REFERENCES

- 1. Agriculture Statistics Hand Book, 2011, Ministry of Agriculture, Government of India.
- Alhassane, A. (2009): "E□et du climat et des pratiques culturales sur la croissance et le d'eveloppement du mil(Pennisetum Glaucum) au Sahel: contribution `a l'am'elioration du mod`ele de pr'evision des rendements SARRA-H," Th`ese Doc. physiologie v'eg'etale, sp'ecialit'e : Agrom'et'eorologie. Univ. de Cocody, Abidjan.
- Anonymous, State of Knowledge Report-Data Requirements for the Design of Weather Index Insurance, GlobalAgRisk, Inc., 1008 S. Broadway, Lexington, KY 40504, June, 2010.
- Antón, J. *et al.*, "A Comparative Study of Risk Management in Agriculture under Climate Change", OECD Food, Agriculture and Fisheries Working Papers, No. 58, OECD Publishing, 2012.
- Attri, S.D., and Tyagi, A.,"A Report on India's Climate Profile", Meteorology Monograph No. Environment Meteorology-01/2010, India Meteorological Department, Government of India.
- 6. Annual Report- 2011-12, Ministry of Agriculture, Government of India.
- Berg, A., Quirion, P. and Sultan, B., Weather-Index Drought Insurance in Burkina-Faso: Assessment of Its Potential Interest to Farmers, Weather, Climate, and Society, Volume 1 (1), American Meteorological Society, 2009.
- 8. Barrett, Christopher B., Carter, M. R. and Ikegami, M., 2008. "Poverty traps and social protection," Social Protection Discussion Papers 42752, The World Bank.
- Bokusheva, R., Crop Insurance in Transition: A Qualitative and Quantitative Assessment of Insurance Products, Discussion Paper No.76, Institute of Agricultural Development in Central and Eastern Europe (IAMO), Halle, Germany, 2004.
- Bokusheva, R. and Breustedt, G., Ex Ante Evaluation of Index-Based Crop Insurance Effectiveness, Paper presented in the 12th Congress of the European Association of Agricultural Economists (EAAE), 2008.
- 11. Byun, H.R., WILHITE, A.D.," Objective Quantification of Drought Severity and Duration, , 1999 American Meteorological Society.
- 12. Chung, W., Evaluating Weather Derivatives and Crop Insurance for Farm Production Risk Management in Southern Minnesota, Unpublished Ph.D. dissertation submitted to the Faculty of the Graduate School of the University of Minnesota, November 2011.

- Clarke, D.J., "Reinsuring the Poor: Group Microinsurance Design and Costly State Verification," Department of Economics Discussion Paper Series 573, University of Oxford 2011.
- Cohn, T. A. and Lins, H. F., Nature's style: naturally trendy. eophys. Res. Lett., 32, L23402, doi: 10.1029/2005GL024476, 2005.
- 15. Cooper, P. J. M., J. Dimes, K. P. C. Rao B. Shapiro B. Shiferaw and S. Twomlow. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ.Vol. 126.Issues 1-2, 24-35, 2008.
- Dash, S. K., Jenamani, R. K., Kalsi, S. R. and Panda, S. K., Some evidence of climate change in twentieth-century India. Climatic Change, 85, 299–321, 2007.
- Dancette, C. (1983): "Estimation des besoins en eau des principales cultures pluviales en zone soudano-sah´elienne," Agronomie Tropicale, 38(4), 281294
- Deng, X., Barnett, B.J., Hoogenboom, G., Yu, Y., and Garcia, A., Evaluating the Efficiency of Crop Index Insurance Products, Paper prepared for presentation at Southern Agricultural Economics Association Annual Meetings, Orlando, Florida, February 5-8, 2006.
- Filler, G., Odening, M., Okhrin and O. Xu, W. On the Systemic Nature of Weather Risk, SFB 649 discussion paper, No. 002, 2009, Humboldt-Universitat zu Berlin, Germany, http://hdl.handle.net/10419/25318, 2009.
- Fuchs, A. and Wolff, H. Concept and Unintended Consequences of Weather Index Insurance: The Case of Mexico, American Journal of Agricultural Economics, 93(2): 505-511, 2011.
- Ghosh, S., Luniya, V. and Gupta, A., Trend analysis of Indian summer monsoon rainfall at different spatial scales. Atmos. Sci.Lett., 10, 285–290, 2009.
- 22. Goodwin, B., (2001), Problems with Market Insurance in Agriculture, American Journal of Agricultural Economics, Vol.83, No.3, pp:643-649.
- Goodwin, B. K. and O. Mahul, 2004. Risk Modeling Concepts Relating to the Design and Rating of Agricultural Insurance Contracts. World Bank Policy Research Working Paper No. 3392.
- 24. Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanam, M. S. and Xavier, P. K., Increasing trends of extreme rain events over India in a warming environment. Science, 314, 1442–1445, 2006.
- Hazell, P. B. R. (1992), The appropriate role of agricultural insurance in developing countries. Journal of International Development, 4: 567–581.

- 26. Heimfarth, L.E. and Musshoff, O., Weather index-based insurances for farmers in the North China Plain: An analysis of risk reduction potential and basis risk, Agricultural Finance Review, 71(2), pp.218-239, 2011.
- Hellmuth, M.E., Osgood, D.E., Hess, U., Moorhead, A., and Bhojwani, H. (eds.) (2009). Climate risk insurance: Prospects for poverty reduction and development. Climate and Society No. 2. International Research Institute for Climate and Society. New York: Columbia University.
- International Research Institute for Climate and Society (IRI), Index Insurance and Climate Risk: Prospects for development and disaster management, Climate and Society No. 2, 2009.
- 29. International Trade Statistics Yearbook (2011), United Nations Statistics Division/ Department of Economic and Social Affairs, International Merchandise Trade Statistics Section, United Nations Organization.
- 30. IPCC (Intergovernmental Panel on Climate Change Working Group 2) 2001 Climate Change 2001: Impacts, Adaptation and Vulnerability (IPCC Working Group 2).
- IPCC (Intergovernmental Panel on Climate Change Working Group 3) 2007 Climate Change 2007:Mitigation of Climate Change (IPCC Working Group 3).
- Joshi, U. R. and Rajeevan, M., Trends in precipitation extremes over India. Research Report No: 3/2006, National Climate Centre, India Meteorological Department, Pune, 2006.
- Joshua D. Woodard, and Philip Garcia, (2008) "Basis risk and weather hedging effectiveness", Agricultural Finance Review, Vol. 68 Iss: 1, pp.99 – 117.
- 34. Kapphan, I., Weather Insurance Design with Optimal Hedging Effectiveness, June 2011, MRPA Paper from University Library of Munich, Germany, Web Source: http://mpra.ub.unimuenchen.de, June 2011.
- Kapphan, I., Calanca, P. and Holzkaemper, A., Climate Change, Weather Insurance Design and Hedging Effectiveness, The Geneva Papers on Risk and Insurance - Issues and Practice, 37 (2), pp. 286-317(32), 2012.
- 36. Kothawale, D. R., Munot, A. A. and Krishna Kumar, K., Surface air temperature variability over India during 1901–2007, and its association with ENSO. Climate Res., 42, 89–104, 2010.
- 37. Krishna Kumar, K., Rajagopalan, B. and Cane, M. K., On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–2159, 1999.
- 38. Krishnakumar, K. N., Rao, G. S. L. H. V. P. and Gopakumar, C. S., Rainfall trends in twentieth century over Kerala, India. Atmos. Environ., 43, 1940–1944, 2009.

