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PREFACE 

Broadly speaking, the object of industry is to set up 
economic ways and means of satisfying human wants and in 
so doing to reduce everything possible to routines requiring a 
minimum amount of human effort. Through the use of the 
scientific method, extended to take account of modern statis
tical concepts, it has been found possible to set up limits 
within which the results of routine efforts must lie if they are 
to be economical. Deviations in the results of a routine process 
outside such limits indicate that the routine has broken down 
and will no longer be economical until the cause of trouble is 
removed. 

This book is the natural outgrowth of an investigation 
started some six years ago to develop a scientific basis for 
attaining economic control of quality of manufactured product 
through the establishment of control limits to indicate at 
every stage in the production process from raw materials to 
finished product when the quality of product is varying more 
than is economically desirable. As such, this book constitutes 
a record of progress and an indication of the direction in which 
future developments may be expected to take place. To get 
as quickly as possible a picture of the way control works, the 
reader may find it desirable, after going through Part I, to 
consider next the various practical illustrations given in Parts 
VI and VII and in Appendix I. 

The material in this text was originally organized for 
presentation in one of the Out-Of-Hour Courses in Bell Tele
phone Laboratories. Since then it has undergone revision 
for use in a course of lectures presented at the request of 
Stevens Institute of Technology in its Department of Eco
nomics of Engineering. Much of the work recorded herein is 
the result of the cooperative effort of many individuals. To a 
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considerable extent the experimental data are such as could 
have been accumulated only in a large industry. 

On the theoretical side the author wishes to acknowledge 
the very helpful and suggestive criticisms of his colleague 

.' Dr. T. C. Fry and of Mr. E. C. Molina of the American Tele
phone and Telegraph Company. On the practical side he 
owes a great debt to another colleague, Mr. H. F. Dodge. 

"The task of accumulating and analyzing the large amount 
of data and of putting the manuscript in final form was 
borne by Miss Marion B. Cater and Miss Miriam S. Harold, 
assisted by Miss Fina E. Giraldi. Mr. F. W. Winters contrib
uted to the development of the theory. The Bureau of 
Publication of the Laboratories cooperated in preparing the 
manuscript for publication. To each of these the author is 
deeply indebted. 

The author is particularly indebted to R. L. Jones, Director 
of Apparatus Development, and to G. D. Edwards, Inspection 
Engineer, under whose helpful guidance the present basis for 
economic control of quality of manufactured product has been 
developed. 

BELL TELEPHONE UBOIlATOIUES, INC: 

New York, N. Y. 
April, 1931. 

W. A. SHEWHART. 
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Introduction 

Fundamental Concepts of Statistical Con
trol and an Outline of Five Economic 
Advantages Obtainable through Statistical 
Control of Quality of Manufactured Product 



CHAPTER I 

CHARACTERISTICS OF A CONTROLLED QUALITY 

t. What;s tht Probltm of Controll 

What is the problem of control of quality of manufactured 
product? To answer this question, let us put ourselves in 
the position of a manufacturer turning out millions of the 
same kind of thing every year. Whether it be lead pencils, 
chewing gum, bars of soap, telephones, o. automobiles, the 
problem is much the same. He sets up a standard for the 
quality of a given kind of product. He then tries to make 
all pieces of product conform with this standard. Here his 
troubles begin. For him standard quality is a bull's-eye, but 
like a marksman shooting at a bull's-eye, he often misses. As 
is the case in everything we do, unknown or chance causes 
exert their influence. The problem then is: how much may 
the quality of a product vary and yet be controlled? In other 
words, how much variation should we leave to chance? 

To make a thing the way we want to make it is one popular 
conception of control. We have been trying to do .this for 
a good many years and we see the fruition of this effort in the 
marvelous industrial development around us. We are sold 
on the idea of applying scientific principles. However, a 
change is coming about in the principles themselves and this 
change gives us a new concept of control. 

A few years ago we were inclined to look forward to the 
time when a manufacturer would be able to do just what he 
wanted to do. We shared the enthusiasm of Pope when he 
said "All chance is but direction thou canst not see", and 
we looked forward to the time when we would see that direction; 
In other words, emphasis was laid on the txaclness of physical 

3 
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laws. Today, however, the emphasis is placed elsewhere as 
is indicated' by the following quotation from a recent issue, 
July, 1927, of the journal Engineering: 

Today the mathematical physicist seems more and more inclined 
to the opinion that each of the so-called laws of nature is essentially 
statistical, and that all our equations and theories can do, is to 
provide us with a series of orbits of varying probabilities. 

The breakdown of the orthodox scientific theory which 
formed the basis of applied science in the. past necessitates 
the in~roduction of certain new concepts into industrial 
development. Along with this change must come a revision 
in our ideas of such things as a controlled product, an econ
omic standard of quality, and the method of detecting lack 
of control or those variations which should not be left to 
chance. 

Realizing, then, the statistical nature of modern science, 
it is but logical for the manufacturer to turn his attention 
to the consideration of available ways and means of handling 
statistical problems. The necessity for doing this is pointed 
out in the recent book 1 on the application of statistics in 
mass production, by Becker, Plaut, and Runge. They say: 

It is therefore important to every technician who is dealing with 
problems of manufacturing cOlltrol to know the laws of statistics 
and to be able to apply them correctly to his problems. 

Another German writer, K. H. Daeves, in writing on somewhat 
the same subject says: 

Statistical research is a logical method for the control of opera
tions, for the research engineer, the plant superintendent, and the 
production executive.2 

The problem of control viewed from this angle is a compar
atively new one. In fact, very little has been written on 
the subject. Progress in modifyin:g our concept of control 
has been and will be comparatively slow. In the first place, 

~ Anwenaungen aer Malhemalischen Slalislilc auf Problem, tier MtlSsenfawilcaiion, 
Julius Springer, Berlin, 1927. 

• "The Utilization of Statistics," cresling, March, 1924. 
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it requires the application of certain modern physical concepts; 
and in the second place, it requires the application of statistical 
methods which up to the present time have been for the most 
part left undisturbed in the journals in which they appeared. 
This situation is admirably summed up in the January, 1926 
issue of N alure as follows: 

A large amount of work has been done in developing statistical 
methods on the scientific side, and it is natural for anyone interested 
in science to hope that all this work may be utilized in commerce 
and industry. There are signs that such a movement has started, 
and it would be unfortunate indeed if those responsible in practical 
affairs fail to take advantage of the improved statistical machinery 
now available. 

2. N alure of Control 

Let us consider a very simple example of our inability 
to do exactly what we want to do and thereby illustrate two 
characteristics of a controlled product. 

Write the letter a on a piece of paper. Now make another a 
just like the first one; then another and another until you 
have a series of a's, a, a, a, a, . . •. You try to make all the 
a's alike but you don't; you can't. You are willing to accept 
this as an empirically established fact. But what of it? Let 
us see just what this means in respect to control. Why can 
we not do a simple thing like making all the a's just alike? 
Your answer leads to a generalization which all of us are 
perhaps willing to accept. It is that there are many causes of 
variability among the a's: the paper was not smooth, the 
lead in the pencil was not uniform, and the unavoidable vari
ability in your external surroundings reacted upon you to 
introduce variations in the a's. But are these the only causes 
of variability in the a's? Probably not. 

We accept our human limitations and say that likely 
there are many other factors. If we could but name all the 
reasons why we cannot make the a's alike, we would most 
assuredly have a better understanding of a certain part of 
nature than we now have. Of course, this conception of what 
it means to be able to do what we want to do is not new; it 
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does not belong exclusively to anyone field of human thought;· 
it is commonly accepted. 

The point to be made in this simple illustration is that 
we are limited in doing what we want to do; that to do what 
we set out to do, even in so simple a thing as making a's that 
are alike, requires almost infinite knowledge compared with 
that which we now possess. It follows, therefore, since we are 
thus willing to accept as axiomatic that we cannot do what 
we want to do and cannot hope to understand why we cannot, 
that we must also accept as axiomatic that a controlled quality 
will not be a constant quality. Instead, a controlled quality 
must be a variable quality. This is the first characteristic. 

But let us go back to the results of the experiment on the 
a's and we shall find out something more about control. Your 
a's are different from my a's; there is something about your a's 
that makes them yours and something about my a's that makes 
them mine. True, not all of your a's are alike. Neither are 
all of my a's alike. Each group of a's varies within a certain 
range and yet each group is distinguishable from the others. 
This distinguishable and, as it were, constant variability 
within limits is the second characteristic of control. 

3. Definition oj Control 

For our present purpose Q phenomenon will be said to be 
controlled when, through the use oj past experience, we can predict, 
at least within limits, how the phenomenon may be expected to 
vary in the future. Here it is understood that prediction within 
limits means that we can state, at least approximatCly, the prob
ability that the observed phenomenon will fall within the given 
limits. 

In this sense the time of the eclipse of the sun is a predictable 
phenomenon. So also is the distance covered in successive 
intervals of time by a freely falling body. In fact, the prediction 
in such cases is extremely precise. It is an entirely different 
matter, however, to predict the expected length of life of an 
individual at a given age; the velocity of a molecule at a given 
instant of time; the breaking strength of a steel wire of known 
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cross section; or numerous other phenomena of like character. 
In fact, a prediction of the type illustrated by forecasting the 
time of an eclipse of the sun is almost the exception rather 
than the rule in scientific and industrial work. 

In all forms of prediction an element of chance enters. 
The specific problem which concerns us at the present moment 
is the formulation of a scientific basis for prediction, taking 
into account the element of chance, where, for the purpose of 
our discussion, any unknown cauu oj II phenomenon will De 
'(N1Ied II chance cause. 



CHAPTER II 

SCIENTIFIC BASIS FOR CONTROL 

I. Three Important Postulates 

What can we say about the future behavior of a phenomenon 
acting under the influence of unknown or chance causes? 
I doubt that, in general, we can say anything. For example, 
let me ask: "What will be the price of your favorite stock 
thirty years from today?" Are you willing to gamble much 
on your powers of prediction in such a case? Probably not. 
However, if I ask: "Suppose you were to toss a penny one 
hundred times, thirty years from today, what proportion of 
heads would you expect to find?", your willingness to gamble 
on your powers of prediction would be of an entirely different 
order than in the previous case. 

The recognized difference between these two situations 
leads us to make the following simple postulate: . 

Postulate I-All chance systems of causes are not alike 
in the sense that they enable us to predict the future in terms 
of the past. 

Hence, if we are to be able to predict the quality of proauct 
even within limits, we must find some criterion to apply to 
observed variability in quality to' determine whether or not 
the cause system producing it is such as to make future pre
dictions possible. 

Perhaps the natural course to follow is to glean what we 
Can about the workings of unknown chance causes which are 
generally acknowledged to be controlled in the sense that they 
permit of prediction within limits. Perhaps no better examples 
could be considered than length of human life and molecular 

8 
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motion. It might appear that nothing is more uncertain than 
life itself, unless perhaps it be molecular motion. Yet there 
is something certain about these uncertainties. In the laws of 
mortality and distribution of molecular displacement, we find 
lome of the essential characteristics of control within limits. 

A. Law oj Morla/ily 

The date of death always has seemed to be fixed by chance 
even though great human effort has been expended in trying 
to rob chance of this prerogative. We come into this world 
and from that very instant on are surrounded by causes of 

FlO. I.-LAw or MORTALITy-LAW or FLUCTUAnONS CONTROLLED WITHIN UMITS. 

death seeking our life. Who knows whether or not death will 
overtake us within the next year? If it does, what will be the 
cause? These questions we cannot answer. Some of us are 
to fall at one time from one cause, others at another time 
from another cause. In this fight for life we see then the 
element of uncertainty and the interplay of numerous unknown 
or chance causes. 

However, when we study the effect of these chance causes 
in producing deaths in large groups of individuals, we find some 
indication of a controlled condition. We find that this hidden 
host of causes produce deaths at an average rate which does 
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not differ much over long periods of time. From such obser
vations we are led to believe that, as we approach the condition 
of homogeneity of population and surroundings, we approach 
what is customarily termed a "Law of Mortality" such as 
indicated schematically in Fig. I. In other words, we believe 
that in the limiting case of homogeneity the causes of death 
function so as to make the probability of dying within given 
age limits, such as forty-five to fifty, constant. That is, we 
believe these causes are controlled. In other words, we assume 
the existence of a kind of statistical equilibrium among the 
effects of an unknown system of chance causes expressible in 
the assumption that the probability of dying within a given 
age limit, under the assumed conditions, is an objective and 
constant reality. 

B. Molecular Motion 

Just about a century ago, in 1827 to be exact, an English 
botanist, Brown, saw something through his microscope that 
caught his interest. It was motion going on among the sus
pended particles almost as though they were alive. In a way it 
resembled the dance of dust particles in sunlight, so familiar 
to us, but this dance differed from that. of the dust particles 
in important respects,-for example, adjacent particles seen 
under the microscope did not necessarily move in even approx
imately the same direction, as do adjacent dust particles sus
pended in the air. 

Watch such motion for several minutes. So long as the 
temperature remains constant, there is no change. Watch it 
for hours, the motion remains characteristically the same. 
Watch it for days, we see no difference. Even particles sus
pended in liquids enclosed in quartz crystals for thousands of 
years show exactly the same kind of motion. Therefore, to 
the best of our knowledge there is remarkable permanence to 
this motion. Its characteristics remain constant. Here we 
certainly find a remarkable degree of constancy exhibited by a 
chance system of causes. 

Suppose we follow the motion of one particle to get a better 
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picture o( this constancy. This has been done (or us by 
leveral investigators, notably Perrin. In such an experiment 
he noted the position o( a particle at the end o( equal intervals 
o( time, Fig. 2. He (ound that the direction o( this motion 
observed in one interval differed in general (rom that in the 
next succeeding interval; that the direction o( the motion 

FlO. :a.-A CLOSE-UP or MOLECULAR MonON ApPEARINO ABSOLUTELY 

IRREOULAR, YET CoNTROLLED WITHIN LIMITS. 

presents what we instinctively call absolute irregularity. Let 
us ask ourselves certkin questions about this motion. 

Suppose we fix our attention on the particle at the point A. 
What made it move to B in the next interval o( time? O( 
course we answer by saying that a particle moves at a given 
instant in a given direction, say AB, because the resultant 
(orce o( the molecules hitting it in a plane perpendicular to 
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this direction from the side away from B is greater than that 
on the side toward B; but at any given instant of time there 
is no way of telling what molecules are engaged in giving it 
such motion. We do not even know how many molecules are 
taking part. Do what we will, so long as the temperature is 
kept constant, we cannot change this motion in a given system. 
It cannot be said, for example, when the particle is at the point 
B that during. the next interval of time it will move to C. 
We can do nothing to control the motion in the matter of dis
placement or in the matter of the direction of this displacement. 

Let us consider either the x or y components of the segments 
of the paths. Within recent years we find" abundant evidence 
indicating that these displacements appear to be distributed 
about zero in accord with what is called the normallaw.1 

Such evidence as that provided by the law of mortality 
and the law of distribution of molecular displacements leads us 
to assume that there exist in nature phenomena controlled by 
systems of chance causes such that the probability dy of the 
magnitude X of a characteristic of some such phenomenon 
falling within the interval X to X + dX is expressible as a 
function! of the quantity X and certain parameters represented 
symbolically in the equation 

. 
where the X's denote the parameters. Such a system of causes 
we shall term constant because the probability dy is independent 
of time. We shall take as our second postulate: 

Postulate 2-Constant systems of chance causes do exist 
in nature. 

To say that such systems of causes exist in nature, however, 
is one thing; to say that such systems of causes exist in a 

1 That is to say. if x represents the deviation from the mean displacement. zero in 
this case. the probability tly of x lying within the range x to x + tbt is given by 

I _~ 
tly = • ;=4 a .. 1 tlx, (I) 

trv:1.-

where tr is the root mean square deviation. 
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production process is quite another thing. Today we have 
abundant evidence of the existence of such systems of causes 
in the production of telephone equipment. The practical 
situation, however, is that in the majority of cases there are 
unknown causes of variability in the quality of a product which 
do not belong to a constant system. This fact was discovered 
very early in the development of control methods, and these 
causes were called assignable. The question naturally arose as 
to whether it was possible, in general, to find and eliminate 
such causes. Less than ten years ago it seemed reasonable to 
assume that this could be done. Today we have abundant 
evidence to justify this assumption. We shall, therefore, 
adopt as our third postulate: 

Postulate ,J-Assignable causes oj variation may be 
found and eliminated. 

Hence, to secure control, the manufacturer must seek to 
find and eliminate assignable causes. In practice, however, 
he has the difficulty of judging from an observed set of data 
whether or not assignable causes are present. A simple illus
tration will make this point clear. 

2. When do Fluctuations Indicate Trouble? 

In many instances the quality of the product is measured 
by the fraction non-conforming to engineering specifications 
or, as we say, the fraction defective. Table I gives for a 
period of twelve months the observed fluctuations in this 
fraction for two kinds of product designated here as Type A 
and Type B. For each month we have the sample size n, 

the number defective nl and the fraction p = nl. We can 
n 

better visualize the extent of these fluctuations in fraction 
defective by plotting the data as in Fig. 3-a and Fig. 3-b. 

What we need is some yardstick to detect in such variations 
any evidence of the presence of assignable causes. Can we 
find such a yardstick? Experience of the kind soon to be con
sidered indicates that we can. It leads us to conclude that 
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it is feasible to establish ~riteria useful in detecting the presence 
of, assignable causes of variation or, in other words, criteria 
which when applied to a set of observed values will indicate 
whether or not it is reasonable to believe that the causes of 
variability should be left to chance. Such criteria are basic 
to any method of securing control within limits. Let us, there
fore, consider' them critically. It is too much to expect that 
the criteria will be infallible. We are amply rewarded if they 
appear to work in the majority of cases. 

Generally speaking, the criteria are of the nature of limits 
derived from past experience showing within what range 
the fluctuations in quality should remain, if they are to be 
left to chance .. For example, when such limits are placed on 
the fluctuations ~ the qualities shown in Fig. 3, we find, as 
shown in Fig. 4, that in one case two points fall outside the 
limits and in the other case no point falls outside the limits. 

TABLE I.-FLUCTUATIONS IN QUALITY or Two MANUFACTURED PRODUCTS 

Apparatus Type A Apparatus Type B 

Fraction Fraction 
Number Number Defective Number Number Defective 

Month Inspected Defective n, Month Inspected Defective n, 
n n, p=-

n 
n n, p=-

n 

Jan ..... 527 4 0.0076 Jan ..... 169 I 0.0059 
Feb ..... 610 5 0.0082 Feb ..... 99 J 0.0303 
March .. 428 5 0. 011 7 March .. 208 I 0.0048 
April. ... 400 2 0.0050 April. ... 196 I 0.0051 
May .... 498 15 O.OJOI May .... IJ2 I 0.0076 
June .... 500 3 0.0060 June .... 89 I 0.0112 
July .... 395 3 0.0076 July .... 167 I 0.0060 
Aug .... 393 2 0.0051 Aug ..... 200 I 0.0050 
Sept .... 625 3 0.0048 Sept .... 171 2 0.0117 
Oct ..... 465 13 0.0280 Oct ..... 122 I 0.0082 
Nov .... .. 6 5 0.0112 Nov .... 107 3 0.0280 
Dec ..... 510 3 0.0059 Dec ..... 132 1 0.0076 

Average 483. 08 5. 25 0. 0109 Average 149·33 1.42 0·0095 
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Upon the basis of the use of such limits, we look for trouble 
in the form of assignable causes in one case but not in the other. 
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However, the question remains: Should we expect to be able 
to find and eliminate causes of variability only when deviations 
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fall outside the limits? First, let us see what statistical theory 
has to say in answer to this question. 

Upon the basis of Postulate 3, it follows that we can find 
and remove causes of variability until the remaining system 
of causes is constant or until we reach that state where the 
probability that the deviations in quality remain within any 
two fixed limits (Fig. 5) is constant. However, this assumption 
alone does not tell us that there are certain limits within which 
all observed values of quality should remain provided the 
causes cannot be found and eliminated. In fact, as long as 

.. o 
z 
2 
t 
~ .. .. 
:I o 
III 

------------------• • • • • • • • • • 
·ONLY SUCH V,RIATIONS ·SHOULD BE. LEFT. TO .CHANCE 

• • • • • • • • • ----------------

AS TIME GOES ON 

FlO. s.-JuOOIIallT PLU. MODal.1f STA11S11CAL MACHllfEaY MAKas POSSIBLE THa 

UTABLlSHMallT or SUCH LIMITS 

the limits are set so that the probability of falling within the 
limits is less than unity, we may always expect a certain 
percentage of observations to fall outside the limits even though 
the system of causes be constant. In other words, the accept
ance of this assumption gives us a right to believe that there is 
an objective state of control within limits but in itself it does 
not furnish a practical criterion for determining when variations 
in quality, such as those indicated in Fig. 3, should be left 
to chance. 

Furthermore, we may say that mathematical statistics as 
such does not give us the desired criterion. What does this 
situation mean in plain everyday engineering English? Simply 
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this: such criteria, if they exist, cannot be shown to exist by 
any theorizing alone, no matter how well equipped the theorist 
is in respect to probability or statistical theory. We see in 
this situation the long recognized dividing line between theory 
and practice. The available statistical machinery referred to 
by the magazine Nature is, as we might expect, not an end 
in itself but merely a means to an end. In other words, the 
fact that the criterion which we happen to use has a fine 
ancestry of highbrow statistical theorems does not justify its 
use. Such justification must come from empirical evidence 
that it works. As the practical engineer might say, the proof 
of the pudding is in the eating. Let us therefore look for the 
proof. 

3. Evidence that Criteria Exist for Detecting Assignable Causes 

A. Fig. 6 shows the results of one of the first large scale 
experiments to determine whether or not indications given by 
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FlO. 6.-EVIDENCE OF IMPROVEMENT IN QUALITY WITH ApPROACH TO CONTROL: 

such a criterion applied to quality measured in terms of fraction· 
defective were justified by experience. About thirty typical 
items used in the telephone plant and produced in lots running 
into the millions per year were made the basis for this study. 
As shown in this figure, during 1923-24 these iteri'is showed··' 
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68 per cent control about a relatively low average of 1.4 per 
cent defective.1 However, as the assignable causes, indicated 
by deviations in the observed monthly fraction defective 
falling outside of control limits, were found and eliminated, the 
quality of product approached the state of control as indicated 
by an increase of from 68 per cent to 84 per cent control 
by the latter part of 1926. At the same time the quality 
improved; in 1923-24 the average per cent defective was 1.4 
per cent, whereas by 1926 this had been reduced to 0.8 per cent. 
Here we get some typical evidence that, in general, as the 
assignable causes are removed, the variations tend to fall more 
nearly within the limits as indicated by an increase from 
68 per cent to 84 per cent. Such evidence is, of course, one 
sided. It shows that when points fall outside the limits, 
experience indicates that we can find assignable causes, but 
it does not indicate that when points fall within such limits, 
we cannot find causes of variability. However, this kind of 
evidence is provided by the following two typical illustrations. 

B. In the production of a certain kind of equipment, 
considerable cost was involved in securing the necessary 
electrical insulation by means of materials previously used for 
that purpose. A research program was started to secure a 
cheaper material. After a long series of preliminary exper
iments, a tentative substitute was chosen and an extensive 
series of tests of insulation resistance were made on this 
material, care being taken to eliminate all known causes of 
variability. Table 2 gives the results of 204 observations of 
resistance in megohms taken on as many samples of the 
proposed substitute material. Reading from top to bottom 
beginning at the left column and continuing throughout the 
table gives the order in which the observations were made. 
The question is: "Should such variations be left to chance?" 

No a priori reason existed for believing that the measure
ments forming one portion of this series should be different 
from those in any other portion. In other words, there was 

I Jones, R. L. "QJaliry of Telephone Materials," )MI 'T.lepfum. ttl""''''/Y. June, 
1927. 
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no rational basis for dividing the total set of data into groups 
of a given number of observations except that it was reasonable 
to believe that the system of causes might have changed from 
day to day as a result of changes in such things as atmospheric 
conditions, observers, and materials. In general, if such 
changes are to take place, we may readily detect their effect 
if we divide the total number of observations into compar 
atively small. subgroups. In this particular instance, the 
size of the subgroup was taken as four and the black dots in 
Fig. 7-a show the successive averages of four observations in 
the order in which thev were taken. The dotted lines are the 

5,045 
4,350 
4,350 
3,975 
:4,290 
4.430 
4,485 
4,285 
3,980 
3,925 
3,645 
3,76:> 

3,300 
3,685 
3,463 
5,200 
5,100 

TABLE 2.-ELECTRICAL RESISTANCE 01' INSULATION IN MEGOHMS

SHOULD SUCH VARIATIONS BE LEFT TO CHANCE? 

4,635 4,700 4,650 4,640 3,940 4,570 4,560 4,450 4,500 5,075 
5,100 4,600 4,170 4,335 3,700 4,570 3,075 4,450 4,770 4,925 
5,450 4,110 4,255 5,000 3,650 4,855 2,965 4,850 5,150 5,075 
4,635 4,410 4,170 4,61 5 4,445 4,160 4,080 4,450 4,850 4,925 
4,720 4,180 4,375 4,21 5 4,000 4,325 4,080 3,635 4,700 5,250 
4,810 4,790 4,175 4,275 4,845 4,125 4,425 3,635 5,000 4,915 
4,565 4,790 4,550 4,275 5,000 4,100 4,300 3,635 5,000 5,600 
4,410 4,340 4.450 5,000 4,560 4,340 4,430 3,900 5,000 5,075 
4,065 4,895 2,855 4,61 5 4,700 4,575 4,840 4,340 4,700 4.450 
4,565 5,750 2,920 4,735 4,310 3,875 4,840 4,340 4,500 4,21 5 
5,190 4,740 4,375 4,21 5 4,310 4,050 4,310 3,665 4,840 4,325 
4,725 5,000 4,375 4,700 5;000 4,050 4,185 3m5 5,075 4,665 
4,640 4,895 4,355 4,700 4,575 4,685 4,570 5,000 5,000 4,61 5 
4,640 4,255 4,090 4,700 4,700 4,685 4,700 4,850 4,770 4,615 
4,895 4,170 5,000 4,700 4,430 4,430 4,440 4,775 4,570 4,500 
4,790 3,850 4,335 4,095 4,850 4,300 4,850 4,500 4,925 4,765 
4,845 4,445 5,000 4,095 4,850 4,690 4,125 4,770 4,775 4,500 

4,500 
4,850 
4,930 
4,700 
4,890 
4,625 
4,425 
4,135 
4,190 
4,080 
3,690 
5,050 
4,625 
5,150 
5,250 
5,000 
5,000 

limits within which experience has shown that these observa
tions should fall, taking into account the size of the sample, 
provided the variability should be left to chance. Several 
of the observed values lie outside these limits. This was 
taken as an indication of the existence of causes of variability 
which could be found and eliminated. 

Further research was instituted at this point to find these 
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causes of variability. Several were Eoun.d, and after these 
had been eliminated another series of observed values gave the 
results indicated in Fig. 7-". Here we see that all of the 
points lie within the limits. We assumed, therefore, upon the 
basis of this test, that it was not feasible for research to go 
much further in eliminating causes of variability. Because of 
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the importance of thIS particular experiment, however, con
siderably more work was done, but it failed to reveal causes of 
variability. Here then is a typical case where the criterion 
indicates when variability should be left to chance. 

C. Suppose now that we take another illustration where 
it is reasonable to believe that almost everything humanly 
possible has been done to remove the assignable causes of 
variation in a set of data. Perhaps the outstanding series of 
observations of this type is that given by Millikan in his 
famous measurement of the charge on an electron. Treating 
his data in a manner similar to that indicated above, we get 
the results shown in Fig. 8. All of the points are within the 
dotted limits. Hence the indication of the test is consistent 
with the accepted conclusion that those factors which need not 
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be left to chance had been eliminated before this particular 
set of data were taken. 

4. Role Played by Statistical Theory 

It may appear thus far that mathematical statistiCs prays 
a relatively minor role in laying a basis for economic control of 
quality. Such, however, is not the case. In fact, a central 
concept in engineering work today is that almost every physical 
property is a statistical distribution. In other words, an observed 
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set of data constitutes a sample of the effects of unknown 
chance causes. It is at once apparent, therefore, that sampling 
theory should prove a valuable tool in testing engineering 
hypotheses. Here it is that much of the most recent math
ematical theory becomes of value, particularly in analysis 
involving the use of comparatively small numbers of observa
tions. 

Let us consider, for example, some property sudi as the 
tensile strength of a material. If our previous assumptions 
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are justified, it follows that, after we have done everything 
we can to eliminate assignable causes of variation, there will 
still remain a certain amount of variability exhibiting the 
state of control. Let us consider an extensive series of data 
recently published by a member of the Forest Products Lah
oratories,' Fig. 9. Here we have the results of tests for modulus 
of rupture on ',304 small test specimens of Sitka spruce, the 
kind of material used extensively in aeroplane propellers 
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during the War. The wide variability is certainly striking. 
The curve is an approximation to the distribution function for 
this particular property representing what is at least approxi
mately a state of control. The importance of going from the 
sample to the smooth distribution is at once apparent and in 
this case a comparatively small amount of refinement in 
statistical machinery is required. 

I Newlin, J. A., Protn'i"gl o/tlrl A",,"c,,,, Socie" 0/ Ci,il E"gi"eerl, September 
1926, pp. 14.)6-1443· 
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Suppose, however, that instead of more than a thousand 
measurements we had only a very small number, as is so often 
the case in engineering work. Our estimation of the variability 
of the distribution function representing the state of control 
upon the basis of the information given by the sample would 
necessarily be quite different from that ordinarily used by 
engineers, see Fig. 10. This is true even though to begin with 
we make the same kind of assumption as engineers have been 
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accustomed to make in the past. This we may take as a 
typical example of the fact that the production engineer 
finds it to his advantage to keep abreast of the developments 
in statistical theory. Here we use new in the sense that much 
of the modern statistical theory is new to most engineers. 

S. Conclusion 

Based upon ev:idence such as already presented, it appears 
feasible to set up criteria by which to determine when assignable 
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causes of variation in quality have been eliminated so that the 
product may then be considered to be controlled within limits. 
This state of control appears to be. in general. a kind of limit 
to which we may expect to go economically in finding and 
removing causes of variability without changing a major 
portion of the manufacturing process as. for example, would 
be involved in the substitution of new materials or designs. 



CHAPTER 'III 

ADVANTAGES SECURED THROUGH CONTROL 

I. Reduction in the Cost of Inspection 

If we can be assured that something we use is produced 
under controlled conditions, we do not feel the need for 
inspecting it as much as we would iF we did not have this 
assurance. For example, we do not waste our money on doctors' 
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bills so long as we are willing to attribute the variability in 
our health to the effects of what in our present terminology 
corresponds to a constant system of chance causes. 

In the early stages of production there are usually causes 
of variability which must be weeded out through the process 
of inspection. As we proceed to eliminate assignable causes, 
the quality of product usually approaches a state of stable 
equilibrium somewhat after the manner of the two specific 
illustrations presented in Fig. II. In both instances, the 
record goes back for more than two years and the process of 
elimination in each case covers a period of more than a year. 

It is evident that as the quality approaches what appears 
to be a comparatively stable state, the need for inspection 
is reduced. 

2. &duction in Ihe Cosl oj Rejeclions 

That we may better visualize the economic significance 
of control, we shall now view the production process as a whole. 
We take as a specific illustration the manufacture of telephone 
equipment. Picture, if you will, the twenty or more raw 
materials such as gold, platinum,silver, copper, tin, lead, wool, 
rubber, silk, and so forth, literally collected from the four 
corners of the earth and poured into the manufacturing process. 
The telephone instrument as it emerges at the end of the 
production process is not so simple as it looks. In it there are 
201 parts, and in the line and equipment making possible the 
connection of one telephone to another, there are approximately 
110,000 more parts. The annual production of most of these 
parts runs into the millions so that the total annual production 
of parts runs in to the billions. 

How shall the production process for such a complicated 
mechanism be engineered so as to secure the economies of 
quantity production and at the same time a finished product 
with quality characteristics lying within specified tolerances? 
One such scheme is illustrated in Fig. 12. Here the manu
facturing process is indicated schematically as a funnel, at the 
small end of which we have the 100 per cent inspection screen 
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to protect the consumer by assuring that the quality of the 
finished product is satisfactory. Obviously, however, it is 
often more economical to throw out defective material at some 
of the initial stages in production rather than to let it pass on 
to the final stage where it would likely cause the rejection of ~ 

INSPECTION 
TO REDUCE COST 

OF PRODUCTION 

100 a/o INSPECTION 
TO 

PROTECT CONSUMER 

FlO. I:1.-AN ECONOMIC PRODUCTION SCHEME. 

finished unit of product. For example, we see to the right 
of the funnel, piles of defectives, which must be junked or 
reclaimed at considerable cost. 

It may be shown theoretically that, by eliminating 
assignable causes of variability, we arrive at a limit to which 
it is feasible to go in reducing the fraction defective. It must 
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suffice here to call attention to the kind of evidence indicating 
that this limiting situation is actually approached in practice 
as we remove the assignable causes of variability. 

Let us refer again to Fig. 6 which is particularly significant 
because it represents the results of a large scale experiment 
carried on under commercial conditions. As the black sectors 
in the pie charts decrease in size, indicating progress in the 
removal of assignable causes, we find simultaneously a decrease 
in the average per cent defective from 1.4 to 0.8. Here we 
see how control works to reduce the amount of defective 
material. However, this is such an important point that it is 
perhaps interesting to consider an illustration from outside 
the telephone field. 

Recent work of the Food Research Institute of Stanford 
University shows that the loss from stale bread constitutes an 
important item of cost for a great number of wholesale as well 
as some retail bakeries. It is estimated that this factor alone 
costs the people of the United States millions of dollars per 
year. The sales manager of every baking corporation is 
interested, therefore, in detecting and finding assignable 
causes of variation in the returns of stale bread if by so doing 
he can reduce this loss to a minimum. 

Some time ago it became possible to secure the weekly 
record of return of stale bread for ten different bakeries oper
ating in a certain metropolitan district. These observed 
results are shown graphically in Fig. 13. At once we see that 
there is a definite lack of control on the part of each bakery. 
The important thing to note, however, is that the bakery 
having the lowest percentage return, 1.99 per cent, also shows 
better control than the other bakeries as judged by the number 
of points falling outside the control limits in the 36-week 
period. 

3. Allainmenl of Maximum Benefits from ffl.uanlity Production 

The quality of the finished product depends upon the 
qualities of raw materials, piece-parts, and the assembling 
process. It follows from theory that so long as such quality 
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characteristics are controlled, the quality bf the finished unit 
will be controlled, and will therefore exhibit minimum vari. 
ability. Other advantages also result. For example, by 
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FlO. IJ.-RI!sULTS SHOWINO How CONTROL EFFECTS A REDUCTION IN THE 

COST OF REJECTIONS. 

gammg control, it is possible, as we have already seen, to 
establish standard statistical distributions for the many quality 
characteristics involved in design. Very briefly, let us see 
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just how these statistical distributions representing states of 
control become useful in securing an economic design and pro-. 
duction scheme. 

Suppose we consider a simple problem in which we assume 
that the quality characteristic Y in the finished product is 
a function! of m different quality characteristics, Xl, X 2, ••• , 

Xm, representable symbolically by 

(J) 

For example, one of the X's might be a modulus of rupture, 
another a diameter of cross section, and Y a breaking load. 
Engineering requirements generally place certain tolerances on 
the variability in the resultant quality characteristic Y, which 
variability is in turn a function of the variabilities in each 
of the m different quality characteristics. 

It follows theoretically that the quality characteristic Y 
will be controlled if the m independent characteristics are 
controlled. Knowing the distribution functions for each of 
the m different independent variables, it is possible to approx
imate very closely the per cent of the finished product which 
may be expected to have a quality characteristic Y within 
the specified tolerances. If, for example, it is desirable to 
minimize the variability in the resultant quality Y by proper 
choice of materials, and if standard distribution functions 
for the given quality characteristics are available for each of 
several materials, it is possible to choose that particular 
material which will minimize the variability of the resultant 
quality at a minimum of ~ost. 

4. d/lainmml of Uniform ~ual;ty tum though Insptction Ttst 
is Dtstructiut 

So often the quality of a material of the greatest importance 
to the individual- is one which cannot be measured directly 
without destroying the material itself. So it is with the fuse 
that protects your home; with the steering rod on your car; 
with the rails that hold the locomotive in its course; with 
the propeller of an aeroplane, and so on indefinitely. How are 
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we to know that a product which cannot be tested in respect 
to a given quality is satisfactory in respect to this same quality? 
How are we to know that the fuse will blow at a given current; 
that the steering rod of your car will not break under maximum 
load placed upon it? To answer such questions, we must rely 
upon previous experience. In such a case, cl\uses of variation 
in quality are unknown and yet we are concd·ned in assuring 
ourselves that the quality is satisfactory. 

Enough has been said to show that here is one of the very 
important applications of the theory of control. By weeding 
out assignable ·causes of variability, the manufacturer goes to 
the feasible limit in assuring uniform quality. 

5. Reduction in Tolerance Limits 

By securing control and by making use of modern statistical 
tools, the manufacturer not only is able to assure quality, 
even though it cannot be measured directly, but is also often 
able to reduce the tolerance limits in that quality as one very 
simple illustration will serve to indicate. 

Let us again consider tensile strength of material. Here 
the measure of either hardness or density is often used to 
indicate tensile strength. In such cases, it is customary 
practice to use calibration curves based upon the concept of 
functional relationship between such characteristics. Ifinstead 
of basing our use of these tests upon the concept of functional 
relationship, we base it upon the concept of statistical rela
tionship, we can make use of planes and surfaces of regression 
as a means of calibration. In general, this procedure makes 
possible a reduction in the error of measurement of the tensile 
strength and hence the establishment of closer tolerances. 
This is true because, when quality can be measured directly 
and accurately, we can separate those samples of a material 
for which the quality lies within given tolerance limits from 
all others. Now, when the method of measurement is indirect 
and also subject to error, this separation can only be carried 
on in the probability sense assuming the errors of measure
ment are controlled ?y a constant system of chance causes. 
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It is obvious that, corresponding to a given probability, the 
tolerance limits may be reduced as we reduce the error of 
measurement. 
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Flo. 14.-How CONTROL MAKES POSSIBLE IMPROVED QUALITY THROUGH 

REDUCTION IN TOLERANCE LnnTS. 

Fig. 14 gives a simple illustration. Here the comparative 
magnitudes of the standard deviations of tensile strength about 
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two lines of regression and the plane of regression are shown 
schematically by the lines in Fig. I4-d. The lengths of these 
are proportional to the allowable tolerance limits corresponding 
to a given probability. It is customary practice to use the line 
of regression between tensile strength and hardness. Note 
the improvement effected by using the plane of regression. 
By using the hardness and density together as a measure of 
tensile strength, the tolerance range on tensile strength cor
responding to a given probability can be made less than it 
would be if either of these measures were used alone. 

6. Conclusion 

It seems reasonable to believe that there is an objective 
state oj control, making possible the prediction of quality 
within limits even though the causes of variability are unknown. 
Evidence has been given to indicate that through the use of 
statistical machinery in the hands of an engineer artful in 
making. the right kind of hypotheses, it appears possible to 
establish criteria which indicate when the state of control 
has been reached. It has been pointed out that by securing 
this state of control, we can secure the following advantages: 

I. Reduction in the cost of inspection. 
2. Reduction in the cc1st of rejection. 
3. Attainment of maximum benefits from quantity pro

duction. 
4. Attainment of uniform quality even though the 

inspection test is destructive. 
S. Reduction in tolerance limits where quality measure

ment is indirect. 
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CHAPTER IV 

DEFINITION OF QUALITY 

I. Introductory Note 

When we analyze our conception of quality, we find that 
the term is used in several different ways. Hence, it is essential 
that we decide, first of all, whether the discussion is to be 
limited to a particular concept of quality, or to be so framed 
as to include the essential element in each of the numerous 

. conceptions. One purpose in considering the various definitions 
of quality is merely to show that in any case the measure of 
quality is a quantity which may take on different numerical 
values. In other words, the measure of quality, no matter 
what the definition of quality may be, is a variable. We shall 
usually represent this variable by the symbol X. In future 
chapters when we are discussing quality control, we shall treat 
of the control of the measurable part of quality as defined in 
anyone of the different ways indicated below. 

The more important purpose in considering the various 
definitions of quality is, however, to examine the basic require
ments of effective specifications of quality. 

1. Popular Conception of ~uality 

Dating at least from the time of Aristotle, there has been 
some tendency to conceive of quality as indicating the goodness 
of an object. The majority of advertisers appeal to the public 
upon the basis of the quality of product. In so doing, they 
implicitly assume that there is a measure of goodness which 
can be applied to all kinds of product whether it be vacuum 
tubes, sewing machines, automobiles, Grape Nuts, books, 
cypress flooring, Indiana limestone, or correspondence school 

37 
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courses. Such a concept, is, however, too indefinite for 
practical purposes. 

3· Conception oj the ~uality oj a Thing as a Set oj Characteristics 

Quality, in Latin qualitas, comes from qua/is, meaning 
"how constituted" and signifies such as the thing really is. 
Suppose we consider a simple thing like water. What is it 
that makes water what it is? One might answer that it is 
the chemical combination of hydrogen and oxygen represented 
by the symbol H 20. To do so is to evade the question, how
ever, for to begin with we must know what we mean by the 
symbol H 20. If we turn to a textbook on chemistry, we find 
that the quality of water is expressed in terms of its chemical 
and physical properties. For example, it is colorless in thin 
layers and blue in thick layers. It is odorless and tasteless, 
has a density of unity at 4 deg. C., a heat of vaporization of 
540 calories at 100 deg. C., and remains a liquid within a 
certain temperature range. It dissociates at 1,000 deg. C. 
in accord with the formula 

[.8% 98 •• % .J. 

and is an active catalyst. Even this description, however, is 
only an incomplete specification of water in terms of that 
which makes it what it is. 

In general, the quality of a thing is that which is inherent 
in it so that we cannot alter the quality without altering the 
thing. It is that from which anything can be said to be such 
and such and may, for example, be a characteristic explainable 
by an adjective admitting degrees of comparison. 

Going a little deeper we see that possibly without exception 
every conceptual "something" is really a group of conceptions 
more elementary in form. The minimum number of con
ceptions required to define an object may be called the qualities 
thereof. For example, Jevons says: "The mind learns to 
regard each object as an aggregate of qualities and acquires 
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the power of dwelling at will upon one or other of those qualities 
to the exclusion of the rest."l 

The same conception underlies the definition of quality 
of manufactured product as given by a prominent author on 
this subject. Thus he says: "The term 'quality', as applied 
to the products turned out by industry, means the character
istic or group or combination of characteristics which dis
tinguishes one article from another, or the goods of one 
manufacturer from those of his competitors, or one grade of 
product from a certain factory from another grade turned out 
by the same factory." 2 In this sense a thing has qualities 
and not a quality. For example, a piece of material has 
weight density, dimensions, and so on indefinitely. 

For our purpose we shall assume that, had we but the 
ability to see, we would find a very large number m' of different 
characteristics required to define what even the simplest thing 
really is. A thing is therefore formally defined in this sense, 
if the specific magnitudes of the m' characteristics are known. 

Admittedly we do not know a single one of these-not 
even the number of possible ones in any given case. Those that 
we take as elementary we believe to be but a combination of 
several truly elementary ones, so that the nearest we can 
approach to the description of any physical thing is to say 
that it has a finite number of measurable characteristics, 
Xl, X2, ••• J Xm., where of course, m' is presumably greater 
than m. 

Thus we' might take the characteristics of capacity, induct
ance, and resistance as defining the quality of a relay. Geo
metrically speaking, the quality of a relay in this sense can 
be thought of as a point (P l=: Xu, X21, X31) in three ~imen
sional space with coordinate axes Xl, X 2, and Xa, see Fig. IS· 
Of course, to define the quality of the relay in terms of those 
characteristics which make it what it is would require a space 
of m' dimensions, where m' is the unknown number of inde-

1 f"M Principles 0/ Scitnu, 2nd Edition, page 25· 
I Radford, G. S., Til, Contro/ 0/ !!lua/ill in Manu/aeturinl, published by Ronald 

Press Company, 1922, page 4. 
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pendent characteristics required to define a relay. For example, 
to characterize a monatomic gas molecule we need a space of 
six dimensions, since one dimension is required for each of three 
space coordinates and for each of three velocity components. 

Quality then as we shall use it may be a quantity having 
known physical dimensions such as length, velocity, resistance; 
a quantity representing the magnitude of any entity in units 
of the same kind; or merely a number such as a rate, number 
defective, and so on. 

r-----~-------X2 
I 
I 
I 
I 
I 
~ 

-----------~ 

FIG. IS.--QUALITY AS A POINT IN 

SPACE. 

~"X"'X"'X" 
I 
I 
I 
I 

~--""I----X2 
_____ J 

FIG. 16.--QuALln· CONFORMS IF WITHIN 

VOLUME. 

4· Conception of the ffluality of a Thing as an Attribute 

Customary engineering practice specifies the limits or tol
erances within which the different quality characteristics are 
supposed to lie provided the single piece of apparatus or thing 
under study is to be considered as satisfactory or conforming to 
specifications. Geometrically this can be represented for the 
previous example involving three quality characteristics by 
Fig. 16. A piece of apparatus or thing having a quality falling 
within the rectangular element of volume is said to possess the 
positive attribute of conformance to specified standards. Obvi
ously this element of volume may be large because often only 
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a single lower or upper bound is given to some one or more 
of the quality characteristics. 1£ the quality falls outside 
this volume, the piece of apparatus or thing is said to possess 
the n~gativt attribut~ of non-conformance. The property of 
positive attribute is variously characterized as good, satis
factory, conforming, standard, and that of negative attribute 
is characterized as unsatisfactory, non-conforming, and so on. 

5. $f!,uality oj a Numb" oj tht Samt Kind of Things 

To begin with, let us consider the information presented 
in Table 3 giving the measurements of tensile strength, hard
ness, and density on sixty specimens of a certain aluminum 
die-casting. This table gives three quality characteristics 
for each specimen.· To picture the quality of the group of 
sixty specimens, it is therefore necessary to consider the one 
hundred and eighty measures of the different quality charac
teristics given in this table. Now our graphical representation 
of quality becomes a real aid because we must have some 
method of visualizing the significance of a set of data such 
as that in Table 3. 

First let us think only of the sixty values of tensile strength. 
How shall we arrive at a simple way of expressing the quality 

• •••••• • •• 
TENSILE STRENGTH X 

FlO. 17.-QUALITY Ill' RESPECT TO TENSILE STI.EII'GTH. 

of the sixty specimens in respect to this characteristic? The 
answer is simple if we think of the sixty values of tensile 
strength plotted along a line such as indicated in Fig. 17. Here, 
of course, we have plotted only a few of the sixty points. 
This graphical presentation at once suggests th~t we seek 
some distribution function to represent the d:nslty o.f ~e 
points along the line. 1£ w~ c~n tin~ such a func~lOn and I~ th!S 
function can be integrated, It IS obVIOUS that the Integral Within 

I The abbreviation psi is used here and elsewhere (or pounds per square inch. AU 
hardness measurements are given throughout this book in Rockwell's" E" even though' 
the" E" may sometimes be omitted. 
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specified limits gives us the number of specimens having a 
value of tensile strength within these limits. 

TABLE 3:-QUALITY EXPRESSED IN TABULAR FORM 

Speci-
Tensile Hardness in Density 

Speci-
Tensile Hardness in Density 

Strength Rockwells in Strength Rockwells in men 
in psi "E" gm/cml men 

in psi ICE" gm/cm3 

I 29,314 53. 0 2.666 31 29,250 71.3 2.648 
2 34,860 70 .2 2.708 32 27,992 52.7 2.400 
3 36,818 84·3 2. 865 33 31,852 76 .5 2.692 
4 30,120 55·3 2. 627 34 27,646 63·7 2.669 
5 34,020 78.5 2.581 35 31,698 69. 2 2.628 
6 30,824 63·5 2.633 36 30,844 69. 2 2.696 
7 35,396 71.4 2.671 37 31,988 61.4 2.648 
8 31,260 53·4 2.650 38 36,640 83·7 2·775 
9 32,184 82·5 2.717 39 41,578 94·7 2.874 

10 33,424 67·3 2. 614 4° 3°,496 7°·2 2.700 
II 37,694 69·5 2·524 41 29,668 80·4 2.583 
12 34,876 73. 0 2.741 42 32,622 76 .7 2.668 
13 24,660 55·7 2. 61 9 43 32,822 82·9 2.679 

.14 34,760 85. 8 2·755 44 3°,380 55. 0 2. 609 
15 38,020 95·4 2.846 4S 38,580 83. 2 2.721 
16 25,680 51.1 2·575 46 28,202 62.6 2.678 
17 25,810 74·4 2.561 47 29,190 78.0 2.610 
18 26,460 54. 1 2·593 48 35,636 84. 6 2.728 
19 28,070 77. 8 2.639 49 34,332 64. 0 2·709 
20 24,640 52.4 2.6II • 50 34,75°. 75·3 2.880 
21 25,770 69. I 2.696 51 40,578 84. 8 2·949 
22 23,690 53·5 2.606 52 28,900 49·4 2.669 
23 28,650 64·3 2.616 53 34,648 74. 2 2. 624 
24 32,380 82·7 2.748 54 31,244 59. 8 2.705 
25 28,210 55·7 2.518 55 33,802 75. 2 2.736 
26 34,002 70 .5 2.726 56 34,850 57·7 2.701 
27 34,47° 87·5 2.875 57 36,690 79·3 2.776 
28 29,248 50 .7 2.585 58 32,344 67. 6 2·754 
29 28,710 72.3 2·547 59 34,44° 77. 0 2.660 
30 29,830 59·5 2.606 60 3+,650 74. 8 2. 819 

In a similar way we may represent the sixty observed 
values of tensile strength and one other property, such as 
hardness, by sixty points in a plane. Again the graphical 
representation suggests the need for some distributi?n function 
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whi~h will give us the density of. the points in this plane. 
In Just the same way, the graphical representation of the 
v~lues . of tensile strength, hardness, and density in three 
dimensional space suggests the need for a distribution function 
indicating the density in space. The graphical representation 
of the sixt>:·points. in a plane and in space was given in Fig. 14. 

In the Inspection of product manufactured in quantities 
running into the thousands or even millions of pieces per year, 
it would be a very laborious task to measure and record as a 
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F.o •• 8.-RECORD OF QUAUTY ,N TERMS OF FRACTION DEFECTIVE. 

variable the 'quality characteristic for each piece of apparatus 
or piece-part. Instead, the practice is usually followed of 
recording only the fraction non-conforming or defective in 
each lot of size N. In the course of a year, then, we have a 
record such as shown graphically in Fig. IS representing the 
quality of a given kind of apparatus measured in terms of 
fraction defective. 

In the general case each piece of apparatus is supposed to 
possess several quality characteristics and the results of an 
inspection of a lot of size N on the basis of, say m,. quality 
characteristics, Xl, X2, ••• , Xm, can be reported either as 
the fractions, PI, P2, .•• , Pm, within limits for the respective 
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characteristics or the fraction p within all the limits. Obviously, 
this fraction, p does not give as much information about the 
product as the set of m fractions. 

6. ~..uality of Product 
• 
!,hus far we have considered the meaning of ·the quality 

of a number of the same kind of things such as the set of sixty 
specimens of a given kind of die-casting. Now we come to the 
problem of expressing the quality of a product for a given 
period of time where this product is composed of M different 
kinds of things, such as condensers, relays, vacuum tubes, 
telephone poles, and so on. , 

We must define quality of product in such a way that 
the numerical measure of this quality serves the following two 
purposes: 

I. To make it possible for one to see whether or not the 
quality of product for a given period differs from that for some 
other period taken as a basis of comparison. 

2. To make possible the comparison of qualities of product 
for two or more periods to determine whether or not the dif
ferences are greater than should be left to chance. 

A. Distribution of f?l..uality Ch,!racteristics 

Let us assume that there are Nl things of one kind such 
as condensers, N2 things of another kind such as relays, and 
finally NM things of the Mth kind. Let ml, m2, ••• , mM 
represent the number of quality characteristics on the M 
different kinds of things. From what we have already seen, 
it is obvious that our picture of quality must be derived in 
some way from the ml + m2 + ... + mM observed frequency 
distributions of the quality characteristics. The quality of 
product for two different periods consists of two such sets of 
frequency distributions. For example, Fig. 19 shows 12 

observed frequency distributions for a single quality char
acteristic, efficiency, for a given kind of product over a period 
of twelve months. Since there were five quality characteristics 
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for ~his part.icular kind of apparatus, the complete record of 
quahty reqUires five sets of frequency distributions similar to 
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those shown in Fig. 19. As already said, the corresponding 
picture of the quality of product consisting of M different 
kinds of apparatus or things would require as many sets of 
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such distribution functions as there are quality characteristics. 
Such a picture contains the whole of the available information. 

B. ~uality Statistics 
The information presented in the form of frequency dis

tributions does not permit readily of quantitative comparison. 
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To get around this difficulty, we may use instead of the fre
quency distribution itself some characteristic or stat;st;c of 
this distribution, such as the fraction within a given range, 
the average, the dispersion, or the skewness. For example, 
the information given in Fig. 19 is presented in terms of certain 
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of these statistics in Fig. 20. Whereas we have only one 
frequency distribution for each characteristic, we have one 
or more statistics for each distribution. These statistics, 
however, give us a quantitative picture of the variation in the 
given quality characteristic. 

C. flualily &Ie 

The two measures of quality just considered are based 
upon the conception of quality as that which makes a thing 
what it is and, therefore, involve the use of as many quality 
characteristics as are required to define the product. In this 
sense, the quality of one thing cannot be added to that of 
another; for example, the quality of a condenser in terms of 
capacity, leakage, and so forth, cannot be added to the quality 
of a telephone pole in terms of its modulus of rupture and other 
physical properties. 

If, however, we can find some measure of the goodness of 
a thing, no matter what it is, we can then get a single quanti
tative measure of quality of product. One way of doing this 
is to weight each quality characteristic. As an example, let 
us assume that for some one quality characteristic Xi of the 
product, we have the observed relative frequency distribution 

. Xii, Xi~, .•. , Xij, ... , Xirn }, (4) 

Pil, Pi.2, ..• , Pij, ... , pin; 

where the X's represent the n, different observed values of the 
variable Xi,PijNi is the number of times that the characteristic 
Xij was observed, and Ni is the total number of things having 
the quality characteristic Xi. By choosing a weighting factor 
Wi(Xi) where w, is a functional relationship different, in general, 
for each characteristic, we get a transformed frequency dis
tribution 

Wi(Xil), Wi(Xi.2.', ••• , Wi(Xij~., •.. , Wi(X~n)' }. (5) 

pil, P,2, ••• , PiJ, ••• , Pin; 

It is assumed usually that the weights are additive so that 
the total weight Wi for the quality characteristic Xi on the Ni 
pieces of product having this characteristic is 

Wi = N;[p;lWi(X;,) + Pi.W,(Xi') + ... + PiiWi(Xii) + ... + p;",Wi(X;..J]. (6) 
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The corresponding total weight W for the whole product then 
becomes 

W=W1+WZ+ ... +Wi+ ... +W"'1+ml+··+"'M' (7) 

where as above there are supposed to be ml' + m2 + ... + mM 
quality characteristics. 

It is obvious that the total weight from month to month 
for any given product will vary because of the effects of un
known or chance causes which, as we have already seen, 
produce variations in the observed distributions of the re
spective quality characteristics. We also see that to be able 
to interpret the significance of variations in respect to this 
weight, we must be in a position to consider the significance 
of variations in the observed frequency functions from which 
this weight is calculated, assuming that for a given kind of 
product the number of pieces produced each month is approx
imately the same. 

In general, an attempt is made to obtain a weighting 
factor which represents approximately the economic value of a 
quality characteristic having a given magnitude. Obviously, 
however, it is very difficult to attain such an ideal, and con
sequently the weights usually represent empirical factors. l 

By dividing the weight W of product for a given period 
by the weight Ws of the same product over some previous 
period taken as a base, we get the customary form of index 

W 
1= W

s
• (8) 

It should be noted that the statement that the index oj quality 
is such and such does not give any indication oj what the quality 
is unless we take into account the details of the method underlying 
thejormation oj the index. In fact a high or low index does 
not necessarily mean that the quality is good or bad in a 'given 
case unless it is known that for the particular index with which 

lOne very simple form of rate used extensively in the Bell System is described by 
Mr. H. F. Dodge in an article" A Method of Rating Manufactured Product," Btil 
SJs/~m 'l"~c~n;cal Journal, Volume VII, pp. 3S<r368, April, 1928. 
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we are dealing, a high index means good and a low index means 
bad quality from the accepted viewpoint. 

7. fluality as a Relationship 

Often the quality of a thing, such as the quality of a manu
facturing process, is of the nature of a relationship. As an 
example, we may consider the process of creosoting telephone 
poles. In general, the depth of penetration of the creosote 
appears to depend upon several factors, one of which is the 
depth of sapwood, as is evidenced by the data given in Table 4, 
showing the depth of sapwood and the corresponding depth 
of penetration for 1,370 telephone poles. In this case the 
relationship between these two factors is an important char
acteristic of the quality of the process. 

To compare the quality of the creosoting process of one 
plant with that of each of several others, we must try to inter
pret the significance of observed differences in the results 
obtained by different plants, such as the seven records shown 
in Fig. 21. To facilitate comparisons of this character, we 
need to have available quantitative measures of the correla
tion or relationship between the quality characteristics corre
sponding to a given process. 

The importance of the concept of relationship in specifying 
quality is more deeply seated than might be indicated by this 
simple problem. In trying to define the quality of a thing in 
terms of those characteristics which make it what it is, we called 
attention to the fact that we make use of what are perhaps 
secondary characteristics. For example, in expressing the 
quality of a thing in respect to strength we make use of meas
ures of ductility, brittleness, and hardness-characteristics 
which are likely dependent to a certain degree upon some com
mon factor more elemental in nature. Hence it follows that 
not only the magnitudes of the characteristics but also their 
interrelationships ·are significant in characterizing a thing. 
The representation of quality in m space as outlined in a 
previous paragraph lends itself to a quantitative expression. 
of quality relationship. 



TABLE 4.-QUALlTY. AS A RELATIONSHIP 

x y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y -
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2.05 0.80 3·40 1.60 2·55 o.go '·55 1.60 2.g0 1.85 3·80 2.80 1·75 1.35 2.10 1.00 '·35 1.05 3·65 2.25 3·95 0.85 2.05 1.20 2·50 1.25 2·40 1·50 
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8. How Shall ffluality be Defined! 

1£ we are to talk intelligently about the quality of a thing 
or the quality of a product, we must have in mind a clear 
picture of what we mean by quality. Enough has been said 
to indicate that there are two common aspects of quality. 
One of these has to do with the consideration of the quality 
of a thing as an objective reality independent of the existence 
of man. The other has to do with what we think, feel, or 
sense as a result of the objective reality. In other words, there 
is a Jubjective side of quality. For example, we are dealing 
with the subjective concept of quality when we attempt to 
measure the goodness of a thing, for it is impossible to think 
of a thing as having goodness independent of some human 
want. In fact, this subjective concept of quality is closely 
tied up with the utility or value of the objective physical 
properties of the thing itself. 

For the most part we may think of the objective quality 
characteristics of a thing as being constant and measurable 
in the sense that physical laws are quantitatively expressible 
and independent of time. When we consider a quality fr6m 
the subjective viewpoint, comparatively serious difficulties 
arise. To begin with, there are various aspects of the concept 
of value. We may differentiate between the following four l 

kinds of value: 
I. Use 
2. Cost 

3. Esteem 
4. Exchange 

For example, although the air we breathe is useful, it does 
not have ·cost or exchange value, and until we are deprived of 
it we do not esteem it highly. 

Although the use value remains comparatively fixed, 
we find that the significance of cost, esteem, and exchange 
values are relative and subject to wide variation. Furthermore, 
we do not have any universally accepted measures of such 
values. Our division of several different things of a given 

1 For a thorough discussion of this division of economic value see Walsh, C. Mi, 
'FM FOl#" Ki"ds oj Eco"omic Y.lu~, Harvard University Press, Cambridge, 1926. 
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kind into two classes, good and bad, necessitates a quantitative, 
fixed measure which we do not have in the case of subjective 
value. 

From the viewpoint of control of quality in manufacture, 
it is necessary to establish standards of quality in a quantitative 
manner. For this reason we are forced at the present time 
to express such standards, insofar as possible, in terms of 
quantitatively measurable physical properties. This does not 
mean, however, that the subjective measure of quality is not 
of interest. On the contrary, it is the subjective measure that 
is of commercial interest. It i~' this subjective side that we 
have in mind when we say that the standards of living have 
changed. 

Looked at broadly there are at a given time certain human 
wants to be fulfilled through the fabrication of raw materials 
into finished products of different kinds. These wants are 
statistical in nature in that the quality of a finished product 
in terms of the physical characteristics wanted by one individual 
is not the same for all individuals. The first step of the en
gineer in trying to satisfy these wants is, therefore, that of 
translating as nearly as possible these wants into the physical 
characteristics of the thing manufactured to satisfy these 
wants. In taking this step intuition and judgment play an 
important rMe as well as the broad knowledge of the human 
element involved in the wants of individuals. The second 
step of the engineer is to set up ways and means of obtaining a 
product which will differ from the arbitrarily set standards 
for these quality characteristics by no more than may be left 
to chance. . 

The discussion of the economic control of quality of manu
factured product in this book is limited to a consideration of 
this second step. The broader concept of economic control 
naturally includes the problem of continually shifting the 
standards expressed in terms of measurable physical properties 
to meet best the shifting economic value of these particular 
physical characteristics depending upon shifting human wants. 



CHAPTER V 

THE PROBLEM OF PRESENTATION OF DATA 

I. Why W~ Tak~ Data 

You go to your tailor for a suit of clothes and the first 
thing that he does is to make some measurements; you go 
to your physician because you are ill and the first thing that 
he does is to make some measurements. The objects of making 
measurements in these two cases are different. They typify 
the two general objects of making measurements to be con
sidered in our future discussion. They are: 

(a) To obtain quantitative information. 
(b) To obtain a causal explanation of observed 

phenomena. 

Measurement to attain the first object enters into our 
everyday life because everything that we buy or sell is by the 
yard, pound, or some quantitative unit of measure. Such 
measurements also play an important role in scientific work. 
In fact, there was a time not so very long,ago when it was felt 
that physical measurements were largely of this character; 
as, for example, those of the so-called physical constants, such 
as the charge on an electron, the coefficient of expansion of a 
material, and so on. Quite naturally, measurement to obtain 
quantitative information plays an important role in industry, 
particularly in the inspection of quality of product where it is 
necessary to have quantitative information to show just what 
the quality for a given period really is. 

The second object of taking data is, however, of perhaps 
greater importance than the first in the field of research and 
development because here we are in search of physical principles 
to explain the observed'phenomenon so that we may predict 
the future in terms of the past. In the control of quality of 

55 
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manufactured product, it is one thing to measure the quality 
to see whether or not it meets certain standards and it is 
quite another thing to make use of these measurements to 
predict and control the quality in the future. 

We shall have occasion to lay stress on four kinds of causal 
interpretation, typical examples of which are: 

A. We note differences between the qualities of a number 
of the same kind of things, such as apples on a tree, produced, 
insofar· as we know, under the same essential conditions. 
The important question which we shall ask is: Should such 
differences be left to chance? 

11. Having concluded in a given case that the differences 
in the qualities of a group of things are such as should be left 
to chance, we often want to discover the distribution of these 
qualities which we may expect to get in the long run. In terms 
of our simple illustration we want to discover the distribution 
of the size of apples to be expected under the same essential 
conditions over a long period of time. A study of this problem 
involves· the use of some kind of mental picture of the way 
certain kinds of chance cause systems act in nature. 

C. Two series of observations of some quality charac
teristic have been taken under what mayor may not have 
been the same essential conditions. From an analysis of the 
data, we are called upon to determine whether or not the two 
conditions were essentially the same. Again using the apple 
tree illustration, we can picture two trees of the same kind 
treated with different fertilizers. The question to be. con
sidered is: Do the differences between the quality charac
teristics of the apples on one tree and those of the apples on 
another indicate that the fertilizers exerted a controlling 
influence? 

D. We take sets of observations of m quality characteristics 
on a number of the same kind of thing, and from these try to 
determine whether or not there is any underlying causal 
relationship between the characteristics. For example, we 
might try to find out if the size of an apple is related to its 
acidity. 
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2. The Pro"'"" of Presentation 

Starting with the raw data, the problem of presentation 
depends upon the way the data are to be used or, in other 
words, the kind of information that they are supposed to give. 
For example, the tailor's measurements for your suit of clothes 
must be presented practically in the detailed form in which 
they were taken. 

In general, however, it is neither feasible nor desirable 
for one reason or another to present raw data in detail such 
as is done in Table ... for the depth of sapwood and depth of 
penetration in telephone poles. Such a presentation usually 
requires too much space. Furthermore, data in this form do 
not furnish the quantitative information usually desired and 
are not readily interpretable in terms of causal relationships. 

The problem of presentation involves the use of methods 
of analysis designed to extract from the raw data all of the 
essential information contained therein for the answer to 
questions which may be put in attaining the object for which 
the data were taken. 

We shall consider briefly methods for presenting such 
data in both tabular and graphical forms which assist materially 
in helping one to obtain the information present in the original 
series of observations. We shall find, however, that the results 
thus obtained are for the most part qualitative, and for this 
reason do not effectively serve the purpose of comparing sets 
of data. To secure quantitative reduction of data, we must 
therefore introduce methods for summarizing a series of values 
of a given quality characteristic by means of a few simple 
functions which express quantitatively such things as the 
central tendency, dispersion, and skewness of the observed 
frequency distribution of the quality characteristic. In 
particular, we need quantitative measures of the relationship 
between quality characteristics. 

We shall find that there are many ways of carrying out 
the details of such analyses and that there are many functions 
which measure such characteristics as central tendency, dis-
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persion, and skewness, some of which. are far more effective 
than others.in giving the essential information. 

3. Essential Information Defined 

We take data to answer specific questions. We shall say 
that a set of statistics for a given set of data contains the essential 
information given by the data when, through the use of these 
statistics, we can answer the questions in such a way that 
further analysis of the data will not modify our answers to a 
practical extent. 

4. Statement of the General Problem 

The raw data with which we have to deal are usually 
given in one of the following ways. We may have a series of 
n observations of the quality of a single thing, such as n obser
vations of the length of a rod, the resistance of a relay, or the 
capacity of a condenser; or we may have a series of n observa
tions representing single observations of some quality charac
teristic on n different things, such as the 1,370 observations of 
the depth of sapwood previously given in Table 4. 

In one case we have n values 
(9) 

representing as many measurements of the same quality on one 
thing, and in the other case we have n values representing 
single measurements of the same quality on each of n things. 

In a similar way, we may have a series of n successively 
observed values of a group of m quality 'characteristics on 
some one thing, or observed values of say m qualities on each 
of, let us say, n things. In either case we have a series of 
observations, such as 

Xu, X 12, ••• , Xli, •.. , Xu, 

X2h X 22, ••• , X 2i, .... , X2n 

(10) 
Xjl, Xj2, ... , Xji, •.. , Xjn 

Xml, Xm2, .•• , Xmi, .•• , Xmn 
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Naturally, we always have a certain purpose in accu
mulating such a series of data, and the object of tabular 
and graphical presentation is to assist in the interpretation 
of the raw data in terms of the object for which they were 
taken. As already noted, the distributions of values of depth 
of sapwood and depth of penetration as given in Table 4 
illustrate the first form (9) in which raw data may occur. 
Similarly, the two distributions taken together illustrate the 
second form (10). 

Later we shall have occasion to make use of several simple 
geometrical conceptions in our study of the ways and means of 
presenting data. It will be helpful, therefore, for us to keep 
in mind some of the problems involved in the analysis of data, 
both from the viewpoint of presentation of facts and from 
that of causal interpretation stated in terms of these geometrical 
conceptions. 

For example, the problem of presenting a series, such 
as (10), of m qualities on each of n things may be looked upon 
as that of locating a set of n points in a space of m dimensions 
in reference to certain lines, planes, or hypersurfaces. A 
simple illustration is that previously given in Fig. 14 where 
we may think of the points as being located in respect to the 
coordinate axes in one case and in respect to either the lines 
or planes of regression in the other case. 

There are many ways in which we may set up this problem. 
For instance, in the case of two variables X and Y, we may 
seek some function I(X, Y) such that I(X, Y)dXtIY tells us 
approximately how many of the observed values lie within 
the element of area X to X + dX and Y to Y + tIY. Such a 
function would give us approximately the density of the 
observed points in the plane. Sometimes, however, it is more 
convenient to have some measure of the clustering of the 
points about a curve Y = I(X). It may be sufficient to know 
that approximately a certain per cent of the points lie within 
some bandj(X) ± e as shown in Fig. 2U. 

It may be of interest to note how some of the problems 
·of causal interpretation mentioned at the beginning of this 
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chapter can be expressed in terms of certain geometrical 
representations of the data. Thus, if we represent a series of 
n measurements of some quality characteristic by points along 
a straight line, we are often interested in knowing whether or 
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FIG. 22.-Two METHODS OF REPRESENTING DATA. 

not the particular spacing of the points indicates that the 
,causes of variation between the observed values are such as 
should be left to chance, Fig. 23-a. Assuming that we have 
decided that the causes of variation should be left to chance, 

• •••• •• 
QUALITY CHARACTERISTIC X 

',SAMPLE 

(a,) 

QUALITY CHARACTERISTIC X 
UNIVERSE 

(b) 

FIG. 23.-SCHEMATlC RELATION BETWEEN SAMPLE AND UNIVERSE. 

we are usually interested in discovering the distribution of the 
variable to be expected if these same causes are allow~d to 
'operate for an indefinite period of time. In other words, we 
seek the universe of effects for a given cause system, Fig. 23-0. 
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It is obvious that the other problems of causal interpretation 
may also be given'a geometric significance. 

5. True Persus O!Jservea flualily 

Thus far we have purposely avoided the problem of trying 
to distinguish between true quality and the observed mag
nitudes of the quality characteristics. Obviously, it is necessary 
to try to do this since all measurements are subject to error. 
Hence, to obtain the essential information in respect to the 
distribution of true quality from a set of observed data such 
as either (9) or (10), we must have some means of correcting 
for errors of measurement existing in the original data. 

To get a picture of what we mean by true quality, let us 
consider first a very simple illustration. What is the true 
length of the line AB? Strictly speaking, it does not have a 

A--------------_B 
true length in the sense of an unchangeable value which is a 
constant of nature. On the contrary, we believe that the 
molecules at the ends of the line are jumping around in random 
fashion so that in the last analysis the line does not have a 
length except in the sense of some distribution of length 01' 

in the sense of some characteristic of a distribution function, 
such as an average. 

Whereas, in the case of the length of the line (in fact the 
magnitudes of most physical quantities) the objective or 
true quality is a frequency distribution function, there are 
instances where we believe that the true quality is perhaps a 
fixed constant of nature. As an illustration, it appears that 
most physicists regard the charge on an electron as such an 
objective constant. 

Even the most precise measurements of such a quantity, 
however, are subject to chance causes of variation or, as we say, 
errors of measurement. As evidence that there always remains 
a nucleus of chance causes of variation in even the best physical 
measurements, we may take the series of observed values of 
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the charge on an electron originally given1 by Millikan, Table 5. 
The problem of presenting the essential information contained 
in such a set of measurements of some quantity assumed to 
be a constant is that of finding the best estimate of this con
stant. 

TABLE S.-MILLIKAN'S OBSERVATIONS OF CHARGE ON AN ELECTRON 

eX 10'0 

4.781 4.764 4·777 4. 809 4.761 4.769 
4·795 4.776 4.765 4·790 4.792 4. 806 
4.769 4.771 4.785 4·779 4.758 4·779 
4.792 4.789 4. 805 4.788 4.764 4.785 
4·779 4.772 4.768 4.772 4. 810 4·790 
4·775 4.789 4. 801 4.791 4·799 4·777 
4·77'1. 4.764 4.785 4.788 4·779 4·749 
4.791 4·774 4.783 4.783 4·797 4.781 
4.78'1. 4.778 4. 808 4.740 4·790 
4.767 4.791 4.771 4·775 4·747 

. Now let us consider the meaning of true quality where 
we have one or more series of measurements (9) or (10) on a 
number of different things. It is obvious from what has been 
said that the true quality in such a case is a frequency distri
bution function. It is, however, not the objective frequency 
distribution function of the observed values, for these contain 
errors of measurement. It is rather this frequency distribution 
function corrected for errors of measurement. Since, in com
mercial work, the error of measurement is often large, it follows 
that the distribution of observed values may differ significantly 
from our best estimate of the true distribution function. Hence, 

. in our discussion of the ways and means of presenting' data, 
we must lay the basis for correcting, insofar as possible, the 
~riginal data for errors of measurement. 

1 These data are those given in the first edition of Millikan's book '7M Ekctron, 
published by the University of Chicago Press. For our purpose, we shall neglect in all 
further discussions of these data the fact that certain corrections should be made as 
outlined by Millikan if we are concerned with the problem of giving the best estimate 
of the charge on an electron. To do this, it would also be necessary to weight the 
values as he has done. For the latest discussion of the use of these data in estimating 
the most probable value of the charge on an electron, see .. Most Probable 1930 Values 
of the Electron and Related Constants," R. A. Millikan, published in the Phys;cal 
Reu;tfI), May 15. 1930. pp. 1'1.31-1'1.37. 
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PRESENTATION OF DATA BY TABLES AND GRAPHS 

I. PrtJmlalion Of Ungrouped Dala 

Perhaps the most useful way of presenting an ungrouped 
distribu~ion of raw data in tabular form is that in which the 
values of the variable are arranged or permuted in ascending 
order of magnitude. Such a permutation is termed afrequmcy 
diJIri/Julion. Let us consider this form of presentation for the 
fifty-eight observed values of the charge on an electron given 
in Table 5. 

TAu. 6.-TA.Uu.. P •• S.IITATIOIf or P .... UTED SEIlIES or DATA 

4·740. 4·747. 4·749. 4.758• 4.761• 4.76+. 4.764. 4.764. +.765. +.767. 4.768• 4.769. 4.769. 

4.771• 4.771• 4·77~. +·77~. 4·77~. 4·774. 4·775. 4·775. 4.776• +·777. 4·777. +.778• +·779. 

4.779.4.779.4.779.4.781.4.781.4.782.4.783.4.783. +.785. 4.785. 4.785. 4.788• 4.788• 

4.789.4.789.4.790.4.790.4.790. +.791• 4.791• +.791• 4·79'. +·79~. +·795. +·797. +·799 • 

... 801. 4.805. +.806. 4.808. 4.809. 4.810 •. 

With this tabular arrangement we can easily obtain such 
characteristics of the observed distribution as range, mode or 
most frequently occurring value, and median or middlemost 
value, of the permuted variable. 

Naturally we can present such a permuted series of mag
nitudes graphically in numerous ways, only one of which is 
given by way of illustration in Fig. 2+ 

In a similar way a set of observations representing measure
ments of several characteristics on each of several things 
may be arranged in tabular form by permuting one of the series 
of observations in ascending order of magnitude and then 
tabulating the corresponding values of the associated char-

63 
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acterlstlcs. Table 7 shows two such tabulations, there being 
in each case two quality characteristics. 

Table 7-a gives the observed current I in amperes through 
a certain kind of carbon contact as the voltage E is changed. 
This is the everyday type of observed relationship presented 
in the customary tabular form in which one of the series of 
measurements, in this case voltage, is permuted in ascending 
order of magnitude. 

TABLE 7.-TABULAR PRESENTATION OF RELATIONSHIP 

Table 7-a Table7~ 

Voltage E Current] Volume in Area in 
in Volts in Amperes Cu.Cm. Sq. Cm. 

