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PREFACE

This book is an outgrowth of lectures on the theory of probability
which the author has given at Stanford University for a number of
years. At first a short mimeographed text covering only the elementary
parts of the subject was used for the guidance of students. As time
went on and the scope of the course was gradually enlarged, the necessity
arose of putting into the hands of students a more elaborate exposition
of the most important parts of the theory of probability. Accordingly
‘a rather large manuscript was prepared for this purpose. The author
did not plan at first to publish it, but students and other persons who had
opportunity to peruse the manuseript were so persuasive that publication
was finally arranged.

The book is arranged in such a way that the first part of it, consisting
of Chapters I to XII inclusive, is accessible to a person without advanced
mathematical knowledge. Chapters VII and VIII are, perhaps, excep-
tions. The agalysis in Chapter VII is rather involved and a better way
to arrive at the same results would be very desirable, At any rate, a
reader who does not have time or inclination to go through all the
intricacies of this analysis may skip it and retain only the final results,
found in Section 11. Chapter VIII, though dealing with interesting
and historically important problems, is not important in itself and may
without loss be omitted by readers. Chapters XIII to XVIincorporate
the results of modern investigations. Naturally they are more complex
and require more mature mathematical preparation.

Three appendices are added to the book. Of these the second is by
far the most important. It gives an outline of the famous Tshebyshefi-
Markoff method of moments applied to the proof of the fundamental
theorem previously established by another method in Chapter XIV.

No one will dispute Newton's assertion: “In scientiis addiscendis
exempla magis prosunt quam praecepta.””  But especially is it so in the
theory of probability. Accordingly, not only are a large number of
illustrative problems discussed in the text, but at the end of each chapter
a selection of problems is added for the benefit of students. Some of
them are mere examples. Others are more difficult problems, or even
important theorems which did not find a place in the mamn text, In all
such eases sufficiently explieit indications of solution {or proofs) are given,
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vi ' PREFACE

The book does not go into applications of probability to other sciences.
To present these applications. adequately another volume of perhaps
latyw gize would be required. - ’

0 00€ 18 mare gware than the author of the many i jons i
; y imperfections in
.the plan of this book auu 118 acvwe.g g present an eitirely satis

factory book on probability is, indeed, a dinn s o, , oy
all these imperfections we hope that the book will prm]/(é uﬂ{f"e}f . Ymh
since it contains much material not to be found in other booksﬂ?fr}sa]\@
same subject in the English language.

J. V. UspPENsKY.

SranrorD UNIVERSITY,
September, 1937.
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APPENDIX I

1, Euler's Summation Formula. Let f(z) be a function with a
continuous derivative f/(z) in an interval (g, b) where ¢ and b > a are
arbitrary real numbers. The notation

nsh

3 /)
n>a
will be used to designate the sum extended over all integers n which are
>aand £b.  Itisanimportant problem to devise means for the approxi-
mate evaluation of the above sum when it contains a considerable number
of terms,
Let [z], as usual, denote the largest integer contained in a real number
1, §o that
=[]+
where 8, so-called “fractional part” of r, satisfies the inequalities
0£6<1.

Considered as functions of a continuous variable z, both (2] and 8 have
discontinuities for integral values of z. The function

pa) =3 —0=Da]-z+}
is likewise discontinuous for integral values of 2. Besides, it is a periodic
function of z with the period 1; that is, we have
pz + 1) = p(a)
for any real z. With this notation adopted we have the following
important formula:

L)
b
M Zn) = [1@)dx + pb)®) - of@) ~ [0 )z
n>a
which is known as “Buler's summation formula.”
Proof. Let k be the least integer >a and I the greatest integer <b.
The sum in the left member of (1) is, by definition,

IR +fk+0)+ - +40)
and we must show that this is equal to the right member. To this end
we write first
347



348 INTRODUCTION TO MATHEMATICAL PROBABILITY

jel-1
Jor@r @i = [s@r @ + [o@r @i+ 3 [y @
i=k
Next, since j is an integer,

i+1 i+l .
j;_ p()f (2)dz = j; (j -z %)f’(x)dx __JQ +1;(.7 + 1) +
i+

+ | fo)dz

7
and

j=l=1 ne=l-1

S f "oar@i - L0 S gy 4 f )
i=k

n=k+41

On the other hand,

k , b .
ﬁ p(@)f ()dz = f (k— 1 ~x+§)f'<x)dx =19 e +

b b b
[rrreie = [[(1- 2+ Do = 2D 4 sorsor+ (s

so that finally
[o@r@ds = - - fe+1) - - - 10 +
+p(01®) — pla)f@) + [ Flw)iz;

whence
n<h

1) = [z + o010 - salfla) - [['o@f @ds,

n>a

which completes the proof of Euler’s formula.
- Corollary 1. The integral

oz = o)

represents a continuous and periodic function of z with the period 1. For

oz +1) ~0o(2) = :’;\j;(zdz—fpz)dz—f(%—z)dz—

fTogz1,
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ofz) = ‘rG - z)dz =L 2_ 2)

1—0)

and in general
oz) = ———

where 8 is a fractional part of z. Hence, for every real
05a@) £3%

Supposing that f(z) exists and is continuous in (a, b) and integrating by
parts, we get

[Lo@)r @)z = o0 ®) - e@f @ = [[e@f @)z,

which leads to another form of Euler’s formula:

nsd

- "t@)dz + p(b)f(B) — p(a)f(a) — o) (B) +

n>e

(@@ + [o@f" @)

Corollary 2. If f(x) is defined for allz = a and possesses & continuous
derivative throughout the interval (g, +«); if, besides, the integral

["o@) @)

exists, then for a variable limit b we have

nsh

@ 2w =C+ [1Od + 050 + [, @) @z

n>a

where C is a constant with respect to b.
It suffices to substitute for

[o@f @z

the difference
[T o@r@iz - [[To@s @i

and separate the terms depending upon b from those involving a.

2. Stirling’s Formula. Factorials increase with extreme rapidity
and their exact computation soon becomes practically impossible. The
question then naturally arises of finding a convenient spproximate



350 INTRODUCTION TO MATHEMATICAL PROBABILITY

expression for large factorials, which question is answered by a celebrated
formula usually known as “Stirling’s formula,” although, in the main,
it was established by de Moivre in connection with problems on proba-
bility. De Moivre did not establish the relation to the number

r = 3.14159 . . .

of the constant involved in his formula; it was done by Stirling.
“In formula (2) it suffices to take a = 14, f(z) = log z, and replace b
by an arbitrary integer » to arrive at the remarkable expression

log(1-2'3---n)=C+(n+%)

where C is a constant. For the sake of brevity we shall set

“o(@)dz _ ["px)de f"”p(ﬂ_x
J:. ~--5;— *j; T + n+1 T + '
and

k+1 (x)dz J‘ p(u)du bolu)du Lo(u)du _
ﬁ px ou+k Lu+k+£u+k—

_f (3 - uw)du f——udu J‘* (1 — 2u)%du
= axk T) axE Tl EroGi-w

Now

Hence
o) = 1)1 = 20F. ()
where
1
Fa(u) = E(k ST
k=n
Since

k4+u)Ek+1—uw =kEk+1) + v~
it follows that for 0 < u < 14

(k+uw)k+1—u>kk+1)
E+uwEk+l-w) <E+H<E+DHE+D.

Thus for 0 < u < 14
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S 1 1
F»‘““Ek‘(kﬂ)’ﬁ

kwn

. 1 1
Fuw) > g(k FHETD Y

Making use of these limits, we find that
l
—-f (1 = 2u)%du = o

> 5 +1f“ d“‘m(nH

and consequently can set

1
() = BT H
where
0<i<i
Accordingly
. 1 1
log(1-2-3...1) =C+(n+-2~>logn—n+m-

The constant C depends in a remarkable way on the number =.
To show this we start from the well-known expression for x due to Wallis:

* o im(2.2.44 2 "
2=MM\1'3'3'5 -1 241/

which follows from the infinite produet

sin r =:r<1 - :;)(1 - 3%)(1 - 9%) s

by taking z = »/2. Since
2244 W h
1335 -1 41 |1

we get from Wallis' formula

. 2:4-6.--2n 1
\/;—llm[l'3-5'--(2n—l)_;]’ n - o,

2:4.6--.2n * 1
J5--(2n=-1] 241

On the other hand,
2-4.6---2n=2.1.2.3...1n
1:2.3...2n
SR S V8 P EET Y
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so that

N
e f2m(1.2.3...p)2 17
\/;—llm{ T }, n- o
or, taking logarithms

log V7 = lim[2n“log2+2log (1-2.3.. n)~
—log(1-2:3 .. 2n) — }logn]
But, neglecting infinitesimals,

log(1:2:3- - n)=C+n+Llogn—n
“log(1-2-3 - 2n) c+(2n+%)log2n—2n

whence
lim[2nlog2 +2log(1-2-3.-.2) -
~log(1-2:3... )--llogn] C - 1ilog2
Thus -
logv/r = C ~3log2, € =log 7
and finally

@) log(1-2:3--.m) =log'\/—2—;r+(n+%)logn—n+

1 1
Tonte 0<i<3
This is equivalent to two inequalities
1-2.3. .
el2n+6 B — < elin
Vrn e
which show that for indefinitely increasing n
1.2.3...n

lim = = 1.

Voarn e

This result is commonly known as Stirling’s formula.
For a finite # we have

1.2.3 . n = 2rnnrer - oo™

where

1 1
B+ oW <1
The expression

-V Zxnmre™
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je thus an approximate value of the factorial 1-2-3 « « - n for large n
in the sense that the ratio of both is near to 1; that is, the relative error is
small. On the contrary, the absolute error will be arbitrarily large for
large n, but this is irrelevant when 8tirling’s approximation is applied
to quotients of factorials.

