McGRAW-HILL SERIES IN GEOGRAPHY
 V. C. Finch, Consulting Editor

PHYSICAL ELEMENTS OF GEOGRAPHY

McGRAW-HILL SERIES IN GEOGRAPHY

ono.

Bennett-SOIL CONSERVATION
Finch and Trewartha-ELEMENTS OF GEOGRAPHY: Physical and Cultural

Finch and Trewartha-P HYSICAL ELEMENTS OF GEOGRAPHY (A republication of Part 1 of the above)

Platt-LATIN AMERICA: Countrysides and United Regions

Raisz-GENERAL CARTOGRAPHY
Trewartha-AN INTRODUCTION TO WEATHER AND CLIMATE

Whitbeck and Finch-ECONOMIC GEOGRAPHY

Whitbeck and Williams-ECONOMIC GEOGRAPHYOFSOUTH AMERICA

ELEMENTS

 OF GEOGRAPHY

 OF GEOGRAPHY}

Physical and Cultural

By
VERNOR C. FINCH
Profrssor of Grography, University of Wisconsin
and
(iLENN T. TREWARTHA
I'rofessor of Geography, University of Wisconsin

mlements of geography physical and cultural
Copfright, 1936, 1942, by
Vernor C. Finch and Glenn T. Trewartha
PRINTED IN THE UNITED STATES OF AMERICA
All rights reserved. This book, or parts thereof, may not be reproduced in any form without permission of the publishers.

PREFACE

The second edition of this book, like the first, is designed to supply textual material covering the elements of geography in a form particularly suited to classroom discussion in beginning courses in college geography. The special merit of the treatment of the subject employed in this text is believed to lie in the choice of the material that has been included in it, in the structure of its organization, and in the manner of its presentation.

The selection of material for inclusion has been made with a single objective: to describe and depict the major elements of geography and to enable the student to-ácquire a background for interpreting the significance of their areal association. The material included is confined to the development of what may be considered a check list of the elements of natural earth and the elements of material culture. In this an attempt has been made to lay a solid foundation for studies in cultural geography by description and analysis of the habitat potentialities of the natural features of the earth and its conspicuous forms of human culture. The material is presented in a manner that the authors believe furnishes a basis not only for understanding on the part of the student but also for a full and rich classroom discussion of the subjects included.
.. The structure of the book's organization is considered by the authors an essential part of the presentatics includes (a) two opening chapters which provide a degree of orientation in the field of geography, together with certain basic facts and geographical tools, and (b) two principal parts. The latter treat, respectively, of (i) the elements of natural earth and (ii) the elements of material culture.

Part I of the book receives the most extended treatment, and it has been divided into five sections of several chapters each. This
organization has the merit of enabling the student to distinguish clearly between the elements of weather and climate and the types of climate into which they are combined, and of distinguishing earth processes from the classes of earth features produced by them. The emphasis has been placed deliberately upon the nature or form of the elements of geography and upon their world distribution rather than upon the processes of their origin. Not that the rational interpretation of features through the manner of their origin is neglected. It is employed constantly, but in part the discussion of process is segregated, and always it is made secondary in importance to the essential physical characteristics of the features produced. In this respect the treatment of landforms, for example, is to be distinguished sharply from that which is customary in physiography or physical geology.

Part II of the book alone deals with the features of material culture essential to geography. Omitting that part, the book functions as a basic text for a course in natural science. Just as Part I is an analytical treatment of natural features, so Part II is a similar, but briefer, analysis of the types of features resulting from human beings occupying regions. This manner of treatment of the subject of material culture is new to American textbooks of geography. Part III of the earlier edition, which concerned the associations of physical features characteristic of each of the great geographical realms of the earth, has been omitted as such, but certain of its features have been incorporated with Parts I and II.

The revision of the Elements of Geography from its original form has been suggested from three directions; the rapid advancement of knowledge in some of the fields upon which it touches, the practical test of five years of classroom use, and the kindly criticism of professional colleagues. Section A of Part I, which treats of the elements of weather and climate, has required the most thorough revision. This has been made necessary by recent and extensive changes in physical climatology, particularly in those aspects of the subject dealing with the nature and behavior of air masses; the types and significance of storms, etc. In the revision of both Sections A and B, the latter dealing with climatic types and their distribution, every effort has been made to 'abbreviate and simplify the numerous details in order that the essentials shall be emphasized and that the whole presentation may more readily be grasped by the beginning student.

Sections C and D of Part I, which deal, respectively, with the origin of landforms and with the characteristics and classification of
landforms themselves, have seemed to require less revision. The changes that were made have, it is believed, resulted in the clarification of obscure points, the avoidance of some controversial matters, and the omission of certain details on which there is recognized difference of scientific opinion beyond the concern of an introductory course. Similar changes have been made in Section E, which deals with earth resources, particularly in the chapters which are concerned with the nature and classification of soils and the distribution of the principal soil groups of the world.

Those who are familiar with the structure of the earlier edition of the book will find the most extensive changes of all in Part II, which surveys the cultural elements of geography. As before, this discussion is concerned with the nature and classification of the significant clements of human culture manifest in the geographical scene. However, the treatment of them has been much expanded, their inherent qualities are analyzed, the bases of their classification are indicated, and the significant features of their world patterns are introduced. Many details of cultural form and feature have been added. The purpose of these, however, is not to present a brief human geography of the world but to give added significance to the bases of classification upon which the facts of world geography may be brought into rational order in other courses which may follow this introduction to the field. The present discussion is an attempt at a scheme of analysis and classification of cultural elements comparable with and parallel to that applied to the physical elements in Part I of the book. Admittedly, the development of theory and the body of knowledge adaptable to this procedure are less complete than for the physical elements, which are the special fields of several branches of science. It is not remarkable therefore that Part II of the book is not equal in extent with Part I.

It may be asked why the authors have so restricted their discussion of the cultural elements of geography and why they have not dealt at some length with the social implications of the various elements of physical earth. In some geography books the description of each of the physical features is followed by a summary of the human activities supposedly related to that feature. For example, the study of the physical characteristics of mountains will be supplemented by a description of the activities "dependent on or centered about" mountains. Such a treatment bespeaks a belief that geographical science is primarily concerned with showing how and to what degree physical earth influences human affairs. To such a philosophy of their subject the present authors cannot subscribe.

It may be asked also why the authors have not enlarged upon numerous themes suggested by the discussions of the cultural elements. Why, for example, have they not considered the world patterns of wheat production or forest exploitation or of any other of the many topics which are a part of the body of systematic economic geography? It may only be stated that this was not their objective. Neither was it their purpose to explore the complex of areal associations that comprise the field of regional study in its full geographical sense. Rather, their purpose has been, as was noted above, to show that the elements of geography, physical and cultural, are capable of analysis and classification and to show something of the pattern of distribution of each of these elements over the surface of the earth. Only after these functions have been performed does the student begin to distinguish the elements as such and to appreciate the significance of their areal associations. The details of these complex associations, whether treated from the systematic or the regional viewpoint, are, however, left to other authors and other courses of study.

Several grades of distinction in type have been employed in the part, section, chapter, and center headings of the book for the purpose of keeping before the student the nature of the structural outline within which he works. Also, the component articles of the chapters have been numbered serially through the book. It is believed that this feature will be of use in encouraging forward and backward reference by the student and in making easy the definition of class assignments by the instructor. It will be noted also that many of the numbered articles are further distinguished by being printed in slightly smaller type and shorter lines. Thise articles are selected as having a secondary or elaborative place in the discussion, and they are, by their type and length of line, indicated for omission by students in briefer courses where there is not time to consider all the topics presented in the book.

The authors have striven for readability as well as explicitness in the style of the text. They have undertaken also, sometimes at the expense of brevity, to place special emphasis upon certain phases of the discussion. The interrelated nature of the subjects treated and the structure of the presentation both facilitate emphasis. The same association of facts may be, and often is, approached from two or more directions in as many different connections. This has made emphasis possible by a judicious use of repetition or by restatement to suit the new occasion.

The style of presentation seeks to avoid being merely a compendium of facts. The elements of geography are ordered, and the student is
led to distinguish, by comparison and contrast, similar but not identical elements. Since this text attempts to lay a good foundation for the understanding of the geographical forms', patterns, and associations of world regions, many statements of fact and association concerning the features of specific world regions or localities have been included. To study these statements most effectively the student should make frequent reference to an atlas. Instructors are urged to see to it that students have facilities for that kind of study.

The text illustrations have been drawn or selected with the special purpose of centering attention upon significant features under discussion and of making possible a reduction in the amount of descriptive text. To that end they are placed in as close proximity to the related text as possible, although, in order to save space, some illustrations are made to serve in more than one connection. The plates that accompany the book have been prepared in blank. They are intended for student drawing and coloring as a manual aid to the appreciation of significant facts and associations in the distributions of geographical phenomena. Duplicate sets of these plates may be obtained from the publisher. Relatively few rainfall and temperature data have been presented in graphic form in the text, since it is believed that the student profits much more by the construction of these graphs for himself. A plate containing a number of coordinate paper blocks provides facilities for doing this. In addition to the classified climatic data provided for the several types of climate within the text proper, data for other stations are available in Appendix A.

Through teaching experience it has been found that in most introductory courses there is scant time for the development of the subject matter relating to forms of map projection, however much the instructor would like to present it. That has therefore been omitted from the body of the text and transferred to Appendix B, where it still is available for reference or for those teachers having time or inclination to use it. The balance of the former Chapter III, dealing with the general features of maps, has been incorporated with Chapter II. ; Appendix D has been added to deal with the American systems of: land survey.

Reference lists are appended to those chapters, sections, or parts of the book that treat of distinct fields without conspicuous overlap in source material. These have been revised to include significant publications of recent date. The lists are not intended to be merelythe references consulted by the authors, although many of those are included, and their aid is acknowledged with gratitude. The purpose of these lists is to suggest some of the more recent and authoritative
general works in each field. In these the instructor or the gifted student may find supplementary reading with which to broaden his understanding of the subjects considered.

The indebtedness of the authors for valuable suggestions, illustrations, and other kinds of aid extends in many directions and to numerous individuals. This cordial cooperation is much appreciated.

Vernor C. Finch, Glenn T. Trewartha.

University of Wisconsin,
May, 1942.

GONTENTS

Page
Preface. vChapter
I. The Field of Geography: Its Content, Method, and Point of View 1
II. The Earth: Its Shape, Planetary Relations, and Representation on Maps. 8
PART I
THE PHYSICAL ELEMENTS OF GEOGRAPHY
SECTION A
THE ELEMENTS OF WEATHER AND CLIMATE
III. Air Temperature (Including Insolation) 33
IV. Atmospheric Pressure and Winds. 58
V. Atmospheric Moisture and Precipitation 93
VI. Storms and Their Associated Weather Types 111
SECTION B
CLIMATIC TYPES AND THEIR DISTRIBUTION
ViI. The Tropical Rainy Climates 160
VIII. The Dry Climates 177
IX. The Humid Mesothermal Climates ‘ 194
X. The Humid Microthermal Climates. 218
XI. Polar Climates and Highland Climates. 239
SECTION C
PROCESSES CONCERNED WITH THE ORIGIN OF LANDFORMS
XII. Earth Materials and the Tectonic Processes. 255
LIII. The Agents and Processes of Gradation 275
ChapterSECTION DLANDFORMS
XIV. Plains of Stream Degradation 303
XV. Plains of Stream Aggradation 325
XVI. Glaclated Plains. 348
XVII. Plains in Dry Chimates. 374
XVIII. The Shore Features of Plaing 387
XIX. Plateaus. 402
XX. Hil Linds. 415
'XXI. Mountains. 431
SECTION E
EARTH RESOURCES
XXII. Water Resources of the Land 465
XXIII. The Biotic Resource: Original Vegetation Cover and Associated Animal Life 483
XXIV. Solls: Their Nature and Classification. 52σ
XXV. The Principal Soll Groups of tre World 535
XXVI. The Mineral Fuels 554
XXVII. Ores and Other Economic Minerals. 577
PART II
THE CULTURAL ELEMENTS OF GEOGRAPHY:
features resulting from man's use of the land
Introduction 601
XXVIII. Popdlation. 60t
XXIX - ©ettlements and Their Houses 630
XXX. Agriculture and Its Assoclated Featurea 667
XXXI. Mangeacture and Its Associated Featureb 701
XXXII. Communications, Transportation, and Trade 734
Retrospect and Conclusion 768
APPENDIX
A. Supplementary Climatic Data for Selected Stations 779
B. Map Projections. 781
C. American Systems of Land Survey. 791
D. A Selected List of United States Topographic Quadrangles. 796
E. Princtipal Subdivisions of Earth History 800
Index 801

ELEMENTS OF GEOGRAPHY. Physical and Cultural

APPENDIĊES

Appendix A

Supplementary Climatic Data for Selected Stations

(T., temperature in degrees Fabrenheit; Rf., rainfall in inches)

