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PREFACE 

This book is an outgrowth of lectures on the theory of probability 
which the author has given at Stanford University for a number of 
years. At first a short mimeographed text coYering only the elementary 
parts of the subject ·was used for the guidance of students. As time 
went on and the scope of the course was gradually enlarged, the necessity 
arose of putting into the hands of students a more elaborate exposition 
of the most important parts of the theory of probability. Accordingly 
·a rather large manuscript was prepared for this purpose. The author 
did not plan at first to publish it, but students and other persons who had 
opportunity to peruse the manuscript were so persuasive that publication 
was finally arranged. 

The book is arranged in such a way that the first part of it, consisting 
of Chapters I to XII inclusive, is accessible to a person without advanced 
mathematical knowledge. Chapters VII and VIII are, perhaps, excep­
tions. The aqalysis in Chapter VII is rather involved and a better way 
to arrive at the same results would be very desirable. At any rate, a 
reader who does not have time or inclination to go through all the 
intricacies of this analysis may skip it and retain only the final results, 
found in Section 11. Chapter VIII, though dealing with interesting 
and historically important problems, is not important in itself and may 
without loss be omitted by readers. Chapters XIII to XVI incorporate 
the results of modern investigations. Naturally they are more complex 
and require more mature mathematical preparation. 

Thrt>e appendices are added to the book. Of these the second is by 
far the most important. It gives an outline of the famous Tshebysheff­
:\larkoff method of moments applied to the proof of the fundamental 
tlworem previously established by another method in Chapter XIV. 

No one will dispute Newton's a..~ertion: "In scientiis addiscendi'l 
f'Xt'rnpla magis prosunt quam praecepta." But especially is it so in the 
tiH•ory of probability. Accordingly, not only are a large number of 
illustrative problt'ms discussed in the text, but at the end of each chapter 
a st•leetion of problems is added for the benefit of students. Some of 
thPm are mrr<> exampll's. Others are more difficult problems, or even 
important thrort'ms which did not find a place in the mam text. In all 
!'Udl ('~'I.'S suffieit>ntly explicit indications of solution (or proofs) are given. 

v 



vi PREFACE 

The book does not go into applications of probability to other sciences. 
To present these applications. adequately another volume of perhaps 
la1!!1- size would be required. · 
· No one l~:~":'o"e aware than the author of the many imperfections in 

. the plan of this book anu ·w~ ~At'-'"'4-·w To present an entirely sati:v­
factory book on probabillty is, indeed, a dllli~·:'"' ...... .,lc.. But even with 
all these imperfections we hope that the book Wlll prove u.,u. ... , -~d9 ~v 
since it contains much material not to be found in other books on the 
same subject in the English language. 

::WANFORD UNIVERSITY, 

September, 1937-

J. V. UsPENSKY. 
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INTRODUCTION TO 
~IATHE~IATICAL PROBABILITY 

INTRODUCTION 

Quanlo enim minus rationu termini~ rompreMndi poll3fl 

videbatur, qwu fortuila s:¥nl alqut in.arta, tanto admira­
biliur ara Ctn*ebitur, cui iWJ gtwqut suhjacent.-

• CB:a. HUTGEYs, 

De ratiociniil in ludo aklu . ... ... 
1. It is always difficult to describe with adequate conciseness and 

clarity the object of any particular science; its methods, problems, and 
results are revealed only gradually. But if one must define the scope 
of the theory of probability the answer may be this: The theory of 
probability is a branch of applied mathematics dealing with the effects of 
cha'f~M-. Here we encounter the word "chance," which is often used in 
everyday language but \\ith rather indefinite meaning. To make clearer 

· the idea conveyed by this word, we shall try first to clarify the opposite 
idea expressed in the word "necessity," Necessity may be logical or 
physical. The statement "The sum of the angles in a triangle is equal 
to two right angles" is a logical necessity, provided we assume the 
axioms of Euclidean geometry; for in denying the conclusion of the 
admitted premises, we violate the logical law of contradiction. 

Tbe following statements serve to illustrate the idea of· physical 
n~:>cessity: 

A piece of iron falls down if not supported. 
Water boils if heated to a sufficiently high temperature. 
A die thrown on a board nenr stands on its edge. 
The logical stru~ture of all these statements is the same: When certain 

conditions which may be termed 41 causes" are fulfilled, a definite effect 
()('rurs of necess-ity. But the nature of this kind vf neces:.ity is dilierent 
from that of logical nece&ity. The latter, with our organization· of 
mind, appears absolute, while physical nee€'ssity is only a result of 
e:xiensive induction. We have nenr known an instance in which water, 
bt'ated to a high temperature, did not boil; or a piece of iron did not fall 
down; or a die stood on its edge. For that reason we are led to beliew 
that in the preceding examplt's (and in innumerable similar instances) 
the effect foUows from its "cause'' of necessity. 

1 



2 INTRODUCTION TO MATHEMATICAL PROBABILITY 

Instead of the term ''physical necessity" we may introduce the 
abstract idea of "natural law." Thus, it is a "natural law" that the 
piece of iron left without support will fall down. Natural laws derived 
from extensive experiments or observations may be called "empirical 
laws" to distinguish them from theoretical laws. In all exact sciences 
which have reached a high degree of development, such as astronomy, 
physics, and chemistry, scientists endeavor to build up an abstract and 
simplified image of the infinitely complex physical world-an image 
which can be described in mathematical terms. With the help of 
hypotheses and some artificial concepts, it becomes possible to derive 
mathematically certain laws which, when applied to the world of reality, 
represent many natural phenomena with an amazing degree of accuracy. 
It is true that in the development of the sciences it sometimes becomes 
necessary to recast the previously accepted image of the physical world, 
but it is remarkable that the fundamental theoretical laws even then 
undergo but slight modification in substance or interpretation. 

The chief endeavor of the exact sciences is the discovery of natural 
laws, and their formulation is of the greatest importance to the promotion 
of'h.uman knowledge in general and. to the extension of our powers over 
natural phenomena. 

Are the events caused by natural laws absolutely certain? No, 
but for all practical purposes they may be considered as certain. It is 
possible that one or another of the natural laws may fail, but such 
failure would constitute a real "miracle." However, granted that the 
possibility of miracles is consistent with the nature of scientific knowledge, 
actually this possibility may be disregarded. 

2. If the preceding explanations throw a faint light upon the concept 
of necessity, it now remains to illuminate by comparison some charac­
teristic features inherent in the concept of" chance." To say that chance 
is a denial of necessity is too vague a statement, but examples may help 
us to understand it better. 

If a die is thrown upon a board we are certain that one of the six faces 
will turn up .. But whether a particular face will show depends on what 
we call chance and cannot be predicted. Now, in the act of tossing a 
die there are some conditions known to us: first, that it is nearly cubic 
in shape; furthet;--if it is a good die, its material is as nearl¥ as possible 
homogeneous. Besides these known conditions, there are other factors 
influencing the motion of the die which are completely inaccessible to our 
knowledge. First among them are the initial position and the impulse 
imparted by the player's hand. These depend on an "act of will"-an 
agent which may act ·without any recognizable motivation-and therefore 
they are outside the domain of rational knowledge. Second, supposing 
the initial conditions known, the complexity of the resulting motion 
defie~ »-ny possibility of foreseeing the final result. 
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Another example: If equal numbers of white and black balls, which do 
not differ in any respect except in color, are concealed in an urn, and we 
draw one of them blindly, it is certain that its color \\rill be either white 
or black, but whether it will be black or white we cannot predict: that 
depends on chance. In this example we again have a set of known 
conditions: namely, that balls in equal numbers are white and black, and 
that they are not distinguishable except in color. But the final result 
depends on other conditions completely outside our knowledge. First, 
we know nothing about the respective positions of the white and black 
balls; second, the choice of one or the other depends on an act of will. 

It is an observed fact that the numbers of marriages, divorces, births, 
deaths, suicides, etc., per 1,000 of population, in a country with nearly 
settled living conditions and during not too long a period of time, do not 
remain constant, but oscillate within comparatively narrow limits. For 
a given year it is impossible to predict what v.ill be their numbers: that 
depends on chance. For, besides some known conditions, such as the 
level of prosperity, sanitation, and many other things, there are unnum­
bered factors completely outside our knowledge. 

Many other examples of a similar kind can be cited to illustrate the 
notion of chance. Thfy all possess a common logical structure which 
can be described as follows: an event A may materialize under certain 
known or" fixed'' conditions, but not necessarily; for under the same fixed 
conditions other events B, C, D, . . . are also possible. The mate­
rialization of A depends also upon other factors completely outside our 
control and knowledge. Consequently, whether A will materialize or 
not under such circumstances cannot be foreseen; the materialization of 
:1 is due to chance, or, to express it concisely, A is a contingent event. 

3. The idea of necessity is closely related to that of certainty. Thus 
it is "certain" that everybody will die in the due course of ~ime. In 
the same way the idea of chance is related to that of probability or likeli­
hood. In everyday language, the words "probability" and "probable" 
are used \\ith different shades of meaning. By saying, "Probably it will 
rain tomorrow," we mean that there are more signs indicating rainy 
weather than fair for tomorrow. On the other hand, in the statement, 
"There is little probability in the story he told us," the word "proba­
bility" is used in the sense of credibility. But henceforth we shall use 
the word as equivalent to the degree of credence which we may place 
in the possibility that some contingent event may materialize. The 
"degree of credence" implies an almost instinctive desire to compare 
probabilities of different events or facts. That such comparison is 
possible one can gather from the foUowing examples: 

I live on the seeond floor and can reaeh the ground either by using 
tht> stairway or by jumping from the window. Either way I might be 
injurt•d, though not necessarily. How do the proLsl)ilitit>li ef. fleing 
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injured compare in the two cases? Everyone, no doubt, will say tha1 
the probability of being injured by jumping from the window is 11 greater' 
than the probability of being injured while walking down the stairway. 
Such universal agreement might be due either to personal experience or 
merely to hearsay about similar experiences of other persons. 

An urn contains an equal number of white and black balls that are 
similar in all respects except color. One ball is drawn. It may be either 
black or white. How do the probabilities of these two cases compare? 
One almost instinctively answers: "They are equal." 

Now, if there are 10 white balls and 1 black ball in the urn, what 
about the probabilities of drawing a white or a black ball? Again one 
would say without hesitation that the probability of drawing a white ball 
is greater than that of drawing a black ball. 

Thus, probability appears to be something which admits of compari­
sons in magnitude, but so far only in the same way as in the intensity of 
pain produced by piercing the skin with needles. 

But it -is a noteworthy observation that men instinctively try to 
characterize probabilities numerically in a naive and unscientific manner. 
We read regularly in the sporting sections of newspapers, predictions 
that in a coming race a certain horse has two chances against one to 
win over another horse, or that the chances of two football teams are as 
10 to 7, etc. No doubt experts do know much about the respective 
horses and their riders, or the comparative strengths of two competing 
football teams, but their numerical estimates of chances have no other 
merit than to show the human tendency to assign numerical values to 
probabilities which most likely cannot be expressed in numbers. 

It is possible that a man endowed with good common sense and ripe 
judgment can weigh all available evidence in order to compare the 
probabilities of the various possible outcomes and to direct his actions 
accordingly so as to secure profit for himself or for society. But preci~e 
conclusions can neve! be attained unless we find a satisfactory way to 
represent or to measure probabilities by numbers, at least in some cases. 

4. As in other fields of knowledge, in attempting to measure proba­
bilities by numbers, we encounter difficulties that cannot be avoided 
except by making certain ideal assumptions and agreements. In 
geometry (we speak of applied and not of abstract geometry), before 
explaining how lengths of rectilinear segments can be measured, we must 
first agree on criteria of equality of two segments. Similarly, in dealing 
with probability, the first step is to answer the question: When may two 
contingent events be considered as equally probable or, to use a more 
common expression, equally likely? From the statements of Jacob 
Bernoulli, one of the founders of the mathematical theory of probability, 
one can infer the following criterion of equal probability: 
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Two contingent events are considered as equally probable if, after taking 
into ronsideration all relevant evidenet, one of them cannot be expected in 
preferena to the other. 

Certainly there is some obscurity in this criterion, but it is hardly 
possible to substitute any better one. To be perfectly honest, we must 
admit that there is an unavoidable obscurity in the principles of all the 
sciences in which mathematical analysis is applied to reality. 

The application of Bernoulli's criterion to particular cases is beset 
with difficulties and requires good common sense and keen judgment. 
There is much truth in Laplace's statement: "La theorie des probabilitt'\:.; 
n'est au fond que le bon sens reduit au calcul." 

To elucidate the nature of these difficulties, let us consider an urn 
filled with white and black balls, but in unknown proportion. The only 
evidence we have, namely, that there are both white and black balls in 
the urn, in this case appears insufficient for any conclusion about the · 
respective probabilities of drawing a white or a black ball. We instinc­
tively think of the numbers of the two kinds of balls, and, being in 
ignorance on this point, we are inclined to suspend judgment. But if we 
know that white and black balls are equal in number and distributed 
without any sort 9f regularity, this knowledge appears sufficient to 
a..r.;sume the equality of the probabilities of drawing a white or a black 
ball. It is possible that, perhaps unconsciously, we are influenced by the 
commonly known fact that if we repeatedly draw a ball out of the urn 
many times, returning the ball each time before drawing again, the white 
and the black balls appear in nearly equal numbers. 

If an urn contains a certain number of identical balls distinguished 
from one another by some· characteristic signs, for example, by the 
numbers 1, 2, 3, . . . , the knowledge that the balls are identical and 
are distributed without regularity suffices in this case to cause us to 
conclude that the probabilities for drawing any of the balls should be 
considered as equal. Again, in so readily assuming this conclusion we 
may be influenced by the fact empirically observed (by ourselves or by 
others) that in a lo,ng series of dra·wings, with balls being re~tored to 

·the urn after each Withdrawal, the balls appear with nearly the same 
frequency. . .. 

An ordinary die is tossed. Should we consider the possible numbers 
of points 1, 2, 3, 4, 5, 6 as equally probable? To pronounce any judg­
ment, we must know something about the die. If it is known that the 
die has a regular cubic shape and that its material is homogeneous, we 
readily agree on the equal probabilities of all the numbers of points 
1, 2, 3, 4, 5, 6. And this a priori conclusion, based on Bernoulli's cri­
terion, agrees \\ith the obserYed fact that each number of points does 
ap}X'ar nearly an equal number of times in a long series of throws, if the 
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die is a good·one. However, if we only know that the die has a regular 
shape, but not whether or not it is loaded, it is only sensible to suspend 
judgment. 

These examples show that before trying to apply Bernoulli's criterion, 
we must have at our disposal some evidence the amount of which cannot 
be determined by any general rules. It may be also that the reason a 
priori must be supplemented by some empirical evidence. In some 
cases, lacking sufficient grounds to assert equal probabilities for two 
events, we may assume them as a hypothesis, to be kept until for some 
reason we are forced to abandon it. 

IS. Besides the ticklish question: When are we entitled to consider 
events as equally probable? there is another fundamental assumption 
required to make possible the measurement of probabilities by numbers. 

Events a1, a2, . . . an form an exhaustive set of possibilities under 
certain fixed conditions S, if at least one of them must necessarily mate­
rialize. They are mutually exclusive if any two of them cannot material­
ize simultaneously. The fundamental assumption referred to consists in 
the possibility of subdividing results consistent with the conditions S 
into a number of exhaustive, mutually exclusive, and equally likely 
events, or cases (as they are commonly called): 

This being gtanted, the probability of any one of these cases is assumed 
to be 1/n. · 

An event A may materialize in several mutually exclusive particular 
forms: a, {3, .. ., >.; that is, if A occurs, then one and only one of the 
events a, {3, . • • >. occurs also, and conversely the occurrence of one of 
these events necessitates the occurrence of A. Thus, if A consists in 
drawing an ace from a deck of cards, A may materialize in four mutually 
exclusive forms: as an ace of hearts, diamonds, clubs, or spades. 

Let an event A be .represented by its particular forms a1, a2, . • . am, 
which together with other ))Vents am+l, am+2, ... an constitute an 
exhaustive set of mutually exc~usive and equally likely cases consistent with . 
.ihe conditions S. Events a1, a~, -~ .. am are called" casesJa.vorabletoA." 
· 'Definition of Mathematical Probability. If, consistent with cond;itio118 

• I ' ~-
8; there are n exhaustive, mutually exclusive, and equally likely cases, and 
m of them are favorable to an event .A, then the mathemaiical probability of 
A is defined as the ratio m/n. 1 

In drawing a card from a full deck there are 52 and no more mutually 
exclusive and equally likely cases; 4 of them are favorable for drawing an 
ace; hence the probability of drawing an ace is %2 = Yia. 

From an urn containing 10 white, 20 black, and 5 red balls, one ball is 
drawn. Here, distinguishing individual balls, we have 35 equally likely ; 
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ca."es. Among them there are 10, 20, and 5 cases, favorable resJ>ectively 
to a white, a black, or a red ball. Hence the probabilities of drawing a 
white, a black, or a red ball are, respectively, 77, ~' and ~f. 

In the first example, instead of. 52 cases, we may consider only 13 
eases according to the denominations of the cards. These cases being 
regarded as equally likely, there is only one of them favorable to an 
ace. The probability of drawing an ace is Yta. This observation makes 
it clear that the subdivision of all possible results into equally likely 
cases can be done in various ways. To avoid contradictory estimations 
of the same probability we must always observe the following rules: 
: Two events are equally likely if each of them can be represented by 
~qual numbers of equally likely forms. 
~ Two events are not equally likely if they are represented by unequal 
numbers of equally likely forms. 

Thus, if two equally likely events are each represented by different 
numbers of their respective forms, then the latter cannot be considered as 
equally likely .. 

Each card is characterized by its denomination and the suit to which 
it belongs. Noting denominations, we distinguish 13 cases, but each 
of these is represented by 4 new cases according to the suit to which the 
card belongs. Altogether we have, then, 52 cases recognized as equally 
likely; hence, the above-mentioned 13 cases should be considered as 
equally likely. 

In connection with the definition of mathematical probability, 
mention should be made of an important principle not always explicitly 
stated. U 

are all mutually exclusive and equally likely cases consistent "ith 
certain conditions, and the indication of the occurrence of an e\'ent B 
makes rases b1, b2, ••• b, impossible, cases a1, a2, ... a. still should be 
considered as eq~ally likely. To illustrate this principle, consider an 
urn with six tickets bearing numbers 1, 2, ... 6. Two tickets are 
drawn in surce:;sion. If nothing is known about tlie number of the first 
ticket, we still have six possibilities for the number of the second ticket', 
which we agree to consider as equally likely. But as soon as the number 
of the first ticket becomes known, then there are only five cases left 
ronrerning the number of the second ticket. According to the above 
principle we must consider these five cases as equally likely. 

6. Probability as defined above is represented by a number contained 
b('t\n'f'n 0-and 1. In the extreme case in which the probability is 0, it 
indicatf's the impos;o;ibility of an evt>nt. On the contrary, in the otht>r 
<·xtrf'nH' c·a~ in whieh the probability is 1, the evt>nt is certain. When 
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the probability is expressed by a number very near to 1, it means that 
the overwhelming majority of cases are favorable to the event. On the 
contrary, a probability near to 0 shows that the proportion of favorable 
cases is small. 

From our experience we know that events with a .small probabil­
ity seldom happen. For instance, if the probability of an event is 
1/1,000,000, the situation may be likened to the drawing of a white ball 
from an urn containing 999,999 black balls and a single white one. 
This white ball is practically lost among the majority of black balls, and 
for all practical purposes we may consider its extraction impossible. 
Similarly, the probability 999,999/1,000,000 may be considered, from h 
practical standpoint, as an indication of certainty. What limit for 
smallness of probability is to be set as an indication of .practical impo~ 
sibility? Evidently there is no general answer to this question. Every­
thing depends on the risk we can face if, contrary to expectation, an 
event with a small probability should occur. Hence, the main ·problem 
of the theory of probability consists in finding cases in which the proba­
bility is very small or very near to 1. Instead of saying, "The proba­
bility is very near to 1," we shall say, "great probability," although, 
of course, the probability can never exceed 1. 

· 7. The definition of mathematical probability in Sec. 5 is essentially 
the classical definition proposed by Jacob Bernoulli and adopted by 
Laplace and almost all the important contributors to the theory of 
probability. But, since the middle of the nineteenth century (Cournot, 
John Stuart Mill, Venn), and especially in our days, the classical definition 
has been severely criticized: Several attempts have been made to rear 
up the edifice of the mathematical theory of probability on quite a 
different definition of mathematical probability. It does not enter into 
our plan to criticize these new definitions, but, in the opinion of the 
author, many of them are self-contradictory. Modern attempts to build 
up the theory of probability as an axiomatic science may be interesting 
in themselves. as me'ntal exercises; but from the standpoint of applica­
tions the purely axiomatic science of probability would have no more 
value than, for example, would the axiomatic theory of elasticity. 

The most ~erious objection to the classical definition is that it can 
be used only in very simple and comparatively unimportant cases like 
games of chance. This objection, stressed by von Mises, is in reality 
not a new one. It is one. of the objections Leibnitz made against Jacob 
Bernoulli's views concerning the possibility of applications of the theory 
of probability to various important fields of human endeavor and not 
merely to games of chance. 

It is certainly true that the classical definition cannot be directly 
applied in many important cases. But is it the fault of the definitiol\ 
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or is it rather due to our ignorance of the innermost mechanisms which, 
apart from chance, contribute to the materialization or nonmaterializa­
tion of contingent events? It seems that this is what Jacob Bernoulli 
meant in his reply to Leibnitz: 

Objiciunt primo, aliam esse rationem calculorum, aliam morborum aut muta­
tionum aeris; illorum numerum determinatum esse, horum indeterminatum et 
vagum. Ad quod respondeo, utrumque respectu cognitionis nostrae aequi poni 
incertum et indeterminatum; sed quicquam in se et sua. natura tale esse, non 
magis a nobis posse concipi, quam concipi potest, idem simul ab Auctore naturae 
crtatum esse et non creatum: quaecumque enim Deus fecit, eo ipso dum fecit, 
~·tiAm determinavit.1 · 

~ 8. A brilliant example of how the profound study of a subject finally 
makes it possible to apply the classical definition of mathematical 
probability is afforded in the fundamental laws of genetics (a science of 
comparatively recent origin, whose importance no one can deny), dis­
covered by the Augustinian monk, Gregor Mendel (1822-1884). During 
eight years Mendel2 conducted experimental work in crossing different 
varieties of the common pea plant with the purpose of investigating how 
pairs of contrasting characters were inherited. For the pea plant there 
are several pairs of such contrasting characters: round or wrinkled seeds, 
tallness or dwarfness, yellow or green pod color, etc. Let us concentrate 
our attention on a definite pair of contrasting characters, yellow or green 
pod color. Peas with green pod color always breed true. Also some 
peas with yellow color always breed true, while still others produce both 
varieties. True breeding pea plants constitute two pure races: A with 
yellow pod color and B with green pod color, while plants with yellow 
pods not breeding true constitute a hybrid race, C. Crossing plants of 
the race A with those of the race B and planting the seeds, Mendel 
obtained a first generation F 1 of hybrids. Letting plants of the first 
generation self-fertilize and again planting their seeds to produce the 
second generation Ft, Mendel found that in this generation there were 
428 yellow pod plants and 152 green pod plants in the ratiq 2.82:1. 
In regard to other contrasting characters the ratio of approximately 3: 1 
W!l.':l ob~erved in all cases. Later experimental work only confirmed 
Mendel's results. Thus, combined experiments of Correns, ).'schermak, 
and others gave among 195,477 individuals of F2, 146,802 yellow pod 
plants and 48,675 green pod plants, in the ratio 3.016:1. 

1 To understand the beginning of this statement see the tra.nslation from "Arts 
conjecta.ndi" in Chap. \1, p. 105. 

1 Mendel's results were published in 1865, but passed completely unnoticed until 
in about 1900 the same facts were rediseovered by DeVries, Correns, and Tscherma.k. 
Modem genetics dates from about this time. 
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Mendel not only discovered such remarkable regularities, but also 
suggested a rational explanation of the observed ratio 3:1, which with 
some modifications is accepted even today. Bodies of plants and 
animals are built up of enormous numbers of cells, among which the 
reproductive cells, or gametes, differ from the remaining "somatic" 
cells in some important qualities. Cells are not homogeneous, but 
possess a definite structure. In somatic cells there are found bodies, 
called chromosomes, whose number is even and the same for the same 
species. Exactly half of this number of chromosomes is found in repro­
ductive cells. Chromosomes are supposed to be seats of hypothetical 

"i. .. 
"genes," which are considered as bearers of various heritable characters. 
A chromosome of one pure race A bearing a character a differs from t1l(; 
homologous chromosome of another pure race B bearing a contrastir~ 
character bin that they contain genes of different kinds. Since characters ·· 
a and b are borne by definite chromosomes, the situation in regard to the 
two characters a and b is exactly the same as if gametes of both races 
contained just one chromosome. Let us represent them symbolically by 
0 and ®. In the act of fertilization a pair of paternal and maternal 
gametes conjugate and form a zygote, which by division and growth 
produces all cells of the filial generation. Certain of these cells become 
the germ cells and are set apart for the formation, by a complicated 
process, of gametes, one half of which contain the chromosome of the 
paternal type and the other half that of the maternal type. 

According to this theory, in crossing two individuals belonging to 
races A and B, zygotes of the first generation F 1 will be of the type 
0-®, and will produce gametes, in equal numbers, of the types 0, ®. 
Now if two individuals .of F1 (hybrids) are crossed (or one individual 
self-fertilized as in the cases of some plants), one paternal gamete con­
jugates with one maternal, and for the resulting zygote there are four 
possibilities: 

0-0 0-® ~-0 ®-® 

These possibilities may be considered as equally probable, whence 
the probabilities for an individual of the generation F 2 to belong respec­
tively to the races A, B, Care 7;1, 7;1, 72. Similarly, one easily finds that 
in crossing an individual of the race A with one of the hybrid race C, 
the probabilities of the offspring belonging to A or Care both equal to 72. 

It is easy now to offer a rational explanation of the Mendelian ratio 
3: 1. In the case of pea plants, individuals of the race A and hybrids 
are not distinguishable in regard to the color of their pods. Hence the 
probability of the offspring of a hybrid plant having yellow pods is 
%, while for the offspring to have green pods the probability is }:;t. 
When the generation F2 consists of a great many individuals, the theory 
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of probability shows that the ratio of the number of yellow pod plants to 
the numbPr of green pod plants is not likely to differ much from the ratio 
3: l. In crossing plants of the race A ·with hybrid..'l, the offspring, if 
numerous, will contain plants of race A or C, respectively, in a proportion 
which is not likely to differ much from 1: 1. And this conclusion was 
experimentally verified by Mendel himself. 

9. If in the case of the Mendelian laws the profound study of the 
mechanism of heredity together with hypothetical assumptions of the 
kind used in physics, chemistry, etc., paved the way for a rational 
explanation of observed phenomena on the basis of the theory of proba­
bility, in many other important instances we are still unable to reach the 
same degree of scientific understanding. Stability of statistical ratios 
observed in many cases suggests the idea that they should be explained 
on the basis of probability. For instance, it has been observed that 
the ratio of human male and female births is nearly 51:50 for large 
~'amples, and this i."l largely independent of climatic conditions, racial 
differences, living conditions in different countries, etc. Although the 
factors determining sex are known, yet some complications not l'!uffi­
ciently cleared up prevent estimation of probabilities of male and female 
births. 

In all instances of the pronounced stability of statistical ratios we 
may believe that some day a way will be found to estimate probabilities 
in such cases. Therefore many applications of the theory of probability 
to impor_tant problems of other sciences are based on belief in the existence 
of the probabilities with which we are concerned. In other cases in 
which the theory of probability is used, we may ha\'e grave doubts 
as to whether this science is applied legitimately. The fact that many­
applications of probability are based on belief or faith should not dis­
eourage us; for it is better to do something, though it may be not quite 
reliable, than nothing. Only we must not be overconfident about the 
f•onclusions reached under such circumstances. · 

After aU, is not faith at the bottom of all scientific knowledge? 
Physici:-;ts speak of electrons, which never have been seen and are known 
only through their visible manifestations. Electrons are postulated 
ju:-;t to coordinate into a coherent whole a large variety of observed 
phenomena. Is not this faith? It must be, for according to Paul 
(Hebrews, 11: 1), "Faith is the substance of things hoped for, the evidence 
of things not seen." 

10. In concluding this introduction it remains to give a short account 
of the hil'tory o( the theory of probability. Although ancient philoso­
phers discussed at length the necessity and contingency of things, it 
~<'!'ems that mathematical treatment of probability was not known to the 
tmcients. Apart from casual remarks of Galileo concerning the correct 
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evaluation of chances in a game of dice, we find the true origin of the 
science of probability in the correspondence between two great men of 
the seventeenth century, Pascal (1623-1662) and Fermat (1601-1665). 
A French nobleman, Chevalier de Mere, a man of ability and great 
experience in gambling, asked Pascal to explain some seeming contradic· 
tions between his theoretical reasoning and the observations gathered 
from gambling. Pascal solved this difficulty and attacked another 
problem proposed to him by de Mere. On hearing from Pascal about 
these problems, Fermat became interested in them, and in their private 
correspondence these two great men laid the first foundations of the 
science of probability. Bertrand's statement, "Les grands noms de 
Pascal et de Fermat decorent le berceau de cette science" cannot be 
t:lisputed. 

Huygens (1629-1695), a great Dutch scientist, became acquainted 
with the contents of this correspondence and, spurred on by the new 
ideas, published in 1654 a first book on probability, "De ratiociniis in 
ludo aleae," in which many interesting and rather difficult problems on 
probabilities in games of chance were solved. To him we owe the 
concept of "mathematical expectation" so important in the modern 
theory of probability. 

Jacob Bernoulli (1654-1705) meditated on the subject of probability 
for about twenty years and prepared his great book, "Ars conjectandi," 
which, however, was not published until eight years after his death in 
1713, by his nephew, Nicholas Bernoulli. Bernoulli envisaged the 
subject from the most general point of view, and clearly foresaw a whole 
field of applications of the theory of probability outside of the narrow 
circle of problems relating to games of chance. To him is due the 
discovery of one of the most important theorems known as "Bernoulli's 
theorem." 

The next great successor to Bernoulli is Abraham de Moivre (1667-
1754), whose most important work on probability, "The Doctrine of 
Chances," was first published in 1718 and twice reprintid in 1738 and 
in 1756. De Moivre does not contribute much to the principles, but this 
work is justly renowned for new and powerful methods for the solution 
)f more difficult problems. Many important results, ordinarily attrib· 
11ted to Laplace and Poisson, can be found in de Moivre's book. 

Laplace (1749-1827), whose contributions to celestial mechanics 
assured him everlasting fame in the history of astronomy, was very 
much interested in the theory of probability from the very beginning of 
his scientific career. After writing several important' memoirs on the 
subject, he finally published, in 1812, his great work "Theorie analytique 
des probabilites," accompanied by a no Jess known popular exposition, 
"Essai philosophique sur les probabilites," destined for the general 
~ducated public. Laplace's work, on account of the multitude of new 
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ideas, new analytic methods, and new results, in all fairness should be 
regarded as one of the most outstanding contributions to mathematical' 
literature. It exercised a great influence on later ·writers on probability 
in Europe, whose work chiefly consisted in elucidation and development 
of topics contained in Laplace's book. 

Thus in European countries further development of the theory of 
probability was somewhat retarded. But the subject took on important 
developments in the works of Russian mathematicians: Tshebysheff 
(1821-1894) and his former students, A. Markoff (1856-1922) and A. 
Liapounoff (1858-1918). Castelnuovo in his fine book "Calcolo delle 
probabilita" rightly r.egards the contributions to the theory of probability 
due to Russian mathematicians as the most important since the time of 
Laplace. 

At the present time interest in the theory of probability is revived 
everywhere, but again the most outstanding recent contributions have 
been made in Russia, chiefly by three prominent mathematicians: S. 
Bernstein, A. Khintchine, and A. Kolmogoroff. 

In closing this introduction it seems proper to quote the closing 
words of the "Essai philosophique sur les probabilites": 

On voit par cet Essai, que la theorie des probabilites n' est au fond, que le bon 
sens reduit au calcul: elle fait apprecier avec exactitude, ce que les esprits justes 
sentent par une sorte d'instinct, sans qu'ils puissent souvent s'en rendre compte. 
Ellene laisse rien d'arbitraire dans le choix des opinions et des partis A prendre, 
toutes les fois que l'on peut, A son moyen, determiner le choix le plus avantageux. 
Par la, elle devient le supplement le plus heureux, A !'ignorance et lla faiblesse 
de l'esprit humain. Si l'on considere les methodes analytiques auxquelles cette 
thoorie a donn~ naissance, la verite des principes qui lui servent de base, Ia 
logique fine et delicate qu' exige leur emploi dans la solution des prohlemes, les 
etablissements d'utilite publique qui s'appuient sur elle, et !'extension qu'elle a 
r~ue et qu'elle peut rer;evoir encore, par son application aux questions les plus 
importantes de Ia Philosophie naturelle et des sciences morales; si l'on observe 
ensuite, que dans les choses m~mes qui ne peuvent etre soumise au calcul, elle 
donne les aper~us les plus surs qui puissent nous guider dans nos jugements, 
et qu'elle apprend A se garantir des illusions qui souvent nous egarent; on verr11 
qu'il n'est point de science plu~ digne de nos meditations. 
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CliAPTER I 

COMPUTATION OF PROBABILITIES BY DIRECT 
ENUMERATION OF CASES 

1. The probability of an event can be found by direct application 
of the definition when it is possible to make a complete enumeration of 
all equally likely cases, as well as of those favorable to that event. Here 
we shall consider a few problems, beginning with the simplest, to illustrate 
this direct method of evaluating probabilities. 

Problem 1. Two dice are thrown. What is the probability of 
obtaining a total of 7 or 8 points? · 

Solution. Suppose we disti~guish the dice by the numbers 1 and 2. 
There are 6 possible cases as to the number of points on the first die; 
and each of these cases can be accompanied by any of the 6 possible 
numbers of pointil on the second die. Hence, we can distinguish alto­
gether 6 X 6 = 36 different cases. Provided the dice are ideally regular 
in shape and perfectly homoge~eous, we have good reason to consider 
these 36 cases as equally likely, and we sha+l so consider them. 

Next, let us find out how many cases are favorable to the total of 
7 points. This may happen only in the following ways: 

First Die 
1 
2 
3 
4 
5 
6 

Likewise, for 8 points: 
First Die 

2 
3 
4 
5' 
6 

Second Die 
6 
5 
4. 
3 
2 
1 

Second Die 
6 
5 
4 
3 
2 

That is, out of the total number of 36 cases there are 6 cases favorable 
to 7 points and 5 cases favorable to 8 points; hence, the probability of 
obtaining 7 points is %6 and the probability of obtaining 8 points is %s. 

2. Problem 2. A coin is tossed three times in succession. What 
is the probability of obtaining 2 heads? What is the probability of 
obtaining tails at least once? 

14. 
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Solution. In the first throw there are two possible cases: hfads or 
tails. And if the coin is unbiased (which we assume is true) these two· 
rases may be considered as equally likely. In two throws thete are. 
2 X 2 = 4 cases; namely, both of the two possible cases in the first toss 
can combine with both of the possible cases in the second. Similarly, 
in three throws the number of cases will be 2 X 2 X 2 = 8. To find 
the number of cases favorable to obtaining 2 heads, we must consider 
that this can happen only in three ways: · 

Heads Heads Tails 
Heads Tails Heads 
Tails Heads Heads 

The number of favorable cases being 3, the probability of obtaining 
two heads is%. · · 

To answer the second part of the question, we observe that there is 
only one case when tails does not turn up. Therefore, the number of 
cases favorable to obtai~ing tails at least once is 8 - 1 = 7, so that 
the required ·probability is Ys. 

3. Problem 3. Two cards are drawn from a deck of well·shuffied 
cards. What is the pro_bability that both the extracted cards are 
aces? 

Solution. Since there are 52 cards in the deck, there are 52 ways 
of extracting the first card. After the first card has been withdrawn, 
the :seeund extracted card may be one of the remaining 51 cards. There­
fore, the total number of ways to draw two cards is 52 X 51 All these 
cases may be considered as equally likely. 

To find the number of cases favorable to drawing aces, we observe 
that there are 4 ace.s; therefore, there are 4 ways to get the first ace. 
After it has been extracted, there are 3 ways to get a second ace. Hence, 
the total number of ways to draw 2 aces, is 4 X 3, and the required 
probability is: 

4 X 3 1 1 
52 X 51 = 13 X 17 = 22f 

Problem 4:. Two cards are drawn from a full pack, the first card 
being returned to the pack before the second is taken. What is the 
probability that both the extracted cards belong to a specified suit? 

Solution. There are 52 ways of getting the first card. For the 
l<econd drawing, there are also 52 ways, because by returning the first 
extracted card to the pack, the original number was restored. rnder 
~<Uch circumstances, the total number of ways to extract two cards i.;; 
52 X 52. Now, because there are 13 cards in a suit, the number of 
<':1l'l<'~ favorable to obtaining two cards of a specified suit is 13 X 13. 
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Therefore, the req~ired probability is given by: 

13 X 13 1 X 1 1 
52 X 52 = 4 X 4 = 16. 

4. Problem 6. An urn contains 3 white and 5 black balls. One 
ball is drawn. What is the probability that it is black? 

Solution. The total number of balls is 8. To distinguish them, we 
may imagine that they are numbered. As to the number on the ball 
drawn, there are 8 possible cases that may reasonably be considered as 
equally likely. Obviously, there are 5 cases favorable to the black color 
of the ball drawn. Therefore, the required probability is %. 

By a slight modification of the last problem, we come to the following 
interesting situation: 

Problem 6. The contents of the urn are the same as in the foregoing 
problem. But this time we suppose that one ball is drawn, and, its color 
unnoted, laid aside. · Then another ball is drawn, and we are required to 
find the probability that it is black or white. 

Solution. Suppose again that the balls are numbered, so that the 
white balls bear numbers 1, 2, and 3; and the black balls bear numbers 
4, 5, 6, 7, 8. Obviously, there are 8 ways to get the first ball, and what­
ever it is, there remain only 7 ways to get the second ball. The total 
number of equally likely cases is 8 X 7 = 56. ..... 

It is a little more difficult to find the number of cases favorable to· 
extracting a white or black ball in the second drawing. Suppose we are 
interested ,in the white color of the second ball. If the first ball drawn is 
a white one, it may bear one of the numbers 1 to 3. Whatever this 
number is, the second ball, if it is white, can bear only the two remaining 
numbers. Therefore, under the assumption that the first ball is a white 
one, the number of favorable cases is 3 X 2 = 6. Again, supposin,g .that 
the fii"st ball drawn is black, we have 5 possibilities as to its numbt!r, and, 
corresponding to any one of these possibilities, there are 3 possibilities 
as to the number of the white ball to be taken in the second drawing, 
so that the number of favorable cases now is 5 X 3 = 15. The number 
of all favorable cases . is 6 + 15 = 21. The requireu probability for 
the white ball is 275 6 = %. In the same way, we should find 
that the probability for the black ball is %. It is remarkable that 
these two probabilities are the same as if only a single ball had been . 
drawn. 

The situation is quite different if we know the color of the first ball. 
Suppose, for instance, that it is white. The total number of equally 
likely cases will then be 3 X 7 = 21; and the number of cases favorable 
to getting )mother white ball is 3 X 2 = 6, so that the probability in 
this case is %. 
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This laRt example shows clearly hm~ much probability depends upon 
'a given or known set of conditions. f 

5. Problem 7. Three boxes, id<'utical in appearance, each have .two 
'drawers. The first box contains a gold coin in each drawer; the second 
(·ontains a silver coin in each drawer; but the third contains a gold coin 
in 0\le drawer and a silver coin in th¢ other. (a) A box is chosen at ran­
dum. What is the probability tl1at it contains coins of different metals? 
\b) A box is chosen, one of its drawers opened, and a gold coin found. 
What is the probability that the other drawer contains a silver coin? 

Solution. (a) Since nothing putwardly distinguishes one box from 
the other, we may recognize three equally likely cases, and among them 
is only one case of a box with coins of different metals. Therefore, we 
estimate the required probability as U. 

(b) As to the second q ue.stion, <me is tempted to reason as follows: 
The fact that a gold coia.•·\'as found/ in one drawer leaves only two 
possibilities as to the rorl\.ent or the other drawer; namely, that the coin 

.in it i~ either gold or sil \'ef. 'Bent"e, the probability of a silver roin in 
the second drawer seems. :to· be· ~.~; But this reasoning is fallacious. 
It is true that, when the gold roin is found in one drawer, there are only 
·two poRsibilities left as to the content of the other drawer; but these 
possibilities cannot be considered as equally likely. To see this point 
dC'arly, let us distinguish the drawers of the first box by the numbers 1 
and 2; thQse of the second boxby the numbers 3 and 4; finally, in the 
third box, 5 will distinguish the drawer containing the silver coin, while 
6 will represent the drawer with the gold coin. 

Instead of three equally likely cases: 

box 1, box 2, box 3 

I ' WI' 110"' have six rases: 
:.;v 

drawers 1, 2; drawers 3, 4; drawers 5, 6, 

whit'll, with reference to the fundamental assumptions, must be con­
liidered as equally likely. If nothing were known about the content~'! 
of the drawer which has been opened, the number of this drawer might be 
l:'itber 1, 2, 3, 4, 5, or 6. But as soon as the gold coin is discovered in it, 

· t'til'es 3, 4, and 5 become impossible, and there remain three equally likely 
.tf'~tunptions as to the numbf'r of the opened drawer: it may be either 1 or 
~ or 6. That kavf's three rases, and in only one of them, namely, in 
c"al'e 6, will the other drawer contain a silver coin. Thus the answer 
to the l'erond question (b) is I,§. 

6. In the preceding problems the enumeration of cases did not 
prt'l'tnt any difficulty. We are now going to diBruss a few problems in 
whi<'h thiii enumt>ration is not so obvious but r~n be greatlv l'limplified 
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by the use of well-known for ·ul~~ the number of permutations;i 
arrangements, and combinations. ; ::..~I) I 

Let m distinct objects be rep '~~ y the letters a, b, c, ... l., 
Using all these objects, we can p1'5· . A; in different orders and torn( 
"permutations." For instance,. if . ·. ' ~~ nly three letters, a, b, and Cf 
all the possible permutations are: a Jir41~, .. b c, bca, cab, cba,-6 different' 
permutations out of 3 letters. In~~~ .. :.·~tte number of permutatitmsl 
P m of m objects is expressed by t t~fj :;,li.~l 

Pm = 1 · 2 · 3 ·~;>-:~. ff:ta"7. ! 
H n objects are taken out of the t talr.P: er of m objects to form 

groups, attention being paid to the or ·~100 cts in each group, then 
these groups are called "arrangemen~. ~~i~!~~tance, by taking two 
letters out of the four letters l!•~.~t4t1fil~~orm the following 12 

arrangements: ·: '~~i~~~~~~'~!'f~~~~:. 
ac lltf<';.p· t•Jl • <+'"'1 :~"' 
ad b~ de·~~ ' 

Denoting by the symbol A;:. the number of arrangements of m 
objects taken nat a time, the folloWing formula holds: 

A;:. = m(m - 1)(m - 2) · · • (m - n + 1). 

Again, if we form groups of n objects taken out of the total number oJ 
m objects, this time paying no attentiq:J,lttO the order of objects in th€ 
group, we form "combinations.? , , ]i'.Ot ··instance, following are th€ 
different combinations out of 5 objects~ taken 3 at a time: 

abc abd abe acd ace 
ade bed bee bde cde r 

. In general, the number of combinations out of m objects taken ., 
at. a time, which is usually denoted by the symbol C;., is given by 

C"' = m(m - l)(m - 2) · · · (m - n + 1). 
"' . 1· 2 · 3 · · · n · 

, ,.. It is useful to recall that the same expression may also be exhibite1 
ov;as follows: J 

m! 1 
C" =• . ' 

m n!(m- n),! 

whence, by substituting m - n inhead of n, the· useful formula 

.. c::. = c:-n 
can be derived. 
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Mter these preliminary reiparks, we can turn to the problems in 
un>.u__..&;"""''·'vJL<O!'.vuJL!'. formulas will often be used. 
·probl.eill 8. An urn contains a white balls and b black balls. If 

balls\are drawn from this urn, find the probability that among 
ther~ll be exactly a white an~ {3 black balls. . 

If we do not distinguish the order in which the balls come 
the urn, the total number of ways to get a + {3 balls out of the 

number a + b balls is obviously expressed by C:tf and this is 
number of all possible and equa,lly likely cases in this problem. The 
her of ways to draw a white balls out of the total number a of white 
in the urn is C';; and similarly Cg represents the number of ways 

drawing {3 black balls out of the total number b of black balls. _ Now 
group of a white balls combines with every possible group' of {3 

balls to form the total of a white 1>alls and {3 black balls, so that .. 
number of ways to form ~ll the grodps cpntai!ing ~ white balls and 

black balls is C;: · cg. This is also ithe num• of favorable cases; 
the required probability is 

r, in a more explicit form, . 

_ C:;· CC 
p- ca+8' 

a+b 

· _ 1 · 2 · · · (a + {3) 
p-1·2···a·1·2···{3 

a(a - 1) · · · (a - a + 1) · b(b -. 1) · · · (b - {3 + 1) 
(a + b)(a + b - I) · · · (a + b - a - {3 + 1) 

Problem 9. An urn contains n tickets bearing numbers from I to n, 
d m tickets are drawn at a time. What is the probability that i of 

he tickets remo~d have numbers previously specified? 
Solution. This problem does not essentially differ froin the preceding 

ne. In fact, i tickets with preassigned numbers can be likened to i 
white balls, while the remaining tickets correspond to the black balls. 
The required probability, therefore, can be obtained from the expression 

• 1(1) by taking a = i, b = n - i, a = i, {3 = m - i and, all simplifications 
{>erformed, will be given by .,. ( . · 

'~I' 

n(n - 1) · · · (n - i + I) · · t) p = m(m- 1) · · · (m- i +I). , (' 

• • The conditions of this problem were realized in the French lottery, 
:which was operated by the French royal government for a long time but 
~discontinued soon after' the Revolution of 1789. Similar lotteries 
~ontinued to exist in other European countries throughout the nineteenth 
rntucy. In the 'Freneb lotWy, tiekets boaring numborn from I to 90 
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were sold to the people, and at regular intervals drawings for winninlf 
numbers were held in different French cities. At each drawing, 5 
numbers were drawn. If a holder of tickets won on a single number_ 
he received 15 times its cost to him. If he won on two, three, fo1 -
five tickets? he cou~d claim re~pectively 270, 5,500, 75,000, and, fiut 
1,000,000 times theu cost to him. . 1 

The numerical values of the probabilities corresponding to ti 
different cases are worked out as follows: we must taken = 90, m = 5, 
and i = 1, 2, 3, 4, or 5 in the expression (2). The results are .. 

Single ticket 

Two tickets 

5 1 
90 =Is· 

5. 4 2 
90. 89 = 80!' 

5. 4. 3 1 
Three tickets 90 . 89 . 88 = 11748' 

5·4·3·2 1 
Four tickets 90 . 89 . 88 . 87 = 511038. 

I 
. . 5·4·3·2·1 1 

Five tickets 90 · 89 · 88 · 87 · 86 = 43949268. 

8. Pt"oblem 10. From an urn containing a white balls and b blac1 

ones, a certain number of balls, k, is drawn, and they are laid aside, the' 
color unnoted. Then one more ball is drawn; and it is required to fin 
the probability that it is a white or a black ball. 

Solution. Suppose the k balls removed at first and the last hal 
drawn are laid on k + 1 different places, so that the last ball occupie. 
t.he position at the extreme right. The number of ways to form groups 
of k + 1 balls out of the total number of a + b balls, attention being 
paid to the order, is · • 

(a+ b)(a + b - 1) · · · (a+ b - k). 

Such is the total number of cases in this problem, and they may all L 
considered as equally likely. To find the number of cases favorable t 
a white ball, we observe that the last place should be occupied by one f 

the a white balls. Whatever this white ball is, the preceding k balL 
form one of the possible arrangements out of a + b - 1 remaining balls 
taken kat a time. Hence, it is obvious that the number of cases favorabl~ 
to a~white ball is 

a(a + b - 1) · · (a + b - k), 

and therefore the required probability is given by 

• 
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for a white ball. In a similar way we find the probability b/(a + b) of 
drawing a black ball. These results show that the probability of getting 
white or black balls in this problem is the same as if no balls at all were 
removed at first. Here we have proof that the peculiar circumstanc(':o! 
observed in Prob. 6 are general. 

9. Problem 11. Two dice are thro·wn n times in succession. Wbat i8 
the probability of obtaining double six at least once? 

Solution. As there are 36 ca1;;es in every throw and each case of th(' 
first throw can combine Vlith each case of the second throw, and so on, 
the total number of cases in n throws Vlill be 36". Instead of trying to 
find the number of favorable cases directly, it is easier to find the number 
of unfavorable cases; that is, the number of cases in which double sixes 
would be excluded. In one throw there are 35 such ca.'les, and in n throws 
there will be 35". No\\', excluding these cases, we obtain 36" - 35" 
favorable cases; hence, the required probability is 

P =·1- (H)". 

If one die were thrown n times in succession, the probability to obtain 
6 points at least once would be 

p = 1- (t)". 

Now, suppose we want to find the number of throws sufficient to 
a...;~ure a probability > H of obtaining double six at least once. To this 
end we must solve the inequality 

(H)"< l 
for 11; when(•e we find 

log 2 • 
n > l 36 1 3 • = 24·6 · · · og - og J 

It means that in 25 throws there is more likelihood to obtain double 
~ix at least once than not to obtain it at all. On the other hand, in 
24 throws, we have le~ chance to succet>d than to fail. 

~ow, if we dealt with a single die, we should find that in 4 throw!< 
there are more chances to obtain 6 points at least once than there are 
chances to fail. · 

This problem is intt>resting in a historical respect, for it was the first 
problem on probability soh·ed by Pascal, who, together 'VIith his great 
l'Oiltemporary Fermat, had laid the first foundations of the theory of 
probability. This problem was suggested to Pascal by a certain French 
nobleman, CheYalier de ~tere, a man of great experience in gambling. 
He i1ad ohserYed the advantage of betting for double six in 25 throws 
and for one six (\\ ith a single die) in 4 throws. He found it difficult to 
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understand because, he said, there were 36 cases for two dice and~ cases 
for one die in each throw, and yet it is not true that 25:4 = 36:6. Of 
course, there is no reason for such an arbitrary conclusion, and the cor­
rect solution as given by Pascal not only removed any apparent paradoxes 
in this case, but it led to the same number, 25, observed by gamblers in 
their daily experience. 

10. Problem 12. A certain number n of identical balls is distributed 
among N compartments. What is the probability that a certain speci­
fied compartment will contain h balls? 

Solution. To find the number of all possible cases in this problem, 
suppose that we distinguish the balls by numbering them from 1 to n. 
The ball with the number 1 may fall into any of the N compartments, 
which gives N cases. The ball with the number 2 may also fall into any 
one of theN cmppartments; so that the number of cases for 2 balls will 
be N · N = N2• Likewise, for 3 balls the number of cases will be 

N2 • N = N3, 

and for any number n of balls the number of cases will beN". To find 
the number of favorable cases, first suppose that a group of h specified 
balls falls into a designated compartment. The remaining n - h balls may 
be distributed in any way amo~g N - 1 remaining compartments. But 
the number of ways to distribute n - h balls among N - 1 compart­
ments is (N - 1)"-11 and this becomes the number of all favorable cases 
in which a specified group of h balls occupies the designated compartment. 
Now, it is possible to form C! such groups; therefore, the total number of 
favorable cases is given by 

c: · (N - 1)"-h, 

and the required probability will be 

c: • (N - l)n-h 
Pll = N" . 

In case n, N and h are large numbers, the direct application of this 
formula becomes difficult, and it is advisable to seek an approximate 
expression for p11• To this end we write the preceding expression thus: 

(NY ( 1)"-h - 1-- p Pll - 1 . 2 . 3 . . . h . N I 

where 

p = ( 1 - ~)( 1 - ~) ... ( 1 - h : 
1
} 



SEC. 10] • COMPUTATION OF PROBABILITIES 23 

Now, supposing 1 ~ k ~ h - 1, we have 

~a) ( 1 - ~)( 1 - h ~ k) = 1 - ~ + k(h n~ k) > 1 - ~-
On the other hand, 

and so 

(b) ( k \( h - k) ( h )
2 

1 -. n/ 1 - -n- ~ 1 - 2n . 

The inequalities (a) and (b) give simple lower and upper limits for P. 
For we can write P2 thus: 

Il-l( k)( h - k) pt = n 1 - n 1 --n-
1:=1 

iind then apply \a) or (b), which leads to these inequalities 

( 
h )A-1 ' ( h)l-1 

p < 1 - 2n ' p > 1 - n T. 

Correspondingly, we have 

(11 r ( 1 )·-A( h )Il-l 
P~t < 1-- 1--

1· 2 · 3 · · · h N 2n 

(N r ( 1 )"-h( h)~ p~r. > 1 - - 1 - - 2 • 
1·2·3 .. ·h N n 

Problem 13. What is the probability of obtaining a given sum s of 
points with n dice? 

Solution. The number of all cases for n dice is evidently 6•. The 
number of favorable cases is the same as the total number of solutions of 
the equation 

{1) a1 + as + · · · + a,. = & 

where a1, at, · · · a,. are integers from 1 to 6. This number can be 
determined by means of the following de\ice: ~Iultiplying the polynomial 

(2) 

by itself, the product will consist of terms 
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where a1 and a2 independently assume all integral values from 1 to 6. 
Collecting terms with the same exponent s, the coeffirient of X' will give 
the number of solutions of the equation 

., 

a1, a2 being subject to the above mentioned limitatioas. 
Similarly, multiplying the same polynomial (2) three times in itself· 

and collecting terms with the san~e exponent s, the coefficient of x• will 
give the number of solutions of equation (1) for n = 3. In general, the 
number of solutions of equation (1) for any. n is the coefficient of X' in 

· the expanded polynomial . . . 
(x + x2 + x3 + x' + x6 + x6)". 

Now we hav·e identically 

and by the binomial theorem 

, n 

x"(l- x6
)" = ~(-1)1C~x"H1 

I =0 .. 
(1 - x)-n = ~ C!;+Ltxk. 

k=O 

Multiplying these series. 'we find the following expression as the 
coefficient of X': 

8-11 

6 

~ ( -1) 1C~C:.:'i1-1 
1=0 

where summation extends over integers not exceeding T· The same 

sum represents the number of favorable cases. Dividing it by 6", we 
get the following expression for the probability ?f s points on n dice: 

6 

p = ~~ ( -1) 1C!C:.:-J,_1· 
1=0 

The preceding problems suffice to illustrate how probability .can pe 
determined by direct enumeration of cases. For the benefit of students; 
a few simple problems without elaborate solutions are added here. 
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Problems for Solution 

1. What is the probability of obtaining 9, 10, 11 points with 3 dice? . 
Ans. 2%u, 2%u, 2%u. I What is the probability of obtaining 2 heads an<\ 2 tails when 4 coins are 

.fK~wn? A.ns. %. 
. 3. Two urns contain respectively 3 white, 7 red, 15 black balls, and 10 white, 

' 6 red, 9 black balls. One ball is ttken from each urn. What is the probability that 
J they both will be.of the same ~lo'f? Ana. 2°% 2s. 
~ }( 4. "'"hat is the probability that of 6 cards taken from. a full pack, 3 will be bla.-k 
and 3 red. . Ans. 13°0%9151 "" 0.332 approximately. 
~ i} Ten cards are taken from a full pack. What is the probability of finding 

among them (a) at !Past one ace; (b) at least two aces? Ana. 34%9si 12 5n735· 

. 6. The face cards are removed from a full pack. Out of the 40 remaining cards, 
4 are drawn. What is the probability that they belong to different suits? 

. Ana. 100%139· 

7. Pnder the.,11ame conditions, what is the probability that the 4 cards belong to· 
different suits and different denominations? Ans. 5°~ 139• 

(& Five cards are taken from a full pack. Find the probabilitie~) that they are 
of different denominations;fo) that 2 are of the same denomination and.B scattered, 

;',(c) that one pair is of one denomination and another pair of & different denomin'ation, · 
iYJd one odd; ~d) that 3 are of the same denomination and 2 scattered; (e) that 2 are 
ut. one denomination and 3 of another; (j) that 4 are of one denomination and 1 of 
··a~ther. · · 

.4ns.)fl) 211 ~4t65i (b) 176 %:t65i (c) 19 ~4J65iJd) 8 ~416si ,!e} %16si fJ) ~165· 
9. What is the probability that 5 tickets taken in succession in the French lottery 

will present an in('ft>asing or decreasing sequence of numbers? Ana. Yso. 
10. \\'bat is thl' probability that among 5 tickets drawn in the French lottery there 

is at ll'ast ont> with a oue-dip:it number? Ans. 4628H 1098a = 0.417. 
11. Twt>l\'r halls are distributed at random among three boxes. What is the 

Prohahilitv that the first hox will contain 3 balls? AM. 
55

·
211 

= 0 2120 . an . . 
12. In Proh. 12 lpa~tf' 22) wtat is the most probable ri~mber of balls in ;\pecified 

. hox? An.<~. Thr probAbility 1 · 

C,'(N -1)" ..... 
Ph= 

I ' 

il! thl' ~r!'at~·st if the integer h is determined by the conditions 

n +I n 
T-~~~~~ 

13. Apply tht>~ l'onsiderlltions to the ea.•'le of n = 200, N = 20. .4n.s. Sinee 
h = 10 the inequalitif>~ on page 23 give 

10
1P( l) 1 '~( 1 )' Pto < - l - - I - -

10! 20 4{) 

~to 1 )uo( 1 )' Pto > l - - 1 - - • 
10! :!() 20 

, find an approximate ,·aJue of 
\ II - l,)tM . 
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note that 

-190 -+-+-+ ... . r 1 1 1 J 
(1 - i'rs)190 = ll 20 2·202 3·20• • 

To 3 decimals 

P1o = 0.128. 

14. Four different objects, 1, 2, 3, 4, are distributed at random on four places 
marked 1, 2, 3, 4. What is the probability that none of the objects occupies the place 
corresponding to its number? · Ans. %. 1 

16. Two urns contain, respectively, 1 black and 2 white balls, and 2 black and 
1 white ball. One ball is transferred from the first urn into the second, after which a 
ball is drawn from the second urn. What is the probability that it is white? 

Ans. !!12· 
16. What is the probability of getting 20 points with 6 dice? 

Ans. 46%1s4 == 0.09047. 
17. An urn contains a white and b black balls. Balls are drawn one by one until 

only those of the same color are left. What is the probability that they are white? 

Ans.-a-· 
a+b 

18. In an urn there are n groups of p objects each. Objects in different groups are 
distinguished by some characteristic property. What is the probability that among 
a1 + a2 + · · · +aft objects (0 ;$ ao ;$ p; i = 1, 2, ... n) taken, there are a1 of 

r one group, a2 of another, etc.? Ans. ,Let X among the numbers a~o a2, ••• a,. ,be 
equal to a, I' be equal to b, . . ·• t1 be equal to l. The requi,red probability is 

n! c:~c:2 
••• c:·. 

x'"' ... t1! c~~+"2 
• • + ... 

Problem 8 is a particular case of this. \ 
19. There are N tickets numbered 1, 2, ... N of which n are taken at random and 

arranged in increasing order of their numbers: x1 < X2 < < x,.. What is the 
Cm-lcn-m 

A M-1 N-M 
probahi~ty that x .. = M? ns. rm 

~N 



CHAPTER II 
• 

THEOREMS OF TOTAL AND COMPOUND. PROBABILITY 

1. As the problenis become more complex the difficulties in enumerat­
ing cases grow and often the computation of probabilities by direct 
application of definition becomes very involved. In many cases the 
complications can he .avoided by use of two theorems which are funda­
mental in the theory of probability. 

Before we can give a clear and exact statement of the first fundamental 
theorem, we must define what is meant by "mutually exclusive" or 
"incompatible'' events. Events are called mutually exclusive or 
incompatible if the occurrence of one of them precludes the occurrence 
of all the others. For instance, the four events concerning the number 
0f points on two dice 

First Die 
1 
2 
3 
4 

Second Die 
4 
3 
2 
1 

are mutually exclusive because it is evident that as soon as one of them 
occurs, none of the others can materialize. 

On the contrary, events are compatible if it is possible for them to 
materialize simultaneously. For instance, the events of 5 points on one 
die,and 5 points on the other, are compatible, since in tossing two dice 

; is possible to get 5 points on each. 
To denote the probability of an event A, we shall use the symbol (A) . 

. . 1\ denote the probability of A or B (or both) we shall use the symbol 
• ... {A +B). Dealing with several events A, B, ... L, the symbol 

(A+ B + · · · +L) 

will denote the probability of the occurrence of at least one of them. 
If A, B, ... L are mutually exclusive events, this symbol represents 
the probability of the occurrence of one of them without specification as 
to which one. 

2. Now we shall state the first • fundamental theorem, called the 
"theorem of total probability" or "theorem of addition of probabilities," 
in the following way: · 

Theorem of Total Probability. The probability for one of tht mutually 
/.rdu8ive evetiU A,, A2, ••• A. to materialize, is th£ sum of the probabilitie1 

27 
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of these e~.'n1ts. In symbolical notations, it is expressed thus: 

(At+ A2 + · · · +A,.) = (At)+ (A2) + · · · + (A,.). 

Proof. Let N be the number of all possible and equally likely ra$< .. 
out 'of which m1 rases are favorable to the event At, m2 cases are favoraL 
to the event At, ... , and finally, m,. cases are favorable to the event A 
These cases are all different, since events At, .4 2, ••• A,. are incompati­
ble. The number of cases favorable to either At or A2, ••• or A,. is 
therefore 

mt + m2 + · · · + m,.. 
HPnce, by definition 

(.-t 1 + .4, + ... +A,.) == mt + m2 ~,' • · + m,. = m 1 + m 2 + 
N N 
+ ... +m •. 

N 
Again, by definition of probability, 

m2 ) m,. 
N = (At ; · · · N = (A,.), 

and so finally 

(.4. + A2 + 
as stated. 

3. It is important to know that the same theorem, stated in a slightly 
different form, is especially useful in application~. An event A can 
occur in several mutually exclusive forms, At, 1h, ... A", which may 
be considered as that many mutually exclusive events. Whenever A 
occurs, one of these events must occur, and conversely. Consequently, 
the probability of A is the same as the probability of one (unspecified) 
of its mutually exclush·e forms. If, for instance, occurrence of 51>oi'n't's 

I 

on two dice is .4, then this event occurs in 4 mutually exclusive forms, as 
tabulated above. 

From the- new point of view, the theorem of total probability can be 
statt>d thus: 

Second Foi'Jll of Theorem of Total Probability. The probability of 
an tt•ent .4 is the sum of the probabilities of its mutually exclusive fonns 
A.~, .4! .... .4.; or, us£ng symbols, 

(.-!) = (At) + (A.2) + · · · + (.4,.). 

Probabilities (.4 1), (.4 2), ••• (.-!,,) are partial probabilities of incom­
patible forlllil of A.. Since the probability.{ is their sum, it rnay be call('d 
s total probability of A. Hence the name of the theorem. 
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In the preceding example we saw that 5 points on two dice could be 
tained in 4 mutually exclusive ways. Now the probability of any one 
these ways is 3i6i hence, by the preceding theorem, the probability 
obtaining 5 points with tw.~ dice is 

-n + -n + -a"r + ! 1
1f = -n = t, 

18 it should be. 
1 If events A 1, A2, ••• A .. are not only mutually exclusive, but 
, exhauiltive," which means that one of them must necessarily take place, 
he probability that one of them will happen is a certainty = 1, so that 
ve must have 

\.n event which is not certain, may or may not happen; this constitutes 
wo mutually exclusive cases. It is customary to call nonoccurrence of a 
·ertain event A as the 11 event opposite" to A, and we shall denote it 
by the symbol A. Now A and A constitute two exhaustive and mutually 
exclusive cases. Hence, by the preceding remark 

(A) + (A) = 1. 

That is, if p is the probability of A 

q = 1- p 

represents the probability that A will not occur. 
4. If an event A is considered in connection witn another event B, 

the compound event AB eonsists in simultaneous occurrence of A and B. 
For three events A, B, C, the compound event ABC consists in simul­
taneous occurrence of A and B and C, and so on for any number of 
<'Omponent events. We shall denote the probability of a compound 
event .4 B . . . L by the symbol 

(AB . .. L). 

~ An event A can materialize in two mutually exclusive forms, namely. 
:til A and BorA and B. Hence, by the theorem of total probability 

(A) = (AB) t (AB). 

(B) = (B.4) + (BA), 

or, ~inc<:' the symbol (B.4.) does not depend upon the order of letters, 

(B) ·= (AB) + (AB). 

The :<um (A) + (B) can be expressed as 

(A) +.(B) = (AB) + f(.4B) + (AB) + (AB)) 



30 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP.JI 

Again, by the theorem of total probabilities, the sum 

(AB) + (AB) + (AB) 

represents the probability (A + B) of the occurrence of at least one &f 
the events A or B. The preceding equation leads to the useful formula 

(1) (A +B) = (A) + (B) - (AB) 

which obviously is a generalization of the theor~m of. total probabilitf; 
for (AB) = 0 if A and Bare incompatible. Equation;(!) can be used lo 
derive an important inequality. Since (A + B) ~ 1, it follows from (1) 
that 

(AB) ~ (A) + (B) - 1. 

If B itself is a compound event A1A2, this inequality leads to 

(AA1A2) ~ (A) + (AtA2) - 1. . 
But 

and so 

for three component events. Proceeding in the same manner, we cad 
establish the follo·wing general inequality: 

(AAtA2 · · · A-t) ~ (.ti) + (A1) + (A2) + · · · t (A-t) - (n- 1) 

Applying this inequality to events A, At, ... A-t respPctively 
opposite to A, At, ... A .. -t, we get 

'(AAt · · · A,._t) ~ (A) +(At)+ · · · +(A-t) - (n - 1), 

or, since (A;) = 1 - (A;), 

(A) + (At) + · · · + (A,._t) ~ 1 - (AAt · · · A,._t). 

Now the compound event AAt ... l,._t means that neither A nor 
At, ... nor A,._1 occurs. The event opposite to this is that at least 
one of the events A, At, ... A,._t occurs. Hence, 

1 - (AAt · · · A,._t) = (A +At+ · · · + A,._1), 
and we reach the following important inequality: . 

(A + A1 + · · · + .4..-t) ~ (A)+ (A1) + · · · + (An-t). 

5. Equation (1) can be extended to the_case of more than two events. 
Let B mean the occurrence of at least one of the events At or A2. Then 
by (1) 

r 

(A. + A I + .42) = (;1) + (A I + .42) - (AB). 
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As to (A 1 + A2), its expression is given by (1). The compound event 
AB means the occurrence of one at least of the events AAt or AA2. 
Hence, applying equation (1) once more, we find 

(AB) = (AA 1 + AA2) = (AAt) + {AA2) - (AA1A2) 

and after due substitutions 

(A +At+ A2) = (A) + (At)+ (A2) - (AAt) - (AA2) - (A1A2) + 
+ (AAtA2) .. 

Proceeding in the same way. and using mathematical induction, the 
following general formula can be established: 

(A+ A1 + · · · + A,._t) =~(A,)- ~(AiAi) t ~(AiAiA,)- • • • 
i.,j i.,j,k 

where summations refer to all combinations of subscripts taken from 
numbers 0, 1, 2, ... n - 1, one, two, three, ... , and n at a time. 

6. Let A and B be two events whose probabilities are (A) and (B). 
It is understood that the probability (A) is determined without any 
regard to B when nothing is known about the occurrence or nonoccur­
rence of B. When it is known that B occurred, A may have a different 
probability, which we shall denote by the symbol (A, B) and call "con­
ditional probability of A, given that B has actually happened." 

Now we can state the second fundamental theorem, called the 
"theorem of compound probability" or "theorem of multiplication of 
probabilities," as follows: 

Theorem of Compound Probability. The probability of simuUaneous 
occurrence of A and B is given by the produCt of the unronditional probability 
of the event A by £he ronditional probability of B, supposing that A actuaUy 
occurred. In other words, 

(AB) = (A) · (E, A). 

Proof. Let N denote the total number of equally likely cases among 
which m cases are favorable to the event A. The cases favorable to A 
and B are to be found among the m cases favorable to A. Let their 
number be mt. Then, by the definition of probability, 

(AB) = ;~, 

which also can be written thus: 

(AB) = ~. mt. 
N m 

Now the ratio m/N represents lhe probability of A. To find the meaning 
of the second factor, we observe that, assuming the occurrenre of A, 
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thrre are only m t.'qually likely cases left (the remaining N - m cases 
hf'roming impo.~:;;;iblP) out of which m1 are favorable to B. Hence the 
ra'tio mt/m represf'nts tht.' conditional probability (B, A) of B supposing 
that .{ has actually happt'ned. 

~ow sinct.' 

m N =(A}, ml = (B A) 
m ' ' 

the probability of the compound event A.B is exprt'ssed by the product 

(AB) = (.4) · (B, A) . . 
Since the compound event A B involves A and B symmetrically: 

we shall have also 

(AB) = (B)· (A, B). 

The theorem of compound probability can easily be extended to several 
events. For example, let us consider three events, A, B, C. The occur­
rence of .A. and B and Cis evidently equivalent to the occurrence of the 
compound event AB and C. We have, thE'refore, 

(ABC) = (A.B) · (C, A.B) 

by the theorE'm of compound probability. By the same theorem 

(AB) = (A) · (B, .4), 
so that 

(A.BC) = (A) · (B, A) · (C, AB). 

Obviously this formula can be extended tu compound events con­
sisting of more than three components. 

In one particular but very important case, the expression for the 
£•ompound probability can be simplified; namely, in the case of so-called 
"independent events." Several events are "independent" by definitioi1 
if the probability of any one of them is not affected by supplementary 
knowlE'dge concerning the materialization of any number of the remaining 
events. For instance, if .4. and B represent white balls drawn from 
two different urns, the probability of A is the same whether the color 
of the ball drawn from the other urn is known or not. Similarly, granted 
that a coin is unbiased, heads at the first throw and heads at the second 
throw are independent events. In such theoretical . ca..'les the inde­
pt>ndence of events can be reasonably assumed or agreed upon. · In other 
rases, and e:-:peeially in practical applications, it is not ea...:;y to decide 
whether events should be con:sidered as indt>pendent or not. 

If J. and B are independent, the conditional probability (B, .4) is 
the same as the probability (B) found ·without any reference to A; this 



S&c. 6] 7'HEOilEMS OF TOTAL AND COMPOUND PROBABILITY 33 

follows from the definition of independence: Hence, the expression of 
compound probability (.1B) for two independent evrnts becomes 

(AB) = (A) · (B) 

so that the probability of a compound event with independent 'eom­
ponents is simply equal to the product of the probabilities of component 
events. This rule extends to any number of component events if thry 

·are indrpendent. Let us consider three independent events, A, B, and C. 
The independence of these events implies 

(B, A) = (B); tC, AB) = (C) 
and henee 

(ABC) = (.4) · (B) · (C) 

in accordance with the rule. 
To illustrate the theorem of compound probability, let us cot111ider 

two l"imple examples. An urn contains 2 white ballr~ and 3 black ones. 
Two balls are drawn, and it is required to find the probability that thry 
are both white. Let A. be the event consisting in the white color of the 
first ball, and B the event consh;ting in the white color of the second ball. 
The probability (A) of extracting a white ball in the first place is 

(A) = ·!· 
To find the conditional probability (B, A) we observe, after drawing one 
":hite pall, that 1 white and 3 black balL., remain in the urn. The 
probability of drawing a white ball under such eircumstances is 

(B, .1) = l· 

Now, by the theorem of compound probability, we shall have 

(AB) = i · l = 11o· 

,:vidf'ntly, in thir~ f'Xample we df'alt with ·dependent events. 
As an example of independent events, let a coin be tossed any' given 

uumber of times; say, n times. What is the probability of having only 
brads? The compound event in this example consists of n independent 
<·omponents; namely, beads at every trial. Now the probability of 
hl":tds in any· trial is H, and so the required probability will be 1/2". 

NoTE: Two e,·ents • .t a.nd B are independent by definition, if 

(.t, B) = (..t) and (B, A) = (B). 

Howt'\'er, one of these ronditions follow~ from the other. Suppose the condition 

(A, B)= (A) 

,is fulfilled, so that ,t is independent of B. We have theQ 

(AB) • (8) ·(A), 



34 INTRODUCTION TO MATHEMATICAL PROBABILITY [Ca:AP. II 

On the other hand, 

wl;aence 
(AB) = (A) • (B, A), 

(B, A)= (B), 

so that B is independent of A. 
Three events A, B, C are independent if the following four conditions are fulfilled: 

(A, B) =(A); (A, C) =(A); (B, C) =(B); (C, AB) =(C). 

From the first three conditions it follows that 

(B, A) = (B); (C, A) = (C); (C, B) = (C). 

To show that the other requirements 

(B, AC) = (B); (A, BC) = (A) 

are also fulfilled, we notice that 

(ABC) = (.4.) · (B, A) · (C, AB) = (A) · (B) · (C) 

because (C, AB) = (C) by hypothesis and (B, A) = (B) as proved. On the other 
hand, 

(ABC) = (A) · (C, A) • (B, AC) 

and (C, A) = (C). Hence, comparing with the preceding expression, 

(B, AC) '= (B). 

Similarly, it can be shown that 

(A, BC) = (A). 

The independence of four events A, B, C, Dis assured if the following 11 conditions 
are fulfilled: 

(A, B) = (A, C) = (A, D) = (A); (B, C) = (B, D) = (B); (C, D) = (C); 
(C, AB) =(C); (D, AB) = (D, AC) = (D, BC) =(D); (D, ABC) =(D). 

And in general, independence of n events is assured if 2" - n - 1 conditions of 
similar type are fulfilled. 

If several events are independent, every two of them are independent; but this 
does not suffice for the independence of aU events, as can be shown by a simple exam­
ple. An urn contains four tickets with numbers 112, 121, 211, 222, and one ticket is 
drawn. What are the probabilities that the first, second, or third digits in its number 
.are 1? Let a unit such as the first, second, or third digit, be represented, respectively 
by A, B, or C. Then 

(A) = (B) = (C) = i = ~. 

Compound probabilities (AB), (AC), (BC) are 

(AB) = (AC) = (BC) = l, 

since among four tickets there is only one whose number has first and second, or 
first and third, or second and third digits of 1. Now, for instance, 

(AB) = l..; l· l = (A)· (B), 



SEc. 7} THEOREMS OF TOTAL AND COMPOUND PROBABILITY 35 

whence A and B are independent. Similarly, A and C; C and B are independent. 
Thus, any two of the events A, B, C are independent, but not all three events are. 
For, if they were, we should have 

(ABC') == i-
But (ABC) = 0 since in no ticket are all three digits equal to 1. 

7. The theorems of total and compound probability form the founda­
tion of the theory of probability as it represents a separate branch of 
mathematical science. They serve the purpose of finding probabilities 
in more complicated cases, either by being directly applied or by enabling 
us to form equations from which the required probabilities can be found. 
A few selected problems will illustrate the various ways of using these 
theorems. 

Problem 14. . An urn contains a white balls and b black balls; another 
contains c white and d black balls. One ball is transferred from the first 
urn into the second, and then a ball is drawn from the latter. What is 
the probability that it will be a white ball? 

Solution. The event consisting in the white color of the ball drawn 
from the second urn, can materialize under two mutually exclusive forms: 
when the transferred ball is a white one, and when it is black. By the 
theorem of total probability, we must find the probabilities corresponding 
to these two forms. To find the probability of the first form, we observe 
that it represents a compound event consisting in th.e. white color of the 
transferred ball, combined with the white color of the extracted ball. 
The probability that the transferred ball is white is given by the fraction 

a 
a+b 

and the probability that the ball removed from the second tJ.rn is white, is 

c+1 
c+d+1 

·because before the drawing there were c + 1 white balls and d black 
balls in the second urn. Hence, by the theorem of compound probability, 
the probability of the first form is · 

a(c + 1) 
(a + b)(c + d + 1)' 

In the same way, we find that the probability of the second form is 

, be 
(a+ b)(c + d + 1)

1 

and the sum of these two numbers, 

ac+bc+a 
(a+ b)(c + d + 1)' 
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gives the probability of extracting a white ball from the seeond urn, after 
on~ ball of unknown color has been transferred from the firRt urn. 

• 8. Problem 15. Two players agree to play under the following 
conditions: Taking turns, they draw the balls out of an urn containing 
a wnite balls and b black balls; one ball at a time. He who extracts the 
first white one wins the game. What is the probability that the player 
who starts will win the game? 

Solution. Let A be the player who draws th~ first ball, and let B 
be the other player. The game can be won by A, first, if he extracts a 
white ball at the start; second, if A and B alternately extract 2 black 
balls and then A draws a white one; third, if A and B alternately extract 
4 black balls and the fifth ball drawn by A is white; and so on. By the 
theorem of total probability, the probability for A to win the game, 
is the sum of the probabilities of the mutually exclusive ways (described 
above) in which he can win the game. The probability of extracting a 
w bite ball at first is 

a 
a+ b. 

The probability of 'extracting. 2 black balls and then 1 white ball is found 
by direct application of the thE>orem of compound probabilities. Its 
expression is 

b(b - l)o 
(a+ b)(a + b - l)(a + b - 2)' 

The probability of extracting 4 black balls and then 1 white ball is given 
by 

b(b- l)(b- 2)(b- 3)a , 
..,._( a-+---cb=---) (.,-a-+---,b:---....,. '-::-:1 )-r( a-+~b - 2) (a + b - 3) (a + b - 4) 

using the same theorem of compound probability. 
In the same way we deal with all the possible and mutually excluflive 

ways which would allow A to win the game. Then, by adding the above 
given expressions of partial probabilitir11, we obtain the exprest'ion for the 
rrquired probability in the form of the sum 

a [ b(b- 1) 
p == a t 1 1 + (a + b - l)(a +1>-.=.- 2) + 

b(b- l)(b- 2)(b .. 3) + ] 
+ (a t·b - l)(a + b - 2)(a + b -_:: 3)(a l b - 4) .. ,' · 

The law of formation of different-terms in this sum is obvious; and 
the sum automatically ends as soon 3\.wE' arrive at a term whi<~h is equal . 
to Zt'ro •. 
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In the same way, we can find that the probability for the playrr B 
to "'in is ~>xpressed by an analogous sum: • • 

• 
a [ b b(b - 1)(b - 2) J 

Q =a+ b a + b- 1 + (a+ b- 1)(a + b- 2)(a + b- 3) + . .' · · 
But one of the players, A or B, must win the game, and the winning of 
the game by .4 and Bare opposite events. Hence, 

P+Q=1 

or, after substituting the above expressions for P and Q and after obvious 
simplifications, 

1 + b + b(b - 1) + ... 
a \ b - 1 (a + b - 1)(a + b - 2) 

=--· 
a 

This is a noteworthy identity, obtained, as we see, by the principles 
of the theory of probability. Of course, it can be proved in a direct 
way, and it would be a good problem for students to attempt a direct 
proof. There are many cases in which, by means of considerations 
belonging to the theory of probability, several identities or inequalities 
can be established whose direct proof sometimes involves considerable 
difficulty. 

9. Problem 16. Each of k urns contains n identical balls numbered' 
from 1 ton. One ball is drawn from every urn. What is the probability 
that m is the greate~St number drawn? 

Solution. Let us denote by P"' the required probability. It is not 
apparE>nt how we can find the explicit expression for thiis probability, but 
using the theorems of total and compound probability, we can form 
E>quations which yield the desired expression for P"w. without any difficulty. 
To this end, let us first ~nd the probability P that the greatest number 
drawn does not exceed m. It is obvious that this may happen in m 
mutually exclusive ways; namely, when the greatest number drawn i;;; 
1, 2, 3, and so on up to m. The probabilities of these different hypotheses 
being P~o P2, . P ,.., their sum gives the follo\\ing first expression for 
P: 

(1) P = P1 + Pt + · · · + P •. 

We can find the second expression for P using the theorem of com­
pound probability; nan~ely,'the greatest number drawn does not exceed 
m if balls drawn fr01n all urns have numbers from 1 tom. The proba­
bility of d~awing 3. ball v<ith t.he number 1, 2, 3, ... m from any urn is 
m ~,. And the probability that thil:l \\ill happen for e\'f>ry urn i...-: a 
rompound event ronsisting of k independ~>nt ewnts with the same 

• 
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probability m/n. Therefore, by the theorem of compound probability 

And this compared with (1) gives the equation 

(2) 

Substituting m - 1 for m in this equation, we get 

and it suffices to subtract this from {2) to have the required expression for 
P .. : . 

10. Problem 17. Two persons, A and B, have respectively n + 1 
and n coins, which they toss simultaneously. What is the probability 
that A will have more heads than B? 

Solution. Let p., p.' and v, v' be numbers of heads and tails .. thrown 
by A and B, respectively, so that p. + v = n + 1, p.' + v' = n. The 
required probability P is the probability of the inequality p. > p.'. The 
probability 1 - P of the opposite event p. ~ p.' is at the same time 
the probability of the inequality v > v'; that is, 1 - Pis the probability 
that A will throw more tails than B. Ry reason of symmetry 1 - P = P, 
P= H. 

11. Problem 18. Three players A, B, and C agree to play a series of 
games observing the following rules: two players participate in each game, 
while the third is idle, and the game is to be won by one of th~m. The 
loser in each game quits, and his place in the next game is taken by the 
player who was idle. The player who succeeds in winning over both 
of his opponents without interruption, wins the whole series of games. 
Supposing that the probability for each player to win a single game is 
Hand that the first game is played by A and B, find the probability for 
.4, B, and C, respectively, to win the whole series, if (a) the number of 
games to be played is limited and may not exceed a given number n; 
if (b) the number of games is unlimited. 

Solution. Let P,., Q,., R,. be the probabilities for,A, B, and C, respec­
tively, to win a series of games when their number cannot exceed n. By 
reason of symmetry, P,. = Q,. so that it remains to find P,. and R,.. 
The player A can win the whole series of games in two mutually exclusive 
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ways: if he wins the first game, or if he loses the first game. Let the 
probability of the first case be p,. and that of the second r •. Then 

P,.,;,. p,. +r,.. 
A can win the whole series after winning the first game, in two mutually 

exclusive ways: (a) if he wins over Band C in succession; (b) if he wins 
the first game from B and loses the second game to C; then, if in the third 
game Closes to B, and in the fourth game A wins over Band later wins 
the whole series of not more than n - 3 games. Now, the probability 
of case (a) is 7i · 7i = ~ by the theorem of compound probability; 
that of case (b) by the same theorem is %Pn-a; and the total probability is 

(1) 

If A loses the first game to B, but wins the whole series, then in the 
second game C Vlrins over B while the third game is won by A, and not 
more than n - 2 games are left to play. Hence, 

(2) r,. = iPn-2· 

Since evidently P2 = pa = p, = ~~ equation (1) by successive 
substitutions yields 

Pak = 4 1 + g + 82 + · · ' + 8k-l 
1( 1 1 1 ) 

P~+t -K I + ~ + ~ ~ ... + 8~.) 
PatH = K 1 + i + ~ + ~ · · + ~) 

or, in condensed form for an arbitrary n . 
[n+l] 

p,. = t(l - 8- 3 ), 

denoting by [x] the greatest integer contained in x. Hence, by virtue of 
(2) the general expression of r,. will be 

[11-l] 
r" = ft{l - 8- 3 ) 

and that of P ,., Q,., 

P .. = Q .. = l':r- y\8-["tl]- n-s-[ll;lJ. 
Finally, to find the probability for C to win, we observe that this can 

happrn only if C Vlins the ~econd game; hence, 
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Sinr'e P,. + Q., + R" < 1, the differenee 

[n+l] ["l [n-1] 
1 -·P .. - Q,.- R." = y\8- 3 + 1448- 3J + J\8- T 

represents the probability of a tie inn games. This probabiJity decreases 
rapidly when n increases, so that in a long series of games a tie is prac­
tically impossible. If the number of games is not limited, the proba­
bilities P, Q, R for A, B, C, respectively, to win are obtained as limits of 

'P •• Qn, Rn, when n increases indefinitely. Thus 

p = Q = fl, 
Problems for Solution 

1. Three urns contain respectively 1 white and 2 black balls; 3 white and 1 black 
ball; 2 white and 3 black balls. One ball is taken from each urn. What is the proba-
bility that among the halls drawn there are 2 white and 1 black? Ans. 2% 0. 