3 0.03 0·9 0.667 
6 0.07 1.9 0.528 
9 0.11 3·9 0.538 

12 0.15 4·5 0.778 
15 0.19 4. 6 0. 827 
18 0.24 4. 6 0·543 
21 0.29 4. 8 0.792 
24 0·34 4·9 0.694 
27 0·39 4·9 0.694 
30 0·45 5. 1 0. 804 
33 0.50 6.6 0.772 

36 0·55 • 7. 8 0.706 

39 0.62 9. 6 0.750 . 
42 0.69 II .7 0.496 

45 0.76 14·9 0.591 
48 0.86 16.2 0.716 
51 0·93 17·9 0.771 

18.2 0.489 
19.0 0.811 
19. 2 0.792 
1'9. 8 0. 803 
26.8 0.664 
44. 8 0.718 

Table 7-/; gives the measurements of two quality charac
teristics of each of twenty-three different kinds of granular 
carbon. In this case the series of observed values of the 
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volume of the pores is permuted in ascending order of mag
nitude. 

The corresponding customary graphical representations 
of such sets of data are presented in Fig. 25 . 

.. 
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In Fig. 25"', there can be little doubt that the current is a 
function of the voltage E, although neither the tabular nor 
the graphical presentation gives the relationship quantitatively • 
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FIG. 2S.--{).B FORM or GUPHICAL PUSBIITAnGIf or DATA or TABLE 7. 

In Fig. 25-h, there is a definite question as to whether or not 
the two characteristics are related at all. 

Now suppose we were to present in a similar way the 
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distribution of 1,370 observed values of depth of sapwood 
given in Table 4 and also the relationship between depth of 
sapwood and depth of penetration. To do this would require 
an excessive amount of space. To get around this difficulty 
of presentation when the number of observations is large, 
customary practice calls for the grouping of the original data. 

2. Presentation of Grouped Data 

We usually divide the range' covered by a frequency dis
tribution of observations into something like thirteen to 
twenty equal intervals or cells, the boundaries of which are so 
chosen that no observed value coincides therewith, thus 
avoiding uncertainty as to which cell a given value belongs. 
The number of things having a quality X lying within a cell 
is termed the frequency for that cell; in a similar way, the 
ratio of the frequency of a given value of X to the total number 
n of observations is termed a relative frequency. The series of 

TABLE 8.--DISTRIBUTION OF DEPTH OF SAPWOOD 

Cell Cell 
Midpoints Frequency Midpoints Frequency 
in Inches in Inches 

1.0 :1 3·4 151 
1.3 '-9 • 3·7 1:13 
1.6 6:1 4. 0 8:1 
1.9 106 4·3 48 
:1.:1 153 4. 6 :17 
:1·5 186 4·9 14 
:1.8 193 5·:1 5 
3. 1 188 5·5 I 

frequencies and of relative frequencies constitute frequency 
and relative frequency distributions respectively. The dis
tribution of depth of sapwood can in this way be reduced to 
the form shown in Table 8. By thus grouping the original 
observations into cells, we secure a tabular presentation 
much simpler than that originally given in Table 4, but in 
the process we ~ave slightly modified the original data. 
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By grouping, we get an improved picture of the clustering 
of the observed values about a central value somewhere near 
the cell whos~ midpoint is 2.8 inches, as is shown in Fig. 26. 
In the first diagram the black dots represent ordinates pro-
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portional to the corresponding cell frequencies, the ordinate 
for a given cell being placed at the midpoint of that cell. If 
we join these ordinates by a broken line, we get the frequency 
polygon. The method of obtaining the frequency histogram is 
clearly indicated by the figure itself. An ordinate in such 
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graphical presentations is termed a frequency, meaning thereby 
the frequen~y of occurrence in the associated cell. 

We may plot as the ordinate at a given value of abscissa 
the total number of observations having a value equal to or 
less than that of the given value of abscissa. In this way we 
get the cumulative distribution, cumulative polygon, and cumu
lative histogram also shown in Fig. 26. These are often termed 
ogives. It is perhaps a matter of personal judgment depending 
upon the situation in hand -as to whether the tabular or the" 
graphical presentation of the frequency distribution of Table 8 
is the more desirable. 

Let us next try to present the data of Table 4 in such' a 
way as to indicate whether or not there is any relationship 
between the two quality characteristics, depth of penetration Y 
and depth of sapwood X. In general, applying the same 
methods as those used above to obtain the reduced frequency 
distribution, we get the correlation table or scatter diagram of 
Fig. 27. The number of poles having values of depth of 
sapwood and depth of penetration lying within a given rectangle 
is printed in that rectangle. 

If we were to erect a parallelepiped on each rectangle 
with a height proportional to the number in this rectangle, 
the resulting figure, would be a surface histogram. We might 
also construct a surface polygon in a manner analogous to that 
used in constructing the frequency polygon. ' 

What does the table or chart shown in Fig. 27 tell us about 
the relationship between the two variables therein considered? 
One thing is certain-the distribution of values of penetration 
in a giveQ column corresponding to a given depth of sapwood 
depends upon the depth of sapwood. In other words, knowing 
the depth of sapwood, we have some information· about the 
depth of penetration. We shall be content, therefore, to say 
for the present that these two qualities appear to be correlated 
and that, in general, the depth of penetration appears to be 
greater, the greater the depth of sapwood. Thus the table or 
chat:t of' Fig. 27 does tell us something, but what it tells is 
qualitative and not quantitative. For example, it .does not 
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tell us how close a relationship exists between the two 
qualities. 
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3. Choice of Cell Boundaries 

The choice of from thirteen to twenty cells is to a large 
extent empirical. Experience has shown that, when the 
data are grouped in this way, it appears possible to retain most 
of the essential information in the ungrouped data. To take 
a larger number of cells often confuses the picture and, in 
particular, emphasizes sampling fluctuations, the significance 
of which will be considered later. In general. other things being 
equal, the outline of the frequency distribution is more regular 
the smaller the number of cells. This is illustrated by the two 
frequency distributions of the data of Table 4- shown in Fig. 28 • • 
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4. Conclusion 

Both tabular and graphical presentations of original 
un grouped data are cumbersome and often require a prohibitive 
amount of space, particularly when there are a large number of 
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observed values. Grouping of raw data materially reduces 
the space required and makes possible a better picture of the 
observed distribution whether in one or more dimensions, 
although the data in this fOI;,m are not readily susceptible of 
causal interpretation. 



CHAPTER VII 

PRESENTATION OF DATA BY MEANS OF 

SIMPLE FUNCTIONS OR STATISTICS 

I. Simple Slalislics 10 Be Used 

Table 9 presents for ready reference a list of those functions 
or statistics which we shall consider, the ones marked by an 
asterisk being the most important in the theory of quality 
control. 

TABLE 9.-COMMONLY USED FUNCTIONS OR STATISTICS 

Fraction 
Measures Measures of Measures Measures of within Measures of 

Certain Central Tendency 
of Lopsidedness of Flatness Relationship 

Limits 
Dispenion or Skewness or Kurtosis or Correia tion 

·Fraction ·Arithmetic mean ·Standard ·Skewness • Flatness • Correlation 
defective X deviation A: P. coefficient 

p " r 

Maximum + Minimum Variance Correlation 

:1 "I ratio ., 

Median Mean 
deviation 

Mode Observed 
range 

2. Fraclion p Defeclive or Non-Conforming 

This simple measure of quality was described in Chapte~ IV 
of Part II as the fraction of the total number of observations 
lying within specified quality limits. 

71 
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3. Arithmetic Mean X as a Measure of Central Tendency 

By definition, the arithmetic mean X of n real numbers, 
Xl, X 2, ••• , Xi, ... , Xn, is .. 

!:x;
X = Xl + X2 + ... + Xi + ... + Xn = ~. 

n n 
(II) 

An approximate value for the mean is often obtained 
from the grouped data as indicated in Table 10 which gives 
the 1,370 observed depths of sapwood grouped into 16 equal 
cells. The mean value obtained in this way will not, in general, 
be equal to that given by (I I). For example, the mean value 
(rom the grouped data in Table 10 is 2.914 inches, whereas 
the mean obtained from (II) is 2.900 inches. 

TABLE IO.-C.UCULATION OF ARITHMETIC MEAN FROM GROUPED DATA . 
Mid-Cell Value Deviation * Observed 

in Inches in Cells from jj Frequency Xy 
X Y 

1.0 ° 2 ° 
1.3 I 29 29 
1.6 2 62 124-
1.9 3 106 318 
2.2 t 153 612 
2·5 5 . 186 93° 
2.8 6 193 1,158 
3. I 7 188 1,316 
3·4 8 151 1,208 
3·7 9 123 1,107 
4.0 10 82 820 

4·3 II 48 528 
4. 6 12 27 324-
4·9 13 14 182 
5. 2 14 5 7° 
5·5 IS I IS 
1: .... 1,370 8,7·P 

1:Xy 8741 
11'1 = - = - = 6.380292 

1:y 1370 

", = units per cell = 0.3 inch 

Arithmetic mean X = ii + "'11'1 = 1.0 + 1.914°88 = 2.914°88 inches 

• The origin 6 is the mid-c:ell value of cell No. 0. 
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4. The Standard Deviation (f as a Measure oj Dispersion 
Given a set of n real numbers, Xl, X 2, ••• , Xi, ... , Xn , 

the standard deviation (f of this set about its mean value X is, 
by definition, . . • 

l:X." Xl: Xi l: Xi' 
.!..:...!....- - 2....!::..L. + X' = 

" " 
(f- !..:.l.- - X'. (11) 

" " 
The exact value of (f can easily be obtained from (12) although 
this method of calculation introduces a prohibitive amount of 
work when the size n of the sample is large. For this reason 
as in the case of the average, we make use of the grouped data 
and calculate (f as indicated in Table II. 

TABU II -CALCULATION or THB STANDARD DEVIATION rROIl THB GROUPED DATA 

Mid-Cell Values 
in Inches 

1.0 

1.3 
1.6 
1,9 
2.2 

2·5 
2.8 

3. 1 

3·4 
3·7 
4. 0 

4·3 
4. 6 

4·9 
5. 2 

H 
E 

Deviation Observed 
in Cells from iJ FmJuency Xy 

X Y 

0 2 0 

1 29 29 
2 62 124 

3 106 318 

4 153 6a 

5 186 930 

6 193 1,158 

7 188 10316 

8 151 1,208 

9 123 1,107 
10 h 820 

II 48 528 

12 27 324 
13 14 Ih 

14 5 70 
15 I 15 

....... t,J70 8,741 

", = units per cell = 0.3 Inch 

EXy 8741 
"" = - = - = 6.380292 

Ey 1370 

EX'y 65583 
'1'1 = -- = -- = 47.870803 

Ey 1370 

1'1 = 11'1 - 11',. = 7.162677 
• = ",,,Ji = 0.802895 inch 

Xly 

0 

29 
248 

954 
20448 

4,650 

6,948 
9,212 
9,664 

9,963 
8,200 
5,808 
3,888 
2,366 

980 

225 
65,583 
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Obviously, a small standard deviation usually indicates 
that the values in the observed set of data are closely clustered 
about the arithmetic mean; whereas, a large standard deviation 
indicates that these values are spread out widely about the 
arithmetic mean. For the time being it must suffice to picture 
the significance of this measure of dispersion somewhat after 

>
u 
z ... 
:> 
C1 ... 
II: ... 

VARIABLE 

.FIO.29.-How THE STANDARD DEVIATION (1' INDICATES DISPERSION. Two 

DISTRIBUTIONS DIFFERINO ONLY IN STANDARD DEVIATION. 

the manner indicated in Fig. 29 which shows two continuous 
distributions of the same functional form, differing only in 
standard deviation. 

5. Skewness k 

The particular statistic which we shall use most extensively 
as a measure of the skewness of a distribution of n values of X 
is designated by the letter k and defined by the expression 

n n n 

~ (Xi -:-X)3 ~Xi3 3X~Xi2 
'-1 1-\ .1-1 + 2X3 ---

n 11 n 
(13) Ie .... [" r 0-

3 

~ (Xi - X)2 
I-I 

n 

where X is the arithmetic mean and (f is the standard deviation 
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of the n values of X. Of course, Ie may be either positive or 
negative. If the distribution is symmetrical, Ie is zero, but it 
should be noted that the condition Ie = 0 is not sufficient for 

~ 

~ ... 
::> 
(1 ... 
a: ... 

VARIABLE 

FlO. JO.-ILLUSTRAl1NO USE or Ie AS A MEASURE OF SKEWNESS 

symmetry. Fig. 30 shows two continuous distributions of the 
same functional form, differing only in skewness. 

6. Flatness 1 132 

The statistic 132 used as a measure of the flatness of the 
distribution is defined by the expression 

where the symbols used are those previously introduced. 
Fig. 31 pictures three symmetrical frequency distributions 
differing only in the degree of flatness. 

1 Also called kurtosis. 
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7· Calculati~n oj Statistics 
Let us see how simply the calculation of the four above

mentioned statistics may be 'carried out. For convenience 
we introduce a new term, the moment of a distribution. By 
definition, the jth moment, 1fJ.j, of a set of n values, Xl, X 2 , 

... , Xi, ... , Xn about the origin from which the values are 
measured is 

> u z ... 
:::J a ... 
II: ... 

II 

"£.X/ 
IP.j=~. 

n 

.vARIABLE 

FIG. JI.-hLUSTRATING USE OF PI AS A MEASURE OF FLATNESS OF DISTRIBUTION. 

Similarly, the jth moment of this same set of numbers about 
the arithmetic mean X is 

II 

"£. (Xi - X)j 
p.j = ;,..'-....:.1 ____ , 

n 
(16) 

It may readily be seen that the formulas for standard deviation, 
skewness, and flatness may be greatly simplified by expressing 
the results in terms of the moments of the distribution, as 
shown in the lower part of the data sheet of Table 12. The 
necessary computations for finding the four statistics for the 
distribution of depth of sapwood are also shown in this data 
sheet. 



Cell 
Miel-
point ----
1.0 --'.J --
'.6 --
'.9 --... --
'.5 --
'.1 --
,.1 --
3.4 --
3.7 --
4.0 --
4.3 --
4·6 --
4·9 --
5· • --
5·, 

Z 
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TABLa n.-TYPICAL COMPuTAnolf SIIEET 

Subject , Date 2/21/30 

Depth DC Sapwood Calc. by MBC 

. in inch.. Checked MSH 

Ceo Deviation Obaerved 
Bouncl- io Cella Prequency "X "X' 

ary from D. X " 
0.150 --- 0 • 0 ° 1.150 1-
--- • 29 29 20 

1.4$0 ------ 2 62 124 '48 
1.750 ------ 3 106 3 18 054 
1.050 ------ .. 153 612 2.448 
1.350 ------ 5 186 910 4.650 

~ 6 103 1,158 6.948 
1.950 ------ 7 188 1.316 9.212 
3· 25(" ------ I 151 1.208 9.664 
3.550 ------ 9 123 1,107 0.963 
3.850 ------ 10 82 820 8.200 
4. 150 --- II 48 528 5.808 
4.450 ------ 12 27 324 3.888 
4·750 --- 13 14 182 2.366 
5·050 ------ 14 5 70 980 
5.350 ------ IS I 15 225 
5.650 ---

1.370 8.741 65.583 

.. Ia umte per cell ==0.3 
JIIa .. ZyX _ 8741 == 6.380292 

Z" 1370 ---

!PI - Z"X' = 655IJ = 47.870803 
Z" 1370 ----

JJA c:t ZyXl _ 549977 c= 40 1.443066 
• Z" 1370 

"' .. _ %yX
t 

c= ~ l:1li 3662.2182 48 
Z" 1370 

"X' 

° 
29 

496 

2,862 

0.702 

23.250 

41.688 

64.48 4 

77.312 

89.667 

82,000 

63.888 

46.656 

30.758 

13.720 

3.375 

549.977 

,.. = .,.. - Jl.'11 - 47.870803 - 40.708126 = 7.16.677 

'"~ - JI.'. - 3J1.'I !PI + 2J1.',' . 

"X' 

0 

20 

992 

8.586 

30.168 

116.250 

250,128 

451.388 

618.496 

807.003 

820,000 

702.768 

559.872 

399.854 

192,080 

50.625 

5.017.239 

= 401.443066 - 916.289104 + 519.459461 = 4.6134'3 

"0 - Jl.'o - 4J1.', JI.'. + 6J1.'," !PI - 3,1',' 

Frequency 
10 

Per Cent 

0.15 

:I.U 

4·53 

7.74 

11.17 

13.58 
~-

14·09 

13.72 

11.02 

8.98 

5.99 

3.50 

1.97 

1.02 

0.36 

0.07 

_ 3662.218248 10245.295930 + 11692.384°8. - 4971.454567 

- 137.85183' 

~ - jj + .aJl.', - 1.0 + .3(6.380292) = 2.914088 

,,-_~ = 0.312.676318) = ~ 

i-~= 4.613423 =0.240663 
,..% 10.169601 ---

lit = ", = 137.851832 = •. 686964 
,... 51.303942 ---
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A. Errors of Grouping.-It will be seen that all of the com
putations in the illustrative example make use 'of grouped 
data, thereby introducing a source of error. The question 
naturally arises as to whether or not an engineer should attempt 
to correct the moments thus obtained by some of the formulas, 
such as those of Sheppard, presented in almost every good 
text on statistical theory. 

We shall consider three reasons why it seems likely that 
little is to be gained through the use of such corrections, at 
least in the class of problems considered in this book. These 
reasons are: 

(a) The actual limitations imposed in the development of 
the formulas for correcting the moments necessitate sharp dif
ferentiation between those distributions to which their applica
tion is justified and other distributions; and yet it is not 
feasible to formulate rules which can be applied intelligently 
to differentiate between these two classes of distributions 
without a full knowledge of the somewhat involved theory 
underl ying the corrections. 

(b) The magnitudes of such corrections 'for the statistics 
are small, compared with the sampling errors of the statistics 
thus corrected, unless the sample" size is very large, it being 
assumed that the interval of grouping is small compared with 
the maximum observed range of variation, as is the case when 
we use from 13 to 20 cells. Hence, in general, the corrections 
do not add much from the viewpoint of causal interpretation. 

(c) The corrected moment may in some cases differ more 
from the moment obtained from the raw data than does the 
uncorrected moment. As a case in point, the standard deviation 
of the 1,370 observed values of depth of sapwood is 0.802555 
inch as determined from the ungrouped data. The uncor
rected moment obtained from the grouped data is 0.802895 
inch; whereas the value of this moment corrected by Shep
pard's formula is 0.798211 inch. Hence we see that in this 
example the correction factor does not correct. This situation 
may arise quite frequently, since the distribution of points 
within a given cell often does not satisfy the conditions tacitly 
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assumed to exist in the applications of Sheppard's correction. 
Obviously, ~herefore, if one is to be sure that he has attained 
the correct moments for a given distribution, he must carry 
out the calculations of these moments from the un grouped data. 

Since it is difficult to determine when the corrections 
should apply, since the corrections are usually small compared 
with the sampling errors of the moments, and since the cor
rections may not correct, it seems that little can be gained 
by applying the customary correction factors. 

B. Numlm' of Figuru 10 be Relained.-It will be noted that 
in the calculation of the statistics, the numerical work is 
carried out to more places than may often be used in the 
final form of presentation. The reason for doing this will 
become clear as we proceed, but one or two instances showing 
the necessity for such a procedure may not be out of place 
at this point. 

In the problem just considered, suppose that we wish to 
determine the error of the average. In general, this will be 
expressed in terms of the observed standard deviation 0' which 

in turn has its own error customarily taken to be _; , where 
v2n 

n is the number of observations. Since the number of figures 
which we wish to retain in the average depends upon the 
error of the average, we must know, this error before we can 
decide how many figures to retain. The calculation of this 
error, however, involves the use of the average itself. Hence 
we must carry enough figures in the average during the process 
of calculation of its error so that the final number of figures 
retained in the average will not be influenced by the number of 
figures retained in the calculation of the standard deviation. 

It is obvious that the same Hne of reasoning applies in 
determining how many figures to retain in the standard 
deviation. 

In the general case, starting with a series of observed 
values, our interpretation of the data involves the use of 
certain statistics expressed as symmetric functions of the data. 
Before we can tell definitely how many figures to retain at a 
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given stage of the calculation, we must have completed all the 
calculations.. Obviously we cannot carry an indefi.nitely large 
number of figures. The detailed calculations carried out in 
this book will serve to show what we have found to be satis
factory practice. It does not appear feasible, however, to lay 
down simple, practical, and infallible rules. 

8. Measures oj Relationship· 

As engineers, we are accustomed to think of two or more 
things as being related when we can express one of them as a 
mathematical function of the others. However, in the scatter 
diagram, Fig. 27, showing the observed values of depth of 
sapwood X and depth of penetration Y, we see that for a 
given value of X there are several values of Y so that these 
two quantities do not appear to be related in a functional way; 
although there does appear to be some kind of relationship 
between them. The knowledge of the depth of sapwood 
gives us some information about the depth of penetration. 
To measure this kind of relationship, we make use of the 
correlation coefficient. 

By definition the cOrTelation coejficient r between n pairs of 
values of X and Y is 

" 
~XiYi 
C~l -x¥ 

n 
rXy=-----

The method of calculating r is illustrated in Table 13. 
We shall see later that the value of r must lie between + 1 

and - I. The significance of r must be developed as we 
proceed. 

9. Other Statistics 

Let us first consider measures of central tendency other 
than the arithmetic mean. By definition, an average of a 
series of n values of a variable is a number greater than the 
least and less than the greatest when all of the values of the 
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TAU. 13.-METHOD or CALCULATING CoRRELATION COEFFICIENT 

X - Depth of Sapwood. 'Y = Depth of Penetr;ation 

(,) (2) CJ) (4) (,) (2) (3) (4) (I) (2) (J) (4) 
X Y '" .. ,XY X Y '" .. ,XY X Y '" .. ,XY ----I------ ---------

1.0 0·7 I 0·70 3. 1 0·7 10 21·70 4. 0 3·4 5 68.00 
1.0 I 1.00 1.0 22 68.20 3·7 I 14·80 --------- 1.3 40 161.20 ---------

I.] 0·4 I ·52 1.6 42 208.32 4·3 1.0 4 17·20 
0·7 15 1].65 1.9 36 2'2.04 1.3 4 22.36 
1.0 12 15. 60 2.2 2~ 163. 68 1.6 7 48 .16 
I.] I 1.6<1 2·5 46 .50 1.9 7 57. 19 --------- 2.8 7 60·76 2.2 6 56 .76 1.6 0·4 2 1.28 

3. 1 I 9. 61 2·5 7 75·25 
0·7 " 12.32 --------- 2.8 4 48 .16 
1.0 33 52.80 

3,4 0·7 3 7. 14 3. 1 5 66.65 
1.3 II 22.88 1.0 15 51 .00 3,4 3 43·86 1.6 5 12.80 

1.3 29 128.18 3·7 I 15.91 ---------
1.6 28 ---------1.9 0·7 13 17. 29 152.32 4. 6 0·7 I 3·22 

1.0 41 77-90 1.9 22 142 .11. 1.3 3 17,94 
1.3 36 88.92 2.2 27 201.96 1.6 5 36 .80 
1.6 14 42 .56 2·5 II 93.50 1.9 3 26.22 
1.9 2 7. 22 2.8 12 Ir4·24 2.2 3 30 .36 --------- 3. 1 2 21.08 

2·5 I 11.50 2.2 0·4 I 0.88 3·4 2 23·12 2.8 3 38 .64 0·7 II 16·94 --I-------- 3. 1 3 42 .78 1.0 42 92 ,40 3·7 0·7 I 2·59 3·4 2 31 .28 1.3 48 137. 28 1.0 10 37. 00 
3·7 I 17·02 1.6 39 137. 28 1.3 13 62·53 4. 0 2 36 .80 1.9 10 41.80 1.6 21 124.32 ---------2.2 2 9. 68 1.9 24 ·168·72 4·9 1.0 I 4·90 ---- ----- 2.2 28 227.92 1.6 3 23.52 

2·5 0·4 I 1.00 2·5 II 101.75 1.9 I 9.31 
0·7 14 24.50 2.8 7 72.52 2.2 I 10·78 1.0 50 125.00 3. 1 4 45. 88 2·5 2 24·50 1.3 59 191. 75 3,4 4 50.32 2.8 2 27,44-1.6 34 136 .00 --- ----- 3. 1 I 15·19 1.9 19 90. 25 4.0 0·7 2 5. 60 3·7 2 36 .26 2.2 7 38 .50 1.0 2 8.00 4·3 I 21·07 
2·5 2 12.50 1·3 10 52.00 ------------------ 1.6 10 64 .00 5. 2 1.0 I 5·20 2.8 0·7 6 11.76 

1.9 9 68,40 3. 1 I 16.12 
1.0 37 103. 60 2.2 15 132 .00 3·7 I 19. 24 
1.3 51 185. 64 2·5 12 120.00 4. 0 I 20.80 
1.6 45 201.60 2.8 14 156.80 4. 6 I 23.92 
1.9 22 117.04 

3. 1 2 24·80 -- -----
2.2 18 110.88 5 ·5 2·5 I 13·75 
2·5 12 84. 00 
2.8 2 15. 68 

.. = 1,370 
l: .. ,xy = 6,765.77 X Y = 4· 637654 

l: .. ,xy = 4.93851 8 f1;g(Ty = 0.498779 .. 
l: .. ,xy _ Xy 

.. 4.93851 8 - 4.637654 = 0.603201 
f1;g(Ty 0'498779 

r= 
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variable are not equal and equal to the common value of the 
variable when all of the values of the variable are equal. 
Therefore, the arithmetic mean is only one of an infinite number 
of measures of central tendency. Typical means often used in 

. . . maximum X + minimum X 
charactertzmg data are the medIan, , 
. 2 

and mode. Naturally, we may expect the different kinds of 
averages of a· series of numbers to differ among themselves. 
Just as an example, we give below four averages for the series 
of fifty-eight observed values of the charge on an electron. 

Median = 4.785 X 10-10 e.s.u. 

Max. + Min. _ -10 
----- - 4.775.X 10 e.s.u. 

2 

Mode = 4.779 X 10-10 e.s.u. 

Arithmetic mean = 4.780 X 10-10 e.s.u. 

Next, let us consider some measures of dispersion, skew
ness, and flatness other than those previously given. A 
measure of dispersion very commonly used in engineering 
work is the mean deviation p. defined for the case of n values 
of X by the expression 

II 

l: lXi-xi 
II- = .;..f=..::I ___ _ 

n 
(18) 

where, as usual, the symbol II represents the absolute value 
of a quantity. In the same way, any even moment of a dis
tribution about its mean is a measure of dispersion, as is any 
odd moment of absolute values of the deviations from the 
mean. Hence, there is an indefinitely large number of possible 
measures· of dispersion of this kind. Furthermore, if we turn 
to any standard text on statistical theory, we shall find other 
kinds of measures of dispersion, such as symmetric ranges, of 
which there is also an indefinitely large number. 

In the same way,_we may set up an unlimited number of 
different measures of skewness and flatness. Obviously, there-
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(ore, we need to have some general principle to guide us in 
choosing measures o( such characteristics o( a distribution of 
data as the central tendency, dispersion, skewness, and flat
ness. 

One basis o( choosing between two statistics as a measure 
o( a characteristic o( a distribution is the difference in the 
amount o( labor involved in their calculation. As a case in 

. . maximum X + minimumX 
POInt, such measures as the median, , 

2 

and mode, can readily be determined by observation of the 
observed frequency distribution; whereas, the calculation of the 
arithmetic mean involves considerable labor. It is believed, 
however, that the cost of the manual labor involved in the 
analysis of engineering data is for the most part a very small 
per cent of the cost of taking the data. If we can get more 
information out of one measure than we can out of another, 
the cost of analysis will not, in general, be a deciding factor. 

Casting about for some more fundamental basis of choice, 
we take note of the fact that it is usually desirable to have a 
statistic which is an algebraic function of the data. It is 
obvious that these functions must be symmetric since they 
must be independent of the order in which the data were 
taken. It follows from algebraic theory that the chosen func
tions must be expressible in terms of what are generally known 
as sum functions, because all symmetric functions are so 
expressible. Now, the sum functions are defined as 

81 = XI + X2 + ... + Xi + ... + X 7I 

82 = XI2 + X22 + ... + Xi2+ ••. + X7I2 

8j = Xl + Xl + ... + Xl + ... + X'/ 

Obviously, Sj is the jth moment Illj of the distribution about 
n 

the origin. 
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The statistics X, (T, k, {h, and r satisfy the condition. 'of 
being symmetric functions of the data, but still we must 
try to find out if they are the most useful symmetric functions. 
In the remaining chapters of Part II, we shall justify the use 
of these five statistics to the extent of showing that they go a 
long way towards expressing the total amount of information 
contained in a set of data. 



CHAPTER VIII 

BASIS FOR DETERMINING How TO PRESENT DATA 

I. The Problem 

Let us consider again the distribution of the 1..170 observed 
values of depth of sapwood. So far as this or any similar 
set of data is concerned, we assume that one observation 
contributes just as much information as any other in the same 
set. The lotal inJormation is given by the observed distribution. 
If, then, we are to present the total information, we must give 
the original frequency distribution. For reasons already con
sidered, however, we find it desirable to condense the original 
data insofar as possible by calculating certain statistics. In 
t~e previous chapter we showed how to effect this reduction 
and illustrated the method by application to the distribution 
of d~pth of sapwood. The information contained in this dis
tribution, reduced to the form of statistics, is given in Table 14. 

TABLB 14.-INFORMATION IN FORM or STATISTICS 

Average X = 2.9141 inches 
Standard Deviation" = 0.8029 inch 

Skewness Ie = o. 2407 inch 
Flatness fJ2 = 2.6870 inches 

Number of Observations n = 1.370 

If the statistics of Table 14 actually contain the total 
information in the original series of observations, it should 
be possible to reproduce this distribution from these stati~ti~s. 
Ob.viously, it is not possible to do this, and therefore the statistics 
do not contain all of the information. However, they do con
tain a surprisingly large percentage, as we shall now see. 

8S 
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Table IS gives the results of two attempts to reproduce the 
original distribution from the observed statistics. The second 
row is the distribution obtained from the average and standard 
deviation alone, while the third row is that obtained using, 
in addition, the skewness of the original distribution. 

TABLE IS.-SHOWING How MUCH INFORMATION IS CONTAINED IN A 

FEW SIMPLE STATISTICS 

Cell Midpoint ....... 0.4 0.7 1.0 1.3 1.6 1.9 ... 2.5 2.8 3.1 3.4 3.7 4·0 4.3 4.6 4·9 5 .• 
- - - - - - - - - l-I- - I- - f-

Observed Frequency. 0 0 2 29 62106 153 186 193 188 151 "3 82 48 27 14 5 
- - - - - - - - - - - - - - -

Normal Law Fre-
quency .......... . I 5 12 '7 53 92138 179 20. 199 170 127 8. 46 23 10 3 

- - - - - - - - - - - - - - -
Second Approxima-

tion Frequency . ... 0 0 9 '5 55 99149 189 .07 193 159 116 77 46 25 13 6 

5.5 

-
1 

I-

1 

-
2 

That the approximate or theoretical distribution obtained 
through the use of ·the average X, standard deviation CT, and 
skewness k is closer to the observed distribution than is that 
obtained through the use of only the first two of these statistics 
can be seen quite readily from Fig. 32. 

200 
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FlO. 3~.-SIGNIFICANCE OF AVERAGE, STANDARD DEVIATION, AND SKEWNESS. 
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The surprising thing is that a knowledge of the average 
and standard deviation alone enables us to reproduce so 
closely the observed distribution in this case. Here, the 
approximation is so good that it is somewhat doubtful whether 
or not, from the viewpoint of presentation alone, we can attach 
any practical significance to the increase in the amount of 
informll;tion given by the introduction of the skewness over 
that given by the average and standard deviation alone. In 
fact, engineers are usually interested in knowing only the 
number of observations lying within certain relatively large 
ranges, such as the average X plus or minus two or three times 
the standard deviation fT. Table 16 presents the observed 
percentages of the 1,370 observations lying within these ranges 
together with those estimated from a knowledge of the average 
and standard deviation. A knowledge of k as here used adds 
nothing to the precision of our estimate of the number of 
observations lying within these or any other ranges symmetric 
in respect to the average. 

TABLE 16.-PERCENTAGE GF OBSERVATIONS LYING WITHIN PARTICULAR RANGES 

Range Range Range Range 
X ± 0.6745" x± ... X±2Ir X±3" 

Estimated, Per Cent ....... 50 .00 68.27 95·45 99·73 
Observed, Per Cent ........ 47·45 66·57 95.91 99·93 
Difference, Per Cent ..•.... 2·55 21.70 0.46 0.20 

In the next few paragraphs we shaH see how these simple 
statistics often enable us to approximate very closely the 
original distribution. In general, we shaH find that the infor
mation contained in statistics calculated from moments 
higher ·than the second depends to a large extent upo~ t.he 
nature of the observed distribution; therefore, these statIstIcs 
are· somewhat limited in their usefulness. The really re
markable thing is that so much information is contained in 
the average and standard deviation of a distribution. 
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The specific problem to be considered is: Given a series 
of numbers, Xl, X 2, ••• ,Xi, ... ,Xn, representing an observed 
distribution of some quality characteristic X such as any of 
those previously discussed, let us try to find some function 
j(X, X, rr, k, (J2) of X and the four statistics calculated from 
the observed distrihution such that the integral 

i b 

f(X, X, IT, k, fh)dX (20) 

of this function from X = a to X = b gives approximately the 
total number of observed values lying within this same interval. 
When the approximation is good, we can say that the statistics 
contain practically all of the total information in the original 
distribution. In fact, as already noted, we can say that these 
statistics contain most of the information of practical en
gineering value when the approximation 

-'

X + lOT • 

_ f(X, X, IT, k, fh)dX 
.'X-ZfT 

is good, where, as before, the values of z with which we are 
usually most concerned are 0.6745, I, 2 and 3. 

Common· sense tells us that the degree of approximation 
in a given case will depend upon the function f. Of course, 
it is desirable to be able to estimate the amount of information 
contained in the statistics independent of the functionf.For 
reasons which will be considered later, we find that under 
the state of control of manufactured product the function f 
which is best in the majority of cases is the same for' most 
quality characteristics. Hence, what we shall do is .to show 
how much information is contained in these statistics for this 
limiting type of distribution function which is approached as 
we approach the state of control. We shall then review the 
work of the Russian mathematician, Tchebycheff, which makes 
it possible for us to see how much of the total information is 
contained in the average and standard deviation of a distribu
tion independent of its functional form. 
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2. Statistics to be Used when ~ualily is Controlled 

When the number n of measurements of some quality X 
have been made under the conditions of control, we find in 
general that the function f in (20) can be assumed to be one 
or the other of the following two forms without introducing 
practical difficulties: 

n -.!!. 
J(x) = --e 2.', (22) 

1T'V'2; 
or 

J(x) = --e 2.' 1-- - -- , n - ~ [ It (X x'd )] 
lTV;; 2 IT 3,,3 

where Jt = X-X. 
Under the conditions of control, it may then be assumed 

that the integral of either one or the other of these two functions 
over a given range should give approximately the number of 
observed values within the corresponding range, particularly 
when the number n of observed values is comparatively large. 
We need, therefore, tables of values of the integrals of these 
functions for n = I. The integral of (23) is 

where F1(z) is the integral of (22), and z =~. Tables A and B 
IT 

give the functions F1(z) and F2(Z) respectively. 
Now we are in a place to see how the approximations 

given in Table 15 were obtained. The method is illustrated 
in detail in Tables 17 and 18 derived from approximations 
(22) and (23) respectively. Corrected moments were used in 
Tables 17 and 18 and Fig. 39· 

We have already noted that Ie contains some information 
not contained in the average and standard deviation in the 
sense that the use of all three gives the closer of the two approx
imations to the observed frequency distribution of depth of 
sapwood. If, however, we are interested in the number of 
observed values within a symmetrical ~ange about the observed 



z F,(z) 
- --
.00 .0000 

.01 .0040 
:02 .0080 
.03 .0120 
.04 .0160 

.05 .0200 

.06 .0239 
·67 .0279 
.08 .0319 
·09 .0359 

.10 .0399 

.II .0438 

.12 .0478 

.13 .0517 

.14 .0557 

.15 .0596 

.16 .0636 

.17 .0675 

.18 .0714 

.19 .0754 

.20 .0793 

.21 .0832 

.22 .0871 

.23 .0910 

.24 .0949 

.25 .0987 

.26 .1026 

.27 . 1064 

.28 . II 03 

.29 .1l41 

.30 . II79 

.31 .1217 

.32 .1255 
·33 . 1293 
·34 .1331 

·35 
.36 

.1369 

.1406 
·37 .1443 
.38 .1481 
·39 .1518 

.40 .1554 
'41 .1591 
.42 .1628 
·43 . 1664 
·44 .1701 
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z 
~ 
·45 
.46 
·47 
.48 
·49 

.50 

.51 

.52 
·53 
·54 

·55 
.56 
·57 
.58 
·59 

.60 

.61 

.62 

.63 

.64 

.65 

.66 

.67 

.68 

.69 

.70 

.71 

.72 
·73 
·74 

·75 
.76 
·77 
·78 
·79 

.80 

.81 

.82 

.83 

.84 

.85 

.86 

.87 

.88 

.89 

TABLE A.-VALUES OF F,(z) = _:_ r:-v. .. Jz 
v 27f)O 

F,(z) z F,(z) z . F,(z) z F,(z) z F,(z) -- I---I- I- I-
.1737 .90 .3160 1.35 ·4II 5 1.80 .4641 2.25 .4878 
.1773 .91 .3186 1.36 .4131 I. 81 .4649 2.26 .4881 
.1808 .92 .3212 1.37 .4147 1.82 .4656 2.27 .4884 
. 1844 ·93 .3238 1.38 .4162 1. 83 .4664 2.28 .4887 
.1880 ·94 .3264 1.39 .4178 1. 84 .4671 2.29 .4890 

.1915 ·95 .3290 1.40 .4193 1.85 .4679 2.30 .4893 

.1950 .96 .3315 1.41 .4208 1.86 .4686 2.31 .4896 

.1985 ·97 .3340 1.42 .4222 1. 87 .4693 2.32 .4899 

.2020 .98 .3365 1.43 .4237 1.88 .4700 2·33 .4901 

.2054 ·99 .3389 1.44 .4251 1. 89 .4706 2·34 ·4904 

.2089 1.00 .3414 1.45 .4265 1.90 .4713 2·35 .4906 

.2123 1.01 .3438 1.46 .4279 1.91 .4720 2.36 ·4909 

.2157 1.02 .3462 1.47 .4292 1.92 .4726 2·37 . 49 II 

.21 91 1.03 .3485 1.48 .4306 1.93 .4732 2.38 .4914 

.2224 1.04 .3508 1.49 .4319 1.94 .4738 2·39 .4916 

.2258 1.05 .3532 1·50 .4332 1.95 ·4744 2.40 .4918 

.2291 1.06 ·3555 1.51 ·4345 1.96 .4750 2.41 .4920 

.2324 1.07 ·3577 1.52 .4358 1.97 .4756 2.42 .4923 

.2357 1.08 ·3599 1.53 .4370 1.98 .4762 2·43 .4925 

.2389 1.09 .3622 1.54 .4382 1·99 .4768 2·44 .4927 

.2422 1.10 .3644 1.55 ·4395 2.00 ·4773 2·45 .4929 

.2454 loll .3665 1.56 .4406 2.01 .4778 2.46 .4931 

.2486 1.12 .3687 1.57 .4418 2.02 .4783 2·47 ·4933 

.2518 I. 13 .3708 1.58 .4430 2.03 .4788 2.48 ·4935 

.2549 1.14 .3729 1·59 .4441 2.04 ·4793 2·49 .4936 

.2581 I. 15 ·3749 1.60 ·4452 2.05 .4798 2.50 .4938 

.2612 I. 16 .3770 1.61 .4463 2.06 .4803 2·51 .4940 

.2643 I. 17 ·3790 1'.62 ·4474 2.07 .4808 2.52 .4942 

.2673 I. 18 .3810 1.63 .4485 2.08 .4813 2·53 ·4943 

.2704 I. 19 .3830 1. 64 ·449S 2.09 .4817 2·54 ·4945 

.2734 1.20 .3850 1. 65 .4506 2.10 .4822 2·55 .4946 

.2764 1.21 .3869 1.66 .4516 2.II .4826 2.56 .4948 

.2794 1.22 .3888 1. 67 .4526 2.12 .4830 2·57 ·4949 

.2823 1. 23 ·3907 1.68 ·4535 2.13 .4834 2.58 .4951 

.2853 1.24 .3925 1. 69 ·4545 2.14 .4838 2·59 .4952 

.2882 1.25 ·3944 1.70 ·4555 2.15 .4842 2.60 ·4954 

.2911 1.26 .3962 1.71 .4564 2.16 .4846 2.61 ·4955 

.2939 1.27 .3980 1.72 ·4573 2.17 .4850 2.62 .4956 
:2968 1.28 ·3997 1.73 .4582 2.18 .4854 2.63 .4958 
.2996 1. 29 .401 5 1.74 .4591 2.19 .4858 2.64 ·4959 

.3024 1.30 .4032 1.75 ·4599 2.20 .4861 2.65 .4960 

.3051 1.31 .4049 1.76 .4608 2.21 .4865 2.66 .4961 

.3079 1.32 .4066 1.77 .4617 2.22 .4868 2.67 .4962 

.3106 1.33 .4083 1.78 .4626 2.23 .4872 2.68 .4963 

.3133 1.34 .4099 1.79 .4633 2.24 .4875 2.69 .4965 

z F,(z) 
--

2.70 .4966 
2.71 .4967 
2.72 .4968 
2·73 .4969 
2·74 .4970 

2·75 .4970 
2.76 .4971 
2·77 '.4972 
2.78 ·4973 
2·79 ·4974 

2.80 ·4975 
2.81 ·4975 
2.82 .4976 
2.83 ·4977 
2.84 .4978 

2.85 .4978 
2.86 ·4979 
2.87 .4980 
2.88 .4980 
2.89 .4981 

2·90 .4982 
2.91 .4982 
2.92 .4983 
2·93 .4983 
2·94 .4984 

2·95 .4984 
2.96 .4985 
2·97 .4985 
2.98 .4986 
2·99 .4986 

3.00 .4987 
3. 10 .4991 
3. 20 ·4993 
3.30 ·4995 
3.40 ·4997 

3·50 .4998 
3. 60 ·4999 
3.70 ·4999 
3·80 ·5000 
3·90 ·5000 

4. 00 .5000 



z F,(.) 

.00 .ocooo 

.01 .00001 

.0'1 ·00004 

.03 .000Cl9 

."4 .00016 

.05 .000'l5 

.06 .00036 
·07 ·00"49 
.08 .00064 
·09 .00081 

.10 ·00Cl99 

.11 .001'10 

.12 .00143 

.13 .00167 

.14 .00194 

.15 .00'1:1'1 

.16 ·00'153 
.17 .00'185 
.18 .00319 
.19 .00355 

.'10 .0039'1 

.'11 ·0043'1 

.22 ·00473 

.23 .00516 

.'l4 .00561 

.25 ·00607 

.26 .00656 

.27 ·00705 

.28 ·00757 

.29 .00810 

·30 .00865 
.31 .00921 
.31 ·00979 
·33 .01038 
·34 .01099 

·35 .01161 
.36 .017.25 
·37 .01'190 
·38 .01356 
·39 .014'l4 

·40 .01493 
.41 .01 564 
·4'1 .016.15 
·43 .01708 
·44 .0178'1 
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TABLa B.-VALua. or F,(.) =_ /_ [I - (I - .')e-~"J 

6V :1r 

z F,(.) z F,(.) z F,(z) z F,(.) z F.(.) 
f-- - r--- r--

·45 .01857 ·90 .05806 1.35 .08848 1.80 ·09597 :1·:15 .08798 
.46 .01933 .91 .05894 1.36 .08890 I. 81 ·09590 '1.'16 .08774 
·47 .0'1011 ·9'1 .05980 1.37 .08930 1.81 .09584 :1·:17 .08749 
·48 .0'1089 ·93 .06066 1.38 .08970 1. 83 .09576 :1.'18 .087:14 
·49 .0'1168 ·94 .06152 1.39 .09008 1. 84 .09568 :1·:19 .08699 

·50 .0'1'l48 ·95 .06236 1.40 ·09045 1. 85 ·09559 :1.30 .08674 
·51 ·0'13:19 ·96 .063'10 1.41 .09080 1.86 ·09549 :1.31 .08650 
·5'1 .0'1411 ·97 .06404 1.4:1 .0911 5 1.87 ·09539 '1·3:1 .086'15 
·53 ·0'l494 .98 .06486 1.43 .09148 1.88 ·095'17 :1·33 .08600 
·54 .0'1578 ·99 .06568 1.44 .09180 1. 89 .09516 2·34 .08575 

·55 .0'l66:1 1.00 .06649 1.45 .09211 1.90 .09503 '1·35 .08sso 
.56 .0'1748 1.01 .06729 1.46 .09'l41 1.91 ·09490 :1.36 .08 5:15 
·57 .0'1833 1.0'1 .06809 1.47 ·09'169 1.9:1 ·09477 '1·37 .08500 
·58 .0'19'10 1.03 .06887 1.48 .09:196 1.93 .09463 '1.38 .08475 
·59 .03007 1.04 ·06965 1.49 ·093:1'1 1.94 .Cl9448 :1·39 .08450 

.60 .03095 1.05 .0704:1 1.50 ·09347 1.95 ·09433 7..40 .084'16 

.61 .03 183 1.06 ·07118 1.51 .09371 1.96 ·09417 '1.41 .08401 

.6:1 .03:17:1 1.07 .07193 1.52 ·09394 1.97 .09401 '1·4'1 .08376 

.63 .03361 1.08 ·07'167 1.53 .09415 1.98 .09384 '1·43 .0835'1 

.64 .03450 1.09 ·07340 1.54 ·09435 1.99 .09366 :1·44 .083:17. 

.65 .03540 1.10 .0741'1 1.55 ·09454 2.00 ·09349 '1·45 .08303 

.66 .03631 1.11 .07483 1.56 .09472 '1.01 .09330 '1.46 .08179 

.67 .03721 1.12 .07552 1.57 .09489 2.0'1 ·0931'1 '1·47 .08155 

.68 .0381 '1 1.13 ·076'11 1.58 .09505 '1·03 ·09'193 2.48 .08131 

.69 .03904 1.14 .07689 1.59 .09519 '1.04 .09273 '1·49 .08'107 

·70 .03995 I. 15 .07756 1.60 .09533 '1.05 ·09'153 '1.50 •08183 
·71 04086 1.16 ·0781'1 1.61 .09546 '1.06 .09233 '1.51 .081 59 
·72 ."4178 1.17 .07886 1.62 .09557 '1·07 ·09'113 7.·5'1 .08136 

·73 .04270 1.18 .07950 1. 63 .09567 '1.08 .0919'1 '1·53 .0811'1 

·74 .0436'1 1.19 .0801'1 1. 64 ·09577 '1·09 .09170 '1·54 .08089 

·75 ·04453 1.'10 .08073 1.65 .09585 2.10 .09149 2·SS .08066 

.76 ."4545 1.21 .08133 1.66 ·09597. '1.11 .091'17 2.56 .08043 

·77 ."4637 1.22 .081 9'1 1.67 ·09599 2.1'1 .09105 '1·57 .o8O'lO 

·78 .04728 1. 23 .08150 1.68 .09604 2.13 .0908'1 '1.58 .07998 

·79 .048'10 1.'l4 .08306 1.69 .09608 7..14 .CJ9060 '1·59 ·07975 

.80 .04911 1. 25 .08361 1.70 .0961'1 '1.15 .09037 '1.60 ·07953 

.81 .0500'1 1.'16 .08416 1.71 .0961 4 '1.16 .09014 '1.61 .07931 

.81 .05093 1.7.7 .08468 1.77. .09616 7..17 .08991 '1.67. ·07909 

.83 .05 183 1.28 .085'10 1.73 .09616 7..18 .08967 '1.63 ·07888 

.84 .057.74 1.'19 .08571 1.74 .09616 '1.19 .08943 2.64 .07866 

.85 .05363 1.30 .08620 1.75 .09615 2.'10 .08919 2.65 .07845 

.86 .05453 1.31 .08668 1.76 .09613 2.21 .08895 2.66 ·078'l4 

.87 .05542 1.3'1 •08715 1.77 .09610 7..'17. .08871 '1.67 .07803 

.88 .05631 1.33 .08760 1.78 .09606 2.23 .08847 2.68 ·0778'1 

.89 .05719 1.34 .08805 1.79 .096O'l 2.'l4 .088'13 2.69 .07767. 

z F,(z) 
~ 

:1.70 ·0774'1 
'1.71 ·077'1:1 
:1·7'1 ·0770'1 
:1·73 .0768:1 
'1·74 .07663 

:1·75 
:1.76 

.07644 

.076'15 
:1·77 .07606 
'1.78 .07588 
2·79 .07569 

'1.80 .07551 
:1.81 ·07534 
:1.h .07516 
'1.83 ·07499 
:1.84 ·0748'1 

'1.85 .07465 
:1.86 .07448 
:1.87 ·0743'1 
'1.88 .07416 
'1.89 ·07400 

'1·90 .07384 
2.91 .07369 
:1·97. ·07354 
'1·93 ·07339 
'1·94 .07324 

2·95 ·07309 
'1.96 .07295 
'1·97 ·07:181 
'1.98 .07267 
'1·99 .07254 

3·00 ·077.40 
3. 10 ·07118 
3·'10 .07016 
3.30 .06933 
3.40 .06866 

3.50 .06813 
3·60 .06771 
3.70 .06739 
3. 80 .0671~ 
3·90 .0669 

4.00 .06683 
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TABLE 17.-DISTJUBUTION OF DEPTH OF SAPWOOD CALCULATED FROM (11) 

n = 1,370 

x = '1.914088 

fT = 0.798'111 

Cell Cell 
Mid- Bound-

point ary 

---- 0·'15 
0·4 
-- o·SS 

0·7 -- 0.85 
1.0 
-- I. 15 

1.3 -- 1.45 
1.6 
-- 1.75 

1.9 -- 2.05 
2.2 
-- 2·35 

2·5 -- 2.65 
2.8 
-- 2·95 
3. 1 
-- 3. 25 

3·4 -- 3·SS 
3·7 -- 3. 85 
4. 0 
-- 4. 15 

4·3 -- 4·45 
4. 6 
-- 4·75 

4·9 -- 5·05 
5·2 -- 5·35 
5·5 

5. 65 --
l: 

Devia-
rion z 

from X (;tIfT) 
;t 

'1.6641 3.3376 

'1.3641 '1.9618 

'1. 0641 '1·5859 

1.7641 '1.'1101 

1.4641 1. 834'1 

1. 1641 1.4584 

0. 8641 1.0825 

0.5641 0.7067 

0. 2641 -0·3309 

0.0359 +0.0450 

0·3359 0.4208 

0.6359 0.7967 

0·9359 1.1725 

1.2359 1.5483 

I. 5359 1.9'142 

1. 8359 2.3000 

2.1359 2.6759 

2·4359 3. 0517 

2·7359 3.4275 

Subject Date '1/'11130 

Depth of Sapwood 
Calc. by MBC 

in inches Checked MSH 

Approxi- Observed Differ- Fre-F.(z) ence quency mate Fre-
Frequency quency 

---
0·4995 ---

0.0010 1.4 I 
0.4985 ---

0.0033 4·5 5 
0·495'1 ---

0. 0087 11.9 1'1 '1 
0.4865 

0. 01 98 
0.4667 

'17. I '17 '19 

0.0390 53·4 53 6'1 
0·4'177 

0. 067'1 92. 1 9'1 106 
0.3605 ---

0.1004 %37·5 138 153 
0.2601 ---

0.1305 178.8 179 186 
0. 1296 ---

0.1476 202.2 202 193 
0.0180 ---

0.1451 198.8 199 188 
';1. 1631 ---

0.1'140 169.9 170 151 
0. 2871 

0·09'14 126.6 127 123 
0·3795 ---

0.0597 8I .8 82 8:1 
0.4392 ---

0.0337 46 .2 46 48 
0.4729 ---

0. 0164 22·5 23 27 
0.4893 ---

0.0070 9. 6 10 14 
0.4963 

0.0025 3·4 3 5 
0.4988 ---

0·0009 1.2 1 I 

0·4997 ---
0.9992 1,368·9 1,370 1,370 



TABLa IB.-DISTalBunON or DEPTH or SAPWOOD C.UCVLATED raolll (23) 

• - 1370 Subject 
X - 2.914088 

Date a/u/,o 

.- .798211 Depth of Sapwood Calc.brMBC 

11-
in inch. Cbecked MSH .2449'5 

Cell Cell 
Deviation 

Mid· from it 1( .. "') ',CI) PICI) ±ilFICI) F,CI) ± .FICI) Dilference Frequency Obaerved 
point Boundary 

" 
Frequency 

0.85 1.0641 1.5859 0·495' 0.0799 0.0196 0.5148 
1.0 0.0065 9 • ------ 1.15 1.7641 2.1101 0.4865 0.0889 a,ouB 0.5083 
1.3 0.0181 IS 10 

1.45 1.4641 1.8342 0·4667 0.0958 0.0135 0.4002 
1.6 0.0390 55 6. 

1.75 1.1641 1.4584 0.4277 0.0924 0.0:126 0·4503 
1.0 0.0719 90 106 

2.05 0.8641 1.0825 0.3605 0.0739 0.0179 0.3784 
1.2 0.1084 149 153 

2.35 0.5641 0.7067 0.2601 0.040 6 0.0090 0.2700 
1·5 0.1378 189 186 

•. 65 0.11641 0·3309 0.1396 0.0105 0.0026 0.13211 
1.8 0.1501 207 193 

1.95 0.0359 0.0450 0.0180 0.0003 0.0001 0.0179 
3.1 0.1411 193 188 ---- 3.25 0.3359 0.4258 0.1631 0.0164 0.0040 0.1591 
3·4 0.1160 159 151 ---- 3.55 0.6359 0.7967 0.2871 0.0488 0.0120 0.2751 
3.7 0.0850 116 123 ---- 3.85 0.9359 1.1725 0·3795 0.0791 0.0194 0.3601 
4.0 0.0560 77 82 ---- 4.15 1.2359 1.5483 0.4392 0.0945 0.0131 0.4161 
4.3 0.0336 46 48 ---- 4.45 I. 5359 1.9242 0.4729 0.0947 0.0232 0·4497 
4.6 0.0184 '5 27 ---- 4·75 I. 8359 2.3000 0.4893 0.0867 0.0212 0·4681 
4.9 0.0091 '3 '4 ---- 5.05 2.1359 •. 6759 0·4963 0.0779 0.0[91 0.4772 
5.' 0.0040 6 5 ---- 5.35 2.4359 3.0517 0.4988 0.0718 0.0176 0.48 12 
5.5 0.0017 2 1 

5.65 2.7359 3.4275 0.4997 0. 0684 0,0168 0.4829 

l: 0.9977 1.370 1,370 
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average, it follows from (24) that the skewness k does not 
add to this information beca~se the integral of (22) over a 
symmetrical range is identically the same as the integral of 
(23) over the same range. 

In passing, we should note that the function" (22) is the 
familiar bell-shaped normal law curve whose significant charac-

50.00000 % OF AREA WITHIN 0 .t 0.&74S ~ 
68.268940/0 OF AREA WITHIN o.t liT 
95.44998% OF AREA WITHIN o.t 2.,. 
99.73002% OF AREA WITHIN o.t 3.,. 

-1<1 -o.674!><1 0 o.674!><1 1<1 3<1 

FIG. 33.-NoRMAL LAw CURVE. 

temtlcs are shown in Fig .• 33. The function (23) will be 
referred to as the second approximation. 

3. Why the Average X and Standard Deviation rT are always 
Useful Statistics 

Let us consider the case where nothing is known about the 
distribution of observed values. To what extent are we 
justified in assuming that the average, standard deviation, 
skewness, and flatness contain significant information? 

We have already seen that the amount of information 
given by these statistics of value in reproducing approximately 
the original distribution, depends upon the nature of the 
original distribution as reflected in the form of function f 
that would be required to satisfy the cOQdition that its integral 
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over a given range should be approximatdy equal to the 
number of observed values within this same range. However, 
even when nothing is known about the condition under which 
the distribution was observed, we find that the average and 
standard deviation enable us to estimate within limits which 
are quite satisfactory for most purposes, the number of obser
vations lying within any symmetrical range X ± ZIT, where z 
is greater than unity. In fact, the proportion of the total 
number of observed values within any such limits is always 

greater than I -~. This follows from a general theorem, the 
Z2 

proof of which can be framed in the simplest kind of elementary 
mathematics, as we shall now see. 

T'he!Jy'he.ff's Theorem.-Given any set of n observed 
values expressible by the frequency distribution of m different 
values, 

pln,P2n, ... , pin, ... , pmn 

where Pin represents the number of values of Xi, then 

and 

.. 
~pinXi 

X= f:..:-.;,.~ __ 

~p;n .-1 
.. 
~ pin (Xi - X)2 

.,.2 = !::f-:..!.I_.,------

Let P.n denote the number of v:"ues of X such that 
x = (X - X') does not exceed numencally ZIT where Z> I, 

and n - P.n denote the number of values of x that do exceed ZIT. 

We may write 
.,.2 = ~lPiXi2 + ~2piXi2, 

where ~l denotes summation for all values of Xi which do not 
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exceed ZO' and ~2 denotes summation for all values of Xi which 
do exceed ZO'o Since all values of PiXi~ are either positive or 
zero, 

Obviously, therefore, 

since all values of Xi included in the summation ~2 are greater 
than ZO'. But 

Hence 

or 

and 

I 
(1 - Pa) <"2' z 

I 
Pa > I -"2. 

z 

We see that no matter what set of observed values we may 
have, the number of these values Pan lying within the closed 

range X ± ZO' is greater than (I - ~)n whereas the number 
• Z2 

(I - Pa)n lying without this range is less than .!..n. 
Z2 

4. Importance oj Skewness k and Flatness fJ2 
Given a set of any n real numbers Xl, X 2, ••• , Xi, ; .. , Xn, 

what does a knowledge of the skewness k and flatness fh for 
this set of numbers really tell us independently of any assump
tion as to the nature of the distribution of the numbers as was 
made in deriving the theoretical distributions in Table 15? 
To get at this question, let us assume that the skewness k is 
equal to zero. Obviously, for a distribution to be symmetrical, 
it is a necessary condition that its skewness be zero. If this 
condition were also sufficient, it would be possible to say of the 
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set of numbers given above that they were symmetrically 
distributed about the arithmetic mean value and hence that 
h • ' t ere were Just as many on one side of the mean as there were 

on the other. This would oftentimes be really worthwhile 
information. 

It can readily be shown, however, that the condition 
It = 0 is not sufficient for symmetry. For example the dis-
tribution ' 

X: 

y: 

2 -I 

16 16 6 

sa~isfies the condition that its skewness is zero, although 
it is obviously not symmetrical about its mean value X = o. 
In fact, it is far from being symmetrical as are many others 
which may be found by empirical methods. In this particular 
instance, instead of finding the set of numbers equally divided 
on either side of the average, we find sixteen on one side and 
twenty-three on the other. Hence we must conclude that a 
knowledge of It in itself does not present very much information. 

In a similar way it can be shown that a knowledge of (32 
in itself does not present any very useful information about the 
distribution of a given set of n numbers. 

These results are of considerable importance because 
they show that the tabulation of moments higher than the 
second for the purpose of summarizing the information con
tained in a set of data is likely to be oflittle value unless there is 
also given some function involving these statistics, the integral 
of which between any two limits gives an approximate value for 
the observed frequency corresponding to these two limits. In 
the general case, therefore, where one wishes to summarize an 
extensive series of observations which may not satisfy the 
condition of control, it is necessary to give a satisfactory 
function of this character to be used in interpreting the sig
nificance of the tabulated statistics from the viewpoint of 
presentation of the total information contained in the original 
set of data. Such functions are usually termed theoretical 
frequency distribution functions, and from the viewpoint of 
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presentation of an observed set of data, it would appear that 
the one to be used is usually that one which satisfies best the 
condition described in Paragraph I of this chapter. 

5. Conclusion 

We may divide observed distributions into two classes
those that have and those that have not arisen under controlled 
conditions. For distribu~ions of the first class, the three 
simple statistics, average X, standard deviation 0", and skew
ness k contain almost all of the information in the original 
distribution. For those of the second class the most useful 
statistics are the average and standard deviation. These 
contain a large part of the total information in the original 
distribution, at least in respect to the number of observations 
lying within symmetrical ranges about the average. 



CHAPTER IX 

PRESENTATION OF DATA. TO INDICATE RELATIONSHIP 

I. Two Kinds oj Relationship 

Two kinds of relationship call for consideration: mathe
matical or functional, and statistical. 

Functional Relationship.-If for each value of some variable 
X a given law assigns one or more values to Y, then we say 
that Y is a function of X and write 

Y=j(X). 

As a simple example, we may take 

Y = ,"(X - II) + 6. 

a-I ..... 2 
-2 

Ca) (b) 

Flo. 34.-GIlAPH or FUNCTION Y = e(X - II) + II SHOWINO SIONIFICANCE or 

PAIl.AMETERS II, II, AND e. 

Obviously, the.graph of this function is a .straight line passing 
through the pomt X = a, Y = lJ. The arbitrary constants a, lJ, 
and c in this function are called parameters. If we fix the values 
of a and lJ, and give to c all possi~le values, we get a pencil ~f 
lines through the point (a, lJ). FIg. 34-4 shows such a pencd 

99 
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through the point (1,2). In a similar way, if we fix the value 
of c and assign arbitrary values to a and b, we get a family of 
parallel lines. Fig. 34-b shows such a family for c = 3. 

This simple example illustrates a general principle that 
should be kept in mind, viz., that the expression of a func
tional relationship involves two things: 

I. The form of the functional relationship. 
2. The specific values of the parameters in that 

relationship. 

Thus, in the probiem just considered, the form of the function 
is linear since Y varies directly as X. How it varies is fixed 
by the values of the parameters a, b, and c. 

Statistical Relationship.-If for each value of some variable 
X a given law assigns a particular frequency distribution of 
values of Y not the same for all values of X, then we say that 
Y and X are statistically related. Two variables statistically 
related are said to be correlated. 

If we let zdXdY represent the frequency of occurrence 
of values of X within the interval X to X + dX simultaneously 
with values of Y within the interval Y to Y + dY, the func
tional relationship 

z =j(X, Y) 

is said to characterize the statistical relationship between 
X and Y. 

One important statistical relationship which will often 
be considered in further discussions is the so-called normal 
frequency function in two variables X and Y, 

where x = X - X and y = Y- Y. This is the familiar bell
shaped frequency surface shown in Fig. 35. Obviously, five 
parameters X, Y, uZ, fry, and r are involved in (27). Our interest 
at present is centered in the fact that the characterization of a 
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statistical relationship involves two th·lngs-~ d ·6 I f fOrm an specl c 
vela u~s 0 hparameters-as did the characterization of functional 
ratIons Ip. 

FlO. 3S.-THE NORMAL SURFACE. 

2. Observed Relationship 

In our causal explanation or interpretation of data we 
assume that both functional and statistical relationships exist. 
In fact it is one of the fundamental objects of experi
mental investigation to determine these relationships or 
physical laws, as they are customarily called. This practical 
problem involves, in most instances, the formulation of the 
law from a study of the observed data, including both the 
functional form of the law and the estimate of the parameters 
in the law. Taking the simplest case of relationship between 
two quality characteristics X and Y, it is obvious that our 
formulation of the law and our estimate of the parameters 
must be based upon an observed set of, let us say, n pairs of 
simultaneously observed values of the two characteristics. 
In other words, the total information is tied up in these n 
pairs of values. 

Suppose that we are studying the relationship between 
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two physical quantities, such as the length L of a rod and the 
temperature S at which this length is measured, or the distance 
s that a body falls starting from rest and the time t that it 
is falling. One object of such a study is the expression of the 
law of relationship. For example, we often assume that the 
empirical law relating the length -and temperature of a rod 
of given material is -linear, or, in other words, that the length 
varies directly with the temperature; i.e., L = La(I + as), 
where La is the original length of the rod, and a is the parameter 
indicating rate of increase with temperature. In a similar way, 
we say that the law relating sand t in the case of a freely 
falling body is s = iat2, where- a is a parameter. Having 
decided once and for all that the law in question is such and 
such, it remains for. us to discover the best values of the param
eters, as is illustrated by these two simple problems. A 
statement of the law and estimates of the parameters in that 
law is the common method of summarizing data indicating 
relationship. 

However, even in the simple case where we believe that a 
functional relationship exists, it is a difficult matter to determine 
what this functional relationship likely is; and, having once 
decided what function to assume, we must choose one from 
among the many different possible ways of finding estimates of 
the required parameters. In other words, the problem of 
presenting data in -this way is to a large extent indeterminate 
even when the assumed relationship is functional. It goes 
without saying that the indeterminateness becomes even 
greater when the relationship assumed to exist is statistical. 

To emphasize what has just been said, let us try to find the 
relationship between the current through and the voltage 
across a carbon contact from the data given in Table 7. In 
this case there is no a priori basis for assuming the form of 
the law of relationship. 1£, however, we assume that it is 
functional and parabolic in form, or, in other words, if we 
assume that the current Y is related to the voltage X in the 
following way, 
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we must find, from the data, estimates of the three parameters 
iZo, aI, and a2. If we had a universally accepted method of 
finding these parameters under these conditions, the problem 
of presenting relationship would be quite simple indeed. As 
we have already said, however, there are many different ways 
of estimating these parameters, four of which are: 

I. Direct substitution of observed values. 
z. Graphical method. 
3. Method of least squares. 
4. Method of moments. 

The details of the methods of estimating the parameters in these 
different ways are given in standard treatises on curve fitting. 
It will serve our purpose here to consider.merely the variability 
in some of the results obtained by these different methods. 
Two of the several possible sets of values for the parameters 
that can be obtained by direct substitution are those in the 
equations 

y = - 0.01000 + 0.01333X + 0.OOOOOX2, 
and 

y = 0.09ClOO - 0.00167X + 0.oooS6X2. 

Each of the following equations contains one of the infinite 
number of possible sets of values for the parameters obtainable 
by the particular method indicated. 

I. Graphical Method 
y = - 0.02446 + 0.0122SX + 0.00012X21 

z. Method of Least Squares 1 

y = 0.00809 -i- 0.00967X + 0.00016X2, 

3. Method of Moments2 

y = 0.02649 + 0.00831X + 0.00018X2. 

I This equation was obtained by minimizing th~ ve~tical deviation ~f a point fro~ 
the curve of 6t. Obviously this is only one of an m6mte number of different ways 1ft 

which the minimizing proc:e:. could be carried out, by c~oosing diffeu:nt dista.nces to 
minimize. We customarily minimize one of the three distances, vertical, honzontal, 

or perpendicular. 
'We may usc any three moments. The 6rst three are usually chosen. 
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Obviously, anyone of these equations is supposed to summarize 
the data of Table 7 in respect to relationship. It is apparent, 
however, that the details of this summary depend upon the' 
choice of the method of calculating estimates of the parameters. 

If in this case a different law of relationship is assumed to 
exist, the values of the parameters supposed to contain the 
information in the original set of data may be expected to be 
different from those given above. The difficulties of expressing 
relationship in this simple problem are multiplied many fold 
when the relationship is statistical instead of functional. 

In the light of these considerations, it becomes apparent 
that the problem of presenting essential information in respect 
to relationship is a complicated one and that a complete 
discussion of the subject is beyond the scope of the present 
text. What we shall do in the remainder of this chapter is to 
consider the significance of the correlation coefficient as a 
measure of relationship, because we shall find it to be a satis
factory measure in most of the problems with which we have 
to deal. . 

3. Information Given by the Correlation Coefficient 1 

d. Let us assume that we have n simultaneously observed 
pairs of values of two quality characteristics X and Y. As a 
specific case, let us consider the observed set of sixty pairs of 
values of tensile strength and hardness previously given in 
Table 3 and shown graphically in Fig. 36. It may be shown 
that the line of best fit to such an array of points obtained by 
the method of least squares 2 through minimizing the squares 
of the vertical deviations of these points from this line is 

Y = ,!!J!.x 
fTz ' 

where x = X - X, and y = Y - Y, the symbols X, 17, O'z, O'y, 

and r being expressed in terms of the n observed pairs of values 

1 It will be found helpful to read Chapter IV of Mathematical Statistics by H. L. 
Rietz in connection with the remainder of this chapter. 

I Throughout the remainder of this chapter, a line of" best" fit is always to be 
taken in the least square sense. 
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of X and Y. In the same way, the equation of the line pf best 
fit obtained by the method of least squares through minimizing 
the horizontal deviations of the points from this line is given 
by the equation 

tI;re 
I: = r-y. 

tl/l 

Similarly, the line of best fit obtained by minimizing the 
squares of the perpendicular deviations of the points from the 
line of fit is given by the equation 

• 

• .. . :/~ 
.", I ... ",'" " 

","/" / .. 
'" I ",'" I 

",'" I ", .;e 
I 

• • x 

• • • • • 

• • 

I A _ MINIMIZING THE PERPENDICULAR DEVIATIONS 

I B _ MINIMIZING THE X DEVIATIONS 

,I C _ MINIMIZING THE Y DEVIA~N,:: 

F 6 _' - OF FIT DERIVED FROM A KNOWLEDGB or X, Y, liz, ". AND r. 
10. 3 _ .... NES • 
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Equation (30) with a positive sign before the radical gives 
the line of worst fi t. 

Having summarized the information in the sixty pairs of 
values of tensile strength and hardness in the form: 

Average Tensile Strength Y in psi = 31869.4 
Average Hardness X in Rockwells = 69.825 
Standard Deviation (l'y of Tensile Strength in psi = 3962.9 
Standard Deviation (1'3: of Hardness in Rockwells = 11.773 
Correlation Coefficient r = 0.683 

we may write down without further work the equations to the 
three lines of best fit just mentioned. They are 

y = 229·904X, 

x = 0.002029Y, 

Y = 492 •837x. 

These are shown graphically in Fig. 36. In Figs. 36 and 40 
the variables are expressed in terms of their respective standard 
deviations, and the units of the scales are made equal. 

B. If, in a scatter diagram such as that showing the rela
tionship between depth of sapwood and depth of penetration, 
we plot the averages of the column and row arrays, we get some 
such result as that indicated in Fig. 37. The line of best fit 
to the averages of the columns when each squared deviation is 
weighted by the number of points in the corresponding column 
is given except for errors of grouping by (28); similarly, except 
for errors of grouping, the line of best fit to the averages of 
the rows is given by (29)' These two lines are called re
spectively the lines of regression of y on x and of x on y. 

It is shown in elementary texts on statistics that, if all of 
the standard deviations in the column arrays are equal,l then 
for linear regression each is equal to the standard deviation Sy 

of the observed points in the scatter diagram about line (28), 
where 

1 When this condition is satisfied, the distribution of y is said to be homoscedaslic. 



DATA TO INDICATE RELATIONSHIP 107 

With this same restriction, if all of the standard deviations 
in the row arrays are. e~ual, then it follows that each is equal 
to the standard deviation Sz of the points about line (29) 
and is given by the expression 

SZ=ITZ~. 
• 

• AVERAGES OF Y ARRAYS 

.. 0 AVERAGES OF X ARRAYS 

I • _ LINES OF ReGRESSION 
II 
w 
:I: 
U 
I 
I, 

~ 
~ 
IE ... 
III 
Z2 
w .. 
~ 
z 
t I 
w 
III 

(;12·) 

o~~ __ ~~ __ ~~~~ __ ~~ __ ~~ __ ~~ 
o 2 a 4 S • 

DEPTH OF SAPWOOD IN INCHES - X 

FIG. 37.-1.11'£1 or R£GIlBSSION. 

Under these conditions, it follows from what has just been 
said and from Tchebycheff's theorem that the fraction of the 
total number of points in the scatter diagram within the band 

will be greater than I - ~. z 

(33) 

If this scatter diagram has been obtained under conditions 
of control or, in other words, if the distributions in the row 



108 ECONOMIC CONTROL OF QUALITY 

and column arrays are approximately normal, the number 
of points within such a band will be approximately that derived: 
from the normal law integral. Fig. 38 shows such a band for 
the 1,370 pairs of values of depth of sapwood and depth of. 
penetration for the case z = 3. Under controlled conditions, 
this band should include approximately 99.7 oer cent of the 
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1,370 points~ We find that it actually includes 99.1 per cent 
of the observed values, even though the data do not rigorously 
meet the condition of control. 

What has just been said concerning the band about die 
line of regression of yon x holds good in a similar way for 
the corresponding band about the line of regression of x 
ony. 
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c. If we rewrite the equation (27) of the normal surface 
in the form 

we see that all values of x and y for a constant value X of X 

lie on an ellipse defined by the equation 1 

I (x2 y2 'lrXY) ---+---- -x 2 
I - r2 tT~ tTl tTztTII - 1· 

us) 

By revolving the original axes through an angle a such that 

2rtTztTII 
tan 2a = 2 2' tTz - tTII 

the equation of this ellipse for any value of X becomes 

where 

• = 2( I ~ r2) [ C:2 + tT:2) - ~ (tT:2 - tT:2 r + tT~:2]' 
and 

Hence the semi-axes of any ellipse are 

x x 
v'1I and V6 US) 

respectively. 
When the observed frequency distribution in two dimensions 

has been obtained under controlled conditions and sometimes 
even when the conditions have not been controlled, the number 
n'l( within the ellipse X is given approximately by the integral 

,-.xix = 1 _ ,-txt. f x' 
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TABLE C 

Fraction Fraction Fraction Fraction 
x, Outside Inside Outside Inside x' 

e- tx' I-e- txl e- tx' 1- e- tx' 

0.1 0.951229 0.048771 0·9000 0.1000 0. 2107 
0.2 0.904837 0.095163 0.8000 0.2000 0.4463 
0·3 0. 860708 0.139292 0.7500 0.2500 0·5754 
0·4 0. 818731 0.181269 0.7000 0.3000 0.7134 
0·5 0.778801 0.221199 0.6000 0·4000 1.0217 
0.6 0.740818 0.259182 0.5000 0.5000 1.3863 
0·7 0.704688 0.2953 12 0·4000 0.6000 1.9326 
0.8 0.670320 0.329680 0·3000 0.7000 2.4080 
0·9 0.637628 0.362372 0.2500 0.7500 2.7726 
1.0 0. 606531 0.393469 0.2000 0.8000 3. 2198 
2.0 0.367879 0.632121 0.1000 0·9000 4. 6052 
3. 0 0.223130 0.776870 0.0500 0.9500 5.9915 
4.0 0.135335 0. 864665 0.0100 0·9900 9. 2104 
5. 0 0.082085 0.917915 0.0030 0.9970 11. 8194 
6.0 0.049787 0.950213 0. 0027 0·9973 11. 8290 
7. 0 0.030197 0.969803 
8.0 0.018316 0.981684 
9. 0 0. 011109 0.988891 

10.0 0. 006738 0.993262 
11.0 0.004087 0.995913 
12.0 0.002479 0.997521 
13.0 0. 001 503 0.998497 
14. 0 0.000912 0·99908S 
15. 0 0.000553 0·999447 
16.0 0.000335 0.999665 
17.0 0.000203 0·999797 
18.0 0. 000123 0.999877 
19.0 0.000075 0.999925 
20.0 0·000045 0·999955 

From Table C we can read off the value of this integral for a 
large range of values of x.2• Fig. 39 illustrates the method 
of constructing 50 per cent and 99.73 per cent ellipses for the 
distribution of 1,370 pairs of values of depth. of sapwood and 
depth of penetration. Observation shows 49.9 per cent and 
99. I 2 per cen t wi thin these ellipses. 
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Similar calculations of the correlation ellipses for the sixty 
pairs of simultaneously observed values of tensile strength 
and hardness previously discussed give the results shown 
graphically in Fig. 40. In this connection the line of best fit 
is that obtained by minimizing the perpendicular distances 
of the poin ts from the line. 
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FIG. 4o.-INFORMATION GIVEN 'BY AVERAGE, STANDARD DEVIATION, AND 

CORRELATION COEFFICIENT. 

