$. Longitude, $67^{\circ} 2^{\prime}$ E.

Height above sea, 27 ft .

A low mountain range, about six miles distant from the station, which is not exposed to cold or variable winds. Land and sea breezes prevail in spring and autumn, and the climate is good. The month of November is characterised by dryness, July and August by humidity ; December, January, and February being the cold months. From May to September is the hot season, during which time strong westerly monsoon winds prevail. Damp cannot be said to exist at any time.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 74° in February to 95° in August.
The low night temperature varies from 44° in December to 82° in August.

The mean annual temperature is about 78°; mean daily range 19°.
The annual fall of rain is about 5 inches; the heaviest monthly fall of rain is in July, viz., $1 \cdot 8$ inches.

Bombay Prestidency. Inland Stations. Sholapore.

165 miles S.E. of Poona Longitude, $76^{\circ} \boldsymbol{\sigma}^{\prime}$ E.
Height above sea, $1,821 \mathrm{ft}$.
There is no higher ground within 30 miles of the station, which is completely open, and exposed to the prevailing winds. The sea breeze is not felt at Sholapore; and the only wind that may be said to be unhealthy is that from the east.
The climate is warm and dry during the greater part of the year, the mean annual temperature being about 80°. May is generally the hottest, and December the coldest month. Fogs occasionally eccur during the months of February and March towards evening. The atmosphere is pure.
The following are the approximate mean monthly values, of temperature :-
The high day temperature varies from 78° in December to 93° in April, and May.
The low night temperature varies from 66° in December to 79° in April.
The mean annual temperature is about 74°; mean daily range 9°
The annual fall of rain is about 33 inches, of which nearly 15 inches fall in July, August and September.

Seroor.

Latitude, $18^{\circ} 50^{\circ}$ N., 30 miles S.W. by W. of Ahmed nuggur.

$$
\text { Longitude, } 77^{\circ} 25^{\prime} \text { E. }
$$

Height bove sea, $1,752 \mathrm{ft}$.
The hill fort of Poorundhur is situated on the nearest table land.
The station generally is remarkably open and exposed to the prevailing winds. The W. wind is most commonly prevalent at the station.
The climate is on the whole, and with the exception of the monsoon months, dry, but not excessively so, boing
within the influence of the sea breeze which generally blows tolerably strongly towards the evening. The variations of cold and heat, dryness and moisture, are moderate and not sudden. The air is generally free from dust and other impurities, but dust storms do occasionally occur during
the hot season.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 84° in Septetober to 107° in April.
The low night temperature varies from 50° in January and December to 69° in May and June
The mean annual temperature is about 75°; mean daily range 33°.
The snnual fall of rain is about 21 inches; of which 8 inches fall in the three months ending August.

Mulligatim.

Latitude, $20^{\circ} 32^{\prime}$ N., 154 miles N.E. of Bombay, on the Trunk road from Bombay to Agra.

Longitude, $74^{\circ} 30^{\prime}$ E.
Height above sea, 1,300 ft.
Nearest mountain 35 miles distant from the station, which
is open and freely exposed to all winds, except those from the sea.

The following are the approximate mean monthly value of temperature :-
The high day temperature varies from 81° in January to 96° in May.

The low night temperature varies from 64° in January to 82° in June.
The mean annual temperature is about 81°; mean daily range 14°.

Dhoolia.

Latitude, $20^{\circ} 54^{\prime}$ N., 181 miles N.E. of Bombay, on the route from Bombay to Agra.

Longitude, $74^{\circ} 45^{\prime} \mathrm{E}$.
Height above sea, $1,000 \mathrm{ft}$.
The nearest high land is the hill fort of Galna, 24 miles distant from the station is open, and would be freely exposed to the winds, if not so encumbered with trees, \&cc. It is exposed to N.W., and occasionally to N. and N.E. winds in December, January, and February, veering to W. in March, and S.W. with monsoon.
The climate is hot and close; there are but few dust storms.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 80° in January to 97° in May.
The low night temperature varies from 62° in January to 83° in June.
The mean annual temperature is about 80°; mean daily ange 13°.
The annual fall of rain is about 84 inches; about 20 inches fall in the months of July and September

Mhow

Latitude, $22^{\circ} 33^{\prime}$ N. Longitude, $75^{\circ} 46^{\prime} \mathrm{E}$.
Height above sea, $1,862 \mathrm{ft}$.
The station is open and freely exposed to variable winds, which in the cold season are northerly. The prevailing wind, however, is from the W.

- The climate has always been consideted good, diry, and cool. The stmosphere is seldom loaded with dust.
The following are the approximate mean monthly values
of tempersture
The high day temperature varies from 74° in December to 95° in May.
The low night temperature varies from 65° in January to 79° in April.
The mean annual temperature is about 74°; mean daily range 10°.

Neemuch.

Latitude, $24^{\circ} 27^{\prime}$ N., 155 miles N.W. of Mhow, 371 miles S.W. of Delhi.

Longitude, $74^{\circ} 64^{\prime} \mathbf{E}_{1,}, 306$ miles W. of Saugor. Height above sea, $1,476 \mathrm{ft}$.
The nearest mountains are distant 70 miles.
The western side of the camp is well exposed to the prevailing winds, the eastern portion is shut out by the bazaar. For four months of the year N. and N.E. Winds prevail, and for the remainder of the year W. und S.

The dry N.E. winds appear predisposed to rheumatism, \&c.

The climate varies with the season of the year. From November 15 to February 15 the air is cold, dry, and bracing; and from the middle of February to the middle of June the heat gradually increases, the maximum being obtained during the month of May, when fierce hot winds prevail. During the monsoon the climate is mild and pleasant. In October the heat again increases, decreasing at the latter end of the month. The diurnal variation of the temperature is great, the nights being generally cool and pleasant, owing to the elevation.

- The atmosphere contains but little moisture, even during the monsoon, and the air is free from dust and other the monso
impurities.
The following are the approximate mean monthly values. of temperature:-
The high day temperature varies from 62° in January to 94° in May.

The low night temperature varies from 49° in January to 78° in June.

The mean annual temperature is about 71°; mean daily range 14°.

The annual fall of rain is about 34 inches, of which 294 inches fall in June, July, and August.

Deesa.

Latitude, $25^{\circ} 14^{\prime}$ N., 301 miles N.W. of Mhow. Longitude, $72^{\circ} 5^{\prime}$ E., 251 miles W. of Neemuch. Height above sea, 400 ft ., 370 miles N. of Bombay.
The nearest mountain, Aboo, is 16 miles distant from the station, which is open and freely exposed to the winds. The sea-breeze (S.W.) blows from about the middle of March to the end of June, but reaches this station exceedingly dry and scorching. The winds are more variable from July to October, but generally from the S. and W.; this is the wet season. Between October and March N. winds are most frequent, and four months of this period are dry, cool, and bracing.

The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 79° in January to 106° in May:
The low night temperature varies from 48° in December to 79° in June and July.
The mean annual temperature is about 80°; mean daily range 26°.
The annual fall of rain is about 25 inches; 19 inches full generally in June, July, and August.

Hyderabad. Sinde.
Latitude, $25^{\circ} 30^{\prime} \mathrm{N}$. Longitude, $69^{\circ} 5^{\prime} \mathrm{E}$. Height above sea, 99 ft .
The nearest mountain is about 20 miles distant from the station, which is frecly exposed to the winds. Cold and station, which is frecly exposed to the winds. Cold and variable winds affect the health of the station more or less.
The climate is exceedingly dry, even when heavy showers of rain fall about July and August. The heat is extreme from the middle of March to the middle of October, and during the day a hot breeze blows from the westward, and dust storms are frequent, but the mornings are clear, cool, and refreshing, except in September and October; when the whole 24 hours are disagreeably oppressive.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 71° in January to 99° in May and June.
The low night temperature varies from 58° in January The low night temperature
The mean annual temperature is about 81°; mean daily range 14°.
The annual fall of rain is about 21 inches; 15 inches fall in August.

Nusseerabad.

Latitude, $26^{\circ} 20^{\prime} \mathrm{N}$, 222 miles W. of Agra. Longitude, $74^{\circ} 50^{\prime}$ E., 350 miles N.W. of Saugor.
Height above sea, $1,500 \mathrm{ft}$., 143 miles N. of Neemuch.
There is a range of hills six miles from the station, which is open, and freely exposed to the winds. During the hot season, from the middle of March to the middle of July, the prevailing winds are from the S. and S.W., these are scorching, and in order to keep the barracks cool khuskhus tatties are used. During the monsoon the winds are variable and pleasant. In the cold season, from November to March, the winds are from the N. and N.E.

With regard to the climate, the temperature ranges very high for about five or six months, in July sometimes rising
to 120°, and during the hot season there is a hot wind
blowing constantly, day and night from the W. During the hot season, the station is visited with severe dust storms, causing great discomfort.

The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 65° in January to 99° in June.
The low night temperature varies from 59° in December to 88° in June.

The mean annual temperature is about 79°; mean daily range 9°.
The annual fall of rain is about 16 inches; 8 inches fall in August, 13 inches in the three months ending August.

Remaris on the Climate of different Stations in the Presidency of Madrias.

Madras Presidency.

This presidency extends from Cape Comorin, in latitude $8^{\circ} 4^{\prime}$ to the N. extremity of Ganjam, in latitude $20^{\circ} 18^{\prime}$; and from longitude $74^{\circ} 9^{\prime}$ to $85^{\circ} 15^{\prime} \mathrm{E}$, and is bounded N. and N.W. by the presidencies of Bengal and Bombay and the kingdoms of Nagpore and Berar.
It is in size intermediate between the two other presidencies.

Palamcottah.

Latitude, $8^{\circ} 43^{\prime}$ N., 3 miles E: of Tinnivelly.
Longitude, $77^{\circ} 48^{\prime}$ E., 88 miles S. of Madura.
Height above sea, 120 ft ., 160 miles S.W. of Trichinopoly.
The nearest mountains are between 20 and 25 miles distant from the station, which being situated so near to the apex of the peninsula is exposed to winds which are, except during the very hottest months, moderately cool. The S.W. wind, which sets in towards the close of May continuing to the end of August, passes over an extensive tract of cultivated land, and is thus rendered cool, although disagreeable at times on account of its violence, and raising dust storms.
The following are the approximate mean monthly values of temperature:-

High day temperature varies from 86° in January and December to 94° in April and May.
Low night temperature varies from 76° in January to 84° in April, May, and June.

Mean annual temperature is about 81°; mean daily range 10°.

Annual fall of rain is about 22 inches, 10 inches of which fall in September, October, November.

Trichinopoly.

-

Lstitude, $10^{\circ} 20^{\prime} \mathrm{N}$. Longitude, $77^{\circ} 10^{\prime} \mathrm{E}$.
Height above sea, 250 ft .
The nearest mountains are some 25 miles distant from the station, which is open and freely exposed to winds. Hot land winds blow during the months of April, May, and June, and cold N.E. winds during the monsoon.

The monthly temperature varies from 78° to 87°.
The mean annual fall of rain is about 30 inches.
There is often a dry and sultry atmosphere for months together. Whirlwinds accompanied by clouds of dust and sand, occur at short intervals in May, June, and July.

W'ellington.

Latitude, $11^{\circ} 5^{\prime} \mathrm{N} . \quad$ Longitude, $77^{\circ} 5^{\prime} \mathrm{E}$.
Height above sea, $6,000 \mathrm{ft}$.
The nearest mountain is Dodabetta, 9 miles distant from the station, which is open and freely exposed to the winds; they are from the land, principally from the N.E. and S.W'

The following are the approximate mean monthly values of temperature :-

High day temperature varies from 66° in February to 75° in August and Seprember.
Low night temperature varies from 59° in September to 65° in May and June.

The mean annual temperature is about 62°; the mean daily range is about 9°.

The annual fall of rain is about 31 inches.

Latitude, $11^{\circ} 39^{\prime}$ N., 100 miles S.E. of Bangalore.
Longitude $78^{\circ} 12^{\prime}$ E., 170 miles S.W. of Madras.
Height above sea, 800 ft .
The Shevaroy hills are 5 miles distant from the station, which is not open to any wind or to the sea breeze.

Bangalore.

Latitude, $12^{\circ} 57^{\prime} \mathrm{N} . \quad$ Lọngitude, $77^{\circ} 38^{\prime} \mathrm{E}$. Height above eea, $3,000 \mathrm{ft}$.

- Nundydroog, 36 miles distant from the station, which is freely exposed to winds. There is no sea breeze, sind the land wind is not hot like that up the country. The winds are very dry.
The following are the approximate mean monthly values of temperature:-

High day temperature varies from 79° in January to 91° in May.

Low night temperature varies from 59° in January to 72° in May.

The mean annual temperature is about 73°; the mean daily range 16°.
The annual fall of rain is about 25 inches; 13 inches fall in June, July, and August.

Hurryhur.

Latitude, $14^{\circ} 31^{\prime}$ N., 160 miles N.W. of Bangalore.
Longitude, $75^{\circ} 51^{\prime}$ E., 181 miles N.E. of Mangalore.
Height above sea, $1,831 \mathrm{ft} ., 85$ miles S.W. of Bellary.
The nearest table lands are the Babadbooder hills and Mercara, lying south by west from this station, both at a considerable distance.
The station is sufficiently open to all the prevailing winds, which generally are neither cold nor variable, and the more prevalent are from the N.E. and S.W., at the seasons respectively constituting the corresponding monsoons. There are occasionally westerly winds towards the after part of the day, which are generally agreeable, and are usually looked upon as sea breezes. The N.E. and E. winds, which usually blow in the early part of the year, are mostly hot and dry.

The climate of Hurryhur is-dry, with a considerable diurnal range of temperature, especially in the cold months of the year. In all essential respects the atmosphere seems to be pure.

Ramandroog.

Latitude, $15^{\circ} 8^{\prime}$ N. Longitude, $76^{\circ} 33^{\prime}$ E

Height above sea, $3,400 \mathrm{ft}$.

This station is 37 miles from Bellary
The climate is good. The station is situated under the influence of both monsoons, without suffering excessively from either; it is near enough to the western coast to have the benefit of the sea breeze, which in the hot season moderates the temperature. It is situsted on an isolated range. The wet season commences in June with the S.W range. The wet season commences in June with the S .W mater a short interral the \mathbf{N} E monsoon sets in and last till November, the the N. monsoon sets in and last 34 to 10 in 34 to 40 inches. From November to February the air is clear, and easterly winds prevail.

Kurnool.

Latitude, $15^{\circ} 50^{\prime}$ N., 90 miles N.E. by E. of Bellary. Longitude, $78^{\circ} 5^{\prime}$ E.
Height above sea, 800 ft .
There is a range of small hills about 4 miles distant from the station, which is open and freely exposed to the winds.
The following are the approximate mean monthly values of temperature :-
High day temperature varies from 79° in December to 93° in April and May.
Low night temperature varies from 74° in December to 90° in April.
The mean annual temperature is about 84°; mean daily range 4°.
The annual fall of rain is sbout 72 inches; 40 inches of which fall in June, July, and August, 17 inches fall generally in July.

Bellary.

Latitude, $17^{\circ} 0^{\prime}$ N. Longitude, $77^{\circ} 0^{\prime}$ E.

Height above sea, $1,500 \mathrm{ft}$.

No table land; but about six miles from the station there is a range of small hills, and among these a peak, rising to is a range of smal hilas, and
$1,000 \mathrm{ft}$. above the station.

The station is open and freely exposed to cold E. and N.E. winds, in November, December, and January. It is also winds, in November, December, and January. It is als rest of the year a pleasant strong W. wind generally is rest of th
Thevalent.
The climate is dry and temperature not very high; not being humid, the heat is bearable; range not great. No fogs. Dust atorms occasionally occur, but the air is usually clear.

The following are the approximate mean monthly values of temperature :-

The high day temperature yaries from 78° in January and December to 92° in May.
The low night temperature varies from 65° in February to 77° in May.
The mean annual temperature is about 75°; mean daily range 12°.
The annual fall of rain is about 22 in . 11 in . fall in the thee months ending November, of which 6 in . fall in October.

Secunderabad.
Latitude, $17^{\circ} 28^{\prime}$ N., 6 miles N. of Hyderabad.
Longitude, $78^{\circ} 32^{\prime} \mathrm{E}$.
Height above sea, $1,800 \mathrm{ft}$.
The table land of Bedur is 70 miles distant from the station, which is open, and free currents of air everywbere exist. It is much exposed to cold and variable winds during and after the rainy monsoon, and when the rains have quite passed away; there is an extreme drynes combined with cold, parching yet chilling the surface.

The climate may be characterized as remarkably dry. The average number of days on which rain falls is about 50 . From January to June the air is dry; the first two months being cool and variable in temperature. From March to June hot land winds blow, and the heat is great. Fogs are unfrequent, and dew seldom deposited. The air is generally clear; but liable, in the hot season, to occasiona dust storms.

The following are the approximate mean monthly values of temperature :-
The mean high day temperature varies from 77° in December to 95° in May.

The mean low night temperature varies from 64° in January to 82° in May.

The mean annual temperature is about 74°; mean daily range 12°.

The annual fall of rain is about 28 inches.
Madras Presidency.
Malabar, or West Coast Stations. .

Quilon.

Latitude, $8^{\circ} 53^{\prime}$ N., 38 miles N.W. of Trevandrum.
Longitude, $76^{\circ} 39^{\prime}$ E., 225 miles S.E. of Cannanore.
Height above sea, 40 ft ,, 385 miles S.W. of Madras.
The nearest mountains are the Wurrakally hills; about 12 miles distant fromi the station, which is open and well exposed to sea and land winds. The sea is about 250 yards distant from the station.

The effects of the climate on Europeans is renovating. During the rains, the weather is close; during the dry weather, parching but free from dust.

Cochin.
Latitude, $9^{\circ} 11^{\prime} \mathrm{N}_{\text {, }}$ Longitude, $76^{\circ} \mathrm{E}$.
Height above sea, 40 ft .
Nearest high ground is about 30 miles distant. The hills rise to a hight of $6,000 \mathrm{ft}$. above the level of the sea. The station is exposed to cold and variable winds from the land side, during the dry season, beginning in November, about 7 p.m., and gradually becoming later, until, in February, its commencement is about $2 \mathrm{a} . \mathrm{m}$.
The climate is variable; the breeze from the land, owing to its coming over a large expanse of water, is moif and chilly. It is occasionally very sultry.

Tellicherry.

Latitude, $11^{\circ} 45^{\prime}$ N., 95 miles S.W. of Seringapatam. Longitude, $75^{\circ} 33^{\prime} \mathrm{E}$. Height above sea,
The Wynaad range of hills is 30 miles distant from the station, which is on the sea coast, and exposed to the sea breeze: The land wind is excluded by trees, houses, and gardens.
The climate is moist, especially during the monsoon. The hottest months are March, April, and May; but it is cooler than at most other Indian stations. The air is generally pure. The wet season, from May to September, is the most unhealthy.

Cannanore.

Latitude, $11^{\circ} 52^{\prime} \mathrm{N}$. Longitude, $75^{\circ} 30^{\prime} \mathrm{E}$.
Height above sea, 15 ft .
The nearest mountain range is the Western Ghauts; 30 to 40 miles distant from the station.
During November, December, and January a strong land
wind blows from shortly after sunset until the earth has been sufficiently heuted by the sun of next day, when a current almost invariably sots in from the sea.
The climate at this station is, on the whole tolerably equable, it is occasionally* variable and chilly, and during the wet season it is moist and debilitating.
The following are the approximate mean monthly values of temperature:-
The high day temperature varies from 92° in Angust to 90° in A pril.

The low night temperature varies from 76° in October to 82° in April.

The mean annual temperature is about 82°; mean daily range, 7°
The annual fall of rain is about 121 inches, of which about 85 inches fall in June, July, and August.

Mercara.

Latitude, $12^{\circ} 24^{\prime}$ N., 47 miles N.E. of Cannanore.
Longitude, $75^{\circ} 48^{\prime} \mathrm{E} ., 130$ miles S.E. of Mangalore.
Height above sea, $4,500 \mathrm{ft}$., 315 miles W. of Madras.
The station is exposed to every wind that blows. The sea breeze is distinctly felt. The east wind is dreaded as parching and destroying young trees.
The climate of Mercara is excellent. The temperature during the hottest season ranging from 62° to 75°. For six months of the year it rains heavily, but the roads are dusty whenever rain is long withheld.

French Rocks.

Latitude, $12^{\circ} 31^{\prime} \mathrm{N} ., 5$ miles N. of the River Cauvery, at Seringapatam.
Longitude, $76^{\circ} 45^{\prime}$ E.
Height above sea, $2,560 \mathrm{ft}$.
There are no mountains or high lands near the stations which is exposed to variable winds, not to sea breeze.
The climate is good, being dry during eight months of the year; and somewhat moist during the monsoon. It is not very variable, and pretty free from fog or damp. There are occasional dust storms, which last but a short time.

Mangalore.
Latitude, $12^{\circ} 50^{\prime} \mathrm{N}$. Longitude, $75^{\circ} 0^{\prime} \mathrm{E}$.
Height above sea, 40 ft ., on the coast W.
The rearest mountain is about 50 miles distant from the station, which is exposed to land and sea breezes.

Madras Presidency.

Coromandel or East Coast Stations.
Arcot.
Latitude, $12^{\circ} 30^{\prime}$ N. Longitude, $79^{\circ} 8^{\prime} \mathrm{E}$. Height above sea, 550 ft .
The nearest table land is at Palamanair, 50 miles off and about 1000 feet higher than this station.
The climate is generally a dry heat. In the monsoon and cold weather, the station is subject to fogs on the lower ground, which extend on to the irrigated land. In the hot weather occasional dust storms take place.

Vellore.

Latitude, $12^{\circ} 55^{\prime}$ N., 220 miles N. of Madura.
Longitude, $79^{\circ} 11^{\prime} \mathbf{E}$., 104 miles E. of Bangalore.
Height above sea, $675 \mathrm{ft} ., 94$ miles N.W. of Cuddalore, 79 miles W. of Madras.
The nearest hill is about $\frac{8}{4}$ of a mile from the cantonment and has an elevation of 780 feet.
The prevailing winds in February are northerly; after March S.E. winds are prevalent, they are hot during the day, but occasionally cool towards early morning. The sea breeze occasionally in the afternoon is strong, but it is generally light, or is replaced by long-shore winds direct.

This is a hot station.

Palaveram.

Latitude, $12^{\circ} 58^{\prime}$ N., 11 miles S.W. of Madras. Longitude, $80^{\circ} 15^{\prime} \mathrm{E}$.
Height above sea, 40 ft
There are no hills of any extent nearer than the Neilgherries.
The station would be open were it not for the two hills on the sea or south side, which in e great measure exclude the sea breeze or only cool wind, whereas it is quite exposed to the land or hot winds. This is one of the hottest stations
in India, the thermometer seldom being below 80°, there is no cold season.

The observations of the Madras Observatory would apply here, except that the air is always much closer.

Saint Thomas' Mount.
Latitude, $13^{\circ} 0^{\prime}$ N., 252 miles N.E. of Madura.
Longitude, $80^{\circ} 15^{\prime} \mathrm{E}$, 95 miles N . of Cuddalore,
Height above sea, 60 feet, 178 miles E . of Bangalore,
10 S.W. of Madras.
St. Thomas' Mount rises close behind the barracks.
The station is exposed both to the sea breeze and land wind.

The climate is dry for at least nine months, and hot all the year round, varying from 71° to 95°. There are heavy rains during the months of October and November and occasional showers from July till September. The average annual fall is between 30 and 40 inches. The climate is very equable; fogs are rare, the air very dusty during the dry season.

Poonamallee.

Latitude, $13^{\circ} 2^{\prime} \mathrm{N} ., 13$ miles due W. of Madras.
Longitude, $10^{\circ} 10^{\prime} \mathrm{E} ., 9$ miles direct line from coast. Height above sea, 2 ft .
I'here are hills of unknown height 40 miles distant from the station, which is open, and freely exposed to variable winds, and to land and sea breezes.

The following are the approximate mean monthly values.. of temperature :-

High day temperature varies from 80° in January and November to 87° in June.
Low night temperature varies from 74° in January to 82° in June, July, and August.

The mean annual temperature is about 82°; mean daily range 4°.
The annual fall of rain is about 50 inches; 30 inches of which fall in September, October, and November.

Nellore.

Latitude, $14^{\circ} 20^{\prime} \mathrm{N}$. Longitude, $80^{\circ} 0^{\prime}$ E.
Height above ses, 50 ft .
The nearest mountains are 40 miles distant from the station, which is open, and freely exposed to winds. The same winds prevail here as at Madras, Nellore being under the influence of the same monsoons. The long-shore southerly winds in March and April are very exhausting to a European constitution.

The climate of this station is particularly dry, with little variability.
The following are the approximate mean monthly values of temperature :-

The high day temperature varies from 76° in January to 93° in May.

The low night temperature varies from
The mean annual temperature is about 82°
The annual fall of rain is about 60 inches; 40 inches fall in September, October, and November, of which 32 inches fall in November.

Madras Presidency.
East Coast upper portion, ranging from $16^{\circ} \mathrm{N}$. to $19 \frac{1}{2}^{\circ} \mathrm{N}$. Masulipatam.

Latitude, $16^{\circ} 10^{\prime}$ N., 325 miles N.E. of Bangalore.
Longitude, $81^{\circ} 13^{\prime}$ E., 195 miles S.E. of Hydrabad.
Height above sea, $7 \mathrm{ft} ., 215$ miles N. of Madras.
The nearest high land is the Condspillay hills, about 55 miles distant; at an elevation of 900 to 1000 feet above the level of the station.
The climate has the character of being salubrious. It is dry during the hot season, and damp during the monsoon, is not of a penetrating character. The heat is great at times during the hot land winds in April, May, and the early part of June. It is not subject to any great variations of temperature, but the early mornings in the month of February are distinguished by dense fogs, which are dispersed by the sun at about 8 oclock. During the dry weather the station is subject to severe dust storms which sweep across in heavy clouds so as at times to obscure the atmosphere.
The following are the approximate mean monthly values of temperature :
The high day temperature varies from 82° in January to 95° in May. :

The low night temperature varies from 68° in December - 82° in May and June.

The mean annual temperature is about 80°; mean daily ange 12°.
The annual fall of rain is about 43 inches.

Guntoor.

Latitude, $16^{\circ} 20^{\prime}$ N., 300 milea N.E: of Bangalore. Longitude $80^{\circ} 30^{\prime}$ E., 225 miles N. of Madras.
Height above sea, 100 ft . 47 miles W. of Masulipatam.
The nearest mountain is one of a range called Kondaveed ind is about 12 miles distant from the station, which is reely exposed to the winds. Sometimes during the months reely exposed to I November and D.W. set in, and continue for five or six days, which N. or N.W. set in, and continue for tive or six days, which ause severe constantly every evening during the hotter month if the year, with a most pleasant and salutary effect. Land sinds blow at times with great strength.
The climate of Guntoor may be stated to be dry, warm, ind not subject to sudden variations of temperature. Fogs scasionally prevail at the end of the year. The air is quite free from dust or other impurity, and the climate would seem to have a most beneficial effect upon convalescents from malarious fever, \&c.
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 79° in December to 94° in May and June.
The low night temperature varies from 65° in December to 84° in May and June.
The mean annual temperature of the air is about 81° mean daily range, 10°.
The annual fall of rain is about 42 inches; 18 inches fall in the three months June, July, and August, and 15 inches in the next three months.

Samulcottah.

Latitude, $17^{\circ} 4^{\prime}$ N., 245 miles E. of Hydrabad.
Longitude, $82^{\circ} 14^{\prime}$ E., 410 miles N.E. of Bangalore. -
Height above sea, 50 feet, 300 miles N. of Madras.
550 miles S. W. of Calcutta.
The hill of Dhumaverim is to the \mathbf{N}. ; it is distant 12 miles from the station, which is not exposed to cold or variable winds, the coldest being the \mathbf{N}. which is seldom felt.
The N.E, and E. sea breezes prevail from October to January; the S.E. and S. winds from January to May; and land winds S.W. and W. by S. from May to September.

Samulcottah is moderately dry for eight months of the year, and moderately damp for the remaining four months. Unless for a few days before the \mathbf{S}.W. monsoon there is no excessive beat, and from November to March the temperature is agreable
The following are the approximate mean monthly values of temperature :-
The high day temperature varies from 81° in January to 96° in May.
The low night temperature varies from 66° in December to 82° in May and June.

The mean annual temperature 79°; mean daily range 13°.
The annual fall of rain is about

Vizianagrum.

Latitude, $18^{\circ} 7^{\prime}$ N., 329 miles E. of Hydrabad.
Longitude $83^{\circ} 28^{\prime}$ E., 200 miles N.E. of Masulipatam. 438 miles S.E. of Calcutta.
The nearest mountain is Galleepareevatum, distant about 40 miles from the station, which is exposed to cold sea breezes, and land winds.

Berhampore.

Latitude, $19^{\circ} 20^{\circ} \mathrm{N} ., 150$ miles N.E. of Vizagapatam,
Longitude, $84^{\circ} 50^{\prime}$ E., 325 miles S.E. of Calcutta.

$$
\text { Height above sea, } 112 \mathrm{ft} .
$$

The nearest mountain is 8 miles distant from the station which is open and freely exposed to the winds except on the west; it is exposed to variable winds; to cold
winds, November to February ; to hot land winds, March winds, November to February; to hot land winds, March
to June; to S.W. winds from June to September; and to to June; to S.W. winds from June to September;
N.E. winds from the end of September to October.
The climate may be considered a dry one from March
The climate may be considered a dry one from March
to the middle of June, the heat from April to the latter part to the middle of June, the heat from April to the latter part
of June being very great. In July and August the climate
is variable. September, October, and November are damp months. January and February are cold and fogay. There are occasional dust storms which do not, however, render the air impure.
Three stations belonging probably to Bombay Presidency.

Jaulnah.

Latitude, $19^{\circ} 50^{\prime} \mathrm{N} ., 240$ miles N.W. of Secunderabad. Longitude, $75^{\circ} 56^{\prime}$ E., 235 miles S.W. of Nagpore.
Height above sea, 1,652 ft., 210 miles N.E. of Bombay.
The nearest high table land is that of Roza, 55 mile distant from the station, which is open, and freely exposed, but not to cold or variable winds. The land or dry westerly winds blow during the months of March, April, May, and June. The station is too far from the sea for the breeze to reach it.
The climate is generally salubrious; dry and cold, yet liable to great sudden variations of temperature. Fogs and damp are rare. The air is pure, rarely containing dust, \&c.

The following are the approximate mean monthly values of temperature :-

The high day temperature varies from 80° in January to 96° in May.

The low night teraperature varies from 64° in January and December to 82° in June.
The mean annual temperature is about 80°; mean daily ange, 13°.
The annual fall of rain is about 40 inches.

Kamptee.

Latitude, $21^{\circ} 10^{\prime} \mathrm{N} ., 10$ miles N.E. of Nagpore.
Longitude, $79^{\circ} 50^{\prime}$ E., 722 miles from Madras.
Height above sea, 900 ft ., 394 miles from Secunderabad.
577 miles from Bombay.
The nearest mountains are those of Chindwarra and Seonie.

The station is open to every wind that happens to blow. The station is open to every wind that happens to bow.
The hot land winds are very distressing in May, and until the rains set in in June. The station being 400 miles until the rains set in in June. The station being 400 miles
distant from the sea, no mention of the sea breeze need distant f
be made.
The climate partakes of both heat and cold. The year is divided into three seasons, cold, hot, and rainy; transitions of which are regulated, and may be calculated at certain periods.
The cold season is from the midcle of October to the middle of March; the hot season, from the middle of March to the middle of June; and the rainy, season from the middle of June to the middle of October. The rainy season is preceded by distressing sultriness; and there is a considerable diurnal range of temperature in the cold season which is extremely prejudicial to weak constitutions.

The following are the approximate mean monthly values of temperature:-

The high day temperature varies from 78° in January and December to 96° in May.
The low night temperature varies from 62° in January and December to 83° in June.

The mean annual temperature is about 80°; mean daily range 15°.
The annual fall of rain is about
Hoshingabad. (N.W. Provinces.)
Latitude, $22^{\circ} 44^{\prime}$ N., 114 miles S.W. of Saugor.
Langitude, $77^{\circ} 44^{\prime}$ E., 428 miles S.W. of Allahabad.
144 miles \mathbf{E}. of Mhow.
924 miles N. W. of Calcutta.
The Putchmaree hills are about 70 miles distant from the station, which is open and is not particularly exposed to cold or variable winds.
The climate is exceedingly hot, oppressive, and relaxing for the greater part of the year, and very trying to a European constitution.

The following are the approximate mean monthly temperatures of the air :-
The high day temperature varies from 78° in January to 97° in May.
The low night temperature varies from 61° in January to 83° in June.

The mean annual temperature is about 79°; mean daily range 14°.

RELATING TO SECTION II.

Mean Monthly Observed Maximum Temperature of the Air.
Tables XLIII. to XLV. at Elevations below 1,000 Feet.
Tables XLVI. to LII. at Elevations above 1,000 Feet.
Table XLIII., showing the Mean Monthif Maximum Temperature of the Air at Elevations below 1,000 Feet between the Latitudes $8^{\circ} 43^{\prime} \mathrm{N}$. and $17^{\circ} 4^{\prime} \mathrm{N}$. and Longitudes $75^{\circ} 30^{\prime}$ E. and $82^{\circ} 14^{\prime}$ E., principally in the Madras Presidency.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
These - \\
Lutitude \\
Longitude \\
Height
\end{tabular} \& Palamсоттл. \(8^{\circ} 43^{\prime} \mathrm{N}\). \(77^{\circ} 48^{\prime}\) E. 120 feet. \& \begin{tabular}{l}
Cantanone. \\
\(11^{\circ} 52^{\prime} \mathrm{N}\). \\
\(75^{\circ} 30^{\prime} \mathrm{E}\). \\
15 feet.
\end{tabular} \& Poonamallee. \(13^{\circ} 2^{\prime} \mathrm{N}\). \(80^{\circ} 10^{\prime} \mathrm{E}\). 2 feet. \& Fort St . George. \(13^{\circ} 4^{\prime} \mathrm{N}\). \(80^{\circ} 14^{\prime} \mathrm{E}\). \& Madrab.

$13^{\circ} 6^{\prime} \mathrm{N}$.
$\dot{80} 20^{\prime} \mathrm{E}$.

$\ldots \ldots . .$. \& | Nellore. |
| :--- |
| $14^{\circ} 20^{\prime} \mathrm{N}$. |
| $80^{\circ} 0^{\prime} \mathrm{E}$. |
| 50 feet. | \& | Kurnool. |
| :--- |
| $15^{\circ} 50^{\prime} \mathrm{N}$. |
| $78^{\circ} 5^{\prime} \mathrm{E}$. |
| 800 feet. | \& | Guntoor. |
| :--- |
| $16^{\circ} 20^{\prime}$ ㅅ․ |
| $80^{\circ} 30^{\circ} \mathrm{E}$. |
| 100 feet. | \& Samuliсотtai. $17^{\circ} 4^{\prime} \mathrm{N}$. $82^{\circ} 14^{\prime}$ E. 50 feet, \& | Means. |
| :--- |
| $14^{\circ} 49^{\prime} \mathrm{N}$. |
| $79^{\circ} 26^{\prime} \mathrm{E}$. |
| 126 feet. |

\hline Month. \& 5 Years, 1855 to 1859. \& $$
\begin{gathered}
10 \text { Years, } \\
1850 \text { to } \\
1859 .
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 5 \text { Years, } \\
& 1855 \text { to } \\
& 1859 \text {. }
\end{aligned}
$$

\] \& \therefore \& \[

$$
\begin{gathered}
30 \text { Years, } \\
1796 \text { to } \\
1825 .
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
2 \text { Years, } \\
1859 \text { and } \\
1880 .
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3 \text { Years, } \\
& 1857 \text { to } \\
& 1859 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 \text { Years, } \\
& 1855 \text { to } \\
& 1859 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3 \text { Years, } \\
& 1857 \text { to } \\
& 1859 .
\end{aligned}
$$
\] \& \cdots

\hline January \& 86 \& 87 \& $$
\begin{aligned}
& \vec{\circ} \\
& 80
\end{aligned}
$$ \& $8{ }_{8}$ \& ${ }^{8} 8$ \& 76 \& 80 \& 82 \& ${ }_{7} 8$ \& 82

\hline February - - \& 90 \& 87 \& 81 \& 87 \& 88 \& 80 \& . 85. \& 84 \& 83 \& 85

\hline March \& 93 \& 89 \& 82 \& 89 \& 91 \& 85 \& 91 \& 91 \& 88 \& 89

\hline $\Lambda_{\text {pril }}$ \& 94 \& 90 \& 85 \& 93 \& 93 \& 86 \& 93 \& 91 \& 92 \& 91

\hline May - \& 94 \& 88 \& 86 \& 101 \& 100 \& 93 \& 93 \& 94 \& 95 \& 94

\hline June - \& 93 \& 83 \& 87 \& 99 \& 98 \& 92 \& 88 \& 94 \& 90 \& 92

\hline July - - \& 92 \& 83 \& 86 \& 92 \& 95 \& 87 \& 85 \& 86 \& 85 \& 88

\hline August - \& 93 \& 82 \& 84 \& 96 \& 94 \& 86 \& 83 \& 87 \& 85 \& 88

\hline September - - \& 93 \& 83 \& 83 \& 92 \& 93 \& 87 \& 84 \& 84 \& 85 \& 87

\hline October - \& 91 \& 84 \& 82 \& 90 \& 92 \& 85 \& 85 \& 81 \& 83 \& . 86

\hline November - \& 87 \& 87 \& 80 \& 86 \& 87 \& 78 \& 80 \& 81 \& 80 \& 83

\hline December - \& 86 \& 86 \& 81 \& 86 \& 84 \& 77 \& 79 \& 79 \& 78 \& 82

\hline Means - - \& 91 \& 86 \& 83 \& 91 \& 92 \& 84 \& 85 \& 86 \& 85 \& 87

\hline $$
\left.\begin{array}{cc}
\text { Difference } & \text { be- } \\
\text { tween } & \text { hottest } \\
\text { and } & \text { eoldest } \\
\text { months. }
\end{array}\right\}
$$ \& 8 \& 8 \& 7 \& 17 \& 16 \& 17 \& 14 \& 15 \& 17 \& 12

\hline
\end{tabular}

Table XLIV., showing the Mean Monthly Maximum Temperature at Elevations below 1,000 Feet between the Latitudes $15^{\circ} 50^{\prime}$ N. and $25^{\circ} 30^{\prime} \mathrm{N}$. and Longitudes $67^{\circ} 2^{\prime}$ E. and $73^{\circ} 41^{\prime}$ E., principally in the Bombay Presidency.

Table XLV., showing the Mran Monthly Maxniom Temperature at Elevations below 1,000 Feet between the Latitudes $20^{\circ} 18^{\prime} \mathrm{N}$. and $23^{\circ} 29^{\prime} \mathrm{N}$. and Longitudes $74^{\circ} 33^{\prime} \mathrm{E}$. and $92^{\circ} 41^{\prime}$ E. in the Presidency of Bengal.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place . . . \\
Latitude . . \\
Longitude \\
Height
\end{tabular} \& Thifet
Myo.
\(20^{\circ} 18^{\prime} N\).
\(92^{\circ} 46^{\prime} \mathrm{E}\).
240 feet. \& \begin{tabular}{l}
Sebitabulder. \\
\(21^{\circ} 10^{\prime} N\). \\
\(79^{\circ} 9^{\prime} \mathrm{E}\). \\
939 feet
\end{tabular} \& \begin{tabular}{l}
Fort \\
Willlam, Caicutta. \(22^{\circ} 34^{\prime} \mathrm{N}\). \\
\(88^{\circ} 25^{\prime}\) E. \\
58 feet:
\end{tabular} \& \[
\begin{gathered}
\text { BERUAM- } \\
\text { PORE. } \\
24^{\circ} 5^{\prime} \mathrm{N} \\
88^{\circ} 17^{\prime} \mathrm{E} \\
76 \text { feet. }
\end{gathered}
\] \& \begin{tabular}{l}
Chinar. \\
\(25^{\circ} 5^{\prime} \mathrm{N}\). \\
\(88^{\circ} 0^{\prime} \mathrm{E}\). \\
250 \\
\hline feet.
\end{tabular} \& \[
\begin{gathered}
\text { BL- } \\
\text { NARES. } \\
25^{\circ} 17^{\prime} \mathrm{N} \\
83^{\circ} 4^{\prime} \mathrm{E} . \\
270 \text { feet. }
\end{gathered}
\] \& LuckNow. \(26^{\circ} 0^{\prime} \mathrm{N}\). \(82^{\circ} 0^{\prime}\) E. 360 feet. \& Meerut.
\(28^{\circ} 59^{\prime} \mathrm{N}\)
\(77^{\circ} 46^{\prime} \mathrm{E}\).
900 feet. \& Feroze-
Porr

$30^{\circ} 55^{\prime} \mathrm{N}$
$74^{\circ} 85^{\prime} \mathrm{E}$
720 feet. \& Punjab.
$31^{\circ} 40^{\prime} \mathrm{N}$
$74^{\circ} 45^{\prime} \mathrm{E}$.
800 feet. \& \& Mrang.

$26^{\circ} 49^{\prime} \mathrm{N}$.
$80^{\circ} 33^{\prime} \mathrm{E}$.
527 feet.

\hline Moxtr. \& $$
\begin{aligned}
& 1 \text { Year, } \\
& 1859 .
\end{aligned}
$$ \& \[

$$
\begin{gathered}
3 \text { Years, } \\
1858 \text { to } \\
1860 .
\end{gathered}
$$

\] \& 5 Years, 1855 to 1859. \& \[

\left\lvert\, $$
\begin{gathered}
3 \text { Years, } \\
1857 \text { to } \\
1859 .
\end{gathered}
$$\right.

\] \& \[

\left\lvert\, $$
\begin{gathered}
10 \text { Years, } \\
1850 \text { to } \\
1859 .
\end{gathered}
$$\right.

\] \& 2 Years, 1858 and 1859. \& \[

$$
\begin{gathered}
3 \text { Years, } \\
1858 \text { to } \\
1860 .
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1859 .
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
5 \text { Years, } \\
1855 \text { to } \\
1859 .
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
3 \text { Years, } \\
1857 \text { to } \\
1859 .
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1859 .
\end{aligned}
$$
\] \& -••*

\hline January - \& 89 \& 80 \& 78 \& 76 \& 76 \& 78 \& 78 \& 72 \& 72 \& 61 \& 63 \& 73

\hline February - \& 95 \& 84 \& 83 \& 82 \& 82 \& 74 \& 78 \& 74 \& 77 \& 66 \& 66 \& 76

\hline March \& 98 \& 88 \& 90 \& 91 \& 93 \& 78 \& 89 \& 76 \& 89 \& 76 \& 80 \& 85

\hline April \& 101 \& 97 \& 93 \& 98 \& 98 \& 88 \& 98 \& 92 \& 95 \& 83 \& 89 \& 93

\hline May \& 93 \& 99 \& 94 \& 99 \& 102 \& 98 \& 100 \& 103 \& 105 \& 89 \& 94 \& 98

\hline June \& 84 \& 9 \& 91 \& 100 \& 103 \& 90 \& 98 \& 97 \& 106 \& 92 \& 98 \& 97

\hline July \& 87 \& 84 \& 88 \& 92 \& 96 \& 87 \& 96 \& 99 \& 101 \& 89 \& 93 \& 93

\hline August - \& 87 \& 83 \& 87 \& 90 \& 94 \& 83 \& 88 \& 92 \& 96 \& 88 \& 92 \& 89

\hline September \& 88 \& 84 \& 88 \& 91 \& 93 \& 86 \& 88 \& 85 \& 96 \& 86 \& 91 \& 89

\hline October - \& 87 \& 85 \& 87 \& 88 \& 91 \& 81 \& 86 \& 90 \& 89 \& 84 \& 86 \& 87

\hline November \& 85 \& 79 \& 82 \& 81 \& 85 \& 74 \& 78 \& 81 \& 81 \& 72 \& 76 \& 79

\hline December \& 84 \& 74 \& 77 \& 75 \& 77 \& 68 \& 66 \& 69 \& 73 \& 65 \& 64 \& 71

\hline Means - \& 90 \& 86 \& 86 \& 89 \& 91 \& 82 \& 87 \& 86 \& 90 \& 79 \& 83 \& 86

\hline $$
\left.\begin{array}{c}
\text { Difference between } \\
\text { hottest and coldest } \\
\text { months. }
\end{array}\right\}
$$ \& \& 25 \& 17 \& 25 \& 27 \& 30 \& 34 \& 34 \& 34 \& 31 \& 35 \& 27

\hline
\end{tabular}

Table XlVI., showing the Mean Monthly Maximum Temperature at Elevations between 1,000 and 2,000 Feet between the Latitudes $17^{\circ} 0^{\prime} \mathrm{N}$. and $17^{\circ} 28^{\prime} \mathrm{N}$. and Longitudes $77^{\circ} 0^{\prime} \mathrm{E}$. and $78^{\circ} 32^{\prime}$ E. in the Madras Presidency.

Table XLVI., showing the Mean Monthly Maxi. mum Temperature at Elevations above 3,000 Feet 'between the Latitudes $11^{\circ} 25^{\prime} \mathrm{N}$. and $12^{\circ} 57^{\prime} \mathrm{N}$. and Longitudes $77^{\circ} 5^{\prime} \mathrm{E}$. and $77^{\circ} 38^{\prime} \mathrm{E}$. in the Madras Presidency.

Place Latitude Longitude . Height.	Bellart. $17^{\circ} 0^{\prime} \mathrm{N}$. $77^{\circ} 0^{\prime} \mathrm{E}$. 1,500 feet.	SecunderABAD. $17^{\circ} 28^{\prime} \mathrm{N}$. $78^{\circ} 32^{\prime}$ E. 1,800 feet.	Means. $17^{\circ} 14^{\prime} \mathrm{N}$. $77^{\circ} 46^{\prime}$ E. 1,650 feet.		Bangalore. $\begin{aligned} & 12^{\circ} 57^{\prime} \mathrm{N} . \\ & 77^{\circ} 38^{\prime} \mathrm{E} \\ & 3,000 \text { feet. } \end{aligned}$	Wrlingatoñ. $\begin{gathered} 11^{\circ} 25^{\prime} \mathrm{N} . \\ 77^{\circ} 5^{\prime} \mathrm{E} . \\ 6,000 \text { feet. } \end{gathered}$
Month.	9 Years, 1851 to 1859	$\begin{aligned} & 10 \text { Years, } \\ & 1850 \text { to, } \\ & 1859 . \end{aligned}$	Monte.	$\text { , } 1 \text { Year, }$	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$
January -	78	78	18	January	79	68
February -	81	82	82	February	83	66
March	85	87	86	March - -	88	71
April	90	92	91	April -	86	67
May	92	95	94	May -	91	73
June	86	86	86	June -	84	73
July -	82	83	83	July -	84	. 74
August -	82	83	83	August -	81	75
September:	84	82	83	September -	82	75
October	80	82	81	October	82	74
November	80	79	79	November	79	68
December -	78	77	78	December	80	75
Means -	83	84	83	Means	83	72
$\left.\begin{array}{c} \text { Difference between hottest } \\ \text { and coldest months. } \end{array}\right\}$	14	18	16	$\left.\begin{array}{c}\text { Difference between hottest and } \\ \text { coldest months. }\end{array}\right\}$	12	9

Table XLVIII, showing the Mean Monthly Maximom Temperature at Elevations between 1,000 and 2,000 Feet between the Latitudes $16^{\circ} 11^{\prime}$ N. and $26^{\circ} 20^{\prime}$ N., and Longitudes $73^{\circ} 1^{\prime}$ E. and $77^{\circ} 25^{\prime}$ E., principally in the Bombar Presidency.

Place . Latitude Longitude Height	Kullad- GhEE. $16^{\circ} 11^{\prime} \mathrm{N}$. $75^{\circ} 33^{\prime} \mathrm{E}$. 7,750 feet.	Mola- $\begin{gathered}\text { Pobe. } \\ 16^{\circ} 42^{\prime} \mathrm{N} . \\ 74^{\circ} 18^{\prime} \text { E. } \\ 1,797 \text { feet. }\end{gathered}$	$\left\lvert\, \begin{gathered} \text { ShoLA- } \\ \text { pore. } \\ 17^{\circ} 40^{\prime} \mathrm{N} . \\ 76^{\circ} 0^{\prime} \mathrm{E} . \\ 1,821 \text { feet. } \end{gathered}\right.$		Seroor.	Droown. $20^{\circ} 54^{\prime} \mathrm{N}$. $74^{\circ} 45^{\prime} \mathrm{E}$. 1,000 feet.	Mнош. $22^{\circ} 33^{\prime} \mathrm{N}$. $75^{\circ} 46^{\prime} \mathrm{E}$. 1,862 feet.	$\begin{gathered} \text { Armad- } \\ \text { NUGGIE. } \\ 23^{\circ} 34^{\prime} \mathrm{N} . \\ 73^{\circ} 1^{\prime} \mathrm{E} . \\ 1,900 \text { feet. } \end{gathered}$		$\begin{gathered} \text { Nusserge- } \\ \text { ABAD. } \\ 26^{\circ} 20^{\prime} \mathrm{N} . \\ 74^{\circ} 50^{\prime} \mathrm{E} . \\ 1,500 \text { feet. } \end{gathered}$	Means. $20^{\circ} 35^{\prime} \mathrm{N}$. $75^{\circ} 3^{\prime}$ E. 1,665 feet.
Monta.	$\begin{gathered} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 10 \text { Years, } \\ 18500 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 11 \text { Years, } \\ 1850 \text { to } \\ 1860 . \end{gathered}$	$\begin{gathered} 5 \text { Years, } \\ 1856 \text { to } \\ 1860 . \end{gathered}$	5 Years, 1854 to 1858.	$\begin{aligned} & 6 \text { Years, } \\ & 1853 \text { to } \\ & 1858 . \end{aligned}$	$\begin{gathered} 2 \text { Years, } \\ 1859 \text { and } \\ 1860 . \end{gathered}$	$\begin{gathered} 6 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 1 \text { Y ar } \\ 1 \times 60 . \end{gathered}$	2 Years, 1859 and 1860.	\ldots
January	89	77	80	81	94	80	75	$8{ }^{\circ} 3$	${ }_{6} 8$	65	79
February	92	82	84	87	94	86	77	87 *	71	76	84
March	101	87	91	91	101	92	85	94	80	80	90
April	104	88	93	95	107	98	92	98	92	91	96
May - -	101	89	93	93	98	101	95	98	94	95	96
June - -	96	81	88	85	96	94	85	88	82	99	89
July - -	91	77	84	80	91	85	86	83	76	91	84
August	93	77	84	78	88	84	77	82	75	89	83
September -	91	78	84	79	84	84	78	81	79	86	82
October	91	80	83	84	96	86	81	84	77	84	85
November -	88	78	81	83	95	- 83	78	82	78	84	83
December -	85	77	78	80	99	81	74	80	76	69	80
Means - -	93	81	85	85	95	88	82	87	79	84	86
$\begin{gathered} \text { Difference } \\ \text { bween } \\ \text { twen } \\ \text { and } \\ \text { motetest } \\ \text { me. } \end{gathered}$	19	12	15	17	23	21	21	18	32	34	17

Table XLIX., showing the Monthly Mean Maximum $/$ Table L., showing the Monthly Mean Maximem TemTemperatere at Elevations between 2,000 and 3,000 Feet, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $17^{\circ} 40^{\prime} \mathrm{N}$., and Longitudes $74^{\circ} 2^{\prime}$ E. and $75^{\circ} 10^{\prime}$ E., principally perature at Elevations between 4,000 and 5,000 Feet between the Latitudes $17^{\circ} 59^{\prime} \mathrm{N}$. and $44^{\circ} 45^{\prime} \mathrm{N}$., and Longitudes $72^{\circ} 49^{\prime}$ E. and $73^{\circ} 54^{\prime}$ E., principally in the Bombay Presidency.

