report of the

RATES & COSTS COMMITTEE I

125550

16.1

NEW DELHI **JANUARY, 1965**

MINISTRY OF IRRIGATION AND POWER · CENTRAL WATER AND POWER COMMISSION

REPORT OF THE RATES AND COSTS COMMITTEE

GOVERNMENT OF INDIA MINISTRY OF IRRIGATION & POWER

REPORT OF

THE RATES & COSTS COMMITTEE

Part I

January--1956

CWPC No. 115

First Printing—January 1956 Second Printing—September 1967

.

Price : Inland Rs. 37.00 Foreign 86 sh. 4 d, or 13 \$ 32 cents.

PRINTED IN INDIA BY THE MANAGER, GOVERNMENT OF INDIA PRESS, FARIDABAD AND PUBLISHED BY THE MANAGER OF PUBLICATIONS, DELHI, 1967.

.

GOVERNMENT OF INDIA MINISTRY OF IRRIGATION & POWER

(RATES AND COSTS COMMITTEE)

No. RCC/37/56

Curzon Road Barracks, New Delhi, the 15th January, 1956.

То

The Secretary to the Govt. of India, Ministry of Irrigation & Power, NEW DELHI.

Sir,

With reference to your letter No. DW-III-7(I), dated the 16th February, 1954, we submit herewith Part I of our Report.

Yours faithfully,

Sd/- (P. C. Agrawal) Chairman.

Sd/- (M. R. Varadarajan) Member.

> Sd/- (S. Ramier) Member.

Sd/- (B. D. Nanda) Member Secretary.

CONTENTS

CHAPTER	INTRODUCTORY							PAGE
1.1.	The Origin	• •	••	••	••	••	••	1
1.2.	The appointment of the Rates of Reference	& Cos	ts Coi	mmittee	e and i 	its Ter	ms	1
1.3.	Changes in the Personnel	••		••	••	••	• •	3
1.4.	Clarification of the Terms of R	eferenc	e	••	••	••	••	3
1.5.	Collection of Data	••	••	••	•••	••	• •	4
1.6.	Our Approach	••	••	••	••	••	••	6
1.7.	The Layout of the Report	••	••	••	••	••	••	7
1.8.	Additional Assignments	, • •	••	••	••	••	•••	8
CHAPTER 2	CONSTRUCTION COST						· .	
2.1.	Preliminary Investigations	• • •	••	••	••	••	••	9
2.2.	Planning the Projects	•	•• .	••	••	••	••	. 9
2.3.	Project Estimates			••		••	••	9 .
2.4.	Divisional Schedule of Rates	••	••	••		••	•••	9
2.5.	The Primary Rates	••			••	••	••	10
2.6.	The Division of Construction	Cost	•••	••	••	••		/10
2.7.	The Labour Component	••	••	••	••	••	••	10 .
2.8.	Work-charged Establishment	•••	·	••	••	••	••	11
2.9.	The Materials Cost	•••	••		••	••	••	12
2.10.	Steel and Woodwork		••	••	•••	••	••	12
2.11.	P.O.L. Group, Rubber Goods	etc.	••	••	••	••	••	13
2.12.	Locally Produced Materials	••	••	••	••	••	••	13
2.13.	The Basic Schedule of Rates	••	••	••	••	••	•• ′	13
2.14.	Comparison of All-in Rates	••	••	••	••	••	••	14
2.15.	Items of Burden		••	••	••	••	•• ′	15
2.16.	Provision for Buildings :.	••	••	••	••	••	••	16
2.17.	The Financial Provision	••	••	••	••	••	••	17
2.18.	The Building Costs	••	••	••	••	••	•• .	19
2.19.	Roads	••	• *•	••	••	••	••	19
2.20.	Water Supply & Sanitation	••	••	••	••	••	••	19
2.21.	Power, Telephone and Telegra	ph Line	S	••	••	••	••	20
2.22.	Workmen's Compensation	••	••	••	••	••	••	21
2.23.	Working-site Amenities	••	••	••	••	••	· •	21
2.24.	Small Tools & Plant	••	••	••	••	•••	• *	22
2.25.	Laboratory & Testing Charges		••	••	••	••		23
2.26.	Losses on Stock & Advances	5	••	••	••	••	••	23
2.27.	Maintenance	••	••		••	••	••	24
2.28.	Miscellaneous	••	••	••	•• • \	••	••	25

		•
2.29.	Éstablishment Overheads	, E
2.30.	Contingencies	•
2.31.	Consultants' Fees	•
2.32.	Audit Charges	•
2.33.		-, , ,
2.34.	Responsibility for Indirect Services	
2.35.		
2.36.		
2.37.	Rates of Expenditure on Preliminary Survey	
CHAPTER	3—ECONOMICS OF CONSTRUCTION EQUIPMENT	•
3.1.	Construction Methods (Manual versus Mechanical)	
3.2.	Manufacture of Construction Equipment	•
3.3.	Standardisation of the Equipment and Spares	•
3.4.		•
3.5.	Determination of Life of Equipment	•
3.6.	Depreciation	
3.7.	Definition of Hours	
3.8.	The Life of Tyres	
3.9.	Depreciation for Idle Period	•
3.10.	Two-Shift Working	
3.11.	Method of Determining the Price of Old Equipment	•
3.12.		
3.13.	Repairs and Renewals of Tyres	· .
3.14.	The Operating Cost	
	Importance of Preventive Maintenance	
	4	
4.1.	General	
4.2.	Classification and Codification of Stores	
4.3.	Limits of Stock	
4.4.	Procurement of Stores	
4.5.	Inspection, Receipt and Payment of Stores	
4.6.	Accounting of Receipts and Issues	
4.7.	Pricing of Stores	
4.8.	Reconciliation of Issues, Receipts and Balances	
4.9.	Other Stores	
4.10.		
4.11.	Lack of Trained Personnel	
4.12.	Insufficiency of Staff	
	5-Cost Control	
5.1.	Contents of a Project Report	

			PAGE
	5.3.	Classification of Accounts	. 84
•	5.4.	Codification of Items of Work and Stores	. 85
	5.5.	The Estimate	. 85
	5.6.	Physical Quantities	. 85
	5.7.	The Contract	. 86
	5.8.	Selection of the Type of Contract	. 87
	5.9.	The Documentation and Tenders	. 88
	5.10.	The Contractor	. 88
	5.11.	Organisation	. 90
	5.12.	Objective of the Organisation	. 91
	5.13.	Planning the job	. 91
	5.14.	Flow Diagrams	. 91
	5.15.	Planning Charts	03
	5.16.	Planning, Plant & Equipment	
	5.17.		92
	5.18.	Control of Expenditure	00
	5.19.	Cost Section and its Functions	. 93
	5.20.		0.2
	5.21.		. 93
	5.22.	Distribution of Cost	. 94
	5.23.	Cost Reports	. 95
	5.24.		0.5
	5.25.		00
	5.26.	Daily 'Materials' Report	. 96
	5.27.	The Collecting and Recording of Machine Costs	0.0
	5.28.		
	5.29.		. 97
	5.30.	Units of Daily Measurement of Work	. 98
	5.31.	Accuracy Required	00
	5.32.	Monthly Reconciliation	. 99
	5.33.	Weekly Equipment Use Report	. 99
	5.34.	Cost Schedule	. 99
	5.35.	Progress Reports	. 99
	5.36.	Monthly Variation Statement	. 100
Curr		-Excavation, Loading, Hauling & Compaction Units	100
CHA			
	6.1. 6.2.	Excavation, Loading, Haulling & Compaction Units	. 101
	0.2.	Outputs and Production Rates, Working Hours & Operating Efficiency	101
	6.3.	Shovels and Draglines	102
	6.4.	Rippers and Rooters	106
	6.5.	Dozers	108
	6.6.	Scrapers	110

	iv	
		PAGE
6.7.	Belt-Loader	117
6.8.	Dumpers	119
6.9.	Shaping and Compacting of Earthwork	120
6.10.	그는 그는 것 같은 것 같	121
6.11.	Unit Rate of Earthwork by Mechanical Means	123
6.12.	Consolidation of Loose Earth	133
6.13.	Hydraulic Sluicing	134
CHAPTER '	7-Earthwork by Manual Labour	
7.1.	Earthwork and Classification of Soils	135
7.2.	Schedule of Manual Output and Rates	136
7.3.	Removal of Spoil	137
7.4.	Excavation Rates and Output (Manual) from Projects	139
7.5.	Hand Shovelling	143
7.6.	Transport by Donkeys or Mules	144
7.7.	Clearing Jungle	144
CHADTED S	8—Transport	
		145
8.1. 8.2.	Transporting Materials of Construction	145
9 A.	Weights of Principal Construction Materials	145
8.3.		146
8.4.	Transporting Materials by Motor Trucks	148
8.5.	Freight Rates by Trucks over Projects	155
8.6.	Transport by Steam & Diesel Locomotives	157
8.7.		158
8.8.	Transport by Ropeways	160
CHAPTER	9—Drilling and Quarrying	
9.1.	Types of Drills	161
9.2.	Drilling Performances	161
9.3.	Drilling for Blasting	164
9.4.		165
9.5.	Air Consumption of Pneumatic Tools	169
9.6.	Blasting	169
9.7.	Comparative Rates for Rock Excavation	171
CTIADTED	10—Tunnelling	•
10.1.		172
10.1.		172
10.2.		172
	Bhakra Diversion Tunnel Bhor and Thal Ghat Tunnel	175
10.4.	Budni Barkhera Tunne	181
		181
10.6.	Lining of Tunnels	104

							Dien
CHAPTER []	-BRICKWORK & LINING OF CANALS	5					PAGE
11.1.	Price of Bricks						183
11.2.	Mortar Materials			•••	••	••	183
11.3.	Prices of Mortar Materials	••	••		••	••	185
11.4.	Labour Output in Brickwork						186
11.5.	Cost of Scaffolding (Use and Waste		••	••		••	· 187
11.6.	Cost of Brick Masonry	•	••			••	187
11.7.	. Lining of Canals	••	••	••	••	••	187
Силртер 1	2—Steel Works and Gates						•
12.1.	Hudroulia Catas			•			191
12.1.	Indigenous Manufacture	••	• •	• •	••	••	191
12.2.	Break-up of Cost	• •	••	• •	••	••	191
12.3.	The Overhead Charges	••	••	••	••	••	193
12.4.	Details of Actual Expense	••		• •	••	••	194
	- · · ·	••	••	••	••	••	174
	B-STONE MASONRY						
13.1.	Stone Masonry Classification	••	••	••	••	••	199
13.2.	Uncoarsed Rubble Stone Masonry	••	••	••	••	••	199
13.3.	Estimating Stones	• •	••	••	••	••	199
13.4.	Cost of Stone	••	••	••	••	••	205
13.5.	Mortar for Hydraulic Works	••	••	••	••	•• `	206
13.6.	Cost of Mortar Materials	••	••	••		• •	206
13.7.	Lead and Lift	••		••	••	••	209
13.8.	Rip-Rap	••	••	••	••	••	210
CHAPTER 14	-Concrete and Formwork					•	
14.1.	Better Concrete				•		212
14.2.	Proportioning of Ingredients	••	••	• •		· . /	212
14.3.	Formwork		• • •				212
14.4.	Wooden Forms for Roof Slabs			••			214
14.5.	P.G.I. Covered Timber Planks over	Timber	Frames				- 215
14.6.	Manufacture of Heavier Type of Sh					/	216
14.7.	Cost of Steel Formwork at Maithon		••			•••	217
14.8.	Concreting Equipment	• •	• • •	••	••	••	219
14.9.	The Crushing Equipment					••	219
14.10.	Cost of Crushing and Screening		•••		••		220
14.11.	Washing Aggregates (Mechanical)	•	••		••	••	222
14.12.	Transport from Stockpiles to Batchi	ng and I	Mixing]				222
14.13.	Batching and Mixing	-		••		••	223
14.14.	Admixture	•			••		225
14.15.	Overall Rates of Mass Concrete	••	••	••	••		225
14.16.	Formwork		••	••			227
CHAPTER 15	-Analysis and Schedule of Rate	ES					
15.1.	Introductory		••		•		228
15.2.	Basic Schedules of Wages		••	••	••	••	228
15.2.	Basic Schedules of Prices		••	•••	••	• •	230
15.4.	Use Rates and Outputs of Machines		••	••	•••	••	238
12,7.	ose rates and outputs of machine.		••	• •	••	••	~~~

v

	vi		
			PAGES
15.5.	Labour and Material Constants	• ••	239
15.6.	Rates for Preliminary Work		246
15.7.	Transport Rates	•• ••	248
15.8.	Earthwork by Machines	· · · · ·	250
15.9.	Earthwork by Manual Labour	•• ••	252
15.10.	Drilling & Blasting	•• ••	253
15.11.	Brickwork & Lining	•• ••	254
15.12.	Stone Masonry	•• ••	264
15.13.	Concrete	•• ••	277
HAPTER 1	6-OBSERVATIONS		
16.1.	Introductory		204
16.2.	The Burden	· · ·	284
16.3.	Comments on the Burden	•• ••	285
16.4.	Earthwork by Machines	•••	286
16.4.	Variation in Use Dates of Mashines		286
16.6.	Charry 1-	. •• <i>;</i>	289
16.7.	Duration	•• ••	289
16.8.	Tractor Decar	•• ••	292
16.8. 16.9.	Material Company and Cardens	•• ••	295 302
16.10.	Fastherents Bates	•• ••	
16.10.	Duilling & Diasting	• •	305
16.11.	Excavation in Rock by Shovels	•• • ••	310
16.12.	Tunnelling	•• ••	311
16.13.	Transport Rates	•••••	313 314
16.14.	Brickwork	• • • •	314
16.15.	Lining of Canals	•• ••	315
16.17.	Hudroulie Cotes	•• ••	313
16.17.	Stone Meconny	••	
		•• ••	319
16.19.	Rip-Rap Lift	•• ••	321
16.20.		•• ••	321
16.21.	Mass Concrete		322
16.22.	Formwork	** • •	323
16.23.		•• ••	323
16.24.		•••••	324
	Annexures	•• •• •	327345

APPENDICES

1.	Variation in Wages over Projects	••	••	••		••	••	349
2.	Plinth Area Rates of Buildings on Proje	ects	••	•••		••	••	350
3.	Worksite Amenities	••	••	<i>.</i> .	••	••	••	352
4.	Preventive Maintenance Forms		••	••	••	••	••	354
5.	Maintenance Charges of a Steam Loco			••	••	••	••	361
6.	Outputs recommended by Foreign Auth	ors		••	••	• •		364
7.	R. & C. C. Use Rate Analysis	••		••	••	••	••	365
8.	Details of Sluice Gates Manufactured in	India		••	••	•••	••	378
9.	Primary and Overall Rates of Uncoarse	d Rub	ble H	earting	g Mas	onry	on	
	River Valley Projects	••		••	••	••.	••	383
10.	Set of Proformas	••		••	••	••	••	386
11.	Decimal System of Classification of Det	taild H	eads ar	nd their	Sub-h	eads	••	410
	· · ·						•	I

INTRODUCTORY

1.1. THE ORIGIN

1.1.1. "The Government of India have been viewing with some concern the large increase in the estimated expenditure of some of the Major River Valley Projects under execution in the country. Special provision has been made for these projects in the Five-Year Plan and periodic increases in the estimated costs, apart from making it difficult to find ways and means of providing additional funds for the completion of such projects, are calculated seriously to affect the implementation of the plan. Under-estimating, due to the absence of adequate information on the rates to be adopted for different items of work seems to be one of the main causes of these mounting estimates. At present there are wide variations between the schedule of rates prevalent in different projects. Government of India, therefore, consider it necessary to evolve a comprehensive standard schedule of rates including detailed analysis of such rates, at least for the major items, which can be used as a basic schedule for all projects. These standard rates can be utilised for examination of future projects after making due allowance for local conditions. The Government of India have accordingly set up a committee of experts to examine the existing rates in the more important projects viz. Bhakra-Nangal, D.V.C., Hirakud, Tungabhadra, Lower Bhavani, Malam-puzha, Kakrapar, Bhadra, Mayurakshi and Chambal under execution in the country and submit a report to the Government."

[Extracted from Ministry of Irrigation & Power's No. D. W. III-7 (I), dated 16-12-1954.]

1.2. THE APPOINTMENT OF THE RATES & COSTS COMMITTEE AND ITS TERMS OF REFERENCE

1.2.1. Sarvashri P. C. Agrawal, ISE (Retd.), Ex-Chief Engineer, U.P. (Chairman), Raunaq Lal, Deputy Chief Accounts Officer, Bhakra-Nangal Project (Member) and G. G. Dhanak, now Superintending Engineer, Tapi Circle, P.W.D., Bombay (Member-Secretary) were appointed to the Committee on its formation, *vide* Ministry of Irrigation & Power letter No. DW-III-7(I) dated 16th Feb., 1954. The Committee was required to make recommendation on the following terms:—

(1) A comprehensive standard schedule of rates for manual as well as machinery work, which can be used as a basic schedule

for all projects with such modifications as may be necessary for zonal consideration;

- (ii) Standard analysis of rates for the main items of River Valley Projects estimates which would enable rates being worked out for any project with the help of the basic schedule, after allowing for differences in cost of carriage and other local factors involved;
- (iii) The causes which have led to the difference in rates at present prevalent on the various major projects (dams and canal works); and
- (*iv*) To examine the present P.W.D. forms with a view to suggesting modifications which would serve the purpose of better cost accounting on all River Valley Projects.

1.2.2. These Terms of Reference were further amplified by the Government of India, with the concurrence of Comptroller and Auditor General in their letter No. DW-III-22 (108) dated 4th June, 1954 stating that the Committee will also visit a typical Railway Workshop (Central Railway Workshop, Parel), and after studying the system of maintenance and accounting of stores in force on the Projects, the Railway, and the Electricity Department of the Government of Madras and the procedure on stock control as laid down in B.S.S. 1100—Part 5 by British Standard Institution, and make recommendations on:—

- (i) Stock account rules to be adopted for both quantity and value of accounts of stores for River Valley Projects;
- (*ii*) Suitable forms for the maintenance of quantity and value accounts of stores;
- (*iii*) Procedure for the maintenance of accounts of special tools and plants and machinery and the forms pertaining thereto; and
- (*iv*) Rules for placing orders for stores, taking delivery from railway (or other carriages), carriage to godowns, safe custody (including construction of godowns, bins and yards), employment of guards, physical verification, issues, etc., with form such as challans, gate passes etc., for upkeep and custody of stores (including all tools and plants) to guard against thefts, shortages etc., and ensure fixing of responsibility thereof.

1.2.3. In so far as the Terms of Reference of the Committee relating to matters falling within Article 160 of the Constitution are concerned the Committee was deemed to function for and under the Comptroller and Auditor General of India, *vide* Government of India, Ministry of Irrigation & Power letter No. DW-III-22 (108) dated 4th June, 1954. Briefly these terms were :--

> (i) To make suggestions for the introduction of such subsidiary rules or accounts as would ensure a more effective control over the cost of certain items of works; and

2

INTRODUCTORY

(ii) To suggest improvements, *inter alia*, in the system of store accounting as far as possible.

1.2.4. Government further directed that the Committee's recommendations in regard to these matters should be made in self-contained sections of the Report for transmission by the Government of India to the Comptroller and Auditor General of India for such action as he may consider necessary.

1.3. CHANGES IN THE PERSONNEL

1.3.1. Shri N. S. Sandhu, Executive Engineer, Stores Division, Bhakra Dam Project, was then appointed as an additional Member of the Committee in view of the extended scope of work outlined in para 1.2.2. The Committee was further strengthened by the inclusion of two more Members namely, Shri B. D. Nanda, Consulting Engineer and Ex. Member-Secretary, D.V.C. Enquiry Committee and Shri M. R. Varadarajan, General Manager, Hindustan Construction Co. Ltd., Bombay. They joined the Committee on 18-6-1954 and 18-7-1954 respectively.

1.3.2. Shri G. G. Dhanak was called back by the Bombay Government on the 1st November, 1954 and was relieved by Shri B. D. Nanda.

1.3.3. Shri N. S. Sandhu returned to the Bhakra-Nangal Project on the 31st December, 1954, while Shri Raunaq Lal proceeded on two months' leave for reasons of health from 10th January, 1955. He was replaced by Shri S. Ramier, Finance Officer, Ministry of Finance, Government of India.

1.4. CLARIFICATION OF THE TERMS OF REFERENCE

1.4.1. The Ministry of Irrigation & Power, in their letter No. DW-III-7 (I) dated 5th March, 1954, indicated the main items of work which were to be examined by the Committee for the preparation of standard analysis of rates. These are given below:—

- (a) Earthwork of all descriptions pertaining to:
 - 1. Dams and Dykes,
 - 2. Excavation in foundation of dams and weirs and canal excavation, and
 - 3. Figures for Swell and shrinkage factors in earthwork;
- (b) Drilling and grouting;
- (c) Concrete in dams;

(d) Shuttering for concrete in dams; M7CW&PC/63-2

- (e) Reinforced concrete in ordinary and special structures:
 - 1. Concrete,
 - 2. Reinforcement,
 - 3. Shuttering;
- (f) Brick Masonry;
- (g) Stone Masonry;
- (h) Steel Gates :
 - 1. Crest Gates,
 - 2. Sluice Gates;
 - (i) Plinth area rates for buildings :
 - 1. Temporary,
 - 2. Permanent.

1.4.2. The Committee had an opportunity to meet Shri Gulzari Lal Nanda, Minister for Irrigation and Power on 25th May, 1954, when the Terms of Reference were discussed at length and further clarified.

1.4.3. The Committee obtained a confirmation from the Ministry that its Terms of Reference did not include an examination of items concerning Power Generation and Transmission.

1.5. COLLECTION OF DATA

1.5.1. The Committee visited the following places to collect data and acquire first-hand knowledge of the local conditions:---

A. River Valley Projects

 (1) The Bhakra-Nangal (2) The Sarda Hydro-Electric (3) The Sarda Sagar (4) The Mayurakshi (5) The D.V.C. Projects: 	(East Punjab) (Uttar Pradesh) (Uttar Pradesh) (West Bengal)
 (i) The Tilaiya (ii) The Maithon (iii) The Panchet Hill (iv) The Konar (v) The Durgapur (vi) The Bokaro 	(Bihar) (Bihar) (West Bengal) (Bihar) (West Bengal) (Bihar)
 (6) The Hirakud (7) The Tungabhadra (Andhra) (8) The Tungabhadra (Hyderabad) (9) The Lakhavali (10) Vaitarna (11) The Gandhi Sagar 	(Orissa) (Andhra) (Hyderabad) (Mysore) (Bombay Corporation) (Madhya Bharat)

4 :

INTRODUCTORY

(12) The Kotah Barrage(13) The Mata Tila Dam	(Rajasthan) (Uttar Pradesh)
B. Workshops	

(1) The Central Tractor Workshop

- (2) The Izzatnagar Workshop
- (3) The Government Workshop
- (4) The Central Railway Workshop

(Delhi) (Uttar Pradesh) (Madras) (Bombay)

(Punjab)

(5) The Central Workshop, Amritsar

C. Commercial Undertakings

(1)	M/s Associated Imports & Exports	(Calcutta)
	M/s William Jack Ltd.	(Calcutta)
(3)	M/s Blackwood Hodge Ltd.	(Calcutta)
(4)	M/s Tractors (India) Ltd.	(Calcutta)
(5)	M/s Larson Toubro Ltd.	(Bombay)
(6)	M/s Voltas Ltd.	(Delhi)
(7)	M/s Power Sams Ltd.	(Bombay)
(8)	M/s Hollorith (India) Ltd.	(Delhi)

1.5.2. The Committee also took into consideration the recommendations of the following Committees:—

- 1. Labour Conditions in Building & Construction Industries in India—Ministry of Labour.
- 2. Report of the Committee of Experts for Building Works-Ministry of Works, Production & Supply.
- 3. Report of the Environmental Hygiene Committee, October, 1949.
- 4. Report on the Central Public Works Department and the Central Water & Power Commission—Ministry of Works, Housing & Supply.
- 5. Report of the Construction Plant and Machinery Committee-Ministry of Irrigation & Power.
- 6. Report of the Damodar Valley Enquiry Committee—Ministry of Irrigation & Power.
- 7. Report on the Planning and Management of Building Contracts by Central Council of Works and Buildings, London.
- 8. Report of the Stores Purchase Committee.

1.5.3. Discussions were also held with several engineers, accounts officers and other well-informed persons in the Engineering Industry.

1.5.4. Questionnaires on matters relating to accounts and stores were issued to a large number of projects and State organisations and

the opinions received have been considered by us while making our recommendations.

1.5.5. Later, when the Committee during the course of its labours felt that the requisite engineering data was not forthcoming from the projects, it approached Ministry for assistance.

1.5.6. The Ministry of Irrigation & Power vide their No. DW-III-221(108)/5 dated 15th October, 1954, issued to the State Governments and the Project authorities a questionnaire on Rates & Costs along with a number of proformas, drafted by the Committee. The response from the projects, however, was not seen very encouraging. Replies from many of them were not forthcoming for considerable time and we felt that it would not be correct to draw conclusions from incomplete data as it might be the missing one which may be quite important in explaining the variations in prices.

The Committee, thereupon sought permission of the Government to submit an interim Report by the 30th June, 1955, without incorporating information in respect of Term (3). This was granted.

1.5.7. The report was circulated at the Engineer's Seminar at Srinagar (Kashmir). The Engineers and Officers present promised the Minister of Irrigation & Power to send in their comments thereon after a thorough study at home by 15th September, 1955.

1.5.8. Very few officers were however able to adhere to their resolve. Due consideration has been given to the comments received and the recommendations amended by us where necessary.

1.6. OUR APPROACH

1.6.1. The projects were furnished with proformas so as to seek information in respect of the direct and indirect expenditure and the breakup of the unit rates into their elements. Only in very few cases we have been able to get the complete information. It is true that the projects had their own difficulties in furnishing the data due largely to their accounts being not in shape to enable them to draw out the required information.

1.6.2. Realising that a single-ready-to-use schedule for the entire country was impracticable and the best that could be offered was the structure of each principal item, we decided to separate the highly variable elements like wages and prices from the constants like output of men and machines, proportions of materials etc., for purposes of the study.

1.6.3. We have on the basis of assumed wages, prices of materials, and equipment, etc., mentioned in Chapter 15, worked out analysis of rates for some of the principal items. Adjustments in these item rates

INTRODUCTORY

due to variations of time and place should be made in their analysis to derive new rates.

1.6.4. In determining the causes of variation in the prevailing rates over the projects, as required under Term 3, we were faced with innumerable difficulties as the Unit Rates on the projects differed widely in their composition and two projects offered the same conditions of work. Not only did they differ in details but their methods of control and execution, local materials, leads and lifts, etc., were very different. The only way out of this difficulty was to examine the various constituents of each item over the projects and bring out the variations as far as feasible.

1.7. THE LAYOUT OF THE REPORT

1.7.1. The Report has been divided into two parts to meet the special requirements of our Terms of Reference. Part I is meant for the Ministry of Irrigation & Power and Part II for the Comptroller and Auditor General of India. Chapters on Cost Control and Stores, which are of interest to both have been included in both the parts.

1.7.2. Part I comprises 16 Chapters as shown below:-

- Chapter 1. Is the Introduction.
- Chapter 2. Deals with general matters relating to the study of rates and other elements of cost.
- Chapter 3. Deals with the Economics of the Construction Equipment.
- Chapter 4. Deals with Stores Management and Control.
- Chapter 5. Deals with the Control of Cost on Projects.
- Chapter 6. Deals with the outputs and rates of earth-moving machines.
- Chapter 7. Deals with the analyses of Rates of Earthwork by Manual Labour.
- Chapter 8. Deals with the Economics of Transport.
- Chapter 9. Deals with Quarrying and Drilling.
- Chapter 10. Deals with Tunnelling.
- Chapter 11. Deals with Brickwork and the Lining of Canals.
- Chapter 12. Deals with Steel Gates.

REPORT OF RATES & COSTS COMMITTEE

Chapter 13. Deals with Stone Masonry.

Chapter 14. Deals with Cement Concrete and Formwork.

Chapter 15. Contains the Analyses and Schedules of Rates.

Chapter 16. Contains Observations.

Appendices.

1.8. ADDITIONAL ASSIGNMENTS

1.8.1. At the instance of the Ministry of Irrigation & Power the Committee submitted a 'Paper relating to problems connected with its Terms of Reference' to the Engineers' Seminar at Roorkee, 1954. This paper was circulated to the participants but could not be discussed for lack of time. The Committee was, thereupon, asked to present an Interim Report in its place for discussion at the following Seminar which was done.

1.8.2. The Committee also functioned as Sub-Committee No. 2 of the Engineers' Seminar to examine the report of the Nangal Sub-Committee on Unit Rates for Concrete and Masonry Dams.

1.8.3. The Co-ordination Committee of Engineers was also requested to examine Shri Gupchup's paper on 'Gravity Dams' and make recommendations on the 'Relative Places of Concrete and Masonry' which was duly submitted.

1.8.4. Three meetings were held on the 2nd and 3rd September, 1954, and a number of eminent engineers participated therein. A report on the subject was submitted to the Co-ordination Committee for discussion at the Srinagar Seminar, 1955.

1.8.5. The Committee also participated in the Symposium on Concrete vs. Masonry for construction conducted in Delhi under the auspices of Central Board of Irrigation & Power on 10th November, 1955, and put up recommendations which were unanimously adopted.

The Ministry of Irrigation & Power also gave us a number of other small but important assignments, which are not included in this Report.

CONSTRUCTION COST

2.1. PRELIMINARY INVESTIGATIONS

2.1.1. The expenditure on surveys and investigation of a project is booked under the Head 18 (A) in the first instance. After a project is sanctioned, this expenditure is debited to the item A-Preliminary of the same.

2.1.2. After a project is sanctioned, greater attention is paid to its execution and very often investigations and surveys do not receive the attention they deserve resulting in subsequent changes in design and methods of construction which prove expensive. It would lead to economy and efficiency if projects are taken in hand only after they have been thoroughly investigated.

2.2. PLANNING PROJECTS

2.2.1. Changes in design for want of proper advance planning have led to considerable excesses in expenditure on a number of projects. The delay and disorganisation caused thereby, not only add to the immediate cost of the work but they also undermine the general morale of the staff and have a far-reaching effect. It is, therefore, important to undertake planning in advance of construction. As detailed planning takes considerable time, due provision should be made in State and Central budgets for this work and steps should also be taken to encourage Indian experts on planning and design so that we may have to depend less and less in this respect on foreign assistance.

2.3. PROJECT ESTIMATES

2.3.1. On most projects there have been several revisions of estimates for one reason or the other. Only the latest estimates have been adopted by us for our study.

2.4. DIVISIONAL SCHEDULE OF RATES

2.4.1. The schedules of Rates are prepared in almost all Irrigation Divisions and are supported by the "ANALYSES OF RATES". These rates are used for purposes of estimating, negotiating job work, pricing extra items of contract and for cost control. They are based on current wages and prices of materials and are revised periodically. Works are usually allotted to piece workers on the basis of these rates. They include direct charges and indirect expenses but are exclusive of departmental overheads.

2.4.2. Enquiries from Public Works Departments of the Centre and the States reveal that their schedules allow for on-costs and contractor's profit from 10 to 15% of the prime cost in the item rates which are applied to small works executed departmentally or by piece workers. For large works, it is usual to invite item rate tenders from contractors who include, in their offer, the cost of the ancillary services and on-costs including profits. Items rates, however, do not include *pro rata* share of departmental overheads expenses.

2.5. PRIMARY RATES

2.5.1. The divisional schedules of rates cannot be utilised as such for purposes of Cost Control in cases where works are executed departmentally. As the picture is not always clear at the time of framing an estimate whether a work is to be done by contract or the departmental agency, it would be advisable to frame the estimate in such a manner that the item rates do not include share of the indirect services and overheads as dealt with later.

2.6. DIVISION OF CONSTRUCTION COST

2.6.1. When the construction of a project is let out to one or more contractors the contract prices with the addition of departmental overheads would determine the cost of the project within close limits. When the project is being executed by force account, organized by the department itself the outlay on a project would fall in the following categories :

(i) Direct labour and work charge establishment.

- (ii) Materials.
- (iii) Plant use.
- (iv) The Burden.

2.7. THE LABOUR COMPONENT

2.7.1. The labour component or the cost of the labour employed on the work relates only to that form of labour which does the physical work. Such work may be done by unskilled labourers, carpenters, masons, truck drivers, crane and shovel operators and others. CONSTRUCTION COST

2.7.2. The variation in wages over the projects (Appendix 1) shows at a glance the extent of discrepancy in the wage schedules particularly between the south and the other parts of the country—the wages being on the low side in the former case. This also holds good in the case of the superior engineering personnel.

2.7.3. Labour can be paid either on the basis of output or time. The output or piece-rate method reduces the cost of supervision and simplifies both costing and control of expenditure and is therefore, recommended in preference to time-rate method. Group piece-rate, *i.e.* payment of rate to a group of workers on the basis of their combined output is particularly recommended.

2.7.4. To get the best out of labour, it is necessary that the minimum wage be tied to a minimum output and those who produce more should get more in the same proportion. As a further incentive names of efficient workers should find a place in departmental bulletins and even given token awards in recognition of their services.

2.8. WORKCHARGED ESTABLISHMENT

2.8.1. Workcharged Establishment :-- Charges under this head comprise salaries of mistries, supervisors, foremen etc., who do not work with their own hands but exercise an immediate control over the quality and output of worker.

2.8.2. Provision under this head varies from 1 to 2%. That for some of the projects is given below :---

Bhakra	••	••	••	••		••	1 %
Kotah		••	••	••	• • .	••	2 1 %
Gandhi Sa	gar	••	••	••	••	••	11%
Hirakud	••		•				2 %
Kakrapar	••	••	••	••	••	• •	2 %

2.9. THE MATERIALS COST

2.9.1. Some of the important materials required for River Valley Projects are discussed below :---

2.9.2. Cement :--- The issue rates of cement over the various projects are tabulated in the Table No. 2.9.2. given below:----

<i>TABLE</i> 2.9.2.	
---------------------	--

S1.	Nome of project	Cement per ton					
No.	Name of project	F.O.R.	In Store	Ex. Store			
1	2	3	4	5			
1	Bhakra	69/-		76/-			
2	Nangal	82/15	85/3	86/7			
3	Sarda Sagar			100/-			
4	Matatila	•		100/-			
5	Chambal (Raj) Kotah			105/-			
6	Chambal (M.B.) Gandhi Sagar	73/3	94/8/6	99/-/4			
7	Konar		80/-	84/6			
8	Mayurakshi	83/12		95/-			
9	-	65/4	\$0/12	85/-			
10	Gangapur	94/10	105/-	108/5			
· 11 ·	Kakrapar			100/-			
12	Vaitarna	87/8		100/-			
13	Tungabhadra (Andhra)	99/8	103/12	105/-			
14	Lower Bhawani	70/10	84/14	89/8			
15	Malampuzha	61/4	71/11	72/13			
16	Bhakra	90/-		100/-			
17	Peechi	· _ ·	· · ·	130/-			
- 18	Perinchani	82/8		130/14			

Rates of Cement over the River Valley Projects

2.10. STEEL AND WOODWORK

2.10.1. The rates for steel (Table 2.10.3) are Rs. 360/- at Lower Bhawani to Rs. 560/- at Bhakra. This variation is due to purchases of steel having been made at different periods. Any project buying steel now will have to pay another Rs. 100/- or so over the highest price paid a year ago.

2.10.2. Price of timber varies over a long range (Table 2.10.3.) on the various projects depending on their nearness to the source of supply.

2.10.3. The issue rates of steel and timber over the various projects are given in Table 2.10.3.

TABLE 2.10.3.

Sl. No.	Name of Projects (Zone-wise)	Steel per ton	Timber (Teak) per FC	Remarks
1	2	3	4	5
1	Nangal	560/-		Rate at site.
2	Chambal (Rajasthan) Kotah		12/8	
3	Maithon]			· · ·
4	Panchet Hill			Issue rates taken from the
5 6	Tilaiya }	500/-	15/8	schedule of rates which is appli-
6	Durgapur			cable to all the DVC Projects.
7 8 9	Konar J			
8	Hirakud	460/-	10/-	As per Schedule of rates.
	Gangapur		10/-	do
10	Kakrapar	510/- to	7/- to	,
		483/-	9/-	do
11	Vaitarna	332/- to 416/-		
12	Tungabhadra (Andhra)	420/-	20/-	do
13	Lower Bhawani	360/-	13/- to	<i>4</i> 0
10		500/-	- 17/-	do
14	Malampuzha	360/-	$\frac{17}{12}$ to	
14	manipulation and a second	2001-	24/-	do
15	Peechi	520/-	19/3	do

Issue Rates of Steel and Timber over the River Valley Projects

2.11. P.O.L. GROUP, RUBBER GOODS, ETC.

2.11.1. The rates of these goods are Manufacturers' Association prices and the variations are small depending mainly on the distance of the project sites from rail-heads and ports of supply.

2.12. LOCALLY PRODUCED MATERIALS

2.12.1. The principal local construction materials in use on projects are building stone, coarse and fine aggregates and their prices vary depending on the method of their manufacture, their proximity to the project where they are to be used, the means of transport etc. The comparison of their prices is discussed elsewhere.

2.13. BASIC SCHEDULE RATES

2.13.1. Project Schedule of Rates which should be supported by the analyses of rates should also include the following basic data :---

- 1. Schedule of wages;
- 2. Schedule of prices of materials and equipment; and
- 3. Schedule of transport rates.

2.13.2. It is necessary that a basic schedule of wages prevalent at the time of the submission of a project should invariably accompany the estimate to enable the project authorities to evaluate accurately the variations under this head at a future date.

2.13.3. Project estimates should always be supported by a schedule of basic prices of materials on which item rates have been framed as then alone can it be possible to examine the effects of variations in such prices on the total cost.

2.14. COMPARISON OF ALL-IN RATES

2.14.1. For a comparative study the true rate of any item of work is the all-in rate which takes into account all the visible elements and also the invisible burden on that item. Such figures are not kept on any project.

2.14.2. Table 2.14.2. shows indirect expenses and overheads as percentages of the direct cost of the project exclusive of the cost of land and rehabilitation works. A break-up of the burdens between indirect and overheads is given below. Their averages come to 16% and 14% respectively.

TABLE 2.14.2.

Sl. No. Name of Project		Primary cost of works in Lakhs ex-			Total	
		clusive of the cost of land and rehabilita- tion	Indirect % age	Over- head %age		
1	2	3	4	5	6	
' <u>1</u>	Gangapur	137	12	32	44	
2	Matatlla	483	7	. 8	15	
3	Gandhi Sagar	564	11	11	22	
4	Mayurakshi	220	9	11	20	
5	T.B.P. (Andhra)	478	20	15	35	
6	T.B.P. (Hyd.)	501	24	11	35	
7	Bhadra	534	18	17	35	
8	Perinchani	36	22	22	44	
9	Bhakra	4140	19	27	46	
10	Maithon	732	24	18	, 42	
11	Panchet Hill	757	25	15	40	
12	Tilaiya	170	18	. 12	36	
13	Konar*	850	5	9	14	
14	Vaitarna	548	7	2	9	
15	Lower Bhawani	398	13	6	19	
16	Malampuzha	169	13		21	
17	Hirakud	2771	19	11	30	
		Average	16	14	30	

Burden as Percentage of Primary Cost for-

A-Dams

*Contractors' burden is not included.

CONSTRUCTION COST

TABLE 2.14.2.—Contd.

1	2	3	4	5	6
1	Mayurakshi barrages	218	15	9	24
2	Kotah	261 -	8	9	17
3	Kakrapar	56	24	21	45
4	Nangal	331	8	9	17
5	Durgapur	344	30	15	44
		Average	17	13	30

B—Weirs and Barrages

C-Canals

		Average	. 7	8	15
13	Hirakud	654	9	11	20
12	Malampuzha	151	· 5	8	13
11	Lower Bhawani	339	5	6	11
10	Durgapur	829	10	12	22
9	Nangal	1018	7	12	19
8	Bhakra	2926	3	10	13
7	Bhadra	566	4	5	· 9
6	Tungabhadra (Hyd.)	1355	12	8	20
5	Tungabhadra (And.)	922	9	9	18
4	Kakrapar	823	6	7	13
3	Mayurakshi canals	578	· 8	. 11	19
2	Chambal RT. & LT.	1632	5	10	15
1	Sarda Hydel	460	8	11	19

2.15. ITEMS OF BURDEN

2.15.1. Apart from the direct cost, there are other elements excluding cost of the acquisition of land, which contribute to the total cost of a project. This burden may be classified as under :—

A. Indirect Expenses (Ancillary and Incidental)

- 1. Buildings, including internal services.
- 2. Service roads and other communications.
- 3. Water supply & sanitary installation.
- 4. Electric & power supply installation & telegraph, telephone lines and radio stations.

- 5. Workmen's compensation.
- 6. Work-site amenities.
- 7. Small tools and plant.
- 8. Laboratory testing.
- 9. Losses on stock and advances.
- 10. Maintenance of essential services.
- 11. Miscellaneous.

B. Overheads (Establishment and Audit)

- (a) Establishment charges, including those for the head-office and the field.
- Salaries (technical and non-technical) including leave and 1. pensionary charges.
- Stationery, printing, postage and telephone charges.
 Staff cars and travelling allowances.
- 4. Entertainment and publicity
- 5. Legal expenses (General).
- 6. Contingencies.
 - (b) Consultants' fees,
 - (c) Audit charges.

2.15.2. Land compensation including cost of settlement, if any, and abatement of land revenue which form a special subject, have been excluded from our studies. The above items of expense are now dealt with seriatim.

2.16. PROVISION FOR BUILDINGS

2.16.1. The financial provision under the head 'Buildings' on the projects generally relates to accommodation for labour, staff, community services, workshops and administrative offices. Housing of labour at site, besides being the responsibility of the project authorities, leads to greater efficiency on the job, minimises absenteeism and introduces among the workers a higher sense of duty. We feel, therefore, that adequate accommodation and public utility services should be provided for all persons engaged on a project.

2.16.2. We observed on some projects that while the higher staff has been provided with accommodation and services on a lavish scale, even the bare necessities of life in this direction have been ignored in the case of labourers. We are, therefore, of the opinion that specific standards of accommodation be laid down for all classes of staff and workers, dependent on the country's economy.

2.16.3. The financial provision under the head 'K-Buildings' on the projects relates to offices, workshops, stores and accommodation for

labour and supervisory staff. The following Table gives analysis of the provision for different categories of personnel on the Hirakud Dam. TABLE 2.16.3.

			Capital out	Percentage		
Type of building		Permanent Buildings (Lakhs)	Tempo- rary Buildings (Lakhs)	Total (Lakhs)	Individual group	Total cost
Residential	{ Officers Staff Workmen Services	24·6 74·2 15·1	0·2 9·2 2·0 32·9	24.8 83.4 17.1 32.2	15.7 52.7 10.8 20.8	10.6 35.7 7.2 14.2
-	Total	113.9	44.3	158.2	100.0	67.7
Non- residential	Officers Stores W. Shops Community	7·6 9·4 · 0·6	1·2 5·4 0·4	8·8 14·8 0·9	· 11.7 19.7 1.3	3.8 6.3 0.4
	Works Services	23.9	0∙6 26∙1	24·5 26·1	32·7 34·7	10-6 11-2
	Total	41.5	33.6	75.2	100.0	32.3
	Grand Total			233.4	· ·	100.0

Analysis	of	Capital	Outlay	on	Buildings	(Hirakud	Project)
----------	----	---------	--------	----	-----------	----------	----------

2.17. THE FINANCIAL PROVISION

2.17.1. Construction camp buildings are generally of two types, namely (a) temporary and (b) permanent. The former are required for the duration of the project only and their cost is an indirect expense on the project. The latter are constructed for use of the maintenance staff after the completion of the project.

2.17.2. The percentage provision of buildings in a project would depend on—

- (i) type of work;
- (ii) duration of the project ;
- (iii) local availability of housing;
- (iv) climatic conditions;
- (v) specifications adopted for building construction; and
- (vi) construction methods (manual or mechanised).

2.17.3. Buildings should be planned in a way that they could be dismantled and the materials re-used elsewhere. When it is not possible to do so they should be planned for duration of project only with no salvage value.

2.17.4. The following table 2.17.4. gives the percentages of the provision of buildings on the projects on direct cost of works excluding cost of land.

TABLE 2.17.4

		Dams		
· · · · · ·				

Sl. Name of project No.	Primary cost of Works (Lakhs)	Perma- nent Building (Lakhs)	Tempo- rary Building (Lakhs)	Total (Lakhs)	Per cent
1 2	3	4	. 5	6	7
1 Gangapur	187	· · · · · · · · · · · · · · · · · · ·		12	6.5
2 Matatila	4883	5	8	12	2.4
3 Mayurakshi	220	5	6	11	5.2
4 Tungabhadra (And.)	478	3	41	• 44	9.2
5 Tungabhadra (Hyd.)	501	1	51	52	9.6
6 Perinchani	36	· · · · ·		7	18.5
7 Bhakra-Nangal	4471	241	67	308	6.9
8 Maithon	732			83	11.4
9 Panchet Hill	757		·	86	11.3
10 Tilaiya	170		· · · · · ·	14	8.2
11 Lower Bhawani	398			25	6.3
12 Malampuzha	169			16	9.7
13 Hirakud	2771			198	7.1

Weir	and Barrages	

1 Mayurakshi	218		· <u></u>	17.44	8.0
2 Kakrapar	56	4	4	. 8	14.1
3 Durgapur	344	9	412	50	14.6

v

.

	•					
1	Sarda Hydel	450	10	6	16	3.5
2	Chambal Valley Projects	1632	22	25	47	2.9
3	Kakrapar	823	· · · · · · · · · · · · · · · · · · ·			<u> </u>
4	Mayurakshi	578			25	4-4
5	Tungabhadra (And.)	922	17	11	28	3.0
6	Tungabhadra (Hyd.)	1355		·	46	3.9
7	Bhakra-Nangal	3944	112	42	154	4 ⋅0
8	Bhadra	556	5	9	14	2.4
9	Durgapur	829	36	15	51	6.2
10	Lower Bhawani	399		·	6	1.8
11	Malampuzha	151		·	3	2.2
12	Hirakud	654			37	5.6

Canals

CONSTRUCTION COST

2.18. BUILDING COSTS

2.18.1. The plinth area rates for some of the residential buildings constructed on the projects have been tabulated in Appendix 2.

2.19. ROADS

2.19.1. Temporary roads have to be constructed in order to get access to various sites of work and constitute an important part of planning. Table 2.19.1. shows provision for roads, railways and trolley lines as a percentage of the total direct cost of the project.

TABLE 2.19.1.

SI.		P	ercentage Exp	pense	
No.	Name of Project	Dams, small up to 5 crore rupees	Dams, large above 5 crore rupees	Weir & Barrages	Canals
1	2 -	3	4	5	6
1	Gangapur	2.1		· · · · · ·	
2	Sarda Hydel				1.4
3	Matatila	0.8	· `		
4	Gandhi Sagar		4-2	_	
5	Mayurakshi	2.3		2.62	2.12
6	Tungabhadra (And.)	2.6			1.3
2 3 4 5 6 7 8 9	Tungabhadra (Hyd.)		2·2 4·5		,
8	Bhadra	<u> </u>	4.5		' .
	Perinchani	1.1	·		
10	Kotah			1.5	0.1
[1	Kakrapar			7.1	
12	Bhakra-Nangal		6.9	<u>`</u>	0.1
13	Maithon		1.7		
14	Panchet Hill		1.2	_	
15	Durgapur			3.9	0.002
16	Lower Bhawani	6·0 *	· • • • • • • • • • • • • • • • • • • •		
17	Malampuzha			<u> </u>	
18	Hirakud		6.1		0.2

Expenses on Service, Roads, Railways and Trolley Lines

*Includes '0' Miscellaneous.