X 

The striking thing about the illustrations considered, in 
this paragraph is that, under certain conditions, a knowledge 
of the five statistics X, P, O'x, O'y, and r gives us so much of the 
total information contained in the raw data. 

If r be the correlation coefficient:- between any given set of 
n pairs of values X1Y1, X 2Y2, ••• , XiYi, ••• , XnYn of any 
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two variables X and Y, it is interesting to note that r2 = I is 
both a necessary and sufficient condition that the set of points 
lie on the line (28), because 111 = 0 only when r = ± I. In this 
case Sz is also zero and the two lines of regression (28) and (29) 
coincide. In other words, r2 = I is a necessary and sufficient 
condition that Y be a linear function of X. If r2 is approx
imatdy equal to unity, it is not necessary that all of the points 
lie near the line of regression although a majority of them do. 
We must know something about the nature of the scatter 
before we can in terpret r in this case. 

4. Relationship between Seueral!?2,ualities 

What has been said about the rdationship between two 
quality characteristics can easily be extended to the case of 
several. We shall consider here only the use of the correlation 
coefficient in determining the plane of best fit and the location 
of the observed points in a band about this plane for the case of 
three variables. 

Let us assume that we have n sets of simultaneous values 
o( three variables X, Y, and Z. Let X, Y, Z, tTz, tTy, tTz, rzy, rllZ, 
and rzz be the arithmetic means, standard deviations, and 
corrdation coefficients respectivdy. 

It may easily be shown ~at the plan~ o( regression of_z 
on x and y, when x = X - X, Y = Y - Y, and z = Z - Z, 
is given, except for errors o( grouping, by the following ex
pression 

where 
z = a+Dx+ ey, 

a = 0, 

D _ tTz(rzz - ryzrzy) 
- tTz(I - rzy2) , 

tTz(ryz - rXlj1'zz) 
c= . 

tTy( I - rzy2) 

These equations show that. a knowl~dge 10(. averages, 
standard deviations, and .correlatlOn coefficIents gIves us the 

1 Obviously,."", = "II~' etc. 
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information req~ired to construct such a plane. As an illus
tration, Table 19 gives these statistics for the sixty sets of 
values of tensile strength, hardness, and density previously 
given in Table 3. 

TABLE 19.-INFORMATION OF TABLE 3 GIVEN IN TERMS OF SIMPLE STATISTICS 

Density Xin Hargness Yin Tensile Strength Z 
gm/cm.a Rockwells in psi 

Arithmetic Mean .... 2.6785 69. 825 31,869.4 
Standard Deviation .. 0.0986 II. 773 3.962 .9 

r"," = 0.616 r". = 0.683 r",. = 0.657 

Substituting these values in (40) we get 

Z = I 53IO.35x + 150.988y. 

The stan4ard deviation (Tz.y:r: of the points from this plane is 
given apProximately 1 by 

I ryz r:r:z ~ 

ryz r:r:y 

r:r;z r:r:y I 
(lz.y:r: = (lz -'-----:::......--:~-:--'-- = 1,638.5 psi. 

(I .- r:r:y2) 

The graphical representation of the plant: was given in Fig. 14. 
Under conditions of control the number of points within 

the band formed by the two parallel planes spaced at a distance 
ZCTz.y:r: on either side of the plane of regression should be approx
imately given by the normal law integral, Table A. 

Naturally we can duplicate the above discussion for the 
planes of regression of y onz and x and of x on y and z. 

Equation (43) enables us to measure the scatter of the 
observed points in Fig. 14 from the plane of regression shown 
therein. It is of interest to compare the standard deviation 
(Tz.y:r: with the corresponding standard deviations Say and Sz:r; 

I The numerical result given in (43) is obtained by using more decimal places than 
shown in Table 19. cr. Paragraph 7. Chapter 7. Part II. 



DATA TO INDICATE RELATIONSHIP 

measuring. respectively .the standard deviation of the points 
fro~ the line of regression of z <?n y and z on x. It is easily 
verifiable that the equations of these two lines of regression are 

and 

It also follows that 

and 
SZJI = VII v' I - rl/,2 = '1,893.98 psi 

Su = v. v' I - rZII2 = '1,987.0'18 psi. 

Both of these standard deviations are larger than (fz.zy given 
by (43), the relative magnitudes being represented by the 
lengths of the lines in Fig. 144. 

s. Measure of Rela/ionship-Correla/ion Ra/io 

Given any set of n pairs of values X1Y1, X 2Y2, ••• , XiYi, 
.•. , X"Y", another useful measure of relationship is the 
correlation ratio 'lIP of Y on X. By definition 

Sl1/2 
'rJ1/:r;2= 1--

v~ 

where Sl,? is the mean square of deviations from the means of 
the arrays of y's. 

The correlation ratio '1zy of X on Y may be defined in a 
similar manner. 

It is shown in elementary texts I that the square of the 
correlation ratio must lie between 0 and 1 and satisfies the 
expression 

I ~ 'rJ1/:r;2 ::: r2. 

The condition that '11/:r;2 = 1 is sufficient to prove that the 
variable Y can be expressed as a single-valued functional rela-

1 Cf. Rietz, loe:. cit. 
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tionship of X, and that the condition 'TJyx2 - r2 = 0 is satisfied 
if and only if the regression. of y on x is linear. Since the 
square of the correlation ratio can never be less than the 
square of the correlation coefficient, it follows that r is zero 
if 'TJyx2 is zero. However, the condition that r = 0, does not 
necessarily mean that 'TJyx = o. 

Furthermore, it should be noted that the correlation 
coefficient r may be zero even though Y is a function of X. 
Rietz 1 has shown that this is true, for example, when 

y = cos xx. 

6. Measure of Relationship-General Comments 

From the viewpoint of presentation of information to show 
statistical relationship, it is necessary to do more than simply 
tabulate statistical measures such as the correlation coefficient 
and correlation ratio.2 It will be recalled that a similar state
ment had to be made in respect to the interpretation of moments 
.of a frequency distribution higher than the second. In contrast 
with this situation, however, we have seen that the average 
and standard deviation of the distribution contain a large 
amount of the total information given by that distribution 
independent of its nature. Of course, the knowledge of these 

I "On Functional Relations for which the Coefficient of Correlation is Zero," 
f{.uartn-/y Pu6/ications of the Amn-ican Statistical Association, Vol. XVI, September, 
1919, pp. 472-476• 

I Incidentally, it should be noted that both the correlation coefficient and the 
correlation ratio are only measures of certain characteristics of correlation defined in 
the first paragraph of the present chapter. In other words, the frequency distribu
tion functions of the x arrays of y's need not all be alike and hence there may be 
definite correlation although r = 0 and '1W.l) = O. A case in point is the scatter dia
gram of numbers shown below and typical of an indefinitely large number which might 
be constructed. 

I 2 1 

I 24 2 I 

I :I. 4 84:1. I 

I :I. 4 :I. I 

I :I. I 

I 



DATA TO INPICATE RELATIONSHIP 117 

two statistics gives us perfectly definite information about 
an observed set of n pairs of values of any two variables X 
and Y. Thus we can say: 

(.1) If r2 = I, then y is related to x by a linear function. 
(B) If '111%2 = I, it follows that Y is a function of X or 

that Y = f(X). 
(C) The regression of y on x is linear if and only if 

'111%' - r2 = o. 

However, other values of rand '1 do not give us such positive 
information. For example, if r2 = 0, it does not necessarily 
follow, as we have already seen, that there is no correlation 
between Y and X. Similarly, if '111%2 = 0, then r = 0, but 
if r = 0, it does not necessarily follow that '111%2 = o. Moreover 
the conditions 

r2 ::l,'1 

'111z'l == I 

'111:1:2 - r2 == 0 

do not necessarily tell us much about the correlation between 
YandX. 

We have seen what a useful tool the correlation coefficient r 
is under certain conditions. \Ve must have been struck, how
ever, with the interesting fact that neither r nor any other 
measure of relationship gives a fraction of the total information 
definable within certain limits irrespective of the nature of the 
relationship, a condition that is satisfied by the average X 
and standard deviation (f of an observed distribution. In 
other words, no matter whether we express the relationship 
as functional or statistical, the significance of a given parameter 
is in the present state of our knowledge dependent upon the 
form of the relationship, whereas certain information is given 
by the average X and standard deviation (f of a frequency 
distribution independent of the form of the distribution, and 
this is made useful through the Tchebycheff theorem. 



PART III 

Basis for Specification of 
Quality Control 

A Statement of the Necessary and 
Sufficient Conditions for the Speci
fication of a Controlled Quality 



CHAPTER X 

LAws BASIC TO CONTR.OL 

J. Control 

We like to believe that there is law and order in the world. 
We seek causal explanations of phenomena so that we may 
predict the nature of the these same phenomena at any future 
time. As stated in Part I, a phenomenon that can be predicted, 
at least within limits associated with a given probability, is 
aaid to be control/ed. Prediction only becomes possible through 
the acquisition of knowledge of principles or laws. 

2. Exacl Law 
By an exact I law we shall mean a rule whereby we can 

predict with a high degree of precision the future cou'rse of 
some phenomenon. 

An illustration will serve to clarify this definition. If we 
impose an electromotive force E sin ",1 upon the simple circuit, 
Fig. 41, with inductance L, 
capacity C, and resistance R, .:R 
the current; at any time I is ~ 'L 
gt'ven by the solution of the E t 

• •• 51NW 
differential equation 

Ji fiJI 1------' 
E sin"" == LJi + Ri + C· C 

FlO ... I.-EXAIIPLE or CONTROLLED PHE

The current through this NOIIENON OBEYING AN EXACT LAw, 

circuit is, therefore, a simple . 
example of a controlled phenomenon obeying an exact law, in 
this case a differential equation. 

IOf course no physical law is exact in the rigorous mathematical sense. The 
aignificance o( this term as hen: used will become clear as we proceed. 

121 
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Of this same character are the numerous laws of physics 
and chemistry, such as Newton's laws, Fermat's principle, 
Maxwell's equations, the principle of least action, and so on. 
Naturally, the control of quality of manufactured product 
involves the use of all known exact laws of this character. 
These laws alone, however, are not enough to insure control 
because, as we have already noted in Part I, the variability 
in quality often is unexplainable upon the basis of known 
exact laws. We say that such variations are produced by 
unknown or chance causes. 

If then we are to secure control of quality of product, 
we must make use not only of exact laws but also of laws of 
chance, sometimes termed statistical laws. Perhaps the 
basic law of this character is the law of large numbers. 

3. Law oj Large Numbers 

If we flip a coin, either the head or the tail must come up. 
If we repeat the experiment again and again, we find that 
there is a certain constancy in the nature of the results obtained 
and that this constancy appears to be independent of whether 
you flip the coin or whether I flip it; whether the coin is 
flipped in some far-off country or at home. From every corner 
of the world, we get evidence of a certain constancy in the 
experimental results; i.e., it appears that the observed ratio 
of the number of times that a head comes up to the total 
number of throws approaches in a certain sense a constant 
value for a given coin. This kind of experience is, however, 
not limited to coin throwing; and, as a result, the following 
general principle is accepted as a law of nature: 

Whenever an event may happen in only one oj two ways, 
and the event is observed to happen under the same essential 
conditions for a large number oj times, the ratio p oj the number 
of times that it happens in one way to the total number oj trials 
appears to approach a definite limit, let us say p, as the number 
oj trials increases indefinitely. 

Symbolically we may state this law in the form 

La p = p, (44) "_ .. 
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where L. stands (or what we shall term a statistical limit,1 
which differs from a mathematical limit in that we do not reach 
a number no of trials such that, for all values of n greater than 
no, the ratio of the number of times an event happens to the 
number of trials differs from some fixed value by less than some 
previously assigned small quantity e. 

We shall call this limiting value p an objective probability, 
and we shall assume that this objective probability of an 
event happening under the same essential conditions may be 
used in the same mathematical sense as we use measures of 
a priori probability in the mathematical theory of probability. 

Mathematical or a priori probability is usually defined in 
some such way as the following: If an event can happen in 
a definite number n of mutually exclusive ways, all ways 
being equally alike, and if m of these ways be called favorable, 

then the ratio ~ is the a priori probability of the favorable 
n 

event. For example, in the tossing of a coin the number n 
of ways in which the event may happen is considered to be 
two-head or tail. If the turning up of a head is taken as 
favorable and if the two ways the event may happen are 
equally likely, the a priori probability of a head is 1. In a 
practical case, we never know whether or not the ways an 
event may happen are equally likely; often we do not even 
know the number n of ways. Hence we cannot calculate the 
a priori probability of an event. Assuming the existence of an 
a priori probability p of an event, the best we can ever hope 
to do is to adopt some estimate p of this probability which 
may not and, in general, will not be the true objective value p. 

Obviously, the concept of a priori probability is not the 
same as that of a statistical limit. Furthermore, even though 
an a priori probability o( an event does exist in an objective 
sense, it is not necessary that even an infinite, sequence of 
trials will lead to the establishment of this a priori probability 
that can be accepted in a rigorous logical sense. On the other 
hand, if we knew in a given case that an objective a priori 

I See Fig. I of Appendix II as an illustration of the way p approaches a statistical 
limit. 
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probability did· exist, it appears that we would most likely 
have faith ~hat the more observations we took in determining 
an empirical measure of this objective probability, the better 
our estimate would become. In general it appears that we 
must believe that estimates of probabilities derived from 
large samples are, in the long run, better than those derived 
from small samples. In other words, it is perhaps reasonable 
to believe that our best estimates of a priori objective prob
abilities are those values which we determine through large 
samples. So far as the present book is concerned, a priori 
probabilities and probability distributions will be characterized 
by a bold-faced notation wherever necessary for the sake of 
clearness. Whether we think of these as statistical limits or 
simply as mathematical entities should not influence to a 
marked extent their practical significance in that in any case 
the important thing to note is the way in which estimates of 
these probabilities represented by the regular symbols are 
actually derived from the data.1 

A slightly more extended form of this law of large .numbers 
is as follows: If we make a series of n measurements 

Xl, X2, ••• , Xi, ••• , Xn 

of some ·quality characteristic X in such a way that each 
measurement is made under the same essential conditions, the 
ratio p of the number of times that an observed value X will 
be found to lie within any specified range X, to Xa to the 
total number n will approach a statistical limit p as the number 
n is increased indefinitely. 

A still more general statement of this law is: If we take a 
series of m samples of n measurements, 

Xu, X12, ••• , Xli, ... , Xln 

Xml, Xm2, ... , Xmi, ... , Xmn 

I I t will be found helpful to read, in this connection, the discussions of the defini
tions of statistical limit and probability found in such books as Fry's Pro!Ja/;i/ily anti 
lis Enginttring UStS, Coolidge's Pro!Ja!Ji/i/y, and Rietz's Mathematical Slatislics. 
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in such a way that each one of the m samples is drawn under 
the same essential conditions, and if we let 8 be a symmetric 
function or statistic of the n values of X in a sample of size n, 
the ratio p ofthe number of times that the observed value of 8 
will be found to lie within the range 81 to 82 to the total 
number m of samples will approach a definite st!l.tisticallimit p 
as the number m of samples is increased indefinitely. Functions 
of this type are termed statistical laws. 

To control quality we must make use of both exact and 
statistical laws. 

4. Point Binomial in Relation to Control 

If p is the mathematical or a priori probability of the 
occurrence of an event or success and fJ is the mathematical 
or a priori probability of the non-Occurrence of the event, it 
readily follows 1 that the probabilities of 0, I, 2,3, ... , i, ... , 
n occurrences of the event in n trials are given by the suc
cessive terms of the point binomial 

It also follows that: 

Average number of successes = pn. (46) 

Standard deviation of number of successes = .ypq;;. (47) 

We are now in a position to consider evidence in justification 
of our assumption of the existence of the law of large numbers. 

5. Evidence of the Existence oJ the Law of Large Numbers 

A. Tossing a Coin or Throwing Dice.-Experience shows 
that, if we throw what appears to be a symmetrical coin or 
die a very large number of times, the statistical limit of the 
ratio of the number of heads to the total number of throws of 
the coin is 1. Similarly, if the occurrence of I, 2, or 3 on a 
symmetrical die be termed a success, the statistical limit of 
the ratio of the number of successes to the total number of 
throws of the die is 1. If then our previous assumptions are 

I See any elementary textbook on probability. 
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justified, we should expect 1 to find the relative frequencies 
of occurrence of 0, I, 2,3, ... , n successes in a large number 
of throws of n dice to be given by the successive terms of 
the point binomial (t + t)n. 

We may make use of some of the experimental results 
obtained by throwing n dice a large number of times to see 
how closely the observed frequency distribution of successes 
checks that of the point binomial. The second column of 
Table 20 gives the observed relative frequencies of 0, I, 2, 3, 
... , twelve successes in 4,096 throws of twelve dice.2 The 
third column of this table gives the mathematical probabilities, 
or, in other words, the successive terms of the point binomial 
(t + t)12. 

A little observation shows that the second and third columns 
reveal a striking agreement. In other words, it appears that 

TABLE 20.-RELATION BETWEEN MATHEMATICAL PROBABILITIES AND 

EXPERIMENTAL RESULTS 

Number Observed Mathematical Number Observed Mathematical 
of Relative Probability of Relative Probability 

Successes Frequency p (1 + W" Successes Frequency p (l + i)'" 

0 0.0000 0.0002 7 0.2068 0.1934 
I 0. 0017 0. 0029 8 0.1309 0.1208 
2 0. 0146 0.0161 . 

9 0. 0627 0.0537 
3 0.0483 0.0537 10 0. 0173 0.0161 

4 0. 1050 0.1208 II 0. 0027 0. 0029 
5 0.1785 0.1934 12 . 0.0000 0.0002 
6 0.2314 0.2256 I 

the rule of procedure followed in calculating the mathematical 
probabilities in this particular case leads to a close prediction 
of the experimental results. We return in Part VI to consider 
more critically the closeness of check between the mathematical 
probabilities and the observed relative frequencies. 

I Strictly speaking, we know that the conditions of symmetry are not satisfied by 
actual coins and dice, hence the statement here made is only approximately true. 

I These data are given in An Introduction to the 'J"heory 0/ Statistics, by G. Udny 
Yule (8th ed.), p. 258. 
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B. Sampling Experimml.-If we were to draw a series of n 
chips with replacement from a bowl containing a large number 
of similar chips each marked with a given number, common 
experience leads us to believe that the observed relative fre
quency of the occurrence of a given number would approach 
as a statistical limit the relative frequency of this number in 
the bowl as the number of trials increased indefinitely. It 
follows that, if we were to draw a series of n chips with replace
ment and then a series of say 2n chips, the observed frequency 
distribution of numbers in the sample of 2n chips should 
approach closer to the actual frequency distribution of numbers 
in the bowl than should the observed frequency distribution 
of say only n chips; or, in general, the larger the number in 
the sample, the closer, in the statistical sense, should be the 
approach of the observed frequency distribution of the sample 
to the true distribution in the bowl. The results of the fol
lowing experiment give evidence that such a prediction, made 
upon the assumption of the existence of the law of large 
numbers, appears to be justified. 

Successive samples of 5, 10, 20, 100, and 1,000 chips were 
drawn with replacement from a bowl in which the frequency 
distribution of the numbers on the chips in the bowl was that 
indicated in the upper left-hand corner of Fig. 42. The observed 
relative frequency distributions of numbers for the samples of 
different size are also shown in this figure. We witness the 
smoothing out of the distribution with increase in the size of 
sample as is predicted upon the assumption of the law of 
large numbers. 

C. Distribution of Number of Alpha Parlic/es.-In 1910, 

Rutherford and Geiger 1 observed the distribution of frequencies 
with which 0, I, 2, •.• , n alpha particles struck a screen of 
constant dimensions in successive equal intervals of time. 
The objective probability of a particle striking the screen as 
estimated from this experiment is 0.°46; and, assuming that 
this can be used as a mathematical probability in a point 

I "The Probability Variations in the Distribution of .. Partides," Philosophical 
Magazint, Series 6, Vol. XX, 1910, p. 698. 
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binomial (q+p);a' where q + p = I, we get the smooth fre
quency distribution shown in Fig. 43. The agreement between 
the observed relative frequencies and those calculated from the 
point binomial is further justification for our belief in the law 
of large numbers. 

il II 
SYSTEM OF CAUSES SAMPLE OF ~ 

SAMPLE OF 20 

SAMPLE OF 100 SAMPLE OF 1000 

FlO. 41.-TYPICAL EXPERIMENTAL EVIDENCE FOa I..Aw OF LAaoE NUMBERS. 

D. Macroscopic Properties of Mal/er.-We might be willing 
to agree that there appears to be a close agreement between 
what was observed under A, B, and C and that which was 
predicted upon the assumption of the existence of the law of 
large numbers, and yet we might not appreciate the full extent 
to which this law is basic to our modern conceptions of physical 
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and chemical laws. Perhaps our best justification for belief 
in this law comes from study of the macroscopic properties 
of matter expressed.in terms of its microscopic properties. 

For example, we believe that a gas is made up of a large 
number of molecules dancing about in a way characterized 
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by the Brownian motion previously considered. For a single 
molecule the properties of greatest importance are perhaps 
those of position, velocity, and mass. In most practical 
applications, however, we do not interest ourselves so much 
in these as we do in the properties of a group of molecules, 
such as pressure, viscosity, temperature, and entropy. Now, 
it is shown in elementary texts on kinetic theory that these 
four properties are statistical in nature and result from a 
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state in which the law of large numbers applies with great 
precision. 

For example, it is shown in discussions of kinetic theory 
that the pressure p of a gas containing 11 molecules, each of 
mass m, is given in terms of the root mean square velocity W 
by the expression 

p = tmllUli. (48) 

Thus we see that the pressure of a gas is a statistical average 
dependent upon the law of large numbers for its constancy 
and yet under constant temperature conditions we know that 
the pressure remains constant within the precision of our 
measuremen ts. 

In a similar way, we find the law of large numbers playing 
an important role in the discussion of Brownian motion, 
the fluctuation in density of a fluid, the distribution of velocities 
of electrons emitted from a hot filament, the distribution of 
thermal-radiation among its different frequencies, rates of 
diffusion and evaporation, rates of thermal and electrical 
conduction, rate of momentum transfer, rates of thermal and 
photo-chemical reactions, and so on indefinitely. 

Upon the basis of results such as indicated under A, B, C, 
and D, we make the following assumption: 

There exist in nature systems oj chance causes which operate 
in a way such that the effects oj these causes can be predicted 
after the manner just indicated, by making use oj customary 
probability theory in which objective probabilities in the limiting 
statistical sense are substituted for the mathematical probabilities. 

Stated in another way, we assume that there are dis
coverable constant systems of 'Chance causes which produce 
effects in a way that may be predicted. 

6. Controlled or Constant System oj Chance Causes 
The unknown causes producing an event in accordance 

with the law of large numbers will be called a constant system 
of chance causes because we assume that the objective prob
ability that such a cause system will produce a given event is 
independent of time. 
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In other words, a cause system is constant if the phe
nomenon produced thereby satisfies the conditions charac
terized by either (44) or (45). 

7. Mtaning oj Cauu I 

As human beings, we want a cause for everything but 
nothing is more elusive than this thing we call a cause. Every 
cause has its cause and so on ad infinitum. We never get quite 
to the infinitum. In this sense there must always exist a 
certain amount of topsy-turviness about the world as we 
perceive it. All that we can do is to find certain practical rules 
or relationships among the things which we observe. In doing 
this, we introduce a lot of terms which we cannot explain in the 
fundamental sense, but which we use to great advantage as, for 
example, mass, energy, electron, and so on. Under these 
conditions we go ahead undaunted and introduce theories as 
to how these things are related, even though we do not know 
what these things are that we talk about. 

As an example, we have theories of light, but we do not 
know what light is. In some ways it acts like a wave, in 
others like a corpuscle. From our viewpoint, the justification 
of the use of either the wave theory or the corpuscular theory 
of light is that it helps one to attain the desired end. So, 
in the simple theory of control, we talk about causes even 
though we do not know what a cause really is any more than 
we know what light or electricity is. Nevertheless, when we 
apply control theory, as we do in this book, it is just as easy to 
get a "feeling" for what we mean by cause in a specific case 
as it is to get a feeling for what we mean by light when we talk 
about it. 

8. Pariable System of Chl:mce Causes 

All systems of chance causes are not constant as two 
simple examples will serve to show. Fig. 44 shows the fluc-

I An interesting discussion of t"use and tffttl will be found in W. E. Johnson's 
ug;t, Vol. III, treating of the logical foundations of science, and published by the 
Cambridge University Press, 1924. 
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tuations 1 in general business conditions over the period from 
1919 to 19~8. Similar curves could be given for the fluctuations 
in market prices of individual commodities or stocks. It is 
well recognized that the causes of such fluctuations are, for 
the most part, unknown. The general belief is, however, that 
variations of this character show distinct trends and possibly 
cyclic movements-the existence of either rules out the con
stancy of the cause system. 
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FIG. 44.--GENERAL BUSINESS COMPARED WITH NORMAL. 

Fig. 45 shows the growth in the number of Bell-owned 
telephones in the United States from 1876 to 1928. Similar 
curves of growth could be given for sales of almost all com
modities, such as radio sets, electric washing machines, per
fumes, automobiles, and so on indefinitely. Always in such 
curves there are certain irregularities introduced .by chance 
causes. In fact, the causes of such gr<?wth in a particular case 
are usually unknown, although they certainly do not exhibit 
the characteristics of a constant system. 

1 Weber, P. J., "An Index of General Business Activity," B~/I <I,lephone !Guarttr/y, 
April. 1929. pp. 124-131. 
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9. Statistical Laws 

. C:Ons~ant systems of chance causes give rise to frequency 
dlstnbutlons, often called statistical laws.! One such is the 
law of mortality, and another is the law of distribution of dis
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FlO. 4S.-NuMBER. OF TELEPHONES IN THE BELL SYSTEM. 

placements of a particle under Brownian motion, both of 
which were ,Q1entioned in Part I. 

Another well-known example is Maxwell's law of dis
tribution of molecular velocities, 

",,0 

tly = Ae -. tlv~ tlvlI tlvz, 
lit wiD be noted that a frequency distribution as here used is in the sense of an 

objective law of distribution whereas, in Part II, it was simply introduced as a function 
luch that its integral over a given range is a fair approximation to the observed number 
of observations falling within that range. 
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where dy is the probability of a molecule having a velocity u 
with components lying within the respective ranges Ux to 
Ux + dux, Uy to Uy + duy, and Uz to Uz + duz; and where d and c 

are constants for a particular kind of mulecule in a given state. 
We may transform this law into one which gives us the prob
ability dy that a molecule will have a speed between v and 
v + dv. By so doing we get 

.",1 

dy = Be -2v2dv, (So) 

where B is a constant different from d. The constants A, B, 
and c in these equations can be determined experimentally for 
a gas under given conditions and these laws may then be used 
to predict either the number of molecules having an x, y, or z 
component within given limits or a speed v within a given range. 

Equation (50) may be stated in terms of the root mean 
square speed W in the following way 

( )

% 3.1 3 --dy = 471" -= e 2VOv2dv. 
27rlJ2 

(50-a) 

Using the value 461.2 meters per second at zero degrees centi
grade determined from (48) for the root mean square speed 
of an oxygen molecule, we gc:t the distribution of speeds of one 
thousand oxygen molecules given 1 in Table 21. 

TABLE :lI.-DISTRIBUTlON OF SPEEDS 

Meters per Number of Meters per Number of 
Second Molecules Second Molecules 

0-100 13- 14 400-500 202-203 
100-200 81- 82 500--600 151- 152 
200-300 166-167 600-700 91- 92 

300-400 214-21 5 700 76- 77 

Fig. 46 shows schematically the shape of this distribution 

1 Data taken from Meyer's K;ntl;c 'l"htory of GflJtS. 
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curve and the relationship between the mean speed ii, root 
mean square speed W, and modal speed v. 

The mean speed ii = 424.9 meters per second 

Root mean square speed -Vv2 = 461.2 meters per second 

Most probable speed v = 376.6 meters per second 

Obviously, if the quality of a product is controlled in the 
sense that the fluctuations therein obey the law oflarge numbers 
and hence some statistical distribution law, we must know 

~ 
to 
J 
iii 
c 
ID o 
II: ... 

~ 'l VV2 
Flo. 46.-A STATISTICAL LAW-{)NE FolUI or MAXWELL·S LAw roa OXYOEN 

MOLECULES. 

this law in order to predict how many pieces of product will 
have qualities lying within given limits. To be of use in this 
as in any other problem, statistical theory must provide us 
with statistical distribution laws. 

It is but natural, therefore, that attempts should have 
been made to discover and tabulate all such laws. As early 
as 1756 a law of error was proposed, and in quite rapid suc
cession other simple laws of error were suggested. Some of 
these, including the normal law of Laplace and Gauss, are 
shown in the first five rows of the table in Fig. 47. 
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An attempt was made to apply the normal law to many 
observed di~tributions, but it was soon found to be un
satisfactory in a majority of problems. This situation 
gave rise to an active search for more general laws, some 
of which are indicated in the last six rows of the table in 
Fig. 47. 

Two of these general laws should be briefly considered 
here as we shall have occasion to refer to them in one way or 
another. One is that of Pearson represented by the dif
ferential equation 

where y is the relative frequency function of the deviation x 
from the arithmetic mean, {31 is the square of the skewness k, 
a is the standard deviation, and {32 is the measure of flatness. 
This general law obviously gives rise to several special laws 
depending upon the functional form of the solution of (51). In 
turn the form of the law depends upon the values of {31 and {32, 
as illustrated in Fig. 48. The upper part of this figure shows 
some of Pearson's laws fitted to observed data, the corre
sponding values of {31 and {32 being given at the bottom of the 
figure. 

It is shown in elementary treatises on frequency curves 
that some of the laws [solutions of (51)] are valid for whole 
areas in the fMJ2 plane; whereas others are valid only for 
points lying on a certain curve; still others only for one point 
as is the normal law which corresponds to the point {31 = 0, 
{32 = 3, as is readily seen by substitution of these values in 
(51). Pearson and his followers claim that these laws have 
been found to cover practically all cases coming to their 
attention. 
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The other important general law is the Gram-Charlier series 

I '[ k I fez) = -4>o(Z) I - ,(3z - z3) + ,(f32 - 3)(3 - 6z2 + z4) 
IT 3· 4· ' 

I zl 

where 4>o(z) = _ ~e-2, and z =~. By taking enough terms 
v 211" IT 

and using the proper parameters, this law may be made to fit 
almost any frequency distribution. 

10. Exact and Statistical Laws-A Comparison 

Perhaps the most important characteristic difference be
tween an exact and a statistical law is that the former states 
something that is true for a single thing or event, whereas the 
latter states something that is true on the average or in the 
long run. The exact law applies to the individual thing, 
whereas the statistical law applies to a group of the same kind 
of things. 

In general we like to think that exact laws apply under 
conditions where the physical phenomena are quite well 
understood, as is true for the current through a simple circuit 
discussed at the beginning of this chapter. In a similar way, 
we think of statistical laws as applying where the details of 
the phenomena are not so thoroughly understood. Between 
these two apparent extremes lies that great body of facts or 
data which have not been explained in terms of either of the 
two kinds of laws just considered; yet even here we find rules 
or laws which make possible a kind of prediction. Two illus
trations will serve to clarify this statement. 

We have already called attention to the problem of the 
economists in forecasting business conditions. There are 
companies devoting all their time to forecasting. In general, 
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th~y claim to have discovered a way of breaking down a time 
serIes, such as that shown in Fig. 44, into four parts: 

(a) Trends, 
(b) Cycles, 

(c) Seasonals, 
(d) Erratic Fluctuations. 

~n outline of the technique involved in such a study is given 
In most of the elementary books on business statistics. A 
rule for forecasting developed in this way is sometimes called 
a law although most people would, to say the least, probably 
insist on calling it an empirical law. To refer to it as an em
pirical law, however, is somewhat misleading, because any 
law, insofar as it is derived from experience, is empirical. 
This point we shall have occasion to emphasize again and 
again as we proceed. Perhaps the best that we can say is 
that the degree of empiricism is greater in this case than it is 
in the case of the so-called exact or statistical laws already 
considered. 

Such rules as are used in business forecasting have to do 
in general with data, the causal explanation or interpretation 
of which is not thoroughly understood. In other words, 
here, as in the case of statistical laws, the phenomena themselves 
are to a large extent attributable to chance or unknown causes. 
It should be noted, however, that here probability theory does 
not apply directly because the conditions for the law of large 
numbers do not hold. This point has been emphasized by 
Persons.! In other words, probability theory does not apply 
simply because a phenomenon is attributable to chance causes. 

Let us next consider the phenomenon of growth which 
comes nearer to being reduced to an exact law than does that of 
customary economic time series. The literature on this subject 
is very extensive. Fig. 49 shows the forecast of the population 
growth of the United States.' It is interesting indeed to see 

I Persons, Foster, and Hettinger, 'J'M Pr061em of BUlintsJ FtJrtt411ing, Houghton 

Mifflin & Co., New York, 1924. 
I Raymond Pearl, 'J''', Biology of Population Growl", Alfred Knopf, New York, 

1925. This book includes an appendix with 165 references. 
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how closely the observed points fall on this logistic curve, 
the equation for which is 

y = 1 + 67.32e o,oala .. ; 

By means of this 'law, Pearl predicts the future course of 
population growth to the year 2100, at which time the popula
tion is to be approximately 197,000,000. 

The general law of growth 

k , 
y = d + 1 + ea1z+""z2+aaz3+ ' , , +a,.,,· 
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FIG. 49.-FoRECAST OF POPULATION GROWTH OF THE UNITED STATES. 

is shown by Pearl to be applicable to a large number of dif
ferent kinds of populations, and for this reason it may be 
claimed that the law is less empirical than the laws used in 
forecasting business conditions. It would perhaps be generally 
agreed, however, that this law of growth is more empirical 
than Newton's laws of motion. 

If we were to observe the growths in population for a 
large number of pairs of fruit flies, we could expect upon 
the basis of the work of Pearl and others, that these growths 
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would vary about the law of growth. It seems reasonable to 
believe that we would find a statistical distribution at any 
pain t .along the line as indicated in Fig. 50. Such a phenomenon 
IS of In.t~rest because it suggests the possibility of the use of 
probabIlIty theory in predicting the deviation from this line
something that economists in general feel cannot be done in 
connection with economic forecasts. 

The causal basis for this frequency distribution might be 
set up after the manner in which hereditary influences are 
explained by Whittaker and Robinson.1 They assume that 
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FlO. 5o.-STA11S11CAL DISTRIBUTION AT ANY POINT IN A LAw or GROWTH. 

the chest measure of an individual, for instance, is the result 
of a very great number of chance causes present in the heredity 
and environment of the individual. This suggests a type of 
law derivable upon a causal basis similar to that involved in 
the study of chemical kinetics. The growth curve under 
these conditions may be thought of as an exact law, and the 
distribution about this curve at any point may be thought of 
as a statistical law. In other words, the general law of growth 
may be a combination of exact and statistical laws. This 
suggests another viewpoint in respect to the so-called exact 
law which is worth considering briefly. 

As an illustration of an exact law, we have used the dif-

1 'II" Cakulus oj 06snwlions, Blackie & Son, Ltd., London, p. 167. 
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ferential equation relating the current in a circuit to the 
inductance, capacity, and resistance of that circuit. The cur..: 
rent, even though it appears to be continuous, is really a 
Row of a number of discrete units of charge or electrons. Thus, 
if we could see what is actually taking place when the current 
appears constant, we would likely find that the number of 
electrons per second passing a given point is not constant. 
The apparent constancy is, as in the case of the pressure of the 
gas, the result of the law of large numbers. Hence we see that 
our exact law is, in the last analysis, statistical in the sense 
that the current is a phenomenon obeying the law of large 
numbers. It should also be noted that all exact laws are sub
ject to statistical laws of error about which we shall hear 
more as we proceed. 

II. Summary 

From what has been said in this chapter, it seems reasonable 
to draw the following conclusions: 

A. It is not feasible to make pieces of product identical 
one with another. Hence a controlled product must 
be one of variable quality. 

B. To be able to say that a product is controlled, we must 
be able to predict, at least within limits, the future 
variations in the quality. 

C. To be able to make such predictions, it is necessary 
that we know certain laws. 

D. These laws may be exact, empirical, or statistical. 
Exact laws are generally stated in terms of the differ
ential equations of physics and chemistry. Statistical 
laws are the frequency distributions arising from the 
very general law of large numbers. All other laws are 
empirical. The technique of finding and using exact 
and statistical laws is better established than that of 
finding and using what we term empirical laws. 



CHAPTER XI 

STATISTICAL CONTROL 

I. Conditions/or Control 

If there is a causal orderliness in events and phenomena 
as we postulate, then it follows that, to one with perfect 
knowledge. everything is predictable and therefore controlled. 
However. for practical purposes' the quality of product is 
controlled only to the extent that we know the laws that make 
prediction possible. For one to be able to say that a phenom
enon is controlled. it is necessary and sufficient that he know 
the laws which make prediction possible. 

In practice. however. we must start with an observed 
set of data representing the fluctuations in some phenomenon 
and try to determine from these whether or not the product is 
controlled. Such a procedure involves. as do all scientific 
attempts to discover natural laws. logical induction in that 
we must employ some such argument as this: Since the 
observed fluctuations are such as might have occurred provided 
the phenomenon obeyed such and such laws, then it follows 
that these laws do control this phenomenon; whereas all that 
we are rigorously justified in saying is that these laws may 
control this phenomenon. For this reason we perhaps never 
can say that the behavior of a phenomenon in the past is 
sufficient to prove that the phenomenon is controlled by a 
given set of known laws. All that we can 'ever say is that 
experience has shown that such behavior appears to be sufficient. 

Furthermore it is a significant fact. as we have seen in 
the previous chapter, that empirical laws do not make possible 
the prediction of erratic fluctuations upon the basis of prob
ability theory. If product is controlled only in this empirical 

145 
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sense, it follows that we cannot obtain the economic advan tages 
discussed i,n Part I. For this reason it is desirable to attain 
the state of statistical control in which the natural law of large 
numbers makes prediction possible. 

2. -Necessary and Suiflcient Condiiions Jor Statistical Control 

We shall assume that the necessary and sufficient condition 
for statistical control is that the causes of an event satisfy 
the law of large numbers as do those of a constant system of 
chance causes. If a cause system is not constant, we shall 
say that an assignable cause of Type I is present. Assignable 
causes of this type in an economic series are such things as 
trends, cycles, ~nd season~s; and in a production process, 
they are such things as differences in machines and in sources 
of raw material. 

Stated in terms of effects of a cause system, it is necessary 
that differences in the qualities of a number of pieces of a 
product appear to be consistent with the assumption that 
they arose from a constant system of chance causes. We 
say appear because, as is always the case in trying to find a 
law controlling a phenomenon, we can never be sure that we 
have discovered the law. Obviously such appearance is not 
sufficient in the logical sense although it must be in the practical 
sense. 

3. Necessary and Sufficient Conditions-Continued 

Let us see how the law of large numbers gives a basis for 
determining from the observed fluctuations in a phenomenon 
whether or not it is statistically controlled. For this purpose 
let us consider the practical problem presented in Part I, 
Chapter II, Paragraph 2. 

If this product is statistically controlled, there is an objective 
probability p that a piece of this product will be defective. 
It follows, as we have seen in out: previous discussion of experi
mental evidence for the existence of the law of large numbers, 
that the observed fractions defective in successive samples of 
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.ize n should be clustered or distributed about the value 
p - p in accord with the terms of the point binomial (q + p)n. 

Graphically this means that, if we take the observed values 
of the fraction defective p as ordinates and a series of numbers 
corresponding to a sequence of samples of size n as abscissae, 
the observed fractions should be distributed about the ordinate 
p after the manner indicated schematically in Fig. SI. 

The frequency distribution of values of p observed in an 
infinite 8equence of samples of size n should be some curve 
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• 

• • 
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~ ---------------
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Fla. SI.-5cHBMATIC or OBJECTlVB COJlDITlOJl. 

8uch as that indicated at the right of the figure. This is the 
picture of what happens in this very simple case deduced from 
the postulated law of large numbers. 

The practical problem involves induction instead of de
duction. We start with a sequence of observed values of the 
fraction defective, and from this we try to determine whether 
or not the quality as measured by fraction defective is sta
tistically controlled. As indicated in Part I, the method of 
attack is to establish limits of variability of p, represented by 
the dotted lines parallel to the line p =p in Fig. SI, such that, 
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when a fraction defective is found outside these limits, looking 
for an assignable cause is worth while. . 

How to establish these limits is the question of utmost 
importance, because it must. be satisfactorily answered if 
statistical control of a production process is to be a practical 
objective. Experience like that presented in Part I leads us 
to believe that it is feasible to establish workable rules for 
setting these limits. These rules will be presented in Part VI. 
For the present we shall confine our attention to a consideration 
of some of the fundamental problems which must be considered 
in the establishment of a scientific basis for setting such 
limits. 

A. Obviously, it is not possible to observe an infinite 
sequence in order to discover the objective probability p 
even though it exists and is discoverable in this way. In 
practice, therefore, we must substitute some experimentally 
determined value for the objective value p. , 

B. Assuming for the sake of argument that in some manner 
. we have found the true objective value p, it follows from what 
has previously been said ~hat, no matter how we set the limits 
about the line p = p (so long as they are not outside the limits 
of the frequency distribution at the right of Fig. 51), some of 
the observed fractions will fall outside these limits. Therefore, 
if we look for trouble in theiorm of assignable causes of Type I 
every time an observed fraction falls outside these limits, we 
shall look a certain number of times even though none exists. 
Hence we must use limits such that through their use we will 
not waste too much time looking unnecessarily for trouble. 

C. The fact that an observed set of values of fraction 
defective indicates the product to have been controlled up to 
the present does not prove that we can predict the future 
course of this phenomenon. We always have to say that 
this' can be done provided the same essential conditions are 
maintained, and, of course, we never know whether or not they 
are maintained unless we continue to experiment. If experience 
were not available to show that a state of statistical equilibrium 
once reached is usually maintained, we could not attain most 



STATISTICAL CONTROL 

of the economic advantages of Part I. Evidence of the type 
given in Figs. 6 and I I seems to justify our belief in the con
stancy of the condition of statistical equilibrium when it is 
once attained, subject to the limitation that there is no a priori 
reason (or believing that an assignable cause has entered the 
production process. 



CHAPTER XII 

MAXIMUM CONTROL 

I. Maximum Control Defined 

The object of industrial research is to establish ways 
and means of making better use of past experience. To do 
this it is essential that research reveal natural laws. The 
ideal goal sometimes pictured for research is complete knowl
edge of all the laws of nature so that one could predict the 
future course of all phenomena. The belief in the existence of 
such a goal rests upon the assumption of a causal orderliness of 
the universe. 

If a manufacturer could tell what the quality of each 
piece of product is going to be, or, more generally, if we could 
predict exactly the future course of a phenomenon, then we 
could say that this quality or phenomenon exhibited maximum 
control. This amounts to assuming that, with perfect knowl
edge of the universe, it would be possible to obtain exact 
control of quality of product because the element of chance 
fluctuation in quality could be removed . 

. It is important to note, however, that such a goal is neither 
feasible nor economic. To emphasize this point, let us take 
a very simple illustration. All of us are perhaps willing to 
admit that it is not feasible to find the causes which control 
the course of a single molecule of a gas. It is also reasonable 
to believe that there is a state reached in the control of quality 
beyond which it is just as foolish to try to go as it is to try to 
find the causes of the motion of a given molecule. 

Suppose, however, that we did have knowledge which 
would enable us to set down the differential equations of motion 
of a system of molecules. Assuming that one could solve 

ISO 
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these, a little calculation shows that he would have to live 
something like 1012 years to set down his results for only 
a thimbleful of molecules at room temperature even though he 
worked 11 hours per day. Obviously the results of such perfect 
knowledge would not be usable in an economic sense. 

In other words, it is believed that there is a limit beyond 
which it is not economicalJy feasible to go in trying to eliminate 
chance fluctuations. 

Common sense guides us in setting conditions to be satisfied 
by a cause system in a state of maximum control. If one 
were ill and were told by his physician that there were likely 
a very large number of causes of his illness, he would feel 
more discouraged about his condition than he would if he were 
told that there was ,only one cause. This follows because it is 
customarily found to be difficult to ferret out and assign a 
single cause of illness when there are several unknown causes. 
What has just been said is true subject to the limitation that 
each cause produces practically the same effect as any other. 
Naturally, if one of the causes is known to produce a pre
dominating effect, a person will feel that there is greater likeli
hood of his being able to find this cause than if each of the 
causes produces the same component effect. This kind of 
experience leads us to postulate that it is not feasible to explain 
in terms of specific causes those phenomena which are attribut
able to a very large number of causes such as the throw of a 
head on a coin, the motion of molecules, the daily fluctuations 
in the price of a stock, hereditary influences, and so on. . 

Therefore maximum control for our purpose will be defined 
as the condition reached when the chance fluctuations in a 
phenomenon are produced by a constant system of a large 
number of chance causes in which no cause produces a pre
dominating effect. 

However, in order that these conditions for maximum 
control may be of practical use, they must be expressed in 
terms of the effects of the causes. This is obviously necessary 
because we cannot find out anything about the causes except 
through their effects. We shan soon discover that serious 
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difficulties are involved in trying to set up necessary conditions 
for maximum control in terms of the distribution of effects of 
a constant cause system. 

2. Characteristics of Maximum Control-Molecular Phenomena 
At first thought one might expect to find that the dis

tribution of displacements of a particle undergoing Brownian 
motion should be characteristic of maximum control. Since, as 
previously noted, this distribution is normal and corresponds 
to the point (0,3) in the {hP2 plane (Fig. fl.), one might be 
led to ask if there is an objective point of maximum control. 

PI 
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3 -POINT OF MAXIMUM CONTROL 7 
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FlO. 5:1..-Is THERE AN OBJECTIVE POINT OF MAXIMUM CONTROL? 

As we have already seen, however, the distribution of 
molecular velocities is not normal even though this distribution 
obviously arises under a condition of maximum control to the 
same extent as does the distribution of displacements. This 
fact alone is sufficient to show that there is not an objective 
point of maximum control. 

3. Necessary Conditions for Maximum Control-Simple Cause 
System 

Let us assume that there are a finite number m of inde
pendent causes, 

Cl, C2, •.. , Ci, ... , Cm, 

and that the resultant effect of these causes is the sum of their 
individual effects. 
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In one case let us assume that these m causes produce 
effects 

"''' "'2 •...• "'i ••••• "'m 
respectively, with probabilities 

p .. /'2 •••• • Pi •... • P"" 

In the other case let us assume that the probability of the 
ith cause (i = I, 2, .•• , m) producing a contribution x in the 
interval x to x + dx is 

li("') J .... 

A little consideration shows that such systems may be said 
to exhibit maximum control when: 

[

pi = pj r/i("') = Ii("') 
"'i ...... j and l m large. 
m large. 

(55) 

Obviously the first set of conditions giyes rise to a dis
continuous distribution, the ordinates of which are the terms of 
the point binomial ('I + p)m where the effect of each cause is 
assumed to be unity: As we know, such a distribution is 
smooth and unimodal. Hence smoothness and unimodality 
are necessary conditions for maximum control in terms of 
effects for this simple discontinuous cause system. 

It is readily shown for the point binomial that 

('1_ p)2 1- 6pq 
fJl = --- and fJ2 = 3 + --. 

pqm pqm 
(56) 

From these equations we see that no matter what the values of 
p and 'I are, the values of fJl and fJ2 approach the normal law 
values 0 and 3 respectivdy as m becomes large. This state of 
affairs is shown graphically in Fig. 53. Hence we see under 
what conditions the distribution of effects for such a simple 
cause system approaches normality, characterized by fJl = 0 
and fJ2 = 3. Of course, the condition that fJl = 0 and 
fJ2 = 3, although necessary for normality, is not sufficient. 

To one not accustomed to think of distribution functions 
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in terms of p, and P2, Fig. 54 is of interest because it gives two 
binomial distributions fitted by theoretical curves. In the one 
case p ... 'I .... i and the number m of causes is 16. In the other 
case p ,. 0.1, 'I - 0.9. and m = 100. This figure illustrates 
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the rapid approach to normality with increase in the number 
of causes irrespective of the value of p. 

For the continuous cause system, it may be shown 1 that 

Bl . B2 - 3 
III = - and 112 = --+ 3. (57) 

m m 

I Subject only to limitation. not met in practice. See (or example, Romanovsky, 
V., "On the Distribution o( an Arithmetic Mean in a Seriea o( Independent 
Trials," Bulkli" oj"" Ruui." .tItU_7 oj Stimu, 1926. 
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where /31 and /32 represent the distribution of the resultant 
effect of the operation of m continuous causes and B1 and B2 
represent the cause function f(x). From (57) we see that no 
matter what the distribution function of a cause is, the dis
tribution function of the resultant effect will approach nor
mality as the number m of causes increases indefinitely. 

The rate of approach to normality, however, is much 
more rapid titan we might at first expect, as we shall see in 
Part IV in our discussion of the distribution function of the 
arithmetic mean. 

4. Necessary Conditions-Some Criticisms 

That chance causes produce equal component effects is 
obviously, pot a, necessary condition for maximum' control, 
although the discussion of the previous paragraph is thus 
limited through (55). Thus, in our previous reference to the 
difficulty of fe'rreting out a cause of illness from among many 
causes, 'itwas'not necessary to impose the restriction that 
,the causes should produce equal effects. On the other hand, 
some restrictions must be p~aced on the relative magnitudes of 
the effects as well as upon the number of effects in order that 
it appear reasonable that one cause may be separated from the 
others. For example, few of us, strictly speaking, are ever ill 
from a single cause, and yet we know that causes of illness 
are findable. It is perhaps enough to insure feasibility of 
discovery of a cause that the effect of this cause be large 
compared' with the resultant effect of all others.' It is not 
possible, however, to say how large the effect of one cause 
must be in respect to the resultant effect in order that it be 
discoverable. Hence we cannot write down explicit require
ments to be fulfilled by a cause system in order that it represent 
the state of maximum control. 

However, so long as one cause does not produce an effect 
greater than the resultant effect of all the others, it seems 
reasonable to believe that considerable trouble will be expe
rienced in discovering this cause when there are a large number . 
of other causes. With this restriction on. the relatiye mag-
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nitudes of component effects, the distribution of resultant 
effects may be shown to approach normality as the number of 
causes is increased indefinitdy subject to limitations of no 
practical interest. Perhaps this fact gives credence to a some
what widespread popular bdief that normality is a limiting 
condition approached whenever the number of causes is large; 

Before too much 'significance is attached to this fact we 
must recall that, as shown in the second paragraph of this 
chapter, normality cannot be, rigorously speaking, a necessary 
condition for maximum control. 

From a practical viewpoint we are most concerned with 
the need for sufficient conditions for maximum control. We 
want to be able to say that, since the distribution of observed 
effects of a chance cause system is of such and such nature, 
therefore the cause system is in the state of maximum control. 
Neglecting for the present the limitations of all inductive 
snferences of this type, let us see if approximate normality is 
a sufficient condition for maximum control. 

That this condition is in itsdf not sufficient can easily 
be seen by looking at Fig. 55. Here we have two identical 
normal curves (broken curves) with their averages separated 
by one and one-half times the standard deviation of either. 
The result of compounding these two distributions is shown 
by the black dots. The smooth solid curve is a normal one 
fitted to the resultant distribution. Suppose now that product 
comes from two sources, the corresponding qualities being 
distributed normally as shown by the broken curves. Obviously 
we could not readily detect ~he existence of the difference 
between the two sources by an examination of the resultant 
curve assuming normality to indicate maximum control. The 
possibility of such a situation arising in practice, however, is 
precluded, if we apply the test for maximum control only in 
those cases where we have first assured oursdves that the 
data exhibit statistical control. 

For these reasons it is believed that approximate normality 
of an observed dislribu/ion arising under controlled conditions 
may be taken as indicating that the cause system is in a state 
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of maximum control. On the other hand, the fact that an 
observed distribution is not approximately normal is not 

. sufficient evidence that the phenomenon is not in the state of 
maximum control. 

Some may argue that there exists a general law charac
teristic of the state of maximum control. Suppose then that 
we make such an assumption. In practice we would always 
try to fit the observed distribution with this general law; and, 
having successfully done this, we would argue that the phe
nomenon exhibited maximum control. Since one can fit almost 
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any distribution by taking enough terms in a general law such 
as the Gram-Charlier series, the conclusion that the phe
nomenon exhibits maximum coptrol is foreordained. For this 
reason it does not appear that much is to be gained by such 
a test. 

5. Some Practical Conclusions 

It appears that there is no characteristic of an observed 
distribution which in itself is sufficient to indicate a state 
of maximum control. If, however, the effects appear to have 
arisen under controlled conditions and at the same time 
exhibit normality, there is good reason to believe that a state 
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of maximum control of the cause system has been reached. 
The occasions when these two conditions are satisfied, however, 
are so rare that the test is of little utility. We have also 
seen that normality of a distribution is not a necessary con
dition for maximum control. 

When a phenomenon has been shown to exhibit control, 
we have likely gone about as far as we can in detecting the 
existence of assignable or discoverable causes by standard 
tests. Our experience shows that after assignable causes of 
Type I have been found and eliminated, the observed dis
tribution is usually smooth and unimodal. Furthermore, 
most distributions exhibiting control have been found to be 
sufficiently near normal to be fitted by the first two terms of 
the Gram-Charlier series previously referred to as the second 
approximation (23). 



PART IV 

Sampling Fluctuations in Quality 

A Discussion of the Sampling 
Fluctuations in the Simple Statistics 
Used in the Control of Quality 



CHAPTER XIII 

SAMPLING FLUCTUATIONS 

I. Samplt 

One dictionary definition of sample is: "A part of anything 
presented as evidence of the whole." Thus, the people living 
in New York City constitute a sample of those living in the 
United States. The top layer in a barrel of apples is a sample 
of those in the barrel. The fish taken from a lake are a sample 
of those in the lake. The instruments inspected from the 
product of a given day constitute a sample of that day's product. 
In each of these instances, the whole of the thing sampled is 
finite in the sense that there is a finite number of people in the 
United States, apples in a barrel, and so on. 

We may, however, think of anyone of these samples as 
a sample of the whole of the possible number of things which 
the same cause system could produce if it continued to function 
indefinitely. In this sense the product for a given period is a 
sample of that which can be produced by the same manu
facturing process. Millikan's measurements of the charge· 
on an electron are a sample of the indefinitely large number of 
measurements that can be made by this method .. 

On the one hand, we are interested in what the sample 
tells us about a finite lot or number of things. On the other 
hand, we are interested in what the sample tells us about the 
cause system producirig the sample-in this sense all our 
experience is a sample. Thus the data used in establishing 
natural laws is a sample from the possible infinite set of data 
that these laws could give. 

2. Sampling Fluctuations 

Even though produced under essentially the same con
ditions, no two things ",re identical in the sense that no two 
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apples on the same tree are identical. The differences, as 
we have said, are attributed to the effects of chance or unknown 
causes. If we look at one thing after another produced under 
presumably the same conditions, we find that the quality 
varies from piece to piece. Such variations are called sampling 
variations or fluctuations. 

These sampling variations may be produced by either 
variable or constant systems of chance causes. As seen in 
Part III, there is reason to believe that we may find and 
eliminate variable chance causes, but not those of a constant 
system in which there is no predominating cause. Hence we 
must always have sampling fluctuations in the quality of 
product. However, if produced by a constant system, they 
are controlled sampling fluctuations in that they can be pre
dicted by well-established probability theory. 

3. Simple Illustration of Sampling Fluctuations 

Let us start our study of sampling with an experiment 
in which 4,000 drawings of a chip from a bowl were made with 
replacement; that is, after drawing a chip, it was replaced and 
thoroughly mixed with the others before another was drawn. 

In the bowl there were 998 circular chips on each of which 
there was a number. Forty chips were marked 0, 40 were 

. marked - 0.1, 40 were marked + 0.1, and so on as shown 
in Table 22. Before replacing a chip in the bowl, the number 
was recorded. The 4,000 observed values are given in Table A, 
Appendix II. . 

In this experiment we have as near an approach as is 
likely feasible to the condition in which the law of large numbers 
applies 1 since, to the best of our knowledge, the same essential 
conditions can be maintained. The differences between 
successive numbers drawn are beyond our control. 

Dividing the observed values into four sets of 1,000 each, 
we get the four grouped'frequency distributions of columns 3, 
4, 5, and 6 in Table. 23. Column 2 gives the corresponding 
distribution in the bowl. 

1 Cf. Paragraph 3, Chapter X, Part III. 
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TABLE no-MARKI"G 0" 998 CHIPS rOR SAMPLING EXPERIMENT 

Marking Number Marking Number Marking Number Marking Number 
on Chip o( on Chip of on Chip of on Chip of 

X Chips X Chips X Chips X Chips 

--- -------
-J.o I -1·5 IJ 0.0 40 1.5 13 

-2·9 I -1·4 15 0.1 40 1.6 11 

-2.8 I -1.3 17 0.2 39 1.7 9 
-2·7 I -1.2 19 0·3 38 1.8 8 
-2.6 I -I.I 22 0·4 37 1.9 7 
-2·5 2 -1.0 24 0·5 35 2.0 5 
-2·4 2 -0·9 27 0.6 33 2.1 4 
-2·3 J -0.8 29 0·7 31 2.2 4 
-2.2 4 -0·7 31 0.8 29 2·3 3 
-2.1 4 -0.6 33 0·9 27 2·4 2 
-2.0 5 -0·5 35 1.0 24 2·5 2 

-1·9 7 -0·4 37 1.1 22 2.6 I 

-1.8 ·8 -0·3 38 1.2 19 2·7 I 

-1.7 9 -0.2 39 1.3 17 2.8 I 

-1.6 11 -0.1 40 1.4 15 2·9 I 

3.0 I 

TABLa 230-GROUPED FREQUENCY DISTRIBUTIONS IN SAMPLI"O EXPERIIIE"T 

Observed Distributions 

Cell Distribution 
Midpoint in Bowl 

SampleNool SampieNoo2 SampicNoo3 SampieNoo4 

-3.0 3 5 I 2 2 

-2·5 9 9 14 10 9 
-2.0 28 36 24 29 25 

-1.5 65 55 5' 72 49 

-1.0 121 123 113 124 112 

-0·5 174 165 187 181 191 

0 198 203 195 180 204 

0·5 174 172 176 169 18:1. 

1.0 121 123 125 120 123 

1·5 65 68 71 67 64 

1I.0 1I8 31 31 32 25 

2·5 8 8 11 III 
9 1I 

J.o 3 1I 4 3 
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As is to be expected, no two of the observed distributions 
are the same, and no one of them is the same as that in the 
bowl. In fact the differences between these five distributions 
are quite marked as is evident from their graphical presen
tations in Fig. 56. The differences look much like those previ-
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ously shown in Fig. I~SO much so, in fact, that one might 
hesitate to say that the distributions in Fig. 19 reveal any 
evidence of lack of statistical control, although, as we shall 
soon see, an assignable cause was present in that case. Hence 
we see that we may be misled if we depend upon the qualitative 
appearance of deviations to indicate the presence of an assign
able cause. What we need in such a case is some quantitative 
measure of the deviation of the distribution in a sample from 
that in the bowl to be used as a basis for detecting lack of con trot. 
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4. Sampling Fluctuations in Simple Statistics 

We shall use simple statistics such as the average X 
standard deviation tT, skewness Ie = v'{i;, and flatness {h £0; 
expressing quantitatively the differences between the observed 
distributions. For example, columns 2 to 5 of Table 24 give 
the observed values of these statistics for the four observed 
distributions of Table 23. We see how the observed distribu
tions differ quantitatively in respect to these simple statistics. 
Column 6 of Table 24 gives, for comparison purposes, the 
values of these same statistics for the distribution in the bowl. 

TABLE 14--oBSERVED VALUES or STATISTICS rOR DISTRIBUTIONS G,VEN IN TABLE 23 

Observed Distributions 

Distribution 

Sample Sample Sample Sample in Bowl 

No.1 No.2 NO·3 NO·4 

Average .............. 0. 001 5 0.0445 -0.0060 0.0365 0 
Standard Deviation .... 1.0219 1.001 9 1.03 ' 7 0·9739 1.0070 
Skewness ............. -0·0903 -0.0126 0.0631 0.0038 0 
Flatness .............. 2.9257 2·9904 2·79¢ 3. 0757 2.9302 

Instead of performing such an experiment to determine how 
samples differ, we try to predict such variability in the prob
ability sense. To do this, we must find the distribution func
tions of averages, standard deviations, and other statistics in 
samples of size n drawn from the distribution in the bowl. 
Usually this is a complicated mathematical procedure, as we 
shall soon see. Therefore, to begin with, we shall take a simple 
example in which the distribution functions can be derived by 
elementary arithmetic. 

s. Simple Problem in Prediction of Sampling Fluctuation
Problem of Distribution 

Suppose that there are just four similar chips in a bowl, 
and that these are marked 1,2,3, and 4 respectively. Suppose 
that samples of 4 are to be drawn with replacement. The 
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problem to be considered is the prediction of sampling fluctu. 
ations in the simple statistics. 

Since the number of ways of choosing r things from n 
things where each of the r things may be anyone of the n 
things is nr, it follows that a sample of four may be chosen 
in 44 = 256 different ways. Obviously not all of the 256 
samples will be different. A little study will show that the 
different possible samples are those given in Column I of 
Table 25, and that the number of ways in which these may 
be drawn are as given in Column 2. The corresponding dis
tributions of statistics X, CT, k, and fJ2 can now be set down 
as in the last four columns of this same table. The frequency 
distributions of these and certain other statistics are shown 
graphically in Fig. 57. 

It is of interest to note that the method of finding the 
distributions in Fig. 57 is purely an analytical one involving 
simple arithmetic. One sets down all of the possible samples 
of size four that can be drawn from the bowl, and then finds 
. the averages, standard deviations, and other statistics for this 
set of possible samples. 

If we assume that the sampling fluctuations in the statistics 
of samples drawn from such a bowl satisfy the law of large 
numbers, it follows from evidence given in Part III that 
the observed distributions gf statistics in samples of size four 
may be expected to approach 1 as statistical limits the.respective 

1 This involves the assumption that similar in the phrase "similar chips" has the 
significance of the phrase "equally likely" so often used in probability theory. It 
seems reasonable to believe, however, that "equally likely" is a concept which has 
significance for the external world rather than for mathematics. On this point it will 
be of interest to read "Probability as Expressed by Asympototic Limits of Pencils of 
Sequences," by E. L. Dodd, published in the Bullelin of 11.,1 .American Mathematical 
Soci~/y, Vol. 36 (1930), pp. 299-305. For example, he says: "In pure mathematics, 
the word pro!Juility may be taken to signify simply the ratio of the number of objects 
in a subset to the number in the set, so long as discrete or arithmetic probability is 
being considered. It is, indeed, as far outside the field of mathematics to determine 
whether two events are equally likely as to determine whether two bodies have the 
same mass. Even in the applications, the nile of pure mathematics is merely to count 
expeditiously the elements of sets and subsets, or, more generally, to determine certain 
measures of sets, which are believed by competent judges to depict adequately situa
tions in the external world," 
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TABLB 25.-SIMPLB PaOBLEM IN DISTlUBUTION THEOaV 

Number 

Sample 
ofTllIIe5 X 
Sample 

tT k fl. 

OcCUR 

1111 I 1.00 0 0 ) 
222:1 I 2.00 0 0 

f 3333 I 3.00 0 
Indeterminate 

0 

4444 I 4.00 0 0 

1112 4 1. 25 0.4330 1.1547 2·3333 
1113 4 1.50 0.8660 1.1547 2·3333 
1114 4 1.75 1.2990 1.1547 2·3333 
2221 4 I. 75 0.4330 -1.1547 2·3333 
2223 4 2.25 0.4330 1.1547 1·3333 
2214 4 2.50 0.8660 1.1547 1·3333 

3331 4 2.50 0.8660 -1.1547 1·3333 

3332 4 2·75 0.4330 -1.1547 2·3333 

3334 4 3. 25 0.4330 1.1547 1·3333 

4441 4 3. 15 1. 2990 -1.1547 1·3333 

4442 4 3.50 0.8660 -1.1547 1·3333 

4443 4 3·75 0.4330 -1.1547 2·3333 

1122 6 1.50 0.5000 0 1.0000 

1133 6 2.00 1.0000 0 1.0000 

1144 6 2.50 1.5000 0 1.0000 

2233 6 2.50 0.5000 0 1.0000 

2144 6 3. 00 1.0000 0 1.0000 

3344 6 3.50 0.5000 0 1.0000 

1113 12 1.75 0. 8192 0·4934 1.6181 

1114 12 2.00 1.1147 0. 8165 2.0000 

1134 12 2.25 1. 2990 0. 2138 1. 2798 

2213 1:1 2.00 0.7071 0 1.0000 

2114 12 2.25 1. 0897 0.6520 2.0970 

2134 12 2·75 0.8192 0·4934 1.6181 

33 12 12 2.25 0. 8192 -0·4934 1.6181 

3314 1:1. 2·75 1.0897 -0.6520 2.0970 

3314 12 3. 00 0.7071 0 2.0000 

4412 12 2·75 1. 2990 -0. 2138 1.2798 

4413 12 3.00 1.2147 . -0. 8165 1.0000 

4423 12 3. 15 0.8192 -0·4934 1.6281 

1234 14 1.50 1.1180 I 0 1.6400 
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distributions of these same statistics shown in Fig. 57. In 
general, the prediction of sampling fluctuations in statistics of 
samples of size n drawn from a distribution such as that in 
the bowl requires the knowledge of the distribution functions 
of these same statistics. Observed fluctuations mayor may 
not have in them component effects of variable chance causes. 

6. Relation oj Sample to Universe 

Let us now examine the relationship between some of the 
simple statistics for the universe (Fig. 57-a) and the averages 
or expected values of the distributions of these same statistics. 
For example, Column I of Table 26 gives the values of some 
of the simple statistics of the universe, and Columns 2 and 3 
give the corresponding expected values for samples of size 
four and 00 respectively. 

TABLE 26.-RELATION OF SAMPLE TO UmvERSE 

0 

Universe 
Sample Sample Correction Standard 
n=4 n= co Factor Devi.ttion 

Average ............... 2.5000 2.5000 2.5000 
Median ............... 2.5000 2.5000 2.5000 
Root Mean Square 

Deviation .......... 1.1180 0.9178 1.1180 1.2181 0·3755 
Mean Deviation ....... 

. 
0.8086 1.0000 1.3826 1.0000 0.4052 

Skewness k ............ 0 0 0 . 
Flatness fl •. ........... 1.6400 I. 7562 1.6400 

The important thing to note is that the expected value oj a 
given statistic in samples oj size n is not necessarily equal to the 
value oj this statistic for the universe so long as the sample size n is 
afinite number. Suppose now that the statistics of the universe 
are unknown although the functional form is known. We see 
that, if we wish to estimate a given statistic for the universe 
from that for a sample of size n, a correction factor is required. 
Two such factors are given in Table 26 for the case in hand. 

Another interesting point is that a statistic of the universe 
may be estimated frorp the same or other statistics. of a sample. 
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Thus either 1.2181 times the standard deviation of a sample 
of four or 1.3826 times the mean deviation of a sample of 
four may be used as estimates of the standard deviation of 
the universe (57-a). The standard deviations of these esti
mates, however, are not equal. We say that one is more 
efficient than the other. As a measure of this ejJiciency 1 we 
take the ratio of the squares of the respective standard devi
ations. For the simple case under consideration the efficiency 

of the root mean square estimate is ~0.4052~2 = 1.1644. 
0.3755 2 

It is suggested that the reader start with some simple 
universe other than the one used in this chapter and find for 
this chosen universe the distributions of the four simple 
statistics for some sample size. By such a procedure, one 
easily discovers that the distribution function of a given 
statistic involves a sample size n and depends upon the func
tional form of the universe. It is also discovered that, in 
general, the. correction factors required to go from the expected 
value of a statistic in a sample of size n to the same statistic 
of the universe depend upon the nature of the universe and 
upon the size of the sample. 

In other words, we come in this way to see that the problem 
of interpreting a sample involves the specification of the universe 
and the determination of tire distribution Junction of a given 
statistic in samples of a given size drawn from this upiverse. 

1 This measure of efficiency is defined as follows: The standard deviation of the 
mean of m. corrected root mean square deoiations (in samples of four) is o.37SS/vm,. 
while the standard deviation of the mean of m. corrected mean deviations in samples of 
four is O.40S2/Y;;;;. If these two standard deviations are to be equal, we must have 

0·37SS 0.4052 
vm,. = Y;;;;' 

Hence the efficiency of the root mean square deoiation is 
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7. T"~ Probl~m of Determining t"~ Allowabl~ Pariability in 
Jiuality from a Statistical Piewpoint 

If the quality X of a product is statistically controlled, 
the probability dy that a unit of this kind of product will have 
a quality X lying within the range X to X + dX is expressible 
as a function f of the quality X and m' parameters, or formally 

dy = f(X, ).1, ~, ••• , ~, ••• , lm')dX. (58) 

We have seen that samples of size n drawn from such a product 
exhibit sampling fluctuations. These fluctuations may be 
measured quantitatively in terms of some statistic e of the 
samples, such as average, standard deviation, etc. For each 
such statistic there is some relative frequency distribution 
function 

fe(e, n), 

representing the distribution of possible values of the statistic 
e in samples of size n drawn from the universe (58). It follows 
that the probability dYe of an observed value of the statistic e 
falling within the range e to e + de is given by the rela
tionship 

dYe = fe(e, n)de. 

In general, the distribution functions of the universe and 
of the statistics may be either continuous or discontinuous. 
Thus, in Paragraph 5 of this chapter we considered in detail 
the distribution functions of several statistics for samples of 
four drawn from a discontinuous universe. Later we shall 
consider distribution functions for continuous universes. 

An allowable variability in quality will be defined as one 
that may reasonably be classed as a sampling fluctuation, or, 
in other words, one that may reasonably be attributed to the 
effects of a constant system of chance causes. 

In the next two chapters we shall consider in some detail the 
nature of the frequency distribution functions characterizing 
sampling fluctuations in some of the simple statistics previously 
introduced. 



CHAPTER XIV 

SAMPLING FLUCTUATIONS IN SIMPLE STATISTICS 

UNDER STATISTICAL CONTROL 

1. Method of Attack 

In this chapter we shall assume that the universe of possible 
effects of the cause system is known, and that the sampling 
fluctuations obey the law of large numbers. Distribution 
functions of statistics basic in the theory of control and in the 
establishment of quality standards are discussed in sufficient 
detail to make clear their use throughout the remaining chap
ters of the book. 

Only those points are discussed which have been found 
helpful in answering practical problems of the following type: 

A. How shall we determine when quality is statistically 
con trolled? 

B. How shall we establish standards of quality? 
C. How shall we establish allowable limits. in design? 
D. How shall we establish allowable limits of variation 

from standard quality? . 
E. How shall we select a representative sample of product? 
F. How large a sample shall we take? 

The reader. primarily interested in such questions· may 
wish to turn immediately to those sections outlining the 
answers which have been found satisfactory in practice. He 
will find, however, that these questions, like many of those 
confronting us every day, do not permit of answers which can 
be considered as final. One common question will suffice as 
an illustration of what is meant: What should a child learn 

174 
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in school? No one knows the answer to this question, and yet 
we must adopt an answer in the form of an established cur
riculum. For the most part, we have faith that students of 
education having a knowledge of the fundamental difficulties 
involved in getting the answer will be able to make progress 
in that direction. Similarly, one interested in the answers to 
the several questions stated in the previous paragraph will 
find that some parts of the following discussion which at first 
appear abstract and impractical may actually prove to be the 
most helpful in the establishment of fundamental principles 
upon which to base production methods. 

Starting with the assumption that the universe of possible 
effects of the controlled system of chance causes is of the form 

y = f(X, ).1, ).2, ••• , li, ... , ).",,), 

we shall need to know the probability P that a statistic of 
a sample of size n produced by this constant system of causes 
will fall within the range 91 to 92 given formally by the 
integral 

We shall find that the distribution function of the statistic 
depends upon the function f of the universe of effects of the 
cause system, and that the distribution functions of even the 
simple statistics are unknown except for a very limited number 
of forms of the function f. In fact, we shall find that for the 
most part the distribution functions of the simple statistics 
are known only when the distribution function f of the possible 
effects of the cause system is normal. 

Since, however, the normal function involves the assumption 
that the variable X may extend from - 00 to + 00, and since 
We do not know of any quality X which rigorously satisfies this 
condition, we see that the theoretical frequency distribu~ion 
functions which we are to use never can represent practical 
conditions rigorously. In this same connection, much of the 
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theory is based upon the assumption of continuity of the 
observable· values of the quality X; although this can never 
be attained in practice because of inherent limitations in our 
measuring instruments. Experimental results obtained by 
sampling under controlled conditions are introduced to in
dicate, in a more or less practical way, the significance of the 
two limitations just stated. 

Even when the distribution function fa(e, n) of a statistic e 
is not known so that we cannot calculate the probability P 
that e will lie within a given range, the results of comparatively 
recent theoretical work enable us to obtain quite satisfactory 
estima!es of the probability P, provided we know the expected 
value e of e in samples of size n and the standard deviation 
fTa of e measured about the expected value e. Oftentimes 
we know the moments of a distribution function, although 
we do not know the functional form. The work of Tchebycheff 
referred to in Part II makes it possible for us to say that the 
probability Ptcra that an observed value of e will fall within 

. the limits e ± IVa satisfies the inequality 

I 
Ptv > I --a 12' 

where I is not less than unity. We may also use Tchebychefrs 
theorem to advantage when the indefinite integral of the dis
tribution function is unknown even though the function is 
known. 

Comparatively recent work has given us the expected 
values and standard deviations of most of the statistics which 
now appear to be useful in quality control work. Furthermore, 
these expected values and standard deviations are known for 
discrete and finite universes of the type which we have to deal 
with in practice. Hence, we have available for use a certain 
amount of theoretical work which is immediately applicable 
to commercial conditions, and which enables us to state at least 
a lower bound to the probability associated with a symmetric 
range about the expected value of a statistic. 
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Recently Camp 1 and Meide1l 2 have shown that the prob
ability P""'e satisfies the inequality 

provided: 

p"", > I __ I_ 
e 2.2512' 

(a) The distribution function fe(e, n) of the statistic e 
is unimodal wit~ a modal value e coinciding with the 
expected value e. 

(6) The distribution function fe(e, n) of the statistic e 
is monotonic on either side of the modal value. 

Hence it follows that if we can show that the distribution 
function of the statistic satisfies the Camp-Meidell conditions, 
we can estimate the probability associated with a symmetric 
range about the expected value within closer limits than we 
can if we know nothing whatsoever about the form of the dis
tribution function of the statistic. In certain instances it is 
sufficient for practical purposes to be able to show that the 
modal value is approximately equal to the expected value, and 
that the distribution function is monotonic about the mode. 
In this connection, it might be noted that the Camp-Meidell 
relation applies strictly to a continuous function, although 
it may easily be shown that this limitation is of no practical 
significance in the cases where we make use of this theory •. 

Experimental results are introduced wherever necessary 
to bridge over gaps in available theory. These same experi
men'tal results will be used extensively in the remaining chapters 
of the book wherever we consider the problem of interpretation 
of a sample. 

In our discussion we shall use bold-faced type to in
dicate the parameters and functional form of the universe of 
effects of the cause system and also the expected values,. 
standard deviations, and other functions derived from known 
distribution functions of statistics. The regular italic notation 

1 Camp. B. H .• "A new Generalization of TchebychelF's Statistical Inequality ... · 
Bulkl;" of 1M dm"ica" MathemalicaISoci •• y. Vol. 28. 1922. pp. 42?-432. 

I Meidell. M. B .... Sur un probleme du calcul des probabilires et les atatistiques; 
mathematiques." Compltl &nt/us. Vol. 175. 1922. pp. 806-808. 
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will be used for the corresponding observed characteristics of a 
sample as indicated in Table 27. 

