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PREFACE

Despite the recognition accorded statistical methods by
active workers in psychology, education, and the social sci-
ences, the average undergraduate major in these fields often
- fegards the customary course in statistics as dull and
uninteresting. And there is no denying the fact that his
actual experience in the course may serve to bolster rather
than to change his original opinions. This is apt to be true,
I believe, when the instructor assumes a degree of mathe-
" matical training, however elementary, which the under- -
graduate major in the social sciences fails to have. Even
when the student has had such training, its value may be
largely nullified by the time interval which separates it from
the course in statistics.

- Another factor producing lack of interest, I believe, is the
stress which is often placed upon long and involved problems
which are essentially exercises in multiplication, subtraction,
division, and addition. The student often regards these
problems—and perhaps rightfully so—as so much “busy-
work.” Such problems subtract from the time which the
student feels could be more profitably spent in learmng to
appreciate the use and value of statistical techmques in bhis
chosen field..

Under these conditions the student’s memories of statistics
are memories of laborious computatlons and mysterious for-
mulas, and it is these memories which he passes on to next
semester’s class. ;

This text attempts to break the vicious circle. Little stress
is placed upon calculative ability. Ihave tried in most cases
to minimize the labor of computations by the use of illustra~
tions and problems constructed with that end in view. In

v .



vi Preface

addition, coding techniques for reducing the size of numbers
are introduced early and stressed throughout. I would not
change this emphasis in the iniroductory course even if a suf-
ficient number of calculating machines were on hand to make
one available to each student. In my opinion, it is not the
function of this first course in statistics to train computers
and machine operators. Let the beginning student get a
picture of the use to which statistical techniques can be put
in answering questions in his field of specialization. Let him
see that statistical techniques are tools, instruments. Let
him understand the simple formulas and the meaning of vari-
ous statistics. He can then learn machine techniques of
calculation if he ever needs to handle large masses of data.

To avoid assumptions concerning the student’s mathemati-
cal training, a review of elementary principles has been
included. An understanding of these should enable the
student to follow subsequent developments. Stress on this
section of the text will assist greatly in minimizing a major
source of confusion for most students. Some theory and
derivations are introduced throughout the text, but nothing
is presented, I feel, which is beyond the comprehension of the
nonmathematically trained student, if he is assisted by the
instructor. In the last analysis, 1 am eonvinced that statis-
tics, unlike many other college courses,.must be taught, not
leetured.

The content of the book follows what I hope is a pedagogi-

"cal as well as a logical order. Correlation is introduced

earlier than in most texts because it has been my experience
that students follow this development quite easily and that
interest and motivation are increased because they see in
correlation a technique of practical use. A good case could
be made for introducing correlation by way of regression.
But since regression is most often used in psychology and
education for prediction, it is reserved for a later chapter on
this topic.

Tests of significance have been stressed. One chapter has
beer devoted to the *“ test,” two to the “F test,” and one
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to the “x® test.”” It has been my experience again that .
students are able to relate these tests to problems in their
own fields and are consequently interested in them. It is not
uncommon to hear students exclaim with some degree of
elation that for the first time they have some idea of what is
meant by the frequent references to “critical ratios” and
“significant differences’ that they have encountered in their
textbooks in other courses.

In discussing tests of significance, I have emphas1zed small
sample theory since, whether the traditional attitude ap-
proves or not, more and more research as published in
psychological and educational journals is being evaluated by
small sample techniques. This does not mean, however, that
there is a rigid division between large and small sample
theory, but rather, as Kenney has said, that the “continuity
between large and small sample theory is an essential part of -
the newer attitude” (63, II, 123).

There are omissions as well as additions in this text. The
reader will look in vain for the customary treatments of par-
tial and multiple correlation. They have been omitted
because I have searched without much success to find many
applications of these statistical techniques in the literature. -
That they have their uses as well as their limitations is
fully recognized, but I feel that they may be developed more
profitably, as far as the student is concerned, in advanced
courses, where time spent on these topics will not be at the
expense of statistical techniques which are more commonly
in use. I have no excuse to offer for certain other omissions
—for example, the customary chapter on the reliability and
validity of tests, and the usual extended treatment of centiles
and scaling techniques—other than the fact that I do not
feel that they fall within the general orientation of the rest of
the book and that these are problems which might well’ be-
taken up in a course in tests and measurements.

I have, as any student must, a desire to acknowledge my

"indebtedness to various 1nd1v1duals Professor Harold Ed-
gerton of Ohio State University first impressed upon me the
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desirability of knowing more about statistical methods and
theory. Professor Lloyd G. Humphreys of Northwestern
University aroused my interest in small sample theory in 1939
and gave freely of his time in discussions of the subject. Itis
s pleasure also to acknowledge that I owe much to the various
publications of Professor George W. Snedecor, Professor
Helen M. Walker, Professor R. A. Fisher, and Professor C. C.
Peters. In addition, Professor Walker and Professor Peters
were kind enough to clarify, in personal communieations,
certain points of interpretation.

To Professors Herbert S. Conrad and Robert J. Wherry
and Dr. Steuart H. Britt, who read a draft of the manuseript
in its entirety, and to Dr. Edward E. Cureton, who read
Chapters 10 and 11, and Professor Quinn MeNemar, who
read Chapter 14, a mere acknowledgment is hardly sufficient
reward for the careful and painstaking service which they
have rendered. I can only say that their comments proved
invaluable in guiding me when I started to work on the
revigion of the original draft. The present text owes much
to their efforts. .

I am indebted to Professor R. A. Fisher, also to Messrs.
Oliver & Boyd Ltd. of Edinburgh, for permission to reprint
Tables C, D, and H, from their book Statistical Methods for
Research Workers. Professors Peters and Van Voorhis and
their publishers, The McGraw-Hill Book Company, kindly
granted permission to reproduce Table F from their book
Statistical Procedures and Their Mathemalical Bases. Table E
has been reproduced from Professor Snedecor’s book Statusti-
cal Methods by permission of the author and his publisber, the
Towa State College Press. Additional values of ¢ at the
1 and the 5 per cent levels were also taken from Professor
Snedecor’s book by permission., Table G was prepared by
J. G. Peatman and R. Schafer and is reproduced by their
permission and by the consent of Carl Murchison from the
Journal of Psychology, where it first appeared. Other
acknowledgments are made at various points throughout the
text. : ’ :
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Phyllis Covington and Jacqueline Charlton shared the
major responsibility of typing the manuscript. Sidney 8.
Culbert assisted in the reading and proofing of the typed copy
and Grace French in the checking of various computations.
I am grateful to all of them for their assistance.

Finally, I owe a very special debt to Professor W. R. Clark
of the University of Maryland, who encouraged me in my
varied efforts to arouse student interest in statistical methods,
and to my students both at the University of Maryland and
al the, University of Washington who responded to these
efforts. :

. A.L.E.
Seattle, Washington
April, 1946
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CHAPTER 1
INTRODUCTION

1. THE TEXT AND THE STUDENT

Approached from the pomt of view that statistical tech-
nigques are tools to be used in experimentation and research,
and in the discovery of new facts, the study of statistical
methods can be a very interesting as well as valuable subject.
As social scientists, are we interested in descriptions? Then
statistical methods can assist us in making our descriptions
more precise. Are we interested in differences between
individuals and groups? Then statistical methods ecan
assist us in describing and evaluating the reliability of
observed differences. Are we interested in discovering
whether there is any relationship between two traits, two
abilities, or between information and attitude, or between
juvenile delinquency rates and various areas of a city?
Statistical methods again come to our assistance. These
are applications of statistical methods to problems and -
there is no reason why such applications eannot be learned
at the same time that the techniques are learned. That is
the point of view stressed in this book.

a. Previous mathematical training. Not everyone who
uses a stop watch is interested, or need be, in the detailed
construction of the watch, The stop watch is a tool, an
instrument, which can be used for measuring, deseribing, or
evaluating time intervals. In a similar fashion statistical
methods may be regarded as techniques for measuring,
deseribing and evaluating data. To learn to apply ele-
mentary statistical techniques does not require any elaborate
previous mathematical preparation. The field of mathe-
matical statistics is so highly developed that not every
worker in the field of psychology or education can be ex-
pected to be a specialist in both fields,

3



4 Introduction

Automobile manufacturers publish two different sets of
instructions to accompany the automobiles they produce;
one book is intended for the driver of the car and the other
*is intended for the mechanic. Needless to say, the contents
of the two books are not the same. The mechanic’s book
explaing the working of the engine and other details. The
driver’s book tells him how to operate the car. The driver
himself may never see the engine which makes his car go,
but he takes it for granted that it is there and in good work-
. ing order. Of course, if the car breaks down, then the
driver must take it to the mechanic to get it repaired.

. This text is more like the automobile book for drivers

-than like the one for mechanics. If while reading it you
become sinterested in getting a better knowledge of the
mathematical bases behind the techniques presented, then
more advanced texts such as Peters and Van Voorhis (74)
may be consulted.!

- b. Examples and problems. It isa generally recognized
principle in psychology and education that one learns by
doing. - That is the purpose of the exercises and examples
scattered throughout the text. Insofar as possible these
examples have been selected for simplicity, but some are
more complicated than others. Emphasis in the text is
placed upon the procedures to be followed in making various
__computations and in interpreting the results of these com-
putations. It is possible to learn to do this just as well with
pumbers that are small as with numbers that are large. In
the few cases where large numbers have been used, you will
find that the chapter on “simplifying computatlons” will
enable you fo “code’” these numbers, i.e., to reduce their
- size, so that computations will be facmtated

c. Use of tables. In the back of the book you will ﬁnd a
number of statistical tables which you will have occasion to
refer to constantly. It is important that you know how
to use these tables accurately. Each one will be explained

1 Numbers in pa.rentheses in boldface type refer to the blbhogra.phy at the
end of the book.,
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in detail at the time at which it is first introduced in the
discussion. Some of these tables are designed to simplify
your work, such as the table of squares and square roots.
This table will enable you to obtain square roots easily and
will alse give you the squares of numbers so that you may
avoid unnecessary multiplication. . :

d. Symbols. A word or two should be said about the
use of symbols. They are relatively few in number and
each one has a specialized meaning. These symbols are in
reality a form of shorthand, a simplified way of expressing
something that would otherwise have to be written out in
longhand.. . Some of these symbals stand for quantities and
others stand for operations to be performed. You have
used symbols before and they are nothing to be frightened
about. See how much easier it is to write “2 -} 2 = 47
than it is to say, “The quantity two plus the quantity two
gives the sum of four.” -

Here is a slightly different example and one which may be
unfamiliar: B = H — L. If we were to have to put this
into words we would say, “The range of measurements is
equal fo the highest measurement minus the lowest measure-
ment.” In the symbolic statement, R = H — L, B stands
for range, H stands for the highest measurement, and L
stands for the lowest measurement. Onee having memor-
ized the symbolic statement we ¢an use it over and over
again in place of the longer definition. In essence, then,
symbols enable us to say a lot with little effort. Take them
in stride, memorize each one as it is introduced, and you
will find that they will give you little trouble. _

What we have just said with respect to symbols applies
also to formulas which are stated in terms of symbols. If
you think.of each formula as consisting of symbolz which
stand for quantities and operations to be performed, and
that this is merely an abbreviated way of saying something,
you will soon realize their value, The purpose of a formula,
don't forget, is to simplify your work, not to make it more
complicated, ‘
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e. Daily preparation. A book written about the subject
of statistical techniques and a course in statistical techniques
may not be quite like the usual texts and courses to which
you- are accustomed. Some courses do not require daily
" preparation, and many students get into the habit of waiting
until just before an examination before getting down to
work. By cramming they may succeed in absorbing a
sufficient amount of knowledge, temporarily at least, to pass
an bbjective or essay type of examination. But research
upon the problem of retention of material learned in this
fashion indicates that it is soon forgotten. Students may
not consider this too great a handicap if they find that an
understanding of later topics is not dependent on what has
come before.

This is not the case with statistical methods. - They can-
not be successfully learned or mastered by cramming. Nor
can the student, once having taken an examination, afford
to forget the material studied and still expect to understand
what is to come later. Statistical methods, as presented in
this book, start from scratch; the assumption is that the
student knows nothing at all about the subject. But there
is a continuity of development, each new topic or section
building upon the foundation established in the beginning.
In certain respects this approach is like the construction of
a house, in which the foundation, sides, and roof are built
one upon the other. No good contractor attempts to put a
roof on a house until he is sure of his foundation. The first
few chapters in this book are the foundation of everything
which appears later. -Don’t make the mistake of rushing
through them beeause they may seem familiar or easy. The
chances are very good that many of the questions you may
ask about later developments have their answers in one of
the earlier chapters. - '

f. Empirical approach. For practically every topic de-
veloped in this book there are several possible approaches.
There is an algebraic development, a geometrical develop-
ment, and an “empirical” or, as some might prefer to call
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it, arithmetical development. By the empirical approach is -

meant the actual working through of a simple set of arith-
MWMW
ents check as they should. - More will be said about the
empirical approach in the third chapter when we take up.
the subject of “averages and measures of variability.” The
empirical approach is stressed throughout the discussion so
that the student without much previous knowledge of mathe-
matics ean follow the development of various topies. The
interested or advanced student should realize that there is
nothing to prevent him from deriving some of the formulas

and proofs by other means. Some examples will be cited
later. : :

2.  STATISTICAL.TERMS AND STATEMENTS

a. Averages. In our daily conversation we often use the
term “average.” We say that “John is better than average”
when someone questions us about his golfing ability. Or
that “Mary is slightly below -average as a dancer” and
“slightly above average in height.” Some of our college
courses we say we like “better than average.” Some of the
shoes we buy are “poorer than average.”” And, although
we may not have defined the term in our own thinking as
precisely as a statistician would, we have some general
understanding of the concept. We may be vaguely aware
that our statements concerning averages are based upon a
series of cbservations or measurements and that each of
these observations or measurements taken singly may not
be the same as the average we have in mind. We perhaps
have some scale in mind when we refer to John's ability as
a golfer or Mary’s beight, and our average represents some
middle position or value. The statements that “John is
better than average” and that “Mary is slightly above
average” indicate that we do not believe they represent this
middle position. o

We can find statements similar to these in books about
psychology, education, and the social sciences, but they are
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usually expressed more precisely than the statements we
make about averages in our daily conversation.
~ “A group of 50 high school students, after viewing a motion
picture -which presented the Chinese in a very favorable
light, showed an average shift toward the favorable end of
a scale measuring attitude toward the Chinese of 2.5 scale
points. A control group which had not seen the motion
picture showed a shift of only 1.2 scale points.”

“The average reading comprehension test score for 200

sixth-grade students was 82.3, while the average score on
" the same test for a group of seventh-grade students was
96.8.” .
“A group of subjects which had been given one hour of
practice daily for five days in simple arithmetic computations
made an average of 13.3 errors on a speed test. Another
‘group with ten days of daily pra,ctlce made an average of
8.4 errors on the same test.”

All of these statements concerning averages were made
possible by statistical methods.

b. Va.nabihty We encounter another kind of statement

which is made possible by statistical methods, In their
simplest form they may appear as follows:
- “The individual shifts in attitude scores for the group
viewing the motion picture ranged from .8 to 7.3. For the
group which did not see the motion picture the shifts ranged
from .2 to 3.4 points.”

“The range of scores on the reading comprehension test
for the sixth-grade students was from 30 to 101; for the
seventh-grade students the range was from 39 to 135.”

" “The number of errors for the group with one week of
" practice ranged from 2 to 21, while for the group with two
weeks of practice the range was from 2 to 11.”

These statements indicate something of the spread or
differences among measures of individual performance.
They tell us, taken in conjunction with statements about
averages, that some of the measurements were above average

and that others were below. These differences are as much
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a matter of interest as are the averages, so much so to some
psychologists that entire books have been devoted to the
subject (2, 34). But we experience variability also outside
our books in daily life. - 'We note that not all incomes are
the same but that some are very high and others very low;
that the temperature is not the same but varies from hour
to hour, from day to day, and from month to month. Not
all synthetic tires have the same life span. Some give more -
mileage than others. Not all individuals are equa]ly good
at golf, dancing, and other skills.

¢. Relationships. Sometimes we find statements which
are ‘not directly about averages or differences, but about
relations between averages or differences. For example,
in connection with the previous statements about reading
comprehension scores for the 200 sixth-graders, we n:ught
find something like this:

“Those students who were above average on the readmg
comprehension test also tended to be above average in
intelligence, as measured by an intelligence test, while those
who were below average on one test also tended to be below
average on the other. There was, in other words, a decided
relationship between performance on the two tests, the
correlation coefficient being .78.”

We need not concern ourselves at this time with the mean~
ing of “correlation coefficient” other than to note that it is
a measure of relationship or association, Qur interest here
is in pomtmg out that relationships are also a subject of
discussion in psychology and education. Statements con-
cerning relationships probably appear as often in these fields
as do statements eoncerning averages and differences. They -
too are made possible by statistical methods,

We also make constant reference to relationships in daily
life, although these statements; like those about averages
and differences, are not expressed as precisely as the statisti- -
cian would like to make them. We note that a person’s -
income may be related to the number of years of education
he has; or that the amount of rainfall is related to the
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season of the year; or that an mdlwdua.l’s opinions on
political questlons may be related to the section of the
country in which he lives. Or we might say about John’s
golf: “He’s good. He practices a great deal.” In this
case we would indicate that we thought there was some
relatlonshlp between his ablhty and the amount of practice
he puts in on his golf. ‘

3. FUNC’TIONS OF STATISTICAL METHODS

a. Precise description. If you have followed the rather
elementary discussion up to this point, then you are already
familiar with some of the chief functions of statistical meth-
ods. In the behavioral or social sciences {and the examples
in this book are selected largely from these fields) statistical
methods enable us to study and to describe averages, differ- -
ences, and relationships in a precise fashion. The problem
of studying averages and differences may seem simple
enough. If we are interested in the performance of college
freshmen on a test of verbal facility, for example, we give a
group of freshmen the test, find some measure of average
performances and some measure of variability or individual
differences. We shall have more to say about this problem
later, but now let us see how we might investigate rela~
tionships,

b, Study of relatlonshlps. One obvious method of study-
ing relationships is. by making comparisons. We might
compare the average performance of freshmen on our test
with the average performance of college sophomores to deter-
mine if there is any relationship between year in college and -
performance. If we found that sophomores made a higher
average score than freshmen, then we might assume that
such a relationship does exist. We might feel even more
confident of our assumption if we had also tested a group
of juniors and a group of seniors and found that average
performance increased from year to year. If we were so
inclined, we Imght evel carry our investigation ¢n down
through the various grades in high school. Note here, in
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this example, that the problem of studylng relatmnshaps is
essentially the problem of studying differences; we observe
differences in average performance for diﬂerent year groups.
We find out, in other words, whether there is any tendency
for these differences to go together, to be associated. -

On some occasions we may not find any basis upon which
to classify individuals in order to get more than two groups.
If we were interested in the relationship between sex and
performance on our test of verbal facility we should have to
be content with classifying our subjects as men or women

- and studying the average performance of each of these two
groups on our test.

There is anather method of approaching the problem of
relationships. Instead of studying average differences be-
tween groups, we study the difference or relationship be-
tween paired measurements. Some examples with which
you are probably already familiar are the relationship be-
tween point hour ratio in college and intelligence test scores,
the relationship between height and weight, the relationship
between motivation and learning. The problem here is
similar to that discussed above, except that all of our sub-
jects are considered as members of a single group. For each
subject we have a pair of measurements and we determine

- the relationship between these pairs.

¢. Formulation of experimental designs. It is sometimes
possible for an investigator to control various faetors in
which he is interested and to manipulate experimentally
others in order to study the relationships between them.
Buch a situation may be called an experiment. The example
cited earlier concerning the influence of a motion picture on
attitudes is a case in point. The factor introduced into the
situation was the motion picture about the Chinese. By
{esting attitudes before and after the children had seen it,
the influence of the picture on attitudes could be measured
(76). Practice periods of different lengths may be given
subjects in order to study the relationship between the
amount of practice and performanece, The behavior of
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children may be observed under normal play conditions,
and then factors designed to produce frustration in the
children may be introduced into the situation in order to
observe whether these factors result in any changes in play
behavior (4).

Usually this approach to the study of differences and rela-
tionships involves an experimental and a conlrol group, and
the behavior or performance of the two groups is compared.
The experimental group is the group for which some factor
(practice, frustration) is varied while the control group does
" not experience the factor. The factor which is introduced
into the experimental situation is ordinarily called the
experimental or independent variable; the variable for which
we observe changes is called the dependent variable.

. 'There are various techniques for selecting and equating
the experimental and control groups so that various factors
which are pertinent to the problems under investigation
may be controlled. If we had reason to believe that, in a
particular investigation, age might be related to the be-
" havior under study, then obviously we would want to have
some assurance that this factor would not account for the
results of our experiment. One way in which we might
accomplish this would be by matching each individual in
~ our experimental group with another individual of the same -

age in the control group.
Sometimes a particular experiment demands that our
groups already differ with respect to a variable in which we
.are interested. This might be the case if we wished to
" study the effects of differing attitudes upon the learning and
retention of different kinds of prose (14 15). Will, for
example, individuals who favor a given issue learn matenal
which presents a favorable picture of the issue more readily
than material which is opposed to it? Will the opposite
tendency be present in individuals who are opposed to the
issue? In this instance we might select for study groups
which differ with respect to the attitude they hold on the
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issue but which are matched Wlth respect to some other
variable, such as level of intelligence, :

Statistical methods play a very important part in the
planning of experiments as well as in the evaluation of the
results of experiments. Setting up an experiment so that
the most advantageous analysis of the results is possible is
- called a problem in ezperimental design. A sound experi-
mental design is like a good blueprint; it gives confidence
that the various parts are all going to fit together at the end.

d. Statistical inference, Having conducted an experi-
ment or having made a series of observations and having
described such things as averages, differences, and rela-
tionships, and having quantified these deseriptions, we find
that statistical methods enable us to make another step.
We are often interested in knowing how reliable our deserip~
tions are. If we repeated the experiment with other groups,
to what extent would the new averages, measures of vara~ -
tion, and relationships differ from those we obtained the
first time? Statistical methods enable us to determine the
reliability of observed differences and relationships so that
we may make generalizations with a given degree of conﬁdence.
The process by which we arrive at such generahzatlons is
known as statistical inference.

e. Prediction. Suppose that we had studied a group of
workmen operating a particular machine and that we had
then constructed a test of some sort which we believed to
be capable of measuring performance on the machine jtself.
Giving the test to a group of “good” workmen, we find that
they make an average score of so many points and that a
group of “poor” workmen make a much lower average score.
Could we then predict from the scores of & new group of
workmen how well they would probably perform on the
machine in question? If we find the relationship between .
a scholastic aptitude test and college grades, then how
sccurately can we predict the average grades of other indi-
viduals, knowing only their scholastic aptitude test scores
when they have not taken any college work?
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If 70 per cent of a group of “maladjusted” individuals
answer “Yes” to an item in a personality inventory and
only 30 per cent of a group of “adjusted” individuals give a
“Yes” response, then how effectively can we predict whether
a person is adjusted or maladjusted merely from knowledge
of his response to this item? OQur prediction, of course,
might be in reverse form; knowing that an individual is
adjusted or maladjusted, how well ean we prediet his answer
to the item? The problem of prediction and the accuracy
of prediction is the final function of statistical methods with
which we shall be concerned.

In gsummary, we now know something about the kinds of
problems to which statistical methods can be applied. The
chapters which follow simply discuss in greater detail the
use of statistical methods: (1) in making precise descrip-
tions of averages, differences, and relationships; (2) in the
planning and design of experiments; (3) in determining the
degree of confidence we may place in certain generalizations
about our observations; and (4) in making predictions.

" As a final note to this introduction and survey of what is
to come, we might add that there are s number of statistical
problems peculiar to test construction which are dealt with

' by various statistical techniques. But this is a field which
has expanded so rapidly that it reqguires separate treatment.
We shall touch upon such problems only indirectly; the
student who desires additional information should consult
Gullford (39) and Greene (37).



CHAPTER 2.
SURVEY OF RULES AND PRINCIPLES

The rules and principles. outlined in this chapter are
extremely simple as well as extremely important. They
deal with fractions, decimals, positive and negative numbers,
squares and square roots, and simple equations. The ma~
terial may be familiar to many students, but merely being
able to work the examples is not sufficient. Working a
problem when it is expressed in simple form is one thing,
. but unless you clearly understand the rule -or principle
involved which guided you in determining the answer, you
may not be able to apply it to some of the formulas developed
later.

1. FRACTIONS

A fraction is one method of stating that we are dealing
with a sum which has been divided into a number of equal
parts. The numerator of a fraction indicates the number
of parts considered and the denominator indicates the equal
parts. For example, 3/4 indicates that a given sum or
number has been divided into four equal parts and that we
are dealing with three of these four parts.

Rule 1. The numerator and denominator of a fraction
may be multiplied or divided by the same number or symbol
without changing the value of the fraction., Thus starting
with the fraction on the left and multiplying both the
numerator and denominator by the same value we get the
following identities:

4_8 _24 48 a.n 2r 4z 12z 24xy .
5 10 30 60 ~° 3y 6y 18y 36y7

Observe, however, that adding or subtracting the same
number or symbol from the numerator and denommator of
15
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a fraction will, in general, change the value of the fraction.
If we subtract 1 from both the numerator and the denomi-
nator of the fraction 4/5 we get 3/4, which is not the same
value as the original fraction; and if we add 2 to the numera-
tor and denominator of the fraction 2/3 we get 4/5, which is
. not the same value as our first fraction. -An exception to

the rule would occur when the numerator of the fraction is
“equal to the denominator. Thus subtracting 3 from the
numerator and denominator of 9/9 gives 6/6, which does
not change the value of the original; and adding 2 to both
the numerator and denominator of the fraction 3/3 gives
5/5, which is also equal to the original value.

Rule 2. To add or subtract fractions they must first be
reduced to a common denominator. We then add or sub-
-tract the numerators only; the denominator of the answer
is the common denominator of the group of fractions added
or subtracted. Thus

2,2,1_2 4,3 _2+4+43_9
-~et3gta=gtete= 6 6

"Rule 3. To multiply fractions merely multiply the
numerators and multiply the denominators. - This, in effect,
- serves to reduce them all to a common denominator. Thus

2.3, 5. 4_2X3xX5x4_120_1
3X2X6X53X4x6X5 360 3
, Rule 4. To divide fractions, "invert the divisor and.
multlply according to Rule 3 above Thus
2.1_2,2 2x2=

3 371°3x1

3" 2

Oallh

' 2. DECIMALS /

Common fractions, as we have seen above, may have very
different denominators. Decimals or decimal fractions, on
the other hand, always have a denominator of 10 or some
power of 10 such as 100, 1,000, 10,000, 100,000, and so on.
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Thus .3 equals 3/10, .03 equals 3/100,..003 equals 3/1,000,
and .0003 equals 3/10,000. Common fractions such as 1/2, -
3/4, and 2/5 may be written as decimals by dividing the
numerator by the denominator. Thus 1/2, 3/4, and 2/5
may also be written .5, .75, and .4, respectively.

Rule 1. When adding or subtracting decimals, keep the
‘decimal points'in a straight line and the decimal point in the
answer should be directly under the decimal points of the
figures subtracted or added. Thus

1.28 T 83

82 333 4
80 1.222 —-05 .11
‘172 1555 o123 72

Rule 2. In multiplying numbers involving decimals,
point off ag many decimal places in the produet as there are
decimal places in the multiplier and multiplicand together.
The answer, in other words, will have as many decimal
places as the sum of those in the two numbers multiplied.
Thus . _ , .

03 222 2.20 .0005
09 .10 03 -
0027 02220  .0660  .00010

Rule 3. When dividing, place the decimal point in the
quotient as many places to the right of the decimal point in
the dividend as there are decimal places in the divisor. In
other words, the number of decimal places in the dividend
minus the number of decimal places in the divisor equals
the number of decimal places in the answer. Thus o

20004  2(42 02008 .03.90
02 21 4 30

8. PROPORTIONS AND PER CENTS

Rule 1. To find what proportion of a sum or total a given
number js, divide the number by the sum or total. If, in a
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class of 60 students, 15 students receive a grade of “C,”
and we wish to find the proportion receiving this grade, we
divide 15 by 60 and qur answer is .25. If, in an experiment,
35 subjects out of a total of 70 show a characteristic in which
we are interested, and we wish to know the proportion
showing ‘the charactensmc, we divide 35 by 70 and our
answer is .50, -

Rule 2. To translate a proportion into a per cent, multi-
ply the proportion by 100. In the example above, the
proportion of the subjects showing the characteristic is .5
and the per cent showing the characteristic is {.5) (100) or
50 per cent.! , We see from this also that if we wish to trans-
late a per cent into a proportion, we must divide the per
cent by 100.

Rulé 3. To find the number that a given proporl:mn of a
total equals, multiply the total by the proportion. If in a
group of 40 students the proportlon Teceiving & grade of
“B” is .1, the number receiving this grade is (40) (.1) or 4.
The same rule applies to a per cent, the per cent being
written, of eourse, as a proportion or decimal.

Rule 4. . Just as the sum of all per cents of a given total is
equal to 100 per cent, so also the sum of all proportions of
any given total is equa.l to 1.00. We shall see the importance
of this later when we deal with the normal curve, which is
tabled in terms of proportions.

4. POSITIVE AND NEGATIVE NUMBERS

Perhaps the simplest illustration of the meaning of a
negative number can be given in terms of rea.dmgs on a
thermometer. Suppose that the temperature is now 20
degrees above zefo and the weather man says that we can
expect a drop of 25 degrees by nightfall. What temperature
will it be then? On the thermometer we have numbers
- above and below zero, and if the weather man’s prediction

 When numbers or symbols are enclosed in parentheses without any inter-
vening signs, the cperation of multiplication is indicated.
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comes true, we would say that the temperature is 5° below-
zero, or —5°. Temperatures that are above zero are repre-
sented by a plus sign and those below'zero by a minus sign.
Ordinarily we omit the plus sign for numbers above zero,
but whenever the number is below zero, we write a minus’
sign in front of it.

Just as minus and plus signs can be used to indicate
temperatures above and below zero, they can also be used
to indicate. directions or deviations from some value other
than zero. For example, knowing that the average height -
of a group of students is 67 inches, we could designate an
individual with a height of 69 inches as being 2 inches above
the average and an individual with a height of 65 inches as
being 2 inches below the average. For these two values
we could write 2 and —2, respectively. And for all other
values above the average we could write the values without
any sign, the plus being understood but each value below
the average would carry a minus sign.

Rule 1. To add numbers with the same sign we merely
add and give the sum the common sign. Thus, adding the
following, we get

2+3+4+6+8+10+1=34
(=2) +(=3) + (=4 + (~6) + (=8) + (=10) + (~1) = —34

Rule 2. To add two nunibers with unlike signs, take the
difference between the two numbers and attach the 51gn of
the larger number., Thus, addmg the following pairs, we
get

-2 4 =100 8 =5
-6 -8 _9 -9 _6
4 -4 -1 -1 .1

S

Rule 3. When adding a group of numbers with unlike
signs, add the positive and add the negative numbers sepa-~
rately, following Rule 1, and then take the difference be-
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tween the two sums and attach the sign of the larger quan-
tity, following Rule 2. Thus

2 —20 =4 7

-3 -0 -6 -6

e 5 -5 —4

-5 15 10 3

~1 10 5 5

~4 =5 _5 =10
-0 -5 5 -5

Rule 4. To subtract one signed number from another,
change the sign of the subtrahend and add according to
the rules above. 'Thus, subtracting the following pairs,
remembering that the sign of the number is written only
when the number is negative, we get

5 4 -4 -4 -4 -4 4 6
#3 £ =4 8 & 8 & 2
8. 10 -1 4 -7 -12 -1 4

Rule 5. 'The multiplication of numbers with like signs
- gives 8 positive product; the multiplication of numbers
. with unlike signs gives a negative product. Thus, multiply-
" ing the following pairs, remembering that the sign of the
" number is written only when it is negative, we get

6 —4 -4 4 8 -5 -5 4
=3 2 -2 2 -3'' 2 -5 -3
~183 -8 8 8 -9 '—-10 25 -—I12

~ Rule 6. The division of numbers with like signs gives a
positive quotients  the division of numbers with unlike
signs gives a negative quotient. Thus, dividing the follow-
ing pairs, remembering that the sign of the number is written
only when the number is negative, we get

-3[—6 -2|—-6 3|6 2| 4
2 -3 2 -2
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6. NUMBERS IN A SERIES

Rule 1. Numbers in & series involving only the operation
of multiplication or addition may be multiplied or added
in any order without changing the answer. Thus

2X3IX4X5 120 and EX3X2X4_ 120"
IX2X3X4 2 ZXIX4X3 24

2+44+5+3+6=20 and 44+24+34+64+5=20

Rule 2. When the operat.ions of division and multipli-
cation are involved in numbers in a series along with the
operations of subtraction and addition, the multlphcatlon
and division should be performed first. Thus '

2+3X8=26 4+4+2=6 448X2—2%X1=18
3X2—-1=5 6+2—-1=2 34+2+2X4-3=10

Rule 3. Terms within parentheses should be treated as a
single number, Thus

(8—2)(6)=36 (4+2—-1)(—2)=~10 . (3><2) 6+2= 3

Rule 4. A quantity cannot be divided by zero, and multi-
plication of a quantity by zero gives zero. . Thus '

3X0=0 4X2X0=0 -

6. SQUARES AND SQUARE ROOTS

At the back of this book you will find a table of squares
and square roots for numbers from 1 to 1,000 (Tszble A,
p. 390). It is important that you know how to use this
table correctly and how to locate approximate values for
the square roots of numbers with over four figures, After
you practice with a few examples, you will find this fairly
easy to do. :

a. Finding squares and square roots. There are three
columns in the table. One column iz headed ¥, the second
is headed N?, and the third column is headed VN, To
find the square root of any number from 1 to 1,000 find the
number in the column headed N and read the square root
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in the column headed VN. To find the square of any
number from 1 to 1,000, find the number in the column
headed N and read the answer in the column headed N2,

Stppose you wanted to find the square root of 49. By
looking in the N column until you came to 49, you could
then read the answer—which, of course, is 7—in the column
+/N. * Now look in the N column at the number 7. Across
the table in the N? column you find that 7 squared is 49.
This should give you an indication of a second way of finding
the square root of a number, a method that is particularly
valuable when you have to find the square root of a number
larger than any of those given in the N column or a number
with four or more figures. If 7 squared is 49, then the
square root of 49 is 7. Therefore, if you have a number
larger than 1,000 or with four or ‘more figures, look for the
closest apprommatlon of it that you can find in the N?
column and read the square root in the N column. In this
way you can find a good approximation of the square root
of any number with as many as six figures.
" b. Locating the decimal point. Before using the table of
squares and square roots to find the square root of a number,
always point off the number in pairs starting at the decimal
point. Thus 30.8025 and 2,520.04, when pointed off, would
be 30 .80 25 and 25 20 .04, respectively. When the number
of figures to the right or left of the decimal point is odd,
assume that a zero has been added. Thus 63,001, 2,294.4,
778.41, and 21.068, when pointed off, would be 06 30 01,
22 94 40 07 78 41 and 21 .06 80, respectlvely

For convenience, you may assume that the square root
will have one figure for every pair in the number, the decimal
point being located according to the number of pairs on each
side of it in the number for which you are seeking the square
root. Thus, for the figures given above:

4/30- 80 25 = 5.55 Since there is one pair to the left and
' two pairs to the right of the decimal
point.
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V25 20 .04 = 50.2  Since there are two pairs to the left and
one pair to the right of the decimal

point.
v/06 30 O0L=25 Since there are three pairs to the left of
the decimal point.

V22 04 40 =479  Since there are two pairs to the left and
' one pair to the right of the decimal
- point.
07 78 AL =219 Since there are two pairs to the left and
' one pair to the right of the dec:mal
point.
v/21 .06 80 =459 Since there is one pair to the left and
' two pairs to the right of the decimal -
point.

c. Squares and square roots of numbers less than 1
The square root of a number less than 1 is always greater
than the number itself, and the square of a number less than
1 is always less than the number itself. Thus

V38 =29 (4)? = .16
V6 =8 and (3)"=.09
V0025 = .05 ~  (.02)* = .0004"

7. SUMMATION

To summate means to add. When, for example, we sum-
mate a variable (a quantity which may assume a succession
of values or simply that which varies) such as X for a given
series of N measurements, we would merely add all of the
N values of X in the series. This operation is indicated
by Z, the Greek capital letter sigma. Thus?

X=X1+X+ X+ X+ Xs4. .. +Xn
2 A more precise mgthod of indicating the summation in this instance would
be to write it thus ZX. These additional symbols above and below the

summation sign would indicate the limits of the summation and would be
necessary in order to avoid confusion when the summation might not extend
over the entire series. However, since the summation in most elementary -
statistical problems is over the entire periea of N vases, the limits will not be
written but will be understood to be from 1 to N
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Rule 1.- The summation of a constant (a value which
does not change for a given series) is obtained by multiplying
the constant by N, the number of times the constant appears
in the series. For example, if we'let k represent a constant,
then Zk is equal to N k. If k is equal to 3 and N equals 6
then

" Zk=ktktkstkitkst ko=
Zk=3+3+3+3+3+3=(6)@®

", Rule 2. The summation of an algebraic sum of two or
more terms is the same as the algebraic sum of the sums of
these terms taken separately What this rather compli-
cated sounding rule means is that it is possible to write
Tz + ¥ + 2) as Zx + Zy + =z and that the two are iden--
tical. . We may illustrate this by letting N equal 3 and
assigning numerical values to z, ¥, and z. Thus

] T = 4;. h= 2 z = —2;
Com= 3 p=-2 a= 3
= —6 ys = 4 z3=.3;

2(z+y+z) UHF2-DFB—2+3)+ (- —6+4+3)
=4+4+1=9

1

_ Z:c+2y+2z 1+4+4
Thus
o E(:c+y+z) 2:1:+2y+2z

Rule 3. The summatlon of a variable times a constant 18
equal to the constant times the summation of the variable.
Thus if k is a constant and X is a variable, and if N equals
3, k equals 2, and X; =2, X, =3, a.ndX;—4 we may
.Wnte

2(6X) = @@ + @) + @@ =4+6+8=18
CkEEX =@@+3+4 =(2(0) =18
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Thus |
Z(kX) = kzX

Rule 4. The summation of 8 variable divided by a con-
stant is equal to the summation of the variable, divided by~
the constant. Thus i1f & 13 a constant and X 1s a variable,

and if N equals 3, kequals 2, and X; = 2, X; =4, and X;; =
6, we may write

N2 4 6
s(F)=2+5+5=1+2+3=06
 ZX _2+446 12
ETTz T2

ZX
2 ("f) Tk
8. SIMPLE EQUATIONS

For performing operations upon equations there is one
simple rule: whatever is doné to one side of the equation
must also be done to the other side. If you multiply one
side by a number or symbol you must multiply the other
side by the same number or symbol. The same rule applies
to division, addition, subtraction, squaring, and extracting
the square root. If you have difficulty in seeing the rela-
tionships in the following examples, try substituting numeri-
cal values for the symbols. But it is important, very impor-
- tant, that you learn to do these operations with symbols
other than numbers. Study the illustrations carefully,

+ Thus

1. Division ‘
— and dividing both sides by ZX _
ZX =NM N we get N M
— and dividing both sxdes by Z2 _
2zt = Ns N we get N L
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2, Multiplication

._i - ';a;ds ﬁglgig;lying both sides R
s.=27v£’ %r;dNinvgitggingbubhsides b ek
3. Subtrﬁction C o
L X=z+M -;%%ssﬁtﬁinngmmboth Xeez=M
- - 4, Addition ‘
e _;.;dgzgdinthobothaida A M=X

B. Extracting square root

g = Zz? and extracting the square _ _ ’E{G:
- N root of both sides we get =AW

's.'Squa:ing e ; ;
z=(X - M) andsquanngbothmdeswe 2t = (X — M)

- There is another pomt to remember in dealing with equa-~
tions. It is possible to substitute any identity for a term
already present in the equation. Here is an example:
* +
1. M= % and multiplying both sides by N we get
2. NM ==X andif -
_ (ZX)* then we may substitute the identity
3. Izt = ZX? "Tr NM for =X and get _

(NM)
TN

These principles are fundamental. If you "understand
them they will take away any of the mystery which might
‘gurround some of the formulas we shall develop later. We

4 Tt =ZX—
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shall also point out various identities as we go a.Iong CIf
you memorize them wLen they first appear you should be
able to recognize them when they are substituted for one
another later. '

SURVEY OF RULES AND PRINCIPLES :
Example 1.—Add each of the following:

@ ® 0 @ & 0O ®

-8 . 4 8 20 10 -6 -6
-3 -2 -9 -10 -8 2 3
®) - (i) @ '

-9 —4

1 —16 —2

Example 2.—Subtract ea.ch of the followmg: .
(a) ® @ (e) ® ()

-8 4 8 20 10 -6 —6
-3 -2 -9 -—10 -8 -2 3
® © 0 S
-9 0 -4
1 -16 -2

Example 3—Check each of the follomng by marking (1) 1f true
or (2) if false:

QORI C) —@—x;x—z’ ®E®
(b) 2(2 X 5) = (4)(10) wxn_ (v
. (2 X 3) ( )(3)
0 @uxo-(@)
') 2z _z
¥y v
(4+2) _
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) w®
® (g) - (%) (2)
ES (12) ) (8—"2'—3) ~4-3

Exa.mple 4.~~Perform the operat.lons indicated:

@ety  ® = @
B e+ri-n 0 = ©
@ ey O -8  @F
S @e-3 . ® O ® 5
C@E-1-20 0 . @3
® E-5+1 @ (-D-6 ) (o2)(02)
® = @ (-1 (w) C1CD)
. Ezample 5,-—Therej are 60 students in a class and 15 receive a
gra.de of B.

_ (a) What per cent received a grade of B?
~(b) What proportion failed to get B?

Ezample 6.—Sixteen out of 64 students passed an item on a test.

(a) What per cent failed the item?
(b) What proportion succeeded in passing the item?

Example 7.—A Ftudent poll showed that in a sample of 200, 60
voted “No.”
(a} What per cent voted “No"?
{b) What proportion failed to vote “No”?
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Example 8.—Find the square root of each of the following fron"1

Simple Equations

Table A in the appendix:
(a) .04 () 20,736
() 81 () 1,024
(c) 0016 () 4,356
(d) 000025 () 9,801

(e) 4624

G) 6,724

k) 59536
(O 10.0489
(m) 51.6961
(n) 99.6004
(0) 37.21

(p) 38,809
(@ 98,59
(r) 157,609
(s) 30,276
(t) 966,289



CHAPTER 3§

MEASUBES OF CENTRAL TENDENCY AND
' VARIABILITY

A simple and effective experimental design is to observe
changes in performance or behavior of members of the same
- group under differing sets of conditions or before and after
they have experienced some variable which the experimenter
has introduced. When variables which might have in-
fluenced the results have been excluded or equated, any
observed changes may be assumed to be the result of the
differing conditions. In this way one might study the
influence. of motion pictures upon attitudes, the effect of a
- gourse in propaganda analysis upon ability to analyze

propaganda, and, in general, the effect of any variable or
set of conditions which it is possible for the experimenter
to introduce upon behavior. '
" When it is not possible or feasible to study the behavior
of the same individuals under differing conditions, the
experimenter may resort to a matching procedure in order
to select two comparable groups for observation. Indi-
viduals might be matched upon the basis of intelligence test
seores, reading comprehension scores, attitudes, or some
other variable which may be related to the variable under
study.! We need not concern ourselves at this point with
‘why this particular type of experimental design is efficient;
we have mentioned the subject by way of introduction to
the hypothetical expenment the data of which we wish to
_discuss. '
1The reasons for this must. await the development of correlational tech-

nigues and tests of significance.
30
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1. AN EXPERIMENT ON RETENTION

Suppose that on some nights we read a sociology. text
just before going to bed and that on other oceasions we do -
our reading in the morning, After a period of several weeks
we have the impression that our memory of what we have
read i3 much better when our period of study has been
followed by sleep than when it has been followed by a period
of waking activity. In order to investigate the problem
further, we design a simple experiment to test retention
under the two conditions.

We have as subjects for our experiment two groups. Ea.ch
individual ‘in one group has been matched with another
individual in the second group on the basis of an academic
aptitude test which we already have reason to believe is a .
variable related to retention and learning. Qur experi-'
mental procedure is to have both groups of subjects learn
a list of twenty words by the method of peired associaies.
In this method words are presented in pairs, and the subject
is supposed to learn to respond with the second member of
a pair when the first is presented. We have all of our
subjects go through the list until they achieve one perfect
trial, i.e., one trial with no errors, This learning period in
the case of one of our groups is followed by eight hours of
sleep and in the case of the other group is followed by eight.
hours of uncontrolled waking activity. At the end of the
eight-hour period both groups are retested. The figures
given in Table 1 show the number of correct responses on
this second test.

2. THE RANGE A8 A MEASURE OF VARIATION

In this idealized and hypothetical experiment, the su-
periority of the members of the ”sleep" group is, as we see
by the figures in Table 1, appavent in every case.? Every
one of the members of this group makes a higher score than

® The data cited are thothetlcal for purposes of illustration and simplicity,
but see the study by Jenkins and Dallenbach (48).. =
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TABLE 1.—REeTENTION Scores oF MartcHED INDIVIDUALS FOLLOWING
EieaT Hours oF DIFFERING DEGREES OF ACTIVITY

Group e
Pae D;ﬁ::;;z DEeviaTiONs AND SQUARED
. P DEVIATIONS
Sleep | Wake AIRS

1) 2| @ 4) ORNORNONRCOREOREN]
X Y D z 2? Y U d da?

1 18 14 4 3 9 4] 16| -1 1

2 12 8 4 -3 9| -21]- 4| -1 1

3 15 10 5 Q 0 0 0 0 0

4 16 9 7 1 1] -1 1 2 4

5 14 8 6 -1 1} -2 4 1 1

6 15 10 5 (1] 0 (1] 0 0 0

7 15 9 6 0 0o} —1 1 1 1

8 - 17 11 6 2 4 1 1 1 1

9 18 13 5 3 9 3 9 0 0

10 13 6 7 -2 4| —4} 16 2 4
11 16 10 6 1] 1 0 0 1 1
12 19 14 5 4 16 4 161 .0 0
13 20 16 4 5 25 6 36| —1 1
14 - 17 8 9 2 4] -2 4 4| 16
15 14 8 6 -1 1]} -2 4 1 1
16 10 8 2 —5] 25| —2 4| -3 9
17 14 9 5 -1 1] -1 1 0 0
18 15 10 5 0 0 0 0 0 0
19 13 i1 -2 -2 4 1 1] -3 9

- 20 9 8 1 —6 36| —2 41 —41] 16
z 300 200 100 01 150 0| 122 0} 66

X _ 300 - \/w A [150
M. N 20 15 ' as . Vb =274

,=.¥=220_g=1o =‘\/ﬁ' \’122 /6.1 =247

My=3D_10_ 5, A“_\/z_di 66 V3—182

his mate in the “wake’” group. But observe the .variation
exhibited by the scores within each group. If there were
no differences in the retention scores of the members within
each group, then the differences in the retention scores
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between pairs of matched individuals would all be the same.
‘In fact, the differences would all be the same whether match-
ing had taken place or not. In this case we would have no
need of statistical methods nor would we have any need to -
observe more than one pair of individuals, since all addi-
tional pairs would show the same constant -difference in
retention, The difference in retention for a single pair
would, under these circumstances, give us complete infor-
mation. But the tendency for individual measurements to
vary is a fundamental fact of nature. That is one reason
why we need the assistance of statistical methods in evaluat-
ing data.. . _ '
A simple measure of the variation present in each group
would be the range, which we have already defined as being
the difference between the highest and the lowest measure-
ment. For the “sleep” group the highest score is 20 and -
the lowest score is 9 and the range is therefore 11, For
the “wake’” group the highest score is 16 and the lowest .
score 18 6 and the range is 10. We could find a similar
measure of spread or variation for the differences between
pairs. The range of these differences is from 9 to 1 and
the range is therefore 8. 'Symbolically, we define the range

as ; %
R=H-L (1

where B = the range
H = the highest measurement in the series
L = the lowest measurement in the series

There is another type of range which is similar to the
range discussed above. It is known as the inclusive range
and tells us the number of possible different measurements
we may have in a series with a given range. The range
for a simple set of measurements might be, for example,
from 15 to 10 or, in other words, 5. The inclusive range is
merely the range plus 1, or, in this instance, 6. This means °

* Formulas are numbered at the time they are first introduced and then -
referred to later by these numbers,
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that there could be 6 different possible values or scores in
our series: 15, 14, 13, 12, 11, and 10. Symbolically, then,
the inclusive range is deﬁned as

Ri=(H —~ L)+1 ) (25

where R, is the inclusive range and H and L have the same
meaning as before.

8. THE MEAN AS A MEASURE OF CONCENTRATION

Note that despite the spread or variability of the scores
within each group, there is also a tendency for the various
scores to cluster around the middle values rather than at
the extremes. A single score toward the middle of the
range would be more representative of all of the scores than
a value ‘selected from either extreme. The statistics which
'we use to measure this concentration are known as averages
or measures of central tendency. The statistician may not
always mean by average; however, the measure you may
have in mind. The measure of which you are thinking is
probably the mean, which is found by adding all of the
scores and dividing by the number of scores. The mean is
only one among several possible kinds of averages.

Let us find the mean for the “sleep’ group, for the “wake”
group, and for the differences between pairs. The totals
or sums of the scores for each series are given at the bottom
of Table 1. For the “sleep” group the total is 300, and
since this sum is based on 20 observations we divide 300 by
20 and find the mean score for the group to be 15. In a
similar manner we determine that the mean for the “wake”
- group is 10 and that the mean of the differences is 5. Note

that the difference between the two means is equal to the mean
of the differences, a relationship that will always hold true
 when measurements have been paired.

4. SOME BASIC. SYMBOLS

Let us see now how it is possible to indicate symbolically
the computations involved in finding the mean. We shall
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let N equal the number of scores in a given series and let X
represent the scores in the series. Then the individual
scores might be represented by X3, X, X3, Xy, .+ « X
where the subseripts, 1, 2, 3, . . . N, stand for the par-
ticular measures. In the example under consideration we -
may let X represent scores for the “sleep” group. In a
- similar manner we may let ¥ represent scores for the “wake”
group, Y, corresponding to X, ¥, to X,, and so on for each
matched pair. The differences between the paired values
of X and ¥ may be represented by D, and particular values
of D may be represented by Dy, D, Dy, and g0 forth,

Since N is the same for the X, ¥ and D scores, we do not
need to worry about a separate symbol for indicating the
 number of cases in each series. If this were not true, how-
- ever, we could use N, N, and N, to represent the different
N’s. We shall use the symbol M to represent the mean,
and the mean of the X series would be M,, the mean of the-
Y geries M,, and the mean of the differences, M, We
need one more symbol, one that we shall use very frequently,
Z, which is the Greek capital sigma. The symbol is an
operational as well as a descriptive symbol and means to
sum. Thus ZX would mean “to sum the variable X,” or
simply “summation X,” or “sum of the X’s.” ZY would
mean “to sum the v:mable Y,” or “summation Y;” and
ZD would mean “to sum the vana.ble D.”

In terms of the symbols we have just discussed, it would
now be possible for us to represent the mean of theX series
by the following formula

HHXG4+E5 X+ X+ X+ X+ X+ ...+ Xy

M, = N

But since we have the symbol £, meaning to sum, we may
merely write, in abbreviated form,

u-ZX @
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where M = the mean
2 = the sum of
.X = each of the individual measurements or scores
N = the number of measureménts in the series

. Formula (3) is the generalized formula for the mean. We
would only need to substitute ¥ for X to apply it to the ¥
series or D for X if we wished to find the mean of the D
series. We have already pointed out that symbols and
formulas are a kind of shorthand. You may observe, in
. this instance, how much more quickly, and with how much

less space, M = 2%(’can be written than the statement for

" which it stands: “The mean of a series is equal to the sum
of the individual measures in the series divided by the
number of measures in the series.”

5. THE AVERAGE DEVIATION -AS A MEASURE OF
VARIATION

" 'We are now ready for a new symbol. You will soon

learn to recognize its meaning as quickly as you now recog-
" nize that green is a symbol for “go.” The new symbol
that we want is one that will represent the deviation of an
observed measure from the mean of the series. We shall
use the symbol z to designate a deviation of X from the
mean of the X series. Thus

| z=X—-M ‘ @
where 2z = a deviation from the mean

X = the original measurement
M = the mean -

Tn a similar manner we could use y to represent the devia-
tion of a Y score from the mean of the Y’s and d to represent
" the deviation of a difference score (D) from the mean of the
differences.
If we were to subtract the mean of the X scores from
. each of the X scores and sum for the series, in other words,
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Z(X — M) or Zz, as we have done in column (5) of Table 1,
we should find that the sum of the deviations from the mean
equals zero, i.e., Zx = 0. This is a basic statistical theorem.
You will find it holds true for any series of measurements
and can easily be verified in the case of the ¥ and D dis-
tributions of scores. This is one reason why we cannot
simply add the deviations from the mean and divide by N
in order to get a measure of average deviation or spread of
scores from the mean. The simple average deviation would
always equal zero and consequently would be' of no value
as a measure of vmabzhty.

We could, however, ignore the signs of the deviations and
find the sum of the absolufe values and divide this by N.
The resulting value is called the average dewiation. Sym-
bolically, we would write -

4p =2

> e
where AD = the average deviation .
|z] = the absolute value of z, ie., without regard to
algebraie sign , ,
' = the number of measures in the series

The average deviation is one of the easiest measures of
variability to understand and had great popularity at one
time., It is still of value if one must describe variation to a
group of statistically inexperienced individuals, but it has
been found to be of limited utility in statistical theory.
You may wonder, if the average deviation is of so little
value, why have we bothered to mention it? Why not
gimply use the range as our measure of variability? The
answer to the first question ia that the average deviation :
provides an introduction to the standard deviation, the -
measure of variability that we shall use most often. The
answer to the second question is that the range also has its
disadvantages. It is determined by only two scores and .
fluctuates much more from one series to another than do
the other measures of variation such as the average devia-
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tion or standard deviation. If we were to repeat our experi~
ment on the effect of sieeping and waking periods on reten-
tion, for example, the range for. each group and for the
differences between pairs might differ greatly from the
~values we got the first time.

6. THE VARIANCE AND STANDARD DEVIATION

The most valuable measure of variability is the standard
deviation, which is computed from the squares of the devia-
tions from the mean and is represented by the symbol o.
We have already pointed out that ignoring the signs of the
deviations as we did in calculating the average deviation
does not lead to the development of any very significant
statistical techniques. Squaring is the next step in sim-
plicity of operations and, incidentally, the squared devia-
tions will all be positive. Squared deviations from the
mean, as we shall see later, form the basis of much of statis-
tical theory. -

If we square each of the deviations from the mean, sum,
and divide by N, we obtain a measure which is called the

. mean square or variance and which is symbolized by v. The

standard deviation is simply the square root of the variance.
2 ,

Thus, if the variance is equal to ZW:C, then the standard

"deviation is equal tg v/, or, as it is more commonly expressed

S a'=\/-2-1$: (6)

" where ¢ = the standard deviation
z® = a deviation from the mean squared
N = the number of cases

The ‘calculation of the standard deviation may be sum-
marized in the following steps:

: : =X
. 1. Find the mean , M= N
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2. Find the deviation of each score from the z = (X — M)

mean
3. Square each deviation ’ e z?
4. Find the sum of the squared devmtlons .
(sum of squares) ‘ p
. 2 2
5. Divide the sum of squares by N to find the v = Ts—
variance or mean square .
. )
6. Extract the square root to find the stand- o = ETVQ-:— »

ard deviation

Extracting the square root (Step 6) returns us to our
original unit of measurement. You may follow these steps
in the calculation of the standard deviations of the X, Y,
. and D series of measurements in Table 1. For the D series,
- for example, column (4) gives the scores which we sum to

find the mean. Column (9) gives the deviations of each of
these scores from the mean, and column (10) gives the
deviation squared. The sum of the squared deviations is
66, which, divided by N = 20, gives the variance, 3.3. The
standard deviation is the square root of 3.3 and from Table
A, page 311, we find this to be equal to approximately 1.82.

?. THE NORMAL DISTRIBUTION CURVE"

You may already be familiar with the concept of a normal
distribution from other sources. A normal distribution' is
represented by a bell-shaped, symmetrical frequency curve, -
with very few measurements at the extremes and more and
more as you move in toward the middle. It may look
something like the curve shown in Figure 1. '

Suppose that this distribution curve represented measure-
ments of differences in retention for 10,000 pairs of subjects.
That is, suppose that instead of merely 20 pairs as we had
in the experiment mentioned earlier we had 10,000. We
would not expect all of the differences in retention to be the
same for these 10,000 pairs any more than they were for
our 20 pairs. If we had 10,000 pairs we might sometimes
get a difference of zero; sometimes, also, differences might,
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be in reverse, i.e., in some of the pairs the “waking’’ member
might show a higher retention score than the “sleeping”
member. But in terms of what we have already observed,
‘we would expect most of these 10,000 differences to tend
toward the middle or mean of the distribution.

[ 68,26 %~

- Jesu13n 34135+

3.59 %

- =30 -20 -10 Mean 1o 20 Se
14 32 1 €8 86

F16. 1—Normal distribution curve with mean equal to
5 and standard deviation equal to 1.8,

If the mean and standard deviation of this new distribu-
tion were the same as the mean and standard deviation of
our 20 observations, then between the mean (5) plus and
minus one standard deviation (1.8) would fall approximately
68.26 per cent of these 10,000 differences. In other words,
between 5 + 1.8 or between 3.2 and 6.8 would fall 68.26 per
cent of the cases, and outside these limits would lie approxi-
mately 31.74 per cent of the differences. About 15.87 per
cent of the differences would be greater than 6.8 and about
15.87 per cent would be smaller than 3.2. These statements
are made possible by the fact that the equation for the
normal curve is known, and tables have been prepared
which enable us to find the proportion or per cent of cases
between the mean and any given distance from the mean
expressed in terms of standard deviation units. These tables
are discussed in detail in a later chapter.
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8. THE MEDIAN AS A MEASURE OF CENTRAL
TENDENCY .

In general, if a distribution is approximately normal, the'
mean is the appropriate measure to use to describe the
central tendency of the group. If the distribution departs
very much from the normal form so that scores are piled up
at one end or the other of the scale, then another measure -
of central tendency may be used to supplement the descrip-
tion provided by the mean. This measure of central tend-
ency is called the median and is defined as that point in a
distribution of measurement above which and below which
50 per cent of the measurements lie. The median would
also be the appropriate measure of central tendency to use
if a distribution is truncated, i.e., cut off at one end so that
we have no knowledge of the exact values of the measures at
this end, as, for example, in a distribution of incomes where
we might have at one end 7 cases which are simply recorded
as $15,000 and over. In a perfectly normal distribution the
mean and median coincide, have the same value.

To illustrate the calculation of the median, let us suppose
that we have a number of ratings on a 5-point scale and
wish to find the median. Instead of writing out the value
of each rating, we shall simply list the five possible values
under the heading “Ratings” and then under f list the
Jfrequency or number of times each value occurs, as in Table 2.
The rating “5,” for example, occurs 4 times, the rating “4,”
occurs 3 times, and so on. Measurements arranged in the
manner of Table 2 are called frequency distributions.

Since we have defined the median as a point, we shall
have to pause for a moment to consider whether a score or
a rating can be considered a precise point or not. It is
customary in statistical work to think of a measurement,
regardless of the instruments used in making it, as repre-
senting an inferval ranging from half a unit below to half
a unit above the given value. A height reported in terms
of inches, for example, may be considered. as representing
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an interval ranging one-half inch below to one-half inch
‘above .the reported value. A height of 61 inches, in other
words, may indicate a value ranging from 60.5 to 61.5.
Even if the height were reported to the nearest 1/10 inch,
61.8 inches, for example, it might still represent an interval
ranging from 61.75 to 61.85. This is because there are

TABLE 2.—Famumrc;t or Rarmves on

A b-Point Scane
RA’LﬁG Lnar J
N 4555 4
4 3.54.5 3
3 2.5-3.5 2
2 1.5-2.5 1
1 H-1.5 1

limits to the accuracy of any measuring instrument. Re-
" gardless of how fine we may make our units of measurement,
i.e., how many decimal places may be used in reporting them,
we still do not know the precise value of the final number.
- Considered in this fashion, then, a rating of 5 may mean a
value from 4.5 to 5.5 and a rating of 1 may mean from
-8 to 1.5,

Ta find the median we must first find out how many ratings
we have under consideration. This we do by adding the
frequencies, 4, 3, 2, 1, and 1. N, then, is 11, and we wish
to find the point above which and below which exactly 50
per cent or 5.5 of these 11 cases will fall. If we start count-~

' ing upward from the lowest rating, we find that 1 1+ 2
will give us 4 of the needed ‘5.5 cases. This carries us
through the rating 3, the upper limit of which is 3.5.” We
have moved up the scale, in other words, to the point 3.5
and have found 4 cases below here. But this is not sufficient ;
we need 5.5 cases or 1.5 more than the 4 we have so far.
The rating 4 occupies the interval fromt 3.5 to 4.5, and there
are 3 cases located within this interval. We do not know
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how these 3 cases are distributed in the interval 3.5 to 4.5,
but for convenience we assume that they are distribuled evenly
throughout the interval. 'We must move up into this interval

"until we have 1.5 more cases. We need, in other words,
1.5 of the 3 cases or 1.5/3, which is equal to .5. We add
this value (.5) to the lower limit (3.5) of the interval in

- which we know the median falls and this gives us the value
of the median, 4.0.

We may, if we wish, check this value by counting down
from the highest rating. We have 4 cases for the rating
5 which extends down to 4.5. We still need 1.5 more cases
in order to get our 50 per cent. - We need to go down into
the interval 4.5 to 3.5 far enough to include 1.5 of the 3
cases which we assume to be distributed evenly throughout
the interval. And 1.5/3 gives us .5 which we now subiract
(we are moving downward) from the upper limit (4.5) of
the interval in which we know the median falls and arrive
at the same value as before, 4.0, for the median.

Sometimes in computing the median we may find that
50 per cent of the measurements or scores take us exactly
through a given score but that there is a gap between the
upper limit of this score and the next score. For example,
suppose we had the following measurements: 18, 17, 16, 14,
10, 8, 7, 5. N is equal to 8 and 50 per cent or 1/2 N is
equal to 4. We need to find the point above which and
below which 4 scores will fall. Counting up from the
bottom or lowest score we find that 4 scores take us through
10, the upper limit of which is 10.5. It is true that 50 per
cent of the scores do fall below the point 10.5, and that
50 per cent fall above this point, But it is also true that
50 per cent fall above and below any other point we mlght
choose to select between 10.5 and 13.5. Under these cir-
cumstances we assume thal the value which best represents the
median i3 the middle of the gap. The range of the gap is
equal t0 13.5 — 10.50r 3. One half of 3 is equal to 1.5 and
1.5 added to the upper limit of 10.5 gives us a value of 12
for the median. You may check these calculations by
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counting down from the top, only in this instance, since
you are moving downward, you would have to subtract 1.5
from the lower limit of the score 14. The value of the
median remains the same, regardless of whether we ealculate
it by countmg up or down.
- I, in the distribution above, there had been 1o gap, e,
if 10 had been followed by 11 rather than by 14, then the
median would become the dividing pmﬁnt betweum these two
scores. Bince the upper limit of 10 is 10.5 and the lower -
limit of 11 is 10.5, the value arrlved at for the median would
be 10.5.

The following formula for computing the medmn will
handle all situations except when the median falls in a gap
in the distribution of measurements.

E -z, ’
 Mdn=1+41% 7 £ 4]
where Mdn = the medla.n
"l = the lower limit of the interval containing the
. median -
N = the total number of scores .
* Zfe = the sum of the frequencies or number of scores up
1o the interval containing the median
fo = the frequeney or number of scores within the in-
terval containing the median
¢ == the size or range of the interval (in the illustrations
" considered, sinee ¢ has always equaled 1, it may be
ignored—we include it here because this is a more
generalized formula which can be used later)

" The value of the median obtained with formula (7) may
be checked, in the manner indicated earlier, by working
from the top interval down The formula in this ease

becomes
. i g —zf,
Min=u — 7 1 6]
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" where u = the upper limit of the interval containing the
median, and Zf, = the sum of the frequencies or number of
scores down to the interval containing the median.