2.20. WATER SUPPLY AND SANITATION

2.20.1. Table 2.20.1. shows the expense on this head as percentage of direct cost of works on some of the projects. M7CW&PC/63-3

REPORT OF RATES & COSTS COMMITTEE

TABLE 2.20.1.

C1			Percentage	e Expense	
SI. No.	Name of Project	Damis, small	Dams, large	Weirs & Barrages	Canals
1	2	3	4	5	6
1	Matatila	1.1			
2	Gandhi Sagar	andra ann an Airtean Ai Airtean Airtean	0.4		
3	Mayurakshi	0.3		0.46	· · · · ·
4	Tungabhadra (And.)	2.2			
5	Tungabhadra (Hyd.)		4.4		
6	Bhadra	e La statione La statione	1.1*		0.5
7	Kotah			**	0.6
8	Bhakra-Nangal	_	1.7		0.04
9	Maithon		1.6		
10	Panchet Hill		4.3		
11	Durgapur		· · · · · · · · · · · ·	0.03	
12	Lower Bhawani	0 · 1			
13	Hirakud		0.6		0.1

Expense on Water Supply Installation and Sanitation

*Chambal Valley Right & Left Canals.

**Dam—Water Supply only.

2.21. POWER, TELEPHONE AND TELEGRAPH LINES

2.21.1. The cost of power other than that directly charged to works has to be included under indirect expense. Table 2.21.1. gives a consolidated statement of provision made under this head on some of the projects.

TABLE 2.21.1.

SI.		Percentage Expense					
No.	Name of Project	Dams, small	Dams, large	Weir & Barrages	Canals		
1	2	3	4	5	6		
1	Sarda Hydel				0.1		
2	Gandhi Sagar						
3	Mayurakshi	0.01	—	2.58	0.54		
4	Tungabhadra (And.)	0.8			·		
5	Tungabhadra (Hyd.)		1.4		0.8		
6	Bhakra	·	0.6				
7	Perinchani	0.3					
8	Kotah	—		·	0.1		
9	Bhakra-Nangal		0.5		0.0		
10	Maithon	_	5.4				
11	Panchet Hill		2.3	· '			
12	Tilaiya	6.4					
13	Durgapur		•	5.3	0.2		
14	Hirakud	·	0.9		0.0		

Expenses on Power Supply and Telephone Lines

*Chambal Valley Right and Left Canals.

2.22. WORKMEN'S COMPENSATION

2.22.1. Due provision also be made in all estimates for compensation to workers suffering injuries on works. We found that such provision was omitted from most of the projects.

2.23. WORKING-SITE AMENITIES

2.23.1. We also feel that adequate health and sanitary measures are essential on River Valley Projects. Rules on the subject in force in several States have been examined by us. They are generally on the pattern of those in the C.P.W.D. given in Appendix 3.

2.23.2. C.P.W.D. in their analyses of Scheduled Rates indicate a provision of 1.70% under this head. This is the Contractor's responsibility. Table 2.23.2. shows this provision on several River Valley Projects against the departmental obligation.

TABLE 2.23.2.

		Percentage Expense				
Sl No.	Name of Project	Dams, small	Dams, large	Weir & Barrages	Canals	
1	2	3	4	5	6	
1	Gangapur	1.3				
2	Sarda Hydel	la de la constante la constante la constante			0.03	
3	Matatila	0.07		· · · · · ·		
4	Gandhi Sagar			*	0.1	
5	Mayurakshi	· · · · · · · · · · ·		0.05	0.04	
6	Kotah	аналанан алар 1. на так ан	· · · ·	<u> </u>	en	
7	Tungabhadra (And.)			0.3		
8	Tungabhadra (Hyd.)	1997) 1997 - Standard Maria 1997 - Standard Maria	2.8	· · · · · · · · · · · · · · · · · · ·	1.4	
9	Bhadra		1.6		1.5	
10	Perinchani	0.06		· · · · · ·	· · ·	
11	Bhakra-Nangal	—	0.7		0.002	
12	Kakrapar			0•3		
13	Durgapur	1. 1		0.4	0.006	
14	Malampuzha	1.39		n de la composition de la comp		

Expense on Work-site Amenities

*Chambal Valley Right and Left Canals.

2.24. SMALL TOOLS AND PLANT

2.24.1. Expense for small tools and plant is not charged directly to units of work but is added as a percentage charge to the cost of a project. This percentage would depend on the class and the value of the work. The general practice is to charge it at 1 per cent of the cost of the whole project including cost of land. We feel that this needs examination. Table 2.24.1. shows actual percentage expense under this head on direct cost of works of projects. The provision for small tools and plant should be based on direct cost of works.

TABLE 2.24.1.

SI. No.			Percentage Expense				
	Name of Project	(Dams, small	Dams, large	Weir & Barrages	Canals	
1	2		3	4	5	6	
	Gangapur		3.6	·			
2	Sarda Hydel		_			0.9	
3	Matatila		2.7		·	0.4	
4	Gandhi Sagar			0.9		—	
5	Mayurakshi		0.3		1.03	1.23	
6	Tungabhadra (And.)			1.5		0.7	
7	Tungabhadra (Hyd.)					6.1	
8	Bhadra			0.9			
9	Perinchani		2.1		—		
10	Kakrapar		· '		1.2	0.7	
11	Bhakra-Nangal			2.0	—	1.0	
12	Maithon			2.3		<u> </u>	
13	Panchet Hill	•		2.9			
14	Tilaiya	•	2.1		, 		
15	Durgapur	•			3.3	3.1	
16	Lower Bhawani		0.8			1.3	
17	Malampuzha		2.3			2.5	
18	Hirakud		<u> </u>	1.3		. 1.1	

Expense	on	Ordinary	Tools	and	Plant
---------	----	----------	-------	-----	-------

2.25. LABORATORY AND TESTING CHARGES

2.25.1. There is a small expense on account of laboratory and testing equipment and organisation on the projects.

2.26. Losses on Stock and Advances

2.26.1. The value of stores held on 31-3-1954 at four large projects are given below and it can be expected that some losses would occur.

	(Rs. in lakhs)
(1) Bhakra	508
(2) D.V.C. Projects	435
(3) Hirakud	436
(4) Tungabhadra	203

2.26.2. Table 2.26.2. shows provision under this head in the project estimates. It is likely, however, that the actual percentages should be different and higher in most cases.

TABLE 2.26.2.

Losses on Stock and Advances

(Estimated figures)

SI.		1	Percentage E	xpense	
No.	Name of Project	Dams, small		Weir & Barrages	Canals
1	2	3	4	5	6
1	Sarda Hydel				0.7
2	Kotah			1.5*	
3	Gandhi Sagar	<u></u>	0.2		0.3
4	Kakrapar			0.2	
5	Tungabhadra (And.)	0.2			0.1
6	Tungabhadra (Hyd.)		2.6		
7	Bhakra		0.1		0.1
8	Maithon	ang tanàn Na <mark>mana</mark> Ng taona ta	1.3		
9	Hirakud	in a second de la companya de la com Esta de la companya d	0.4	· · · · · ·	0.3

*Chambal Valley Right and Left Canals.

2.26.3. Losses may also be due to purchases of faulty goods, wastage n cutting up, bad workmanship, drying of volatile materials, leakage of iquids and gases etc.

2.27. MAINTENANCE

2.27.1. Table 2.27.1. shows figures for cost of maintenance of buildigs and roads as percentage of the direct costs on various projects :---

CONSTRUCTION COST

TABLE 2.27.1.

		· · · · · · · · · · · · · · · · · · ·	Percentage	Expense	
No.	Name of Project	Dams, small	Dams, large	Weir & Barrages	Canals
1	2	3	4	5	6
1	Gangapur	1.9			 `,
2	Sarda Hydel	<u> </u>			0.6
3	Kotah		·	1.2*	0.3
4	Gandhi Sagar		2.0		· ·
5	Mayurakshi	0.1			
6	Tungabhadra (Hyd.)		0.3		0.1
7	Bhakra-Nangal		2.0		0.9
8	Maithon		1.2	-	
9	Panchet Hill		2.2		
.0	Tilaiya	1.2			
11	Durgapur			2.0	0.6
12	Lower Bhawani				0.7
3	Malampuzha	0.1	-	-	 .

Expense on 'P-Maintenance'

*Chambal Valley Right and Left canals.

2.28. MISCELLANEOUS

2.28.1. Table 2.28.1. gives an account of expense, which is not debitable to any of the above heads and is an indirect expense on some of the projects.

TABLE 2.28.1.

Miscellaneous Expenses

			1. S.		
			Percentage I	Expense	
SI. No.	Name of Project	Dams, small up to 5 crore rupees	Dams, large above 5 crore rupees	Weir & Barrages	Canais
1	Sarda Hydel				0.6
2	Kotah			0.8	· · · · · · · · · · · · · · · · · · ·
3	Mayurakshi			0.08	• • • • • • • • • • • • • • • • • • •
4	Tungabhadra (And.)	0.4			1.2
5	Tungabhadra (Hyd.)		0.1		
6	Bhadra	· · · · · · · · · · · · · · · · · · ·	3.3		
7	Perinchani	0.1			n de la seconomia de la seconom En seconomia de la seconomia de En seconomia de la seconomia de
8	Bhakra-Nangal		0.003		
9	Maithon		0.4	•	
10	Durgapur				0.0
11	Lower Bhawani			2012 1997 - 1997 1997 - 1997 - 1997	1.1
12	Hirakud				0.0

2.29. ESTABLISHMENT OVERHEADS

2.29.1. Table 2.29.1. gives the establishment expense on various projects.

2.30. CONTINGENCIES

2.30.1. A provision for contingencies at 5 per cent is made when a project estimate is put up for the administrative sanction to cover the cost of unforeseen items, and incidental expenses of a miscellaneous character.

Ĭ

TABLE 2.29.1.

			Percentage Expense					
S1. No.	Name of Project	Dams, small up to 5 crore rupees	Dams, large above 5 crore rupees	Weir & Barrages	Canals			
1	Gangapur	31 • 3						
2	Matatila	6.2	· - ·	•				
3	Sarda Hydel	· · · ·			9.5			
4	Gandhisagar		3.4					
5	Kotah			7·3 *	9·1			
6	Mayurakshi	8.8		7 ⋅8 *	9.3			
7	Kakrapar	<u> </u>		21.6	11.7			
8	Tungabhadra (And.)	13.3			7.9			
9	Tungabhadra (Hyd.)		10.0		16.3			
10	Bhadra	<u> </u>	17.0		5.0			
11	Perinchani	22.1			<u>+</u>			
12	Bhakra-Nangal		23.2		11/1			
13	Maithon		16.8					
14	Panchet Hill		14.2					
15	Tilaiya	14.4	. —		·			
16	Durgapur			14.8	11.3			
17	Lower Bhawani	4 8			4.4			
18	Malampuzha	6.7			7.5			
19	Hirakud		9.7		10.5			

Expense on Establishment and Overheads

*Chambal Valley Right and Left canals.

The present provision of 5 per cent *ad valorem* irrespective of the magnitude of the work is very much on the high side in the case of lage projects taken in hand after prolonged investigations and planning. We, therefore, recommend the following scales instead:—

- 1. For works costing upto 5 crores: 5%.
- 2. For works costing above Rs. 5 crores but less than Rs. 15 crores: 4 per cent with a minimum of Rs. 25 lakhs.
- 3. For works costing above Rs. 15 crores but less than Rs. 25 crores: 3 per cent with a minimum of Rs. 60 lakhs.

REPORT OF RATES & COSTS COMMITTEE

4. For works costing above Rs. 25 crores but less than Rs. 40 crores: 2 1/2 per cent with a minimum of Rs. 75 lakhs.

5. For works costing above Rs. 40 crores: Rs. 1 crore fixed.

NOTE-The cost of work should be exclusive of contingencies.

2.30.2. It is also a common practice to make a full provision of contingencies at 5 per cent in the case of revised estimates even though submitted in advanced stages of construction. When very little remains, unforseen provision under this item should be suitabley curtailed and many even be eliminated.

2.31. CONSULTANTS' FEES

2.31.1. Even on important projects no provision is made for payment of fees to consultants which sometimes becomes necessary during execution. No precise scale can be laid down for it but a fraction of a per cent of the cost of the project should meet the requirements generally. Table 2.31.1. shows expenditure under this on some of the projects.

TABLE 2.31.1.

		· · · · · ·	ана) Алар	Percentage E	xpense	
SI. No.	Name of Project		Dams, small up to 5 crore rupees	Dams, large above 5 crore rupees	Weir and Barrages	Canals
· · · · · · · · · · · · · · · · · · ·						
1 Matat			0.1		· · · · · · · · · · · · · · · · · · ·	
	Hydel		1			0.02
3 Gandl	ni Sagar			0.2	· · · ·] *	
4 Kotah		1997 - 199	· · · · · ·		0.2	0.06
5 Bhakr	a-Nangal			1.7	· · · · · · · · · · · · · · · · · · ·	
6 Maith	on			1.2		
7 Panch	et Hill			0.3		-
8 Hirak	h			0.03		

Expense on Consultant's Fees

*Chambal Valley Right and Left canals.

CONSTRUCTION COST

2.32. AUDIT CHARGES

2.32.1. Table 2.32.1. gives figures for percentage charges of audit and accounts to the direct charges on the various projects.

TABLE 2.32.1.

			Percentage E	xpense	
SI. No.	Name of Project	Dams, small up to 5 crore rupees	Dams, large above 5 crore rupces	Weir and Barrages	Canals
1	Gangapur	1 · 2	narredanne i a agus air a tha thair agus air an	n gelan an a	annen a - marandaridaridarida
	Sarda Hydel		.	ariag: 2	
3	Matatila	1.1			
4	Gandhi Sagar		1 · 4	-	
5	Rotah	·		1-2*	
6 7	Mayarakshi	2 · 4		1 • 1	1 • 4
	Rakrapar Turahka dan (Anda)	-			
8 9	Tungbhadra (And.)	1.8			
10	Tungabhadra (Hyd.) Bhakra-Nangal		0.6		
11	Maithon		0.7		
12	Panchet Hill		0·4 0·4		
13	Tilaiya	3.8	0.4		
14	Durgapur	5.6			
15	Lower Bhawani	0.9			
16	Malampuzha	1+1	_		
17	Hirakud	• •	1.3		

Expense on Audit and Accounts

*Chambal Valley Right and Left canals.

2.33. THE OVERALL BURDEN

2.33.1. Whenever rates of items over different projects have to be compared, it would be necessary to add cumulative burden on primary rates. Burden will be a fixed percentage charge for most of the items of expense but may be variable percentage in some cases such as an indirect wage bill of establishment which will be inversely proportional to the variation of output on estimated production of men and machines.

2.33.2. In the case of construction works the burden on 'Prime Cost Base', which is likely to average out the peculiar variations in the nature of item of burden, should be used in preference to any other base such as cost of labour, materials, etc.

2.33.3. The overall burden is substantial and we feel that economy should be possible under this head, wherever possible.

REPORT OF RATES & COSTS COMMITTEE

2.34. RESPONSIBILITY FOR INDIRECT SERVICES

2.34.1. When a large project is carried out under a series of contracts, the responsibility for providing indirect services for the proper execution of works is shared among them and it can be understood that either services would not be adequately provided for or there may be waste due to multiplicity of provisions by several piece rate workers, although the latter has perhaps never occurred. It would, therefore, be only right that the provision of indirect works should separately made in each project. Only where the whole project is offered to a single agency for execution, this provision may form an invisible part of the contractor's bid items.

2.35. CONDITIONS OF PAYMENT ON WORKS

2.35.1. The provisions for interim payment on account of work or advances and those for the release of part of the retention and final payment deserve a very careful consideration, in framing the Conditions of Contracts. These arrangements intimately affect both the Government and the contractor. The Government must balance the advantages of paying promptly against fewer and larger payments needing contractors with larger financial resources which may affect the bids.

2.36. CONTRACTORS' OVERHEADS AND PROFITS

2.36.1. Overheads—An allowance of 10 per cent would be adequate for the contractor's actual expense on supervisory establishment, field office and share of head-office charges, travelling expenses, publicity, interest and insurance of damage to plant and injury to labour.

2.36.2. *Profits*—We believe that in normal circumstances an allowance of 10 per cent of the prime cost as contractor's profit is reasonable.

2.37. RATES OF EXPENDITURE ON PRELIMINARY SURVEY

2.37.1. The rates of expenditure on preliminary survey are highly variable, but those stipulated by the Survey of India and given below, may be treated as a guide (Table 2.37.1.).

TABLE 2.37.1

, 1. · · .	Air mapping.	Re/10/8 p	er acre
2.	Detailed ground contour survey.	Rs. 1/10/0	Do.
3.	Land use survey and planning.	Re. /12/6	Do.
4.	Forest Survey.	Re/10/6	Do.
5.	Upland irrigation survey including drill- ing, test pits, canal layouts, dam design.	Rs. 1/8/-	Do

ECONOMICS OF CONSTRUCTION EQUIPMENT

3.1. CONSTRUCTION METHODS (MANUAL versus MECHANICAL)

3.1.1. Changes in living and social conditions at home and abroad have raised the labour wages and they are still rising. In view of the present tempo of works which has created a large demand for construction labour and also due to rise in their living standards, we feel that a reduction in labour rates is hardly possible.

3.1.2. While considering the ecomony of Manual versus Machines the following points should be taken into account:---

- (i) Expense on free transport for labour from their villages to project sites and sometimes railway or bus fares back on completion of the works;
- (ii) Adequate amenities in future; and

(iii) General inaptitude of labour for hard work.

A comparison of rates of excavation both by manual and mechanical agencies has been dealt with elsewhere in the Report. It may be, however, stated here that for leads exceeding 300' and lifts exceeding 20' the execution of earthwork by manual labour is generally uneconomical.

3.1.3. Factors which militate against the use of machines in this country are:-

- (i) that they are almost invariably made in foreign countries and their use, therefore, tends to deplete reserves of foreign currency;
- (ii) that there is a tendency on the part of the agents not to have adequate stocks of spare parts in India; and
- (*iii*) that there is a lack of planning in obtaining spares from abroad, even when urgently needed, resulting in enormous losses of time and money on projects.

3.1.4. Machines become, more or less, indispensable for places, which are unhealthy, inaccessible, or where time is an important factor. They are expensive and the greatest care should be exercised in their acquisition. Some of the arguments against the use of machines would cease to apply when construction equipment industry is established in this country as recommended by us in para 3.2.4.

3.2. MANUFACTURE OF CONSTRUCTION EQUIPMENT

3.2.1. We do not share the Construction Plant and Machinery Committee's pessimism in regard to the feasibility of manufacturing Construction equipment in India. They say that all the major construction projects in India have either been completed or are nearing completion and that the future projects will be either small or medium sized. This is not a correct appraisal of the present position. It may be true that some of the big dams would be completed in the next few years but they are not going to be the last of their class. The country is so large and the possibilities of development so vast that many large works shall have to be built in future.

That we do not possess the "know-how" of the construction 3.2.2. plant industry was until lately true of so many other industries which have since been successfully established. There are ways and means of getting all the "know-how" and we can adopt them in this case also. Construction machinery is fairly simple and if the country can manufacture locomotives, aeroplanes and machine tools, there is no reason why we cannot produce construction equipment.

3.2.3. The Plant and Machinery Committee has recommended that we should make a start with only one or two principal items of equipment on the major side and confine our attention mainly to minor pieces of equipment like 7/10 cft. capacity concrete mixers, tippers, rooters, sheepfoot rollers, etc. While we agree that we should standardise the sizes of equipment into as few items as possible, it would be a mistake to tackle only the minor items of work, as this will not solve the problem.

3.2.4. Our recommendation, therefore, is to concentrate on items of equipment in general demand, standardise their designs and sizes, and go in for their manufacture in right earnest, in co-operation between the public and private sectors.

3.3. STANDARDISATION OF EQUIPMENT AND SPARES

3.3.1. In the case of plant selection, full consideration should be given to the availability of spare parts and extent of the need for stocking them to ensure adequate supply of such parts on the job at all times. This brings up the question of the standardisation of equipment. A committee of the Government of India is already looking into this matter. We recommend that this Committee should also go into the standardisation of spares. We lay stress on this point because the prices of standard parts purchased from the manufacturers of parts would be very much lower than those charged by the suppliers of the equipment.

3.4. CAPITAL OUTLAY

3.4.1. The capital outlay on construction equipment on a project varies from 10 to 30 per cent of the total cost. This percentage is likely to go up in future with the increase in the mechanisation of construction methods. It is imperative that extreme care should be exercised in the selection of various units and as far as possible accurate provision for their depreciation, major repairs and overhauls and salvage value should be made.

TABLE 3.4.1

Si. No.		Name of	f Projects	Wc inc Sj	nary cost o orks (lakhs) luding 'Q' pl. T.& P. provision) & & Prov	Spl. Tools 2 Plant vision khs)]	Remarks
. 1			2	F	3	4	5	<u>/o</u> (ñ
1 2	Bhakra Matatil	-Nangal a			6009.03 487.49	7	1542 · 546 109 · 97	25.6 Exc 16.0 salv	clusive of age value

	1	TABLE 3.4	•1	
Capital Out	lay on Co	nstruction 1	Equipment	on Projects

1	2	3	4	·` 5	6
3 4	Gandhi Sagar	577.41	35.00	(0(<u>`</u>
4	Maithon	746.21	226.00	6.06	Exclusive
5	Panchet	806.68	195.20	$30.29 \\ 24.20$	of salvage
6	Tilaiya	184.76	52.60	$24 \cdot 20$ 28 \cdot 47	value
7 8 9	Mayurakshi	228.11	28·58	28·47 12·50	
8	Hirakud	3424.94	1139.06	33.25	
	Gangapur	213.32	71.49	33.23 33.5	
10	Tungabhadra (And.)	505.69	76.00	15·05	
11 👘	Tungabhadra (Hyd.)	519.05	90.00	17.40	
12	Bhadra	554.11	52.50	9.50	
13	Lower Bhawani	464.24	144.00	31·00	
14	Malampuzha	153.78	24.20	15.75	
•		B. Weir and Barrag	ges	······	
1	Kotah	275.08	40.0	14.54	
2	Durgapur	373.10	81.74	21.91	
3	Kakrapar	60.63	<u> </u>		· · ·
		C. Canals			
1	Bhakra-Nangal	4563.40	442.87	9.70	
2 3	Sarda Hydel Scheme	460.09	82.47	19.00	
3	Chambal Rt. & Lt.	1692.15	142.54	8.42	`.
4	Tungabhadra (And.)	964.38	103.00	10.7	
5	Bhadra	565.78	20.97	3.70	
6	Lower Bhawani	346.10	25.00	7.23	
7	Malampuzha	139.27	9.50	6.80	

TABLE 3.4.1.—contd.

3.4.2. A reasonably accurate forecast of the number of years the equipment is likely to be employed on the project, the number of hours it could be worked per year and the estimated expense on its major repairs and overhaul for the period and its residual or salvage value, (if any), can be made at the outset. A schedule of basic use-rates can then be worked of out by adding the estimated cost of running costs per hour *viz*: the cost of consumables, labour and field maintenance, to the rate of depreciation and major repairs and overhauls per hour. With use-rates' schedule and production tables, estimates of working cost with various plant combinations can be drawn up.

3.5. DETERMINATION OF LIFE OF EQUIPMENT

3.5.1. We concede that no authoritative life schedule of Construction machinery so far exists in this country and so in its absence our River Valley projects authorities have adopted hypothetical life figures which are quite often in excess of the standard lives recognised by standard institutions in U.S.A. and other foreign countries.

3.5.2. The economic lives of machines in years and hours adopted by the foreign authorities and that adopted on our projects have been tabulated in Tables 3.5.2. (i), (ii) 3.5.2. (iii) respectively.

ς.

TABLE

Sl.	Equipment	A.G.C.	Schedule	U.S.B.R. Bulletin	U.S.B Bul	R. 'F' letin	T.V.A. Schedule
No.		Years	Opera- ting shift hours	Years	Opera- ting shift hours	Years	Work- ing hours
1	2	3	4	5	6	7	8
1	Air Compressors— Diesel	4 5	4,880— 6,000	4.5	4,800 6,000		10,000
2	Batching Plant	4.6	4,800 7,200	4	4,800		50 % of cost to project
3	Core-drilling machines	3	4,200	3	4,200	3	6,000
4	Concrete Buckets	5	6,000	5	ō,000	5	5·6 to 8·3 yrs.
5	Cranes-Crawler: (a) Upto 3 tons (b) 3 to 10 tons (c) Over 25 tons	4 5 7·75	6,400 8,000 10,850	5 8	8,000 11,200	5 5 9	10,000 12,000 20,000
6	Cranes (Truck- Mounted): (a) Upto 6 tons (b) Upto 15 tons (c) Above 15 tons	4 5 6	6,400 8,000 8,400		7,200 7,200		18,000 20,000
7	Crushers— (a) Jaw (b) Gyratory	6 10	7,200 12,000	<u>6</u>	7,200		l0% of cost to
	(c) Cone	10	12,000		·	10	project
8	Excavators- Crawlers: (i) Diesel						
	(a) Upto ³ / ₄ Cyd. (b) Upto ¹ / ₁ Cyd.	4 4•56	7,200 7,200— 9,520	4·5 5·5	9,000 9,360		10,000 12.000
	(c) Upto 2 ½ Cyd	. 5·6— 6·25	8,960 10,000	6.0	9,600		15.000
ina Na Hina	(d) Above 2 ½ Cy (ii) Electrically operated		10,650 7,000 14,000	6·0 6·10	9,600 9,600 16.000	5 to 10	15,000 20,000
9	Graders	5	8,000	5	8.000	4 to 8	12,000

Statement of Life of Rated Equipment in Ye ars and Hour

3.5.2. (i)

D.C. 8 Bulle			.C.A. alletin	S.C.E.F. Bulletin	New Zealand		Estimating by S. Geddes	C.P.& M.C. Report
Years	Useful hours	Years	Opera- ting hrs. maximum	Years	Years	Years	Working hours	Plant hours
9	10	· 11	12	13	14	15	16	17
·		6-25-7	1 2,50 0- 14,000-			5	. 8,000	8,000
		5	7,500-	- 5				·
	_				_	_		
		7	12,250		·			
5 9 12	10,000 18,000 24,000	9 9 9	18,000 18,000 18,000		 	8 8 8	12,000 12,000 12,000	
		6·25 7 7	14,060 15,750 15,750			·		9,000 10,000 12,000
		6·25-	10,940 12,250				. —	
	_	10	17,500				. <u> </u>	
					—		- <u></u>	
5	10,000	7	15,750)	6·66 @1 5%		5 9,000	9,000
6	12,000	7	15,750)	6.66		5 9,000	10,000
8	16,000	8· 3 3	16,700)	6.66	:	5 9,000	12,000
8	16,000	8.33	16,700)	6.66	:	5 9,000	12,000
				· -	·	<u>.</u>	· · · · · ·	
		5	7,500)	6·55 @15%	~ 0		10,000

Adopted by Various Authorities for Depreciation

M7CW&PC/63-4

m 4	m	w.	m
TA	к	1	P.
***	~		~

1	2	3	4	5	6	7	8
10	Loaders	5	6,000	5	6,000	5-6	15,000
11	Locomotives— Diesel	6-8.3	9,600			10	12,000
12	Mixers Concrete (a) Less than 1 Cyd. (b) More than 1,,	3 4	4,800 6,400	3 4	4,800 4,800	6 8	6,000 6,000
13	Rollers—Road: (a) Diesel (b) Gasoline (c) Steam	7 7 —	11,200 11,200	7 7 	11,200 11,200 —	10 10	10,000 10,000 10,000
14	Scrapers— (i) Motorised: (a) Upto 10 Cyds.	4.5	6,400 8,000				15,000
	(b) Above 10 ,, (ii) Towed	5 3—4	8,000	4 - 4·5	5,600 6,400 8,000		15,000 15,000
15	Tractors-						
	(i) Crawlers: (a) Upto 89 B.H.P.	45	7,200 8,000	34	4,200 5,600		8,000
	(b) Above 89 ,, (ii) Wheeled:	5	8,000	4	5,600		8,000
	(a) Upto 40 ,,	3.3-4	6,000 7,200	- 3.3	6,000		
	(b) Above 40 ,,	45	7,200 8,000	4	6,400		
16	Trucks: (a) Diesel (b) Gasoline	5	8,000	4 3—5	7,200 5,400– 8,000	5—8 - 5—8	· · · · · · · · · · · · · · · · · · ·
17	Trucks—Dumpers: (a) Rear Dump	5	8,000	۲. ۲. ۲.	8.000		8,000 12,000
	(b) Bottom Dump	5	8,000	4	5,600		12,000
18	Well drilling ma- chines 5"—6"	5	8,000			10	

Reference :--

1. A.G.C. Schedule :--Associated General Contractor of America Schedule of 2. U.S.B.R. Schedule :--United States Department of the Interior Bureau of 3. U.S.B.R. 'F' Bulletin :--U.S. Bureau of Internal Revenue, Income-tax 'F' Bulletin. 4. T.V.A. Note :-- "Procedure for Equipment Transfer Evaluation" by George K. 5. PC&SA Bulletin :-- Power Crane and Shoved Association, USA Technical Bulletin. 6. Construction Association Pulletin. Equip-Reclama-Leonard

Canadian Construction Association Bulletin.
 S.C.E.F. Bulletin :--Socie of Civil Engineers of France Bulletin.
 "Estimating" by S. Geddes-"Estimating for Building & Civil Engineering
 CP&MC Report :--Plant and Machinery Committee Report,

Works"

3.5.2. (i)-contd.

9	10	11	12	13	14	15	16	17
				·				
<u> </u>	·	6.259	12,500 18,000			10	15,000	
	 	3 5	6,000 10,000				12,600 12,600	
_		8.33	12,500		5 20%	8	14,400	
		8.33	12,500		5 20%		-	
	·	12•5 6•25	18,750 10,940	5	5@20% —	12	21,600	9,000
	. 	6.25	10,940	5 5				10,000 10,000
		6.25	12,500	5	, `	5	9,000	9,000
		6.25	12,500	5		5	9,000	10,000
		5	11,250	5		5	9,000	
		5 <u>6</u>	11,250 12,500	5		5	9,000	10,000
	-	5 5	11,250 11,250			5 5	11,000 11,000	
·		6.25	14,060	4	<u>.</u>	4	8,000	10,00
		·7 6·25— ·7	15,750 14,060 15,750	4	. 	4	8,000	10,00
		7	12,250					. –

ment Ownership expense. tion Schedule of Equipment Ownership Expense.

Chief Construction Engineer, Knawike U.S.A. No. 2, Operating Cost, Guide.

by Spence Geddes.

REPORT OF RATES & COSTS COMMITTEE

TABLE 3.5.2. (ii)

Statement of Depreciation Rate per Month of Non-Rated Equipment

Sl. No.	Equipment	A.G.C. Schedule	T.V.A. Schedule	U.S.B.R. Bulletin	C.C.A. Bulletir
1	2	3	4	5	6
1	Air Compressors: Stationary	3.33%	1 %	• <u>·</u>	2-2.3%
2	Bins	3—4%	50% of cost to project	30 Mths.	2%
3	Boats		3%		
4	Boilers	2.33%	1.5%		1.7% to 2%
5	Cableway	4—5.5%	50% of cost to project		
6	Engines: (i) Diesel—upto 100 HP 100 to 500 HP (ii) Gasoline	1 · 7 % 1 · 4 %		59 Mths.	1 · 5 % 1 · 25 %
	Upto 10 HP 11 to 20 HP 20 to 30 HP Above 30 HP	3% 2% 2% 1.9%	- 4	46 ,, 42 ,, 49 ,, 59 ,,	2.5% 2% 1.8% 1.7%
7	Electric Light Plant: Diesel				
	Upto 10 kW Upto 25 kW Above 25 kW (ii) Gasoline	2·5% 2·5% 2·5%		56 ,, 56 ,, 56 ,,	1.7% 2% 1.8%
	Upto 10 kW Upto 25 kW Above 25 kW	2·5% 2·5% 2·5%	4	35 ,, 49 ,, 56 ,,	2 % 2 % 1 · 8 %
8	Hoists: Air Chain	1.6% 1.6%		40 ,, 80 ,,	1·7°, 2·5°,
	Electric Gasoline Upto 10 HP Above 10 HP	1.6% 2.5% 2%	2%	56 ,, 40 ,, 48 ,,	1.5% 2.5% 2—1.5%
9	Pile Hammers Single Acting Double Acting	3% 5·5–3%	1 1%		2·3*/ 2·3*/

ECONOMICS OF CONSTRUCTION EQUIPMENT

Sl. No.	Equipment .	A.G.C. Schedule	T.V.A. Schedule	U.S.B.R. Bulletin	C.C.A. Bulletin	
1	2	3	4	5	6	
10	Pneumatic Tools:					
	Drifters	4%	·	24 Mths.	6.7%	
	Jackhammers	4.5%	3%	18 "	6·7 %	
	Pumps	5.5%	3%		6.6%	
	Vibrators	4.7%	. 3%	21 ,,	5.5%	
	Wagon drills	2%	3%	24 ,,	2%	
11	Pumps :					
	Grout	—	2%	35 ,,	4%	
	Pump etc.	4•⁄₀	3%	24—30"	3%	
	Centrifugal	• 3.3%	11-3%	30 ,,	2	
12	Rollers : Sheeps foot	3-4%	112%	32 ,,	2.3%	
13 14	Sand-Plant Outfit Welding Machines	3 % 2 · 5 %	11%	40 ",		

TABLE 3.5.2. (ii)-contd.

Reference :---

- 1. A. G. C. Schedule : Associated General Contractors of America Schedule of Equipment, Ownership Expense.
- 2. T. V. A. Schedule : Procedure of Equipment Transfer Evaluation by George K. Leonend. Chief Const. Engineer, T. V. A.
- 3. U. S. B. R. Bulletin : United States Department of the Interior Bureau of Reclamation Schedule of Equipment Ownership Expense.
- 4. C. C. A. Bulletin : Canadian Construction Association Bulletin

TABLE

Statement of Life Hours

SI. No.	Equipments	Bhakra	Nanga
1	2	3	4
T	Air Compressors Diesel	8,000	
2	Batching & Mixing Plant		· · · · · · · · · · · · · · · · · · ·
3	Core-drilling Machines		12,000
4	Cranes—Crawler :		
	a. Under 3 Tons		
	b. 3 to 10 Tons		
e	c. Over 25 Tons	15,000	· · · · · · · · · · · · · · · · · · ·
5	Cranes—Truck-Mounted : <i>a.</i> Under 6 Tons		
	a. Under 6 Tons b. Under 15 Tons	i i i i i i i i i i i i i i i i i i i	
	a Above 15 Tons	12,000	
6	Crushers :	12,000	
	<i>a</i> . Jaw		· · · · · · · · · · · · · · · · · · ·
	b. Gyratory		
	<i>c</i> . Cone	10,000	
7	Excavators—Crawlers:		
	(i) Diesel—	•	
	Up to $\frac{3}{4}$ Cyd	17,000	20,000
	Up to $1\frac{1}{2}$ Cyd	17,000	15,000
	Up to $2\frac{1}{2}$ Cyd	22,000	30,000
	Up to $3\frac{1}{2}$ Cyd	22,000 33,000	30,000
8	Graders	12,000	8,000
9	Loaders		0,000
10	Locomotives Diesel	20,000	an a
11	Mixers: Less than 1 Cyd.	8,000	
	More than 1 Cyd	8,000	en e
12	Roolers Road :		
	a. Diesel	· · ·	
	b. Gasoline c. Steam		
13	Scrapers:		
15	a. Motorised—		
	(<i>i</i>) Up to 10 Cyds		15,000
	(<i>ii</i>) Above 10 Cyds		15,000
1	b. Towed	in a statistica	
14	Tractors :		
	(i) Crawlers—		
	a. Up to 89 BHP	12,000	12,000
	<i>b.</i> Above 89 BHP (<i>ii</i>) Wheeled	12,000	12,000
	a. Up to 40 BHP	4	
e je se	b. Above 40 BHP \dots		· · · · · · · · · · · · · · · · · · ·
15	(<i>i</i>) Trucks :	n an thur an	
	(a) Diesel	8,000	
	(b) Petrol	8,000	· · · · · · · · · · · · · · · · · · ·
	(ii) Dumper Trucks :		
	(a) Rear Dump	17,000—19,000	10,000-12,000
	(b) Bottom Dump		· · · · · · · · · · · · · · · · · · ·

3.5.2. (iii) adopted by Projects

D.V.C.	Hirakud	Tungabhadra (Hyderabad)	Tungabhadra (Andhra)	Gangapur
5	6	7	8	9
Years				10,000
			—	10,000
		—		-
5 5	<u> </u>			_
5 9—12				
10 10		` 		
			<u></u>	10,00
6			·	10,00
6 8 8	16,000 16,000	20,000	18,000-24,000	15,00
8	16,000	20,000	18,000-24,000	15,00
5	7,000	- <u></u>	<u></u>	10,00
5 5	12,000			10,00
10				-
3—4 5		—		-
				-
				-
				·
		10,000	12,000	10,0
5 5	8,000	10,000	12,000-	10,0
_		·	24,000	
4	7,000	20,000	10,000	10,00
4 5	7,000	20,000	10,000	10,00
5 5	7,000			-
5	7,000			
5—8 5—8	·		 	_
	10,000	10,000	10,000	10,00 10,00
4—5 5	10,000		10,000-12,000	10,00

REPORT OF RATES & COSTS COMMITTEE

3.6. DEPRECIATION

3.6.1. Its relationship with life of equipment—Depreciation usually refers to the process of charging into unit rates a fair amount of the "first cost" of construction plant to cover the wear and tear obsolescence and loss in value. It practically means that the difference between the first cost and re-sale or salvage value must be charged to the work.

3.6.2. Depreciation is directly connected with the life of machines and hence it is of utmost importance to determine the lives of equipment used in the calculation of depreciation.

3.6.3. The lives of equipment are mentioned in terms of (i) periods like weeks, months or years and (ii) hours as operating hours, shift hours, plant hours, etc. The depreciation is calculated by dividing the cost of the machine less the cost of tyres less the salvage value, if any, by the life period. Consequently, depreciation is expressed as (i) weekly rates, monthly rates or yearly rates or; (ii) as rate per hour; or (iii) depreciation percentages by quarters of the equipment's expected life. In view of the great importance of determining the method of charging depreciation we elicited information on this subject from various foreign authorities, a summary of which is given below:—

TABLE 3.5.3.

Methods of Charging Depreciation Adopted in Foreign Countries

SI.	SI. Name of Authority Method of char	
1NU.		
1	2	3

U.S.A.

- 1 The Associated General Contractors of America, Washington.
- 2 The U.S. Department of the Interior, Bureau of Reclamation.

The A.G.C. and the U.S.B.R. Schedule of ownership expense treat equipment depreciation by *straight line* method by which a uniform percentage of the capital investment is charged off on *monthly basis*. No salvage or scrap value is considered as this is usually negligible in contractor's equipment. The

ECONOMICS OF CONSTRUCTION EQUIPMENT

TAL	<i>LE</i> 3.6.3.—contd.	•
1 2		3
	monthly charges multipl number of working mont machine is in use gives ciation. It varies extre the type of equipment, of work and other fact expense rates are based o shift per day for 30 day equipment is operated 2 an additional charge of shift rate for each additi made. Daily rate is o monthly rate by 30. I depreciation is handled that is most advantage from a tax standpoint.	ths during which the the annual depre- mely depending on the climate, nature ors. The monthly on a single op rating is a month. When or 3 shifts per day 50% of the single ional 8 hour shift is derived by dividing Largely, equipment d in such a manner
3 The U.S. Bureau of Internal Rev Income-tax, 'F' Bulletin.	enue, The Schedule reveals the in years. Annual depre considered to be on str	eciation rates are
4 Procedure for equipment transfer ex tion. Tennessee Valley Authority.	alua- The life of 'Rated Equ records of hours of se operation will be main terms of operating hour operating hours, that is all delays. The depr computed by the use of tages by quarters of the ec life.	ervice and cost of ntained is given in rs. Defined as not gross hours minus reciation shall be depreciation percen-
	The depreciations for no is figured on the <i>monthly</i>	on-rated equipment v depreciation basis.
	The transfer values of pl as conveyors, mixing pla generally installed for t shall be 50% of the cost job (excluding installati	nts, etc. which are the life of the job, t to the transferring
CANADA		
The Canadian Construction Associa Canada.	ation, Straight line method of uniform percentage is cha monthly percentage is cha average use months per y tal percentage is based or of not less than one mon of not more than 250 h the weekly rental perce operational time of not in seven consecutive da rate has a basis of n working hours in a Overtime is charged by of the straigh line rate.	arged off <i>yearly</i> : the e depending on the year. Monthly ren- n a minimum period ath operational time ours a month, while entage is based on more than 60 hours ays while the daily not more than 10 24 hour period. the hours at 50%

TABLE 3.6.3 —contd

43

REPORT OF RATES & COSTS COMMITTEE

TABLE 3.6.3.—contd.

3 2 1 UNITED KINGDOM

Federation of Civil Engineering 6 Contractors, London.

AUSTRALIA

Institution of Engineers, Sydney, 7 Australia.

State Rivers & Water Supply 8 Commission, Melbourne.

FRANCE

9

NEW ZEALAND

10 Department of Scientific & Industrial Research, Wellington.

DENMARK

11 Christianis & Nielsen Civil Engineers & Contractors, Copenhagen, Denmark.

ISRAEL

12 Ministry of Agriculture, Water Authority, Deptt., of Water Supply, Sewage & Flood Control.

The general practice in this country is to calculate. Depreciation on an estimated average life in years of the machine. This cost is then usually reduced to an hourly rate by reference to the average annual use, in hours, of the machine.

It is the practice here to recover all fixed and maintenance costs by means of a hirerate individually calculated for each type of machine and levied broadly on the basis of the number of days the plant is committed to a particular project. The hire-rates do not cover operator's wages, fuel costs etc.

The hire-rates are on the basis of time actually in the field less that for major repairs. Plant held idle on the job as standby, is charged 20% of the working rate. The working life is expressed in hours.

Electricite de France, Paris, France. Depreciation of power stations and electrical equipment is carried out by means of equal annuities the value of which is established by dividing the cost by the anticipated life in years.

> Annual method of depreciation adopted. The depreciation rate for caeh item is a fixed percentage for each class of plant. The annual depreciation charge is calculated on the cost of the item at full depreciation rate, regardless of time worked, under repair or idle time. The annual depreciation in general, represents 2,000 working hours each year, based on a 40 hour week at 50 weeks.

> Depreciate one per cent of the original value of the plant per month at site, plus 0.1 per cent of the original value for each working day (8 hours).

> Depreciation based on 2,000 working hours per year. The normal depreciation period adopted as per A.G.C. Schedule of U.S.A.

The above table shows that the Straight Line method of calculating depreciation is the one generally preferred to other methods *viz*. (i) the Production Units method; (*ii*) the Declining Balance; and (*iii*) Sinking Fund method because of its simplicity in estimating.

3.6.3. Charging depreciation as a percentage on monthly or yearly basis is adopted by contractors and is most advantageous to them from the income-tax standpoint. The method of charging depreciation percentages by quarters of the life of equipment though feasible is cumbersome. Hence we recommend defining lives in terms of hours in case of 'rated equipment' for which records of service hours are maintained. In case of non-rated equipment *i.e.* those pieces of equipment for which no individual records of hours of service or cost of operation are maintained, the depreciation charges should be assigned on monthly basis.

3.7. DEFINITION OF HOURS

3.7.1. There exists considerable differences of opinion as to how the operating period in hours is to be defined for purposes of calculating depreciation. In this connection we come across the terms (i) the shift hours; (ii) clock hours; (iii) operating hours; (iv) plant hours; and (v) the meter hours. These are discussed below:

3.7.2. 'Shift Hour' includes the idle hours occurring in a shift and hence it is not correct to adopt it for working out depreciation. 'Clock Hours' are the working hours as noted by the time-piece and recorded in log books. These are the same as 'working hours' and differ from the 'operating hours' in that they include minor delays in working the machine on a job. 'Plant Hours' and 'Meter Hours' practically mean the same.

3.7.3. The C.P. & M.C. have in their report defined plant hours as under:—

'Plant Hour' means meter hours where meters are working, where such meters do not exist, commensurate effective hours, based on the working of similar other machines with meters should be used; where even this is not possible, the 'effective hour' can be based on the average fuel consumption and work done per hour, which gives the 'load factor'.

3.7.4. In view of the fact that on many items of plant and equipment 'meters' are not fixed and as the hour meter registration is not fool-proof and cannot be relied upon, the use of meter hour or plant hour cannot be accepted as a standard method for assessing lives of machines. Also to base life hours on fuel consumption and load factor is not only cumbersome but it lends itself to abuse in recording fuel consumption. Also, fuel consumption is a factor dependent on the mechanical condition of the plant and therefore unsuitable for adoption as a standard.

3.7.5. We, therefore, recommend the use of working hours of clockhours for determining the life of rated equipment. Most projects prefer recording clock-hours in log books; and the use of working hours is not only simple but more reliable than any of the other methods. It will not be out of place to mention that almost all advanced countries advocate the reckoning of depreciation by working hours basis as the soundest and the most practical method.

3.7.6. Our recommendations regarding the lives of rated equipment in working hours and those of the non-rated as monthly percentages are given below in Tables 3.7.6. (i) and 3.7.6. (ii).

TABLE 3.7.6. (i)

SI. No.		Equipment	•				Life or	n wo hours	orking-
1		2						3	
1	Air Compressors : Diese	l Portable	••	••	• •		10,000		· .
2	Batching Plant		• •	••	•••	••	50% of charged project.		to be the
3	Core drilling machines	••	••		• •	••	6,000		
4	Concrete buckets	•••	•••	• •	••	• •	10,000		
5	Cranes—Crawler : (a) Upto 3 Tons (b) 3 to 10 Tons (c) Over 25 Tons	•••	••	••	••	••	10,000 12,000 20,000		
6	Cranes—Truck mounted (a) Upto 6 Tons (b) Upto 15 Tons (c) Above 15 Tons		••	••	••	••	12,000 15,000 15,000		
7	Crushers: (a) Jaw (b) Gyratory (c) Cone		••	••		•••	40% of charged project. do. do.	cost to	to be the
8	Excavators Crawlers— (i) Diesel:								• •
	(a) Upto $\frac{3}{4}$ Cyd. (b) Upto $1 \cdot \frac{1}{2}$ Cyd. (c) Upto $2 \cdot \frac{1}{2}$ Cyd. (d) Above $2 \cdot \frac{1}{2}$ Cyd. (ii) Electricity operated E	•• ••	•••	•••	••	••	10,000 12,000 15,000 15,000 20,000		
9	Graders		••		• •	·	12,000		
10	Loaders	•••					15,000		
11	Locomotives : Diesel	•		• •	•	2 A A	12,000		

Life Table of Rated Equipment Recommended by Rates & Costs Committee

46

1		2					3
12	Mixers concrete :						
	(a) Less than 1 Cyd		••	••	••	••	6,000
	(b) More than 1 Cyd	• •	••	••		••	6,000
13	Rollers-Road :						
	(a) Diesel		••	••		••	12,000
	(b) Gasoline	•••	••	••	••	••	12,000
	(c) Steam	••	••		••	••	20,000
14	Scrapers						
	(i) Motorised : (rubber ty	/ped)					
	(a) Upto 10 Cyds			••	••		12,000
	(b) Above 10 Cyds	••	••	••	•••	••	15,000
	(<i>ii</i>) Towed :		••				15,000
15	Tractors—		•				
	(i) Crawlers :						
	(a) Upto 89 B.H.P.	••	••	••	••	••	10,000
	(b) Above 89 B.H.P.	••	••	••	••	••	12,000
	(ii) Wheeled :						
	(a) Upto 40 B.H.P.	••	••	••	••	•••	10,000
	(b) Above 40 B.H.P.	••	••	••	••	•••	10,000
16	Trucks :					· •	
	(a) Diesel	••	••	••	· ••	••	12,000
	(b) Gasoline	••	••	••	, ••	••	12,000
17	Trucks—Dumpers :						
	(a) Rear dump	•••		••	••	••	12,000
	(b) Bottom dump	, ••	••	••	••	••	15,000
19	8 Well drilling machines 5"-6	<i>*</i>		••	••	••	12,000

TABLE $3 \cdot 7 \cdot 6$. (i)—contd.