In this connection it is useful to derive two further mequahtles

Let m < n; we have, then,

. kan=-1
1 .
Fu(u) — Falu) = 2 CE+uwk+1-v’
k=m
and further, supposing 0 < u < 14,
k=n-1
1 1
Folu) - F(u<2k(k+l).——_;
k=m
k=n—
Fa(u) = Fu(u) > El ! g -
» . 2 E+HE+D m+3 n+i
Hence,
1 1 1 1
w(m) — w(n) < 1om ~ v w(m) — w(n) > 2m+3 12 +3)

and, if | is a third arbitrary positive integer,

1 1
w(m) + (l) ““’(")<m+-1'2"l*m

t 11
2m+4) " 120+ 1200+ 3)

3. Some Definite Integrals. The value of the important definite
integral
f “et'dt
- J0

can be found in various ways. One of the simplest is the following: Let

J. = fo " evindy

in general where n is an arbitrary integer 20. Integrating by parts one
can casily establish the recurrence relation

w(m) + w(l) = o(n) >

Jn = ﬁ"%—l".—d;
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whence

'J2m=

1:3-5...(2m—-1),
gm vo

sz+1=1'2'32' com

On the other hand,
Josr + O+ Ny = j; ® e t1(g 4 N,
which shows that
ot + 2N + W0y >0

for all real . Hence, the roots of the polynomial in the left member are
imaginary, and this implies

JE < Japidnr

Taking n = 2m and # = 2m 1 and using the preceding expression
for Jym and Jomy1, we find

2:4.6--+2m 1 <Jo< 2:4:6-..2m 1
I35 @mn-Dyam+te 135 @m-1)1/anm
But

. 2. 4. < 2m .
mhﬂl -5 - -(2m—17 bt
hence

Jo= [Cevd =47
Here substituting ¢ = +/au, where a is a positive parameter, we get
L 1 =
[
As 3 generalization of the last integral we may consider the following one:
V= j; e~ cos budu.
The simplest way to find the value of this integral is to take the derivative

v
db

and transform the right member by partial integration. The result is

®
= —-f ¢ sin bu - udu
b
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av b
a4
or
bt
d(Veks) = 0,
whence .

bt

' V=C%
To determine the constant C, take b = 0; then

C= (V)b.o = f evdy = —J:v
® 1
f e cos budy = —\/:e [}
0 2\

The equivalent form of this integral is as follows:

80 that finally

© - bt

i

f e cos budu = ety =  [-¢ o
~e —a a

355



APPENDIX II

METHOD OF MOMENTS AND ITS APPLICATIONS

1. Introductory Remarks. To prove the fundamental limit theorem
Tshebysheff devised an ingenious method, known as the “method of
moments,” which later was completed and simplified by one of the most
prominent among Tshebyshef’s disciples, the late Markoff. The
simplicity and elegance inherent in this method of moments make it
advisable to present in this Appendix a brief exposition of it.

The distribution of a mass spread over & given interval (g, b) may be
characterized by a never decreasing function ¢(z), defined in (a, b)
and varying from ¢(a) = 0 to ¢(b) = m, where my is the total mass con-
tained in (g, b). Since p(z) is-never decreasing, for any particular point
1y, both the limits

lim (2 ~¢) = ¢(z0 — 0)
lim ¢(z0 + €) = ¢(5a + 0)

exist when a positive number e tends to 0. Evidently

(20 — 0) < ¢(20) < @20 + 0).
If
ez ~ 0) = p(z0 + 0) = ¢(z),
then zo is a “point of continuity” of ¢(z). In case
oz + 0) > oz — 0),
2, is & point of discontinuity of ¢{z), and the positive difference
V ¢(zs + 0) = ¢(z - 0)
may be considered as a mass coneentrated at the point x.. In all cases
¢(zo — 0) is the total mass on the segment (a, ) excluding the end point
1o, whereas ¢(zo + 0) is the mass spread over the same segment including
the point z;. ,

The points of discontinuity, if there are any, form an enumerable set,
whence it follows that in any part of the interval (a, b) there are points of
continuity.

If for any sufficiently small positive e

oz + ¢ > oz — o),

1o is called a “point of increase” of ¢(z). There is at least one point of

inerease and there might be infinitely many. For instance, if
356
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p(z) =0 for afzZc
o(r) =mg for c¢<zZh

then ¢ is the only point of increase. On the other hand, for

( o r—a
o) = mo—4

every point of the interval (e, b) is a point of increase. In case of a
finite number of points of increase the whole mass is concentrated in
these points and the distribution function ¢(z) is a step function with a
finite number of steps.

Stieltjes’ integrals

[laoa) = m,  [zdole) =my, - - [(ridole) = m;

represent respectively the whole mass mo and its moments about the
origin of the order 1, 2, . . . . When the distribution function ¢(z)
is given, moments mo, my, ms, . . . m; (provided they exist) are deter-
mined. If, however, these moments are given and are known to originate
in a certain distribution of a mass over (g, b), the question may be raised
with what error the mass spread over an interval (g, z) can be determined
by these data? In other words, given mq, m,, ms, . . . m;, what are the
precise upper and lower bounds of & mass spread over an interval (g, z)?
Such is the question raised by Tshebysheff in a short but important article
“Sur les valeurs limites des intégrales” (1874).! The results contained
in this article, including very remarkable inequalities which indeed are of
fundamental importance, are given without proof. The first proof of
these results and the complete solution of the question raised by Tsheby-
sheff was given by Markoff in his eminent thesis “On some applications
of algebraic continued fractions” (St. Petersburg, 1884), written in
Russian and therefore comparatively little known.

Suppose that p; is the limit of the error with which we can evaluate the
mass belonging to the interval (g, z) or, which is almost the same, the
value of ¢(z), when moments mo, my, my, . . . m; are given, If, with ¢
tending to infinity, p tends to 0 for any given z, then the distribution
function (r) will be completely determined by giving all the moments

my, My, My, . .
One case of this kind, that in which

_1:3.5. - (2k=1)
2¢ ' Mapyy

my =1, My

fl
<

VJour, Liowmlle, Ser. 2, T. XIX, 1874,
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was considered by Tshebysheff in a later paper, “Sur deux théorémes
relatifs aux probabilités” (1887)! devoted to the application of his
method to the proof of the limit theorem under certain rather general
conditions. The success of this proof is due to the fact that moments,
a8 given above, uniquely determine the normal distribution

o(z) = e ey
3

of the mass 1 over the infinite interval (= o, 4 ).

After these preliminary remarks and before proceeding to an orderly
exposition of the method of moments, it is advisable to devote a few pages
to continued fractions associated with power series, for continued frac-
tions are the natural tools in questions of the kind we shall consider.

2. Continued Fractions Associated with Power Series. Let

: Al Ai AJ R
¢(2)=;;,+;;,+;;;+"-, (41 5#0)
be a power series arranged according to decreasing powers of z where the
smallest exponent a; is positive. We consider this power series from a
purely formal point of view merely as 2 means to form a sequence of
rational fractions

Ay Ay 4y Ay A A

= mtw wmTmTw
and we need not be concerned about its convergence.

Evidently 1/¢(2) can again be expanded into power series, arranged

according to decreasing powers of z. Let its integral part, containing
non-negative powers of z, be denoted by ¢:1(z), and let the fractional part

Bl Bz Ba
mimtat

containing negative powers of z, be denoted by — ¢1(2), so that

1) - e,

#(2)
In the same way
1
()
can be represented thus:
i = 90 = 4

1 Qeuvres complétes de P. L. Tshebysheff, Tome 2, p. 482.
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where g,(z) is 8 polynomial and

#:e) = — + C’

m Fabd

C
+;’=+...,

% power series containing only negative powers of z. Further, we shall
have

‘E%=ww—mm

with a certain polyﬁomial q,(z) and a power series

4’3(2) + P +

Z" 25!
containing negative powers of 2, and soon. Thus we are led to consider a
continued fraction (finite or infinite)

() - 1

fh";

associated with ¢(2) in the sense that the formal expansion of
. .

@~
B - 1

R 0]

into 8 power series will reproduce exactly ¢(z). The continued fraction
(1) is again considered from a purely formal standpoint as a mere abbre-
viation of the sequence of its convergents

Pl AH_1 . A_1
G o &6 a-=" & @-- 1'
] Rt
q:
The polynomials
Pl, Pg, P;, -
Qu Qs Qs . ..
can be found step by step by the recurrence relations
P = q-Pi«l P..-:}
2 2,3,4,
@ Q = ¢Qi1 ~ Qis
P[ = l, Po = (

Q‘-qlv Qﬂ=l
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from which the following identical relation follows:
@ Pi2)Qinr(2) — Qul2)Pica(e) = 1,
showing that all fractions
Py(2)
Qi(2)
are irreducible. Evidently degrees of consecutive denominators of

convergents form an increasing sequence and the degree of Qi(z) is at
least 7. Since

1 1 _ Pigis1 — ¢ia(2)) = Picy _

- T Qg — 6in(@) ~ Qe
gz — . . 1

- Girt — $i(2)

= Piyy — Piipai(2)

Qir1 — Qidinn(2)

we can write .
= Pin = Pigina(2)
¢ Qir1 — Qid(2)

in the sense that the formal development of the right-hand member is
identical with ¢(2). By virtue of relation (3) ‘

(Z) Q Qﬂ'l - Q\d’vﬂ)

The degree of Q; being \; and that of Qi1 being M\, the expansion of
Qi1 — Qigin)
in a series of descending powers of z begins with the power 2\,

Hence,

P M
¢(Z)—§:=m+"'

and, since \iy1 2= N + 1, the expansion of

o(2) — Q‘

begins with a term of the order 2\; + 1 in 1/z at least. This property
characterizes the convergents P;/Q; completely. For let P/Q be a
rational fraction whose denominator is of the nth degree and such that
in the expansion of

o
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the lowest term is of the order 2n + 1in 1/zat least. Then P/Q coincides
with one of the convergents to the continued fraction (1). Let 1 be
determined by the condition

M é n <N‘+1‘
Then
P; M
o(2) — 0 =smm T

P N
¢(2)"'Q=Z,T'+l+"'

whence in the expansion of
P P

—-— - —

Q &

the lowest term will be of degree 2n + 1 or i + My in 1/z. Hence, the
degree of

PQi —~ PQ
in z is not greater than both the numbers
N—-n-1 and n - Nu

which are both negative while

PQ; - PQ
is a polynomial. Hence, identically,
PQ;—PQ =0
or
P_P
Q &

which proves the statement.

, .
3. Continued Fraction Associated with f g—’% Let ¢(z) be a never

decreasing function characterizing the distribution of a mass over an
interval (a, ). The moments of this distribution up to the moment of
the order 2n are represented by integrals

mo= [ldod),  m = [ zdela),
my = [(2dela), + - - mau = [C2odela).
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Let
Moy m.
mam, iy mam m,
. _ . - . Mg

Ao =My Ay = ; Ar=imymgmgl; - - ¢ A, = i

mame|” O} b L,

MM gty
MMyl Moy

If p(2) has not less than n + 1 points of increase, we must have

A >0, A >0,---4,>0
and conversely, if these inequalities are satisfied, ¢(z) has at least n + 1
points of increase. To prove this, consider the quadratic form

b= [tz t o+t de)

inn + 1 variables by, ¢y, . . , t.. Evidently
¢ = Emﬂ-ititi. (iyj =0,12 ... n)

so that A, is the determinant of ¢ and A, Ay, . . . A._: its prineipal
minors. The form ¢ cannot vanish unless {y =8, = - .. =1, = 0.
For if z = §is a point of increase and ¢ = 0, we must have also .

[+t - 4 1del@) = 0

for an arbitrary positive ¢, whence by the mean value theorem
(bt a2 dele) =0 (k- e <<t
or ' v
ottt - 4t =0
because : <
[Hdola) > 0.
Letting ¢ converge to 0, we conclude

httEd o b =0

at any point of increase. Since there are at least n + 1 points of increase
the equation

bbbzt oo +la =
would have at least # + 1 roots and that necessitates

hmti= o Rl =0,
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Hence, the quadratic form ¢, which is never negative, can vanish
only if all its variables vanish; that is, ¢ is a definite positive form. Its
determinant A, and all its principal minors A._y, As.s, .« . . Ao must be
positive, which proves the first statement.