Place . . . Latitude Longitude. Height	Dharmar.	Belgacm. $15^{\circ} 52^{\prime} \mathrm{N}$. $74^{\circ} 42^{\prime}$ E. 2,260 feet.	Sattara. $\begin{gathered} 17^{\circ} 40^{\prime} \mathrm{N} . \\ 74^{\circ} 2^{\prime} \mathrm{E} . \\ 2,320 \text { feet. } \end{gathered}$	Means. $16^{\circ} 27^{\prime} \mathrm{N}$. $74^{\circ} 38^{\prime} \mathrm{E}$. 2,354 feet.	Place. Latitude. Longitude Height	MahabLebhwur. $17^{\circ} 59^{\prime} \mathrm{N}$. $73^{\circ} 30^{\prime} \mathrm{E}$. 4,500 feet.	Poorcndhur. $18^{\circ} 12 \mathrm{~N}$. $73^{\circ} 54^{\prime} \mathrm{E}$. 4,200 feet.	Mornt Aboo. $24^{\circ} 45^{\prime} \mathrm{N}$. $72^{\circ} 49^{\prime} \mathrm{E}$. 4,000 feet.	Meang. $20^{\circ} 19^{\circ} \mathrm{N}$. $73^{\circ} 24^{\prime}$ E. 4,233 feet.
Montr.	$\begin{gathered} 2 \text { Years, } \\ 1859 \text { and } \\ 1860 . \end{gathered}$	4 Years, 1856 to 1859.	Moxtr.	$\begin{aligned} & 1 \text { Year, } \\ & 1834 . \end{aligned}$	$\begin{gathered} 2 \text { Years, } \\ 1852 \text { and } \\ 1853 . \end{gathered}$	5 Years, 1855 to 1859.
Japuary -	$8{ }^{\circ}$	85	82	${ }_{8}^{8}$	January -	71	7	7	71
February -	89	91	82	87	February -	74	77	78	76
March .-	92	94	89	92	March - .-	82	81	82	82
April - -	91	97	92	98	April - -	82	83	87	84
May -	91	89	90	90	May - -	81	78	92	84
June	83	81	80	81	June - .- -	69	80	92	- 80
July - - -	80	79	76	78	July - - -	67	71	81	73
August -	77	78	75	77	August - -	67	68	76	71
September	77	80	78	78	September -	66	73	78	72
October-	82	85	79	82	October -	69	74	79	74
November -	85	84	79	83	November -	70	73	79	74
December	80	83	80	81	December	68	70	73.	70
Mesnı - -	84	85	82.	84	Mėans	72	75	81	76
$\left.\begin{array}{cc} \text { Difference } & \text { be- } \\ \text { tween } & \text { hoteest } \\ \text { and } & \text { coldest } \\ \text { months. } & \vdots \end{array}\right\}$	15	19	17	16	$\left.\left\lvert\, \begin{array}{cc} \text { Difference } & \text { be- } \\ \text { tween } & \text { hottest } \\ \text { and } & \text { coldest } \\ \text { months. } \end{array}\right.\right\}$	16	15	21	14

Table LI., showing the Mean Monthly Maximum Temperatere, | Table Lit., showing the Mean Monthly |
| :---: | Maximlem Temperature at Llevations above 4,000 Feet, between the Latitudes $25^{\circ} 14^{\prime} \mathrm{N}$. and $27^{\circ} 2^{\prime} \mathrm{N}$. and Longitudes $88^{\circ} 18^{\prime}$ E. and $91^{\circ} 45^{\prime} \mathrm{E}$. in the Presidency of Bengial.

Place . Latitude . Longitude Height	Kherwarrah. $26^{\circ} 42^{\prime} \mathrm{N}$. $79^{\circ} 12^{\prime} \mathrm{E}$. 1,200 feet.	Dmballa. $30^{\circ} 23^{\prime} \mathrm{N}$. $76^{\circ} 44^{\prime}$ E. 1,050 feet.	Mean Meer. $30^{\circ} 34^{\prime} \mathrm{N}$. $74^{\circ} 4^{\prime} \mathrm{E}$ 1,128 feet.	Pesha wor. $34^{\circ} 20^{\prime} \mathrm{N}$. $71^{\circ} 29^{\prime} \mathrm{E}$. 1,056 feet.	Means. $30^{\circ} 30^{\prime} \mathrm{N}$ $75^{\circ} 22^{\prime} \mathrm{E}$ 1,109 feet.	Means. $30^{\circ} 32^{\prime} \mathrm{N}$. $74^{\circ} 55^{\prime}$ E. 1,128 feet.	Place . Latitude Longitude Height	Chirrapoongee. $25^{\circ} 14^{\prime} \mathrm{N}$. $91^{\circ} 45^{\prime} \mathrm{E}$: 4,118 feet	Darjeelina. $27^{\circ} 2^{\prime} N$. $88^{\circ} 18^{\prime} \mathrm{E}$. 7,000 feet.	Nrnet Tall. $29^{\circ} 20^{\prime} \mathrm{N}$. $79^{\circ} 30^{\prime} \mathrm{E}$. 6,400 feet.
Monte.	$\begin{gathered} 5 \text { Years, } \\ 1854 \text { to } \\ 18.58 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1851 \text { and } \\ 1852 . \end{gathered}$	$\begin{gathered} 5 \text { Years, } \\ -1855 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 6 \text { Years, } \\ & 1855 \text { to } \\ & 1860 . \end{aligned}$	Including Umbala.	Without Umbala.	Monti.	$\begin{gathered} 2 \text { Years, } \\ 1859 \text { and } \\ 1860 . \end{gathered}$	3 Years, 1857 to 1859.	9 Years, 1846 to 1854.
January	74	81	64	60	70	${ }^{\circ} 6$	January	61	50	84
February	82	86	72	62	75	72	February -	65	51	65
March -	91	84	80	73	82	81	March - -	67	57	\%2
April -	99	101	92	87	95	93	April -	72	60	78
May	103	109	98	96	102	99	May -	74	63	83
June -	93	113	95	102	101	97	June -	71	65	81
July -	87	108	96	100	98	94	July -	73	64	77
August	85	100	95	99	95	93	August	71	65	76
September	88	100	91	94	93	91	September -	72	65	76
October	87	98	84	86	89	86	October	73	61	76
Novenber	81	84	78	74	79	78	November -	64	57	71
December	74	76	69	63	71	69	December	58	52	67
Means -	87	95.	84	83	87	85	Means	68	59	74
$\left.\begin{array}{cc} \text { Difference } & \text { be- } \\ \text { tween } & \text { hottest } \\ \text { snd } & \text { coldest } \\ \text { months. } \end{array}\right\}$	29	37	34	42	32	33	$\left\{\begin{array}{cc} \text { Difference } & \text { be- } \\ \text { tween } & \text { hottert } \\ \text { and } & \text { coldest } \\ \text { months. } \end{array}\right\}$	16	15	19

RELATING TO SECTION III.
Mean Monthly Observed Minimum Temperature of the Air.
Tables LIII. to LV. at Elevations below 1,000 Feet
Tables LVI. to LXII. at Elevations above 1,000 Feet.
Table LIII., showing the Mean Monthly Minimum Temperature at Elevations below 1,000 Feet, between the Latitudes $8^{\circ} 43^{\prime}$ N. and $17^{\circ} 4^{\prime}$ N., and Longitudes $75^{\circ} 30^{\prime}$ E. and $82^{\circ} 14^{\prime}$ E., principally in the Madras Presidency.

Place Latitude Longitude Height	Palamcotrah. $8^{\circ} 43^{\prime} \mathrm{N}$. $77^{\circ} 48^{\prime}$ E. 120 feet.	CanNANORE. $11^{\circ} 52^{\prime} \mathrm{N}$. $75^{\circ} 30^{\prime} \mathrm{E}$. 15 feet.	Poonamallee. $13^{\circ} 2^{\prime} \mathrm{N}$. $80^{\circ} 10^{\prime} \mathrm{E}$. 2 feet.	Fort St. George. $\begin{gathered} 13^{\circ} 4^{\prime} \mathrm{N} \\ 80^{\circ} 14^{\prime} \mathrm{E} \end{gathered}$	Madras. $\begin{gathered} 13^{\circ} 6^{\prime} \mathrm{N} \\ 80^{\circ} 21^{\prime} \mathrm{E} \\ \therefore \end{gathered}$	Nellore. $14^{\circ} 20^{\prime} \mathrm{N}$. $80^{\circ} 0^{\prime} \mathrm{E}$. 50 feet.	Kurnool. $15^{\circ} 50^{\prime} \mathrm{N}$. $78^{\circ} 5^{\prime} \mathrm{E}$. 800 feet.	Guntoor, $16^{\circ} 20^{\prime} \mathrm{N}$. $80^{\circ} 30^{\prime} \mathrm{E}$. 100 feet.	Samul. cottan. $17^{\circ} 4^{\prime} \mathrm{N}$. $82^{\circ} 14^{\prime}$ E. , 50 feet.	$\begin{gathered} \text { Means. } \\ 14^{\circ} 49^{\prime} \mathrm{N} . \\ 79^{\circ} 26^{\prime} \mathrm{E} . \end{gathered}$
Monte.	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to. } \\ & 1859 . \end{aligned}$	\ldots	$\begin{aligned} & 30 \text { Years, } \\ & 1796 \text { to } \\ & 1825 . \end{aligned}$	$\begin{aligned} & 2 \text { Years, } \\ & 1859 \text { and } \\ & 1860 . \end{aligned}$	$\begin{gathered} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{gathered}$	5 Years, 1855 to 1859.	$\begin{aligned} & 3 \text { Years, } \\ & 1857 \text { to } \\ & 1859 . \end{aligned}$
Janaary - -	76	78	74	65	69	72	75	68	55	70
February - -	77	79	76	65	70	75	79	73	60	73
March -	82	81	78	69	72	77	86	72	65	. 76
April - -	84	82	80	74	77	- -	90	81	75	80
May - - -	84	80	81	78	81	- -	88	84	80	82
June - - .	84	77	82	79	81		84	84	78	81
July - - -	83	77	82	77	79		82	80	78	80
August - -	82	78	82	74	79	- -	81	81	77	79
Seprember - -	83	77	79	74	78	79	81	79	76	78
October -	82	76	78	73	76	81	81	70	74	77
November -	79	77	75	67	73	76	76	T3	63	73
December - -	77	76	76	66	71	74	74	65	53	70
Meana	81	78	78	72	76	- -	81	76	69	77
$\left.\begin{array}{c} \text { Difference be- } \\ \text { tween hottest } \\ \text { and coldest } \\ \text { months. } \end{array}\right\}$	+ 8 *	- 6	8	14	12	- . -	16	19	27	12

Table LIV., showing the Mean Monthly Minimum Temperature at Elevations below 1,000 Feet, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$, and $25^{\circ} 30^{\prime} \mathrm{N}$., and Longitudes $67^{\circ} 2^{\prime}$ E. and $73^{\circ} 41^{\prime}$ E., principally in the Bombar Presidency.

Place . . . '. Latitude . . Longituac Height	Vincorla. $15^{\circ} 50^{\prime} \mathrm{N}$ $73^{\circ} 41^{\prime} \mathrm{E}$ 20 feet.	Rutnagherry. $i 7^{\circ} 0^{\prime}$ N. $73^{\circ} 20^{\prime} \mathrm{E}$. 150 feet.	Dapoo- LeE. $17^{\circ} 45^{\prime} \mathrm{N}$ $73^{\circ} 16^{\prime} \mathrm{E}$ 600 feet.	Surat. $21^{\circ} 10^{\prime} \mathrm{N}$ $72^{\circ} 52^{\prime} \mathrm{L}$. 33 feet.	$\begin{gathered} \text { Baroda. }^{2} \\ \vdots \\ 22^{\circ} 16^{\prime} \mathrm{N} \\ 73^{\circ} 14^{\prime} \mathrm{E} \\ 90 \text { feet. } \end{gathered}$	Rarcote. $22^{\circ} 18^{\prime} \mathrm{N}$ $70^{\circ} 50^{\prime} \mathrm{E}$ 450 feet.	Ahmed- $\triangle B A D$. $23^{\circ} 0^{\prime} \mathrm{N}$. $720^{\prime} \mathrm{E}$. 320 feet.	$\begin{gathered} \text { Kurde- } \\ \text { ches. } \\ 24^{\circ} 51^{\prime} \mathrm{N} . \\ 67^{\circ} 2^{\prime} \mathrm{E} . \\ 27 \text { feet. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Devsa. } \\ 25^{\circ} 14^{\prime} \mathrm{N} \\ 72^{\circ} 5^{\prime} \mathrm{E} \\ 400 \text { feet. } \end{gathered}\right.$	$\left(\begin{array}{c} \text { HxDER } \\ \text { ABLD. } \\ 25^{\circ} 30^{\prime} \mathrm{N} \\ 69^{\circ} 5^{\prime} \mathrm{E} \\ 9 \\ 99 \text { feet. } \end{array}\right.$	$\left(\begin{array}{c} \mathrm{J}_{\triangle \mathrm{COB}}- \\ \triangle \mathrm{BAD} . \\ \because \\ \because \\ \cdots \\ 220 \text { feet. } \end{array}\right.$	
Молтн.	$\begin{gathered} \text { 4 Years, } \\ 1856 \text { to } \\ 1859 . \end{gathered}$	5 Years, 1855 to 1859.	2 Years, 1858 and 1859 1859.	$\begin{gathered} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 7 \text { Years, } \\ 1847 \text { to } \\ 1853 . \end{gathered}$	$\begin{gathered} 4 \text { Years, } \\ 1857 \text { to } \\ 1860 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{gathered}$.	$\begin{gathered} 3 \text { Years, } \\ 1857 \\ 1859 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1856 \text { and } \\ 1857 . \end{gathered}$	$\begin{array}{\|c} 12 \text { Years. } \\ 1848 \text { to } \\ 1859 . \end{array}$. \cdot
January - -	72	70	61	$\stackrel{\circ}{59}$	$\begin{gathered} \circ \\ 58 \end{gathered}$	$\begin{gathered} \circ \\ 59 \end{gathered}$	${ }_{6}^{\circ}$	$\begin{gathered} \circ \\ 51 \end{gathered}$	5	$\stackrel{\circ}{58}$	$\stackrel{\circ}{4}$	$\stackrel{\circ}{59}$
February	73	71	62	69	56	62	65	57	54	62	48	62
March - -	76	74	69	70	71	71	73	66	62	72	56	69
April - -	79	76	74	76	69	77	82	73	71	78	70	75
May -	80	77	76	80	83	83	86	77	78	83	83	81
June - -	77	77	75	80	80	83	84	80	79	85	90	81
July -	76	74	75	78	80	81	77	79	79	84	87	79
August -	76	76	73	79	76	79	77	80	76	82	83	78
September -	76	77	72	77	77	79	77	78	73	80	81	77
October -	77	74	70	73	73	77	77	72	62	76	69	73
November	75	71	66	67	64	66	70	56	53	65	53	64
December	73	70	61	63	58	64	60	51	48	58	46	59
Means -	76	74	69	72	69	73	74	67	65	73	67	72
Diff. between hottest and coldest months.	8	7	15	21	27	24	26	29	31	27	46	22

Table LV., showing the Mean Monthly Minimum Temperature at Elevations below 1,000 Feet, between the Latitudes $20^{\circ} 15^{\prime} \mathrm{N}$. and $32^{\circ} 29^{\prime} \mathrm{N}$., and Longitudes $74^{\circ} 33^{\prime}$ E. and $92^{\circ} 46^{\prime} \mathrm{E}$., in the Presimency of Bengal.

Place . . . Latilude * . Longitude Height	Thy Mry. 20° $20^{\prime} \mathrm{N}$ $92^{\circ} 46^{\prime} \mathrm{E}$ 240 feet.	Seeta- bulder. $21^{\circ} 10^{\prime} \mathrm{N}$. $79^{\circ} 9^{\prime} \mathrm{E}$ 939 feet.	Fort William (Cal. cetta). $22^{\circ} 34^{\prime} \mathrm{N}$. $88^{\circ} 25^{\prime}$ E. 8 feet.	$\begin{gathered} \text { BrRHMM } \\ \text { Pork. } \\ 24^{\circ} 5^{\prime} \mathrm{N} . \\ 88^{\circ} 17^{\prime} \mathrm{E} . \\ 76 \text { feet. } \end{gathered}$	$\left(\begin{array}{l} \text { ChUNAR. } \\ 25^{\circ} 5^{\prime} \mathrm{N} . \\ 83^{\circ} 0^{\prime} \mathrm{E} . \\ 250 \text { feet. } \end{array}\right.$	$\begin{gathered} B_{E N A R E S} \\ 25^{\circ} 17^{\prime} \mathrm{N} \\ 83^{\circ} 4^{\prime} \mathrm{E} . \\ 270 \text { feet. } \end{gathered}$	LockNow. $26^{\circ} 0^{\prime} \mathrm{N}$. $82^{\circ} 0^{\prime} \mathrm{E}$. 360 feet.	Meerut. $28^{\circ} 59^{\prime} \mathrm{N}$. $77^{\circ} 46^{\prime} \mathrm{E}$ 000 feet.	Feroze- pork. $30^{\circ} 55^{\prime} \mathrm{N}$. $74^{\circ} 35^{\prime} \mathrm{E}$. 720 feet.	Punjas. $31^{\circ} 40^{\prime} \mathrm{N}$ $74^{\circ} 45^{\prime} \mathrm{E}$ E. 800 feet.	$\left[\begin{array}{c} \text { Seale } \\ \text { котк. } \\ 32^{\circ} 29^{\prime} \mathrm{N} \\ 74^{\circ} 33^{\prime} \mathrm{E} \\ 900 \text { feet. } \end{array}\right.$	$\begin{aligned} & \text { Means. } \\ & 26^{\circ} 49^{\prime} \mathrm{N} . \\ & 80^{\circ} 33^{\prime} \mathrm{E} . \\ & 527 \text { feet. } \end{aligned}$
Montr.	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$	$\begin{gathered} 2 \text { Years, } \\ 1858 \text { and } \\ 1860 . \end{gathered}$	$\begin{array}{\|c\|} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{array}$	$\begin{gathered} 3 \text { Years } \\ 1857 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{gathered}$	$\left.\begin{array}{\|c} 2 \\ \hline 1858 \text { Years } \\ 1859 . \end{array} \right\rvert\,$	$\begin{gathered} \text { 3 Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$	1 Year, 1859.	$\begin{array}{\|c\|} \hline 5 \text { Years. } \\ 1855 \text { to } \\ 1859 . \end{array}$	$\left.\begin{gathered} 3 \text { Years } \\ 1857 \text { to } \\ 1859 . \end{gathered} \right\rvert\,$	$\begin{gathered} 1 \text { Year, } \\ 1859 . \end{gathered}$	\cdots
January -	53	61	60	51	54	60	5	50	47	47	51	53
February	63	75	65	54	57	65	59	55	58	54	51	59
March -	67	78	73	61	68	71	64	58	63	60	58	65
April	77	87	77	69	74	80	78	71	67	71	67	74
May -	78	92	79	71	80	88	81	77	83	82	74	81
June	75	86	81	77	81	85	82	83	84	86	81	83
July -	77	81	80	76	79	85	80	85	80	85	80	82
August --	78	80	79	77	78	80	81	80	76	84	78	79
September	78	80	80	78	77	81	83	76	78	80	72	79
October -	76	77	77	70	72	78	73	63	69	67	64	71
Norember	66	69	67	60	62	67	62	50	56	51	60	60
December	62	65	59	55	53	59	55	53	52	44	54	55
Means -	71	78	73	67	69	75	71	67	68	68	66	70
Diff. between hottest and coldest months.	$\}^{25}$	91	22	27	28	29	29	35^{*}	37	42	30	30

Table LVI., showing the Mean Monthly Minimpm \mid Table LVII., showing the Mean Monthly Minimum Temperature at Elevations between 1,000 and 2,000 Temperature at Elevations above 3,000 Feet, between the Latitudes $11^{\circ} 25^{\prime}$ N. and $12^{\circ} 57^{\prime}$ N., and Longitudes $77^{\circ} 5^{\prime}$ E. and $77^{\circ} 38^{\prime}$ E., in the Madras Presidency. and Longitudes $77^{\circ} 0^{\prime}$ E. and $78^{\circ} 32^{\prime}$ E., in the Madras Presidency.

$\begin{array}{l}\text { Place . }\end{array}$. $\left.\quad . \quad . \quad . \quad.\right)$	Bangalore. $12^{\circ} 57^{\prime} \mathrm{N} .$ $77^{\circ} 38^{\prime}$ E. 3,000 feet.	Wellington. $\begin{gathered} 11^{\circ} 25^{\prime} \mathrm{N} . \\ 77^{\circ} 5^{\prime} \mathrm{E} . \\ 6,000 \text { feet. } \end{gathered}$
Monte.	$\begin{aligned} & \text { I Year, } \\ & 1859 . \end{aligned}$	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$
January - - -	59	60
February - - - -	63	60
March - - - -	70	63
April - - - -	71	62
May - - - -	72	65
June - - - -	69	65
July - - - -	70	62
August - - - -	69	65
September - - - -	70	59
October - - - -	69	65
November - - - -	67	64
December - - -	62	65
Means - -	67	63
Difference between hottest and coldest months.	13	6

Table LVIII., showing the Mean Monthly Minimom Temperature at Elevations between 1,000 and 2,000 Feet, between the Latitudes $16^{\circ} 11^{\prime}$ N. and $26^{\circ} 20^{\prime}$ N., and Longitudes $73^{\circ} 1^{\prime}$ E. and $77^{\circ} 25^{\prime}$ E., principally in the Bombay Presidency.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place . . \\
Latitude \\
Longitude \\
Height
\end{tabular} \& \[
\begin{gathered}
\text { Kullad- } \\
\text { GHEE. } \\
16^{\circ} 11^{\prime} \mathrm{N} . \\
75^{\circ} 33^{\prime} \mathrm{E} \\
1,750 \text { feet. }
\end{gathered}
\] \& Kolapore

$16^{\circ} 42^{\prime} \mathrm{N}$
$74^{\circ} 18^{\prime} \mathrm{E}$
1,797 feet. \& Shola. PORE. $17^{\circ} 40^{\prime} \mathrm{N}$. $76^{\circ} 0^{\prime}$ E. 1,821 feet. \& Poona.
$18^{\circ} 30^{\prime} \mathrm{N}$.
$74^{\circ} 0^{\prime} \mathrm{E}$.
1,800 feet. \& Seroor.

$18^{\circ} 50^{\prime} \mathrm{N}$.
$77^{\circ} 25^{\prime} \mathrm{E}$.

1,752 feet. \& | Drodila. |
| :--- |
| $20^{\circ} 54^{\prime} \mathrm{N}$. |
| $74^{\circ} 45^{\prime} \mathrm{E}$. |
| 1,000 feet $^{\text {a }}$ | \& Mrow.

$22^{\circ} 93^{\prime} \mathrm{N}$
$75^{\circ} 46^{\prime} \mathrm{E}$.
1,862 feet. \& \& Nremuch.
$24^{\circ} 27^{\prime} \mathrm{N}$.
$74^{\circ} 54^{\prime} \mathrm{E}$.

1,476 feet. \& $$
\begin{aligned}
& \text { Nusseer- } \\
& \text { ABAD. } \\
& 26^{\circ} 20^{\prime} \mathrm{N} . \\
& 74^{\circ} 50^{\prime} \mathrm{E} . \\
& 1,500 \text { feet. }
\end{aligned}
$$ \& \[

$$
\begin{gathered}
\text { Means. } \\
20^{\circ} 35^{\prime} \mathrm{N} . \\
75^{\circ} 3^{\prime} \mathrm{E} . \\
1,665 \text { feet }
\end{gathered}
$$
\]

\hline Monte. \& 5 Years, 1855 to 1859. \& $$
\begin{array}{|c}
10 \text { Years, } \\
1850 \text { to } \\
1859 .
\end{array}
$$ \& \[

\left\lvert\, $$
\begin{gathered}
11 \text { Years, } \\
1850 \text { to } \\
1860 .
\end{gathered}
$$\right.

\] \& 5 Years, 1856 to 1860. \& \[

$$
\begin{gathered}
5 \text { Years, } \\
1854 \text { to } \\
1858 .
\end{gathered}
$$

\] \& 6 Years, 1853 to 1858. \& \[

$$
\begin{gathered}
2 \text { Years, } \\
1859 \text { and } \\
1860 .
\end{gathered}
$$

\] \& 6 Years, 1854 to 1859. \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& \text { I860. }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2 \text { Years, } \\
& 1859 \text { and } \\
& 1860 .
\end{aligned}
$$
\] \& \cdots

\hline January - - \& $$
\stackrel{\circ}{60}
$$ \& \[

\stackrel{\circ}{67}

\] \& \[

\stackrel{\circ}{69}

\] \& \[

$$
\begin{gathered}
\circ \\
58
\end{gathered}
$$

\] \& \[

\stackrel{\circ}{50}

\] \& \[

\stackrel{\circ}{62}

\] \& \[

$$
\begin{gathered}
0 \\
65
\end{gathered}
$$

\] \& $\stackrel{\circ}{59}$ \& \[

$$
\begin{gathered}
\circ \\
49
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\circ \\
61
\end{gathered}
$$
\] \& 60

\hline February - \& 66 \& 69 \& 72 \& 63 \& 51 \& 65 \& 68 \& 62 \& 50 \& 69 \& 63

\hline March - \& 74 \& 75 \& 78 \& 68 \& 59 \& 72 \& 75 \& 69 \& 60 \& 73 \& 70

\hline April - - \& 74 \& 76 \& 85 \& 71 \& 64 \& 79 \& 79 \& 75 \& 70 \& 83 \& 76

\hline May - - \& 74 \& 77 \& 83 \& 74 \& 69 \& 83 \& 78 \& 76 \& 75 \& 84 \& 77

\hline June - - \& 72 \& 76 \& 79 \& 72 \& 69 \& 81 \& 64 \& 74 \& 78 \& 88 \& 75

\hline July - - - \& 73 \& 74 \& 78 \& 70 \& 68 \& 79 \& 78 \& 73 \& 73 \& 84 \& 75

\hline August \& 73 \& 73 \& 77 \& 69 \& 68 \& 77 \& 74 \& 71 \& 73 \& 77 \& 73

\hline September - - \& 73 \& 74 \& 77 \& 68 \& 66 \& 76 \& 73 \& 70 \& 71 \& 76 \& 72

\hline October - \& 68 \& 75 \& 76 \& 66 \& 68 \& 73 \& 74 \& 69 \& 66 \& 78 \& 71

\hline November - \& 63 \& 72 \& 73 \& 61 \& 59 \& 65 \& 73 \& 63 \& 56 \& 66 \& 65

\hline December - - \& 60 \& 67 \& 66 \& 58 \& 50 \& 61 \& 67 \& 59 \& 55 \& 59 \& 60

\hline Means \& 69. \& 73 \& 75 \& 66 \& 62 \& 73 \& 72 \& 68 \& 64 \& 75 \& 70

\hline Difference between hottest and coldest monthes. \& 14 \& 10 \& 19 \& 16 \& 19 \& 22 \& 14 \& 17 \& 29 \& 29 \& 17

\hline
\end{tabular}

Table LIX., showing the Montily Mean Minimum Templeature at Elevations between 2,000 and 3,000 Feet between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $17^{\circ} 40^{\prime}$ N., and Longitudes $74^{\circ} 2^{\prime}$ E. and $75^{\circ} 10^{\prime}$ E., principally in the Bombay Presidincy.

Place Latitude Longitude Height .	Diarmar. $15^{\circ} 500^{\prime} \mathrm{N}$. $75^{\circ} 10^{\prime} \mathrm{E}$. 2,482 feet.	Belgacm. $15^{\circ} 52^{\prime} \mathrm{N}$. $74^{\circ} 42^{\prime}$ E. 2,260 feet.	Sattala. $17^{\circ} 40^{\prime} \mathrm{N}$. $74^{\circ} 2^{\prime} \mathrm{E}$. 2,320 feet.	Mrans. $16^{\circ} 27^{\prime} \mathrm{N}$ $74^{\circ} 38^{\prime} \mathrm{E}$ 2,354 feet	Place Latitude Longitude Height	Mahableshwor. $17^{\circ} 59^{\prime} \mathrm{N}$. $73^{\circ} 30^{\prime} \mathrm{E}$. 4,500 feet.	PoordnDhut. $18^{\circ} 12^{\prime} \mathrm{N}$. $73^{\circ} 54^{\prime} \mathrm{E}$. 4,200 feet.	Mount Aвоо. $24^{\circ} 45^{\prime} \mathrm{N}$. 72 2° 49 E. 4,000 feet.	Meass. $20^{\circ} 19^{\prime} \mathrm{N}$. $73^{n} 34^{\prime} \mathrm{E}$. 4,250feet.
Monte.	2 Years, 1859 and 1860.	$\begin{gathered} 4 \text { Years, } \\ 1856 \text { to } \\ 18.59 . \end{gathered}$	\ldots	\ldots	Monte.	$\begin{gathered} 1 \text { Year, } \\ 1834 . \end{gathered}$	2 Years, 1852 and 1853.	5 Years, 1855 to 1859.	\ldots
January	6 인	57	${ }^{\circ} 4$	$6{ }^{\circ}$	January	6	68	${ }_{43}$	${ }_{55}^{\text {c }}$
February	71	59	66	65	February -	61	67	47	58
March	74	62	71	69	March	66	70	60	65
April	73	66	75	71	April	67	71	61	66
May -	77	66	75	73	May -	67	68	66	67
June -	75	66	72	71	June	63	65	66	65
July -	73	66	71	70	Joly	63	65	65	64
Angust	70	65	71	69	August	64	64	64.	64
Septewber	70	64	70	68	September -	64	65	62	64
October	71	62	69	67	October -	62	67	61	63
Norember	69	62	64	65	November -	57	65	55	59
December	64	57	62	61	Deceraber	56	59	43	53
Means	70	63	69	67	Means	62	65	57	62
$\left.\begin{array}{c} \text { Difference between } \\ \text { hottest and coldest } \\ \text { months. } \end{array}\right\}$	16	9	13	12	$\left.\begin{array}{c} \text { Difference between } \\ \text { hotteest and coldest } \\ \text { months. } \end{array}\right\}$		12	23	14

Tabee LXI., showing the Mean Minimum Temperatire at Elevations betwera 1,000 and 2,000 Feet, between the Latitudes $26^{\circ} 42^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $71^{\circ} 29^{\prime} \mathrm{E}$. and $79^{\circ} 12^{\prime} \mathrm{E}$., principally in the Presidency of Bengal.

Place . Latitude. Lomgitud Height	Khtr- Walrah. $26^{\circ} 42^{\prime} \mathrm{N}$. $79^{\circ} 12^{\prime} \mathrm{E}$. 1,200 feet.	Uyballa. $30^{\circ} 23^{\prime} \mathrm{N}$. $76^{\circ} 44^{\prime} \mathrm{E}$. 1,050 feet.	Mean Meer. $30^{\circ} 34^{\prime} \mathrm{N}$. $74^{\circ} 4^{\prime}$ E. 1,128 feet.	Premantr.	Means.	Means. $30^{\circ} 3 z^{\circ} \mathrm{N}$. $74^{\circ} 55^{\prime} \mathrm{E}$ 1,128 feet.	Place. . . . Latitude . . Longitude. Height . . .	Chirrapoongee. $25^{\circ} 14^{\prime} \mathrm{N}$. $91^{\circ} 45^{\prime} \mathrm{E}$. 4,118 feet.	Darieeling. $27^{\circ} 2^{\prime} \mathrm{N}$. $68^{\circ} 18^{\prime} \mathrm{E}$ 7,000 feet.	Nines Til. $29^{\circ} \varepsilon 0^{\prime} \mathrm{N}$. $79^{\circ} 30^{\prime} \mathrm{E}$. 6,400 feet.
Monte.	$\begin{gathered} 5 \text { Years, } \\ 1854 \text { to } \\ 1858 . \end{gathered}$	2 Years, 1851 and 1852.	5 Years, 1855 to 1859.	$\begin{gathered} 6 \text { Years, } \\ 1855 \text { to } \\ 1860 . \end{gathered}$	Including Umbaila.	Not including Unballa.	Момтн.	$\begin{gathered} 2 \mathrm{Years}, \\ 1859 \text { add } \\ 1860 . \end{gathered}$	3 Years, 15.5 to 1859	$\begin{aligned} & 9 \text { Years, } \\ & 18+6 \text { to } \\ & 1854 . \end{aligned}$
January	53	37	- ${ }^{\circ} 5$	44	45	47	January	62	${ }^{39}$	${ }^{28}$
February	58	46	48	49	50	52	February	50	39	31
March	67	50	62	57	59	62	March -	56	46	38
April -	76	54	66	64	65	69	April -	64	50	45
May -	84	62	74	78	75	79	May -	66	53	52
June -	81	76	82	79	80	81	June	66	58	57.
July -	78	74	78	81	78	79	July -	68	58	39
August -	76	76	77	77	77	77	August -	67	58	58
September	76	65	74	73	2	74	September	67	56	54
Octuher	68	54	66	67	64	67	October	65	50	46
November	54	41	59	54	52	56	November	48	44	${ }^{3}$
December	52	37	51	48	47	50	December	47	39	8.5
Means	69	56	65	64	64	66	Means	60	49	45
Difrereme be. twien liat best $\left.\begin{array}{l}\text { and } \\ \text { monthn. } \\ \text { cold }\end{array}\right\}$	32	39	37	37	35	34		21	19	31

RELATING TO SECTION IV.
Mean Montely observed Daitiy Range of Temperature in each Presidency.
Tables LXIII. to LXV. at Elevations below 1,000 Feet.
Tables LXVI. to LXXI. at Elevations above 1,000 Feet.

Table LXIII., showing, the Mean Daily Range of Temperature at Elevations below 1,000 Feet, between the Lati tudes $8^{\circ} 43^{\prime} \mathrm{N}$. and $17^{\circ} 4^{\prime}$ N., and Longitudes $75^{\circ} 30^{\prime}$ E. and $82^{\circ} 14^{\prime}$ E., principally in the Presidency of Madras.

Place Latitude. Longitude Height	Palamcottal. $8^{\circ} 43^{\prime} \mathrm{N}$. $77^{\circ} 48^{\prime} \mathrm{E}$ 120 feet.	CannaNORE. $11^{\circ} 52^{\prime} \mathrm{N}$. $75^{\circ} 30^{\prime} \mathrm{E}$. 15 feet.	Poona. malleg. $13^{\circ} 2^{\prime} \mathrm{N}$. $80^{\circ} 10^{\prime} \mathrm{E}$. 2 feet.	Foet St. George. $13^{\circ} 4^{\prime} \mathrm{N}$ $80^{\circ} 14^{\prime} \mathrm{E}$	$\begin{aligned} & \text { Madras. } \\ & 13^{\circ} 6^{\prime} \mathrm{N} . \\ & 80^{\circ} 21^{\prime} \mathrm{E} . \end{aligned}$	Nellore. $14^{\circ} 20^{\prime} \mathrm{N}$ $80^{\circ} 0^{\prime} \mathbf{E}$ 50 feet.	Kurnool. $15^{\circ} 50^{\prime} \mathrm{N}$. $78^{\circ} 5^{\prime} \mathrm{E}$. 800 feet.	Guntoor. $\left\{\begin{array}{c} 16^{\circ} 20^{\prime} \mathrm{N} \\ 80^{\circ} 30^{\prime} \mathrm{E} . \\ 100 \text { feet. } \end{array}\right.$	Samulcottar. $17^{\circ} 4^{\prime} \mathrm{N} .$ $82^{\circ} 14^{\prime} \mathrm{E}$ 50 feet.	Meirs. $14^{\circ} 49^{\prime} \mathrm{N}$. $79^{\circ} 26^{\prime}$ E. 144 feet.
Monti.	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	-	$\begin{gathered} 30 \text { Years, } \\ 1796 \text { to } \\ 1825 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1859 \text { and } \\ 1860 . \end{gathered}$	$\begin{aligned} & 3 \text { Years, } \\ & 1857 \text { to } \\ & 1859 . \end{aligned}$	5 Years, 1855 to 1859.	$\begin{gathered} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{gathered}$	\ldots
Jancary - -	10	$\stackrel{9}{9}$	8	$\stackrel{1}{19}$	15	4	5	14	23	12
February - -	13	8	5	21	18	5	6	11	23	12
March -	11	8	4	20	19	8	5	19	23	13
April - -	10	8	5	19	16	- -	3	10	17	11
May - -	10	8	5	23	19	- -	5	10	15	12
June -	9	6	5	20	17	- -	4	10	12	10
July -	9	6	4	15	16	- -	3	6	7	8
August -	11	4	2	21	15	- -	2	6	8	9
September -	$10 \cdot$	6	4	18	15	8	3	5	9	9
October -	9	8	4	16	16	4	4	11	9	9
November -	8	10	5	19	14	2	4	9	17	10
December -	9	10.	5	20	13	3	5	14	25	12
Means - -	10	7	4	19	16	- -	4	10	16	15
$\left.\begin{array}{l} \text { Difference between greatest } \\ \text { and least range - } \end{array}\right\}$	5	6	4	8	6	- -	4	14	18	5

Table LXIV., showing the Mean Dainy Range of Temperature at Elevations below 1,000 Feet, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $25^{\circ} 30^{\prime} \mathrm{N}$., and Longitudes $67^{\circ} 2^{\prime}$ E. and $73^{\circ} 41^{\prime}$ E., principally in the Bombay Presidency.

Flace Latitude Longitude. . . . Height . Ai. . .	$\left\lvert\, \begin{gathered} V_{\text {IIS- }} \\ \text { corLa } \\ 15^{\circ} .50^{\prime} \mathrm{N} \\ 73^{\circ} 41^{\prime} \mathrm{E} \\ 20 \text { feet. } \end{gathered}\right.$	$\begin{array}{\|c\|} \text { RUTNA- } \\ \text { GHERRY. } \\ 17^{\circ} 0^{\prime} \mathrm{N} . \\ 73^{\circ} 20^{\prime} \mathrm{E} \\ 150 \text { feet. } \end{array}$	Dapoo- LERE $17^{\circ} 45^{\prime} \mathrm{N}$ $73^{\prime} 16^{\prime} \mathrm{E}$ 600 feet.	$\begin{array}{\|c} \text { Surat. } \\ 22^{\circ} 10^{\prime} \mathrm{N} \\ 72^{\circ} 52^{\prime} \mathrm{E} . \\ 33 \text { feet. } \end{array}$	Baboda. $22^{\circ} 16^{\prime} \mathrm{N}$. $73^{\circ} 14^{\prime} \mathrm{E}$. 90 feet.		$\begin{array}{\|c} \begin{array}{c} \text { Amged- } \\ \text { ABAD. } \\ 23^{\circ} 0^{\prime} \mathrm{N} \end{array} \\ 73^{\circ} 0^{\prime} \mathrm{E} . \\ 320 \text { feet. } \end{array}$	$\begin{gathered} \left.\begin{array}{c} \text { Kirrar }^{\prime} \\ \text { CHEE. } \\ 24^{\circ} 51^{\prime} \mathrm{N} \\ 67^{\circ} 2^{\prime} \mathrm{E} . \\ 27 \text { feet. } \end{array} \right\rvert\, \end{gathered}$	Deera. $25^{\circ} 14^{\prime} \mathrm{N}$. $72^{\circ} 5^{\prime} \mathrm{E}$. 400 feet.	HyderABAD. $25^{\circ} 30^{\prime} \mathrm{N}$. $69^{\circ} 5^{\prime} \mathrm{E}$. 99 feet.	$\begin{array}{\|c\|} \hline J_{\text {ACOB }} \\ \cdots \\ \cdots \\ \cdots \\ 220 \text { fect. } \\ \hline \end{array}$	Means. $21^{\circ} 22^{\prime} N$. $71^{\circ} 44^{\prime}$ E. 215 feet.
Month.		$\begin{gathered} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{gathered}$	$\left\lvert\, \begin{gathered} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{gathered}\right.$	$\left\|\begin{array}{c} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{array}\right\|$	$\begin{aligned} & 7 \text { Years, } \\ & 1847 \text { to } \\ & 1853 . \end{aligned}$	$\begin{gathered} 4 \text { Years, } \\ 1857 \text { to } \\ 1860 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{gathered}$	\ldots	$\begin{gathered} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{gathered}$	$\left\lvert\, \begin{gathered} 2 \text { Years, } \\ 1856 \text { and } \\ 1857 . \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 12 \text { Years, } \\ 1848 \text { to } \\ 1859 . \end{gathered}\right.$.
Janaary	12	16	27	28	${ }^{26}$	19	13	27	29	13	$\stackrel{\circ}{33}$	${ }_{22}$
February	12	16	27	22	34	21	31	20	31	16	34	24
March -	11	16	22	28	25	18	21	19	32	17	37	22
April -	9	16	19	25	25	20	22^{4}	14	31	16	30	21
May	8	16	15	20	22	16	22	14	28	16	25	18
Jone -	8	12	11	14	18	12	10	14	21°	14	19	14
July - -	7	11	8	12	11	7	27	12	14	11	21	15
August - -	6	8	7	8	12	5	15	12	11	11	19	10
September	6	8	11	13	13	6	13	10	16	10	20	11
October	7.	13	18	20	14	12	13	21	31	13	25	17
Novers	8	16	26	24	26	20	17	33	36	15	35	23
December	12	17	26	25	31	- 15	19	30	34	15	33	23
Means	9	14	19	20	23.	15	19	20	27	14	28	18
$\left.\begin{array}{c} \text { Difference between } \\ \text { greatest and least } \\ \text { range } \end{array}\right\}$	6	9	20	20	15	14	21	23	25	6	18	14

Table LXV., showing the Mean Daily Ravge of Temperature at Elevations below 1,000'Feet, between the Latitudes $20^{\circ} 15^{\prime}$ N. and $32^{\circ} 29^{\prime}$ N., and Longitudes $74^{\circ} 33^{\circ} \mathrm{E}$. and $92^{\circ} 46^{\prime}$ E., in the Presidency of Bengal.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place. \\
Latitude \\
Longitude \\
Height
\end{tabular} \& \[
\begin{gathered}
\text { Tuynt } \\
\text { Myo. } \\
20^{\circ} 15^{\prime} \mathrm{N} \\
92^{\circ} 46^{\prime} \mathrm{E} . \\
240 \text { feet. }
\end{gathered}
\] \& \begin{tabular}{l}
Sceta- \\
buldef. \\
\(21^{\circ} 10^{\prime} \mathrm{N}\). \\
\(79^{\circ} 9^{\prime} \mathrm{E}\). \\
939 feet.
\end{tabular} \& \begin{tabular}{l}
Fort \\
Whlliam, Calcutta. \\
\(22^{\circ} 34^{\prime} \mathrm{N}\). \\
\(88^{\circ} 25^{\prime}\) E. \\
8 feet.
\end{tabular} \& \begin{tabular}{l}
Berfam. Pore.
\[
24^{\circ} 5^{\prime} \mathrm{N} .
\]
\[
88^{\circ} 17^{\prime} \mathrm{E}
\] \\
76 feet.
\end{tabular} \& Chunar.
\(25^{\circ} 5^{\prime} \mathrm{N}\).
\(83^{\circ} 0^{\prime} \mathrm{E}\).
250
feet. \& Benareb.
\(25^{\circ} 17^{\prime} \mathrm{N}\).
\(83^{\mathrm{c}} 4^{\prime} \mathrm{E}\).
270 feet. \& LockNow.
\[
\begin{aligned}
\& 26^{\circ} 0^{\prime} \mathrm{N} . \\
\& 82^{\circ} 0^{\prime} \mathrm{E} . \\
\& 360 \text { feet. }
\end{aligned}
\] \& MeErdt.
\(788^{\circ} 59^{\prime} \mathrm{N}\)
\(77^{\circ} 46^{\prime} \mathrm{E}\)
900 feet. \& \[
\left\lvert\, \begin{gathered}
\text { Feroze- } \\
\text { Pork. } \\
30^{\circ} 55^{\prime} \mathrm{N} \\
74^{\circ} 35^{\prime} \mathrm{E} \\
720 \text { feet. }
\end{gathered}\right.
\] \& Punjab.

$31^{\circ} 40^{\prime} \mathrm{N}$
$74^{\circ} 45^{\prime} \mathrm{E}$
800 to

900 feet. \& \begin{tabular}{c}
Seal-

воte.

$32^{\circ} 29^{\prime} \mathrm{N}$

\hline $74^{\circ} 33^{\prime} \mathrm{E}$

\hline 900 feet.

 \&

Means.

$$
26^{\circ} 49^{\prime} \mathrm{N}
$$

$80^{\circ} 33^{\prime} \mathrm{E}$.

527 feet.
\end{tabular}

\hline Month. \& $$
\begin{aligned}
& 1 \text { Year, } \\
& 1859 .
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 2 \text { Years. } \\
& 1858 \text { to } \\
& 1860 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5 \text { Years, } \\
& 1855 \text { to } \\
& 1859 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3 \text { Years, } \\
& 1857 \text { to } \\
& 1859 .
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
10 \text { Years, } \\
1850 \text { to } \\
1859 .
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
2 \text { Years, } \\
1858 \text { and } \\
1859 .
\end{array}
$$

\] \& \[

$$
\begin{array}{|c}
3 \text { Years, } \\
1858 \text { to } \\
1860 .
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1859 .
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
5 \text { Years, } \\
1855 \text { to } \\
1859 \text { a }
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
3 \text { Years, } \\
1857 \text { to } \\
1859 .
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1859 .
\end{aligned}
$$
\] \& - $*$

\hline January - \& $\stackrel{\circ}{36}$ \& 19 \& 18 \& 25 \& 22 \& 13 \& 25 \& 22 \& 25 \& 14 \& 12 \& 20

\hline February - \& 33 \& 9 \& 18 \& 28 \& 25 \& 9 \& 19 \& 19 \& 19 \& 12 \& 15 \& 17

\hline March - \& 31 \& 10 \& 17 \& 80 \& 30 \& 7 \& 20 \& 18 \& 26 \& 16 \& 22 \& 20

\hline April - - \& 24 \& 10 \& 16 \& 29 \& 24 \& 8 \& 20 \& 21 \& 28 \& 12 \& 22 \& 19

\hline May - - \& 15 \& 7 \& 15 \& 28 \& 22 \& 10 \& 19 \& 26 \& 22 \& 7 \& 20 \& 17

\hline June - - \& 9 \& 4 \& 10 \& 23 \& 22 \& 5 \& 16 \& 14 \& 22 \& 6 \& 17 \& 14

\hline July - - \& 10 \& 3 \& 8 \& 16 \& 17 \& 2 \& 16 \& 14 \& 21 \& 4 \& 13 \& 11

\hline August - - \& 9 \& 3 \& 8 \& 13 \& 16 \& 3 \& 7 \& 12 \& 20 \& 4 \& 14 \& 10

\hline September - \& 10 \& 4 \& 8 \& 13 \& 16 \& 5 \& 6 \& 9 \& 18 \& 6 \& 19 \& 10

\hline October \& \& 8 \& 10 \& 18 \& 19 \& 3 \& 13 \& 27 \& 20 \& 17 \& 22 \& 16

\hline November - \& 19 \& 10 \& 15 \& 21 \& 23 \& 7 \& 16 \& 31 \& 25 \& 21 \& 16 \& 19

\hline December - \& 23 \& 9 \& 18 \& 20 \& 24 \& 9 \& 11 \& 16 \& 21 \& 21 \& 10 \& 16

\hline Meang - - \& 19 \& 8 \& 13 \& 22 \& 22 \& 7 \& 16 \& 19 \& 22 \& 11 \& 17 \& 16

\hline Difference between
\&rentest and least
manke \& 27 \& 16 \& 10 \& 17 \& 14 \& 11 \& 19 \& 22 \& 10 \& 17 \& 9 \& 10

\hline
\end{tabular}

Table LXVI, showing the Mean Daily Range of Temperature at Elevations up to 6,000 Feet in the - Madras Presidency.

Table LXVII., showing the Mean Daily Range of Temperature at Elevations between 1,000-and 2,000 Feet, between the Latitudes, $16^{\circ} 11^{\prime} \mathrm{N}$. and $26^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $73^{\circ} 1^{\prime} \mathrm{E}$. and $77^{\circ} 25^{\prime} \mathrm{E}$., principally in the Bombay Presidenct.