- 39. Leblois, A., Quirion, P., Alhassane, A. and Traore, S. Weather Index Drought Insurance: An Ex Ante Evaluation for Millet Growers in Niger, European Association of Agricultural Economists, 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland.
- 40. Mahul, O., Verma, N., and D.J. Clarke, "Improving famers' access to agricultural insurance in India", Technical Report, mimeo 2011.
- 41. Miranda, M. and Glauber, J., Systemic Risk, Reinsurance, and the Failure of Crop Insurance Markets, American Journal of Agricultural Economics 79: 206-215, 1997.
- 42. Miranda, M., C. Gonzalez-Vega, and M. Villafani-Ibarnegaray. 2010. "Index Insurance and the Optimal Management of Loan Portfolios in Rural Microfinance Institutions in the Presence of Systematic Risk." AEA Annual Meeting Paper, Allied Social Sciences Associations Meeting, Atlanta, GA, January 3-5, 2010.
- 43. Mishra, P K, Agricultural Risk, Insurance and Income. Arabury, Vermont: Ashgate Publishing Company, 1996.
- 44. Mobarak A. Mushfiq and Rosenzweig, Mark, Selling Formal Insurance to the Informally Insured, Yale Economics Department Working Paper No. 97; Yale University Economic Growth Center Discussion Paper No. 1007, 2012.
- 45. MOEF, Climate change and India: A '4 × 4' assessment. Ministry of Environment and Forests, New Delhi, 2010.
- 46. Morduch, J, 1995. "Income Smoothing and Consumption Smoothing," Journal of Economic Perspectives, American Economic Association, vol. 9(3), pages 103-114, Summer.
- 47. Norton, M.T., Three Topics in Weather Index Insurance, Unpublished thesis submitted to the Faculty of the Graduate School of Cornell University, January, 2009.
- 48. Norton, M., Osgood, D. and Turvey, C.G.Weather Index Insurance and the Pricing of Spatial Basis Risk, Paper presented at Agricultural & Applied Economics Association's 2010 AAEA, CAES & WAEA Joint Annual Meeting, Denver, Colorado, July 25-27, 2010.
- 49. Odening, M., Musshoff, O., and Xu, W., Modeling and Hedging Rain Risk, Paper Prepared for Presentation at the American Agricultural Economics Association Annual Meeting, Long Beach, California, July 23-26, 2006.
- Odening, M., Musshoff, O, and Xu, W., Analysis of Rainfall Derivatives Using Daily Precipitation Models: Opportunities and Pitfalls, Agricultural Finance Review, 67(1), pp.135 -156, 2007.
- 51. Osgood, D.E., Giannini, A., Hansen, J., Holthaus, E., Ines, A., Kaheil, Y., Karnauskas, K., McLaurin, M., Robertson, A., Shirley, K., and Vicarelli, M., Designing Index-based Weather

Insurance for Farmers in Central America, Final Report to the World Bank, Commodity Risk Management Group, ARD, International Research Institute for Climate and Society, Columbia University, New York, USA, March 2009.

- 52. Osgood, D.E., McLaurin, M., Carriquiry, M., Mishra, A., Fiondella, F., Hansen, J., Peterson, N., and Ward, N., Designing Weather Insurance Contracts for Farmers in Malawi, Tanzania, and Kenya, Final Report to the Commodity Risk Management Group, ARD, World Bank, International Research Institute for Climate and Society IRI, Columbia University, New York, USA, 2007.
- 53. Pal, I. and Al-Tabbaa, A., Regional changes in extreme monsoon rainfall deficit and excess in India. Dyn. Atmos. Oceans, 2009, doi: 10.1016/j.dynatmoce. 2009.07.001, 2009
- 54. Pal, I. and Al-Tabbaa, A., Trends in seasonal precipitation extremes an indicator of climate change in Kerala, India. J.Hydrol., 367, 62–69, 2009.
- Parthasarathy, B. and Dhar, O. N., Secular variations of regional rainfall over India. Q. J. R. Meteorol. Soc., 100, 245–257, 1974.
- 56. Pattanaik, D. R. and Rajeevan, M., Variability of extreme rainfall events over India during southwest monsoon season. Meteorol. Appl., 17, 88–104, 2010.
- Pattanaik, D. R., Analysis of rainfall over different homogeneous regions of India in relation to variability in westward movement frequency of monsoon depressions. Nat. Hazards, 40(3), 635–646, 2007.
- 58. Paulson, N.D., and C. E. Hart, (2006), "A Spatial Approach to Addressing Weather Derivative Basis Risk: A Drought Insurance Example," Selected paper, American Agricultural Economics Association Meeting, Long Beach, CA, July 23-26, 2006.
- 59. Planning Commission, Government of India, 2011, Report on "Outreach of Institutional Finance, Cooperatives and Risk Management": Working Group Report for XII Plan period.
- Rajeevan, M. 2001. Prediction of Indian summer monsoon: Status, problems and prospects. Current Sci. 81(11):1451-1457, 2001.
- 61. Rajeevan, M., Bhate, J. and Jaswal, A. K., Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett., 35, L18707, 2008.
- 62. Rakhecha, P. R. and Soman, M. K., Trends in the annual extreme rainfall events of 1 to 3 days duration over India. Theor. Appl. Climatol., 48, 227–237, 1994.

- 63. Ramesh, K. V. and Goswami, P., The shrinking Indian summer monsoon. Research Report RR CM 0709, CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, 2007.
- 64. Rao, G G S N., Rao, A V MS, Vanaja, M., Rao, VUM. and Ramakrishna Y S. Impacts of regional climate change in India. (13-42 pp). Climate change and Agriculture over India (Eds.).G SLHV Prasada Rao, GGSN Rao and VUM Rao. PHI Learning (P) Ltd., New Delhi. 328 p, 2010.
- 65. Rao, P., G S L H V. and Gopakumar, C. S. Climate change impacts on monsoon and Indian Food grains Production. Academy of Climate Change Education and Research, KAU, Thrissur. 92 p, 2011.
- 66. Rao, K N, IRDA Journal, 'Weather based Crop Insurance: Panacea or Providence?' Insurance Regulatory & Development Authority (IRDA), November, 2007.
- 67. Ray P K, Agricultural Insurance: Theory and Practice and Application to Developing Countries, Pergamon Press, 1981
- 68. Reilly J (2002) Agriculture: the potential consequences of Climate Variability and Change for the United States. University Press, Cambridge.
- 69. Richards, T.J., M. Manfredo, and D. Sanders, (2004), "Pricing Weather Derivatives," American Journal of Agricultural Economics 86(4): 1005-1017.
- 70. Rosenzweig, M. R. and Binswanger, Hans P, 1993. "Wealth, Weather Risk and the Composition and Profitability of Agricultural Investments," Economic Journal, Royal Economic Society, vol. 103(416), pages 56-78, January.
- 71. Rupa Kumar, K., Krishnakumar, K., Pant, G B. and Srinivasan, G. Climate Change The Indian Scenario, In: Background paper prepared by FICCI, International Conference on science & Technology Capacity Building for Climate Change, October 20-22, New Delhi, pp. 5-17, 2002.
- Scholzel,C., and Friederichs.P., "Nonlinear Multivariate non-normally distributed random variables in climate research – introduction to the copula approach", Processes Geophysics., 15, 761–772, 2008.
- Sen Roy, S. and Balling, R. C., Trends in extreme daily precipitation indices in India. Int. J. Climatol., 24, 457–466, 2004.
- 74. Sharad K. Jain, and Vijay Kumar, "Trend analysis of rainfall and temperature data for India" Current Science, Vol.102, No.1, 10 January 2012.
- 75. Shinoda, M., Y. Yamaguchi, and H. Iwashita, 2000: A new index of the Sahelian soil moisture for climate change studies. Proc. Int. Conf. on Climate Change and Variability—Past, Present

and Future, Tokyo, Japan, International Geographical Union Commission on Climatology, 255–260.