TABLE ~7.-NOTATIONS FOR UNIVERSE AND SAMPLE 

Universe Sample 

Distribution. . ....... .......... f(X, ~1' ~2, ••• , ~m') f(X, ~1, ~2, ••• , ~m) 
Fraction Defective or Fraction 

within Given Limits ......... . 
Average ...................... . 
Standard Deviation ............ . 

Skewness ..................... . 
Flatness ...................... . 

2. Fraction Defective I 

p 

i .,. 
k=~ 

Ii. 

p 

X 
fI 

Ie = yt;; 
fl. 

That the fraction defective should play an important 
role in modern production is at once apparent when one con
siders that so many quality measurements are made with a 

. gO-nO-go· gauge. It is but natural, therefore, to consider first 
the nature of the sampling fluctuations in this fraction under 
controlled conditions. 

The distribution function for the observed fraction defective 
p or fraction found between any two specified limits Xl and X 2 

in . samples of size n drawn from a controlled product of any 
functional form whatsoever is given by the terms of the point 
binomial 

(60) 

The expected value p, modal value p, and standard deviation 
(Tp of this distribution function are given by the following 
relationships: 2 - -p=p=p 

1 The derivation of the formulas cited in this paragraph are given in almost any 
elementary text on statistical theory. 

I Of course the modal and expected values of p are not always equal. However, 
the difference is too small to be of any practical importance in most applications. 
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In these relationships p is the probability that a constant 
cause system will produce a defective piece of product. 

We see at once that the first distribution function (60) 
that we have chosen is not normal. In fact, it is not even 
continuous. As pointed out in Part III, however, the point 
binomial theoretically can be approximated quite closely by 
the ordinates (or appropriate areas) of a normal curve of the 
same mean value and standard deviation as the point binomial, 
provided p is approximately equal to (I - p) and n is very 
large. We saw in this same connection, however, that the 
approximation is quite good when p = I - P even if n is no 
greater than 16; similarly when p = 0.1 and n is no greater 
than 100. This gives us, therefore, some idea of the degree 
of precision which we can expect to attain by assuming that 
the distribution of the observed fraction defective p is normal. 

Since the modal and expected values of p may be con
sidered equal, and since the discrete distribution can be quite 
accurately fitted by a function satisfying the Camp-Meidell 
requirements, it follows that the Camp-Meidell inequality 
may be assumed to give a close approximation to the lower 
bound of the probability associated with any sy~metrical 
range about the expected value p. Knowing the standard 
deviation of p, we may make use of the normal law integral 
to calculate the probability that an observed fraction p will 
fall within any two limits PI and P2, provided the values of p 
and n are such that the normal law is a satisfactory approx
imation. If the conditions are such that we cannot use the 
normal law, we may always make use of this value ofp and its 
standard deviation in establishing limits with probability 
bounds in accord with the Tchebycheff inequality. 

3. Average-Normal Universe 
Perhaps the arithmetic mean is used in engineering work 

more often than any other statistic to express the central 
tendency of a group of data. We shall therefore consider 
next the fluctuation of this statistic in samples of size n drawn 
from a normal universe. It is a' simple matter to show that 
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under these conditions the distribution of the average X is 

normal with a standard deviation _ ~, where IT is the standard 
vn . 

deviation of the universe. So long, therefore, as we are dealing 
with samples from a known normal universe, it is a very simple 
matter to obtain from Table A the value of the probability 
that an observed average will fall within any two arbitrarily 
chosen limits. Hence, from a theoretical viewpoint, we need 
give no further consideration to the distribution of the average 
of a sample from a normal universe. It is of interest, however, 
to see how closely experimental results may be expected to 
check the theoretical ones, even though we cannot, for reasons 
previously cited, experiment with samples drawn from a strictly 
normal universe. 

Perhaps we cannot duplicate the conditions under which 
we should expect to find agreement between theory and 
practice more closely than by drawing chips from a bowl in 
the manner described in the previous chapter. Obviously, 
the 4istribution in the bowl is discontinuous and does not 
extend to either side of the average beyond three times the 
standard deviation; whereas a normal distribution is con
tinuous and extends to infinity in both directions. It is of 
interest, therefore, to note how closely the observed distribution 
of 1,000 averages of four, Fig. 58, approaches normality. 
The data of Table A, Appendix II, were divided as indicated 
into 1,000 groups of four each. 

4. Average-Nan-Normal Universe 

Even for so simple a statistic as an average, we do not 
know the distribution function when the universe is not 
norma1.1 We do, however, know the moments of this dis
tribution function in terms of the moments of the universe. 

1 For exceptions see "On the Means and Squared Standard Deviations of Small 
Samples from any Population" by A. E. R. Church, Biometrika, Vol. XVIII, pp. 
321-394. 1926, and "On the Frequency Distribution of the Means of Samples from 
Populations of Certain of Pearson's T.ypes," by J. O. Irwin, Metro", Vol. VIII, pp. 
51- 106• 
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As in the case of averages from a normal universe, the expected 
value of averages is the average X of the universe. Similarly, 

the standard deviation fTJl of this distribution is equal to ..:in 
where fT is the standard deviation of the universe. With this 
information we are in a position to apply Tchebycheff's theorem. 

We may do better than this, however, because it is known 
that the skewness kl' and the flatness P2Jl of the distribution 

.. 
~ I~ 
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Flo. S8.-ExPERIMENTAL EVIDENCE THAT THE DISTRIBUTION OF AVERAGES OF 

SAMPLES or SIZB ,. DIlAWN FaOl( AN EXPERIMENTALLV NORMAL UNIVERSE 

II NOaMAL. 

of averages are given in terms of the corresponding functions 
of the universe by the following expressions: 

kg = :;. 1 
(63) 

P2 -:l 
P2g = -;:- + 3· . 

From (63), we see that, if the sample size n is made large 
enough, no matter what the skewness and fl~tne.ss ~f the 
universe are the skewness and flatness of the distribution of 
averages of ~amples of size n approach normality as charac-
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terized by the values 0 and 3 respectively. It remains for' us 
to show that, even for comparatively small values of n, the 
distribution of averages may be considered to be normal to 
a high degree of approximation, thus making possible the use 
of the normal integral, Table A, in establishing sampling limits. 

Again we shall appeal to the use of experimental data. 
Tables Band C of Appendix II give the results of 4,000 draw-
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FIG. 59.-UNIVERSES AND DISTRIBUTIONS OF AVERAGES FROM RECTANGULAR AND 

RIGHT TRIANGULAR UNIVERSES. 

ings with replacement from each of the universes, rectangular 
and right triangular, described in Table 28. Fig. 59 gives the 
observed distributions of averages of 1,000 samples of four 
for each of the two experimental universes. To show how 
closely these observed distributions actually approach nor
mality, we have drawn smooth normal curves having expected 
values and standard deviations determined from theory upon 
the basis of our knowledge of the universes. The closeness 
of fit is striking and illustrates the rapid approach of the 
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distribution to normality as the sample size is increased. 
Such evidence, supported by more rigorous analytical methods 
beyond the scope of our present discussion, leads us to believe 
that in almost all cases in practice we may establish sampling 

TABLE 28.-MARKING ON CHIPS rOR EXPEalWENTAL UNIVERSES 

Rectangular Universe I Right Triangular Universe 

Marking Number Marking Number Marking Number Marking Number 
on Chip of on Chip of on Chip of on Chip of 

X Chip. X Chips X Chips X Chips 
--- ---

-J.o 2 0.0 2 -I.J 40 0·7 20 

-2·9 2 0.1 2 -1.2 39 0.8 19 
-2.8 2 0.2 2 -1.1 38 0·9 18 

-2·7 2 0·3 2 -1.0 37 1.0 17 
-2.6 2 0·4 2 -0·9 36 1.1 16 

-25 2 0·5 2 -0.8 35 1.2 15 
-2·4 2 0.6 2 -0·7 34 1.3 14 
-2·3 2 0·7 2 -0.6 33 1.4 13 
-2.2 2 0.8 2 -0·5 32 1·5 12 

-2.1 2 0·9 2 -0·4 31 1.6 II 

-1,0 2 1.0 2 -0·3 30 1.7 10 

-1·9 2 1.1 2 -0.2 29 1.8 9 
-1.8 2 1.2 2 -0.1 28 1.9 8 

-1.7 2 1.3 2 0.0 27 2.0 7 
-1.6 2 1.4 2 0.1 26 2.1 6 

-1·5 2 1.5 2 0.2 25 2.2 5 
-1·4 2 1.6 2 0·3 24 2·3 4 

-1·3 2 1·7 2 0·4 23 2·4 J 
-1.2 2 1.8 2 0·5 22 2·5 2 

-1.1 2 1.9 2 o.~ 21 2.6 I 

-1,0 2 2.0 2 

-0·9 2 2.1 2 

-0.8 2 2.2 2 

-0·7 2 2.J 2 

-0.6 2 2·4 2 

-0·5 2 2·5 2 

-0·4 2 2.6 2 

-O.J 2 2·7 2 

-0.2 2 2.8 2 

-0.1 2 2·9 2 
J.O 2 
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limits for averages of samples of four or more upon the basis 
of normal law theory. 

5. Standard Deviation-Normal Universe 

The distribution function of the standard deviation has 
been studied by "Student,"1 Pearson,2 and Fisher.3 They 
have shown that the distribution function of the observed 
standard deviation (]' for samples of size n may be expressed in 
terms of the standard deviation (]' of the universe in the fol
lowing way: 

We note at once that the distribution of (]' is asymmetric, 
although it approaches symmetry as the size n of the sample 
increases. Although we have the distribution function in this 
case, we do not have a table of its integral as we have for the 
normal law. Obviously, however, (64) is unimodal; and it 
may be easily shown that the modal value if and the expected 
value a are given respectively by 

and 

(!.=...:.), _ f2 2 • 

G" = 'J: ( ) G" = C2G". n n - 3 , 
2 • 

(65) 

(66) 

We shall have many occasions to make use of the factors (I 

and (2 occurring in these two equations. Hence they are 

I Biometrika, Vol. VI, 1908, pp. 1-25; Vol. XI, 1917, pp. 416-417; Metron, Vol. V, 
NO.3, 1925, pp. 18-21. 

t Biometrika, Vol. X, 1915, pp. 522-529. 
a Ibid., pp. 507-521; Proc. Cambridge Phil. Sac., Vol. XXI, 1923, pp. 6SS~58; 

Metron, Vol. V, NO.3, 1925, pp. 3-17 and 22-32. 
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tabulated In Table 29 for sample sizes most likely to be of 
interest. 

TABLE 29.-CORRECTJON FACTO .... (I AND (. 

" (I (. " (I (, 

3 0·57735 0.72360 22 0.95346 0.96545 
4 0·707" 0.79788 23 0·95553 0.¢697 
5 0.77460 0.84069 24 0·95743 0.96837 
6 0. 81650 0. 86863 25 0.95917 0·¢965 
7 0.845 15 0.88820 30 0·96~ 0·97475 
8 0. 86603 0.90270 35 0.97101 0.97839 
9 0. 88192 0.91388 40 0.97468 0.98111 

10 0.89443 0.92275 45 0·97753 0.98322 
II 0·90453 0·929¢ 50 0.97980 0.98491 
n 0.91287 0·93594 55 0.98165 0.98629 
13 0.91987 0.94098 60 0.98319 0.98744 
14 0.92582 0.94529 65 0.98450 0.98841 
15 0·93094 0.94901 70 0.98561 0.98924 
16 0.93541 0.95225 75 0.98658 0.98996 
17 0·93934 0.955" 80 0.98742 0·99059 
18 0.94281 0.95765 85 0.98817 0.99"5 
19 0.94591 0.95991 90 0.98883 0.99164 
20 0.94868 0.¢194 95 0.98942 0.99208 
21 0.95 11 9 0.96378 100 0.98995 0.99248 

For sample sizes greater than five, the difference between 
modal and expected values of standard deviation is so small 
that in most practical problems we may assume that the 
Camp-Meidell inequality applies, where the standard deviation 

of the distribution of (f is taken to be _ ~. 
v2n 

Here again it is not feasible to duplicate theoretical con
ditions in practice. It is therefore interesting to see how 
closely the 1,000 standard deviations in samples of four drawn 
from the 'experimentally normal distribution previously de
scribed can be approximated by (64). The results of such 
a comparison are shown in Fig. 60. The closeness offit between 
the observed and theoretical distributions certainly appears 
to warrant our acceptance of the theory as a guide to practice 
in such a case. It is also of interest to note how closely the 
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theoretical and observed values of modal and average standard 
deviation agree as indicated in Table 30. 

TABLE 30.-AGREEMENT OF THEORETICAL AND OBSERVED VALUES OF MODAL AND 

AVERAGE VALUES OF STANDARD DEVIATION 

Observed in 

.. Theoretical 1,000 Samples 
of Four 

Modal Standard Deviation in Samples of Four ..... 0.7071 0.7168 
Expected or Average Standard Deviation in Samples 

of Four ..................................... 0·7979 0.8007 

6. Standard Deviation-Non-Normal Universe 

Theoretically, we know nothi~g about the distribution 
function of the standard deviation of samples from a non-normal 
universe-not even the values of the moments. If, then, we 
are to be able to establish ranges of variability within which 
the observed vaiues of standard deviation may be expected to 
fall for samples drawn from other than a normal universe, we 
must rely at the present time upon empirically determined results. 
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To indicate the nature of the results to be expected it is 
of interest therefore to consider the observed distributi~ns of 
Itand~rd de~iations of s~mples of four drawn from rectangular 
and rIght trIangular Universes. These are shown in Fig. 61. 
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As is to be expected, the modal and average values of the 
observed distributions are less than the standard deviations 
'of the respective universes, Table 31. These results show 
that since the modal and expected values are approximately 
equal, it would be possible to apply the Camp-Meidell in
equality· except for the fact that the standard deviation is 
nor known. " In, other words, we are not in a place to set 

, sampling limits on the standard deviation of samples drawn 
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TABLE 3I.-ExPECTED AND MODAL VALUES OF. STANDARD DEVIATION 

Rectangular Right Triangular 
Universe Universe 

Modal Standard Deviation in Samples of Four. 1.4639 0.7761 
Average Standard Deviation in Samples of Four. I·432S 0·786S 
Standard Deviation of Universe .............. 1·7607 0·9S39 

from other than a normal universe, unless' the divergence 
from normality is so small as to warrant our belief that the 
distribution function (64) is a reasonable approximation. 
In cases where this assumption is not justified, we may make 
use of the square of the standard deviation or the variance 
as it is termed. 

7. Pariance 
For variance, as for standard deviation, we know the 

distribution function when sampling from a normal universe. 
It is 

n-3 nat 

dy = C(u2)-a-e - alT" d(u2), 

where C is a constant. In fact, "Student"l first found this 
distribution function empirically, and from it derived the 
distribution of (T. 

When the sampled universe is not normal, we know merely 
the moments of (T2 expressed in terms of those of the universe.2 

The expected variance and the standard deviation of variance 
are 

and 

n - I 
cr2 = --cr2 

n 

cr2~1f - I 
cr ... = - --[en - I)P2 - n + 3)] 

n. n 

(68) 

I Loc. cit. The distribution was later found rigorously by R. A. Fisher, loco cit. 
" See, for example, A. E. R. Church, "On the Means and Squared Standard Devia

. tions of Small Samples from any Population," Biomttrilca, Vol. XVIII, Nov., ~.926, 
pp. 321-394. 
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in terms of the standard deviation fT and the flatness P2 of 
the universe. Obviously, without further investigation based 
upon the use of higher moments of the distribution function of 
variance than those given in (68), we cannot establish sampling 
limits in general with an assurance much greater than that 
afforded by the application of the Tchebycheffrelationship. 

8 D_' X - X U I r-r • 
• LVI/'O z == --- - JYorma vnlverse 

tT 

Thus far we have considered the distribution functions of 
some of the simple statistics taken one at a time. We shall 
find that another very helpful way of looking at this problem 
is to consider the ratio z of the deviation in the average to 
the standard deviation of the sample. "Student"l was the 
first to derive the distribution of z for samples drawn from a 
normal universe. His results are given by (69): 

(
n - '.!)r 
2· -~ 

dy = ( ) (I + Z2) adz. 
v;n-.1f 

2 • 

It is useful to know that the standard deviation 0-. is always 

equal to ~. The distribution of z is symmetrical about 
n-J 

the expected value i = 0, and the table of the integral of this 
function originally given by "Student" has now been extended 
by "Student"l and Fisher.l 

Fig. 62 shows how the distribution function of z differs from 
the normal law for the case n = 4. The broken curve is the 
normal law with the same standard deviation as the observed 
distribution of z derived from the thousand samples of four 
drawn from a normal universe. Two things should be noted. 
First, although the two distribution functions are symmetrical, 
they differ widely for small sample sizes. Second, we should 

I Loc. cit. 
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note how closely "Student's" theoreticai distribution fits the 
observed points in Fig. 62. 

If the samples are drawn from other than a normal universe, 
very little of importance in the theory of control is known 
about the distribution of z other than that derived from an 
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empirical study of the sampling results given in Appendix II. 
The success of" Student's" theory in predicting the distribution 
of z for samples of size four drawn from rectangular and right 
triangular universes is indicated in Fig. 63. There can be 
little doubt that "Student's" distribution is a closer approx
imation to the observed distribution than is the normal law. 

Analysis of these results indicates that for niost ranges - z 
to + z (when z ~ 3) the associated probability given by 
"Student's" distribution must be considered as an upper bound1 

1 See for example, .. Small Samples-New Experimental Results," by W. A. Shew
hart and F. W. Winters, ']0141714/0/ Amerk4n 8It11iSI;'4/ Asso,;tllion, Vol. 23, pp. 
144-153, 1928• 
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when sampling from a universe with values of PI and P3 
lying in the {Jl{J2 plane above the line 

fh-fh-3=O. 

9. Dislrioution of Average and Standard Deviation 

We shall now briefly outline another way in which sampling 
limits may be set on statistics. Instead of considering the 
distribution of each statistic separately, we may consider the 
distribution of pairs of simultaneously observed values of two 
statistics. As an example, Fig. 64 shows such distributions 
for averages and standard deviations of the samples from the 
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normal, rectangular, and right triangular universes. It is 
apparent that the distributions for the rectangular and right 
triangular universes differ materially from that of the thousand 
samples drawn from the normal universe. For control purposes 
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we may make use o( the (orm of presentation given in Fig. 6S 
showing the curves of regression of average on standard 
deviation. For the samples drawn from a normal universe, 
we see that the regression curve is a horizontal line. In the 
other cases, however, the regression is non-linear. For the 
rectangular universe the curve of regression is a parabola 
symmetrical about the ordinate through the mean of the dis
tribution; for the right triangular universe the curve of re
gression cannot be so simply described. 

Recent work of Neyman I gives the equation of the curve 
of regression of the average on variance in terms of the moments 
o( the universe. Neyman also gives the standard deviation of 
the distribution (rom this curve of regression. 

These results of Neyman were used in constructing the 
theoretical curve o( regression and the dotted limits corre
sponding to three times the standard deviation of the dis
tribution about the line of regression for the data presented 
in Fig. 65. O( course we are not justified in using Neyman's 
work in this particular way, except to get an approximation. 
Therefore, it is interesting to note that the results so established 
include approximately 99 per cent of the observed values 
as they should if the distribution about the curve of regression 
were normal and the theoretical value of the standard deviation 
used in constructing the limits were not subject to compu
tational error. 

So far as we are concerned at the present moment, emphasis 
is to be laid upon the importance of these results as indicating 
the wide variety of possible ways in which we may establish 
limits within which observed statistics may be expected to fall. 
In such a case the theoretical determination of the regression 
curve together with the standard deviation o( an array about 
such a curve gives us a basis (or establishing limits which 
we may interpret at least upon the basis of Tchebycheff's 
relationship. A review of the theoretical work that has already 
been done in this connection, however, indicates certain 

"'On the Correlation of the Mean and the Variance in Samples Drawn from an 
• Infinite' Population," Biomtlriu, Vol. XVIII, pp. 401-413, 1926. 
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inheren~ dif!iculties in attaining a high degree of precision in 
the derIvatIon of the necessary regression curve and the 
standard deviation from such If. curve. 

10. A Word of Caution 

Before passing on to a consideration of the distribution 
functions of other statistics, it is well to sound a further word 
of caution about accepting theoretical results in the form of 
distribution functions of statistics derived upon assumptions 
of continuity of universe where for one reason or another the 
measurements cannot be made under the ideal conditions 
assumed. As an illustration, it is interesting to examine the 
effect of grouping in any universe, such for example as the 
rectangular one, upon the regression of the variance on the 
average in small samples. We find that the apparent close
ness of fit of a second order parabola to the means of variances 
depends upon the number of cells. The approximation in many 
cases is not very good as is illustrated by Fig. 66 corresponding 
to the scatter diagram of the 256 pairs of values of variance and 
standard deviation based upon the data of Table 25.0bvi
ously the mean values of variance corresponding to a given 
average and represented by the solid dots do not lie on a second 
order parabola. It follows that the precision of the estimate 
of the number of points to be expected outside the limits 
derived after the manner of those shown in Fig. 65 is quite 
uncertain. In fact, we cannot use Tchebycheff's theorem in 
connection with the parabola of regression to estimate even 
the upper bound to this number . 

. The reader may appreciate now the significance of the 
experimental results previously cited to show that the effect of 
grouping into a finite number of cells and the effect of the 
finite range of the experimental universe were not sufficient to 
invalidate the application of the distribution functions for 
averages, standard deviations, and ratios of deviations in 
averages to observed standard deviations derived upon the 
assumption of a continuous universe of infinite range. As a 
result of these considerations, we see that in the derivation of a 
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distribution function for a given statistic in a sample of size n 
drawn from a given universe, we must realize that in practice we 
can never attain the condition of continuous universe. 
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Of course, it must be kept in mind that so far as theory is 
concerned, it is quite possible that the curve of regression even 
for a continuous universe is not rigorously a second order parab
ola. In other words, the theory involved above rests upon 
the assumption that a second order parabola is simply a good 
first approximation to the actual curve. This fact, however, 
does not invalidate the argument of the previous paragraphs 
to the effect that the form of the best fitted curve of regression 
depends to a certain extent at least upon the number of cells 
into which the universe is divided. 
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II. SJuwntss k and Flalnus fJ2 

. Very little is known about the characteristics of the dis
tribution function of eith,er k or fJ2 except for large samples 
drawn from a normal Universe under which conditions these 
distribution functions approach normality. It has long been 
known, however, that the standard deviations of these two 
statistics in samples of n drawn from a normal universe are 

fTk =~, 
n (70) 

and 

fTk = ~. n (71) 

If the sample size n is of the order of magnitude of 500 or 
more, we may assume that the distribution functions of these 
statistics about k and P2 respectively of the universe are such 
that the normal law integral may be assumed to give approx
imate values for the probabilities associated with symmetrical 
ranges about the expected values.1 

J 2. Oln" Mtasurts of Ctnlral TtndtncJ 

In our discussion of quality control methods, we shall 
have occasion to use two measures of central tendency other 
than the arithmetic mean. These are the median and the 

Max. + Min, Th d' 'b' r. ' r. h d' f -_~ __ • e lstn utlon JunctIon Jor t e me Ian 0 
2 

samples of n drawn from a normal universe is known to 
approach normality as the sample size becom~s i?de~nitely 
large. Little is known, however, about the dlstrlbutl?n of 
medians in samples drawn from other t~an a normal unlve~se 
or in small samples drawn from any universe. Also the dlS-

I Isserlis, L "On the Conditions under which the 'Probable Errors' of Frequency 
Distributions have a Real Significance," Proceedings of 1M RO;1tU Sotie/;1, Series A, 
Vol, XCII, 1915, pp'-2.J-41. 



198 ECONOMIC CONTROL OF QUALITY 

'b . f . f h Max. + Min .. 
trl utlOn unctIon 0 t e IS apparently not known 

2 

except for samples of n drawn from a rectangular universe.r 
For both these measures of central tendency, we can say 

that their distribution functions for symmetrical universes 
are symmetrical so that the expected value for both distribution 
functions is the average X of the universe. Although, in 
general, we do not 'know the standard deviation of either 
measurement for small samples from even a normal universe, we 
do know that the standard deviation of the median in large 

samples from a normal universe is 1 'Y.<T, where <T is the 

standard deviation of the universe. 
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Wherever it has been found necessary to make use of the 
distribution functions of these two measures for small samples, 
they have been determined empirically. For example, Fig. 67 
shows the experimentally determined distributions of these 
two measures for the 1,000 samples of four from the normal 
universe previously mentioned. For purposes of comparison 
we have included the theoretical and observed distributions of . 

1 Rider, P. R., "On the Distribution of the Ratio of Mean' to Standard Deviation 
in Small Samples from Non-Normal Universes," Biomtlri!ca, Vol. XXI, pp. 114-141, 

19:19· 
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arithmetic means o( these samples. We see that all o( these 
are al?proximately normal. Obviously they would be identical 
one with another (or samples o( size two. The observed standard 
deviations shown in Table 32 are, however, significantly di(-

TABLa 32..-CHAUCTERlSTICS or DISTRIBUTIONS or THREa MEASURES or 
CENTRAL TENOENCY 

Efficiency as Compared 
~o that of Mean as 

Measure o( Standard 100 Per Cent 

Central Average Devi .... Skewness Flatness 

Tendency e tion ~a {lta Observed Theoretical 

"a for Samples for Large 
Of4 Samples 

Arithmetic Mean. 0.014 0.502. -0.038 2..985 100.0 100.0 
Median ......... 0.02.6 0·559 -0.02.8 2.·92.1 80.6 63. 8 
Max. + Min. 

0.036 
:l 

.. ,. 0·547 -0. 01 5 2.986 84. 2 

(erent one from another, indicating that the measures differ in 
efficiency as defined in Paragraph 6 o( the previous chapter.1 

Th h . I ffi' r h Max. + Min. e t eoretlca e clency JOr t e measure even 
2 

(or large samples is not known, although it is known that it will 
be less than that o( the median. The interesting thing to note 
is that the efficiency of a measure depends upon the sample 
size. For example, that of the median starts with 100 per cent 
for sample size n = 2 and drops off to 63.8 per cent for large 
samples. 

13. Other Measures of Dispersion . 
One of the competing measures of dispersion, particularly 

in engineering work, is the mean deviation. In general our 
state o( knowledge in respect to the theoretical distribution. 

1 See discussion in Chapter XIX of Part VI for special interpretation of efficiency 
(or the case of small samples. Just as in Pafllg!!'ph 6 of t?e previous. chapter, effi
ciency here applies to the estimate of the mean X o( the umverse obtained from the 

• Max. + Min.. 'ffa . 
mean of III medians or values of In samples 0 ur. 

:z 
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of the mean deviation even for samples from the normal 
universe is in a far less satisfactory state than is that of the 
standard deviation under similar conditions. For large samples 
it is true that the distribution function of the mean deviation is 
sufficiently near normal for us to use the normal integral 
in establishing sampling limits in control theory .. Under these 
conditions, however, the efficiency of the mean deviation is 
only about 88 per cent . 
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The empirically determined distribution of the thousand 
mean deviations (multiplied by v:;;2) in samples of four is 
presented in Fig. 68.' We see that it is distinctly different 
in functional form from that of either the theoretical or the 
observed distribution of standard deviations of this same 
group of 1,000 samples of four. We also see from Fig. 68 and 
Table 33 that the mean and modal values of the distribution 
of mean deviations differ from those of the corresponding 
distribution of standard deviations. Hence, until further 
theoretical work has been done, the use of the mean deviation 
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(or small samples offers comparatively serious limitations as 
compared with the use o( the standard deviation .. Furthermore, 
we shall see that under these conditions the standard deviation 
is the more efficient measure.1 Hence we should not expect 
to find many cases in quality control work where the mean 
deviation is to be preferred to the standard deviation as a 
measure o( dispersion. 

TABLII 33.-CHAUCTERISTlCS or DUTUBUTlON or THREE MEASURES 

or DISPERSION 

Standard 
Bui. of Eotimate of Average Mode Devia- Skewness Flatness 
Standard Deviation a 9 tion ke {J'e 

ere 

Root Mean Square Deviation ... 0·8007 0.7161 0.340 0.486 2.952 

~ (Mean Deviation) ......... 0.8612 0·7353 0·379 0.622 3. 261 

X.-X •..................... 2.0030 1.7564 0.875 0.548 3. 030 

Sometimes we need to use a measure o( dispersion which 
can be readily obtained on the job. For this purpose we may 
make use o( the absolute value of the range between the 
maximum and minimum observed values in samples of size n. 

The observed distribution of ranges in samples of four 
drawn from a normal universe is given in Fig. 69' The average 
o( the thousand observed ranges is 2.003cr where cr is the 
standard deviation of the universe. Upon the basis of these 

experimental results, we could take _1_ times the range as 
2.003 

an approximate value of the standard deviation of the universe; 
or looked at in another way, knowing the standard deviation 
of the normal universe, we may set limits within which the 
observed range in the sample size n may be expected to fall 
with a given probability P if, as in the previous examples, 
we can find the distribution function of this range . 

• Chapter XIX of Part VI. 
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Considerable theoretical work has been done within recent 
years in an .attempt to fi~d this distribution function. For 
example, TIppett 1 gives the expected value and standard 
deviation of the distribution of ranges in samples of size n 
drawn from a normal universe. From his results we get Fig. 70. 
He also gives the theoretical values Pl and P2 of the distribution 
of the range. In this way, he shows that the distribution of 
this statistic diverges more and more from normality as the 
size n of the sample is increased. Obviously, therefore, the 
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best that we can hope to do in the present state of our 
theoretical knowledge, in using the range for control purposes, 
is to establish symmetrical limits about the expected yalue of 
the range given in Fig. 70 for a specified sample size by making 
use of theoretical standard deviations also given in this figure. 
Since we do not know the distribution function, all that we 
can say is that Tchebycheff's theorem applies to the limits 
thus established. 

In this same connection, it is interesting to compare the 

1 "On the Extreme Individuals and the Range of Samples taken from a Nor;ri'a1 
Population," Biometrika, Vol. XVII, pp •. 364-387, December, I92S. 
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observed distribution functions of estimates of the standard 
deviation fT of the universe derived from the root mean square 
deviations, mean deviations, and ranges for the thousand 
samples of size four drawn from the normal universe. These 
distributions are shown in Fig. 71. The root mean square 
and mean deviation estimates of the standard deviation IT 

are those usually employed in error theory although they are 
not consistent as we shall see in Part VI. We shall have 
occasIOn later, in discussing the efficiency of measurements, 
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to emphasize the significance of the differences in these three 
dis tri bu tions. 

Sometimes in commercial work we may have occasion to 
use a range other than the extreme range because often the 
available data represent the quality of product after a previous 
inspection has excluded the extremes. We shall enter into 
this discussion only far enough to indicate the nature of the 
problems involved. 

At the present time we must rely almost entirely upon 
the results of empirical studies to indicate the nature of the 
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distribution functions that we may expect to get under such 
condi tions, and also to determine how these functions depend 
upon the functional form of the universe from which samples 
are drawn. Fig. 72-a shows the observed distributions of 
four ranges in samples of four drawn from a normal universe. 
To obtain these distributions, the four values in each of the 
thousand samples of four were arranged in ascending order 
of magnitude. Thus, if we let Xl, X 2, X a, X 4, represent the 
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values in a sample thus arranged, the four ranges are: the 
extreme range X4 - Xl, the range between the first and second 
X 2 - Xl, the range between the second and third X3 - X 2, 

and the range between the third and fourth X 4 - X 3• 

The striking thing to be observed is that the distribution 
functions of the last. three ranges are less symmetrical than 
that of the extreme range. Furthermore, the standard de
viation of the extreme range is larger than that. of anyone 
of the other three distributions in absolute magnitude, although 



FLUCTUATIONS-UNDER STATISTICAL CONTROL 'lOS 

when expressed as a coefficient of variation, the variation in 
the extreme range is less than that in any other. For purposes 
of comparison, the distribution function of observed differences 
between successive pairs of observed values is also reproduced 
in this figure. Table 34 shows the observed expected value, 
standard deviation, skewness, and flatness for these five dis
tributions. 

TABLa 34.-CHARACTEIUSTlC or DISTIUBUTlOK OF RAKGES 

Ave!.age 
Standard 

Skewness Flatness 
Range Deviation e 

"e ke P'e 

XI-X, 0.7863 0. 6087 I. 2133 4.5604 
XI-XI 0.6338 0.4941 1·245' 4·5974 
X,-XI 0·7752 0·5953 1. 1672 4.3608 
X.-X, 2.0044 0.8759 0.5627 3. 0312 

Succeosive 
Drawings 1. 2136 0.8661 0.9140 3.5884 

Turning our attention to Figs. 72-b and 72-C, we see the 
marked influence of the functional form of the universe upon 
the distribution functions of the ranges. This is significant 
in connection with our present study in that it shows that the 
interpretation of control limits set upon some statistic such 
as a range depends much more upon the nature of the func
tional form of the universe than does the interpretation of 
similar limits placed upon standard deviations and, particu
larly, limits placed upon arithmetic means. 

14. Chi Square 

The statistic x2 is a measure of the resultant effect of 
sampling fluctuations in the cell frequencies. Thus, if the 
universe of possible effects be divided into m cells such that 
in a sample of size n the expected frequencies in these cells are 
respectively fl, f2, ••• , fi, ••• , fm; and if the observed 
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frequencies for a given sample in these same cells are Y1, Y2, 
... , Yi, .. , , ym, x.2 is defined by the relationship 

2 _ ;, (Yi - Yi)2 
X -.., • 

1-1 Yi 

In 1900, Pearson 1 gave the distribution function of the statistic 
x.2, which may be written 

. x' m-3 

fX2(X2, m) = Ce - 2(X2)-2-d(x2), 

where C is a constant. 
Similarly it may be shown that the expected value X2, the 
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L Karl Pearson "On the Criterion that a Given System of Deviations from the 
Probable in the Case of a Correlated System of Variables is such that it can be Reason
ably Supposed to have Arisen from Random Sampling," Philosophical Magazine, 
5 th Series, Vol. L, 1900, page 157. 
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modal value X2, and the standard deviation tTX" of x2 are 
given by 

X
2 

= m - I} 
i2 = m - 3 . (73) 

tTXI = v' 2(m - I). (74) 

Tables of values of the integral of the x2 function for the 
range of values of number m of cells of most importance were 
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originally given by Elderton and are reproduced in useful 
form in Pearson's Tables. l 

Tables in slightly different form are given by Fisher.2 
Making use of these tables, we can read off the probability P 
associated with almost any pair of limits in which we may 
happen to be interested. Fig. 73 indicates the way in which 
the probability associated with a given value of x2 varies 
with the number of degrees of freedom.8 

I f'uklfor SIC;,I;,;"", ."" B;D",,,rit;,,,,,, Table XII. 
I SItII;II;"J Me/"ot/lfor RIm"." Work",. 
I The number of degrees of freedom i. equal to one less than the number of cells if, 

a. ~ have assumed above, the universe frequencies are known II priDri. 
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The distribution function of x2 is unimodal; and since 
the mean and the mode differ by only two, the Camp-Meidell 
inequality applies quite accurately to symmetrical ranges 
about the expected value. Furthermore, it is of interest to 
note that, for a comparatively large number m of cells, the 
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distribution of x2 can be quite accurately obtained by the 
second approximation function (23). For example, Fig. 74 
shows the second approximation fitted to the theoretical dis
tribution of x2 for m = 30 cells. Hence, for a number of 
cells of the order of magnitude of thirty or more, the normal 
probability function can be used to give a close approximation 
to the probability associated with a symmetric range about 
the expected value. 

It is of interest to note that the distribution of x2 is not 
explicitly limited by the functional form f of the universe 
or by the number n in a' sample. A limitation, however, 
does enter in that the functional form of the distribution 
depends upon the assumption that the variable Xi is distributed 
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normally, where Xi = yi - Yi. From our study of the point 
binomial distribution function, we see that this assumption 
requires that the probability Pi associated with the ith cell 
must be such that the probability distribution (qi + pi)n is 
approximately normal. This condition cannot be rigorously 
fulfilled, nor do we have any available analytical method 
for determining its significance. We may, however, again 
make use of the experimental results presented in Appendix II, 
this time to give information of an empirical nature which 
indicates the magnitude of the effect of grouping upon the 
distribution of x2• We shall make use here of only the four 
samples of one thousand drawings each from the normal 
universe. 

T.\au 35,-C.ucvunONS INVOLVED IN DETERMINING x', 

True Observed 
Distribution Distribution ., :1 

3 5 
9 9 

28 36 
65 55 

121 123 
174 165 
198 203 
174 172 
121 123 
65 68 
28 31 

9 8 

3 2 

:1-y 

2 
0 
8 

10 
2 

9 
5 
2 

2 

3 
3 . 
I 
I 

(y - y)" 

4 
0 

64 
100 

4 
81 
25 
4 
4 
9 
9 
I 
I 

(y - y)' 

y 

1.333 
0.000 
2.286 
1.538 
0.033 
0.466 
0.126 
0. 023 
0.033 
0.138 
0.321 
0.111 

0·333 

x" = 6.741 

P = 0.873 

For purposes of reference, Table 35 shows the calculations 
involved in determining the value of x2 for the first sample 
of one thousand, grouped into thirteen cells. We see that 
the probability p associated with the end cells is only -u-h-, 
which is exceedingly small. _We may, therefore, consider the 



TABLE 36.-EFFECT OF GROUPING ON X· 

Observed Distributions 

True 
Distribu- Sample No. I Sample No. Z Sample No. 3 

tion 
y 

13 II 9 7 13 II 9 7 13 II 9 
Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells Cells 

--- ----I-

3 5 I 2 

9 9 14 14 15 10 IZ 
z8 36 36 50 z4 24 39 z9 Z9 41 
65 55 55 55 105 51 51 51 90 7z 7z 7z 

IZI IZ3 IZ3 123 1Z3 II3 II3 II3 II3 IZ4 IZ4 IZ4 
174 165 165 165 165 187 187 187 187 181 181 181 
198 :103 z03 z03 :103 195 195 195 195 180 180 180 
174 172 17z 17z 17z 176 176 176 176 169 169 169 
121 123 123 123 123 IZ5 125 IZ5 IZ5 120 120 120 
65 68 68 68 109 71 71 71 II4 67 67 67 
28 31 31 41 31 31 43 32 32 46 
9 8 10 8 12 II 14 
3 Z 4 3 

---------I-------------
X· 6·741 5. 630 4. 882 0.833 10.71£ 6·91I 5.519 4. 614 4·455 3.900 3. 885 

---------'---- --
i' IZ 10 8 6 12 10 8 6 12 10 8 

7 13 
Cells Cells 

Z 
9 

Z5 
II3 49 
IZ4 lIZ 
181 191 
180 z04 
169 18z 
120 123 
1I3 64 

25 
12 
2 

----
3.364 9· 174 
--l-

6 12 

Sample NO.4 

II 9 
Cells Cells 

--

II 

z5 36 
49 49 

lIZ lIZ 
191 191 
z04 204 
182 182 
123 123 
64 64 
25 39 
14 

----
7,924 7·z91 
----

10 8 

7 
Cells 
--

85 
lIZ 
191 
z04 
18z 
123 
103 

--
6.761 
--

6 

~ ... 
o 
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advisability of grouping the tails of the distribution after the 
manner often suggested in the literature. Table 36 shows the 
effect of grouping the tails of each of the four experimental 
distributions. In all but one case the observed value of 
", is less than the theoretical expected value, although the 
average difference between the two decreases as we increase 
the probability associated with the last cell by decreasing 
the number m of cells. These experimental results indicate 
that the effect of the limitation as to the normality of the 
distribution of the variable XI may be much more serious from 
an experimental viewpoint than one might be led to believe 
by reading the literature on the subject. In any case the use 
of ", in control work must be subjected to careful scrutiny 
to eliminate the obvious effects of grouping even under con
ditions where, as in the present case, we should expect the ,,2 
test to be applicable. 

IS. Summary 

Broadly speaking, distribution functions of statistics are 
basic tools with which the engineer interested in quality control 
must work. In this chapter we have sketched briefly the 
present state of our knowledge of the distribution functions 
of some of the more important statistics. A summary of 
these results is given in Table 37. From this we see how 
little is really known about the distribution functions of even 
the simple statistics, particularly when the universe is not 
normal, with the two exceptions, viz., the fraction defective p 
and the average X. 

Subject to limitations set forth in this chapter, we can 
make use of the average and standard deviation of a statistic, 
even when the distribution function is not known. When 
theoretical information about the distribution of a statistic is 
not available either in the form of the function or certain 
moments of the function, and we have reason to believe that 
the universe is not normal, we may make use of the empirical 
laws presented herein to indicate the extent. to which the 
normal law theory may be applied. We see that there is much 



TABLE 37.-SUMMARY OF AVAILABLE INFORMATION IN RESPECT TO SOME OF THE MORE IMPORTANT STATISTICS 

Distribution Function Expected Value e in Standard Deviation ... e Modal Value e Statistic fe(e,n) Samples of Size n 
e 

fNormal fnotNormal f Normal fnotNormal f Normal fnotNormal f Normal fnotNormal 

p (q + p)" (q + p)" p p ~ ~ p p 

X Approximate- i i ... ... i it Normal Iy normal V;; vii 
Table 29 

.... Table 29 (I (64) . 
(66) v2n (65) 

(II (67) 
n-l n -I 

(68) (68) n - 3 .... -' -~ . n n n 

z (69) 0 
I 

0 
Vn-3 

k ot ~~ 
fl. 3t ~~ 
Xl (72) (72) (73) (73) (74) (74) (73) (73) 

Median i 1.253"'t 
v;' 

i 

Range Fig. 70 Fig. 70 

Max. + Min. i i 
2 

• Correction for sample size of little commercial significance. t If " is large. ~ Subiect to limitations stated in the text. 
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room (or (uture development in distribution theory, all o( 
which will have a direct bearing on the theory of control. 
However, we shall soon see that in many cases the gain in 
precision through possible developments of this nature may 
not be o( so great practical importance as might at first be 
expected. 



CHAPTER XV 

SAMPLING FLUCTUATIONS IN SIMPLE STATISTICS--' 

CORRELATIO~ COEFFICIENT 

I. COrTelation CoejJicient 

Having considered in the previous chapter the distribution 
functions for statistics of a single variable, we now turn our 
attention to the distribution function of simultaneously 
observed quality characteristics correlated one with another. 
Since, as is to be expected, the problem of deriving the distri
bution functions for correlation statistics is in general much 
more difficult than those previously considered, we shall 
confine our attention to the use of the correlation coefficient 
as a measure of relationship. In Part II we saw how this 
simple function may be used to present the information con
tained in a single set of n data. There, however, we did not 
consider how much an observed value of r tells us about what 
we may expect to get in tqe future under the same essential 
conditions or, in other words, under the same constant system 
of chance causes. What was said there about the correlation 
coefficient as an expression of observed relationship is true 
for a given sample. Naturally, however, even under con
trolled conditions this statistic is subject, as are those previously 
studied, to sampling fluctuations. 

As an illustration Fig. 75 shows the observed scatter dia
grams and corresponding values of correlation coefficient for 
eight samples of five simultaneous pairs of values produced 
"by the same constant system of causes wherein there was no 
correlation or commonness of causation between the two 
variables. In other words, the correlation r in the universe 
was zero; yet we find in one sample an observed correlation 
of - 0.82. 
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The method of obtaining these eight samples was as follows: 
Eighty consecutive values were taken from Table A, Appendix 
II, and these were grouped into forty pairs by taking the 
first and second, the third and fourth, and so on. The first 
five pairs were taken as the first sample, the second five pairs 
as the second sample; and in this way eight samples of five 
pairs each were obtained from a non-correlated universe. 
The result of this experiment is sufficient to show the impor
tance of knowing the distribution function of the correlation 

r--0.2' 

• •• 
, , t , 

• • 
• • • 

I , , ! , I , 

-J 0 J 
x. 

rKQ.30 

• • • 
• • 
, , I , 

r.o.1a 

,. . . -
. , " " 

-J 0 .1 
x. 

roo-0 .• 2 

• • • • 
• 

! I I 

r=OA2 

\ • • 
• 

I I , " , 

-3 0 .1 
x. 

r = 0.23 

• •• 
• • 

« I , , 

r =-0.00 

•• • •• 
, , ! , I , , 

-3 0 3 
Il, 

F,G. 75.-EJGHT ScATTER D'AGIlAIII REPRESENTING SAMPLING FLUCTUATIONS OF 

THE OBIE.VED CoR.IlLATION IN SAMPLES OF F,VE DIlAWN FIlOM A UNIVEIlSE 

'N WHICH THEilE WAI NO CoIlIlELATION. 

coefficient as a basis for interpreting the significance of an 
observed value of the correlation coefficient r in a sample. 

As might be expected, the distribution function of the 
observed correlation r in samples of n drawn from a universe 
in which the correlation is r involves both r and the sample 
size n. Table 38 presents experimental evidence. Thus 
Column 2 of this table shows the observed distribution of 
correlation coefficient r in one hundred samples of four drawn 
from a universe in which the correlation r was o. It will 
be seen that the mean value r is 0.0300 and that the standard 
deviation (Tr is 0.5620. The distribution itself is approximately 
rectangular. In a similar way, Column 4 shows the observed 



TABLE 38.-{)BSERVED DISTRIBUTIONS OF CORRELATION COEFFiCiENTS 

n=4. , n = 205 

.' 
r=o r = 0.5 ' r = 0.895 r=o r = 0.5 r = 0,9 r = 0.98 

Cell 
Fre-

Cell 
Fre-

Cell 
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Fre-Mid- Mid- Mid- Mid- Mid- Mid- . Mid-

point 
quency 

point 
quency 

point 
quency 

point 
quency 

point 
quency 

point 
quency 

point" 
quency 

------------'---- . ------~ ---------
-0.90 12. -0.90 4 0.15 I -0.60 I -o.~2o I 0.800 3 0.950 I 

-0.60 II -0.60 3 0.30 0 -0·45 z 0.0 0 0. 8205 3 0.956 I 

'"-0.30 16 -0.30 7 0·45 20 -0.30 6 0.12. I 0.850 6 0.9620 4 
0.0 16 0.0 12. 0.60 7 -0.15 18 0. 204 6 0.875 2020 0.968 5 
0.30 17 0.30 16 0·75 II 0.0 205 0.36 14 0·900 20Z 0,974 17 
0.60 17 0.60 37 0.90 57 o. IS 203 0.48 205 0.9205 18 0.980 30 
0·90 II 0.90 46 I. oS 2020 0.30 II 0.60 209 0.950 10 0.986 19 

0.720 10 0·975 20 9.9920 9 

m= 100 m= 1205 m= 100 m= 86 m= 86 m= 86 m= 86 
r = 0.0300 r = 0.48720 r = 0.8790 f- 0.0087 r = 0.5009, r = 0.8968 ,. = 0.97920 

tlr ... 0.56200 tI, = 0.4673 tI,=0.I5I5 tI, = 0.19320 tI, = 0.152020 IT, = 0.0377 IT, = 0.0116 
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distribution of r for one hundred and twenty-five samples 
drawn from a universe in which r was 0.5. The differences 
between columns 2, 4, and 6 are attributable to the fact that 
r is not the same in the three cases. Columns 8, 10, 12, and 
14 give the distributions of observed values of the correlation 
coefficient in samples of twenty-five 'for different 'values of r. 
A comparison of these results with those in the other part of 
the table indicates the inAuence of the size of sample. 

2. Distribu/ion Func/ion 01 Correia/ion Codficitn/ 

From experimental results, "Student"l derived in 1908 
an empirical distribution 'function of correlation coefficient r 
in samples of n drawn from a normal universe in which r = o. 
In 1913 SoperS obtained the mean and the standard deviation 
of the distribution of correlation coefficient to second approx
imations for samples of n drawn from a normal universe with 
correlation coefficient r. In 1915 R. A. Fisher3 showed that 
the distribution function of r is 

This function is so complicated as to require a table of values 
giving the distributions for different values of universe cor
relation r and sample size n. Such tables were provided in 
1917 by Soper· and others, and ~the reader is referred to 
these for a comprehensive and detailed picture of the dis
tribution of the correlation coefficient. It will be of interest, 
however, to note the way it varies with the size of sample and 
the correlation in the universe as shown in Fig. 76. 

'''00 the Probable Error of a Correlation Coellicienr." Biomelril"., VoL VI, p. 30,2 
eteeq. 

• "On the Probable Error of the Correlation Coellicient to a Second Approxi. 
mation," Bio"IIIriI:., Vol. IX, 1913, page 91, et aeq. _ I 

• "Frequency Distribution of the Values of the Correlation Coellicient in Samples, 
(rom an Indefinitely Large Population," Biomtlril:., VoL X, 1915. page 507. et aeq. . 

• H. E. Soper, A. W. Young. B. M. Cave, A. Lee. K. Pearson, "On the Distribution 
of the Correlation CoeIIicient in Small Samplcs," Biomtlril:., VoL XI, 1917, pp. 328-

41J. 
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. A 

r =0 r =0.9 

I 
-1.0 0 1.0 -1.0 0 1.0 

SAMPLE SIZE n = 4 

A 

r =0 r =0.9 

,D, 
-1.0 0 1.0 -1.0 -1.0 0 1.0 

SAMPLE SIZE n = 10 

r =0.9 

-1.0 -1.0 o 1.0 

SAMPLE SIZE n = 2~ 

FIG. 76.-TYPICAL DISTRIBUTIONS OF CORRELATION COEFFICIENT. 

3. Standard Deviation ITr of Correlation Coefficient 

The article by Soper and others shows that the standard 
deviation ITr of the correlation coefficient in samples of n is 
given approximately by the simple formula 

1 - r2 
ITr = _/~ 

vn-I 
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The degree of approximation is indicated by the curves in 
Fig. 77. 

In general, it will be seen that, except when the sample 
size n is small and the universe correlation r is large, formula 
(76) gives a two-place accuracy. For greater precision the 
reader must refer to the tables. 

0.' 

0.6 

z 
!! 0.3 .. 
c 
:I 
ii 
o 
II 
Go 

~ 0.2 

O. I 

o 

. V 
Vi 

1/ II 
l/; I/J 

I~ V II 
1/ VI I 

I~ VI V J 
I~ '/ Vol V 

~ rL V..; V 

~ ~ ~ ~ 
t-n ~ 100 
t-n = 2!1 
t-n = 10 

~ ~ E/ ~ t::::: 
n=. 

f-'.n=~ 
t-n =. 

IA ~ ~ 
o 0.1 0.2 0.3 0.. 0.6 OAi 

TRUE STANDARO DEVIATION OF CORRELATION COEFFICIENT tlr 

Fla. ".-STANDARD DEVIATION or CORRELATION COEFFICIENT IN RELATION TO THE 

SIMPLE ApPROXIMATION (76). 

+ Modal and Expected J'alues of Correlation Coefficient 

Except for the case of samples from a normal universe 
with correlation coefficient r = 0, the modal value 'f and the 
expected or mean value r of correlation coefficient do not 
coincide with the universe value r. Fig. 78 shows the rela.,. 
tionship between these three values for several sample sizes. 
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We see that for samples ofless than twenty-five the absolute 
differences'l r - r I and I r - r I are quite large. Even for 
n ;;:: 25, we often have occasion to make corrections for the 
fact that these two differences are riot zero. 

1.0r---"'T""--,.--.---...... ---.---.---r---.---.--=_ 

0.9 r----t---~-=-_=_t---__1_--_1----+O;~~7""7"'I:........,._L.,If#:..-~ 

0.8 

0.71---~---T----~--~~:::."j~_-F-__,..q-.~~----+---~ 

IL. 

Z 
~0.6r---~---+~--~~~--~--~~~-r--_1----+---~ 
;:; 

D 
Z~5r---~-++--~~--~~~~~+---~--~----+---~ 
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~O~I---~~~~:..-~~~~~----+----r--_1----+---~ 
D 
o 
;:; 

O.Ir7~~~-+----t---~----.----+----+--~r---+---~ 

OE-__ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ __ ~~~~--~-~ 
o ~ ~ ~ ~ u ~ M ~ ~ 

TRUE CORRELATION 'COEFFICIENT r 
FlO. 78.-RELATIONSHIP OF MODAL VALUE r AND EXPECTED VALUE r IN SAMPLES OF 

SIZE n FROM A NORMAL UNIVERSE WITH CORRELATION COEFFICIENT f. 

s. Transformed Distribution oj Correlation Coefficient 

Let us consider the problem of establishing sampling 
limits on the observed value of correlation coefficient in samples 
of n drawn from a normally correlated universe for which the 
correlation coefficient is r. The tables of rand fTr previously 
referred to, make it possible to write down limits 

r ± tar, 
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and applying Tchebycheff's inequality, we can say that the 
probability of observing a value of r within these limits is 

greater than I _!. Since, as is illustrated in Fig. 76, the 
I'~ 

shape of the distribution function changes so much with size 
of sample and the correlation of the universe, the actual 
probability associated with such a pair of limits will vary 
materially for different sample sizes and different values of r. 

Under these conditions, some of the recent work of Fisher1 

can be used to good advantage. He has shown that the dis
tribution of z where 

z == i[loge (I + r) - loge (I - r)] (77) 

is approximately normal independent of the sample size and the 
correlation coefficient r in the normally correlated universe. 
Furthermore, he has shown that 

1 
fT. = _~' 

vn-J 

where fT. is the standard deviation of the distribution of the 
transformed variable z. 

Fisher has also shown that the expected value z is greater 

numerically than z by an amount (r ) where z is the value 
2 n - I 

of z given by (77) for r = r. 
Making use of these results we can establish sampling 

limits i ± 1fT. such that to a high degree of approximation the 
probability that an observed value of z in samples of size n 
drawn from a normally correlated universe with correlation 
coefficient r will fall within the range fixed by these limits is 
given by the normal law integral. 

6. Conditions under which Distrihulion of r has Significance 

What has been- said about the sampling fluctuations of r 
has significance only when all samples are drawn from the 

I SIIII;sl;,III M"WsJor RIm".," Worms, Second Edition, 19z8. 



222 ECONOMIC CONTROL OF QUALITY 

same constant system of chance causes, so that the probability 
p that the point (X, y), corresponding to an observed pair of 
values of X and Y, will fall within a given area X to X + dX 
and Y to Y + dYis constant for each observed pair of values. 

Correlation between variables coming from non-constant 
cause systems is termed spurious correlation. A correlation 
coefficient calculated from n observed pairs of values arising 
from a non-constant system of chance causes is a spurious cor
relation coefficient for which the sampling distribution function 
(75) does not apply. Such a coefficient is not subject to the 
usual interpretation as a measure of relationship discussed more 
in detail in the following section. If then we do not take great 
care to eliminate lack of constancy in the cause system giving 
rise to a set of n pairs of values of two variables, we may obtain 
a false conception of the relationship between these variables. 
This is very important as we shall now show by a simple 
illustration. 

Let us assume that we are using Rockwell hardness Y as a 
measure of tensile strength X for nickel silver sheet and that 
for this kind of material of given thickness the relationship is 
statistical in that the probability of an observed pair of values 
(X, Y) falling within the rectangle X to X + dX and Y to 
Y + dY is constant. It can easily be shown under these 
conditions that the correlati()n coefficient R between X and Y 
for two universes considered as one, or for the total number 
of observations is 

where the difference between expected values of tensile strength 
and that between expected values of Rockwell hardness are 
a and b respectively. 

This equation shows that, under these assumptions, the 
spurious correlation R may be either greater or less than r. 
Fig. 79 gives a simple illustration. The two sets of dots rep-
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resen t two sets o( 12 observed pairs o( values o( tensile strength 
and hardness (or nickel silver sheets o( two thicknesses. The 
observed correlations o( the two groups taken separately are 
r. = 0.59 and r2 = 0.54; considered together the correlation R 
is 0.90. Lines o( regression (1,2, and 3) o( hardness on tensile 
strength are shown (or correlations r., r2, and R respectively. 
Obviously R is a spurious coefficient. To use it as an indication 
of the statistical relationship between hardness and tensile 

I 
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ROCKWELL HARDNESS • 

FlO. 79.-EFUCT or SPUIUOUS CoRRELATION. 

strength would obviously be misleading. Furthermore, as 
already stated, the distribution function (75) does not apply 
to this case. 

7. CommonntSs of Causa/ion Measured /ly r 

Let us assume that we have any two physical quantities Xl 
and X2, and that variations in the first are produced by (/ + s) 
independent causes, which we shan designate by 
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whereas variations in the second are produced by (l + m) inde
pendent causes 

so that 1 of the causes are common to the two variables. 
Let us consider first the following simple hypotheses con

cerning the causes: 

(I) Each cause produces a single effect, and this effect is 
unity for all of the causes. 

(2) The probability that anyone of the causes produces its 
effect is constant and equal to p. 

(J) The resultant effect Xl or X 2 is made up of the sum of 
the effects of the individual causes. 

These conditions, of course, lead to a binomial distribution 
of effects for each of the variables Xl and X 2• 

Denote by z the contribution to Xl and X 2 of the 1 common 
causes, by x the contribution of the V's, and by y that of the 
'W's. Then, for any particular operation of the cause systems, 

Xl = x+Z, 
and 

It may easily be shown that under these conditions 

1 
rX,Xa = V(/+ s)(/+ m)· 

(So) 

If s = m so that there are the same number (I + m) of 
causes for each of the variables Xl and X 2, then 

1 
r=-

l+m' 
(SI) 

or the ratio of the number of common causes to the total number 
of causes in either variable. 

Let us consider now the more general case in which Xl and 
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X, are related to their respective causes by some unknown 
functional relationship. Thus 

and 
x, = F2(UI, U2, ••• , Ul, WI, 11'2, •• • ,Wm). 

Now we shall think of the U's, rs, and IP's as symbols for 
groups of causes, each group producing a discontinuous dis
tribution of effects. 

Assuming that Xl andX2 can each be expanded in a Taylor's 
series, that terms beyond the first powers in the expansions 
can be neglected, that equal deviations in the U's, rs, and 
IP's produce deviations in Xl and XI proportional to the cor
responding number of causes, and that the standard deviation 
of effects of one of the I + s + m causes is the same as that of 
any other, it may be shown that r.l',.I'l is again given by (80). 

8. Simple Example Showing How Correlation Coefficient Meas-
ures Common nell, oj Causation 

Let us take eight chips experimentally identical-three 
red, three green, and two white. On each chip let us mark 
one side with zero and the other with unity. Now let these 
chips be tossed; let z be the sum of the numbers turned up 
on the two white ones, and x and y be the corresponding sums 
on the green and red ones, see Fig. 80. 

We may think of the turning up of a chip as a cause and the 
number on a chip as the effect of the cause. If we let Xl be 
the sum of the numbers on the three green and two white ones, 
and similarly let X:a be the corresponding sum on the three 
red and the same two white ones, then Xl and XI may be 
thought of as two variables having two out of a total of five 
causes of variation common to both. 

In general, the resultant effect of the first system is 

Xl = x+Z, 
and that of the second system is 

X2=J+Z, 

Inasmuch as each observed value of Xl and X:a has a common 
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component, i.e., the effect of the two common causes, we would 
naturally e:)Cpect a certain relationship between the values of 
Xl and X 2 in successive operations of the two systems. 

Now the correlation coefficient rX1Xa between Xl and X 2 is 
a measure of this relationship; and since these two systems 
of causes obey all the laws laid down for the general case in 
Paragraph 7, we have merely to set I = 2, m = 3, and we have 

2 
rX1Xa = -- = 0.400• 

2+3 

The observed correlation coefficient between Xl and X 2 

in one observed set of 500 pairs of values was 0'422, giving a 
rather close check on the expected value 0.400. 

¥ 

CD CD CD 

'QCD CD. 

CD 
CD 

z 

FIG. So.-Two SYSTEMS BAVING Two CAUSES IN COMMON. 

Fig. 8 I gives the scatter diagram and lines of regression 
for these 500 observed values of Xl and X 2• 

Practical Significance.-In Chapter IV attention was 
directed to the fact that the quality of material must be 
expressed in terms of physical characteristics which are, in 
general, not independent one of another because we do not 
know the independent ultimate quality characteristics or 
properties of a thing which make it what it is. In this con
nection the importance of considering not only the quality 
characteristics that are used in expressing quality but also 
the relationships between these was emphasized. We are 
now in a position to see more clearly the reason for so doing. 
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. Let us consider first the simplest kind of a case in which 
we have a product with two quality characteristics, Xl and 
X2• It is apparent that simply to specify that the two quality 
char~teristics should be controlled about the averages Xl 
and X2 with standard deviations crl and cr2 does not place the 

• r-------r-------O--------~3--~r_~S~-----3 

• I----;~----,~--- t!----'II--_-ell 

2 

o 2 ;) • 
XI 

Flo. 81.-ScATraa DIAGRAM AND UNItS or RaGRESSIO" rOR 500 OasERvED VALUES. 

same requirement on the constancy of the inherent quality 
of the material as to state that these two properties shall be 
controlled in the way just indicated and in addition that the 
correlation between them shall be, let us say, homoscedastic 
and linear with a coefficient of correlation r. In the second 
form of specification in which the nature of the correlation 
between the two characteristics is specified, we have intra-
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duced certain restrictions on the quality of the material in 
that the two characteristics must have a common causal 
source of an amount consistent with the causal interpretation 
of r outlined above. 

Passing to the more complicated case where the quality 
of the material is specified in terms of m quality characteristics 
Xl, X 2, ••• , Xi, ... , X m, there is a corresponding interpre
tation of the ~orrelations which becomes of importance in the 
consideration of ways and means of specifying the quality of 
materials. It is beyond the scope of our present discussion 
to do more than call attention to some of the recent develop
ments in statistical theory indicating possible causal inter
pretations of certain inter-relations between all the pairs of 
the m variables measured in terms of the correlation coeffi
cients. For example, it has been known for several years that 
foUl; variables may- be thought of as due to one general causal 
factor plus four specific non-correlated factors when 

T. L. Kelley 1 has recently given an interesting discussion of 
the causal significance of inter-relationships of this character. 
Such work suggests an. avenue of approach to the difficult 
problem of specifying quality in terms of those attributes 
which make it what it is. 

9. I nlerprelalion oj r in General 

The correlation coefficient is often used as a measure of 
relationship when the condition of constancy of cause system is 
not satisfied. This is particularly true of time series. We shall 
consider one simple example in sufficient detail to show that 
the sampling distribution for such a coefficient of correlation is 
not necessarily the same as that discussed above, and that the 
above interpretation of r as a measure of commonness of caus
ation does not apply. 

I Crossrotuls in lhe Mind 0/ Man, Chapter III, Stanford University Press, 1928. 
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For this purpose we shall use an example given by Yule 1 in 
his presidential address before the Royal Statistical Society in 
November, J925. The data are given in Fig. 82 and show the 
apparent relationship between the number of marriages in the 
Church of England and the decrease in the standard mortality 
rate over the same period. In this case the observed value of 
r is 0.95. 

Needless to say this value of r may be thought of, as in 
Part II, as a summary presentation of the observed oairs of 
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values. For example, an assumed line of regression would 
involve the statistic r. However, one is led to agree with Yule 
that there is no causal relationship between the two quantities 
shown in Fig. 82. Even if there were, the interpretation of r 
as a measure of commonness of causation in the sense of the 
previous two paragraphs would not hold. 

I" Nonsense Correlationl between TIme Series," 10"",,,1 0/ Roy./ SIIII;SI;,'/ 
Soc;,ly, Vol. LXXXIX, pp. 14 



CHAPTER XVI 

SAMPLING FLUCTUATIONS IN SIMPLE STATISTICS

GENERAL REMARKS 

1. Two Phases of Distribution Theory 

Starting with the simple problem discussed in detail in 
Chapter XIII of Part IV, we have noted that there are two 
phases to the theory of distribution. 

A. Mathematical Distribution.-Given a discrete universe, 
it is theoretically possible to set down all of the ways in which 
one may draw therefrom a sample of size n just as we did in the 
case of the simple example discussed in Paragraph 5 of Chap-

. ter XIII. It is then possible to calculate any given statistic for 
anyone of the N possible samples. The fundamental nature 
of the problem of determining the mathematical distribution 
of a given statistic may then be represented schematically as 
in Table 39. The first column of this table is supposed to stand 
for the N possible different-samples. Obviously, 9ij stands for 
the value of the ith statistic for the jth sample, the permuted 
column of values corresponding to any statistic 9i representing 
the distribution of possible values of that statistic. 

The problem of determining the mathematical distributjon 
of a given statistic 8i is that of finding the distribution cor
responding to the N possible different samples. This part of 
the work, it should be noted, is purely formal or mathematical. 
From a logical viewpoint, this table has nothing to do with 
the universe in which we live until we have connected it up 
in some way or other with reality. This we shall now do. 

B. Objective Distribution.-We may think of the equation of 
control (58) as defining the universe of possible values of X from 
which we may select all possible different sets of samples of 

230 
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size n just as we have done above. Strictly speaking this is 
true only when (58) is di~crete. If h is continuous we can, of 
course, calculate the relative frequency of occurrence of a sta
tistic within a given interval. 

TABLII 39.-ScHEIfATIC or DtSTUBUTION or STATISTICS 

Sample Statiltic Statistic Statistic Statistic 
e, e. e. e. 

J e .. et , eil ed 

2 e,. 9 t • e .. e •• 

e.; 

N e,.11 

In a similar way, it should be possible to calculate mathe
matically the distribution of any statistic for a sample of 
given size drawn from such a universe of possible effects. Up 
to this stage, the procedure is, as before, purely mathematical. 
At this point we make use of the postulate of control previously 
discussed in which we assume that there exist constant systems 
of chance causes such that the observed distribution of effects 
approaches in the statistical sense the mathematical distribution 
function. It does not appear feasible to justify this assumption 
other than in an empirical way as we have tried to do in Parts I 
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and III. The comments of Dodd 1 again become relevant. 
Whether one chooses to call a mathematical distribution a prob
ability distribution or not would seem to be a matter of choice. 
The mathematical distribution itself, as any mathematical 
formula, merely becomes a tool in the hands of an experi-
mentalist. . 

It is essential therefore that in all that follows we carefully 
keep in mind the difference between the mathematical theory of 
distribution and the physical theory of distribution which it 
would appear must rest upon the assumption that the law of 
large numbers is a law of nature. 

2. Importance of Distribution Theory 

Again let us return to the simple problem discussed in 
Chapter XIII of Part IV. I think that most people would agree 
that if they were to draw samples of four from an experimental 
universe such as described in that chapter, they would get as 
statistical limits the distributions shown in Fig. 57. I doubt, 

. however, that many of us would have much of an idea how the 
distributions of standard deviation, mean deviation, skewness, 
and flatness, would look in such a case until we had gone 
through the mathematics of distribution as was done there. 
This is just the kind of situation that the engineer of control 
faces when he considers the problem of predicting what he 
may expect to get in the future based upon an assumc;d equation 
of control of the type (58). 

It is obvious that the reasonab.1e way of predicting under 
such conditions, assuming the existence of the law of large 
numbers, is to make use of mathematical distribution theory 
such as that briefly discussed in the previous chapters. Our 
excursion into the field of mathematical distribution theory, 
however, has been a sort of pleasure trip in which we stopped 
to look at a few things which in the present state of our knowl
edge appear to be of immediate practical interest. It is well, 
therefore, that we take another look at this field for the purpose 

1 Loc. cit. 
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of getting a little better picture of the theory of mathematical 
distribution as a useful tool. 

3· Mai/umali'll/ Distribution Theory-Method of AI/II,k 

Given the problem of determining the distribution function 
of a given statistic 9 for samples of size n drawn from a given 
universe, there are, in general, two methods of attack depending 
to a certain extent upon whether the universe is discrete or 
continuous. One of these methods consists in finding the exact 
mathematical distribution function through the use of integral 
calculus. The other, already illustrated in the previous chap
ters, consists in finding merely certain moments of the dis
tribution function. 

As a simple example of the exact method, let us consider 
the problem of determining the distribution function of x where 
x = Xl + X2. Furthermore, let us assume that values of Xl and 
XI are normally distributed about zero. 

One method of finding the distribution of X is to fix on a 
definite range, say X to X + dx, and then to find the total 
probability of the occurrence of all possible combinations of 
Xl and XI which will yield a value of X within the prescribed 
interval. The distribution function of X thus obtained will be 
the one desired. 

The probability that Xl lies within the interval Xl to Xl + dXI 

at the same time that X2 lies within the interval X2 to X2 + dX2 

is given by the expression 
I _..!t. I-.!t. 

P = --=, 2er," dXI ---, 2cr1" dX2. 

111 v' 211' 112 VZ; 
Having fixed on a value of XI, and X being initially fixed, 

the value of X2 is of necessity X - XI. Hence we may write 
I _...!!!.. I _ (z-z,)" 

P = _ /-, 2er," iJXI ---, 2cr" dX2, 
111 V 211' 112";;; 

which for a proper choice of dXI and dX2 is the probability, to 
within infinitesimals of higher order, of pairs Xl. and X2 which 
yield a value of x within the interval X to X + dx. When Xl 
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is allowed to take all values between - ao and + ao and dXI 
is made to,approach zero, we see that the sum of terms like p 
approaches the total probability that Xl + X2 lies within the 
prescri bed in terval. 

Hence the total probability P(x)dx that the sum Xl + X2 
lies within the interval X to X + dx is by definition 

since dX2 --+ dx as dXI --+ o. 
Thus we are led to the well-known result that the dis

tribution of a sum of two variables, each of which is normally 
distributed, is normal with a variance equal to the sum of the 
variances of the given normal distributions. This method may 
be extended to a linear sum of any number of variables. Whit
taker and Robinson 1 show how through the use of Fourier's 
Integral Theorem it is possible, to obtain the distribution 
function of a linear function of deviations in a more elegant 
manner. 

If one can obtain in some such wayan exact distribution 
function, it is theoretically possible to obtain the integral of this 
function over any given range, either exactly or by quadrature 
methods. 

As an illustration of the-modern mathematical tools avail
able for finding the moments of the distribution of a statistic, 
let us consider one 2 method of finding the moments of the 
mean of a sample of n drawn from any discrete universe. 

Assume that the universe is defined by'S different values 

the relative frequencies of which are 

PI, P2, ••. , Pi, ... , ps 
respectively. 

1 Loc. cit., p. 168. ,See also the very interesting papers, .. Application of Thiele's 
Semi-Invariants to the Sampling Problem," C. C. Craig, Metron,' Vol. 7,' NO.4, 
Dec. 31, 1928, pp. 51-107, and" Sampling When the Parent Population is of Pearson's 
Type III," C. C. Craig, Biometrika, Vol. XXI, Parts J to 4, Dec. 1929, pp. ~87;293' 

'V. Romanovsky, loco cit. • 
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Let the frequency of 
Xl, X2, ... , X. 

in a sample of n independent trials be 

f1,f2, ... ,f., 
where, of course, some of thej's may be zero. 

Then our problem is to investigate the distribution of 
, 

T.fiXi 
X=~ 

n 
in possible sets of n trials. 

Denote the average and higher moments of the distribution 
of the universe by 

X, fL2, JLa, ••• , 11i, ••• , 

and of the distribution of the mean by 

Xl" fL2x' JLax' ... , I1ix' ... , 
where, in each case, the moments are measured about the mean. 

What we shall do is to express the POx's in terms of the Po's, 
which for a given universe are known constants. Since the 
mean value of X in an indefinitely large number of samples is 
X, we may replace Xl' by X in finding expressions for the 
higher moments of X. 

Romanovsky has developed an elegant and simple way of 
obtaining these moments as follows: Consider the function of I 
defined by 

_ r j(XI-X) + j(XI-X) + + J(X,-X)]" 
- LP11<- P21< - • •• P8C • 

By the multinomial theorem we have 

U = ~ n! [!(XI-X)]'l[ !(XI-XJ]'" [j(X,-X>]', "'/1l: I I I P1e" P2e" ••• PS'-
1 2 ... 'J.' 

(a) 
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the summation being extended to aUf's whose sum is n. 

Now the factor 

n! h h h 
jI! b.! ... js!Pl P2 ... PI 

is the probability of getting in n trials!lXl's,!2X2's, ••• , 
!,X,'s. Or, in other words, this factor is the probability of 
getting an X constructed in a particular way. Also for a par
ticular construction of X, the exponent of e is 

Making use of this fact, we have, on differentiating U 
r times with respect to I and then setting I = 0, 

(d'U) ~ n! Ii I: /, - - r 

d'! = """J If: I IIPllp2' ..• ps'(X - X). 
'-0 1. 2 .•• OJ8· 

(0) 

This is true since each differentiation of a particular term in 
the sum (a) merely multiplies this term by (X - X). 

By virtue of the way in which the right-hand side of (0) has 
been built up, it is clear that this sum. is precisely the rth 
moment IJorx of the mean abo~t its mean value. The method 
of obtaining any moment of X is then a very simple one. To 
facilitate the work, set 

• 1 
~ -(x,-I) 

ro = "",,wn 
0 

'-1 
Then 

U = ron. 

Then the zeroth moment of X is 
(U)'=O = (PI + P2 +.0. + ps)n = I. 

(d~ [ 1 I ~ !.(X,-X) - ] 
ILlX = - = nwn

- - """ Pie" (Xi - X) 
dl 1=0 n '-1 '=0 

• 
= l:: Pi(X; - X) = o. 

'-1 
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In an exactly similar way, it can be shown that 

ILa 3(n - I) 14 
1La. = - and 14 ... = II-J2 + -. 

A n2 A n3 n3 

Denoting by PIX and P2x the skewness and flatness re
spectively of the distribution of the averages, we have by 
definition 

PI == ~ = 1La
2 

n3 = ~ 
% I'-z%,3 n4 II-J3 n 

a ~ (3(n-l) 2 l4)n2 P2-3 . 
,.2- = = II-J + - - = -- + 3, 

A II-J1'2 n3 n3 II-J2 n 

where PI and ~ are the skewness and flatness respectively of 
the universe. Of course it is possible, by the above method, 
to go much further than this and to find expressions for iiiI' 
of any desired order i. However, our present purpose is merely 
to illustrate one of the modern methods of finding the moments 
of the distribution of a statistic. 

A. Some Numerical Rtsulls.-To fix in our minds. the sig
nificance of the above results, let us use them to calculate the 
statistics of the universe of averages, column 3, Table 25. 
We get 

Xl' = X = 2.5°0000000 

(1 l.n80339887 
(11' = _ r = = 0.559°1699435 

vn 2 

PI 0 PiX = - = - = 0 
n 4 

~- J 1.64- 3 
~x = -- + J = + 3 = 2.660000000. 

n 4 
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These results obtainable through the use of the first four 
moments ,of the universe without going through the details of 
getting the distribution in column 3, Table 25, are the same 
to the number of places shown as the results obtained directly 
from the distribution in column 3. 

In this same connection, it w.ill be interesting to compare 
the values of mean variance er2 and erg 2 obtained from (68) for 
the distribution of variance in samples of four drawn from the 
experimental universe of Chapter XIII with that calculated 
directly from column 4 of Table 25. 

From (68) we get 

_ n- 1 
er2 = -cr2 = !(I.1 5) = 0.9375 

n 

= 1.25V i[3(1.64) - 4 + 3] = 0.3125 VO.75(3.92) 
4 

= (0·3125)(I.714-642820) = 0.5358258812. 

These results check to .the number of places shown those 
obtained directly. • 

B. Comparison of the Two Methods.-Whenever the exact 
distribution of a statistic can be found by integration, we have 
more information than can be provided by the knowledge of 
any number of moments of the distribution of the same statistic. 
In other words, when the distribution of a statistic 9i is 
known as a function of 9i, the probability that the statistic 
will take on values lying between any given limits can 
be found either by direct integration or by quadrature 
methods. 

On the other hand, if only the moments of the distribution 
of 9i are known, we can never be quite sure what the form of 
the distribution is. For example, ~lX - 0 and ~2X - 3 as n 
becomes large but even if we actually had ~lX = 0 and 
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'2r ... J. we could not infer that the distribution of X was 
normal; for obviously the distribution defined by 

X: 

f: 

-I o 

has I " -= 0. '2 = J. '3 = 0, which are identical with the first 
three betas for a normal universe, although this distribution 
is far from normal. As a matter of fact. it would be necessary 
in this instance to go as far as the sixth moment before we would 
discover any difference between it and the normal law function, 
so far as moments are concerned. 