	Jan.	Feb.	Mar.	A pr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year	Ran
1. $\mathrm{T}_{\text {R }}$.	${ }_{7.9}^{79}$	79	$\begin{array}{\|c} 80 \\ 7.9 \end{array}$	${ }^{81} \mathbf{8 . 0}$	$\begin{array}{\|l\|} \hline 81 \\ 11.1 \end{array}$	$\begin{aligned} & 80 \\ & 11.7 \\ & \end{aligned}$	${ }_{91}^{81}$	${ }_{8.58}^{88}$	${ }_{3.1}^{\varepsilon_{3.1}}$	$\begin{gathered} 83 \\ 2.0 \end{gathered}$	${ }^{89} 6$	$\begin{aligned} & 81 \\ & 11.1 \end{aligned}$	$\begin{aligned} & 81 \\ & 88.7 \end{aligned}$	4.0
2. $\mathrm{T}_{\mathrm{Rf} \text {. }}$	${ }_{30}^{8.3}$	${ }^{80} 1.9$	$\begin{array}{\|l\|} 82 \\ 4.3 \end{array}$	$\begin{gathered} 83 \\ 9.7 \end{gathered}$	$\begin{array}{l\|l} 83 \\ 10.9 \end{array}$	$\stackrel{82}{7.3}$	$\begin{gathered} 81 \\ 4.4 \end{gathered}$	${ }_{8.2}^{81}$	${ }_{4.3}^{81}$	${ }_{13.4}^{81}$	$\begin{aligned} & 89 \\ & 11.8 \end{aligned}$	${ }_{50}^{8.1}$	$\begin{aligned} & 81 \\ & 80.1 \end{aligned}$	8.2
3. \mathbf{T}.	$\mathrm{BO}_{\mathbf{3 . 9}}$	${ }^{79}{ }_{1.7}$	$\begin{array}{\|c} 80 \\ 1.7 \end{array}$	$\begin{array}{\|c\|c} 80 \\ 4.2 \end{array}$	$\begin{array}{\|l\|l\|} 89 \\ 12.0 \end{array}$	$\begin{aligned} & 80 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 80 \\ & 13.2 \end{aligned}$	$\begin{aligned} & 79 \\ & 14.9 \end{aligned}$	$\begin{aligned} & 80 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 79 \\ & 14.8 \end{aligned}$	${ }_{〔 1.5}^{73}$	$\begin{aligned} & 80 \\ & 11.9 \end{aligned}$	$\begin{gathered} 80 \\ 199.4 \end{gathered}$	1.1
$\text { 4. } \underset{\text { Rf. }}{\text { T. }}$	${ }_{\mathbf{7 9}} \mathbf{0 . 9}$	81 0.1 8	${ }_{0.3}^{84}$	${ }_{1.7}^{86}$	$\begin{array}{\|c\|} 84 . \\ 8.3 \end{array}$	$\begin{aligned} & 82 \\ & 12.6 \end{aligned}$	$\begin{aligned} & 8 q \\ & 11.1 \end{aligned}$	$\begin{aligned} & 88 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 82 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 81 \\ & 11.1 \end{aligned}$	${ }^{80} \mathbf{s . 7}^{6}$	${ }_{\mathbf{7 . 1}}^{79}$	${ }_{77.2}^{88}$	7.0
$\text { 5. } \underset{\mathrm{Rf} .}{\mathrm{T}}$	$\begin{array}{\|l} 84 \\ 15.3 \end{array}$	$\begin{aligned} & 83 \\ & 13.0 \end{aligned}$	${ }_{8 .}^{8.7}$	84	$\begin{array}{\|c} 82 \\ 0.7 \end{array}$	${ }_{0.2}^{79}$	${ }_{0.1}^{77}$	${ }^{80} \mathbf{0 . 1}$	${ }_{0.5}^{88}$	${ }_{2.1}^{86}$	${ }_{5.2}^{88}$	$\begin{aligned} & 85 \\ & 10.8 \end{aligned}$	83 61.7	8.5
6. $\mathrm{T}_{\mathrm{R} i}$	${ }_{0.1}^{70}$	${ }_{0}^{75}$	${ }_{50.2}^{83}$	${ }_{1.1}^{90}$	${ }_{5.8}^{89}$	${ }_{5.5}^{87}$	${ }_{87}^{87}$	$\begin{array}{r} 86 \\ 4.0 \end{array}$	${ }^{85}$	${ }^{89} 4.7$	${ }^{76}{ }_{1.6}$	${ }_{0.4}^{71}$	$\begin{aligned} & 89 \\ & \mathbf{3 5 . 1} \end{aligned}$	20
$\text { 7. } \underset{\text { Rf. }}{\text { T. }}$	${ }_{0.6}^{60}$	${ }_{1.9}^{68}$		${ }_{64.4}^{64}$	${ }_{3.0}^{66}$	${ }_{5.7}^{64}$	$\begin{aligned} & 62 \\ & 11.0 \\ & \end{aligned}$	$\begin{aligned} & 61 \\ & 1.1 \end{aligned}$	${ }^{61} 7.6$	${ }_{0}^{69}$	${ }_{0}^{59}$	${ }^{59} 0.8$	68 49.6	7
8. T .	49	54	${ }_{1}^{61.3}$	${ }_{71}^{7.9}$	$\begin{array}{\|c} 81 \\ { }_{0.9} \end{array}$	${ }^{90} 0$	${ }_{0.0}^{95}$	${ }^{94}{ }_{0.0}$	${ }_{0.0}^{88}$	${ }_{0.1}^{80}$	${ }_{0.8}^{63}$	${ }^{53} 1.2$	${ }_{7.0}^{79}$	46
$\text { 9. } \underset{R}{\mathbf{R}} \text {. }$	$\begin{array}{\|c} \mathbf{6 0} \\ 0.0 \end{array}$	${ }_{0.1}^{60}$	$\begin{gathered} 59 \\ 0.2 \end{gathered}$	${ }^{58}$	57	${ }_{0.3}^{55}$	${ }_{0.2}^{55}$	${ }^{54} 0.4$	${ }_{0.3}^{55}$	${ }_{0.0}^{58}$	$5_{0.2}^{59}$	${ }_{0.1}^{60}$	$\stackrel{58}{9 .}$	6
$\text { 10. } \mathrm{T} \cdot \mathrm{Rf} .$	${ }^{58} 0.5$	${ }_{6}^{62}$	${ }_{08}^{0.7}$	${ }_{7} 7.1$	${ }^{79} 1.2$	$\stackrel{82}{8.3}$	$\begin{gathered} 82 \\ 9.1 \end{gathered}$	$\begin{aligned} & 83 \\ & 2.0 \end{aligned}$	${ }^{78} 4.4$	${ }^{71} 8$	${ }^{64} 1.3$	${ }^{57} 1.0$	71 19.5	25.2
$\text { 11. } \mathrm{T} \text { Rt. }$	${ }_{0}^{19}$	$\begin{aligned} & 23 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 33 \\ & 0.4 \end{aligned}$	${ }_{0.7}^{48}$	$\begin{gathered} 64 \\ 0.7 \end{gathered}$	$\begin{array}{\|c} 73 \\ 0.8 \end{array}$	$\begin{gathered} 76 \\ \hline 0.5 \end{gathered}$	${ }^{74}{ }_{0.5}$	$\begin{gathered} 63 \\ 0.5 \end{gathered}$	$5_{0.5}^{50}$	${ }_{0.5}^{36}$	$\stackrel{27}{0.6}$	${ }_{6.6}^{49}$	56.9
12. T. Rf.	${ }_{0.7}^{7 .}$	$7_{0.6}^{74}$	${ }^{70}{ }_{1.0}$	${ }^{64.7}$	${ }_{9.8}^{58}$	${ }^{54}{ }_{3.1}$	$\stackrel{52}{9.6}$	${ }_{4.5}^{54}$	${ }_{9.0}^{57}$	${ }_{1.7}^{68}$	${ }^{67}{ }_{1.2}$	${ }_{1.0}^{7}$	${ }_{20.9}^{63}$	29.4
$\text { 13. } \mathrm{T} \text { Rf. }$	${ }_{0.7}^{70}$	${ }_{0.6}^{70}$	$\left\lvert\, \begin{gathered} 68 \\ 0.9 \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 63 \\ 1.9 \end{array}$	${ }_{59}^{59}$	$\begin{array}{\|c\|} \hline 56 \\ 4.5 \end{array}$	${ }^{55} \mathbf{8 5 . 6}$	${ }^{56.4}$	${ }_{9.3}^{58}$	${ }^{61} 1.6$	${ }_{1.1}^{64}$	${ }^{68}$	${ }_{25.2}^{68}$	15.0
$\text { 14. T. } \underset{\text { R } \text {. }}{ }$	49	${ }_{9.6}^{50}$	${ }_{3.3}^{53}$	${ }_{2.0}^{56}$	${ }^{6} 1.7$	${ }_{0.7}^{68}$	${ }_{63}^{73}$	${ }_{\mathbf{0 . 1}}^{75}$	${ }_{1.1}^{70}$	${ }^{64.4}$	${ }^{57}{ }_{4.1}$	$\begin{gathered} 59 \\ \mathbf{3 . 9} \end{gathered}$	${ }_{87.0}^{61}$	25.4
15. T. Ri.	${ }^{74 .}$	${ }_{7}^{78.7}$	$\underset{4.4}{69}$	${ }_{6.5}^{61}$	${ }_{9}^{55} 9$	$\stackrel{50}{2.5}$	${ }_{9.9}^{49}$	$\begin{gathered} 51 \\ 2.5 \end{gathered}$	${ }^{55} \mathbf{8 . 0}$	$\begin{gathered} 60 \\ { }_{3.5} \end{gathered}$	${ }_{3.1}^{66}$	${ }^{71}{ }^{3.9}$	${ }_{37.3} 1$	94.7
$\text { 18. } \mathrm{T} \text {. }$	$\begin{array}{\|c\|c} 53 \\ 1.4 \end{array}$	$\begin{gathered} 55 \\ 1.6 \end{gathered}$	${ }_{1.8}^{63}$	$\begin{gathered} 69 \\ 9.7 \end{gathered}$	${ }_{3,9}^{75}$	$\stackrel{81}{8.7}$	$\underset{2.5}{83}$	$\begin{array}{\|l\|l} 88 \\ 2.6 \end{array}$	79	${ }_{9.0}^{70}$	${ }_{9.9}^{61}$	$\stackrel{54.8}{1.8}$	${ }_{28.0}^{69}$	30
17. T. Rf .	${ }^{77} 4.6$	${ }_{7}^{77}$	${ }^{70} 4.6$	$\begin{array}{\|c} 78 \\ 8.0 \end{array}$	${ }_{9.0}^{68}$	$\stackrel{65}{0.7}^{8}$	${ }_{0.8}^{65}$	$\underset{9.0}{66}$	${ }_{3.7}^{68}$	${ }_{40}^{70}$	$\underset{\text { 4.4 }}{\mathbf{7 3}}$	${ }_{4.5}^{75}$	$\begin{aligned} & 71 \\ & 39.7 \end{aligned}$	12
18.	$\begin{gathered} 34.5 \\ \hline \end{gathered}$	$34 .$	${ }_{5.9}^{35}$	$\begin{gathered} 42 \\ 4.1 \end{gathered}$	${ }_{4.5}^{49}$	$\mathbf{5 5}_{\mathbf{8 . 3}}$	$\begin{array}{\|c} 53 \\ 5.8 \end{array}$	$\begin{array}{\|c} \hline 53 \\ 7.5 \end{array}$	${ }_{8.7}^{53}$	${ }_{8.9}^{45}$	${ }_{8.9}^{39}$	${ }_{8.5}^{\mathbf{8 5}}$	$\begin{aligned} & 45 \\ & 81.0 \end{aligned}$	24.5
$\text { 19. } \mathrm{T} .$	$\begin{gathered} 62 \\ 9.4 \end{gathered}$	$\begin{gathered} 60 \\ 3.0 \end{gathered}$	$\begin{array}{\|c\|} 58 \\ 5.5 \end{array}$	$\stackrel{53}{5.4}$	$\begin{aligned} & 50 \\ & 15.2 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 48 \\ 17.0 \end{array}$	$\begin{array}{\|l\|l\|} \hline 46 \\ 18.1 \end{array}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \hline 43.2 \end{array}$	$\begin{array}{\|l\|l} 48_{8}^{\prime} \end{array}$	52	${ }_{5.0}^{55}$	${ }^{59}$	$\begin{gathered} 53 \\ 104.8 \end{gathered}$	16.4
20. T. $\mathbf{R f}$.	$\begin{array}{\|c} 39 \\ 4.5 \end{array}$	${ }_{30}{ }_{3.5}$	$\stackrel{48}{2.5}$	$\begin{gathered} 48 \\ 1.7 \end{gathered}$	${ }^{53.5}$	${ }_{0.9}^{57}$	$\begin{array}{\|c} 60 \\ 0.4 \end{array}$	$\begin{gathered} 60 \\ 0.6 \end{gathered}$	$\stackrel{56}{9.0}$	$\begin{gathered} 50 \\ 9.5 \\ \hline \end{gathered}$	${ }_{8.5}^{45}$	$\begin{gathered} 49 \\ 5.9 \end{gathered}$	$\stackrel{49}{39.5}$	91.1

Supplementary Climatic Data for Selected Stations.-

 (Continued)(T., temperature in degrees Fahrenheit; Rf., rainfall in inches)

	Jan.	Feb.	Mar.	Apr.	May	Junc	July	Aug.	Sept.	Oct.	Nov.	Dec.	Year	Rang*
$\text { 21. } \mathrm{T} .$	22	25.	87 1.5	$\stackrel{51}{2.8}$	$\stackrel{63}{4.1}$	$\begin{gathered} 78 \\ 4.7 \end{gathered}$	$\begin{array}{r} 77 \\ 4.0 \end{array}$	${ }^{75} \mathbf{3 . 2}$	${ }^{66} \mathbf{3 . 0}$	$\stackrel{55}{8.3}$	$\begin{gathered} 39 \\ 1.1 \end{gathered}$	${ }^{27}$	$\begin{aligned} & 51 \\ & \mathbf{8 9 . 0} \end{aligned}$	55
29. T.	32 9.4	38 28	46 8.7	${ }_{5}^{55}$	${ }_{63}^{63.1}$	${ }^{70} 3.3$	${ }^{75} 8$	${ }_{3.2}^{78}$	${ }_{36}^{66}$	${ }_{56}^{4.7}$	44.3	${ }_{36}^{36}$	$\begin{aligned} & 55 \\ & \mathbf{9 9 . 8} \end{aligned}$	42
$\text { 23. } \mathbf{T} \text {. }$	8 0.2	14 0.3	30 0.7	$\stackrel{47}{1.1}^{1}$	${ }^{65} \mathbf{q . 2}$	$\begin{gathered} 71 \\ 3.4 \end{gathered}$	${ }^{77} 5.8$	$\underset{5.3}{75}$	${ }^{61} \mathbf{8 . 9}$	$\begin{gathered} 48 \\ 1.5 \end{gathered}$	29.9	$\begin{aligned} & 14 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 44 \\ & 24.9 \end{aligned}$	68.4
$\text { 24. } \underset{\mathrm{Rf} .}{\mathrm{T}}$	- 4.9	$\begin{aligned} & 0 . \\ & 0.7 \end{aligned}$	${ }^{15}$	$\begin{gathered} 1.4 \\ \hline \end{gathered}$	$\begin{gathered} 52 \\ 2.0 \end{gathered}$	${ }^{62}$	${ }^{66} 3.1$	${ }_{64}^{6.8}$	${ }_{54}^{5.9}$	41.4	21.1	${ }_{0}^{6} 0$	$\begin{aligned} & \mathbf{3 5} \\ & \mathbf{2 0 . 2} \end{aligned}$	70
$\text { 25. } \mathbf{T}_{\mathbf{R}}$	24.	23.1	27	$\begin{gathered} 28 \\ 1.2 \end{gathered}$	$\begin{gathered} 49 \\ 1.7 \end{gathered}$	$\stackrel{57}{2.0}$	$\begin{aligned} & 62 \\ & .2 .7 \end{aligned}$	$\stackrel{59}{9.8}$	$\begin{gathered} 59 \\ 9.0 \end{gathered}$	$\stackrel{41}{8,1}$	$\begin{gathered} 3 z \\ 1.7 \end{gathered}$	25	$\begin{aligned} & 41 \\ & 81.4 \end{aligned}$	39
$\text { 26. } \underset{\mathrm{Rf}}{\mathrm{~T} .}$	-3 1.1	2	$\begin{aligned} & 13 \\ & 0.8 \end{aligned}$	$\begin{gathered} 30 \\ 0.7 \end{gathered}$	$\begin{gathered} 47 \\ 1.5 \end{gathered}$	$\stackrel{59}{2.7}$	${ }^{64} 3.0$	$\begin{aligned} & 59 \\ & 8.3 \end{aligned}$	$\begin{gathered} 43 \\ 1.4 \end{gathered}$	$\begin{gathered} 2.4 \end{gathered}$	13	1.9	31 20.0	66.9
$\text { 27. } \underset{\mathrm{Rf} .}{\text { T. }}$	${ }^{24.0}$	24.7	39 5.1	${ }_{40}^{4.6}$	49 3.3	${ }_{58} 8.8$	${ }_{65}^{6.7}$	${ }_{4}^{65}$	${ }_{49} 4.1$	43.5	43.9	29.5	$\stackrel{44}{57.9}$	44.7
$\text { 28. } \underset{\mathbf{R f} .}{\mathbf{T} .}$	8 0.9	9 0.7	18 0.8	$\begin{gathered} 30 \\ 0.7 \end{gathered}$	$\begin{gathered} 41 \\ 1.2 \end{gathered}$	$\stackrel{53}{1.8}$	${ }^{60} 9.4$	$\begin{gathered} 56 \\ 2.4 \end{gathered}$	$\begin{gathered} 43 \\ 9.2 \end{gathered}$	$\stackrel{34}{1.6}$	22	12	${ }_{16.8}$	52
$\text { z9. } \underset{\mathrm{Rf} .}{ }$	$\begin{gathered} -23 \\ 0.8 \end{gathered}$	$\begin{gathered} -11 \\ 0.8 \end{gathered}$	4.5	$\stackrel{29}{0.7}$	$\begin{gathered} 46 \\ 0.9 \end{gathered}$	${ }^{57}{ }_{1.3}$	${ }_{59} \mathbf{1 . 6}$	${ }_{1.4}^{5.6}$	${ }_{49} 1.7$	25.3	$\stackrel{1}{1.3}$	$\begin{gathered} -13 \\ 1.1 \end{gathered}$	$\begin{aligned} & \stackrel{23}{13.6} \end{aligned}$	82.4
30. T.	4.4	-9 1.3	$\begin{gathered} -9 \\ 1.1 \end{gathered}$	$\begin{aligned} & 8 \\ & 0.9 \end{aligned}$	$\begin{gathered} 23 \\ 0.5 \end{gathered}$	$\begin{gathered} 35 \\ 0.4 \end{gathered}$	$\begin{gathered} 48 \\ 0.6 \end{gathered}$	$\begin{gathered} 40 \\ 0.9 \end{gathered}$	$\begin{gathered} 32 \\ 1.0 \end{gathered}$	$\stackrel{29}{1.2}$	$\stackrel{11}{1.0}$	$\stackrel{6}{6}_{1.5}$	18	44

Stations for which data are given above:

1. Georgetown, British Guiana
2. San Antonio, Tex.
3. Colombo, Ceylon
4. Colón, Canal Zone
5. Saigon, French Indochina
6. Darwin, Australia
7. Mandalay, Burma
8. Addis Ababa, Ethiopia
9. Baghdad, Iraq
10. Port Nolloth, Union of South Africa
11. Monterrey, Mex.
12. Astrakhan, U.S.S.R.
13. Adelaide, Australia
14. Capetown, Union of South Africa
15. Durban, South Africa
16. Bergen, Norway
17. Valdivia, Chile
18. Victoria, Can.
19. Omaha, Neb.
20. Milano (Milan), Italy
21. Mukden, Manchuria
22. Winnipeg, Can.
23. Uppsala, Sweden
24. Tomsk, U.S.S.R. (Siberia)
25. Halifax, Can.
26. Arkhangelsk (Archangel), U.S.S.R.
27. Algers (Algiers), Algeria
28. Dawson, Can.
29. Spitsbergen

Appendix B

Map Projections

The Nature of Map Projections. The term map projection commonly is used in a rather broad sense, since many projections, so called, are more truly mathematical devices, and only a few are true perspective projections. The nature of the latter may be understood readily if one imagines a hemispherical basket of wire so constructed that the wires represent the parallels and meridians of the earth. The shadow of such a grid cast upon a plane touching it at a single point (tangent plane) is called a perspective projection because the observer appears to be looking through the grid. The spacing of the shadow lines obviously may be changed, and the resulting projection given different properties, by shifting the position of the light that casts the shadow to different distances from the point at which the plane is tangent to the wire grid. In certain projections the shadow is supposed to be cast not upon a plane but upon a tangent cone or a tangent cylinder, either of which is then developed into a plane. Many other "projections," and often more useful than those of the perspective class, have been devised by different scholars through mathematical computations, mainly within the last two centuries.