TABLE 3.7.6. (ii)

SI. No.		Equi	pment					Depreciation % per month
1			2)	· .	3
1	Air Compressors—Station	ary	••	• •		• •		1
2	Bins	•••	••	• • .	• •	• •	• •	$2 \cdot \frac{1}{2}$
3	Boats		••	••	••	••	•••	3
4	Boilers	••	••	••	••		•••	• 1·5
5	Cableway		•••	• •		••	· • •	50 of cost to project
6	Engines—							
	(i) Diesel :							
	Upto 100 HP	••	••	••	•••	••	••	1.5
	100 to 500 HP	••	••	••	• • .	• • •	• •	1.5
	(ii) Gasoline :							
	Upto 10 HP	••	••	•••		• •	••	2
	11 to 20 HP	••	••	••	• •	••	· • • ·	2
	20 to 30 HP	••	••	••	••	. • •	••	2
· _ ·	Above 30 HP	•••	••	• •	••	••	••	2
7	Electric Light Plant-							
	(i) Diesel :							,
	Upto 10 kW Upto 25 kW	••	. •	••	••	••	••	2
	Above 25 kW -10	$\frac{1}{10}$ kW	••	••	••	•••	••	22
	(<i>ii</i>) Gasoline :	50 K 11	••	•••	••	••	••	4
	Upto 10 kW							n
	Upto 25 kW	•••	••	••	• •	••	••	2 2
	Above 25 kW	•••				< · ·	•••	$\frac{1}{2}$
8	Hoist—Air :			1				2
	Chain					••	• •	$\frac{2}{2}$
	Electric	••	•••		• •	••		2
	Gasoline : Upto 10	0 HP	••	• • •	• •	••	• • •	2.5
	Above		••	· • •	••	••	•••	2
9	Pile Hammers-Single Act	ing	••	•••	••	••	••	1.5
	Double Ac	ting	••		••	••	••	1.5
10	Pneumatic—Tools :							
	Drifters	• •:	• •	• •	• • •	••	••.	3
1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1	Jack Hammer Pumps		••	••	• •		÷ •	3
	Vibrators	**	••	• •			• •	3
	Wagon Drills		••	••	••	••	••	3
11	Pumps—Grout :			• •	•••		••	
	Pumps etc.	••	••	••	**	· • •	• •	2 3
	Centrifugal	•••	•			•••	••	3
12	Rollers-Sheeps foot	1. 1. 1.					•••	
13	Sand blast outfit	• •	••	••	••	••	••	1.5
		••	••	•••	••	• •	••	1.5
14	Welding Machine	••	• • ¹ 2	•••	с. С. • •	• •	• •	2

Life Table of Non-rated Equipment Recommended by R. & C.C.

ECONOMICS OF CONSTRUCTION EQUIPMENT

3.8. The Life of Tyres

3.8.1. Though the suppliers always include the price of tyres initially fitted on an equipment in their quotations for the equipment, tyres have to be treated quite separately for the inclusion of *pro rata* cost in the unit rate. On some equipment, the cost of tyres is a substantial part of the total price and their lives are not the same as those of the machines.

3.8.2. The recommendations of the C.P.&M.C. in respect of the average life of tyres of various types of equipment are reproduced below :

								Life Expec He	ctancy ours
Equipment								Average material	Abrasive material
Scrapers	• •	••	••	••	••			3,000	2,50
Dumpers—bottom			••	••	••	••	••	3,500	3,00
Dumpers-end	••		••	••	••	••	•••	3,000	2,50
Tractors	••		••	••		, • •	••	2,500	2,00
Rubber-belt for loade	ers	.• 	••	••	••		••	3,000	2,50
Drawn scrapers		••	••	••	••	••	••	4,000	3,50

TABLE 3.8.2.

3.9. DEPRECIATION FOR IDLE PERIOD

3.9.1. Equipment depreciates even while idle. We observe that no depreciation is allowed for the idle period in the working out unit costs on projects. We recommend that a quarter of the full rate of depreciation be charged to the project for idle hours. This will also lead to economy in the capital outlay on equipment on projects.

3.9.2. During monsoons when there is a shut-down on most of the works it can be expected that the equipment would be overhauled for use in the following season. This period which may last for 2 to 3 months, should not be considered as idle time for purpose of charging depreciation for idle hours. Any shut-down during the working season, howsoever long, should be treated as an idle period.

3.10. TWO-SHIFT WORKING

3.10.1. We recommend two-shift working on large projects and also periods in between these shifts by gangs attending to the machinery. Single shifts working of machines is uneconomical on large projects while *three-shift* working can only be justified where the time for the completion of the project is very limited.

3.11. METHOD OF DETERMINING THE PRICE OF OLD EQUIPMENT

The Co-ordination Board of Ministers have ruled that "the 3.11.1. usual formula for determining the price of old equipment would be the book value, less depreciation. In the event of difference of opinion, the matter would be settled by a joint inspection of the two parties, and if necessary, ultimately by arbitration. This procedure, however, should not hold up the transfer of the machines". We agree with these observations and further recommend that before a machine is transferred from one project to another project, it should be completely overhauled and put in a perfect mechanical condition to the satisfaction of an independent authority. We are further of the opinion that each project should towards the end of its completion be required either to scrap the machine or put it in thorough working order at its own cost and get it evaluated by an independent body like C.W.&P.C. The equipment population in the country is so great and stores so large that C.W. & P.C. can afford to have a body of experts on its staff to act as a Central agency for the disposal of Stores and Equipment and their transfer from one project to another.

3.12. Repairs and Maintenance

3.12.1. Repairs and maintenance include the cost of labour and spare parts involved in overhauls at the end of the working season, as well as minor replacements or major repairs caused by accidents, etc., which may be required during the working period.

3.12.2. Expenditure on repairs cannot follow any uniform pattern as is the case with operation charges. Nor is there any apparent direct relationship between the depreciation charges and charges for repairs but some assumption about the likely cost of repairs on a machine is necessary and a method has to be devised for debiting it to the unit cost. The only datum available is the purchase price of the machine on which depreciation is based. Practices differ in the correlation of the estimated cost of repairs with the purchase price. Some fix it at some annual percentage of the purchase price and divide this by the number of hours assumed per year to arrive at an hourly cost; others express the total cost of repairs during the life of the machine as a percentage of the purchase price.

3.12.3. We give in Table 3.12.3. our recommendations for repairs and maintenance for the various classes of machines. It must, however, be noted that hourly costs of repairs and major overhauls depend largely upon the severity of use or working conditions, and the care and attention given to the equipment. The rates given below would apply to average working conditions.

TABLE 3.12.3.

Repairs and Maintenance as Percentage of Depreciation

Class of Machinery	Percentage of Depreciation
1	2
Boilers, conveyors (portable), engines, motors (electric), pumps (high pressure, piston or pump), scrapers, shovels, tractors, bull-dozers, belt loaders, welders (acetylene).	100%
Automobiles, bins (aggregate), bituminous equipment (except kettles), compressors, conveyors (stationary), draglines, graders (motor), hoists (electric and steam), pavers, pile hammers, pit and quarry plans (small), pumps (centrifugal), pumps (concrete), trucks (dump), wagons (dump), welders (gas-driven).	80 %
Bucket loaders, cables, cement guns, concrete, plants cranes, crushers, drills (pneumatic), hoists (gas), mixer concrete (medium), mixers (motor small), rollers (except sheepsfoot), trailers, trucks (except dump).	60 %
Electric hand tools, mixers (concrete, small below 14.8), pipe, pneumatic tools, vibrators (concrete).	40% or less

3.12.4. Contrary to depreciation, expenditure on major repairs should follow an upward trend during the life of a machine, being low in the beginning when the machine is new and higher and higher in later years. It is, however, almost a universal practice to allow for repairs and overhauls in the unit rates on a straight line basis for the sake of simplicity in working. Unlike depreciation no charge for repairs should be incorporated in unit costs for idle hours.

3.12.5. The Government of India, in the Ministry of Finance, in their instructions to the Accountant General as contained in their letter No. F-8 (23-EC-II/51) dated 26-9-51 lay down that adjustments for transferring plant use-rate charges to works be made "annually or at more frequent intervals as may be considered expedient". We are of the opinion that such adjustments should be carried out monthly and incorporated in accounts. In the case of cost accounting shorter periods may be adopted, but there is no need to incorporate the figures earlier than one month in financial accounts.

M7CW&PC/63-5

REPORT OF RATES & COSTS COMMITTEE

3.13. REPAIRS AND RENEWALS OF TYRES

3.13.1. The repairs and maintenance charges of tyres and tubes are definitely smaller than those of the machines. The following figures of the percentage allowance for repairs of tyres have been adopted in our calculations and are recommended for use.

TABLE 3.13.1.

Job Conditions	Bottom Dump	Rear Dump	Scrapers	Twin- power Scrapers	Loaders
1	2	3	4	5	6
Favourable	40 %	50%	45 %	50%	40%
Average	50 %	60%	55%	65%	45%
Unfavourable	60%	80%	65%	85%	50%
Extremely unfavourable	70%	95%	75%	95%	55 %

Allowance for Repairs and Maintenance of Tyres

3.14. THE OPERATING COST

3.14.1. The operating cost includes expense on fuels, lubricants and labour per hour. The fuel and lubricant consumption is dependent on the B.H.P. of the equipment and its type. The labour charges are affected by local conditions, availability of skilled labour, etc. We have recommended in Chapter 2 the scale of wages for personnel required to man the construction equipment. The expenses incurred on the personnel engaged as "leave reserve" and for non-working season should also be included under the cost of labour. We have provided 25% of the total labour charge per hour under this head in our calculations of use-rates of equipment.

3.15. IMPORTANCE OF PREVENTIVE MAINTENANCE

3.15.1. While dealing with cost, we should not forget that the worst enemy of equipment is improper maintenance and it is imperative that full advantage be taken of the cost building features, which the modern expensive earthmoving equipment offers.

52

ECONOMICS OF CONSTRUCTION EQUIPMENT

3.15.2. It is good commonsense to do little things in maintenance which can prevent serious failures later. Not only are the repair charges in a factory to be considered but much more important are the periods of shut-down of works resulting in total loss of production.

3.15.3. Most failures in a well designed and properly built machine are due to wear and tear, shocks, or overloads or a combination of the three. Failures due to wear and tear could be eliminated by proper lubrication, proper adjustment and the replacement of worn parts, before they cause failure of other parts in the assembly.

3.15.4. Failure due to shock could be eliminated by proper driving care and smooth driving operation, good haul roads and making sure that all parts on the vehicle are securely tightened and vibration eliminated. Failure due to overload could be eliminated by prohibiting all overloading.

Regular maintenance of check sheets and control reports along the lines of aircraft maintenance to do "little things" to prevent failures, would go a long way towards effecting saving in cost. Our recommendations on this subject are embodied in Appendix 4.

53

STORES

4.1. GENERAL

- 4.1.1. A perfect store system should be capable of :-
 - (i) Efficiency and economy in management.
 - (ii) Prevention of waste and pilferage.
 - (iii) The exact allocation of all stores bought.
 - (iv) Stock records indicating qualities of goods delivered by outside suppliers not up to the standard mark.
 - (v) Securing protection against running short of materials and stores, the stores ledger showing at a glance the exact stock held from day-to-day.
- (vi) Affording protection against over-stocking and thus running the risk of loss by falls in the market value, by deterioration of the goods, and by danger of obsolescence.
- (vii) Affording check against locking up of capital by carrying unnecessarily large stocks.
- (viii) Showing up cases of duplicate ordering and afford protection against it.
 - (ix) Continuous test checks with a minimum stock-taking.

4.1.2. Stores Account system should in short be able:—

- (i) to produce figures wanted by the Costing Section promptly,
- (ii) to present a complete account of receipt and expenditure,
- (iii) to show bad and good buying,
- (iv) to indicate quantity and value of stores without stock-taking,
- (v) to indicate ordering level without inspection, and
- (vi) to indicate surplus, dead, and unserviceable stores.

4.1.3. The condition of stock accounts on most projects is far from satisfactory as they have failed to fulfil most of the essential requirements. Briefly put, the defects noticed can be grouped as follows :--

(i) Purchase registers for Stores Ordered are not maintained to watch supplies and to avoid duplication of order,

STORES

- (ii) Registers for Railway Receipts are not maintained to watch incoming supplies.
- (*iii*) Articles are not priced promptly due to the absence of specified procedure for valuation prior to receipts of priced invoices and vouchers for miscellaneous charges.
- (*iv*) Payments of bills are unduly delayed on account of nonavailability of measurement books containing the bills, due to a lengthy procedure of certification and payment.
- (v) Issues in the stores registers are wrongly entered due to absence of Code Numbers, resulting in confusion and extreme difficulty in reconciliation of differences.
- (vi) Half-yearly register of stock is not closed resulting in nonfixation of rates for the ensuing half year.
- (vii) Physical verification is not generally carried out.
- (viii) Large accumulation of surplus and dead stores exists at each project, resulting in unnecessary locking-up of capital and unnecessary waste.
- 4.1.4. The present state of affairs is due to :---
 - (i) Absence of classification and condition for stores.
 - (ii) The inadequacy of the existing rules on Management and Accounting.
 - (iii) Lack of Trained Personnel for stores management and accounting.
 - (iv) Cumbersome methods of pricing and verification of stores, closing of Stock Accounts half-yearly and enormous increase in the items of stores and their transactions due to the rapid advance towards mechanised methods of construction, now being adopted on works.
 - (v) Unsuitability of some of the existing forms of stores accounting.
 - (vi) Unsuitability and inadequacy of stores houses.
- (vii) Inadequacy of proper arrangements and methods for storing articles.

4.1.5. Our recommendations on the subject are contained in the succeeding paragraphs.

4.2. CLASSIFICATION AND CODIFICATION OF STORES

4.2.1. According to current practice, stores are classified as under and given no code numbers :---

Small Stores. Building Materials. Timber. Metals. Fuel. Painters Stores. House Fittings. Miscellaneous Stores. Manufacture. Land and Kilns Storage.

It is evident that the above classification had been evolved in the past to cover mainly the building materials and cannot serve the requirement of the large river valley projects.

4.2.2. There is at present no codification of stores on most of the river valley projects. For this purpose the decimal system is more suited than any other. In this system every item is given a code number, which makes for ease and accuracy in posting transactions. It also gives elasticity for expansion according to needs without disturbing the codification of items already in use and is capable of being adopted to the use of machines for stores accounting.

4.2.3. The following main classification and coding of stores is recommended :—

Code Nos.Main Classification $11,000$ to $11,999$ Building Materials. $12,000$, $12,999$ Plant & Equipment. $13,000$, $13,999$ Auto Stores. $14,000$, $14,999$ Chemicals. $15,000$, $15,999$ Gums, Resins and Varnishes. $16,000$, $16,999$ Petroleum, Fuel Oils & Lubricants $17,000$, $17,999$ Rubber Goods. $18,000$, $18,999$ Tar & Tar Products. $19,000$, $19,999$ Cement. $20,000$, $20,999$ Steel & Steel Products. $21,000$, $21,999$ Non-ferrous Metals. $22,000$, $22,999$ Electrical Stores. $23,000$, $25,999$ Scientific Stores. $25,000$, $25,999$ Hardware Tools. $27,000$, $28,999$ Railway Materials. $29,000$, $29,999$ Explosives. $30,000$, $30,999$ Clothing. $31,000$, $31,999$ Glass & Glass Products. $33,000$, $33,999$ Fire Arms & Ammunitionand so on to $99,000$ to $99,999$ Miscellaneous	10001	minoridod	•		
12,000 ,, 12,999 Plant & Equipment. 13,000 ,, 13,999 Auto Stores. 14,000 ,, 14,999 Chemicals. 15,000 ,, 15,999 Gums, Resins and Varnishes. 16,000 ,, 16,999 Petroleum, Fuel Oils & Lubricants 17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 20,999 Steel & Steel Products. 20,000 , 20,999 Steel & Steel Products. 21,000 , 21,999 Non-ferrous Metals. 22,000 , 22,999 Electrical Stores. 23,000 , 23,999 Sanitary Stores. 24,000 , 24,999 Mechanical Stores. 25,000 , 26,999 Hardware Tools. 27,000 , 29,999 Explosives. 26,000 , 28,999 Railway Materials. 28,000 , 28,999 Railway Materials. 30,000 , 30,999 Clo		Code No	<i>os.</i>		Main Classification
12,000 ,, 12,999 Plant & Equipment. 13,000 ,, 13,999 Auto Stores. 14,000 ,, 14,999 Chemicals. 15,000 ,, 15,999 Gums, Resins and Varnishes. 16,000 ,, 16,999 Petroleum, Fuel Oils & Lubricants 17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 28,999 Hardware Tools. 27,000 ,, 29,999 Explosives. 30,000 , 30,999 Clothing. 31,000 , 31,999 Glass & Glass Produc	an an an An Anna an Anna	11,000	to	11,999	Building Materials.
13,000 ,, 13,999 Auto Stores. 14,000 ,, 14,999 Chemicals. 15,000 ,, 15,999 Gums, Resins and Varnishes. 16,000 ,, 16,999 Petroleum, Fuel Oils & Lubricants 17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 , 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 30,999 Clo		12,000	,,	12,999	
14,000 ,, 14,999 Chemicals. 15,000 ,, 15,999 Gums, Resins and Varnishes. 16,000 ,, 16,999 Petroleum, Fuel Oils & Lubricants 17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 31,999 Glass & Glass Products. 32,000 , 32,999					
15,000 ,, 15,999 Gums, Resins and Varnishes. 16,000 ,, 16,999 Petroleum, Fuel Oils & Lubricants 17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 26,999 Hardware Tools. 27,000 , 27,999 Photographic & Cine Stores. 28,000 , 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 30,999 Clothing. 31,000 , 31,999 Glass & Glass Products. 32,000 , 32,999 Timber. 33,000 , 33,999 Fire Arm					
16,000 ,, 16,999 Petroleum, Fuel Oils & Lubricants 17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 , 30,999 Clothing. 31,000 , 31,999 Glass & Glass Products. 33,000 , 33,999 Fire Arms & Ammunition.					
17,000 ,, 17,999 Rubber Goods. 18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 31,999 Glass & Glass Products. 32,000 , 32,999 Timber. 33,000 , 33,999 Fire Arms & Ammunition.					
18,000 ,, 18,999 Tar & Tar Products. 19,000 ,, 19,999 Cement. 20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 30,999 Clothing. 31,000 , 31,999 Glass & Glass Products. 33,000 , 33,999 Fire Arms & Ammunition.					
19,000 , 19,999 Cement. 20,000 , 20,999 Steel & Steel Products. 21,000 , 21,999 Non-ferrous Metals. 22,000 , 22,999 Electrical Stores. 23,000 , 23,999 Sanitary Stores. 24,000 , 24,999 Mechanical Stores. 25,000 , 25,999 Scientific Stores. 26,000 , 26,999 Hardware Tools. 27,000 , 27,999 Photographic & Cine Stores. 28,000 , 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 30,999 Clothing. 31,000 , 31,999 Glass & Glass Products. 32,000 , 32,999 Timber. 33,000 , 33,999 Fire Arms & Ammunition.					
20,000 ,, 20,999 Steel & Steel Products. 21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 , 29,999 Explosives. 30,000 , 30,999 Clothing. 31,000 , 31,999 Glass & Glass Products. 32,000 , 32,999 Timber. 33,000 , 33,999 Fire Arms & Ammunition.					
21,000 ,, 21,999 Non-ferrous Metals. 22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.					Steel & Steel Products.
22,000 ,, 22,999 Electrical Stores. 23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.					
23,000 ,, 23,999 Sanitary Stores. 24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.					
24,000 ,, 24,999 Mechanical Stores. 25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.					
25,000 ,, 25,999 Scientific Stores. 26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.			-		
26,000 ,, 26,999 Hardware Tools. 27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.	P				
27,000 ,, 27,999 Photographic & Cine Stores. 28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.					
28,000 ,, 28,999 Railway Materials. 29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition.					
29,000 ,, 29,999 Explosives. 30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition. and so on to					
30,000 ,, 30,999 Clothing. 31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition. and so on to					
31,000 ,, 31,999 Glass & Glass Products. 32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition. and so on to		30,000			
32,000 ,, 32,999 Timber. 33,000 ,, 33,999 Fire Arms & Ammunition. and so on to		31,000			Glass & Glass Products.
33,000 , 33,999 Fire Arms & Ammunition. and so on to					
and so on to					
		· ··			****
					• • • • • • • • • • • • • • •
99,000 to 99,999 Miscellaneous.					
		99,000	to	99,999	Miscellaneous.
			1.11		

STORES

4.2.4. Each of the above group can be divided into 99 sub-groups and each sub-group can be sub-divided into 999 items allowing thereby ample scope for expansion.

4.3. LIMITS OF STOCK

4.3.1. According to the existing procedure, an upper limit is sanctioned for each division for holding store and the net outlay on stores at the end of the financial year should not exceed this limit. This limit may be revised as and when necessary. For each individual year, a net appropriation is made and it may be plus or minus accordingly as the estimated value of receipts of stores exceeds the value of issues and vice versa. But it is always implied that net outlay on stores will not exceed the limit mentioned above. This system may be all right for over-all financial control on stores but for efficient working of stores on large river valley projects, every item needs attention and proper planning so that stores may be in a position to supply all the items as required by construction engineers and at the same time there may not be unrequired accumulation of any item. Such accumulation does not only mean lock-up capital but results in continuous cost of storage and safe custody and risk of deterioration, obsolescence and loss.

4.3.2. It is, therefore, necessary that maximum, minimum and normal ordering limits of stock are determined for each article. Such limits will be a great help in efficient and economical working of stores. When the stock of an article is reduced to the minimum limit it should alert the stores keeper to take steps for its procurement and when the stock is at the upper limit purchases are stopped which will save locking up capital. Maximum and minimum limits should be fixed very judiciously with the objective that locked-up capital remains the minimum compatible with regular and timely availability of required stores so that progress of work remains unhampered. It is also considered desirable to fix a limit for normal ordering to be placed for supplies.

4.3.3. Minimum limit on the quantity of an item should be fixed at such a level that the existing stock may generally be sufficient to meet the requirement of works during the period which is necessary for its procurement after the date of purchase requisition. Maximum limit may be fixed by considerations of periodical requirements which will depend on the convenient intervals of replacements and requirements of works.

4.3.4. As a rule the maximum limit should not exceed the requirement of a year plus the minimum limit, unless some such conditions are foreseen that a certain article may become scarce in the near future or its price may go up. The limits for each individual item will depend upon the following factors :--

- (a) The time required to process an order.
- (b) The time required to procure the materials after an order is placed within or outside the country.
- (c) The rate of consumption of the article.

(d) Availability of storage space.

- (e) Economical, commercial units of purchase.
- (f) The capacity of the store organisation to handle procurement orders, measurements of goods, binning and storing the articles and payment of bills thereof.
- (g) The provisions necessary to meet the contingencies of accidental needs of certain kinds of items.
- (h) The minimum amount of money that can reasonably be invested in stock.

4.3.5. If the procedure for procurement orders could be made short and quick, the minimum limits can be reduced thus effecting a saving on the overall investment. From this point of view it is better to have as many items under a Rate Contract as possible so that no time may be lost in inviting tenders etc. This is a pointer to the importance of minimum of centralisation and maximum of the delegation of authority to save time in routines of passing on the papers from one office to another.

4.3.6. The time required to procure materials is dependent upon the availability of the materials in the market and the speed of transportation. When articles are available in the local market, the minimum stock limit should normally not exceed the requirement of 6 to 8 weeks. For materials that have to be imported from abroad, the time required is usually large resulting in the necessity for higher minimum limit. The officer fixing the limits must, therefore, be conversant with the availability of the article.

4.3.7. The rate of consumption of an article will depend upon the time schedule of construction. It is necessary, therefore, that the officer fixing the limit should also have a detailed list of the phased requirements of materials for his works. The availability of storage space scarcely needs any comments except that this may have to be limited to keep down the investment on buildings, and reduce the hazards of fire, theft, etc.

4.3.8. Bulk purchases are always cheaper than piecemeal orders; but care should be taken to see that too much stores is not ordered, in an endeavour to purchase at bulk rates, which may not be required in the near future or may deteriorate with time or may otherwise become unusable.

4.3.9. Theoretically if an order could be placed every day for the requirements of a material in regular demand, the stock limit can be kept very low, say only to meet one day's needs. However, this will throw so much burden on the store organisation, that it will not be able to cope up with the work of ordering, receiving, paying and binning the goods. It is necessary, therefore, to bulk the requirements and indent them at one time. Such bulking of orders should, however, be limited to not more

STORES

than 3 months' requirements but deferred deliveries may be asked for when necessary.

4.3.10. Certain types of stores are required to be held against an unforeseen demand, which if not satisfied, might result in dislocation of entire work. The forward indents for contingent stock holding of spare parts is a typical example of this nature.

4.3.11. In the case of mechanical equipment, it is recommended that it should be standardized and the supply of spare parts by the dealer concerned during the life time of the machine should be made a condition of the purchase. Further prices of the parts should be controlled by the Government taking into account net price in manufacturing countries, transport and other incidental charges so that the dealers may not indulge in profiteering. This will greatly reduce the requirement of Government investment in spares which accounts for a great portion of stores on mechanised river valley projects.

4.3.12. The reserve limit of stores should be fixed on the basis of a detailed analysis on the above lines.

4.4. PROCUREMENT OF STORES

4.4.1. Bulk purchasing of stores, in a manner suited to each individual case, can undoubtedly prove an economical proposition.

4.4.2. The various purchasing organisations in vogue on projects in India are the following:---

- (i) The project authorities themselves.
- (ii) The State Stores Purchase Departments.
- (iii) The Central Stores Purchase Department.
- (iv) The India Supply Missions in other countries.

4.4.3. Stores purchase is a highly technical job involving specialised knowledge of various branches of engineering and it is obvious that no other agency except (i) above can possibly afford to have all the experts on its staff without making the organisation unnecessarily expensive and even wasteful. It is also true that the disposal of business in an expeditious manner can alone be assured by agency No. (i). No other agency can be more conversant with the exigencies of the situation than the project authorities themselves.

4.4.4. We, therefore, recommend that a Stores Purchase Committee be constituted on each large project and vested with full powers to make purchases direct. In order that these purchases may be made in accordance with the principles accepted by the Ministry of Works, Housing and Supply of the Government of India or by the Stores Purchase Officer, a senior officer of these organisations should be associated with the Committee, as recommended by the Sub-Committee of the Central Board of Irrigation and Power in their Report in Contract and Force Account System of Construction issued in 1952.

4.4.5. These Committees should ordinarily comprise :--

The	project Manager	Chairman
The	S.P. Officer, D.G.S.	
The	Chief Mechanical Engineer	Members
The	Financial Adviser	
The	Chief Accounts Officer	
The	Central Stores Officer	Member-Secretary

4.4.6. Budget for the annual stores requirements should be prepared with the same meticulous care as the Financial Budget, supported by Stores Purchases Programme presented before the Purchasing Committee and passed, before any orders are placed, except in emergencies for which special powers should be vested in the Project Manager.

4.4.7. The Chief Stores Officer should be placed directly under the Project Manager, so that the latter may remain in touch with the true position of stores at all times.

4.4.8. Requirements of stores, by consideration of time factor, can fall under three categories :--

(a) Routine.

(b) Urgent.

(c) Immediate.

4.4.9. Under the last category, "Immediate", can fall only the emergency requisitions mentioned in para 4.4.6. All normal indents will comprise routine requirements for purpose of procurements. In case of supplementary indents most of the items may be available in stores and some others may be arranged by the routine procedure while some others may still require urgent attention. However, in the interest of the field engineers themselves, the magnitude of urgent and immediate requirements should be kept as low as possible. If their magnitude increases, such requirements cannot possibly obtain proper attention :--

(a) Routine — There \cdot should be pre-planning for the procurement of the routine requirements. If recourse has to be taken to direct purchase, procurement procedure should follow the normal channel and lend *itself* to free competition over as large a field in the market as possible.

(b) Urgent — Urgent demands are those against which supplies are required within a month. Procurement will have to be made from the exstock offers. The same may be available from some of the firms in Rate Contract with any Central or State agency, or else enquiry will have to be made from a group of selected suppliers whose names are maintained on

the approved list. Short notice quotations or telegraphic enquiries will have to be made to save time.

(c) *Immediate*—The enquiries for such demands may be made by telephone or telegrams from a few selected suppliers. It becomes sometimes necessary to place orders even without ascertaining the price of an article but this procedure is risky and should be resorted to only with firms of known repute and by officers of adequate status.

4.4.10. In view of the fact that sometimes short-cut procedures have to be resorted to for urgent and immediate demands, it is necessary to clearly define the powers of various officers in this respect depending upon the type of job, its magnitude and urgency.

4.4.11. There should be a close liaison between the Chief Stores Officer and the Field Engineer. As soon as a schedule of material required is worked out, the field engineer should examine the demand with reference to the materials already available in the Stores with a view to effecting necessary amendments. A requisition in form No. N-1 should then be carefully drawn up and sent in duplicate to the Procurement Section.

4.4.12. Purchase Requisitions received in form N-1 from the various Indenting Officers should be consolidated into one or more sets for issue of inquiries by the Procurement Section. As already pointed out purchases through the State and Central Government purchasing agencies have to follow the procedure laid down for them and procurement department should follow the same. For the rest an inquiry should be issued as may be necessary according to the nature of requirement if it is routine, urgent or immediate. Purchase enquiries should be sent out in the form No. N-2. For bulk purchases of routine category exceeding a certain value (to be decided by the State concerned), it is desirable to give an advertisement in newspapers. For purchases of smaller magnitude, the enquiries may be restricted to the list of selected suppliers.

4.4.13. Where detailed specifications or drawings cannot conveniently be furnished with the enquiry it is often more convenient to ask for samples along with the quotations. The selection of the firm on whom the order is to be placed will, in that case depend upon the quality of the goods and its relative price which may not necessarily be the lowest.

4.4.14. Inquiries and Tenders

The following are amongst the different methods of obtaining quotations :---

- 1. Open tenders by advertisement in the press.
- 2. Limited tenders, *i.e.*, by issuing invitation to a limited number of firms.
- 3. Single tender, *i.e.*, by invitation to one firm only.

4.4.15. The primary duty of the Procurement Officer is to obtain the best value for the money spent consistent with timely procurement. The adoption of one or the other form of enquiry should be given very careful consideration as this is one of the effective methods of keeping down the rates.

4.4.16. Open Tender System

This system of invitation of tender by public advertisement should be used as a general rule for big purchases, the monetary limit for which should be fixed by the State concerned.

4.4.17. Limited Tenders

Enquiries under this procedure of purchase are issued to a limited number of firms on the approved list of suppliers for the class of required goods. This system is operated upon where the value of the goods required is below a certain limit, to be fixed by the State concerned or when the demand is urgent or immediate.

4.4.18. Single Tender

This system may be adopted when the article required is of a proprietary nature such as spare parts of machines. It should be ascertained if there is any rate-contract for the same, so that it may be utilised as far as possible.

4.4.19. Receipt and Opening of Tenders

Quotations should be invited in sealed covers with instructions to the suppliers to indicate on the cover, the nature of enquiry and the due date of opening the quotations. All these tenders should be collected by the Procurement Officer and kept under safe custody until the date and time fixed for their opening.

4.4.20. It is desirable to open tenders and quotations, as far as possible before the tenderers or their representatives, if any, by an officer authorised to do so, who should initial every page of the quotation or tender and conditions and number them serially.

4.4.21. Quotations received after the due date should not normally be admitted. The cases where there is evidence to show that the quotation was actually posted by the party prior to the date of opening but was not received in time owing to the delay in transit may be taken into consideration at the discretion of the officer calling for the quotations, but the tenders of quotations submitted after the scheduled date and hour of opening should be summarily rejected.

4.4.22. A comparative statement of quotations should then be made and scrutinised by some responsible official and initialled by him.

Orders of competent authority duly empowered to place the order should then be obtained. In dealing with the competitive quotations the same care should be exercised as is normally taken of the competitive tenders in the Public Works Department.

4.4.23. The Purchase Order

A suitable form of purchase order is given at form No. N-3. The number of copies of the purchase order required will depend upon the complexity of the organisation. In most of the cases six copies, distributed as under, will be found sufficient. These should be filled serially and suitable remarks made as materials are received.

- 1. To the firm.
- 2. To the officer receiving store.
- 3. To the officer holding the store.
- 4. To the ultimate user.
- 5. To the Accounts Branch.
- 6. Office copy of the Procurement Officer.

4.4.24. Any change in the rate or terms, etc. made subsequent to the placing of the orders must be intimated to all persons, to whom a copy of the purchase order was sent.

4.4.25. Repeat Orders

When materials are required during a contract period in excess of the quantities contracted for, and such excess is not sufficiently large to justify the invitation of fresh tenders, there may be no objection to quantities outstanding under the existing contract, if any, being increased suitably by a repeat order, provided that as a result of negotiation more favourable terms are received for the purchase than would have been possible by calling fresh tenders.

4.4.26. The Register of Purchase Orders

A register in form No. N-4 should be maintained by the Procurement Officer and the officer receiving the stores which should be kept posted up-to-date from the copies of purchase orders, etc. and periodically examined to watch prompt supplies, etc.

4.5. INSPECTION RECEIPT, AND PAYMENT OF STORES

4.5.1. The Railway Receipts received from the suppliers for goods despatched by rail are required to be very carefully handled as they form an important link in the procedure for stores accounting. A record of Railway Receipts should be maintained in form No. N-5 by the official entrusted with the clearance from the Railway.

4.5.2. Returned Stores

Sometimes goods may be returned to stores from works, form No. N-17 should be used for this purpose and drawn up in triplicate. One copy should be retained by the person returning it and 2 copies should be given to the Stores Section to which goods are delivered. The person receiving the stores should sign both the copies in acknowledgement of the stores and return one copy to the person who sent the stores and keep the other to accompany the "Stores Received Book"

4.5.3. Inspection and Measurements

All consignments of materials received against a purchase order should be opened in the presence of an officer responsible for inspection and count. The inspection should be carried out in reference to the standard specifications or drawings, as indicated in the purchase order. In cases where orders are based on approved samples, the standard sample should be held under a seal by the Inspecting Officer and stores accepted only if they reach the standard of the approved sample.

4.5.4. All materials on receipt should be examined and counted, weighed or measured as necessary. Under the existing Financial Rules measurements have to be recorded in Measurement Books (Form CPWA-23) whether these relate to works or materials. This form of measurement books is not suitable for recording measurements of supplies of materials. Also it gives only a single record of the articles received. The procedure of having pass books and bills to various tables for payment causes delay in payments and arrears in the completion of the connected records. It is, therefore, proposed to replace this form with a form of "Stores Received Book" (form No. N-8) for recording receipts of stores. This form affords convenience for accelerated movements and timely completion of records. This form should in the first instance be prepared in triplicate by carbon process using indelible ink or copying pencil. One copy is retained by the officer receiving the store, the second is intended for the disbursing officers for making payments and posting ledger and the third for the preparation of an abstract in form No. N-11. The signature and designation of the officer taking measurement should invariably be endorsed thereon. The pages should be machine numbered. Complete instructions regarding its preparation are given in Chapter VI of Part II of this Report.

4.5.5. Rejected Stores

Unaccepted stores should be kept aside and the party concerned immediately notified of the rejection through a Rejection Memo in form No. N-6 with the request for immediate removal of the stores from the Government premises. In order to have a consolidated record of such rejections for future reference, it is recommended that a register in form No. N-7, known as Rejection Register, be maintained. This will also serve as a record of the unreliability of the firms in respect of supply of specific items.

4.5.6. Materials Received Short

The shortages found on opening the consignments should at once be notified to the supplier. In case of damaged packages booked at Railway

risk, a remark should be given in the Railway Delivery Book, short certificate obtained and claim lodged with the Railway immediately. Record of claims for such shortages should be kept in a manuscript register to watch the clearance. Payment to suppliers for shortages accepted by the Railway as their responsibility can be made debitable to Misc. P.W. Advances, pending clearance on recovery from the Railway.

4.5.7. Payment of Railway Freight

Various methods of payment of railway freights, by cheque, cash and credit notes are at present in vogue in the River Valley Projects. The delay generally attending the adjustment of credit notes, rules out the adoption of this method. Payment by cash would involve handling of large sums of money demanding adequate security arrangemets and would not be suitable. On some projects payments by deferred freight system have been allowed by Railways, under which the Station Superintendent sends a consolidated bill once a week for the consignments cleared during the week and then payments made by cheque. This system does not seem to have any special advantage as the bills would require verification, etc. and may result in delays and accumulation. The Committee considers that such payments should be made by cheques and cash to cover the difference between the cheque and actual claims if demurrage, wharfage, etc. which cannot be known in advance, have to be paid. The system was referred to the Railway Board, who have stated in their letter No. 4486-TC dated the 19th May, 1955, that they have no objection to the facility of payment of freight by cheque being granted to such of the Civil Departments of the Central as well as State Government as may ask for it. \overline{A} copy of correspondence is given in Appendix 6.

4.5.8. Payment of Bills

4.5.8.1. To avoid delays in payment of bills, it is recommended that the suppliers should be asked to send the bills in duplicate giving reference of Purchase Order and Railway Receipt, etc. These should be entered in the bill register form No. N-12 which is maintained to watch their settlement. During the course of our visits it was seen that many of the projects maintain such registers in some form or the other.

4.5.8.2. As the measurement of stores included in the bill should have already been recorded immediately on receipt, the relative "Stores Received Book" should be completed in respect of rates and amount. It will sometime happen that incidental charges like packing, forwarding, insurance, etc. cannot be included in the Stores Received Book until the receipt of bill. In such cases a supplementary Stores Received Book should be prepared including these charges so that the total of the two Stores Received Books will tie up the accounts between the value of the stores received and the expenditure through cash book on the stock sub-head concerned.

4.5.8.3. The receiving officer will connect the bill with the relative Stores Received Book giving its reference thereon. He will check it with entries made therein and the purchase order and record the certificate of verification required as per instructions for completing Stores Received Books given in Appendix 4.

4.6. ACCOUNTING OF RECEIPTS AND ISSUES

4.6.1. Direct Purchase Versus Purchases through Stock

C.P.W.A. Code Para 99(a) requires that the cost of stores should be debited to the final head of account concerned or to the particular work for which they are required if either of these can be determined at once otherwise it should be kept in suspense account pending clearance as materials are issued by debit to the specific heads of accounts of work. This system can prove satisfactory only when stores are small and arrangements can be made to keep materials charged to work and those charged to stock separately from each other. It does not suit the large River Valley Project organisations where all stores are held by a Central Stores Organisation for ultimate users. It is not possible for such organisation to keep the materials charged to works separately from those charged to stock. The Committee invited views of the various project authorities and is of the opinion that in cases where control stores are maintained all materials should be passed through one channel viz. Stock Account. This has the advantages of better control of receipts and issues and knowing the total consumption of an article at a glance from the ledger. It may mean a slight increase in clerical work in stock accounting but the fact remains that it would afford a better control particularly when detailed and clear M.A.S. accounts could not be maintained for certain types of works e.g., operation and repairs of machines, in accordance with the Code Rules.

4.6.2. At present the Suspense Head "Purchase" is sub-divided into two parts, viz., (1) Purchases for stock and (2) Purchases for works. The Committee has recommended in para 4.6.1. that all purchases of stores should pass through stock account. The procedure for such purchases in para 344 of the CPWA Code is that "when materials are received from a supplier or from other department their value should be credited to purchases on closing the accounts of the month if they have been received for stock and payment has not been made for them during the month so as to secure agreement between the quantity and value account". In this system Purchase Account cannot be prepared until the close of the month specially where stock account is prepared in an office different from the one that is making payment. To avoid this difficulty it is recommended that all purchases even for stock should pass through "Purchase Account" in the first instance and clearance effected as and when bills are paid. This may involve some additional work in the maintenance of "Purchase Register" but this would afford the much needed advantage of having control over the transactions and by this method the Purchase Account and its clearance can be maintained and watched from day to day.

4.6.3. Purchase Register (Suspense)

On almost all the River Valley Projects large balances were found outstanding clearance under Suspense Head "Purchase" mostly due to the

difficulty of identifying items with the bills. To overcome this difficulty it is suggested that references to Store Received Book number and date, Railway Receipt number and date, Purchase Order number and date and the names of some prominent items be given in the column of particulars of item of P.W.A. form No. 67 (Register of Supense) which would facilitate linking of the items and their ultimate final clearance.

4.6.4. Abstract of Receipts

4.6.4.1. At present the abstract of store receipts is prepared for the entire sub-division abstracted monthly in a single Abstract of Stock Receipts which are required to be posted in the Sub-divisional Office from the Register of Stock Receipts and issues form No. 8, entries being made in respect of quantity. All transactions of the month need not be entered severally in the abstract but it would be sufficient to show as a single transaction for the total receipt from each source. These transactions are so written as to group the articles by the prescribed Heads of Stock. After all the transactions of the month have been posted, the total receipt of each article is computed and entered in the column headed "Quantities". No entries are to be made in the Sub-divisional Office, in any of the money columns as these are to be filled up in the Division's Office. The values of the stores received are abstracted in the Divisional Office separately by each of the sub-head of stores and are further classified under 'Cash Payment or Purchases'.

4.6.4.2. The existing form No. 9 was suitable for small stores holding a few items only, but they are inadequate for recording large numbers of transactions common to the large River Valley Projects. Moreover the sizes of the columns for transaction are also inadequate to enter the quantities and the value figures. In addition, this form is required to be prepared within a few days intervening the date of closing of the monthly account and the date of its submission. The transactions are so large that it is very difficult to prepare it in duplicate which has to be done by hand, the layout being not convenient for typing.

4.6.4.3. The Committee is of the opinion that when once the receipt of stock has been recorded in the Stores Received Book form, which is already classified by the sub-heads of stock, the duplication of working in preparation of this form is unnecessary. It is adequate to prepare an abstract of the Stores Received Books sub-divided by stock sub-heads to serve the purpose of the existing form No. 9. In view of the fact that we have recommended passing of such transactions through purchases, no further sorting by 'Purchases or Cash Payments' is necessary. The form No. N-11 of Abstract of Receipt recommended by us is given in Appendix 4. This form can be filled up daily from the copy of Stores Received Book which would accompany the abstract.

4.6.4.4. We invited opinion of the various River Valley Projects authorities and Accounts Officers on the suitability of this system. The recommendations of the officers are divided on this subject but the Accountant General, Madras, Andhra and the Tungabhadra Board and M7CW&PC/63-6 Electricity Department of Madras are already using this system and have stated that they have found it very convenient and simple in operation. We have also recommended the use of ledger system regarding the quantity and value account of receipts and issues. One copy of the Store Received Book will be utilised for posting of the ledger.

4.6.5. Monthly Reconciliation

4.6.5.1. Monthly reconciliation should be effected as under:

- 1. Total value of the abstract of receipts should tally with total in the Purchase Register for stock.
- 2. The total of the stock sub-heads in the abstract should tally with the total of the monthly receipts of the ledgers under each of the stock sub-heads.

4.6.5.2. Measurements of Gases. Very often payments are made for leaky gas containers resulting in considerable loss to the projects. The cubical contents of the containers should be marked on them and the pressure measured by a gauge on their receipt. With these two figures and atmospheric temperature, bills for stores could be checked.

4.6.6. Intimation of Receipt of Indentors

The intimation of materials having been received should be at once sent to the indentor by the Stores Receiving Officer. He should also watch receipts against the orders placed.

4.7.1. PRICING OF STORES

4.7.1.1. According to para 118 of the CPWA Code an issue rate is assigned to an article of stores as soon as it is brought on stock on the principle that there should ultimately be no profit or loss on stock account, and should consequently provide beyond the original price paid for carriage and other incidental charges, if any, *actually* incurred on the acquisition. This is worked out to the nearest anna and normally remains constant throughout the half year. Appreciable variations are, however, watched and issue rates may and in important cases, shall at once be revised. When closing the half-yearly Register of Stock, all issue rates have to be reviewed and revised if necessary to bring them within the market rates.

4.7.1.2. This principle of fixing issue rates has not proved practicable in the case of large stores handled on River Valley Projects due to the tremendous amount of work involved in breaking up the incidental charges for each item and the time required for enquiry about the market rate for each item etc. This work was found in arrears on almost all the River Valley Projects. The following procedure is recommended for adoption in order to meet the requirements.

4,7.1.3. Standard Prices.—The growth in the number and complexity of stores and the need of planning and controlling stores has led to the establishment of standard prices in several commercial organisations. The existing code rule of market price to be fixed periodically involves so much clerical labour that the work remains almost invariably in arrears and it fails to provide the control data for management. We, therefore, recommend the adoption of the first purchase price as the standard price of the store for the duration of the project, except for violent fluctuations in the prices of important stores when corrigendum can be issued. Any profit or loss on stores due to difference in rates can be charged direct to work periodically so as to make costing of items realistic. Whenever violent fluctuations are noticed, the issue rates of the articles should be worked out as best as possible at actuals plus approximation of items of expenditure not known at the time of receipt and this issue rate will remain constant till such an occasion crops up again.

4.7.2. Delivery of Materials to Central Store

The materials along with the original Stores Received Book are passed on to the Store Holder the officer receiving the stores. The Store Holder checks up the materials and allots Bin Cards number to each item in the column provided for the purpose in the Stores Received Book and then makes entries in his Bin Card and signs the Stores Received Book. The original copy of the Stores Received Book is then returned to Receiving Officer who should then complete his other two copies in respect of the Bin Card number and pass on the original copy to the ledger section (in division) for further processing. The third copy will be attached to the monthly "Abstract of Stores Received" form No. N-11.

4.7.3. Binning of Materials

4.7.3.1. The materials on receipt in the Central Stores should be recorded on the Bin Cards and the balances in the Bin Card brought up-todate. The Bin Cards should be kept in the respective bins or in a bound register (like the Kalamazoo visible binder). It may also be convenient at some stores to adopt Card Index Cabinet System located centrally for each sub-store. Bin Cards form the most important initial record, and hence a great care should be taken to maintain them properly. A record of Bin Cards should be maintained in form N-9 to watch their losses. A new card should be issued only under the signature of the officer holding the stores There should be a separate Bin Card for each type of item indicating transactions of receipt and issues, with respective Store Received Book or Store Issue Book and the number and the date. Each card should show the location of the articles in the space provided for the purpose e.g. File No. Rack There should always be a separate store for all the combustible No—. materials like Calcium Carbide, cotton waste etc. After the completion of all these entries the articles should be stored in the proper bins allocated to the items. As far as possible, bins should be arranged in the sequence of the store code numbers,

4.7.3.2. The recommended form No. N-10 of Bin Card is given in App. 4. It shows the unit of count or measurement, the opening balances, the proposed maximum and minimum balances and a record of the stock verification whenever contents of the bins are checked by the Store Inspector. It is further recommended that the issue rate from the ledger should be entered on the Bin Card.

4.7.3.3. The Bin Cards will serve the same purpose as the existing form No. 8 which is intended to be abolished.

4.7.4. Issue of Stores

4.7.4.1. Issues of stores in all cases should be made on the authority of an indent in form No. N-13. The indent should be prepared neatly and clearly in indelible ink or with a copying pencil in triplicate by the carbonprocess as all subsequent accounting depends on it. One copy is to be retained by the Indentor and two presented at the stores. One copy is to be retained, by the Storekeeper and the other should accompany the stores.