- 76. Singh, N. and Sontakke, N. A., On climatic fluctuations and environmental changes of the Indo-Gangetic Plains, India. Climatic Change, 52(3), 287–313, 2002.
- 77. Sinha Ray, K. C. and Srivastava, A. K., Is there any change in extreme events like droughts and heavy rainfall? INTROPMET- 97, 2–5 December 1997, IIT New Delhi, 1999.
- Sivakumar, M. V. K.: 1988, 'Predicting Rainy Season Potential from the Onset of Rains in Southern Sahelian and Sudanian Climatic Zones of West Africa', Agric. and For. Meteorol. 42, 295–305.
- 79. Skees, J. R. and Barnett, B.J. (2006) "Enhancing microfinance using index-based risk-transfer products", Agricultural Finance Review, Vol. 66 Iss: 2, pp.235 250
- Soman, M. K., Krishna Kumar, K. and Singh, N., Decreasing trend in the rainfall of Kerala. Curr. Sci., 57, 7–12, 1988.
- 81. State of Indian Agriculture 2011, Ministry of Agriculture, Government of India.
- Subbaramayya, I. and Naidu, C. V., Spatial variations and trends in the Indian monsoon rainfall. Int. J. Climatol., 12, 597–609, 1992.
- 83. Turvey, C.G., and M. Norton, An Internet-Based Tool for Weather Risk Management, Agricultural and Resource Economics Review 37/1:63-78, 2008.
- Vedenov, D.V. Application of copulas to estimation of joint crop yield distributions,
 Contributed paper at the Annual Meeting of the AAEA 2008, Orlando, USA, July 27-29, 2008
- 85. Vedenov, D.V. and Barnett, B. J. Efficiency of Weather Derivatives as Primary Crop Insurance Instruments, Journal of Agricultural and Resource Economics, 29(3):387-403, 2004.
- 86. Wang, H.H., and H.Zhang, "On the Possibility of a Private crop Insurance Market: A Spatial Statistics Approach" Journal of Risk and Insurance 70, 1(2003):111-124
- 87. Winkel, T., Renno, J.F., and Payne, W.A., (1997), Effect of the timing of water deficit on growth, phenology and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) grown in Sahelian conditions, J. Exp. Botany, 48, 1001-1009.
- 88. Woodard, J.D. and Garcia, P., Basis risk and weather hedging effectiveness, Paper prepared for presentation at the 101st EAAE Seminar 'Management of Climate Risks in Agriculture', Berlin, Germany, July 5-6, 2007.
- 89. World Bank. 2001. World Development Report 2000/2001: Attacking Poverty. New York: Oxford University Press.

- 90. World Bank Group Finance and Private Sector Division (WBIFP) "Scaling up Microfinance for India's Rural Poor", World Bank Policy Research Working Paper No. 3646 (2005)
- 91. World Bank. 2005. "Managing Agricultural Production Risk: Innovations in Developing Countries." Agricultural and Rural Development Department. Report No. 32727.
- 92. Xu, W., Okhrin, O., Odening, M. and Ji, C., Systemic Weather Risk and Crop Insurance: The Case of China, SFB 649 Discussion Paper 2010-053, October, 2010, Web Source: http://sfb649.wiwi.hu-berlin.de, October 2010.
- 93. Zhu, Y., S.K.Ghosh, and B.K.Goodwin, "Modeling Dependence in the Design of Whole-Farm Insurance Contract: A Copula-Based Model Approach" Paper presented at annual meetings of the American Agricultural Economics Association, Orlando, FL, 27-29 July 2008.

ANNEXURE 1: PRODUCT DESIGN MODELS

1) Key Factor Index Product (D1): Suppose there are 'n' weeks from sowing to maturity. Aggregate rainfall, weight and cap for the ith week are R_i, W_i and C_i, respectively. Where i=1,2...,n. Then index I is given by

$$\sum_{i=0}^{n} W_{i} * Max(C_{i}, \mathbf{R}_{i})$$

Say, T is Trigger. Shortfall (%) $\Delta(I,T)$) is given by,

 $\Delta(I,T) = 100 * (Max(0,T-I)/T)$

And payout function F is given by:

 $F(\Delta(I,T)) = S * g(\Delta(I1,T1))$

Where, S is maximum payout under this cover and function g is given by the following table:

Z	∆(I,T)>=	0	Δ1	Δ2	 Exit
F	Pay-out (%)	0	p1	P2	 100

So claim payable under design D1 is given by

$P(D1) = F(\Delta(I,T))$

2) Aggregate Rainfall Product with Dry-spell (D2): Suppose aggregate rainfall over risk period is R,

$$I1 = R$$

Say, T1 is Trigger. Shortfall (%) $\Delta(I,T)$) is given by,

 $\Delta(I1,T1)) = 100 * [Max(0,T1 - I1)/T1]$

And payout function F1 is given by:

 $F1(\Delta(I1,T1)) = S1 * g[\Delta(I1,T1)]$

where, S1 is maximum payout under this cover and function g is given by the following table:

Δ(I,T)>:	= 0	Δ1	Δ2	 Exit
Pay-out (%) 0	p1	P2	 100

A day is called a dry day if recorded rainfall on that day is less than 2.5 mm. Incidence of consecutive dry days is called dry-spell and number of consecutive dry days is called length of dry-spell. Suppose there are 'n' dry spells of length D1, D2...,Dn, Then Index I2 is given by I2 = (D1, D2, ..., Dn)

Here trigger T2 is also a vector value of 1 * 5.

$$T2 = (t1, t2, t3, t4, t5)$$

Such that $t1 <= t2 <= t3 = <= t4 <= t5$.
$$\Delta(12, T2) = (\delta(D1, T2), \delta(D2, T2), \dots, \delta(Dn, T2))$$

$$\delta(Dn, T2)) = \begin{cases} 0 \text{ if } Dn \in [0, t1) \\ t1 \text{ if } Dn \in [t1, t2) \\ t2 \text{ if } Dn \in [t2, t3) \\ t3 \text{ if } Dn \in [t3, t4) \\ t4 \text{ if } Dn \in [t4, t5) \\ t5 \text{ if } Dn \in [t5, \infty) \end{cases}$$

And payout function F2 is given by

$$F2(\Delta(I2,T2)) = Min(S2, \sum_{k=0}^{n} f(\delta(Dk,T2))$$

where, 'f' is given by following table

Strike (=)	0	t1	t2	t3	t4	t5
Pay-out (Rs.)	0	р1	p2	р3	р4	S2

where, 'S2' is the Maximum pay-out under this cover So, claim payable under design D2 is given by

$$P(D2) = \sum_{i=1}^{2} Fi(\Delta i(Ii, Ti))$$

3) Market- based Product with Crop Stage-wise Volume and Dry-spell (D3): Suppose the total risk period is divided into 'm' crop phonological phases and aggregate rainfall during these phases are R1, R2...,Rm and S11,S12,...,S1m is sum insured for phase 1 to m, respectively. So index I1 is given by

 $I1 = (R1 \ R2 \dots \ Rm)$

Trigger T1 is given by matrix of 3xm

 $T1 = \begin{pmatrix} t11 & t21 \dots & tm1 \\ t12 & t22 \dots & tm2 \\ t13 & t23 \dots & tm3 \end{pmatrix}$

$$T1 = (T11 \quad T12 \dots \quad T1m)$$

$$\Delta(I1,T1) = (\gamma(R1,T11) \quad \gamma(R2,T12) \dots \quad \gamma(Rm,T1m))$$

$$\gamma(Rm,T1m) = \begin{pmatrix} Max(0,tm1 - max(Rm,tm2)) \\ Max(0,tm2 - Rm) \end{pmatrix}$$

Notional Rate Vector

It's given by

$$NR = \begin{pmatrix} \beta 11 & \beta 21 \\ \beta 12 & \beta 22 \\ \vdots & \vdots \\ \beta 1m & \beta 2m \end{pmatrix}$$
$$NR = \begin{pmatrix} \beta 1 \\ \beta 2 \\ \vdots \\ \beta 3 \end{pmatrix}$$

So,

$$\beta k = (\beta 1 k \quad \beta 2 k)$$

Where, $\beta 1k$, $\beta 2k$ are notional rate for kth phase chosen such that itshould indemnify farmer for yield loss due to shortfall in index and

$$S1k = (t1k - t2k) * \beta 1k + (t2k - t3k) * \beta 2k$$

Payout function F1 is given by

$$F1(\Delta(I1,T1)) = Min(S1, \sum_{k=1}^{m} h(\gamma(Rk,T1k)))$$

where,

$$h(\gamma(Rk,T1k)) = \beta k * \gamma(Rk,T1k))$$

And $S1 = S11 + S12 + \dots + S1m$

' Dry-spell' cover is designed on the same principle as an in design D2.