Some map projections are constructed so that they represent the shapes of earth features properly as compared to their shapes on a globe. Others represent areas so truly that all parts of the map are in proper areal relation to the globe. It is impossible for any projection that includes a considerable area to accomplish both these objectives; some accomplish neither. A projection on which the shape of any small area of the earth is truly rendered is called a conformal projection. One on which the ratio of areas is constant ${ }^{1}$ between the globe and any part of the map is called an equal-area, or equivalent, projection. There are certain equal-area projections which, in achieving equality of area, produce gross distortions of the shapes of parts of the areas they show. All do so to some degree. Conversely, conformal projections in securing proper shapes do violence to the comparability of areas within the map. The name
${ }^{1}$ Areas are in constant ratio when the area of any quadrilateral included between two parallels and two meridians on a map has the same size relationship to the area on the earth that it represents that any other quadrilateral on the map has to the earth area that it represents.
of the projection employed usually will be found below each map in any scientific atlas, and often also a statement telling whether it is of the conformal or the equal-area type.

Some projections have an added quality: that of showing compass directions properly all ways from the center of the map. Such a projection is called azimuthal or sometimes, for no very good reason, "zenithal." One of these descriptive words may be coupled with one of those indicated above and with the name of its originator, to make the complete name of the projection, as, for example, the "Lambert azimuthal equal-area projection."

In order that the qualities of a few of the more commonly used projections may be understood they are here explained briefly and illustrated, together with some that are less used but are in striking contrast with them.

Maps of the Whole Earth

Mercator's projection, which is commonly used for maps of the world, may be understood better by first examining two other contrasting projections

Fig. A.-A cylindrical equal-area projection.
between which it effects a compromise. Figures \boldsymbol{A} and B show forms of projection in which the shadow of the imaginary basket grid of the earth is cast by lights located at different points. These shadow patterns give the spacing for the parallels upon tangent cylinders. In Fig. A the position assumed by the light is at an infinite distance so that its rays are parallel. The result is an equal-area projection but one in which the shapes of areas in high latitudes are so stretched out east and west and so shortened north and south that they look very odd-so odd, in fact, that the projection is little used. At the opposite extreme is Fig. B. In this one the shadow-casting light is assumed to be at the center of the basket grid. In this projection also there is a great east-west expansion in high latitude but a still greater north-south expansion. It is neither equal-area nor conformal.

The contrast between these two makes clear the nature and purpose of Mercator's projection (Fig. C), first published in 1569. In it the converging meridians of the globe are represented as parallel lines spaced as they are at the equator. This obviously involves a rapid east-west expansion with increase of latitude. To balance that distortion the positions for the parallels of latitude are mathematically computed to produce north-south expansion which shall increase at the same rate as the east-west expansion. The result is a conformal projection; i.e., any small area, like a bay or a peninsula, is shown with practically its true shape. Large areas, however, are distorted
both in size and shape by the constant change of scale from place to placeIndeed, the scale of miles sometimes printed with this very common form of map is of little use outside the equatorial region, where the distortion of area is small. The expansion of the grid of this projection is a serious defect in a map for educational use, since it causes land areas in high latitudes to appear vastly larger than they really are in comparison with those near the equator.

Fig. B.-A central-perspective cylindrical projection.

Fig. C.-Mercator's projection.
In addition to its conformality Mercator's projection has another quality that recommends it, especially to navigators. Straight lines drawn upon it show constant compass directions. For example, a straight line drawn at an angle of 45° to the right of a meridian on this projection trends northeast throughout its length. This is most useful for plotting ship's courses. The shortest distance between any two commercial ports follows the arc of the great circle of the earth passing through those ports, but that is a hard course to steer because the compass direction at any given point on the course is different from that at every other point, and the ship's course must be gradually
but continuously changed. In practice, such a course is approximated by plotting on Mercator's projection a series of short straight lines (rhumb lines) which follow the general direction of the great circle but along each of which the compass direction remains constant.

The Oval Projections and Their Combination. The projections described above portray the entire earth on one or another form of rectangular grid. There is another group of projections which mainly are oval in form, having their poles shown as points instead of lines as long as the equator. Figures D, E, and F show the plans of three of these. All three are equalarea projections, but they differ slightly in other respects. All are developed

Fig. D.-Mollweide's homolographic projection.

Fig. E.-The Sanson-Flamsteed sinusoidal projection
on polar axes that are one-half the length of the equatorial axis, which is the proper ratio of the length of the equator to the distance from pole to pole. In Mollweide's homolographic projection (Fig. D) and the sinusoidal projection (Fig. E) the meridians are equally spaced, as they are on a globe, and the parallels are truly parallel, as they also are on a globe. The difference between the two is in the shapes of their meridians and in the spacing of their parallels. Both of them distort shapes, especially near the margins of the maps and in high latitudes, but to slightly different degrees in different places. Aitoff's projection (Fig. F), while keeping equality of area, secures slightly better shapes by decreasing the spacing of the meridians from the center of the map outward and by using curved parallels. There are other projections of this general type.

In recent years also certain modified forms of projections in this group have appeared. They are characterized by interruptions of continuity for
the purpose of having more than one central or principal meridian, near which there is the least distortion of shape. Goode's homolosine projection (Fig. G) is one of these. It is made by combining the sinusoidal projection (from the equator to latitude 40°) with Mollweide's projection (from 40° to the pole). Since it is composed of equal-area projections, it also has that quality. In addition, a proper selection of the meridians to be repeated as principal meridians causes each continent to appear as if it were in the center of the original projection where shapes are very good. The form of Aitoff's projection used in the plates accompanying this volume employs the principle of interruption also. Offsetting these two desirable properties (equality of area

Fig. F.-Aitoff's projection.

Fig. G.-Goode's homolosine projection.
and a fairly good shape) is the necessity for the eye of the observer to bridge the gaps in the grid caused by the interruptions. Equal-area projections of the entire earth's surface are of great value for the purpose of showing the world distribution of economic data or other phenomena of any kind that require areas to be shown in their true proportion to one another.

In the first of the above groups of projections the earth poles (if they can be shown) are represented by lines as long as the equator. In the second group they are represented by points, the meeting places of all the meridians. In certain other projections neither of these conditions is fulfilled, the poles being represented by lines, not points, but by lines less long than the equator. In some of the projections of this latter group the positions of the parallels are computed so that the resulting grids are equal-area or equivalent. One of several such projections is employed for the maps of the world shown in Figs. 24, 25, and others of this book.

Maps of Hemispheres and Smmilar Areas

Perspective Projections. The front of nearly every atlas contains maps of the hemispheres, or of the polar areas, which are circular in outline. These are constructed according to any one of several schemes of projection,

Fig. H.-The orthographic projection; the manner of obtaining the spacings of its parallels and meridians, and segments of its meridional and polar forms.

Fig. 1.-The stereographic projection; the manner of obtaining the spacings of its parallels and meridians, and segments of its meridional and polar forms.
more or less used. Some of them have properties of peculiar value. Among them are perspective projections which are derived as if by projecting the shadows of the wire-basket grid upon tangent planes, just as in Figs. A and B they were cast upon tangent cylinders. Map grids constructed by these methods may take either the polar or the meridional form, and the illustrations show quadrants
in each, together with the mode of obtaining the spacings of the meridians and parallels.

The orthographic projection (Fig. II) shows great compression about its margin but expansion of areas in its center and gives the appearance of looking into a bowl. It is much used for star charts of the heavens but not much for maps of the earth. The stereographic projection (Fig. I) shows a spacing of lines just the reverse of the preceding. It is a conformal projection and renders the shapes of limited areas accurately but greatly distorts the relative areas of different parts of the surface shown. Still more extreme in its marginal expansion is the gnomonic projection (Fig. J). In fact, the expansion of the latter is so great that no large part of a hemisphere can be shown by it, and on it both shapes and areas are so distorted that it has no value for showing either the shapes or the sizes of regions. It has, however, one unique quality that gives it a place among the valuable projections. On it every arc of a great circle of the earth is rendered as a straight line, and, conversely, every straight line drawn on the projection is an arc of a great circle. This is a most useful device for plotting great-circle (shortest possible) air or ocean routes. Because most lines that would be drawn upon this projection

Fig. J.-The gnomonic projection; the manner of obtaining the basic spacings of its grid, and segments of its meridional and polar forms. for the purpose of locating sailing courses would cut parallels and meridians at various angles, compass steering by it is not easy. For that reason the significant points of latitude and longitude on the course usually are transferred from the gnomonic to a Mercator's projection and are connected by a series of short straight lines, as previously indicated. This approximates the great-circle route and makes steering much simpler. Lambert's azimuthal equal-area projection (Fig. K) illustrates the manner of constructing another of the hemispherical projections, which, however, is not of the perspective type. The spacing of the parallels or meridians from the center of the map is proportional to the chord distance of the arc of the number of degrees of earth circumference represented by the position of the line. This spacing gives the projection qualities the reverse of those of the stereographic. It is equal-area, azimuthal (i.e., all points have their true compass directions from the center of the map), and the distortion of shapes, while considerable about the margins, is not great near the center of the projection. This valuable device commonly is used to show the hemispheres
in school atlases. The principle employed in it, when expanded to include the whole earth, underlies the construction of Aitoff's projection (Fig. F).

Fig. K.-Lambert's azimuthal equal-area projection; the manner of obtaining the spacing of its parallels and meridians, and segments of its meridional and polar forms.

The Conical Projections

Forms of Conical Projection. It has been noted previously that grids of various forms may be projected upon tangent cones as well as upon tangent cylinders and planes. Some forms of conical projection are truly perspective in type, some of even greater value are mathematically derived, whereas still others are obtained only by modification of one or more of the basic characteristics of the conical group.

To understand the simple form of the conical projection, imagine a large paper cone set down upon a globe with its apex directly above the pole of the globe. The cone is tangent to the globe along the entire circumference of some selected parallel, which is called the standard parallel. Because this parallel is everywhere equally distant from the apex of the cone, it becomes an arc of a circle when the cone is opened out into a plane surface, and all other parallels become arcs of concentric circles (Fig. L). Lines drawn on the surface of the cone from the apex through selected points on the standard parallel" become the meridians of the map and always are straight lines radiating from the common center. Meridians that are radial straight lines and parallels that are arcs of concentric circles always indicate one of the several forms of the true conical projection.

In the simple form of the conical projection the scale of the map is true only along the standard paralle. North or south of that parallel the longitudinal distance expands rapidly, and the scale does not apply. Much greater area may be brought within the range of reasonable distortion if the map be.
constructed on two standard parallels instead of one. This is done by making the cone secant to the globe rather than tangent to it (Fig. M). By careful choice of position for the standard parallels an arrangement of lines may be had which, over a wide band of latitude, produces surprisingly little distortion. By mathematical adjustments of the exact positions of the parallels the distortions may be restricted either to the shapes or to the areas of the features shown. Thus both equal-area and conformal types of this projection exist.

Fig. L.

Such are the Lambert conformal conic projection and the Albers equal-area projection, each with two standard parallels. The latter is particularly good for showing an area, like the United States, which has a greater east-west than north-south dimension. By proper selection of the standard parallels a map of the United States may be made in which the maximum scale error, which is on the northern and southern margins, is only a little more than 1 per cent. The map is, therefore, by construction equal-area and, for so large a region as the United States, very nearly conformal. The map of the geology of the United States, prepared by the United States Geological Survey in 1932, utilizes this excellent projection.

Modified Forms of Conical Projection. Several forms of projection adopt the basic principles of conical projection but, by modification of them in one way or another, produce grids having somewhat different qualities.

Fig. N.-Bonne's projection. One of these is Bonne's projection, much used in atlases for maps of some of the continents (Fig. N). In this projection all parallels are arcs of concentric circles, as they are in the truly conical projections, and they are spaced in their proper positions relative to those on the globe. The meridians, however, are not straight lines but curves which converge at the pole and pass through points on the parallels that are spaced in true proportion to their spacing on the globe. Thus every quadrilateral of the grid has its true proportional length and breadth as compared with that quadrilateral on a globe, and the projection is equal-area. It gives good shapes near the principal meridian of a map, but distortion of shape increases rapidly with distance east or west. The projection is most properly used, therefore, for a land area, such as the continent of North America, having its greater dimension north and south rather than east and west.

Another modified form of conical projection often is used as a basis of detailed surveys, such as the United States topographic maps or the International Map of the World on a scale of $1: 1,000,000$. This projection is called polyconic (meaning many cones) (Fig. O). It is drawn as if many cones of different taper were fitted upon a globe, each tangent on a different parallel. The parallels of this projection are arcs of circles, as in all conical projections, but not, as in the others, arcs of concentric circles. The meridians, except a central one, also are curved.

Compromise Projections. Among the scores of map projections that have been devised some are fanciful in the extreme or have only single or very limited uses. Others make no claim to scientific value but are easily understood and generally useful, since they compromise between

Fig. O.-A polyconic projection. the distortions of shape, common in equal-area projections, and the distortions of area, usual in conformal projections. One such is the Van der Grinten projection of the earth, which has qualities intermediate between those of the Mercator and Mollweide projections. Another is the familiar globular projection of the hemispheres.