9. THE SEMI-INTERQUARTILE RANGE

The measure of variation which is generally used in con-
nection with the median is the semi-interquartile range or
Q. To find the value of @, two other values must be com-
puted, @, the first quartile, and @,, the third quartile.
These two values are also points on a scale, Q; being the
point. below which 25 per cent of the measurements fall and
above which 75 per cent fall, and Q; being the point below

- which 75 per eent fall and above which 25 per cent fall.
*Q, and Q, are found in the same way that the median is
found, ie., by means of formula (7), the only difference .

being that for E we substltute E for Q1 and for Q; we sub- .

stitute %\f

The interval @; — @ contains the middle 50 per cent of the
measurements and is known as the inferquartile range. The
semi-interquartile range iz one half the range of the middle
50 per cent of the cases and is given by the following formula

where @ = the semi-interquartile range
Qs = the third quartile
Q1 = the first quartile

10. CENTILES

Just as we used formula (7) to find the median or point
above which and below which 50 per cent of the cases fall,
and to find ¢, and @, g0 also it can be used to find the point
in a distribution above which and below which any given
per cent of the cases fall. Such points are commonly called-
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centiles. Since the median marks the point above which
and below which 50 per cent of the cases fall, it is also the
50th centile. The 25th centile is the same a3 Q, and the
75th centile is the same as @;. The points dividing the
distribution into tenths are also given special names; they
are called deciles. Thus the 10th centile is also the 1st
decile, the 20th centile is also the 2nd decile, and so forth.
If -we wished to find a given centile, we would only need
to 'substitute that per cent of the total scores or measure-

ments for g in formula (7). Thus, if we wished to find the
80th centile, which would be the point below which 80 per
cent ‘of the cases fall, il would be replaced by (%0(—)) (N) or

by %. To find the 33rd centile we would substitute (%)
(W) or %J{\)T The 50th centile, the median, would be, of

50 g e g
course, E%T : which, simplified, is 12’_v’
Centiles are often used to deseribe an individual's relative
. position in a group with respect to some variable. For
example, if we were told that John’s score on a reading test
was 49, and this was all that we were told, we would know
no more about his ability than if we had not been told his
score. If we knew that the mean score for college freshmen
on the test was 40, we would at least know that he per-
formed better than the average freshman. But if we were
told that his score corresponded to the 75th centile, we
would know that he does better than 75 per cent of the
students who take the test. :

One major difficulty with centiles as a means of expressing
relative position is that, when distributions are fairly normal,
individual differences relatively near the center of the dis-

“tribution are exaggerated in comparison with the extremes.
The actual measured differences represented by the centile
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range 40 to 60, for example, are not as great as the actual
measured differences represented by the centile range 1 to 21
and 79 to 99. This is because, as we know from our earlier
discussion of the normal curve, frequencies are greater in

the center of the distribution than at the extremes.

oo

11. STANDARD SCORES

When a distribution of measures is approximately normal
we may overcome the difficulty mentioned above in connec-
tion with centiles by expressing scores in terras of relative
deviafes or -standard scores, symbolized by z. Standard
scores derived from one distribution may also be compared
directly with standard scores derived from another dis-
tribution, when both distributions are normal in form.

To illustrate the use of z scores, let us suppose we wish
to find an average of an individual’s score on a history test
and on an English test. The history test is scored in terms
of the number of right answers and shows a spread of scores
from 10 to 190 with a mean of 95. The English test, how-
ever, is scored in terms of the number of right answers
minus the number of wrong, and the range of scores is from
50 to 70 with a mean of 59, QObviously, we cannot com-
pare directly the standing of our subject on one test with
his standing on the other. We could not find his average
standing on both tests by adding his score on the history
examination with his score on the English examination and
dividing by 2. This average would have no meaning, for we,
would be combining different units from different scales.
It is as though we added together an individual’s height, as
measured in terms of inches, and his weight, as measured in
terms of pounds, and divided by 2 to get an average.
Suppose that we were foolish enough to do so and found
that this average was 110. 'This would be 110, but 110 what?
Inches? Pounds? Surely not either of these, nor would such
an average have any other meaning, :

If we wish to compare measurements from various dls-



48 " Measures of Central Tendency and Variability

tributions, we must first reduce the measurements of each
distribution to a common scale. To do this for the dis-
 tribution of scores on the history test, which we may desig-

nate as the X variable, we would subtract the mean of the
distribution from each score in the distribution to reduce the
measurements to deviation scores. Then we divide each
deviation score by the standard deviation of the distribution
to arrive at z scores. Thus

= (10)

where z = a standard score
z = a deviation from the mean of the series
= the standard deviation of the series

« In the same manner we would transform each of the scores
"on the English examination, which we may designate as the
Y vana.ble, to z scores by subtracting the mean of the dis-
tribution from each score and dividing the resulting devia~
tion scores by the standard deviation of the distribution.
‘We may then add the 2 score of our subject on the history
examination with the z score he obtained on the English
examination and divide the sum of these by 2 in order to
get an average. If we were interested 4n comparing indi-
- vidual scores on various other tests with those on the history
and English examinations, these scores could also be reduced
tozscores. Aslong as the various distributions are approxi-
mately normal in form, z scores derived from one distribution
may be compared with z scores derived from other distribu-
tions. By following the procedure outlined we have, in
effect, reduced the scores of each distribution to a common
scale. Some of the z scores will, of course, carry negative
signs, since some of the scores wﬂl be smaller than the mean.

- In general, a distribution of z scores will range in size from
about plus 3 to minus 3. The mean of this distribution
will be equal to zero and the standard deviation will be
_equal to 1. That the mean will be equal to.zero, we know
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because we have already found that the sum of deviations
from the mean is equal to zero. The fact that the standard
deviation of a full set of z scores equals 1 can be shown as
follows:t

Oz, = Oz
N

12. OTHER MEASURES OF CEN TRAL TENDEN C'Y AND
VARIABILI TY

There are other kinds of averages than those we have
" mentioned. One is the mode, or measure which occurs most
frequently in a distribution of measurements. - Another is
the geometric mean which is the nth root of the product of
the N values in a series. The geometric mean of 3 and 12,
for example, would be V' (3)(12) = V36 = 6, whereas the
arithmetic mean would be 7.5. We shall have occasion to
refer again briefly to the geometric mean in connection with -
measures of relationships. Another measure of central
tendency is. the harmonic mean, which is defined as the
‘reciprocal’ of the arithmetic mean of the reciprocals of the
values. The harmonic mean is used in problems involving
the averaging of rates, but we shall have no need to refer
to it again in this text.

There are also other measures of variability in addition to
those which we have described. Omne such is the middle
80 per cent range or the spread of scores between the 10th
and 90th centiles. Another is the probable deviation -or
probable error which was widely used in the past, but which
is practically never used now to describe variability. The
probable deviation is approximately 2/3 the size (more

Ez’ \/I— 1

0':

4 Let it be emphasized again that if this development is not perfectly clear,
you should go back and study the rules of Chapter 2. Nothing is involved here
exee t the application of these rules

reciprocal of a given value is 1 divided by that va.lue,
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precisely, .6745) of the standard deviation and is found by
multiplying the standard deviation by that value. In a
normal distribution the interval established by the mean plus
and minus one probable deviation containg the middle 50 per
" cent of the measures and is therefore equivalent to Q;—Q;.
The probable deviation has no advantages over the standard
deviation; rather, the disadvantage lies in the fact that in
order to find it we must first calculate the standard deviation.
The measures of central tendency and variability which
we have treated briefly in this section are used very in-
{frecuently in psychology and education and, with the excep-
tion of the geometric mean, have little bearing upon the
statistical methods developed later, We shall consequently
say no more about them. OQur basic measure of central
tendency will be the mean and our basic measure of vari-
ability will be the standard deviation. We shall refer to
these measures constantly. Be sure that you thoroughly
‘understand their caleulation.,

' 18, SAMPLES AND STATISTICS

‘We have more or less avoided the use of the term “sample”
up to this point but to continue to do so would prove awk-
ward. In your own experience you have “sampled” foods
and then made judgments or based future reactions on your
experience with these samples, i.e., you may ask for more
or you may refuse more because you assume that the re-
mainder of the food will be very much like the sample you
experienced. An observer standing by would probably
note that you do two things when you sample: (1) you deal
only with a part or a portion of some whole, and (2) you
assume that this part or portion is in some way representa~
tive of the whole. This is very similar to the meaning of a
sample in statisties.

~ The statistical sample consists of the particular group of
observations which have been selected for investigation or
study (88, p. 129) and, generally, the sample under study is

1
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assumed to be representative of some larger group from
which the sample was selected. The larger group is called
a population or universe. A measure derived from a sample,
such as the mean or standard deviation, is called a stafistic.
The corresponding mean or standard deviation which would
be obtained if the population instead of the sa.mple had
‘been studied is called a parameter. Parameters, since they
are based upon all the existing cases, have fixed, single
values. Statistics, on the other hand, since they are based
upon only a part of the total populatlon, may vary from
sample to sample. ’
Statistics,-in the absence of any other information, are the
best estimatés of the population parameters we have. The.
. two statistics which we have demonstrated in ‘this chapter,
the mean and standard deviation are, as we have empha-
sized previously, basic. To find them you need compute
but two sums: the sum of scores (ZX) and the sum of
squares (Zzx?). The sum of scores is necessary for the mean
and the sum of squares for the standard deviation. Later
we shall find that there are easier ways of computing these
statistics when we have to deal with either a large number
of observations or when the measures as such, have large
numerical values.

MEASURES OF CENTRAL TENDENCY AND
: VARIABILITY

Example 1.—A class in applied psychology made the following
scores on a weekly quiz. (a) Find the mean of the scores. (b)
Now subtract the mean from each score and sum these deviations.'
Are you surprised at your finding? Could you use this device to
verify the calculation of a mean? .
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Fi:id the median for each of the following distribu-
Hans—Gheck your caleulations by counting down from the top.
(a) 23,23,22,22,22,20,17,17,17,17,15, 15, 13, 13, 13,12, 124
(b) 20, 20, 19, 17, 17, 17, 15, 15, 15
(e) 15,13,11,9,6,4,2¢°2, /

(d) 24, 22,19, 17, 16, 14, 8,6, 4 2 /
(e) 38,35, 34, 33, 30, 28, 20, 17, /$

Example 3.—Suppose that you had two groups of subjects, each
gubjeet in Group 1 being matched with a subject in Group 2.
Given the following measurements for each subject, find the mean
for each group, and the difference between the means. Now take

_ the difference between each pair and find the mean of these differ-
ences. + Is this mean equal to the difference between the means?
Verify each of the three means by summing the deviations.

Groupl 10 5 6 7 10 6 7 8 6 5
Group 2 7 3 5 7 8§ 4 5 6 3 2

‘Example 4.—Find the median for each group in Example 3.
Find the range, variance, and standard deviation for each group.

C Example 5.>F‘m' d the mean, variance, and standard deviation
of theYollowing distribution of measurements: o

95 924 22 2t 2 19 18 17 }4
25 24 22 21 20 19 18 15
55 924 922 921 92 18 17 15 494
25 23 21 21 19 18 17 14
24 23 21 20 19 18 17 14

Example 6.—Find the median, -Ql,_ and Q; for the distribution of
scores in Example 5. .
: !
Example 7.—Write a symbolic equivalent for each of the follow-
ing. For example, X — M could also be written z.

@ X—-—M (c) Z2* M
®) 2X @ % © @-my
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ample 8_—3how, algebraically, that the sum of the deviations .

‘Trom the nean is equal to zero.



CHAPTER 4
SIMPLIFYING STATISTICAL COMPUTATIONS

The computation of the mean and standard deviation is’
quite simple, as long as we are dealing with relatively few
measurements or when the numerical size of the measure-
ments is small. But when we have a great many scores
and when the values of these are large, as may often be the
case, then we need some method for simplifying our work.
This is achieved through coding, a means of reducing scores
or measurements.

1. THE APPROXIMATE NATURE OF MEASUREMENTS

You may recall that in the last chapter we touched briefly
upon the meaning of a measurement or score when we con-
sidered the calculation of the median. At that time we
‘pointed out that measurements are made and reported to
the nearest unit, whatever that unit happens to be. Height,
-for example, may be reported to the nearest inch despite the
fact that there is not a jump from one inch to the next, but a
theoretically. infinite gradation of units between each. The
distance between 61 inches and 62 inches, for example,
might be divided into tenths and reported 61.1, or divided
into hundredths and reported 61.01, or thousandths and
reported 61.001, and so on. A height, then, reported simply
" as 61 inches is not the precise value upon close examination
that it might at first seem to be. But then neither would
a reported valué of 61.001 inches be an exact figure, for,
regardless of the units of measurement, theoretically an
instrument might be constructed which would measure with
a greater degree of precision. .

This is true of all measurements. Time may be measured
in terms of years, months, weeks, days, hours, minutes,
seconds, milliseconds, and so on, each succeeding unit being

54
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" more precise than the one before, but even milliseconds are

not exact values but only approximate. What we have said
about time applies also to other measurements with which
you may be familiar: temperature, weight, brightness,
intensity of sound, and so forth.

Because of the approximate nature of measurements, we

ccustomarily, in statistics, regard a height reported in terms

of the nearest inch, such as 61 inches, as representing an
interval ranging from 60.5 to 61.5, i.e., half a unit above
and half a unit below the value reported. We regard
psychological test scores and other measurements in the
same manner. An intelligence test score of 82 is taken to
mean from 81.5 to 82.5; an attitude test score of 23 is con-
sidered as representing an interval from 22.5 to 23.5. It is
conceivable, in each instance, that if our units of measure-
ment on these scales had been more refined, then the obtained
values might have been somewhat higher or somewhat lower
than the scores, 82 and 23, indicate. If this disturbs your
previous beliefs about the accuracy of figures, then you
might take comfort in the thought that most of our units of
measurement are precise enough for the situations in which
we are interested. .

a. Significant figures. A frequent question coming from
students is: How many decimal places shall I carry in my
computations? There is no exact answer to this question
as it is phrased. More properly, the question should be:
How many significant figures should I carry? But even
here there is no exact answer; there are only “good” or
“established” practice and “‘poor” or not common practice—
like “good” and “bad’” usage in English. In view of what
we have said concerning the approximate nature of measure-
ments, the figures 28, 280, and 2,800 each contain but two-
significant figures. That is because the zeros used in the
second and third numbers are merely used to locate decimal
points, they are “fillers.” The first value, 28, represents a
range from 27.5 to 28.5; the second, 280, a range from 275
to 285; and the third, a range from 2,750 to 2,850. How-
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ever, if 280 and 2,800 had been written 280. and 2,800.,
with a decimal point, then the zeros would have been con-
sidered significant figures and the range would be 279.5 to
280.5 and 2,799.5 to 2,800.5, respectively. In the measure-
ments used throughout this book, we shall follow thé fairly
common practice of nof writing the decimal point after
figures such as 70 or 60 or 210 but assume that it is under-
stood. When a score is written as 60, for example, it will
be assumed that this represents a range from 59.5 to 60.5.
_ There are “rules” governing the number of significant
figures in the answers to problems involving multiplication,
division, addition, and subtraction, but, as Snedecor (86)
has pointed out, they would have to be discarded when an
involved series of operations must be performed. Following
rigidly any single set of rules would involve “exaggerations
of inaccuracies’”’ (86, p. 87). The best single principle to
follow is to earry along more figures in various computations
“than you intend fo retain in the final answer, and then to
round back to a reasonable number of places in reporting
your answer. Let’s consider first what we mean by a
“reasonable” number of places in an answer before turning
10 the technique of “rounding.”

b. Common practice in reporting statistics: An exami-
nation of the research literature in a given field will indicate
current practice. In psychology, education, and the social
sciences, since many or most of our measures are concerned
with scores, usually measured in terms of whole numbers
and seldom in terms of decimals or fractions, the followmg
is common practice:

r__l The mean is usua.lly reported to one or two decimal
places.
2. The median is usua]ly reported to one or two decimal
places.
3. The standard deviation is usually reported to one or
two decimal places.
4. Standard errors, which we have not discussed as yet,

t
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are usually reported to two and ordinarily not more tha.n to
three decimal places.

5. Correlation coefficients are usually reported to two and
sometimes to three places.

6. Per cents, written as decimal fractions, .are seldom

reported to more than four places, and usually to two.

7. Proportions are usually reported to two or sometimes
to three decimal places

8. Ratios, used in tests of s1gmﬁcance, which we shall
take up later, are usually reported to two or sometimes to
three decimal places.

When the number of observations with which we are
dealing is very large, we might report the statistics listed -
above to another decimal place, but when the number of
observations is small, say less than 100, such “professed
accuracy”’ is apt to be looked upon as misleading. Remember
that if you are going to report the mean of a sample to two
decimal places, then you should carry the division ZX/N to
three places and round back to two. This practice should
be followed in computing all other statistics also: carry
along two or three extra figures in making your computations
and then round back in your final answer.

c. Rounding numbers. In rounding numbers to the
nearest whole number, we would proceed as follows:
84 becomes 8; 7.1 becomes 7; 3.2 becomes 3; 7.6
becomes 8; 7.8 becomes 8; and 6.6 becomes 7. What
is the rule we have followed? If the decimal fraction was
less than .5, we dropped it and let the number stand; if the
decimal fraction was over .5, we raised the number by one.
If we round to one decimal we follow the same rule: 8.46
becomes 8.5; 7.32 becomes 7.3; 6.11 becomes 6.1; a.nd
4.654 becomes 4.7. :

Difficulties in rounding are apt to arise when we are asked
to round numbers such as these: 5.5 and 4.5 to the nearest
whole number; 8.550 and 4.650 to one decimal place. The -
answers may surprise you: 5.5 becomes 6;' 4.5 remains 4;
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8.550 becomes 8.6; and 4.65 remains 4.6. AIl of these
numbers involve the dropping of a 5, which is right on the
" border line. The rule, by common practice, is this: if the
number preceding the 5 which is to be dropped 13 an even
MW& do not change it, but if the number preced=
ing the 5 i3 odd; then it is raised by one. This is an arbi-
trary rule, to be sure, and it could just as well be the other
way around. Either one would work and would tend to
balance out errors that might be present in rounding if we
had a long series to work with,

2. CODING BY SUBTRACTION

a. The sum of scores. We are now ready to consider
some of the techniques of coding measurements, Consider °
the simple set of scores on a Thurstone attitude scale listed
in Table 3. If you subtracted 5 from each of these scores

TABLE 3—A Siuriz SE? oF Scorks
©N A THURSTONE ATTITUDE ScALE

11

-

"

] rosm om0t

2]

and added the resulting deviations you would find that the
sum would equal zero. What would this indicate? Do
. you recall a theorem introduced earlier, that the sum of
deviations from the mean is equal to zero? This should
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tell you, then, that the value we have subtracted from ea.ch
_ of these scores is really the mean.

Now try subtracting 4 from each of the seores. The sum
of the deviations is now no longer zero but 15. If you were
to divide this value by N, which is equal to 15, the result
would be 1, which is just the amount you need to add to the
‘value 4, which you subtracted from each score, in order to
obtain the mean. - Try subtracting 3 from each score and
you will now find that the sum of the deviations is equal to
30, and 30 divided by N gives 2, which is just the amount
you need to add to 3, the value subtracted from each seore,
in order to obtain thc mean.

As a matfer of fact, any value at all could be subtracted
~ from these scores a.nd you could still find the mean by sum-
ming the deviations from the value subtracted. If you
subtract a constant value from each score, then that value
must be subtracted N times (once for each measurement in
the series). Then N times the value subtracted, added to
the sum of deviations from this value, will give the sum of
scores (ZX). For example, when 3 was subtracted from:
each score in the above series, we found the sum of deviations
to be 30. And (15)(3) 4 30 = 75, or the value that would
be found by summing the original seores. '

We are going to have to resort to some more symbols.
The deviations we have just used may be symbolized by.
X'. This means that the deviation is not from the actual
mean (M) of the series, but from some other point of arbi--.
trary origin, symbolized by M’. Now for some algebraic
manipulations, but manipulations which involve nothing -
more complicated than the application of the rules intro-
duced in the second chapter. If the discussion is not elear,
then you should go back and study the rules. '

We can arrive at the equation ZX = (N){(M") +EX’ ;
empirically, that is, by actually working out several prob- :
lems, subtracting different values, but we can also arrive
at it in terms of our rules for equatlcns and summation,
Thus if we start with
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X-M=X By definition
- 2X - M) =32X Summating, and since the
: summation of a constant
(M) is equal to N times the

constant, we get

- (N)(M) ==X" And adding (N)(M") to both

sides we get

= (NM') +zX’

_ Now having arrived at the above equation, we can readily
see how it can be used to find the mean. If we divide both

'4
| sides of the equation by N, we get % =M+ E—X—, and
since TV_X is equal to the mean, we may substitute in the left
" side to arrive at .
M =M+ ’:5 o (1)

where M = the mean
M’ = some constant whlch is subtracted from each score
+ ZX’ = the sum of deviations from M’
N = the number of scores in the series

o (4
The value (?%) is called the correction term for the mean

when deviations have been taken from some value other
than the actual mean of the series. :
~ b. The sum of squares. Perhaps you are wondering
whether the X’ values can be squared, summed, and then
corrected in some fashion to arrive at the sum of squares
(Zz?). The answer is “Yes.”” All that we need to do to

i X’
obtain the sum of squares is to subtract (EN )y from ZX"2

1If M’ were equal to the mean, then —‘;— would, of course, be zero, since

the “sum of deviations from the mean is equal to zero.”
i v :

i
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* In other words, . |
gt = ZX — @%')—' | 12

where  Zz! = the sum of squared deviations from the mean of
the series
IX'* = the sum of squared deviations from some va.lue'
(M) other than the mean .
(ZX")* = the sum of the deviations from M’, squared - .
N = the number of cases

s (EX’)’
The correction lerm is not a correction term for

subtraction as such, but for failure to take the deviations
from the actual mean. Measures of variation such as the
standard deviation and range are uninfluenced by subtrac-
tion or addition of a constant from every member in the
series; the variation or spread of scores remains the same.
For example, if the lowest score in a set was 20 and the
highest was 40, the range would be 20. If a constant such
as 10 was subtracted from every score in the series, the
lowest score would become 10, the highest would become ..
30, and the range would remain 20. If 10 were added to
each score, the lowest score would become 30, the highest:
50, and the range would be the same as before. The stand-
ard deviation would also remain the same, rega.rdless of the .
constant which is subtracted or added.

We may illustrate formula (12) with the series of Thur-. _
stone attitude scale scores we used before, Column (2) of
Table 4 gives the deviations of each of the scores listed in
column (1) from the actual mean. Working with these
deviations from the mean, we can readily see from column (3)
that the sum of squares is equal to 122. Now let us try the
formula involving a correction term, when we work with
deviations from some value other than the mean. In
column (4) we have the values of X’ when 4 has been sub- -
tracted, the sum of the deviations being 15. In eolumn (5)
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TABLE 4,—DgvisTioNs aND SqUareEp DEvIATIONa
FROM YaR10Us Points oF OriciN

i

(X=X —14)

(1 @) (3) 4y .| (5) (6)
X z |- a X | xn X
r 6 36 7 49 121
8. 3 9 4 16 61
H 0 Q0 1 1 25
2 - 9 -2 4 4
4 -1 1 0 0 16
7 2 4 3 9 19
1 -1 16 3 9 1
2 =3 9 -2 4 4
5 hy 0 1 1 25
o . 4 16 5 25 81
7 2 4 3 9 | 49
1 -1 16 -3 9 1
4 -1 1 0 0 16
5 0 ] 1 1 25
4 -1 1 o 0 16
Z 5 o | 122 { 15 | 137 497

we have these deviations sqﬁared, the sum being 137.°
Applying formula (12), we have

2

ER .
- 137 = 187
= 137 — °3¢
=137 —15 -
=122

which is precisely!the value we obtained when we worked
directly with the deviations from the actual mean of the
- distribution. .

In column (6) we have squared the original scores. We
may sum these, apply formula (12), and obtain the sum of
squares as'‘we did before. In this instance we are merely
subtracting zero from each score, and our correction term
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becomes the square of the sum of the ongmal scores, divided
by N. Thus we may write ~ .

2t = z:X‘* @X) . (13)

Substituting the appropriate va.lues in the above formula
we getb

a5
Zx® = 497 15
5,625
= 497 — 15
= 497 375
= 122

We now have several different ways of finding the sum of
squares: we may work with deviations from the actual
mean; we may subtract some value other than the mean
and apply a correction term to the resulting sum of squared
deviations; or we may work with the measurements as they
stand. This latter method is particularly valuable if you
have a calculating machine to assist you in your computa-~
tions,

8. CODING BY DIVISION

a. The sum of scores. We have just seen how we may
subtract any constant from a series of scores, thus reducing
the numerical size of the scores. We found also that we
could work with these reduced or “coded” scores and, by
applying a correction term, arrive at the same value for the
sum of scores and the sum of squares that we would have
obtained working with the original measures. We shall now
see how division, too, can be used to reduce the size of scores.

In Table 5, column (1), we have a set of original measure-
ments, the sum of which is 100. Sinece N is equal to 10,
the mean of these scores is 100/10 or 10. Column (2) gives
the deviation of each score from the mean and the sum of
this column is zero, as it should be. Column (3) gives the
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dew:a.tmns squared, and the sum of squares i3 equal to 86.
In column (4) we have divided each X by 2 and we shall
symbolize this “coded” score by 2. < ' We shall let © represent
the value by which we lelded the scores. Column (5)

contains the squares of the coded scores (X) .

2
TABLE 5.—Copve Scores 8Y Drvision
&=X/2)

m e e | e
X |.= = z z
12 2 4 6 36
10 0 0 5 - 25

8 -2 4 4 16

10 0 0 5 25
14 4 16 7 49

6 —& 16 3 9

8 —2 4 4 16

16 6 36 8 64

3] —4 16 3 9

, 10 0 Q 5 25
Z 100 L] 96 50 274

Nofe that the 2z’ needs to be multiplied by 2 (the value
by which each X was divided) in order to equal the sum of
X. In other WOl'dB ZX = (Zx)({@). Ii we divide both

sxdes of this equation by N, we get E—I%( = (Ea:) (z), and

since ETX is equal to the mean, we may substitute in the

left-hand mde of the equat.lon to get another basic formula:
P2
u=(Z) 6 S aw

Thus we see that if we have reduced scores by dividing each
one by the same constant, we may sum these coded scores,
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divide by N, and multiply the result by 7, the value by
which we divided each score, to arrive at the mean. Sub-

stituting the appropriate numencal values in formula (14),
we geb

- (Do
=& @
= 10

which is the value we obtained by working with the originalf ,
" measures. .

b. The'sum of squares. The formula for the sum of
squares now requires a correction term for coding as well as
one for failure to take the deviations from the mean of the
series. Measures of variation, although uninfluenced by
subtraction or addition, are changed by multiplication or -
division. Note, for example, that the range of the scores in
column (4) i3 no longer the same as that of the original
measurements in column (1). The formula we need is

Izt = [Ea:" — %’)—I] 2 | (15)
where Z1® = the sum of squares : ‘
Zz"* = the coded sum of squares from some point other
than the mean
(zz)
N

= the correction term for origin

= the correction term for coding, that is division -
Substituting in formula (15), we get

22t = [214 - ("’i}’] @y

_ [274 _ 2500]4

(274 — 250) 4
(24) (4)
96
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which is precisely the value we obtained when we worked
with deviations from the mean of the distribution.
You may not quite grasp, at this time, the value of the
coding techniques we have described. That is because the
- problems and data we have had to work with up to now
have been selected for simplicity and ease of computation.
+In each illustration the mean has been a whole number and
the figures have been small rather than large. But suppose
that the mean for a distribution of over 100 scores turned
out to be 152.67. If you tried to compute the standard
deviation by working with deviations from this mean, the
computations would involve squaring four- or five-place
figures. Coding the series by subtracting some even value
and reducing them even more by dividing by a constant
would simplify your computations. .

4. SUMMARY OF “CODING FORMULAS”

We might summarize the discussion so far before we turn
to coding measures by grouping. It is possible, we have
seen, to code measurements by subtraction and division,
if we remember to return our coded measurements to the
units of our original scores for our final answers.2 :

1. When scores have been reduced by subtraction only
(X — M’) then

=X’

. S (ZX’)’
M=M+5 N

and Ez? ==X —

314 is also possible to code by multiplication and addition, but we seldom
have need for these coding techniques in handling the data of the social sci-
ences. The rules are these: The mean is influenced by every operation; the
standard deviation only by multiplication and division. When more than
one operation has been performed, for example, subtraction and then division,
the coded results must be decoded with the inverse operation (the inverse
operation of subtraction is addition, of division it is multiplication) and in
reverse order. If we have subtracted 5 and then divided each measure by 2,
we must decode the resulting mean by first multiplying by 2 and then adding 5.
The sum of squares, being influenced only by the one operation, division,
must be multiplied by the square of the value by which each measure was
divided.
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%

2. When scores have been reduced by means of chwsmn

only (X) then ,
Ef'-)i  and 2= [22 —@—“")’]a

3. When scores have been reduced ﬁrst by Subtra.ctlonw
and then by division, then

M = M +(§Kf)i a.nd er’ -= [Ea:" - (E;’)., %

4, When scores are treated in terms of the original meas-
urements, then

M= zjr{ and Zz’ EXL-@

The formulas given above are bamc. Memonze them
and make sure that you know what every term means and
what every term does.

5. GROUPING MEASURES INTO CLASSES

The most common method of coding scores is by “group-
ing’’ data or measurements into ““classes” to form a frequency
distribution. You may recall that earlier in this chapter
we discussed “precision of measurement.” Grouping may
be thought of as the equivalent of using a less precise measur-
ing unit and is most valuable when we have a large number
of measurements, Instead of treating each measurement
separately, we group them into a number of equal intervals,
classes, or steps. We then code the classes and work with
these coded values in order to simplify our computations,

Examine the scores in Table 6. They are hypothetical
. but we shall assume that they were made by a class in
psychology on an objective examination, These scores, as
they stand, do not give a very concise description of the
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performance of the group—and one of the purposes of
statistics is to summarize and describe. Nor are these
scores, as they stand, very convenient to use in computation.

a. The number of intervals. - The first thing we need to
do in making a frequency distribution is to determine how
we shall group the scores. We could group them in terms

TABLE 6.—HyroTHETICAL Scores Mape By StupENTs
ON AN OBIECTIVE TYPE OF EXAMINATION

97 74 70 ‘68 66 64 63 62 61 60

of a class interval of 1 by placing numbers ranging from
- 87 to 33 at the left-hand side and then making a ta.lly mark
(/) each time one of these numbers was found in the dis-
tribution. . This, however, would still leave the scores-
spread out; the class range would be from 87 to 33 or 54.
Fo'rtuna.tely, experience has shown that quite accurate
results can be obtained in statistics when, for purposes of
computation, we work with a much smaller class range, say,
from 10 to 20 classes. OQur first rule for grouping scores,
then, will be that we shall group them so as to have from
* 10 to 20 classes or groups. The larger the number of in-
tervals, the more precise will be the computations, but also
the more complicated the computations. Consequently,
the number of class intervals we decide to work with will be
dictated by our desire for accuracy and also by our desire
for convenience. .
‘b. Size of the class interval. One method which might
be used to determine the appropriate size of the class interval
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to use in grouping scores is first to find the range and then
to divide this value by the contemplated number of class
jntervals with which you wish to work. In the present
problem, if we wished to work with the minimum number,
10, we would divide the range, 54, by 10 and the quotient
would be 5.4, This quotient rounded off to the nearest,
integer would be 5, which suggests the size of the interval
to use. We shall let the symbol ¢ represent the value of the
class interval.

I we wished to work with approximately 15 class mterva.ls

_we would divide the range by 15 and the quotient would
be 3.6, which, when rounded, is 4. In this instance, how-
ever, instead of using 4 for the size of the class interval, we
might prefer touse 3. The reason for this is that, in general,
an odd number for the size of the class interval is easier to
work with than an even number. We shall later make the
assumption that the midpoint of the class interval best
represents all of the scores located within the interval. If
the interval has an odd number of units, then the midpoint
will be an integer. If the interval has an even number of
units, then the midpoint will be a fraction. It is to avoid
the latter situation that intervals with an odd number of
units are to be preferred? However, if the quotient ob-
tained by d.ividing the range by the contemplated number of
intervals is 9 or 11, then most workers would probably
select 10 for the size of the interval. This is partly because
classifying things by 10’s is common in everyday life and
also because computations jnvolving 10's are particularly
€asy.

c. Limits of the intervals. It is customary in psychology
and education to start class intervals so that the lowest
score of the interval is some multiple of the size of the elass
interval, For example, when the size of the jnterval is 3,

¥ This rule, like most rules based upon common tice, han exceptions.
If'we had a range of 25, we would be orced to demci‘e between working with
the measures as the st.and, or using an £ of 3, which would %:e us less than

the 10 intervals we desire, or using anf of 2, You wou]d probably find advo-
cates of each procedure.
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intervals are started with some multiple of 3 such as 6, 9,
12, or 15, and so forth.* Although it is eustomary to write
these intervals as 6-8, 9-11, 12-14, and so forth, for a
class interval of 3; and 10-14, 15-19, 20-24, and so forth,

- for a class interval of 5; we must remember what we
have previously said about the meaning of a score, i.e., that
it represents a range extending .5 of a unit above and
below the recorded value. The same reasoning applies to
class intervals; the theoretical limits of the interval 10-14
~are 9.5-14.5, that is, .5 of a unit below and .5 of a unit
above the recorded limits. . :

d. Tallying the scores. The next step in making a fre-
quency distribution, after the size of the class interval has .
been determined, is to tally the scores. The various class
intervals are listed as in Table 7 according to the accepted
practice of placing the highest interval at the top. As the
scores are taken one at a time, a tally mark is placed opposite
the interval in which each score falls. When four tally
marks (////) have been made in a given interval, the fifth is
made as a cross tally, thus /A{/. The sum of the tally marks
for each interval gives the frequency of the interval, and the
sum of all of the frequencies gives the total N.

‘e. Assumptions concerning grouped scores. What as-
sumptions can we make concerning these scores as they are
‘now grouped? We might assume that the scores within each
interval are evenly distributed throughout that interval. This
is the assumption we shall have to make in order to find the
median which is a point. - A second assumption we might
make, and one that we use in computing the mean and
standard deviation, is that the best single value to represent
‘all of the scores within a given tnlterval is the midpoint of that
interval. 'This, of course, will not always be true, but the
errors introduced tend to be small and the errors in one
direction tend to counterbalance errors in the other direction.

¢ This again is an arbitrary practice, and there is much to be said for starting
intervals in such a way that the midpoint of the interval is an even multiple
of the size of the interval. When 5, for example, is the size of the interval,
the intervals may be started with 8, 13, 18, or 23, and so forth.
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We shall find that the mean and standard dev1at10n based
upon this assumption will not be seriously in error.

We could, if we wished, now compute the mean by locat-

ing the midpoint of each class interval and multiplying this

TABLE 7—FREQUENCY DISTRIBUTION OF Scomas
GIvEN IN TaBLE 6

—

1) 2 )
Scores TaLLy Marxs
.. 85-89 i .3
- 80-84 ! 1
75-79 i 4
70-74 M 9
65-69 MIN N 13
60-64 M INEIEINE 26
55-59 NN 19
50-54 MW 12
4549 Ml 8
40-44 i 3
35-39 ] 1 2
30-34 { 1

value by f, the number of scores within the interval; we
could sum these values and divide by N and this would
give us the mean, Locating the midpoint of an interval is
an easy process. The midpoint of the interval is halfway
between the lower limit and the upper limit of the interval.
The lower limit of the interval 30~34 is 29.5 and the upper
limit is 34.5, a range of 5. Half of 5 is 2.5 and this value
added to the lower limit of the interval gives the midpoint,
32. The midpoint of any class interval, in other words,
is the lower limit of the interval plus i/2. It is important
not to forget that the lower limit of any interval extends
.5 of a unit below the recorded value and the upper hmlt
.5 of a unit above.
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f. Calculation of the mean and sum of squares. You may
wonder why we are not now going ahead to find the mean
of the distribution of scores in Table 8, by multiplying the
midpoints of the class interval as gwen in column (2) by

- the corresponding frequencies as listed in column (4). We
could calculate the mean in this manner, but we may simplify
our computations even more by coding the values of the
midpoint. To do this we (1) subtract the midpoint of the
lowest interval from the midpoint of all of the other intervals

+ and then (2) divide these values by %, the size of the interval.

-*This will not change the values of the mean and standard
‘devmtlon except for the slight errors already introduced by
groupmg, if we take into consideration the proper corrections.
for origin and coding. The formulas are similar to those
we used before except that we now use fz’ to indicate that
each coded score or midpoint has been multlphed by its
frequency Thus :

M=M'+(—21—{,I—')i | (16)
. 22t = [2 o %')—’] e an

 The essential steps in the application of formula (16) and
formula (17) are illustrated in Table 8. You may note
several things from this table. It would not have been
necessary to find the midpoint of the lowest interval and
. then to subtract this value from the midpoint of every other
interval, dividing the remainders by 1. We could have
simply coded the lowest interval 0, the next 1, the next 2,
and so on. This will be true of all distributions, regardless
of the size of the class interval or the number of intervals
or any other cansiderations. We might also have subtracted
the midpoint of some interval other than the lowest. We
could bhave started, for example, with the midpoint of some
interval toward the center of the distribution and numbered
this 0. Then intervals above this would be numbered 1, 2,
3, and so on, and those below would be numbered —1, —2,
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TABLE 8 —CavcuraTion of THE MeaN, MEDIAN, AND STANDARD D!WIATION
reRoM ScoreEs CODED BY Gnourma '

ey {2) (3 (4) (5 @ | @
Mip- Mio. o ; ; -
- Beomes POINT porg;' I 2' I C A L
85-89 87 55 2 11 22 242
8084 | 82 50 1 10 10 .| 100
75-79 7 45 4 9 36 324 °
70-74 72 40 9 8 72 76
65-69 67 35 13 7 91 637
60-64 62 30 26 6 156 936
55-59 |+. 57 25 19 5 95 475
50-54 - 52 20 12 4 48 102
4549 | 47 15 8 3 24 72
40-44 42 10 3 2 6 12
35-30 37 5. 2 1 2 2
30-34 32 0 1 Q 0 0
z 100 562 3,568
M:M'_l_(.zji'.)" zz!;[zfz'f;.%ﬂ]@
= 32 + (562)5 = [3'_553 - M] 25
=32 4 (5.62)(5) - [3,568 el 844)] 25
= 32 4281 = (3,568 - 3,158.44) 25
= §0.1 = (409.56)(25)
Min=1+4 (%r _ Ef')l : ;2"239
7 i
50 — 45 _ 10,239
-wse(@58)  -nm
= 59.5 +(ﬁ)5 =123
= cofER
= 59.5 + .95 o= »\/;; or 'ng\:—‘n .
= 60.46 '
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~3, and so on, This would give us slightly smaller figures
to deal with, but' would have introduced some negative
values into our computations. As general practice, it is
better to start the lowest interval with 0 and number up
from there.  There is perhaps less chance of making a mis-
take if you follow this practice.

8- The “Charlier checks.” There are checks on the
accuracy of your<computations. They are known as the
- “Charlier checks’”- and in the present problem may be
- effected by raising each coded interval by one point. The 0
interval in the frequency distribution. becomes 1, the 1
interval becomes 2, and so on. We may designate these
new coded values for the class intervals as ”. Now find the
Zfz" and the Zfz'? as before. If the computations in the
 first and second instance have both been correctly made,
then the following relations will hold: .

>fr" = 2fe’ + N (18)
- Zfa? =2+ Q@) + N (19)

_ As an illustration of these checks we may examine the
computations in Table 9.

TABLE 9.—JLLUSTRATION OF THE “CHARLIER CHECKS”

(¢} QD[ | @O |6 |O] 6O
Scorzs F 2zl || g |2 || pm
30-32 1l sl 5o 1| 6 6] 3
27-29 2| 4§ 832|235 ]1w0]50
2426 5| 3 [15]|a ]| 5| 2|2]s
21-23 7.0 29| 12| 28| 7| 3 | 2| 63
18-20 8’| 1 3| 3| 3| 2| % | 12
1517 20| o] of 2|1 2 | 2
z | 2 45 | 133 65 | 243
S = 3f + N I = 3o + Q) + N
65 = 45 + 20 243 = 133 + (2)(45) 4 20

65 = 65 243 = 133 4 90 + 20
o 243 =243
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h. Calculation of the median. The median, @, @, and
centiles can also be found from a frequency distribution.
Formula (7) given earlier will work without any change.
But if we have our scores grouped in intervals greater than.
one, a3 will usually be the case, the value within the paren-

_theses must be multiplied by the size of the interval, . Thus

N
_"_"Efn »
Mdn-—z+(2_ -)‘

Jo
where Mdn = the median ' -
l = the lower limit of the mterva.l containing the

" median
Zfs = the sum of frequencies up to the interval oonta.ining
the median , , .
Jo = the frequency within the interval containing the
median

N = the total number of cases in the distribution .
1 = the size of the class interval

- The application of formula (7) is illustrated in Table 8.
The value of the median obtained by means of this formula
may be checked by caleulating the median usmg formula (8) &

6. SUMMARY OF STEPS IN CODING

Here is a summary of the steps in coding measurements -
by first grouping them in a frequency distribution.

1. Determine the range: (H — L). ’

2. Divide the range by the number of intervals you wish
to work with (10 to 20). This figure gives the approxlmabe
size of the class interval 1.

3. Begin the lowest interval with some multiple of the
size of the interval. "
4. Code the lowest inferval 0, the next 1 the next 2, and
so forth until‘the highest 1nterva.l has been coded

5. Apply formula. (16) for the mean and formula. (17) for
the sum of squares.
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-If you are working with a calculating machine, you may
not want to record the scores in a frequency distribution
but may still wish to code themh. This is easily accom-
plished. Follow the procedure above through the third
step. Then take the lower limit (recorded Limit) of the first
interval and divide this by ¢ (the size of the interval). This
will be a whole number since the lower recorded limit is a
multiple of 4, and may be designated as k. Now divide
each measurement by 7, discarding any remainder. Sub-
tract the value % and this will give you the coded value of
the score, which is identical with the value you would have
obtained if you had grouped the scores into a frequency
distribution.

Suppose. we take a few of the values from Table 6 to
illustrate how they might have been coded without making
the frequency distribution. The lower limit (recorded) of
- the first interval is 30, and this divided by the size of the
interval, 5, gives the value of k, which is 6. Check the
coded values listed i in Table 10 agamst those of Table 3.

" TABLE 10.-——Gonme Scorms WITHOUT
i . GroUPING INTO INTERVALS

i=5; E=6)
X X
>4 i (1.) k
- 33 i3 0
a5 1 T 1
38 7 1
4% 8 2
= 43) - 8 2
50 10 4
68 13 7
76 15 9
85 17 11
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- SIMPLIFYING COMPUTATIONS

Example 1.—Here is an easy practice series for coding.
29 28 27 25 24 22 20 )

(2) Find the mean and sum of squares by the usual method.
(b) Subtract 22 from each score and find the mean and sum

of squares. .
(c) Find the sum of squares assuming M’ to be Zero.

Examlven the following highest and lowest scores in a
number of different distributions:

o e 3) @ . © ©
87-232 95-50 .  18563£0 664350 52-180 110-5¢ /Y

(a) Find the range. .

(b) Find the value of 4.

(c) Find the limits of the lowest interval.
(d) Find the midpoint of the lowest interval.

Example 3.—Code the followmg scores without making a fre-
quency distribution. The range is from 84 to 33.

@ G @©@ @ @@ O @
80 45 53 39 42 56 43"
33 62 64 66 47 83 58
8 68 59 55 35 38 60
76 71 37 8 45 6l - T7
. 42 3 78 72 4 59 52

Exaemonstrate the “‘Charlier check” with the follow-
ing frequency distribution. Check both (a) the sum of scores and
(b) the sum of squares.

Scores 7 '
3~ %/' !
1 5
1255 A 2 4
¥ *-' % 5 3
oy | 1|
/ ‘7"7 20 2 0
1617 1411 od
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Exampl@By making & frequency distribution, code the
following * " gcores made by a class in general psycholegy on
an objective examinafion: Let £=3. Find the mean and
standard deviation of the distribution. Check your computatlons
by Ieans of the “Charlier checks.”

-ﬁ_'ﬂ) 35 34 32 31 3 2 27

42 .- 37 . 35 23 31" 30 29 29 27
40 36 34 33 31 . 30 29 28 26
40 35 34 32 31 30 29 28 26

2 .25-24' 24 23 237 22 22 22

Exa.mple@—Fmd the mean, medla.n, and standard deviation
of the following distributionr * :

Scones i 4
60-62 1 8
57-59 3 7

"~ 54-56 2 6
51-53 7 5
48-50 11 4
45-47 --10 3
42-44 9 2

13941 ] 1

- 3638 5 0

Exampl@—Show, algebraically, that 2z = ZX* — (ZX)

Example 8.—Show, algebraically, that (a.) Efm = Ef:c + A
and that (b) Zfz"? = Zfz'* + (Q(=fz) + N.
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CHAPTER 5
THE PRODUCT-MOMENT CORRELATION
COEFFICIENT ‘

The statistical techniques discussed so far are useful for
describing single variables. We are now ready to consider
statistical techniques which will permit us to study two
variables and to describe the relationships between them.
The problem in which we are interested is the extent to which
two variables are associated. As values of oné increase.
from small to large can we expect corresponding changes
in the second? Is it true, for example, that tall men tend
to marry tall women and short men tend to marry short
women? If we studied this problem and found that the state-
ment were true, then we would say that these variables,
height of husband and height of wife, are positively related.

There are occasions, however, when we observe not posi-
tive but negative rela.tmnshlps. Such a rela.tlonsb.lp has
been reported between an index of economic prosperity and
the number of lynchings occurring during a given year (9).
A negative relationship between these two variables means
that as values of one increased, values of the other tended
to decrease; the higher the index of economie prosperity,
the fewer the lynchings; the lower the index of economic
prosperity, the greater the number of lynchings. We
describe this relationship by saying that the two variables
are negatively related.

We must take care in studying relationships that we do not
confuse the concepts of “correlation” and “ecausation.”
When two things are related it does not necessarily follow °
that one is the cause of the other. We might find that
there is a positive relationship between scores on a test of
aggressiveness and yearly incomes for a sample of several
hundred men, but we cannot legitimately say | that one is the

79
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cause of the other. The assumption that changes in one
variable are the cause of changes in the second may or may
not be valid, but this must be determined by considerations
other than the mere fact that the two variables are related.
- The changes in each variable, for example, might possibly
be the common result of some third variable. This is per-
haps the most probable explanation of the positive rela-
tionship that has been found between scores on an academic
aptitude test and subsequent gradesin college. Noone would
. assume that the scores on the test determine or cause the stu-
dent to get good grades, or that the good grades cause the
student to get a high score. Whatever it is that causes the
student to get a high score may also be the cause of bis
better than average grades. ‘

- 1. THE COEFFICIENT OF CORRELATION

One of the statistical techniques for describing relation-
ships, both positive and pegative, is the product-moment
‘cortelation coefficient. This coefficient measures the degree
to which two variables are associated and is symbolized by
7. In terms of absolute size, r may vary from +41.00,
through zero, to —1.00. A correlation coefficient of +41.00
indicates a perfect positive relationship between two vari-
ables; a zero coefficient indicates no relationship; and —1.00
indicates a perfect negative relationship. It is very seldom,
if at all, that perfect relationships are found in the behav-
ioral sciences, in part because of the limitations of our
measuring instruments and also because of the difficulties of
. controlling all possible factors which may influence the two
variables being studied. But for purposes of illustration and
understanding let' us see what a perfect relationship would
mean. : i

a. A perfect positive correlation. If we are going to study
" relationships between variables, then we must take measure-
ments in pairs and we must have more than one pair of
measurements. We might take an individual’s score on

one fest and pair it with his score on a second test, and
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continue to do this for a number of different individuals.
Or we might study the relationship between seores of broth-
ers and sisters on the same test, pairing the score of each boy
with that of his sister, If we were interested in studying a
problem in motivation or drive in the psychological labora~
tory we might take the number of hours that an animal hag
been without food and pair this value with the number of
crossings it will make over an electrically charged grid in
order to reach food. Suppose, for reasons of simplicity, we
assume that we have 10 individuals and that each one has -
taken two psychological tests. We shall call one of the
tests X and the other Y. The paired scores for each mdl-

-~ vidual are given in Table 11. :
" Observe that each individual’s score on the Y test is
exactly 1 point higher than his score on the X test. There
are no - exceptions and we _
would find that the correlation HREAE
coefficient is positive and per- _ '
fect and expressed by +1.00. = " :

2

Perhaps the best way to wis- f
ualize what this means is in 3
terms of a simple graph.

Figure 2 indicates the cus-
tomary method of plotting a
graph for two variables, The
base line is called the X-axis SRR Ll
or oxis of abscissas. The left Fia. 2—Correlation chart for
vertieal line is called the 8coreson Test X and Test ¥ given

in Table 11, Correlation co-
Y-axiz or azis of ordinales. efficient aqua.lto 1.00. _
The point at which the two
lines intersect is called the point of origin or 0. The scale
on the X-axis always runs from left to right and on the -
Y-axis from the bottom up, as shown in the diagram. A
vertical distance from the X-axis to a given point is called
the ordinate of that point and a horizontal distance from.
the Y-axis to a given point is called the abscissa of that
point. Thus to plot a point for a given value of X and Y,

= » a & &
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we would move out the X-axis away from O until we come
to that value of X, and then move up the Y-axis until we
~come to the value for Y. The point would be plotted at the
intersection of the horizontal line drawn from the value of

TABLE 11.—Scores oN Tests X anp Y ror 10 InpIviDUsLs
(r = 1.00)

INDIVIDUALS

1 2 | 3 4 5 6 | 7 8 9 10

X "16 14 13 10 8 7 5 4 2 1
Y | 17 15 14 11 9 8 6 5 3 2

Y and the vertical line drawn from the value of X. To-
_gether the ordinate and abscissa of the point would be called
the coordinates of the point.!

In plotting the test scores of Table 11, values of the X
test are plotted along the abscissa and along the ordinate
values of the Y test are plotted. This is similar to plotting
or making a frequency distribution with a single set of test
scores, except that here we move the Y scores out to the
right so that they will be tallied (plotted) also in terms of
the corresponding X values. :

1Tt is sometimes necessary to deal with negative values of X and Y, as might
be the case if we were plotting the points in

*10 - terms of deviation scores. In this instance
o | we would take the origin of the X and ¥ axes

i 1 at the means of X and Y. The two axes
1~ |Socoma Y would be extended as shown. The upper
a4l (Quad: right-hand section takes care of positive val-
e e2 _ ues of both X and ¥, the upper left-hand
H ,f section takes care of negative values of X
e " o [*Origin and positive. values of ¥, the lower left-hand
i e section takes care of negative values of both
-4 Fouth | | X and ¥, and the lower right-hand section

P D v Quadrant takes carp of positive values of X and nega-
I ] [ 1 tive values of ¥. These sections are called

88 =6 -4 -2 0 +2 +4 +6 +8 +10 the first, second, third, and fourth quadrants,

Test X respectively.
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We can readily see from Figure 2 that the plotted points
fall along a straight line and that, therefore, the relationship
between Test X and Test Y is rectilinear. The line which
might be drawn through the plotted points to represent
their trend is called a regression line and is described more
fully on pages 262-264. When the relationship between
the two variables is not perfect, then we have two re-
gression lines, one showing the correlation or regression of
Y on X and the other showing the correlation or regression
of X on Y. The two regression lines always cross at the
point which would be designated by M. and M, in the
graph. Thé larger the absolute value of r, the closer to-

- gether the two lines tend to lie. When r equals 1.00 the .

* lines coincide. When r equals zero, on the other hand, the
two regression lines are perpendicular to each other. The
correlation coeflicient, r, however, has the same value,
regardless of whether we are speaking of the regression of
X onY or the regression of ¥ on X. That is to say, rzy
equals .. ‘ : .

In some instances, the trend of the plotted points may be
more accurately described by a curved regression line, that
is, the relationship between X and Y may be curvilinear .
rather than rectilinear. To describe the degree of associa~
tion between two variables related in this fashion, weshall
need to compute another correlation coefficient, known as
the correlation ratio. All that we have said concerning the
product-moment correlation coefficient and all that follows
assumes that the relationship between the variables under
consideration can best be described in terms of a straight line,
i.e., that changes in one variable are accompanied by a
uniform change in the second.? ' ,

b. A perfect negative correlation. Suppose that our 10
individuals had made the scores given in Table 12. We.
shall let their X scores remain the same, but we shall change

* In a later section, where X and Y are grouped into classes in order to com-
pute the correlation coefficient, it is assumed that the average value of ¥, from
class to class, changes uniformly with changes in X. and vice versa. For any
given class the individual values may, of course, vary about the class mean.
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) TABLE 12,~Scores oN Tests X aNp Y ror 10 INDIVIDUALS
‘ (r = -1.00)

INDIVIDUALS
Tesr

X 16 14 13 10 8 7 5 4 2 1
Y 2 4 5 8 10 11 13 14 16 17

the value of the ¥ scores. If we now plot these scores as
we have done in Figure 3 we may note that the plotted
. values hgain fall exactly on a straight line but that the slant
or direction of the line is different. High values of ¥ now
tend to be associated with low values of X. In this instance

1~ 1
16 16
L ]
‘ll o 14
12 12
10 2 > 10 >
' 2 8 ’ (-’i 8
6 6
L
- Y
c [ ]
2 LYz
% TR 30 12 14 16 18 RN} g 30 12 14 16 19
. Test X Test X
Fia. 3.—Correlation chart illus-~ Fia. 4.—Correlation chart for
trating correlation between scores scores on Test X and Test Y given
on Test X and Test Y given in in Table 13. Correlation co-
“Table 12. Correlation coefficient efficient equal to .74.
equal to — 1.00. :

the correlation coefficient is —1.00 and we say that the
relationship is negative. |

c. A high positive correlation. Consider another illustra~
tion with the same X scores as before for our 10 individuals

¥ [ 3
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but with the values of Y, as given in Table 13 Observe
now that although there is a tendency for large values of X

. TABLE 13.—Scores o Tears X anp ¥ ror 10 INpiviovals

(r=.74)
InpIviDUaLs
Test :
1 2 3 4 ' 5 6 7 8 9 10
X 16°] 14 13 10 8 T 5. 4 2 1
Y 14 17 11 5 8 15 [{] 9 2 3

and Y to be associated, the plotted points in Figure 4 deviate
somewhat from any straight line that might be drawn among
them to describe the trend. The correlation coefficient
between X and Y is now .74. ,

d. A high negative correlation. A coefficient similar to
that obtained from the data in Table 13 but with a negative
relationship between X and ¥ would be indicated by the
set of scores in Table 14. The scatterof the plotted points

TABLE 14.—8cogEs oN Tesrs X axp ¥ ronllo InpIviDUALS
{r = —.73)

IxpivipuaLs

TEsT -
1 2 3 4 5 6 7 8| 9 10

x |w {1 |{md3twlis| 7185 ]| 2| 2| 1
Y | 5{ 3| 2| '8}6 |17]86 |15]11|14.

in Figure 5 is about the same but the. trend is dlﬁerent :
The correlation coeflicient is —.73.
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e. Alow corr.elation. Perhaps you are wondering what a
set of scores yielding a very small correlation coefficient
would look like when plotted. The set of scores in Table 15

TABLE 15.~—Scones oN Tests X anp ¥ ror 10 INDIVIDUALS
h : = —12)

ok . . INpIVIDUALS
TEsT

1 (2|38 4 |5-6]7 8|91

»

X |18 ]14]13w0| 8| 7|5
Y | 6| 3|1 |5|2]s

G0 a

1
14

-4 ]

yields a coefficient of —.12 and you may observe from
Figure 6 that the plotted points tend to scatter all over.

.13 . . 18 "

e d 18

uf-e o uls
1 1
BN T} b 10
L &,

6 &

. -

a ’_4

2 . 2 .

a6 8 10 8 14 16 18 %0 i 4 6 & 10U M 16 1

) . Tt X . Test X
Fre. 5.—Correlation chart for Fia. 6.—Correlation chart for
scores on Test X and Test ¥ given scores on Test X and Test ¥
in Table 14. Correlation oo« given in Table 15, Correlation

efficient equal to —.73. coefficient equal to — .12,

There is, in other words, no very apparent tendency for
values of X to increase or decrease in any consistent
fashion with increases or decreases in Y.
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2. BASIC FORMULAS FOR r .
a. Standard deviations. The formula for the coefficient
of correlation is R

4 _ Zzy ) .
Ty = Nowoy - (20)

where r,, = ‘the correlation coefficient of X.on ¥*
Zzy = the sum of the cross-products or (z){y)
0. = the standard deviation of the X variable.
oy = the standard deviation of the ¥ variable
N= the number of pairs of measurements

The only new term involved in formula (20) is the Zzy.
"This term, when divided by N, is known as the covanance

and is similar to the variance (ZN) of individual ets of

measurements, The deviation z, as we already know, is
X—M,and yis ¥ — M,. The Zzy is the sum of the
products of all of the psured deviations.

We can now see what makes the correlation nega.twe or
positive in sign. If an individual is above the mean on
both the X and Y variable, then xy is positive in sign and.
this will be true of all such cases. On the other hand, if an.
individual is. below the mean on both variables, then zy
will still be positive in sign since (—z)(~y) gives a positive:
product, The sum of zy is positive in sign and at a maxi~
mum when the largest value of x is paired with the largest.
value of y, and other values of z and y are paired accordingly

A negative relationship between two variables means.
that values below the mean of one variable tend to be asso-
ciated with values above the mean of the second variable,
The z and y deviations will thus tend to be associated in
the manner (z)(—y) and (—z)(y), and consequently the
products will be negative in sign. The sum of xy will be at

¥ The correlation coefficient of ¥ on X would take the game formula. The
two are identical, as pointed out before,
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its maximum negative value when the individual farthest
above the mean on the X variable is also the farthest below
the mean on the Y variable, and other z a.nd y deviations
are paired accordingly.

By having the values ¢, and o, in the denominator of
formula (20), the deviations of x and y are reduced to a

common basis, The values of a'i and -;,— are standard scores,
. * 4
which we discussed earlier, and are comparable regardless
of the unit of measurement involved in X and Y. Thus
( i)(_'-'_/_ _ i-'/_. and summing for the series and dividing
oy 0y by N to get an average we arrive at
‘ 2(7,)(3;) Zzy

=N which is the formula forr., -
10y

The coefficient of correlation, in other words, is the mean
of the products of palred standard scores.

The steps involved in the ecalculation of the correlation
coefficient by means of formula (20) are illustrated in
" Table 16. The scores are the same as those presented
earlier in Table 13.

b. Sum of squares method. If we are not interested in
the standard deviations of the X and Y variables as such,
“but have as our main objective the determination of the
" correlation coefficient, then formula. (20) may be simplified
so that .

ny'
Toy =~ 21
¥ oz @n
where r,,, = the correlation coefficient of Xon ¥
Zzy = the sum of the cross-products
Z2? = the sum of squares for X
Zy* = the sum of squares for Y

The coefficient obtained by formula (21) would be identical
with that obtained by formula (20). You may observe
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TABLE 16 —Cu.muron of THE COBRRELATION Commcmm FOR THE
DATA or TasLE 13 :

m @) (3) (@) ®) ) m
X ¥ z v N # . my
16 14 8 5 64 25" 40
14 17 6 8 36 . 64 483
13 11 5 2 20 { - 4 10 -
10 5 2 s 4 16 -8
8- 8 1] -1 0 1 0
ki 15 ~1 6 1 36 —6
5 ., B —3 -3 9 g9 9
4 ] —4 1] 16 0 0
2 2 —6 -7 36 49
1 3 -7 —6 49 36 42
Z 80 20 0 0 240 240 177

Try 177 177

= Newy ~ (10)(@0Y(30) = 3401 = -4

that in the formula just given r is the ratio between two
averages of variance. If both the numerator and the
denominator are divided by N, then the numerator becomes

the covariance (z—;y), and the denominator becomes the

geometric mean of the variance (Ex ) of X and the variance

N
p
( y) of Y. The geometric mean of two numbers, you -

may recall from an earlier discussion, is the square root of
their product.

It can easily be demonstrated that the dqnominators of
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formulas (20) and (21) are identical. Thus by substituting
1dent1t1es for o5 and ¢, we get

"N 00y = Ny K I;I)(Ey') and multlplymg we get

-N Zz’Zy’_ . and taking the square root of the
- N2 denominator we arrive at

=1Ev\/2:c’2y’ andsinee—lz%isequa.ltol,then

= VZ7Zg

Empirica]ly we can determine the identity by substituting
the values for Zz? and Zy* and solving for r.

__Zwy  _ 177 =E_7=74
T Vzezyg V(0)(240) 240

¢. Correlation using original measures. The calculation
of the coefficient of correlation from original measures,
without subtracting the mean of the Y distribution from
each Y score and the mean of the X distribution from each
X score, is usually a more convenient method of finding r
than either of the two methods described above. In this
instance, we do as we did before and assume that the means
in each case are equal to zero. We square each of the
scores, sum, and apply a correction term for origin to obtain
the sum of squares. We already know that

>:z*=>:2=—(EX—)'
' Ey’ ZY‘—(EY)

All that we need to do to get the sum of products (Szy) is
to apply a similar correction term for point of origin. Thus

Toy = IXY — (Z—X)I@ (22)
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* And since we now have identities for Z2?, Zy?, and Z:cy, we
may substitute in formula (21) to obtain

XY — (ZX)(EY)
- \/[zxr - (ZX)’] [zY’ (EY)’] @

The application of formula (23) is illustrated in Table 17.
d. Thedifference method forZxy. The difference formula
for obtaining the sum of cross-products (Zzy) is sometimes

valuable. It is obtained as follows
X =-Y)2=X2-2XY+7¥
(X - Y)2=2zX*—23XY + ZY?

2EXY = ZX? + ZY? ~ (X — Y)?
—_ —_ V4
SXY = zZX* 12 5 Z(X-Y) (24)
Since we already have ZX? and 2Y?, we merely need to find
the value of Z(X — Y)? and then to substitute in formula
(24) above to solve for ZXY. The steps are illustrated in
Table 18. A

e. Correlation using coded scores. The techniques of
simplifying computations by coding apply especially well to
the calculation of r. That is because the coded results of
our computations do not need to be decoded as they do
when we find the mean and standard deviation. Conse-
quently, if we are not interested in these statistics, but only
in r, we may work directly with the coded values. If we
code X and Y by division,’ then we obtain the following

formula for r:
[z zlyl (E:c’) (Zy')]

TG-S (-5

4 An alternative formula may be obtained by multiplying both the numer-
ator and the denominator of formula (23) by N. Thus .

NzXY — (ZX) (=Y)
T VINZX - @X) [NZY? — CY

% The sum of cross-products like the sum of squares,.is uninfluenced by
addition or subtraction of a constant. k
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The prime sign indicates that we are dealing with values
of X and ¥ which have been coded, and i, and i, are the
constants by which X and Y scores, respectively, were

TABLE 17.—CavicoraTioN of THE CORRELATION
CoEFFICIENT ¥ROM ORIGINAL MEASUREMENTS

43 2 @) 4) (5)
X Y x r ¢ 4
16 14 256 196 224
14 17 196 - 289 233
13 11 169 121 143
10 5 100 25 50
8 . 8 64 61 64
7 15 49 225 | 105
5 6 25 36 320
4 9 16 81 368
2 2 4 4 4-
1 3 1 9 3
z 80 %0 820 | 1,050 897
; 2xy - CDEN
— Xy Yy
'\f[zx: o ][z:Y' -~y ]
so7 — B000)
.\,[830 . (30) ][mm (90)’ '
(7.200) o
l; — G 400)][1 050 _ (B:100) 100)
897 — 720
= V(330 — 640)(L,060 — 810)
177
= Vewen)
. (1 4
-2

=74



Basic Formulas for r ' 93

TABLE 18-—CavcuraTion of XY BY THE
DrIFFERENCE METHOD

] @ @ @

X Y x-Y) [(X-Yp
16 14 2 4
14 17 -3 9
13 1 .2 4
10 5 5 25
8 8 0 0
7 15 -8 64
.5 6 ~1 1
- 4 9 -5 25
2 2 0 0
1 3 -2 4
% ' 136

— —
EXY=EX’—_|-EY’ X -T) )

2
=880+1,05{l-—136 oy 2
2
_ L34
2 =
= 8OT

divided. The numerator of formula (25) is equal to the
decoded or “true” value of Zzy, and the denominator con-
tains the decoded or “true” values for £z? and Zy® There
is no need to find these “true” values, however, if we are
not going to compute the standard deviations of the X and
Y distributions, Since the term, i.{,, appearing in the
numerator of formula (25) is eanceled by 4, and 7,2 appearing
under the radical sign in the denominator, we may write

2oty — EEY)

oy = —— N .
V-G - 8]

~(26)
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8. CORRELATION C’OMPU TED FROM A SCATTER
DIAGRAM

The technique of calculating a correlation coefficient from
~ a scatter diagram involves principles already familiar. The
paired X and Y scores are tallied in a two-way frequency
distribution which groups them into class intervals. To
illustrate the steps involved ‘we shall make use of the data
of Curtis (8) on the relationship between a measure of
susceptibility to hypnosns and a measure of mtelhgence.
These data are glven in Table 19.