I. Cards are drawn one by one from a full deck. What is the probability that 
10 cards will precede the first ace? Am. 16%; 165 = 0.03938. 

3. Urn 1 contains 10 white and 3 black balls; urn 2 contains 3 white and 5 black 
balls. ·Two balls are transferred from No. 1 and placed in No. 2 and then one ball is 
taken from the latter. ,What is the probability that it is a white ball? Am. 5,% 30 . 

4. Two urns identical in appearance contain respectively 3 "\hite and 2 black balls; 
2 white and 5 black balls. One urn is selected and a ball taken from it. What is the 
probability that this ball is white? . Ans. 3 >70 . 

&. \'\"bat is the probability that 5 tickets drawn in the French lottery all have on!'-
• digit numbers? Am. 12441626 =: 29.10-7

• 

6. What is the probability that eacil of the four players in a bridge game will get a 
( l . 2 ..• 13)4 ' 

complete suit of cards? Am. 24 
1 

. 
2 
... 

52 
= 4.474.10-28, 

7. What is the probability that at least one of the players in a bridge game will 
get a complete suit of cards? 

16 ·13!. 39! 72. (13')2 . 26! + 72. (13!)' 
Am. 

52
! = 2.52 . w-u. 

See Sec. 5._page 31. • ·· , • 
8. From an urn with a white and b black balls n balls are taken. Find the prob­

ability of drawing at least one white ball. A.m. The required probability can be 

1 
expressed ~ two way~. First expression: ' · 

bib - I) · · · (b - 11 + 1) 
I - . 
, (a + b)(a + b - 1) · · · (a + b - n t 1) 

Second expression: 

a [ b bib - 1) • · • (b - n + 2) ] 
a+ b 1 +a+ b -1 + .. · +(a+ b- Ilia+ b- 2) · · · (a+ b- n + 1) · 

Equating them, we have an identity 

b b1b- 1) · · · (b'- n + 2) 
1 + a + b - 1 + · · · + (a + b - l)(a + b - 2) · · · (a + b - n + 1) 

a + b[ b(b - I) · · · (b - n + 1) ] 
= -,.- 1 - (a + b)(a + b - 1) · · · (a + b - n + 1) . 
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9. Three players A., B, C in turn draw balls from an urn with 10 white and 10 black 
balls, taking one ball at a time. He who extracts the first white ball wins the game. 
Supposing that they start in the order A., B, C, find the probabilities for each of them 
to win the game. A.ns. For A., 0.56584; forB, 0.29144; for C, 0.14271. 

10. If ,.. dice are thrown at a time, what is the probability of having each of the 
points 1, 2, ... 6, appear at least once? Find the numerical value of this pro}).. 
ability for n = 10. A.ns. 

Pft = 1 - 6(1)" + 15(tl" - 20(f)" + 15(tl" - 6. m· 
PIO = 0.2718. 

HrNT: Use the formula in Sec. 5, page 31. 
11. In a lottery m tickets are drawn at a time out of the total number of n tickets, 

and returned before the riext drawing is made. 'What is the probability that in k 
drawings each of the numbers 1, 2, ... n will appear at least once? A.m. 

n(n ...:. m)' n(n - l)(n -m)'(n - m - 1)• 
Pt = 1 - -1 -- + ---1 2 -- 1 n · n n-

12~ We have k varieties of objects, each variety consisting of the same number of 
obje<'ts. These objects are drawn one at a time and replaced before the next drawing. 
Fint1 the probability that nand no less drawings will be required to produce objects of 
all varieties. A ns. ' 

.. k-1 (k-l)(k-2) 
A·"-1p,. = (k- 1)"-t- --(k- 2)•-t + (k- 3)•-l- · · · . 

1 1. 2 

13. Three urns contain respectively 1 white, 2 black balls; 2 white, 1 black balls; 
2 whit.e, 2 black balls. One ball is transferred from the first urn into the second; then 
one from the latter is transferred into the thi~; finally, one ball is drawn from the 
third urn. What is the probability of its being white? Ans. a311 0• 

14. Each of n urns contains a white and b black balls. One ball is transferred 
from the first urn into the second, then one ball from the latter into the third, and so 
on. Finally, one ball is taken from the last urn. What is the probability of its being 
white? Am. Denote by Pt the probability of drawing a white ball from the kth urn. 
Then 

·a+ 1 a 
Pt+• • a + b + l Pt + a + b + l (l - Pt) 

for k = 1, 2, . . . n - 1. Hence, 

a 
p. = --· 

a+ b 

16. Two players A and B toss two dice, A lltarting the game. The game is won 
hy .t if he casts 6 points before B casts 7 points; and it is won by B if he casts 7 points 
before .t c8.1lts 6 points. What are the probabilities for A and B to win the game if 
they agree to c&llt diL-e not more than n times? What is the probability of a tie! 
Ana. Probability for A: 

PI\Jhahility for H: 

P• ::. lj[t ;- (!W"'l 
P• = tl[l - (tH)"'+1] 

.< ... 

.. 
q. = H[l - q}fi•J 
q.; fl[l - qHl•J 

if 
if 

A= 2m 
"=2m+ 1. 

if '' = 2m 
if " =2m+ 1. 
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Probability of a tie: 

r,. = (!H)"' if 11 = 2m; r,. = fHHi)"' if n = 2m + 1. 

If 11 increases indefinitely, r,. converges to 0 and Pn, qn converge to the limits 

P =H. q = n. 
which may be considered as the probabilities for A and B to win if the number of 
throws is unlimited. 

16. The game known as "craps" is played with two dice, and the caster wins 
unconditionally if he produces 7 or 11 points (which are called "naturals") j he loses 
the game in case of 2, 3, or 12 points (called "craps"). But if he produces 4, 5, 6, 8, 9, 
or 10 points, he has the right to cast the dice steadily until he throws the same num­
ber of points he had before or until he throws a 7. If he rolls 7 before obtaining his 
point, he loses the game j otherwise, he wins. What is the probability to win? 

Ans. 24H9s = 0.493. 
17. Prove directly the identity in Prob. 15, page 37. 
Solution 1. Let 

) 
b b(b - 1) b(b - l)(b - 2) 

q~(c, b = ~ + c(c - 1) + c(c - l)(c - 2) + ' ' ' 
where b is a positive integer and c > b. Then ' 

whence 

and in general 

b 
q~(c, b) = -[1 + I(J(c - 1, b - 1)] 

c· 

1 
q~(c, 1) = -; 

c 

' 2 
q~(c, 2) = --

1
; 

c-

b 
I{I(C1 b) = 1. + 

C-• 

3 
q~(c,3) == -

2 c-

Taking c = a + b - 1, we have 

a+b 
1 + q~(a + b - 1 b) = -· ' a 

Solution S. The polynomial 

b b(b- 1) 
S(z) = 1 +-x +--zZ + ... 

c c(c - 1) 

can be presented in the form of a definite integral 

S(z) = (c + l)[o\1- W- x))b(l - ~)c-6d~ 
whence 

L
1 

c + 1 a+ b 
S(l) = (c +I) (1- v·~a~ = =.-

c- + a 

iic=a+b-1. 
18. Find the approximate expressiollB for the probabilities P and Q in Prob. 15, 

page 36, when b is a large number. Take for numerical application a = b = 50. 
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Solution. Since P + Q = 1, it suffices to seek the approximate expression for 
P -- Q. Now 

whence 

P - Q =! f\1 - u)b(J - ~).-tdu + (-1)•. 
2)o 2 24C!~ 

To find the approximate expression of this integral, we set 

whence u can be expressed as a power series in v: 

2 4b +a - 1 12b1 + (2b +a - 1)1 
u = 11- 112 + va-

2b +a - 1 (2b +a - 1)1 3(2b +a - 1) 6 

Substituting the resulting expression of du/dv and integrating with respect to t1 

between limits 0 and oo, we obtain for P - Q an asymptotic expansion whose first 
terms are , 

P-Q= a -[I- 4b+a-1 ]+a[l2b2 +(2b+a-1)2)+(-1)~. 
2b + a - 1 (2b + a - 1)2 (2b + a - 1)' 2ac:+b 

A more detailed discussion reveals that the error of this approximate formula is less 
a[40(a - 1)2 - 6b(a - 1) + 32b2] • 

than a(%)b+1(%)a-1 and greater than (
2
b +a _ 

1
)6 proVIded 

b ~ 12. For a = b = 50 the formula yields 

p - Q = 0.3318; p = 0.6659; Q = 0.3341. 
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CHAPTER III 

REPEATED TRIALS 

1. In the theory of probability the word "trial" means an attempt to 
produce, in a manner precisely described, an event E which is not certain. 
The outcome of a trial is called a "success" if E occurs, and a "failure" if 
E fails to occur. For instance, if E represents the drawing of two cards 
of the same denomination from a full pack of cards, the "trial" consists 
in taking any two cards from the full pack, and we have a success or 
failure in this trial according to whether both cards are of the same 
denomination or not. 

If trials can be repeated, they form a "series" of trials. Regarding 
series of trials, the following two problems naturally arise: . 

a. WhAt is the probability of a given number of successes in a given 
series of trials? And as a generalization of this problem: 

b. What is the probability that the number of successes will be 
contained between two given iimits in a given series of trials? 

Problems of this kind are among the most important in the theory of 
probability. 

2. Trials are said to be "independent" in regard to an event E if 
the probability of this event in any trial remains the same, whether 
the results .of any number of other trials are known or not. On the other 
hand, trials are "dependent" if the probability of E in a certain tria'!. 
varies according to the information we have about the outcome of one or 
more of the other trials. 

As an example of independent trials, imagine that several times in 
succession we draw one ball from an urn containing white and black balls 
in given proportion, after each trial returning the ball that has been 
drawn, and thoroughly mixing the balls before proceeding to the next 
trial. With respect to the color of the balls taken, we may reasonably 
assume that these trials are independent. On the other hand, if the 
balls already extracted are not returned to the urn, the above described 
trials are no longer independent. To illustrate, suppose that the urn 
from which the balls are drawn, originally contained 2 white and 3 black 
balls, and that 4 balls are drawn. What is the probability that the 
third ball is white? If nothing is known about the color of the three 
other balls, the probability is ,%. If we know that the first ball is white, 
but the colors of the second and fourth balls are unknown, this proba· 
bility is },4. In general, the probability for any ball to be white (or black) 

44 



~E<'. 3j REPEA1'ED TRIALS 45 

depends essentially on the amount of information we possess about the 
color of the other balls. Since the urn contains a limited number of 
balls, series of trials of this kind cannot be continued indefinitely. 

As an example of an indefinite series of dependent trials, suppose that 
we have two urns, the first containing 1 white and 2 black balls, and the 
second, 1 black and 2 white balls, and the trials consist in taking one 
ball at a time from either urn, .observing the following rules: (a) the 
first ball is taken from the first urn; (b) after a white ball, the next is 
taken from the first urn; after a black one, the next is taken from the 
second urn; (c) balls are returned to the same urns from which they were 
taken. 

Following these rules, we evidently have a definite series of trials, 
which can be extended indefinitely, and these trials are dependent. 
For if we know that a certain ball was white or black, the probability 
of the next ball being white is Ya or %, respectively. 

Assuming the independence of trials, the probability of an event E 
may remain constant or may vary from one trial to another. If an 
unbiased coin is tossed several times, we have a series of independent 
trials each with the same probability, H, for heads. It is easy to give 
an example of a series of independent trials with variable probability for 
the same event. Imagine, for instance, that we have an unlimited 
number of urns with white and black balls, but that the prop.ortion of 
white and black balls varies from urn to urn. One ball is drawn suc­
cessively from eaeh of these urns. Evidently, here we have a series of 
trials independent in regard to the white color of the ball drawn, but 
with the probability of dra·wing a ball of this color varying from trial to 
trial. 

In this chapter we shall discuss the simplest case of series of inde­
peildent trials with constant probability. They are often .called "Ber­
noullian series of trials" in honor of Jacob Bernoulli who, in his classical 
book, "Ars conjeetandi'' (1713) made a profound study of such series 
and was led to the discovery of one of the most important theorems in 
the theory of probability. 

3. Considering a series of n independent tftals in which the probability 
of an e\·ent E is p in every trial (that of the opposite event F being 
q = 1 - p), the first problem which presents itself is to find the proba­
bility that E will occur exactly m times, where m is one of the numbers 
0, 1, 2, ... n. In what follows, we shall denote this probability by T ,.. 
In the extreme cases m = n and m = 0 it is easy to find T,. and T0• 

\\'hen m = n, the event E must occur n times in succession, so that T. 
reprt>sents the probability of the compound event EEE ... E with n 
idt'ntieal components. These components are independent events, since 
the trials are independt>nt, and the probability of eaeh of them is p. 
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Hence, the compound probability is 

Tn = p · p · p · · · p (n times) 
or 

The symbol To denotes the probability that E will never occur inn 
trials, which is the same as to say that F will occur n times in succession. 
Hence, for the same reasons as before, 

When m is neither 0 nor n, the event consisting in m occurrences of E 
can materialize in several mutually exclusive forms, each of which may 
be represented by a definite succession of m letters E ana n - m letters F. 
For example, if n = 4 and m = 2, we can distinguish the following mutu· 
ally exclusive forms corresponding to two occurrences of E: 

EEFF,EFEF,EFFE,FEEF,FEFE,FFEE. 

To find the number of all the different successions consisting of m 
letters E and n - m letters F, we observe that any such succession is 
determined as soon as we know the places occupied by the letter E. 
Now the number of ways to select m places out of the total number oi 
n places is evidently the number of combinations out of n objects taken 
m at a time. Hence, the number of mutually exclusive ways to have 
m successes in n trials is 

n(n - 1) · · · (n - m + 1) em= . 
n 1·2·3•"m 

The probability of each succession of m letters E and n - m letters F 
by reason of independence of trials, is represented by the product o 
m factors p and n - m factors q, and since t'he product does not depenc 
upon the order of factors, this probability will be 

for each succession. Hence, the total probability of m successes in 
trials is given by this simple formula: 

(1) 
n(n - 1) · · · (n - m + 1) Tm = p"'qn-m 

1·2·3 .. ·m 

which can also be presented thus: 

{2) T - n! p"'qn-m 
m-m!(n-m)! . 
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This second form can be used even form = 0 or m = n if, as usual, 
we assume 0! = 1. Either of the expressions (1) or (2) shows that T,. 
may be considered as the coefficient of tm in the expansion of 

(q + pt)" 

according to ascending powers of an arbitrary variable t. In other 
words, we have identically 

(q + pt)" = To+ T1t + T2t2 + · · · + T,.t". 

For this reason the function 

(q + pt)" 

is called the "generating function" of probabilities To, T1, T2, ... T,.. 
By setting t = 1 we naturally obtain 

To+ T1 + T2 + · · · + Tn = 1. 

4. The probability P(k, l) that the number of successes m will satisfy 
the inequalities (or, simply, the probability of these inequalities) 

k ~ m ~ l 

where k and l are two given integers, can easily be found by distinguishing 
the following mutually exclusive events: 

m = k or m = k + 1, . . . or m = l. 

Accordingly, by the theorem of total probability, 

P(k, l) = Tk + Tk+l + · · · + T, 

or, using expression (2), 

I 

~ n! 
P(k, l) = I( _ ) 

1
pmqn-ffi. 

m.n m. 
m=k 

In particular, the probability that the number .of successes will not 
be greater than l is represented by the sum 

P(O, l) = q" + yPqn-t + n(; ~2 1)p2qn-: + . , . + 
n(n - 1) · · · (n - l + 1) + plqn-1 

1· 2 ... l . 

Similarly, the probability that the number of successes in n trials will 
not be lt>ss than l ran be presented thus: 
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P(l n) = n(n- 1) · · · (n- l + 1) 1 ,._1[ 1 + n- l E + 
I 1•2.,•l pq l+1q 

+ (n - l)(n - l - 1)('!!_)2 + ... ] 
(l + 1) (l + 2) q 

where the series in the brackets ends by itself. 
5. The application of the above established formulas to numerical 

examples does not present any difficulty so long as the numbers with 
which we have to deal are not large. 

Example 1. In tossing 10 coins, what is the probability of having exactly 5 heads? 
Tossing 10 different coins at once is the same thing as tossing one coin 10 times, if all 
the coins are unbiased, which is assumed. Hence, the required probability is given 
by formula (1), where we must taken = 10, m == 5, p = q = 72 and it is 

10 . 9 . s·. 7 . 6 1 252 
---- . = = 0.24609. 1 . 2 . 3 . 4 . 5 210 1024 

Example 2. If a person playing a certain game can win $1 with the probability 
%, and lose twenty-five cents with the probability %, what is the probability of win­
ning at least $3 in 20 games? Let m be the number of times the game is won. The 
total gain (considering a loss as a negative gain) will be 

m- H20- m) = {m- 5 dollars 

and the condition of the problem requires that it should not be less than $3. . Hence 
{m- 5 ~ 3, 

whence m ~ 6% or, since m is an integer, m ~ 7. That is, in 20 trials an event with 
the probability 72 must happen at least 7 times and the probability for that is: 

~ 201 (1)'"(2)30

-.. 

~m!(20- m)! 3 · 3 
m=7 

This sum contains 14 terms; but it can be expressed through another sum containing 
only 7 terms, because 

~ 20! (1)"'(2)l0"-111 ~ , ' 20! (1\"'(2)%0-m 
~m!(20- m)! 3 3 = 1 - ~m!(20- m)! 3/ 3 . 
m=7 m=O 

Using the last expression, one easily gets 0.5207 for the required probability. 

6. In the series of probabilities 

To, Tt, T2, ... T,. 

for 0, I: 2, . . . n successes in n trials, the terms generally increase t.ill 
the greatest term T,. is reached, and then they steadily decrease. For 
instance, if n = 10, p = q =· 72 the values of the expression 

2loT., 

for m = 0, 1, 2, ... 10 are 
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1, 10,)45, 120, 210, 252, 210, 120, 45, 10, 1 
~o that Tfi is the greatest term. For obvious reasons the number~ (to 
which the greatest term T, in the series of probabilities To, T1, ... T .. 
eorresponds) is called the "most probable" number of successes. 

To prove this observation in general, and to find the rule for obtaining 
Jl., we obRerve first that the quotient 

T.,.+l' n-mp 
T ... =m+1q 

decreases with increasing m, so that 

(a) T 1 > T 2 > T a > . . . > ~. 
To T1 T, · T,._1 

The two extreme terms in (a) are 

and if n is large enough, the first of them is > 1 and the last < 1. To 
find exactly how large "' must be, we notice that 

if 

whence 

Similarly, 

if 

whence 

~: >1 

np > q = 1- p 

n + 1 > !. 
p 

T" < 1 
T•-t 

p < nq or 1-q<nq 

n+l>!· q 

Cuns<'quently, if n + 1 is greater than both 1/p and 1/q, the first term 
111 (a) is > 1 and the last term is < 1. As the terms of (a) form a decrew:­
iu~ st-quence, there must be a last term which ii ~ 1.. Let it be 

Thf'U 

T, 
T,.-1· 
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and 

or, which is the same, 

> Tn 
Tn-1 

To < Tt < T2 < · · · < Tp-1 ~ T"' 
T"' > T,..+t > Tp+2 > · · · >Tn. 

In other words, the sequence of probabilities increases till the greatest 
term T,. is reached and steac.'(ly decreases from then on. Besides T~', 

there may be another greatest term T,.-t; namely, when T,.-1 = T,.; 
but all the other terms are certainly less than T"'. The number J.l is 
perfectly determined by the conditions 

which are equivalent to the two inequalities 

(n + l)p ~ p.(p + q), 

These in turn can be presented thus: 

p. ~ (n + 1)p < p. + 1 

and show that p. is uniquely determined as the greatest integer contained in 
(n + l)p. If (n + l)p is an integer, then p. = (n + l)p and T~' = Tp-l· 
That is, there are two greatest terms if, and only if, (n + l)p is an 
integer. 

Let us consider now what happens if 

or 

In the first case, all the terms in (a) are less than 1 with the single excep­
tion of the first term Tt/To which may be equal to 1; namely, when 

1 
n + 1 = -· Consequently, 

p 

To ~ Tt > T2 > · · ·. > T,. 

so that To is the greatest term. If (n + 1)p < 1 the greatest integer 
contained in (n + 1)p is 0, and there is only one greatest term To. If, 
however, (n + l)p = 1, there are tw,o terms To == Tt greater than 
others. 

If (n + 1)q ~ 1, all the terms in series (a) are > 1 with the exception 
of the last term, which may be equal to 1; namely, when (n + l)q = 1. 
Hence, · 

To< T1 < · · · < T•-1 ~ T,. 
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so that T" is the greatest term, and the preceding term T"-t can be equal 
to it only if (n + l)q = 1. Now the condition 

(n + l)q ~ 1 
is equivalent to 

(n + l)p ~ n. 

On the other hand, because p < 1, 

(n + l)p < n + 1. 

Therefore n is the greatest integer contained in (n + l)p. 
Comparing the results obtained in the last two cases (excluded at 

first) with the general rule, we see that in all cases the greatest term 
T,. corresponds to 

11. = [(n + l)p]. 

If (n + l)p is an integer, then there are two greatest terms T,. and T,.-1. 
This rule for determining the most probable number of successes is very 
simple and easy·of application to numerical examples. 

Example 1. Let n = 20, p = %, q = %. Then (n + l)p = 8.4, and the greate11t 
integer contained in this number is p. = 8. Hence, there is only one most probable 
numbE"r of successes p. == 8 with the corresponding probability 

20! (2)'(3)
11 

T, = 81121 5 5 = 0.1797. 

Example 2. Let n = 110, p = %, q = %, and (n + l)p = 37, an integer. 
Consequently, 36 and 37 are the most probable numbers of successes with the corre­
sponding probability 

llO! (1)17(2)73 

Tu = Tu = 37,73! 3 3 = 0.0801. 

7. When n, m, and n - m are large numbers, the evaluation of 
probability T ... by the exact formula 

n' 
T,. = m!(n ~ m)!p•q"-• 

becomes impracticable and it is necessary to resort to approximation.'!. 
For approximate evaluation of large factorials we possess precious means 
in the famous "Stirling formula." Referring the reader to Appendix I 
where this formula is established, we shall use it here in the following 
form: 

log x! = logy'2;Z + x log x - x + w(x) 
where 

1 1 
12(x + !) ,< wtx) < J2x' 
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In the same appendix the following double inequality is proved: 

1 1 1 1 1 
i21i - 12m - 121 < w(n) - w(m) - w(l) < 1Zn + 6 - 12m + 6 -

1 
- 12l + 6' 

Now from Stirling's formula 

and two similar expressions for m! and (n - m)! follow. Substituting 
them into T ,.., we get two limits 

(3) T ~ k~ n (np)"'( nq )"-"' 
"' ' 27rm(n - m) m n - m 

(4) T l~ n (np)"'( nq )"-m 
m > 21rm(n - m) m n - m 

where 
1 1 1 

k = el2n+6-l2m+6-12(n-mJ+6 

I ·I 1 
l = el2n -12m -l2(n-ml, 

When n, m, n - m are even moderately large k and l differ little from 
each other. 

Inequalities (3) and (4) then give very close upper and lower limits 
for T ,.. To evaluate powers 

with large exponents, sufficiently extensive logarithmic tables must be 
available. If such tables are lacking, then in cases which ordinarily 
oecur when ratios np/m and nq/(n - m) are close to 1, we can use 
special short tables to evaluate logarithms of these ratios or else resort to 
series. 

8. Another problem requiring the probability that the number of 
sueeesses trill be contained between two given limits is much more 
complex in case the number of trials as well as the difference between 
given limits is a large number. Ordinarily for approximate evaluation 
of probability under such circumstances simple and convenient formulas 
are used. These formulas are derived in Chap. VII. Less known is 
the ingenious use by Markoff of continued fractions for that purpose. 

It suffices to devise a method for approximate evaluation of the 
probability that the number of successes will be greater than a given 
integer lwhich ean be supposed >np. 'We 'lhall denote this probability by 
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P(l). A similar notation Q(l) will be used to denote the probability 
that the number of failures is >l where again l > nq. The probability 
P(k, l) of the inequalities k ~ m ~ l can be expressed as follows: 

P(k, l) = 1 - P(l) - Q(n - k) 

if l > np and k < np; 

P(k, l) = P(k - 1) - P(l) 

if hoth k and l are > np; and finally 

P(k, l) = Q(n - l - 1) - Q(n - k) 

if both k and l are < np. 
For P(l) we have the expression 

P(l) _ n! ,.J+l n-1-tr 1 + n - l - 1 ~ + 
-(l+1)!(n-Z-1)!l' q l+2 q 

(n - l - 1)(n - l - 2) p)2 
] 

+ (l + 2) (l + 3) q + . . . . 

The first factor 

nl 1+1 n-l-1 

(l + 1) !(n - l - 1) !p q 

ran be approximately evaluated by the method of the preceding section. 
The whole difficulty resides in the evaluation of the sum 

n - l - 1 p (n - l - 1)(n - l - 2)(p)2 

s = 1 + l + 2 q + (l + 2)(1 + 3) q + ... 
which is a particular case of the hypergeometric series 

a~ a(a + 1){j(f3 + 1) 2 F(a, ~~ y, x) = 1 + 1 . 'Y x + 1 . 2'Y('Y + 1) x + · · · · . 
In fact 

/!{ -n + l + 1, 1, l + 2, - ~) = S. 

Now, owing to this connection between S and hypergeometric series, S 
ean be represented in the form of a continued fraction. First, it is 
Ntsy to establish the following relations: 

F(a, ~ + 1, 'Y + 1, x) = F(a, {J, "/, x) + 
a('y - /3) ' 

+X y(y + 1/(a + 1, /3 + 1, 'Y + 2, X) 

F(a + 1, {3, 'Y + 1, x) = F(a, {3, -y, x) + 
fJ('Y - a) 

+ f 'Y('Y + 1t(a + 1, fJ + 1, 'Y + 2, x). 



54 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP. III 

Substituting a+ n, f3 + n, 'Y + 2n and a+ n, {J + n + 1, 'Y + 2n + 1, 
respectively, for a, {3, 'Y in these relations and setting 

X211 = F(a + n, f3 + n, 'Y + 2n, x); 
X2,.+I = F(a + n, {J + n + 1, 'Y + 2n + 1, x) 

_ (f3 + n)('Y - a+ n) . _ (a+ n)('Y - {J + n) 
a2

" - ('Y + 2n)('Y + 2n - 1)' a2
n+

1 
- ('Y + 2n)('Y + 2n + 1) 

for brevity, we hav~ 

whence 

In our particular case 

Xo = Xt - a1xX2 
Xt = X2- a2t:X3 

Xm-1 = Xm- amXXm+l 

X1 = F( -n + l + 1, 1, l + 2, x), Xo = 1 

and a2n-21-1 = 0. 

Hence, taking x = _'!! and introducing new notations, we have a 
q 

finite continued fraction 

(5) 

where 

Cn-1-l 

1 + dn-1-1 

1 

(n - k - l)(l + k)p 
(6) Ck = (l + 2k - l)(l + 2k)q; 

k(n + k)p 
d~c = (l + 2k)(l + 2k + 1)q' 

Every one of the numbers Ck ·will be positive and < 1 if this is true for 
Ct. Now 

(n - l - 1)p 
Ct = (l + 2)q < 1 

if l > np, and that is exactly what we suppose. The above continued 
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fraction can be used to obtain approximate values of 8 in excess or in 
defect, as we please. Let us denote the continued fraction 

Ck 

I+~ Ck+l 
1 --1 + 

by w1. Then 

0 < Wk < Ck, 

which can be easily verified. Furthermore, 

1 
8=--; 

1 - Wl · 

Ct d 
Wt =- 1 

1 +-1-; 
Ct 

W2 =- d2 
1+--

1 - wa - (1)2 

and in general 

Having selected k, depending on the degree of approximation we 
desire in the final result (but never too large; k = 5 or less generally 
sufficeA). we use the inequality 

0 < Wk+l < Ck+t 

to obtain two limits in defect and in excess for wk. Using these limits, we 
obtain similar limits for Wk-t, Wk-2, Wk-s, ••• and, finally, for Wt and 8. 

The series of operations will be better illustrated by an example. 
9. Let us find approximately the probability that in 9,000 trials an 

event with the probability p = 73 will occur not more than 3,090 times 
and not less than 2,910 times. To this end we must first seek the 
probability of more than 3,090 occurrences, which involves, in the first 
place, the evaluation of 

9000! (1)3091(2)5909 
T3091 = 3091!5909! 3 3 

By w;;ing inequalities (3) and (4) of Sec. 7, we find 

0.011286 < Tsott < 0.011287. 

Next we turn to the continued fraction to evaluate the sum 8. The 
following table gives approximate values of Ct1 C21 o o , Ce and dt, ds •.. da 
to 5 decimals and less than the exact numbers 
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n Cn d,. 

1 ·0.95553 0.00047 
2 0.95444 0.00094 
3 0.95335 0.00140 
4 0.95227 0.00187 
5 0.95119 0.00234 
6 0.95010 

We start with the inequalities 

0 < W& < 0.95011 

and then proceed as follows: 

1.00234 < 1 + -1 d
6 < 1.04711; 0.90839 <WI)< 0.94898 

- W& 

d4 
1.02041 < 1 + -1 - < 1.03685; 0.91842 < W4 < 0.93324 

- W5 

1.01716 < 1 + -1 da < 1.02113; 0.93362 < wa < 0.93728 
W4 

1.01416 < 1 + 1 ~
2 W3 < 1.0~514j 0.94020 < W2 < 0.94113 

1.00785 < 1 + -1 dt < 1.00816; 0.94779 < Wl < 0.94810 - W2 
1 1 

0.05221 < s < 0.05190 
0.02161 < STa091 < 0.02175. 

Hence, we know for certain that 

0.02161 < P(3,090) < 0.02175. 

By a similar calculation it was found that 

0.02129 < Q(6,090) < 0.02142, 

so that 

0.04290 < P(3,090) + Q(6,090) < 0.04317. 

The required probability P that the number of successes will be contained 
between 2,910 and 3,090 (limits included) lies between 0.95683 and 
0.95710 so that, taking P = 0.9570, the error in absolute value will be 
less than 1.7 X 10-4• 

Problems for Solution 

1. What is the probability of having 12 three times in 100 tosses of 2 dice? 
Ana. croo(fa-)3(M) 97 = 0.2257. 
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'/2. What is the probability for an event E to occur at least once, or twice, or three 
times, in a series of n independent trials with the probability p? Am. 
(a) 1 - (1 - p)"; (b) 1 - (1 - p)"-1{1 + (n - l)p]; 

[ 
(n - l)(n - 2) ] 

{c) 1 - (1 - p)"-2 1 + (n - 2)p + 
2 

p2 • 

3. What is the probability of having 12 points with 2 dice at least three times in 
100 throws? Ans, 0.528. 

4. In a series of 100 independent trials with the probability 3-3, what is the most 
_probable number of successes and its probability?' Ans." = 33; Tu = 0.0844. 

NoTE: Log 100! = 157.97000; Log 671 = 94.56195; Log 33! = 36.93869. 
' 6. A player wins $1 if he throws heads two times in succession; otherwise he loses 

25 cents. If this game is repeated 100 times, what is the probability that neither his 
gain nor loss will exceed $1? · Or $5? Ans. 

]()()I (l)20(3)so 
(a) 20! S~l 4 4 = 0.0493; 

100! (1) 20(3)80
[ 80 80 ·79 80. 79. 78 80. 79. 78. 77· 

(b) 20! 80! 4 4 1 + 63 + 63 . 66 + 63 . 66 . 69 + 63. 66. 69. 72 + 
+6(), 60·57 60·57·54 60·57·54·51] •. 

8i + 81 . 82 + 81 . 82 . 83 + 81 . 82. 83\· 84 = 0.4:>0o. 

NoTE: Log 201 = 18.38612; Log 801 = 118.85473. 
v 6. Show that in a series of 2s trials with the probability ~ the most probable num­

ber of successes is s and the corresponding probability 

Show also that 

HINT: 

1 · 3 · 5 · · · (2s - l) 
T. = . 

2·4·6 ... 2s 

1 T,<---· 
V2s+i 

2·4·6 ... 2s 
T. < . 

3 . 5 . 7 ... (28 + 1) 

7. Prove the following theorem: If P and P' are probabilities of the most probable 
number of successes, respectively, in n and n + 1 trials, then P' ;;i P, the equality 
sign being excluded unless (n + l)p is an integer. 

8. Show that the probability T,. corresponding to the most probable number of 
SU<'<'esses inn trials, is Mymptotic to (211'11pq)-~, that is, 

lim T ,.y'2;1ipq = 1 as n-. ac. 

9. When p = ~' the following inequality holds for every m: 

/2 t-1' 

T. <'\j;;Rt·· 
1--

" if 

n (n 
m = 2 + t \12' 
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10. What is the probability of 215 successes in 1,000 trials if p == 7&? 
Ans. 0.0154. 

11. What is the probability that in 2,000 trials the number of successes will be 
contained between 460 and 540 (limits included) if p = K Ans. 0.964. 

12. Two players A and B agree to play until one of them wins a certain number of 
games, the probabilities for A and B to win a single game being p and q = 1 - p. 
However, they are forced to quit when A has a games Still to win, and B has b games. 
How should they divide their total stake to be fair? 

This problem is known as 11 probleme de parties," one of the first problems on 
probability discussed and solved by Fermat and Pascal in their correspondence. 

Solutioo 1. Let P denote the probability that A will win a remaining games before 
B can win b games, and let Q = 1 - P denote the probability for B to win b games 
before A wins a games. To be fair, the players must divide their common stake M in . 
the ratio P:Q and leave the sum MP to A and the sum MQ to B. 

To find P, notice that A wins in the following mutually exclusive ways: 
a. If he wins in exactly a games; probability p•. 

b. H he wins in ex~ctly a + 1 games; probability ip•q. 

If h · · 2 b bil' a(a + l) c. e wms m exactly a+ games; pro a 1ty --
2

-'[f'q2• 
1. 

n. If he wins in exactly a + b - 1 games; probability 

a....:(_a ...:..+_1:._) _· _· _. .:_(a......;+_b_-___:2) 
1. 2. 3 .... (b - 1) p"qlrl, 

Consequently 

[ 
a a(a + 1) a(a + 1) · · · (a + b - 2) ] 

p = p" 1 + -q + --q2 + . . . + qlrl 
1 1 . 2 1 . 2 ... (b - 1) 

and similarly 

[ 
b b(b + 1) b(b + 1) · · · (b +a - 2) ] 

Q = rf 1 + iP + t.2p2 + ... + 1. 2 ... (a- 1} rt'-1 . 

Show directly that P + Q = 1. 

dP dQ 
HINT:-+-= 0. 

dp dp 
Solut.ioo, 2. The same problem can be solved in a different way. Whether A orB 

wins will be decided in not more than a + b - 1 games. Now if the players continue 
to play until the number of games reaches the limit a + b - 1, the number of games 
won bv A must be not less than a. And conversely, if this number is not less than a, A 
will ~in a games before B wins b games. Therefore, P is the probability that in 
a + b - 1 games .4. wins not less than a times, or 

(a + b - 1)! [ b - 1 p (b - l)(b - 2) (p)2 + + • 
p = a!(b - l)l p"qlrt 1 +a + 1 q + (a + l)(a + 2) q ' .. . 

(b- l)(b- 2) ... 2 ·l (p)lrl] 
(a + l)(a + 2) · · · (a + b - 1) q 

Show directly that both expressions for P are identical. 



HINT: Proceed as before. 
13. Prove the identity 

ltEPEATE/J 1'/tlALS 

n n(n - I) n(n - 1) • · • (n - k + 1) 
p" + -P"-Iq + -- p"-P,ql + ... + p•-"q' = 

1 1·2 1·2·3 .. ·k 
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Jo" z•-H(l - z)~dx 

Jo1
z•-H(l - x)'dx 

HINT: Take derivatives with respect to p. 
14. A and B have, respectively, n + 1 and n coins. H they toss their coins 

simultaneously, what is the probability that (a) A will have more heads than B? 
(b) A and B will have an equal number of heads? (c) B will have more heads than A? 

Solution. a. Let P,. be the probability for A to have more heads than B. Thill 
probability can be expressed as the double sum 

ntl " 

P __ 1 ~~c .. +·~ 
• - 22"+1~ ~ •+I II' 

z=l a=O 

Considering the coefficient of t'" in 

we have 

Hence 

(1 + t) .. +{~ + ~r (1 + t)~~>+l 

II 

""'ca+zca - C"+• .6.{ •+I a - 1-+1' 
a•O 

I 

b. The probability Q. for A and B to have an equal number of he~.is 

c. The probability R,. for B to have more heads than A is 

R _! _ c~-+1, 
• 2 2t..+l 

16. If ee.ch of n independent trials can result in one of the m incompatible events 
f..\ E1, ... E., with the respective probabilities 

(pt + Ps + · · · + P• • 1), 

~how that the probability to have lt events E" l, events E1, ... l. events E. where 
l1 + I, + · · · + l .. .,. n, is given by · 

nl 
pi I I. - ---·--php'* p'• ,, ..... -~~~~~~· • •l.! I I ... a• 



CHAPTER IV 

PROBABILITIES OF HYPOTHESES AND BAYES' THEOREM 

1. The nature of the problems with which we deal in this chapter may 
be illustrated by the following simple example: Urns 1 and 2 contain, 
respectively, 2 white and 3 black balls, and 4 white and 1 black balls. 
One of the urns is selected at random and one ball is drawn. It happens 
to be w:hite. What is the probability that it came from the first u~n? 
Before the ball was drawn and its color revealed, the probability that the 
first urn would be chosen had been 1/2; but the indication of the color 
of the ball that was drawn altered this probability. To find this new 
probability, the following artifice can be used: 

Imagine that balls from both urns are put together in a third urn. 
To distinguish their origin, balls from the first urn are marked with 1 
and those from the second urn are marked with 2. Since there are 5 
balls marked with 1 and the same number marked with 2, in taking one 
ball from the third urn we h:ve equal chances to take one coming from 
either the first or the second urn, and the situation is exactly the same 
as if we chose one of the urns at random and drew one ball from it. 
If the ball drawn from the third urn happens to be white, this can happen 
in 2 + 4 = 6 equally likely cases. Only in 2 of these cases will the 
extracted ball have the mark 1. Hence, the probability that the white 
ball came from the first urn is.% = ~. 

The success of this artifice depends on the equality of the number of 
balls in both urns. It can be applied to the case of an unequal number 
of balls in the urns, but with some modifications; however, it seems 
preferable to follow a regular method for solving problems like the 
preceding one. 

2. The problem just solved is a particular case of the following funda­
mental: 

Problem 1. An event A can occur 'only if one of the set of exhaustive 
ap.d incompatible events 

occurs. The probabilities of these events 

corresponding to the total absence of any knowledge as to the occurrence 
60 
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or nonoccurrence of A, are known. Known also, are the conditional 
probabilities 

(A, B,); i = 1, 2, ... n 

for A to occur, assuming the occurrence of B, . . How does the proba­
bility of B, change with the additional information that A has actually 
happened? 

Solution. The question amounts to finding the conditional proba­
bility (B,, A). The probability of the compound event AB, can be 
presented in two forms 

or 

Equating the right-hand members, we derive the following expression 
for the unknown probability (Bi, A): 

(B· A) = (Bi)(A, B,), 
,, (A) 

Since the event A can materialize in the mutually exclusive forms 

• AB1, AB2, ..• AB,., 

by applying the theorem of total probability, we get 

(A) = (Bt)(A, B1) + (B 2)(A, B2) + · · · + (B,.)(A, B,.). 

It suffices now to introduce this expre8sion into the preceding formula for 
(B,, A) to get the final expression 

(1) (B A) (B;)(A, B,) 
'' = (B1)(A, B1) + (B2)(A, B2) + · · · + (B,.)(A, B,.)' 

This formula, when described in words, constitutes the so-called 
"Bayes' theorem." However, it is hardly necessary to describe its 
content in words; symbols speak better for themselves. For that 
reason, we prefer to speak of Bayes' formula rather than of Bayes' 
theorem. Bayes' formula is also known as the "formula for probabilities 
of hypotheses." The reason for that name is that the events B1, B2, ••• 

B. may be considered as hypotheses to account for the occurrence of A. 
:. It its customary to speak of probabilities 

(Bt), (B2), ... (B,.) 

as a priori probabilities of hypotheses 

B1, Bt, ... B,., 
while probabilities 

(B,, A); i = 1, 2, ... n 
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are called a posteriori probabilities of the same hypotheses. 
3. A few examples will help us to understand the meaning and th ~ 

use of Bayes' formula. 

Example 1. The contents of urns 1, 2, 3, are as follows: 

1 white, 2 black, 3 red balls 
2 white, 1 black, 1 red balls 
4 white, 5 black, 3 red balls 

One urn is chosen at random and two balls drawn. They happen to be white and red. 
What is the probability that they came from urn 2 or 3? 

Solution. The event A represents the fact that two balls taken from the selected 
urn were of white and red color, respectively. To account for this fact, we have three 
hypotheses: The selected urn was 1 or 2 or 3. We shall represent these hypotheses in 
the order indicated by Btt B2, Ba. Since nothing distinguishe11 the urns, the probabili­
ties of these hypotheses before anything was known about A are 

(B1) = (B2) = (Ba) = }. 

The probabilities of A, assuming these hypotheses, are 

(A, B~) = }, (A, Ba) = -h· 

It remains now to introduce these values into formula (1) to have a posteriori prob­
abilities 

. . l·l ~5 
(Bt, A! = l·l + i · i + i · -h = 118 

~ i·-h 30 
(Ba, A) - i ·i + i · i + i · ·A = 118 

and also, nattrally, 

(B~, A) = 1 - (B2, A) - (Ba, A) = lh· 

Example 2. It is known that an urn containing altogether 10 balls was filled in 
the following manner: A coin was tossed 10 times, and according as it showed heads 
or tails, one white or one black ball was put into the urn. Balls are drawn from this 
urn one at a time, 10 times in succession (always being returned before the next draw­
ing) and every one turns out t<> be white. What is the probability that the urn con­
tains nothing but white balls? 

Solution. The event A consists in the fact that in 10 independent trials ·with a 
definite but unknown probability, only white balls appear. To account for this fact, 
we have 10 hypotheses regarding the number of white balls in the urn; namely, that 
this number is either 1, or 2, or 3, . . . or 10. The a priori probability of the hypo­
thesis B, that there are exactly i white balls in the urn, according to the manner in 
which the urn was filled, is the same as the probability of having i heads in 10 throws; 
~~ ~ 

10! 1 
(B,) = i!(lO - i)! 21oi i = 1, 2, ••. 10. 

Gr&nted the hypothesis B,, the probability o! A is 

( ')10 (A,~,) = fo . 
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The problem requires us to find (B1o, A). The expression of this probability immedi· 
atRly rrsults from Bayes' formula: 

The denominator of this fraction ia 

14.247. 
Henre 

(B1o, A) = 0.0702. 

This probability, although. still small, is much greater than Xou, the a priori prob· 
. ability of having only white balls in the urn. 

If, instead of 10 drawings, m drawings have been made and at each drawing white 
balls appeared, the probability (810, A) would be given by 

(BID, A) = _10 ___ _ 

~c;{~Y 
i=l 

The denominator of this formula can be presented thus: 

10 

~c:{1-~Y·· 
i=O 

Now 

and so 

i· .. (~- ~r <~(' •• -~-(I+· -~r 
i•O i=O 

Hence 

( 
"')-10 

(B,o, A) > 1 + e -Tii . 

This shows that with increasing m the probability (B 1o, .4.) rapidly approaches 1. 
For instanre, if m = 100 

(B1o, A) > (1 + e-10)-10 > (1.0000454)-10 > 0.99954. 

Thus, after 100 drawings produring only white balls, it is almost certain that the 
urn contains nothing but white balls-a ronclusion which mere common sense would 
dictate. ' 

Example 3. Two urns, 1 and 2, contain respectively 2 white and 1 black ball, 
and 1 white and 5 black balls. One ball is transferred from urn 1 to urn 2 and then 
one hall is drawn from the latter. It happens to be white. 'What is the probability 
that the.transferl't'd ball was black? 
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Solution. Here we have two hypotheses: B,, tha.t the transferred ball was black, 
and B 2, that it was white. The a priori probabilities of these hypotheses are 

(B,) = i,· (B2) = i· 

The probabilities of drawing a white ball from urn 2, granted that B1 or B2 is true, 
are: 

(A, B,) = t, (A, B2) = ;. 

The probability of B~, after a white ball has been drawn from the second urn, 
results from Bayes' formula: 1., 1 

(B,, A) = i · t\ i · l = 5' 

4. Problem 2. Retaining the notations, conditions, and ·data of 
Prob. 1, find the probability of materialization of another event C 
granted that A has actually occurred. Conditional probabilities 

i = 1, 2, ... n 

are supposed to be known. 
Solution. Since the fact of the occurrence of A involves that of one, 

and only one, of the events 

Bt, B2, ... Bn, 

the event C (granted the occurrence of A) can materialize in the following 
mutually exclusive forms 

CB1, CB2, ... CB". 

Consequently, the probability (C, A) which we are seeking is given by 

(C, A) = (CB1, A) + (CB2, A) + · · · + (CBn, A). 

Applying the theorem of compound probability, we have 

(CB1, A) = (B,, A)(C, BiA) 

and 

(C, A) = (Bt, A)(C, ABt) + (B2, A)(C, AB2) + · · · + 
(Bn, J)(C, ABn). 

It suffices now to substitute for 

(B,, A) 

its expression given by Bayes' formula, to find the final expression 
II k (B,)(A, B,)(C, AB1) 

(2) (C, A) = .:_i=..:.l_n ____ _ 

k (B,)(A, Bi) 
, .. 1 
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It may happen that the materialization of hypothesis B, makes C 
independent of A; then we have simply 

(C, AB,) = (C, B,) 

and instead of formula (2), we have a simplified formula 

II 

~ (B,)(A, B,)(C, B,) 

(3) (C, A) = ';...·--=-1-
11
-----

~ (B,)(A, B,) 
i•l 

The event C can be considered in regard to A as a future event. For 
that reason formulas (2) and (3) express probabilities of future events. 
For better understanding of these commonly used technical terms, we 
shall consider a simple example. 

Example 4. From an urn containing 3 white and 5 black balls, 4 balls are trans­
ferred into an empty urn. From this urn 2 balls are taken and they both happen to 
be white. What is the probability that the third ball taken from the same urn, will 
be white? 

Solution. (a) Let us suppose that the two balls drawn in the first place are returned 
to the second urn. Analyzing this problem, we distinguish first the following hypoth- · 
eses concerning colors of the 4 balls transferred from the first urn. Among them, there 
are necessarily 2 white balls. Hence, there are only two possible hypotheses: 

B.: 2 white and 2 black balls; 
B2: 3 ~bite and 1 black ball. 

A priori probabilities of these hypotheses are 

c:.c: 3 
(B.)= Cf =7· 

q.q 1 
(B2) = cr = 14. 

The event A consists in the white color ;r both balls drawn from the second urn. 
The conditional probabilities (A, BJ and (A, B2) are 

(A,· Bt) = i; (A, B2) "" f. 

The future event C consists in tbe white color of tht> third ball. Since the 2 balls 
drawn at first are returned, C becomes independent of'A as soon as it is known which 
one of the hypotheses haa materialized. Hence 

(C, AB.) = (C, B.)=! 
(C, AB2) == (C, B2) = ~· 

Substituting these various numbers in formula (3), we find that 

(C, A) = ~ · l · ! + r• · f · i = !. 
J. i +h. f 12 
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(b) If the two balls drawn in the first place are not returned, we have 

Then, making use of formula (2), 

1 
(C, ABz) = lf 

- -h·t·i 1 
(C, A) - l · l + t~ · f = if 

5. The following problem can easily be solved by direct application 
of Bayes' formula. 

Problem 3. A series of trials is performed, which, with certain 
additional data, would appear as independent trials in regard to an event 
E with a constant probability p. 

Lacking these data, all we know is that the unknown probability p 
must be one of the numbers 

Pt, P2, · .. P~r: 

and we can assume these values with the respective probabilities 

In n trials the event E actually occurred m times. What is the proba~ 
bility that p lies between the two given limits a and ~ (O ~ a < {3 ~ 1), 
or else, what is the probability of the following inequalities: 

a~ p ~ ~? 

A particular case may illustrate the meaning of this problem. In a 
set of N urns, Nat urns have white balls in proportion Pt to the total 
number of balls; Na2 urns have white balls in proportion P2i ... Nak 
urns have white balls in proportion Pk· An urn is chosen at random and 
n drawings of one ball at a time are performed, the ball being returned 
each time before the next drawing so as to keep a constant proportion 
of white balls. It is found that altogether m white balls have appeared. 
What is the probability that one of the N a, urns with the proportion 
P• of white balls was chosen? Evidently this is a particular case of the 
general problem, and here we possess knowledge of the necessary data, 
provided that the probability of selecting any one of the urns is the same. 

Solution. We distinguish k exhaustive and mutually exclusive 
hypotheses that the unknown probability is Pt, or p2, • • • or p,. The 
a priori probabilities of these hypotheses are, respectively, at, a 2, ••• ak. 
Assuming the hypothesis p = p,, the probability of the event E occurring 
m times in n trials is 

C:;'pi(l - p,)"-m. 

Now, after E has actually happened m times in n trials, the a pos­
teriori probability of the hypothesis p = p,, by virtue of Bayes' formula, 
will be 
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or, canceling C':, 

C::Oa,p'f(l - p,)n-m 
1: 

~ c:a;p7(l - p,)n-m 
i•l 

a,pi(l - Pi)n-m 
1: 

~ a,p'!'(l - Pi)n-m 
i=l 

Now, applying the theorem of total probability, the probability P of the 
inequalities 

will be given by · 

(4) 

i=l 

where the summation in the numerator refers to all values of p, lying 
hf'tween a and P, limits included. 

An important particular case arises when the set of hypothetical 
probabilities is 

1 
P1 = k' 

2 
P2 = -, · · · Pk = 1 k 

and the a priori probabilities of these hypotheses are equal: 

1 
0:1 = 0:2 = · · · = O:j; = r 

Then the fraction 1/k can be canceled in both numerator and denomina­
tor. The final formula for the probability of the inequalities 

will be 

(5) 

a~p~fJ 

p _ ~P'i(1 - p;)n-m 
- k 

I P'l'(1 - p;)"-fll 
i-=1 

summation in numerator being extended over all positive integers i 
!<atisfying the inequalities 

ka ~ i ~ k{J. 

In the limit, when k tends to infinity, the a priori probability of the 
inequalities 
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is given simply by the length fJ - a of the interval (a, fJ). The a pos­
teriori probability of the same inequalities is obtained as the limit of 
expression (5). Now, as k--+ oo, the sums 

tend to the definite integrals 

J:xm(l- x)n-mdx and fo1
xm(l x)n-mdx. 

Therefore, in the limit, the a posteriori probability of the inequalities 

a~p~fJ 

is expressed by the ratio of two definite integrals 

J: xm(l - x)»-mdx 
P= . fo1 

xm(l - x)n-mdx 
(6) 

This formula leads to the following conclusion: When the unknown 
probability p of an event E may have any value between 0 and 1 and the a 
priori probability of its being contained between limits a and {3 is {3 - a, 
then after n trials in which E occurred m times, the a posteriori probability 
of p being contained between a and {3 is given by formula (6). 

6. Problem 4. Assumptions and data being the same as in. Prob. 3, 
find the probability that in n1 trials, following n trials, which produced 
E m times, the same event will occur mt times. 

Solution. It suffices to take in formula (3) 

(B;) =a;; 

and 
(C, B,) = C::'t'Pf•(l - p;)nt-mt 

to find for the required probability this expression: 
k 

~ a;p;m+mt(l - p;)n+n.-m-mt 

(7) Q = cr;::·:_·=-=-1---:/t-------

Supposing again 
1 

Pt = k;' 

~ a;pf(l - p;)n-m 
i=l 

2 
P2 = _, · · · p.~.: = 1 

k 
1 

=a.~,:= k 
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and letting k -+ ~ formula (7) in the limit becomes 

(1 xm+m'(l - x)"+n,-m-m,dx 
Q = cm)o . "' fo1 

xm(l - x)"-mdx 
(8) 

This formula leads to the following conclusion: When the unknoum 
probability p of an event E may have any value between lim£ts 0 and 1 
and the a priori probability of its being contained between a and fJ is 
fJ - ~ (so that equal probabilities correspond to intervals of equal length), 
the probability that the event E will happen m1 times in nt trials following 
n trials which produced Em times is given by formula (8). 

In particular, for n1 = m1 = 1 (evaluating integrals by the known 
formula), we have 

Q = m + 1, 
. n + 2 

This is the much disputed "law of succession" established by Laplace. 
7. Bayes' formula, and other conclusions derived from it, are neces­

sary consequences of fundamental concepts and theorems of the theory of 
probability. Once we admit these fundamentals, we must admit Bayes' 
formula and all that follows from it. 

But the question arises: When may the various results established 
in this chapter be legitimately applied? In general, they may be applied 
whenever all the conditions of their validity are fulfilled; and in some 
artificial theoretical problems like those considered in this chapter, they 
unquestionably are legitimately applied. But in the case of practical 
applications it is not easy to make sure that all the conditions of validity 
are fulfilled, though there are some practical problems in which the use 
of Bayes' formula is perfectly legitimate. 1 In the history of probability 
it has happened that even the most illustrious men, like Laplace and 
Poisson, went farther than they were entitled to go and made free use 
principally of formulas (6) and (8) in various important practical prob­
lems. Against the indiscriminate use of these formulas sharp objections 
have been raised by a number of authors, especially in modern times. 

The first objection is of a general nature and hits the very existence 
of a priori p~obabilities. If an urn is given to us and we know only that 
it contains white and black balls, it is evident that no means are available 
to estimate a priori probabilities of various hypotheses as to the propor­
tion of white balls. Hence, critics say, a priori probabilities do not exist 
at all, and it is futile to attempt to apply Bayes' formula to an urn with 
an unknown proportion of balls. At first this objection may appear 

1 One such problem can be found in an excellent book by Thornton C. Fry, "Prob· 
ability and Its Engin€'ering Uses," New York, 1928. 
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very convincing, but its force is somewhat lessened by considering the 
peculiar mode of existence of mathematical objects. 

Some property of integers, unknown to me, is not present in my 
mind, but it is hardly permissible to say that it does not exist; for it does 
exist in the minds of those who discover this property and know how to 
prove it. • 

Similarly, our urn might have been filled by some person, or selected 
from among urns with known contents. To this person the a priori 
probabilities of various proportions of white and black balls might 
have been known. To us they are unknown, but this should not prevent 
us from attributing to them some potential mode of existence at least as 
a sort of belief. 

To admit a belief in the existence of certain unknown numbers is 
common to all sciences where mathematical analysis is applied to the 
world of reality. If we are allowed to introduce the element of belief 
into such 11 exact" sciences as astronomy and physics, it would be only 
fair to admit it in practical applications of probability. 

The second and very serious objection is directed against the use of 
formula (6), and for similar reasons against formula (8). Imagine, 
again, that we are provided with an urn containing an enormous number 
of white and black balls in compl~tely unknown proportion. Our aim 
is to find the probability that the proportion of white balls to the total 
number of balls is contained between two given limits. To that end, we 
make a long series of trials as described in Prob. 5 and find that actually 
in n trials, white balls appeared m times. The probability we seek would 
result from Bayes' formula, provided numerical values of a priori proba­
bilities, assumed on belief to be existent, were known. Lacking such 
knowledge, an arbitrary assumption is made, namely, that all the a 
priori probabilities have the same. value. Then, on account of the 
enormous number of balls in our urn, formula (6) can be used as an 
approximate expression of P. It can be shown that, given an arbitrary 
positive number E, however small, the probability of the inequalities 

m m -E<p<-+E n n 

can be made as near to 1 as we please by 'taking the number of trials 
greater than a certain number N(E) depending upon e alone. In other 
words, with practical certainty we can expect the proportion of white 
balls to the total number of balls in our urn to be contained within 
arbitrarily narrow limits11 , 

m 
-- E n 

and 
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A conclusion like this would certainly be of the greatest importance. 
But it is vitiated by the arbitrary assumption made at the beginning. 
The same is true of formula (8) and of Laplace's 111aw of succession." 
The objection against using formulas (6) and (8) in circumstances where 
we are not entitled to use them appears to us as irrefutable, and the 
numerical applications made by Laplace and others cannot inspire much 
confidence. 

As an example of the extremes to which the illegitimate use of formulas 
(6) and (8) may lead, we quote from Laplace: 

En faisant, par exemple, remonter la plus ancienne epoque de l'histoire A 
cinq mille ans, ou a 1,826,213 jours, et le Soleil s'etant leve constamment, dans 
cet intervalle, A chaque revolution de vingt..quatre heures, il y a 1,826,214 A parier 
contre un qu'il se levera encore demain. 

It appears strange that as great a man as Laplace could make such a 
statement in earnest. However, under proper conditions, it would 
not be so objectionable. If, from the enormous number N + 1 of 
urns containing each N black and white balls in all possible proportions, 
one urn is taken and 1,826,213 balls are drawn and returned, and they 
all turn out to be white, then nobody ean deny that there are very nearly 
1,826,214 chances against one that the next ball will also be white. 

Problems for Solution 

1. Three urns of the same appearance have the following proportions of white aucl 
black balls: 

Urn 1: 1 white, 2 black balls 
Urn 2: 2 white, 1 black ball 
Urn 3: 2 white, 2 black balls 

One of the urns is selected and one ball is drawn. It turns out to be white. What 
is the probability that the third urn was chosen? Am. Ya . 

.. 2. Under the same conditions, what is the probability of drawing a white ball 
again, the first one not having been returned? · Ans. Ya. 

3. An urn containing 5 balls has been filled up by taking 5 balls from another urn, 
which originally had 5 white and 5 black balls. A ball is taken from the first urn, and 
it happens to be black. What is the probability of drawing a white ball from among 
the remaining 4? :l11s. %. 

'· From an urn containing 5 white and 5 black balls, 5 halls are transferred into an 
. empty second urn. From there, 3 balls are transferred into an empty third urn and, 

finally,. ~ne hall is drawn from the latter. It turns out to ~e white. What is the 1 1 
probab1hty thAt all5 balls transferred from the first urn are wh1te? Ar11. 71 26• } ll-41 

6. Conditions and notations being the same as in Prob. 3 (page 66), show that the 
probability for an event to occur in the (n + l)st trial, granted that it has oct>urred 
in all the preceding n trials, is ne\•er less than the probability for the same event to 
oct>ur in the nth trial, granting that it has occurred in the pret'eding n - 1 trials. 

HINT: it must be proved that ., 

±a.p~+t · ±t¥;pi1 ~ ( ±a;p~)t· 
i•l j .. J i•l 
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For that purpose, use Cauchy's inequality 

(;Pm)' S ,;P! · ,;>! 
6. Assuming that the unknown probability p of an event E can have any value 

between 0 and 1 and that the a priori probability of its being contained in the interval 
{a, {j) is equal to the length of this interval, prove the following theorem: The prob­
ability a posteriori of the inequality 

p~IT 

after E has occurred m times in n trials is equal to the probability of at least m + 1 
successes in n + 1 independent trials with constant probability u. (See Prob. 13, 
page 59.) 

'1. Assumptions being the same as in the preceding problem, find approximately 
the probability a posteriori of the inequalities 

N(f ~ P;::; !H, 
it being known that in 200 trials an event with the probability p has occurred 105 
times. Ans. Using the preceding problem and applying Markoff's method, we find 
p == 0.846. 

8. An urn contains N white and black balls in unknown proportion. The numbe1 
of white balls hypothetically may be 

0,1, 2, .... N 

and all these hypotheses are considered as equally likely. Altogether n balls are 
taken from the urn, m of which turned out to be white. Without returning these 
balls, a new group of n, balls is taken, and it is requir~d to find the probability that 
among them there are m, white balls. Naturally, the total number of balls is so 
large as to haven + n, < N. Ans. The required probability has the same expression 

flx"'+m•(l - x)n+nc-m-m•dx 
cm)O I 

"• fo1
xm(t - x)n-mdx 

as in Prob. 4, page 69. 

Polynomials ordinarily called "Hermite's polynomials," although they were dis­
covered by Laplace, are defined by 

The first four of them are 

H,(y) == -y; H2(y) = y2
- 1; Ha(Y) = -y3 + 3y; 

They possess the remarkable property of orthogonality: 
yt 

J_ .... e - 2 H,.(y)H ,.(y)dy = 0 when 

while 

H,(y) = y4 - 6y2 + 3. 

m¢n 
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Under very general conditions, a function f(y) defined in the interval (- ao 1 + ao) 
can be represented by a series 

f(y) = ao + a,H,(y) + azHz(Y) + · · · 
where in general 

Let 
m 

a=-
n 

and ht =--n­
a(l- a) 

provided 0 < a < 1. . 
9. Prove the validity nf the following expansion indicated by Ch. Jordan: 

(n + 1)1 . h -~[ 1 - 2a 
· x"'(l - x)"- = :.;2: 2 1 - --hH1(y) + 

m!(n- m)! 211' n +2 

2n - (lln + 6)a(l - a)h'Hz(y) + ... ] 
2n(n + 2)(n + 3) 

for 0 ;:;; x ;:;; 1 where y is a new variable connected to x by the equation 

X= a+ !t. 
h 

HrNT: Consider the development in a series of Hermite's polynomials of the 
function 

II'( )"'( )"-j(y)• = e'i a+~ 1 -a-~ 
f(y) = 0 if either y < -ha 

for 

or 

-ha ;:ii y ;:ii h(l - a) 

y > h(1- a). 

10. Assuming that the conditions of validity of formula (6) are fulfilled, show that 
the a posteriori probability of the inequalities 

m ~a(l - a) . m ~a(l - a) --t ---<p<-+t --· 
n n n n ' 

can be expanded into a convergent series 

m 
a=-

n 

L
t I -~ 

p = _2_ 6 -rdy -~ 2n - (lln + 6)a(l - a) + ... 
~ o y'2; (n + 2)(n + 3)a(l - a) ' 

When n is large and a is not near either to 0 nor to 1, two terms of this series suffice 
to give a good approximation to P (Ch. Jordan). Apply this to Prob. 7. 

An.s. 0.8458.5. 
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CHAPTER V 

USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS 
OF PROBABILITY 

1. The combined use of the theorems of total and compound proba­
bility very often leads to an equation in finite differences which, together 
with the initial conditions supplied by a problem itself, serves to deter­
mine an unknown probability. This method of attack is very powerful, 
and it is often resorted to, especially in the more difficult cases. In this 
chapter the use of equations in finite differences, applied to a .few selected 
and comparatively easy examples, will be shown; but in Chap. VIII 
we shall apply the method to a class of interesting and historically 
important problems. 

Certain preliminary explanations are necessary at this point. Again 
we consider a series of trials resulting in an event E or its opposite, F, 
but this time we suppose that the trials are dependent, so that the 
probability of E at a certain trial may vary according to the available 
information concerning the results of some of the other trials. 

A simple and interesting case of dependent trials arises if we suppose 
that the probability of E in the (n + l)st trial receives a definite value 
a if E has happened in the preceding nth trial, and this value does not 
change whatever further information we may possess concerning the 
results of trials preceding the nth. Also, the probability of E in the 
(n + l)st trial receives another determined value {3 if E failed in 
the nth trial, no matter what happened in the trials preceding the nth. 

We have a simple illustration of this kind of dependence, if we suppose 
that drawings are made from an urn containing black and white balls in 
a known proportion, and that each ball drawn is returned to the urn, but 
only after the next drawing has been made. It is obvious that the proba­
bility that the (n + l)st ball drawn will be white, becomes perfectly 
definite if we know what was the color of the ball immediately pr~ceding, 
and it remains the same no matter what we know about the colors of the. 
1, 2, ... (n - l)st balls. 

If the trials depend on each other in the above-defined manner, we 
say that they constitute a "simple chain," to use the terminology of the 
late A. A. l\Iarkoff, who was the first to make a profound study of 
dependent trials of this and similar, but more complicated, types. It is 
implied in the definition of a simple chain that it breaks into two sPpa­
rate parts as soon as the result of a certain trial hecome:o; known. For 

74 
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imstance, if the result of the fifth trial is known, trials 6, 7, 8, . . . i)rcome 
independent of trials 1, 2, 3, 4, and the chain breaks into two di~tinrt 
parts: the trials preceding the fifth, and those following it. If the 
results of trials 1, 2, 3, . · .. (n - 1) remain unknown, the event E 
in the following nth trial has a certain probability which we shall denote 
by p,.. Also, if it becomes known that E happened at trial k, where 
k < n - 1, the probability of E happening in the nth trial receives a 
different value, p<!>. It is important to find means to determine the 
probability p,., the a priori probability of E in the nth trial when the 
results of the preceding trials remain unknown; as well as to determine 
the probability p<~ of E in the nth trial when we possess the positive 
information that E has materialized in the kth(k < n - 1) trial. 

2. Thus we are led to the following problem concerning simple chaiml 
of dependent trials: 

Problem 1. The initial probability Pt of the event E in a simple 
chain of trials being known, find the probability p,. of E in the nth trial 
when the results of the preceding trials remain complet!:'ly unknown. 
Also, find the probability p<!1 of E in the nth trial when it is known that 
E has happened in the kth trial where k < n - 1. 

Solution. In the nth trial the event E can happen either precedf'd 
byE in the (n - 1)st trial, the probability of which is p,._1, or preceded 
by F in the (n - 1)st trial, the probability of which is 1 - p,._1• By 
the theorem of compound probability, the probability of the succession 
EE is p,._,a, while the probability of the succession FE is (1 - p,.._1){1. 
Hence, the total probability p,. is 

(1) p,. = O:Pn-1 + fl(l - Pn-1) = (a - fl)Pn-1 + B. 

This is an ordinary equation in finite differences. It has a partieular 
solution 

p,. = c = const. 

where c is determined by the equation 

c = (a - f3)c + {1, 

whence 

8 
c = :::-1 ...,-+-fJ::---0: 

prodded 1 + fJ - a ¢ 0. 1 On the other hand, the corresponding 
1 If I + fJ - « = 0 or « - fJ == 1, we necessarily have a == 1, d "' 0, whieh 

tm•.ans tlult E must occur in all the trials if it actually orcurs in the fil'!!t trial, and 
'U't'~'~' o<•curs if it does not actually orcur at the outset. This case, as well as the otht>r 
~Xtl'('me case in which 111 - ~ • -1 can therefore bto exrluded as not J>OAAf'Siling !'('a! 
WI <~rt>,st. 
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homogeneous equation 

y,. = (a - f1)Yn-1 

has a general solution 

y,. = C(a - {1)"-1 

involving an arbitrary constant C. Adding to it the previously found 
particular solution, we obtain the general solution of (1) in the form 

p,. = C(a - p)n-1 + {1 • 
1+13-a 

The arbitrary constant Cis determined by the initial condition 

{1 
C + 1 + 13 a= Pl 

so that finally 

p,. = 1 + ~ - a + (Pt - 1 + ~ - a)(a - p)n-1, 

If 

- 13 
P1- 1 + {1- a 

we see that Pn does not depend on nand is constantly equal to p1• Be­
cause we may exclude the cases a - P = 1 or a - fJ = -1, so that 
a - fJ is contained between -1 and 1, we may conclude from the above 
expressi~n that p,., if not a constant, at any rate tends to the limit 

1+.8-a 
as n increases indefinitely. 

As to p~k> we find in a similar way that it satisfies the equation 

(2) 

of the same form as equation (1). But the initial condition in this 
case is P1~1 = a because the probability of E happening in the (k + 1)st 
trial is a when it is known that E occurred in the preceding trial. The 
solution of (2) satisfying this initial condition is 

(kl - f1 + 1 - a ( - R)n-!: 
p,. - 1 + fJ - a 1 + {1 - a a "" · 

As the second term in the right-hand member decreases with increas­
ing n and finally becomes less than any given number, we see that the 
positive information concerning the result of the kth trial has less and less 



SEc. 3) USE OF DIFFERENCE EQUATIONS IN SOLVING PROBLEMS 77 

influence on the probability of E in the following trials, and in remote 
trials this influence becomes quite insignificant. 

Example. An urn contains a white and b black balls, and a series of drawings of 
one ball at a time is made, the ball removed being returned to the urn immediately 
after the taking of the next following ball. What is the probability that the nth ball 
drawn is white when: (a) nothing is known about the preceding drawings; (b) the ktb 
ball drawn is white? 

a-1 a · a 
In this particular problem we have a = a + b _ I' f3 = a + b _ 1• Pt = a + b 

and 
{3 a 

=-- =Pt· 
I+f3-a a+b 

Thus 
a 

p,. = Pt =a+ b. 

That is, the probability for any ball drawn to be white is the same as that for the 
first ball, nothing being known about the results of the previous drawings. The 
expression for p~k\ is, in this example, 

p<k>- _a_+ (-1)"-J: b . 
" - a + b (a + b)(a + b - 1)"-lo 

So, for instance, if a = 1, b = 2, n = 5, k = 3, 

P(3) = ~ + _2_ = ~. 
5 3 3. 22 2' 

the information that the third ball was white raises to Y2 the probability that the fifth 
ball will be white; it would be 31 without such information. 

3. The next problem chosen to illustrate the use of difference equa­
tions is interesting in several respects. It was first propounded and 
solved by de Moivre. 

Problem 2. In a series of independent trials, an event E has the 
constant probability p. If, in this series, E occurs at least r times in 
succession, we say that there is a run of r successes. What is the proba­
bility of having a run of r successes inn trials, where naturally n > r? 

Solution. Let us denote by y., the unknown probability of a run of 
r in n trials. In n + 1 trials the probability of a run of r will then be 
y .. +l· Now, a run of r in n + 1 trials can happen in two mutually 
exclusive ways: first, if there is a run of r in the first n trials, and second, 
if such a run can be obtained only in n + 1 trials. The probability of 
the first hypothesis is y,.. To find the probability of the second hypothe­
sis, we observe that it requires the simultaneous realization of the follow­
ing conditions: 

(a) There is no run of r in the first n - r trials, the probability of 
which is 1 - y,._,.. (b) In the (n - r + l)st trial, E does not occur, 
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the probability of which is q = 1 - p. (c) Finally, E occurs in the 
remaining r trials, the probability of which is p". 

As (a), (b), (c) are independent events, their simultaneous mate­
rialization has the probability 

(1 - Yn-r)qp'. 

At the same time, this is the probability of the second hypothesis. 
Adding it to' Yn, we must obtain the total probability Yn+t· Thus 

(3) Yn+l = Yn + (1 - Yn-r)p'q 

and this is an ordinary linear difference equation of the order r + 1. 
Together with the obvious initial conditions 

Yo = Yt = · · · = Yr-t = 0, y,. = P' 

it serves to determine Yn completely for n = r + 1, r + 2, . . . . For 
instanee, taking n = r, we derive from (3) 

Yr+l = P' + p'q. 

Again, taking n = r + 1, we obtain 

Yr+2 = P' + 2prq 

and so forth. Although, proceeding thus, step by step, we can find the 
required probability y,. for any given n, this method becomes very labori­
,ous for large nand does not supply us with information as to the behavior 
of Yn for large n. It is preferable, therefore, to apply known methods of 
solution to equation (3). First we can obtain a homogeneous equation 
by introdueing z,. = 1 - Yn instead of Yn· The resulting equation in 
z,. is 
(4) 

and the eorresponding initial conditions are: 

Zo = Zt = ' · • = Zr-1 = 1; z, = 1 - p'. 

We. could use the method of partieular solutions as in the preceding 
problem, but it is more convenient to use the method of generating 
functions. The power series in ~ 

'PW = Zo + Zt~ + Z2~2 + · · · 
is the so-called generating function of the sequence zo, Zt, z2, . . 
If we succeed in finding its sum as a definite function of ~' the development 
of this function into power series will have precisely Zn as the coefficient 
of ~n. To obtain 'I'W let us multiply both members of the preceding 
series by the polynomial 
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The multiplication performed, we have 

(1 - ~ + qp'r+1)1PW = Zo + (zt - Zo)~ + · · · + (z,_t - z,_2)r-1 + 
+ (z,- Zr-1)~' + (z,+l - z, + qp'Zo)r+1 + · · · . 

In the right-hand member the terms involving ~'+1, r+', ... have 
vanishing coefficients by virtue of equation (4); also z" - Zk-t = 0 for 
k = 1, 2, 3, ... r - 1, while 

so that 

and 

Zo = 1 and Z, - Zr-1 = -p' 

1- p't 
~PW = 1 - E + qp'~r+t' 

The generating function ~PW thus is a rational function and can be 
developed into a power series of ~ according to the known rules. The 
coefficient of ~fl gives the general expression for z,.. Without any dif­
ficulty, we find the following expression for Zn: 

(5) 
where 

" r+l 

13n.r = ~ ( -l)'C~_1,(qp')1 

l•O 

and f3n-r,r is obtained by substituting n - r instead of n. If n is not very 
large compared with r, formula (5) can be used to compute z,. and 

y,. = 1- Zn. 

For instance, if n = 20, r = 5, and p = q = %, we easily find 

15 45 10 1 ( 10 10) 
Z20 = 1 - M + 642 - 643 - 32 1 - M + 642 

and hence 

z., = 0.75013 

correct to five decimals; Y?A~ = 0.24987 is the probability of a run of 5 
heads in 20 tossings of a coin. 

4. But if n is large in comparison ·with r, formula (5) would require 
so much labor that it is preferable to seek for an approximate expression 
for z, which will be useful for large values of n. It often happens, and 
in many branches of mathematics, but especially so in the theory of 
probability, that exact solutions of problems in certain cases are not of 
any use. That raises the question of how to supplant them by con-
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venient approximate formulas that readily yield the required numbers. 
Therefore, it is an important problem to find approximate formulas where 
exact ones cease to work. Owing to the general importance of approxi­
mations, it will not be out of order to enter into a somewhat long and 
complicated investigation to obtain a workable approximate solution 
of our problem in the interesting case of a large n. 

Since c.oW is a rational function, the natural way to get an appropriate 
expression of Zn would be to resolve c.oW into simple fractions, correspond­
ing to various roots of the denominator, and expand those fractions in 
power series of ~· However, to attain definite conclusions following this 
method, we must first seek information concerning roots of the equation 

5. Let 
JW = ~ - 1 - a~r+l 

where 
a = p'(l - p). 

When p varies from 0 to 1, the maximum of pr(I - p) is attained for 

p = r ~ 1 and is r'/(r + 1)>+1 so that a~ r'/(r + 1)>+1 in all cases. 

To deal with the most interesting case, we shall assume 

(6) 

which involves 

r 
p<r+1 

rr 
a < (r + 1)r+' 

and we leave it to the reader to discover how the following discussion 

should be modified if p 6; r ~ 1. 

When ~ starts to increase from 0, the function JW steadily increases 
and attains a positive maximum for ~ = ~o where 

(r + l)aro = 1 

after which JW decreases steadily to negative infinity. Hence, there 
are two positive roots of the equation fW = 0: ~'' which is less than 

r 1 and another root greater than this number. This root is 1/p if 
r 

condition (6) is fulfilled. 
The remaining roots are all imaginary if r is odd and there is one 

negative root among them if r is even. 
Now we shall prove that the absolute value of every imaginary or 

negative root is > 1/p. Let p be the absolute value of any such root. 
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We have first 

f(p) = p - 1 - qp'+l < 0 

so that p belongs either to the interval (0, ~ 1) or to the interval (1/ p, + co), 
and if we can show that p > ~0 then p can be only > 1/p. If the root we 
consider is negative, p satisfies the equation 

F (p) = 1 + p - ap"+l = 0 

and since F(p) increases till a positive maximum for p = ~0 is reached, and 
then decreases, the root of F(p) = 0 is necessarily > ~0 • If ~ = pe'8 is 
an imaginary root of JW = 0 we have, equating imaginary parts, 

(7) ap' sin (: ~ 1)8 = 1. 
sm 

But, whatever 8 may be 

l
sin (~ + 1)81 ::;; r + 1 sm 8 -

the equality sign being excluded if sin 8 ~ 0. 1 Hence, 

(r + 1)ap' > 1 

which implies p > ~o. The statement is thus completely proved. 
6. The equation 

~ - 1 - a~r+l = 0 

ran be exhibited in the form 

1 
~+a~'= 1. 

Substituting ~ = pei8 here, and again equating imaginary parts, we get 

apr+1 sin r8 = sin 8 

and, combining this with (7), 

sin (r + 1)8 
P = sin r8 i 

(sin r8)• sin 8 
a = [sin (r + 1)8]r+t' 

. sin mil 1 The extreme values of the ratio -.-(m integer > 1) correspond to certain 
sm 8 

roots of the equ.ation m sin 9 cos m8 = sin m9 cos 9, but for every root of this equation 

'

sin mill = m < m 
sin 9 ! Vl + (m1 -l) sinllJ = 

The equality sign is excluded if sin (J differs from 0. 
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If the imaginary part of ~ is positive, the argumrnt 6 i~ eontained 

between 0 and r. In this case, it cannot be less than r ~ 
1 

or greater 

than 1r- _'~~'_, For, if 0 < 8 < 1r 
r + 1 r 

or 

sin r6 > sin (r + 1)8 
r8 (r + 1)8 

sin r8 > _r_. 
sin (r + 1)8 r + 1 

At the same time 
sin 8 > _1_ 

sin (r + 1)8 r + 1 
and hence 

{ 
sin rO }' sin 8 r' 

a = sin (r + 1)8 sin (r + 1)8 > (r + l)r+1' 

which is impossible. That 8 cannot be greater than 1r - r ~ 
1 

follow~ 

simply, because in this case, sin (r + 1)8 and sin r8 would be of opposite 
signs and p would be negative. 

1r 1r 
As r + 1 ~ 8 ~ 1r - r + 1, we have 

• • 1r 
psmO>psmr+t' 

On the other hand, sin x > 2xj1r if 0 < x < r/2 and p > 1/p. Hence, 

. 8 2 
P sm > (r + l)p' 

. Thus, imaginary parts of all complex roots have the same lower bound 

of their absolute values. 
7. Denoting the roots of the equation /W = 0 by 

~"; (k = 1, 2, ... r + 1) 
we have 

r+l 

~ 1 - P~~c ( ~)-t 
\OW= ~(1- p)Mr + 1- r~~c) 1 - ~ · 

t=l 
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Hence, expanding each term into power series of ~ and collecting 
coefficients of ~", we find 

r+l 

~ 1- P~k tk" 
Zn = ~(1- p)~k • r + 1- r~"· 

1:=1 

For every imaginary root, we have 

I 
(1 - p~k)~k'" I < r + 1 p"H 

(1 - p)Mr + 1 - r~k) r(1 - p) 

since 

If r is odd, there are r - 1 imaginary roots and the part in the expression 
of z,. due to them in absolute value is less than 

(r + 1)(r- 1)p"+2 < _r_pn+2 

r(1- p) 1- p · 

The term corresponding to the root 1/p vanishes, so that finally 

z =. 1 - P~t • ~!" + 8-r-p"H 
" (1 - p)~t r + 1 - r~1 1 - p 

where 181 < 1 and h denotes the least positive root of the equation 

1 - ~ + qpT+l = o. 
If r i~ ('Vtn, thPre is one negative root. The part of z,. corresponding 
to this root is IPss than 

2p"+2 
(1 - p)r 

The whole eontribution due to imaginary and negative roots is less than 

r2 - r r 
-,----,-'p"+2 < --p"+2 
r(l - p) 1 - p 

in absolute value. Thus, no matter whether r is odd or even, we have 

-1<8<1. 

This is the required expression for z,., excellently adapted to the case of a 
large value for n, since then the remainder term involving 8 is rompletely 
negligible in comparison with the first principal term. 
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The root ~1 can be found either by direct solution of the trinomial­
equation following Gauss' method, or by application of Lagrange's series. 
Applying Lagrange's series, we have 

~1 ,., 1 + a + 2: (lr + 2) (lr + ~i · · · (lr + l) a' 

1-2 

1 t _ + ""'(lr + 1)(lr + 2) · · · (lr+ l - 1) 1 og '>1 - a ~ l! . a 
l-2 

both series being convergent if Ia! < r' /(r + 1)r+1 and this condition .is 
satisfied. 

8. Let us apply the approximate formula (8) to the case p = q = ~'2 
and r = 10. Using Lagrange's series, we find that 

and 
~1 = 1.0004909 

58 
-Z11 = 1.003947 ' (1.0004909)- + 2" • 

Hence, for n = 100, 1,000, 10,000, respectively, 

, Z11 = 0.9559; 0.6146; 0.0074 

so that, for instance, the probabilities of a run of at least 10 heads in 
100, 1,000, or 10,000 throws of a coin are, respectively, 

0.0441; 0.3854; 0.9926. 

Thus, in 10,000 throws, it is quite likely that heads would turn up 10 or 
more times in succession. 

In general, for a given rand increasing n, the probability Yn tends to 1, 
so that in a very long series of trials, runs of any length are extremely 
likely to occur, a conclusion which at first sight seems paradoxical. 

9. In the preceding examples, an unknown probability was deter­
mined by an ordinary* equation in finite differences. Very often, how­
ever, probability as a function of two or more independent variables is 
defined by a partial difference equation in two or more independent 

· variables, together with a set of initial conditions suggested by the 
problem itself. A few examples will suffice to illustrate the use of 
partial equations in finite differences and to give an idea of the two 
principal methods for their solution; namely, Laplace's method of 
generating functions, and the less well known, but elegant, method 
proposed by Lagrange. 

We start with an analytical solution of the problem which was dis­
cussed in detail in Chap. III. 
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Problem 3. Find the probability of exactly x successes in t inde­
pendent trials with the constant probability p. 

Solution by Laplace's Method. Let us denote the required proba­
bility by Yz.t· To obtain x successes in t trials can be possible only in 
two mutually exclusive ways: (a) by obtaining x successes in t - 1 trials 

, and 11, failure at the last trial; (b) by obtaining success at the last trial 
and x - 1 successes in the preceding t - 1 trials. The probability of 
case (a) is qy;r:,t-1 and that of case (b) is py;r:-l,t-1· The total probability 
Yz.t satisfies the equation 

(9) Yz,t = PY;r:-l,t-1 + qyz,t-1 

for all positive x and t. This equation alone does not determine Yz.t 
completely, but it does so in connection with certain initial conditions. 
These conditione are 

Yz,O = 0 if X > 0, 
(10) 

Yo,t = q1 if t ~ 0. 

The first set of equations is obvious; the second set is the expression 
-of the fact that if there are no successes in t trials, the failures occur t 
times in succession, and the probability for that is q'. 