Appendix C

American Systems of Land Survey ${ }^{1}$

Township and Range System. Over a large part of the United States the basic subdivision of the land follows a system of survey adopted by the United States government in 1785. It was applied especially to the region of the Great Lakes, the Mississippi Valley, and the western states. By this system public land and rural property are described and their ownership deter-

Fig. A.
mined in relation to a network of north-south and east-west lines. These include selected meridians, which are called principal meridians, and base lines and correction lines (Fig. A). Their use has the effect of dividing the land into essentially rectangular blocks. The location of these blocks is indicated by numbered townships and ranges. The ranges are north-south strips of land 6 miles wide, and they are numbered east and west from the nearest or most convenient principal meridian. In Wisconsin, for example, the controlling
${ }^{1}$ Adapted from Appendix F., Bull. 36 of the Wisconsin Geological and Natural History Survey. Illustrations by courtesy of E. F. Bean. Director.
line is the 4 th principal meridian, the 1st being in eastern Indiana, and there are 30 ranges east and 20 west of it (Fig. B). The ranges are divided into townships by east-west lines at intervals of 6 miles, beginning at a selected southern boundary. In Wisconsin, this is the Illinois-Wisconsin state line. Thus a range consists of a north-south tier of townships each of which is supposed to be

Fig. B.
6 miles square. There are 53 townships in the longest range in Wisconsin. By this system any township can be located by reference to its township and range numbers, e.g., township 7 north, range 9 east. This is usually written T. 7 N., R. 9 E. Owing to the fact that the meridans converge toward the north certain corrections and allowances must be made. Other factors require allowance also, such as a base line which is not true east-west, errors in surveying, and the presence of lakes or streams at critical points. The four correction lines for Wisconsin are shown in Fig. B.

The civil, organized, or municipal towns into which counties are divided are units of political administration, and they may or may not coincide with government townships, which are for purposes of location. In thinly settled districts the civil towns often are much larger and may include two or more government townships or parts of townships. In other areas one government township may be divided into two or more small civil towns. Using Dane County, Wisconsin, as an illustration we note that most of its civil towns are also government townships, but this is not true of the two northwesternmost towns of Black Earth and Mazomanie (Fig. C). There the corner of the county

Fig. C.
is not rectangular, owing to the presence of the Wisconsin River. The boundaries of civil towns also are subject to change by appropriate legislation, but the government townships remain.

Every government township is divided into 36 sections, each 1 mile square. The sections are numbered, beginning at the northeastern corner and ending at the southeastern, as is shown in the northeastern township in Fig. C. The locations of the township and section corners are supposedly marked by a stake, stone, mound, tree, or other device, but too often these are impermanent features and are now difficult to locate. Since each section is 1 mile square, its area is 640 acres. For purposes of more detailed location and description the section is divided into quarters, each containing 160° acres, and the quarter sections are further divided into quarters of 40 acres each (Fig. D). These are commonly called "forties." The quarter sections are indicated by the points of the compass, and so also are the forties. To describe and locate a given forty,
therefore, one might say that it is the NE $\frac{1}{4}$ of SW $\frac{1}{4}$ of Sec. 31, T. 18 N., R. 9 E. Such a location is almost as precise as if it were given in latitude and longitude, and it tells also the area of the parcel of land in question.

Metes and Bounds. In the Atlantic Coast states and certain others the original land grants and surveys were made prior to the adoption of the township and range system of survey. In those states parcels of land are described by a system known as "metes and bounds." In that system an arbitrary point is taken, such for example as a projecting rock, a tree, or some significant point on the bank of a river or lake. The property is then bounded by lines

Fig. D.
run in a given compass direction for a certain distance, then in another direction for a specified distance, and so on around to the point of beginning. This system has often led to conflict over property lines because after a time the tree, stone or other arbitrary beginning point has been lost or its location has changed. Moreover, the stated distances were sometimes measured inexactly, as in parts of Texas, for example, where some of the early Spanish land grants are said to have been measured in terms of the length of a lariat rope or of how far a horse could walk in a given time. Such lines often did not surround rectangular parcels of land, and seldom did the plots of land have any consistent pattern of shape with respect to the cardinal compass directions.

This lack of coordination is plainly apparent in the road patterns to be seen in detailed maps of New England, Texas, and other states. In some North

[^0]
Appendix D

A Selected List of United States Topographic Quadrangles

The topographic quadrangles indicated below have been selected from those published by the United States Geological Survey because they illustrate in map form certain of the landforms discussed in the text. Some of the subjects discussed, ice-scoured plains, for example, do not find clear illustration in any of the United States Topographic Quadrangles now published and are therefore omitted from the list.

Certain of the maps named below may be used to illustrate more than one class of features, and their names are repeated. Such maps are indicated by the asterisk. In some instances two or three adjacent quadrangles are required to show adequately the extent of the feature in question. Such are indicated as a series by being listed in series.

These topographic quadrangles may be obtained from the United States Geological Survey, Washington, D. C. In the following list, sheets of sizes other than standard are marked " (special)."

Platns of Stream Degradation

Newly emerged plains:
Bladen and Everett City, Ga.
Cambon, Fla.
Chicora, S. C.
Moniac, Ga.-Fla.
Higher and better drained coastal plain:
Bamberg, S. C.
Forest, Miss.
Springhope and Rocky Mount, N. C.
Plains with cuestaform ridges and escarpments:
Blanchardville and Blue Mounds, Wis.
Epes, Ala.
Fond Du Lac and Neenah, Wis.
Kendall and Mauston, Wis.*
Llano, Tex.*
Nashville, Tenn.*
New Boston and Linden, Tex.

Niagara, N. Y.
Pelahatchie and Morton, Miss.
Knobs and outliers on cuestaform plains:
Big Clifty, Ky.*
Franklin, Tenn.
Kendall and Mauston, Wis.*
Llano, Tex.*
Nashville, Tenn.*
Young plains (mainly in glacial drift):
Gillespie, Ill.*
La Salle, III.*
Macon, Mo.
Paulding, Ohio*
Ray, N. D.*
Rough, maturely dissected plains:
La Farge, Wis.
Newcomerstown, Ohio
Nortonville, Ky.

Dissected river bluffs (river breaks):
Ray, N. D.*
Porcupine Valley and Spring Creek, Mont.
Old-age plain:
Mount Carmel, Ill.-Ind.
Owensboro, Ind.-Ky.
Peneplains.with monadnocks:
Atlanta and Marietta, Ga.

Gastonia, N. C.
Kings Mountain, N. C.
Karst plains:
Big Clifty, Ky.*
Interlachen, Fla.
Mammoth Cave, Ky.
Princeton, Ky.
Williston, Fla.

Plaing of Stream Aggradation

Delta margin:
East Delta, La.
Timbalier, La.
Narrow levees:
Bayou de Large, La.
Pt. a la Hache, La.
Quarantine, La.
Shell Beach, La.
Wide levees:
Baton Rouge, La.
Donaldsonville, La.
New Orleans, La.
Wide alluvial fioodplains:
Bayou Sara, La.
Clarksdale, Miss.
Marks, Miss.
Memphis, Tenn.-Ark.
Vicksburg, Miss.
Narrow floodplains:
Chester, Ill.

Gays Mills, Wis.
Ogallala, Neb.*
Prairie du Chien, Wis.*
Alluvial terraces:
East Cincinnati, Ohio
Malaga, Wash.
Prairie du Chien, Wis.*
Tarboro, N. C.
Alluvial fans and piedmont alluvial plains:
Cucamonga and San Bernardino, Calif.
Levis, Calif.
Pacoima and Sunland, Calif.
Whittier, Calif.
Plains of older alluvium:
Assinniboine, Mont.
Colorado Springs, Colo.
Eaton, Colo.
Sanborn, Colo.
Vilas, Colo.

Glacial Drift Plains

Till plains (younger drift):
Poorly drained
Chokio, Minn.
Lansing, Mich.
Neshkoro, Wis.
Well-drained
La Salle, Ill.*
Slater, Iowa
Upper Sandusky, Ohio
With drumlins
Boston, Mass.*
Clyde and Weedsport, N. Y.
Palmyra, N. Y.
Sun Prairie and Stoughton, Wis.
With eskers
Fowlerville, Mich.
Rives Junction, Mich.*

St. Francis, Minn.
Till plains ${ }^{\text {(older drift): }}$
Albia and Pella, Iowa
Gillespie, III.*
Till plains (relief controlled by bedrock features):
Baraboo, Wis.
Stonington and Moosup, Conn.
Youngstown, Ohio
Marginal moraines:
Kettle-moraine regions (large area)
Pelican Rapids and Vergas, Minn.
Kettle-moraine belts (with associated pitted outwash plains)
Rives Junction* and Stockbridge, Mich.
Schoolcraft, Mich.

St. Croix Dalles, Wis.
Whitewater, Wis. Lake plains (glacial):

Detroit, Mich.

Fargo, N. D.-Minn.
Paulding, Ohio*
Ridgeway, N. Y.

Planns in Dry Climates

Eolian sand plains:
Brown, Neb.
Lakin, Kans.
North Platte, Neb.
Ogallala, Neb.*

Loess plains (stream eroded):
Omaha and Vicinity, Neb. and Iowa (special)
Red Cloud, Neb.
York, Neb.

Shore Features of Plains

Ria shorelines:
Bath and Boothbay, Maine
Boston, Mass.*
Choptank, Md.
Kilmarnock, Va.
Deposited shore features:
Offshore bars:
Atlantic City, Sea Island, and Barnegat,* N. J.
Lopena Island and Saltillo Ranch, Tex. .

Spits and hooks:
Cape Henlopen, Del.*
Erie, Pa.
Provincetown, Mass.
Sandy Hook, N. Y.
Shore dunes:
Barnegat, N. J.*
Cape Henlopen* and Reheboth, Del. Fenville, Mich. Three Oaks, Mich.

Dry-platead Features

Plateau valleys and escarpments:
Abajo, Utah*
Bisuka, Idaho
Bright Angel, Ariz.
Diamond Creek, Ariz.
Escalante, Utah
Hanford and Scooteney Lake, Wash
Henry Mountains, Utah*
Kanab, Utah

Mesas and buttes:
Mesa de Maya, Colo.
Mount Trumbull, Ariz.
Raton, N. M.
Tascotal Mesa, Tex.
Plateau bolsons:
Carson Sink, Nev.*
Cienega Springs, N. M.
Disaster, Nev.*
Silver Peak, Nev.*

Hill Lands

Stream-eroded hills in horizontal strata:
Arnoldsburg, W. Va.
Bald Knob, W. Va.
Confluence, Pa .
Fayetteville, W. Va. (plateau features)
Parkersburg, W. Va.-Ohio
Badlands:
Rock Springs, Wyo.
Hills in folded sedimentary strata:
Hyndman, Pa.
Millersburg, Lykens, and Pine Grove, Pa.

Mount Union, Pa.
Winding Stair, Okla.
Hills in complex rocks:
Asheville, N. C.-Tenn.
Knoxville, Tenn.-N. C.
Hills in areas of linear faulting:
McKittrick, Calif.
Priest Valley, Calif.
San Mateo, Calif.
Glaciated hill lands:
In crystalline rock
Allagash, Maine

Bolton, N. Y.
Greenlaw, Maine

Volcanic peaks:
Crater Lake National Park, Ore.
Lassen Volcanic National Park, Calif.
Maiden Peak, Ore.
Mount IIood, Ore.
Mount Rainier National Park, Wash.*
Laccolithic mountains:
Abajo, Utah*
Fort Benton, Mont.
Henry Mountains, Utah*
Fault-block mountains:
Ballarat and Furnace Creek, Calif.
, Carson Sink, Nev.*
Disaster, Nev.*
Sequoia and General Grant National Parks, Calif. (special)*
Silver Peak, Nev.*
Mountain foothills of the hogback-ridge type:
Boulder, Colo.

In horizontal strata
Bath and Hammondsport, N. Y.

Mountains

Loveland, Colo.
Rapid, S. D.
Glaciated mountains:
Glacier National Park (special)
Hamilton, Mont.
Hayden Peak, Utah.
Mount Rainier National Park, Wash.*
Sequoia and General Grant National Parks, Calif. (special)*
Emerged highland shore features:
La Jolla, Calif.
San Diego, Calif.
San Luis, Calif.
Santa Ana, Calif.
Solstice Canyon and Las Flores, Calif. Fiords:

Reconnaissance Map-Alaska Railroad, Seward to Matanuska Coal Field (special)
Takoma and Snohomish, Wash.

Appendix E

I N D E X

Pages on which illustrations appear are in boldface type.

A

Abrasion, 278, 294; wind, 299, 379
Absolute humidity, 96
Acacia trees, 503
Acid soils, 524
Acidic rocks, 257
Adiabatic cooling, 101-102; cloud and rain stage, 103-104; dry stage, 102; retarded stage, 103; snow and ice stage, 104
Adirondack Mountains, ice-scoured hills in, 428; iron ores in, 583
Adobe houses, 633-634
Advection fog, 101
Aeolian sand plains, 380
Africa, continental plateau of, 404; mineral regions of, 589; population distribution in, 620
Agents, gradational, 275
Agglomerated settlements, 644-665; classes of, 645
Aggradation, 263, 275, 279; by running water, 288
Agonic line, 17
Agricultural elements, classification of, 668
Agricultural land, 667; pattern of, 669
Agricultural regions, 682-699; classification of, 681
Agricultural village, modern type, 646
Agriculturally productive land, percentage of, 668

Agriculture, Mediterranean, 689; plantation, 688; subsistence, 686
Aircraft manufacture, 718
Air drainage, 49-50
A Air in the soil, 525
Air masses, 45, 115-122; Asiatic, 122; classification of, 117; classification of for North America, 118; continental, 117; equatorial, 75-76; European, 122; maritime, 117; North American, 117-122; polar, 117; Polar Atlantic, 120; Polar Continental, 119; Polar Pacific, 120; relation to winds, 74; source regions, 115; source regions in North America, 119; tropical, 117; tropical Gulf, 120-121; tropical Pacific, 121; tropical superior, 122
Air transport, 760-762; limitations of, 760; in the United States, 761
Aitoff's projection, 785
Alabama Black Belt, 311
Alabama iron ores, 583
Albemarle Sound, 396
Aleutian low, 62, 80, 141
Alkali flats, 379
Alkali-tolerant vegetation, 514
Alkali waters, 467
Alkaline soils, 524
Allegheny-Cumberland hill region, 418
Allegheny Front, 419
Alloys, 577
Alluvial basins, 377; plains of, 343

Alluvial fans, 290, 340, 378; irrigation of, 476; soils of, 548
Alluvial plains, 325
Alluvial terraces, 338, $\mathbf{3 6 6}$
Alluvium, 288
Alpine meadows, 450
Alps, 449
Alps, The, 436; lakes in, 450
Alta pianura, 346
Altiplano, 403
Aluminum, ore of, 587
Amana settlements, 651
America, drift plains of, $\mathbf{3 6 7}$
American farmsteads, 642-644
American oil and gas fields, 570
American systems of land survey, 791
Animal industries in southeastern Asia, 687
Animal life, 483-484; of the sea, 517-519; in tropical rainforest, 492; in tundra, 516-517
Animals, kinds and number of, 676; uses of, 675
Annuals, 485; in deserts, 514
Antarctic Circle, 13
Antarctic glacier and plateau, 412
Anthracite coal, 556; region of, 560
Anticlinal mountains, 267
Anticyclones, 111-140; appearance of, 113-114; movement of, 114-115; nature of, 113; precipitation in, 130; size of, 114; temperature in, 132-135; wind system in, 129
Antitrades, 72
Appalachian coal field, 560
Appalachian oil region, 571
Appalachian ridge-and-valley region, 422
Aral Sea, 379
Arches, structural, 312, 319
Arctic Circle, 13
Argentina, lakes in, 450; loess in, 384; manufacturing in, 730
Arid land deltas, 332
Artesian structures, 474
Artesian wells, 473
Asia, coal in, 566; eastern, hill region of, 427; southern, agriculture in, 686; southern, oil fields of, 575
Asphalt, 571; lake of, in Trinidad, 574

Atmosphere, absorption of insolation by, 42; composition of, 29-30; cooling of, 42-45; cooling by expansion, 45; general circulation of, 71-73; heating of, 42-45; heating by compression, 45; heating by conduction, 42-43; heating processes, 42; middle latitude circulation of, 73; polar circulation of, 72-73; tropical circulation of, 72
Atmospheric heat, source of, 30
Atolls, 398
Australia, artesian basin of, 474; coal in, 568; manufacturing in, 730; population distribution in, 620; sand hills of, 381; youthful plateau-hill region of, 425
Automobiles, 744-745
Azimuth, 17
Azonal soils, 531