Suppose then. that the universe we started with had a form 
such that the distribution of means actually was identical with 
the simple one given above. but we had calculated merely the 
moments of this distribution by the above method. We would 
find that the first five moments were identical with those of the 
normal law, and we might perhaps be tempted to infer that the 
distribution of means was normal. although, as we have seen, 
such an inference would in fact be far from the truth. 

4. Mathematical DislrilJution Theory-Important Results 

Looking back over the work in the previous chapters, we 
see that distribution theory provides us. in certain instances, 
with distribution functions of a given statistic a of the form 
fa (a.n) such that the integral of this function for a given range 
gives us the probability of occurrence of a value of a within 
that range. IIlustrations of this type are the distribution func
tions of average, standard deviation, and correlation coefficient. 

Similarly, we may have distribution functions of a ratio z 
between two statistics e; and aj such that t (z, n)dz represents 
the probability of occurrence of a value of z within the interval 
% to z + dz. This kind of function has been illustrated by the 
distribution of the ratio of the error of the average to the 
observed standard deviation. 

I Of counc, uncorrected momenta are used here. 
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The other important form of distribution to be noted is 
that of the distribution of two statistics 9i and 9j, such that 
£91,9J (9i, 9j, n)d9id9j represents the probability of the occur
rence of values of 9i and 9j within the rectangle 9i to 9i + d9i 
and 9j to 9j + d9j. 

It is important to note also that the distribution function 
of a given statistic depends upon the functional form of the 
universe from which the sample is drawn, and that, in general, 
the average or expected value e in samples of size n is not the 
same as the value of this same statistic for the universe. 

5. Mathematical Distribution Theory-Present Status 

- Any summary of the status of distribution theory today 
will likely be out of date before the ink is dry. Here, as in the 
field of modern physics, progress is so rapid and along so many 
different lines that even those actively engaged in extending the 
theory find it difficult to keep abreast of all that is being done. 
A few brief remarks, however, may be of service to the engineer 
who cares to become acquainted with some of the important 
recent contributions. 

The exact distribution of means of samples from normal 
populations dates back at least to the time of Gauss, whereas 
the exact distribution of variance and standard deviation were 
found in 1915 by R; A. Fisher.l In the same article, Fisher 
gives the exact distribution of the correlation coefficient in 
samples from an indefinitely large normal population. The 
same author has since given the exact distributions of the 
regression coefficient,2 partial- correlation coefficient,3 and 
multiple correlation coefficient,4 assuming a normal universe. 

1 Loc. cit. 
I "The Goodness of Fit of Regression Formulae and the Distribution of Regres

sion Coefficients," Journal oj the Royal Statistical Society, Vol. LXXXV, Part IV, 
1922, pp. 597-612• 

I "The Distribution of the Partial Correlation Coefficient," Melron, Vol. III, 
No. 3-4, 1924, pp. 32~332. 

4 "The General Sampling Distribution of the Multiple Correlation Coefficient," 
Proceedings oj the Royal Society, A, Vol. 121, 1928, pp. 654-673. 
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Pearson,· Romanovsky,2 and Wishart 3 have also studied these 
lame distributions. 

In 1925, Hotelling 4 gave the distribution of the square 
of the correlation ratio subject to the conditions that the 
variates are not correlated, that the population is indefinitely 
large, and that the variates are normally distributed. 

Exact distributions of means for certain of the Pearson 
type curves other than the normal have been given by Church,'; 
Irwin,s and Craig.7 

Important contributions to the theory of distribution 
through the use of moments have been made by Pearson,s 
Tchouproff,9 Church,!O Fisher,!! and Wishart.!2 

The list of references given in the last few paragraphs is 
by no means complete. Instead, it is selective and is intended 
to indicate the rapid development!3 that is going on in this field. 

a" Reoearches on the Mode of Distribution of the Constants of Samples Taken at 
Random from a Bivariate Normal Population," Proem/ings of 1/11 ROYIlI Soci~/Y, A, 
Vol WI, 1916, pp. 1-14' 

I "On the Distribution of the Regre .. ion Coefficient in Samples from a Normal 
Population," Bulk';" ti~ r Aeatkmi, ti,s Sciences ti, ru. S. S. R., 1916, pp. 645~48. 

'''The Generalized Product Moment Distribution in Samples from a Normal 
Multivariate Population," Biom,triltll, Vol. XXA, 1918, pp. 31-51. 

• "The Distribution of Correlation Ratios Calculated from Random Data," 
Procutii"gs of 1111 Nlllionlll.Aeati~my of Science, Vol. II, No. la, 1915, pp. 657~62. 
Table. of the integral of the function given by Hotelling have recently been gi~en 'by 
T. L Woo, Biom,triltll, Vol. XXI, 1929, pp. I~. 

• Loc. cit. 
I Loc. cit. 
r Loc. cit. 
I "On the Probable Errort of Frequency Constantt," Biomdriltll, VoL II, 1903, 

pp. 27J-281 and Vol. IX, 191J, pp. 1-10. "Further Contributions to the Theory of 
Small Samples," Bi.m,triltll, Vol. XVII, 191 5, pp. 176-179. 

• "On the Mathematical Expectation of the Momentt of Frequency Distributions," 
Biom~triltll, VoL XII, pp. 185-210. 

ao Lac. cit. 
II .. Momentt and Product Momentt of Sampling Distributions," Proeutiings oj 

Lontio" MIllIo_lIIiea! Soei~/y, Vol. 30, 1919, pp. 199-2J8. 
al" A Problem in Combinatorial Analysis Giving the Distribution of Certain-. 

Moment Statistics," Procutiings oj Lontion MIllMmlllie1l1 Soci~/y, Vol. 28, 1919, pp •. 
J09'"J11; ProCt~tiings oj ROYIlI Soci~/y oj Etiin6urt", Vol. XLIX, 191 9, pp. 78-9<> • 

.. Rider, P. R., .. A Survey of the Theory of Small Samples," Annilis of MIII"~mlllies,. 
Vol JI, No. 4, pp. ~28, October, 1930. An excellent bibliography is appended to. 
thi. article. . 
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6. Imporlance of Distribution Theory-Further Commenls 

We are now in a position to consider a little more critically 
than has been done the significance of some of the recent 
work on the mathematical theory of distribution as it bears 
upon the theory of control. 

Assuming that an engineer is going to make use of statistical 
theory in helping him to do what he wants to do, it is but 
natural that he must sooner or later express what he wants to 
do in terms of some distribution function of a given quality X 
which he is to take as standard; that is to say, he must specify 
as a standard of what he wants to do some distribution function 
typified by the equation (58) of control 

dy = f(X, ~1, ~2, ••• , ~, ••• , 'A.m')dX. (58) 

Assuming the existence of a constant system of causes 
having as its objective statistical limit this equation of control, 
it is necessary to set up limits on one or more different statistics 
of samples of size n. In many cases the control engineer may 
also desire to set up limits upon the allowable variation in X 
itself and in the fraction of the observed values of X which lie 
beyond some particular pre-assigned value. 

Let us consider first the problem so often met in practice 
of setting a limit X + fa on the variable X such that the 
objective probability that an observed value of X will fall 
between this limit 1 and + 00 is p, where X and a are the 
average and standard deviation of the universe (58) of control. 
To do this it is necessary to find the value of I from the equation 

p = ~- f(X, ~1, ~2, ••• , ~, ••• , 'A.m')dX. 
JX+tfT 

Expressed in this general way, the formal problem of 
establishing the value of I for a given value p appears to be 
quite simple. When, however, we consider the theory of 
frequency distributions, we find that this problem is not so 
simple as it appears when the value! corresponding to the 

1 The same discussion obviously applies to the negative tail. 
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chosen value of p is greater than three, at least for most of the 
standard functions involving not more than four parameters. 
In fact, certain of these frequency functions may be found to 
have negative frequencies for values of X outside of a sym
metrical range something 1 like X ± 3er. This is true of the 
second approximation (23) for certain values ofk. 

This fact is significant because it shows that when an en
gineer attempts to set some particular limit X + ler such that 
the objective probability of an observed value falling beyond 
this limit shall be p (where p is perhaps of the order of 0.001 

or less), even the solution of the formal problem may be dif
ficult. Of course, he might appeal to experience, observe the 
value of X a large number of times under what he assumes to 
be a controlled condition, and in this way try to approach as a 
statistical limit the exact objective frequency distribution to 
which any of the customary theoretical distributions would 
simply be an approximation. One does not need to go far to 
see, however, that such a procedure is not, in general, feasible 
if for no other reason than because it would require a large 
number of trials in order to justify the establishment of such 
a limit in anything like a satisfactory manner-it being true, 
of course, that one could never be sure of results obtained in 
this way. 

Passing to the more general problem of establishing sampling 
limits on any statistic e in samples of n drawn from the universe 
(58), it is of practical importance to note that with but few 
exceptions the exact frequency distribution function of such a 
statistic is unknown even when the universe (58) is continuous. 
When the universe is not continuous-it never is in practice
we must be satisfied with a knowledge of the moments of the 
distribution function of the statistic expressed in terms of the 
moments of the universe (58). For example, in the previous 
paragraph we have spoken briefly of a method of expressing 
any moment of the average of a sample of n in terms of the 

I Thil point is emphasized in the writings of Edgeworth and i. touched upon in 
varioul places in Bowley'. IUmmary of" Edgeworth's Contributions to Mathematical 
Staristics," published by the Royal Statistical Society, 192.8. 
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moments of the universe. We have seen that to be able to 
specify the moments of the distribution of averages in samples 
of size .n beyond the fourth moment requires a knowledge of 
moments of the universe higher than the fourth. 

This is significant from an engineering viewpoint because 
it shows that if we are going to try to establish sampling limits 
even on such a simple statistic as the arithmetic mean with a 
comparatively high degree of precision in respect to the objec
tive probability associated with the tail of this distribution, 
we must certainly be in a position to specify the moments of 
the accepted standard (58) of control beyond the fourth
something that it is obviously very difficult to do. 

What we have said in respect to the establishment of 
sampling limits on the average is all the more true when we 
attempt to establish limits on other statistics such, for example, 
as the variance. This follows from the work of Tchouproff and 
Church 1 showing that the equation relating the fourth moment 
of the distribution of variance in samples of n to the moments 
of the universe involves the eighth moment of the universe
to obtain which is certainly not feasible. 

There is another reason why it is difficult to attain great 
precision in the estimate of the probability associated with an 
asymmetrical range as we shall now see. Several times in the 
previous section we pointed out the significance of the fact that 
sampling from a discrete universe may give results radically 
different from those obtained when sampling in a similar way 
from a continuous universe. This is particularly important 
because we seldom see fit to classify measurements into more 
than ten to twenty cells, and it does not appear feasible to 
introduce moment corrections which allow us to go from the 
discrete to the continuous case with a known degree of 
precisioh. 

We have considered at some length the approach of the 
distribution of the average to normality with increase in sample 
size irrespective of the parent population (58) as chara~terized 
by the first two {J's of this distribution. The comparatively 

1 Loc. cit. 
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recent work o( Holzinger and Church 1 shows that the dis
tribution (unction o( averages (rom a U-shaped universe is not 
even unimodal (or small samples and appears to approach uni
modality and symmetry only (or samples o( the order o( fifty 
or more. In (act, they conclude that the distribution function 
of averages of less than fifty cannot be satisfactorily repre
sented by a continuous curve. In such a case we must rely 
upon the application of the Tchebycheff inequality as we have 
done. 

This kind o( evidence indicates the nature of the difficulites 
involved in trying to establish asymmetrical limits on the 
sampling fluctuations of any statistic and it helps us appreciate 
the significance of the powerful Tchebycheff inequality in the
establishment of symmetrical limits with at least a known upper 
bound to the error that we may make in the estimate of the 
probability associated with these limits provided only that we 
know the two simple statistics X and tT of the universe. 

The fact that we do not, in general, know the exact distri
bution function of measures of correlation other than the 
correlation coefficient in terms of the specified correlation in 
the universe precludes the use of these statistics in that we 
cannot establish their control limits. For this reason, we have 
not discussed the mathematical distribution theory for these 
statistics. 

'''On the Mean. of Sam plea from a U-ahaped Population," Biom~lri"", Vol. XX·A, 
pp. 361-J88. 



PART V 

Statistical Basis for Specification of 
Standard Quality 

The Establishment of Economic Toler
ances and Standards of Quality Involves 
the Use of Three Simple Statistics 



CHAPI'ER XVII 

DESICN LIMITS ON VAllIABILITY 

I. To/tranus 

Since all pieces of a given kind of product cannot be made 
identical, it is customary practice to establish allowable or 
lo/tranu ranges of variability for each of the measured quality: 
characteristics. For example, if a shaft is to work in a bearing, 
we must allow for a certain clearance. In such a case the 
specifications usually require that a shaft have a diameter not 
less than some minimum nor more than some maximum value, 
and that the diameter of the bearing must not be less than some 
minimum nor more than some maximum value. An illustration 
taken from practice is: 

Diameter of Shaft {
Maximum limit 0.7500 inch 

Minimum limit 0.7496 inch 

D· f B • {Maximum limit 0·7507 inch lameter 0 eanng . . .. . 
MlOlmum lImit 0.7502 lOch 

Assuming that the diameters can be measured accurately to 
the fourth decimal place, we see that the minimum and max
imum clearances are 0.0002 inch and 0.001 I inch respectively. 

The tolerance range for a given quality X is defined as the 
range between the maximum and minimum tolerance limits 
specified for this quality, Fig. 83. Sometimes these limits are 
called tolerances. Perhaps more often, however, these limits 
are given in the form Xl = X - U and X 2 = X + U, and 
in this case U is called a tolerance. To avoid any misunder
standing that might arise because of the apparent lack of uni
formity in the definition of tolerance we shall use the terms 

249 



250 ECONOMIC CONTROL OF QUALITY 

tolerance range and tolerance limits wherever necessary to make 
the meaning clear. 

2. Tolerances Where IDD Per Cent Inspection Cannot Be Made 
Where the quality X can be inspected on every piece of 

apparatus by some ga-no-go gauge, it is easy to separate product 
into two classes-that which does and that which does not fall 
within the tolerance range. If, however, we are testing for 

QUALITY X 

/ "'" '---TOLERANC£ R'ANCE __ -.l"/ 

MINIMUM LIMIT 
X, 

MAXIMUM LIMIT 
X2. 

FIG. 83,-RELATIONSHIP BETWEEN TOLERANCE RANGE AND TOLERANCE LIMITS, 

some quality such as tensile strength, it is obviously not possible 
to make 100 pc;:r cent inspection to see that the tolerance is met. 

In this case our information about a lot of N pieces of 
, product must be obtained from tests made on a sample of n 

pieces. The usual practice is to establish tolerance limits 
for the quality X and also tolerance limits for the fraction 
defective in the lot, or, in other words, the fraction of t~e 
total number of pieces of product in the lot having a quality 
X lying outside the tolerabce limits for this quality, Fig. 84. 
V~.:9:'!-l1Y zero is taken as the lower limit for the fraction defec
tive ,in '. die-Jot. Since our information must depend upon a 
sample, it is also necessary to establish tolerance limits on the 
fta~i:t6h, d¢fective found in the sample, the lower limit being 

;' . izera .. T~ese two kinds may be thought of as lot and sample 
~lerlmces, arid they are related one to the other through a 
risk ass9ciated with the given sampling plan as will be indi
cated in Part VII, thus making it necessary for the sample 
tolerance to depend upon the number n in the sample. 

3. Importance of Control in Setting Economic Tolerance 
In general, a tolerance range on a quality X should be as 

small as possible. If it is too small, however, the rejections 
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will be excessive. In other words, the design engineer tries to 
balance the rate of increase in value of reducing a tolerance 
range against the rate of increase of cost of such a procedure 
because of increased rejections. 

.,2UALITY • 

.!,RACTION DEFECTIVE 

t'·, .. _···· .. j 
MINIMUM LIMIT MAXIMUM LIMIT 

X, X2 

TOLERANCE RANGE 

LOWER LIMIT 
P, 

UPPER LIMIT 
Pz 

Fla. 8 •• - Two SlIn or TOLltllANCa LIMITS NECESSARY WHEN 100 PEa CENT INSPEC

nON CANNOT BE MADE. 

From what has previously been said, it is obvious that, if a 
design engineer knows that the quality X of a material or 

MINIMUM LIMIT 
8, 

QUALITY 8 

_ CONTROLLED DISTRIBUTION 
d\l-f' (x, ~I' ~2' .... ~~dlC 

~ PROBABILITY OF REJECTION P 

MAXIMUM LIMIT 
82 

Fla. 8S.-ToLltIlANCE ON FllAcnoN DEFEcnVB roa CoNTROLLED QUALITY. 

piece-part entering into his design is statistically controlled in 
accord with some probability distribution such as illustrated by 
the smooth curve, Fig. 85, then he knows the expected number 
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pN of rejections that will occur in the production of a number 
N of these piece-parts for a given set of limits. Only under 
these conditions of control is it a comparatively simple process 
to find an economic tolerance range. 

Hence, to set an economic tolerance range it is necessary that 
the qualities of materials and piece-parts be controlled. 

4. Tolerances .where Iaa Per Cent Inspection Cannot be Made
Importance of Control 

When 100 per cent inspection cannot be made, we never 
know that the tolerance on a quality X is being met, even 
though it is met in the sample. Later we shall show that any 
inference about what exists in the remainder of the lot from 
what was found in the sample depends entirely upon what we 
assume about the lot before the sample was taken, and that the 
significance of such an assumption depends upon whether or 
not we assume that the product is controlled. If, however, 
instead of trying to use the double tolerance described in Para
graph 2. above, the design engineer makes use of raw materials 
and piece-parts previously shown to be statistically controlled 
with accepted expected values and standard deviations, he 
need only specify that the qualities of all materials and piece
parts going into his design be controlled with accepted average 
values and standard deviations. 

Hence we see that it is very desirable to know that the quality 
of a pro'duct is controlled when it cannot be given Iaa per cent 
inspection. 

s. Tolerances for ffluality of Finished Product in Terms of 
Tolerances of Piece-parts 

Let us consider a very simple problem. Assume that an 
engineer wishes to design a circuit containing m different 
pieces of standard apparatus, such as relays, tr'ansformers, 
and so on. Suppose that he wishes to set a tolerance range on 
the overall resistance in the circuit and that the tolerance 
limits on the resistances of these m different pieces 9fapparatus 
are respectively Ru and R 12; R21 and &2; ... ; Ril and Ri2i 
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••• ; RIIIl and R.u. What shall the engineer use as the tolerance 
range (or the overall resistance? 

The answer to the question is obviously 

RI2+R22+ .. . +Ri2+ .. . +Rm2-Rll-R21- ... -Ril- .. . -Rml, 

L\. 
RII Ria 

1.6-

Rml Rma 

FlO. 86.-ToLEUNCE RANGES ON OBSERVED DJSTlUBIITIONS. 

if we hold to the definition o( a tolerance as the range between 
the maximum and minimum possible values of the quality. 
Before accepting this answer, however, let us consider the 
problem further. 

Oftentimes we find that the previously observed distri
butions in the m different resistances are somewhat as indicated 
by the smooth distribution curves in Fig. 86. We see that in 
some instances the tolerances are such as to cause rejections 
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in both the upper and lower ranges of the resistance as in the 
case of the quality R I • At other times the condition may be 
such as indicated for the resistances Ri and Rm. 

When the number m of different resistances is large, it is 
obvious. that the number of times that we may expect to get a 
combination of m resistances chosen at random (one each 
from the m different kinds of resistances) that will add up to 
either the maximum or minimum limit is very small indeed. 
The question arises, therefore, as to whether or not it is eco
nomical to allow in design for an over-all tolerance range equal 
to the range between the possible maximum and minimum 
resistances that may occur. 

Let us consider this problem upon the basis of the assump
tion that each of the m kinds of apparatus is manufactured 
under conditions such that the resistances are controlled about 
average values 

Rl, ~, ... , Ri, ... , Rm, 

with standard deviations 

For the sake of simplicity, let us assume that the resistances 
are normally controlled, or, in other words, that the distribution 
function for each resistance is normal. From what has previ
ously been said, it would be quite reasonable to adopt the 
tolerance limits 

on the ith resistance. If we adopted such a set of m toler
ance limits, and followed the practice previously described of 
taking the difference between the sums of the maximum and 
minimum possible resistance as the tolerance for the sum of 
the resistances, we would have a tolerance range such as that 
schematically indicated in Fig. 874. Let us now consider why 
such a tolerance range may not be economical. 

As may be shown, the expected distribution of the sum of 
m resistances chosen from the m different kinds of resistances 
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as indicated above would be normal with an expected or mean 
value equal to IR& and a standard deviation 

" .. v' ".2 + "2
2 + ... + "i2 + ... + "m2. 

Suppose that we assume, as a simple case, that each of the m 
standard deviations is equal to, let us say, "1. It is obvious 
that the standard deviation of the sum is 

,,= Ym"'. 
Starting with these simple assumptions, we may easily draw 

the frequency distribution function of the resultant resistance 

1------TOl.ERANCE IRANGE---------I, I 
.,'NIMU.. LIM.T 
Iii - n., 

MIN'MUM LIMIT 
Ii, - 31:., 

QUALITY. 

(a.) 

tiii 
tii, -3. til. .. 3. 

QUALITY • 

(b) 

MAXIMUM LIMIT 
xiii -+ 3X"1 

MAX'MUM LIMIT 
tii, + 31:0'1 

FlO. 87.-ILLusTunHo PaOPEa WAY TO SET Lllars. 

for any special case. Fig. 87-" shows such a distribution cor
responding to nine component resistances in the circuit or to the 
case m = 9. For purposes of comparison, the additive tol
erance previously described is also shown for m = 9. We see 
at once that the practice of adding tolerance limits may be 
uneconomical because the chance is relatively very small that 
a resultant resistance would ever lie outside the limits IRi ::I: 3". 

Having considered this simple illustration, we are in a 
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position to discuss the general 'problem of setting overall toler
ance limits, in terms of tolerance limits of piece-parts. 

6. The General Problem oj Setting Tolerances on Controlled 
Product 

As a perfectlY general case, let us assume that the quality X 
upon which we wish to set tolerance limits depends upon the 
qualities Xl, X 2 , ••• ,Xi, ... ,Xm of m different piece-parts or 
kinds of raw material. Interpreted from the viewpoint of 
control, this means that we wish to set two limits on X which 
will include a certain fraction P of the product in the long run. 
We shall show how this can be done upon the basis of the 
assumption that each of the m component qualities are con
trolled about expected values 

with standard deviations 

subject to certain limitations. 
Let us assume that we may write 

X = F(Xl , X2 , ••• , Xi, ... , Xm). 

Furthermore, let us assume that the quality X may be expanded 
in a Taylor's series so that to a first order of approximation we 
may write 

X =F(Xl,X2, ... ,Xi, ... ,Xm) +al Xl +a2 X2 + ••• +aiXi+ ••• +am Xm, 

where 

and 

it being understood that Xij in this case is anyone of the 
possible values of the quality Xi. 
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It may easily be shown under these conditions that the 
expected value X and the standard deviation tTz of the distri
bution of quality X of product assembled at random are given 
by the following equations: 

No matter what the nature of the distribution functions 
,,<XI). f~(X2) • •••• fi(Xi) •••.• fm(Xm). Equations (82) enable 
us to write down the expected resultant quality X and the 
standard deviation tTz of this quality about the expected value 
subject to the limitations already considered. Making appli
cation ofTchebychelrs theorem. we can say that the probability 
p,.. that the resultant quality will lie within the interval 

satisfies the inequality 
I 

P"'z> 1--' 12 

For example. one can say with certainty that in the long 
run more than (I - I) of the product will have a quality X 
lying within the limits X ± 3tTz. In the simple case con
sidered in the previous paragraph, where it is assumed that 
the distribution function for each of the m qnality character
istics is normal, we see that the probability P3rx is equal to 
0.9973. It is exceedingly important from our present viewpoint 
to note that so long as we know nothing about the distribution 
function of each of the m quality characteristics, we can only 
make use of (82) in connection with Tchebychelrs theorem. 
The more we kno'f about these functions, the more accurately 
we can establish the probability P"'x. 

If the distribution functions of the m quality characteristics 
are alike in respect to their second, third and fourth moments, 
it may easily be shown that the skewness kx and the flatness 
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~2X of the distribution of quality X are given 1 by the following 
equations: 

kg =:m ), 
~? - 3 

~2g =~+3 

wherek and P2 are the skewness and' flatness of the distribution 
of anyone of the m quality characteristics. Thus we see that 
under these conditions the skewness and flatness of the resultant 
distribution will be approximately normal, even though the 
individual qualities are distributed in a way such that their 
skewness and flatness are appreciably different from zero and 
three respectively. 

In the more general case, where the distribution functions 
for the m different quality characteristics are not all alike, it 
may also be shown that the distribution of the resultant effect 
X will approach normality 2 as m _ 00. 

These results are of great importance as indicating the 
magnitude of the advantages that accrue from specifying the 
distribution of anyone of the m qualities other than by saying 
that they shall be controlled about known average values with 
known standard deviations. Even though the distribution func:
tion of X approaches normalit¥ as m increases, it is usually true 
in a specific case that it would be very difficult to characterize 
the functions of the m component qualities with such precision 
as to enable the dt:termination of the probability Pta-x to within, 
let us say, I per cent. In other words, it appears that, from a 
design viewpoint, there are many advantages to be gained by 
specifying that the quality of raw materials and piece-parts 
shall be controlled about known averages and with knowrt 
standard deviations, although it appears that the advantages 
to be gained by trying to specify the functional forms of the 
controlled distributions and more than these two parameters 
of the distributions are offset by certain disadvantages. 

t Compare with (63). 
I See Appendix I. 
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Hmu jrom 16 design vitfl)poinl W~ conclud~ lhal Ih~ sp~cifi
cation oj control should ;nclud~ Ih~ spuification oj ~xpuled rJa/u~ 
Xi and standard deviation fTi oj any quality charactmstic Xi. 

We are now in a place to consider the more general problem 
of designing a complicated piece of apparatus so that the 
quality of the product will have minimum variability. 

7. Designjor Minimum Par;abi/ity 

Again let us assume that the resultant quality X is a function 
F of the qualities XI, Xa, •.. , Xi, ... , A"m, or that 

x - F(XI , X2, ... , Xi, ... , X m}, 

and that we wish to make a product having an expected quality 
X with minimum standard deviation fTz. 

We shall assume that the m quality characteristics are 
controlled about expected values XI, X2, ... , Xi, ... , Xm with 
standard deviations 11'1, 11'2, ••• , fTi, ••• , fTm. 

Making the same kind of assumptions as in Paragraph 6 
about the expansibility of the quality X by means of Taylor's 
theorem, we may write 

i - F(Xt, X2, ••• , Xi, ... , Xm), 

where, as in the preceding paragraph, a; is a function of the 
m mean values. Our problem now is one of minimizing fTz 

subject to the restriction imposed by the last equation. This 
will be recognized as a problem in the theory of maxima and 
minima. Expressed in terms of the Lagrange indeterminate 
multiplier X it involves the solution of the following m + I 
equations: 

a (fTX2) aF I -=- - 2).-=- = 0 ax. aXi . 
X = F(Xt,X2, ••• , Xi, ••• , Xm} 
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It may not be feasible to solve this set of m + I equations 
for the unknowns Xl, X2, ••• , Xm and ~ because of their com-

o 2 

o 2 10 II 12 13 

SPECIES C 

o 7 8 9 10 II 12 13 

o 2' 3 
i 

FlO. 88.-TYPICAL RELATION BETWEEN EXPECTED VALUES AND STANDARD 

DEVIATIONS. 

plexity. Again it is possible that the solution may contain zero, 
infinite, or imaginary values' of the' X's. Such solutions are 
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obviously of no practical significance. We see that, in addition 
to knowing that the qualities of piece-parts and raw materials 
are controlled, il is essential only to know the averages and 
standard deviations oj the distribution Junctions oj the component 
qualities. 

In practice limitations are often imposed upon the possible 
magnitudes of the expected values of the m quality charac
teristics other than those already considered. For example, 
one or more of these quality characteristics may be properties 
of material such as density, tensile strength, resistance, coeffi
cient of expansion, and so on. Obviously, in choosing the 
expected values in such a case, we are limited to the expected 
values of the available raw materials, unless we develop some 
alloy having the desired expected value. 

Also, in practice, the choice of an expected value of a quality 
cannot usually be made independent of the choice of its stand
ard deviation. Thus in the case of a physical property of a 
material there· is, in general, some relationship between the 
expected value of the property or quality and its standard 
deviation. This fact is illustrated in Fig. 88 showing the 
relative expected values and standard deviations of modulus of 
rupture of four kinds of telephone poles. We see that, broadly 
speaking, the standard deviation increases with increase in 
expected modulus of rupture. 



CHAPTER XVIII 

SPECIFICATION OF STANDARD QUALITY 

I. Standard ~uality 

We often think of a standard of quality as being either a 
specified value X8 or a value X lying within some specified 
tolerance limits Xl and X 2 • If, however, we try to produce all 
units of a given kind of product with a standard quality XS1 

the best we can hope to do, as we have seen in Parts I and III, 

&LC\ 
QUAL~TY .x XI x X2 

(a) 
QUALITY X 

FIG. 89.-COMMON C~NCEPTS OF STANDARD QUAUTY. 

is to make a product whose quality X satisfies the equation of 
control 

dy = f(X, ~I, ~2, ••• , ~, ••• , ~m'), (58) 

with an expected value X somewhere near the specified standard 
or ideal value Xs as indicated schematically in Fig. 89-a. Sim-. 
ilarly, if one attempts to make a product all units of which 
will have a quality within the tolerance range Xl to X 2, he will 
usually end up, after having done everything feasible to attain 
constancy, by making a product whose quality will be dis
tributed as indicated schematically in Fig. 89-b. It is possible 
that the tolerance limits Xl and X 2 will lie outside the limits 
of the curve (58) although this is seldom the case. 

262 
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These standards are, as it were, ideals. We may however . , , 
gain certaIn advantages by looking upon standard quality in 
a slightly different way as being the distribution function 
representing what we can hope to do in our attempt to attain 
an ideal standard quality. This objective standard quality 
distribution represents what we may expect to get when we 
have done everything feasible to eliminate assignable causes of 
variability in the quality. Hence, if we are to be able to inter
pret the significance of observed variability in quality, it is 
necessary to adopt or specify some such distribution function 
to be accepted as a standard for each quality characteristic. 
Then, so long as the observed variability in quality of n pieces 
of product may be interpreted as a sampling fluctuation in the 
effects of the constant system of chance causes characterized 
by the accepted standard distribution function for this quality 
characteristic, there is no need to worry over the observed 
variation because it is likely that there is nothing that we can 
do about it. 

The question now to be considered is: What are the factors 
that determine how far we should try to go in specifying dis
tribution functions to be used as standards? In the previous 
chapter we have shown that, from a design viewe.oint, it is 
usually satisfactory to specify only the average X and the 
standard deviatiQn (J' of the distribution, whereas complete 
specification would require the functional form f and the numer
ical value of each of the m' parameters. Furthermore, it is 
obvious that the specification must be such as to provide a 
satisfactory basis for detecting lack of control in the two 
important design characteristics X and (J' of the distribution 
of effects of the chance cause system. 

It is necessary that we consider at this time the character 
of the specification to be required, because upon the choice of 
specification depends much of the treatment to follow in the 
discussion of the two problems: 

(a) Establishment of sampling limits to detect lack of 
control to be treated in Part VI. 

1.. .. 
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(b) Statistical estimation involved in establishing quality 
standards to be treated in Part VI. 

2. Types oj Specification 

Type I: The probability oj the production oj a defective piece 
oj product shall be p. 

This type of specification corresponds to making the toler
ance limits either - 00 and some value X 2, or some value Xl 

'\ I , 
, \ ! , 
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i \ 
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i \ 
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FIG. 9O.-THIlEE UNIVEIlSES OF EFFECTS SATISFYING THE SPECIFICATION THAT THE 

PIlOBABILITY P SHALL BE CONSTANT. 

and + 00, and to specifying that the probability of X lying 
outside such a tolerance shall be p. It is obvious that this form 
of specification does not fix the form of the distribution func
tion (58). For example, Fig. 90 shows three distribution 
functions which satisfy the specification Type I, although they 
are distinctly different. Hence the necessary design infor
mation, viz., the average and standard deviation of the ~istri
bution function, is not fixed by this type of specification. 

It follows from what was said in Part IV that we may 
establish sampling limits within which the observed fraction p 
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defective in a sample of n may be expected to fall with a 
specified probability P. Hence this form of specification 
provides a basis for detection of lack of control although it fails 
to give requisite design information. 

Type II: The expecled or avtrage qualily shall be X. 
This form of specification is sometimes considered when 

we would like to specify that the quality should be some ideal 
standard value X.. It is apparent that there is an indefinitely 
large number of frequency functions satisfying this specification, 
but differing in respect to dispersion, skewness, and other char
acteristics as is illustrated schematically in Fig. 91. 

if 
QUALITY X 

Fla. 91.-THR •• UHlv.RSas or EuBCTI SATISrYlHG THE SPECIFICATIOH THAT THE 

ExPECTED VALUE SHALL BE X. 

I t follows that specification Type II fails to give the infor
mation which makes possible the establishment of design limits 
on the yariability of quality. Neither does it give information 
basic to the establishment of limits within which the observed 
quality may be expected to vary without indicating lack of 
control. Hence this form of specification is of comparatively 
little value from the viewpoint either of design or control. 

Type III: The avtrage or expecled qualily shall lit X and the 
slandard devialion shall be fT. 

This specification gives the requisite design information, and 
so long as quality of product satisfies this specification, we know 
from Tchebycheff's theorem that the probability P"" that a 
piece of product will have a quality X lying within the range 

between the two limits X :I:: 1fT is greater than I. -.!.; This . 12 
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statement is true independent of whether the function f in the 
objective equation of control is or is not continuous. l 

To emphasize the importance of the use of Tchebycheff's 
theorem in this connection. we show iri Fig. 92 four distributions 

~ 
I I I 

I 
I 
I 
I 
I 

having a pproxima tely the 
same average X and standard 
deviation IT. The dotted limits 
are drawn at X ± 31T. Hence 
we should expect to find more 
than 89 per cent of the total 
area for each distribution 
within the limits. In fact, no 
matter what distribution we 
might construct with average 
X and standard deviation IT, 

we would find that more than 
89 per cen t of the area would 
fall within the dotted limits. 

From the viewpoint of 
control, we have seen in Part 
IV that sampling limits may 
be set on averages of size n 
if we know a and that the 
probability associated with 
any limits Xl to X 2 for the 

r--- t17 +tcs---, average X of a sample of n is 
I QUAL~TY lI. I given quite accurately by the 

FIG. 92.-FoUR UNIVERSES OF EFFECTS normal law integral, at least 
SATISFYING THE SPECIFICATION TH~T THE when n is large. Furthermore, 
EXPECTED VALUE SHALL BE X AND l' 1" b b 
STANDARD DEVIATION SHALL BE cr. samp 109 Imlts can e esta -

Ii shed for observed standard 
deviation or variance in samples of n, and the probability asso
ciated with a given range 1T1 to 0'2 can be quite accurately 
estimated if we can assure ourselves that the function f is 
approximately normal. 

1 This is true at least for objective distributions of the type possible in 
practice. 
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From this discussion we conclude that the specification Type 
III i. farsuperior to either of the two types previouslymentioned. 

Typ, IP: Th, avn-ag" siandard d,vialion, slc,wness, and 
flatness oj Ih, distribulion oj qualily X shall '" X, v, k, and Pa. 

Let us see what the specification ofk and Pa adds in the way 
of valuable information. In the first place, the knowledge of 
these two statistics of the distribution function adds nothing 
to our knowledge of the integral of the function over any range 
Xl to X 2 over and above that given by X and v and the use 
of Tchebychefrs theorem. This statement rests upon the 
assumption that we know nothing about the function f. 

Under the same conditions the knowledge of k and P2 is of 
little practical value from a control viewpoint, since, as we 
have lIeen in Part IV, not even the expected values and standard 
deviations of Ie and {32 for samples of size n are known for other 
than normal universes, so that we cannot establish sampling 
limits on these two statistics. . 

Hence we come to the important conclusion that the speci
fication of standard quality in terms of X and v gives us the 
maximum amount of usable information, unless we specify f. 

3. Imporlana oj Specifying Ih, Funclion f. 
From the discussion of Chapter XII, Part III, we see that 

there is some justification for the belief that the distribution of 
a controlled quality is approximately normal or at least is 
approximately representable by the first two terms of a Gram
Charlier series, which has previously been referred to as the 
second approximation (23)._ If then we specify that the func
tion f shall be normal with X and v as the two parameters, the 
specification becomes complete from the viewpoint of both 
design and control in that we know for such a product the 
probability associated with any interval Xl to X 2, and we can 
set sampling limits on almost all of the common statistics, 
Table 37. Similarly, if we specify that f shall be the first two 
terms of a Gram-Charlier series, we can make use of most of 
the distribution functions of the simple statistics for a normal 
universe as first approximations, and the normal law integral 
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gives the probability associated with any symmetrical interval 
X ± tfT. In these two cases we find X and fT playing an impor
tant role. 

Formally, of course, the specification of f and each of the 
m' parameters makes possible the determination l of the proba
bility associated with any interval Xl to X 2• We have seen, 
however, that little is known about sampling fluctuations in 
statistics of samples of n drawn from such universes with the 
exception of average, variance, and x2• Hence, from a control 
viewpoint, having specified X and fT, the specification of f or of 
any number of parameters does not add as much as one might 
at first expect. However, we shall soon see that we must 
specify f in order to make possible the most accurate estimates 
of such 'statistics, as p, k, and P2. 

4. Specification-Further Discussion. 

Th'us far we have considered the problem of specification 
as though we could make the function f and parameters ~l, 
~2, ••• , Ai, ••• , ~/, whatsoever we chose to make them. 
Obviously we do not have such freedom of choice. We assume 
that there is one and only one objective distribution function 
representing the state of control for each quality X, although 
we do not assume that these functions are necessarily even of 
the same form f for all qualities. This means that the distribu
tion function for any quality X must bejound before it can be 
specified. Our. previous discussion is of in terest therefore in 
indicating the relative importance of different forms of specifica
tion, thus indicating the extent to which we should try to go in 
finding the distribution function of control in a specific case. 

In any case we need to estimate the expected value X and 
standard deviation fT of the objective distribution representing 
the state of control. Whether we try to go further and specify 
p, k, P2, and f depends upon whether or not the kind of infor
mation given by such a specification justifies the added expense 
of estimating these characteristics of the objective distribution 

1 The usc of complicated quadrature methods is often necessary. 
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and the expense of the extensive inspection required to assure 
the producer that the quality of product does not vary beyond 
reasonable sampling limits in respect to these characteristics. 

It is of interest to point out at this stage of our discussion 
that the specification of p, k, and Jl2 introduces a problem in 
estimation, the solution of which requires the assumption of a 
particular functional form f. To illustrate this point, let us 
assume that we have a comparatively small sample, say five 
observations, in which we are to estimate p. Assuming that 
the objective p is of the order of 0.01 as is often the case in 
practice, it is obvious that we cannot use the observed fraction 
p in a small sample as a basis of estimating p. The best we 
can do perhaps is to make use of our estimates of X and CT 

derived from the sample as a basis for the estimate of p. On 
the other hand, the estimate of p derived in this way involves 
an assumption as to the functional form f. We may, by mak
ing use of Tchebycheff's relationship~ state certain bounds 
within which it is likely that plies. 

Of course, when we have a large sample representing what 
we assume to be the condition of control, it is possible to use 
the observed fraction p as a basis for an estimate of p, although 
even then it is reasonable to believe that we should consider 
the general functional form of the distribution in arriving at 
an estimatt!. For example, Column 2 of Table 40 gives a dis
tribution of observed values 1 of a variable X. Column 3 of 
this table gives a theoretical distribution based upon the 
assumption that the distribution function is 

Jt _II tao-1-( 2)-'" " y=yo l+;2 t G. 

The theoretical and observed distributions, shown in Fig. 93, 
indicate close agreement between theory and observation. 
When there is such close agreement it seems reasonable to 
assume that the integral of the assumed theoretical distribution 
between any two limits Xl and X 2 should be taken into con-

I Elderton, W. P., Fre'lume;, CuroeJ "'tid Correwion. 
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sideration along with the observed fraction p within the same 
limits in estimating the objective fraction p. In other words, 
we see that the estimate of p required in a specification involves 
the assumption of a particular functional form f which in turn 
must be justified upon the grounds that it appears to be the 
objective frequency function representing the condition of 
control in this specific case. 

TABLE 4o.-IMPORTANCE OF DISTRIBUTION FUNCTIONS IN 
ESTIMATING FRACTION IN TAIL OF DISTRIBUTION 

CeU Observed Distribution Type IV Distribution 
Midpoint of Variable X of Variable X 

5 10 6 
10 13 16 

15 41 49 
20 115 135 
25 326 321 

30 675 653 

35 1,113 1,108 

40 1,528 1,535 

45 1,692 1,712 

50 1,530 1,522 

55 1,122 1,074 
60 610 604-
65 255 274 

70 • 86 102 

75 26 32 
80 8 8 

85 2 2 

90 I I 

95 I 0 

l: 9154- 9154 

We have seen in the previous paragraphs that if we are to 
make use of information given by k and ~2, we must also have 
a specification of f. Thus, in the example just quoted from 
Elderton, the observed values of Ie and fJ2 are 0.073 and 3. 170 

respectively. The fact that the use of these two observed values 
of Ie and fJ2 in the assumed functional form f gives an apparently 
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close fit to the observed data, provides us with a certain amount 
of assurance that the objective values of skewness k and flat
ness iI:I are, for example, different from 0 and J respectively 
corresponding to the normal law, or that they are somewhere 
in the neighborhood of the values derived from the observed 
data. 

Enough has been said to show that the problem of estimation 
involved in the specification of characteristics other than X and 
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fT and the objective fraction p of the distribution of control 
involves the assumption of specific forms for f. 

5. Conclusion 

The specification of quality f~m the viewpoint of both 
design and control should provide X and fT. In certain cases it 
is desirable that we specify p so as to provide a basis for catching 
erratic troubles which, as we shall see later, may not be detected 
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through sampling limits established on statistics used to detect 
lack of control in X and fT. The accurate estimate of p, how
ever, involves the introduction of some assumption as to the 
functional form f of the distribution (58) of control. The speci
fication of k and P2 is, in general, of less importance than that 
of p, X, and fT. 



PART VI 

Allowable Variability in Quality 

Five Criteria for Determining 
When Variations in Quality 
Should Not Be Left to Chance 



CHAPTER XIX 

DETECTION or LACK or CONTROL IN RESPECT TO 

STANDARD QUALITY 

I. Tht ProD/tm 

In Part V we saw that standard quality is characterized by 
the equation of control 

Jy - f(X, ).1, ).2, ••• , ).;, ••• , 'A.m')JX. (58) 

In particular, we saw that it is desirable to maintain constancy 
of this distribution at least in respect to the average X and 
standard deviation ft. Of course the qualities of samples of 
n pieces of product of standard quality may be expected to 
show sampling fluctuations. 

The problem to be considered in this chapter is that of 
establishing an efficient method for detecting the presence of a 
cause of variability other than one of the chance causes belong
ing to the group which gives the accepted standard distri
bution (58), or of determining when an observed sample is such 
that it is unlikely that it came from a constant cause system 
characterized by this distribution. 

2. Tht Basis for EstaDiishing Control Limits 

Knowing the distribution function (58), we saw in Part IV 
that it is possible, in general, to find a distribution function 
fa (a, n) for a given statistic a calculated for samples of size n 
such that the integral 

p = 1"-f9(9, n)d9 (85) 

gives the probability that the statistic a will have a value lying 
within the limits a1 to a2. Of course, if the function fa(a, n) 

27S 
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is limited in both directions, we may choose e1 and e2 such 
that i? = I; and, in this case, any observed value of e falling 
outside the limits is a positive indication that standard quality 
is not being maintained. If the function fe(e, n) in (85) is dis
continuous we must replace the integral sign by the symbol of 
summation }; for discrete ordinates and change our discussion 
accordingly. The conclusions, however, remain unchanged. 

For the most part, however, we never know fe(e, n) in 
sufficient detail to set up such limits. More important yet is 
the fact that, even if we knew the function well enough to set 
up limits within which a statistic e must fall provided the 
cause system has not varied from the accepted standard, we 
could not say that the occurrence of an observed value of e 
within this range is sufficient to prove that the sample came 
from a constant system characterized by the accepted standard. 
distribution function (58). 

How then shall we establish allowable limits on the vari
ability of samples? Obviously, the basis for such limits must 
be, in the last analysis, empirical. Under such conditions it 
seems reasonable to choose limits e1 and e2 on some statistic 
such that the associated probability P is economic in the sense 
now to be explained. If more than one statistic is used, then 
the limits on all the statistics should be chosen so that the 
probability of looking for trouble when anyone of the chosen 
statistics falls outside its own limits is economic. 

Even when no trouble exists, we shall look for trouble 
(I - P)N times on the average after inspecting N samples of 
size n. On the other hand, the smaller the probability P the 
more often in the long run may we expect to catch trouble if 
it exists. We must try to strike a balance between the ad
vantages to be gained by increasing the value P through 
reduction in the cost of looking for trouble when it does not 
exist and the disadvantages occasioned by overlooking troubles 
that do exist. It is conceivable, therefore, that there is some 
economic value P or pair of limits e1 and e2 for each quality 
characteristic. It is perhaps unnecessary to say that the 
determination of the economic value P and the associated 
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limits must be an approximation in any case. Furthermore, it 
is obviously necessary to adopt some value which will be 
acceptable for practically all quality characteristics, although 
the economic value P for one quality may not be the same as 
that for another. 

With these points in mind we shall consider a few principles 
to guide our choice of 81 and 82. In general, it is reasonable 
to believe that the objective economic values of 81 and 82 
are not symmetrically spaced in respect to the expected value 
G of the statistic. It is perhaps more reasonable to assume 
that they are so spaced as to cut off equal tails of the function 
fa(8, n). Under these conditions it is reasonable to try to set 
limits 81 and 82 that will satisfy this condition. From the 
discussion in Part IV we see, however, that even when the 
distribution (58) is known, the distribution function fa(8, n) 
for a given statistic 8 is seldom known in sufficient detail to 
make it possible to choose 81 and 82 to cut off equal tails. 
Even more important is the fact that we seldom care to specify 
f accurately enough to make possible the setting of such limits. 

For these reasons we usually choose a symmetrical range 
characterized by limits 

(86) 

symmetrically spaced in reference to 9. Tchebycheff's theorem 
tells us that the probability P that an observed value of 8 
will lie within these limits so long as the quality standard is 
maintained satisfies the inequality 

I 
P> 1- 12. 

We are still faced with the choice of t. Experience indicates 
that t = 3 seems to be an acceptable economic value. 

Hence the method for establishing allowable limits of vari
ation in a statistic e depends upon theory to furnish the 
expected value e and the standard deviation O'e of the statistic 
e and upon empirical evidence to justify the choice of limits 
9 :::i: /fTe. 
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3. Choice of Statistic to Detect Change in Average ~uality 

Suppose, for example, that 

dy = f(X, ~l, ~2, ••• , >-i, ... , 'Am')dX, (58) 

with an expected value X, is the standard of quality and that 
we are to detect a change in quality in which only the expected ..LLS:" ..... ml 

:, ill 
STANDARD X +4X 
QUALITY (b) 

SHIFT IN 
EXPECTED VALUE 

~A 
I I (d) 

DISTRIBUTIONS OF MEANS 
USED IN DETECTING SHIFT 

~ ~ 
I I (f) 

DISTRIBUTIONS OF MEDIANS 
USED IN DETECTING SHIFT 

value changes from X to 
X + .£lX. What statistic of the 
sample should we use to detect 
this change in order to minimize 
the number of observations 
required? 

To start with, let us assume 
that (58) is a normal distri
bution. Obviously then, we 
might use either the median 
or arithmetic mean of a 
sample to detect a change .£lX 
in the expected value X. To 
illustrate, let us assume that 
the standard quality is distrib
uted as in Fig. 944 and that 
the shift .£lX in expected value 
is represen ted by Fig. 94-b. 
Let us assume also that the 
distribution of arithmetic means 
and that of medians are nor

FIG. 94.-!LLUSTRATIHG IMPORTANCE OF 
PROPER CHOICE OF STATISTICS. mal as indicated in Figs. 94-C 

and 94-e respectively. This 
situation is practically met when the sample size is large, 
in which case the standard deviation of the distribution of 

medians is 1.253 ..:;; and that of means is .:in. These values 

of standard deviation were used in drawing' Figs. 94-' and 94-e. 
Limits including equal areas of Figs. 94-' and 94-e are shown. 
The curves of Figs. 944 and 94-1 represent the distributions of 
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averages and medians about the expected value X + dX. 
Obviously, the area of Fig. 944 outside the dotted limits for 
means is greater than the area of Fig. 941 outside the limits for 
medians. Hence, for a given increase dX, we may expect to 
have an indication of trouble more often by limits set on arith
metic means than by those set on medians. 

In general, if 8 l and 82 are two statistics (such as median 
and arithmetic mean) used to detect a change in some charac
teristic 0 of the universe; if the functions fa,(8l , n) and 
fa,(82, n) are symmetric, monotonic, and unimodal; if the 
standard deviations of 8 l and 8 2 fall off in the same way with 
increase in sample size n; and if ~l = e2 = 0, then we may 
say that that statistic having the smaller standard deviation 
should be used in detecting the change dX. 

Now, if there exists a statistic 8 such that the use of any 
other statistic 8 l does not throw any further light upon the 
value of the parameter to be estimated, then 8 is said to be a 
sujJiciml sla/;s/;c, and is, of all statistics of this class, the one 
to use, provided it can be shown that it is also the most efficient. 

In this connection, some very useful theory has been con
tributed by R. A. Fisher.! He shows that if tT and tTl, the 

standard deviations of 8 and 81 respectively, faU off as ..:n, 
and if 8 and 8 l are normally correlated with correlation coeffi
cient r, then the above criterion of sufficiency leads to the 
rela tionshi p 

showing that 8 is more efficient than 81 and that under the 
given conditions 

r = VE. 
where E is the efficiency of 81 as compared to 8. If, in practice, 
we find that the correlation surface for two statistics, such as 
the median and arithmetic mean, is normal and satisfies (87), 
then it is reasonable to assume that the more efficient of the 

1 "On the Mathematical Foundationa of Theoretical Statistica," Philosophical 
'I",.".IIIUlio"s, Seri~ A, Vol. 222, pp. 309""368,1922. 
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two is a sufficient statistic and perhaps also the most efficient 
statistic that can be used. It should be noted that under the 
given conditions the more efficient of the two statistics has the 
smaller standard deviation and hence is the better one to use 
in detecting a change of parameter. 

We have already seen that the distribution of medians for 
samples of size n = 4 from a normal universe is symmetrical 
and not so very different from normal, whereas the distribution 
of arithmetic means is normal in this case. It is interesting to 
see, therefore, whether or not the arithmetic mean is not only 
better than the median for detecting a shift AX but really the 
best statistic that can be used. 

Fig. 95 shows the observed scatter diagram of correlation 
between medians andmeans for samples of four. In this case 
the observed efficiency E and correlation coefficient rare 

E = 0.80 

and (8'7) is practically satisfied. Since we know of no statistic 

whose standard deviation falls off more rapidly than ~, 

we may conclude that the arithmetic mean is the best statistic 
to be used for detecting a' shift AX, subject to the conditions 
stated above. 

We are not in a place to prove that the average is the best 
statistic when the distribution function (58) is not normal. 
However, since we do not know of a better statistic than the 
arithmetic mean to detect a shift of AX when the universe 
differs from normality by no more than it usually does in prac
tice, we shall always make use of the arithmetic mean for this 
purpose. 

It is of interest to note that the efficiency E of the median 
in respect to the arithmetic mean for samples of n drawn from 
a normal universe decreases asymptotically with increase in 
sample size from 100 per cent for n = 2 to ~3 per cent when 
11 is large, as indicated in Fig. 96. The point for n = 4 is that 
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observed for the 1,000 samples of four. This curve shows that 
for large samples th~ efficiency of the median is such that it 
contains only about 63 per cent of the information in respect 
to the change 4X; in other words, that the average of a sample 
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of size n = 63 will detect in the long run a shift 4X as often 
as the median of a sample of n = 100. 

I ~· d f th di h Max. + Min. '. mstea 0 e me an, we use t e asa 
2 

statistic, we have seen that the efficiency is 100 per cent for 
samples of two and about 88 per cent for samples of four. 
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By making use of some of the recent work of Tippett,! E. S. 
Pearson, and N. K. Adyanthaya,2 we may show that the 

ffi . f h Max. + Min. r 11 ff . d' d' F' 6 e clency 0 tela s 0 as In lcate In 19. 9 . 
2 

This curve is in striking contrast to that for medians. 
The concept of efficiency here used is different from that 

introduced in Part IV, and is perhaps the more usual one. 
It is simply .the ratio of the sample sizes of two different 
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FIG. 96.-EFFICIENCY OF THE MEDIAN AND AS A FUNCTION 

2 

OF SAMPLE SIZE n. 

consistent statistics required to give the same standard 
deviation. . 

Consider for example the arithmetic mean ~ and median M 
of a sample of n. The standard deviation of X in samples of n 
drawn from a normal universe with standard deviation a is 
a/Vn and for medians M, the standard deviation is c{n)a, 

1 "On the Extreme Individuals and the Range of Samples Taken from a Normal 
Population," Biomelri1c4, Vol. XVII, December, 1925. 

I Egon S. Pearson and N. K. Adyanthaya, "The Distribution of Frequency Con
stants in Small Samples from Symmetrical Populations," Biometrilca, Vol. XX-A, 
PP·356-360• 
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where ,en) is some function of n which approaches I.2531vn 
as n becomes large. 

Choose a particular sample size nil for the median and find 
the sample size nr for the arithmetic mean required to give 
the same standard deviation as that of the median for the 
chosen ~ample size. This requires merely the solution of the 
equation 

for nr. In fact 
I 

n::t=~( )' , nM 

and therefore by definition the efficiency of the median for the 
chosen value of nil is 

E .. n::t = I 

nlJl nMc2(nM>" 

The trouble with this value of efficiency for small values of 
n is that it depends upon the fact that the value of nil was 
chosen first. Thus if we assign to n::t the same value nil, and 
solve for the new value n'lI we should come out with the same 
value of E, if the efficiency for small samples is to have the 
same interpretation as for large samples. However, if we solve 
for n'lI from the equation 

fT , ) 
_~ = ,en II fT, 
v nil 

and then take the ra tio E = nil, it will be found to be differen t, 
. n'lI 

in general, from the value of E computed above. 
In other words, this means that for small samples we get 

one curve of efficiency by assigning to nil an increasing 
sequence nl, n2, • •• and a different curve of efficiency when n::t 

is assigned the same series of values. 
. For this reason the curves of Fig. 96 should not be con

sidered as exact but as merely indicating, in a general way, how 
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h ffi · f h d' Max. + Min. f 11 ff . h . tee clency 0 t e me Ian or a s 0 wit In-
2 

creasing sample size. 

4. Choice of Statistic to Detect Change in Standard Deviation 

Suppose now that we consider the problem of determining 
the statistic which will detect a change only in the standard 
deviation of the effects of the cause system. Let us start, as in 
the previous paragraph, with the case where the universe of 
effects (58) is normal. Naturally, we may use anyone of several 
infinite sets of estimates of a as a means for detecting a change 
!la. Thus, for example, 

mi = _2_[xie -:;'dx = ai2~ r(i + I), 
a.y'2; 0 V; 2 

(88) 

where x = X - X, and i = (1,2,3, .•. ). For a given value 
of i, we can write 

where b is a constant fora particular i. Obviously, the ith 
moment mi of the absolute values of the deviations in a sample 
from the observed average X of a sample can be used as an 
estimate of a in samples of size n = 00. In other words, the 
statistic 

1 

e = (bmi)' 

may be used as an estimate of a if the sample size is sufficiently 
large. 

In general, the distribution function fe(9, n) of any statistic 
e is not symmetrical; hence the expected value e is not a. 
This situation is represented schematically in Fig. 97. For 
samples of a given size n, there is some constant c by which to 

divide e so that the expected value of ~ becomes equal to e. 
c 

Hence ~ may be used as an estimate of e or in this case of a; 
c 

it is called a consistent estimate. 
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In a similar way we may make use of either a symmetrical 
or an asymmetrical range as an estimate of fT. For example, 
we have already considered the distribution of 1,000 observed 
ranges in samples of four drawn from a normal universe. The 
statistics for these distributions were given in Table 34. Since 
these ranges are measured in terms of the standard deviation 
of the universe, the empirical factors for estimating fT are those 

• i • 
STATISTIC: e 

FlO. 97.-ScM ... Ane ASYM .. ETRICAL DtSTRIBUTlON or A STAnsne. 

given in Table 41. Now, as in the discussion of Fig. 97, if e 
represents the expected value of the distribution of any range 

a, the expected value of the distribution of ~ is e or the sta-
t 

tis tic a of an infinite sample or of the universe. Of course, 

TABLK 41.-EMplaJCAL FACTORS roB ESnMAnlfo .. 

Range ........................... X. - XI X I - XI XI- XI X. - XI 
Empirical Factor for Eotimation. .... 2.0044 0.7863 0.6338 0.7752 

this statement rests on the assumption that a is measured in 
units of e as in Table 41. The second row of this table gives 
the empirically determined factors with which to transform the 
observed ranges into consistent estimates of fT. It will be noted 
that we use e as a statistic of an infinite universe. If e is 
also a parameter in the equation of control (58), as it usually is, 
then there is some parameter 1. numerically equal to e. 
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Enough has been said to show that there is an indefinitely 
large num~er of ways in which to estimate a. Which one shall 
we choose as being the most likely to detect a change ~a? 

Let us start with a comparison of the standard and the mean 
deviation as a basis for estimating a. In Part IV we saw that 
the expected value for small samples is not equal to a for either 
of these statistics, the situation being that characterized by 
Fig. 97. Hence, before we can use either statistic as an estimate 
of a, we must know the correction factor for transforming the 
statistic into one for which the expected value will be a.Such 
correction factors are given in Table 29 for the standard devi
ation a of the sample and a similar table could be given for the 
mean deviation. 

Of course these factors approach unity as the sample size 
becomes large. If we also assume that the distributions of these 
two statistics approach normality as the sample size n becomes 
large, we can make use of the same reasoning as that given in 
Paragraph 3 to show that fT is the better estimate since the mean 
deviation estimate is only 88 per cent efficient. 

When the sample size is small, these two estimates have 
more nearly the same efficiency. This situation is shown in 
Fig. 98. The question arises as to whether or not the standard 
deviation fT is the most efficient statistic for estimating a from 
a small sample, assuming that it is the most efficient for a large 
sample. The only available method for doing this is to apply 
the test of (87) which is strictly applicable only when the 
correlation between the two estimates is normal, which condi
tion is, as we know, not fulfilled in this case. The experimental 
results for the 1,000 samples of four are shown in Fig. 99. The 
correlation coefficient r in this case is 0.895, whereas the effi
ciency of the estimate 1.1547 mi. as compared with the estimate 
I.2533fT is practically 100 per cent. We are, therefore, uncertain 
from thill test whether or not the standard deviation is the most 
efficient estimate although we see from Fig. 98 that even for 
small samples it is more efficient than the mean deviation. The 
difference is negligible, of course, for comparatively small 
samples. 



DETECTION OF LACK OF CONTROL 287 

It will be of interest now to consider the efficiency of the 
range between the maximum and minimum values of a sample 
as an estimate of tT. Again making use of the work of Tippett,l 
E. S. Pearson. and N. K. Adyanthaya,2 we get the range effi
ciency curve shown also in Fig. 98. The very rapid decrease in 
efficiency of the estimate derived from the range is striking. 
The same concept of efficiency is used here as was used in 
Paragraph 3. We have here an added difficulty in that the 
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root mean square deviation, y';ji mean deviation, and the 
range are not even consistent estimates of tT. For this reason 
the curves of Fig. 98 are supposed merely to indicate, in a 
general way, how the efficiencies of the above two statistics fan 
off with increasing n. 

It should be noted that, in our discussion of the importance 
of choosing the most efficient statistic for detecting a change 
.1X or .1cr, we tacitly assumed that the distribution functions 
of the statistics compared were symmetrical and of the 

I Loc. cit. 
I Lac. cit. 
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same functional form. This is a very important requirement 
for, in general, the most efficient statistic in the sense of being 
the one with the smallest standard deviation need not be the 
statistic most likely to catch a given change in X or CT. For 
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example, the comparison of the four ranges of Table 41 for 
detecting a given change llCT involves the algebraic magnitude 
of llfT, and the knowledge of the functional forms of the distri
bution of the different ranges. The same could be said of the 
comparison of the statistics based upon the moments mi of the 
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absolute values of the deviation. To make such a comparison 
is certainly not practicable at the present time. 

It appears, therefore, that there is good reason to choose 
the standard deviation tT of the sample as a basis for the es
timate of the standard deviation fT of the universe to detect 
Ii change 4fT. 

s. Additional Reason for Choosing Ihe Average X and Standard 
Deviation tT 

We are now in a place to consider an additional and very 
important reason for choosing the average X of a sample to 
detect a change 4X and the standard deviation tT to detect a 
change 4tT. The previous discussion has been limited to the 
assumption that the universe or distribution (58) of standard 
quality is normal. 

In Part IV, however, we saw that, no matter what the nature 
of the distribution function (58) of the quality is, the distri-

, bution function of the arithmetic mean approaches normality 
rapidly with increase in n, and in all cases the expected value 
of means of samples of n is the same as the expected value X 
of the universe. Hence the arithmetic mean is usable for de
tecting a change 4X almost equally well for any universe of 
effects which we are likely to meet in practice. It appears that 
the same cannot be said of any other known statistic. 

We also saw in Part IV that, although the distribution 
function f.,(cr, n) of the standard deviation cr of samples of n is 
not known for other than the normal universe, nevertheless 
the moments of the distribution of variance cr2 are known in 
terms of the moments of the universe. Hence we can always 
establish limits 

within which the observed variance in samples of size n should 

fall more than lOO( I - ~) per cent of the total number of times 

. a sample of n is chosen, so long as the quality of product is 
controlled in accord with the accepted standard. 
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This generality of usefulness is not shared by any other 
known estimate of a' or, more specifically, of a'2. 

6. Choiet of Statistic to Detect Change t:..r in the· Correlation 
CoeJficient r 

In the prenent state of our knowledge of the distribution of 
product moments, the only availabIe basis for detecting a 
change flr is the distribution function (75) of .the correlation 
coefficient in samples of size n. 

7. Choice of Method of Using Statistics 

Having chosen statistics with which to detect variability 
from standard quality, it remains for us to choose the way of 

---~--------------T---

3eTe 

i~--------------------------------+------

--------.---------j~--
SUCCESSIVE SAMPLES OF n 

FIG. lOO.-SIMPLE FORM OF CONTROL CHART. 

using them. We shall illustrate this point by a discussion of 
the ways of using the average X and standard deviation eT of 
samples of size n. 

Making use of the control limits 

e± 3a'e, 

we may construct a control chari such as shown in Fig. 100. 

The occurrence of a value of e outside these limits is taken as 
an indication ofa significant variation from standard quality 
or as an indication of trouble. 
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Instead of using this simple form of chart for each of several 
statistics, we may use a chart based upon the probability of 
the simultaneous occurrence of the different statistics. Two 
possible forms of such charts for two statistics 8 1 and 8 2 are 
shown in Fig. 101. In Fig. 101-11 the occurrence of a sample 
for which the point (81,82) falls outside the shaded area is 
taken as an indication of trouble, the boundary of this area 
having been chosen so that the probability P of falling within 
the boundary is economic. Similarly, in Fig. 101-h, the prob
ability P of falling inside the dotted limits on either side of the 

. , •• 

82 

(b) 

FlO. IOI.-Two TYPICAL FOllMs or CONTROL CHART. 

curve of regression represen ted by the solid curve is economic. 
Such a test is often referred to as the doublettest. 

To construct a chart of the type of Fig. 101-11 requires the 
knowledge of the distribution function felte.C8l , 8 2, n) of the 
two statistics 8, and 82• For the averages and standard 
deviations of samples from a normal universe this function 
rapidly approaches normality as we see from a study of the 
distribution functions of X and 0" of Part IV. Hence we can 
set up correlation ellipses corresponding to a desired probability 
P. In general, however, little is known about the distribution 
function of pairs of statistics, even for the arithmetic mean and 
standard deviation, for samples from other than a normal 
universe. 
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The work of Neyman already referred to in Chapter XIV of 
Part IV makes possible the construction of a chart of the form 
of Fig. IOI.:.b for averages and variances of samples from any 
known universe. This theory also makes it possible to establish 
approximate limits for pairs of averages and standard devia-
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tions. Fig. 102, for example, shows such sets of limits for 
samples of n = 4, n = 100, and n = 1000. This figure is of 
particular interest in that it indicates that such a test may be 
more sensitive' to a change in the functional form f of the uni
verse when the sample is small than when it is large. In other 
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words, such a chart can be made sensitive to changes in the 
function representing standard quality, even though the average 
X and standard deviation f1 of the universe remain constant. 

8. Choice oj Method of Using Statistics-Simple Example 

Table 41 gives forty observed .values of tensile strength of 
steel strand in pounds per square inch (psi). Let us assume 

T.ULa 42.-TENIILB STRENGTH or STEEL STUND 

Company No. I Company No.2 

12.600 13.800 14,.]00 14.550 
13.750 14.250 13.900 14.250 
13.440 13,,]70 140460 13.390 
13.¢o 13.510 140480 14.130 

13.570 13.110 14.170 13.910 

13.550 130400 13.610 13.180 
13.570 13.860 13.990 13.790 
130430 13.440 14.140 13.810 
13.250 13.900 130400 13.260 
13.320 13.910 14.290 14.550 

that the accepted standard quality for the tensile strength of 
this particular product is normally distributed with 

and 
f1 = 440 psi. 

Is there any indication that the quality of product of either 
supplier is significantly different from standard quality in the 
sense that the observed samples may not be considered as 
random samples from standard quality? In what follo,..!s, we 
shall describe three different ways of using the statistics X and IT 

to answer this question. 
A. One way is to construct control charts for averages and 

standard deviations of samples of twenty with the following 
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limits. Of course, a is 440C2 where the value of C2 is that given 
in Table 29 for n = 20: 

- IT 440 {13,245 X± 3_ ;-- = 13,540 ± 3_ /- = , 
v n v 20 13,835 

and 
- IT 440 {214 
IT ± 3 _ /- = 42:] ± 3 _ r-: = . 

v 2n v40 632 

This is done in Fig. 103. Using this method, we assume that 
there is an indication of the existence of significant deviations 
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FIG. I03.--ONE FORM OF"CONTROL CHART TEST. 

II: 

from standard if the observed values of either average or stand
ard deviation or both for a given sample fall outside of the 
control chart limits. 

The observed values of average and standard deviation for 
the two samples of twenty are represented by the black dots. 
We take the fact that one of the averages falls outside its limits 
as an indication of lack of control in respect to standard 
quality. 
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B. Another.way of testing whether or not the two samples 
of twenty came from standard quality is to construct a control 
chart of the type shown in Fig. 101-a. S·nce for samples of 
twenty from a normal universe I the correlation surface of X 
and fT is approximately normal, we may construct the ellipse 
which should include, let us say, P = 99.73 per cent of the 
observed pairs of values of X and fT. Doing this for the case 
in hand, we get the results shown schematically in Fig. 104. 
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Flo. 104.-ANOTHER CoNTROL CHART TEST. 

The fact that one point is outside this ellipse is taken as an 
indication of trouble. 

C. A third way of testing whether or not the two samples 
came from standard quality is to test whether or not the dif
ferences 

and 
I XI - X2 1 = 'f28 ·50 , 

1111 - 1721 = 71•28 

are likely to have occurred if both samples came from standard 

I Cf. Chapter XV. Part IV. 
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quality. Obviously a test of this nature comparable with the 
previous t~o is to consider the occurrence of an absolute dif
ference in averages greater than 

C1' 440 
3~ = 3_ /- = 417'42 , n V 10 

2 

or in standard deviations greater than 

C1' 440 
3_ r= = 3_ /- = 295.16 
vnv 20 

as indicative of trouble. Again we get a positive indication. 

9. Choice of Method of Using Statistics-Continued 

Let us look at the results obtained by the three different 
tests just described. It will be seen that the first test indicates 
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trouble when a point (X, a) falls outside the dotted rectangle 
in Fig. 105, whereas the second test indicates trouble when a 
point falls outside the ellipse. _ It is easy to see that the two 
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tests are inherently different. In the first place the probabilities 
associated with the areas of the rectangle and ellipse are 0.9946 
and 0.9973 respectively. More important, however, is the fact 
that the two tests could not be made to exclude the same region 
even if the areas were equal. 

Now the third test is basically different from the other two 
in that it indicates trouble when either the distance a or b ex
ceeds certain limits. 

Since, as in the simple illustration of the previous paragraph, 
experience indicates that the three tests so often give consistent 
results, since the third test is obviously very difficult to apply 
when we have many samples of size n, and since the second 
test is more difficult to apply than the first although it gives 
approximately the same results, the first test appears to be the 
practical choice. 

10. Choice of Statistic/or Deteeting Change in Universe of Effects 

Let us consider next the problem of detecting a variation 
from standard quality represented by a change of cause system 
from one which gives standard quality, say 

Jy = f(X, lo .. 102, ••• , >.;, .•. , l.m')JX, (58) 

to one which gives something different from standard and 
represented by some unknown distribution of the form 

Jy = fleX, lo' .. 1o'2, ••• , lo'i, ••• , lo'mn)JX. 

P~rhaps the single statistic most sensitive to a change of 
this type is the x2 function. Subject to the limitations set forth 
in Part IV, we may divide the original distribution into any 
number of cells and calculate x2 for samples of size n grouped 
into the chosen cells. A control chart for x2 may then be con
structed by making use of the known values of X2 and ('fl. In 
general, it is desirable to use a grouping which gives as nearly 
as possible equal probabilities for all cells. One difficulty is 
that the x2 controJ chart can only be used for comparatively 
large samples. 
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I I. Detection of Failure to Maintain Standard !!2,uality 

Thus fiu. we have· considered the comparatively simple 
problem of detecting a change of a given kind and amount in 
the effects of a constant cause system, such as a change .::1X in 
expected value or a change .::1a- in the standard deviation of the 
effects of the cause system, everything else remaining fixed. In 
practice, however, we never know that the quality has changed 
from standard in a specific way. What we do is to take a sample 
of n to determine whether or not the product has changed. It 
mayor may. not have changed one or many times within the 
period in which the sample of n is being taken. Our success 
in detecting trouble~in such a case depends among other things 
upon the way in which the sample is taken, or, more specifically, 
upon whether or not th~ sample of n comes from one or more 
constant systems of causes. 

For example, in testing whether or not the tensile strength 
of strand, Table 42, had been controlled in accord with standard 
quality, we divided the data into t.wo groups of twenty obser. 
vations, one group from each of the two suppliers. Of course 
we could have tested in a similar way the hypothesis that the 
forty observations came from a standard production process. 
Thus, the control limits in pounds per square inch (psi) on 
average X and standard deviation q of samples of forty from 
product of standard quality' are respectively: 

13,540 ± 3 44
0 

= {13,33
1 

V;; 13,749 

440 {284 
432 ± 3VSc; = 580 

The fact that the observed average of the forty values of tensile 
strength falls outside the control limits would be taken as 
evidence of lack of control. Hence, no matter which test had 
been applied in this case, the result would have been the same. 
It may easily be shown, however, that the results of two such 
tests may not be the same. That is to say, if trouble does exist 
in that the product as tested by a sample of n comes from two 
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constant systems of causes in the sense that nl pieces come 
from a cause system with constants 

Xl and crh 

and n2 pieces come from another system with constants 

X2 and cr2, 

it is possible that a test for trouble using the total sample n 
mayor may not give an indication of trouble. The same is 
true of the test based upon the use of the samples nl and n2. 
Furthermore, one test may be positive and the other negative. 

Therefore it might appear that it makes little difference 
how a set of n data representing lack of standard control is 
grouped before applying the test for detecting trouble of this 
kind. In other words, this would mean that an inspector trying 
to detect variation from standard quality would be able to do 
so equally well irrespective of whether or not he was able to 
divide the data in a sample of size n into subgroups corre
sponding to different constant systems of causes. To draw 
such a conclusion would be utterly misleading and against what 
is perhaps the most generally accepted step in the scientific 
method, that is, classification. Assuming for the moment, how
ever, that in the long run a test using the whole group of n 
data as a unit is just as likely to detect trouble as one using the 
subgroups of data obtained by accurate classification, there still 
would be a definite advantage in classifying the data before 
applying the test. Obviously, the ultimate object is not only 
to detect trouble but also to find it, and such discovery natu
rally involves classification. The engineer who is successful in 
dividing his data initially into rational subgroups based upon 
rational hypotheses is therefore inherently better off in the 
long run than the one who is not thus successful. 

For such an engineer the statistical tests described in this 
chapter constitute a powerful tool in testing his hypotheses 
and in determining the extent to which an investigation must 
be carried in order to check beyond reasonable doubt whether 
or not a given hypothesis is justified. 
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Suppose, for example, that an engineer wishes to determine 
how large a sample is required to detect variation from standard 
quality by an amount AX in the expected value, where it is 
assumed that the functional form f and all other parameters 
remain the same. It is a simple matter to show that the 
required sample size n is given by the solution of the equation 

_ CT 

AX = 21 Viz' 

where I is generally taken as three for reasons already set forth. 
In a similar way one finds that the number required to 

detect a change only in standard deviation and of an amount 
ACT is given by the solution of 

CT 
ACT = 21 _ ~. 

v2n 

For example, the size of sample determined from (89-'l) is 
such that the probability of detecting trouble of the nature of 
a change only in X and of an amount AX is approximately 

. 0.99 if 1= 3. We can go even further and say that with this 
sample size the probability of detecting trouble in the form of 
a change only in X is greater than 0.99 if the shift is greater 
than AX used in (89-'l)' 

A similar interpretation may be given to the value of n 
derived from (8~). • 

Thus we see how statistical theory becomes a useful tool 
after we have taken the scientific step of classification of data 
into rational subgroups. Moreover we see that, even though 
classification is not as it should be, statistical tests often indicate 
the presence of trouble. Of course, these advantages are 
attained with a knowledge that we shall not look for trouble 
when it does not exist more thal.1 a certain known fraction 
(I - P) of the total number of times that a sample of size n is 
observed. 



CHAPTER XX 

DETECTION OF LACK OF CONTIlOL 

I. Th~ Pro"/~m 

In the previous chapter we considered the comparatively 
simple problem of detecting lack of control in respect to an 
accepted standard distribution. Now we shall consider the 
problem of detecting lack of control in the sense of lack of 
constancy in the unknown cause system. To make clear the 
inherent difference in these two problems, let us consider once 
more the data on tensile strength of strand as given in Table 42. 
The three tests of the previous chapter merely served to in
dicate whether or net it is likely that the data came from a 
Ipteifitd constant cause system. The corresponding question 
to be considered now is whether or not they come from som~ 
constant cause system of unknown functional form f, unknown 
average X, and unknown standard deviation fT. 

The tests of the previous chapter made use of assumed 
known values of X and fT. The corresponding tests which we 
can use in this chapter must involve estimates X and (I, say, of 
the unknown average X and standard deviation fT of the objec
tive but unknown distribution representing the condition of 
control, if it be controlled. 

Two criteria to guide us in making the estimates X and (I' are: 
d. The estimates X and (I used as a basis for detecting 

lack of control must be such that, if the quality from which 
the sample of size n is drawn is controlled with an average X 
and a standard deviation fT, then the following two statistical 
limits should be fulfilled: 

I. X = Xl ._ao 
I. tT=fT ._ao 

301 
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B. Insofar as possible, the estimates should be chosen so 
that, if the quality is nC:lt controlled, the estimates X and 0" 

actually used shall be those which will be most likely to indicate 
the presence of trouble or, in this case, lack of constancy in 
the cause system. 