So claim payable under design D3 is given by

$$P(D3) = \sum_{i=1}^{2} Fi(\Delta i(Ii, Ti))$$

4) **INFOCROP based Crop Growth Simulation Model (D4)**: Let the total risk period be divided into 'm' fortnights and aggregate rainfall during these fortnights are R1,R2....,Rm and S11,S12,...,S1m are the sum insured for fortnight 1 to m, respectively. So index II is given by

$$\mathbf{I} = \begin{pmatrix} \mathbf{R}1 & \mathbf{R}2 \dots & \mathbf{R}m \end{pmatrix}$$

Trigger T is given by

 $\mathbf{T} = \begin{pmatrix} T\mathbf{1} & T\mathbf{2} \dots & Tm \end{pmatrix}$

Shortfall (%) is given by

 $\Delta(I,T)) = (\delta(R1,T1) \quad \delta(R2,T2) \dots \quad \delta(Rm,Tm))$ where, $\delta(Rm,Tm) = 100 * (Max(0,Tm - Rm)/Tm)$

and, pay-out function 'F' is given by:

$$F(\Delta(I,T)) = \sum_{k=1}^{m} Sk * l(\delta(Rk,Tk))$$

where, *l* is a function given by following table:

\rightarrow				
Ţ				
100	p(1,100)	p(2,100)	•••••	p(m,100)
90	P(1,90)	p(2,90		p(m,90)

10	p(1,10)	P(2,10)	 p(m,10)

where, the values p(r,q)'s (r=1,2...,m;q=10,20,...,100) are estimated yield loss (%) because of moisture stress of different levels and at different stages. These values are crop and location specific.

5) **CRIDA Model (D5)**: Suppose T_i; i=1...n denotes the mean temperature for ith day during phase and T is trigger temperature for phase. Trigger temperature is usually the long-term average of daily mean temperature over respective phase, i.e:

 $d_i = \begin{cases} 1 , If \ Ti > T \\ 0 , Otherwise \end{cases}$

 $\partial T_i {=} \begin{cases} (Ti - T), If Ti > T \\ 0, Otherwise \end{cases}$

$$\partial T = \frac{\sum_{i=1}^{n} \partial T_i}{\sum_{i=1}^{n} d_i}$$

$$D_i = \begin{cases} D_{i-1} + d_i, If \ d_i > 1\\ 0, Otherwise \end{cases}$$

 $\widetilde{D}_{i} = \begin{cases} D_{i} & , If Di > 5 \ and \ D_{i+1} = 0 \ or \ i = n \\ 0 & , & , Otherwise \end{cases}$

 $I_i = \begin{cases} 1 & , If \ \widetilde{Di} > 0 \\ 0 & , otherwise \end{cases}$

$$D = \frac{\sum_{i=1}^{n} \widetilde{D}_i}{\sum_{i=1}^{n} I_i}$$

The index I is defined as

$$I = \partial T \times D$$
$$\Delta(I, T) = I$$

And payout function F is given by:

$$F(\Delta(I,T)) = S \times R(\Delta(I,T))$$

where, S is sum insured under this cover and $R[(\Delta(I,T))]$ is response factor given by

$$R(\Delta(I,T)) = K \times \Delta(I,T) - 10^{-16}$$

where, K is a coefficient of adverse deviation, which depends on crop growth stage.

Suppose index for vegetative and reproductive phases is I_{ν} and I_{r} respectively. The payout function for Vegetative and Reproductive Phase are given as

$$\mathbf{F}_{v}(\Delta(\mathbf{I},\mathbf{T})) = S_{v} \times R_{v} \Delta(\mathbf{I}_{v},\mathbf{T}_{v}))$$

 $\mathbf{F}_r(\Delta(\mathbf{I},\mathbf{T})) = S_r \times R_r \Delta(\mathbf{I}_r,\mathbf{T}_r))$

where, S_{ν} and S_{r} are sum insured and R_{ν} and R_{r} are response factor corresponding to vegetative and reproductive phases, respectively and are given by

$$\mathbf{R}_{v}(\Delta(\mathbf{I}_{v},\mathbf{T}_{v})) = K_{v} \times \Delta(\mathbf{I}_{v},\mathbf{T}_{v}) - 10^{-16}$$

$$\mathbf{R}_r \left(\Delta(\mathbf{I}_r, \mathbf{T}_r) \right) = K_r \times \Delta(\mathbf{I}_r, \mathbf{T}_r) - 10^{-16}$$

where, K_{ν} and K_{r} are Coefficients of adverse deviation corresponding to vegetative and reproductive phase, respectively.

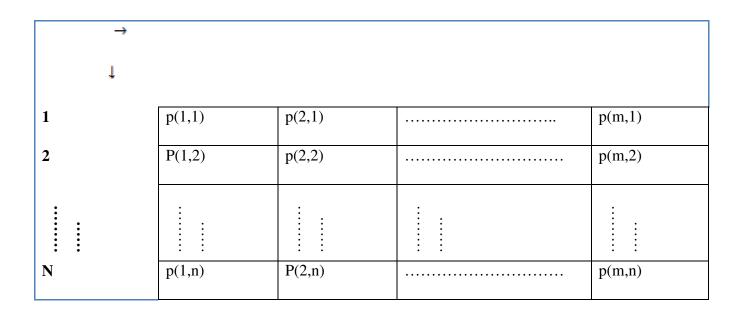
So the payout from this product design is given by

$$P(D1) = \sum_{i=x,v} F_i (\Delta_i (I_i, T_i))$$

6) INFOCROP based Crop Growth Simulation Model-Temperature Deviation (D6): Suppose the total risk period is divided into 'm' fortnights and average mean temperature during these fortnights are A1,A2...,Am and S11,S12,...,S1m have sum insured for fortnight 1 to m, respectively. So index II is given by

 $I = (A1 \quad A2 \dots \quad Am)$

Trigger T is given by


 $\mathbf{T} = \begin{pmatrix} T\mathbf{1} & T\mathbf{2} \dots & Tm \end{pmatrix}$

 $\Delta(I,T)) = (\delta(A1,T1) \quad \delta(A2,T2) \dots \quad \delta(Am,Tm))$ where, $\delta(Am,Tm) = (Max(0,Am - Tm))$

And payout function F is given by:

$$F(\Delta(I,T)) = Min(S, S \times \sum_{k=1}^{m} l(\delta(Ak,Tk)))$$

where, *l* is a function given by following table:

where, values p(r,q)'s (r=1,2...,m;q=1,2...n) are estimated yield loss (%) because of adverse deviation of mean temperature of different levels and at different stages. These values are crop and location specific.

7) **Market-Product for Temperature (D7)**: Suppose the total risk period is divided into 'm' fortnights and Ti (i=1,2...m) 's are fortnightly Trigger temperature, respectively.

Suppose $Max T_{ij}$ denotes maximum temperature for the jth day of the ith fortnight. Index I is given by

$$l = \sum_{i} \sum_{j} Max(0, MaxT_{ij} - T_i)$$

Suppose T is strike:

$$\Delta(\mathbf{I},\mathbf{T}) = \mathrm{Max}(\mathbf{0},\mathbf{I}-\mathbf{T})$$

And payout function 'F' is given by

$$\mathbf{F}(\Delta(\mathbf{I},\mathbf{T})) = \sum_{k=1}^{m} Min(S,\Delta(\mathbf{I},\mathbf{T})\times\mathbf{r})$$

where, S is sum insured for this cover and r is rate per degree deviation.