B

Backing wind shift, 128-129
Badlands, 316, 410, 419
Bai-U rains, 147
Banks, as fish feeding grounds, 517
Barograph tracing, 137, 138, 152
Barometric slope, 66
Barrier reef of Australia, 398
Bars, offshore, 393
Basalts of the Columbia Plateau, 406
Base lines and principal meridians of United States, 791
Baselevel, 285
Basic rocks, 257
Basin Ranges, 410
Basins, alluvial, 377; structural, 312, 319
Batholiths, 270
Bauxite, 587
Bay bar, 393
Bay of Fundy, Nova Scotia, tides in, 401
Bays, 308
Beach ridges, 371, 372
Beaches, 393, 453
Beaufort scale of winds, 68
Bedding planes, 257
Belted coastal plains, 309
Bench marks, 25
Bending, crustal, 267
Benguela Current, 91

Bessemer process, 582
Biologic factor in soil development, 530
Biotic resources, 483-519
Birmingham, Ala., industrial region of, 583
Birth rates, in selected countries, 609-610; recent decline in, 612
Bituminous coal, 556
Black Hills, 426
Blast furnaces and steel mills, 715, 717
Blizzard, 224-225
Bluegrass region, 320
Blue Ridge Mountains, 425
Bolsons, 378; plateau, 410
Bonne's projection, 790
Boston Bay, 397
Boston Mountains, 419
Bottle-neck harbors, 398
Borax, 379
Boulder clay, 294
Boulders, 363
Braided channels, 376
Brazil, coffee industry, 689; iron-ore reserves of, 584; manufacturing in, 730
Breakers, 297
Breaks, river, 313
British centers of manufacture, 720
Broadleaf forest, 498-503; definition of, 489
Brown coal, 556
Bryce Canyon, Utah, 409
Bunch-grass steppe, 512-513
Buran, 224
Bushwood, definition of, 487
Butter-producing regions, 697
Buttes, 410

C

Cable, 762
Cacti, 514
Calcium phosphate, 594
Caldera, 439
California, Great Valley of, 343; oil region of, 573
Canada, eastern, coal in, 563; oil regions of, 573; population distribution in, 620; shorelines of, 389

Canal, Chicago Sanitary and Ship, 373; Erie, 373; Welland, 754
Canals, as routes of trade, 753; German, 373
Canaries Current, 90
Canoe-shaped valleys, 421, 423
Canyons, 407
Cape Canaveral, 395
Cape Cod, 393, 397
Capillary water, 526
Capital and the localization of industry, 709
Carbon dioxide, 29
Carbonation, 276
Caribbean Current, 88-90
Caribbean oil regions, 573, 574
Carrituck Sound, 396
Cartograms, 21
Cascade Mountains, 436
Casco Bay, Maine, 390
Caspian Sea, 379
Caverns, 322
Cement, manufacture of, 592
Cenotes, 323
Centers of action, 74
Central European districts of manufacture, 725
Central Plains, industrial cities of, 717
Cereal grains in Asia, 687
Chaparral, 497-498
Cheese-producing regions, 697
Chemical industries, raw materials for, 592
Chemical weathering, 276
Chemistry, soil, 521-525
Chernozem soil, 386, 546, 691
Chert, 259
Chesapeake Bay, shorelines of, 390
Chicago, industrial district of, 705; manufactural district of, 717; water supply of, 466
Chicago Sanitary and Ship Canal, 373
China, coal fields of, 567, 728; coal resources of, 566; industrial development of, 728; North, great delta of, 331, 332 ; loess plains of, 384
Chinook winds, 193, 251-252
Cincinnati-Indianapolis manufactural region, 716
Circle of illumination, 10-11

Circulation of the atmosphere, 71-73
Circumference of earth, 8
Cirque lake, 451
Cirques, 449; 451
Cirrus clouds, 104-105
Cities, 658-665; classification of, 658-659; commercial, 661-662; distinguishing features of, 663-664; distribution of, 659-661; functional areas in, 664; functions of, 658-659; manufactural, 662-663; strategic locations of, 661-. 663
Civilization, distribution of, 606
Classes of manufactural features, 704
Classifications, of agricultural elements, 668; of agricultural regions, 681; of climates, $155-158$; of manufactural industries, 703; of soils, limitations of, 534
Clay Belt, Ontario, 372
Clays, 525; industrial uses of, 592
Cliff glaciers, 446
Cliffs, wave-cut, 298, 392
Climate, controls of, 30-31; definition of, 30; dry, 177-193; effect upon civilization, 608; humid mesothermal, 194217; Mediterranean, 194-202; savanna, 169-176: tropical rainforest, 161-169; tropical rainy, 160-176
Climatic conditions of plateaus, 406
Climatic data for selected stations, supplementary, 779
Climatic elements, 30
Climatic energy, distribution of, 607
Climatic factor in soil development, 530
Climatic regions and types, 155-156
Clothing industry, 713
Cloud types, 104-106
Clouds, cirrus, 104-105; cumulus, 104; nimbus, 106; stratus, 106
Cluses, 422
Coal, 554-568; accessibility of, 557; age relationship of, 557; in Asia, 566; in eastern Canada, 563; estimates of quantity, 556; in Germany, 565; metamorphism of, 555; origin of, 555; regions of, 559-568; in South America, 564; structural associations of, 554; transformation of, 556; varieties of, 556

Coal fields, China, 667, 728; Europe, 564; France-Belgium, 723; Great Britain, 564; Ruhr Valley, 724; United States and Canada, 560
Coal and petroleum fields of Russia, 575
Coastal aggradation, 299
Coastal features of glaciated mountains, 455
Coastal marshland, 395
Coastal plains, Atlantic and Gulf, 310; belted, 309
Coasts, fiorded, 455, 457
Cobalt, 588
Coffee industry, Brazilian, 689
Coking coals, 556, 561; 715
Cold front, 116, 124, 125; rainfall, 132; thunderstorms, 151-153, 152; weather, 139
Cold waves, 132-133, 134, 225
Colloidal clays, 525
Colloids, soil, 522
Colorado Plateaus, 403, 404
Colorado River Delta, 333, 344
Columbia Plateau, 270, 403, 405
Comb ridges, 453
Commercial crop and livestock farming, 693
Commercial dairy farming, 696
Commodities of trade, 737-738
Common lands, 649
Communications, 734-766; functions of, 734-735; relation to place utility, 734-735
Compass declination, 17
Complicated rock structures, hills in, 424
Composite volcanic cones, 438
Composition of the atmosphere, 29-30
Concentric ridges and lowlands, plains of, 319
Condensation, 93, 95, 97-102; forms of, 99-102; methods of producing, 99102; in moving air over cold surfaces, 101; nuclei, 99; in quiet air over cold surfaces, 99-101; in rising air currents, 101-102
Conditional instability, 103
Conditions affecting the location of manufacturing, 707-711
Conduction heating, 42-43
Cones, volcanic, 437-440

Conglomerate, 259
Conical projections, 788
Coniferous forests, 503-509; on American Pacific Coast, 505; on Atlantic and Gulf coastal plains, 507; in Eurasia, 506; in lower middle latitudes, 504-509; in the Rocky Mountains, 506; subarctic, 503-504
Conservation, of natural resources, 462; of soil, 549
Continental divides, 442
Continental glaciers, 292
Continental plateaus, 403
Continental shelf, 307, 453
Continents, area of, 9
Contour interval, 23, 26
Contour map, 22
Controls of weather and climate, 30
Convectional heating, 44-45
Convectional precipitation, 106-107
Cool desert western littorals, 185-186
Cooling processes, 42-45
Coral-reef shorelines, 397
Cordilleran regions, 433; American, minerals in, 588
Corn, yield of, 672
Corn Belt, American, 693
Corrasion, 278
Cotton region of the United States, 688
Cotswold Hills, 318
Crater Lake, 439
Craters, 269; volcanic, 438
Creosote bush, 514
Crescent beaches, 393
Crevasses, 446
Crop farming, 693 .
Crop yields, 672
Cropped land, 670
Cropping, multiple, 674; systems of, 673
Crops, various, proportions of plowed land in, 671; water requirement of, 476
Crustal bending, 267; warping, 268
Cuba, bays in, 399 ; karst in, 393
Cuestaform foothills, 435
Cuestaform plains, 311, 318
Cuestaform ridges, 310, 422, 441, 443
Cuestas, 311
' Cultivation, rudimentary, 685

Cultural features associated with mineral extraction, 595
Cultural geography, 5, 601
Cumulus clouds, 104
Currents, gradation by, 296; longshore, 298
Cyclones, appearance of, 113-114; cold front in, 125; middle latitude, 111140; movement of, 114-115; nature of, 113; origin of, 115-117, 122-125; paths of, 140-142; precipitation in; 129-132; regions of precipitation in, 127, 131-132; size of, 114; structure of, 122-125, 123; temperature in, 135-136; tropical, 143-145; warm front in, 125; weak tropical, 146-147; weather changes in, 136-139; wind shift in, 128; wind system of, 125129, 127
Cyclonic precipitation, 109
Cyclonic tracks, 140-142
Cylindrical equal-area projection, 782

D

Dairy farming, commercial, 696
Date line, international, 16
Deccan Plateau, 270, 405
Decentralized manufacturing, 710
Deciduous forest, definition of, 489
Deciduous hardwood forests, 501
Deflation, 299, 379
Deflective force of earth rotation, 70-71
Degradation, 263, 275, 279; by running water, 283
Delta, drainage, 329; fans, 344, 396, 449; outline, 326 ; plains, 325 ; surface, 326
Deltas, 290, 371; rice culture on, 687
Dendritic pattern of drainage, 418
Density of population, 620-627; Europe, 626; United States, 627; world, 625
Deposition,' 279; glacial, 294; marine, shoreline features resulting from, 392; from solution, 281; by waves, 298
Desert, 177; low latitude, 180-186; middle latitude, 190-191; pavement, 299, 379; plains, 374 ; shrub, 488-489, 513514; soils, 548; stream channel, 375; stream erosion, 375 ; tropical, $180-$ 186; varnish, 379; weathering, 374

Desert of Atacama, 594

Desert basins, drainage of, 378
Destructive soil erosion, causes of, 550; kinds of, 551
Destructiveness of earthquakes, 272
Detroit manufactural region, 715
Dew, 99
Dew point, 97-98
Diamonds, 589
Diastrophism, 264
Differential erosion, 285
Differential weathering, 278
Dike, 270, 438
Dip slopes, 311
Directions, 11, 17
Discontinuity surfaces, 116-117
Dismal Swamp, 308
Dispersed settlements, 637-644; advantages of, 638; causes of, 640-642; disadvantages of, 638-639; distribution of, 639-640; origin of, 639-640
Distributaries, $\mathbf{2 9 0}$
Distributary channels, 326
Distribution of civilization, 606
Distribution of climatic energy, 607
Diurnal variation of wind velocity, 87
Divide, 284; knife-edge, 453; mountain, 442
Doabs, 345
Doldrums, 70, 74-76; wind rose of, 75
Dolines, 323
Dolomite, 260
Domes, structural, 319
Donets Basin, 566, 726; coal field of, 584
Dot maps, 21
Douglas fir, 505-506
Downs, 318
Drainage, delta, 329; dendritic pattern of, 418; of desert basins, 378; glacial disturbance of, 295, 428; in icescoured plains, 350; interior, 378; trellis pattern of, 422
Drainage basin, 284
Drainage pattern in older drift, 368
Drift, older, 296; thickness of, 353
Drift plains, of America and Europe, 367; features of, 353, 354
Driftless Area, 293
Drowned valleys, 389
Drumlins, 358, 359, 397

Dry climates, 177-193; boundaries of, 177; definition of, 177; diurnal temperatures in, 178; low latitude, 180188; middle latitude, 188-193; plateau features in, 406; precipitation in, 179; rainfall reliability in, 178; temperatures in, 178; winds of, 179-180
Dry farming, 691
Dry-plateau escarpments, 408; uplands, 409
Dry-summer subtropical climate, 689 (See also Mediterranean)
Dunes, 397; sand, 380
Dust, 30

E

Earth and sun relations, 36-37
Earth, area, 9; circumference of, 8; grid, 11; interior, 8; materials, 255; motions, 10; plasticity, 9; revolution, 11 ; rigidity, 9; shape, 8
Earth resources, 460; classes of, 461
Earthquakes, 272; regions of, 273
Eastern Interior Coal Field, 562
Eastern Interior Oil Region, 578
Ecliptic, plane of, 11
Edaphic factor, 486
Eifel, The, 427
Elements of geography, cultural, 601; natural, 601
Elements of weather and climate, 30
Eluviation, 533
Emergence, shoreline of, 388
Enclosed valleys, 423
End moraines, 295, 301, 447
England, iron industries of, 720
Enrichment of ore deposits, 579
Entrepôt ports, 766
Environment and soil zonation, 531
Epiphytes, 491
Equator, 12
Equatorial air masses, 75-76, 172
Equatorial belt of variable winds and calms, 70, 74-76
Equatorial low-pressure belt, 60-61
Equinoxes, 36
Erg, 382
Erie Canal, 373

Erosion, 278; desert-stream, 375; glacial, 294; of sea cliff, 391; soil, destructive, 549; stages of, 286; stream, 283; wind, 379
Erosion remnants, 316
Erratic boulders, 349, 355, 368
Eruptions, volcanic, 439
Escarpments, 311; dry-plateau, 408
Eskers, 367
Eskimos, 683
Estuaries, 389; of Europe, 390
Eucalyptus trees, 503
Eurasia, manufactural regions of, 718730; oil fields of, 574
Europe, coal fields of, 564; distribution of population in, 617-618; drift plains of, 367; estuaries of, 390; glaciated regions of, 369 ; iron-ore deposits of, 584; loess region of, 386; population axis of, 617; spillways of, 373
Evaporation, 93, 95
Everglades, 308
Evergreen forest, definition of, 489
Evergreen hardwood forests, 501-503
Exotic streams, 332, 378, 407
Extrusions, igneous, 269
Extrusive rocks, 256

F

Factory, size of, 705
Falkland Current, 188
Fallowing, 522
Falls, 314, 352, 360, 441
Fans, alluvial, 340; delta, 344
Far East, population distribution in, 615-617
Farm crops, land area in, 671
Farm population, in United States, 619
Farming, crop and livestock, 693; livestock, 675
Farms, land in, 668; size and shape of, 676
Farmsteads, American, 642-644; in southwestern Wisconsin, 643
Fault block mountains, 436
Fault valleys, 435
Faulting, hill region of, 426
Faults, 265
Feldspars, 256
Ferroalloy minerals, 708

Ferromagnesian minerals, 256, 257
Fertilizers, mineral, 593
Fiard, 459
Field biete, 449
Fields, number and size of, 676
Finger Lakes, 430
Finland, lakes, 353
Fiorded coasts, 455, 457
Fiords, in marine west coast climates, 216; origin and shapes of, 456
Fish, 517-519
Fishing regions of the world, 518-519
Flat plains, 305
Flattening, polar, 8
Flint, 259
Flocculated soil, 628
Floodplain, 289, 333; surface of, 335; width of, 334
Floods, river, 339
Foehn, 251-252
Fog, 91; advection, 101; distribution in United States, 100; London, 101; radiation, 99-101; in tundra climate, 242
Folded strata, hills in, 420
Foothills, mountain, 442
Forces, gradational, 263; surface-molding, 261, 263; tectonic, 263
Foreign trade, by continents, 738; principal classes of, 738-739; of the United States, 739; of the world, 740
Forest, climate, 487; definition of, 487
Forest lands and grasslands, boundaries between, 543
Forest soils, gray-brown, 541
Forests, on American Pacific Coast, 505; broadleaf, 498-503; hardwood, 498503; low latitude, 489-495; middle latitude, 495-509; types of, 489-509; utilization of in the middle latitudes, 507-509
Form utility, 701
Fractional scale, 18
Fracture, crustal, 264
France, iron ores of, 585
France-Belgium, centers of manufacture of, 722; coal fields of, 723
Frisian Islands, 396
Fronts, 115-117, 116