Suppose the conditions

2>0, A>0...48,>0

satisfied and let ¢(z) have 8 < n + 1 points of increase. Then the
integral representing ¢ reduces to a finite sum

p=plothEi+ o HLE) F Pl thb - FRE)+
Fo e F bl - G

denoting by pi, ps, . . . p, masses concentrated in the & points of
increase §,, &, . . . £ Now, since s S n constants &, &, . . . ls, DOt
all zero, can be determined by the system of equations

bbbt =0
bbb+ +hi=0

bh+bt+ - +Lir=0

Thus ¢ vanishes when not all variables vanish; hence, its determinant
4, = 0, contrary to hypothesis.
From now on we shall assume that (z) has at least n + 1 points of

increase. The integral
f * do(z)
a2— I

can be expanded into a formal power series of 1/, thus

b
do(x) _me , M, My M1a
J:____=T+z_,‘.+.z_’+...+zh“+...

2~z

and this power series can be converted iuto a continued fraction as
explained in Sec. 2. Let

be the first n + 1 convergents to that continued fraction. I say that the
degrees of their denominators are, respectively, 1, 2, 3,...n+ 1
Since these degrees form an increasing sequence, it suffices to show that
there exists a convergent with the denominator of a given degree

s<n+4+1

This convergent P/Q is completely determined by the condition that in &
formal expansion of the difference
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bdw!x P
a?f—Z

into a power series of 1/z, terms involving 1/z, 1/22, . .. 1/2* are
absent. This is the same as to say that in the expansion of

b
e f d@) _ pgy

z—2a
there are no terms involving 1/2, 1/2, . . . 1/2. The preceding expres-
sion can be written thus:
b
Q(x)dsa(x) Q(Z) 4
e oa) = P& = S+ o
Since

b
[ = gy —
is & polynomial in z, it must vanish identically. That gives
b
@ Py = [ W =90,

To determine Q(z) we must express the conditions that in the expansion of

*Q(z)de(z)

o 2—1X

termsin 1/z, 1/2% . .. 1/2 vanish. These conditions are equivalent to
s relations

) [a@de@) =0, [20@de@) =0, - - - ['#-10@)de(z) =0,
which in turn amount to the single requirement that

©) [L80w@det) = 0

for an arbitrary polynomial 6{z) of degree £ s — 1.

Conversely, if there exists a polynomial Q(z) of degree s satisfying con-
ditions (5), and P(z) is determined by equation (4), then P(z)/@(z) is a
convergent whose denominator is of degree s. For then the expansion of

f”d«’(x) _PQ)
az—t Q@

lacks the termsin 1/z, 1/22, . . . 1/z%.
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Let
Q) =b+ble+het 4 -+ Flozt 42
Then equations (5) become

molo + mily +mals + - -+ 4l b m =0
mlo + mals +male + < - - +mliy + My =0

mc—l.lﬂ + mtll + mﬂ-llz + cor + mz--xl-—l + Myl = 0-

This system of linear equations determines completely the coeﬁiclents
b, Iy, . . . I,y since its determinant A,_; > 0.
The existence of a convergent with the denominator of degree

s<n41

being established, it follows that the denominator of the sth convergent
P,/Q, is exactly of degree s. The denominator @, is determined, except
for a constant factor, and can be presented in the form:

1zz22 «..2
¢ My MMy m,
Q = | my mym, Mo
An»l .
M 1MgMgyr = = = Myyy.

A remarkable result follows from equation (6) by taking Q Q. and
0 = Qy; namely,

(1) [laqide@ =0 it s
while

fau@ >0 Gsw.
In the general relation

Qc = q:Q--l - Q-—l
the polynomial g, must be of the first degree

¢ = a2+ 8,

which shows that the continued fraction associated with

*dp(z)
bz —1
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has the form
1

—— 1

The next question is, how to determine the constants «, and §,. Multi-
plying both members of the equation

Qn = (a:z + Bi)Qt—l - Qc—z (8 2 2)

" by Q.-sde(2), integrating between limits a and b, and taking into account
. (D), we get

b b
= o [[0,10sdele) — [[Q21delc)
On the other hand, the highest terms in @, and Q,_s are

[ 37 TOCIC a...ﬂ"l, ag - v e gl

Hence,
1
2Q,2 = '&—Qo-l + ¢
-1

where ¢ is a polynomial of degree $s — 2. Referring to equation (6),
we have

b 1 [
ﬁ on—%Qa—ld(P(z) = ;—:’J‘: qu—ld‘p(z)
“and consequently

O
e f QX 1de( z)

Suppose that the following moments are given: mo, my, . . . may; how
many of the coeflicients &, can be found? Evidently ay = 1/my. Fur-
thermore, @y = 1 and @, is completely determined given my and m,.
Relation (8) determines a,, and Q. will be completely determined given
mq, My, Mz, ma. The same relation again determines as, and Q; will be
determined given mg, my, . . . ms. Proceeding in the same way, we
conclude that, given my, my, ma, . . . Maa, all the polynomials

QO; Ql; Q2; L Qn

(8)

as well as constants

@y Oz A3, - 4 o Ungl
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can be determined. It is important to note that all these constants are
positive,

Proceeding in a similar manner, the following expression can be found
Jr2aL et
B, = —a, T
Jrarideta

It follows that constants
Bll ﬁ?y « 0 ﬂu
are determined by our data, but not 8,1, Forif 8 = n 4 1, the integral

[ridota)

can be expressed as a linear function of mg, my, o . . Maayy With known
coefficients. But s is not included among our data; hence, 444
cannot be determined.

4. Properties of Polynomials {,. Theorem. Rools of the equation

Q) =0 (s5n)
are real, stmple, and contained within the interval (a, b).
Proof. Let Q.(z) change its sign r < s times when z passes through
points 2y, 24, . . . 2, contained strictly within (g, b). Setting
0e) =(-2)z—2) - (-2
the product
8(2)Qu(2)

does not change its sign when # increases from a to b. However,

[1006d0 =0,

and this necessitates that
0(2)Q.(2)

or Q.(2) vanishes in all points of increase of p(z). But this is impossible,
since by hypothesis there are at least n 4 1 points of increase, whereas
the degree & of Q, does not exceed n. Consequently, Q,(z) changes its
sign in the interval (g, b) exactly s times and has all its roots real, simple,
and located within (a, b).

It follows from this theorem that the convergent

P,
UR
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can be resolved into & sum of simple fractions as follows:

P2 A 4, A,
®) 0@ "r-ati-at T tion
where 21, 2, . . . 2, are roots of the equation @.(2) = 0 and in general
P ”(Zk)
A = —’—..-
k Qn(zk)

The right member of (9) can be expanded into power series of 1/z, the
coefficient of 1/2* being

zn:Aaz';"‘.

a=1

By the property of convergents we must have the following equations:

$hmm

a=1

n
24‘1«2« =m

a=1

n
EAaZZ”"l = Magnt.

a=l

These equations can be condensed into one,
" b
(10) 3, 4aT(z) = [(T(@de(2)
a=1
which should hold for any polynomial T'(z) of degree £2n — 1.

Let us take for T(z) a polynomial of degree 2n — 2:

0 - |-t

Then
T(z) =1, T@)=0 i Bf#a

and consequently, by virtue of equation (10),

b 9
Q.(2) ]
Aa = ““""_“,—'- d > 0-
L [(z =]l
Thus constants A,, As, . . . A4, are all positive, which shows that Pa(2)
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has the same sign as @,(z). Now in the sequence

0z, Qua), - . . Qu(2)

any two consecutive terms are of opposite signs. The same being true of
the sequence

Py(2)), Pu(za), . . . Pal2a),

it follows that the roots of Pa(z) are all simple, real, and located in the
intervals

(2, 2); (29, 23); . . - (2n-1, 2a).

Finally, we shall prove the following theorem:
Theorem. For any real z

Qu()@r-1(z) = Qu-s(2)Qn(2)

18 @ posttive number.
Proof, From the relations

Qi(2) = (a2 + B8)Qu(2) — Q.—(2)
Qn(x) = (a,x + ﬂl)Ql—-l(z) - Qt-!(x)

it follows that
Qa(z)Ql—l(x) - QI(I)QO—I(Z) = aoQ.-l(Z)Qn—l(x) +

-2
+ Qr—l(z)Ql—t(I) - QI—I(I)Q0~2(Z)

-2l

whence, taking s = 1,2, 3, . . . n and adding results,

Q,.(Z)Q»—x(x)z - SMQH@ - Ea,@.—x(I)Qn-n(z)-
t=1

It suffices now to take z = z to arrive at the identity

Q@) - r@)ul2) = Ja Q@

a=]

Since Qo = 1 and a, > 0, it is evident that
Qu(2)Qu-1(z) — Q1_1(2)Qu(z) > 0

for every real x.
6. Equivalent Point Distributions. If the whole mass can be con-

centrated in & finite number of points so as to produce the same ! first
moments as & given distribution, we have an “equivalent point distribu-
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tion” in respect to the [ first moments. In what follows we shall suppose
that the whole mass is spread over an infinite interval — ®, w and that
the given moments, originating in a distribution with at least n +1
points of increase, are

Moy My, My, .\ . My,

The question is: Is it possible to find an equivalent point distribution
where the whole mass is concentrated in » + 1 points? Let the unknown
points be

El; E?y e En+1
and the masses concentrated in them
Al, Ai, “« . An+l.