TABLE 19 —Scomas ON A MEASURE OF SUsCEPTIBILITY TO HYPNOSIS AND
, ON A MEASURE OF INTELLIGENCE roR 32 SuBJECTS* o

- Hyr. Sus. | STANFORD- Hrye. Sus. | StaNFoRD-
SvssEcr ScaLe BmveT- Sussect ScaLe BINET
MJ 22 136 TF 0 101
DJR 6 106 AEH 22 128
HIR 20 116 " RR 16 122
SRB 8 - 139 - JM 13 111
1C 0 103 SN 7 129
JDC 17 126 WP 10 117
MC 21 131 FW 6 116
JLF 13 137 SR 16 129
BHH 14 144 HF 13 109
.. MEG 5 130 CEF 0 103
DC 6 133 MM 0 104
SS 4 123 HMD 0 111
GG 9 134 JMD 12 131
FES 8 132 GA 4 112
MNS 6 117 GH 12 134
MLC 0 128 TF -+ 0 101

* Data from Curtis (8)

a. Preparing the scatter dlagram. Our first step is to
make the, scatter diagram, which is, in fact, a simple two-
way frequency distribution or double-entry table. On the
* left in Table 20 we group scores on the hypnotic scale (Y
variable) in terms of an interval of 2 with code numbers
and frequencies at the right. At the top we give the classes



TABLE 20.—IiLustRation or Tes CourvramioN or tae Proover-Mowent Corneramion Corrricient rrod & CoBRELaTioN CHant
Data TAKEN FROM TabLE 10

X = Boores on Stanford-Binet mlal®]® 1 )
£ 0= | 102-| 108~ 108~ | 111=| 1lé~| 1§7=-[ 120~ | 123-{ 120~ | 129~ | 132~] 135~ | 138~ | 143« | 144 F) ¥ F.' fut Zxy |u'Ta'y
101 |voe | oz { o | nis | 138 | 130 | 122 | 125 | 128 | 131 [ 184 { 1av | veo | 1ea | 248
3 2923 1 ] E 2| M| 23| 242 21 291
ﬁ $0-31 i i 2| w| 20| 200 T] 150
2 Mew » [ [ 0 0- [
E 16-17 i ro 3 8| 24| wa{, 28 M8
o | 1418 I [ [ Y| 4 15 105
§ 12-18 R P |t 5 8| 20| 1m0 0 240
10-11 ' 1 3 5| 25 [ 30
B &0 [ ' 2| «| 12| ) 3 | o
‘E -7 ! I t I |1 [3 3| 18] s U 02
- 5 i ] i [] 2 8| Iz 22 “"
L] 2 " [ 1 [ 0 [ o
o1 |n [m [ | ? [ [ [ 14 [
) RIERE 1 8| = v o 8| 5[ «f s 2] of tff =2 )| eo3 | 230 | 1280
2) d ] 11 £ a|l 4 E| o | ®{ 0] 1 1| W] 1y 15 oy TN ] zy'
@ 1 o |8 | ® al | w| 1] 7| | 27| s0| 46| 24| 03| o) 16| 2o0| rere—d .
w | £ o L3 | 4 o a8 { 50| 72| 40| o4 {263 [ 200 | 454 (288 | 100 | o | 235 |[ 2208 [ zpev - .
CHIEZS ERERE 6| 8| 13| 8| & 2| 1wl 20| iz{ x| a} 0] 7§ 141 |e—d
@ |sTp-s'|| 0 [] L] 187 32| o5 | 48 0| 16 | 170 ( 200 | 167 | 204 | 52 0 | 105 || 1250 | ¥ep"
~ ze e {mey - ML 2t m [aren - 220 - 20 = [zan - EE]
~ o [rs0  EDUD] 9 "= [2.20 - 2] 1) 'E"“" ok
- (""w - %) @ - (’-“ - a_g%_o) )] _ w (03 - ’-“—a%s-l) o)
= (1,250 = 101244)(8) - - (2,908 — 1,853.13}(9) = (993 ~ 021.28)(4)
= {234.50)(6) = {554.88) (0 2 - m (3TLI2)4)
= 1,419.36 - 4,003.09 = 1,483.88

141838 - 1483

y w1403 14163
*n = Viena T Vawaanimam | b T

woIboYT 4POS D W] panduio]) UOD]ILO)
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for the measure of intelligence (X variable) in terms of an
interval of 3, with the code numbers and frequencies at the
bottom.$ On each individual we have two measurements,

the score on the hypnotic scale and the score on the mtelh-
gence test. We make a tally mark in the proper cell in the
table for each individual, taking both measurements into
consideration. For example, the first subject, MJ, makes
a score of 22 on the hypnotic scale and a score of 136 on the
intelligence test. To find the cell in which to place the
tally, we run up the left-hand intervals until we come to
class 22-23 where, in terms of hypnotic scores, this par-
ticular one falls. We now move to the right until we come
to the class interval 135-137 on the mtelhgence test. MJ’s

‘score on this test is 136 so that it belongs in this interval.

Consequently, we place a tally mark in the twelfth cell
from the bottom and the thirteenth cell from the left. In
this cell we-would make a tally for every other subject who
has a hypnotlc score ranging from 22 to 23 and, at the same
time, an intelligence test score of 135-137. In the bottom
left-hand corner cell, for example, we find 2 tallies. That
is because there are two subjects who have made hypnotic
- scores from 0 to 1 and intelligence test scores from 99 to 101.

In a similar manner we make a tally for each pair of scores.
‘When we have finished, we could enter numbers to take the
place of the individual tallies and in this form, the table is
often called a correlation chart. We have not entered the
- numbers in our table because of the sma.ll number of cells
with more than one tally.

b. The sum of scores and sum of squares. Let us look
now at the various entries in the columns at the right of
Table 20 and the rows at the bottom. The first four columns
numbered (1), (2), (3), and (4) are already familiar. Column
(1) is the sum of the tallies for each interval in the Y dis-
tribution. - It is the f column we used when we worked with-
a single frequency distribution to find the standard deviation.

¢ The Y variable is always plicéd on the vertical scale and the X va.nable on
the horizontal scale in a scatter diagram, as in a graph.

L



Correlation Computed from a Scatter Diagram 97

Column (2) is the coded value (y’) for the various intervals,
column (3) is the frequency for each interval times the
coded value (fy’) for that interval, and column (4) is the
coded value squared times the frequency (fy'?). All of
these' we have already used in our work with a single fre-
quency distribution. The first four rows at the bottom of
the table are the similar entries for the X variable. We
could easily decode the sums at the bottom of the columns
and at the end of the rows to find the means and standard
deviations of the X and Y distributions if we were interested
in them. o
c. The sum of cross-products. Columns (5) and (6) and
rows (5) and (6) are new. They are used to find the sum
of cross-products (Zzxy) needed for r. Let us see how we
get these entries. Column (5) is the sum of z’ values for
all individuals having a common 3’ value. For example,
there are three individuals with a %’ value of 8. One of
these has an z’ value of 7, another an z’ value of 9, and the
third an z’ value of 10. The sum of all of these z’ values
is 26 and that is recorded opposﬂ:e the coded y’ value of 8,
in the column headed Zz'-3". '
To take another case: there are seven individuals w1th
v’ values of 0. 'What is the sum of their z’ values? Looking

at the table we see that two of these individuals bave.an -

2’ value of 0, three have an 2z’ value of 1, one has an 2’ value
of 4, and another has an 2’ value of 9. Summing these 2’
values glves us 16, and that figure is recorded opposn;e the
coded ¥’ interval of 0.

The other entries are found in a similar fashion. The
entries in row (5) at the bottom of the table give us the
sum of %’ values for all individuals with a common 2’ value.
For example, we find that in the interval 111-113 there are
three individuals. What is the sum of their 3’ values? "
Running down the table, we find that one of these indi-
viduals has a y’ value of 6, one has a 3’ value of 2, and the
third has a ¢’ value of 0. Their sum is 8 and that figure is
recorded in the Zy’ -z’ row opposite the coded z’ interval of 4.
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Column (6) and row (6) are simply the products of the
entries in column (2} and column (5} or (y') (Zz"-y’) and row
(2) and (5) or (z’) (Zy’-z’), respectively. The total sum of
column (6), as indicated by the heading at the botlom of the
column, is the sum of the eross-products which we need in
‘the numerator of our formula for . The total sum of row
(6) should check exactly with the total sum of eolumn (6).
Note also that other checks are provided. Arrows have been

. drawn to indicate the values that should be precisely the

- same if computations have been correctly made. Once the
column and row totals have been found, all that we need
to do is to substitute in the formulas as shown at the bottom
of Table 20 and solve for .7 .

You now have at your disposal a number of different

methods of finding a product-moment correlation coefficient.
- ‘Which method you will want to use depends upon the type
of problem you may be ealled upon to work and upon
whether or not you have available a calculating machine.
~ The major advantage of using a scatter diagram is that you
can get a picture of the trend of the paired values which
unplotted scores will not give. This provides a visual test
of whether the relationship is rectilinear—which is always
assumed in computing a product-moment correlation co-
efficient.! But there are many opportunities for errors in
making the entries, and there is no check upon this part of
the process except to tally the scores a second time. Even
then, if you find a discrepancy, you have no way of knowing
whether .an error was made in the first or second plotting
or in both.? : e 8
Many workers gxpress a preference for using original

¥ Although it would not have been necessary, we have decoded 22y, Zz%,
+and Zy? before computing r. We did 5o because we shall want to refer to the
decoded values later on when we discuss “predictions.” . .
A precis;e test of whether or not the relationship is rectilinear is described
on page 237. i
’%tgshould be pointed out also that the formula for r is based upon measure-
ments taken by pairs. The ealculation of r from a correlation table results
. in a slight loss in preeision. This, however, is negligible if there are 12 or
! more class intervals and if N is approximately 50 or greater,
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scores as they stand, but when ¥ is large and the measure-
ments are large, the calculations are much too laborious
without mechanical equipment. In such instances, how-
ever, it is possible to code the scores and then to work
directly with the coded values. Even when calculating
. machines are used, it is often timesaving to code the scores -
before beginning calculatmns

4. INTERPRETATION OF CORRELATION

a. The range of the correlation coefficient. We already
have some general ideas about the size of 7. We know that
it can range from +1.00, through zero, to —1.00. And we -
 kmnow that a coefficient of +1.00 indicates a perfect positive
~. relationship, —1.00 indicates a perfect negative relationship,
and .00 indicates complete independence. Qur problem .
now is to find some basis for interpreting or evaluating
correlation coefficients between .00 and 1.00. We must
remember that the correlation coefficient is not expressed in
the units of measurement from which it is obtained as are
the mean and standard deviation. An r of .60, for example,
does not indicate twice the relationship that an r of .30 does.

b. The coefficient of determination. One very useful way
of looking at r is in terms of the coefficient of determination
and the coefficient of nondetermination. The coefficient of
determination is r* and when multiplied by 100 it gives the
percentage of variance in ¥ which is associated with the
variance in X or the other way around. If r equals .80,
then 72 would be .64, and this would indicate the proportmn
or percentage (the proportion times 100) of the variance-
in X which is associated with the variance in ¥ and vice
versa, This is, In other words, the amount of variance in
one variable that can be accounted for by the variance in the'
other. The coefficient of nondetermination equals 1 — s
and indicates the amount of variance in one variable or the
other which is independent of changes in the second variable.
As an approx:mate standard, then, ignoring other:factors'
such as the size of the sample upon which the r is based, it is
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possible to view the size of a coefficient of correlation, regard-
less of sign, as follows:

r VARIANCE QUALITATIVE
EXPLAINED EvVALUATION
.90-1.00 . .81-1.00. very high. .
, -8~ .89 : . .61~ .80 high
64~ .77 A41- .60 moderate
46— .63 21- 40 low
.00~ 45 00—~ .20 very low

¢. Common elements. Another way of looking at r is in
terms of the theory of common elements. Out of a box in
which we had placed several hundred discs numbered vari-
ously, we might draw three, and let these three numbers
constitute common factors in a single X and a single Y
_score. Then if we drew a fourth number out of the box
and added this to the first three to get the total value of
the X score and drew a fifth number out of the box to add
to the three to get the total value of the corresponding Y
score, we would have a pair of X and Y values, each member
of which was made up of four numbers or elements. Three
of the elements or numbers making up the Y score would
also be common to the X score; the pair would differ in
only one element. We could draw a whole series of such
~ pairs, each member havmg three elements or numbers in
common and differing in only one number or element. If
we computed the correlation coefficient for such palred X
and Y values, then we would assume that
) .
N\
VNI

' where  r = the correlation coefficient _

N., = the number of elements common to both X and Y

N, = the total number of elements in X
- Ng = the total number of elements in ¥
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Since, in the case cited aboire, N, equals 3 and N equals 4
and N, equals 4, we would assume the resulting correlahon
coefﬁ(:lent Wuuld be equal to

pite s g K
vViE 4

It is doubtful, however, whether there are many correla-
tions obtained from data in the social sciences which can
be advantageously interpreted in terms of the theory of
common elements. We are never sure of the number of
factors determining such things as traits, abilities, aptitudes,
motivation, and so forth, which constitute our X and Y
variables. If we could assume that X and ¥ have the same

number of total factors, then the obtained r might be inter- -
- preted as indicating the proportion of common factors, but
in most cases this assumption is probably not justified.
Furthermore, we should also have to assume that the con-
tribution of each element is a simple additive function, i.e.,
if one factor should double or triple the effects of other
factors, the interpretation would be in error (86, p. 131).

&. PURPOSE FOR WHICH r IS TO BE USED

It is well to keep in mind, when dealing with correlation
coefficients, the purpose for which the » was originally com- .
puted. If we are merely interested in determining whether
any relationship at all exists between two variables, then we
have a means for testing whether a given r differs mgmﬁcantly
from zero, as we shall see later, By the appropriate “test of
significance” . we ean determine whether an obtained r is
sufficiently high to indicate that the hypothesis of no rela-
tionship is untenable. If, on the other hand, prediction is
our interest, that is, if we desire to predict individual scores
on Y from corresponding scores on X, or vice versa, then
we also have a means of determining the extent to which
our efficiency of prediction is increased by the presence of
some relationship. This problem will be taken up la.ter in
the chapter on “prediction,”
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6. ERRORS OF MEASUREMENT AND CORRELATION

Every set of measurements is subject to errors of observa-
tion. If, for example, we had several hundred objects of
. varying lengths and we measured the length of each one
. twice, we would not expect the pairs of measurements to be
precisely the same. - Slight errors of observation are apt to
" be present, despite efforts to reduce these to a minimum.
Sometimes the second reading might be slightly less than
the first, sometimes it might be slightly more, and in other
‘cases we might have exactly the same recorded value for
both readings. If these errors of observation are chance
“errors, then they are just as likely to be positive as negative
. and would, consequently, have a negligible influence upon
the mean. But measures of variability are increased by such
errors and measures of relationship are decreased. This
.means, of course, that the obtained correlation coefficient
between two variables is probably always somewhat lower
than the correlation which might be obtained between
““true’” measures of these same variables. "_ :

A formula is available for correcting for this state of
affairs and it is known as the correction for attenuation. By
correcting for attenuation we may estimate the correlation
which might be obtained between “true’” measures of our
variables rather than those made with our fallible measuring
instruments.’®. Thus

o)y X r — T,,
~ - Yt Tpm T N
T . ‘\/"ss Tyy
where fon = the correlation between “true” measures of X
and Y :
~ ' rg = the correlation between two sets of measure-

ments of the X variable made with the same

measuring instrument
ryy = the correlation between two sets of measure-
_ments of the Y variable made with the same

measuring instrument
10 We shall no\t, in this text, directly concern ourselves with the problems of
reliability an:! validity of educational and psychological measurements.
These are problems which can be treated in context in courses in “test con-

struction” or “tests and measurements.” Students who wish further informa-
tion on these problems should consult Greene (37).
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_THE PRODUCT-MOMENT CORRELATION COEFFICIENT
Egampl¢ 1}THere are 10 paired measurements for easy practice. -
Find the coefficient of correlation by the following formula.
Zxy
3 - Nﬂ'xa‘s ) .
XDistribution 2 5 4 3 6. 36 4 5 27,
YDistribution 1 5 2 3 4 2 5 3_4 11,

Exampl@Using the data of E:ﬁa.mple 1, show that the same
value of 7 i§ obtained when the following formula is used.

Zzy

T=Vigzy

Exampl Now use the raw score formula to find r. Are you
2
clear as to wha.f. the values EX) Y) a.; EX)EY) do in the

N’ N~ . N
formula,

— (zX)(zY)

R [EY' m]

Example 4—As an algebraic exercise you might try showing .
that Zry = ZXY — @—XI’V(EQ Start with z — (X — M.) end-
y=(Y — M) Then zy = (X — M,) (Y — M,). Ca.rry out
the multiplication of the right-hand term, summa.te and try sub-
stituting identities.

Example 5—A group of women students af a university ﬁ]led"
out a Likert-type attitude scale (61). The students also had their
mothers fill out the questionnaire. The scores are given below.
Is there any correspondence between mothers’ and dayghters'
scores? Without making a frequency dlstnbmtuml code the scores
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in the manner described in the chapter by letting 2 = &; &k will
~ then equal 6.

MorteER DaveaTER MotrER DAUGHTER
31 33 43 43
85 74 58 51
61 60 66 64
21 84 56 52
63 45 71 56
red 60 59 62
81 53 60 59
80 57 | 70 64
84 64 . 48 51
58 45 b4 56

Example 6.—A class in applied psychology was given Shafier’s
S-Scale and C-Secale (82). Shaffer states that. there is little rela-
tionship between scores on these two scales. Would you be in-
clined to agree on the basis of the data below? Code the scores
without making a frequency distribution by subtracting 10 from
each one. After you have found », ask yourself whether it would
have been simpler to have subtracted a smaller number from each
gecore so that negative deviations would not have oceurred.

c | s || ¢c| s c | s II c | s c s
5 |10 || 15| 7 || 14| 10 9 | 10 || 18 9
19 9 || 11 6 || 13| 7 6 | 19 || 14 | 14
17 | 10 ) 18 [ 11 |[ 19| 8 8| 8| 13 6
14 6 | 13 [ 1 |[ 11 | x| 18| 9f 188
13 |10 f| 14| 4,18 ] 8| 16| & | 18 7
7 |12 13| 8 5| 6 5| 7 8 4
13 | 14 f{ 3] 6 || 18] 13 | 14| 8| 19 12
8 | 10 1| | s 15| 7| 2] 17
6 | 17 8| o 23| 18 |[ 18 | 12

Example @—The data below are scores on two tests given to an
introductory class in general psychology. One test was designed
to measure the students’ general understanding of the sub]ect
matter of the course. We shall call this variable X. The ¥ vari-
able consists of scores on a vocabulary test of psychological terms.
Construct a scatter diagram, letting £ = 5 on both variables, and
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determine whether there is any relationship between scores on the
two tests. _ : '

.XYXYXY'XYXYXYX'YX'YXYXY‘

55 | T1{| 50| 57| 49{ 53|| 58| 65] 78| 65|| 74| 65| 74| 75|| 72| 7T1|| 57| 63| 96| 80
- 60 | 69|) 67| 64 53‘ 46| 67| 67} 58} 55|| 68| 71|| 55| 65} 59| 66| 63| 75|| T4| 78 -
56 | 48(1 69] 70|| 613 65|| 59| 51| 53} 61( 87} 78|} 68| 72| 74| 61| 79| 71|| 01| 95
56 | 60| 59| 68|| 60| 62(| 63| 66}] 60| 59(| 61| 56|| 55| 61f| 59| 52|| 49| 51|| 821667
57 | 67{| 59] 70|| 45| 54| 58| 61|i 65| 67| 66| 70{; 61| 63{| 60| 62| 58| 71|| 63| T4
55 | 53|| 564 67(| 71] 61]} 73| 61(] 74| 63| 58| 72| 48| 58{| 73| 78| 82| 80|| 06| &5
61 | 50| 66] 58 T1] 63| 48| 62| 73| 73|| 58| 55|| 69| 58{| 57| 62){ 97| 84| 90| 89
54 | 63[] 491 47(| 67| &7(| 50| 68| 67| 64| 45| 55(| 77| 63;| 71| 66{ 82| 75|| 86| 75
57 | 61|} 601 61| 52} 52| 55| 59(; 55| 60|| 76| 68(| 78| 78]| 741 81|| T9| 76|| 82| 85
58 | 68|} 45) 57[| 60| 60(| 61| 40 48| 66 50/63 86| 82/ 55{ 62 90;3 97

Y lgstge




CHAPTER 6

THE CORRELATION RATIO AND OTHER
MEASURES OF ASSOCIATION

The Pearson product-momentr correlation coefficient dis-
cussed in the last chapter assumes that the relationship
between the two variables under consideration is reetilinear,
that is, that a straight line best describes the increase or
decrease in ¥ with changes in X or vice versa. Sometimes,
however, we find variables which do not seem to be related
in this fashion; the trend of the plotted points in the scatter
diagram is not as accurately deseribed by a straight line as it
would be by a curved line. In such eases we speak of a
curvilinear relationship between the variables and we need
a new measure of association to describe it.

Think for a moment of a correlation chart in which the
means of each ¥ column are the same. A line drawn through
these means, from left to right, would be a straight line
across the correlation table at the level of the mean of the
entire ¥ distribution. Hence there would be no change in
Y with cha.nge in X; the average Y score for all individuals
with a given high average X score would be the same as
the average Y score for individuals w1th a given low average
value of X. The relationship between’X and ¥ would be
zero. If the means of the ¥ columns inereased with corre-
sponding. increases in X, then the relationship between
X and ¥ would be positive. If the means of ¥ decreased
‘with increases in X, then the relationship would be negative.

Lt us suppose, however, that the means of the ¥ columns
increase at first with increases in X, then level off and begin
to drop with values of X beyond a certain point. This
situation is illustrated in Figure 7, where we have plotted
the paired values of X and ¥ given in Table 21. Obviously,
any stra;lght Iine drawn through these pomts would not

106
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accurately describe the trend of the relationship between
X and Y. There is, however, a very definite rela.tmnsblp ‘
'between the two variables.

®
8
T : -
. L
w8
3
‘o3
2
1
0% 2 3 4 5 6 7 & & 1011
Test X

Fia. 7—A correlation chart showing the
relationship between the scores on Test X
and Test ¥ given in Table 21.

TABLE 21.—PAmep Scomes ox Teers X awp ¥ ¥or 10 Inprvipvais

InpIviDUALS )
Trsr - : . - :
1 2 3 4 5 6 7 '8 9 10 _
X b 2 3 4 5 L] 7 8 9 10
Y 1 4 6 7 8 8 7 6 -4 1

1. THE CORRELATION RATIO

The correlation ratio or eta (n) is used to determme the
degree of relationship between two variables when the
assumption of rectilinearity is not warranted.! Eta will be ..
equal to r if rectilinearity does prevail, but if it does not,
then # will be greater than the r that would have been ob- .
tained from the same set of data. Eta has a maximum

! Page 237 provides a precise test of whether the relationship dsparta suffi- -
ciently from rectilinearity to make the assumption invalid.



108 - The Correlation Ratio and Other Measures

value of 1.00 and a minimum value of .00 and does not ever
carry a negative sign. .. .

-+ Eta differs from r in still other respects. As we shall see
later, it is possible, knowing the value of the correlation
coefficient, to write an equation which may be used for
predicting ¥ from X or X from Y, but a similar equation
cannot be written in terms of 7.2  And unlike the correlation
coefficient which has the same value for 7, and 7,., the
. values of 1,4 and 1,, may be, and usually are, different. We
shall therefore have two formulas for the correlation ratio:
one for Y on X and the other for X on Y.

In computing 7, measurements of the X and Y variables
- must first be grouped into classes in a correlation table.
" As is customary, we place the class intervals for X along the
horizontal secale and the class intervals for Y along the
vertical scale. We may then find for each class interval of
X the mean Y value of all X’s within the class. These
values we shall call the means of the columns or m,. In a
similar manner, we may find for each class interval of ¥
the mean X value of all Y’s within the class. These values
we shall call the means of the rows of the correlation table or
m,,. We are now ready for the formulas for the correlation
ratio:

T and gy = T2 (2

Nys =
) Oy O

‘where  7,. = the correlation ratio for ¥ on X, and 7., = the
‘ correlation ratioof X on ¥

= the standard deviation of the means of the
"columns, and om_ = the standard deviation of
" the means of the rows * .

: oy = the standard deviation of the entire Y distribu

PR . tion, and ¢, = the standard deviation of the

' entire X distribution

* If the relationship is curvilinear, a curve may be fitted to the means of the

columns (or rows, as the case may be) of the correlation table, and the equation
of this etirve may serve as a basis for making predictions.

Omy
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Since the computation of 7,. and 7., is baswally similar,
we shall deseribe only the calculation of 3,.. We proceed
in finding 7,. as in computing r from a correlation table.
The standard deviation of the Y distribution is calculated
from the values given at the right side of the table (see
Table 22), and is already a familiar process. The only new
calculation is finding the standard deviation of the means -
of the columns. One possible way of doing this would be
to find first the mean of the complete Y distribution from
the values at the right. 'We would then find the mean of
each column and subtract the mean of the entire ¥ dis-
tribution from each of the column means. These values

-.would represent column mean deviations from the mean
.of the total. The next step would be to square each of the
deviations and fo weight each squared deviation by multiply-
ing by the number of cases in the column upon which it is
based. The sum of these squared, weighted dewatlons,
when divided by the total number of cases (), is equal to
the variance of the means of the columns. To find the
standard deviation of the means, we need only to extract
the square root If the relationship between ¥ and X were

perfect, then —2 would equal 1.00 and the standard devia~

tion of the means of the columns would have to be as great
as the standard deviation of the entire Y distribution. When
Op,, €quals zero, then the correlation ratio also equa.ls Zero,
a. A simple method of computation. There is a simpler -
method for computing the correlation ratio which eliminates
the calculation of the mean and standard deviation of the
Y distribution as such, and the mean Y value of each column.

- This method deals with the sums of the columns rather than
the means, but the correlation ratio obtained with this -
method will be identical with that computed according to
the procedure outlined above. All that we need to do is to
find the sum of squares for the columns and the sum of squares
for_the_complete Y distribution. In terms of a formula,
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which .may appear complicated but in terms of which the
calculations involved are really simple, the correlation ratio
squared is .

G, CO L G G
e T m T Tt

(28)?

T = sy — GV
C /e o
where ~ 9%, = the squared correlation ratio of ¥ on x
. \2 .
’ (Eﬂ‘i—f’l = the squared sum of the coded 3’ values for the
- first column, divided by the number of cases
o within the column, and the other similar terms.
S " equal the corresponding values for successive
columns . ’

. . _ ‘ v
-Q:Jivﬁ = the square of the sum of all the 3’ values divided
by the N of the complete Y distribution

SRR
Zfy — %)- = the sum of squares for the complete Y distribu-
o tion and which is found in the usual way .

b. Summary of steps in computing 7,,. The method  of
calculating 7,, just described is illustrated in Table 22
where a problem has been worked out in detail in order
that you may see where each value in formula (28) is ob-
tained. . The steps involved in the calculations may be
summarized as follows: '

-

1. Make a correlation table as for the correlation co-
efficient. Cot :

2. Find the Zfy’ and the Zfy’ for the entire distribution
in the customary fashion. -

3. Find the sum of scores for each of the %k columns:

Cvb), CyD), Cyi), - - . CY')-

# Note that formula (28) is expressed in terms of eta squared and that in
order to find eta we need to extract the square root of the value obtained with
the formula. ;
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TABLE 22.—){ TapLE To TLLUsTRATE THE COMPUTATION OF THE CORRE-

>

11

LaTION Ratio 18 Teems or Foruura (27) or Forumura (28):

Scare VaLues (X) anvp Q Vavues (¥} or 129

ATTITUDE Tl_z'.sr ITEMS

Q BcaLE Vauoes (X) : ¢ &
VALUES - ' Fly|wy me
() fof{1]2]3|4|5|6]7|8
4044 o1 1| 1| 2 - 518 | 40| 320
3539 «| 1] 1| 1| 4| 5| 4] 2 18| 7 [126] ss2
3.0-34 a|l 3| 1| 6| 3 2|6 2]|27}e6 |162] o2
2529 3| 2 2l 2] 1| 3 13] 5 | 65| 325
2024] 4| 3] 2 3| 3| 15)4 | 60| 240
1519 8|.°6 1 5| 2073 | 60| 130
10-14] & 9{ 15 2 | 30| o
5-9| 3 ml1al1 4] 12
o4 1 1| 2{0]| o] o
n 22117} 9| 3|1a{12| 7|14]31 129 557 | 2,008
z of 1] 2| 3| 4| 5! 6] 7! 8
174 55|76 | 51|21 (85|79 |45 77| 68 {557

— ] .

Eyyr . = |IHr— 7\

Cou| n |2y |yy| B i
' . = | 2,003 — 2= | (57

o | 22|55 |3025] 13750 310,249
AETEL | E - R it ol

. = {2,993 — 2,405

31 3|21 | 41| 14700 = o (_2??5 wem
4 | 14 | 85 |7.225| 51607 = 148.6925
5 | 12 | 79 |6241] 52008 126.0995
6 7 45 12,025] 280.29 oy = '

7 | 14| 77 |5929] 42350 129
8 | 31 | 68 |a624] 14916 _=v’1 0}{.1395‘

e P P 2,811.36 SR @f)._@%f)m "

Formula (28): |, i =N W

2,811.36 — %g— 2,811.36 — %-?'] (.51

o G b VA v

T 120 ‘{(406.33) (25)
= 406.33 - 129
58797 1015825
= .6911; 5, = .83 = 129
Formula (27); = 3‘\/9.7875 :

_ 8
*m—lm—-.sa
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4, Squa.re the suns found in Step 3.
5. Divide each of the squared sums of Step 4 by its corre-
spondmg number of cases within the column Noy Ny N,

S e o

" 6. Sum the values found in Step 5.
(Efy')’

from

7.  Subtract the correction term' for origin

the value obtained in Step 6. '

8. Divide the value obtained in Step 7 by the sum of
squares, corrected for ongm, for the entire ¥ dxstnbutmn-
sy L,

"9, Extract the square root of the value obtained in Step 8
to ﬁnd Wi

_ ATo find %., it is merely necessary to remember that you
are dealing with rows instead of columns. Consequently,
all that you need to do is to substitute the word row for the
word column and substitute X for ¥ and :c’ for ¥’ in the steps
. outlined above and solve for 24 -

2. BISERIAL CORRELATION

Sometimes an investigator is faced with a situation in
- whi¢h he desires to find the relationship between two vari-
_ables, but the data for one variable are expressed in terms
of a dichotomy (only two categories) or else have been
reduced to a dichotomy. We might, for example, be in-
terested in the relationship between the classification of a
group of employees as “satisfactory’’ and “unsatisfactory”
and the scores of the group on some test. Or we m1ght
have individuals classified as “radicals” and “conservatives”
and wish to determine the relationship between scores on a
personality inventory and the dichotomy “radical-con-
gervative,” Another problem of this nature is the deter-
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‘mination of the relationship between response to a single
item on a test and total scores on the same test. Many
other problems similar to these arise in psychologlcal and
educational research.

If N is at least 50 and preferably larger and if we can

"make certain assumptions about the data at hand, then
there is a statistical technique for detenmmng the rela-
tionship between a variable expressed in terms of only two
categories and one for which we have a series of measure- .
ments. This technique is called the biserial coefficient of
correlation' and is symbolized as 7y. The assumptions -
which are involved in computing biserial r are that the-
dichotomized variable is really continuous and, further-
more, that it is normally distributed. These assumptions
are usually defended by the argument that if our measure-
ment of the dichotomized variable were sufficiently refined,
we would find not just two categories as we have at hand
but an infinite gradation along a scale ranging from one
extreme to the other. And applying this refined measuring
instrument, we would find not just two categories with indi-
viduals piling up in one or the other, but instead a normal
distribution such as was described earlier.

There is another condition which must be met before we
can legitimately compute biserial r. Our dichotomous
variable must not constitute merely the two extremes of a
larger group, but must include the entire group. We could
not, for example, give a test to a large group and then select . .
only the top 25 per cent and the bottom 25 per cent as the
members of our dichotomy. If we attempted to compute
biserial r with only these two extreme groups, the assump-
tions concerning continuity and normality of the dichoto-
mous variable would indeed be difficult to justify. In this
situation, we would need to make use of a special formula
for the biserial coefficient of correlation computed from
widespread classes. This formula is not given here, but is
developed in Peters and Van Voorhis (74, pp. 384-389).
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The formula for biserial r is

= ()

where M, = the mean score on the continuous variable of the
. individuals in the category with the higher mean
M; = the mean score on the continuous variable of the .
entire distribution (both categories ‘combined)
o; = the standard deviation of the continuous variable
for the entire distribution
GZT"I W‘E_ the proportion of the total N in the category
—1  with the higher mean on the continuous variable
"y = the ordinate or height of the normal curve at the
5»_  point of division between the two groups
< ,

a-for-fifiding biserial r inyolves only one new
value with which we are not familiar, y, the ordinate of the
normal curve. This we find, from Table B on page 320.
- Determine first the proportion in the group with the higher
mean by dividing the number in this group by the total N.
Then look down column B or column C in Table B until
you find the value most closely approximating this propor-
tion. - Then read the corresponding value of y from the last
column of the table. To illustrate the calculation of biserial
r we have worked out a problem in detail in Table 23.
If the dichotomous variable cannot be assumed to be
continuous and normally distributed, as would surely be
the case if this variable consisted of the two categories,

“¢You 'ma.y also encounter _the "following formula for biserial r in other

I o

where M, = the mean score on the continuous variable of the group in the
’ category with the lower mean .

" g = the proportion of the total N in the category with the lower mean
and the other vallzles are the same as in formula (29). Formula (29) is to be
recommended, however, since as long as the standard deviation must be found
in either case, we may as well find the mean of the total distribution while we
are at it.
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" TABLE 23 —TirvereaTioN oF THE CoMPUTATION OF PISERIAL ¢ BETWEEN
REsPoNEE TO A SiNaLE ITeEM o A TesT anp Toran Scomres B
oN TaE TEST .

P l"‘mﬂ
Scores N
| “fe | % | | R pA 75
85-89 2 8 16 128 "2 16
081 |, 3 7 a1 147 . 2 14
75-79 "5 6 30 180 3 18
70-74 10 5 50 . 250 7 35
65-69 15 4 60 |. 210 1 44
60-64 20 3 60 180 8 24
55-59 20 2 40 80 10 20
50-54 4 | 4 4 1 1’
45-49 1 0 0 0 ‘1 0
z 80 281 1,209 5 |1
“i {,\ 72
. ‘tl‘
. Mo

M= V(’f“") — 474 (23‘) 5 =47 4 17.56 = . 64.56

EXCci e 1,209-%3”."25 _
Y (e A APy | St I gl T S

M, =M+ (%?) =7 +..(1}52-) § ounlFids 1T e BT

N [N
This ( 7 ¥ . ‘P % = 5625
66.11 — 64.56Y 7.5625 o
a3 ) ( y= 390
(1 55) ( 5625
304
8719
= 3333

= 27
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men and women, then Richardson and Stalnaker® suggest

that the followmg formula be used:
‘ M,— M,
Tobie = (T) (Vpd) (30)
where - 7,4, = the point biserial coefficient of correlation

M, = the mean score on the continuous variable of
of the group in the category with the higher
mean )

M, = the mean score on the continuous variable of
the group in the dichotomy with the lower
mean
= the standard deviation of the contmuous vari-
able for the entire distribution

P = the proportion of the total N in the category
with the higher mean

¢ = the proportion of the total N in the category
with the lower mean

3.- TETRACHORIC COREELATION

Another special case of association is where the data for
both variables are in terms of dichotomies or have been
reduced to dichotomies. We might, for example, be in-
terested in analyzing responses to items in a questionnaire
and we might wish to determine whether, for any given pair
of items, a “Yes’ response to one is associated with a “Yes”
response to the other, while a “No” response to one tends
to be associated with a “No” response to the other. Or we
might wish to determine the association between a dichotomy
such as “normal-abnormal’” and another dichotomy such as
“Yes” and “No” responses to an item in a test. Or the
relationship between being classified as “satisfactory” or
“unsatisfactory’’ as an employee and being ‘“‘above the
mean”’ or “below the mean’’ on a given test.

Again, if we are willing to make the assumption that both

¢ Richardson, M. W, & Stalnaker, J. M. A note on the use of biserial r in
test research. J. gener, Psychol., 1933, 8, 463465,
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of the dichotomous variables are really continuous and.
normally distributed, we can determine the relationship
between the two by means of another technique of measuring
association, tetrachoric correlation. The assumption of con-
tinuity of response to a single item demanding a “Yes” or
“No” answer, for example, might be justified by stating
that all who respond “Yes”’ do not do so with equal intensity.
And likewise all who respond “No” probably do not do so
with equal feeling. Some of the “Yes” responses indicate
a very emphatic “YES” and others a very weak “Yes,” and
likewise for the “No”’ responses. Assuming such a continu-
ous scale, then the additional ‘assumption of normality of -
. distribution along this scale might also be justified.

But even when these assumptions are valid, the labor of
computing tetrachoric r is excessive, if all of the terms that
properly belong in the formula are included in the solution.
Fortunately, a set of computing diagrams, prepared by
Chesire, Saffir, and Thurstone (7), simplifies the labor of
calculating tetrachoric r tremendously. For this reason the
formula for tetrachoric r is not given here. If tetrachoric
r’s are to be computed, the diagrams mentioned should be
consulted. . ‘ '

4. THE PHI COEFFICIENT

We may, however, inquire as to whether there is not a
simpler coefficient which will serve our purpose in deter-
mining the degree of association between two dichotomous
variables. The pht coefficient (¢) seems to be suited to this
task for, in the first instance, it is applicable to truly dichoto~
mous distributions, that is, where we have discrete cate-
gories such as men-women, married-single, alive-dead, and _

- 80 forth.® In the second instance, the ¢ coefficient may be

® Some might wish to take issue with the statement that the examples cited
are true dichotomies, arguing that they are really continuous. A case might
be made for this point of view, but in either instance we are dealing with
assumptions. If we assume continuity, then, as we shall &ee, the ¢ coefficient
may be adapted to the assumption. . -
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adapted to the assumption of continuity, in which case we
‘may also derive an estimate of the corresponding .

a. The ¢ coefficient and true dichotomies. ILet us ex-
amine first the application of the ¢ coefficient to a problem
where we do not feel justified in assuming that our variables
are continuous. We shall assume, in other words, that each
of our variables represents a true dichotomy.

Suppose we had interviewed a sample of 200 college
students, of which 75 were men and 125 were women. Sup-
pose also that one of the questions we had asked was whether
they were employed part of the time or not and we found
that 45 of the men said “Yes” and 45 of the women said
“Yes.”« We give these data in Table 24, where the cell

TABLE 24—RELATIONSHIP BETWEEN SEX AND EMPLOYMENT STATUS IN
‘ A SamprLe oF 200 COLLEGE STUDENTS

Womsx MeN ToraLs
Employed part time. . . ..... 45 45 %
(a) ®) (a +b)
Not employed time. .... 80 30 110
part ' ©) @ +d
Totals. ............... 125 75 200
(a+9) G+d j@t+dt+ctl)

entries are also represented symbolically by the letters a,
b, ¢, and d. Using these letters, the formula for the ¢
coefficient may be written

V (@a+b)c+ d)(a +o0+ad
where (bc) = the number in cell (b) times the number
in cell (¢
(ad) = the number in cell (a) times the number
in cell (d)

(a+D), (c+4d),
(a + ¢), and (b + d) = the respective border totals
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If the product of cells (b) and (c) is greater than the
product of cells (¢) and (d), then this will indicate that
“being employed’’ and “being a male’ are positively associ-
ated, while if the product of cells (a) and (d) is greater than
the product of cells (b) and (c), the association will be nega-~
‘tive. Substituting the values of Table 24 in the formula,
we get

(45)(80) — (45)(30) _
4/(90)(110) (125) @5)

The obtained value of ¢, .23, mdlcates that there is a slight
- tendency for sex classification to be associated with em-
ployment status. College men, in other words, are more
apt to be employed than college women.

b. The assumption of continuity.. Now let us consider a
case where we feel justified in making the assumption that
our dichotomized variables are really continuous, as in the
case where tetrachoric r would customarily be applied to
determine the relationship between the variables. Suppose
that we had interviewed a sample of 300 college students
and found that 200 of them were under 19 years of age and
that 100 were 19 years of age or over. We shall call these
two groups the “younger group’” and “older group,” respec-
tively. Of the older group, 20 answered “Yes” to the
question: “Do you believe that three years of English
should be required of all college students?”’ In the younger
group, 140 answered “Yes” to the same question. Is the
relationship between age and a “Yes” response to the ques-
tion positive or negative?

We give the essential data in Table 25. Note that the
data are so arranged as to be consistent with the pattern of
a correlation table (page 82). A concentration in the first
and third quadrants (cells b and ¢) represents a positive
relationship and a concentration of the data in the second

¢ =
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TABLE 25.—RELATIONSHIP BETWEEN “YES” AND ‘“No” RESPONSE AND

Age StaTUS
No Yes ToraLs
Older students. ... ...coe.vu.. 80 20 100
Younger students. .......... 60 . 140 - 200 -
Totals. . ... vereereien| o140 160 300

and fourth quadré,nts (cells @ and d) represents a negative
rela.tiqnship._ Solving for ¢, we get

, _@0)(60) — (80)(140) _
= e a0 e

The ¢ coefficient of —.472 is based upon the assumption
that our variables are “true’ dichotomies, whereas, in this
instance, we might feel justified in assuming that the di-
chotomies are really artificial, that we have imposed them

upon the data. If we had allowed for varying degrees of

_response to the question, such as “Strongly Agree,” “Agree,”

-

“Undecided,” “Disagree,”” and “Strongly Disagree,” we
would have had the beginning of a continuum. . And like-
wise we might have recorded age as a continuous variable.
If these assumptions are valid and if we wish to estimate the .
corresponding r, then we must first find the proportion of
cases in the category (a + b), (¢ + d), (@ +¢), or (b + d),
whichever is the largest. Then by reference to Table 26
we find the value of %, the constant by which the ¢ co-
efficient is to be divided in order to estimate the correspond-
ing Pearson r. In this problem, the category (¢ + d) has
"7 The values in Table 26 are taken from Camp, B. H. The mathematical

part of elementary statistics. Boston: Heath, 1931, p. 309. Camp points
out that the use of the constants in the table is limited to those cases where no'

‘one of the frequencies in the 2x2 table is less than 1 per cent of N; the propor-

tion in no one of the border categories is greater than .9; and r is not
greater than .80 (pp. 309-311). Since these assumptions will be met in most
cases where tetrachoric r is applicable, the ¢ coefficient divided by the proper
constant from Table 26 may Ee used profitably to provide a quick approxima~

tion of r. :
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the largeét frequency and the proportion of cases in this
category is equal to 200/300 = .67. According to Table 26,
when p = .67, then k is approximately equal to 625 Thus

We would say, in this instance, that there is a very decided
negative association between age and a ‘“Yes” response to
the question.

TABLE 26.—Seowma TeEs VALUE oF k, Tee CoNSTANT BY WHICH THE ¢
CozrriciENT Is 10 BR Divipep, 1N 3 OF p, THE PROPORTION
mCEm’.. (a+c), (c+4d), (a+b), or (b + WHICHEVER
5T, ON THE ASSUMPTION OF CONTINUITY

oF Bora VARIABLES*

5 ) 7 8 9
k 637 .63 62 .60 .56

*From Camp, B. H The mathematical part of elementary afatis!'.lm.
Boston: Heat.h, 1931, p- 309. -

¢. The ¢ coefficient and tetrachoric 7. To illustrate the
correspondence between the estimate of the Pearson r
derived by means of the ¢ coefficient and the corresponding
r derived by means of tetrachoric correlation, we cite a
specific case. Garrett (31, p. 372) reports a tetrachoric r
of .53 for the data of Table 27, Using these data and solving
for ¢, we get
(35)(30) — (25)(10) _
V/ (60)(40) (55) (45) ,

Estimating the corresponding Pearson r, we get .328/.63,
which equals .52, as compared with a tetrachoric r of .53.
Some other illustrations are cited in the examples at the end
of the chapter. You will find that, in general, ¢ divided
by the proper value of & will correspond very closely to -
tetrachoric 7 when the conditions mentioned previously are

¢=
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satisfied. If you are without copies of the computing
diagrams for tetrachoric r, ¢, in terms of simplicity, might
well be the most appropriate measure of association to use
with 2°X 2 tables. S .

TABLE - 27.—RELATIONSHIP BETWEEN SUCCESS AS A SALESMAN
. AND S0CIAL ADJUSTMENT®

UNSUCCESSFUL | SUCCESSFUL ToraLs
SALESMEN SALESMEN
Socially adjusted. . . ... ..... %5 35 60
Socially maladjusted......... 30 10 40
[] .
Totals. . ............... 55 45 100

* Data from Garrett (31).

5. THE CONTINGENCY COEFFICIENT

~ The contingency coefficient (C) is another measure of asso-
_ ciation which may be applied to data arranged in ann X n

‘table. This coefficient may be used when both variables
can be classified in two or more eategories, but when the
categories themselves are not quantitative. Such might be
the case if we wish to determine whether there is any rela-
- tionship between the eye color of fathers and their sons.
Sons may be classified according to whether the color of
their eyes is brown, blue, hazel, or gray, and so may fathers.
The problem is to find out whether brown-eyed fathers tend
to have brown-eyed sons, blue-cyed fathers tend to have
blue-eyed sons, and so forth,

The contingency coefficient varies between 0 and 1, but
its sign must be determined by inspection of the table from
which it is computed. The contingency coefficient can
reach its maximum value only when the number of classes or
categories is large. When the data are arranged in a 4 X 4
table, for example, as would be the case for the hypothetical
problem mentioned above, C cannot exceed .866, and for a
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10 X 10 table the maximum value of C’ would be 949
(102).8
The formula for the contingency coeiﬁment may be stated
in terms of another statistic, chi-sguare (x?). The method
_of computing x? is described in Chapter 12 and we shall not
go into the details here. Once x? has been found, then we
may substitute in the following formula to obtam the con-
tingency coefficient. ) .
- 7 | .
) ¢ =\ \@
where (= the contingency coefficient o
x? = the value of chi-square {obtained in the manner
described in Chapter 12) - S
N = the total number of cases in the table

8. RANK-DIFFERENCE COEFFICIENT

When we have a small number of pairs of observations
which have been made in terms of ranks rather than in
terms of some measurement, there is another method of
measuring the association between the two sets. Ranking
differs from measuring in that it merely arranges things in
serial order. We might rank individuals in terms of height
without making any actual measurements of height in terms
of inches. We could simply line up a group of individuals,
put the tallest one at the head of the line, followed by the
next tallest, and so on until we had arranged all individuals
in order. 'We could then assign rank 1 to the tallest, rank 2
to the next, and so on. Ranks, as contrasted to measure-
ments, do not tell us how much.taller the individual ranked 1
is as compared to the individual with rank 2, or rank 3
and so forth,

The method of measuring association between two sets o£
ranks is known as the “rank-difference method” and the

¢ For a further discussmn of this eoefficient and the conditions under which -

various corrections may he applied, ses Kelley (52 265-271) and Guilford
birigondirrtinli ¥ e applied, y( y PP }
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resulting coefficient is called rho. The computations are
fairly straightforward. In terms of a formula

6zD?

P=l-yai-1

(33

where - p = the rank-difference correlation coefficient

=, D? = the difference squared between each pair of ranks -
N = the number of pairs of ranks

. The computations are illustrated in Table 28, which gives
the rank order of importance assigned to various “morale”
items by two different groups, a group of employers and a
. group of employees (28). We wish to determine whether
there is any association or relationship between the ranks
assigned to the items by the two groups.

TABLE 28 —RaNks AssiaNED T0 VARIous MoraLE ITEMs BY
. EMpLOYERS AND EMPLOYEES*

‘ EMPLOYER | EMPLOYEE DIFFERENCE
Ireu Ranking | Ranking | DIFFERENCE [ "o pen
1. Credit for ﬁofk done. 1 7 —6 36
2. Interesting work..... 2 3 -1 1
3. Fair pay..... teeeees 3 1 2 4
4. Understanding and’
appreciation....... 4 5, -1 1
5. Counsel on personal e
problems.......... 5 8 -3 9
6. Promotion on merit. . 6 T4 2 4
7. Good physical work- .
ing conditions..... 7 6 - 1 1
8. Job security......... 8 2 6 36
. : ' 92
" * Data from Fosdick (28). -
’ : -1 6(92)
P=i78@—T)
—1 552
- 504
=1 -~1.095

= —.10
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Because formula (33) seems easier to apply than the
Pearson product-moment formulas, some individuals would
g0 so far ag to transfer a set of measurements into ranks in
order to use p as a measure of association. For example,
when observations were originally made in terms of measure-
" ments, these are then converted into ranks by assigning the
largest measurement in each series rank 1, the next largest
rank 2, and so on. When two or more meagurements in
the same series are identical, that is, tied for a given rank,
the practice is to give each one the average of the tied ranks.
Thus two individuals with the same score, tied for, let us
say, rank 8, would be given the average of ranks 8 and 9 or
- 8.5. If three individuals had been tied for rank 8, then each -
would be given the average of the ranks they would ordi-
narily occupy, ranks 8, 9, and 10, or the average rank of 9.

Frankly, however, there is little reason for converting
measurements into ranks in order to determine the degree
of association between the two geries. . The problem of
converting, dealing with ties, finding differences, and squar-
ing these differences, even for a short series, may require
more time than the apphcatmn of one of the formulas for
the Pearson product-moment 7 discussed earlier,

7. MULTIPLE AND PARTIAL CORRELATION

We have discussed under measures of association only
those techniques which enable us to deseribe the relation--
ship between two variables. A product-moment correlation’
coefficient, for example, describes the relationship between
one variable, which we call X, and a second, which we call
Y. Technically, correlation coefficients of this nature are
called zero-order correlations. It is possible, however, -
through the use of multiple correlation techniques to study
the relationship between one variable and several others
considered simultaneously. We might, for example, be
interested in the relationship between high school marks -
and intelligence tests scores considered together and later
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success in college as measured by point hour ratio. The
maximum correlation that we could obtain between these
first two variables and point hour ratio can be described by
the coefficient of multiple correlation. Multiple correlation
analysis is not limited to studying the relationship between
two variables considered jointly and a third, but can be
extended to determine the relationship between a combi-
nation of several factors and some other one. ‘But since
the multiple correlation coefficient is not the simple sum of
the zero-order correlations of each of the combined factors
with the variable under study, but takes into consideration
the intercorrelations between the several variables in the
combination, the law of diminishing returns is soon reached.
This is to say that the increase in the size of the multiple
correlation coefficient as a result of adding new variables is
quite slow when the variables themselves are correlated
with one another.

Partial  correlation, in contrast to multiple correlation
where we combine variables, enables us to hold constant
certain variables while we study the relationship between

" two others. In the problem described above, we might be
interested in the correlation we would find between in-
-telligence test scores and college marks, if high school grades
were held constant. If we hold one variable constant while
we study the relationship between two others, the resulting
correlation coefficient is called a firsi-order partial correla-~
tion. If two variables are held constant at the same time,
we have a second-order partial correlation. There is some
basis, however, for believing that the application of partial-
correlation methods much beyond the first-order stage is
inadvisable. ” We cannot go into the reasons for this belief
here,® nor can we give a detailed treatment of the applica-
- tions and limitations of partial and multiple correlation.
For this the interested student is referred to Peters and Van
Voorhis (74).
# See, for example (38, pp. 270-271), (74, pp. 244-245), (64, pp. 251-252).

i
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8. SUMMARY OF MEASURES OF ASSOCIATION

By way of summary of the methods of measuring associa~
tion, let us go back over the various techniques mentioned.

a. Pearson product-moment r: for measuring relation-
. ships between two variables when both are continuous and
the relationship is rectilinear. The coefficient of correlation
is most reliable when based upon a large number of pairs of
observations. ' An r based upon 15 pairs of observations
would have to be at least .64 to indicate that the correlation
in the population from which the sample was drawn was not
zero, for example, whereas the same inference might be
. made for an r of .18 if the sample consisted of 200 cases.!?

- The coefficient of correlation if computed from a correlation

table with a small number of classes is likely to be less than
the r which would be obtained if calculated directly from
ungrouped measures. A table of correction factors . has
been worked out by Peters and Van Voorhis (74} for 7’s
computed from tables with varying numbers of classes and
should be consulted for more precise estimates of association
when r is computed from tables with less'than 10 classes.

b. The correlation ratio: for measuring relatlonshlps be-
tween two variables which are related in a curvilinear
fashion. The correlation ratio, 7,., unlike the correlation
coefficient, is overestimated when the number of class
intervals of X is large so that but a few cases are found in
each class. Obviously, if only a single case were present
in each column, then the variance of the means of the col-
umns would be as great as the total variance of Y, and the
correlation ratio would be 1.00. However, if N is sufficiently
large and the grouping of X is in terms of 8 to 10 intervals,
each interval is apt to have a sufficient number of cases in -
it to make the obtained correlatmn ratio approximately .

accurate. .

c. Biserial r: for measuring relationships when one vari- -
able is recorded in terms of a dichotomy and the other is
10 See pages 185189 for the method of arriving at this statement. +
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continuous, Biserial 7 assumes that the individuals in each
of the two categories represent a complete distribution (i.e.,
not just the two extremes), that the dichotomized variable
is really continuous and normally distributed, and that the
relationship between the two variables is rectilinear. '

- d. Point biserial r: for measuring the relationship be-
tween a truly dichotomous variable and a continuous
variable. '

e. Phi coefficient: for measuring the relationship between

two variables that are truly dichotomous. :

- f. Pearson r estimated by ¢ and tetrachoric r: for measur-
-ing the relationship between two variables, when each one is
V%ecorded in terms of a dichotomy. It is assumed that both
variables are essentially continuous and normally distributed
and that the measures in each of the categories represent a
complete distribution, and that the relationship is rectilinear.
8 nting ent+—formeasuring the relationship
e~claghified in two or more
themselves are not

wo variableg wiN

(LD wietl

. h. Rank differencétoefficient: for measuring the rela-
tionship between two variables, each of which is arranged
_in terms of rank order. SN ;

i. Multiple correlation coefficient: for measuring the
maximum relationship that may be obtained between a
"combination of several variables and some other one variable.

j. Partial correlation coefficient: for measuring the rela-
tionship between two variables with the effects of a third
(or several others) held constant. ..

-OTHER MEASURES OF ASSOCIATION

, Examp'le 1.—Here is a simple set of data for practice. Assume
that the X variable represents chronological age and that the Y
variable represents scores on a vocabulary test. Compute 7,4 to
determine the correlation ratio of ¥ on X. :
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Vocary- i
" LARY ]

CERONOLOGICAL AGE

TEesT
. Scores 15 16

17

18 19

20

22

23

- 150-159
140-149
130-139
120-129
110-119
100-109
90— 99
80- 89 | -,
70~ 79
60- 69

B I Y e

Ha bt

[l -0

= I

0O = b b S

DO e O g =t

- g

- Rt

B3 P bl ek b3

Exampﬁ—Hay and Blakemore (41) .report the following dis-
tributionsof sedres for “inexperienced” and *experienced” workers

on the Minnesota Vocational Test for Clerical Workers.

Ure

biserial  to determine wheiher there is any relationship between
classification as an “experienced” or an."inexperienced” worker
and scores on the test. ™

EXPERIENCED

INEXPERIENCED

Scorzs Group Group
190-199 1
180-189 2 4
170-179 3 5
160-169 11 8
150-159 9 30
140-149 25 26
130-139 . 27 26
120-129 33 42
110-119 48 39
100-109 38 28
90- 99 17 20
B0 89 14 N
T0- 79 3 B,
80~ 69 4

50- 59 1

Example 3.—The following data were obtained from a class in
Using’ the formula for

social psychology on a final examination,
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he point biserial coefficient of correlation, determine whether there
is any relationship between response to Item 22 on the examination

and total scores.

‘ToTaL

. Response TO ITEM 22

Scores

Correct

80-84

'75-79

70-74

65-69

60-64

" 55-59

’ 50-54
. 45-49
40-44

35-39

. Incorrect

=R OU00 QY W

‘2

[y
Y -T S L

e

‘

EXxdmple 4.—A group of 100 men and 100 women were polled to
determine whether they liked or disliked a particular radio com-
mentator. Of the men, 55 liked the commentator and 45 did not,
while 40 of the women said they liked him and 60 said they did
not. Find the ¢ coefficient to determine whether there is any
relationship between response to the question and sex classification.

Example 5.—Peters and Van Voorhis (74) report a tetrachorice
r of .569 for the following data. What is the value of r estimated

by way of the ¢ coefficient?

NumBER oF HouRs UnsuccEssFuL | SuccEssFuL
oF PEDAGOGY TEACHERS TEACHERS -TorAL
Six hours or more. . ... ...... 20 80 100
Less than 6 hours............ 70 55 125
Totals............. el 9 135 225

Example 6.—Lindquist (64) reports a tetrachoric r of .35 for
the following data on responses of 150 students to two test items.
What value of r is obtained when estimated by means of the ¢

coefficient?
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REesPONSE TO ITEM 1

RespPoNsE TO ITEM 2
: Wrong Right ToTAvL
Righbe.oooeeeeeeeeeennnnns 24 - 56 80
Wrong. . ceveneiiiiiveeernennan. 36 34 70
Totals.....ueueenenenennns.. 60 90 150

ExAm/;ﬂ; 7 ——Assxgn ranks to the scores hsted below and find the
rank difference coefficient of correlation.

XVarisble 8 13 13 18 14 19 8§ 4 17

, Y Variable 4 14 6 13

8§ 12 10 7 6

15 22

6 18 8 124
7 17 17 4

9 9 4

Example 8.—Lo (66) had Chinese men and women and also

. boys and girls rank the “vices” listed below in order of seriousness.
Are the average ranks assigned to these “vices” by boys more
closely related to the ranks assigned by glrls than to the ranks

assigned by men? ,

“Vices” MEN WomEN Bovs GirLs
Snobbishness. ............. 1 2 2 2 .
Cheating...............0.. -2 3 1 4
Sex irregularity............ 5. 1 3 1
Stealing.......o0nvennnnn.. 4 4 4 3
Selfishness................. 3 8 5 7
Lying......oevvvvneant.s, 6 5 7 6
Gambling. . ............... , 8 9 6 8
Laziness................... 7 6 8 11
Gossip........... Heesennns 9 7 10 5
Extravagance.............. 10 13.5 9 10 -
Vulgar talk..... Crereasaa. 12 10 , 14 9
Swearing.................. 11 13.5 13 12
Smoking.................. 15 11 11 13
Drinking..........c........ 14 12 12 14
Dancing........covevnnenn. 13 15 15. 15




CHAPTER 7

PROBABILITY AND FREQUENCY
DISTRIBUTIONS

We have already observed how individual members of a
group vary from one another and we know how to measure
this variation in terms of the standard deviation of the
distribution of measurements. ‘Individuals, however, not
only vary from one another; they also differ from them-
selves if measured at different times. Height, for example,
is said to be different in the morning upon arising and at
night before retiring. Surely one’s weight increases with
a heavy meal. Individuals tend to perform better on’
achievement tests when not fatigued, and so on. Now
since measurements on the same individual made at different
times may vary, and since measurements of different indi-
viduals at the same time may vary, we may expect statistics
derived from samples of individual measurements to vary
also.

The mean achievement score of a group of college fresh- °
men tested in the morning may not be precisely the same
mean score that would have been obtained if the same
group had been tested in the afternoon. Nor would we
necessarily expect another sample of college freshmen,
drawn from the same larger group or population as the first
sample and in the same manner, to have precisely the same
mean score as the first sample.

If we found the mean intelligence test score of a group of
freshmen at a given college to be 115, we might expect the
mean intelligence test score of another sample of freshmen
to differ from this value.. If the difference was only 1 point
we might be inclined to say that this is just a “chance”
difference. But would we also be willing to attribute a
difference of 3 points between the two means as being due

132
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to “chance”? If so, then what about a difference as great
as 10 pomts‘? How much would the two means have to-
differ, in other words, before we would be willing to give up- -
the hypothesis that the difference is due to chance?

To take another case: suppose that we were given a box:
"and were told that it contained 50 white dises and 50 red
discs. Suppose that we shook the box and drew out a.
sample of 30 discs. We would expect to have close to 15
red and 15 white discs, but we would probably not be too
surprised if our sample had 16 of one color and 14 of the
other. What if our sample had 20 of one color and 10 of
the other? "How far would our sample have to depart from.
- the expected 50-50 division in order for us to suspect that.
we had been mjsmformed concerning the contents pf the
box?

These questions brmg us to our next problem in statlstlcaL
methods: the problem of how much confidence we can
place in means, proportions, and other statistics derived
from samples. The statistical methods used in investigat-
ing this problem are known as “tests of significance,” and
they enable us to determine, among other things, whether
- observed differences in sample statistics may be assumed to
" be the result of chance factors or whether we may reject this.
hypothesis. But in order to understand the use of these
statistical techniques we shall have to consider first some-
thing of the general nature of probability and chance, and
some of the properties of known frequency distributions.

1. MEANING OF PROBABILITY

The probability of an event may be defined as a ratio,
the numerator of which gives the number of times that the
event is expected to occur or the number of outcomes favor-
able to the event, and the denominator of which gives the:
total number of poss1ble outcomes. The probabxhty, for-
example, of the head of a coin coming up is 1/2, the 1 in the
numerator representing the outcome favorable to the event.
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and the 2 in the denominator representing the total number
«of possible outcomes—the head or the tail of the coin may
come up. The probability of an event occurring plus the
probabil.ity that it will not occur equals unity (1.00) assum-
ing a dichotomy of “occur” vs. “not ocecur.” The probability
that the head of a coin will come up is 1/2 and the probab1hty
that it will.not is 1/2. The sum of these two is equal to
1.00. It is customary to let p equal the probability that an
event will happen, and 1 -~ p, which is represented by g,
the probability that the event will not happen.

"~ A distinction is made between a priort and empirical
probability (63, IT, pp. 2-3). A priori probability refers to
assumed probability. It is sometimes called rational or

_mathepatical probability. An example would be finding

" the probability of getting exactly 7 heads and 3 tails in a

single toss of 10 coins, on the assumption that each coin is

as likely to come up heads as it is tails. Empirical prob-

" ability refers to statements of probability based upon the
actual observation of the number of times that an event
has occurred in a given number of trials. The ratio of the

‘number of times the event has occurred to the total number

_of trials is called the relative frequency of success. . Thus in
the coin problem we could toss 10 coins up in the air, say
10,000 times, and note the number of heads and the number
of tails occurring on each toss. Then the number of times
that 7 heads and 3 tails come up, divided by the total number

-of tosses, would give the probability of this event occurring.
This statement of probabxhty Would be denved from em-
pirical observation.

- Let us examine! first a few cases of a priori probablhty
- Assume that if we toss a single coin, the probability of its

head coming up is 1/2. What is the probability of getting

two heads when two coins are tossed or when a single coin is
tossed twice? The possible outcomes are HH, HT, TH, and

TT. Of these four possible outcomes, only one is favorable

to. getting two heads. The probability then is 1/4. If we

are not interested in which particular coin comes up ‘“heads”
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and which one “tails,” then the probability of getting one
head and one tail is 2/4. The probability of getting two
tails is the same as that of two heads, 1/4. A The sum of
these probability ratios equals 1.00. We have, then, an
answer to the question we raised: the probability of getting
"two heads with two tosses of a single coin is 1/4. -We also
+have in this simple illustration the basis of a general rule or
principle: the probability that all of a set of independent events
will occur s the product of the separale probabilities of
each event. When a single coin is tossed twice, the prob-
ability of getting a head on the first toss is 1/2 and the
probability of getting a head on the second toss is 1/2; the
probability of getting two heads—the two tosses are indepen-
‘dent, i.e., regardless of how the first toss comes out it will not
influence the second toss—is therefore (1/2)(1/2) or 1 /l In
a similar fashion we could determine that the probability of -
getting three heads from tossing a single coin three times or
three coins once would be (1/2)(1/2)(1/2) or 1/8.1

Suppose we think for a moment of a single item on a
“true-false” test, and let us suppose that a student is going
to answer this item by flipping a coin, as students sometimes
do in answering true-false questions. The chances of getting
a correct answer are 1/2, since there are two possible out~
comes, “correct” and “incorrect,” and only one of them is
favorable. If this test consisted of 10 items, and if the
student answered each item by flipping a coin, then what
is the probability that he will get a score of 10 correct on
the basis of chance alone? Since each response is an in-
dependent event, the chances of getting all correct would be
the product of the separate probabilities according to the
rule above. Thus FX3IXEXIXIXEIXEXEX
% X % or (3)* would give the probability of this happen-
ing. What are the chances that he will get all 10 items

1There are a number of possible ways of stating the probabilities just
described. We sometimes say that the chances of getting a head on a single
toss are even; that the chances are 50-50 of getting a head; that the propor-
tion of heads expected if ten coins were tossed is .5; or that 50 per cent of the
coins are expected to be heads. o
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wrong? ¥ Since, again on the basis of chance, this is also 1 /2
for each individual item, then the probability of getting a
score of zero would also be (3)°.

2. COMBINATIONS -

The cases just discussed are simple enough But suppose
vthat we had asked what the probability was of the student
getting precisely 7 correct answers and therefore 3 wrong
ones? Note that we are not here specifying which par-
ticular 7 answers need to be correct, but only that 7 be
correct.. In order to answer this question we need to know
how many combinations of 10 things taken 7 at a time are
possible, This can be determined by the formula for combi-
natlons of mdependent events

n!

=Tl 34)

where oCr = the number of combinations of n thmgs taken rat
a time

“n! = factorial n or the product of all the integers from
ntol

(n — r)! = the product of all the integers from (n —-r)tol
= the product. of all the mtegers from r to 1

In the present problem, we want to know - the possible
number of combinations of 10 thmgs (items) taken 7 (7
correct) at a time. Substituting in formula. (34) we geb

0. = 101 :
AT nIml -t

S 10X9IX8XTX6X5X4X3X2X1
(3x2><1)(7><6><5x4x3x2><1)
_10X9X8
T 83X2X1

720

==

'=120 -

i
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- Thus we find that there are 120 ways in which a student
might get precisely 7 items correct and 3 incorrect on a
10 item test, but we still do not know how frequently these
particular combmatlons will turn up.  Out complete formula, -
for the probability of getting 7 items correct and 3 incorrect:
on the test should read .
r n-r ) ' )
o' ( DI} . i : (35

In this formula, p is the probability of getting a correct
answer to a single item considered alone, and the exponent
_ of p indicates the total number of correct items in which we
“+are interested. The value of ¢ is equal to 1 — p, and the
exponent of ¢ indicates the number .of incorrect items.
bubstltutmg in the formula we get

10! N1 " 120
wGER) = = @@ = 1,024

In a similar fashion we could use formula (35) to determi:ne
the probability of the student getting any particular score
ranging from 10 to zero. v

3. BINOMIAL DISTRIBUTION

If you have had algebra, then you may have noticed that
the value of ,C, gives the coefficient of the (n — r 4 1)
term in the binomial expansion (p + ¢)". That is, 1Cy,
for example, gives the coefficient of the (10 — 7 4-1) or
fourth term of (p 4+ ¢)'°. Expanding?® we would get

(@ + @) = p® + 10p°q + 45p°¢* + 120p"¢® + 210p°¢* + -
252p°¢ + 210p'¢" + 120p°¢ + 45p°¢* + 10pg® + ¢

and the fourth term is 120p¢3, the coefficient being the.
number 120. The exponent of p in each of the terms of the

21t is customary to let 01 = 1, : .