4.7.4.2. The indents must be signed by the officer authorised to indent on the Store subject to such limitations as the Divisional Officer may impose. The indents should be registered, the Stores Issue Book and after issue of the articles, all the columns in respect of rates, Bin Card No. and materials issued should be filled up in the two copies presented to the store. The indents are then signed by the receiving officer on the Store's copy and by the issuing officer on the second copy in token of having received and issued the required materials. The second copy of the indent together with the materials covered by a Gate Pass if necessary should be handed over to the indentor or his agent who will present his copy at the gate for security arrangements. The security officer at the gate should check the store with the indent and affix his stamp 'Checked' on the indent and sign before allowing the materials to pass out of the Store compound keeping the Gate Pass as a Record.

4.7.4.3. From the copy of the indent retained in the Stores, Issue Book should be prepared. Normally three copies as under Stores Received Book should be adequate but this number may be varied depending upon the size of the store organisation and the accounting set up.

- 1. For posting ledgers.
- 2. For preparing abstract of issues.
- 3. Office Copy.

4.7.5. Preparation of Indents for Stores

The following instructions should be observed for the preparation indents:---

- 1. Blank space at the end of an indent should be crossed or scored out by drawing double line diagonally across the space.
- 2. The store-keeper should fill in carefully the column meant for materials issued, as in some cases it may be less than the indent quantity or may be nil.

- 3. Under no circumstances should any correction be made in the indent by the Storekeeper in respect of quantities issued except under the initial of the indentor or his agent.
- 4. In no case, should addition or alterations be made in an indent as there is no possibility of checking whatever the addition was made before or after the indent was presented. Storekeeper should not accept unattested alterations and additions but should refuse the issue of such indents.
- 5. Indents should be current only for 30 days from the date of indent where a partial supply is made against an indent, the balance of the quantities should be cancelled and a fresh indent accepted, if and when the supply is again demanded.
- 6. Indent books should be machine-numbered and kept in safe custody.
- 7. Separate indents should be required for each sub-head of store and for each work.
- 8. Normally only about 6 items should be indented on one copy of the indent to leave enough space to fill in other details.

4.7.6. Accounts of Issues

4.7.6.1. According to the existing procedure (CPWA Code Para III) the issue transactions of the entire sub-divisions should be abstracted monthly in a single 'Abstract of Stock Issues' (Form No. 10) which is posted from the Register of Stock Receipt Issues (Form No. 8) entries being made only in respect of quantities. Several transactions of a month are not shown severally in the Abstract but a single transaction is shown for the total issue to each account or work. The entries are so arranged in the Form 10 as to group them by the Stock sub-head. On receipt of this account in the Divisional Office, value account of issue is prepared on the basis of the issue rates and the storage charges.

4.7.6.2. This procedure was suitable for small stores where the number of items of the transactions were not very large. For River Valley Projects stores, however, this system of preparing a consolidated monthly abstract of issues is found inconvenient, as it is impossible to compile the monthly account in the few days intervening the date of closing and the date of submission of the monthly account.

4.7.6.3. Having introduced the Store Issue Book Form No. N-14 for classified issues, we feel it unnecessary to have to prepare the issue of abstract showing also the items of stores classified.

- (i) By sub-head.
- (ii) Work and its sub-head.

We consider that an abstract of the Store Issue Book grouped by sub-heads of stock and each group classified by work and its sub-head would serve the same purpose yet simplifying the day-to-day work without putting extra strain by the end of the account month.

4.7.7. Preparation of Abstract of Issues

4.7.7.1. The detailed procedure for the preparation of the Abstract of Issues will be as under:—

- (i) Each sectional store holder will prepare separate S.I.Bs. for different sub-heads of stores daily for the issues of the day based on the registered No. of the indents. The total value for a stock sub-head should be carried forward from page to page for an account month.
- (ii) The sectional store holder should prepare in addition an abstract of the indents issued in a sheet maintained separately for each work and its sub-head and post it under the proper sub-head of stock *vide* form No. N-15. He should post this form daily from S.I.Bs. and prepare an abstract thereof at the close of the month in a monthly abstract form No. N-16 to which one copy of the S.I.B. concerned will form its accompaniment.

4.7.7.2. At the end of a month, each section store-holder will submit a set of Store Issue Books and a copy of the monthly abstract of issues to the officer who compiles the account of the store. The officer will in turn, consolidate the abstracts of various sectional store-holders in similar monthly abstract form for his entire charge which will give the values of the store issued by store sub-heads, by work and its sub-heads, and by the Fundamental Heads of Account. This will form the basis of intimating the debit to various sub-divisions and divisions work-wise and give the necessary figures for periodical reconciliation of the stock account in as far as the issues by stock sub-heads are concerned.

4.7.7.3. The main advantage of this system is that the classification of the indents by works, their sub-heads and the sub-heads of stock is carried out from day-to-day so that the work remains up-to-date.

4.7.8. Loan of Tools

4.7.8.1. To keep a watch on tools lent out we recommend the use of the Tool Card Form No. N-24.

- 4.7.8.2. The objects of this Card are:—
 - (a) to provide a plant record of every tool, jig, gauge or other items of movable plant which require control;
 - (b) to supply a record of plant items issued to operators; with the dates of issue and return.

4.7.8.3. The card is designed for two purposes; first to list the employees who have used a tool and in particular, to show the person actually in possession of this plant item, and second to list all items handed over to an individual and obtain that person's initials fixing responsibility in case of subsequent claims. The method of working is to make out one card

72

for each itemof plant; and one card for each employee to distinguish the two types of cards, it is suggested that one to the top corners of the plant card should be cut off.

4.7.8.4. The plant cards are filled according to plant number and the employee's cards according to personnel number.

4.7.8.5. The presentation of the job card is the authority to draw cardools, and the storekeeper notes the employee's number on the plant with and the plant number on the personnel card. He stamps both cards tool the date of issue and obtains the initials of the person receiving the ther on the personnel card.

4.7.8.6. Should the tool be required, its location is known and should an employee leave the factory, it is possible to present a list of outstanding tools which should be returned to, before his departure. The transaction upon return completes the cycle, and by showing the stamp date to the employee, the latter is assumed that his liability is cleared.

4.8.1. RECONCILIATION OF ISSUES, RECEIPTS AND BALANCES

4.8.1.1. Store Price Ledger.—To watch the value account of the transactions we recommended the use of stock ledger envisaged in para 133 of C.P.W.A. Code. This ledger will form the fundamental basis for the reconciliation of the receipts, issues and balance of stock by its subheads as these ledgers would be posted independently of the Bin Cards from the Stores Received Book and Stores Issued Books.

4.8.1.2. It has been stated earlier that one copy of each of the Stores Issued Book and Stores Received Book should be routed through the ledger clerk to enable him to keep his posting up-to-date.

4.8.1.3. We have further suggested that each ledger should have a few pages at the end reserved to abstract the transactions of each of the articles in the ledger every month. At the time of periodical reconciliation with the financial account, a copy of the ledger abstract should be given to the accounts branch where, the total of all the ledger abstracts grouped by sub-heads can be taken without any laborious computations.

4.8.1.4. We further recommended that the financial reconciliation of the stock account should be carried out by one or two stock sub-heads each month so that the entire work does not come up at the end of a six or twelve-monthly period. This reconciliation under the system proposed by us would be relatively very simple. As store has not to be repriced at Market Rate, the reconciliation would amount to settling the discrepancies in the quantity account to bring out the differences between the ledger balances and the financial accounts.

4.8.1.5. As the issue rates are recommended to be fixed as standard the discrepancy between the financial account and the ledger account,

would be adjusted to the Project on a *pro rata* basis to be fixed by a competent authority.

4.8.1.6. If monthly reconciliation is taken up for one or two stock sub-heads, it would be possible to locate and set right the arithmetical errors side by side each month without accumulating all the work at the end of the six-monthly period.

4.8.1.7. We further recommended that the monthly review should be taken to bring out the discrepancies between the financial and the value amount of ledgers but we suggest that the adjustment of profit and loss should be deferred to the end of the yearly period.

4.8.1.8. The physical verification of the ground balances should also be so planned as to complete the particular stock sub-head each month so that the quantity account also can be reconciled at the same time as the value account. If and where this system is adopted it will not be necessary to maintain form No. 11 and 12 for six-monthly reconciliation as the same will be served by the Bin Cards and the price ledgers.

4.8.1.9. We invited views of various executive and accounts officers connected with the River Valley Projects. Almost all the officers have endorsed the views that if priced store ledgers are maintained, the existing form P.W.A. 11 and 12 would be superfluous. Accountant General, Madras and Andhra mention that this system is working very satisfactorily and that reconciliation of the ledger and financial account is carried out monthly.

4.8.1.10. The rules for the maintenance of Store Price Ledgers are given below:---

- (i) One page or more of the ledger should be devoted to one item as necessary.
- (*ii*) One ledger should be devoted to one stock sub-heads or category.
- (*iii*) Entries in the ledger for the receipts and issues should be initialled by the officer entrusted with the posting.
- (*iv*) A certificate should be given on every Stores Issue Book and Stores Received Book to the effect that entries are made in the ledger accordingly.
- (v) Ledger folios should normally be arranged according to the sequence of the Store Code numbers.
- (vi) The face sheet should give an index of the items in the ledger and their code No. and page.
- (vii) Arrangement should be made by the Divisional Officer to see that a fixed percentage of the entries on the receipts and issues of the ledger are checked with Store Received Books and indents by a responsible officer of the divisional staff, say Divisional Accountant, Store Keeper, etc.

(viii) Ledgers should be kept in safe castody under lock and key.

(ix) Ledgers may be in bound registers, each page being machine numbered. Alternatively they may be in loose leaves (like Kalamazoo binders) in which case each sheet should bear the signature of the Divisional or Sub-divisional Officer at the time of issue.

4.8.2. Detached Store Sub-division

4.8.2.1. It will sometimes happen that an independent store organisation subordinate to the main store will have to be maintained at the site of work. Sub-store will generally belong to a Sub-divisional Officer.

4.8.2.2. In such cases the Central Store should issue the materials to the sub-divisional store as 'transfer of stock' and the sub-division should maintain its own issues.

4.8.2.3. The sub-store should send monthly abstract of their own ledgers, to the divisional office for monthly reconciliation of the sub-heads concerned undertaken for reconciliation during the month.

4.8.2.4. The sub-divisional store, should be kept supplied with the revised issue rates every time the rates are revised in the divisional office. Normally all such receipts whether in the divisional office or at such sub-divisions should be treated as divisional receipts and then shown issued to the sub-divisions.

4.8.3. Stock Taking

4.8.3.1. The P.W.A. Code lays down that in the case of special stores of construction divisions, where there may be large concentration of stores their physical verification should be the duty of the executive authorities and should be performed by such agency and in such details as may be decided by the local administration in consultation with the Accountant General.

4.8.3.2. Local authorities have prescribed different regulations in their own P.W.A., Code to deal with the physical verification. Often these lay down that ground balances should be checked at the end of the sixmonthly or yearly period. For large stores, such verification cannot be carried out within a few days at the end of a given period. It is necessary to spread the work throughout the year so that each section under various stock sub-heads can be checked at least once a year and preferably twice.

4.8.3.3. In order to achieve an independent check, it is desirable to have an officer of adequate status specially set apart for this work. The status of the officer will depend upon the size and value of the store. On big stores, one or more gazetted officers may be appointed whereas on relatively smaller stores a stock verifier working independently of the officer in-charge of the store may be adequate. The Chief Executive of the project would lay down rules specifying the duties of the verification officer which

would mention particular sections of stores to be checked once, twice, thrice in a year, depending upon the importance of the sections, their transactions and the possibility of discrepancies in the ground balance.

4.8.3.4. The verification officer should maintain a register in the following form to control the programme of checking:-

CHECKING				
	Code No.	Rate of Check		
Store	Store 1st cycle	2nd 3rd cycle cycle	4th cycle	Remarks

The verification officer should check whether any of the store checked by him has become unserviceable. If so, he should submit a report showing the articles, quantity and the conditions of such store, indicating the action necessary for its better preservation. Such unserviceable store should then be dealt with, in accordance with the Code rules.

4.8.3.5. Instructions—The following instructions should receive special attention:---

- 1. The subordinate in-charge of the store should render full assistance to the stock verifier in his work.
- The Bin Cards should be brought up-to-date by the stores 2. organisation before a section is put to verification, and the balances shown therein got certified as correct by Accounts Branch.
- The stock verifier should prepare a list of the articles in the 3. section to be verified from the Bin Cards and record, the Bin Card balances, the ground balance and the difference in a form No. N-19.
- Articles of allied nature should be verified at the same time to 4. see whether there is any inter-mixing of these.
- The check should be carried out in the presence of a repre-5. sentative of the stock-holder so that the necessary assistance can be rendered to the verifier in identification and count of the articles and discrepancies minimised.
- 6. Where weighment of large quantities is necessary, the number or weight may as alternatively be determined by weighment and count on the basis of an average sample weight or count of quantities selected at random for articles, coke, etc., the materials may be verified on the basis of stock measurements and standard weight per unit of volume. Small discrepancies likely to arise in sure methods of check may be ignored.

76

4.8.3.6. Four copies of the verification report should be prepared which should be utilised as under :---

- (i) to the Chief Executive of the Project ;
- (ii) to the officer holding the stock ;
- (iii) to the section stock-holder; and
- (iv) verifier's own copy.

4.8.3.7. The Verification Officer should initial and date the Bin Cards of articles checked by him. The officer in-charge of the store should scrutinise the discrepancies. If there are any arithmetical errors these may be set right under the initials of the verifier; the shortages and excesses should be dealt with in accordance with the para 134 of C.P.W.A. Code. The discrepancy report should be finalised and action taken within one month of checking.

4.8.4. Treatment of Stores Deficiencies

4.8.4.1. Deficiencies should be carefully inquired into with a view to discovering the cause. This may consist of one or more faults, such as :---

- 1. Issue of materials without requisition.
- 2. Issue of more materials than requisitioned, either by failure to alter a requisition note to agree with issues, or by guessing quantities.
- 3. Misappropriations of goods from store.
- 4. Wastage of stores through careless handling, faulty protection, or natural causes.
- 5. Failure to make the necessary charge for goods sold, no requisition note having been issued.
- 6. By merely giving 'Good' measure or weight. It is simply the 'Scales Pull'.

4.8.4.2. Whatever the reason for the shortage, certain actions are necessary.

- 1. The deficiencies must be written off the stores accounts, and the Stores Control Account.
- 2. The authority for writing off, and clearing up, must emanate from a person of responsibility, preferably the head of the department.
- 3. They must be charged up to something, or to somebody, and what, or who this is, and can be determined only in the light of the fullest knowledge available.

4.8.4.3. Assuming the losses are bona fide, and as an indication of how they may be treated, it is suggested that efforts be made to find out what jobs have been undercharged (in quantities) with stores issued, so that errors may be rectified. The Cost Accounts Section should be of great help in this connection.

4.8.5. Writing out Surpluses and Deficiencies in Stores Accounts

4.8.5.1. It has already been recommended that surpluses and deficiencies be written out of the books without delay. The reasons for prompt action are : -

- 1. The Stores Accounts become inaccurate and exhibit a false view of the actual positions.
- 2. The Cost Accounts are also wrong and should be corrected.
- 3. If the seriousness of inaccuracies is not impressed on all who have been responsible for them, the full benefit of a system of stores accounting is not obtained, and there is no incentive on the part of the delinquents to be more efficient.
- 4. An unscrupulous storekeeper can, if he so wishes, rectify surpluses whether by pilfering, or by deliberate issue of materials without, or in excess of proper requisitions.
- 5. The storekeeper can also try to put the deficient balances right by giving short weight of measurement or by other means more or less suitable, according to his ingenuity.
- 6. Surpluses and deficiencies may balance one another as a whole or in part, and in consequence large disparities of both descriptions may be wholly or partly obscured.

4.8.5.2. The treatment of surpluses should be based on the results of an inquiry of the same description as that suggested in the case of deficiencies. Accounts that have been overcharged in issues should also be put right.

4.9. OTHER STORES

4.9.1. Apart from stores held in stock under central stores, the following types of stores also have to be handled and their accounting done :--

- (i) Charged Stores.
- (ii) Returned Stores.
- (iii) Scrap, Empties and Surplus Stores.
- (iv) Tools and Plants.

4.9.2. Charged Stores

With the Committee's recommendations for passing all stores through 'Stock' and discontinuance of M.A.S. Accounts on River Valley Projects, the above type of stores must disappear. If, however, such stores do appear these should be kept apart from the regular stores prominently marked as 'Charged Stores'. The transactions of issue of such stores should also be passed through Stores Issue Book which should be marked prominently as 'Charged Stores'.

4.9.3. Returned Stores

4.9.3.1. There will be two types of materials returned to the store.

- (a) New Stores remaining unutilised on completion of works.
- (b) Old Stores salvaged from works.

4.9.3.2. Such articles should be returned to the stores so that their future utilisation could be planned. These should be presented to the store accompanied by return store note in form No. N-17. The Central Store will then deal with the articles so received in the same manner as the account in the S.R. B. form.

4.9.4. Scrap, Empties and Surplus Stores

These should be given the same treatment as outlined for 'Returned Stores'.

4.9.5. Tools and Plant

In case of Central Store Organisation being established on projects, the articles of Tools and Plant should also be handled by it and account kept according to the existing rules.

4.10. STORE MANAGEMENT

4.10.1. Location

Store should be located at sites where from the minimum of carriage of materials to the various departments served is involved. They should preferably be close to the Railway Station. Very often store buildings not orginally intended to serve for stores are used for storing the goods received in the earlier phase of a project. Many such buildings are a make-shift, but the exercise of ingenuity can lessen the disadvantages of this nature. It is desirable to plan out storage building carefully and rather on the liberal side to avoid damages and deterioration of the stores. We noticed that almost all the projects stores did not plan and construct their buildings adequately in advance and in almost all the cases the estimate of the space required enhancement.

4.10.2. Space

4.10.2.1. One ever-recurring and chronic difficulty is the lack of space. This may be alleviated by the use of gangways not wider than is necessary to handle, in and out, the large and awkward parts. In ordinary circumstances 2 feet and 2'-6' gangways will be sufficient.

4.10.2.2. The heavier goods should be stored in the lower bins which should be kept bigger. If the bins run higher than 6 ft. the lower bins should be strong enough to permit a man to climb the first three or four bins. Where necessary, portable ladders should be provided to approach the upper portion of racks so that the space can be utilised. Racks of 10' height should be suitable. There should be at least 4' clearance from roof to the top of bins to prevent damage due to sweating. The provision of extra space on the top also lessens the heat effects on men working at the top of the bins.

Ideally, only one type of item should be stored in each store bin but frequently many types of items have to occupy a bin due to lack of space. In such cases the bin should be partitioned so that different types of items are segregated. Where it is impracticable to partition the bins, the items selected to occupy the same bins should differ from one another as much as possible. Orderly piling of the items one upon another in tiers within the bin makes best use of the space in the bin and also helps in quick counting whenever required.

4.10.3. Type of Bins and Racks

Steel racks with bigger bins at the bottom and smaller at the top are recommended for the storage of spares, electrical materials, small tools and general stores of lighter types. Ready made steel racks to standard dimensions are available in the market. At some places masonry racks can be used with advantage for the storage of heavy goods like ferrous and nonferrous metals, paints etc.

4.10.4. Lighting

Storage racks are generally built up high, because of the limitation of space. Natural lighting is, therefore, generally poor. The correct and prompt service requires good lighting of stores, and this can be assisted by painting in light colour the walls and ceiling such as the aluminium paints. The provisions of portable inspection lamps, which will shine right into any bin should invariably be made even with an adequate overhead lighting system.

4.10.5. Cleanliness

Dust collects quickly in stores, particulary where the floor is of concrete. Washing the floor is ineffective and the concrete should be treated with some sodium silicate product in order to keep down dust. A vacuum cleaner is desirable for this purpose.

4.10.6. Protection of Stores

All the stores after inspection should be wrapped in original wrappers after greasing. If these are torn out in the process of checking them, new wrappers should be provided. Special care should be taken in storing all the small spare parts so that they are absolutely

protected against (rust) etc. It is desirable to wrap assemblies in transparent coverings, and or paint the articles with anti-rust paint in order to save the trouble of greasing and degreasing. The store should be made absolutely leak and damp proof. It should be the duty of the officer in charge of store to see that proper rust proof paints and disinfectants are used freely to see that no damage is being done to any item of stores under his charge. The gaskets are very delicate parts to handle and are liable to be damaged by dampness works, etc. It is recommended that separate drawers in cabinets should be used to arrange the gasket of various sizes. The smaller one can easily be arranged in the space within the larger ones. Tyres, tubes and rubber goods should be placed in a dark and cool room to guard them against deterioration by heat and light to which rubber goods are so very sensitive.

4.10.7. Lettering

It is desirable that a uniform and well considered system should be used for numbering bins, compartments and stocks. The letters and numbers should be at least 3" high, and placed at eye level if possible. Numbers should be assigned in a uniform manner, and they should run from left to right uniformly throughout the store, and from bottom to top of the store so that the bin number also indicates in a general way its location. Colours may be used for indentification of materials if desired.

4.10.8. Fire Protection

4.10.8.1. Special attention should be paid to the fire hazard. No oils, varnishes, inflammable compounds, celluloid, kerosene, petrol, packing materials etc., should be stored with other materials. Materials of this nature should be stored separately, at a safe distance from other stores so that the risk of spreading fire is minimised. Fire extinguishers and fire buckets should be placed at different places in all the stores in sufficient numbers for emergencies. Fire fighting drills be held to fight fire in emergencies. Fire fighting squads should be formed from amongst the staff who may be given a small allowance to keep them alive to the sense of their duty. The stock compound should be served with a net work of pipe line and fire-hydrants, supplied from water storage under adequate pressure to bring fire hoses into operation whenever needed. It would be desirable to consult fire-fighting experts and follow their advice about the layout and arrangement or fire-fighting.

4.10.8.2. Notice boards both in English and the regional language should be placed at the entrance of store houses and on other places where materials are placed, prohibiting smoking, of lighting fire in the store houses etc.

4.10.9. Security Measures

4.10.9.1. The methods and forms recommended in all phases of accounting for controlling these essential commodities have been designed

to eliminate or minimize losses from pilferage. Notable instances that have a very potent effect in this matter are :--

- 1. Checking invoices with the Stores ledger;
- 2. Checking invoices with the Stores Received Books;
- 3. Checking invoices with order on supp liers;

Ensuring that all goods paid for are taken on to store charge and fully accounted for

- 4. Detailed stocks and stores account ;
- 5. Making frequent spot test checks on stores, etc. by internal audit or other staff with the Stores Ledger Accounts and Bin Cards;
- 6. Taking a complete periodical stock and comparing the finding with Stores Ledger Accounts;
- 7. Instituting periodical returns from departments, branches and stores to head office ;
- 8. Comparing and linking up stores recieved with the financial books ;
- 9. Internal automatic check by spreading the work over as many persons as practicable ;
- 10. Effecting checks on issues by reference to S.I.B.'s and the user ;
- 11. Branding by distinctive mark, plant, etc. for retention on the premises; and
- 12. In respect of issue to jobs a good check on consumption is effected by 'Measuring up' the work done. A competent person can compute with considerable accuracy the quantity of materials required in a given product, taking into account unavoidable wastage. The figures comprised in detail as to materials used (as shown by cost accounts) help to locate pilfering and unnecessary wastage by the workers on the job in question.

4.10.9.2. In certain cases, it may be thought appropriate to institute direct physical precautions against theft of materials by methods such as :--

- (a) the use of clothing of overall without pockets by those who handle stores of small dimensions but of appreciable value,
- (b) the examination of persons leaving the premises by inspectors or other persons, and
- (c) the checking of goods taken out of or off the premises, by doorman, yardman, etc., by a comparison of the declared contents of packets and the label thereon (filled in by one person and duly verified by another, adding his signature) with delivery and issue notes, invoices, or pass out orders held by the person removing the goods.

4.10.9.3. The foregoing remedies for avoiding or minimising pilfering are not equally applicable to all circumstances. The most appropriate method to adopt, would depend on factors such as :--

- 1. The nature of the stores, some are small and valuable, others less easy to steal and difficult to remove unnoticed;
- 2. The location of the stores building or compartments; and
- 3. The presence of other employees therein. (It is more difficult to pilfer articles if somebody else knows it). Each case should be considered on its merits.

4.10.9.4. The Security staff should be provided for all stores in adequate numbers and where necessary Police Guards should be provided. The store yard should also be well lighted at night.

4.11. LACK OF TRAINED PERSONNEL

4.11.1. Raw officers and subordinates are often placed in-charge of large stores without knowing the A.B.C., of store management, or having familiarity even with the names of the stores. This lack of knowledge and experience coupled with the absence of Code numbers results in wrong physical issues of stores and in wrong accounting subsequently, creating confusion all over.

4.12. INSUFFICIENCY OF STAFF

4.12.1. Some of the difficulties in this connection will disappear as soon as the store personnel are given proper training and proper rules and procedure for stores accounting and management are introduced. On projects having big stores involving thousands of daily transactions, accounting machines can be used with advantage resulting in speeding up of work and greater degree of accuracy. They are, however, difficult to maintain, are expensive in the initial cost and their hiring charges are high. Their use can, therefore, be recommended at present only to the projects which are largely mechanised and have costing cells. <u>.</u>

COST CONTROL

5.1. CONTENTS OF A PROJECT REPORT

5.1.1. A project report should be able to present to the reader a complete picture of the socio-economic effects of the undertaking and comprises items like the topography, geology, hydrology, climate, communication, soil characteristics, ground water conditions, engineering plans, estimates of quantities and cost, analyses of rates programme of work, schedule of the annual requirements of equipment, men, material and stores and funds, specifications of work and financial forecast. It should also be accompanied by the following documents :--

1. A schedule of basic wages.

2. A schedule of basic rates of materials.

3. A schedule of transport rates.

4. The equipment prices and their use rates.

5. The basic outputs of men and machines.

6. The standard methods and units of measurement.

7. The classification of accounts.

8. Estimates.

9. Codes for stores and accounts.

The first five of the above items have been dealt with elsewhere in this report. We will deal with the rest in this chapter.

5.2. STANDARD METHODS AND UNITS OF MEASUREMENTS

5.2.1. The units to be adopted for bidding purposes and for measurement and payments of work should conform closely to the Standard Estimating Practice. Typical units are given in Annexure 1.

5.2.2. The Institute of Engineers (India) has brought out a publication entitled 'The Standard Method of Measurements of Building & Constructional Works', which deals mainly with items relating to the Building Industry. We recommend that a comprehensive Manual on similar lines be got out for the River Valley Projects.

5.3. CLASSIFICATION OF ACCOUNTS

5.3.1. A standard classification of the items of work is essential for the correct compilation of accounts and reconciliation of figures between costing and accounts sections.

5.3.2. The present system of classification fails to meet the presentday requirements of the large River Valley Projects, which contain numerous and varied features that they cannot all be denoted by the 26 letters of the English alphabet and this handling very often leads to confusion and be responsible for the inability of the project officers to furnish cost figures for the various items of work in spite of their best efforts.

5.3.3. A simple system of classification of estimates and accounts is given in Appendix II.

5.4. CODIFICATION OF ITEMS OF WORK AND STORES

5.4.1. Accounts and stores are not codified at present. They have to be described and result not only in waste of time in writing but may often also result in serious accounting mistakes, which become difficult to locate. It is, therefore, essential that a proper code be laid out for all items of stores and accounts and the same code be followed in the preparation of estimates. (App. II & Chapter 4 para 4.2.3. gives the code).

5.5. THE ESTIMATE

5.5.1. Estimate being the foundation for cost control should be prepared with meticulous care by a competent engineer, thoroughly familiar with construction methods and costs. It should be prepared in such detail and in such a manner that may enable the cost engineer to split up the cost into the elements of work with a view to make comparison of actuals with the estimated figures possible. If this is not done, cost reports will not be readily assimilated and make comparison at a later stage difficult if not impossible, thereby rendering the cost section inoperative and ineffective.

5.5.2. The estimate indicates the probable cost and not the actual. The agreement of the former with the latter will depend upon the estimater's skill, the correct visualization of the work as also the accuracy of estimating methods employed by him. The preparation of an estimate of a real value is a skilled work and calls for the highest training, wide experience and sound judgment.

5.6. PHYSICAL QUANTITIES

5.6.1. A River Valley Project involves expenditure in two forms viz., structural and physical. The estimate takes off quantities in units of work from the drawings in terms of brick-work, concrete, stone masonry etc. These quantities "called structural quantities" are priced at a composite rates called "unit rates" or "item rates" for purpose of estimating. These quantities should also be converted into physical quantities such as materials, labour, plant use expendable stores etc., which can be precisely priced at prevalent wages and basic market rates of materials. Appendix IV contains a form N-33 recommended for estimating purposes.

5.6.2. The following items have a great bearing on the actual cost of a project:—

- 1. The Contract,
- 2. The Documentation,
- 3. The Contractor,
- 4. Planning the job,
- 5. The Organisation,
- 6. Cost Control;

and are dealt with in the succeeding paragraphs.

5.7. THE CONTRACT

5.7.1. Contract may be classified as follows :---

- The lump-sum which provides for the payments to the con-1. tractor on the basis of a total amount to cover all work and services required by the plans and specifications. Its use is indicated where the types of construction are largely standardised and where a variety of operations is required. Plans & specifications should be comprehensive and should show in complete detail the requirements of the work. Work orders showing deviation after the contract is signed, prove expensive and even lead to controversies and disputes. Furthermore, when the plans are indefinite the contractor tries to inflate his bids to cover the worst case. If these hazards are avoided, the Government has the advantage of knowing in advance the exact cost of the work, and the measurement of work and payment thereof are considerably simplified.
- 2. The Unit-Price contract which includes a breakdown of estimate into number of units of each type of construction and a price for each unit. When the work requires large quantities of a relatively few types of construction, and the volume of work cannot be exactly determined in advance, the unit price contract has many advantages. It is elastic as reasonable variations may be made in amount of work to be done without formal deviation from orders as long as the changes are restricted to the tendered items. The plants and specifications must show the nature and details of the work, but its limits may be left more or less indefinite, the magnitude and scope of the work being indicated by the estimate. Under these conditions the contractor is not forced to gamble on uncertain conditions.
- 3. Cost-plus-a-percentage of cost contract provides for the contractor's profit on the basis of a fixed percentage of the actual cost of the work. In common with all negotiated contracts this type permits the beginning of construction before the plans are completely developed, resulting in an

important saving of time in the completion of urgent projects and the government may make any desired changes in the plans and specifications as the work progresses. It has the disadvantage to the government that the contractor's compensation is increased by an increase in construction on cost. Therefore, there is no incentive for the contractor to economise during construction.

- 4. Cost-plus-a-fixed fee : To eliminate the above defect the contract may be cost-plus-a-fixed fee type which provides for payment to the contractor the cost of the work plus a fixed amount as fee which is determined from a consideration of the character of the work and its estimated cost. Thereafter the fee remains fixed although the actual cost of the work may vary from the estimate.
- 5. As an added incentive to the contractor to keep the cost of the work at a minimum, a profit-sharing clause is sometimes added to the cost-plus-a-fixed fee contract. The profitsharing provision allows the contractor to receive a share of any saving if the actual cost should be less than the original estimate.

5.7.2. The principal argument against cost-plus-a-percentage types of contracts is that the owner has no way of knowing in advance what the work will cost. This objection may be overcome to a considerable degree by placing a maximum limit on the cost of the work. That is to say the contractor is reimbursed for the actual cost of the work plus his fee, provided that the total amount does not exceed the maximum limit provided in the contract. If the total amount should exceed the maximum limit the contractor is held responsible for the excess and receives no compensation over the guaranteed ceiling price. This type of contract removes some of the uncertainties from the ordinary cost-plus-percentage contract but requires that the plans and specifications for the work be sufficiently developed to permit the establishment of a reasonable ceiling price.

5.7.3. A contractor may deliberately inflate the construction cost in order to obtain a corresponding increase in his fee. This may be done by padding payrolls, taking commissions on materials purchases, and the like. For these reasons we do not recommend the cost-plus-a-percentage forms of contracts for general use. Extra work and change orders may, however, sometimes be handled conveniently under this system.

5.8. Selection of the Type of Contract

5.8.1. It is advantageous to adopt a competitive bid contract when sufficient time is available to work out the plans and specifications in detail. Generally, however, the unit price form is used for all Civil Engineering contracts and is recommended for general adoption. 5.8.2. A negotiated contract will be indicated when it is desirable to begin work before the completion of detail plans and specifications thus assuring earlier completion of the work when the requirements of the project cannot be determined definitely in advance of the early phases of construction; or when the nature of the project is such that an accurate estimate cannot be made for bidding purposes.

5.8.3. It sometimes happens that the Government contemplating a construction project desires to deal with only one party for all services, both engineering design and construction, in connection with the work, this is a so-called "turn-key" or "package" job. This type of contract may be drawn either on a firm price or on one of the cost-plus forms and the planning, design, plans, specifications, and construction services, are included under one contract. Combined engineering and construction contracts of this nature are not in public interest.

5.9. THE DOCUMENTATION AND TENDERS

5.9.1. The specifications are an integral part of a project whether the work is to be executed through a contractor or by the departmental agency. Their composition, therefore, must be logical and systematic otherwise they will result in repetition, omissions and conflicting statements which lead to confusion and disputes with contractor during and after the construction and can thus considerably add to anticipated costs.

5.9.2. Looking to the number of controversies arising in the interpretation of contracts and specifications, we consider it necessary that greater attention be paid to contract documents to avoid all ambiguities. It would be recognised that the preparation of documents for River Valley Projects is best done by oualified quantity surveyors experienced in taking off and pricing.

5.9.3. We like to bring out one important aspect of contract documents. It often happens that junior officers knowingly or unknowingly make commitments to contractors which have a far-reaching effect on the contract while they have not the requisite authority to do so. On the other hand, the contractor seldom, if ever, places himself in the wrong, fortified as he usually is with advice from astute lawyers. It is, therefore, very necessary that agreements should contain a clause invalidating all commitments from any but the legally authorised sources. Also, on large projects legal advice should freely be available to the Contract as well as the Claims sections of the Project.

5.10. THE CONTRACTOR

5.10.1. One of the most important items for the successful execution of a work is the selection of the right type of contractor.

COST CONTROL

Selection of Contractor.—The selection of the contractor should be based primarily on the following considerations :—

- (a) Previous experience in the particular type of work.
- (b) Reputation for fairness and excellence in performance.
- (c) Quality and experience of personnel.
- (d) Available working capital.
- (e) Available plant and equipment.
- (f) Normal volume of work per hour.
- (g) Incompleted works in progress.
- (h) Available work capacity (difference between normal volume and incompleted work in progress).

Information along these lines should be collected and classified systematically preferably by some sort of questionnaire. Analyses of this data will usually indicate one or more contractors suitable for the work. A pre-selection of bidders is, therefore, recommended.

5.10.2. The necessity to advertise for bidders, to accept bids from all who are inclined to compete, and to award contracts to the lowest possible bidders, introduces problems in the awarding of contracts for public works which are not encountered in private construction, where the stil of bidders may be selected without restriction. For a bidder to establish responsibility under these conditions, usually means the furnishing of required security and a record free from defaults or proved dishonesty. Thus incompetent and over-extended contractors and those with inadequate financial resources may be placed, more or less, on an equal footings with responsible bidders in the competition for the awarding of the contract.

5.10.3. The employment of unqualified contractor usually leads to difficulties during the operation of the contract. Also slow progress, unsatisfactory quality of work and excess cost may result. Moreover, incompetency is one of the very important factors in contractor's defaults which always cause inconvenience, delays and extra cost to the owner. To avoid or reduce these difficulties, the pre-qualifications of bidders is recommended. The object is to determine before the contractor is allowed to bid whether he is responsible and competent to satisfactorily complete a given construction contract. 5.10.4. The pre-qualification procedure requires the contractor to submit a formal application to bid. The application contains sufficient information on the lines outlined in para 5.10.1. The consideration of these factors will usually eliminate unfit contractors from the list of those permitted.

5.10.5. The chief advantages of pre-qualification are that lists of competent bidders will be established in advance when there is sufficient time to investigate contractors' qualifications. When all the bidders are qualified, the contract is simply awarded to the lowest bidder and the public official, who awards the contract, is saved the embarrassment of rejecting a low bid from an unqualified bidder. Contractors are saved the time and expense of preparing bid for him for work in which they are unqualified, by inexperience and lack of financial or other resources. Failures and defaults of contractors, which results in the saving of time and cost in construction work.

5.11. ORGANISATION

5.11.1. After the estimate has been sanctioned and the agency for the execution of the work decided, a suitable project organisation has to be set up. A sound organisation should satisfy the following requirements :--

- (1) Separation of functions, such as accommodation procurement, engineering, laboratory control, etc.
- (2) Setting the line of functions with their logical subdivisions so that there is no over-lapping or conflict and so that no individual receives orders from more than one individual—his immediate superior. He may, however, receive aid and advice from Staff Officers or Assistants.
- (3) Clear cut distinction between line and staff functions and functional control.
- (4) Clear cut specifications of each job.
- (5) Suitable and adequate delegation of authority and responsibility of each member.
- (6) Selection for each position and most suitable person without fear, favour or political influence.

COST CONTROL

5.12. OBJECTIVE OF THE ORGANISATION

5.12.1. The objective of organisation is the actual superintendence of operations, and its prime purpose is to obtain the maximum production at the minimum expenditure. To achieve this end, it should know :--

- 1. How the actual production can be made approach the estimate.
- 2. The production that is actually being obtained.
- 3. The best production that can be obtained.

5.12.2. To make the actual production approach the best estimated demands competent planning, keeping men and machines in good working conditions, and above all, furnishing sufficient incentive to the workers to ensure their best performance. To determine the best production that can be obtained, time and motion studies are employed.

5.12.3. A typical organization chart for a large River Valley Project is given in Annexure 2.

5.13. PLANNING THE JOB

5.13.1. The construction of River Valley Projects is essentially a manufacturing process and as such it is affected like any other industry by all the problems of economics, management, labour and production. It, however, differs from the latter in one important respect *e.g.*, that while in the production of the most of the industrial commodities, manufacturing methods are more or less standardised to facilitate mass production in a centrally located manufacturing plant, and the finished product is transported to its place of use, in the construction industry the product is necessary for each construction job, also each project is peculiar in characteristics. It is particularly so with storage schemes, where the principal features of one project are vastly different from those of another.

5.14. FLOW DIAGRAMS

5.14.1. Flow diagrams are used more and more in the construction industry to show the position and capacity of each stationary machine or operation, including the method of transportation from one to another. The diagrams are of great use in planning the work. They are not to be drawn to scale and may be shown in plan or section. Simple diagram for cement mixing plant is shown in Annexure 19.

REPORT OF RATES & COSTS COMMITTEE

5.15. PLANNING CHARTS

5.15.1. Charts (Annexures 3—9) show diagrammatically the various steps used in planning expenditure on labour, equipment, materials and miscellaneous items of a project.

5.16. PLANNING, PLANT AND EQUIPMENT

5.16.1. The planning of a suitable equipment is an intricate job as it does often require a composite group of machines to work in harmony with each other so as to achieve the maximum efficiency in output and cost. Several combinations have to be investigated so as to arrive at the best, keeping an eye also on their availability in time. Equipment time schedules are worked out to show the various pieces of major equipment and the duration for which they are required. An illustrative chart showing the equipment schedule for a concrete dam is shown in Annexure 10.

5.17. PLANNING OF LABOUR

5.17.1. It is necessary to determine sequence of operations and trades so as to plan a proper labour requirements of a job. An illustrative chart, Annexure 15, shows a typical force report.

5.18. CONTROL OF EXPENDITURE

5.18.1. Exercise of control over expenditure is an integral part of good management. The cost is not an end in itself but the object should be to provide ways and means and whereby cost can be controlled and cut down. Cost control should increase efficiency by indicating waste, leakage of materials, waste of time and uneconomic overheads.

5.18.2. Most of the large River Valley Projects are being executed under a field organisation which works on a functional basis. Under such a set-up no divisional officer would know or can be held responsible for the overall cost of a project or that of any unit thereof. The work being divided on a functional basis, it has to be priced for each function and then collected to know the overall cost and the unit rates. Indirect or distributive costs constitute a large fraction of the total cost of a work, especially where a large amount of plant serving many parts of the project simultaneously has made the cost distribution mandatory. Therefore, the need for a *Cost Section* is now keenly felt on all large projects. There is a general concensus of opinion both among Engineers and Accounts Officer consulted by the Committee that there should be a *Cost Section* besides the present accounts organisation for each sizable project.

COST CONTROL

5.19. COST SECTION AND ITS FUNCTIONS

5.19.1. The Cost Section is to function as an independent factcollecting agency and compiling data for presentation to executives in a form most serviceable to them. Its major objectives are (i) to furnish the maximum amount of information from both operation and cost angles, (ii) to present in the most practical way the facts that reveal actual performances and to aid in the attainment of high standards of efficiency, and therefore, of realisation of maximum economy, and (iii) to aid in determining operational policies. In short, cost accounting would aim at accounts for operators and project managers instead of accounts for accountants. It is thus more an adjunct to Engineering Departments particularly of estimating and planning them to the general accounting department.

5.20. COSTING SYSTEM TO BE FLEXIBLE

5.20.1. The Costing system should be flexible so that it can be readily adapted to changing conditions. It should be simple and practical to operate so that it may be conveniently kept up-to-date in the peculiar difficulties of construction jobs. We, therefore, consider that a complete review of the system and the forms in use should be carried out from time to time in order to eliminate any unnecessary features and to adapt the system to suit the conditions under which a project is executed.

5.20.2. The system will serve no useful purpose unless the data compiled is used by the technical personnel to study and assess the progress made on each job, and to compare the efficiency of labour and machine with the best attained under similar conditions.

5.21. CONDITIONS ESSENTIAL FOR AN EFFICIENT COSTING SYSTEM

5.21.1. The conditions essential for an efficient costing system are :---

- (i) that arrangements and designing of the cost accounting system should be suited to the organisational set-up and the methods of construction on a praticular project, at all levels of management down to the smallest field of activity;
- (*ii*) that the costing organisation should be conversant with technical aspects of the work, to detect flaws in the original data and to offer constructive criticism to improve efficiency;
- (iii) that promptitude and utmost regularity in the supply of data to the organisation should be ensured; and
- (iv) that where the availability of actual data is not possible in time, best approximation should be made and subsequently corrected.

5.21.2. To secure the best results, it is desirable that the cost organisation should work under a competent Cost Engineer assisted by a trained staff. The Cost Engineer should be able to comment on (i) the operations which are costing more than the estimates, (ii) the possible avenues of saving, and (iii) the total ultimate cost of the project. This organisation should be responsible to the Chief Executive of the project, who should, on the basis of the cost reports and comments, be able to take effective and timely measures to control the cost of the project.

5.21.3. Promptitude in cost reports is an important requirement of a successful control system. The Project Manager needs information that makes possible correction of conditions while the work is being performed. Whether reports should be daily, weekly or monthly, will depend on the needs of a particular section of the project organisation. They must be simple, timely and up-to-date.

5.21.4. The success of cost department is largely dependent on the interpretation of operating results as determined from periodic cost reports which should clearly indicate whether variance is due to volume or labour costs. Control of physical standards which speak for themselves, is more valuable and it is our view that the Cost Accounting Sect on should lay greater emphasis on quantity engineering data than on 'rupee cost figures. Data related to labour out put, plant output, material consumption account is more useful to the Engineers for the cost control and for framing a reliable basis for future planning and estimating. It, therefore, follows that estimates of physical quantities and performances, if prepared in a form comparable with costing procedure, would be helpful in establishing closer co-operation and understanding between the cost and operating departments and a greater recognition would result on the part of the cost section of the problems faced by the operating departments.

5.21.5. Certain assumptions would be essential to produce timely cost reports. Some of these are :—

- (i) Provision for repairs and overhauls of special equipment. Assumptions and procedure of accounting has already been dealt with in Chapter 6.
- (*ii*) Unpaid bills have to be accounted for cost purposes.
- (iii) The procedure of pricing the stores should be based on "Standard Rates" so that articles may be priced immediately as they are issued. Need for reflection of current prices in cost figures is not so important in Civil Engineering Works.

5.22. DISTRIBUTION OF COST

5.22.1. The distribution of cost relates to the assigning of expenditure, as represented by original documents such as pay rolls, invoices of the materials and supplies to each item of work in the same manner as

COST CONTROL

planned by the estimator. Intelligent cost distribution calls for a knowledge of the plan of construction, the purpose for which all labour and materials are used and construction methods followed in the field, besides a knowledge of construction accounting principles. This would emphasise the necessity of estimating and cost distribution adhering strictly to the standard classification of accounts.

5.23. COST REPORTS

5.23.1. In developing the usefulness of the cost reports different classes of executives and their needs must be understood and recognised. Junior Executives (Overseers) who are concerned with details of every day operations should have detailed reports in order to enable them to control cost. These men are in close contact with expenditure primarily for labour and materials on operations under their charge and with the daily output. The costing section and on small projects the overseers themselves, should be able to produce daily the cost per unit of physical quantities or structural quantities on the type or work under costing. These reports should help these Junior Executives to control wastes of all kinds by control on the activities of operators and machines placed under their charge. The scope of these reports is necessarily limited but these reports form the foundations of costing system and cost control. We may call the reports at this level as "Daily Output Reports".

5.23.2. Executive Engineers who have the overall responsibility for functions entrusted to them exert their influence on costs and operating results have to adapt the work to overall conditions of a project and find solutions for factors which retard output. By comparing actuals with estimated costs, variations are obtained which are analysed in the reports and causes. The Project Manager can thereby know the efficiency of men and machines on the job.

5.24. FIELD REPORT AND RECORDS

5.24.1. The Cost Section would require the following :----

(i) Daily pay rolls and acquittance rolls with output report.

(ii) Daily 'materials' report received, issued, and on hand.

(iii) Daily equipment performance report.

5.24.2. The reports may be prepared by Assistant Executive Engineers, Foremen, Time-keepers or Clerks but should preferably be seen and signed by the Executive Engineers. In addition to this, each official should maintain a daily diary in which all essentials regarding the work under him are recorded. Similar weekly consolidated reports should be prepared for the Chief Engineer's Office if it be other than the Projec Manager. Monthly consolidated reports ought to be prepared for th Government.

5.25. PAY ROLLS AND ACQUITTANCE ROLLS

5.25.1. Briefly speaking, we have recommended adoption of a Time-keeping System on the lines of the one used at Bhakra, the introduction of a Daily Time Card prepared by each Foreman, Labour Ledger and Identity Cards, each carrying a photograph of the workers.

5.25.2. The time of men on construction work cannot be distributed with the same accuracy as for a workman at a bench or machine all day probably working on only one operation. It is not difficult, however, for a foreman to keep distribution of each man's time to the nearest quarter or half an hour, and this is the greatest accuracy necessary. Ever to the nearest hour is generally sufficient, as in the end inaccurancies will balance each other.

5.26. DAILY 'MATERIALS' REPORT

5.26.1. The recommendations are that Stores Receipt Books and Stores Issue Books should replace measurement books and so far as the receipt and issue of stores as are concerned the Bin Cards and Stores Ledgers should be used instead of the Register of Daily Stock Receipt and Issue, half-yearly balance return of stock and half-yearly register of stock.

5.26.2. The collecting and recording of materials' costs will be done in the main office and checked against foreman's field reports.

5.26.3. Except for violent fluctuation in the market, prices of any principal commodities, prices of stores be kept fixed for the duration of the project. Any losses or gains on stores during the year should be adjusted by debits or credits to work at the end of the year. It is, therefore, simpler to report in most cases, the total work performed to the end of the week or month, leaving it to the office to determine individual weekly or monthly progress by deducting the quantities in the previous report from these in the last report.