Evidently the question will be answered in the sffirmative if the system
of 2n + 1 equations
a1

Y Aa = mg
n:l=l

2 AaEa = my

a=}

(A) s+l

D) Autt = my

a=]

.......

can be satisfied by real numbers &, &, . . . banj 4y, 4y .., Agy,
the last » + 1 numbers being positive. The number of unknowns being
greater by one unit than the number of equations, we can introduce the
additional requirement that one of the numbers £, &, . . . .41 should
be equal to & given real number v. The system (4) may be replaced by
the single requirement that the equation

a+l

(11) 3, 4T = [7 T@de(a)
a=1

. shall hold for any polynomial T{(x) of degree £2r. Let Q(r) be the
polynomial of degree n + 1 having roots £, &, . . . w1 and let O(z)'be
an arbitrary polynomial of degree n — 1. Then we can apply equation
(11) to

T(z) = 8(x)Q(x).
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Since Q(£a) = 0, we shall have
(1) [ 100 de) =0

for an arbitrary polynomial 8(z) of degree $n — 1. Presently we shall
see that requirement (12) together with @(v) = 0 determines Q(r), save
for a constant factor if

Qnv) # 0.
Dividing Q(z) by Qa(z), we have identically
Q@) = O + ©)Q.(2) + Ro-i(z)

where R._i(z) is a polynomial of degree Sn — 1. If 08(r) is an arbi-
trary polynomial of degree £n — 2,

(A + #)6(z)
will be of degree £n — 1. " Hence
[0 + I Ede) =0
by (6), and (12) shows that
[o@Res@)detz) = 0

for an arbitrary polynomial 8(z) of degree S£n — 2. The last require-
ment shows that R,_,(r) differs from Q,..i(z) by a constant facior, Since
the highest. coefficient in @{z) is arbitrary, we can set

Rai(z) = =Qus(2).
In the equation .
Q(z) = (0 + ¥)Qu(2) — Quila)

it remains to determine constants A and . Multiplying both members by
Qn-1(2)de(x) and integrating between — = and o, we get

M 20uiQudela) = [ 02 dea)

or

2" quv) = [ ardotn

!_. 1de(7) _

[ Qe

But
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whence
)\ = ng1.
The equation

0 = Q) = (answ + #)Qulv) — Qu(v)
serves to determine g if Q.(v) £ 0. The final expression of Q(z) will be

0@ = (wwnte =0 + %20 ) _ g0,

Owing to recurrence relations

Q: = (ox + 82)Q1 — Qo; Qs = (asz +82)Q2 — Q1 - - -
Qn = (am'c + ﬂn)Qn—l - Qn—z,
it is evident that '

Qy Qn; Qn—l, « Ql, Q(] =1

in a Sturm series. For z = — o, it contains » 4 1 variations and for
r = » only permanences. It follows that the equation
Q@) =0

has exactly n + 1 distinet real roots and among them #. Thus, if the
problem is solvable, the numbers £, &, . . . £u1 are determined as
roots of

@ =o. ‘
Furthermore, all unknowns 4, will be positive. In fact, from equation
(11) it follows that

Now we must show that constants A. can actually be determined so as -
to satisfy equations (4). To this end let -

Plz) = f _:%go(z) - [am(z 0+ Qé;&i? }P,.(x) —Pos(a).
Then ‘

—w LT —2

o [ 20 pyy - [ e

-and, on account of (12), the expansion of the right member into power
series of 1/z lacks the terms in 1/2,1/2% ... . 1/2z", Hence, the expan-

sion of

f' de(z) _ P(z)
-z —2 Q)
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lacks the terms in 1/z, 1/z%, . . . 1/z**}; that is,
P& _m m .
-zttt o tEato
On the other hand, resolvmg in simple fractions,
(I) Al Az L. Aﬁ.; .
Q@ 3ff1 3"Ez+ +I—E.+1

Expanding the right member into power series of 1/z and comparing
with the preceding expansion, we obtain the system (A). By the previous
remark all constants A, are positive. Thus, there exists a point distribu-
tion in which masses concentrated in n 4 1 points produce moments
My, My, . . . My One of these points v may be taken arbitrarily, with
the condition

Qa(r) # 0

being observed, however.

6. Tshebysheff’s Inequalities. In a note referred to in the introdue-
tion Tshebysheff made known certain inequalities of the utmost impor-
tance for the theory we are concerned with. The first very ingenious
proof of them was given by Markoff in 1884 and, by a remarkable
coincidence, the same proof was rediscovered almost at the same time
by Stieltjes. A few years later, Stieltjes found another totally different
proof; and it is this second proof that we shall follow.

Let ¢(z) be a distribution function of a mass spread over the interval
~w, o, Supposing that 8 moment of the order i,

- det@) = m,
exists, we shall show first that

lim li(mo — ¢(l)) =
lim V(=)

when [ tends to +». For
f,‘z‘"d‘p(x) 2zl ﬁ “do(z) = lp(+ =) — ¢(D)]
or .
Hm ~ o0) 5 [ "zide(a).
Similarly

U:I.Iidv(x)l 2 lif_—:d;p(x) = lip(=T)
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or
. -1
lo(=D < |[ 7 aidota)]
Now both integrals )
@ -1,
j; ride(z) and f _ -‘m'dw(z)

converge to 0 as ! tends to -+ o ; whence both statements follow immedi-
ately. Integrating by parts, we have

[lidote) = 1o — m) ~ i[le(s) — mlada
[*witola) = (=1 ig(=1) — i [*sto(aris,
whence, letting [ converge to + «,
m = f_u,x"d‘l’(z)_'_‘ - 'j;'ulso(f) ~ molz*dz ~ iffﬁx"%(m)dx.

If the same mass m,, with the same moment my, is spread according to
the law characterized by the funetion y(z), we shall have

m = f _:x"d\b(x) = =i j; ‘[1[/(1) — mojx iz — ¢ f f ‘:c"ldz(x)dx,
whence
(13) 7 lela) — vz = 0.

Suppose the moments
Mo, My, M3, . . . Moy

of the distribution characterized by ¢(2) are known. Provided ¢(z)
has at least n + 1 points of increase, there exists an equivalent point
distribution, defined in Sec. 5 and characterized by the step function
v(z) which can be defined as follows:
Yia) =0 for —o<z<E
Vi) =4, for HSz<6&
i) =41+4, for bhszr<b
V@) = A+ A4+ -+ 4, for B Sr<bn
¢(1)=AI+A2+"'+A5+! for E,.+|§I<+w,
provided roots £, £, . . . a1 of the equation Q(z) = 0 are arranged
in an increasing order of magnitude.
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Equation (13) will hold for £ =1, 2, 3, . . . 2n or, which is the
same, the equation

(1) [ b@let@) - wl@dz = 0

will hold for an arbitrary polynomial #(z) of degree £2n — 1. The
function

- k(@) = o(z) — ¥()

in general has ordinary discontinuities. We can prove now that h(z), if
not identically equal to 0 at all points of continuity, changes its sign at
least 2n times.! Suppose, on the contrary, that it changes sign r < 2n
times; namely, at the points

03,0y .. .8,
Taking
8z) =(z-a)(x~a) - - - (z—a),
equation (14) will be satisfied, while the integrand
(z)h(2),

if not 0, will be of the same sign, for example, positive, Let ¢ be any
point of continuity of h(z). ¢ =a;(§=1,2,...r) then h(a) =0
since h(z) changes sign at a.. If £ does not coincide with any one of the
numbers ay, @, . . . @, then for an arbitrarily small positive ¢ we must
have

[8(2)h(z)dz = 0.

But by continuity
8(z)h(z)

remains in the interval (¢ — ¢, ¢ 4 ¢) for sufficiently small ¢ above a
certain positive number unless h(§) = 0. Thus, if h(z) does not vanish
at all points of continuity (in which case ¢(z) and ¥(z) do not differ
essentially), it must change sign at least 2n times. Let us see now where
the change of sign can occur. In the intervals

—o, tand by, +

1A function f(z) is said to change sign once in (a, b} if in this interval tbere
exists a point or points ¢ such that, for instance, f(z) Z 0 in (a, ¢) and f(r) SO0 in
(¢, b}, equality signs not holding throughout the respective intervals. The change
of sign occurs n times if (a, b) can be divided in w intervals in which f(z) changes
sign once,
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¢(x) — ¥(z) evidently cannot change sign. Within each of the intervals

ey &

there can be at most one change of sign, since ¢(z) remains constant
there, and ¢(z) can only increase. The sign may change also at the
points of discontinuity of y(z); that is, at the points &, &, . . . Eu.
Altogether, ¢(z) — ¢(z) cannot change sign more than 2n + 1 times
and not less than 2n times.

Since ¥(z) = 0 so far as z < & and ¢(% — € is not negative for
positive ¢, we must have

o1 — ¢ — (i —¢ 2 0.
Also ¢(z) = mo for 2 > Enyq and ¢(z) £ mg, so that
olEntr + € — Y(En1 +¢) S0,
At first let us suppose
ot — ¢ — ¢k~ ¢) >0, P(Entr + €) — Yléas + ¢) 0.

In this case ¢(z) — y(z) must change sign an odd number of times; that is,
not less than 2n 4 1 times.  Since this cannot happen more than 2n 4 1
times, the number of times ¢(z) — Y(z) changes its sign must be exactly
2n + 1. These changes occur once within each interval '

fo, &

and in each of the points £, £, . . . k1. When the change of sign
occurs in the interval (£, &) where ¢(z) remains constant, because ¢(z)
never decreases, we must have for sufficiently small ¢

(15) ol — € — Yt — ¢ > 0.

But the sign changes in passing the point £; therefore,
(16) - plli+6¢ — (i +6 <0

The equalities ’

ot~ —YEi— =0, @l t+e —y¢(farr+¢ =0

cannot both hold for all sufficiently small e. For then there would not
be a change of sign at £ and .44, 50 that the number of changes would
not be greater than 2n — 1 which is impossible. Therefore, let

- =¥ —¢ =0 and (i + & — (b +6) <0
Then there will be exactly 2n changes of sign: one in each of the intervals

e b
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and in each of the points £, £, . . - Eaes. The inequalities (15) and
(16) would hold for ¢ 2 2, but

po—d = Wh-9 =0, eltd—dti+e9<0

for all sufficiently small e.
Now let

et +6 —Yllapn+¢ =0  and & —¢ —Y(li—¢ >0

for all sufficiently small positive e. Then there will be exactly 2a changes
of sign: In each of the points &y, £, . . . £« and in each of the n intervals

ki, &
The inequalities (15) and (16) will again hold for ¢ £ n, but |
Pl =€ —Yllann—€ >0 and gl +6 — Yl +¢ =0

for all sufficiently small e. Letting ¢ converge to 0, we shall have

el = 0) Z ¥k~ 0)
el 4+0) Syt +0)

fort =1,2,3,...n+1linall cases. Then, since
e(k) 2 el = 0);  o(t) S ok +0),
we shall have also

e(&) 2 ¥(& — 0)
e(8) S ¥(E+0)
or, taking into consideration the definition of the function ¢(z)
i1

. Ple)
¢(E‘) -2- < Q’(El)

These are the inequalities to which Tshebyshef’s name is justly
uttached. For a particular root £ = v they can be written thus:

P(t)

elr) 2 EQ’—(&-)

) S P(t)
]

olv) = Em

bge
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with the evident meaning of the extent of summations. Another, less
explicit, form of the same inequalities is

p(v) Z ¢ - 0)
(18) #(0) < ¥lo +0).

As to P(z) and Q(z), they can be taken in the form:

P(Z‘) = [aﬂ+l(x - ”)Qn(v) + Qn—l(v)]Pn(z) - Qn(v)Pn—d(m)
Q) = lanpi(z ~ 0)Qa(t) + Qu-i(0)]Qn(z) — Qulv)Quur(2).

Thus far we have assumed that » was different from any root of the
equation

Qulz) = 0,
but all the results hold, even if
Q.(v) = 0.