Frost, 50-52; conditions favorable for, 51-52; in humid continental climate, 228-230; killing, 50; losses from, 52; in marine west coast climates, 213 ; in Mediterranean climates, 198-199; protection from, 50-51; in subarctic climates, 234
Frozen ground in tundra climate, 242
Frozen subsoil, 549
Fruit culture, commercial, 697
Fruit farming, 698
Fuel and power, 708
Fuji Mountain, 437
Functions of manufacture, 701
Fundament, 4

G

Galeria forests, 510
Ganges Delta, 326, 330
Gangue, 578
Garden Wall, 453
Gardening, commercial, 697
Gas, natural, 572
Geographic realms, 770-772; of important development, 773-774; man's place in, 772-773; of meager development, 772
Geography, cultural, 5, 601; cultural features of, $2-3$; definition of, 1 ; description and explanation in, 3-4; elements of, 1-3; field of, 1-5; outline of, 1-3; physical, 4-5, 601; physical features of, 2-3; regional, 5-6; systematic, 5-6
Geologic history, subdivisions of, 800
Germany, canals of, 373; coal deposits of, 565; potash deposits of, 594; western, industrial districts of, 724
Geysers, 469
Glacial deposition, 294
Glacial deposits, 355; in Great Lakes Region, 362
Glacial disturbance of drainage, 295, 428
Glacial drift, 295
Glacial erosion, 294; of volcanoes, 438
Glacial Great Lakes, 371
Glacial grooves, 350
Glacial lake plains, 370, 371
Glacial lakes, 350; and swamps, 428

Glacial retreat, 291
Glacial spillways, 372
Glacial striations, 350
Glacial till, 356
Glacially eroded mountain features, 445
Glaciated mountains, coastal features of, 455
Glaciated plains, classes of, 348
Glaciated regions, of Europe, 369; of North America, 368
Glaciation, areas of former continental, 292; effects upon relief, 354
Glaciation and power sites, 478
Glaciers, Antarctic, 412; continental, 292; Greenland, 412; mountain, 291, 446
Glacier National Park, lakes in, 450
Glaciofluvial deposits, 295; plains, 364
Glaciolacustrine plains, 372
Glass, manufacture of, 592, 709
Glaze, 106
Gneiss, 260
Gnomonic projection, 787
Gold, 589
Goode's homolosine projection, 785
Gorges, mountain, 441
Graben, 266; valley of Scotland, 564
Gradation, forces of, 263; by ground water, 281 ; by running water, 282; by waves and currents, 296 ; by wind, 299
Gradational agents and processes, 275
Graded stream, 284
Gradient, stream, 284
Grain farming, commercial, 690
Grand Canyon, The, 408
Graphite, 260
Grass, short, 547
Grassland climate, 488
Grassland soils, 543
Grasslands, 509-513; middle latitude, 511-513; origin of, 488; tropical, 509-511
Gravel and outwash, 365
Gravitational water, 527
Gravity, force of, 264
Gravity cones, 442
Gray desert soils, 548
Gray-brown forest soils, 541, 697
Great Basin, 403
Great Britain, coal fields of, 564 ; iron ores of, 585

Great Circle Route, 756
Great circles, 12
Great Lakes, 370, 753-755; advantages as a route of trade, 753-754; trade on, 754; transportation on, 481
Great Lakes Region, glacial deposits in, 362
Great Plains, artesian water in, 474
Great Salt Lake, 879, 411
Great Valley of California, 343
Great Valley, The, 423
" Greenhouse effect of atmosphere," 43
Greenland glacier, 412
Greenland high, 62
Greenland plateau, 412
Grinell Glacier, 452
Ground moraine, 294, 354
Ground water, availability of, 466; gradational work of, 281; hardness of, 468; medicinal qualities of, 467; qualities of, 467
Ground-water supply, 466-475
Ground-water table, 280, 466
Growing season, 51 ; in subarctic climate, 234
Gulf Coast oil region, 572
Gulf Stream, 88
Gullying, 552

H

Hacienda settlement, 646-648
Hail, 106, 148-149
Hamada, 377
Hanging valleys, 450, 455, 458
Harbors, 453; bottle-neck, 398; crater, 439
Hardness of ground water, 468; of surface water, 475
IIardpan, 540
Hardwood forest, 498-503; definition of, 489; in foreign countries, 501 ; location with respect to conifers, 499; subdivisions of, 500 ; in the United States, 500-501
Harmattan, 166
Hawaiian volcanoes, 269, 437
Headlands, erosion of, 389
Headward erosion, 283
Heat balance in atmosphere, 46

Heating and cooling of earth's surface, 40-42
Heating processes, 42-45
Heavy industries, 715; English, 720; of Europe, 719; French, 723; German, 724; of Japan, 729; of Russia, 726
Heavy manufactures, 703
Hematite, 580, 586
Henry Mountains, 437
High Plains, altitude of, 402
Highland climates, 245-252; air temperatures in, 247-249, 248; atmospheric pressure in, 246 ; daily weather of, 252; foehns or chinooks in, 251-252; intensity of insolation in, 246-247; in middle latitudes, 249; precipitation in, 250; seasonal temperatures in; 248-249; temperature zones in, 248249; tropical, 248-249; winds in, 250-252; zone of maximum precipitation in, 250
Highland Rim, 320
Highlands of Scotland, ice-scoured hills in, 428
Highways, 742-747
Hill lands, definition of, 415; local relief of, 415 ; shore features of, 430
Hill regions, of eastern Asia, 427; icescoured, 427; of faulting, 426; resources of, 416; shore features of, 453-459; stream-eroded, 416-427
Hogback ridges, 443
Hook, 893
Horizon of lime accumulation, 544
Horizons, soil, 532
Horizontal strata, hills in, 416
Horns, 453
Horse latitudes, 70, 77-78; weather conditions in, 78; wind rose of, 77
Horst blocks, 267, 435
Horticultural products, 698
Hot springs, 469
Hot waves, 133-134, 225
Houses, 630-637; adobe, 633-634; in advanced civilizations, 631; in China, 632; distinguishing features of, 631632; durability of materials of, 635; form and shape of, 635-637; in Japan, 631, 632; log, 634; materials
of, 632-635; in Middle West, 636637; in New England, 636; in northern United States, 636; in Norway, 631-632; in primitive societies, 631; in Russia, 631-634; in southern United States, 636
Humid continental climates, 220-233; early summer rainfall maximum in, 222-223; frost and growing season in, 230-231; importance of summer rainfall maximum in, 223; location of, 220-221; long summers in, 226-229, 227; modified east coasts in, 221; precipitation in, 222-224; seasonal weather in, 224-226; short summers of, 229-233, 230; snowfall and snow cover in, 232-233; temperature in, 221-222; temperature gradients in, 221-222
Humid forest lands, soils of, 537
Humid mesothermal climates, 194-217; type locations of, 194
Humid microthermal climates, 218-238; effect of snow cover in, 219; location of, 218; precipitation in, 219-220; temperatures in, 218-219
Humid subtropical climate, 203-210; American, 207-208; boundaries cf, 203-204; comparison of with Mediterranean, 203; frost and the growing season in, 206-208; minimum temperatures in, 206-208; night ter:peratures in, 205-206; precipitation in, 208-210; seasonal weather of, 210; sensible temperatures in, 204-205; summer temperatures in, 204-205; temperatures in, 204-208; type locations of, 203-204
Humidity, 96; absolute, 96; relative, 97; specific, $96-97$
Humus, 523
Hurricanes, 143-145; 144; in humid subtropical climates, 209; isobars of, 143; origin of, 145 ; pressure gradients in, 143-144; rainfall in, 144; regions of occurrence, 145 ; size of, 144 ; temperature distribution in, 144 ; tracks of, 140 ; wind velocities in, 144-145
Hydration, 276
Hydrologic cycle, 94

Hygrophytes, 485
Hygroscopic dust, $\mathbf{3 0}$
Hygroscopic water, 526

I

Ice age, 370
Ice plateaus, 412-414
Ice storm, 106
Ice tongues, 414
Iceberg Lake, 451
Icebergs, 292, 413, 414, 448
Ice-cap climates, 244-245
Iceland low, 62, 80, 141
Ice-scoured hill regions, 427
Ice-scoured plains, drainage in, 350;
features of, 349-353
Ideal climate, 608
Ideal continent, distribution of climates on, 158-159
Igneous extrusions, 269; intrusions, 270
Igneous rocks, 256
Illuviation, 533
Imperial Valley, 333
Inclination of earth's axis, 11
India, coal in, 567; industrial development of, 729; iron ores of, 586
Indian River, Florida, 395
Indian summer, 226
Industrial belt of southern Japan, 789
Industrial patterns of war and postwar industries, 731
Industrial plant, the, 705
Industrial region, Rhine-Westphalian, 724
Industrial resources of the U.S.S.R., 726
Industrial Revolution, 608; effect upon population growth, 609
Industrial workers, 707
In-facing escarpments, 319
Inland navigation, 752-755; value of lakes for, $\mathbf{4 8 1}$; value of streams for, 479
Inland waterways, Great Lakes, 753-755
Insect life in tropical rainforest, 492
Inside passage, 458
Insolation, 33-40; absorption of by atmosphere, 39; amount received at various latitudes, 38; annual distribution of, 38; diffuse reflection of, 39; distribution of, at earth's surface, 37-40; distribution from pole in
pole, 37-38; distribution at time of equinoxes, $37-38$; distribution of; at time of summer solstice, 38 ; effects of atmosphere upon, 38-40; factors determining amount received, 33-34; reaction of land and water surfaces to, 40-42; selective scattering of, 38-39; speed of, 33; wave lengths of, 33, 40
Instability, atmospheric, 102-103
Interculture, 674
Interfluves, 284; in young plains, 313
Interior bituminous coal fields, 562
Interior drainage, 378
Intermontane plateaus, 403
International date line, 16
Intertropical front, 76
Intrazonal soils, 531
Intrusions, igneous, $\mathbf{8 7 0}$
Intrusive rocks, 256
Inversions of temperature, 49
Iron industries of England, 720
Iron ore, bog, 260
Iron-ore deposits, of Europe, 584; of Lorraine, 723
Iron-ore ranges, 581
Iron ores, distribution of, 580-587
Iron and steel plant, 706
Irrigated land, soils of, 548; of United States, 476
Irrigation, waters used for, 476
Isarithmic maps, 22
Isobars, definition of, 60
Isogonic lines, 17
Isothermal maps, 52-55
Isotherms, actual temperatures, 55 ; sea level, 55

J

Japan, coal in, 567; cropped land in, 671; industrial development of, 728; population increase in, 612
Joints, 265
Jura Mountains, 420

K

Kame-and-kettle moraine, 363
Kames, 363, 368
Karroo. 404.

Karst, 281
Karst lakes, $32 \dot{4}$
Karst plains, 321
Karst regions, 323
Karst springs, 324
Kentucky karst region, 324
Kettle ponds, 364
Kettles, 363, 368
Knobs, 321
Köppen's classification of climates, 156157
Krivoi Rog, 584, 726
Kuznetsk Basin, 566, 727

L

Labor, supply of, 709
Labrador Current, 90
Laccolithic mountains, 436
Laccoliths, 270, 435
Lacustrine plains, 370
Lagoons, 393
Lake Agassiz, 371, 372
Lake Eyre, 379
Lake Louise, 451
Lake Michigan manufactural region, 716
Lake Superior ores, 581
Lakes, 351, 360, 364; chain, 360; crater, 439; in Finland, 353; glaciated mountain, 449; in Glacier National Park, 450; marginal, 370; oxbow, 336; salt, 378, 411; value of for inland navigation, 481
Lambert's azimuthal equal-area projection, 788
Lancashire coal fields, 781
Lancashire-Yorkshire industrial region, 721
Land, agricultural, 667; area in farm crops, 671; in farms, 668
Land and sea breezes, 86-87
Land and water, contrasts in heating and cooling of, 41-42
Land routes, 741-752; carriers on, 741-743
Land relief and water-power sites, 478
Land surfaces, heating of, 40-42
Land survey, American systems of, 791795
Landforms, origin of, 261; types of, 301

Landscapes, climatically induced, 769; mature, 769-770
Latent energy, 95
Latent heat of condensation, 95
Lateral moraines, 447
Laterite, 535
Lateritic red soils, 537
Lateritic red and yellow soils, 673
Latifundian village, 646-648
Latin America, population distribution in, 620, 621
Latitude, length of degrees, 12
Latitudinal shifting of wind belts, $80-82$
Laurentian Shield, 581, 588
Laurentian Upland, cultivated land in, 669
Lava flows, $\mathbf{9 6 9}$
Lava plateaus, 405
Leaching, 277, 282, 529
Lead and zinc ores, 587
Leeward, 67, 108
Length of day, 34-35
Leningrad industrial region, 787
Levees, natural, 889,387
Lianas, 491
Libyan erg, 382
Lichens, 516
Light, effects on vegetation, 484
Light industries of Japan, 798,
Light manufactures, 703; German, 725
Lighter tropical forest, 493, 494
Lightning, 149
Lignite, 556, 725; European, 566; North American, 563
Lime accumulation, horizon of, 544
Limestone, 259; of Indiana, 591
Limonite, 580, 585
Lincoln Wolds, 318
Line ships, 759
Linear ridges and valleys, 480
Lithic regions, 261
Lithographic limestones, 591
Lithosphere, 255
Liverpool, England, tides at, 401
Livestock farming, 675, 693
Livestock production, 674; systems of, 675
Livestock ranching, 675, 683
Livestock unit, 675
Local relief, 303
Local thunderstorms, 148, 150-151

Location, 11, 14
Loess, 300, 380; deposits of, in steppes, 383; in Argentina, 384
Loess plains, 383-386
London Basin, 319
London manufacturing center, 780
Long-leaf, loblolly pines, 507
Longitude, 13; length of degrees, 14; and time, 15
Long-lot farms, 651
Longshore current, 298
Los Angeles-San Bernardino lowland, 343
Low latitude desert, 180-186; cloudiness and sunshine in, 182-183; cool littorals of, 185-186; daily maxima and minima in, 183-184; precipitation in, 181; temperatures in, 183-184
Low latitude forests, 489-495
Low latitude steppes, 186-188
Lowland fog, 99-101
Lumber industry, 708

M

Magnetic declination, 17
Magnetite, 580, 585
Magnitogorsk, 727
Mammoth Cave, 259, 323, 324
Mangrove swamp forests, 493
Man-land ratio, 622
Mantle rock, 261, 520
Manufactural features, classes of, 704
Manufactural importance, measures of, 704
Manufactural industry, classes of, 703
Manufactural regions, of North America, 711-718, 712; of the Southern Hemisphere, 730; of U.S.S.R., 726; of the world, 711-731
Manufacture, British centers of, 780; Central European districts of, 725; French and Belgian centers of, 722; function of, 701; of motor vehicles, 716; population engaged in, 707; South European centers of, 726
Manufacturing, conditions affecting the location of, 707-711; distribution of European centers of, 719; use of land for, 701

Map projections, 19, 781-790
Map scales, 18, 26
Maps, contour, 22; isarithmic, 22; nature and uses of, 18-26; representations on, 19; topographic, 25
Maqui, 498
Marble, 960
March of temperature, 47
Marginal lakes, 370
Marginal moraines, 295, 354; patterns of, 361; stony, $\mathbf{3 6 3}$
Marine deposition, shoreline features resulting from, 392
Marine erosion, shoreline features resulting from, 391
Marine terraces, 393, 454
Marine west coast climate, 210-217, 456; boundaries and extent of, 211 ; cloudiness and precipitation in, 216-217; cold spells in, 214; frost in, 213; location of, 210-211; origin of precipitation in, 216; precipitation in, 214-217; rainy days in, 216; seasonal weather in, 217; snowfall in, 215-216; temperatures in, 211-214, 212; winter minima of, 213-214
Market, nearness to, 710
Market gardening, 698
Market towns, 655-658; definition of, 655; functional areas in, 655-656
Material culture, 601
Materials, earth, 255
Matterhorn, 452
Mature landscapes, 769-770
Mature soils, 531
Mature streams, 285
Maturity, erosional, 286
Meadow, 488
Meander scars, 336, 337
Meanders, 286; migration of, 335
Measures of manufactural importance, 704
Meat packing, 708
Meat-packing plants, 717
Mechanical energy, effect on civilization, 608; source of, 708
Mechanical weathering, 278
Medial moraines, 447
Mediterranean agriculture, 689