Place . . Latitude. , Longitude. - Height	$\begin{gathered} \text { KUL } \\ \text { LADGEEE. } \\ 16^{\circ} 11^{\prime} \mathrm{N} \\ 75^{\circ} 33^{\prime} \mathrm{E} \\ 1,750 \text { feet. } \end{gathered}$	KolaPORE. $\left(\begin{array}{l} 16^{\circ} 42^{\circ} \mathrm{N} \\ 74^{\circ} 18^{\prime} \mathrm{E} \\ 1,797 \\ \text { feet. } \end{array}\right.$	Sholapore. $17^{\circ} 40^{\prime} \mathrm{N}$. $76^{\circ} 0^{\prime}$ E. 1,821 feet.	$\begin{gathered} \text { Poona. } \\ 18^{\circ} 30^{\prime} \mathrm{N} . \\ 74^{\circ} 0^{\prime} \mathrm{E} . \\ 1,800 \text { feet. } \end{gathered}$	Seroor. $18^{\circ} 50^{\prime} \mathrm{N}$. $77^{\circ} 25^{\prime} \mathrm{E}$ 1,752 feet.	Dhoolia. $20^{\circ} 54^{\prime} \mathrm{N}$. $74^{\circ} 45^{\prime} \mathrm{E}$. 1,000 feet.	$\left\lvert\, \begin{gathered} \text { Mноw. } \\ 22^{\circ} 33^{\prime} \mathrm{N} \\ 75^{\circ} 46^{\prime} \mathrm{E} \\ 1,862 \text { feet. } \end{gathered}\right.$	$\begin{gathered} \text { AHMED- } \\ \text { NUGGUR. } \\ 23^{\circ} 34^{\prime} \text { N. } \\ 73^{\circ} 1^{\prime} \mathrm{E} . \\ 1,900 \text { feet: } \end{gathered}$	Neemoch.	$\left\lvert\, \begin{gathered} \text { NuSSEER- } \\ \text { ABAD. } \\ 26^{\circ} 20^{\prime} \mathrm{N} . \\ 74^{\circ} 50^{\prime} \mathrm{E} . \\ 1,500 \text { feet. } \end{gathered}\right.$	Mears. $\left(\begin{array}{c} 20^{\circ} 35^{\prime} \mathrm{N} \\ 75^{\circ} 3^{\prime} \mathrm{E} \\ 1,665 \text { feet. } \end{array}\right.$
Monte.	$\begin{gathered} -5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 10 \text { Years, } \\ & 1850 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 11 \text { Years, } \\ 1850 \text { to } \\ 1860 . \end{gathered}$	5 Years, 1856 to 1860.	5 Years, 1854 to 1859.	6 Years, 1853 to 1858.	$\begin{aligned} & 2 \text { Years, } \\ & 1859 \text { and } \\ & 1860 . \end{aligned}$	$\begin{gathered} 6 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 1 \text { Year, } \\ & 1860 \text {. } \end{aligned}$	2 Years, 1859 and 1860.	".
January - -	29	10	11	$\stackrel{\circ}{23}$	44	18	10	24	13	4	19
February - -	26	13	12	24	43	21	9	25	21	7	20
March	27	12	13	23	42	20	10	25	20	7	20
April - -	30	12	8	24	43	19	13	23	22	8	20
May - - -	27	12	10	19	29	18	17	22.	19	11	18
June - - -	24	15	9	13	27	13	21	14	4	11	15
July - - -	18	3	6	10	23	6	8	10	3	7	9
August -	20	3	7	9	20	7	3	11	2	12	9
September - -	18	4	7	11	18	8	5	11	8	10	10
October -	23	5	7	18	28	13	7	15	11	6	13
November -	25	¢	8	22	36	18	5	19	22	18	18
December -	25	10	12	22	49	20	7	21	21	10	20
Means	24	8	10	19	33	15	10	19	15	9	16
$\begin{gathered} \text { Diffreance } \\ \begin{array}{c} \text { between } \\ \text { greateas } \\ \text { ranue } \end{array} \\ \hline \end{gathered}$	12	10	7	15	31	14	18	15	19	14	11

The results at Seroor are evidently erroneous, and possibly belong to radiation and not to temperature.

Table LXVIII., showing the Mean Daily Range of Temperature at Elevations between 2,000 and 3,000 Feet, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $17^{\circ} 40^{\prime} \mathrm{N}$., and Longitudes $74^{\circ} 2^{\prime}$ E. and $75^{\circ} 10^{\circ}$ E., principally in the Bombay Presidenct.

Table LXIX., showing the Mean Daily Range of Temperature at Elevations between 4,000 and 5,000 Feet, between the Latitudes $17^{\circ} 59^{\prime} \mathrm{N}$. and $24^{\circ} 45^{\prime} \mathrm{N}$., and Longitudes $72^{\circ} 49^{\prime} \mathrm{E}$. and $73^{\circ} 54^{\prime} \mathrm{E}$., principally in the Bombay Presidency.

Place . . . Latitude Longitude Height .	MahabLeshwur. $17^{\circ} 59^{\prime} \mathrm{N}$. $73^{\circ} 30^{\prime} \mathrm{E}$. 4,500 feet.	$\begin{gathered} \text { Poorun- } \\ \text { dack. } \\ 18^{\circ} 12^{\prime} \mathrm{N} . \\ 73^{\circ} 54^{\prime} \mathrm{E} . \\ 4,200 \text { feet. } \end{gathered}$	$\begin{gathered} \text { Modnt } \\ \text { Aboo } \\ 24^{\circ} 45^{\prime} \mathrm{N} . \\ 72^{\circ} 49^{\prime} \mathrm{E} \\ 4,000 \text { feet. } \end{gathered}$	Meanb. $20^{\circ} 19^{\prime} \mathrm{N}$. $73^{\circ} 24^{\prime}$ E. 4,233 feet.
Montr.	$\begin{aligned} & 1 \text { Year, } \\ & 1834 . \end{aligned}$	$\begin{gathered} 2 \text { Years, } \\ 1852 \text { add } \\ 1853 . \end{gathered}$	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	- \quad.
January - - February - - March - - April - - May - - June - - July - - August - - September - October - November - December -	11 13 16 15 14 6 4 4 2 7 13 12	9 9 10 11 12 10 15 6 4 8 7 8 8 11	$\begin{aligned} & 28 \\ & 31 \\ & 22 \\ & 26 \\ & 26 \\ & 26 \\ & 26 \\ & 16 \\ & 12 \\ & 16 \\ & 18 \\ & 24 \\ & 30 \end{aligned}$	16
Means	10	10	24	14
	14	8	19	11

Table LXX., showing the Mean Daily Range of Temperature at Elevations between 1,000 and 2,000 Feet, between the Latitudes $25^{\circ} 42^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $71^{\circ} 29^{\prime} \mathrm{E}$.

Table LXXI., showing the Mean Datly Range of Temperature at Elevations above 4,000 Feet, between the Latitudes $25^{\circ} 14^{\prime} \mathrm{N}$. and $29^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $79^{\circ} 30^{\prime} \mathrm{E}$. and $91^{\circ} 45^{\prime}$ E., principally in the Bengal PresiDENCY.

Place . . Latitude Longitude Hcight	Kinerwapkat. $26^{\circ} 42^{\prime} \cdot \mathrm{N}$. $t 9^{\circ} 12^{\prime} \mathrm{E}$. 1,200 feet.	$\begin{gathered} \text { Umballa. } \\ 30^{\circ} 23^{\prime} \mathrm{N} . \\ 76^{\circ} 44^{\prime} \mathrm{E} . \\ 1,050 \text { feet. } \end{gathered}$	Mean Meer. $30^{\circ} 34^{\prime} \mathrm{N}$ $74^{\circ} 4^{\prime}$ E. 1,128 feet.	Peshafur. $34^{\circ} 20^{\prime} \mathrm{N}$. $71^{\circ} 29^{\prime} \mathrm{E}$. 1,056 feet.	Means. $30^{\circ} 32^{\prime} \mathrm{N}$. $74^{\circ} 55^{\prime} \mathrm{E}$. 1,128 feet.	Place . . . Latitude Longitude Height	Cghrat roongee. $25^{\circ} 14^{\prime} \mathrm{N}$. $91^{\circ} 45^{\prime} \mathrm{E}$. 4,118 feet.	Dabjeeling. $27^{\circ} 2^{\prime} \mathrm{N}$. $88^{\circ} 18^{\prime} \mathrm{E}$. 7,000 feet.	Nynee TÀL. $29^{\circ} 20^{\prime} \mathrm{N}$. $79^{\circ} 30^{\prime} \mathrm{E}$. 6,400 feet.
Moxth.	$\begin{aligned} & 5 \text { Years, } \\ & 1854 \text { to } \end{aligned}$ $1859 .$	$\begin{aligned} & 2 \text { Years, } \\ & 1851 \text { and } \end{aligned}$ $1852 .$	$\begin{aligned} & 5 \text { Years. } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	Without Umbala	Montr.	$\begin{gathered} 2 \text { Years, } \\ 1859 \text { and } \\ \pm 1860 . \end{gathered}$	$\begin{aligned} & 3 \text { Years, } \\ & 1857 \text { to } \\ & 1859 . \end{aligned}$	9 Years, 1846 to 1854.
January	$2{ }^{\circ}$	44	19	16	19	January - -	${ }_{9}$	11	${ }^{\circ} 6$
February	24	40	24	13	20	Febraary - -	15	12	34
March	24	34	18	16	19	March	11	11	34
April	23	47	26	23	24	April - -	8	10	33
May -	19	47	24	18	20	May - -	8	10	31
June -	12	37	13	23	16	June - -	5	7	24
July -	9	34	18	19	15	Jaly - -	5	6	18
August	9	24	18	22	16	August -	4	7	18
September -	12	35	17	21	17	September	5	9	22
October -1	19	44	18	19	19	October -	8	11	30
Norember -	27	43	19	20	22	November	16	13	33
December -i	22	39	18	15	19	December -	11	13	32
Means	18	45	19	19	19	Means	8	10	29
	18	20	13	10	9	$\left.\begin{array}{c} \text { Differencence teitu eent } \\ \text { greatest and least } \\ \text { range } \end{array}\right\}$	11	7	18

The results at Nynee Tâl are probably connected with radiation observations, or else the instruments have been placed too near the ground.
RELATING TO SECTION V.
The Mean Monthly observed Temperatcre of the Air.
Tables LXXII. to LXXIV. at Elevations below 1,000 Feet.
Tables LXXV. to LXXXII. at Elevations above 1,000 Feet.
Table LXXII., showing the Mean Monthly Temperature of the Air at Elevations above the Sea less than 1,000 Feet, between the Latitudes $8^{\circ} 43^{\prime} \mathrm{N}$. and $17^{\circ} 4^{\prime}$ N., and Longitudes $75^{\circ} 30^{\prime}$ E. and 82° d 4^{\prime} E., in the Presidency of Madras, arranged in the Order of Latitude.

Table LXXIII., showing the Mean Temperature of the Alr at Elevations above the Séa less than 1,000 Feet, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $25^{\circ} 30^{\prime} \mathrm{N}$., and Longitudes $67^{\circ} 2^{\prime} \mathrm{E}$. and $73^{\circ} 41^{\prime}$ E., principally in the Bombay PresiDENCY, arranged in the order of Latitude.

Place Latitude . Longitude Height		Rutna- gherry. $17^{\circ} 0^{\prime} \mathrm{N}$. $73^{\circ} 20^{\prime}$ E. 150 feet.	Dapoo- LeE. $17^{\circ} 48^{\prime} \mathrm{N}$ $73^{\circ} 16^{\prime} \mathrm{E}$ 600 feet.	Bombax		$\begin{array}{\|c\|} \text { Baboda } \\ 22^{\circ} 16^{\prime} \mathrm{N} \\ 73^{\circ} 14^{\prime} \mathrm{E} \\ 90 \text { feet. } \end{array}$	${ }^{\text {Rad. }}$ cote. $22^{\circ} 18^{\prime} \mathrm{N}$. $70^{\circ} 50^{\prime} \mathrm{E}$. 450 feet.	$\begin{gathered} \text { Aнмед- } \\ \text { АвAD. } \\ 23^{\circ} 0^{\circ} \mathrm{N} . \\ 72^{\circ} 0^{\prime} \mathrm{E} . \\ 320 \text { feet. } \end{gathered}$	$\begin{gathered} \text { Kirra- } \\ \text { CuEE. } \\ 24^{\circ} 51^{\prime} \mathrm{N} \\ 67^{\circ} 2^{\prime} \mathrm{E} \\ 27 \text { feet. } \end{gathered}$	Deesa.	Hyóerabad. $25^{\circ} 30^{\prime} \mathrm{N}$ $69^{\circ} 5^{\prime} \mathrm{E}$. 99 feet.	Jacob- АвAD. \ldots \ldots \ldots 220 feet.	$\begin{gathered} \text { Means. } \\ 21^{\circ} 32^{\prime} \mathrm{N} . \\ 71^{\circ} 42^{\prime} \mathrm{E} . \\ 200 \text { feet: } \end{gathered}$
Monte.	$\left\lvert\, \begin{gathered} 4 \text { Years, } \\ 1856 \text { to } \\ 1859 . \end{gathered}\right.$	$\begin{gathered} 5 \text { Years, } \\ \text { 1855 to } \\ 1859 . \end{gathered}$	$\begin{array}{\|c\|} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}$	$\begin{gathered} 12 \text { Years, } \\ 1847 \text { to } \\ 1858 . \end{gathered}$	$\left\|\begin{array}{c} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{array}\right\|$	7 Years, 1847 to 1853.	$\begin{gathered} 4 \text { Years, } \\ 1.857 \text { to } \\ 1860 . \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}$..	$\begin{gathered} 3 \text { Years, } \\ 1857 \text { st } \\ 1859 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1856 \text { and } \\ 1857 . \end{gathered}$	$\begin{gathered} 12 \text { Years, } \\ 1848 \text { to } \\ 1859 . \end{gathered}$..
January - -	78	78	75	74	73	71	69	7	${ }^{\circ} 4$	64	64	60	70
February - :	79	. 79	- -	76	77	70	75	80	67	70	71	65	73
March -	82	82	81	80	84	83	82	83	76	80	81	74	80
April - -	83	84	86	83	88	81	86	93	81	87	87	85	85
May -	85	85	86	86	89	94	90	97	83	91	91	95	89
June - -	81	83	83	83	87	89	89	89	88	89	92	99	87
July - -	79	80	82	81	84	85	85	90	86	88	91	98	87
August -	79	80	80	81	83	84	82	84	85	82	88	92	83
September -	79	82	79	80	83	88	81°	83	83	83	85	91	82
October -	81	83	80	82	83	80	83	83	79	81	82	81	81
November -	79	79	80	79	78	77	77	78.	73	84 ?	73	70	77
December	78	79	. \cdot	76	74	73.	73	69	64	69	66	63	72
Means -	80	81	81	80.	82	81	81	83	78	80	81	81	80
$\left.\begin{array}{cc} \text { Difference } & \text { be- } \\ \text { tween } & \text { hottest } \\ \text { and } & \text { coldest } \\ \text { months } & - \end{array}\right\}$	${ }^{7}$	7	11	$\ldots 12$	16	24.	21.	28		27	88	- -39	19

Table LXXIV., showing the Mean Monthly Temperature at Elevations above the Sea less than 1,000 Feet, between the Latitudes $21^{\circ} 10^{\prime} \mathrm{N}$. and $31^{\circ} 40^{\prime} \mathrm{N}$., and Longitudes $74^{\circ} 35^{\prime} \mathrm{E}$. and $88^{\circ} 25^{\prime}$ E., principally in the Prestdency of Bengai, arranged in the order of Latitude.

Table LXXV., showing the Mean Monthly Temperature of the Air at Elevations between 1,000 and 2,000 Feet between the Latitudes $14^{\circ} 31^{\prime}$ N. and $17^{\circ} 28^{\prime}$ N., and Longitudes $75^{\circ} 51^{\prime}$ E. and $78^{\circ} 32^{\prime}$ E., in the Madras Presidency.

	Place. Latitude . Longitude Height	IUtrritur. $14^{\circ} 31^{\prime} \mathrm{N}$ $75^{\circ} 51^{\prime}$ E. 1,831 feet.	Belcary. $17^{\circ} 0^{\prime} \mathrm{N}$. $77^{\circ} 0^{\prime}$ E. 1,500 feet.	Secunderabad. $\begin{gathered} 17^{\circ} 28^{\prime} \mathrm{N} . \\ 78^{\circ} 32^{\prime} \mathrm{E} . \\ 1,800 \text { feet. } \end{gathered}$	Meaks. $16^{\circ} 20^{\circ} \mathrm{N}$. $77^{\circ} 8^{\prime}$ E. 1,710 feet.	.
	Montre.	4 Years, 1857 to 1860.	9 Years, 1851 to 1859.	10 Years, 1850 to 1859.	
	January - - - -	74	84	- 73	- ${ }^{74}$	
	February - - - .-	79	79	76	78	
	March - - - -	81	85	81	82	
	April - - - - -	81	88	86	85	
	May - - - -	84	86	89	86	
	June - - - -	81	83	83	82	
	July - - -	79	80	80	80	
	August - - - -	78	79	79	79	
	September - - -	79	79	78	79	
	October - - - -	80	78	78	79	
	November - - - -	78	74	76	76	
	December - - -	76	73	73	74	
-	Means - -	79	- 80	80	79	
	$\left.\begin{array}{l} \text { Difference between hottest and } \\ \text { coldest month3 } \end{array}\right\}$	10	15	16	12	

Table LXXVI., showing the Mean Temprrature of the Air at Elevations between 1,000 and 2,000 Feet, at Stations between the Latitudes $16^{\circ} 11^{\prime} \mathrm{N}$. and $26^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $73^{\circ} 1^{\prime} \mathrm{E}$. and $77^{\circ} 25^{\prime}$ E.; principally in the Bombay Presidency.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place . . . \\
Latitude . . \\
Longitude \\
Height .
\end{tabular} \& \begin{tabular}{l}
Kullad-
ghee. \\
\(16^{\circ} 11^{\prime} \mathrm{N}\). \\
\(75^{\circ} 33^{\prime}\) E. \\
1,750 feet.
\end{tabular} \& \begin{tabular}{l}
Sholafore. \\
\(17^{\circ} 40^{\prime} \mathrm{N}\). \\
\(76^{\circ} 0^{\prime} \mathrm{E}\). \\
1,821 feet.
\end{tabular} \& Poond.
\(188^{\circ} 30^{\prime} \mathrm{N}\).
\(73^{\circ} 30^{\prime} \mathrm{E}\).
1,800 feet. \& Seroor.
\(188^{\circ} 50^{\prime} \mathrm{N}\).
\(77^{\circ} 25^{\prime} \mathrm{E}\).
1,752 feet. \& Droolia.

$20^{\circ} 54^{\prime} \mathrm{N}$.
$74^{\circ} 45^{\prime} \mathrm{E}$.

1,000 feet \& \begin{tabular}{l}
Mrow.

\hline $22^{\circ} 33^{\prime} \mathrm{N}$.

$75^{\circ} 46^{\prime} \mathrm{E}$.

\hline 1,862 feet.

 \&

Ahmednugacr.

$23^{\circ} 34^{\prime} \mathrm{N}$.

$73^{\circ} 1^{\prime} \mathrm{E}$.

1,900 feet.

 \&

Neemuca.

$24^{\circ} 27^{\prime} \mathrm{N}$.

$74^{\circ} 54^{\prime}$ E.

1,476 féet.

 \&

NusseerABAD.

$26^{\circ} 20^{\wedge} \mathrm{N}$.

$74^{\circ} 50^{\prime}$ E.

1,500 feet.

 \&

Means.

$20^{\circ} 59^{\prime} \mathrm{N}$.

$75^{\circ} 5^{\prime} \mathrm{E}$

1,663 feet
\end{tabular}

\hline Month. \& 5 Years, 1855 to 1859. \& 11 Years, 1850 to 1860. \& \& $$
\begin{aligned}
& 5 \text { Years, } \\
& 1854 \text { to } \\
& 1858 .
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 6 \text { Years; } \\
& 1853 \text { to } \\
& 1858 .
\end{aligned}
$$

\] \& 2 Years, 1859 and 1860. \& 6 Years, 1854 to 1859. \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1860 \text {, }
\end{aligned}
$$
\] \& 2 Years, 1859 and

1860 \& \ldots

\hline January - \& 75 \& 75 \& $7{ }^{\circ}$ \& 72 \& 78 \& 70 \& 71 \& 55° \& ${ }^{\circ} 3$ \& ${ }_{6} 6$

\hline February - \& 79 \& 78 \& 74 \& 71 \& 76 \& 72 \& 75 \& 60 \& 68 \& 73

\hline March - \& 88 \& 84 \& 79 \& 80 \& 82 \& 80 \& 82 \& 70 \& 77 \& 80

\hline April \& 89 \& 89 \& 83. \& 87 \& 88 \& 86 \& 87 \& 81 \& 87 \& 86

\hline May - - \& 87 \& 88 \& 84 \& 83 \& 91 \& 87 \& 87 \& 84 \& 89 \& 87

\hline Jone - - \& 84 \& 83 \& 80 \& 81 \& 87 \& 74 \& 81 \& 80 \& 94 \& 83

\hline July - - \& 82 \& 81 \& 77 \& 76 \& 82 \& 82 \& 77 \& 74 \& 88 \& 80

\hline August - \& 83 \& 80 \& 76 \& 76 \& 80 \& 75 \& 76 \& 74 \& 77 \& 87

\hline September - \& 82 \& 81 \& 76 \& 76 \& 80 \& 75 \& 76 \& 75 \& 81 \& 78

\hline October - \& 79 \& 80 \& 78 \& 77 \& \& 77 \& 77 \& 71 \& 79 \& 78

\hline November - \& 76 \& 77 \& 76 \& 75 \& \& 75 \& 73 \& 67 \& 75 \& 74

\hline December - \& 72 \& 72 \& 71 \& 72 \& 72 \& 71 \& 70 \& 65 \& 64 \& 70

\hline Means \& 81 \& 81 \& 77 \& 37 \& 81 \& 77. \& 77 \& 71 \& 79 \& 79

\hline $$
\left.\begin{array}{cc}
\text { Difference be } \\
\text { tween hottest } \\
\text { and } & \text { coldest } \\
\text { monthe } & -
\end{array}\right]
$$ \& 17 \& 17 \& \& 16 \& 21 \& \& 17 \& 29 \& 31 \& 18

\hline
\end{tabular}

Table LXXVII., showing the Mean Monthly Temperature of the \mid Table LXXVIII., showing the Mean Air at Elevations between 1,000 and 2,000 Feet in the Presidenci of Bengal. Monthly Temiperature of the Air at Elevations between 2,000 and 3,000 Feet in the Madras Presidency.

Place . Latitude Longitude Height	$\left\{\begin{array}{c} \text { Kher- } \\ W_{A R E A} \\ 26^{\circ} 42^{\prime} \mathrm{N} . \\ 79^{\circ} 12^{\prime} \mathrm{E} \\ 1,200 \mathrm{feet} . \end{array}\right.$	Kulsea: $30^{\circ} \mathrm{O}$ 7 $77^{\circ} 30^{\prime} \mathrm{E}$ $1,100 \mathrm{feet}$		Mean Meer. $30^{\circ} 34^{\prime} \mathrm{N}$ $74^{\circ} 4^{\prime}$ E. 1,128feet	$\left\|\begin{array}{c} P_{\text {Pesha }} \\ \text { WUIE } \\ 34^{\circ} 20^{\prime} \mathrm{N} \\ 71^{\circ} 29^{\prime} \mathrm{E} \\ 1,056 \text { feet. } \end{array}\right\|$	Means. $30^{\circ} 24^{\prime} \mathrm{N}$ $75^{\circ} 48^{\prime} \mathrm{E}$. 1,107feet.	Menes. $30^{\circ} 24^{\prime} \mathrm{N}$ $75^{\circ} 34^{\prime} \mathrm{E}$ 1,121feet.	Place Latitude Longitude Height	Seringapatam $\begin{aligned} & 12^{\circ} 45^{\prime} \mathrm{N} . \\ & 76^{\circ} 51^{\prime} \mathrm{E} . \\ & 2,412 \text { feet. } \end{aligned}$
Moxtr.	5 Years, 1854 to to 1858 .	$\begin{array}{\|c\|} \hline 2 \text { Years. } \\ 18.37 \text { and } \\ 1838 . \end{array}$	$\left\lvert\, \begin{gathered} \text { 2 Years, } \\ 1851 \text { and } \\ 1852 . \end{gathered}\right.$	$\begin{gathered} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{gathered}$	$\begin{array}{\|c} 6 \text { Years, } \\ 18.55 \text { to } \\ 1860 . \end{array}$	Umballa	Umballa left out.	Montic.	2 Years, 1814 to 1816.
January	64	${ }_{5} 8$	60	55	52	58	57	January	71
February	71	61	70	60	55	63	62	February -	77
March	79	63	67	71	65	69	69	March	81
April	89	78	83	79	75	81	80	April	84
May	94	81	89	86	88	88	87	May	85
June	88	86	97	86	91	89	88	June	79
July -	82	84	87	87	91	86	86	July	75
August -	80	75	91	86	88	84	82	August	74
September	81	77	92	82	84	83	81	September -	77
October -	77	71	84	75	73	76	74	October	77
November	68	63	67	69	64	66	66	November -	74
December	64	60	62	60	56	60	60	December	72
Means	78	71	79	75	74	75	74	Means	77
$\left.\begin{array}{r} \text { Difference be } \\ \text { tween hot- } \\ \text { test and cold- } \\ \text { est month. } \end{array}\right\}$	30	28.	37	32	39	31	31	$\left.\begin{array}{l}\text { Difference between hottest and } \\ \text { coldest months. }\end{array}\right\}$	14

Table LXXIX., showing the Mean Temperature of the Am, \mid Table LXXX., showing the Mean Temperature at Elevations between 2,000 and $\dot{3}, 000$ Feet, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $17^{\circ} 40^{\prime} \mathrm{N}$., and Longitudes $74^{\circ} 2^{\prime} \mathrm{E}$. and $75^{\circ} 10^{\prime}$ E., principally in the Bombay Presidency. of the Air at Elevations between 4,000 and 5,000 Feet between the Latitudes $17^{\circ} 59^{\prime} \mathrm{N}$. and $24^{\circ} 4 \overline{5}^{\prime} \mathrm{N}$., and Longitudes $72^{\circ} 49^{\prime}$ E. and $73^{\circ} 30^{\prime}$ E., principally in the Bombay Presidency.

Place : Latitude Longitude . Meight.	$\begin{gathered} \text { Dhar- } \\ \text { war. } \\ 15^{\circ} 50^{\prime} \mathrm{N} \\ 75^{\circ} 10^{\prime} \mathrm{E} \\ 2,482 \text { feet. } \end{gathered}$	$\begin{gathered} \text { BEL- } \\ \text { GACM } \\ 15^{\circ} 52^{\prime} \mathrm{N} \\ 74^{\circ} 42^{\prime} \mathrm{E} \\ 2,260 \text { feet. } \end{gathered}$	Sattara	$\left\|\begin{array}{c} \text { Mrans } \\ 16^{\circ} 27^{\prime} \mathrm{N} \\ 74^{\circ} 38^{\prime} \mathrm{E} \\ 2,354 \text { feet. } \end{array}\right\|$	Place. Latitude. Longitude Height	MarcabLESHWOR $13^{\circ} 59^{\prime} \mathrm{N}$ $73^{\circ} 30^{\prime} \mathrm{E}$ 4,500feet.	Mount Aboo. $24^{\circ} 45^{\prime} \mathrm{N}$ $72^{\circ} 49^{\prime} \mathrm{E}$ $4,000 t e e t$	Means. $21^{\circ} 22^{\prime} \mathrm{N}$. $73^{\circ} 9^{\prime} \mathrm{E}$. 4,250fect.
Montri.		4 Years, 1856 to 1859.	$\cdots \cdot$	-	Montri.	$\left\lvert\, \begin{gathered} 15 \text { Years, } \\ 1829 \text { to } \\ 1843 . \end{gathered}\right.$	5 Years, 1855 to 1859.
January - - \quad.	72	72	71	72	January - -	64	57	60
February	80	75	74	76	February - - . . -	66	63	64
March	83	78	79	80	March - - -	72	71	71
April -	82	81	83	82	April -	75	72	74
May	84	78	84	82	May - -	72	79	75
June	79	75	76	77	June - -	66	79	72
July -	76	73	75	75	July -	63	74	68
August -	73	72.	73	73	August -	63	70	66
September	73	74	74	74	September -	64	70	67
October -	76	74	76	75	October -	67	71	69
November	77	72	73	74	November -	64	67	65
December	72	70	71	71	December - -	63	58	60
Means -	77	74	76	76	Means - -	66	69	68
$\left.\begin{array}{l} \text { Difference between hottest } \\ \text { and coldest months. } \end{array}\right\}$	12	11	13	11	$\left.\begin{array}{l} \text { Difference berween hottest } \\ \text { and coldest months. } \end{array}\right\}$	12	22	15

Table LXXXI, showing the Mean Monthly Temperature of the Air at Stations whose Elevations are respectively $3,000,4,500,6,000,7,361$, and 8,640 Feet.

	Dodabetta. $\begin{gathered} 11^{\circ} 25^{\prime} \mathrm{N} \\ 77^{\circ} 5^{\prime} \mathrm{E} \\ 8,640 \text { feet. } \end{gathered}$	Ootacamond. $\begin{aligned} & 11^{\circ} 35^{\prime} \mathrm{N} . \\ & 78^{\circ} 45^{\prime} \mathrm{E} . \\ & 7,361 \text { feet. } \end{aligned}$	Mercara. $12^{\circ} 24^{\prime} \mathrm{N}$. $75^{\circ} 48^{\prime} \mathrm{E}$. 4,500 feet.	Bangalore. $12^{\circ} 57^{\prime} \mathrm{N}$. $77^{\circ} 88^{\prime} \mathrm{E}$. 3,000 feet.	Wellington. .. \qquad 6,000 feet.
Montr.	2 Years, 1817 and 1818.	3 Years, 1831 to 1833.	3 Years, 1838 to 1840	1 Year. 1859.
January - -	52	${ }^{53}$	${ }_{6}{ }^{\circ}$	70	${ }^{\circ} 4$
February -	52	55	71	73	63
March	55	60	74	79	67
April	56	63	73	79	64
May -	57	62	72	80	69
June	53	60	69	76	69
July	53	58	67	75	68
August -	53	58	66	74	70
September -	53	58	66	75	67
October -	53	58	67	73	69
November -	52	56	67	72	66
December	51	53	64	70	70
Means -	54	58	68	76	67
$\left.\begin{array}{l}\text { Difference between Hottest and } \\ \text { Coldest Months. }\end{array}\right\}$	6	10	- 8	13	7

Table LXXXII., showing the Mean Monthly Temperature of the Air, at Elevations above 4,000 Feet, between the Latitudes $25^{\circ} 14^{\prime} \mathrm{N}$. and $31^{\circ} 0^{\prime} \mathrm{N}$., and Longitudes $77^{\circ} 0^{\prime} \mathrm{E}$. and $91^{\circ} 45^{\prime} \mathrm{E}$., principally in the Bengal Presidency.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Place
Latitude
Longitude \& Chirrapoongee, Khabia Hills. $25^{\circ} 14^{\prime} \mathrm{N}$. $91^{\circ} 45^{\prime} \mathrm{E}$. 4,118 feet. \& Darjerling.

$27^{\circ} 2^{\prime} \mathrm{N}$.
$88^{\circ} 18^{\prime} \mathrm{E}$.
7,000 feet. \& Nynee Tàl.

\[
$$
\begin{gathered}
29^{\circ} 20^{\prime} \mathrm{N} . \\
79^{\circ} 30^{\prime} \mathrm{E} \\
6,400 \text { feet. }
\end{gathered}
$$

\] \& | Khatmandu. |
| :---: |
| $27^{\circ} 42^{\prime} \mathrm{N}$. |
| $87^{\circ} 40^{\prime} \mathrm{E}$. |
| 4,650 feet. | \& | Uttra |
| :--- |
| Mellat. |
| $24^{\circ} 55^{\circ} \mathrm{N}$. |
| $85^{\circ} 20^{\prime} \mathrm{E}$. |
| 4,600 feet. | \& | Kotauri. |
| :--- |
| $31^{\circ} 0^{\prime} \mathrm{N}$. |
| $77^{\circ} 0^{\prime} \mathrm{E}$. |
| 6,634 feet. |

\hline Month. \& | 2 Years. |
| :--- |
| 1859 and 1860. | \& \[

$$
\begin{gathered}
3 \text { Years, } \\
1857 \text { to } 1859 .
\end{gathered}
$$

\] \& 9 Years, 1846 to 1854. \& \& 2 Years, 1845 and 1846. \& \[

$$
\begin{aligned}
& \text {. } 3 \text { Years, } \\
& 1819 \text { to } 1821 .
\end{aligned}
$$
\]

\hline January \& 57 \& ${ }_{4}{ }^{\circ}$ \& ${ }_{4}^{6}$ \& 48 \& 63 \& 40

\hline February \& 60 \& 43 \& 48 \& 52 \& 65 \& 45

\hline March - \& 62 \& 52 \& 55 \& 58 \& 68 \& .

\hline April - - - \& 68 \& 56 \& 62 \& 67 \& 68 \& -

\hline May - - . \& 70 \& 58 \& -68 \& 72 \& - 66 - \& 68

\hline June - \& 70 \& 61 \& 69 \& 74 \& 64 \& 72

\hline July - - \& 70 \& 61 \& 68 \& 76 \& 65 \& 71

\hline August \& 69 \& 61 \& 67 \& 74 \& 65 \& 67

\hline September \& 70 \& 61 \& 65 \& 72 \& 66 \& 65

\hline October \& 68 \& 56 \& 61 \& 65 \& 64 \& 56

\hline November \& 57 \& 51 \& 55 \& 55 \& 65 - \& 51

\hline December \& 52 \& 45 \& 51 \& 46 \& 63 \& \cdots

\hline Means - \& 64 \& 54 \& 60 \& 68 \& 65 \& - .

\hline $$
\left.\begin{array}{c}
\text { Difference between Hot- } \\
\text { test and Coldest Months }
\end{array}\right\}
$$ \& 18 \& 18 \& 29 \& 30 \& 5 \& .

\hline
\end{tabular}

RELATING TO SECTION VII.
Mean Monthly and Annual observed Temperatures of the Dew Point.

$"$	$"$	$\#$	Amount of Vapour in a Cubic Foot of Aif,
$"$	$"$	$"$	Amount of Vapour required to saturate a Cubic Foot of Air.

At Stations between the Latitudes $11^{\circ} 25^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime}$ N., and Longitudes $69^{\circ} 5^{\prime}$ E. and $92^{\circ} 46^{\prime} \mathrm{E}$.

Table LXXXIII., showing the Mean Monthly and Annúal Temperature of the Dew Point at Stations situated between the Latitudes $11^{\circ}: 25^{\prime}$ N. and $34^{\circ} 20^{\prime}$ N., and Longitudes $69^{\circ} 5^{\prime}$ E. and $92^{\circ} 46^{\prime}$ E.

Place.	Dodabetta.	Madras.	Brigata.	Bellary.	Srconderabad.	Sattara.	$\begin{array}{\|c\|} \hline \mathrm{D}_{\text {APoo. }} \\ \mathbf{L E E} . \end{array}$		Poona.	Bombay.	Seroor.	$\begin{gathered} \text { Dinoo- } \\ \text { LiA. } \end{gathered}$	Radcote.
Latitude	$1^{\circ} 25^{\prime} \mathrm{N}$.	$13^{\circ} 6^{\prime} \mathrm{N}$.	$15^{\circ} 52^{\prime} \mathrm{N}$	$17^{\circ} 0^{\prime} \mathrm{N}$.	$17^{\circ} 28^{\prime} \mathrm{N}$.	$17^{\circ} 40^{\prime} \mathrm{N}$.	$17^{\circ} 48^{\prime} \mathrm{N}$	$17^{\circ} 59^{\prime} \mathrm{N}$.	$18^{\circ} 30^{\prime} \mathrm{N}$.	$18^{\circ} 53^{\prime} \mathrm{N}$.	$18^{\circ} 50^{\prime} \mathrm{N}$.	$20^{\circ} 54^{\prime} \mathrm{N}$.	$2^{\circ} 18^{\prime} \mathrm{N}$.
Longitude	$77^{\circ} 5^{\prime} \mathrm{E}$	$80^{\circ} 21^{\prime} \mathrm{E}$.	$74^{\circ} 42^{\prime} \mathrm{E}$.	$77^{\circ} 0^{\prime} \mathrm{E}$.	$78^{\circ} 32^{\prime} \mathrm{E}$.	$74^{\circ} 2^{\prime} \mathrm{E}$.	$73^{\circ} 16^{\prime}$ E. 7	$73^{\circ} 30^{\prime}$ E.	$74^{\circ} 0^{\prime} \mathrm{E}$.	$72^{\circ} 52^{\prime} \mathrm{E}$.	$77^{\circ} 25^{\prime}$ E. 7	$74^{\circ} 45^{\prime} \mathrm{E}$.	$70^{\circ} 50^{\prime} \mathrm{E}$.
Height	8,640feet.	...	2,260 feet.	1,500 feet.	1,800 feet.	2,320 feet.	600 feet.	4,500feet.	1,800 feet.	64 feet.	1,752 feet.	1,000feet.	450 feet.
Monta.	1 Year, 1847.	$\begin{array}{\|c\|} \hline 18 \text { Years, } \\ 1833 \text { to } \\ 1850 . \end{array}$	$\begin{array}{\|c\|} \hline 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}$	$\begin{aligned} & 9 \text { Years, } \\ & 1851 \text { to } \\ & 1859 . \end{aligned}$	$\begin{aligned} & 10 \text { Years, } \\ & 1850 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{gathered}$	$\begin{gathered} 9 \text { Years, } \\ 1835 \text { to } \\ 1843, \end{gathered}$	5 Years, 1856 to 1860.	$\begin{array}{\|c\|} \hline 12 \text { Years, } \\ 1847 \text { to } \\ 1858 . \end{array}$	5 Years, 1854 to 1858.	$\left\lvert\, \begin{gathered} 6 \text { Years, } \\ 1853 \text { to } \\ 1858 . \end{gathered}\right.$	$\begin{array}{\|l\|} \hline 4 \text { Years. } \\ 1857 \text { to } \\ 1860 . \end{array}$
January	$\stackrel{\circ}{40}$	67	54	54	54	59	68	51	51	64	57	58	${ }_{4}{ }^{\circ}$
February	50	68	51	60	51	61	70	47	50	64	48	57	45
March	45	71	58	58	60	61	74	49	54	68	32	59	49
April -	50	76	60	69	59	60	78	53	59	73	48	65	56
May -	53	76	66	62	62	66	80	61	65	75	59	68	64
June -	51	73	68	69	66	69	70	66	67	76	64	74	71
July :	51	73	68	69	68	67.	76	65	69	76	67	74	72
August	51	74	67	66.	71	70	76	65	69	74	66.	75	72
September	51	25	.. 66	59	73	69	75	63	67	75	66	75	67
October	51	74	61	67	66	66	72	64	62	74	58	70	60
November	50	71	61	66	58	62	72	54	55	67	48	61	44
December	47	69	55	60	54	60	64	53	51	64	37	56	43
Means	49	72	61	64	62	64	72	57	59	71	54	66	57

(continued.)

Place .	Ahmednuggra.	$\begin{array}{\|c} \text { Kurra- } \\ \text { chee. } \end{array}$	Deesa.	$\begin{array}{\|c\|} \hline \text { HyOER } \\ \text { ABAD. } \end{array}$	$\begin{aligned} & \text { Thyet } \\ & \text { Myo. } \end{aligned}$	Catcutta.	Fort Wirham.	$\begin{gathered} \text { HAZA- } \\ \text { REEG- } \\ \text { BADGH } \end{gathered}$	$\begin{gathered} \text { Darvere } \\ \text { Ling. } \end{gathered}$	$\underset{\text { NARES. }}{\mathrm{BE}-}$	$\begin{gathered} \text { Kвег- } \\ \text { warrat. } \end{gathered}$	Meerti.	LANdour.	$\underset{\text { wor. }}{\text { PeskA }}$
Latitule	$23^{\circ} 34^{\prime} \mathrm{N}$.	$24^{\circ} 51^{\prime} \mathrm{N}$	$25^{\circ} 14^{\prime} \mathrm{N}$	$25^{\circ} 30^{\prime} \mathrm{N}$.	$20^{\circ} 18^{\prime} \mathrm{N}$	$22^{\circ} 34^{\prime} \mathrm{N}$.	$22^{\circ} 34^{\prime} \mathrm{N}$.	$24^{\circ} 0^{\prime} \mathrm{N}$.	$27^{\circ} 2^{\prime} \mathrm{N}$.	$25^{\circ} 17^{\prime} \mathrm{N}$.	26°	$28^{\circ} 59^{\prime}$		$3^{14^{\circ}, 20^{\prime} \mathrm{N} .}$
Longitule	$73^{\circ} 1^{\prime} \mathrm{E}$	$77^{\circ} 2^{\prime} \mathrm{E}$.	$72^{\circ} 5^{\prime} \mathrm{E}$.	$69^{\circ} 5^{\prime} \mathrm{E}$.	$92^{\circ} 46^{\prime}$ E.	$88^{\circ} 25^{\prime} \mathrm{E}$.	$88^{\circ} 25^{\prime} \mathrm{E}$	$85^{\circ} 24^{\prime}$ E.	$88^{\circ} 10^{\prime} \mathrm{E}$.	$83^{\circ} 4^{\prime}$ E:	$79^{\circ} 2^{\prime}$ E.	$77^{\circ} 56^{\prime}$	$78^{\circ} 10^{\prime} \mathrm{E}$	$71^{\circ} 29^{\prime} \mathrm{E}$.
Height	1,900feet.	27 feet.	400 feet.	99 feet.	240 feet.			1,900feet.	7,000feet.	270 feet.	1,200feet.	900 feet.	7,000feet.	1,056feet.
Month.	$\begin{gathered} 6 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \text { Years, } \\ 1856 \text { to } \\ 1860 . \end{array}$	$\begin{gathered} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{gathered}$	$\left\|\begin{array}{c} 2 \text { Years. } \\ 1856 \text { and } \\ 1857 . \end{array}\right\|$	$\begin{gathered} 1 \text { Year, } \\ 1859 . \end{gathered}$	$\begin{array}{\|c} 2 \text { Years, } \\ 1843 \text { and } \\ 1844 . \end{array}$	$\begin{gathered} 6 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 3 \text { Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$	$\begin{gathered} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{gathered}$	$\begin{array}{\|c\|} \hline 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}$	$\left\|\begin{array}{c} 5 \text { Years, } \\ 1854 \text { to } \\ 1858 . \end{array}\right\|$	$\begin{aligned} & 1 \text { Kear, } \\ & 1859 . \end{aligned}$	4 Years.	$\begin{gathered} 3 \text { Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$
Jannary	52	48	50	49	${ }^{9} 6$	65	57	48	38	48	$5{ }^{5}$	54	${ }^{27}$	39
February	51	55	53	52	47	67	61	53	41	53	55	56	32	43
March	54	60	55	58	45	76	68	54	45	57	59	59	36	56
April -	56	66	60	62	- -	80	72	60	48	60	60	56	41	66
May -	62	74	69	67	69	82	76	73	54	72	62	71	53	62
June -	67	76	72	71	67	83	78	66	59	78	67	76	57	72
July -	69	76	75	75	75	81	78	69	60	84	69	80	63	74
Angust	66	75	74	75	74	82	78	73	60	80	77	71	64	74
September	69	71	72	73	75	83	78	72	58	80	71	75	59	65
October	83	66	64	67	74	78	74	61	49	76	65	71	46	56.
November	57	52	53.	52	65	74	64	49	43	61	57	61	84	45
December	52	47	48	50	61	66	57	56	40	54	51	48	29	39
Means	59	64	62	62	62	76	70	61	49	67	62	65	44	57

Table LXXXIV., showing the Mean Montily and Anndal Ayount of Vapour in a Cubic Foot of Air, at Stations situated between the Latitudes $11^{\circ} 25^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $69^{\circ} 5^{\prime}$ E. and $92^{\circ} 46^{\prime} \mathrm{E}$.

(continued.)

Table LXXXV., showing the Mean Monthly and Annual Amount of Varour required to saturate a Cubic Foot of Air at Stations situated between the Latitudes $11^{\circ} 25^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $69^{\circ} 5^{\prime}$ E. and $92^{\circ} 46^{\prime} \mathrm{E}$.

Place . . Latitude . Lougitude Height		Dodabetta. $11^{\circ} 25^{\prime} \mathrm{N}$. $77^{\circ} 5^{\prime} \mathrm{E}$. 8,640feet.	Madras.	$\left\lvert\, \begin{gathered} \text { BEL- } \\ \text { GAUM. } \\ 15^{\circ} 52^{\prime} \mathrm{N} . \\ 7^{\circ} 4^{\circ} 42^{\prime} \mathrm{E} . \\ 2,260 \text { feet. } \end{gathered}\right.$	(Bex- $c_{\text {Larr: }}$	(Seccer- ${ }_{\text {derabad. }}$	($\begin{gathered}\text { Sat- } \\ \text { tara. } \\ 17^{\circ} 40^{\prime} \mathrm{N} \\ 74^{\circ} 2^{\prime} \mathrm{E} . \\ 2,320 \text { feet. }\end{gathered}$	DAPOO- LeE: $17^{\circ} 48^{\prime} \mathrm{N}$ $73^{\circ} 16^{\prime} \mathrm{E}$ 600 feet.	$\|$MARAB- LESAIVDR $17^{\circ} 59^{\prime} \mathrm{N}$ $13^{\circ} 30^{\prime} \mathrm{E}$ 4,500 feet.	Poond.	Seroor.	$\left(\begin{array}{c} \text { Bombay. } \\ 18^{\circ} 53^{\prime} \mathrm{N} \\ 72^{\circ} 52^{\prime} \mathrm{E} \\ 64 \text { feet. } \end{array}\right.$	$\left\{\begin{array}{c} \text { Droom } \\ \text { ria. } \\ 20^{\circ} 54^{\prime} \mathrm{N} \\ 74^{\circ} 45^{\prime} \mathrm{E} \\ 1,000 \text { feet } \end{array}\right.$	Rajcots. $22^{\circ} 18^{\prime} \mathrm{N}$. $70^{\circ} 50^{\prime} \mathrm{E}$. 450 feet.
Mostr.		$\begin{aligned} & 1 \text { Year, } \\ & 1847 . \end{aligned}$	$\left\lvert\, \begin{gathered} 18 \text { Years, } \\ 1833 \text { to } \\ 1850 . \end{gathered}\right.$	$\begin{array}{\|c\|} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}$	$\begin{aligned} & 9 \text { Years, } \\ & 1851 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 10 \text { Years, } \\ 1850 \text { to } \\ 1859 . \end{gathered}$	$\left\{\begin{array}{c} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \\ \hline \end{array}\right.$	$\left\{\begin{array}{c} 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}\right.$	$\begin{aligned} & 9 \text { Years, } \\ & 1835 \text { to } \\ & 1843 . \end{aligned}$	$\begin{gathered} 5 \text { Years, } \\ 1856 \text { to } \\ 1860 . \end{gathered}$	$\begin{gathered} 5 \text { Years, } \\ 1854 \text { to } \\ 1858 . \end{gathered}$	$\text { 12 Years, } \left\lvert\, \begin{gathered} 1847 \text { to } \\ 1858 . \end{gathered}\right.$	$\left\{\begin{array}{l} 6 \text { Years, } \\ 1853 \text { to } \\ 1858 . \end{array}\right.$	$\begin{gathered} 4 \text { Years. } \\ 1857 \text { to } \\ 1860 . \end{gathered}$
January	-	grs. 1.6	grs. $\mathbf{2 . 5}$	$\begin{gathered} \mathrm{grs} \\ 4 \cdot 3 \end{gathered}$	$\begin{aligned} & \text { grs. } \\ & 5: 8 \end{aligned}$	$\begin{gathered} \text { grs. } \\ 4: 8 \end{gathered}$	$\begin{gathered} \text { grs. } \\ 2 \cdot 9 \end{gathered}$	$\begin{gathered} \text { grs. } \\ 2 \cdot 0 \end{gathered}$	$\begin{aligned} & \text { grs. } \\ & 3 \cdot 7 \end{aligned}$	grs.	$\begin{aligned} & \text { grs. } \\ & 3 \cdot 7 \end{aligned}$	${ }_{2}^{\text {grs. }}$	$\begin{aligned} & \text { grs. } \\ & 2 \cdot 8 \end{aligned}$	$\begin{gathered} \text { grs. } \\ 4 \cdot 6 \end{gathered}$
February		$0 \cdot 3$	$3 \cdot 0$	$6 \cdot 3$	$5 \cdot 5$	$6 \cdot 9$	$3 \cdot 6$	$2 \cdot 0$	$4 \cdot 5$	$5 \cdot 8$	$4 \cdot 9$	$3 \cdot 3$	$4 \cdot 6$	$5 \cdot 9$
March		$1 \cdot 5$	$3 \cdot 2$	6.2	$9 \cdot 8$	$6 \cdot 6$	$4 \cdot 5$	$2 \cdot 2$	5.6	$5 \cdot 8$	9•7	$3 \cdot 6$	$6 \cdot 5$	$7 \cdot 6$
April		0.9	$3 \cdot 0$	6.1	$4 \cdot 9$	$8 \cdot 8$	$6 \cdot 1$	$2 \cdot 5$	$6 \cdot 0$	$7 \cdot 1$	$10 \cdot 1$	$3 \cdot 4$	7-5	$8 \cdot 9$
May -		$0 \cdot 7$	$4 \cdot 3$	$3 \cdot 8$	$5 \cdot 8$	$9 \cdot 5$	$4 \cdot 5$	$1 \cdot 9$	$4 \cdot 0$	$5 \cdot 0$	$7 \cdot 1$	$4 \cdot 2$	$8 \cdot 1$	9.2
Jane -		$0 \cdot 3$	$4 \cdot 7$	$2 \cdot 0$	$5 \cdot 4$	$7 \cdot 0$	$2 \cdot 0$	$5 \cdot 6$	$1 \cdot 4$	$3 \cdot 4$	$4 \cdot 9$	$2 \cdot 3$	$4 \cdot 8$	6.4
July -		$0 \cdot 3$	$4 \cdot 1$	$1 \cdot 4$	$3 \cdot 0$	$4 \cdot 7$	$2 \cdot 5$	1.8	$0 \cdot 9$	$2 \cdot 0$	$2 \cdot 5$	1.8	$2 \cdot 8$	$4 \cdot 5$
August		0.3	$3 \cdot 5$	1.4	4:5	$3 \cdot 2$	$1 \cdot 0$	$1 \cdot 1$	0.5	1.5	$2 \cdot 9$	$2 \cdot 2$	$1 \cdot 7$	$3 \cdot 3$
September		$0 \cdot 3$	$2 \cdot 9$	1.8	$6 \cdot 5$	$2 \cdot 2$	$1 \cdot 5$	$1 \cdot 1$	1.3	$1 \cdot 9$	$2 \cdot 9$	$1 \cdot 7$	$1 \cdot 7$	$4 \cdot 6$
October		$0 \cdot 3$	$2 \cdot 8$	$3 \cdot 6$	$3 \cdot 4$	3-8	$2 \cdot 4$	$2 \cdot 1$	$0 \cdot 9$	3.6	$4 \cdot 7$	* $2 \cdot 8$	$3 \cdot 2$	6.6
Noveriber		0.3	$2 \cdot 1$	3.6	1.8	$4 \cdot 2$	$3 \cdot 1$	1.0	$2 \cdot 6$	$4 \cdot 4$	$5 \cdot 8$	$3 \cdot 4$	$4 \cdot 0$	$6 \cdot 3$
December	-	0.6	$2 \cdot 5$	$8 \cdot 8$	$2 \cdot 9$	$4 \cdot 3$	$2 \cdot 6$	$2 \cdot 7$	$2 \cdot 9$	3.7	$6 \cdot 1$	$3 \cdot 3$	$3 \cdot 5$	$5 \cdot 3$
Means -	-	$0 \cdot 6$	3.2	$4 \cdot 9$	$3 \cdot 7$	$5 \cdot 5$	$3 \cdot 0$	$2 \cdot 2$	$2 \cdot 8$	$4 \cdot 0$	$5 \cdot 2$	2.9	4.3	6.1

(continued.)