2. Choice of Method of Estimating X and IT 

Let us start by considering estimates X and 0" in psi derived 
from the data of Table 42 in two different ways as follows: 

(a) Let 

and 

(D) Let 

and 

40 

~Xi 
X = ~ = 13,763.75, 

40 

( 

40 )~ ~ (Xi- X)2 
i-I 

where 0"1 and 0"2 are the standard deviations of the first and 
second groups of twenty observed values and where C2 is the 
factor given in Column 3 of Table 29. 

Obviously the condition (90) is satisfied by the estimates (a) 
and (D). It may easily be shown, however, that if the sub.
groups are rational, then the estimate 0" of type (D) is on the 
average less than the corresponding estimate of type (a). 

Therefore, under .these conditions criteria involving the use 
of estimates (0) will in the long run detect trouble more 
often than similar criteria involving estimates (a). Hence it is 
reasonable to choose method (D) for estimating X and 0". 
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3. Choiu of Ttst Critn-ion for Detecting LAck of Control 

Having chosen a pair of estimates X and tT, we may use them 
in any criterion in which we may use X and fT. As an illus
tration let us apply the three criteria of the previous chapter, 
making use of X and (f calculated as in (6). The results of the 
application of the first two criteria are shown graphically in 
Fig. 106. Obviously both of these criteria give a negative 
indication of lack of control. Comparing Fig. 105 with Fig. 106 
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we see that, whereas one point is out of limits in Fig. 105, 
neither point is out in Fig. 106. This is interpreted as meaning 
that, although the observed data are consistent with the 
assumption of tlte existence of a controlled state upon the basis 
of the criteria used, the equation of control is likely not the 
accepted standard used in the previous chapter. 

Now since the difference 428.50 psi in averages exceeds 

3 _ ~ = 379·9 psi, the third test criterion gives indication of 
vn/2 

lack of con trol. . 
As previously explained, this is the kind of situation which 
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often arises in which the indications of two criteria are not 
the same. Our decision in such a case involves the use of 
judgment. In this particular instance and for reasons outlined 
in the previous chapter, we choose the first type of control 
chart test corresponding to the rectangular limits of Fig. 106. 

With the above discussion as an introduction, we shall now 
describe criteria which have been found to work successfully in 
the detection of lack of control.· -

4. Criterion I-General 
Given a set of n data to determine whether or not they 

came from a cons tan t system of causes, we take the following 
steps: 

A. Divide the n data into m rational subgroupsl of nI, n2, 
•.. , ni, ••• , nm values each. 

B. For each statistic to be used, use estimates e and eTe 
satisfying as nearly as possible conditions A and B of Para
graph I. 

C. Construct control charts with limits 

e ± 30"9 

for each statistic. 
D. If an observed point falls outside the limits of this chart, 

take this fact as an indication of trouble or lack of control. 

5. Criterion I-Attributes 
In this case we make use of a control chart with limits 

P ± 30"p 

where p is the fraction defective in the total set of n observations 
and 

Up =~, 
n 

where Ii is the average sample size. The lower limit is taken as 
zero if p - 3ITp S o. 

1 Note in Fig. 55 the difficulties encountered if the data are not divided into 
rational subgroups. 
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Examplt: Carrying out these computations for the Type A 
data of Table I, we get the following results: 

Month 

January. 
February. 
March 
April .. ..... 

'" p ---
" 

0.0076 
0.0082 

0.0117 

0.0050 

Month 

May ........ 
June ......... 
July ......... 
August ....... 

_ !:nl 
p - !:n .. 0.0109, 

P + JO'p - 0.0'150 , 

'" p =-
" 

0.0301 

0.0060 

00076 
0.0051 

Month 

September .... 
October ...... 
November .... 
December .... 

P -30'p .. - 0.003'1 (hence taken to be 0.0000). 

'"~ p =--

" 
0.""48 

0.0~80 

0.0111 

0.0059 

With this information we get the control chart of Fig. 44. 
The fact that points fall outside the limits was taken as in
dicating the presence of assignable causes of variability, at least 
some of which were later discovered, thus justifying the indi
cation of trouble given by the test. 

6. en/trion /-17 ariablts-Largt Samplts 

Given a series of n observed values Xl, X 2, ••• , Xi, ... , 
X" divisible into m rational subgroups of nl, n2, ... , ni, ... , 
n", values each, we make use of control charts with limits 

where X is the average of t~e n observed values and 
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TABLE 43.-TYPICAL ApPLICATION OF CIlITEIUON 

Frequency 

July Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June ---- .-------- --------• • 4 I 
I I 3 • I 1 

• 5 12 1 5 9 
3 I 5 10 '4 19 IS I~~ 55 10 I I2 59 49 48 52 161 130 116 

141 90 119 99 157 152 137 125 221 168 146 .06 
168 .38 .38 171 179 ·49 171 195 239 157 171 215 
·49 .65 213 312 302 359 320 330 281 241 237 3.' 
305 335 332 366 327 414 285 309 254 215 243 318 
231 313 238 2J4 161 117 162 140 IJ4 132 150 153 

64 46 3 3 II 9 13 27 49 100 106 79 
26 • I 2 4 24 10 8 

9 ." ....... I I 4 
2 --------------------------------------------

1.·50 

July 

-1 .• 98 
0.829 

-0.009 
2.729 
1,250 

1.300 1.150 1,200 1,200 1.350 1,150 1,200 1.400 

Frequo""y Dis/,ibu/io1l./or Da/a 0/ Twol .. Polygons of Fig. 19 

Aug. Sept. Oct. Nov. Dec. Jan. Feb. Mar. Apr. -------------------------------
-1.·50 -1.368 -1.325 -1.504 - 1.512 -1.490 -1.505 -1.165 -1.550 

0.67. 0.673 0.623 0.113 0.638 0.110 0.754 0.923 0.985 
-0.439 -0.185 -0.170 -0·541 -0.490 -0.573 -0.711 -0.353 -0.093 

3.287 4.854 4.208 3.143 3.0·5 3.673 4.566 3.331 2.637 
1.300 1,150 1,200 1,200 1.350 1.150 1.200 1.400 1.200 

Stotis';" lor abOfl' FreQu,ncy Distributions 
- .. {X+3" .. --1.408 

= 0.022.04 X control bmlt. X- ... - 3"g- -1.541 

11k -= V~ =- 0.069171 

" 
"8. = ~ - 0.138343 

11 

{ "+3"" - 0.833 " control limit. 
,,- 3G'a - 0.739 

" control limits { It + 3"t - -0.211 
" - 3"k = -0.63' 

II. control limits {II. + 3"110 = 3.816 
II. - 3"11. = 2.986 

• ii - 1,254 or average sample lize for 12 months. 

1.200 1.200 1.450 

May June Total -----------
-1.501 -1.571 -1.475 

0.921 0.862 0.786 
-0.191 -0.192 -0.424 

'.390 I •. 519 3.401 
1.200 1.450 
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"i being the standard deviation of the ith rational subgroup. If 
the sizes of the subgroups are practically equal, we have 

If the sizes of the subgroups are not equal, the limits for a given 
subgroup i must be made to depend upon the sample size nj for 
that group. 

Obviously, the condition that the statistical limit 

is not satisfied when nj is small. It seems reasonable to believe 
in the light of our previous discussion of the distribution func
tion of the standard deviation that, so long as the minimum size 
of a subgroup does not fall below, let us say, twenty-five, the 
estimate" given by (91) approximately satisfies this limit con
dition. 

If the rational subgroups contain a large number of observa
tions, we may also make use of control charts for the skewness k 
and flatness P2. 

Example I: Table 43 gives the observed frequency distri
butions and the control limits for the twelve monthly records 
of quality shown previously in Fig. 19. Fig. 107 shows the 
results in graphical form. The fact that some of the points fell 
outside control limits was taken as an indication of lack of 
control for which the assignable causes were later discovered. 

Example 2: Let us apply Criterion I to the data of Fig. 21 

to determine whether or not there is any indication that the 
depth of penetration for the seven treating plants is controlled. 
The requisite computations are given in Table 44. 

In this case the sample sizes are too small to justify the use 
of k and P2 and the sizes differ so much among themselves that 
it is necessary to use variable limits as shown in Fig. 108, Lack 
of control, the causes of which were later discovere~ is indicated 
by both the averages and correlation coefficients. 



Company 

I 
2 
3 
4 

~ 
7 

Total 

TABLE 44.-TYPICAL ApPLICATION OF CRITERION I TO CORRELATION COEFFICIENT 

X = Dep'th of Sapwood in inches 
Y = Depth of Penetration in inches 

Number of Number of X y 
Poles Borings tTx tTy 

48 350 3.5611 0.6060 1.8966 0.6326 
50 239 3. 1552 0.6922 2.0795 0.7091 
50 316 2.8959 0.6667 I. 7016 0.5925 
47 323 3.3963 0.7093 2. 0653 0.7153 
48 346 3. 6107 0·5935 1.9642 0.6865 
50 241 3.4012 0.5987 2.0320 0.7546 
50 346 3. 1850 0.6385 1. 6832 0.6563 

343 2161 3.3242 0. 6863 1.9053 0.6911 

iiX = 0.6436 
·ox = 0.6422 

O'y = 0.6781 
·oy = 0.6736 

Statistics for Data of Fig. :11 

Calculation oj Correiation Control Chart-Company It: 
1- r,l 1-(0.2597)1 

tT, = --- = = 0.050 vn, - I vJ49 

{
r + 37 , = 0.415 

Control limits 
r - 37, = 0.117 

• Weighted Average. t Limits for other six companies calculated as for Company I. 

rXY 

0.2597 
0.4403 
0.4913 
0.1584 

-0.1815 
0.4181 
0·3855 

0.3926 
rx =0.2817 

*rXY = 0. 2656 

w o 
00 
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Examplt J: As a third example, let us apply Criterion I to 
a let of data which may reasonably be assumed to be controlled 
and see if the result of the test is consistent. For this purpose, 
we may make use of the four observed distributions of 1,000 

given in Table 23. Since these data were obtained under con
ditions as nearly controlled as we may reasonably hope to 
attain, all observed points should fall within the limits. Fig. 109 
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shows that they do. The positive indication of control is con
sistent with the facts as we believe them to be. Of course, as 
previously noted, a few points should fall outside control limits 
in the long run even though there is no lack of control. 

7. Crilt'1'ion /-PariabltS-Small Samples 

Given a series Xl, X 2, ••• , Xi, ... ,Xn of n observed values 
of X that may be divided into m rational subgroups of equal 
size, control charts with limits 

X == 3D'g and i == 3D', 
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constitute what we shall term the Criterion I test for small 
samples. where _ _ _ 

X"" XI +X2 + ... +Xi+ ... +Xm 
m 

i _~~I~+~~~2~+~.~.~._+~~~i~+_.~.~.+~~~m 

if 
m 

II --. 
(2 

In these expressions (2 is the factor given in Table 29, Xi is 
the average, and IIi the standard deviation of the ith subgroup. 
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Example I: The problem to be considered first is one pre
viously reported in the literature.' It is to determine whether 

I Appendix to report of Committee B1XV of the American Society for Testing 
Materials, published in the Proem/i"Ks of that Society for 1929. 
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or not the tensile strength in psi of a given alloy as produced 
by five different companies is controlled where five tests on as 
many pieces of product from each of five companies gave the 
following results in pounds per square inch: 

Companies 

C D G W S 

Average X ............. 29,314 24,660 28,210 31,988 34,332 
Standard Deviation" ... 1,198 2,434 528 1,243 1,006 

The details of the method of calculating the control limits 
are shown below: 

X 29,314 + 24,660 + 28,210 + 31,988 + 34,332 
= 5 = 29,701 

- 1,198 + 2,434 + 528 + 1,243 + 1,006 8 
u = = 1,2 1.8 

5 

q 1,281.8 6 
u- =-- = = 82 

X C2Vn 0.8407Vs 

X + 3ux = 31,747 

X - 3ux = 27,655 

iT 1,281.8 
UtI = ------= = . = 482 

C2V 2n 0.840700 
U + 3u" = 2,728 

u - 3u" = - 164 (taken as zero) 

The corresponding control charts, Fig. 110, indicate lack of 
control or significant differences between the tensile strengths 
of this alloy manufactured by the different suppliers. 

Example 2: Let us next consider the set of two hundred and 
four measurements of insulation resistance"previously given in 
Table 2 of Part I. In this case there was no basis for dividing 
the data into rational subgroups other than that it is reasonable 



DETECTION OF LACK OF CONTROL JIJ 

to believe that the cause system may have changed in the course 
of taking the measurements. Accordingly we divided the data 
into groups of four, starting with the first four and continuing 
in the order in which they were taken. The control chart for 

~ ... ., -------_ ... _--
.,000 

b 

~ '.000 .. ----------• : IO.OOOF---...-_____ _ ~ 2,000 .. 
",000 • 

1,,000 

o 

~ • ---------- • 

~bw ~ C ~bw~ 
CO"PANIES CO"PANIES 

Flo. "O.-COJITaOL CHAaT roa SMALL SAMPLES SHOWINO LACK or CONTROL. 

averages shown in Fig. 74 and that for standard deviations 
shown in Fig. II J indicate lack of control. As was pointed out 
in Part I the causes for lack of control were found and removed. 

The reader may question why the original data were grouped 
into subsamples of four instead of some other number. A little - • 
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FlO. 1I1.-CoNTaOL CHART rOR STANDAIlD DEVIATIONS or SAMPLES or FOUIl

DATA or TABLE 1. 

consideration will show that there is nothing sacred about the 
number four although there are several reasons why it may be 
the most satisfactory when there is no a prior; knowledge to 
justify any other sample size. 



314 ECONOMIC CONTROL OF QUALITY 

Obviously, if the cause system is changing, the sample size 
should be as small as possible so that the averages of samples 
do not mas~ the changes. In fact single observations would 
be the most sensitive to such changes. Why then do we not 
use a sample size of unity? The answer is that if we do, we are 
faced with the difficulty of choosing the standard deviation to 
be used in the control charts. Of course, we might use the 
standard deviation (f of the entire group of observations but, 
in doing so, we would find that (f = 465.21, a value distinctly 

larger than that of ~ = 328.26. A little consideration will 

show that, in general, this condition will occur in the long run 
whenever the cause system is not constant in respect to the 

- (f 
expected value X, although the expected values of (f and -

C2 

are equal when there is no change in the cause system. Thus 
the test in which we would use the standard deviation (f of the 
whole ,group of n observations is not so sensitive, in general, 
as the one proposed in which we divide the data into small sub
groups in the order in which they were taken. In fact, the 
sensitivity of the test will increase, in general, with decrease 
in subsample size until the size of the sample is such that the 
data in any given subgroup come from a constant system of 
chance 'causes. In the ab.sence of any a priori information 
making it possible to divide the data into rational subgroups, 
there would be some advantage therefore in reducing the sub
sample size to unity. To do so, however, would obviously 
defeat our purpose since we could not then obtain an estimate (f 
to use in the control charts. Hence we must choose some sub
sample size greater than unity. Sizes 2 and 3 offer some dif
ficulties in the way of computation of (f and so we go to a sample 
of four. 

Now we are in a position to see how important it is to record 
. the data in the order in which they were taken when we have 

no a priori basis for dividing the data into rational subgroups. 
If this is not done, there would obviously be no sense in trying 
to apply Criterion I. 
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8. Use oj Cnltrion I-Some Commenls 
In the practical application of Criterion I. particularly in 

the case of small samples. certain questions arise. One of 
these is: How many subgroups of four must we have before 
we are justified in using Criterion I? That this question is 
important is at once apparent because the expected probability 
of a atatistic falling within the ranges established by Criterion I 
approaches the economic limiting value only as the total 
number n of observations approaches infinity. This difference 
in expected probability. however. even for two subsamples of 
four is likely less than 0.02 and certainly less than 0.05. Hence. 
the effect in the long run of using Criterion I when the total 
number of observations is small is to indicate lack of control 
falsely on an average of perhaps five times in 100 trials instead 
of three times in. let us say. 1.000 trials which it would do when 
the total number n is large. In almost every instance we can 
well afford to take this added precaution against overlooking 
trouble when the total number of observations is small. It 
appears reasonable. therefore. that the criterion may be used 
even when we have only two subsamples of size not less than 
four. In this case. of course. we may wish to apply additional 
tests although. as we have already seen in the earlier part of 
this chapter. such tests will perhaps in the majority of cases 
give consistent results.1 The principal thing to be kept in mind 
is. however. that the main purpose of such a criterion is to 
detect lack of control in a'continuous production process where 
we have a whole series of samples so that the question as to the 
minimum number of subsamples becomes of minor importance. 

We may also ask how the indications of Criterion I depend 
I In work not yet published, F. W. Winten has investigated the efficiency o( this 

criterion for the case o( small samples (rom two normal subgroups, assuming that the 
data have been divided objectively. In other words, he has determined the probability 
that the use o( Criterion I with a given sample size will detect a difference of a given 
amount in the averages o( two objective subgroups. For example, he has shown that 
the efficiency varies all the way from 4 per cent (or a sample o( four and an objective 
difference o( " (the common standard deviation o( the objective subgroups) to 97 per 
cent (or a sample o( twenty and an objective difference o(:Iv. On the other hand the 
probability that this Criterion will lead us to look (or trouble needlessly is, under the 
lint condition, .0085, and under the second, .00014. 
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upon the universe from which the sample is drawn, especially 
in the case of small samples. It will have been observed that 
the factor C2 used in setting limits for standard deviation is 
based upon the assumption that the samples are drawn from 
a normal universe whereas, in general, we know that this con
dition is not rigorously fulfilled. Furthermore, we have seen 
that the distribution function of both the average X and stand
ard deviation. (f of samples of a given size depends upon the 
nature of the universe. Hence, the probability associated with 
the limits in the control charts for the average X and standard 
deviation (f depends upon the universes from which the samples 
were drawn. 

Of course, the distribution of averages, even for samples of 
four, is approximately normal independent of the universe so 
that the probabilities associated with control charts for averages 
are closely comparable irrespective of the nature of the uni
verses. This is not true, however, in respect to the distribution 
of standard deviations. 

We may get around this difficulty partly by using the control 
chart for the expected variance of the universe since, as we have 
seen, the expected value is related to the variance of the 
universe in a known manner. This makes it possible to establish 
the base line of the control chart for variance-something which 
cannot be done for the standard deviation unless the functional 
form of the universe is known. On the other hand, the stand
ard deviation of the variance involves the flatness P2 of the 
universe and hence cannot be estimated with great accuracy 
in most practical cases. 

Under these conditions, it seems reasonable to believe 
that comparatively little can be gained in most cases by making 
use of the variance instead of the standard deviation. In this 
connection, it is ofinterest to cite a typical instance of the way 
in which the control chart method, making use of averages and 
standard deviations for small samples, gives indications con
sistent with facts when we apply the test to samples of four 
drawn from either of the three types of universes previously 
described. For example, Fig. 112 shows the results of the test 
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applied to twenty-five samples of four from each of the three 
experiment~ universes. In each case all of the points are within 
the limits as we should expect them to be under the controlled 
conditions supposed to exist in drawing these samples. The 
results of the test are obviously consistent with the facts 
assumed a priori to be true in this particular instance. 

9. Criterion II 

We shall close this chapter with a description of another 
criterion and illustrate its use by application to the 204 data 
of Table 2. Having the data divided into m subgroups of size n, 

we calculate the ratio 11 as indicated in the data sheet of 
CTd 

Table 45. If the ratio is greater than three, this fact is taken 
,to indicate lack of control. We shall call this test Criterion II. 

This test provides a means of judging the nature of the 
conditions under which the sampling has been done. Thus, 
if all samples are produced by the same constant system of 
causes, or, in other words, if the sampling has been done in 
what we term Bernoulli fashion, then the expected value of d 
is zero. If, however, conditions change between each observa
tion of a subgroup but the same set of changes occur in the 
process of obtaining each sqbgroup of observations, then the 
expected value of d is greater than zero, and in such cases the 
sampling is said to be done in Poisson fashion. Or again, if 
conditions remain constant for any subgroup of observations 
but change in anyone of a finite number of ways from subgroup 
to subgroup, then the expected value of d is less than zero and • 
the sampling is said to be done in Lexian fashion. 

However, even though the sampling is actually done in 
Bernoulli fashion, the observed value of d may be positive, 
zero, or negative due to sampling fluctuations. Hence, we must 
have some way of judging when the deviations of d from zero 
are sufficiently great to indicate either a Poisson or a Lexian 
selection of samples. 

The standard deviation of d based upon Bernoulli sampling 
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TULa "S.-DATA SHUT roa CI.ITEUO" II-DATA or TABLE :a 

Calculation of M 

Sample 
Number 

I 

:a 
3 

51 
Z 
Av. 

·4 

Number of observations N - 200f 
Size of subgroup" = .. 

Number of .ubgroups m - 51 

Average X; X;, 
of Sample 

..... 30. 0000 19.6'4.900. 0000 

".372 .5000 19.118.756.2500 
3.h 7·5°OO 14.649.756 . :a 500 

5.100 .0000 16,0 I 0,000 . CXXlO 

2:a9",07·0000 1.038•11 9.07:a·07OO 

""'98 . 1765 20.355.275 . 92 :a9 

:; Xii 

Variance lIit 

of Sample 

1 .. 9.51:a·5°OO 
7.606 . 2500 

17.656 . 2500 

1I.:a5°· 0000 
4.83:a.876.105O 

94.76:a. :a766 

"X" -~ - go = 2°.35P75·9:a:a9 - (4 ... 98. 1765)" .. 
.. 
l: ";' - '-I "I _ - .. - ". 94.76'1.2766 

t1". -"-CJi - ~",,_I =- 370.12:a.48ro 
II_I m-I X 

provides such a measure of significance. The formula for 
vel was obtained upon the assumption that the samples had 
been drawn from a normal universe, in which case U2 and vr 
are uncorrelated. If the universe is not normal, this formula 
for vel will not necessarily give the correct result, although from 
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the viewpoint of detecting lack of control this simply means 

that the probability that Idl will exceed 3 differs somewhat 
rJ'd 

from 99 per cent, or, in other words, we may on the average 
look for trouble a little more often 01' a little less often than 
one time in a hundred when it actually does not exist. 



CHAPTER XXI 

DETECTION OF LACK OF CONTROL-CONTINUED 

I. Introductory Statement 

In the previous chapter we considered the problem of 
detecting lack of constancy of a cause system or the presence 
of an assignable cause of Type I. In this chapter we shall 
consider the problem of detecting the presence of a predomi
nating cause or group of causes forming a part of a constant 
system. Such a cause will be referred to as an assignable cause 
of Type II. In the latter part of this chapter we shall consider 
what is perhaps the only available method for detecting the 
presence of assignable causes when the data are such that 
they cannot be grouped into rational subgroups and when no 
inf<>rmation is available other than the observed distribution. 

Assuming that the variable X satisfies the equation (58) 
of control, how can we detect the presence of a predominating 
cause or group of causes? As a basis for our consideration of 
this question, let us return to the picture of a constant system 
of chance causes presented in Part III. There we assume that 
such a system is composed of, let us say, m ultimate independent 
causes 

producing effects which compound linearly. It will be recalled 
that we do not presume to be able to describe anyone of these 
m causes. The most that we can usually hope to do is to put 
our fingers on some secondary cause made up of several of the 
independent contributing causes. 

To make this point clear, let us think of the unknown group 
3:11 
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of m causes of error in some physical measurement such as 
that of the. coefficient of expansion of a steel rod. Some of 
the secondary or macroscopic causes of error would be temper
ature fluctuations, non-homogenous heating of the rod, etc. 
Such a cause obviously includes a group of the elementary 
causes. We may represent this situation schematically as 
follows: 

Cl, C2,· • •. , 1 Ci, Ci+h Ci+2, . .. , Ci+j I, ... , Cm. 
Macroscopic CaUBe Y 

With this picture in mind, two methods of detecting the 
presence of an assignable group of causes suggest themselves. 
They are the well-known Method of Concomitant Variation 
and the Method of Differences of elementary logic. The first 
method is to vary the cause Y and see if we get an accompanying 
change in the resultant effect of the cause system. The other 
method is to remove the cause Y and observe whether or not 
the resultant effect is modified. 

In the general case where X is a chance or statistical variable 
subject to sampling fluctuation, the effect either of varying the 
cause Y or of removing this cause must be shown to be sig
nificant in the sense of being greater, than can reasonably ·~e 
attributed to sampling fluctuations in the variable X. 

It should be noted that both of these methods require that 
the analyst be successful in choosing the macroscopic cause 
which is findable in the objective sense. Hence, in the appli
cation of such a test, one must make full use of his powers of 
imagination, supposition, idealization, comparison and analogy 
in the utilization.of all available data. 

2. Criterion III 

Let us assume that we are to discover whether or not there 
is an assignable or predominating cause of variability In a 
variable X satisfying the equation of control, namely, 

dy = f(X, ~1, ~2; ... , ~, ... , ~')dX. (58) 
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The application of Criterion III involves three steps: 
(A) Pick out some controIIed variable Y which mayor may 

not be an assignable cause of Type II. 
(B) Obtain n simultaneously observed pairs of values Xl YI , 

X 2Y2 • •••• XiYi • ...• XnYn and determine the cor
relation coefficient r. 

(C) If r lies outside the limits 

3 
O%.yn_I' 

take this fact as an indication that Y is an assignable 
cause. 

If the correlation between Y and X is normal. we see that 
Criterion III indicates that there is a significant degree of 
commonness of causation or. in other words. that the observed 
correlation coefficient r is greater than can reasonably be 
attributed to sampling fluctuations where. as before, we choose 
sampling limits corresponding to three times the standard 
deviation of the statistic used in measuring the fluctuations. 
Since. as we have seen in Part III, there is reason to believe 
that the correlation between two controlled variables is at least 
approximately normal. we may assume that the positive in
dication of Criterion III is indicative of a significant degree of 
commonness of causation between the two variables. and to 
this extent Y may be considered to be in most cases an assign
able cause. 

From what has been said about the sampling fluctuations 
of the correlation coefficient, it is obvious that. if small samples 
are to be used. it is preferable to state the test in terms of the 
variable z given by (77). If z, as given by this equation, lies 
outside the range 

3 
o%_~, 

v n -3 

the criterion is said to give a positive indication that Y is an 
assignable cause in the sense of our present discussion. So long 
as the sample size n does not exceed twenty-five, it is perhaps 
better to use the z transformation. 
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Example I: We shall consider a case in which it is very 
desirable to con trol the hardness of a particular kind of appa
ratus. In this instance, each piece of apparatus consisted of 
two parts welded together, the materials for the two parts 
coming from different sources. Table 46 gives the hardness 
measurements on each of the two parts for fifty-nine pieces of 
this apparatus. Is there any evidence of the existence of an 
assignable group of causes of variability in hardness? 

TABLE 46.-HARDNESS MEASUREMENTS ON WELDED PARTS 

Hardness Hardness Hardness 
Sample Sample Sample 

Number 
Part I Part 2 

Number 
Part I Part 2 

Number 
Part I Part 2 

-------
I 50 .9 44·3 21 48.7 36.8 41 47·9 36.7 
2 44. 8 25·7 22 44·9 36.7 42 45. 8 35·3 
3 51.6 39·5 23 46.8 37. 1 43 47·9 35·5 
4 43. 8 19·3 24 49. 6 37. 8 44 45. 8 35. 1 
5 49.0 43. 2 25 51.4 33·5 45 49. 1 33. 2 
6 45·4 26·9 26 45. 8 37·5 46 50 .0 36. I 
7 44·9 34·5 27 48.5 38.3 47 47·3 35·9 
8 49. 0 37·4 28 46.2 30.7 48 46.9 35. 2 
9 53·4 38.1 29 49·5 33·9 49 49. 1 38.1 

10 48.5 33. 0 30 50 .9 39. 6 50 48.2 35·9 
II 46.0 32.6 31 47·5 .36.9 51 46,9 33. 8 
I2 49.0 35·4 32 45.0 37·5 52 49. 0 37. 6 
13 43·4 36.2 33 • 46.6 32.4 53 44·7 35·5 
14 44·4 32.5 34 48.0 39. 8 54 51.7 36.2 
IS 46.6 31.5 35 44·5 35·3 55 45. 2 34·4 
16 50 .4 38. I 36 48.5 38.3 56 44. 8 27·5 
17 45·9 35. 2 37 46.0 38. I 57 42.4 31.1 
18 47·3 33·4 38 48.9 35.0 58 48.5 36.8 
19 46.6 30.7 39 46.3 34·9 59 50 .1 34·4 
20 47·3 36.8 40 46.1 32.9 

Now the only common source of causation was the heat 
treatment given the apparatus after the two parts were welded 
together. Hence the variability in the heat treatment might 
be an assignable cause. If it is, we should expect .to find that 
the correlation coefficient r between the hardness measurements 
in Table 46 is significant in terms of Criterion III. 
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Applying the test we find that the observed correlation 
r = 0.513 lies outside the limits 

o± 3 . 
v59=I 

Hence we conclude that the heat treatment constitutes an 
assignable cause of variability in the hardness of the finished 
product. This conclusion has since been justified by further 
studies. 

3. Criterion II? 

Let us assume, as before, that the v·ariable X satisfies the 
equation (58) of control. The application of Criterion IV 
involves the following steps: 

(A) Obtain n observations Xl, X 2, ••• , Xi, ... , Xn of the 
variable X and calculate some statistic 8il for this set of n 
observed values. 

(B) Choose some variable Y which mayor may not be an 
assignable cause and obtain n values of the variable X under a 
condition where it is known that the variable Y can in no way 
influence the variability in X. Making use of this new series 
of n observed values, determine the value of the statistic 8i and 
let us call this value 8i2. . 

(C) If 
I 9il - 9i21 > 30'9,,-911' 

we take this fact as an indication that Y was an assignable 
cause. 

For reasons which we have already considered, it is usually 
sufficient to make use of the two statistics, average and stand
ard deviation, in terms of which we say that Y is an assignable 
cause if either of the following inequalities is satisfied: 

I Xl - x2 1 > 3~.!. (0'12 + 0'22) 
n 
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Example: Fig. 113 shows the cross-sectional view of a com
mon type carbon transmitter. It is but natural to expect that 
the physical properties, such as resistance, efficiency, etc., of 

VARIATIONS INTRODUCED 
BY PIECEPARTS 

VARIATIONS INTIR.OD'Ur:"D BY ASSEMBLY 

THREE CAUSES, OR GROUPS OF CAUSES. OF VARIATION 

THIS ~s~~~~~~g~CJF T:':~~'m~~~~ r: =~~Ic5~PECT; 
FIG. 113. 

this kind of instrument should be sensitive to slight variations 
in such factors as granular carbon, the elasticity, density, etc., 
of the piece-parts, and the details of assembly, such as tightness, 
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with which the screws are set and the care with which the 
respective parts are centered. 

It is of interest to see how -much influence each one of these 
three factors exerts upon the general variability of the qualities 
of the completed instrument. The method for investigating 
the influence of each factor immediately suggests itself-it is 
the use of Criterion IV. 

To apply this method we must eliminate the influence of 
all but one of the factors and study the resulting distribution 
of quality attributable to the remaining factor or constant 
system of chance causes. The results of such a study on one 
quality characteristic gave the three distributions shown in 
Fig. 113, the standard deviations of which were 0'1 for piece
parts, 0'2 for assembly, and 0'3 for carbon. 

If 0' represents the standard deviation in quality of the 
completed instrument in a sample of nand 

0'1.23 = standard deviation in samples of n when piece-part 
variations are eliminated, 

0'2.13 = standard deviation in samples of n when assembly vari
ations are eliminated, and 

0'3.12 = standard deviation in samples of n when carbon varia-
tions are eliminated, 

then the application of Criterion IV to standard deviations 
states that piece-parts, assembly and carbon represent assign
able groups of causes if 

10'- 0'1.231 > 3~-f;, (r + 0'21•23), 

10'-- 0':U31 > 3~1~ (r + r2.13), 

and 

In this case it was found that each of these three inequalities 
was satisfied and hence we conclude that all three factors 
actually represent assignable cause groups of variation. 



328 ECONOMIC CONTROL OF QUALITY 

Furthe~mote, since the ~alue of (1' is approximately given by 

we conclude that these three groups operate independently 
and contribute practically the entire amount of variability 
observed in the completed instrument.' 

4. Criterion P 

Oftentimes the observed data are given in a form such that 
no one of the four previously described criteria can be used. 
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FIG. II4.-Is THERE ANY INDlc;ATIDN OF LACK OF CONTROL? ClUTElUON V 
ANSWER.S: uYES." 

As a specific illustration we may consider the observed fre
quency distribution of efficiency of 7,686 pieces of one kind of 
apparatus represented by the black dots in Fig. 114. Is there 
any indication of lack of control? 

The instrumen ts in this group had come to the cen tral 
testing laboratory from eight different shops. The measure
ments when submitted for analysis, however, had been grouped 
together, giving the frequency distribution of Fig. 114 and the 
fourth column of the upper half of Table 47. 

The method of detecting lack of control in this case is as 
follows: 
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A. Calculate the average X, the standard deviation tT, and 
the skewness Ie from the n observations and use these in the 
expression 1 

f I [ *(x I :1("1)1-~ 
'" tTV 21/" I - 2 ; - 3 ;;- e 2.

l

dx 

to calculate the theoretical frequencies Y91, Y92, ••• , yam for 
the m cell intervals into which the original data have been 
grouped, it being understood that x = X - X. 

B. Calculate 
WI (yo )2 

x2 =!: ' - .vo; . 
i- 1 ye; 

c. Read from the curves 2 of Fig. 73 the probability P of 
obtaining a value of x2 as large as or larger than that observed, 
where the number of degrees of freedom is taken as four less 
than the number m of cells. 

D. If the probability P is less than 0.001, take this fact as 
an indication of lack of control. 

Example I: The details of the application of this criterion 
to the data of Fig. 114 are shown above in the data sheet of 
Table 47. It will be noted that Sheppard's corrections are used 
in this case. The smooth solid curve of Fig. 114 appears to fit 
the observed points very well indeed. However, Criterion V 
detects what the eye does not see. In accord.ance with the con
ditions of Criterion V, we conclude upon the basis of its appli
cation that the quality of this product was not controlled. 

Although the observations originally presented were grouped 
together without reference to the shops from which they came, 
it later became possible to subdivide the data upon this basis. 
Definite evidence of lack of constancy of the cause system 
was thus revealed by the control chart of Fig. IlS, and the 
assignable causes of variability were found. In other words, 
the indication of Criterion V was correct. 

I This is the second approximation already referred to in Parts II and III. The. 
theoretical frequencies may be calculated with the aid of Tables A and B. 

I More extensive tables of P(xl ) are given by K. Pearson in his 'I" lilies for 8/41. 
islic;(lns (Inti Biomtlricians. 0 
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·TABLE 47.-DATA SHEET FOR CRITERION V. 
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Example 2: I!l ~he d~velopment of methods of preserving 
telephone poles, It IS of Interest to know the distribution of 
thickness of sapwood to be expected for poles of a given kind 
and to know whether or not this quality of poles is controlled. 
Early in this study a set of 1,528 measurements of depth of 
sapwood .on ~ many chestnut poles became available, although 
at that time It was not possible to divide this set of data into 
rational subgroups . 

• 
• 

------~----------

• • 

• • • -2 
A B c D E F G H . . , , , , , , 

SHOPS 

Flo. IIS.-FURTHER EVIDENCE or UCIt OF CONTROL FOR DATA OF FlO. 114. 

The observed and theoretical distributions of depth of 
sapwood are shown by the black dots and the smooth curve of 
Fig. 116. The probability P of obtaining a value of x2 .as large 
as or larger than that observed is much less than 0.001. Hence 
a search for assignable causes was begun and the following 
three were found: 

(a) The men who made the measurements favored even 
numbers. 

(b) The thickness of sapwood was determined from borings, 
and no allowance was made for shrinkage of these during the 
time that the measurements were being taken. 

(c) The expected thickness of sapwood was found to depend 
upon whether the poles had come from one or the other of th.e 
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slopes of a mountain range. In the sample of 1,528 poles some 
had come from one slope and some from another . 
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FIG. I16.-CRITERION V INDICATES THE PRESENCE OF ASSIGNABLE CAUSES. 

Example): In the initiaJ stages of the production of a kind 
. of equipment for which electrical resistance was an important 
quality characteristic, the observed frequency distribution was 
that given by the dots in Fig. 117. The !lPplication of Cri-
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terion V indicated the presence of assignable causes in that the 
probability of occurrence of a value of x2 as large as or larger 
than that observed was much less than 0.001. 

Further investigation revealed that assignable causes had 
entered the production process and affected the resistance of a 
small group of the instruments in the original lot. After the 
measurements for this small group had been separated from 
the others, the resultant distribution was found to be that 
given in Fig. lIS. Criterion V applied to this resultant dis-
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1'10. IIR.-TROUBLE REMOVEo-CltITERIOIf V GIVES NEGATIVE TEST. 

tribution gave a negative test, indicating that the trouble had 
been removed. 

5. Criticism oj Criterion p-
In the first place the test is based upon the use of a particular 

frequency function, viz., the second approximation. Are we 
justified in assuming that quality free from assignable causes 
is always distributed in accord with this statistical law or 
frequency distribution? Is it necessary and sufficient to show 
that the quality of a product differs no more from a second 



TABLE 48.--CHI SqUARE FOR EACH OF THE FOUR DISTRIBUTIONS OF SAMPLES OF 1,000 EACH FROM THE NORMAL UNIVERSE 
USING OBSERVED ESTIMATES FOR PARAMETERS 

Sample No. I Sample No." Sample NO.3 Sample NO.4 

Theoretical Observed (Y-Ye)2 Theoretical Observed (Y-Ye)" Theoretical Observed (Y-Ye)2 Theoretical Observed (Y-Ye)" --- ---
Ye Y Ye Ye Y Ye Ye Y Ye Ye Y Ye 

3 5 1·333 " I 0.500 4 " 1.000 " " 0.000 
10 9 0.100 8 • 14 4.500 10 10 0.000 7 9 0.571 

"9 36 1. 690 "5 "4 0.040 30 "9 0.033 "3 25 0.174 
66 55 1. 833 61 51 1. 639 68 7" 0.235 59 49 1.695 

121 11.3 0.033 116 113 0.078 122 124 0.033 116 112 0.138 

173 165 0.370 172 187 1.308 172 181 0.471 176 191 1.278 

195 "03 0.328 199 195 0.080 193 180 0.876 205 204 0.005 
173 172 0.006 179 176 0.050 172 169 0.052 183 182 0.005 
1"1 123 0 .. 033 126 125 0.008 120 120 0.000 126 123 0.071 

67 68 0. 01 5 69 71 0.058 67 67 0.000 66 64 0.061 

"9 31 0.138 30 31 0.033 29 32 0.310 27 25 0.148 
10 8 0.400 10 8 0.400 10 II 0.100 8 12 2.000 

3 2 0·333 4 4 0.000 4 3 0."50 2 " 0.000 

x' 6.612 8.694 3.360 6.146 
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approximation curve than may be attributed to sampling 
fluctuations? 

In Part III it was shown that there is no such known neces
sary and sufficient condition for control. However, it was 
shown that, for a very wide range of constant systems of chance 
causes. the second approximation is approached as we approach 
the theoretical conditions of maximum control although no fre
quency function is a sufficient. even though it be a necessary, 
condition for maximum control unless it be known a priori 
that the chance cause system is constant. 

Now let us consider the use made of the Chi Square test 
in this criterion. Let us assume for the sake of argument 
that it is necessary and sufficient to show that the distribution 
function is the second approximation in order to show that the 
cause system is free from assignable causes. In this case can 
we rely upon the Chi Square test to detect the presence of 
assignable causes when the theoretical distribution is calculated 
from the second approximation using estimates of the three 
parameters derived from the observed data? 

We have seen how the Chi Square test works when the dis
tribution function is known a priori, both as to functional form 
and the values of the parameters. The question now to be 
considered is: How will it work, if we know a priori the func
tional form but not the parameters? 

To make the problem specific, let us consider the four dis
tributions of 1,000 observations each from the normal universe 
previously used to illustrate the use of the Chi Square tes~ 
when the true distribution Y1, Y2, ••• , Yi, ••• , Ym into m 
cells is known a priori. Now. however, let us calculate 
theoretical distributions for each of the four samples of 1,000 

by using the observed values of the averages and standard 
deviations in the normal function. Table 48 gives the four 
distributions derived in this way together with the calculated· 
values of x,2, using a thirteen-cell grouping. 

It is of interest to compare the observed values of x,2 in 
Table 48 with those previously calculated for the same four 
samples of 1.000 making use of the a priori known distribution, 
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Table 36. These two sets of values are shown in columns 2 

and 3 of .Table 49. The average x2 in the third column is 

TABLE 49.-{)BSERVED VALUES OF x' 

Chi Square Probability 

Sample Theoretical Distribution 

Number A Priori 
Theoretical 

A Priori 
·Known Known 

Distribution 
Distribution 

Distribution ]2 Degrees ]0 Degrees 
of Freedom of Freedom 

] 6·74] 6.612 0.873 0.880 0.760 
2 10.716 8.694 0·554 0.728 0.562 

3 4·455 3.360 0.972 0.991 0.969 
4 . 9. 174 6.146 0.688 0.908 0.802 

Average ..... 7.772 6. 203 0.772 0.877 0·773 

definitely less than that in the ~ecohd, and the average prob
ability calculated for the values of x2 from the theoretical 
frequencies is 0.877 as compared with the average of 0.772 cor
responding to the chi squares computed from the known a priori 
frequencies. 

A little consideration shows that in the calculation of x2 

from theoretical frequencies, we must make allowance for the 
fact that estimates of parameters are used instead of true values. 
We see that, when the Ifl priori cell frequencies Y1, Y2, •.. , 
Yi, ••• , Ym are known, the only restriction on the observable 
cell frequencies Yl, Y2, ... ,Yi, ... , ym is that 

Yl + Y2 + ... + yi + ... + ym = n. 

In other words, the set of m variables (Yi - Yi), (i = 1,2, ••• , m), 
has m - I degrees of freedom. Obviously, however, the set of 
m variables (yi - Yei) has m - 3 degrees of freedom because we 
have three conditions imposed upon the possible cell frequen-
cles, VIZ., ~Yi = n, 

~YiXi = nX, 
~Yi(Xi - %)2 = nu2, 
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When we make allowance for the loss of three degrees of freedom 
instead of one. we get the probabilities in the sixth column of 
Table 49. the average of which is 0.773 as compared with the 
corresponding average 0.772 for the values of x.2 calculated 
from the a priori known cell frequencies. This close check 
should strengthen our faith in the usefulness of the x.2 test 
when the functional form is known a priori and the parameters 
are estimated from the data. 

We must consider briefly certain other characteristics of the 
Chi Square test. Obviously the total number of observations 
must be large before we can apply the test. particularly when 
the parameters in the frequency function must be estimated 
from the observed data. In quality control work we seldom 
try to use Criterion V unless the sample size n is at least 1,000. 

When the sample size is very large. it becomes important that 
the method of estimating the parameters in the theoretical 
frequency distribution is such that the statistical limit 

I 
La -(y; - Y&i) = 0 

_oon 

is satisfied. Otherwise the observed value of x.2 as n is increased 
indefinitely will always approach infinity even though the 
quality is controlled in accord with the assumed functional dis
tribution. Enough has been said to indicate the nature of some 
of the limitations to be placed upon the use of the Chi Square 
test involved in Criterion V. 

Thus we see that Criterion V is a far less satisfactory test 
than Criterion I where the latter can be applied. We see that 
Criterion V in practice will usually give indication of the 
presence of assignable causes even though the product is con
trolled, unless the objective distribution is rigorously given by 
the second approximation. The criterion likely errs on the side 
of indicating trouble when it does not exist, although this is 
not a serious handicap in most industries until the state of 
control has been practically reached. By such time a producer 
will generally have set up his inspection practices so that his 



338 ECONOMIC CONTROL OF QUALITY 

data are divided into rational subgroups and Criterion I may 
be applied. 

6. Role of Judgment in Choice of Criteria 

Even though, in general, an engineer need not go beyond 
the use of the five criteria previously described, certain excep
tions may arise. Such a case is shown in Fig. 119 in which we 
have a control chart for averages of samples of four supposed 
to have been drawn from a normal universe in the order plotted. 
Would you conclude that the cause system is constant because 
Criterion I is satisfied? Almost anyone will answer this 
question in the negative. The probability of getting from a 
controlled system twenty-five samples with averages decreasing 
from sample to sample is so exceedingly small compared with 
the probability of getting twenty-five samples not so ordered 
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FIG. I.I9.-A CASE WHERE JUDGMENT IS REQ,UIRED. 

as to suggest the presence of an assignable cause or trend. 
Here is a case then where common sense suggests the use of a 
criterion other than one of the five. 

As another example of a situation .requiringJudgment in the 
use of criteria, let us consider again the distribution of successes 
in 4,096 throws of twelve dice where the throw of a I, 2, or 3 
is to be considered a success. A manufacturer of these dice 
might reasonably have wished to produce dice which are not 
biased. In such a case the distribution of successes, Column 2 
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of Table 50, should not differ from that given by the successIve 
terms of the point binomial, 4,096 (i + *)12 by more than may 
be attributed to sampling fluctuations. Would he conclude 
that the discrepancy between the theoretical and observed dis
tributions indicates bias? To answer this question he might 

T.uu SO.-DoEI TH. DISCREPANCY BETWEEN THEORETICAL AND 

OB.UVED DISTalBUTloN INDICATE BIAS? 

Number 
Obaerved 

Theoretical Number 
Observed 

Theoretical 
of 

Frequency 
Frequency of 

Frequency 
Frequency 

Succeua 4096(1+1)11 Successes 40CJ6 (hi)'" 

0 0 , 7 847 792 , 7 12 8 SJ6 495 
2 60 66 9 257 220 

3 '98 220 '0 7' 66 
4 430 495 " " 12 

S 73' 792 12 0 , 
6 948 924 

apply Criterion V. Doing so, he would get a probability of fit 
of 0.0015. Since this probability exceeds the value 0.001 set as 
a limit in the statement of Criterion V, he would be supposed 
to conclude that the product was controlled in the sense that it 
did not show a significant bias from the a priori standard. 

If, however, we compare the graph of the smooth curve 
through the frequencies determined from the binomial expan
sion, Fig. 1l0, with the observed values, we see that the smooth 
curve appears to be shifted to the left. 

Instead of using Criterion V, we might have compared the 
observed fraction p = 0'511 of success with the expected value 
0.500 upon the basis of the assumption of no bias. We might 
take the occurrence of a value of p outside the range 0.500 ± 3ITp, 

where ITp is the standard deviation of p in samples of size n, as 
being significant. In this case 

"p = ~ II = 0.01 58• 
1,000 
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Hence this test indicates control as did Criterion V, because 
the observed value p = 0.512 is well within the limits of 
0.500 ± 3(0.0158). Thus both tests indicate control. 

It is left as an exercise for the reader to calculate the theo
retical distribution upon the assumption that the dice were 
biased so that the probability of success is the observed value 
0.5 12• He will find that the probability of fit is thus remarkably 
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FIG. 120.-THE FACT THAT THE SMOOTH THEORETICAL CURVE ApPEARS TO BE 

SHIITED TO THE LEIT SUGGESTS LACK OF CONTROL EVEN THOUGH CRITERION V 
GIVES NEGATIVE TEST. 

improved, and that the differences between observed and cor
responding theoretical cell frequencies show a mixture of signs 
as they should. In this case he will find that the observed 
results are more likely on the assumption of bias than on that 
of no bias. Most likely his judgment will lead him to accept 
the hypothesis that the dice are biased. 
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7. Sampling Inspection in Relation to Control-Attributes 
We are now in a position to consider the significance of 

control in relation to sampling inspection designed to give the 
consumer certain assurance in respect to the quality of product 
which he receives. 

The consumer, in general ignorant of the production process, 
naturally wants some protection against accepting a bad lot of 
product. Of course, the ideal situation would be to inspect 
the entire lot and thus make absolutely certain of its quality. 
This. however. is often a too costly procedure. Hence the 
consumer is wiJJing to compromise and use sampling inspection 
provided it is not likely that the quality of the sample will 
indicate that the lot is good when, in reality, it contains more 
defects than he is willing to tolerate. Two such sampling 
methods for protecting the consumer will now be discussed. 

A. A Priori Method: The essential element in this method 
is that, if a lot containing the tolerance number of defective 
pieces is submitted for inspection, the chance that it will be 
accepted on the basis of a random sample is a given value p. 
whereas if the lot contains more than the tolerance number of 
defective pieces, the probability that it will be accepted on the 
same basis is less than P. 

For example, let us assume that a lot of N pieces of product 
is to be inspected and that the number c of defective pieces 
found in a sample of n is to be made the basis of acceptance or 
rejection of the lot. The consumer is perhaps willing to accept 
a certain amount of defective material provided the number of 
such pieces thus accepted does not exceed some fixed per
centage of the lot, commonly known as the tolerance pt. In 
fact we shall assume that. if a tolerance lot,-one containing 
ptN defective pieces-is submitted for inspection the consumer 
wishes to have some assurance that he will accept only a fraction 
P of such lots in the long run. This fraction P has been called 
the consumer's risk and it is merely the probability that a 
tolerance lot will be accepted upon the basis of the sample.1 

I Thi. risk i. discuued in an article by H. F. Dodge and H. G. Romig, "A Method 
p( Sampling Inspection," Btll S711t", 'Ttt/mita/Journal, October, 1929. 
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It remains merely to specify the ~ample size n and acceptance 
number c, in such a way that the probability of finding this 
number or less of defective pieces in the sample taken from a 
tolerance lot is a given value P. 

Mathematically these factors are related by the following 
equation: 

where C/ means the number of combinations of i thing!! taken j 
at a time and qt = I - pt. Having assigned P a definite value, 

0.30 
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NUMBER DEFECTIVE IN SAMPLE 

FIG. I2I.-CONSUMER'S RISK • 

. 
say 0.10, it is then possible to find pairs of values of nand c 
which satisfy (92). 

To illustrate the meaning of the consumer's risk, let us 
consider the following simple case. N = 100, n = 50, pt = 

5 per cent, c = I, 'it = 95 per cent. The consumer's risk is 
then the probability of finding I or ° defective pieces in the 
sample of fifty taken from the lot of one hundred containing 
five defective pieces. Substituting the necessary V1:llues in (92), 
we find P = 0.1811, which is equal to the sum of the first two 
ordinates of Fig. 121. 

B. A Posteriori Method: This method also offers the con
sumer a certain protection against accepting bad lots, i.e., those 
containing the tolerance number or more of defective pieces. 
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The essential point of difference between this and the method 
just described is that the present method I attempts to find the 
probability that.a lot contains more than X defective pieces if 
, defective pieces. are found in a random sample of n. A little 
consideration will show that this kind of risk is quite different 
from the consumer's risk previously described and that the 
nature of the assumption that must be made before this risk 
can be given is quite different from that made in the a priori 
method. 

Specifically, it is necessary to assume the a priori existence 
probability distribution of lots of a given size N in respect to 
the number of defective pieces contained therein. Having made 
this assumption, it is then possible to calculate the probability 
that each .of the possible lots would have given the sample. 
The a posteriori probability that the lot contains just M de
fective pieces is then the ratio of the probability that a lot of 
size N co*aining M defective pieces existed and caused the 
sample to .the sum of the probabilities that lots containing 0, 

I, 2, ••• , N defective pieces existed and caused the sample. 
It follows from this that the a posteriori probability that the 
lot contains more than M defective pieces is the sum of a series 
of the above ratios found by allowing the number of defective 
pieces in the lot to vary from M + I to N inclusive. 

To illustrate this method, consider again the above example 
and let us find the a posteriori probability that the lot of one 
hundred pieces contains more than the tolerance number of 
defective pieces, assuming that the sample shows only one 
defective piece. As a very simple a priori assumption we shall 
assume that all possible constitutions of lots are equally prob
able, i.e., the probabilities of the existence of lots containing 
0, I, 2, ••• , 100 defective pieces are all equal to m. Then 
the existence probability distribution of possible lots is that 
shown graphically in Fig. I:22-a and given in Column :2 of 
Table 51 as existence probabilities ao, ai, ••. , ai, ••• , aN. 

I This method of sampling is discussed in an article by Paul P. Coggins "Some 
General Results of Elementary Sampling Theory," Btll Sysltm 'l"td",;,al Journal, 
January, 1928• 
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The next step IS to' calculate the probability that each of the 
possible lots could have given the observed sample. These 
are the productive probabilities {jo, {jl, ••• , {ji, ••• , {jN shown 
in Fig. 122-b and Column 3 of Table 51. At th.is stage we should 

TABLE 51.-CALCULATION OF IZ post"iori PROBABILITY 

-
(I) (2) {J) (4) 

Number A priori A priori A post"iori 
Defective Existence Productive Probability 

in Lot Probability Probability a;/l, 
M, IX; {J; "1:a;/l, 

0 1/101 . 0 0 
I 1/101 0.500000 0.252475 
2 1/101 0.505051 0.255026 
3 1/101 0.378788 0.191269 
4 1/101 0.249922 0.126198 
5 1/101 0.152947 0.077231 
6 1/101 0.088870 0.044875 
7 1/101 0.049635 0.025063 
8 1/101 0.026838 0.013553 
9 1/101 0.oI4I12 0.007126 

10 1/101 0·007'1.37 0.003654 
II 1/101 0.0036'1.7 0. 001831 
1'1. 1/101 0.001778 0.000898 
13 1/101 0.000854 0.000431 
14 I/Ioi 0.000402 0. 000203 
15 1/101 0. 000185 0.000093 
16 1/101 0. 000084 0.00004'1. 
17 1/101 0.000037 0.000019 
18 1/101 0.000016 0.000008 
19 1/101 0.000008 0.000004 
'1.0 1/101 0.000003 0.000002 
'1.1 1/101 0.000001 0.000001 

*'1.2 1/101 0.000000 0.000000 

• Probabilities in columns (3) and (4) for M ~ 22 do not affect the sixth place of decimals. 

note that certain of the {j's are necessarily zero,-lots of one 
hundred containing less than one defective piece or more than 
fifty-one defective pieces could not have produced the sample. 
For {j's corresponding to number of defects lying between these 
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limits, the probability ai/1i that a lot containing just; defective 
pieces existed and caused the sample is 

I 100-;; 
aifJi = - C48 Cl • 

101 
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The II posltr;ori probability that the lot contains just; defective 
pieces is 

N 

~ aifJi 
'-0 

These probabilities are shown in Column 4 of Table 51. Hence, 
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for the given special case, the a posteriori probability P l that 
the lot contains more than the tolerance number (five) of 
defective pieces is found by summing the probabili ties In 

Column 4 corresponding to M = 6,7, ... , 100. Thus 
100 

l:: aifJi 

P 1-6 
1 = ~ = 0.0978. 

l:: ai{3i 
«-0 

Hence P l is the consumer's assurance that the lot is bad 
upon the basis of the given assumption and is represented 
graphically by the sum of the ordinates of Fig. 122-& from 
M = 6 to M = 100. 

It is perhaps worthwhile to point out that, if the manu
facturing process is contr<;>lled, the probability that a lot of 
N pieces contains the tolerance o~ more of defective pieces is 
known as soon as the equation (58) of control is known. The 
a priori consumer's risk, however, even under these conditions, 
'has an additional protective feature in that even among the 
proportion of lots which contain the tolerance number of 
defective pieces the consumer will accept only a certain fraction 
P of them. Among those lots containing more than the toler
ance number defective, less than the fraction P of them will 
be accepted. • 

If the quality is controlled in the sense that the probability 
of the production process producing a defective piece of appa
ratus is p, it can be shown that the a posteriori method of deter
mining the constitution of a lot of product tells us nothing 
other than would have been inferred a priori. In fact, if the 
condition just stated is satisfied, it can be shown that the 
a posteriori probability that the lot N contains say c + X 
defective pieces, having found c defective pieces in a sample 
of n, is precise! y 

,,}{-n N-n-X X loX q P • 

This expression, however, is nothing more than the a priori 
probability that the balance (N - n) of the lot contains just 
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X defective pieces and is known as soon as the condition of 
con trol is met. 

It is of importance to note that, in order to be able to state 
the probability that a lot of N pieces of a product contains not 
more than X defectives a/t" examining a sample of n in which 
c defective are found, we must assume something about the 
constitution of the lo~ "yore the sample of n was taken. Now, 
as we have seen, we approach the condition where we can say 
sometliing about a lot of size N before the sample of size n is 
taken as we approach the condition of control. 

Hma we see that evm from the viewpoint 0/ consum" pro
tution, it is an advantage to have allained as nearly as possible 
the condition oj control. 



PART VII 

Quality Control in Practice 

A Summary of the Fundamental Principles 
Underlying the Theory of Control and an 
Outline of the Method of Attaining Control of 
Quality from Raw Material to Finished Product 



CHAPTER XXII 

SUMMARY OF FUNDAMENTAL PRINCIPLES 

I. Introduclory Slaltmml 

The subject of quality control as considered in the previous 
chapters is comparatively new. The theory is based upon 
certain statistical concepts-physical properties and physical 
laws are both assumed to be statistical in nature.' With the 
introduction of statistical theories and statistical laws comes a 
need for a new concept of causation.2 Our understanding of 
the theory of quality control requires that our fundamental 
concepts of such things as physical properties, physical laws, 
and causal explanations undergo certain changes, since indus
trial development rests upon the application of the laws relating 
the physical properties of materials. 

The object of industrial research is to estabiish ways and 
means of making better and better use of past experience. 
Insofar as research continues to reveal certain rules or laws 
which exist in the production of the finished product whose 
quality characteristics satisfy some human need, we may expect 
industry to be interested in research. That industries do have 

I Thi. development i. in accord with modern physics in that statistical theory i. 
basic to a causal explanation o( atomic phenomena. For example, Loui. De Broglie, 
recipient o( the Nobel Prize (or Physics in 1919, &aya ,. Conaequendy there are no 
longer any rigo ...... IaWi but only laWi o( probability:'-W"III M.cluJ"ics, page 9, 
Metheun & Co., Ltd., 1930. 

• Thi. i. true also in the field o( pure physics. See (or example Arthur Haas. 
W"III M.cluJ"iu ""J 1M NtflI ~u""/I"" '1"1.1"", published by Constable & Co., London, 
1918, He &ay., ··In contrast to the sharply defined causality which is evident in 
macroscopic physics, the latest theories have emphasized the indeterminate nature of 
atomic processes; they assume that the only determinate magnitudes are the statistical 
magnitudes which result from the elementary processes of physics." 

3SI 
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such an interest in this form of human endeavor seems to be a 
wdl-established fact. It is estimated that during the year 1927 

upwards of $200,000,000 was spent in industrial research in 
approximatdy 1,000 laboratories in the United States.1 This 
gives the order of magnitude of the sum of money that is being 
spent annually in the effort to find out how to do something 
tomorrow that we do not know how to do today. All effort, 
however, in this direction is obviously not included in formal 
research programs. Who, for example, in some way or other 
has not made use of past experience? 

It is rather startling to see how much progress was made 
by that part of the human race which never had any knowledge 
of applied science as such. Long before anyone worried over 
the physical principles which govern the use of the lever and 
of the wedge, use had been made of both of these mechanical 
devices. Long before anyone had arrived at the generalization 
known as the Law of the Conservation of Energy, our fore
fathers had transformed mechanical energy into heat energy to 

. start their fires. These two illustrations are sufficient to indicate 
that progress in the use of past experience does not depend 
upon the knowledge of scientific laws as we know them today. 
The rate of progress on the other hand does depend upon this 
knowledge. In a similar way, we do not have to know the 
theory of control to make progress in the improvement of 

... quality of product. But, as the physical sciences have led to 
useful generalizations which increase the rate of progress, so 
also does the knowledge of the principles of control. 

To indicate the rdationship which the theory of control 
bears to exact science, it is interesting to consider six stages 
in the devdopment of better ways and means of making use of 
past experience. They are: 

I. Bdief that the future cannot be predicted in terms of 
the past. _ ' 

2. Belief that the future is pre-ordained. 

I Grondahl, L. 0., "The R6le ofPh,vsics in Modern Industry," Science, August 23, 
1929, pp. 175-183. 
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3. Inefficient use of past experience in the sense that expe-
riences are not systematized into laws. 

4. Control within limits. 
s. Maximum control. 
6. Knowledge of all laws of nature-exact science. 

It is conceivable that some time man will have a knowledge 
of all the laws of nature so that he can predict the future quality 
of product with absolute certainty. This might be considered 
a goal for applied science, but indications today are that it is 
not a practical one. At least we are a long way from such a goal; 
for years to come the engineer must be content with the knowl
edge of only comparatively few of the many conceivable laws 
of nature where we think of the term law in the sense of New
ton's Laws of Motion. Furthermore, the engineer is fully 
aware of the fact that, whereas it is conceivably possible with 
the knowledge of these laws to predict the future quality of 
product with absolute certainty, it is not in general feasible to 
do so any more than it is feasible to write down the equations 
of motion (were it possible to do so) for a thimble full of mol
ecules of air under normal conditions. The engineer is fully 
aware that, whereas in the laboratory one may often be able 
to hold conditions sufficiently constant that the action of a 
single law may be observed with high precision, this same 
degree of constancy cannot in general be maintained under 
what appear today to be necessary conditions of commercial 
production. In fact, if we are to believe, as do many of the 
leaders of scientific thought today, that possibly the only kind 
of objective constancy in this world is of a statistical nature, 
then it follows that the complete realization of the sixth stage 
is not merely a long way off but impossible.! 

We have seen that the principle of control plays an im
portant role in laboratory research in what is ordinarily termed 
pure science. We have seen that it is necessary, in general, in 
all such work to attain as nearly as possible to certainty in the 

I Bridgman, P. W., Ioc. cit. 
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assurance that the observations supposed to have been taken 
under the .same essential conditions have actually been taken 
in this way. As an efficient tool in testing whether or not this 
condition has been satisfied, we have the criteria of Part VI. 
We have seen that the criteria for maximum control (Part III) 
give a test which indicat~s the limit to which it is reasonable 
that research may go in revealing causes of variability in a set 
of observations presumably taken under a constant system of 
chance causes. We have also seen that many of the quantities 
with which we actually deal in the so-called exact sCiences are 
but averages of statistical distributions assumed to be given by 
what we have chosen to term a constant system of chance 
causes. 

Let us now consider the need for control as an in tegral 
part of any industrial program. In most cases we can dis
tinguish five more or less distinct steps in such a program. 
They are: 

I. A study of the results of research to provide principles 
. and numerical data upon which to base a design. 

2. The application of such information in the construction 
of an ideal piece of apparatus designed to satisfy some human 
want, where no attention is given to the cost. 

3. Production of tool-m~de samples under supposedly com
mercial conditions. 

4. Test of tool-made samples and specification of quality 
requirements that can presumably be met under commercial 
conditions. 

5. Development of production methods. 

From this viewpoint the results of design, development, and 
production are grounded on the initial results of research. 
What is more important in our present study is the fact that 
often causes of variability enter in the last four steps which 
by the very' nature of the problem are not experienced in the 
research laboratory. For example, we have the possibility of 
assignable causes entering through different sources of material, 
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the human element, and variable conditions which affect the 
production process. 

One possible method of obtaining satisfactory quality under 
such conditions is to make wherever possible 100 per cent in
spection of the product at the time it is ready for delivery. In 
many cases, however, this cannot .be done because of the 
destructive nature of the tests; in any case the cost of inspection 
must be considered. Furthermore, if indications of the presence 
of assignable causes of variability are discovered in the quality 
of final product, it is not easy to locate the causes because the 
data of final tests may have been taken long after the causes 
have ceased to function. Even more important, as we have seen 
in previous chapters, is the fact that the quality may appear 
controlled in the end and yet there may be assignable causes of 
variability at one or more steps in production. For these 
reasons, it seems highly desirable that the measurements 
made in tac" of the last four of the steps mentioned above be 
tested to determine whether or not there is any indication of 
lack of control. If there is, it may be necessary that a further 
study be made in the laboratory to assist in finding the assign
able causes of variability. 

We must emphasize the importance of control in setting 
standards for the raw materials that enter into the production 
process. Most physical properties are subject to the influence 
of presumably large numbers of chance causes. Therefore, if 
we are to make efficient use of data representing these prop
erties, the data must have been taken under controlled con
ditions. Before we can use experimental results with any 
assurance of their giving a controlled product, it is highly 
desirable that we make use of tests to determine whether or 
not the data have been secured under controlled conditions. 

Furthermore, in the development of processes of production, 
it should be of advantage to apply tests to detect lack of control 
and then to weed out the assignable causes of variability as 
they occur, with the assurance of the kind already indicated in 
previous chapters, that after this process of weeding out has 
once led to a product which appears to be controlled, future 
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product will remain in the same state unless obvious assignable 
causes of variability enter. 

Thus the theory of control plays an important part in the 
various stages of applied science. It is desirable that the depart
ments of design, development, and production keep the labor
atory research department informed as to evidence of the 
existence of assignable causes wherever they arise up to the 
time that product goes to the consumer. 

The theory is also of value in the study of the life history 
of product. Obviously, when equipment goes into the field it 
meets many and varied conditions, the influence of which on 
the quality of product is not in general known. Such an 
example would be the varied conditions under which telephone 
poles are placed throughout the United States. A priori, it 
is reasonable to believe that the life of the pole depends in a 
large way upon the service conditions. Among the exceedingly 
large number of variables which may influence the life of the 
pole, little information is available to indicate the importanc6 

.of anyone. The value of laboratory research in improving the 
quality of a pole through life must take into account ways and 
means of preservation suited to each of the various conditions. 
Naturally, therefore, it is of interest to know when the vari
ability in the quality of the material at any stage in life is such 
as to indicate the existenGe of an assignable cause so that 
further research may be instituted to find ways and means of 
effectively removit:Ig this cause, Field engineers, therefore, find 
need for analytical methods of detecting evidence of lack of 
control in the quality of product at any time as revealed by 
life data so that they can call this fact to the attention of the 
laboratory staff. 

In this chapter we shall discuss briefly such fundamental 
concepts as physical property, physical law, and cause, basic 
to every step in control. 

2. Object of Control 

As already stated, the object of control is to enable us to do 
what we want to do within economic limits. 
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As we have seen in Part I, it is necessary to postulate that 
when we have done everything that we can do to eliminate 
variability in a quality X, we arrive at a state of statistical 
control in which we can say that the probability dy of an 
observed value X falling within the range X to X + dX is 
given by the equation of control 

Jy ... f(X, ).1, ~, ••• , Ai, ••• , >..n')JX. (58) 

3. Physical Properties 

In the previous chapters we have seen that perhaps the 
closest that a physical quality attains to constancy is in the 
sense that objectively it may be represented by a distribution 
function (58) characterizing a state of control. It follows that 
the complete specification of any quality requires the estab
lishment of an equation of control of the form (58) both in 
respect to functional form f and the values of the m' parameters 
contained therein. It has been shown in Part V that for most 
practical purposes it is sufficient to attempt to specify simply 
two characteristics of this distribution, namely, the average or 
expected value X and the standard deviation (1'. 

Examples: To emphasize the statistical nature of materials 
still often treated as constants, let us look through a microscope 
at a cross section 0'£ a piece of ordinary steel,! Fig. 123. What 
we see is anything but a homogeneous isotropic body. Why 
this heterogeneous structure? The answer is-It is produced 
by chance or unknown causes. 

What is the effect of such irregularities upon the physical 
properties of steel when produced in some useful form as, 
for example, supporting strand, a piece of which is shown in 
Fig. 124? The answer is that a physical property, say the 
breaking load of such strand will, if we are able to eliminate 
assignable causes of variation, be some distribution function 
as indicated in Fig. I2S. The smooth curve in this figure 

J LuC8.I, F. F., "Structure and Nature ofTroostire," BtU SYJltm <J'telmieaIJoul7lal, 
1 anuary, 1930. 
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represents the objective distribution of control (58) for this 
particular case, as inferred from the study of observed data. 

FlO. 12J.-MICROSCOPIC CROSS SECTION OF STEEL. 

-'-------

Flo. 12+-PiECE OF SUPPORTING STRAND. 

As we have said above, it is usually sufficient to specify merely 
the average X and standard deviation (J' of such a distribution. 
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Now let us look at a cross section of another important 
structural material,-wood, Fig. 126. This time we do -not 
need a microscope to see the effects of chance causes upon the 
structure of the material. 

Fig. 88 in Part V shows roughly what such irregularities do 
to the modulus of rupture of four kinds of telephone poles. 

~~4 !\ 
~:.Il __ ~~'~~~'~~~~'~~~'~~'~~~~~~~~'~' ii .poo 8.000 12,000 16,000 20,000 24,000 2e.Ooo 

TENSILE STRENGTH OF STEEL STRAND 

FlO, Ils,-TaH'ILIt STRaHOTH DISTRIBlITIOH FOil STIlAND SHOWN IN FlO, 1:14. 

Note the wide spreads of these distributions as compared with 
their means. 

These two illustrations are sufficient to show that the 
variation introduced by constant systems of chance causes into 

FlO. 126.--CaoSl SECT101f or POLS. 

the physical properties of materials are so large that they need 
to be taken into account in the use of these materials. 

Shortly we shall see what methods are available in the liter
ature for establishing objective distributions for standards of 
physical properties. 
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4. Physical Laws 

In Part III we discussed briefly three differen t kinds of 
laws, viz., exact, statistical, and empirical. In this section we 
shall contrast the first two kinds in the hope that by so doing 
we may take over the part of the concept of exact law that is 
common ~with~ that of statistical law, and that we may see clearly 
wherein the concepts of the two laws differ, insofar as this 
bears upon the theory of quality control. 

Let us consider first the harmonic oscillation of a vibrating 
system characterized by the equation' 

J2X dX 
m-+k-+sX= 0 

dt2 dt 

where X is a linear displacement, 1 is the time, m is the mass, 
k is the frictional force proportional to velocity and sX is 
the restoring force. The solution of this differential equation 
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FlO. 127-4.-BASIS FOil. EXACT PaEDICTlON. 

gives us the displacement X as a function of the time I. In 
other words, starting ,with a knowledge of m, k, s, and X at 
1 = 0, we can predict with great precision the displacement at 
any future time I. Fig. 1274 typifies such a prediction. 

Let us now consider what is involved in prediction in a 
statistical sense. Let us contrast with this simple problem 
that of predicting the number of times that a head will be 
turned up in n throws of a penny. As was pointed out in 
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Part .111, the practical method of making prediction in this 
case IS to assume that there is some point binomial 

(q + p)-

where q + p = I such that the successive terms of this ex
pansion represent the probabilities of occurrence of 0 I 2 3 
••• n heads in n throws. It follows that the standard Je;iatio~ 
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"p of the relative frequency p of heads in n trials is given by the 
relationship 

"p=~. n 

1£ p = I it follows from what has already been said that 
approximately all of the observed values of p in future trials 
should lie within the dotted limits, 

P:l::3~' 
shown in Fig. 127-". The dots in this figure indicate the experi
mental results of throwing a penny two hundred times. 

Now let us compare the results in these two cases. Pre
diction in the first case involves the assumption that the 
dynamical system behaves in a way such that when we sub
stitute measurable values of m, k, and J in the differential 
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equation the solution of this equation gives a satisfactory 
prediction of the future displacement of the mass. In an 
analogous way, as indicated in previous chapters, it appears 
that we may expect to find (in the objective sense) a value of 
p for a given penny such that when used as indicated above, 
we may establish limits such as those given in Fig. 127-D. 

The two methods of prediction are alike in that they require 
the experimental establishment of certain parameters. They 
differ in that one makes use of these parameters in a differential 
equation, the other in a binomial expansion. They are alike in 
that we do not know a priori that the mathematics used in 
either case is the mathematics that should be used. 

Now suppose that we were to try to make N dynamical 
systems to have as nearly as possible the same values for m, 
k, and s. In the same way let us suppose that we take N 
pennies that appear to be" alike so far as we can determine. 
If we were to start oscillation in each of the N dynamical 
systems with the same displacement and observe the resultant 
displacement, we would expect that each of the systems would 
follow the curve in Fig. 1274 quite accurately. Similarly, if 
we were to throw each of the Ncoins a large number of times, 
we would expect to get something like the three records shown 
below, Fig. 128, representini the results of two hundred throws 
of each of three different pennies. 

The systems are alike in that the smooth ~urve in Fig. 127-a 
represents what we may expect to get on the average when" 
we try to duplicate the dynamical systems as nearly as possible 
and the straight line p = i in Fig. 127-0 represents the expected 
value for a symmetrical coin. In the statistical case, however, 
there is a certain indeterminateness as compared with the so
called exact case. Although we can say in the statistical case 
with considerable assurance that the observed values of p will 
lie within certain limits and that these limits will decrease 
proportionately to the square root of n, we cannot say anything 
determinate about the way the observed values will approach 
the value p. 

In the dynamical case, if t is made indefinitely large, we 
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can say that the corresponding value of X will approach the 
value zero as a mathematical limit. On the other hand, we 
can say in the statistical case that for each of the N pennies, 
the observed fraction p in n throws will approach as a statistical 
limit the value p. In the first case we can say very definitely 
how the displacement will approach the value zero. In the 
~econd case we can say scarcely anything about the way the 
value p will approach p. . 

This. fundamental limitation of indefiniteness, however, is 
not solely limited to the statistical case when we come to think 
of the determination of the parameters which must be found in 
either case. In Part III we pointed out that our success in 
being able to predict a phenomenon by means of statistical 
theory rests ultimately upon the assumption that we can find 
the parameters in certain functions through use of a statistical 
limit. In a similar way, the values of m, k, and s can only be 
obtained in practice through averaging observed values of 
these factors taken under presumably the same essential con
ditions. In other words the objective values of m, k, and s 
are in themselves statistical limits. 

Strictly speaking, all that we can say in the exact case is 
that the probability of the displacement a,t.a given time t 
lying within a given range is a certain constant value. Similarly, 
we can say in the case of'throwing a coin under the same 
essential conditions that the probability of observing a given 
number of heads in a given number of throws is a constant. 
In other words in both instances what we really assume to be 
constant is a certain statistical distribution. In both cases 
there is the same kind of indeterminateness although it appears 
in a slightly different way. 

5. Causal Explanation 
We have made much use of the concept of a constant system 

of chance causes. It is essential that we consider a little more 
carefully the significant difference between causal explanation 
as it is usually accepted and causal explanation in the statistical 
sense. 



SUMMARY OF FUNDAMENTAL PRINCIPLES 365 

It is customary to think of a cause as being an antecedent 
event which is always followed by one or more definite events 
or consequents. The antecedent event in such a case is the 
cause and the consequents are the effects of the cause. For 
example, the presence of a tubercle bacillus in the lungs of a 
human individual may produce many different effects, such as 
a high temperature, change in composition of blood, loss of 
appetite, and so on. Some of these effects, however, may be 
produced by other causes. The situation in such a case is 
indicated schematically in Fig. 129, in which A and Bare ante-

ANTECEDENT A ANTECEDENT • 

• 9 

Flo. 1l9.-ScHEIlATIC or CAUSAL RELATIONSHIP. 

cedents with corresponding consequents indicated by small 
letters. 

If we can state in a given case all of the consequents be
longing to a given antecedent event, it is generally agreed that 
we may go with certainty from effect to cause. Of course in 
the practical case we meet with the serious difficulty of not 
being able to state all of the consequents corresponding to a 
given antecedent. This point, however, we do not care to con
sider at present. 

The point that we do wish to make is this. Causal explan
ation in this accepted sense assumes that whenever we have 
an antecedent A such as indicated above, it is always followed 
by effects (consequents) a, b, c, t, andf. With this picture of 
cause let us now contrast the concept of chance cause already 

;'. 
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illustrated in some detail in Part III and Appendix 1. Imme
diately we note a characteristic difference between the concept 
of a chance cause and the older concept of cause. For example, 
in our discussion of Appendix I we treat of very simple systems 
composed of m different causes. It is assumed that each cause 
may be followed by one or the other of two events, that is one 
or the other of two different values of X. In other words, it 
appears that we can never hope to tie up a chance cause with 
a given event because for each chance cause more than one 
event is always possible. 