5.27. THE COLLECTING AND RECORDING OF MACHINE COSTS

5.27.1. Although mechanical equipment has been used in this country on large projects during the last century, it was being done on a comparatively small scale. Machines, however, play a very important role in the present day projects and cost colossal amounts. A proper system of collection of field data and its processing in the office is, therefore, very necessary for the well-being of the project.

COST CONTROL

5.27.2. The Cost Section should maintain an "Equipment Register" in form N-25 which will provide information regarding the type of equipment, equipment number, from whom purchased and data of purchase, size, capacity, original cost and a record of use rate/hr. or ownership cost/hr. The record should show the estimated economic life of machines and their cost from which the depreciation rate is determined to which a percentage for repairs and overhauls is added in tune with the recommendations in Chapter 3. This will ensure ownership cost record of all equipment on the job.

5.28. DAILY REPORT

5.28.1. Daily reports show the work done during the day. It is easy to report because the Foreman or Time-keeper knows the number of the units performed during the day and where the work started and left off.

5.29. DAILY REPORT FORMS

The following forms are recommended :--

- 5.29.1. Daily Time Check Sheet (Form No. 5.29.1.) gives at a glance the result of checking of the labour by the Time-keeper during the working hours.
- 5.29.2. Daily Equipment Report (Form No. 5.29.2.) gives the Number of hours each machine worked on a particular job.
- 5.29.3. Materials and Stores issued to any Foreman during the day are reported by the Foreman on Form No. 5.29.3.
- 5.29.4. Details of field repairs carried out on any machine during the day appear on Form No. 5.29.4.
- 5.29.5. Daily accident and breakdown report appears on Form No. 5.29.5.
- 5.29.6. Daily report for the use of automobiles is given in Form No. 5.29.6.
- 5.29.7. Daily output report for machine is given in Form No. 5.29.7.
- 5.29.8. Daily Mass Concrete Report is sent on Form No. 5.29.8.
- 5.29.9. Report on misc. items of work, e.g., laying and vibrating, form-work and creation, cleaning and curing, finishing et is made on Form No. 5.29.9.

REPORT OF RATES & COSTS COMMITTEE

5.30. UNITS OF DAILY MEASUREMENT OF WORK

5.30.1. The units of measurement of work done should be the same as those allocated for preparing the estimates. The kind and amount of information required for determining unit costs will depend on the nature of the work. On heavy masonry work such as dams and dock walls, it will be necessary to know the C.F.C. (hundred cubic feet) of concrete poured or masonry executed or the square feet of forms placed.

5.30.2. The following units are suggested for reporting work performed daily on several accounts :---

Account

- 1. Mechanical excavation
- 2. Hand excavation
- 3. Hauling aggregate and Steel hauling cement
- 4. Form-work Footings Columns Walls Beams & Girders

Slabs Sills

5. Concreting

6. Exterior curation walls

- 7. Bearing walls and partitions
- 8. Plastering
- 9. Carpentry-posts, Joists, Rafters etc.
- 10. Flooring and Roofing
- 11. Structural Steel

Approximation unit of measure

Number of loads (Cubic Yds.).

Lin. ft. of trench, No. of footing.

Number of loads. Number of sacks.

Number completed. Lin. feet of wall or No. of panels. Lin. feet of wall or No. of panels. No. of completed or Lin. ft. or bays.

No. of bays. No. of windows.

No. of sacks of cement for each class of concrete, or by No. of batches produced.

No. of bays.

No. of tiles or bricks of Lin. ft. \times height or No. of sacks of lime or cement.

No. of sacks of plaster. No. of rooms.

No. of pieces. No. of days or sq. ft. of area.

No. of days or sq. ft. of area.

No. of days or sq. ft. of area.

COST CONTROL

5.31. ACCURACY REQUIRED

5.31.1 The time of a man on construction work cannot be distributed with the same accuracy as for workman at a bench or machine all day, probably working on only one operation. It is not difficult, however, for a foreman to keep distribution of each man's time to the nearest quarter or half an hour, and this is the greatest accuracy necessary. Even to the nearest hour is generally sufficient, as in the end inaccuracies will balance each other.

5.32. MONTHLY RECONCILIATION

5.32.1. Monthly reconciliation of figures of work and expenditure between Costing and Accounting Sections is most essential. The daily measurements of works on the basis outlined in para 5.30.2. give only the approximate results, which are good enough for executing daily check of the performance of the equipment and operations. For working out the unit rates, however, all measurements of works have to be taken into account on a specified day towards the end of the month, and furnished simultaneously to the Costing and Accounting Sections. To bring about reconciliation between figures for expenditure in two sections, those relating to the accounting side are brought up-to-date by taking into consideration the unliquidated liabilities, adjustments awaiting acceptance etc. This reconciliation should also cover Store Accounts and Workshop Accounts.

5.33. WEEKLY EQUIPMENT USE REPORT

5.33.1. On large projects using a big fleet of machines, the Project Manager should be kept posted as regards the machines working, lying idle or under repairs. A weekly chart showing these details is given in Annexure 14.

5.34. COST SCHEDULE

5.34.1. The costing is the reverse of the process of Estimating described in para 5.5. Typical charts and graphs for mass concrete, mixed plant, form-work, and total executive force, are shown in Annexures 11, 12 and 13, such charts should enable the Project Manager to lay his fingers exactly on the pulse and take timely action.

5.35. PROGRESS REPORTS

5.35.1. Monthly Progress Reports are necessary to keep the Project Manager and the State and Central Authorities informed of the actual progress of work, the actual cost, and the head of cost. It should be the responsibility of the Costing Section to furnish such reports punctually on the Forms shown in Annexures, 8, 9 and graphically in Annexure 18. M7CW&PC/63-8

REPORT OF RATES & COSTS COMMITTEE

5.35.2. Form No. in Annexure 16 gives the figures by quantities and items of work.

5.35.3. Form No. in Annexure 17 gives the figures by expenditure on each item of work.

5.36. MONTHLY VARIATION STATEMENT

5.36.1. The Monthly Progress Reports mentioned above should enable the Project Manager to judge whether the quantities of various items of work and their rates of cost are behaving, whether any or both of these show a tendency to run away from the estimated figures and what is likely to be their effect on the ultimate cost of the work. The Project Manager should submit a half-yearly review on the effects of variations on the ultimate cost of project with a view to enable to the higher authorities to decide, administrative approval is necessary.

5.36.2. A sample form for such forecast is given in Annexure 18.

100

EXCAVATION, LOADING, HAULING AND COMPACTION UNITS

6.1. EXCAVATION, LOADING, HAULING AND COMPACTION UNITS

6.1.1. Introduction.—This chapter deals with the outputs, hourly use-rates and the unit rates of the earthwork by mechanical equipment, viz., (i) Shovels, (ii) Draglines, (iii) Rooters, (iv) Dozers, (v) Drawn Scrapers, (vi) Motorised Scrapers, (vii) Belt-loaders, (viii) Dumper Trucks, (ix) Motor-graders, and (x) Sheepsfoot Rollers.

6.2. OUTPUTS AND PRODUCTION RATES, WORKING HOURS AND OPERATING EFFICIENCY

6.2.1. The working hour forms have been adopted for the basis of calculations, for the reasons already given. The actual productive time is less than 60 minutes in a working hour. On an average 10 minutes are taken as lost per hour in minor breakdowns, and a 50-minute hour is the accepted practice. The average production obtained in a working hour is governed by operating efficiency which is a function of the Job and Management factors. The Job factor is governed by the physical conditions of the job *e.g.* topography, working space, the surface, weather conditions and specifications. The Management factor covers conditions which pertain to the efficiency of operation and constitute items such as (i) selection, training and direction of men; (ii) selection, care and repairs of equipment; (iii) planning, laying out of the job, supervision and co-ordination of the operations. A table prepared by Frank A. Nikirk of U.S.A., after many years of critical study and research, is reproduced below :—

TABLE 6.2.1

Tal Eas	4 - m		•		· .			Μ	anageme	nt Factor	S .
Job Fac						=		Excellent	Good	Fair	Poor
Excellen	t	••	••		••	••		0.84	0.81	0.76	0.7
Good	••	••		••		· •	••	0.78	0.75	0 •71	0.6
Fair		••						0.72	0 •69	0 •65	0.6
Poor		•••			· ••	••		0.63	0 •61	0·5 7	0.5

6.2.2. A certain amount of scaling down in job and management factors is necessary in our case so long as we have to depend on foreign imports for machines and their spare parts, and there is somewhat still a dearth of skilled personnel in our country. We have, therefore, modified the above table as shown below and adopted the mean figure 0.65 for average operating efficiency in our calculations, as given below:—

				Manag	gement Fa	actors
Job Factor				Good	Fair	Poor
Good	••	•••	••	0 • 75	0.71	0.65
Fair	••	••	• •	0 .69	0.65	0.60
Poor	• •	••	••	0.61	0 • 57	0.52

TABLE 6.2.2.	TA	BL	E 6	.2.2.
--------------	----	----	-----	-------

6.3. SHOVELS AND DRAGLINES

6.3.1. The Peak Production

The peak production of a shovel or a dragline is a function of the depth of the cut, the angle of the swing, the bucket efficiency and the standard production. The standard or peak production means the rated capacity of the bucket divided by the cycle time of the shovel or dragline for a 90° swing and the optimum depth of cut. It is the basic production for ideal conditions without taking into account any of the factors affecting the output. The depth of cut is the optimum when the dipper comes up with a full load without undue crowding and the output is the greatest. The bucket efficiency is the ratio of the volume (Borrow-pit Measure) handled in one bucket load to the rated volume of the bucket; this depends on the swell characteristics of the soil.

6.3.2. As it is not always possible to predict the exact values of the angles of swing and depths of cut we have for estimating purposes adopted the optimum depth of cut and 90° swing in our computations.

6.3.3. The Power Crane Shovel Association of U.S.A. have quoted the following Tables 6.3.3.(i) and 6.3.3.(ii) giving the peak productions of shovels and draglines as adopted by Nikirk. The outputs are obtained by assuming the optimum depth of cut, 90° angle of swing, 60-minute

a working hour, the materials being loaded into proper sized hauling units.

TABLE 6.3.3.(i)

Sl. No. Type of soil				Shovel dipper capacity in Cu. yd.							
51.		3/4	l	11/2	2	2 <u>1</u>	31/2				
1.	Moist loam or slight sa	ındy cl	ay	45	55	77	96	109	142		
2.	Sand and gravel	••	••	42	54	73	89	105	136		
3.	Good common earth	••.		36	47	65	81	96	123		
4.	Clay, hard and tough	••	••	30	39	57	72	84	109		
5.	Rock, well blasted	••	••	26	34	49	62	74	99		
6.	Clay, wet and sticky		• •	19	26	- 39	50	62	84		
7.	Rock, poorly blasted	••	••	14	20	31	43	53	73		

Rated output of shovels in CFC units per min. hr., optimum depth of cut and 90° swing

TABLE 6.3.3.(ii)

Rated output of dragline in CFC units per 60 min. hr., optimum depth	
of cut and 90° swing	

				Shov	el dipper	capacity	in Cu. yd	•
Sl. No			3/4	1	11	2	2 <u>1</u>	3
1.	Light moist clay or loam	••	35	43	59	72	82	105
2.	Sand and gravel		34	42	57	69	80	103
3.	Good common earth	••	28	36	51	62	72	92
4.	Clay, hard and tough	••	24	30	43	53	62	82
5.	Clay, wet and sticky	••	15	21	30	39	47	66

Average job production for a 50 min. hr., and 65% operating efficiency is tabulated below in Table 6.3.4. (i) & 6.3.4. (ii).

TABLE 6.3.4. (i)

Job Production of shovels per working hour at 65% efficiency in CFC units Borrow-pit Measurement

			Shove	l dipper c	apacity i	n Cu. yd.	
SI. No	Type of soil	3/4	1	1 <u>1</u>	2	2 <u>1</u>	3
1.	Moist loam or light sandy clay	24	30	42	52	58	77
2.	Sand and gravel	23	29	40	48	56	73
3.	Good common earth	19	25	35	44	52	66
4.	Clay, hard and tough	16	21	30	39	45	58
5.	Rock, well blasted	14	18	26	34	40	53
6,	Clay, wet and sticky	10	14	21	27	34	45
7.	Rock, poorly blasted	8	11	17	23	29	40

TABLE 6.3.4. (ii)

Job Production of draglines per working hour in CFC units Borrow-pit Measurement

	D	ragline d	ipper cap	acity in	Cu. yd.	·
Sl. Type of soil No.	3/4	1	1 <u>1</u>	2	$2\frac{1}{2}$	3
1. Light moist clay or loam	19	23	32	39	44	57
2. Sand and gravel	18	23	31	37	43	55
3, Good common earth	15	20	27	34	39	49
4. Clay, hard and tough	13	16	23	29	34	44
5. Clay, wet and sticky	8	11	16	21	25	35

١

6.3.5. These recommendations for output tally very closely with the actual outputs obtained on some of our projects, are given below. The recommendation of some standard authorities abroad is shown in Appendix 6.

TABLE 6.3.5. (i)	TA	BL	E	6.	3.	5.	(i)	
------------------	----	----	---	----	----	----	-----	--

SI. No.		Pr	oject		Soil	Output in C	per hr. CFC	Remarks
		11	ojeet		501 7	Project actual	R. & C.C.	Remarks
$3\frac{1}{2}$ Cu Shove					······			
(a) ₁	Nangal H	Hydel	Chann	el	Light clay mixed with gravel.	51 •7	58	Soil is taken as clay hard & tough.
(b) I	Hirakud			•••	Semi-pervious	47*`	58	Soil is taken as murum. *Embankment measure is 51.82 and the borrow measure is calcu- lated.
. 2 <u>1</u> Cu Shove	. yds. 21							,
(a)	Bhakra	••	••	, .	Rock	37*	40	*Worked out from
•					Earth Claystone & Rock	24 •8*	29	the register of work for electric shovel assumed as rock poorly blas- ted.
(b) I	Nangal	••	••		Light clay with	42	45	Murum assumed.
	-				gravel Hard clay	30	45	
(c) H	Hirakud	••	••	••	Semi-pervious	37	45	
(<i>d</i>) 1	Maithon	••	••	••	Earth : Rock as 2:1	37	72	
. 11 Cu <i>Šhove</i>								
(a) I	Iirakud				Semi-pervious	21	30	Murum assumed.

Comparative Statement of output of shovels per hour in CFC unit (Borrow Measure)

.

REPORT OF RATES & COSTS COMMITTEE

TABLE 6.3.5. (ii)

			A	. <i>i</i> n	· · · · · · · · · · · · · · · · · · ·		
AT	. I want must at	Duantanaria	('1.('	mulle I Horrow	I nor br	(3115 -	
\mathbf{I} on \mathbf{n} and \mathbf{n} of \mathbf{n} of \mathbf{n}	<u> </u>	Diagones m		units (Dorrow	per ne	Jur	
Comparative statement	of only a of				1		

SI.	C - 11	Output CFC per hr.	Remarks
No. Project	Soʻl c	Project R.&C.C.	ixemarks
1. $3\frac{1}{2}$ Cu.yds.			
(a) Tungabhadra (Andhra)	Shishy soft black cotton soil		Soil taken as clay vet and shishy.
2. $2\frac{1}{2}$ Cu.yds.			
(a) Harike	Earth	40.6 39	
(b) Sarda Hydel	Wet earth Sandy soil	25 25	
(c) Tungabhadra (Andhra)	Shishy soil	28 25	
3. 1 ¹ / ₂ Cu. yas. Tungabhadra (Andhra)	Shishy soil	20 21	
4. 1 <i>Cu.yd.</i> Harike	Earth	19.5 20	
5. 3/4 Cu.yd.	al de la companya de La companya de la comp		
(a) Harike	Earth	14 15	
(b) Tungabhadra (Andhra)	Stiff black cotton soil	11 13	

6.4. RIPPERS AND ROOTERS

6.4.1. Rippers and Rooters enable considerable economy in the breaking up of materials prior to dozing scraping etc. as well as in breaking or clearing out roots etc. in land clearance. Field observations show that the use of Ripper or Rooter prior to scraping shows fair increase in output. Another primary benefit is the reduced strain and wear on tractors and scoops resulting in a saving in fuel consumption and in better pay-loads. A Ripper or Rooter will break enough material to keep 3 to 6 tractors and scrapers employed. Field observations reveal that 1 hour of ripping may yield sufficient loosened dirt to keep a dozer employed from 4 to 15 hours.

6.4.2. In very hard soils it may be necessary to rip and then to cross rip. In this case the output figures corresponding to the particular ripping width and depth and tractor speed should be halved to make allowance for this double work

- 6.4.3. The depth of rooting depends upon the following factors :-
 - (a) The design and size of the rooter which varied from 1' to 2'-6''.
 - (b) The size of the tractor—usually a tractor not smaller than 90 BHP is used.
 - (c) The nature of the soil which will vary from hard tough clay to cemented conglomerate of disintegrated rock.
 - (d) The number of twines used.

Sometimes a pusher tractor is added to assist the pulling tractor in rocky compacted materials.

Rooting is generally done in the 1st gear. The speed at governed R.P.M. in different gears and the draw-bar pull of 130 H.P. tractor are given below:—

TABLE 6.4.3.

Draw-bar pull and speed of 130 H.P. tractor

130 H Tract Gea	or						·				Speed at governed R.P.M.	Draw-bar pull (lbs.)
1st	•••									•••	1.6	29,900
2nd		••	• •		••	••	••	••	••	••	2.3	21,700
3rd	•••	••			••	••	••	• •			2.9	15,700
4th	• •		••	••	••		••		• •		3.7	11,900
5th	÷	••		••	• •	••		••	••	••	4.8	8,600

6 4.4. The following table indicates the nature of duty that may be expected from a heavy rooter.

TABLE 6.4.4.

Performance of rooters in different types of soils

Sl No		-	No. of - twines	Width at each root- ing	Depth in feet	No. of turns recd.	Pushed tractor rec.
1	2		3	4	5	6	7
1. 2. 3. 4.	Gravel and sand compact cemented. Good common earth Clay, hard & tough Murum	& 	2 to 3 3 3 2 to 3	4 to 8 8 8 4 to 8	1 ft. 2 ft. 2 ft. 1'-6''	2 to 4 1 1 to 2 1 to 2	17 Usually not
5. 6. 7.	Hard Murum Clay with boulders Clay wet & sticky	•••	2 to 3 3 3	4 to 8 8 8	1 ft. 1'-6'' 1'-6''	2 to 4 1 1	1

6.4.5. Production by Rooters

Taking a travel speed of 1.6 m.p.h. and an operating efficiency of 65% (wide and extensive areas) the following production per working hour is obtained:—

TABLE 6.4.5.

Average output of Rippers in CFC Units (borrow measurement)

SI. Soil No.	Vol. rooted per hour
1. Compact cemented gravel	60-240
2. Good common earth	1000
3. Clay	500-1000
4. Murum	180-750
5. Hard murum	60-240 -
. Clay with boulders	750
'. Clay wet	

6.5. DOZERS

6.5.1. Before starting earthwork on any project it is necessary to grub the ground and clear the area of trees, stumps and bushes. Frequently both clearing and grubbing are carried out in one operation by using a tractor dozer assisted by a rooter. The unit of measurement for grubbing and clearing site should preferably be the acre.

6.5.2. Stripping

This consists of removing the top vegetative soil to specified depths and where dirt is to be transported only a short distance say upto 200 ft. a tractor-dozer is used and for longer hauls a scraper. The unit of measuring stripping should be an acre although the C.yd. measure has been adopted on some of the projects. The size of the tractor required will depend upon the growth of jungle, the size of the boulders, the hardness of the soil and the terrain. Tractors smaller than 90 B.H.P. will generally be found unsuitable for this work. 6.5.3. The production of dozers will naturally vary with the field conditions. The following data may however be adopted in the absence of any experimental observations:—

TABLE 6.5.3.

Production of Dozers for grubbing and clearing

	Size of tractor			Area grubbed and cleaned per hr. (acres)					
	5120 01 11 40101				Favourable conditions	Average conditions	Un- favourable conditions		
1.	90 BHP tractor with a dozer			•••	0.66	0.40	0.16		
2.	130 BHP tractor with a dozer	••		•••	0.80	0.5	0.2		

6.5.4. Some manual labour will be required to burn or remove the shrubs, excavate out some stumps, collect stray roots etc. After accounting for the manual labour, petty establishment etc. the unit rate for clearing and grubbing will work out as given below in table:—

TABLE 6.5.4.

Item					Unit	rate and c	for lear	grubbin ing	1g
Grubbing and clearing areas, to rematrees not exceeding 6" in dia. boulders and stacking them neatly in or outside the a lead not exceeding 150 ft. including ches, stumps and burning or otherwise, leaves etc. as directed.	(not he area pitchin	exceedi a so as ng up	ing 2 C to allo roots,	.yds.) ow for bran-					
 (a) Favourable working conditions (b) Average working conditions (c) Difficult working conditions 	•••	••	 	•••		Rs. Rs. Rs.	250	per acr	e

6.5.5. Dozer Outputs

Most jobs involve a number of strata e.g. a layer of top soil followed by a layer of common earth, followed by a sub-soil comprising clay and/or sand. Moreover a large portion is usually a mixture of one or more of the above. The thickness of each layer usually varies throughout the job.

REPORT OF RATES & COSTS COMMITTEE

Seasonal changes in moisture content also affect the volume change. Some materials will swell freely; others, like sand, will not. Thus any calculation of the number of dozer cycles, required to move a given volume of earth can only be approximate, as the time required will further vary according to (1) the condition of the tractors, (2) efficiency of the operators, (3) weather conditions, (4) moisture content, (5) type of soil, and (6) rigidly of inspection and control of specification.

The following data in table 6.5.5. pertaining to the design of American machines will be helpful for estimating out-turn.

TABLE 6.5.5.

Dozer Capacity

Sl. No.	Tractor H.P.		Blade width in feet	Capacity in CFC	Approximate wt. in lbs.
1.	130-160		11	0.85	5200
2.	85-100		10	0.65	4400
3.	65-75	••	8	0.51	2800

6.5.6. The following table 6.5.6. gives the output of dozers in "Good common earth" for a 50 minute working hour and 65% operating efficiency.

TABLE 6.5.6.

Size of tractor		Lead on	e way in feet	Demosta
	50 ft.	100 ft.	150 ft. 200	Remarks
	AD BD		AD BD' AD	BD
130 B.H.P. 90 B.H.P.	34 27 30 25	21 17 18 16	15 12 12 13 11 10	10 AD-angle dozer. 9 BD-bull-dozer.

Job productions of dozer in good common earth (CFC Unit)

Where the truck loads are to be pushed over the edge of a fill (lead about 50 ft.) the production in earth may be taken as 1.4 times that given in table 6.5.6.

6.6. SCRAPERS

6.6.1. Use of Scrapers

Scrapers combine the actions of excavation and haulage. They are mostly adaptable to plowable materials. In non-cohesive sand or gravel, it is difficult to load scrapers as the material will not pile up into the scraper, and the pay-load is considerably reduced. Wet and muddy soils make the discharging of the scraper difficult. For efficient working material should be free-flowing with very little or no rock and shale.

110

Tractor-drawn scrapers and motorised scrapers are used to 6.6.2 excavate and haul large volumes of earth for such projects as dams, levees, highways, airports and canals. Their use depends considerably on the iob conditions and economic use. They are particularly well suited for canal excavation and embankments not involving hard rocky material and providing large hauling area. For short hauls of 500 to 1500 ft. the crawler type tractor, pulling a rubber-tyred, self-loading scraper is mostly The Crawler tractor has a high draw-bar pull for loading the scraper, used. has a good grip on the ground, can operate over muddy haul roads, but has a low travel speed the maximum being about 6 m.p.h. As a drawn-scraper is a self-contained unit, its performance is better than that of other machines which have to depend upon another unit for loading e.g. an excavator, or a pusher tractor working with a motor-scraper. For longer haul distances of 1000 to 5000 ft. or more, the rubber-tyred tractor pulling a rubbertyred self-loading scraper is more economical than the Crawler unit. While this motorized unit cannot deliver as great a tractive effort in loading the scraper as the Crawler type, it has a higher travel speed up to about 18 m.p.h. Usually a pusher tractor is used along with motorized units to facilitate easy scraping and thereby increase scraper outputs and cut down earthwork costs.

6.6.3 Equipment Combination

The following equipment combination in case of drawn scrapers will be generally found suitable for various types of soils.

SI. No.	Type of soil			• Tractor B.H.P.	Scraper struck capa- city in C.yd.	Pusher Tractor B.H.P.	Remarks
1	2			3	4	5	6
1.	Light loam or crum	bly sil	t	90	10 to 12	Not reqd.	
2.	Good common earth loam	n or cla	ayey 	90 or 130	12 to 15	Do.	
3.	Sand and gravel		••	Do.	10 to 12	90	
	Murum		••	130	15	130	Rooting desir- able.
5.	Clay hard & tough			130	10 to 12	90	Do.
	Hard murum .			130	15	130	Rooting essential
				130	15	130	Do.
	Clay, wet & sticky		••	130	15	130	Do.

TABLE 6.6.3

Equipment Combination

6.6.4 Speed of Hauling

The speed of hauling is a function of (i) the road resistance, (ii) B.H.P. to the weight ratio of the tractor, and (iii) grade resistance, due both to rolling resistance and grade resistance the speed on adverse grades goes down. The speed of 130 H.P. D-8 Crawler tractors in 5th gear is 4.8, m.p.h. 4th gear 3.7, 3rd gear 2.9, 2nd gear 2.3 and 1st gear 1.6 m.p.h. In the case of motorized scraper, for example D-W 21 caterpillar scraper, the speed in 5th gear is 20.2 m.p.h., 4th gear 12.2, 3rd gear 7.2, 2nd gear 4.2 and in 1st gear 2.2 m.p.h.

6.6.5 Time of Hauling

The time taken for the scraper to haul and return depends on the lengths of haul on the level and on the incline. As both these are variables differing from project to project, it will be reasonable to assume an average speed of haul which would cover the time gained on level grade when the machine goes at a greater speed than the average and that time lost while the machine is travelling at a lesser speed on the incline. In keeping with this assumption, we have adopted in our calculation an average speed of 4 m.p.h. in the case of drawn scrapers as they normally operate on short leads of about 500 to 1500 ft. and more on inclines. As motorised scrapers haul greater distances on level grades than that on inclines we have adopted an average speed of 15 m.p.h. in its case.

6.6.6 Lead

Lead is defined as the shortest practicable route and not necessarily the route taken actually to move the mass of the earth from one situation to the other.

We have adopted lead in terms of one way haul in feet and the cycle time in minutes as that required to haul and return through this distance plus the time taken in loading and unloading, turning[•] and changing gears.

6.6.7 Drawn Scrapers

Fixed times are given below:—

TAB 6.	6.	7
--------	----	---

Sl. No. Type of loading	Working conditions	Cycle time for load- ing 15 C.yd. struck scraper in minutes	Cycle time for loading 10 C.yd. struck scraper in minutes
1. Back track loading	Favourable	1.75	1.45
in the second	Average	2.40	2.10
	Unfavourable	3.00	2.70
2. Chain loading or	Favourable	1.25	1.05
shuttle loading	Average	1.60	1.40
	Unfavourable	2.00	1.80

Fixed Time for Euclid-drawn Scrapers

112

TABLE 6.6.8.

SI No		ngth of	haul c Linea	ne way r feet	y in		Cycle time minutes	No. of trips in 50 mts.	Remarks
1. 2. 3. 4. 5. 6.	500 600 800 1000 1200 1600	••• •• •• ••	· · · · · · · · ·	•••	 	•••	4 · 7 5 · 0 5 · 5 6 · 0 6 · 6 7 · 5	10.6 10.0 9.1 8.4 7.6 6.7	Fixed time 2.25 minutes for load- ing & unloading and 1 min. for turns etc. Cycle time includes also return time. Aver- age speed 4 m.p.h.

Cycle Times and No. of Trips for 50 min. hr. Drawn Scrapers

6.6.9 Swell Factor

The pay-load of a scraper is affected by the swell characteristics of the soil. The swell factor is equal to 100 divided by (100 plus per cent of swell). The following table 6.6.9 has been drawn up with reference to the figures *vide* 'Estimating Production and Costs' by Euclids.

TABLE 6.6.9

Sl. No		Soil				Percent of Swell	Swell factor (natural)	Swell factor for scrapers
1		2				3	. 4	5
1.	Light loam or crumb	ly silt	••		••	20	0.83	0.93
2.	Sand and gravel	••	••	. 	••	18	0.85	0.95
3.	Good common earth	or clay l	loam	••	••	25	0.80	0.90
4.	Clay, hard & tough	••	• •		••	33	0.75	0.85
5.	murum	••	••		••	18	0.85	0.95
6.	Hard murum	••	••	••	•••	33	0.75	0.85
7.	Clay, wet and sticky	••	••		••	33	0.75	0.85

Values of Swell and Swell Factors of Soils

Note: Swell factor when loading scraper is more because of more compact loading.

6.6.10 Production Rate

Taking average load as the mean of the heaped and struck capacity and the swell factor as in table 6.6.9. and the number of trips per working hour as in table 6.6.8 the job production in different type of soils in 50 min. working hour and 65% efficiency are tabulated below in table 6.6.10 (*i*) and (*ii*).

TABLE 6.6.10 (i)

SI. No.	Length of haul one way in feet	130 BHP Tractor90 BHP Tractordrawn 15/20 C.yd.drawn 10/12.5RemarksscraperC.yd. scraper
1	2	3 4 5
1.	500	30* 19
2.	600	
3.	800	26 17
4.	1000	24 16
5.	1200	22 14
6.	1500	19 12
	* $\frac{17.5 \times 27 \times 0.93 \times 10.6 \times 65}{100+100}$ = 10.6 No. of trips in 50 min. 0.65 Efficiency factor. 17.5 is the average capacity. 27 is a multiplier to convert C.y 0.93 is the Swell factor.	

Job Production in Light Loam

TABLE 6.6.10 (ii) (a)

SI. No. Soils	Output in CFC Borrow-pit Measure 15/2 C.yds. Scraper (Lead one way haul in feet)							
	500	600	800	1000	1200	1500		
. Light loam or crumbly silt	30	28	26	24	22	19		
2. Sand & gravel	31	29	27	25	22	19		
3. Good common earth	29	27	25	23	21	18		
4. Clay, hard & tough	28	26	.24	22	.21	18		
5. Murum	31	29	27	25	22	19		
5. Hard murum	27	26	24	22	20	17		
7. Clay, wet and sticky	27	26	24	22	20	17		

114

EXCAVATION & COMPACTION UNITS

TABLE 6.6.10 (ii) (b)

10/12.5. C. yds. Scrapers

Sl. No		8			Borrow- Scraper way hau		
		500	600	800	1000	1200	1500
1.	Light loam or crumbly silt	19	18	17	16	14	12
2.	Sand & gravel	19	18	17	16	14	12
. 3.	Good common earth	18	17	16	15 .	14	12
4.	Clay, hard & tough	18	17	16	15	13	11
5.	Murum	19	18	17	16	14	12
6.	Hard murum	17	16	15	15	13	11
7.	Clay, wet & sticky	17 ·	16	15	15	13	11

6.6.11 Motorised Scrapers :-- Cycle Time

TABLE 6.6.11

Cycle Time and No. of Trips per 50 min. hr.

SI. No		th of h in line	aul on ear feet	e way		Cycle time in minutes	No. of trips in 50 min. hr.	Remarks
1.	1000 ft.		• •		•	4.0	12.5	Fixed time nearly
2. 3.	1500 ft. 2000 ft.		 	•••	••	4·4 4·8	11·4 10·4	same as that of drawn scraper is
4. 5.	2500 ft. 3000 ft.	•••	••	•••	••	5·2 5·5	9·6 9·1 7·9	2.25 at loading & unloading & 1 min. for turns
6. 7.	4000 ft. 5000 ft.	•••	· •	••	••	6·3 7·0	7.1	etc. Average speed 15 m.p.h.

6.6.12 Production Rate of Motorised Scrapers

Job production on the basis of 50 min. hr. and 65% efficiency, taking the average load as the mean of the heaped and struck capacity is the swell factor as given in table 6.6.9. and the number of trips per working hours as in table 6.6.11. has been worked out in table 6.6.12. (i) & 6.6.12 (ii).

TABLE 6.6.12. (i)

Job Production of Motorised Scrapers

Sl. No. Soil			Output in CFC (Borrow Measurement) (One way haul in linear feet)						
	1000	1500	2000	2500	3000	4000	5000		
1. Light loam	36	33	30	27	26	23	20		
2. Sand & gravel	37	34	31	28	27	23	20		
3. Good common earth	35	32	29	26	25	22	19		
4. Clay, hard & tough	34	31	28	25	24	21	17		
5. Murum	37		31	28	27	23	20		
6. Hard murum	33	30	27	25	24	21	18		
7. Clay, wet & sticky	33	30	27	25	24	. 21	18		

(i) 15/20 C. yds. Capacity

TABLE. 6.6.12 (ii)

	4. 1. 1. 1.	A 14 14				
122	10	/12	\boldsymbol{c}	. da	- C ~	
- U II -	10	/13	C	vas.	-ca	pacit

1.	Light loam	23	21	20	18	. 17 -	15	13
2.	Sand & gravel	23	21	20	18	17	15	13
3.	Good common earth	22	20	19	17	16	14	13
4.	Clay, hard & tough	21	20	19	17	16	14	12
5.	Murum	23	21	20	18	17	15	13
6.	Hard murum	21	19	18	16	16	14	12
7.	Clay, wet & sticky	21	19	18	16	16	14	12
		······						

116

6.7 Belt-Loader

6.7.1 Belt-loader is an excavating and loading unit. It excavates loose material, elevates and loads it into vehicles. Rarely it is used to cast the excavation directly. Its economic use largely depends on the adequacy of transporting units. It is pulled by a tractor. It has a cutting edge which excavates the material which in turn is picked up by a moving belt so aligned that a constant flow of material travels up the belt and is discharged into the hauling unit. It has the advantage of less loading time and constant discharge of material. But it is suitable and economical under the following conditions:—

- (i) Where very high hourly production rate is required.
- (ii) Where soil is free from rock.
- (iii) Where uniform long and wide borrow-pits exist.
- (iv) Where a large quantity of earth is handled.
- (v) Where loading conditions are such that from five to ten loads of free flowing material may be obtained between loader turn arounds and that is relatively long and level.

The loading time of the loader will be about 0.6 to 0.8 minute under average conditions; but it is not related to production figures as the latter depends on the adequacy of hauling units of proper size.

6.7.2 Assuming that, properly matched equipment is made available, the output of a 54 inch belt-loader for 60 minute hour is as given below:—

	W	Remarks		
	Favourable	Average	Unfavourable	Remarks
Production in CFC units per hour borrow-pit measurement.	270	202	135-95	54-inch belt 60 min. hr.

TABLE 6.7.2

For a 50 min. hour and operating efficiency of 65% the average job production of belt-loader will be as under:—

TABLE 6.7.2(i)

Average Job Production of Belt-loader

	W	Domonico		
	Favourable	Average	Unfavourable	Remarks
Production in CFC units per hour borrow-pit measurement.	145	110	73-51	54-inch belt 50 min.hr. effi-
				ciency 65%

6.7.3 The auxiliary equipment required to obtain the outputs depends on the nature of the soil handled by the loader. In hard clays two pulling tractors or one pulling tractor and one pusher will be required in addition to rooting. A dozer constantly attending to levelling the borrow floor improves the operating efficiency and reduces wear and tear on the machines.

The combination of equipment required for different types of materials is indicated below in table 6.7.3.

TABLE 6.7.3

Sl. No.	Soil	Belt- Touring Rooter Doz				Remarks
		loader	tractor			
1.	Light loam	1	1			
2.	Sand & gravel	1	1	· · ·		If compact, 2 touring tractors, 1 dozer & 1
					•	rooter are required to give good output.
3.	Good common earth	1	2		1/2	
4.	Clay, hard & tough	1	2	1	- 1	
5.	Clay, wet & sticky	1	2	1	1	Rooter useful for
			e Le set			letting the soil dry before loading.
6.	Soft murum	1	2	1	Т	

Equipment Combination Belt-loader Operation

6.8 DUMPERS

6.8.1 The two types of dumpers commonly used on the projects are the rear dump and the bottom dump. Each type has its own advantage and use, depending on the job conditions. Dumpers can run on rough ground or on open wet sites unsuitable for lorries. Their economic length of haul is up to $1\frac{1}{2}$ miles lead.

6.8.2 Rear dumpers are specially designed to haul heavy materials like rock, one shale or a combination of free-flowing and bulky materials and to withstand severe loading impact as it occurs in loading under a large shovel. They have maximum grade ability and can do rapid spotting in a restricted area.

6.8.3 Bottom dumpers are of a tractor trailer type and are largely used for hauling free-flowing materials such as loose sand and gravel, hard clay, broken shale etc. where dumping is unrestricted and the long adverse grades do not exceed 3% to 5%. They have a high manoeuvrability and a fast movement.

6.8.4 Rating of Dumpers

Usually dumpers are rated according to their capacity in struck measure, in heaped measure (generally 3 to 1 slope) and in terms of pounds of pay-load. It is important that not only the capacity in cu. yards but also in weight should be considered while considering the dumper capacities.

6.8.5 Production Rate—Cycle time

The production rate of dumpers or any hauling units varies with the length of the haul, load grade and road conditions *i.e.* on the cycle time in general. Time required for loading, dumping or unloading, turning and spotting constitutes the 'fixed' time while the haul and return times are 'variable'. The 'fixed' time constants pertaining to Euclid dumpers are tabulated in table 6.8.6. An average haul speed of 12 m.p.h. in case of rear dumps and 15 m.p.h. in case of bottom dumps can be taken to work out the hauling and returning time for different leads.

		Rear I	Dump	Bottom Dump		
51. No	Conditions	Turn and dump in minutes	Spot in minutes	Turn and dump in minutes	Spot in minutes	
	2	3	4	5	6	
	Level ground ample space, dumping in transit Limited space, and some manoeuvring	1·5 2·0	0·15 0·30	0·7 1·0	0·15 0·50	
•	Constructed spaced manoeuvring to dump required	2.5	0.50	2.0	1.00	

TABLE 6.8.6

Turning, Dumping and Spotting Times for Various Job Conditions

6.8.7 Outputs

The output of a dumper is directly related to the loading unit and the number of trips per hour. Generally, the capacity of the dumper should be 4 to 5 times that of the shovel or dragline. The material carried will have the swell factors as given in table 6.6.9. The swell factors in case of rock well-blasted is 0.57 and for shale or soft rock it is 0.75. An operating efficiency of 65% can be adopted in working out the output.

6.9 SHAPING AND COMPACTING EARTHWORK

6.9.1 This work is usually carried out by using a motorgrader or a bulldozer for spreading the soil a tractor-pulled sheeps-foot roller for compaction and a sprinkler truck for adding water where the natural moisture content is less than that required.

6.9.2 Graders

Two types of graders are used; the towed grader and the self-propelled. The towed grader is used where considerable force at low speed is desired as in ditching. The motorgrader is self-propelled and is designed for higher speeds in light work such as road maintenance and mixing of materials. It is generally gas or diesel powered with a 12 ft. wide handcontrolled or motorised wide blade.

On an average a motorgrader operates at 2 m.p.h. and can cover an effective blade width of about 8 ft. Its output is expressed in terms of the area in 8 ft covered by its blade in an hour.

6.9.3 Sheeps-foot Rollers

Sheeps-foot rollers are universally used for developing suitable compaction on rolled-fill dams. They are suitable for use in soils free from large boulders and they compact plastic soils better than any other mechanical method and for compacting the fill.

6.9.4 They are usually assembled in units of 1, 2, 3 or 4 drums. The tamping feet on the drums which are staggered, distribute the weight of the drum and give better tamping effect. The weight of a single drum varies from about 2700 lbs. to 3470 lbs. as empty, depending on the size and the number of tamping feet on the drum. Provision is usually made for filling the drum with liquid and/or sand in order to add to its weight. The optimum tractor speed for the use of a sheeps-foot roller is approximately 2.5 m.p.h.

120

6.9.5 Average Hourly Output

The following hourly outputs in CFC units of borrow-pit measure can be attained in a working hour (50 min. hr.) with average operating efficiency of 65% in ordinary soils.

TABLE 6.9.5

No. of Dumps	1×1					1×2				1×3			
No. of trips	6	8	10	12	6	8	10	12	6	8	10	12	
Depth of layer						•	<u></u>	<u> </u>					
4''	27	20	17	14	57	44	37	28	84	·65	54	44	
6''	40	30	23	20	87	65	50	44	13	97	76	65	
8''	55	40	34	27	120	87	72	57	18	130	110	87	
10''	67	53	40	34	144	107	85	72	220	163	130	110	
12''	80	62	53 ·*	40	173	132	107	85	260	200	163	130	

Average Output of Sheeps-foot Rollers

6.10 Use Rates of Earth-moving Equipment

6.10.1 In working out their use rates, we have assumed that the equipment is all new, that depreciation follows the straight line law and that the working hours form the basis of depreciation for all rated equipment. Maintenance and repair charges have been determined from table 3.12.3 while the fuel consumption has been taken from the formula: $0.5 \times BHP \times 6/8.26$ which gives the optimum consumption for a 60 min. working hour. We have adopted 65% or 2/3rd of the figure given by this formula for actual consumption, the wages operators and unskilled labour have been taken as those recommended by us.

6.10.2 The detailed analysis of the use rates are given in Appendix 7 and abstract of the same is furnished below:—

TABLE 6.10.2

Sl. No.	Equipment	Hourly use rate in rupees
1	2	3
I.	(H.P.)
	18 B.V. Belt loader 54" width 248	55.0
II.	Dump Track	
*	(a) 9.7 C. yds. 15 tons Rear Dump 150-165 (b) 14.8 C. yds. 22 tons Rear Dump 250 (c) 13 C. yds. struck Bottom Dump 200 (d) 17 C. yds. ",",",",",",",",",",",",",",",",",",",	34 ·0 52 ·0 37 ·0 47 ·0
III.	Excavators	
	(a)(i) $\frac{3}{4}$ C. yd. Shovel80(ii) $1\frac{1}{2}$,,,,170(iii) $2\frac{1}{2}$,,,,200(iv) $3\frac{1}{2}$,,,,225	31 ·0 50 ·0 64 ·0 39 ·0
		29 ·0 43 ·0 55 ·0 74 ·0
IV.	Scrapers	
	(a) $10/12 \cdot 5$ C. yds. Drawn Scraper(b) $15/20$ (c) $10/13$ Motorised(d) $15/20$	14 ·0 20 ·0 43 ·0 56 ·0
\mathbf{V}_{\bullet}	Tractors	
	(a) 81 HP Crawler Tractor 81 (b) 130 HP Crawler Tractor 130 (c) 81 HP Tractor Dozer 81 (d) 130 HP Tractor Dozer 130 (e) D-4 Tractor with Sheeps-foot Roller 44	25 ·0 29 ·0 28 ·0 32 ·0 15 ·1:
VI.	Motor Graders	
	115 HP 115	25-0

Hourly Use Rate of Mechanical Equipment

6.11 UNIT RATE OF EARTHWORK BY MECHANICAL MEANS

6.11.1 The unit rate of earthwork involves the cost of excavation, transportation and compaction of a CFC of soil as measured at the borrow-pit. We have adopted the borrow measure in preference to the embankment measure as it is more precise. In the case of scrapers, however, borrow measurements are not always practicable and the volume of work done is calculated from the loose measure after applying the swell factor of the soil.

6.11.2 Most of the excavation work on projects is done by shovels and scrapers, although use of tractor dozers for dozing is considerable. In fact, a tractor dozer is a versatile unit performing many tasks *e.g.*, clearing, shipping, opening up cuts, dozing, push loading, back filling, etc. Draglines are mostly used on canal works. We have, therefore, confined our study of the earthwork rates by shovels and scrapers.

6.11.3 Using 1/3 hr. dozer per shovel the Tables 6.11.3 (i) and (ii) give the rates per unit of shovelling.

TABLE 6.11.3 (i)

		Ave	rage Conditions		. Rock	work	
S1.	~	Rate per	r hour		Éxtra pro- vision of	Total rate per hour	
No. Sh	Shovel cu. yds. 🦟	Shovel	Tractor dozer 1/3rd	Total _.	10% for repairs		
<u></u>		Rs.	Rs.	Rs.	Rs.	Rs.	
1.	3 4	31	10	41	4 • 1	45	
2.	11	50	10	60	6 ·0	66	
3.	2 <u>1</u> 2	64	10	74	7 •4	81	
4.	312	89	10	99	9.9	109	

Cost per Hour of Working Shovels with Tractor Dozer

TABLE 6.11.3 (ii)

		·	<u> </u>			S	Size	of show	els in	cubic	yards
SI. No.			Conditior	15	3	3/4		1-1/2	2	-1/2	3-1/2
1			2		1. N	3	•	4		5	6
1.	Average	Conditi	ons							· · ·	
	Hour	ly use ra	te vide table	6.11.3 (i)		Rs.	41	Rs. 6)	Rs. 74	Rs. 9
	(a)	Moist lo Rate pe	am or sandy or CFC	output CFC	2	24 1 • 7	71	42 1 •43	5	58 1 ·28	77 1 -2
	(b)	Sand & Rate pe	gravel output r CFC	ut CFC		23 1 · 7	79	40 1 • 5 0)	56 1 •33	73 1 • 3
	(c)	Commo Rate pe	on earth, outp r CFC	out CFC		19 2+1	16	35 1 • 7 1		52 1 •43	66 1 •5
	(<i>d</i>)	Clay ha Rate pe	rd & tough, r CFC	output CFC	3 2000 - 100 1000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	16 2 • :	56	30 2 • 0 0))	45 1 ∙66	58 1 •7
	(e)	Clay, w Rate pe	et & sticky, o r CFC	output CFC	· · ·	10 4 · j	10	21 2 -89	3	34 2 ·19	45 2 • 2
2.	Rocky	Conditio	15				- T oir -				
	Hou	ly use r	ate vide table	6. 11. 3 (<i>i</i>)	Rs.	45		Rs. 66	Rs.	81	Rs. 109
	(<i>a</i>)	Rocks Rate pe	well blasted, or CFC	output CFC		14 3 •2	22	26 2 -5 4	ŧ	40 2 •04	53 2 0
	(b)		oorly blasted, er CFC		С	8 5 - (53	17 3 •88	3	29 2 ·80	40 1 - 3
6.1	Outp	ut of 2	of Rate fo $2\frac{1}{2}$ C. yds. er 9.7/11.4	shovel pe	r ho	ur					

Cost of Shovelling Operation per CFC (Borrow Measure) in Different Soils

Borrow measure of 10.5 C. yds: $10.5 \times 0.67 \times 0.27$: 1.9 CFC. Hauling cycle: Loading time plus hauling & returning time plus turning & dumping and spotting. 1.9×60

Loading time: Body capacity $\frac{1.9 \times 60}{34} = 3.4$ min.

Spotting time for truck : 0.3 min. (vide table 6.8.6)

Average travel speed : 12 m.p.h.

Hauling and return time for 2000, 3000, 5000, 6000 and 8000 feet are 3.8, 5.7, 11.4 and 15.2 minutes respectively.

Turning and dumping time: 2 min.

The cycle time and number of trips, output per hour of and the number of dumpers per shovel hour for different loads are given below in table 6.11.4 (i):

Particulars	Lead One Way in Feet							
	1000	2000	3000	5000	6000	8000		
Cycle Time in min Trips in 50 min. hr Output per hr. at 55%	4 ·2 11 ·9	6 ·1 8 ·2	8 ·0 6 ·25	11 ·8 4 ·25	13 ·7 3 ·65	17 ·5 2 ·86		
efficiency Dumper per shovel hour $11.9 \times 0.65 \times 1.9 : 14.7.$ 34 : 2.4	14 ·7* 2**	10 3	7 ·7 4	5·3 6	4 •5 8	3 •54 10		
14.7 11.9 = No. of trips in a 50 min 0.65 = Efficiency factor. 1.9 = CFC borrow measure of 34.0 = Output of a shovel. 14.7 = Output per hour of the	f the Cap. 9/11	1•4 C. yd. d	umpers.					