Place .	Ahmedngggit.	Kurra. chee.	Deesa.	HyderABAD.	$\begin{array}{\|c\|} \text { Thyet } \\ \text { Myo. } \end{array}$	$\begin{aligned} & \text { Cal- } \\ & \text { cutia. } \end{aligned}$	Fort Widilay (Cal- CUTA.)	Haza-ReEbadge	Darjee- ling.	$\begin{gathered} \text { Be- } \\ \text { Nares. } \end{gathered}$	Kherwarrat.	Meerit.	LanDOLR.	PesraNUR.
Latitude.	$23^{\circ} 34^{\prime} \mathrm{N}$	$24^{\circ} 51^{\prime} \mathrm{N}$	$25^{\circ} 14^{\prime} \mathrm{N}$	$25^{\circ} 30^{\prime} \mathrm{N}$.	$20^{\circ} 18^{\prime} \mathrm{N}$.	$22^{\circ} 34^{\prime} \mathrm{N}$	$22^{\circ} \cdot 34^{\prime} \mathrm{N}$	$24^{\circ} 0^{\prime} \mathrm{N}$	$27^{\circ} 2^{\prime} \mathrm{N}$.	$25^{\circ} 17^{\prime} \mathrm{N}$	$26^{\circ} 42^{\prime} \mathrm{N}$.	$28^{\circ} 59^{\prime} \mathrm{N}$.	$30^{2} 27^{\prime} \mathrm{N}$	$34^{\circ} 20^{\prime} \mathrm{N}$.
Longitude .	$73^{\circ} 1^{\prime}$ E.	$77^{\circ} 2^{\prime} \mathrm{E}$.	$72^{\circ} 5^{\prime} \mathrm{E}$.	$69^{\circ} 5^{\prime} \mathrm{E}$.	$92^{\circ} 46^{\prime} \mathrm{E}$.	$88^{\circ} 25^{\prime} \mathrm{E}$.	$88^{\circ} 25^{\prime}$ E.							
Height. .	1,900feet.	27 feet.	400 feet.	99 feet.	240 feet.	\cdots	...	1,900feet.	7,000feet.	270 feet.	1,200feet.	900 feet.	7,000feet.	1,056feet.
Month.	$\begin{gathered} 6 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{array}{\|c} \text { 5. Years, } \\ 1856 \text { to } \\ 1860 . \end{array}$	$\begin{gathered} 3 \dot{\text { Years }} \\ 1857 \text { to } \\ 1859 . \end{gathered}$	$\begin{array}{\|c\|} 2 \text { Y Years, } \\ 1856 \text { and } \\ 1857 . \end{array}$	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$	$\left\lvert\, \begin{gathered} 2 \text { Years, } \\ 1843 \text { and } \\ 1844 . \end{gathered}\right.$	$\begin{gathered} 6 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 3 \text { Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$	$\left.\begin{gathered} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{gathered} \right\rvert\,$	2 Years, 1858 and 1859.	5 Years, 1854 to 1858.	$\begin{gathered} 1 \text { Year, } \\ 1859 . \end{gathered}$	4 Years.	$\begin{gathered} 3 \text { Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$
Jamary	8rs.	grs.	gra.	grs. $2 \cdot 7$	grs. 4.9	$\underset{2}{\text { grs. }}$	grs. $2 \cdot 3$	grs. $3 \cdot 8$	grs.	$\begin{gathered} \text { grs. } \\ \mathbf{3} \cdot \mathbf{3} \end{gathered}$	grs.	$\begin{gathered} \mathrm{grs} \\ 1 \cdot 4 \end{gathered}$	grs. 1.6	$\underset{1}{\text { grs. }}$
February	$5 \cdot 4$	3.6	$5 \cdot 1$	$4 \cdot 1$	$7 \cdot 1$	4.0	$3 \cdot 0$	$3 \cdot 9$	0.5	$3 \cdot 4$	$3 \cdot 6$	$2 \cdot 9$	$1 \cdot 1$	$1 \cdot 4$
March	$7 \cdot 3$	$5 \cdot 0$	$8 \cdot 2$	$6 \cdot 2$	$8 \cdot 5$	4.3	$3 \cdot 6$	$4 \cdot 3$	0.8	$7 \cdot 4$	$5 \cdot 3$	$2 \cdot 5$	$2 \cdot 8$	1.5
April - -	$8 \cdot 9$	$5 \cdot 7$	10.4	7-7	- -	$4 \cdot 7$	$3 \cdot 9$	$5 \cdot 5$	0.9	9.8	$9 \cdot 0$	$7 \cdot 2$	3.9	$2 \cdot 4$
May -	$7 \cdot 7$	$4 \cdot 8$	$8 \cdot 8$	$8 \cdot 5$	$5 \cdot 4$	$3 \cdot 4$	3.7	$2 \cdot 7$	$0 \cdot 7$	6.5	11.0	$7 \cdot 0$	$3 \cdot 9$	6.4
Jane -	$4 \cdot 0$	$5 \cdot 0$	$6 \cdot 5$	$7 \cdot 8$	$4 \cdot 0$	$2 \cdot 7$	$2 \cdot 5$	6.4.	0.4	$5 \cdot 2$	$7 \cdot 1$	6.4	$3 \cdot 7$	$7 \cdot 2$
July -	$2 \cdot 5$	3.7	3.6	$6 \cdot 3$	$2 \cdot 3$	$2 \cdot 0$	$1 \cdot 8$	6.2	0.4	$0 \cdot 7$	4.2	$3 \cdot 2$	$1 \cdot 7$	6.9
August	$2 \cdot 9$	$2 \cdot 9$	$2 \cdot 2$	$4 \cdot 9$	$2 \cdot 8$	$1 \cdot 3$	1.8	$2 \cdot 2$	0.4	$1 \cdot 9$	1.2	$4 \cdot 4$	0.9	$5 \cdot 5$
September	$2 \cdot 0$	$3 \cdot 8$	$3 \cdot 3$	$4 \cdot 1^{\prime}$	$2 \cdot 9$	1.4	$1 \cdot 8$	$2 \cdot 7$	$0 \cdot 4$	$1 \cdot 9$	$3 \cdot 2$	$2 \cdot 3$	1.5	$6 \cdot 8$
October	$3 \cdot 7$	5-1	$6 \cdot 1$	$4 \cdot 6$	$2 \cdot 2$	$2 \cdot 5$	2.2	3.6	$1 \cdot 3$	$1 \cdot 1$	$3 \cdot 3$	1.5	1.8	$3 \cdot 5$
Noveraber	$3 \cdot 7$	6.4	$7 \cdot 1$	$4 \cdot 6$	$2 \cdot 8$	$2 \cdot 2$	$2 \cdot 7$	$3 \cdot 9$	$1 \cdot 1$	3.0	$2 \cdot 3$	$1 \cdot 7$	1.7	$2 \cdot 5$
December	$3 \cdot 7$	$4 \cdot 4$	4.6	$3 \cdot 1$	$3 \cdot 0$	2.4	2.8	$1 \cdot 9$	0.5	1.8	2.4	$2 \cdot 3$	1.5	1.3
Meana	$4 \cdot 7$	4.5	$5 \cdot 8$	$5 \cdot 4$	$4 \cdot 7$	$2 \cdot 8$	$2 \cdot 6$	$3 \cdot 9$	0.7	$3 \cdot 8$	$4 \cdot 5$	3.5	$2 \cdot 2$	3. 9

Table LXXXVI., showing the Mean Monthly and Annual Degree of Hempity at Stations situated betwcen the Latitudes $11^{\circ} 25^{\prime}$ N. and $34^{\circ} 20^{\prime}$ N., and Longitudes $69^{\circ} 5^{\prime} \mathrm{E}$, and $92^{\circ} .46^{\prime} \mathrm{E}$.

(continued.)

Place -	Ahmed. nugeur.	Kurracliee.	Deesa.	HyderABAD.	Thret Myo.	Calcotta.	$\left\|\begin{array}{c} \text { Fort } \\ \text { WIILIAM } \\ \text { (CUAL } \\ \text { CUTA.) } \end{array}\right\|$	Hazabatge.	Darjeeling.	$\begin{gathered} \text { Be- } \\ \text { nares. } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Kher- } \\ \text { WArrat. } \end{array}$	Meerta.	LanDOUR.	$\begin{gathered} \text { Peses- } \\ \text { Wrb. } \end{gathered}$
Latitude .	$23^{\circ} 34^{\prime} \mathrm{N}$.	$24^{\circ} 51^{\prime} \mathrm{N}$				$22^{\circ} 34^{\prime} \mathrm{N}$.	$22^{\circ} 34^{\prime} \mathrm{N}$	$24^{\circ} 0^{\prime} \mathrm{N}$.	$27^{\circ} 2^{\prime} \mathrm{N}$.	$25^{\circ} 17^{\prime} \mathrm{N}$.	$6^{\circ}{ }^{\circ} 42^{\prime} \mathrm{N}$	$8^{\circ} 59^{\prime} \mathrm{N}$		$34^{\circ} 20^{\prime} \mathrm{N}$.
Lomgitude	$73^{\circ} 1^{\prime} \mathrm{E}$.	$77^{\circ} 2^{\prime}$ E.	$72^{\circ} 5^{\prime} \mathrm{E}$.	$69^{\circ} 5^{\prime} \mathrm{E}$.	$92^{\circ} 46^{\prime} \mathrm{E}$.	$88^{\circ} 25^{\prime}$ E.		$85^{\circ} 24^{\prime} \mathrm{E}$.	$88^{\circ} 10^{\prime} \mathrm{E}$	$83^{\circ} 4^{\prime} \mathrm{E}$.	$79^{\circ} 12^{\prime} \mathrm{E}$			
Hicight . .	1,900feet.	27 feet.	400 feet.	99 feet.	240 feet.	1.900feet.	7,000feet.	270 feet.	1,200feet.	900 feet.	7,000feet.	1,056feet.
Montr.	6 Years, 1854 to 1859.	5 Years, 1856 to 1860.	$\begin{array}{\|c\|} \hline 3 \text { Years. } \\ 1857 \text { to } \\ 1859 . \end{array}$	$\begin{gathered} 2 \text { Years. } \\ 1856 \text { and } \\ 1857 . \end{gathered}$	1 Year, 1859.	$\left\lvert\, \begin{gathered} 2 \text { Years, } \\ 1843 \text { and } \\ 1844 . \end{gathered}\right.$	$\begin{aligned} & 6 \text { Years, } \\ & 1854 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 3 \text { Years } \\ 1858 \text { to } \\ 1860 . \end{gathered}$	$\begin{aligned} & 3 \text { Years, } \\ & 1857 \text { to } \\ & 1859 . \end{aligned}$	$\begin{gathered} 2 \text { Years, } \\ 1858 \mathrm{and} \\ 1859 . \end{gathered}$	$\begin{gathered} 5 \text { Years, } \\ 1854 \text { to } \\ 1858 . \end{gathered}$	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$	4 Years.	3 Years, 1858 to 1860.
January	50	49	52	59	41	70	68	49	77	52	67	77	49	67
February	43	57	46	50	32	63	66	53	85	56	57	73	65	69
March -	38	53	36	44	27	69	67	51	80	41	50	69	45	77
April -	35	54	34	43	- -	70	68	50	80	36	37	40	42	74
May -	43	65	45	44	58	77	72	76	87	56	35	53	53	48
June -	63	65	56	50	63	81	80	52	94	66	49	59	58	53
July -	75	72	72	59	80	85	85	55	94	95	64	77	78	56
August	71	76	80	65	76	90	85	80	94	85	90	64	88	61
Scptember	79	68	72	68	76	90	85	75	94	85	72	80	. 78	49°
Octrober	63	57	51	0	B)	80	80	62	75	90	67	84	65	57
November	58	39	37	48	70	80	70	50	74	66	68	78	57	53
December	63	47	44	56	66	74	64	73	84	72	63	62	54	67
Means	56	58	51	54	58	27 :	34	60	84	67	60	68	61	61

RELATING TO SECTION VIII.

Monthly and Annual observed Falls of Rain at different Stations in India, arranged in the following order :-

1. Stations on the West Coast, from Latitude $8^{\circ} \mathrm{N}$. up the Malabar Coast to Latitude $25 \frac{1}{8}{ }^{\circ} \mathrm{N}$.
2. " " East or Coromandel Coast, and continued to Latitude $21 \frac{1}{2}^{\circ} \mathrm{N}$.
3. " in the Interior of the Country.

Table LXXXVII., showing the Fall of Rain on the West Coast of India from Cape Comorin in Latitude $8^{\circ} 4^{\prime} \mathrm{N}^{\prime}$. to Kurrachee in Latitude $24^{\circ} 51^{\prime} \mathrm{N}$

Place . . Latitude Longitude Height	Cape Comorin. $8^{\circ} 4^{\prime} \mathrm{N}$, $77^{\circ} 34^{\prime}$ E. 50 feet.	Vauhioor. 60 feet.	Allerf. 30 feet.	TrevanDRUM. $8^{\circ} 28^{\prime} \mathrm{N}$. $77^{\circ} 2^{\prime} \mathrm{E}$. 130 feet.	Quilon. $8^{\circ} 53^{\prime} \mathrm{N}$. $76^{\circ} 39^{\prime} \mathrm{E}$. 40 feet.	Cochen. $9^{\circ} 11^{\prime} \mathrm{N}$. $76^{\circ} 0^{\prime} \mathrm{E}$. 4 feet.	AnjaraKANDY. $11^{\circ} 40^{\prime} \mathrm{N}$. $75^{\circ} 40^{\prime}$ E.	$\begin{gathered} \text { CaNNA- } \\ \text { NORE. } \\ 11^{\circ} 52^{\prime} \mathrm{N} . \\ 75^{\circ} 30^{\prime} \mathrm{E} . \\ 15 \text { feet. } \end{gathered}$	$\begin{aligned} & \text { Mercara. } \\ & 12^{\circ} 24^{\prime} \mathrm{N} . \\ & 75^{\circ} 48^{\prime} \mathrm{E} . \\ & 4,500 \text { feet. } \end{aligned}$	Vingorla. $15^{\circ} 50^{\prime} \mathrm{N}$. $73^{\circ} 41^{\prime}$ E. 20 feet	
Monte.	5 Years, 1843 to 1847.	$\begin{aligned} & \text { 6 Years, } \\ & 1841 \text { to } \end{aligned}$ $1846 .$	$\begin{aligned} & 6 \text { Years, } \\ & 1841 \text { to } \\ & 101 \varepsilon . \end{aligned}$ $1846 .$	5 Years, 1842 to 1846.	$\begin{aligned} & 6 \text { Years, } \\ & 1841 \text { to } \\ & 10 \end{aligned}$ $1846 .$	$\begin{aligned} & 6 \text { Years, } \\ & 184110 \\ & 1846 . \end{aligned}$	$\begin{gathered} 14 \text { Years, } \\ 1810 . t 0 \\ 1823 . \end{gathered}$..	3 Years, 1838 to 1840.	$\begin{gathered} 4 \text { Years, } \\ 1856 \text { to } \\ 1859 . \end{gathered}$.
January	$\begin{aligned} & \text { in. } \\ & 0.2 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.9 \end{aligned}$	$\operatorname{in}_{2 \cdot 4}$	$\operatorname{ing}_{1.8}$	$\begin{aligned} & \text { in. } \\ & 0.9 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.7 \end{aligned}$	in.	$\begin{gathered} \text { in. } \\ 0.3 \end{gathered}$	in.	in.	in.
February		0.4	$1 \cdot 2$	0.2	0.3		$0 \cdot 1$	0.2	0.4	- -	- -
March	0.9	1.1	$\cdot 3$	1.8	1.9	$2 \cdot 0$	$0 \cdot$	$0 \cdot 4$	1.5	- -	
April	0.8	0.4	$3 \cdot 4$	3.5	$3 \cdot 5$	$3 \cdot 2$	1.2	$3 \cdot 9$	$2 \cdot 6$	0.4	1.5
May -	$4 \cdot 6$	4.0	$26 \cdot 1$	$10 \cdot 2$	16.5	17.8	6.9	$13 \cdot 5$	$7 \cdot 4$	16.7	2.5
June -	4.6	$2 \cdot 0$	$26 \cdot 1$	13.1	17.9	30.7	31.1	$36 \cdot 3$	30.4	29.0	$30 \cdot 3$
July -	0.7	$1 \cdot 1$	18.2	$6 \cdot 4$	19.9	17.3	$38 \cdot 9$	$32 \cdot 0$	55.9	$40 \cdot 9$	43.9
August -	0.4	$0 \cdot 1$.	$9 \cdot 2$	$3 \cdot 3$	$6 \cdot 1$	13.0	$22 \cdot 5$	16.2	$27 \cdot 0$	22.2	$17 \cdot 5$
September -	$0 \cdot 4$	0.9	$7 \cdot 0$	$3 \cdot 5$	$3 \cdot 3$	$4 \cdot 8$	$12 \cdot 3$	$5 \cdot 9$	$11 \cdot 9$	6.2	15.6
October	8.8	$7 \cdot 3$	$12 \cdot 8$	$12 \cdot 3$	$9 \cdot 9$	9.7	6.2	8.9	$4 \cdot 6$	$2 \cdot 9$	$2 \cdot 7$
November -	3.9	$3 \cdot 6$	6.0	$4 \cdot 1$	$3 \cdot 9$	$2 \cdot 3$	$2 \cdot 5$	$2 \cdot 2$	1.4	$0 \cdot 1$	0.6
December -	$2 \cdot 8$	$2 \cdot 9$	2.9	$4 \cdot 5$	1.7	$3 \cdot 5$	1.2	1.7	$0 \cdot 2$	- -	- -
Sams -	$28 \cdot 1$	24.7	119:5	$64 \cdot 7$	85.8	$105 \cdot 0$	123.2	1215	$143 \cdot 3$	$118 \cdot 4$	$114 \cdot 6$

(continued).

Table/LXXXVIII., showing the Fall of Rain on the East Coast of India from Palamcottah, in Latitude $8^{\circ} 43^{\prime}$ N., to Balasore, in Latitude $21^{\circ} 31^{\prime} \mathrm{N}$.

Place	Palamcottah,	St. Thomas' Mount.	Poonamallee.	Fort Sr. George.	Madras.	NeLLore.	MastidPatam.	$\begin{aligned} & \text { Gon- } \\ & \text { TOOR. } \end{aligned}$	Samulcottah.	VizagaPatam.	Pooree.	$\begin{aligned} & \text { Cut- } \\ & \text { tace. } \end{aligned}$	BalaBOEE.
Latitude,	$8^{\circ} 43^{\prime} \mathrm{N}$.	$13^{\circ} 0^{\prime} \mathrm{N}$.	$13^{\circ} 2^{\prime} \mathrm{N}$.	$13^{\circ} 4^{\prime} \mathrm{N}$.	$13^{\circ} 6^{\prime} \mathrm{N}$	$14^{\circ} 20^{\prime} \mathrm{N}$.	$16^{\circ} 0^{\prime} \mathrm{N}$	$16^{\circ} 20^{\prime} \mathrm{N}$.	$17^{\circ} 4^{\prime} \mathrm{N}$	$17^{\circ} 41^{\prime} \mathrm{N}$.	$19^{\circ} 48^{\prime} \mathrm{N}$	$20^{\circ} 29^{\prime} \mathrm{N}$.	$21^{\circ} 31^{\prime} \mathrm{N}$.
Longitude	$77^{\circ} 48^{\prime} \mathrm{E}$.	$80^{\circ} 15^{\prime} \mathrm{E}$	$80^{\circ} 10^{\prime} \mathrm{E}$.	$80^{\circ} 14^{\prime} \mathrm{E}$.	$80^{\circ} 21^{\prime} \mathrm{E}$.	$80^{\circ} 0^{\prime}$ E.	$81^{\circ} 13^{\prime} \mathrm{E}$.	$80^{\circ} 30^{\prime} \mathrm{E}$.	$82^{\circ} 14^{\prime} \mathrm{E}$.	$83^{\circ} 2 \chi^{\prime}$ E.	$85^{\circ} 49^{\prime} \mathrm{E}$.	$85^{\circ} 54^{\prime} \mathrm{E}$	$86^{\circ} .58^{\prime} \mathrm{E}$.
Height . ${ }^{\text {- }}$	120 feet.	60 feetr				50 feet.		100 feet.	50 feet.	\ldots	\ldots	. \cdot.
Monte.	$\begin{aligned} & 7 \text { Years, } \\ & 1842 \text { to } \\ & 1848 . \end{aligned}$	$\left\lvert\, \begin{gathered} 31 \text { Years. } \\ 1811 \text { to } \\ 1841 . \end{gathered}\right.$	$\begin{array}{\|c} 29 \text { Years, } \\ 1822 \text { to } \\ 1850 . \end{array}$	$\begin{gathered} 2 \text { Years, } \\ 1859 \text { and } \\ 1860 . \end{gathered}$	$\begin{aligned} & 7 \text { Years, } \\ & 1842 \text { to } \\ & 1848 . \end{aligned}$	$\begin{array}{\|c} 5 \text { Years, } \\ 1855 \text { to } \\ 1859 . \end{array}$	$\begin{array}{\|c\|} \hline 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{array}$	\cdots	$\begin{aligned} & 1 \text { Year, } \\ & 1851 . \end{aligned}$	$\begin{gathered} 1 \text { Year, } \\ 1851 . \end{gathered}$	$\begin{aligned} & 1 \text { Year, } \\ & 1851 . \end{aligned}$
January -	$\begin{aligned} & \text { in. } \\ & 2 \cdot 7 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 1.9 \end{aligned}$	in.	$\begin{aligned} & \text { in. } \\ & 1.2 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 1 \cdot 2 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.6 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0 \cdot 2 \end{aligned}$.$^{\text {in. }}$	in.	in.	in.	$\begin{aligned} & \text { in. } \\ & 0.1 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 0.5 \end{aligned}$
February -	$1 \cdot 2$	$0 \cdot 3$	$0 \cdot 1$	$0 \cdot 1$	1.0		$1 \cdot 6$			$0 \cdot 5$	0.4	- -	$0 \cdot 3$
March	$3 \cdot 5$	$0 \cdot 4$		$0 \cdot 7$	$0 \cdot 2$		$0 \cdot 3$	0.9	$1 \cdot 0$	$0 \cdot 4$	- -	$0 \cdot 3$	$1 \cdot 2$
April	10.7	$0 \cdot 3$	1.2	0.4	1.0	1.5	0.2	$2 \cdot 5$	$2 \cdot 5$	$1 \cdot 9$	1.0	$1 \cdot 6$	$3 \cdot 4$
May	$5 \cdot 8$	$2 \cdot 5$	1.5	$1 \cdot 1$	1.0	0.9	1.9	$4 \cdot 6$	$1 \cdot 0$	$2 \cdot 0$	0.5	0.8	$0 \cdot 1$
June	$0 \cdot 7$	$0 \cdot 9$	$2 \cdot 0$	$1 \cdot 5$	$2 \cdot 5$	$1 \cdot 5$	$4 \cdot 5$	$4 \cdot 1$	$6 \cdot 1$	$3 \cdot 6$	$4 \cdot 5$	$7 \cdot 3$	$3 \cdot 2$
July	- -	$2 \cdot 3$	1 3.8	$3 \cdot 7$	$3 \cdot 6$	$8 \cdot 7$	$4 \cdot 6$	$5 \cdot 9$	$10 \cdot 0$	$3 \cdot 7$	$14 \cdot 3$	$10 \cdot 2$	$5 \cdot 9$
August -		2.4	$4 \cdot 3$	$4 \cdot 8$	$5 \cdot 1$	5.1	$4 \cdot 9$	$7 \cdot 7$	$6 \cdot 5$	$4 \cdot 2$	$7 \cdot 4$	$12 \cdot 1$	$3 \cdot 6$
September	$1 \cdot 6$	$3 \cdot 7$	$4 \cdot 5$	$4 \cdot 3$	$3 \cdot 9$	$3 \cdot 4$	$5 \cdot 9$	$5 \cdot 7$	$5 \cdot 6$	$6 \cdot 3$	$4 \cdot 4$	$6 \cdot 1$	3.4
October -	$9 \cdot 6$	$8 \cdot 4$	11.0	$11 \cdot 1$	11.5	4.3	$6 \cdot 7$	7-0	$9 \cdot 7$	13.4	$\left\{\begin{array}{l} \text { blown } \\ \text { down } \end{array}\right\}$	11.7	$9 \cdot 1$
November	$14 \cdot 7$	$10 \cdot 2$	$19 \cdot 7$	$14 \cdot 1$	12.4	$32 \cdot 1$	$1 \cdot 1$	$2 \cdot 1$		$7 \cdot 2$	- -	- -	$0 \cdot 2$
December	$5 \cdot 8$	$8 \cdot 4$	$7 \cdot 1$	$4 \cdot 6$	$6 \cdot 7$	$2 \cdot 0$	$1 \cdot 9$	$1 \cdot 0$	$0 \cdot 5$	$0 \cdot 4$. \cdot		- \cdot
Sums	56.3	41×7	$55 \cdot 2$	$47 \cdot 6$	$50 \cdot 1$	$60 \cdot 1$	$33 \cdot 8$	41.5	$42 \cdot 9$	43.9	-••	$50 \cdot 2$	$30 \cdot 9$

Table LXXXIX., showing the Fall of Rade at Inland Stations in the Southery Part of the Presidency of Madras.

	Place Latitude Longitude Height	Sueneottar. $\begin{gathered} 9^{\circ} 17^{\prime} \mathrm{N} . \\ 78^{\circ} 10^{\prime} \mathrm{E} . \end{gathered}$	Teichinopoly. $\begin{aligned} & 10^{\circ} 20^{\prime} \mathrm{N} \\ & 77^{\circ} 10^{\prime} \mathrm{E} \end{aligned}$ $250 \text { feet. }$	Combatore. $\begin{aligned} & 11^{\circ} 0^{\prime} \mathrm{N} \\ & 77^{\circ} 1^{\prime} \mathrm{E} \end{aligned}$	Dodabetta. $11^{\circ} 25^{\prime} \mathrm{N} .$ $77^{\circ} 25^{\prime}$ E. 8,640 feet.	Bangalore. $\begin{gathered} 12^{\circ} 57^{\prime} \mathrm{N} . \\ { }_{77^{\circ} 38^{\prime} \mathrm{E}} \mathrm{~B}, 000 \text { feet. } \end{gathered}$	-
	Month.	5 Years, 1842 to 1846.	7 Years, 1842 to 1848.	$\begin{gathered} 3 \text { Years, } \\ 1844 \text { to } 1846 . \end{gathered}$	2 Years, 1847 and 1848.	1 Year. 1859.	
\bullet \cdot .	January - - - February - - - March - - April - - May - - June - - July - - August - - September - - - October - - - November - - - December - - -	in. 1.3 0.3 1.6 2.2 3.6 4.3 3.9 1.1 1.8 8.2 5.9 3.0	$\begin{gathered} \text { in. } \\ 2.0 \\ 0.2 \\ 0.5 \\ 1.4 \\ 2.7 \\ 1.3 \\ 2.6 \\ 1.9 \\ 5.3 \\ 5.6 \\ 2.6 \\ 4.5 \end{gathered}$	$\begin{aligned} & \text { in. } \\ & 0.7 \\ & 0.2 \\ & 0.8 \\ & 0.5 \\ & 1.8 \\ & 1.5 \\ & 1.6 \\ & 0.2 \\ & 5.3 \\ & 4.5 \\ & 0.5 \\ & 3.0 \end{aligned}$	$\begin{array}{r} \text { in. } \\ 0.1 \\ 7.4 \\ 3.6 \\ 19.8 \\ 4.9 \\ 4.6 \\ 7.4 \\ 9.3 \\ 7.5 \\ 12.5 \\ 11.9 \\ 12.3 \end{array}$	$\begin{aligned} & \text { in. } \\ & \cdots \\ & \cdots \\ & \cdots \\ & \cdots \cdot 3 \\ & 3 \cdot 8 \\ & 1 \cdot 6 \\ & 5 \cdot 6 \\ & 5 \cdot 4 \\ & 3 \cdot 2 \\ & 1 \cdot 1 \\ & 2 \cdot 9 \\ & 0 \cdot 1 \end{aligned}$	
	Sums - -	$37 \cdot 2$	$30 \cdot 6$	$20 \cdot 6$	$101 \cdot 3$	$25 \cdot 0$	

Table XC., showing the Fall of Raly at Stations in the Bombay Presidency betiween the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $17^{\circ} 40^{\prime} \mathrm{N}$., and Longitudes $74^{\circ} 2^{\prime}$ E. and $76^{\circ} 52^{\prime}$ E.

Table XCI., showing the Fall of Rain at Inland Stations in the Northern Part of the Presidency of Madras.

Table-XCII. to XCIV., showing the Fall of Rain at Stations in the Bombay Presidenoy between the Latitudes $17^{\circ} 59^{\prime} \mathrm{N}$. and $20^{\circ} 54^{\prime} \mathrm{N}$., and Longitudes $73^{\circ} 47^{\prime} \mathrm{E}$. and $75^{\circ} 30^{\prime} \mathrm{E}$.

Table XCII.					Table XCIII.		
Place Latitude Longitude Height	Prultur. $17^{\circ} 59^{\prime} \mathrm{N}$. $74^{\circ} 31^{\prime}$ E.	Poorundhur $18^{\circ} 12^{\prime} \mathrm{N}$. $73^{\circ} 54^{\prime}$ E. 4,200 feet.	Poona. $18^{\circ} 30^{\prime} \mathrm{N} .$ $74^{\circ} 0^{\prime} \mathrm{E}$ 1,800 feet.	Aurengabad. $\begin{aligned} & 19^{\circ} 30^{\prime} \mathrm{N} . \\ & 75^{\circ} 30^{\prime} \mathrm{E} . \end{aligned}$	$\begin{array}{llll}\text { Place . } & . & . & \\ \text { Latitude } & . & . & \\ \text { Longitude } & . & . & . \\ \text { Height . } & . & . & .\end{array}$	Nabsik. $20^{\circ} 0^{\prime} \mathrm{N}$. $73^{\circ} 47^{\prime} \mathrm{E}$.	Dhoolla. $20^{\circ} 54^{\prime} \mathrm{N}$. $74^{\circ} 45^{\prime}$ E. 1,000 feet.
Moxtr.	3 Years, 1846 to 1848.	6 Years.	$\begin{aligned} & 1 \text { Year, } \\ & 1848 \text {, } \end{aligned}$	Montr.	4 Years, 1844 to 1847.	6 Years, 1853 to 1858.
	in.	in.	in,	in.		in.	in.
January		$0 \cdot 1$	0.3	.	January		
February		$0 \cdot 3$	-	-	February		0.2
March -	0.2	0.2	0.4	\cdots	March -		0.6
April	1•8	$0 \cdot 5$	0.5	0.1	April -		0.5
May	$3 \cdot 4$	5.7	$2 \cdot 4$	$5 \cdot 7$	May - -		$2 \cdot 3$
June	$3 \cdot 2$	$10^{\circ} 2$	$4 \cdot 5$	$7 \cdot 9$	June -	6.8	$15 \cdot 3$
July -	$1 \cdot 8$	23.0	$7 \cdot 1$	$6 \cdot 8$	July -	6.7	$21 \cdot 4$
August -	$0 \cdot 5$	16.3	$4 \cdot 1$	$2 \cdot 4$	August	3.4	$9 \cdot 5$
September	2.2	$7 \cdot 4$	$3 \cdot 0$	18.3	September	$2 \cdot 9$	$20 \cdot 9$
October	$2 \cdot 7$	- $6 \cdot 5$	$2 \cdot 8$	1.0	October	$3 \cdot 3$	13.3
November	4.4	0.7	$2 \cdot 4$	$1 \cdot 9$	November	1.5	-
December	$0 \cdot 8$	1.4	$0 \cdot 1$	-	December	- -	0.3
Sums	$21 \cdot 0$	72.3	$27 \cdot 6$	-44•1	Sums	$28 \cdot 6$	$84 \cdot 3$

Table XCIV., showing the Fall of Rain at Stations in the Bombay Presidency between the Latitudes $20^{\circ} 56^{\prime}$ N. and $23^{\circ} 9^{\prime}$ N., and Longitudes $77^{\circ} 58^{\prime}$ E. and $79^{\circ} 59^{\prime}$ E.

* Bhore, it is supposed that the resuit in September is 10 inches too small,

Table XCV., showing the Fall of Rain at Stations in the Bombay Presidenct between the Latitudes $23^{\circ} 34^{\prime} \mathbf{N}$. and $26^{\circ} 20^{\prime}$ N. and Longitudes $69^{\circ} 5^{\prime} \mathrm{E}$. and $74^{\circ} 54^{\prime} \mathrm{E}$.

Table XCVI., showing the Fall of Rain at Stations in the Bengal Presidency between the Latitudes $20^{\circ} 8^{\prime} N$. and $27^{\circ} 31^{\prime}$ N. and Longitudes $91^{\circ} 44^{\prime}$ E. and $95^{\circ} 1^{\prime} \mathrm{E}$.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place . \\
Latitude \\
Longitude. \\
Height .
\end{tabular} \& Akyab.

$20^{\circ} 8^{\prime} \mathrm{N}$.
$92^{\circ} 56^{\prime} \mathrm{E}$ \& Thyet
MYo.
$20^{\circ} 18^{\prime} \mathrm{N}$.
$92^{\circ} 46^{\prime} \mathrm{E}$.
240 feet. \& Chitta-
gong.
$22^{\circ} 20^{\prime} \mathrm{N}$.

$91^{\circ} 47^{\prime} \mathrm{E}$. \& | Cachar. |
| :--- |
| $24^{\circ} 48^{\prime} \mathrm{N}$. |
| $92^{\circ} 47^{\prime} \mathrm{E}$ | \& Syliet.

$24^{\circ} 53^{\prime} \mathrm{N}$.

$91^{\circ} 50^{\prime} \mathrm{E}$. \& | Ceirra- |
| :--- |
| Poongee. |
| $25^{\circ} 16^{\prime} \mathrm{N}$. |
| $91^{\circ} 44^{\prime} \mathrm{E}$. |
| 4,500 feet. | \& Gowahuttee. $26^{\circ} 11^{\prime} N$. $91^{\circ} 47^{\prime}$ E. \& Tezpore. \& Batti-

cotte.

$26^{\circ} .40^{\prime} \mathrm{N}$.

$91^{\circ} 59^{\prime} \mathrm{E}$. \& $$
\begin{gathered}
\text { Debro- } \\
\text { GhUR. } \\
27^{\circ} 31^{\prime} \mathrm{N} . \\
95^{\circ} 1^{\prime} \mathrm{E} .
\end{gathered}
$$

\hline Montre. \& 1 Year, 1851. \& $$
\begin{gathered}
1 \text { Year, } \\
1859 .
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1851 .
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 1 \text { Year, } \\
& 1851 .
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
1 \text { Year, } \\
1851 .
\end{gathered}
$$

\] \& . \cdot. \& \[

$$
\begin{gathered}
1 \text { Year, } \\
1851 .
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
1 \text { Year, } \\
1851 .
\end{gathered}
$$
\] \& 2 Years, 1847 and 1848. \& 1 Year, 1851,

\hline January - \& in. \& in. \& in. - \& .$^{\text {in. }}$ \& \[
$$
\begin{aligned}
& \text { in. } \\
& 0 \cdot 3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { in. } \\
& 0 \cdot 4
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { in. } \\
& 0.5
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { in. } \\
& 1: 9
\end{aligned}
$$
\] \& in.

$$
1.5
$$ \&

\hline February \& \& \& $1 \cdot 9$ \& \& $4 \cdot 5$ \& $2 \cdot 4$ \& 0.5 \& 1.9 \& 1.2 \& $5 \cdot 5$

\hline March - \& \& 0.3 \& - \& - - \& $2 \cdot 2$ \& $2 \cdot 1$ \& $1 \cdot 4$ \& 2-1 \& 1.1 \& $2 \cdot 3$

\hline April - \& - - \& 0.5 \& $2 \cdot 5$ \& $12 \cdot 1$ \& $19 \cdot 3$ \& 21.7 \& 5-6 \& $4 \cdot 3$ \& $6 \cdot 5$ \& $9 \cdot 4$

\hline May \& 11.3 \& $2 \cdot 3$ \& $7 \cdot 5$ \& $27 \cdot 8$ \& 43.4 \& $62 \cdot 3$ \& 6.6 \& $9 \cdot 6$ \& 1.5 \& 14.5

\hline June \& $59 \cdot 5$ \& 16.5 \& $25 \cdot 9$ \& $15 \cdot 4$ \& $39 \cdot 7$ \& 195.2 \& $16 \cdot 6$ \& $16 \cdot 8$ \& 0.9 \& $12 \cdot 8$

\hline July - \& $22 \cdot 4$ \& 6.9 \& $13 \cdot 1$ \& 15.6 \& 33.5 \& 121.3 \& $9 \cdot 4$ \& $4 \cdot 5$ \& $1 \cdot 3$ \& $13 \cdot 7$

\hline Augast \& $27 \cdot 6$ \& $9 \cdot 8$ \& $8 \cdot 0$ \& $8 \cdot 9$ \& $28 \cdot 3$ \& 103.5 \& $4 \cdot 5$ \& 16.6 \& 1*7 \& 18.4

\hline September \& 17.6 \& $4 \cdot 8$ \& 16.3 \& $9 \cdot 3$ \& 17.9 \& $74 \cdot 8$ \& $3 \cdot 1$ \& $4 \cdot 5$ \& $2 \cdot 6$ \& $12 \cdot 0$

\hline October - \& 14.1 \& $6 \cdot 8$ \& $10 \cdot 8$ \& 11:3 \& $20 \cdot 4$ \& 28.9 \& 3.7 \& $3 \cdot 0$ \& 15.2 \& 17.7

\hline November \& \& \& \& 2.0 \& - - \& - \& $0 \cdot 4$ \& - \& 15.1 \& -

\hline December \& $2 \cdot 5$ \& 0.4 : \& 0.4 \& 0.5 \& 0.4 \& \& 0.5 \& $0 \cdot 3$ \& $8 \cdot 3$ \&

\hline Sựs - \& 155.0 \& $48 \cdot 3$ \& 86.4 \& 102:9 \& $209 \cdot 9$ \& 612.6 \& $52 \cdot 8$ \& $63 \cdot 6$ \& 56.9 \& $106 \cdot 9$.

\hline
\end{tabular}

Table XCVII., showing the Fall of Rain at Stations in \mid Table XCVIII., showing the Fall of Rain at
the Bengal P'residency between the Latitudes $22^{\circ} 35^{\prime} \mathrm{N}$.
and $26^{\circ} 11^{\prime} \mathrm{N}$., and Longitudes $89^{\circ} 15^{\prime} \mathrm{E}$. and $91^{\circ} 5^{\prime} \mathrm{E}$.

Table XCIX., showing the Fall of Rain at Stations in the Bengal Presidency between the Latitudes $24^{\circ} 48^{\prime} \mathrm{N}$. and $26^{\circ} 7^{\prime} \mathrm{N}$., and Longitudes $85^{\circ} 3^{\prime}$ E. and $85^{\circ} 26^{\prime}$ E.

Place Latitude . . . Longitude. Height	Gyar. $\begin{gathered} 24^{\circ} 48^{\prime} \mathrm{N} \\ 85^{\circ} 3^{\prime} \mathrm{E} \end{gathered}$	Utrea Mullay. $24^{\circ} 55^{\prime} \mathrm{N}$. $85^{\circ} 20^{\prime} \mathrm{E}$. 4,600 feet.	Dinarore. $\begin{array}{r} 25^{\circ} 37^{\prime} \mathrm{N} . \\ 85^{\circ} 5^{\prime} \mathrm{E} . \end{array}$	Tirhoot. $26^{\circ} 7^{\prime}$ N. $85^{\circ} 26^{\prime} \mathrm{E}$.
Monta.	$\begin{aligned} & 1 \text { Year, } \\ & 1851 . \end{aligned}$	3 Years, 1844 to 1846.	$\begin{aligned} & 1 \text { Year, } \\ & 1851 . \end{aligned}$	$\begin{aligned} & 1 \text { Year, } \\ & \text { 1851. } \end{aligned}$
January .'.	in.	$\operatorname{in.}_{4 \cdot 3}$	$\begin{array}{r} \text { in. } \\ \text { 1. } \end{array}$	$\begin{array}{r} \text { in. } \\ 3 \cdot 8 \end{array}$
February	$1 \cdot 3$	0.2	1.0	$1 \cdot 4$
March -	- - -	$4 \cdot 9$	$2 \cdot 0$	0.9
April -	- - -	$3 \cdot 6$.	\cdots
May -	- -	$19 \cdot 7$.	..
June -	$3 \cdot 3$	$37 \cdot 0$	4.5	3.5
July -	$9 \cdot 3$	36.7	$3 \cdot 7$	8.5
Lagust -	$3 \cdot 3$	23.5	6.8	$7 \cdot 3$
September - :	$4 \cdot 2$	$7 \cdot 1$	7.5	$3 \cdot 5$
October -	2.5	$50 \cdot 2$	3.8	$4 \cdot 5$
November	$0 \cdot 5$	24.7	.	-
Decenber	- - -	18.0	-	-
Sums - -	24.7	$229 \cdot 9$	$31 \cdot 1$	$33 \cdot 4$

Tarle C., showing the Fall of Rain at Stations in the Bengal Presidency betwoen the Latitudes $25^{\circ} 14^{\prime} \mathrm{N}$. and $25^{\circ} 48^{\circ} \mathrm{N}$., and Longitudes $86^{\circ} 43^{\prime}$ E. and $88^{\circ} 41^{\prime}$ E.

Table CL., showing the Fall of Rain at Stations in the Bengal Presidency between the Latitudes $23^{\circ} 13^{\prime} \mathrm{N}$. and $23^{\circ} 44^{\prime}$ N., and Longitudes $87^{\circ} 6^{\prime}$ E. and $87^{\circ} 52^{\prime}$ E.				Table CLI., showing the Fall of Rain at Stations in the Bengal Prestmency between the Latitudes $23^{\circ} 24^{\prime}$ N. and; $27^{\circ} 3^{\prime}$ N., and Longitudes $85^{\circ} 24^{\prime}$ E. and $88^{\circ} .33^{\prime} \mathrm{E}$.						
Latitude Longitude. Height .	Burdwan. $23^{\circ} 13^{\prime} \mathrm{N}$. $87^{\circ} 52^{\prime} \mathrm{E}$.	Bancoorah. $23^{\circ} 13^{\prime} \mathrm{N}$. $87^{\circ} 6^{\prime}$ E. -	Beerвноом. $.23^{\circ} 44^{\prime} \mathrm{N}$. $87^{\circ} 34^{\prime}$ E.	Place . . Latitude Longitude . Height .	Kishnughor. $23^{\circ} 24^{\prime} \mathrm{N}$. $88^{\circ} 22^{\prime}$ E.	Hazaree- baygr. $24^{\circ} 0^{\prime} \mathrm{N}$. $85^{\circ} 24^{\prime} \mathrm{E}$. 1,900 feet.	Berfinm- pors. $24^{\circ} 5^{\prime} \mathrm{N}$. $88^{\circ} 17^{\prime} \mathrm{E}$ 76 feet.	$\begin{gathered} \text { Moorshed } \\ \text { ABAD. } \\ 24^{\circ} 11^{\prime} \mathrm{N} . \\ 88^{\circ} 13^{\prime} \mathrm{E} . \\ 76 \text { feet. } \end{gathered}$	Batliah. $24^{\circ} 23^{\prime} \mathrm{N}$. $88^{\circ} 33^{\prime} . \mathbf{E}$.	Dir- jeeling. $27^{\circ} 3^{\prime} \mathrm{N}$. $88^{\circ} 18^{\prime} \mathrm{E}$ 7,000 feet.
Monte.	$\begin{gathered} 1 \text { Year, } \\ 1851 . \end{gathered}$	1 Year, 1851.	$\begin{aligned} & 1 \text { Year, } \\ & 1851 . \end{aligned}$	Monte.	1 Year,		3 Years, 1857 to 1859.	$\begin{gathered} 1 \text { Year, } \\ 1851 . \end{gathered}$	1 Year, 1851.
January	${ }_{\text {in. }}^{\text {in }}$	in. 0.9	in.	Janaary	in: ${ }_{2.5}$	- in.	in.	in. 0.2	in. .	$\mathrm{in}_{1.8}$
February	$1 \cdot 1$	0.9	0.6	February	1.2	1.2	$0 \cdot 5$	$1 \cdot 7$	0.6	$2 \cdot 4$
March -	0.3	$1 \cdot 1$	1.2	March -	- -	1.2	$0 \cdot 5$	- - -	$0 \cdot 2$	$2 \cdot 9$
April -	$0 \cdot 4$	$4 \cdot$	2.5	April -	2.6	0.6	1.4	$2 \cdot 3$	0.2	$4 \cdot 3$
May -	- -	$1 \cdot 0$		May -.	- -	$2 \cdot 3$	$6 \cdot 1$	$2 \cdot 6$	$0 \cdot 3$	$7 \cdot 6$
June -	3.3	4.4	$3 \cdot 5$	June -	$4 \cdot 1$	10.5	6.9	4.6	6.9	$26 \cdot 0$
July -	$8 \cdot 8$	8.	11.3	July -	23.0	$11 \cdot 7$	13.6	$10 \cdot 7$	$11 \cdot 6$	28.6
Angust	$5 \cdot 2$	$2 \cdot 7$	$5 \cdot$	August-	10.8	$11 \cdot 2$	$9 \cdot 7$	$7 \cdot 7$	$4 \cdot 9$	$24 \cdot 3$
September -	$2 \cdot 6$	$4 \cdot 1$	$2 \cdot 7$	September	$11 \cdot 0$	$9 \cdot 1$	$5 \cdot 9$	3.6	$3 \cdot 4$	16.9
October	$5 \cdot 6$	$2 \cdot 9$	$4 \cdot 9$	October	2.5	$3 \cdot 7$	4.9	$7 \cdot 1$	$3 \cdot 3$.	$8 \cdot 6$
November	0.6		\cdots	November	- - -	$0: 4$	- - -	- - -	$0 \cdot$	0.3
December			: \cdot.	December	- - -	0.8	0.2	- - -	- - -	$0 \cdot 3$
Sums	28.2	$31 \cdot 0$	$32 \cdot 1$	Sums-	$57 \cdot 7$	$52 \cdot 7$	$49 \cdot 8$	$40^{\circ} 5$	$31 \cdot 6$	124;0

Table CIII., showing the Fall of Rain at Stations in the Bengal Presidency between the Latitudes $25^{\circ} 5^{\prime} \mathrm{N}$. and $26^{\circ} 46^{\prime}$ N., and Longitudes $80^{\circ} 48^{\prime}$ E. and $83^{\circ} 22^{\prime}$ E.

Table CIV., showing the Fall of Rain at Stations in the Bengal Presidengy between the Latitudes $26^{\circ} 7^{\prime}$ N. and $30^{\circ} 23^{\prime}$ N., and Longitudes $77^{\circ} 13^{\prime}$ E. and $79^{\circ} 47^{\prime}$ E.

Table CV., showing the Fall of Rain at Stations in the Bengal Presidency between the Latitudes $30^{\circ} 27^{\prime}$ N. and $34^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $70^{\circ} 30^{\prime} \mathrm{E}$. and $78^{\circ} 10^{\prime} \mathrm{E}$.

Tables showing the Monthly and Yearly Mean Reading of the Barometer at Stations situated in the Presidency of Madras, arranged in the order of Latitude.

Table CVI., showing the Monthly and Yearly Mean Reading of the Barometer at Stations situated between the Latitudes $5^{\circ} 21^{\prime}$ N. and $17^{\circ} 41^{\prime} \mathrm{N}$. and Longitudes $75^{\circ} 30^{\prime}$ E. and $100^{\circ} 25^{\prime} \mathrm{E}$. in the Madras Presidency,

Place Latitude . . . Longitude. . . Height	Penamg.	Colombo. $\begin{aligned} & 6^{\circ} 57^{\prime} \mathrm{N} \\ & 80^{\circ} 0^{\prime} \mathrm{E} \end{aligned}$	Teincomalee. $\begin{aligned} & 8^{\circ} 34^{\prime} \mathrm{N} \\ & 81^{\circ} 19^{\prime} \mathrm{E} \end{aligned}$	Palamсотtah.* $8^{\circ} 43^{\prime} \mathrm{N}$. $77^{\circ} 48^{\prime} \mathrm{E}$. 120 feet.	$\left\{\begin{array}{c} \text { Welling- } \\ \text { ton } \dagger \\ 11^{\circ} 25^{\prime} \mathrm{N} . \\ 77^{\circ} 5^{\prime} \mathrm{E} . \\ 6,000 \text { feet. } \end{array}\right.$	Doda- Betta. $11^{\circ} 25^{\prime} \mathrm{N}$. $77^{\circ} 5^{\prime} \mathrm{E}$. 8,640 feet.	$\|$Canna- nore. \ddagger $11^{\circ} 52^{\prime} \mathrm{N}$. $75^{\circ} 30^{\prime} \mathrm{E}$. 15 feet.	$\begin{gathered} \text { Mergui } \\ 12^{\circ} 27^{\prime} \mathrm{N} \\ 98^{\circ} 42^{\prime} \mathrm{E} . \\ 200 \text { feet. } \end{gathered}$	$\begin{gathered} \text { Bang. } \\ \text { LORE. } \\ 12^{\circ} 57^{\prime} \mathrm{N} . \\ 77^{\circ} 38^{\prime} \mathrm{E} . \\ 3,000 \text { feet. } \end{gathered}$	Poonamallee. $\\|$ $13^{\circ} 2^{\prime} \mathrm{N}$. $80^{\circ} 10^{\prime}$ E.	Fort St. George. $13^{\circ} 4^{\prime} \mathrm{N}$. $80^{\circ} 14^{\prime} \mathrm{E}$.
Montr.	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$	2 Years, 1853 and 1854.	$\begin{aligned} & 1 \text { Year, } \\ & 1854 . \end{aligned}$	$\begin{aligned} & 5 \text { Years, } \\ & 1855 \text { to } \\ & 1859 . \end{aligned}$	1 Year, 1859.	$\begin{gathered} 2 \text { Years. } \\ 1847 \text { and } \\ 1848 . \end{gathered}$	$\begin{aligned} & 10 \text { Years, } \\ & 1850 \text { to } \\ & 1859 . \end{aligned}$	7 Years, 1853 to 1859.	$\begin{gathered} 1 \text { Year, } \\ 1859 \text {. } \end{gathered}$	5 Years, 1855 to 1859.	2 Years, 17.7 and 1778.
January	in. 29.62	in. 29.91	in. $29 \cdot 87$	in. $29 \cdot 57$	$\begin{aligned} & \text { in. } \\ & 24 \cdot 32 \end{aligned}$	in. $22 \cdot 08$	in. $29 \cdot 87$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 90 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 27 \cdot 33 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 67 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 30 \cdot 02 \end{aligned}$
February	$29 \cdot 65$	$29 \cdot 88$	$29 \cdot 85$	$29 \cdot 56$	$24 \cdot 33$	22.10	29•73	$29 \cdot 90$	27-28	$29 \cdot 66$	$30 \cdot 02$
March	$29 \cdot 60$	$29 \cdot 89$	$29 \cdot 84$	(29.69)	24.34	22.13	$29 \cdot 63$	29-90	27-26	$29 \cdot 62$	$30 \cdot 01$
April	$29 \cdot 55$	$29 \cdot 84$	$29 \cdot 73$	$29 \cdot 42$	$24 \cdot 40$	$22 \cdot 10$	$29 \cdot 68$	$29 \cdot 85$	27-22	$29 \cdot 54$	$30 \cdot 19$
May	$29 \cdot 60$	$29 \cdot 85$	29-70	$29 \cdot 35$	$24 \cdot 34$	22.06	$29 \cdot 87$	$29 \cdot 80$	27-12	$29 \cdot 47$	$30 \cdot 17$
Juae	$29 \cdot 60$	$29 \cdot 84$	29-69	29-34	$24 \cdot 34$	21.97	$29 \cdot 94$	$29 \cdot 75$	$27 \cdot 06$	$20 \cdot 45$	$29 \cdot 16$
July	29.55	29-89	$29 \cdot 68$	29-33	$24 \cdot 32$	21.97	29.85	$29 \cdot 75$	27.03	29-40	$29 \cdot 17$
August	29.55	29.84	$29 \cdot 71$	$29-35$	$24 \cdot 37$	$22 \cdot 00$	29.85	$29 \cdot 75$	27.07	29-45	$29 \cdot 19$
September -	$29 \cdot 60$	$29 \cdot 88$	29-70	$29 \cdot 37$	$24 \cdot 33$	$22 \cdot 00$	29•75	29-75	27.08	$29 \cdot 47$	$29 \cdot 18$
October -	$29 \cdot 50$	$29 \cdot 89$	29-74	29-38	24.31	$22 \cdot 05$	$29 \cdot 80$	29-90	27-13	29-47	$29 \cdot 19$
November -	$29 \cdot 55$	$29 \cdot 86$	$29 \cdot 82$	$29 \cdot 42$	$24 \cdot 31$	22.08	$29 \cdot 80$	29-90	27-12	$29 \cdot 49$	$30 \cdot 01$
December -	29-60	29-92	$29 \cdot 80$	$29 \cdot 47$	24-33	22.04	$29 \cdot 99$	29-90	$27 \cdot 17$	29-61	$30 \cdot 02$
Means -	29-58	29.87	29-76	$29 \cdot 42$	$24 \cdot 34$	$22 \cdot 05$	$29 \cdot 81$	29-84	$27 \cdot 15$	29-53	

* Palamcottah.-The reading in March has been altered conjecturally from 29:69 to 29.49 .