LOCATION	AKOLA		A	NANT	PUR		BIJAPU	R	
CROP	SOYBEAN		GROUNDNUT		SHORGUM				
PERIOD	18-Jun	to	8-Oct	2-Jul	to	15-Oct	4-Jun	to	10-Sep
	MSW	Kc _i	Ci	MSW	Kc_i	Ci	MSW	Kci	Ci
	25	0.2	50	27	0.1	50	23	0.20	60
	26	0.2	50	28	0.2	50	24	0.20	60
	27	0.4	60	29	0.4	60	25	0.30	60
	28	0.6	60	30	0.4	60	26	0.30	75
	29	0.6	70	31	0.4	60	27	0.30	75
0	30	0.8	80	32	0.6	60	28	0.45	75
AR(31	0.8	80	33	0.8	75	29	0.45	75
, UL	32	0.8	90	34	0.8	75	30	0.45	75
PARTICULARS	33	1	100	35	0.8	75	31	0.55	90
AF	34	1	100	36	0.8	60	32	0.55	90
	35	0.8	80	37	0.6	60	33	0.55	90
	36	0.6	80	38	0.6	60	34	0.45	60
	37	0.5	60	39	0.4	60	35	0.45	60
	38	0.4	50	40	0.4	50	36	0.45	60
	39	0.2	50	41	0.3	40	37	0.30	40
	40	0.1	50	42	0.2	30	38	0.20	30
	41	0	40				39	0.10	30
=	$\sum_{i=1}^{n}$	o Kel •	Max(Cl,	Ri) , wh	ere R	i is aggreg	ate rainfa	all of ith	week
T<		303		159			104		
S	1	6000			2000	0		20000	

ANNEXURE 2: Weights of Key Factor Index Model

Where, MSW is the Meteorological Standard Week, and Ci is the rainfall cap.

ANNEXURE 3: Product basis risk term sheets WEATHER BASED CROP INSURNACE SCHEME

Term-sheet (KHARIF 2011)

STATE- Rajasthan	CROP -Bajra
DISTRICT-Ajmer	UNIT: Hectare
TEHSIL-Ajmer, Bhinay, Kekari, Kishangarh, Sarwar	

Rainfall Volume Cover:

	PHASE I	PHASE II	PHASE III
		21 JUL TO 15	16 AUG TO 30
PERIOD	01 July to 20 July	AUG	SEPT
INDEX	Aggregate of rainfa	all over respective Phas	es
STRIKE I(<)	40	100	40
STRIKE II(<)	15	40	10
EXIT	5	0	0
RATE I (INR/mm)	10	10	15
RATE II (INR/mm)	50	22.50	30.00
MAXIMUM PAYOUT (INR)	750	1500	750

TOTAL PAYOUT (INR) 3000

Rainfall Distribution Cover:

PERIOD	1 July to 31 Aug			
INDEX	Number of days in a spell of Consecutive dry days			
STRIKE (=>)	22	26	30	
PAYOUT (INR)	250	750	2000	

TOTAL PAYOUT (INR) 2000

Note: A day with rainfall less than 2.5 mm will be considered as a dry day and multiple events will be considered for payouts under rainfall distribution cover.

Excess Rainfall Cover:

PERIOD	1 Sep to 30 Sep
INDEX	Maximum of 3 consecutive day's cumulative rainfall
STRIKE (>)	50
EXIT	150
RATE (INR/mm)	10.00
MAXIMUM PAYOUT	
(INR)	1000

TOTAL PAYOUT (INR)	1000.00
--------------------	---------

Premium Description:

SUM INSURED (INR)	6000
PREMIUM (INR)	600
PREMIUM (%)	10

WEATHER BASED CROP INSURNACE SCHEME

Term-sheet (KHARIF 2012)

STATE- Rajasthan		CROP -Bajra
DISTRICT-Ajmer		UNIT: Hectare
TEHSIL-Ajmer, Bhinay, Kekari, Kishangarh, Sarwar	_	

Rainfall Volume Cover:

	PHASE I	PHASE II	PHASE III
		21 JUL TO 20	
PERIOD	01 July to 20 July	AUG	21 AUG TO 30 SEPT
INDEX	Aggregate of rainfa	all over respective phase	es
STRIKE I(<)	50	90	40
STRIKE II(<)	25	45	20
EXIT	0	0	0
RATE I (INR/mm)	13.33	14.81	16.67
RATE II (INR/mm)	26.67	29.63	33.33
MAXIMUM			
PAYOUT (INR)	1000	2000	1000

TOTAL PAYOUT (INR) 4000

Rainfall Distribution Cover:

PERIOD	01 JUL to 10 SEPT
INDEX	Longest spell of Consecutive dry-days.
STRIKE (=>)	24
EXIT	68
PAYOUT PER DAY(INR)	45.45
MAXIMUM PAYOUT (INR)	2000

TOTAL PAYOUT (INR) 2000

Note: A day with rainfall less than 2.5 mm will be considered as a dry day and single event of maximum intensity will be considered for pay-outs under rainfall distribution cover.

Excess Rainfall Cover:

	PHASE I	PHASE II	PHASE III	
PERIOD	01 July to 20 July	21 JUL to 20 AUG	21 AUG to 30 SEPT	
	Maximum of 3 consecutive day's cumulative rainfall in respective			
INDEX	phases			
STRIKE I(>)	90	120	80	
STRIKE II(>)	113	150	100	
EXIT	135	180	120	
RATE I(INR/mm)	14.81	22.22	16.67	
RATE II(INR/mm)	29.63	44.44	33.33	
MAXIMUM				
PAYOUT (INR)	1000	2000	1000	

TOTAL PAYOUT (INR)	4000
--------------------	------

Note: Pay-out of deficit volume and excess rainfall cover will be calculated on "either or basis" the cumulative pay-out of respective phases will be compared and whichever is more will be considered.

Premium Description:

SUM INSURED (INR)	6000
PREMIUM (INR)	600
PREMIUM (%)	10

ANNEXURE 4: Spatial basis risk term sheet WEATHER BASED CROP INSURNACE SCHEME

Term-sheet (KHARIF 2011)

STATE- Rajasthan
DISTRICT-Jaipur
TEHSIL- Amber, Bairath, Bassi, Chaksu, Chomu,
Dudu, J. Ramgarh, Kotpuli, Naraina, Paota, Phagi,
Phulera, Sambhar, Sanganer

CROP -Bajra
UNIT: Hectare

Rainfall Volume Cover:

	PHASE I	PHASE II	PHASE III
PERIOD	01 July to 20 July	21 Jul to 20 Aug	21 Aug to 25 Sept
INDEX	Aggregate of rainfall over respective Phases		
STRIKE I(<)	40	70	30
STRIKE II(<)	10	15	5
EXIT	0	0	0
RATE I (INR/mm)	8	10	5
RATE II (INR/mm)	51	80	175
MAXIMUM			
PAYOUT (INR)	750	1750	1000.00

TOTAL PAYOUT (INR) 3500

Rainfall Distribution Cover:

PERIOD	1 July to 31 Aug				
INDEX	Number of days in a spell of consecutive dry days				
STRIKE (=>)	23	28	30	38	43
PAYOUT (INR)	500	750	2000	1250	1500

TOTAL PAYOUT (INR) 1500

Note: A day with rainfall less than 2.5 mm will be considered as a dry day and single event of maximum intensity will be considered for pay-outs under rainfall distribution cover.

Excess Rainfall Cover:

	PHASE I
PERIOD	01 Sep to 30 Sep
INDEX	Maximum of 3 consecutive day's cumulative rainfall in respective phases
STRIKE (>)	100
EXIT	150
RATE (INR/mm)	20
MAXIMUM	1000
PAYOUT (INR)	

TOTAL PAYOUT (INR)	1000
--------------------	------

Note: Pay-out of deficit volume and excess rainfall cover will be calculated on "either or basis" the cumulative pay-out of respective phases will be compared and whichever is more will be considered.