*The rules for expanding the binomial (p 4 ¢)* are summarized below

1. Each term in the binomial consists of the product of a numenca.l co~
efficient and a power of p and a power of ¢.

2. The first term always has a numerical coefficient of 1 whlch is understood.
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binomial expansion, as in formula (35), indicates the number
of items correct (successes) and that of g indicates the
number of items incorrect (failures), and the coefficients
represent the number of ways in which each of these combi-
" nations of successes and failures may occur.
- Thus to interpret the expansion above In terms of the
" true-false test on which each of the 10 answers is deter-
mined by chance: the probability of getting a score of 10
correct is 1/1,024; the probability of getting a score of
precisely 9 is 10/1,024; the probability of getting a score of
precisely 8 is 45/1,024, and so forth. The advantage of the
binomial expansion is that from it we can readily determine
the probability of obtaining a score as large as or larger than
any given score. The probability of getting a score of 7
or above, for example, is the sum of the probabilities for the

" and therefore is not written; the power of p is always n and the power of ¢ is

zero and therefore does not appear; thus the first term is always p».

: 3. In each succeeding term, the power of p decreases by 1 in regular order,

yvhilellhlh:ipowerofqincreaswbylinregularorder, antil the final term, ¢*,

1S reac] .

. 4. The product of the numerical coefficient and the power of p in any given
term, divided by 1 plus the power of ¢ in that term, will give the numerical
coefficient of the term which follows. - .

If you have difficulty in remembering these rules, then you may always
rely upon Pascal’s riangle shown in Table 29 to find the binomial coefficients,

- TABLE 29.—PascAv’s TRIANGLE ror FINDING THE BINOMIAL
' ) CoEFFICIENTS

3

BinomiaL COEFFICIENTS

QOO DG LN
[4]
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~
o
[=]
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_scores, 7, 8, 9, and 10, or 120 + 4? (-); 410 + 1, which is equal
to 176/1,024. Thus about 17 times in 100 we would expect
a score of 7 or higher to occur by chance alone.

‘We may now ask another question about our student. How
‘high a score must he make before we would begin to suspect
the hypothesis that his answers were determined by chance
alone? A score of 8 or above would occur by chance just
slightly more than 5 per cent of the time, and a score of 9
or higher would occur by chance just slightly more than 1
per cent of the time. * Although the limits are arbitrary, it is
. customary in most statistical work to refer to the occurrence
* of an event that would happen by chance alone 5 per cent
of the time as representing a significant departure from
chance expectations, and the occurrence of an event that
would happen by chance alone 1 per cent of the time is
regarded as representing a very significant departure. If we
accept these standards, then we would surely regard a student
who can conszstently, i.e., repeatedly, make scores of 9 or
higher as answering each item on some basxs other than
chance.

Coming back to our true-false test of 10 1tems, suppose
that we gave it to 1,024 students and that each student
answered each item by flipping a coin, that is, by chance.
The probabilities that we worked out earlier could now be
considered as the frequenciesof each score and we could
make a frequency distribution of the 1,024 scores as we have
done in Table 30.

Note the symmetry of the distribution of scores in Table 30
and observe that the distribution begins to approximate the
bell—shaped, normal distribution to which we have had
occasion to refer before. We can perhaps see this more
clearly when the frequencies are plotted as in Figure 8.
Now if the number of items on our test were increased and
scores were rescaled so that the resulting frequency distribu-~
tion conformed to the base line of Figure 8, the ordinates
(the perpendicular straight lines representing frequencies)
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(Qf the distribution would be crowded elaser and closer. to-
gether, the steps would become smaller and smaller, and the
distribution would approach a continuous curve, normal in
shape. e

TABLE 30. —DisTRIBUTION oF SCORES ON
A 10-JtEM TrUE-Farse Test as De-
TERMINED BY CHANCE

ScorE f
10 : 1

: 10
45
120
210
252
210
120
45
10
1

. 1,024

M OmRtOIND

Y N

o 1 2 3 4 & § 1 8 8

Fra. 8.~Theoretical distribution of seores of 1,024 students
on a true-false test of 10 items when responses to each item
are determined by chance.

H
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i THE NORMAL DISTRIBUTION CURVE
The equation for the normal curve is

—at "
N e .- (36)

1

where =y = the frequency or height of the curve at any given
_point along the base line : .
N = the number of cases involved in the distribution
o = the standard deviation of the distribution
x = 3.1416, the ratio of the cxrcumference of a c1rcle to’
its diameter
¢ = 2.718, the base of the Naperian system of logarithms
g = the deviation of a measurement from the mean of
" the seriea '

Since the values for ¢ and 7 are known, and for any given
distribution we would know the values of N and ¢, we could
solve for any given frequency (y) corresponding to any given
value of z within our series of measurements,

We could, in this way, determine for any given distribu-
tion the best fitting normal distribution with the same mean
and standard deviation as those actually eomputed from
the data at hand. We shall do this for the true-false test
of 10 items and compare the frequencies we obtained by
the binomial expansion with those fo be expected if the
distribution were normal and had the same mean and
standard deviation.

Fortunately the labor which would be involved in the
calculations based upon formula (36) is greatly simplified
by the fact that we have available tabled values of the unit
normal curve, where N is assumed to be equal to 1 and the
standard deviation is assumed to be 1. Table B on page 320
is a table of the unit normal curve, The first column of

Table B headed z or ; gives the standard score’ value,
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x-M)

o
cases Or area ‘between the mean and the standard score

~————=, The second column glves the proportion of

z . .
value = The third column gives the area or proportion

. below the value -3 or the area in the larger portion of the

curve, and the fourth column gives the area above ; or the
area in the smaller portion of the curve. The ordinate v,
erected at the point f—: is tabled in the fifth column. Since

the normal curve is symmetrical, the tabled values are
given for only one half of the curve. Deviations below the
mean would be the same except that we would think of
them as having a negative sign attached. Thus we see
from the third and fourth columns of Table B that exactly
.5 of the total area of the curve is above the mean and .5
below the mean.

If we are to fit a normal distribution to the chance dis-
tribution of scores on the ‘true-false test of 10 items, then
we need to find the frequencies which would be expected,
assuming a normal distribution with a mean of 5, standard
deviation of 1.58, and N of 1,024. The essential calcula~
tions are given in Table 31. Column (1) gives the scores,
column (2) the deviations of each score from the mean of the
series, and column (3) the deviations divided by the standard

_deviation of the dlstnbutlon, that is, x. The values of ¥

given in column (4) are obtained from Table B. To get
the value of y corresponding to a z of 3.16, for example, we
enter column (1) of Table B and run down the tabled values
of z until we arrive at 3.16. 'We then read the corresponding
value of y from column (5), which, for a z of 3.16, is equal
to .0027. Since these ordinates are for the unit normal
curve, where N equals 1 and the standard deviation equals 1,
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TABLE 31.—-Frrring A Norsar DisTRIsuTIoN T0 THE DATA OF Tﬁin '30

(4} @ 3 4 (5 6)
(X — M) (f) Taste B | ExrecTEp | ORsERVED
SCO“ 2 : - y ] f' J\-.
10 5 3.16 0027 1.7 1
] 4 * 2.53 0162 - 105 10
8 3 1.80 0656 42.5 45
7 z | .1z | 11 usse | 120
6 1 .63 3271 212.0 210
5 0 00 3989 258.5 252
4 -1, —.63 B271 212.0 210
3 -2 -1.27 1781 115.4 120
2 -3 -1.90 0656 42.5 - 45
1 —1 —253 | 0162 105 10
(1] -5 -316 0027 1.7 1
Total.. ol v | T 1,0227 1,024
M=235
o= L58

we must adjust the tabled values of y for the N of 1,024 and
the standard deviation of 1.58 of our distribution. We'
need to compute R
_iN
3

@7

where %k = a constant by which each value of ¢ taken from the
table must be multiplied ' )
¢ = the gize of the interval in which the scores are
grouped (in this instance 2 = 1, and can therefore
be ignored)
N = the number of ¢ases in the distribution
o = the standard deviation of the distribution

Substituting in formula (37) we obtain

1,024

158 = 648.1

and multiplying each of the values of ¥ in column (4) bj '
6438.1, we obtain the expected frequencies given in eolumn
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(5). In column (6) the frequencies which would result from
the expansion of the binomial are given. You may note
that there is a slight discrepancy between the sums of columns
(5) and (6). The sum of frequencies determined by the
normal curve will ordinarily be somewhat less than the N
of the data to which we are fitting the normal distribution.
This is because the normal curve extends beyond the range
of the data. But the discrepancy is very small. By in-
- spection we can see that the departure of the “chance”
' frequencles from those expected in terms of a normal d]S-
tnbutlon 1s not very great.

5. THE USE OF TABLE B

Although we shall not often be concerned with fitting a
normal distribution to 5 given set of measurements, the
" discussion of how this can be accomplished has served to
introduce us to the tabled values of the unit normal curve.
We are now ready to consider some of the ways in which
this table may be used. 3 .

The tabled values are in terms of proporl:1ons but we can,
- if we wish, readily think of them in terms of per cents by
multiplying each by 100. Thus the proportion of scores
below the mean and above the mean in a normal distribution
is .5 and the percentage above and below the mean is 50 per
cent. 'What percentage of the cases in a normal distribution
will fall between the mean and plus 1 standard deviation,

* that is when f equals 17 From Table B, column (2), we

find that the proportion is .3413 or 34.13 per cent. Since a
similar per cent will lie on the other side of the curve between
. the mean and minus 1 standard deviation, we now see the
basis for the statement made earlier that in a normal dis-
tribution 68.26 per cent of the scores will fall within the
limits set by plus and minus 1 standard deviation from the
mean.
Even more important than the per cent falling between
the mean plus and minus 1 standard deviation is the per
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cent falling between the mean and plus and minus 1.96
standard deviation units. On each side of the curve be-
tween the mean and 1.96 standard deviation units would lie
47.5 per cent. These two points will, in a normal distribu-
tion, define the zone which embraces the middle 95 per cent

of t.he measures. In a similar fashion we may determine
" that between the mean plus and minus 2.58 standard devia~
tion units will lie the middle 99 per cent of the measures.
Since the entire area under the curve is tabled as 1.00, it
follows that the area between 4-1.96 or between :|:2.58
standard deviation units can be expressed as a proportion
of the total area, as can the area outside these limits. This .
is the essence of & probability ratio, as we have already
discovered.

Suppose we had a normal distribution of scores with a-
mean of 60 and a standard deviation of 10. Then, if we
wished to determine the limits which would include the
middle 95 per cent of the scores, we would solve

= =.—.i:1.95
1—0"' +1.96
z =196 .

Then between 60 == 19.6 or between 40 4 and 79.6 we would

expect 95 per cent of the scores to fall. And we would
expect scores as high as 79.6 or above and as low as 404 -
or below to occur only 5 per cent of the time. Suppose we
wrote the value of each score in the distribution on a dise,
placed all of the discs in 2 box, and mixed them thoroughly.
‘We then draw out one dise at a time, record the value appear-
ing on it, and put it back in the box. We do this N times.
We would expect, in the long run, that scores of 79.6 and
above and scores of 40.4 and below would account for only
5 per cent of N, i.e., of the total number of recorded values.
They would occur, in other words, with a frequency of about
5 in 100. The significance of these statements will become
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clearer when we take up the problem of sampling in the
next chapter.

It should be obvious that using the same procedure that
we have just described, we could determine from Table B
the answers to the followmg questions about any given
normal frequency distribution: .

What per cent of the cases would be expected to fa]l
* between the mean and any given value of ;?
2. What per cent of the cases would be expected to fall
-above 2 jgiven value of —‘? )
3. What per cent of the cases would be expected to fall
“below a glven value of a?
4 What per cent of the cases would be expected to fall

between any two given va.lues of —"

6. PRAGMATIC CONSIDERATIONS

If you are about to place some magical belief in the normal
probability curve, let-us hasten to point out that it is, in
" nature, a mathematical ideal. - Seldom, if ever, do distribu-
tions of actual measurements ‘conform precisely to the
expected frequencies of the normal curve. Deviations of
actual from expected frequencies occur in the most precise
set of observations made under the most ideal conditions
and where the expectance of a normal distribution is logically
-justified, for example, in the actual tossing of a set of n
coins several thousand times. Distributions of measure-
ments in psychology and education likewise seldom, if ever,
give a precisely normal distribution. But there are statis-
tical tests to determine whether or not the departure of
observed frequencies from those expected in terms of a
normal distribution is sufficient to cause us to reject the
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hypothesis of a normally distributed population.. As an
ideal pattern, the normal distribution curve is not very
different from such physical ideals as Boyle’s law, to which
gases are expected to conform in fact but do so only in
theory. . ' :

Since many of the measurements in the social sciences
are concerned with traits, aptitudes, abilities, achievements,
attitudes, and so forth, and since these measurements are
usually made by means of a test or scale, we might point
out that one of the reasons why we so often find approxi-
mately normal distributions with these instruments is
because of the manner in which the instruments are recon-
‘structed. If we make up an achievement.test for a particu-~
- lar grade level and then find that the test we originally
constructed fails to give us a normal distribution when we
administer it to students at that particular grade level, we
proceed to alter the test. We may make it more difficult
if there are too many high scores; or if there are too many
low scores we may make it a bit easier. Or we may lengthen
the test so that there will be a greater spread of scores.
Or we might change some of the items or replace some of
the items with others. We might alter the method of scor-
ing the test or do something else to change the test until we
do get a normal distribution. There is nothing wrong with
this practice. As a matter of fact if the normal curve is to
be used in interpreting scores on a test, then the test should
be altered or reconstructed to yield a normal distribution of
scores, . .

A question which is often asked is: How do you know
whether or not the particular trait or ability in which you
are interested is actually distributed normally in the popula-~
tion or not? The answer is that we do not. The question
as it stands is operationally meaningless since our measure-
ments are confined to samples and we can only estimate
the distribution in the population from what we obtain
from our samples. If we intentionally construct a measur-
ing instrument to yield a normal distribution with a sample,
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then, if our sample is representative of some larger group
which we call the population, we: assume that a similar
distribution would result if the population were measured
with the same instrument.

. 7. SKEWED DISTRIBUTIONS o

When a distribution of measurements departs from nor-
mality by yielding more measurements at one end of the
~scale than at the other, we say that the distribution is
skewed.. In a normal distribution of measurements the
mean and median and mode coincide, and there is sym-
metry or balance between the areas on each side of these
measures’ of central tendency. When measurements are
massed at one end or the other of the distribution, the
mean, since it is the center of balance, tends to be displaced
toward the pointed or tail end of the curve. The mean, as
you recall, is influenced by the numerical size of the measure-
ments; the sum of deviations above the mean equals the
sum of deviations below the mean. The median, on the
other hand, is not influenced by the size of the scores; it is
merely the point on each side of which there is an equal
number of scores. Consequently, when a distribution is
skewed negatively, the median will be larger than the mean
as in Figure 9, where the horizontal scale, as usual, increases

Mean Median Median Mean
F1a. 9.—Relative position of the F1q. 10.—Relative position of the
mean and median in a negatively mean and median 1n a positively

skewed distribution. skewed distribution.
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fromrleft to right. When a distribution is skewed positively,
the median will be smaller in value than the mean, as in
Figure 10.

Another term ‘which is used to descnbe dlstnbutlons is
kurtosis, which refers to the relative peakedness or flatness
of a distribution in the neighborhood of the mode. A dis-
tribution which is flatter than a normal curve is called
platykurtic and a distribution which has a higher peak than °
a normal curve is called leptokurtic. There are measures of
skewness and kurtosis, but we shall have little need of them
and they are not included here.*

PROBABILITY AND FREQUENCY DISTRIBUTIONS

Example 1.—Suppose a student is faking a true-false test con-_
s15t1ng of 8 items and answers each questlon by ﬂippmg a com,
ie., by chance.

(a) What is the probability of his gettmg a score of 8 correct‘?
(b) What is the proba.blhty of his getting a score of 6 or
higher?

Example 2.—What is the probability of a student getting af least
one correct answer by chance on two true-false questions?

Exampl If you flipped four coins in the air, what ls the :
probability that you will get exactly three heads?

Example 4—On a multiple-choice test of 4 items, each item
with 4 alternatives, what is the probability of getting a score of
precisely 3 on the basis of chance?

Exampl@—(hven the following normal distribution of a large
sample of measurements with mean of 80 and standard deviation
of 38, what per cent of the measurements would you expect to find:

(a) Above 98 ) (2) Below 110

(b) Above 86 (h) Below 92 .
(c) Above 65 (i) Between 68 and 104 -
(d) Above 50 (5) Between 68 and 92 -

(e) Below 68 (k) Between 56 and 98

(f) Below 86 () Between 68 and 98

* See Tippett (90), Peters and Van Voorhis (74), or Kenney (63).
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Examf)liven the following means and staridard devia- .
tions of normal distributions of large samples, within what limits
would you expect to find the middle 95 and 99 per oent of the -
measurements? ,

@ M=25 o=5 @ M=185 o=22-%.9
) M=30 ¢ =T35 O M=24 c=44-2.2
© M=50 o=68 () M=470 o=55 2.7
DM=42 ¢=4885 (Q)M=21 ¢=3t 5.9



CHAPTER 8
SAMPLING DISTRIBUTIONS

You now have at your command a number of statistical
methods which are capable of giving a good. descnptlon of
samples. Central tendency can be described in terms of
the mean or median, and variation in terms of the standard
deviation. . Raw scores can be translated into z scores to
determine how far above or below the mean a given score
lies, and to compare standing on one variable with relative
position on another. In addition, you are familiar with
various methods of measuring the degree of association be-
tween two variables. You have also at your disposal a
means of determining by inspection how closely a set of
obtained sample frequencies corresponds to the frequencies
to be expected in a normal distribution with the same mea.n,
standard deviation, and number of cases.

1. SAMPLES AND POPULATIONS

Samples, however, are not often studied for themselves
but in order to generalize beyond the samples to the popula~
tions from which they were drawn. Why, if our interest is
in the population, do we not study it instead of a sample
drawn from it? Some of the more obvious reasons for not
doing o are that it would be too time-consuming, expensive,
impractical, and, in many instances, impossible. If you
stop to consider the labor, expense, and time involved in
conducting the United States Census once every ten years,
this should be clear.! An investigator who wishes to study
the state of public opinion on a particular issue could not
afford to conduct a census, that is, a study of every member
of a defined population. Yet, the scientific polling organi-

" ssmclaoga p. 127) estimates that the 1940 census cost spproximately
l
151
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zations can determine quite accurately the state of public
opinion by studying a sample drawn from the population
(30). This is accomplished with relatively little expenditure
of time, money, and labor as compared to the census. .

The factors mentioned above are not the only reasons
that deter us from studying populations. We may experi-
ment and control conditions and variables much more

readily in a small sample than we could in a large popula-
~ tion.. If we were interested in studying the relative effective-

ness of two different methods of teaching arithmetic at the
sixth-grade level, we might select as subjects in our éxperi-
ment two small matched groups, samples, of sixth-grade
students. For these small groups we can obviously control
the experimental situation more effectively than if our
subjects exhausted the population of sixth-grade students.
One group we would teach by one method and the other by
the second method, comparing the performance of the two
groups on some measure of achievement at the end of the
- experimental period. If our samples are representative of
the population from which they were drawn, then we assume
that the method of instruction which is found most effective
in our experiment will also prove to be most effective for
similarly matched groups in the population at large.

You are probably most familiar with “samples” from
reading about the opinion polls and, although the samples
used in these polls are not samples typical of those we shall
deal with in this chapter and later ones, they may serve as
an introduction to the subject of “reliability of statistics.”
The opinion polls, by studying a relatively small sample of
the voting population, make generalizations from the sample
data about the population which, experience has shown,
correspond very closely to the actual outcomes of elections.
The polls report their data in terms of per cents, and these
per cents, being measures derived from samples, are statistics
_in the same sense that a mean or standard deviation derived
from a sample is a statistic. Statistics, you recall, are
_ estimates of corresponding measures in the population
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which are called parameters. The per cent favoring a given
issue as derived from an opinion-poll sample would be a
statistie; the per cent favoring the issue if it were possible to
interview the population from which the sample has been
drawn would be the corresponding parameter. The mean
intelligence test score derived from a sample of grade school
students in New York City is a statistic and is an estimate
of the correspondmg mean or parameter in the populatmn
which the sample is supposed to represent.

Reports of opinion-polling organizations such as the
Amerfcan Institute of Public Opinion usually include a
warning statement with pre-election reports of public -
opinion. A poll may state, for example, that a sample of

the voting public shows that Candidate A is favored by 52 - .

per cent of the voters with a margin of error of 4 per cent. -
This means that the per cent in the population favoring
Candidate A can quite confidently be assumed to be between
48 and 56 per cent. The 4 per cent margin of error, in other
words, gives some indication of the reliability of thé sample
per cent or statistic. The theory underlying the deter-
mination of measures of reliability is known as sampling
theory, and sampling theory is based upon frequency dis-
tributions and probability (63, 1I, 98).

2. SAMPLING DISTRIBUTIONS

We know from the discussion in the last chapter that if
we had a large normal distribution with a given N, mean,
and standard deviation, we could easily determine what
proportion of scores to expect at given distances above or
below the mean if we drew scores at random from the dis-
tribution. That is to say, if we put each score on a dise,
mixed the discs in a box, and drew them forth one at a time,
we could make a probability statement concerning the fre-
quency with which we expect to obtain scores at or above
a given point, or between two given points,

Let us assume that the distribution of scores in Table 32
was obtained by giving an objective type of examination
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to a psychology elass of 100 students. If we think of these
scores as making up a population, we could compute the
mean and standard deviation of the population, which we
would find to be 60 and 10, respectively. If our distribution
of 100 scores is a population, then the mean and standard

" TABLE 32—Hno'mnncu. Scores or 100 StupENTa ON AN OBJECTIVE

TYPE OF Emma'nou

& 7% 73 T 67 66 64 63 61
gg 75 72 60 67 65 64 62 61

78 74 71 68 6 65 63 62 6l
77 74 W 68 66 64 63 62 6l

BRgRE 233333

23333
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59 57 56 54 53 50 47

dewatmn may be considered as ﬁxed values or parameters
of this population.

Suppose now that we placed each of the numbers in Table
32 on a dise and mixed them up in a box and drew samples
of 1 case each out of the box, replacing the dise after each

drawing. The mean of each sample would be equal to E-W)-( ’
and since we have but a single X and since &V equals 1, the
mean of each sample would be % or the seore itself. If we
" drew a large number of samples of 1 case each, we could
plot the means of these samples in a frequencey distribution.
If we then found the standard deviation of this distribution
of sample means, it would be approximately the same as
the population standard deviation, 10. The reason for this
is simply that each sample mean would deviate from the
population mean in the same way that each score does from
the mean. But if we increased the size of our sample to 10
cases, and drew a large number of samples of this size from
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the box, we would find that the sample means now show less
variation about the population mean. And with samples of
40 cases each, the variation of sample means would be still less.
The relationship between the variation of sample means
and the size of the sample is illustrated by an actual sampling
experiment. Figure 11 is"a distribution of means of 820
samples of 10 cases each. These samples were dra.wn by

Froquency
" 8 & 8 R 8
Y

o 350 b1 52 53 64 b5 66 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

Values of Means

Fia. 11. —Dlstnbutlon of 820 means of samples of 10 cases
each drawn from the scores of Table 32.

students in statistics classes at the University of Maryland
and the University of Washington from the scores of Table
32. Note that the lowest mean is 49 and that the highest
mean is 71, the range being 22, Observe also the concentra~
tion of the sample means around the population value of 60,
and the approximately normal shape of the dJstnbutmn.
If we combine the means of four samples, each sample with
10 cases, and find the mean of these combined samples, it
would be the same as finding the means of samples of 40
cases each. This we have done, and the distribution of the
205 sample means is shown in Figure 12. You may observe
that the range of means is now less than it was when each
sample consisted of only 10 cases. The -lowest mean is
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now 54 and the highest is 66. The range, 12, is only about
half that for the samples of 10 cases each.

. Frequeney distributions of statistics, such as the mean,
derived from a large number of samples of a given size are
known asg sampling distributions and the standard deviation
of a sampling distribution is called a standard error in order
to differentiate it from the similar measure, the standard
deviation, derived from a single sample. You should see

¢ - e,
B4 65 56 67 68 59 60 61 62 63 64 65 68

Values of Meana

FIG 12.—Distribution of 205 means of samples of 40 cases
‘ each drawn f.rom the scores of Table 32.

from Flgure 11 and Figure 12 that the standard error of a
distribution of sample means is related to the size of the
sample. As more individuals are included in the sample,
the less the means will scatter or vary around the population
mean, The standard error of a sampling distribution is
related also to the amount of variability present in the
population from which the samples are drawn, If the
standard deviation of the 100 scores making up the popula-
tion described above had been greater than 10, then the
variability of means of samples drawn from this 'population
would be greater also.
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8. STANDARD ERROR OF THE MEAN

In the sampling experiments just described we have been -
dealing with samples drawn from .a population ‘where the .
parameters are known values. Under these circumstances, .
the formula for the standard deviation of the sampling dis-
tribution of means drawn from the population is

o .
VR 9
where  o¢n = the standard error of the mean L w
' & = the population standard deviation (the tilde. is
" placed over the standard deviation to indicate .
that it is the population value, not the sample
" value) ; ‘ . '
N = the number of cases in the sample

“

In most research problems in the past, it has been the
practice to consider the standard deviation of the sample as
an estimate of the population standard deviation, since the
latter is seldom, if ever, known. Thus ¢ has usually been
substifuted for ¢ in formula (38). It can be shown, how-
ever, that a more precise esfimate of the unknown population
standard deviation is obtained by the following formula:?

2 The proof of this is not developed hers, but ean be found in Lindquist
{84, pp. 43-50) or Peters and Van Voorhis (74, p. 70). We can, however,
give zome indication of why we divide the sample sum of squares by N~1 in
estimating the population stendard deviation. The best estimate of the
population standard deviation is +/Z(X — M)*/N, when M is the population
mean and N is the number of cases in the sample. "But the population mean is
not known, and deviations must be taken from the sample mean. The result -
18 that the estimate of the population standard deviation derived from the
sample, particularly when the sample is small, is underestimated. The reason
for thia 18 that the sum of squares which we calculate, taking deviations from
the sample mean, is at & minimum, i.e., less than it would be from any other
value. Onlyin the unusual case where the sn,mfple mean happened to be identi-
cal with the population mean would the sum of aquares based upon the sample -
mean be as large as the sum of squared deviations from the population mean,
Regardless of how glightly the sample mean varies from the population mean,
any variation at all would give us a smaller sum of s ua.redp deviations if the
deviations are taken from the sample mean than would be found if the devia- -
tions were taken from the population mean, Division by N would thus give .
us an estimate of the ation standard deviation which is biased, an esti-
mate which i8 too small, It can be demonstrated algebraically that this bias
can be eorrected for by dividing by N—1 instead of N, The proof in Lind-

. quist is not beyond the comprehension of the student with an elementary
knowledge of algebra.
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i

vty
~Nret (39)

from which we see that if we want an estimate of the popula-
tion standard deviation rather than the standard deviation
of the sample, we simply divide the sum of squaresby N — 1
instead' of by N. And having computed this estimate of
the population standard deviation we could substitute in
formula (38) for the standard error of the mean and get

g=g¢

N .
N—1
[
N NN-=1
(
zz?

__a

== VN
a2
NN =1
VN

—

\/ =zt
NN -1)
=zt

N

TN

TVN-1
[

VN -1 - (0)

Thus you can see that the standard error of the mean
could also be obtained directly from the sample standard
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deviation by means of formula (40). It makes no difference
which procedure you use. You can divide the sample sum
of squares by N — 1 and then use the square rodt of N as
the denominator in the formula for the standard error of the
mean, or you can divide the sa.mple sum of squares by N
and use N — 1 as the denominator m the formula for the
standard error of the mean. ‘

4 LARGE SAMPLES AND THE NORMAL C URVE TABLE

How shall we interpret the standard error of the mean,
once we have computed it? TLet us take a concrete case.
Suppose that we have given an achievement test to a random
sample of 400 students at a given university where the total
enrollment is 10,000. The mean of our sample is 200 and
the estimate of the population standard deviation is 40.-
The standard error of the mean is therefore 2. Suppose
that our real interest is not in the mean score of our sample
of 400 students but rather in the mean score that would
have been obtained if we had given the test to every student
in the university. We may ask how reliable an estimate of
the population mean is our obtained sample mean of 200.
We might even wish to ask what the probability is that the
popalation mean is the same as that derived from our
sample. Unfortunately, if we insisted upon asking the
question in this way, we would be in for a disappointment.
For the manner in which the question is phrased eliminates
any possibility of an answer. .

But, you may ask, didn’t we say before that the statistic
derived from a sample is an estimate of the population param-
. eter? Aren’t we justified, therefore, in saying that the
best estimate of the population mean is 200? True enough,
but note that this is but another way of stating that the best
“hypothesis” we can make about the population mean with
the data at hand is 200. Another sample of 400 cases drawn
from the same population might have a mean of 201; a
third sample might have a mean of 203. Without actually
drawing a second and third sample, we might make the
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hypothesis that the population mean is actually 201 or 203
or some other value, and that our obtained sample mean of
200 simply represents a chance deviation from this value.
Obviously, whether we care to accept or reject the various
hypotheses that might be set up concerning the population
mean will depend upon the relative frequency with which
observed sample means of 400 cases would deviate from
these assumed or hypothetical values as a result of sampling
: varla.tlon

" *-_Recall that in a normal dlstnbutlon we may find the ratio
X M -

4
the ‘normal .curve with any given value of z, in order to
"determine the relative frequency with which deviations as
large as or larger than the given x occur. Now, since the
' distribution of means of random samples 1s also normal,® and
. stnce these means will cluster around the population mean af
the center of the distribution, it is also possible to write

z= M, — M, . - \ (41)

R A Om

= ; = ¢z, and that we may then enter the table of

Thus formula (41) tells us that we may set up some hypo-
thetical value of the population mean, find the extent to
_which our sample mean. deviates from this value of the
population mean, and then, by reference to the table of the
normal curve, determine how frequently such deviations or
larger may be expected, to occur by chance if the hypothesis
4s true. If deviations as large as the one we have obtained
or larger would occur quite frequently as a result of sampling
.variation, then we would have very little confidence in-
rejecting the hypothesis that the population mean is the
" yvalue that we have set up. On the other hand, if a deviation
from the hypothetical value of the population mean as large
as or larger than the one we have obtained would occur

$ This is true even when the population from which the samples were drawn
departs considerably from normality, For evidence bearmg upon the problem,
see Kenney (53)
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quite infrequently as a result of sampling variation, then
we might reject the hypothesis concerning the population
mean with a greater degree of confidence. .

Let us test the hypothesis that the population mean is
199, assuming that our sample mean of 200 represents a
* deviation from this wvalue. Substituting in formula (41).
- we get . o

200 — 199 ‘
= 'T = 5

Entering Table B of the normal eurve, we find that 31 per
cent of the cases in a normal distribution may be expected
to deviate from the mean by plus .5 standard deviation
- units or more. On the assumption, then, of random
sampling from a population with a mean of 199, sample
means of 200 or larger would occur in the long run 31 per
cent of the time. We must admit, that if this is the case,
then we would have very little conﬁdence in rejecting the
hypothesis that the population mean is 199. - .

In a similar manner we could test the hypothesis that the
populatmn mean is 194. The deviation of our observed .
mean in terms of standard deviation units would be 6/2,
or 3, and we would find from the table of the normal curve
that z values of plus 3 or larger may be expected to occur
by chance much less than 1 per cent of the time, Conse-
quently, if the population mean is 194, then sample means
of 200 or larger could be expected to oceur by chance less
than 1 per cent of the fime. In this instance we would.
have much more confidence in rejecting the hypothesis tha.t
the true mean is 194.4

From these two exa.mples you may see that the degree of
confidence we may have in rejecting or accepting a given
hypothesis about the population mean depends, as we have
said before, upon the relative frequency with which devia~-

4 Note that in both of the examples cited, we have nof made the assumption
that our eample mean is at the center of the distribution of sample means..

It is My which is assumed to be at the center of thll distribution apd M,
represents a deviation from M,
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tions as great as our sample mean or greater might be ex-
pected to occur from the hypothetical value as a result of
sampling variation. In other words, assuming a given
hypothesis to be true, we test it by finding the relative
frequency with which deviations from it as large as or larger
than our sample deviation might be expected to occur by
" chance. If such deviations would occur very frequently by
chance, then we cannot reject the hypothesis about the
_ population mean with much confidence. On the other
hand, if such deviations would occur very infrequently by
chance, then we may reject the hypothesis with a high
degree of confidence. ) .

5. THE CONCEPT OF FIDUCIAL LIMITS’

- . The discussion of the previous section, let us hope, has
provided a basis for understanding the method now to be:
described.  Instead of testing one hypothesis after another,
as we might possibly do, it is customary to determine the
interval within which any hypothesis might be considered
tenable and outside which any hypothesis might be con-
sidered untenable. This interval is known as a confidence
interval and the limits defining it are called fiducial limits.
Statements of probability made in terms of the fiducial
limits are called statements of fiducial probability.

It may be observed from Table B, page 320, that absolute
values of z of 1.96 or greater will occur, by chance, 5 per cent
of the time. It may also be observed that absolute values

. of z of 2.58 or greater will occur, by chance, 1 per cent of
the time. It has recently become common among statistical
workers to agree, prbitrarily, to reject a hypothesis about
the population mean such that our sample mean deviates
from it to the extent that the resulting value of z or greater
would occur by chance 5 per cent or less of the time. If we
set up a hypothesis concerning the population mean value
and found that our sample mean deviated from this hypo-
thetical value to the extent that we obtained an absolute
value of z equal to 1.96, we would say that we reject this
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hypothesis at the 5 per cent level of confidence. In a similar
manner, if we obtained an absolute value of z equal to 2.58,
we would say that the hypothesis is rejected at the 1per
cent level of confidence. A z of 1.96, in other words, indi-
cates a stgnificant deviation and a 2 of 2.58 indicates a very
. significant deviation. If we agree upon these standards,
then we may determine for a given sample mean the line
dividing hypotheses that would be acceptable from those
that would be rejected at these levels of confidence. Let
us do this for the problem discussed earlier where the sample
mean was 200 and the o, was 2. The formula we reguire
is the following:
z

L

where  z = a deviation of the sample mean from a hypothetical -
value of the population mean ‘
om = the standard error of the mean
2 = an absolute value of z that would cause us to reject
a bypothesis at the 5 per cent level (1.96) or at
the 1 per cent level (2.58)

Since o, and z are known values, we may substitute in the
formula and solve for .. Let us do so for a value of z at the
5 per cent level of confidence. o

5% Level
] i = 42z
Om
F
3= £1.56
z = (2){+1.96)
zr = 43.92

Having found the value of z (4-3.92), we may note (Figure
13) that if the population mean is as low as 196.08, then
our sample mean deviates from this value to the extent that
a plus value of z of 1.96 is obtained. By reference to Table
B we find that plus values of z of 1.96 or larger would occur
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025 or 214 per cent of the time by chance. Similarly, if
the population mean is as large as 203.92, then our sample
.mean deviates from this value to the extent that a minus
value of z of 1.96 is obtained (Figure 13). And by reference
to Table B, we find that minus values of z of 1.96 or larger
"would occur by chance .025 or 214 per cent of the time.
Putting these two figures together, we may observe that

/]

. Mp
196.08 ' 200 203.92
b (41,96 ) e (=196 0} ——

Fia. 13‘.—The(ﬁducia! limits at the 5 per cent level as
" determined from the tables of the normal probability
) curve.

‘absolute values of z (regardless of sign) of 1.96 or greater
‘would arise 5 per cent of the time by chance. ]
Hence, any hypothesis that the population mean is as
“low as 196.08 or lower, or as high as 203.92 or higher, will,
" in terms of the sample mean we have obtained, yield a value
of z which would occur 5 per cent of the time or less by
‘chance. The sample mean would be said, therefore, to
differ significantly from either of these two hypothetical
values of the population mean (or any values outside these
two), and any such hypothesis concerning the population
mean would be rejected according to the standards we have
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agreed upon. We also know that any hypothesis that the
population mean is greater than 196.08 but less than 203.92
will be in accord with the value of the sample mean we have
obtained, i.e.,-the sample mean will not differ significantly
from any of these hypothetical values. ‘ -

The limits set by the interval described above have been
termed by Fisher (26) the fiducial limits of the parameter
at the 5 per cent level. Just as we saw that the fiducial
probability that the population mean was 203.92 or greater.
was 214 per cent and that the fiducial probability that the
population mean was 196.08 or less was 214 per cent, so *
also we may say that the fiducial probability that the popu-
lation mean lies within the fiducial limits is 95 per cent (26,
pp. 190-191). That is to say, in the long run, we shall be
correct 95 times in 100 in inferring that a population mean
lies within the 5 per cent fiducial limits.

If we desire a higher degree of confidence before rejecting
a hypothesis concerning the population mean, then we
would, of course, work with the fiducial limits of the param-
eter at the 1 per cent level. In this case the fiducial
probability that the population mean is 205.16 or greater is
005 (z = ~2.58) and the fiducial probability that the
population mean is 194.84 or less is .005 (z = +2.58). The
fiducial probability, therefore, that the population mean lies
within these limits is 99 per cent.
. If we consistently follow the rule that a hypothesis is
acceptable if it falls within the limits set by one of the above
levels, then we may be in error because (1) we reject a true
hypothesis, or (2) we accept a false one. “Errors of the
first kind” may be minimized by arbitrarily increasing the
level of significance we demand before accepting the hy-
pothesis and, therefore, making the probability low that if
the hypothesis is true we would obtain the value we have
obtained.* By adopting the 1 per cent level, for example,

® But, as Tippett points out, by choosing a level that is too severe, “the
proportion of mistaken inferences of the second kind may be too great, and
advance of knowledge may be unjustifiably impeded. Too much scepticism
may be obstructive’” (90, p. 75). L.
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“‘errors of the first kind” would occur, in the long run, only
once in every hundred experiments; that is, we would reject
1 per cent of all of the true hypotheses tested. If we work
at the 5 per cent level, then we would reject, in the long

- run, 5 per cent of the true hypotheses tested. As with any
rule-of-thumb procedure, caution must be exercised in
critical cases. Under some circumstances an “error of the
first kind” may be more serious and, under other circum-
stances an “‘error of the second” may have more serious
consequences.! It may be said, by way of conclusion, that
the 1 and 5 per cent levels that we have cited are the most
commonly used. '

'6. SMALL SAMPLES AND THE TABLE OF t

As long as the samples with which we are working are
quite large, the ratio, u_i, may be interpreted by reference
« n
to the tables of the normal curve. But with small samples
{considered by some statisticians as samples under 30 cases
and by others ag samples under 100 cases) the distribution
of the ratio, 2z, is not precisely normal. This means, of
course, that the use of the table of the normal curve in inter-
preting the ratio is not justified. We must make use of
the tabled values of &.7 o
~ The ¢ ratio is the same ratio that we have just been dis-
cussing. under the designation of z, and, for large samples,
the distribution of £ is equivalent to 2. The sampling dis-
tribution of ¢ depends, however, upon the number of cases in .
the sample or, more precisely, upon the number of degrees of
Jfreedom involved. ‘The concept of degrees of freedom, sym-
bolized by n or df, refers to the number of observations that
¢ See, for example, the discusslon’ by Walker (96, pp. 288292} and Jack-
son (47, pp. 13-15).
 TThe problem of satisfactorily dealing with amsll samples was recognized
and investigated by W. 8. Gosset, who published under the pseudonym of
“Student.” Professor R. A. Fisher has done much to develop the theory and
technique of treating small samples and the table of # which we have included

{page 330) is taken from his book (28) by pei:mission of the author and his
pub%ishera. '
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are free to vary after certain restrictions have been placed
upon the data.® In determining the fiducial limits for the
mean, the number of degreees of freedom is one less than
the number of cases in the sample or N — 1. : .
Table C, page 330, gives the 1 and 5 per cent points for ¢.

. for samples with varying degrees of freedom. Table C is
to be used in the same way that we used the table of the
normal curve, except that the value of ¢, instead of being
1.96 at the 5 per cent level and 2.58 at the 1 per cent level,
will be somewhat larger, the exact value depending upon
the number of degrees of freedom involved. Thus for a
sample of 20 cases, the number of degrees of freedom is 19
and the value of £ at the 5 per cent level is 2.09. For a
sample of 10 cases, the number of degrees of freedom is 9,
and £ at the 5 per cent level is 2.26. ' '

In the case which we have already dealt with in terms of

2z, we find that for a sample of 200 cases,. degrees of freedom -
= 199, ¢{ would be 1.97 at the 5 per cent level and 2.60 at .
the 1 per cent level.? Using these values we may find the
fiducial limits. Thus -

, 1% Level , 5% Level
L=t : L=t
0’,,; o'm .
z _ T '
5= +2.60 3= +1.97
z = (2)(£2.60) z = (2)(£1.97)
Cz = =£5.20 : = £3.94

& An adequate treatment of the concept of degrees of freedom would take us
beyond the scope of this elementary text. It can be said, in general,
however, that whenever a sample of N cases is used for the purpose of
estlmatmg a population value, 1 degree of freedom is lost for every statistic
caleulated from the sample and in making the estimate. In the case of
estimating the standard deviation of the population, the statistic calculated
from the sample and used in making this estimate is the mean of the sample,
Since this is the only statistic used in making the estimate, only 1 degree of
freedom (N — 1) is'lost. An excellent discussion of this problem, in terms
which are not beyond the comprehension of the beginning student, can be
found in Goulden (35, pp. 33-34). See also the mere technical article by -
Walker (94). i

® There is no entry in Table C for degrees of freedom- 199, but we may use -
the entry for 200 degrees of freedom, the discrepancy being very slight.
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For a sample as large as this (N = 200) the fiducial limits
would be little ‘changed by using the table of £ instead of
the table of the normal curve. The greatest discrepancies
between the fiducial limits established by z and by ¢ will
oceur when N drops below 100.

7. OTHER STANDARD ERROR FORMULAS

a. Standard error of the standard deviation, The same
interpretation that we have applied to the mean of a sample
and its standard error also applies to the standard error
formulas for other statistics. The sampling distribution
of the variance for small samples is, however, slightly
skewed, as is the sampling distribution of the standard
deviation, but both approximate a normal distribution when
N is approximately 50 or greater. We shall not include a
formula for the standard error of the variance, but you may
find one in Peters and Van Voorhis (74) or Tippett (90) if
you should ever have need of it. The standard error of a
standard deviation may be estimated by the formula

T V2N =1

when the standard deviation has been computed by dividing
the sum of squares by N. If the sum of squares has been

.divided by N —-1 in computing the standard deviation,
then formula (42) becomes

(42)

o
= V2N

In finding the fiducial limits for the standard deviation,
we would proceed as we did in the case of the mean. If
we use the table of £, then we must enter it with the appro- -
priate number of degrees of freedom, N — 1, or one less
than the number of eases in our sample. )

b. Standard error of a proportion. 1If, in a given sample,
our data are expressed in proportions, frequencies, or per
cents, we may wish to compute standard errors for these sta-

(43)
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tisties, and to establish the fiducial limits. If we interviewed
a sample of 100 students and found that 60 (p = .6) of them
favored a given proposition and 40 (g = .4) were opposed,
we might be interested in finding the limits within which -
hypotheses concerning the population proportion would be.
-tenable.

On the assumption that the obtained sample value of p
is the most proba.ble population value, the standard error
of a proportion is :

oy = A|P2 L ay

N
_ where = the proportmn in one category {(in this mstance the

proportion favoring the proposition)
¢ = 1 — p or the proportion in the second category
N = the number of cases in the sample.

The standard error of the proportion in the case cited
above would be, according to formula (44),

+/ 0022
05

To establish the fiducial limits we would enter the table of
¢t with degrees of freedom equal to N — 1, The value of £
at the 5 per cent level is 1.98 and the fiducial limits would
be (.05) (£1.98) or ==.1 (rounded) Thus we would con-
sider any hypothesis concerning the proportion in the popula-
tion which fell within the limits .6 and .7 as tenable, i.e.,
our sample would offer no evidence against the hypothesis.
On the other hand, any hypothesis that the population
proportion was equa.l to or outside these hmlts would be
considered untenable and rejected.

LI
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¢. Standard error of a per cent or frequency. Since
we know that a per cent is simply a proportion multiplied
by 100 and that a frequency in a given category is equal o
the proportion in the ecategory multiplied by the total
number of cases involved, we may write the formula for a
standard error of a per cent and a standard error of a fre-

_ quency as follows: '
or = 100, /22 (45)

N
agr=N \{_% ) . (46)

A word of caution should be expressed eoncerning the
calculation of standard errors for proportions, per cents, and
frequencies, and using these values in establishing the fidu-
cial limits. The procedure described will give approxi-
mately the same results as those obtained with more exact
methods as long as the produet Np (or N¢ if ¢ is less than
p) equals at least 20. If this relationship does not hold,
however, then a more exact treatment is necessary.’?

SAMPLING DISTRIBUTIONS

. Exzample 1—Place the scores of Table 32 on dises or beans.
~ Assume that the 100 scores make up a peopulation with known
parameters. From this population each member of the class will
draw 10 samples of 10 cases each,. The technique to be used in
drawing the samples is this: place the numbered discs in a box
with a hole cut in one end; shake the box and draw out one dise;
record the number, and put the disec back in the box; shake it,
draw out another djse and so on until 10 numbers have been re-
corded. These numbers will make up Sample No. 1. Repeat the
process until you have drawn 10 samples.

. (a) Find the mean of each of your 10 samples. Do not worry
about the decimal place; round the number.

®&ee, for example: C. J. Clopper & E. 8. Pearson, The use of confidence or
fiducial limits illustrated in the case of the binomial Biometrika, 1934, 26,
404-413. ! . .



Other Standard Error Formulas 171

(b) To get some idea of the sampling dis tnbutlon of means,
make a frequency distribution of all of the sample means dra,wn
by the members of your class.

(¢) What would you expect to happen to the range of means
if the sample size had been larger than 10?2 Why?

(d) To get some idea of the sampling distribution of ¢ you
can find the standard deviation and standard error of the mean
for each of your samples. Then using the formula

=M0—MI|

Tm

¢

and substituting the mean of the population (60), since it is
known, for M,, solve for t. Some of the values will carry & .
minus sign and others will be positive. '
(e) Combine all of the #’s from the class into a frequency dis-
tribution, in terms of absolute values. :
~{f) What absolute value of ¢ would you expect to find ex-
ceeded 1 per cent of the time? 5 per cent of the time?

' Exampl@,—ﬂiven the following means, N’s, and sample
standard déviations, find the fiducial limits of the parameter at
the 5 per cent and 1 per cent levels, using the table of &.

‘N M o k N ] M T
(a) 65 25 5 (e) 26711 25 10
(b) 17 30 7 gf) 41'7 16 50 127
i §C) 101 35 10 - 2) 50 75
d) 10 25 5 (h) 296 m 22.5 4.25

"—Example@—Assume that the scores given below are “time”.
scores on a maze test, Using the table of £, find the standard

error of the mean and the fiducial limits at the 1 and the 5 per cent
levels.

RL 26 TH 17 LW 21
S8 20 BM 20 AM 17
EG |- 19 AE 23 VB 22
RG 15 WW 25 MG 19
EE 21 sC 16 NK 19
GH 19 PC 21 AB » 20




CHAPTER 9
THE ¢ TEST OF SIGNIFICANCE

In studying the reliability of various sample statistics in
the last chapter, we discussed most of the basic essentials of
the ¢ test of significance applied to differences between
sample statistics. In experimental and research work the
determination of whether an observed difference is of such
magnitude that it cannot be attributed to chance factors or
sampling variation is often our major interest. We may
find, for example, that a group working under one set of
experimental conditions has a higher mean output than
a comparable group working under a different set of experi-
mental conditions. Is the observed difference between the
means one that might occur frequently by chance, i.e., as a
result of sampling variation? If not, then we might infer
that the difference is a product of the experimental variables.

1. AN EXPERIMENT INVOLVING PAIRED
OBSERVATIONS

Let us suppose that we are interested in the problem of
whether attitudes toward working conditions are important
determiners of output. - We have 20 subjects who have been
practicing adding numbers under quiet conditions. On the
basis of their performance durmg these practice periods we
divide the 20 subjects into 10 pairs, so that each subject is
matched with another individual of comparable level of
performance. We assign one member of each pair at random

to one of two groups. Thus we have two groups or 10 pairs
~ of subjects, each pair, and consequently each group, being
fairly equal in ability to add. One of these groups we shall
designate as “Group A” and the other as “Group B.” .
On the critical trials we tell the members of Group A that
they are to be subjects in an experiment on distraction which
172 ’
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is to be a check on previous experiments which have been
done. It has previously been found, we add, that working
under conditions of noise results in an increase in produc- -
tion, that is, that most individuals find that noise tends to
facilitate adding. The members of Group B are also told
_that they are to be subjects in an experiment on distraction,
but they are told that previous experiments have shown that
working under conditions of noise tends to decrease produc-
tion. Each group is then put to work adding problems
under noisy conditions, and performance is measured: in
terms of the number of problems correctly added. The
scores of Group A and Group B on the critical trials are
. given in Table 33." 'We see that the mean score of Group A

TABLE 33.—MEasores oF PERFORMANCE oF MarcaEDp Pams WoORKING
ONDER CONDITIONS OF NOISE BUT WITE DIFFERING ATTITUDES
TOWARD INFLUENCE OF Noise—GROUP A UNDER ATTITUDE
- Taar Noise INCrEAsEs OuTPUuT AND GROUP B UNDER

Arritruope TaAT Noise DecreEases OuTeuT

MaTtcHED Pamrs .
Grour - Som | MeAN
1j213|4|5|6!7]S8 | 9 | 10

A 22|25 242326 23|26] 2425
B 21{25]|22| 23124 | 22|25 23| 24

240 | 24
21230 23

is higher than the mean score of Group B. Is the difference
between the two means significant? )
If we took an infinite number of samples of 10 paired
observations each, the differences between the means, ie.,
the mean differences, would constitute a sampling distribu-
tion in the same sense that means of single samples give us
a sampling distribution.? We could plot these mean differ-
ences in a frequency distribution and they would.tend .to

b ‘%‘hﬁ da(sta) are hypothetical for the sake of simplicity, but see the experiment
y Baker

2 I't bas been demonstrated earlier that the difference between the means is
equal to the mean of the pmred d\ﬂ'erences. e
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cluster around the mean of this distribution, which would
be the population mean difference. The standard deviation
of this distribution would indicate the amount of variability
in mean differences which is to be expected when the samples -
consist of only 10 pairs of observations. How large a meaa
difference will we have to observe before we are willing to
reject the hypothesis that the population mean difference
is zero? It should be obvious from earlier discussions
-that we would need to know the standard deviation (standard
error) of the distribution of mean differences based upon
samples of 10 paired observations. As in the ease of the
standard error of a single mean, we must use our avail-
able statistics to estimate the standard error of the mean
-dlﬁerence
a. Standard error of a mean difference. In the case of
matched pairs, the technique of finding the standard error
of the mean difference is quite simple. We find the differ-
ence between each pair of observations and then the mean
of this distribution of 10 differences. We then find the
sum of squares and the standard deviation of the distribu-
‘tion of 10 differences; using this standard deviation as the
numerator and the square root of the number of pairs minus
1 as the denominator, we may estimate the standard error‘
of the mean dlfference By formula. tlns is
w0 5 o 92 3
VN1 )
= the standard error of the mean difference (or
difference between the means)
gq= lt.he gtandard deviation of the distribution of
‘differences between pairs
N = the number of pairs

The essentlal caleulations for the problem at hand are
given in Table 34. The scores for both groups have been

-where Omg

#1f the numerator is the estimate of the population variance, i.e., if the sum
of squares has been divided by N — 1, then the denominator of formula (47)
becomes the square root of N. )
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" reduced by subtracting 20 from each ofie, Subtraction,
you may recall, will not change the resulting sums of squared -
deviations from the mean. And since the same constant
has been subtracted from each series, the difference between

- TABLE 34.—PERFORMANCE SCORES -or MaTrcHED PAtrs GIvEN IN TABLE 33
CoDED BY SUBTRACTING 20 AND ARRANGED FOR COM-~
PUTATIONAL PuUrPOSES

W @ | ® (4>Pf Gle|lo|le]o|a
Grour A GuourB@ ’

- X 0 ¢ D Bd d z v zy 2 |

27 1 1 o] o -2 | -2 4 4 4

5 5 o]l-1}1 1| 2| 2| 1 4

4 2 2 1] 1 ol -1| o 0 1

3 3 |0 -1| 1] <1 0| o 1 0

.6 4 2 1§ 1 2 1| 2 4 1

3 2 1 ol o | -1 | —1 1 1 1

6 5 1 0] o 2 2| 4 4 4

4 3 1 o]l o o|- 0| o 0 0

5 4 | 1 0l o 1| 1 1 1 1

2 1 1 ol o | 2| -2]| 4 4 4

s 40 30 10 0| 4 0 o| 18| 20| 20

Ty 18 - 18

oy

FR g

T Viesd | Ve 2

the pairs and the means will be unchanged. Conseqhently, .
we may treat these coded scores as original measurés,zwith-
out taking into consideration any corrections for coding. -
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‘We find, from Table 34, that the mean difference between
Groups A and B is 1, with a standard error of .21, How
may we evaluate this observed difference between the means
of the two groups? Is the difference so small that it might
simply be the result of sampling variation? One way in
which we might approach the problem is to set up some
hypothesis concerning the population mean difference and
then see whether our sample difference departs significantly
from this hypothetical vatue. The deviation of our sample
difference from the hypothetical population mean difference
when divided by the standard error of the difference would
give us the familiar £ ratio. Assuming the hypothesis to be

- true, we could, by reference to the table of £, determine how
- frequently absolute values of ¢ this size or larger would
occur by chance. ' According to the standards we have
agreed upon, if the value of ¢ is such that it would be expected
to occur less than 5 per cent of the time by chance we could
say that f was significant. We might, therefore, conclude
that the hypothesis concerning the population mean differ-
ence is not likely and reject it as untenable. Suppose, how-
ever, that we found just the opposite, that ¢ was not
significant at the 5 per cent level. What might we then con-
clude? We would have no basis for rejecting the hypothesis,
but would this mean that the hypothesis was true? The
answer is definitely no. The hypothetical value we tested
js ' but one among many values that might result in a non-
significant value of &

b. Testing the null hypothesis. There is another ap-
proach to the evaluation of our observed mean difference
that is more satisfactory if we are merely interested in finding
out whether the difference is sigmﬁcant The hypothesis
that we may set up to test is the null hypothesist We

4 In this section and in thosa that follow, the term “null hypothesis™ is often
used to designate the hypothesis that a given population parameter is zero.
» Jt should be gomted out, however, that the term covers any hypothesis which

is set up to be tested for possible rejection. For a more detaled discussion
of this point, see the footnote on page 281,
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assume that the population mean difference is zero and that,
therefore, any observed difference such as the one we have
obtained is merely due to chance or sampling fluctuations. -
This, in many respects, is the most logical hypothesis to
test, since the major point we wish to determine is whether
our observed difference between the means of the groups is
significant. 1f we assume that the population mean differ-
ence is zero, then
A,—M, 1—-0

t= = =31 =476

vor the observed mean difference divided by the standard
error of the difference, since Af, is assumed to be zero. '

We may now evaluate this ¢ by entering Table C (page 330)
with the approprisate number of degrees of freedom. In
the present problem the number of degrees of freedom is
equal to N — I, where N is the number of pairs of observa-
tions. According to Table C, if the null hypothesis is true,
then for 9 degrees of freedom we would expect to get an
absolute value of £ of 2.26 or larger 5 per cent of the time,
and an absolute value of £ of 3.25 will be exceeded only an
average of once in 100 times. As before, we agree that if
our obtained value of t is such that it would be exceeded
5 per cent of the time or less, then we ghall reject the hy-
pothesis being tested and infer that our observed mean
difference is gignificant.] In the present experiment, since ¢
exceeds the 1 per cent point, the null hypothesis must be
abandoned. We stll do not know, however, what the
population méan_diflerence 3s; we only know that the

thesi t it is zero ¥ not tenabl of sig-
nificance we have agreed upon,

c. Establishing the fiducial limits. We may go a step
further in our development. In the manner of the last ?
chapter we may determine the fiducial limits; that is, find *
out something about the limits within which we would be
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willing to aceept hypotheses about,the population mean
difference. Thus i

19, Level 5% Level

L o=t Z o~

Omg . : Tm,

=i = %325 5= 226
7 = (.21)(+3.25) 2 = (:21)(£2.26)
x = +.68 = 47

Any hypothesm that the populatlon mean difference is
_ withim.the limits .53 to 1.47 would have to be accepted as
tenable. On the other hand, any hypothesis that the popu-
lation mean difference is as large as 1.47 or larger and as
~ small as .53 or smaller would be considered untenable at
~ the 5 per cent level. At the 1 per cent level the fiducial
limits would be, of course, .32 and 1.68. Observe that in
- this instance also, we do not know what the population mean
difference is, and that we cannot make any satisfactory
statement of probability about .its value. We are only
confident, at a defined level, that it does not equal or exceed,
in either chrectlon, the ﬁduclal limits.8
d. Another method for compuhng the standard error.
"The method of evaluation Just described is for testing the
significance of the difference between means of samples
where members of one sample have been paired against the
members of the second sample, as in the experiment de-
seribed. -. The method would apply also when we give the
'same group a pre- and an end-test designed to measure the
same factor, or if we have observations on the same variable
for the same group before and after some intervening experi-
mental situation. ;. Under any of these conditions, we might,
if we so desired, work directly with the dlﬂ'erences between
palrs in fmdmg the standard error of the mean difference.

s In this connection, the student should reread the section of the previous
" chapter concermng “ermrs of the firs, and second kinds.”
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Anofher method which might be used, however, would be
to compute the correlation coefficient between the pairs of
measurements and then to apply the following formula

o‘..d"=.'\,/a,‘:+a,,§—2rnamtoﬂ.= i . (48)
‘where om, = the standard error of the mean difference '

ow, = the standard error of the mean of one group - |
om, = the standard error of the mean of the second

- group ' Y
Ly = the correlation coefficient between the pairs of
measurements on the experimental variable (the
variable on which we are comparing the difference
between the means)

We have all the necessary data in Table 34 to use formula
(48). Substitutipg we find : ‘

omg = V& F (B = @O0 AN |
= +/4418 — 3076

= /.0442
= .21

which is the same value that we vbtained by working di-
rectly with the differences between pairs. In evaluating
the { based upon formula (48) we would again have 9 degrees
of freedom available or N — 1, where ¥ is the number of
pairs.* The application of formula (48), however, is more
laborious than working directly with the differences. In
addition to finding the correlation coefficient, we must com~

¢ Guilford (38) suggests that the number of degrees of freedom in this in-
stance would be equal to N' — 2, where N is the number of pairs. If this were
the case, however, then the evaluation of ¢ based upon the difference formula
(45) _a_nd' that based upon the correlation formula (46) might differ gignificantly
in eritical cases, despite the fact that the two formulag would lead to equivalent
standard errors, ;

Professor Helen M, Walker, in 2 personal communication, has explained the
rationale for using N — 1 with both formulas: “Qne arrives at tha value of
N - 1 (where N i3 the number of fpaim) by either of two legitimate courses of
reasoning: (1) We may think of the N differences as measurements on a
random gample of N cases restricted only by the fact that deviations are
measured from the sample mean. (2) We may think of the 2¥ cases ag pre-
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pute the standard deviations of the scores for each group
and the standard error of the means, 'The difference formula
takes the correlation element into consideration and simplifies
the work involved, That is why it is preferred.

. 2. EXPERIMENTS =II\Wf’()L‘I?’.H\Kr’ MATCHED GROUPS

Sometimes in an experiment another method of matching
groups is used. We do not pair off the individuals in one
. group with the individuals in the other, but arrange our two
groups so that the means, standard deviations, and dis-
- tributions of the two groups are comparable on some vari-
sble, without regard to individuals as such. The basis en
which we match the groups may be preliminary practice or .
- _performance on the variable on which we intend to measure
final outcomes in the experiment, or it may be on the basis
of some other variable which we have reason to believe will
be correlated with the variable on which we are going to
measurg, outcomes. The reason for matching cur groups
on the basis of a variable which will be correlated with the
experimental variable is that the standard error of the differ-
ence will be reduced if the two are positively correlated.
‘The formula for the standard error of the mean difference is
as follows:? ‘

. Oy = Vel F o )T —13) (49)
where - 6w, = the standard error of the mean difference
-@m_ = the standard error of the mean for one group cn
the X variable on which we are testing the dif-
_ ference. .

senting an analysis of variance problem, in which the total number of degrees
of freedom is divided as follows:
- Among pairs N -1
Between groups = 1
Tnteraction N-1
’ . Total 2N -1
The N — I degrees of freedom among pairs are the same N — 1 obtained in
. congidering this as a sample of N pairs” (97). This second line of reasoning
is phrased in terms of “analysis of variance,” a technique which you will eo-
counter later in Chapters 10 and 11, °
T Bee Wilks (99) and McNemar (68).
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a_' = the standard error of the mean for the second
group on the X variable e
rsy = the correlation eoefficient between the X variable.
on which we are testing the difference and the ¥
variable on which the groups were equated. The
r is based upon the total N, that is, the N of the
combined samples. L

The difference between the meansg is then divided by
the standard error to arrive at £. The number of de-
grees of freedom available for evaluating ¢ when the two
groups have been matched on only one variable is equal.

“to Ny + N, — 3 (96).5 :

8. EXPERIMENTS INVOLVING INDEPENDENT '
GROUPS -

If we have two groups in which the subjects are not
matched or paired upon any basis so that thers is no reason
to believe the means of the samples are correlated,” then
the formula for the standard _error of the mean difference
becomes '

e
(50) 2

E 1t is possible, of coUrses+o-mrAYCH Lhe groups upon more than one variable.
Professor Walker (96) points out that if “r is a multiple correlation of z against
k other traits, there wouldbe (Vi — 1) + (Ns — 1) =k =N, +N;— (k + 2)
degrees of freedom. Where r is a correlation of zero order, of course this be-
comes N]_ + NQ - 3."

Whether much is to be gained, statistically, from the use of several variables
for matching purposes, however, has been questioned by McNemar, who
makes the point that “the efficacy of using additional controls is somewhat
limited by the well-known fact that the increase in the multiple correlation
coefficient resulting from adding more variables is usually slow, That this
phenomenon of diminishing returns, sssociated with the problem of multiple
correlation should be ogerative here has probably not been suspected by ex-
perimentalists” (68, p. 357). '

_ # The correlation between means of pairs of samples is, of course, unknown,
since we ordinarily have but one pair of means and a correlation coefficient
cannot be computed for one pair of observations. Fortunately, the correla~
tion between means can be estimated by the correlation between the two sets
of individual measurements in the two samples. It is the. latter coefficient
which we have used in the standard ercor formula, - . 7
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To illustrate the application of formula (50) let us suppose

~ that we are testing the difference between the means of a
random sample of Democrats and a random sample of

Republicans on an attitude test. The essential data are

TABLE 35.—SuMMARY OF Arrrrupe Teer Data For 50
' DemocraTe AND 50 REPUBLICANS

1 Desocrata | REPUBLICANS

Number of cases............. 50 50

Mean of distribation......... 8.7 6.2
Standard deviation. ... ... ... : 14 21
Standard error of mean. . ..... 2 ]

given. in Table 35. Substituting the necessary values, we
. obtain . ,
ony, = V(2P + (3 = V.04 + .09 = V13 = 36
L, Mi— M, 87-—-62 25
=TT =T 3 3%
When formula (50) is used to eompute the standard error
of the mean difference, the number of degrees of freedom
available for evaluating ¢ becomes (¥, — 1) + (Nz — 1), or
Ny 4+ N; — 2. According to Table C, for 98 degrees of
freedom a £ of 2.63 is significant at the 1 per eent level. - Qur
observed ¢ of 6.9 is, therefore, highly signifieant according
to the standards agreed upon. . Can we make any inference
concerning the limits within which the population mean
difference may Lie? We may determine the fiducial limits
of the parameter at the 1 per cent level in the same manner
as before. Thusi

1%-Level
Z =4
0'.‘
T
-R- = 4+2.63

x = (.36)(£2.63)
z = £.95
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We may infer, then, at the 1 per cent level of confidence,
that the population mean difference is within the limits 1.55
and 3.45. 3

4. THE ADVANTAGES OF PAIRING OBSERVATIONS

For the expenment cited earlier on the influence of atti-
tudes toward conditions of work as a factor influencing out-
put, let us find the standard error of the mean difference,
assuming no correlation, and see what happens to both the
standard error of the mean difference and the test of sig-
nificance ba,sed upon it. Substituting in formula (50), we

et

= VI F (47 = \/4418 = .66

Note that thls value (.66) is larger tha,n the value (. 21) we

"obtained by use of the proper formula which takes the
correlation into consideration. Computing the £ ratio, -we
find that our observed mean difference divided by the stand-
ard error of the difference is now 1/.66 or 1.52. 'This value
of £ would not meet the requirements of significance regard-
less of the number of degrees of freedom available.