Following Laplace, we introduce for a given t the generating function 
of Yo.ci Yt,ti Y2,1, ••• , that is, the power series 

.. 
'Pt(~) = Yo,t + Y1.t~ + Y2.1~2 + · · · = ~Yz.t~:r:. 

z=O 

Taking t - 1 instead of t, separating the first 'term and multiplying by 
q, we have 

.. 
q1Pt-1W = qyo,t-1 + ~ qyz,t-l~:r:; 

z=l 

and similarly 
Clll 

P~'Pt-tW = ~ py;r:-1,1-l~:r. 
z=l 

Adding and noting equation (9) we obtain 

(p~ + q)'Pt-1W = 'PtW + qyo,t-l - Yo,t, 

but because of (10) 
' 

qyo,t-l- Yo.t. = ¢- q' = 0 

and hence, 
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for every positive t. Taking t = 1, 2, 3, ... and performing successive 
substitutions, we get 

~PtW == (pE + q)'~PoW 
and it remains only to find 

~PoW = Yo.o + Yt,o~ + Y2,o~2 + 
But on account of (10), Y:.o = 0 for x > O, while Yo.o = 1. Thus, 

~PoW == 1 
and 

To find Yz.t it remains to develop the right-hand member in a power series 
of ~and to find the coefficient of Ez. The binomial theorem readily gives 

_ t(t - 1) ' ' ' (t - X + 1) z t-:z: 
Yz.t - 1 . 2 . . . X p q . 

10. Poisson's Series of Trials. The analytical method thus enables 
us to find the same expression for probabilities in a Bernoullian series 
of trials as that obtained in Chap. III by elementary means. Considering 
how simple it is to arrive at this· expression, it may appear that a new 
deduction of a known result is not a great gain. But one must bear in 
mind that a little modification of the problem may bring new difficulties 
which may be more easily overcome by the new method than by a general­
ization of the old one. Poisson substituted for the Bernoullian series 
another series of independent trials with probability varying from 
trial to trial, so that in trials 1, 2, 3, 4, ... the same event E has different 
probabilities p1, p2, p3, p4, . . . and correspondingly, the opposite event 
has probabilities q1, q2, q3, q4, .•. where qk == 1 - pk, in general. Now, 
for the Poisson series, the same question may be asked: what is the 
probability y,t.t of obtaining x successes in t trials? The solution of this 
generalized problem is easier and more elegant if we make use of differ­
ence equations. 

First, in the same manner as before, we can establish the equation in 
finite differences 

(11) 

The corresponding set of initial conditions is 

Y z,O = 0 if X > 0 
(12) Yo,t = q1q2 · · · q, if t > 0 

Yo.o == 1. 

Giving fP,W the same meaning as above, we have 
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.. 
q,~t--1(~) = q,yo,t-1 + ~ q,y.,t--tf11 

:r=l .. 
Pt~<Pt-tW = ~ PtY•-t,t-t~~~~, 

:t•l 

whence 
(p,E + q,)cpe-1W = ~Pt(~) + q,yo,t-1 - Yo.ci 

but because of (12) 

qlyO,t-1 - Yo.t = Q1q2 • ' • q, - qlq2 · · · q, = 0, 
and thus 

whence again 

1ft(~) .;, (Pt~ + q1)(p2~ + q2) · · · (p,~ + q,)IPoW· 
However, by virtue of (12), <PoW = 1 so that finally 

<PtW = (p~~ + q1)(p2~ + q2) · · · (p~~ + q,). 

To find the probability of x successes in t trials in Poisson's case, one 
ne!'ds only to develop the product 

(p~~ + q1)(p2E + q2) · · · (p,~ + q,) 

according to ascending powers of e and to find the coefficient of e~~~. 
11. Solution by Lagrange's Method. We shall now apply to equa­

tion (9) the ingenious method devised by Lagrange, with a slight modifica­
tion intended to bring into full light the fundamental idea underlying this 
method. Equation (9) possesses particular solutions of the form 

a"{3t 

if a and ~ are connected by the equation 

a~= p + qa. 

Sol\'ing this equation for ~. we find infinitely many particular solutions 

a"'(q + pa-l)' 

wher!' a is absolutely arbitrary. Multiplying this expression by an 
arbitrary function cp(a) and integrating between arbitrary limits, we 
obtain other solutions of equation (9). Now the question arises of how 
to choose cp{a) and the path of integration to satisfy not only equation (9) 
but also initial conditions (10). We shall assume that cp(a) is a regular 
function of a complex variable a in a ring between two concentric circles, 
with their center at the origin, and that it can therefore be represented in 
this ring by Laurent's series 

.. 
cp(a) = ~ c,.a". 

ft=- .. 
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If cis a circle concentric with the regulariiy ring of I!'( a) and situated 
inside it, the integral 

Y:~:.t = 2
1 

.Jax-l(q + pa-1) 1tp(a)da 
11'~ D 

is perfectly determined and represents a solution of (9). To satisfy 
the initial conditions, we have first the set of equations 

~ia=-ltp(a)da = 0 
2n c 

for X= 1, 2, 3, ... 

which show that all the coefficients Cn with negative subscripts vanish, 
and that tp(a) is regular about the origin. The second set of equations 
obtained by setting x = 0 

~i (q + pa-1) 1"'~a) da = q1 for t = 0, 1, 2, ... 

serves to determine tp(a). If E is a sufficiently small complex parameter, 
this set of equations is entirely equivalent to a single equation: 

1 i tp(a)da 1 
21l'i c a - E(p + qa) = 1 - Eq' 

Now the integrand within the circle c has a single pole ao determined by 
the equation 

ao = E(p + qao) 

and the corresponding residue is 

tp(ao) 
1- qe' 

At the same time, this is the value of the left-hand member of the above 
equation, so that 

or 
tp{ao) = 1 

for all sufficiently small E or ao. That is, l!'(a) = 1 and 

Y~. 1 == 2~i ax-{q + ~yda 
is the required solution. It remains to find the residue of the integrand; 
that is, the coefficient of 1/ a in the development of 
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in series of ascending powers of a. That can be easily done, using the 
binomial development, and we obtain 

Y:~:,l = Cfpzqt-s 

a.s it should be. 
12. Problem 4. Two players, A and B, agree to play a series of 

games on the condition that A wins the series if he succeeds in winning a 
games before B wins b games. The probability of winning a single game 
is p for A and q = 1 - p forB, so that each game must be won by either 
A or B. W:hat is the probability that A will win the series? 

Solution. This historically important problem was proposed as an 
exercise (Prob. 12, page 58) with a brief indication of its solution based 
on elementary principles. To solve it analytically, let us denote by 
Yz,t the probability that A will win when x games remain for him to win, 
while his adversary B has t games left to win. Considering the result 
of the game immediately following, we distinguish two alternatives: 
(a) A wins the next game (probability p) and has to win x - 1 games 
before B wins t games (probability Yz-t,,); (b) A loses the next game 
(probability q) and has to win x games before B can win t - 1 games 
(probability y,,,_t). The probabilities of these two alternatives being 
PYz-l,t and qy,,t-1 their sum is the total probability y,,,. Thus, Yz.c 
satisfies the equation 

(13) Y:~:.t = PYz-1.1 + qyz,t-1· 

Now, Yz,o = 0 for x > 0, which means that A cannot win, B having 
won all his games. Also, Yo.t = 1 for t > 0, which means that A surely 
wins when he has no more games to win. The initial conditions in our 
problem are, therefore, 

Yz,O = 0 if X> 0; 
(14) 

Yo,t = 1 if t > 0. 

The symbol Yo.o has no meaning as a probability, and remains undefined. 
For the sake of simplicity we shall assume, however, that Yo,o = 0. 

Application of Laplace's Method. Again, let 

IP:z(~) = Yz.o + Yz,t~ + Y:~:.2~2 + · · · 
be the generating function of the sequence Yz.oi Yz,1j Yz.2, ••• cor­
responding to an arbitrary x > 0. We have 

.. 
q~"'"W = ~qy:t,t-1r 

1=1 
... 

P.P.c-tW = PY.c-t,o + ~PYs-1.,r 
1=1 
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and 
110 

q~IPzW + PIP2:-1W = PY:.:-t,o + ~ (py,_;,t + qyz,t-tH1 

1=1 

or, because of (13), 

Q~<P:W + PIPz-t(~) = PYz-1,o - Yz.o + ~Pi~). 
Now, for every x > 0 

Yz,O = Y:-1,0 = 0 

in conformity with the first set of initial conditions, which allows us to 
present the preceding relation as follows: 

whence 

But 

~PoW = Yo.o + Yo,l~ + Yo.2~2 + • · · = ~ + ~2 + ~3 + · · · == -~-
1 - ~ 

and finally 
~pz 

IPzW = (1 - ~)(1 - qtre' 
It remains to develop the right·hand member in a power series of ~ and 
find the coefficient of ~~. As 

1 ~ ~ = ~ + ~2 + ~3 + . ·. . 
and 

1 = 1 + : ~: + x(x + 1) 2t2 + ... 
(1-q~)z 1q(; 1·2 q(; 

we readily get, multiplying these series according to the ordinary rules, 

_ :[1 + x + x(x + 1) 2 + ... + x(x + 1) · • · (x + t- 2) 1-1] 
Yz,l- p ~ 1 · 2 q 1 '2 • · · (t -1) q 

which coincides with the elementary solution indicated on page 58. 
Application of Lagrange's Method. Equation (13) has particular 

solutions of the form 

where 
a{J = ptJ + qa. 
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Hence, we can either express a by P or fJ by a. Leaving it to the reader 
to follow the second alternative, we shall express a as a function of 8 
and seek the required solution in the form 

where !f.'(f3) is again supposed to be developable in Laurent's series in a 
certain ring; c is a circle described about the origin and entirely within 
that ring. Setting x = 0, we must have 

for t = 1, 2, 3, .. 

and thill set of equations is satisfied if we take 

1 
= fJ(fJ - 1); lf31 > 1. 

Now we have 

and fort = 0 

p:ei d{3 
Y:.o = 211'i c(1 - q[3-l)z{3({3 - 1) = 0 

as it should be, because for ltJI > 1 the integrand can be developed into a 
power series of 1/{J, the term with 1/{3 being absent. Thus, the required 
solution is given by 

pz I tJI-ldtJ 
Yz,l = 211'i (1 _ q{3-l)z({J _ 1} 

where c is a circle of radius > 1 described about the origin. The final 
expression for Yz.t is obtained as the coefficient of 1/{J in the development 
of 

(1 - q{3-l)z({3 - 1) 

into power series of 1/ {3. We obtain the same expression as before. 

Problems for Solution 

1. Each of n urns contains a white and b blaC'k balls. One ball is transferred from 
the first urn into the second, another one from the second into the third, and so on. 
Finally, a ball is drawn from the nth urn. What is the probability that it is white, 
when it is known that the first ball transferred was white? 

a b 
Am.-- +--(a + b + 11'-. 

a+b a+b 
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2. Two urns contain, respectively, a white and b black, and b white and a black 
balls. A series of drawings is made, according to the following rules: 

a. Each time only one ball is drawn and immediately returned to the same urn it 
came from. 

b. If the ball drawn is white, the next drawing is made from the first urn. 
c. If it is black, the next drawing is made from the second urn. 
d. The first ball drawn comes from the first urn. 
What is the probability that the nth ball drawn will be white? 

1 l(a- b)" Am p = - +- -- · 
'" 2 2a+b 

3. Find the probability of a run of 5 in a series of 15 trials with constant prob-
ability p = ~. Am. Y15 = 23.3-6 - 70.3-12 = 0.0314184. 

4. How many throws of a coin suffice to give a probability of more than 0.999 for 
a run of at least 100 heads? Ans. 1.76 ·1031 throws suffice. 

6. What is the least number of trials assuring a probability of ~~:2 for a run of at 
least 10 successes if p = q = H? Ans. 1,420. 

6. Seven urns contain black and white balls in the following proportions: 

Urns ......... .... ... ... . . .. ... .. 2 3 4 5 6 7 

White ..... ...... ... ... ... ... ... . . 1 2 2 3 2 3 4 
Black ........... ······ ... ... .... I 

'I 2 2 5 2 5 

One ball is drawn from each urn. What is the probability that there will be among 
them exactly 3 white balls? Ans. Coefficient of e in. 

or 

iH = 0.28025. 

'1. Two players, each possessing $2, agree to play a series of games. The prob­
ability of winning a single game is Y2 for both, and the loser pays $1 to his adversary 
after each game. Find the probability for each one of them to be ruined at or before 
the nth game? 

Solution. Let y .. be the probability that after playing 2m games, neither of the 
players is ruined. We have 

and hence 

Ym =-
2"' 

1 1 
The probability for one of the players to be ruined at or before the nth game is 2 -

2 
.. +

1 

if n = 2m or n = 2m + 1. 
8. Solve the same problem if each player enters the game with $3. 

Ans. Y2 - Y2G~)m-l if n =2m- 1 or n =2m. 
9. Players A1, A2, ... An+ I play a series of games in the following order: first At 

plays with A2; the loser is out and the winner plays with the following player, A3; the 
loser is out again and the next game is played with A4, and so on; the loser always being 
out ~cl his place taken by the next following player. The probability of winning a 
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single game is ~ for each player and the series is won by the player who succeeds in 
winning over all his adversaries in succession. What is the probability that the 
series will stop exactly at the xth game? What is the probability that the series will 
stop before or at the xth game? 

Solution. Let Ys be the probability that the series terminates exactly at the xth 
game. That means that the player who won the game entered at the (x - n + l)st 
game and won successively the n following games. Now, there are n - 1 cases 
to be distinguished according as the player beaten at the (x - n + l)st game has 
already won 1, 2, 3, . . . n - 1 games. Let p, be the probability that the loser in the 
(x - n + l)st game previously has won k games. The probability of ending the 
series in this case is Pk/2". On the other hand, 

so that 

Hence, for x > n 

1 1 
Yz = 2!•-l + fJ•-t + 

Initial conditions: 

Yt = Yt = · · · = y,._, = 0; 

The generating function of y,; 

Yt t Y2~ t Y3~1 t · · · 
r-{~- ~) 

2"-{1- ~ +~) 
and the generating function of the probability that the series will end before or at the 
xth game is 

10. Three players, A, B, C, play a series of games, each game being won by one of 
them. If the probabilities for A, B, C to win a single game are p, q, r, find the prob­
ability of A winning a games before B and C win b and c games, respectively. 

Solution. Let A •. , .• denote the probability for A to win the series when he has 
~till to win x games, while B and C have to win y and z games, respectively. First, 
we can establish the equation 

A. •. ,.• = pA .• -t.r.• + qA.•.r-1.• + rA.,,,•-1· 

Next, Ao.r.• = 1 for positive y, z, and A. ...... = 0 for positi,•e x, z; A,.,,,e = 0 for posi­
tive x, y. Besides, although this is only a formal simplification, we shall ll.'lSume 
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A,.,o,• = 0, A,.,,,o = 0 when :x or y or z vanishes. For the generating function of 
A,.,w,• 

"' 
1/>.(~. II) = ~ A.,y .• ~ll' 

1/,z=O 
we find the equation 

whence 

The final answer is 

[ 
a-- a(a + 1)-- a(a + l)(a + 2)-- J 

A •. b.• =.Po 1 + l(q + r) + ~(q + r)S + 1. 2. 3 (q + r)3 + ... • 

the dash indicating that powers of q and r with the exponents ~band ~care omitted. 
Obviously, the same method can be extended to any number of players, and leads 

to a perfectly analogous expression of probability. 
11. An urn contains n balls altogether, and among them a white balls. In a series 

of drawings, each time one ball is drawn, whatever its color may be, it is replaced by 
a white ball. Find the probability y.,,, that after r drawings there are x white balls 
in the urn. 

Solutioo. The required probability satisfies the equation 

n-x+l x 
y,.,t+l = Yz-l,r + -y,.,,, 

n n 
Besides, 

Yo,O = 1, Yz,O = 0 if X ¢ a, y,.,, = 0 if X < a. 

From the preceding equation, combined with the initial conditions, we find suc­
cessively 

Yo,r = (;)' 

and so on. 
r 

12. If, in the problem of runs, pis supposed to be > --
1
• prove that the probabil­

r+ 

ity of a run of r in n trials is greater than 

1 ( p - Pt + r(p + pi)) p~+l 
r - (r + 1)pt 2 1 - Pt 

' · f h · where P• < -- IS a root o t e equation 
r+l 

p~(1 - PI) = p'(1 - p). 
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l3. To find an SBymptot.ic expression of probability for a run of r inn independent 

trials, if p !E; r : 
1
, the following proposition is of importance: Imaginary and nega. 

tive roots of the equation 

(1 - B):c" - X + 8 = 0; 

are, in absolute value, greater than the root R > 1 of the equation 

211' 
(1 - s)R~- R + s cos-= 0. 

n 

Prove the truth of this statement. 
14. Given s urns containing the same number n of black and white balls in known 

proportions, drawings are made in the following manner: first, a single ball is drawn 
out of every urn; second, the ball drawn from the first urn is placed into the second; 
that drawn from the second is placed in the third, and so on; finally, the ball drawn 
from the lSBt urn is placed in the first, so that again every urn contains n balls. Sup­
posing that this operation is repeated t times, find the probability of drawing a white 
ball from the xth urn. 

Solution. Let 1/&,c be the required probability. First, it can be shown that it 
satisfies the equation 

1/z,l = ( 1 - ;)1/s,l-1 + ~z-1,1-1• 
The initial probabilities 1/t,o, 1/2,o1 ••• y.,o are known; and, moreover, the function 
y.,, must satisfy a boundary condition of the periodic type, Yo, 1 = y,,,. Hence, 
applying Lagrange's method, the following solution is found 

( 1)'[ t t(t - 1) ] y.,, = 1 - - /(:t) + f(:r: - 1) + j(:r: - 2) + ... 
n l·(n-1) 1·2(n-1)1 

where 

/(:t) = 1/s,o when :r: > 0 

and the definition is extended to x ;ii 0 by setting 

/( -x) = /(8 - x). 

If, to begin with, all urns contain the same number of white and black balls, so that 
/(x) = const. = p, we shall have, no matter what t is, 
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CHAPTER VI 

BERNOULLI'S THEOREM 

1. This chapter will be devoted to one of the most important and 
beautiful theorems in the theory of probability, discovered by Jacob 
Bernoulli and published with a proof remarkably rigorous (save for some 
irrelevant limitations assumed in the proof) in his admirable posthumous 
book" Ars conjectandi" (1713). This book is the first attempt at scien­
tific exposition of the theory of probability as a separate branch of 
mathematical science. 

If, in n trials, an event E occurs m times, the number m is called the 
"frequency" of E in n trials, and the ratio m/n receiV.es thename of 
"relative frequency." Bernoulli's theorem reveals an important proba­
bility relation between the relative frequency of E and its probability p. 

Bernoulli's Theorem. With the probability approaching 1 or certainty 
as near as we please, we may expect that the relative frequency of an event E 
in a series of independent trials with constant probability p will differ from 
that probability by less than any given number E > 0, provided the number 
of trials is taken sufficiently large. 

In other words, given two positive numbers E and 'T/, the probability 
P of the inequality 

will be greater than 1 - T/ if the number of trials is above a certain 
limit depending upon E and 'TI· 

Proof. Several proofs of this important theorem are known which 
are shorter and simpler but less natural than Bernoulli's original proof. 
It is his remarkable proof that we shall reproduce here in modernized 
form. 

a. Denoting by T m, as usual, the probability of m successes in n trials. 
we shall show first that 

(1) 

if b > a and k > 0. Since the ratio 
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decreases as x increases we have for b > a 

or 

Changing b, a, respectively, into b + 1, a + 1; b + 2, a + 2; · · · b + k, 
a + k, it follows from the last inequality that 

that is, 
Tb+k < Ta+k. 

Tb Ta 

b. Integers X and p. being determined by the inequalities 

X- 1 < np ;:i X, JJ. - 1 < np + nt ;:i JJ. 

the probabilities A and C of the inequalities 

m 
0 ;:i-- p < E; 

n 
m 
-- p '?:. E n -

are represented, respectively, by the sums 

A = T>. + T>.+1 + · · · + T,.-1 
C = T,. + T,.+t + · · · + T,. 

the first of which contains JJ. - X = g terms. Combining terms of the 
second sum into groups of g terms (the last group may consist of less than 

· p terms) and setting for brevity 

At= T,. + Tl'+t + · · · + T,.+a-1 
\ 

.42 = T,.+o + T,.+u+l + · · · + T~'+2u-t 

.4a = T,.+2u + T,.+2u+l + + T,.+3u-l 

we shall have' 

and at the same time 

(Z) A, < T,., 
A T>. 

A2 < T,., 
.4t T>. 

The ratio • 
A 1 _ T>.+u + Tlo.+u+l + · · · + Tlo.+2u-t 

A - T>. + T>.+l + ' · · + T>.+u-1 

is less than the greatel'lt of numbers 

TATU Tlo.+u+! T>.+2g-l 
~T)o. . r;::;' ... T).-lr-l. 
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But by inequality (1) 

hence 

Similarly, 

A2 < T,.+u, 
AI T,. 

and again by inequality (1) 

Consequently 

and inequalities (2) are established. 
c. For x E?; A 

TT:t < 1. 

" It suffices to show' that 

As A E?; np 

n- }.E < __!!P_L < 1 }. + 1 q = npq + q 

which shows that T;~1 < 1. 

The inequality just established shows that in the following expression: 

T,. T,. T,.-1 T,.-a+t T,.-a T.,.,+t 
T.,., = T,.-t . T,._2 . . . T,.-a . T,.-a-t . . . T.,., 

all the factors are < 1. Consequently, if we retain a ~ g first factors 
only, replacing the others by 1, we get 

T,. < T,. . Tp-1 ... T,.-a+t. 
T>. = T,._t T,._2 . T,.-a 

Moreover, 
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whence the following important inequality results: 

(3) T" < ( n - p. + a p_)a· 
T). ~-a+ 1q 

Here a is an arbitrary positive integer ~g. 
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Now, let E be an arbitrary positive number. Then we can show that 
for 

(4) 

we have both 

> a(1 +E)- q 
n = E(p +E) 

(i) n - a 1!. ~ _P_ and (ii) a ~ g. 
p.-:-a+ q p+e 

Since p. ~ np + nE, it suffices to show that (i) is satisfied for p. = np + ne. 
If p. = np + nE inequality (i) is equivalent to 

nq - nE + a < _q_ 
np + nf - a + 1 = p + E 

or, after obvious simplifications, 

ne(p + E) ~ a(1 + e) - q. 

But this inequality follows from (4). To establish (ii), since a and g 
are integers, it suffices to show that a < g + 1. "'l3ut p. ~ np + ne, 
X < np + 1 and consequently g + 1 > ne. Hence (ii) will be estab­
lished if we can show that ne ~ a which by virtue of (4} will be true if 

a(1 +E) - q > 
p + E =a 

that is, if 
a(1 + E) - q ~ ap + aE 

or aq - q ~ 0 which is obviously true, a being a positive integer. 
d. The auxiliary integer a is still at ou~ disposal. Given an arbitrary 

positive number 'I < 1 we shall determine a as the least integer satisfying 
the inequality 

A.t the same time 

1 log-

a C! ( 'I )' 
log 1 + ~ 
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and since log ( 1 + ~) > p ~ e' we shall have 

p + E 1 
o: < 1 + -- log -

E '1/ 
and 

Consequently, if 

(5) n ~ 1 + e log ! + ! 
'1/ E 

then by virtue of (i) and (3) 

T,. 
T.,.. <'11, 

and by virtue of (2) 

At < A'f/, A2 < At'f/ < A'f/2
, Aa < A2'1/ < A'f/3

, • • • , 

whence 

(6) 

This inequality holds if n satisfies (5). No trace of the auxiliary 
integer a is lefj. 

e. Let us now consider the inequalities 

m 
-e <-- p < 0 

n 
and 

m 
--p~-e 
n 

and introduce their respective probabilities Band D. These inequalities 
are equivalent to 

n-m 
0 <-- -q < E 

n 
and n-m 

- q ~E. 
n 

It is apparent that we can interpret B or D as probabilities that the num­
ber of occurrences m' = n - m of the event F opposite to E inn trials will 

m' m' 
satisfy either the inequality 0 < - - q < e or - - q ~ e. Since 

n n 
the right-hand side of (5) contains only given numbers e, '1/ it is clear that 

(7) D < ..!!!__ 
1- '1/ 

if ( 5) is satisfied. 
Now A + B =Pis the probability of the inequality 
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and C + D = Q is the probability of the opposite inequality 

Hence P + Q = 1. Moreover, by (6) and (7) 

Q < _!!j__ 
1-11 

Consequently, 

or 

if only 

p + _!_:j_ > 1 
1 - 11 

P>1-11 

> 1 n= 
E 1 1 
log-+-· 

11 E 

This completes the proof of Bernoulli's theorem. 
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For example, if p = q = %and E = 0.01, 11 = 0.001 we get from (5) 

n ~ 69,869 

which shows that in 69,869 trials or more there are at least 999 chances 
against 1 that the relative frequency will differ from% by less than 7{00 . 

The number 69,869 found as a lower limit of the number of trials is 
much too large. A much smaller number of trials would suffice to fulfill 
all the requirements. From a practical standpoint, it is important to 
find as low a limit as possible for the necessary number of trials (given e 
and 71). With this problem we shall deal in the next chapter. 

2. Bernoulli's theorem states that for arbitrarily given E and 11 there 
exists a number no(E, 71) such that for any single value n > no(E, 11) the 
probability of the inequality 

will be greater than 1·- .,. The question naturally arises, whether for 
given E and '1/ a number N(E, 71) depending upon E and., can be found such 
that the probability of simuUaneous inequalities 

for all n > N(E, 71) will still be greater than 1 - 'II· The following theo­
rem due to Cantelli shows that this question can be answered positively. 

Cantelli's Theorem. For given e < 1, '1 < 1 let N be an integer 
w.tisfying the inequality 

2 4 
N >-log- +2 

f 2 E~ 
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The probability that the relative frequencies of an event E will differ from 
p by less thanE in the Nth and all the following trials is greater than 1 - 11· 

Proof. We shall prove first that the probability Q11 of the inequality 

will always be less than 2e-~11•1 • According to results proved in the 
preceding section for any 11 > 0 

Q11 <71 
if 

n > 1 + e log ! + !. 
E2 TJ E 

This inequality, if we take 11 = 2e-~11•2 becomes 

n > 1 + en + ! - 1 + E log 2 
2 E E2 

itnd in this form it is evident, since for e < 1 . 

1 - 1 + E log 2 < 1 - 2 log 2 < 0. 
E 

Hence, as stated, 
(8) Qn < 2e-inez. 

The event A, in which we are interested, consists in simultaneous 
· fulfillment of all the inequalities 

for n = N, N + 1, N + 2, . . . . The opposite event B consists in 
the fulfillment of at least one of the inequalities 

where n can coincide either with N, or with N + 1, or with N + 2, ... 
The probability of B, which we shall denote by R, certainly does not 
exceed the sum of the probabilities of all the inequalities 

for n = N, N + 1, N + 2, .... 
Consequently, referring to (8), 
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To satisfy the inequality 

it suffices to take 
2 2 2 1 

N > - log - + - log --• 
E2 f1 E2 1 - e-itl 

Now 

2 1 2 2 
- 2 log -

1 
_, , < -2 log -2 + 2. 

E - e•• E E 

Consequently, if 

we shall haveR <'I and at the same time the probability of A will be 
greater than 1 - '1, which proves Cantelli's theorem. 

SIGNIFICANCE OF BERNOULLI'S THEOREM 

3. As was indicated in the Introduction, one of the most important 
problems in the theory of probability consists in the discovery of cases 
where the probability is very near to 0 or, on the contrary, very near to 1, 
because cases \\ith very small or very 11 great" probability may have real 
practical interest. In Bernoulli's theorem we have a case of this kind; 
the theorem shows that with the probability approaching as near to 1 
or certainty as we please, we may expect that in a sufficiently long 
series of independent trials with constant probability, the relative fre­
quency of an event will differ from that probability by less than any 
specified number, no matter how small. But it lies in the nature of the 
idea of mathematical probability, that when it is near 1, or, on the con~ 
trary, very small, we may consider an event with such probability as 
practically certain in the first case, and almost impossible in the second. 
The reason is purely empirical. 

To illustrate what we mean, let us consider an indefinite series of 
independent trials, in which the probability of a certain event remains 
constantly equal to H. It can be shown that if the number of trials 
is, for instance, 40,000 or more, we may expect with a probability > 0.999 
that the relative frequency of the event will differ from ~2' by less than 
0.01. In other words, we are entitled to bet at least 999 against 1 that 
the actual number of occurrences "ill lie between the limits 0.49n and 
0.5ln if n ~ 40,000. If we could make a positive statement of this 
kind without any mention of probability, we should be offering an ideal 
scientific prediction. However, our knowledge in this case is incomplete 
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and all we are entitled to state is this: we are more sure to be right in 
predicting the above limits for the number of occurrences than in expect­
ing to draw a white ball from an urn containing 999 white and only 1 
black ball. 

In· practical matters, where our actions almost never can be directed 
with perfect confidence, even incomplete knowledge may be taken as a 
sure guide. Whoever has tried to win on a single ticket out of 10,000 
knows from experience that it is virtually impossible. Now the convic­
tion of impossibility would be still greater if one tried to win on a single 

. ticket out of 1,000,000. 
In the light of such examples, we understand what value may be 

attached to statements derived from Bernoulli's theorem: Although the 
fact we expect is not bound to happen, the probability of its happening 
is so great that it may really be considered as certain. Once in a great 
while facts may happen contrary to our expectations, but such rare excep­
tions cannot outweigh the advantages in everyday life of following the 
indications of Bernoulli's theorem. And herein lies its immense practical 
value and the justification of a science like thR theory of probability. 

It should, however, be borne in mind that little, if any, value can be 
attached to practical applications of Bernoulli's theorem, unless the 
conditions presupposed in this theorem are at least approximately ful­
filled: independence of trials and constant probability of an event for 
every trial. And in questions of application it is not easy to be sure 
whether one is entitled to make use of Bernoulli's theorem; consequently, 
it is too often used illegitimately. 

It is easy to understand how essential it is to discover propositions 
of the same character under more general conditions, paying especial 
attention to the possible dependence of trials. There have been valuable 
achievements in this direction. In the proper place, we shall discuss the 
more important generalizations of Bernoulli's theorem. 

4. When the probability of an event in a single experiment is known, 
Bernoulli's theorem may serve as a guide to indicate approximately bow 
often this event can be expected to occur if the same experiments are 
repeated a considerable number of times under nearly the same condi­
tions. When, on the contrary, the probability of an event is unknown 
and the number of experiments is very large, the relative frequency of 
that event may be taken as an approximate value of its probability. 
Bernoulli himself, in establishing his theorem, had in mind the approxi­
mate evaluation of unknown probabilities from repeated experiments. 
That is evident from his explanations preceding the statement of the 
theorem itself and its proof. Inasmuch as these explanations are interest­
ing in themselves, and present the original thoughts of the great discov­
erer, we deem it advisable here to give a free translation from Bernoulli's 
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book. After calling attention to the fact that only in a few cases can 
probabilities be found a priori, Bernoulli proceeds as follows: 

So, for example, the number of cases for dice is known. Evidently there are 
as many cases for each die as there are faces, and all these cases have an equal 
chance to materialize. For, by virtue of the similitude of faces and the uniform 
distribution of weight in a die, there is no reason why one face should show up 
more readily than another, as there would be if the faces had a different shape 
or if one part of a die were made of heavier material than another. So one knows 
the number of cases when a white or a black ticket can be drawn from an urn, 
and besides, it is known that all these cases are equally possible, because the num­
bers of tickets of both kinds are determined and known, and there is no apparent 
reason why one of these tickets could be drawn more readily than any other. 
But, I ask you, who among mortals will ever be able to define as so many cases, 
the number, e.g., of the diseases which invade innumerable parts of the human 
body at any age and can cause our death? And who can say how much more 
easily one disease than another-plague than dropsy, dropsy than fever- can 
kill a man, to enable us to make conjectures about the future state of life or 
death? Who, again, can re~ster the innumerable cases of changes to which the 
air is subject daily, to derive therefrom conjectures as to what will be its state 
after a month or even after a year? Again, who has sufficient knowledge of the 
nature of the human mind or of the admirable structure of our body to be able, 
in games depending on acuteness of mind or agility of body, to enumerate cases 
in which one or another of the participants will win? Since such and similar 
things depend upon completely hidden causes, which, besides, by reason of the 
innumerable variety of combinations will forever escape our efforts to detect 
them, it would plainly be an insane attempt to get any knowledge in this fashion. 

However, there is another way to obtain what we want. And what is impossi­
ble to get a priori, at least can be found a posteriori; that is, by registering the 
results of observations performed a great many times. Because it must be pre­
sumed that something may occur or not occur as many times as it had previously 
been observed to occur or not occur under similar conditions: For .instance, if, 
in the past, 300 men of the same age and physical build as Titus is now, were 
investigated, and it were found that 200 of them had died within a decade, the 
others continuing to enjoy life past this term, one could pretty safely conclude 
that there are twice as many cases for Titus to pay his debt to nature within the 
next decade than to survive beyond this term. So it is, if somebody for many 
preceding years had observed the weather and noticed how many times it was 
fair or rainy; or if somebody attended games played by two persons a great many 
times and noticed how often one or the other won; by these very observations he 
would be able to discover the ratio of cases which in the future might favor the 
occurrence or failure of the same event under similar circumstances. 

And this empirical way of determining the number of cases by experiments is 
neither new nor unusual. For the author of the book 11 Ars cogitandi," a man 
of great acumen and ingenuity, in Chap. 12 recommends a similar procedure, 
at-.:1 everybody does the same in daily practice. Moreover, it cannot be con­
cealt"d that for reasoning in this fashion about some event, it is not sufficient to 
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make a few experiments, but a great quantity of experiments is required; because 
even the most stupid ones by some natural instinct and without any previous 
instruction (which is rather remarkable) know that the more experiments are 
made, the less is the danger to miss the scope. 

Although this is naturally known to anyone, the proof based on scientific 
principles is by no means trivial, and it is our duty now to explain it. However, 
I would consider it a small achievement if I could only prove what everybody 
knows anyway. There remains something else to be considered, which perhaps 
nobody has even thought of. Namely, it remains to inquire, whether by thus 
augmenting the number of experiments the probability of getting a genuine ratio 
between numbers of cases, in which some event may occur or fail, also augments 
itself in such a manner as finally to surpass any given degree of certitude; or 
whether the problem, so to speak, has its own asymptote; that is, there exists a 
degree of certitude which never can be surpassed no matter how the observations 
are multiplied; for instance, that it never is possible to have a probability greater 
than ~' %, or% that the real ratio has been attained. To illustrate this by an 
example, suppose that, without your knowledge, 3,000 white stones and 2,000 
black stones are concealed in a certain urn, and you try to discover their numbers 
by drawing one stone after another (each time putting back the stone drawn 
before taking the next one, in order not to change the number of stones in the 
urn) and notice how often a white or a black stone appears. The question is, 
can you make so many drawings as to make it 10, or 100, or 1,000, etc., times 
more probable (that is, morally certain) that the ratio of frequencies of white and 
black stones will be 3 to 2, as is the case with the number of stones in the urn, 
than any other ratio different from that? If this were not true, I confess nothing 
would be left of our attempt to explore the number of cases by experiments. 
But if this can be attained and moral certitude can finally be acquired (how that 
can be done I shall show in the next chapter), we shall have cases enumerated a 
posteriori with almost the same confidence as if they were known a priori. And 
that, for practical purposes, where "morally certain" is taken for "absolutely 
certain" by Axiom 9, Chap. II, is abundantly sufficient to direct our conjectures 
in any contingent matter not less scientifically than in games of chance. 

For if instead of an urn we take the air or the human body, that contain in 
themselves sources of various changes or diseases as the urn contains stones, we 
shall be able in the same manner to determine by observations how much more 
likely one event is to happen than another in these subjects. 

To avoid misunderstanding, one must bear in mind that the ratio of cases 
which we want to determine by experiments should not be taken in the sense of a 
precise and indivisible ratio (for then just the contrary would happen, and the 
probability of attaining a true ratio would diminish with the increasing number of 
observations) but as an approximate one; that is, within two limits, which, 
however, can be taken as near as we wish to each other. For instance, if, in the 
case of the stones, we take pairs of ratios ao~ 00 and 29%oo or soo~ooo and 
299% 000 , etc., it can be shown that it will be more probable than any degree of 
probability that the ratio found in experiments will fall within these limits than 
outside of them. Such, therefore, is the problem which we have decided to 
publish here, now that we have struggled with it for about twenty years. The 
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novelty of this problem as well as its great utility, combined with equal difficulty, 
may add to the weight and value of other parts of this doctrine.-" Ars Conjec­
tandi," pars quarta, Cap. IV, pp. 224-227. 

APPLICATION TO GAMES OF CHANCE 

6. One of the cases in which the conditions for application of Ber­
noulli's theorem are fulfilled is that of games of chance. It is not. out 
of place to discuss the question of the commercial values of games from 
the standpoint of Bernoulli's theorem. "Game of chance" is the term 
we apply to any enterprise which may give us profit or may cause us 
loss, depending on chance, the probabilities of gain or loss being known. 
The follov.ring considerations can be applied, therefore, to more serious 
questions and not only to games played for pastime or for the sake of 
gaining money, as in gambling. 

Suppose that, by the conditions of the game, a player can win a 
certain sum a of money, with the probability p; or can lose another 
sum b with the probability q = 1 - p. 

If this game can be repeafed any number of times under the same 
conditions, the question arises as to the probability for a player to gain 
or lose a sum of money not below a given limit. Let us denote by n 
the total number of games, and by m the number of times the player 
wins. Considering a loss as a negative gain, his total gain will be 

K = ma - (n - m)b. 

It is convenient to introduce instead of m another number a defined by 

a= m- np 

and called "discrepancy." Expressed in terms of a the preceding expres­
sion for the gain becomes 

K = n(pa- qb) +(a+ b)a. 
The expression 

E = pa- qb 

entering as the coefficient of n has, as we shall see, an important bearing 
on the conclusion as to the conunercial value of the game. It is called the 
•• mathematical expectation" of the player. Suppose at first that this 
f'XpP<'tation is positive. By Bernoulli's theorem the probability for a 
disrrepan<'y less than -ru, e being an arbitrary positive number, is 
smaller than any given number, provided, of course, the number of games 
is sufficiently large. At the same time, with the probability approaching 
1 as near as we please, we may expect the discrepancy to be ~ - ru. 
However, if this is the case, the total gain will surpass the number 

n[E - E(a + b)] 
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which, for sufficiently large n, itself is greater than any specified positive 
number. It is supposed, of course, that E is small enough to make the 
difference 

E- e(a +b) 

positive. And that means that the player whose mathematical expecta­
tion is positive may expect with a probability approaching certainty as 
near as we please to gain an arbitrarily large amount of money if nothing 
prevents him from playing a sufficient number of games. 

On the contrary, by a similar argument, we can see that in case of 
a negative mathematical expectation, the player has an arbitrarily small 
probability to escape a loss of an arbitrarily large amount of money, 
again under the condition that he plays a sufficiently large number of 
games. 

Finally, if the mathematical expectation is 0, it is impossible to make 
any definite statement concerning the gain or loss by the player, except 
that it is very unlikely that the amount of gain or loss will be considerable 
compared with the number of games. 

It follows from this discussion that the game is certainly favorable 
for the player if his mathematical expectation is positive, and unfavorable 
if it is negative. In case the mathematical expectation is 0, neither 
of the parties participating in the game has a decided advantage and then 
the game is called equitable. Usually, games serving as amusements are 
equitable. On the contrary, all of the games operated for commercial 
purposes by individuals or corporations are expressly made to be profita­
ble for the administration; that is, the mathematical expectation of the 
administration of a game operated for lucrative purposes is positive at 
each single turn of the game and, correspondingly, the expectation of any 
gambler is negative. This confirms the common observation that those 
gamblers who extend their gambling over large num hers of games are 
almost inevitably ruined. At the same time, the theory agrees with 
the fact that great profits are derived by the administrations of gaming 
places. 

A good illustration is afforded by the French lottery mentioned on 
page 19, which, as is well known, was a very profitable enterprise operated 
by the French government. Now, if we consider the mathematical 
expectation of ticket holders in that lottery, we find that it was negative 
in all cases; namely, denoting by M the sum paid for tickets, we find the 
following expectations: 

and so forth. 

On 1 ticket (H - l)M = -!M, 
On 2 tickets (Hi - l)M = -HM, 
On 3 tickets (1~¥4\ - l)M = -tHfM, 
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On the other hand, the expectation of the administration was always 
positive, and because of the great number of persons taking part in this 
lottery, the number of games played by the administration was enormous, 
and it was assured of a steady and considerable income. This was an · 
enterprise avowedly operated for the purpose of gambling, but the same 
principles underlie the operations of institutions having great public 
value, such as insurance companies, which, to secure their income, always 
reserve certain advantages for themselves. 

EXPERIMENTAL VERIFICATION OF BERNOULLI's THEOREM 

6. Bernoulli's theorem, like any other mathematical proposition, is 
a deduction from ideal premises. To what extent these premises may be 
considered as a good approximation to reality can be decided only by 
experiments. Several experiments established for the purpose of testing 
various theoretical statements derived from general propositions of the 
theory of probability, are reported by different authors. Here we shall 
discuss those purporting to test Bernoulli's theorem. 

I. Buffon, the French naturalist of the eighteenth century, tossed a 
coin 4,040 times and obtained 2,048 heads and 1,992 tails. Assuming 
that his coin was ideal, we have a probability of 72 for either heads or 
tails. Now, the relative frequencies obtained by his experiments are: 

HH = 0.507 for heads 
HH = 0.493 for tails 

and they differ very little from the corresponding probabilities, 0.500. 
In this case, the conclusions one might derive from Bernoulli's theorem 
are verified in a very satisfactory manner. 

II. De Morgan, in his book "Budget of Paradoxes" (1872), reports 
the results of four similar experiments. In each of them a coin was 
tossed 2,048 times and the observed frequencies of heads were, respec­
tively, 1,061, 1,048, 1,017, 1,039. The relative frequencies corresponding 
to these numbers are 

HH = 0.518; HH = 0.512; UH = 0.497; HH = 0.507. 

The agreement with the theory again is satisfactory. 
III. Charlier, in his book" Grundziige der mathematischen Statistik," 

reports the results of 10,000 drawings of one playing card out of a full 
deck. Each card drawn was returned to the deck before the next draw­
ing. The actual result of these experiments was that black cards 
appeared 4,933 times, and consequently the frequency of red cards was 
5,067. The relative frequencies in this instance are: 

8M = 0.4933 for a black card 
1Y/r?-rr = 0.5067 for a red card 
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and they differ but slightly from the probability, 0.5000, that the card 
drawn will be black or white. The agreement between theory and experi­
ment in this case, too, is satisfactory. 

IV. The author of this book made the following experiment with 
playing cards: After excluding the 12 face cards from the pack, 4 cards 
were rlrawn at a time from the remaining 40, and the number of trials 
was c~uried to 7,000. The number of times in each thousand that the 
four cards belonged to different suits, was: 

I II III IV V VI VII 
113 113 103 105 105 118 108 

Altogether the frequency of such cases was 765 in 7,000 trials, whence 
we find for the relative frequency 

'7Vh = 0.1093 

while the probability for taking 4 cards belonging to different suits is 

tHt = 0.1094. 

V. In J. L. Coolidge's "Introduction to Mathematical Probability," 
one finds a reference to an experiment made by Lieutenant R. S. Hoar, 
U.S.A., but the reported results are incomplete. The author of this book 
repeated the same experiment which consisted in 1,000 drawings of 5 cards 
at a time, from a full pack of 52 cards. The results were: 503 times t~e 
5 cards were each of different denominations; 436 times 2 were of the same 
denomination with 3 scattered; 45 times there were 2 pairs of 2 different 
denominations and 1 odd card; 14 times 3 were of the same denomination 
with 2 scattered; 2 times there were 2 of one denomination and 3 of 
another. The remaining possible combination, 4 cards of the same 
denomination with 1 odd, never appeared. The probabilities of these 
different cases are, respectively, 

HH = 0.507; 
Tih = 0.021; 

HH = 0.423; 
n\-1" = 0.001; 

mo = 0.048; 
m-o = o.ooo. 

The corresponding theoretical frequencies are 507, 423, 48, 21, 1, 0, 
while the observed frequencies were 503, 436, 45, 14, 2, 0. The dis­
crepancies are generally small and the greatest of them, 13, is still within 
reasonable limits. Deeper investigation shows that the probability that 
a discrepancy will not exceed 13 is about 72; hence, the observed deviation 
of 13 units cannot be considered abnormal. 

VI. Bancroft H. Brown published, in the American Mathematical 
Monthly, vol. 26, page 351, the results of a series of 9,900 games of craps. 
This game is played with two dice, and the caster wins unconditionally 
if he produces 7 or 11 points, which are called 11 naturals"; he loses the 
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game in case of 2, 3, or 12 points, called "craps." But if he proci.uce.'l 
4, 5, 6, 8, 9, or 10 "points," he does not win, but has the right to. cast the 
dice an unlimited number of times until he throws the same number of 
points that he had before, or until he throws a 7. If he throws 7 before 
obtaining his point, he loses the game; otherwise he wins. 

It is a good exercise to find the probability of winning this game. 
It is 

iH = 0.493 

that is, a little less than 72'. Multiplying the number of games, in our 
case 9,900, by this probability, we find that the theoretical number of 
successes is 4,880 and of failures, 5,020. Now, according to Bancroft H. 
Brown, the actual numbers of successes and losses are, respectively, 
4,871 and 5,029. The discrepancy 

4871 - 4880 = -9 

is extremely small, even smaller than could reasonably be expected. 
The same article gives the number of times "craps" were produced; 
namely, 2 appeared 259 times, 3 appeared 508 times, and 12 appeared 
293 times, making the total number of craps 1,060. The probability 
of obtaining craps is · 

rr+n+iu- =i 
hence, the theoretical number of craps should be 1,100. The discrepancy, 
1060 - 1100 = -40, is more considerable thiR time but still lies within 
rPasonable limits. • 

VII. E. Czuber made a complete investigation of lotteries operated 
on the same plan as the French lottery, in Prague between 1754 and 1886, 
and in Brunn between 1771 and 1886. The number of drawings was 
2,854 in Prague and 2, 703 in Brunn. The probability that in each draw~ 
ing the sequence of numbers is either increasing or decreasing, is 

-e'l :::: 0.01667 

while the observed relative frequency of such cases was 

Prague: 0.01612; Brunn: 0.01739 

and in both places combined 

0.01674. 

The probabilities that among five numbers in each drawing there is 
none or only one of the numbers 1, 2, 3, ... 9, are, respectively, 

0.58298 and 0.34070. 
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The corresponding relative frequencies were 

Prague: 0.58655 and 0.32656 
Brunn: 0.57899 and 0.34591 

and in both places combined 

0.58183 and 0.33587, respectively. 

The probability of drawing a determined number is Yis. Now, according 
to Czuber, for the lottery in Prague the actual number of occurrences for 
single tickets varied from 138 (for No. 6) to 189 (for No. 83), so that for 
all tickets the discrepancy varied from -20 to 31. Besides, there were 
only 16 numbers with a discrepancy greater than 15 in absolute value. 
All these results stand in good accord with the theory. 

VIII. One of the most striking experimental tests of Bernoulli's 
theorem was made in connection with a problem considered for the first 
time by Buffon. A board is ruled with a series of equidistant parallel 
lines, and a very fine needle, which is shorter than the distance between 
lines, is thrown at random on the board. Denoting by l the length of 
the needle and by h the distance between lines, the probability that the 
needle will intersect one of the lines (the other possibility is that the 
needle will be completely contai~ed within the strip between two lines) is 
found to be 

2l 
p ='Irk' 

The remarkable thing about this expression is that it contains the 
number 1r = 3.14159 · · · expressing the ratio of the circumference of a 
circle to its diameter. In the appendix we shall indicate how this expres­
sion can be obtained, because in this problem we deal with a different 
concept of probability. 

Suppose we throw the needle a great many times and count the 
number of times it cuts the lines. By Bernoulli's theorem we may expect 
that the relative frequency of intersections will not differ greatly from 
the theoretical probability, so that, equating them, we have the means of 
finding an approximate value of r. 

One series of experiments of this kind was performed by R. Wolf, 
astronomer in Zurich, between 1849 and 1853. In his experiments the 
width of the strips was 45 mm., and the length of the needle was 36 mm. 
Thus the theoretical probability of intersections is 

72 
451!- = 0.5093. 
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The needle was thrown 5,000 times and it cut the lines 2,532 times; 
whence, the relative frequency 

HH = 0.5064. 

The agreement between the two numbers is very satisfactory. If, 
relying on Bernoulli's theorem, we set the approximate equation 

72 . 
451r = 0.5064, 

we should find the number 3.1596 for 1r, which differs from the known 
value of 1r by less than 0.02. 

In another experiment of the same kind reported by De Morgan in 
the aforementioned book, Ambrose Smith in 1855 made 3,204 trials with 
a needle the length of which was % of the distance between lines. There 
were 1,213 clear intersections, and 11 contacts on which it was difficult 
to decide. If on this ground, we should consider half of them as inter­
sections, we should obtain about 1,218 intersections in 3,204 trials, which 
would give the number 3.155 for 'II'. If all of the contacts had been treated 
as intersections the result would have been 3.1412-very close to the 
real value of 1r. 

In an excellent book "Calcolo delle Probabilita," vol. 1, page 183, 
1925, by G. Castelnuovo, reference is made to experiments performed by 
Professor Reina under whose direction a needle of 3 em. in length was 
thrown 2,520 times, the distance between lines being 6 em. Taking into 
account the thickness of the needle, the probability of intersection was 
found to be 0.345, while actual experiments gave the relative frequency 
of intersections as 0.341. 

APPENDIX 

Buffon's Needle Problem. Let h be the width of the strip between 
two lines and l < h the length of the needle. The position of the needle 
can be determined by the distance x of its middle point from the nearest 
line and the acute angle IP formed by the needle and a perpendicular 
dropped from the middle point to the line. It is apparent that x may 
rary from 0 to h/2 and IP varies within the limits 0 and 1r /2. We cannot 
define in the usual way the probability of the needle cutting the line, for 
there are infinitely many cases with respec~ to the position of the needle. 
However, it is possible to treat this problem as the limiting case of 
another problem with a finite number of possible cases, where the usual 
definition of probability can be applied. 

Suppose that h/2 is divided into an arbitrary number m of equal 
parts 6 = hj2m and the right angle r/2 into n equal parts w = r/2n. 
Suppof'e, further, that the distance x may have only the values 

o, a, 26, ... m& 



114 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP. VI 

and the angle tp the values 

0, w, 2w, . . . nw. 
This gives 

N = (m + l)(n + 1) 

cases as to the position of the needle, and it is reasonable to assume that 
these cases are equally likely. To find the number of favorable cases, we 
notice that the needle cuts one of the lines if x and rp satisfy the inequality 

l 
X< 2 COS lfJ· 

The number of favorable cases therefore, is equal to the number of 
systems of integers i, j satisfying the inequality 

(A) 
. l . 
~~ < 2 COS JW 

supposing that i may assume only the values 0, 1, 2, ... m and j only 
the values 0, 1, 2, ... n. Because we suppose l < h the greatest 
value of i satisfying condition (A) is less than m and we can disregard 
the requirement that i should be ~ m. Now for given j there are k + 1 
values of i satisfying (A) if k denotes the greatest integer which is less 
thaQ 

l . U COSJW. 

In other words, k is an integer determined by the conditions 

k < ~ cos jw ~ k + 1. 

The number of possible values for i corresponding to a given j can 
therefore be represented thus 

n1.j = J_ cos jw + fJ1 
2~ 

where {}i may depend on j but for all j is ii;;; 0 and < 1. Taking the sum 
of all the mi corresponding to j = 0, 1, 2, . . . n, we obtain the number 
of favorable cases 

l 
M = U(l + cos w + cos 2w + · · · + cos nw) + ne 

where e again is a number satisfying the inequalities 

0~9<1. 
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But, as is well known, 

1 sin (n + !)w 
1 + cos w + cos 2w + · · · + cos nw = -2 + 2 

2 . CJ.I 

sm 2 
11' 

or, because w = 2n 

1 1 CJ.I 

1 + cos w + cos 2w + · · · + cos nw = 2 + 2 cot 2; 

therefore 
. l CJ.I l 
M = 46 cot 2 + 4i + ne. 
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Dividing this by N = (m + 1)(n + 1) and substituting for 6 and w 
their expressions 

h 
6 =-· 2m 

11' 
w=-

2n 

we obtain the probability in the problem with a finite number of cases 

11' 

M l m cot 4n l · m 1 ne 
N = 2h · m + 1 · n + 1 + 2h · m + 1 · n + 1 + (n + 1)(m + I)' 
The probability in ButTon's problem will be obtained by making m 

and n inrrease indefinitely in the above expression. Now, since 

lim m ~ 1 = 1, 

lim (m + 1~n + 1) = lim (n + 1)~m + 1) = 0 

and 

we have 

11' 

. cot 4n 4 
lim--=-, 

n+1 r 

. M 2l 
limN= hr. 

Thus we arrive at the expression of probability 

21 
p = hr 

in ButTon's needle problem. 

(m, n-+ 0()) 
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Problems for Solution 

Another very simple proof of Bernoulli's theorem, due to Tshebysh~ff (1821-
1894), is based upon the following considerations: 

1. Prove the following identities: 

n n 

~Tm(m-np)=O, 
m=O 

~ T,.(m- np)2 = npq, 
m=O 

Indication of the Proof. Differentiate the identity 

n 

e....,.t>u(pe" + q)" = ~ T me<m-..p)" 
m=O 

twice with respect to u and set u = 0. 
2. If Q is the probability of the inequality Jm - npj ;;;; nE prove that 

Q < pq_ 
nE2 

Indication of the Proof. In the identity 

n 

~ Tm(m- np)2 = npq 
m=O 

drop all the terms in which lm - npj < nE and in the remaining terms replace 

(m -np) 2 

by n2Et. The resulting inequality 

is equivalent to the statement. 
3. Prove that 

if n > pq/f/E2• 

p > 1 -'I/ 

Indication of the Proof. P = 1 - Q, Q < pq/nE2 and pq/nf2 < 'I if n > pq/f/Ez. 
The following two problems show how probability considerations can be used in 

proving purely analytical propositions. 
4. S. Bernstein's Proof of Weierstrass' Theorem. The famous theorem due to Weier­

strass states that for any continuous functionf(x) in a closed interval a ~ x ~ b there 
exists a polynomial P(x) such that 

lf(x) - P(x)l < 11 

for a ~ x ~ b where a is lL!l arbitrary positive number. By a proper linear trans­
formation the interval (a, b) can be transformed into the interval (0, 1). According 
to S. Bernstein, the polynomial 

II 

P(x) = ]C:x"'(l- x)"-~;) 
• m=O 
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for sufficiently large n satisfies the inequality 

jf(ic) - P(x)l < 11 

uniformly in the interval 0 ~ z ~ 1. 
Indication of tluJ Proof. For x = 0 and x = 1 we have j(O) = P(O) and 

j(l) = P(l). 
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It suffices to prove the statement for 0 < x < 1. Let x be a constant probability in 
n independent trials. We have 

n 

(a) f(x) - P(x) = ~ C~x"'(l - x)"..,.[f(x) - 1(;)} 
m•O 

By the property of continuous functions, there is a number t corresponding to any 
positive number 11 such that 

1/(x') - f(x)i < ~ 
whenever 

lx' -xi <' (0 ~ x', x ~ 1). 

Also, there exists a number M such that 1/(x)l ~ M for 0 ~ x ~ 1. From equation 
(a) we get 

lf(x) - P(x)l ~ ~p + 2MR 

where P and Rare, respectively, the probabilities of the inequalities 

f; -x1 < E and f; -x/ ~ e. 

Now P < 1 and 

R <11 

if n > l/4ES,. Take 11 == 11/4M; then 

1/(x) - P(x)l < 11 
if 

6. Show that 

provided 0 < m <nand~- E > 0, ~ + e < 1 (Castelnuovo). 
ft A 
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Indication of the Proof. By Prob. 6, Chap. IV, page 72, the ratio 

m 

Jon -ez"'(l - x)n-mdx 

Jo
1
x"'(l - x)"-"'dx 

represents the probability Q of at least m + 1 successes in a series of n + 1 inde­
pendent trials with constant probability 

Set 

whence 

But 

Hence 

m 
p =--e. 

. n 

m + 1 = (n + l)p + (n + l)a 

n-m 
a = n(n + 1) + e > e. 

Q 
p(l - p) 1 <---< . 
(n + l)a2 4(n + l)e2 

• m 

Jon-ex"'(l - x)"-"'dx 

Jolx"'(l ..:. z)n-mdx < 4(n + l)e2 

and by a similar argument 

J~ x"'(l - x)"-"'dx 
n+E 1 

Jolx"'(l - x)"-"'dx < 4(n + l)el 
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CHAPTER VII 

APPROXIMATE EVALUATION OF PROBABILITIES IN 
BERNOULLIAN CASE 

1. In connection with Bernoulli's theorem, the following important 
question arises: when the number of trials is large, how can one find, at 
least -approximately, the probability of the inequality 

where e is a given number? Or, in a more general form: How can one 
find, approximately, the prob~bility of the inequalities 

l ~ m ~ l' 

where l and l' are given integers, the num~r of trials n being large? 
The exact formula for this probability is 

e=l' 

p = ~T. 
•=I 

where T ,, as before, represents the probability of s successes in n trials. 
While this formula cannot be of any practical use when n and l' - l 
are large numbers, yet it is precisely such cases that present the greatest 
theoretical and practical interest. Hence, the problem naturally arises 
of substituting for the exact expression of P an approximate formula 
which will be f'asy to use in practice and which, for large n, will give a 
sufficiently close approximation to P. De l\Ioivre was the first sue· 
cessfully to attack this difficult problem. After him, in essentially the 
same way, but using more powerful analytical tools, Laplace succeeded 
in eRtablishing a simple approximate formula which is given in all books 
on probability. 

When we use an appcoximate formula instead of an exact one, there 
is always this question to con.'lider: How large is the committed error? 
If, as is usually done, this question is left unanswered, the derivation of 
Laplace's formula becomes an easy matter. However, to estimate the 
error comparatively long and detailed inn>8tigation is required. Except 
for its length, this inve8tigation is not very difficult. 

2. First we shall present the probability T, in a convenient analytical 
form. The identity 

F(t) = (pt + q)R = To+ T1t + T~2 + · · · + T .t• 
119 
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after substituting t = e~ becomes 

F(ei<P) = To+ T1e~ + T2e2~ + · · · + T11e11~. , 

Multiplying it bye-ill" and integrating between -1r and 1r, we get 

J:..e-i~'~'F(e~)d~P = 21fT, 

because for an integral exponent k 

Thus 

if 
if 

T. =!f .. F(ei<P)e-·~diP 
211' - .. 

and this is the expression for T. suitable for our purposes. To find the 
sum 

a=l' 

p = ~T. 
a=l 

we .observe first that 

. (l'- l + 1) 
a=l' . e-ily> - e-i(!'+l)tp _l+l'itp sm 2 !p 

~e-n"'= 1- e-~ = e 2 • --~-q;--· 
sm-

s=Z 2 

On the other hand, the complex number F(ei,) can be presented in 
trigonometrical form, thus: 

F(ei<P) = Reie 

whence 

. (l'- l + 1) 
1 J" i(a-1+1',) sm 2 rp 

P =- Re 2 
'
1
(() 

211' -.. • !p sm 2 
or, because Pis real, ' 

. (l'- l + 1) 
p = !J" R cos (e - l + l' ((J)sm 2 (() d((J. 

2r -r 2 . (() sm 2 

Finally, because R is an even function of IP and 9 is an odd one, we can 
extend the integration over the interval 0, r on the condition that we 



SEc. 3) APPROXIMATE EVALUATION OF PROBABILITIES 121 
double the result. Thus we obtain 

. (l'- l + 1) 
P = ! f" R cos (e - l + l' IP) sm 2 IP diP. 

~Jo 2 . IP sm 2 

It is convenient to introduce instead of land l' two numbers !t and ! 2 

defined by 

l = np + j + !tVB:, l' = np - j + !tVB: 

where Bn = npq. Setting further 

e = np!p + x, 
P can be presented as 

P = P2- Pt 

where P, and P2 are obtained by taking t = !t and t = !2 in the integral 

{1) J = .! f .. R sin (s{ifn~P - x) diP. 
211' Jo sm !~P 

3. Our next aim is to establish upper and lower limits for R. 
Evidently 

R = (p2 + q2 + 2pq cos IP)i = (1 - 4pq sin2 ~)i = p". 

Now 

log p = -2
1Iog (1 - 4pq sin2 '!.) = -2pq sin2 '!. - !{4pq)2 sin4 '!. -

2 2 4 2 

whence 

log p < -Zpq sin2 '!.. 
2 

Since 7'21P < ~12, we ha'J 

and consequently 

or 

(2) 

- !{4pq) 3 sin6 '!. - · · . 6 2 
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for all values of IP in the interval of integration. On the other hand, we 
have 

sin ~ > ~ - :~ > 0 for '(J
2 < 24 

and 
• rp rp2 IP' 

sm2 - >-- -, 
2 4 48 

which gives another upper bound for p: 

(3) 

The corresponding upper bounds for R will be 

(4) 

(5) 

To find a lower bound for R we shall assume '(J ~ 1r /2. We can 
present log p thus: 

log p = _pq'P2 - !(4pq)2 sin4 f·+ 2pq~(P.)
2

- sin2 !elf. -
2 4 2 ~2 2 

- !(4pq)3 sin6 f -
6 2 

On the other hand, 

and 

(
"')2 . 2 rp 1 . 4 '(J 2 - sm 2 > 3 sm 2 

so that 

2pq{(~Y - sin2 ~} - i(4pq)a sin6 ~ - •.• > ~j sin4 ~ 
- !(4pq)3 sin&!! = 2Pq sin4 'l{t - 32p2q2 sin2 IP

2
-} > 0 

3 2 3 . 2 

and consequently 

log P > _pq'(J2 - !(4pq)2 sin4 if!. > _p2q'(J2 - p42q2'(J4 
2 4 2 
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'f <'If H 1 "'= 2. ence, 

(6) 

and this is valid for rp ~ 'If /2. 
4. Let r be dc>fined by 

r 2 = 3B;;t. 

Assuming B,. ~ 25 from now on, we shall have, 

.,.2 ~ i 
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and a fortiori 1 < '11'/2. Let us suppose now that"' varies in the interval 
0 ~ "' ~ r. By inequality (6) we shall have 

--B • .,. - B • .,~ --pqH • .,' pq --B.,s I , 1 ( I ) 1 
R - c 2 > e 2 e 4 - 1 > - 4 B,.rp4e 2 > 

because e-:e - 1 > -x for x > 0 and pq ~ %. 
On the other hand, using inequality (5), we find that 

-- ,.,., --B • .,t -.,• 18 1 l B. ~ 
R - e 2 < e 2 e'24 - 1 

Rince 
B.r• 3 

!e24 = !e8 < i. 
From the two inequalities just establish('d it follows that 

(7) 

in the interval 

0 ~I{'~ T. 

5. We turn now to the angle e. Evidently 

where 

p sm rp e =narc tg = n,(l) 
q + p cos"' 

w = arc tg p sm "' · 
q+pcosrp 

By surcessive derivations with respect to "' we find 
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dw p2 + pq cos q: d2w pq(p - q) sin rp 
drp = p2 + 2pq cos q, + q2; drp2 (p2 + 2pq cos rp + q2)2 

d:w _ ( )4pq + (1 - 2pq) cos rp - 2pq cos2 rp 
drp8 - pq p - q (p2 + 2pq cos rp + q2)3 

d4w _ ( ) sin rp[ -1 + 4pq+20p2q2+8pq(1-2pq) cos rp-4p2q2 cos2 rp] 
d~t~4 - pq p-q (p 2+2pq cos rp+q2)4 