Wellington and Dodabetta.-The changes of atmospheric pressure from month to month seem to be very small.
Cannanore.-The results are irregular, and several of the readings are erroneous.
Mergui.-Most likely the instrument was not good.
Poonamallee.-The reading in February has been altered conjecturally from 29•71 to 29•66.
(continued.)

Place Latitude . . . Longitude . . . Height	Font St. George. $\begin{aligned} & 13^{\circ} 4^{\prime} \mathrm{N} \\ & 80^{\circ} 14^{\prime} \mathrm{E} \end{aligned}$	Madras. $13^{\circ} 6^{\prime} \mathrm{N}$. $80^{\circ} 21^{\prime} \mathrm{E}$.	Taror. 140 $7^{\prime} \mathrm{N}$ $98^{\circ} 18^{\prime} \mathrm{E}$. 12 feet.	$\begin{aligned} & \text { Nellore.* } \\ & 14^{\circ} 20^{\prime} \mathrm{N} . \\ & 80^{\circ} 0^{\prime} \mathrm{E} . \\ & 50 \text { feet. } \end{aligned}$	$\begin{gathered} \text { HURRT- } \\ \text { HUR. } \dagger \\ 14^{\circ} 31^{\prime} \mathrm{N} . \\ 75^{\circ} 51^{\prime} \mathrm{E} . \\ 1,831 \text { feet. } \end{gathered}$	$\begin{gathered} \text { Kornool. } \ddagger \\ 15^{\circ} 50^{\prime} \mathrm{N} . \\ 78^{\circ} 5^{\prime} \mathrm{E} \\ 800 \text { feet. } \end{gathered}$	$\left\{\begin{array}{c} \text { Gontoor.§ } \\ 16^{\circ} 20^{\prime} \mathrm{N} . \\ 80^{\circ} 30^{\prime} \mathrm{E} . \\ 100 \text { feet. } \end{array}\right.$	$\begin{gathered} B_{\text {bllary. }}^{17^{\circ}} 0^{\prime} \mathrm{N} . \\ 77^{\circ} 0^{\prime} \\ 1,5 . \\ 1,500 \text { feet. } \end{gathered}$	Secunderabad. \downarrow $\begin{aligned} & 17^{\circ} 28^{\prime} \mathrm{N} \\ & 78^{\circ} 32^{\prime} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { Vizaga- } \\ & \text { Patam.* } \\ & 17^{\circ} 41^{\prime} \mathrm{N} . \\ & 83^{\circ} 21^{\prime} \mathrm{E} . \end{aligned}$
Montr.	$\begin{aligned} & 31 \text { Years, } \\ & 1811 \text { to } \\ & 1841 . \end{aligned}$	$\begin{gathered} 55 \text { Years, } \\ 1796 \text { to } \\ 1850 . \end{gathered}$	$\begin{gathered} 11 \text { Years, } \\ 1849 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 2 \text { Years, } \\ & 1859 \text { and } \\ & 1860 . \end{aligned}$	3 Years, 1857 to 1859.	3 Years, 1857 to 1859.	5 Years, 1855 to 1859.	9 Years, 1851 to 1859	$\begin{gathered} 10 \text { Years; } \\ 1850 \text { to } \\ 1859 . \end{gathered}$	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$
January	$\begin{aligned} & \text { in. } \\ & \mathbf{3 0} \cdot 11 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 30 \cdot 05 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 30 \cdot 15 \end{aligned}$	$\text { in. }_{28 \cdot 51}$	in.	in.	$\begin{aligned} & \text { in. } \\ & 29 \cdot 95 \end{aligned}$	in. $28 \cdot 65$	in. $28 \cdot 88$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 91 \end{aligned}$
February	30.08	30.03	$30 \cdot 05$	28.49	27.79	$29 \cdot 11$	$29 \cdot 73$	$28 \cdot 64$	$28 \cdot 61$	$29 \cdot 93$
March	$30 \cdot 02$	$29 \cdot 98$	30.14	28.45	$27 \cdot 74$	$28 \cdot 98$	29-76	$28 \cdot 59$	$28 \cdot 33$	$29 \cdot 87$
April	29.95	$29 \cdot 90$	$30 \cdot 00$	$28 \cdot 41$	27.72	$28 \cdot 93$	$29 \cdot 85$	$28 \cdot 58$	$28 \cdot 31$	$29 \cdot 80$
May	29-87	$29 \cdot 80$	$29 \cdot 95$	$28 \cdot 31$	$27 \cdot 70$	28.93	29.76	28:59	$28 \cdot 82$	$29 \cdot 74$
Jone	$29 \cdot 86$	29-78	$29 \cdot 92$	28.25	$27 \cdot 69$	$28 \cdot 90$	29-71	28.51	28-6.5	$29 \cdot 68$
July	29.86	29.79	29.91	$28 \cdot 22$	27*65	28.80	29-70	28.40	28.62	29-71
August	29.88	$29 \cdot 82$	$29 \cdot 86$	$28 \cdot 27$	27.69	28.81	29.73	28.46	28.56	$29 \cdot 72$
September -	29.91	$29 \cdot 85$	$29 \cdot 01$	$28 \cdot 33$	27-74	28.89	29.74	28.47	28-64	29-79
October	$29 \cdot 97$	$29 \cdot 91$	$30 \cdot 01$	$28 \cdot 36$	27.79	$28 \cdot 91$	29.72	$28 \cdot 58$	28:78	$29 \cdot 91$
November	30.03	$29 \cdot 98$	$30 \cdot 04$	$28 \cdot 42$	27-76	(29.05)	29-89	$28 \cdot 68$	28.56	30.04
December.-	30.08	30.03	30.10	$28 \cdot 48$	$27 \cdot 82$	$29 \cdot 14$	30.02	$28 \cdot 70$	28.70	$30 \cdot 06$
Means-	29-97	29-91	$30 \cdot 01$	$28 \cdot 38$	27-74	28.96	29-80	28.57	28.62	$29 \cdot 84$

* Nellore.-The reading in February has been altered conjecturally from 28.54 to 28.49.
\dagger Hurryhor,-The reading in March has been altered conjecturally from $27 \cdot 84$ to $27 \cdot 74$. The reading in April has been altered comjecturally from $27 \cdot 82$ to $27 \cdot 72$.
\ddagger Kurnool.-The reading in November has been altered from 29.25 to 29.05 .
§ Gantoor.-The readings seem to be erroneous.
|| Bellary.-The reading in October has been altered from 28.48 to 28.58 .
- Secunderabad.-The readings seem to be erroneous.
* Vizagapatam.-The reading in May has been altered from $29 \cdot 64$ to $29 \cdot 74$. The reading in June has been altered from $29 \cdot 58$ to $29 \cdot 68$.

Tables showing the Monthly and Yearly Mean Reading of the Barometer at Stations situated for the most part in the Bombay Presidency, arranged in the Order of Latitude.

Tablé CVII., showing the Monthly and Yearly Mean Reading of the Barometer at Stations situated between the Latitudes $15^{\circ} 52^{\prime} \mathrm{N}$. and $23^{\circ} 34^{\prime} \mathrm{N}$., and Longitudes $70^{\circ} 50^{\prime}$ E. and $77^{\circ} 25^{\prime}$ E., and for the most part in the Presidency of Bombay.

* Seroor.-The reading in November has been altered from 29•26 to 29•46.
\dagger Rajcote-The readings seem to be erroneous.

Tables showing the Montuly and Yearly Mean Readings of the Barometer at Stations situated for the most part in the Presidency of Bengal, arranged in the Order of Latitude.
Table CVIII., showing the Monthly and Yearly Mean Reading of the Barometer at Stations situated between the Latitudes $20^{\circ} 18^{\prime}$ N. and $34^{\circ} 20^{\prime}$ N., and Longitudes $67^{\circ} 2^{\prime}$ E. and $92^{\circ} 46^{\prime}$ E., for the most part in the Presidency of Bengal. ${ }^{\prime}$

Ilace .	$\begin{gathered} \text { Tiret } \\ \text { Mro. } \end{gathered}$	$\begin{gathered} \text { Cal- } \\ \text { Cctra.* } \end{gathered}$	$\begin{gathered} \text { Cal- } \\ \text { cutta. } \end{gathered}$	Fort Willasm (Cal-- Cetta).	$\begin{gathered} \text { Haza- } \\ \text { mee- } \\ \text { bacgh. } \dagger \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Berfack- } \\ \text { pore. } \end{gathered}\right.$	Benares	DarJEELING.	KtrRachee.	Deesa. \ddagger	Baroda§	Meerdt.	$\underset{\text { Bafila. }}{\text { Cym }}$	PeshaWUR.
Latitude	20°	$22^{\circ} 34^{\prime} \mathrm{N}$.	$22^{\circ} 34^{\prime} \mathrm{N}$.	$2^{\circ} 3$	24	24	$25^{\circ} 17^{\prime} \mathrm{N}$		24	25	$25^{\circ} 30^{\prime} \mathrm{N}$	$8^{\circ} 5$		
							83	88	E.					
Iteight.	240 feet.	80 feet.	80 feet.		1,900feet.	76 feet.	270 feet.	7,000feet.	27 feet.	400 feet.	A few ft.	900 feet.	1,050feet.	1,056feet.
Montit.	1 Year,	$\begin{gathered} 2 \text { Years. } \\ 1843 \text { and } \\ 1844 . \end{gathered}$	$\begin{gathered} 1 \text { Year, } \\ \text { ist8. } \end{gathered}$	$\begin{gathered} 5 \text { Years, } \\ 1854 \text { to } \\ 1859 . \end{gathered}$	$\begin{gathered} 3 \text { Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$	$\begin{array}{\|c} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{array}$	$\begin{array}{\|c\|} \hline 2 \text { Years, } \\ 1858 \text { and } \\ 1859 . \end{array}$	$\left\{\begin{array}{c} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{array}\right.$	4 Years, 1856 to 1859.	$\begin{array}{\|c} 3 \text { Years, } \\ 1857 \text { to } \\ 1859 . \end{array}$	$\begin{aligned} & 7 \text { Years, } \\ & 1847 \text { to } \\ & 1853 . \end{aligned}$	$\begin{aligned} & 1 \text { Year, } \\ & 1859 . \end{aligned}$	$\begin{array}{\|c\|} 2 \text { Years, } \\ 1851 \text { and } \\ 1852 . \end{array}$	$\begin{gathered} 3 \text { Years, } \\ 1858 \text { to } \\ 1860 . \end{gathered}$
January	$\begin{aligned} & \text { in. } \\ & 29 \cdot 85 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 94 \end{aligned}$		$\begin{aligned} & \text { in. } \\ & 30 \cdot 02 \end{aligned}$	${ }_{27 \cdot 87}^{\text {in. }}$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 94 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 85 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 23 \cdot 16 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 30 \cdot 16 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 67 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 30 \cdot 22 \end{aligned}$	$\begin{aligned} & \text { in. } \\ & 29 \cdot 27 \end{aligned}$	in.	$\begin{aligned} & \text { in. } \\ & 28 \cdot 86 \end{aligned}$
February	$29 \cdot 86$	$29 \cdot 92$	$29 \cdot 98$	$29 \cdot 96$	$27 \cdot 82$	$29 \cdot 90$	29•78	$23 \cdot 14$	30.08	$29 \cdot 59$	30.22	29-27	$29 \cdot 11$	$28 \cdot 76$
March	29.81	$29 \cdot 79$	$29 \cdot 84$	$29 \cdot 86$	27-76	29•86	29-70	$23 \cdot 14$	$29 \cdot 98$	$29 \cdot 56$	(30.04)	29-19	$29 \cdot 02$	$28 \cdot 78$
April	$29 \cdot 76$	$29 \cdot 66$	29.72	29-77	27-70	29,74	$29 \cdot 61$	$23 \cdot 12$	$29 \cdot 90$	$29^{*} 45$	29.85.	$29 \cdot 07$	$28 \cdot 97$	$28 \cdot 69$
May	29.70	$29 \cdot 56$	29.64	29.65	27-64	$25 \cdot 62$	$29 \cdot 43$	$23 \cdot 07$	$29 \cdot 73$	$29 \cdot 52$	$29 \cdot 80$	$29 \cdot 01$	$28 \cdot 87$	$28 \cdot 56$
June	29.59	$29 \cdot 48$	29.52	$29 \cdot 53$	27.59	$29 \cdot 51$	29.41	$23 \cdot 02$	$29 \cdot 62$	$29 \cdot 35$	$29 \cdot 76$	$28 \cdot 75$	28.31	$28 \cdot 35$
July	$29 \cdot 62$	$29 \cdot 52$	$29 \cdot 53$	$29 \cdot 54$	27.67	$29 \cdot 50$	$29 \cdot 41$	23.02	29-58	$29 \cdot 33$	$29 \cdot 65$	$28 \cdot 85$	$28 \cdot 77$	$28 \cdot 36$
Aupust	29-68	$29 \cdot 52$	$29 \cdot 54$	$29 \cdot 60$	27-58	$29 \cdot 57$	$29 \cdot 44$	$23 \cdot 06$	$29 \cdot 66$	$29 \cdot 44$	$29 \cdot 73$	$28 \cdot 59$	$28 \cdot 81$	$28 \cdot 49$
September -	$29 \cdot 70$	$29 \cdot 61$	$29 \cdot 71$	$29 \cdot 70$	27-66	29.67	$29 \cdot 51$	$23 \cdot 12$	$29 \cdot 81$	$29 \cdot 55$	29.79	$29 \cdot 00$	28.81	$28 \cdot 52$.
October	29-74	29-73	$29 \cdot 88$	$29 \cdot 83$	27-78-	29-79	$29 \cdot 67$	$23 \cdot 18$	$29 \cdot 97$	$29 \cdot 68$	$29 \cdot 87$	29-20	$29 \cdot 06$	$28 \cdot 61$
November	$29 \cdot 85$	$29 \cdot 86$	$30 \cdot 01$	$29 \cdot 98$	$27 \cdot 88$	29-92	$29 \cdot 85$	$23 \cdot 21$	30.04	$29 \cdot 77$	$30 \cdot 22$	$29 \cdot 30$	$29 \cdot 16$	$28 \cdot 75$
December.	29.86	29-95	- 30.02	30.03	27-90	29-95	$29 \cdot 88$	$23 \cdot 18$	30-16	$29 \cdot 85$	30.09	29-37	29-19	$28 \cdot 93$
Means -	29•75	29,71	$29 \cdot 78$	29'79	27.73	$29 \cdot 75$	29.63	$23 \cdot 12$	29-89	$29 \cdot 56$	$29 \cdot 92$	29-07	28.97	$28 \cdot 64$

[^36]Tables showing' the Observed Monthly, Quabterly, Haif Yearly, and Yearly Means, and Differences between the Hottest and Coldest Months, and Seasons, of Observations taken for the most part in the Presidency of Madras arranged in the order of Latitude, of the following Meteorological Elements:-

1. Maximum Temperature of the Air.
2. Minimum Temperature of the Air.
3. Daily Range of Temperature.
4. Temperature of the Air.
5. Readings of the Dry and Wet Bulb Thermometers.)

Madrae Presidency.-1. Maximum Temperature of the Air.
Table CIX., showing the Average Maximem Temperatore for every Montif and Quarter as well às for the Periods October to March, and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean Maximum Temperature for the Year, between Latitudes $5^{\circ} 21^{\prime} \mathrm{N}$. and $18^{\circ} 56^{\prime} \mathrm{N}$., and Longitudes $75^{\circ} 30^{\prime} \mathrm{E}$. and $100^{\circ} 25^{\prime}$ E. arranged in the order of Latitude, at Stations for the most part in the Presidency of Madras.

Ilace Latitude . . . Longitude . . . Height				$\begin{aligned} & \text {. . . Colombo . } \\ & \text { - } .6^{\circ} 57^{\prime} \text { N. . } \\ & . \quad . \quad .80^{\circ} 0^{\prime} \text { E. . } \end{aligned}$			- . - .	rincomale $8^{\circ} 34^{\prime} \mathrm{N}$. $81^{\circ} 19^{\prime} \mathrm{E}$.	E • -	$\begin{array}{ll}\text { - } & \text { P } \\ \text { - } & \text { - } \\ \text { - } & \\ \text { - } & \text { - }\end{array}$	alamcotta $8^{\circ} 43^{\prime} \mathrm{N}$ $77^{\circ} 48^{\prime} \mathrm{E}$. 120 feet.									
Montir.	1 Year.	Winter,	October to March.	1 Year.	Winter, Spring,	October to March.	1 Year.	Winter, Spring,	October to March.	5 Years.	Winter Spring,	October to March.								
	1259.	Summer, Autumn.	April to September.	1853.	Summer, Autume.	April to September.	1854.	Summer, Autumn.	April to September.	$\begin{gathered} 1855 \text { to } \\ 1859 . \end{gathered}$	Summer, Autumn.	April to September.								
January -	838484858584868584848383.82	$\left\{\begin{array}{l} \} \begin{array}{c} \circ \\ 83 \\ 85 \\ \} \\ 85 \\ 83 \end{array} \end{array}\right.$	83	$\begin{aligned} & 84 \\ & 84 \\ & 85 \\ & 87 \\ & 86 \\ & 85 \\ & 84 \\ & 83 \\ & 83 \\ & 84 \\ & 83 \\ & 83 \\ & 84 \end{aligned}$	$\left\{\begin{array}{l} \left\{\begin{array}{c} \circ \\ 84 \\ \{ \end{array} \begin{array}{l} 86 \\ 83 \end{array}\right. \\ 83 \end{array}\right.$	84	81 84 86 90 89 90 88 88 89 85 81 80	$\left\{\begin{array}{l} \} \begin{array}{l} 0 \\ 82 \\ 88 \\ 88 \\ 89 \end{array} \\ 85 \end{array}\right.$	83	$\begin{aligned} & 8 \\ & 86 \\ & 90 \\ & 93 \\ & 94 \\ & 94 \\ & 93 \\ & 92 \\ & 93 \\ & 93 \\ & 91 \\ & 87 \\ & 86 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{c} \circ \\ 87 \\ 94 \end{array} \\ \left\{\begin{array}{c} 93 \end{array}\right. \\ 90 \end{array}\right.$	89								
March -			83			84			83											
April																				
May																				
June			85			84			89			93								
July																				
August																				
September																				
Ocrober -																				
December -																				
Diffrence hetween	$\}$	2	. 2	4	3	0		7	6	8	7	4								
$\xlongequal[\substack{\text { Hottest } \\ \text { and Coldest } \\ \text { Months. }}]{$ Hottent and Coldest Seasons. $}$																				
Mean for Year -	84			84			86			91.										
Ilighest in Lowest in	June. December.			March. July, Algust, Oct. and Nov.			April and June. December.			April and May. January and December.										
(continued)	,																			
Place Latitude . . . Longitude . . . Height	Wellingtom $.11^{\circ} 25^{\prime}$ N. . - $77^{\circ} 5^{\prime}$ E. . .6,000 fect .			Cannanore . .. $11^{\circ} 52^{\prime} \mathrm{N}$. $75^{\circ} 30^{\prime}$ E. 15 feet.			- Mergul $12^{\circ} 27^{\prime} \mathrm{N}$. $98^{\circ} 42^{\prime} \mathrm{E}$. 200 feet.			$\begin{aligned} & \text {. } . \text { Bangalore. } \\ & \text { - } \\ & \text {. } \quad 12^{\circ} 57^{\prime} \mathrm{N} . \\ & \text {. } 77^{\circ} 38^{\prime} \mathrm{E} . \\ & \text {. } 3,000 \text { feet. } \end{aligned}$										
Month.	$\frac{1 \text { Year. }}{1859 .}$		October to March. April to September.	$\frac{10 \text { Years }}{1850 \text { to }} \begin{gathered} 1859 . \end{gathered}$	Winter. Spring. Summer. Autumn.	October to March. April to September				1 Year.Winter. Spring. Summer. Autumn		OctobertoMarch.								
January - - February - - March - - April - - May - - June - - July - - August - - September - - October - - November - - December - -	$\begin{aligned} & 60 \\ & 68 \\ & 66 \\ & 71 \\ & 67 \\ & 73 \\ & 73 \\ & 74 \\ & 75 \\ & 75 \\ & 74 \\ & 68 \\ & 75 \end{aligned}$	$\left\{\begin{array}{c} \left\{\begin{array}{c} 0 \\ 70 \\ 7 \\ 70 \\ \left\{\begin{array}{c} 74 \end{array}\right. \\ 72 \end{array}, ~\right. \end{array}\right.$		87 87 89 90 88 83 83 82 83 84 87 86 86	$\left\{\begin{array}{l} \left\{\begin{array}{c} 0 \\ 87 \\ 89 \end{array}\right. \\ 883 \\ 85 \end{array}\right.$	${ }^{\circ}$	$\begin{aligned} & 8 \\ & 86 \\ & 78 \\ & 84 \\ & 90 \\ & 90 \\ & 84 \\ & 84 \\ & 80 \\ & 80 \\ & 80 \\ & 84 \\ & 89 \end{aligned}$	$\left\{\begin{array}{l} \left\{\begin{array}{l} 0 \\ 82 \\ 88 \\ 8 \end{array}\right\} \begin{array}{l} 83 \\ 81 \end{array} \end{array}\right.$	82	79798388869184848182827980	$\left\{\begin{array}{l}\left\{\begin{array}{l}\circ \\ 81 \\ \left\{\begin{array}{l}\text { a }\end{array}\right. \\ 88 . \\ 83\end{array}\right. \\ 81\end{array}\right.$									
			70			87						82								
			73			85			85			85								
Difference between	$\}$		3	8	6	2	12													
Hottest Hottest and Coldest Mond Conthes. Sensons.								7.	3	12	7	3								
Mean for Year -	72			86			$\cdots 84$ -			83										
Flighest in Lowest in		August. February.		April. August.				April. February.		-	May. January.									

т.A.-160.

Madras Presidenoy.-1. Maximum Temperature of the Air-continued.

Place Latitude . . . Longitude Height	$\begin{aligned} & \text {. Poonamallee . . } \\ & \text {. } . ~ \\ & 13^{\circ} 2^{\prime} \text { N. . } \\ & \text {. } \\ & .80^{\circ} 10^{\prime} \text { E. . . } \\ & \text {. } \quad . \\ & \text { feet. } \end{aligned}$			- Fort St. George.$\begin{aligned} & \text {. . . } 13^{\circ} 4^{\prime} \text { N. . . . } \\ & . \quad .80^{\circ} 14^{\prime} \mathrm{E} . \quad . \quad . \end{aligned}$			$\begin{aligned} & \text { Fort St. George } \\ & . \quad . \\ & . \quad .13^{\circ} 4^{\prime} \text { N. . } \\ & . \quad . \\ & \hline 0^{\circ} 14^{\prime} \text { E. . } \end{aligned}$			$\begin{aligned} & . \quad . M_{A d r a s .} \\ & . \quad . \quad 13^{\circ} 6^{\prime} \mathrm{N} . \\ & . \quad .80^{\circ} 21^{\prime} \mathrm{E} \end{aligned}$		
Monte.	5 Years.	Winter. Spring.	October to March.	2 Years.	Winter,	October to March.	31 Years.	Winter,	October to March.	30 Years.	Winter, Spring,	$\begin{array}{\|c} \text { October, } \\ \text { to } \\ \text { March. } \end{array}$
	$\begin{aligned} & 1855 \text { to } \\ & 1859 . \end{aligned}$	Summer. Autumn.	April to September.	$\begin{gathered} 1777 \text { and } \\ 1778 . \end{gathered}$	Summer, Antume	April, to September.	$\begin{aligned} & 1811 \text { to } \\ & 1841 \text {. } \end{aligned}$	Summer, Autuma.	$\begin{aligned} & \text { April } \\ & \text { to Sep- } \\ & \text { tember. } \end{aligned}$	$\begin{gathered} 1796 \text { to } \\ 1825 . \end{gathered}$	Summer, Autumn.	April to September.
	$\begin{array}{r} \circ \\ 80 \\ 81 \\ 82 \\ 85 \\ 86 \\ 87 \\ 86 \\ 84 \\ 83 \\ 82 \\ 80 \\ 80 \\ 81 \end{array}$	$\left\{\begin{array}{l} \left\{\begin{array}{l} 81 \\ 8 \end{array}\right\} \\ 84 \\ 86 \\ 82 \end{array}\right.$	\bigcirc	082868891103100999891888587	$\left\{\begin{array}{l} \left\{\begin{array}{l} 85 \\ 94 \end{array}\right. \\ \left\{\begin{array}{l} 99 \end{array}\right. \\ 88 \end{array}\right.$	-	\circ 86 87 90 95 99 98 85 93 93 92 87 84	$\left\{\begin{array}{l} \left\{\begin{array}{l} 86 \\ 95 \end{array}\right. \\ 92 \end{array}\right.$	-	08488919310098959493928784	$\left\{\begin{array}{c} . \\ \left\{\begin{array}{c} 0 \\ 85 \\ 95 \\ \\ 96 \end{array}\right. \\ 91 \end{array}\right.$	
January - February			81			86			88			
March -									88			
April -												
May -												
June -			85			97			94			$95 \ddagger$
July -												
August -												
September - October												
November -												
December -												
Difference between												
Hottest Hottest and Coldest Months.	7	5	4	21	14	11	15	9	6	16	11	$7 \frac{1}{2}$
Mean for Year -	83			92			91			92		
Highest in Lowest in	June. January.			May. January.			May. December.				May. ary-Dece	mber.

(continued.)

Madras Presidency.-1. Maximum Temperature of the Air-continued.

$\dot{M}_{\text {adras Presidency.-2. Minimum Temperature of the Air. }}$
Tabe CX., showing the Average Minimum Tempetature for every Month and Quarter, as well as for the Periods October to March, and April to September, with the Difference between the Hottest and -Coldest Months and Seasons, and Minimum Temperature for the Year, between the Latitudes $5^{\circ} 21^{\prime}$ N. and $18^{\circ} 57^{\prime}$ N., and Longitudes $75^{\circ} 30^{\prime}$ and $100^{\circ} 25^{\prime} \mathrm{E}$., arrianged in the order of Latitude, at Stations for the most part in the Presidency of Madras.

Madras Presidency.-2. Minimum Temperature of the Air-contenued.

ADDENDA TO EVIDENCE TAKEN BEFORE THE COMMISSIONERS APPOINTED

Madras Prisidency.-2. Minimum Temperature of the Air-continued.

Madras Presidency.-3. Daily Range of Temperature.
Table CXL, showing the Average Daily Range for every Month and Quarter, as well as the Periods October to March, and April to September, with the Difference between the greatest and least Months, and the Mean Daily Range for the Year, between the Latitudes $5^{\circ} 21^{\prime} \mathrm{N}$. and $18^{\circ} 57^{\prime} \mathrm{N}$., and between the Longitudes $75^{\circ} 30^{\prime} \mathrm{E}$. and $100^{\circ} 25^{\prime}$ E., àrranged in the order of Latitude, at Stations, for the most part, in the Presidency of Madras.

Madras Presidency.-3. Daily Range of Temperature-continued.

Madras Presidency.-3. Daily Range of Temperature-continued.

> Madras Presidency.-4. Temperature of the Air.

Table CXII., showing the Average Temperature of the Air for every Month and Quarter, as well as for the Period October to March, and April to September, and the Difference between the Hottest and Coldest Months and Seasons, and Mean Temperature for the Year, between the Latitudes $1^{\circ} 16^{\prime} \mathrm{N}$. and $17^{\circ} 41^{\prime} \mathrm{N}$., and Longitudes $75^{\circ} 30^{\prime} \mathrm{E}$. and $103^{\circ} 53^{\prime} \mathrm{E}$., arranged in the order of Latitude, at Stations, for the most part, in the Presidency of Madras.

Place . . - Latitude - Longitnde . Height - .							$\begin{array}{cc} . & . \\ . & \text { CoLомво . } \\ . & .6^{\circ} 57^{\prime} \text { N. . } \\ - & . \\ & .80^{\circ} 0^{\prime} \text { E. . } \\ \ldots \end{array}$				Согомво $0^{\circ} 57^{\prime} \mathrm{N}$. $80^{\circ} 0^{\prime} \mathrm{E}$.	
Montr.	$1 \text { Year. }$	Winter,	$\begin{aligned} & \text { October } \\ & \text { to } \\ & \text { March. } \end{aligned}$	1 Year.	Winter,	$\begin{aligned} & \text { October } \\ & \text { to } \\ & \text { March. } \end{aligned}$	2 Years.	Winter,	$\begin{aligned} & \text { October } \\ & \text { to } \\ & \text { March. } \end{aligned}$	2 Years.	Winter, Spring	October March.
	1859.	Summer, Autumn.	April to September.	1859.	Summer, Autumn.	April to Sep. tember.	$\begin{gathered} 1812 \text { and } \\ 1815 ; \end{gathered}$	Summer, Autumn.	April to Sep. tember.	$\begin{aligned} & 1853 \text { and } \\ & 1854 . \end{aligned}$	Summer, Autumn.	$\begin{aligned} & \text { April } \\ & \text { to Sep- } \\ & \text { tember. } \end{aligned}$
January February -	8080808281828283838182818081	$\left\{\begin{array}{l} \} \begin{array}{l} 80 \\ 80 \\ 82 \end{array} \\ 882 \\ 81 \end{array}\right.$	81	80808182828183828181788078	$\left\{\begin{array}{l} \left\{\begin{array}{l} \circ \\ 80 \\ 82 \\ \left\{\begin{array}{l} 82 \end{array}\right. \\ 880 \end{array} .\right. \end{array}\right.$	80	798982848482818081798078	$\left\{\begin{array}{l} \left\{\begin{array}{l} 89 \\ 79 \\ 83 \\ { }^{\circ} 81 \\ 80 \end{array}\right. \end{array}\right.$	80	$\begin{aligned} & 81 \\ & 83 \\ & 85 \\ & 85 \\ & 84 \\ & 83 \\ & 82 \\ & 82 \\ & 82 \\ & 82 \\ & 82 \\ & 76 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{l} 80 \\ 8 \end{array} \\ \left\{\begin{array}{l} 85 \\ 82 \end{array}\right. \\ 82 \end{array}\right.$	8 81
March Aril Mre												
May - -												
June -			82			82			82			83
July -												
$\underset{\text { September - - }}{\text { August }}$												
October -												
$\underset{\text { November - - }}{\substack{\text { December } \\ \hline}}$												
Diflerence between	3	2	1	5	2	2	6	4.	2	9		2
Hotteyt and Coldest Months. Hottest and Coldest Soasons.											5	
Mean for Year -	81			81			81			82		
Hottest in Coldest in	July. January.			June. October.			April. December.			March. December.		
(continued.)												
Place. Latitude Longitude Height	$\begin{aligned} & \text {. } . ~ . ~ K i n d r ~ . ~ . ~ \\ & \text {. . . } 7^{\circ} 17^{\prime} \text { N. . . } \\ & \text {. . . } 80^{\circ} 49^{\prime} \text { E. . . } \\ & \text {. } \end{aligned}$			Trincomalee $8^{\circ} 34^{\prime}$ N. $81^{\circ} 19^{\prime}$ E. .								
Montr.	$\frac{3 \text { Years }}{1833 \text { to }} 1835 .$	Winter, Spring, Summer,Autumn.	OctobertoMarch.	1 Year.	Winter, Spring, Summer Autumn	October to March. April to Sep- tember.	$\begin{array}{\|c} \hline 5 \text { Years } \\ \hline \begin{array}{c} 1855 \text { to } \\ 1859 . \end{array} \\ \hline \end{array}$	Winter, Spring, Summer Autumn	$\left\|\begin{array}{c} \text { October } \\ \text { to } \\ \text { March. } \end{array}\right\|$	1 Year.	Winter Spring, Summer Autum	October to March. April to September.
										1859.		
January	$\begin{aligned} & 71 \\ & 73 \\ & 73 \\ & 75 \\ & 74 \\ & 75 \\ & 73 \\ & 78 \\ & 73 \\ & 73 \\ & 72 \\ & 72 \\ & 72 \end{aligned}$	$\left\{\begin{array}{l} \left\{\begin{array}{c} \circ \\ 72 \\ 75 \\ 75 \\ 73 \\ 72 \end{array}, ~\right. \end{array}\right.$	73	80808284878787858585837979	$\left\{\begin{array}{l} \} \begin{array}{l} \circ \\ 80 \\ 86 \end{array} \\ \{86 \\ 82 \end{array}\right.$	81		$\left\{\begin{array}{l} \left\{\begin{array}{l} \circ \\ 82 \\ 88 \\ \{88 \\ 86 \end{array}\right. \end{array}\right.$	84		$\left\{\begin{array}{l}\text { ¢ } \\ 66 \\ \}\end{array}\right.$	
February -												66
April												
May												
June			73			86						68
August												
September -												
November -												
December - -												
Difference between	$\} 4$	3	0	8	6	5	8	6	4	7.		2
Hottest and Oolicest Monthe. Hottent and Seasons.											3	
Mean for Year -	73			84			86			67		
Hottest in Coldest in	March. January.			April. ... November.			April. January.			August and December. -....... February.		

Madras Presidency.-4. Temperature of the Air-continued.

Place Latitude . . . Longitude . . . Height	$\begin{aligned} & \text {. . .Dodabetta } \\ & . \quad . \quad 11^{\circ} 25^{\prime} \mathrm{N} . \\ & \text {. . . } 77^{\circ} 5^{\prime} \mathrm{E} . \\ & . \quad . \\ & .8,640 \text { feet . } \end{aligned}$			Ootacamund $11^{\circ} 35^{\prime} \mathrm{N}$. $76^{\circ} 45^{\prime} \mathrm{E}$, . 7,361 feet.			Anjara Kandy .$\begin{aligned} & 11^{\circ} 40^{\prime} \mathrm{N} \\ & 75^{\circ} 40^{\prime} \mathrm{E} \end{aligned}$			$\begin{aligned} & \therefore . M_{4 N A N T O D D Y} \\ & =. \quad 11^{\circ}, 48^{\prime} \mathrm{N} \\ & . . \quad . \mathbf{7 6}^{\circ} 4^{\prime} \mathrm{E} \end{aligned}$		
Month.	2 Years.	Winter, Spring, Summer, Antumn.	October to March. April to September.	$\left\lvert\, \begin{gathered} 3 \text { Years. } \\ \hline 1831 \text { to } \\ 1833 . \end{gathered}\right.$	Winter, Spring, Summer. Autumn.	$\begin{gathered} \begin{array}{c} \text { October } \\ \text { to } \\ \text { March. } \end{array} \\ \hline \begin{array}{c} \text { April } \\ \text { to Sep- } \\ \text { tember. } \end{array} \end{gathered}$	10 Yearg. 1810 to 1813, and 1818 to 1823.	Winter, Spring, Summer, Áutumn.	October to March. April to September.	$\frac{1 \text { Year. }}{1832 .}$	Winter, Spring, Summer, Autumn.	October to March. ApriI to Sep- tember.
	$\begin{gathered} 1817 \text { and } \\ 1818 . \end{gathered}$											
January : - February - - March - - April - - May - - June - - July - - August - - September - - October - - November - - December - -	\circ 52 52 55 5.	$\left\{\begin{array}{l} 52 \\ 56 \\ 56 \end{array}\right.$	53	0535560636260585858585653	$\left\{\begin{array}{l} \left\{\begin{array}{l} 54 \\ 62 \end{array}\right. \\ 6 \begin{array}{c} 59 \\ 57 \end{array} \end{array}\right.$	56		$\left\{\begin{array}{c} 0: \\ \} \begin{array}{c} 81 \\ 85 \\ \{ \end{array} \\ 79 \\ 80 \end{array}\right.$	81	57 64 71 72 72 69 67 67 68 68 68 65	$\left\{\begin{array}{c} 0 \\ \} \\ 62 \\ 72 \\ \left\{\begin{array}{c} 08 \\ 68 \end{array}\right. \\ 68 \end{array}\right.$	\circ 66
	56											
	57											
	53		54			60			81			69
	53											
	53											
	53 58											
	52											
	51											
Difference between												
Hottest and Coldest Months.$\left\|\begin{array}{c}\text { Hottest } \\ \text { Ond Coldest } \\ \text { Seasons. }\end{array}\right\|$		4	1	10	8	4	8	6	0	15	10	3
Mean for Year -		54			58			81			68	
Hottest in Coldest in		May. December.			April: January.			April. July.			April. January.	
(continued.)												
Place Latitude Longitude Height		$\begin{gathered} \text { Cannanore } \\ 11^{\circ} 52^{\prime} \mathrm{N} . \\ 75^{\circ} 30^{\prime} \mathrm{E} \\ 15 \text { feet } \end{gathered}$	\cdot \cdot \cdot \cdot	\therefore \therefore \therefore	Mercara $12^{\circ} 24^{\prime} \mathrm{N}$ $75^{\circ} 48^{\prime}$ E. 4,500 feet	$*$ \cdot . . .		eringapat $\begin{aligned} & 18^{\circ} 45^{\prime} \mathrm{N} . \\ & 76^{\circ} 51^{\prime} \mathrm{E} . \\ & 2,412 \text { feet } \end{aligned}$	am \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot		$\begin{aligned} & \text { BANGALOR } \\ & 12^{\circ} 57^{\prime} \mathrm{N} . \\ & 77^{\circ} 38^{\prime} \mathrm{E} . \\ & 3,000 \text { feet } \end{aligned}$	
	10 Years	Winter, Spring,	October to March.	3 Years.	Winter, Spring,	October to March.	2 Years.	Winter, Spring,	October to March.	1 Year.	Winter, Spring,	October to March.
	$\begin{gathered} 1850 \text { to } \\ 1859 . \end{gathered}$	Summer, Autumn.	April to September.	$\begin{gathered} 1838 \text { to } \\ 1840 . \end{gathered}$	Summer, Antumn.	April to September.	$\begin{gathered} 1814 \text { to } \\ 1816 . \end{gathered}$	Summer, Autumn,	-April to September.	1835.	Summer, Autumn.	April to September.
	;	-	。	-		-	-	-	-	-	0	-
January -	82	\} 82		67			71	\} 73		70°	\} 71	
February -	82		82	71		68	77		75	73		72
$\begin{array}{ll}\text { March - } \\ \text { April } & \text { - }\end{array}$		\% 85		74	73	-	81	\% 83	-	79		-
May -	85			72		,	85	\}		78		
June . -	80		81	69	,	69	79		79	75		76
July - -	79	\} 79	;	67	\} 67		75	\} 76		74	\} 74	
August --	79	$\}$		66	\}		74			73		
September - -	79	7 .		66.	7		77	\}		74	, 72	
October - .-	81	\} 81		67	\} 67.		77	$\} 76$		71	$\} 72$	
November - December --	88.			67			74			71 69		
Difference between												
Hottest and Coldest Months. Hattest and Coldest Seqsons. $\|$	\} 7	\bigcirc	1	$\therefore 8$		1		10	4	10	8	4
Mean for Year -	82			68			$\bigcirc 77$			- 74		
Hottest in Coldest in	April. July.			March. August.			May: January.			March and April. December.		

Madras Presidency.-4. Temperature of the Air-continued.

Madras Presidency.-4. Temperature of the Air-continued.

Madras Presidency.-5. Readings of the Dry and Wet Bulb Thermometers.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place \\
Latitude \\
Longitude . \\
Height
\end{tabular} \& \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \& \begin{tabular}{l}
. \(\quad\). \\
- \(\quad \because\) \\
- \\
\hline
\end{tabular} \& Doda
\(11^{\circ} 2\)
\(\mathbf{7 7}\)

8,640 \& RTTA
N.
E.
feet \& . \cdot. \& \bullet
\cdot
\cdot

- \& Madr
$13^{\circ} 6^{\prime}$
$80^{\circ} 21^{\prime}$ \& S.
N.
E. \&

\hline \multirow[t]{2}{*}{Monta.} \& \& \& \& \& 18 \& r. \& \& $$
\begin{aligned}
& \text { ter, } \\
& \text { ng, } \\
& \text { ner, } \\
& \text { mn. } \\
& \hline
\end{aligned}
$$ \& 18 Y \& \& \& \[

$$
\begin{aligned}
& \text { ter, } \\
& \text { ing, } \\
& \text { mer, } \\
& \text { man. }
\end{aligned}
$$
\]

\hline \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& Wet.

\hline January \& 79 \& ${ }^{\circ} 5$ \& \& ${ }^{\circ}$ \& \& \& \& \& \& $\stackrel{\circ}{\circ}$ \& ${ }^{\circ}$ \& -

\hline February : \& 79
79 \& 75 \& 79 \& 75 \& 52
52 \& 46
51 \& $\} 52$ \& 49 \& 76
78 \& 71 \& , ${ }^{77}$ \& 72

\hline March - \& 80 \& 77 \& \& \& 55 \& 50 \& \& \& 81 \& 75 \& \&

\hline April \& 81 \& 77 \& 81 \& 77 \& 56 \& 53 \& 56 \& 53 \& 84 \& 79 \& 84 \& 78

\hline May \& 82 \& 78 \& \& \& 57 \& 55 \& \& \& 87 \& 80 \& \&

\hline June \& 82 \& 78 \& \& \& 53 \& 52 \& \& \& 86 \& 78 \& \&

\hline July - \& 81 \& 77 \& 81 \& 77 \& 53 \& 52 \& \} 53 \& 52 \& 85 \& 78 \& 85 \& 78

\hline August - \& 81 \& 77 \& \& \& 53 \& 52 \& \& \& 84 \& 78 \& \&

\hline September - \& 81 \& 77 \& \& \& 53 \& 52 \& \& \& 83 \& 78 \& \&

\hline October - \& 80 \& 77 \& $\} 80$ \& 77 \& 53 \& 52 \& \} 53 \& 52 \& 82 \& 77 \& \} 81 \& 76

\hline November - \& 80 \& 76 \& \& \& 52 \& 51 \& \& \& 78 \& 74 \& \&

\hline December - \& 79 \& 76 \& \& \& 51 \& 49 \& \& \& 77 \& 72 \& \&

\hline Difference between \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{3} \& \multirow[b]{2}{*}{2} \& \multirow[b]{2}{*}{2} \& \multirow[b]{2}{*}{6} \& \multirow[b]{2}{*}{9} \& \multirow[b]{2}{*}{4} \& \multirow[b]{2}{*}{4} \& \multirow[b]{2}{*}{11} \& \multirow[b]{2}{*}{9} \& \multirow[b]{2}{*}{8} \& \multirow[b]{2}{*}{6}

\hline | Hiphest | Highest
 and Lowest
 Monthl
 Readinys. |
| :---: | :---: |
| snd
 Senowest
 Seasonal
 Readings. | | \& \& \& \& \& \& \& \& \& \& \& \&

\hline Means \& 80 \& 77 \& 80 \& 77 \& 53 \& 51 \& 53 \& 51 \& 82 \& 76 \& 82 \& 76

\hline Highest \& \multirow[t]{2}{*}{| May and June. |
| :--- |
| Jan., Feb., |} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{May and June. January and February.}} \& May. \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{| May... |
| :--- |
| January. |}} \& \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{| May. |
| :--- |
| January |}}

\hline Lowest - \& \& \& \& \& December. \& \& \& \& January. \& \& \&

\hline
\end{tabular}

(continued.)

Place Latitude . . . - Longitude . . . Height	$\begin{array}{llll}\text { • } & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \text { - } & \cdot & \cdot\end{array}$	Bein 1780 77° 1,500	$\begin{array}{cc}\text { art } & \text { - } \\ \text { N. } & \text { - } \\ \text { E. } & \text { - } \\ \text { feet } & .\end{array}$	-	\cdot - - \cdot -	ecund 17° 78 78 1,800	rabad	$\stackrel{.}{\cdot}$		Tongr $18^{\circ} .57^{\prime}$ 96 ${ }^{\circ} 30$ 300				
Montr.	9851 to 1	859.			$\frac{10 \text { Years. }}{1850 \text { to } 1859 .}$		Winter, Spring, Summer, Autumn.		$\frac{1 \text { Year. }}{1859 .}$		Winter, Spring, Sumnaer,Autumn.			
	Dry.	Wet.	Dry.	Wet.	Dry.	Wet.	Dry.	Wet.	Dry.	Wet.	Dry.	Wet.		
	${ }^{\circ}$	\bigcirc		-	\bigcirc	\bigcirc	${ }^{\circ}$	-	\bigcirc	$\stackrel{\circ}{\circ}$	${ }^{\circ}$	-		
January	78 80	64 68		- 66	75 80	63	\} 76	63	70	61	\} 74	65		
March -	90	70			83	69	\} 87	71	80	69	\} 85	75		
April -	84	75		- 72	8891	70			90	7977				
May	82	70							84					
June	85	75		73	87	74	\} 84	74	88	7877	31	78		
$\mathrm{July}_{\text {Aly }} \mathrm{-}$ -	79 81	73 78			83 81	$\begin{aligned} & 74 \\ & 75 \end{aligned}$								
	81	72 68		70	81 80	$\begin{aligned} & 75 \\ & 76 \end{aligned}$,		$\begin{aligned} & 81 \\ & 81 \end{aligned}$	78	$\{79$	75		
October -	79	72			79	71	, 78	71	81	76				
November -	73	69			75	65			76	71				
December -	72	65			73	62			74	68				
Difirence between	\} 18	11		7	18	14	11	11	20	18		13		
Means	81.	70	81	70	81	70	81	70	80	73	80	73		
Highest in	March.	April and June. . January.			May.	September. December.			April. .	- April December.				
Lowest in	Deceniber.				December.				January.					

Madras Persidency.-6. Temperature of the Dew Point.

Table CXIV., showing the Average Temperatcre of the Dew Point for every Monter and Quarter, as well as for the period October to March, and April to September, with the. Difference between the highest and lowest Month and Season and Mean' Temperature of the Dew Point for the Year, between the Latitudes $1^{\circ} 16^{\prime}$ N. and $18^{\circ} 57^{\prime} \mathrm{N}$., and Longitudes $75^{\circ} 50^{\prime} \mathrm{E}$. and $103^{\circ} 53^{\prime} \mathrm{E}$., arranged in the order of Latitude, at Stations for the most part in the Presidency of Madras.

Madras Presidencr.-7. Amount of Vapour in a Cubic Foot of Air.

Table CXV., showing the Average Amount of Vapour in a Cubic Foot of Air for every Month and Quarter, as well as for the period October to March, and April to September, with the Difference between the greatest and least Months and Seasons, and the Mean for the Year, between the Latitudes $1^{\circ} 56^{\prime} \mathrm{N}$. and $18^{\circ} 57^{\prime} \mathrm{N}$., and Longitudes $75^{\circ} 51^{\prime}$ E. and $103^{\circ} 53^{\prime}$ E., at Stations for the most part in the Presidency of Madras.

Madras Presidency.-8. Additional Weight of Vapour required for Saturation.
Table CXVI., showing the Average Amount of Vapuor required to Saturate a Cobic Foot of Air, for every Monte and Quarter, as well as for the period October to March, and A mil to Scptember, with the Difference between the greatest and least Months and Seasons, and Mean for the Year, between the Latitudes $1^{\circ} 56^{\prime} \mathrm{N}$. and $18^{\circ} 57^{\prime}$ N., and Longitudes $75^{\circ} 51^{\prime}$ E. and $103^{\circ} 53^{\prime}$ E., arranged in the order of Latitude, at Stations for the most part in the Presidency of Madras.

Madras Presidency.-9. Degree of Humidity.
Table CXVII., showing the Average Degree of Humidity for every Month and Quarter, as well as for the period October to March, and April to September, with the Difference between the most Humid and least Humid Months and Seasons, and Mean for the Year, between the Latitudes $1^{\circ} 16^{\prime} \mathrm{N}$. and $18^{\circ} 57^{\prime} \mathrm{N}$., and between the Longitudes $75^{\circ} 51^{\prime}$ E. and $103^{\circ} 53^{\prime}$ E., arranged in the order of Latitude, at Stations for the most part in the Presidency of Madras.

Madras Presidency.-10. Sun Temperature.