The degrees of freedom for evaluating this ¢ are, however, '
greater than in the case where we dealt with pairs, Taking
cognizance of the pairing or the correlation, the number of
degrees of freedom is the number of pairs minus 1 or, in this
experiment, 9. For 9 degrees of freedom, ¢ must be at least
2.26 to be significant at the 5 per cent level. When we have
not palred our subjects, then the number of degrees of free-
dom is the number of subjects in one group minus 1, plus
the number of subjects in the second group minus 1 or, in
this experiment, 18. For 18 degrees of freedom a ¢ of 2.10
is significant at the 5 per cent level. * We can now see that
in order for a statistical advantage to result from pairing or
matching when we are dealing with two groups of 10 cases
each, assuming the mean difference remains the same, the
reductlon in the standard error must be at least enough to
rajse £ from 2.10 to 2.26.
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"If we had matched our groups and the resulting correla-
tion coefficient had not been large, to take the extreme case,
zero, then the standard error of the difference would not
haye been reduced at all, thus

. Omg = ‘\/‘Umf + o'm: — 2 Omy Omy = ‘\/o'm: + Um: - 0

In effect then, our experiment would really*have lost in
precision because we would have only 9 degrees of freedom
. for evaluating the obtained ¢ instead of 18, and the greater
the number of degrees of freedom we have available, the
smaller the required value of £ to be significant at the 5 or
' the 1 per cent level. On the other hand, if we had matched
" our groups so well that the correlation coefficient had been
_quite high, then the standard error of the difference would
have been reduced sufficiently to offset the loss in degrees of
freedom.
“ In the present experiment, if we had not taken the correla-
tion element into consideration, we could not have rejected
* the null hypothesis. But let us hasten to emphasize that
this would only mean that the value of ¢ computed offered
no basis for rejecting the null hypothesis and that this is
‘entirely different from concluding that the population mean
difference must, therefore, be zero. You must keep clearly
. in mind the nature of the hypothesis that is tested and also
the nature of the inference it is possible to make upon the
basis of the test of significance.

6. TESTING THE SIGNIFICANCE OF A PROPORTION

“We can apply the ¢ test to observed sample proportions
or per cents also, in order to determine whether these statis-
-tics depart significantly from some given hypothesis about
the population parameters. Suppose that in a poll of
student opinion we found that a sample of 100 was divided
65 to 35, with 65 individuals favoring the iissue on which
they were polled and 35 opposing the issue. What is the
null hypothesis applied to this problem? We might assume
that there is no difference between the number favoring
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. and the number disapproving, i.e., that the division in the
population is 50:50. Assuming this hypothesis to be true,
we can then find the standard error of the proportion by

formula (44), where o, = \/ p}g Thus if the hypothesis we
set up is true, the standard error of the proportion would be

’ (?)35) or 0.:; To translate this into the standard error

of a per cent we need only multlply by 100 to get 5 per cent.
Our observed sample departs from the hypothetical value
we set by 15 per cent. This is the difference which we
~ divide by the standard error of the hypothetical per cent to-
“find £. Carrying through our computations, we find ¢ is
equal to 15/5 or 3. According to Table C, a ¢ of 2.63is
required at the 1 per cent level of conﬁdence and our value
of 3 is, therefore, very significant. YWe may reject the
hypothesis of evenly divided opinion which we set up as the
population division and infer that a majority does favor the
We shall see later that the chi-square test of significance
is particularly useful in dealing with problems such as the
one just described. In order to apply the standard error
formulas for proportions and per cents, the data must first,
be translated into porportions or per cents, whereas the chi-
square test enables us to work directly with the data in their
original form.

6. TESTING THE SIGNIFICANCE OF r

When N is large and the population value of the correla~
tion coefficient is not excessively high, then the standard
error of r is given by the following formula: :

o =11 G

where 7 = the population value of the correlation coeﬂiment
N = the number of pairs of observations -
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Since the population value of the correlation coefficient is’
unknown, it has been the practice of some investigators to
substitute the sample value of r for 7 in the formula. The
standard error of r thus derived has then been given an
interpretation. similar to that which we have given other
standard errors. This practice, however, is not recom-
mended. The reason is that the sampling distribution of r
is normal only under the conditions stated above: when N
is large and when the populatiorf correlation is not very high.
. The sampling distribution of r based upon a small number
of observations drawn from a population having an absolute
value of r of .80, for example, is markedly skew. One
reason for this is that we have placed a limitation on one
end of the sampling distribution. If the population r is
.80, then samples could vary from 1.00 to — 1.00, but they
could exceed the population value by not more than .20 at
one end of the distribution, whereas in the opposite direction
‘they could deviate by as much as 1.80 from the value.

If, however, the number of pairs in the samples upon
which the #’s are based were increased to, let us say, 300
pairs, then the restriction of unity at one end of the scale
‘would no longer be an important determining factor in the
sampling distribution. Samples of 300 pairs of observa-
tions, even when the population r is'as high as .80, would
not tend to range more than .05 on each side of the popula-
tion value (86, pp. 131-132). - But if the population value
were .96 or higher, then the restriction would again be a
factor to consider. . : -

Even when the population r is zero, however, the sampling
distribution of r for small samples departs from the normal
form.!® * Figure 14 shows the curves for samples of 8 pairs

10 Fisher (25) has introduced a transformation of r into another statistic
which is known as z (not, to be confused with the z mentioned earlier), the dis-
tribution of which approximates the normal distribution and which remains
nearly constant in form despite changes in the population parameter. He has
also developed a formula for the standard error of z which permits the testing
of any hypothesis concerning the population value or which may be used to
test the difference between two r's obtained from independent samples. A
table has been prepared by Lindquist (64) which facilitates the computation of
z for a given value of r.  These sources should be consulted for testing hy-
potheses of the nature just described.
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of observations which were drawn from a population where
" the correlation was zero and from a population where the
correlation was .80. , !
a. The direct computation of £. The hypothesis which
we are probably most interested in testing, once we have
‘obtained a given value of r, is the hypothesis that the true,

1 1
=100 =80 =60 =40 =20 00 20 40 60 B0 100
Fi6. 14.—SBampling distribution of eorrelation coefficients for samples of eight
pairs drawn from two populations having the indicated values of r. (Repro-
duced by permission from Fig. 7.4 in [86} with slight modifications.)

ie., the population, r equals zero. If we set up this hy-
pothesis for testing, assuming that our sample value is the
result of sampling variation or chance, then the formula for
tis

t= ( ‘/&;ﬁ)(ﬁ-—m _ (52)'--'

where r = the observed sample value of the correlation
coefficient y
N = the number of pairs of observations in the
sample
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Accordmg to Fisher (25), the ¢ calculated from formula
(52) is distributed in accordance with the tabled values of
¢ for degrees of freedom equal to N ~ 2. In other words,
-once we have obtained the value of £ from the formula above,
'wo may enter Table C, page 330, with degrees of freedom
equal to the number of pairsof observa.tlons minus 2, to deter-
mine whether the obtained value is significant at the 5 or
1 per cent levels. Let us suppose, for example, that we

. obtained an r of .60 with 11 pairs of measurements, Sub-
stituting in formula (52) we get

- ()=
- (F@)v®

-()®

—225

Entermg Table C with 9 degrees of freedom, we find that
atof 2.26is required in order for us to reject the hypothesis
-tested at the 5 per cent level of confidence. Qur obtained
value of 2.25 is, therefore, not quite significant and, if we
abide by the standards we have agreed upon, we would have
to conclude that the hypothesm that the population r is
zero is tenable. -

b. The use of Table D.. There is & much snnpler method
for finding out whether an observed value of r is sufficiently
large to cause us ta reject the hypothesis of zero correlation.
‘Table D, page 331, gives the values of r which would be
needed to meet the requirements of sign.iﬁca.nce at the 5
-and the 1 per cent levels for samples of various sizes. Table
D is entered with degrees of freedom equal to N — 2, where
N is the number of pairs. If we enter Table D w1th the
9 degrees of freedom available from the example described
previously, we find that our r would need to be .602 to be
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significant at the 5 per cent level. Our sample value of .60
is just slightly below the value required for significance.
This is precisely the same conclusion we arrived at by using
- formula (52) and entering Table C to evaluate the obtained

value of £. Obviously, the use of Table D is an easier method
- for testing the significance of an obtained 7.

It should be evident from Table D that small +’s may be
significant when they are based on a large number of pairs
of observations, whereas large values of » may not be sig-
nificant when based on a small number of observations.
An r of .55 based upon 10 pairs of observations, for example,
may be expected to oceur quite frequently as a result of

1 sampling variation, even when there is no correlation in the
population from which the sample was drawn. The larger
the value of N, on the other hand, then the less the value of
the observed sample r need be in order to cons1der the
hypothesis of zero correlation untenable. , oo

THE ¢ TEST OF SIGNIFICANCE

Exa.mple @—Watson (98) has reported the following data odn—
cerning the performance of elghth-gra.de and tenth-grade students
on a test of musical meanings. Is the difference between the

means significant?

: ‘ STANDARD °
Grove N Mean DEViaATION
Eighth-grade students,......... 200 80.76 19.32
-Tenth-grade students. .......... 200 © 89.32 18.36

7

Exampl@@—ollowing measurements have been made on
an experiméntal variable for individuals who have been matched
on some criterion prior to the experiment proper.

Group Marcaep ParRs oF SUBJECTS

A 10 5 6 7 10 8 7 8 6 5
B 7 3 5 7 8 4 & |6
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(a) Assuming that the groups are mdependent test the differ-
ence between the means.

(b) Taking cognizance of the fact that the measurements
have been paired, test the difference between the means. Does
the new value of ¢ change the conclusions you might have drawn
from the tgst of sigoificanee in (2)?

Exampl Klineberg (54) has reported the mean scores of
children in sEveral European cities on a performance test of ability.
Do these means differ significantly? To facilitate computations,

" assume that the sums of squares have been divided by N —1in

_ computing the standard deviations.

(')ITI N Mzan STANDARD DEvVIATION
Paris. . .... % s poesmis 100 219.0 46.2
Hamburg.....c..v.n.n 100 216.4 45.6
"Rome: o g seaanaiis . 100 2118 426

Example 4—In a sample of 100 college students, 63 answered

Fyes” to the question: Would you make use of the library facilities

if the building were open on Sunday afternoons? Do you have
any confidence in the hypothesis that opinion is really evenly
divided pn the question?

Example 5—0ut of 200 adults polled, 110 announced that they
approved of “smgmg commereials” on the radio. Only 90 dis-
approved of “singing commereials.” Is the hypothesis of evenly
divided opinion tenable?

Example 6.—A random sample of 50 students showed that 35 of
them were going to vote for Candidate A in a student election and
15 were going to vote for Candidate B. Are you confident that
Candidate A will win the election?

Example 7.—In drawing a sample of 30 balls from a ballot box

containing both black and white balls, a student obtained 22 black
balls and 8 white. Is the hypothesm that the box contains an

- equal number of black and white balls tenable?

Example 8 —From another box containing white and black balls,
the same student drew a sample of 50 and found 32 white and 18
black balls. ' Is the hypothesis that the box contains an equal
number of black and white balls tenable?



Testing the Significance of r | 191

Example 9.—An investigator reports an r of .88 for 10 palrs of
measurements. Is the hypothes1s that the population r is zero
tenable?

Example 10..—Would a value of r of 33 for 10 pairs of measure-
ments cause you to reject the null hypothes;s? Why? '

. Example 11.—What value of r would you want to obtain before -
abandoning the null hypothesis for a sa.mple of 50 pa.lrs of
measurements? -

- Example 12.—An investigator reports an r of .25 for a series of
paired observations.

(a) How large would his sa.mple have to be before you would
be willing to reject the null hypothesis?
(b) What if he had reported an r of .55?

Example 13.—Lewis and Franklin (60) found that “task- -
oriented” subjects recalled a total of 118 mterrupted and com-
pleted tasks at the end of an experimental session. The total was
divided as follows: 75 interrupted tasks recalled and 43 completed
tasks recalled.  Someone proposes the hypothesis that this is just
the result of sampling variation; that actually interrupted tasks
are not recalled any more frequently than completed tasks.
Could you offer any evidence to the contrary?



CHAPTER 10

ANALYSIS OF VARIANCE: INDEPENDENT
GROUPS

The test of significance, ¢, developed in the last chapter is
.adequate for any experiment which involves only two groups
and consequently a test of a single mean difference. But
suppose that we had an experimental design involving three
variables, for example, the performance of three groups, A,
"B, and C, under three differing sets of conditions. We
could st111 use ¢ to evaluate the differences between the
means, by comparing A and B, B and C, and A and C. This
seems a relatively simple procedure and it is, as long as
. there are not too many groups in our experiment. But if
we had five groups, the number of comparisons we would
have to make would be 10. And if we had ten groups, then
the number of comparisons would be 45.! "And we would
“have no assurance before going through all of the calcula-
tions involved that any single mean difference would be
significant. - Obviously, if we had some method.of testing
differences among all of the means at the same time, it would
‘prove very valuable.. Analysis of variance, and the corre-
sponding test of significance, F, permits us to do just this.

1. NATURE OF ANALYSIS OF VARIANCE
Analysis of variance, as the name indicates, deals with
variances rather than with standard deviations and standard
errors. The variance of a sample, you may recall, is the
: 2
standard deviation squared or »2;'—:;-, and the estimate of the

N-1"°

population variance is The rationale of analysis of

! ) . wn. . (=1
= ——’W—, when r equals 2, simplifies to —(-?—-

1 The formula ,C; =
' 192
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variance is that the total sum of squares of a set of measure-
ments composed of several groups can be analyzed or broken
down into specific parts, each part identifiable with a given
source of variation. In the simplest case, the total sum of
squares is broken down into two parts, a sum of squares based
upon variation within the several groups and a sum of squares .
based upon variation befween the group means. Then from
these two sums of squares, independent estimates of the -
population variance are computed. On the assumption
that the groups making up the total series of measurements -
are random samples from a homogeneous population, the
two estimates of the population variance may be expected
to differ only within the limits of chance fluctuations. This
is the null hypothesis and it is tested by dividing the larger
variance by the smaller variance to get the ratio of the vari-
ances. The 5 per cent and 1 per cent points of the variance
ratio, which has been designated as F, have been tabled by
Snedecor (86) and are reproduced in Table E, page 332. 1If
the value of F exceeds the value at the level of significance
agreed upon, then the null hypothesis—namely that there is
no difference among the populations from which the samples
have been drawn—is considered untenable. If we reject
the null hypothesis, the populations from which the samples
have been drawn may differ in terms of either means or
variances or both. If the variances are approximately the
same, then it is the means which differ. Since we are ordi-
narily concerned with differences in means, it is fortunate
that, while possible, it is “unlikely in experimental data,
that it is the variances which differ’” (86, p. 188).2

This basically, then, is analysis of variance. Our first
step will be to show that the total sum of squares for a series
of measurements composed of several groups can be analyzed

.2 Just as the agricultural and biological data Snedecor has in mind may at
times prove to be exceptions to this general principle, s0 may educational and
psychological data. K. E. Cureton, for example, in a personal commmunica~
tion, reports that he bas found such an exception in an analysis of test scores
(()é; peop!l)% )a.t different salary levels in certain occupations. - * Cf, also Lindquist,

p- 99). ~ .
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into the two parts mentioned, one, part associated with
variation within groups and the other with variation between
group means. Let us take the data of Table 36. Assume

TABLE 36.—ScoRES (X) anp SquaREs oF Scores (X?)
ON AN ACHIEVEMENT TEST FOR SuBJECTS TAUGHT
BY THE LECTURE AND THE PROJECT METHODS

Lectore Grour Pno.mc'r'Gnom:

X . X . Xz

7 49 2 4

' 10 100 2 4
10 . 100 '3 9

11 121 7 49

12 144 6 36

b)) 50 7 514 20 - 102

that the values given are scores on an achievement test 10r a
- group taught by the lecture method and another group
taught by the project method.?

a. The total sum of squares. We first determine the total
sum of squares by combining the scores of the two groups
and treating them as one set of measurements. We could
find the mean, which is 7, of the combined distribution,
subtract this value from each of the scores, square the devia-
tions and sum, to get the total sum of squares. Since the
scores are rather small and few in number, however we shall
apply the formula for the sum of squares, using the measures
as they stand. Thus . '

' = X2 — %

10

.. 8Tt is possible to make use of coding techniques before computing the various

-sums of squares needed in analysis of variance. The same coding constants,
however, should be applied to every measure in the combined series. If this
is done, then no corrections for coding are necessary.

= 616 —
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4,900
= 616 — 10
= 616 — 490
" =126

b. The sum of squares within groups. Now let us find
the sum of squares within each group. That is, considering
each group separately, we find the mean of each group and
the sum of squared deviations within each group from its
own mean. Again we sha.ll use the formula for the scores
as they stand.

Lecture Group ‘ - Project Group
EX)2 . CX)
_— 2 o AL, 2 —
211’ = ZXI, P E:Cz EX2 "
_ (50)2 _ _ (20)2
= 514 5 = 102 ——5
2,500 . 400 .
= 514 — 2= ‘ o=l
= 514 — 500 . = 102 — 80
=14 =220

The sum of these two sums of squares (14 + 22 = 36) is
called the sum of squares within groups. It obviously does
not equal the total sum of squares (126). The reason is
that for the total sum of squares the deviations were taken
from the mean of the combined groups which was 7, whereas
the sum of squares for the lecture group was computed from
its own mean of 10, and the sum of squares for the project
group was computed from its own mean, which was 4. If
the means of the two groups had been equal, then the sum
of squares computed within the lecture group plus the sum -
of squares computed within the project group would have
equaled the total sum of squares.

¢. The sum of squares between groups. Since the two
means differ we may compute a second sum of squares based
upon the variation of the group means. We find the mean



196 _‘ Analyszs of Variance: Independent Groups

of the total which is 7 and the deviation of each of the group
means from this value. We shall let d represent the deviation
of a group mean from the mean of the total. Then d; =
(My — M)* and &2 = (M, — M) But since each of these
squared deviations is based upon 5 cases, each one must be
welgh'ted or multiplied by n, the number of subjects in each
group, in order to put them on a per individual measure
"basis. Thus the sum of squares based upon variation of
- group means of r groups will be equal to

ndi + o} +nadf + . . .+ ndy -3

In the case at hand we have only two means, each based
upon 5 cases. The deviation of the lecture mean from the
total mean is 3, and the deviation of the project mean from
~ the total is —3. Thus the sum of squares is

G + G)N=3) = ()(O) + (B)©O) =

- The sum of squares between means (90) plus the sum of
_squares within groups (36) is now equal to the total sum of
“ squares (126).
d. Generalized formula for 7 groups. In symbolic form,
for the case at hand, we may now write

= @2 + D) + (@ + ) (54)

where =z = the total sum of squa.res for the combined dis-
tributions

. Ez’+v2:c§ thesumofsqtmmmthmgroups
. md} + n.d@ = the sum of squares between group means

Now, if we recall that the sum of squares for any given
set of measurements can be stated in terms of No?, since

o= 2;’ by definition
L . .
o = ~ squaring both sides
No* = =2t ’ multiplying both sidesby N

then we-may“ généra]ize formula (54) for more than two
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groups and at the same time put it into an easily remem-
bered form. We merely-substitute the appropriate symbols,
no?, for the corresponding sums of squares w1th1n groups.
Thus, if we have r groups .

22?2 = (mof + Mo} + N0l 4. + neo) +
(md} + n.d3 + nadi + < n,d?) (55)
where-  Zz? = the total sum of squares based upon -deviations
* from the mean of the combined measurements
n = the number of cases within a given group '
, ¢ = the standard deviation of a given group

d = the deviation of a given group mean from the
mean of the entire distribution

Thus froxﬁ formula (55) above we see that the total sum
of squares is equal to

2t = Zne® + Znd? ‘ (56)
where 2z? = the total sum of squares

Zne® = the sum of squares within groups N
Znd? = the sum of squares between group means

Formulas (55) and (56) make apparent what we have said
before: That the total sum of squares can be analyzed into
two parts: the Zno? which is called the sum of squares within
groups, and the Znd? which is called the sum of squares
between group means. Each of these sums of squares when
divided by the appropriate number of degrees of freedom
provides an independent estimate of the population variance,
The number of degrees of freedom for the total sum of
squares, we have already seen, is equal to N — 1 where N
is the total number of cases in the combined groups. The
number of degrees of freedom within each group is equal to
n — 1 where n is the number of cases within each group..
But since we have two groups, in this instance, the number
of degrees of freedom is equal to r (n — 1), where »is the
number of groups. The number of degrees of freedom
between groups is equal to » — 1, where r equals the number
- -of groups. We may see these relatlons in Table 37,
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TABLE 37.—ANALYsIS OF VARIANCE OF ACBIEVEMENT SCORES oF GRroUPS
TAUGHT BY THE LECTURE AND THE ProsEcT METHODS

" Source or Variation | Sum oF Squares | df | EstrMaTE oF VaRiance

Between gi'oubs ........ . 90 1 90
Within groups.......... 36 8 4.5
Total.......uv..... 126
. Degrees of Freedom
. . Betweengroups...........ccu... r—1
Within groups. .........coanunn.. rn —1)orN —r
. Total...cveeevvevecesreaic..m—1lorN =1

[

" e. The variance ratio. F, as you recall, is the ratio of the
two estimates of the population variance, or - -

. larger variance

F = Snaller variance 57
In the present instance F is equal to 90/4.5 or 20. To
determine whether this F is significant at the 5 per cent or
1 per cent level, we enter the column of Table E (page 332)
with the degrees of freedom of the larger variance (df = 1)
and follow down to the row entry corresponding to the
degrees of freedom of the smaller variance (df = 8). The
values of F at the 5 per cent point are given in lightface
type; the boldface type is the value at the 1 per cent point
These values for df = 1 and =8 are 5.32 at the 5 per cent
level and 11.26 at the 1 per cent level. Our value of F,
which is 20, is therefore highly significant, since 11.26 is
the value of F-which would be exceeded only 1 per cent of
the time as a result of sampling variation if the null hy-
pothesis were true.

Now since (i) the mean for the lecture group is higher than
that for the project group, and since (ii) the difference be-
tween the means (between-groups variance) leads to a
larger estimate of the population variance (is greater than
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the within-groups variance) in (iii) a reliable fashion (the
F ratio exceeds the 1 per cent level), therefore, (iv) we
may be quite confident that the difference in achievement
between the group taught by the lecture method and the
group taught by the project method is indicative of a real .
difference, or, in other words, that achievement is rehably
greater under the lecture method of mstructlon \

2. A COMPARISON OF F AND t IN THE CASE OF TWO
GROUPS

You may ask whether we could not have obta.med a 51mllar
test of the null hypothesis by the method described in the
last chapter. The answer would, 'be “Yes,” and the results
obtained with the ¢ test would be 1dentlcal with those we
arrive at by means of fhe F test/ But consider first another
method of finding the standar error of the mean and. the
standard error of th erence-

You ma ‘that gaQ th: t the population standard
deviatio, a\)& fro the sample" standa.rd

herifore, the population vari-

>z
N-1
N

2 .
=N =71 in which case .2 =

But if we have more thanN\one group we may combine our
data to arrive at anothey estimate of the population variance
on the assur‘x\lgtion that pur two samples are random samples
from the samg populatjon, or from populations having a
common standard devigtion as well as a common mean.¢
We arrive at our\estinyate by pooling the sums of squares '
¢ The assumption that the populations are normally distributed is also in-
volved. Tippett points out, Eowever, that experience seems to indicate that
“the tests are not very sensitive to moderate departures from normality nor

to small differences in standard deviations” (90, p. 115). See also the dls-
cussion in Chapter 14, pp. 295-299.



200 - Analysis of Variance: Independent Groups

'computed within each of the groups along with the associa~
ated degrees of freedom. Thus for two groups

_ Zzi + 24 - 4+ 24
CETToDFT =D NiN—-3 ®
T2 4 =22 z12 4 =3

: Ni+4+N,.—2 Ni+N,—2
= AR wae g - BEREE
2+ 23 z + 213

) e N]+Ng""2 : N1+Nz—2
0‘-;‘, "——N:—— . + A '——N, (60)

Since the numerators of the two values in (60) are the same,
we rewrite the formula for the standard error of the difference

_ 'squ_ared’as
= (i mes) (w+w) @0

. If we have the same number of subjects in each group,
then the standard error of each sample will be the same, and
formula. (61) may be simplified to

\/(2) fi ';,ff )(N) - @

Thus the standard error of the mean difference for the
lecture group and the project group could be found directly
from the sum of squares within each group, without first
finding the standard deviations and the standard errors of
the means. We merely need to substitute in formula (61)
or formula. (62) and get :

N0
0

V18
1.34

|

|
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The difference between the means is 6, and ¢ would be
equal to 6/1.34 or 4.48. The number of degrees of freedom
is (N, — 1) 4+ (N: — 1), or 8, and for 8 degrees of freedom .
a t of 3.355 would be significant at the 1 per cent level. We
would consider the null hypothesis, that there is no difference

'between the means, as untenable and reach, therefore, the

very same conclusion that we reached by means of the F
test. As a matter of fact, when only two groups are in-
volved, F is equal to £ That is to say, { which is 4.48
(rounded), when squared is 20 (rounded), which is the value
of F we obtained. Thus you can see that there is no advan-
tage in using F rather than { when testing the difference -
between only two means. It is only when we have a number
of groups and consequently a number of means involved
that F can be used to advantage. F provides us with an
over-all test of significance among a number of different
means. If F meets the level of significance we have adopted,
we may then make specific comparisons with the ¢ test.

What if the value of F which is obtained fails to be sig-
nificant? May we then use the ¢ test to test the differences
between the pairs of means? Let us suppose that we had
10 sample means and found that F was not significant at
the 5 per cent level. Now let us suppose that we tested,
by means of ¢, the difference between the largest and the
smallest mean in the group of 10. The value of ¢{ thus
obtained may greatly exceed the tabled value at the 5 or
the 1 per cent points. Could we conclude that the F test
and the £ test are inconsistent: that the former shows :no
significant differences, yet the latter does? When we ex-~
amine the hypothesis tested by the ¢ test we see the fallacy
involved in this comparison. The hypothesis tested by ¢
is that the two sample means have been drawn at random
from the same population. We have selected the largest
and the smallest for the comparison. The difference we
are comparing is but 1 out of 45 possible ecomparisons which
might be made.f Fisher (26), although warning that com-

§ Determined by the formula for combinations, n(n ~ 1)/2,
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parisons suggested after the data are in are open to suspicion,
proposes that under these circumstances instead of demand-
ing that the probablhty be 1 in 20 (5 per cent level) that
it be 1 in (45)(20) = 1 in 900. In other words, £, in this
particular example, would have to be equal to a value that
could be expected to occur as a result of sampling variation
but 1 time in 900 rather than 1 time in 20. Fisher contends,
fhowever, that it would be better to regard such unforeseen
: comparlsons “only as suggestions for future experimentation,
m which they can be dehberately tested” (26 p. 57).

3. THE COMPARISON OF THREE GROUPS

Let us now introduce a third group, taught by the dis-
cussion method, into our expenment. The scores on the
achievement test for this group are given in Table 38, where,

TABLE 38. —Scores (X) AND SQUARES OF ScoRES (X?) ON AN ACHIEVEMENT
’ Test FOR SuBiecrs TavugHT BY THE LECTURE, Discussion,
AND Prosecr METHODS

* Lmcrure Grour | Discussion Group . Prosect GrOUP
X T X X X2 X bel
7 49 4 16 2 4
10 100 6 36 2 4
10 100 7 - 49 . 3 9
11 121 9 81 7 49
12 144 9 81 6 36
% 50 514 35 263 20 102

‘for the sake of comparison and easy examination, we repeat
the scores of the other two groups.

a. The total sum of squares. The total sum of squares—
we are dealing now with all of the groups combined—could
be found by finding the mean of the total distribution and
subtracting this value from each of the 15 scores and squar-
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ing the resulting deviations. We shall, however, use the
following formula for treating the measures as they stand

2:::*=EX‘—@-

g (105)?
= 819 — %
11,025
Sk G T
= 879 ~— 735
= 144

b. ‘The sum of squares between groups, To find the sum
of squares between group means we must first find the mean
of the entire distribution. This will be equal to >, Thus

_ 50435420 105 _ L=

We then subtract 7 from each of the group means to get d,
square each of these deviations, and weight each squared
deviation by n, the number of cases within each group.
Thus
Zad = o di -+ me &3 -+ na 43 :

= (83)* + B)(0)* + (B)(—3)*

=454+ 0+ 45

= 00

Another method which is convenient for finding the sum
of squares between groups is to work directly with the sum
of scores for each group. If we square the sum of scores for-
each group and divide each of these values by the number
of cases on which the sum is based, then we need only to

apply a correction term for origin to get the sum of squa.res '
Thus

s = CXY (zxz)* +EEP, | OEY %Xl’; )

—
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where
Znd? = the sum of squares between groups

. 2X3, X, %X, ZX, = the sum of scores or measurements for
each of the r groups
7, N3, N3, 7y = the corresponding number of cases in
’ Ex) the various groups
~“—= = the correction term for origin or the total
sum of scores for all of the groups,
squared, and divided by the total N.

Substltutmg in formula (63), we may obtain the sum of
squares between means for the case at hand. Thus

(50)2 T (35)2 + (20* _ (105)

5 5 5 15 .
_ 2,500 + 1,225 + 400 _ 11,025
5 15 .
4,125
e — 135
=825 — 735
=90

which is the same value that we obtained by the other
method of computation. Note also that the “correction
' 2
term,” (z-——fé) y
to find the total sum of squares. :
¢. The sum of squares within groups. We still have to
~ obtain the sum of squares within groups. This we do by
adding the sum of squares computed for each of the three
groups when considered separately. We already have the
sum of squares for the lecture and the project groups and
we can find the sum of squares for the discussion group in
the customary fashion. Thus

Zz3 = ZX3 —

35
"5

is the same correction for origin that is used

(ZX,)?

= 263 —



‘The Comparison of Three Groups 205

: 1,225
= 263 ~ 5
= 263 — 245
=18

The sum of squares within groups is thus equal to 14 +
18 4+ 22 or 54. This is a good place to point out that the
direct computation of the sum of squares within groups is
not necessary. We have merely done so up to this point
in order to illustrate the source of this sum of squares.
Actually, if our other computations are correct, the sum of
"squares within groups can be obtained by subtraction. The
reason for this is that the sum of squares within groups
plus the sum of squares between groups must equal the total
sum of squares. Consequently, if we have the sum of
squares between groups, we can subtract this value from the
total sum of squares in order to get the sum of squares .
within groups.. For example, the total sum of squares is
equal to 144, and between groups the sum of squaresis 90,
and 144 — 90 equals 54 or the sum of squares within groups.

d. The variance ratio. The results of our various com-
putations are summarized in Table 39, where the two in-:

TABLE 39.—ANALYS18 OF VARIANCE OF ACHIEVEMENT Scores oF Grours
Tavcar BY THE LEcTURE, DiscussioN, AND ProsecT METHODS -

SourceE OF VariaTION | SuM oF Squares | df | EsTIMATE OF VARIANCE

Between groups. ...,... ) 90 2 45
Within groups,..,...... 54 112 45
Total.............. 144 14 -
. Degrees of Freedom
Between groups........... treesae r—1 - '
Within groups..... e reesenenan rn—1orN—r
Total.............coovvuans m—lorN ~1
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dependent estimates of the population variance have been
made by dividing the sum of squares between groups and
the sum of squares within groups by the appropriate degrees
of freedom. F is the larger variance divided by the smaller

variance or fg = 10. We enter the column of Table E

(page 332) with the 2 degrees of freedom of the larger vari-
. ance and run down the ‘column until we come to the row
- entry corresponding to the 12 degrees of freedom of the
smaller variance. The value of F at the 1 per cent point
is 6.93. If the null hypothesis, that the groups are random
samples from the same population, is true, then values of F
as large’ as 6.93 or larger would be expected to occur as a
result of sampling variation less than 1 per cent of the time.
Since our obtained value of F, 10, greatly exceeds the 1 per
* cent point, we may reject the null hypothesis with a great
.deal of confidence. Consequently, we may infer that the
differences in achievement between the three groups taught
by different methods of instruction are indicative of real
differences.
We should note that the F test, although permitting us to
infer that there are s1gn1ﬁcant differences between the
groups, does not specify that each group differs significantly
‘from each of the others. It may be that only the difference
. between the lecture group (M = 10) and the project group
(M = 4) is significant and that the discussion group (M = 7)
does not differ significantly from either the lecture or the
project group. The F test is an over-all test, as we have
pointed out before. To determine whether any particular
mean difference is mgmﬁcant or not, we would need to test
the null hypothesis applied to the mean difference by the ¢
test.
We summarize the computatlons needed for a simple case
‘of analysis of variance in Table 40. The necessary formulas
and methods of determining the appropriate degrees of
freedom are 1ncluded also for convenient reference.
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TABLE 40. —-Stm:nunr or COMPUTATIONS IN ANALYSIS OF VARIANCE FOR I
GROUPS WITH 1 INDEPENDENT SUBJECTS IN EacH Gnowp—To'ru. :
Sun OF SQUARES ANunEn 1o Two PARTS

e l -7 MEASUREMENTS
. InprviDUAL — : : 3
‘ Group 1 Group 2 Group 3 Group * -
a ) Xl‘ _ Xn; ] X’u ’ Xr'“ -
b X X.i ng o X’b Xr& L
¢ xl- Xz.r- Xa° s Xr' =
S N
Sum of columns, , .. X, X, ZX, . =X,
Cnmputatmns
“1. Total sum of scores = X, 4 =X, + EXg + e + EX.. ’
z X)’

2. Correction for origin =

8. Total sum of squares = ZX* — g%.’ E i -

4. Bum of squares between groups
L EXP+EX) + EXP 4.+ (ZX) (ZXP
[ N
5. Sum of squares within groups = Total — Between groups

Degrees of freedom:

1. Between groupa =r — 1
2. Within groups = r{n — 1) or N — r
3, Total =m=—lor N —

4. A MORE COMPLEX ANALYSI8

Let us now consider a somewhat more complicated appli-"
cation of analysis of variance. Suppose that we wished to
study snnultaneously the interaction of two or more vari-
ables, each varymg in several ways. Specifically, we might
be interested in the differential effects of three methods of -
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instruction (the lecture method, the discussion method, and
the project method) upon three different types of achieve-
ment as measured by three different but comparable tests
(a test of factual information, a test of understanding of
general principles, and a test of ability to make applications).
The questions which we might be interested in answering
by experiment might be these: which of the three methods
of instruction will result in the greatest over-all achieve-
 ment, that is to say, on the combined tests? Will achieve-
ment be greater in the area of facts, applications, or prineci-
ples? Is achievement in each area mdependent of method
of instiuction or will achievement in the various areas be
dependent upon the type of instruection?
" For purposes of illustration, let us assume that we have
45 subjects and that each subject is assigned at random to
one of the nine experimental conditions of Table 41,

TABLE 41 -—ExperiMenTs. DESIGN FOR STUDYING TEE INFLUENCE CF
Taeer Disrerent MEernops oF InstrucTiON UPON THREE
DrirrERENT KiNpg OF ACHIEVEMENT ]

i : MEeTHOD OF INSTRUCTION i

YPE OF :

ACHIEVEMENT " E Torar

Lecture Discussion Project

Facts........ " a b ¢ {a+b+¢)

Principles. ...|- d e I d4-e+ 1)

Applications, . I A i g+ k419
Total....|fa+d+g}|(t+e+h) | (c+f+1) |[(a+b+et -!'

g - et+f+g+h+i)

+

With the border totals alone, we would have three com-
" parisons to make for achievement and three comparisons to
make for methods of instruetion. If we compared every
cell in the table, ie., every experimental condition with
every other experimental condition, we would have 36 ad-
ditional comparisons to make. Since we do not know
whether any of these differences are significant or not, we
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shall ma.ké over-all comparisons first by means of the F test.
We may then make the specific comparisons if F is signifi-
cant. The results of the outcomes on the.various achieve-

.TABLE 42—Scores oN THEREE DIFFERENT MEASURES OF ACHIEVEMENT
FOoR Groups TAavGET BY THREE DIFFERENT METHODS OF INSTRUCTION

METHOD
SuM aAND
A Tree orm 1 Inp. —| MEAN FoR
CHIEVEME : . , . ACHIEVEMENT
o Lecture | Discussion | Project .
1 7 4 -2
2 10 6 2
LN
Facts. 5 | 12 9 6.
z 50 35 20 105
. Mean | 10 7 4 7
(1 6 | 10 5
2 5 10 4
IR EE
Principles | 5 12 13 11 ‘.
-z 40 55 35 130 :
\ Mean| 8 1 7 '8.67 -
[ 1 3 4 7
2 3 6 9
3 4 7 9
Applications { 3 7 10 3
p 25 35 45 105
\  Mean 5 7 9 7
Sum for Method........| 115 | 125 100 340
Mean for Method...... 7.67 8.33 6.67 7.56

ment tests for each subject are given in Table”42 We
proceed with the calculation of the sums of ‘squares in the
manner already familiar.
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Sum of squares:

1. Total = (7)? + (107 + A0+ + (107 = (312)’
= 2,938 — 2,568.89
= 369.11
2. Between groups = ('STO)Z (40)2 +.. +
' = 2,770 — 2,568.89
e ~ =20L11
_ 3. Within groups = Total — Between groups
: = 369.11 — 201.11
= 168

_ Before ana.lyzmg further the sum of squares between
groups, let us test for the significance of the differences
between groups (cells). Table 43 summarizes the data.

(45)2 (340)2
45

TABLE 43.—ANALYSIS OF VARIANCE OF ScORES ON THREE DIFFERENT
: MEASURES OF ACHIEVEMENT FOR GROUPS TAUGHT BY THREE
DIFFERENT METHODS OF INSTRUCTION

- SOURCE OF VARIATION Slm OF SQUARES df | ESTIMATE OF VARIANCE

Between groups. ....... 201.11 8 25. i4

Within groups..........| = =~ 168.00 - 36 4.67
Total........ sl seear’ 44
. Degrees of Freedom
. - DBetweengroups.................. r—1
Within groups........ e reaerenee rin —1)or N —r
Total.....covvvicinnuns visoarmn—1lorN =1
|
F is equal to the larger variance divided by the smaller vari-
14
ance or 245 67 = 5.38.. We enter the column of the table of

F with the 8 degrees of freedom of the larger variance and
find the row entry correspondmg to the 36 degrees of free-
dom of the smaller variance and find that an F of 3.04 wili
be significant at the 1 per cent level. According to the
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standards agreed upon, our obtained F of 5.38 is hlghly'
significant. We find the null hypothesis untenable, since
if there were no differences in the populations the divergence
between our estimates of the variance would occur as a
_result of sampling variation less than 1 per cent of the time.
Hence we infer that the observed differences between our
groups are not the result of chance. = = _- ~

But the information we have at the present time is not
_entirely satisfactory. We are pretty confident. that there
are differences between the nine experimental groups,but
what about. differences in type of achievement? And are
. the methods of instruction equally effective as far as total
achieyement is concerned? Or is one method more effective
with one type of achievement while another method of
instruction is more effective with another kind of achieve-
ment? Let us analyze the sum of squares between groups
to see if we can get any additional information which would
assist us in answering these questions.

We may compute a sum of squares for a.chlevement by
squaring the sum of scores for each type of achlevement
dividing each of these values by the number of cases on
which it is based, and then subtracting the correction term
for origin. Ina s1m1la.r manner we may compute a sum of
squares for methods by squaring the sum of scores for each.
method, dividing each of these squares by the number of
cases on which the sum is based, and then subtractmg the
correction term for origin. Thus

‘Sum of squares:
. _ (105)2 | (130)z , (105)* (340)2
1. Achievement = T a2 5~ 48
= 2,596.67 — 2,568.89
= 27.78
" 2 Methods = (115)’ + (125)2 + (100)* _ (340)*

15~ 45
='2,590 - 2,568.89
= 2111
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The sum of these two sums of squares (27.78 4+ 21.11)
which is equal to 48.89 does not equal the sum of squares
between groups; we have a remainder or residual. We
shall call this residual the sum of squares for interaction.
It is found by subtraction. Thus :

C 3 Intera.ctlon = Between groups — (Methods + Achievement)
* & 20111 — (2111 + 27.78)
= 152.22

Let us see What we have accomplished. First we analyzed
the total sum of squares into two parts, one part associated
with variation between each of the cells or groups of Table
42, the 'second part associated with variation within each
of the groups. We then proceeded to analyze further the
sum of squares between groups. One part can be traced
to variation between methods of instruction, another to
variation between types of achievement. The third, or
remainder; is called interaction, since it is the result of the
joint effect of a particular method of instruction and a
particular kind of achievement.

We summarize the results of our analysis in Table 44,
showing what has happened to the total sum of squares
and how the total number of degrees of freedom has been
partitioned. Note that we have 9 experimental groups
with 5 subjects in each group. Consequently, we have 4
degrees of freedom: within each of these groups or (9)(4) =
36 degrees of freedom within groups. In the previous
analysis we had 8 degrees of freedom available for the sum
of squares based upon differences between the 9 experi-
mental groups. This made up our total of 44 degrees of
freedom (N — 1). But we have further analyzed the sum
of squares between groups into an achievement sum of
squares, a methods sum of squares, and a residual or inter-
action sum of squares. And the 8 degrees of freedom must
also be divided among these sums of squares. The methods
sum of squares and the achievement sum of squares are
based upon 3 groups each‘and consequently each of these
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sums of squares will have 2 degrees of freedom. Thus, if .
2 of the 8 degrees of freedom are allotted to methods and
2 to achievement, then we have a remainder of 4 degrees of
freedom for the residual or interaction sum of squares. The
degrees of freedom for interaction may also be obtained by
multiplying the number of degrees of freedom allotted to
methods by the number of degrees of freedom allotted to
achievement as shown in Table 44.

TABLE 44.—Funmn ANALYsis OF VARIANCE oF Scores oN THREE
DIFFERENT MEASURES OF ACHIEVEMENT FOR GRroups TAUGHT
BY THREE DIFFERENT METHODS OF INSTRUCTION

SourceE oF VARIATION | SuM OF SQUARES | df | ESTIMATE OF VARIANCE
Type of achievement. ... 27.78 2 13.89
Method of instruction.,. 21.11 2 10.56
Interaction............. 152.22 4 38.06
Within groups.......... 168.00 36 4.67

Total.............. 369.11 44
Degrees of Freedom*
Achievement groups............ - 1 )
Method groups. ....coeecneanns ru
Interaction......coveensennnses (rqa — 1)(1"( - 1)
Within groups....cccave.. feas .r.,.(n —1)orN —rp
Total......oocvvvenennenn. rgn —1lor N —1.

* rp» = the total number of experimental groups or 9
r a4 = the number of achievement groups or 3
rar = the number of methods groups or 3
n = the number of subjects in each group or 5

If we divide the achievement, method, and interaction
estimates of the population variance by the variance within
groups, we get the following values of F':

. . 1389 F at 19, point for df 2 and
Achievement: i6T = 297 36 — 5.95

. 10.56 F at 19, point, for df 2 and
Method: TeT = 2.26 36 = 5.5

. 3806 .. Fat19% pointfordf4and
Interaction: 267 = 8.15 36 = 3.80
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Each of the above values of F must be evaluated according
to the number of degrees of freedom involved in computing
it. For achievement and method of instruction the degrees
of freedom are the same, 2 and 36, but for interaction we
have 4 and 36 degrees of freedom. The values of F at the
1 per cent point-listed above were found by entering the
column of Table E with the degrees of freedom of the larger
variance and finding the row entry correspondmg to the
* degrees of freedom for the smaller variance. The F ratios
for achievement and method of instruction fail to meet the
value of F at the 5 per cent level (3.26) also. Consequently,
if we abide by our standards, we must regard the null hy-
pothesi$ as tenable in each of these cases.

What conclusions can we now draw from the analysis?
The failure of the F ratio for methods to meet the require-
ments of significance indicates that differences in total
achievement of groups taught by different methods of in-
struction are not significant. Likewise we find that the F
. ratio for achievement is not significant, and hence we cannot
say that our subjects tend to learn facts better than principles
_ or applications. It is the highly significant F ratio for
interaction that is of prima.ry interest. How may we
interpret this?

The interaction variance, as we have said before, is a
product of the joint effect of method of instruction and type
of achievement. The fact that it is significant indicates
that the effectiveness of a particular method of instruction
depends upon the kind of achievement we are interested in
measuring. One method of instruction is, in other words, |
more effective with one kind of achievement than w1th
another. Note that again the F test does not tell us spe-
cifically which method is most effective with which kind of
achievement. To complete our analysis we should now
proceed to try the ¢ test with the various specific comparisons.
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ANALYSIS OF VARIANCE: INDEPENDENT GROUPS

mple 1.—yThe following data consist of measurements of ouf.-‘

oazpes of a riment involving a “contro, ” group and an “‘ex-

perimental” group " The two groups were not matched in any
_manner.

Coutrol Zroup. . ennneeenniennns 9 10 20 14 18 5 8 11 12 13
Experimental group. ............ 21 19 18 13 15 20 22 25 17 ‘10

(a) Test the difference between the means, using the pooled
sum of squares m computing the standard error of the mean
difference.-

("(b) Compute F for the same d%

Example 2 —»’I‘he—fellowmg—daﬁa—cmsb-ef—eamfﬂes-selected

Assume that each va.lue representsa seore
made by an individual assigned at random to one of five different

experimental groups.

I qI I v v
#3 9 i 1
55 I 9
60 1 5 0
b7 0 2 4 9
o 1 2 9 1

(2) Find the total sum of squares, the sum of squares between
means, and the sum of squares within groups. Weeslethe-datas
—threughﬁvst-mthaatual-deuuﬁom the null hypothesis
denable? <
AAbY Code the scores by subtracting 60 from each one. Does
thm influence the values for the sums of squares? Is the Ialue

)chaged? ’ Tl ! .

Assume that we are intelested in studying differ-
ences in ret®fition between groups which have been presented with
material by different methods. We are also interested in studying
the relative effectiveness of the method of presentation, as far as
retention is concerned, at three different age levels. We have
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30 subjects at each age level. Within each age level subjects have
been assigned at random to one of the three methods groups.
The hypothetical outcomes of our experiment are listed below.

METHODS
AGeE Grours

I II I

. A 8 9 5
5 4 3

6 8 . 7

o |

I W 10 6 1
9 7 5

7 6 4

8 7 3

| 10 6 4

[ 6 6 9

1 B 8

1 9 9

o 1 1 6 11

: 3 6 10

6 5 7

4 4 8
4 7 9

, 7 ' 7 ‘ 5

3 5 9

6 " 8 8

Pl |

. m 1 5 - .8 8
3 6 6

3 6 . 8

4 -8 5

{ 4 © 4 7

]

Find the total sum’of squares, the sum of squares within groups,
"the sum of squares between methods groups, the sum of squares
between age groups, and the sum of squares attributed to inter-
action. Make the various tests of significance and interpret your
Tesults, -



CHAPTER 11
- ANALYSIS OF VARIANCE: MATCHED GROUPS

You may recall that when we discussed the ¢ test applied
to groups that had been matched or in which the individuals
had been paired, we were forced to modify the simple formula,
for the standard error of the mean difference to take into
account the correlation. In the case of analysis of variance,
. where groups have been matched or individuals have been
paired on some basis, we must do something very similar.
As our illustration of the procedure to be followed we shall
use the case of two matched groups, from the data of Table
34 in Chapter 9. Although we would not ordinarily use F
to evaluate a single mean difference, this example will serve
as an introduction to analysis of variance applied to several
matched groups.

Group A, you recall, worked under the suggestion that
noise facilitated performance, and Group B worked under the
suggestion that noise resulted in a decrease in output. Indi-
viduals in the two groups had been matched on the basis of
earlier performance. We found that the value of {, when
we failed to take cognizance of the fact that the subjects
had been paired, was only 1.52, or not significant at the
5 per cent level of confidence. On the other hand, when we:
took the pairing into consideration, we obtained a value of
t equal to 4.76, a highly significant value. In the former
case, we would have had to accept the null hypothesis as
tenable, whereas, with the proper evaluation of the mean
difference, the null hypothesis was rejected. The proper
evaluation of the mean difference, in other words, determined
the conclusion we could draw from our experiment.

We shall now see that if we were to apply the methods of
analysis of variance described in the last chapter to this
same set of data, we would find that F is not significant,

217
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but is equal to the nonsignificant value of 2. That is, the
F ratio obtained by dividing the estimate of the population
variance derived from the sum of squares between the two
groups by the estimate -of the population variance based
upon the sum of squares within groups should be equal to
- (1.52)% On the other hand, if we analyze the total sum of
squares in the manner to be described in this chapter, the
F ratio will be significant and equal to the significant value
" of # or (4.76)%

1. ANALYSIS OF VARIANCE OF TWO MATCHED
' GROUPS ‘

The necessary data are given in Table 45. We could,
if we so desired, work with deviations from the actual means
of the distributio_ns. Since the scores have been coded by
subtraction and are small in size, we shall work directly

TABLE 45.—CoMPUTATION OF SuM OF SqUARES BasEp UPoN MEANS oF
. Pairs AND SuM oF SQUARES Basep uroN MEANS oF GROUPS

. . ] @ 3 @ (5) (6) . 7)
Par | Grour | Group MEeAaN oF|(Mp, — My)
A | B |.5 |"pun | .74 & nd
1 2 1 3 1.5 -2.0 4.00 8.00
2 5 5 10 50. 1.5 2.25 450
3 4 2 6 3.0 -5 .25 .50
4 3 3 6 3.0 - .5 .25 .50
1 6 4 10 5.0 1.5 2.25 4.50
6 3 2 5 2.5 —-10 1.00 2.00
7 6 5 11 ' 5.5 2.0 4.00 8.00
8 4 3! 7 3.5 0 .00 00
9 5 4 9 45 1.0 1.00 2.00
10 2 1 3 1.5 —20 4.00 8.00
p] 40 30 y(V JE PR U FR 38.00
Group .
Mean 4.0 3.0 3.5
- d 5 -5
a2 .25 25
nd? 2. 50 2.50
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with them as they stand; merely applying a correction term
for origin. )

Sum of squares: 10
L. Total = @7 + O + @ + ... + W= L
4,900
= 290 — —2-(-)—-
= _290 — 245
= 45

@or , @0 _ (70
10 710 20
_ 1,600 4900 _ 4,900

- 2. Between groups =

10 20
2,500
T — 245
= 250 — 245
. =5 - _
3. Within = Total — Between groups
=45—5
= 40

We see from Table 46, where the results of our computa-
tions have been summarized, that using the methods of the

TABLE 46.—ANALYSIS OF VARIANCE OF Scores oF GRouP A AND Grour B
INTO Two Parts

SoURCE OF VARIATION | SuM OF SQUARES | df | ESTIMATE OoF VARIANCE

Between groups. ....... 4 5 1 5
Within groups.......... 40 18 2.22
Total......ounn.... 45 19
Degrees of Freedom
Between groups.............c..... r—1
Within groups.......ccvvveevunn.. r(n—1orN—r
Total......cocvveerennnnnnn. m—1lorN — '

_ larger variance 5 _ .-
F = Smalier variance — 2.23 = 225
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last chapter, analyzing the total sum of squares into only
two parts, results in an F of 2.25. This value, as a result
«of errors of rounding, is not quite equal to (1.52)% the value
of #* obtained by ignoring the correlation.
Note in Table 45 that if one member of a pair, assigned
to one of the experimental groups, tends to have a high
score, the corresponding member in the second group also
_tends to have a high score (r = .90). We anticipated that
the previous level of performance of our subjects might be
a factor influencing their performance under the experi-
"mental conditions and we attempted to control this variable
by pairing the individuals in the two groups on the basis of
their previous performance. In analyzing the total sum
of squares into two parts, however, we have included all of
the variation due to this factor in the within-groups sum of
squares. As'a result the value of F which we derived was
underestimated in the same manner that £ was under-
estimated when we failed to take into account the matching.
We should take cognizance of this matching by ecalculating
a sum of squares based upon differences befween pairs which
may then be subtracted from the within-groups sum of
squares. T ‘
Since the scores in Table 45 may be classified by rows
(pairs) as well as by ¢olumns (groups), the sum of squares
between pairs may be computed in the same manner that we
use to find the sum of squares between groups. We could
find the sum of each pair and divide by 2 to find the mean
of each pair. We could then subtract the mean of all 20
scores from each of the means for pairs, square the devia-
tions, weight each squared deviation by multiplying by 2,
* the number of cases on which it is based, and then sum.
This would give us a sum of squares based upon the varia-
tion of the means of pairs and the procedure we have used
in computing it is simply the application of formula (53).
The computations are clearly indicated in Table 45.
A simpler method for finding the sum of squares between
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pairs, however, would be to work with the sum of scores for
each pair and apply formula (63). Thus

Betweenpajrs=£3’—)f+(£))_’+@f+____{;_(:3_)’f_£'7_())f

2 20
_9+1004+36+...+9 4900
2 _ 20
566 -
=5 — 245
= 283 — 245
= 38

The number of degrees of freedom for this sum of squa.res is
equal to the number of pairs minus 1.

If we now subtract the sum of squares between pairs from -
the sum of squares within groups, we are left with a re-
mainder, or the residual sum of squares. Thus ;

Residual = Within groups — Between pairs
=40 — 38
=2

This residual sum of squares is based upon variation remain-
ing in the data that cannot be accounted for in terms of
variation of the column means (between groups) and the -
row means (between pairs). - Note that if we add the sum
of squares between groups and the sum of squares between
pairs ar 1 then subtract this value from the total sum of
squares, we are left with the residual sum of squares. Thus

Residual = Total — (Between groups -+ Between pa,u's)

=45 — (5 +38)
=45-43
=2

from which you may see that it would not have been neces-
sary to calculate the within-groups sum of squares in order to
find the residual sum of squares. This sum of squares is
always found most easily, as shown above, by subtraction.

It is possible to calculate the residual sum of squares
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directly, that is, by working with deviations rather than by
subtraction, but this involves additional work. Tbe residual
sum of squares, as Snedecor (86) has pointed out, may be
thought of as the result of the differences between a set of
expected values and the actual observed values.
- If we subtract 3.5, the mean of all of the scores, from each
group mean and from the mean of each pair, we may repre-
sent these deviations by d. The expected value for each
subject then becomes the mean of all the scores (3.5) plus
the deviation of the mean of the group and the mean of the
pair of which he is a member. The deviation of the mean
of Group A = - .5, and the deviation of the mean of Group
B = — 5. The deviation of the mean of the first pair =
— 2.00, the deviation of the mean of the second pair = +1.5,
the deviation of the mean of the third pair = — .5, and so
on. The expected value for the first subject in the A group
is thus equal to 3.5 + .5 — 2.0 = 2. For the second sub-
ject in the A group, the expected value is equal to 3.5
5+ 1.5 = 5.5. The expected values for the other subjects
in the A group are found in the same manner. For the first
subject in Group B, the expected value is equal to35— .5
— 2.0 = 1.00. For the second subject in Group B, the
expected value is 3.5— 5+15=45. In a sumlar
manner, the expected values for the other subjects are
found and have been entered in Table 47.

If we now take the difference between each of the observed
scores and the corresponding expected values, square these
differences, and sum them, we would get

(20 — 2.0 4+ (5.0 — 5.5)* 4. .. + (1.0 — 1.0)* = 2.00

which is the residual sum of squares. You will probably
never want to use this method of calculation, however, since
. the residual sum of squares can be found so easily by sub-
traction.

The residual sum of squares, when divided by the appro-
priate number of degrees of freedom, provides us with an
estimate of 'the population variance. The number of
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TABLE 47.—OBserveD AND ExrEcTED SCORES FoR SuBJeEcTs IN GroUP A
AND IN GrRoUP B ARRANGED.TO ILLUSTRATE THE Dimecr Com-
PUTATION OF THE RESIDUAL SUM OF SQUARES

Grour A Grour B _
Pamr |- Som | Mean d
Observed | Expected | Observed | Expected ' .
1 20 20-.{ 10 1.0 3 | 15 | =20
2 5.0 5.5 5.0 4.5 10 50 . 1.5.
3 4.0 3.5 2.0 2.5 6 3.0 - .5
4 ‘3.0 3.5 3.0 2.5 3.0 — .5
5 6.0 5.5 40 4.5 10 5.0 15
6 3.0 3.0 20 2.0 5 2.5 -10
7 6.0 6.0 5.0 5.0 11 5.5 2.0
8 4.0 4.0 3.0 3.0 7 3.5 0
9 5.0 5.0 40 40 9 45 1.0
10 2.0 2.0 1.0 1.0 3 1.5 —2.0
z | 400 30.0 ,
Mean 40 3.0 3.5
d 5 —.5

degrees of freedom for this sum of squares is equal to (r — 1)
(n — 1) where r is the number of matched groups and =
equals the number of cases in each group.! In the present
problem, then, the number of degrees of freedom is equal to
(2 —=1)(10 — 1) or 9. The residual sum of squares, when
divided by 9, the number of degrees of freedom, gives
the estimate of the population variance which we use in the
denominator of the formula for the F ratio to test the
between-groups variance.?

The results of our computations are summarized in Table

1 The number of degrees of freedom can also be obtained by subtraction
from the total or from the number allotted to within groups. Thus the
number of degrees of freedom for the residual sum of squares is :

dfes = Total — (Between groups + Between pairs
r..=!1)9_'(l+9) groups pairs)
and also fres = }Igithig groups — Between pairs

=9
* On the basis of the assumptions noted in Chepter 10.
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48. Let ussee what we have accomplished. In this analysis
the total sum of squares has been' broken down into three
parts with accompanying degrees of freedom. The variation
between group means was, of course, our major interest.
We wanted to know whether the difference was significant
or not in mean performance score between a group working
under the suggestion that noise was a hindrance and a

' TABLE 48.—ANALYsIS OF VARIANCE OF Scores oF Group A anp Grour B
INTO THREE PARTS

SoUuRCE OF VARIATION | SuM oF SQUARES | df | ESTIMATE oF VARIANCE
Between groups........ 5 1 5
Between pairs.......... 38 9 422
- Residual............... 2 9 22
Total..: 45 19
Degrees of Freedom
Between BrOUPS....iieiiaaaa,, r—1
Between pairs. .................. n-—1
Residual. ... ... ...l r—1Dnr-=1) 1

Total.....cocavecanacancanns rm—1locN —

group working under the suggestion that noise facilitated
- performance. But we also realized that the performance of
our subjects under-the experimental conditions might be
related to performance prior to the experiment proper. We
took this into account by pairing our subjects on the basis
of previous performance and then “eliminating’’ the sum of
squares attributable to this source of variation from the
within-groups sum of squares. That is to say, the vari-
ation of the means of the groups and the means of the pairs
has been taken into account and the residual variance is
based upon whatever variation remains in the data.
The value of F which we obtain, using the residual vari-
ance in the denominator and the variance between groups
in the numerator, is now equal to 22.73. This value corre-
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sponds, within errors of rounding, to the value of &, (4.76)2,

which we obtained when we took cognizance of the fact that
the groups had been matched. Entering the' column of

Table E with the 1 degree of freedom corresponding to the

variance estimated from the between-groups sum of squares

and running down to the row entry for the 9 degrees of
freedom of the residual variance, we find that F need be

only 10.56 to be significant at the 1 per cent level. Since

the value we have obtained is 22.52, we would reject the null

hypothesis. and infer that the difference between the two

groups could not be the result of sampling variation.®

2. ANALYSIS OF VARIANCE OF SEVERAL MATCHED
GROUPS ‘

We are now ready to extend the method of analysis just
described to the case of several matched groups. Let us
suppose that we are interested in the effectiveness upon
attitudes of various methods of presentation of propaganda
material. We might, for example, be ‘concerned with
whether the same piece of propaganda presented by radio,
by a face-to-face speech, by reading, and so forth, would be
equally effective in modifying attitudes. Let us suppose
that we have five different methods of presentation and
that we have available twenty-five subjects, or five for each
of the experimental groups. We could, of course, merely
assign the subjects at random to one of the five experimental
groups, but suppose that the degree of change in attitude
as a result of the propaganda is related to the intensity of
the attitude one has before being subjected to the propa-~
ganda. It is questionable as to whether an individual who
has a very intense attitude, either positive or negative, will
be influenced as much as an individual who has a relatively
neutral attitude. If there is correlation between attitude
prior to the experiment and attitude after being subjected

 We could make a test of significance befween pairs also, if we were interested.
The F ratio, in this instance, would become the variance between pairs divided
by the residual variance. '
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to the propaganda material, then we should take this into
consideration in assigning our subjects to the various experi-
mental groups. If we can control this factor, then we can
reduce the sum of squares within groups as we did in the
case of the two matched groups discussed previously. :
If we have available scores on the attitude test for the
twenty-five subjects prior to the experiment, then we may
_use these as a basis for equating our groups. We first
divide our twenty-five subjects into five groups of five
subjects each, assigning to each of the five groups subjects
with approximately the same attitude test scores. These
five groups we shall designate as the ‘“attitude groups.”
- To each experimental group we now assign, at random, one
subject from each attitude group. This scheme will tend
" to balance the experimental groups so that each will have
individuals with similar “intensities” of attitudes. That is
to say, we may have some assurance that no one of the experi-
mental groups has all of the subjects with high or low atti-
tude test scores, but that each group has approximately the
same range and mean,* _
" The fictitious attitude test scores of the subjects after the
presentation of the propaganda material are given in Table
49. If we ignored the fact that our experimental groups
had been matched, we would proceed with the customary
analysis of the total sum of squares. We would find the
part associated with differences between the means of the
experimental groups (columns) and the part associated with
differences within the experimental groups. Thus

Sum of squdfes: .
L Total = ®F 4+ (0 + O + ...+ @ + 03 — DL
= 1,678 — 1,600 ‘
" =178
 That adequate matehing would be virtually impossible with so few sub-

jects and so0 many groups must be recognized. The experiment is hypothetical
and is for purposes of illustration. It is the procedure that is important.
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. 2 2 2 2
2. Between groups = (—3?—-+(i§l +...+ -(;455—)- —(lggl
= 1,620.8, — 1,600
= 20.8 )
3. Within groups = Total — Between groups -
: =78 — 20.8 .
= 57.2 ‘ e

TABLE 49.—ArriropE TEsT Scores o GRoUPS SUBJECTED TO DIFFERENT
METHODS OF PRESENTATION OF PROPAGANDA. INDIVIDUALS 1IN ~
Eace Group MATCHED ACCORDING TO INTENSITY OF
ATTITUDE PRIOR TO THE PRESENTATION

A ; ExPERIMENTAL GROUPS )

TTITUDE

LEVEL — Sou MEean

1 2 3 4 5 T
1 8 10 10 11 11 50 1
2 7 9 9 ‘10 10 45 g
3 6 7 8 9 10 40 8
4 6 6 7 - 8. 8 || 35 7
5 6 6 5 7 6 30 6
z 33 38 39 45 45 200
Mean 6.6 76 | - 78 9 9 |........ 8

_The results of our computations, which are summarized
in Table 50, show that F is equal to 1.82. According to
Table E, the value of F at the 5 per cent level for 4 and 20
degrees of freedom is 2.87. We must assume, therefore,
that 1:,he F we obtained could easily have resulted from
samphng variation and that the null hypothesis is tenable.
I.n a similar manner we might test the differences between
attitude levels, that is, between rows. The new sum of
squares which we would need is ‘

Bet c (B0 L (52 -, (30)* _ (200)2
etween rows =+ E- ...t 5~ g

= 1,650 — 1,600
=50
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and the sum of squares within rows may be obtained by
subtra.ctlon. Thus

Wxthm rows = Total — Between rows
=78 — 50
.= 28
TABLE 50.—AnaLye1s oF VARIANCE INTO Two Parts or Arrrrupe Testr

ScorEs oF EXpERIMENTAL GROUPS SUBJECTED T0 DIFFERENT
MEeTHODS OF PRESENTATION OF PROPAGANDA

SouncE oF VARIATION | SuM oF Squares | df | EsTiMATE or VARIANCE

Between groups ........ 20.8 4 52
Within groups. ........ ’ 57.2 20 2.86
Total. ............ 8 24
Degrees of Freedom
Between groups..........c....... r—1
Within groups. ............. ..... rn—1)orN —»
Tot;garl?.l.)? ................... m—1lorN -1

TA.BLE 51.—ANAI:YSIS oF VARIANCE OF ATTITUDE TEsT ScoRES CLASSIFIED
Accorping To Rows or TasLE 49

Sounce oF VARIATION | Sum oF qu;nzs df | EsTIMATE OF VARIANCE

Between rows.......... 50 ] 4 12.5
Within rows. . ........ - 28 20 14
Total.....cocoveun 78 24
Degrees of Freedom
Between rows. .. ...c.ccoveennnaen n—-1
Within rows. ......eccc0eveannaen alr—1)orN—n
Total.....ccovveennnn eeneen nr—torN —
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" In Table 51 we have made the estimates of the population
variance based upon these computations. F is 8.93, a
highly significant value. We expected that it would be if
our matching of the various groups were effective and if-
- intensity of attitude prior to the.experiment were related
" to subsequent scores.

The sum of squares within groups in this and in the prev1-'
ous analysis, however, includes a source of variation which
we can control. We shall compute the residual sum of
squares, which will enable us to hold the variation between
rows constant while testing the columns, and to hold the
columns constant while testing the rows. This new residual
- sum of squares is the same for both rows and columns and is
found by subtraction. Thus ’

Residual = Total — (Between columns - Between rows)
=78 ~ (208+50)
=72

We may now set up Table 52 and test the columns and
rows, using the new estimate of the population variance
based upon the residual sum of squares as the denominator
in the formula for the F ratio. According to Table E, F

TABLE 52.—ANavLYs18 OF VARIANCE INTO THREB PABTS orF ATTrrupE TEST
conzs oF TaBLE 49

Souvrce or VariATION | SoM oF Squanes | df | EsTIMATE oF VARIANCE

Between columns. ....... 20.8

4 5.2

Between rows.......... 50 4 12.5

Residual,.............. { 7.2 16 . A
Total.....coonunen. 78 24

® . Degrees of Freedom
Between columns. . .............. r—1 . >
Between rows. . ......convenunvns -1 .
Residual........................ (r—1(n=1)
N-1

-----------------------
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at the 1 per cent level for 4 and 16 degrees of freedom is
4.77. 'The F ratio for columns is §.2/.45 = 11.56; hence
we may infer that the differences between the columns
{methods of presentation) are indicative of real differences.
Althouglr we are not primarily intergsted in the differences
between rows (attitude levels), we may test these for sig-
nificance also. The F ratio for rows is 12.5/.45 = 27.78,
. a highly significant value for 4 and 16 degrees of freedom,
and we must conclude that the null hypothesxs applied to
rows is not tenable.