A motor grader and a water tanker is necessary to maintain the haul roads in good condition for efficient working of hauling units.

The total cost of equipment required per hour shovel output and the rate for excavating, transporting and dumping a CFC of blasted rock are given in Tables 6.11.4 (*ii*) & (*iii*) respectively.

TABLE 6. 11. 4 (ii)

Equipment Cost per Hour Output of Shovel in Blasted Rock

					Equi	pment	Cost			
Lead one way haul in feet	2-1/2 C. yd. Tractor shovel dozer				М	5 h.p. otor ader	Water tanker	Total amount		
	Nos.	Amt.	Nos.	Amt.	Nos.	Amt.	Nos.	Amt.	Amt.	
1	2	3	4	5	6	7	8	9	10	11
ft.		Rs.		Rs.		Rs.		Rs.	Rs.	Rs.
1000	1	70	1/3	11	2	68	1/4	6	5	160
2000	1	70	1/3	11	3	102	1/4	6	5	194
3000	1	70	1/3	11	. 4	136	1/4	6	5	228
5000	· ī	70	1/3	11	6	204	1/4	. 6	5	296
6000	ī	70	1/3	11	8	272	1/4	6	5	364
8000	i	70	1/3	11	10	340	1/4	6	5	432

TABLE 6.11.4 (iii)

Rate for Mucking per CFC of Blasted Rock by 23 C. yds. Shovel and Hauling Nea (9.7 C. yds).

Lead o	ne way haul in feet	Equipment Cost		Output CFC	
ft.		Rs.			
1000	••	160	•	40	
2000	1	194		40	
3000		228		40	
5000	••	296		40	
6000	• • •	364		40	
8000	••	432		40	

6.11.5 Analysis of Rate for Earthwork

Output of $2\frac{1}{2}$ c. yds. shovel in good common earth

52 CFC per hour.

1

Bottom dump of 13/15.1 c. yds. will have an average capacity of c.yds. The percentage of swell of common earth is 25% and the swell fact is 100:0.8. The borrow measure of 14 c. yds. is therefore $14 \times 0.8:11.2$ yds, or 3 CFC.

Loading time in minutes : $\frac{3 \times 60}{52}$ 3.46 min.

Spotting time for loading muck 0.50 min.

Average travel speed of }15 m.p.h. bottom dump

For leads 2000, 3000, 5000, 6000 and 8000 feet, the hauling and re turning time is 3.02, 4.53, 7.55, 9.06 and 12.08 minutes respectively.

Turning and dumping time: 1.00 min.

The cycle times, number of trips per hour, the average output and number of dumpers required to haul and hour output of shovel for different leads is tabulated below:—

Lead one way haul in feet	1000 ft.	2000 ft.	3000 ft.	5000 ft.	6000 ft.	8000 ft.
Total cycle time in mi- nutes.	3 -01	4.52	6 •03	9 •05	10.56	13 - 58
Trips per 50 min. hr.	16 •7	11.0	8.30	5 • 53	4.75	3.7
Output per hr. @ CFC 65% efficiency.	32 •6	21.5	16 ·20	10.80	9 • 25	.7 :2
No. of dumpers per shovel hour.	1 •6	2	3.0	5	6	7

TABLE 6.11.5 (i)

Equipment charges for handling common earth equipment to an hour of $2\frac{1}{2}$ c. yds. shovel are given in table 6.11.5 (ii) below:—

TABLE, 6.11.5 (ii)

Lead one way haul in feet	2½ c. yds. shovel		Tractor dozer		ь	13 c. yds. bottom dumps		115 h.p. motor grader.		Total amount
	Nos.	Amt.	Nos.	Amt.	Nos.	Amt.	Nos.	.Amt.	Amt.	•
1	2	3	4	5	6	7	8	9	10	- 11
ft.		Rs.		Rs.		Rs.	· ·	Rs.	Rs.	Rs.
1000	1	64	1/3	10	2	74	1/4	6	5	159
2000	1	64	1/3	10	2	74	1/4	6	.5	159
3000	1	64	1/3	10	3	111	1/4	6	. 5	196
5C 00	1	64	1/3	10	5	18 5	1/4	6	- 5 -	270
6000	1	64	1/3 [.]	10	6	222	1/4	6	.5	.307
8000	1	64	1/3	10	7	259	1/4	6	5 -	344

Equipment Cost per Hour Output of Shovel

REPORT OF RATES & COSTS COMMITTEE

TABLE 6. 11. 5 (iii)

Rate per CFC of Common Earth Excavated and Loaded by 23 C. y.ls. Shovel and Hauled by 13 C. yds. Bottom Dump

Load one way haul	Equipment cost	Output CFC	Rate per CFC
ft.	Rs.		Rs
1000	159	52	.3
2000	159	52	3
3000	196	52	3.75
5000	270	52	5-0
6000	307	52	6.0
8000	344	52	6.5

6.11.6 In the case of other soils, the rates can be worked out on the same lines. Due to the different swell factor the output per hour of the dumpers will slightly vary. Its effect on the number of dumpers will require for different leads per shovel output is not very appreciable and so the equipment combination can be taken the same as in the case of common earth; the rates will be inversely proportional to the outputs. The rates for earthwork in different soils are given below in table 6.11.6:

TABLE 6.11.6

Soils	Lead one way haul in feet						
5013	1000	2000	3000	5000	6000	8000	
Moist loam or light sandy clay.	2.75	2.75	3.5	4.5	5.5	6	
Sand & gravel	2.75	2.75	3.5	5	5-5	6	
Good common earth	3	3	3.75	5	6	6.5	
Clay, hard & tough	3.5	3.5	4.5	5.75	7 1	7 -5	
Clay, wet & sticky	4.6	4.6	5.75	7.5	9	10	

Earthwork Rates by Shovels-Rate per CFC

128

6.11.7 Earthwork by Tractor-drawn Scrapers

The excavation and hauling rates of 10/12.5 c. yds. and 15/20 c. yds. scrapers are as per tables 6.11.7 (i) and 6.11.7 (ii) and the average rates are those given in table 6.11.7 (iii), worked out on the basis of outputs shown in tables 6.6.10 (ii)(a) and (b), the hourly rate of tractor scrapers being Rs. 39 and Rs. 49 respectively.

TABLE 6.11.7 (i)

		Lead one way haul in feet							
SI. No.	Soil	500 Rate per CFC	600 Rate per CFC	800 Rate per CFC	1000 Rate per CFC	1200 Rate per CFC	1500 Rate per CFC		
1	2	3	4	5	6	7	8		
1.	Light loam or crumbly soil.	2.05	2.17	2.30	2 •44	2 •79	3 • 25		
2.	Sand & Gravel	2 -05	2 • 17	2 - 30	2 -44	2 •7 9	3 •25		
3.	Good common earth	2 - 17	2 • 30	2 • 44	2.60	2 • 79	3 • 25		
4.	Clay, hard & tough	2 • 17	2.30	2 •44	2 -60	3 .0	3 - 55		
5.	Murum	2.05	2 • 17	2.30	2 •44	2 • 79	3 - 25		
6.	Hard murum	2.30	2 • 44	2 .60	2.60	3.0	3 • 55		
7.	Clay, wet & sticky	2.30	2 •44	2.60	2 •60	3 .0	3 - 55		

Unit Rates of Excavation and Transport by Tractor-drawn 10/12.5 C. yds. Scrapers

TABLE 6. 11.7 (ii)

Unit Rates of Excavation and Transport by Tractor-drawn 15/20 C. yds. Scrapers

Light loam or crumbly soil.	1 .63	1 .75	1 •88	2.04	2.23	2 • 58
Sand & gravel	1 • 58	1 .69	1 -81	1 •96	2 •23	2 • 58
Good common earth.	1 •69	1 .81	1 •96	2.12	2.34	2 •72
Clay, hard & tough	1 •75	1 .88	2.04	2.23	2.34	2 •72
	1 •58	1 •69	1 .81	1 •96	2.23	2.58
	1 • 81	1 .88	2.04	2.23	2.45	2 -88
	2 •06	2.16	2.32	2 42	2.73	3 .22
	crumbly soil. Sand & gravel Good common earth. Clay, hard & tough	crumbly soil. Sand & gravel 1.58 Good common 1.69 earth. Clay, hard & tough 1.75 Murum 1.58 Hard murum 1.81	Light Ioani I ioani I ioani crumbly soil. Sand & gravel 1 ioani I ioani Sand & gravel 1 ioani I ioani I ioani Good common 1 ioani I ioani Clay, hard & tough 1 ioani I ioani I ioani Murum 1 ioani I ioani Hard murum 1 ioani I ioani	Light round 1	LightIoanIIIIIcrumbly soil.Sand & gravel $1 \cdot 58$ $1 \cdot 69$ I 81 I 96 GoodcommonI 69 I 81 I 96 QoodcommonI 69 I 81 I 96 Qood $2 \cdot 12$ Clay, hard & tough $1 \cdot 75$ I 88 2 04 Qood $2 \cdot 23$ MurumI 81 I $1 \cdot 81$ I 88 2 04 Qood $2 \cdot 23$	LightIoanI 60I 60I 60I 60I 60I 60Sand & gravel 1.58 1.69 1.81 1.96 2.23 Goodcommon 1.69 1.81 1.96 2.12 2.34 Clay, hard & tough 1.75 1.88 2.04 2.23 2.34 Murum 1.58 1.69 1.81 1.96 2.23 Hard murum 1.81 1.88 2.04 2.23 2.45

REPORT OF RATES & COSTS COMMITTEE

TABLE 6. 11. 7. (iii)

Average Rate per CFC of Working Tractor Scraper

•								
Sl. No.	Soil	500 Rate per CFC	600 Rate per CFC	800 Rate per CFC	1000 Rate per CFC	1200 Rate per CFC	1500 Rate per CFC	
1.	Light loam or crumbly silt.	1 •84	1 •96	2 .09	2.24	2 01	2 •91	
2.	Sand and gravel	1 .84	1 •93	2.06	2 • 20	2.01	2 •92	
3. (Good common earth.	1 •93	2.06	2.20	2.36	2 •07	2 .99	
4.	Clay, hard & tough	1 •91	2.09	2 • 24	2 • 42	2.17	3 • 14	
5.	Murum	1 •82	1 •93	2.06	2.20	2.51	2 ·9 2	
6.]	Hard murum	2.06	2.16	2.32	2.42	2.73	3.22	
7. (Clay, wet & sticky	2.06	2.16	2.32	2 • 42	2.73	3 · 2 2	

6.11.8 Other Units Assisting Tractor Scraper Operation

A pusher or a rooter will be required to assist excavation when the soil is hard. A rooter is not necessary in light loam, sand and gravel, common earth, but is required in hard and tough clay, murum, hard murum and wet and sticky clay. A pusher is not required in case of light loam and good common earth.

6.11.9 The number of pushers required per scraper is equal to cycle time of pusher/cycle time of scrapers. On an average a pusher tractor is required for four scrapers. The average cost of pushing is equal to the earthwork rate in table 6.11.7 (*iii*) use rate of pusher divided by the number of scrapers a pusher will serve \times the average use-rate of drawn scraper. This amounts to about Rs. 0.4 per CFC.

The average cost of rooting per CFC is about Re. 0.04.

6.11.10 The following table gives the rate per CFC (borrow measure) in different soils of tractor, scraper operation assisted by dozers and rooters where necessary:

TABLE 6.11.10

SI. No.	Soils			Lead one	feet		
	5013	500	600	800	1000	1200	1500
1	2	3	4	5	6	. 7	8
1.	Light loam or crumbly silt.	1 .84	1 .96	2.09	2 • 24	2.00	2 .90
2.	Sand & gravel	2 • 24	2.33	2.46	2.60	2.41	3.32
3.	Good common earth	1 -93	2 .06	2 .20	2.36	2.07	2.99
4.	Clay, hard & tough	2.35	2.53	2.68	2.86	2.61	3 • 58
5.	Murum	2.26	2.37	2.50	2.64	2.95	3.36
6.	Hard murum	2.50	2 .60	2.76	2.86	3.17	3.66
7.	Clay, wet & sticky	2.50	2 .60	2.76	2.86	3.17	3.66

Rates of Earthwork by Tractor-Scrapers

6.11.11 Earthwork by Motor-Scrapers

Rates for excavation and hauling by scrapers of 10/13 and 15/20 c. yds. in different soils are tabulated in tables 6.11.11 (*i*) and (*ii*) and their average in table 6.11.11 (*iii*) using the outputs mentioned in tables 6.6.12 (*ii*) (*a*) and (*b*) hourly rates of Rs. 43 and Rs. 56 respectively.

TABLE 6.11.11 (i)

Sl. No.	C - 'l-	Lead in one way haul in feet							
	Soils	1000	1500	2000	2500	3000	4000	5000	
1	2	3	4	5	6	7	8	9	
1.	Light loam or crumbly silt.	1 .87	2 .05	2.15	2.39	2.53	2.87	3 .31	
2.	Sand & gravel	1 .87	2.05	2.15	2.39	2.53	2.87	3 - 31	
3.	Good common earth	1 -95	2.15	2.26	2.53	2.69	3 .07	3 • 31	
4.	Clay, hard & tough	2.05	2.15	2.26	2.53	2.69	3.07	3 • 31	
5.	Murum	1 .87	2 .05	2.15	2.39	2.53	2.87	3 • 31	
6.	Hard murum	2.05	2.26	2.39	2.69	2 .69	3 •07	3 - 58	
7.	Clay, wet & sticky	2.06	2.26	2.39	2.69	2.69	3 •07	3 • 58	

Unit Rate of Excavation and Hauling by Motor-scraper 10/13 C. yds. Capacity

17CW&PC/63-10

TABLE 6.11.11 (ii)

SI.	Lead in one way haul in feet								
No. Soils	1000	1500	2000	2500	3000	4000	5000		
1 2	3	4	5	6.	7	8	9		
1. Light loam or crumbly silt.	1 • 56	1 •71	1 •87	2.07	2.15	2 • 44	2.80		
Sand & gravel	1.51	1.65	1.81	2.00	2.07	2 .44	2.80		
3. Common earth	1.60	1.75	1.93	2.15	2 .24	2.54	2.94		
4. Clay, hard & tough	1.65	1.81	2.00	2.24	2.33	2.66	2.30		
5. Murum	1.51	1.65	1.81	2.00	2.07	2.44	2.80		
6. Hard murum	1.71	1 •87	2.07	224	2.33	2.66	3.11		
7. Clay, wet & sticky	1.71	1.87	2.07	2.24	2.33	2.66	3.11		

Unit Rate of Excavation and Hauling by Motor-Scraper 15/20 C. yds. Capacity

TABLE 6.11.11 (iii)

		e 1000 per		• · · · · · · · · · · · · · · · · · · ·				
1.	Light loam or crumbly silt.	1 .72	1 •88	2 .01	2 • 23	2.34	2.66	3 -06
2.	Sand & gravel	1 .60	1.86	1.98	2.20	2.30	2.66	3 .06
3.	Common earth	1.73	1.96	2.10	2.34	2.47	2.81	3.13
4.	Clay, hard & tough	1.85	1 .98	2.13	2.39	2.51	2.87	3 .44
5.	Murum	1.69	1.86	1 .98	2.20	2.30	2.66	3.06
6.	Hard Murum	1.83	2.07	2 - 23	2.47	2.51	2.87	3 - 35
7.	Clay, wet & sticky	1.83	2.07	2.23	2 • 47	2.51	2.87	3.35

Average Rate per CFC of Using Motor-Scraper

6.11.12 On an average one pusher tractor is required to assist three scrapers; the share of pusher is about Re. 0.5 per CFC of earth moved. The cost of rooting, where necessary, is about Re. 0.04 per CFC.

The rates per CFC (Borrow measure) for Motor scraper operation in different soils assisted by dozers and rooters where necessary are given below:—

TABLE 6.11.12

SI. No.	Soils	Lead one way haul in feet								
1.01	50113	1000	1500	2000	2500	3000	4000	5000		
1	2	3	4	5	6	7	8	9		
1.	Light loam or crumbly silt	1 .72	1 .86	2.01	2.23	2.34	2.66	3 06		
2.	Sand and gravel	2.19	2·35 ·	2 •48	2 • 70	. 2 -80	3.16	3 • 56		
3.	Good common earth	1 •78	1 .95	· 2 ·10	2.34	2 • 47	2 ·81	3 • 13		
4.	Clay, hard & tough	2 • 39	2.52	2.57	2.93	3 .05	3 •41	3 .93		
5.	Murum	2.23	2.39	2 • 52	2 • 74	, 2 ⋅ 84	3 • 20	3 .60		
6.	Hard murum	2 • 42	2 .61	2.77	3 .01	3.05	3 • 41	3 ·89		
7.	Clay, wet & sticky	2 •42	2 .61	2.77	3.01	3.05	3 •41	3 .89		

Rates for Excavation and Hauling by Motorised Scraper

6.12 CONSOLIDATION OF LOOSE EARTH

6.12.1 Rate for Trimming, Watering and Compaction

The equipment used for trimming, watering and compaction of an earthen bank are tractor-dozers, water sprinkler trucks and rollers or tractor-drawn sheepsfoot rollers. A motor grader is sometimes used in addition to the dozer. In some cases watering is done by manual labour and the quantity of water depends on the job specifications and soil condition. On some projects where heavy scrapers dump the earth on bank, no rollers are used, as the compaction is supposed to be achieved by the weight of the scrapers and other hauling equipment on the bank.

6.12.2 About half-an hour of dozing is necessary for an hourly output of a shovel and the cost of watering is about Re. 0.25 per CFC.

6.12.3 Analysis of Rate of Consolidation

(a) Cost per CFC dozing @ Rs. 38 per hour } Re. 0.38.

			en e
134	Report of r	ates & c	OSTS COMMITTEE
<i>(b)</i>	Cost of Water per CF	⁷ C	Re. 0.25
(c)	Cost of Rolling Output of twin drum sheepsfoot roller for 3" depth layer and 10 passes.		72 CFC per hr.
	Use Rate per hour of D. 4 tractor drum rol Cost per CFC of rolli	ler	Rs. 15.1 Re. 0.21
Abstract			
	per CFC (borrow) Dozing	Rs. 0.38	
	Watering	0.25	
(c)	Compaction	0.21	
	Total	0.84	

6.13 Hydraulic Sluicing

6.13.1 This Chapter will not be complete without a mention of one of the novel methods of moving earth other than those mentioned above. It is hydraulic sluicing.

6.13.2 It is a simple and effective way of moving earth by a stream of water at high pressure through portable nozzles called 'Hydraulic Giants' or 'Monitors' directed at the material. This method is very economic in such situations, as for example a hillside, not connected by haul roads by which earthmoving machines can reach the site.

6.13.3 This method is being effectively employed on the Bhakra Project, where 1,62,400 c. yds. was moved in 255 hours at a cost of Re. -/7/6 per c. yd. inclusive of erection, depreciation and operation charges.

CHAPTER 7

EARTHWORK BY HUMAN LABOUR

7.1 EARTHWORK AND CLASSIFICATION OF SOIL

7.1.1 Earthwork by manual labour is generally confined to a naximum lead of 300 feet except in places where the quantity of work involved is too small to justify the use of the machines. 7.1.2 The classification of soils in an ascending order of effort

s given below (table 7.1.2):-

SI. 10.	Тур	e of Soil	Wt. per cft in borrow (lbs.)	Digging tools used in exca- vation	Local names
1		2	3	4	5
		S	Soil Character	istics	
1.		Silt & sand	90-105	Hand Shovel	Sand, silt, sandy gravel.
2.	Ordinary soil	Top soil	75-100	Hand shovel or spade	Soil, silt.
3.	son	Common earth	90-110		Average loam.
4.		Clay, light	100-115		Clayey and loamy sub-soil.
5.	C	lay, heavy or hard soil	100-125	Pointed pick	Stiff clay, soft murum clay and boulder.
		, i i i i i i i i i i i i i i i i i i i	Rock Characte	eristics	·
6.	Soft rock	· · ·	130-150	Crowbar or wedges	Compact gravel, hard murum, Shale, Schist soft late- rite & disin- tegrated rock.
7.	Hard rock	· · ·	150-190	Blasting	Stone, massive hard rock, abrassive massive rock.

TABLE 7.1.2

REPORT OF RATES & COSTS COMMITTEE

7.2 SCHEDULE OF MANUAL OUTPUT AND RATES

7.2.1 Excavation can be (i) the Surface Digging in which case the depth of cutting is not more than 12", or (ii) the Rough from borrows, *i.e.* cutting hillside or removal of spoil, (iii) Deep Digging exceeding 12" depth and (iv) Trenching in narrow. Rates vary according to the nature of the work involved, but we shall confine our attention here to category (i) which is the most common.

7.2.2 The Table 7.2.2 gives the effort in man-days per CFC of digging and raising spoil from excavation including rough dressing in borrows. The range of excavation rates for various soils is given in col. 4 assuming an average wage rate for unskilled male *mazdoor* and *pro* rata share of the mate at Rs. 1.8 per day.

TABLE 7.2.2

			a ser en ser
Sl. No.	Type of soil	Range of labour effort per CFC (man-days)	Range of rates per CFC (Rs.)
1	2	3	4
1.	Sand and silt	0 • 250 • 4	0 • 450 • 72
2.	Top soil	0.4 -0.6	0 • 72 1 • 08
3.	Common earth	0.5 -0.8	0.9 -1.44
4.	Clay, light	0.7 -1.0	1 • 26 - 1 • 8
51	Clay, heavy	0.85-1.2	1.5 - 2.2
б.	Soft rock	1.42.5	2.5 - 4.5

Digging not Exceeding 3' Depth and Raising of Spoils and Filling in Head-load Baskets or Borrows.

NOTE:-These labours and rates do not include transporting.

136

EARTHWORK BY HUMAN LABOUR

7.3 REMOVAL OF SPOIL

7.3.1 Table 7.3.1 gives the effort needed and rate fixed per CFC of excavated materials by female @ Rs. 1.3 per diem for different leads.

TABLE 7.3.1

Labour Effort Constants in	Man-days and Rates	in Rupees for Removal of Spoil
	per CFC	

	Horizontal distance between	R	emoval of	soil				
Sl. No.		Soil		Roc	k	Remarks		
140.	(CFR unit)	Labour	Rate	Labour	Rate			
1	2	3	4	5	6	7		
1. 2. 3. 4. 5. 6.	·25 ·50 1·0 1·5 2·0 2·5	·13 ·23 ·43 ·63 ·83 1·03	·17 ·30 ·58 ·82 1·08 1·34	·17 ·30 ·59 ·86 1 ·14 1 ·43	·22 ·39 ·77 1·12 1·48 1·86	It is assumed that a person carrying soil can travel 200 ft. per minute and it takes .06 minute to unload a basket. For car- rying rock the speed will be reduced to 150 ft./ min.		

7.3.2 In case when the spoil has to be loaded into baskets from an existing heap and consolidated bank measured, the extra labour to be added would be 0.2 and 0.3 to columns 3 and 5 while 0.26 and 0.39 are to be added to the rates.

7.3.3 Table 7.3.3 gives rates (per CFC) of excavation in muck and over areas for leads between 50'-60' and digging not exceeding 3' depth.

TABLE 7.3.3

Manual Operations

Sl. No.					Range of	Rates at average wages at			
	Type of	SOIL			labour effort (Man-days)	Rs. 1 · 5	1.8	2.1	
1	2			. 3	4	5	6		
1.	Sand and silt	•••			0.48-0.63	0 .72-0 .94	0 .86-1 .13	1 -01-1 -32	
2	Top coil		• • •		0 •63-0 •83	0 •94-1 •25	1 •13-1 •49	1 • 32-1 • 74	
3	Common earth				0 •73-1 •03	1 •09-1 •54	1 •31-1 •85	1 • 53-2 • 10	
4.	Class light		••		0 •93-1 •36	1 • 4 • - 2 • 0 4	1 .63-2 .45	1 .95-2 .85	
5	Class haarn				1.06-1.53	1 .62-2 .29	1 •95-2 •76	2 ·27-3 ·21	
5. 6.	Cuft rook	• • • •			1 .70-2 .8	2 • 55-4 • 20	3 .06-5 .04	3 · 57-5 · 88	

138 • REPORT OF RATES & COSTS COMMITTEE

7.3.4 Combining the two tables 7.2.2 and 7.3.1 we have the two tables 7.3.4 (i) and 7.3.4 (ii) giving fair labour constants and rates for excavation with various leads.

TABLE 7.3.4 (i)

Rates of Earthwork by Manual Labour

S1.	Type of soil		Labour effort in man-days for digging and disposal of spoil for leads							
No.			0 ·25 CFR	0.5 CFR	1 •0 CFR	1 ·5 CFR	2.0 CFR	2.5 CFR		
1	2		3	. 4	5	6	7	8		
1.	Sand and silt	••	0 • 38 - 0 • 53	0 •48-0 •63	0.68-0.83	0 .88-1 .03	1 .08-1 .23	1 • 28 - 1 • 43		
2.	Top soil	••	0 • 53-0 • 73	0 .63-0 .83	0 •83-1 •03	1 .03-1 .23	1 • 23 - 1 • 43	1 •43-1 •63		
3.	Common earth	2. 1 . 1. 1.	0 .63-0 .93	0 •73-1 •03	0 •93-1 •23	1 •13-1 •43	1 • 33-1 • 63	1 • 53-1 • 83		
4.	Clay, light	••	0 •93-1 •33	1 •03-1 •53	1 •23-1 •63	1 •43-1 •83	1 •63-2 •03	1 .83-2 .23		
5.	Clay, heavy	••	1 •13-1 •63	1 •23-1 •73	1 •43-1 •93	1 •63-2 •13	1 .83-2 .33	2.03-2.53		
6.	Soft rock	••	1 • 57-2 • 67	1 •70-2 •80	1 •90-3 •09	2 • 26 - 3 • 36	2 • 54 - 3 • 64	2 .83-3 .93		

TABLE 7.3.4 (ii)

Rates for Earthwork by Manual Labour

Sl.		Type of soil	Rat	Rates of excavation for distances (CFR) from the excavation point									
No.		Type of som	0.2	0.25 0.5			1.0		2.0		2.5		
1		2	3		4	5	, [']	6	7		8		
1	l.	Sand and silt	0 .62-0	•89	0 • 75-1 • 0	1 .03-1	23	1 • 27 - 1 • 47	1 - 53 - 1 -	75	1 .79-2 .00		
2	2.	Top soil	0 .89-1	·25	1.0 -1.4	1 •23-1	68	1 • 47-1 • 90	1 • 73-2	16	2 00-2 42		
1	3.	Common earth.	1 •07-1	•57	1.2 -1.7	1 •48-1	98	1 • 72 • 22	1 .98-2	54	2 • 24-2 • 74		
. 4	4.	Clay, light	1 •43-1	·87	1 • 56-2 • 1	1.84-2	38	2 .08-2 .62	2.34-2	88	2 .60-3 .14		
. 4	5.	Clay, heavy .	. 1.67-2	•37	1 .8 -2 .8	2.08-2	78	2 • 32 - 3 • 02	2 .58-2 .	58	2 • 84-3 • 54		
· · · (6.	Soft rock .	. 2.72-4	72	2 .89-4 .89	3 • 27 - 5	·27	3 .62-5 .62	3 98-5	98	4 • 36-6 • 36		

7.3.5 Average rates for excavation in different soils for a lead between 500/60' and 3' depth would be as under (Table 7.3.5). The rates are primary.

SI. No.	Тур	e of s	bil		Average rates dig- ging 3' depth and lead 50'-60' Rs. per CFC	Remarks		
1			2			3	4	
1.	Sand and silt	nd silt			•••	0.87	For every extra lead of 50' add Re. 0.25	
2.	Top soil		••			1.20	0.25	
3.	Common earth		••	••	••	1.45		
4.	Clay, light	• •	• •	••		1.83		
5.	Clay, heavy					2.30		

TABLE 7.3.5

7.4 EXCAVATION RATES AND OUTPUT (MANUAL) FROM PROJECTS

7.4.1 The excavation rates have been tabulated below for different types of soils for $\cdot 50$ to $\cdot 60$ CFR lead and digging not exceeding 3' Rates have been obtained from applicable sanctioned schedule of rates or from observed recorded data.

7.4.2 Sanctioned rates of digging and disposal of spoil up to 60' lead and depth of excavation not exceeding 3' in various soils have been tabulated for a few projects.

TABLE 7.4.2 (4)

SI. No.	Name of Proj	ect		Rate Rs. per CFC	Man-days per CFC	Weighted average wage rate	- ·
1	2		<u></u>	3	4	5	6
1.	Nangal	••	••	1 •22	0.57	2 .3	Rate as per table 7.3.4 (ii)=Re. 0.75 to 1.00
2. 3.	Gangapur Lower Bhawani	•••	••	0 ·86 0 ·73	0 ·53 0 ·58	1 ·3 1 ·25	
4. 5.	Malampuzha Pecchi	••	••	0 ·80 0 ·98	0 ·66 0 ·67	1 ·21 1 ·46	

Excavation by Manual Labour (Type of Soil : Silt and Sand) .

TABLE 7.4.2 (ii)

Excavation by Manual Labour (Type of Soil : Common Earth)

Sl. No.	Name of Project	Rate Rs. per CFC	Weighted average wage rate	Man-days per CFC		Remarks
1	2	3	4	5		6
1.	Nangal	1 •49	0.70	2.125	Lead	Rates as per table 7.3.4 (<i>ii</i>) =Rs.1 \cdot 20 -1 \cdot 7
2.	Sarda Sagar	2.00	1 • 14	1 • 75		Converted to 60' lead and 3' ift
		1 .56	0.89		100' lead	· · · · · · · · · · · · · · · · · · ·
3.	Matatila	1.6	1 .097	1 •46	5' Lift 109' Le 5' Lift	ad -do-
		1.2	0.82		5 Ent	
4.	Chambal (Raj.) (Kotah)	2.0	1 .37	1.46		
5.	Gangapur	$ \begin{array}{r} 1 \cdot 7 \\ 1 \cdot 22 \end{array} $	1 ·16 0 ·73	1 •625	60' Lead 3' Lift	1
6. 7. 8.	Lower Bhawani Malampuzha Peechi	1 ·00 1 ·09 1 ·20	0 ·80 0 ·90 0 ·83	1 ·25 1 ·21 1 ·46	37 37 37 77	

TABLE 7.4.2 (iii)

Excavation by Manual Labour (Type of Soil : Clay, Light)

SI. N No.	ame of Project		Rate Rs. per CFC	Man-da per CFC	Weighted erage wa rate		Remarks
1	2		3	4	 5		6
1. Chambal (Kotah)		••	2.30	1.57	1·46 60		Rates as per table 7.4.2 (<i>ii</i>) = Rs. 1 .56-2.1
			2.00	1 • 37	100 5'	' Lead Lift	Converted 10 60' lead and 3' lift

ġ.

1	2		3	4		5	6
2.	Hirakud	••	2.03	1 • 39	1 •46	60' Lead 5' Lift	
		-	1.81	1 .24			
3.	Tungabhadra (Hyd.)	••	1 .93	1 .57	1 •23	60' Lead	
		_	1.85	1.5		3' Lift 50' Lead	Converted to
4.	Peechi	••	1 • 54	1 .05	1 •46	5' Lift 60' Lead	60' Lead and 3' lift
5.	Lower Bhawani	••	1 •27	1.02	1 •25	5' Lift Lift	

TABLE 7.4.2 (iii)-contd.

TABLE	7.4.2	(iv)
-------	-------	------

Excavation by Manual Labour (Type of Soil : Clay, Heavy)

Sl. No.	Name of Project		Rate Rs. per CFC	Man-days per CFC	Weighted average wage rate	Remarks
1	2		3	4	5	6
1.	Matatila	÷	2.3	1 •57	Lead 1 • 46	Rates as per table 7.4.3 (ii) =Rs. 1 .8 to 2 .8
			1.9	1 ·30	100' Lead	
					5' Lift	Converted to 60' lead and 3' lift.
2.	Chambal (Raj.) Kotah	••	2.8	1 .92	1 •46	
		·	2.5	1.71	100' Lead 5' Lift	
3.	Hirakud	••	2.5	1.71	1.46	
			2 . 28	1 .56	100' Lead 5' Lift	-do-
4.	Tungabhadra (And.)	••	2.12	1.93	1·10	
5.	Tungabhadra (Hyd.)	••	2 • 19	1 .78	1.23 50' Lead	-do-
6.	Malampuzha	••	2 ·11 1 ·89	1 ·71 1 ·56		

.

TABLE 7.4.2 (v)

Excavation by Manual Labour (Type of Soil : Hard Gravelly Soil)

Sl. No.	Name of Project	Rate Rs. per CFC	Man-days per CFC	Weighted average wage rate	Remarks
1	2	3	4	5	6
1.	Nangal	3 . 14	1 .48	2.125 Lead	
2.	Sarda Hydel	3.00	1.71	1.75	
		2.56	1 •46	100' Lead 5' Lift	Converted to 60' lead and 3 lift
3.	Matatila	3.00	2.06	1 •46	
		2.6	1 .78	100' Lead 5' Lift	-do-
4.	Hirakud	3.00	2.05	1.46	
		2.78	1 .90	100' Lead 5' Lift	
5.	Tungabhadra (Andhra)	2.60	2.36	1.10 60' Lead	
6.	Tungabhadra (Hyd.)	2.25	1.83	5' Lift 1.23	da
7. 8.	Malampuzha Peechi	$2 \cdot 17$ 2 \cdot 14 2 \cdot 18	1 ·76 1 ·77 1 ·49	50' Lead 5' Lift 1 ·21 \ 60' Lead 1 ·46 \ 3' Lift	-do-

TABLE 7.4.2 (vi)

Excavation by Manual Labour (Type of Soil : Soft Rock)

Sl. No.	Name of Project	Rate Rs. per CFC	Man-days per CFC		Weighted average wa rate	
1	2	3	4	· · · · · · · · · · · · · · · · · · ·	5	6
1.	Chambal (Raj.) Kotah	2.93	2.00	1 .46		
		2.43	1.67		100' Lead 5' Lift	Converted to 6' lead and 3' lift
2.	Mayurakshi	4.00	2.04	1.96		
		3 .40	1 .74		100' Lead 5' Lift	-do-

EARTHWORK BY HUMAN LABOUR

1	2		3	4		5	6
3.	Hirakud	• •	4.5	3.08	1 • 46		
		-	4 ·28	2 .93		100' Lead	Converted to
4. 5.	Gangapur Tungabhadra (Andhra)	•••	3 ·36 3 ·00	2 ·07 2 ·73	1 ∙625 1 •10	5' Lift	60' lead and 3' lift
6.	Tungabhadra (Hyd.)	•••	3.32	2.70	1 • 23		
		-	3 .24	2.63		50' Lead	-do-
7. 8. 9.	Lower Bhawani Malampuzha Peechi	•••	2 •44 2 •89 3 •68	1 ·95 2 ·39 2 ·52	1 ·25 1 ·21 1 ·46	5' Lift	•

TABLE 7.4.2 (vi)-contd.

7.5. HAND SHOVELLING

7.5.1. The cost of hand shovelling depends upon the kind of material, lift, kind of shovel, and the skill and inclination of the workmen. All materials that can be shovelled either while loading or unloading should be measured and rated in CFC units for these functions. The range of output and average rates are given in Table 7.5.1. Rates for carriage should, however, be paid per ton on large works where arrangements for weighing trucks ought to be made.

TABLE 7.5.1.

Shovelling of Materials (loading & unloading)
(Daily weighted wage rate= $Rs. 2.0$)

Kind of material			Truck to	nloading rat ground or s to stack		Ground t	g Rates o truck agon
			Output per man Range	Output per shift Average (CFC)	Rates per CFC	Rates for lifts up to 4' per CFC	Rates for lifts 4'6' per CFC
1.	·····		2	3	4	5	6
Cinders	•••		-4-6	5	0.4	0.5	0.6
Sand or Surkhi	••	••	3-5	4	0.5	0.6	0.7
Soil heaps	••	••	3-4	3.5	0.6	0.7	0.8
Gravel	••	• •	2 • 5 - 3 • 5	3	0.7	0.8	0.9
Crushed stone in stacks	••	••	2-3	2.5	0.8	0 • 9	1.0

7.5.2 Illustrative Example

Determine cost for unloading bankrum gravel from Railway wagon to platform.

Volume of gravel in CFC units	= 5
Rate per CFC for unloading	= Re. 0.7
(Col. 4) Rate for unloading gravel per wagon	= Rs. 3.5

REPORT OF RATES & COSTS COMMITTEE

7.6 TRANSPORT BY DONKEYS OR MULES

7.6.1 Donkeys or mules are often employed in transporting materials particularly in hauling dirt. Average rate of travel for these animals working over a shift of eight hours may be reckoned as 3 miles (16,000') an hour approximately. Load carried is usually one cu. ft. and the hire charge inclusive of the attendant labour is Rs. 2/8 per day-6 animals usually requiring one donkeyman and two assistant boys. The rate of haulage can now be derived for varying leads (Table 7.6.1.)

TABLE 7.6.1

Loading and unloading time-2.0 minutes.

Y		Tin	ne taken per tri	P	NTo of	Rate per
Lead	ſ	Haulage (min.)	Loading & unloading (min.)	Total (min.)	No. of trips per day	CFC (Rs.)
 . 1		2	3	4	5	6
 200		1 .50	2.0	3.5	137	1 -8
300		2.25	2.0	4.25	113	2.1
400		3.0	2.0	5.0	96	2.6
500		3.75	2.0	5.75	.84	3.0
600		4.5	2.0	6.50	74	3 - 4
700		5.25	2.0	7.25	66	3.8
800	1.5	6.0	2.0	8.0	60	4 • 2
900		6.75	2.0	8.75	55	4.6
1000		7.50	2.0	9.50	50	5.0
1500	ан ал Ал ал	10.25	2.0	12.25	39	6.4
2000		15.00	2.0	17.0	28	8.9
2500		18.75	2.0	20.75	23	10.8

7.7 CLEARING JUNGLE

7.7.1. Rates for light and thick jungle clearance with and without rooting out by manual labour are given in Table 7.7.1.

TABLE 7.7.1

Analysis and Schedule of Rates for clearing Site by Manual Labour

Item	Unit	No. of Labour	Rate (Rs.)	Per	Amount (Rs.)	Rate per Acre (Rs.)
Clearing scrub jungle without rooting out.	MFS	1	1 .8	each	1 .8	78
Clearing scrub jungle including rooting out. Clearing light jungle	· · · · ·	2	1.8	each	3 - 3	157
without rooting out. Clearing light jungle	,,	2	1 • 8	each	3.6	157
including rooting out. Clearing heavy jungle	**	4	1.8	each	7 • 2	314
without rooting out. Clearing heavy jungle	s 5 5	4	1.8	each	7 • 2	324
including rooting out. Clearing thickly wood- ed and thorny jungle		8	1.8	each	14·4	627
including rooting out.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	9	1 .8	each	16.2	706

CHAPTER 8

TRANSPORT

8.1 TRANSPORTING MATERIALS OF CONSTRUCTION

8.1.1 Transportation figures practically occur in all items of construction and very often these account for a large portion of the total cost. Some of the important means of transport which are in use on the projects are bullock carts, petrol and diesel trucks, tip wagons on trolly line pushed by hand or pulled by a steam or a diesel locomotive, dumpers, belt conveyors and ropeways. Transports by men or by donkeys have been discussed in the preceding chapter.

8.1.2 In transporting materials the operations invloved are loading, carriage, and unloading at the delivery point. Stacking is excluded from the present study.

8.2 WEIGHTS OF PRINCIPAL CONSTRUCTION MATERIALS

8.2.1 The weights of principal construction materials are given in the engineering data books but weights for some local materials are recorded here (table 8.2.1.) and these would be utilised in our studies for transporting them.

	Nature of materials		We	Dementer	
Sl. No.	Nature of materials		Lbs. per CFC	Remarks	
1	. 2		· 3	4	5
1. 2. 3. 4. 5. 6. 7.	Quarried and crushed stone— (i) Lime stone	· · · · · · · · · · ·	80 92 95 100 94 90 60 30 72	$3 \cdot 57 4 \cdot 11 4 \cdot 24 4 \cdot 46 4 \cdot 20 4 \cdot 02 2 \cdot 68 1 \cdot 34 3 \cdot 21 $	The data given is based on 45% voids.
8.	Timber (i) Deodar (ii) Teak' (iii) Sal	•••	36 45 47	1 ·6 2 ·0 2 ·1	

Weights of Local Structural Materials

TABLE 8.2.1.--contd.

Bricks

Sl. No.	Size o	f Bricks		Weigi 1000 (ton	Nos.	No. cf bricks per tons	* •	Rem	ar k s
1	2	,			3	4	· · · ·		5
9. 9"×4 ¥	×2 3″		· · · · · · · · · · · · · · · · · · ·		3.21	313			
10. 9"×4 1	· · · · ·	•• ••			1.57	637			
11. 12"×6	• · · · ·				4.46	224	É.		
12. 10"×5"	'×2] "	••		• - 2	3.88	258		see fe	
13. 10°×4	-				4.16	240)		

8.3 COST OF CARRIAGE BY CARTS

8.3.1 There are many types of carts in the country varying in their capacity and their rates of hire vary from Rs. 2/8/- to Rs. 6/10/- including labour charges of the driver, average being Rs. 5/-. Table 8.3.1. gives the rates prevalent in various localities,

TABLE 8.3.1

Station State	Daily hire rate
1 2	3
Gangapur Bombay	4/8/- to 6/-/-
Tungabhadra Madras	5/8/-
Chambal Madhya Bharat	7/-/*
Hirakud Orissa	4/8/-
Bhakra-Nangal Punjab	6/-/-
Konar D.V.C.	6/10/-
Rihand U.P.	4/8/- to 5/8/-
Madhya Bharat	3/8/- to 4/8/-
Ahmed Nagar Divn Bombay	4/8/-
Ghataprabha Divn Bombay	5/-/- to 6/-/-
Trinulvali Divn Madras	5/-/-
Jabalpur Circle Madhya Pradesh	2/8/- to 4/-/-
Berar and Nagpur Circle Madhya Pradesh	3/-/-/ 10 5/1/-

Hire Rates of Carts per day (With Attendant and a Pair of bullocks)

TRANSPORT

8.3.2 Table 8.3.2 is extracted from C.P.W.D., schedule (1950 publication) for carriage by *Thelas*. These *Thelas* are big 4-wheeled carts pulled by a strong pair of bullocks and carry considerably more load than the usual bullock carts. The hire rate is Rs. 12/-/- per day.

TABLE 8.3.2

Lead in Miles	Number of trips per 8 hours	Cost per trips	Remarks
1	2	3	4
1	6 •96		
1	5 • 16	2/5/3	
11/2	4 • 10	2/14/10	1. Number of trips N = tr ps per 8 hours.
2	3 •40	3/8/6	$N = \frac{8}{2L}$
2 <u>4</u>	2.91,	4/2/-	$\frac{22}{S}$ + 4
3	2 • 54	4/11/7	where \dot{L} = Lead in miles, S = Speed in miles per hour and hours is allowed for loading and unloading.
3 1	2 • 25	5/5/4	
4	2.03	5/14/7	2. Speed assumed 2½ miles pe hour.
4 <u>1</u>	1.84	6/8/4	3. Bullock cart charge @ Rs. 12 per 8- hour day.
	1 .68	7/2/3	
$5\frac{1}{2}$	1 -55	7/11/1	
6	1 •44	8/5/4	

Handling and Transporting Materials (Carriage by Carts)

-

47CW&PC/63-11

.

,

8.3.3. Based on the capacity of these *Thelas* and the above Table the derived rates are given over various leads (Table 8.3.3.). The carriage rates are primary and the units of measure differ with nature of materials. Rates can be worked out similarly for smaller sizes of carts and their hire rates.

<u> </u>	T. 1 0			Mater	ials .		
SI. No.	Lead Cost p in Miles trip		Bricks	Cement, Steel, C.I. Pipes and other heavy materials	Timber	Tar, Bitumen	Coal
C	apacity per trip	33] FC	500 Nos.	1 •5 Ton	50 FC	1 <u>1</u> Ton	Ton
	Unit of Rate	CFC	1000 Nos	. Ton	CFC	Ton	Ton
1	2 3	4	5	6	7	8	9
1.	$\frac{1}{2}$ 1/11/7	5/3	3/7.	1/2:	3/7	1/2	1/12
2.	1 2/5/3	7/-	4/11	1/9	4/11	1/9	2/5
3.	$1\frac{1}{2}$ 2/14/1	0 8/13	5/14	1/15	5/14	1/15	2/15
4.	2 3/8/6	10/10	7/1	2/6	7/1	2/6	3/9
5.	$2\frac{1}{2}$ 4/2	12/6	8/4	2/12	8/4	2/12	4/2
6.	3 4/11/7	14/3	9/7	3/2	9/7	3/2	4/12
7.	Above 3 miles per $\frac{1}{2}$ mile $-/9/8$	1/13	1/3	-/6/-	1/3	-/6/-	-/10/-

TABLE 8.3.3

8.3.4 Transport by hand-pushed trolley on rails is often made use of on large projects. The rate for hauling 100 cubic feet of soil usually comes to Rs. 1/8/- per mile exclusive of the cost of tools and plant.

8.4 TRANSPORTING MATERIALS BY MOTOR TRUCKS

8.4.1 Reference was made to State to supply approved freight rates by motor trucks both per ton and per truck per mile. The data

TRANSPORT

collected is tabulated in Table 8.4.1 Rates differ with type of roads which are classed as under :---

Type A roads	=	Cemented, tarred, asphalted or metalled.
Type B roads	=	Gravel or Kankar roads.
Type C roads		Fair weather tracks.

TABLE 8.4.1

👘 Handling	and	Transporting	Materials	over	Long	Distances	
		(5 Ton Lorr	ies—155"	Base) -		

÷

.

	Υ. Υ.					
SI. No.	Source of data	Class of roads	Freight per ton per mile	Freight rate per- truck per mile in- cluding opera tion labo 5 tons		
1	2	3	4	5		
1.	Transport Commissioner, U.P.	A B	0-4-8 0-7-9	1/1/6 (loaded) -/12/6 (empty) (b) 1/4/-		
2.	State Motor Transport Controller, Delhi	А	0-9-4	1/4/-		
	2			1		
3.	Transport Commissioner, Rajasthan, Jaipur.	A B C	0-7-0 0-8-2 0-11-8			
4.	G. M. Bombay State Road Transport Corporation.	A	0-8-0	-/11/90 (3% more on rough road.)		
5.	Secretary, Transport Deptt. East Punjab.	A B	0-7-0 0-9-4	1/4/- 1/6/-		
6.	State Transport Commissioner, Bihar.	A B	0-4-8 0-6-0	-/12/- -/12/-		
.7	Secretary, State Transport Authority, Bombay.		0-8-0	(b) 1/-/-		
8.	Secretary, State Transport Authority, Madhya Pradesh.	Α	0-14-0 (Ceiling)	. 1/-/-		
9.	Director, Transport Department, Tra- vancore-Cochin	A C	0-6-6 (Ghat Section	1/8/- 2/		

Note :- The rates are for long distances and do not include any charge for empty journey but include loading and unloading.