Premium Description:

SUM INSURED (INR)	6000
PREMIUM (INR)	600
PREMIUM (%)	10

ANNEXURE 5: State's Questionnaire

Various Crop Insurance Schemes – States Perspective

Name:

State:

1. Which is a better Scheme? Give rank in order of preference

From State Govt.'s perspective	From Farmer's perspective	
Scheme Rank	Scheme Rank	
NAIS	NAIS	
WBCIS	WBCIS	
MNAIS	MNAIS	

2. In your view, which are the good and bad aspects of these Schemes (list 2 under both good and bad)

Scheme		Good	Scheme		Bad
NAIS	i	ii	NAIS	i	ii
WBCIS	i	ii	WBCIS	i	ii
MNAIS	i	ii	MNAIS	i	ii

Select from the list (can select the same under more than one scheme)

A. Adequacy of payments relative to losses	E. Liked by farmers	I. Transparency of process
B. Time taken to make claim paymentsC. Ease in implementationD. Ease for farmers to	F. Lapse of data gathering (CCEs, weather etc)G. Reliability of data to assess payouts	J. Choice of Insurance companies
understand	H. Correlation of claim amount with yield loss	

3. Priority areas for further improvements (give order of importance by writing the rank against the parameter)

MNAIS:

- a. Timely payouts and faster processing of claims
- b. Improve communication and outreach to farmers
- c. Better tools to help State Govt make informed decisions between different schemes and insurance companies
- d. Product development: more effective insurance products that payout when farmers need it. i. Others
- e. Product communication and ease in buying product by non-loanees
- f. CCE quality issues
- g. Manpower / infrastructure to conduct CCEs
- h. Product design and correlation with farmer losses

WBCIS:

- a. Timely payouts and faster processing of claims
- b. Improve communication and outreach to farmers
- c. Better tools to help State Govt make informed decisions between different schemes and insurance companies
- d. Product development: more effective insurance products that payout when farmers need it.

- e. Product communication and ease in buying product by non-loanees
- f. Weather data quality issues
- g. Product design and correlation with farmer losses
- h. Misuse of product by non-loanees
- Others i.

4. Do you think involvement of multiple insurance companies is a good way to go forward: Yes / No

Could you list three pre-requisites to determine the maximum benefit to farmers out of competition ?

- a b.
- c.
- 5. What do you think the essential features of weather insurance product? Rank the below given options in the order of priority:

a) Product payout to correspond to actual losses (product basis risk)

b) Prefer reasonably large payouts once in 4 to 5 years to regular small payouts

c) Distribute sum insured on 1 or 2 key weather parameters rather than 3 to 4 weather parameters

d) Payout calculations of insurance companies to be certified by an independent entity

- e) Insurance product to be based practical and research inputs
- f) Ensure misuse of subsidy by enrolling only genuine farmers
- g) No claim discount for payout free years
- h) Others.....
- 6) Do you think a combination (hybrid) of weather & yield index insurance products is better than a pure yield or weather index insurance product? Yes / No
- 7) **Can you indicate comfort level on use of private weather data providers** (give a rate between 1 and 5 with 1 corresponding to lowest comfort and 5 corresponding to highest comfort):

8) Do you think the product bench-marking of insurance product is essential to involve multiple insurance companies?

Yes / No

- a. In any case, do you think the State has required expertise to bench-mark the product so that all competing insurance companies be able to give transparent product when can be easily evaluated by the State ? Yes / No
- b. In any case do you think there is a need for creating a **'technical support unit'** within Ministry of Agriculture (GoI) to guide the States and to monitor performance of insurance companies? Yes / No

ANNEXURE 6: Farmer's Questionnaire

Climate Risks and Crop Insurance

Data Zone Code:

Respondent Code:

1. Please rank the following weather perils in decreasing order of importance to your farming.

Weather Perils	Rank (Frequency)	Rank (Severity)	Rank (Overall)	Score/Weight (Out of 100)
Deficient Rainfall				
Excess Rainfall				
Low Temperature				
High Temperature				
High Humidity				
Low Humidity				
High Winds				
Frost				
Hail-stones (hailstorm)				
Others (Specify)				

2. Please rate the influence of weather on the following decisions related to your farming

Decision	Zero	Low	Medium	High	Full
Colortion of Change for Corrige					
Selection of Crops for Sowing					
Time of Sowing					
Crop Cycle/Duration					
Timing and Frequency of Irrigation					
Sprays of Protection Chemicals					
Quality/Variety of Seeds					
Quantity of Fertilizers & Nutrients					
Usage of Modern Farm Equipment (Drip					
Irrigation, Combine Harvester etc.)					

3. Please share the following information about your agricultural system and your views regarding

If YES, weather parameters to	Rainfall	
be covered for crops (Tick All	Temperature	
Applicable Parameters and	Relative Humidity	
Detail Specific Risk)	Wind Speed	
	Other (Specify)	

4. Coping Mechanisms and Role of Weather Forecast and Advisories

What, according to you, can be some practical approaches to manage weather risks?	1. 2.
	3.
Have you heard of weather forecast or advisories?	
(Explain what the weather advisory is in case the farmer doesn't know)	1.
In case timely weather advisories are made available, are you in a position to minimize / prevent crop losses by taking	2.
some preventive / timely action?	
Which type of weather advisories would you prefer: a)	Preference:
those based on historical weather data b) those based on satellite forecast? Why?	Reason:
Which of the following modes of weather advisory do you prefer	Preference:
to receive? : (i) Radio; (ii) DD; (iii) Newsletter; (iv) village head (opinion leader); (v) extension worker	Reason:
What role can Government Agencies play for reducing	
weather risks of farmers?	

- Weather Effect on your Farming Parameter Risk Mitigation and Type of Change No Decrease Increase Degree of Strategies Change Change (H/M/L)* Rainfall No. of Rainy Days Seasonal Rainfall Volume Length of Dry Spells Incidence of Unseasonal Rains No. of High Rainfall Days Others (Specify) Minimum Temperature Temperature Maximum Temperature Average Temperature Extremity Range of 1 Temperature Others (Specify)
- 5. Based on your experiences during the past 5-10 years, please share with us your views about the changes in the following weather parameters.

*(H/M/L) ~ High/Medium/Low

6. Awareness / Experience related to Crop Insurance

Are you aware of any Crop Insurance Scheme? YES / NO

Have you bought any crop insurance policy so far? YES / NO

If NO, what were the main reasons for not buying it?

A) _____

B) _____

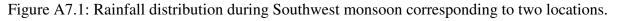
C) _____

If YES, what were the premium and sum assured for the latest policy bought by you?

Premium Rs._____ per Acre Sum Assured: Rs._____ per Acre

Kindly share specific reasons for satisfaction and dissatisfaction with crop insurance policies so far.

Aspect	Reasons of Satisfaction	Reasons of Dissatisfaction
Premium Rates		
Communication & Awareness		
Coverage of Risks		
Availability & Distribution		
Basis for Settlement		
Settlement Process		
Grievance Redress		
Others		


Which of the following assets and facilities do you have at present? Tick the applicable ones

Mobile Phone	Cycle
Motorcycle/Scooter	Four-Wheeler/Tractor
TV	VCD/DVD Player
Cooler	Refrigerator / Fridge
Kisan Credit Card	Thresher

Respondent Information

Name:		_ Father's Name:	
Age: yea	rs Caste:	Category:	
Total Landhol	ling: Acres	Education:	
Village:		Tehsil / Block:	
Contact No:			

ANNEXURE 7: Rainfall, Temperature and Relative Humidity Trends during the Study Period

Kovilpatti

Raipur

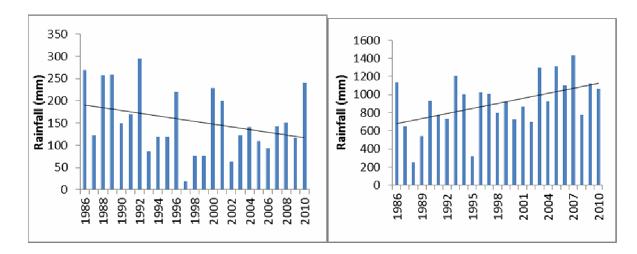
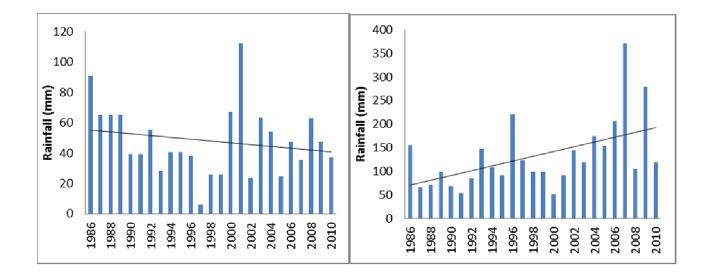



Figure A7.2: Single day maximum rainfall corresponding to two locations.