Perhaps you are wondering about the similarity between
the sum, of squares which we have called .the “residual” in
this chapter and the sum of squares which we called “inter-
action” in the last chapter. If so, then you may note that
without replication, i.e., without more than one subject,
within each of the “attitude levels” for each of the “experi-
mental groups,” we cannot evaluate the residual variance
in the manner in which we evaluated the interaction variance
in the last chapter. You may see this more clearly if you
examine more closely the design of our experiment in Table 49.

- If we had five subjects instead of one at each of the atti-
tude levels for each of the experimental conditions, so that
we would have twenty-five groups of five subjects each, we
could take the deviations within each of these groups from
the mean of the group to get a sum of squares within each
of the twenty-five groups. The sum of these sums of squares,
based upon deviations within each group from the group
mean, would correspond to the sum of squares within groups
which we used in the methods-achievement experiment,
described in the last chapter, to evaluate the interaction
variance. The residual variance in the present experiment,
in other words, could be evaluated only if a number of sub-
jects were included in each of the attitude levels for each of
the experimental groups. y

In Table 53 we have summarized the computations for
analysis of variance into three parts. The necessary
formulas and methods of determining the number of degrees
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TABLE 53.—SuMMARY 61- Courmanbﬁé 1N ANALYSIS OF VARIANCE FOR
Groups wWITH n MapceED SuBJECTS IN EAcE GROUP—TOTAL -

Sum oF SQUARES ANALYZED INTO THREE PARTS

. . . MEASUREMENTS ‘
: : - Sum or
INDIVIDUAL |- - Rows
’ | Group 1 | Group2 | Group 3 | Groupr | -
a 3 X 1‘ Xz. X, ;. X Ty EX 3
b .. [ Xy X, X, X,, ZX,
[ Xl‘ - XI" xl‘ : xl-= ’ zxa_ :
n " e xll X'I- . X'n ‘ x,'u EX nv
Sum of eolumns..] =X, ZX, =X, - =X, zX
Computatio;xs: .

1. Total sum of scores = ZX, + ZX2 + ZX3 +... + =X,

Xy
N

2. Correction for origin =
3. Total sum of squares = ZX* —

4. Sum of squares between columns

(zX)
N

_ EX) + EX) + CXD +... + GX)

n

5. Sum of squares between rows

_ Xy
N

_CXP 4 CX) + CXP 4. + CXP_ GXP

i r

N

6. Residual'sum of squares = Total ~ (Between columns } Between rov_vs)

Degrees of freedom:

1. Between columns =y — 1
. Betweenrows =n — 1

3. Residual = (r — 1}(n — 1)

4, Total=N ~1

.
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of freedom available for each of the sums of squares have
been included for convenient reference.®

. 8. CORRELATION RATIO A.ND ANALYSIS OF
" VARIANCE

a. The correlation ratio without bias. Peters and Van
Voorhis (74) make a strong case for the use of the correlation
. ratio in place of analysis of variance 'techniques. The
correlation ratio, however, as we computed it earlier, is
influenced by the size of the sample and by the number of
classes into which the sample is divided. But this bias can
be corrected for by substituting the two estimates of the
population variance in the formula for 4.° If 92 has already
been computed, and we assume that it has in cases of in-.
terest, then the correlation ratio without bias, designated as
epsilon (& by T. L. Kelley, who developed the formula, is
the square root of epsilon-square which is given by formula
(64).

' — ﬂw(N_l)"(k_l)
&= = (64)

where & = epsdon—square or the square of the correla.tlon
ratio without bias
ny= = the value of the correlation ratio
N = the total number of cases in the distribution
k = the number of columns in the correlation table

§ Lindquist (64) provides many illustrations of the use of analysis of variance
in the field of educational research. Additional illustrations in educational
.and psychological research may be found in Baxter (8), Dunlap (11), Garrett
and Zubin (32), Jackson (47), and Shen (83). The ecritical discussions by
Grant (36) and Peters (73) should be consulted also. In addition to these
references, the student would do well to read Snedecor (86). He has achieved
a simplicity of presentation which is notable and to be commended. Tippett
* (90) and Goulden (36) are well worth reading. Kenney (53) approaches analy-
sis of varianve from a mathematical viewpoint and his text should be of interest
to advanced students, as should the two classical publications of Fisher (25,
26). The article by Helen Walker (94), although technical, is a valuable aid
to an understanding of the concept of degrees of freedom.
¢ The rationale of this is developed in Peters and Van Voorhis (74, pp. 319~
322) from which formula (64) is taken. A further correction for broad cate-
gories is suggested if the classes are contmuous and groupings are large. This
will probably not be true of most cases where analysis of variance techniques
might be applied. If needed, however, tables to facilitate the corrections
can be found in the reference cited.
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b. Tables of epsilon-square. Peters and Van Voorhis
have tabled the values of € at the 1 per cent and 5 per cent
points, assuming the {rue correlation to be zero. Assuming
the null hypothesis, that the population correlation is zero,

Table F, pp. 336-339, gives the values of € which can be
expected to occur by chance 5 per cent and 1 per cent of
the time. The column of Table F is to be entered with 1
less than the number of columns in the correlation table
from which the correlation ratio was computed, (k — 1),-
and the valie of € at the 5 or 1 per cent point is to be found
by running down this column to the row entry corresponding
to the total number of cases less the number of eolumns, -
N — k). ) .

Before turning to the relationship between the correlatio
ratio without bias and analysis of variance, we may illustrate
the use of Table F by an example. Let us suppose that we
had found a correlation ratio of .60 from a correlation table
consisting of 10 columns, and with a total N of 90 cases.
Substituting in formula (64), we gef;

2 ot N =1)—(k—1)

N —k
_ (60)? (90 — 1) — (10 — 1)
, 90 — 10
_(36) (89) — 9
80
32.04 — 9
80
- B.04
80
= .288

If we now assume the null hypothesis, that the popl;latiori
correlation is zero, we may test the significance of the ob-
served value of €, .288, to find out whether it would occur
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as a result of sampling variation less than 5 per cent of the -
. time. If our observed value is larger than the tabled value
of ¢ at the 5 per cent point, then we may reject the null
hypothesis and infer that the population correlation is not
zero. We enter the column of Table F (page 336) with
(k — 1) =9, and run down to the row entry corresponding
to (N — k) = 80. The value of € at the 5 per cent point is
. .091, and at the 1 per cent point it is .142. Since our ob-
served value exceeds the value of €® at the 1 per cent point,
we may reject the hypothesis that the population correlation
is zero with a high degree of confidence. If the hypothesis
of zero correlation were true, then we would get such a large
value of € much less than 1 per cent of the time. Thus, you
see that the table of € is used in much the same fashion that
the table of F is used.
S Epsilon—square and analysis of variance. In the simple
"analysis of variance experiment, where the total sum of
squares is analyzed into two parts, ¢ is found readily. By
vformula it is
2 Vw )
€ =1— E A . (65)
where | } e” = epsxlon—squa,re
' p, = the population variance estimated from the
within-groups sum of squares
v, = the population variance estimated from the total
sum of squares (the sum of squares for total
divided by N — 1)

- To illustrate formula (65) we may take the data of Table
39, where we found that the estimate of the population
variance based upon variation within groups was 4.5. The
- total sum of squares was equal to 144 and this divided by
N — 1 or 14 gives us 10.29, the denominator for formula
{65). , Solving for €, we get

4.5

2 —PE= —_— = — = , . = R ==,
de=1-=1—gros =14 56,e‘\/56 75
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We may evaluate € by reference to Table F. In this in-
stance (¢ — 1) = 2 and (N — k) = 12. Entering the table
of € with these values, we find that an € of .291 is significant
at the 5 per cent level and an € of .459 at the 1 per cent
-level. Our observed € of .56 is much greater than_ the
value at the 1 per cent level, which means that if the null
hypothesis were true, then as large a value of € as we ob-
tained would occur much less than 1 per cent of the time.
Thus you see that none of our conclusions is changed by the
€ test.. But, in addition to getting a test of significance,
we also get an indication of the extent of the relationship
. between achievement and method of instruction. This is
~expressed by the unbiased correlation ratio, .75, the square
root of € (74, p. 325).

When the total sum of squares in an analysis of variance
problem has been analyzed into more than two parts,
formula (65) must be revised. If, for example, we have
analyzed the total sum of squares into three parts, one asso-
ciated with columns, another with rows, and a third which .
we have called the residual, then we must use a different
method of obtaining €. Peters and Van Voorhis (74) give
the following formula:

& = (vet) (B — 1) — (v,e)(k — 1)
v ("wl) (k — 1) + (vm) (.d.fru)
where € = epsilon-square
ot = the population variance estimated from the sum
- of squares between columns
k — 1 = the degrees of freedom associated with the be-
tween-column variance or the number of columns
minus 1 ’
vres = the population variance estimated from the resid-
ual sum of squares
{ @fres = the number of degrees of freedom associated with
the residual sum of squares -

The value of €? at the 5 and 1 per cent pomts ‘when formula.
(66) is used, is found by entermg the column of Table E

(66)
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with (k — 1) and running down to the row entry correspond-
ing to the number of degrees of fréedom associated with the
residual variance, that is, df,.,. We may illustrate the use
of formula (66) by applying it to the data of Table 52.
The estimated population variance from the sum of squares

“between columns was 5.2 for 4 degrees of freedom, and for
the residual sum of squares the estimated population vari-
ance was .45 for 16 degrees of freedom. Substituting in
formula (66) and solving for €2, we get

o, = 5IW — (45(®)

. G2){@ + (45)16)

i . _12
T 28

=-.68"

- We ﬁnd from the table of € that a value of .287 is sig-
nificant at the 5 per cent point and a value of .43 at the 1 per
cent point for 4 and 16 degrees of freedom. Our observed
value of .68 is, therefore, highly significant, and we must
consider the null hypothesis untenable. Thus we arrive at
the same conclusion using €? that we did using F'.

You may wonder at this point whether F or € should be
used as a test of significance in a given problem. There is
no definite answer to this question, and there are advocates
of each method. The calculations involved are much the
same for both F and €%, and. tables of the 1 per cent and
5 per cent points of both ¢ and F are available and easily
used. The results of the tests of significance by both
methods are consistent. Peters and Van Voorhis, however,
point out that the F test does not “directly indicate the
strength of the relation that is present, only its reliability.
Analysis of variance, that is, tells only the negative side of
the story, limiting itself to confirming or refuting the null
hypothesis. Epsilon, on the other hand, shows in language
with a uniform meaning what is the strength of the relation
that is present and at the same time permits an ‘exact’ test
of its rehablhty” (74, p. 353).
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4. A TEST OF RECTILINEAR RELATIONSHIP

Epsilon-square may also be used to provide a test of
whether two variables, X and Y, are related in a rectilinear
fashion (74, p. 329). The test involves the computation of
both € and r. The statistic derived from the test may be
designated as €2 and is obtained from the following formula;:

w_€—1° :
Since €2 has the same form of distribution as €, we may
- use the same tables for its interpretation. The table of ¢
“js entered with degrees of freedom equal to k — 1 and
N — k. If €* is such that it exceeds.the 5 or 1 per cent -
pomts, we may infer that the departure from rectilinearity
is significant. If it does not, then we may infer that the
relationship between the two variables is essentlally recti-.
linear,

ANALYSIS OF VARIANCE: MATCHED GROUPS

Example 1.—Here is the set of scores of Example 2 in Chapter 9
on ““The t Test of Significance.” . '

GroupI.......... 10 5 6 7 10 6 7 8 6 5
GroupIIL......... 7 3 5 7 8 4 5 6 3 2.

(2) Compute the value of F based upon an analysis into two
parts: the between and the within sum of squares. Is the value
of F thus obtained equal to the value of {* obtained when the
pooled sum of squares is used in calculating the sta.nda.rd error
of the mean difference?

(b) Test the difference between the groups, taking cognizance
of the fact that the measurements have been paired. Analyze .
the total sum of squares into three parts, using the estimate of.
the variance based upon the residual sum of squares as the
denominator in the F ratio. Is the value of F now equal to the
value of 2 obtained when the correlation is taken into account?

(c) Set up a table and compute the “residual” sum of squares

directly. Does this value check with that obtained by sub-
traction? ' :
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Example 2.—Here isa set.of scores for practice.

: ‘EXPERIMENTAL ConprTioNs
INDIVIDUALS

1 I I
-1 11 10 i2
2 10 9 11
3 10 9 12.
4 8 9 10
5 "8 - 7 8
6 8- 8 9
7 8 6 9
8- 6 5 8.
9 6 ‘3 5
10 - - 8 4 6

.(a) Analyze the total sum of squares into two parts and find
the value of F,

(b) Analyze the total sum of squares into three parts, using
the estimate of the variance based -upon the residual sum of
squares as the denominator in the F ratio. Explain the results
‘of this analysis, assuming the subjects have been matched.

Example 3.—Kellar (51) reports the following data concerning
Q and S values of items in an attitude scale. Find &, and
‘interpret your results.

. X SCALE VALUES oF ITEMS
Y: Q VaLues
- 1112 41516 819110
2.1-23 . ' 519164 5|3
1.8-2.0 3312|128 |2}7
1.5-1.7 1 21112 114
- 1.2-14 3 . 1 8
911 1 1
6- .8 4 3
B3~ .5 1




. CHAPTER 12
THE x? TEST OF SIGNIFICANCE.

Chi-square is a statistic similar to ¢ and F in that its
sampling distribution is known and in that it is also used for -
testing hypotheses. It is particularly applicable to situa~
tions where we wish to test the departure of observed fre~
_ quencies in a given sample from the frequencies we would -
~expect to obtain on the basis of a given hypothesis. Chi- -
square is also useful in testing the hypothesis that two
samples have been drawn from a homogeneous population.’
We shall see some additional uses to which x* may be put
later, but now let us examine a specific case.

1. SIMPLE APPLICATIONS OF x

Suppose that you are in charge of selecting a title for a
new college magazine. You have eliminated all of the titles
except two, but you cannot decide which of the two would .
have more appeal. To get some basis for making your
decision, you go out and interview a small random sample of
60 students, asking each one to state which of the two titles
he prefers. Your final count shows that 36 prefer Title
No. 1 and 24 prefer Title No. 2. In this instance, as in
most others where you are working with samples, it is not.
the sample that is of primary interest, but the population
from which the sample was drawn. What you really wish
to know is, if you go ahead and select Title No. 1, will your
choice meet with the approval of a majority of the entire :
student body? ‘

a. Observed and expected frequencies. When we wanted
to make an inference on the basis of a sample mean concern-
ing the population mean, we found that we could approach
the problem by setting up some hypothesis about the popu-
_ lation mean. Then by finding the deviation of our observed

. 239
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sample mean from the hypothetical population value and
dividing this deviation by the standard error of the mean,
we arrived at a statistic called £. And, since the sampling
distribution of £ was known, we were able to make a prob-
ability statement concerning the frequency with which
values of ¢ as large as, or larger than, the one we obtained
would oceur by chance, assuming the hypothesis to be true.
- Similarly, in the case of x?, we must set up some hypothesis
concerning the population ratio. We can then determine
the frequencies we would expect to get in our sample, assum-
ing the hypothesis to be true. Our deviations now become

- the difference between these expected frequencies and those
actually observed in our sample. We may then use X2 to
‘test the hypothesis that our sample may have been drawn
from a population with parameter equal to the theoretical
ratio. We assume, in other words, that any difference
between our observed sample frequencies and those to be
expected on the basis of the hypothesis can be accounted
for in terms of sampling variation. The computations are
simple: we merely take the difference between each ob-
served and expected number, square these discrepancies,
divide each squated discrepancy by the corresponding
expected number, and sum. . By formula .

o .
x =209 (69
where xt= bhi—square B
= the observed frequency
© e =the corresponding expected frequency in terms

of the hypothesis

If the obtained value of x2 is such that it would occur
5 per cent of the time or less, then, according to the standards
we have used before, we would have to assume that the
hypothesis being tested is untenable. On the other hand,
if x? is such that a value as large as, or larger than, the
obtained value would occur more than 5 per cent of the
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time, then we would have to consider the hypothes1s tenable.,
The interpretation of x? corresponds to the interpretation
we have learned to place upon ¢, F, and €.
b. Testing a 50:50 hypothesis. In the problem at ha.nd ,
-since we are really interested in knowing whether or not a
majority of the students prefer Title No. 1, our working
hypothesis would be.that the population is evenly divided,
We assume that if we had interviewed every member of the
population we would find 50 per cent favoring Title No. 1
and 50 per cent favoring Title No. 2. If the hypothesis is
true, then the calculation of x2 proceeds as in Table 54.

TABLE 54—TEsTING A 50:50 HyeoTHESIS BY Mgaxs oF x*

APPROVE APPROVE
TrrLe No. 1} TirLe No. 2 Toran, .
Observed. ...vusereensnsnnns 3 | 240 | e
Expected.....cocc0veennns .- 30 30 - 60
(o —¢) . 6 -6
(o — e): 36 36
ot 12 12 X =24

Note that the computed value of x? would be zero if our -
" observed frequencies were the same as those expected on the
basis of our hypothesis. The greater the departure of the .
observed frequencies from the expected, the larger the result-
ing value of x will be. If our sample had divided 55:5,
for example, x? would be equal to 41.66. In this respect
x? is like ¢, for ¢ also becomes larger the greater the departure :
of an observed sample mean from the hypothetical value "
of the population mean being tested. But, whereas the
distribution of ¢ was dependent upon the size of the sample,
the general form of the distribution of x? is independent, of
sample size. For example, if we drew a large number of .
random samples of 20 cases each from a box in which we
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had placed 50 red and 50 white discs, the expected fre-
quencies would be 10 red and 10 white. Computing x? for
each of these samples, we could plot a frequency distribution
of the obtained values. If we then repeated the sampling
process, this time drawing samples of 30 cases each, the
expected numbers would be 15 and 15. If we made a fre-
‘quency distribution of the values of x2 obtained with samples
of this size, the two frequency distributions would be quite
. similar, despite the fact that the values of x* in one case
were based upon samples of 20 and in the other upon samples
of 30:.
To evaluate the x2 of 2.4 which we obtained in our illustra-
tion, we must enter Table H (page 342) with the number of
- degrees of freedom that are related to our sample data.
We stated earlier that the concept of degrees of freedom
may be regarded as having to do with the number of observa-
‘tions that are free to ,vary once certain restrictions have
been placed upon a sét of data. In the present problem
we have only 1 degree of freedom because once we have
entered one of the frequencies in Table 54, the other can
be determined from the border total by subtraction. If we
enter Table H with 1 degree of freedom we find that a value
of x% of 2.4 or larger may be expected to occur by chance
more than 10 per cent of the time Thus we have little
basis for rejecting the hypothesis that our sample was drawn
_ from a population in which the ratio is 50:50. In order for
.us to reject the hypothesis of evenly divided opinion at the
5 per cent level, our computed value of x2 would have to be
3.841. '

Perhaps you have notlced that whenever a 50:50 hypothe-
sis is being tested, the (o — e)? values are the same, and of
course the expected numbers are the same also. Thus there
is a simplified formula for x? which may be used whenever
this hypothesis is being tested:

2(0 — o)?

Ll ’ =
. X P

(69)
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Substituting in the problem under consideration, we get-

_2(36 —30)* _"(2)(6)? _ 2(36) _ 72 _
X=="35 =73 =~ 35 —30 " 2%

c. Testing any a priori hypothesis. In the same manner
that we tested the hypothesis that the population ratio was
50:50 in the last example, we might test any hypothesis
concerning a population ratio. Suppose, for example, that
on the basis of past experience we knew that about 75 per.
cent of the members of a general psychology class could be
. expected to pass an item on a test. We now have a new
class consisting of 200 members. On the basis of our past
experience we would predict that about 75 per cent or 150
of these students would pass the item and that about 25
per cent or 50 would fail. Of course, we would not expect,
to obtain exactly these numbers; we can assume that some
variation will be present as a result of chance or sampling
factors. But suppose now, aiter givmg the test, we find
that only 137 pass the item and 63 fail it. Is this depa.rture
from the expected frequencies too great to be attributed to
chance? Can we assume that our sample was drawn from
a population in which the ratio of those passing to those
failing the item is 75:25? The hypothesis may be tested by
calculating x2

The value of x2 based upon the data of Table 55 is 4.51
and with 1 degree of freedom, a value of 3.841 is significant

TABLE 55.—TgsTING A 75:25 'Hvro'rm-:sts.nz Means or x?

'FAILING THE | PAssING THE
ITEM ITEM Toran
Observed. .............. 63 137 200 -
Expected............... 50 150 200
(0 —~¢) 13 —13 .
?’ - 169 169 -
2=t 3.38 113 7| x=451
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at the 5 per cent point. Hence, if our sample was drawn
_from a population in which the ratio of those passing to
those failing the item is 75:25, something has happened to
our sample that would occur on the basis of chance less than
5 per cent of the time. According to our standards, we
would thus consider the hypothesis untenable.

d. x* calculated from per cents. Sometimes data are
reported in terms of per cents by other investigators; as
readers of their reports, we may wish to test their findings
against some hypothesis which we may have. The value of
x2 cannot be found directly from per cents, but requires a
correction tefm (86). If we work with per cents, then the

resulting value of x* must be multiplied by %, where N is

the observed sample total. In our title illustration we found
observed frequencies of 36 and 24. In terms of per cents
these would be 60 and 40. Our expected frequencies must be
expressed in the same units and, on the basis of a hypothesis
of evenly divided opinion, they would be 50 and 50. Using
formula (69), we find that x* is equal to (2)(10)%/50 or 4.
This is not the same value we found before, 2.4. But apply-
. ‘ . N 60

ing our correction term, ye get (4) (100 = (4) (1 00) =
240 .

100 = 24 ' | ‘
You may think that translating the title data into per
cents has served to increase the sample size (from 60 to 100)
and that this is the cause of the discrepancy between the
two values of x2. If so that would be inconsistent with the
- statement we made earlier that the distribution of x? is
independent of sample size. It is not the increase in the
sample size, but rather the increase in the value of the
deviations that has changed the value of x%. While a devia-
tion of 36 — 30 or 6 is not uncommon in samples of 60 cases,
a deviation of 60 — 50 or 10 in samples of 100 drawn from
the same population is uncommon. This may become
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clearer if you think of tossing 10 coins into the air. Accord-
ing to the laws of probability the expected frequencies are
5 heads and 5 tails. But if you found 6 of one and 4 of the
other you would not be too upset. Suppose now that you
" tossed 1,000 coins. 'Would you be surprised to get 600 heads
and 400 tails? :
e. X applied to more than two categones. The apphca,-
tion of x? is not limited to dichotomous distributions. If
can be used when we have sample data divided into three
or more catégories. In the absence of any a priori hypothesis
. concerning the population, we may assume that the sample
* frequencies should be distributed according to chance, that
" is, with an equal number in each category. Suppose, for
example, we polled 60 students and asked their opinions
concerning a contemplated change in the hours during which
the library is to be open. We allow for three eategories of
response: favorable, indifferent, and unfavorable. Accord-
_ing to chance we would expect to find 20 students in each
category. The data and the calculation of x? are given in
Table 56. o

TABLE 56.—Tesring THE HyrorHESIS OF A UNPORM DISTRIBUTION

UNFPAVORABLE| INDIFFERENT | FAVORABLE T
R:Esronsz RESPONSE RESPONSE OTAL

Observed....... - 15 10 . 35 - 60
Expected....... 20 20 20 60 !
(o —¢) -5 -10 15 -
(o —e) 25 100 225 .
(0 —e) . .
e 125 3 - 11.25 x=175

The value of x? now equals 17.5. How many degrees of
freedom are involved in our data? In general, in a problem
of this nature, the number of degrees of freedom is equal to
. r — 1, where r equals the number of categories that we have.
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" Thus if we have three categones we have 2 degrees of free-
dom, if we have 4 categories we have 3 degrees of freedom,
and so on. Another way of looking at the matter is this:
once the frequencies for.two of the categories have been
entered, then the third can be determined by subtraction
from the border total. If our sample total is to remain 60,
~ and if we had 40 in the first category and 5 in the second,

the third would have to be 15. If we had 20 frequencies in
the second category and 10 in the third, then the first would
have to have 30, if our sample total is to remain the same.
According to Table H, a x2 of 17.5 with 2 degrees of freedom
is significant beyond the 1 per cent point. Hence we may
reject the hypothesis that our sample was drawn from a
population in which the same proportion would be found in
each of the categories. Our observed frequencies, in other
words, differ significantly from those to be expected, on the
basis of the hypothesis tested.

2. x* APPLIED TO TWO SAMPLES

In all of the problems considered so far, we have had only
a single sample and either we have had an a priori hypothesis
to work with or else we have assumed a chance hypothesis,
i.e., that the frequencies would be distributed uniformly in
the various categories. But in many problems our interest
is in comparing two or more samples, and in such situations
. it sometimes happens that we have no a priori hypothesis,
and frequencies in each of our samples depart so very far
from chance expectatlons that this does not provide us with
a very good basis for comparing the groups. We might
have, for example, two groups of 100 cases each, one dividing
70:30 and the other 90:10. In each sample the departure
from chance or 50:50 is highly significant.

Let us suppose that the samples we have consist of two
groups of eighth-grade students and that 90 is the number
passing an item on a standardized test in one of the samples
and 70 is the number passing in the other. Since we have
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only these data and no a priori hypothws against which
to test the frequencies, how may we compare the two groups?
If we make the assumption that both of our samples are
drawn from a homogeneous population, then we may com-
bine the frequencies from each sample to get a new common
estimate of the population and we can measure the devia~
tions of each sample from it. _If the resulting value of x* is
small, i.e., does not reach the 5 per cent point, then we may
infer that the two samples are drawn from the same popula-~
tion and that the best estimate of the parameter of this -
population is given by the frequencies from the pooled
samples. On the other hand, if the value of x* exceeds the
5 per cent point, then we may reject the hypothesis that
the samples are drawn from a homogeneous population and
infer that the observed frequencies in each sample are
significantly different.
The hypothesis in the present problem is based upon the
combined samples in Table §7. Specifically, we test the

TABLE 57.—Testing THE HyroraEsis TaaT Two Samrres Have Been
Drawn ¥roM A HomoGENEOUS POPULATION

Fawng tae | PAssing THE -
ITEM ITe Torau
Sample 1.iiiisceecrreecenns 10 90 100
Sample 2....00cececcnncnn.. 30 70 100 -
Total...ecevveervannnn . 40 160 200
o [ o—6 (o —ep ( : o
10 20 -10 100 5.00 -
90 80 10 100 125
30 20 10 100 5.00
70 80 —10 100 - 125
Total 200 200 Joeeeeeieeidovennnnn. .| e=1250
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hypothesis that the two samples have been drawn from a
population in which the probability of passing the item is
160/200 or 80 per cent and the probability of failing the
item is 40/200 or 20 per cent. On the basis of this hypothe-
sis, we calculate the expected frequencies for Sample 1 and
Sample 2 by simply multiplying the total number in each
of the samples by the theoretical percentages 80 and 20.
The calculation of x® then proceeds as before.

The computed value of x2, 12.50, must be evaluated in
terms of the number of degrees of freedom involved in the
set of data upon which it is based. If we place the restric-
tion upon our data that the border totals of Table 57 must
remain the same in each sampling, then only one cell in the
table can be filled in independently. Once a single fre-
quency has been entered in any one of the four cells, then
the values for the remaining three cells can be determined
by subtraction from the border totals. If 90 is entered in
the upper right-hand cell, then 100 — 90 or 10 must be
entered in the upper left-hand cell. And if 10 is the value of
the upper left-hand cell, then 40 — 10 or 30 must be entered
in the lower left-hand cell. The value for the lower right-
hand cell can be determined in a similar manner. Conse-

-quently, we say that only one degree of freedom is involved
in this problem.

According to Table H, for one degree of freedom a value
of x* as large as 12.5 or larger would occur much less than
1 per cent of the time, if the two samples were drawn from
a homogeneous population. Consequently, we reject the
hypothesis that we set out to test and say that the observed
frequencies in the two samples differ significantly.

It is worth noting in a problem of this nature that only
one of the expected frequencies needs to be calculated; the
others can be obtained by subtraction from the border
totals, since the sum of the expected frequencies in each row
and each column must check with these values. There is
also a very simple rule for determining the number of degrees
of freedom involved when the hypothesis to be tested is
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based upon the border totals, as in this problem. The rule
is this: if you have a table with r rows and &k columns; the
number of degrees of freedom is equal to (r — 1)(k — 1).
In a2 X 2 table, such as we have here, the number of degrees
of freedom is equal to 2 —1)2—1) or 1. Ina 3 X 4
table, the number of degrees of freedom would be equal to
B@—1)(4—1oré6.

The apphcatmn of x? to the type of problem we have _
just discussed is of much value in psychological and educa-
tional research. Suppose that we were interested in the
effectiveness of two methods of psychotherapy. . We try the
two methods out with a sample of 100 patients divided at
random into two groups of 50 subjects each, and observe .
the number in each group showing “improvement’’ and the
number showing “no improvement.” We pool the data of
the two groups to get our hypothesis and then calculate x?,
assuming the hypothesis to be true. If x? exceeds the 5 per
cent point, we reject the hypothesis that the two groups
were drawn from the same population and infer that the
numbers showing improvement and no improvement in the
two samples differ significantly, i.e., that one method is
more effective than the other. A problem of this nature is
illustrated by the data of Table 58.

If the hypothesis to be tested is true, then we would
expect to find 70/100 or 70 per cent of the 50 individuals
treated by Method 1 to show improvement, and 30/100 or
30 per cent to show no improvement. Since the number of
cases treated by each of the two methods is the same, the
expected numbers for each of the two groups will be the
same. The value of x?is found as before,

The computed value of x?, 4.76, exceeds the 5 per cent
point, 3.841, for 1 degree of freedom. Hence we reject the
hypothesis that the two samples were drawn from the same
population and conclude that the numbers showing im-
provement in the two groups differ significantly. Method 1
is more effective than Method 2, and the difference in the
numbers showing improvement, we believe, cannot be the
result of sampling variation.
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TABLE 58 —Testing TER EFFECTIVENESS OF Two MreTHODS OF
PercEOTHERAPY WiTH Two SampLEs oF 50 Casks Eace

NumBeR Numses
| Smowma No SmowiNg Toran
IMPROVEMENT | IMPROVEMENT
Method 1oeenennennannn.. 10 40 50
. Method 2...inueininnnnnn 20 a0 50
o "Fobaliwcisimmiana o 30 _ 70 100
r
] € 0o—e (o — et (o-;-e)’
10 15 = 25 167
40 35 5 25 q1
20 - 15 5 25 ) 1.67
30 ‘ 35 —5 25 ' 71
" Total 100 1111 S PO Kt = 4.76

3. 'xﬂ APPLIED TO MORE THAN TWO GROUPS

- . We are not limited to two groups nor need the number of
subjects in each group be the same in order to apply the x?
test of significance to problems of the kind described. To
illustrate the procedure to be used in a more complicated
* problem, we have the hypothetical data of Table 59, in
which 250 subjects have been classified according to “letter
© grades” on g test of general information and according to
“educational status.” We see that 95 of the subjects are
college graduates, 70 high school graduates, and 85 ele-
mentary school graduates. The subjects in each of these
three groups are then classified according to letter grade
received on the test. - _
.. If we assume that the three educational groups are samples .
from the same population, we may pool the data from each.
On the basis of the pooled frequencies, we estimate the

»
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© Tapie 50.—Tesrva TAE SGNTFICANCE OF DIFFEEENCES BETWEEN
GRrADES ON A TrsT oF GENERAL INFORMATION FOR THRER
EpvucarioNan LEVELS |

GrAbE oN InvorMATION TEST
- Toran
C B .| _A -
Coll dustes. ......... eaes 10 35 50 95
Higlfgse;:forzggmduates ........... 20 40 10 70
Elementary school graduates..... 35 40 10 85
Total..oovverereernnnnnns. 65 115 70 =250
— e)l
(] e 0o—a (o — e .(ie_").
10 247 —147 - | 21600 - 875
35 437 - 8.7 75.69 1.73
50 26.6 234 547.56 120,58
20 182 1.8 3.24 .18
40 32,2 78 6084 1.89
10 19.6 =06 92.16 4.70
33 221 129 166.41 7.53
40 39.1 9 81 02
10 23.8 —-13.8 190.44 - 8.00
Total 250 250000 Licciaswsnaama s — x' = 53.38

- proportion in the population to be found in each letter grade
category. Thus, in the “A” category we have 70/250 =
.28; in the “B” category we have 115/250 = .46; and in
the “C” category we have 65/250 = .26. Now if our
samples have all been drawn from this population, then the
expected numbers in each letter grade category for each
sample will be these proportions of the sample totals.  Thus
the expected frequencies for the sample of 95 individuals
who are college graduates will be: {.28)(95).= 26.6 in the
“A" category; (.46)(95) = 43.7 in the “B" category; and
(.26)(95) = 24.7 in the “C"” category. We find the ex-’
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pected numbers for each of the other groups in the same
manner., '

The caleulation of x? is the same as before. 'We subtract
each of the expected numbers from the correspondmg ob-
served numbers and square the deviations.  Each squared
deviation is then divided by the corresponding expected
number. The sum of these values which, in the present
instance, is 53.38, is equal tox%. 'We have (r — 1)k — 1or
(8 — 1)(3 — 1) = 4 degrees of freedom and according to
‘Table H a value of x2 of 13.277 is significant at the 1 per
cent level. Since our obtained value of 53.38 greatly exceeds
© 13.277, ‘we must reject the hypothesis that these samples
were drawn from the same population and conclude that the
observed differences are significant.

-4» TESTING “GOODNESS OF FIT”

. 'There is another valuable use of ¥ You may recall
that when we discussed fitting a normal distribution to a
- get ‘of observed frequencies we had no basis for comparing
the “goodness of fit” other than mspectlon It should be
readily apparent, however, that x* can be used to provide
us with a more precise answer to the question of whether
the observed set of frequencies and those to be expected on
the basis of a normal distribution differ significantly or not.
All that we need to do is to find the difference between each
of the observed and expected frequencies for each class
interval, square each of these deviations, and divide each
by the correspond.mg expected number The sum of these
values is x%
" How many degrees of freedom do we have in evaluating
this x2? That depends, as Peters and Van Voorhis (74)
" point out, upon the question we pose. If the only restriction
" placed upon the set of frequencies is that their totals remain
the same, then the number of degrees of freedom is equal to
the number of class intervals minus 1. If we place the further
restriction upon the data that the mean and standard
~ deviation must remain the same, which we ordinarily do in



x? and Small Frequencies : - 253

fitting a normal distribution, then the number of degrees of
freedom is equal to the number of intervals minus 3. -

If the computed value of x2 is small so that it may be -
expected to occur quite frequently as a result of sampling
variation, then we may infer that the discrepancies between
the observed frequencies and those to be expected on the
basis of a normal distribution are not significant. For
example, suppose we had a distribution consisting of 12
class intervals and we fitted a normal distribution to the
observed frequencies in the manner described in an earlier
chapter. We compute x2 and find it to be 8.5. By reference
to Table H we find that for 9 degrees of freedom values of
x? as large as 8.5 may be expected to occur quite frequently
(P = .50). Consequently, we may be quite confident that
our distribution does not depart significantly from. the
normal form. To reject the hypothesis of normality we
would have had to obtain a x? of at least 16.919, the tabled
value at the 5 per cent level for 9 degrees of freedom.

5. x* AND SMALL FREQUENCIES

It seems to be generally agreed that the x2 test should not
ordinarily be applied to tables in which any cell entry is less
than 5! If a given cell entry is less than this value, then a
correction may be applied to 2 X 2 tables or other tests
involving 1 df.2 The correction consists of adding .5 to the
smallest observed frequency of the table (77). Since the
marginal totals must remain the same, this means ¢hat the.
other cell entries must be adjusted accordingly.?

1 This limit is set by Kenney (63) and others (38, 64, 86), but Tippett (90)
suggests a value of 10, .

*In applying the correction to the test of a ratio, for example, a 50:50
hypothesis with observed frequencies of 18 and 12, we add ,5 to the smaller
frequency, 12, and subtract .5 from the larger frequency, 18. We thus reduce
each deviation of observed from expected by .5, 1.e., from 3 to 2.5 in this in-
stance. For a more detailed discussion of this point and other limitations of
the x* test which are beyond the scope of this brief treatment, the student is
referred to Goulden (36, pp. 101-104). .

3 Snedecor, however, has recently said: “Accumulating evidence indicates
that the inaccuracies which may be introduced by small expected numbere
are not so serious as was formerly thought” (86, p. 169).



254 . The x* Test of Significance

The limitation imposed by small frequencies would apply
also in the fitting of a normal distribution to a set of ob-
served frequencies. Since in this instance, it is apt to be
the extreme class intervals that contain small frequencies,
the limitation is usually circumvented by combining the
frequencies in the lowest interval with those in the interval
directly above it and by combining the frequencies in the
“highest interval with those in the interval directly below.
Sometimes it may be necessary to combine the frequencies
of several intervals, the number of degrees of freedom being
reduced accordingly.

6. x* AND THE ¢ COEFFICIENT

*'We discussed earlier the use of the ¢ coefficient as a
measure of association or relationship when two variables
had been reduced to a 2 X 2 table. Although we found
that the ¢ coefficient could be used to give us some indica-~
tion of the strength of the relationship present, we had no
means of testing whether or not the relationship was sig-
nificant, i.e., whether it might be the result of chance or
not. In the case of r we had a test of the null hypothesis
. by reference to Table D or by the computation of £ according
to formula (52) and then by reference to the table of .
The calculation of x2 provides us with a similar test for the ¢
coefficient. - The ¢ coefficient and x? are related in the
following way

. | s=y5 a0

and - x*=N¢* (71)

Hence, if we have computed ¢ as a measure of association
and wish to test the null hypothesis, we need merely square
the obtained value and multiply by N, the number of cases
upon which it is based, to arrive at x2.. The number of
degrees of freedom involved in the computation of x? is, of
course, 1, since we have a 2 X 2 table. We evaluate x* as
we have before by reference to Table H.
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If we take the data from Table 27 cited earlier in our
discussion of ¢, we have a computed value of ¢ equal to
.328 with an N of 100. Substituting in formula (71) we get

x* = (100)(.328)?
= (100)(-107584)
= 10.76 o

By referenee to Table H we find that for 1 degree of freedom
a value of x? of 6.635 is significant at the 1 per cent level of
confidence. Since our obtained value is 10.76 we would .
reject the hypothesis of no relationship with a great deal of
confidence.

We could, of course, in a 2 X 2 table, reverse the pro--
cedure and compute x2 first. This would tell us whether or
not there was any association present and whether we could
reject the null hypothesis with any degree of confidence.
If we were then interested in getting some indication of the
" strength of this relationship we could substitute in formula
(70) and solve for ¢. -

CHI-SQUARE , .
Example@—Previous experience with a particular achievement
test indicated that for seventh-grade children the ratio of those
receiving a passing mark to those failing was 3 to 1. We wished
to test whether this hypothesis (3:1) would also hold for sixth-
grade children. A sample of 100 students drawn from the sixth-
grade revealed that 60 passed. Is the hypothesis tenable?

Example 2.—A poll of fraternity men on a university eampus
showed that the ratio of those on the honor list to those not on the
list was 1:4. To find out whether this ratio would hold for soror-
ity members a sample of 150 sorority members was drawn. Forty
of the sorority members were on the honor list. Must we abandon
the hypothesis of 1:4?

Example (3}—A chairman of a committee confronted with a
choice between the use of two slogans decided to sample a number
of individuals to determine which they preferred. In a sample
of 80 he found that 50 approved Slogan Ne. 1 and 30 approved
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Slogan No. 2.. Can we assume that the two slogans are equally
popular? '

'.Exa,mplegQ—A sample of 30 schizoid cases in a mental institu-
tion gave the following responses to an item in a personality in-
ventory: “Yes” = 18; “?” = 9; “No” = 3. Another sample of
30 manic cases gave the following responses to the same item:
“Yes” = 6; “?” =9; “No” = 15. Test the hypothesic that
there is no difference between the responses of the two groups,
ie., that the two samples are drawn from the same population.

Example 5.—A group of men and a group of women distributed
their responses to an item in an attitude test in the fashion listed
below. Test the hypothesis that there is no difference between the
distribution of responses of the two groups, i.e., that they are both
sarples from the same population.

StrRONGLY StroNGLY
; DISAGREE Di1sAGrEE [UNDECIDED| AGREE AGREE ToraL
Men...... 5 5 12 18 " 60 100
. Womeq: .- 25 25 20 20 10 100

Example 6.—Two methods of psychotherapy were tried with-
two different samples. The results are given below. Can we
assume that one method is more effective than the other?

.y NumBER SEOowIiNG | NuMBer SHOWING
MeraoD No ImPROVEMENT IMPROVEMENT Torax,
1 - 10 42 52
2 . 58 60 118
' ,

Example 7.—Kuo (57) reared kittens under three different con-
ditions: (1) one group of kittens was isolated from all contact
with rats except on the experimental test: (2) the kittens in an-.
other group were reared with their mothers whom they saw kill
a rat or mouse every 4 days outside the cage; (3) one group lived
with a single rodent from age 6-8 days onward. The test situa-
tion consisted of putting a kitten together with a rat to determine
whether or not the kitten would kill. The data are as follows:
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Grour No. Kmruing | No. Nor Knune | Toran
1) Isolated............... 9 1 2
2) Reared with mother. ... 18 - 3 .. 21,
(3) Reared with rodent..... 3 15 _18 -

Are there any significant differences between the groups or cari we -
assume that they are all samples drawn from the same population?

Example 8. —Rosenzweig (80) has studied the recall of subjects
for finished and unfinished tasks when they worked on the tasks
under differing sets of instructions. The “informal” group was
told that the experimenter was interested in knowing something
abotit the task, that the ability of the subject was not under in-
vestigation. The “formal” group, on the other hand, was under
the impression that the tasks were an intelligence test. The data
for recall are given below. Calculate x* and interpret your results.

No. SusJsecTS No. Sussects L
RECALLING REecaLLING N%ﬁ?{\?g’m
Grovp PREPONDERANCE | PREPONDERANCE | PREFONDERANT '
oF FinisgED | oF UNFINISHED TENDENCY
Tasks TasES [
Informal group. 7 ) 19 "4
Formal group.. 17 8 -
i

Example 9. — Determine whether the following distributions
came from the same population. Assume that Distribution II
gives the frequencies expected according to some hypothesis held
by an experimenter and Distribution I gives the observed fre-
quencies. :

Scores DisTrIBUTION 1 Distrisurion IT .
70-74 5 - | T -

65-69 18 15 -

6064 24 ‘ 20

55-59 20 | 30"

50-54 16 s 20

4549 , 20 15

40-44 14 10




CHAPTER 13

PREDICTIONS AND THE EVALUATION
OF PREDICTIONS

"~ Once we have discovered and measured differences and
relationships by means of the statistical techniques dis-
cussed so far, we are then often interested in making predie-
tions based upon our discoveries. The simplest problem
of prediction is one of predicting the presence or absence of a
given characteristic from knowledge of some other char-

" acteristie, that is, predictions based upon data classified in
categories. If we have found by the x? test, for example,

. that there are significant differences between the responses
of men and wormen to an opinion poll on a given issue, then
we might be interested in determining how accurately we
can predict the poll results on the basis of this knowledge.
Or perhaps we have found that employees who are above
the mean on a psychological test tend to be rated as “satis-

~ factory” by their supervisors, while those who are below
the mean tend to be rated as ‘“unsatisfactory.” How
accurately can we predict the ratings of a group of employees
on the basis of this knowledge?

1. PREDICTING SIMPLE CHARACTERISTICS

Suppose that we have polled 200 students to determine
whether they approve or disapprove of a contemplated uni-
versity ruling. Our final tabulations show that 120 approve
and 80 disapprove. - With only the knowledge that our first
sample divides 120 to 80, our prediction of the responses of
the members of another similar sample would follow the
principle of maximum likelihood or maximum probability
(43). This means that we would predict for every indi-
vidual the most probable or most frequent response, which

- 258
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happens to be “approve” since it was made 120 tlmes as
compared with a frequency of 80 for ‘““disapprove.” If we
made this prediction and if the ratio 120:80 held true for
the second sample, we would have made 120 correct predic-
tions out of a total of 200. We would be correct, in other .
words, 120/200 = 60 per cent of the time. And we would
be wrong 80/200 = 40 per cent of the time. ‘

Now let us suppose that we have knowledge of another
factor: the manner in which men and women voted on the
issue. Let us assume that we had 100 men and 100 women in
the first sample and that the women voted 40 “approve and
60 ““disapprove,” whereas the men voted 80 ‘‘approve”
and 20 “disapprove.” With knowledge of this factor what -
will our predictions be? It is obvious that if knowledge of
the division of opinion within each sex does not increase
the number of correct predictions over the number that we
could successfully predict without this knowledge, then the
information contributes nothing.

We shall still follow the principle of maximum likelihood,
but we shall now consider the two groups separately. The
most frequent response for men is “approve” and conse-
quently that will be the predicted response for all men.
The most frequent response for women, on the other hand,
is “disapprove” and that will be our predicted response for -
all women. How many correct predictions will we now
make? In the two groups combined we would have 80
correct for the men and 60 correct for the women for a total
of 140 correct predictions. This is better than the total of
120 correct predictions we would have made without knowl-
edge of the division of opinion within each sex.

To determine how much better our predictions are with
knowledge of the vote according to sex, we divide the excess
correct predictions made with this knowledge by the number
we. would have had without the knowledge. The result,
20/120 = 16.7 per cent. OQur predictions made with knowl-
edge of the division of opinion within each sex are, in other
words, 16.7 per cent better than predictions made without
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this knowledge. . Table 60 illustratates the ‘basic computa-
tions involved in this evaluation.

Let us turn to another example. Suppose that we have
entrance examination scores on 800 college students and we

TABLE 60. -—lemmons oF RESPONSE FROM KNOWLEDGE OF
SEx CLASSIFICATION

‘ Acruan Vors NuMBER
Grour ToraL - | PrepicTioN | CoRRECTLY
i . | Disapprove | Approve PreDiCTED
Men.........] = 20 80 100 (Approve) 80
Women...... 60 . 40 - 100 (Disapprove) 60
Total...... 80 120 200 |oeiaeeo.... 140
Correct predlctxons without knowledge of
division of opinion within each sex....... -..120 or 120/200 = 60 per cent
Correct predictions with knowledge of di-
vision of opinion within each sex.......... 140 or 140/200 = 70 per cent
Increase in correct predictions with knowl- )
edge of division of opinion within each
BEX.cveenscessusnsencesenvansnanscannasas 20 or 20/120 = 16.7 per cent

. then divide the students into two groups: those with scores
above the median and those with scores below. We then
classify the subjects within each group according to whether
they earned average grades of “C or better” or “below C”

" during their freshman year in college. The results of our
classification are glven in Table 61, where we have evaluated
the accuracy of our predictions of “academic standing”
made from knowledge of classification on the entrance
examination, in terms .of predlctlons made without such
knowledge.

Perhaps you are wondering whether or not it is possible
to make predictions in the opposite direction. The answer
is “yes,” though ordinarily we are interested in predicting
in only one direction. As an exercise, you might try pre-
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TABLE 61.—PreprcTioNs oF “AcapEmic Staxping” FroM ENOWLEDGE
OF CLABSIFICATION ON AN ENTBANCE EXAMINATION

Actvan FrREQUENCIES .
- : Numser
Grour o Toran | PREDICTION gonnmrm,r :
. Cor 'REDICTED
Below C Above ‘
Above Mdn,,. 150 250 400  [(C or Above) 250
Below Mdn., . 225 175 T 400 (Below C) 225
Total......| 375 425 800 firernn.. .| 478
Correct redictions without knowledge of - i
cation on entrance examination. ..... 425 or 425/800 = 53. per cent
. Correct predictions with lknowledge of : .
classification on entrance examination, . .... 475 or 475/800 = 59 per cent
Increase in correct predictions with knowl-
edpe of classification on entrance exami-
nation.......e..00 A S e T X 50/425 = 12 per cent

dieting whether an individua.l will be above or below the
mean on the entrance examination from knowledge of ]:ns .
grades.

2. PREDICTING MEASUREMENTS

We are now ready to consider another problem of predie- -
tion. This time our interest is in predicting measurements
of one quantitative variable from knowledge of measure-
ments of another quantitative variable. We might wish to
predict, for example, the most probable scores on one test
from knowledge of scores on a second test. Obviously, if
there is no relationship between the two tests;, then we
cannot expect to use scores on one as a basis for predicting
scores on the other, It is the presence of correlation or
association between the two that makes prediction possible,
and the efficiency or accuracy of such predictions is a func-
tion of the degree or strength of the relationship that exists.
For purposes of illustration, let us take the data cited earlier
concerning the relationship between scores on a test of
intelligence and scores on’ a. measure of susceptibility to
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hypnosis. . We plot these scores ‘in a scatter diagram
(Figure 15).

a. The regression line. If we can assume that the rela-
tionship between the scores on the two tests is rectilinear,
then we can draw a straight line through the plotted values
which will indicate the trend of the relationship. This line
is called the regression line! It indicates the average
change to be expected in one variable with change in the
other. The regression line can then be used for prediction
purposes. Given an individual’s score on the X variable,
we could erect an ordinate at that point and follow it up to
the point’ where it meets the regression line. The Y value
corresponding to this point would be the individual’s most
probable Y score. ~

It is obvious, however, that a number of straight lines

~ might be drawn through the plotted values, since they will

not fall precisely on any single line. We could, perhaps,
draw one by inspection which seemed to “best fit”’ the data,

_but we can fit this line much more-accurately by another

technique, the method of least squares. This simply means
that we shall demand that the line drawn to describe the
trend be the one from which the sum of the squared errors
of estimate (errors of prediction) is at a minimum. Our
errors of estimate are the deviations of the observed values
from the line describing their trend. If we let Y’ equal a
predicted or estimated value (a point on the line correspond-
ing to some value of X) and Y equal the actual value, then
we must find the ]'J'ne for which the Z2(Y — Y’)?* is at a

The line just described is the regression line we desire to
find and it has a number of properties. It will pass through
the point where the mean of the X variable and the mean

1 Francis Galton first used the term “regression” in studying the inheritance
of stature. It was his observation that, on the average, the offspring of ab-
normally tall parents and abnormally short parents tend to move back toward

the population mean. The line describing this trend was called a “regression
line”” The term is still used to describe the line drawn among a group of

* points to represent the trend present, but it no longer necessarily carries the

original implications that Galton intended.
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- of the Y variable meet in the scatter diagram. The sum of
the deviations, Z(¥ — Y”), will be equal to zero. And the
sum of the squared deviations, Z(¥ — Y”)?, will be less than
it would be from any other straight line.?

b. The regression coefficient. The slope of the regression
line is given by the regression coefficient, b, which is simply
the “covariance” divided by the variance of X. Thus

(72

where b, = the regression coefficient of ¥ on X

Zxy : .

S i the eovariance 5
Zt .
~ = the variance of the X distribution

You are already familiar with both of these values from
the discussion of the correlation coefficient. The Zry is the
sum of the cross-products and is called, when divided by N
(the number of paired measurements on which it is based),
the covariance. We can simplify formula (72) by multi-
" plying both the numerator and the denominator by N to get

_ Zxy .
bs =52 - | (73)
!
Since we havé the values needed from our earlier calculation
of the correlation coefficient (Table 20) we may substitute
in formula (73) and get

1,419.38

290392 — 254

.bys-_'

2 The line dmnbed i for the regression of ¥ on X and is used in the pre-
diction of ¥ from X. When predicting X from Y, as we shall see later, another
line for the regression of X on ¥ is used.



Predicti;bg Measurements E 265

c. The regression equation. Once we have computed the
regression coefficient we may substitute in the formula for .
the regresswn equation to find the most probable value of
Y for any given value of X. The formula for the regression
equatmn 18

Y'=b,,(X-M,)+M, PR (79)

. where - ¥’ = the predicted or estimated value of ¥
bys = the regression coefficient of ¥ on X '

X = the value of X for which we are predictmg a value .

of Y '

M, = the mean of the X distribution

M, = the mean of the ¥ dxstnbutmn

In order to avoid subtra.ctmg M, from X each time thatr
a prediction is made, we may rewrite formula (74) so that
Y=0b.X+k < (75)
where k=M, —b.M, S
To illustrate the use of the regressmn equation, let us
suppose that we are given an X score of 132. What is our
best prediction of the corresponding ¥ score? . Substituting

in the above formula with the necessary values calcula.ted
from Table 20, we solve for Y.

= (.284)(132) + [9.31 — (.284)(121. 56)}
= 37.49 4 (9.31 — 34.52)

= 37.49 — 25.21

=1228

In a similar manner we could find the most probable Y
value for any other given value of X,

d. Regression and correlation coefficients. You may
have perceived already that the formula for the regression
coefficient bears a very close resemblance’ to one of the
formulas we used for the correlation coefficient, As a
matter of fact, when we have already eomputed the correla~
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 tion coefficient, we may use it to find the regression co-
efficient. Thus if

bz = %%I then substituting an identity
_ Szy. and multiplying both numerator and
Noj? denominator by the same value
Zzy .
- (N o.? )(o'za'v) TeATTanging
A' —(Z*y )(a,a,,) smolifvi .
b, smpv ying and
N«r,a,,)( ) substltutmg an identity

—r( ) ' » (76)

If we substitute in formula (76) with the value of r that
we had previously obtained for these test scores, we get

b =1 (Z)

8
= .52 (12 49

= (.52)(.546)
= 284

" which equals the value we obtained by usmg formula (73).
How can we evaluate the reduction in our error of pre-
diction when we use the regression coefficient and regression
equation to predict values of Y? In the absence of any
knowledge of relationship between X and Y our best pre-
_diction for any given value of X would, of eourse, be the
mean of the Y distribution and the extent of the errors of
our predictions would be the standard deviation of the
entire Y distribution. If you look for a moment at Figure
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15, in which we have plotted the paired X and Y scores,
you may be able to see more clearly just what influence corre-
lation will have in reducing our errors of prediction.  If
we drew a horizontal line through the mean of the Y distri-
bution, then the vertical deviations of each plotted point
from this line (y deviations) would represent. the actual
deviations of ¥ — M,. The sum of these deviations would
be equal to zero, but the sum of these squared deviations
would be greater than the sum of squared deviations from
the regression line—if there is any relationship between X .
and Y. If the horizontal line through the mean of the .Y .
distribution is rotated counterclockwise about the point A4,
where the mean of the X and the mean of the ¥ distribution -
fall, then the sum of squared deviations would become
- smaller and smaller until the line toincides with the regression
line—line AB in Figure 15. It is the second variable, X,
. which makes this regression line meaningful. As long as
the Y measures are considered alone, the best predicted
value of Y for any single X measure would be the horizontal
line, or mean of the Y distribution. But when there is
regression of ¥ on X we find that different values of ¥ are
associated with different values of X. It is these associated
values that become our predictions when we have knowledge
of the relationship between the two variables.

e. The standard error of estimate. The extent to wh1ch
we have errors of prediction, i.e., the degree to which our
predicted Y’ values fail to correspond to the actual ¥ values,
is indicated by the standard error of estzmate In terms of a

formula - ‘ ,
Oy.s = 4 ’Z(—Y_;;_Y_l)z \ (77)

where oy.s = the standard error of estimate . .
Y’ = predicted value of ¥ correspdnding to X
Y = the corresponding actual value of ¥
N = the number of cases in the series -
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Formula (77), however, involves computing the ¥” value for
each X and finding the diserepancy between this value and
- the actual value, squaring, and summing for all predicted
values. If we are not interested in individual errors of
_estimate, we can wuse the following- formula to find
Z(Y — Y'), and then divide this by N and extract the
_square root to get ... Thus

" 2 V ’ .
sw-vyp=zp-Z2 (78)
' _ (141936
= 148688 — e
= 1,486.88 — 403.41
= 1,083.47
‘Then we find oy.; by formula (77). Thus
. &

=T N2
= +/33.8584
= 5.82

" An even simpler method of deriving the standard error of
estimate when we have the correlation coefficient available
is to use the following formula.

T gga= or,,‘\/ 1I—7 - (79)
= 6.824/1 — (.52)8
= 6.824/1 ~ 2704
= 6.824/.7296
= (6.82)(.85)
= 5.80 =

- 'The value 5.80 calculated by means of formula (79) differs
slightly from the value 5.82, caleulated by means of formula
(77) as a result of the errors of rounding involved in the
caleulations. - Formula (79) is valuable in that it enables
s to see how we can evaluate our predictions. If there
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had been no relationship at all between the two variables,
then r would be zero, the value under the radical would be 1,
and the standard error of estimate would therefore be equal
to the standard deviation of the entire Y distribution. The
other limiting case would arise if the relationship between
X and Y were perfect. In this instance 1 would equal 1
and the value under the radical would be zero; hence the
standard error of estimate would be zero also. This is as it
should be, for with a perfect correlation we could predict
precisely the- corresponding Y value for any given value of
X with no errors; on the other hand, with no correlation
present, our best prediction is the mean of the Y distribution
and our errors would be measured by the standard deviation :
of the Y distribution.

f. The index of forecasting efficiency. In the present
case we can get an indication of the reduction in errors of
prediction by comparing the standard error of estimate to
the standard deviation of the Y distribution. The standard
error of estimate’is 5.82. This is a reduction of 1.00 point
compared to the standard deviation, which is 6.82. In
terms of per cent reduction of error we have 1.00/6.82 =
15 per cent. We have reduced the extent of our errors of
prediction, in other words, from knowledge of the correlatlon
between the two vanables by 15 per cent.

You may note that the index of forecasting efficiency, in
this instance 15 per cent, can be obtained with reference to
the size of the correlation coefficient alone. The formula is

E=1-4/1-¢" , (80)
=1-1=(52)
=1-—4/.7296
=1—.85
=.15 .
= 15 per cent

g. Predicting in the opposite direétion. Ordinarily we
are interested in predicting in one direction only, but we
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could, if we were so interested, make predictions of X values
from values of Y. When r = 1.00, the two regression lines
coincide, but when r is less than 1.00, the two regression
lines will be different, and if we are to predict X values from
. given values of Y, then we must do so from the line showing
the regression of X on Y. Our procedure would be the same
~as that which we have already outlined, except that the
regression coefficient would now be

L b=k | g 81)
or bay = r(:—:) ‘ 82)
and the regression equation would be :
o X' =b,(Y — M)) + M, (83)
or X = b + (M. — baM,)- (84)
and the standard error of estimate would be
: Gap =0 V11 . (85)

h. Coding and regression coefficients. What we bave
said before about coding applies to the computations we
used in finding the regression coefficients. If X and Y
have been divided by the same coding constant, then we
do not need to worry about decoding, since ¢.%, in the numer-
ator will cancel 42 or 72 in the denominator of formulas (73)
and (81). If, however, X and ¥ have been coded by divid-
ing by different constants, then we must decode as follows

! - CEENT;
Zxly’ — — 2 it
= ——zzxx?: = [ [2-1:'2 _ (ENz;’)z]i]z ']
N z

8. PREDICTING FROM NONRECTILINEAR RELATION-
' SHIPS '

We have still another problem of prediction to consider,
one that is something of a mixture of the two problems we

(86)

bys
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have already considered.. The,regression coefficient and
regression equation we have just discussed are based, you
recall, upon the assumption that the relationship between
. X and Y is rectilinear. 'What predictions can we make when
this assumption is not warranted, i.e., when the relationship
between X and Y is curvilinear? Qur procedure can best
be illustrated by a concrete problem. Suppose we had 129
items we contemplated using in a questionnaire. These
items have, been scaled by the Thurstone technique (89),
the details of which are unimportant here. For each item,
_ let us suppose that we also have a measure of ambiguity,
Q, and a measure of scale value, S. Our problem is to
determine the most probable Q value from knowledge of
the scale value of the item. Our first step is to plot these
paired values in a correlation table as in Table 62. '

In the absence of any knowledge at all of the relationship
between scale and @ values, our best prediction for each
of the items would be the mean Q value of the entire dis-

TABLE 62.—PzepictioN or ¥ (Q VaLues) FrRoM X (ScALE VALUES) WHEN
. THE RELATIONSHIP BETWEEN THE Tw92 VARIABLES
Is CUBVILINEAR

Scare Vavues (X)

B
Sgc
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Mean of entire ¥ distribution = 2.36
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tribution. This prediction follows from the principle of
least squares which, in the present case, means that we wish
to predict values which will give us the smallest sum of
squared deviations, i.e., the smallest discrepancy between
predicted and observed values. The standard deviation of
the complete distribution of @ values would give us a measure
of the extent of our errors of prediction in this instance.
. But when we have the items classified according to scale
and Q value, as in Table 62, we note that the means of the
columns differ from the mean of the entire distribution.
Could ‘we not predict more accurately for items of a given
range of scale values (items in a given column) if we pre-
dicted the mean @ value of the column rather than the mean
of the entire distribution? . If we predict as the most prob-
able @ value for each item in column 0 the mean @ value
of that column, then the sum of squared deviations of the
items in the column from the mean would give us a measure
of our errors of prediction for the single column. If we
Trepeat this procedure for the items of column 1, column 2,
" and so on, and divide the total sum of squared deviations
within groups by N, we could get an over-all measure of our
errors of prediction. Thus

« Yy

- 2 =2y§»—|—2y?+2y§']-{\;2y§+...+2y§ &7

You may recognize Zy2, 2y, Zvs, - . - Y2 as being the
sum of squares within groups of analys1s of variance. We
did not apply analysis of variance to these scores when they
were presented earlier in Table 22, page 111. If we had,
we could get the sum of squares Which we need in formula :
(87) by subtracting the sum of squares between groups
(columns) from the total sum of squares. But the solution
for the standard eiror of estimate is even simpler if we know
the value of the correlation ratio, since

Oy = Oy V 1 - 7’32 ) (88)
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Substituting in formula (88) with the value of ¢, and n v
taken from Table 22, we get

oy.s = 1.07 /1T — 6911
= 1.07 +/.3089

= (1.07)(.556)
= .505

The value of 0y 595, provides us W1th an estmate of
our errors of predlctlon When we predict as the most probable
Y value for any given value of X, the mean of the ¥ column.
_in which the X value is classiﬁed. We have reduced the
extent of the errors of prediction from the standard deviation
of the entire Y distribution, 1.07, to the value given by o..,

.595. This represents a reduction of .475 points, or an
improvement of .475/1.07 = 47 per cent.

PREDICTIONS AND THE E VALUA TI ON OF
PREDICTIONS

Example 1.—A study of 100 women who thought their marriage
was a success and a study of 100 women who thought their mar-
riage was unsuccessful revealed a differential in response to the
question: Did you have a happy chlldhood? The data are as
follows:

MARITAL STATUS
CriLpEHOOD STATUS . ToTAL
Wnsuccessful Successful -
Marriage Marriage
Happy..covvvevvennn... 40 70 110
Unbappy.............. 60 : 30 20 -
Total.............. 100 100 200

(a) What per cent of the predictions would be correct without
a knowledge of the response to the question concerning child-
hood status? What per cent would be correct with a knowledge
of the response to this question? To what extent is the effi-
ciency of prediction increased by this knowledge?
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(b) Reverse the table and determine the efficiency of predic-
tion of response to the question concerning childhood status
without knowledge of marital status and with knowledge of
marital status. To what extent is the efficiency of prediction
increased by this knowledge? :

Example 2.—The data below, adapted from Newcomb (69),
show student preference for presidental candidates in the 1936
election arranged according to college status. Determine the
efficiency of prediction without a knowledge of student status and
with this knowledge. To what extent is the efficiency of predic-
tion increased by this knowledge?

STUDENT PREFERENCE
CoOLLEGE STATUS . ToraL
‘ Against Roosevelt | For Roosevelt
Juniors—Seniors. .. ... 24 28 52
Sophomores.......... 23 17 40
Fres}.\men ..... PP 37 15 52
. Total............ 84 60 144

Example 3.—Dorcus (10) had an industrial concern select two
extreme groups of workers, a “satisfactory group” and an ‘‘un-
satisfactory group.” ' Each member of both groups was then given
the Humm-Wadsworth Scale and predictions were made on the
basis of scores on the scale as to the group in which the individual
belonged. The resplts were as follows:

Company RaTINGS

. HumMm-WADSWORTH ToraL
ScaLe .
Unsatisfactory Satisfactory
Satisfactory. . ........ 6 18 24
Unsatisfactory........ 16 8 24
Total............ . 22 26 48
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Determine the efficiency of prediction without a knowledge of
Humm-Wadsworth score, but assuming you know .the number of
individuals placed by the company ratings in each of the two
groups. Determine the efficiency of predlctlon with a knowledge
of Humm-Wadsworth score and the increase in efficiency of predlc-
tion with this knowledge.

Example. 4.—Krathwohl (56) reports the following data on re-
lationship between classification on the ACE test of academic
aptitude and grades in the social sciences. Determine the effi-

~ciency of predlctlon without and with knowledge of ACE clas-
sification. What is the increase in efficiency of predictions w1th .
knowledge of ACE classification?

ACE GRADES IN SoCIAL SCIENCE
CLASSIFICATION ) ToraL
Dand E C A and B
More than 75.............. 7 30 39" 76
P4 T (- T 62 59 30 151
Lessthan75............... 49 19 3 71
Total...ooveunernnnnn, 118 108 72 208

Example' 5—In an earlier problem (Example 7, Chapter 5,
page 104) you found the coefficient of correlation between scores
on a test of subject matter and a test of vocabulary in psychology.