Table CXVIII., showing the Average Sun Temperatere for every Monti and Quarter, as well as for the Period from October to March, and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and the Mean for the Year, between the Latitudes $8^{\circ} 43^{\prime} \mathrm{N}$. and $17^{\circ} 41^{\prime} \mathrm{N}$., and Longitudes $75^{\circ} 51^{\prime} \mathrm{E}$. and $98^{\circ} 42^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Madras.

Tables showing the Monthly, Quarterly, Malf Yearly, and Yearly Means, and Differences between the IIottest and Coldest Months and Seasons, of Obsenvations taken for the most part in the Prebidency of Bombay, arranged in the order of Latitude, of the following Meteorological Elements :-

1. Maximum Temperature of the Air.
2. Minimum Temperature of the Air.
3. Daily Range of Temperature.
4. Temperature of the Air.
5. Readings of the Dry and Wet Thermometers.
6. Temperature of the Dew Point.
7. Amount of Vapour in a Cubic Foot of Air.
8. Amount of Vapour required for Saturation.
9. Degree of Humidity.
10. Sun Temperature.

Bombay Presidency.-1. Maximum Temperature of the Air.
Table CXIX., showing the Average Maximcim Temperatdre for every Month and Quarter, as well as for the Periods October to March, and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean Maximum Temperature for the Year, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $26^{\circ} 20^{\prime} \mathrm{N}$, and between the Longitudes $67^{\circ} 2^{\prime}$ E. and $76^{\circ} 0^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Bombay.

Bombay Prestidency.-1. Maximum Temperature of the Air-continued.

Bombay Presidencri-1. Maximum Temperature of the Air-continued.

Bombay Presidency_-1. Maximum Temperature of the Air-continued.

(continued.)

Bombay Prestdency.-2. Minimum Temperature of the Air.

Table CXX., showing the Average Minimum Tempriature for every Month and Quarter, as well as for the Periods from October to March, and April to September, with the Difference between the Hottest and Coldest'Months and Seasons, and Mean Minimum Temperature for the Year, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $26^{\circ} 20^{\prime} \mathrm{N}$., and Longitudes $67^{\circ} 2^{\prime}$ E. and $76^{\circ} 0^{\prime}$ E., arrauged in the order of Latitude, and for the most part in the Presidency of Bombay.

Bombay Presidency.-2. Minimam Temperature of the Air-continued.

(continued.)

Place. Latitude . . . Longitude . . . Height . . .	$\left\lvert\, \begin{array}{ccccc} \cdot & \cdot & P & \text { Poona } & \cdot \\ \cdot & \cdot & 18^{\circ} 30^{\prime} \mathrm{N} & \cdot & \cdot \\ \cdot & \cdot & 74^{\circ} 0^{\prime} \mathrm{E} . & \cdot & \cdot \\ \cdot & \cdot & 1,800 \text { feet } & \cdot & \cdot \end{array}\right.$			Seroor $18^{\circ} 50^{\prime} \mathrm{N}$. $77^{\circ} 25^{\prime}$ E. 1,752 feet								
Month.	$\frac{5 \text { Years. }}{\text { 1856 to }} 1860$.	Winter, Spring, Suminer, Autumn.	October to March. April to September.	$\frac{5 \text { Years. }}{\text { 1854 to }}$ (1858.	Winter, Spring, Summer; Autumn.	OctobertoMarch. $\|$sApril to Sep- tember.	i Year.	Winter. Spring, Summer, Autumn.	OctobertoMarch.	$\left\lvert\, \begin{gathered} 6 \text { Years. } \\ \hline \begin{array}{c} 1853 \text { to } \\ 1858 . \end{array} \\ \hline \end{gathered}\right.$	Winter, Spring, Summer, Autumn.	OctobertoMarch.
January February March	0586368717472706968666158	$\left\{\begin{array}{l} 60 \\ \left\{\begin{array}{l} 60 \\ 71 \end{array}\right. \\ 60 \end{array}\right.$	62	0505159646969686866685950	$\left\{\begin{array}{l} 0 \\ \left\{\begin{array}{c} 0 \\ 50 \\ 64 \end{array}\right. \\ 68 \\ 64 \end{array}\right.$	56	78 76 76 76 74	-	-	0 62 65 72	, ${ }^{\circ} 63$	66
$\begin{array}{lll}\text { March } \\ \text { April } & \text { - } \\ \text { - }\end{array}$										72	\} 78	
May - -										83		
June -			70			67		1		81		79
July -								\} 75		79	$\} 79$	
August -										77		
September - - October											\} 71	
November - -										65		
December -										61		
Difference between										/'		
Hottest Hottest and Coldest Month.	$\} 16$	11	8	19	18	11	4	:	-	22	16	13
. Mean for Year -	66			62			76			73		
Highest in Lowest in	May. January and December.			May. December.			*. . .			May. December.		

Bombay Presidency.-2. Minimum Temperature of the Air-continued.

Place Latitude . . . Longitude . . . Height		Surat $21^{\circ} 10^{\prime} \mathrm{N} .$ $75^{\circ} 52^{\prime} \mathrm{E}$ 33 feet	$\begin{array}{cc}\text { • } & \cdot \\ \text { - } \\ \text { - }\end{array}$		Baroda $\begin{gathered} 22^{\circ} 16^{\prime} \mathrm{N} \\ 73^{\circ} 14^{\prime} \mathrm{E} \\ . \\ .90 \text { feet } \end{gathered}$			Rajcote $22^{\circ} 18^{\prime} \mathrm{N}$. $70^{\circ} 50^{\circ} \mathrm{E}$. 450 feet	• \cdot . . .		$\begin{gathered} \text { Muow. } \\ 22^{\circ} 33^{\prime} \mathrm{N} \\ .75^{\circ} 46^{\prime} \mathrm{E} \\ 1,862 \text { feet } \end{gathered}$										
Monte:	10 Years	Winter, Spring, Summer, Autumn.	October to March. April to September.	7 Years.	Winter, Spring, Summer, Autumn.	OctobertoMarch. $\|$April to Sepp tenber.	$\frac{4 \text { Years. }}{1857 \text { to }} \begin{gathered} 1860 . \end{gathered}$	Winter, Spring, Summer, Autumn.	October toMarch.	$\frac{\text { 2 Years. }}{1859 \text { and }}$	Winter, Spring, Summer, Autumn.	October to March.									
	$\begin{aligned} & 1850 \text { to } \\ & 1859 . \end{aligned}$			$\begin{aligned} & 1847 \text { to } \\ & 1853 . \end{aligned}$								$\begin{aligned} & \text { April } \\ & \text { to Sep- } \\ & \text { tember. } \end{aligned}$									
January - -	0 59 69 70 76 80 80 78 79 77 73 67 63	$\left\{\begin{array}{l}\text { \{ } \\ \left\{\begin{array}{c}0 \\ 64 \\ 75\end{array}\right. \\ \left\{\begin{array}{l}79\end{array}\right. \\ \\ 72\end{array}\right.$	0 67.	-	$\left\{\begin{array}{l}0 \\ \left\{\begin{array}{l}57 \\ 74 \\ \left\{\begin{array}{l} \\ 78\end{array}\right. \\ 781\end{array}\right\}\end{array}\right.$	\square	59 62 71 77 83 83 81 79 79 77 66 64			-		-									
$\begin{array}{lll}\text { January } \\ \text { February } & - & - \\ \text { - }\end{array}$				58 56					- 66	65	$\} 67$	70.									
March -				56 71							$\left\{\begin{array}{l} \\ 78\end{array}\right.$										
April -				69																	
May -				83						78											
June			78	80		79			80	64	\}	74									
July -				80						78	\} 72										
August -				76						74	$\int 72$										
September -				77						73											
October				73						74	73										
November -				64						73											
December -				68		!			!	67											
Difference between	$\}^{21}$	${ }^{15}$	11	\cdots	21 18 \vdots		24	-19	14	14	10										
Hottent Hottest and Coldest Months. and Coldest Seasons.							4														
Mean for Year -	72			69				73				72.									
Highest in	May. January.			May. February.			May. January:			April. January.											
Luwest in																					

(continued.)

Bombay Presidency-2. Minimum Temperajure of the Air-continued.

Bombay Presidency.-3. Daily Range of Temperature.
Table CXXI, showing the Average Daily Range for every Month nad Quarter, as well as for the Periods October to March, aud April to Scptember, with the Difference between the Greatest and Least Months and Seasons, and Mean Daily Range for the Ycar, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $26^{\circ} 20^{\prime} \mathrm{N}$., and between the Longitudes $67^{\circ} 2^{\prime}$ E. and $76^{\circ} 0^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Bombay.

Bombay Presidenct,-3. Daily Range of Temperature-continued.

(continued.)

Place. . . . Latitude Longitude . . . Height . . .	$\begin{array}{ccccc} \text {. } & \text {. } & \text { Poona } & . & \text {. } \\ \text {. } & 18^{\circ} 30^{\prime} \mathrm{N} . & - & \text {. } \\ \text {. } & 74^{\circ} 0^{\prime} \mathrm{E} & - & \text {. } \\ \text {. } & 1,800 \text { feet } & \text {. } & \text {. } \end{array}$			$\begin{array}{\|cccc} . & . & \text { Seroor } & \text {. } \\ . & - & 18^{\circ} 50^{\prime} \mathrm{N} . & - \\ \text {. } & - \\ \hline & 77^{\circ} 25^{\prime} \mathrm{E} & \text {. } & - \\ \text {. } & 1,752 \text { feet } & \text {. } & \text {. } \end{array}$								
Monte.	$\begin{array}{\|c\|} 5 \text { Years. } \\ \hline 1856 \text { to } \\ 1860 . \end{array}$	Winter,Spring,Summer,Autumn	$\left\lvert\, \begin{gathered} \text { October } \\ \text { to } \\ \text { March. } \end{gathered}\right.$	5 Years.	Winter, Spring, Summer, Autumn.	$\begin{array}{\|c} \text { October } \\ \text { to } \\ \text { March. } \end{array}$	1 Year.	Winter, Spring, Summer, Autumo.	October to March. April to Sep- tember.	6 Years.	Winter,Spring,SummerAutumn	October to March. April to Sep- tember.
	$\begin{gathered} 1856 \text { to } \\ 1860 . \end{gathered}$		April to September.	$\begin{gathered} 1854 \text { to } \\ 1858, \end{gathered}$		$\begin{aligned} & \text { April } \\ & \text { to Sep- } \\ & \text { tember. } \end{aligned}$	1860.			$\begin{gathered} 1853 \text { to } \\ 1858 . \end{gathered}$		
- January - - February - - Mapch - - April - - May - - June - - July - August - - September - - October - - November - December - -	$\begin{aligned} & 23 \\ & 24 \\ & 23 \\ & 24 \\ & 19 \\ & 13 \\ & 10 \\ & 9 \\ & 11 \\ & 18 \\ & 22 \\ & 22 \end{aligned}$	$\left\{\begin{array}{c} 0 \\ \left\{\begin{array}{c} 0 \\ 23 \\ 22 \end{array}\right. \\ 11 \\ 17 \end{array}\right.$	-	$\begin{aligned} & \hline 0 \\ & 44 \\ & 43 \\ & 42 \\ & 43 \\ & 29 \\ & 27 \\ & 23 \\ & 20 \\ & 18 \\ & 28 \\ & 36 \\ & 49 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{l} 45 \\ 38 \end{array} \\ \left\{\begin{array}{l} 23 \end{array}\right. \\ 27 \end{array}\right.$		$\begin{gathered} \circ \\ \cdots \\ \because \\ \ddot{21} \\ 28 \\ 24 \\ 16 \\ 18 \\ \cdots \\ \cdots \\ \cdots \end{gathered}$		-		\bigcirc	-
			22							${ }_{21}^{18}$	$\} 20$	18
										20		-
										19	\} 19	
			14			26				13		12
										6	$\} 9$	
										7		
										8		
										18	$\}^{13}$	
										20		
Difference between												
Greatest Greatest and leant Monthly and Least Seasonal	$\} 15$	12	8	31	22	14	\cdots	.	.	15	11	6
Monthly Seasonal Ranges. Ranges.)											
Mean for Year.		18			33			21			15	
Greatest in Least in	Febr	ary and August.	April.		December. September.			\cdots			February. July.	

Bombar Presidency:-3. Daily Range of Temperature-continued.

Place . Latitude Longitude . Height				\cdot \cdot \cdot \cdot \cdot \cdot	Baroda $22^{\circ} 16^{\prime} \mathrm{N}$ $73^{\circ} 14^{\prime} \mathrm{E}$ 90 0 feet	\cdot \cdot \cdot \cdot	$\begin{array}{ll}\cdot & \cdot \\ \text { : } \\ \cdot \\ \cdot & \text { - }\end{array}$	Rajcotte $22^{\circ} 18^{\prime} \mathrm{N}$ $70^{\circ} 50^{\prime} \mathrm{E}$. 450 feet	$\therefore \quad$.	$\begin{array}{llll}\cdot & \cdot \\ \bullet & \cdot \\ : & \cdot \\ \cdot & :\end{array}$. Mrow. $22^{\circ} 33^{\prime} \mathrm{N}$. $75^{\circ} 46^{\prime} \mathrm{E}$. 1,862 feet.									
Monte. ${ }^{\text {a }}$	$\frac{10 \text { Years. }}{1850 \text { to }} 1859 .$	Winter,Spring,Summer,Autumn.	October to tarch. April to Sep tember.	$\begin{array}{\|c} 7 \text { Years. } \\ \hline 1847 \text { to } \\ 1853, \end{array}$	Winter, Spring, Sunimer Autu.	$\begin{array}{\|c\|} \begin{array}{c} \text { October } \\ \text { to } \\ \text { March. } \end{array} \\ \hline \begin{array}{c} \Lambda \text { pril } \\ \text { to Sep- } \\ \text { tember. } \end{array} \\ \hline \end{array}$	$\frac{4 \text { Years. }}{\begin{array}{c} 1857 \text { to } \\ 1860 . \end{array}}$	$\begin{aligned} & \text { Winter, } \\ & \text { Spring, } \\ & \text { Summer, } \\ & \text { Autumn. } \end{aligned}$	October to March. April to September.	$\left\lvert\, \begin{gathered} 2 \text { Years. } \\ \hline 1859 \text { to } \\ 1860 . \end{gathered}\right.$	Winter, Spring, Summer Autumn	October to March. April to Sep. tember.								
			24	263425252218111213142631	$\left\{\begin{array}{l} \left\{\begin{array}{l} \circ \\ 30 \\ 24 \end{array}\right. \\ \left\{\begin{array}{l} \\ 14 \end{array}\right. \\ 18 \end{array}\right.$		$\begin{gathered} \circ \\ 19 \\ 21 \\ 18 \\ 20 \\ 16 \\ 12 \\ 7 \\ 7 \\ 5 \\ 6 \\ 12 \\ 20 \\ 15 \end{gathered}$	$\left\{\begin{array}{l} 18 \\ \left\{\begin{array}{l} 18 \end{array}\right. \\ 8 \\ 8 \end{array}\right.$	17	\circ10910131721835757	$\left\{\begin{array}{l} 0 \\ \left\{\begin{array}{l} 0 \\ 13 \end{array}\right. \\ \left\{\begin{array}{l} 11 \end{array}\right. \\ 6 \end{array}\right.$	8								
	$\begin{array}{r} 28 \\ 22 \\ 28 \\ 25 \\ 20 \\ 14 \\ 12 \\ 8 \\ 8 \\ 13 \\ 20 \\ 24 \\ 25 \end{array}$																			
			15																	
						17			11.			11								
Difference between	$\} 20$	14	9.	23	16	9	16	10			15	$3 \cdot$								
Greatest Greatest and Least and Least Monthly Rauges. Reasonal Ranges.																				
Mean for Year -	20			21			15			10										
Greatest in Least in	January and March. Augast.			February. July.			February. August.			June. August.										
(continued.)																				
Place .				$\begin{array}{lll} : & \text { : Atmedndegur . } & \cdots \\ : & : & 23^{\circ} 34^{\prime} \text { N. } \end{array} \cdot-$																
Latitude																				
Longitude																				
Height																				
Montr.	2 Years Winter, 1858 and 1859. October Spring, to Aummer, Aurch.			6 Years. Winter, Spring, October to tarch. 1854 to 1859. Summer, Autumn. April to Sep- tember.			$\frac{1 \text { Year. }}{1860 .}$	Winter, Spring, Summer, Aatumn.	OctobertoMarch. $\|$	5 Years.	Winter,Spring,Summer,Autumn	October toMarch.								
				$\begin{gathered} 1855 \text { to } \\ 1859 . \end{gathered}$																
	$\begin{aligned} & 13 \\ & 31 \\ & 21 \\ & 22 \\ & 22 \\ & 10 \\ & 27 \\ & 15 \\ & 13 \\ & 18 \\ & 17 \\ & 19 \end{aligned}$	$\left\{\begin{array}{l}\text { a } \\ 21 \\ 22 \\ \\ 17 \\ 17 \\ 14\end{array}\right.$	-				$\begin{aligned} & 24 \\ & 25 \\ & 25 \\ & 23 \\ & 22 \\ & 14 \\ & 10 \\ & 11 \\ & 11 \\ & 15 \\ & 19 \\ & 21 \end{aligned}$	$\left\{\begin{array}{l}\left\{\begin{array}{c}23 \\ \cdot \\ 23\end{array}\right. \\ \left\{\begin{array}{l}12 \\ 12\end{array}\right. \\ 15\end{array}\right.$	-	$\begin{array}{r} 13 \\ 21 \\ 20 \\ 22 \\ 19 \\ 4 \\ 3 \\ 3 \\ 2 \\ 8 \\ 11 \\ 22 \\ 21 \end{array}$		-	$\begin{aligned} & 28 \\ & 31 \\ & 22 \\ & 26 \\ & 26 \\ & 26 \\ & 16 \\ & 12 \\ & 16 \\ & 18 \\ & 24 \\ & 30 \end{aligned}$	$\left\{\begin{array}{l}30 \\ 30 \\ 25 \\ \text { 2 } \\ 18 \\ 19\end{array}\right.$	-					
			19	21	18	25														
						18														
			18	15	10															
				,																
Difference between	$\} 21$	8	1	13	11	6	20	17	8											
										13	12	7								
Mean for Year	18			18			14			23										
Greatest in -	February. June.			February and March. July.			April and November. Angust.			February. August.										

Bombat Presidency. 3. Daily Range of Temperature-continued.

Place . . . \cdot Latitude . . . Longitude. . . \cdot Height . .				-. \cdot	Kurracher $24^{\circ} 51^{\prime} \mathrm{N}:$ $67^{\circ} 2^{\prime} \mathrm{E}$. 27 ${ }^{7}$ feet.	$\begin{array}{ccc}\cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}$		$\begin{gathered} \mathrm{D}_{\text {RESA }} \\ 25^{\circ} 14^{\prime} \mathrm{N} \\ 72^{\circ} 5^{\prime} \mathrm{E} \\ 400 \text { feet. } \end{gathered}$							
Montr.	1 Year.	Winter, Spring, Summer, Autumn.	October to March.	5 Years:	Winter, Spring, Summer, Autumn	October to March	3 Years.	Winter, Spring, Summer, Autumn	October to March						
	1847.		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$	$\begin{gathered} 1856 \text { to } \\ 1860 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$	$\begin{aligned} & 1857 \text { to } \\ & 1859 . \end{aligned}$		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$						
	-	$\left\{\begin{array}{l} \} \\ \left\{\begin{array}{l} 23 \\ \{ \end{array}\right\} \\ 12 \\ \\ 23 \end{array}\right.$			-	24	$\begin{aligned} & 29 \\ & 31 \\ & 32 \end{aligned}$	\} 31	34						
	30 15		26	252424	$\} 23$										
	14918				19	-		\}							
				24 19 15			32 31 38 28								
	141212		12	151512	13	14	21	7.	20						
								\} 15							
	1310			11	13		11								
				11 21			16 31								
	37			29			36								
Difference between	80	16	14	18	10	10	25	16	14						
Mean for Year -	19			19			26								
Greatest in Least in	December. April.			November. August and September.			November. August.								
(continued.)															
Place: . . . Latitude. Longitude. Height							. . . Jacobabad. Unknown. - . . . ditto. . . : . 220 feet								
Montr.	2 Years.	Winter, Spring, Autumn.	October to March	2 Years.	Winter, Spring, Sutumn Autumy.	October to March.	12 Years.	$\begin{array}{l\|l} \text { Winter, } \\ \text { Spring, } \\ \text { Summer, } \\ \text { Autuman. } \end{array}$	October to March.						
	$\begin{gathered} 1856 \text { and } \\ 1857 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { toptember. } \end{gathered}$	$\begin{gathered} 1859 \text { and } \\ 1860 . \end{gathered}$		April to September.	$\begin{gathered} 1848 \text { to } \\ 1859 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$						
	-	-	-	-		-	${ }^{\circ}$		。						
January February -	1316	$\}{ }^{15}$	15	4	$\} \cdot 7$	9	33 34	$\} 33$	32						
March - -							3730	\} 31							
April - : -	17 16	\} 16	\cdots	7											
$\begin{array}{ll}\text { May - } \\ \text { June - } & \text { - }\end{array}$	16 14	\% :		11	9	9.	25		22						
July - - -	11	\} 12		12	\} 10		21	\} 20							
August -	11														
September - October	10	\} 13	-	1061810		-	20	$\} 27$							
November -							253538		-						
December -	15														
Difference betwren		4													
			2		4	0	18	13	10						
Mean for Year' -	14			${ }^{9}$			27								
Greatest in Least in	March. September.				November. January.		March. June and August.								

Bombay Presidency.-4. Temperature of the Air.
Table CXXII., showing the Average Temperature of tife Air, for every Month and Quarter, as well as for the Periods from October to March and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean 'Temperature for the Ycar, between the Latitudes $12^{\circ} 45^{\prime} \mathrm{N}$. and $26^{\circ} 20^{\circ} \mathrm{N}$., and between the Longitudes $45^{\circ} 15^{\prime} \mathrm{E}$. and $79^{\circ} 11^{\prime} \mathrm{E}$., arranged in the order of Latitude, and for the most part in the Presidency of Bombay.

Bombay Presidency.-4. Temperature of the Air-continued.

Bombay Presidency.-4. Temperature of the Air-continued.

(continued.)

Place Latitude Longitude . . .	$\left(\begin{array}{ccccc} \cdot & . & . \operatorname{Rajcote} & . & \cdot \\ \cdot & \cdot & 22^{\circ} 18^{\prime} \mathrm{N} . & \cdot & \cdot \\ \cdot & \cdot & .70^{\circ} 50^{\prime} \mathrm{E} & \cdot & . \\ . & . & 450 \text { feet } & . & . \end{array}\right.$									- . Afmednuggur.$\begin{aligned} & . \quad .23^{\circ} 34^{\prime} \mathrm{N} \\ & \cdot \quad . \quad 73^{\circ} 1^{\prime} \mathrm{E} \\ & . \quad . \quad .1,900 \text { feet. } \end{aligned}$						
Montr.	4 Years.	Winter, Spring, Summer, Autumn.	$\left\|\begin{array}{c}\text { October } \\ \text { to } \\ \text { March. }\end{array}\right\|$April to Sep- tember.	2 Years.	Winter, Spring, Summer, Autumn.	October to March. April to September.	$\begin{array}{\|c\|} \hline 2 \text { Years. } \\ \hline 1858 \text { and } \\ 1859 . \end{array}$	Winter, Spring, Summer, Autumn.	$\begin{array}{\|c} \begin{array}{c} \text { October } \\ \text { to } \\ \text { March. } \end{array} \\ \hline \begin{array}{c} \text { April } \\ \text { to Sep- } \\ \text { tember. } \end{array} \end{array}$	$\begin{array}{\|c\|} \hline 6 \text { Years. } \\ \hline 1854, \text { to } \\ 1859 . \\ \hline \end{array}$	Winter, Spring, Summer, Autumn.	Octobel to March.				
	$\begin{gathered} 1857 \text { to } \\ 1860 . \end{gathered}$			$\begin{array}{\|c\|} \hline 1859 \text { and } \\ 1860 . \end{array}$								April to September				
	\circ697582869089858281837773	$\left\{\begin{array}{l} \begin{array}{c} 0 \\ 72 \\ 86 \end{array} \\ 885 \\ 80 \end{array}\right.$	$\circ$$78^{\circ}$	$\begin{aligned} & 0 \\ & 70 \\ & 72 \\ & \mathbf{8 0} \\ & \mathbf{8 6} \\ & \mathbf{8 7} \\ & \mathbf{7 4} \\ & \mathbf{8 2} \\ & \mathbf{7 5} \\ & \mathbf{7 5} \\ & \mathbf{7 7} \\ & \mathbf{7 5} \\ & \mathbf{7 1} \end{aligned}$	$\left\{\begin{array}{l} 0 \\ \left\{\begin{array}{l} 0 \\ 84 \end{array}\right. \\ 77 \\ 77 \end{array}\right.$	- 74	71 80 83 93 97 89 90 84 83 83 78 69	$\left\{\begin{array}{l} \} \\ \left\{\begin{array}{c} 73 \\ 91 \\ \{ \end{array}\right. \\ 88 \\ 81 \end{array}\right.$	0 77	$\begin{array}{r} \circ \\ 71 \\ 75 \\ 82 \\ 87 \\ 87 \\ 81 \\ 77 \\ 76 \\ 76 \\ 77 \\ 73 \\ 70 \end{array}$	$\left\{\begin{array}{l}0 \\ \left\{\begin{array}{l}0 \\ 72 \\ 85\end{array}\right. \\ 78 \\ 78 \\ 75\end{array}\right.$					
January - -																
February																
March - -			85			-										
April - -																
June -						79			89			80				
July -																
August -																
Sepiember -																
October -																
Norember -																
December - -																
$\overbrace{$ Hottest and Coldest Months. }$^{\overbrace{\substack{\text { and Coldest } \\ \text { Seasons. }}}^{\text {Difference between }}}$	$\} 21$	14	7	17	18	5	28	18	12	17	13	6				
Mean for Year -	81			77			83			77						
Ilighest in -	May. January.			May. Spring. January. Winter.			May. December.			April and May. - December.						
Lowest in																

Bombay Presidency.-4. Temperature of the Air-continued.

(continued.)

Bombay Presidency.-5. Readings of the Dry and Wet Bulb Thermometers.
Table CXXIII., showing the Average Readings of the Dry and Wet Bulb Thermometers for every Monta and Quarter as well as for the periods October to March and April to September, with the Difference between the Highest and Lowest Months and Scasons, and Mean for the Year between the Latitudes $15^{\circ} 52^{\prime} \mathrm{N}$. and $25^{\circ} 30^{\prime} \mathrm{N}$., and between Longitudes $69^{\circ} 5^{\prime} \mathrm{E}$. and $77^{\circ} 25^{\prime} \mathrm{E}$., arrangod in the order of Latitude and for the most part in the Presidency of Bombay.

Bombay Presidency. 5. Readings of the Dry and Wet Thermometers-continued.

Bombay Presidency.-6. Temperature of the Dew-Point.
Table CXXIV., showing the Average Temperature of the Dew-Point, for every Month and Quarter, as well as for the periods October to March and April to September, with the Difference between the Highest and Lowest Months and Seasons, and Mean for the Year, between the Latitudes $15^{\circ} 52^{\prime} \mathrm{N}$. and $25^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $69^{\circ} 5^{\prime}$ E. and $77^{\circ} 2^{\prime}$ E., arranged in the order of Latitude at Stations for the most part in the Presidency of Bombay.

Bombay Presidency.-6. Temperature of the Dew Point-continued.

> Bombay Presidency.-7. Amount of Vapour in a Cubic Foot of Air.

Table CXXV., showing the Avelrage Amount of Vapour in a Cubic Foot of Air for every Monti and Quarter as well as for the periods October to March and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and the Mean for the Year between the Latitudes. $15^{\circ} 52^{\prime} \mathrm{N}$: and $25^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $69^{\circ} 5^{\prime}$ E. and $77^{\circ} 2^{\prime}$ E., arranged in the order of Latitude, at Stations for the most part in the Presidency of Bombay.

Bombay Presloencx.-7. Amount of Vapour in a Cubic Foot of Air-continued.

Bombay Presidency.-8. Amount of Vapour required for Saturation.
Tables CXXVI., showing the Average Amount of Vapour required to Saturate a Cubic Foot of Air, for every Month and Quarter, as well as for the Periods from October to March and April to September, with the Difference between the Greatest and Least Months and Seasons, and the Mean for the Year, between the Latitudes $15^{\circ} 52^{\prime} \mathrm{N}$. and $25^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $69^{\circ} 5^{\prime} \mathrm{E}$. and $77^{\circ} 2^{\prime} \mathrm{E}$., arranged in the order of Latitude, at Stations for the most part in the Presidency of Bombay.

(continued.)

Place . . . Latitude . . . Lungitude Height	- . -	Poona $18^{\circ} 30^{\prime} \mathrm{N}$. $74^{\circ} 0^{\prime} \mathrm{E}$. 1,800 feet.	• \cdot - -	- \cdot \cdot \cdot - \cdot - -	Seroor $18^{\circ} 50^{\prime} \mathrm{N}$ $77^{\circ} 25^{\prime}$ E. 1,752 feet.	$\begin{array}{cccc}\cdot & \cdot & \cdot \\ \cdot & \text { - } & \cdot \\ \cdot & \text { - }\end{array}$. Bombay. . $18^{\circ} 53^{\prime} \mathrm{N}$. $72^{\circ} 52^{\prime} \mathrm{E}$	
Montr.	5 Years.	Winter, Spring, Summer, Autumn.	October to March.	5 Years.	Winter, Spring, Summer, Autumn.	October to March.	12 Years.	Winter, Spring, Summer, Autumn.	October to March.
	$\begin{gathered} 1856 \text { to } \\ 1860 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$	$\begin{gathered} 1854 \text { to } \\ 1858 . \end{gathered}$		April September.	$\begin{gathered} 1847 \text { to } \\ 1858 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { to } \end{gathered}$ September
January February a	$\begin{gathered} \text { grs. } \\ 3 \cdot 7 \\ 5.8 \end{gathered}$	($\} \begin{aligned} & \mathrm{grs} \\ & 4.4\end{aligned}$	grs. 4.5	$\begin{gathered} \begin{array}{c} \mathrm{grs} . \\ 8 \cdot 7 \\ 4 \cdot 9 \end{array} \end{gathered}$, $\begin{aligned} & \text { grs. } \\ & 4.9\end{aligned}$	grs $5 \cdot 8$	$\begin{aligned} & \mathrm{grs.} \\ & 2.7 \\ & 3 \cdot 3 \end{aligned}$	$\} \begin{gathered}\text { grs. } \\ 3 \cdot 1\end{gathered}$	$\begin{gathered} \mathrm{grs} . \\ \mathbf{3 . 2} \end{gathered}$
March -	$5 \cdot 8$ $7 \cdot 1$	$\} 6.0$		$9 \cdot 7$ $7 \cdot 7$	\{ 8.2		3.6	\{ 3.9	
April - - May -	$7 \cdot 1$ $5 \cdot 0$			$7 \cdot 7$ $7 \cdot 1$	\} $8 \cdot 2$		3.4 4.2	\} $3 \cdot 7$	$2 \cdot 6$
June - -	3.4		$3 \cdot 5$	$4 \cdot 9$		4.5	$2 \cdot 3$		
July - -	2.0) $2 \cdot 3$		2.5	\} $3 \cdot 4$		1.8	1) $2 \cdot 1$	
August	1.5	$3 \cdot 3$		$\begin{aligned} & 2.9 \\ & 2.9 \\ & 4.9 \\ & 5.8 \\ & 6.1 \end{aligned}$			$2 \cdot 2$		
October -	$\mathbf{8 . 6}$ 4.4				4.5		$\begin{aligned} & 1.7 \\ & 2.8 \\ & 3.4 \\ & 3.3 \end{aligned}$	$\} 2 \cdot 6$.	*
Norember December	4.4 3.7								
Difference between Greatest and Least									
Monthly Amount. Sersonal Amount.		$3 \cdot 7$	$1 \cdot 0$	7.2.	$4 \cdot 8$	$1 \cdot 3$	$2 \cdot 5$	1.6	0.6
Mean for year	4.0			5.2			$2 \cdot 9$		
Greatest in Least in	April. August.	Spring. Sunumer.	-	March. July.	Spring. Summer.	.	May. September.	Spring. Summer.	,

Bombay Presidency.-8. Amount of Vapour required for Saturation-continued.

Bombay Presidency.-9. Degree of Humidity.
Tarle CXXVII., showing the Averige Degree of Húmidity for every Month and Quarter as well as for the Periods October to March and April to September, with the Difference between the Most Humid and Driest Months and Scasons, and Mean Degree of Humidity for the Year, between the Latitudes $15^{\circ} 52^{\prime} \mathrm{N}$. and $2.5^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $69^{\circ} 5^{\prime} \mathrm{E}$. and $77^{\circ} 2^{\prime} \mathrm{E}$., arranged in the order of Latitude, at Stations for the most part in the Presidency of Bombay.

Hlace . . . Latitude. Longitude Height							• - - - -	Dapoolet. $17^{\circ} 48^{\prime} \mathrm{N}$. $73^{\circ} 16^{r} \mathrm{E}$. 600 feet. .	$\begin{array}{cc}\cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot\end{array}$		hablésem $17^{\circ} 59^{\prime} \mathrm{N}$ $73^{\circ} 30^{\prime} \mathrm{E}$ 4,500 feet.	twor. N. E. t.
Montr	$\begin{array}{\|c\|} \hline 2 \text { Years. } \\ \hline 1858 \text { and } \\ 1859 . \end{array}$	Winter, Spring, Autumn	October to March	5 Years.	Winter, Spring, Summer, Autumb	October to . March. April to September.	$2 \text { Years. }$	Winter, Spring, Autumn.	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Otober } \\ \text { to } \\ \text { March. } \end{array} \\ \hline \begin{array}{c} \text { April } \\ \text { to Sep- } \\ \text { tember. } \end{array} \\ \hline \end{array}$	9 Years. 1835 to 1843.	Winter, Spring, Autumn.	Octobertomarch.
	$\left\lvert\, \begin{gathered} 1858 \text { and } \\ 1859 . \end{gathered}\right.$		April to September.	$\begin{gathered} 1855 \text { to } \\ 1859 . \end{gathered}$			$\begin{gathered} 1858 \text { and } \\ 1859 . \end{gathered}$					
January - - February - - March - - April - - May - - Jane - - July - August - - September - - Oetober - - November - December D -	$\begin{aligned} & 51 \\ & 39 \\ & 44 \\ & 48 \\ & 63 \\ & 79 \\ & 84 \\ & 84 \\ & 79 \\ & 62 \\ & 62 \\ & 54 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{l} 48 \\ 52 \end{array} \\ \left\{\begin{array}{c} 82 \end{array}\right. \\ 68 \end{array}\right.$	52	$\begin{aligned} & 65 \\ & 62 \\ & .56 \\ & 48 \\ & 60 \\ & 79 \\ & 75 \\ & 89 \\ & 84 \\ & 74 \\ & 66 \\ & 69 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{c} 65 \\ 55 \\ 5 \end{array} \\ \left\{\begin{array}{c} 81 \\ 75 \end{array}\right. \end{array}\right.$	65	$\begin{aligned} & 79 \\ & 79 \\ & 80 \\ & 80 \\ & 80 \\ & 85 \\ & 58 \\ & 85 \\ & 90 \\ & 89 \\ & 80 \\ & 89 \\ & 70 \end{aligned}$	$\left\{\begin{array}{l} \left\{\begin{array}{l} 76 \\ 82 \end{array}\right. \\ \left\{\begin{array}{l} 78 \end{array}\right. \\ 86 \end{array}\right.$	79	534440415983889483886460	$\left\{\begin{array}{l} \left\{\begin{array}{l} 52 \\ 47 \end{array}\right. \\ \left\{\begin{array}{c} 88 \\ 88 \end{array}\right. \end{array}\right.$	58
			73			72			81			74.
Difference between Most Humid and Least Humid	$\} 45$	34	21	41	26	7	32	10	2	54	41	16
Months. 1 Seasons.												
Mean for Year -		63			69			80			66	
Most humid Driest	July and August. February	Summer. Winter.		August. April.	$\left\lvert\, \begin{gathered}\text { Summer. } \\ \text { Spring. }\end{gathered}\right.$		August. June.	$\left\lvert\, \begin{gathered}\text { Autumn. } \\ \text { Winter. }\end{gathered}\right.$		August.	Summer.	
(continued.)				.								
Place. .	- •	. Po	Na	$\cdots \cdot$ -		.	Stroor	- •		.	омmat.	
Latitude .	-	. 18°	$30^{\prime} \mathrm{N}$.			- . 1	$50^{\circ} \mathrm{N}$.	-•••		- 1	$5^{\prime} \mathrm{N}$.	-
Longitude.	- •	74°	$0^{\prime} \mathrm{E}$.	-•• 77	$7^{\circ} 25^{\prime} \mathrm{E}$.	-•••	. .	- $72{ }^{\circ}$	${ }^{52}$ ¢ E .	
Height	: .	- 1,80	0 feet.	- •	-	- 1	,752 feet.					
	5 Yea			October to March.	5 Yea		Winter, Spring,	October $\stackrel{\text { to }}{\text { March. }}$	12 Y	ears.	Finter, pring,	October to March.
Dontic.	$\begin{array}{r} 1856 t \\ 1860 . \end{array}$			April to September.	${ }_{\text {r }}{ }^{1854} 1858$		Summer, Autumn.	$\begin{array}{\|c} \text { April } \\ \text { to } \\ \text { September. } \end{array}$	r. ${ }^{1847} 185$		utumn.	$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$
January	53			51	析			35	70			64
Febraary	40				42							
April- -	43				25				72		69	
May - -	67 67			68	56			57	68			80
June - - -	79				75				85			
Augist - -	84				11				80			
September October	79 63				51				76			
Norember	52				38				67			
December -	53											
Difference between Moost Humid and Least Humid	44		29	17		0	40.	22	18		14	16
Months. 1 Seasons.												
Mean for Year -			59				48				. 74	
Most humid Driest		ust. S uary. S	mmer. pring.		Jul		Summer.		July septer Feb., Nov. 8		ummer. Winter.	

Bombay Presidency.-9. Degree of Humidity-continued.

(continued.)

Place . . . Latitude . Longitude Height. .	$\begin{aligned} & \text {. . . . Kurbacher } \\ & \text {. . . } 24^{\circ} 51^{\prime} \text { N. } \\ & \text {. . . } 77^{\circ} 2^{\prime} \text { E. } \\ & \text {. . . } 27 \text { feet. } \end{aligned}$			$\begin{array}{ll}\cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot\end{array}$	Deesa $25^{\circ} 14^{\prime} \mathrm{N}$. $72^{\circ} 5^{\prime}$ E. 400 feet.	\cdot \cdot \cdot \cdot		$\begin{gathered} \text { Hfderdbad. } \\ 25^{\circ} 30^{\prime} \mathrm{N} . \\ 69^{\circ} 5^{\prime} \mathrm{E} . \\ 99 \text { féet. } \end{gathered}$	
Moxtr.	$\frac{5 \text { Years. }}{1856 \text { to }} 1860 .$	Widter, Spring, Summer, Antoma	October to March.	3 Years.	Winter, Spring, Summer, Autuma	October $\stackrel{\text { to }}{\text { March. }}$	$\frac{2 \text { Years. }}{1856 \text { and }} \begin{gathered} 1857 . \end{gathered}$	Winter, Spring, Summer, Autuma	October to March
			$\begin{gathered} \text { April } \\ \text { to } \end{gathered}$ September.	$\begin{gathered} 1857 \text { to } \\ 1859 . \end{gathered}$		April to September.			April to September
January February March Aprid May - June - Joly - August Septewber October November December	$\begin{aligned} & 49 \\ & 57 \\ & 53 \\ & 54 \\ & 65 \\ & 65 \\ & 72 \\ & 76 \\ & 68 \\ & 57 \\ & 39 \\ & 47 \end{aligned}$	$\left\{\begin{array}{l} 51 \\ 57 \\ \\ 51 \end{array}\right.$	- ._.	$\begin{aligned} & 52 \\ & 46 \\ & 36 \\ & 36 \\ & 34 \\ & 45 \\ & 56 \\ & 78 \\ & 80 \\ & 72 \\ & 51 \\ & 37 \\ & 44 \end{aligned}$	$\begin{cases}\left\{\begin{array}{l} 47 \\ 38 \end{array}\right. \\ 6 & 69\end{cases}$	43	595044434450596568604856	$\left\{\begin{array}{l} 55 \\ \left\{\begin{array}{l} 44 \end{array}\right. \\ 58 \\ 58 \end{array}\right.$	53
			67			59			55
Difforence betwecn Most Humid nnd Least Hurnid	37	20	17	46	31	16	25	15	2
Mouths.									
Mean for Year -		58			51			54	
Most humid Driest	August: November.	Summer. Wintér.		August. ApriI.	Summer. Spring.		September. April.	Automn. Spring.	

Table CXXVIII., showing the Average Sun Temperature, for every Monthaind Quarter, as well as for the Periods. October to March and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean for the Ycar, between the Latitudes $15^{\circ} 50^{\prime} \mathrm{N}$. and $25^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $67^{\circ} 2^{\prime} \mathrm{E}$. and $77^{\circ} 25^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Bombay.

Bombay Presidency.-10. Sun Temperature-continued.

(continued)

Tables showing the Monthly, Quarterly, Half Yearly, and Yearly Means, and Differences between the Hottest and Coldest Months and Seasons, of Observations taken for the most part in the Presidency of Bengal, arranged in the order of Latitdde, of the following Meteorological Elements :-

1. Maximum Temperature of the Air.
2. Minimum Temperature of the Air.
3. Daily Range of Temperature.
4. Temperature of the Air.
5. Readings of the Dry and Wet Bulb Thermometers.
6. Temperature of the Dew Point.
7. Amount of Vapour in a Cubic Foot of Air.
8. Additional Weight of Vapour required for Saturation.
9. Degree of Humidity.
10. Sun Temperature.
mum Temperature of the Air.

Table CXXIX. showing the Average Maximum Temperature for every Month and Quarter as well as for the Periods October to March, and April to September, with the Difference between the Hottest and Coldest Months and Sehsons, and Mean Maximum Temperature for the Year, between the Latitudes $20^{\circ} 15^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime}$ E. and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude, at Stations for the most part in the Presidency of Bengal.

Place . . . Latitude. Longitude Height	$\begin{array}{llll} \text {. } & \text {. Thiet Mro } & \text {. } \\ \text { - } & 20^{\circ} 15^{\prime} \mathrm{N} . & \text {. } \\ \text { - } & 92^{\circ} 46^{\prime} \mathrm{E} . & \text {. } \\ \text {. } & . & 240 \text { feet. . } & \text {. } \end{array}$						- . Fo	ort Willia $22^{\circ} 34^{\prime} \mathrm{N}$. $88^{\circ} 25^{\prime} \mathrm{E}$. 8 feet	M \cdot \cdot \cdot \cdot		$24^{\circ} 5^{\prime} \mathrm{N}$. $88^{\circ} 17^{\prime}$ E. 76 feet.	
Monte.		Winter Spring, Summer,Autumn	October to March.	$\frac{3 \text { Years }}{} \begin{aligned} & 1858 \text { to } \\ & 1860 . \end{aligned}$	Winter, Spring, Autumn.	OctobertoMarch. $\|$	$\begin{array}{\|c} 5 \text { Years. } \\ \hline \begin{array}{l} 1855 \text { to } \\ 1859 . \end{array} \end{array}$	Winter,Spring,Summer,Autumn.	OctobertoMarch.	$\begin{array}{\|l\|l} 3 \text { Years. } \\ \hline 1857 \text { to } \\ 1859 . \end{array}$	Winter,Spring,Summer,Autumn.	October to March. April to Sep- tember.
	1859		$\begin{aligned} & \text { April } \\ & \text { to Sep- } \\ & \text { Atmber. } \end{aligned}$									
January - - February - - March - - April - - May - - June - - July Augnst - - Suptember - - October - November - - December -	$\begin{array}{r} 89 \\ 95 \\ 98 \\ 98 \\ 101 \\ 93 \\ 84 \\ 87 \\ 87 \\ 88 \\ 88 \\ 87 \\ 85 \\ 84 \end{array}$	$\left\{\begin{array}{l} \left\{\begin{array}{c} \circ \\ 89 \end{array}\right. \\ \left\{\begin{array}{c} 97 \\ 86 \end{array}\right. \\ 87 \end{array}\right.$	89	$\begin{aligned} & 80 \\ & 84 \\ & 84 \\ & 88 \\ & 97 \\ & 99 \\ & 90 \\ & 84 \\ & 83 \\ & 84 \\ & 85 \\ & 79 \\ & 74 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{c} \circ \\ 79 \\ 95 \\ 98 \\ 86 \end{array} \\ 88 \end{array}\right.$	82	$\begin{aligned} & 78 \\ & 78 \\ & 83 \\ & 90 \\ & 93 \\ & 94 \\ & 91 \\ & 88 \\ & 87 \\ & 88 \\ & 87 \\ & 82 \\ & 77 \end{aligned}$	$\left\{\begin{array}{l} \} \begin{array}{l} \circ \\ 79 \\ 92 \end{array} \\ \left\{\begin{array}{l} 89 \end{array}\right. \\ 86 \end{array}\right.$	83	$\begin{aligned} & 86 \\ & 82 \\ & 82 \end{aligned}$	\|\} $\stackrel{\circ}{88}^{\circ}$	82
			89									
										98 98	$\}^{96}$	
			90			89			88	100		95
										92	94	
										$\begin{aligned} & 90 \\ & 90 \end{aligned}$		
										88	87	
										81		
										75		
Difference between												
Hottest and Coldest Months. Hottest and Coldest Seasons.	\} 17	11	1		12	7	17.	13	5	25	18	13
Mean for Year -		90			86			86			89	
Highest in Lowest in		April. December			May. December.			May. December	-		June. December	
(continued.)												
Place	- •	Crunar	-	. C	mirrapoon	aem.	- .	Benares		. .	Ghazeipor	
Latitude.	. .	$25^{\circ} 5^{\prime} \mathrm{N}$.	- \cdot	- .	$25^{\circ} 14^{\prime} \mathrm{N}$.		- .	$25^{\circ} 17 \mathrm{~N}$.	- •	- .	$25^{\circ} 49^{\prime} \mathrm{N}$	
Longitude	. . .	$83^{\circ} 0^{\prime} \mathrm{E}$.		- .	$91^{\circ} 45^{\prime} \mathrm{E}$.		- . .	. $83^{\circ} 4^{\prime} \mathrm{E}$.		-	$80^{\circ} 48^{\prime} \mathrm{E}$.	
Height	.	250 feet		- .	4,118 feet.	.	- .	. 270 feet	:	
			October			October			October			October
	10 Years.	Winter,	$\begin{gathered} \text { to } \\ \text { March. } \end{gathered}$	2 Years.	Winter,	$\stackrel{\text { to }}{\text { March. }}$	2 Years.	Winter,	$\begin{gathered} \text { to } \\ \text { March. } \end{gathered}$	4 Yeara.	Winter,	$\begin{gathered} \text { to } \\ \text { March. } \end{gathered}$
Honta.		Summer, Autumn		$\begin{gathered} 1859 \text { and } \\ 1860 . \end{gathered}$	Summer, Autumn		$\begin{gathered} 1858 \text { and } \\ 1859 . \end{gathered}$	Summer,			Summer, Autumn.	
	1859.	Autumn.	$\begin{aligned} & \text { April } \\ & \text { to } \end{aligned}$	$1860 .$		to September.	1859.		to September.	1859.		to September.
January	76		-	61		。	73		-	79		-
February	82		84	65		64	74		74	84		84
April	98 98			72	, 71		888888	\} 88		959		
May	102			74			98			$105{ }^{\circ}$		
June	103		97	71	,	72	90	\} 87	89	103		99
${ }^{\text {July }}$ August	96 94	$\}^{98}$		73	$\}^{72}$		87 88	$\}^{87}$		97 100	, 100.	
${ }_{\text {August }}^{\text {September }}$	${ }_{93}^{94}$			72			86			100 93		
October	91	900		73	\% 70		81			91	\} 90	
November	85			64			74			85		
December	77			58			68			74		
Dillitrence betwoen						*						
	, 27	20	13	16	11	8	so	16	15	91	21	15
Mean for Year -		91			68			82			92	-
Higheat in ${ }^{\text {. }}$ Lowest in		June. January.			May. December			May. December.			May. December	

Bengal Presidency.-1. Maximum Temperature of the Air-continued.

Bengal Presidency.-1. Maximum Temperature of the Air-continued.

(continued.)

Bengal Presidenct.-2. Minimum Temperature of the Air.
Table CXXX., showing the Average Minmey Temperature of the Air for every Month and Quarter, as well as for the Periods October to March and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean Minimum Temperature for the Year between the Latitudes $20^{\circ} 15^{\prime}$ N. and $34^{\circ} 20^{\prime}$ N., and between the Longitudes $71^{\circ} 29^{\prime}$ E. and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Bengal.

Pace . . . Latitude . . Longitude . . Height . .	$\begin{aligned} & \text {. } . \text { Thiet Mio }_{\text {M }} \\ & \text {. } 20^{\circ} 15^{\prime} \text { N. . } \\ & \text {. } \\ & \text {. } 92^{\circ} 46^{\prime} \text { E. . } \\ & \text {. } 240 \text { feet . } \end{aligned}$			$\begin{array}{lcl}\text { - } & \text { - SE } \\ \text { - } & \text { - } \\ \text { - } & \text { - } \\ \text { - } & \text { - }\end{array}$	etabclde $1^{\circ} 10^{\prime} \mathrm{N}$. $9^{\circ} 9^{\prime} \mathrm{E}$. 939 feet		- . For - - - . -	Willy $22^{\circ} 34^{\prime} \mathrm{N}$. $88^{\circ} 25^{\prime} \mathrm{E}$. .	$\begin{array}{rr}\text { M } & \cdot \\ \cdot & \cdot \\ \cdot & \cdot\end{array}$	- $\cdot \mathrm{B}$	ergampore $24^{\circ} 5^{\prime} \mathrm{N}$. $88^{\circ} 17^{\prime} \mathrm{E}$. 76 feet.	
Month.	$\frac{1 \text { Year. }}{1859 .}$	Winter, Spring, Summer, Autumn.	October to March.$\|$April to Sep- tember.	3 Years. 1858 to 1860.	Winter, Spring, Summer, Autumn.	October to March. April to September.	5 Years. Winter, 1855 to Spring, 1859. Autumb 		OctobertoMarch. $\|$April to Sep- tember.	$\frac{3 \text { Years }}{\substack{1857 \text { to } \\ 1859 .}}$	Winter, Spring, Summer, Autumn.	October to March. April to Sep- tember.
January - -	53 62	$\begin{array}{\|c\|c} 0 & 0 \\ 59 & 64 \end{array}$		61 75	$\}$$\circ$ 0 67 71		$\begin{aligned} & \circ \\ & 60 \\ & 65 \\ & 73 \\ & 77 \\ & 79 \\ & 81 \\ & 80 \\ & 79 \\ & 80 \\ & 77 \\ & 67 \\ & 59 \end{aligned}$	$\left\{\begin{array}{c} \left\{\begin{array}{c} \circ \\ 61 \\ 76 \\ 76 \\ 80 \end{array}\right. \\ 75 \end{array}\right.$	¢ 68	$\left.\begin{array}{l}\text { 51 } \\ 54\end{array}\right\}$2 53 58		
Mareh . -	62 67			78		\square			-	$\left.\begin{array}{l}64 \\ 69\end{array}\right\} 67$		-
A pril	7778		\square	8792								-
May -		$\} 7$	77		\} 86					71		
June -	75	$\left\{\begin{array}{c} \} \\ \}^{77} \\ 73 \end{array}\right.$		86	$\left\{\begin{array}{l} 82 \\ 75 \end{array}\right.$	84			79	77		7
July -	77			8180						76	7	
August -	78								-	7878706055	1\} ${ }^{\text {a }}$ (9	
September -	78			80		\square						
October -	76											
November - -	66			69								
December -	62			65								
Difference between	25	18	13	31	19	13	22	19	11	27	24	16
Hottest and Oolest Months.												
Mean for Year -	71			78			73			67		
Higheat in Lowest in	May, August, and September. Janaary.			May. January.			June. December.			September. January.		