To prove this, we note first that when a variable » approaches a root § of
Qu(z), one root of Q(z) (either £ or £ns1) tends to = o or 4 «, while the
remaining n roots approach the n roots ), zs, . . . zs of the equation

Qn(x) = 0-
1f & tends to negative infinity, it is easy to see that

PlE)
&)

tends to 0. In this case the other quotients

P(&)
Q'(&)
tend respectively to

Qi) Qllzy)

If £.41 tends to positive infinity the quotients

PE&).)_ 19 .. . a

@
approach respectively
P.(:n)' =
Q(,(:c;)’l 1,23, ...n
while

P (Eu-H)
Q' ()
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tends to 0. Now takee = § — eand v = { 4+ «in (17) and let the posi-
tive number ¢ converge to 0. Taking into account the preceding remarks,

we find in the limit
-0z 3g)
n<¢
ot +0) s Do,

nst

whence again

o2 Do
n<t

: Pu(xl)-
o(8) S TG
nst

But these inequalities follow directly from (17) by taking v = §.
Since

— o - 0) = 2O
W(” + 0) #’(” 0) = Q’('))
it follows from inequalities (18) that

P(v)
Oév(v)—w(v-0)§m.

On the other hand, one easily finds that

PO _ 1 .
QW analu(0)? + G 0)Qua(r) — Qh1(1)QU()

But referring to the end of Sec. 4,

Q) — Qa)Qu0) = Ty aues(0)?,

(23]

whence

a0iQa(®)* + QU0)Qu-1(0) — Qo y(0)Qa(r) = QUy(1)Qu0) — QL()Qui (o).
Finally,

£ 1 —
AOLXORRHOINNG

If @:1(¢) is another distribution function with the same moments

05 () = ¥(r —0)

Mo, My, My, . , . Maa,
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we shall have also

1
+1(”)Qn(”) Q,’\(U)Qnﬂ(”),

0 ple) —90—0) 2

and as a consequence,

(19) i) = o0)] S x400)
—a very important inequality. Here for brevity we use the notation
1

xa(v) = Q»-H(”) Q. (v) Q’ 1)) Q”“(f))

7. Application to Normal Distribution. An important particular
case is that of a normal distribution characterized by the funetion

==-1- ’ evdu,
Vr)oo

In this case it is easy to give an explicit expression of the polynomials
Qu(). Let

dre=!

H(:v)—-e"dn-

Integrating by parts, one can prove that forl S n — 1
f_a ez H (x)dz = 0.

Hence, one may conclude that Q.(z) differs from H.(z) by a constant
factor. Let

Qulz) = e Ha(x).
To determine ¢,, we may use the relation \
H,(z) = —2zH,1(z) — 2(n — 1)Hau(z)

which can readily be established. Introducmg polynomials @, this
relation becomes

Q@) = ~2-"Qua(s) = 2 — 1) Qunrl2).
] ) n—2

Hence,
& 1 = —gCn -
E;: B 2n — 2, o = C,.-l’ ﬁn 0

Since Hy(z) = Qu(z) = 1, we have ¢ = 1; also

...
!
T2
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whencecy = — Y. The knowledge of ¢, and ¢, together with the relation

- Ca—g
“Tm=3
allows determination of all members of the sequence ¢, €5, ¢, - . . .
The final expressions are as follows;
Cim = 1
m T 9m.1-3°5 - - - @m ~1)
-1

Comtl = 5017 9.4-6 - - - 2m

From the above relation between H,.(z), H.-.(z), H.—2(z) and owing to

the fact that ,(z) is an even or odd polynomial, according as n is even or
odd, one finds

H;u0) = (~2)=-1-3-5---(2m - 1),
while another relation
Hy(z) = —2nHa\(2),
following from the definition of H.(z), gives
Hy (0) =(-2)»-1-3:5-- 2m - 1).
These preliminaries being established, we shall prove now that

1
Calnit(Hopa(0) Ha(v) — Ho(0)Haia(v))

attains its maximum forv = 0. Let
Av) = Hy @) Ha(v) = Hi@)Hapa(0).

Then, taking into account the differential equation for polynomials
H.@v):

x«(v) =

H!(v) = 20H.(v) — 2nH.(v)
we find that

dQ

i 200 — 2H () H s (v).
On the other hand,

d H.v)
= - Ll
Q Hon() dv H'“(v)’
and denoting roots of the polynomial H.,.(v) in general by .
d H.po) _ H.(®) 1

@ Hel) - T SHL OG- O
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Consequently
H() 1
@=H, .

W0 S =g

Again
Ho(§) v—t¢
ﬂ( ﬂ-H(") HM-I("’) EHI (E y — E)z’

and so

Ho(®) ¢ _ —Huna(0)?

Em = 2}19»+l('})2211;+1 E) (') — E)z n 41 E(ﬂ - 5)2

Roots of the polynomial H..H.(x) being symmetrically located with
respect to 0, we have:

D R R

and finally
dQ -9 ﬁ+1(9)
r) n-I-lE(u’—-f’)’
Hence
Woo it <oy Peo i1 9>0
dy dv

that is, 2(v) attains its maximum forv = 0 and x.(v) attains its maximum
for v = 0. Referring to the above expressions of cim, Cims1; Ham(0),
Hiny1(0), we find that

2-4. 6 - om
xm(0) = 35 (2m+1)
2:4-6---2m

X = s Em
In Appendix I, page 354, we find the inequality

2:4-6---2m <Vr
1-3-5- (2m—1)‘/4m+2 2

4.6 - 2m x
T 2m+1) V4m +2
1) $ %0 < 5

whence

Thus, in all cases
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whence, by virtue of inequality (19),

ler(®) = o) < \/;ln

Thus any distribution function ¢,(v) with the moments

3.5 (k-1
m=l, m,,,..,=0, fnu=135 2,,( ) (kéﬂ)

corresponding to

o(v) = L evdu

vr)-.

\[f_‘.
2n

Since this quantity tends to 0 when » increases indefinitely, we have the
following theorem proved for the first time by Tshebysheff:
The system of infinitely many equations

differs from ¢(v) by less than

j " dole) = 1; f £1dg(z) = O; f 2dp(z) =

C1:3:5 - (% -1)
- o

k=123 ...

untquely determines a never decreasing function ¢(z) such that o(— ) = 0;
namely,
1 z
p(z) = —= f e'du,
).

8. Tshebysheff-Markoff's Fundamental Theorem. Whenamass = 1
is distributed according to the law characterized by a function F(z, \)
depending upon a parameter \, we say that the distribution is variable.
Notwithstanding the variability of distribution, it may happen that its
moments remain constant. If they are equal to moments of normal
distribution with density

A

Vr

then by the preceding theorem we have rigoroualy

Flz,)) = %f' e*'du

no matter what \ is.
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Generally moments of a variable distribution are themselves variable.
Suppose that each one of them, when \ tends to a certain limit (for
instance =), tends to the corresponding moment of normal distribution.
One can foresee that under such circumstances F(z, A) will tend to

z " ey,
0(1,_) \/; e
In fact, the following fundamental theorem holds:
Fundamental Theorem. If, for a variable distribution characlerized
by the function F(z, N),

lim f_ -x"dF(:c N = \/; ) °'e"’:a:"dx, A
for any fired k =0,1,2,3, . .., then
lim F(p, A) = \/_ jar"dx;; A ®
uniformly in v.
Proof. Let
Mg, My, My, . . . Man

be 2n + 1 moments corresponding to a normal distribution. They
allow formation of the polynomials

Qu(z), Qu(z), . . . Qu(z) and Q(z)

and the function designated in Sec. 6 by ¥(z). Similar entities cor-
responding to the variable distribution will be specified by an asterisk.
Since

mi—me a8 Ao o
and sinee A, > 0, we shall have
A >0

for sufficiently large \. Then F(z, \) will have not less than n + 1
points of increase and the whole theory can be applied to variable dis-
tribution. In particular, we shall have

0 2 oly) — ¥ — 0) £ xa(t)
20
0 S F(v,)) — y*(v — 0) £ x30).
Now Q¥z)(s=0, 1,2, ... n) and Q*(z) depend rationally upon
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mi(k=0,1,2, ... 2n); hence, without any difficulty one can see that
GW-Qa); =0L2...8
Q*(2) — Q@)
a5 \ — «; whence, L
X4 (1) = xa(0).
Again
V= 0) = ¥lo ~ 0

as A — ». A few explanations are necessary to prove this. At first let
Q.(v) # 0. Then the polynomial Q(x) will have n + 1 roots

fl<fs<fa<"' < s

Since the roots of an algebraic equation vary continuously with its
coefficients, it is evident that for sufficiently large X the equation

Q*z) =0
will have n + 1 roots:
B<H<EH< <8y
and ¢ will tend to & as A — .  In this case, it is evident that y*(v — 0)
will tend to ¢(r — 0). If Qu(r) = 0,it may happen that % or £2,, tends

respectively to — % or 4@ as A — «, while the other roots tend to the
Toots

Ty Ty oo o Tn
of the equation
Qn(x) = 0.

But the terms in ¢*(» — 0) corrmpondmg to mﬁmtely increasing roots
tend to 0, and again

Ve —0) (v - 0).

() < \/g}

Consequently, given an arbitrary positive number ¢, we can select n so
large as to have

Now

xalt) < \% <e



386 INTRODUCTION TO MATHEMATICAL PROBABILITY

Having selected » in this manner, we shall keep it fixed. Then by the
preceding remarks a number L ¢an be found so that

x*) < \/;% <e
W —0) —¢*0—0) <e
for A\ > L. Combining this with inequalities (20), we find
iFlw, N) — o(®)] < 3¢

for A > L. And this proves the convergence of F(y, \) to ¢(v) for a
fixed arbitrary v. To show that the equation

: 1o
lim F{y, \) = \/;f— K2 d
holds uniformly for a variable v we can follow a very simple reasoning due

to Polya. Since o(— ) =0, ¢(+=) =1 and ¢(z) is an increasing
function, one can determine two numbers ¢ and a, so that

olz) S ela) <z for zZa
1—ez) £1 - ola,) <% for zgd,..
Next, because ¢{z) is a continuous function, the interval (aq, ,) can be
subdivided into partial intervals by inserting between g and a, points
a4, <a; < -+ < @y 50 that
0 < plaw) — elar) < %

fork=0,1,2,...n~—1 By the preceding result, for all sufficiently
large A )

Fla M) <5 1-Fley)) <3
and
IFlayN) = (@) <55 k=12 ...n-1
Now consider the interval (— «, ). Here foro < a,
0SFE, N <5  0<ol) <3

and
P2, \) — o) < e
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For v belonging to the interval (., + =)
081-FnN) <5 0<1-¢) <3

whence again ‘
[Fe,N) — o(v)] <e
Finally, let
a,,_S_v(ak“ (k=0,l,2,..-ﬂ"'l).
Then ‘
F(o,N) = ¢(v) 2 Fla, M) — e(ais) =
= [Fo, V) = o(as)] + [¢(a) — elar)]
F(y, N) — o(v) £ Flare, \) — ela) =
= [F(ar, N) = elarsr)] + [elaer) — olan)].
But
Flan N = o) > = 5;  ola) = (o) > —3

Flowy M) = #low) <35 ola) = o) <3

whence
—e<F(v,\) — olv) <e
Thus, given ¢, there exists 8 number L(¢) depending upon e alone and
such that
[F(o, %) ~ e(0)] <

for A > L{e) no matter what value is attributed to .