Kovilpatti

Raipur

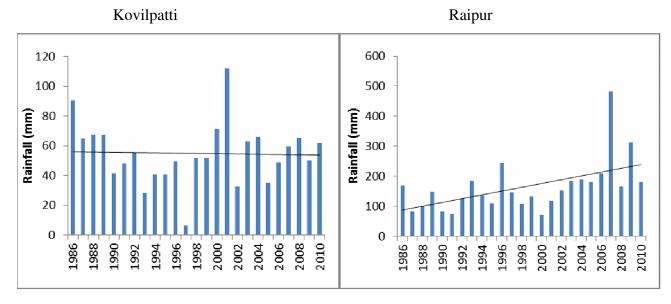
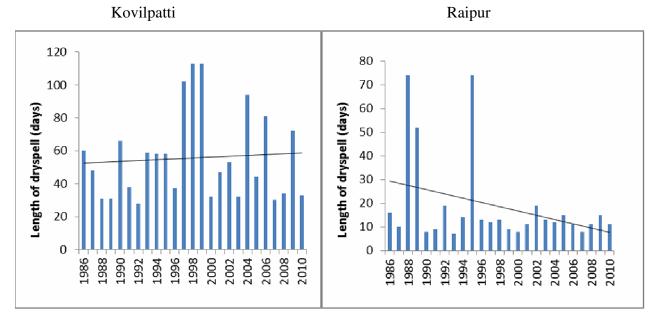



Figure A7.3: Two day maximum rainfall during June to September corresponding to two locations

Figure A7.4: Duration of dry spell during June to September corresponding to two locations

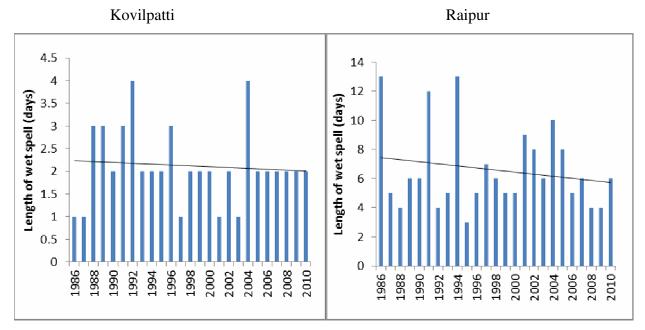
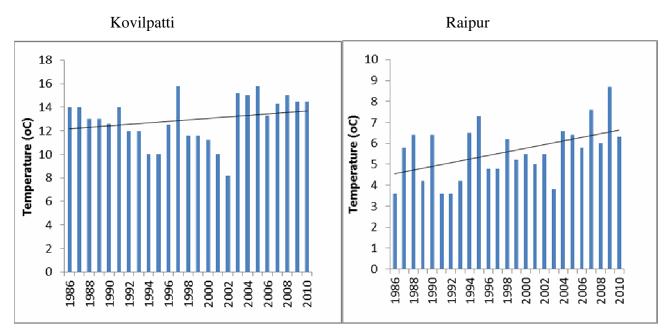
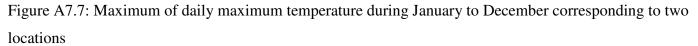




Figure A7.5: Duration of wet spell during June to September corresponding to two locations

Figure A7.6: Minimum of daily minimum temperature during January to December corresponding to two locations

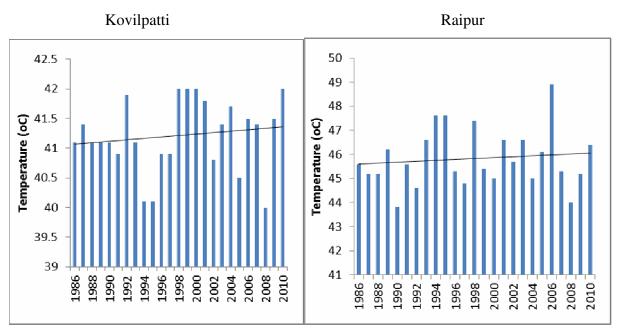
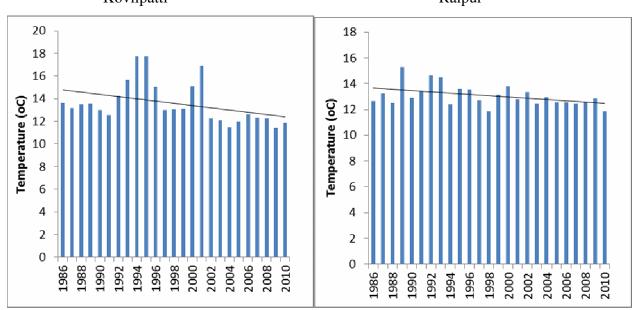



Figure A7.8: Average of daily temperature range during January to December corresponding to two locations Kovilpatti Raipur

ANNEXURE 8: Product Basis Risk Results Tables

 Table A8.1. Average claim payment conditional on total crop loss, expressed as percentage of average claim payment

Element/s of WBCIS cover	Expected claim payment in years with zero area average yield (percentage of average claim payment)		
	Products sold in 2011 Products sold in 2012		
Volume deficit rainfall cover	186	181	
Volume excess rainfall cover	52	197	
Dry spell rainfall cover	188	53	
Volume deficit and dry spell rainfall cover	193	153	
All WBCIS cover	175	164	

Table A8.2. Average claim payment conditional on area average yields equaling 50% of the historicalaverage, expressed as percentage of average claim payment

Element/s of WBCIS cover	Expected claim payment in years with zero area average yiel (percentage of average claim payment)						
	Products sold in 2011	Products sold in 2012					
Volume deficit rainfall cover	141	139					
Volume excess rainfall cover	79	147					
Dry spell rainfall cover	142	77					
Volume deficit and dry spell rainfall cover	144	126					
All WBCIS cover	136	132					

Table A8.3. Average claim payment conditional on area average yields equaling 70% of the historicalaverage, expressed as percentage of average claim payment

Element/s of WBCIS cover	Expected claim payment in years with zero area average yield (% percentage of average claim payment)						
	Products sold in 2011	Products sold in 2012					
Volume deficit rainfall cover	123	123					
Volume excess rainfall cover	89	128					
Dry spell rainfall cover	124	86					
Volume deficit and dry spell	126	115					
rainfall cover							
All WBCIS cover	120	119					

 Table A8.4. Average claim payment conditional on area average yields equaling 90% of the historical average, expressed as percentage of average claim payment

Element/s of WBCIS cover	Expected claim payment in years with zero area average yield (percentage of average claim payment)						
	Products sold in 2011	Products sold in 2012					
Volume deficit rainfall cover	106	108					
Volume excess rainfall cover	99	110					
Dry spell rainfall cover	107	95					
Volume deficit and dry spell rainfall cover	108	105					
All WBCIS cover	105	107					