(continued.)

Place Latitude. Longitude Height	$\\| \cdot \begin{array}{cc}\cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot\end{array}$	$. C h u n a r ~ . ~$ $.255^{\circ} 5^{\prime}$ N. . $.83^{\circ} 0^{\prime}$ E. . .250 feet .	- • -	$\begin{array}{lll}\text { • } & \text { - } \\ \text { • } & \\ \text { - }\end{array}$	Benares $25^{\circ} 17^{\prime} \mathrm{N}$. $83^{\circ} 4^{\prime} \mathrm{E}$. 270 feet	. . -	. . . ${ }^{\text {. }}$	Grazeerpo $.25^{\circ} 49^{\prime} \mathrm{N}$. $.80^{\circ} 48^{\prime} \mathrm{E}$.	Re . .		urrapoon $25^{\circ} 14^{\prime} \mathrm{N}$. $91^{\circ} 45^{\prime} \mathrm{E}$. 4,118 feet	
Moxit.	$\frac{10 \text { Year }}{1850 \text { to }}$	Winter,Spring,Summer,Autumn.	October to March. April to Sep- tember.	$\frac{2 \text { Years. }}{1858 \text { and }} \begin{gathered} 1859 . \end{gathered}$	Winter, Spring, Summer, Autumn.	$\|$October to March.	4 Years.	Winter, Spring, Summer Autumn	$\begin{array}{c}\text { October } \\ \text { to } \\ \text { March. }\end{array}$ $\begin{array}{c}\text { April } \\ \text { to Sep- } \\ \text { tember. }\end{array}$	2 Years.	Winter, Spring. Summer, Autumn.	Qctober to March.
							$\begin{aligned} & 1856 \text { to } \\ & 1859 . \end{aligned}$			$\begin{gathered} 1859 \text { and } \\ 1860 . \end{gathered}$		Aprit to September.
January February - -	54 54 54	$\} \stackrel{\circ}{55}$	${ }^{\circ} \mathrm{O}$	60 65	, ${ }^{\circ} 1$	\circ 66	57 60	$\}{ }^{\circ} 8$	${ }^{\circ}$	59 50	$\}{ }^{\circ} 50$	c 53
March -	63			71			67			56		-
April	74	\% 72		80	\} 80		77	\} 75		64	62	
May -	80			88			82			66		
June. -	81)	74	85		83	82		81	66		66
July ${ }^{\text {J }}$: -	79	1\} 79		85	83		83	\} 82		68	67	
Augnst -	78			80			81			67		
Septemher - -	77			81			81			67		-
October - -	72	\} 70		78			74	$\} 72$		65	$\} 60$	
November - -	62	\}		67			62)		43		
December -	53			59			56					
Difference between	$\} 28$	24	14	29	22	17	27	24	18	21	17	13
Hottest and Coldest Monthe.$\left\|\begin{array}{c}\text { Hottest } \\ \text { nnd Cealdest }\end{array}\right\|$												
Mean for Year -	69			75			72			60		
Highest in Lowest in	June December.			May. December.			July. December.			July. December.		

Bengal Presidency.-2. Minimum Temperature of the Air-continued.

Bengal Presidencr.-2. Minimum Temperature of the Air-continued.

Bengal Presidenct.-3. Daily Range of Temperature.
Table CXXXI., showing the Averiage Daily Range for every Month and Quarter, as well as for the Periods October to March, and April to September, with the Difference between the Greatest and Least Months and Seasons, and Moan for the Year, between the Latitudes $20^{\circ} 15^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime} \mathrm{E}$. and $92^{\circ} 46^{\prime} \mathrm{E}$., arrunged in the order of Latitude, at Stations for the most part in the Presidency of Bengal.

(continued.)

$\begin{array}{lll}\text { Place } \\ \text { Latitude } & . & . \\ \text { Longitude } & . & . \\ \text { Height . } & . & \end{array}$										- Chirrapoongee. - . $25^{\circ} 14^{\prime} \mathrm{N}$. - . $91^{\circ} 45^{\prime} \mathrm{E}$. - . 4,118 feet.		
Montr.	$\frac{10 \text { Years. }}{1850 \text { to }} 1859 .$	Winter. Spring, Summer Autumn.	OctobertoMarch. $\|$April to Sep- tember.	$\frac{2 \text { Years. }}{\substack{1858 \text { and } \\ 1859 .}}$	Winter, Spring, Summer Autumn.	$\|$October to March.	$\frac{4 \text { Years. }}{1856 \text { to }}$	Winter, Spring, Autumn.	October to March. April to September.	2 Years. 1859 and 1860.	Winter Spring, Autumn.	October to March. $A_{\text {F }}$ ril to Sep- tember.
January February March April May June July August September October November December		\} $\stackrel{\circ}{24}$	$\stackrel{\circ}{24}$	$\begin{array}{r} 13 \\ 13 \\ 9 \\ 7 \\ 8 \\ 10 \\ 5 \\ 2 \\ 3 \\ 5 \\ 5 \\ 9 \\ 7 \\ 9 \end{array}$	$\left\{\begin{array}{l} \left\{\begin{array}{c} 0 \\ 10 \\ \{ \end{array}\right. \\ 8 \\ 6 \\ 3 \end{array}\right.$	$\stackrel{\circ}{8}$	202224282223212114191217232318.		$\stackrel{\circ}{22}$	$\begin{array}{r} 0 \\ 9 \\ 15 \\ 11 \\ 8 \\ 8 \\ 5 \\ 5 \\ 5 \\ 4 \\ 5 \\ 8 \\ 16 \\ 11 \end{array}$	$\left\{\begin{array}{c} 12 \\ \left\{\begin{array}{c} 0 \\ \\ 9 \\ 5 \end{array}\right. \\ 10 \end{array}\right.$	$\stackrel{\circ}{12}$
	30											
	22											
	22		19			5			18			6
	17	\} 18										
	16											
	19	$\} 19$										
	23											
	24											
Differnnce betwoeu												
Greatest Greatest and Lfanst Monthly and Least Ranges. Slaranal Ranges.	14	7	5	11	7	3	16	7	4	12	7	6
Mean for Year -	22			7			20			9		
Greatest in Least in	March. Aug. and Sept.			January. July.			March. September.			November. August.		

Bengal Presidencr.-3. Daily Range of Temperature-continued.

Place . . Latitude Longitude	$\begin{aligned} & . \quad \text { Lucknow } \\ & . \\ & . \quad . \quad 26^{\circ} 0^{\prime} \mathrm{N} . \\ & . \quad .82^{\circ} 0^{\prime} \mathrm{E} . \\ & . \quad .360 \text { feet . } \end{aligned}$			Gwalior$26^{\circ} 15^{\prime} \mathrm{N}$$.78^{\circ} 0^{\prime} \mathrm{E}$			Kherwarrah $26^{\circ} 42^{\prime} \mathrm{N}$ $79^{\circ} 12^{\prime}$ E. 1,200 feet				arjeelin $27^{\circ} 2^{\prime} \mathrm{N}$ $88^{\circ} 18^{\prime}$ E. 7,000 feet.										
Month.	3 Years.		OctobertoMarch. $\|$April to Sep- tember.	1 Year.	Winter, Spring, Summer, Autumn.	OctobertoMarch.	$\frac{5 \text { Years. }}{1854 \text { to }} \begin{gathered} 1858 . \end{gathered}$	Winter, Spring, Summer, Autumn.	$\left\|\begin{array}{c}\text { October } \\ \text { to } \\ \text { March. }\end{array}\right\|$Aprik to Sep- tember.	$\frac{3 \text { Years. }}{1857 \text { to }} 1859 .$	Winter, Spring, Summer, Autumn.	October to March. April to Sep- tember.									
	$\begin{aligned} & 1858 \text { to } \\ & 1860 . \end{aligned}$																				
January - - February	25	$\left\{\begin{array}{l} 0 \\ \left\{\begin{array}{c} 0 \\ 18 \\ 20 \\ 13 \\ 12 \end{array}\right. \end{array}\right.$		 0 21 42 32 31 32 30 34 9 15 17 28 23	$\left\{\begin{array}{l} 29 \\ 29 \\ 32 \\ 24 \\ 20 \end{array}\right.$	27	21 24 24 23 19 12 9 9 12 19 27 22	$\left\{\begin{array}{l} 22 \\ 22 \\ \left\{\begin{array}{l} 22 \\ 10 \\ 19 \end{array}, ~\right. \end{array}\right.$	\circ . 23	11		12									
March - -	19 20									11	$\} 12$	-									
April -	2019		14							10	10										
May										10											
June -	19 16					25			14	7		8									
July -	16167									6	\} 7										
August -										9											
September - October -	$\begin{array}{r} 6 \\ 6 \\ 13 \\ 16 \\ 11 \end{array}$									11	$\} 21$	-									
November -										12											
December - -										13											
Difference between	19	8		33.	12	2	18	12	9	7	5	44									
Greatest Greatest and Least Monthly Rnd Least Ranges. Reasonal Ranges.																					
Mean for Year -	16			26			18			10											
Greatest in Least in	January. September.			February. August.			November. July and August.			November and December. July.											
(continued.)																					
	Agra $27^{\circ} 11^{\prime} \mathrm{N}$. $77^{\circ} 53^{\prime}$ E. . 800 feet																				
Montr.		Winter, Spring. Summer, Autumn.		1 Year.	Winter, Spring, Summer, A atumn.	October to March.	9 Years	Winter, Spring, Summer, Antumn.	October to March.		Winter, Spring, Summer, Autumn.										
				1859.		April to September	$\begin{aligned} & 1846 \text { to } \\ & 1854 . \end{aligned}$		April toseptember.	1860.											
	$\begin{array}{r}\circ \\ 30 \\ 31 \\ 37 \\ 39 \\ 32 \\ 29 \\ 20 \\ \hline\end{array}$	$\} 36$		22 19 18 21 26 14 14 12 9 27. 81 16	$\left\{\begin{array}{l} \left\{\begin{array}{l} 19 \\ 22 \\ \{ \end{array}\right\} \begin{array}{l} 13 \\ 22 \cdot \end{array}, ~ \end{array}\right.$	a	36 34 34 33 31 24 18 18 22^{\prime} 30 33 32	$\left\{\begin{array}{l} \left\{\begin{array}{l} 84 \\ 33 \end{array}\right. \\ \{20 \\ 28 \end{array}\right.$	-	$\begin{gathered} \circ \\ \cdot \\ \cdot \\ 28 \\ 17 \\ 19 \\ 20 \\ 16 \\ 17 \\ 33 \end{gathered}$	\} 18										
						22			33												
						16			24												
Difference between	$\} \ldots$	$* *$		22																	
Greatest Greatest and Least Monthly Rnd Least Ranges. Seasonal Ranges.					9	6	18	14	9	\cdots									
Mean for Year -				-19 :			29			...											
Greatest in Least in	\cdots			November. September.			January. July and August.			*....											

Bengal Preswency.-3. Daily Range of Temperafure-continued.'

Mengal Presidency.-4. Temperature of the Air.
Table CXXXII., showing the Average Temferature of the Air, for every Month and Quarter, as well as for the Periods October to March, and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean Temperature for the Year, between the Latitudes $20^{\circ} 18^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime} \mathrm{E}$. and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Bengal.

Bengal Presidency.-4. Temperature of the Air-continued.

(continued.)

Bengat Presidenct.-4. Temperature of the Air-continued.

Place Latitude. Longitude Height	. .. K	hirwarm $26^{\circ} 42^{\prime} \mathrm{N}$ $79^{\circ} 12^{\prime} \mathrm{E}$ 1,200 feet	H. $\cdot \cdot$	- \cdot . $\cdot \underline{ }$	ctityenter $27^{\circ} 2^{\prime} \mathrm{N}$ $79^{\circ} 30^{\prime} \mathrm{E}$. 600 feet	$\begin{array}{ccc}\bullet & \cdots \\ \ldots & \vdots & \\ \cdots & \end{array}$	ardickln $27^{\circ} 2^{\prime} \mathrm{N}$ $888^{\circ} 18^{\prime} \mathrm{E}$ 7,000 feet	• . \cdot .		. Agra. $27^{\circ} 11^{\prime} \mathrm{N}$ $77^{\circ} 53^{\prime} \mathrm{E}$ 800 feet:									
Month.	$\frac{5 \text { Years. }}{1854 \text { to }} 1$	Winter, Spring, Summer, Autumn.	October to March. April to September.	$\frac{2 \text { Years. }}{1832 \text { and }} \begin{gathered} 1833 . \end{gathered}$	Winter, Spring, Summer, Autumn.	October to March. April to September.	3 Years.1857 to1859.	Winter, Spring, Summer, Autamn.	October to March.	1 Year.	Winter, Spring, Summer, Autumn.	October to March.								
									April to September.	1860.		April to September.								
	${ }^{\circ}$		-	${ }^{\circ}$	${ }^{\circ}$	-	15		\bigcirc	$\stackrel{\circ}{\circ}$		-								
January - -	64	$\} 66$	70	57	$\} 59$	66	45 43	\} 44	48		-									
February - March -	71 79			63 74	$\{$		52			81										
April -	89	\} 87		35	\} 83		56	\} 55		91	\} 89									
May -	94			90	,		58			95										
June -	88		86	95	$\}$	88	61		59	97										
July - -	82	\} 83		87	. 89		61	61		90										
August -	80	\bigcirc.		85			61			.										
September - -	81	7 ,		84	1 \%	-		\}	-	.										
October - -	77	$\} \rightarrow 2$		75	$\} .76$		56	\} 56		.										
November -	68			69			51													
December -	64			58			45													
Difference between	330	21	16	38	30	22	18		11	.	\cdots	-•								
Hottest Hottest snd Coldest Months. and Stoldest $\|$																				
Mean for Year -	78			77			54			a										
Hottest in	May. January and December.			June.January.			June, July, August, and September. February.			-'										
Coldest in -																				

(continued.)

Bengal Presidency.-4. Temperature of the Air-continued.

Place Latitude . . • Longitude Height	$\begin{array}{lll}\text { • } & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ \end{array}$	Roorkee. $29^{\circ} 53^{\prime} \mathrm{N}$. $77^{\circ} 57^{\prime} \mathrm{E}$.	$\begin{array}{llll}\text { • } & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot\end{array}$	$\begin{array}{lll}\cdot & \cdot & \cdot \\ \cdot & \ddots & \cdot \\ \cdot & \cdot & \\ \cdot & \cdot & \cdot\end{array}$		• - - -	$\begin{array}{lll}\text { - } & \cdot & \\ \cdot & \cdot & \\ \cdot & \cdot & \\ \text { - } & \text { - }\end{array}$	Umballa. $.30^{\circ} 23^{\prime} \mathrm{N}$. $.76^{\circ} 44^{\prime} \mathrm{E}$. . 1,050 feet.							
Monte.	1 Year.	Winter, Spring, Summer, Autumn.	October to March.	2 Years.	Winter, Spring, Summer, Autumn.	October $\underset{\text { March. }}{\text { to }}$	2 Years.	Winter, Spring, Summer, Aatumn.	October to March.						
	1860.		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$	$\begin{gathered} 1837 \text { and } \\ 1838 . \end{gathered}$		April September	$\begin{gathered} 1851 \text { and } \\ 1852 . \end{gathered}$		April to September.						
January - - February - - March - - April - - - May - - - June - - - July - - August - - September - - October - - November December - -	二	88	-	58 61 63 78 81 86 84 75 77 71 63 60 60		62	$\begin{aligned} & \circ \\ & 60 \\ & 70 \\ & 70 \\ & 77^{*} \\ & 83 \\ & 89 \\ & 97 \\ & 91 \\ & 91 \\ & 92 \\ & 84 \\ & 67 \\ & 62 \end{aligned}$	$\begin{cases}64 \\ \left\{\begin{array}{l} 80 \end{array}\right. \\ \{33\end{cases}$	68						
	84														
	89					80									
	90								90						
	86														
	86 76								-						
	-														
	-														
Diffrence between	$\} \cdot \cdot$.	..	28	22	18	37	28	22						
Mean for Year -	...			71			79								
Hottest in				June. January.			June. January.								
Coldest in															

(continued.)

Place . . . - Latitude . . Longitude . Hcight . .				$\begin{array}{lll}\text { • } & \cdot \\ \text { - } & \text { - } \\ \text { - } & \text { - } \\ \text { - } & \text { - }\end{array}$	Frrozepore $30^{\circ} 55^{\prime} \mathrm{N}$. $74^{\circ} 35^{\prime} \mathrm{E}$. 720 feet		$\begin{array}{lll}\text { • } & \text { - } \\ \text { - } & \text { - } \\ \text { - } & \text { - } \\ \text { - } & \text { - } \\ \text { P }\end{array}$	he Punjab $31^{\circ} 40^{\prime} \mathrm{N}$. $74^{\circ} 45^{\prime} \mathrm{E}$. to 900 feet	
Montr.	$\frac{5 \text { Years. }}{1855 \text { to }} \begin{gathered} \text { 1859. } \end{gathered}$	Winter, Spring, Summer, Autumn.	October to March.	5 Years.	Winter, Spring, Summer,Autumn.	October to March	$\frac{3 \text { Years. }}{1857 \text { to }} 1859$	Winter, Spring, Summer,Autuinn.	October to March.
			April September.	$\begin{array}{r} 1855 \text { to } \\ 1859 . \end{array}$		April to September.			$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$
	556071798686878682756960		65	59 68 76 81 94 95 95 90 86 86 79 68 $\mathbf{6 8}$.	$\begin{cases}0 & 0 \\ 62 \\ 8 & 80 \\ 9 & 78\end{cases}$	68	$\begin{aligned} & \circ \\ & 54 \\ & 60 \\ & 68 \\ & 68 \\ & 77 \\ & 86 \\ & 89 \\ & 87 \\ & 86 . \\ & 83 \\ & 76 \\ & 61 \\ & 55 \end{aligned}$	$\left\{\begin{array}{l} 56 \\ 77 \\ 78 \\ 87 \\ 73 \end{array}\right.$	- ${ }_{62}$
			84			88			84
			\cdot						
$\overbrace{$ Hntterst and Coldest Months. }$^{\left.\text {and } \begin{array}{c}\begin{array}{c}\text { Hnd Coldest } \\ \text { Seasons. }\end{array} \\ \hline\end{array}\right]}$	32	- 28	19	37°	28	20	35	31	22
Mean for Year -	75			78				78	
Hottest in Coldest in	July. January.				June. Decèmber.		June. . January.		

* Reading inMarch altered conjecturally from 67° to 77°.

Bengal Presidency.-Temperature of the Air-continued.

	$\begin{array}{lll}\cdot & \cdot & \cdot \\ \cdot & \text { • } & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \end{array}$	Jhblum $32^{\circ} 56^{\prime} \mathrm{N}$. $73^{\circ} 47^{\prime} \mathrm{E}$ 1,000 feet	• • \cdot \cdot \cdot - \cdot \cdot	- \cdot \cdot \cdot - - - \cdot - -	Peshawure $34^{\circ} 20^{\prime} \mathrm{N}$. $71^{\circ} 29 \mathrm{E}$. 1,056 feet.		$\begin{array}{lll}\cdot & \cdot & \cdot \\ \cdot & \text { - } \\ \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \end{array}$	Benares. $25^{\circ} 17^{\prime} \mathrm{N}$. $83^{\circ} 4^{\prime}$ E. 270 feet.	-						
Montr.	1 Year.	Winter, Spring, Summer, Autumn	October to March.	6 Years.	Winter, Spring, Summer, Autumn	Octaber March.	3 Years.	Winter, Spring, Summer, Autumn.	October March.						
	- 1859.		$\begin{aligned} & \text { April } \\ & \text { to } \end{aligned}$ September	$\begin{gathered} 1855 \text { to } \\ 1860 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$	$\begin{gathered} 1824 \text { to } \\ 1826 . \end{gathered}$		$\begin{gathered} \text { April } \\ \text { to } \end{gathered}$ September.						
January February March April May - June - July - August September October November December	$\begin{aligned} & \circ \\ & \bar{\square} \\ & \hline- \\ & \hline 86 \\ & 91 \\ & 89 \\ & 88 \\ & 84 \\ & 81 \\ & - \end{aligned}$	$\mid\}^{89}$		0525555657588$\mathbf{9 1}$$\mathbf{9 1}88847364\mathbf{5 6}$		61	$\begin{aligned} & \circ \\ & 63 \\ & 69 \\ & 79 \\ & 90 \\ & 95 \\ & 90 \\ & 86 \\ & 86 \\ & 85 \\ & 82 \\ & 72 \\ & 63 \end{aligned}$	$\left\{\begin{array}{l} \\ 6 \\ 65 \\ 88\end{array}\right.$	71						
									89						
						86									
								80							
Difference between	39	36	25	32	23	18						
Hottestand ColdestMonthe. $\|$Hottest and Coldest Seasons.															
Mean for Year -	...			74			80								
Hottest -	*.			June and July. January.			May. January and December.								
Coldest -															

(continued.)

Bengai Presidency.-_5. Readings of Dry and Wet Bulb Thermometers.

Ciarle CXXXIII., showing the Average Readings of the Diry and Wet Bulb Thermometers for every Month and Quantris as well as for the periods October to March and April to September, with the Difference between the Ilighest and Lowest Months and Seasons, and Mcun for the Year between the Latitudes $20^{\circ} 18^{\prime} \mathrm{N}$, and $34^{\circ} 20^{\prime} \mathrm{N}$. , and between Longitudes $71^{\circ} 29^{\prime}$ E. and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude and for the most part in the Presidtncy of Bengal:

Bengal Presidency.-5. Readings of Dry and Wet Thermometers-continued.

(continued.)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Place \\
Latitude. \\
Longitude \\
Height
\end{tabular} \& - \& . \& Lasd
\(300^{\circ}\)

788°
7,000 \& N. \& \cdots \& - \& . \& . \& Pesi 34° 71° 1,05 \& cr.
N.
E.
ceet. \& \&

\hline \multirow[t]{2}{*}{Montr.} \& - \& - \& \multicolumn{2}{|r|}{Winter, Spring, Summer, Autumb.} \& \multicolumn{2}{|l|}{| October to
 March. |
| :---: |
April to September.	} \& \multicolumn{2}{	l	}{	3 Years.		
1858 to 1860.	} \& \multicolumn{2}{	r	}{Winter, Spring, Summer, Autumn.} \& \multicolumn{2}{	l	}{	October to March.
:---						
April to September.	} 					

\hline \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& Wet. \& Dry. \& \& \& Wet.

\hline January Ferraary - \& 44
43
57 \& \circ
36
38
46
46 \& $\}^{\circ}{ }^{\circ}$ \& $\stackrel{\circ}{37}$ \& $\stackrel{\circ}{49}$ \& 41 \& \circ
49
53
63 \& \circ
44
48

59 \& $\} .50$ \& 45 \& 58 \& $$
51
$$

\hline ${ }_{\text {April }}$ - \& 65 \& 52 \& \multirow[t]{2}{*}{$\} 64$} \& 53 \& \multirow{5}{*}{69} \& \multirow{5}{*}{61} \& ${ }_{7} 6$ \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 29 \\
& 70 \\
& 71
\end{aligned}
$$} \& \multirow[t]{2}{*}{$\} 74$} \& \multirow[t]{2}{*}{67} \& \multirow{5}{*}{85} \& \multirow{5}{*}{84}

\hline May - .- \& 71 \& 61 \& \& \& \& \& 84 \& \& \& \& \&

\hline June - - \& 73 \& 64 \& \multirow[b]{2}{*}{\% 70} \& \multirow[b]{2}{*}{65.} \& \& \& \multirow[t]{2}{*}{91
92} \& \multirow[t]{2}{*}{79
81} \& \multirow[b]{2}{*}{${ }^{91}$} \& \multirow[b]{2}{*}{80} \& \&

\hline July - - \& 70 \& 66 \& \& \& \& \& \& \& \& \& \&

\hline August
September \& 68
66 \& 66

62 \& \multirow{3}{*}{57} \& \multirow{3}{*}{52} \& \& \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 89 \\
& 86 \\
& 72 \\
& 60 \\
& 49
\end{aligned}
$$} \& \multirow[t]{3}{*}{80

73
63
52
44} \& \multirow{3}{*}{$\}^{73}$} \& \& \&

\hline October - \& 57 \& ${ }_{42}^{51}$ \& \& \& \multirow[t]{2}{*}{} \& \& \& \& \& \multirow[t]{2}{*}{63} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{}

\hline December - \& 44 \& 37 \& \& \& \& \& \& \& \& \& \&

\hline $\begin{gathered}\text { Difference between Highest } \\ \text { and LLowest }\end{gathered}$ \& \multirow{3}{*}{30} \& \multirow{3}{*}{30} \& \multirow{3}{*}{26} \& \multirow{3}{*}{28} \& \multirow{3}{*}{20} \& \multirow{3}{*}{20} \& \multirow{3}{*}{43} \& \multirow{3}{*}{37} \& \multirow{3}{*}{41} \& \multirow{3}{*}{35} \& \multirow{3}{*}{${ }^{1} 27$} \& \multirow{3}{*}{23}

\hline Monthly Read-
ings of the
ings of the
ind \& \& \& \& \& \& \& \& \& \& \& \&

\hline Dry. ${ }^{\text {Wet. }}$ Dry. $/$ Wet. \& \& \& \& \& \& \& \& \& \& \& \&

\hline Mean for the Year - \& 59 \& 52 \& 59 \& 52 \& 59 \& 52 \& 72 \& 64 \& 72 \& 64 \& 72 \& 64

\hline Highest in - \& \multicolumn{3}{|c|}{\multirow[t]{2}{*}{Jane. February.}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{July and August. January.}} \& \multicolumn{3}{|l|}{\multirow[t]{2}{*}{| July. |
| :--- |
| January and December. |}} \& \& July. \&

\hline Lowest in \& \& \& \& \& \& \& \& \& \& \multicolumn{3}{|l|}{January and December.}

\hline
\end{tabular}

Bengal Presidency.-6. Temperature of the Dew Point.
Table CXXXIV., showing the Average Thmperature of the Dew Point, for every Month and Quarter, as well as for the Periods October to March, and April to September, with the Difference between the Highest and Lowest Months and Seasons, and the Mean for the Year between the Latitudes $20^{\circ} 18^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\circ} \mathrm{N}$., and between the Lougitudes $71^{\circ} 29^{\prime}$ E., and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude at Stations for the most part in the Presidency of Bengal.

Place Latitude . . . Longitude . . . Height - - - -	Calctita $22^{\circ} 34^{\prime} \mathrm{N}$. $88^{\circ} 25^{\prime} \mathrm{E}$.	\cdot \cdot \cdot .	. . Fo	bt Willia $22^{\circ} 34^{\prime} \mathrm{N} .$. $88^{\circ} 25^{\prime}$ E.	$\begin{array}{cc}\text { M } & \cdot \\ \cdot & \cdot \\ - & \cdot\end{array}$		zareerat $24^{\circ} 0^{\prime} \mathrm{N}$. $85^{\circ} 24^{\prime}$ E. 1,900 feet.										
Mostr.	1 Year.		October to March.	2 Years.	Winter, Spring, Summer, Autumn.	OctobertoMarch. $\|$	5 Years.	Winter, Spring, Summer, Autum	October,toMarch. $\|$	3 Years.	$\begin{aligned} & \text { Winter, } \\ & \text { Spring, } \\ & \text { Summer, } \\ & \text { Autumn. } \end{aligned}$	October to March. April to Sep- tember.									
	1859.		April to September.	$\left\|\begin{array}{c} 1843 \text { and } \\ 1844 . \end{array}\right\|$			$\begin{array}{r\|} 1855 \text { to } \\ 1859 . \end{array}$			$\begin{array}{\|c\|c} 1858 \text { to } \\ 1860 . \end{array}$											
-	86 48 47	¢5151		65 67 76 80 82 83 81 82 83 8 88 78 74 • 66	$\left\{\begin{array}{l} \prime \\ \left\{\begin{array}{c} \circ \\ 66 \\ 79 \\ 8 \end{array}\right. \\ 82 \\ 78 \end{array}\right.$	$\stackrel{\circ}{71}$) $\stackrel{\circ}{58}$	${ }_{60}$		$\}^{\circ} 52$	$\stackrel{0}{55}$									
February - March	47 45			61 68			$\} 672$	$\begin{aligned} & 48 \\ & 53 \end{aligned}$		$\} \begin{aligned} & 62 \\ & 62\end{aligned}$	69										
April -	48	\} 54	68			82		72	76			60									
May	69						76	$\left\{\begin{array}{l} \}^{72} \\ 78 \\ 72 \end{array}\right.$		7366		$\left\}^{62}\right.$									
June -	${ }^{67}$						78														
July ${ }_{\text {August }}$ -	75 74	$\}^{72}$					78 78			69 73		$\{69$									
September -	75	$\} 71$					78			72											
October -	74						74			61	61										
November	65						64			49											
December	61						57			56											
Difference between Highest and Lowest	\} 30	21	12		28	16	11	21	20	16	25	17.	14								
$\overbrace{\text { Monthly }}$																					
Readiugs. ${ }^{\text {Readings. }}$																					
Mean for Year -	62			76			70			61											
Highest in Lowest in	July and September. March.			June and September. January.			June, July, Aug., and Sept. January and December.			May and August. January.											
(continued.)																					
Place. .LatitudeLungitudeHeight .				$\begin{aligned} & \text {. . Kherwarrah } \\ & \text {. . } .26^{\circ} 42^{\prime} \text { N.. } \\ & \text {. . . } 79^{\circ} 12^{\prime} \text { E. . } \\ & \text {. . . } 1,200 \text { feet . } \end{aligned}$																	
Montr.	2 Years.	Winter,Spring,Summer,Autumn	OctobertoMarch. $\|$	5 Year	Winter.Spring,AutumnWiuter.	October to March. April to Sep- tember	3 Year	Winter, Spring, Autumn	October to March.	1 Yeam	Winter, Spring, Autumn.	$\begin{array}{\|c} \begin{array}{c} \text { October } \\ \text { to } \\ \text { March. } \end{array} \\ \hline \begin{array}{c} \text { April } \\ \text { to Sep. } \\ \text { tember. } \end{array} \end{array}$									
	$\begin{gathered} 1858 \text { and } \\ 1859 . \end{gathered}$			$\begin{gathered} 1854 \text { to } \\ 1858 . \end{gathered}$			$\begin{gathered} 1857 \text { to } \\ 1859 . \end{gathered}$		April to September.	1860.											
January	${ }^{4} 8$		\bigcirc	${ }_{5}^{\circ}$		\bigcirc	38		$\stackrel{0}{4}$	4	*										
February	53			55			41	$\}^{40}$													
April - -	60	\} 63		60		68	48	49	55	*											
May - -	72			62)		48 54 59														
June - -	78 84 8	\} 81	76	67	, 71		60	$\} 60$		69											
${ }_{\text {Jugust }}$ -	84 80	$\}^{81}$		69 77	\} ${ }^{71}$																
September -	80			$\begin{aligned} & 71 \\ & 65 \\ & 57 \\ & 51 \end{aligned}$	\} 64		$\begin{aligned} & 58 \\ & 49 \\ & 43 \\ & 40 \end{aligned}$	$\} 50$													
October -	76																				
November -	61									\because											
December	54																				
Diference between Highest and Lowest	O											-									
Monthly Keading. Seasonal Readings.		29	18	26	18	11	22	20	12	-•	-										
Mean for Year -	67			62			49			..											
Ilighest in Lowest in	July. January.			August. December.			July and August. January.			-											

Bengal Présmency.-6. Temperature of the Dew Point-continued.

Place - Latitude Longitude. . . . Height		Merbet $28^{\circ} 59^{\prime} \mathrm{N}$. $77^{\circ} 56^{\prime}$ E. 900 feet.			andour $30^{\circ} 20^{\prime} \mathrm{N}$. $78^{\circ} 10^{\prime} \mathrm{E}$. 7,000 feet.			Pesginte $34^{\circ} 20^{\prime} \mathrm{N}$ $71^{\circ} 29^{\prime} \mathrm{E}$ 1,056 feet	
Monte.	1 Year.	Winter, Spring, Summer, Autumn.	October to March.	4 Years.	Winter, Spring, Summer, Autumn.	October to March.	3 Years.	Winter, Spring, Summer, Autamn.	
	1859.		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$			April to September.	$\begin{gathered} 1858 \text { to } \\ 1860 . \end{gathered}$		April to September.
January - - - February	50545659567176807175716148	$\left\{\begin{array}{c}0 \\ 53 \\ 62 \\ 76\end{array}\right.$	\circ 58	27 22 36 36 41 53 57 63 64 59 46 34 29		0 34	$\begin{aligned} & 8 \stackrel{\circ}{39} \\ & 43 \\ & 56 \\ & 66 \\ & 62 \\ & 72 \\ & 74 \\ & 74 \\ & 65 \\ & 56 \\ & 45 \\ & 39 \end{aligned}$	$\left\{\begin{array}{c}0 \\ 40 \\ \left\{\begin{array}{l}0 \\ 61 \\ 73\end{array}\right. \\ 55\end{array}\right.$	$\begin{aligned} & \circ \\ & 46 \end{aligned}$
March - -									69
April - -									
May -			71			54			
June -									
Aagust -									
September -									
October -									
November -									
December - -									
Difference bntween Highest and Lawest	32	23	13	. 37	32	20	35	33	23
Monthly Seasonal Readings.									
Mean for Year -	65			$4 \pm$			57		
Highest in Lowest in	July. December.			August. January.			July and Augast. January and December.		

Bengal Presidency.-7. Amount of Vapour in a Cubic Foot of Air.
Table CXXXV., showing the Average Amount of Vapour in a Cubic Foot of Air, for every Monte and Quarter, as well as for the Periods from October to March, and April to September, with the Difference between the Greatest and Least Months and Seasons, and Mean for the Year, between the Latitudes $20^{\circ} 18^{\prime} \mathrm{N}$. and $34^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime}$ E. and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude, at Stations for the most part in the Presidency of Bengal.

Place Latitude . . . Longitude . . . Height				Calcutta . . $22^{\circ} 34^{\prime} \mathrm{N}$. $88^{\circ} 25^{\prime} \mathrm{E}$.			- Fort William .$\begin{aligned} & 22^{\circ} 34^{\prime} \mathrm{N} \\ & 88^{\circ} 25^{\prime} \mathrm{E} \end{aligned}$			Hazarerbaygh.$\begin{aligned} & \cdot \quad .24^{\circ} 0^{\prime} \mathrm{N} \\ & \because \quad 85^{\circ} 24^{\prime} \mathrm{E} \\ & \because \quad . \quad 1,900 \text { feet. } \end{aligned}$		
1	PYear.	Winter, Spring,	October to March.	2 Years.	Winter, Spring,	October to March.	6 Years.	Winter, Spring,	October to March.	3 Years.	Winter, Spring,	October to March.
Monte.		Summer, Autumn.	April to September.	$\begin{array}{\|c\|} 1843 \text { and } \\ 1844 . \end{array}$	Summer, Autumn.	April to September.	$\begin{gathered} 1854 \text { to } \\ 1859 . \end{gathered}$	Summer, Autumn.	April to September.	$\begin{gathered} 1858 \text { to } \\ 1860 . \end{gathered}$	Summer, Autamn	April to September.
January -	$\begin{gathered} \text { grs. } \\ \mathbf{3 . 4} \\ \mathbf{3 . 5} \end{gathered}$	$\} \begin{gathered}\mathrm{grs} \\ 4 \cdot 2\end{gathered}$	$\begin{gathered} \mathrm{grs.} \\ 5 \cdot 3 \end{gathered}$	$\begin{gathered} \text { grs. } \\ 6.6 \\ 7.0 \end{gathered}$	$\} \begin{aligned} & \mathrm{grs} \\ & 6.9\end{aligned}$	grs. 8.2	grs. 5.2 5.8	($\begin{gathered}\text { grs. } \\ 5 \cdot 3\end{gathered}$	grs 6.5	grs. 3.7 4.4	$\underbrace{\text { grs. }}$	$\begin{aligned} & \text { grs. } \\ & 4.5 \end{aligned}$
March -	$3 \cdot 2$			9.3			$7 \cdot 4$			-4.5		
April	$3 \cdot 5$	\% $5 \cdot 3$		$10 \cdot 6$	10.4		$8 \cdot 5$	8.5		5.5	6.2	
May	$7 \cdot 4$		$7 \cdot 5$	11.4		11.4	$9 \cdot 5$		$9 \cdot 8$	$8 \cdot 6$		$7 \cdot 5$
June -	$7 \cdot 0 \cdot$	8. 4		$11 \cdot 7$		114	$10 \cdot 3$	10.2		6.8 7.4		
July -	9.4 8.9	$\} 8.4$		11.2 11.5	\}11.5		$10 \cdot 2$ $10 \cdot 2$	10.2		7.4 8.8	\} $7 \cdot 7$	
August September' -	$8 \cdot 9$ 9.1		-	11.5 11.8			$10 \cdot 2$ 10.2			8.8 8.3		
September' - - October -	9.1	$\} 8 \cdot 3$		11.8 10.3	\} 10.4		10.2 9.1	\} $8 \cdot 6$		8.3 5.8	6 $6 \cdot 0$	
November -	6.6			$9 \cdot 1$			6.4			$3 \cdot 9$		
December -	$5 \cdot 8$			$7 \cdot 0$			$5 \cdot 0$			$4 \cdot 9$		
Difference between Highest and Lowest] 7.2	$4 \cdot 2$	3.2	$5 \cdot 2$	$4 \cdot 6$	3.2	$5 \cdot 3$	$4 \cdot 9$	8-3	- $5 \cdot 1$.s.4	$3 \cdot 0$
Monthly Seasonal Amount. Amount.												
Mean for Year -	$6 \cdot 5$			$9 \cdot 8$			$8 \cdot 1$			6.0		
Greatest in Least in	July. March.			September. January.			Jane. December.			August. Jamuary.		

Bengal. Presidenct.-7. Amount of Vapour in a Cubic Foot of Air-continued.

(continued)

Place Latitude Longitude Height .	• • • • •	Meerti $28^{\circ} 59^{\prime} \mathrm{N}$ $77^{\circ} 46^{\prime} \mathrm{E}$. 900 feet		\bullet \cdot \cdot \cdot \cdot	Landour $30^{\circ} 27^{\prime} \mathrm{N}$ $78^{\circ} 10^{\prime} \mathrm{E}$. 7,000 feet	• \cdot \bullet \bullet \cdot \cdot \cdot		Pebeiawur $34^{\circ} 20^{\prime} \mathrm{N}$. $71^{\circ} 29^{\prime} \mathrm{E}$. 1,056 feet.							
Monte.	1 Year.	Winter, Spring, Summer, Autumn.	October to March.	4 Years.	Winter, Spring, Suminer, Autumn.	$\begin{aligned} & \text { October } \\ & \text { to } \\ & \text { March. } \end{aligned}$	3 Years.	Winter, - Spring, 3Summer, Antumn.	Octuber to March.						
	1859.		$\begin{gathered} \text { April } \\ \text { to } \\ \text { September. } \end{gathered}$			April to September.	$\begin{array}{r} 1858 \mathrm{to} \\ 186 \mathrm{ch} \\ \% \end{array}$		April to September.						
	grs. $4 \cdot 6$ $4 \cdot 9$ $5 \cdot 5$		$\begin{gathered} \text { grs. } \\ 5 \cdot 4 \end{gathered}$	$\begin{aligned} & \text { grs, } \\ & 1 \cdot 7 \end{aligned}$	grs.	$\begin{aligned} & \text { grs. } \\ & 2 \cdot 3 \end{aligned}$	$\mathrm{grs}_{2.7}$	(${ }^{\text {grs. }}$	grs. 3.6						
March - April -	$5 \cdot 5$ 4.8	, 6.0		$2 \cdot 4$	$\} \mathbf{3 . 2}$	$5 \cdot 1$			\longrightarrow						
May -	$4 \cdot 8$ 7			$4 \cdot 4$			$\begin{array}{r} 7.0 \\ 6.0 \end{array}$	$\} 6.0$	$7 \cdot 5$						
June - -	$9 \cdot 3$	$\{2$	$8 \cdot 2$	5.16.3	\} 6.0		$8 \cdot 1$8.8	\} 8.6							
July - -	$10 \cdot 8$	\} $9 \cdot 4$													
August :-	$8 \cdot 0$			6.6				\} $8 \cdot 6$							
September - - October	$9 \cdot 4$ 8.2	\} $7 \cdot 8$		$5 \cdot 5$ 3.4	\} 3.7		$\begin{aligned} & 8 \cdot 9 \\ & 6 \cdot 4 \end{aligned}$	$\{4 \cdot 9$							
November -	$5 \cdot 8$			$2 \cdot 3$	J.		$3 \cdot 3$								
December -	$3 \cdot 7$			1.8			$2 \cdot 7$								
Difference etween Highest and Lowest	$7 \cdot 1$	$5 \cdot 0$	$2 \cdot 8$	$4 \cdot 9$	1 $4 \cdot 1$	$2 \cdot 8$	6.2	$5 \cdot 8$	$3 \cdot 9$						
$\overbrace{\substack{\text { Monthly } \\ \text { Amount. }}}^{\substack{\text { Scasonal } \\ \text { Amount. }}}$															
Mean for Year -	$6 \cdot 9$			$3 \cdot 7$			3.6								
Greatest in Least in	July. December.			August. January.			August. January and December.								

Bengal Presidenct.-8. Additional Weight of Vapour required for Saturation.
Table CXXXVI., showing the Average Amount of Vapour required to saturate a Cubic Foot of Air for every Month and Quarter, as well as for the Periods October to March and April to September, with the Difference between the Greatest and Least Months and Seasons, and Mean for the Year, between the Latitudes $20^{\circ} 18^{\prime} \mathrm{N}$. and $34^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime} \mathrm{E}$. and $92^{\circ} 46^{\prime} \mathrm{E}$., arranged in the order of Latitude, and for the most part in the Presidency of Bengal.

Bengal Presidency.-8. Additional Weight of Vapour required for Saturation-continued.

Bengal Presidency.-9. Degree of Humidity.
Table CXXXVII., showing the Average Degree of Humidity for every Month and Quarter, as well as for the Periods from October to March, and April to September, with Difference between the Driest and most Humid Months and Seasons, and Mean for the Year, between the Latitudes $20^{\circ} 18^{\prime}$ and $34^{\circ} 30^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime}$ and $92^{\circ} 46^{\prime}$ E., arranged in the order of Latitude, at Stations for the most part in the Presidency of Bengal.

Place . . . Latitude. . Longitude . Height . .							$\begin{aligned} & . \\ & . \\ & . \\ & . \\ & . \\ & . \\ & \hline \end{aligned} .82^{\circ} 34^{\circ} 25^{\prime} \text { E. . . . }$. Hazareebatgi. - . $24^{\circ} 0^{\prime} \mathrm{N}$. - . $85^{\circ} 24^{\prime} \mathrm{E}$. - . . 1,900 feet.		
Monti.	$\frac{1 \text { Year. }}{1859 .}$		OctobertoMarch. $\|$	$\left\lvert\, \begin{array}{\|c\|} \hline \begin{array}{c} 2 \text { Years. } \\ 1843 \text { and } \\ 1844 . \end{array} \\ \hline \end{array}\right.$	Winter, Spring, Summer, Autumn	OctobertoMarch.	$\frac{5 \text { Years. }}{1855 \text { to }} \begin{gathered} 1859 . \end{gathered}$	Winter, Spring, Summer, Autumn.	October to March.$\|$	3 Yearg 1858 to 1860 ,	Winter, Spring, Autumn.	October to March. April to Sep- tember.
January	41 32	$\}^{46}$, 52		70 63	$\} 69$	72	6866	$\} 66$	69	74 49 53	$\} 58$	56
March -	32 27			6970		-			\cdots	5150	59	
April	25	$\} 37$	-		$\} 72$		67 68	\} 69				
May	58	$\left\{\begin{array}{l} \}^{73} \\ 75 \end{array}\right.$	63	77 81		82	72 80 80	\{ ${ }_{83}$	79	76 52		
June	${ }_{8}^{68}$			81	\} 85		$\begin{aligned} & 85 \\ & 85 \end{aligned}$			52		
August -	76			85 90				8 ${ }^{3}$		55	$\left\{\begin{array}{l} 62 \\ 62 \end{array}\right.$	
September	76			90			85	\} 78		$\begin{aligned} & 75 \\ & 62 \end{aligned}$		
November	70			80			70			62 50		
December -	66			74			64			73		
Diffrrence between	$\left\}_{55}\right.$	38	11	27	14	10	21	17	10	27	4	8
Most Humid Lent												
Months. I Soasons.												
Mean for Year -	58			77			74			60		
Most Humid in Least Humid in	July and October. April.			August and September. February.			July, August, and September. December.			May. January.		

Bengai Presidency.-9. Degree of Humidity-continued.

Bengal Presidenct.-10. Sun Temperature.
Table CXXXVIII., showing the Average Sun Temperature for every Month and Season, as well as for the Periods from October to March and April to September, with the Difference between the Hottest and Coldest Months and Seasons, and Mean for the Year, between the Latitudes $22^{\circ} 34^{\prime} \mathrm{N}$. and $34^{\circ} 20^{\prime} \mathrm{N}$., and between the Longitudes $71^{\circ} 29^{\prime}$ E. aud $91^{\circ} 45^{\prime}$ E., arranged in the order of Latitude, and for the most part in the Presidency of Bengal.

Place. Intitude. Longitude. Height . .				$\left.\left\lvert\, \begin{array}{ccccc} . & . & . & \text { Chunar } & . \\ . & . & . \\ \therefore & . & .85^{\circ} & 5^{\prime} & \mathrm{N} . \end{array}\right.\right) .$						- \cdot -.	Benarer. $25^{\circ} 17^{\prime} \mathrm{N}$. $83^{\circ} .4^{\prime} \mathrm{E}$. 270 feet.									
Monti.	5 Years.	Winter, Spring, Autumn.	$\begin{gathered} \text { October } \\ \text { to } \\ \text { March. } \end{gathered}$	$\frac{10 \text { Years. }}{\begin{array}{c} 1850 \text { to } \\ 1859 . \end{array}}$	$\begin{aligned} & \text { Winter, } \\ & \text { Spring, } \\ & \text { Summer, } \\ & \text { Autumn. } \end{aligned}$	OctobertoMarch. $\|$	$\frac{2 \text { Years. }}{\substack{1859 \mathrm{and} \\ 1860 .}}$	Winter, Spring, Summer, Autumn.	October to March. April ta Sep- tember.	$\frac{2 \text { Years. }}{1858 \text { and }} \begin{gathered} 1859 . \end{gathered}$	Winter, Spring, Summer Autumn									
	$\begin{gathered} 1855 \text { to } \\ 1859 . \end{gathered}$											April to September.								
January - -	130 132	$\}^{129}$	131	84 90 100	$\}^{86}$	91	70 74	$\} 74$	75	90 97	$\} 93$	101								
March - -	135 135 135	$\}_{135}$		100 106	\} 106		77 87	\} 84		102	$\} 116$									
May	134			113120110		109	888888		87	128										
$J u n e$	133		133		\} 112			$\{88$			$\left\{\begin{array}{l} 113 \end{array}\right.$									
July	133	, 13					91 85			116 110										
August -	136			$\begin{aligned} & 107 \\ & 100 \end{aligned}$			82			$\begin{aligned} & 114 \\ & 116 \end{aligned}$										
October	136	134		95	95		78	79												
November -	129			90			77			10992										
December -	124			85			77													
Ditference between	12	6	2	36	26	18	21	14	12	38	23	14								
$\overbrace{\text { Honttest }}$ Hottest																				
and Coidest Mouth. and Coldest Scavon.																				
Mean for Year -	132			100			81			109										
Highest in	September and October. December.			June. January.			July. January.			May. January.										
Lowest in																				

(continued.)

Bengal Presidency.-Sun Temperature-continued.

Place Latitude Longitude Height .				$\begin{array}{llll}\cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \bullet\end{array}$	Umballa $\begin{aligned} & 30^{\circ} 23^{\prime} \mathrm{N} \\ & 76^{\circ} 44^{\prime} \mathrm{E} \\ & 1,050 \text { feet } \end{aligned}$	$\begin{array}{cccc}\bullet & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot\end{array}$		Ferozepo $\begin{gathered} 30^{\circ} 55^{\prime} \mathrm{N} \\ 74^{\circ} 35^{\prime} \mathrm{E} \end{gathered}$. 720 feet.					
Month.	1 Year.	Winter, Spring, Summer, Antumn.	October to March. April to September.	$\frac{2 \text { Years. }}{1851 \text { and }} \begin{aligned} & 1852 . \end{aligned}$	Winter, Spring, Summer, Auturan.	OctobertoMarch.	$\frac{1 \text { Year. }}{1859}$	Winter, Spring, Summer, Autumn.	October to March.				
									April to September.				
January . - -	。	$\begin{cases}\{ & 118 \\ \{ & 142 \\ \left\{\begin{array}{l} 135 \\ \\ 13 \end{array}\right. & 136\end{cases}$	127	0899591104113117122122.12012810089	$\begin{cases}\} & 91 \\ \begin{cases}103 \\ \{ & 120 \\ & 116\end{cases} \end{cases}$	99			-				
January February - -	113 130						95 98	$\} 91$	98				
March - -	130132151						$\begin{aligned} & 103 \\ & 115 \end{aligned}$	$\} 116$.	\square				
April - , -			138			116							
May - - -	151.7						130	$\} 116$					
June - - -	138						125	$\{123$	12]				
July - . -							130						
August - -	134						115		\therefore				
September - -	$\begin{aligned} & 130 \\ & 139 \end{aligned}$		\cdots				108	\} 107					
October - -							118						
November -. -	138						+96		:				
December - -	111						79						
Difference between	40	24	11		29	17	51		23				
Hottest and Coldest Months. Hottest Hnd Coldeat Seesons.$\|$													
Mean for Year -	133			108			109						
Highest in		April. December.		- October. January and December.			May and July, December,						
Lowest in													

(continued.)