Let us go a little further in the amplification of this point. 
Let us suppose that we have n observed values 

Xl, X2, ... , Xi, •.. , Xn 

of some variable quality X taken under controlled conditions 
represented by'the equation of control (58). We may think of 
the cause of this sample as being the particular equation of 
control representing the conditions under which the samples 
were drawn. It is apparent, however, that in general any series 
of n observed values such as indicated above may have come 
from anyone of let us say N different universes which we may 
characterize as follows: ' 

dYI = fl (X, ~11, ~12'" •. , ~li, ••• , ~lm',) dX, 

dY2 = f2 (X, ~2h ~22, ••• , ~2i, ... , ~2m'.) dX, 

. . . . . . . . . . . . . . . . ., 
dyj = fj (X, ~jh ~j2' ••• , ~ii, .•. ,~jmi) dX, 

. . . . . . . . . . . . . . . . ., 
dYN = fN(X, ~Nl, ~N2, .•. , ~Ni, •.• , ~Nm'JI) dX. 

Under the above condition we may never state with cer
tainty what one of the N universes the observed sample came 
from. Each of the N universes is a possible cause but our 
interpretation of a sample must always be indefinite in that 
under the above conditions we can never be certain as to the 
origin of that sample. Cause in the older scientific sense, there-
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(ore, has a certain determinateness about it which must of 
necessity be absent in the statistical case. 

The two kinds of cause, however, do have this much in 
common that is very important from the viewpoint of the 
theory of control-the choice of a cause in a given case largely 
depends upon the intuitive faculty of the human mind. In 
other words, we cannot in general write down rules for the 
correct selection of a cause. It is, however, one of the objects 
of logic to lay down ways and means of testing postulated 
causal explanations. 

An interesting illustration may be drawn from the field of 
investigation as to the origin of the planets. Two fundamental 
rival hypotheses are described in a popular way in a compar
atively recent article by F. R. Moulton.1 The first of these 
he describes as follows: 

Laplace started with a heated gaseous mass rotating as a solid. 
With loss of heat by radiation, it contracted and rotated more rapidly. 
At various stages of the contraction the centrifugal acceleration 
at the equator of the rotating mass equaled the gravitational accelera
tion toward its center. At these places the contracting mass left 
behind gaseous rings which were concentrated into planets by the 
mutual gravitation of their parts. In six cases, after the contracting 
rings had assumed approximately spherical forms they similarly 
contracted and left behind smaller rings, which became satellites. 
This theory is delightfully simple and can be stated in a few sentences. 
I t makes few demands upon the imagination to conceive of its various 
steps and it requires no sustained mental effort to organize them 
into a unified whole. It raises no unanswered questions and arouses 
no doubts. The account of the creation and the origin of the earth 
in Genesis is not simpler. 

He then summarizes the second in the following words: 

In striking contrast with the foregoing, consider the planetesimal 
hypothesis. The fundamental point of view adopted in it is that 
the stars of our galaxy constitute a group of mutually related objects, 
the evolution of each depending in part upon its relationships to the 
others. They mix and mingl~ with one anothe~, in the course «;>f 
time, somewhat like molecules In a gas. At the time of the dynamiC 

1 The Planetesimal Hypothesi-S,im&I, December 7, 19l8, Volume LXVIII, 
Number 1771, pp. 549""559-
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adventure of a suitable near approach of one star to another, planets 
are born from the parent suns. These planets grow up around 
nuclei by the accretion of countless little planets (planetesimals) 
born at the same time. Not only in the broad sweep of events 
leading to the birth of the planets as independent objects does 
this theory differ completely from the Laplacian, but also all the 
dynamical considerations involved in the growth and evolution of 
the planets are wholly different. More than one commentator on 
the planetesimal hypothesis has regarded with favor the origin of 
the planets by dynamic approach as being likely, and has then utterly 
failed to realize that the growth and evolution of the planets could 
not have been along the lines that are consonant with the Laplacian 
theory. The new hypothesis gives an entirely new earth and lays 
down a new basis for the development of dynamic geology. 

In other words, these two hypotheses may be thought of as 
A and B in Fig. 129. The effects in this case to be explained 
are the characteristics of the solar family. 

Now let us see how the process of checking an hypothesis 
or cause in the older sense corresponds with that of checking an 
hypothesis or cause in the statistical sense. The essential dif
ference is this. In the first case we may be able to find that 
some of the observable phenomena cannot be effects of the 
postulated cause. In such a case it is customary to reject or 
modify the hypothesis. For example, this is true in respect 
to the Laplacian hypotheSIS as to the origin of the earth referred 
to above. In the statistical case, however, it is not so easy to 
reject an hypothesis, as we shall now see. 

Suppose, for example, that we attempt to test the hypoth
esis that a sample of n observed values of a quantity X came 
from let us say the first universe of (93). We have already 
touched upon this problem in Part VI in the discussion of the 
choice of statistic to be used in a given case and of the choice 
of method .of using this statistic. Let us look at this problem 
in a more general way. We may represent a sample of size n 
as a point in n dimensional space. In a similar way we may 
represent all of the possible different samples of size n that 
may be drawn from an assumed universe as points in this same 
space. To get a test of whether or not the observed sample 
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came ~rom the. assumed universe, it appears to be necessary to 
establish certain contours in this n dimensional space within 
which the points corresponding to an observed sample must fall 
if we are to accept the hypothesis that it came from the assumed 
uni~erse. Naturally there are an indefinite number of ways of 
set~tng up such contours and the choice of anyone is quite 
arbitrary on the part of the individual scientist as was the cor
responding choice of statistic in Part VI. 

In any given case there are in general an indefinitely large 
number of possible hypotheses. Hence, in addition to the 
problem of establishing arbitrary contours upon which to test 
a given hypothesis, we must consider the problem of judging 
between alternative hypotheses. Here again we come upon the 
indeterminateness of the statistical method. It appears that 
there is no ultimate ground upon which to base our final choice. l 

6. Measurement of Average X and Standard Deviation C1 

The concept of physical properties and phenomena as 
frequency distributions introduces the concept of measurement 
of such distributions. Since for most engineering purposes it is 
sufficient to know the average X and standard deviation C1 of 
such a distribution, we shall conside~ the problem of measuring 
these two characteristics. 

Assuming that the set of n observed values, 

of a quality characteristic X satisfy the equation (58) of control, 
it follows from the law of large numbers that the observed 
average X and standard deviation (f can be made ~ approach, 
in the statistical sense, as close as we please to X and C1 re
spectively by making the sample size n sufficiently large. In 

I See in this connection the especially interesting and valuable article by J. Neyman 
and E. S. Pearson entitled "On the Use and Interpretation of Certain Test Criteria 
for Purposes of Statistical Inference," Pan I, Biometrik", Volume XX-A, July, 19:18, 
pp. 175-240, Part VII, Biometrik". Volume XX-A, pp. :16,]-:194, December, 19:18. 

Also see pp. 303-314 of A. N. Whitehead's Proml ""tI IU,,/il), Macmillan Com
pany, 19:19. 
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other words, it follows from the law of large numbers and 
Tchebycheff's theorem that, by making n sufficiently large, we 
can bring as close to unity as we please the objective probability 
P that the inequality 

Ix-xl~e 

will be satisfied, e being any previously assigned positive 
quantity. 

In practice, however, it is not feasible to take an indefinitely 
large number of observations. In fact, we must often be sat
isfied with estimates of X and a derived from comparatively 
small samples. For example, we may wish to determine an 
approximate standard for a quality X of a given kind of appa
ratus from measurements of this quality on from five to twenty
five tool-made samples. Or again, we may wish to adopt a 
standard for the physical property of some new material or 
alloy from measurements made on comparatively few pieces. 
We shall now consider various ways of doing this. 

A. A Posteriori Probability Method.-This method has been 
discll:ssed in a very interesting and novel manner by Molina 
and Wilkinson.1 Assuming that the set of n observed values of 
the variable X have come from a normal universe 

I (X_X)I 

1(X) = _ ;::-e-2irJ, 
-av2r 

in which X and a are unknown, the a posteriori probability 
P(X)dX that the true mean lies within the interval X to 
X + dX is given by 

n 
2: (X;-X)' 

.. _ _:..:f-:..:.l~_ 

P(X)dX = AdX ( W(X, a)e 2 ... 
1 

da, (94) 
)0 an 

where A is a constant and W(X, a)dXda is the a priori prob
ability, before the observations were made, that the true mean 
and standard deviation were within the intervals X to X + dX 
and a to a + da respectively. 

1 "The Frequency Distribution of the Unknown Mean of a Sampled Universe," 
Bell System 'l'eclm;cal Journal, Vol. VIII, October, 1929, pp_ 632-645-
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To get a definite answer in a given case, certain assumptions 
must be made in order to give the parameters in (94) specific 
values in terms of the statistics of the set of n observed values 
of the quality X, and in every case one must assume some 
particular form for the function WeX, cr). In other words, 
before any measurements are made, one must choose some one 
function W(X,cr) out of the indefinitely large number of possible 
functions. 

Assuming that X and cr are independent, we may write 

W(X, cr) = W I (X)W2(cr). 

Making these various general assumptions and certain others 
of a more detailed nature, the authors then assign to. the param
eters in the functions WI and W 2 twenty-one sets of values 
out of a possible infinite number of such sets, and find as many 
probable and 99.73 per cent errors for a single example. Their 
results are shown graphically in Fig. 130.1 The startling and 
very important thing to note is the great significance that must 
be attached to the choice of the a priori existence probability 
functions II'I(X) and W2 (cr) before any measurements are taken . 

. Of course, anyone of the twenty-one or, in fact, of the 
indefinitely large number of probability distributions P(X)dX 
of (94) gives us only the a posteriori probability that the true 
mean lies within a '!pecified range, whereas we wish to get 
usable estimates of X and cr. Hence, even though one goes 
through the a posterior; solution under the conditions stat~ 
above, it is likely that he will take the observed average X 
as his best estimate of X. As for an estimate of cr, it will be 
expressible as a multiple of the observed standard deviation, 
let us say ccr, the value of c depending upon the particular 
assumptions made in applying (94)' 

B. Maximum Likelihood Me/hod.-In the particular case 
just considered the probability P of the simultaneous occurrence 
of the set of observed values XI, X 2 , ••• , Xi, ... , Xn within 

I The authors used the precision constant" instead of .. in this paper. However, 
they have also shown the distribution of .. (the dotted lines) for the first seven sets 
of assumptions. 
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the respective intervals Xl to Xl + dXI , Xz to X% + dX%, .•. , 
Xi to Xi + dXi, ••• , XII to XII + dX" is 

• I cr,-.. )I 
P ... IT --t-~ tiXi .-1 s-y'i; , 

where m and J are universe parameters. That value of m which 
will make P a maximum is given by the solution of the equation 

o(log P) 
=0 om ' 

since P is a maximum when log P is a maximum. This gives 
the observed average X as an estimate of X. 

Similarly the condition 

o(log P) 
=0 os 

gives the observed standard deviation tT as the estimate of IT. 

Since the expected value ii of the observed standard devi
ation in samples of size n drawn from a normal universe is less 
than the standard deviation IT of the universe, it is obvious 
that the estimates of IT derived by the likelihood method are 
too small in the long run, particularly if the sample size n is 
small. 

C. Empirical Mt'/hod.-Assuming, as before, that we are 
sampling from a normal universe free fE?m assignable cause~ 
there is perhaps no better estimate of X than the average X 
of the sample. If, however, there is any reason to believe that 
a few of the observed values were influenced by assignable 
causes, this fact should be taken into consideration. 

If we assume that we are sampling from other than a sym
metrical universe, it becomes all the more important that we 
make use of the average X of the sample of size n as an estimate 
of the average X of the universe of possible effects. 

Coming to the estimate of the standard deviation IT of the 
normal universe, we have seen that a posteriori probability 
theory does not provide a direct method of establishing a 
specific value as the best estimate and that the likelihood 
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method leads to an estimate which is too small in the long run. 
Referring to Fig. 97 indicating the important characteristics of 
the distribution of an observed statistic 9, say standard devi
atiop, we might be led to base our estimate of fT on the assump
tion that the observed (J' is the modal (J' of the distribution of 
this statistic. In other words, we might take as an estimate 

where Cl is given in column 2 of Table 29. To do so, however, 
means that in the long run estimates made in this way are too 
large. An estimate that will be consistent in the long run is 

!!... where C2 is also given in Table 29. 
C2 

There is thus some justification under these conditions for 

adopting!!'" as an estimate of fT. In any case the observed 
C2 

,standard deviation (J' becomes the basis of an estimate. Hence 
it seems reasonable that it should be tabulated together with 
any correction thereof adopted as an estimate in a given case. 

The estimate of fT of a non-normal universe presents addi
tional difficulties since, in general, we do not know the dis
tribution function of obser"ed standard deviations in samples 
of n. Here again the observed standard deviations in the long 
run are too small, in the sense that the expected value in samples 
of size n from a given universe is less than the standard devi
ation fT of that universe. 

7. Measurement of Average X and Standard Deviation fT

Practical Example 

Let us consider the significance of previous results in a 
simple practical case. Four pieces of shoulder leather from a 
given source were found to have the following tensile strengths 
expressed in pounds per square inch: 
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Upon the basis of this information, what shall we choose as 
estimates of the average X and standard deviation fT of the 
tensile strength of leather from this source assuming that this 
quality is controlled. 

From what has been said in the previous section it is appar
ent that the answer to this question depends upon many factors. 
It depends upon more or less arbitrary assumptions as do the 
answers to many practical.,9uestions. In each case, however, it 
is likely that the average X = 4,762.5 and the observed stand
ard deviation fT = 1,118.6 will be made the ba.sis of the estimate. 
Furthermore, it is obvious that the interpretation of these 
depends upon the size n of the sample, in this case four. For 
these reasons it appears that in the tabulation of results of this 
character the experimentalist should always record the observed 
average X, standard deviation fT, and sample size n. 

In general it is perhaps reasonable to believe that the exper
imentalist who is in charge of taking the data is in the best' 
position to make a reasonable assumption upon which to base 
an estimate. For this reason it is desirable that he record what 
he considers to be the best values to take as estimates of the 
average X and the standard deviation fT of quality X assumed 
to be controlled. It is likely in this case that the average X 
will be taken as the estimate of X. In the same way it is likely 
that fT will be taken as a quantity larger than fT. As we have 

said in the previous section, the estimate!' is a consistent es-
(2 

timate in that in the long run the average of an indefinitely 
large number of such estimates would give the true value fT 

assuming that the universe of control is normal. 
Anyone who wishes to make use of these results may use the 

observed average and standard deviation and the sample size 
as a basis for his own estimates of X and fT, or he may choose 
to use those selected by the experimentalist himself. In this 
way he is free to make his own postulates basic to estimating 
X and fT. 



CHAPTER XXIII 

SAMPLING-MEASUREMENT 

I. Place of Measurement in Control 

In any program of control we must start with observed 
data; yet data may be either good, bad, or indifferent. Of 
what value is the theory of control if the observed data going 
into that theory are bad? This is the question raised again 
and again by the practical man. 

Even though it is necessary, as a starting point in the theory 
of control, to tabulate the results of n measurements of some 
physical quality X in terms of the average X and the standard 
deviation fT', the engineer often reacts in something like the 
following way. He will likely admit that this method is an 
excellent one to-follow if, as he says, the data are known to be 
good, but he will often argue in a given case that the data are 
not good enough to make it worth while to record more than 
perhaps the average and the range. He may go so far as to 
throw out one or more of the observed values before taking 
even the average and the range. In fact I have heard industrial 
research men say that they can get more out of a set of data 
just by looking at it than anyone without their experience can 
get by the most refined analysis. 

In discussing this point at a recent round-table conference 1 

on presentation of data, one prominent engineer had this to 
say: 

Most frequently we are confronted with expressing results that 
have been obtained by empirical methods in the hands of fallible 

1 Conference held in New York, December 5, 1929, under the auspices of the 
American Society of Mechanical Engineers and the American Society for Testing 
Materials. . 
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operators on more or less representative samples of generally very 
heterogeneous materials. When we go to discuss the precision of 
our methods, we always have three factors which have not been 
controlled. We have the question of the authenticity of the sample; 
we have the question of the operator; and we have the question of 
the method itself. Hence it becomes a very complicated problem 
to apply the mathematical methods of analysis to these data. 

A number of years ago I read somewhere an expression which has 
always struck me. It said something about mathematics being a 
mill that grinds with exceeding fineness and yet a mill that is no 
better than the grain that is put in it. So it always seemed that in 
our work the first thing we had to do was to attempt to develop 
the limit of precision of our methods after we had at least some
thing to start with; then we could determine the effect of the 
presence of the operator. From that point we could determine 
the authenticity of our samples and we would be in a better posi
tion to analyze our crop of results. 

Not only in the fields of industrial research and engineering 
do we get such a reaction. We find it also in the field of so-called 
exact science-for example, physics. Thus in a recent paper by 
Millikan discussing the value of electronic charge,1 emphasis is 
laid upon the importance of the human judgment of the exper
imentalist, as is typified by the following paragraph: 

This value of the electron is also that at which Birge finally 
arrives as a result of his survey of the whole field of fundamental 
constants. It is true that he reanalyzes for himself my individual 
oil-drop readings and weights them so that he gets from them the 
value 4.768 ± 0.005 in place of my value 4.770 ± 0.005, a result 
that is so much nearer mine than my experimental uncertainty that 
I am quite content-indeed gratified-but I may perhaps be par
doned for still preferring my own graphical weightings, since I 
thought at the time, and still think, that I got the best obtainable 
results in that way from my data. The person who makes the 
measurements certainly has a slight advantage in weighting over 
the person who does not, and the graphical method by which I got 
at my final estimated uncertainty is, I think, in the hands of the 
experimenter himself more dependable than least squares. 

In this way we get into the following dilemma: The en
gineer questions the usefulness of refined methods of analysis 

I Loc. cit., Part II. 
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because his data are not good; the research man questions their 
use because he does not need them. The sooner an engineer 
appreciates this situation, the sooner will he become an influence 
in getting good data such that he can use in the theory of control 
to effect certain economies previously discussed. 

Everyone will admit that.in the literature there are numer
ous sets 'of bad data. As an illustrative case we find the fol
lowing statement 1 in a recent paper on thermionic emission: 

Most of the observations on emission made up to 1914, and a 
considerable number of those made since then, are almost worthless· 
because of the poor vacuum conditions under which they were made. 

2. All Measurement a Sampling Process 

An element of chance enters into every measurement; hence 
every set of measurements is inherently a sample of certain more 
or less unknown conditions. Even in the few instances where 
we believe that the objective reality under measurement is a 
constant, the. measurements of this constant are influenced by 
·chance or unknown causes. Hence, the set of measurements of 
any quantity, even though the quantity itself be a constant, is 
a sample of a possible infinite set of measurements which we 
might make of this same quantity under essentially the same 
condi tions. 

From this viewpoint, measurement is a sampling process 
designed to tell us something about the universe in which we 
live that will enable us to predict the future in terms of the past 
through the establishment of principles or natural laws. In 
fact, we may think of the process of examining a subgroup n of 
a larger group of N things along this same line in the sense that 
we look at the n things and try. to predict what we would find 
if we were to look at the remaining N - n things. 

In the measurement of anything four kinds of errors may 
artse: 

{

Theoretical 
A. Constant Instrumental 

Personal 
1 Saul Dushman, Reoiews of Modern Physics, Volume II, pp. 381-476,1930-
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I Manipulative 
B. Mistakes Observational 

Numerical 

C. Effect of Assignable Causes, Type I 

D. Effect of Constant Chance Systems Instrumental I Methodological 

Ph ysiological 

3. Good Data 

Three prerequisites of good data are: 

A.They shall come from a constant system of chance 
causes-in other words, they must satisfy the criteria of Part VI 
if they are sufficiently numerous that such tests can be applied. 
It this condition is not fulfilled, we must rely upon the experi
mentalist's ability to eliminate all causes of lack of constancy 
in the chance cause system. 

B. They shall be free from constant errors of measurement 
and mistakes. 

C. They shall provide a basis for estimating the error of 
measurement. 

4. Corrtction of Data for Constanl Errors 

Let us consider the simplest kind of measurement, viz., that 
of a so-called physical constant such as one of those in the 
equation of electron emission as a function of temperature of 
the form 

where 
I = emission per unit area, 
T = absolute temperature, 

and a and 6 are constants characteristic of the emitting sur

face. 
Dushman 1 considers in some detail the constant errors that 
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must be taken into account in making such measurements. 
Some of the most important sources of theoretical instrumental 
error are: 

A. Error in measurement of surface area at maxImum 
temperature. 

B. Temperature gradients along emitting surface. 
C. Presence of adsorbed and occluded gases in emitter. 
D. Presence of gases in tube. 
E. Cooling effect of leads. 
F. Effect of anode voltage. 
G. Error in measurement of temperature. 

Errors (A) and (E) are largely eliminated through design; 
(B), (F), and (G) are such that the observed data can be cor
rected with the aid of available but complicated theory. 
Errors from sources (C) and (D) are eliminated by proper bak
ing' of bulb, flashing of the filament, and evacuation of the 
system. 

Thus we get a picture of the technique required either to 
correct for or remove two of the sources of constant error in 
one very important physical measurement. A more detailed 
study of this problem of correcting data for constant errors 
will emphasize the fact that- the degree of success will depend 
among other things upon the intuition, reason, theoretical 
knowledge, experience and technique of the experimentalist. 
Is it any wonder that engineering and even research data often 
fail to satisfy the prerequisite of being free from constant 
errors of the instrumental and theoretical kinds? 

I t is also true that to correct for personal errors often 
presen ts a real problem. Often one finds a set of data revealing 
the psychological tendency on the part of the observer to 
favor certain numbers, a case of which was noted in Part VI. 
One of the most troublesome characteristics of such errors is 
the fact that many of the psychological errors from their very 
nature are such that we do not readily detect them in ourselves. 
Witness for example the tendency for us to Jeel that the two 
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lines II and" in Fig. 131 are not of equal length although we 
know better. 

The method of detecting and eliminating assignable causes 
has been discussed in sufficient detail in Part VI and hence 
need not be considered here. It would perhaps be of interest 

FlO. IJI.-How MUCH LoNORa IS " THAN ~l 

to show how mistakes can often be singled out even by analyt
ical methods. To do so, however, is out of place here because 
the best method of correcting for these is to take care not to 
make them, or to provide two independent observers. 

s. Errors lntroduwl !Jy Constant Systems oj Chance Causes 
After the state of constancy in the chance cause system has 

been reached, the problem of correcting data for errors of 
TRUE ~XPECTED OBSERVED 
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measurement may be schematically indicated as in Fig. 132. 

In this the true value is represented by X, the expected observed 
value by X and the average of a sample of size n by X. The 
distance f0( represents the resultant cons~ant error which must 
be taken care of as indicated in the previous section. 
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Under the assumption of constancy of the cause system, it 
follows tha t 

where the limit La is statistical. 
In practice we usually take the observed average X as our 

best estimate of X and hence make our constant error correction 
with X as a base. Our problem is not solved, however, until 
we form some reasonable estimate of the probability that the 
inequali ty I X - X I ::;; e is satisfied where e is some preassigned 
positive quantity. To do this it is necessary to obtain some 
estimate of the true standard deviation a of the objective dis
tribution of observed values. Except in the case of small 
samples we usually take the observed value of standard devi
ation as the best estimate of a. If we let 

e 
Z=--

u/vn 

then we may, subject to the usual assumption of normality of 
the distribution of error, use the normal law probability table 
to estimate the probability that the absolute difference exceeds 
za/vn. 

Thus we see that the complete discussion of the measure
ment of the simplest kind does involve the use of statistical as 
well as physical theory. 

An interesting illustration of such a system of errors attrib
utable to a physiological source is that shown in Fig. 133 repre
senting the distribution of minimum audible sound intensity.1 
It is particularly interesting to note how closely the observed 
distribution is approximated by the normal law. 

6. Correction for Constant Chance Errors of Measurement 

Let us next consider the case where the thing measured is 
itself a constant chance variable with average Xl' and standard 
deviation aT. Furthermore, let us assume that the error of 

1 For a discussion of these results see" Some Applications of Statistical Methods," 
by W. A. Shewhart, Bell System <f'echnical Journal, Vol. III, No. I, January, 1924. 
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measure~e.nt is ~uch_that the expected value of the measure
ment comcldes wIth X,. and that the standard deviation of the 
error of measurement is fl •• 

. Assuming that the error of measurement compounds linearly 
wIth the true value and that there is no correlation between 
them, it follows I that 
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FlO. 133.-DISTalaUTlON or MINIMUM Sou NO INTENSITY. 

where flo is the standard deviation of the objective distribution 
of observed values. Fig. 134 shows schematically the rela
tionship between the objective true distribution f,.(X) and the 
objective observed distribution fo(X). 

Example: Table 51 gives two observed distributions-one 
is the distribution of single measurements of efficiencies of 
15,050 pieces of a given kind of equipment; the other is the 
distribution of five hundred measurements on a single instru
ment. It had previously been shown experimentally that there 

I If there is no correlation between the thing measured and the error of measure
ment, we may think of an observed value X as being the sum of a true value X,. and 
an error E. Hence from section 3 of Chapter XVI, Part IV, we get (95). Another 
way of arriving at this result is given by W. A. Shew hart in an article" Correction of 
Data for &rora of Measurement," Btll SySltm 'l'eclm;c4/70urn4/, Vol. V, pp. 1I~6, 
1926• 
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TABLE p.-TYPICAL CALCULATION INVOLVED IN ELIMINATING ERRORS 

OF MEASUREMENT 

Measurements on Single Measurement on 
a Single Instrument Each of a Number of Instruments 

Cell Midpoint Frequency Cell Midpoint Frequency 

2.8 2 0.0 13 
3. 1 16 0·5 10 
3·4 

. 
46 1.0 8 

3·7 88 1.5 43 
'4.0 138 2.0 100 
4·3 1I3 2·5 815 
4.6 71 3.0 1,761 
4·9 22 3·5 2.397 
5. 2 . 4 4.0 3.431 

4·5 3,703 
5.0 2,165 
5·5 510 
6.0 77 
6·5 15 
7.0 2 

n = 500 n = 15,050 
'Ks = 4.0606 Xo = 4.0251 
ITs = 0.4423 ITo = 0.8II6 

. 

was no correlation between efficiency and error of measurement. 
Since the numbers of measurements are large, we may assume 
that 0'0 = 0'0 and as = as where 0'0 and O's are the observed 
standard deviations given in Table 52. With this assumption 
we get 

O'T = v' 0'02 - O's2 = v' (0.8 II 6)2 - (0.4423)2 = 0.6805. 

7. Analysis oj Bad Data 

We are now in a better position to consider the practical 
problem of the engineer in trying to determine how far he shall 
go in analyzing his results. Again take as a simple illustration 
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measurements of some so-called physical constant such as those 
considered earlier in this chapter. 

There is no known method for estimating the true value X 
of the constant and the true standard deviation IJ' of the error 
of measurement from a set of n bad data-data that do not 
satisfy anyone of the three prerequisites of good data. We 
cannot say, however, that the man who took these data cannot 
intuitively arrive at good (or at least practical) estimates of 
both X and IJ'. Men of genius such as Poincare claim often 
to advance intuitively first and logically afterwards.1 

We have seen how intuition, hypothesis, imagination, and 
the like are basic to the process of finding and correcting for 
constant and assignable errors of measurement. If we turn 
to the history 2 of science and scientific method, we do not 

~ 
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/ 

FlO. IJ4.-EFFECT or UIlOIl or MEASUIlEllENT. 

find, however, many (if any) of the accepted e;;timates. of 
so-called physical constants that have been obtamed by 10-

tuitive use of bad data. 
Let us go a little further and see what would happen if we 

were to accept results obtained from bad data through the 

I See Dubs RAti."al I"ducti.", Chicago University Press, 193", on this point. 
Such questions'lead us into the fields of logic, psychology, and philosophy in an attempt 
to reduce to a rational basis the rOle played by each of these in measurement. Other 
references along this line are given in Appendix Ill. 

I References in Appendix Ill. 
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intuition of the experimentalist. Immediately the analysis of 
data would' be removed from the field of logic and we would 
have to accept a result simply on the basis of the authority of 
the experimentalist. Then we would face the difficult task of de
termining the ultimate authority. Such a method is certainly not 
scientific, nor does history reveal much ground for belief that it 
is a method which can be relied upon to give satisfactory results. 

In the light of this situation it seems reasonable to believe 
that we are not justified in basing industrial development on 
intuitive analyses of data. This does not mean that experi
mental science has not profited by hunches that have come to 
those in the process of collecting data later found to be bad. 
The very fact that an experimentalist feels that his data are 
bad is usually an incentive to get good data. A research man 
is usually concerned with the fact that he may unknowingly 
get bad data. Here it is that the mathematical theory of 
detecting the presence of assignable causes (Part VI) comes to 
his aid.1 To get the best results through the use of these 
criteria requires that the data be divided into rational subgroups 
and that at least the averages and standard deviations of these 
subgroups be known. 

8. Analysis of Good Data 

Good data in generat" a;e expensive. In the. process of 
getting them many measurements are usually taken, from which 
a few are finally chosen as being good. 

Furthermore, even though the cost of getting good data is 
large, experience shows that the cost of making the most effi
cient analytical study of such data is relatively small. 

In Part VI the problem of choosing statistics to be used 
and of choosing the best way of using them was considered. 

1 In this connection the following quotation from Mathematics of Lif, ana <fhoughl 
by A. ~. Forsyth is of interest. .. Briefly, the science of mathematics cannot be a 
substitute for essential experiment; but it can show how experiments and observa
tions, duly systematized, can be elucidated so as to discriminate between what is 
principle and what is detailed consequence of principle." The criteria described in 
Part VI help to discriminate between what should be and what should not be left to 
chance. 
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The fact that one statistic is often much more efficient than 
another is of considerable economic importance. For example. 
in general. the standard deviation of n good observations is just 
as good as the mean deviation of 1.14 n such data. To take 
on the average one hundred and fourteen observations where 
one hundred would do is an unnecessary waste of money which 
becomes significantly large in extensive industrial research 
programs. 

To use the range in such a case instead of the standard 
deviation effectively results in throwing. away a very large 
fraction of the information in respect to dispersion contained 
in the observed data. For example. if the sample size n is 
approximately sixty, the efficiency of the range is only about 
50 per cent when compared with the standard deviation. As 
n increases beyond this value. the efficiency of the range rapidly 
decreases. In the face of this fact we sometimes find the range 
instead of the standard deviation tapulated in the literature. l 

Table 53 is taken from an engineering report, and gives the 
modulus of rupture for three species of telephone poles. To 

TABLE 53 -ILLUSTRATING INEFFICIENT METHGD or TABULATING DATA 

Number" 
Modulus of Rupture in psi 

Efficiency of 
Species of Poles in Max.-Min. 

Sample Average Maximum Minimum 

A 4 3.985 5.690 2,980 100 

B 16 50978 7.090 4.460 75 
C 100 5.787 7,790 3.490 35 

have tabulated only the ranges in Cases Band C amounted 
to throwing away approximately 25 per cent and 65 :per cent 
of the information available in the original data. ThiS state
ment is based upon the assumption that ~e original data we~e 
good and that they came from an approxlmat~y normal un~
verse. Of course, the range in bad data may give the expen-

I Examples of this kind are Tables 4 Bnd J2 in the first edition of the very inter
esting book, <J'i""'", III SIr",gl", S~aso"i"g, ,,,ul Gradi", by Harold S_ Betts, McGraw

Hill Book Company, pp. 34 and 91, 1919. 
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mentalist some indication of the effects introduced by assignable 
causes of Type I. As indicated in the previous section, however, 
the interpretation of the range or any other statistic derived 
from bad data should be made by the experimentalist and can 
be accepted by another only upon the authority of the exper
imen talist. 

For a sample of four, practically all of the information con
tained in the data is retained by using the range~ 

It is for such reasons that efficiency in analysis and pre
sentation of data has been considered so often in the previous 
chapters. Graphical methods of analysis have not been given 
any attention simply because experience has shown them to be 
inferior to and less efficient than analytical ones.1 

9. Minimizing Cost 0/ Measurement-Simple Example 
Let us consider the following simple problem: What is the 

most economical way of measuring a quality X controlled by a 
constant system of causes "to insure with a given probability P 
that the average of the measurements will not deviate in 
absolute magnitude from the average XI' by more than a pre
assigned quantity e. Let us assume that: 

and 

a1 = cost of selecting each unit and making it available 
for measuremen~, 

a2 = cost of making each measurement, 
n1 = number of units selected, 
n2 = number of measurements made on each unit, 
fTll = objective standard deviation of errors of measure

ment, 

fTf' = objective standard deviation of true magnitudes of 
the measured characteristic. 

I Whittaker and Robinson make the following statement in the preface of their 
classic, 'I'M Calculus of O!JsmJlllionsl "When the Edinburgh Laboratory was estab
lished in 1913, a trial was made, as far as possible. of every method which had been 
proposed for the solution of problems under consideration, and many of these were 
graphical. During the ten years which have elapsed since then, graphical methods 
have almost all been abandoned, as their inferiority has become evident, and at the 
present time the work of the Laboratory is almost exclusively arithmetical." 
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Let us take P = 0.9973, then the ra~e XT ± 3ax. in~ludes 
99.73 per cent of the observed averages Xo, and hence e = 3ax •. 

The average of n2 measurements made on one unit is to be 
taken as the observed value Xo of the true magnitude XT for 
that unit. This average has the standard deviation aB/v"h. 
Hence, from (95), the objective standard deviation of the 
observed values is given by 

where aB~ is the objective standard deviation of errors of aver
ages of n2. Thus the objective standard deviation ax. of the 
average of nl observed values is 

which gives die relationship 

between nl and n2. 
Taking the cost of inspection as 

and using customary methods this can be shown to be a inin
imum when 

The following values correspond to one practical case: 

e = 0.3 unit III = $0.50 

aB = 0.3 unit Q2 = $0.02 

aT = 0.9 unit P = 0·9973 

With the aid of this theory we find that .the most econo~ical 
method of measurement in this case reqUires two observations 
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on each of eighty-six units. Here, as in general, we take 
observed values of fTB and fTT in large samples as estimates of 
(TB and (TT respectively. 

10. How Many Measurements? 

Perhaps the question most frequently raised by those in
terested in the control of quality is: How many measurements 
shall be taken? Of course, for such a question to be answerable, 
it must be understood to mean something like this: How many 
measurements shall be taken in order that one may have a 
given assurance that such and such is true subject to certain 
specific assumptions? When so stated the question usually has 
an objective answer. 

Sometimes the question is put briefly as follows: How large 
a sample shall be taken? When so stated, however, care must 
be exercised to differentiate between the size of sa,mple, meaning 
thereby the number of things measured, and the size of sample, 

. meaning thereby the number of measurements, where one 
thing may be measured more than once. The significance of 
these remarks will be apparent as we proceed. 

To introduce the subject, let us ask a very simple question: 
Assuming that we know that a quality X is normally controlled 
with standard deviation (1', how many. measurements of .this 
quality must we make in order that the probability will be, let 
us say, 0.9973 that the deviation of the average of n observed 
values from the true but unknown arithmetic mean X be not 
greater in absolute magnitude than some given value AX. 

From what has previously been s·aid we see that the size n 
of the sample required in this case is rigorously given by the 
relation 

.'iT. (T 

~ = 3...;;· 

In practice, however, we do not know (T. In fact, this factor is 
only obtainable as a statistical limit when the sample size n 
is made indefinitely large. What we can do under such con-
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ditions is to estimate" from available data 
estimate v, we may solve for n in the equation . 

- IT 
U-3y'1,· 

391 

Calling this 

We can then say that the size n of the sample thus obtained is 
the one required, assuming that v = v. 

Perhaps the most important thing to note in this connection 
is that the standard deviation of the average decreases inversely 
as the square root of the number of observations, because this 
in.dic~tes the ~rder of increase in the precision of the average 
with Increase In the number of observations under the assumed 
conditions. 

In general, if we know that we are sampling from a constant 
system of chance causes, we can say that the standard deviation 
of an estimate of anyone of the objective statistics, fraction 
defective p, average X, standard deviation ", and correlation 
coefficient r, decreases inversely as the square root of the size 
of the sample, even though we do not know the magnitudes of 
the respective standard deviations in a given case. Further
more, given the standard deviation as a function of sample 
size, for any statistic derived from a sample from a specified 
universe, we have, as indicated, a means of determining the 
significance of increasing the sample size. 

It is very important to note that the answer given to the 
question of how many measurements is in each case limited !Jy the 
assumption thai the variable X is controlled. If we ask a similar 
question in a case where we are not willing to assume to begin 
with that the data are controlled, it is first necessary to try 
to determine by criteria already described whether or not the 
variable under consideration satisfies this condition. 

Example: Recent investigations 1 have been made by the 
American Rolling Mill Company to determine the life of ferrous 
materials under different corrosion conditions. Data obtained 

1 R. F. Passano and Anson Hayes, .. A Method of Treating Data on the Lives of 
Ferrous Materials," Proem/in,s 01 1M Amme"n SocieIJlor'l"eslin, Mtllm"is, Vol. 29, 

Part 11,.1929. 
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from a certain kind of sheet material immersed in Washington 
tap water showed that the average time of failure of such 
samples was X = 874.89 days and the standard deviation of the 
time of failure was (1 = 85.31 days. One kind of practical 
question of interest to the research engineer of this company 
is: What sample size n must be used in order that for similar 
test conditions, the probability shall be 0.90 that the average 
time for failure determined from the n tests will be in error by 
not more than 5 per cent of the average of the universe? 

Assuming that the observed values of average and standard 
deviation are the true values for the universe, and that averages 
of samples of n are distributed normally, we may answer this 
question as follows: The allowable error is 5 per cent of 874.89 
days or 43.74 days, and this must correspond to a probability 
of 0.90 or to an error of 1.645 (1/Vii as found from Table A of 
Part II. Hence n is found by solving the equation 

I.645(1/Vn = 43·74 

having assumed that (1 = 85.31. In this way, we get n = 10. 

II. Law oj Propagation oj Error-Practical Significance 

Most measurements are indirect in that the quality Y to 
be measured is derived from measures of let us say mother 
qualities 

to which it is either functionally or statistically related. In this 
section we shall consider the functional case, examples of which 
are met in everyday work. 

A simple illustration is the measurement of the density D 
of a solid by the formula 

D= 

where Wl and W2 are the weights of the solid in air and water 
respectively. 

If the solid is such that we can measure its volume V in a 
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more direct way than by determining the difference WI - W2 we 
may use the (ormula 

D= WI 
Y 

to obtain the density. 
The choice o( method o( measurement involves at least two 

things: 

.d. Determination o( effect o( errors o( measurement in each 
o( the m qualities upon the standard deviation o( the calculated 
values o( Y. 

B. Choice o( most efficient method o( measuring Y. 
Let 

Y = F(X" X2, ••• , Xi, ... , Xm) 

be the (unctional relationship between the quality Y to be 
measured and the m other qualities upon whose measurements 
the calculated (measured) value o( Y depends, as the calculated 
value of D depends upon the observed values of WI and W2 
above. 

Assuming that F can be expanded in a Taylor's series 
and that terms containing higher powers in the x's than the 
first may be neglected, we have 

_ _ _ ( 'OF) ( 'OF) ( 'OF \ 
Y = F(XI,X2, ..• ,Xm)+XI aXI L+ X2 aX2 I:··· +Xm ax;';!.' 

where Xi = Xi - Xi, and the derivatives are (ormed (or the 
mean values of the X's. Under these conditions we have as 
in Part V 

and 
IT,I = V tll21T12 + tl221T22 + ... + tlj2ITi2 + ... + tlm2ITm

2
, (97) 

where 

tli=(a
F
), 

aXi I. 

IT" is the standard deviation o( the measurement of Xi, and 1T1I 

i: the standard deviation of the indirect measurements of Y. . 
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Equation (97) is the law of propagation of error, and gives 
us the information called for under (A). 

If for the simple problem of measuring density we let 

WI = expected weight in air, 

W2 = expected weight in water, 

0"1 = standard deviation of measurement of WI, 

0"2 = standard deviation of measurement of W2, 

and O"D = standard deviation of error of measurement of D, 

we have on applying (97) 

O"D = _ -v' W220"I2 + WI20"22 • 
. WI- W2 

By a process exactly similar to that used in Paragraph 7, 
Chapter XVII of Part V, we can determine the mean values 

(if they exist) which will minimize O"y. By comparing the 
minimum values of O"y obtainable by different methods we can 
arrive at the most efficient method of measuring Y. 

12. Measurementthrougli Siatistical Relationship 

Let us consider the ptoblem of measuring some physical 
quality such as tensile strength ':Vhich cannot be measured 
except through the use of some statistical relationship unless 
we resort to a destructive test. 

Let us start with a simple question. How can we be sure 
as to whether or not the tensile strength of the bar in Fig. 135 
lies within specified limits Y 1 and Y2 ? The answer is: Break 
it and find out. However, since we cannot break it and use it 
too, we must be satisfied with the answer to a slightly different 
question: How shall we test the bar indirectly through sta
tistically correlated variables? Let us start with the illus
tration introduced in Part I, Fig. 14. Let us consider first the 
correlation between tensile strength Y and hardness X. We 
'Can never expect to be sure that the tensile strength of tested 
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material will lie within t~o sp~ci~ed limits YI and Y2 by making 
lure that the hardness hes within some two limits Xl and X 2• 

The situation is shown 1 schematically in Fig. 136, for the 

IE;;;; ;=:;;;;;;=b=;;:J] 

FlO. IJS.-TEST BAR.. 

d'ata of Fig. 14-a. In such a case values of tensile strength 
rna y be expected. to be found in the shaded area of the figure 
between the limits Xl and X 2 and outside the limits YI and Y2• 
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FlO. IJ6.-WHY ONS CANNOT BE SUIlS THAT STIlENOTH LiES WITHIN 

LiMITS. 

SPECIFIED 

If, and only if, the product ;s controlled .in respect to the. two 
correlated variables Y and X, can we predICt how many p,eces 

• Mathematical details considered in Part II. 
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of material having quality X within the range Xl to X 2 will have 
quality y. within the range YI to Y 2• In other words, the use 
of indirect statistical measures must be based upon the assump
tion that the probability P that the point corresponding to an 
observed pair of values X and Y will fall within a given rectangle 
is constant. 

A. Calibration.-Suppose one has a lot>~ N pieces. like the 
one shown in Fig. 135, and wants to mark each of them with a 

,. 
I 
% 
t-

" Z ... 
II: 
t
III 
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.J 

III 
Z ... 
t-

A-LINE OF REGRESSION X ON Y 

a·LINE OF REGRESSION Y ON X 

c- LINE OF BEST FIT 

HARDNESS - X 

FIG. 137.-SHALL ONE OF THESE LINES BE USED FOR CALIBRATION? 

value of tensile strength derived from the corresponding hard
ness measure. What functional relationship between Y and 
X shall be taken as a basis? In other words, how shall we 
calibrate Y in terms of X assuming that these two variables 
are normally correlated? Shall we take one of the three lines 
illustrated in Fig. 137? 

Let fry = standard deviation of objective distribution of ten
sile strength Y, 
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fTa = standard deviation of objective distribution of 
hardness X, 

r = correlation coefficient between X and Y in objec
tive distribution of X and Y. 

It follows from the discussion of lines of regression in Part II 
that the line of regression of tensile strength on hardness 

where, = Y - Y and Jt = X - X, gives the expected or aver
age value of, to be associated with a given value of x. In other 

words, if we were to mark with N" x each of a very large number 
fTz 

" test pieces that gave a hardness value X + x, and then we 
were to break these to determine their tensile strength, we 
should expect to find that the average tensile strength of the 

" pieces would be rrr"x, although the observed tensile strengths 
fTz 

would be distributed about this value. 
Furthermore we should expect 99.73 per cent of the" pieces 

to have tensile strengths measured in terms· of deviations, 
within the limits 

since as we have seen in Part II, the standard deviation of 
any y array about its mean in this simple case is 

In fact, if the regression of y on Jt is linear a~d 0e scatter 
of points is homoscedastic, then the standard deVIatIon of each 

array of y's about the mean rfT"Jt is given by (98) and we can 
fTz 

say by virtue of Tchebycheff's inequality that more than 



398 ECONOMIC CONTROL OF QUALITY 

lOO( I - ~) per cent of the y values m.~y be expected to lie 

wi thin the band 
fry 

r-xxtsy. 
fr:e 

Where the correlation surface is normal, the number of 
points lying within such a band is given by the normal law 
integral. Under the same conditions, similar statements hold 
with respect to the regression of x on y. It is sometimes 
argued that some line other than the line of regression should 
be used as a measure of y in terms of x. One such suggestion 
is that line for which the sum of the squares of the perpendicu
lar distances of the points in the xy plane to this line is a 
minimum. The reason for choosing the line of regression 
instead of this or any other line is that this is the only line 
about which we can make the general statements. previously 
made in connection with the range (99). 

In the discussion of Fig. 14 it was pointed out that the use 
of the plane of regression of tensile strength Z on hardness Y 
and density X is a better measure of tensile strength than either 
the line of regression of Z on X or Z onY. This follows because 
the standard deviation, 

of the values of tensile strength from the plane of regression is 
less than either 

or 
Szy = fr.-V 1- ryz2, 

where Su and Szy are the standard deviations of tensile strength 
from the lines of regression of z on x and z on y respectively. 

B. Effect oj Error oj Measurement.-Thus far we have con
sidered the problem of measuring some quantity such as tensile 
strength Y through its statistical relationship with some other 
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quantity, let us s~y hardness X. In general, the observed 
values of both tensile strength and hardness are in themselves 
subject to error. Let us assume for example that 

VZI = The standard deviation of the objective distribution 
of the observed values of hardness, 

V,," = The standard deviation of the objective distribution 
of the observed values of tensile strength, 

vZr = The standard deviation of the objective distributio~ 
of true values of hardness, 

v"1' = The standard deviation of the objective distribution 
of true values of tensile strength, 

fo = The true correlation between the observed values of 
hardness and tensile strength, 

and r = The true correlation between the true values of 
hardness and tensile strength. 

It can easily be shown that under these conditions 

(100) 

From this relationship we see that the correlation between the 
observed values of two correlated variables is always less than 
the correlation between the true values, unless the error of 
measurement of each of the variables is zero. In other words, 
the smaller the error of measurement for each of the variables, 
the more precise will be the regression method of measuring 
one in terms of the other. 

C. Conclusion.-To be able to measure through the use of 
statistical relationship, ;/ ;s necessary /hal/he variables be con
trolled. In the simple case of normally correlated variables the 
line or plane of regression has certain advantages as a calibration 
line or plane over any other. 

It should be noted, however, that the use of a statistical 
calibration curve involves the introduction of a concept quite 
different from that underlying the use of a calibration curve 
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based upon a fun.ctional relationship. The use of statistical 
relationship introduces a certain indeterminateness not present 
in the use of the functional relationship. To make this point 
clear let us suppose that we had, say one hundred bars, such 
as shown in Fig. 135, and let us suppose that we wished to 
test these for tensile strength indirectly through the use of the 
Rockwell hardness measure. . 

If we assume that tensile strength Y is functionally related 
to X, as 

Y =f(X), (101) 

where f is a single valued function, then for every X there is 
one and only one value of Y. If we use such a calibration 
curve, we can mark each of the one hundred bars with a value Y 
which will be the tensile strength of that bar except for errors of 
measurement. 

If, however, the two quantities Y and X are related sta
tistically and we use a line of regression 

(102) 

where y = Y - Y and x = X - X, then we cannot say that 
for a given value of X there is only one value as given by the 
line of regression of y on x. Instead for every X there is an 
array of Y's, the mean of which under controlled conditions 
will be the value of Y given by (102). Here we run into the 
kind of indeterminateness discussed in the last chapter. 

Equation (80) expressing r as a measure of the commonness 
of causation under simplified and controlled conditions may 
help one to form a better picture of the significance of the line 
of regression (102) as a calibration curve. Unless r is unity 
there are always causes of variation in Y that are not present 
in X. Even under these simple conditions if we could be sure 
that the correlation coefficient r and the variable X were con
trolled, we could not be sure that Y was controlled and we 
could not be sure of the interpretation of y as given by (102) 
except in the sense that the mean value of y for a given X would 



SAMPLING-MEASUREMENT 

be given by (101). d priori, however, it seems unlikely that Y 
will be uncontrolled if both r and X are controlled. At least it 
appears that the best we can hope to do in trying to control Y 
through the measure X is to try to control rand X. 

D. Example: Since the use of statistical relationship plays 
8uch an important role in measurement, it may be of interest 
to consider another simple problem. Many machine measures 
of quality depend upon the use of statistical relationship. A 
very important type of machine in the telephone plant is that 
introduced to supplant measures depending upon the human 

• 10 20 ao "0 10 
TIME IN aECONoa x 10.3 

Flo. IJ8.-()SCILLOOLU( or "NOISE CURREJrT." 

ear, such as in testing the quality characteristics of telephone 
instruments. 

Fig. 138 shows the oscillogram of a greatly magnified II noise 
current" attributable to chance fluctuations in the resistance 
of a certain kind of telephone instrument. It is obviously 
desirable to go as far as one can in reducing such noise to a 
minimum and in controlling the effect of this kind of distortion 
as measured by the human ear. Consequently, all instruments 
of this type are tested to make sure that they meet specification 
requirements in respect to this kind of distortion. Of course, 
the cost of doing this by ear would be prohibitive; therefore 
it is desirable to secure the economic advantages of a machine 

measure. 
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- A little consideration will show, however, that it' is almost 
hopeless to expect to be able to find a machine measure of such 
fluctuations in current that will be functionally related to the 
measures of the human ear. The best we can hope to do is to 
find some machine measure X which is statistically related to 
the ear measure Y. 
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MEASURE? 

Fig. 139 shows the calibration scatter diagram of a machine 
measure X and ear measure Y on 942 instruments. These 
data were obtained under conditions of control as determined 
by the criteria described in Part VI. The solid line in this 
figure represents the line of regression of the ear measure Y 
on the machine measure X. The fact that the difference 
"Iyz2 - r2 is approximately zero indicates that we are justified 
in assuming linear regression. This incidentally is what we 
should expect to get for reasons outlined in Part III. 
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For reasons given previously in this section, it appears that 
there is good ground for the belief that we may control the 
quality Y determined by the ear by controlling the quality X 
determined by the machine in respect to both the average X 
and the standard deviation u" in samples of size n. To check 
the calibration o( such a machine, it is necessary that the cor
relation r between the ear measure Yand the machine measure 
X (or a sample of n instruments be controlled in the sense of 
the criteria o( Part VI. 



CHAPTER XXIV 

SAMPI:.ING 

I. Fundamental Considerations 

Table 54 gives the results of measurements of modulus of 
rupture on twenty-four telephone poles of species D. Based 
upon these data, what can we say as to the strength of this 
species? 

Assuming that no assignable causes of variation of Type I 
are present, or in other words, assuming that these poles came 
from a constant system of chance causes, it follows from the 
discussion of the previous chapter that reasonable estimates of 
the average X and standard deviation fT of the distribution of 

TABLE 54.-MoDULUS OF RUPTURE OF TWENTy-FOUR TYPE D 
TELEPHONE POLES 

Pole 
Number 

I 

2 

3 
4 
5 
6 

7 
8 

9 
10 
II 
I2 

Modulu!Oof Pole 
Rupture Number 

3,643 13 
5,195 14 

3,925 15 
4,595 16 

4,482 17 
6,248 18 
6,012 19 
6,697 20 

7,II7 21 

5,340 22 
8,712 23 
5,819 24 

Average = 5,829 psi 
tr = 1,159 psi 

404 

Modulus of 
Rupture 

5,385 
5,843 
6,905 
5,696 

7,392 
6,184 
4,885 
6,182 
6,201 

7,334 
5,497 
4,621 
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modulus of rupture given by the assumed constant system of 
causes are 

x ... i ... 5,829 psi 

IT • 
- ... fT ... 1,197 pSI. 
'2 

So far as the distribution of the; twenty-four observed values is 
concerned, there is no definite evidence of lack of constancy in 
the chance cause system. Under these conditions one would 
be led to the conclusion that the average strength and standard 
deviation of this species of telephone pole are 5,829 psi and 
1,197 psi respectively. 

Anyone who knows anything about the strength charac
teristics of timber would likely and justly challenge such a 
conclusion. For example, such a one would likely ask what 
effect moisture content has on the strength of poles of this 
species, knowing as they would that moisture is at least for 
most species an assignable cause of variation in strength. 

Dividing the poles in respect to moisture content in this 
case leads to the results shown in Fig. 140. There can be little 
doubt that moisture content is an assignable cause in this case. 
How then, does this effect the validity of our conclusion arrived 
at upon the assumption of constancy? 

From Fig. 140 it appears that there is a difference of the 
order of magnitude of 1,000 psi between the strength when 
the pole is dry and that when it is wet. What strength 
one may expect to find in the future then may be something 
nearer 5,000 psi than the predicted 5,829 psi if the poles 
to be tested are wet. It appears that prediction based upon 
a sample coming from a non-constant system or non-controlled 
system of chance causes may differ widely from what the 
future will reveal. What reliance then, asks the engineer, 
can be placed on sampling results? The answer is that pre
diction based upon a sample from a non-controlled universe in 
which the causes of lack of control are unknown is likely always 
to be in error just as a measurement uncorrected for constant 
errors always in the long run is in error. Sampling theory 
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applies to samples arising under controlled·conditions. Too much 
emphasis cannot be laid upon this fact. To be able to make 
accurate predictions from samples, we must secure control first 
just as to make accurate physical measurements, we must eliminate 
constant errors. 

In this section we have approached the problem of inter
preting a sample from a practical angle, and in so doing, have 
been led to see the importance of control. Having read Parts 
III, IV, and VI, one sees that the only theoretical basis of 
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FIG. I4o.-WHY CONSTANCY OF CAUSE SYSTEM IS ESSENTIAL FOIl PllEDICTION. 

interpreting a sample is the assumption that it arose under 
controlled conditions characterized by (45) in the most general 
case, or in other words, by the fact that the sample was taken 
under the same essential conditions that will maintain through
out the future so that the universal physical law of large num
bers applies. 

2. Random Sample 

A sample taken under conditions where the law if large numbers 
(15) applies will be termed a random sample. This concept of 
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random is of fundamental importance in the theory of control. 
By simple illustrations we shall now try to make clear how this 
concept differs from that of some of the prevalent definitions 
of random in order that no confusion may arise in the use of 
the term in this book. 

Yule in that treasure house for statisticians,.An Introduction 
to tht Thtory of Statistics, indicates that the usual concept of 
random sample is one drawn with replacement, though he crit
icizes the use of the term random because it is so often taken 
to be synonomous with haphazard. Caradog Jones 1 apparently 
would also have us believe that a random sample is one drawn 
with replacement. For example, he says in effect: To select 
99 sheep from 999, number each sheep and place in a box 999 
tickets numbered I to 999, one to correspond to each sheep, 
then pick out 99 tickets in succession being careful' to replace, 
each and shake up the box before picking out the next; if 
there were absolutely no difference between the tickets such 
as would cause one to be picked more easily than another, the 
selection made in this way would be random. 

Now, if a random sample were only that kind of a sample 
and if the theory of sampling had to start with that kind of a 
sample, one can well imagine how enthusiastic a purchaser of 
999 sheep wbuld be about the theory. To such a man that 
method of sampling would be foolish. 

Not only is it foolish from a practical viewpoint in certain 
cases to try to take this kind of a sample-very often indeed, it 
is impossiblt to take a sample with replacement. As an illus
tration: How would you take a sample tensile strength test 
with replacement from the coil of wire in Fig. I4I? 

The kind of sample described by Yule and Jones is random, 
of course, but so are other kinds of samples as will be apparent 
from a study of the generalized law of large numbers (45). 
Thus either a sample without replacement or a Poisson sample 
may be random in this general sense. 

I A Firsl COIWJt i" SId/iSlitS. G. Bell & Sons. Ltd •• London. J9:14. 
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3. Samplingfor Protection 

Various methods of setting up sampling schemes to give 
definite consumer's risks were outlined in the last chapter of 
Part VI. A study of the subject matter of the references there 
given shows that the conclusions drawn rest upon the assump
tion that samples are selected at random. In other words, 
assuming that there are N items in the lot to be inspected, it is 
necessary that the sample of n required by one of these sampling 

FlO. 141.-How SHOULD WE CHOOSE A RANDOM SAMPLE OF THE TENSILE STRENGTH 

OF THIS COIL·OF WIRE? 

schemes, for a certain consumer's risk, be drawn at random. 
The risks calculated in this way apply so long as the samples 
are random. If, however, the samples are not random, the risks 
do not necessarily hold.1 

The kind of random sample required by the risk theory 
can be obtained by sampling without replacement from a bowl 
containing N identical chips marked 1 to N where it is assumed 
that the chips have been thoroughly stirred before the sample 
of n is drawn. We can see, therefore, the nature of the dif
ficulties involved in getting a random sample of the poles from 
the pole yard of Fig. 142. 

As another illustration let us consider the problem involved 
in drawing a random sample of soldered terminals from fifty 
panels such as the one shown in Fig. 143 where there are 4,500 

terminals on each panel. 

I Cf. Sec. I of this chapter. 
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• 
We need not go further to see that it is very seldom feasible 

to draw a samp!e in which the experimental conditions requisite 
for randomness have been secured. Therefore we must rely 
upon the engineering ability of the inspector to divide as in 
Part VI the total lot N to be sampled into, let us say, m sub
groups which" priori may be expected to differ assignably. 
A sample may then be drawn from each subgroup of the right 
size to insure that the chosen risk is met by the sampling test 
for each particular group. These remarks are sufficient to 
emphasize the importance of " priori information about' the 
lot prior to the taking of a sample. 

Now let us consider the problem of selecting a sample from 
a shipment of ten carloads of boxed material, there being 
twelve items in a box and roughly 1,000 boxes in a car. Obvi
ously it is not feasible to arrange experimentally for a random 
sample to be drawn. The next best thing is to try to divide the 
total of N - 110,000 items into m rational subgroups. If, 
however, we know nothing about the manufacturing process 
or the conditions under which the lot was' produced, we are 
faced with the necessity of doing something that we cannot do; 
yet we know that unless the sampling is done as it should be, 
sampling theory does not apply. 
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Thus we see how important it is that the consumer know 
assignable 'causes of variation if he is to devise ~ sampling plan 
to insure that the product accepted is of satisfactory quality. 
If the product is controlled, one can easily set up a satisfactory 
sampling . plan, but if it is controlled, the plan is often not 
needed. If the product is not con-trolled, the consumer needs 
to know the assignable causes of variation so as to establish an 
adequate sampling scheme. 

FIG. I43.-How SHOULD WE CHOOSE A SAMPLE OF THE SOLDEREDTERMlNALS IN 
THIS PANEL? 

In this way we come to see the advantage of control to 
both consumer and producer. Just as each of these now secure 
advan tages through' cooperating in laying down specifications 1 

for quality, it is 'reasonable to believe that. each will soon try 
to obtain the mutual benefits of control. ~ 

4. Representative Sample 

A sample that is representative of what we may expect to 
get if we take additional samples, is one satisfying the general 

IOn this point see H. ' F, Moore's <f'exl-BoolI 0/ Ihe Materials 0/ Engineering, 4th 
Edition, Chapter XVII, McGraw-Hill Book Company, 1930. 
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condition (45) of the law of large numbers. In other words, 
if we let N be the total universe, finite or infinite, to be sampled, 
we should try to divide the universe on an a priori basis into m 
objective rational subgroups as represented schematically in 
Fig. 144. The total sample of n should then be divided between 
these m subgroups in such a way as to give some indication of 
what we may expect to get from each group. 

FlO. 1 .... -Sc:H£ .. "nc or DIVUJo" INTO RAno""L SUBGROUPS. 

s. Siu of Sample 

We have seen in the previous chapter and in the last chapter 
of Part VI that the size of sample always depends upon what 
we assume a priori to be the conditions under which we are 
sampling. In any case the interpretation of the sample rests 
upon the assumption of control, or upon the assumption that 
the law of large numbers holds in the particular case. Thus 
we need to know if the quality of the product gives evidence 
of control, and in this way we are forced to come back to the 
problem discussed in Part VI. 

A very simple case will illustrate this point. Several years 
ago an engineer reported trouble on the job because the width 
of saw-slots in the screw heads was under minimum require
ments so that the available screw-drivers could not be used. 
The question was raised as to how large a sample n should be 
inspected in each lot of size N to protect against the recurrence 
of this trouble. Investigation revealed that a sampling plan 
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was already in use in which a certain fraction was taken from 
each lot of N. Just a little engineering investigation showed 
that the only assignable cause of the kind of trouble reported 
was wearing of the saw blade that made the slot. The obvious 
thing to do was to. inspect the blade and not the screws. The 
important question was not "how many," but rather "how." 
A few measurements of the saw blade to control the product 
were worth far more than many measurements made blindly, 
as it were, on the screws to find trouble that should have been, 
and could easily have been, eliminated. 

6. Size oj Sample-Continued 

To summarize, we may say that the answer to the question 
as to size of sample depends first of all upon whether or not we 
can assume that the product is controlled. However, to deter
mine whether or not the product is controlled, it is necessary to 
use the sampling process after the manner discussed in detail 
.in Part VI. The answer to the question-How large a sample? 
depends upon the following five important things considered 
in that chapter: 

A. Ability of engineer to divide data into objective rational 
subgroups. 

B. Choice of statistics. 
C. Choice of limits for statistics. 
D. Choice of method of using statistics. 
E. The way control is specified. 

Illustrative examples showing the importance of each of 
these five factors have already been considered in Part VI. It 
may be of interest, however, to give one more illustration here 
to show the importance of choosing the right statistic in de
tecting lack of control. 

Fig. 14s-a shows the observed fraction defective in a certain 
kind of apparatus over a period of ten months. Beginning 
about April, the rejections for this kind of apparatus became 
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excessive. It is of interest, therefore, to see how this trouble 
could have been detected through the use of a control chart on 
fraction defective. Such a chart (Criterion I, Part VI) is shown 
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caused t~e trouble beginning about the second week in 
April. 

As shown in Parts V and VI, the average is usually a much 
more sensitive detector of assignable causes than is the frac
tion defective. It so happened that the quality of a few instru
ments of this particular kind had been measured as a variable 
each week over this same period. Applying Criterion I to 
these data, we get the results shown in Fig. 145-c. Evidence 
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of lack of control is given by this chart sixteen weeks prior to 
that given by Fig. 145-b. 

Such results are typical of those experienced every day in 
the analysis of inspection data to detect lack of controL 

Having assured ourselves that the product is controlled 
about a certain level of quality, it may be desirable in some 
instances to set up sampling limits to give a certain assurance 
that the quality in a given lot meets certain limits. From 
what has been said in previous sections, it appears, however, 
that the size of sample required to give the desired assurance 
depends upon the following factors: 

a. Kind of risk. 
b. Magnitude of risk. 
c. Kind of sampling scheme. 
d. Kind of specification. 
t. Previous information as to the quality of product. 
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Obviously, therefore, the answer to the question-How large a 
sample?-even when product is controlled-depends upon 
several factors. Of course, the need for protective sampling 
schemes is very much reduced when we have the assurance that 
quality is being controlled. 

7. Siu oj Samp/~COnlinu(d 
To emphasize the importance of the conclusions stated in 

the previous section, let us consider very briefly four typical 
problems. 

A. Quite recently, the head of a large organization inter
ested in the production of linseed oil raised the following 
question. Three shiploads of flaxseed constituting a lot of 
approximately 65,000 bushels had been received. A test sample 
for chemical analysis had been taken from each shipload, the 
manner of taking being unknown. An order had been accepted 
for several thousand dollars' worth of oil at a price based upon 
the results found in the sample. When sufficient oil to fill the 
order was extracted from a portion of the flaxseed, it was found 
that the average oil content was so much less than that of the 
sample that the producer suffered considerable loss. The 
question asked was: How many samples should be taken under 
similar circumstances in the future in order to prevent the 
recurrence of such loss? 

If we turn to almost any book on the specification of prop
erties of materials for design purposes, we shall find problems 
of which the follo~ing three are typical. 

B. Given the observed distribution, Table 55, of resistance 
of a sample of 904 pieces of a given kind of apparatus, what is 
the tolerance limit Xli that will not be exceeded more than, 
let us say, 0.5 per cent of the time? 

C. The tensile strength of Code A wire shall not be less than 
21,000 pounds per square inch. How many samples shall be 
taken in order to insure that the specification is being met on 
a carload lot? 

D. Fig. 146 shows a typical cross section of a coating mate:
rial. One of the specification requirements is that this coating 
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shall have an average weight between twenty-five and fifty 
milligrams per square inch. The question is: How shall we 
sample this product to insure that this quality specification 
is being met? 

TABLE SS.-How SHOULD WE CALCULATE TOLERANCE LIMITS? 

Resistance Number of Resistance Number of 
in Ohms Pieces in Ohms Pieces 

31. 25 2 51. 25 30 
33·75 3 53·75 30 
36.25 37 56.25 10 
38.75 99 58.75 II 

'P·25 189 61.25 9 
43·75 228 63·75 3 
46.25 175 66.25 I 

48.75 76 76.25 I 

It follows from what was said in the. previous section that 
we cannot give definite answers to these questions in their 
present form. It will be noted that in no case are we justified 
in assuming that the material is controlled upon the basis of 

FlO. I46.-TvPICAL CllOSS SECTION OF A PllOTECTIVE COATINo-NOTE Ia.llEOULAll 

LINE OF DEMAllKATION BETWEEN COATINO AND METAL. 

the information given. On the contrary, questioning revealed 
in each of these typical cases that a priori there were good 
grounds for the belief that the quality was not controlled. In 
not one of the four cases did the engineer proposing the problem 
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know what assignable causes were likely to influence the par
ticular set of data giving rise to the question. 

Without this kind of information, any answer to the question 
-How large a sample?-is likely to be greatly in error because, 
as we have seen, the presence of unknown assignable causes may 
play havoc with the conclusions derived upon the basis of any 
sampling scheme which tacitly assumes, as it must, that the 
sample is random or, in other words, that it has come from a 
controlled system of chance causes. Before anyone of the 
four questions previously proposed can be given a reasonable 
answer, it is therefore necessary to know whether or not we 
are justified in assuming control, and if control cannot be 
assumed, it is necessary that we employ the sampling scheme 
that will make the best use of a priori knowledge of assignable 
causes. 

8. Sampling in Relation 10 SptcijicQlion oj QualilY 

In Part V the advantages of specifying control of quality 
were considered in some detail. It was pointed out that 
wherever possible we should specify the average X and stand
ard deviation" of the objective distribution of control. It is 
of interest to note that we are led to this same conclusion from 
the viewpoint of sampling theory because, strictly speaking, 
it is only under the condition of control that we have a basis 
for interpreting samples. 



CHAPTER XXV 

THE CONTROL PROGRAM 

I. Resume 

Five important economic reasons for controlling the quality 
of manufactured product were considered in Part I. In Chap
ter XXI of Part VI, we saw that, from the viewpoint of con
sumer protection, it is also advantageous to have attained the 
state of control. If only to assure the satisfactory nature of 
quality of product which cannot be given 100 per cent inspec
tion, the need for control would doubtless be admitted. 

In a very general sense, we have seen that the scientific 
interpretation and use of data depend to a large extent upon 
whether or not the data satisfy the condition of control (58). 
The statistical nature of things and of relationships or natural 
laws puts in the foreground this concept of distribution of effects 
of a constant system of chance causes. For this reason, it is 
important to divide all data into rational subgroups in the 
sense that the data belongibg to a group are supposed to have 
come from a constant system of chance causes. 

We have considered briefly the application of five important 
criteria to check our judgment in such cases. We have seen, 
however, that such tests do not take the place of, but rather 
supplement, the inherent ability of the individual engineer to 
divide the data into rational subgroups. Thus we see clearly 
how statistical theory serves the engineer as a tool. 

2. Control in Research 
Since observed physical quantities are, in the last analysis, 

statistical in nature, it is desirable that the results of research 
be presented in a form easily interpreted in terms of frequency 
distributions. As a specific instance, the design engineer 

418 
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must depend upon the results of research to give him a basis 
for establishing the requisite standard of quality character
ized, as we have seen in Part V, by the arithmetic mean X 
and the standard deviation fT of a controlled quality X. 

Naturally the research engineer is always interested in 
detecting and eliminating causes of variability which need not 
be left to chance. Hence the criteria previously discussed often 
become of great assistance as is shown in Part VI. The data 
of research are good or bad, depending upon whether or not 
assignable causes of variability have been eliminated. In most 
instances the data which have been divided into rational sub
groups can best be summarized by recording the average, stand
ard deviation, and sample size for each subgroup. 

3. Control in DtSign 

Our discussion of this phase of the subject in Part V in
dicated the advantages to be derived through specification of 
the condition of control in terms of the arithmetic mean X and 
standard deviation fT of any prescribed quality characteristic X. 

4. Control in Deoelopment 

From the results of measurements of quality on tool-made 
samples supposedly produced under essentially the same con
ditions, we may attain tentative standards of quality express
ible in terms of averages and standard deviations. These 
tentative standards may then be used as a basis for the con
struction of control charts in accord with Criterion I for the 
purpose of detecting and eliminating assignable differences of 
quality between tool-made samples and those produced under 
shop condi tions. 

5. Control in Commercial Production 

It is obviously desirable that a method of detecting lack of 
control be such that it indicates the presence of assignable 
causes of variability before these causes have had time to affect 
a large per cent of the product. For this reason, the method 



420 ECONOMIC CONTROL OF QUALITY 

to be used on the job should involve a minimum number of 
computations. Here again Criterion I usually proves sat
isfactory. 

6. Control in the Purchase of Raw Materiai 

As is to be expected, a prevalen t source of lack of con trol 
is selection of raw material. It is not necessary that the dif-

QUALITY REPORT 
PRODUCT x Y Z 

TYPE A ",.'1 8 

•• TA .... QUAUf'I UWI.& 

~TA .... 0 .. aoU_CI IU 

ferent sources of material come from what could be considered 
to be the same constant cause system, but it is desirable that 
each source of a given material be controlled within itself. As 
an example, a physical property such as the tensile strength 
of a given species of timber may be assign ably different for 
different sections of the country although within one section 
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TABLa s6.-5cHEMAnc FOaM or Su ....... y QUAUTY CoHTROL REPO.T 

Quality Indication 

Quality N arure of Cause Action Taken 

Controlled Not Controlled 
or Called for 

XI V 

X. V New IOUl'Ce of raw No other source of 
material. raw material availa-

ble. Nothing can be 
done unless we change 
the kind of raw mate-
rial called for in the , 
design specification. 

X. V Raw material Should secure mate_ 
comes from aources rial only from sources 
assignably different. A, B, and C. 

X. V Poor assem bly oc- Source of trouble 
casioned by new oper- eliminated. 
aton. 

X. V Unknown. Further investiga-
tion under way. 

X. V Low insulation Source of trouble 
caused by improper eliminated. 
washing of insulation 
material before as-
sembly • 

..... . .... ...... . ....... . ......... 

..... ..... ...... . ....... . ......... 
X. . .... ...... . ....... . ......... 

this variability may be such as to be attributable to a constant 
system of causes. In the same way, we may have sources of 
supply of piece-parts produced by different units of an organ
ization or different manufacturers wherein there are assignable 
differences between the product coming from different sources 
even though each source represents a controlled product in 
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itself. Such a condition can easily be taken care of in the use 
of the material, since the object of securing control from a design 
viewpoint is, as we have seen, the prediction 'of variability in 
the finished product. 

7. ~ua/jty Control Report 

The quality report should, in general, do two things: 
a. Indicate the presence of assignable causes of variation 

in each of the quality characteristics, 
o. Indicate the seriousness of the trouble and the steps that 

have been taken to eliminate it. 

Fig. 147 is a page from a typical quality report which ful
fills the first requirement. Information similar to that shown 
schematically in Table 56 meets the second requirement. 
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RESULTANT EFFECTS OF CoNSTANT CAUSE SYSTEMS 

I. Introductory Remarks 

Our discussion of the problem of establishing the necessary 
and sufficient conditions for maximum control was based upon 
the following three assumptions: 

A. The resultant effect X of the operation of the m causes 
is the sum of the effects of the separate causes. 

B. The number m of causes is large. 
C. The effect of anyone cause is finite and is not greater 

than the resultant effect of all the others. 

It was stated that under these conditions the distribution of 
resultant effects of a cause system approached normality as the 
number m of causes was increased indefinitely, at least in the 
sense that the skewness VPIU and the flatness P2%X of this 
distribution approach 0 and 3 respectively. We shall now con
sider the basis for this statement in more detail. 

To start with it will be found helpful in trying to get an 
appreciation of the significance of the three limitations to carry 
through the details of finding the distribution of resultant 
effects of a few simple systems. For this purpose we shall 
consider eight such systems charactedzed as follows: 

(a>1 : - ! I; 0 I; 0 I; 0 I; 0 I. 

p: t i; t i; t i; t t; • i· 

(b>1 : =-! I; 0 2; 03; 04; 0 s· 
p: t.; i t; I- 1-; • i; • i· 

425 
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r~S (c) . x: 0 Ij 02; o 3j o 4j 05· 

p: t fj t fi t ti t fi 5 1 
T T' 

r~7 (d) x: 0 Ij o 2.; o 3i o 4j o 5j o 6i 07· 

p: t fi i fi i fi t fj i fj t ti 
5 1 
T T' r- m 

(e) x: 0 Ij 02; o 3i o 4i o 5j o 6j o 7j o 8j o 9j o 10. 

p: t fi t fi t fi t ti t fj t fi t ti t fj t fi 
5 1 
T T' r-s 

(f) x: 0 Ii o I; o I; o I; o I. 

p: t fj t ij f fj i tj 1 5 
T T' r-' (g) x: 0 I j 0 2j o 4j o 4j o 2j o I. 

p: !!j! tj t !i ! !i ! !i 
1 1 
22' 

r~s (h) x: 0 Ij o 2j o 4i o 8j 016. 

p: !!i t !j ! !j !tj 1 1 
22' 

. The notation used iIi describing the cause systems can be made 
clear by considering only the first one. Here we have a system 
of m = 5 causes. Each of these five causes may produce an 
effect of either 0 or I. For each cause the probability of zero 
effect is i and that of unit ~ffect is t. 

Using this caus~ system we may illustrate the method of 
finding the distribution of resultant effects. Obviously the 
magnitude of this effect may take on values 0, I, 2, 3, 4, 5. 
The probability that the resultant effect will be zero is the 
compound probability of each component cause producing zero 
effect or (i)5, In a similar way the probabilities of getting a 
resultant effect equal to 1,2,3,4, or 5 are respectively 5Ci) (i)4, 
10 (i) 2 (i)3, lO(i)3 (i)2, 5(t)4 (i)1, and (t)5, In this way we get 
the· following distribution: 

Resultant 
Effect X 0 I 2 3 4 5 

Probability 0.401878 0.401878 ?~ I~075I 0.0321 50 0.00321 5 .0.000129 
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This is shown graphically in Fig J A Th d' 'b' f 
h 

,-, e Istrl utJOns 0 

~ e resultant effect,s o~ the seven other systems are also shown 
In Fig, I. What slgmficance do these results have? 
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RESULTANT EFFECT 

FlO, I,-DISTRIBUTION OF RESULTANT EFFECTS OF SIMPLE CAUSE SYSTEMS, 

In the first case we see that the distribution of resultant 
effects will always be characterized by the point binomial. 
Hence it will always monotonically decrease on either side of 
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the mode-in other words, it is a smooth distribution. Dis
tributions b, c, d, and e indicate the effect of lack of uniformity 
among the component causes. From this viewpoint smooth
ness is a necessary condition. That it is not, however, a suffi
cient condition is evidenced by systemsj, g, and h. 

As long as the component causes are the same, we have 
already seen (Fig. 53) that the distribution of resultant effects 
approaches normality as the number of causes is increased. 
The condition that there shall be an indefinitely large number 
of causes is, however, certainly not sufficient as is shown by 
systems g and h: for in these cases the shapes of the distributions 
will always be those shown in Fig. I-g and h. Of course, if we 
admit that the effect of any cause must be finite, systems such 
as g and h with an indefinitely large number m of causes are 
ruled out. 