(a) Find the regression coefficients: by, and b.,

(b) Using the regression equation, predict the most likely
score on the test of vocabulary (Y) for the following scores on
the test of subject matter (X):

(D.¢ 48 | 55 | 73| s2 | 90
Then ¥’ ‘
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(¢} Using the regression equation, predict the most likely
" score on the test of subject matter (X} for the following scores

on the test of vocabulary (Y):
MY 58 | 71 1 78 ) %0 | e
Then X’ : | ‘

(d) Find the standard errors of estimate, 0,.5 and .., and

interpret them.

Ezample 6.—In an earlier problem (Example 1, Chapter 6,
page 128) you found the correlation ratio of vocabulary test scores.
(Y) on chronological age (X)) Find the standard error of estimate
for the same data, i.e., ¢y.., and interpret it.



CHAPTER 14
RESEARCH AND EXPERIMENTATION

Research problems consist essentially of defining issues
operationally, and collecting, analyzing, describing, and
interpreting data as they bear upon the particular issue or
question. "Thus any question on which it is possible to
collect data ean be the basis of a research problem. To be
sure, as Lynd (66) has stated, not all questions and conse-
quently not all research problems are of equal significance.
But the exact significance of a question is not always an
easy matter to determine beforehand, as any trained re-
searcher knows. Many problems, which may at first
thought seem relatively insignificant, may later lead to very
important contributions to knowledge.

The following questions illustrate something-of the scope
of research activities in the behavioral sciences. Will chil-
dren, on the average, work harder when they are praised
than when they are criticized (45)? Is there any relation-
ship between grades earned in college and scores on a college
entrance examnatmn (33)? Does frustration result, on the
average, in aggression or regression or both (4, 9)? Wil
one method of teaching mathematics result in greater average
achievement upon the part of students than another method
(6)? Do students, on the average, learn just as much from
straight lectures as they do from diseussion groups (100)?
In terms of average achievement, are small classes to be
preferred to large classes (100)? Are individuals who are
honest in one situation likely to be honest in other situations
(67)7 Are personality traits related to.color of the hair
(71)? What is the greatest source of anxiety for 'college
students (18)? Do we tend to suppress experiences which
are unpleasant (17)? Is there any real difference between
the results obtained by the counseling procedures used in
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“nondirective” therapy and “directive” therapy (78)? To
what extent can attitudes be changed as a result of viewing
motion pictures (75, 79)? To what extent do “stereotypes”
determine our responses to social issues (16)? How can
children’s fears be eliminated most effectively (49)? To
what extent can children’s intelligence test scores be modi-
fied by changes in the environment (84)? Do the attitudes
we have toward various political concepts influence the
meaning which these concepts have for us (12, 13)?

" The posing of a question, similar to those just listed, is the
first step in research. Questions, when properly phrased,
become hypotheses which can be subjected to empirical test.
Once a question has been formulated, the next step is plan-
ning the experimental design. This consists of determining
what data will need to be collected, the manner in which
they will be collected, and the methods by which they will
be analyzed. The third step is actually carrying out the
research and analysis. - The final steps are interpreting the
analyzed data and seeing that the results are then made
available to other investigators.

Since it is the initial step which most often proves to be a
stumbling block for the student called upon to undertake
a research project as part of his academic training, we might
examine briefly some of the sources of problems suitable for
-investigation. One of the most fruitful sources of hypothe-
ses is to be found in the theories advanced by various writers
in a given field. In psychology, for example, the learning
theories of Hull (44), Tolman (91), and Guthrie (40) have
" been the starting point for many experiments. Allport’s
(1) theory of functional autonomy in the field of motivation
has been another source of research problems (76). Sears
(81) has summarized many experiments which had their
origin in the psychoanalytic theories of Sigmund Freud.
Likewise, Gestalt theory (55) and the variation of Gestalt
theory advocated by Lewin (58, 59) have resulted in many
important research projects.

Students who have been mdoctnnated with critical atti-
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tudes and who read challengingly the literature in their
field of specialization will not fail to find innumerable
projects demanding investigation. Students who read with
blind acceptance of authority and the printed word, on the
other hand, are apt to overlook assertions and statements
made by writers which are not based upon research evidence.
Such assertions and statements, when questioned, may very
well become the basis of research problems for the critical
reader. The proverb ‘““The grass looks greener on the other
side of the fence” and the many variations of this proverb,
when questioned, became the basis of a series of ingenious
experiments for Wright (101). And Irwin’s (46) question-
ing attitude applied to certain aspects of Wright’s research -
led to additional experimentation.

!

1. INTERPRETATION OF TESTS OF SIGNIFICANCE

Once a problem has been selected for investigation, if
the investigation requires a test of significance—and this
will usually be the case—it is important that we understand
clearly the kind of hypothesis which can be tested by means
of the x% i, €%, or F tests. Despite the fact that the ques-
tions or hypotheses raised earlier were stated in such forms
as ““Is there any relationship between . . .,” “To what extent
can attitudes be changed by ... ,” “Is there any difference
between . . .,” and so forth, these questions must be re-
stated when ‘it comes to the application of tests of sig-
nificance. To be sure, it is in the forms just given that the
investigator usually gets his hunch or hypothesis, i.e., it is
usually the investigator’s opinion that one method is more
effective than another, or that attitudes ean be changed by
motion pictures, or that there is some relationship between
two variables. But, as McNemar has pointed out in the
case of a mean difference, “Regardless of the experimental
hunch or hypothesis, the only workable statistical hypothesis
is that no difference exists between the universe means”
(68, pp. 336-337). ' ‘



280 Research and Experimentation

The hypothesis of no difference is the familiar null hypothe-
siz and applies not only to differences between means. It
is stated in a variety of ways depending upon the particular
investigation.! If we are testing the difference between the
means of achievement scores of children taught by one
method and children taught by another method, our working
hypothesis would be that there is no difference between the
the means of the populations of which our two groups are
assumed to be samples. Sometimes we state our working
hypothesis in this form: Two samples have been drawn
from the same population; consequently there is no differ-
ence between them other than would be expected as a result
of sampling variation. In testing the significance of an
observed correlation coefficient, the hypothesis may be that
the correlation in the population is zero, or that the sample
value of r does not differ significantly from some other
specified value of the population r.” The same sort of hy-
pothesis is applied to the means of several samples being
tested by the F test. Qur working hypothesis is that they
have all been drawn from the same population or popula-
tions with a common mean and variance.! The ealeulation
of x® tests the same null hypothesis: That there is no differ-
ence between our observed and expected frequencies or that
the observed sample data have been drawn from a population
distributed according to the expected frequencies.

Our tests of significance are based on the assumption that

.L A hypothesis which is set up with the possibility of being rejected at some
designated level of significance is called a null hypothesis, the term “null”
referring to our interest in possible rejection rather than to the fact that the
hypothesis is stated negatively. Fisher has emphasized that “every experi-
ment may be szid to exist only in order to give the facts a chance of disproving
the null hypothesis™ (26, p. 16). E .

In a broad sense, the term is used by some statisticians to refer to any eligible
hypothesis, that is, any hypothesis which is exact and free from vagueness,
80 that it may form the basis for the sampling distribution used in making &
t&;tsof aign.iﬁc)a.nce. (See the note by T. A. Bancroft in Biometrics Bulletin,
1945, 1, p. 38.

3 N'Io;epprecisely, the hypothesis is that the samples have been drawn from
the same or identical populations, since the assumption i3 that not only the
means and the variances are the same, but that the populations are, in addi-
tion, normally distributed.
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the pull hypothesis is true. If we then obtain a value of ¢,
F, &, or x? such that it would occur on the basis of sampling
variation alone 5 per cent or less of the time, this may lead
us to reject the null hypothesis at a defined level of sig-
nificance.? And if the null hypothesis is not tenable, this
tells us that we would not expecet to get the results we have
obtained on the basis of sampling variation alone. If our
results are not due to sampling errors, then this fact may,
through logie and ingight, lead us to infer that some differ-
ence between our experimental groups does exist and that
this difference is attributable to one of our variables. But
this inference must come from our experimental design and
from analysis of our variables, not from tests of significance.
Should the value of ¢, for example, be such that it could be
expected to occur much more frequently thah the 5 per cent
of the time which we have agreed to regard as significant,
then we must assume that the null hypothesis is tenable,
i.e., that we have no evidence against it. But observe that
the statement that we have no evidence against the hypothe-
sis does not prove it to be true; it merely means that this
particular sample offers insufficient evidence for rejecting it.
The insistence upon this form of statement of a statistical
hypothesis, we agree with McNemar, is not “mere quib-
bling.” If the null hypothesis iz true, then successive
repetitions of the research would give a sampling distribu-
31t was pointed out previously, but it is worth repeating, that the pull
hypothesis which is tested is not set up necessarily because we believe it to be
true, but so that it may be considered for possible rejection at a designated
level of significance. On the assumption that the hypothesis js true, then the -
sampling distribution of the statistic under conmderation may be used to deter
mine the probability that random sampling from the population for which the
bypothesia holds would yield statistics deviating from tEe arameter as much |
88 the gample one does. Bince the null hypothesis specifies the frequencies
with which the different results of an experiment may occur, we may also
divide thess results into two classes, one of which shows a sigmificant discrep-
ancy or deviation from the null hypothesis, and the other no significant dis-
crepancy or deviation from this hypothesis (26, pp. 16-17). “If these classes
of resulta are chosen, such that the first; will ocenr when the null hypothesis is
true with a known degree of rarity in, for example, 5 per cent or } per cent of
the trials, then we have a test by which to judge, at a known levergf signifi-

cance, whether or not the data contradict the hypothesis to be tested” (26,
P 182). CJ, also t.he'dlscumion in Walker (36, pp. 200-292).
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tion of differences which would have a mean of zero. The
standard deviation of this sampling distribution is esti-
mated from the standard error of the difference we have
calculated. By reference to the table of £, we can then
make a statement of the probability of obtaining a value of
{ as large as the one we have obtained. Under no circums-
stances, however, can we make any statement of probability
that the true population difference is some specified value.
Populatmn parameters, though smgle, fixed values, usually
remain unknown. , .

But despite the limitations imposed by the fact that
population values are unknown, we sometimes lose sight of
the fact that by establishing the fiducial limits we may infer
something as to the degree of the difference between two
means. That is, a simple test of significance may lead us to
reject the hypothesis of no difference, but the fidueial limits
permit us to determine, again with a given degree of con-
fidence, whether we may consider as tenable a hypothesis
that the population mean difference is within a certain range.

2. SAMPLES AND RESEARCH

Since most research deals with samples, we may expand
our earlier discussion to take into consideration certain
aspects of sampling which we neglected. When, as is
generally the case, we are interested in making inferences
from statistics derived from samples about the population
or universe, certain assumptions are necessary. We must
assume that our sample is representative of the population
from which it was drawn. We may, however, define this
population in various ways. We may start with a definition
‘of a population of males as consisting of all males in the
world. We may limit this definition by restricting our
population to all males of a given age in a given eountry;
all males of a given age in a given state; all males of a given
age in a given college; and so on. If we have conducted an
experiment with a random sample of male college students
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selected from a given college, we can safely generalize from
tests of significance about the population of college students
in genera.l only if we can make the assumptxon that our
 sample is representative of college students in general. .
Generalizations from samples must always, in other words,
be considered as applying only to the population of Whlch
the samples are representatlve. )

Samples used in experimentation and research, and conse-
quently statistics derived from these samples, are subject
to two kinds of errors: constant errors and errors of random
sampling. Constant errors are errors which bias statistics
in one direction. The Literary Digest poll of 1936, which
predicted a Republican victory on election day, illustrates
what happens when constant errors are present in a sample.
One of the reasons why the Digest poll was in error was that
much of Roosevelt’s support lay in the lower income groups
which were not represented on the lists of telephone sub-
scribers and automobile owners from which the Digest
largely selected its sample. The results of the poll conse~
quently were biased. The sample was not representative
of the voting population, and the inaccuracy of the generali-
zation concerning the outcome of the election, based upon
the sample, was evident to polling experts long before
election day arrived (29). The important point in this
connection is that the standard error formulas, upon which
statistical tests of significance are based, do not provide
any estimate of the direction or magnitude of constant
errors. Constant errors can possibly be detected by a
logical examination of the manner in which the sample was
selected.

Only the errors of random sampling, the second source of
errors to which samples are subject, can be estimated by
standard error formulas. The standard error of a statistic
estimates the variation to be expected of the statistic from
sample to sample when the successive samples are of the
same size and randomly selected from a given populatlon.
A random sample is customanly defined as a sample in
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which each individual in the defined population must have
an equal chance of appearing.* Such a sample, if possible
to obtain, would insure the fact that the sample is repre-
sentative of the population., But strictly speaking, it is
obvious that, according to this definition of randomness,
the samples dealt with by psychologists, educators, sociolo-
gists, and others in-the social sciences are never random.
For all individuals in any-large population never have an
equal chance of appearing in the sample selected for in-
vestigation. . -
- In an experiment, for example, involving a comparison of
two teaching methods for sixth-grade children, the subjects
being two classes in a given school, could we generalize
from the sample results concerning the effectiveness of the
two methods for sixth-grade -students in general? If we
could assume that our subjects constitute a random sample
of the population of sixth-grade students, then we could
generalize about this pdpulation. But our subjects could
. be considered 'a random sample only if every sixth-grade
‘student had an equal opportunity to appear in the sample.
Obviously, this is not the case.’ : ,
i The problems of random sampling which are faced by the
investigator in the social science fields, however, are not
peculiar to these fields alone. * In the same sense that indi-
viduals in a large population never have an equal chance
of -appearing in samples under investigation, the samples
"used by geologists, agronomists, biologists, physicists, chem-
ists, and engineers are not, strictly speaking, random sam-
ples. A geologistt may examine a sample of ore from a
given area, but does every possible unit of ore have an equal

¢ Snedecor contends, however, that for tests of significance one can specify
that, after having decided upon the size of the sample to be used, the only
requirement which needs to be imposed is that “every possible sample of n
individuals shall have the same chance of being drawn’ (86, p. 389). Note
that this says nothing about individuals. .
5 We could, of course, define the population about which we were generalizing
as consisting not of individuals, but of intact sixth-grade classes in schools of a
given size, We could then select by chance the schools and the classes in the
- gchools in which we carried out our experiment and assume that our samples
were representative of this defined population.
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opportunity of appearing in the sample? An industrial
engineer testing the tensile strength of thread or some other
material in a plant, regardless of how the sample of thread
is selected, does not have a random sample in which every
unit in the population has an equal opportunity to appear.
The sample of thread he studies can be a random sample
only of the population of thread already manufactured.
Thread which has not yet been produced does not have an
equal opportunity to appear in the sample. Yet this does
not prevent the industrial engineer from assuming that his
sample is a random sample and that’ it is representative of
all the thread that is currently coming.

The same is true of the agronomlst who conducts research _
with a variety of corn grown in a given soil mixture. He
may have a random sample of the population of corn grown
this year, but he obviously does not have a random sample
of the corn to be grown next year, for this corn does not have
an equal opportunity to appear in the sample. But, again,
this does not prevent the agronomist from dealing with his
sample as if it were random, nor does it prevent him from
assuming that his sample is representative of the corn to
be grown in the future. From the sample he has he conducts
tests of significance and generalizes on the basis of them
about the corn which is yet to be grown.

The problem here, it seems, is one of an ideal. As an
ideal, a random sample is to be regarded in much the same
fashion as Boyle’s law in physics, which gases are assumed .
in theory to obey, but which in practice they do not. The
concept of the ideal is a useful and convenient way of looking
at the behavior of gases. The failure of gases to satisfy the .
ideal does not prevent physicists and chemists from experi~
menting and making generalizations on the basis of it. .

In the behavioral sciences we may recognize and acknowl-
edge that we never have perfectly random samples of a large
population. But, if we are willing to make the necessary
assumptions, we find that in many, many instances the
assumptions are justified in terms of practical considera~ .
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tions. Much has been said against the samples used in
behavioral research—and that many studies have violated
even simple precautions to insure representativeness is not
to be denied—but generalizations based upon samples in
which care has been taken to eliminate bias and which are
then treated as i#f they were random samples from larger
populations have been found to be sound and useful. The
fact is that no one has ever studied the correlation between
college grades and tests of academic aptitude in a strictly
random sample of college students from the population of
all college students. Yet generalizations have held up that
have been made on the basis of available correlation co-
efficients derived from samples and tests of significance have
been applied to these coeflicients as though they were de-
rived from random samples.

-MeNemar, in the article to which we have referred prev1—
ously, summarizes the problem of representativeness in this
way: . .

In the absence of any rule-of~thumb method for checking repre-
sentativeness in psychological research, the investigator must re-
sort to logical considerations. If the sample has been drawn by
some mechanical means or by stratifying the universe on the basis
of pertinent facts, one can feel fairly sure that the sample is repre-
sentative. In the absence of an obviously valid scheme for
drawing the sample, the only thing one can do is to describe the
sample as completely as possible with regard to known charac-
teristics of the universe from which it was drawn. If the sample
is typical of the umverse in several variables which are related to
the variate being studied, it is safe to assume that it is representa~
tive. This reasoning is, of course, posterior use of the principles
of stratified sampling. The importance of fully describing the
sample and how it was drawn cannot be overemphasized. With-
out such information it is impossible to evaluate a given research.
(68, p. 384.)¢

& For a discussion of stratified samples, the article by McNemar (68) should
be consulted as should Stock (88). The use of tables of random numbers for
mechanically selecting samples will be discussed in a later section.



Size of the Sample 287

8. SIZE OF .THE SAMPLE

It would not be difficult to ﬁnd ma.ny articles stressmg
the need and value of large samples in psychological and
educational research. Indeed, as McNemar points out:-

Some psychologists frown upon the use of small samples, as,
for example, N less than 25; a few use such small samples, but scorn
the necessity of evaluating then' results in terms of the mathematies
of small samples . . . while others will rightfully argue that when
small samples, properly evaluated,' yield a difference which would
arise by chance only once in a hundred times, the result is just as
dependable as if the same chance figure had been found for large
samples. It is assumed in either case—small or large sampling—
that the sampling technique is such as to avoid bias. It is com-.
monly and erroneously thought that some magic lies in large
samples and that bias is less apt to be present. The larger the
sample, the greater the precision so far as random errors are con-
cerned, but it does not follow that bias is avoided by increasing the
size of the sample. (68, p. 340.)

If, in comparing the means of two independent samples,
each consisting of 15 eases, for example, we obtained a £ of
2.76, which is significant at the 1 per cent level for 28 degrees
of freedom, we could reject the hypothesis being tested with
the same degree of confidence that we would have if the
samples had consisted of 100 cases each and the value of &
obtained was 2.60. Our confidence, in other words, is not
increased in rejecting a hypothesis at the 1 or 5 per cent
levels of significance when we are dealing with samples of
100 cases each, over what it would be if the same hypothesis
were rejected at the 1 or 5 per cent levels for samples of
15 cases each.

Let us suppose, however, that in a given experiment we
are testing the difference between the means of two samples
of 25 cases each and that our computed value of £ just fails
to meet the required value at the 5 per cent level of sig-
nificance. Now if we assume that the difference between
the means will remain fairly constant, regardless of the size
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of the samples, then we would, of course, expect to get a
significant value of ¢ if the size of the samples were increased.
‘We could, in other words, repeat the experiment, if this
~were feasible, with samples sufficiently large to insure more
or less that we would obtain a significant value of 2.7
With respect to this persistent question of how many cases
one should use, there is no one set answer. But we agree
with McNemar “that the demonstration of a difference (or
effect) which is large enough to possess any practical or
social significance will nct require large samples; certainly,
. a difference which is so small as to require 1000 cases in each
_sample to demonstrate it is apt to possess little psychological
meaning” (68, p. 340).

4. CONTROL GROUPS

Suppose that an investigator reported the following experi-
‘ment: At the beginning of the term in a Latin class, the
members were given an English vocabulary test. At the
end of the term the test was repeated and the difference
between the means of the first and second tests is significant
at the 1 per cent level. What conclusions may be drawn
from this experiment? Can we assume that the study of
Latin increases English vocabulary? This might be the
.case, but the experiment described does not establish the
fact. All that we can conclude is that there has been a
significant increase in the mean English vocabulary score,
but we do not know whether this is largely due to the Latin
course or not. The reason that we cannot draw the conclu-
sion concerning the effects of the Latin course is that the
acquisition of English vocabulary is a growth or achievement
process that may have occurred, and probably did to some
extent, in students who were not members of the Latin
class. If the test had been given to an arithmetic class we
would expect this group to show some increase in vocabulary
also. :

_47:))See, for example, the discussion in Peters and Van Voorhis (74, pp. 469-
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In this and every other experiment where the changes in
behavior we are measuring might possibly oceur as a result
of factors external to the experiment proper, a control group
which does not experience the experimental variable is neces-
sary for evaluating the changes observed in the experi-
mental group. If we fail to take the precaution of having a
control group, then we have no way of determining how
much of the change in the experimental group ¢an be attrib-
uted to the experimental variable, in this instance the Latin
course, ahd how much to other unknown factors. _

a. Control by random selection. Control groups are.
sometimes formed in research by dividing the total number
of subjects available into two groups by some method of.
random gelection. Each subject might be assigned a num-
ber, the numbers placed on dises, put into a box, and thor-
oughly mixed. The numbers are then drawn out one at a
time, the first number being asgigned to one group and the
second number to the second, the third to the first, the
fourth number to the second, and so on, until the numbers
in the box are exhausted. Then by flipping a coin one of
the two groups could be assigned to the experimental condi-
tion and the other could serve as a control,

A still more efficient method of random selection, how-
ever, is to make use of a lable of random numbers (27, 72).
These tables consist of numbers arranged at random in
columns and rows. The tables can be used by entering at
any point and by reading in any direction, down or up,
right or left, or obliquely. U

Let us suppose that we wished to divide 80 subjects into
two groups of 40 each. 'We first number our subjects from
00to 79. To determine where to enter the table, we might
close our eyes and put our peneil on the table. Suppose we
then open our eyes and find that the pencil is resting, let us
say, on column (5) and row (26). It makes no difference,
once the point of entry has been determined, in which direc-
tion we read. Let us assume that we are going to read
downward. Since we need two place numbers, we obtain
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these by combining the digits in adjoining columns. We
read down the column until we have 40 unlike numbers
below 80, We skip any number which is 80 or above and
any number which is a repetition of a number previously
read. Going down columng (5) and (6) of Table 63, which
is'a section of the table of random numbers, Table G, pp.
340-341, we would have 31, 14, 17, and 22, We would
‘skip 99, since we have no subject who is assigned a number
as large as this. If 99 were followed by 31, we would skip

TABLE ﬁ.‘.’:.——A Brock oF Rinpom NUMBERS SELECTED rFroM TamLe G

- CoLumMNs

1 B'Ow . .
®lo®|®o|l®|o|la|a|a| e
" 26 '3 1 7 7 5 2 2 | 3 4
27 1 4 |8 5 |7 o | 9 6 4
28 1 7 2 | 8 0 3 | e 2 3
29 2 2 | o | o 7 2 3 9 2
30 |'9.| 9 5.| 6 9 g8 | 2 8 0

this number also since the subject assigned number 31 hasg
already been selected. 'When we have reached the last row
in the table we may continue to read numbers by going up
or down the adjoining columns, for example, columns (7}
and (8), until we have 40 unlike numbers below 80. -

The individuals with the numbers corresponding to the
first 40 numbers below 80 that we have read from the table
of random numbers would econstitute one of our groups and
the remaining 40 individuals would econstitute the second
group. In a similar fashion we could divide a large group
of subjects at random into any number of smaller groups.
Tables of random numbers can also be used for selecting at
random s single small group of subjects from a larger total,
and for assigning groups at random to one of a number of
given experimental conditions.
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When individuals have been assigned .to control and
experimental groups in the manner just described or by some
other method of random selection, then the proper formula
for the standard error of the difference to use in evaluating
the difference between the means of the experimental and
control groups is formula (50) or formula (61)

b. Control by matching individuals. It is obvious, how-
ever, that many experiments will not permit the random
selection of an experimental and control group and, in many
instances, greater precision in terms of a reduced standard
error of the difference can often be achieved by not making -
use of groups selected at random. In the experiment cited
on the effect of Latin on' English vocabulary, for example, -
it would not be possible to assign subjects to the Latin class -
and to a control group at random. We must deal with the
Latin class as it stands. In this instance we could establish
a control group by pairing with every member of the Latin
class a non-Latin student with a similar English vocabulary
score. At the end of the experiment we repeat the English
vocabulary test with the experimental and control groups.
We thus have an initial and final test score for each indi-
vidual. We could now test the difference between the
means of the initial and final test for the Latin group. But
since correlation is involved between the means we are
comparing, we must make use of the difference formula,

0d
Oy = ——— iffer-
Ry to find the standard error of the mean differ

ence. We could, of course, compute the standard error of
the difference in terms of formula (48), if we first found the
correlation coefficient between the initial and final scores
for the Latin group, but working directly with the differences
between scores involves less labor. In a similar manner we
could determine whether the initial and final means of the
control group differ significantly.

Suppose that we found a significant value of £ in each
comparison. This would mean that both the Latin group
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and the non-Latin group show significant differences be-
tween the first and final tests. But we would, on the basis
of the comparisons just made, have no way of knowing
whether the study of Latin resulted in a greater mean in-
crease in English vocabulary. It is in comparing the differ-
ence between the mean gains (or mean losses or simply mean
changes, as might be the case in another experiment) that
we would find the answer to this question. The standard
error of the difference between the mean gains can be found
quite simply when we have paired the members of our
experimental and control groups.

We first find the difference between the initial and the
final test for each member of the two groups. We thus
have a difference score for each member of the two groups,
and these scores are shown in columns (4) and (7) of Table
64. And since we have paired the members of each group,

TABLE GL;THE COMPUTATION OF THE STANDARD ERROR OF THE MEeaAN
DIFFERENCE IN Gams ¥or MarcHED INDIVIDUALS

-

LaATIN (ExpERMENTAL) | Non-LaTIN (CoNTROL) DIFFERENCE

. Pam - N GaIN
B ¢ Y 2 3) 4 G) | () ™ 8)
1 35 42 7 35 36 1 6
2 42 46 4 43 48 5 -1
3 28 28 0 27 25 -2 2
4 32 31 -1 30 32 2 -3
5 37 10 3 38 37 -1 4

the difference scores are also paired. All that we need to
do is to find the difference between each pair of difference
scores. These scores, listed in column (8), will represent
" the differences.in gains or losses for each pair of subjects.
We then find the standard deviation of this distribution.
This standard deviation divided by the square root of
N — 1, where N equals the number of pairs, will give us the
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standard error that we need for evaluating the difference in
mean gain in English vocabulary for the two groups. Thus

_* o4,
T WVN-=-1

Perhaps you have noticed from Table 64 that the matched
pairs do not have precisely the same scores on the. initial
test. Indeed, it is seldom that we can match the members
of the two groups so that they have exactly the same initial
scores. We must expect to have some discrepancies. Peters -
and Van Voorhis (74, pp. 448-449) suggest that differences
between the pairs on the matching variable as large as 5 to
10 per cent of the range of scores are permissible as long as
. they are balanced between the two groups so as to keep the
means apprommately equal.

Sometimes it is not feasible to pair individuals in the
control and experimental groups on the variable on which
we are going to make a test of significance, but we may be
able to pair our subjects on the basis of some variable which
we have reason to believe is correlated with the variable on
which the two groups are to be compared. We might be
able to pair the subjects on the basis of age, intelligence test
scores, reading speed, or some other factor that has a fair
degree of correlation with the variable under study. If we
match subjects in the experimental and control groups on
this basis, we may still make use of the difference formula
for finding the standard error of the mean difference.

If we succeed in pairing on some variable so that we
introduce a correlation coefficient as high as .75, then this
has the effect of reducing the standard error of the difference
by about one half (68, p. 354). We already know that the
standard error of the difference can be reduced by increasing
the number of subjects in each group. But we would have
to quadruple the number of subjects to achieve this same
reduction in the standard error of the difference for groups
selected at random. If we can introduce a correlation co-

(89)
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efficient of .50, thig would reduce the standard error of the
difference as much as would doubling the number of sub-
Jects for groups selected at random (68, p. 354).* Pairing
individuals on the basis of some relevant variable, we see,
is obviously advantageous statistically and also from the
point of view of experimental design. But if the subjects
are-paired on the basis of a variable which fails to be corre-
lated very highly with the experimental variable, then the
reduction in the number of degrees of freedom avaﬂable for
evaluating the ¢ obtained may offset the slight reduction in
the standard error of. the difference. Qur experimental
‘design, in this case, would really be less efficient than if we
had used groups selected at random.

. ¢. Control by matching groups. Even when circum-
stances do not permit the pairing of individuals, it may still
be possible to match groups. If we can matech individuals
this insures the matching of groups. We can, however,
match or equate entire groups, without regard for indi-
viduals, by seeing to it that the two groups have approxi-
mately the same mean and standard deviation on the initial
test on the experimental variable or, if this is not possible,
on gsome other relevant variable. If the variable on which
the two groups are matched is correlated with the variable
under study, we may still take advantage of this condition
to reduce the standard error of the difference. When
groups have been matched on this basis, the proper formula
to use in finding the standard error of the mean difference is
formula (49).

- d. Single group serving as its own control. FEarlier in our
discussion we pointed out that a single group cannot serve
as its own control whenever there is any basis for assuming
that the changes in behavior which we are measuring might
possibly be the result of factors external to the experimental
situation. We should point out now that if we have mo
Teason to assume that external factors are important, then,
of -course, the experimental group may serve as its own
‘control. For example, if we measured the attitudes of sub-
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jects just before and smmediately after theyvhad seen a motion
picture designed to change attitudes, we would have no
peed of a control group. We could logiecally assume that
whatever changes in attitufle occurred were directly at-
tributable to the influence of the motion picture, since it is
- difficult to see what possible external factors might be at
work in this particular experiment. When a single group
serves as its own control, the presence of correlation must be
recognized and taken into account in computing the standard
error of the difference between means. .

5. THE t TEST AND THE ASSUMPTION OF HOMO-
GENEITY OF VARIANCES

The experimental demgns and problems we have been
discussing concern largely the test of significance of a mean
difference based upon the sampling distribution of £ - Test-
ing the significance of the difference between two sample
means, by dividing the difference by the standard error of
the difference and referring the obtained value to the table
of i, involves, as we have said before, the assumption that
the variances of the populations from which the samples
were drawn do not greatly differ. If the variances of the
populations do differ, and if a significant value of ¢ is ob-
tained, then we can still reject the hypothesis that the two
samples were drawn from the same or identical populations.
But we do not know, however, whether the two populations
differ only with respect to variances or perhaps with respect
to both means and variances.

Since our interest is usually in the difference between
means, it is fortunate that in most experimental work vari-
-ances will not differ significantly. But a test of this hy-
pothesis, in case of doubt, is proper and may be easily made.
We may determine whether the assumption of homogeneity
of variances is justified by calculatmg the ratio between the
two estimates of the population variance derived from the
samples. That is, we first find the sum of squares within
one of our sa.mples and divide this by n; — 1; then we find
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the sum of squares within the second sample and divide
this by ns — 1. We then caleulate the ratio between these
two variances, always placing the larger variance in the
numerator. The value obtained is F, and we enter the
tolumn of the table of F with the number of degrees of
freedom corresponding to the larger variance and find the
row ‘entry corresponding to the degrees of freedom of the
smaller variance. Since the calculated value of F will
always be larger than 1, so that only one end of the F dis-
tribution is involved, the tabled value at the 1 per cent
level will indicate the value at the 2 per cent level.? Let us
apply this test to the variances of the “lecture” and “project”
* groups mentioned ea.rher in connection with analysis of

variance.
From the date of Table 36, we find that the estimate of the
population variance based upon the scores of the “lecture”
- group is equal to ,
- | 2 U

m—1_5=1 =3.0.
For the “project” group, we shall have
Z:c’ 22
m—1-5—1-°>%

. F will be equal to % = L. 571 By reference to Table E,

we find that an F of 15.98 will be required in order for us to

_reject the hypothesis of homogeneity of variances ai the
2 per cent level for 4 and 4 degrees of freedom. Thus there
is no reason to suspect that the two variances differ s1g-
nificantly.

Let us take a case where the two estimates of the popula-
tion variances do differ significantly, but where we have the
same number of subjects in each group. When we tested

This discussion and the following one are based upon the new, fourth

edltmn (1946) of Snedecor’s book (86} which appeared toa late to beincluded
in the list of references,
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the difference between the means of attitude test scores of
50 Republicans and 50 Democrats (Table 35), we found a
value of £ equal to 6.9 which, for 98 degrees of freedom,-was
highly significant. If we apply the test for homogeneity of -

2
Vanances, however, we find that — 1s equal to 2.25. Accord-

“ing to Table E, an F equal to 2. 25 slightly exceeds the tabled
value at the 2 per cent point for degrees of freedom equal to
49 and 49. Thus we would reject the hypothesis of homo-
geneity of variances. But can we test the hypothesis that
the means of the population from which the samples were
drawn are equal, irrespective of variances? As long as the
number of cases in each sample is the same so that n, — 1
equals n; — 1, the solution is fairly simple. Snedecor
recommends that we merely enter the £ table with degrees
of freedom equal to 7, — 1 or just half the number
(ny + nz — 2) we have when the variances do not differ
significantly. Thus, entering the table of ¢ with degrees of
freedom equal to 49, we find that our conclusion concerning
the difference between the means remains unchanged. The
obtained value of £, 6.9, still exceeds the 1 per cent point for
49 degrees of freedom.

What is the solution, however, if n; and n; differ greatly
as do also the variances? Let us suppose that we have one
sample of 10 cases and another of 30, and that the two
estimates of the population variances are 27.04 and 5.76,
respectxvely. F would be equal to 2577(? or 4.694, a highly

significant value for degrees of freedom equal to 9 and 29,
and the hypothesis of homogeneity of variances would be
rejected. Can we, under these circumstances, test the
hypothesis that the population means are equal without any
hypothesis concerning the variances? Snedecor reports an
unpublished paper by Cochran and Cox in which an approxi-
mate method is proposed for testing this hypothesis.

We calculate the sum of squares within each group and
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find the estimate of the population variances by dividing the
sum of squares for the first group by n; — 1 and that for the
second group by nz — 1. These two values for the case at
hand are equal to 27.04 and 5.76, respectively. The vari-
ances of the two sample means are found by dividing the
estimates of the population variances by the corresponding
number of cases in the samples. For the first group the

rvaﬂﬂa,nce of the mean would be equal to Ll 2.704, and

10
" for the second group we would have %;%— = ,192,
' Let us suppose that the difference between the means is

equal to 4.2 and the obtained value of £ will then be equal to-
M- M, _ 42 42
Tmg - V2.704 + 192 — 17

" To find out whether this value is significant at the 5 per
cent level, we find the tabled value of £ at the 5 per cent
Jevel for both n; — 1 and ns — 1. For the first sample,
with 9 degrees of freedom, ? at the 5 per cent point is equal
to 2.262; for the second sample, with 29 degrees of freedom,
the value of £ at the 5 per cent point is equal to 2.045. These
two values, which for convenience may be called #, and £,
are substituted along with the corresponding variances of
the means of the two samples in the formula given below to
find the approximate value of ¢ required at the b per cent
level of significance. Thus

59 level = (o) () -ii- Sfm,) (&)

=247

Substituting in the above formula., we obtain
(2.704)(2.262) +- (.192)(2.045)
2704 + .192

JThe hypothesis tested by comparing the value of § (2.47),
obtained by dividing the difference between the means by

5% level = = 2.248
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the standard error of the difference, with the value of 2
(2.248) approximated above is that the means of the popula-
tions from which the two samples were drawn are equal,
with no hypothesis concerning the population variances
involved. Since the calculated value of 2.47 is greater than
the approximated value of 2.248, we may reject the hy-
pothesis at the 5 per cent level. We could, of course, have
used the tabled values of £ at the 1 per cent point instead
of the 5 per cent point in the approximation formula, if we
had wanted to find the value of ¢ requlred at the 1 per cent '
Ievel of mgm.ﬁca.nce :

6. ADDITIONAL PROBLEMS IN EXPERIMENTAL
DESIGN

Similar problems of experimental design involving ¢, F,
and x% could be treated in much the same manner that
problems involving { have been treated. For a discussion
of these, however, the student is referred to Peters and Van
Voorhis (74), Lindquist (64), Fisher (26, 26), Snedecor (86),
Tippett (90), and Goulden (35). The articles mentioned
previously in connection with analysis of variance should be
consulted also.
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APPENDIX

TABLE A.—Squages aNp Squarg Roors oF Numsers ¥rom 1 To 1,000

N z VN N Nt N
1 1 1.000 41 1681 6.403
2 4 1414 42 1764 6.481
3 9 1.732 43 1849 6.557 *
4 16 2.000 44 1936 6.633
5 25 2.236 45 20 25 6.708
] 36 2.449 46 2116 6.782
7 |'- 49 2646 -l 47 2209 6.856
8 - 64 2.828 48 23 04 6.928 -
9 81 3.000 49 2401 7.000 -

10 100 3162 50 2500 7.071

11 121 3.317 51 26 01 7.141 -

12 144 3.464 52 2704 7.211

13 169 . 3.606 " 53 28 09 7.280

14 196 3.742 54 2916 | 7.348

15 225 3.873 55 3025 7.416

16 . 256 4.000 56 3136 7.483

17 289 - 4123 57 3249 7.550

18 324 4243 58 3364 . 7.616

19 361 4.359 59 3481 7.681

20 400 4,472 60 3600 - 7.746

21 441 4,583 61 3721 7.810

.22 484 4.690 62 3844 7.874

23 529 4.796 63 . 3069 7.937

24 576 | 4899 64 4096 8.000

25 625 5.000 - 65 4225 8.062

26 676 5.009 66 4356 8.124

27 729 5.196 67 4489 8.185

28 784 5.292 68 4624 8.246

29 841 5.385 69 4761 8.307

30 900 5.477 70 4900 8.367

31 961 5.568 - 71 5041 8.426

32 1024 5.657 72 5184 8.485

33 1089 5.745 73 5329 8.544

34 11 56 5.831 74 5476 8.602

35 1225 5.916 75 56 25 8.660

36 1296 6.000 76 5776 8.718

37 13 69 6.083 77 5929 8.775 .

38 1444 6.164 78 60 84 8.832

39 1521 6.245 79 6241 | 8888

40 16 00 6.325 80 64 00 8.944
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. TABLE A.—SQUARES AND SQUA@ Roors—Continued

N N2 VN N N2 VN
" 81 6561 9.000 121 14641 11.000
82 6724 9.055 122 14884 11.045

6889 9.110 123 15129 11.091

70 56 9.165 124 15376 11.136
85 7225 9.220 125 15625 11.180
86 7396 9.274 126 15876 11.225
87 7569 9.327 127 16129 11.269
88 7744 9.381 . 128 16384 11.314
89 7921 9.434 129 16641 11.358
90 | . 8100 9.487 130 16900 11.402
91 8281 9.539 131 17161 11.446
92 8464 9.592 132 17424 11.489
93 8649 9.644 133 17689 11.533
94 8336 9.695 134 17956 11.576
95 9025 9.747 135 18225 11619
96 9216 9.798 136 18496 11.662
97 9409 9.849 137 18769 11.705
98 96 04 9.899 138 - 19044 11.747
99 9801 9.950 139 19321 11.790
100 10000 10.000 140 196 00 11.832
101 10201 10.050 141 19881 11.874
102 10404 10.100 142 201 64 - 11.916
103 10609 10.149 143 204 49 11.958
104 10816 10.198 144 20736 12.000
105 11025 10.247 145 21025 12.042
106 11236 10.296 146 21316 12.083
107 11449 10.344 147 21609 12.124
108 11664 10.392 148 21904 12.166
109 11881 10.440 149 22201 12.207
110 12100 10.488 150 225 00 12.247
111 12321 ,| 10536 151 292801 12.288
112 12544 ‘| 10583 152 23104 12.329
113 12769 10.630 153 23409 12.369
114 12996 10.677 . 154 23716 12.410
115 13225 -10.724 155 24025 12.450
116 13456 10.770 156 24336 12.490
117 13689 10.817 157 24649 12.530
118 13924 10.863 158 24964 12.570
119 14161 10.909 159 25281 12.610
120 14400 - 10.954 160 256 00 12.649




Appendiz 309
TABLE A.—SquaRes aNp SQUARE Roors—Continued
N N: VN N N2 vN
161 25921 12.689 201 40401 14.177
162 26244 12.728 - 202 40804 14.213
163 26569 12.767 203 41209 14.248
164 26896 12.806 204 41616 14.283
165 27225 12.845 205 42025 14.318
166 27556 12.834 206 42436 14.353
167 27889 12.923 207 42849 14.387
168 "+ 28224 12.961 208 43264 14,422
169 - 28561 13.000 209 436 81 14.457
_1_'_79 28900 13.038 _2l0_ 44100 14,491
171 29241 13.077 211. 44521 14.526
172 29584 13.115 212 44944 14.560
173 29929 13.153 213 45369 14.595
174 30276 13.191 214 457 96 14.629
175 30625 13.229 215 46225 14.663
176 30976 13.266 216 466 56 14.697
177 31329 13.304 217 47089 14,731
178 31684 13.342 218 47524 14.765
179 32041 13.379 219 47961 14.799
}§Q 32400 13.416 _22 48400 14.832
181 32761 13.454 221 48841 14.866
182 33124 13.491 222 49284 14.900
183 33489 . 13.528 223 49729 14.933
184 33856 13.565 224 50176 14.967
185 34225 -13.601 225 50625 15.000
186 34596 13.638 226 51076 15.033
187 34969 13.675 227 51529 15.067
188 35344 13.711 228 51984 15.100
189 35721 13.748 229 52441 15.133
190 36100 13.784 230 52900 15.166
191 36481 13.820 231 53361 - 15.199
192 36864 13.856 232 53824 15.232
193 37249 13.892 233 54289 15.264
194 37636 13,928 234 54756 15.297
195 38025 13.964 235 55225 15.330
196 38416 14.000 236 556 96 15.362
197 38809 14.036 237 56169 15.395
198 39204 14.071 238 56644 15.427
199 39601 14.107 239 57121 15.460
200 40000 14.142 240 57600 - 15.492
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TABLE A.—Squares aAND SQUARE Roors—Continued

N Nt VN N1 v~
241 58081 15.524 281 78961 16.763
242 58564 15.556 282 79524 16.793
243 59049 15.588 283 80089 16.823
244 59536 15.620 284 806 56 16.852
245 - 60025 15.652 285 81225 16.882
246 60516 15.684 286 81796 16.912
247 61009 15.716 287 82369 16.941
248 61504 15.748 288 82044 16.971
249 62001 15.780 289 83521 17.000

250 6 25 00 15.811 290 84100 17.029
9251 63001 15.843 291 84681 17.059
252 63504 15.875 292 85264 17.088
. 253 64009 15.906 293 85849 17.117
254 64516 15.937 294 86436 17.146
255 65025 | 15.969 295 87025 17.176
256 6 55 36 16.000 296 87616 17.205
257 -- 66049 16.031 297 88209 17.234
258 ' 66564 16.062 298 88804 17.263
259 67081 16.093 299 89401 17.292
_gi_g . 67600 16.125 _&_0 90000 17.321
261 68121 16.155 301 90601 17.349
262 68644 16.186 302 91204 , 17.378
263 ' 69169 16.217 303 91809 17.407 -
264 696 96 16.248 304 92416 17.436
265 70225 16.279 305 93025 17.464
266 70756 16.310 306 93636 17.493
267 71289 16.340 307 94249 17.521
. 268 71824 16.371 308 94864 17.550
269 72361 16.401 309 95481 17.578
270 72900 16.432 310 96100 17.607
271 73441 16.462 311 96721 17.635
272 73984 16.492 312 97344 17.664
273 74529 16.523 313 97969 17.692
274 75076 16.553 314 98596 17.720
275 75625 . 16.583 , 315 99225 17.748
276 - |. 76176 16.613 316 998 56 17.776
277 ° 76729 16.643 317 1004 89 17.804
278 - . 7284 16.673 318 101124 17.833
279 7 77841 16.703 319 101761 17.861
280 78400 16.733 320 102400 17.889
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TABLE A.—SQUARES AND SQUaRE Roors—Conlinued
- . — —
N N2 VN . N N VN
321 103041 17.916 361 130321 19.000
322 - 1036 84 17.944 362 131044 19.026
323 104329 17.972 363 131769 19.053
324 104976 18.000 364 132496 19.079
325 1056 25 18.028 365 133225 19.105
326 106276 18,055 366 133956 19.131
327 1069 29 18.083 367 134689 119.157
328 |- 107584 18.111 368 135424 19.183
329 |- 108241 18.138 369 136161 19.209
330 10 89 00 18.166 370 13 69 00 19.235
331 1095 61 18.193 371 1376 41 19.261
332 110224 18.221 372 138384 19.287
333 110889 18.248 373 139129 19.313
334 111556 18.276 374 139876 19.339
335 112225 18.303 375 140625 19.365
336 112896 18.330 376 141376 19.391
337 113569 18.358 ‘377 142129 19.416
338 114244 18.385 378 142884 19.442
339 114921 18.412 379 143641 19.468
340 1156 00 18.439 380 144400 19.494
341 116281 18.466 381 145161 19.519
342 116964 18.493 382 145924 - 19.545
343 1176 49 18.520 383 1466 89 19.570
344 118336 18.547 384 1474 56 19.596
345 119025 18.574 385 148225 . 19.621
346 119716 18.601 386 148996 19.647
347 120409 18.628 387 149769 19672
348 121104 18.655 388 1505 44 19.698
349 121801 18.682 389 151321 19.723 .
350 122500 18.708 3% 15 21 00 19.748
351 123201 18.735 391 1528 81 19.774¢
352 123904 18.762 392 1536 64 19.799
353 1246 09 18.788 393 154449 19.824
354 125316 18.815 304 1552 36 19.849
355 126025 18.841 395 156025 19.875 -
356 126736 18.868 396 156816 19.900
357 127449 18.894 397 157609 | ' 19.925
358 128164 18.921 398 158104 19.950
359 1288 81 18.947 399 159201 19.975
360 12 96 00 18.974 400 16 00 00 20.000
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TABLE A.—SqQuaARes AND SQuarRe Roors—Conlinued
N Nt ‘N N M VN

401 16 08 01 20.025 441 194481 21.000
402 161604 20.050 442 1953 64 21.024
403 1624 09 20.075 443 196249 21.048
404 163216 20.100. 444 197136 21.071
405 - 164025 20.125 445 198025 21.095
406 1648 36 20.149 446 198916 21.119
407 16 56 49 20.174 447 199809 21.142
408 16 64 64 20.199 448 2007 04 21.166
409 167281 20.224 449 2016 01 21.190
410 16 8100 20.248 450 2025 00 21.213
411 168921 - 20.273 451 203401 21.237
412 1697 44 20.298 452 204304 21.260
413 17 05 69 20.322 453 20 5209 21.284
414 171396 20.347 454 206116 21.307
415 172225 20.372 455 207025 21.331
416 173056 20.396 456 2079 36 21.354
417 . 173889 20.421 457 208849 21.378
418 174724 20.445 458 2097 64 21.401
419 - 175561 20.469 459 2106 81 21.424
420 1764 00 20.494 460 211600 21.448
421 C 177241 20.518 461 212521 21.471
422 17 80 84 20.543 462 213144 - 21.494
423 178929 20.567 463 214369 21.517
424 179776 - 20.591 464 2152 96 21.541
425 1806 25 20.616 465 216225 21.564
426 181476 20.640 466 217156 . 21.587
427 182329 20.664 467 ‘21 80 89 21.610
428 183184 © 20.688 468 219024 21.633
429 - 184041 20.712 469 2199 61 21.656
: _43_'0 184900 20.736 _ﬂ)_ 2209 00 21.679

*431 185761 20.761 471 221841 21.703
432 1866 24 20.785 472 2227 84 21.726
433 187489 . 20.809 473 223729 21.749
434 1883 £6 20.833 474 224676 21.772
435 189225 20.857 475 - 22 56 25 21.794
436 190096 20.881 476 226576 21.817
437 190969 20.905 477 227529 21.840
438 .191844 20.928 478 228484 21.863
439 192721 20.952 479 2294 41 21.886
440 - 19 36 00 20.976 480 230400 21.909
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TABLE A.—SqQuaRres AND Square Roors—Continued
N N +N N Nz VvN

481 231361 21.932 521 271441 22.825
482 232324 21.954 522 2724 84 . 22.847
483 233289 21.977 523 . 27 3529 - 22,869
484 - 234256 22.000 524 . 274576 1 22.801
485 235225 22.023 525 275625 - 22.913
486 236196 22,045 526 276676 22.935
487 237169 22.068 527 277729 22.956
488 |- 23814 22.091 528 . 278784 22.978
489 - 239121 22,113 529 2798 41 _ 23.000
490 240100 22.136 _@9_ 28 09 00 © 23.022
491 241081 22.159 531 281961 |  23.043
492 2420 64 22.181 532 283024 - 23.065 - .
493 24 3049 22.204 533 © 284089 . 23.087
494 244036 22.226 534 28 51 56 23.108
495 24 5025 22.249 535 28 6225 23.130
496 246016 22.271 536 . 287296 23.152
497 247009 22.293 " 537 28 8369 23.173
498 24 80 04 22.316 538 289444 23.195
499 249001 22.338 539 1200521 23.216
500 |- 250000 22.361 540 | 201600 | ' 23238
501 251001 22.383 541 2926 81 23.259
502 2520 04 22.405 542 293764 1 23.281
503 253009 22.428 -543 . 294849 23.302
504 254016 22.450 544 29 59 36 23.324
505 25 50 25 22.472 545 | 297025 23.345
506 25 60 36 22.494 546 298116 23.367
507 257049 22.517 547 299209 23.388
508 25 80 64 22.539 548 3003 04 23.409
509 2590 81 22.561 549 301401 23.431
_;il_(_) 26 01 00 22.583 5-__50 30 25 00 23.452
511 261121 22.605 551 3036 01 - 23.473
512 262144 22.627 552 304704 23.495
513 26 31 69 22.650 553 30 58 09 23.516
514 26 41 96 22.672 554 . 306916 23.537 .
515 ! 26 52 25 22,694 555 30 80 25 23.558
516 26 62 56 22.716 556 309136 . 23.580
517 267289 22.738 557 310249 - 23.601
518 26 83 24 22.760 558 311364 23.622
519 26 93 61 22,782 559 312481 ¥ 23.643
520 270400 22.804 560 3136 00 23.664
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TABLE A.—SqQuares AND Square Roors—Continued
N Nz VN N N2 AN
561 314721 23.685 601 361201 24.515
562 315844 23.707 602 36 24 04 24.536
563 316969 23.728 603 36 36 09 24.556
564 318096 23.749 604 3648 16 24.576
565 319225 23.770 605 36 60 25 24.597
566 3203 56 23.791 606 3672 36 24.617
567 321489 23.812 607 -36 84 49 24.637
568 322624 23.833 608 36 96 64 24.658
569 323761 23.854 609 37 08 81 24.678
570 324900 23.875 610 372100 24.698
571 326041 23.896 611 373321 24.718
572 327184 23.917 612 374544 24.739
573 328329 23.937 613 37 57 69 24.759
574 329476 23.958 614 37 69 96 24.779
575 330625 23.979 615 378225 24.799
576 331776 24.000 616 3794 56 24.819
577 332929 24.021 617 38 06 89 24 839
578 334084 1 24.042 618 381924 24.860
579 335241 24.062 619 38 3161 24.880
_5_@ 336400 24.083 _(_529 3844 00 24.900
581 337561 24.104 621 38 56 41 24.920
582 338724 24.125 622 38 68 84 © 24,940 .
583 3398 89 24.145 623 388129 24.960
584 341056 24.166 624 389376 24.980
585 342225 24.187 625 3906 25 . 25.000
586 34 3396 24.207 626 391876 25.020
587 34 4569 24.228 627 393129 25.040
588 345744 24.249 628 3943 84 25.060
589 346921 24.269 629 395641 25.080
@ 34 81 00 24.290 §§Q 39 69 00 25.100
591 349281 24.310 631 39 8161 25.120
592 3504 64 24.331 632 399424 25.140
593 351649 24.352 633 4006 89 25.159
594 3528 36 24.372 634 401956 25.179
595 354025 - 24.393 635 403225 25.199
596 355216 24413 636 4044 96 25.219
597 356409 24.434 637 4057 69 25.239
598 357604 24.454 638 407044 25.259
599 358801 24.474 639 408321 25.278
600 36 00 00 24.495 640 4096 00 25.298
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TABLE A.—Squares AND Square Roors—Coniinued .

N N vN N N VN
641 410881 25.318 681 463761 26.096
642 412164 25.338 682 465124 26.115
643 413449 25.357 633 | 466489 26.134
644 414736 25.377 684 4678 56 26.153
645 416025 25.307 685 469225 26.173
646 417316 25417 686 470596 26.192
647 418609 25436 || 687 471969 26.211
648 419904 25.456 688 473344 26.230
649 421201 25.475 689 474721 26.249
650 422500 25.495 690 476100 | 26.268
651 423801 25.515 691 477481 26.287
652 425104 25.534 692 478864 26.306
653 426409 25.554 693 480249 26.325
654 427716 25.573 694 4816 36 26.344
655 429025 25.593 695 483025 26.363
656 430336 25.612 696 | .484416 26.382
657 431649 25.632 697 485809 26.401
658 432964 25.652 698 487204 26.420
659 434281 25671 699 |- 488601 26.439
660 4356 00 25.690 700 4900 00 26.458
661 436921 25.710 701 491401 26.476
662 428244 25.729 702 492804 26.495
663 439569 25.749 703 494209 26.514
664 440896 25.768 704 4956 16 26.533
665 442225 25.788 705 497025 26.552
666 443556 25.807 706 4984 3¢ 26.571
667 444889 25.826 707 4998 4S 26.589
668 416224 25.846 708 501264 26.608
669 447561 25.865 709 5026 81 26.627
670 448900 25.884 710 504100 26.646 |
671 | 450241 25.904 711 5055 21 26.665
672 451584 25.923 712 5069 44 26.683
673 452929 25.942 713 5083 69 26.702
674 454276 25.962 714 5097 96 26.721 ;
675 455625 | - 25.981 715 | 511225 26.739
676 456976 26.000 716 512656 26.758
677 458329 26.019 717 514089 26.777
678 4596 84 26.038 718 515524 , 26.796
679 461041 26.058 719 5169 61 * 26.814
680 462400 26.077 720 518400 26.833
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TABLE A.—SqQuaAres AND SqQuare Roors—Continued

N N VN N Nz vN
721 519841 26.851 761 579121 27.586
722 521284 26.870 762 58 06 44 27.604
723 522720 26.889 763 582169 27.622
724 624176 26.907 764 583696 27.641.
725 525625 26.926 765 585225 27.659
726 527076 26.944 766 586756 27.677
727 - | 528529 26.963 767 588289 27.695
728 529984 26.981 768 589824 27.713
729 531441 27.000 769 591361 27.731
730 | 532000 27.019 770 59 29 00 27.749
731 534361 | 27.037 il 594441 27.767
732 | 535824 27.055 772 5959 84 27785
733 537289 27.074 773 507529 27.803
734 538756 27.092 774 599076 27.821
735 540225 .| 27111 775 600625 27.839
736 541696 27.129 776 602176 27.857
737 |- 543169 27.148 777 603729 27.875
738 544644 27.166 778 605284 27.893
739 .| 546121 27.185 779 6068 41 . 27.911
740 5476 00 27.203 780 60 84 00 27.928
741 549081 97.221 781 6099 61 27.946
742 550564 27.240 782 611524 27.964
743 552049 27.958 783 613089 27.982
744 553536 27.276 784 61 46 56 28.000
745 555025 27.295 785 616225 28.018
746 | . 556516 27.313 786 617796 28.036
747 558009 27.331 787 619369 28.054
748 559504 27.350 758 6209 44 28.071
749 561001 27.368 789 622521 28.089
750 56 2500 27.386 790 624100 28.107
751 56 40 01 27.404 791 6256 81 28.125
752 . | 565504 27.423 792 627264 28.142
753 56 70 09 27.441 793 628849 28.160
754 568516 27.459 794 6304 36 28.178
755 570025 27.477 795 . 632025 28.196
756 571536 27.495 796 633616 28.213
757 573049 27.514 797 635209 28.231
758 574564 27.532 798 63 6804 28.249
759 576081 27.550 799 638401 28.267
760 577600. 27.568 800 64 00 00 28.284
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TABLE A.—Squarges AnND. SQuare Roors—Conlinued

N N2 VN N N2 VN
801 641601 28.302 841 707281 29.000
802 643204 28.320 842 708964 29.017
803 644809 28.337 843 710649 29.034
804 646416 28.355 844 712336 29.052
805 64 8025 28.373 845 714025 29.069
806 6496 36 28.390 846 715716 29.086
807 651249 28.408 847 717409 29.103
808 |. 652864 28.425 848 719104 29.120
809 - 654481 28.443 849 720801 29.138
810 656100 28.460 @ 722500 29.15‘5‘
811 657721 28.478 851 724201 29,172
812 6593 44 28.496 852 725904 29.189
813 66 09 69 + 28.513 853 7276 09 29.206
814 66 25 96 28.531 854 729316 29.223
815 6642 25 28.548 855 731025 29.240
816 66 58 56 28.566 856 732736 29.257
817 667489 28.583 857 734449 29.275
818 66 91 24 28.601 858 736164 29.292
819 67 07 61 28.618 859 737881 29.309
820 672400 28.636 860 7396 00 29.326
821 674041 28.653 861 741321 29.343
822 67 56 84 28.671 862 743044 29.360
823 677329 28.688 863 744769 29.377
824 678976 28.705 864 746496 29.394
825 680625 28.723 865 748225 . 29.411
826 682276 28.740 866 7499 56 29.428
827 683929 28.758 867 7516 89 29.445
828 68 55 84 28.775 868 753424 29.462
829 687241 28.792 869 755161 29.479
830 68 89 00 28.810 _8_7(? 75 69 00 29.496
831 690561 28.827 871 758641 29.513
832 69 2224 28.844 872 76 03 84 29.530
833 69 38 89 - 28.862 873 762129 29.547
834 69 55 56 28.879 874 76 3876 29.563
835 697225 28.896 875 76 56 25 29.580
836 698896 28.914 876 767376 29.597
837 700569 28.931 877 769129 29.614
838 702244 28.948 878 7708 84 29.631
839 703921 28.965 879 772641 29.648
840 7056 00 28,983 880 774400 29.665
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TABLE A.—Squares AND SQuare Roors——Continued

"N N VN N » VN
881 776161 29.682 921 848241 30.348
882 777924 29.698 022 850084 30.364
883 7796 89 29.715 923 851929 30.381
884 7814 56 29.732 924 853776 30.397
885 783225 29.749 925 855625 30.414
886 784996 29.766 926 857476 30.430
887 78 6769 29.783 927 8593 29 30.447

1888 - | 788544 29.799 928 861184 30.463
889 790321 29.816 929 86 3041 30.480
890 79 21 00 29.833 930 86 49 00 30.496
891 793881 29.850 931 86 67 61 30.512
892 79 56 64 29.866 032 86 86 24 30.529
893 797449 29.883 933 " 870489 30.545
894 799236 29.900 934 8723 56 30.561
895 801025 29.916 935 874225 30.578

. 896 802816 . 29.933 936 87 60 96 30.594
897 8046 09 29.950 937 8779 69 30.610

' 898 80 64 04 29.967 938 879844 30.627
899 - 808201 29.983 939 881721 30.643
900 810000 30.000 940 8836 00 30.659

- 901 811801 30.017 941 885481 30.676
902 8136 04 30.033 942 8873 64 30.692
903 815409 30.050 943 8892 49 30.708
904 817216 30.067 944 891136 30.725

. 905 819025 30.083 945 893025 30.741
906 8208 36 30.100 946 894916 30.757
907 822649 30.116 947 ' 896809 30.773
908 824464 30.133 948 898704 30.790
909 826281 30.150 . 949 9006 01 30.806
910 82 8100 30.166 950 90 25 00 30.822
911 829921 30.183 951 904401 30.838
912 831744 30.199 952 90 63 04 30.854
913 833569 30.216 953 90 82 09 30.871
914 83 53 96 30.232 954 910116 30.887
915 837225 30.249 955 912025 30.903
916 839056 30.265 956 913936 30.919
917 8408 89 30.282 957 91 58 49 30.935
918 842724 30.299 958 9177 64 30.952
919 844561 30.315 959 91 96 81 30.968
920 8464 00 30.332 960 9216 00 30.984
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TABLE A.—SqUARES AND SQUARE Roors—Concluded '

N A VN N N2 VN
961 923521 31.000 981 96 23 61 31.321
962 025444 31.016 982 964324 . 31.337
963 927369 31.032 983 96 62 89 31.353
964 92 9296 31.048 984 96 82 56 * 31.369
965 931225 31.064 985 970225 .| 31.385'
966 933156 31.081 " 986 972196 | 31401
967 93 50 89 31.097 987 97 41 69 31.417
968 + 9370 24 31.113 988 . 97 61 44 31.432
969 938061 | 31.129 989 978121 31.448
970 940900 - | 31145 990 98 01 00 31.464 -
971 9428 41 31.161 991 982081 31.480
972 9447 84 31.177 992 ' | 984064 -31.496
973 946729 31.193 993 98 60 49 31.512
974 9486 76 31.209 994 98 80 36 31.528
975 9506 25 31.225 995 99 00 25 31544
976 952576 31.241 996 99 20 16 31,559
977 954529 31.257 997 99 40 09 31.575
978 9564 84 31.273 998 99 60 04 31.591
979 0584 41 31.289 999 998001 31.607
980 960400 31.305 1000 100 00 00 31.623
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TABLE B.—ARgA3 AND ORDINATES OF THE NorMAL CURVE
15 TERMS OF z

o
Q) @ &) @ 6]
z A B (44 v
STANDARD AREA FROM ﬁA IN Ismm IN ORDINATE
z x GER MALLER

Score (;) ME‘“ T = | PorrioN PorTION AT-—
0.00 L0000 .5000 - 5000 .3989
0.01 10040 .5040 - .4960 .3989
0.02 .0080 .5080 4920 3989
0.03 0120 5120 . 4880 .3988
0.04 0160 .5160 .4840 .3986
0.05 0199 5199 .4801 .3984
0.06 - 10239 .5239 4761 .3982
0.07 0279 5279 4721 -3980
0.08 0319 5319 4681 .3977
0.09 0359 .5359 4641 ,3973
0.10 ,0398 .5398 .4602 .3970
0.11 0438 5438 4562 .3965
0.12 10478 5478 4522 -3961
0.13 0517 5517 4483 .3956
0.14 -0557- 5557 4443 .3951
0.15 0596 5596 4404 3945
0.16 0636 .5636 4364 .3939
0.17 . 0675 5675 4325 .3932
0.18 0714 5714 14286 3925
0.19 0753 5753 4247 .3918
0.20 .0793 .5793 4207 .3910
0.21 0832 5832 4168 3902
0.22 0871 5871 4129 3804
023 .0910 .5910 4090 - 3885
0.24 0948 5948 4052 .3876
0.25 0987 5987 4013 3867
0.26 .1026 .6026 .3974 .3857
0.27 -1064 .6064 .3936 3847
0.28 .1103 6103 .3897 .3836
0.29 141 6141 .3859 .3825
'0.30 1179 6179 .3821 3814
0.31 1217 6217 .3783 .3802
0.32 1255 6255 .8745 -3790
0.33 1293 .6293 .3707 3778
0.34 .1331 6331 .3669 .3765




Appendiz

321

TABLE B.—AReAs ANp ORDINATES OF THE NORMAL CURVE
1N TERMB OF = —Conhnued

(1) (2) {3) @ (5)
2 A B c y
STANDAED | AREA FROM AREA IN AREA IN OBDINATE

f z LARGER SMATLER T
Score (;) MeaN 10 =1 Pommion Pormion el
0.35 1368 6368 .3632 3752
0.36 . 1406 6406 3594 3739
037 . .1443 6443 3557 3725
0.38 1480 6480 3520 3712
0.39 15617 6517 3483 3697
0.40 1554 6554 3446 3683
0.41 1591 6591 3409 3668
0.42 .1628 6628 3372 3653
0.43 1664 6664 3336 3637
0.4 1700 6700 3300 3621
0.45 1736 6736 3264
0.46 1772 6772 3228 .3589
0.47 1808 6808 3192 3572
0.48 1844 6844 3156 .3555
0.49 1879 6879 3121 3538
0.50 1915 6915 .3085 3521
0.51 1950 6950 3050 3503
0.52 1985 6985 ".3015 3485
0.53 2019 7019 2081 3467
0.54 .2054 7054 2946 3448
0.55 2088 L7088 2012 3429
0.56 2123 7123 28T 3410
0.57 2157 JT157 2843 3391
0.58 L2190 L7190 2810 3372
0.59 2224 J224 2776 3352
0.60 2257 1257 2743 .3332
0.561 2291 7201 2709 3312
0.62 2324 7324 2676 3202
0.63 2357 7357 2643 3271
0.64 2389 .7389 2611 3251
0.65 2422 7422 2578 3230
0.66 2454 7454 2546 3209
0.67 .2486 7486 2514 | B187
0.68 2517 7517 .2483 3168
0.69 2549 7549 2451 ° 3144
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TABLE_ B.—AREAS AND ORDINATES OF THE NormaL Curve
IN TERMS OF ; —Continued :