Mediterranean climate, 194-202; frosts and growing season in, 198-199; in interior locations, 197, 198; in marine locations, 196-197; precipitation in, 200-202; regions of, 690; seasonal temperatures in, 197-199; seasonal weather of, 202; snowfall in, 200; summer drought in, 201; temperature in, 196-199, 196; type locations of, 194-196; world distribution of, 195
Mediterranean forests, 495-498, 496
Mediterranean route, 756
Mercator's projection, 783
Merchant marine, 759-760
Meridian, prime, 13-14
Meridians, 12
Mesa, 410
Metallic minerals, 577-590
Metals, native, 578; precious and semiprecious, 587
Metamorphic rocks, 260
Microorganisms in soil formation, 530
Mid-Continent oil region, 572
Middle latitude deserts, 190-191
Middle latitude dry climates, 188-193; location of, 188; precipitation in, 189-190; temperatures. in, 189; weather element in, 190
Middle latitude forests, 495-509
Middle latitude grasslands, 511-513
Middle latitude steppe, 191-193, 192
Midlands region, 720
Military Ridge, 319
Millibar, definition of, 59
Milk-producing regions, 697
Milpa agriculture, 488
Mineral extraction, cultural features associated with, 595
Mineral fertilizers, 593
Mineral fuels, 554
Mineral regions, 587
Mineral resources, classes of, 577
Minerals, definition of, 255
Mining industries, local importance of. 597
Mining population and settlements, 596
Mississippi Delta, 327, 330
Mississippi floods, 339
Mobile processes, 275, 278
Mohawk Valley, 373

Mollweide's homolographic projection, 784
Monadnocks, 287, 316
Monsoon, in the United States, 84-86; Indian, 84-85; summer, 84; winter, 83-84
Monsoon forests, 493
Monsoon winds, 82-86
Morainal belts, 361
Moraines, 294; kame-and-kettle, 363; marginal, 361
Moskva industrial region, 727
Moss tundra, 516
Motions of earth, 10
Motor vehicles, 744-745; manufacture of, 716
Mountain climates (see Highland climates); vertical temperature gradients in, 247-248
Mountain divides, 442
Mountain features, classes of, 432
Mountain foothills, 442
Mountain glaciers, 291, 445, 446
Mountain gorges, 441
Mountain passes, 444, 453
Mountain peaks, 444, 453
Mountain ranges, 435; differential erosion in, 435; volcanic, 436
Mountain regions, shore features of, 453459
Mountain resources, 432
Mountain sickness, 246
Mountain snow fields, 446
Mountain spurs, 443
Mountain systems, 434; patterns of arrangement of, 434
Mountain valley forms, 441
Mountain and valley winds, 87
Mountains, distinguishing features of, 431; distribution of, 432; local relief of, 431 ; as playgrounds, 432; streameroded details of, 440-445
Multiple cropping, 674, 687
Muskeg, 353, 504

Nashville Basin, 320
Native metals, 578
Natural bridges, 323

Natural features, interrelationship of, 768-769
Natural gas, 572, 715
Natural levees, 289, 327
Natural resources, 460; conservation of, 462
Natural vegetation, 483-517; adjustments of, to cold, 485; annuals, 485; effects of soil on, 486; effects of temperature and light on, 484-485; effects of water on, 485-486; forest associations in, 487; optimum temperatures for, 484; perennials, 485; plant associations in, 484; principal classes of, 486-487; specific zero for, 484; vegetative period of, 485
Neap tide, 400
Needle tree forest, definition of, 489
New drift plains, 367
New England, building stones of, 591; ice-scoured hills in, 428; manufactural districts of, 712; shorelines of, 389
New York City manufacturing center, 713
New York industrial belt, central, 714
Newfoundland iron ores, 584
Newly emerged coastal plains, features of, 307
New Zealand, Canterbury Plain of, 344; cropped land in, 671; manufacturing in, 730
Niagara cuesta, 319
Niagara Falls, 319
Niagara-Ontario manufactural region, 714
Nickel, 588
Nile Delta, 326, 332
Nile Valley, oasis of, 688
Nimbus clouds, 106
Nitrate of soda, 594
Nitrogen, 29, 522, 594
Nomadic herding, 675, 682
Nonmetallic nonfuel minerals, 590-595
Nonrenewable resources, 462
North America, manufactural regions of, 711-718, 712; population distribution in, 618, 620
North Atlantic Drift, 90
North Atlantic route, 756
North Pacific routes, 758
Northern Interior Coal Field, 562

Norway, fiords, 456
Nuclei of condensation, 99
Nunataks, 414, 427

0

Oasis, 332, 343, 344, 377, 389, 474; of the Nile Valley, 688
Occlusion, 125
Ocean carriers, 759-760
Ocean currents, 88-92, 89; climatic significance of, 90-92; cool, 90; effects on fog and precipitation, 91; effects on temperature, $90-91$; indirect climatic effects of, 91 ; scheme of, 88-90; upwelling of, 90 ; warm, 90
Ocean deeps, 8
Ocean highway, 755
Ocean tides, 398
Ocean trade, 755-760
Ocean trade routes, 755-759, 757; Mediterranean, 756-758; nature of, 755756; North Atlantic, 756; North Pacific, 758; Panama Canal, 758; parts of, 756; South African, 758; South American, 758
Oceans, area of, 9
Offshore bars, 371, 393, 394
Oil and gas fields, American, 570; of southeastern Europe, 574; of southern Asia, 575
Oil shales, 575
Okefenokee Swamp, 308
Old age, erosional, 286
Old stream-eroded plains, 312
Older alluvium, 325; in Great Plains, 347; in India, 345; in Japan, 345; plains of, 344-347; in the Po Plain, 346
Older drift, 296
Older drift plains, 367
Ontario, western, ice-scoured plains of, 351
Ontario Clay Belt, s71, 372
Open-field system of agriculture, 646
Open-pit mining, 682
Optimum temperatures for plants, 484
Orange River, 404
Orbit, earth, 11
Ore deposit, definition of, 578; enrichment of, 579; physical associations of, 578

Ores, of iron, qualities of, 580; of the Lake Superior Region, 581, 588
Organic matter in soil, 522; and soil fertility, 523
Orient, population distribution in, 615617
Orographic precipitation, 107-109
Orthographic projection, 786
Outcrops, 261
Out-facing escarpments, 819
Outliers, 319
Outwash gravels, 365, 366
Outwash plain, 295, 364, 365
Overlapping spurs, 443
Overloading of streams, $\mathbf{2 8 8}$
Oxbow lake, 336
Oxidation, 276
Oxygen, 29, 255
Ozark hill lands, 419

P

Pacific Coast, manufacturing districts of, 718
Pacific Coast coal fields, 563
Padre and Matagorda Islands, Texas, 395
Palisades, 426
Pamlico Sound, 396
Pampa of Argentina, 346
Paraffin, 571
Parallel ranges, 435, 436
Parallel ridges, 421
Parallelism of the earth's axis, 11
Parallels, 12, 13
Paramos, 248
Parasites, 491
Parasitic cones, volcanic, 438
Parent material of soil, 520
Paris Basin, 319, 320
Park savanna, 488-489
Passes, mountain, 444
Patagonia, desert of, 188; plateau of, 403
Pattern of agricultural land, 669
Peaks, mountain, 444
Peat, 556
Pediment, 376, 379
Peneplains, 287, 316, 317
Perennials, 485; in deserts, 514
Permanent pasture, 670

Persons employed in manufacturing industries, 706
Perspective projections, 786
Peru Current, 91
Petrification, 282
Petroleum, 568-575, 715; structural associations of, 568
Petroleum fields of the United States, 571
Phosphorus, 594
Physical geography, 4-5, 601; time element in, 262
Physical properties of soils, 525-529
Piedmont alluvial fans, 291, 340, 341
Piedmont plateaus, 403
Pilot balloons, 142
Pitted òutwash, 364, 366
Pittsburgh industrial area, 705
Pittsburgh-Lake Erie manufactural region, 715
Place utility, 734-735
Plains, aeolian sand, 380; alluvial, 325; alluvial basin, 343; classes of, 304306; of concentric ridges and lowlands, 319; cuestaform, 318; definition of, 303; delta, 325; desert 374; distribution of, 304; drift, features of, 353; glacial lake, 370; glaciofluvial, 364; ice-scoured, features of, 349-353; karst, 321; loess, 383386; newly emerged, 308 ; of older alluvium, 344-347; outwash, 364; piedmont alluvial, 340, 341; streameroded, 306-321; stripped, 377
Plane of the ecliptic, 11
Planetary winds, terrestrial modifications of, 80-88
Plankton, 517
Plantation agriculture, 688
Plantation settlement, 646-648
Plants, water requirement of, 526
Plateau bolsons, 410
Plateáu features, in dry climates, 406
Plateaus, classes of, 402-406; climatic conditions of, 406; definition of, 402; ice, 412-414; in humid climates, 411
Playa-lake beds, 548
Playa lakes, 378
Playa salt deposits, 593
Plucking, glacial, 294, 350, 451
Pocosins, 308

Podzol, 536, 539, soils associated with, $3+1$
Polar Atlantic air masses, 120
Polar climates, 239-245; Arctic vs. Antarctic, 240; hours of daylight and darkness in, 239 ; locations and boundaries of, 239-240; precipitation in, 240-241; temperatures in, 240-241
Polar Continental air masses, 119
Polar front, 73, 79
Polar high, 61
Polar Pacific air masses, 120
Polar pressures, 61-62
Polar winds, 79-80
Polders, 331
Pollution of wells, 472
Polyconic projection, 790
Ponds, 364
Pools, oil, 569
Population, 604-629; causes of future redistribution, 615; distribution patterns, 612-621; engaged in manufacture, 707; future settlement areas, 628; growth of, 609; growth of, in Europe, 609; numbers, 605-612; possible changes in world distribution, 614-615; rate of growth in Japan, 612; rates of increase for selected countries, 611; total area occupied by, 604; trends in, 608-612; world distribution patterns of, 612615
Population density, agricultural, 624; arithmetic, 622; economic, 623; Europe, 626; factors affecting, 622623; in Japan, 623-624; physiological, 623-624; for selected countries, 622; United States, 627; world, 625
Population distribution, in Africa, 620621; in Australia, 620; in Canada, 620; in Europe, 617-618; in Great Britain, 617; in Hokkaido, 616; in Latin America, 620, 621; in North America, 618-620; in Siberia, 617; in southeastern Asia, 615; in western Europe, 617
Population movements, 627-628; in China, 628
Population statistics, by continents, 605; for selected countries, 605

Pore space, for ground water, 467; in soils, 528
Portland Canal, 457
Ports, 763-766; entrepôt, 766; free, 766; harbors of, 764; mechanical facilities of, 766; qualities of, 764; terminal, 766; types of, 766; unbalanced trade of, 764
Potash, 594; German, 725
Pottery clay, 592
Power and fuel, 708
Power transmission, hydroelectric, 478
Prairie, 488, 511-512
Prairie soils, 544, 673
Precious or semiprecious metals, 577, 587
Precipitation, cold front, 132; convectional, 106-107; in converging air currents, 131; cyclonic, 109; dependability of, 109; forms of, 106; orographic, 107-109; seasonal periodicity of, 109; warm front, 131-132
Precipitation regime, 110
Pressure, 58-66; equatorial low, 60-61; horizontal distribution of, 60-66; importance of as a climatic element, 58-59; January, 63, 65-66; July, 64, 65-66; latitudinal belts of, 61; profile of, 62; relation to winds, 66-68; relationship to temperature, 59 ; seasonal centers of, 65-66; thermal and dynamic control of, 62, 65; vertical distribution of, 60
Pressure gradient, 66-67
Prevailing winds, 67
Primary manufactures, 703
Prime meridian, 13-14
Processes, earth, 253; gradational, 275; mobile, 278 ; static, $\mathbf{2 7 6}$; tectonic, $\mathbf{2 6 4}$
Profile, soil, 532
Puna, 248

Q

Quartz, 956
Quartzite, 260

R

Radial mountains, 435

Radial pattern of drainage, 437

Radiation fog, 99-101
Radio, 763
Radiosondes, 142
Radius of the earth, 8
Railroads, 747-752; advantages of, 747748; in Africa, 751-752; in Asia, 751; in Australia, 752; in Canada, 749750; distribution of, 748-752; in Europe, 750-751; in North America, 749; in South America, 752; in the United States, 749-750
Rain, 106
Rain shadow, 108
Rainfall reliability, 174, 192
Ranching, livestock, 675, 683
Range, tidal, 401
Ranges, mountain, 435
Ranges of temperature, 56-57
Rapids, 285, 314, 352, 360; of Congo River, 404
Raw materials, 708
Recessional moraines, 295, 361
Recreation, lakes and streams as centers of, 481
Recurved spit, 393'
Red River Plains, 372
Reg, 380
Regional geography, 5-6
Regions, agricultural, 682-699; cordilleran, 433; of diastrophism, 268; of earthquake occurrence, 273 ; of manufacture in Asia, 728; of volcanic activity, 271; of the world, manufactural, 711-731
Regolith, 261, 520; colors of, 580
Reindeer, 683
Relative humidity, 97
Relief, effects of glaciation on, 354; local, measurement of, 303
Rendzina, 546
Resources, of hill lands, 416; inexhaustible, 461; mountain, 432; renewable, 462
Retarded adiabatic rate, 103
Retreat, glacial, 291
Retrospect, 768-775
Rhine Delta, 330
Rhine-Westphalian industrial region, 724/
Ria shorelines, 389, 455; utility of, 390
Rias,' 430

Rice, dominance of in southeastern Asia, 687; yields of, 673
Rift valleys, 266
Rio de la Plata, 391
River breaks, 313
River Clyde, 722
River floods, 339
River systems, 284
Rivers, estuarine, 389; as trade routes, 759-753
Roads, 742-747; functions of, 743; mileage of, 745; patterns of, 745-747; in the United States, 743
Roches moutonnées, 350, 359, 427
Rock for construction, 591
Rock basis, 350, 351
Rock-controlled drift surface, 354, 357
Rock flour, 355
Rock salt, 572
Rock structure, 268; and ground-water supply, 472
Rock terraces, 315
Rocks, 255, 256; igneous, 256; metamorphic, 260; phosphate, 595; pore space in, 467; sedimentary, 257
Rocky Mountains, 436; coal fields of, 563; oil regions of, 572
Rolling plains, 305
Rotation of the earth, 10
Rough plains, 305
Rounded uplands, 424, 425
Routes of transport, 741-763
Rudimentary cultivation, 685
Ruhr Valley, 566; coal fields of, 724
Running water, aggradation by, 288; gradation by, 282
Runoff, 283
Rural nonfarm population, in Cnited States, 619
Rural village, development of, 645-646; in China, 652-654; in colonial Georgia, 650; in colonial Kentucky and Tennessee, 650; in colonial New England, 648-650; in colonial Virginia, 650; distribution of, 648; in Japan, 652; latifundian type of, 646-648; patterns of, 654-655; shifting type of, 646; in the United States, 650-652; in Utah, 651