2. Practical Significance oj Results 

In practice one is confronted with an observed distribution 
and from its nature must often decide whether or not it is 
worth while looking for assignable causes of either Type I 
or Type II. We shall concern ourselves here only with the 
problem of deciding whether or not an observed distribution 

TABLE I.-THERMAL UNITS PER Cu. FT. OF GAS 

1,391 1,3 18 1,203 1,291 
1,416 1,268 1,380 1,273 
1,367 1,294 1,349 1,242 
1,258 1,J68 1,360 1,231 
1,289 1,330 1,313 1,320 
1,199 1,254 1,351 1,340 
1,275 1,226 1,289 1,420 

gives evidence of the presence of a predominating cause, that 
is, an assignable cause of Type II. 

Let us consider a typical problem. The operation data for 
a certain gas plant for one month expressed in terms of arbitrary 
thermal units per cubic foot of gas produced from oil by cracking 
are those given below in Table 1. The data are tabulated in 
the order in which they were taken. Ideal operation calls for 
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as high and as nearly constant value as can economically be 
attained. 

The following question was raised by the Director of 
Research of the large organization interested in these results: 

If I understand the methods of statistics correctly, it should be 
possible to determine from these data whether or not there is a pre
dominating cause of variation, and hence to determine whether or not 
it should be reasonable to expect that a marked improvement in 
product can be made by controlling one or at least a few causes of 
variation. Am I right in this interpretation of the possibilities of 
statistical methods? . 

In answer to such a question we can at least say something 
like the following. If we divide the data into subgroups of 
four in the order in which they were taken and apply Criterion I 
of Part VI, we get no evidence of lack of control, as may easily 
be verified by the reader. Assuming that the quality is con
trolled, we may now consider the evidence for the presence of a 
predominating effect. An examination of these data shows 
that they are more or less uniformly distributed over the range 
of variation as one might expect with a cause system such 
as (h). In other words, the observed results are consistent with 
the hypothesis that a predominating cause was present. Need
less to say such evidence is not conclusive: it is suggestive. 

3. Analytical Results 
Let us now find expressions for the skewness V~l:tX and 

flatness ~2U" of the distribution of resultant effects under 
simplifying assumptions. 

If we let JLi represent the ith moment of the .effects of the 
jth cause abo;t their expected value, it may be shown 1 that 

er2 = 11-2 = er12 + er22 + ... + erl + ... + erm2, 

I'a = !L31 + tLa. + ... + tLaJ + ... + tLa., 
and .. 

IL4 = ~ (IL4J - 3erJ·) + 311-22
, 

J -I 

1 See for example Ekmtnts 0/ StaJistics, by A. L. Bowley, published by P. S. King 

& Son, Ltd., '910, pp. 2.9'-2.92.· 
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where p.i is the ith moment of the resultant effect of the m 
causes about the expected value of the resultant effect. 

From tnese results we get 

2 {i iJ.3j)2 
R _ JLa _ \;-1 
1"1l:X - \L2a - ..-'<--=\L2--:a-:-'- (I) 

and 
m m 

~ (\L4j - 3cr/) 1'4 1~1 (\L4j - 3cri') + 3\L2
2 

P2l:X = 1'22 = 1'22 
1-1 + 3. (2) 

\L22 

As a simple case let us assume that the distribution of effects 
of (m - I) of the component causes are the same, at least in 
respect to their second, third and fourth moments, all of which 
are assumed to be finite, which we shall denote by M2, Ma, 
and M4• Let us assume that the remaining cause is pre
dominating in the sense that the corresponding three moments 
of its effects are b2M2, baMa, and b4M4, where b2, ba, and b4 are 
all positive and greater than unity. Under these conditions, 
we get 

and 

Evidently these two expressions approach 0 and 3 respec
tively as th~ number m of causes becomes indefinitely large, 
assuming that b2, ba, and b4 are finite. In this way we come 
to see that the skewness and flatness of a distribution of re
sultant effects will, in general, be approximately 0 and 3 if the 
number m of causes is very large. 

4. Economic Significance of Control from a Design Viewpoint 

In Chapter III of Part I we called attention to the fact that 
as a result of control we attain maximum benefits from quantity 
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production. Only general statements as to obtaining these 
benefits were given at that time. In Part III however we 
dev~loped the theore.tical basis for control, n:aking it 'now 
possible to show speCifically how control enables us to attain 
these benefits. We shall consider here only the simplest kind of 
examples. 

A. Example I.-Suppose that an assembly is to be made in 
which two washers are to be used, one brass and the other mica. 
Assume that it is desirable to maintain as closely as possible a 
uniform overall thickness of these two washers. This could 
be done, of course, by selecting the pairs of brass and mica 
washers to give the desired thickness. Such a process, however, 
would tend to counterbalance the benefits of quantity produc
tion, since the economies rising from assembly processes result 
from interchangeability of piece-parts. 

Table 1 gives the results of measurements of thickness on 
one hundred tool-made samples each of mica and brass washers 
to be used in the manner previously indicated in the assembly 
of an important piece of telephone equipment. The reader 
may easily satisfy himself that both of these distributions are 
sufficiently near normal to indicate that each of the piece-parts 
was con trolled, and we shall therefore assume this to be the 
case. For this size of sample we are perhaps justified in assum
ing that the observed standard deviations of these two dis
tributions may reasonably be taken as the standard deviations 
VI and V 2 of the objective controlled distributions of mica and 
brass washers respectively. The theory of the previous section 
shows that under these conditions the standard deviation of a 
random assembly of two washers, one of each kind, is 

Furthermore it follows that the distribution of the sum of the 
thickness in' such a random assembly will be normally dis
tributed about a mean value which is the sum of the mean 
values of the two objective distributio~s. . ••. 

Upon this basis, therefore, the design engmeer IS Justified 
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TABLE 2.-TYPICAL DISTRIBUTION REQUISITE FOR EFFICIENT DESIGN 

Thickness 
Number of 

Thickness 
Number of 

of Mica 
Washers 

of Brass 
Washers 

in Inches in Inches 

0.0088 I 0,0182 I 

0, 0089 I 0, 0185 I 

0,0092 I 0,0186 2 

0,0093 I 0. 0187 2 

0.0094 I 0.0188 2 

0,0095 I 0. 01 90 2 

0,0098 2 0, 01 9 1 3 
0,0099 I 0. 01 92 3 
0,0100 2 0. 01 93 3 
0,0101 5 0. 01 95 5 
0.0102 2 0, 01 96 6 

0, 0103 3 0. 01 97 5 
0. 0104 7 0. 01 98 4 
0. 0105 5 0. 01 99 I 

0.0106 8 0,0200 3 
0. 0107 10 0,0201 8 

0.0108 10 0,0202 4 
0. 0109 7 0, 0203 5 
0.0110 5 0, 0204 7 
0,0111 3 0. 0205 4 
0.0112 5 0.0206 3 
0.0113 6 0. 0207 3 
0.0114 § 0.0208 6 

0.0115 3 0.0210 3 
0.0116 3 0.0211 I 

0.0119 I 0.0212 I 

0. 021 3 3 
0. 021 4 2 

0. 021 5 3 
0,0216 2 

0,0220 I 

0,0222 I 

in predicting that the overall thickness of random assemblies 
of mica and brass washers will be distributed as shown in Fig. 2. 

The dots in this figure show how closely the first one hundred 
assemblies made from manufactured product check the pre
diction. Furthermore, if the observed average thickness of 
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each distribution is taken as the expected value of the distribu
tion, th~ design e~gineer can .easi!y calculate the percentage of 
assemblIes that WIll be defective In respect to overall thickness 
subject to the assumptions that have been made . 

• 0. 

)~ 

)0 .. 
a: r 2~ .. 
C • ... 20 
0 
a: 
:: IS 
:I 
:> 
z 10. 

~ 

0. 
0.0.21 C).029 0.0.)1 

• OBSERVED DISTRIBUTION 
-E""ECTED DISTRIBUTION 

. 0..0.35 
THICKNESS IN INCHES 

Flo. ':-5TATlSTlCAL METHOD MAItES PREDICTION IN DESION POSSIBLE. 

B. Example 2.-For a shaft to operate in a bearing it is, of 
course, necessary to have a certain clearance. Thus, if Pl and 
P2 represent the radii of the bearing and shaft respectively, 
then the specification will, in general, state that the difference 
PI - P2 must satisfy the inequality 

where al and a2 are both positive. This situation is represented 
schematically in Fig. 3. 

In most instances the shaft and bearing are fitted. Some
times, however, it is of economic importance to be able to· 
product shafts and bearings separately and to assemble these 
on the job. The question, of course, that is always raised is: 
What will be the expected rejection of such assemblies because 
of failure to satisfy the clearance specification? 
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From the theory of the previous section we see that this 
question. can be answered readily, at least if we assume that 
radii of bearings and shafts are normally controlled with stand
ard deviations a1 and a2 respectively. Under these conditions 
the difference P1 - P2 between any bearing and shaft chosen 
at random will be distributed normally about a mean value 
P1 - P2 with standard deviation 

SHAFT AND BEARING 

a = Va12 + a22. 

d. P.-P2 da 

DISTRIBUTION OF DIFFERENCES BETWEEN 
RADII OF SHAFT AND BEARING 

FIG. 3.-How MANY REJECTIONS SHOULD WE EXPECT IN ASSEMBLY? 

Hence, the probability of a random assembly being rejected 
because the clearance fails to come within the required limits 
is given by 

where 

and the value of the integral can be read directly from Table A. 
C. Example J.-We shall now consider a problem involving 

maximum control. Many instances arise in production where 
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materials must be covered with protective coatings. Of such 
are the various kinds of platings, nickel, chromium, zinc, etc. 
In other instances we have coatings of paper or lead. 

In practically every instance of this kind it is very desirable 
to maintain a uniform coating that is never less in thickness 
than some prescribed value. It is obviously desirable from the 
viewpoint of saving to reduce the variability to a minimum. 
Table 3 gives an observed distribution of one such kind of 

TABLE 3.-Do THE VAI.IATIONS IN THICKNESS INDICATE A POSSIBLE SAVING? 

Thickness in 
Number 

Thickness in 
Number 

of of 
Inches 

Observations 
Inches 

Observa tions 

0.115 1 0.13 1 10 

0.116 11 0.131 5 
0.117 11 0.133 3 
0.118 18 0.134 0 

0.119 33 0.135 3 
0.130 33 

coating supposed always to be more than 0.124 inch in thick
ness. The histogram in Fig. 4 shows this distribution. What 

:t5 .. 
~30 
~ 
~ 25 ... .. .. 
020 

tf 
a: 15 ... .. 
2 
~ 10 

5 

0 
0.123 0.127 0.1211 0.131 

THICKNESS IN INCHES 

FIG. 4.-How MAXIMUM CoNTI.OL SAVES MONEY. 



436 .~CONOMIC CONTROL OF QUALITY 

does the theory of maximum control tell us about the uni
formity of coating? In the light of the previous section the 
lack of smoothness in this distribution is indicative of the 
presence of assignable causes of variation which can be removed. 
In fact, an investigation revealed assignable causes of variation, 
and on removing these, the resulting quality approached the 
distribution shown by the smooth curve of Fig. 4, representing 
the state of maximum control for this particular kind of coating. 
By attaining this state of maximum control, it is apparent 
that the average thickness of coating is materially reduced 
without increasing the probability of obtaining a defective 
thickness. 

Not only does control lead to a saving of material in such 
cases but it also leads to a more uniform product because as 
shown in Chapter XXIV of Part VII, it is practically impos
sible to sample for protective purposes unless the quality is 
con trolled. 
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PllESENTATION OF OIlIG,NAL EXPEllIMENTAL 

RESULTS USEFUL IN OBTAINING AN UNDER

STANDING OF THE FUNDAMENTAL PRINCIPLES 

UNDEllLYING THE THEOllY OF QUALITY CONTROL 

The six tables in this appendix give in detail the results of 
4,000 drawings from each of the three experimental universes 
referred to in the text. Tables A, B, and C give the original 
drawings divided into groups of four in the order in which 
they occurred. Tables D, E, and F give various statistics 
for these samples of four. It should not be inferred that these 
statistics are arranged to correspond to the samples as this is 
not always the case. We have made extensive use of these 
data in our discussions of the theory of quality control, and 
it is advisable to reproduce these data if for no other reason 
than that the reader may wish to carry out for himself com
putations similar to those referred to throughout the text. 

There is, however, a far more important reason for present
ing these experimental results. It will have become apparent 
by this time that statistical theory rests upon a fundamental 
natural law-the law of large numbers. In the last analysis 
we must always appeal to experimental evidence to justify our 
belief in such a law and to give us a feeling for its physical 
significance. For example, in the discussion of the theory of 
statistics, we always have to talk about doing something again 
and again under the same essential conditions; or, as we have 
said, under a controlled condition where the chance cause 
system ;s constant. 
. We have used these data in various places throughout the 

book to illustrate a controlled phenomenon. In particular we 
437 
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have shown how they can be used in checking the results of 
the mathematical theory of distribution, and in certain other 
instances, in indicating the probable character of some distri
bution function not yet determined Q priori. Most of this 
discussion was limited to the statistics of samples of four. 
Often, of course, we wish to investigate in a similar way the 
nature of the distribution functions for sample sizes other than 
(our. This can readily be done (or the three types of universes 
through the use of the data in Tables A, B, and C. 

These data have been used in many ways other than those 
mentioned in the text. For example, they have been found 
to be of great use in the experimental determination of the 
correlation between the average and range, which correlation is 
sometimes required in the establishment o( an efficient inspec
tion method where it is not feasible for one reason or another 
to calculate the standard deviation. 

In this connection it is perhaps worthwhile to illustrate the 
use of these data in indicating in a somewhat more concrete 
manner than was done in the text the nature of the statistical 
limit involved in the statement of the law of large numbers. 
For example, suppose·we consider a thousand drawings from 
anyone of the universes, let us say the normal one. It will be 
recalled that half of the 998 chips were of one color 1 and half 
of another. If we let p represent the ratio of the number of 
chips observed to be of one color in a series of n drawings to 
the number n of drawings, then this fraction p should obey 
the law of large numbers and approach t as a statistical limit; 
that is, 

Ls P = i· 

Fig. 1 shows the statistical approach of the fraction p in one 
such series of 1,000 drawings. .., 

Obviously, as a result of the first drawmg, ? wlll be elt~er 
zero or unity. In fact, p will continue to remam zero or umty 
until a chip is drawn which is of a color different from that of 

I Colon used instead of plus and minus. 
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the first one drawn. Thereafter p will never become equal to 0 

or I, but will always lie somewhere within this range. In the 
definition of a statistical limit, it was pointed out that there 
is no value of n such that for n greater than this value, the 
absolute value of p always becomes and remains less than some 
preassigned quantity-characteristics which belong to a mathe
maticallimit. 

The experimental results shown in Fig. I illustrate how the 
fraction p oscillates back and forth. A studen t of the theory of 
control can well afford to carry out similar tests of this nature 
un til he has gained a clear picture of the significance of the 
statistical limit. 
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TABLES 

TABLE A-4,ooo drawings from a normal universe consisting of 
998 approximately identical chips marked as indi
cated in Table 22 of the text. 

TABLE B-4,ooo drawings from a rectangular universe of 122 

approximately identical chips marked as indicated 
in Table 28 of the text. 

TABLE C-4,ooo drawings from a right triangular universe 
made up of 820 approximately identical chips 
marked as indicated in Table 28 of the text. 

TABLE D-Observed distribution of arithmetic mean X, me-

d· Max. + Min. d . . d d Ian, , mean eVlatlOn 1', stan ar 
2 

d . . d' X r eVlatlOn tI, an ratio z = - lOr 1,000 samples of 
tI 

four from the normal universe. 

TABLE E-Observed distribution of arithmetic mean X, stand-

. . d' X r I ard deVIatIOn tI, an ratio z == - lOr 1,000 samp es 
tI 

of four from the rectangular universe. 

TABLE F-Observed distribution of arithmetic mean X, stand-
X 

ard deviation tI and ratio z = - for 1,000 samples , tI 

of four drawn from the right triangular universe. 
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-1.0 -1 •• -.1 -.a 1.1 -.' -.. .1 -1.1 -.' -B.O I.' 1 •• .. .1 -.. -.f .. 1.' .a • .. 1.1 -.1 .1 
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-1.1 -I.' .. I.' .. 1.1 1 •• .... -.. ..... -.' -.' -1.' -1.1 ... l.lI 1.' I •• • .. I.' -I." -.' I.' ...... ...... •• 1 . .. ' ...... -I •• -1.' -I.' .. I.' •• 1 -1.' " 
1.1 I.' 

• -.. I •• '.1 '.1 1.' .. ... -.. 
-1.0 ... ... .. ... -.. .. •• 0 ... 1 •• -,.1 .. -1.' .. 1.1 1.1 -I.' 1 •• .. -1 •• .. . .. 1.' ... -.. -.. ~ .. .. 1.' 1.' 

-1.& -.' I.' .. ... .1 ... I.' .. 1.1 
-1.6 .. I •• .. .... 1 .. .. 1.' I.' -1.1 -1.' .. .... -.' _1.0 I •• ..... ..... 0 .. ... -10' 
-1.8 1.' ... .. 1.8 I.' -1.1 ..1.1 .... _1.0 

-.' -I.' ... -I •• -I.' 1.' ... .. 1.1 1.' .. ' .. 1.1 .. -I.' -.' .. 1.1 -.. .. 1.1 -1.' .. . .. 1.' -1.1 ... -1.8 I.' -1.6 .' • 1 .1 1.' -.. -.1 -1.1 -1.0 -.' -.. 
-1.1 I •• -.1 .. • 1 ... ·.1 .. ·l.t 

1 •• .. ...... • 1 - •• 1 ... 1 •• .. -... 
1.' _.1 -l.l • .. I.' I •• -1.6 ... 
1.1 .. .. 1 •• 1.' -I.a -.' -1.1 • .. ..' ... 1.' .. 1.1 .1 -1.8 1.' -I.' ... -1.0 ... ... 1.' 1.' -1.1 -1.1 1 •• .. I.' 1.' I •• -1.0 .. -.. _1.40 1.' 1.' 1.' .1 _1.1 -.' ... _,.8 -.' .. 
-.. • ",'.a ... .. .. 1.1 .. .. I.e -I.a 

.. 1.0 • 1 1.' -.' ..... ... 1.' -1.1 1.' 1.' .. ..... . . ... _1.' -1.0 -1.8 -.' -.' ..... -.. ... .1 -1.1 ... -.' ... ... 
1.' ... 1.1 1.' .... -.1 I •• ... .. 
1.' ... ..... .. . . -.. ...... -.. I •• 
I.. -1.1 -.. ... ..... 1.' ... .. -.. -.. -.. -.' 1 •• ..... 1 .. -1.8 -1.0 1 •• 

-.' .. 1.1 .1 -.' -.' 1.1 .. 1.1 ... 1.' 
-l.t -.. -1.1 .. -1.1 _ •• 0 '.' .. 1 •• 
·1.1 ... -1.1 1 •• -I.' _1.6 I.. -1.' 1 •• 
- •• 1 ... -.. -I.' • ... .... 40 • 1 •• 

... 1 •• -.. .. .. ".1 •• 1 
1.' -1 •• ..... . . ... -1 •• 
-~ .. -.. ... . .. ..... ... .. . .. .. .... .. .. , .. • 
-I.' .. 1 •• -1.' .. ... ... 
-I.. 1 •• .. ... -.. . .. . .. .. .. -I.' ..... -I.' 
".1 1 •• .... -1.' ..... ..1 

.. 1.' -1.8 •• 1 -.' -1.1 .. .. -1.1 -I •• .. -.' I.' 

'.' -1.1 -1.1 .. -1.1 -.. 
... 1.0 .... . -.' .. -I.' ... ... -.. -1.1 1.' ... .. 
-1 •• .. • ..... 8 -I.e 1 •• 
I.' ... .. ..I.' -1.8 .. 
'" .. ..1.0 1.' .. 1 •• 

... 1.' -.. 1.' .. . . -1.' 
1.1 ... -.1 _1.0 .1 -.. ... -1.6 -1.1 .. 1.0 -1.0 .. ... .. -.1 1.' ... ... 

·1.1 .. -I •• 1.1 -1.' I .• 

-.' -I.' -.1 -a. • -1 •• -1 •• 
..... 1 1.' -1.1 1.' 1.' -.' -I.e 1.1 .1 .. ... -1.6 

-1.1 -I.' ... .. l.8 -1.1 .. 1.1 
I.' -1.1 ... '" .. 1.0 -&.' 
1.' -.' .. -1.1 .... t .. ... -1.8 • .. I.' ..... • 
" . ... - •• 1 • -1.1 ·.1 

-.' _1.0 .. 1.' -.' ... ... 
I •• -.' •• 1 1.1 -... - •• 0 
1.' .. .. -1.1 .. -I.' -1.40 

-'.1 -.' . .. I.' • 1 .. . .. .. 1.' 1.' _.1 1 •• ... 
-1.8 -1.' .. 1.1 .. . .. -1.40 -.. .. -I. • -.. .1 •• 1 .. 1.' ... ... -1.1 ... 
-.' -1.1 -1.0 .. ... .. 1.' 

-I.' -.. -.' ... .. 1.1 -1.6 
- •• 1 .. .. -.1 -1.0 -.. 

.... . .. 1 •• .. 1.1 -1.' .. . . -.' ..... 1.' ... .. .. . . -1 •• ... -I •• ..... .... . 
-I •• -... I.. . .. .. .1 

1 •• -1.1 -.. .... . .. .. 
.... 1 . .. . .. ...... -~ .. .1 
1 •• .... .. .... .. . .. -.. -.' -.' I.' -1.0 -.' -.. • 1 

• 1 •• ..... -.. ·.1 . .. ... -I.e ...1., .. ... 1.1 .. ... 
1.' ..... .... -.. •• 1 -1.8 

-1.1 I.' '" ... .. 1.' 

1.1 -.' ..1.1 -1.1 1.' ... 
-.' ..1.' ... -1.1 -Jot -1.1 

-1.0 -1.' 1.1 .. -1.1 1.' 
-1.0 1 •• -.. .. -1.' -.' 
-I •• ... .. I.' ... .. -.' -1.1 .. •• 1 '" ... -.. 
I.' -I .• .. 1.' ·1.1 .... 

-1.6 ·1.0 .I.t -I.' -I.' -.. ... ·1.1 ... -.. -1.1 -1 •• .. . .. ... -1.1 -1.1 _I.t . .. .. l.a 1.' -1.40 -.. . . ... -... -'.' .. .. 1 •• 

..... 1 I. • • 1 ... _.1 .. 
I •• 1.' -.' ... 1.' .. I.t .. 
1.1 -I.. -1.1 .. -1.40 . .. 

·1.1 .. ' -'.e -'.1 .. . .. 
-l.t .. -1.0 -1.0 ... ... 
-1.8 -'.40 ... 1.1 .. -.. I.' 
I.' -1.1 '" 1.1 - •• 1 1.' 

-1.1 ... -.. -.' -1.0 1 •• ... .. 1.0 _1.0 ...1.' '" ·-.6 
-.1 .1 -1.' .. I •• -1.1 

-1.1 -1.8 •• 1 -.' ·.1 -.' -1.6 I •• -1.40 .. -1 •• I.' 
I •• -1.1 .. .. -1.1 1.1 

-.' -.. _ •• t -.. ... 1 •• 
.... 1 • 1 I.. .... 6 -1.6 1 •• 
-1.1 ... •.. . .. -.1 -.. 

.. -.. ..... ... .. .. ... .. 
..1.1 -1.1 ..... . . 
-.' . .. ... .. .. 

.... 1 ...... 
-1.0 .. • -.. ... .. 1.1 
'.1 .. 
1.' -.' ... 1.' -101 

-I •• -I .• 
..1 • 1 

-1.1 -I.' • .. 
I.' ·l.e .. .. , I.' .. • 1.1 -I •• 

.. 1 •• -I •• ... _1.0 .. ... 1.' .. ... I.t . .. .. 1.40 . .. -.. 
-1.0 .. 
'" '" ... ". -1.1 _1.0 

1 •• -1.40 
.. 1.1 -1.8 ... 1.' 

.1 . .. 
.. 1.8 1.' 

.1 -1.1 
.. 1 •• 1 •• 
•• 1 .. ... 

I. • -.. , .. 
-.' 

.. I.' ... 
-1.1 
1 •• 

1 •• -.. -.. ..I.' 
-1.1 ... 
~ .. ... ... 
I •• ... -.. 

-I •• 
-1.0 .... , .. 
-.. 

.1.. .. ... 
-I.' 
-1.1 . .. 
1.' -.. 

-1.1 
-l.a 
-1.0 -I.' 
-1.1 
.. 1.1 .. -.. 

-.. . .. -.. ... 
..1.' . .. -1.' ... 1.' . .. .. 
1 •• 
1.' 

1 •• -.. .. 
-1.1 ..• ... ". '" 

-1.0 
1.' 
1 •• ... 
1.' .. ..• 
I.' 
1.' .. -.. 

..1.0 . .. 
-I.' 
I •• 
1.' -.. 
-.' .. 

-1.' .. 

.... .... 



TABLE C.-DRAWINGS FROM RIGHT TRIANGULAR UNIVERSE 

-1.1 1.' .1 • 1 .. -.s .s 1.t -1.1 1.' -.. -.. 1.' -.1 -1.0 .. 1.0 .. 1.0 -1.1 • 1 -.. .t .. .. .. I.! 
-.1 _.s -.t -1.1 -.. I.' -.s .. -.. -l.S ... l.!! .0 .. ., 1.t -.s 1.0 .. .0 ." .. -.2 .0 .. 1.0 
-.1 0 -.. 1.t .. -.. -.1 -1.1 1.t -.t .. 1.t -1.0 -.. ~ -1.2 .. .. -.. ...1.0 .. -.s .t .. .t -.. 
1.t • 1 1.1 -.' 1.0 .s .. 1.7 -.. .. 1.' 1.t ... 1.2 .. 1.1 1.S • 1 1 •• -1.1 .t .0 0 .0 .. 1.1 -.a ... 1.1 I.' 

.1 .1 .. 0 .1 ." 1.2 • 1 -.. 0 -.. .. 1.1 .1 -1.3 -1.3 I.' .> 1.S -1.1 1.S 1.1 -.1 0 .. 1.0 
0 .' -.S .> -1.2 1.' .0 -.. .t '0 • < -1.1 -.. .> 1.2 .. 1 •• 1.t 1.' 1.' -.a 1.t 1.0 1.0 1.' 

.< .. ... 1.0 1.0 -1.3 • 1 -.. .2 .S .t ... 1.1 1.4 • 0 1.' -.. 1.1 -.0 .1 -.S .a I." .. -1.1 2.0 1 •• 
-1.0 -.S 0 1.0 -." -.a .s • 1 .t -1.1 0 -.. .< -.a ... 1.£ 1.' -1.1 -1.2 -.' -1.1 -.. -.. I." -.. -1.0 

1.' .< .. 1.15 • 1 .t .. -1.1 -.> -l.a -.. 1.' • 3 -.. 1.0 -1.0 -1.1 I.' -1.1 I.a -1.2 .. -.. -1.1 I." -1.0 
... 1.0 1.0 .. -1.0 .. 1.2 -1.2 -1.1 1.1 -1.1 1.4 -1.0 .> -1.2 .1 -.0 .1 I.' 1.0 1.1 -.1 -." .. -1.1 0 -1.3 
-.a -1.1 1.' .0 -.. -.t ~l.O -.t 1.' -.S -.0 -.1 1 -.> .. -1.1 -.. .< .1 1.t 1.< 1.< -.1 -.. -.2 
1.a • 1 .. 1 •• 1.t -.t I." -.2 -1.1 -1.2 -.S I.' -.S 0 -.. 1.' .1 -.. -.t .. -1.2 -1.2 1.' -1.1 1.' 

-.. .1 -.. 1.0 -'1.0 -.1 -.. I.' -1.1 .1 .. 2.0 -.s -.. -.. -.. -.t 2.! -.1 -1.0 -1.2 -.. .. 1.0 -1.1 1.1 
.S _.S 1.1 -.. 1.1 1.0 1.t -.. 1.S -.. .. 1.0 -.1 ... 1.2 -.< -." 1.1 -.. .1 .. 1.1 -.0 -1.2 1.' 1.a 1 •• -.! 

-1.& 1.1 .< .. -.a -1.2 1.1 0 • 1 -1.2 1.1 .. I .• -1.1 -1.1 -.. ! •• -.. -.t 1.1 1.' -1.2 -1.1 -1.0 -1.0 
1.t 1.1 1.0 1.' 1.1 1.' -.S 1 •• -.. 1.' ·1.9 1.2 .1 I." 1 •• -1.0 -.1 .0 1.S 0 -.a -.. -.2 -.0 -1.0 

1.1 • a .1 .. -.t .. .0 .. 0 -l.S -.2 1 •• -.. -.. .. .. 1.1 . . -.1 1 •• .1 -.1 .. -1.0 -.. .1 
.1 -.1 -.1 .S 1.0 • s .. -.2 -.0 0 .. .4 .< .1 1.0 .a -1.1 .1 • < -.1 -1.2 -.. -.S .1 1.t 
• 1 .a -1.2 -.. .1 -.. -.S -.. -.S .. 1.0 -.s "1.0 .S -1.3 .a -.< .1 -1.:1 1.' -.. .. -.. .0 .0 .t 
.S -1.1 .2 .S 0 -.t -.0 -1.0 .. -.0 -.. .1 -.. -.. -.< .. .2 .. 1.S -1 •• -.1 -.t -.0 -1.0 .. 

-1.0 -1.0 -.. 0 • 1 -.. .t -1.1 .. -.1 .t -.S .. -1.0 -.. -.1 -.2 -1.0 .. 1.1 -.0 -1.2 -.t -1.2 .2 -.I! 
.1 -.. -.< -1.1 1.t • t -1.1 -1.3 -.. -.1 -1.0 _.a -.0 .1 -.0 1.2 1.1 -.1 1 •• 1 •• -.0 1.t 1.t l.t .. 1.' 

.. 1.1 -.1 .. -.. .a 1.0 -.1 -.1 -.4 .. -.. -.' -.. -.1 .0 -.1 .. -.. -.. -.2 -1.1 -1.1 -.4 .. 1.2 -.. 
-1.0 • a _.t -l.a .1 -.1 -.S .2 -1.1 -.. -1.1 .. .. 1.2 -.0 .1 0 -.0 1 •• -.. -1.0 1.' -1.1 .. -1.1 -.1 .. .. ~.l .1 .> -.t -.. -.. .1 -.t -.. -.2 1.t .t -1.2 -1.1 -.1 .. -.1 -.. 1.1 -1.1 -.. -.. 0 
·1.1 0 -1.1 .0 -.S -1.1 • 0 .. l.S .. -.. .2 .2 1.1 -l.D -.. 0 -.. 0 -1.2 .< • 1 -.. .1 -." -.1 
_.S 1.1 -.S -.1 • t -.1 -.. -.1 1.1 -1.0 .S -.2 .. -1.2 -.1 0 -.1 .. -.> .1 -.1 -1.0 .. -1.2 -1.1 

-1.1 .1 -.. -.t -.1 -.1 .• 1 .. 1.0 -.1 .. 1.2 1 •• .. -.4 -.1 -.< .. 1.2 -.. -.. -.1 . . -.;4 _.S -l.3 -1.0 

-.1 .1 .S -1.0 -.1 .t .1 1.0 -l.S -1.0 -1.1 -.. .S -l.S .1 -.1 .. 1.' _.a .. l.S -1.1 -.t -1.1 -.1 I.> 
-1.1 0 .1 -.1 -.. -.s .. 1.1 -l.D -.1 -.S -l.D 1.' • t .2 .. -.1 I.e -1.1 -.S I.' .2 1.' 1.1 -1.0 
-.1 -.1 -., -.S -.. .-.' 1.1 • 0 .. 1 •• • 0 1 •• 1.1 -.S -.S -.. -1.0 1.0 I.' ... 1.1 .. 1.1 -.1 0 -.t -.S 

-1.1 .1 ., .1 .. 1.1 -.1 a.1 -1.2 1.1 -1.1 1.0 1.0 -1.0 .1 .s -.2 -.2 ... ~ -1.0 -1.0 -.1 -.. -.S -.. 1.1 

-.t -.t -1.0 -.1 -., -.. -1.0 .1 .1 -.S 1.0 .1 -1.:5 -1.:5 0 .0 -.s -.2 -.1 • 1 -.. 1.1 -." 1.0 -.. 
.1 -1.0 -.t -.1 -.1 1.1 _.t .1 -.1 .S -.1 1.0 -1.2 _.S .> -1.1 -.. -.. .. -.. -.. -.. -.1 1.0 -.1 
.1 .1 -.t l.t • 1 1.2 • S -.1 -.. !".2 .1 -.1 -.. -.. .. .. 1.1 .1 -.0 .. 1.0 -.. 0 -.S -1.2 .1 -1.2 

1 •• • 1 .f .. .. 1.2 0 .S -.S .1 1.0 .. .1 .0 .. 1.S -1.1 -.1 1.0 .. 1.1 -.> 1.1 -.1 '.' 1.1 .. 
.1 .1 .8 -.. 1.0 .< -1.1 . , -.t 1.1 -.1 .. .S 0 .. -1.' '.1 -1.1 -.S ...1.0 -.. .t -.. -.. .< 

-.1 -.1 -.1 -1.0 -.1 -.. .. -1.0 .1 .. -1.0 1.' -1.1 1.t .0 .< -l.a .s .a -.2 -.1 -l.S -1.2 .S -.s 
1.0 1.0 0 0 .1 .1 -1.1 -1.1 -1.1 1 •• .0 • 1 -.. -.. -.. .s • 0 .. .1 .. .t -.. .s -.S .1 -.. -.. .. 1.1 ;1 -.a -1.0 .1 .1 .1 -.t .1 2.1 .t 1.0 -1.0 .1 • t .. 0 .1 -l.a -.1 0 .. -.. 



.. .1 .a ·1.0 1.1 1.1 1.1 .1 .1 • 1 .. .1 .1 -1.0 -1.1 -.. -1d -1" 1.1 .1 -.1 '.0 -.1 0 .1 -.. -1.1 -1.0 .1 1.' .1 .1 ..1.1 • 1 -1" .a -1.1 .. .' .1 -1.1 -1.1 .a .1 -.1 1.1 -.' .. -.' -1.1 
.. 1.1 .1 .' .1 .. '.1 -.' -.1 -1.1 .1 -.1 .1 .1 .. -.1 .1 .. .1 -.1 1.' -.. -.a -.1 0 -1.1 

.1 .. .1 .1 -.1 .. -.' .1 -.1 -1.1 -1.1 -.1 -1.1 _.1 .. .1 .1 .. _" 1.1 .1 I -.1 ... -.. 
-1.1 • 1 -.1 -.' '.1 -1.1 -.1 -.1 1.1 .1 .1 -.' -.1 .1 • 1 -1.1 .1 1.1 .. .1 1.' 1.1 .. 1.1 -1.1 -.' .1 -.1 -.' .1 .. .1 .1 -.1 -.1 -1.1 -.1 .a -.1 1.1 .1 -.. 1.1 1.0 -1.1 1.1 1.1 .. 1.1 .1 .a -.. -.1 .. 1.1 -1.1 -.1 -.1 .1 -.1 .1 1.1 -.1 .a ·1.1 -.0 1.1 .1 .1 1.1 -.1 -.' .1 -.0 -.1 -.. -.1 

• 1 1.1 .1 .. -.' -1.0 1.1 -1.1 0 -.1 -.1 -1.0 -1.1 -.1 -.1 -.1 "" -.. -.a .1 .. -.1 -.. -.1 _I 

.1 -1.1 -.1 -.' -1.0 -.1 -.1 -.' .1 -.1 .. -.' -.1 -.1 .1 -1.1 .. -1.1 -.. -1.1 .1 -.1 0 .0 -.1 

.1 -.1 .. .1 .1 .1 .0 -1.1 -.1 • 1 .1 • 1 -.1 -.1 -1.1 -.. -.. .1 .1 -.1 -.1 -.1 -.1 • 0 .. 
-.1 .1 • .1 -1.1 -.1 -.1 .. 0 -.1 -.1 .1 1.1 1.1 -1.0 -1.1 -.1 -1.1 -1.1 -.1 .1 .. 1.1 -.1 .1 -.1 
-.1 -1.0 1.1 -.1 -.. 1.1 -1.1 -.1 1.1 .. -.1 -.1 -.' -.1 -1.0 .1 -1.1 -.a -.1 .0 1.1 -.1 -1.1 -1.1 .. 
1.1 • 1 .. 1.0 .. 1.1 .. .1 .1 .. .1 -.1 .. .1 -.1 .. .1 .1 .1 .1 -.' -.1 • .. 1.1 -1.0 .1 
.1 -1.1 .1 .1 -.' .1 .1 -1.1 -.1 -.1 -.0 1.1 .1 0 -.1 .1 -1.0 -.1 -.' -.1 -.1 .1 1.' ... 1.0 -1.1 

-.1 .1 .1 .1 .1 -1.1 -1.1 .0 -1.1 .1 1.1 .1 • 1.1 1 •• -.1 -.1 -.0 -.0 .1 .. • 1 -.. .1 -.1 -.0 
1.1 -1.1 -1.1 -.' .. -.1 -.1 -.1 .1 1.0 -.1 1.1 -1.0 1.1 -1.1 -1.0 .1 .a -1.1 -.0 -1.0 -.' .1 .1 -.1 

.1 -1.1 .1 .. _.a 1.1 -.. -1.1 ... 1.1 .1 -.1 .1 .1 -.1 1.1 -.1 -.1 -.1 .1 0 -.1 1.' 1.0 1.1 -.1 .. .1 -.1 -.1 . ' 1.0 -1.1 -.1 -1.1 -.1 -.. .1 .1 -.. .1 -1.0 -.. .1 -.0 .1 1.1 .1 -.' -.! .1 
-1.0 .1 -1.1 -1.0 .1 -.1 -.1 -.' .1 1.1 .1 -.' -.1 .1 1.1 -.1 -.1 0 -.' -.1 -.' .0 -.1 .1 .1 -.. -.1 .1 .1 -1.0 -.0 .1 .0 -.1 -.1 -.' .1 -.' .1 .1 0 ... 1.1 -.. .1 -.1 .0 .1 -.0 -.. 1 •• 

.. 1.1 -.1 .1 .1 1.1 • 0 -.0 -.. .1 -.1 .1 .0 -1.1 • 1 .1 .1 .. _.1 -.1 -.1 .. -1.1 -.1 0 -.1 
.1 .. 1.1 1.1 .1 .. -1.0 -.' -.. .0 1.0 .1 -.1 1.1 _.1 -.. 1.' -.' -1.1 -.0 1.' -.' .. 1.1 -1.1 .. 

-.0 -.1 -.1 1.1 1.1 _.1 0 -1.1 -.' -.1 1.1 1.0 -.1 .0 .1 -.1 .. -1.1 -1.1 .1 .1 -1.0 .. 1.1 -.1 1.0 

-.' -.1 0 _.1 -.1 -.1 -.1 -.0 .1 -.1 .1 0 -1.0 
_. 

-.0 -.1 .. -.1 -.1 -.. .0 -.1 -1.1 -1.0 0 

1.1 -.1 -.1 .. .1 1.1 1.1 .1 0 -.1 .. 1.0 -.1 -.1 .1 1.1 -.1 ... 1.0 .1 1.' -.. -.' -.1 -.1 -.. -.' --.1 .. I ·.0 l.a -.0 -1.1 .0 -1.1 .. 1.1 -.0 -1.1 -.. -.' .1 -.1 _1.1 -.1 1.0 .1 1.0 -.' -.0 -.. .1 -1.1 
-.1 •• 1 1.1 0 1.' .0 -1.1 1.1 -.1 1.1 .. 1.1 -.1 -.1 .. 1.0 1.' 1 •• -1.0 1.1 1.' -.1 -.' -.0 .1 -1.1 
1.1 1.1 1.1 -1.1 -1.1 0 .0 -.1 1.' .. I -1.1 -.1 -.' .1 1.0 1.1 1.0 1.1 -.1 I •• -.1 -.0 -.1 0 -.1 

1.0 -.1 -.1 -.1 '.1 .1 _.0 .1 ". -.1 -.1 .. 1.0 _1 -.. -.. -.1 -.0 .1 1.1 1.1 -1.1 .. 1.1 1.1 -.1 1.1 
.1 ... 1.0 1.0 0 ... _1.1 -1.1 -1.1 1.1 -.1 -.1 -1.0 -.1 -.. -.. 0 .. -1.1 _.1 -.. -I •• -1.1 .1 -1.1 1.1 

1.1 -1.0 -.' -.1 -.' .. 1.1 .. 0 -.. -.. -.1 -.1 -.1 -.1 -.> 1.1 1.1 -.0 -.0 -.1 1.1 -.> .1 1.' 1.0 
.1 -1.1 -.1 '" -.1 1.0 ·.1 .1 I •• _.1 -.1 -.1 .1 •• 1 -.1 -1.1 -.1 1.0 -1.' .1 -.1 1.B -1.0 1.1 -1.1 

.1 -.' -.1 -1.1 -.1 -.1 -1.1 1.1 .0 _.1 1.1 -.1 -.' ·.1 -.0 -1.1 '" -.1 -.1 .1 •• 1 .0 -.1 .1 -.1 

.1 -.1 .1 -.1 -.1 -.1 -.. 1 •• _.a -1.1 1.1 .0 -1.1 _.1 -.' -.1 -.0 -1.0 -.. -.1 -1.0 1.1 .1 .1 '" 
•• 1 .1 -.' -1.0 -.1 _.1 • 1 .1 -.' -1.1 .. -.1 -.1 -.. -1.1 -1.1 .. 1.0 -.' -1.1 .1 -.1 .1 -.1 .1 -.1 
.1 -.1 -1.0 -1.1 .1 .1 .1 .1 .0 -.1 .. .0 -.. 0 -1.1 -1.1 -.1 ·.0 -1.1 -.1 -.1 1.1 .1 .1 V 

.1 .1 -.1 .1 .. -.1 -1.0 -.1 -.1 -.1 .. .1 -.1 -.1 0 -.1 -.1 -.' 0 -1.1 -.' 0 .1 -.0 -.1 
1.1 .1 •• 1 -.1 .1 -.1 -.0 -.1 0 -.1 .1 • 1 -1.1 -.. .' • 1 .1 -.. -.' -1.0 -.1 -.1 .1 -.< -.0 
.1 .1 .0 -.1 1.0 -1.1 -.1 _.1 -.1 -.. 0 .1 -.0 -.1 .< -.' -.' •• 0 -.' -.1 '" 0 -.. -1.1 -1.0 

1.1 1.1 .1 -.1 .. -1.1 ·1.0 -.1 -.1 -.1 .. 0 -1.1 -1.1 ·.1 -.. -.1 • 1 -.' -1.1 .. -.0 -.1 -1.1 -.' 



TABLE C.-DRAWINGS FROM iUGHT TRIANGULAR UNIVERSE.-(Continued) 

1.1 1.1 1.f 1 •• 1 •• -.. 1.1 1.0 1.0 -.1 -1.1 -.. .1 .1 0 .1 .1 .1 -1.0 0 1.1 -1.0 -1.1 1.& -.. 
1.1 -1.0 -.1 1.1 1.1 1.6 -.1 • 1 -1".0 -.6 1.1 0 1 •• -.6 1.1 .& -1.8 -1.1 1.0 1.0 .1' . -.1 -.1 0 1 •• 
-.0 -1.1 1.8 -.6 .1 .1 .f 1.6 -.1 1.1 -.1 1 •• -.1 -1.1 -.1 -1.1 -.0 1.1 .f 1.0 .0 -.1 -.a -.9 -.f 

... 1.1 1.1 -.6 -.0 -.' 1.1 -1.1 -.0 1.0 1.1 .8 1.a .a 1.1 -1.1 1.1 1.1 -.' -.8 .. I.' 1.0 1.1 -.& .1 

1.1 -.1 1.0 0 -1.1 1.1 _.f -.. 1.0 1.0 1.1 -.8 .1 -1.1 -1.1 -.6 .& -l.a -1.1 1.0 .0 -.1 1.1 1.0 1.1 
-1.1 1.1 .1 1.' -1.1 -.0 1." 1." -1.0 0 -.1 -.. -.1 .0 1.1 1.8 -.1 1.1 -.f 0 .. -1.1 -.' 1.0 _.8 
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APPENDIX III 

A BIBLIOGRAPHIC GUIDE WITH SUGGESTIONS 

FOR. STUDY IN THE FURTHER DEVELOPMENT 

OF A SCIENTIFIC BASIS FOR THE ECONOMIC CON

TROL OF QUALITY OF MANUFACTURED PRODUCT 

As stated in the preface, the present book is but an initial step 
toward the formulation of a scientific basis for securing economic 
control. Much remains to be done. In presenting a list of references 
for further study, an attempt has been made to include those sugges
tive of what appear to be profitable lines of further development. 

Throughout the book we have had occasion to give many specific 
references. The object of the present bibliography is to suggest refer
ences of a more or less general nature to be read in connection with 
each of the seven parts. It is hoped that in many instances these ref
erences will be suggestive of work which may be profitably done in 
extending the theory of quality control, particularly in the direction 
of the development of improved ways of securing good data through 
the more thorough application of the scientific method. 

REFERENCES FOR PARTS I AND III 

I. Exact and Statistical Laws 

In Parts I and III the r6les of exact, empirical, and statistical laws 
in helping us to do what we want to do are touched upon. 

The recent book, A History of Science, C. D. Whetham, 2nd 
edition, Macmillan Company, New York, 1930, gives ~n inter
esting and up-tO-date survey of the results of human effort In estab
lishing laws of nature. To get a more exact picture, however, we 
must turn to some such book as Introduction to Theoretical Physics, 
A. Haas, 2nd edition, Constable & Company, London, Vol. I, 1928, 
Vol. II, 1929; or the book of the same title by L. Page, D. Van 
Nostrand Company, Inc., New York, 1928• 
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With the development of the atomic structure of matter and· 
electricity, it became necessary to think of laws as being statistical 
in nature. The importance of the law of large numbers in the inter
pretation of physical phenomena will become apparent to anyone 
who even hastily surveys anyone or more of the following books: 
Statistical Theories oj Matter, Radiation, and Electricity, K. K. Darrow, 
The Physical Review Supplement, Vol. I, No. I, July 1929, also 
published in the series of Bell Telephone Laboratories' reprints, 
No. 435; Introduction to Statistical Mechanics for Students oj Physics 
and Physical Chemistry, J. Rice, Constable & Company, Ltd., 
London, 1930; Statistical Mechanics with Applications 10 Physics and 
Chemistry, R. C. Tolman, Chemical Catalog Company, New York, 
1927; Kinetic Theory oj Gases, L. B. Loeb, McGraw-Hill Book Com
pany, New York, 1927; The Kinetic Theory oj Gases, E. Bloch, 
Methuen & Company, Ltd., London, 1924; Introduction to Modern 
Physics, F. K. Richtmeyer, McGraw-Hill Book Company, New York, 
1928; Modern Physics, H. A. Wilson, Blackie & Son, Ltd., London, 
1928; Introduction to Contemporary Physics, K. K. Darrow, D. Van 
Nostrand Company, Inc., New York, 1926; and Atoms, Molecules 
and Quanta, A. E. Ruark and H. C. Urey, McGraw-Hill Book Com
pany, New York, 1930. 

One cannot return from even a brief excursion into the field of 
modern physics and chemistry without having caught a glimpse of 
the importance of the concept of the statistical limit in all of the 
latest developments. Even in· this field of exact science nothing is 
exact. In the last analysis thi! influence of chance causes is felt. 
Almost the only things that appear ·to be constant are distribution 
functions or statistics of these functions-and this constancy is only 
in the statistical sense. For example, one interested in the specifica
tion of quality of materials need read only Chapter III of The Physics 
of Solids and Liquids, P. P. Ewald, Th. Poschl and L. Prandtl, 
Blackie and Son, Ltd., 1930, to see how far we are from being able 
to explain some of even the simplest mechanical properties in terms 
of atomic physics. 

1. Empirical Laws 

To contrast the way in which the so-called exact and statistical 
laws enable one to predict with the way in which an empirical law 
does, the recent excellent book Business Cycles, W. C. Mitchell, Na-
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tional Bu~eau of Economic Research, New York, 1927, should prove 
to be of Interest. The author of this book discusses in a critical 
manner the very extensive amount of work that has been done in 
trying to develop a rational basis for predicting cyclic movements 
with a net result that is not so very encouraging. Even a casual 
reading of this book must impress one with the serious hopelessness 
of trying to predict the future in terms of the past when the chance 
cause system is not constant. In the present state of the scientific 
method of induction, it appears that empirical relationships such as 
time series give little basis for prediction. This conclusion is con
sistent with that so admirably presented in a recent paper by S. L. 
Andrew in the Bell Telephone Quarterly, Jan., 1931, and also with 
conclusions set forth in the recent book Business Adrift, by W. B. 
Donham, Dean of the Harvard Business School. Such reading 
cannot do other than strengthen our belief in the fact that control of 
quality will come only through the weeding out of assignable causes 
of variation-particularly those that introduce lack of constancy in 
the chance cause system. 

3. Fre'luency Distribution Functions 

In Part III we considered very briefly the problem of determining 
the kind of frequency distribution function or functions that we 
might expect controlled quality to follow. In this connection we 
touched upon the philosophy of frequency curves as laws of dis
tribution. 

Two systems of curves were mentioned in particular, namely, the 
Pearson and the Gram-Charlier systems. Although we have not had 
occasion to make much use of these functions as such, a serious 
student of control of quality will find it greatly to his advantage to 
read some of the original memoirs dealing with these two systems of 
curves. Those of Pearson are naturally available in English and 
cannot help but prove stimulating. The more formal.part o~Pearso.n·s 
work in this field has been summarized by Elderton In the Interestmg 
book, Fre'luency Curves and Correlation, second edition, Layton, Lon
don, 1928. T. L. Kelley, a former student of ~ear~on, also has ~~ch 
of interest to say about this system of curves In hiS book, Stattstzeal 
Method, Macmillan Company, New York, 1923. ., 

Very interesting and stimulating a~counts of the s~gmficance of 
the Gram-Charlier series have been given by Arne Fisher, Mathe-· 
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matical Theory of Probabilities, 2nd edition, Macmillan Company, 
New York, 1922; by F. Y. Edgeworth in a series of articles referred 
to in his article Probability in the 13th edition of the Encyclopedia 
Britannica; and by T. N. Thiele, Theory of Observations, London, 
1903. J. F. Steffensen in Some Recent Researches in the Theory of 
Statistics and Actuarial Science, Cambridge University Press, 1930, 
makes some very interesting and pertinent remarks on the theo
retical foundation of certain types of frequency curves. 

It is of particular interest to note the way in which Edgeworth 
arrives at the Gram-Charlier series as a method of expressing the 
results of the joint action of a complicated system of causes. Of 
course, the Pearson system can be given somewhat similar causal 
interpretation although great emphasis has not been laid upon this 
point by many of those writing about the Pearson system. 

The sythentic building up of a frequency curve in terms of the 
effects of component groups of causes forms a basis, as we have seen, 
for our discussion of the necessary and sufficient conditions of max
imum control. We have emphasized the significance of the fact that, 
as the number of causes of variability is increased, we seem to ap
proach closer and closer to what we have termed the point (0,3) 
of maximum control in the fh {J2 plane. 

In this connection The Behavior oj Prices, F. C. Mills, National 
Bureau of Economic Research, Inc., New York, 1928, should prove 
interesting reading, particularly that part having to do with the march 
of the {J's back to normalcy, as he puts it. 

4. Probability 

Probability and its Engineering Uses, T. C. Fry, D. Van Nostrand 
Company, New York, 1928, and An Introduction to Mathematical 
Probability, J. L. Coolidge, Oxford University Press, New York, 1925, 
contain interesting discussions of the meaning of probability and the 
difficulty involved in defining it. 

5. Quality Control 

The only book touching upon the subject of quality control in 
anything like the sense of the present text is that by Becker, Plaut, 
and Runge, referred to in Chapter I of Part I. 
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REFEIlENCES FOil P AIlT II 
I. Economies 

The problem of economic control of quality in its broadest sense is 
as we have seen, that of doing what we want to do within limits which 
are economical. To do this, we must establish economic standards of 
quality. A brief outline of the economic considerations which must 
be taken into account in attempting to establish such standards of 
quality is given in an interesting article, "Stand,lrd Quality," G. D. 
Edwards, Bell Telephone Quarterly, Vol. VII, pp. 292-3°3. 

For example, in establishing such a standard, we must consider 
the relationship between cost and value. Value, however, is not so 
easily defined in a way that will cover all of the prevalent concepts 
of this term. To attempt to do so leads us into difficulties touched 
upon in our discussion of the definition of quality. 

Naturally, value in some way or other depends upon the degree 
to which a given quality satisfies human wants; but, in turn, human 
wants are not constant even for the same person. Furthermore, the 
degree to which a thing having several quality characteristics tends 
to satisfy the human wants of even a single person is to a large extent 
a complicated and unknown function of the magnitudes of the phys
ical characteristics of the thing. Even assuming that the value 
determined on the basis of the wants of a single person is a constant, 
it is apparent that the values for different people differ among them
selves so that, in the last analysis, value, ifit can be expressed quanti
tatively, is presumably a frequency distribution function. 

A brief, terse exposition of the fundamental economic problems 
involved in attaining a dynamic meas!lre of value will be found in 
the Mathematical Introduction to Economics, G. C. Evans, McGraw
Hill Book Company, New York, 1930. Having obtained a picture of 
the complicated nature of this problem, one may feel inclined to 
despair of its solution. However, for some time to come, it is likely 
that we shall not get away from the desire on the part of all of us to 
find some measure of quality which is common to all qualities. . 

In our discussion of economic control, we left out any detailed 
consideration of this problem of finding an adequate measure of value, 
even though such a measure apparently would serve a very useful 
purpose. We started with the tacit assumption that ~h.en s?ch. a 
measure of value can be found, it will have two characteristics: It will 
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be a statistical quantity, and it will be statistically related to the 
measurable quality characteristic of the product. 

Beginning at this point, we have shown, particularly in Part I, 
that certain economic advantages can be attained in the production 
of a controlled quality. This means, of course, as previously stated, 
that the quality standard is some frequency distribution function. 
We emphasized the importance of at least two characteristics, 
namely, the average X and the standard deviation ('T of this function. 
To insure that the !>pecified parameters in a given case are economic 
standards would require a consideration of the fundamental prob
lems involved in establishing measures of value already referred to. 
In such cases we must choose standards which to the best of our 
knowledge at the present stage of the development of the subject 
appear to be reasonable estimates of economic standards. 

2. Texts on Statistical Theory 

The ninth edition of Yule's An Introduction to the Theory of 
Statistics, C. Griffin & Company, Ltd., 1930, should prove to be a 
veritable storehouse of knowledge in respect to many of the things 
discussed in Part II. This is particularly true in respect to measures 
of central tendency, dispersion, and correlation. As supplementary 
reading for the more technical part of the discussion, Mathematical 
Statistics, H. L. Rietz, Open Court Publishing Company, Chicago, 
1917, should prove of great value, particularly in connection with the 
consideration of the analytical aspects of correlation. A. L. Bowley's 
Elements of Statistics, Chas. Scribner's Sons, New York, 1926-in 
particular the second volume-contains much of interest in regard to 
the point binomial and the sc:cond approximation (23). The Mathe
matics of Statistics, R. W. Burgess, Houghton Mifflin Company, 
New York, 1927, will be found helpful as a general elementary text. 
It also contains references to several elementary books dealing with 
statistical methods and their application in other fields such as eco
nomics. Two of these should be mentioned here: Statistical Methods 
Applied to Economics in Business, F. C. Mills, Henry Holt & Com
pany,New York, 1924, and Principles and Methods of Statistics, R. E. 
Chaddock, Houghton Mifflin Company, Boston, 1925. Attention 
should also be called to the recent book, The Mathematical Part of 
Elementary Statistics, B. H. Camp, D. C. Heath & Co., New York, 
1931. 
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3. Curw Filling 

In connection with our discussion or the derivation of empirical 
formulas to represent relationships, the little book, Empirical For
mul4s, T. R. Running, Wiley & Sons, New York, 1917, is of interest. 
The method or moments is discussed in some detail in Elderton's 
book, Frt'lunJcy CurtJtS, previously referred to. The method of least 
squares is admirably treated in the Calculus of OIJStrtJations, E. T. 
Whittaker and G. Robinson, 2nd edition, Blackie & Son, London, 1926. 

REFERENCES FOR PART IV 

In 1922, R. A. Fisher presented in The Philosophical Transactions 
of 1M Royal Socitly in London an article, "The Mathematical Foun
dations of Theoretical Statistics," in which he characterized three 
fundamental problems, namely, specification, distribution, and esti
mation. At least the first nine paragraphs of this paper should be read 
by anyone interested in the application of statistical theory in the 
control of quality. In Part IV, we are particularly interested in the 
theory or distribution which has been developed to a marked extent 
during the last few decades at the hands of R. A. Fisher, "Student," 
J. Neyman, L. Isserlis, A. E. R. Church,V. J. Romanovsky, J. Wish,art, 
E. L Dodd, B. H. Camp, H. Hotelling, Karl Pearson, E. S. Pearson, 
L H. C. Tippett, P. R. Rider, A. A. Tchouproff, A. A. Markoff, 
M. Watanabe and E. Slutsky. 

Perhaps one of the best ways for a newcomer to orientate himself 
in this field of investigation is to read the excellent" Report on Sta
tistics" by H. L Rietz, published in the Bullttin of the Amtrican 
Mathematical Socitly, October, 1924, pp. 'P7-453. References to later 
work of the men mentioned in the previous paragraph and others on 
the theory of distribution will be found in the bibliographies of the 
books by Yule. Rietz, and Kelley, already referred to. In conn~ction 
with the discussion of Tchebycheff's theorem, one of the most Inter
esting articles is that of A. A. Tchouproff, "Asymptotic Frequency 
Distribution of the Arithmetic Means or n Correlated Observations 
for Very Great Values of n," Journal of 1M Royal Statistical Socidy, 
Vol. LXXXVII, 1925, pp. 91-1°4. This article gives detailed 
references to the work of Watanabe, Markoff, Slutsky, and others 
touching upon this same problem. . . . .. .. 

A recent paper, "British Stat~stlcs an~ ~tatJstlcl~ns. Today, 
H. Hotelling, Journal of tM Ammcan StatIStICal ASSOCIatIon, June. 
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1930, pp. 186-190, gives an interesting brief account of what is going 
on in England today in the development of statistical theory. If 
one is interested in tracing the development of the theory of dis
tribution or, in fact, any part of statistical theory back through the 
ages, Studies in the History of Statistical Method, Helen M. Walker, 
Williams & Wilkins Company, Baltimore, I~P'9, will be found helpful. 
Perhaps our best general source of information on the important work 
of the Scandinavian School of statisticians is the book by Arne Fisher 
previously mentioned. 

REFERENCES FOR PARTS VI AND VII 

I. Estimation 

Two fundamental statistical problems are touched upon in Parts 
VI and VII. One is that of going from a random sample of size n 
to its universe. 

Today there are in the literature the following three general 
methods of going from a sample to its universe: 

(a) The a posteriori method. 
(b) The method of maximum likelihood. 
(c) The empirical method. 

To mention these three in the same breath in the presence of a group 
of statisticians is almost certain to start an argument, for there is a 
wide divergence of opinion as to the comparative validities of these 
methods. 

For this reason, the reader will find it advantageous to consider 
in some detail the original memoirs dealing with these separate meth
ods. The a posteriori method is tied up with the theory of causes and 
the name of Bayes. The recent important article, .. Frequency Dis
tribution of the Unknown Mean of a Sampled Universe," E. C. 
Molina and R. I. Wilkinson, Bell System Technical journal, Vol. VIII, 
pp. 632-645, October, 1929, should prove an interesting starting point 
for the consideration of this method, although the reader will doubtless 
wish to read other original memoirs referred to in connection with the 
discussion of Bayes' theorem in the general bibliographies mentioned 
in a previous paragraph. 

The method of maximum likelihood is tied up largely with the 
work of R. A. Fisher, starting primarily with his article in the Phila
sophical Transactions previously mentioned. 
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A recent article, "On the Use and Interpretation of Certain Test 
Criteria for Purposes of Statistical Inference," E. S. Pearson and 
J. Neyman, Biometrika, XXA, pp. 175-240, 1927, and XXA, pp. 263-
294, 1928, is perhaps the best critical discussion of the available 
methods of solving the problem of estimation. It should certainly 
be read by any serious student of this subject. 

The third edition of Statistical Methodsfor Research Workers, R. A. 
Fisher, summarizes most of the detailed methods of estimation de
veloped by him. It is a book of particular value to scientists and 
engineers, although one must keep in mind the serious limitations of 
all methods of estimation based upon small samples as noted in the 
text and discussed in such references as that of Pearson and Neyman. 

It is of interest to note that a divergence of opinion is expressed in 
the literature as to the usefulness of the theory of the so-called small 
sample. Perhaps most of the critical remarks are based upon the 
assumption that this theory is to be used as the basis of estimation, 
and that it may give the impression that we can replace large samples 
by small ones. In the first place, a careful reading of the available 
literature does not reveal any specific suggestion to substitute small 
samples for large ones. In the second place, it should be noted that 
the application of small sample theory used in this text is required in 
handling large numbers of data in a rational way by breaking them 
up into rational subgroups. In this work the distribution theory 
for small samples plays a prominent r6le. 

In general the problem of estimation presents the universal dif
ficulties involved in all induction. If one reads such a book as A 
Treatis, on Probability, J. M. Keynes, Macmillan Company, New 
York, 1921, he may feel at first very much discouraged, because his 
attention will have been directed to many of the serious difficulties 
involved in the application of probability theory. A useful tonic in 
such a case is to read anyone or more of the following books: The 
Natur, oj th, Physical World, A. S. Eddington, Macmillan Company, 
New York, 1928; Th, Logic oj Modern Physics, P. W. Bridgman, 
Macmillan Company, New York, 1928; The Analysis of Maller, 
Bertrand Russell Harcourt, Brace & Company, Inc., New York, 1927. 
At least these th~ee books should prove to be a tonic, if it is true that 
misery ioves company. Certainly the serious difficul~ies involved in 
the interpretation of physical phenomena are common m all fields, and 
the discussions in these books show how much we must rely upon the 
application of probability theory even in an "exact" science. 
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2. Detecting Lack of Control 

The second fundamental statistical problem is that of determining 
whether or not a given set of data comes from a constant system of 
causes, or more generally it is the problem of dividing the universe of 
objective values into rational subgroups schematically represented in 
Fig. 144. In our discussion of ways and means for detecting lack of 
control, we have pointed out again and again the necessity of sub
dividing the data into rational subgroups. To do this requires the 
exercise of human judgment. 

In the last analysis we must depend upon the use of scientific 
method-that is, upon human intuition, imagination, reasoning, and 
knowledge. It is perhaps only through the application of this general 
method that we can hope to attain good data, one characteristic of 
which is that they be subdivided into rational subgroups. It may be 
of interest, therefore, to sketch briefly a course of reading which will 
be (ound helpful to the student in the application of scientific method 
to the further development of the theory of quality control. To do so 
necessarily takes us into the fields of psychology, philosophy, and 
logic; into the field of psychology because we must get some sort of 
'picture of the way the mind works; into the field of philosophy be
cause we need some hypothesis as to the nature of reality and the 
function of laws, theories, and causal explanations; into the field of 
logic because it presents what we know about the formal methods 
available in the theory of deduction and induction. 

How do data depend upon the mind? What is the effect of factual 
experience and the effect of reasoning upon an observer? These are 
important questions. What we sense through anyone of our senses 
depends partly upon previous use of these senses. Thus a child 
looking at a straight stick extending beneath the surface of a pool of 
water sees a bent stick. Similarly, the first time one sees what is 
shown in Fig. 131, he sees the length of the line (a) to be different 
from that of line (b), although they are of the same length. In this 
way, factual experience influences what we sense through anyone of 
our senses. 

Perhaps more important, however, is that the mental experience 
involving reasoning influences to a marked extent what we sense. 
One looking at a line AB, Fig. I, and thinking of the points on the 
line, sees those points in an entirely different way after he has tried 
to place such points as V3 and'll" on that line. 
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Almost every day one hears of some physical discovery which has 
been influenced by a conceptual theory. A trained experimentalist 
who is at the same time familiar with the current theory or theories 
having to do with the phenomena which he is investigating will, in 
many cases at least, be able to get better data for the particular 
purpose in hand than he would be if he did not know the theory. 
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FIG. I. 

In this same connection, It IS Important to note some of the 
applications of the theory of frequency curves in assisting one to 
break down an observed set of data into rational subgroups or to 
indicate in ways other than those described in the text whether or 
not this can be done. For example, the fact that an observed point 
in the 111112 plane is in the neighborhood of (0, 1.8), Fig. z, is consistent 
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with the hypothesis that the observed set of data came in approx
imately equal proportion from, let us say, m rational subgroups. In 
a similar way, an observed value of skewness may be consistent with 
some rational hypothesis in respect to the causes of variation. In 
other words, an observed set of statistics can be suggestive of a 
working hypothesis in much the same way that a r?ugh plot of .an 
observed frequency distribution may be suggestive In the sense In

dicated by E. R Wilson in his article, "The Development of a Fre-
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quency Function and Some Comments on Curve Fitting," Proceedings 
of the National Academy of Sciences, Vol. 10, 192 4, pp. 7~84' 

Another very important use of the knowledge of the theory may be 
that of detecting mistakes in computation. For example, if one found 
a point (Ill, ~2) below the line ~2 - ~l - I = 0, Fig. 3, he would 
know that a mistake had been made because, as was originally shown 
by Pearson, it is not possible for a frequency distribution function 
to have a point in this area. 

Broadly speaking, we see again why it is so necessary in the control 
of quality of manufactured product to have data accumulated by 
someone acquainted with the available factual and conceptual expe-

~~--~~~5----I~~-----I~.5----~2~.O----~2.~5--~3D . 

~I 

FIG. 3. 

rience relating to the particular problem in hand. Books such as: 
Scientific Thought, C. D. Broad, Harcourt, Brace & Company, Inc., 
New York, 1927; The Function of Reason, A. N. Whitehead, Princeton 
University Press, Princeton, New Jersey, 1929; The Analysis of Mind, 
Bertrand Russell, George Allen and Unwin, Ltd., London, 1922; 
Conflicting Psychologies of Learning, H. B. Bode, D. C. Heath & 
Company, New York, 1929; The Principles of Psychology, William 
James, Henry Holt & Company, New York, 1890; The Revolt Against 
Dualism, A. L. Lovejoy, W. W. Norton & Company, Inc., New York, 
1930; and Human Learning, E. L. Thorndike, The Century Co., 1931; 
contain much of interest in this connection. 

Having seen what an important part conceptual experience may 
play iIi taking data, one is likely to become more interested in formal 
logic. The meaning of the laws of thought and the application of 
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syllogistic reasonin~ take on a new interest. For example, a funda
mental understanding of the theory of control tacitly involves such 
mathematical concepts as function, limit, continuity, and so on, 
developed to a degree of refinement which comes from the study of 
the discussion of these subjects in such a book as G. H. Hardv's 
Purl Malhnnalics, Cambridge University Press, London, 1928• . 

Perhaps of even greater interest, however, is the consideration of 
what we mean by judgmtnl and common uns~two things which we 
find we must use so often in experimental work of all kinds. One 
soon finds that there is a considerable divergence of opinion in respect 
to such matters as will be evidenced by a more or less systematic 
browsing in the following treatises on logic. Elemtnlary Logic, A. 
Sid wick, Cambridge University Press, London, 1914; Principles of 
Logic, H. W. Bradley, Vol. I and Vol. II, 2nd Edition, Oxford Univer
sity Press, London, 1922; An Introduclion 10 Logic, H. W. B. Joseph, 
2nd Edition, Oxford University Press, London, 1922; Formal Logic, 
J. N. Keynes, 4th Edition, Macmillan Company, Ltd., London, 1928; 
Logic, W. E. Johnson, Cambridge University Press, London, Vol. I, 
Logic, Gtncra/, 1921; Vol. II, Logic Demonstraliv, Injcrtnu: Deduc
I;v, and Inducliv" 1922; Vol. III, The Logical Foundalion oj Scitnu, 
1924; The Logic of Discovery, R. D. Carmichael, The Open Court 
Publishing Co., Chicago, 1930; RAlional IndUe/ion, H. H. Dubs, 
The Chicago University Press, Chicago, 1930; and Scitnlific Injcrtnu, 
Harold Jeffreys, Macmillan Co., New York, 1931. 

It will be noted that the application of the formal scientific method 
in discovery involves a human choice at every step. For example, 
in the discovery of a functional or statistical relationship, the follow
ing choices must be made: 

I. Choice of data. 
2. Choice of functional form. 
3. Choice of number of parameters, at least in certain cases. 
4. Choice of method of estimating parameters. 

To a certain extent this field of choice is a kind of methodological 
N~Man's Land. 

History of science shows, however, that. ~e d~scoverers ~f the 
past have, in general, been those broadly trained In the part1c~~ar 
field of discovery of their choice. They ~ave been .those. famill.ar 
with the status of experimental and theoretIcal results In theIr partIc
ular field. The importance of theory in helping one to choose the 
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right thing to he discovered is illustrated by the fact that several 
elements in, the periodic table have been looked for and found because 
their existence was suggested by the blank spaces. So it is that many 
of the discoveries of science have been suggested by theory. . 

Furthermore, it is of interest to note that important discoveries 
have usually come only after the investigator has surrounded himself 
for a considerable period of time with the facts bearing upon the 
subject and during this period has kept these more or less constantly 
in mind. It is true, however, history also indicates that many of 
these discoveries have only come after the investigator has dropped 
the search for a time more or less completely from his conscious con
sideration. In all cases, however, it appears that preliminary con
scious attention to the facts in hand is essential. 

Coming now to the more or less formal treatment of scientific 
method, the following books will be found helpful in something like 
the order listed: The Foundations of Science, H. Poincare, The Science 
Press, New York, 1929; The Principles of Science, W. S. Jevons, 
Macmillan Company, Ltd., London, 1924; Essentials of Scientific 
Method, A. Wolf, Macmillan Company, New York, 1927; Scientific 
Method, A. D. Ri tchie, Harcourt, Brace & Company , New York, 1923; 
and Physics, The Elements, N. R. Campbell, Cambridge University 
Press, London, 1920, together with Vol. III of Johnson's Logic noted 
in the previous paragraph. 

Books such as the Questfor Certainty, John Dewey, Minton Balch 
Company, New York, 1929; and in particular, A. N. Whitehead's 
Process and Reality, MacmillaA. Company, New York, 1930, contain 
much of interest. Just as a simple example, it is necessary for us to 
think of a quality characteristic as an entity in the sense adopted by 
Whitehead if it is to be general enough to be of use in the many 
practical problems that arise in the interpretation of a sample. 

OrHER REFERENCES 

1. Errors of Measurement 

It is assumed that the reader has available one or more of the 
following books on the discussion of the errors of measurement: The 
Combination of Observations, David Brunt, University Press, London, 
1917; The Calculus of Observations, E. T. Whittaker and G. Robinson, 
Blackie & Son, London, 1924; The Theory of Measurements, A. D. 
Palmer, McGraw-Hill Publishing Company, New York, 1930; and 
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The Theory oj Measurements, L. Tuttle and J. Satterly, Longmans, 
Green & Company, New York, 1925. 

Brunt', book contains, in addition to the ordinary discussion of 
the theory of errors, an interesting introductory chapter indicating 
various ways of developing the normal law. The book by Tuttle 
and Satterly gives a particularly good elementary discussion of many. 
things which must be considered in correcting data for errors of meas
urement. Palmer's treatise is of particular value in outlining things 
which must be considered in planning physical measurements so as 
to reduce the errors of measurement to a minimum. 

2. Tables 

Of course, every one needs a table of squares, reciprocals, and 
square roots such as that of Barlow published in revised form by E. 
and F. N. Spon, Ltd., London, 1930, and a table of logarithms such 
as those of Vega published by D. Van Nostrand Company, New York, 
1916. In addition to these, anyone interested in the theory of quality 
control will find much use for Pearson's Tables jor Statisticians and 
Biometricians, published by the Cambridge University Press, London, 
1924. The second volume of these tables which is now in the process 
of preparation ia supposed to contain the tables which have appeared 
in Biometrilta since the publication of the first volume in 1924. In 
a way, the promised second volume will be even more helpful than the 
first. The books by Fry, Arne Fisher, and R. A. Fisher contain many 
useful tables. For a more complete bibliography, the reader is 
referred again to that of Yule. 

3. Magazines 

Without question, one magazine which has been found most 
useful in our study of quality control has been Biometrilta, edited 
by Karl Pearson and his son Egon Pearson, and published by the 
Cambridge University Press, London. It has carried many of the 
important papers of "Student," R. A. Fisher, L. H. C. !ippett, J. 
Neyman, J. O. Irwin, Karl Pearson, E. S. Pearson, J. Wishart, and 
their associates. The Sltandinavislt Alttuarietidsltrijt, Stockholm, 
contains many important articles in English as well as in foreign 
languages. The same is true of Metron, an international review of 
statistics published in Rome, Italy. 
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<fhe 'Journal oj the American Statistical Association, New York, 
contains many discussions of the applications of the more elementary 
theory of statistics in the field of economics. The same can be said 
of the 'Journal oj the Royal Statistical Society, London, although this 
Journal has also published several important articles on the theory 

. of statistics. Both of these Journals are of value because of their 
reviews of current literature. The Annals oj Mathematical Statistics is 
a Journal recently started in cooperation with the American Statis
tical Association. It is devoted to both theory and application of 
mathematical statistics. 

A glance at any of the complete bibliographies previously referred 
to will show that important articles have appeared in many other 
journals than those listed here. 

4. Mathematics 

It is assumed, of course, that the student of the theory of control 
is equipped with elementary texts up to and including differential 
and integral calculus. For a more complete treatment than is ordi
narily given in any elementary text, the following books are suggested. 
In questions involving purely algebraical manipulation as in the dis
cussion of the multinomial theorem, the student will find Algebra, 
G. Chrystal, Vol. I and Vol. II, 5th Edition, A. and C. Black, Ltd., 
London, 1920, of great help. For a discussion of the subject of sym
metric functions and related topics of interest in the application of the 
method of moments and the use of semi-invariants, M. Be-cher's 
Introduction to Higher Algebra, Macmillan Company, New York, 1921, 
will be helpful. Advanced Calculus, W. F. Osgood, Macmillan Com
pany, New York, 1925, treats in sufficient detail for most purposes 
the analytical methods required for an understanding of the math
ematical theory found in most articles on the subjects of specification, 
distribution, and estimation. Two excellent books on the mathemat
ical theory of statistics are: Statistique Mathematique, G. Darmois, 
Gaston Doin et Cie., Paris, 1928, and Statistique Mathematique, 
Charles Jordan, Gauthier-Villars et Cie., Paris, 1927. 

5. Graphical Methods 

We have neglected to consider in any great detail the important 
problem of presenting the results of quality control studies in a way' 
to be of greatest service even though so much depends upon a thought-
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NOMOGRAPHIC REPRESENTATION 
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fu1 and artistic layout of the graphical presentation. In this con
nection, uyouJ in Advn-I;s;ng, W. A. Dwiggins, Harper & Bros., 
New York, 1928, should prove to be suggestive. 

In closing, we should note that in the application of the method 
of control, it is sometimes advisable to substitute nomograms for 
tables in shop practice. For example, Fig. 4 gives a nomogram which 
enables one to read oft'the standard deviation IT in terms of a given 
sample size" and probability p'. In a similar way, Fig. 5 presents in 
graphical form the very complicated table of "Student's" integral. 
For a discussion of this nomogram and of the application of nomog
raphy in this way, see the paper by V. A. Nekrassoft', "Nomography 
in Applications of Statistics," published in Mttron, Vol. VIII, 1930 , 

Pp·95""99· 
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