8.4.2 Cost of Transport by Petrol Trucks (5-Ton) Variable per mile :		
(a) Cost of truck exclusive of tyres and tubes Repair charges @ 60% over life-time	Rs. Rs.	17,500 10,500
Life of Truck : 10,000 hours Assuming average speed over life-time of 15 m.p.h. Life in miles : 1,50,000	Rs.	28,000
: Depreciation and repairs per mile	Re.	0.187 (a)
 (b) Cost of six tyres and tubes @ Rs. 325/- for each set. Repairs and casualties @ 20% 	Rs. Rs.	1,950 390
Total	Rs.	2,340
Life of tyres and tubes assumed to be 15,000 miles.		
Cost of tyres and tubes per mile 1	Re.	0.156 (b)
Total ownership cost	Re.	0.343
 (c) Cost of operation materials per mile— (i) Petrol with consumption of 8 miles per gallon on the average and cost 		
Rs. 2/8 per gallon. (<i>ii</i>) Mobil oil with consumption of one gallon for every 400 miles on the	Re.	0.350
average and cost Rs. 5/8 per gal. (<i>iii</i>) Other oils and stores say equal to	Re.	0.015
(b).	Re.	0.015
Total cost of operation materials per mile.		
Total $a+b+c=$ Re. 0.723 per mile Constants per day of 8 hours :	Re.	0.380 (c)
(d) Cost of staff per day of 8 working hours including allowance for idle days.		
Driver @ Rs. 4/8/- per day Cleaner @ Rs. 2/-/- per day	Rs. Rs.	4.5 2.0
Sub-total Add 25% for idle days	Rs. Rs.	6.5 1.51
Total (e) Cost of labour per day of 8 working hours	Rs.	8.01
for loading and unloading. 6 male mazdoors @ Rs. 1.75	Rs.	10.50

150 REPORT OF RATES & COSTS COMMITTEE 8.4.2 Cost of Transport by Petrol Trucks (5-Ton)

TRANSPORT

 (f) Taxes and Insurance etc. per (i) Road Tax (varying for (ii) Insurance (iii) Driver's licence fee 	each St	_ ate) 	Rs. Rs. Rs.	300 250 10
· · ·	Fotal		Rs.	560
Assuming 250 working days cost per day. Total $d+e+f$	in a ye	ear, 	- Rs. Rs.	2.24 20.75

8.4.3. Based on the above data cost of transport of materials for various leads is given in Table 8.4.3.

TABLE 8.4.3.

Lead in Miles	Cost of variables (a+b+c= Re. 0.723 per		Number of trips per day	Rs. 20 ·75 per trip	mile round	Capacity per trip	Primary rate per CFC
	mile) per round trip	of 8 hours		(col. 3÷4) (trip cols. 2+5)		Rs.
1	2	3	4	5	6	7	8
				Rubble Stor	ne		
1.	1 •446	20 .75	8	2 • 594	4 ∙040	CFC	4 ·0
[.] 2.	2.892	20.75	8	2 • 594	5 •486	CFC	5.5
3.	4 ·338	و. 20.75	· · 7	2 •964	7 • 302	CFC	7.3
				Bricks			
							rimary rate 1000 Nos.
1.	1 •446	20.75	8	2 • 594	4 ∙040	1250 No.	3 .02
2.	· 2 ·892	20.75	8	2 • 594	5 •486	1250 No.	4 • 4
3.	4 • 338	20 .75	7	2 •964	7 • 302	1250 No.	5.8
			Fine and	Coarse Agg	regates	P	rimary rate per CFC
1.	1 •446	20.75	7	2 •964	4 · 410	CFC	4 • 4
2.	2.892	20.75	7	2 •964	5 •856	CFC	5.9
3.	4.338	20.75	6	3 •458	7 •796	CFC	7 ·8

Cost	of	Transport	by	Petrol	Trucks	(5- <i>Ton</i>)
------	----	-----------	----	--------	--------	------------------

NOTE :--1. Rates include cost of labour for loading & unloading.
2. Rates are applicable to type 'A' roads—cemented, oil bound and good metalled roads.
3. Add to the above 15, 20, 30% for class B, C & D type roads respectively.

TYPE:--B. Gravel, kankar and murum roads.C. Rough metal roads.D. Soft roads.

152 REPORT OF RATES & COSTS COMMITTEE

8.4.4. Cost of Transport by Diesel Trucks (5-Ton)

Analysis of rates for transport by 5-Ton Diesel Truck is given below :--

Variables per mile

iables	per mile			
(a)	Cost of truck exclusive of tyres and tubes	Rs.	23,000	
	Repair charges @ 60% over life-time	Rs.	13,800	
	Total	Rs.	36,800	
	Life : 12,000 hours			
	Assuming average speed over life-time of 15 m.p.h.			
	Life in miles : 1,80,000			
•	.Depreciation per mile	Re.	0.204	(a)
<i>(b)</i>	Cost of six tyres and tubes @			
	Rs. 325/- per set. Repairs and casualties @ 20%	Rs. Rs.	1,950 390	
	Total	Rs.	2,340	
	Life of tyres and tubes assumed to be 15,000 miles.			
•	Cost per mile	Re.	0.156	(b)
	Total ownership cost per mile	Re.	0.36	
(<i>c</i>)	Cost of operation materials per mile			
	(i) Diesel with consumption of 10 miles per gallon on the average and cost Rs. 1/8/- per gallon.	Re.	0.150	
	(ii) Mobil oil with consumption of one gallon per every 300 miles on the average and cost Rs. 5/8 per gallon	Re.	0.019	
	and the cool rest of o per Salloll	170.	0 012	

TRANSPORT

.

(iii) Oth (b)	er oils and stores say equal to per mile.	Re.	0.019
	Total cost of operation materials per mile.	Re.	0.188 (c)
	Total $a+b+c=$ Re. 0.548 per m	ile.	

Constants per day of 8 hours

(d)	Cost of staff per day of 8 world including allowance for idle	king ho e days	ours S	•	
	Driver @ Rs. 4/8/- per day Cleaner @ Rs. 2/- per day	• •	•••	Rs. Rs.	4.5 2.0
	Sub-Total	·••	••	Rs.	6.5
	Add 25% for idle days	••	•••	Rs.	1.51
	Total	••	• •	Rs.	8.01 (d
(e)	Cost of labour per day of 8 wor for loading & unloading.	king h	ours		
	6 male mazdoors .@ Rs. 1.75	••	••	Rs.	10.50 (e)
(f)	Taxes and Insurance etc. per	year—			
	(i) Road Tax	••	••	Rs.	300*
	(ii) Insurance		••	Rs.	250
	(iii) Driver's licence fee	• •	••	Rs.	10
	Total	• •	•••	Rs.	560
	Assuming 250 working days i cost per day.	in a ye	ear,	Rs.	2.24 (f)
	Total $d+e+f=Rs$. 20).75			

*This figure varies from State to State.

8.4.5. Based on the above data costs per unit of materials is given in Table 8.4.5.

TABLE 8.4.5

Lead in miles	Cost of variables (a+b+c= Re. 0.548 per mile) per round trip	Cost of cons- tants (d+e+f =Rs. 20.75) per day of 8 hours	Number of trips per day	$(col. 3 \div 4)$	Total cost per mile per round trip (cols. 2+5)	Capacity per trip	Primary rate per CFC Rs.
1	2	3	4	5	6	7	8
			Dub	ble Stone			111
		00 7 7					
1.	1.096	20.75	8 (* 1977) 1	2 • 594	3.690	CFC	3.7
2.	2 • 192	20.75	8	2.594	4.786	CFC	4.8
3.	3 • 288	20.75	7	2 • 964	6 • 252	CFC	6.3
			Brick.	7	an a		
				2			Primary rate per 1000 Nos
1.	1.396	20.75	8	2 • 594	3.690	1250	3.0
2.	2.192	20.75	8	2 • 594	4 • 786	1250	3.8
3.	3 • 288	20.75	⊾7	2 • 964	6.252	1250	5.0
		Fit	ie and Co	oarse Aggre	gates		
							Primary rate pe CFC
1.	1.096	20.75	7	2 • 964	4·060	CFC	4.1
2.	2.192	20.75	7	2 • 964	5.156	CFC	5.2
3.	3 • 288	20.75	6	3 • 458	6 • 746	CFC	6.7
	2. Rates ard 3. Add to t :B. Gravel,	clude cost of labour e applicable to type he above 15, 20 and kankar and murum netal roads.	'A' roads—c i 30 % for cl	emented oil	ound and a	ood metalled respectivelly.	roads.

Cost of Transport by Diesel Trucks (5-Ton)

TRANSPORT

8.5. FREIGHT RATES BY TRUCKS OVER PROJECTS

8.5.1. Study of freight rates over the projects is limited to a few projects only. The data given in Table 8.5.1. is for the different materials of construction over various leads.

TABLE 8.5.1.

SI. No.	Name of						Lead	in mil	es			
NO.	Project			1	2	3	4	5	6	7	8	9
1	2		3	4	5	6 :	7	8	9	10	11	12
					Rubbl	e Stone	e per C	CFC				
1.	Nangal	••		6.5	—		_					
2.	Sarda Hydel	••		6 - 0								
3.	Matatila	•••		5•0	9.0	12.0	15 ·0	17 ·0	19 •0	21 ·0	23 ·0	25 ·0
4.	Mayurakshi	••	5.0	8.0	10 · 0	11 •9	13 .9	15.9	17 •9	19 •9	21 •8	23 ·8
5.	Hirakud	••		8 •0	10 •0	12 •0	13.5	15 ·0	16.5	18 ·0	19 • 5	21 .0
6.	Gangapur	••	7 ∙ 0		8 •9		_	_			·	
7.	Kakrapar	••	7 ·0	.*			 ;					
8.	Vaitarni	••	3 • 8	5.7								
9.	Lower Bhawani	••	4 ·4	5.9	8 ·9	11 •9	14 •9	1 7 •9	20 ·9	23 •9	26 •9	29 ∙0
10.	Malampuzha	••	<u> </u>	12.0				_				
11.	Peechi	••		3 • 10	. —						—	
12.	Perinchani	••	2.6				<u> </u>					
				Balla	st or .	Aggreg	ate per	CFC				
1.	Sarda Hydel	••	-					11.5				
2.	Matatila	••		5•0	9.0	12.0	15 ·0	17 •0	19 •0	21 •0	23 •0	25.0
3,	Mayurakshi	••		8 • 3	10 •4	12•5	14 •6	16 • 8		-	 	 • .
4.	Hirakud			8 ∙ 0	10 ·0	12.0	13 • 5	15 ·0	16 • 5	18 ·0	19 •5	21-0

Freight Rates for Different Materials in Rupees

REPORT OF RATES & COSTS COMMITTEE

TABLE 8.5.1.-contd.

1.	2		3	4	5	6	7	8		10	11	1
						:						
			В	allast	or Agg	gregate	per Cl	FCcc	ontd.			
5.	Gangapur				8.9		· · · · ·				· · · · ·	
6.	Kakrapar	• •		·		14.0						
7.	Bhadra	••		8.8	13 ·0	16.6	20.3	24.0	27.7	31 - 4	35.1	38 -
8.	Lower Bhawani	••.	4.4	5.9	8.9	11 -9	14 • 9	17 _. •9	20.9	23.9	26.9	29 -9
9.	Malampuzha	••		8.8	•	· · · · ·					· · · ·	
10.	Peechi	•••		3 • 1				· 			<u> </u>	
11.	Perinchani	••	2.6	<u> </u>		· 		· · · - ·				·.·
				Sa	nd, Shi	ingle a	nd Surl	khi pe r	CFC			
1 . ,	Nangal	••			9 • 4	13.6	15.0		-	19.3	21.0	
2.	Satda Hydel	••						11.5				· · · ·
3.	Matatila	• •	· . <u></u> .]	5.0	9 •0	12.0	15.0	17.0	19 ·0	21.0	23.0	25 (
4.	Gandhi Sagar	••						· · ·	9.8		· . ·	
5.	Hirakud	2 •••		8.0	10.0	12.0	13.5	15.0	16.5	18.0	19 • 5	21.0
6.	Gangapur	••		4.•7	8.0			-			·	: ·
7.	Kakrapar*	•••		7.0		11.0		· · · ·			<u> </u>	
						to 15 •0						
8.	Lower Bhawani	•	4.4	5.4	7.4	9.5	11 • 4	13.4	15.4	17.4	19.4	21 •4
9.	Malampuzha			·	· · · · ·				6.4			
10.	Pcechi	••	· · · ·		. > <u> </u>			17.4				
11.	Perinchani	• •					8.5					·
						· · · ·						
					Brick	s per	1000 A	los.				
1.	Nangal			5.5								
2.	Sarda Hydel			-				11.0				
3.	Matatila	•••		5.0	9.0	12.0	15.0	17-0	19.0	21-0	23.0	25-0
4.	Mayurakshi	••	· · · · ·	8.0		13.0		17-0	19.0	21.0	23.0	25.0
5.	Hirakud .	•••		8.0	10.0		13.5	15.0	16.5	18.0	19.5	21-0
6.			3.5	4.3	5.8	7.3		10.3	11.8	13.3	14.8	
•25					- ~	• •			4 E Q	1. J. J.	1 7 0	10.3

156

T	ABLI	58	۰5	•1	coi	nci	d.
---	------	----	----	----	-----	-----	----

i	2		3 .	4	5	6	. 7	8	9	10	.11	12
	Cement per Ton											
1	No 2001			1.0		•	101					• . •
1.	Nangal	••		1.0	1.9	2.6			4·2			
2.	Sarda Hydel	••	<u>.</u>				2.8					·
3.	Matatila	••			5.0							^
4.	Gandhi Sagar	••					1.13			13 ·6 f	or 30 1	niles
5.	Mayurakshi	•••	·	2.0	2.5	3.0	4 ∙ 0	4 • 5	5.0	5.5	6·0	
6.	Hirakud	••		2.0	2.75	3.5	4.0	4.5	5.0	5.•5	6.0	6.5
7.	Gangapur	••				—.		10 • 5	for 15	miles		
8.	Kakrapar	, .	 .		1 •9	 						
9.	Lower Bhawani	••	1 •1	1 •4	1.9	2 •4	2.9	3.4	3.9	4 • 4	4.9	5 • 4
10.	Malampuzha	••							10 •4	for 29	miles	
11.	Perinchani	••				_		64 · 1	for 130	miles		
					Stee	el per I	on					. •
1.	Nangal	••		1*•2	1 •9						·	
2.	Sarda Hydel	••					3 •7	_				
3.	Mayurakshi	••		3.0	3.5	4.0	4.5	5-0	5-5	6.0	6 •5	7-0
4.	Hirakud	••		2.0	2.75	3.5	4 ∙ 0	4.5	5.0	5 • 5	6 •0	6.5
5.	Lower Bhawani	••	1 •9	2.5	3.6	4.6	5.7	6 ·7	7 ·8	8 •9	9.9	10 -9
	·····			<u></u>					•			

8.6. TRANSPORT BY STEAM LOCO AND DIESEL LOCO

8.6.1. The excavated soil from the foundation was transported by Steam & Diesel Locos in Tungabhadra and Sarda Hydel Projects. The rates as observed in respective cases are as follows, which are inclusive of loading and unloading charges.

Steam Loco

Sarda Hydel : Rs. 1.0 to 1.25 per CFC per mile. Tungabhadra (Andhra) : Rs. 2.0 per CFC per mile. Diesel Loco

Sarda Hydel : Re. 0.75 to 1.0 per mile per CFC Tungabhadra (Andhra) : Rs. 1.60 per mile per CFC

In the case of Sarda Hydel Project the rates do not include the share of laying and maintaining the track and Rolling Stock whereas in the case of Tungabhadra rates are inclusive of those charges. Rates as observed at Tungabhadra are workable. The full details as observed in Tungabhadra are given in Appendix 5.

8.6.2. The rates of transport of materials will vary with nature of the materials and their weight. Generally most of the materials could be transported at Re. 0.40 to 0.45 per ton per mile by Steam Loco, and Re. 0.36 to 0.40 per ton per mile by Diesel Loco.

8.7. HANDLING OF MATERIALS WITH OTHER EQUIPMENTS

8.7.1. Other types of equipment used for handling materials are belts, buckets, ropeway conveyors, etc.

8.7.2. Belt Conveyors are under operation on Bhakra and Panchet Hill Projects. Observed data in the case of Panchet Hill Project and estimated analysis in the case of Bhakra Dam Project are given below:—

PANCHET HILL PROJECT

Operation of Belt Conveyor

Quantity handled: 3,44,000 C.F.T. (Approximate) Working hours : 1,037

1.		Rs. Rs.	2,323 610	
2.	Labour Field Maintenance	Rs.	472	
3.	Material (a) P.O.L (b) Miscellaneous	Rs. Rs.	419 122	
4.	Repairs and Overhauls @ 100% of deprestion	cia- Rs.	3,501	•.
5.	Depreciation at 3.38 per hour	- Rs.	3,501	
6.	Power	Rs.	778	
	Total 🕳		11,726	-
	Rate per CFC of rock $\frac{117}{34}$	=Rs.	3.41	

TRANSPORT

Rate per ton is Re. 0.77, the lead involved is not likely to exceed 1/4 mile.

The cost of transporting the aggregate in Bhakra Dam is Re. 0.51 per ton over a distance of 1.55 miles. The details of the estimated analysis are given below :—

				Original Value	%	Residual Value
(a) Plan	t Depreciation					
1.	Feeder	••	••	12,000	20	2,400
2.	Conveyors No. 3-7 7008'-30" wide		· .			
	Belt Idlers Drives Electric Motors	••• ••	•••	3,70,000 2,00,000 1,74,000 45,000	10 50	17,400 22,500
	Total Deduct	••	••	8,01,000 42,300		42,300
	Cost chargeable to w	vorks	••	7,58,700 7,58,700		
	Depreciation per ton	l	· • • -	66,81,800	0.11	l per ton
(b) Ere	ction plant per ton		•• -	7,09,200 66,81,800	- 0.1	06 per ton
(c) La	bour per day					
4	Foremen @ 20/ Asstt. Foremen @ 12 Mechanics @ 8/-		••	80 48 32		
8 20	Greasemen @ 3/	2/8- 	•••	24 50 32		
	Total	••	••	266 266		042
	Labour per ton	• •	••	. 6360	- = 0	.042 per to

Aggregate Transport—Fatehwal to Neilla

(d) Electrical Energy

340 units @ -/-	-/10 per unit	Rs. 17.7 17.7	
Electric energy	per ton $@ 67\%$		$- = 0.003 \times 2/3$
(a) (b) (c)] (d) (e)	Total for 1-2	0.111 0.106 0.042 0.002 0.207	= 0.002
		0.478	per ton

8.8. TRANSPORT BY ROPEWAYS

8.8.1. Trandstor by ropeway is also used at Vaitarna and its data are reproduced below:---

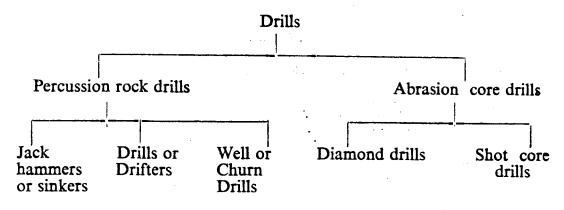
Ropeway :

Length of Ropeway	13,400 ft.
Rise	40
Speed of Hauling Rope	9.2 feet/sec.
Capacity of one bucket	1 ton
Cost of ropeway with all	
accessories	Rs. 9,97,000
Rate per ton per 3 miles works ou	at to be Rs. 1.55.

8.8.2. Bokaro Thermal Station (D.V.C.)

The aerial ropeway covers a distance of $5\frac{1}{2}$ miles between Bermo Colliery and the power station. It has been constructed at a total cost of Rs. 26,26,000. The total budget provision including cost of land, site clearing, etc., is Rs. 29.95 lakhs.

The estimated operation and maintenance cost is Rs. 7,51,000 per annum. Assuming 6 years life for the rope, 10 years for the bucket sheeves, etc., and 40 years for land, trestle foundation etc., it is estimated that the cost of transporting coal from the colliery to the power station will be about Re. -/15/- per ton. This works out to Re. -/2/9 per ton per mile.


160

CHAPTER 9

DRILLING AND QUARRYING.

9.1. TYPES OF DRILLS

9.1.1. Drills may be divided into two main groups and further sub-divided as shown below :---

9.2. DRILLING PERFORMANCES

9.2.1. Table 9.2.1. gives the relative drilling performances for various types and sizes of drills.

• TABLE 9.2.1.

Diameter	Class	Rock Drills		Core	Drills
of hole (inches)	or rock	Jack- hammer	Wagon drill	Diamond drill	Shot drill
1 (Core 1-1/8)	Soft to medium	10 to 12 5 to 10	25 to 35 20 to 25	3 to 7 2 to 4	
2-3/8 (Core 1-5/8)	Soft to medium	8 to 15	25 to 30	2 10 4	
2-3/8 (Core 1-1/5)	Hard	3 to 8	15 to 25		. *
3 (Core 2-1/8)	Soft to medium hard				
4 (Core 3)	Soft to		5 to 10		
	medium hard		3 to 5		1 to 2
6 or $5\frac{1}{2}$ with (Core 4-3/4)	Soft to		3 to 6		7 to 2
-	medium hard		1 to 3		± to ₹
12	Soft to		1 to 4		
	medium hard				1 4 1
36	Soft to medium hard			• . •	$\frac{1}{2} \text{ to } 1$

Drilling Performance (feet per hour)

9.2.2. Record of drilling holes for grouting rock foundations in projects have been tabulated in Table 9.2.2.

TABLE $9 \cdot 2 \cdot 2 \cdot$

		Parti	iculars of h	Use rate	Rate per F.I	
81. Name of No. Project	Type of rock drilled	(in.) (ft.) po		Depth per hr. (ft.)	per hour of drilling machine	in Rs.
1 2	3	4	5	6	7	8
		Jack H	lammer			99 - 200 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
1. Bhakra	From sand- stone to silt-	2 <u>1</u> to	0 to 16	5.0	42.3	8.5
	stone and other foundation mix- ed with shale	3 <u>1</u>	: 16			
2. Matatila	Granite	1 • 09 to	0 to 35	9•4	5.5	
		1.48	: 35			
		Core 1				
3. Bhakra	From sand- stone and other foundation mixed with shale	A.X.	16 to 30 : 14	4.0	79•4	19.8
4. Bhakra		33	30 to 150 : 120	3.0	64.0	21.9
5. Bhakra	99 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	,,,	150 to 200 : 50	1.6	48 • 1	30.0
6. Bhakra	2 3	**	200 to 300 : 100	1.2	43•3	36.1
7. Bhakra		>>	50 to 100 : 50	5.0	92.0	18·C
8. Bhakra	,, 3 N ho	.X. ole	0 to 75 : 75	2.4	74.7	31.0

Drilling Performance for Grouting Rock Foundations

1 2	3	4	5	6	. 7	8
9. Matatila	Granite	1-7/8 A.X. holes	3 to 22 & 64 to 75 in. depth	1.0	59.0	59 •(
10. Matatila	Granite	2-3/8 B.X. holes	0 to 3 & 42 to 56 in.	1.0	69 •6	69.0
11. Matatila	Granite	3 X.X. holes	depth 0 to 4 & 32 to 39	1.0	84•4	84•4
12. Tungabhadra (Andhra)	Epidiorite	31	20.3	0.3	5•4	18.0
13. Tungabhadra (Andhra)	Epidiorite	31	40 0	0.3	5.2	17•3
14. Tungabhadra (Andhra)	White pegmatite	31	25.0	0-8	6-1	7.6
15. Tungabhadra (Andhra)	Pegmatite	5 <u>1</u>	20.0	0.4	7.1	17.8
16. Tungabhadra (Andhra)	Hard epidiorite	2 <u>1</u>		0.3	7.3	24.3
17. Tungabhadra (Andhra)	Pegmatite	21	43.0	0.7	5.9	8.4
18. Bhakra	Sand-stone & other founda- tion mixed with shale .*	36	30.0	0.2	47.0	2 35∙0
19. Tungabhadra (Andhra)	Pegmatite or epidiorite		40.0	0.6	9.8	16-2
20. Tungabhadra (Andhra)	Epidiorite	2]	30.0	0.4	6.7	16.8
21. Tungabhadra (Andhra)	Pegmatite	2 <u>1</u>	20.0	0.7	6.9	9.9
22. Tungabhadra (Hyd.)	UCRS masonry		-	1-5	16.3	10.7
23. Tungabhadra (Hyd.)	UCRS masonry	1-7/8		1.5	19•3	12.8
24. Tungabhadra (Hyd.)	UCRS masonry	3		1.5	. 24.3	16-2
25. Matatila	Granite	2 1	0 to 12 : 12	1.5	9.5	6.4
6. Gangapur	Rock	1 to 1 1		6.7	26•7	4•0
7. Tungabhadra (Andhra)	Epidiorite	2 to $3\frac{1}{2}$	18.3	0.6	4.5	7•5
8. Tungabhadra (Andhra)	Epidiorite	$\frac{11}{3\frac{1}{2}}$ to $\frac{3\frac{1}{2}}{3\frac{1}{2}}$	20 ·0	1.3	5•4	4.1

TABLE 9.2.2.—contd.

REPORT OF RATES & COSTS COMMITTEE

9.3. DRILLING FOR BLASTING

9.3.1. Data regarding drilling for blasting by Jack hammer as furnished by the various projects is given below :---

TABLE 9.3.1.

Sl. Name of Project Type of rock No. drilled	Dia. of hole in inches	Full depth of hole in ft.	Depth of hole per hr.	Rate of drilling machine	Rate per F.R. in Rs.
1 2 3	4	5	6	7	8
*1. Matatila Granite	1.3	0 to 15	12.5	7.5	0.6
2. Gangapur Granite	$\frac{2 \text{ to}}{2\frac{1}{2}}$		15.8	17.9	1.1
**3. Vaitarna Basalt	1 · 3 to 1 · 5	20	12.5	9.1	0.7

Jack Hammer Drilling & Blasting

* 6 working hours per shift.

** Assuming shift hrs. to be 3 hrs. labour includes blasting also.

9.3.2. Drilling cost will vary according to the type of rock drilled. A typical analysis of cost of drilling in basalt is given below. In the case of hard and abrasive rock like granite or sandstone the cost will increase by 25 to 30% depending on the nature of rock. About 6 r. ft. of drilling in basalt is required to blast 100 c. ft.

Analysis of rate for drilling one r. ft. in Basalt

Drilling 20 ft. deep holes from 40 mm. at top to 33 mm. at bottom with Carbide tipped Conomont drills.

(a)	Average set of 3 sets of Conomont drills of different lengths.	Rs.	90
	Average r. ft. drilled by the drills allowing for breakages.	· · · · · · · · · · · · · · · · · · ·	500'
	Cost of drill per r. ft. of drilling	Re.	0.18
<i>(b)</i>	Sharpening charge L.S	Re.	0.04
(c)	Pipes & pipe fittings	Re.	0.08
(<i>d</i>)	Machinery charges : Depreciation of Jack hammer @ 3% per month.	Rs.	30

164

Depreciation per hr. @ 200 hrs. per month (A Jack hammer can drill 100 r. ft. in 8 hrs.)	Re. 0.15
Depreciation per r. ft. $\frac{8 \times 0.15}{100}$	Re. 0.012
Repairs @ 40% of depreciation	Re. 0.005
 (e) Air Charges : Using 315 CFM air compressor supplying air to 4 Jack hammers Use-rate of air compressor : Rs. 14/- Cost of air supplied to 1 Jack hammer Hence, cost of air for 0.08 hour of Jack hammer per r.ft. (d) Labour per r. ft. : Re. 0.11 	Rs. 3.5 0.08×3.5 Re. 0.28
Abstract	
 (a) Cost of drill (b) Sharpening charges (c) Pipes and pipe fittings (d) Machinery charges (e) Air charges (f) Labour (c) Cost of drill (c	Re. 0.18 Re. 0.04 Re. 0.08 Re. 0.017 Re. 0.28 Re. 0.11
Total rate of drilling per r. ft.	Re. 0.707

9.4. AIR COMPRESSORS

9.4.1. The portable diesel compressors commonly used are of 210, 315 and 500 c. ft. per minute capacity. Stationary compressors particularly the electrical ones are preferable to the portable types on large works. Detailed analysis of use-rates of air compressors is given below (Table 9.4.1.):

TABLE 9.4.1.

Air Compressor—Portable

210 CFM Diesel Compressor (55 H.P.)

	••	••	••	••	••	••	Rs.	25,100
Life in working hours	••	••	••	••	••	••	_	10,000
Depreciation per working	hour	••	••	••	••	••	Rs.	2.61
(b) Repairs & maintenance co	ost @ 8	0% of	deprec	iation	••	••		2.09
(c) P.O.L. charges								
2.25 diesel oil & Rs. 1.6	per ga	ı l.	••	••	••			3.40
Lubricants & grease		••	••	••	••	••		0.75
Sundries such as cotton v	waste, e	etc.	• •	••	••	••	•	0.75
		•						4.90

166 REPORT OF RATES & COSTS COMMITTEE

$\frac{1}{2}$ No. driver @ Rs. 4.5 per day per shift	••		0-30 0-40
			0.70
Add 25% for idle days and leave reserve labour rate per w	ork-		0.18
ing hour.		Re.	0.88
		_	
Abstract			
Depreciation		Rs.	2.61
Repairs & maintenance	•••	A 101	2.09
Fuel charges			4.90
Labour charges	••		0.88
	••		0.00
			10.48
Use rate per working hour : 10.48 say Rs. 10.5			10.40
Use fale per working nour . 10.48 say Ks. 10.5			
315 GFM Diesel Compressor (78 H.P.)		· · · ·	
(a) Depreciation per working hour :			
Cost of the compressors		Rs.	38,300
Life in working hours	•••		10,000
Depreciation per hour		Rs.	3.83
(b) Repairs & maintenance @ 80% of depreciation charges	•••	Rs.	3.07
(c) P.O.L. charges :	••	1.5.	5 07
3 Cls. Diesel oil @ Rs. 1.5 per gal.		2	4 - 50
Lubricants and grease	• •		
Sundries such as cotton waste, etc.			1.05
Summers such as conton waste, etc	• •		0.70
		n	1 05
(d) Labour abarras :		Rs.	6.25
(d) Labour charges :		· · · · ·	
1 No. driver @ Rs. 4.5 per day per shift	••		0.30
1 No. Helper @ Rs. 3 per day per shift	••		0.40
			0.80
Add 75 %/ for idle dave & lance recorris	1 · · ·		0.70
Add 25% for idle days & leave reserve	••		0.18
I abour noto non marline haun			
Labour rate per working hour	••		0.88
		i .	
Abstract			
Depreciation			3.83
Repairs & maintenance			3.07
Fuel charges			6.25
Labour			0.88
Use-rate per working hour.			14.03
		Sav	Rs. $14/-$
		Day	A () () ()
500 CEM Stationary Floatric Commence			
500 CFM Stationary Electric Compressor			
(a) Depreciation per working hour :			
Cost of the compressor	· · ·	Rs.	31,200
Depreciation @ 1% per month			3.12
Assuming 26 days in a month and 8 hrs. per shift pe	r dav		
i to any in a month and o mis, per shift pe	orking		
<i>i.e.</i> , 200 working hours, depreciation rate per wo	- ~		
<i>i.e.</i> , 200 working hours, depreciation rate per wo			
<i>i.e.</i> , 200 working hours, depreciation rate per wo	312		
<i>i.e.</i> , 200 working hours, depreciation rate per wo	312	- Re	1.56
<i>i.e.</i> , 200 working hours, depreciation rate per wo	312 200	- Rs.	1.56

DRILLING AND QUARRYING

(b) Repairs & maintenance @ 80	% of depre	ciation	rate		• •	Rs. 1.25
(c) Power charges:	0 F			••		N3. 1 23
Rated h.p. of the engine : 120)					
Power consumption per hour	7 n.p. 89 •5 kWh	at full	load			
Power charges for 89.5 kWh	Re. 0.125	per uni	t			11.2
Lubricants & other sundries	••		•••	•••		0.8
Total Power & oil charg	ges per hr.	••	••	••	• •	12.00
(d) Labour charges:						
1 No. operator @ Rs. 6/- per	day per shi	ft	••		•••	0.38
1 No. Helper @ Rs. 3/- per d	ay per shift		••	••	••	0.38
$\frac{1}{2}$ No. Foreman @ Rs. 12/- per Chowkidar @ Rs. 1 .75 per da	r day per si av of 2 shift	1111 'e	••	••	••	0.38
	ay or 2 shift	.0	••	••		0.11
						1.25
Add 25% for non-working sea	ason & leav	e reserv	/e	••	••	0.31
Labour charges per hour						1.56
Labour charges per nour	••	••	••	••	•••	1 56
Abstract						· · · · ·
Depreciation	•				•	1.56
Repairs & maintenance	· · ·	•••	••	•••	••	1.25
Power charges	• ••	•••	• •			12.00
Labour	• ••	••	••	••	••	1 • 56
Use rate per worki	ing hour 16	5.37	r De	16.50	1	16.37
Use fate per work	ing nour re	J JI Saj	y 183.	10.00	•••••	10,21
500 CFM Diesel Comp	pressor (127	<i>H.P.</i>)				
500 CFM Diesel Comp		H.P.)				
(a) Depreciation per working how		H.P.)		• .		58 000
(a) Depreciation per working how Cost of the compressor	ur:	<i>H.P.</i>)	••	••	•••	58,000 10,000
(a) Depreciation per working how	ur: 	<i>H.P.</i>)	•••	••	•••	58,000 10,000 5 •8
(a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour	ur: 	••		••	· · · · · · · · · · · · · · · · · · ·	10,000
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour	ur: 	••	•••	••	•••	10,000 5 • 8
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 	ur: % of deprec	••		•••	•••	10,000 5 • 8
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4 ·5 gls. of diesel oil @ 1 ·5 Lubricants & grease 	ur: % of deprect	••		••• •• ••	•••	10,000 5 •8 4 •64 6 •76 1 •00
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 	ur: % of deprect	••		••• ••• •••	· · · · · · · · · · · · · · · · · · ·	10,000 5 •8 4 •64 6 •76
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4 ·5 gls. of diesel oil @ 1 ·5 Lubricants & grease 	ur: % of deprect	••		••• •• •• ••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease	ur: % of deprect	••		••• •• •• ••	· · · · · · · · · · · · · · · · · · ·	10,000 5 •8 4 •64 6 •76 1 •00
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour , Depreciation per hour , (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease Sundries such as cotton waste (d) Labour charges: 	ur: % of deprect	 iation 		••• •• •• ••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ \hline 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline \hline 8 \cdot 50 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease Sundries such as cotton waste (d) Labour charges: 1 No. driver @ Rs. 4.5 per d 	ur: % of deprect ay per shift	 iation 		••• •• •• ••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ 0 \cdot 30 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour , Depreciation per hour , (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease Sundries such as cotton waste (d) Labour charges: 1 No. driver @ Rs. 4.5 per different di	ar: % of deprect ay per shift ay per shift	 iation 		· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ \hline 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline \hline 8 \cdot 50 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease Sundries such as cotton waste (d) Labour charges: 1 No. driver @ Rs. 4.5 per d 	ar: % of deprect ay per shift ay per shift	 iation 		••• ••• ••• ••• •••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ \hline 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ \hline 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour , Depreciation per hour , Depreciation per hour , (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease Sundries such as cotton waste (d) Labour charges: 1 No. driver @ Rs. 4.5 per difference 1 No. helper @ Rs. 3/- per difference 	ar: % of deprect ay per shift ay per shift	 iation 		••• ••• ••• ••• •••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour Depreciation per hour	ar: % of deprect ay per shift ay per shift	 iation 		••• ••• ••• ••• •••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ \hline 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ \hline 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour Depreciation per hour Depreciation per hour	ar: % of deprect ay per shift ay per shift	 iation 		••• ••• ••• ••• •••	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline 0 \cdot 88 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease Sundries such as cotton waste (d) Labour charges: 1 No. driver @ Rs. 4.5 per dial No. helper @ Rs. 3/- per dial Add 25% for idle days and letter Abstract Abstract Depreciation 	ar: % of deprect ay per shift ay per shift	 iation 		· · · · · · · · · · ·		$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ \hline 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ \hline 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour Depreciation per hour Depreciation per hour	ar: % of deprect ay per shift ay per shift	 iation 		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ \hline 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline 0 \cdot 88 \\ \hline 5 \cdot 80 \\ 4 \cdot 64 \\ 8 \cdot 50 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour Depreciation per hour Depreciation per hour (b) Repairs & maintenance @ 80% (c) P.O.L. Charges: 4.5 gls. of diesel oil @ 1.5 Lubricants & grease	ar: % of deprect ay per shift ay per shift	 iation 		· · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ \hline 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline 0 \cdot 88 \\ \hline 5 \cdot 80 \\ 4 \cdot 64 \\ \end{array} $
 (a) Depreciation per working how Cost of the compressor Life in hours Depreciation per hour Depreciation per hour Depreciation per hour Depreciation per hour	ar: % of deprect ay per shift ay per shift ave reserve 	 iation 		· · · · · · · · · · · · · · ·		$ \begin{array}{r} 10,000 \\ 5 \cdot 8 \\ 4 \cdot 64 \\ 6 \cdot 76 \\ 1 \cdot 00 \\ 0 \cdot 75 \\ \hline 8 \cdot 50 \\ \hline 0 \cdot 30 \\ 0 \cdot 40 \\ 0 \cdot 18 \\ \hline 0 \cdot 88 \\ \hline 5 \cdot 80 \\ 4 \cdot 64 \\ 8 \cdot 50 \\ \end{array} $

.

- 167

9.4.2. Table 9.4.2. shows an abstract of the foregoing Table 9.4.1.

TABLE 9.4.2.

			Rate	per worki	ng hour			
Sl. No.	Туре	Size	Depre- ciation	Repairs etc.	Fuel etc.	Lab- our	Use- rate per hour	Cost of 1000 cft. of air
1.	Diesel portable	210 CFM	2.6	2.1	4.9	0.9	10.5	0.83
2.	do.	315 "	3.8	3.1	6 · 2	0.9	14.0	0.74
3.	do.	500 "	5.8	4.6	8.5	0.9	19-8	0.66
4.	Electrical stationery	500 ,,	1.6	1.3	12.0	1.6	16.5	0.55

Abstract of the Use Rates of Compressors

9.4.3. The use-rates of air compressors, used on some of the projects from which information became available, are tabulated in Table 9.4.3.

TABLE 9.4.3.

C1]	Rate per working hour				* *	
Sl. No.	Project		Depre- ciation	Repairs	Fuel etc.	Lab- our	Use-rate per work ing hour		
			1. Diese	l Portable	2 315 CFM				
(a) (b) (c) (d)	R. & C.C. Bhakra Gandhi Sagar Kotah Barrage	••	3 ·8 3 ·9 3 ·7 2 ·8	3 ·1 6 ·3 5 ·0 2 ·8	$6 \cdot 2 6 \cdot 2 3 \cdot 0 5 \cdot 2$	0 ·9 1 ·1 1 ·6 3 ·1	14 ·0 17 ·5 13 ·3 13 ·9	Assuming 100% of depreciation	
		2	2. Diese	l Portabl	e 500 CFI				
(e) (f)	R. & C.C Bhakra	••	5·8 4·5	4·5 7·2	8·5 5·6	0.9 1.1	19·8 18·4	Portable compressor	
			3. Electi	rical Stat	ionary 500) CFM			
(g) (h)	R.& C.C Gandhi Sagar	••	1 ·6 2 ·3	1 ·3 1 ·7	12 ·0 12 ·0	1 ·6 2 ·1	16 · 5 18 · 1		

Use-Rates of air Compressors used on Projects

9.4.4. Variations are mainly due to non-standard practices and it is suggested that the method of arriving at use-rates shown in the Table 9.4.1. should be adopted on all the projects.

9.5. Air Consumption of Pneumatic Tools

9.5.1. Table 9.5.1. gives the air consumption of pneumatic tools operated by compressed air. Consumption is expressed in c. ft. of free air per minute, at 90 PSI and standard conditions.

TABLE 9.5.1.

Sl. No.				Т	ool		,				CFM
1.	Drills, rock Jack-h	rs 30	lb. weig	ht		· · · ·			······		
			45	,,	••				••	••	- 85
			55	,,	••	• •	••			••	95
			80	**	••	••	••	• •	••		125
		A	ugurs	i i	••	••	••	••	••		85
2.	Drifters (Wagon d	rills) 6	5 lb.	weight	• •			•••			125
		100		U	••	••	••		••	•••	155
		· 140) "		••		••				200
3.	Hoists, 500-1000 11	o. capa	city :	l •5 (con	sumpti	ion/ft.	of lift)	••		••	
	2000 lb.			(••			2.0
	3000 lb.				•••			••	••	••	3.0
	4000 lb.	••		••	••			••	••	••	6.5
	6000 lb.	••			••			••	•••	••	8.5
4.	Pavement Breakers							•••	•••	- ••	00
	30 lb. weight				••						45
	55 lb. weight		•••		••	••	••	•••	•.•	••	50
	85 lb. weight					••	•••	••	••	•••	75
5.	Sump Pumps						••	••	••	••	15
~.	Upto 100 ft. h	ead								-	65
	Upto 185 ft. h	ead	••	••	••	••	••	••	. • •	••	115
6.	Tampers, back-fill	vuu	••	••	••	••	••	••	. • •	•	
0.									-		20
	25 lb. weight 38 lb. weight	••	••	••	••	••	••	••	••	••	30
7		••	••	• •	••	••	••	•••	••	••	35
7.	Trench diggers										
	25 lb. weight	••	••	••	••	••	•• .	••	••	• •	35
	45 lb. weight	••	••	••	••	••	••	••	••	••	45

Air Consumption of Pneumatic Tools

9.6. BLASTING

9.6.1. When rock excavation or stone quarrying is to be done on a large scale, blasting would cost less per 100 cubic feet by means of machine drills and dynamite than by hand drills and gunpowder. Ordinarily, however, the cost is about the same, and the advantage in the addition of the former method lies in better speed, convenience and good control.

Details of materials and amount of labour required for blasting 100 cft. of basalt rock are given below :--

TABLE 9.6.2.

Analysis of rates for Blasting Rock

1.	Gelatine 2.25 lb. at Rs. 1.5 per lb.	1	3.38
2.	Detonators 4 Nos. at Rs. 6 per 100 Nos.	· · · · · · · · · · · · · · · · · · ·	0.24
3.	Labour 3 ·1 Blaster 0 ·01 at Rs. 4 ·5 each 3 ·2 helper or quarry 0 ·20 at 3 ·5 each		··· 0 ·05 ·· 0 ·70 ·
			4.37

Say Rs. 4.50

Rs.

9.6.3. The building stones suitable for hydraulic works are the harder type such as quartzite, granite, trap and basalt weighing 140/145, 165,180 and 185 lb. per cu. ft. respectively. Table 9.6.3. indicates their use on the various masonry dams recently built or under construction.

TABLE 9.6.3.

Name of Dam	Type of stone	Specific gravity
Gandhi Sagar Kotah Barrage, Jawai Konar	Quartzite (Vindhyan & stone)	140 (2 ·24)
Tiliaya Panchet	and Gond- wane sandstone	140/145 (2 ·4)
Maithon Hirakud		
Matatila Tungabhadra Bhadra	Granite	165 (2·65)
Tunga anicut Peechi, Perinchani Lower Bhawani Malampuzha		
Vaitarna Gangapur Kakrapar	Basalt and trap	185 (2 ·88)

DRILLING AND QUARRYING

9.7. COMPARATIVE RATES FOR ROCK EXCAVATION

9.7.1. Comparative statement of rates per CFC for rock excavation on various projects is given in Table 9.7.1. (i).

TABLE 9.7.1. (i)

S1.	Project .						Rate per CFC of Rock in Rs.		
No.						Type of rock	Drilling	Blasting	Total
1	······································		2			3	4	5	6
1.	Bhakra	•••	•••	••	••	Mixed Rock	2.54	5.60	8 ·44
						•	4.20	4 • 50	8.70
2.	Gangapur	••	••		••	Deccan trap	4 - 32	3 • 52	7 •84
						-	4.20	4.50	8.70
3.	Gandhi Sagar	••	••	••	••	Highly abra-	15.77	6.45	22 ·22
						sive foliated quartzite	12.60	6.60	19 .10
4.	Kakrapar	••	•••	••	••	Deccan trap	4 •75	6.0	10 ·75
				.*			4.20	4.5	8 ·70
5.	Kotah	••	••	••	•••	Laminated	· 5 •97	3 • 26	9 • 23
						quartzite	4.20	4.50	8.70
6.	Peechi	••	••	••	••	Granite	8 .00	5.75	14 • 75
	•						6.30	5.62	11 .92
7.	Vaitarna	••	••	••	••	Basalt	3 • 53	7 -03	10 • 58
					•		4 .20	4.50	8 • 70

Actual Rates of Rock Excavation per CFC on Projects

Note-The above figures in each line are as per R. &C.C.

. . . .

CHAPTER 10

TUNNELLING

10.1. Cost Study

10.1.1. The cost study for tunnelling has been divided into two portions, namely rock excavation and concrete lining and the data has been collected from the following four projects :---

1. Ramsagaram Tunnel (Tungabhadra Project)

2. Bhakra Dam Diversion Tunnels (Punjab)

3. Bhor and Thal Ghat Tunnels (Central Railway)

4. Budni Barkhera Tunnel (Central Railway)

10.2. RAMSAGARAM TUNNEL

10.2.1. The tunnel is in the shape of a horse-shoe with vertical sides of 8'-3" and 16' diameter semi-circular roof, inverted bed 1 ft. below the flat bottom. It is built for the passage of water for irrigation purpose. The particulars are given below :---

Length	1105′
Height, finished	17'-3″
Height, excavated	19 feet to 20 feet
Width, finished	16 feet
Width, excavated	18'-8" to 20'-0"
Area, finished	246 square feet
Area, excavated	313 to 340 square feet

Area of waterway	204 square feet		
Area of lining	67 square feet (minimum)		
Lining (with masonry and concrete)			
Bottom (invert)	9" thick, 1:3:5 C.C.		
Sides	1'-4" thick, 1:3:5 C.C. and R.R. Masonry in 1:6 C.M. Plastered smooth in 1:4 C.M. $\frac{3}{4}$ " thick.		
Top arch	1'-0" from spring level in 1:3:5 C.C.		
Full supply depth	13.25 feet		
Fall	1/1250		
Velocity	8.75 feet per second		
N (Coefficient of friction)	0.014		
Discharge	1785 Cusecs		
Discharge required	1745 Cusecs		

10.2.2. The "Method of Driving" the tunnel adopted was bottom heading in one stage and stopping the top in second stage. The "Drilling Pattern" adopted was generally the "Burns Cut" and with $7\frac{1}{2}$ feet depth of drill holes, an advance of $5\frac{1}{2}$ to 6 feet per round was obtained. "Blasting" was done by the use of delay-action detonators, fired electrically. These were of half a second interval delay-action. "Mucking" was done mostly manually and partly by a mine loader, with one cu. yard trucks on double line of tram track pushed by manual labour from inside, out of the tunnel into the open cut from where the trucks were hoisted up by derricks and further pulled by diesel loco to the unloading site. The muck had to be hoisted up only as bed excavation was in progress in the approach flumes.

10.2.3. The cost of tunnel excavation works to Rs. 238.5 per CFC of designed cubic contents of the tunnel, and Rs. 207 per CFC of actual excavated quantity. Expenditure on preliminaries and experimental work done has been excluded. Items 8 and 9 of the data Table 10.2.4. relate to expenditure on special supports and protective works used to deal with the loose rock met with, not anticipated originally at the time of estimating.

10.2.4. The analysis of expenditure on the Ramsagaram tunnel is given in Table 10.2.4.

TABLE 10. 2. 4.