and for rp = 0 

( dJw) = pq(p - q). 
drp3 0 

Furthermore, one easily verifies that in the interval 0 ~ rp ~ 1r /2 

~~;\ ~ ~pq\p - qi( 1 - 4pq sin2 ~)-a 
~~~~ ~ 2pq\p- qi(1- 4pq sin2 ~)-4 rp. 

Hence, applying Taylor's formula and supposing 0 ~ rp ~ 1'1 we get for x 

(8) x = iB,.(p - q)rp8 + M rp5 

where 

(9) IMI < fiB,.\p - q\(1 - pqT2)-4, 

or 

(10) X = Lrp8 

where 

(11) ILl < -frB,.lp- q\(1 - pqT2)-3. 

Using inequalities (9) and (11), we easily find 

(12) sin (tVlJ:rp- x) =sin (tVJi:rp) - iB,.(p- q)rp8 cos (tv'B,.rp) + r 

where 

provided 0 ~ rp ~ 1'. 

6. To find an appropriate expression of the integral J we split it into 
two integrals, J1 and J2, taken respectively between limits 0, 1' and T, 1r. 

We have 
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because sin ~ > ;. Let 11 = 1 ;, then by inequality (4) 

But for positive x the following inequality holds: 

(14) 

consequently 
i "'e_,.'du e-1 

--<-· 
z u 2x2' 

i" d!() e-tB.~' e-ty'if.: 
'Rq; < B .. 12 = 3]jf' 

Noting that R(!()) is a decreasing function of!() we have for 1 ~ !() ~ 11 

Hence, 

i~,Rd!() < ~. log! e-lv'B. 
!() 2 2 ' 

and combining this inequality with the one previously established, we 
have finally 

(15) 

7. More elaborate considerations are necessary to separate the 
principal term and to estimate the error term in J t· Making use of the 
inequality 

~ -- <--
1

1 11 x
2 

sin x x 6 sin x 

we can present Jt thus: 

J
1 
=! rTR sin (tVB:!()- X)d!() + /). 

211' Jo !() 
where 

and, because R < %e-lB..,, in the interval 0 < rp < , 

ltJ.I < r ,B;t· 
32r sin 2 
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Since r 2 ;;i; % we find by direct numerical calculation 

7' --- < 0.0205, 
3211" sin i 

and so, finally, 

1~1 < 0.0205B;1• 

8. Referring now to inequality (7), we can write 

_! {
7

R sin (rVJf;.IP- x) d<P = _! re-!B•<P' sin (tvB:<P- x) diP t ~1 Zr)o IP Zr)o IP 

where 

~~l~ < :&rfo"'e-!B,.,2~d'P = ~~1 

< 0.04B;l. 

Combining this with the result of the preceding section, we can present 
J1 thus 

(16) J _ 2l' _, 8 , sin (rVBniP - x)d + A 
1-- e • •<P cp '-'2 

211" 0 • cp 

and 

~~21 < 0.0605B;1
• 

9. To simplify the integral in the right member of (16), we substitute 
for sin (ryB,.If' - x) its expression (12). Taking into account inequal­
ity (13), we get (17): 

! f 7 

e-lB,.pt sin (rVIf;.rp - X) d1p :::: ! r7 

e-lBn!PI sin (rVJi:'IJ) d'IJ _ 
Zr)o <P Zr)o IP 

B {" _B.I(Jt -

- e,;(p - q) )o e 2 <P2 cos (rv B,.<P)d"' + ~3 
where 

But 
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and so 

1 9 IAal < 
4
y'2;B;'IP- qJ(l - pqr2)-4 + 6411-(p- q) 2(1 - pqr2)-6B;1 . . 

Now pq ;iii %, r2 ;iii %, B,. Sf; 25, consequently 

1 1 (20)
4 

__:;dJ-i(l - pqr2)-4 :s; -- - < 0.0385. 
4y'27r n - 20y'2; 17 

On the other hand, 

3{(p + q)2 (p- q)2
} 17 3 l - pqr2 Sf; l - 5 -2- - -2- = 20 + 20(p - q) 2

, 

and for positive x the maximum of 

x(H + -.hx2)-6 

is attained for x2 = 1 %a, whence it follows that 

9 I I (1 2)-6 < 9 (17)t(55)6 0 051 6411- P - ql - pqr = 6411- 33 51 < · · 

Taking into account all this, we have 

IAal < 0.09jp - qJB;;1
• 

10. As to integrals in the right-hand member of (17) we can write 

(18) 2l' -•s ,sin (rv'B:IP)d 2l'" -•s ,sin (tv'B:IP)d + A - e•·'~ ip=- e••~~> IP 4 
21r o 1P 21r o 1P 

(19) Bn(P - q) r·e-lB·'~'IP2 cos (tv'B:~P)di{J = 
611' Jo 

= B.(~- q) L .. e-ts.,11P2 cos (tv'B:IP )diP + A. 

where 

and 

because 
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for x > 1, as can easily be proved. Finally, taking into account (15), 
(16), (17), (18), (19), we get 

(20) IJ - ! f.,; e-iB.,Isin (ty'B,.cp) dcp + . 
2-n-Jo cp 

+ Bn(P q) f'" lB I 2 (,..roB )d I< 0.065 + 0.09lp- q! + 
611" Jo e-· •~-' cp cos ~ v DnlfJ cp Bn 

+(~log~+ B;i + B;l + B;;t )e-iv'B. < 0.065 + 0.09lp- q! + !e-iv'B. 
4 2 6 3r rv'3 Bn 2 

since for Bn ~ 25 

Differentiating the well-known integral 

e-4zl cos bxdx = - ~e-ra L.. ll bl 

2 a (a> O) 

twice with respect to b, and after that substituting a = Yz, b = r, we 
find for (22) this expression: 

p - q (1 - r2)e-tl'2. 
6y21fBn 

On the other hand, an integral of the type 

L( ) So
., 1 ,sin aud a = e-,u __ u 

0 u 

can be reduced to a so-called "probability integral." In fact, the 
derivation with respect to a gives 

r.. 1 at 

L'(a) = Jo e-2"
2 

cos audu = }y'"2;e -2 . 

and since L(O) = 0, 
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Consequently, integral (21) can be reduced to 

~ Lr e-iuldu. 

Having found an approximate expression of the integral J after sub­
stituting in it s2 and s1 fort and taking the difference of the results, we 
find the desired expression of P. 

11. The result of this long and detailed investigation can be sum­
marized as follows: 

Theorem. Let m be the number of occurrences of an event in a series 
of n independent trials with the constant probability p. The probability P 
of the inequalities · 

np +! + r1v'nj)q ~ m ~ np- t + t2v'nj)q 
where extreme members are integers, can be represented in the form 

1 ir u
1 

[ t1
1 

t1
1
] 

(23) P = ~ ro: 
2

e - 2 du + ~ (1 -We-T- (1 - tDe -2 +w. 
v 211' r' 6 21rnpq 

The error term w satisfies the inequality 

lwl < 0.13 + 0.18lp - qi + e-lynpq 
npq 

provided npq ~ 25. 
By slightly increasing the limit of the error term, this theorem can 

be put into more convenient form. Let t1 and t2 be two arbitrary real 
numbers and let P denote the probability of the inequalities 

np + t1Vfipq ~ m ~ np + t2Vfipq. 

If the greatest integers contained in 

np + t2Vfipq and nq - t1Vfipq 

are re~pectively, A2 and At, the preceding inequalities are equivalent to 

n- A1 ~ m ~ A2. 

To apply the theorem, we set 

np - ! + s2v'nj)q = A2 = np + t2Vfipq- 82 
np +! + t1v'nj)q = n- A1 = np + t1Vfipq + 81 

82 and 81 being, respectively, the fractional parts of np + t2Vfipq and 
nq- hy';ipq. Hence, 
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Applying Taylor's formula, it is easy to verify that 

ftl h% 

-- e 2du--- e 2du- < 
1

1 iii -~ 1 ill -~ (! - o,)e -2 + (! - 02)e -21 0.061 
y'2; it y'2; 1, ~ npq 

I 
q - P [ (l - We -tf - (1 - tDe -ff] - q - P [ (1 - tne 
6~ 6~ 

_ (1 _ tDe -~]~ < 0.069Jp - qJ 
npq 

whence, finally, we can draw the following conclusion: For any two 
real numbers tt, t2, the probability of the inequalities 

k/wj}q ~ m- np ~ t2vnpq 

can be expressed as follows: 

P = -- e-lu'du + 2 + . 1 ih · (! - 01)e-W + (! - 02)e-itt1 

y'2; h v'211'npq 

+ q - p [(1 - ti)e-l"' - (1 - tne-W] + 11 
6~ 

where 82 and o, are the respective ·fractional parts of 

and 
np + t2vnpq and nq- t1Viii)q 

1111 < 0.20 + 0.25Jp- qJ + e-~v;;pq 
npq 

provided npq ~ 25. 
In particular, if t2 = -t1 = t, the probability of the inequality 

Jm - npJ ~ tVii"i)q 
is expressed by 

p = _2_ r~e-i"'du + 1 - o,- 02e-tt• + 11 
y'2;Jo ~ 

"ith the same upper limit for 11. Laplace, supposing that np + tvnpq 
is an integer in which case 02 = 0 and o, is a fraction less than (npq)-Yz, 
gives for P the approximate expression 

P = -- e-!"'du + ---2 L' e-it• 
y'2; 0 ~ 

without indicating the limit of the error. Evidently Laplace's formula 
coincides "ith the formula obtained here by a rigorous analysis, save for 
terms of the same order as the error term 11, 
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To find an approximate expression for the probability P of the 
inequality 

it tmffires to take 

t = E.Jfg• 
Then 

~ 11 _nel 

p = - !: r· pqe-2" du + 1 ~ 82e 
2

pq + 0 
v 2r Jo 21rnpq 

and evidently P tends to 1 as n increases indefinitely. This is the second 
proof of Bernoulli's theorem. 

Referring to the above expression for the probability of the inequalities 

kvnpq ~ m - np ~ t,y"iipq 

and supposing that the number of trials n increases indefinitely while 
h and t2 remain fixed, we immediately perceive the truth of the following 
limit theorem: The probab1:lity of the inequalities 

tends to the limit 

a.s n tends to infinity. 

m- np · 
t1 ~ _ 1- ~ ta 

vnpq 

This limit theorem is a very particular case of an extremely general 
theorem which we shall consider in Chap. XIV. 

12. To form anidea of the accuracy to be expected by using the 
foregoing approximate formulas, it is worth while to take up a few 
numerical (>Xamples. Let n = 200, p = q = H and 

95 ~ m ~ 105. 

The exact expression of the probability that m will satisfy these ine­
qualities is 

- 200! 200[ (100 100. 99 100. 99. 98 
p - 100!100!2- 1 + 2 101 + 101. 102 + 101. 102. 103 + 

+ + . 100. 99. 98. 97 100. 99. 98. 97. 96 )] 
101 . 102 . 103 . 104 101 . 102 . 103 . 104 . 105 
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The number in the brackets is found to be 9.995776 and its logarithm to 
five decimals 

0.99982. 

The logarithm of the first factor, again to five decimals, is 

2.75088, 
whence 

log P = 175070; P = 0.56325, 

and this value may be regarded as correct to five decimals. Let us see 
now what result is obtained by using approximate formulas. In our 
example 

tv'fi/Pq = tv'50 = 5; 1 
t = V2 = 0.707107 

and 
2 r~ -~ 

y'2; Joe 2 du = 0.52050. 

The additional term 
e-o.2s 

'\/lOOr = 0.04394 

and by Laplace's formula 

p = 0.56444. 

This is greater than the true value of P by 0.00119. Now, the theoretical 
limit of the error is nearly 

"Jllf = 0.004 

so that, actually, Laplace's formula gives an even closer approximation 
than can be expected theoretically. 

When npq is large, the second term in Laplace's formula ordinarily 
is omitted and the probability is computed by using a simpler expression: 

P = -- e 2 du. 2 Ll -~ 
y'2; 0 

In our case this expression would give 

p = 0.52050 

instead of 0.56325 with the error about 0.043, which amounts to about 
8 per cent of the exact number. Such a comparatively large error is 
explained by the fact that in our example npq = 50 is not large enough. 

• In practice, when npq attains a few hundreds, the simplified expression for 
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P can be used when an accuracy of about two or three decimals is con­
sidered as satisfactory. In general, the larger t is, the better approxima­
tion can be expected. 

For the second example, let us evaluate the probability that in 6,520 
trials the relative frequency of an event with the probability p = % 
will differ from that probability by less than e = Uo. To find t, we 
have the equation 

tvnpq =En 

where 
n = 6520, p = t, q = i, E = -h, 

which gives 

t = 130
·
4 

= 3.2965 
..y'i564] ' 

and, correspondingly, 

2 fl u' 
yZ;Jo e-2du = 0.999021. 

Since m satisfies the inequalities 

3912 - 130.4 ~ m ~ 3912 + 130.4 

the fractions 81 and 82 are 81 == 82 = 0.4 and' the additional term is 

0·2 e-5·4334 = 0.000009. 
V3129.&r . 

Hence, the approximate value of P is 

p = 0.999030. 

To judge what is the error, we can apply Markoff's method of con­
tinued fractions to find the limits between which Plies. These limits are 

0.999028 and 0.999044. 

The result obtained by using an approximate formula is unusually good, 
which can be explained by the fact that in our example tis a rather large 
number. Even the simplified formula gives 0.999021, very near the 
true value. 

Finally, let us apply our formulas to the solution of the inverse 
problem: How large should the number of trials be to secure a probability 
larger than a given fraction for the inequality 

I~- PI~ E? 
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Let us take, for example, p = Va, E = 0.01 and the lower limit of proba~ 
bility 0.999. To find n approximately, we first determine t by the 
equation 

which gives 

Hence, 

2ll -~ -- e 2 du = 0 999 y'2;0 . ' 

t = 3.291. 

pqt2 20000 . 
n = 7 = - 9-(3.291)2 = 24,066, approXImately. 

We cannot be sure that this limit is precise, since an approximate formula 
was used. But it can serve as an indication that for n exceeding this 
limit by a comparatively small amount, the probability in question will 
be >0.999. For instance, let us take n = 24,300. The limits for m 
being 

8,100- 243 ~ m ~ 8,100 + 243, 

we find t from the equation 

t = E rn = 3.3068 \)pq 
and correspondingly 

2 L' -~ _ rn: e 2du = 0.999057. 
v21r o 

The additional term in Laplace's formula being 0.000023, we find 

p > 0.99908 - 0.00006 > 0.999. 

Thus, 24,300 trials surely satisfy all the requirements. 

Problems for Solution 

1. Find approximately the probability that the number of successes will be con­
tained between 2,910 and 3,090 in 9,000 independent trials with constant probability 
%. AM. 0.9570 with an error in absolute value <IO-• [using (23)]. 

2. In Buffon's experiment a coin was tossed 4,040 times, with the result that heads 
turned up 2,048 times. What would be the probability. of having more than 2,050 
or less than 1,990 heads? AM. 0.337. 

3. R. Wolf threw a pair of dice 100,000 times and noted that 83,533 times the 
numbers of points on the two dice were different. What is the probability of having 
such an event occur not less than 83,533 and not more than 83,133 times? Does the 
result suggest a doubt that for each die the probability of any number of points was 76? 
AM. This probability is approximately 0.0898 and on account of its smallness some 
doubt may exist. 
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'· If the probability of an event E is _Y2, what number of trials guarantees a 
probability of more than 0.999 that the difference between the relative frequency of 
E and Y2 will be in absolute value less than 0.01? Ans. 27,500. 

6. If a man plays 10,000 equitable games, staking Sl in each game, what is the 
probability that the increase or decrease in his fortune will not exceed S20 or $50? 

~ Ans. (a) 0.166; (b) 0.390. 
6. If a man plays 100,000 games of craps and stakes 50 cents in each game, what 

is the probability that he will lose less than $300? Ans. About Y2 00. 

'1. Following the method developed in this chapter, prove the following formula 
for the probability of exactly m successes in n independent trials with constant 
probability p: 

1 _!:[ (q - p)(t3 
- 3t)] T,.=\1 e 2 1+ +A 

2~pq 6~ 

where t is determined by the equation 

m = np + ty'npq 
and 

I I 
0.15 + 0.25lp - ql -tv'ii'PO 

A < ( )' +e npq • . 

provided npq ~ 25. 
8. Developments of this chapter can be greatly simplified if p = q = Y2 (sym­

metrical case). In this case one can prove the following statement: The probability 
of the inequalities 

can be expressed as follows: 

1 i'' 1 (!2' - !t)e-ite• .;... (t,• - !,),-ir•l P = _ In ,-,u•du + _ ;;;- + A 
v 211' r, 12v~ 

where !AI < l/2n1 for n > 16. 
9. In case of "rare" events, the probability p may be so small that even for a 

large number of trials the quantity >. = np may be small; for example, 10 or less. 
In cases of this kind, approximation formulas of the type of Laplace's cannot be used 
with confidence. To meet such cases, Poisson proposed approximate formulas of a 
different character. Let P .. represent the probability that in n trials an event with 
the probability p will occur not more than m times. Show that 

where 

and 

[ 
>. ~ ~ ] P. = e->- 1 +- +- + · · · + + ~ = Q .. +A 
1 1·2 1·2·3 .. · m 

IAI < (eX - l)Q.. if 
IAI < (eX - 1)(1 - Q.) 

1 >,1 
>-+-+-4 n 

X= • 
2(71- >.) 
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Indication of the Proof. We have 

[. 1 -! (1 -~)(1 -~) ... (t -~) ] 
>. n>.2 n n n >."' 

P.,. = q" 1 +- + --- + · .. + · q 1•2q2 1·2·3•oom q"' 

N 
. }. 

ow, smce q = 1 - -
n 

and 
· [).) X-k i-1( ) ().) ( ) ~ i!=i ().H)I n 1 +}.- k ~ n 1 +).- k < ek=O ~ e2(n-X)• 

k=O n - >. k=O n - >. 

Consequently 

p < (1 - ~)n)~n+_i~;[l + ~ + }.2 + . • • + X"' ]· 
·"' n 1 1· 1·2·3·oom 

But 

( 
>.)" -X-~ 1-; < e 2n, 

whence 

[ 

}. }.2 }."' ] 
Q,. = e-X 1 + - + - + .. · + · 1 1·2 1·2·3 .. · m 

On the other hand, 

II 

~ n(n -1) · · · (n- J' + 1) 
1 - P .. = qn-"pJA = 

}'! 
~&•m+l 

whence 

and 
p,. > eXQm + 1 -eX, 

The fin!U statement follows immediately from both inequalities ohtllined for P,., 



APPROXIMATE EVALUATION OF PlWBABILITIES 137 

10. With the usual notation, show that 

where 

~-(n-m)>.t_m(m-1)[ ((n _ m)>.• m• )] 
Q = en 2nl 2n 1 _ (J + ; 

3(n - >.) 1 2n(n - m) 
0<6<1. 

Indication of the Proof. Referring to Chap. I, page 23, we have 

But 

whence 

Hence 

T .. <- 1-- 1-~ >.•( x)"-"'( )"'-• 
m! n 2n 

. x•( x)"-"'( m)m-t T .. >;jl-; 1--; 2. 

( )

•-• rn (n-rn)>.t X -H->.---
1 -- < e n 2nl ' 

n 
m ---

( )

•-1 m(m-1) 

1-- < e 2n ' 
2n 

( 
x)·-.. ( m)~ ->.+~-(n-m)>.l_m(m-1) _(n-m)).l __ m_•_ 

1 - - 1 - - 2 > e n 2n' 2n • e 3(n- >.)• 2n(n- m), 
n n 

and a fortiori 

l - - l - - 2 > e 11 2n1 2n 1 - -( 
>.)"-"'( m)~ ->.+~- (n-m)>.•_ m(m-1)[ (n _ m)X• 

n n 3(n- X) 1 

m• ] 
2n(n- m) 

If X and m are both small in comparison to n the above-introduced factor Q will bt> 
near 1. Under such circumstances we may be entitled to use an approximate formula 
due to Poisson 

>.• 
T =-t~ 

• tr~l • 
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Indicatifm of the Proof. We have 

[ 1 -! (1 -~)(1 -~) ... (1 -~) 1 >. n>.' n n n xm 
P .. = q" 1 +- + --- + .. · + · q 1·2q1 1·2·3 .. ·m qm 

Now, since q == 1 - ~ 
n 

and 
' {>.) >.-k i-1( ) [>.)( ) 2; n=>;. (}.+j)2 II 1 + >.- k ;li II 1 + >.- k < i=O ;li i<n->-). 

k=O n - >. k•O n - >. 

Consequently 

.P .. < (1- ~\ ")~~~~1~;[1 + ~ + ~ + · · · + >."' ]· 
~) 1 1 · 2 1 · 2 · 3 · · · m 

But 

( >-)" ->.-~ 1-; <e 2n, 

whence 

P .. <eXQ,.; [ 
>. >,.2 X"' ] 

Q .. = e-" 1 + - + - + · " + · 1 1·2 1·2·3 .. · m 

On the other hand, 

II 

~ n(n - 1) • · • (n - p. + 1) 
1 - p .. = q"-P.pP. = 
' p.! 

whence 
1 - P .. < eX(l - Q .. ) 

and 
P .. > eXQ .. + 1 -eX. 

The final statement follows immediately from both inequalities obtained for P .. , 
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10. With the usual notation, show that 

where 

>..• 
T,. = e->.-Q 

m! 

~-(n-m)>.•_m(m-1)[ ((n _ m)>..• m• )] 
Q =en 2nl 2n 1 _ 8 + ; 

3(n - >..)' 2n(n - m) 
O<tJ<l. 

Indication of the Proof. Referring to Chap. I, page 23, we have 

T .. <~ 1-~ 1-~ ( . )"-"'( )·-· 
m! n 2n 

>.."' >.. m-
( )

"-"'( )m-1 T.>;;;jl-; 1--;; 2. 

But 

( 
>..)".... ->.+!!!>.-~ 1-- < IJ II 2nl I 

n ( )
•-1 m(m-1) 

m ---1-- < e 2n 1 

2n 

whence 
>..• ~-(11-m)).l-~ 

T < -e->. . 11 11 2n' 2n • 
., m! 

Hence 

and a fortiori 

1 - - 1 - - 2 > e " 2n1 2n 1 - --- -( 
>..)"-"'( m)!'!..::.! ->.+~-(n-m)).t_m(m-1)[ (n _ m)>..l 
n n 3(n- >..) 1 

m• ] 
2n(n- m) 

If >.. and m are both small in comparison to n the above-introduced fattor Q will bt> 
near l. '[nder such circumstances we may be entitled to use an approximate formula 
due to Poisson 

>..• 
T = _.-l • • r . 
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The preceding t>lementary analysis gives means to estimate the error incurred by using 
this formula. 

11. Apply the preceding considerations to the case n = 1,000, p = X00, >.. = 10 
and m = 10. Ans. 0.1256 < T1o < 0.1258. Poisson's formula gives 0.1251-a 
very good approximation. Alo, 0.5807 < P1o < 0.5863. Taking P10 = 0.583, the 
error in absolute value will be less than 3.3 · 10-3• By a more elaborate method it is 
found P1o = 0.5830. 
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CHAPTER VIII 

FURTHER CONSIDERATIONS ON GAMES OF CHANCE 

1. Wlu•n a penmn undertakes to play a very large number of games 
under theoretically identical conditions, the inference to be drawn from 
Brrnoulli's theorem is that that person "ill almost certainly be ruined 
if the mathematical expect~tion of his gain in a single game is negative. 
In case of a positive expectation, on the other hand, he is very likely to 
win as large a sum as he likes in a sufficiently lon'g series of gamE'!'. 
Finally, in an equitable game when the mathematical expectation of a 
~~;ain is Z('ro, the only inference to Le drawn from Bernoulli's theorem i" 
that his gain or loss willlikl>ly be small in comparison \'lith the number of 
games played. 

These conclusions are appropriate however, only if it is possible to 
continue the series of games indefinitely, with an agreement to postpone 
the final settling of accounts until the end of the series. But if the 
settlement, as in ordinary gambling, is made at the end of each game, 
it may happen that even playing a profitable game one will lose all his 
JllOIH'Y and will have to dis<·ontinue playing long before the number of 
games becomes large enough to enable him to realize the advantages 
whieh continuation of the games would bring to him. 

A whole series of new problems arises in this connection, known as 
probh·ms on the duration of play or ruin of gamblers. Since the science 
of probability had its humble origin in computing chances of players in 
different games, the important question of the ruin of gamblers was 
di:o;<·ussed at a very early stage in the historical de,·elopment of the 
throry of probability. The simplest problem of this kind was solved by 
Huygens, who in this field had such great successors as de Moine, 
Lagrange, and Laplace. 

2. It is natural to attack the problem first in its simplest a."pect, and. 
then to proceed to more involved and difficult quet~tions. 

Problem 1. Two players .4. and B play a series of games, the proba­
bility of winning a single game being p for A and q forB, and ea<·h game 
ends \'lith a lo.'\8 for one of tht>m. If the lO!'ier after eaeh game gives his 
adn•rsary an amount representing a unit of money and the fortunes of 
A and B are measured by the whole numbers a and b, what is the proba­
bility th11t A (or B) will he rtlint>d if no limit iz5 !:let for tht> num~r (Jf 
g'.ill1('1'! 

139 



140 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP. VIII 

Solution. It is necessary first to show how we can attach a definite 
numerical value to the probability of the ruin of A if no limit is set for 
the number of games. As in many similar cases (see, for instance, Prob. 
15, page 41) we start by supposing that a limit is set. Let n be this 
limit. There is only a finite number of mutually exclusive ways in which 
A can be ruined in n games; either he can be ruined just after the first 
game, or just after the second, and so on. Denoting by p1, p2, . . . Pn 
the probabilities for A to be ruined just after the first, second, . . . nth 
game, the probability of his ruin before or at the nth game is 

Pt + P2 + · · · + Pn· 

Now, this sum being a probability, must remain <1 whatever n is. 
On the other hand, each term of this sum is ~ 0 for the same reason. 
Both remarks combined, show that the series 

Pt + P2 + P3 + · · · 
is convergent. We take its sum as the probability for A to be ruined 
when nothing limits the number of games played. So it is clear that 
this probability, although unknown, possesses a perfectly determined 
numerical value. Let us denote by Yz: the probability for A to be ruined 
when his fortune is x. The probability we seek is Ya· Obviously, 

{1) Yo= 1, 

for A is certainly ruined if he has no money left. Similarly 

(2) Ya+b = 0 

because if the fortune of A is a + b, it means that B has no money where-­
with to play, and certainly the ruin of A is then impossible. Further, 
considering the result of the game immediately following the situation 
in which the fortune of A amounted to x it is possible to establish an 
equation in finite differences which Yz: satisfies. For, if A wins this game 
(the probability of which case is p), his fortune becomes x + 1 and the 
probability of being ruined later is Yz:+t· By the theorem of compound 
probability, the probability of this case is PYz:+l· But if A loses (the 
probability of which is q), his fortune becomes x - 1 and the probability 
that the one possessing this fortune will be ruined is Yz-1· The proba­
bility of this case is qyz-.1. Now, applying the theorem of total proba­
bility, we arrive at the equation 

(3) Yz: = PYz:+l + qy:~:-1· 
This equation has a particular solution of the form a"' where a is a 

root of the equation 

a= pa2 + q. 
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If p ;&. q there are two roots 

1 !l 
'p 

and, correspondingly, there are two distinct particular solutions of 
equation (3): 

Obviously, 

Ys = c + n(~Y 
is also a solution of (3) for arbitrary C and D. Now, we can dispose of 
C and D so as to satisfy conditions (1) and (2). To this end we have the 
equations 

whence 

and 

C+D=l 
paHC + <fH D = 0, 

qa+bpz _ paHqz 
Y:r: = px(<f+b _ pa+b)' 

It remains to take x = a to obtain the required probability 

<f(qb - p•) qa(p• - qb) 
Yo= <f+b _ pa+b = pa+b _ qaH 

that the player A possessing the fortune a will be ruined. Similarly, 
the probability of the ruin of B is 

It turns out that 

so that the probability that the series of games will continue indefinitely 
without A or B being ruined, is 0. The probability 0 does not show the 
impos:;ibility of an eternal game, because this number was obtained, 
not by direct enumeration of cases, but by passage to the limit. Theo­
retically, an eternal game is not excluded. Actually, of course, this 
possibility can be disregarded. 
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If p = q = ~§, so that each single game is equitable, the preceding 
solution must be modified. In this case, the above quadratic equation 
in a has two coincident roots = 1, and we have only one particular 
solution of (3), y:JJ = 1. But another particular solution in this case is 
x, so that we can assume 

Y~: = C + Dx 

and determine C and D from the equations 

Thus, we find that 

and for x =a 

C = 1; C + D(a +b) = 0. 

X 
Y~ = 1--­

a+b 

b 
YIJ =a+ b' 

Similarly, giving Zb the same meaning as above, 

a 
Zb =a+ b' 

If, therefore, each single game i~ equitable, the probabilities of ruin are 
inversely proportional to the fortunes of the players. The practical 
conclusion to be derived from this theoretical result is sheer common 
sense: It is un·wise to play indefinitely with an adversary whose fortune 
is very large without submitting oneself to the great risk of losing all 
one's money in the course of the games, even if each single game is 
equitable. Gamblers who gamble at an even game with any willing 
individual are in the sal,lle condition as if they were gambling with an 
infinitely rich adversary. Their ruin in the long run is practically 
certain. 

If single games of the series are not equitable, that is, p ¢ q the 
conclusion may be different. Supposing p > q, we have a case when 
the expectation of A is positive; in each single game, A has an advantage 
over his adversary. The above expression for Yo may be written in the 
form 

and, because q/p < 1, it is easy to see that Ya remains always less than 
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and converges to this number when b becomes infinite. Thus, playing a 
serie~ of advantageous games even against an infinitely rich adversary, 
the probability of escaping ruin is 

If a is large enough, this can be made as near 1 as we please, so that a 
player with a large fortune has good reason to believe that in the course 
of the games he will never be ruined, but that actually he is very likely 
to Vlin a large sum of money. 

This conclusion again is confirmed by experience. Big gambling 
institutions, like the Casino at Monte Carlo, always reserve certain 
advantages to themselves, and, although they are willing to play with 
practically everybody (as if they played against an infinitely rich adver­
sary) the chance of their being ruined is slight because of the large 
capital in their possession. 

3. In the problem solved above the stakes of both players were 
!lUpposed to be equal, and we took them as units to measure the fortunes 
of both player!l. Kext it would be interesting to investigate the case in 
which the stakes of A and B are unequal. An exact solution of this 
modifiPd problt'm, l'iinee it depends on a difference equation of h;gher 
order, would be too complicated to be of practical use. It is therefore 
Pxtrt'mely inten•l'iting that, following an ingenious method developed by 
A. A. Markoff, one can establish simple inequalities for the required 
probabilitirA which give a good approximation if the fortunes of the 
playf'rs art> large in comparison \'\rith their Btakes. 

Problem 2. If the conditions presupposed in Prob. 1 are modified, 
in that the stakt>s of .4 and B measured in a convenient unit are a and {J 

and tht'ir respecth·e fortunes are a and b, find the probabilities for A or 
B to be ruined in the sense that at a certain stage the rapital of A will 
b('eome less than a or that of B less than {3. 

Solution. Let y, be the probability for A to be forced out of the 
game by the lack of sufficient money t.o set a full Btake a when his 
fortune amounts to x and consequently that of his adversary is a + b - x. 
In the same way as before, we find that y. is a solution of the equation 
in finite differenres: 

(4) Y• = PYz.+~ + qy_. 

To determine y. completely, in addition to (4), we have two sets of 
l'lUpplementary conditions: 

l5) 
(6) 

Yo = Yt = · · · = Y•-t = 1 
Yo+Jo = y,...,._. = · · · = Y•-+4-11-tl = 0. 
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Equation (5) expresses the fact that if the fortune of A becomes less 
than his stake, it is certain that A must quit. On the contrary, equation 
(6) indicates the impossibility for A to be ruined if the other player B 
does not have enough money to continue gaming. Equation (4) is an 
ordinary equation in finite differences of the order a + {J. It has par­
ticular solutions of the form fft where fJ is a root of the equation 

(7) p(Ja+fl - (J« + q = 0. 

The left-hand member for fJ = 0 is positive and with increasing 0 de­
creases and attains a minimum when 

a 
p(Jfl =a+ {J 

and then steadily increases and assumes positive values for large 8. 
This minimum must be negative or zero because 0 = 1 is a root of (7). 
Now, if it is negative, there are two positive roots of (7). One of them 
is (J = 1 and another > or < 1 according as 

a 
p<a+fJ or 

a 
p>a+fJ 

or else 
p{J- qa <: 0 or >0. 

That is, the positive root of (7) different from 1 is > 1 when single games 
are favorable to Band < 1 if they are favorable to A. In case of equita­
ble games, both positive roots coincide and 0 = 1 is a double root of (7). 
All the other roots of (7) are negative or imaginary. 

The regular way to solve the problem would be to write down the 
general solution of (4) involving a + fJ arbitrary constants to be deter­
mined by conditions (5) and (6). As this method would lead to a com­
plicated expression for Yz, we shall refrain from seeking the exact solution 
of our problem, and instead, following A. A. Markoff's ingenious remark, 
we shall establish simple lower and upper limits for Yz which are close 
enough if the fortunes of the players are large in comparison with their 
stakes. 

Lemma. If Ys is a solution of equation (4) and none of the numbers 

Yo, Yt, • · · Ya-1 

Ya+b1 Ya+b-11 • • • Ya+b--13+1 

is negative, then Yz ~ 0 for x = 0, 1, 2, ... a+ b. 
Proof. Let u~> (k = 0, 1, 2, ... a - 1) represent the probability 

that the player A whose actual fortune is x (and that of his adversary 
a+ b - x) will be forced to quit when his fortune becomes exactly = k. 
Evidently u~k> is a solution of equation (4) satisfying the conditions 
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u~41 = 0 for x = 0, 1, ... k - 1, k + 1, ... a - 1; a + b, 
a + b - 1, . . . a + b - fJ + 1; u~"' = 1. 

Similarly, if v~ll(l = 0, 1, 2, ... fJ - 1) represents the probability that 
the player B will be forced to quit when the fortune of A becomes exactly 
= a+ b - l, v~ll will be a solution of (4) satisfying the conditions 

v~11 = 0 for x = 0, 1, 2, ... a - 1; a + b, ... a + b - l + 1, 
a + b - l - 1, . . . a + b - fJ + 1; v~!4-1 = 1. 

Thus we get a + fJ particular solutions of (4), and it is almost evident 
that these solutions. are independent. Moreover, since they represent 
probabilities, u~k> ~ 0, v~11 ~ 0 for x = 0, 1, 2, ... a+ b. Now, any 
llolution Y~ of (4) with given values of 

Yo, Ytr • · · Ya-1 

Ya+~>, Ya+~~-1, • · • Y~+t 

can be represented thus 

a-1 jl-1 

Y• = l;yku~k> + ~ye>+b-lv~n. 
1:•0 l=O 

Hence, y, ~ 0 for x = 0, 1, 2, ... a + b if none of the numbers 

Yo, 1/1, · · • Ya-1 

1/a-fJI, 1/a~l, • • • 1/a~+l 

is negative. This interesting property of the solutions of equation (4) 
derived almost intuitively from the consideration of probabilities can be 
f'stablished directly. (See Prob. 9, page 160.) 

The lemma just proved yields almost immediately ·the follo\\ing 
proposition: If for any two solutions y; and y;' of equation (4) the 
inequality 

holds for 

x = 0, 1, 2, ... a - 1; a + b, a + b - 1, ... a + b - fJ + 1, 

thl' l'ame inequality will be true for all :t = 0, 1, 2, ... a + b. It 
I'Uffi<'es to notice that y. = y~' - y! is a solution of the linear equation 
(4) and, by hypothesis, Ys ~ 0 for :t = 0, 1, 2, ... a- 1; a+ b, 
a + b - 1, ... a + b - fJ + 1. 

~ow we can come back to our problem. First, if the mathl'matical 
expe<'tation of .4 

pd- qa 
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is different from 0, equation (7) has two positive roots: 1 and 8. With 
arbitrary constants C and D 

Y! = C + D" 

is a solution of (4). \Vhatever C and D may be, y~ as a function of x 
varies monotonically. Therefore, if C and D are determined by the 
conditions 

Yri = 1, 
we shall have 

y; :i 1 
Y! :i 0 

if x = 0, 1, 2, . . . a - 1 
if x = a + b {3 + 1, . . . a + b 

and by the above established lemma, taking into account conditions (5) 
and (6), we shall have for the required probability the follo\\ing inequality 

or, substituting the explicit expression for y!, 
(Ja+b-;tl+l _ 8~ 

Y > . 
z = (Ja+b-11+1 - 1 

If, on the contrary, C and Dare determined by 

Y~-t = 1, y!~ = 0 
we shall have 

and 

Y! ~ 1 
y! ~ 0 

if x = 0, 1, 2, . . . a - 1 
if x = a + b - 13 + 1, ... a + b 

(Ja-i-11-«+1 _ e-+• 
Y < . 

z = (Ja+b-a+l _ 1 

Finally, taking x = a, we obtain the following limits for the initial 
probability Yo: 

(jr-IJ+l - 1 fJb - 1 ,. < . ::::; 11"-a+l-:-:-;----;"-;----: 
/'jt"+b-11+1 - 1 = y. - ea+b-a+l - t' 

They give a sufficient approximation to Ya if a and b are large com­
pared with a and /3. 

If each single game is equitable, equation (4) has a solution with two 
arbitrary constants: 

y; = C + Dx. 

Proceeding in the same way as before. we obtain the inequalities 

b-13+1 < < b . 
a+b-fJ+1=~=a+b-a+1 
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4. To Himplify the analyl'lis, it was l'Upposed that nothing limit.,d the 
number of gamPs played by A and B so that an eternal game, although 
Pxtremely improbable, was theoretically possible. We now tum to 
problems in which the number of games is limited. 

Problem 3. Players A and B agree to play not more than n games. 
The probabilities of winning a single game are p and q, respectively, and 
the stake!'l are equal. Taking these stakes as monetary units, the fortune 
of A is mea:sured by the whole number a and that of B is infinite or at 
least so large that he cannot be ruined in n games. What is the proba­
bility for A to be ruined in the course of n games? 

Solution. Let y ,.,, represent the probability for A to be ruined when 
his fortune is measured by the number x and he cannot play more than 
t games. The reasoning we have used several times shows that y,,, 
Hatisfies a partial equation in finite differences: 

(8) Ys:,t = PYs:tl.t-1 + qy,_l,t-1· 

Moreover, if A has no money left, his ruin is certain, which gives the 
rondition 

(9) Yo,t = 1 if t ~ 0. 

On the other hand, if A still possesses money and cannot play any more, 
his ruin is impossible, so that 

(10) Y:t.O = 0 if X> 0. 

Conditions (9) and (10) together with equation (8) determine 1/:t,t 

romplPtely for all positive values of x and t. To find an explicit expres-, 
:-<ion for 1/s:,c WP shall u:-<e Lagrange's method. Equation (8) has particular 
~>olutions of the form 

where a and 11 11atisfy the relation 

a{j = pa2 + q. 

We ('an solre this Pquation either for {j or for a which leads to two different 
(•xpressions of y,,. Solving for {j we have infinitely many particular 
solutions 

a:r(pa + qa-1) 1 

with an arbitrary a and we ~an seek to obtain the required solution in the 
form 

Y~.t = -
2
1

. f a~'- 1 (pq + qq-1)'/(a)da rt)c 
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where /(a) is supposed to be developable in Laurent's series on a certain 
circle c. To satisfy (10) we must have 

o~: r a>~-lj(a)da = 0 for X = 1, 2, 3, , .. mn.}c 
which shows that /(a) is regular within the circle c. To determine f(a) 
completely, we must have, according to (9) 

2
1 

.f(pa + qa-1)/(a) da = 1 for t = 0, 1, 2, .... 
11"'1. c a 

All these equations are equivalent to a single equation 

1 r f(a)da - 1 
2tri) ca - pEa2 - qE - 1 - E 

holding good for all sufficiently small E. The integrand has a single pole 
ao within c defined by 

ao - pEa~ - qE = 0, 

and the corresponding residue is 

q + pag /(ao). 
q-: pa~ 

But this must be equal to 
1 

1- E 

or, substituting for E its expression in ao 

q + pa3 
pa~- ao + q' 

and hence for all sufficiently small ao 

that is. if 

!( ) - q- pa~ . ao - 2 , 
pao- ao + q 

q- pa2 
f(a) = pa2 - a + q 

all the requirements are satisfied. Taking into account that p + q = 1, 
we have 

and also 

1 pa 
f(a) =-+--,' 1-a q-pa 

... 

J(a) = 1 + ][ 1 +(~)"]an. 
n•l 
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The expression for Y:r..e is therefore 

where co = 1 and c.. = 1 + (p/q)" if n ~ 1. 
It remains to find the coefficient of 1/a in the development of the 

integrand in a series of descending powers of a. Since 

' a:r-l(pa + qa-1)' = ~qp'q'-la2l~-l 
1=0 

this coefficient is given by the sum 

1-:r. 
T 

~Clp'qHc,_._!l 
1=0 

extended over all integers l from 0 up to the greatest integer not exceeding 
t-x 
-

2
- · Hence, the final expression for the probability Yo," is 

(11) 

11-tJ 
-2-

Ya.fl = qo ~ C~(pq)'[p"-o-21 + q"-o-!t] 
1=0 

\\ith the agreement, in case of an e\·en n - a, to replace the sum 

eorresponding to l = n ; a by 1. It is natural that the right-hand 

member of the preceding expression should be replaced by 0 if n < a, 
which is in pt>rfect agreemt>nt with the fact that A cannot be ruined in les.., 
than a games. 

The second form of solution is obtained if we express a as a function of 
fl Tht> equation 

pa2 -atJ+q=O 

ha\'ing two roots, we shall take for a the root 

{J- y{J!- 4pq 
a = '----=--::-----:....: 

2p 

dt>termint>d by the condition that it Yanishes for infinitely large positive 

{J and can be developed in power series of 1/{J when IPI > 2v'i)q. Csing 
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a in this perfectly determined sense, it is easy to verify that 

- 1 i(/1 - v /1 2 
- 4pq)= /1

1 

Yx,t- 2---; 2 , ~~d/1 
11'~ c p "'-

where cis a circle of radius > 1 described from 0 as its center, satisfies all 
the requirements. For it is a solution of equation (8). Next, for x = 0 
and t ~ 0, 

Yo , = _!._ipl! + .!. + · · · )a11 = 1 . 211'i c \P /12 

and, finally, fort = 0 and x > 0 

= ~i({J -v~)·_EL = o 
Yz,O 2ri c 2p /1 - 1 

because the development of the integrand into power series of 1//1 
starts at least ·with the second power of 1//1. 

To find Yz.t in explicit form, it remains to find the coefficient of 1/{3 
in the development of 

(/1 v (32 - 4pq)" _L_ 
.2P {3- 1 

in a series of descending powers of /1. Let 

(/1- V/12
- 4pq)'" = 1 + lz+I + ... , 

2p /1"' p.:+l I 

multiplying this series by 

~ 1 1 ---tJI-l+tJI-2+ ... +-+-+ ... 
t1 - 1. {:J f12 

we find that the coefficient of 1/ fJ in the product is 

l.: + lz.tl + ... + l,, 
and hence 

y,.,, = l:e + l.:+l + ... + l, 
provided t ~ x, for otherwi~e y,.,, = 0. The quadratic equation in a 
can be written in the form 

1 
a = fi(q + pa2) 

and the development of any power of its root vanishing for fJ = 0'.) into 
power series of 1/{J can be obtained by application of Lagrange's series. 
We have 

B•:l 
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but 

1 [d"-•(q + p~2)n~,;-1] = (x + 2i - 1)! . 1 
n! d~n-l e-o i!(x + i)! q*p 

if n = x + 2i, and = 0 if n = x + 2i + 1. Hence, 

l x(x + 2i - 1)! z+i i 

2+2i= i!(x+i)! q p 

l2f2i+l = 0, 

and finally 

(12) [ 1 + 
~ + a(a + 3)( )2 + a(a + 4)(a + 5)(pq) 3 + 

1/a,n = r 1pq 1 . 2 pq 1 . 2. 3 

+ ... + a( a + k + 1) · · · (a + 2k - 1) ( )k.] 
1·2 .. ·k pq 

n-a n-1-a . 
where k = -

2
- or k = 

2 
accordmg as n and a are of thP. 

same parity or not. 
5. The difference Ya.n - Ya,n-1 gives the probability for the player A 

to be ruined at exactly the nth game and not before. Now, this differ­
ence is 0 if n differs from a by an odd number, so that the probability of 
ruin at the (a+ 2i - 1)st game is 0. That is almost evident because 
after every game the fortune of A is increased or diminished by 1 and 
therefore can be reduced to 0 only if the number of games played is of 
the same parity as a. If n = a + 2i, the difference Ya,,. - Yo,a-1 is 

a(a + i + 1) · · · (a + 2i - 1) .. - qa+ip• 1. 2. 3 ... i . 

Such, therefore, is the probability for A to be ruined at exactly the 
(a + 2i)th game. The remarkable simplicity of this expression obtained 
by means which are not quite elementary leads to a suspicion that it 
might also be obtained in a simple way. And, indeed, there is a simple 
way to arrive at this expression and thus to have a third, elementary, 
solution of Prob. 3. 

Considering the possible results of a series of a + 2i games, let A 
stand for a game won by A, and B for a game lost by A. The result of 
t>\·ery serie,s will thus be represented by a succession of letters A and B. 
\\' e are intt'ret4ed in finding all the sequences which ruin A at exactly 
the la:;;t game. Bt>cause the fortune of A sinks from a to 0 there must be 
i letters A and i + a letters B in every sequence we consider. Besides, 
there is another important condition. ~t us imagine that the sequence 
is di'ided into two arbitrary parts, one containing the first letter and 
anotht>r the last letter of the sequ~nre. Let. z be the number of letter!! B, 
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and y that of letters A in the second or right part of the sequence. There 
will be a + i - x letters B and i - y letters A in the first or left part. 
It means that the fortune of A after a game corresponding to the last 
letter in the left part, becomes 

a + i - y - (a + i - x) = x - y 

and since A cannot be ruined before the (a+ 2i)th game, x must always 
be > y. That is, counting letters A and B from the right end of the 
sequence, the number of letters B must surpass the number of letters A 
at every stage. Conversely, if this condition is satisfied the succession 
represents a series of games resulting in the ruin of A at the end of the 
series and not before. 

To find directly the number of sequences satisfying this requirement 
is not so easy, and it is much easier, following an ingenious method 
proposed by D. Andre, to find the number of all the remaining sequences 
of i letters A and i + a letters B. These can be divided into two classes: 
those ending with A and those ending with B. Now, it is easy to show 
that there exists a one-to-one correspondence between successions of these 
two classes, so that both classes contain the same number of sequences. 
For, in a sequence of the second class (ending with B) starting from 
the right end, we necessarily find a shortest group of letters containing 
A and B in equal numbers. This group must end with A. Writing 
letters of this group in reverse order without changing the preceding 
letters, we obtain a sequence of the first class ending with A. Con­
versely, in a sequence of the first class there is a shortest group at the 
right end ending with B and containing an equal number of letters A and 
B. Writing letters of this group in reverse order, we obtain a sequence 
of the second class. 

An example will illustrate the described manner of establishing the 
one-to-one correspondence between sequences of the first and of the 
second rlass. Consider a sequence of the first kind 

B!BBABAA. 

The vertical bar separates the shortest group from the right containing 
letters A and Bin equal numbers. Reversing the order of letters in this 
group, we obtain a sequence of the second class 

BjAABABB 

and this sequence, by application of the above rule, is transformed again 
into the original sequence of the first class. The number of sequence;, 
of the first class can now be easily found. It is the same as the number of 
all possible sequences of i - 1 letters A and a + i letters B, that is, 

(a + 2i - 1)! (a + i + l)(a + i + 2) · · · (a + 2i - 1) 
(i - 1) !(a + i)! = I · 2 · · · (i - 1) · 
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The total number of sequences in both classes is 

2
(a + i + l)ta + ,: + 2) · · · (a+ 2i- 1}. 

1. 2 ... (i - 1) 

Hence, the number of sequences leading to ruin of A in exactly a + 2i 
games is 

(a + i + l)(a + i + 2) · · · (a + 2i) 
1·2 .. ·i -

_ 
2

(a + i + l)(a + i + 2) · · · (a + 2i - 1) "" 
. 1 . 2 ... (i - 1) 

a(a + i + 1) · · · (a + 2i - 1) 
1·2 ... i . 

As the probability of gains and losses indicated by every such sequence 
iR the same, namely, tf-Hpi the probability of the ruin of A in exactly 
a + 2i games is 

a(a + i + 1) · · · (a+ 2i - 1) . i 

1·2·3 .. ·i ~p 

and hence the second expression found for Ya ... follows immediately. 
The problrm concrrning the probability of ruin in the course of a 

prescribrd numbPr of games for a player playing against an infinitely 
rich advrrsary was first considered by de Moivre, who gave both the 
preceding solutionl'i without proof; it was later solvf'd completely by 
Lagrange and Laph~ce. The elementary treatment can be found in 
Bertrand's "Caleul des probabilites." 

6. Formula.~ (11) and (12), though elegant and UF.eful when n is not 
large, bPcome impracticable when fl. is somewhat large, and that is pre­
ei:o;rly tht> mo:o;t intt>re:o;ting ca."le. Since the quf'stion of the risk of ruin 
incurred in playing equitable games possesses special intf'rest, it would not 
he out of place at least to indicate here, though without proof, a con­
\'rnient approximate exprt'ssion for the probability y •.• in C8SE' of a large 
nand p = q = ~~. Lett be defined by 

t = a . 
V2(n +f)' 

then for n ~ 50 it is possible to t-stablish the approximat~ fonnula 

- 1 2 !' -·'d + 6 Ya.• - - _ ;-: t Z -
vr o 6n 

whert> -1 < 6 < 1. Suppose, for instan<'e, that tht fortune of a player 
amounts to $100. each stake hfing $1, and he dE'('ides to play 1.000, 
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5,000, 10,000, 100,000, 1,000,000 games. Corresponding to these cases, 
we find 

t = 2.2354, 0.9999, 0. 7071, 0.2236, 0.0707 

and hence 

~ L'e-•'dz = 0.9984, 0.8427, 0.6827, 0.2482, 0.0796. 

The corresponding approximate values of Ytoo,'/1 are 

0.0016, 0.1573, 0.3173, 0.7518, 0.9204. 

Thus, for a player possessing $100 there is very little risk of being ruined 
in the course of 1,000 games even if he stakes $1 at each game. The risk 
is considerably larger, but still fairly small, when 5,000 games are played. 
In 10,000 games we can bet 2 to 1 that the player will still be able to 
continue. But when the limit set for the number of games becomes 
100,000, we can bet 3 to 1 that the player will be ruined somewhere in the 
course of those 100,000 games. Finally, there is little chance to escape 
ruin in a series of 1,000,000 games. The risk of ruin naturally increases 
with the number of games, but not so fast as might appear at first sight. 

7. We conclude this chapter by solving the following problem, 
where the f9rtunes of both players are finite. 

Problem 4. Players A and B agree to play not more than n games, 
the probabilities of winning a single game being p and q, respectively. 
Assuming that the fortunes of A and B amount to a and b single stakes 
which are equal for both, find the probability for A to be ruined in the 
course of n games. 

Solution. Let Zz,1 be the probability for the player A to be ruined 
when his fortune is x (and that of his adversary a+ b - x) and he can 
play only t games. Evidently Zz, 1 satisfies the equation 

{13) Z:r,l = PZ.t-t-1,1-1 + qZ:z;.-1,1-1 

~perfectly similar to equation (8), but the complementary conditions 
serving to determine Zs,1 completely are different. First we have 

{14) Zo,c = 1 for t ~ 0. 

Next, 

(15) Za-+lJ,I = 0 for t ~ 0, 

because if A gets all the money from B, the games stop and A cannot be 
ruined. Finally, 

(16) Z:r,o = 0 for x = 1, 2, 3, ... a + b - 1, 
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because A, having money left at the end of play, naturally caanot be 
ruined. 

Since (13) has two series of particular solutions 

a.:er;t and a.'zr;t 

where a. and a.' are roots of the equation 

pa2 - {;a + q = 0 

both developable into series of descending powers of 13 for l/31 > 1, we 
shall seek Zz,t in the form 

z,,, = 2~1 [J(JS)a.J: + tp(f3)a.'"l/3'df3. 

Here the integration is made along a circle of sufficiently large radius and 
/(B) and IP(B) are two unknown functions which can be developed into 
series of descending powers of {J. Obviously z,,, satisfies (13) identically 
in x and t. For x = 0 and t ;;:; 0 we have the condition 

~i[/(8) + ~(B))S'd/3 = 1; t = 0, 1, 2, · ... 

whieh is satisfied if 

(17) 
1 

/(/3) + ~(B) = 8 - 1 

Condition (15) will be satisfied if 

(18) cfA+b/(8) + a.'GHtp(/3) = 0 

and it remains to show that at the same time (16) is satisfied. Solving 
(17) and (18}_ we have 

and 

(19) 
a.'•+•a."' - a.<>+•a'z 

/(f3)a_:t + ~(r;)a.'"' = (/3 - 1){a.'GH _ Q"+b) = 
( q)• a.'•+ .... :r - a,~~+ ...... 

= \P (r; - 1)(a'•+• - etA.;:~· 

Xow let a. be the root vanishing for ll = oo and a.' the other root who....;;e 
den•lopment in series of descending powers of {J starts with the term 
c·ontaining /3. Evidently the development of (19) for 

x = 1, 2, 3, ... a+ b- 1 
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does not contain terms involving the first power of 1/{3, ~nd hence 
Z:r,o = 0 if x = 1, 2, 3, . . . a + b - 1 as it should be. The solution 
of (13) satisfying (14), (15), (16) being unique, its analytical expression is 
therefore 

- (~ ria'a+h-11 - ael-1-6-~ f31d(3 
Z:~:,l - 2m c a'a+b - arrb {3 - 1' 

whence for x = a and t = n 

z •.• = ~}f. ":~: = ::.. {!!! 
To find an explicit expression for Za,n it remains to find the coefficient of 
1/{3 in the development of 

P ·- ([)a a'b - ab {3" 
- p a'a+b- aa+b {3 - 1 

in series of descending powers of {3. This can be done in two different 
ways. First we can substitute fo~ a' its expression in a: 

and present Pin the form 

aa - (E)6 

aaHb 
p = q {311 I 

(
p)"+b {3- 1 1 - - a2a+2b 
q 

or developing into series 

p = [ aa- (~Yaa+2b + (~YHa3a+2b- (~)a+
26

a3a+4b + · · · ]{3 ~ t' 
But the coefficient of 1/{3 in 

amf3" 

{3- 1 

by the second solution of Prob. 3 is the probability Ym,n for a player with 
a fortune m to be ruined by an infinitely rich player in the course of n 
games. Hence, the final expression for Za,,. is 

( )

II ( )a+b (p)a+2b 
Za,ll = Ya,'A - ~ Ya+2b,n + ~ Y3a+2b,n - q Y3a+4b,n + 
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the terms of this series being alternately of the form 

and 

for k == 0, 1, 2, . . . . The series stops by itself as soon as the first 
subscript of Y:e." becomes greater than n. 

To obtain a second expression of Za," we notice that 

a'• - a•· a'b - a• a'aH - cf~H 
I =-,--+ ' =Q+R 

a 11H-ct~H a -a a -a 

is a rational function of ~ whose denominator 

a'•+• - a•+b 
R=-....-,-­

a -a 

is a polynomial in tJ of the degree a + b - 1. To find the roots of R = 0, 
we set ~ = 2ypq cos If'· Since, then, 

we have 

The equation 

having roots 

a= ~~~ 
\Jp ' 

R = { !l)a+~- 1sin (~ + b)lf', 
\P sm If' 

hr 
lf'h =a+ b; 

sin (~ + b)lf' = 0 
Sllllf' 

h = 1, 2, . . . a + b - 1, 

the a + b - 1 roots of R are 

f3h = 2ypq cos If'•· 

X ow we can resolve the rational function Pinto a sum of simple elements 
as follows: 

where 
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and fork> 0 

A11 = - (2ypq)n+/ ~)~ ( ) sin ~ sin a!Fh(cos l()h)" \P a+ b (1 - 2 pq cos l()n) 

while E({:J) is the integral part of P. The coefficient of 1/{:J in the develop­
ment of P being 

a+b-1 

Ao+ ~ A11, 
11-1 

we have a new explicit expression for Za,n: 

(20) 

This expression shows clearly that Za,n, with increasing n, approaches 
the limit 

representing the probability of ruin when the number of games is unlim­
ited, in complete accord with the solution of Prob. 1. 

The first term in (20) naturally must be replaced by a ~ b in case 

p = q = 31. This form of solution was given first by Lagrange. 

Problems for Solution 

1. Players A and B with fortunes of $50 and $100, respectively, agree to play until 
one of them is ruined. The probabilities of winning a single game are % and U, 
respectively, for A and B, and they stake Sl at each game. What is the probability 
of ruin for the player A? Am. Very nearly 2-•o = 8.88·10-16• 

2. If A and Bat each single game stake $3 and $2, respectively, and have fortunes 
of $30 and $20 at the beginning, what is the approximate value of the probability 
that A will be ruined if the probability of his winning a single game is (a) p = %; 
(b) p = ~? 

Am. (a) 0.40 + L\; Ill.! < 1.7 X IO-t; (b) 0.96 + ll.; lll.l < 4.6 X I0-3• 

3. A player A with the fortune $a plays an unlimited number of games against an 
infinitely rich adversary with the probability p of winning a single game. He stakes 
$1 at each game, while his rich adversary risks staking such a sum /1 as to make the 
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game favorable to A. What is the probability that A will be ruined in the course 
of the games? Give numerical results if (a) a = 10, p = %, fJ == 3; (b) a = 100, 
p • %, fJ = 3. Am. Let fJ < 1 be a positive root of the equation pflft+1 - B + q = 0. 
The required probability Pis: P = 94

• 

In case (a) P = 0.002257; in case (b) P = 3.43 · I0-17• 

'· A player A whose fortune is $10 agrees to play not more than 20 games against 
an infinitely rich adversary, both staking $1 with an equal probability of winning a 
single game. What is the probability that A will not be ruined in the course of 
20 games? An~. 0.9734. 

&. Players A and B with S1 and $2, respectively, agree to play not more than n 
equitable games, staking Slat each game. What are the probabilities of their ruin? 

Am. For A: ~ - 3 + ( -l)"', forB: ! - 3 - ( - 1)". 
3 3 ' 2•+! I 3 3 • 2"'+l 

6. Players A and B with $2 and $3, respectively, play a series of equitable games, 
both staking Sl at each game. What are the probabilities of their ruin in n games? 
Give the numerical result if n = 20. A118. 

3 4{(V5 +l)"+t (V5 -t)"+t} ForA·--- -- + -- · e=lifnisodd, e=2ifniseven . 
. 5 5 4 4 ' 

ForB: ~-H( V:+l)"+tl-( v:-l)"+tl}; t~=l if niseven, "=2 ifnisodd. 

'1. Find the expression of 'UG,,., the probability of the ruin of A when his adversary 
B is infinitely rich, corresponding to formula (20). Am. From the definition of a 
definite integral it follows that 

(2ypq)•+t(!)i " . . 
p l SlDtpSlDQtp !1•.• = y .... - ___ _:_._.c_ -----(cos tp)"d~P 

.. 0 1 - 2ypq cos , 

where 

u •.• = 1 if p ~ 9 

'Uo,"" = (; Y if p > q. 

If the games are equitable and n differs from a by an even number, then 

2~i sin 41p II•.• = 1 -- -.-(cos .p)•+1d.p. 
rO san., 

This formula wu given by Laplace. 
8. Referring to the lut formula in the preceding problem, show that 

"'here 

2 _(' 
"··· == 1 - v.Jo e-..'du + .6 

• ' "" . 
v2(tl + n' 

1 2 _ .... 
1.61 < - + -c 32 • 

211& II 
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Indication of the Proof. It is impo~ant to prove the following inequalities first 

'P (cos 'P)"+I _nH'P! 
. < e 2 for 

sm 'P 

whence 

'P (cos 'P)n+l _n+ l'P1[ n + 1 ] 
. =e 2 1-~'{J4 j 

Sill '{J 8 
0<9<1 

provided 0 < 'P ~ 71'/4. The rest of the pro!lf is easy. 
9. Attempt a direct proof of the importa"nt lemma (page 144) used in the discus­

sion of Prob. 2. 
HINT: The proof can be based upon the following proposition' generalizing an 

important theorem on determinants due to Minkowski: Let 

i = 1, 2, 3, ... n 

be a system of linear forms whose coefficients satisfy the following conditions: 
/(1) au > 0; ak; ~ 0 if k ~ i; ali + a2; + · · · +a,.; ~ 0. 
(2) One of these sums is positive. 
If these forms assume nonnegative values, then every x; !?; O(i = 1, 2, ... n). 

Proof by induction: Express x,. through x~, X2, • · •• Xn-lr thus: 

a,.. 

and substitute into the remaining forms .. Show that the resulting forms in x,, x2, 
. • • Xn _, satisfy the same conditions (1) and (2). Hence, it remains to prove the 
proposition for two forms, which can easily be done 
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CHAPTER IX 

MATHEMATICAL EXPECTATION 

1. Bernoulli's theorem, important though it is, is but the first link 
in a chain of theorems of the same character, all contained in an extremely 
general proposition with which we shall deal in the next chapter. But 
before proceeding to this task, it is necessary to extend the definition of 
"mathematical expectation"-an important t~oncept originating in 
connection with games of chance. 

If, according to the conditions of the game, the player can win a 
~urn a with probability p, and lose a sum b \'.ith probability q = 1 - p, 
the mathematical expeetation of his gain is by definition ! 

pa- qb. 

Considering the loss as a negative gain, we may say that the gain of the 
player may have only two values, a and -b, with the corresponding 
probabilities p and q, so that the expectation of his gain is the sum of the 
produets of two possible values of the gain by their probabilities. In this 
cal'le, the gain appears as a variable quantity possessing two values. 

Variable quantities with a definite range of values each one of which, 
urpending on chance, can be attained with a definite probability, are 
called" chance variables," or, using a Greek term, 11 stochastic" variable:.;. 
They play an important part in the theory of probability. A 8tochastic 
variable is defined (a) if the set of its possible values is gi\·en, and (b) if 
the probability to attain each particular value is also given. 

It is easy to give examples of stochal'ltic variables. The gairi in a 
t~;anw of chance is a stochastic variable with two values. The number of 
points on a die that is toi-lsed, is a storha.-;tic variable with six values, 
1, 2, ... 6, each of which has the same probability ~f A number on 
a ti('krt drawn from an urn containing 20 tickets numbered from 1 to 20, 
is a stoelu1."tic variable with 20 values, and the probability to attain 
any onr of tht·m is %o. Each of two urns contains 2 white and 2 blaek 
balk Simultaneously, one ball is transferred from the first urn into the 
s••<·ond. while one ball from the latter is transferred into the first. AftPr 
thir' ex('hange, the number of white balls in one of the urns may be regaru(..:l 
a .... a stoeha...,tic variable with three ,·alues, 1, 2, 3, whose correspondiug 
probabilitiel'i are, respedively, 14, ~~. ~~. It is natural to extend the 
e(lnrt>pt of mathematical expt•<·tation to stO<'hastic variables in gem·ral. . 

161 
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Suppose that a stochastic variable x possesses n values: 

and 
Xt1 X21 • ••• x,., 

Pt, p2, · · · p,. 

denote the respective probabilities for x to assume values x1, .x2, • • • .xtl. 
BY: definition the mathematical expectation of x is 

E(x) = PtXt + P2X2 + · · · + p,.x,.. 

'It is understood in this definition that the possible values of the 
variable x are numerically different. For instance, if the variable is a 
number of points on a die, its numerically different values are 1, 2, 3, 4, 5, 
6, each having the same probability, Ye. By definition, the mathematical 
expectation of the number of points on a die is 

HI + 2 + 3 + 4 + 5 + 6) = 3.5. 

If the variable is the number on a ticket drawn from an urn containing 
20 tickets numbered from 1 to 20, its numerically different values are 
represented by numbers from 1 to 20, and the probability of each of 
these values is Mo, so that the mathematical expectation of the number 
on a ticket is 

n(l + 2 + ... + 2o) = to.5. 

2. It is obvious that the computation of mathematical expectation 
requires only the knowledge of the numerically different values of the 
variables with their respective probabilities. But in some cases this 
computation is greatly simplified by extending the definition of mathe· 
matical expectation. Suppose that, corresponding to mutually exclusive 

· and exhaustive cases At, A2, ••• A,., the variable x assumes the values 
Xt, x2, . • . x,., with the corresponding probabilities p1, p2, . . . p,.; 
we can define the mathematical expectation of x by 

E(x) = PtXt + P2X2 + · · · + p,.x,... 

What distinguishes this extended definition from the original one is that 
in the second definition the values Xt, x2, • • • x,. need not be numerically 
different; the only condition is that they are determined by mutually 
exclusive and exhaustive cases. 

To make this distinction clear, suppose that the variable x is the 
number of points on two dice. Numerically different values of this 
variable are ' 

2, 3, 4, 5, 6, 7, 8, 9, io, 11, 12 • 

and their respective probabilities 

"'~'~'n'~'~!~'»'*'~'n· . . 
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Therefore, by original definition, the expectation of xis 

Ia + ·lv; + H + H + U + !.i + H + U + U + H + H = W = 7. 

But we can distinguish 36 exhaustive and mutually exclusive cases accordM 
ing to the number of points on each die and, correspondingly, 36 values 
of the variable x, as shown in the following table: 

First die Second die :r First die Second die :r 

1 1 2 4 1 5 
1 2 3 4 2 6 
1 3 4 4 3 7 
1 4 5 4 4 8 
1 5 6 4 5 9 
1 6 7 4 6 10 

2 
I 

1 3 5 1 6 
2 2 4 5 2 7 
2 I 3 5 5 3 8 
2 4 6 5 4 9 
2 5 7 5 5 10 
2 6 8 5 6 11 

3 1 4 6 1 7 
3 2 5 6 2 8 
3 3 6 6 3 9 
3 4 I 7 6 4 10 
3 5 8 6 5 11 
3 6 I 9 6 6 12 I 

The probability of each of these 36 cases being H6, by the extended 
definition the mathematical expectation of x is 

2 + 2! 3 + 4. 3 + 5. 4 + 6. 5 + 7. 6 + 8. 5 + 9. 4 + 10.3 + 11· 2 + 12 
36 

=7 
as it should be. 

It is important to show that both definitions always give the same 
'·alue for the mathematical expectation. 

Let x1, Xt, • • • :c. be the values of the variable x corresponding 
to mutually exclusive and exhaustive cases A1, A1, ••• A., and, 
p,, p,, ... p., their respective probabilities. By the extended defini­
tion of mathematical expectation, we have 

(1) 
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The values x~, x2, ... x"' are not necessarily numerically different, 
the numerically different values being 

~~ 'r/, 5, ... A. 

We can suppose that the notation is chosen in such a way that 

Xt, x2, . . . x,. are equal to ~; 
Xa+t, Xa+2, . . . Xb are equal to 'Y/; 

Xb+ 1, Xb+2, • . • Xc are equal to 5; 

xl+l, x1+2, ... Xm are equal to A. 

Hence, the right-hand member of (1) can be represented thus: 

(pr + P2 + · · · +PaH + (Pa+ t + Pa+2 + · · · + pb)'YJ + · · · + 
+ (Pt+t + Pl+2 + · · · t Pm)A. 

But by the theorem of total probabilities, the sum 

Pt + P2 + · · · + Pa 

represents the probability P for the variable x to assume a determined 
value ~. because this can happen in a mutually exclusive ways; namely, 
when x = x1, or x = x2, ... or x. = Xa. By a similar argument we see 
that the sums 

Pa+t + P•+2 + · · · + Pb 
Pb+t + Pb+2 + · · · t Pc 

Pt+I + Pl+2 + . . . + p,. 

represent the probabilities Q, R, ... T for the variable x to assume 
values 'r/, 5, ... A. Therefore, the right-hand member of (1) reducrs 
to the sum 

Pe t Q'Y/ + Rs t · · · t TA 

which, by the original definition, is the mathematical expectation of x. 
If, corresponding to mutually exclusive and .exhaustive cases, a 

variable x assumes the same value a-in other words, remains constant­
it is almost evident that its mathematical expectation is a, because the 
sum of the probabilities of mutually exclusive ~nd exhat~stive cases is 1. 
It is also evident that the expectation of ax where a is a constant, is 
equal to a times the expectation of x. 

NOTE: Very often the mathematical expectation of a stochastic variable is called 
its "mean value." · 

MATHEMATICAL ExPECTATION OF A SuM 
3. In many cases the computation of mathematical expectation is 

greatly· facilitated by means of the following very general theorem: 



MATHEir/AT/CAL EXPECTATIO.Y 165 

Theorem. The mathematical exptctation of the sum of slveral t'Uriabks 
is equal to the sum of their expectations; or, in symbols, 

E(x + y + z + · · · + w) = E(x) + E(y) + E(z) + · · · + E(w). 

Proof. We Hhall prove this theorem fir."lt in the rase of a sum of two 
variables. Let x assume numerically different values x1, x2, ••• x,, 
while numerically different values of y are y., y2, ••• y,.. In regard to 
the sum x + y we can distinguish mn mutually exclusive cases; namely, 
when :t ar;i'umes a definite value X; andy another definite value y;, while i 
andj range respectively over numbers 1, 2, 3, ... m and 1, 2, 3, ... n. 
If p;1 denotes the probability of coexistence of the equalities 

Y = Yi 

we have by the extended definition of mathematical expectation 

m n 

E(x + y) = l; ~;vii(x; + Yi), 
i=li=l 

or 
m n m n 

(2) 

As the variable x as!'umes a definite value X; in n mutually exclusive 
ways (namely, when the value X; of x is accompanied by the values 
y,, Y2, ... y. of y) it is obvious that the sum 

II 

rrpr<'sents the probability p; of the equality x = :r;. In a similar manner 
we sl"e that tht> sum 

rrpw•t>nts the probability Qi of the l"quality y = y1• Therefore 
m " ,. • 

~ ~PiJX; == !x, IPii = ~p;:r; = E(x), 
i•lj•l isl j=l i=l 

and similarly 

II Ia II 

I IP•iYi = I IP•iYi = IQiYi = E(y); 
i•lj•d i=l i=l j=l 
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that is, by (2) 

E(x + y) = E(x) + E(y) 

which proves the theorem for the sum of two variables. 
If we deal with the sum of three variables x + y + z, we may consider 

it at first as the sum of x + y and z and, applying the foregoing result, 
we get 

E(x + y + z) = E(x + y) + E(z); 

and again, by substituting E(x) + E(y) for E(x + y), 

E(x + y + z) = E(x) + E(y) + E(z). 

In a similar way we may proceed farther and prove the theorem for the 
sum of any number of variables. 

4:. The theorem concerning mathematical expectation of sums, 
simple though it is, is of fundamental importance on account of its very 
general nature and will be used frequently. At present, we shall use it 
in the solution of a few selected problems. 

Problem 1. What is the mathematical expectation of the sum of 
points on n dice? 

Solution. Denoting by x, the' number of points. on the ith die, the 
sum of the points on n dice will be 

8 = Xt + X2 + ' ' ' + X,.1 

and by the preceding theorem 

E(s) = E(xt) + E(x2) + · · · + E(x,.). 

But for every single die 

therefore 
E(x,) = -t; i = 1, 2, ..• n; 

E(s) = 7n. 
2 

Problem 2. What is the mathematical expectation of the number of 
successes inn trial~ with constant probability p? 

Solution. Suppose. that we attach to every trial a variable which 
has the value 1 in case of a success and the value 0 in case of failure. If 
the variables attached to trials 1, 2, 3, ... n are denoted by Xt1 x2, ••• 

.r., their sum 

m = x1 + x, + · · · + x. 

obviously gives the number of successes in n trials. Therefore, the 
required expectation is 

E(m) = E(xt) + E(x2) + · · · + E(x,.). 
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But for every i = 1, 2, 3, ... n 

E(x,) = p · 1 + (1 - p) · 0 = p, 

because x, may have values 1 and 0 with the probabilities p and 1 - p 
which are the same as the probabilities of a success or a failure in the ith 
trial. Hence, 

E(m) = np 
or 

E(m- np) = O, 

which may also be written in the form 

n 

~ T .,.(m - np) = 0. 
m•O 

This result was obtained on page 116 in a totally different and more 
complicated way. The new deduction is preferable in that it is more 
elementary and can easily be extended to more complicated rases, as 
we shall see in the next problem. 

j»roblem 3. Suppose that we have a series of n trials independent or 
not, the probability of an event being p, in the ith trial when nothing is 
known about the results of other trials. What is the mathematical 
expectation of the number of successes min n trials? 

Solution. Again let us introduce the variable x, connected with 
the ith trial in such a way that x, = 1 when the trial results in a success 
and x1 = 0 when it results in failure. Obviously, 

m = X1 + Xt + ' ' ' + Xn 

and 
E(m) = E(xt) + E(xs) + · · · + E(x.). 

But 
E(x,) = 1 · p, + 0 · (1 - p,) = P• 

and therefore 

E(m) = P1 + Pt + · · · + P•· 

For instance, if we have 5 urns containing 1 white, 9 black; 2 white, 
8 black; 3 white, 7 black; 4 white, 6 black; 5 white, 5 black balls, and we 
draw one ball out of every urn, the mathematical expectation of the 
number of white balls taken will be: 

E(m) = n + 1\ + -h + 1\ + -h = 1.5. 

- Prob'em 4. An urn contains a white and b black balls, and c balls arE' 
drawn. What is the mathematical expectation of the number of the 
white balls drawn? 
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Solution. To every ball taken we attach a variable which has the 
value 1 if the extracted ball is white, and the value 0 otherwise. The 
number of white balls drawn will then be 

8 = X1 + X2 + · · ' + Xc. 

But the probability that the ith ball removed will be white when nothing 

is known of the other balls is a ~ b; therefore 

a b a 
E(xi) = a + b · 1 + a + b · 0 = a + b 

for every i, and the required expectation is 

ca 
E(s) =-· a+b 

Problem 5. An urn contains n tickets numbered from 1 to n, and 
m tickets are drawn at a time. What is the mathematical expectation 
of the sum of numbers on the tickets drawn? 

Solution. Suppose that m tickets drawn from the urn are disposed 
in a certain order, and a variable is attached to every ticket expressing 
its number. Denoting the variable attached to the ith ticket by x,, 
the sum of the numbers on all m tickets apparently is 

8 ,; X1 + X2 + ' ' ' + X,.. 

But when taken singly, the variable X; may represent any of the numbers 
1, 2, 3, ... n, the probability of its being equal to any one of these 
numbers being 1/n. By the definition of mathematical expectation, we 
have 

and therefore 

E(s) = m(n + 1). 
2 

For example, taking the French lottery where n = 90 and m = 5, we 
find for the mathematical expectation of the sum of numbers on all 5 
tickets 

5. 91 
E(s) = -

2
- = 227.5. 

Problem 6. An urn contains n tickets numbered from 1 to n These 
tickets are drawn one by one, so that a certain number appears in the 
first place, another number in the second plare. and so on. We -.hall say 
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that there is a "coincidence" when the number on a ticket corresponds 
to the place it occupies. For instance, there is a coincidence when the 
first ticket has number 1 or the seeond ticket has number 2, etc. Find 
the mathematical expectation of the number of coincidences. Also, find 
the probability that there will be none, or one, or two, etc., coincidences. 

Solution. Let x, denote a variable which has the value 1 if there is 
coincidence in the ith place, otherwise x, = 0. The sum 

8 = X1 + X2 + ' ' · + X,. 

gives the total number of coineidences and 

But 
1 1 

E(x,) = - · 1 = -n n 

because the probability of drawing a ticket with the number i in the ith 
place without any regard to other tickets obviously is 1/n; therefore, 

1 
E(s) = n · - = 1. 

n 

On the other hand, denoting the probability of exactly i coincidences by 
p;, we have by definition 

E(s) = P1 + 2pa + · · · + np,., 

and, comparing with the preceding result, we obtain. 

(3) Pt + 2p2 + · · · + np,. = 1. 

Let us denote by JP(n) the probability that in drawing n tickets, wt shall 
have no coincidences. It is easy to express p, by means of IP(n - i). 
In fact, we have exactly i coincidences in 

C' = _n(~n_-~1)__,.·-·_·_(~n_-'""""t_. +~1) 
II 1·2·3·"i 

mutually exclusive cases; namely, when the tiekets of one of the 

c~ 

~pecifil'd groups of i tiekets have numbers corresponding to their places 
while the remaining n - i tickets do not present coincidences at all. 
By the theorem of compound probability, the probability of i coincidences 
in i ~pl'cified places is 

!._1_ 1 
n n- 1 n-i+1 
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and the probability of the absence of coincidences in the remaining n - i 
places is IP(n - t). The probability of exactly i coincidences in i specified 
places is therefore ~ 

IP(n- t) 
n(n - 1) · · · (n - i + I)' 

and the total probability p, of exactly i coincidences without specification 
of places is 

n(n - 1) · · · (n - i + 1) IP(n - i) 
p, = 1 · 2 · 3 · · · i · n(n - 1) · · · (n - i + 1)' 

or 

(4) IP(n - i) 
Pt. = 1 · 2 · 3 · · · i' 

The symbol <P(O) has no meaning, but the preceding formula holds 
good even fori = n if we assume IP(O) = 1. 

Substituting expression (4) for Pi into (3), we reach the relation 

( _ 1) + IP(n - 2) + IP(n - 3) + 
IP n 1! 21 

'P(O) . 
· · +(n - 1)! = l; 

or changing n into n + 1 

( ) + <P(n - 1) + IP(n - 2) + ... + IP(O} = l 
1P n 1! 2! nl ' 

which gives successively IP(l), 1?'(2), 1?'(3), . ' .. by taking 

n = 1, 2, 3, .... 

The general result, which can easily be verified, is 

or, in an explicit form, 

n 

~(-1}~ 
<P(n) = ~kl' 

A:•O 

1 1 1 ( -l)n 
<P(n) = 1 - I + r:2 - m + ... + 1 · 2 · 3 · · · n' 

Even for moderate n this is very near to 

1 1 1 1 . e = 1 - I + 1-2 - 1 . 2 . 3 + · · · ad tnf. = 0.36787944. 

MATHEMATICAL ExPECTATION OF A PRODUCT 

5. For the product of two or more stochastic variables we do not 
possess anything so general as the foregoing theorem concerning the 
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mathematical expectation of BUJ111il. An analogous theorem "ith respect 
to the product of stochastic variables can be established only under 
certain restrictive conditions. 

Several stochastic variables are called "independent" if the proba­
bility for any one of them to assume a determined value does not depend 
on the values assumed by the remaining variables. For instance, if the 
variables are the numbers of points on dice, they may be considered as 
independent. 

On the other hand, we have a ca.se of dependent variables in numbers 
on tickets drawn in a lottery. For, in this case the fact that certain 
tickets have determined numbers precludes the possibility of any one of 
these numbers appearing on other tickets drawn at the same time. 

If more than two variables are independent according to the above 
definition, it is clear that any two of them are independent. But the 
converse is not true: It is easy to imagine cases when any two of the 
variables are independent and yet they are not independent when taken 
in their totality. Therefore, when speaking of independence of variables, 
we must always specify whether they are independent in their totality 
or only in pairs. 

For two independent variables we have the follo\\ing simple theorem: 
Theorem. The mathematical txpectation of the product xy of two 

independent variables x andy is equal to the product.of their expectatiom; 
or, in symbols 

E(xy) = E(x)E(y). 

Proof. Let x1, x2, •.. x .. be the complete set of values for x, and 
Yt, Y2, ••. y" the analogous set for y. Denoting the probability of 
x being equal to Xi by p;., and similarly, the probability of y being equal 
to Yi by Qil the events 

X= Xi and 

are independent by definition of independence-because the probability 
of x being equal to x, is not affected by the fact that y has assumed any 
one of its possible values, and it remains P•· 

By the theorem of compound probability the simultaneous occurrence 
of the events 

x = x, and y = Yi 

has the probability p,-q;. Again, by the extended definition of mathe-­
matical expectation . . . 

E(xy) = ~ ~p.-QjX;y; 
i•lj•l 
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because the values of the product xy are determined by mn exhaustive 
and mutually exclusive cases 

X= X01 

i = 1, 2, ... m; 
Y = Yi 
j = 1, 2, ... n. 

Now, performing the summation with respect to j first, while i remains 
constant, we have 

n n 

~p,qiXiYi = PiX; ~qiYi = p;x;E(y), 
i=l i=l 

and again 
m m 

E(xy) = ~pix;E(y) = E(y) ~pixi, 
i=l i=l 

or 
E(xy) = E(x)E(y). 

This theorem can be extended to the case of several factors inde­
pendent in their totality. For instance, if x, y, z are independent, it is 
obvious that xy and z are also independent. Hence 

E(xyz) = E(xy)E(z), 
and again 

E(xyz) = E(x)E(y)E(z). 

In a similar way we can extend this theorem to any number of inde-
pendent factors. · 

As an important application, let us consider two independent variables 
x and y with the respective expectations a and b. The variables x - a 
andy - b being independent also, we have 

E(x - a)(y - b) = E(x - a)E(y b); 
but 

E(x- a) = E(x) -a = a- a = 0; 

therefore 

(5) E(x a)(y - b) = 0. 

DISPERSION AND STANDARD DEVIATION 

6. Let x be a variable and a its mathematical expectation. The 
expectation of 

(x - a) 2 

is called "dispersion" of the variable, and the square root of dispersion 
is usually called "standard deviation." As 

(x - a)2 z::: x2 
- 2ax + a2 
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we can apply the theorem on the expectation of sums to the right-hand 
member of this identity and find 

E(:e - a) 2 = E(z2) - 2aE(:e) + a2 = E(:e2) - a2 

or, denoting by b the expectation of x2, 

(6) E(x - a) 2 = b - a2• 

Thus, the computation of dispersion can be reduced to the computa­
tion of the expectation of the variable itself and its square. Also, denot­
ing by u the standard deviation of x, we have the formula 

"2 = b- a2. 

For instance, if the variable is the number of points on a die, we have 

7 12 + 22 + . . . + 62 91 
a= 2' b = 6 = 6 

and 

u1 = 1(- - Jf = 2.917; u = 1.708. 

DISPERSION OF SUMS 

7. It is important to have a convenient formula to find the dispersion 
of a sum 

8 = X1 + Zt + • ' ' + X" 

of several stochastic variables. The expectation of s is given by 

E(8) = E(x1) + E(x2) + · · · + E(x,.) 
or 

E(s) = a1 + a2 + · · · + a .. , 

denoting by a, the expectation of x,. The deviation of 8 from its expecta­
tion is, therefore, 

Xt + x2 + · · · + x,. - (a1 + a1 + · · · + a,.), 

and we have to find the expectation of 

(x1 + x, + · · · + x. - a1 - a1 - · · · - a .. )2. 

Now we have identically 

(xt + r, + · · · + r,. - a1 - as -
• 

- a.) 2 = ~(x, - ai) 1 + 
i•l 

+ 2~(z,- ai)(z;- ai), 
iJ 
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the last sum being extended over all the different combinations of sub· 
scripts) and j for which i ¢. j and consisting of n(n - 1)/2 terms. 
The mathematical expectation of a sum being equal to the sum of the 
expectatio~ of its terms, we must find the expectations of the terms 

(x,- a,) 2 and (x,- a,)(xi- a;). 

The first is the dispersion of x, and can be found from (6); namely, 

E(x,- a;) 2 = b, - a[ = ui 

if b, is the expectation of x{. 
As to 

E(x, - a,)(x; - ai), 

instead of it we introduce the so.called "correlation coefficient" of x, 
and x; 

Denoting the required dispersion by D, we obtain 

(7) D = uf + ul + · · · + u! + 2R1,2U1CT2 + 2Rx,aUICT3 + · · · + 
+ 2Rn-l,nUn-1CTn 

so that the dispersion of a sum can be obtained as soon as we know the 
dispersion of its terms and their correlation coefficients. 

In an important case, expression (7) for dispersion can be greatly 
simplified. If the variables XI, x2, • • • x,. are independent in pairs, we 
see from (5) that all the correlation coefficients are = 0, so that in this 
case simply 

(8) D = uf + u~ + · · · + u! = b1- af + b2- ai + · · · + b,.- a!. 
In other words, the dispersion of a sum of variables, any two of which 

are independent, is equal to the sum of dispersions of its terms. 
8. A few examples will serve to illustrate the use of these formulas. 
Problem 7. · Find the dispersion of the number of successes in series 

of n independent trials with probabilities PI, P2, . . • p,. corresponding to 
first, second, . . . nth trial. 

Solution. As in Prob. 2 we associate with every trial a variable which 
assumes the value 1 or 0, according as the trial resulted in success or 
failure. These variables x1, x2, ••• Xn are independent because the 
trials are supposed to be independent. The number of successes 

m = Xt + X2 + ' ' ' + X,. 

is thus the sum of the independent variables. To find the dispersioJJ of 
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any one of these variables z, we notice that 

E(x,) = 1 · P• + 0 · q, = P• 
E(xl) = 1 · p, + 0 · ~· = p,; 

therefore the dispersion of x, is 

and by (8) 
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D = E(m - P1 - P2 - · · · - p,.) 2 = p1q1 + P'llz + · · · + p,.q,.. 

In the Bernoullian case of independent trials with the same probability 
p, we have p1 = Pt = · · · = p,. = p and 

E(m - np) 2 = npq. · 

This formula is equivalent to the relation 
n 

~ T.,.tm- np)2 = npq 
111•0 

established on page 116. 
Problem 8. In a lottery m tickets are drawn at a time out of n 

tickets numbered from 1 to n. Find the dispersion of the sum s of the 
numbers on the tickets drawn. 

Solution. Let Zt, z2, • • • x.,. be the variables representing the 
numbers on the first, second, ... mth tickets. By Prob. 5 we know that 

and in a similar way we find 

12 n' (n + 1)(2n + 1) 
E(xi) = ------ - , n - 6 

whence the dit'persion of x, is 

E(x;- n t 1y = n' 1; 1. 
Sinct> we deal in the present case with dependent variables, we mul<t 

find the correlation coefficients, or, which is the same. 

for e\·ery pair of subscripts i and j. The variable :i, may have any of 
the valut's 1, 2, 3, ... n, "ith the same probability 1/n; and z; may 
ha\'e any of the same values with the exception of that assumed by z1 
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with the probability _!_
1
, so that the preceding expression consists of n-

terms . 

n(n ~ 1lxi- n ~ 1)(xi- n ~ 1) 
when~ for given Xi = 1, 2, ... n, ranges over all numbers 1, 2, 
3, n with the exception of Xi. As 

II 

~(~ _ n ~ 1) = 0 
f-1 

it is obvious that 

and 

n+l 
= ----r2· 

Everything now is ready for the application of (7). All simplifications 
performed, we get the following expression of the required dispersion 

D= 1---· m(n2 - 1)( m - 1) 
12 n- 1 

If the variables were independent, the dispersion would be 

m(n2 - 1) 
12 . 

The dependence diminishes it, but the influence of dependence is not great 
if the ratio m/n is small. 

Problems for Solution 

1. Find the mathematical expectation M of the absolute value of the discrepancy 
m - np in a series of n independent trials with constant probability p. Am. By 
definition 

where, as usual, 

II 

M = ~ T .. lm -npl 
m=O 

n! 
T .. = '( - )r·r. m.n m. 
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But since 
II 

l; T,.(m- np) == 0, 
m•O 

we have also 

M = 2 ~ T,.(m -np), 

m>np 

the sum being extended over all integers m which are >np. Denoting by F(x, y) the 
sum 

we have 

F(x, y) = l; c::xmy• ..... 
m>np 

~ 
iJF(p, q) 

T.,(m- np) == p--- npF(p, q). 
iJp 

m>np 

On the other hand, by Euler's theorem on homogeneous functions 

iJF iJF 
rJi'(p, q) = rr::- + q-• 

iJp. iJq 

whence 

~ (;;F aF) ~ T m(m - np) = pq ap - aq = npqCf-:pl'-lq"-11. 

m>np 

Here I' represents an integer determined by 

I' ;i np + 1 < I' + 1. 

The answer is therefore given by the simple formula. 

M = 2npqc:=:v,...~qt<-t~. 

2. By applying Stirling's formula (Appendix 1, page 347) prove the following 
result: 

where 

2npq 1 ~-( ) M = -,.- 1 + 21!c ; 11!1 < 1 

c = max.(-1 
' -

1 
) np- 1 nq- 1 

and n is so large as to make c iii 7)0• 

HtNT: 

loll; (M: ~~ < --"- + {J' - _!_ max. (-
1
-, -

1
-) \j-;-} 2(np- fJ) 2(nq- {J') 24 np- {J nq- "' 

lott (M :./2nrpq) > l t)l {J'! 

'J l2(np - 6) 12(nq - t)') 4(np - 4(nq - f')! 

O;iiiifJ;il; "'+1""1 
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3. What is the expectation of the number of failures preceding the first success in 
an indefinite series of independent trials with the probability p? 

pq q 
Ans. qp + 2q2p + 3q3p + · · . = -- = -· 

(1 - q)l p 
4. Balls are taken one by one out of an urn containing a white and b black balls 

until the first white ball is drawn. What is the expectation of the number of black 
• balls preceding the first white ball? 

Am: 1., By direct application of definition the following first expression for the 
required expectation M is obtained: 

=- + + M 
a [ b 

2 
b(b - 1) 

a+ b a+ b - 1 (a+ b- l)(a + b - 2) 

+ 3 b(b - l)(b - 2) + . . . ]· 
(a + b - 1)(a + b - 2) (a + b - 3) 

Ans. 2. However, it is possible to find a simpler expression forM. Denote by Xt the 
number of black balls preceding the first white ball, by Xz the number of black balls 
between the first and second white ball, and so on; finally, by Xo+1 the number of black .. 
balls following the last white ball. We have 

Xt + X2 + · • · + Xa+l = b 
and 

But as the probability of every sequence of balls (that is, of every system of number~ 
Xt1 Zt, .•. Xa+ 1) is the same, namely, 

it is easy to see that 

That is, 

or 

a!b! 

(a+ b)! 

(a+ l)M = b 

M=-b-· 
a+l 

Equating this to the preceding expression for M, an interesting identity can be 
obtained, whose direct proof is left to the student. 

6. In.Prob. 6, page 168, to determine the probability IP(n), we had an equation 

IP(n) + .,(n- 1) + IP(n- 2) + ... + .,(0} = l; IP(O} = 1. 
1! 2! n! · 

Find the general expression for .,(n) using the method of generating functions. A1rs. 
Let 

F(x) = .,(O} + .,(l)x + .,(2)x1 + · · · 
be the generating function of IP(n). Multiplying this Peries by 

x x2 x3 

e-"=1+-+-+-+ .•. 
I! 2! 3' ' 
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or 

whence 
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e*F(z) = 1 + z + z' + · · · 

e-" 
F(z)=-• 

1- z 

== --
1-z 

1 1 ( -1)• 
IP(n) = 1 - - +- - · · · + --· 

1! 2! n! 
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6. The total number of balls in an urn is known, but the number of white balls 
depends on chance and oniy its mathematical expectation is known. Find the prob· 
ability of drawing a white ball. Am. Let N be the total number of balls and M the 
expectation of the number of white balls. The required probability is MIN. 

7. Two urns contain, respectively, a white and b black and a white and fj black 
balls. A certain number c (naturally not exceeding a +b) of balls is transferred 
from the first urn into the second. What is the probability of drawing a white ball 

• from the second urn after the transfers? Am. The required probability is 

8. An urn contains a white and b black balls. After a ball is drawn, it is to be 
returned to the urn if it is whitej but if it is black, it is to be replaced by a white ball 
from another urn. What is the probability of drawing a white ball after the foregoing 
operation has been repeated x times? Am. Denote by M, the expectation of the 
number of white balls after z operations. From the equation 

the following expression for M. can be derived: 

M. = a + b - b(l --1-)·· 
a +b 

It follows that the required probability is 

b ( 1 ). 
p=l-a+b 1 -a+b · 

t. Urns l&nd 2 contain, respectively, a white and b black and e white and d black 
balls. One ball is taken from the first urn and transferred into the second, whlle 
t~imulta.noously one ball taken from the second urn is transferred into the first. What 
is the probability of drawing a white ball from the first urn after such an excha.ngt­
has bren repeated z times? Am. Let M. and P. represent the mathematical expect&· 
tions of the number of white balls in the first and second urn after z excha.nget!. Then 

M 
P. M, 

HI= .\f, +.--- --; 
c+d a+b 

J/, +P. =a+ e 
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whence 

M (a + c)(a +b) ad -be ( 1 1 )" 
a= a+b+c+d+ a+b+c+d l- a+b- c+d · 

10. An urn contains pN white and qN black balls, the total number of balls being 
N. Balls are drawn one by one (without being returned to the urn) until a certain 
number n of balls is reached. What is the dispersion of the number m of white balls 
drawn? Am. Let x; = 1 if the ith ball drawn is white and x; = 0 if it is black. 
We have 

and 

E(x;) = p, E(m) = np, E(xD = p 

pq 
E(x; - p)(xi - p) = E(x;XJ) - p2 = - N _ 

1
-

The required dispersion is 

N -n 
D = E(m - np)2 = npq-;;----;· 

N -l 

11. In a lottery containing n numbers (1, 2, 3, ... n) m numbers are drawn at a 
time. Let x; represent the frequency of a specified number i in N drawings. Prove 
that 

E(:x;) = Np, . E(x; - Np)2 = Npq 
E(:x; - Np)(x 1 - Np) = Np(p'- p); (i ¢ J) 

where 

m 
p = -· q = 1- p, 

n 

m -1 
p'=--· 

n 1 

12. Let 
Zi = (Xi - Np)' - Npq. 

Show that the dispersion of the sum 

is 
Zt + Z2 + + Zn 

D _ 2N(N - 1)( )2 
- n- 1 npq · 

Indication of the Proof. Let N variables ~h ~,, ••• tN be defined as follows: 

/;1: = -p if in the kth drawing the number i fails to appear 
/;k = q if in the kth drawing the number i appear~. 

In a similar way, we can define N variables 1/h 112, . • . 'IN a.ssociated with the 
number j ¢ i. Since 

Xi - Np = h + ~2 + ... + EN 
Xi - Np = fJI + fJ! + ... + 1/N 

we have 

The variables 
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being independent, we have 

E(ll"<o,-Np)+t(ef-NII>) = E(e•t•flll1) • E(e•ft+"":) • • • E(e"fN+toiiN), 

But 

E(e"f•...,'•) = E(e"f:+•••) == · · · = E(e"fN+""") = 
= pp'e'l"+v• + p(l - p')eu-po + p(l - p')e'l'..,.. + (q - p + pp')e_,._,, = 
= F(u, 11). 

Hence 

It suffices to expand both members into power series in u and 11 and compare terms 
involving u'v' to find 

E(z,z;); i ~ j. 

The rest does not present serious difficulties except for somewhat complicated calcula­
tions. 

13. A box contains 2" tickets among which C~ tickets bear the number i (i = 

0, 1, 2, ..• n). A group of m tickets is drawn; denoting by • the sum of their 
numbers, it is required to find the expectation E and the dispersion D of •· 

1 1 m(m- 1)n 
Am. E = -mn· D = -mn- · 

2 I 4 4(2"- 1) 
1,, A box contains k varieties of objects, the number of objects of each variety 

being the same. These objects are drawn one at a time and put back before the 
next drawing. Denoting by n the smallest number of drawings which produce 
objects of all varieties, find E(n) and E(n1). A.m. 

E(n) = k 1 + -+ -+ · · · + -( 1 1 1) 
2 3 k 

E(n') - E(n)1 = k2(1 +.!. + · .. + !..) -k(l +! + .. · + ~)· 
21 k' 2 k 

Use the result of Prob. 12, p. 41. 
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CHAPTER X 

THE LAW OF LARGE NUMBERS 

1. The developments of the preceding chapter, combined with a 
simple lemma due to Tshebysheff, lead in a natural and easy way to a 
far reaching generalization of Bernoulli's theorem, known under the 
name of the "law of large numbers." 

Tshebysheff's Lemma. Let u be a variable which does not assume 
negative values, and a its mathematical expectation. The probability of the 
inequality 

is always greater than 

whatever t may be. 
Proof. Let 

1 1-­t2 

be all the possible values of the variable u and 

Pt, P2, · · · Pn 

their respective probabilities. By the definition of mathematical expec­
tation, we have 

(1) 

We may suppose the notations so chosen that 

are all the values of u which are ~at2, the remaining values 

being >at2• If all the terms in (1) with subscripts 1, 2, ... a are 
dropped, the left-hand members can only be diminished, since these 
terms are positive or at least nonnegative by hypothesis. We have, 
therefore, 

But as 
u, > at2 

182 
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fori = a+ 1, a+ 2, ... n a still stronger inequality, 

at2(p .. +l + · · · + p .. ) < a 
or 

:will hold. 

1 
Po+l + · · · + p .. < r 
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Here the left-hand member represents the probability Q of the 
inequality 

u > at1 

because this inequality can materialize only in the following mutually 
exclusive forms: either u = u a+l, or u = Ua+t, , •• or u = u,. whose 
probabilities are, respectively, Pa+l, PaH, ... p,.. Thus 

1 Q <-· t~ 

But if P is the probability of the opposite event 

we must have 

wlwnre 

which proves the lemma. 

p + Q = 1, 

1 P>l-­tt 

2. Let z1, Zt, ••. x. be a set of stochastic variables and a., a2, ••• a,. 
t lwir rei'peetive expectations. The dispersion of the sum 

x1 + .r, + · · · + x,. 

whieh we shall denote by B,. is, by definition, the mathematical expecta~ 
tion of the \'ariable 

u = (.r1 + x, + · · · + .r .. - 01 -a,- · · · -a,.)'. 

Tshebysheff's lemma, applied to this Yariable u, shows that the proba­
hility of the inequality 

(.r1 + z, + · · · + z. - a1 - at - · · · - a.)2 :a BJ2 

is gl't'ater than 

1 
1- -· t' 
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But the preceding inequality is equivalent to two inequalities 

-tv'lJ: ~ Xt + X2 + · · · + x" a1 - a2 - · · · - an ~ tv'lJ: 
or, dividing through by n, 

-t {'B: ~ x1 + x~ + · · · + x,. _ a1 + a2 + · · · + a,. ~ t {B ... 
~nr- n n - Vn2 

· Hence, the probability of these inequalities for an arbitrary positive t 
is greater than 

1 
1- -· t2 

Let e be an arbitrary positive number. Defining t by the equation 

t~=E1 
whence 

n2E2 t2 = _, 
B" 

we arrive at the following conclusion: The probability P of the inequalities 

Xt + X2 + . ' ' ' + X" Ut + U2 + ' ' ' + Un ...-_ E -E ~ - __ ..;:_. ____ .:::. 

- n n 

equivalent to a single inequality 

IX1 + x2 + n. · · + x". a1 + a2 + n. · · + a,.\ ~ E 

is greater than 

Thus far nothing has been supposed about the behavior of Bn for 
indefinitely increasing n. We shall now suppose that the quotient· 
Bn/n2 tends to 0 as n increases indefinitely. Then, having chosen two 
arbitrarily small positive numbers e and 11, a number no can be found so 
that the inequality 

will hold for n > no. Consequently, we shall have 
r. 

p > 1-71 

for all n > n0• This conclusion leads to the following important theorem 
due, in the main, to Tshebysheff: 
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The Law of Large Numbers. With the probability approaching 1 or 
certainly as near as we please, we may exped that the arithmetic mean of 
values adually assumed by n stochastic variables will differ from the arithmetic 
mean of their expectations by less than arry given number, however small, 
provided the number of variables can be taken sufficiently large and provided 
the condition 

as n-too 

is fulfilled. 
If, instead of variables x,, we consider new variables z, = x, - a, 

with their means = 0, the same theorem can be stated as follows: 
For a fixed E > O, however small, the probability of the inequality 

IZ1 + Z2 + n. · · + z,.l ~ E 

tends to 1 as a limit when n increases indefinitely, provided 

B .. _o 
n2 . 

This theorem is very general. It holds for independent or dependent 
variables indifferently if the sufficient condition for its validity, namely, 
that 

is fulfilled. 
3. This condition, which is recognized as sufficient, is at the same 

time necessary, if the variables z1, z2, ... z,. are uniformly bounded; 
that is, if a constant number (one independent of n), C, can be found 
I'O that all particular values of e,(i = 1, 2, ... n) are numerically less 
than C. Let P, as before, denote the probability of the inequality 

!z1 + z2 + · · · + z,.l ~ n~. 
Then the probability of the opposite int'quality 

lzt + Zt + · · · + z,.l > nt 

will be 1- P. 
Now, by definition, 

B. = E(zt + Zt + · · · + z,.)2 

whence one can easily derive the inequality 
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from which it follows that 

~211 < C2(1 - P) + e2P < e2 + C2(1 - P). 

If the law of large numbers holds, 1 - P converges to 0 when n 
increases indefinitely, so that the right-hand member for sufficiently 
large n becomes less than any given number, and that implies 

Bn O n2 ~ , 

which proves the statement. 
4. There is an important case in which the law of large numbers 

certainly 'holds i namely, when variables Xt, x2, . . . Xn are independent 
and the expectations of their squares are bounded. Then a constant 
number C exists such that 

b, = E(xi) < C for i == 1, 2, 3, .... 

On the other hand, for independent variables 
n n 

Bn = !(b, - a1) ;;;i !b, < nC 
i=l i•l 

and 

n~ oo, 

The expectations of squares are bounded, for instance, when all the 
variables are uniformly bounded, which is true, for instance, for "iden­
tical" or "equal" variables. Variables are said to be identical if they 
possess the same set of values with the same corresponding probabilities. 

5. E. Czuber made a complete investigation of the results of 2,854 
drawings in a lottery operated in Prague between 1754 and 1886. It 
consisted of 90 numbers, of which 5 were taken in each drawing. From 
Czuber's book "Wahrscheinlichkeitsrechnung," vol. 1, p. 141 (2d ed., 
1908), we reprint the table shown on page 187. 

With the 2,854 drawings, we associate 2,854 variables, Xt, x2, ••• x2864 

representing the sum of five numbers appearing in each of the 2,854 
drawings. These variables are identical and independent with the 
common mathematical expectation 227.5. Hence, by the law of large 
numbers, we can expect that the arithmetic mean of actually observed 
values of these variables will not notably differ from 227.5. To form 
the sum 

28M 

S = !x, 
i=l 
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Numbers 
Their frequency j 

m I 

Difference 
m -158 

6 138 -20 
39,65 139 -19 
16, 41, 76, 87 142 -16 

2, 14, 56, 79, 86 143 -15 
18, 44, 47 144 -14 
72, 80 145 -13 
12 146 -12 
21,53 147 -11 

70 149 - 9 
24, 32, 55, 69 150 - 8 
27, 64, 75 151 - 7 
81 152 - 6 
23, 29, 85 153 - 5 
19, 35, 42, 74 154 - 4 
7, 20, 59 155 - 3 

13, 34, 40, 67, 88 156 - 2 
11, 52, 68 I 157 - 1 

I 

17, 82 I 158 0 
15, 90 159 1 
58 160 2 
8, 25, 36 161 3 

22 . 162 4 
33, 57 163 5 
51 164 6 

3, 43, 45, 48 165 7 
10, 26, 66 166 8 

1, 5, 60, 84 167 9 
50,62 168 10 
9, 61, 63 170 12 

54, 73 171 13 
49, 71, 78 172 14 
28 173 15 
37 176 18 
30,46 177 19 
89 178 20 
31 179 21 
38 184 26 
4 185 27 

77 186 28 
83 189 31 

we must multiply the frequencies given in the preceding table by the 
smn of corresponding numbers. To simplify the task we notice that all 
numbers from 1 to 90, actually appear.-d. Hence, we multiply the 
sum of these numbers. 4,095, by 158. which gives: 

4095 . 158 = 647,010, 
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and then add to this number the sum of the differences m - 158 multi­
plied by the sum of the numbers in the same line. The results are: 

Hence 

and 

Sum of positive products 
22,336 

Sum of negative products 
-19,587. 

s = 647,010 + 22,336 - 19,587 = 649,759 

8 
2854 = 227.67, 

which differs very little from the expected value 227.5. An even larger 
difference would be in perfect agreement with the law of large numbers 
since 2,854, the number of variables, is not very great. 

6. The two experiments reported in this section were made by the 
author in spare moments. In the first experiment 64 tickets bearing 
numbers 0, 1, 2, 3, 4, 5, 6 and occurring in the following proportions: 

Number........................ 0 2 3 4 5 6 
1-----------1--·1------------

Frequency ..................... . 6 15 20 15 6 

were vigorously agitated in a tin can and then 10 tickets were drawn at a 
time and their numbers added. Altogether 2,500 such drawings were 
made and their results carefully recorded. From these records we 
derive Tables I and II. 

TABLE I 

Number Frequency observed Expected frequency Discrepancy 

0 404 390.625 +13.375 
1 2,321 2,343.75 -22.75 
2 5,850 5,859.375 - 9.375 
3 7,863 7,812.5 +50.5 
4 5,821 5,859.375 -38.375 

5 2.344 2,343. 75 + 0.25 
6 397 390.625 + 6.375 

The next table gives the absolute values of differences s - 30 where s 
is the sum of the numbers on 10 tickets drawn at one time, and their 
1espective frequencies. 

From Table I it is easy to find that the arithmetic mean of all 2,500 
sums observed is: 

7 4996 
= 29 9984 2500 . 
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TABLE JJ 

is- 30i Frequency observed is- 30i Frequency observed 

0 246 7 71 
1 549 8 44 
2 479 9 25 
3 379 10 8 
4 324 11 4 
5 241 12 1 
6 129 

whereas the expectation of each of the 2,500 identical variables under 
consideration by Prob. 13, page 181, is 30. By the same problem the 
.dispersion of s, that is, E(s - 30) 2 is 12.857. On the other hand, from 
Table II we find that 

~(s - 30) 2 : 31477 
and 

~(s - 30)2 : 12 5908 
2500 . 

fairly close to 12.857. 
In the second experiment we tried to produce cards of every suit in n 

drawings (n being the smallest number required) of one card at a time, 
each card taken being returned before the next drawing. By Prob. 14, 
page 181, we find that the expectation and the dispersion of this number 
n are, respectively, 873 and 14.44. Altogether 3,000 values of n were 
recorded, of which 33 was the largest. Values of the difference n - 8 ar(> 
givf'n in Table III. 

TABLE III 

n-8 Frequency n-8 Frequency n-8 Frequency 
-

-4 282 6 77 16 3 
-3 420 7 50 17 5 
-2 426 8 40 18 2 
-1 407 9 31 19 1 

0 348 10 17 20 3 
1 247 

I 
11 15 21 1 

2 228 
I 

12 13 22 I 1 
3 156 j 13 6 23 I 

1 
4 

I 

116 14 9 24 0 
5 88 [ 15 6 25 I 1 

I I 

From this table we find 

!(n - 8) = 965, !(n - 8)' = 43,395. 
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whence 

l':(n- 8!)2 = };(n- 8) 2 - fl':(n- 8) + .a..y.a = 43,085 
l':n = 24,965. 

By the law of large numbers we may expect that the quotients 

l':n and l':(n - 8!)2 
3000 3000 

will not consid~rably differ from 8~ and 14.44, respectively. As a 
matter of fact, 

l':n 
3000 = 8.322, l':(n - St)~ = 14 362 

3000 . . 

There is a very satisfactory agreement between the theory and this 
experiment in another respect. Of 24,965 cards drawn there were 

6,304 hearts 
6, 236 diamonds 
6,131 clubs 
6 , 294 spades 

whereas the expected number for each suit is 6241.25. 
7. So far, we have dealt with stochastic variables having only a finite 

number of values. However, the notion of mathematical expectation, 
and the propositions essentially based on this notion, can be extended to 
variables with infinitely many values. Here we shall consider the 
simplest case of variables with a countable set' of values, that can be 
arranged in a sequence 

· · · < a-2 < a-1 < ao < ai < a2 < · • · 
in the order of their magnitude. 

With this sequence is associated the sequence of probabilities 

· · · , P-2, P-I, Po, PI, P2, · · · 

so that in general p, is the probability for x to assume the value a;. 

These probabilities are subject to the condition that the series 

'2:p; = · · · + P-2 + P-I + Po + PI + P2 + · · · 
must be convergent with the sum 1. 

The definition of mathematical expectation is essentially the same 
as that for variables with a finite number of values, but instead of a 
finite sum, we have an infinite series 

E(x) = l':p,ai 

provided this series is convergent (it is absolutely convergent, if con­
vergent at all). If this series is divergent, it is meaningless to speak if 
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the mathematical expectation of x. Likewise, the mathematical expec· 
tation of any function tp(x) is defined as being the sum of the series 

Eltp(x) I = l:p,tp(a;), 

provided the latter is convergent. 
It can easily be seen that various theorems establi.'lhed in Chap. IX, 

as well as Tshebysheff's lemma, continue to holt! when the various mathe­
matical expectations involved exist. 

The law of large numbers follows, as a simple corollary, from TshPby-
sheff's lemma if the following requirements are fulfilled: 

a. Mathematical expectations of all variables x1, x2, xa, . . . exii'Ot. 
b. The dispersion Bn of the sum x1 + Xt + · · · + x .. E'xists. 
c. The quotient Bn/n2 tends to 0 as n tends to infinity. 
The first requirement is absolutely indispensable. Without it the 

theorem itself cannot be stated. The second requirement (not to SpE'ak 
of the third) need not be fulfilled; and still the law of large numbers may 
hold, as Markoff pointed out. 

8. Let Xt, x2, xa, ... be independent variables. If for every i 
the mathematical expectation 

E(xn 

Pxists, the quantity Bn exists also. But if at least one of these expecta-­
tions does not exist, the quantity B,. has no meaning. However, the 
following theorem, due to Markoff, holds: 

Theorem. The lauf of large numbers holds, provided that for some 
8 > 0 aU the matherruJ.tical expectations 

E(\x;\ 1+'); i = 1, 2, 3, ... 

exist and are bounded. 
Proof. For the sake of simplicity we may assume that 

E(x,) = 0; i = 1, 2, 3, .... 

For, 8Upposing 

i = 1, 2, 3, ... 

in!iitPad of x,, we may consider new variables 

Thrn 

E(z;) = 0 

and it rE'mains to prove the t>xi!iiten<'e and boundedness of 

i = 1. 2, 3, .... 
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The proof follows immediately from the inequalities 

lx, - a,lt+a ~ 28llx,it+a + la•i 1H} 

la,it+a ~ E(lx,it+a) 
the first of which is well known; the second is a particular case of Lia­
pouno:ff's inequality, established in Chap. XIII, page 265. 

Thus, from the outset we are entitled to assume that 

E(x1) = 0. 

The proof of the theorem is based on a very ingenious and useful 
device due to Markoff. Let N be a positive number which later we shall 
increase indefinitely. Together with x, we shall consider two new varia­
bles, u, and v,, defined as follows: a: being a particular value of x,, the 
corresponding values of u, and v, are 

u, =a, v, = 0 

if ia:l ~ N and 
Ui == 0, Vi == a: 

if ia:l > N. Thus, stochastic variables u, and v, are completely defined. 
Evidently 

x, = u, + v, 

whence 

and 
~' == E(u,) = - E(v,). 

Now 
I 

by hypothesis. Since v, is either 0 or its absolute value is > N, we have 

N8E(iv,i) ~ E(iv,it+6) < c, 
whence 

(2) 

Likewise, the probability q, for v, ;& 0 satisfies the inequality 

NlHq, ~ E(lv,llH) < c, 

whence 

(3) 
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Now, let us consider two inequalities 

(4) lUt + u2 +n· · · + u,., < u 

(5) IXt + x2 + n . .. + x~~ < , 

where cr is an arbitrary positive number and let Po and P be their respec~ 
tive probabilities. The inequalities (4) and (5} coincide when 

Vt == v2 == • • · = v,. == 0. 

With this supplementary condition they have the same probability Q. 
But they can bold also when at least one of the numbers 

is different from 0. Let the probabilities of (4) and (5) under such 
circumstances be Ro and R. Then 

Po= Q + Ro, P = Q + R. 
But evidently neither Ro nor R can exceed the probability that in the 
series 

at least one number is different from 0; this probability in turn does not 
exceed (see Chap. II, page 30) · 

Hence 

and 

(6) 

nc 
Ro <NtH' 

nc + q,. < Nl+,· 

nc 
R < NHi 

I nc 
p- Pol< NH•· 

On the other hand, since none of the values of u,(i = 1, 2, ... n) 
exceeds N, we have 

E(uD ~ NHE(!u,j 1+1) ~ NHE(!x,!t+&) < cNH. 

Accordingly, the dispersion of the sum u1 + u2 + · · · + u,. will be 
less than 

cnNH. 

Hence, by what has been proved in Sec. 2, the probability of the ine­
quality 

(7) jUt + Us + · · · + u. fJt + fJs + · · · + fJ,.I E - S:-n n . -2 
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is greater than 

But whenever (7) is satisfied, the inequality 

(S) lu1 + u2 + · · · + u,.l :s;; ..! + ~~~ + ~2 + · · · + !3,.1 
n -2 n 

is also satisfied. Hence, the probability of this inequality is a fortiori 
greater than 

• 
Owing to inequalities (2), the following inequality follows from (8): 

I
Ut + u2 + · · · + u,.l < ..! + .!... = · 

n 2 N8 u. 

Hence 

and on account of (6) 

Now we can dispose of the arbitrary number N by taking 

ne 
N = -r 

Then 
J2)1H 

P > 1 - 2\; n-8
• 

Now N tends to infinity with nand as soon as n surpasses a certain 
limit no, the fraction 

c 
N& 

will become and remain less than e/2. The probability of the inequality 

IXt + X2 + n. . . + x,.l < e 

for n > no will be greater than P and consequently greater than 
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It tends, therefore, to 1 as n tend'! t.o infinity, and that proves Markoff's 
theorem. 

Example. Let the possible values of the variable z,.(p = 1, 2, 3, . • . ) be 

p-'(p + 1)4, ,-l(p + 1)1, ,-l(p + 1)1, ••• 

with the corresponding probabilities 

Since the aerii."B 

p p p 
p + 11 (p + 1)11 (p + 1)11 ..•• 

1 1 1 
-+-+-+··· p p p 

is divergent, the mathematical expectation 

E(z!) 

dol'~ not fxi~t. Yet the law of large numbers holds. For 

is a com•erp;ent aeries for any 0 < 6 < 1. Moreover, 

~ 
1 1 

P-I s---· 
!!(1-1)- ~ 

11•1 (p + 1)2 2 2 - 1 

nnd eonSt.•quently the conditions of Markoff's theorem are satisfied for any 0 < I < l. 
!{,•nee, the law of large numbers holds in this example. 

9. If variables xa, x2, Xs, ••• are identical, the law of large numbers 
holds without any other restrictions, except that for these variables mathe-­
matical expectations exist. In fact, Khintchine proved the following 
tht•orrm: 

Theorem. If, cu we rnay naturaUy suppose, E(x,) = 0, the probability 
nf tht inequality 

'Xt + l't + .,; .. + .t'1 ~ f 

tn1d8 w 1 a.s n iru:recues indefiniuly. 
Proof. The proof is quitt- similar to that of Markoff's theorem and 

i~ ba..,.N_ on the same ingenious artifiee.. Let 

' ' ' < CLt < (Ll < U1 < Ut < Ut < 
he different \·alm-s of any one of the identical \'ariables %1, .r1, %a, ••• and 

••• I P-t, P-t. p., Ph p,, ... 



196 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP. X 

their probabilities. By hypothesis 

is a convergent series with the sum 0. The series 

.!p,ja,j 

is also convergent; let c > 0 be its sum. 
Keeping the same notations as before, we have 

~~~1 ~ E(jv,l) = ~ P•la•l = 1/t(N) 
Ja•I>N 

where 1/;(N) is a decreasing function tending to 0 as N -+ oo • Also 

E(uD ~ NEjx,j = eN 

so that the dispersion of the sum 

Ut + U2 + ' ' ' + Un 

is less than 
cNn. 