1) ) 3) () ®)
2 A B C v
STANDARD AREA FROM | ~ AREA LABGEIII: SAnnA N ORDINATE

- (3 z MALLER P
s:”“ (;) Mean 10 = | Portion PorrioN ar 2
0.70 . 2580 7580 - - 2420 3123
0.71 2611 7611 2389 3101
0.72 2642 7642 2358 3079
0.73 . .2673 7673 2327 3056
0.74 2704 . 4704 2296 3034
0.75 2734 J734 2266 3011
0.76 2764 7764 2236 2989
0.77 2794 7794 2206 2966
0.78 - 7823 2177 2943
0.79 2852 7852 2148 - 2920
0.80 2881 7881 2119 2897
0.81 - 2010 7910 2090 2874
0.82 2939 .7939 .2061 2850
- 0.83 2967 7967 2033 2827
0.84 2095 27995 2005 2803
0.85 3023 .8023 1977 2780 -
0.86 3051 8051 1949 2756
0.87 3078 8078 1922 2732
0.88 3106 8106 1894 2709
0.89 3133 8133 1867 2685
0.90 3159 8159 1841 2661
0.91 3186 8186 1814 2637
0.92 3212 8212 1788 2613 -
0.93 . 3238 8238 1762 2589
0.94 3264 - 8264 - 1736 2565
0.95 3289 .8289 Jd711 .2541
0.96 3315 8315 1685 2516
0.97 3340 8340 1660 2492
0.98 .3365 8365 - .1635 22468
0.99 '.3389 8389 1611 2444
1.00 3413 8413 1587 2420
1.01 3438 8438 1562 2396
1.02 3461 8461 1539 2371
1.03 - 3485 8485 1515 2347
1.04 8508 1492 2323
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TABLE B.—AReas aAND OrpINATES OF THE NormaL CURvVE
IN TERMS OF ; —Continued )

14)) 2) @ [¢)) )
z A B C y
STANDARD AREA FBOM AREA IN gmu IN ORDINATE

z X LARGEB MALLER x
Score (;) Mean 10 = | pogmion PorrioN AT
1.05 3531 8531 1469 2299
1.06 . 3554 8554 .1446 2275
1.07 3577 8577 1423 2251
1.08 3599 .8599 1401 2227
1.09 3621 8621 1379 2203
1.10 3643 8643 1357 2179
111 3665 - 8665 1335 2155
112 3686 8686 1314 2131
1.13 3708 8708 1292 2107
114 3729 8729 1271
1.15 3749 8749 1251 .2059
116 3770 8770 1230 2036
117 3790 8790 1210 2012
118 3810 8810 1190 .1989
119 . 1170 .1965
1.20 3849 8849 1151 1942
1.21 .3869 .8869 1131 .1919
1.22 3888 8888 112 .1895
1.23 3907 8907 .1093 1872
1.24 3925 8925 1075 .1849
1.25 3944 8944 .1056 1826
1.26 .3962 .8962 1038 1804
1.27 3980 8980 1020 1781
1.28 3997 8997 .1003 1758
1.29 4015 9015 0985 1736
1.30 4032 9032 0968 1714
131 4049 9049 0951 1691
1.32 4066 9066 0934 1669
1.33 4082 9082 0918 1647
1.34 4099 .9099 0901 .1626
1.35 4115 9115 0885 1604 .
1.36 4131 9131 .0869 1582
1.37 4147 9147 .0853 1561
1.38 4162 9162 ., 0838 1539
1.39 4177 9177 .0823-




324 Appendiz

TABLE B.;—ABEAB AND ORpINaTES OF THE Noemarn Curve
¥ TERMS OF f’- “—Continued -

1) 2 . (3 &) (5)
z A B . c v
Sranpanp | Area FrROM AREA IN gnm. w ORDINATE
z : P LARGER MALLER

Scors (;) MEeaw 10 = PoRTION Pormion L) =
1.40 A192 9192 0808 1497
141 A207 9207 0793 1476
1.42 4222 9222 0778 1456
1.43 4236 9236 0764 1435
1‘.44 A251 9251 0749 1415
145 A265 9265 0735 1394
1.456 4279 9279 0721 1374
147 4292 9292 0708 1354
1.48 4306 9306 L0694 1334
1.49 A319 9319 ) 0681 1315
150 4332 9332 0668 1295
-1.51 4345 9345 0655 1276
1.52 A357 9357 0643 1257
1,53 - A370 9370 0630 .1238
1.54 ; A382 ' 0618 1219

- 1,55 4394 9304 0606 1200
1.56 4406 9406 0594 1182
1.57 A418 9418 0582 L1163
.1.58 4429 9429 L0571 1145
1.59 441 9441 0559 Jd127
160, 4452 0452 0548 1109
1.61 A463 L9463 05637 1092
1.62 A474 9474 .0526 d074
1.63 4484 9484 0516 1057
1.64 A405 - | 0495 - g 0505 1040

- 1.65 14505 9505 0495 1023
-1.66 44515 9515 0485 1006
1.67 4525 9525 0475 0939
1.68 4535 9535 L0465 0073
1.69 A545 9545 0455 L0957
1.70 4554 9554 0448 L0040
1.71 4564 9564 D436 0925
1.72 A573 9573 0427 0909

i 1.73 A582% 9582 0418 0803
1.74 4591 L8591 _.0409 0878

\ .
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TABLE B.—A.B:EAS AND OrDNATES oF THE Nonuan Cunve
™ TeERMs oF f —Conlinued

= A
® @ N ®)
z A B C ¥
Sranparp AgeA FROM %nm mw gxm ™ OBDpINATE
z z ARGER MALLER z
Scone (;) MeAN 50 = | Poprion PortioN AT
1.75 4599 9599 0401 D363
176 AB0B 9608 0392 D848
YT A616 9616 0384 0833
173 4625 96525 0375 D818
179 K 9633 0367 0804
1.80 4641 9641 0359 0790
L.81 4649 9649 0351 0775
1.82 4656 9656 0344 0761
1.83 4664 9664 0336 0748
1.84 A671 9671 0329 0734
1.85 A678 9678 0322 072
1.86 A686 9686 0314 L0707
1.87 4693 9693 D307 0694
1.88 4699 9699 0301 0681
1.89 A706 9706 0294 0669
1.90 A713 9713 1287 0656
1.91 A719 9719 0281 L0644
1.92 4726 9726 0274 0632
193 A732 9732 0268 0620
"1.94 A738 5738 0262 L0608
1.95 AT44 9744 0256 0596
AT50 9750 0250 L0584
1.97 4756 9756 0244 0573
1.93 4761 9761 0239 0562
19 4767 9767 K 0551
2.00 ATT2 9772 0228 0540
2.01 AT77R 8778 0222 L0529
2.02 4783 9783 0217 0519
2.03 AT88 9788 0212 . ”
2_.04: 4793 9793 0207 0498
2.05 A708 9798 0202 0488 -
2.06 A803 9803 0197 0478
2407 4808 9508 0192 0468
2.03 4812 0812 0188 0459
2.09 A817 0817 Q183 - 0449
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TABLE B.—Arzas axp OrpinaTES oF THE NokmanL Cumve
v TErMs oF E —Continued

(1) (2 (3) (4) 5)
‘2" A B . c y
STANDARD AREA FrROM Aan o SAnm N ORDINATE

x - ARGER MALLER -
Scors (;) ‘ Meaw 10 = | pormon Pormion ar =
2.10 4821 0821 0179 0440
2.11 4898 19826 0174 10431
2.12 4830 10830 0170 0422
2.13 4834 9834 0166 0413
2.14 4838 -0838 0162 0404
2.15 4842 9842 0158 039
2.16 4846 9816 0154 0387
217 14850 9850 0150 0379
218 4854 854 0146 0371
2.19 4857 0857 0143 0363
2.20 4861 9861 0139 0355
221 4864 0864 0136 0347
2.22 4868 9868 ‘0132 10339
2.23 4871 9871 0129 0332
2.24 14875 9875 0125 0325
2.25 .ABTS 9878 0122 0817
2.26 14381 0881 0119 0310
2.27 14884 0884 0116 0303
2.28 14887 0887 0113 10297
2.29 4890 10890 0110 10290
2.30 4803 9893 0107 - 0283
2.31 14806 0896 0104 0277
2.32 4808 0808 0102 10270
2.33 14901 9901 10099 0264
2.34 4904 19904 10096 0258
2.35 " 4906 9908 0094 0252
2.36 4900 19909 0091 0248
2.37 4911 <9911 10089 0241
238 4913 ‘9013 10087 0235
239 4918 8916 10084 0229
2.40- | 4918 . 9918 0082 0224
2.41 14920 9920 10080 10219
2.42 14922 9022 0078 ‘0213
2.43 14925 9925 10075 0208
2.44 14027 0027 0073 10203
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TABhE B.—Arras AxD OrpinaTES OF THE NorRwaAL CURVE
v TeEMS OF f —Continued

(1) 2 3) @ (5)
F A B c ¥
STANDARD AREA FROM imu I gmu N ORDINATE

T x ARGER MALLER x
Score (;) MeaN 0 = | Pogrion” PoRTION AT =
245 .4929 9929 0071 0198
248 4931 9931 . 0069 0194
247 ' 4932 9932 0068 0189
248 4934 9934 0066 0184
249 4936 .9936 0064 0180
2.50 4938 9938 0062 0175
2.51 4940 0940 0060 0171
2.52 4941 o 9941 | 0059 0167
2.53 4943 9943 L0067 0163
2.54 A945 9945 0055 0158
2.55 4946 .9946 10054 0154
2.56 4948 .9948 0052 0151
2§£ , 4949 9949 0051 0147
4951 9951 0049 0143
2.59 4952 9952 0048 0139
2.60 4953 9953 0047 0136
2.61 4955 9955 0045 0132
2.62 4956 9956 . 0044 0129
263 4957 9957 0043 0126
2.64 4950 9959 0041 0122
2.65 4960 9960 0040 0119
2.66 4961 9961 0039 0116
2.67 4962 9962 0038 0113
2.68 A963 0963 .0037 0110
2.69 4964 9964 .0036 0107
2.70 4965 9965 0035 0104
271 49606 D966 0034 L0101
272 A967 0967 0033 L0099
2.73 4968 D968 0032 L0096
2.74 4969 .9969 .0031 0093
2.75 A970 9970 0030 .0081
2.76 A971 9971 0029 0088 -
.77 4972 .9972 0028 0086
2.78 4973 9973 0027 {0084
2.79 4974 9974 0026, 0081
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TABLE B.—Aneas aNp OrpDINATES oF THE NorMaL CURVE
1N TERMS OF E —Conlinued

(1) @) 3) (4 )]
z ¥} B Cc v
STANDARD Arsa FROM AREA TN AREA IN ORDINATE

Scoxa (& M z LARGER SMALLER x
; 7] | MEAN TO 21 Pogmion PorTioN 2
2.80 4974 9974 0026 0079
2.81 4975 9975 0025 0077
2.82 A976 9976 . 0024 0075
283 . 4977 9977 0023 0073
2,84. 4977 9977 0023 0071
]

2.85 4978 9978 0022 0069
_ 2.86 A979 .9979 L0021 0067
2.87 4979 9979 0021 0065
2.88 4980 9980 0020 0063
2.89. 4981 9981 0019 0061
2.90. 4981 9981 0019 0060
291 - L4982 9982 0018 0058
2.92 4982 0982 0018 0056
2,93 4983 - 0983 0017 0055
2.94 4984 L0084 0016 0053
2.95 4984 9984 0016 20051
2.96 4985 9985 L0015 0050
297 4985 . .9985 0015 0048
298 4986 9986 0014 0047
2.99 4986 0986 0014 0046
3.00 4987 9987 0013 0044
3.01 A987 L9087 0013 0043
3.02 A987 9087 0013 D042
3.03 4988 - 9983 © 0012 0040
3.04 4988 L9988 0012 0039
3.05 ,4989 .9989 0011 0038
3.06 L4989 9989 L0011 0037
3.07 4989 .8089 0011 0036
3.08 A990 9990 0010 0035
3.09 - 4990 9990 0010 0034
3.10 4990 9990 0010 0033
3.11 L4991 L9991 0009 0032
3.12 4991 9991 0009 0031
3.13 49091 9991 0009 L0030
-3.14 . 4992 9992 0008 L0029
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TABLE B.—Areas AND ORDINATES OF THE ﬁonm Curve
"1 TERMS OF E —Concluded

(1) 2 3) S CY) (5)
z A B C v
STANDARD AREA FROM m ™ gmu N ORDINATE
z x ER MALLER .
Scors (;‘) MEeaw 10 — | Pogrmon PortioN A=
3.15 4992 9392 0008 * .0028
3.16 4992 5992 L0008 L0027
3.17 4992 9992 .0008 0026
3.18 4993 9993 0007 0025
3.19 A993 9993 L0007 L0025
3.20 4993 9993 L0007 0024
3.21 4993 .8993 0007 0023
3.22 4904 9994 .0006 0022
3.23 4994 9994 .0006 0022
3.24 4994 9094 0006 0021
3.30 4995 9995 L0005 0017
3.40 A997 9997 0003 0012
3.50 A998 .9908 0002 0009
3.60 4998 9998 0002 L0006
3.70 4999 .9999 0001 0004
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TABLE C.—Varves oF § AT THE 5% AND 19} LEVELs oF SioNIFICANCE®

DEcGREES OF DEGEEES OF i
EDOM 5% 1% FrEEDOM 5% 1_%
1 12.706 63.657 32 2.037 2.739
2 4.303 9.925 34 2.032 2728
3 3.182 5.841 36 2.027 2.71%
.4 2776 4604 .‘38 2.025 2,711
D 2.571 4032 ;40 2021 2.704
6 omar | 3707 | a2 2017 | 2606
7 2.365 3.499 . 44 2015 2.691
8 2.306 3.365 46 2.012 2.685
.9 2.262 3.250 48 2.010 2.681
10 2.228 3.169 50 2.008 2.678
11 2.201 3.106 55 2.005 2.668
12 2.179 3.055 60 2.000 2660
13 2.160 3.012 65 1.998 2.653
14 2.145 2977 70 1.994 2.648
15 2131 2047 80 1.990 2.638
16 2.120 2921 90 1.987 "2.632
17 2.110 2.808 100 1.954 2.626
18 2101 2.878 125 1.979 2.616
19 2.093 2.861 150 1.976 2.609
20 2.086 2.845 200 1.972 2.601
21 2.080 2.831 300 1.968 2.592
22 2.074 2.819 400 1.966 2.588
23 2.069 2.807 500 1.965 2.586
24 2.064 2.797 1000 1.962 2.581
25 2.060 2,787 @ 1.860 2.578
26 2.056 2.779
27 2.052 2.771
28 2.048"° 2.763
29 2.045 . 2.756
30 2.042 2.750

) F .

*Table C s abridged from Table IV of Fisher: Statistical Methods for
Research Workers, Oliver & Boyd, Ltd., Edinburgh, by permission of the
Author and Publishers. Additional entries were taken from Snedecor:
Sialistical Methods, Ames, Jowa: Collegiate Press, by permission.
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TABLS D.—VaLUEs oF r AT THE 5%, AND 1%, LEVELS OF SIGNIFICANCE*

DregrEES OF DEGREES OF
FrEEDOM 5% 1% FaEEDOM 5% 1%
1 097 1,000 24 333 496
2 950 990 25 381 ABY
3 878 959 26 374 AT8
4 811 9017 27 367 470
5 154 B74 28 361 A63
6 o7 234 29 355 A56
7 666 798 . 80 .349 A49
8 [ 632 765 35 325 A18
) 602 135 40 304 393
10 576 708 45 288 372
11 553 | 684 50 273 354
12 532 661 60 2250 8325 .
13 514 641 70 232 302
14 A97 623 80 217 283
i3 A82 606 90 205 267
16 A68 590 100 195 254
17 A56 575 125 174 228
18 444 561 150 159 .208
19 433 549 200 138 181
20 423 537 300 113 148
21 413 526 400 008 128
22 404 alh 500 088 d15 .
23 396 505 1000 062 D81

*Table D i abridged from Table V.A. of Fisher: Statistical Methods for
Besearch Workers. Oliver & Boyd, Ltd,, Edinburgh, by permission of the
Author and Publisher, Additional entries were taken from Snedecor: Sta-.
stical Methods, Ames, Towa: Collegiate Press, by permission
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The function, F =e with exponsnt 2s, is computed in part from Fisher's table VI (7). Additionsl entries are by interpalation, mostly graphical.
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TABLE F.~Vaives or ¢ At TaB §% (Rouman Tyrz) avn 1% (Iratic Tyes) LuveLs oF SIGNIFICANCE®

Y k e 1 w
N-k| 1 2 3 ) .4 5 ] T | 8 t'® | 10 {11 | 127 14 [ 16 | 20 | & | s0 [ ¢ | 6O
1 988
0088
a .854 | 900 ; .
B70 | 880 - #1I the body of this table is given in standard type the maxi-
3 606 {1 .77 | B80S mum ¢! that could be expected & timesin 100 and, in italics,
808 088 | 084 the maximum & that could be expected 1 timein 100, on
d 573 686 | .706 | 729 ths basia of chanca Auctuation when the true correlation
808 860 Y 871 | B88 ia gero, the valuea being given for the number of aolumns
B 483 G678 § .623 | 651 | ,680 in the eorrelation table Iees 1 (k¥ — 1) by columns and
| 718 778 ] 808 | 828 | 888 the total population of the sample less the number of
(] 415 | 500 | .66 | 683 | .608 | .621 columns (V' — k) by rows. ‘The reason the section of
B4 I8 | L745| J188 ) (778 | .789 this table oovered by this note is blank ia bacause no
7 885 | .454 | .501 | .532 ]| .653 | .670 | .582 velid meaning could attach to o when the average
L84 | 855 f 601 | (714 | L7808 | J24L | 760 number of items in each column is less than two
] .824 400 | 466 | .486 | .5609 | .525 | .588 | .EG0 Thia table was made by Charlea H, Grifin by
.688 805 | 648 | BaY | 684 | 697 | 708 | 716 3 the formula derived on pp. 421-422, of Peters
'] .292 372 | .41T7 | 447 | .470 | .487 | .500 | .512 | .523 aod Van Voorhia Statistical Procedures and Their
488 581 | 606 | 625 | 844 | 668 ) 069 | .678 | .685 | - Mathematical Bases and is reproduced from
10 | .264 }.341| 885 | 415 | .437 | .454 | .468 | .479 | .480 | .408 Pp. 494407 by permission of the suthors and
461 | 588 | 568 | .682 | .e07 | .88 | .85 | .648 | .658 | 658 their publishare, MoGraw-Hill Book Come
11 «242 .814 | .867 | .888 | .407 | .425 | .430 | .461 | .461 | .470 | .47 pany.
418 W488 | B8 | 566 | 674 | (080 | 601 | 018 | 620 | 628 | 654
12 224 +201 § .832 | .861 | .B83 | .400 | 414 | 4426 | .436 | .444 | .451 | .458
801 | 450 | 407 | 884 ) L6454 | 660 | 674 | L6839 | L698 ) .600 | 608 ) BIF
13 208 | .272 | .811 | .839 | ,350 | .877 | .82 { .403 | .413 | .421 | .428 | .434
808 | 488 | J47e | 487 | JEIT| 693 | L840 | 85T ) 568 | (574 | .B81 | 587
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TABLE F.—VaLvEs oF & aT 1HR 5% (Roman Treg) AND 19, (Itanic Tyrs) Levirs or Sientrrcancn—Continued

& =-1
N -k 1 2 g i o ] 7 8 9 10 11 12 14 | 18 20 24 80 40 50
14 J104 | .258 { .202 | .319 | .B40 | .B57 | .371 | .382 | .302 | .400 | .407 | .414 | .425
844 | 408 | L4458 | 4R | 498 508 | (623 | 638 | 648 | (661 | (56T | (664 | 674
15 .181 | .240 | ,276 | .302 | .322 | ,338 | .351 | .363 | .374 | .383 | .300 | .307 | .408 | .418
B4 | 887 | 424} 450 | 471 | 487 | .00 | 611 | 620 | (628§ .636 |-.648 | 6568 | (601
18 70 ) 228 | (261 | .287 | 806 | .822 | .834 | .846 | .B57 | .364 | 371 | 8378 | .300 | .380 | .415
807 | 868 | 404 | 480 450 | 468 | L4850 | 492 ) 600 | 609 | 515 | 628 ) (533 | L5648 | 658
17 L1681 | 214 | .248 | 272 | .201 | .807 { .221] .332{ .842 | .840 | .866 | .63 | .876 | .835°| .800
L2091 | 850 | (885 | 411 408 | 447 461} 471 ) 481 | 490 | 487 | 608 | 616 | 584 | 680
18 J152 | .208 | .238 | .260 | .278 | .203 { .307 | .317 | .827 | .335 | .842 | .340 | .3681 | .870 [ .385
By | (834 869 | (385 | 414 429 | 444 | 456 | 464 | 478 | 481 | 487 | 408 | .508 | .52t
19 L145° .103 | .225 | .248 | .206 | .281 | .294 | .3056 | .315 | .822 | .320 | .336 | .348 | .3566 | .371
o645 | .o20 | 355 578 ] .s08 | 414 | 487 | 488 | 448 | 486 | 484 | 471 | 488 | 402 | 508 '
20 .138 | .85 | .215 | .238 } .255 | .270 | .283 | .203 | .303 | .310 | .317 | .324 | .338 | .344 | .350 § .37T1
858 | .806 | .538 | 564 | 388 | .508 | 418 | 428 | 458 | 441 | 449 | 456 | 467 | 47T | .482 | 504
21 A3t ) a7 | 208 | 227 | .244 | 250 | .271 | .281 | .201 | ,299 | .306 | .313 | .324 | ,332 ] 847 [ .358
248 | 204 | 526 | 550 | 868 | 885 | 568 | 408 | 410 | 4BV | 45E | L4401 | 455 | (463 | 478 | 48O
22 126 | L1689 | L1097 | .210 | .285 | 240 | .262 | .272 | .282 | .280 | .206 | ,303 | ,315 | .322 | .338 | '.350
oo | wse | (g .89 | (858 | JEVR | 885 | 855 | 406 | A4 | o481 | L4288 | 440 | 450 | 486 | 477
230" .120| .162 1 .190 | .211 | .227 | .240 | .253 | .263 | .271{ .270 | .286 | .,201 | ,801 | .311 | .%26 | .338
228 878 | 203 ] (888 | (844 | 559 | 8T8 | 883 | (898 | 401 | 408 | L4215 | 407 ) (48T | 453 | 465
24 W15 | .156 | L1838 { .203 | 218 ) .232 | .244 | .254 | .262 | .270 | .277 | .282 | .20Q | .B04 | .B317 | .829
214 | ee8 | 298| 315 | 833 848 | 861 | 871 | .880 | 890 | 398 | 404 | 416 | 486 | 448 | 464
25 L1114 150 | L1761 186 | L2101 | .224 | .236 | .245 | .258 | .262 | .268 | .273 | .285 | .203 | .308 | .820 | .334
807 | 868 | .283 | 305 | 523 | 837 | 250 | .360 | .869 | 878 | 585 | 898 | 404 | AL | 490 | 448 | 467
28 W107 | .145 | .170 | .188 | .204 | .218 | .228 | .237 | .246 | .253 | .260 | .266 | .278 { .286 | .301 | .313 | .826
109 | (244 | 275 295 | (313 | 287 | (888 | 850 | .858 | .867 | 575 | .888 | (804 | 408 | 419 | 481 ) 448
27 .103 1 .130 | .184 | .182 | .107 | .210 | .220 | .229 | .238 | .245 | .251 | .258 ) .260 | .277 | .202 | .304 | .317
293 | 836 | ko5 | 288 | 804 | 818 | 850 1 .54 | 849 | .858 | 564 | 578 | (8586 | 898 | 410 | L4828 ) 438
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TABLE F.-~VALUES OF .¢ AT THE 5% (Roﬂmv »Tn’m) AND 19, (Itanic TypE) Lmvmé oF S1aN1FICANCE—Conlinued

B—1 - v
N=k 1 2 8 4 5.1 .6 7 8 9 10 11 12. | 14 16 20 24 30 40 50
L ;
28 .099 | ,135| .169 | .176 | .191 | .203 | .214 | .223 | .231 | .238 | .245 | .251 | .261 | .271 | .286 | .298 | .810
.186°| 229 | 267 | 877 | 295 | .509 | .8%81 | .88 | .839 | .848 | .866 | .86 | 875 | .888 | .400 | .418 } .47
29 008 | .131] .153 ] .171 | .185 | .197 | .208 | .217 | .224 | .232 | .230 | .244 | .256 | .262 | .277 | .290 | .302
J80 | 828 | 249 |-.260 | 286 | .800 | .818 | .828 | .830 | .839 | .840 | .864 | .866 | .874 | .891 | .408 | .418
a0 .093 | .127 | .140 | 166 | ,170 | ,101 | .202 ]| .211 | .218 | .225 | .231 | .237 | .240 | .256 | .271 | .283 | .206
75| R15 | 248 | £68) .78 ) .99 | .808 | .814 ) .8%8 | .831 | .838 | .845 | .85¢ | .%66 | .988 | .895 | .408
82 .087 | .119 | .140 | .157 | .160 ]| .181 | .102 | .200 | .207 | .213 | .220 | .226 | .237 | .244 | .250 | .260 | .284 | .207 |
2165 | .208 | 229 | 848 | .£64 | 876 | .£88 | .098 | .808 | .816 | .829 | .829 | .841 | .851 | .867 | .878 | .898 | .410
84 .082{ ,112 ] .132 | .148 ]| .160 | .171 | .182 | .190 | .197 | .203 | .209 | .215 | .226 | .233 | .248 | .258 | .273 | .286
156 | (188 | 217 | (833 ) 861 268 | 874 | 884 | .898 | 800 | .808 | 815 | .826 | .80 | .58 | .%68 | 878 | .895]| .
36 .078 | ,106 | .125 | .140 | .162 | .163 | ,172 | 180 | ,187 | ,103 | ,100 | .2056 | .2156 | .222 | :287 | .247 | .262 | .276 | .286
© W47} J188 | 806 | .084 | 230 | 261 | ,208 | 871 | .280 | .888 | .294 | .801 | .818 | .829 | .838 | .961 ]| .865 | .981 | .%94
88 074 .101 | 119 | .184 | .1456 | .156 | .164 | ,171] .179 | .185 | .101 | .107 | .205 | .214 | .227 | .236 | .251 | .267 | .276
J40 1 274 ) J196 | 81| 828 | 840 | 251 060 | .268 | 875 | .288 | .289 | .800 | .809 | .9%8 | .858 | .850 | .869 | .880
40 .069 | .006 | 114 | .128 | .130 | ,149 | ,167 | .164 | .171 | ,176 | .183 | ,188 | .108 | .205 | .219 | .220 | .241 | .257 | .268
188 | 166 | 188 | L05} 218 | 830 | .40 | 840 | .857 | 865 | 878 | 877 | .%88 | .809 | 814 | .82@ | .840 | .857 | .868
42 .067 | .002 | ,109 | .121 ] .133 | .142 | .150 | ,158 | ,164 | ,169 | ,175 | .180 | .190 | .197 | .200 | .221 | .233 | .249 | .258
L2187 | 160 | 180 | 186 | 209 | .820 | (251 | .830 | .847 | .854 | .861 | .867 | 878 | .287 | .808 | .814 | .898 | .848 | .857
&“ 084 | 088 | 104 | .116 | ,127 | .136 | .144 | .151 | .157 | .163 | .168 | .174 | .182 | .190 | .203 | .211 | .226 | .239 | .251
JA88 | 168} 178 | 188 | 801 | .818 | 281 | 830 | .898 | .845 | .851 | .958 | .268 | 877 | .898 | .%04 | .818 | .835 | .847
46 .061 | .084 ) .100 | ,112 | .2122 | ,130 | ,130 | .144 | ,151 | 167 | .162 | .167 | .175 | .183 | .105 | .204 | .219 | .232 | .244
JA17 | 148 ) 268 | 181 | 198 | 804 | (818 | .#81 | .829 | 836 | .843 | 840 | .268 | 868 | 888 | .#96 | .808 | .8%¢ | .838
48 .068 | ,081 | ,007 | ,107 | .117 | ,126 | ,133 | ,140 | .146 | ,151 | .16 | 161 | 160 [ .177 | ,180 | .198 | .212 | ,225 | ,237
18| 140 268 | 174 | L2186 | 106 | 808 | 818 | .88l 2928 [ 834 | .840 | .850 | 850 | 874 | .%86 | .899 | 317 | .529
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TABLE F.—VaLuEs or ¢ AT THE 5% (Roman Tyree) anp 19, (Itauic Tyee) LeveLs or SianiFicanceE—Continued

k=1
N—-k 1 2 ] 4 8 [ 7 8 9 ‘10 1n 12 14 16 201 24 30 40 &0

§0( .056] .077 | .092 | .104 | .113 | .,121 | .128 | .135| .140 | .145 | .150 | .155 | .164 | .171 | .182 ] .104 | .206 | .219 | .231
L108 | 185 | 168 | .168 | .180 | .189 | .199 | 208 | 214 | (221 | €268 | 858 | .£48 | .£568 | 265} .e77 | .£98 | .808 | .320

55)] .0511 .071 ] .084 ) .005) ,103 | ,111 | .118 | .124| .129 | .133 | .139 | .143 | .152 | .168 | .169 } .179 | .191 |- .204 | .216
099 | 128 | .140 | 154 | 266 | 176 | 188 | .190 | 197 | 808 | 800 | .£16 | .225 | 898 | 847 | .£69 | 278 | 288 | .800

60 ] .047 ) .065) .077 ] .087 | .095 | .102 | .109 | .115] .119 | .124 | .128 | .133 | .140 | .146 | .1568 | .167 | .178 | 191 | .203
091 | 114 | 180 | 148 | (158 ) 162 | .169 | 176 | .183 | .189 | .196 | .200 | .£09 | 217 | .881 | 848 | .256 | .£71 | %83

65] .043 | .060] .072 | .080 | 089 } .095 | .101] .106 | .110 } .116 ] .120 } .123 | .131 | .136 | .147 | .1556 | .166 ]| .178 | .190
084 ) 105 | 120] 188 ) 148 | 150 | .168 | 164 | 171 | 177 ]| 188} (186 | .195 | 204 | 217 | .£27 | .840 | 856 | .268

70| .040 .056 | .067 | .075 | .083 § .089 | .004 } .009 | .103 | .108 | .112 | .115} .123 | .128 | .138 | .146 | .157 | .160 | .181
078 | 098 | 118 ] 128 | 138 | 140 | (148 | 164 ] 160 | 166 | 170 | 275 | 184 | 190 | 204 | L1565 | 287 | 848 | 866

80| .035) .049 | .059 | .066 | .073 | .078 | .083 | .087 | .091] .095| .099 | .103 | .109 | .114 | .123 | .130 } .141 | .153 | .164
069 | .088 | .099 | .109 | 117 | 185 | 181 | 187 | .148 | 147 | 1568 | 166 | 164 | 171 | .18%8 | .198 | .204 | .219 | .#81

00| .028) .039 | .047 4 .053 | .058 ] .063 | .067 ] 071 .074 | .077 | .080 { .083 | .088 | .094 | .102 | .109 | .116 ] .127 { .138
056 ) 070§ .080 } .088 | .095 | .101 | .106 | 111 | 116 | .121 | 184 | 187 ] 184 | 141 | 160 | .169 | 170 | .18} | .198

125 | .023 | .032 | .038 | .043 | .047 1 .051 | .054 | .057 | .060 | .063 | .065 | .068 ] .072 | .076 | .082 | .088 | .096 } .106 | .114
.| “.044 ) 066 | 064 071 | 077 | .088 | .087 | .090 | .095 | .098 | .102 | 104 | 110 | A15 | 124 ] 181 | Q41 } 164 ] .168
150 | .019] .026 | .032 ] .036 | .039 | .043 | .046 | .048 | .051 | .053 | .055 | .057 | .061 | .064 | .070 { .076 | .083 | .090 | .099
1 087 ) .047 | 064 | .060 )] 0656 .069 | .078 | .07¢ | .080 | .088 | .086 | 088 | .098} .097 | .105 { 118 | .128 | ,182 | .142
200 | .014} .020| .024{ .027 ] .030 | .032| .034 | .036 | .038 | .040 | .041 | .043 | .046 | .049 | .053 | .058 | .064 | .070 | .077
0281 .035 | 041 .046 | .049 ]| 052 | .066 | .058 | .061 | 063 ] .065 | .068 | .071 | .076 | .081 | .086 | .098 | .108 | .110

400 | 2007 { .010 | .012 ] .014{ .015 ] .016 | .017 | .018 | .019 | .020 | .021 | .022 | .024 | .025 | .028 | .030 | .033 | .037 | .041
0141 .018 | 081 | 028 | 025 027 | .028 | 029 | .081 | .038 | .088 | .086 | .088 )| .038 | .04#2 1 .045 | .049 | .066 | .060

1,000 | .003{ .004 | .005 | .005 | .006 | .007 | .007 | .007 | .008 | .008 | .009 | .009 | .010 { .010 | .011 | .012 | .014 | .016 | .017
.006 | .007 | .008 | .009| ,010| .011 | .011 | .012 ] .018 } ,018 | .014 | .014 | 016} .016 | .017 | .019 | .0%0 | .023 | .0%6
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CoLumNn NUMBER

TABLE G.—A TasLe or Ranpom NUMBERs*

10 11 12 13 14 15 16

7 8 9
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. - : .
HHNND WO = AONOOMY NVOOM MmN Olerirird PN=RO OHNWO™ HOOMH
- . - . . -~

CODWO AVDPOWH 45547 NAHDN0 WNOOO NANDOL NIWVINO DNV HN = NDBOO BHNDO M

WODINN OO HRDO W 0O N FONC OANO SINONN CNDRO OWOWD 27458

RO NOHOR ORNOH OMNMH SONMO AHMNMS WD HND NIBNA0 NVO-HO HHNO W

NOOWX NOPDD MVl ONNNO OHOWN NOMNW HHMN0ID ™MD SN OO |

NADIH ORI D10 ABIDHrd O I VO D AN W00 OONOH 90230.38043 !

Row ;

NN OO 123.4—5 ONONO =N OROND =AM ORNOND 123 ) OO
A Tl el e v vy G 222%2 RNANND NMMMNM VMMM 444M“4. <

* From J. G. Peatman and R

206-297, by permission of the

A table of random numbers from Selec-

1942, 14, pp.

. Schafer.

J. Psychol.,

tive Service numbers.
editor and publisher.
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Appendiz

TABLE G.—A TaBLE oF Ranpom Numsers—Coniinued

Row

bl | NSO NN ODOQ AN HID) ONONO =AM ONORO =ANYID CODD
A 7A 1..1111111112222%2222233333333334444“444445

CoLuMN NUMBER ‘
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

=HRONOM DEWMNGN YRNNOW OMNMMOM QUImNN 83296 RONAMH ONNEN CRNYELr OCOWOQ
-.09921 97325 HIDW OO0 Hha O MW QOO O WNHOML ORI OMNOm™®N 0857_2
O oNt0 4.4.54.,0 O N ONIOHNIOIM NN~ RO 883Lu3 N0 TRl

DeR00Wo0 IMUNOH I rdOIHH OO ONNNNO =OOMN WDWWL WD ©MHON 08992 O =004t

.

COM=m NHHOH NAOUNN DN CNOHE IO ND i Ol NHNWO Wi D ODN D
6210.09 W= QROM =03 DMl NN QMO N HOEN OHHINAN HOMDDe HOODM
MNOVON OMMNPW ONWO NN~ O MHN 16755 AR NYHEO B-NOH =OCOMm
ORHNM N H 1”.4982 HONN) = AHHO DOWHNDN LONTW NMNOO= NN DmNOM
HIHRIO) N-HOND VNI~ NNODNMO OMMNO 14.2484. WHEAD) MNOOMAN UM HO 100 wd i 1D
WG HOMNNW Wi W= NON OQWNON HNONM DNINON NOMNMIE NDNROO DM =-D
&0176 R0 Ol PO O OHLY NN 42,0291 WOOOD 42.701 OB O OO W
AWM N RN DNOPm NNH=NO N0 HreiRON O RN NOHrmr OO H MO =10
QOMNOQ 27..04.1 00 O OF et 795\50 WONANMINOON NMMmrd MNOWHN mNOOM ~IONN
BDO 557.76 DOV HMNEND 45~L24. LN O™ &187-% 5.9686 Qomad

Ve R H NV YD NN O MANOND HANOW ONONO OISO ONVO- OHROM

CAVOY Ol NCOOY NriORHNNNOD NN O=HINO OONNY HOMNI NROMO




Dperuess .
ot P =00 H8 95 90 80 70 | 50 | 80 | 20 | a0 | 05 [ 02 | .01,
Fanzpou

n -

1 000157 | .000828 [ 00303 { 0158 | 0642 | .148 | 45| 1074 [ 1842 | 2706fi 8841 Ba12| 6638
2 0201 [ 0404 .103 211 | 448 | 713 | 1386 | 2.408 [ 8210 | 4605l 5901 [ 7.824 | e.210
8 115 185 862 58¢ | 1005 | 1.424 | 2.366 | 3665 | 4.642 | 6251l 7.815 [ 9.837 | 1L
4 207 429 711 1064 | 1649 | 2.195.| 3357 | 4878 5989 | 7.779| 9.488 | 11.668 | 13.277
5 554 752 1146 | 1610 | 2.3438 | 3000 | 4361 | 6.064 [ 7.280 | 9.236 | 11.070 | 13.388 | 15.086
8 872 1,184 1635 | 2204 | 3070 | 38281 5348 | 7.231 | 8.558 | 10.645 | 12.502 ) 15.033 | 16.812
7 1.239 1.564 2067 | 25833 | 8822 | 4671 6.346 | 8383 | 0.808 | 12.017 | 14.067 | 16.622 | 18.475
8 1,46 2032 2733 | 8490 | 4504 | 5.527 [ 7.344 | 9.524 | 11.030 | 13.362 | 35.507 | 18.168 | 20.090
9 - | 2088 2532 3325 | 4168 | 5380 | 6:303 | 8:343 | 10.656 | 12.242 | 14.684 | 16 919 | 19.679 | 21.666
10 2.658 3.059 3940 | 4885 | €170 | 7.267 | 9.342 | 11.781 | 13.442 | 15.987 | 18.307 | 21.161 | 23.209
11 2.053 3.609 4575 | 5578 | 8989 | 8.148 | 10.341 | 12.800 | 14.831 | 17.275 | 10.675 | 22.618 | 24.725
12 3.571 4178 5226 | 6:30¢ | 7.807 | 9.03¢ | 11.340 | 14.011 | 15.812 | 18.540 | 21026 54 | 26.217
13 4.107 4785 5802 | 7.042 | 8863¢ | 0926 | 12.340 | 156118 | 16.085 | 10.813 | 22 362 | 26.472 | 27.688
14 4.680 5.368 8571 | 7.790 | 8.467 | 10.821 | 13.339 | 18.222 | 18.151 | 21.064 | 23.685 | 26.873 | 20.141
15 5229 5.85 7.261 | 8547 | 10807 | 11721 | 14.339 | 17.322 | 10.311 | 22.307 | 24.696 | 28.250 | 30.578
18 5.812 8.614 7.962 | 0812 | 11162 | 12.624 | 15338 | 18.418 | 20.465 | 23.542 | 26.208 | 20.633 | 82.000
17 8.408 7.265 8672 | 10085 | 12.002 | 13.531 | 16.838 | 10.611 | 21.615 | 24.769 | 27.587 | 30.995 | 83.409
18 7.015 7.906 9:390 | 10885 | 12.857 | 14.440 | 17.338 | 20.601 | 22.760 | 25.089 | 28.869 | 32.316 | 34.805
19 7.633 8567 [10117 [ 11651 | 13716 | 15362 | 18:338 | 21.689 | 23.900 | 27.204 | 20.144 [ 33.687 | 36.101
20 8.260 9237 | 10851 | 12443 | 14.678 | 16.266 | 19.337 | 22.775 | 25.038 | 28.412 | 31.410 | 35.020 | 87.566
21 8.807 99015 | 11.591 | 13.240 | 15445 | 17.182 | 20.337 | 23.858 | 26.171 | 20.615 | B2.671 ( 36.343 | 38.932
22 9.542 10.600 12.338 14.041 16.314 | 18.101 | 21.337 | 24.939 | 27.501 | 30.813 | 83.924 | 37.659 | 40.289
23 10196 | 11208 | 13.091 | 14:848 | 17.187 | 19.021 | 22337 | 26.018 | 28.420 | 32.007 | 35.172 | 38.968 | 41.648
24 10.856 11.902 13.848 15.659 | 18.062 | 19.943 | 23.337 | 27.096 | 20.563 | 33.196 | 88.415 | 40.270 | 42.980
25 11524 | 12607 | 14611 | 16473 | 18040 | 20.867 | 24.337 | 28.172 | 30.675 | 34.382 | 87.652 | 41.566 | 44.314
28 12108 | 13400 | 15879 | 17.202 | 19.820 | 21.702 | 25.338 | 20.248 | 81.7u5 | 35.563 | 38.885 | 42.856 | 45.642
27 12879} 14125 | 18151 | 18114 | 20703 | 22.719 | 26.336 | 30.310 | 82.012 | 36.741 [ 40.113 | 44.140 | 46.963
28 13.866 | 14.847 | 16.028 | 18930 | 21.588 | 23.647 | 27.336 | 31.301 | 84.027 | 87.916 | 41.337 | 45.419 | 48.278
29 14256 | 15674 | 17.708 | 10768 | 22475 | 24.577 | 28.336 | 82.461 | 86.139 | 89.087 | 42,057 | 46.693 | 49.588
30 14963 | 16308 | 184903 | 20,689 | 23.364 | 25.508 | 20.336 | 83.530 | 86.260 | 40.266 | 43.773 | 47.962 | £0.802

* Table H is reprinted from Table III of Fisher: Statistical Methods for Research Workers.

Oliver & Boyd, Ltd., Edinb

gh, by per

of the Author and Publishers. For larger values of n, the expression v/Zx? — 4/2n — I may be used a8 4 normal deviate with unit standard error.

zpusddy
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Example 1.

Example 2.

Example 3.

Example 4.

Example 5.
Example 6.

Example 7.

ANSWERS TO EXAMPLES

(a) —11

b) 2

(0 -1

d 10

() 2

(@ -5

(b)) 6

(¢ 17

d 30

(e 18

(@ 2

®) 2

© 2

@ 2

e 1

®n 1

(a) 49

® 3

(c) 25

(d 36

(e 1

" 16

(& -4

(a) 25 per cent
(b) .75

(a) 75 per cent
() .25

(2) 30 per cent
®) .70

H -4

( -3
({B) -8
G) —16
G) =6
®n -8
(g) -9
(h) —10
G 16
@ -2
@® 1
b 1
O 2
G 1
& 1
»m 2
(h) —4
@ -3
G 21
(k) —10
®» -6
(m) 6
@ o
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(o) 2

() 20
@ 2
(r) 40

s) .6
(t) - .0004
w .01
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Example 8.

Chapier 3
Example 1.

Example 2.

‘ L]
Example 3.
‘ Example 4.

Example 5.
: '.Exa.mple 6.
Example 7.

Answers to Ezamples
(a) 2 _ (fy 144 (k) 2.44 (p) 197
{b) .9 € 32. @ 317  (q) 314
{c) .04 (h) 66 (m) 7.19 (r) 397
{d) .005 i 99 (n) 9.98 {s) 174
{e) .68 (i) 82 {0) 6.1 (t) 983
ia.)M=24 b)Zz=0
(a) Mdn =169  (d) Mdn = 165
(b) Mdn = 17.0 "~ {e) Mdn =315

{c) Mdn= 9.0

Groupl: M =7; Zzr=10
Group2: M =5; Zxz=0
Diff.: My=2; Zd=0

Group1: Mdn =65; R=5; v =30; ¢ =173
Group2; Mdn=5.0; R=6; r =36; ¢ =190

M=20; ¢=101951; o=3.19

Mdn=2012; @ =1775; Q,=2242 .

® =z
®) NM

(0 (X —M); Ne?
M :

(@)

(e) %{
o v v s
2 (X — M)

® i % N

(X — M)

® 5 N

P2

O =X



Answers to Examples

-~ Example 8.

Chapter 4 -

Example 1.

Example 2,

Example 3.

&) Z#t; Z(X - My

W o5 Vo SPEM

N
(m) X' — M -

r=X—-M

Tr=3(X — M)
Zz =X —ZM
Zr=3X — NM
2z = ZX - ZX
Zx =10 )

(a) X = 175; M= 25;

Za? =
L 21 :
(b) M—22+(-f-)=25
Zrt = 127 — @'ﬁ 64
() Za? = 4,430 — (1—?5—): =64 _
(a) (b)), T o),
{1) 65 5 20—24
(2) 45 3orbh 48-50or50—54
(3) 123 10 T 60—69 ’
4 23 2 4243
6) 386 - 3 15—17
© 5 5 5054
(@ ® ( @ & @
X’ X' X' .X i.Xf X’
10 3 4 1 2 5
0 6 8 7 -3 10
10 7 5 5 1. 1
9 8 1 10 .3
2 1. 9 8 ‘2 5

345

64

@
.22

49 or 52
64.5
- 42.5

16

o2

(@
- X0

ot
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Example 4.-

. Example 5.

Exa:mﬁle 6.
Example 7.

Answers to Examples
(a) 65 =45+ 20

'(b} 243 = 1334 (2)(45) + 20

M=2217; o=741
Cheek: Zfz” = 1,090 = 910 + 180
Check: Zfz’"* = 7,700 = 5,700 4 (2)(910) + 180

M =4679; Mdn=46.75; o=25383

z=X-M

= (X — M)

¢ =X — 2XM |- M?
Z2t = 2X? — 2MZX + NM?
Zr* = ZX®* — 2MNM -+ NM?
Zr? = ZX? - 2NM? + NM?
32 = X — NM?

- re- e G

Example 8.

Chapler B

Example 1.

Example 2. ‘

Exérﬁple 3. r=

2‘.::‘ ZX2 - (E—X)

{a) =" —2+1
2z =Z2'+ N
) 2 =2'+1
z™ = (2 + 1)?
=z 4+27 41
2z =2z () -+ N

18 .
(10) (1.414)(1 414)

18

_—l-—-.

V)
138 —

N80 - (40)'][110 _(30)

= .90

(40) (30)




Answers to Examples | 34'Z=
| Exampled. 2y = (X — M)(Y — M)

! Examj)le 5.
Example 6.
Example 7.

Chapler 6

Example 1.
Example 2.
Example 3.
Example 4.
Example 5.
. Exarﬁple 6.
Example 7.
Example 8.

Chapter T

Example 1.
Example 2.
Example 3.

2y = XY — YM, — XM, + M.M, _
Sry = ZXY — M.2Y — MEX + NM.M,
Try = XY — M.NM, — M,NM. -+ NM M,
Tzy = XY — 2NM.M, + NM.M,

Try = 2XY — NM,M,

szy = 2x¥ - N )5 A8

- EX)(zY)

r= .82
r=.12
r=.,73

Nys = 82

Toi = .20 -

Yobie = 24

¢=.15

¢ = .37; e = .59
¢=.22; 1,=.30
p=.27

pro = 84 pax = Ol
(2) 1/256 (b) 37/256
3/4

1/4 '



348 Answers to Examples
Example 4. 3/64

Example 5. (a) .0668 {g) 0938
(c) 8044 . (i) 8185
(d) 9938 G) 6826
(e) 1587 (k) 9104
- (f) 6915 Q) .7745
Example 6. Middle 95 per cent
; (a) 25+ 9.80 (e) 185+ 431
{b) 30 X 13.72 ) 224+ 8.62
{e) 50 + 11.76 (2) 47.0 = 10.78
(d) 42+ 8§82 (h) 231+ 412
Middle 99 per cent
{a) 25 4+ 12.90 (e} 18.5 -+ 5.68
(b) 30 -+ 18.06 (6 224 + 1135
(c) 50 1548 (g) 47.0 x 14.19
(d) 42 + 11.61 (h) 23.1 = 5.42
Chapler 8
Example 2. Fiducial Limits Fiducial Limits
. at. 5% Level at 1%, Level
(a) 23.75—26.25 (a) 23.314—26.66
(b) 26.20—33.71 - (b) 24.89—35.11
{¢)} 33.02—36.98 (e} 32.37—37.63
© (d) 21.16—28.84 (d) 19.48—30.52
{e) 20.85—29.12 {e) 19.42—30.58
() 43.64—56.36 (f) 4124—58.76
() 47.85—52.15 (o) 47.13—52.87
() 22.01—22.99 () 21.85—23.15
Example 3. M = 20; om = .718; df = 16

. Fiducial limits at 59 level: 18.48—21.52
. Fiducial limits at 1%, level: 17.90—22.10



Answers to Ezamples : ‘ 349

C hapter' 9

Example 1.
Example 2.

Example 3.

Exa.mple
Example
Example
Example

Example 8.
Example
Example 10.

Example 11.

Example 12.

Example 13.

Chapter 10

4.

5
6
7.
8
9

t—453; df =398

(a) t =235 df=18
(b)t=671; df= 9

ParisHamburg: ¢ = .40;  df = 198
Paris-Rome: t=115; - df =198 .

Hamburg-Rome: ¢ = .74; ~ df = 198

t=260; df =99
1=143; df=99
{=286; df =49
t=256; df=29
t=200; df =49
r = .765 would be significant at 1%, level for 8 df :

r must be at least .632 to be s1gmﬁca.nt at 5% level
“ for8df g

r must be at least .28 to be s1gmﬁca.nt at 5% level
~ for48 df

N must be at least 62 in order for r = .25 to be

" significant at 5%, level

N must be at least 13 in order for r = .55 to be
significant at 5%, level

1=3.04; df=117

Example 1. (a) t = 2.99; df = 18

(b) F=895; df=1and18

Example2. F =110; df =4and20"
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Example 3.

Chapter 11

Example 1.

Example 2.

o Example 3.

Chapier 12
. Example 1.

Exzample 2.

Example 3.

* "Example 4.

Example 5.
Example 6.
Example 7.
Example 8.

Example 9. -

Chapter 13
Example 1.

Answers o Ezxamples

- Between the 9 groups:
F=1316; df =8and8l
Between the age groups:
F= 135; df=2and8l1
Between the methods groups:
‘ ' F = 540; df = 2and 81
Interaction:
F=2204; df=4and8l
(a) t= 234; df=
F = 5.45; df = land 18
(b) t= 6.71; df = 9
F=4505 df= 1and9
{a) F = 198; df = 2and 27
) F=2252; df= 2and18
ni=7174; & =.6856; k—1=09;
N-k=3%80
x2=1200; df=1
xt= 416; df=1
x*= 500; df=1
x*=1400; df=2
Xt = 64.50; df =4
x*=1347; df=1
x*=1899; df=2
X*=,876; df=2
xt= 9.20; df=6
{a) Per cent correct without knowledge of

response to question................. 50
Per cent correct with knowledge of re-

sponse to question. . 65



Answers to Ezxzamples

Example 2.

Example 3.

. Example 4.

Example 5. -

Per cent increase with knowledge of re-
sponse to question................. ..

(b) Per cent correct without knowledge of
marital status..........ociiiaiiiiis

Per cent correct with lmowledge of marital

I;ér cent correct without knowledge of Humm-
Wadsworth seore

.......................

- Per cent correct with knowledge of Humm ‘

Wadsworth seore. .

Per cent increase with knowledge of Humm-
Wadsworth score

.......................

Per cent correct without knowledge of ACE‘

elassifieation. ........cooviiinininneen

Per cent correct with knowledge of ACE
classification

...........................

Per cent inerease with knowledge of ACE

classifieationi. ., ..o g van 5 v e sewn o

M,=6525; 4,=1277: 7y, =173
M, =65.90; o,=1004; 7,.=.73
(a) b, = .929

byz = .574.’
(b) X =48; Y'=56.00

X =55; Y’ =60.02

X =173 Y =7035

X =182; Y =7552

X =90; ¥ =180.11

351

- 55

65

- 18

58

- 61



352 Answers fo Examples
() Y =568, X" =5791
- Ye=T1; X'=6999
Y =176 X'=7463
Y = 80; X’ = 7835
Y =95 X'=0220
(d) Ty = 8-72; E = 32%
" oye = 6.86; E =32%

“ E:_niﬁlplé, 6 ' c’-.i: 13.01; E = 439,
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SUBJECT INDEX

Abecissa, 81
Anaslysis of variance, 192-231
" of independent groups, 192-214
of matched groups, 217-231
natuare of, 192-199
relation to epsilon-square, 232-236
relation to { test in case of two inde-
pendent groups, 199-201
relation to ¢ test in case of two
matched groupe, 224-225
of several independent groups,
202-207
of several matched groups, 225-
231
Area, under normal curve, 40, 141-
142
Arithmetic mean, 32
Attenuation, eorrection for, 102
Attributes, prediction of, 258-261
Average 3638
Averages, 7-8, 34
correlation between, 181
of rates, 48

Bmalmal, rules for erpa.ndmg, 137-

Bmmmal coefficients, 137—138
Binomial distribution, 137-140
Biserial coefficient of correlation, 112—
116, 127-128
assumptions involved in eom-
puting, 113
computed from widespread classes,
113

Centiles, 4547
as measurea of relativg position, 46
Central tendency, measures of, 34,
41-45, 49-50
Charlier checks, 74
Chi-equare, 239-255

applied to an a priori hypothesis,
241-246

Chi-square—Continued
applied to more than two cate-
gories, 245-246
applied to several samples, 250-252
applied to two samples, 246-250
caleulated from per cents, 244
correction for small frequences,
253254
degrees of freedom for, 248
interpretation of, 240
relation to contingency coefficient,
123
relation to phi coefficient, 254-255
sampling distribution of, 241
as test of “goodness of ﬁt.," 252—253
Class intervals, 67-70
assumptions concerning scores
within, 70
influence of number of on accuracy,
68
midpoint of, 71
recorded Im:ula of, 69-70
gize of, 6869
thmrehml limits of, 70
Coding, 58-67, 270 .
and ealeulation of correlation coeffi-
cient, 91-93
and calculation of regression coeffi-
cient, 270
correctiona for, 60-67
by division, 63-66
formulas, 66-67
by subtraction, 53-63
Coeflicient, biserial, 112-116
contingency, 122-123
of correlation, 9, 79-99
of determination, 99-100
of non-determination, 99-100

phi, 117-122
point-biserial, 115
nnk—dz.ﬁemnne, 123-125
regression, 264, 266, 270
Combinations, 136-137
Common elementa, theory of, 100-101

355
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Confidence intervals, 162-165
Constant, definition of, 24
Constant errors, 283
Contingency coefficient, 122-123
Control group, 12, 288-295
formed by matching on experi-
.. mental variable, 294
formed by matching on related
©  variable, 294
formed by pairing individuals, 291~
294

formed by random selection, 289~
291
- single group serving as own, 294 |
Coordinates, 82
Correction, for attenuation, 102
for coding, 60-66
for small frequencies in ca.lculatmg
chi-square, 253-259
.Correlation, accuracy of predictions
based upon, 261
. and causation, 79
chart, 96
and common elements, 100-101

2s means of reducmg standardﬁ

error, 183

multiple, 125-126, 181

negative, 83-85

partial, 125-126

positive, 80, 84-85

of ranks, 123-125

and regression, 265-267

and standard error of mean differ-
ence, 179-181

tetrachoric, 116-117

Correlation coefficient, 9, 79-99

computed_from coded scores, 91—

93

computed from original measur&, .

90-91

computed from scatter diagram,
94-99

computed from standard scores, 88

estimated by phi, 120

as mean of product of paired
2 scores, 88

multiple, 125

partial, 125

i purpose for which used, 101

Subject Index

Correlation coefficient—Continued
as ratio of two averages of variance,
© 89
reduction in size from grouping, 127
relation to regression coefficient,
265-266 v
reliability of, 127
significance of, 185-189
gize of, 80, 99
zero order, 125
Correlation ratio, 83, 107—1 12, 232~
236
without bias, 232-236
relation of size of to number of class
intervals, 127
size of, 108
summary of steps in computing,
110-111
Covariance, 87, 89
Cross-products, computation of, 87
Curvilinear relationships, 83, 106-111

Deciles, 46
Decimals, 16-17
Degree of confidence, 13, 161-162
in rejecting hypotheses, 165
Degrees of freedom, 166-167, 168,
170, 177, 179-180, 182-183, 188~
189, 197-198, 201, 206, 210, 212-
213, 221-223, 235-236, 242, 245~
246,%248-249, 252-253, 296
in calculating chi-square, 242, 249
in determining fiducial limits of
mean, 167
formulas for in analysis of variance,
207, 231
for mean difference between inde-
" pendent groups, 182
for mean difference between
matched groups, 177, 179, 180
in testing “goodness of fit” of
. normal distribution, 252-253
in testing significance of r, 188
Dependent variable, 12
Deviation, 36-37
of observed from expected fre-
-quency, 240 .
significant, 139, 163



of sample means, 154-156
sampling, 153-156
skewed, 148-149
truneated, 41

Epsilon, 232-236
Epsilon-equare, 232-236
T with F, 234-235
relation to analysis of variance,
234236
as test of rectilinear relationship,
237
use of tables of, 233
Equations, rulea for performing oper-
ations npon, 25~27
Errors, constant, 283
of estimate, 262
of first kind, 163
of measurement, 102
of random sampling, 281, 283
Eta, 107 ]
Experimental design, 11, 13, 30, 192,
208, 278, 281, 299
Experimental group, 12
Experimental variable, 12
Experiments, nature of, 11
Fiducial limita, 162-166
of mean difference, 177-178, 182
of proportion, 163
and emall samples, 166-170
Fiducial probability, 163
Fractions, 15-16
Frequency, standard error of, 170
Frequency distributions, 41, 67
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Geometric mean, 49, 89

“Goodness of fit,” chi-square as {est
of, 252-253

Graphs, 81-82

Harmonic mean, 49

Homeogeneity of variance, test of, 206

Hypotheses, testing of, 160-166, 176,
187188, 201. 236-237, 240, 243,

mull, 176-177, 131——185, 193, 280~
281, 234 .

rejection of true, 165

and theory, 278-279

Identities, substitution of in formu-
las, 26-27

Independent groups, 181-183, 102-
214

Independent variable, 12

Index of forecasting efficiency, 269

Interaction, 208

Interaction variance, 212-214

Interval, 41

Intervals, confidence, 162-165

EKurtoeis, 149

Yeast squares, principle of, 272

Mab:hedgrmpa.l?.m,lsz. 180-181
Mean, arithmetic, 34
mludswdhnmgmpedmn-
- T4
geometric, 49
harmonic, 49
as a measure of concentration, 34~ -
36 z
of a set of = scores, 48
standard error of, 157-159 -
Mean difference, fiducial limits of,
177-178
significance of when "variances
differ, 297-299
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Mean difference—Continued
standard error of, 174-176
Mean square, 38
Means, variability of in correlation
chart, 108-109
. Measurements, approximate nature
of, 54-58
errors of, 102
paired, 11, 80
precision of, 67
predictions of, 261-273
':redueed to common scales, 47—48,

- reha.bxhty of, 102

in social sciences, 147

transformed into set of ranks, 125
‘Median, 41-45, 75
Method of least squares, 262
Midpoint, of class interval, 71
Mode, 49
Multiple correlation coefficient, 125~

126, 128, 181

Normal curve, 3940, 140-144
and large samples, 159-162
ordinates of, 114, 141-143
and standard scores, 142
use of tables of, 40, 144-146
zone embracing mddle 95 per cent
: of measures, 145
Normal distribution, 3940, 139-140
fitted to sample set of measure-
ments, 142-144
as a mathematical ideal, 146
relation of mode, median, and mean
in, 148
of test scores, 147
testing “‘goodness of fit” of, 252-
253 .
Null hypothesis, 176—177 184—185
’ 193, 234, 280281
Numbers, in a series, 21
positive and negative, 18-20
techniques of rounding, 57-58

Opinion polls, 283
Ordinate, 81
of normal curve, 114

Subject Index

Paired associates, method of, 31
Paired observations, 11
advantages of, 183-184
reduction in degrees of freedom for,
183-184
Parameters, 51, 153
Partial correlation coeflicient, 125-
126, 128
Per cents, 17-18
calculation of chi-square from, 244
standard errors of, 170
Phi coefficient, 117-122, 128
applied to true dichotomies, 118~
119
and assumption of continuity, 119~
121
estimate of r derived from, 120
relation fo chi-square, 254255
as substitute for tetrachoric r, 121~
122
Point biserial r, 114-116, 128
Population, definition of, 51
estimate of mean of, 159
estimate of variance of, 192, 222
ratio, 240
Precision, of measurements, 67
Predictions, 13
accuracy of dependent upon corre-
lation, 261
“of attributes, 258-261
based upon means of columns of
correlation table, 272
errors of, 259, 262
evaluation of efficiency of, 259, 269
of measurements, 261273
Principle of least squares, 272

. Principle of maximum likelihood, 258

Principle of maximum probability,
258
Probability, a priori, 134
empirical, 134
fiducial, 162
meaning of, 133-136
principle of maximum, 258
Probable deviation, 49
Probable error, 49
Proportions, 17-18
standard error of, 168-169
testing significance of, 184-185



Subject Index

" Public opinion polls, 152
margin of error in, 153
samples used in, 152

Quadrant, 82
Quartile, 45

Random numbers, tableg of, 289-290
Range, 5 ’
of correlation coefficient, 80, 99
inclusive, 33-34
88 measure of variability, 8-9, 31-
34 »
middle 80 pér cent, 49
semi-interquartile, 45
Rank-difference coefficient, 123-125
Ranks, method of dmlmg with ties,
125
Rates, averaging of, 49
Rectllmear relationship, test of sig-
nificance of departure from, 237
Regression coefficient, 263
eoding of, 270
and correlation, 265-267
Regression equation, 265
Regression line, 83, 262-263
ﬁt;ed by mel;hod of least squares,
63
Relationships, between averages and
differences, 9
curvilinear, 83, 106-107
negative, 79, 85
positive, 79, 84
rectilinear,

, 83
study of, 9-10, 70-80
Relative deviates, 47
Reliability, 13, 153
Replication, 230
Research problems, 277-279
Residual sum of equares, 221-222,
229-230
Residual variance, 222, 224, 230

Samples, definition of, 50
generalizations from, 283
large, 287
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Samples—Continued
random, 283-286
reasons for studying, 151-152
representativeness of, 282, 286

small, 165-168, 170, 287-288
used in opinion polls, 283
Sa.mplmg distribution, 153156, 173
of chi-square, 241-242 ‘
of correlation coefficient, 186—187
of difference between correlated
means, 181
of difference between means, 173
of epsilon-square, 233
of means, 157
of standard deviation, 168
- of ¢ ratio, 166-167
of variance ratio, 193, 296
Sampling, errore of random, 281, 283
Sampling theory, 153
Scatter diagram, 94
Significance, tests of, 57, 297-299
Bignificant figures, 55-56
Skewness, 148-149
Squares and square roots, 21-23 <

Squares, sum of, 39, 51, 60-63, 65,

157, 193-195, 202, 210, 219, 226
Btandard devistion, 27-39
caleulated from grouped scores, 73
of a distribution of z scores, 48 :
estimate of population, 157-158
of a sampling distribution, 156
standard error of, 168
Standard errors, 156-159, 168-170,
. 174-189, 200
based on pooled sum of squares, 200
of difference in mean gains, 293
of estimate, 267-269, 272-273
of frequenciea, 170 4
of %m differences, 174, 179-180,

of mean differences of independent
groups, 181, 200

of mean differences when correla-
tion is present, 179-181

of means, 157-159

of per cents, 170, 184-185

of proportions, 168-169, 184-185
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Standard errors—Conlinued
relf.;ion to population variability,
6
relation to sample size, 156
of standard deviation, 168
Standard scores, 47-49, 88, 141
mean of distribution of, 48
mean of products of paired, 838
B3 meaaures of relative position,
S 14748
. standard deviation of distribution
‘ of, 48 -
Statistical inference, 13
Statistical methods, applications of, 3
approaches to study of, 6
continuity of development of, 6
- functions of, 10-14
mathemsatical bases of, ¢
Statistics, 51, 152
Sum of cross-products, 87
computed from oorrelatmn chart,
97-98
computed from original measures,
90

correction for coding, 90

¢ difference method of computing, 91

Sum of squares, 51, 60-63, 65, 157,
193-195, 202, 210, 219, 226
~ eomputed from correlatmn chart,
<0697
between groups, 193, 195-196, 203~
- 204, 210, 219, 227
within groups, 193, 195, 204-205,
210, 219, 227, 230
+ mtera.ctlon, 212, 230
pooling of mthm groups, 199, 204-
© 205, 210, 219, 227
realdua.l 221—222, 220-230 "
Summation, 23-25, 36

of an algebraio sum of two or more .

terms, 24 .
'of & constant, 24
of a variable, 24
of a variable divided by a constant,

25
Symbols, use of, 5, 34-36

'

Subject Indez

Test construction, 14
Testa of significance, 133, 184
:chi-square, 239-255
comparison of F and ¢ in case of two
groups, 199-202, 218-225 -
epsilon-square, 232-237
interpretation of, 279282
£ ratio, 166, 187
variance ratio, 193, 296
Tetrachoric eorrelation, 116-117
sssumptions involved im com-
puting, 117
diagrams for computing, ll'l'
and phi coefficient, 121
Two-way frequency table, 94

Universe, definition of, 51

Variability, 89
in population as related to sample,
156
Variable, definition of, 23
dependent, 12
dichotomous, 112-113
experimental, 12
independent, 12
Variables, used for matching groups,
203294
Variance, analysis of, 192-231
assamption of homogeneity of,
205-299
definition of, 38
estimate of population, 192, 197,
199
interaction, 212-214-
of means of columns in correlation
chart, 108-109
‘in onme variable associated with
second, 99
residual, 222, 224, 230 :
Variance ratio, 193, 193, 296, 205~
206, 213-214, 218, 225, 227, 296

X-axis, 81-82 E

Y-axis, 81-82