ANNEXURE 9: Spatial Basis Risk Results Tables

Table A9.1: Distance between Weather Station Locations

Amber	0.00													
Bairath	60.61	0.00												
Bassi	24.79	70.21	0.00											
Chaksu	42.97	96.93	27.06	0.00										
Chomu	25.03	55.62	49.59	66.54	0.00									
Dudu	71.64	127.47	82.98	71.92	72.70	0.00								
J.														
Ramgarh	19.69	43.73	27.83	53.63	32.49	91.27	0.00		-					
Kotputli	86.35	28.01	98.04	124.56	76.03	148.65	71.02	0.00						
Naraina	68.53	120.99	83.32	76.26	65.47	12.58	87.69	140.71	0.00					
Paota	106.53	98.55	87.88	102.08	124.76	170.38	92.29	117.82	171.19	0.00		_		
Phagi	54.51	115.06	56.27	39.03	67.32	34.41	73.10	140.11	41.82	140.40	0.00		_	
Phulera	63.66	113.56	80.65	76.70	57.95	21.38	82.24	132.47	9.34	168.26	45.55	0.00		_
Sambhar	67.47	115.22	85.42	82.35	59.75	25.50	85.60	133.14	12.92	172.79	51.45	5.92	0.00	
Sanganer	20.85	81.32	26.41	28.32	39.98	56.85	38.84	107.20	56.92	114.28	34.27	54.61	59.63	0.00
							J.							
	Amber	Bairath	Bassi	Chaksu	Chomu	Dudu	Ramgarh	Kotputli	Naraina	Paota	Phagi	Phulera	Sambhar	Sanganer

							J.							
	Amber	Bairath	Bassi	Chaksu	Chomu	Dudu	Ramgarh	Kotputli	Naraina	Paota	Phagi	Phulera	Sambhar	Sanganer
Amber	100	78	63	60	84	75	70	74	70	59	75	78	77	87
Bairath	48	100	46	50	52	38	50	63	43	48	58	48	50	52
Bassi	52	61	100	60	60	46	57	53	65	44	58	61	68	57
Chaksu	41	56	50	100	52	50	50	53	43	41	54	57	50	57
Chomu	72	72	63	65	100	67	60	53	61	52	67	61	68	74
Dudu	62	50	46	60	64	100	50	58	65	56	67	74	68	65
J.Ramgarh	72	83	71	75	72	63	100	68	70	56	75	78	77	70
Kotputli	48	67	42	50	40	46	43	100	43	56	54	43	50	52
Naraina	55	56	63	50	56	63	53	53	100	48	71	70	86	57
Paota	55	72	50	55	56	63	50	79	57	100	58	57	59	61
Phagi	62	78	58	65	64	67	60	68	74	52	100	70	77	65
Phulera	62	61	58	65	56	71	60	53	70	48	67	100	77	61
Sambhar	59	61	63	55	60	63	57	58	83	48	71	74	100	57
Sanganer	69	67	54	65	68	63	53	63	57	52	63	61	59	100

Table A9.2: Conditional probability of occurrence of rainy day in year 2004 (%)

	Amber	Bairath	Bassi	Chaksu	Chomu	Dudu	J.Ramgarh	Kotputli	Naraina	Paota	Phagi	Phulera	Sambhar	Sanganer
Amber	100	17	28	20	44	25	30	20	9	14	27	15	6	35
Bairath	22	100	33	27	67	17	23	45	0	21	36	15	13	22
Bassi	28	26	100	40	33	33	33	20	9	18	27	23	6	30
Chaksu	17	17	33	100	22	17	30	25	0	18	18	15	0	22
Chomu	22	26	17	13	100	8	20	10	0	4	9	8	0	9
Dudu	17	9	22	13	11	100	7	10	9	4	27	23	19	22
J.														
Ramgarh	50	30	56	60	67	17	100	30	0	36	27	31	13	35
Kotputli	22	39	22	33	22	17	20	100	0	25	36	8	13	26
Naraina	6	0	6	0	0	8	0	0	100	4	0	15	25	9
Paota	22	26	28	33	11	8	33	35	9	100	0	15	13	17
Phagi	17	17	17	13	11	25	10	20	0	0	100	8	6	30
Phulera	11	9	17	13	11	25	13	5	18	7	9	100	38	17
Sambhar	6	9	6	0	0	25	7	10	36	7	9	46	100	17
Sanganer	44	22	39	33	22	42	27	30	18	14	64	31	25	100

 Table A9.3: Conditional probability of occurrence of rather heavy rainfall in normal years (%)

	Amber	Bairath	Bassi	Chaksu	Chomu	Dudu	J.Ramgarh	Kotputli	Naraina	Paota	Phagi	Phulera	Sambhar	Sanganer
Amber	100	49	48	40	72	63	74	82	57	51	66	62	62	61
Bairath	49	100	58	69	68	75	77	44	59	44	56	85	54	66
Bassi	48	58	100	59	63	37	58	61	35	28	25	50	34	55
Chaksu	40	69	59	100	46	61	67	32	54	39	39	72	58	69
Chomu	72	68	63	46	100	67	69	75	44	78	67	69	63	75
Dudu	63	75	37	61	67	100	69	43	75	60	64	84	54	71
J.														
Ramgarh	74	77	58	67	69	69	100	73	48	55	79	86	68	70
Kotputli	82	44	61	32	75	43	73	100	27	60	70	54	63	58
Naraina	57	59	35	54	44	75	48	27	100	28	42	66	25	50
Paota	51	44	28	39	78	60	55	60	28	100	64	59	74	77
Phagi	66	56	25	39	67	64	79	70	42	64	100	69	63	58
Phulera	62	85	50	72	69	84	86	54	66	59	69	100	55	72
Sambhar	62	54	34	58	63	54	68	63	25	74	63	55	100	77
Sanganer	61	66	55	69	75	71	70	58	50	77	58	72	77	100

Table A9.4: Correlation of 3 day aggregate rainfall in year 2004 (%)

Table A9.5: Standard deviation of absolute differences in payouts

	Ambe	Bairat		Chaks	Chom		J.		Narain			Phuler	Sambha	Sangane
	r	h	Bassi	U	U	Dudu	Ramgarh	Kotputli	а	Paota	Phagi	а	r	r
Amber	0.00	415.78	459.03	681.90	677.13	502.94	305.89	702.61	527.73	917.99	686.54	567.07	648.65	493.67
Bairath	415.78	0.00	435.41	480.80	533.70	368.68	327.52	505.91	272.44	579.69	480.83	349.79	413.55	323.72
Bassi	459.03	435.41	0.00	303.06	255.40	369.78	470.83	336.07	368.94	763.83	310.32	350.86	475.27	341.82
Chaksu	681.90	480.80	303.06	0.00	244.41	370.99	629.30	278.25	418.58	840.45	285.00	385.85	421.90	448.18
Chomu	677.13	533.70	255.40	244.41	0.00	461.11	619.31	313.43	468.48	678.29	94.95	363.84	496.38	435.83
Dudu	502.94	368.68	369.78	370.99	461.11	0.00	414.61	440.38	327.31	805.87	436.30	279.37	171.24	328.33
J.														
Ramgarh	305.89	327.52	470.83	629.30	619.31	414.61	0.00	630.36	417.53	614.84	600.30	406.58	510.59	302.87
Kotputli	702.61	505.91	336.07	278.25	313.43	440.38	630.36	0.00	448.31	840.44	351.40	387.67	485.72	454.87
Naraina	527.73	272.44	368.94	418.58	468.48	327.31	417.53	448.31	0.00	801.61	430.11	343.28	333.21	355.73
Paota	917.99	579.69	763.83	840.45	678.29	805.87	614.84	840.44	801.61	0.00	615.64	515.03	801.35	596.98
Phagi	686.54	480.83	310.32	285.00	94.95	436.30	600.30	351.40	430.11	615.64	0.00	310.77	459.79	365.91
Phulera	567.07	349.79	350.86	385.85	363.84	279.37	406.58	387.67	343.28	515.03	310.77	0.00	287.44	179.28
Sambhar	648.65	413.55	475.27	421.90	496.38	171.24	510.59	485.72	333.21	801.35	459.79	287.44	0.00	355.06
Sanganer	493.67	323.72	341.82	448.18	435.83	328.33	302.87	454.87	355.73	596.98	365.91	179.28	355.06	0.00