Consequently the probability of the inequality 

(9) l
u1 + U2 + · · · + Un _ fh + fJ2 + · · · + flnl ~ ~ 

n n 2 

is greater than 

On the other hand, the probability q, of the inequality v, ~ 0 is less 
than 

because 

and 

1/;(N) 
N 

N ~ p, < 1/;(N) 
Ja;J>N 

q, = ~ Pi· 
ia;I>N 

Hence, the difference between the probability of the inequality 

IUt + U2 + n. · · + Unl < f1 
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and that of the inequality 

,x. + x, + n. · · + xi < , 

is numerically less than 
nof(N) 
-y-· 

197 

AI, in the preceding section we conclude that the probability of the 
inequality 

is greater than 

1 
_ 4cN. 

E'n 

Finally, the probability of the inequality 

(lO) !Xt + X2 + . · ' + Za! ~ !_ + t(N} 
n j- 2 

is greater than 

1 
_ 4cN _ nY,(N). 

t 2n N 

To dispose of N we observe that the ratio 

v'i(N) 
-N-

is a decreasing function of N and tends to 0 as N--+ co. Hence, at least 
for large n, there exists an integer N such that 

v'i(N) < V4c ~ v 'f~N - 1) 
N En - l~ - 1 

Then 

whence it follows that the probability of inequality (10) is greater than 

1- V:[ VW\1 + N~ 1vt(X -l)l 
~ow N increa...-.es indefinitely together with n; therefore, for all n 

above a certain limit no, 

Y,(X) <; 
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so that for n > n0 the probability of the inequality 

IXl + Xa + n. • • + Xnl < E 

will be greater than 

1 - V4c[v'RN) + _K_vtJ;(N- 1)] 
E N- 1 

and with indefinitely increasing n will approach the limit 1. Thus 
Khintchine's theorem is completely proved. 

Example. Let 

be all possible values of identical variables Xt, x,, xa, . . . and 

1 1 1 
2' 22' 23' ... ~· ... 

their corresponding probabilities. Since the series 

is convergent, mathematical expectations of the variables Xt, x2, x3, • • • exist. 
Hence, the law of large numbers holds in this case. 

Markoff's theorem cannot be applied here, because for any positve o the series 

is divergent. 

Problems for Solution 

1. Let x be a stochastic variable with the mean = 0 and the standard deviation u. 
Denoting by P(t) the probability of the inequality 

show that 
X~ t 

u' 
P(t) ~ 

001 
+ 12 for 

u' 1 - P(t) S -- for 
- u2 + t2 

t < 0 

t >0. 

Show also that the right-hand members cannot be replaced by smaller numbers. 
Indication of the Proof. Since 

we have also 
l:pi(xt - t) = -t, !p;(x; - t) 1 = u1 + 12 
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wht>nce, supposing that x; > t for i = 1, 2, ... 11 and first taking t negative, 

t' ~ l ±p;(Z; - t) l 
1 

~ ~p, ±p;(x; - t)1 ~ (1 - P(t))(v' + t•) 
i•l ' i=l i•l 

tl 1/2 

1 - P(t) ~ 
11

• t t"; P(t) s --· 
• • - cr2 + t2 

For positive t the proof is quite similar. Considering a stochastic variable with 
two values: 

,. 
Zt = t, PI = .,s + t• 

t• 
P2 = 112 t t' 

one can easily prove the last part of our statement. 
2. Tshebysheff's Probkm.1 If xis a positive stochastic variable with given 

E(x) = v2, 

then the probability P of the inequality 

X~!/ 

has the following precise upper bounds: 

p ~ 1 ,.. 
P~-

" 

for 

for 

"< ,. 
,.c 

,t ~" <-; 
II 

,., -v« 
P s for - ,., + "' - 2vlv 

Indication of the Proof. Let 

Thrn ~ <"if 11 ~ ,.•jv' and 

sinre 

for x ~ 11. On the otht>r hand, 

cr'r1 -r• 
~=--· "- ,. 

p ~E(~)• "- ~ 

(X-~)! - ~· " - ~ 

E(x - £)' = ,., - 211'£ + £1 = ---"'_-_,,_ 
v-£ (v-El 1 -2vS., 

\\'ht>nce 

,.• -v' 
p~ -----· + - 2vtu 

1 Sur l<'t~ \'a)!'urs limitE'S di'S intt>l{l"lll!-'11, Jn11r. LiouciUt, St-r. 2, T. XIX, 1874. 
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The equality sign is reached for the stochastic variable with two values: 

(v-u2)2 

Pl = .,4 + v2 - 2u2v 

.,•- u• 
Z2 =II, Pz = .,• + v2 - 2u2v. 

If uz ~ v < .,4 /u2 we have an obvious inequality 

(z) u' p ~ E ; = ;;· 

To show that the right-hand member cannot be replaced by a smaller number, con­
sider the following stochastic variable with three values: 

Zt = 0, 

Z2 =II, 
fn2 - .,. 

p2 = 11(l- v) 

.,•- u2v 
pa = l(l -v) 

where l > 11 is an arbitrary number. For this variable 

is arbitrarily near to u2/11 for sufficiently large l. 
3. If x is an arbitrary stochastic variable with given 

E(x2) = u2, E(x4) = .,, 

and P denotes the probability of the inequality 

lxl ~ ku, 
then 

These inequalities cannot be improved. 
HINT: Follows from Tshebysheff's problem. 
4. Let x; assume two values, i and -i with equal probabilities. Show that the 

law of large numbers cannot be applied to variables Xt, x2, X3, •••• 

5. Variables Xt, x,, x3, ••• each assume two values: 
loga or -loga; log(a+l) or -log(a+I); log(a+2) or -log(a+2); · · · 
with equal probabilities. Show that the law of large numbers holds for these vari-
ables. 
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HINT: E(z;) = 0; i = 1, 2, 3, ... 

B,. = E(z1 +zs + · · · +z.)1 = 
11-1 

201 

=! !log (a+'') 11 ....., (a+ n - l)llog (a+ n - 1)}1 

i=O 

as can easily be established by using Euler's summation formula (Appendix 1, page 
347). Hence 

as n-+ oo, 

6. Hz. can have only two values with equal probabilities, ia and -ia, show that the 
law of large numbers can be applied to x1, x,, xa, ... if a < ~. 

HINT: 

nta+l 
B = p« + 21a + · · · + n2« l'ol __ , 

" 2a + 1 

It can be shown that the law of large numbers does not hold if a ~ ~. 
'1. In an indefinite Bernoullian series of trials with the constant probability p, 

let m; denote the number of successes in the first i trials. Show that the law of large 
numbers holds for variables 

m;- ip · 
Z; = (ipq)"' j i == 1, 2, 3, .•• 

if a>~. 
HINT: Evidently E(x;) = 0, E(xD = (ipq)1-~« and 

II 

B. = !(ipq)•-~a + 2!E(x.x;). 
i~l j>i 

Now 

E(z,z;) = (ij)-<~(pq)-taE(m.-ip) 1 +(ij)-(pq)-"'EI(mt ip)(m,-rnt-(j-,}p)}= 
= (pq)l-!«il-«j-

since m; - ip and m1- m. - (j - i)p are independent variables. Thus 

" 
B. = (pq)•-2a[ !i•-~~~ + 2!i•-r·] 

i -1 j >i 

and it is easy to show that 
B,. --o as n-+ oo nt 

provided cz > ~. But the law m large numbers no longer holds if a ~ ~. The 
proof of this is more difficult. 

8. The following extension :>f Tshebysheti's lemma was indicated by Kolmogoroti. 
~t Zt, Zt ••• z,. be independent variables; E(x,) = 0, E(:t!) = b;, 

B.=b.+bt+··· +b. 
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and 

8k = Xl + Xt + • • • + Xkj k = 1, 2, . , , n, 

Denoting by P the probability of the inequality 

(A) max. (si; s~, ... s!) > B,.tt, 

we shall have P < 1/t2• 

Indication of the Proof. The inequality (A) can materialize if and only if one of 
the following mutually exclusive events occurs: 

event e1: s~ > B,.t2; 

event ez: s~ ~ B,.t2; 

event ea: s~ ~ B..t2; 

si > B,.t2; 

s: ~ B,.t2; 

If (e;) represents the probability vf e;(i = 1, 2, ... n) then 

P = (et) + (ez) + · · · + (e,.}. 

Now consider the conditional mathematical expectation E(s!Jek) of s! given that 
ek has occurred. Since the indication of ek does not affect variables Xk+J, XkH, • • • x,., 
these variables and Bk are independent. Hence 

E(s!\ek) = E(si\eh) + bk+t + · · · + b,. > B..t2• 

On the other hand 

n 

B,. E(s!) = l; (ek)E(s!\ek) > B,.t2l(et) + (e2) + · · · + (e,.)} 
k=l 

whence P < 1/tz. 
9. The Strong Law of Large Numbers (KolmogorojJ). Using the same notations 

as in the preceding problem, show that the probability of the simultaneous inequalities 

Fnl ~ E, lnS~t~l ~ E, ln8~221 ~ E, ' • • 

will be greater than 1 - ,, provided n exceeds a certain limit depending on the choice 
of e and ,, and granted the convergence of the series 

~~. 
"-tnz 

1 

I ndicatioo of the Proof. Consider variables 

r; = max.l
8
"'- .

8 ''-•1 for"'= 2Hn ~ m < 2in; i = 1, 2, 3, , , , 
"• . 

and denote by q, the probability of the inequality r; > HE. By Kolmogoroff's 
lemma 
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and 
" l=2'n-l oo 1•2'n-l 

q1 + q, + qa + · · · < 4f-l~ 22i:J.nl ~ b1 < 16t-
2 ~ ~ ~ 

i•l 1=2•-tn i,.ll=2•-tn 

or 

~ bk 
q1 + q, + qa + · · · < 1&-2 ~ k' · 

k=n 

Hence, the probability of fulfillment of all the inequalities.,., ~ ~Ej i = 1, 2, 3, , .• 
is greater than 

.. 
1 - 1&-2~ ~. 

~kl 
k•n 

The inequalities jsk/kl ~ Ej k = n, n + 1, n + 2, ... are satisfied when simul­
taneously 

.,., ~ je; i = 1, 2, 3, ..• 
and 

4B 
The probability of the last inequality being greater than 1 - ~. the probability 

n2e2 

of simultaneous inequalities 

~~! ~ tj k = n, n + 1, n + 2, .•• 

a fortiori will be greater than 

This inequality suffices to complet~ the proof if we notice that B,./n2 tends to 0 when 
the series 

is convergent. 
10. Let. zit z2, ••• z,. be identical st·01·hast.ic variables and E(x1) = 0. Denoting 

by P.(e) and P.(t), respecth·eb•, the probabilities of the inequalities 

Zt + Z2 + ' ' · + Z. Xt + X: + · · · + X,. ·----- > E and < - e 
n 

show that 

according as E(x~) > or <0. 

+ 
. P,.(e) 

hm --- = 0 or + 10 

,. ... P.(t) 

n 
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For the proof see Khintchine's paper in Mathematische Annalen (vol. 101, pp. 381-
385). 

11. The Law of the Repeated Logarithm (Khintchine, Kolmogoroff). Let z1, z1, 

... x,. be bounded independent variables, E(z;) = 0, i = 1, 2, ••• nand B,. ~ ao 
as n ~ ao • For an arbitrarily small B > 0 and E > 0 and for an arbitrarily large N 
one can choose no > N so that: 

a. The probability of the fulfillment of the inequality 

Js,.J > (1 + 8)y2B,. log log Bn 

for at least one n ~ no is less than E. 

b. The probability of the fulfillment of the inequality 

Js,.J > (1 - 8)y2Bn log log B,. 

for at least one n ~ no is greater than 1 - E. 

For the proof see Kolmogoroff's paper in Mathematische Annalen (vol. 101, pp. 126-
135). 

H z1, x2, . . . x,. are variables independent in pairs and B,. the dispersion of their 
sum s == Z1 + X2 + · · · + x,., then the probability P that 

satisfies the inequality 

1 
p > 1-­

t2 
(Tshebysheff's inequality) 

provided E(x1) = 0, i = 1, 2, ••. n, which can be assumed without loss of generality. 
In case variables are totally independent and are subject to certain limitations of com­
paratively mild character, S. Bernstein has shown that Tshebysheff's inequality can be 
considerably improved. 

12. Let x1, .t2, ••• x,. be totally independent variables. We suppose E(x.) = 0, 
E(xD = b, and 

for i = 1, 2, .•. n and h > 2, c being a certain constant. Show that 

Bne1 

A= E{eE<zt-H>s+ .. ·-H>.l} < e2<t-vl 

where(/ is an arbitrary positive number <1 and e is a positive number so small that 
EC ~fl. 

Indication of the Proof. We have 

~ ~ 1 + EX; + i e"Jx;J" 
n. 

n=2 

when~e 
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13. If Q denotes the probability of the inequality 

B.E t' 
:l:a + ~ + • . • +:e. > -- +-

2(1 - cr) E 

show that Q < e-1'. 

Indication of th£ Proof. If lJ is the probability of the inequality 

then, by Tshebysliteff's lemma, 'Q < e-1' and Q < 'Q by Prob. 12. 
14. S. Bernstein's Ineql.Wlity. Denoting by P the probability of the inequality 

lx1 + :e, + · · · + z..l :1! 111, 

"' being a given positive number, show that 
.. I 

p > 1- 2e -2B.+2c ... 

B,.e t1 •• t~ 
I ndicatiun of tht Proof. To make --) +- == P mlilUllum take E = _ r;:; j 

2(1-cr E vB. 

then F = t~ and t is determined by equating F to "'· The resulting value of E, 

E = ~(1- cr) 
B.,. 

is admissible only if ee :1! cr or ~B (1 - cr) :1! cr. The best choice for cr is cr = B w ' 
" .+w 

(II 

and correspondingly t ""' V · By Prob. 13 the probability of the inequality 
2B,. +2w 

X1 + Zt + · · · + Z. > Cll 

.. I 

is less than e- 28•+2c.., The same is true of the probability of the inequality 

z1 + ~ + · · · +:e. < -~~~ or -x1 - x, - · · · -x.,. > (II, 
16. If variables z,, zs, . . . .2: .. are unifprmly bounded and M is an upper bound 

of their numerical values, then we may take c = M ;3. 
Indi.cation of the Proof. Note that 

16. Consider a Poisson's series of trials with probabilities pa, Ptt ••• p. for an 

event E to oceur. Let m be the frequency of E inn trials, p = Pt + Pt + · · · + 1'-, 
n 

1 
~ = -(p,q1 + p,q1 + · · · + p.q,). Show that the probability P of the inequality 

n 

·m I I; - p ~ e has the following lower limit: 

eu• 
p > 1 _ 2e -2Ht.. 
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In the Bernoullian case Pt = P: = · · · = p,., ). = pq and consequently 

nEt 

P > 1 - 2e - 2P'l+!f. 

17. An indefinite series of totally independent variables Xt, x1, xa, , •• has the 
property that the mathematical expectations of any odd power of these variables is 
rigorously = 0 while 

E( ?") s (~)\2k)!. 
Z, - 2 k! I 

b, = E(xi) 

for i = 1, 2, 3, . . . . Prove that the probability of either one of the inequalities 

Xt t X2 t · · · t Xn > tv'21f,; or 

where B,. = bt + bt + · · · + b,. is less than e-11 (S. Bernstein). Prove first that 

.2b; 

E(eu•) ~ e2. 

18. Positive and negative proper decimal fractions limited to, say, five decimals, 
are obtained in the following manner: From an urn containing tickets with numbers 
0, 1, 2, . . . 9 in equal proportion, five tickets are drawn in succession (the ticket 
drawn in a previous trial being returned before the next) and their respective numbers 
are written in succession as five decimals of a proper fraction. This fraction, if not 
equal to 0, is preceded by the sign + or -, according as a coin tossed at the same time 
shows heads or tails. Thus, repeating this process several times, we may obtain as 
many positive or negative proper fractions with five decimals as we desire. What 
can be said about the probability that the sum of n such fractions will be contained 
between prescribed limits -wand w? A.ns. These n fractions may be considered as 
so many identical stochastic variables for each of .which 

E(x2H1) = 0, 
. (1 - I0-5)(2 - I0-6) 1 

{J = E(x1) = < -· 
6 3 

Besides, 

since in general 

Again, the inequality 

s2k+l 

plo + 2"" + . . . + (s - 1)"" < 2k + 1. 

E( "") ~ (~)k (2k)! 
X - 2 k! 

can easily be verified and we can apply the result of Prob. 17. For the required 
probability P the following lower limit can be obtained: 

,., &,! 

P > 1 - 2e- 2nil > 1 - 2e -2il; 
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-fMI 
P>1-2e 

For example, if e = ho and n ~ 814, 

p > 0.99999, 

207 

that is, almost certainly the sum of 814 fractions formed in the above described man­
ner will be contained between -82 and 82. 
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CHAPTER XI 

APPLICATIONS OF THE LAW OF LARGE NUMBERS 

1. A theorem of such wide generality as the law of large numbers is a 
source of a great many important particular theorems. We shall begin 
with a generalization of Bernoulli's theorem due to Poisson. 

Let us consider a series of independent trials with the respective 
probabilities Pt, p2, pa, ... , varying from one trial to another. Con­
sidering n trials, we shall denote by m the number of successes. The 
arithmetic mean of probabilities inn trials 

Pt + P2 + · · · + p,. 
p= n 

will be called the "mean probability inn trials." With such conditions 
and notations adopted, we can state Poisson's theorem as follows: 

Poisson's Theorem. The probability of the inequality 

for fixed e > 0, no matter how small, can be made as near to 1 (certm'nty) as 
we please, provided the number of trials n is sufficiently large. 

Proof. To show that this theorem is but a particular case of the law 
of large numbers, we use an artifice often applied in similar circum. 
stances, namely, we associate with trials 1, 2, 3, ... n variables x1, 
x2, xs, . . . x,. defined as follows: 

Xi = 1 in case of success in the ith trial, 
Xi = 0 in case of failure in the ith trial. 

Since the trials are independent, these variables are also independent. 
Moreover 

and the dispersion of x, is 

Pi-P:= P~•· 
The dispersion B,. of the sum 

Xt + X2 + ''' + :Z:,. 

is the sum of the dispersions of its terms, that is, 
n 

B .. = p1q1 + p2q2 + · · · + p,.q,. ~ r 
At the same time, the former sum represents the number of successes m. 

208 
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Now, applying the results established in Chap. X, Sec. 2, we arrive 
at this conclusion: Denoting by P the probability of the inequality 

we shall have 

It now suffices to take 

to have 

1 
n > 42"" 

E TJ 

p > 1- '1 

where 'f/ is an arbitrary positive number no matter how small. That 
completes the proof of Poisson's theorem. 

Evidently Bernoulli's theorem is contained in Poisson's theorem as a 
particular case when 

Pt = P2 = ' ' ' = Pn = p. 

Poisson himself attached great import~tnce to his theorem and adopted 
for it the name of the "law of large numbers," which is still used by many 
authors. However, it appears more proper to reserve this name to the 
theorem established in Chap. X, Sec. 2, which is due to Tshebysheff. 

2. Let us consider n series each consisting of 8 independent trials with 
the constant probability p. Also, let 

represent the number of successes in each of these 8 series. Stochastic 
variables 

Xt = (m2 - sp) 2
, • • • x,. = (m,. - 8p)2 

are independent and identical. Their common mathematical expecta­
tion is spq. The law of large numbers can be applied to these variables 
and leads immediately to the conclusion: The probability of the inequality 

can be brought as near as we please to 1 (or certainty) if the number of 
series n i..;: suffic1entlv lar~re. 
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Substituting Espq forE and dividing through by spq, we may state the 
same proposition a.s follows: The probability of the inequalities 

II 

~(m,- sp) 2 

1 - E < i = l < 1 + E
1 Npq 

where N = ns is the total number of trials in all n series, can be brought 
as near to 1 as we please if the number of series is sufficiently large. 

The law of large numbers can be legitimately applied to the variables 

x; == )m;- sp); i = 1, 2, 3, ... 

with the common mathematical expectation 

M, = 2spqC~:lp~'- 1q•-p 

where J.l. == [sp + 1], and leads to the following proposition: The proba­
bility of the inequalities 

II 

!lm,- spl 
1 - E < i=l < 1 + E 

. nM, 

can be brought as near to 1 as we please if the number of series is suf­
ficiently large. 

For the sake of simplicity, let us use the notations 
II 

!<mi- sp) 2 

A 2 ='=-=-=-I __ _ 
n 

II 

!lm;- sp) 
B =i-=::-I __ _ 

n 

The probabilities P and P' of the inequalities 

(1) y'Spq(1 - q) < A < '\l'spq(l + q) 
(2) M,(1 - u) < B < M,(l + o') 

which are equivalent to 
II 

!(m,- sp) 2 

(1 - cr)2 < i=l < (1 + 0')2 
nspq 

II 

!Jm; sp) 

1-u<~-<l+u 
nM, 
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ran both be made grE'ater than 1 - "' where 'I is an arbitrarily <small 
positive number. The probability of simultaneous materialization of 
(1) and (2) is not iess than 

. P + P' - 1 > 1 - 2.,. 

But whenever (1) and (2) hold simultaneously, we have 

(3) VS1!!J1 - u < ~ < yspq 1 + u. 
M, 1 + u B M, 1 - u 

Therefore the probability of these inequalities is again > 1 - 2.,. Now 
let us take 

f 

(f = 2Tr 
whE>re r is another positive number arbitrarily choRen. Then 

1 (f 
= 1 + r; 

-(I 

Hmre, the inequalities 

1- (f 

1 + (f > 1- f. 

vspq(l - r) < ~ < yspq(1 + r) 
M. B M, 

follow from inequalities (3) and their probability is a fortiori > 1 - 2.,. 
It suffires to take 

M, 
f = -=E 

yspq 

to arrivt> at thl' following proposition: 
The pr~)hability of the inequality 

I:!- ~I< E 
IB M. I 

for a fixed E and suffieil'ntly large number of se1'ies can be made as near to 
1 a."1 WI' plra."e. 

If spq is sonwwhat large, the quotient 

y'8pq 
lf: 

differs but little from vr/2 (see Chap. IX, Prob. 2, page 177). Hence, 
whE-n the numbE-r of seriE-s is large and the seriE-s themseh·es sufficiently 
long, we may expect with great probability that the quotient 

.,.ill not diffE-r much from v'if2, 

A 
B 
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DIVERGENCE CoEFFICIENT 

3. The considerations of the preceding section can be generalized. 
Let us consider again n series containing s trials each, and let 

represent the numbers of successes in each of these series. Without 
specifying the nature of the trials (which can be independent or depend­
ent) we shall denote by p the mean probability in all N = ns trials and 
by q = 1 - p its complement. Again considering the quotient 

n 

!(m,- sp)2 

Q = .;,..i=....;;l-=-=----
' Npq 

w~ seek its mathematical expectation 

E(Q) =D. 

When all the N trials are of the .Bernoullian type, D = 1. But it is also 
possible to imagine cases when D > 1 or D < 1. Lexis calls VD the 
"coefficient of dispersion." We shall call D itself the "theoretical 
divergence coefficient." If m1, m2, ••• m,. are actually observed fre­
quencies in n series, the quotient 

n 

!(m,- sp)2 

D' =i ..... =-"1~=----
Npq 

may be called "empirical divergence coefficient." Then, if the law of 
large numbers can be applied to variables 

(m.- sp)2 
X;= • spq , i = 1, 2, 3, ... ,· 

we can expect with probability, approaching certainty as near as we please, 
that the inequality 

ID'- Dl < E 

will be fulfilled for an adequately large number of series. 
Thus far we have not specified the nature of the trials. Now we shall 

suppose that all N = ns trials, distributed in n series, are independent 
but with probabilities varying in general from trial to trial. Let 

(i == 1, 2, ... n) 
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be the probabilities in successive trials of the ith series. Their mean 

PH + P2i + · · · + P" 
P• = 

8 

is the mean probability in the ith series. Finally 

P1 + P2 + · · · + Pn p= 
n 

is the mean probability in all N = ns trials. As to the expectation of 
(rn;- sp) 2, we find 

E(rn, - sp) 2 = E(m, - sp, + s(p1 - p)) 2 = E(m, - sp1)
2 + s2(p1 - p)2 

since 

On the other hand, 

and 

whence 

' ' ' 
E(m,- sp,) 2 = kPi<- kP1• = sp,- kPl• 

i=l i•l i=l 

B B 

~(p,- P;;) 2 = -sp; + ~p1~, 
i•l i=l 

E(m. - sp;)2 = sp, - spl - k (p; - p,,)2. 
i=l 

Now, letting i take values 1, 2, ... n and taking the sum of the 
results, we get 

" II II I 

k E(m, - sp,)2 = nsp - s k p: - k ~ (p, - p;1)2. 
i•l i=l i=li=l 

But 
II II 

sk(p- p,)s = -nsp2 + BkP1 
.... 1 i=l 

whence finally . 
II II I 

D == 1 + 8 -
1~(p- p;)2- -~-~~(p· _ p ... ',z 

npq ~ Npq~~ ' •' • 
i=l i•l i=l 

Two particular rases deserve special attention. 
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Le:ris' Case. Probabilities remain the same within each series, 
but vary from series to series. In this case Pii = p; and the expression of 
D becomes: 

The theoretical divergence coefficient in this ease is always greater than 
1 and may be arbitrarily large. 

Poisson's Case. The probabilities of the corresponding trials in all 
series are the same, so that 

and 

11'1 + 11'2 + + '~~'•. p = P• = _:_.:___.::......:._s __ :......_:_ 

In this case the divergence coefficient 

8 

~ (p- 11';)2 

D = 1 _i :__=...::._
1---

8pq 
is always less than 1. 

Since the law of large numbers evidently is applicable to variables 

(m;- sp)2 
x,= spq' 

we may expect that the empirical divergence coefficient D' will not 
differ much from D if the number of series is sufficiently large. 

For numerical illustration let us consider 100 series each containing 
100 trials, such that in 50 series the probability is % and in the remaining 
50 series it is %. Here we evidently have Lexis' case. The mean 
probability in all trials is 

p=! 
and 

100 

~ (i - Pi)2 = 50 ' Tn + 50 ' In = 1. 
ial 

Finally, 
D = 1 + H = 4.96. 

Now, suppose that we combine in pairs series of 100 trials with 
probability % and series of 100 trials with probability %, to form 50 
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series each of 200 trials. Evidently we have here Poisson's case. The 
mean probability in each series again is p = ~and 

200 

! (! - 11';)2 = 100 ' 1h- + 100 'Tn = 2. 
j .. l 

Finally, 
D = 1 - 11\ = 0.96. 

The consideration of the divergence coefficient may be useful in 
testing the assumed independence of trials and values of probabilities 
attached to these trials. In the simplest case of Bemoullian trials with 
a constant and known probability, the theoretical divergence coefficient 
is 1. Now, if the number of series is sufficiently large and the empirical 
divrrgence coefficient turns out to be considerably different from 1, 
we must admit with great probability that the trials we deal with are not 
of the supposed type. If, however, the empirical divergence coefficient 
turns out to be near 1, that does not conclusively prove the hypothesis 
roncrrning the independence of trials and the assumed value of the 
probability. It only makes this hypothesis plausible. 

There are cases of dependent trials (complex chains considered by 
l\larkoff) in which the theoretical divergence coefficient is exactly 1 and 
the probability of an event has the same constant value in each trial, 
inl'lofar as the results of other trials remain unknown. Cases like that 
may easily be mistaken for Bernoullian trials without further detailed 
l'tuJ.y of the entire course of trials. 

4. When there is good reason to believe that the trials are independent 
with a constant but unknown probability, we cannot in all rigor find the 
valut> of the empirical divergence coefficient 

" 
!(m;- sp)' 

D' = .'-... -'-1 ~--
Npq 

to compare it with the theoretical divergence coefficient D = 1, since p 
remains unknown. 

But, rt>lying on Bernoulli's theorem, we can take the quotient 

where 

M 
N 

AI = m1 + m2 + · · · + m. 

as au approximate value of p. By taking p = ..lf/N in the preceding 
exprt>s.,ion for D' we get another number 
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n 

N~(m,-~y 
D" = i=l ----:M:-=-(=N:-----M-=-=-) -

which in general is close to D'. However, considering m1, m2, ... m,. 
not as observed but as eventual numbers of successes in n series, the 
mathematical expectation of D". is different from 1. To avoid this 
difficulty, it is better to consider a slightly different quotient 

n(N- 1)]( m,- •~)' 
Q = i=l 

(n- 1)M(N- M) 

For this quotient there exists a theorem discovered and proved for the 
first time by the eminent Russian statistician Tschuprow. 

Theorem. The mathematical expectation of Q is rigorously equal to 1. 1 

Proof. Here we shall develop the proof given by Markoff. The 
above given expression of Q pre~ents itself in the form % and therefore 
has no meaning in two cases: M = 0 or M = N. For these exceptional 
cases we set Q = 1 by definition. If neither M = 0 nor M = N, we 
can present Q in the form 

(4) 

~ M2 
n(N - 1) ~ m[ - n 

Q = n - 1 M(N - M) . 

Considering m1, m2, . . . m,. as stochastic variables assuming integral 
values from 0 to s, the probability of a definite system of values 

lS 

. s! M N-M 

m,.!(s - m,.) !p q · 

To get the expectation of Q we must multiply it by P and take the 
sum 

E(Q) = I.PQ 

extended over all non-negative integers m1, m2, . . . m~, each of them 
not exceeding s. To perform this multiple summation we first collect 
all term..'l with a given sum 

m1 + m2 + · · · + m" = M. 
1 The theorem itself and its proof given by Markoff can be extended to the case of 

series of unequal length. 
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Let the result of this summation be SM. Then it remains to take the 
sum 

to have the desired expression E(Q). To this end we first separate two 
terms corresponding to M = 0 and M = N. In the former case 

m1 = m2 = · · · = m,. = 0 

and the probability of such an event is q·v while Q = 1. In the latter 
case 

m1 = m2 = · · · = m,. = 8 

the probability of which is pN, while again Q = 1. Thus 

N-1 

E(Q) = pN + qN + ! SM. 
M=l 

To find S.v we observe that the denominator of Q has a constant value 
when summation is performed over variable integers m1, . m2, • • • m,. 
connected by the relation 

m1 + m2 + · · · + m,. = M. 

Hence, it suffices to find two sums 

~p and !.Pm~ 

extended over integers m1, m2, . . . mn varying within limits 0 and 8 

and having the ~um M. To this end consider the function 

V = (pteh + q)•(pteh + q)• · · · (pteE· + q)• 

involving n + 1 arbitrary variables t, ~h ~2 , ... ~... When developed, 
V consists of terms of the form 

E\'idently we obtain the sum !P by setting ~1 = ~2 = · · · = ~" = 0 
and taking the coefficient of tM in the expansion 

(V)E,-.fl"" · · · Eo=O = (pt + q)N, 
Thus 

(5) 

To find '!Pm1 take the sE>cond derivative 

cPV 
ae 
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and after setting ~~ = ~a = · · · = ~~~ = 0, expand 

( ~
2

;) Et=Er- · · · b~·-o 
and take the coefficient of tM. Thus we find 

~ [ (N-1)! (N-2)! ] 
(6) ~Pml = s (M _ 1) !(N _ M)! +s(s -1) (M _ 2) !(N _ M)! pMqN-M, 

Referring to (4), (5), and (6), we easily get 

n(N- 1) (N- 2)!N 
SM = (n 1)M(N- M) n(M- 1)!(N- M)![nN- n + 

+ (N- n)(M- 1) - M(N- 1)]pMqN-M; 

or, after obvious simplifications, 

Hence 

and finally 

N-l 

S - N! M N M 
M = M!(N - M) !p q - . 

~ SM = (p + q)N :_ pN - qN = 1 - pN - qN, 
M=I. 

E(Q) = 1. 

Markoff, using the same method, succeeded in finding the explicit 
expression of the expectation 

Since there is no difficulty in finding this expression except for some­
what tedious calculations, we give it here without entering into details 
of the proof: 

N-l 

2N(N - n) ~ M- 1 N - M - I 
E(Q- 1)2 = (n -l)(N- 2)(N- 3)~--.xf. N- M C~pMqN-M, 

M=I • 

whence the following inequality immediately follows: 

2 
2N(N n) 

E(Q - l) < (n - l)(N - 2)(N - 3)' 

lp case n ~ 5 a still simpler inequality holds: 

(7) E(Q - 1)2 < - 2
-· 

41 - 1 
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Let R be the probability of the inequality 

Q ~ 1 + E, 

where Eisa positive number. Applying the same reasoning to inequality 
(7) as was used in establishmg Tshebysheff's lemma, we find that 

R < 2 . 
(n - l)E2 

Likewise, denoting by R' the probability of the inequality 

Q ~ 1- E1 

we have 

R' < 2 . 
(n - 1)E2 

Thus, in a large number of series it becomes very unlikely that tne 
value of Q found in actual experiment would lie outside of the interval 
1 - t, 1 + E. For instance, the probability for Q ~ 2 in 100 series is 
surely less than 

2 
99 

or nearly 0.02. However, this limit is much too high. It would be 
greatly desirable to have a good approximate expression for the proba­
bility of either one of the inequalities 

or Q ~ 1- E. 

But this important and difficult problem has not yet been solved. 
5. In order to illustrate the foregoing theoretical considerations we 

turn to experiments reported by Charlier in his book "Vorlesungen 
tiber die Grundzuge der mathematischen Statistik" (Lund, 1920). He 
made 10,000 drawings of single cards from a complete deck of 52 cards 
(each card taken being returned before the next drawing), and noted 
the frequency of black cards. The drawings were divided into 1,000 
series of 10 cards, or into 200 series of 50 cards. The results are given 
in the tables on page 220. 

Assuming the independence of trials and the constant probability 
p = } 2, the theoretical divergence coefficient must be 1. Let us compare 
it with the empirical divergence coefficient deriYed from Tables I and II. 
To this end we multiply the squares of numbers in the second column 
by the numbers given in the third column. The results are: 

For 200 series of 50 cards 
!(!IIi - ps)1 • 2,487 

For 1,000 series of 10 cards 
l:(~ni - ps)• = 2,419 
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TABLE I.-NUMBER OF BLACK CARDS IN TABLE 11.-NUMilER OF BLACK CARDS IN 

200 GROUPS OF 50 CARDS EACH 1,000 GROUPS OF 10 CARDS EACH 

Number of Number of 

Frequency 
Difference groups with 
m- 25 these 

Frequency 
Difference groups with 
m- 5 these 

frequencies 
I 

frequencies 

14 -11 1 0 -5 3 
15 -10 0 1 -4 10 
16 - 9 2 2 -3 43 
17 8 2 3 -2 116 
18 - 7 4 4 -1 221 
19 - 6 8 5 0 247 
20 - 5 6 6 1 202 
21 - 4 15 7 2 115 
22 - 3 i 

13 8 3 34 
23 - 2 15 9 4 9 
24 - 1 34 10 5 0 
25 0 14 I 

26 1 21 
27 2 26 
28 3 14 
29 4 10 
30 5 5 
31 6 5 
32 7 3 

33 8 I 2 i 

Dividing these numbers by 10,000 · H = 2,500, we get the following 
empirical divergence coefficients: 

D' = 0.9948; D" = 0.9676. 

Both are close to 1, so that the hypotheses of independence of trials 
and constant probability 72 for each of them, are in good agreement with 
empirical results. The second divergence coefficient, corresponding to 
more numerous groups, differs from 1 more than the first, corresponding 
to only 200 groups. But such a difference can be accounted for by 
fluctuations due to chance. 

Series of 50 trials are long enough to test the theorem established in 
Sec. 2 of this chapter. The quantities denoted there by A and B are 

here correspondingly: 

whence 

.4 2 = -\Yi; 
B =Ut; 

_4 = 3.5263 
B = 2.805 

A B = 1.2571 
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while 

~ = 1.2533. 

Again the difference, only about 4.10-3, is rather small. 
In this example, the probability of dravwi.ng a black card was assumed 

to be 72. In case we do not know the probability, but suppose it to be 
constant throughout 10,000 independent trials, we must consider the 
coefficient 

n(N- 1) ~( M)2 
Q = (n- 1)M(N- M)~ m,- 8N · 

... 1 

In our example 

n = 1,000; N = 10,000; M = 4,933 
M 

8 = 10; SN = 4.933. 

To evaluate the sum 
1,000 

S = ~ (m, - 4.933)2 

i-1 

we write it in the form 

Now 

1,000 1,000 

S = ~ (m,- 5) 2 + 0.134! (m;- 5) + 1,000 · (0.067 12• 

i=1 

1,000 

! (m, .:.. 5) 2 = 2,419 
1 

1,000. (0.067) 2 = 4.489 
1,000 

0.134 ~ (m,- 5) = -8.978 
1 

s = 2,414.51 

This is to be multiplied by the number 

n(N- 1) 1 
(n - 1)M(N - M) = 249'7.3. 

The result is 

0.9668, 

JH'ar t>nough to 1 for us to considPr the hypothesis of independenre of 
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trials and the constant value of probability as in agreement with experi­
mental data. 

EXAMPLES OF DEPENDENT TRIALS 

6. So far we have dealt only with independent variables. But the 
law of large numbers holds, under certain conditions, even in the case of 
dependent variables. Leaving aside generalities, we shall show the appli­
cation of the law of large numbers to a few interesting problemsjnvolving 
dependent variables. 

Let us consider first a Bernoullian series consisting of n + 1 inde­
pendent trials with the same probability p for an event E, the opposite 
event being denoted by F. We associate with trials 1, 2, . . . n variables 
x1, x2, •.. x ... defined as follows: 

x; = 1 if E occurs in trials i and i + 1, 
X; = 0 in all other cases. 

The probability of x, "" 1 evidently is p2 when nothing is known about 
the values of other variables. But if we know that X,;_t = 1, which 
implies the occurrence of E in the ith trial, then the probability of x, = 1 
is p. Thus, consecutive variables are dependent. However, X; and X~: 
are independent if lk - il > 1, as we can easily see. Since 

E(x;) "" E(xn = p2 • 1 + (1 - p2) • o = p2 

the e..{pectation of the sum Xt + X2 + · · · + Xn will be 

E(x1 + x2 + · · · + x ... ) = np2
• 

As to the dispersion of this sum, it can be expressed as follows: 

"' 
B,. = ~E(x,- p2)2 + 2~E(x,- p2)(xi- p2). 

i=l i>i 

Now 

and 

(9) E(x, - p2)(xi - p2) = E(x; - p2
) • E(xi - p2

) = 0 

for j > i + 1 because then x; and xi are independent. But 

(10) E(x, - p2) (x,+l - p2) = E(x;x;+t) - p4 = p3 - p4 

since the probability of simultaneous events 

Xi= 1, 
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is p3• Taking into account (8), (9), and (10), we find 

B, = np2q(3p + 1) - 2p3q 

and the condition 

i~ f<atitified. Hence, the law of large numbers holds for variables Xt, 

x2, ••• x,.. To express it in the simplest form, it suffices to notice that 
the sum 

Xt + Xz + ' ' ' +X,. 

represents the number of pairs EE occurring in com;ecutive trials of the 
Bernoullian series of n + 1 trials. Let us denote the frequency of such 
pairs by m. Then, referring to the law of large numbers, we get the 
follov.ing proposition: 

If in n consecutive pairs of Bernoullian trials the frequency of double 
successes EE ism, then the probability of the inequality 

will approach 1 as near as we please, when n becomes suffidently large. 
7. Simple chains of trials, described in Chap. V, Sec. 1, offer a good 

example of dependent trials to which the law of large numbers can be 
applied. Let Pt be the given probability of an event E in the first trial. 
According to the definition of a simple chain, the probability of E in 
any subsequent trial is a or {j according as E occurred or failed to occur 
in the preceding trial. By p,. we denote the probability forE to occur 
in the nth trial when the results of other trials are unknown. Let 

& = a- {j, 
{j 

p=-· 
1 - & 

Then, aecording to the developments in Chap. V, Sec. 2, 

p,. = p + (pl - p)&--t, 

whence 

Pt + Pt + · · · + p. Pt - p 1 - 6" 
n = P +-n-1--=-1' 

barring the tri\ial ca..;;es & = 1 or & = -1. It follows that p represents 
the limit of the mean probability in n trials when n increases indefinitely, 
and for that reason p may be called the mean probability in an infinite 
chain of trials. When it is known that E ha..-~ ore~ed in the ith trial its 

I 
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probability of occurring in some subsequent jth trial is given by 

pJ') = p + qoH, q = 1 - p. 

In the usual way we associate with trials 1, 2, 3, ... variables 
x1, x2, X31 • • • so that in general 

x, = 1 when E occurs in the ith trial 
x, = 0 when E fails to occur in the ith trial. 

Evidently 
E(x,) = E(xf) = p;. 

In order to prove that the law of large numbers can be applied to 
variables Xt, x2, X3, .•• , we must have an idea of the behavior of Bn 
for large n. By definition 

n 

B, = E(Xt - Pt + X2 - P2 + · · · + Xn - Pn) 2 = ~ E(x; - p;)2 + 
i=l 

j>i 

The first sum can easily be found. We have 

E(x, - p,)2 = P• - Pi = pq + (q - p)(Pt - p)oH - (Pt - p)2o2i-2 

whence 
n 

A = ~E(x;- p;) 2"' npq 

neglecting terms which remain bounded. As to the second sum, we 
observe first that 

E(x, - p;)(xi - Pi) = E(x,xi) - p;Pi· 

Again, since the prob~bility of 

X;Xj = 1 

is evidently p;p(p we have 

and 

E(x,- p;)(xi- Pi) = p;_p}') -Pi) = pqOi-i + 
+ (Pt - p)@ p)Oi-t - (Pt - p) 2oi+i-2. 

Now, for a fixed i = 1, 2, ... n - 1, we must take the sum of these 
expressions letting j run over i + 1, i + 2, . . . n. The result of this 
summation is 

o- o"-'+1 

pq 1 - o + (Pt p)(q o'- o" p)--- (PI 
1 - 0 
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Taking i == 1, 2, 3, ... n - 1 and neglecting in the sum the terms 
which remain bounded, we grt 

whence 

B == ~.E(x, - p,)(x; - p;) t'<o.J npq
1 
~ 

0 
J>• 

1 + 6 
B,. ==A+ 2Bt'<o.Jnp~· 

This asymptotic equality suffices to show that 

B,.~o 
n2 as 

Therefore the law of large numbers can be applied to variables X11 

x2, X3, • • • • Since the sum 

x 1 + x2 + · · · + x,. = m 

represents the frequency of E in n trials, the law of large numbers in 
this particular case can be stated as follows: For a fixed E > 0, no matter 
how small, the probability of the inequality 

lm P1 + P2 + · · · + p,.1
1 

< 
~-- E 
1
n n 

tends to 1 as n -+ oe . 

The arithmetic mean 

P1 + P2 + · · · + p,. 
n 

itself approaches the limit p. It is easy then to express the preceding 
theorem thus: The prohability of the inequality 

ll'nds to 1 a..s n-+ ao. 

This proposition is of exactly the 8ame type as Bernoulli's theorem, 
hut applie8 to series of dependent trials. 

8. Let a. simple chain of N = ns trials be divided into n consecutive 
series each consisting of s trials; also, let m1, m2, ••• m,. be the fre­
qurnries of E in each of these series. When N is a large number, the 
mran probability in N trials differs little from the quantity denoted by p. 
It is natural to modify the definition of the divergence coefficient ginn 
in S('t'. 3 by taking p instead of the variable mean probability inN triab. 
Tillis we define 
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n 

~ (m,- sp) 2 

D=E= 1 
- --.N-::-p-q-

In our case, the variables 

X1 = (m1- sp) 2, X2 = (m2- sp)2, · · · X,.= (m,.- sp)2 

are neither identical nor independent, although the degree of dependence 
is evidently very slight. These variables can also be presented in the 
form · 

(11) (Xa - P + Xa+l - p + · · · + Xa.ta-1 - p)2 

taking successively a = 1, s + 1, 2s + 1, ... (n - 1)s + 1. 
To find the mathematical expectation of (11) it suffices to notice that 

E(x;- p) 2 = E(x,- p;) 2 + (p, - p) 2 = pq + (q- p)(p1 - p)oH 
E(x, - p)(xi - p) = E(x, - p;)(xi - Pi) + (p; - p)(Pi - p) 

= pqQi-i + (Pl- p)(q- p)oi-1 

and then proceed exactly as in the approximate evaluation of B,. in Sec. 7. 
The final result is 

E(Xa- P + Xa+l - P + • · · + Xa+s-1- p) 2 = 
_ 1 + o 2pqo + (q - p) (Pt - p) (1 + o) o"_1 + 
- spq1 - o - (1 - o) 2 (1 - o) 2 

+ ~os+l- (q- p)(Pt - p)[2s(l o) + 1 + o]oa+~- 1 • 
(1-o) 2 (1-o) 2 

For somewhat large s the two last terms in the right member are com· 
pletely negligible; so is the third term if a ~ s + 1. Hence, with a good 
approximation, 

E(X) = 1 + o _ ~ + (q- p)(p1- p)(1 + o) 
1 spq1 - o (1 - o)2 (1 - o) 2 

E(X) 1 + 0 2pqo if i > 1 
i = spq1 - o - (1 - o) 2 

and 

D = 1 + o _ 2o + (q- p)(p1- p)(1 + o). 
s(1 - o) 2 Npq(1 - o) 2 

Again, when N is large, the last term can be dropped and as a good 
approximation to D we can take 

(12) D = 1 + o _ 2o . 
1 - o s(1 - o)2 

It can be shown that the law of large numbers holds for variables X t1 

X2, ••• X. and therefore when n (or the number of series) is large, the 
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empirical divergence coefficient is not likely to differ considerably from 
D as given by the above approximate formula. 

9. In order. to see how far the theory of simple chains agrees with 
actual experimE'nts, the author of this book himself has done extensive 
experimental work. To form a chain of trials, one can take two sets of 
cards containing red and black cards in different proportions, and 
proceed to draw one card at a time (returning it to the pack in which it 
belongs after each drawing) according to the following rules: At the 
outset one card is taken from a pack which we shall call the first set; 
then, whenever a red card is drawn, the next card is taken from the first 
set; but after a black card, the next one is taken from the second set. 
Evidently, these rules completely determine a series of trials possessing 
properties of a simple chain. In the first experiment the first pack 
contained 10 red and 10 black cards, while the second pack contained 5 
red and 15 black cards. Altogether, 10,000 drawings were made, and 
following their natural order, they were divided into 400 series of 25 
drawings each. The results are given in Table III. 

TABLE IlL-DISTRIBUTION OF RED CARDS IN 400 SERIES OF 25 CARDS 

Frequency of Difference, Number of series 
red cards, m m- 8 with these frequencies 

1 -7 2 
2 -6 4 
3 -5 8 
4 -4 27 
5 -3 29 
6 -2 54 
7 -1 37 
8 0 52 
9 1 47 

10 2 44 
11 3 41 
12 4 20 
13 5 20 
14 6 7 
15 7 4 
16 8 3 
17 9 1 

The sum of the numbers in column 3 is 400, as it should be. Taking 
the !lUm of the products of numbers in columns 1 and 3, we get 3,323, which 
is the total number of red cards. The relative frequency of red cards in 
10,000 trials is, therefore, 

0.33~3. 
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In our caFe 

a=!, {J=i, o=l 
and the mean probability p in an infinite series of trials 

fJ 1 
p = 1 - 0 = 3 = 0.3333. 

Thus, the relative frequency observed differs from p only by 10-a and 
in this respect the agreement between theory and experiment is very 
satisfactory. Now let us consider the theoretical divergence coefficient 
for which we have the approximate expression 

D = 1 + o _ 2o . 
1 - o s(1 - o)2 

Here we must substitute o = % and s = 25. The result is 

D = 1.631, approximately. 

To find the empirical divergence coefficient we must fir~t evaluate the 
sum 

S = .2:(m - -2.1) 2 

extended over all 400 series. For the sake of easier calculation, we 
present S thus: 

S = 2:(m - 8) 2 - i2:(m - 8) + 1-3-0.. 

Now from Table III we get 

2:(m- 8) 2 = 3,521; ~(m- 8) = 123 
whence 

s = 3,483.4. 

Dividing this number by 2° 00% = 2,222.2, we find tht> empirical 
divergence coefficient 

D' = 1.568 

which differs from D = 1.631 by only about 0.06, well within reasonable 
limits. 

10. In two other experiments two packs were used: one containing 
13 red and 7 black cards, and another 7 red and 13 black cards. In 
one experiment the pack with 13 red cards was considered as the first 
deck, and in the other experiment it became the second deck. The 
new experiments were conducted in the same way as that described in 
Sec. 9, but they were both carried to 20,000 trials divided into 1,000 
series of 20 trials each. In the first experiment, we have 

a = H, fJ = y\i, o = -l'ri, p = ! 
and 

D = 1.796, approximately, 
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while the same quantities for the second experiment are 

a= irf, v=t 
and 

D = 0.556, approximately. 

The results of these experiments are recorded in the followmg two 
tables: 

TABLE IV.-CONCERNlNG THE FIRST ExPERIMENT 

Frequency of Difference, i Number of series 
I 

red cards, m m- 10 with theRe frequencies 

2 -8 3 
3 -7 5 
4 -6 18 
5 -5 36 
6 -4 59 
7 -3 93 
8 -2 103 
9 -1 117 

10 0 128 
11 1 121 
12 2 101 
13 3 93 
14 4 48 
15 5 39 
16 6 26 
17 7 7 
18 8 1 
19 9 1 
20 10 1 

TABLE V.-CoNCERNING THE SEcOND ExPERIMENT 

Fn>quenry of I Differenee, ~umber of series 
n>d rards, m 111 - 10 . with these frequencie~ 

5 -5 2 
6 -4 10 
7 -3 48 
8 -2 112 
9 -1 193 

10 

I 

0 251 
11 1 201 
12 2 113 
13 ! 3 56 
14 4 9 
1/i 5 5 
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Taking the sum of the products of numbers in columns 1 and 3, we 
find 

10,036 and 10,045 

as the total number of red cards in the first and second experiments. 
Dividing these numbers by 20,000, we have the following relative 
frequencies of red cards: 

0.50018 and 0.500225 

extremely near to p = 0.5. From the first table we find that 

};(m - 10)2 = 8,924 

summation being extended over all 1,000 series. Dividing this number 
by 20,000 · ~ = 5,000, we find the empirical divergence coefficient in 
the first experiment 

D' = 1.785 
which comes close to 

D = 1.796. 

Likewise, from the second table we find 

};(m - 10) 2 = 2,709, 

whence, dividing by 5,000, 

D" = 0.5418 
again close to 

D = 0.5562. 

Thus, all the essential circumstances foreseen theoretically, for simple 
chains of trials, are in excellent agreement with our experiments. 

Problems for Solution 

1. From an urn originally containing a white and b black balls, n balls are drawn 
in succession, each ball drawn being replaced by 1 + c(c > 0) balls of the same color 
before the next drawing. If m is the frequency of white balls, show that the prob­
ability of the inequality 

1~--a I<E 
n a+ b 

doe.s not tend to 1 as n increases indefinitely (Markoff, G. P6lya). 
Indication of the Proof. If x; = 1 or X; = 0, according as a white or a black ball 

appears in the ith drawing, we have 

~ a 
E(x;) = E(x,) = a + b' 

a a+ c 
E(x;x·) = -- · ---· 1 atb a+b+e 
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Hence 

B,. = E( Zt + Xs + · · · na )' n
2
abc +z,.--- = + 

a + b (a + b)!( a + b +c) 

+ nab . 
(a + b)(a + b +c) 

2. M arbe' B Problem. A group of exactly m uninterrupted successes E or failures F 
in a Bemoullian series of trials with the probability p for a success is called an "m 
Mequence." If N is the frequency of m sequencf'.s inn trials. show that the probability 
of the inequality 

j; - (p"'q' + p'q"')l < ( 

for a fixed e converges to 1 as n becomes infinite. 
Indication of the Proof. Associate with each of the " = n - m + 1 first trials 

variables Xt, x2, • • • x,. assuming only two values, 0 and 1. For 1 < i < " we set 
x.; = 1 if, beginning with the ith trial, a succession of m letters E or F is preceded and 
followed by For E. In all other cases Xi = 0. We set Xt = 1 if, beginning with the 
first trial, there is a succession of m letters E or Fended by ForE; otherwise x1 = 0. 
Finally, x,. = 1 if, beginning with the p.th trial there is a succession of m letters E or F 
preceded by ForE, otherwise x,. = 0. Show that 

E(xt + X2 + · · · + Xp) = (n - m- l)(p"'q' + p2q"') + 2(p"'q + pq"') 
E(zt + Xs + · · · + :c11)1 = n1(p"'q2 + p2q"') 2 + nP 

where P remains bounded. 
8. The following interesting series of dependent trials has been suggested by S. 

Bernstein: Two urns contain white and black balls. The probabilities of drawing 
white balls from the first and second urns are, respectively, p and p1

• The probabilities 
of drawing black balls from the same urns are q = 1 - p and q1 = 1 - p1

• Finally, 
the probability of taking a ball from the first urn at the outset of the trials is a. A 
series of trials is uniquely defined by the following rule: Whenever a white ball is 
drawn (and returned), the next ball is drawn from the same urn; but when a black 
hall is drawn, the next ball is taken from the other urn. Let a. be the probability 
that the nth ball will be drawn from the first urn when the results of other drawings 
rt'main unknown. Under the same assumption, let p .. be the probability of the nth 
hall being white. Find general expressions of a. and p ... 

HINT: 

a,.+l = a,.(p + p1 
- 1) + 1 - p' 

whenre 

a. "" - p 
1 
+ a - - p , (p + p1 

- 1)•-•. 1 I ( 1 I ) 

2-p-p 2-p-p 
Also 

p. = a.p + (1 - a.)pl 

whenre 

P• = p. p - .. p:- + II -. - p , (p - p1)(p' + p - 1)•-1. + 1 
t) I ( 1 I ) 

2-p-p 2-p-p 

'· When it bN>omrs known that in the ith trial a white ball was drawn, wh11.t are 
the probabilitiet> a~oi and Pi.) of taking a ball from the first um in the}thlj > i) trial 
and of drawing a white ball in the same trial? 
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HINT: The probability a~11 that it was the first urn from which a white ball was 
drawn in the ith trial is determined by Bayes' formula: 

(') (') a;p 
a,~1 =a/ = -· 

p; 

For n ~ i + 1 

a!.~l = a!.'1(p + P1 
- 1) + 1 - p' 

whence 

. 1 - (a;p 1 - P
1 

) a}'' = I + - - I (p + p' - 1)h-1 
2-p p p; 2-p-p 

for j > i + 1. Furthermore 

p~i) a~•>p + (1 - a~'>)p' 

for j ~ i + 1. 
6. From now on we shall assume p + p' = 1 or p' = q, q' = p. Show that the 

law of large numbers can be applied to variables Xt, x2, xa, . . . which are defined in 
the usual way: 

x; = 1 if a white ball is drawn in the ith trial, 
:t; = 0 if a black ball is drawn in the ith trial. 

Indication of the Proof. Evidently. E(:t;) = E(xD = p;. Furthermore 

Now 

71 

B,. = !E(x. - p;)2 + 2 !E(x; - p1)(x1 - p;). 

1=1 j>i 

E(x; - p;)1 = 2pq{l - 2pq); i > 1 
E(x1 - Pt) 2 = pq + a{l - a)(p - q)1• 

For j > i > 1 
E(x; - p;)(x; - p;) = 0 if j > i + 1 

E(x. - p;)(x;+t - Pi+t) = pq(1 - 4pq). 

Fori = 1 and j > 1 

Hence 

E(xt - Pt)(x; - p;) = 0 
E(xt - Pi)(Xz - Pz) = a:p2 + (1 - a)q2 

if j > 2 
(1 - 2pq)(q + (p - q)a). 

Bn "' 4pq(1 - 3pq)n 

and the law of large nu:nbers holds. It can be stated as follows: If in n trials the 
frequency of white balls is m, then the probability of the inequality 

1:-m r lo (p2 + q2) < E 
I 

tends to 1 as n tends to infinity for any given positive number E. 

6. Let r = pz + qz be the mean probability in infinitely many trials Find the 
divergence coefficient 

71 

!(m;- sr)2 

D = Ei-·_t __ _ 
Nr(l - r) 

when N = ns trials are dtvtded in n consecutive groups containing s trials each. 
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Jndicntion of Solution. From the foregoing formulas it follows that 

E(x. r + Xa+l - r + · · · + Xa+•-1 - r)1 = 4spq(l - 3pq} - 2pq(l - 4pq) 

if a > l. Hence 

E~ (m; - sr)l = 4Npq(l - 3pq) - 4spq(l - 3pq) - 2(n - l)pq(l - 4pq). 

i-2 

Again 

E(m1 - sr)t = 4spq(I - 3pq) - 2pq(3 - 10pq) + p(1 - 6q + 12q1 - 4q8) -

· - a(p - q)(l - 8pq) 
so that finally 

D = 2- 6pq _ 1 - 4pq + (p- q)(p- a)(l - 8pq}. 
1 - 2pq s(l - 2pq) 2Npq(1 - 2pq) 

For large N with a good approximation 

D = 2 - 6pq _ 1 - 4pq 
1 2pq s(1 - 2pq) 

'1. Two sets of cards containing respectively 12 red and 4 black cards (the first 
deck) and 4 red and 12 black cards (the second deck) were used in the following experi­
ment: The first card was taken from the first deck, and in the following trials, after 
a red card the next one was taken from the same deck, but after a black one the next 
<'ard was taken from the other deck. Altogether 25,000 cards were drawn, and in their 
uutural order were divided in 1,000 series of 25 cards each. The results are recorded 
in Table \'I. How close is the agreement between this experiment and the theory? 

TABLE Vl.-DISTRIBUTlON OF RED CARDS IN 1,000 SERIES OF 25 CARDS 

Frequeney of Difference, Number of series 
red cards, m m- 16 with these frequencies 

6 -10 1 
7 - 9 1 
8 - 8 1 
9 - 7 12 

10 - 6 13 
11 - 5 43 
12 - 4 65 
13 - 3 92 
14 - 2 101 
15 - 1 i62 
16 0 94 
17 1 164 
18 2 68 
19 3 110 
20 4 26 
21 5 28 
22 6 10 
23 7 7 
2-l 8 I 
2.) i 9 1 
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Ans. In the present case p = q' = %, p' = q = ~. Mean probability in infinitely 
many trials: 

p1 + q2 = i = 0.625. 

Theoretical divergence coefficient: D = 1.384. Frequency of red cards: 15,696. 
Relative frequency: 

!HH = 0.62784, 
close to 0.625. 

Empirical divergence coefficient: D' = 1.3845, very close to 1.384. 
The probability of taking a card from the second deck is 0.25. Now, by actual 

counting, it was found that in 7,500 trials a card was taken from the second deck 
1,856 times. Hence, the relative frequency of this event in 7,500 trials is 

HH = 0.2475, 

again very close to 0.25. 
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CHAPTER XII 

PROBABILITIES IN CONTINUUM 

1. In the preceding parts of this book, whenever we dealt with 
stochastic variables, it was understood that their range of variation was 
represented by a finite set of numbers. Although, for the sake of better 
understanding of the subject, it was natural to begin with this simplest 
case, there are many reasons why it is necessary to introduce into the 
calculus of probability stochastic variables ·with infinitely many values. 
Such variables present themselves naturally in many cases of the type of 
Buffon's ne<>dle problem which we bad occasion to mention in Chap. VI. 

On the other hand, even in dealing with stochastic variables with a 
finite, but very large number of values, it is often profitable for the sake 
of approximate evaluations, to substitute for them fictitious variables 
with infinitely many values. Among these the most important ones by 
far are continuous variables. 

CASE OF ONE vARIABLE 

2. Bt>ginning with the case of a single continuous variable x, we must 
assume that its range of variation is known and represented by a given 
interval (a, b), finite or infinite. The knowledge only of the range of 
variation of x would not enable us to consider x as a stochastic variable; 
to be able to do so, we must introduce in some form or other the considera­
tions of probability. For a continuous variable it is as unnatural to 
:;prak of the probability of any selected single value, as it is to speak of 
the dim<>nsion of a single selected point on a line. But just as we Fipeak 
of the lPngth of a segment of a line, we may introduce the notion of the 
probability that x will be confined to a given interval (c, d), part of (a, b). 

In introducing this new notion of probability in any manner whatso­
P\'<'r, we must be careful not to fall into contradiction with the laws of 
probability which are assumed as fundamental. To this end, if P (c, d) 
is the probability for x to lie in the interval (c, d), we are led to assume 

1° P(c, d) ~ 0 
2° P(a, b) = 1. 

The first a.~umption is an expression of the fact that probability 
can ne\'er be nrgative. The second assumption corresponds to the fact 
that z certainly assumes one out of the totality of its possible values. 

235 
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Next, if the interval (c, d) is divided into two adjoining intervals 
(c, e) and (e, d), we assume ' 

3° P(c, d) = P(c, e) + P(e, d) 

in conformity with the theorem of total probability. . 
For continuous variables it is furthermore assumed: 4° for an infini~ 

tesimal interval (c, d), P(c, d) is also infinitesimal. 
Properties 3° and 4° show that P(c, d) is a continuous function of c 

and d and that 

P(c, c) = 0. 

In other words, the probability that x will assume any given value is 0. 
At the same time P(c, d) represents the probability of any one of the four 
inequalities · 

C <X < d; «- ~X < d; C <X ~ d; C ~X ~d. 

3. A simple example will serve to clarify these general considerations. 
A small ball of negligible dimensions is made to move on the rim of a 
circular disk. It is set in motion by a vehement impulse and after many 
complete revolutions, retarded by friction and the resistance of the air, 
comes to rest. The variety and complexity of causes influencing the 
motion of the ball make it impossible to foresee the final position of the 

• ball when it comes to rest and the whole phenomenon bears characteristic 
features of a play of chance. The stochastic variable associated with this 
chance phenomenon is the distance from a certain definite point on the 
rim (origin) to the final position of the ball, counted in a definite direction, 
for example, clockwise. This variable, when we consider the ball as a 
mere point, may have any value between 0 and the length of the rim. 
The question now arises, how to define the probability that the ball will 
stop in a specified portion of the rim, or else that the variable we consider 
will have a value belonging to a definite interval, part of its total range 
of variation. In trying to define this probability, we must observe the 
fundamental requirements set forth in Sec. 2. Besides that, we must of 
necessity resort to considerations which are not mathematical in their 
nature but are based partly on aprioristic and partly on experimental . 
grounds. Suppose we take two equal arcs on the rim. There is nothing 
perceptible a priori that would make the ball stop in one arc rather than 
in another. Besides, actual experiments show that the ball stops in one 
arc approximately the same number of times as in another, and this 
experimental knowledge together with aprioristic considerations suggests 
the assumption that we must attribute equal probabilities to equal arcs, 
irrespective of the position of the arcs on the rim. As soon as we agree on 
this assumption or hypothesis, the problem becomes mathematical and 
can easily be solved. 
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Before proceeding to the solution, a remark on the meaning of zero 
probability in connection with continuous variables is not out of place. 
Zero probability in this case does not mean logical impossibility. We 
attribute zero probability to the event that the ball will stop precisely 
at the origin. However, that possibility is not altogether excluded 
so far as we consider the origin and the ball as mere points. The question 
lacks sense if we deal \\ith a material ball and a material rim, no matter 
how small the former and how fine the latter. 

'· A stochastic variable is said to have uniform distribution of 
probability if probabilities attached to two equal intervals are equal. 
This means that P(c, d) depends only upon the length d - c = s of the 
interval (c, d) and accordingly can be denoted simply by P(s). Com­
bining two adjoining intervals of the respective lengths a and s' into a 
:-~ingle interval of length 8 + s', a.ccording to requirement 3°, we must 
have 

(1) P(s + s') = P(s) + P(s'). 

Suppose now that the interval (a, b) of the length b - a = l, represent­
ing the whole range of \·ariation of x, is di,ided into n equal intervals 
of the length l/n. The repeated application of equation (1) gives 

But by requirement 2° P(l) = 1 and hence 

Again, repeated application of (1) gives 

for any integer m < n. ~ow let us take any interval of lengths. For an 

appropriate m it will contain the intern! !!!1 and be contained in the 
n 

int.,n·al m + 11; hence, referring to requirements 1° and 3° we shall have ,. , 

~ ~ P(s) ~ m + 1 
n n 

while 

~~ S' < m + ll 
n - " ' 
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or 

Since P(8) ~nd 8/l are contained in the same interval of length 1/n, 

and this being true for an arbitrary n, no matter how large, it follows that 

P(8) = T' 

Thus for a variable x with uniform distribution of probability, the 
probability of assuming a value belonging to an interval of length 8 is 
given by the ratio of 8 to the length l of the whole range of variation of x. 

5. In the general case, when we cannot assume the uniformdistribu­
tion of probability throughout the whole rang!' of variation of x, we let 
ourselves be guided by an analogy with a mass distributed continuously 
over a line. In fact, the distribution of a mass satisfies all the require­
ments set forth for probability. In particular, the mass t::.m contained 
in an infinitesimal interval (z, z + t::.z) is also infinitesimal and the mean 
density 

t::.m 
Yz 

is generally supposed to tend, with t::.z converging to 0, to a limit called 
"density at the point z." If this density p(z) is known, the mass con­
tained in any interval (c, d) is represented by an integral 

J:dp(z)dz. 

Following this analogy we admit that the mean density of probability 

P(z, z + t::.z) 
t::.z 

tends to a limit/(z): density of probability at the' point z when the length 
of the interval t::.z tends to 0. Hence, again the probability corresponding 
to an interval (c, d) will be represented by the integral · 

P(c, d) = idf(z)dz. 

This expression satisfies all the requirements of Sec. 2 if the density of 
the probability f(z) is subject to two conditions: 
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(a.) 

(b) 
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f(z) ~ 0 for all z in (a, b). 

Lbf(z)dz = 1. 

The second condition implies, of course, the existence of the integral itself. 
But in all cases of any importance the density is continuous, save for 
discontinuities of the simplest kind which do not cause any doubts as 
to the existence of the above integral. 

From the general expression of P(c, d) it follows that for an infini­
tesimal interval (z, z + ~z) the probability is given by f(z)dz neglecting 
infinit.esimals of a higher order. For the uniform distribution of proba­
bility over an interval of length l the density is com;tant and = 1/l. 

In other cases we cannot expect to obtain a definite expression for 
density unless the variable itself is sufficiently characterized by addi­
tional conditions, either hypothetical or implied by the problem. Thus, 
for instance, in applications of probability to problems of theoretical 
physics, the physicists have i'lUCcE>eded in obtaining definite probability 
distributions by invoking physical laws of admitted universal validity 
together with some plausible hypotheses. 

6. The interval containing all possible values of a stochastic variable 
may be finite or infinite according to the nature of that variable. How­
('Ver, in all cases we may take the largest possible interval from - «l to 
+ «l; to this end it suffices to define the density outside of the originally 
g;i,·en intrrval as being = 0. Then the density Vlrill be defined for all 
r·ral values of z and will satisfy the conditions: 

(a) f(z) ~ 0 for all e 

(b) J_"'.J(z)dz = 1 

Furthrrmorf', the probability for x to be in any interval (c, d) will be 
ginn by 

f 1
J(z)dz. 

In particular, taking c = - CX) and writing t instead of d, 

F(t) = J~ .J(z)dz 

rrpresents the probability that x will not exceed or will be less than t. 
f'on:o:idrred as a function oft, F(t) is never decreasing and varies betwefn 
F( cc) = 0 and F( + cc) = 1. It is called the" distribution function of 
probability." In cast> x has uniform distribution of probability over an 
intrrYal (a, b) its distribution function is t>vidently defined as follows: 

F(t) = 0 for t < a 

F(t) = t - a for a ~ I ~ b 
-a 

F(t) = 1 for t > b. 
It~ IZrH ph i!! ~>hown in Fig. 1 on page 240. 
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7. The definition of mathematical expectation can easily be extended 
to continuous variables; namely, the expectation of x or the mean value 
of x is defined by 

E(x) = J_"'.,.zj(z)dz 

provided this integral exists. Similarly, the mathematical expectation 
of any function <P(x) is given by 

E[<P(x)] = J_"'..,<P(z)j(z)dz. 

Of course, the existence of the integral in the right member is presupposed 
again. When this integral does not exist, it is meaningless to speak of 

the mathematical expectation of <P(x). -----LLt________ The mathematical expectation of the 
-oo a b +oo power X11 with positive integer exponent 

FIG. 1. is called the moment of the order n or 
nth moment. We shall denote it by mn so that 

m,. = J_ "'.., z"f(z)dz. 

The dispersion D and the standard deviation of x are defined in the same 
way as in Chap. IX; namely, 

D = u2 = E(x - mt)2 = J_ "' .. (z - m1) 2j(z)dz = m2 - m1. 

Often it is advisable to consider the mathematical expectation of lxl"' 
where a may be any real number, ordinarily positive. This expectation 
is called the "absolute moment of the order a." Its expression is 

and it is eVIdent that 

The mathematical expectation of the func1Jion 

where t is a real variable, is of the utmost importance. It is called the 
"characteristic function" of distribution and is defined by 

q;(t) = J_"',,e'''f(z)dz. 

Since j(z) ~ 0 and 

J_"')(z)dz = 1 
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the integral defining rp(t) is always convergent and 

irp(t)i ~ 1. 

241 

The distribution is completely determined by its characteristic func­
tion. Because by the Fourier theorem 

JJ 110 

foo - dt e•t<•-zlj(z)dz = j(x) 
211' -oo -oo 

at all points of continuity of J(x). But the left-hand member is 

If"' - rp(t)e-''"'dt 
211' -oo 

by the definition of rp(t) and so 

JJ 110 

f(x) = - rp(t)e-it:tdt. 
211' -oo 

8. To illustrate the preceding general explanations we shall now con­
sider a few examples. 

Example 1. Let x be a variable with uniform distribution of probability over 
the interval (0, l). The density of this distribution being constant 

1 
J(z) = l 

t hr nwan val uP of x is 

and the srcond moment 

m2 = f
1

z2~ = ~. Jo l 3 

Hence, the sQuare of the standard deviation 

This simple example may be used to illustrate a remark made at the beginning of this 
t·hapter, that sometimes it is profitable to substitute for a variable with a finite but 
lar~e number of values a fictitious continuous variable. Suppose that in flipping a coin 
r1 timt>s, we mark heads by 1 and tails by 0, thus obtaining a sequence comprising n 
units and zeros altogether, disposed in the order of trials. This sequence may be con­
~idt•l't'd as successive digits in the binary representation of a fraction: 

a1 a2 a • 
. \:=2+4+···+~ 

l'Ontained between 0 and 1. X may be considered as a stochastic variable with 2• 
Yalut•s tlll<'h having the probability l/2-. The probability ll(a, (j) that X will be con­
t&ined in the inter\' a! (a, /1), or more definitely that X will satisfy the inequalities 

II <X ~iJ 
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is obviously obtained by multiplying the number of integers N contained in the limits· 

2"a < N ~ 2"{3 

by 1/2". Now there are exactly 

[2"{J) - [2"a) == 2"(fJ - a) + e; -1 < e < 1 

such integers; hence 

e 
ll(a {J) = fJ - a + -· 

I 2" 

If n is even moderately large, this probability is very near to the probability 

P(a, fJ) = {3- a 

that a fictitious variable z with uniform distribution over the interval (0, 1) will 
assume a value in the interval (a, {3). The first two moments of the variable X are, 
respectively 

0+1+2+· .. +2"-1 1 1 
M 1 = 22" = 2 - 2"+1 

Q2 1 1 1 
M, = .23n = 3- 2n+l + 3 ·22n+l 

and differ little from the respective· moments }1 and ~ of the fictitious continuous 
variable. Without losing anything essential, we here gain considerably in sim­
plicity by substituting a fictitious continuous variable for the discontinuous variable 
X. 