Russia, coal fields of, 566; industrial resources of, 726; oil fields of, 574

S

Saar Basin, 566
Saeter, 449, 458
Sagebrush, 514
St. Lawrence waterway, 754
Salmon fishing, 519
Salt, 592
Salt lakes, 378, 411
Salt pans, 379
Salt-producing regions, 593
Sand, industrial uses of, 592
Sand bars, 289
Sand-dune areas, features of, 381
Sand dunes, 300, 380, 382, 395
Sand plains, aeolian, 380
Sandstone, 259
Sandy Hook, 393
San Joaquin Valley, 343
San Juan Mountains, 437
Sanson-Flamsteed sinusoidal projection, 784
Saturation point, 96
Savanna, 487, 509-511
Savanna climate, 169-176; amount of rainfall in, 171; boundaries of, 169-170; location of, 169-170; monsoon variety of, 173-174; precipitation in, 171-173; rainfall regime of, 171-173, 172; rainfall reliability in, 175-176; relation to air masses, 172; seasonal weather of, 174-175; temperatures in, 170-171; upland variety of, 176
Savanna forests, 493
Scales, map, 18
Scandinavia, ice-scoured hills in, 428
Scarp, fault, 265
Scenery, glacial, 451
Schist, 260
Scoriaceous lava, 438
Scotland, graben, valley of, 564
Scottish Lowlands, manufactural region of, 722
Scrub forest, 494-495
Sea breeze, 86-87
Sea mammals, 519

Sea water, salt in, 592
Seals, 519
Seasonal landscapes, 673
Secondary manufactures, 703
Sections, land, subdivisions of, 794
Sedentary agriculture, 686
Sedges, 516
Sedimentary rocks, 257, 299
Seismograph, 272
Self-fluxing ores, 580, 585
Sensible temperatures, 57, 163; in humid subtropical climates, 204-205; in tropical rainy climates, 163
Settlement types, 637-666
Settlements, 637-666; agglomerated, 644, 665; dispersed, 637-644; primary types, 637
Shale, 259, oil, 575
Shape of earth, 8
Sheet wash, 551
Shensi-Shansi coal fields, 567, 728
Shield volcanoes, 269
Shifting cultivation, 685
Shipbuilding, English, 721; in Scotland, 722
Shoe manufacture, 708
Shore features, of hill lands, 430; of hill and mountain regions, 453-459
Shorelines, conditions affecting, 387; coral-reef, 397; of Chesapeake Bay, 390 ; of emergence, 388 ; features resulting from marine erosion, 391; of submergence, 388 ; of submerging highland coasts, 455; ria, 389
Short-grass steppe, 512-513
Shrubwood, definition of, 487
Siberia, coal fields of, 566
Siderite, 580
Sierra Nevada Mountains, 436
Silesia, resources of, 725
Silicon, 255
Silk manufacture, 709
Sinks, limestone, 322
Skerry guard, 458
Slate, 260
Sleet, 106
Snow, 106; in humid continental climates, 229; in humid subtropical climate, 210; in ice-cap climates, 245 ; in Mediterranean climates, 200; in
middle latitude dry climates, 180 , in subarctic climates, 237; in tundra climate, 244
Snow cover, in humid continental climates, 229; in humid microthermal climates, 219; in humid subtropical climates, 210
Snow fields, mountain, 446
Snowfall, in humid continental climates, 232-233; in marine west coast climates, 215-216
Sodium nitrate, 379
Soft water, 468
Softwood forest, definition of, 489
Sogne Fiord, 458
Soil chemistry, 521-525
Soil classification, mature soils as basis of, 534
Soil color, 529
Soil conservation, 549
Soil creep, 424
Soil development, biologic factor in, 530 ; climatic factor in, 530
Soil elements, 521
Soil erosion, destructive, 549; causes of, 550 ; reduction of, 553
Soil fertility and organic material, 523
Soil formation, factors in, 529 *
Soil horizons, 532
Soil lime, 594
Soil profile, 531, 532; immature, 533, mature, 533
Soil structure, 587
Soil temperature, 529
Soil texture, 525
Soil zones, 536
Soils, effects on natural vegetation, 486; gray-brown forest, 697; of humid forest lands, 537; major classes of, 535; mature, 531; organic matter in, 522; parent material of, 520 ; physical properties of, 525-529; pore space in, 528; prairie, 544; of subhumid grasslands and deserts, 543548; of subpolar regions, 549; tropical and subtropical, 537
Solar energy (see Insolation)
Solstices, 36-37
Solution, process of, 276, 281; features of, 321

Source regions, 115; types of, 117
South Africa, coal fields of, 568
South America, coal in, 564
South Wales coal field, 722
Southern Appalachian manufactural region, 717
Southern hemisphere, manufactural regions of, 730
Southern pine forest in the United States, 507
Southwestern Interior Coal Field, 562
Specific heat, 41
Specific humidity, 96-97
Specific zero for plants, 484
Spillways, European, 373; glacial, 372
Spits and hooks, 389, 393
Spring tide, 400
Spring water, uses of, 471
Springs, 468; large, 470
Spurs, mountain, 443
Squall line, 132
Squall winds, 149-150
Stability, 102-103
Staked Plains, 346
Stalactites and stalagmites, 281
Standard time, 15
Static gradational processes, 275, 276
Stations, 650
Steppe climates, 177; with high-sun rainfall, 187-188; in low latitudes, 186188; with low-sun rainfall, 187; in middle latitudes, 191-193; rainfall reliability of, 192
Steppes, 177, 488, 510, 512-513; middle latitude, 512-513; soils of, 547; tropical, 509-511
Stereographic projection, 786
Storm tràcks, 140-142, 141
Storms, 111-154; anticyclonic, 111-140; cyclonic, 111-147; as generators of. precipitation, 111; hurricares, 143145; thunder, 147-154; tornadoes, 154; weaker tropical, 146-147

Strata, 257

Stratified rock, 258
Stratosphere, 48-49
Stratus clouds, 106
Stream dissection, depth of, 313
Stream-eroded hill regions, 416-427

Stream-eroded plains, 306-321; mature, 315 ; old, 316 ; young, 313
Stream erosion in mountains, 445
Stream flow and power development, 477
Stream sorting, 288
Streams, of coastal plains, 308, erosion by, 283; origin of, 282; of young plains, 313; youthful, 359
Stripped plains, 377
Structure, artesian, 474; oil, 569; rock, 268; soil, 527
Subangular boulders, 294
Subarctic climates, 233-238; frozen ground in, 235; growing season of, 234; lengths of day and night in, 234; location and boundaries of, 233; precipitation in, 237-238; snow and snow cover in, 237; summer ternperatures in, 233-234; winter temperatures in, 235-237
Subarctic coniferous forests, 503-504; animal life in, 504
Submergence, shoreline of, 388
Subpolar lows, 80
Subpolar regions, soils of, 549
Subsistence agriculture, 686
Subsistence crop and livestock farming, 695
Subtropical belt of winds and calms, 70
Subtropical belts of variable winds and calms, 77-78
Subtropical high, 61, 72
Subtropical low, 61
Sugar industry, Cuban, 688
Sulphur, 593
Surface of discontinuity, 116-117
Surface relief and soil development, 530
Surface waters, 475-482
Swamps, glacial, 360; of coastal plains. 308
Sweden, iron ores of, 585
Swells and swales, 357, 359
Switzerland, map of, 20
Synclinal mountains, 267
Synclinal valleys, 435
Syncline, 267
Systematic geography, 5-6
Systems of livestock production, 675

T

Table, ground-water, 466
Tablelands, 403
Taiga, 235, 503-504, 506
Talus, 408
Talus slopes, 442
Tarim Basin, 343
Teak forests, 494
Tectonic processes, 264
Telegraph, 762
Telephones, 762
Temperature gradients, 698; in humid continental climates, 221-222
Temperature inversions, 49
Temperature zones, 155
Temperatures, 'annual, 55; annual range of, 56-57; atmospheric, 33-57; daily march of, 47; distribution of, 48-57; effects on vegetation, 484; horizontal distribution of, 52-57; January, 53, 55-56; July, 54, 55-56; relation to air pressure, 59; seasonal march of, 47; sensible, 57; vertical distribution of, 48-50
Tents, 633
Terminals, 763-766
Termites, 493
Terraces, 442; alluvial, 338; marine, 454; rock, 315; wave-built, 392, wave-cut, 391
Terrestrial modifications of winds, $80-88$
Terrestrial radiation, 43-44; wave lengths of, 40
Texas Black Prairies, 311
Textile centers, English, 721
Textile manufacture, in India, 729; in Japan, 728, in Russia, 727
Texture, soil, 525
Thermograph tracing, 137, 138, 152
Thorn forest, 494-495
Thornthwaite's classification of climates, 156
Thunder, 149
Thundersquall, 149-150
Thunderstorms, 147-154, 148; anvil cloud in, 151; classes of, 150-153; cold front in, 151-153, 152; distribution of, 153-154; hail in, 148-149; in humid microthermal climates, 223;
in humid subtropical climates, 209; intra-air mass, 150-151; in marine west coast climates, 216 ; precipitation in, 148; structure of, 148; in tropical climates, 165, 166, 172, 175
Tibet, plateau of, 403
Tidal inlets, 393
Tidal range, 401
Tidal wave, 273
Tides, at Bay of Fundy, Nova Scotia, 401; at Liverpool, England, 401; nature of, 399; ocean, 398
Tierra caliente, fria, and templada, 248
Till, glacial, 294
Till plain, 355-360; drainage patterns in, 359; surface features of, 357
Till-plain lakes, permanency of, $\mathbf{3 6 0}$
Till sheet, 354,
Timber land, distribution of, in the United States, 508
Time, longitude and, 15
Tin, 590
Topographic maps, 25
Topographic quadrangles, U.S., selected list of, 796
Tornadoes, 154
Trade, causes of, 735-737; commodities entering into, 737-738; foreign, 737740; world, 738-739
Trade routes, 741-763; land, 741-752; types of, 741
Trade winds, 70, 76-77; air masses in, 76-77; as sailing routes, 77; wind rose of, 75
Tramp ships, 759
Transhumance, 684
Tránsportation, 734-766; costs of, 710; features associated with, 737; on Great Lakes, 753-754; and localization of manufacture, 709
Trellis drainage, 422
Trinidad, asphalt lake of, 574
Tropical air masses, 172
Tropical cyclones, 143-145
Tropical desert, 180-186
Tropical forests, semideciduous, 493; as a source of lumber, 495
Tropical front, 76
Tropical grassland soils, 547

Tropical grasslands, 509-511; animals in, 510
Tropical Gulf air masses, 120-121
Tropical hurricanes, 76
Tropical Pacific air masses, 121
Tropical rainforest, 489-493; animal life in, 492; color of, 490; composition of, 490; external aspects of, 489-491; internal aspects of, 490, 491-492; light conditions in, 491; subtypes of, 493
Tropical rainforest climate, 161-169; annual temperatures of, 161-162; daily march of temperature in, 163164; daily temperatures of, 162-163; daily weather of, $166-167$; eastern littorals in, 167-168; location of, 161; monsoon littorals of, 168-169; precipitation in, 164-166; sensible temperatures in, 163; winds in, 166; world distribution of, 167
Tropical rainy climates, $160-176$; boundaries of, $160-161$; definition of, 160 ; location of, 160-161; precipitation in, 161 ; temperatures in, 160
Tropical steppe, 186-188
Tropical and subtropical soils, 537
Tropical superior air masses, 122
Tropics, The, 13
Tropophytes, 486
Troposphere, 49
Truck farming, 698
Tundra, 515-516; animal life in, 516-517; soils of, 549
Tundra climate, 241-244; definition of, 241; fog in, 242; frozen ground in, 242; location and boundaries of, 241; precipitation in, 243-244; snow in, 244; summer temperatures in, 241242; winter temperatures in, 242-243
Tupelo forest, 508
Types of climate, 155-252; outline of, 157
Types of landforms, 101
Typhoons, 143-145

U

Ubiquitous industries, 711
Underground solution, 281
Underground streams, 473

Undertow, 297
Undulating plains, 305
Union of South Africa, manufacturing in, 731
Unit, livestock, 675
United States, cropped land in, 670; farm population of, 619; petroleum fields of, 571; rural nonfarm population of, 619 ; urban :opulation of, 618
Unstratified drift, 355
Upland savanna, 176
Uplands, dry-plateau, 409
Upwelling of cool water, 90
Ural industrial region, 727
Urban population in United States, 618
Urbanization, distribution of, 660-661
U-shaped valleys, $448,455,457,458$

V

Valencia, Spain, lowlands of, $\mathbf{3 4 4}$
Valley forms, mountain, 441
Valley glaciers, 291, 446
Valley train, 295, 366
Valleys, 284; dry-plateau, 407; U-shaped, - 455

Varved clays, 370
Veering wind shift, 128-129
Vegetation cover, 483-577
Vein, 281
Veld, 404
Venezuela, oil in, 574
Victoria Falls, 404
Volcanic activity, 269; eruptions, 439; regions of, 271
Volcanic cones, 437-440; features of, 438
Volcanic mountain ranges, 436
Vulcanism, 269

W

Walrus, 519

War industries and postwar industrial patterns, 731
Warm front, 116, 124, 125
Warm-front rainfall, 131-132
Warm-front weather, 139
Warping, crustal, 268
Watchung Ridges, 426

Water, capillary, 526; effects on natural vegetation, 485-486; hardness of, 468; hygroscopic, 526; per capita consumption of, 465 ; in the soil, 525 ; surface, 475-482; used for irrigation, 476; uses of, 465
Water gaps, 421, 422, 423
Water power, 352,451 ; conditions favorable to, 477; of France, 722; of southern Europe, 726; world distribution of, 478; world resources, 480
Water-power sites and land relief, 478
Water requirement of crops, 476
Water routes, 758-759
Water supply, in dune regions, 382; sources of, 466
Water surfaces, heating of, 40-42
Water vapor, 30; importance of, 93; latent energy in, 95 ; sources of, 93-94
Waterfalls, 285, 350, 428, 450; retreat of, 286
Waters of the earth, area of, 296 -
Wave work, 296
Wave-built terrace, 392
Wave-cut cliffs, 298, 392, 454
Wave-cut terrace, 391
Waves, deposition by, 298; gradation by, Xèrophytes, 485 296; tidal, 273
Weak tropical cyclones, 165
Weaker tropical lews, 146-147
Weald, The, 320
Weather, at cold front, 139; controls of, 30-31; definition of, 30; at warm front, 139
Weather elements, 30
Weather forecasting, 142-143
Weather map, 124, 133, 142-143
Weathering, 276-278, 520; desert, 374
Welland Canal, 754
Wells, 471; artesian, 473; city water supply from, 466
Westerlies, 70; northern hemisphere, 79; southern hemisphere, 79; weather in, 78-79; wind rose of, 78
Western Interior Coal Field, 562
Wesiphalia, 566
Whale fishing, 519

White frost, 99
Wind abrasion, 379
Wind belts, 74-80; latitudinal shifting of, $80-82$
Wind erosion, 379
Wind gaps, 422
Wind roses, 75, 77, 78
Winds, 66-68; Beaufort scale of, 68; deflection of, 70-71; direction, 67; gradation by, 299; monsoon, 82-86; on a nonhomogeneous earth, 71; on a nonrotating homogeneous earth, 69-70; planetary system of, 68-80; prevailing, 67; relation of to pressure, 66-68; on a rotating homogeneous earth, 69-70; surface, 74-80; thermally controlled system of, 68-69: velocity of, 67
Windward, 67
Wireless, 763
Woodlands, in Japan, 687
Workers, industrial, 707
World patterns, 770-772
World trade, 738-739

X

$$
\mathbf{Y}
$$

Yazoo River, 337
Yosemite Valley, 451
Young stream-eroded plains, 312
Young streams, 285
Youth, erosional, 886
Youthful plateau-hill region of Australia, 425
Yucatan karst, 323
Yurts, 633

Z

Zastrugi, 412
Zinc and lead ores, 587
Zonal soils, 531
Zone of fracture, crustal, 265
Zuider Zee, 331

PLATES I TO X

Additional copies of these plates may be secured from the publisher.

[^0]: American localities the present small parcels of land are subdivisions of grants made by the kings of England, France, or Spain to noblemen or to the sponsors of settlement projects. In French Canada, for example, the present farms often are rectangular but are very long and narrow, their narrow frontage being upon a river and their length extending at right angles from the river, regardless of compass direction. Some of the counties of the Province of Quebec may be seen to have the same shape. They were established at a time when river frontage was a most prized possession but the land of the interior had little value. Various systems more or less like that of metes and bounds are prevalent in most of Europe and, in fact, in the larger part of the world.