The fundamental theorem with reference to probability can be stated
as follows;

Let s, be a stochastic variable depending upon a variable posilive integer
n. If the mathematical expectation E(st) for any firedk =1,2,3, . . .
tends, as n increases indefinitely, lo the corresponding expectation

l -
E(@Y) = —= | revdr

@ =

of a normally distributed variable, then the probebility of the inequality
8, <v
tends Lo the limat
l ]
e 2dz
Vrl-.

and that uniformly in v.
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In very many cases it is much easier to. make sure that the conditions
of this theorem are fulfilled and then, in one stroke, to pass to the limit
theorem for probability, than to attack the problem directly.

ArrricaTioN TO SUMS OF INDEPENDENT VARIABLES

' 9. Let 21, 25, 23, . . . be independent variables whose number can be
mncreased indefinitely. Without losing anything in generality, we may
suppose from the beginning

E@)=0; k=1 223,...
We assume the existence of
_ v E(z}) = by
forall k=1,23,.... Also, we assume for some positive & the
existence of absolute moments
Elopf?*® = ¥+, £k =1,2,3,....

Liapounoff’s theorem, with which we dealt at length in Chap. XIV,

states that the probability of the inequality

ntant o+
<
2B,

b

where
Bn=b1+b2+ e +bn

tends uniformly to the limit
1 ¢
— | e
asn— «®, provided‘ ' ‘

e R
A 3 : + g . .

. Liapounoff's result in regard to generality of conditions surpassed by
far what had been established before by Tshebysheff and Markoff, whose
proofs were based on the fundamental result derived in the preceding sec-
tion. Since Liapounoff’s conditions do not require the existence of
moments in an infinite number, it seemed that the method of moments
was not powerful enough to establish the limit theorem in such a general
form. Nevertheless, by resorting to an ingenious artifice, of which we

" made use in Chap. X, Sec. 8, Markoff finally succeeded in proving the
limit theorem by the method of moments to the same degree of generality

gs did Liapounoff.
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Markoff’s artifice consists in associating with the variable z; two new
variables 7, and y, defined as follows:

Let N be a positive number which in the course of proof will be
selected so as to tend to infinity together with n. Then

=2z, =0 i [N
Iy = 0, Y = 2t if lZ);[ >N,

Evidently 2, 2, yx are connected by the relation

o= I+ Y
whence
2y, E(z) + E(yy) = 0.
Moreover
E(z) + E@wd) = E@) = b
(22)

Bl + Byl = B = e,

as one can see immediately from the definition of z. and ys.
Since r; is bounded, mathematical expectations

E(zf)

exist for all integer exponents! = 1,2,3, . . . andfork =1,2,3, .. ..
In the following we shall use the notations

EGD)| = c; 1=123 ...
PP+ +c? =B
“(‘2+5)> +“(!2+6) + SRR “Lu-a\ - C..

Not to obscure the essential steps of the reasoning we shall first
establish a few preliminary results,
Lemma 1. Let g, represent the probability that yx # 0; then

Bt Sy

Proof. Let ¢i(z) be the distribution function of z. Since y; # 0
only if |z} > N, the probability g is not greater than

[Zldeda) + [ deta).
On the other hand,

f-;v‘z[ﬁldw(r) + f~:.11‘!+6dm(1.) < “?ﬂ)'
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But
-N o -N ®
Jo i) + [ladad) 2 80 [ Ndo@) + [ da@),

whence

-¥ ® pgo
o = do(z) + L de(z) £ N

The inequality to be proved follows immediately.
Lemma 2. The following inequalily holds:

B, Ch
lgﬁ;gl—‘B—nN‘.

Proof. - From

Elyklﬁ-ﬂ é #,(‘HS)
which is a consequence of the second equation (22) it follows that
. y;c%hi)
E(yd) £ N
The first equation (22)

o + E) = b

gives

Taking the sum fork = 1,2,3, . . . n, we get

, Ca
B.z B, 2 B, - i

whence
C. .
B N?

¢ I

1 z1l-

v
==

Lemma 3. Fore 2 3,
P+t s(}ﬁ)g—’ :
: = \ B«
B;
Proof. This inequality follows immediately from the evident
inequalities

4 < Bl < NIE() S N=,
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Lemma 4. The following inequality holds

o 4¢P '~-+c§,"5 C. t
B} = \N

N+
Proof. Since
E(z) + E(p) =0,
we have .
Y = |E(zs)] = |E@w)] £ Elyl.
On the other hand, by virtue of Schwarz's inequality
(Ely:| + Elys] + - -+ + Elgall* £

S@tat  +e) SEGD S By

k=1

whence the statement follows immediately.
If the variable integer N should be subject to the requirements that
both the ratios
C.

N

N?
B.

should tend to 0 when n increases indefinitely, then the preceding lemmae
would give three important corollaries. But before stating these
corollaries we must ascertain the possibility of selecting N as required.
It suffices to take

and

Then

by virtue of Liapounoff’s condition,

Also :
Lo (OGN (G
BN N BH;

will tend to 0. By selecting N in this manner we can state the following
corollaries:

Corollary L. The sum

atat- 4
tendsloOaen— o,
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Corollary 2. The ratio

tends to 1.
Corollary 3. The ratio

C‘f’+0§" + cr e +c$‘¢)
¢
B:

lends to 0 for all posilive integer exponents e excepl e = 2,
10. Let F.(!) and ¢.(f) represent, respectively, the probabilities of the
inequalities

R T R o
<
2B,
I|+I:"i'"'+2‘n<t
2B,

By repeating the reasoning developed in Chap. X, Sec. 8, we find that
Ful) — )l S0+ a2+ -+ +ga

Hence,
lim (Ful)) = 60) =0 85 no> o

by Corollary 1. It suffices therefore to show

éa(l) — e*dr a3  an—o

\/'_..

and that ean be done by the method of moments By the polynomial
theorem

n+x:+-'-+r.‘"=s m! Sep, -2
VB, iaBl N 553

where the summation extends over all systems of positive integers
azflz - z \satisfying the condition

atB+ - Hr=m

and Sas .. .x denotes a symmetrical function of letters x,, 24, . . . 1,
determined by one of its terms

nf ... 1)
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. A\ Since variables

if 1 represents the number of integers a, B,
Iy, &3, . . . I, are independent, we have
m'. G,.,a, N N

E<Zx+12+"'+x»>"'= _
. Blt.- N mom
: . : 2"3 2 B,2

V2B,

where G, ... is obtained by replacing powers of variables by mathe-
matical expectations of these powers. It is almost evident that

lGﬂ‘ﬁ- o X': < c(la) + 0(241) + e cia) ) c(‘ﬂ) + c;ﬂ) + . + C:ﬂ)
n = [ . []
B2 B.! B.! .
c(l’f) + c(zk) + +c(nk)‘
. by
B}

Now if not all the exponents a, B, . . . X-are =2 (which is possible
only when m is even), by virtue of Corollary 3 the right member as well as

Ga.d,v--l‘

L

B2

tends to 0. Hence ’

E(In+z¥+ e +.xn>"‘_'+.0

28,

if m s odd,
But for even m we have

(23) E(xl + Iy + c + z»)‘“ . m_!Gﬂ.h re® — 0
V2B, opi
Let us consider now (m being even)
m . ol my
Bé 2= c‘l”+c‘,”+ . _+_(.:‘2> 2“ '5 ”““_“‘
. B. ) EMM! R
Bﬂ;)

where summation extends over all systems of positive integers

A2Zp2Z 2o

satisfying the condition

.
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and H,, ... is a symmetric function of ¢{?, ¢f?, . . . ¢{® determined by
its term

(PP . . . (cf?)e,
I being the number of subscripts A, g, . . . w. Apparently

12 (PR (')l o - e I ol 50 o
m = B
B.2 "

o) + @) - 4 (@)
B

Besides

62 S N2, (g2) < N3d < N,

and :
(C(li))a + (6(22))' + s (cs‘ﬂ))v < (Na)o—l
B: = E -0
ife > 1. Thus ‘
HX.#. -”; @ —_ 0
B,?
if not all subscripts A, g, . . . w are equal to 1. It follows that
B! z m H11 e w1
2o\ [Py .
(B..) (2) n -0,
B,?
But by Corollary 2
Bl
B!

and evidently Hy,y, . . . 1 =Gas, . . . 2. Hence

(322t
B,?

and this in connection with (23) shows that for an even m
E(11+zz+ ‘e "+x..)"_) m!
2m

=

Finally, no matter whether the exponent m is odd or even, we have

lim E(zl tn +2.B. s x”)‘ = %J‘. ™,
. T)~»
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Tshebysheff-Markoff’s fundamental theorem can be applied directly
and leads to the result:

t
lim 600 = —lﬁ f_ s
uniformly in . On the other hand, as has been established before,

lim [Fa(t) = ¢a(8)] =0
uniformly in {. Hence, finally '
l ]
lim Fo(t) = == | e*dg
.\/-

r)-a
uniformly in ¢&.

And this is the fundamental limit theorem with Liapounoff’s condi-
tions now proved by the method of moments. This proof, due to
Markoff, is simple enough and of high elegance. However, preliminary
considerations which underlie the proof of the fundamental theorem,
though simple and elegant also, are rather long. Nevertheless, we must
bear in mind that they are not only useful in connection with the theory
of probability, but they have great importance in other fields of analysis.



APPENDIX III
ON A GAUSSIAN PROBLEM

1. In a letter to Laplace dated January 30, 1812,' Gauss mentions a
difficuls problem in probability for which he could not find a perfectly
satisfactory solution. We quote from his letter:

Je me rappelle pourtant d’un probléme curieux duquel je me suis occupé il y
a 12 ans, mais lequel je n’ai pas réussi elors & résoudre 3 ma satisfaction. Peut-
étre daignerez-vous en occuper quelques moments: dans ce cas je suis sur que vous
trouverez une solution plus compléte. La voici: Soit M une quantité inconnue
entre les limites 0 et 1 pour laquelle toutes les valeurs sont ou également probables
ou plus ou moins selon une loi donnée qu’on la suppose convertie en une fraction
continue i
1

M=y, 1

a + -

Quelle est la probabilité qu'en s'arrétant dans le développement 4 un terme fini
a' la fraction suivante
1

alatl)

1
e

soit entre les limites 0 et z? Je la designe par P(n, z) et j’ai en supposant toutes
les valeurs également probables

P, z) = 2.

P(1, z) est une fonetion transcendante dépendant de la fonction
1 1 1
1+ 3 + 3 + -+ 7

que Fuler nomme inéxplicable et sur laquelle je viens de donner plusieurs re-
cherches dans un mémoire présenté & notre Société des Sciences qui sera bientot
imprimé. Mais pour le cas ou n est plus grand, la valeur exacte de P(n, z) semble
intraitable. Cependant j’ai trouvé par des raisonnements trés simples que pour
n infinie

log (1 + 7)

Pn, 2) = log 2

1 Gauss’ Werke, X, 1, p. 371,
396
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Mais les efforts que j'ai fait lors de mes recherches pour assigner

_ log (1 + z)

Pin, 2) log 2

pour une valeur trés grande de n, mais pas infinie, ont été infructueux.