Example 2. A thin bar can rotate freely about its middle point P. It is set in 
motion and after several revolutions comes to a stop pointing toward a point X on a 

line l. The position of the bar is determined by an angle 0 "< formed by itself and the perpendicular PO dropped from P on l; 0 
~~\ varies between the limits -Tr /2 and 1r /2 and its distribution is 

--0-=--~x--1 supposed to be uniform. The position of X is determined by 

FIG. 2. its distance OX = x from 0, this distance being positive or nega­
tive according as X is to the right or to the left of the point 0. 

It is required to find the distribution of the probability of x. The relation between fl 
and xis 

if OP = a or, conversely, 

x=atge 

z 
e =arc tg -· 

a 

By differentiation we find the relation between de and dz: 

adx 
de=--· 

a2 +x2 

Now, by hypothesis, the probability that <.OPX will be contained between e and 
IJ +diJis 

de 1 adx -=---· 
r r a2 + x2 
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And the probability that the distance of X from 0 villi be contained betweer. z and. 
x + d.% is the same. Hence, the density of probability for the variable z is 

1 a 
/(z) =---

r a2 + z1 

and the probability corresponding to a finite interval (c, d) is given by 

•i" tulz P(c, d) = - --· 
r eat+ zl 

For the whole range of variation of z 

•J.. tulz - --=1 
r - ,.a• + zt 

as it should be. However, we cannot speak of the mean value of z or of momentP ol 
higher order, since the integrals 

f • zdx f • z:!th 
-----• e~. 

- .,at + x' - ,.as + 
have no meaning. But the characteristic function .,!t) exists and is given by 

Example 3. One of the most important distributiollll (thoorE>tically and pral}o 
tically) is the so-called "Gaussian" or "normal" distribution. The delll!ity of this 
distribution is given by 

f(z) = Ke-•11
'-.)

1 

with three parameters K, h, a. However, only two of these parametel"'! are inde­
JWndent, sinre we must have 

f • /lz)dz = Kf" tf""'<• .... ,'dz = Kf • e"""'"''du = KVr = 1; 

-· -· -· " 
whence 

and fuut.lly 

" K=-
0 

To find the meaning of a and h we obst'r.'e th11.t the me.a.n value of our variable is 
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Thus a has the meaning of the mean value of the normally distributed variable :c. 
The square of the standard deviation is given by 

a)tdz = - e-h u uZdu = -. hI"' 2 I 1 
v; -.. 2h2 

whence 
1 

ov2' h 

Thus for the normally distributed variable with the mean a and standard deviation " 
the density of probability is 

l (z-a)i 

f(z) =--e-~ 
IT~ 

Finally, for the variable u = :z; - a with the mean value 0 and the same standard 
deviation, the expression of density takes the simplest form 

1 _ _:: 
f(z) = --e 2<r' 

uy'2; 
and the distribution function of probability is represented by the integral 

F(t) = -- e 2112dz. 1 j'' _ _:: 
1Ty'2; - .. 

The curve of density 

Q1' the probability curve has a bell-shaped form as shown in the figure corresponding 
to 11 = 1. It has a single maximum corre-

~ sponding to :z; = 0 and on both sides of this 
==~==---------~--=· maximum it rapidly approaches the x axis. 

0 The characteristic function of normal 
FIG. 3• distribution has a very simple form. By 

definition 

But as 

(a> 0) 

we find that .,,,, 
rp(t) = e-2 . 

The moments of normal distribution (with the mean = 0) can now be easily found. 
From the definition of the characteristic function it follows that 
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[n our case 

cp(t) = 1 - -t2 + - - t• - -- - t' + ... ' 111 1 ( 112)1 1 (.,.s)a 
2 1·2 2 1·2·3 2 

whence 

(
d21:+icp(t)) = O· 

dt2k+l I 
1•0 

(
d2kcp(t)) (- 1)i -21:- = 1 • 3 · 5 · · · (2k - l)v2k, 

dt 1=0 

Thus 
m2k+l = 0 

m2k = 1 · 3 • 5 · · · (2k - l)o-21:, 

CAsE OF Two oR MoRE VARIABLES 

9. By analogy it is easy now to extend the notion of probability to 
two or more variables considered simultaneously. A pair of special 
values x, y of two stochastic variables X, Y will be represented geomet­
rically by a point with the coordinates x, y referred to a rectangular 
system of axes. The domain S of all the possible values of X and Y will 
be represented by a portion (finite or infinite) of a plane with a definite 
boundary unless this domain coincides with the whole plane. The 
probability that the point x, y should belong to an infinitesimal area 
dxdy will be expressed by the product IP(x, y) dxdy where the function 
IP(x, y) is again called the density of probability at the point x, y. The 
density of probability must satisfy two requirements: it is non-negative 
in the whole domain S and 

J J IP(x, y)dxdy = 1 
s 

where the double integral is extended over all the domain S. The. 
probability for the point x, y to be located in a given domain r1 is then 
given by tht> integral 

J J 1p(x, y)dxdy . 
rxtended over u. 

If IP(x, y) is a constant in S, the distribution of probability is called 
uniform. The domain S in this rasP must be finite and if its area is 
denoted by the same letter, then 

1 
IP(X, y) = fj" 

The probability for the point x, y to be within the domain, will be ginn 
by the ratio 

dt'noting the area of tl.e domain t1 hy, again. 
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10. We can always substitute the whole plane for the domain S. 
To that end it suffices to set 

q;(x, y) = 0 

in all points not belonging to S. We shall then have 

q;(x, y) !;?; 0 

everywhere and 

J_ .. .,.J_ .. ..,c,o(x, y)dxdy = 1. 

By doing so we have the advantage of stating results in a perfectly general 
form without mentioning the domain S. However, in dealing with 
particular problems, it is more convenient to consider only those points 
which can actually represent simultaneous values of the variables. 
The probability of simultaneous inequalities 

a < x < b; c < y < d 

according to the general definition is represented by the double integral 

Lb!d q;(x, y)dxdy. 

This corresponds to the compound probability of two events and we must 
see that the fundamental theorem of compound probabilities continues 
to hold. Taking c = - oo, d = + oo the repeated integral 

Lbdx J_ .... q;(x, y)dy 

represents the propability P(a, b) for the variable X (as if it were con­
sidered alone without any reference to Y) to have its value in (a, b). 
The function 

f(x) = J_ .. .,q;(x, y)dy 

represents the density of probability of X. Thus 

P(a, b) = j)(x)dx. 

In a similar way 

F(y) = J_ .... q;(x, y)dx 

represents the density of the probability of Y; and the probability Q(c, d) 
that this variable has its value in (c, d) is given by 

Q(c, d) = £dF(y)dy. 
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Now the double integral 

LbJ:" rp(x, y)d:uly 

can be written in either of the forms 

where 

J:" rp(x, y )dy 
j.(x) = J" F(y)dy 

c 
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may be considered as densities of conditional probabilities, respectively, 
for Y when it is known that X has a value in (a, b) and for X when it is 
known that Y has value in (c, d). The preceding expressions for the 
probability of the simultaneous inequalitiE>s 

a < x < b, c < y < d 

have the same form as the theorem of compound probability and may be 
considered as its extension. The conditional probability for Y to have 
its value in (c, d) when it is known that X has its value in (a, b) is given by 

J:11
F1(y)dy. 

Now, we define variables X and Y as independent when the proba­
bility for Y t.o be in (c, d) is not affected by the knowledge that X belongs 
to (a, b), which means that 

i 11
F1(y)dy = l 11

F(y)dy 

or 

J.bid rp(x, y)dxdy = l 11
F(y)dy · £bf(x)dx 

and, ~inoe intervals (a, b) and (c, d) are arbitrary, 

rp(x, y) = f(x) · F(y) 

at points of continuity. Hence, the density of probability for two 
independent variables is a product of a function of z alone by a function 
of y alone. Conversely, when this condition is satisfied the variables are 
independent. For independent \'ariables the probability of the simul­
taneous inPqualities 

ca<:r:<b 
c<y<d 



248 INTRODUCTION TO MATHEMATICAL PJ.iOBABIL/TY [CRAP. XII 

has a simple expression 

£bf(x)dx · ldF(y)dy 

which is the product of the probability for X to have its value in the 
interval (a, b) by the probability for Y to have its value in the interval 
(c, d), in perfect analogy with the compound probability of two inde­
pendent events. 

Finally, the mathematical expectation of any function if;(x, y) can be 
defined by 

E(if;(x, y)) = J_"'.,J_ "',}(x, y)cp(x, y)dxdy , 

provided the integral in the right member exists. 
11. It is hardly necessary to dwell at length upon the case of several 

stochastic variables. A system of particular values x1, x2, • • • Xn of 
n stochastic variables X 11 X 21 ••• X" may be considered as a point in 
n-dimensional space. The density of probability is a non-negatiye func­
tion cp(Xt, X21 • • • x,.) defined in the whole space and satisfying the 
condition 

J_"' .. J_"'., · · · J_"',.cp(Xt, x2, ... x,.)dx1dx2 · · · dx,. = 1. 

The probability for a point representing Xt, X2, ... X .. to be located 
in a given domain u is given by the integral 

J J . . . J IP(x,, x2, . . . x,.)dx,dx2 . . . dx,. 

extended over u. In the case of uniform distribution of probability, 
IP(x1, xa, • . . Xn) is by definition a constant in a certain finite region 
of space and = 0 outside of that region. If V is the volume of that 
region and v the volume of the domain u, the ratio v/V gives the proba­
bility that a point belongs to u. 

The probability of the simultaneous inequalities 

is given by the integral 

which, by introduction of the conditional probabilities as in the case of 
two variables, can be put into the form of a product of n integrals in a 
manner perfectly analogous to the expression of the probability of a 
compound event with n components. Finally, the variables are inde-
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pr>ndent if the density ~(x 11 x2, • • • x,.) is a product of n functions 
depending only upon x11 x2, ... x,., respectively, and conversely. 

The expression 

E[if(x~r x2, • • • x,.)] = J_"',J_·., · · · J_.}lf'{ixtdX2 · · · dx,. 

serves to define the mathematical rxpectation of any function if(xt, 
X2 1 ••• x,.) of Xt, x2, ... Xn. 

12. Since in introducing the extended idea of probability we took 
care to preserve the fundamental theorems of the calculus of probability, 
we may be sure that' other theorems derived from them will hold for 
continuous variables. In particular, theorems concerning mathematical 
expectation and the fundamental lemma in Chap. X, Sec. 1, hold for 
continuous variables. Upon this basis as we have seen was built the 
proof of the law of large numbers. Hence, this important theorem 
applies equally to continuous variables. 

GEOMETRICAL PROBLEMS 

13. A few geometrical problems will afford a good illustration of the 
foregoing general principles. 

Problem 1. A rectilinear segment AB is divided by a point C into 
two parts AC = a, CB = b. Points X and Y are 
taken at random on AC and CB, respectively. What is A ~ C !I B 

the probability that AX, XY, BY can form a triangle? FIG. 
4
· 

Solution. We must first agree upon the meaning of the expression 
"at random." The idea suggested by this expression implies that the 

R way of selecting points X and Y gives no preference to 
any point of .4C and CB, respectively. Consequently, 
variables x =AX andy= BY may be assumed to have 

N un~form di~tribution of probabilit~. The ~omain of the 
pomt x, y IS a rectangle OMPN ·w1th the Sides OM= a, 

o s M Q ON = b. In order that AX, XY, BY can form a triangle 
Flo. 5. the following inequalities must be fulfilled: 

x < (a + b - x - y) + y or x < a + b - x 
y < (a + b - x - y) + x or y < a + b - y 

a + b - x - y < x + y. 

Thf'~ inequalities are equivalent to 

a+b 
z < -2-' 

a+b y<--· 2 
a+b x+y> -2-· 

To interpret them geometrically through P draw a line QPR making 
<RQO = 45°. From the mid-point of QR drop the perpendiculars 
.l'S, rw on OX, OY. Then the preceding inequalities limit the po~ition 
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of the point x, y to the shaded area SVW, whose part TSU is contained 
in the rectangle OMPN. Variables x andy are independent and have 
uniform distribution. Hence, the density of probability of the pair 
x, y is constant and the probability that the point x, y is in the triangle 
TSU will be 

Area TSU !bb 1 b 
Area OMPN = lib = 2 a' 

At the same time this is the probability for AX, XY, BY to form a 
triangle. 

Problem 2. On a line AB two points X 1, X 2 are taken at random. 
What is the probability that AX1, X1X2, X2B can form a triangle? 

:x, 

A B 
:xl Xz 
FIG. 6. Fxo. 7. 

Solution. Variables AX1 =. Xt1 AX2 = x2 are independent and have 
uniform distribution of probability. The domain of all possible positions 
of the point x1, x2 is a square with the side AB = l. Positions of this 
point when AXt, X1X2, X2B form a triangle can be characterized as 
follows. First, if X1 precedes X2, we have 

l 
X2- Xt <-2 

l 
Xt <-2 

l 
or X2 > 2 

which means that x1, x2 belongs to the triangle OPN, the definition of 
which is evident if L, M, N, P are mid-points of the sides of the square 
ABCD. Second, if Xt follows X2, we have 

l 
Xt > 2 

and these inequalities define the area OLM. Since the distribution of 
Xt, x2 is uniform, the required probability is 

Area OLM + Area ONP ill 1 
Area ABCD =. 7I = 4' 

Problem 3. A chord is drawn at random in a given circle. What is 
the probability that it is greater than the side of the equilateral triangle 
inscribed in that circle? 
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Solution 1. The position of the chord drawn at random can be deter­
mined by its distance from the center of the circle. This distance may 
vary between 0 and R, the radius of the circle. The chord is greater 
than the side of the equilateral triangle inscribed in the circle if its dis­
tance from the center is less than ~R. Hence, the required probability 

!R 1 
P1 = R = 2' 

Solution 2. Through one end of the chord, draw a tangent AT. 
The angle "' varying from 0° to 180° determines the position of the 

T chord. If "it is greater than the side of the inscribed equilat-86 eral triangle, the angle "' must lie between 60° and 120°. 
Hence the answer 

120° - 60° 1 

t'IO, 8. 
p2 = 180° = 3' 

The fact that we obtain two different numbers for the same probability 
seems paradoxical, and the problem itself is known as "Bertrand's 
paradox." However, going attentively over both solutions, we discover 
that we are really dealing with two different problems. In the first 
solution it was assumed that the distance of the chord from the center 
has uniform distribution, while in the second solution the distribution 
of the angle"' was taken as uniform. The seco.nd solution may be con­
sidered reasonable if a thin bar or a needle can rotate freely about A 
and if, being set in motion, it determines the chord AB by its ultimate 
position. On the other hand, the first solution is acceptable if a circular 
disk is thrown upon a board ruled with parallel lines distant from one 
another by the diameter of the disk. The intersection of the disk with 
one of the lines determines a chord, and the probability that it is greater · 
than the side of the inscribed equilateral triangle can reasonably be 
assumed to be Yz. 

A general remark applies to all problems of .this kind. V\lben a 
certain geometrical element, such as a point or a line, is supposed to be 
taken at random, it should be clearly indicated by what kind of 
medumism this is to be done. Only then the hypothetically assumed 
distribution can be put to an experimental te~;t and either confirmed 
(approximately) or rejected. 

14. Buffon's Needle Problem. A board is ruled with equidistant 
parallel lint>s, the width of the strip between two consecutive lines being 
d. A needle so fine that it can be likened to a. rectilinear segment of the 
lt•ngth l <dis thrown on the board. What is the probability that the 
nt•L>dle will intt>rsert one of the lines (naturally not more than one)? 

Solution. This is the oldest problem dealing with geometrical 
probabilities. It was mentioned by ButTon, the celebrated French 
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naturalist of the eighteenth century, in the Proceedings of the Paris 
Academy of Sciences (1733) and later reproduced with its solution in 
Buffon's book "Essai d'arithmetique morale," published in 1777. 

Let us determine the position of the needle by the distance OP = x of 
its middle point from the nearest line, and the acute angle cp between OP 
and the needle. Variables x and cp may be considered as independent. 
Furthermore, x and cp vary respectively between 0 and ~d, and 0 and 
'lf'/2. As a hypothesis we assume the distribution of probability for 

.X 

FIG. 9. FIG. 10. 

x and cp as uniform. The domain of x, cp is a rectangle OABC with 
OA = r/2, OC = d/2. Now, the needle intersects one of the lines if 

l 
x< 2cost,e 

and then the point x, cp lies in t~e shaded area below the curve 

l 
X= 2 COS cp• 

Since the distribution of x, cp is uniform, the required probability will be 

Area OAD 
P =Area OABC. 

But 
.. 

zfo2 
z Area OAD = - cos cpdcp = -

2 0 2 
'If' d 

Area OABC = - · -2 2 

and consequently 
2l 

p = 'lf'i 

On pages 112-113 an account was given of experiments made by several 
authors in connection with Buffon's problem. They all show good agree­
ment with the theory and indirectly confirm the hypothesis assumed in 
deriving the above expression for probability. 

15. Extension of Bufion's Problem. A thin plate in the shape of a 
convex polygon, of dimensions so small that it cannot intersect two of 
the lines simultaneously, is thrown on a board ruled, as in Buffon's needle 
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problem. What is the probability that the boundary of the plate "ill 
intersect one of the lines? 

Solution. Suppose that the polygonal boundary has five sides. 
Let these sides (and their lengths) be denoted by 

a, #, '}'1 o, E. 

Each of them is shorter than the distance d between two consecutive 
lines. On account of convexity, a line can intersect either none or two 
(and only two) sides. Accordingly, combining sides in pairs, we can 
distinguish 10 mutually exclusive cases and denote their probabilities by 

(a~), (ai'), (ao), (aE), ~i'), ~o), (~e), (i'o), (i'E), (oE). 

The required probability will be given by the sum 

p = (a~) + {ai') + (ao) + (aE) + ~i') + ~o) + (#E) + (i'o) + 
+ (i'E) + (&), 

On the other hand, the side a can be intersected by a line in four mutually 
exclusive ways; namely, together with# or i', or o, or E. Hence, if (a) is 
the probability of intersection 

and Rimilarly 

whence 

But 

2a 
{a)= -• 

..-d 

and consequently 

(a) = (am + (ai') + (ao) + (aE), 

(~) = (~a) + (~i') + (~o) + (~E) 
(-y) = (i'a) + (i'~) + (i'o) + (i'E) 
(o) = (oa) + (o~) + (oi') + (oE) 
(E) = (Ea) + (e~) + (ei') + (eo), 

(a) + <m + (i') + (o) + (E) = 2p. 

2~ 
(~) = -· 'I'd 

21' (i') = _, 
'I'd 

2o 
(o) = -, 

'I'd 

a+~+'}'+o+E p 
P = .,.d =.,.a 

where P is the perimeter of the polygonal boundary. Evidently this 
result is perfectly general. Since it does not depend upon the number of 
sides, by passage to the limit, it can be extended to the case of a plate 
bounded by any convex curve. 

16. Second Solution of Buffon's Problem. Barbier has given another 
extremely ingenious solution of Buffon's problem and of its extension. 
lRt f(l) ht> an unknown probability that the needle will intersect a line. 
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Imagine that the needle is divided into two parts l' and l". Evidently a 
line intersects the needle if, and only if, it intersects either the first or 
the second part. Hence, by the theorem of total probabilities 

f(l) = f(l') + f(l"), 

whence, as in Sec. 4, we conclude 

f(l) = Cl 

where C is a constant independent of l. The whole question is how to 
determine this constant. Barbier's ingenious idea was to let this 
problem depend on the solution of another one: A polygonal line (convex 

·or not) is thrown upon the board; what is the mathematical expectation 
of the number of points of intersection? The perimeter of the polygonal 
line can be subdivided into n rectilinear parts a1, a2, ... an all less than 
d. With these n parts we can associate n variables x11 x2, • • • Xn, such 
that 

The sum 

x, = 1 if one of the lines intersects a, 
x, = 0 otherwise. 

8 = X1 + X2 + · ' ' + Xn 

evidently gives the total number of the points of intersection. Hence 

E(s) = E(xt) + E(x2) + · · · + E(xn) 

and, if P• is the probability of intersection of a; with one (and only one) 
line, 

But, according to the previous result, 

P• == Ca,. 

Hence, we have a perfectly general formula 

E(s) = C(a1 + az + · · · + a,.) = CP 

where P is the perimeter of the polygonal line. The result holds for any 
curvilinear arc (closed or not) as can be seen by the method of limits. 

This formula applied to a circle with the diameter d gives 

c. 1fd = 2 

since such a circle has always exactly two points of intersection witb 
the lines of the system. Thus we find that 

2 
C = rd 
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and 

f(l) = 2l 
rd 

as obtained before. For a closed convex line of sufficiently small dimen­
sions only two cases are possible: two intersections (probability p), or 
none (probability 1 - p), whence E(s) = 2p and 

or 

2P 2P = rd 

p 
p ='ltd 

in agreement with the result obtained in Sec. 15. 
17. Laplace's Problem. A board is covered with a set of congruent 

rectangles as shown in the figure, and a thin needle is 
thrown on the board. Supposing that the needle is shorter ~ 
than the smaller sides of the rectangles, find the probability 
that the needle will be entirely contained in one of the 
rectangles of the set. Flo. 11. 

Solution. Let A.B = a, AD = b be the sides of the rectangle which 
contains the middle point of the needle, the length of which is 

l (l < a, l < b). 

Taking A B and AD for coordinate axes, the position of the needle is 
determined by two coordinates x, y of its middle point Yb and the angle IP formed by the needle with the x axis. 

D c We may consider x, y, IP as three independent variables 
X with uniform distribution of probability. The domain 

' B filled up with all possible points x,· y, I() is a 
FIG. 12. II l . d para e eptpe on 

0 < :r <a; 0 < y < b; 

and the distribution of probability throughout this domain is uniform. 
To characterize the domain of points representing positions of the 

H M 
D/ /c 

FlG. 13. Fla. 14. 

middle point of the nff'dle when it is located entirely Vlithin ABCD we 
consider the s('('tions of that domain by planes IP = constant and their 
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projections on the plane xy. These projections· are represented by 
the shaded areas in Figs. 13 and 14 corresponding to positive and negative 
rp, respectively. 
In Fig. 13 

<PAB ='Pi AP!!BF!!CR!!DG 

and AP = BE = BF == CR = DG = DH = !l. 
Similarly, in the second figure 

<JAB = 'Pi AJI!BQI!CLI!DS 

and AJ = AK = BQ = CL = CM = DS = !l. 
The area of the rectangle PQRS corresponding to these two cases can be 
expressed as follows: 

Area PQRS = (a - l cos rp)(b - l sin rp) = ab - l(b cos rp +a sin rp) + 
+ l2 sin rp cos rp, 

Area PQRS = (a - l cos rp)(b + l sin rp) = ab - l(b cos rp - a sin rp) -
- l2 sin rp cos rp. 

Without distinguishing positive and negative values of 1{1, we may write 

F(rp) =area PQRS = ab- bl cos rp- la!sin 'PI+ Wlsin 2rpl. 

The volume of the domain representing positions of the needle entirely 
within ABCD is: 

while 

'I' 

v = J2
,..F(rp)drp = 'l!'ab - 2bl - 2al + z2 

-2 

v ='l!'ab 

is the volume of the domain 

0 < x < a, 0 < y < b, 

Hence, the required probability is: 

p = 1 _ 2l(a ~~ - l
2 

and the complementary probability for the needle to intersect the 
boundary of one of the rectangles is: 

2l(a +b) -l2 

q = rab • 
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Buffon's problem may be considered as a limiting case when a = ao 

and, indeed, by setting a = oo, we find that 

2l 
q = ;b 

in conformity with the result in Sec. 14. 
These examples may suffice to give an idea of problems in geometric 

probabilities. Sylvester, Crofton, and others have enriched this field 
by extremely ingenious methods of evaluating, or rather of avoiding 
evaluations, of very complicated multiple integrals. However, from the 
standpoint of principles, these investigations, ingenious as they are, 
do not contribute much to the general theory of probability. 

Problems for Solution 

1. A point X is taken at random on a rectilinear segment AB = l whose middle 
point is 0. What is the probability that AX, BX, and AO can form a triangle? The 
distribution of AX = z is assumed to be uniform. Am. ~. 

2. Two points X 11 X z are taken at random on AB = l. 
Assuming uniform distribution of probability, what is the mathe- A X 8 
matical expectation of any power n of the distance between X 1 ° 
~~ ~~ 

fl fl dx1dx1 2l• 
Am. JoJo lxl- x,l"-z~- = (n + l)(n + 2). 

8. Three points X 1, X z, X a are taken at random on AB. What is the probability 
that X a lies between X 1 and X z? 

Am. 73, assuming uniform distribution of probability. 
4.. A rectilinear segment AB is divided into four equal parts 

AC = CO = OD == DB. 

Supposing that the distribution of probability is symmetric with respect to 0, let p 
be the probability that a point selected at random on AB will be between C and D. 

Also, let Q be the probability that the middle 1>oint between 
A C 0 0 8 two points selected at random will be between C and D. Prove 

FIG. 16. 1 +P' 
thatQ >-

2
-· 

HINT: The middle point of a segment X1Xs is surely between C and D if : (i) X1 
and Xs are in CO; or (ii) X1 and X, are in OD; or (iii) X1 and Xz are on opposite sides 
of 0. 

6. Two points X" Xz are chosen at random in a circle of radius r. Assuming 
uniform distribution of probability, what is the mathematical expectation of their 
distance? Ans. Denoting the required mathematical expectation by M, we have 

.-sr•M = J:" Jo2
" F(r, 11, 111ded6' 

where 

F(r, IJ, IJ') = Jo' Jo' Vpt + p'
1 

- 2pp' cos (11 - IJ1pp'dpdP'. 

Hence, varying r by dr 

dF = 2rdr fo' yr1 + p2 - 2rp cos (11 - 8')pdp 
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and 

d(r~4M) = 4-n-rdr (
2
" (' yr2 + p2 - 2rp cos wpdpdw. Jo. Jo 

By introduction of new polar coordinates the integral in the right member can be 
exhibited as 

FIG.l7. 

whence 

Thus 

r r 

J:j l2r COB w 16 J•2 32 
dw u2du = -ra cos3 wdw = -ra. 

_! 0 3 0 9 
2 

128r 
M=-· 

45w-

6. A board is covered with congruent rectangles as in Laplace's problem. A coin 
the diameter of which is less than the smaller side of the rectangles is thrown on the 
board. What is the probability that it will be partly in one rectangle and partly in 
another? Ans. a, b, r being respectively the sides of the rectangles and radius of the 
coin, the required probability is 

2r(a + b- 2r) 

· ab 

'l. Solve Bufion's problem when the needle is longer than the distance between 
two consecutive lines. Ans. The probability for the needle to intersect at least one 
line is 

2l ' 2.p~ 
p = - (1 - sm .p~) + -

.,.d 'II' 

where .po is determined by cos .po = d/l. 
8. A board is covered with congruent triangles whose sides are a, b, c. A needle 

whose length is less than the shortest altitude of any one of these triangles is thrown 
on the board. "''bat is the probability that the needle will be contained entirely 
within one of the triangles? Ans. The required probability is 

(Aa2 + Bb2 + Cc2)l2 (4a + 4b + 4c - 3l)l 
1+ 2~2 - 2~ 

where A, B, Care angles opposite to sides a, b, c and Q is double the area of the triangle. 
For equilateral triangles 

1 + ~(~)' - zv3(4 - ~)· 
3 a .,.a a 

9. On each of the circles 0 1, 0 2, Oa, ... with respective radii r~, rz, ra, ... 
points M., M 1, M 1, • • • are taken at random. Supposing that the series 

r, + Tt + ra + · · · 
is clivergent, while the series 
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is convergent, prove that the probability that the length of the vector 

OM = 01M1 + O,M, + OaMa + · · · + O,.M,. 

will be > R tends to 0 as R -+ co no matter how large n is. 
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lndicmwn of Solut-wn. Let Xt, x2, ... x,.; y., Yt, ..• y,. be components of 
OM.,OM~, ... OM,.ontworectangularaxesOX,OY. Then M. . G~ M E(x,) = E(JJ;) = 0 • T:\ f."'\ J 

r 2 ~ ~ VJi 
E(x~) = E(yn = ~-

2 FIG. 18. 

Bv Tshebysheff's lemma (Chap. X, Sec. 1) the probabilities Q and Q' of the inequalities 

r2 + r2 + r2 + · · · ~G I I 8 = t _ 
2 2 

IY1 + Ys + · · · + y,.J > t-=----=--'---· _ .. = t~ 

are both less than 1/tl. Now, if the length OM> R then either 

lx1 + Xt + · · · + x,.l > ~ = t~ 
or 

IY1 + 112 + · · · + u .. l > ...!_ = t @. V2 \)2 
Hence, the probability P for the length of OM to be > R is less than Q + Q'; 

that is, 

10. Prove that 

2G 
p <Q +Q' <-· Rt 

lim fl fl . . . flx~ + x: + ... + z!dxtdxt ... dx." = ~. 
ft .... Jo Jo Jo Zt +zs + · · · +z,. 3 

HINT: Considering x., x2, ••• x,. as continuous stochastic variables with uniform 
distribution over the interval (0, 1) prove with the help of Tshebysheff's inequality 
thttt the probability of 

2 ~ + x: + · · · + x! 2 --e< <-+e 
3 Xt + Xt + · · • + X• 3 

for any t > 0 t('nds to 1 as n -+ oe. 
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CHAPTER XIII 

THE GENERAL CONCEPT OF DISTRIBUTION 

1. In dealing with continuous stochastic variables we have introduced 
the important concept of the function of distribution. Denoting the 
density of probability by f(z), this function was defined by 

F(t) = J~ .J(z)dz 

and it represents the probability of the inequality 

X< t. 

For a variable with a finite number of values the function of distribu­
tion can be defined as the sum 

where p1, p2, . • • p, are respective probabilities of all possible values 
Xt, x2, • • • Xn of the variable x. The notation x; < t is intended to 
show that the summation is extended over all values of x less than t. 
Again, F(t) for any real t represents the probability of the inequality 

X< t. 

In this case F(t) is a discontinuous function, never decreasing and varying 
between F(- oo) = 0 and F( + oo) = 1. Its discontinuities are located 
at the points Xt, x2, • • • Xn and are such that 

F(x; + 0) - F(x; - 0) = p,, 
denoting, in the customary way, 

F(x; + 0) = lim F(x; + E) 
F(x; - 0) = lim F(x; - E) 

when E, through positive values, converges to 0. To represent F(t) 
graphically we note that 

F(t) = 0 for t < Xt 

F(t) = Pt for Xt < t < X2 

F(t) = Pt + P2 for X2 < t < Xa 

..... 
F(t) = Pt + P2 + · · · + p, for x, < t. 

260 
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As for the value of F(t) at the point t = x,, it is F(x, - 0). Hence, 
the graph of F(t) consists of rectilinear segments as shown in the figure 
(for n = 4; X1 = -2; x2 = 0; Xa = 1; x, = 3; Pt = Pz = Pa = P• = ~) 
and belongs to the so-called step lines. 

Thus, in case of a continuous variable the distribution function is 
given by an integral, and in case of a discontinuous variable, by a sum. 
In stating theorems equally true for continuous and discontinuous 
variables, it would be tedious always to distinguish these two cases. 
The question naturally arises whether it is possible to represent distribu­
tion functions, moments, and similar quantities by using new symbols 
equally applicable to continuous and discontinuous variables. In a 
similar kind of investigation Stieltjes was confronted with the same 

-oo -2 0 +oo 
FtG. 19. 

difficulties and he succeeded in overcoming them by introducing a new 
kind of integrals known as "Stieltjes' integrals." 

STIELTJES1 INTEGRALS 

2. Let .p(x) be a never decreasing function defined in the interval 
a :i x :i b. For any particular value of the argument both the limits 
(for E converging to 0 through positive values) 

lim .p(xo + t) = .p(Xo + 0) 
lim .p(xo - t:) = .p(xo - 0) 

exist. Since evidently 

~D(Xo - 0) :i .p(xo) :i .p(Xo + 0), 

Xo is a point of continuity of 'P(x) if 

.p(xo - 0) = IP(Xo + 0). 

If, however, 

'P(Xo - 0) < .p(Xo + 0) 

.p(x) is discontinuous at xo, and the difference 

fn{l = !f'(Xo + 0) - .p(x11 - 0) 

11;ives the measure of discontinuity or simply discontinuity. Since 
for any number of points of discontinuity x0, x1, ••• x. the sum of 
discontinuities 

1nil + m1 + · · · + m. :i IP(b) - 'P(a) 
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the points of discontinuity form a countable set. For there are only a 
finite number of discontinuities above any given number, so that, con~ 
sidering the sequence 

8 > 81 > 82 > ... 
tending to 0, there is only a finite number of points with discontinuities 
> 8; also a finite number of points with discontinuities ~ 8 and > o1, 

and so on. It follows that points of discontinuity can be arranged into 
a single sequence and hence form a countable set. 

It may happen, however, that ~P(x) may have discontinuities in any 
interval, no matter how small; but at any rate there are points of con­
tinuity in any interval. If ~P(Xo + e) > ~P(xo - e) for all sufficiently small 
e > 0 the point Xo is called a "point of increase" of ~P(x). In particular, 
any point of discontinuity is a point of increase. 

3. Let J(x) be a continuous function in the interval a ~ x ~ b. By 
inserting points x1 < :r2 < . . . < x,. this interval is subdivided into 
n + 1 partial intervals. In each of these we arbitrarily select points 
~o, ~~, . . . ~ .. and form the sum 

S = /(~o)[~P(Xt) - ~P(a)] + /(~t)[~P(.x2) - ~P(Xt)] + · · · + 
+ f(~,.)[~P(b) - ¥?(x.)]. 

It can be proved in the same way as for ordinary integrals that when 
all intervals 

Xt - a, X2 - X t 1 • • • b - X,. 

tend to zero uniformly, the sum S tends to a definite limit. This limit, 
called Stieltjes' integral, does not depend upon the manner of subdividing 
the interval (a, b) or upon the choice of points ~o, ~~, ... ~... It has 
a perfectly definite value as soon as J(x) and ¢t(x) (together with a, b) 
are given, and accordingly is denoted by 

In case ¢t(X) has a continuous derivative, d¢t(x) can be interpreted 
!1.8 the ordinary differential; Stieltjes' integral then coincides with the 
ordinary one. In other cases d¢t(x) is a new symbol introduced as a 
reminder of the origin of Stieltjes' integral. In particular, if ¢t(x) is a 
step function with discontinuities Pt, p2, p3, ..• at the points x11 
x2, x3, • • • , Stieltjes' integral coincides with the sum 

~p;J(x;) 

which is a finite sum or an absolutely convergent infinite series according 
as the set of points of discontinuity is finite or infinite. 
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Stieltjes' integrals possess many properties of ordinary integrals. 
For instance, the mean-value theorem holds for them in the form: 

Lbf(x)d'P(x) = JW['P(b) - 'P(a)] 

where a ~ ~ ~ b. Also, if f(x) has a continuous derivative, we have an 
analogue for the integration by parts 

L6f(~)d'P(x) = f(b)'P(b) -f(a)'P(a) - Lb 'P(x)df(x) 

. where df(x) means an ·ordinary differential and the integral in the right 
member is an ordinary integral. However, some important properties 
of ordinary integrals do not hold universally for Stieltjes' integrals. For 
instance, considered as functions of bora, they may have discontinuities. 

In the definition of Stieltjes' integral it was assumed that a and b 
were finite numbers. Stieltjes' integral over the interval - oo, + oo is 
defined in an ordinary way as being the limit of 

Lbf(x)d'P(x) 

when a and b tend independently to - oo and + oo, respectively. In 
othrr words, 

when a-+-oo, 

provided this limit exists. If it does not exist, the symbol 

J_'"'.J(x)d'P(x) 

has no meaning. 

THE GENERAL CoNcEPT OF DxsrnmuTION 

4:. The most general type of distribution function of probability, 
covering all imaginable cases, is given by a never decreasing function 
F(t) defined for all real values of t and varying from F(- oo) = 0 to 
F( + oo) = 1. If at points of discontinuity we set 

F(t) = F(t - 0), 

then for any t the probability of the inequality 

x<t 
will be gi\·en by F(t). Also, the probability of the inequalities 

will b(• 



264 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP. XIII 

The case of continuous F(t), having a continuous derivative f(t) 
(save for a finite set of points of discontinuity), corresponds to a con­
tinuous variable distributed with the density f(t), since 

F(t) = ~~ "'f(x)dx. 

If F(t) is a step function with a finite number of discontinuities, it charac­
terizes the distribution of probability of a variable witli a finite number 
of values. Finally, if F(t) is a step function with an infinite set of dis­
continuities distributed without density, it corresponds to a variable 
whose values can be arranged in a sequence according to their magnitude. 
These are the most important types of variables considered in the 
calculus of probability, and for all of them the distribution function can 
be represented by Stieltjes' integral 

F(t) = J~ .. dF(x). 

The mathematical expectation of any continuous function f(t) is 
defined by Stieltjes' integral 

E(f(t)) = f_'"J(t)dF(t) 

provided it has a meaning. In particular, moments of the order n (n 
positive integer) and absolute moments of the order a (a real) are defined, 
respectively, by 

and we always have 

· Finally, 

m11 = J_"'}ndF(t) 

p.a = f_ '".,itJ"dF(t) 

tp(t) = J_"'.., ei~:r:aF(x) 

is the characteristic function of distribution. Since the integral exists 
for any real t, this function is defined for all real values t and satisfies the 
inequality 

INEQUALITIEs FOR MoMENTS 

6. Moments of any distribution satisfy certain inequalities, which 
it is important to know. They all are particular cases of the following 
very general inequality due to Liapounoff. 
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Liapounoff's Inequality. Let a, b, c be three real numbers satisfying 
the inequalities 

a~b~c~O 

and ~~-a, J.l.b, J.l.c absolute moments of orders a, b, c for an arbitrary distribu­
tion. Then the following inequality holds: 

Proof. a .. Let Pt1 p2, ... p,.; x1, x2, ... x,. be positive numbers 
and 

1,0(a) = PtXi + P2X~ + · · · + p..x:. 

Then for arbitrary real numbers s1, .~21 • • • s11 the following inequality 
holds: 

/81 + 82 + • • • + 811)
11 

(1) ~ p ~ 1,0(St)!,~(s2) • • • IP(Sp)• 

For p = 2 this inequality follows immediately from the known inequality 
due to Cauchy: 

by taking in it 
II IS 

a, = v'P.x!, b, = -v'i.x!. 
For p = 4 we have 

(
81 + 82 + 8s + 84)

4 
~ (81 + 82)

2 (sa + 8,)' < ( ) ( ·) ( ) ( , IP 4 - IP 2 IP 2 = 1P 81 1P 82 1P Sa 1P S4J 

and continuing in the same manner we find in general that 

(
81 + s2 + · · · + s,.)2• 

IP 2.. ~ ~P(8t)~P(82) • • • 1,0(s,.). 

Let m be taken so tha.t 2• > p and let us take in the last inequality 

81 + 82 + ' ' • + 8 
811+1 = SP+t = ' ' ' = St- = 8 = P. 

p 
Since 

81 + St + ' ' ' + S!t> ps + (2• - p )s 
2"' = 2• =' 

we shall ha,·e 
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whence 

~(s)P ~ ~(st)~(s2) · · · ~(sp), 

which is inequality (1). 
b. Let a i:;; b f; c f; 0 be integers. Taking p = a- c; s1 = s2 = 

' ' ' = 8a-b = Cj Ba-IH-1 = ' · · = 8a-c = a, We have 

and consequently, by virtue of (1), 

(2) ( *P•~ r ~ ( *paf( *P••f· 
If a = p/s, b = q/s, c = rjs are rational numbers (a f; b ;:;:; c ;:;:; 0), 

1 

it suffices to take, in (2), p, q, r instead of a, b, c, replace X; by x:, and 
raise both members to the power 1/s to ascertain that (2) holds for 
rational a, b, c. Finally, the passage to the limit makes it clear that (2) 
holds for real a, b, c, provided a 'f; b f; c f; 0. 

c. Let the interval A to B be subdivided into partial intervals by 
inserting numbers t1 < t2 < · · · < tn between A and B and let 

Po = F(tt) - F(A), Pt = F(t2) - F(tt), ... p,. = F(B) - F(t,.) 
Xo = lA I, Xt = Itt!, ... x,. = Jt,.J. 

Then the three sums 

11 fl " 

~p;~, ~PiX~, ~P;X1 
0 0 0 

will tend to the respective limits 

JJtibdF(t), JJwaF(t), £BitladF(t) 

when all differences A. - t1, t2 - t1, ... B - tn tend to 0 uniformly. 
Hence, passing to the limit in (2), we get 

and finally, letting A tend to - C() and B to + oo, 
' . 

or 
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as stated. 

Taking b = a ~ c, Liapounoff's inequality becomes 

whence 

/J:+c ~ Jl.c/Ja 
T 

267 

for any two real positive numbers a and c. If k and l are two po.~itin. 
integers and we take c = 2k, a = 21, tht'n 

or 

smce 
and 

Another important inequality results if we take c = 0. Then, since 
JJ.o = 1, 

or 
l l 

.,;; ::.;; ,; .... - .... 
if a > b > 0. This amounts to 

log /Jb < log P.a 
b = a 

if 

which i11 £'quivalent to the statement that 

log !1-% 

X 

is an increasing function of x for po~<itin• x. 

a>b 

CoMPOSITION OF DISTRmerroN FuNCTIONS 

6. An important problem in the ralculus of probability is to find the 
di!o~tribution function of thf' sum of se,·eral independent \·ariables when 
distribution functions of th£'se variables are known. It suffiees to show 
how this problem can be wlwd for the sum of two independent vari~blf's. 

l.Rt :r and y be two independent \'ariahl('tl with the corresponding 
distribution functions F(t) and G(t). To find the distribution function 
H (t) of their sum 
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is the same as to find the probability of the inequality 

x+y<t 

for an arbitrary real number t. Here, for the sake of simplicity and in 
view of the applications we propose to consider later, we shall assume that 
one, at least, of the variables x, y has continuous distribution with 
generally continuous density. 

At first, let both x and y have continuous distributions so that 

F(t) = J~ }(x)dx; G(t) = J~ .,u(x)dx. 

The probability of the inequality 

X+ y < t 
according to the general principles stated in Chap. XII is expressed by 
the double integral 

H(t) = J J!(x)g(y)dxdy 

extended over the domain 

x+y<t. 

Now, following ordinary rules, we can reduce this double integral to a 
repeated integral. To this end, for any fixed x we integrate g(y) between 
limits - IX) and t - x, thus obtaining 

r--.. zg(y)dy = G(t- x). 

Then, after multiplying by f(x), we integrate the resulting expression 
between limits - IX) and + G() for x. The final result will be 

H(t) = J_"'., G(t- x)f(x)dx 

or, written as Stieltjes' integral, 

H(t) = f_ "' ... G(t - x)dF(x). 

In the second place, let x be a discontinuous variable with different 
values Xt, x2, xa, . . . and corresponding probabilities Pt, P2, pa, . . . . 
For x = x, the inequality 

x+y<t 
is equivalent to 

y < t- Xi 
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and the probability of this inequality is G(t - x,). Since the probability 
of z = z~ is p,, the compound probability of the two events 

will be 
p,G(t - .r;). 

The total probability H (t) of the inequality 

X+ y < t 
llrill be expressed by the sum 

H(t) = 'I.p,G(t - x,) 

extended over all possible values of x. But this sum can again be written 
as Stieltjes' integral: 

(1) H(t) = ~-·· G(t- x)dF(x). 

In both cases we obtain the same expression for H(t). Evidently 
H(t) can also be defined as the mathematical expectation of G(t- x): 

H(t) = EIG(t - x) I 
taken \liith respect to the variable x. The important formula (1) is 
known as the formula for composition of distribution functions F(t) 
and G(t). 

Enmple. Let x and 11 be two normally distributed variables with means = 0 
and respective standard deviations .,., and .,.,, Instead of using (1), it is better to 
write H (I) a.s a. double integral 

H(t) = -•-JJe--/lri,~dxdy 
2nr!ll't 

extended over the doma.in 
x+y<t. 

To e\·aluate this int~gral, it is natural to introduce z + 11 = 2 a.s a new variable and 
find constant. C, D, «, /3 so a.s to have identically 

zt 111 

- +- = C\z + y)t + D(11tZ + 11!1)1 
:l.o: 2o-: • 

whence one easily finds 

and 

c---~-. 
2\11': +~r:) 

• = .:, 
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The Jacobian of 

z = z +y, 11'2 fl'l 
u=-z--y 

0'1 O't 

with respect to x, y being 

H (t) can be presented as the double,integral 

H(t) = 1 ffe -2(;,~,~::,ldzdu 
21r(u~ + ui) 

with the domain of integration defined by a single inequality: 

z < t. 
Hence, 

or . It t 
1 __ z_ 

H(t) = ---;==:::::::::. e 2( .. ,'tcrt*ldz, 
V2n-(cr~ + cr~) - oo 

sinr.e 

The expression obtained for H(t) leads to a remarkable conclusion: 
The sum of two normally distributed variables with means = 0 and 
standard deviations crt and cr2 is also a normally distributed variable with 
the mean = 0 and the standard deviation u = V o1 + u~. If the means 
of x and y are a1 and a2, then evidently z will be normally distributed 
with the mean a = a1 + a2 and the standard deviation cr = V cri + ui. 

Repeated application of this result leads to the following important 
theorem: 

If Xt, x2, • • • x,. are rwrmally distributed independent variables with 
means at, a2, . . . a11 and standard deviations crt, cr2, • . . u 11, then their sum 

Z = Xt t X2 + · ' ' + X,. 

is again normally distributed with the mean a = a1 + a2 + · · · + an 
and the standard deviation cr = y o1 + ui + · · · + u!. 

Finally, any linear function 

U = CtXi t C:!X2 + ' ' . t C..Xn 

is normally distributed with the mean a = Ctat + c2a2 + · · · + c.a, 
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and the standard deviation t1 = Vciui + 4oi + · · · + c!~. In 
particular, the arithmetic mean 

Z1 + Z2 + + Zn 

n 

of identical normally distributed variables with the mean a and the 
standard deviation 0' is normally distributed about the mean a and with 
the standard deviation tT/Vn. Hence, the conclusion may be drawn 
that the probability P of the inequality 

is given by . .;;. v:n f. -~ 2 L-. -~ P = -- e 2fr'dx = -- e 2dt 
(1-y'2; -. y'2;- 0 

and rapidly approaches 1 as n increases. This is a more definite form 
of the law of large numbers applied to normally distributed (identical or 
equal) variables. 

DETERMINATION OF DISTRIBUTION WHEN ITs CHARACTERISTIC FUNCTION 

Is GIVEN 

1. One of the most important conclusions to be drawn from the 
preceding considerations is that the distribution function of probability 
is uniquely determined by the characteristic function. The known 
proofs of this fact are rather subtle, ovl'ing to the use of conditionally 
ronvergent integrals. However, such integrals can be avoided by resort­
ing to an ingenious device due to Liapounoff. In the general case, the 
distribution function of a variable z has discontinuities. To avoid the 
had effect of these discontinuities, Liapounoff introduces a continuous 
rari~tble y that, with reasonable probability, can have values only in the 
,·icinity of 0. It may be surmised, therefore, that the continuouE 
distribution function of the sum z + y will approximately represent that 
of z and, by disposing of a parameter involved in the distribution function 
of y, will tend to it as a limit. To make these explanations more definite, 
let y be a normally distributed variable whose distribution function is 

Wlwn h il'l small, tht> probabilities of any one of tht> inequalities 
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will be extremely small and even will tend to 0 when h tends to 0. Hence, 
the distribution function H(t) of the sum x + y is likely to tend to 
F(t) as a limit when h tends to 0. 

To prove this in all rigor, we apply the composition formula (Sec. 6) 
to our case. We obtain the following expression for H(t): 

H(t) = _ r dF(x) e-r:az 1 J'" fl-:1: •
2 

hv'll' _., _., 

or, in more convenient form 

1-z 

H(t) = ~f-"' .. dF(x) J_: e-v'du; 

and furthermore, integrating by parts, 

H(t) = - e- T F(x)dx. 1 J'" ('-z}' 
hv; _,. 

The integral in the right member can be split into three parts 

- ee_ T F(x)dx +- e- T F(x)dx + 1 i'+ ('-z}l 1. i,. ('-:x)• 

hy';. t-e hy;. tte 

; + _!,=f'-·e -('~:xyF(x)dx. 
hv tr - .. 

Now, for positive T 

- e-•au < -e-r•. 1 l'" 1 
y';. T 2 

Making use of this inequality, we find that 

_ 1_ .. e .... T F(x)dx<-- e- T dx= .r:. e-u'du<2e-hi i (t-:x)' 1 I'" {'-x}' 1 f'" 1 . •' 

hy';. +• hyf; t+• v 1r ~ 
II 

and similarly 

1 J'-· -('-:x)l 1 .! __ e II F(x)dx < 
2
e-iii, 

hy';. _., 
so that 

l ul 1 5o• u
1 

el 
H(t) = - 1- 'e -iiiF(t + u)du + . r:. e -liiF(t - u)du + 8e -iii; 

h.y'"; o hvtr o 
0<8<1. 

Given an arbitrary , > 0, the number E can be taken so small that 

0 ~ F(t + u) - F(t + 0) < , 
0 ~ F(t - O) - F(t - u) < , 
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for 0 < u < E1 whence 

and 
f 

H(t) = F(t + O) + F(t - 0) ('e-u'du + o'(2o- + e -f.) i 
y'; Jo 

On the other hand, 

273 

18'1 < 1. 

0 < 8" < 1, 

so that finally 

IH(t) - F(t + 0) ~ F(t- 0)1 < 2o- + 2e-f., 

and for all sufficiently small h (1! being kept fixed) 

IH(t) - F(t + 0) ~ F(t - 0)1 < 4o-; 

that is, 

lim H(t) = F(t + 0) + F(t - 0) 
11-+0 2 

or, if t is a point of eontinuity, 

lim H(t) = F(t). 

Now we must find another analytical representation for H(t). To 
this end we consider the di1Ierence 

1-z 

1 f. f-H(t) - H(O) = Vr _ •dF(x) _: e-"''du, 

1 

and, t.o l'f'present in a convenient way the inner integral, we make use 
of tht> known intrgral 
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Multiplying both sides by du and integrating between - ~ and ~~ 
h h 

we find 
t-z 

1 IT 1 1 f 00 -~ • 1 - e-ivt - e-u du = - e 4 elVa: __ . -dv v; -~ 211' -.. w 
h 

and 

1 f ., f.. -hivt 1 - e-ivl 
H(t) - H(O) = - dF(x) e 4 e'n . dv. 

211' -oo -oo W 

The next step is to reverse the order of integrations, an operation 
which can be easily justified in this case. The result will be: 

1 J"' _hiv21- e-ivt f"' 
H(t) - H(O) = - e 4 • dv e••xdF(x) • _., w _., 

or 

1 f'" _II"Dz 1- e-ivt 
H(t) - H(O) = -

2 
e 4 tp(v) -.-dv 

. ~· -.. ~v 

since 

tp(v) = J_ "' .. e'udF(x). 

Now, taking the limit of H(t) for h converging to 0, we have at any point 
of continuity of F(t) 

(2) 
1 I .. _ ~~,~ 1 _ e-··~ 

F(t) = C + -
2 

lim e 4 tp(v) . dv 
11' 11•0 -oo W 

where the constant 
C = F( +O) + F( -0) 

2 

is determined by the condition F(- oo) = 0. Thus, the distribution 
function is completely determined by (2) at all points of continuity when 
the characteristic function IP(v) is given. 

Example 1. Let us apply (2) to find the distribution corresponding to the 
characteristic function .. ,2 

.,(v) = e -2. 

Since in this case the integral whose limit we seek is uniformly convergent. with 
respect to h, we find simply 

1 f .. _ .. av•l - e-••t 
F(t) = C + - e 2 -.-dv 

271' - oo tV 

1 f "' -.. ""a sin tv 
= C +- e 2 -dv. 

211' -.. v 
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On the other hand (Chap. VII, page 128), 

f ,. .,..,, _ ;;:-Lc u' 
- - 2 sin tvd V 2r - 2;td e -v=-- e u, 

-,. II II 0 

80 that 

F(t) = C - _ ;;:- e -2;idu + _ ;;:- e -2;'"'du. 
1 fo .,., 1 J' u' 

vy 2r _ ,. uv 2r - ., 

Taking t == - ae, the condition F(- ae) "" 0 gives 

and so finally 

Naturally, we find a normal distribution with the standard deviation 11 (compare page 
270). 

Example 2. What is the distribution determined by the characteristic function 

a> 0? 

As in the preceding example we find that 

1 f '" sin tv lL "' sin tv F(t) = C + - e-• 1 • 1~ = C +- e-··~. 
2r -,. 11 11' 0 II 

But 

whence 

Thus 

1 af' d:t F(t) = C - - +- --
2 1r - ..,a• + z1 

and the condition F(- ae) = 0 gives C = ~. 80 that finally 

F(t) =~f' ~ . 
.. - .. a• +.rt 

Xatumlly we find the same distribution as that considered in Example 2, page 243 
oometimes it is calle<: "Cauchy's distribution" with the parameter a. 

COMPOSITION OF CHARACTERISTIC Ft:NCTIONS 

8. Ha,ing n independent variables z1, z2, ... x. whose charac· 
tt·ril'ti<' fun<'tions are 1P1(t), 1P2(t), ••• .,.(t), the product 

tp(t) = .,,(t)IP2(t) •.• .,.(t) 
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is the characteristic function of their sum 

8 = Xt + X2 + · • · + X11• 

In fact, the characteristic function of 8 is by definition 

IP(t) = E(e"') = E(ei"'•1 • ei"'z1 • •• ei~·'). 

Since Xt, X21 • • X11 are independent variables, the expectation of the 
product 

is equal to the product of the expectations of the factors, whence 

IP(t) = 1Pt(t)IP2(t) · · • IPn(t). 

This simple theorem is of great importance since it determines the 
characteristic function of the sum of independent variables and indirectly 
its function of distribution. 

9. A few examples will illustrate the preceding remark. 

Example 1. Consider n independ~nt normally distributed variables x,, x2, • • • x,. 
with means = 0 and standard deviations a,, u2, .•. u,.. Their characteristic func­
tions are 

0'~111 

IPk(t) = e -yi k = 1, 2, ... n 

and the characteristic function of their sum 

8 ::= Zt + Z1 + ' ' ' + Zn 

will be 

where 

u2 = u~ + u: + · · · + u!. 
Hence s is a normally distributed variable with the mean 0 and the standard deviation 

as we found previously by a method involving a considerable amount of calculation. 
Example 2. Independent variables x1, x2, • • • x,. have Cauchy's distributions 

with parameters a1, a2, • • • a,.. Since the characteristic function of Xk is 

6- ... rcr, 

the characteristic function of the sum 

8 == Xt + Xt + · ' ' + Zn 

will be 
tp(t) = e-•&111 

where 
a = a, + a2 + · · · + a... 

Hence, a again has Cauchy's distribution with the parameter a, + a2 + · · · + a... 
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Example 3. Let .t1, z2, • • • x,. be independent variables with uniform distribu­
tion of probability in the interval (0, l). The characteristic function of any one of 
them is 

1 f1 e"' -1 
i J o e"%dz = --;u-· 

Hence, the characteristic function of their sum 8 will be 

(e"'- 1)" q~(t) = --at . 
The distribution function of 8 is given by 

f "' ll'fll(" )" . 1 -- e"' - 1 1 - e-.• 
F(t) = C + - lim e 4 -. - --:--dv 

21rii•O -"' dv w 

and, since the integral again is uniformly convergent, 

F(t) = C + .!.f"' (e'l•.- 1)"1 -. e->tC dv. 
221' - ..,. Jlv Jv 

The evaluation of this integral presents certain difficulties. To avoid them we 
notice that the integrand considered as a function of a 
complex variable I! is holomorphic everywhere. Hence,-----'~ Heel/axis 
we can substitute for the rectilinear path of integration ° 
the path r as shown in Fig. 20. FIG. 20. 

Now it is easy to show that integrating over the path r we have 

i . 0 if g>O 
e•r• 

f(g) = rZ"+tda = -21fi•+~ if 
nl g :1 ° 

The integral 

f(e"•.- 1)"~ 
Jr dz u 

being a linear combination of integrals of the type /(g) with g 51; 0 reduces to 0. 
Similarly, 

or, in explicit form, 

J. ~~(-1)1c:(i _ "Y· 
t$! 

l 

Referring to the above expression of F(t), we find that 

F(t) = c + ~~ < -I)lc:(i- "Y· 
l~: 
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The consrant C = 0 since F(t) and the sum in the right member both vanish for 
t = 0. The final expression of F(t) is, therefore: 

• 1 [(t)" n(t )" n(n- l)(t )" ] F(t) = · - - · - 1 + -- · - 2 - . . . · 
1·2·3 .. ·n l ll 1·2 l 

The series in the right member is continued as long as argull'ents remain positive. 
Such is the probability that the sum 

Xt + X2 + · · • +x,. 
of n independent variables, uniformly distributed throughout the interval (0, l), will 
be less than t. The above expression is due to Laplace, who, however, obtained it in 
quite a different manner. 

Problems for Solution 

1. Prove directly the inequality 

for absolute moments. 
HINT: The quadratic form in >., 1.1 

J_ 
00

"' (~Jxl~ + ~.~ixJ~) 2d'l'(x) 
is definite or semidefinite. Show that the equality sign cannot hold if tp{X) has at 
least two points of increase a, fJ such that a: fJ is neither 0 nor ± 1. 

2. Let x1, x2, • • • x,. be n variables. Denoting the absolute moment of the order 
a for X; by 1.1~ 1 , and by "'8 the quotient 

J.l~~8 + ~~8 + . . . + J.l~~)8 
CliO= • 

1+-
(~1) + ~2) + . . . + 1.1~")) 2 

prove that 

if a'> & > o. 
HINT: Use Liapounoff's inequality. 
3. A variable is distributed over the interval (0, + oo) with a decreasing density of 

probability. Show that in this case moments M, and M, satisfy the inequality 

M: ~ tM. (Gauss) 

and that in general 
1 1 - -

[(1.1 + l)M~']" ~ [(v + l)Mv]• 
it,> /.1 > 0. 

Indication of the Proof. Show first that the existence of the integral 

Jo 00 

x'f(x)dx 

in ease f(x) is a positive and decreasing function implies the existence of the limit 

lim a-+1((a) = 0: a-t+ oo. 
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Hence. dedure that 

Jo • xdtp(x) = 1, Jo • x"+ltLp(x) = (p, + l)M,., Jo • x'*~(x) = (r + l)M • 

where !P(x) = /(0) -/(z) and, finally, apply the inequality 

(. Using the composition formula (1), page 269, pro,·e Laplact>'s formula on 
page 278 by mathematical induction. 

6. Prove that the distribution function of probability for a variable whose charae­
teristic function !P(t) is given can be determined by the formula 

1 I • IP(v} 1 - e-•• 
F(t) = C +lim- --

1
-.-dt· . 

... o2r -•l+h'"v ., 

HINT: In carrying out Liapounoff's idea, take an auxiliary variable with the di&­
tribution 

tf" -~~~ G(y) =.....:. e 11 dz. 
2h -. 

Also make use of the integral 

Many definite integrals can be evaluated using the relation between characteristic 
and distribution functions, as the following example shows. 

6. Let z be distributed over (-DC, +DC) with the density ~e-t.ot. The character­
i:stic function being in this case 

we find 

whence 

an intt>gral due to Laplace. 

l 
9'(0 = --

1 + t1 

•J. t-li" - --dr = t ... ,, 
.,. - .1 + r1 ' 

7. A variable is said to have Poisson's distribution if it ean have only integral 
values 0, 1, 2, ... and the probability of x = i: is 

~e-. 

Hj 

the quantity a is called uparamPter" of distn'bution. If a variables ha\·e Poisson's 
distribution 11ith parametera oa, as, .•. a., show that their sum has al&o Poisson's 
distribution, the parameter of which is a1 +Cit + · · · + a .. 
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8. Prove the following result: 

_!_I'" (sin v)"sin tv dv = _! + __ 1 --[ (t + n)" _ ~(t + n _ 2)" + 
2'11' -110 v v 2 2·4·6 .. ·2n 1 

n(n- 1) ] + -
1 
.-
2
-(t + n - 4)" - · · · 

the series being continued as long as arguments remain positive. 
HINT: Consider the sum of n uniformly distributed variables in the interval 

( -1, + 1) and express its distribution function in two different ways. 
9. Establish the expression for the mathematical expectation of the absolute 

value of the sum of n uniformly distributed variables in the interval (- ;)1, + 72) . 
. Mta. 

E!x1 + Zs + · · · + :nl = 
2 [n"+1 

- ~(n - 2)"+1 + 
2 • 4 · 6 · · · (2n + 2) 1 

n(n- 1) · ] 
+--(n -4)"+1- · · · ' 

1·2 

the series being continued as long as the arguments remain positive. 
HINT: Apply Laplace's formula OQ page 278, conveniently modified, to express the 

expectation of X1 + X2 + · · · + Xn and that of lx, + X2 + · · · + x,.j. 
10. Show that under the same conditions as in Prob. 9 

f .. ( )"-! n sint sint-tcost 
Elx1 + x2 + · · · + x,.! = -

2 
- 3 dt. 

'll' -.. t t 

HINT: Prove and use the following formula 

I
T. . 

e'10
" -1 - ~wx 

lim dx = -'ll'lwl. 
r-. -T X

1 

11. Let x1 and z2 be two identical and normally distributed variables with the 
mean = 0 and the standard deviation t1. If x is defined as the greater of the values 
lx,j, !x2!, that is, 

x = max. (!x1!, lx2!) 

find the mean value of x as well as that of x1• Ans. 

12. IA!t 

2t1 
E(x) = y; 

x = min. (lx,l, lx,j, . . . jx,.j) 

where z~, z2, • • • z,. are identical normally distributed variables with the mean = 0 
and the standard deviation tr. Find the mean value of x. AM. Setting for brevity 

we have 

~ J;;LI u• v2 --. r e 2.r• du = ll(t}, 
O'VT 0 

E(x) =fa "11 - ll(t) l"rlt. 
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In particular for n • 2 

ECx> = ;.cv'2 -1). 

For large n asymptotically 

E ) 
fly';/2 

(:x ----· 
n+l 

13. A variable with the mean = 0 and the standard deviation = 1 is called a 
"reduced variable." By changing the origin and the unit of measurement any 
variable can be made reduced. For, if x has the mean a and the standard deviation 11 

the variable 
:x-a 

u=--
11 

is reduced. The distribution function of the reduced variable u can be called the 
"reduced law of distribution." 

As we have seen, variables x, and z2 with normal distribution have the same 
reduced law of distribution, as does their sum. The question may be raised: Is the 
normal law of distribution a unique law possessing this property? (G. Polya.) 

Solution. Let z,, Z2 be two variables for which the second moment of the distri­
bution exists, so that we can speak of their means and standard deviations. Let :;:1 

have its mean a, and its standard deviation 111; likewise, let a2 and 111 be the mean and 
the standard deviation of x2• Three reduced variables 

Xt- Gt u,=--· 
IIJ 

Xt- «t u,=--· 
fiJ 

x, + :x, - «t - a, 
Ua = 

have by hypothesis the same law of distribution. Hence, they have the same charac­
teristic function <P(I) whence we can draw the conclusion that the characteristic 
functions of x,, Xt, Xt + x2 are, respectively, 

'l't(l) = e•••atp(lftl); 

Sinre 

we must have for an arbitrary real t 

,(11,t)rp(11,t) = ,(VIT~ + 11~), 
or 

(I) 

where 

lit a=---, 
~ 

., 
tJ=--· 
~· 

«'+(11==1. 

Since (I) holds for every real t, we shall have 

.,(art) = f'(«1t).,(a/ff); .,(jJt) = fi(«Pl),(plt) 
t.nd 

(2) 

Applying (1) again ro each of these factors in the right member of (2), we find that 

(3) f'(t) "" .,(cr't).,{a1tJI)Irp(atJ11) 1.,(~'t) 
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and proceeding in the same way, we arrive at the general formula 

(4) tp(t) = tp(a"t)Potp(a"-1(3t)P1 .•• tp(fJ"t)P3 

where po, Ph . . . p,. are coefficients in the expansion 

{1 + z)" = Po + PtZ + · · · + p..z". 
The arguments 

llo = a"t, lit = a"-1tJt, • , , 11,. = fJ"t 

tend uniformly to 0 since a· < 1, tJ < 1. The quotient 

tp(ll) 
2
-
1 

= -f .. t2dF(t) f\1 - x)e•w~dx 
11 -.., Jo 

is represented by a unifQT'mly convergent integral; hence 

. tp{ll) - 1 If'" 1 hm -- = -- t'dF(t) = --
112 2 -... 2 

or 
tp(ll) = 1 + [ -l + E(v)]v' 

where 
e(ll) -+ 0 as 11 -+ 0. 

At the same time 

log tp(v) = [ -l + &(v)]v2 (principal branch of log) 
where again 

o(v) -+ 0 as v -+ 0. 

Now, taking logarithms of both members of (4) 

log tp(t) = -W(poa2" + p,a2"-W + ... + pJI',.) + n = -W + !l 
where 

1l = t2[po8(11o)a211 + p,8(v,)a211- 2tJ' + • • · + pno(v,.)tJ211). 

Given e > 0, we can take n so large that 

jo(v;)j < e; i = 0, 1, ••• n 
whence 

IOI < Et2• 

Thus 
!log .p(t) + it21 < Et' 

and since e can be taken arbitrarily small, 

log .p(t) + it' = 0 
or 

IP(t) = e-ll•, 

which shows that the normal law is the only one with the required properties, among 
a.lllaws with finite second moments. 
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CHAPTER XIV 

FUNDAMENTAL LIMIT THEOREMS 

1. Bernoulli's theorem, as we have seen in Chap. VII, follows from a 
more general one known as Laplace's limit theorem. In terms already 
familiar to us, this theorem can be stated as follows: Let an event E 
occur m times in a series of n independent trials with constant probability 
p. As n becomes infinite, the distribution function of the quotient 

m- np 
ynpq 

approaches 

-- e-luldu 1 J' 
~-· 

as a limit; or, to state it in a less precise form, the distribution of the 
above quotient tends to normal. 

Just as Bernoulli's theorem itself is a very particular case of the general 
law of large numbers, so Laplace's limit theorem is a special case of 
another extremely general theorem, the discovery of which by Laplace 
may be considered as the crowning achievement of his persistent efforts, 
rxtending over a period of more than twenty years, to find the approxi­
mate distribution of probability for sums consisting of a great many 
independent components '\\ith almost arbitrary distributions. The 
result at which Laplace finally arrived is as astonishing as it is simple: 
if x., x2, ... x" (E(x;) = 0, i = 1, 2, ... n) are independent variables 
(subject to some very mild limitations not stated, however, by Laplace) 
and B" is the diApersion of their sum, then for large n the distribution of 
tht> quotirnt 

Xt + X! + ' ' ' + X" 

VB: 
is nearly normal. To put it more precisely, the distribution function 
of this quotient tends to the limit 

-
1-J' rt"'du 

y'2; -· 
as n becomes infinite. 

Laplace's attempt to prove this important proposition does not stand 
the test of modern rigor and, besides, cannot easily be made rigorourt 

283 
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The same is true of the attempts made by later investigators, notably 
Poisson, Cauchy, and many others. Only after a lapse of many years 
were truly rigorous proofs of Laplace's theorem given. This important 
achievement is the result of the work of three great Russian mathemati­
cians: Tshebysheff (1887), Markoff (1898), and Liapounoff (190Q-1901). 
An account of Tshebysheff's and Markoff's ingenious investigations is 
given in Appendix II. Here we shall follow Liapounoff; for his method 
of proof has the advantage of simplicity even compared with more recent 
proofs, of which that given by J. W. Lindeberg deserves special mention.1 

2. Before going into details of analysis, we shall state the limit theo­
rem in a very general form due to Liapounoff. 

Laplace-Liapounoff's Theorem. Let X1, x2, • • • x" be independent 
variables with their means = 0, possessing absolute moments of the order 
2 + 8 (where 8 is some number > 0): 

1/, denoting by Bn the dispersion of the sum Xt + X2 + · · · + :1:11, the 
quotient 

tends to 0 as n -+ co, the probability of the inequality 

Xt + X2 + ' ' ' + Xn < t 
VB: 

tends uniformly to the limit 

,-1- r e-tu•du. 
yZ;J_,. 

It is natural that the complete proof of a theorem of such character 
cannot be too short, and to make the proof clearer it is advisable to 
divide it into logically separated parts. 

3. The Fundamental Lemma. Let, s" be a variable, depending on an 
integer n, with the mean = 0 and the standard deviation = 1. If its 
characteristic function 

'Pn(v) = E(e'"•) 
tends to 

•• e-2 

' Lindeberg's proof, as well as later proofs by P. Levy and others, make use of an 
ingenious artifice due to Liapounofi. Lindeberg explicitly acknowledges his indebted· 
ness to Liapounoff, while Levy and other French writers fail to give due credit to the 
great Russian mathematician. 
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uniformly in any given finite interval ( -l, l), then the distribution fundion 
F "'(t) of s"' tends uniformly (in the domain of all real values oft) to the limit 

-- e-tu'du. 1 J' 
y'2; -· 

Proof. a. Together with the variable s"', whose distribution function 
is F.(t), Liapounoff considers another variable 

1ot, = 8"' + y 

where y is a normally distributed variable with the distribution function 

G(y) = - e-lidz. 1 f" :r• 

hyw -· 
Denoting the distribution function of 1" by H"'(t), we have (Chap. XIII, 
Sec. 7) 

(1) 
1 s· s·~~ H.(t) = y; _ .dF,.(x) _ • e-'du. 

On account of the inequality 

1 i. 1 - e"""11'du S ::::e-r•. 
y'; T - 2 1 T~O 

we have: 
,_, 

1 J' 8' ('-:r)' Fort - x < 0: - e-"'du = -::-e- T ; 
v; -· 2 

0<8'~1. 

,_, 
1 f' 1 1 ioe 8" -('-:r)' Fort - X !;; 0: ~ r:_ ru du = 1 - - e-'du = 1- -::-e ' ; 

V'll" -• y'; 1-:r 2 
l 

0<8"~1. 

Hence, introducing these expressions into (1), 

f, 8 i.. ('-:r)' 8 i ('-:r)' H,.(t)= dF,.(x)+-
2
° e- T dF.(x)-2 e- "T dF.(xJ 

-• I 2 -• 

wlwre again 0 < 8o < 1; 0 < 81 < 1. This leads to the following 
inequality: 

But 

(t-:r)' h f ,.,. - T _ • --+w<:r-1) 
--- e • dv 

2Y,: - .. 
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and consequently 

or 

(2) JH,.(t) - F,.(t)J < ~ J: . e -T-"
1
[1,0,.(v) - e -2]dv + h {f., h*t>l , ~I 

4v11' _., 

+ J_ .... e -~~:~-~e-ivtdv}· 

Here we split the first integral into three J 11 J 2, J 3, taken respectively 
between limits - ®, -l; -l, l; l, + ® and denote the second integral 

•' 
by J,. Since I<Pn(v) - e -21 ~ 2, we shall have 

(3) 

because 

i.. e-zt 
e-u 1du <­

z 2x 

for positive x. Also 

(4) -JJ41<- e 2dv=-· ·h h f"' -~ h 
4\f'; 4\f'; _., V8 

~~ 

To estimate J2 we shall denote by e,.(l) the maximum of I'Pn(v) - e-21 in 
the interval -l ~ v ~ l. Then 

(5) 
h hEn(l)f"" _h2t>l 1 
_ r:IJ2I < . r::. e 4 dv = tn(l). 

4v11' 4v11' _., 

Finally, taking into account (2), (3), (4), and (5), we find 

(hi) I 

(6) 
1 h 2 e -T 

JH .. (t) - F ,.(t)J < 2e,.(l) + VS + y'; 

b. Expression (1) of H,.(t) can be transformed in a manner similar 
to that employed in Chap. XIII, Sec. 7, if we first write 

t-z 1-z lfT 1 tLT _ ;: e-1du = 2 + . ;: e-«'du. 
vr _., vr o 
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Thus we get 

H,(t) =- +- e -T -e. IPn v dv 1 1 f . 11"''1 _,,. ( ) 

2 211' -· tv 

or 
Alrt . 

1 1L • - 11"''-~in tv 1 f .. e -T-
11

' -~ 
H,(t) = -

2 
+- e 4 2-dv + -

2 
-.-(e 2 - l(),.(v))dv. 

'II" 0 v 11' _,. w 

Now 

since 

and consequently 

_h'r>• h"v' 
0<1-e 4 <-

4 

(7) IH ,.(t) - ! - ! f • e -fsin tv dvl < h2 + _!_I • e- •:•I~Pn(v) - e -~dv. 
2 11' Jo v 411' 2r - • lvl 

To find an upper bound of the integral in the right member, we split 
it into five integrals It, h la, I., I r. taken respectively between limits 
-oo, -l; -l, ->.; ->., >.; >., l; l, +oo. To estimate la, we notice 
that 

and 

Hence 

(8) 

,. 
11/),(v) - e -rl ~ .r. 

1 lj·~ X2 

-llal ~- vdv = -· 2r r o 2r 
,, 

To estimate I 1 + I,, we use the inequality lrp,.(v) - e -21 ~ Etr.(l) and we 
get 

(9) 

Finally, dealing \\ith It and I., we use the obvious inequality 
,. 

lrp.(v) - e -rl ~ 2 
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and we obtain 

(10) 

fill) I 

1 2J, .. - 11
"'

1
dv 4e --r 

-II 1 + I 51 ~ - e 4 - < --· 211' 'II' l v 11' (hl)2 

Taking into account (7), (8), (9), and (10), the following inequality 
results: 

(hl)l 

'

Hn(t)-!-! r·e -isin tvdvl < h2 + A2 + En(l) + ~e- 4. 
2 r Jo v 4'11' 2r y'";hA 1r (hl)2 

In it, since A is still at our disposal, we can take 

A = En(l)ih-i, 

The inequality thus obtained when combined with (6) gives (a = hl) 
a2 al 

(11) 
I
Fn(t)-!-! f•e -fsin tvdvl < ~e -, + ~ e -, + ~ + 

2 1r Jo v r ,; y'; a VBl 
+ ::l2 + (2~ + J;)(za-1)le,.(l)l + ~En(l). 

Here a and l are arbitrary positive numbers. We dispose of them in 
the following manner: Given an arbitrary positive number e, we take a 
so large as to have 

cr! a2 

4e -, 2 e -, 1 
--+--<-E 
ra2 y'";a 3 

and after that we select llarge enough to make 

a a2 1 
v'sl + 41fl2 < 3E. 

Finally, since for a fixed l, e,.(l) by hynothesis, tends to 0 whe~ n ~ ex:, 

there exists a number no such that 

(;11' + ~){la-l)fE,.(l)i + ~E,.(l) < ~E 
for all n > n0• The inequality (11) then shows that 

I 
1 1L .. -~ sin tv I F ,.(t) - - - - e 2 -dv < e 
2 'II' 0 v 

for n > no and this means that 

1 1L'" -~sin tv 1 J' _!ua lim F ,.(t) = -
2 
+ - e 2 =-=dv = _ rn: e 2 du 

n-+ ao 11' 0 V V 211' - 10 
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uniformly in t because the number no, as clearly follows from the pre­
ceding analysis, depends upon E only and not upon t. 

Remark 1. Without changing anything in the proof, we can state 
the fundamental lemma. in a. slightly generalized form as follows: If t,. 
tend11 to the limit t, the probability of the inequality 

8,. < t,. 
tends to 

Remark 2. The fundamental lemma, although not explicitly stated 
by Liapounoff, is implicitly contained in his proof. More general 
propo!litions of the same nature have been published by P6lya and Levy. 
The very elegant result due to the latter can be stated as follows: If 
the characteristic function of the variable s,. tends to the characteristic function 

rp(t) = J_'".,e>tzdF(x) 

of a fixed distn'bution uniformly in any finite interval, then 

lim F ,.(t) = F(t) 

at any point of continuity of F(t). 
The above proof, corresponding to the particular case 

F(t) = -- e-iu'du, 1 J' y'2; - .. 

can be used, almost without any changes, in proving the general proposi­
tiom of Levy. 

4. Proof of Liapounotrs Theorem. a. If Liapounoff's condition 

i~ !'Rtisfied for a certain a > 0, it will be satisfied for all smaller a. 
vt f,(t) bt' the distribution function of Z;(i = 1, 2, ... n). The 

~11m 

f(t) = ft(t) + ft(t) + ... + f,.(t) 
being a nondecreasing function of t, the following inequality holds 
(Chap. XIII, St-c. 5): 
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provided a > b > c > 0. We take here 

a= 2 + 8, 

supposing 0 < 8' < 8. Then 

b = 2 + 8', c = 2 

II II 

J_"'.,itjbdj(t) = ~~~~6'i J_ "'.,itiadj(t) := ~~~~0 j 
1 1 

and 

( *.;'ft )' ~ B.o-•{ *•t~J 
But this inequality is equivalent to · 

and it shows that 

if 
II 

~~~(~) 
-'-1~""2+6 

_l __ ~o 
6 I 

B1+2 
II 

provided 0 < 8' < 8. Hence, in the proof we can assume that the fundaw 
mental condition is satisfied for some positive 8 ;i 1. 

b. Liapounoff's inequality (Chap. XIII, Sec. 5) with c = 0, b = 2, 
a = 2 + 8 when applied to X; gives 

b1+8 ;i W~a) 2 ; b, = E(x1). 
Hence, 

2 

b. ( ,m )2+6 __!._ ~ < .!:.!±!. < w2+1i 
B = /j II 

II B1+2 
II 

{12) 

and, since it is assumed that w11 ~ 0, all the quotients 

b, b; 
B11 = b1 + b2 + · · • T b11 

will converge to 0 uniformly as n ~ c.o. 

(i == 1, 2, ... n) 
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c. The following formula can easily be obtained by means of integra­
tion by parts: 

e•~ = 1 + ix - £ - x2 fl (e;,' - 1)(1 - t)dt. 
2 Jo 

If xis real and in absolute value >2, we have 

k L1

(ei~e - 1)(1 ; t)dtl ~ x2 < lx~;• 
since 

ie':r' - 11 ~ 2. 

If lx! ~ 2, we can use the inequality 

and find 

le'"'' - 11 ::;; 2j~jt ::;; 2lxl't - 2 - 26 

lx2 11 

(e'"'' - 1)(1 - t)dtl ~ ~ ix~;• < i:ri:H 

Thus, for every real x 

x2 jxj2H 
eiz = 1 + ix- 2 + 87; \81 ~ 1. 

Substituting here 
:Ct 

X= t-- =itt 
VB.. 

and taking the mathematical expectation of both members, we have 

b IJ.rkl 
(13) 'Pt(l) = E(ei'h) = 1 - -~ t2 + 8t~!WH; \8tl ~ 1. 

2B. 1+-
26B. 2 

Furthermore, since 

8 
1 - X = e-• - :t2

; X > 0; 0 < 9 < 1, 

we can write 

(14) 1 - ~2 = e 2B. _ _ _ • b~: _.!~,, e( t2b1:)' 
2B. 2 2B. 

If w,.jtj"+-' < 1, we shall have, by virtue of (12), 

~<1 B. 
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'and consequently 

& a a 

(b,.t2)2 (b,.t2)1+j(bJ,2)l-2 1 (b,.t2)1+2 JJ.(k) 

2B = 2B - < -a - < -.!±L!WH. ,. ,. 2B,. t-- 2B,. 1+! 
2 2 4BII 2 

This inequality, together with (13) and (14), leads to the following 
·expression of IPk(t): 

(15) 

where 
9 ,(k) ,(t) 

(16) lukl < get ~W+~ < 3 ,..2+WI*'· 
Bl+2 Bl+2 

II II 

d. The characteristic function of the variable 

_ Xt + X2 + ' ' ' + X,. 
8~~----=---Vlf,. 

lS 

q>(t) = ll't(t)IP2(t) · · · q>,.(t) 

because Xt, x2, • • • x,. are independent variables. Hence, by (15) 

q>(t) = e-412(1 + O't)(l + u2) · · · (1 + u,.) 
I~P(t) -e-i''l < (1 + lutl)(1 + lu21) · · · (1+ju,.i)-1 <el•d+lnl+ ... +lcr·l-1 

and 

(17) 

taking into account inequalities (16). Inequality (17) holds if 

w,.ltj2+8 < 1. 

Suppose, now, that tis confined to an arbitrary finite interval 

-l ~ t ~ l. 

Because w,., by hypothesis, tends to 0, the difference 

ea...I2H- 1 

will tend to 0 as n --~> co • In connection with (17) this shows that 

q>(t)--~> e-itl 

uniformly in any finite interval. It suffices now to invoke the funda­
mental lemma to complete the proof of Liapounofi's theorem. 

5. Particular Cases. This theorem is extremely general and it is 
hardly possible to find cases of any practical importance to which it 
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could not be applied. Two particularly significant cases deserve special 
mention. 

First Case. Let us suppose that variables x1, x2, . . . x,. are bounded, 
so that any possible value of any one of them is absolutely less than a 
constant C. Evidently 

and hence 

It suffices to assume that 

B,. = b1 + b, t · · · + b .. 

tends to infinity to be sure that w,. -t 0. Hence, dealing with bounded 
independent variables, the condition for the validity of the limit theorem 
IS 

as 

which is equivalent to the statement that the series 

bt + b, + ba + · · · 
is divergent. 

Poisson's series of trials affords a good illustration of this case. In 
the usual way, we attach to each of the trials a variable which assumes 
two values, 1 and 0, according as an event E occurs or fails in that trial. 
Let P• and q, = 1 - p, be the respective probabilities of the occurrence 
and failure of E in the ith trial. The variable z, attached to this trial 
is defined by 

Noticing that 

z, = 1 if E occurs, 
z, = 0 if E fails. 

we introduce new variables 

(i = 1, 2, ... n) 

with the mean 0, whose sum is given by 

m- ttp 

where m is the number of occurrences of E in n trials and p the mean 
probability 

p = PI + p~ + . . . + p ... 
n 
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In our case 

and 

Hence, we can formulate the following theorem: 
Theorem. The probability of the inequality 

m- np < h/B,. 

tends uniformly to the limit 

as n - oo , provided the series 

is divergent. At the same time the probability of the inequalities 

k\I'B: < m- np < kVR 
tends uniformly (in t1, t2) to the limit 

1 ih -~ _ rn: e 2du. 
v2zr '• 

Second Case. Let z1, z2, . . . z,. be identical variables with the 
common mean a and dispersion b. Supposing that for some positive o 

Elz, - ajH8 = c 

exists, we have 

nc c _! 
w,. = --3 = - 8 ·n 2, 

(nb)l+2 b1+2 

and hence w,. - 0 as n - oo. The limit theorem applied to this case 
can be stated as follows: 

The probability of the inequality 

Z1 + Zz + · · · + z,. - na < tv:;ib 
tends uniformly to 

-- e 2 du 1 J' -~ 
y'2; -oo ' 
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provided 
Elz,- aJHI 

exists for some positive &. As a corollary we have: The probability of the 
inequalities 

tends tn 

-t ~ < Zt + Zt + ' ' ' + Z,. _ a < t ~ 
~n n ~n 

2 f' "' y'2;Jo e -2du. 

This proposition is regarded as justification of the ordinary procedure 
of taking a mean of several observed measurements of the same quantity, 
made under the same conditions, to approximate its "true value." 
Barring systematical errors which should be eliminated by a careful 
study of the tools used for measurements, the true value of the unknown 
quantity is regarded as coinciding with the expectation of a set of poten· 
tially possible values each having a certain probability of materializing 
in actual measurement. Since for comparatively small t the above 
integral comes very near to 1 and 

for large n becomes as small as we please, the probability of the mean of a 
\'ery large number of observations deviating very little from the true 
value of the quantity to be measured, will be close to 1 and herein lies 
the justification of the rule of mean mentioned above. 

EsTIMATION OF THE ERROR TERM 

6. The limit theorem is a proposition of an essentially asymptotic 
character. It states merely that the distribution function F,.(t) of the 
\'ariable 

Xt + Xt + · · · + x. s. = 
v'B: 

approaches the limit 

-- e -2du. 1 f' •. 
y'2; -. 

as n herorn('S infinite when a certain condition is fulfilled. For practical 
pur~es it is \'ery important to estimate the error committ~d by replac· 
ing F.(t) by its limit when n is a finite but very large number. In his 
ori~inal papE>r Liapounoff had this im}X)rtant problem in his mind and 
for that l't'li~n entPrPd into mort' detailed elaboration of various parts 
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of his proof than was strictly necessary to establish an asymptotic 
theorem. 

We do not intend to reproduce here this part of Liapounoff's investiga­
tion; it suffices to indicate the final result. Assuming the existence of 
absolute moments of the third order Elx,l 3; i = 1, 2, ... n, we shall 
suppose n so large that · 

- ~~~D + ~~~2) + , . , + ~~~Al 1 
w,.- . B~ < 20' 

Then, setting 

we shall bave 

IRI <~ .. [(log 3~..)! + 1.1] + w; log 3~ .. + ~,.te-i(ol• -§. 