Tables showing the Monthly, Quarterly, Half-yearly and Yearly Falls of Rain at Stations in the Madras Presidency, arranged in the order of Latitude.

Table CXXXIX, showing the Monlily, Quarterly, Half-yearly, and Yearly Falls of Rain at Stations situated in the Presidency of Madras and the Strait Settlements, between the Latitudes $1^{\circ} 16^{\prime}$ N. and $26^{\circ} 48^{\prime}$ N., and Longitudes $75^{\circ} 30^{\prime}$ E. and $103^{\circ} 53^{\prime}$ E.

(continued.)

Madras Presidenct.-Monthly, Quarterly, Half-yearly, an⿳ Yearly Falls of Rain-continued.

(continued.)

Place . . Latitude. Longitude Height	. . SeEnkottar - . . $9^{\circ} 17^{\prime} \mathrm{N}$. - . $.78^{\circ} 10^{\prime}$ E.			$\begin{aligned} & \text {. . Thichinopoly . } \\ & \text { - . } \\ & \text {. } 10^{\circ} 20^{\prime} \text { N.. . } \\ & \text {. } \\ & \text {. } \\ & \hline 7^{\circ} 10^{\prime} \text { E. . . } \\ & 250 \text { feet . . } \end{aligned}$			Cormbatorf.$\begin{aligned} & .11^{\circ} 0^{\prime} \mathrm{N} \\ & .77^{\circ} 1^{\prime} \mathrm{E} \end{aligned}$					
Month.	$\frac{5 \text { Years. }}{1842 \text { to }}$	Winter, Spring, Autumn	October to to March.	$\frac{7 \text { Years. }}{1884 \text { to }} \begin{gathered} \\ 1848 . \end{gathered}$	Winter, Spring, Autumn	October to March, April to Sep- tember.	$\xrightarrow[\substack{1844 \text { to } \\ 1846 .}]{3 \text { Years. }}$	Winter, Spring, Summer, Autumn\square	OctobertoMarch. $\|$	$\frac{2 \text { Years. }}{184 \text { and }} 1848 .$	Winter, Spring. Autumn	OctobertoMarch. $\|$April to Sep- tember.
	$\begin{aligned} & \text { in. } \\ & 1 \cdot 3 \end{aligned}$		in.	in.		in.	$\begin{aligned} & \text { in. } \\ & 0.7 \end{aligned}$		in.	$\mathrm{in}_{0} \mathrm{in}$.		
February -	0.3	$\}^{4 \cdot 6}$	$20 \cdot 3$	$0 \cdot 2$	$\}^{6 \cdot 7}$	$15 \cdot 4$		$\}^{3}$	9•7		$\}^{19 \cdot 8}$	$47 \cdot 8$
March	1.6			0.5			0.8			3.6		
April ${ }^{\text {a }}$	2.2	7 $7 \cdot 4$		$1 \cdot 4$	4.6		0.5	3.1		19.8	$28 \cdot 3$	
May	$3 \cdot 6$			$2 \cdot 7$			1.8			4.9		
June	$4 \cdot 3$		16.9	$1 \cdot 3$		$15 \cdot 2$	1.5		10.9	$4 \cdot 6$		53.5
July	$3 \cdot 9$	9.3		$2 \cdot 6$	$\} 5 \cdot 8$		1.6	$\} 3 \cdot 3$		$7 \cdot 4$	21-3	
August	$1 \cdot 1$			1.9			0.2			9.3		
September	$1 \cdot 8$			$5 \cdot 3$			$5 \cdot 3$			$7 \cdot 5$		
October	$8 \cdot 2$	15.9		$5 \cdot 6$	13.5		4.5	10.3		12.5	31-9	
November -	$5 \cdot 9$			$2 \cdot 6$			0.5			11.9		
December	$3 \cdot 0$			4.5			$3 \cdot 0$			$12 \cdot 3$		
Year	$37 \cdot 2$	-	-	30.6		-	20.6	-	-	$101 \cdot 3$	-	-

Madras Presidency.-Monthly, Quarterly, Half-ycarly, and Yearly Falls of Rain-continued.

(continued.)

Madras Presmency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Madras Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

Place Latitude Longitude Height				$\begin{aligned} & \text {. Mastlipatam . . } \\ & \text {. } .6^{\circ} 10^{\prime} \text { N. . . } \\ & \text {. . } .81^{\circ} 13^{\prime} \text { E. . . } \end{aligned}$								
Monte.	3 Years.	Winter, Spring, Suminer Autumn.	October to March.	7 Years.	Winter, Spring, Sumnier, Autumn.	October to March. April to Sep- teraber.	5 Years.1855 to1859.	Winter, Spring, Summer, Autumn.	OctobertoMarch.	$\frac{19 \text { Years. }}{\frac{1841 \text { to }}{1859 .^{\circ}}}$	Winter, Spring, Summer, Autumn.	OctobertoMarch.
	$\begin{aligned} & 1857 \text { to } \\ & 1859 . \end{aligned}$		April to September.	$\begin{aligned} & 1842 \text { to } \\ & 1848 . \end{aligned}$								
	in.	in. in. 0.0 $13 \cdot 1$		in.	$\}_{\text {in. }} \begin{aligned} & \text { a } \\ & 3 \cdot 7\end{aligned}$	in.$11 \cdot 8$	in.	$\}^{\text {in. }} \mathrm{l}$	in. $11 \cdot 0$	in.	$\} \begin{aligned} & \text { in. } \\ & 0.6\end{aligned}$	in.
Tebruary	0.0			$1 \cdot 6$			0.0			$0 \cdot 0$		$8 \cdot 3$
March -	$0 \cdot 0$	$\} 10 \cdot 8$	-	0.30.2	$\}_{2 \cdot 4}$	$22 \cdot 0$	$0 \cdot 9$	¢ 8.0	$30 \cdot 5$	$1 \cdot 0$	$\} 4 \cdot 1$	$13 \cdot 4$
April	$2 \cdot 7$		58.8				2.54.6			1.0		
May .	$8 \cdot 1$			$1 \cdot 9$	\} $2 \cdot 4$					$2 \cdot 1$		
June	14.4	\} $40 \cdot 0$		$4 \cdot 5$	$\}_{14 \cdot 0}$		4.15.9	$\}_{17 \cdot 7}$		$\begin{aligned} & 1.8 \\ & 1.7 \end{aligned}$	$\{6.5$	
July	17.2			$4 \cdot 6$								
August	$8{ }^{*} 4$			$4 \cdot 9$			$7 \cdot 7$			$3 \cdot 0$		
Scptmber -	$8 \cdot 0$			$5 \cdot 9$			$5 \cdot 7$			$3 \cdot 8$	$\} 10.5$	
Oc:ober	$8 \cdot 7$	21:1		6-7	\} $13 \cdot 7$		$7 \cdot 0$	14.8		$5 \cdot 6$		
Norcmber	4.4			1-1			$2 \cdot 1$			$1 \cdot 1$		
Inrember -	$0 \cdot 0$			$1 \cdot 9$			1.0			0.4		
Year -	71'9	-	-	$33 \cdot 8$	-	-	$41 \cdot 5$	-	-	$21 \cdot 7$	-	-

(continued.)

Msdras Presidencr_Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Tables showing the Montily, Quarterly, Half-yearly, and Yearly Falis of Rain at Stations in the Bombay Presidency, arranged in the order of Latitude.

Table CXL., showing the Monthly, Quarterly, Half-yearly, and Tearly Falls of Rain at Stations situated between the Latitudes $15^{\circ} 8^{\prime}$.N. and $26^{\circ} 20^{\prime}$ N., and Longitudes $67^{\circ} 2^{\prime}$ E. and $77^{\circ} 28^{\prime}$ E., principally in the Presidency of Bombay.

(continucd.)

Bombay Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Bombay Presidency.-Monthly, Quarterly, IIalf-yearly, and Yearly Falls of Rain—continued.

1'lace. Lalitude . . . Longitude . Height	$\begin{array}{cccc} \text {. } & \text {. Sattara . } & \text { - } \\ \text { - } & 17^{\circ} 40^{\prime} \mathrm{N} & \cdot & \text { - } \\ \text {. } & 74^{\circ} 2^{\prime} \mathrm{E} & \cdot & - \\ \text {. } & 2,320 \text { feet } & \text { - } \end{array}$									- . Malcolm Pait. - . $17^{\circ} 56^{\prime} \mathrm{N}$. - . $\quad 73^{\circ} 41^{\prime} \mathrm{E}$.		
Month.	4 Years.	Winter, Spring, Summer, Autumn.	October to March. April to Seprember.	$\begin{array}{\|c\|} \hline 5 \text { Years. } \\ \hline \begin{array}{c} 1855 \text { to } \\ 1859 . \end{array} \\ \hline \end{array}$	Winter, Spring, Summer, Autuma.	October to March.	2 Years.	Winter, Spring, Summer, Autumn.	October to March.	1 Year.	Winter, Spring, Summer, Autumn.	October to March.
	$\begin{gathered} 1844 \text { to } \\ 1847 . \end{gathered}$					April to September.	$\left.\begin{array}{\|c} 1858 \text { and } \\ 1859 . \end{array} \right\rvert\,$		April to September.	1820.		$\begin{aligned} & \text { April } \\ & \text { to Sep- } \end{aligned}$ tember.
	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
January -	$0 \cdot 9$	$\} 0.8$		0.6	\} 1.2		0.0			$0 \cdot 0$	$\} 0.0$	
February -	$0 \cdot 1$		$7 \cdot 3$	0.0		$6 \cdot 6$	$0 \cdot 0$		$4 \cdot 3$	0.0	\}	$0 \cdot 0$
March	$0 \cdot 1$			$0 \cdot 1$			$0 \cdot 0$			$0 \cdot 0$	-	
April	$3 \cdot 0$	$\} 4 \cdot 4$		$1 \cdot 0$	$\} 4.4$		$0 \cdot 1$	$\} 3 \cdot 8$		$0 \cdot 0$	$\} 0 \cdot 0$	
May	$1 \cdot 3$			$3 \cdot 3$			3.7			$0 \cdot 0$	J	
June	7.5		30.0	$5 \cdot 0$		$32 \cdot 6$	$26 \cdot 3$		118.0	$53 \cdot 6$) -	$196 \cdot 4$
July	10.4	\} $21 \cdot 2$		$13 \cdot 1$	25:2		41.5	¢ $97 \cdot 1$		$43 \cdot 6$	158.8	
August -	$3 \cdot 3$			$7 \cdot 1$			29.3	1.		61.6		
September -	$4 \cdot 5$			$3 \cdot 1$)		$17 \cdot 1$	$7 \cdot$		$37 \cdot 6$)	
October -	$3 \cdot 7$	10.9		$4 \cdot 7$	$\} 8.4$		4.0	< $21 \cdot 4$		$0 \cdot 0$	\} $37 \cdot 6$	
November -	$2 \cdot 7$			0.6			$0 \cdot 3$			$0 \cdot 0$		
Necember -	$0 \cdot 7$			0.6			$0 \cdot 0$			$0 \cdot 0$		
Year - -	37-3	*		$39 \cdot 2$	\cdots		122.3		*	$196 \cdot 4$		

(continued.)

PA DISPASLS OF MYDAA AYD WYGRMD COMPARED.

. Bombay Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Place Latitude . . . Longitude . . . Height				$\begin{aligned} & \therefore \quad . \quad \text { Bomgay: } \\ & \therefore \quad . \\ & \cdot \\ & \cdot \\ & \cdot \\ & \hline \end{aligned} 8^{\circ} .53^{\prime} \mathrm{N} . \quad . \quad .$			$\begin{gathered} . \quad . \quad \text { Bomвay } \\ . \quad . \quad 18^{\circ} 53^{\prime} \mathrm{N} \\ . \quad . \quad 72^{\circ} 52^{\prime} \mathrm{E} \\ \ldots . \end{gathered}$					
Month.	5 Years.	Winter, Spring, Summer, Autumn.	October to March.	34 Years.	Winter, Spring, Summer, Autumn.	October to March.	$\left\lvert\, \frac{12 \text { Years. }}{1847 \text { to }} 1\right.$	Winter, Spring, Summer, Autumn.	$\begin{gathered} \text { October } \\ \text { to } \\ \text { March. } \end{gathered}$	4 Years.	Winter, Spring, Summer, Autumn.	October to March.
	$\begin{gathered} 1854 \text { to } \\ 1858 . \end{gathered}$		April to September.	$\begin{aligned} & 1817 \text { to } \\ & 1850 . \end{aligned}$		April to September.			April to September.	$\begin{gathered} 1844 \text { to } \\ 1847 . \end{gathered}$		April to September.
	in.		in.	in.		in.	in.		in:	in.	in.	in.
January	$0 \cdot 1$	\} 0.4		0.0) 0.0		$0 \cdot 1$	\} 0.2		$0 \cdot 0$	0.0	
February	$0 \cdot 3$		$5 \cdot 2$	$0 \cdot 0$		$1 \cdot 3$	0.0		$3 \cdot 9$	0.0		$4 \cdot 8$
March	$0 \cdot 4$			$0 \cdot 0$	7 -		$0 \cdot 0$			$0 \cdot 0$	7	
April	0.9	$\} .4 \cdot 2$		0.0	$\} 0.0$		- 0.1	$\} 1 \cdot 1$		0.0	$\} 0.0$	
May	$2 \cdot 9$			$0 \cdot 0$			1.0			0.0		
June	$3 \cdot 7$)	$15 \cdot 9$	$22 \cdot 1$		$75 \cdot 9$	23.4		$65 \cdot 7$	6.8		23.8
July	$3 \cdot 0$	$\} 8.2$		$24 \cdot 9$	663.8		24.0	\}56.5		$6 \cdot 7$.	\} 16.9	
August -	1.5			16.8			$9 \cdot 1$			$3 \cdot 4$		
September -	3.9.			$11 \cdot 1$			$10 \cdot 1$			$2 \cdot 9$		
October	$3 \cdot 7$	\% $8 \cdot 3$		$1 \cdot 3$	12.4		$2 \cdot 1$	12.9		$3 \cdot 3$	7-7	
November -	0.7		.	0.0			0.7			$1 \cdot 5$		
December -	$0 \cdot 0$			$0 \cdot 0$			$0 \cdot 1$			$0 \cdot 0$		
Year -	21.1	-•		76.2	\cdots		$68 \cdot 7$.	-•	$28 \cdot 6$		

Bombax Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

Bombay Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

- $\begin{array}{r}\text { Place } \\ \text { Latitude } \\ \text { Longitude . . . } \\ \text { Height }\end{array}$	Ahmedabad . $23^{\circ} 0^{\prime} \mathrm{N}$. $.72^{\circ} 0^{\prime} \mathrm{E}$. . 320 feet			Ahmednegatr $23^{\circ} 34^{\prime}$ N. . $73^{\circ} 1^{\prime}$ E. . 1,900 feet			Ahmednuggur . $23^{\circ} 34^{\circ} \mathrm{N}$. . $73^{\circ} 1^{\prime}$ E. . 1,900 feet			Kotri near Hyderabad.$\begin{gathered} . \quad .23^{\circ} 54^{\prime} \mathrm{N} \\ . \quad .68^{\circ} 46^{\prime} \mathrm{E} \\ \ldots . . \end{gathered}$		
Montr.	2 Years.	Winter, Spring, Summer Autumn.	October to March.	$\left\|\frac{4 \text { Years }}{\substack{1844 \\ 1847 .}}\right\|$	Winter, Spring, Summer, Autumn.	October to March. April to September.	$\begin{array}{\|c\|} 6 \text { Years. } \\ \hline \begin{array}{c} 1854 \text { to } \\ 1859 . \end{array} \\ \hline \end{array}$	Winter, Spring, Summer, Autumn.	October to March. April to September.	$\begin{array}{\|c\|} 5 \text { Years. } \\ \hline \begin{array}{c} 1845 \text { to } \\ 1849 . \end{array} \\ \hline \end{array}$	Winter, Spring, Summer, Autumn.	$\begin{array}{c}\text { October } \\ \text { to } \\ \text { March. }\end{array}$ $\begin{array}{c}\text { ApriI } \\ \text { to Sep- } \\ \text { tember. }\end{array}$
	$\left\lvert\, \begin{gathered} 1858 \text { and } \\ 1859 . \end{gathered}\right.$		April to September.									
	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
Jannary *	0.0	$\} 0.0$		0.0	$\} 0.3$		$0 \cdot 1$	$\} 0.7$		0.0	$\} 0.0$	
February	0.0		$0 \cdot 0$	$0 \cdot 2$		$3 \cdot 0$	0.0		$6 \cdot 7$	0.0		$0 \cdot 1$
March -	- 0.0			$0 \cdot 6$			0.2			$0 \cdot 1$		
April -	0.0	\} 0.0		0.8	\} $5 \cdot 5$		$0 \cdot 2$	\} $2 \cdot 7$		$0 \cdot 0$	$\} 0.5$	
May	0.0			$4 \cdot 1$			$2 \cdot 3$			0.4		
June	1.8		$31 \cdot 3$	$5 \cdot 1$		$21 \cdot 9$	$4 \cdot 3$		$19 \cdot 4$	$1 \cdot 3$		$1 \cdot 7$
July	15.9	\}25:3		$3 \cdot 1$	$10 \cdot 3$		$2 \cdot 1$	10.5		0.0	$\} 1 \cdot 3$	
August	$7 \cdot 6$			$2 \cdot 1$			$4 \cdot 1$			$0 \cdot 0$		
September -	$6 \cdot 0$			$6 \cdot 7$			$6 \cdot 4$			$0 \cdot 0$		
October -	0.0	$\} 6.0$		$0 \cdot 2$	\} 8.8		$5 \cdot 2$	12.2		0.0	$\} 0 \cdot 0$	
November -	$0 \cdot 0$			1.9			$0 \cdot 6$			$0 \cdot 0$		
Decernber	$0 \cdot 0$			$0 \cdot 1$			0.6			0.0		
Year -	$31 \cdot 3$	-	-	$24 \cdot 9$	\therefore		$26 \cdot 1$	\cdots		1.8	-	\cdots

(continued.)

Place Latitude . . . Longitude . . . Height		Negmuch $24^{\circ} 27^{\prime} \mathrm{N}$. $74^{\circ} 54^{\prime} \mathrm{E}$. 1,476 feet			ount Abo $24^{\circ} 45^{\prime} \mathrm{N}$. $72^{\circ} 49^{\prime} \mathrm{E}$. 4,000 feet			Kurracee $24^{\circ} 5 l^{\prime} \mathrm{N}$ $67^{\circ} 2^{\prime}$ E. 27 feet			Deesa. $25^{\circ} 14^{\prime} \mathrm{N}$ $72^{\circ} 5^{\prime}$ E. 400 feet.	
Mov	1 Year.	Winter, Spring,	October to March.	5 Years.	Winter, Spring,	October to March.	5 Years.	Winter, Spring,	October to March.	3 Years.	Winter, Spring,	October to March.
Monr.	1860.	Summer, Autumn.	April to September.	$\begin{gathered} 1855 \text { to } \\ 1859 . \end{gathered}$	Summer, Autumn.	April to September.	$\begin{array}{c\|c} 1856 \text { to } \\ 1860 . \end{array}$	Summer, Autumn	April to September.	$\begin{gathered} 1857 \text { to } \\ 1859 . \end{gathered}$	Summer, Autumn.	April to September.
	in.		in.	in.	in.	in.	in.		in.	in.		in.
January -	0.0	$\} 0.6$		0.8	$\} 1 \cdot 0$		$0 \cdot 4$	0.9		$0 \cdot 6$	$\} 0.8$	-
February	$0 \cdot 3$		0.8	0.2		$1 \cdot 0$	$0 \cdot 3$]	0.9	$0 \cdot 2$		0.8
March -	0.0)		$0 \cdot 0$	7		0.0	7		$0 \cdot 0$	17	
April	0.0	$\} 0.3$		$0 \cdot 3$	$\} 0.6$		0.0	$\} 0.0$		0.0	$\} 0 \cdot 0$	
May ${ }^{\text { }}$	0.3	1		$0 \cdot 3$			0.0			$0 \cdot 0$		
June	1.7		$33 \cdot 3$	$10 \cdot 3$		$63 \cdot 7$	0.0		$3 \cdot 7$	$3 \cdot 8$		$23 \cdot 8$
July -	11.8	29.2		$25 \cdot 9$	\}02:2		$1 \cdot 8$	$\} 3 \cdot 3$		$8 \cdot 6$	\} 186	
August	$15 \cdot 7$			$17 \cdot 0$			1.5			$6 \cdot 2$		
September -	3;8			$9 \cdot 9$			$0 \cdot 4$			5.2.		
October	0.2	\} 4.0		0.0	$\} 9 \cdot 9$.		0.0	\} 0.4		0.0	5.2	
November -	0.0			0.0			0.0			0.0		-
December -	$0 \cdot 3$			0.0			0.2			$0 \cdot 0$		
Year - -	34•1	\cdots	-	64.7			$4 \cdot 6$	- .	.	$24 \cdot 6$	\cdots	

Bombay Presidencr.-Monthly, Quarterly, Malf-yearly, and Yearly Falls of Rain-continued.

Tables showing the Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain at Stations in the Bengal Presidency, arranged in the order of Latitude.

Table CXLI., showing the Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain at Stations situated between the Latitudes $19^{\circ} 48^{\circ}$ N. and $34^{\circ} 20^{\prime}$ N., and Longitudes $71^{\circ} 29^{\prime}$ E. and $92^{\circ} 56^{\prime}$ E., for the most part in the Presidency of Bengal.

Place Latitude Longitude . . . Height	- Poree, or Jlggernaut.$\begin{array}{ll} . & 19^{\circ} 48^{\prime} \mathrm{N} . \\ . & 85^{\circ} 49^{\prime} \mathrm{E} . \end{array}$						Thifet Mro $2 C^{\circ} 18^{\prime} \mathrm{N}$. $92^{\circ} 46^{\prime} \mathrm{E}$. . 240 feet -			$\begin{aligned} & \text {. . Cuttacz. } \\ & . \quad . \quad 20^{\circ} 29^{\prime} \mathrm{N} . \\ & . \quad . \quad 85^{\circ} 54^{\prime} \mathrm{E} . \end{aligned}$		
Month.	1 Year.	Winter, Spring,	October to March.	1 Year.	Winter, Spring,	October to March.	1 Year.	Winter, Spring,	$\begin{gathered} \text { October } \\ \text { to } \\ \text { March. } \end{gathered}$	1 Year.	Winter, Spring,	October to March.
	1851.	Summer,	April to September.	1851.	Suminer, Autumn.	April to September.	1859.	Summer,	April to September.	1851.	Summer Autumn	April to September.
January - - February -	in. 0.0 0.4	in.	in.	$\begin{aligned} & \text { in. } \\ & 0.0 \\ & 0.0 \end{aligned}$, $\} \begin{aligned} & \text { in. } \\ & 2.5\end{aligned}$	in. $16 \cdot 6$	in. 0.0 0.0	, $\} \begin{aligned} & \text { in. } \\ & 0.4\end{aligned}$	in. 7.5	in. 0.1 0.0	, $\} \begin{aligned} & \text { in. } \\ & 0 \cdot 1\end{aligned}$	$\ln .$ $12 \cdot 1$
March -	$0 \cdot 0$.		0.0	7		$0 \cdot 3$] .		$0 \cdot 3$	T	
- April	1.0	.	-	$0 \cdot 0$	$\} 11 \cdot 0$		$0 \cdot 5$	$\} 3 \cdot 1$		$1 \cdot 6$	2.7	
May	0.5	.	\cdots	11.3			$2 \cdot 3$			0.8		
June	$4 \cdot 5$.	.	59.5		$138 \cdot 4$	16.5		$41 \cdot 8$	$7 \cdot 3$		$38 \cdot 1$
July	$14 \cdot 3$	-	\cdots	$22 \cdot 4$	\} $109 \cdot 5$		6.9	333.2		$10 \cdot 2$	329.6	
August	$7 \cdot 4$	-	\cdots	$27 \cdot 6$			$9 \cdot 8$			12.1		
September -		-			$731 \cdot 7$		48	? 11.6		$6 \cdot 1$		
Octuber -	$\left\{\begin{array}{l}\text { blown } \\ \text { down. }\end{array}\right.$.	.	$14 \cdot 1$	$331 \cdot 7$		6.8	\} 11.6		$11: 7$	17.8	
November -	..	\cdots	-	0.0			0.0			$0 \cdot 0$	$)$	
December -	-			$2 \cdot 5$			0.4			0.0		
Year -	-		\cdots	155.0	,	-•	$48 \cdot 3$	\therefore	-•	50.2		

Bengac Presidenct:-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

Bengal Presidzncy.-Monthly, Quarterly, Haly-yearly, and Yearly Falls of Rain-continued.

(continued.)

Bengal Presidency.—Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Bengal Presidencr.-Monthly, Quarterly, Half-yearly, and Yearly Fạlls of Rain—continued:-

(continued.)

TO RLQUIRE INTO, THE BANTARY STATE OF THE ARMY IN INDLA.
Bengal Presioency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-oontinued.

Bengal Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Bengai Presidency-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

Bengal Preadency.-Monthly, Quarterly, Malf-yearly, and Yearly Falls of Rain-continued.

(continurd.)

Bengal Presioency.-Monthly, Quarterly, Hald-yearly, and Yearly Falls of Rain-continued.

Place. Latitude . . . Longitude . . . Height	DUDOOPORE$30^{\circ} 12^{\prime} \mathrm{N}$						Landotr $30^{\circ} 27^{\prime} \mathrm{N}$. $78^{\circ} 10^{\prime} \mathrm{F}$. 7,000 feet			$\begin{aligned} & \text {. } \quad \text { Mean Meer. } \\ & \text {. } \quad 30^{\circ} 34^{\prime} \mathrm{N} . \\ & \text {. } \quad \mathbf{7 4}^{\circ} 4^{\prime} \mathrm{E} . \\ & \text {. } \quad 1,128 \text { feet. } \end{aligned}$		
Montr.	15 Years.	Winter, Spring, Summer, Autumn.	$\begin{gathered} \text { October } \\ \text { to } \\ \text { March. } \\ \hline \text { April } \\ \text { to Sep- } \\ \text { tember. } \end{gathered}$	$\left\lvert\, \begin{gathered} 2 \text { Years. } \\ 1851 \text { and } \\ 1852 . \end{gathered}\right.$	Winter, Spring, Summer, Autumn.	$\begin{array}{c}\text { October } \\ \text { to } \\ \text { March. }\end{array}$ $\begin{array}{c}\text { April } \\ \text { to Sep- } \\ \text { tember. }\end{array}$	$\frac{10 \text { Years. }}{1850 \text { to }} 1859 .$	Winter, Spring, Summer, Autumn.	October - to March.	3 Years.	Winter, Spring, Summer, Autumn.	October to March.
	$\begin{gathered} 1834 \text { to } \\ 1848 . \end{gathered}$								April to September.	$\begin{gathered} 1857 \text { to } \\ 1859 . \end{gathered}$		April to September.
	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.	in.
January -	0.9	$\} 3 \cdot 0$		0.7			- 0.6	\} $1 \cdot 5$		$1 \cdot 2$	\} 2.6	
February	1.8		$5 \cdot 2$	$0 \cdot 0$		$7 \cdot 9$	0.6		$3 \cdot 3$	1.4		$3 \cdot 0$
March	1.0			$7 \cdot 1$			$0 \cdot 3$	7		$0 \cdot 4$	1	
April	0.4	$\} 2 \cdot 2$		0.9	$\} 10 \cdot 8$		$1 \cdot 9$	\} 3.7		$0 \cdot 5$	$\} 1 \cdot 3$	
May	$0 \cdot 8$			2.8			1.5			0.4		
June	$6 \cdot 2$		$34 \cdot 9$	$1 \cdot 3$		$18 \cdot 2$	11.9		89.4	1.4		$13 \cdot 3$
July	$13 \cdot 6$	328.8		$7 \cdot 8$	\} 12.2		31.5	75.7		$5 \cdot 5$	10.5	
August	$9 \cdot 0$			3.1			$32 \cdot 3$	J.		$3 \cdot 6$		
September -	$4 \cdot 9$			0.0	1		$10 \cdot 3$	7		$1 \cdot 9$	T	
October -	1.0	$\} 6 \cdot 1$		$0 \cdot 0$	\} $2 \cdot 3$		$0 \cdot 9$	11.8		0.0	$\} 1 \cdot 9$	
November -	$0 \cdot 2$			$2 \cdot 3$			0.6			0.0		
December -	$0 \cdot 3$			$0 \cdot 1$			$0 \cdot 3$			0.0		
Year - -	40*1	-	-	$26 \cdot 1$		-	92.7	-	.	16.3	-	-

(continued.)

Bengar Prestonency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain-continued.

(continued.)

Bengal Presidency.-Monthly, Quarterly, Half-yearly, and Yearly Falls of Rain_continued.

[^0]: - At page 46 of the Appendix to the Indian Organization Report, Colonel Baker states the cost of barracks for a regiment of the line at 15,0001 . a year, being at the rate of about12l. per man annually.

[^1]: \qquad

[^2]: \qquad
 \qquad

[^3]: 路

[^4]: "S fros,oxeeds the number of
 † Dr. Msephersoni! Report on Mradras Preaidency, Dec. 27, 18ce.

[^5]: Ventilation.-Windows on pivots near top of wall; docors; ventilating tiles in ridge; cooling by tatties.
 Cleansing.-Limewashing once a year, oftener if necessary.
 Latrines.-Too close to main buildings; water supply not sufficient; contents removed by
 sweepers.
 Lavatory.-A small room to each ward; patients wash in tubs or earthen vessels without arrangement; one or two masonry baths; barely sufficient.
 Hospital washing by dhobies
 Bedding.-Quite suficient.
 Bedding.-Wooden cots, mattress, \&ec. ; iron cots better.
 Cooking.-Good and aufficiently varied.
 Convalescents.-No special wards; exercise in verandahs or on elephants.
 Female hospitals.-Provided ; "quite satisfactory,"
 Sanitary state.-"Good," Larger and better bathing houses would be an improvement.
 27. Site.-Partially open and freely ventilated only to the north and west."

 Water supply abundant.
 Drainage. Surface guttering, with an outlet 30 yards distant; insufficient.
 Construction.-Stone and lime; verandahs; inner ones occasionally used for sick or convalescents; building one-storied ; floor, 6 feet above ground; no ventilation beneath.
 Accommodation.-Four wards, 46 beds, at 1,187 to 1,316 cubic feet, and 68 to 87 square feet per bed.
 Ventilation.-No windows ; numerous doors, with ridge openings ; occasional closeness in hot weather ; cooling by punkahs and tatties.
 Cleansing.-Limewashing once a year, or oftener
 Latrines.-Fifty feet from hospital; cleansed in the usual Indian way; "not more offensive "than such places are in this country."
 Lavatory.-Part of verandah; also serving as bath room; "sufficient."
 Storage sufficient.
 Beddrng.-Cane-bottomed bedsteads; tow mattress, \&c.
 Cooking.-Indian and English cooking apparatus; cooking properly done, and varied according to order.
 Attendance.-Hospital serjeant and usual native establishment; in serious cases "a waiting man from the battalion, who is relieved daily;" not sufficient
 Sanitary state.-"Healthy ;" position of latrines and kitchen not good; buildings interfere with ventilation.
 Convalescents.-No wards; exercise tajken by river side or on ramparts.
 Cemale hospital. -In saime compound as male hospital; two wards, "satisfactory," but a nurse required.
 Ventilation.-By holes in roof; "sufficient ;" no means of cooling.
 Cleansing.-Limewashing once a year.
 Latrines.-Cleansed by sweepers.
 Lavatory.-A small shed; "sufficient;" a bathing tub and foot bath, also "sufficient."
 Hospital washing.-By washermen.
 Storage sufficient.
 Bedding.-Wooden cots, harbouring bugs ; iron better.
 Cooking.-Kitchen simply a hut; cooks prepare food on ground; "this arrangement is not " good, but we are accustomed to it in India."
 Attendance.-Not sufficient; "healthy men are detached for this duty from the barracks, but " they dislike it, and often neglect their patients."
 Sanitary state " good."
 Convalescents.-No ward; exercise morning and evening, sometimes on elephants; extra doolies required.
 Female hospital.--One; "sufficient."
 29. Hospitals not yet built. A barrack used temporarily. No female hospital.
 30. Site open; generally healthy.

 Water supply from tank close to hospital; abundant and generaliy wholesome.
 Drainage by open masonry; drains to river; "sufficient."
 Constraction, -An iron-framed building with verandah; one immense hall, 411 feet long, 38 Constraction,-An iron-rramed builigg Verandahs. Building on one floor 3 or 4 feet high, feet wide, and 23 feet 8 inches high:
 and planked over. Accommodation, 150 beds, all in one ward (60
 1,809 cubic feet, and 86 square feet per bed.
 1,809 cubic feet, and 86 square feet per bed.
 Ventilation by doors and openings in fidge; ${ }^{\text {"c }}$
 Cleansing.-limewashing annually, or oftener.
 Latrines of usual construction. Contents removed daily.
 Latrines of usual construction. Contents removed daily. baths in each. Earthen dishes used Lavatory attach
 for ablution.
 for ablution.
 Hospital washing by dhobies.
 Hospital washing by dhobies.
 Storage insufficient. Bedding and clothing partly kept in verandahs, and injured by wet or torage insufficient. Bed
 damp (since remedied).
 Bedding. -Wooden bedsteads ; tow mattresses.
 Cooking "sufficient.".
 Cooking "sufficient.
 Sanitary state good, but more accommodation in the way of store rooms and amall wards
 required.
 Convalescents.-No werds + not needed. No provision for exercise, except verandahs. Weakly men taken out on elephants.
 Female hospital, none. "Certainly desirable."
 31. No regular hospital. A temporary hospital of bricks, stone and mortar, on one floor. Too 31. No regular hospital. A tamp other buildings for free ventilation. No windows, only doors. much surrounded by walls and other buidings - Latrines of usuad construction. Lavatoriea
 Ventilation of wards by doors and openings. with iron and wooden baths. Cooking pretty well done. Whole arrangements temporary. 32. Present hospital an old barrack, on an open airy site, but has s sluggish malarious nullah 32. Present
 in front.

[^6]: Ventilation by doors and windows. No roof ventilators. Air cooled by punkahs.
 Cleansing and limewrashing twice a year, or oftener if necessary.
 Latrines.-Placed to windward "unfortunately." "Tubs only are used." No urinals or waterclosets. Privy washed daily, and "charcoal burned in it s " "not offensive." An opinion in regard to which the Commander-in-chief says,-" a year ago, it was odiously offensive." Lavatory and bath. -Three rooms with brass basins and stands. Baths are large tubs for cold and warm water. Shower bath and douche.
 Storage sufficient ; but considerable improvements might be made with advantage.
 Bedding.-Wooden and iron cots. Bedding of good quality.
 Cooking.-Similar means to those recently introduced in barracks, promise to act well.
 Attendance--Hospital serjeant, male cooliea, orderlies when required, "sufficient."
 Convalesoents.-No wards. Not sufficient exercising ground. Men conveyed in doolies and bullock carts to the sea beach, morning and evening.
 Female hospital.-A detached ward. Midwifery cases taken to lying-in hospital. Arrangemente not antisfactory.
 Sanitary state "good," Cases of cholera have appeared, when disease was in Madras. Ulcers have once in five years shown tendency to gangrene, when whitewashing has been neglected.
 Secunderabad. Site.-Three hoapitals for Europeans, five for natives scattered all over cantonment.
 Water supply,-Abundant snd wholesome.
 Drainage.-No drains or sewers; only surface drainage. Impurities removed daily. Smafl cesspools at some native hospitals.
 Construction.-Wards raised 1 foot to 1 foot 10 inches above ground. No ventilation beneath, Roof water sinks into subsoil, or runs awry on surface. Trimulgherry hospital is upper storied. Madras artillery is abominable, and frightfully hot. It is condemned. All have front and rear verandahs.
 Accommodation in European hospitals, 10 wards, 775 beds, at from 1,000 to 1,052 cubic feet, and from 24 to 75 square feet per man. Two of the new wards at Trimulgherry hold each 228 sick, apparently in six rows between the windows. In this hospital, 486 sick have no more than 24 square feet each. The wards are no less than 42 feet high, and out of the whole number of sick in all the hospitals, only 118 have more than 46 square feet.
 A plan of one of the floors is given in fig. 14, showing the. large wards completely enclosed by other rooms, cutting off the ventilation.

[^7]: Accommodation.-Two wards, 10 beds each, at 1,150 cubic feet ; 75 square feet per man. Ventilation.-Iron cowls in ridge, doors, and windows ; cooled by kuskus tatties. Cleansing every three months, or oftener.
 Privies cleansed daily by sweepers; "not more offensive than the best of such places usually Privies cleansed daily,
 are in this country."
 Ablution and bath room, make shift ; there is a bath room ; " but all apparatus entirely wanting." Ablution and bath room, make shirt,
 Hospital washing done by diobies.
 Storage.-"Accommodation in every ww
 Bedding.-Iron cots ; straw mattresses.
 Bedding.--Iron cots; straw mattreases.
 Cooking "apparatua primitive ; best adapted for Indian cook."
 Cooking "apparatua primitive; be
 Attendance, "good and.sufficient. ${ }^{\text {Stital disease. }}$ Sanitary state, "good;" no hospit
 Sanitary state, "good;" no hospital disease.
 Convalescenta.-No means of exercise, except in verandahs; no copvalescent ward.

[^8]: - I am no professed geologist, but l can state from my own obscrvation that Landour is situated on stratified rocks of the metamorphic series, which are covered with a scant and not very fertile soil; and that the ground generally is very lightly timbered, and almost free from underwood.

[^9]: - The European cavalry barrack at Meerut is wretched, and ought to have been abandoned years ago

[^10]: " "Tappes" a local term for the diatricte into which the country

[^11]: - On the south side of the long infantry range a slight temporary rerandah had recently been put up to serpe as a shade from the

[^12]: －See＂Edinburgh Review，＂July 1808.

[^13]: * I would wish to remark that this portion of my suggestions is no original, inasmuch as Dr. Robinson proposed to a general officer, twi years aqo, that somewhat similar precautions should be taken with
 reference to syphilis at Windsor. His letter will be found in thy reference to syphilis at wind isor. His listter win be found in thi Ir. Rose published some letters in the "Lanoet," advocating the esta ishment of lock hospitals for the beneft of the service.
 + A surgeon to oue of our pentitentiaries lately told mo, that out of as
 कomen he examined for admissiou into hia saslun (not a hospital) 54 ere so heriousined for admission into hio asylum (aol a hospital) $5:$ mere so seriously diseased, that he could not give his sanction to thei who has been present at the examination of the applicants to our fou wards at hospitals nead not be reminded of the self-evident ract, thal
 the way in which these women neglect themselves or are neglected if the way in which these women neglect themselves or are neglected if
 deplorable. The mot strihing instance within my own knowledge is the one which ocecurredit Windsor, where during the summer before last the ist battalion of Pusilier Guards was quartered. Out of 660 men, 644 wert laid up in hospital with veneresi affections. This state of things arosf
 from the infected condition of the women of that town, as was well known to the men, offlerers, and police authorities, yet, as far as I car
 learn, no steps were takeu by the latter to cure them or diminish the evil

[^14]: Incrobille as it may appmar, I found, upon reneated trials, that pair of ordinary "zumechatare" 'hillocks, with the two attendant men raising water by the hag and rope" (in universal use in India where the
 depin to the witer exceds 20 feet), did not equal in efleet more than depth to the water excects 20 fect $)$ did not equal in eftect more than
 about one-eighth of the rstimated single horse power, and that the cost of irrigatink land throughoute Weskern India, ranged, for the three wateribes usual in the scason, from one to thirce, and sonatimes four $t+1 f$ nll parts of the nachine were well jacketed with charcoal o blankets, it would no donbt materially reduce the entrance of heat. $\$$ Vide note + in arext column.
 quantity within a distruce at whichnot bo obtained in any very grat quantity within a distance at which it would retain its coolness in tra-
 veling. it has been sugrested that the condensing apparatus itself veingk io sunk inte one of the wells, and thewe all conected with ach other by subaqueons tumels. I have in carlier writings pronosed cona hydraulice machine lut emhe such tunncl would cost nurro than scveral mative wills. In the present case the moin objection would lse rapid heating of the water by the ether undergoing condensation. As
 water is drawn off prom a well it is rapidy replaced hy water fowing in rater is drawn off Prom a wel it is rap
 from the surromding sindy stratum. Alt the water in eight wents, each one yard in diameter, and having ten feet decp of wator (an untasual quantity in the hot season), would wot exceed ss, who pounds, so that ip the water of all the wails could be truroughy mixed it wonld be heated a week. As to any planking process or enforeing a circulation ot the water throuk the carth around. it would by found, to bre at all efficetund, quite as laboricus as, and nore expensive from the provisions necessary, than rusug the water at onco, and it would soon exhaust the cooling throngh. Noreover, to would endanger a menid destruction of the watls. In the pinn for cooling air in wells deseribed in a former part of this
 evidenre, 120 wells are provided fur oue barruck, and the eftoct is aided by a certain amount of ovaporation.

[^15]: - A teruu I ventured to introduce in earlier writings to denote its state with respect to warmth. moisture, and electricity combined.
 \dagger I may brielly remark that the apparatus for producing ventila + I may brielly remark that the apparatus for producing ventilation
 by means of a cooling current would be placed above the ceiling, and by means of a coolinf current woudd be paced above the ceiling, and
 act on the principle have elserhere advocated of a downeard ventilation of cold heavy air. Hy employing the scnsitive apparatus referred to in the precedinge colnum the air might be cooled directly by the
 evapomentine cther, without the intarvention of a linuid medium such as the brine current in the ice-lnaking apparatus; but without such aup especeisl and very sensitive apparatusa aparge volume of so poor a heatconducting nedinm as air could not be cooled directuy by the ether, point, indeed below zero. As to the condensation of the ether after wards hy tho outtlowing current of air, when at a temperature of at least so (i.e., as it who boing diseharged from the building), if is an nction which gould not he secured without s condensing surface of
 metal of great extent, bearing somue such pronortiou to the surfice needed mor condensing by water, as do, inversely, tho small capacity for heat and swall heat-conducting powor of air bear to the vastly greater capacity for heal and conductiug power of water, especially when the casacitics means for urging the air current would bo ncedful.

[^16]: - Teme here employed as having been arcepted hy subsequent aththors, they having been first introduced in "The Stative of the Chest,",
 as appearing to
 me suitable for dencting certain volumes of pulmonary air not then defined by name though previously also notieed by Dr. Calvert Holland and others. The resilent air includes the supplement:
 tary and theresidunl, whill last cannot be expelled; the term "residual", having boen long introduced by physiologitew writors to donote the air remaining in the luggs after death.

[^17]: - Thediminution of the preseure wer the whole surfice, as by ascend-
 inc mountains, could it be effectu, would, of course, be altorether tng mountains, could it be effected, would, of course, be altagether
 difierent in its effeet. The pressure upon the body, and by way of the different in its effect. The pressure upon the body, and by way of the
 lungs, is necessary to drive bbood into the thighs and legs, which, as in dry cuping. would become a temporary reoeptacle for the tluid, to the rolief, it may be hoped, of the vitals oppressed by it.

[^18]: The quantity of rain in the tropical or temperste zones varies with the
 elevation of the eand sbove the sea. In India the maximum fall on the
 Western and Western coast is about 4,500 feet. In India the maximum fall on the
 nishes. This is shown by Colonel Sykea, in his Mis height it dimi-

 highest point of Western India, one year), 101 Inches. The same principle is
 observathe in the arid loty table-land of Thibet, and in the continuous
 elevated regions where rain eldom fall of
 the Andes. Dr. John Fletcher Miller, of Whitelaven, adduces evidence, in
 has interesting account of the Cumberland Lake District, to demonstrate the existence of a similar lawn in England, where he considets the maximum fall
 of rain to he at the height of 2,00 feet.
 t 1829 I wrote and publioned in Fifects of Climate, Fuod aspd Drink on Mam. The essay was prepared in the and ventilation of Cascutta, where cholera had become permanently located. Indian cities by the purificadion of this fearful malady were destroyed in the would be extensively generated and wafted with the periodical winds from Abia to Eurppe. The prugnostication was ridiculed: anc experience may now effective sanitary meanurutes. By so doing a healthy climate may everywhere se obtaned but no altitude or position will avall for the prevention of enof human besings are congregatcd, the ouration of life, wherever larke masses an urgent and daily duty all putrescent animal and vegatable, metter be made

[^19]: reeeded 65 Inchos; the grocatest repistered fall was 72 inches, and that was in I809. Average fall of rain for eight years, $48^{\circ} 10$ inches. Proceeding wost
 ward towards the Ghauts and Indian Ocean, the rains become heavier unti!

 when in amounted to wiyn inches. Another repurt kives the meanin wannual fatli,
 as deduced from the ohsarvations of ten years, at $2 \% y$ inches ; and the number as deduced from the ohsarvations of ten years, at $2 \% \mathrm{y}$ inches; and the number
 of days on which rain falle at i27.

[^20]:
 I The Chuors. distret (valley of the Pabur, 4,500 feel) is a beautiful and
 fertite tract, with 8 delightul climate.

[^21]: - In the neiglihourhood of Calcutta a serles of boring experiments to find
 water were carried on at intervals between 1804 and 1×33; the resuits were. water were carried on at intervats between ea light bue; or grsy-coloured asandy chay, becoming graibally darker from decased vegetable matior, wheil it pasies at 30 it. decp into a y it. stratum of black peat. apparently forged by
 the débris of Suuderbund vegetation, which was once the uelta of the Ganges ; below the peat a brack clay vatul in this and the gray clay immetiately above the peat, loge and brancher of yetlow and red wayd, found in a more or less decayed state. In oue insiance ouly bones were diswovered, at 9 ieet deep.
 Under blue clays, at 50 to 70 feet deep, kunkr and bagivi (appsrently smali Under shells, as seen in Upper India). At 70 tees a eeam of loose reodish iand,75 to 125 seet bend of yelow clay predominate, frequently stif and puare like
 poter's clap, but generaly mixed with sand and mica; horizontal strats of potter's clas. but generaly mixed with sand and mica; horizontal strats of 12 mect a more sandy yellow clay prevails, whicn gradually changes to a gray. jonse sand, hecoming coarier in quasity to the lowest depth yet mached
 (i7i, fiet), where it contains angular frayments, as lage as peas, oi quartz and jelispar.

[^22]: resembling the unio, which exists in preat abundance at the foot of the lower
 hills and througtout the Dooab. In the Neermal hills, north of the Godavery, hills and throughout the Dooab. In the Neermal hills, north of the Godavery,
 rest everywhere on grante; and there are several hot-springe holding lime rest every where on granke,
 in oolution. Unisalpe and
 mussels, abound in Malwah.
 mussels, abound in Malwah.
 in Most of the soils of lidia have a powerful absorbing quality; hence their fertile properties.

 are asi
 rence.

[^23]: - It is curious to note, in different enuntries, how planta seem to vary in
 their feeting; thun, at Singapore, the beat cotton soll apparestly consists of harge cearse rraing of white sande, mixed with eomething like rough charcoal dust, and with fragments of vegetablet and monses of all sorts. A A somewhat
 similar gubstance, mingled with shella and decayed vegetable matter, is the
 $\$$ See Mackay's valuable Report on Woatern India, p. 41.
 Cenonct stenbach asys that the mineral wealth of the Punjaub is conhat "properry worked they would yield an enormous revence."
 ohary more malieable, aud not so likely to break au Englantionn.

[^24]: 43. Annual Rate of Mortality in each of the 10 Years

 564
 44. Average Annual Mortality in the 10 Years at different Ages 564

[^25]: －Ape， 53 years and 6 months；period of service， 50 years（an Indian）；received from Lower Orphan School in 1798，and died in 1848.

[^26]: * No Cavalry separately accounted for at this Station during the Years 1847, 1848, 1851, 1852, 1853, 1854, 1855, and 1856.

[^27]: * No Troops separately accounted for at this Station during the Yeara 1847 and 1848 .

[^28]: * No Troops separately accourtid for at this Station except during the Year 1856.

[^29]: * No Cavalry separately accounted for under this heading except during the Years 1854, 1855, and 1856.

[^30]: * Troops only separately accounted for at this Station during the Yeara 1847 tn 1849

[^31]: *Troops only separately accounted for at this Station during the Years 1847 and 1848.

[^32]: * In this number is included 328 volunteers to other Regiments on the departure of the Battalion from Calcutta. The men who were discharged are included in the column "Number of Men sent from India to England."

[^33]: 1861, 5. Average 30

[^34]: * Of the death from Diarrhcea, 30 oceurred in the 32 nd Regiment in 1855. If the strength and deaths by Diarrhcea in that year are deducted, the ratio will be $7 \cdot 5$ instead of $10 \cdot 9$.

[^35]: These heights are greater than those required to obtain English high day temperature in all cases, and much greater These heights are greater than those required to obtain English high day temperature in all cases, and much greater
 than required for English mean temperature at places situated south of 26°; very nearly the same at 28°, and are less at than required for
 higher latitudes.

 Section VII.-On the Hygrometrical States of the Air in India.
 The trustworthy observations for determining the hygrometrical states of the atmosphere are but few in number. This is to be regretted, as the more or less moisture in the air exercises a very considerable influence upon the bealth of man. The observations which I have found available have been those of the dry and wet-bulb thermometers, and no direct determination of the temperature of the dew point has been met with, made either by Daniell's or Regnault's hygrometers. Our knowledge of the laws of the distribu-
 tion of water in the atmosphere is so limited, that at all elevated places some direct observations of this element should be taken, and not trust entirely to the inferential results derivable from the dry and wet-bulb aione. At moderate elevations it is possibly better to use the dry and wet thermometers than either of the above hygrometers ; and it may prove to be so at great elevations, when sufficient simultarieous observations have been made of direct and inferential determinations.
 The hygrometrical elements most desirable to be known are,-
 The temperature of the dew point.

[^36]: * Calcutta.-The reading in June has been altered from $29 \cdot 18$ to $29 \cdot 48$. The reading in October has been altered from $29 \cdot 63$ to $29 \cdot 73$.
 \dagger Ilazareebangh. The reading in April has been altered conjecturally from $27 \cdot 80$ to $27 \cdot 70$. The reading in December has been altered conjecturally from $27 \cdot 80$ to $27 \cdot 90$.
 Deesa.-The reading in May seems to be in error as compared with April and June; it should be 29.42 .
 Baroda.-The reading in March has been altered conjecturally from 30.54 to $30 \cdot 04$; and the reading in October from 29.67 to 29.87 .