The problem itself and the main difficulty in its solution are clearly
indicated in this passage. The problem is difficult indeed, and no
satisfactory solution was offered before 1928, when Professor R. O.
Kuzmin succeeded in solving it in a very remarkable and elegant way.

2. Analytical Expression for P.(r). We shall use the notation
P,(x) for the probability which Gauss designated by P(n, z). The first
question that presents itself is how to express P,(z) in a proper analytical
form. Let &(vy, v3, . . . s, z) be an interval whose end points are
represented by two continued fractions:

1 and L 1

> 1 .
01+6;+.‘ . vl+;;+_. .

v, +2 Un

with positive integer incomplete quotients vy, vy, . . . v., while z is a
positive number £1. Two such intervals corresponding to two different
systems of integers vy, vs, . . . v, and v, #3; . . . 9, do not overlap;
that is, do not have common inner points. For, if they had a common
inner point represented by an irrational number N (which we can always
suppose), we should have for some positive 2’ < 1land 2" < 1

1 1
vl+l-);+'. 1 vl+'g+" 1

But that is impossible unless s} = vy, 03 = vy, . . . v = p,.
A number M being selected at random between 0 and 1 and converted
into a continued fraction

1

M== 1
41 +a + .

. +,_1_

v+ £
if the quantity § turns out to be contained between 0 and z < 1, M must
belong to one (and only one) of the intervals é(vy, vy, . . . v,, 1) cor-
responding to one of all the possible systems of n positive integers
ty, 01 ... fh Since M has a uniform distribution of probability and
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since the length of the interval 8(o;, vy, . . . v,, 2) is
1 _ 1
(-1 Vx+“l‘ ”1+"'
vt 1 v+ 1
Ttz T

the required probability P.(z) will be expressed by the sum
- W1 1
P"(’)‘E( D541 it 1
0,08, . . . O 02+. 1 ')2-*-‘.’
L .
v, 4+

extended over all systems of positive integers vy, 92, . . . va. In general
let

1
.+;):

g—=z— 1 =12 ...n)
4] + ’ 1
C 4 v
be a convergent to the continued fraction
1
01 + -
"TLL
Un

Then the above expression for P,(z) can be exhibited in a more convenient
form:

o re- 3 enEEeE-gl

By the very definition of P.(z) we must have P,(1) = 1; hence the
important relation

1
@ et

This result can also be established directly by resorting to the original
expression of P,(1) and performing summation first with respect to »,,

then with respect to v, etec.
Relation (2) can be interpreted as follows: Let & in general be the

length of an interval 8(vy, vs, . . . v,, 1). Then
=1

summation being extended over the (enumerable) set of intervals 6,
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3. The Derivative of P.(z). In attempting to show that P.(z)
tends uniformly to a limit function as n —+ o it is easier to begin with its

de]’iVﬂtiVE p,,(x). Series
(Qn ZQ;-])’

obtained by formal derivation of (1) is uniformly convergent in the
interval (0, 1). For

O+ Qu
Qn>“_‘2““‘—‘l

whence

1 < 2
(Qu + xQn—l)z Qn(Qu + Q-—-l)

and the series

2
2w ~?

is convergent, Hence

dP,(z) _ _ 1
dz p-(x) = E(Q, + :L‘Q.-x)’.

Since
Qu = ”nQn—l + Q»—S
we have
1 1
pa(z) = E i i
1 (ve + 2)
" .. ..(Q.—l + ;‘—_'F'EQ-»—z) _
and, performing summation with respect to vy, 93, . . . ve— for constant
Va
S (k)
| 1 T PN + 2/
"oy, . -. . u-‘(Qu—l + a + IQ-—Q)
whence

pa(2) = ?.,P»*(o‘.“:q)ﬁ_::)’

el
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or else

| . . 1 .
3) Pa(z) = Eﬁpn l(v ¥ x)(v T o)
v=1

—an important recurrence relation which permits determining com-
pletely the sequence of functions

pl(x)) pz(l), e

starting with po(z) = 1. .

4. Discussion of a More General Recurrence Relation. In dlscubsmg
relation (3) the fact that pe(z) = 1is of no consequence. We may. start
with any function fy(z) subject to some natural limitations, and form a
sequence

£1(®), £2(2), (@),

by means of the recurrence relation

N, (1)1
@ He = E’(T)rrx‘r

The following propertles of f,(z) follow easily from this relation:
a If :

z

fo(x) 1 +

then

Jale) =

n=1,23"...

For

c 1 1 a
fl(x)"‘z(wz v+z+1)=l+x

whence the general statement follows immediately.

b, If
m M
Tz 300 77
then _
™) s

-+
]
+
L]
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Follows from (a) and equation (4) itself.
As a corollary we have: Let M, and m, be the precxse upper and
lower bounds of : .

a+ :c)f,.(x) n=012". . ’)
in the interval 0 £ £ 1. Then v

Mz My z2Me 2
mEmEms .-

¢. We have

f el = gf !""( + x)(v +ot "
- [ - foioie = [t

d. The following relatlons can eamly be estabhshed by mathematlcal
induction:

_ Pﬁ + IP"—I\ 1
I) = EIO(Q + IQ»—I/(Q" + ZKQ»—X)2
P. 4+ zP.._l 1
Julz) = Ef (Q‘ ¥ IQ.._J(Q:- + 2Qn)?
~ P, + 2P, 1_
Junl2) = EIQ"(Q. + IQw—l)(Qu + 2Qa)?

......

Let us suppose now that the function fo(z) defined in the interval
0221

possesses & derivative everywhere in this interval and let 4 be an upper
bound of |fi(z)| while M is an upper bound of [(1 + 2)fs(z)]. Then by
property (b) P

LIS M @l S 3 @l S M,

The function f,(x) represented by the series

|
o) = 20 gy
where u stands for

Pn + IP»—I
Ql + IQ»-!’



402 INTRODUCTION TO MATHEMATICAL PROBABILITY

has a derivative; for the series obtained by a formal differentiation

(=1 s
e) = 2R g~ 22 g

18 uniformly convergent and represents fi(z). Now

Qn—-l
(Qu + an-—l)’ < Q—:

and

Q: > Qu(Qu ;‘ Qn—l).
Hence

Qw—l l 1 _
2 200 s < e ~ 4
by virtue of (2). On the other hand, the inequality

Qn(Qu + Qn—l) = (')qu—l + Qn—!)[(vu + I)Qn—l + Qn—'l] >

> 20u-1(Qat + Qns)
holding for n 2 2 together with an evident inequality
Qi+ Q) 22
shows that
Q@+ Q1) >22 (n22).
Thus

Qn(Qu + Qn-l) . Qn(Qn + Qn-l) >
2 2
> 2“_205(01\ + Qﬂ—l)

@+ 2Qu0)* > Q13- Q2 >

and consequently
(=1
lzf g <
Hence, we may conclude that
)

is an upper bound of |f;(z)]. Similarly, starting with the second equation
in (d), we find that

m=2“—,1,+4M
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is an upper bound of |f3,(z)], and so forth. In general, the recurrence
relation

I‘k—m- +4M (k=123 -")

determines upper bounds of

2@ 1@ 1S, -
It is easy to see tbat, in general

M
2&(»—:) 2 =5

so that for sufficiently large n
w < M.

. Main Inequalities. Let

m(:c) Jolz) - T+z +z

Then

Ia) = T3 = wale) =

1 1 1
= Ew(u)m > EEW(“)M'

Since the intervals § defined at the end of Sec. 2 do not overlap and cover
completely the whole interval (0, 1), we may write:

=3 wtore = 33 | terts = 3 Sty

the latter part following from the mean value theorem and u, being n
number contained within the interval 8. By subtraction we find

i) 1 1
Ju(z) T332 | -2'2[%(“) vo(ux)]m
and, since both u and 4, belong to the same interval §,

- Ho + Mo it me
wl) = ol > g Fen T T 7
Consequently,
) =M oy et

i3 g
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and a fortiori-

v 14z
© It follows that
6)] my = my Al — 2“"(#0 + mo)
In a similar way, considering the functlon
e) = 2~ i)
and setting

b= 3f W@z,
we shall have -

Mo -hL+ 2""(#0 -+ Mo)

fle) < 2=t

e

whence
(6) My Mo =1+ 277(uo + My).
Further, from (5) and (6)

My~ my S Mo = mo + 2o+ Me) — L= I,
But

I+h=}log2 (s — m) = (L — KMo — m); -k < 0.66,
5o that finally

My = my < QMo = m) + 2 + M)
Startiné with f(z), faal2), . . . mstead of fo( ), in 8 slmnlar way we ﬁnd
My—m; < k(Mx ml) + 2""'“(#1 + M)
M, — Ma<k(M2 my) + 27 (uy + M) ‘
M= o < KM = ) + 20y + M),
From these inequaliﬁes it follows that

My — my < (Mo = mo)k» + 27 fuck™! it 4 -+ sy +

“F Mt 4 Mt 4 - o Mo
Without losing anything in generality, we may suppose that fy(z) is a
positive function. Then .

*M;, m; are used here with the same meaning as My, ma; in See, 4.
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M, My, wm<iMy (=123...)
at least for sufficiently large n. Owing to these inequalities we shall have

N\ 6M
) M. — m, < (My =~ m)k» +,Ilo(‘2‘) + (f———l‘cTof::‘
This irequality shows that sequences

MizMi2 M2
mEmEms

approach a common limit a. The following method can be used to find
the value of this limit. Let N be an arbitrary sufficiently large integer
and n the integer defined by

nEN<(n+1)

Then
Mn M.

l+.’£ é.fm\(x) é 1 +£'
and therefore

T+z + = £ ) = 1+z +
The last inequality permits presenting fv(r) thus:
(8) f,v(I) + 6( M, — Ma); lol < 1!
whence

mew=f%ma=am2+anmm,|m<L

and, berause M, — m. ultimately becomes as small as we please in
absolute value,

alog? = J; l)fo(ar)dz.
Equation (8) shows clearly that the sequence of functions

J@), Ni(2), fa), - ..

defined by the recurrence relation (4) approackes uniformly the Limit
function

-]

+
L3
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where

1 1
a= Tog? L Jo(x)dz.

6. Solution of the Gaussian Problem. It suffices to apply the preced-
ing considerations to the case fu(x) = po(z) = 1. In this case M, = 2,
my =1, wp = 0 and

0=t
“log 2

Consequently,
Y — o(k* + ———-3--——) <1
P =T Fa)log 2 i=n -2/

where # = [v/N). It suffices to integrate this expression between limits
0 and ¢ <1 to find

g+ (. 3 ).
Py(t) = —W + X(k + a= k)2""'>' N <t

AsN - @

log (1 +1)
Pl > gz

as stated by Gauss. Moreover,

log (1 4+ 8 _ [, 3

for sufficiently large, but finite N.