Although this limit for the error term is probably too high, it seems 
to be the best available. However, it is greatly desirable to have a more 
genuine estimation of R. · 

7. Hypothesis of Elementary Errors. It is considered as an experi­
mental fact that accidental errors of observations (or measurements) 
follow closely the law of normal distribution. In the sphere of biology, 
similar phenomena have been observed as to the size of the bodies and 
various organs of living organisms. What can be suggested as an 
explanation of these observed facts? In regard to errors of observations, 
Laplace proposed a hypothesis which may sound plausible. He considers 
the total error as a sum of numerous very small elementary errors due 
to independent causes. 

It can hardly be doubted that various independent or nearly inde­
pendent causes contribute to the total error. In astronomical observa­
tions, for instance, slight changes in the temperature, irregular currents 
of air, vibrations of buildings, and even the state of the organs of percep­
tion of an observer may be considered as but a small part of such causes. 
One can easily understand that th~ growth of the organs of living organ­
isms is also dependent on many factors of accidental character which 
independently tend to increase or decrease the size of the organs. If, 
on the ground of such evidence, we accept Laplace's hypothesis, we can 
try the explanation of the normal law of distribution on the basis of the 
general theorems established above. 

Suppose that elementary errors do not exceed in absolute value a 
certain number l, very small compared with the standard deviation u 
of their sum. The quantity denoted by w,. in the preceding section will 
be less than the ratio l/u and hence will be a small number; and the same 
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will be true of the error term R. Hence, the distribution of the total 
Prror will be nearly normal. 

Laplace's explanation of the observed prevalence of normal distribu­
tions may be accepted as plausible, at least. But the question may be 
raised whether elementary errors are small enough and numerous enough 
to make the difference between the true distribution function of the total 
error and that of a normal distribution small. Besides, Laplace's 
hypothesis is based on the principle of superposition of small effects and 
thus introduces another assumption of an arbitrary character. 

Finally, the experimental data quoted in support of the normal di~ 
tribution of errors of observations and biological measurements are not 
numerous enough for one to place full confidence in them. Hence, the 
widely accepted statistical theories based on the normal law of distribu­
tion cannot be fully relied on and may be considered merely as substitutes 
for more accurate knowledge which we do not yet possess in dealing with 
problems of vital importance in the sphere of human activities. 

LIMIT THEOREMS FOR DEPENDENT VARIABLES 

8. The fundamental limit theorem can be extended to sums of depend­
ent variables as, under special assumptions, was shown first by Markoff 
and later by S. Bernstein, whose work may be considered an outstanding 
recent contribution to the theory of probability. However, the condi­
tions for the validity of the theorems established by Bernstein are rather 
complicated, and the whole subject seems to lack ultimate simplicity. 
For that reason we confine ourselves here to a few special cases. 

Example 1. Let us consider a simple chain in which probabilities for an event E 
to occur in any trial are p' and p", respectively, according as E occurred or failed in 
the preceding trial. The probability for E to occur at the nth trial when the resulta of 
other trials are unknown is 

where "• is the initial probability, 6 • p' - p" and 

p" 
p ==--· 

1- i 

Thl' mec&n probability for " trials is given by 

P•- p 1 - r 
p. "" p + -"- 1 - ' 

ao that p may be t'()nsidered as the mean probability in infinitely many trials. 
In the usual way, t() trials 1, 2, 3, ... we attach variables z1, z~o z., ... 110 that 

inceneral. 

s:. • 1 - Pi or s:. = -Pi 
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according as E occurs or fails in the ith trial. If m is the number of occurrences of 
E in n trials, the sum 

:l:t +:r:t + ... +:r:.. 
of dependent variables represents 

m-np.., 
Evidently 

E(m - np,.) = 0 

and, as we have seen in Chap. XI, Sec. 7, 

1+6 
B,. = E(m - np,.)' "'np~J";--:; 

1- B 

that is, the ratio of B,.: npq 
1

1 
+ 6 

tends to 1 as n becomes infinite. -a 
In order to find an appropriate expression of the characteristic function of the 

quotient 
m -nfj,. 

v'B: 
we shall endeavor first to find the generating function w,.(t) for probabilities 

Pm,,.(m = O, 1, 2, •.• n) 

to have exactly m occurrences of E in n trials. Let A,.,,. be the probability of m 
occurrences when the whole series ends with E and similarly Bm,,. the probability of 
m occurrences when this series ends with F, the.event opposite to E. The following 
relations follow immediately from the definition of a chain 

(18) 

Let 

A .. , .. +t = Am-t,nP' + Bm-t,nP" 
Bm,n+l = A,.,,.q' + Bm,nq", 

8,.(t) = k Am,nl"', 1/t,.(t) = ! Bm,nt"' 
m=O m=O 

be the generating function of A,.,,. and Bm,fl· From relations (18) it follows that 

o .. +t(t} = p'to,.(t) + p"t.Y.(t) 
Ytn+t(!) = q'O,.(t} + q'1!f,.(t). (19) 

These relations established for n ~ 1 will hold even for n = 0 if we define Bo(t) and 
1/to(t) by 

p'9o + p"l/to = Pt 
q'9o + q".Yo = 1 - Pt 

whence 
9o +!/to = 1. 

From (19) one can easily conclude that both 9,.(t) and 1/t,.(t) satisfy the same equa,.. 
tion in finite differences of the second order 

0,.+1 - (p't + q")B,.+t + ate,. = o 
"'"+' - (p't + q").Yn+t + at.y,. = o. 
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Evidently 
P •.• =A .... + B .... ; 

hence 
lll,.(t) = 8,.(t) + tjt.,.(t) 

satisfies the equation 

(20) "'A+I - (p't + q")"'a+l + 0~.,. = 0 

and is completely detennined by it and the initial conditions 

Since 
p' = p + q&, q" = q + p& 

the characteristic equation corresponding to (20) can be written 

<r - 1)(t - a) = (t - l}[(p + q~)r - aJ 

and for small t - 1 its roots can be expanded into power serietJ 

!1 = 1 + c,(t - 1) + c2(t - 1)' + · . · 
It = & + d,(t - 1) + d,(t - 1)1 + .... 

The general expression of ~.~~,(t) will be 

"',.(t) = Att + Bt2 = At~ + Bo"t"fi" · 

where to satisfy the initial conditions we must take 

B = -r, + q, + Ptt, 
Is- !1 

Having found "'a(t}, the characteristic function of 

m- np.,. 
8, = -v'B: 

will be given by 

-nP.-.!£_ ( i-' ) 
~Ao(ll) = t ..;B:"'• (! v'R. . 
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To study the asymptotic behavior of f1,o(11) when 11 is confined fA> a finite fixed 
interval -l ~ 11 ~ l, we notice that then 

II 

u = vB. 
will be well within the convergence region of the series we are gomg to consider now. 
By means of Lagrange's series or otherwise, we find the following expansion of log t 1 in 
power series of t - 1 

(
'P' pq8 ) log rl = p(t - 1) - -- - - (t - 1)1 + ... 
2 1-6 

convergent for sufficiently small values oft - 1. By setting t = e"' we obtain another 
power series in u 

. pql +' log rl ... pt.u - - --101 + ... 
2 1 -. 
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convergent for sufficiently small u. Hence 

where g(u) is a bounded function of u, u being contained in a certain interval ( -r, r). 
By substituting 

v 
u =VB: 

here, we easily conclude that 

tends unifonnly to the limit 

in the interval -l ;;i 11 ;;i l while 

- vi -np.-
e . v'F.ri'' 

remains there uniformly bounded. Since, as can easily be seen, A and B can be 
represented by power series 

A = 1 + a,u + a2u2 + · · · 
B = -a,u - a2u! - · · · 

A tends uniformly to 1 and B tends uniformly to 0. Hence, finally, 'l'n(v) in any fixed 

interval -l ;;i v ;;i l tends uniformly to e - 2. It suffices to apply the fundamental 
lemma to conclude that the probability of the inequality 

m - nP,. < t,.v'B,. 

tends uniformly to the limit 

if t,. tends tot. 

Since B .. is asymptotic to npq ~ ~ : and p,. differs from p by a quantity of the order 

1 In, the inequality 

. ~+B m -np <t --npq 
1 - i 

ean be written in the form 

m - np,. < t,.v'If., 

with t. tending to t, whence, using the above established result, the following theorem 
due to Markoff can be derived: 
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Theorem. For a simple chain the probability of the inequalities 

t 1~ < m - np < t2~~ ~ !npq 

tends to the limit 

-- e 2du 1 i" -~ 
y"'2"; h 

asn-too, 
E.umple 2. Considering an indefinite series of Bernoullian trials with the prob­

ability p for an event A to occur, we can regard pairs of consecutive trials 1 and 2, 
2 and 3, 3 and 4, and so on, as forming a new series of trials which may produce an 
event E consisting of two successive occurrencp,s of A (E = AA) or an event F opposite 
to E (F = AB, BA, BB). With respect to E the trials of the new series are no longer 
independent. Let m be the number of occurrences of E in n trials. Then 

E(m - np1) == 0 

and 

B. == E(m - np1) 1 = nplq(l + 3p) - 2p'q 

as was shown in Chap. XI, Sec. 6. 
Let P .... be the probability of exactly m occurrenres of E in a series of n trials. 

Evidently 

P •.• =A •.• +B •.• 

where A .... and B .... are the probabilities of m occurrences of E when the Bernoullian 
series of n + 1 trials ends with A or B, respectively. By an easy application of the 
theorems of total and compound probabilities we get 

A .... +1 = A,._.,,.p + B ..... p 
B ..... +t = A .... q + B .... q. 

Corresponding to these relations the generating functions 

o,.(t) = ! A ... ..t•, t/t.(t) = ! B.,,,.t• 
•=0 ... o 

satisfy the following equations in finite differences: 

'•+• = pto. + p.p. 
"'·+• = q8. + q.p. 

holding even for n = 0 if we set 80 = p, tfo = q. Hence, it follows that 8.(1) and 
t/t.(t\ satisfy the same equations of the second order • 

and 80 does their sum 

8,.+1 - (~ + q)8a+l + pq(l - 1)8. = 0 
tfo+l - (pt + q)tfa+l + pq(l - l)tfa = 0 

C~o~a(l) = l.(t\ + .p.(t) = ! P •. .t-. 
•·0 
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Thus, to determine w,.(t) we have the equation 

Wn+l - (pt + q)wn+l + pq(t - l)w,. = 0 

and the initial conditions 

WO = 1, WI = 1 - pi + pit. 

The general expression of w,.{t) is 

w..(t) = Art + Bt; = A!~ + .Bp"q"(t - l)"r. 

where !1 and !2 are roots of the equation 

r• - r = p(t - 1Hr - q) 
and 

-t2 + 1 + p2(t - 1) 
A= ; 

ft- fs 
!t - 1 - p2(t - 1) B= . 

ft- !2 

If st is the root which fort = 1 reduces to 1, we easily find the following series 

p2( -pi + 2pq) 
log ft = p2(t - 1) + (t - 1)1 + · · · 

2 

or, setting t = e;" and supposing u sufficiently small, 

. p1q(l + 3p) 
log ft = tp!u -

2 
u1 + · · · . 

As to A and B, they can be developed into series of the form 

A= 1 + cu1 + · · · 
B = -cu2 + · · · 

Hence, reasoning in the same manner as in Example 1, we can conclude that the 
characteristic function 

np!v. " 

IPn(v) = e- y'B,.'wn(ev'B,.) 
of the variable 

m- np1 

vfB,. 
'l 

tends to the limite -2uniformly in any finite and fixed interval -l ;;,; 11 ;;,; l. Refer-
ring, finally, to the fundamental lemma, we reach the following conclusion: The 
probability of the inequalities 

t1ynp2q(1 + 3p) < m- np1 < tsynp2q(l + 3p) 

tends uniformly (with respect to t, and t2) to the limit 

-- e 2du. 
1 ib -~ 

y'2; It 

a.s "--t ao. 
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Problems for Solution 

1. Consider a series of independent variables Xt, x2, x,, ... where in general 
xk(k == l, 2, 3, ... ) can have only two values k11 and -k11 each with the probability 
7'2. Show that the limit theorem holds for the variables thus defined if 01 > -.7'2, 
but the law of large numbers holds only if 01 < ,Yi. 

Solution. Evidently 

E(xk) == 0, E(x:) = k~a, Eixkl1 = k~tr. 

From Euler's formula (Appendix I) we derive two asymptotic expressions 

Hence 

nta+t 
B = 1 ta + 2Jtr + · · · + nta ,.., --

• 2a + 1 
naa+t 

1aa + 2aa + . . . + naa ,.., 
3a+ 

(2a + 1)1 -l 
""'""aa+ln' 

so that the limit theorem holds. For « = .Y2 the probability of the inequalities 

Xt + Z1 + • • • + X. < ~ 
-e < -------- " 

" 
tends to the limit 

and the law of large numbers doe.s not hold. 
2. Let m; be the number of successes in i Bernoullian trials with the probability p. 

Show that the limit theorem holds for variables 

""- 8p 
lli = --: i = 1, 2, ..• " 

y'ipq 

but the law of large numbers does not hold (Bernstein). 
HINT: 

8t + 8t + ... + 8a = (pq)-l [(1 + -
1
- + · .. + -1-)xt + v2 Vn 

+ (-•- + ... + _l_)xt + ... + _!_...z..] 
v'2 Vn Vn 

where Zt, :r., ... ,;-,.are independent variables with two values q and -p a.ssociateJ 
in the customary way with trials 1, 2, ••• n. 

S. Consider an infinite sequence of independent variables :.1, x11 za, ..• where 
.r. <'All have three values 

0, (log k)", -(log k)l' 
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with the corresponding probabilities 

2 1 1 
1 - , , -------

(k +a) {log (k +a) jP · (k + a) {log (k + o:) )P (k +a) !log (k + a) jP 

a being a sufficiently large constant. Moreover, p. and p satisfy the inequality 

2p.- p + 1 > 0. 

Show (a) that Liapounoff's condition is satisfied when p < 1 and hence the limit 
theorem holds; (b) that this condition is not satisfied if p ~ 1 and at the same time the 
limit theorem fails at least for p > 1. 

Solution. a. By using Euler's formula we find 

lf~ a 
(21' + 1 - p) 2 -(p-1) 

""' f'V (2 + a)!' + 1 - p {log (n + ex) )2 • 

Hence the first part is answered. 
b. The probability of the inequality 

is less than 
Xt + x2 + · · · + z.. ~ 0 

n 

2 ~ (k + a) {lo~ (k + cx)}P 
k=l 

and this, in case p > 1, is less than 

2 
--(log a)l-P, 
p- 1 

Hence, the probability of the equality 

Xt + :rs + • · · + Xn = 0 

remains always >1 -
2 

(log a)l-P and the limit theorem cannot hold. Note 
p-1 

that B. -+ co because 21' - p + 1 > 0. 
4. Prove the asymptotic formula 

nz n• 1 
1 + n +- + · · · + "" - e", 1·2 1·2 .. •n 2 

n being a large integer. 
HINT: Apply Liapounoff's theorem ton variables distributed according to Poisson's 

law with parameter 1. 
6. By resorting to the fundamental lemma, prove the following theorem due to 

Markoff: If for a variables,. with the mean = 0 and the standard deviation = 1 
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for any given k = 3, 4, 5, • . . , then the probability of the inequality a. < I tends 
to the limit 

8. In many special cases the limit of the error term can be considerably lower than 
th11t given in Sec. 6. For instance, if variables Zt, z2, ... x. are identical and uni­
formly distributed in the interval - J,-2, J,-2 the probability F .(t) of the inequality 

z1+zs+ · · · +x,.<t~ 
differs from 

by less (in absolute value) than 

1 1(2)" 12 -~ - +- - +-e a. 7.5n .,. .,. .,.~n 

the last two terms being completely negligible for somewhat large n. 
Indication of tlul Proof. First establish the inequalities 

. .,, .,. 
Slll <P ----- > e 6 136 

I(J 

for 0 ;:1! , ;:1! ... ;2. Further, represent F.(l) by the integral 

1 1 r .. sin f)~; sin 1!1 

( 
{3)· 

F.(l) • 2 + ;J, •-l -11-d.l 

and split it into two integrals taken between 0 and rVn/'Vi2 and ,.Vni'Vi2 and 
+ oo. 

7. Supposing again that z., z11 ••• z,. are identical and uniformly distributed in 
the interval - ~. ~, pro re that for n ;;;: 2 

E\z, +z, + · · · +z.! = ln +-'-· 
~(; oo-Vn' 0<1<1. 

8. Let a,. be a variable with the mean = 0 and standard deviation = 1. If its 

t•haracteristic {unction ~pa(l) tends to e-h11 as " - ., uniformly in any finite intervul 
-l ;:i t ;:i l, show that 

HINT: 
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9. If independent variables x1, x2, ... Xn with means =0 satisfy Liapounofl 
condition, prove that 

10. Show that for a simple chain of trials 

~2npql + o 
E\m - np\ "' ---, 

.,. 1 - ~ 

p being the mean probability in infinite series o£ trials and a = p' - p". 
11. A series of dependent trials can be illustrated by the following urn scheme 

Two urns, 1 and 2, contain white and black balls in such proportions that the prob· 
ability of drawing a white ball from 1 is p, whereas the probability of drawing a 
white ball from 2 is q = 1 - p. Whenever a ball taken from an urn is white, the 
next ball is taken from the same urn, but if it is black, the next ball is drawn from the 
other urn. The urn at the first drawing is selected by lot, the probabilities of select­
ing the first or the second urn being given. Evidently the course of trials is deter­
mined by these rules without any ambiguity. Let m denote the number of white balls 
obtained in n drawings and let 

Show that the probability of the inequality 

m - na < tV La( I a)n; 
L "' 2_(1_-...._...:.3pq..::.;_) 

1 - 2pq 

approaches the limit 

-
1-J' e -!fdu. vz; _,. 

1 ndication of the Proof. Let ' 

P~~ .. ; P~! .. ; P~'!.; p:•~. 
be the probabilities of having m white balls in n trials when (a) the last ball is white 
and from urn 1; (b) the last ball is white and from urn 2; (c) the last ball is black and 
from urn 1; and (d) the last ball is black and from urn 2. The sum 

p "'•" = P~!n + p~2!n + pi,.a~n + p~•_J,. 
represents the probability of having exactly m white balls in n trials. The generating 
functions of probabilities Pi;~" satisfy the following equations 

<P~t = pt(<Pll) + "'~·>) 
<f~~l == qt(<P~I) + <P~J)) 
'1'~1 == q(<P~l) + <Pi•>) 
<P~~~ = P('P~2> + <Pi'>) 

whence it can be shown that they all, as well as their sum-the generating function of 
P •.• --satisfy the same equation of the second order 

Z....l - tz,.+l + pq(t1 - l)z.. = 0. 
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Setting t = e"', one of the characteristic roots will be given by 

"' (1-2pq)iv-fpq(l-3pq)- + · · · 
e 2 
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for small u, while the other root tends to 0 as u-+ 0. The final eonciusion can now 
be reached in the same way as in Examples 1 and 2, pages 297 and 301. 
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CHAPTER XV 

NORMAL DISTRIBUTION IN TWO DIMENSIONS. LIMIT 
THEOREM FOR SUMS OF INDEPENDENT VECTORS. 

ORIGIN OF NORMAL CORRELATION 

1. The concept of normal distribution can easily be extended to two 
and more variables. Since the extension to more than two variables 
does not involve new ideas, we shall confine ourselves to the case of 
two-dimensional normal distribution. 

Two variables, x, y, are said to be normally distributed if for them 
the density of probability has the form 

where 
lfJ = ax2 + 2bxy + cy2 + 2dx + 2ey + f 

is a quadratic function of x, y becoming positive and infinitely large 
together with lxl + IYI· This requirement is fulfilled if, and only if, 

ax2 + 2bxy + cy2 

is a positive quadratic form. The necessary and sufficient conditions 
for this are: 

a> 0; ac- b2 = .:l > 0. 

Since .:l > 0 (even a milder requirement .:l ¢. 0 suffices), constants xo, Yo 
can be found so that 

1fJ = a(x - Xo) 2 + 2b(x - xo)(y -Yo) + c(y - Yo) 2 + g 

identically in x, y. It follows that the density of probability e-" may be 
presented thus: 

The expression in the right member depends on six parameter~ K; 
a, b, c; xo, y0• But the requirement 

reduces the number of independent parameters to five. We can take 
a, b, c; x0, y0 for independent parameters and determine K by the condition 

K f_• .,.f_"'., c-o(»-zol'-2b(z:-z.)(IJ-1Jo)-e(1J-Vtl'dxdy = 1 
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which, by introducing new variables 

~=X- Xo, 

can be exhibited thus 

'I= Y- Yo 

K J_ •• J_·. e-"EL-'I:bflr-e.,'d~" = 1. 
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To evaluate this and similar double integrals we observe that the positi,·e 
quadratic form 

can be presented in infinitely many ways as a sum of two squares 

a~2 + 2b~ + Cf/2 = (a~+ fJT/)2 + ('Y~ + Of/)2, 

whence 

b = a{J +'YO 

and 
(a& - fJ'Y)' = .1. 

By changing the signs of a and f3 if necessary, we can always suppose 

a6 - fh = +'\~'X. 
Now we take 

u =a~+ f3'1i 

for new variables of integration. Since the Jacobian of u, fl with respect 
to ~. 1'/ is '\~'X, the Jacobian of ~. 'I with respect to u, 11 will be 1/ .y:i and, 
by the known rules 

f • f • rfL-'I:bfre.,'d~" = _1_J .. f • e-"._.'dUflv = __!__. 

-· -· 0 -· -;• v'X 
Thus 

Kr = 1 
\1'1' 

K = y'X 
r 

That is, the general expression for the density of probability in two­
dimensional normal distribution is 

2. Parameters Xo, Yo represent the mean values of variables z, y. 
To prove this, lt>t us consider 

E(x - zo) = Y} J_ ·.J_ ·. (x - z.)e-<-s.J'-»<-s.Ju-flt)-c<.-,.,•dxd11. 
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To evaluate the double integral, we can express x and y through new 
variables u, v introduced in the preceding section. We have 

0u - {Jv --yu + av 
x-xo= y';l / y-yo= vx· 

and 

E(x- Xo) =- (au- {Jv)e-u'-•'dudv = 0, 1 f'"f .. ... ~ _,. _,. 

whence 
E(x) = xo, 

and similarly 
E(y) =Yo· 

3. Having found the meaning of xo, Yo we may consider instead of x, y, 
variables x - Xo, y - Yo whose mean values = 0. Denoting these new 
variables by x, y again the expression of the density of probability for 
x, y will be: 

It contains only three parameters, a, b, c. To find the intrinsic meaning 
of a, b, c let us consider the mathematical expectation of (x + Xy) 2 

where X is an arbitrary constant. We have 

E(x + Xy)2 = ~ J_ "' .. f_"',. (x + Xy)2e-a>:'-21mr-cv'dxdy, 

or, introducing u, v defined as in Sec. 1 as new variables of integration, 

But 
8' + (32 = c, "Y' + a2 = a, afj + -y6 = b, 

whence 

and since ~ is arbitrary 

E(x2) == ~' E(xy) = -2~, E(y2
) = 2~· 
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On the other hand, if 111, 112, and rare reRpectively standard deviations 
of x, y and their correlation coefficient, we have 

Henc:e 

c 
2~ = tTf, 

and 

or 

Finally, 

a - 2 
2~- (121 

b =- __ _! ___ , 
2a1112(1 - r 2) 

v~ =- 1 -· 
211I11tV1 - r 2 

With thrse values for a, b, c, and vX the density of probability can 
be presented as follows: 

nnd the probability for a point x, y to brlong to a given domain D will be 
exprrl'.sed by the double integral 

1 If ___ 1 [(~)'-2r~ !+{!}'] e 2(1-r') '" •a "' •: dxdy 
211"11I112V1 - r2 

rxtrnded ovf'r D. 

'· Curves 

(/)) 

__ l .. • [ (:_)t - 2r:_ JL + (1!..)
2

] = l = const. 
2(1 - r-) 0"1 0"1 ITt O't 

are rvidPntly similar and similarly placed ellipses with the common 
rent{'r at thf' origin. For ob,·ious rf'asons thf'y are called ellip&-s of 
equal probability. The ar<'a of an ellipse corresponding to a given value 
of l (t>llipse l) is 



312 INTRODUCTION TO MATHEMATICAL PROBABILITY [CHAP. XV 

whence the area of an infinitesimal ring between ellipses l and l + dl 
has the expression 

211'0'i0'2~dl. 

The infinitesimal probability for a point x, y to lie in that ring is 
expressed by 

Finally, by integrating this expression between limits lt and l2 > lt, we 
find 

. as the expression of the probability for x, y to belong to the ring between 
two ellipses lt and l2. If l1 = 0 and l2 = l, 

1- e-1 

gives the probability for x, y to belong to the ellipse l. 
If n numbers l, l1, l2, . . . l,._1 are determined by the conditions 

. 1 
1 - e-1 = e-z- e-z, = e-1,- e-z, = ... = e-z._,- e-l._, = --' 

n+l 

the whole plane is divided into n + 1 regions of equal probability: 
namely, the interior of the ellipse l, rings between l, l1; l1, l2; ... l .. -2 ln-1 
and, finally, part of the plane outside of the ellipse l..-1. 

5. To find the distribution function of the variable x (without any 
regard toy), we must take forD the domain 

- oo <X< t; -oo <y<+oo. 
As the integral 

1 J' J'" --1 
((!-!:)'t{1-r2)(!.)'] e 2(1-r') "' 111 · 111 dxdy = 

211'0'10'2~ _ .. _ .. 

= e-211•'dx · e - 20-r'ldz = -- e - 211•'dx, 1 J' :r• J 00 

zt 
1 J' :r' 

211'0'1~ -.. -.. 111-vz;;: -.. . 
we see that the probability of the inequality 

X< t 
is expressed by 

-- e 211•'dx 1 J' -~ O'fvz;;: -.. . 
Similarly, the probability of the inequality 

y < t 
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is 

-- e 2•n'dy. 1 J' _ _rt 

0'2y'2; - .. 

Thus, if two variables x, y are normally distributed with their 
means = 0, each one of them taken separately has a normal distribution 
of probability with the common mean 0 and the respective standard 
deviations u1 and , 2, Variables x andy are not independent except when 
r = 0. For if they were independent the probability of the point 
x, y belonging to an infinitesimal rectangle 

t <X< t + dt; T < y < T + dT 

would be 

whereas it is 

1 --1 [(.!.)'-2r.!. . .!.+(.!.)'] 
----=== e 2(1-r2) 0'1 0'1 0'1 0'1 dtdT 
21r0'!0'2~ ' 

and these expressions are different unless r = 0. Thus, except for r = 0, 
normally distributed variables are necessarily dependent in the sense 
of the theory of probability. Dependent variables are often called 
"correlated variables." In particular, variables are said to be in "normal 
correlation" when they are normally distributed. 

6. The probability of simultaneous inequalities 

X< X <X', y < t 
is reprPsented by the repeated integral 

while 

-- e 2v•'dx 1 i.Y'-~ 
CTtvf2; X 

is the probability that x will be contained between X and X'. Hence 
(Chap. XII, Sec. 10) the ratio 

fxX'e -/i;'dxr. .. e -~[ r-.;,z rdy 
fl-t-V-;::;:2=r(==l =-=r=::2) (X' -..!:. 

Jx e 2v•'dx 

ran be ronsidered M the probability of the inequality 

v < t 
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it being known that x is contained between X and X'. Considering X' as 
variable and converging to X the above ratio evidently tends to the 
limit 

1 J' --1 -[u-:::x]' e 2cn'(l-r2) .. , dy 
0'2~~- .. 

which can be considered as the distribution function of y when x has a 
fixed value X. Hence, y for x = X has a normal distribution with the 
standard deviation 

and the mean 

Y = ru_::_X, 
O't 

Interpreted geometrically, this equation represents the so~called 
"line of regression" of yon x. . 

In a similar way, we conclude that for y = Y the distribution of x 
is normal with the standard deviation 

and the mean 

X= r~Y. 
0'2 

This equation represents the line of regression of x on y. 

LIMIT THEOREM FOR SUMS OF INDEPENDENT VECTORS 

7. So far normal distribution in two dimensions has been considered 
abstractly without indication of its natural origin. One-dimensional 
normal distribution may be considered as a limiting case of probability 
distributions of sums of independent variables. In the same manner 
two-dimensional normal distribution or normal correlation appears as a 
limit of probability distributions of sums of independent vectors. 

Two series of stochastic variables 

Xt 1 X2 1 , , • X,. 

Yt, Y2, .. · y,. 

define n stochastic vecto-rs v1, V21 ••• v,. so that x;, y, represent com· 
ponents of V; on two fixed coordinate axes. If 

E(y;) = fl,. 
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the vector a, with the components a,, b, is called the mean value of v,. 
Evidently the mean value of 

V = Vt + Vt + · · · + v. 

is represented by the vector 

a = It + It + · · · + &.. 

and that of v - a is a vanishing vector. Without loss of generality 
we may assume at the outset that 

E(x,) = E(yi) == 0; i = 1, 2, ... n, 

in which case E(v) = 0. Vectors v1, v2, .•• v. are said to be inde­
pendent if variables x,, y, are independent of the rest of the variables 
X;, Yi where j ~ i. 

In what follows we shall deal exclusively with independent vectors. 
8. As before, let x~e, Y~e be components of the vector 

Then 

Vt(k = 1, 2, ... n). 

X = Xt + Xt + . . . + x. 
Y = Yt + Yt + · · · ~ y. 

will be the components of the sum 

If 

then 

V = Vt + Vt + · · · + V •• 

E(x«) = E(yt) = 0 
E(x:) = b~t, E(yl) = c~;, E(x~;y~c) = d~c 

E(X) = 0, E(Y) = 0 
E(X2

) = bt + bs + · · · + b. = B. 
E(Y2

) = Ct + Ct + ... +c. =c. 
E(XY) = dt + dt + · · · +d.= r.-v'~VC: 

E(x,yi)- 0 if j ¢- i, 

\'aria Lit•:; .r i and y; being independent. 
lRt us introduc-e ill$tt--ad of variables r~:, y1(k = 1, 2, ... n) new 

\'ariahlt:"s 

l't 
~. = __ , 

VB: 
!It .,.=--vc: 
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and correspondingly 

X y 
8=--, 

VB: 
q=--vc: 

instead of X, Y. We shall have: 

and 

E(~~c) = E(T/~c) = 0 

E(W = !:; E(71~) = ~: 

E(s) = E(q) = 0 
E(s2) = E(q2) = 1 
E(sq) = r,.. 

The quantity r,., the correlation coefficient of sand u, is in absolute value 
~ 1. We define 

q,(u, v) = E[ei(tu+w.r>] 

as the characteristic function of the vector s, q, Evidently 4>(u, 0) and 
q,(O, v) are' respectively the characteristic functions of s and u. Since 

and the factors in the right-hand member represent independent varia­
bles, we shall have 

q,(u, v) = E(ei(uE1+1111v) • E(ei(uE2+v~2l) ... E(eHuEn+v~·>). 

9. For what follows it is very important to investigate the behavior 
of 4>( u, v) when n increases indefinitely while u, v do not exceed an 
arbitrary but fixed number l in absolute value. 

Let 

and 

If w. and"" tend to 0 as n---+ (X), we shall have 

(1) 

provided 

lui ~ l, lvl ~ l 
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and n is so large as to make 

l(w! + '7!) < 1. 

Since 

e1<vE,+"''t, = 1 + i(uh + V'l'/k) - ~(u~~~ + V7Jk) 1 + 

we shall have: 

On the other hand, 

and so 

Furthermore, 

because 

Also 

+ 8 • (uet + V1'/t) 1
• 

6 I 

[E(u~t + V1'/c) 2]2 < [E(ue; + V'lt) 2]' ~ Eju£; + V11tl 1 

E!uek + r~t/ 1 ~ 4l{~t + ~i} 
Taking into account these \'arious inequalities, we may write 
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IBI < 1, 

IB'I < 1. 



318 INTRODCCTION TO MATHEMATICAL PROBABILITY [CHAP. XV 
\ 

where 

Finally, 

and 

as was stated. 
10. Theorem. Let P denote the probability of simultaneous inequalities 

Provided r" remains less than a fixed number a < 1 in absolute value and 
the above introduced quantities (A)"' 1Jn tend to 0 as n -l> oo , P can be expressed 
as 

where d11 tends to 0 uniformly in to, t1; ro, r1. 
If, in addition, rn itself tends to the limit r(irl < 1)P will tend uniformly 

to 

· e 2(1-r') dtdr. 1 J,"i' 71 - _1 -(tl- 2rt. +•') 
27rVl - r 2 to TO . 

Proof. a. In trying to extend Liapounoff's proof to the present case 
we introduce an auxiliary quantity II defined as 

II = E - e A du . e Ia dv · ( 
1 i" -(!.::!)I iTl _(!..=.!)I ) 

h2
1r to TO 

Using the inequality 

~i ~c1'dt < e;z• for X> 01 

one can easily derive the following inequalities: 

(2) '.!. rhe -(";')'du. i'le -C~"rav- II< 
h?)to TO 

< !(e -(tt;•)' + e -('-;')' + e -(•tA"")' + e -Col"")') 
2 
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if 

(3) 

and 

(4) __!_ f11e -e~~rdu·ine -c~~rdv < !(e -(";')' + e -('o;')' + 
h~ Jto ,. 2 

+ e -(n;~r + e -('·;~)') 

if at least one of the inequalities (3) is not fulfilled. From the definition 
of II, P and from (2) and (4) it follows that 

IP -III < iE(e -e;·r + e -(";')' + e -('·;~)' + e -t·;·r). 
But referring to (1) and setting 

e41 •< ... -~,., - 1 = a,.(l) 

we have by virtue of the developments in Chap. XIV, Sec. 3, 

(5) 
8 e -(~)' 

IP- III< 2all(l) + hV2 + Vr -hl-· 

b. Replacing t 11 ·r1 by variable quantities t, r and taking the second 
derivative of II with respect to t and r, we get 

d2II = ( 1 -('~')' -(';•)). 
dldr E W 

On the other hand 

whence 

(6) 

Here we t~ub..,titutt' 

For all real u, v 
:g(u, v)i ~ 2. 

If lui ~ l, j1•i ~ l, where l ~ an arbitrarily fixed number, and n is large 
Pnou~rh, Wt' han• 

jg(u, r)j ~ a.([). 
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Hence, the double integral 

1 If -~(u'+•') 41f2 e 4 e-i(tu+ ... lg(u, v)dudv 

extended over the region outside of the square lui ~ l, lvl ~ l is less than 

If ~ f. ~ -~ 1 --(u'+vl) 1 -- e 4 
- e 4 dudu = - e 4 rdr < --211'2 11' l h2 

u•+v'li:l' 

in absolute value. The same double integral extended over the square 
lui ~ l, lvl ~ lis less than 

in absolute value. Thus, referring to (6) 

and 
h'l' 

l2 e-T 
IRI < ~a,.(l) + y· 

_ Now 

1>-1 < 1 

and 

h2 f"' f"' h2 h2 
16r2 -., - "'e-i<ut-t-2r.uv+v'>(u2 + v2)dudv = 411'(1 - r!)i < 411'(1 - a2)i' 

.Hence 

and 
(hi)' 

l2 e-T h2 
IR'I < ~a,.(l) + h2 + 41r(1 _ a2)1' 

By transformation to new variables 

~=u+r,.v; f1=V~ 
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the foregoing double integral becomes 

1 J .. J • -!e·-~· iiHi~ ~ 11--:::i e 2 2 · e v'1-r.• d~., = 
4n-2v J. - 'ii - .. - • 

1 --1-(l•-2r.k+r1) = - ---e 2(1-r.•) 
211-'\/'1- r! 

so that finally 

d2JI 1 e-20 :,.•l <t•-2r.er+r•> + R'. 
dtdr = :W'\/'1 - ~ 

Integrating this expression with respect to t and T between limits to, t, 
and To, r,, we get: 

(7) II = 1 fhJ''e -2(1~r.•)(t•-2r.J•+••)dtdr + D 

211''\/'1 - r!Jto •o 

where 

(8) jpj < (h- to)(T,- ro)[~a,(l) + '}' + -~]· 
47r(l - a2)2 

Hence combining inequality (5) with (7) and (8), 

p = 1 ihfne -2(l~r.•)[t•-2r.Jr+••ldtdT + ~~~ 
211''\/'1 - r! lo ro 

where 

[~.[ < [ 2 + ~(t,- 4)(,,- ,,) ]a.(l) + '}{~ ~ + 
+ (t, - to)(Tl - ro)} + h'\1'2 + (t, - to)(T, - ;o)hZ. 

4r(1 - a2)2 

Considering to, t,; To, T1 as variable and denoting an arbitrarily large 
number by L, we shall assume at first that the rectangle D 

to ~ 8 ~ t,; To ~ t1 ~ 11 

is completely contained in the squMe Q: 

lsi~ L, 

Then, taking h = z-~ we shall ha,·e 

lal ~L. 

1~ .. 1 < (2 + ~;')a .. (l) + k -V -j:-~+4L') + v'2l-~ + Vr' f 
\ r(l - a 2)2 
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Given an arbitrary positive number E, we take l so large as to have 

le -~(~-~ + 412) + y'2(~ + vz-t ~ < ~E. 
11'(1 - a2)2 

After that, since a,.(l) --.. 0 as n --.. CXl (for a fixed l) we can find a number 
no(e} so tha~ 

( 
4£2l2)-l 

a,.(l) < ~ 2 + 7 

for n > no(e). Finally, we shall have 

~~~~I< E 

as soon as n > no( E); that is, ~ .. tends to 0 uniformly in any rectangle D 
contained in the square Q with an arbitrarily large side 2L. 

c. To prove that ~. tends to 0 uniformly no matter what are t0, t1; 

ro, rt we observe that the integral 

1 ff' e -2(1~r.2)(12-2r.l1+r2)dtdr 
21ry'l - r! 

extended over the area outside of Q becomes infinitesimal as L --.. CXl. 

Accordingly, we take L so large as to make this integral <E/2 (no matter 
what n is) and in addition to have L-1 < E/4. The number L selected 
according to these requirements will be kept fixed. 

Let D' represent that part of D which is inside Q, the remaining part or 
parts (if there are any) being D". Let P' and P" denote the probabilities 
that the point s, t1 shall be contained in D' or D", respectively. Also, 
let J' and J" be the integrals 

1 f fe -20 ~ r. 2) 111- 2r.lr +rt) dtdr 
21ry'1- r! 

extended over D' and D", respectively. By what has been proved, given 
E > 0 a number no(e) can be found so that 

IP' -'J'i < E 

for n > no(e). Now 

P = P' +P"; J = J' + J", 

whence 

IP - Jl < E + P" + J" 

for n > no(E). Since by Tshebysheff's lemma (Chap. X, Sec. 1) the 
probability of either one of the inequalities 
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lsi> L or lui >L 

is less than 1/L, we shall have 

Also, 

whence 

P" < ~ < !.. L 2 

J /1 < !. . 2' 

IP- Jl < 2E 

for n > no(t); that is, the difference 

tends to 0 uniformly, no matter what to, t1; To, T1 are. 
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Finally, the last statement of the theorem appears as almost evident 
and does not require an elaborate proof. 

11. The theorem just proved concerns the asymptotic behavior of 
the probability P of simultaneous inequalities 

To~ u < r1 

which, due to the definition of s and u, are equivalent to the inequalities 

tov'B .. ~ X1 + x2 + · · · + x. < tr\IB: 
rov'G. ~ Y1 + Y2 + · ' ' + y,. < T1v'c:. 

From the geometrical standpoint the above domain of s, u is a rec­
tangle. But the theorem can be extended to the case of any given 
domain R for the point s, u. It is hardly necessary to enter into details 
of thf' proof ba~ed on the definition of a double integral. It suffices to 
~tatf' the theorem itself: 

Fundamental Theorem. The probability for the point (s, tt) to be 
located in a given domain R can be represented, for large n, by thl' irde9ral 

1 ffe -2(1~r.')(l'-2rJr+r'ldtdr 
2rvT='"r! 

uurtded over R, u~th an error which tends umfomtly to 0 a& n bw:lmtl 

infint~t, provided 

Colla -+0, IJ• -+0, 
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while for all n 
lr .. l <a< 1. 

In less precise terms we may say that under very general conditions 
the probability distribution of the components of a vector which is the 
sum of a great many independent vectors will be nearly normal. 

The first rigorous proof of the limit theorem for sums of independent 
vectors was published by S. Bernstein in 1926. Like the proof developed 
here it proceeds on the same lines as Liapouno:ff's proof for sums of 
independent variables. ·Moreover, Bernstein has shown that the limit 
theorem may hold even in case of dependent vectors when certain addi­
tional conditions are fulfilled. 

12. A good illustration of the fundamental theorem is afforded by 
series of independent trials with three alternatives, E, F, G. For the 
sake of simplicity we shall assume that probabilities of E, F, G are 
p, q, r in all trials. Naturally 

p+q+r=l. 

In the usual way, we associate with these trials triads of variables 

so that 
(i = 1, 2, 3, . . . ) 

Xi= 1 or 0 according as E occurs or fails at the ith trial; 
y, = 1 or 0 according as F occurs or fails at the ith trial; 
z, = 1 or 0 according as G occurs or fails at the ith trial. 

Evidently 

E(x;) = E(xi) = p 
E(y,) = E(y;) = q 

so that vectors v, with components 

~· = x,- p, .,, = Y;- q 

have their means = 0. The independence of trials involves the inde­
pendence of vectors v11 v2, ••• v.,. Hence we can apply the preceding 
considerations to the vector 

with the components 

We have 

V = Vt + V2 + ' ' ' + t'., 

X = ~t + ~2 + · · · + ~ .. 
y = 1/1 + 1/2 + ... + .,.,. 

B.= E(X2) = np(l - p); C,. = E(f2) = nq(1 - q). 
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MoreO\'er, 

E(~.,.,,) = E(x,y,) - pq = -pq 

'llld 

E(XY) = r,.VJJ:.VC: = -npq 

whence 

r,. :::i: 
pq 

ypq(1 - p)(1 - q) 

The quantities denoted by f~<, g" in Sec. 9 are in our case 

!11 = El~kl 1 = p(1 - p) 3 + (1 - p}p3 

g~; = El11kl 3 = q(l - q) 3 + (1 - q)q1
• 

Hence 

p(l - p) 3 + (1 - p)p3 

w,. = nlp1(1 - p)i ' 
q(l - q) 3 + (1 - q)q' 

71" = nlq1(1 - q)l ' 

and the conditions 

""-+ 0 
are satisfied. The fundamental theorem, therefore, can be applied. 
If k, l, m are the respective frequencies of events E, F, Gin n trials, the 
quantities X and Y represent the discrepancies 

X = k - np, " = l - nq. 

Introducing the third discrepancy 

t~=m-nr 

we shall have 

X+JJ.+t~=O 

so that 11 is determined when X and pare given. The last two quantities, 
however, may have various values depending on chance. Concerning 
them the following statement follows from the fundamental theorem: 

Theorem. The probability that discrepancies X, " in n trials shaU 
simultaneously satisfy the inequalities 

aovn <X< al'v'n; PoVn < p < tftVn 

tend& untformly, with indefinitely increas'ing n, to the limit 

1 i .. i'' _!(~+~+~) --= e 2 ., • ' dadfJ 
2rv pqr •• 11 , 
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where, to have symmetrical notation, 'Y is a variable defined by 

a+ {3 + 'Y = 0. 

On account of symmetry, perfectly similar statements can be made in 
regard to any two pairs of discrepanciE-s X, p., II. 

Since the fundamental theorem and its proof can be extended without 
any difficulty to vectors of more than two dimensions, we shall have 
in the case of trials with more than three alternatives a result perfectly 
analogous to the last theorem. 

Theorem. Each of n independent trials admits of k alternatives E 1, 

E2, ••• E,. the probabilities and the frequencies of which respectively are 
Pt, P2, ..• p" and m1, m2, ... m~c. The probability that the discrep-
ancies m, - npi(i = 1, 2, ... k - 1} should satisfy simultaneously the 
ineq,ualities 

arv'n < m, - npi < {3;yn 

tends 1mtformly, with indefinitely increaS'ing n, to the limit 
k 

12:''' 

J.
llt-• -2 PI 

. . e 1 dt1dt2 · · · dt~e-1 
"'k-t 

1 r~~· . 
k-1 Ja 

(211-}-2 YPtP2 ' ' ' Pk at 

where 
t" = (it + tz + · · · + tk-t). 

From this theorem, by resorting to the definition of a multiple integral, 
we may deduce an important corollary: Let P,. denote the probability of the 
inequality 

(m1 - npt)2 + (m2 - np2J2 + ... + (m~c - np")2 ~ x2. 
npt np2 npk 

Then, as n tends to infinity P,. tends to the limit 

k-1 
1 J · · · Je -~(*+~+ · · · +~)dt1dt2 · · · dtk-t 

(2r)2 YPtP2 · · · P~e 
where the integration is extended over the (k - 1) dimensional ellipsoid 

t2 t2 ·t2 

lfJ = _! + ..! + . . . + ..! ;ii xt. 
Pt P2 P• 

It is easy to see that the determinant of the quadratic form I(J in 
(k - 1) variables is (PtPt · · • pk)- 1• Hence, by a proper linear trans­
formation the abow integral reduces to 

1 If f -!< .. ·+.,·+ · · · +·. II) t-l • • · e 2 _, dv1dv2 · · · dvk-1 
(2r) 2 
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the domain of int~·gration being v~ + v~ + · · · + v:_1 ~ X
2
• But 

this multiple intf'gral, as will be shovrn in Chap. XVI, Sec. 1, can be 
rf'duced to a l'iirnple integral 

Thus 
1 LX_!". 

limP. = ~ (k _ 1) e 2 u•- 2du. 
22f-- 0 

2 

The probability Q. = 1 - P" of the opposite inequality 

(A) (m, - np_t}% + (m2 - np2) 2 + 
11p, npt 

tt>nd" to the limit 

and for large n we have an approximate formula 

but the degree of approximation remains unknown. In practice, to 
h•"t whether the observed de,·iations of frequencies from their expecred 
values are significant, the Yalue of the sum (A), say x2, is found; then 
by the above approximate formula the probability that the sum (A) will 
\)(' greater than x' is eomputed. If this probability is very Bmall, then 
the obtained i'yst('m of deYiations is significantly different from what 
<·ould be expectt>d a:;; a re"ult of ehanrf' alone. The lack of information 
a.~ to the E>rror incurred by using an approximate expression of Q. renders 
the applieation of this" x!-test" dt>,ised by Pearson somewhat dubious. 

HrPoTH.:tiCAL ExPLASATIOS or EllPIRICALLY YERinED CASES or 

XoRllAL CoRRELATION' 

13. ~ormal dil"tribution in two dinwnsions plays an important part 
in tar~t·t practice. It is generally 8.."-"Umed on the basis of varied e'idence 
<"t.J!It-.·tffi in artual targrt pra<'tire tl1at points of a target hit by projectiles 
art" l"<'llttt>l't'd in a mannt>r "ugg~ting normal distribution. By referring 
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points hit by projectiles to a fixed coordinate system on the target, it is 
possible from their coordinates to find approximately (provided the 
number of shots is large) the elements of ellipses of equal probability. 
Dividing the surface of the target into regions of equal probabilities as 
described in Sec. 4, and counting the actual number of hits in each 
region, the resulting numbers in many reported instances are nearly 
equal. That and the agreement '\\-ith other criteria are generally con­
sidered as evidence in favor of assuming the probability in target 
practice to be normally distributed. 

Two-dimensional normal distribution or normal correlation has been 
found to exist between measurable attributes, such as the length of the 
body and weight of living organisms. Attributes like statures of parents 
and their descendants, aecording to Galton, again show evidence of 
normal correlation. 

Facing such a variety of facts pointing to the existence of normal 
correlation, one is tempted to account for it by some more or less plausible 
hypothesis. It is generally assumed that deviations of two magnitudes 
from their mean values are cauS'ed by the combined action of a great 
many independent causes, each affecting both magnitudes in a very small 
degree. Clearly, the resulting deviations under such circumstances may 
be regarded as components of the sum of a great many independent 
vectors. Then, to explain the existence of normal correlation, reference 
is made to the fundamental theorem in Sec. 11. 

Problems for Solution 

1. Let p denote the probability that two normally distributed variables (with 
means = 0) will have values of opposite signs. Show that between p and the corre­
lation coefficient r the following relation holds: 

T =COS JYR'• 

2. Variables x, y (with the means = 0) are normally distributed. Show that the 
probability for the point x, y to be located in an ellipse 

x1 x y y2 

-;-2r--+-;=l 
0'1 0'!0'2 0'2 

is greater than the probability corresponding to any other domain of the same area. 
3. Three dice colored in white, red, and blue are tossed simultaneously n times. 

Let X andY represent the total number of points on pairs: white, red and white, blue 
Show that the probability of simultaneous inequalities 

7n +to~< X < 7n + l1~; 1n +To~< Y < 7n + Ti,.fij;,. 
tends to the limit 

as" ..... co. 
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4. Three dice, white, red, and blue, are tossed simultaneously n times. If k and t 
are frequenciee of 10 pointe on pain!: white, red; red, blue; show that the probability 
of simulte.neous inequalities 

tends to the limit 

as n-+ ~~>. 

5. Two players, A and B, take part in a game arranged as follows: Each time on(" 
ball is tllken from an urn containing 8 white, 6 black, and 1 red ball; if this ball is 

white, A and B both gain $1; 
black, A loses $2, B loses $4; 
red, A gains $4, B gains $16. 

Let a. and 11. be the sums gained by A and B after n games. Show that the probability 
of simultaneous inequalities 

for very large n will be approximately equal to 

Not.e that the ;>robability of the inequality s,.q. < 0 is about 0.13-not very small­
so that it is not very unlikely that the luck will be 11•ith one player and against another. 

6. Concentric circles C,, C,, Ca, ... in unlimited numbers are described about 
the origin 0. Points P,, P,, Pa, ... are taken at random on these circles. Let R 
be the end point of the vector representing the sum of vectors OP,, OP1, OP1, •••• 

lf r,, r,, ra, ... are radii of C,, C., C1, ••• and the condition 

r: + r: + · · · + r! -+ 0 
(r: + r~ + · · · + r!)l as 

is fulftllt'd, show that the probability that R will lie within the circle described with the 
r~tdiud, llbout the origin will be very nearly equal to 

for l~~r~~:e tt. 
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CHAPTER XVI 

DISTRIBUTION OF CERTAIN FUNCTIONS OF NORMALLY 
DISTRffiUTED VARIABLES 

1. In modem statistics much emphasis is laid upon distributions of 
certain functions involving normally distributed variables. Such dis­
tributions are considered as a ba..,iR for various "tests of significance" 
for small samples, that is, when the number of observed data is small. 
Some of the most important cases of this kind will be considered in this 
chapter. 

Problem 1. Independent variables X1, x2, • • • x,. are normally 
distributed about their common mean = 0 with the same standard 
deviation fl. Find the distribution function of the sum of their squares 

8 = .r~ + .rl + · · · + x!. 
Solution. The inequality 

x: < t 
being equivalent to 

-Vi <X;< Vi, 
thl' di~tribution function of~~ is 

f',(t) = -- e 21'dx = -- e 21'u 2du 1 Jv'i -!!._ 1 !c' _..!._ _! 
11y'2; - v'i 11y'2; o 

F,(t) = 0 for t < 0. 

for t ~ 0 

Hence, the characteristic function of any one of the variables xi, xi, 
... x! is 

'l't(i)'"' . ~ r·e-<~-il)•u -~du = -
1-(_!_- a)-~ 

11V 2r Jo 11y'2 262 

and that of their sum 

'l'(t) = -
1-(.! -a)-i· (ay'2)• 262 

Con~uently, the di~tribution fun<·tion of a is expn>ssed by 

F(t) = C + (ay'2)-•J • 1 - r"• -,.dtt 
2r _. ·( 1 . )~ 

It 262- w -

331 
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and it remains to transform this integral. To this end, imagine a variable 
distributed over the interval (0, + oo) with the density 

Its characteristic function is 

_ 17i ( 1 )-~ (crv "')-n - - it 2 
2u2 

and since the distribution function is given a priori, we must have for 
t ~ 0 

(uvf2)-nLI -~ ~-1 (uvf2)-nf., 1- e-ilv 
-(n) e 2.r1.u2 du = const. + ~ . ( 1 . )r:dv. 
r- 0 -"'w-- w 2 

2 ' 2~ 

Hence 

The constant must be = 0 since F(t) as well as the integral in the right 
member vanishes fort = 0. The final expression is therefore: 

1 t -~ ~-1 
F(t) = Joe 2"'u2 du 

{uvf2)nr(;) 0 
for t ~ 0 

F(t) = 0 for t ~ 0. 

The probability of the inequality 

xf + xi + · · · + x! < t, 
on the other hand, can be expressed directly as a multiple integral 

F(t) == --- · • · e- 2"' dx1dx2 · · · dx" 
1 ff f z•'+ta'+ • ' ' +z•l 

(crv'2;)" 

extended over the volume of the n-dimensional sphere S 

X~ + X~ + · · · + x! < t. 
By equating both expressions of F(t), we obtain an important transforma­
tion, 
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If F(xt + x~ + · · · t x!) is an arbitrary function of 

u = xi + xi + · · · + x~, 
the integral 

--- · · · e- 2.-• F(x2 + · · · + x2)dx1dx• · · · dx 
1 If I :fl·+x·l+ ... +;l)o· 

(O'y'2;)" 1 n ' 11 

extended over the whole n-dimensional space represents the mathematical 
expectation of F(u). On the other hand, the distribution function of 
u being known the same multiple integral will be equal to 

1 f., u n-2 

Jo e -z;;sF(u)uT du. 

(O'y'2)nr(;) 
0 

II 

2 !., u l n-2 'If' --+au -
= -- e 2 u 2 du r(;) o ' 

which will be used later. 
2. Problem 2. Variables x1, X2, • • • Xn are defined as in Prob. 1. 

Denoting their arithmetic mean by 

X1 + X2 + ' ' ' +X.. 
8 = ' n 

find the distribution function of the sum 

~ = (x1 - s) 2 + (x2 - s) 2 + · · · + (x. - s)!. 

Solution. The probability of the inequality 

~ < t 
is t>Xpl'l"&"'t'd by the multiple integral 
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extended over the volume of the n-dimensional ellipsoid 

(x1 - s)2 + (x2 - s)2 + · · · + (xn - s) 2 < t. 
Let 

whence 
U1 + U2 + ' ' ' + Un = 0 

and 
xf + x~ + · · · + x! = u~ + u: + · · · + u~ + ns2

• 

Taking u11 u2, . . . Un-1, and s for new variables, we must first find the 
Jacobian J of X11 x2, •.. Xn with respect to u1, u2, ... Un-J, s. It is 

1 1 0 0 ... 0 1 1 0 0 ... 0 
1 0 1 0 ... 0 1 0 1 0 ... 0 

J= 
1 0 0 1 ... ·o = = ( -1)"-tn. 

1 0 0 0 ... 1 1 0 0 0 ... 1 
-1 .:_1 -1 ... -1 n 0 0 0 ... 0 

In the new variables the expression for F(t) will be 

F(t) = (u~)" I I · · · I e -~-
1111

+u,~+2;' .. +u.'dsdu1du2 • • ·• du,._1 

and the domain of integration in the space of the new variables is defined 
by 

-oo<s<oo 
uf + tt~ + · · · + uL1 + (u1 + U2 + · · · + u,._t) 2 < t. 

After performing the integration with respect to s, we get 

·vn II I -ut'+u•'+ ... +u·' 
F(t) = . ro:. · · · e 2 .. ' du1du2 · · · dun-!· 

{uv 211')"-1 

The quadratic form 

'P = uf + ui + · · · + uL1 + (u1 + U2 + · · · + Un-t)
2 

can be represented as a sum of the squares of (n - 1) linear forms in 
variables u1, u2, ... u..-1: 

'P = vf + v~ + · · · + vLt· 

The Jacobian 
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it(v~, Vt, • • • v,_,) 
d(Ut, Ut, ... tl,_,) 

335 

is the square root of the determinant of the form 1{), which is the same 
8$ thE' determinant of lin('ar form.~ 

1 d'f' - - = 2u1 + Ut + · · · + u_, 2 au, 

1 d'f' 
- -- = Ut + ua + · · · + 2u•-•· 2au_, 

Now, in g('n('ral 

p times 

1 >..11 ... 1 

1>..1 ... 1 = (>.. ~ 1)p-l(). + p - 1) 

111 ... ). 

f/.0 that thE' dt>tt>rminant of 'I' is =n, whence 

and 

o(r•~, v2. · · · v,_,) _ r:. 
~~~----~ =vn 
d(U~, tlt1 ' ' ' U,.-t) 

o(u~, u,, ' .. u,._,) 1 
o(v,, v~, ... v,._,) = .yn' 

Tlat•reforE', taking v,, '''• ... t•,._, for new variables, F(t) can be expressed 
:1.~ follow~ · 

whert> thE' intt>~tral is ('Xtended over thE' \'Olume of the sphere 

v~ + r·~ + · · · + r·!-_1 < t. 
This multiplt> intrgral is exactly of the type considered in the preceding 
problt•m, and it ran be redu<·ed to a simple integral a.s follows 
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After substitution, the final expression of F(t) is 

1 f' " n-3 
F(t) = J~ e -2;iu 2 du 

(uy'])n-tr( n ; 1) o 
for t > 0 

F(t) = 0 for t ~ 0. 

3. Problem 3. Variables Xt, x2, • • • Xn are defined as in Prob. 1. 
As in Prob. 2, we set 

Xt + X2 + ' '' + Xn 8 = __:._.:.__:.._:_ __ ....:..__;:; 
n 

u.a = x, - 8j i = 1, 2, ... n 

and introduce the quantity 

~
u2 + ut + ... + u2 

E = 1 2 n, 
n 

What is the distribution function of the ratio 

8 

or, which is the same, the probability F(t) of the inequality 

8 < tE? 

Solution. First, assuming t to be positive, let us find the probability 
1/>(t) of the inequality 

m:: 

This probability can be presented in the form 

L 
ns' 

1/>(t) = ~ .. e -~(s)ds 
(u 2'11")" 

where the multiple integral 

in which 

Ua = - (Ut + Ut + ' ' ' + U.-t) 
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j, extended over the domain 

Proceeding in exactly the same manner as in Prob. 2, we can transform 
'I' ( s) into 

1 If f -···+···+ ... + .. _ .. 
'l'(s) = Vn : · · e 211' dvtdvz · · • dv .. - 1 

extended over the sphere 

in the ~:>pace of the variables v1, v2, ••• v,._1• For this multiple integral 
we can substitute a simple integral 

n-1 "'' n-1 n-1 1 

r(~l",-~;~
1

du = ~~J.',-1£i•-'d! 

and thus reduce 'l'(s) to the form 

n-1 n-2 1 

24r T T (i nE' 

i>(s) = r( • ; I )J• '-;;;r-•d!. 

After substitution we can express q,(t) as a repeated int~gral 

~'(t) = 
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whence 

Now 

¢(+co)= 0; J
• dz _ v;r(~) 
- '"(1 + z2)~ - r(i) 

so that C = 1 and 

~(t) -I- r(;) J' ~· 
Y*r(n; 1) -•(1 +z2)2 

Such is the probability of the inequality 

8 6; tE. 

The probability F(t) of the inequality 

8 < te 

will be 1 - ¢(t) or 

. F(O - r(;) J' dz n' 

v;r(n; 1) - '"(1 + z2)2 

but this is established only for positive t. However, this result holds 
for negative t as well. For t being negative = -r the inequality 

8 < -u 

is entirely equivalent to 

-8 > TE 

and its probability is evidently 

r(;) J" _!! 
F(-r) = ¢(r) = 1- ( ) (1 + z2

) 2dz. v;r n -1 -• 
' 2 
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But 

which permits of writing the preceding expre . .,sion for F( -r) as follows 

Thu~, no matter whether t is positive or negative, the distribution func-
tion of th<' ratio . 

8 

or the probability of the inequality 

s<tE 
is given by 

Th<' di~trihution of tlw quotic>nt s/E was diseoverro by a British 
~tatistician who wrote under the pseudonym "Student," and it i., com­
monly referf('d t.o as ''Student's distribution." The first rigorous proof 
wa~ publi~ht'd by R. A. Fisher. 

4. Problem 4. Yariablrs :r, yare in normal correlation. A sample of 
'I corre!'ponding pnirs, r 11 y,; 12, Yt; ..• :r,, y, is taken and the "correla­
tion roefficirnt of the 88mple" i:o: found by the formula 

!(.r;- tS)(y;- s') 

P == y!(r; - s)! · !(y,- a') 1 

where, for the sake of abbre,·iatiou. 

r, + r: + · · · + .r, 
$ = ~- I !It + Yt + ... + y. 

8 =-. . 
" " 
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Find the distribution function of p, that is, the probability P of the 
inequality p < R for a given R( -1 < R < 1). 

Solution. Since the expression of p is homogeneous of degree 0 in 
Xt, xz, ... x,.; Yt, Y2, .•• y,. we can assume 111 = 112 = 1.. Also without 
loss of generality the expectations of x and y may be supposed = 0. 
Denoting by r the correlation coefficient of x and y, the density of proba­
bility in the two-dimensional distribution will be: 

Hence the required probability will be expressed by the multiple integral 

extended over the 2n-dimensional domain 

(3) I(x; - s)(y; - s') < Ryi(x; - s) 2 • I(y; - s') 2 

and 

(4) 

Replacing x;, y;(i = 1, 2, ... n), respectively, by .yr=T2x,, .yr=T2y,, 
we can write P thus: 

II 

P = (\~;:)2f f · · · fe -~10dxt · · · dx,.dy1 · · · dy,. 

while (3) and ( 4) still hold but with the new notation for the variables. 
Let us set now 

then 

Ut + Uz + ' ' ' + U,. = 0, 

Introducing s, s'; Ut, Uz, • . • Ur~-t ; Vt, v2, • • • V11-t as new variables, we 
find as in Sec. 2 

" n2(1 - r2)2 __ , -ff f 1 

P = (2r)" · · · e 2 dsds'dut · · · du.,._tdVt · · · dv,._1 

where 
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and the domain of integration is defined by the inequalities 

-oo<s<oo; -oo<s'<oo 
Iu.v, < Rviul· Ivf. 

Now by the same linear transformation the quadratic forms !ul, 
!.vl (each containing n - l independent nriables) can be transformed 
into 

·-· ·-· !w~, !z!; 
i=t i =I 

at the same time 

fl ·-· 

!u.v, = k w.z,. 
i=l i=l 

Proceeding as in Sec. 2 and noting that 

e2 dsds'= ' I "' f"' --"-<•t+•'1 -2ra'J 2r 

-• -• n~ 
we find that 

(1- r2)";•JJ f _I P = · · · e P dw1 · · · dw tdZt · · · .J. 1 ~~~ - ~-

where 

X = Iwf + !z!- 2riu\Z; 

and the domain of integration in the space of 2n - 2 dimensions is defined 
by 

We shall integrate now in regard to Yariables Zt, 21, .•. z,._1 for a fixed 
~'Ystem of values w., u•2, ... Wa-l· To this end we use an orthogonal 
t ransf ormation 

Zt = Cui 1 + Ct.:t% + . . . + Ct. a-t! a-1 

21 = cu!t +cuss+ · · · + es.-~r,._, 

Za-1 = Ca-t.!l't + Ca-J.s!'s + ' ' ' + C,._t.,._J,._l 

in which the elements of the first column are 
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Defining ~1, ~2, • • • ~n-1 by 

W1 = Ct,l~1 + C1,2~2 + ' ' ' + C1,n-l~n-1 
W2 = C2,1~1 + C2,2~2 + ' ' ' + C2,n-l~n-l 

we shall have ~~ = w, 6 = · · = En-t = 0. By the properties of 
orthogonal transformations 

so that for a fixed system of values w1, w2, . . . Wn-1 the domain of 
jntegration in the space of variables !1, !2, ... sn-1 will be 

(5) 

Thus we must first evaluate the integral 

J = fJ • · · Je-Hft1+ · · · H•-t2)-il'•2+rwitds1ds2 • • • dsn-l· 

If r 1 < 0 no restriction is imposed upon r 2, • • • r n-1; if r 1 > 0, then 

r~ + · · · + t!-1 > (~2 - 1 )n 
Consequently the result of integration in regard to t 2, . . . t n-1 can be 
presented thus: 

r1w' 1 l 
- ~ oo --!t2+rwft ff f --(!•'+ · · · +i•-tl) J = Ce 2 - e 2 dt I ' ' ' e 2 dt 2 ' ' ' dt n-1 

0 

where the inner integral is extended over the domain 

ri + · · · + rL~ < (~2 - 1 )rr 
and cis a constant. Making use of formula (1), Sec. 1, the expression of 
J reduces to 

This has to be multiplied by 

1 n-1 -!xw;t 
--(1 - r2) 2 e 2 dw1 · · · dw -1 (211')n-1 A 

and integrated over the whole space of the variables Wt, w,, ... Wn-1· 

The resulting expression for P will be 
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where 

Now we differentiate in regard to R, reverse the order of integrations, 
and make use of formula (2), Sec. 1; the resulting value of dP / dR will 
then be expressed as a double integral 

or 

since 

r(~)r(~) = v;r(n- 2) 2 2 2"-3 • 

In the double integral we make transformation to new variables ~' '1 
hl~~ . 

t 
~ = -, " = tu. u 

The Jacobian oft, u in regard to ~.,,being H~-t, we have 

r• r•e -~(l'+v'l+Rrlv(tu)•Hdtdu = l r• f"'e -~c+t-R•\,.-2d'ld~ = 
Jo Jo Jo Jo ~ r.. ~-la~ r.. at 

= jr(n -I)./. (I~ t'- Rrr' = r(n- I) Jo (<hi- Rr)~': 

and so, finally, 

dP n- 2 "- 1 ~ f • dt 
dR = -.,.-(1 - r2) 2 (1 - R!) 2 Jo (cht- Rr)"-1. 

In case r = 0, that is, when the variables x, y are uncorrelated, we have 
a \"erv simple expression of P: 
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(
n- 1) 

f -2- R n-4 

p = I (1- p2)2dp. v;r(n; 2) -1 

In case r ~ 0 the integral 

L,. tcht _!~r)n-l 
can still be found in finite form. We have, in fact, 

Loo dt 1 [11' , ] -ht R = -2 + arc sm (Rr) , c - r v'l _ R2r2 

whence 

r (cht _dtRr)-' = (~:-;)! d~~.{[l- R'r~-'[~ +arc sin (Rr) ]}. 

and so 

P =A s:
1
(l- p2

)";•;;:2{[1- p2r2]-{~ +arc sin (rp) ]}ap, 

where 

n-1 
A = r-<n-2) (1 - r~ T. 

1r(n- 3)! 

"'nen n is an even number, this integral appears in a very simple finite 
form, but in case of an odd n certain integrals of a rather complicated 
type appear. Besides, the behavior of P for somewhat large n cannot 
be easily grasped by using this integral expression for P. 

5. Fisher, who was first to discover the rigorous distribution of the 
correlation coefficient, called attention to the fact that, setting 

thz = 2:(xi- s)(yi- s') , 
V2:(x;- s) 22:(yi- s') 2 

the distribution of z will be nearly normal even for comparatively small 
values of n. Let us set thR = w, thr = r; then P can be expressed thus: 

p _ n- 2f'" f'" chzdtdz 
- - ... - _ ,.Jo (chtchzchr - shrshz)n-t' 

In • .<~tead of t it is convenient to introduce a new variable -r so that 
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Then 
_ n - 2f"' (chz)l dz f 1r-t(1 - r)"-2dr 

p - rV2 - .. chr [ch(z - r)]n-f Jo v'1=P1 
where 

- ch(z + r) < ch(w + r> 
P - 2chzcht = 2chwchr 

for all values of z under consideration. Now 

and 

flr_-.....:..1(1--=-=.,.=)"=-2-dr < y';r(n- 1)(1 + _P_) 
Jo v'1=P1 r(n - t) 2n - 1 

since 

rl.,.-!(1 - r)"-
2
d1 < f\-1(1 - r)"-2(1 + pr)dr 

Jo v'1=Pf Jo 
for 0 < p < 1 as can be easily verified. Consequently 

p _ (n - 2)I'(n - 1)Jw (chz)l dz • 
- \f"2;r(n - t) - .. chr [ch(z - mn-f 

. [ 1 + ch(w_±l)_8_]· 0 < 8 < 1. 
2chwchr 2n - 1 ' 

As to the integral in this formula, its approximate expression, omitting 
terms of the higher order, is: 

e 4 dz-~ 4 • fw _2n-3(J-f)l ths _2n-3{w-()1 

_.. 2n- 3 

Thus for somewhat large n the required value of P can be found with 
the help of a simple approximate formula. 

The various distributions dealt with in this chapter are undoubtedly 
of great value when applied to variables which have normal or nearly 
normal distribution. Whether they are always used legitimately can 
be doubted. At least the "onus probandi" that the "populations" with 
which they deal are even approximately normal rests with the statisticians. 

Problems for Solution 
1. Show that 
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2. With the same assumptions and notations as in Pro b. 3, page 336, show that the 
distribution function of the quotient 

Xi- 8 
i = 1, 2, ... n 

is 

r(Y) It · ( 12 )n~ 4 

F(t) = • ~ (n _ 2) _ yn=T 1 - n _ 1 dr 
v1r(n -11r -

2
-

F(t) = 1 if t > v;;-:1; F(t) = 0 if t <- v;;-:1. 
It is worthy of notice that for n = 4 the distribution is uniform. I 

S. In two series of observations, samples Xt, x2, •.• x,. and Yt1 y2, ••• y,.. from 
the same normally distributed population (or of the same normally distributed vari­
able) are obtained. Denoting for brevity 

Xt + X2 + • • • +:r:,. 
8= 

Yt + Y2 + · · · + y,.• s' = :__..;..__;:___;. __ __;_::._ 
n n' 

E =~(;+~}};(xi- s)2 + ~(y;- s')2], 

find the distribution function of the quotient 
8 

- s' ("Student"). Ans. 
E 

(
n + n' -1) 

F(t) = r 2 Il dr • 
- r (n + n'- 2) -., n+n'-1 
v1rr 

2 
(1 +r2) 2 
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APPENDIX I 

1. Euler's Summation Formula. Let f(x) be a function v.ith a 
continuous derivative f'(x) in an interval (a, b) where a and b > a are 
arbitrary real numbers. The notation 

n~b 

kf(n) 
n>a 

will be used to designate the sum extended over all integers n which are 
>a and ~b. It is an important problem to devise means for the approxi­
mate evaluation of the above sum when it contains a considerable number 
of terms. 

Let [x], as usual, denote the largest integer contained in a real number 
x, so that 

.r = [;r] t 8 

where 9, ~:~o-called "fractional part" of x, satisfies the inequalities 

0~8<1. 

Considered as functions of a continuous variable x, both [x] and 8 have 
discontinuities for integral values of x. The function 

p(x) = i - 8 = [x] - x + ~ 
is likev.ise discontinuous for integral values of x. Besides, it is a periodic 
function of x v.ith the period 1; that is, we have 

p(x + 1) = p(x) 

for any real x. With this notation adopted we have the following 
important formula: 

II ~b 

(1) ~f(n) = j)(x)dx + p(b)f(b) - p(a)J(a) - Lbp(x)f'(x)dx 
11>o 

which is known a..; "Euler's :mmmatiou formula." 
Proof. l.Rt k be the lra...;t integer >a and l the greatest integer ~b. 

Tht> sum in tht> left memhfr of (1) is, by definition, 

/(k) +J(k + 1) + ... +J(l) 
and wr must ~how that this is equal to the right member. To this end 
we write fir:-t 

347 
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jm!-1 

£bp(x)f'(x)dx = £kp(x)f'(x)dx + jbp(x)f'(x)dx + ~ ii+Ip(x)f'(x)dx. 
i=k 

Next, since j is an integer, 

J:Hp(x)f'(x)dx = Li+
1

(j- x + ~)f'(x)dx = f(J) + ~(j + 1) + 
fi+l 

+ Ji f(x)dx 

and 

J~IiHip(x)f'(x)dx = f(k) t f(Q - ·~If(n) + J.f(x)dx. 

jmk nmk+l 

On the other hand, 

ikp(x)f'(x)dx = ik(k- 1 ~ x + ~)f'(x)dx = _f~) - p(a)f(a) + 

+ ikf(x)dx 

ibp(x)f'(x)dx = lb(z - x + Df'(x)dx = _f~) + p(b)f(b)·+ Jbf(x)dx, 

so that finally 

J>(x)f'(x)dx = -f(k) - f(k + 1) - · · · - f(l) + 
+ p(b)j(b) p(a)f(a) + £bf(x)dx; 

whence 
n :;;b 

if(n) = Lbf(x)dx + p(b)f(b) - p(a)f(a) - Lbp(x)f'(x)dx, 
11>11 

which completes the proof of Euler's formula. 
Corollary 1. The integral 

J.: p(z)dz = u(x) 

represents a continuous and periodic function of x with the period 1. For 

-~ (1 (1 
u(x + 1) - u(.r) = Jz p(z)dz = Jop(z)dz = Jo (!- z)dz = 0. 

If 0 ;;i X ;;;! 1, 
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fx(1 ) x(1 - x) 
u(x) = Jo 2 - z dz = 2 

u(x) = 9(1 - 9) 
2 

where 9 is a fractional part of x. Hence, for every real x 

0 ~ u(x) ~ l. 

349 

Supposing thatf"(x) exists and is continuous in (a, b) and integrating by 
parts, we get 

Lbp(x)f'(x)dx = u(b)f'(b) - u(a)f'(a) - Lbu(x)f"(x)dx, 

which leads to another form of Euler's formula: 

n ~b 

~f(n) == J)<x)dx t p(b)J(b) - p(a)J(a) - u(b)f'(b) + 
n>o 

+ u(a)f'(a) + J:u(x)f"(x)dx. 

Corollary 2. If J(x) is defined for all x ;?;; a and possesses a continuous 
rlrrivative throu~hout the interval (a, too); if, besides, the integral 

fa"' p(x)f'(x)dx 

rxists, then for a variable limit b we have 

ll~b 

(2) ~/(n) = C + J!(b)db + p(b)f(b) + h•p(x)f'(x)dx 
11)0 

where C is a constant '\"'Oith respect to b. 
It sufficf's to substitute for 

J: p(x)f'(x)dx 

the difference 

L•p(x)f'(x)dx- L"'p(x)f'(x)dx 

and separate the terms depending upon b from those involving a. 
2. Stirling's Formula. Factorials increase with extreme rapidity 

and their exact computation soon becomes practically impossible. The 
question then naturally arises of finding a. convenient approximate 
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expression for large factorials, which question is answered by a celebrated 
formula usually known as "Stirling's formula," although, in the main, 
it was established by de Moivre in connection with problems on proba­
bility. De Moivre did not establish the relation to the number 

'II" := 3.14159 ... 

of the constant involved in his formula; it was done by Stirling. 
~In formula (2) it suffices to take a = 7-i, f(x) = log x, and replace b 

by an arbitrary integer n to arrive at the remarkable expression 

( 1) f "'p(x)dx log (1 . 2 · 3 . · · n) = C + n + 2 log n - n + n -x-

where C is a constant. For the sake of brevity we shall set 

w(n) = i"'p(x)dx. 
n X 

Now 

r "'p(x)dx ;: f"+
1
p(x)dx + f"+2p(x)dx + ... 

Jn X Jn X Jn+l X 

Hence 

where 

F,.(u) = ~ (k + u)(k
1 
+ 1 - u)' 

k=n 

Since 

(k + u)(k + 1 - u) = k(k + 1) + u- u2
, 

it follows that for 0 < u < 7i 
(k + u)(k + 1 - u) > k(k + 1) 
(k + u)(k + 1 - u) < (k + !) 2 < (k + !)(k + t). 

Thus for 0 < u < H 
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~ 1 1 
Ffl(u) < ~k(k + 1) == n 

A:•n 

~ 1 1 
F,.(u) > ~(k + !)(k + V = n + f 

· k•n 

l\1aking use of these limits, we find that 

1 r• 1 
w(n) < 2n)o (1 - 2u)2du == 12n 

1 r• 1 
w(n} > 2n + 1)o (1 - 2u)2du = 12(n + !)' 

and consequently can set 

where 

Accordingly 

1 
w(n) = 12(n + 8) 

0 < 8 < l· 

· log (1· 2 · 3 · · · n) = C + ( n +~)log n- n + 12(n1+ B)' 

Tht> constant C depends in a remarkable way on the number I'. 

To !Show thi~ we start from the well-known expression for r due to Wallis: 

! =lim(~.~.!.!···~.~), n-+ 110 
2 1 3 3 5 2n - 1 2n + 1 

which follows from the infinite product 

sin x = x(1- ~)(1- ~2)(1- ~,) · · · 
by taking x = r /2. Sinre 

2 2 4 4 2n 2n [ 2 · 4 · 6 · · · 2n ]t 1 
l · 3 · 3 · 5 · · · 2n - 1 · 2n + 1 = 1 · 3 · 5 · · · (2n - 1) 2n + 1 

we get from Wallis' formula 

V'l' = lm -I 
_ 1: 1. [ 2 · 4 · 6 • · · 2n 1 ] 

1 . 3 . 5 •.. (2n - 1) vn n-+ 110, 

On the other hand, 

2 · 4 · 6 · · · 2n = 2" · 1 · 2 · 3 · · · n 
1· 2 · 3 · • · 2n 

1· 3 · 5 · · · (2n- 1) = 2-=--. .,...1 .-=2-. ..,..3 -. -. -. -.n 



352 INTRODUCTION TO MATHEMATICAL PROBABILITY 

so that 
' 

v'lf=hm ·~, n-+CX> 
_ ;-: . {22"(1 · 2 · 3 · · · n) 2 1 ·} 

1· 2 · 3 .. · 2n vn 

or, taking logarithms 

logy'; = lim [2n log 2 + 2log (1 · 2 · 3 · · · n) -
- log (1 · 2 · 3 · · · 2n) - j log n ] 

But, neglecting infinitesimals, 

log (1 · 2 · 3 · · · n) = C + (n + ~) log n - n 
· log (1 · 2 · 3 · · · 2n) = C + (2n + !) log 2n - 2n 

whence 

lim [2n log 2 + 2log (1 · 2 · 3 · · · n) -
- log (1 · 2 · 3 · · · 2n) - t log n] = C - t log 2. 

Thus 

logy;= C- llog 2, C =log y2'1f 

and finally 

(3) log (1 · 2 · 3 · · · n) =log y2;; + ( n +~)log n - n + 
1 1 

+ 12(n + 0); 0 < 0 < 2' 

This is equivalent to two inequalities 

el2;+6 < 1 . 2 . 3 . . . n < el~n 
.y'2;1inne-n 

which show that for indefinitely increasing n 

lim 1 · 2 · 3 · · · n = 1. 
y'2;1i n"e-n 

This result is commonly known as Stirling's formula. 
For a finite n we have 

1 · 2 · 3 · · · n = vrz;;:nn"e" · e"'<"J 

where 

1 1 
12(n + t) < w(n) < 12n' 

The expression 
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i~ thuR an approximate value of the factorial 1 · 2 · 3 · • · n for large n 
in the sense that the ratio of both is near to 1; that is, the relative error is 
:-;mall. On the contrary, the absolute error will be arbitrarily large for 
large n, but this is irrelevant when Stirling's approximation is applied 
to quotients of factorials. 

In this connection it is useful to derive two further inequalities. 
Let m < n; we have, then, 

1:•11-1 
~ 1 . 

F.,.(u)- F,.(u) = ~ (k + u)(k + 1- u); 
k=m 

and further, supposing 0 < u < %, 
k•ll-1 
~ 1 1 1 

F,.(u) - F,.(u) < ~ k(k + 1) = m- n 
k=ll-1 
~ 1 1 1 

F .. (u) - F .. (u) > ~ (k + i)(k +f) = m +! - n + f 
k=lll 

Hence, 

1 1 
w(m) - w(n) < 12m - 12n' 

1 1 
w(m) - w(n) > 12(m + !) - 12(n + !) 

and, if l il'l a third arbitrary positive integer, 

1 1 1 
w(m) + w(l) - w(n) < 12m + 12l - 12n 

1 1 l 
w(m) + w(l) - w(n) > 12(m + !) + 12(l + !) - 12(n + lf 

3. Some Definite Integrals. The value of the important definite 
integral 

r· e-t'dt . Jo 
C'an be found in various ways. One of the simplest is the following: Let 

J" = J:"' r''t"dt 

in general where n is an arbitrary integer ~0. Inwgrating by parts one 
C'Rn easily establish the recurrence relation 

n-1 
J. = -2-J .... ,; 
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whence 

. J 1 · 3 · 5 · · · (2m - 1) 
2m= · 2111 Jo 

1·2·3 .. ·m 
J2m+1 = 2 • 

On the other hand, 

J,.+l + 2>.J,. + 'A.2J,....1 = Jo• e-''t"-1(t + >.)tdt, 

which shows that 

J,.+l + 2AJ,. + 'A.21n-l > 0 

for all real >.. Hence, the roots of the polynomial in the left member are 
imaginary, and this implies 

J! < J n+IJ n-1• 

Taking n = 2m and n = 2m + 1 and using the preceding expre~<sion 
for J2m and J2m+t1 we find 

2 · 4 · 6 · · · 2m · 1 2 · 4 · 6 · · · 2m 1 
1· 3 · 5 · · · (2m- 1) y4m + 2 < Jo < 1· 3 · 5 ·. · · (2m- 1) y"4m' 

But 

. 2 · 4 · 6 · · · 2m 1 _ t: lim · = vr; 
m• .. 1 • 3 • 5 • • • (2m - 1) ym 

hence 

.Jo = fa• e-''dt = \v;. 

Here substituting t = yau, where a is a positive parameter, we get 

f.. . 1 j; 
Jo e-au'du = 2"\'~· 

As a generalization of the last integral we may consider the following one: 

V = fa • e-ou' COS budu. 

The simplest way to find the value of this integral is to take the derivative 

- = - e-oul sin bu · udu dV Lao 
db 0 

p.nd transform the right member by partial integration. The result is 
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dV b 
- = --V db 2a 

•• 
V == Ce -ii&. 

To determine the constant C, take b = 0; then 

C = {V),_o = f • e-o•'du = ! f!, Jo 2Va 
so that finally 

e ...... cos budu = - !e -44. L. 1~ •• 
o 2 a 

The equivalent form of this integral is as follows: 

f. f. ~ b• e-oul cos budu == e-out+llludu = !e -id. 
-• -• a 
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METHOD OF MOMENTS AND ITS APPLICATIONS 

1. Introductory Remarks. To prove the fundamental limit theorem 
Tshebysheff devised an ingenious method, known as the "method of 
moments," which later was completed and simplified by one of the most 
prominent among Tshebysheff's disciples, the late Markoff. The 
simplicity and elegance inherent in this method of moments make it 
advisable to present in this Appendix a brief exposition of it. 

The distribution of a mass spread over a given interval (a, b) may be 
characterized by a never decreasing function <P(x), defined in (a, b) 
and varying from <P(a) = 0 to <P(b) = mo, where mo is the total mass con­
tained in (a, b). Since <P(x) is·never decreasing, for any particular point 
Xo, both the limits 

lim <P(Xo - E) = <P(Xo - 0) 
lim <P(Xo + E) = <P(Xo + 0) 

exist when a positive number t tends to 0. Evidently 

<P(Xo - 0) ~ <P(Xo) ~ <P(Xo + 0). 
If 

<P(Xo ~ 0) = <P(Xo + 0) = <P(Xo), 

then xo is a "point of continuity" of <P(x). In case 

~o + 0) > <P(Xo - 0), 

x0 is a point of discontinuity of <P(x), and the positive difference 

<P(Xo + 0) - <P(Xo - 0) 

may be considered as a mass concentrated at the point XQ. In all cases 
<P(Xo - 0) is the total mass on the segment (a, xo) excluding the end point 
Xo, whereas <P(Xo + 0) is the mass spread over the same segment including 
the point Xo. 

The points of discontinuity, if there are any, form an enumerable set, 
whence it follows that in any part of the interval (a, b) there are points of 
continuity. 

If for any sufficiently small positive c: 

<P(Xo +E) > <P(Xo - E), 

x11 is called a "point of increase" of <P(x). There is at least one point of 
increase and there might be infinitely many. For instance, if 
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lfJ(x) -= 0 for 
IP(x) = mo for 

then c is the only point of increase. On the other hand, for 

x-a 
lfJ(X) = ~ 

357 

every point of the interval (a, b) is a point of increase. In case of a 
finite number of points of increase the whole mass is concentrated in 
these points and the distribution function IP(x) is a step function with a 
finite number of steps. 

Stieltjes' integrals 

J:d!P(x) = mo, . £bxdlfJ(x) = m1, · · · £bx'd'P(x) = m. 

represent respectively the whole mass mo and its moments about the 
origin of the order 1, 2, ... i. When the distribution function 'P(x) 
is given, moments mo, m1, m2, ..• m. (provided they exist) are deter­
mined. If, however, these moments are given and are known to originate 
in a certain distribution of a mass over (a, b), the question may be raised 
with what error the mass spread over an interval (a, x) can be determined 
by these data? In other words, given mo, m1, mt, . . . m., what are the 
precise upper and lower bounds of a mass spread over an interval (a, x)? 
Such is the question raised by Tshebysheff in a short but important article 
"Sur les valeurs limites des integrates" (1874). 1 The results contained 
in this article, including very remarkable inequalities which indeed are of 
fundamental importance, are given without proof. The first proof of 
these results and the complete solution of the question raised by Tsheby­
sheff was given by Markoff in his eminent thesis "On some applications 
of algebraic continued fractions" (St. Petersburg, 1884), written in 
Russian and therefore comparatively little known. 

Suppose that Pi is the limit of the error with which we can evaluate the 
mass belonging to the interval (a, x) or, which is almost the same, the 
value of 'P(x), when moments mo, m1, fnt, ••. m. a~ given. If, vdth i 
tending to infinity, Pi tends to 0 for any given x, then the distribution 
function 'P(x) V~ill be completely determined by giving all the moments 

Ont> ca.~ of this kind, that in which 

1 . 3. 5 ... (2k - 1) 
m21 = 

24 
, ~1=0 

1 Jm1r, Lim~. Ser. 2, T. XIX, 1874. 
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was considered by Tshebysheff in a later paper, "Sur deux theoremes 
relatifs aux probabilites" (1887) 1 devoted to the application of his 
method to the proof of the limit theorem under certain rather general 
conditions. The success of this proof is due to the fact that moments, 
as given above, uniquely determine the normal distribution 

of the mass 1 over the infinite interval (- CX), +co). 
After these preliminary remarks and before proceeding to an orderly 

exposition of the method of moments, it is advisable to devote a few pages 
to continued fractions associated with power series, for continued frac­
tions are the natural tools in questions of the kind we shall consider. 

2. Continued Fractions Associated with Power Series. Let 

q,(z) =At+ Ai + Aa + .... 
z<-'1 z<-'1 Z"' ' 

be a power series arranged according to decreasing powers of z where the 
smallest exponent a1 is positive. We consider this power series from a 
purely formal point of view merely as a means to form a sequence of 
rational fractions 

At A: Aa -+-+-J ... z«l za• zaa 

and we need not be concerned about its convergence. 
Evidently 1/tf>(z) can again be expanded into power series, arranged 

according to decreasing powers of z. Let its integral part, containing 
non-negative powers of z, be denoted by qt(z), and let the fractional part 

Bt B2 B3 
zllt + zll• + zfla + ' · ' 

containing negative powers of z, be denoted by - tf>t(Z), so that 

1 
t/>(z) = qt(Z) - t/>t(z) •. 

In the same way 

can be represented thus: 

1 
fbt(Z) 

1 
t/>J(z) = q2(z) - tf>t(z) 

1 Oeuvres completes de P. L. Tshebysheff, Tome 2, p. 482. 
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where q2(z) is a polynomial and 

Ct C., Ca 
tP2(z) = z;. + Z"1 + z:y; + · · · , 

I power series containing only negative powers of z. Further, we shall 
have 

. 1 ) 
,P2(z) = qa(z) - tPa(z 

with a certain polynomial qa(z) and a power series 

Dt Dt Da 
tPa(z) = z'• + z61 + z'• + . . . 

containing negative powers of z, and so on. Thus we are led to consider a 
continued fraction (finite or infinite) 

(1) 

associated with ,P(z) in the sense that the formal expansion of 

1 1 
q~-­q,-

1 
- q;- ,p,(z) 

int.o a power series will reproduce exactly ¢(z). The continued fraction 
(1) i~-1 again con1-1idered from a purely formal standpoint as a mere abbre­
\'iation of the sequence of its convergents 

The polynomials 

p, 
-Q =- 1; 

i 91-­qs 

Pa 1 - =- 1 ....• 
Q. 91-- 1, 

91-­q, 

Pt, Pt, Pa, •.• 
Qt, QJ, Qa, ••• 

can he found step by step by the recurrence relations 

(2) pi = q,P._, - p._,}i = 2 3 4 
Q, = q.-Qt-1 - Q._, ' ' ' . . . 
P, • 1, Pe ""'0 
(h = q,, Qo == 1 
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from which the following identical relation follows: 

(3) 

showing that all fractions 

are irreducible. Evidently degrees of consecutive denominators of 
convergents form an increasing sequence and the degree of Q,(z) is at 
least i. Since 

P,(qi+l - tPi+t(Z)) - Pi-1 
= Qi(qi+t - tPi+t(Z)) - Q'-1 = 

we can write 

1 

q,(z) = Pt+t - P,q,;+t(z) 
Q;+l - Q;<PHt(Z) 

- pi+l - PitPi+t(Z) 
- Qi+l - QitPi+t(Z) 

in the sense that the formal development of the right-hand member is 
identical with q,(z). By virtue of relation (3) 

p. 1 
q,(z) - ?i = Q,(Qi+t - Q,q,...,t) · 

The degree of Q, being ~ and that of Qi+t being ).t+t, the expansion of 

Q,(Qi+l - QitPi+J) 

in a series of descending powers of z begins with the power z>-rH;••. 
Hence, 

and, since 4t ~ ~ + 1, the expansion of 

p . 
.P(z)- cj. 

begins with a term of the order 2~ + 1 in 1/z at least. This property 
characterizes the convergents P,jQ, completely. For let P /Q be a 
rational fraction whose denominator is of the nth degree and such that 
in the expansion of 

p 
.p(z) - Q 
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the lowest term is of the order 2n + 1 in 1/z at least. Then P /Q coincides 
with one of the convergents to the continued fraction (1). ut i be 
determined by the condition 

Then 

whence in the expansion of 

the lowest term will be of degree 2n + 1 or Xi+ N+• in 1/z. Hence, the 
degree of 

in z is not greater than both the numbers 

Xi - n - 1 and n - ~~ 

which are both negative while 

PQ,- P.Q 

is a polynomial. Hence, identically, 

PQ;.- P.Q = 0 

or 

which proves the statement. 

3. Continued Fraction Associated with f.• ~(x) · ut .p(x) be a never 
4 Z- X 

decreasing function characterizing the distribution of a mass over an 
interval (a, b). The moments of this distribution up to the moment of 
the order 2n are represented by integrals 

mo • J: d.p(x), m, • J: x~(x), 
m, = £ x!tltp(:), ••. m,. = £ z'ladtp(:r). 
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Let 

If <P(X) has not less than n + 1 points of increase, we must have 

~0 > 0, ~1 > 0, • • · ~n > 0, 

and conversely, if these inequalities are satisfied, <P(x) has at least n + 1 
points of increase. To prove this, consider the quadratic form 

in n + 1 variables to, h, . . . tn. Evidently 

(i, j = 0, 1, 2, ... n) 

so that ~" is the determinant of q, and ~o, ~1, • • • ~n-t its principal 
minors. The form q, cannot vanish unless to = t1 = · · · = tn = 0. 
For if x = ~ is a point of increase and q, = 0, we must have also . 

for an arbitrary positive E, whence by the mean value theorem 

or 

because 

!E:cd<P(X) > 0. 

Letting e converge to 0, we ~onclude 

to + td + · · · + tnr = 0 

at any point of increase. Since there are at least n + 1 points of increase 
the equation 

to + t1x + · · · + t,.x" = 0 

would have at least n + 1 roots and that necessitates 

to . = t, ;:; . . . . . ;..; t,. = 0, 
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Hence, the quadratic form q,, which is never negative, can vanish 
only if all its variables vanish; that is, q, is a. definite positive form. Its 
determinant A" and all its principal minors A_t, A ... t, •. • • .Ao must be 
positive, which proves the first statement. 

Suppose the conditions 

Ao > 0, At > O, . . . A11 > 0 

satisfied and let cp(x) have a < n + 1 points of increase. Then the 
integral representing q, reduces to a finite sum 

q, = Pt(to + t1E1 + · · · + fnE~) 2 + P2(1.! + t1Es + · · · + t~~E;) 1 + 
+ · · · + p,(t.J + ttE. + · · · + t .. ~:)' 

denoting by Pt, p1, • : • p, masses concentrated in the a points of 
increase Et, ~2, ••• E.. Now, since a ;:;1 n constants ~.!, t,, ... t11, not 
all zero, can be determined by the system of equations 

1.! + tt(l + . . . + t~~~i = 0 
t.J + t.E, + . . . + t .. n = o 

to + tl~l + . . . + t .. t: = 0. 
Thus q, vanishes when not all variables vanish; hence, its determinant 
.1. = 0, contrary to hypothesis. 

From now on we shall assume that cp(x) has at least n + 1 points of 
increa.'le. The integral 

can be expanded into a formal power series of 1/z, thus 

f.
11

dc;(x) = mo + mt + m, + ... + tnt .. + ... 
z - :e a z2 z1 z211+l 

and this power series can be converted llito a continued fraction as 
f'xplained in Sec. 2. ~t 

Pt P, P. P.+t 
Q/ Qt' ... Q,.' Qfl1-l 

be the first n + 1 convergents to that continued fraction. I say that the 
degrt>es of their denominators are, respectively, 1, 2, 3, •.• n + 1. 
Sinee the:se Jegref's form an increasing sequence, it suffices to show that 
tlwrf' f'xists a convergent "ith the denominator of a given degree 

a;:;ln+l. 
This eonnrgent P /Q is completely determined by the condition that in a 
formal t>xpansion of the difft>rence 
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fbdq>(x) _ ~ 
Jo Z- X Q 

into a power series of 1/z, terms involving 1/z, 1/z2, ••• 1/z2• are 
absent. This is the same as to say that in the expansion of 

Q(z) fbdq>(x) - P(z) Jo Z- X 

there are no terms involving 1/z, 1/z2, ••• 1/z'. The preceding expres­
sion can be written thus: 

fbQ(x)dtp(x) + fbQ(z) - Q(x) dtp(x) - P(z) = __!_ + .... 
Jo Z - X Jo Z - X z-+1 

Since 

i bQ(z) ~ Q(x) dtp(x) - P(z) 
4 Z- X 

is a polynomial in z, it must vanish identically. That gives 

(4) P(z) = fbQ(z) - Q(x) dq>(x). 
Jo Z- X 

To determine Q(z) we must express the conditions that in the expansion of 

LbQ~)~;x) 

terms in 1/z, 1/z2, ••• 1/?! vanish. These conditions are equivalent to 
8 relations 

(5) LbQ(x)dtp(x) = 0, LbxQ(x)dtp(x) = 0, · · ·£bx1-1Q(x)dtp(x) = 0, 

which in turn amount to the single requirement that 

(6) Lb 8(x)Q(x)dtp(x) = 0 

for an arbitrary polynomial O(x) of degree ~ s - 1. 
Conversely, if there exists a polynomial Q(z) of degrees satisfying con­

ditions (5), and P(z) is determined by equation (4), then P(z)/Q(z) is a 
convergent whose denominator is of degree 8. For then the expansion of 

ibdtp(x) _ P(z) 
z- x Q(z) 

lacks the terms in 1/z, 1/z2, ••• 1/z21• 
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Let 

Then equations (5) become 

molo + m1l1 + m2l2 + · · · + m,_tle-1 + m, = 0 
m1lo + m,lt + mal2 + · · · + m,l,_l + me+1 = 0 

m,-tlo + m,l1 + m.+tlt + · · · + m2,-2Z•-t + mt,-t = 0. 
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This system of linear equations determines completely the coefficients 
lo, l1, . . . l,_. since its determinant ~•-1 > 0. 

The existence of a convergent with the denominator of degree 

s~n+l 

being established, it follows that the denominator of the sth convergent 
P,jQ, is exactly of degree 8. The denominator Q, is determined, except 
for a constant factor, and can be presented in the form: 

1 z z2 
• • • z' 

c mo mtmt · · • m, 
Q, = - mt mtma · · · m,+l 

Ae-1 

A remarkable result follows from equation (6) by taking Q = Q, and 
6 = Q,; namely, 

(7) L"Q,Q,. d'{!(X) = 0 if 8 F' 

while 

!" Q!dcp(x) > 0 

In the general relation 

(8 ~ n). 

Q, = q,Q,_. - Qa-t 

the polynomial q, must be of the first degree 

q, = a,z + fJ,, 

which shows that the continued fraction associated with 

J.
6 dcp(x) 
z-r 
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has the 'form 

_1_ 1 
a1Z + ~~ - --- 1 

a2z+~2- --­
aaz + fJa-

The next question is, how to determine the constants a, and ~.. Multi­
plying both members of the equation 

(s ~ 2) 

· by Q,_2dtp{z), integrating between limits a and b, and taking into account 
(7), we get 

0 = a.J:zQ,_IQ,_2dtp(z) - J:Q!-2dtp(z). 

On the other hand, the highest terms in Q,_l and Q,_z are 

Hence, 

where 'It is a. polynomial of degree ~s - 2. Referring to equation (6), 
we have 

· and consequently 

(8) 
a, Lb Q;_2dtp(z) 

a,_t = Lb Qi-tdtp(Z). 

Suppose that the following moments are given: mo, m1, •.. m2,.; how 
many of the coefficients a, can be found? Evidently a1 = 1/mo. Fur­
thermore, Q0 = 1 and Qt is completely determined given mo and m1. 
Relation (8) determines a2, and Q2 will be completely determined given 
mo, m1, ~, ma. The same relation again determines aa, and Qa will be 
determined given mo, m1, ..• m5. Proceeding in the same way, we 
conclude that, given mo, m1, mz, . . . m2 .. , all the polynomials 

as well as constants 
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can be determined. It is important to note that all these conl'1tants are 
positive. 

Proceeding in a similar manner, the following expres.'3ion can be found 

ib zQ;_ 1diP(z) 
fj, = -a, (b • 

Jo Q;_ldi()(Z) 

It follows that constants 

Pt, fj2, • . . p. 

are determined by our data, but not fj•+l· For if B = n + 1, the integral 

£"zQ!dl()(z) 

can be expressed as a linear function of mo, mt, ; . · . ""'*1 with known 
coefficients. But m2n+1 is not included among our data; hence, P--tt 

cannot be determined. 
<l. Properties of Polynomials Q.. Theorem. Roots of the equation 

Q,(z) = 0 (s ~ n) 

are real, simple, a?W contained within the interval (a, b). 
Proof. Let Q,(z) change its sign r < s times when z passes through 

points z~, z1, ••• Zr contained strictly within (a, b). Setting 

8(z) = (z - Zt)(z - Zt) • • • (z - z,) 

the product 

8(z)Q,(z) 

does not change its sign when z increa..qes from a to b. However, 

J: 8(z)Q,(z)diP(z) = 0, 

and this necessitates that 

B(z)Q,{z) 

or Q,(z) vanishes in all points of increase of IP(z). But this is impos.'3ible, 
since by hypothE'sis tht're are at least n + 1 points of increa..~, whereas 
the degree s of Q, does not exceed n. Consequently, Q,(z) changes its 
sign in the int~rval (a, b) exactly' times and has all its roots real, simple, 
and locatro within (a, b). 

It follows from this theorem that the convergent 

P. 
Q. 
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can be resolved into a sum of simple fractions as follows: 

(9) P,.(z) =_6_ +~ + ... +~ 
Qn(Z) Z - Zt Z - Z2 Z - Z11 

where Zt, z2, • • • z,. are roots of the equation Q,.(z) = 0 and in general 

A~:= Pn(zk), 
Q~(zk) 

The right member of (9) can be expanded into power series of 1/z, the 
coefficient of 1/zl: being 

By the property of convergents we must have the following equations: 

a=l 

• ! Aaz!n-1 = m2n-1o 

a=l 

These equations can be condensed into one, 

II 

(10) ! AaT(Za) = J:r(z)d!f(z) 
a=l 

which should hold for any polynomial T(z) of degree ~2n - 1. 
Let us take for T(z) a polynomial of degree 2n - 2: 

[ 
Q,.(z) ]2 

T(z) = (z - z..)Q~(Za) • 

Then 

T(Za) = 1, T(ztJ) = 0 if tJ ~ a 

and consequently, by virtue of equation (10), 

Aa = iT (z - ~:~~~(za) ra!f(Z) > 0. 

Thus constants A1, A2, ••• A,. are all positive, which shows that P,.(zk) 
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has the same sign as Q~(zk). Now in the sequence 

Q~(zt), Q~(z2), ... Q~(z,.) 
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any two consecutive terms are of opposite signs. The same being true of 
the sequence 

P,.(zt), P,.(z2), ... Pn(z,.), 

it follows that the roots of P ,.(z) are all simple, real, and located in the 
intervals 

(zt, z2); (z2, za); •.. (z,._t, z,.). 

Finally, we shall prove the following theorem: 
Theorem. For any real x 

Q~(x)Qn-t(X) - Q:.,..l(x)Qn(X) 

is a positive number. 
Proof. From the relations 

Q,(z) = (a,z + {3,)Q,_t(z) - Q,_2(z) 
Q,(x) = (a,x + {3,)Q,_t(X) - Q,_2(x) 

it follows that 

Q,(z)Q,_t(X) - Q,(x)Q,_t(z) =::: a,Q,_
1
(z)Q,_

1
(x) + 

z-x 
+ Q,_t(z)Q,_2(x) - Q,_t(x)Q,_2(z) 

z-x. 

whence, takings = 1, 2, 3, ... nand adding results, 

II 

•=1 

It $Uffices now to take z = x to arrive at the identity 

II 

Q!(x)Q,._t(x) - Q:._1(x)Q,.(x) = Ia,Q,_t(X) 2• 

•=1 

Since Qo = 1 and a, > 0, it is evident that 

Q!(x)Q,._t(x) - Q:._1(x)Q,.(x) > 0 

for every real z. 
6. Equivalent Point Distributions. If the whole mass can be con· 

centrated in a finite number of points so as to produce the same l first 
moments a.s a given distribution, we have an "equivalent point distribu-
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tion" in respect to the l first moments. In what follows we shall suppose 
that the whole mass is spread over an infinite interval - co, co and that 
the given moments, originating in a distribution with at least n + 1 
points of increase, are 

The question is: Is it possible to find an equivalent point distribution 
where the whole mass is concentrated inn + 1 points? Let the unknown 
points be 

E1, E2, . . . En+t 
and the masses concentrated in them 

At, A2, ... An+!· 

Evidently the question will be answered in the affirmative if the system 
of 2n + 1 equations 

(A) 

n+l 

·~Aa = mo 
cr=l 

n+l 

~Aa~a = mt 
cr=l 
n+l 

~AcrE:= m2 
11"'1 

n+l 

~Aa~!" = m2" 
«=1 

can be satisfied by real numbers ~~, E2, ..• En+Ji A1, A2, •.• A~1, 
the last n + 1 numbers being positive. The number of unknowns being 
greater by one unit than the number of equations, we can introduce the 
additional requirement that one of the numbers ~~, Ez, . . . ~ .. +t should 
be equal to a given real number v. The system (A) may be replaced by 
the single requirement that the equation 

tl+l 

(11) ~ AaT(E .. ) = J_ .... T(x)d~~>(x) 
a=l 

shall hold for any polynomial T(x) of degree ~ 2n. Let Q(x) be the 
polynomial of degree n + 1 having roots E1, E2, ... E~1 and let 8(x) be 
an arbitrary polynomial of degree ~ n - 1. Then we can apply equation 
(11) to 

T(x) = 8(x)Q(x). 
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Since QUa) = 0, we !'hall have 

(12) J_ .. , O(x)Q(x)dl{)(x) = 0 

for an arbitrary polynomial O(x) of degree ~n - 1. Presently \H' shall 
l'!ee that requirement (12) together with Q(v) = 0 determines Q(x), ~<ave 
for a constant factor if 

Qn(v) F- 0. 

Dividing Q(x) by Q,.(x), we have identically 

Q(x) = (Ax + p.)Qn(x) + R,.-J(x) 

where R .. -J(x) itoi a polynomial of degree ~ n - 1. If O(x) is an :uhi­
trary polynomial of degree ~n - 2, 

(Ax+ ~t)O(x) 

will be of degrt>e ~ n - 1. · Hence 

£b(Ax + p)O(x)Q,.(x)dl{)(x) = 0 

by (6), and (12) shows that 

£bo(x)R.-l(x)dl{)(x) = 0 

for an arbitrary polynomial 8(x) of degree ~ n - 2. The la.'lt require­
mrnt shows that R .. -J(x) differs from Q,._J(x) by a constant facwr. Since 
the hight>st. coefficient in Q(x) is arbitrary, we can set 

R_..J(x) = -Q.-l(x). 

In the equation 

it rt>mains to dt>t.ermine constants~ and~'· Multiplying both members by 
Q,._.(;r)di{J(x) and integrating between - oc and ac, we get 

~ J_"'.xQ,._lQ .. di{)(X) = J_"'. Q!._1dl{)(x) 

or 

But 
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whence 

The equation 
0 = Q(v) = (an+JV + p)Qn(v) - Qn-l(v) 

serves to determine p. if Q,.(v) ~ 0. The final expression of Q(x) will be 

Q(x) = ( lln+t(X - v) + QQ:{~}))Qn(X) - Q_t(X). 

Owing to recurrence relations 

Q2 = (a2X + {j2)Q1 - Qo; Qa = (aax + {ja)Q2 - Ql; · · · 
Qn = (anX + ~~~)Qn-1 - Qn-21 

it is evident that 
Q, Qn, Qn-1, • • • Ql, Qo = 1 

in a Sturm series. For x = - «l, it contains 1t. + 1 variations and for 
x = CX) only permanences. It follows that the equation 

Q(x) = 0 

has exactly n + 1 distinct real roots and among them v. Thus, if the 
problem is solvable, the numbers ~~, ~2, • • • ~n+t are determined as 
roots of 

Q(x) = 0. 

Furthermore, all unknowns Aa will be positive. In fact, from equation _ 
(11) it follows that 

Aa = J_~J(x _ ~~)~,(~a)Td~(x) > o. 

Now we must show that constants Aa can actually be determined so as · 
to satisfy equations (A). To this end let 

I "' Q(x) ..;. Q(z) [ Qn-t(V)]p ( ) p ( ) 
P(x) = - ~ X- z d~(z) = lln+t(X- v) + Qll(v) 11 X - n-1 X • 

Then 

Q(x) f~~ ... :~z~- P(x) =I-~~ Q~)~~;z) 
·and, on account of (12), the expansion of the right member into power 
series of 1/x lacks the terms in 1/x, 1/x2, •.•• 1/x11• Hence, the expan­
sion of 

I
~ d~(z) _ P(x) 

_ ..,x- z Q(x) 



APPENDIX II 

lacks the terms in 1/x, 1/z2, ••• 1/z2A+t; that is, 

P(x) = ~ + ~ + ... + ~ + .... 
QW x ~ x~' 

On the other hand, resolving in simple fractions, 

P(x) =~ +~ + ... +~· 
Q(x) z - Et z - Et x - E~1 
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Expanding the right member into power series of 1/z and comparing 
with the preceding expansion, we obtain the system (A). By the previous 
remark all constants A.a are positive. Thus, there exists a point distribu­
tion in which masses concentrated in n + 1 points produce moments 
~' m1, • • • m2... One of these points fl may be taken arbitrarily, with 
the condition 

being observed, however. 
6. Tshebysheff's Inequalities. In a note referred to in the introduc­

tion Tshebysheff made known certain inequalities of the utmost impor­
tance for the theory we are concerned with. The first very ingenious 
proof of them was given by Markoff in 1884 and, by a remarkable 
coincidence, the same proof was rediscovered almost at the same time 
by Stieltjes. A few years later, Stieltjes found another totally different 
proof; and it is this second proof that we shall follow. 

Let IP(x) be a distribution function of a mass spread over the intt>rval 
- ao, ao. Supposing that a moment of the order i, 

J_·_ x'diP(x) = rn,, 

exists, we shall show first that 

lim li(~ - ...,(l)) = 0 
lim z;IP( -Z) = 0 

when l tends to + ao. For 

f, • z'diP(Z) ~ lif, • d4p(x) = l'[IP( + ao) - IP(l}) 

or 

l'(m. - IP(l)) ~ .( • :r'diP(x). 

Similarly 
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or 

Now both integrals 

converge to 0 as l tends to + ao ; whence both statements follow immedi­
ately. Integrating by parts, we have 

J:x'd'l'(x) = li['l'(l) - mo] - ifo1
['1'(x) - mo]xHdx 

f o xidl/l(x) = ( -l)i-1l''l'( -l) - iJ0 
xH'I'(x)dx, 

-1 -1 

whence, letting l converge to + ao, 

If the same mass mo, with the same moment m;, is spread according to 
the law characterized by the function 1/t(x), we shall have . 

m; = f'" x'dtft(x) = -i ('"[~(X) - mo]zHdz- if0 
zi-ltft(x)dx, -"' Jo -"' 

whence 

(13) J_'" .. zH('I'(x) - 1/t(x)]dx = 0. 

Suppose the moments 

of the distribution characterized by 'l'(x) are known. Provided 'l'(x) 
has at lea.St n + 1 points of increase, there exists an equivalent point 
distribution, defined in Sec. 5 and characterized by the step function 
tft(x) which can be defined as follows: 

~(x) = 0 for - QC) <X< El 
tft(x) = At for ~~ ;:i X < ~2 

'/;(x) = A1 + A2 for ~2 ;:i X < ~3 
..... 

'/;(x) =At+A,+ ···+A,. for ~ .. ;:i X< ~ .. +1 

1/t(x) = A1 +A,+ · · · +A,.+! for ~11+1 ;:i X < + ao, 

provided roots ~ 1 , ~2 , ••• E,.+1 of the equation Q(x) = 0 are arran~:red 
in an inrrPasing order of magnitudP. 
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Equation (13) will hold for i = 1, 2, 3, ... 2n or, which is the 
same, the equation 

(14) J_·. 9(x)[,(x) - t(x)]dx = 0 

will hold for an arbitrary polynomial B(x) of degree ~2n - 1. The 
function 

h(x) == IP{Z) - t(:r) 

in general has ordinary discontinuities. We can prove now that h(x), if 
not identically equal to 0 at all points of continuity, changes its sign at 
least 2n times. 1 Suppose, on the contrary, that it changes sign r < 2n 
times; namely, at the points 

Taking 

B(x) = (x - a1)(.r - a,) · · · (.r - a,), 

equation (H) will be satisfied, while the int~grand 

B(x)h(x), 

if not 0, will be of the same sign, for example, positive. Let E be any 
point of continuity of h(x). If E = a. (i = 1, 2, ... r) then h{tli) = 0 
8ince h(z) changes sign at a.. If E does not coincide with any one of the 
numbers a1, as, • . . a,, then for an arbitrarily small positive e we must 
have 

!Ht 
B(x)h(x)dx = 0. -· 

But by continuity 

B(x)h(x) 

remains in the interval (E - E, t +E) for sufficiently small e above a 
certain positive numbfr unless hW = 0. Thus, if h(:c) does not nnif'b 
at all points of continuity (in which case q>(.r) and ;(:r) do not differ 
e&.qentially), it must change sign at least 2n times. Let us see now wbel't' 
tht change of sign can occur. In the intervals 

- ac, E1 and~'*" +ac 
1 A function /(z) is said tD change sign onoe in (a, b) if in thil interval then' 

exists a point or pointll e such that, for instanre./(z) ~ 0 in (a, e) and /(z) :i 0 in 
(e, b), toquality signa not holding throughout the respertive intervals. The changto 
of sign OC('UJ'I " timee if (a, b) can be di\'ided in " intervals in which f!z) chao~ 
sip ont't!. 
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qJ(X) - 1/t(x) evidently cannot change sign. Within each of the intervals 

E•-1, t• 
there .can be at most one change of sign, since 1/t(x) remains constant 
there, and qJ(x) can only increase. The sign may change also at the 
points of discontinuity of 1/t(x); that is, at the points Et, ~2, ••• tn+l· 
Altogether, qJ(x) - 1/t(x) cannot change sign more than 2n + 1 times 
and not less than 2n times. 

Since 1/t(x) = 0 so far as x < t1 and qJ(tt - E) is not negative for 
positive E, we must have 

qJ(tt - e) - 1/t(~t - e) ~ 0. 

Also 1/t(x) = mo for x > ~n+t and ,(x) ;;i mo, so that 

qJ(t,.+l + E) - 1/t(tn+l + e) ~ 0. 

At first let us suppose 

In this case qJ(x) - 1/t(x) must change sign an odd number of times; that is, 
not less than 2n + 1 times. Since this cannot happen more than 2n + 1 
times, the number of times qJ(x) - 1/t(x) changes its sign must be exactly 
2n + 1. These changes occur once within each interval 

E>-1, t• 
and in each of the points tt, ~2, • • • ~n+l· When the change of sign 
occurs in the interval (E>-t, ~.)where 1/t(x) remains constant, because qJ(x) 
never decreases, we must have for sufficiently small e 

(15) 

But the sign changes in passing the point ~.; therefore, 

(16) 

The equalities 

qJ(~1 - e) - 1/t(~t - e) = 0, 

cannot both hold for all sufficiently small e. For then there would not 
be a change of sign at t1 and tn+t, so that the number of changes would 
not be greater than 2n - 1 which is impossible. Therefore, let 

f'(tt - E) - 1/t(Et - E) = 0 and qJ(t .. +l + e) - 1/t(~n+t + e) < 0. 

Then there will be exactly 2n changes of sign: one in each of the intervals 

~ ..... !, ~ .. 
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and in each of the points ~2 , ~a, • • • Ea+•· The inequalities (15) and 
(16) would hold for i ~ 2, but 

~(~t - E) - ~(El - E) = 0, ~(Et + e) - ~(Et + e) < 0 

for all sufficiently small E. 

Now let 

for all sufficiently small positive E. Then there will be exactly 2n changes 
of sign: In each of the points Et, E2, ..• t. and in each of then intervals 

Ea-t, E•· 
The inequalities (15) and (16) will again hold for i ;;i n, but , 

~(~n+l - t) - ~(~n+l - e) > 0 and ~(~n+l + E) - ~(~a+l + E) = 0 

for all sufficiently small E. Letting e converge to 0, we shall have 

~(~ - 0) ~ ~(t - 0) 
~(E• + O) ;;i ~(~, + 0) 

for i = 1, 2, 3, ... n + 1 in all cases. Then, since 

~(~;) ~ ~(~. - 0); ~(~;) ;;i ~(~; + 0), 

we shall have also 

~(~;) ~ ~(t; - 0) 
~(M ;;i ~(E• + O) 

or, taking into consideration the definition of the function ~(x) 

i-1 

,(E,) ~ ~ ~~~~~ 
l•l 

' 
.,(M ;;i ~s,~~} 

l=l 

These are the inequalities to which Tshebysheff's name is justly 
attached. For a particular root E• = 11 they can be written thus: 

(17) 
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with the evident meaning of the extent of summations. Another, less 
explicit, form of the same inequalities is 

(18) 
cp(v) ~ tj(v - 0) 
cp(v) ;:;i tj(v + 0). 

As to P(x) and Q(x), they can be taken in the form: 

P(x) = (a,.+l(x- v)Q .. (v) + Qll-t(v)]P .. (x) - Q .. (v)P .. -t(x) 
Q(x) = [~1(x - v)Q .. (v) + Q,._t(v)]Q .. (x) - Q .. (v)Q,._t(x). 

Thus far we have assumed that v was different from any root of the 
equation 

Q,.(x) = O, 

but all the .results hold, even if 

Qn(v) = 0. 

To prove this, we note first that when a variable v approaches a root ~of 
Q .. (x), one root of Q(x) (either ~~or ~n+l) tends to ~ «> or +«>,while the 
remaining n roots approach the n roots x1, x2, . • . x11 of the equation 

Q .. (x) = 0. 

If Et tends to negative infinity, it is easy to· see that 

P(~t) 
Q'(~t) 

tends to 0. In this case the other quotients 

P(~z) 
Q'(Ez) 

tend respectively to 

P,.(xt) P,.(x2) 
Q~(x1)' Q~(x,)' · ' ' • 

If ~ ... 1 tends to positive infinity the quotie11ts 

P(~,). _ 
Q'(~,)' l - 1, 2, ... n 

approach respectively 

P ,.(x,) · l - 2 3 
Cl,.(xz)' - 1, ' ' ... n, 

while 
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tends to 0. Now take v = E - e and" = E + e in (17) and let thE' posi­
tive number e converge to 0. Taking into account the preceding remarks, 
we find in the limit 

whence again 

But these inequalities follow directly from (17) by taking v = E. 
Since 

P(v) 
'f(v + 0) - 'f(v - 0) = -­Q'(v) 

it follows from inequalities (18) that 

P{v) 
0 ~ f'(ll) - 'f(v- 0) ~ Q'(v)' 

On the ot.hf'r hand, one easily finds that 

P(v) 1 
Q'(v) = a,.+lQ .. (v)2 + Q~(v)Q-t(V) - Q:.,..1(t,)Q.(v)" 

But reff'rring t.o thf' f'nd of Sec. 4, 

• 
Q~(v)Q,._,(v) - Q:.-,1(v)Q,.(v) = ~ a,Q,_,(v)', 

tel 

whf'll<'t> 
a,.+,Q,.(v)' + Q~(v)Q,._,(v) - Q:.,..1(v)Q,.(v) = Q~1(v)Q.(v) - Q~(v)Q,.+t(v). 
Finally, 

1 
0 ~ ~P(v) - t/l(fl - 0) ~ Q~.(v)Q.(t•) - Q~(v)Q,....,(v)" 

If .,,(r•) is anotht>r distribution function with the same moments 
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we shall have also 

1 0 ~ 'Pl(v) - 1/t(v- O) ~ Q~+l(v)Q,.(v) - Q~(v)Q,.+J(v)' 

and as a consequence, 

(19) I'P1(v) - IP(v)l ~ x,.(v) 

-a very important inequality. Here for brevity we use the notation 

1 . 
x,.(v) = Q~+l(v)Q,.(v) - Q~(v)Q,.+l(v)' 

7. Application to Normal Distribution. An important particular 
case is that of a normal distribution characterized by the function 

IP(X) =- e-u'du • 1 fz 
...;; _,. 

In this case it is easy to give an explicit expression of the polynomials 
Q,.(x). Let · 

Integrating by parts, one can prove that for l ~ n - 1 

J_'",. e-z'x1H,.(x)dx == 0. 

Hence, one may conclude that Q,.(x) differs from H,.(x) by a constant 
factor. Let 

To determine c,., we may use the relation 

H,.(x) = -2xH,._l(x) - 2(n- 1)Hn-2(x) 

which can readily be established. Introducing polynomials Q,., this 
relation becomes 

Hence, 
c,.. 1 -=--, 

Cn-2 2n- 2 
a• = -2~1 R Q .. "'" = . Cn-1 

Since Ho(x) = Qo(x) = 1, we have Co = 1; also 

1 C1 
at = - = 1 = - 2.::! 

me. ~ 
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~·hence c, = - ~- The knowledge of Co and Ct together with the relation 

c,._2 
c,. = 2n- 2 

allows determination of all members of the sequence Ct, ca, c,, . . . . 
The final expressions are as follows; 

1 
C

2
"' = 2"' · 1 · 3 · 5 · · · (2m - 1) 

-1· 
Clmf.l = 2"'+1 · 2 · 4 · 6 • · • 2m' 

From the above relation between H,.(x), H,._1(x), H,._2(x) and o\\ing to 
the fact that 7l,.(x} is an even or odd polynomial, according as n is even or 
odd, one finds 

Ht ... (O) = ( -2)• · 1· 3 · 5 · · · (2m- 1), 

while another relatil)n 

H~(x) = -2nH,._t(x), 

following from the definition of H ,.(x), gives 

H~1(0) = ( -2)• ·1 · 3 · 5 · · · (2m- 1). 

These preliminaries being established, we shall prove now that 

1 
x .. (v) = c,.c'*1(H~+1(v)H,.(v)- H~(v)H-+t(v)) 

attains its maximum for 11 = 0. Let 

!l(v) = H~1(v)H,.(v) - H~(v)H .. +l(v). 

Then, taking into account the differential equation for polynomials 
H,.(v): 

H:(v) = 2vH~(v) - 2nH,.(v) 

we find that 

an 
dt~ = 2vn- 2H.(v)H .. 1(v). 

On the other hand, 

n _ -H ( )~ H,.(v) 
u - •+1 v ® H.+l(v)' 

and denoting roots of the polynomial H •+1(v) in general by f, 

d H .. (v) ~ H.W 1 
'ik H-+1(v) = - ~H~1W (•- ~)~· 
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Consequently 

n H ( )2~ H,.W 1 
= n+l 

11 ~H~1W (u- E)t' 

Again 

and so 

dO 2~ H,.W ~ -Hn+t(u) 2~ ~ 
dv = 2H,.+l(u) ~H~+1W (v- E) 2 = n + 1 ~ (v- Ei 

Roots of the polynomial H .. +t(x) being symmetrically located with 
respect to 0, we have: 

and finally 

Hence 

dO O -> dv if I)< 0; dO O -< dv 
if u>O 

that is, O(v) attains its maximum for 11 = 0 and x .. (u) attains its maximum 
for v = 0. Referring to the above expressions of C2m, c2m+ti H,m(O), 
H~1(0), we find that 

2 · 4 • 6 · · · 2m 
x2 

.. (0) = 3 · 5 · 7 · · · (2m+ 1) 

2 · 4 · 6 · · · 2m 
X2•+t(O) = 3 · 5 · 7 · · · (2m+ 1)' 

In Appendix I, page 354, we find the inequality 

2 · 4 · 6 · · · 2m · 1 Vr 
,.----;:,..---;:-----;-;:;------:;> --::::== < -
1 · 3 · 5 · · · (2m - 1) y 4m + 2 2 

whence 

2 · 4 · 6 · · · 2m ,-;-
3,.--·--..,.,5-· 7=--. -. ·-(:-=-2m--:-+~1) < \fim"+2_m_+_2, 

Thus, in all cases 
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whence, by virtue of inequality (19), 

I'P1{v) - 'P(v)l < .J'ln· 
Thus any distribution function 'Pl(v) with the moments 

1 . 3 . 5 . • • (2k - 1) 
1tl.{l = 1, m!k-t = O, mst = 2~ (k ~ n) 

corresponding to 

'P(v) = ~ ;: e-'du 1 J' 
VI' -• 

differs from 'P(v) by less than 

.Jln· 
Since this quantity tends to 0 when n increases indefinitely, we have the 
following theorem proved for the first time by Tshebysheff: 

The system of infinitely many equations 

J_ .. d'P(x) = 1; f_ •• x2i-1d'P(x) = 0; f_ •• xt.kd'P(x) = 

1 . 3 . 5 ... (2k - 1) 
= 2~ 

k = 1, 2, 3, ... 

uniquely determines a never decreasi11{1 function 'P(x) BUCh that 'P(- GO) = 0; 
namely, 

'P(z) = _ !: e-"'du. 1 f. 
VI' -• 

B. Tshebysheff·Markoff's Fundamental Theorem. When a mass = 1 
is distributed according to the law characterized by a function F(z, >.) 
depending upon a parameter >., we say that the distribution is variable. 
Notwithstanding the variability of distribution, it may happen that its 
moments remain constant. If they are equal to moments of normal 
distribution with density 

~ 
y; 

tht>n by the preceding theorem we have rigoroualy 

no matter what ). ia. 
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Generally moments of a variable distribution are themselves variable. 
Suppose that each one of them, when ). tends to a certain limit {for 
instance oo ), tends to the corresponding moment of normal distribution. 
One can foresee that under such circumstances F(x, >.) will tend to 

tp{x) =- e-u'du. • 1 Jz 
y; -oo 

In fact, t.he following fundamental theorem holds: 
Fundamental Theorem. If, for a variable distribution characterized 

by the function F(x, >.), 

for any fixed k ;;:;; 0, 1, 2~ 3, ... , .then 

lim F(v, X) = ~ 1r:J' e-z'dx; ). -+ oo 
V'll' -oo 

uniformly in v. 
Proof. Let 

be 2n + 1 moments corresponding to a normal distribution. They 
allow formation of the polynomials ' 

Qo(x), Q1(x), ... Qn(x) and Q(x) 

and the function designated in Sec. 6 by if;(x). Similar entities cor· 
responding to the variable distribution will be specified by an asteri~;k. 
Since 

and since .1,. > 0, we shall have 

a:> o 
for sufficiently large >.. Then F(x, >.) will have not less than n + 1 
points of increase and the whole theory can be applied to variable dis­
tribution. In particular, we shall have 

0 ~ tp(v) - if;(o - 0) ~ Xn(v) 

(20) 

0 ~ F(o, >.) - if;*(o- 0) ~ x:(v). 
Now Q!(x)(B = 0, 1, 2, ... n) and Q*(x) depend rationally upon 
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m t(k = 0, 1, 2, ... 2n); hence, without any difficulty one can see that 

Q!(x) --+ Q,(x); s = O, 1, 2, ... n 
Q*(x) --+ Q(x) 

as X --+ ao ; whence, 

x!(v) --+ x .. (v). 

Again 

~*(v - 0) --+ ~(11 - 0) 

as X--+ ao. A few explanations are necessary to prove this. At first let 
Q~(v) '¢ 0. Then the polynomial Q(x) will have n + 1 roots 

£1 < £, < h < . . . < ~ .. +l. 

Since the roots of an algebraic equation vary continuously with it., 
coefficients, it is evident that for sufficiently large ~ the equation 

Q*(x) = 0 

will have n + 1 roots: 

n < n < n < · · · < ~:r~ 
and Et will t(lnd to ~k as~--+ ao. In this case, it is evident that ~*(v - 0) 
will tend to ~(I' - 0). If Q.(v) - o, it may happen that nor ~!rl tends 
respPctiwly to - oo or +co as ~--+ co, while the other roots tend to the 
root~ 

Z11 X2, ••• X,. 

of thf' t>quation 

Q .. (x) = 0. 

But the tf'rms in ~*(v - 0) corresponding to infinitely increasing roots 
tend to 0. and ap;ain 

~*(" - 0) --+ ~(v - 0). 

Now 

x .. (t•) < ~;n 
Con..wquently, given an arbitrary positive number t, we can sel{'('t n so 
large as to have 

x.(,) < J;n <E. 
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Having selected n in this manner, we shall keep it fixed. Then by the 
preceding remarks a number L can be found so that 

x*(v) < ~ < E 

l~(v - 0) - ~*(v - O)l < E 

for X > L. Combining this with inequalities (20), we find 

jP(v, ).) - <P(v)l < 3E 

for ). > L. And this proves the convergence of F(v, >.) to <P(v) for a 
fixed arbitrary v. To show that the equation 

1 J' lim F(v, X) = _ t:. e-:c1dz 
V11' -oo 

holds uniformly for a variable v we can follow a very simple reasoning due 
to P6lya. Since <P(- oo) = O, <P( + oo) = 1 and <P(x) is an increasing 
function, one can determine two numbers ao and a,. so that 

<P(x) ~ <P(ao) < ; for x ~ ao 

1 - <P(x) ~ 1 - <P(a,.) < ; for x ~ a,.. 

Next, because <P(x) is a continuous function, the interval (ao, a,.) can be 
subdivided into partial intervals by inserting between ao and a,. points 
a1 < a2 < · · · < a,._t so that 

E 
0 < <P(a~:+t) - <P(a~:) < 2 

for k = 0, 1, 2, . . . n - 1. By the preceding result, for all sufficiently 
large X · 

E E 
F(ao, X) < 2; 1 - F(a", ).) < 2 

and 

IF(a~:, >.) - <P(a~:)l < ;; k = 1, 2, . . . n - 1. 

Now consider the interval (- oo, ao). Here for v ~ ao 

0 ~ F(v, >.) < ;; 0 < <P(v) < ; 

and 

IF(v, >.) - <P(v)! < E. 
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For v belonging to the interval (a,., +~X>) 

E E 
0 ~ 1 - F(v, X) < 2, 0 < 1 - cp(v) < 2' 

whence again 

IF(v, X) - cp(v)l <e. 
Finally, let 

a~c ~ v < alc+l (k = 0, 1, 2, ... n - 1). 

Then 

F(v, X) - cp(v) ~ F(a~c, X) - cp(at+t) = 
= [F(ak, X) - cp(a~:)) + (cp(a~:) - 'P(a~;+t)] 

F(v, X) - 'P(v) ~ F(ak+t, X) - 'P(a~;) = 

But 

whence 

= [F(ak+t, X) - cp(ak+t)) + ['P(a~:+t) - IP(all)). 

E 
cp(a11) - cp(a~:+t) > - 2 

E 
cp(a~;+t) - cp(at) < 2' 

-E < F(v, X) - cp(v) < E. 

Thus, given t, there exists a number L(E) deP,ending upon E alone and 
such that 

IF(v, ).) - cp(v)l < 1 

for ). > L(E) no matter what value is attributed to v. 
The fundamental theorem With reference to probability can be stated 

as follows: 
Let s. be a stochastic variable depending upon a variable po8itive integer 

n. If the mathematical expectation E(s!) for any fixed k = 1, 2, 3, ... 
tends, as n increases indefinitely, to the coJTesponding expectation 

E(x") = -1-J • zke-:r'dx 
v; -· 

of a rwrmally distributed variable, then the probability of tht inequality 

•• <' 
tends ~ tht limit 

_l_J' r•'dx 
v; -· 

and tMt uniformly in t. 
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In very many cases it is much easier to. make sure that the conditions 
of this theorem are fulfilled and then, in one stroke, to pass to the limit 
theorem for probability, than to attack the problem directly. 

APPLICATION TO SUMS OF INDEPENDENT VARIABLES 

9. Let Z11 z2, za, . • . be independent variables whose number can be 
increased indefinitely. Without losing anything in generality, we may 
suppose from the beginning 

E(zk) = o; 
We assume the existence of 

k = 1, 2, 3, .... 

E(z2) = bk 

for all k = 1, 2, 3, . . . . Also, we assume for some positive 8 the 
existence of absolute moments 

k = 1, 2, 3, .... 

Liapounoff's theorem, with which we dealt at length in Chap. XIV, 
states that the probability of the inequality 

Z1 + Z2 + ' ' ' +zn v'2B": < t, 

where 

Bn ;:::: b1 + b2 + ' ' ' + b11 

tends uniformly to the limit 

_1_J' e-"'ld::c 
y'; -co 

as n ......,. ct>, provided 

p.~2+Jil + p.~2+6) + . . . + p.~2+6J ........ 0 
6 • 

B;+2 

Liapounoff's result in regard to generality of conditions surpassed by 
far what had been established before by Tshebysheff and Markoff, whose 
proofs were based on the fundamental result derived in the preceding sec­
tion. Since Liapounoff's conditions do not require the existence of 
moments in an infinite number, it seemed that the method of moments 
was not powerful enough to establish the limit theorem in such a general 
form. Nevertheless, by resorting to an ingenious artifice, of which we 

. nutde use in Chap. X, Sec. 8, Markoff finally succeeded in proving the 
limit theorem by the method of moments to the same degree of generality 
as did Liapounoff. 
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Markoff's artifice consists in associating with the variable Zk two new 
variables Xt and 1/k defined as follows: 

Let N be a positive number which in the course of proof will be 
selected so as to tend to infinity together with n. Then 

Xt = Zk, Y• = 0 if 
Xk = 0, 1/k = Zk if 

Evidently z~c, x,, 1/k are connected by the relation 

Zk = Xk + 1/k 

whence 

(21) 

Moreover 

E(xl) + E(yi) = E(zl) = b, 

(22) 

Elxkl2+6 + EIYki2H = Elzkl2+' = P.~!H>, 
as one can see immediately from the definition of X1c and 11•· 

Since x~~: is bounded, mathematical expectations 

E(xL) 

exist for all integer exponents l = 1, 2, 3, ... and fork = 1, 2, 3, ... , 
In the following we shall use the notations 

IE(xDI = c~0 ; l = 1, 2, 3, ... 
ci21 + c~21 + · · · + r~!l = B~ 

P.i!+liJ + ~~-~2+11> + . . . + IJ.~2+6l = c •. 
Not to obscure the essential steps of the rf>a..,oning we shall first 

establish a few preliminary results. 
Lemma 1. Let q~c represent the probability that 1/t ~ 0; then 

+ + + < c. Ql Qs • • • q,. = Nt+i 

Proof. U>t "t(x) be the distribution function of z~c. Since 1/t #: 0 
only if lza:l > N, the probability q; is not greater than 

J_-: d"'k(.r) + Jv• dlf';(x). 

On the othPr hand, 

J_-~vixl2+'dlf';(x) + Jv·lx'2+'dlf';(x) ~ P.'.2+'1• 
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But 

J_-:lxl2+'d1Pk(x) + JN"'ixi.2Hd1Pk(x) ~ N2+8 ~~--: diP~c(x) + J""' diP~c(x)t, 
whence 

f -N f"' k2Hl 
q~c ~ _"' diP~c(x) + JN diPk(x) ~ ~2+c1' 

The inequality to be proved follows immediately. 
Lemma 2. The following inequality holds: 

1 ~ B! > 1 - _!;__, 
-B .. = B..N' 

Proof. From 

Elykj2+8 ~ #!~2Hl 

which is a consequence of the se.cond equation (22) it follows that 
(2+6) 

E(yl) ~ I!N• . 
The first equation (22) 

gives 
JL<2Hl 

b· ~ c<2> ~ b·-- _k_, 
.. - k - .. N• 

Taking the sum for k = 1, 2, 3, . . . n, we get 

B > B' > B C,. 
n = II= "- N8' 

whence 

1 > B~ ~ 1-~· 
= B,.- B,,N6 

Lemma 3. Far e ~ 3, 

c<•> + c<•> + · · · + c<•> (N2)'-2 1 2 n < _ 2. 
e = B 

B2 II 

• 
Proof. This inequality follows immediately from the evident 

inequalities 
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Lemma 4. The JoUowiTUJ inequality lwlds 

Clu + c~u + · · · + c~ll ( C. )'· 
Bl ;:;i NtH .. 

Proof. Since 

we have 

4° == IE(x~:)l = IE(y~c)l ;:\i E!ti~cl. 

On the other hand, by virtue of Schwarz's inequality 

[Eiyd + ElYtl + · · · + Ely.!]' ;:;i 
• 

;:;i (q1 + qa + · · · + q.) ~E(yl) ;:;i B.;~,, 
i:•l 

whence the statement follows immediately. 
If the variable integer N should be subject to the requirements that 

both the ratios 

c. 
N~+• 

and 

should tend to 0 when n increases indefinitely, then the preceding lemma.e 
would give three important corollaries. But before stating these 
corollaries we must ascertain the possibility of selecting N as required. 
It suffices to take 

1 

N = (B.C.)ffi. 
Then 

Nt ""' .,!;_ = (..2.!_)4!1 -+ 0 B N2H 1+~ • B 2 • 
by virtue of Liapounoff's condition. 

Also 

c. ( c. )-' ( c. ~_!_ 
B.N' ""' Nt+• 2+1· B!+~j H 

"''ill t.end to 0. By selecting N in this manner we ean state the following 
corollaries: 

Corollary 1. Thlaum 

9& + 9• + ... +q. 
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Corollary 2. The ratio 

B' • 
B;. 

tends to 1. 
Corollary 3. Tht ratio 

lft + c~e> + · · · + c~> 
e 

. B~ 

tends to 0 for all positive integer exponents e except e = 2. 
10. Let F,.(O and (/),.(t) repregent, respectively, the probabilities of the 

inequalities 

zi + z2 + · · · + z,. < t 
V2B.. 

X1 + X2 + ' . ' + X,. < t. 
V2B: 

By repeating the reasoning developed in Chap. X, Sec. 8, we find that 

Hence, 

lim (F,.(t) - 1/>n(t)) = 0 as n ~ ~ 

by Corollary 1. It suffices therefore to show 

and that can be done by the method of moments. By the polynomial 
throrem 

(
l't +X~ + · · · + l'_~)"' = ~ m! Sa,{J, ... ). 

v'2B. ~a!J9! ... >.! ~ !!! 
. 22 Bn 2 

where the :o:ummation extends over all systems of positiYe integers 
a f;; J9 ;;;; · · · f;; ). sati:"fying the condition 

a+P+ · · · +>.=m 

and S ... 8 . ... A denotes a symmetrical function of letters Xt, x~~ ... In 

determined by one oi its terms 

xj.rf ... xt 



. APPENDIX II 393 

if l repret~ents .the number of integers a, ~' ... >.. Sinre variables 
x1, Xz, ••• x,. are independent, we have 

E(Xl + x2 + ... + Xn)m = ~ ml Ga.~ .... ). 
. . v'2fi: . ~a!~! ... >.! m m 

22B,l 

where Ga,lf, ... ). is obtained by replacing powers of variables by mathe­
matical expectations of these powers. It is almost evident that 

IG ·. , I c<al + c<'a)' + . c~al c<llfl f c<211l + . . . + c<,.fJl a,(J, • • • A I < _!1:-_:..__;2::___..:..__ __ ,:.._· 

m = a • II 

B! B! B} 
cix, + c<(l + 

Now if not Jill the exponents a, ~, ... X are = 2 (whirh is po:-;:-;ible 
only whrn m iR even), by virtue of Corollary 3 the right member as well as 

tends to 0. Hence 

if m is odd. 

Ga,/J, .. . ). . 
m 

Bl. 

(
XI f X2 f ' ' ' f X")m 

E_ _ 100 -+0 
. v2Bn 

Rut for even m we have 

l23) E(X1 + X2 + · • • + Xn)111 
_ m! Gu, ... ~-+ O 

- lilDB 2"' ~ · y2Dn B,.2 

Let us consider now (m being t>nn) 

~ . m m, 
2 =. 1 2 " - .>-.~<.···· (B')2 (c·(IJ + c<tl + ... + c(21)2 ~ 2_ · IT 
B,. B.. ·~ - >.!~! · · ·. w!.- ~-

satisfying the condition 

+c.~=~ 
2 

B,.2 
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and H.,.,11, ..... is a symmetric function of c~21 , c~'ll, • • • c~'ll determined h) 
its term 

(ci2l)"(c~'ll)" ••. (cl'll) .. , 

l being the number of subscripts }., p., • • • w. Apparently 

H>.,11, ••• ., < (c~2>)A + (c~t>)A + ... + (c~'ll)A ••• 
m = B! 

B,.f 

Besides 

and 
(c~'ll)• + (c~2>)• + ... T (c~2l)• < (N2).-1 

Be = -B -+0 
A A 

if e > 1. Thus 

if not all subscripts>., p., ••• ware equal to 1. It follows that 

But by Corollary 2 

B~ 1 --+ 
B" 

and evidently H 1,1, ••• 1 = G2,2, ... 2· Hence 

(j)lc,,,~~i . • ~ l 
and this in connection with (23) shows that for an even m 

E -+--· 
(

Xt + Xt + · · · ·+ x,.)"' m! 
V2B: 2"'(i)t 

Finally, no matter whether the exponent m is odd or even, we have 

lim E(Zt + Xt + . . . + x~~)"' = _l_J • x"'e-z•dx. 
v'2B: y;: -· 
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Tshebysheff-!\Iarkoft''s fundamental theorem can be applied directly 
and leads to the result: 

lim .p,.(t) = _ r e-~e'dx 1 f' 
vr -• 

unifor~y in t. On the other hand, as has been established before, 

.lim [F.(t) - .p.(t)] = 0 

uniformly in t. Hence, finally 

lim F .(t) = _ r: e-~dx 1 f' 
vr -• 

uniformly in t. 
And this is the fundamental limit theorem with Liapounoft''s condi­

tions now proved by the method of moments. This proof, due to 
Markoff, is simple enough and of high elegance. However, preliminary 
considerations which underlie the proof of the fundamental theorem, 
though simple and elegant also, are rather long. Nevertheless, we must 
bear in mind that they are not only useful in connection with the theory 
of probability, but they have great importance in other fields of analysis. 



APPENDIX III 

ON A GAUSSIAN PROBLEM 

1. In a letter to Laplace dated January 30, 1812, 1 Gauss mentions a 
difficult problem in probability for which he could not find a perfectly 
satisfactory solution. We quote from his letter: 

Je me rappelle pourtant d'un probl<~me curiimx duquel je me suis occupe il y 
a 12 ans, mais lequel je n'ai pas reussi alors a resoudre a rna satisfaction. Peut~ 

etre daignerez-vous en occuper quelques moments: dans ce cas je suis sur que vous 
trouverez une solution plus complete. La voici: Soit M une quantite inconnue 
entre les limites 0 et 1 pour laquelle toutes les valeurs sont ou egalement pro babies 
ou plus ou moins selon une loi donnee: qu'on la suppose convertie en une fraction 
continue · : · · 

.· 

Quelle est la probabilite qu'en s'arretant dans le developpement a un terme fini 
a< .. > la fraction suivante 

_1_ 1 
a<n+i) +-­

a<•+2) + • 

soit entre les limites 0 et x? Je la designe par P(n, x) et j'ai en supposant toutes 
les valeurs egalement probables 

P(O, x) = x. 

P(1, x) est une fonction transcendante dependant de la fonction 

1+1+!+ ... +! 
2 3 X 

que Euler nomme inexplicable et sur laquelle je viens de donner plusieurs re­
cherches dans un memoire presente a notre Societe des Sciences qui sera bientOt 
imprime. Mais pour le cas ou nest plus grand, la valeur exacte de P(n, x) semble 
intraitable. Cependant j'ai trouve par des raisonnements tres simples que pour 
n infinie 

P( ) 
_ log (1 + x) 

n, x - log 2 

1 Gauss' W erke, X, 1, p. 371. 
396 
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~lais les efforts que j'ai fait lors de mes recherches pour assigner 

P( ) 
_ log (1 + x) 

n, x log 2 

pour une valeur tres grande de n, mais pas infinie, ont ete infructueux. 

The problem itself and the main difficulty in its solution are clearly 
indicated in this passage. The problem is difficult indeed, and no 
satisfactory solution was offered before 1928, when Professor R. 0. 
Kuzrnin succeeded in solving it in a very remarkable and elegant way. 

2. Analytical Expression for P,.(x). We shall use the notation 
P,.(x) for the probability which Gauss designated by P(n, x). The fir!'t 
question that presents itself is how to express P ,.(x) in a proper analytical 
form. Let 6(v1, v2, ... v,., x) be an interval whose end points are 
represented by two continued fractions: 

!. 1 
Vt +-

V2 + ' 
and 

+ 1 
Vn X 

with positive integer incomplete quotients v1, v2, ... v .. , while x is a 
positive number ~ 1. Two such intervals corresponding to two different 
~ystems of integers v1, Vt, • . . v,. and v~, t'~; . . . v~ do not overlap; 
that is, do not have common inner points. For, if they had a common 
inner point represented by an irrational number N (which we can always 
suppose), we should have for some positive x' < 1 and x" < 1 

1 N=- 1 
V1 +-

V2 + · 1 
+ v,.+x' 

1 =- 1 
v~ +;; + . 

1 
+ v~ + x''' 

But that is impossible unless v~ = v1, v~ = v2, ..• v~ = v,.. 
A number M being selected at random between 0 and 1 and converted 

into a continued fraetion 

1 
M =- 1 

l't+-
V2 + · 

+-1-
v,. + E 

if the quantity E turns out to be c·ontained between 0 and x < 1, M must 
bt'long to one (and only one) of the inten·at. o(v1, v2, ••• v,., r) ror­
N'~ponding to one of all the possible 8ystt>ms of n positi\·e intPgers 
t•~, l't •••• r.. Sinrf.' .\{ has a uniform distribution of probability and 
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since the length of the interval 8(vt, v2, ••• v,., x) is 

(-1)"[•· ~! V• + . . . 1 
·+ v,. 

the required probability P ,.(x) will be expressed by the sum 

1 l -ih+1 
V';+·~. 1 

. +-.. v,. X 

extended over all systep1s of positive integers v1, v2, • . . v,.. In general 
let 

~ =!. 1 (' 1 2 ) 
Qi v1 + - ~ = ' ' · · · n 

v2 + · . . 1 ·+-v, 
be a convergent to the continued fraction 

!. 1 
Vt +-
. V2 + · . 1 . +-· v,. 

Then the above expression for P ,.(x) can be exhibited in a more convenient 
form: 

(1) P,.(x) = ~ (-1),.[P,. + xP,._t _ P .. ]. 
Q,. + xQ,._t Q,. .... , ...... 

By the very definition of P.,.(x) we must have P,.(1) = 1; hence the 
important relation 

(2) ~ 1 = 1 
Q,.(Q .. + Q,._l) . 

This result can also be established directly by resorting to the original 
t>xpression of P.,.(1) and performing summation first with respect to Vt, 

then with respect to Vt, etc. 
Relation (2) can be interpreted as follows: Let a in general be the 

length of an interval 8(vt, v~, ..• v", 1). Then 

2:8 = 1. 

summation being extended over the (enumerable) set of intervals a. 
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3. The Derivative of P,.(x). In attempting to show that P,.(x) 
tends uniformly to a limit function as n -+ ao it is easier to begin with its 
derivative p,.(x). Series 

obtained by formal derivation of (1) is uniformly convergent in the 
interval (0, 1). For 

whence 

and the series 

is convergent. Hence 

Since 

we have 

p,(x) = ~ ( 1 1 )' (•, ! •l' 
•t,tlo • • • .. Q.-1 + II a + a: Q,._t 

and, performing summation with respect to 111, lit, • • • ~~-• for constant 
II,. 

whence 



400 INTRODUCTION TO MATHEMATICAL PROBABILITY 

or else 

"' 

(3) Pn(x) = ]Pn-{v ~ x)(v ~ x)2 
•=1 

-an important recurrence relation which permits determining com­
pletely the sequence of functions 

P1(x), P2(x), ... 

starting with po(x) = 1. 
4. Discussion of a More General Recurrence Relation. In discussing 

relation (3) the fact that po(x) = 1 is of no consequence. We may stai:t 
with any function fo(x) subject to some natural limitations, and ~~~m a 
sequence 

by means of the recurrence relation 
... 

(4) ·fn(X) ·= ]!n-{v! x)(v ~ x)2' 
•=1 

The following properties of fn(X) follow easily from this relation: 
a. If 

then 

For 

a 
fo(x) = 1 + x 

a 
.. }n(X) = 1 + xi , n = 1, 2, 3, · ... 

"' 
/I(x) =a ](v! x . v + x1 + 1) = 1 ~ x 

•=1 

whence the general statement follows immediately. 
b. If 

\hen 

m <j()< M 
1+x= 0 x=t+x 
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Follows from (a) and equation (4) itself. 
As a corollary we have: Let M" and m" be the precise upper and 

lower bounds of -t 

• (1 + x)f"(x) . (n = 0, 1, 2, ... ) 

in the interval 0 ~ z ~ 1. Then 

c. We have 

MoE; Mt E; Mt ~· • · · 
mo ~ mt ~ mt ~ · · · 

d. The following relations can easily be established by mathematical 
induction: 

I.et us suppose now that the function /o(x) defined in the interval 

O~z~1 

posseSS(>S a derivative everywhere in this interval and let ·IJ.O be an upper 
bound of 1/~(x)l while M is an upper bound of 1(1 + x)/o(x)l. Then by 
propt>rty (b) 

1/ft(x)l ~ M; 1/t .. (x)l ~ M; .1/a.(x)j. ~ M, ~ .... 

The function J,.(x) represented by the series 

where u stands for 

/.(x) = ~fo(u) (Q~ + ~Q-J)ll 

P,. +xP,._t 
Q. + xQ,._/ 
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has a derivative; for the series obtained by a formal differentiation 

J~(x) = ~J~(u)(Q" ~-:6~1)'- 2 ~fo(u)(Q" ~~-Q-1) 1 
ts uniformly convergent and represents J~(x). Now 

Q_l <.! 
(QII + xQII-t)3 Q! 

~tnd 

Hence 

12 ~/o(u)(Q .. ~;Q-1) 31 < 4M ~Q~~(Q" ~ Q
11

_ 1) = 4M 

by virtue of (2). On the othe~ hand, the inequality 

Q,.(Q" + Qll-1) = (v,.Q.._l + Q.._t)[(vn + l)Q-1 + Qn-2] > 
> 2Q-t(Qn-1 + Qn-2) 

holding for n ~ 2 together with an evident inequality 

Qt(Qt + Qo) ~ 2 

shows that 

Thus 

(Q. + xQ-1)4 > Q! . Q! > Q"(Q .. ~ QA-1) . Q,.(Qn ~ Q"_t) > 

> 2•-2Qn(Q,. + Qll-1) 

and consequently 

~~/~(u)(Q" ~;~~t)41 < 2':-z· 
Hence, we may conclude that 

P.t = : 2 +4M 

is an upper bound of l~(x)l. Similarly, starting with the second equation 
in (d), we find that 

P.t = ;_2 + 4M 
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is an upper bound of 1/~(x)l, and so forth. In general, the recurrence 
relation 

l't-t + 4M 
"" = 2-2 

(k=123 .. ·) , ' ' 

determines upper bounds of 

It is easy to see that in general 

· p.o 4M 
"" < 2k(~t-l) f- 1 - z-<-2) 

so that for sufficiently large n 

"" <liM. 
6. Main Inequalities. Let 

Then 

11111 
~Po(X) = /o(x) - -· 1+z 

J,.(x) - 1 ~ z = tp,.(x) == 

~ 1 1~ 1 
= ~~~~o(u\Q .. + xQ-t)l > 2~1Po(u)Q,.(Q .. + Q-~f 

Since the intervals & defined at the end of Sec. 2 do not overlap and cover 
completely the whole interval (0, 1), we may write: 

1 r' 1~ r 1~ 1 
l = 2Jo 'Po(x)dx = 2~Jw~~~o(x)dx = 2~1Po(Ut)Q .. (Q .. + Q-t)' 

the latter part following from the mean value theorem and tt1 beinl( 11. 

number contained within the interval a. By subtraction we find 

tnt 1~ 1 
J,.(z) - 1 + z- I> 2~[~Po(tt)- fo(ul)]Q .. (Q. + Q_t) 

and, since both u and Ut belong to the same interval i, 

() () l'o+tnt l'o+mo 
flO U - f UJ > - Q.(Q. + Q_t) > -~· 

Consequently, 

() mo , l'o+me 
f. X - 1 + Z- • > -2-+1' 
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and a fortiori· 

f,.(x) > mo + l - 2-"(Jto + mo). 
} .' " 1 +.x . 

It follows that 

(5) 

In a similar way, considering 'the fJn~tion · ' . · 

Mo · 
t/lo(x) = 1 + x.-: fo(x) 

and setting 

lt = ! JoltPo(x)dx; 
' ' ~ ,. . . . 

we shall have 

f,.(x) < Mo.- lt + 2-"(Jto + Mo), 
. .· , 1 +X · 

whence 

(6} 

Further, from (5) and (6) 

M 1 - m1 ;i Mo - mo + 2-"+l(Jto +.Mo) - l - l1. 

But 

l + l1 =!log 2 · (Mo- mo) = (1 -k)(Mo- mo); k < 0.66) 
so that finally 

Mt- m1 < k(Mo ..... mo) + 2-,"~ 1 (Jto + Mo} .. 

Starting with f,.(x), h,.(x), ... instead of fo(x), in~ similar way we find 

M2- m2 < k(Mr- m1) + 2-"+1(1'1 + M1) 
Ma-ma < k(M2- m2) + 2-n+l(Jlz + M2) 

Mn- m,. < k(M,._t - m,._1) + 2-~+1(1'.~1 f M,._t). 

From these inequalities it follows that 

M,.- m,. < (Mo- mo)k" +2-n+l {Jtok"-1 + JJ.tk"-.2 + · · · + Jln-1 + 
+ Mok"-1 + M tii:"-2 + · ' · + M n-t]. 

Without losing anything in generality, we may suppose that fo(x) is a 
positive function. Then . 

* M ;, m; are used here with the same meaning as M *'' m.; in Sec. 4. 
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J/ k ~ Mo, /lk < 5 . .:\f o (k = 1, 2, 3, ... ) 

at least for sufficiently large n. 0\\ing to these inequalities we shall have 

-(k)"-1 
6Mo 

(7) M,. - m,. < (Mo - mo)k" + _p.o 2 + (1 _ k)2-•" 

This inequality shows that sequences 

Mo ~ Mt ~ Ms ~ 
mo ~ mt ~ m2 ~ · · · 

approach a common limit a. The following method can be used to find 
the value of this limit. Let N be an arbitrary sufficiently large integer 
and n the integer defined by 

Then 

and therefore 

n2 ~ N < (n + 1)2• 

m,. <f () < M. 
1 + X = "" X = 1 + %1 

m,. < J () < M. 
1 + X = N X = 1 + x' 

The last inequality permits presenting /N(x) thus: 

(8) a 
/N(x) = 1 + x + 8(Jl,- m,.); IBI < 1, 

whence 

~
1

/A·(x)dx = ~1/o(x)dx = a log 2 + 8'(M. - m.), 18'1 < 1, 

and, bf>rause M,. - m. ultimately becomes 88 small 88 we please in 
absolute value, 

a log 2 = ~1/o(x)dx. 

Equation (8) shows clearly that the sequence of functions 

/o(x), /t(z), /2(x), ... 

defined by the recurrence relation (4) approaches uniformly the limit 
function · 
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where 

1 fl 
a = log 2Jo fo(x)dx. 

6. Solution of the Gaussian Problem. It suffices to apply the preced­
ing considerations to the case fo(x) = p()(x) = 1. In this case Mo = 2, 
mo = 1, JAo = 0 and 

1 
a=-· log 2 

Consequently, 

PN(x) = (1 +;)log 2 + o(k" + (1 - ~. 2"_.); 181' < 1 

where n = [v'N]. It suffices to integrate this expression between limits 
0 and t < 1 to find 

p (t) =log (1 + t) +·~(k'~~ + 3 \. 1~1 < t. 
N log 2 (1 - k)2n-l} 1 

AsN-+ IX) 

p (t) --+ log (1 + t) 
N log 2 

as stated by Gauss. Moreover, 

IPN(t) _logl~~ t t)l < t(k" + (1- ~)2"-a) 
for sufficiently large, but finite N. 



TABLE or THE PROBABILITY INTEGRAL 

~<•> = -- e-l''dt 1 l. 
vz; 0 

I 
--~-

I . 41<•1 z 4J(I) ' 41<•1 t ~., 

0.00 0.0000 0.65 0.2422 1.30 0.4032 1.95 0 .• 744 
0.01 0.0040 0.66 0.2454 1.31 0.4049 1.96 0.4750 
0.02 0.0080 0.67 0.2486 1.32 0.4066 1.97 0.4756 
0.03 0.0120 0.68 0.2517 1.33 0.4082 1.98 0.4761 
0.04 0 0160 0.69 0.2549 1.34 0.4099 1.99 0.4767 
0.05 0 0199 0.70 0.2580 1.35 0.4115 2.00 0.4772 
0.06 0.0239 0. 71 0 2611 1.36 0.4131 2.02 0.4783 
0 07 0 0279 0.72 0.2642 1. 37 0.4147 2.04 0.4793 
0.08 0 0319 0.73 0.2673 1.38 0.4162 2.06 0.4803 
0.09 0.0359 0.74 0.2703 1.39 0.4177 2.08 0.4812 
0.10 0.0398 0 75 0.2734 1.40 0.4192 2.10 0.4821 
0.11 0.0438 0 76 0.2764 1.41 0.4207 2.12 0.4830 
0.12 0.0478 0.77 0.2794 1.42 0.4222 2.14 0.4838 
0.13 0.0517 0.78 0.2823 1.43 0.4236 2.16 0.4846 
0.14 0 0567 0.79 0.2852 1.44 0.4251 2.18 0. 4854 
0.15 0.0596 0.80 0.2881 1.45 0.4265 2.20 0.4861 
0.16 0.0636 0.81 0.2910 1.46 0.4279 2 22 0. 4868 
0.17 0.0675 0.82 0 '2939 1.47 0.4292 2.24 0.4875 
0.18 0.0714 0.83 0 2967 1.48 0.4306 2.26 0.4881 
0.19 0.0753 0.84 0.2995 1.49 IH319 2.28 0. 4887 
0.20 0.0793 0.85 0' 3023 1.50 0.4332 2.30 0.4893 
0.21 0.08:!2 086 0.3051 1. 51 0.4345 2.32 0.4898 
0 22 0 0871 0 87 0' 3078 1.62 0.4357 2.34 0.4904 
0.23 0.0910 0 88 0.3106 1.53 0.4370 2.36 0.4909 
0.24 0.0948 0.89 0.3133 1.54 0.4.382 2.38 0.4913 
0.26 0 0987 0.90 0.3159 1.55 0.4394 2.40 0.4918 
0.26 0.1026 0.91 0. 3186 1.56 0.4406 2.42 0.4922 
0.27 0.1064 0 92 0.3212 1.57 0.4418 2.44 0.4927 
0 28 0' 1103 0 93 0.3238 1.58 0.4429 2.46 0.4931 
0 29 0.1141 0 94 0.3264 1.59 0.4441 248 0.4934 
0 30 0.1179 0.95 0. 3289 1.60 0.4452 2.50 0.49:18 
0.31 0.1217 0.96 o. a:m 1.61 0.4463 2.52 0.4941 
0.32 0.1255 0.97 0.3340 1.62 0.4474 2.64 0.4945 
0.33 0.1293 0.98 0.3365 1.63 0.4484 2.56 0.4948 
0.34 0.1331 0.99 0.3;)89 1.64 c .4495 2.58 0.4951 
0.311 0.1368 1.00 0.3413 1.65 0.4505 2.60 0.4953 
0.36 0.1406 101 0. 3438 1.66 0.4515 2 62 0.4956 
0.37 0' 1443 102 0.3461 1.67 0.4525 2 64 0.4959 
0.38 0.1480 I .03 0.3485 1.68 0.4535 2.66 0.4961 
o.:l9 0.1517 1.04 0. 3508 1.69 0.4545 2 68 0.4963 
0.40 0.1554 105 0.3531 l. 70 0.4554 2. 70 0.4965 
0.41 0.1591 1.06 0. 3554 1.71 0. 4564 2. 72 0.4967 
0.42 0.1628 1.07 0. 3577 1.72 04573 2.74 0.4969 
0 43 0.1664 1.08 0.3599 I. 73 0.4582 2. 76 0.4971 
0 ... 0.1700 1.09 0.3621 1.74 0.4591 2.78 0.4973 
0 45 0 1736 1.10 0. 3643 1.75 0.4599 280 0.4!174 
0 46 0.1772 1.11 0. 3665 1.76 0.4608 2.82 0.4976 I 
0.47 0 1808 1' 12 0.3686 1. 77 0.4616 284 0.4977 
0.48 0.1844 1.13 0.3708 1.78 0.4625 286 0.4979 
0 49 0.1879 1.14 0 3729 1.79 0.4633 288 0.4980 
0./lO 0. llll5 1.15 0 3749 1.80 0.4641 2.90 0.4981 
0.61 0.1950 1.16 0. 3770 1.81 0.4649 2 92 0.4982 
0 [)2 0.1\!85 1.17 0.3790 1.82 0.4656 2 94 0.4\!84 
OM 0.2019 1.18 0.3810 1.83 0' 41\64 2.96 0.4985 
054 0.2054 1.19 0.3!1:{0 1.84 0.4671 2.98 0.4!!86 
0115 0. 2088 1 20 0. 3849 1.85 0 4678 300 0.49865 
0.56 0.2123 I. 21 0. 3869 1 86 0.4686 320 0.491131 
0 67 0.2157 1.22 0.3888 1 87 0 46\13 3.40 0.49966 
OM 0.2190 1. 23 0. 3907 1.88 0.4699 360 0.499841 
0 611 0 2224 1.24 0.3\!25 1.89 0 4706 380 0.4\111\1:.?8 
060 0 2257 125 0. 3944 1.90 0.4713 4.00 0.499968 
0 61 0.2291 1. 26 0.3962 1.91 0.4719 4/lO 0 499997 
0 62 0 2324 1.27 0 3~g(} 1.92 0 4726 5.00 0.4009117 
0 63 0.2:!57 128 0. 3997 1.93 0.4732 
064 0 2389 129 0.4015 1.94 0.4738 



INDEX 

A 

Arrangements, 18 

B 

Bayes' formula (theorem), 61 
Bernoulli criterion, 5 
Bernoulli theorem, 96 
Bernoulli trials, 45 
Bernstein, S., inequality, 205 
Bertrand's paradox, 251 
Buffon's needle problem, 113, 251 

Barbier's solution of, 253 

c 

Cantelli's theorem, 101 
Cauchy's distribution, 243, 275 
Characteristic function, composition of, 

275 
of distribution, 240, 264 

Coefficient, correlation, 339 
divergence, 212, 214, 216 

Combinations, 18 
Compound probability, theorem of, 31 
Continued fractions, 358, 361, 396 

Markoff's method of, 52 
Continuous variables, 235 
Correlation, normal (su Normal cor­

relation) 
Correlation coefficient, distribution of, 

339 . 

D 

Difft>rence ~uations, ordinary, 75, 78 
partial, 84 

Di~persion, definition, 172 
of sums, 173 

l>•~trihution, Cauchy's, 243, 275 
l'haractt-ristic function of, 264 
of rorrelation coefficient, 339 

Distribution, determination of, 271 
equivalent point, 369 
general concept of, 263 
normal (Gat181lian), 243 
Poisson's, 279 
"Student's," 339 

Distribution function of probability, 
239, 263 

Divergence coefficient, empirical, 212 
Lexis' case, 214 
Poisson's case, 214 
theoretical, 212 
Tschuprow's theorem, 216 

E 

Elementary errors, hypothesis of, 296 
Ellipses of equal probability, 311, 328 
Estimation of error term, 295 
Euler's summation formula, 177, 201. 

303, 347 
Events, compound. 29 

contingent, 3 
dependent, 33 
equally likely, 4, 5, 7 
exhaustive, 6 
future, 65 
incompatible, 37 
independent, 32, 33 
mutually exclusive, 6, 27 
opposite, 29 

Expectation, mathematical, 161 
of a product, 171 
of a sum, 165 

F 

Factorials. 349 
Fourier theorem, 241 
French lottery, 19, 108 
Frequency, 96 
Fundamental lemma (au Limit the<trem) 
Fundamental theorem (IW TshPh\"Shf.fJ-

Markoff theorem) . 
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G 

Gaussian distribution, 243 
Gaussian problem, 396 
Generating function of probabilities, 

47, 78, 85, 89, 93, 94 

H 

Hermite polynomials, 72 
Hypothesis of elementary errors, 296 

Independence, definition of, 32, 33 

K 

Khintchine (see Law of large numbers) 
Kolmogoroff (see Law of large numbers; 

Strong law of large numbers) 

L 

Lagrange's series, 84, 150 
Laplace-Liapounoff (see Limit theorem) 
Laplace's problem, 255 
Laurent's series, 87, 148 
Law of large numbers, generalization 

by Markoff, 191 
for identical variables (Khintcbine), 

195 
Kolmogoroff's lemma, 201 
theorem, 185 
Tshebysheff's lemma, 182 

Law of repeated logarithm, 204 
Law of succession, 69 
Lexis' case, 214 
Liapounoff condition (see Limit theorem l 
Liapounoff inequality, 265 
Limit theorem, Bernoullian case, 131 

for sums of independent vectors, 318, 
323, 325, 326 

fundamental lemma, 284 
Laplace-Liapounoff, 284 

Line of regression, 314 
Lottery, French (see French lottecy) 

M 

Marbe's problem, 231 
Markoff's theorem, infinite dispersion, 

191 

Markoff's theorem, for simple chains, 301 
Markoff-Tshebysheff theorem (see 

Tshebysheff-Markoff theorem) 
Mathematical expectation, definition of, 

161 
of a product, 171 
of a sum, 165 

Mathematical probability, definition of, 
6 

Moments, absolute, 240, 264 
inequalities for, 264 
method of (Markoff's), 356ff. 

N 

Normal correlation, 313 
origin of, 327 

Normal distribution, Gaussian, 243 
two-dimensional, 308 

p 

Pefl.rson's 11 x2-test.," 327 
Permutations, 18 
Point, of continuity, 261, 356 

of increase, 262, 356 
Poisson series, 182, 293 
Poisson's case, 214 
Poisson's distribution, 279 
Poisson's formula, 137 
Poisson's theorem, 208, 294 
Polynomials, Hermite (see Hermite) 
Probability, approximate evaluation of, 

by Markoff's method, 52 
compound, 29, 31 
conditional, 33 
definition (classical) of, 6 
total, 27, 28 

Probability integral, 128 
table of, 407 

R 

Relative frequency, 96 
Runs, problem of, 77 

s 

Simple chains, 7 4, 223, 297 
Markoff's theorem for, 301 

Standard deviation, 173 
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Rtieltjes' integrals, 261 
Stirling's formula, 349 
Stochastic variables, 161 
Strong law of large numbers (Kolmo­

goroff), 202 
"Student's" distribution, 3.39 

T 

Table of probability integral, 407 
Tests of significance, 331 
Total probability, theorem of, 27, 28 
Trials, dependent, independent, rt>pt>8ted, 

44, 45 

Tschuprow (set Divergence coefficient) 
Tshebysheff-Markoff theorem, funda­

mental, 304, 384 
application, 388 

TshebyshetJ's inequalities, 373 
Tshebysheff's inequality, 204 
Tshebysheff's lemma, 182 
Tshebysheff's problem, 199 

v 
Variables, continuous, 235 

independent, 171 
stochastic, 161 

Vel'tors (su Limit theorem) 
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