TABLE OF THE PROBABILITY INTEGRAL

1 11
@ = eila

. ‘ L0 z L) z o z (0]
0.00 0.0000 | 0.65 0.2a22 | 1.30 0.4032 | 195 | 0.4744
0.01 0.0040 1 0.66 0.245¢ | 1.31 04040 | 196 | 0.4750
0.02 0.0080 | 0.67 02486 | 1.32 04066 [ 1.97 | 0.47%6
0.03 00120 | 0.68 0.2517 | 1.33 0.4082 | 1.98 | 0.4761
0.04 0.0160 | 0.69 02549 { 1.3 04099 | 1.9 | 0.4767
0.05 00199 | 0.70 02580 | 135 04116 | 200 | 04172
0.08 0.020 | 0.7 02611 | 136 04131 | 202 | 0.4783
0.07 00279 | o072 02642 | 1.37 04147 | 204 | 0.4793
0.08 0.0319 | 0.73 0.2673 | 1.38 o.4162 | 206 | o0.4803
0.09 0.0350 | 0.74 02708 | 1.39 oatrr | 208 | o042
0.10 0.0398 | 0.75 0.273¢ | 1.40 o2 | 200 [ o.4su
0.1 0.0438 | 0.76 0.2764 | 1.41 0.4207 | 2112 | 0.4830
0.12 0.0478 | 0.7 0.2794 { 142 04222 | 214 | 0.4838
0.13 .| 00517 | 0.78 0.2823 | 1.43 0.4236 | 2.16 | 0.4846
0.14 0.0557 | 0.79 0.2852 | 144 04251 | 2.18 | 0.4854
0.15 0.0506 | 0.80 0.2881 | 1.48 0.4265 | 2.20 [ 0.486t
0.16 0.0636 | 0.81 0.2910 | 1.46 04279 | 222 | 04868
0.17 0.0675 | 0.82 0293 | 147 04202 | 224 | 0.4878
0.18 00714 | 083 02967 | 1.48 04306 | 226 | 0.4881
0.19 0.0753 | 0.84 0.2995 | 1149 04319 [ 2.28 | 0.4887
0.20 0.0793 | 0.85 03023 | 1.50 04332 | 230 | 0.4803
0.21 0.0832 | 086 0.3051 1.51 04345 | 232 | 0.4808
022 0.0871 | 087 0.3078 | 1.82 04357 | 2.34 | 0.4004
0.23 0.0910 | 0.8 0.3106 | 1.83 0.4370 | 236 | 0.4900
0.24 00948 | 0.89 0.3133 | 1.5 04382 | 238 | 04013
0.25 0.0987 | 0.0 0.3159 § 1.55 04394 | 240 | 0.4918
0.26 01026 | 0.91 0.3188 | 1.56 0.4406 | 242 | 0.4922
0.27 0.1064 | 092 0312 { 1.67 04018 | 244 | 04927
028 01108 | 0.3 0328 | 1.8 04420 | 246 | 014931
0.29 01141 | 0.94 0.3264 { 159 04441 [ 248 | 0.4934
0.30 01179 | 0.5 0.3289 | 1.60 04452 | 250 | 0.4938
0.31 01217 | 0.96 0.3316 | 1.6 04163 | 252 | 04041
0.32 01255 | 0.97 0.3340 | 1.62 04474 | 234 | 0.4045
033 01203 | 098 0.3385 | 1.63 04484 | 2.5 | 0.4948
0.34 01331 | 0.99 03380 | 1.64 Cl4405 | 258 | 0.4951
0.35 01368 | 1.00 0313 | 165 0.4505 | 2.60 | 0.4953
0.3 0.1406 | 1.01 0.3438 | 166 0.4515 | 262 | 0495
0.37 01443 | 102 0.3461 1.67 04525 | 2.64 | 0.4959
038 01450 | 1.03 0.3485 | 1.68 04535 | 2.66 | 0.4961
0.39 01517 | 1.4 0.3508 | 1.69 04545 | 268 | 0.4963
0.40 0155¢ | 1.08 03531 | 170 0.4554 | 2.70 | 0.4965
041 0.1591 1.06 0.355¢ | 171 0.4564 | 2,72 | 0.4967
0.42 0.1628 | 1.07 03577 | 172 04573 | 2.74 | 0.4989
043 0.166¢ | 1.08 0.3509 | 1.73 04582 | 2,76 | 0.497)
0.44 01700 | 1.09 0.3621 | 174 04501 [ 278 | 0.4973
045 01736 | 1.10 0.3643 | 1.75 04500 | 280 | 0lao74
048 o2 | 1 0.3665 | 1.76 0.4608 | 2.8 | 04976,
0.4 01808 | 112 03686 | 177 04616 | 2.84 | 0.4077
.48 01844 | 1013 0.3708 | 178 04625 | 2.85 | 0.4979
0.49 01879 | 114 0379 [ 179 04633 | 288 | 04980
0.50 oms | 118 03740 | 180 04641 | 290 | 0.4981
0.51 o1us0 | 116 0.377 1.8 0.4649 | 2.92 | 0.4982
052 0108 | 117 03790 | 18 0.4656 | 204 | 0.4984
0 53 02000 | 118 0.3810 | 1.83 04664 | 296 | 0.49ss
0.54 02054 | 1019 03830 | 184 04671 | 2.08 | 0.4986
058 62088 | 120 03849 | 185 04678 | 300 | 0.49865
0.56 02123 | 1.21 0.3369 | 1.8 0.4686 | 2320 | 040031
0.7 02157 | 1.2 038 | 187 04603 | 3.40 | 0 49956
0.58 0% | 123 03007 | 188 04660 | 360 | 0.4v9841
o5 | o | 124 03025 | 189 04706 | 3.80 | 0 400928
060 | o287 | 1.2 03044 | 190 0.4713 | 4.00 | 0499968
061 | 0220 1.26 0.39%2 | 191 0.4719 | 450 | 0.490%97
662 | o234 | 1.7 03080 | 102 04726 | 500 | 0 4v00v7
063 | 02357 1.28 0.3997 1.93 0.4732
0 64 02389 | 129 | 04015 [ 184 0.4728




INDEX

Arrangements, 18
B

Bayes' formula (theorem), 61

Bernoulli criterion, 5

Bernoulli theorem, 96

Bernoulli trials, 45

Bernstein, 8., inequality, 205

Bertrand’s paradox, 251

Buffon's needle problem, 113, 251
Barbier’s solution of, 253

C

Cantelli’s theorem, 101
Cauchy’s distribution, 243, 275
Characteristic function, composition of,
275
of distribution, 240, 264
Coefficient, correlation, 339
divergence, 212, 214, 216
Combinations, 18
Compound probability, theorem of, 31
Continued fractions, 358, 361, 396
Markofi’s method of, 52
Continuous variables, 235
Correlation, normal (see Normal cor-
relation)
Correlation coefficient, distribution of,
339

D

Difference equations, ordinary, 75, 78
partial, 84

Dispersion, definition, 172
of sums, 173

Disteibution, Cauchy's, 243, 275
characteristie funetion of, 264
of correlation coefficient, 339

Distribution, determination of, 271
equivalent point, 369
general concept of, 263
normal (Gaussian), 243
Poisson’s, 279
“Student’s,” 339
Distribution function of probability,
239, 263
Divergence coefficient, empirical, 212
Lexis’ case, 214
Poisson’s case, 214
theoretical, 212
Tschuprow’s theorem, 216

E

Elementary errors, hypothesis of, 296
Ellipses of equal probability, 311, 328
Estimation of error term, 295
Euler's summation formula, 177, 201
303, 347

Events, compound, 29

contingent, 3

dependent, 33

equally likely, 4, 5, 7

exhaustive, 6

future, 65

incompatible, 37

independent, 32, 33

mutually exclusive, 6, 27

opposite, 29
Expectation, mathematical, 161

of a product, 171

of a sum, 165

Factorisls, 349

Fourier theorem, 241

French lottery, 19, 108

Frequency, 96

Fundsmental lemma (see Limit theorem)

Fundamental theorem (see Tshehwshefi-
Markoff theorem)

W0
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G

Gaussian distribution, 243

Gaussian problem, 396

Generating function of probabilities,
47, 78, 85, 89, 93, 94

H

Hermite polynomials, 72
Hypothesis of elementary errors, 296

I
Independence, definition of, 32, 33
K

Khintchine (see Law of large numbers)
Kolmogoroff (see Law of large numbers;
Strong law of large numbers)

L

Lagrange’s series, 84, 150
Laplace-Liapounoff (see Limit theorem)
Laplace’s problem, 255
Laurent'’s series, 87, 148
Law of large numbers, -generalization
by Markoff, 191 '
for identical variables (Khintchine),
195 e
Kolmogoroft’s lemma, 201
theorem, 185 :
Tshebyshefi’s lemma, 182 -
Law of repeated logarithm, 204
Law of succession, 69 -
Lexis’ case, 214
Lispounoff condition (see Limit theorer)
Liapounoff inequality, 265
Limit theorem, Bernoullian case, 131
for sums of independent vectors, 318,
323, 325, 326 -
fundamental lemma, 284
Laplace-Liapounoff, 284
Line of regression, 314
Lottery, French (see French lottery)

M

Marbe’s problem, 231
Markoff’s theorem, infinite dispersion,
191
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Markoff’s theorem, for simple chains, 301
Markoff-Tshebysheff ~ theorem  (see
Tshebysheff-Markoff theorem)
Mathematical expectation, definition of,

161
of a produet, 171
of & sum, 165
Mathematical probability, definition of,
6
Moments, absolute, 240, 264
inequalities for, 264
method of (Markoff’s), 356f.

N

Normal correlation, 313
origin of, 327

Normal distribution, Gaussian, 243
two-dimensional, 308

P

Pearson’s “x%test,” 327
Permutations, 18
Point, of continuity, 261, 356
of increase, 262, 356
Poisson series, 182, 293
Poisson’s case, 214
Poisson’s distribution, 279
Poisson’s formula, 137
Poisson’s theorem, 208, 204
Polynomials, Hermite (see Hermite)
Probability, approximate evaluation of,
by Markoff’s method, 52
compound, 29, 31
conditional, 33
definition (classical) of, 6
total, 27, 28
Probability integral, 128
table of, 407

R

Relative frequency, 96
Runs, problem of, 77

§
Simple chains, 74, 223, 207

Markoff’s theorem for, 301
Standard deviation, 173
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Stieltjes’ integrals, 261

Stirling’s formula, 349

Stochastic variables, 161

Scrong law of large numbers (Kolmo-
goroff), 202

“Student’s” distribution, 339

T

Table of probability integral, 407

Tests of significance, 331

Total probability, theorem of, 27, 28

Trials, dependent, independent, repeated,
44, 45

411

Tschuprow (see Divergence coefficient)
Tshebysheff-Markoff theorem, funda-
mental, 304, 384

application, 388
Tshebysheff’s inequalities, 373
Tshehysheff’s inequality, 204
Tshebyshefl’s lemma, 182
Tshebyshefi's problem, 199

A

Variables, continuous, 235
independent, 171
stochastic, 161

Vectors (see Limit theorem)
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