SI. No.		Rate of rock ex- cavation (actual) per CFC	Total Expenses (Rs.)
1	2	(Rs.)	
.	\mathbf{Z}_{i} and \mathbf{Z}_{i} is the second sec		4
1.	Installation & transhipment of 25-ton derrick in the rear face, 4-ton derrick in the front face & cranes for loading & unloading	4.9	19,200
2.	Laying of tramway track including preparing the tracks at site and transhipment from various places, the trucks hooks rails	6.9	27,000
3.	(a) Installation of water supply arrangements including conveyance		
	of pantoon tanks & cost of pipe line(b) Maintenance of water supply including the water tanker 1500	2.9	11,500
	gallons capacity for $1\frac{1}{2}$ years	5•4	21,300
4.	 (a) Installation of air compressor including testing, conveyance and transhipment (b) Laying 6" & 4" compressed air mains, from compressor house to the front & rear faces and initial laying inside the 	0.5	2,100
	tunnel including the cost of 6" & 4" pipes & their con-		
	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800		
	veyance from Headworks and freight 6" Pipe line		
	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800		
	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800 TOTAL 17,500 Credit for Pipes— 6" Pipes	1 •7	6,700
	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800 TOTAL 17,500 Credit for Pipes	1 •7	6,700
	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800 TOTAL 17,500 Credit for Pipes	1 •7	6,700 6,100
	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800 TOTAL $17,500$ Credit for Pipes		
Ded	veyance from Headworks and freight 6" Pipe line Rs. 8,700 4" ,, ,, Rs. 8,800 TOTAL 17,500 Credit for Pipes		

TUNNELLING

_	2	· · ·	-h <u>-</u>		3	4
8.	 (a) Temporary wooden supports for the r to 190 in the rear face for loose portion (b) Steel centering from L.S. 210 to 226 in 	1			1.7	6,500
	Credit $1500 \times 7 = \frac{10,500}{8,800}$	•	••	•••	2.2	8,800
	(c) Temporary supports to the pilot tunne(d) Temporary supports at L.S. 380	el from 226	to 26	0	0 ·5 0 ·1	2,000 300
9.	Steel supports for crevice roof supports from	n L.S. 210	to 23	6	2.5	9,700
10.	Manufacturing drilling accessories and s	taging an	d ber	ding		-,
	blow pipe, etc.	• ••	••		1.1	4,100
11.	Removing of bed muck & clearing the unde	r breakage	S .	••	2 • 1	8,300
12.	Tunnel dewatering (Special)		••	••	1.7	6,800
3.	Share of Excavation of tunnel by contractor	r	••	•• '	103 .00	4,03,900
4.	Petty supervision	• ••	••	••	11 •1	33,000
5.	Photographic & accident expenses	· ••	.:	••	2.3	9,150
6.	Cost of machinery tools & spares debited to	the work				
	Cost of machinery & tools : Rs. 1,86 Cost of spares 92,367	,197				
		,197				
	Cost of spares	,197			25.2	1 10 064
7.	Cost of spares 92,367 2,78,564	,197			25 • 2	1,10,064
17.	Cost of spares 92,367 2,78,564 Credits		ers		25 ·2 7 ·5	1,10,064 29,290
17.	Cost of spares		ers			1,10,064 29,290 33,380

10.3. BHAKRA DIVERSION TUNNEL

10.3.1. The two tunnels have been excavated at Bhakra, one on each side for the river of diversion of the river water for constructing the dam. The rock met with varied from jointed sandstone to indurated clay. The method adopted for excavation was heading and bench method of mucking and drilling in which drilling could proceed on the heading while the bench was being mucked. The quantity of explosive used was 3.5 lb. average per CFC of excavated material in the two tunnels. 10.3.2. The following statement (10.3.2.) shows the working rate of excavation of the left diversion tunnel (as supplied by the Project authorities for departmental work from 16.10.50 to 30.4.53).

Sl. No	Description.	Rate per CFC (Rs.)
1	2	3
1.	Labour	
	 (i) Excavation including, drilling blasting and barring	21 ·0 3 ·7 1 ·1 13 ·1
	(v) Cost of explosives .	6·9 2·1 1·3
	(viii) Laying pipe line & maintenance (ix) Accidents (x) Hutting	0 ·4 0 ·6 Nominal
2.	Material	
	(i) Timber	3 •7 30 •5
3.	Machinery	
	 (i) Compressed air (ii) Lighting charges including stock & work charges (iii) Depreciation of machinery (iv) Repair to jack hammers, jack rods including working of drill 	9.9 6.6 4.6
	sharpening machine	1.1
4. ,	Miscellaneous	
	(i) Ramps and paths	0 ·9 6 ·8
5.	Supervisory charges	
	(i) Tunnel foreman, pay and allowance	1 ·8 1 ·3 0 ·8
	Total	118.2

TABLE 10.3.2.

10.3.3. Detailed analysis of rate for rock excavation in the right dam tunnel as provided by the project is given in Table 10.3.3.

For six wagon drills and six jack hammers.		nditure month
		(Rs.)
(i) Drillers on 6 wagons drills for 2 shifts. @ Rs. 108 p.m. = $6 \times 2 \times 2 \times 108$		2 502
Fitters in 6 wagon drills for 2 shifts @ Rs. 108 p.m. $=6 \times 2 \times 1 \times 108$		2,592 1,296
Drillers for jack hammers @ Rs. 108 p.m. $=6 \times 3 \times 2 \times 108$ (ii) Blasting labour		3,888
2 Blasters @ Rs. 108 p.m		216
2 Helpers @ Rs. 65 p.m.		130
10 skilled mazdoors for making tamping balls @ Rs. 65 p.m (iii) Laying and linking pipe line		650
• For 2 shifts pipe fitters @ Rs. 95 p.m. $=2 \times 1 \times 95$		190
Skilled mazdoors @ Rs. 65 p.m. $=2 \times 2 \times 65$		260
(iv) Making paths and ramps inside the tunnel		1/0
Work mistri for 2 shifts @ Rs. 80 p.m. $=2 \times 1 \times 80$		160
Skilled coolies for 2 shifts @ Rs. 65 p.m. $=2 \times 10 \times 65$ (v) Supervisory and other staff for two shifts		1,300
1 Foreman @ Rs. 360 p.m.= $2 \times 1 \times 360$		720
2 Supervisors @ Rs. 120 p.m. $=2 \times 2 \times 120$		480
8 Work mistris @ Rs. 100 p.m. $= 2 \times 8 \times 100$		1,600
2 Chowkidars @ Rs. 52 p. $m = 2 \times 2 \times 52$		208
2 Store Attendants Rs. 52 p.m. $=2 \times 2 \times 52$		208
8 Fitters @ Rs. 108 p.m. $=2 \times 8 \times 108$		1,728
4 Khalasis @ Rs. 50 p.m. $=2 \times 4 \times 50$		400
15 Muckers @ Rs. 68.p. m. $=2 \times 15 \times 68$		2,040
1 Gubliman @ Rs. 75 p.m. $= 2 \times 1 \times 75$ 1 Time keeper @ Rs. 100 p.m. $= 2 \times 1 \times 100$		150 200
1 Thus keeper (w Ks. 100 p.m. =2 × 1 × 100		
Total	-	18,416
Total labour expense per month: Rs. 18,416 \therefore Labour expense per day, assuming 25 working days in a month = $\frac{18,416}{25}$	Rs.	7 36 •6
aterials		
(i) Repairing parts of 6 jack hammers and 6 wagon drills @ Re. 0.5 per		
hour per machine for 5 hours $=12 \times 5 \times 0.5$		30.0
(<i>ii</i>) 6 Bits for 6 jack hammers @ Rs. 2 \cdot 5 each =6 \times 2 \cdot 5		15 0 9 0
 6 Forged bills for 6 wagon drills @ Rs. 1 ·5 each =6×1 ·5 (iii) Rods worth Rs. 40,000 work issue for 72,65,700 F.C. of rock excavation. 	1	3.0
Hence per CFC = $\frac{40,000}{72,657} = 0.55$	-	

TABLE 10.3.3.

TABLE 10. 3.3. -contd.

ce per 6,000 F.C. @ Re. rication for 12 machines (osives agon drill holes @ 8 lb. e agon drill holes @ 6 lb. e c of 340 lb. @ Rs. 2 ·0 per rs 20 wagon drill holes @ 2 30 jack hammers holes @ cos. detonators @ Re. 0 · Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222 ÷ 3 1 Marion Shovel can run 6	 @ Re. 0.75 p each each r lb Nos. each @ 1 No. each 75 each erial per day o 	er mach		shift 160 180 340	1b. 1b. 40 30 70	64	33 ·75 9 ·0 680 ·0 <u>52 ·5</u> <u>829 ·2</u>
osives agon drill holes @ 8 lb. e agon drill holes @ 6 lb. e of 340 lb. @ Rs. 2 ·0 per rs 20 wagon drill holes @ 2 30 jack hammers holes @ os. detonators @ Re. 0 · Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	each each r lb Nos. each 20 1 No. each 75 each erial per day o yds. . yds.			160 180	1b. 1b. 40 30 70	64	680 ·0 52 ·5
agon drill holes @ 8 lb. e agon drill holes @ 6 lb. e of 340 lb. @ Rs. 2 ·0 per rs 20 wagon drill holes @ 2 30 jack hammers holes @ os. detonators @ Re. 0 · Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	r lb Nos. each 2 1 No. each 75 each erial per day o . yds. . yds.	••	 	180	1b. 1b. 40 30 70	64	52.5
agon drill holes @ 6 lb. e of 340 lb. @ Rs. 2 ·0 per rs 20 wagon drill holes @ 2 30 jack hammers holes @ os. detonators @ Re. 0 · Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	r lb Nos. each 2 1 No. each 75 each erial per day o . yds. . yds.	••	3	180	1b. 1b. 40 30 70	64	52.5
rs 20 wagon drill holes @ 2 30 jack hammers holes @ os. detonators @ Re. 0 Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	Nos. each 2 1 No. each 75 each erial per day o . yds. . yds.	••	 	340	40 30 70	64	52.5
rs 20 wagon drill holes @ 2 30 jack hammers holes @ os. detonators @ Re. 0 Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	Nos. each 2 1 No. each 75 each erial per day o . yds. . yds.	••	 3		30 70	64	52.5
20 wagon drill holes @ 2 30 jack hammers holes @ os. detonators @ Re. 0 Total cost of mate harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	 2 1 No. each 75 each erial per day of <!--</td--><td>••</td><td></td><td></td><td>30 70</td><td>64</td><td></td>	••			30 70	64	
 30 jack hammers holes (os. detonators (a) Re. 0 · Total cost of mate narges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3 	 2 1 No. each 75 each erial per day of <!--</td--><td>••</td><td> S</td><td></td><td>30 70</td><td>64</td><td></td>	••	 S		30 70	64	
Total cost of mate harges l rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	erial per day o 	 o f 2 shift 	S	••	•••	64	
Total cost of mate harges l rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	erial per day o 	 o f 2 shift 	S	••	••	64	
harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	. yds. . yds.	of 2 shift	.s •••	••	••	64	829 • 2
harges 1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	. yds. . yds.	••	••	•	•••	64	
1 rock excavated : 222 C. ne Euclid carries 3 1/2 C No. of Euclids : 222÷3	. yds.	••	••	••	••	64	-
ne Euclid carries $3 1/2 C$ No. of Euclids : $222 \div 3 1$. yds.			1.1			
		hour.				6	
ce working hours of show	-		ours				
one dumper takes 20 minu orking period of dumper	$= 64 \times 20/60$: 22 hou	ITS.	uck			
ost of working of marion Rs. 40/- per hour.	shover for T	nours			5		440
of working dumpers 22				••	•••		484
our	••	• •	••	••	•••	н н. Т	408
otal machinery charges pe	er day of 2 sh	nifts	••	••	••		1,332
charges							
Jack hammers is assumed a wagon drill takes 300 Cl ir consumed = $6 \times 6 \times 300$	d. FM/hour. =10,800 C.F						
	t of working dumpers 22 ter for levelling etc. of mu our otal machinery charges po- charges burs working of 6 wagon of Jack hammers is assume h wagon drill takes 300 C ir consumed $= 6 \times 6 \times 300$	t of working dumpers 22 hours @ Rs. ter for levelling etc. of muck for 12 hour our otal machinery charges per day of 2 sh charges burs working of 6 wagon drills Jack hammers is assumed. h wagon drill takes 300 CFM/hour. ir consumed =6 × 6 × 300 = 10,800 C.F	t of working dumpers 22 hours @ Rs. 22 per h ter for levelling etc. of muck for 12 hours @ Rs. our otal machinery charges per day of 2 shifts charges burs working of 6 wagon drills Jack hammers is assumed. h wagon drill takes 300 CFM/hour. ir consumed = $6 \times 6 \times 300 = 10,800$ C.F.M.	t of working dumpers 22 hours @ Rs. 22 per hour ter for levelling etc. of muck for 12 hours @ Rs. 34 per our otal machinery charges per day of 2 shifts charges burs working of 6 wagon drills Jack hammers is assumed. h wagon drill takes 300 CFM/hour. ir consumed = $6 \times 6 \times 300 = 10,800$ C.F.M.	t of working dumpers 22 hours @ Rs. 22 per hour ter for levelling etc. of muck for 12 hours @ Rs. 34 per our otal machinery charges per day of 2 shifts charges burs working of 6 wagon drills Jack hammers is assumed. h wagon drill takes 300 CFM/hour. ir consumed = $6 \times 6 \times 300 = 10,800$ C.F.M.	t of working dumpers 22 hours @ Rs. 22 per hour ter for levelling etc. of muck for12 hours @ Rs. 34 per our otal machinery charges per day of 2 shifts charges burs working of 6 wagon drills Jack hammers is assumed. h wagon drill takes 300 CFM/hour.	t of working dumpers 22 hours @ Rs. 22 per hour ter for levelling etc. of muck for 12 hours @ Rs. 34 per our otal machinery charges per day of 2 shifts charges burs working of 6 wagon drills Jack hammers is assumed. h wagon drill takes 300 CFM/hour. ir consumed = $6 \times 6 \times 300 = 10,800$ C.F.M.

Total=16,200 C.F.M,

TUNNELLING

TABLE	10.3.3.	concld.
-------	---------	---------

		···
E. Other workshop charges		
1 Chargeman per shift for 2 shifts @ Rs. 140 p.m.		
$=2\times1\times140$	••	280
4 Fitters per shift for 2 shifts @ Rs. 108 p.m. $=2 \times 2 \times 108$	••	864
4 Khalasis per shift for 2 shifts @ Rs. 65 p.m. $=2 \times 4 \times 65$	••	520
Total	۰.	1,664
: Workshop charges per day = $1664/25$	••	66 · 5
-10.3.4. Abstract of expense per day of 2 shifts		·
1. Labour charges		Rs. 736 •60
2. Materials—Petty Stores & Explosives	•••	829 - 25
3. Machinery charges	••	1332 .00
4. Air charges	••	486 ·00
5. Other workshop charges		66 • 50
		3450 • 35
Add 25% due to breakdown of machinery, lights, pumping & air		862 - 59
Total	••	4312 · 94
Say Rs. 4313.		
Output is 6000 F.C. or 222 C. yds. per day .: Rate per C.F.C. or rock excavators=4313/60 Rs. 71.9		

Say Rs. 72 per C.F.C.

10.4. BHOR & THAL GHAT TUNNEL

10.4.1. The tunnelling work involved in Bhor & Thal Ghat was carried out under contract and therefore no analysis of rates is available. However, the construction of these tunnels was carried out in connection with the doubling of Budni-Barkhera line on Itarsi-Bhopal section and was carried out through the departmental agencies. The details of cost as M7CW&PC/63-13

supplied by the Central Railway are given in Table 10.4.1. The method employed consisted of driving a pilot tunnel and then enlarging later after the tpilot was completed.

			Heading			Enlargi	ng
S1. No.	Type section	Qty. in cft.	Rate per 100 cft. (Rs.)	Cost (Rs.)	Qty. in cft.	Rate per 100 cft. (Rs.)	Cost (Rs.)
1	2.	3	4	5	6	7	8
1.	Crown lined single line tunnel wholly on straight and with- out side lining (cost per ft. length)	64	160	102	416	160	666
2	Crown lined single line tunne wholly on straight with side lining (cost per ft. length)	64	160	102	566	160	906
3.	Straight portion of crown lined single line tunnel is partly on straight and partly on curve 50 and without side lining (cost per ft. length)	64	160	102	426	160	682
4.	Straight portion of crown lined sinlge line tunnel where tunnel is partly on straight and partly on curve 50 and without side lining (cost per ft. length)	64	160	102	586	160	938
5.	Crown lined single line tunnel on curve 50 and without side iining (cost per ft. length)	64	160	102	466	160	746
6.	Crown lined single line tunnel on curve 50 and with 64 side lining (cost per ft. length)	64	160	102	616	160	986
7.	Unlined single line tunnel on straight (cost per ft. length)	64	160	102	296	160	474
8.	Unlined single line tunnel on curve 50 (cost per ft. length)	64	160	102	321	160	514
9.	Portal for unlined tunnel on 50 curve (cost per ft. length)				295	160	472
10.	Cost of man refuge in an un- line tunnel				182		
11.	Cost of trolly refuge in an un- lined tunnel		· · ·		1,100	160 160	292 1,760

TABLE 10.4.1.

TUNNELLING

10.5. BUDNI BARKHERA TUNND

10.5.1. In the Budni Barkhera Tunnel a statement has been extracted based on the job costing done by the Railway Department as shown in Table 10.5.1.

	Depreciation					hea	lot ading Rs.				fop ha oreako Rs.			Bend lowe I		
(a	Labour in drilling & b	lasting	••				1	2	6	0	6	3	0	4	8	
(b	Drilling tools replaced		• •					3	2	0	· 2	11	0	2	3	Ç
(c)	Explosives	••	••				. 1	8 1	15	0	9	1	0	8	0	0
(d)	Mucking labour		••			••	. 1	9	0	0	21	3	0	14	13	0
(e)	Proportionate cost of J	ambo f	for drill	ings.	(1,8	380/	-) :	l	3	0						
(f)	Multipurpose shield in	top hal	lf break	out ((4,2	:00/-	-)			—	1	6	0			
(g)	Support work	••	••			••	1	8 1	0	0	53	.7	0	2	0	C
(h)	Mechanical services fo & lighting	r com	pressed	air, 	W	ate:	r 17	71	0	0	10	-	0	8	4	0
(i)	Lighting charges	••	••	••		••	1	1	8	0	9	12	0	5	0	0
j)	Proportionate ownersh per shift Plant compressor Generator Pneumatic tools Pump	••	1 maint	i4 14 4 9 4	1 1 0 0	0 0 0 0	1:	5	9	0	12	8	0	5.	3	0
				31	2	0										
k)	Workshop services	••	••				13	0	(0	7	10	0	5	7	0
l)	Accommodation of lab	our, off	ices, etc			••	14	0		0	14	0	0	14	0	0
m)	Supervision at site	••	••	• •		••	8	11	1	0	. 6	8	0	3	0	0
				•			153	1	0	0	154	14	0	72	6	0
	Cost per Lft. of Tur	nnel									Propo	ortic	onate	e cost		
	excavation. Heading area 1 Top half break Lower half ben	out 208	sq. ft.			 	 		•	 	162 322 190	14 2 6	0			
	Total			••			••			F	Rs. 67	56	0			

TABLE 10.5.1.

.

Cost per 100 cft. of tunnelling excavation =Rs. 117/-

10.6. LINING OF TUNNELS

10.6.1. The cost of erection of temporary supports of either timber or steel has been included in the rates for excavation already discussed in the preceding paragraph.

10.6.2. Table 10.6.2. gives details of the cost of cement concrete lining for Bhakra diversion tunnels and Budni-Barkhera railway tunnels.

	in t	Bhak	ra	Budni Barkhera	
SI. Specification No.		Right Diver- sion Tunnel		(Central Rly.)	
1 2		3	4	5	
1. Coarse Aggregate					
(a) Quantity per CFC	•••	0.9		0.8	
(b) Amount in Rs		21.8	16.1	28.8	
2. Fine Aggregate					
(a) Quantity per CFC	••	0.4	<u></u>	0.5	
(b) Amount in Rs		7.0	12.8	11.7	
3. Cement					
(a) Quantity in cwts	••	14.3	· · · · ·	18.0	
(b) Amount in Rs	•••	58.8	70.7	90.0	
4. Total cost of material	••	87.6	99.5	129 .7	
5. Cost of labour	••	24.07	`	*131.5	
				∖ & י	
6. Miscellaneous cost		31.1	- 88.0	109.5	
7. Share of lant cost		26.4		· · ·	
8. Rate of cement concrete per CFC		167.0	187.5	*341 •3 10	
o, ituto of transmitterior per of o	· · ·		· ·	319.3	

TABLE 10.6.2.

*The higher rate of lining is for arch roof of tunnel and lower rate for sidewalls.

10.6.3. Table 10.6.3. shows primary cost of cement concrete lining per CFC in other projects. Details are not available.

TA	BL	Ε	10).6	.3.

<i>TABLE</i> 10.6.3.	
SI. Project No. Lining of Lining of sides arch roc	of Overall
1. Ramsagaram 2. Bhor Ghat 3. Thal Ghat	332

BRICKWORK AND LINING OF CANALS

11.1. PRICE OF BRICKS

11.1.1. The price of bricks varies from Rs. 20/- to Rs. 30/- per thousand of standard well-moulded and well-burnt common bricks while the rates for the larger size varies from Rs. 35/- to Rs. 45/-. These prices are ex-kiln and cost in transporting would be proportional to the haulage involved.

11.1.2. Standard size of bricks in most parts of the country is $9'' \times 4-3/8'' \times 2-11/16''$ so that 4 courses and 4 joints of brickwork would rise to 12" height. In some States and in Irrigation Department the brick size is $10'' \times 5'' \times 2-3/4''$. Joints vary from 1/4'' to 1/2''. Tolerances of 1/8'' in length and 1/16'' in other directions are common.

11.1.3. The number of standard bricks per CFC of brickwork shall vary with the size of bricks and the quantity of mortar used or thickness of mortar joints. Table 11.1.3. gives the number of standard bricks required per CFC for various thicknesses of mortar joints.

TABLE 11.1.3.

Sine of built				Thickness of joints					
Size of brick				1/4″	5/16"	3/8″			
$9'' \times 4_8^{3''} \times 2-11/16''$ (Standard brick)	••	•• ••	••	1350	1300	1270			
$10'' \times 5'' \times 2\frac{3}{4}''$	••	•• ••		1040	1000	• 975			

Number of bricks per CFC (exclusive of wastage)

11.2. MORTAR MATERIALS

11.2.1. Mud is the cheapest binder and will continue to be used and ought to find favour on the construction of camps which are likely to be demolished and the salvaged bricks utilised elsewhere. Regarding other binders it may be stated in general, that cement improves the strength

of mortar while lime improves its workability. The use of lime along with cement in the mortar is said to aid the retention of moisture in it for the more complete hydration of cement in the mix and also to introduce as high degree of plasticity enabling handling of mortar with ease and providing a uniform bedding for the bricks.

11.2.2. The quantity of dry mortar mix required for 1000 bricks and per CFC of masonry in a 1-1/2 brick wall has been tabulated below in Table 11.2.2. for various thicknesses of joints. Allowance has been made for normal wastage in mortar.

TABLE 11.2.2.

Mortar (in cft.) for brickwork in $1\frac{1}{2}$ brick wall (Standard bricks)

1986 - A.											
Thicknes	s of joints in inches	••	• • • • • • • •	1/4″	5/16″	3/8″					
Mortar p	ber 1000 bricks	••	•••	14	17	21					
Mortar p	per CFC of brick work	••	••	19	22	25					

11.2.3. Brick walls usually would require relatively less or more mortar per unit of brickwork depending on their thickness. If mortar content for 1-1/2 brick wall is taken as 1000 then the relative indices of mortar required for other thicknesses of brick walls may be applied from the following Table 11.2.3.

TABLE 11.2.3.

Thickness of walls in brick sizes	•••	$\frac{1}{2}$	1	11	2	$1\frac{1}{2}$	3
Percentage indices for mortar	••	92	.95	100	103	105	108

11.2.4. Weights of materials used and mortar are given below:-

(1) Stone-lime in small lumps from kiln	44	lb.	рег	FC	
(2) Fine and dry pit sand	90	· ,, ·	,,		
(3) Medium sand	95	,,	,,	.,,	
(4) Coarse sand	100	",	,,	,,	
(5) Ashes	50	,,	37	••	
(6) Lime-sand mortar 1:2 to 1:3 proportion	114	••	••		
(7) Cement-sand mortar 1:3 hand-made					
stiff well mixed	124	• •		••	
(8) Cement-coalash mortar 1:2 mixed stiff	10.5		· .		
and fresh.	107	· · 29	**		

11.2.5. The quantities of the various ingredients of mortar are given below:—

Type of					Ratio	In	gredients]	per FC		Labour
mix					Natio	Cement Cwts.	Lime Mds.	Sand FC	Surkhi	nixing/ FC an-day
LSM	••	••	••	••	1:2 1:3		·27 ·20	1 ·0 1 ·1	·	·012
CLM	••	•••	••	••	1:4 1:1:4 1:1:6	·20 ·15	·15 ·14 ·10	1 ·2 1 ·0 1 ·1		
CS	••	••	••	••	1:1:8 1:2 1:3	·12 ·40 ·29	·08	1 ·2 1 ·0		" 0 [°] 12
					1:4 1:5	·22 ·21		1 ·1 1 ·2 1 ·3	 	>> >> >>
RCM	••	••	••	••	4:1:10 4:1:15 4:1:20	·34 ·25 ·19	 	1 ·0 1 ·1 1 ·2	·08 ·06 ·05	"02 "

TABLE 11.2.5.

L=lime, S=Surkhi

11.3. PRICES OF MORTAR MATERIALS

11.3.1. Prices will vary at different times and in different localities. e.g., sand may cost anything like Rs. 5/- to Rs. 15/- CFC (average Rs. 10/-), stone lime from Rs. 1/8 to 4/- per md. (average Rs. 3/- per md). and cement Rs. 4/8 to Rs. 6/- (average Rs. 5/-) at different places.

11.3.2. The data for labour and plant needed for mortar mixing are given in the Table 11.3.2.

TABLE 11.3.2.

Nature of I		nt hour CFC	Labour day per CFC			
Lime, Sand (LSM)	• •		 	••	4	1.00
Cement, Lime Sand (CLM)		••	 		4 ·5	1 • 25
Cement, Sand (CM)		•••	 ••	••	5	1.33
Cement, Surkhi, Sand (RCM)			 • •	• •	6.0	1.50
Lime, Ashes or Surkhi	• •	••	 ••	••	6 · 5	1 .66
						: , ¹

11.3.3. Cost of mortars per FC hand mixed and those of mechanically mixed are indicated below. The prices have been derived on the basis of assumed wages and rates.

TABLE 11.3.3.

Type of mix	Ratio	Material	Labour	Cost per FC
	(a) Manual labour fo	r mixing	e to a E constantes	a san ta
LSM	1:2	0 ·91	0 ·021	0 ·93
	1:3	0 ·71	0 ·021	0 ·73
	1:4	0 ·57	0 ·021	0 ·59
CLM	1:1:4	1 ·57	0 ·029	1 •60
	1:1:6	1 ·16	0 ·029	1 •19
	1:1:8	0 ·96	0 ·029	0 •99
СМ	1:2	2 ·10	0 ·021	2 ·12
	1:3	1 ·56	0 ·021	1 ·52
	1:4	1 ·22	0 ·021	1 ·24
RCM	4:1:10	1 ·80	0 ·035	2 ·20
	4:1:15	1 ·36	0 ·035	1 ·40
	4:1:20	1 ·07	0 ·035	1 ·11
	(b) Mechanica	l mixing		
LSM	1:2	0 ·91	0 •06	0 ·97
	1:3	0 ·71	0 •06	0 ·77
	1:4	0 ·57	0 •06	0 ·63
CLM	••• 1:1:4	1 •57	0 •07	1 ·64
	1:1:0	1 •16	0 •07	1 ·23
	1:1:8	0 •96	0 •07	1 ·23
СМ	1:2	2 ·10	0 ·073	2 ·173
	1:3	1 ·56	0 ·073	1 ·633
	1:4	1 ·22	0 ·073	1 ·293
RCM	4:1:10	1 ·80	0 ·086	1 ·886
	4:1:15	1 ·36	0 ·086	1 ·446
	4:1:20	1 ·07	0 ·086	1 ·166

Cost of Mortars per FC mixed by (a) Manual Labour (b) Mechanical Mixing

11.4. LABOUR OUTPUT IN BRICKWORK

وليرد بصباب الدعير الأرأج وتصفحك الد

11.4.1. The number of bricks laid per day or cubic feet of masonry performed per day per mason will depend upon the kind of brick face, thickness of joints, quality of mortar, thickness of wall, number of openings, corners, panelling pillars, working conditions, etc. Table 11.4.1. gives range and average number of bricks laid per person per day for common straightforward brickwork.

TABLE 11.4.1.

Approximate rate of laying bricks for heights not exceeding 10' (common brickwork)

	fhickness of Wall			,		On one	· On	On two faces		
				ļ ,	From	То	Average	From	То	Average
	1.				2	3	4	5	6	7
1.	1/2 Brick wal	1		•••	300	500	400	250	400	325
2.	1 ,, ,,	••	••	•• • •	400	600	500	300	500	400
3.	1-1/2 ,, ,,		••	••	500	800	650	400	. 600	
4.	2 ,, ,,	••	••		600	1000	800	500	. 700	
5.	2-1/2 ,, .,	••	••		700	1200	950	550	750	650
6.	3 ,, ,,	••	••	••	800	1400	1100	600	800	700

11.4.2. The amount of work done per day by a helper can be any one of the following items :

1. Mix 100 to 120 F.C. of mortar.

2. Deliver 3000 to 5000 bricks to a distance of 50'.

3. Deliver mortar 150 to 250 F.C.

4. Two good helpers can handle 100 to 200 ton of pole staging.

11.5. COST OF SCAFFOLDING (USE AND WASTE)

11.5.1. Cost of scaffolding (use and waste) may be reckoned as a percentage on the cost of bricks to be laid or as a unit rate per CFC of brickwork. For single storey houses it would be Re. 0.5 to 1.0 per CFC of brickwork depending on the thickness of walls.

11.6. COST OF BRICK MASONRY

11.6.1. It can be readily understood that different rates would be required for different classes of brickwork for varying positions, conditions and specifications. The Committee do not propose to examine all those items relating to brickwork.

11.7. LINING OF CANALS

11.7.1. It has been possible on several projects in India to reduce the section of the canal, and, also to make a considerable saving in seepage losses by lining the channels with an impervious material.

11.7.2. While canal lining is a new feature in India it has been in practice for a long time in other countries like U.S.A., where the entire work is mechanised and carried out in cement concrete resulting in speedy construction. In India, however, the work has so far been done entirely by manual labour using especially moulded brick tiles, or stone-slabs or cement concrete to suit local conditions.

11.7.3. The prominent examples of this class of work are the Harike Canal, Nangal Hydel Canal, Sarda Hydel Canal and the Tungabhadra Canal.

11.7.4. The data collected for these projects has been analysed in the following Tables 11.7.4. (i), (ii) and (iii).

TABLE

Basic Rates of Constituents

		Rates of materials in rupees (Issue Rates)							
Sl. No.	Name of Project	Cement Cwt.	Tiles or Bricks 2 1000 Nos.	Slab " thick	gate	3/4" Aggre- gate CFC	Sand CFC		
1	2	3	4	5	6	7	8		
	Nangal Hydel Canal (Concrete 1:3:6)	4/12/-		7. 	9/-/-	12/-/-	2/-/-		
	Nangal Hydel, Rupar (Tile Size $12'' \times 6'' \times 2''$)	4/7/-	41/-	·	·	· · · · · ·	2/-/-		
	Sarda Sagar (Brick Size $10'' \times 5'' \times 2\frac{1}{2}$)	5/4/-	29/4/-				3/-/-		
4.	Harike (Tile Size $12'' \times 6'' \times 2''$)	4/9/-	42/-/-	·	7/8/-	12/5/-	1/15/-		
5.	Tungabhadra (Andhra)	5/4/-	 ;	25/12/-	20/-/-	42/1/-	25/-/-		
	Tungabhadra (Hyd.)		·	28/5/-		34/-/-			

NOTES: 1. The rates of materials do not include carriage and are issue rates.
2. Sand is River Sand and its lead in case of Tungabhadra (Andhra) is 26 miles.
3. Sand Lead for Tungabhadra Project (Hyd.) is not given.

TABLE Break up of Rates of Brick

				Brick Til	es	Sand		
Sl. No.	Name of Project	Mix of Mortar	Qty. Nos.	Rate inclu- sive of carriage per 1000Nos.		Qty. in FC	Rate inclu- sive of carriage per CFC	Amount (Rs.) e
1	2	3	4	5	6	7	8	9
	Nangal Hydel (Rupar $12'' \times 6'' \times 2''$ Double Layer Tile lining in bed	1:4 c.m.			47.16	36.3	16.0	5.83
3. I	-do- on slopes Harike 12" × 6" × 2" Double Layer Tile	1:4 c.m	. 908	51.75	47.16	36•3	16.0	5.83
4. S	lining in bed Sarda Sagar Hydel 10"×5"×2-1/2" Dou Layer Tile lining in	1 :4 c.m. ble	908	4 7 · 0	42.68	36•3	6.2	2.36
5. 1	Layer The Inning in bed and slopes Fungabhadra (Hyd.) 9" thick U.C.R.S.in	1:4 c.m.	1100	-	43 · 18 Break up	$40 \cdot 0$ of ro	10.0 ues of (• • • •
	slopes	1:8 c.m.	100	10.29	10.29	40.0	11-14	4.46

for Canal Lining at Pro

	riage rates Carriage rates (Rs.) over long leads		Mixer	Mixer	Weighted		
Per Ton for 1st Mile		Per To per Mile	n Per CFC per Mile	charges per CFC Rs.	charges per hour Rs.	average wage rate Rs.	Remarks
9	10	11	12	13	14	15	16
1/1/-	6/8/-	-/8/-	1/-/-	2/11/-		2.3	•
1/1/-	6/8/-	-/8/-	1/-/-			2.3	*Rates by
		* 1/-/-	*1/8/-	—		2.3	trolley excluding depreciation and
1/-/-	6/8/-	/7/10	-/15/-	<u> </u>		2.3	laying trolley. Mixer use rate
1/10/-	5/4/-			· .		1.8	@ Rs. 3/-/- in equal to Rs
1/1/-	4/-/-			9/6/-	3/-/-/	1.8	2/11-/- per CFC with 10/7 mixer

11.7.4. (ii)

Tile lining rate per CFC

	Cemen	it	,	Soaking		Total	Rate	Thick-	
Qty. in cwt.	Rate inclusive of carriag per cwt.		Labour	tank curing & water arrange- ments	Sundries pro- file for Sub- grade	Rs. per	in Rs. CFS 100 Sq. ft.	ness of lining	Remarks
10	11	12	13	14	15	16	17	18	19
7.95	4 · 59	36.49	25.8	5.9		121 • 2	53.37	5″	(1) Excess labour
7.95	4.59	36•49	32.4	5.9	9.13	136.94	60.33	5″	for slope lining Rs. 4.75 per CFC.
7.95	4.77	37•95	23.25	<u> </u>		106.25	47.12	5*	(2) Rate for CFS
7 •40	5.5	40 ·70	38.60		5.5	132.00	66.00	6″	on slope Rs. 49·2
Masor 3 · 98	ary lining (J 5+57	Rate per 22·17				62·00	46.5	9 ″	

TABLE 11.7.4. (iii)

Break up of Rates of Concrete Lining rate per CFC

			Name of	Project		
Sl. No. Item	Nan Hydel			bhadra dhra)		abhadra erabad)
	5" thick in bed	6" thick in slopes	4-1/2" thick in bed	4-1/2" thick in slopes	4" thick in bed (Blasting of Agg. by Govt.)	Precast c.c. slab 2" thick
1. Mix of Concrete	1:3:6	1:3:6	1:6:10	1:3-1/2:5	1:6:10	1:4:5
2. (a) Aggregates 1/2"	46.6	47.0	77.1	77.7	.100	85.7
size, Quantity in						
FC.			i ta Ali			
Rate inclusive of						
carriage per			10.06	10.00		
CFC	24.26	24.26	40.06	40.06		34.3
Amount (Rs.)	11.3	11.4	30.9	31.1	12.86	29.4
(b) Aggregates 3/4"						
size, Quantity	1 A L 1		de la secolo			
in FC.	46.6	47.0	19.3	19•4		·
Rate inclusive						•
of carriage per CFC	27.26	27.26	54.0	54.0		
	$27 \cdot 26 \\ 12 \cdot 7$	$\begin{array}{c} 27 \cdot 26 \\ 12 \cdot 9 \end{array}$	54·0	54.0		
Amount (Rs.)	12.1	12.9	10.9	10.5		
3. Sand, Quantity in FC	46.6	17 0	57 0	50 0	50.0	(0.0
Rate inclusive	40.0	47.0	57.8	58.2	50.0	69.0
of carriage per						
CFC	18.06	18.06	35.0	35.0	17.16	10.2
Amount (Rs.).	8.4	8.5	20.2	20.4	8-58	$\frac{10\cdot 3}{7\cdot 5}$
4. Cement, Quantity			20 2	20 H	0 00	1.2
Cwts	12.68	12.70	7.74	13.52	6.66	13.9
Rate inclusive	12 00	12 70	1 / 4	15.52	0.00	13.8
of carriage	4.85	4.85	5.15	5.15	5.35	5.57
Amount (Rs.)	61.5	61.6	39.9	69.6	35.67	76.5
5. Labour	15.17	19.75	10.3	$31 \cdot 2$	26.1	143.1*
6. Plant use	2.75	2.75	2.72	16.8		9.37
7. Form work	13.7	20.0		33.8	- -	5 51
8. Slurry	17.9	15.0	15.6	16.5	·	
9. Curing	1.8	1.5			4.3	
10. Sundries	· ·				0.73	
11. Total Rate (Rs.) per CFC AV.	145·2 149·3	153.4	130.0	229.9		265.8
12. Rate (Rs.) per CFS AV.	61 · 0 68 · 85	76.7	48.75	87.75	29.6	44.12

*Includes (i) labour for concreting (ii) fixation of blocks. (iii) 1:6 c.m. mortar, quantity of which is not given, (iv) conveyance of precast slabs.

Rates include washing of aggregates also.

STEEL WORKS AND GATES

12.1. Hydraulic Gates

12.1.1. Hydraulic gates can be classified into:-

- (i) Category 1, where the operating member moves on sliding surfaces, or
- (ii) Category 2, where the operating member moves on wheels or rollers, or
- (*iii*) Category 3, where the operating member rotates about a fixed or movable point to engage with the sealing element.

12.1.2. Ordinary low head and bulk head gates belong to the first category and are the most common. For higher heads, mounting of wheels and rollers becomes necessary to keep down frictional resistance in the operation of gates. Radial and drum gates are examples of the third category and are used for regulating the flow over the spillway.

12.1.3. All these types of gates are built essentially in steel with a lining on the water face. The allied structures comprise the operating platforms, bridges, hoists and the controlling devices.

12.2. INDIGENOUS MANUFACTURE

12.2.1. Until lately, all gates and hoists for the River Valley Projects used to be imported from abroad at a prohibitive cost. Recently, however, the technique of steel fabrication has developed so fast in the country, both in the public and private sectors, that there is hardly any need now for the import of such structures.

12.2.2. Notable examples of the public enterprise are Government Workshops at Amritsar, Madras, Izatnagar (U.P.), and the Tungabhadra Project which have turned out quality products at competitive rates. In the private sector, a number of reputable firms exist in the country which can undertake such jobs on competitive prices, but their chief difficulty in the past has been that they do not get sufficient load for their shops due to preference shown to foreign manufacturer. It is, therefore, recommended that a Central Agency should watch the interests of this important engineering undertaking in the country, both in the private and the public sectors, 12.2.3. Table 12.2.3. indicates the extent of work done within the country. Fuller details are given in appendix (9).

Sl.	Name of	Nature	Year of	Cost	per ton	Hoisting	
No.	project	inature	Manufac- ture	Gate Leaves	Embedd- ed parts	Gear	Total
1	2	3	4	5	6	7	8
				Rs.	Rs.	Rs.	
1.	Nangal Dam	Regulator	1954	· . · · ·	· · · · ·		1,340
2.	Tilaiya, D.V.C	Spillway	1952				4,200
3.	Bokaro D.V.C	Spillway Emergency	1952 1952				2,600
4	(i) Kopai (Mayurakhsi) (ii) Dwarka (Mayurakshi)		1950 ,, 1951 ,,				1,700 1,400
	(iii) Bakraswar (Mayurakshi)	Regulator Crest Sluice Regulator	1951 ,,				2,000
	(iv) Brahamani (Mayurakshi)	Weir Sluice Regu ¹ ator	1953 ,,		• • •		2,150
5.	(i) Hirakud (Mani Dam) (ii) Hirakud	Spillway	1955	· · · · ·	an a	n yang di sang di sang Sang di sang di Sang di sang di	2,000
	Bargarh canal	Regulator	1955	2,900	1,400	18,000*	4,300
6.	Tungabhadra	Spillway Sluice Penstock	1952-54 1952-53 1953-54	1,360 4,600 4,800	800 1,600 1,620	45,000* 57,600* 64,500*	2,160 6,100 6,420
7.	Jawai	Spillway	1954-55	1,450	1,000	16,000*	2,450
8.	Lower Bhawani	Spillway	1954	5,216	1,528	13,200*	6,744

TABLE 12,2.3.

•Prorata share of the hoisting gear is not included,

STEEL WORKS & GATES

12.3. BREAK-UP OF COST

12.3.1. Statements showing break-up of cost of manufacturing gates, etc. in the Tungabhadra and Amritsar Workshops are given below in Tables 12.3.1. (i) & 12.3.1. (ii):--

TABLE 12.3.1. (i)

Statement of Break-up of cost of Hydraulic gates (Manufactured by Tungabhadra Workshop)

Sl. No.	Details of Gate	Steel %	Other material and consu- mables	Labour %	Centage charges	Percentage of centage over labour col. 6/5 × 100
1	2	3	4	5	6	7
Gate	Leaf					
Pro	garh Sluice Gate, Hirakud ject. v level Sluice Gate, Tunga-	17	¹ / ₂ 19 ¹ / ₂	37	26	70
bha	dra.	10	. 28	35	27	77
Pro	stock Gate, Tungabhadra ject. 'ai Spillway Gates, Rajas-	. 10	$\frac{1}{2}$ 40	- 30	20	× 67
tha	n.	40	13	22	25	114
Pro	llway Gates, Tungabhadra ject. edded Metal	33	28	19	20	105
6. Bar Hir <i>Hois</i>	garh Sluice embedded parts, akud.	36	20	18	36	144
7. Bar	garh Hoist, Hirakud.	14	34	. 27	25	93
8. Ope bha	eration Bridges, Tunga- dra Project.	45	12	18	25	139

TABLE 12.3.1. (ii)

Statement of Break-up of cost of Nangal Canal Head Regulator Gates (Manufactured by Government Central Workshops, Amritsar)

SI. No	. Details of Gate		Material (Steel) %	Labour %	Centages charges	Percentage of Centage over labour (Col : 5/4×100)
1	2		• 3	4	5	6
1.	Canal Head Regulator Gates, Nangal	••	47	12	41	342

12.3.2. The Executive Engineer incharge of the Tungabhadra workshop reports that item (2) low level sluice gate for Tungabhadra was the first one manufactured in the shop when the cost worked out to Rs. 4,600 per ton. Subsequently with improved methods it was possible to make similar sluice gates @ Rs. 2,900/- per ton although the basic rates for steel had increased during the period.

12.4. THE OVERHEAD CHARGES

12.4.1. The overhead charges comprising factory charges in the various shops, general charges and office charges with direct labour base are also shown in the previous table, but a further split up is given in Table 12.4.1. for Amritsar Workshop.

TABLE 12.4.1.

Workshop Overhead Charges in percentage over cost of Direct Labour For quarter ending 3/55

SI.	Name of Shops Dir	rect -	Percer	ntages of O	verhead (A	Actual)
No.		bour	Factory	General	Office	Total
-1	2	3	4	5	6	
1. 2.	Machine shop	100	481	148	43	672
	ment shop.	100	140	33	43	210
3.	Steel & Welding shop	100	181	88	43	31
'4 .	Smithy shop	100	181	82	43	30
5.	Iron & Brass foundry	100	190	91	43	32
6.	Mill wright shop	100	311	122	43	47
7.	Carpenter shop	100	148	64	43	25
8.	Painter shop	100	93	46	43	18.
9.	Fitter shop	100	159	61	43	- 26
10.	Factory as a whole	100	234	92	43	36

(Govt. Central Workshops, Amritsar)

12.5. DETAILS OF ACTUAL EXPENSE

12.5.1. Details of actual expense on various elements for gates manufactured in the three shops are recorded.

TABLE 12.5.1. (i)

Tungabhadra Workshop

A. Low	v Level S	Sluice										
	Project Type of		and	purpose	 served			•••		Tungabhadra Low level sluice	gate	
						•	n ng san n San San San San San San San San San San	• • • • •	n en	Fixed wheel Life gate		

STEEL WORKS AND GATES

TABLE 12.5.1.(*i*)—contd.

3	Size						61 - 101
				••	••	••	6'×12'
	Maximum lead for			••	••	۰.	83'
5.	Type of water seals	•• ••	• •	• •	••	••	Music note for side
	•••						seals and flat rubber
6	XX71 41 11		1				bottom.
0.	Whether rollers pro	ovided, it so w	nat typ	e, nxea	or mov	ving.	Fixed Rollers
7.	Weight of Gate Lea	ives	••	••	••	••	$9\frac{1}{2}$ tons including 3 tons
	-						ballast.
8	Weight of embedde	d norts					
			••	••	••	••	
9.	Cost per ton of em	bedded parts	••	••	••	••	Rs. 1,500/-
	· .						(including C.I. Lining)
10.	Cost per ton of Ga	te leaves				••	Rs. 4,600/-
11	Type of Hoisting G	ear provided a	ind the	method	lofone		
		cal provided a	ina the	meenee	i or ope	at-	TTomo daman TTotat
	ing the same.						Hope drum, Hoist power
							& manually operated
12.	Capacity of Hoistin	g Gear			••	• •	30 tons
13	Cost of Hoisting C	lear ner ton (of weig	ht and	ner ton	of	Rs. 4,000/- per ton.
15.		bear per ton c	1 1015		per ten	U.	$P_{5} = 1.020/$ mon ton
	capacity.						Rs. 1,920/- per ton.
R Fm	ergency Embedded P	arte					
	-						61 A
(a)	1. Weight	•• •• *	••	•••	••	••	$5\frac{1}{2}$ tons
	2. Cost					• •	Rs. 7,000/-
	3. Cost/ton				••	••	Rs. 1,273/-
_	•	•• ••	••	••	••	••	10. 1,2101-
Eme	ergency Gates						
(b)	1. Weight						9 tons each
(0)		•• ••	••	••	••		
	2. Cost	•• ••	••	••	••		Rs. 30,000/- each
	3. Cost per ton		••	••	••	••	Rs. 3,333/-
	-	1 1					
C. High	h Level Sluice—50 ft	. neaa					
	1. Vent size		1.11				6 ft×12 ft.
		· · · · · · · · · · · · · · · · · · ·	 	 1 1	n narte	••	20 tons
	2. Total weight of s	since gate, no	ists and	i ouni i	in parts	••	
	3. Total cost.						Rs. 64,000/-
•	4. Cost per ton				••	• •	Rs. 3,200/-
	-						
D. Pen	stock Cut-off •						
	1 Denste de (Diens)	`					11 ft.
	1. Penstock (Diam.			• •	••	••	
	2. Discharge	•• ••	••	••	••	• •	760 cusecs
	3. Power developed	•••		••	••	••	9000 kW
	4. Nominal size of		••		••	••	$10\frac{1}{2}$ ft. $\times 17$ ft.
						••	12 tons
	5. Weight of built-i	n parts	••	••	••		20 tons
	6. Weight of gate in	icluding hoist	s	•••	••	••	
	7. Weight of 2 spee	d hoists 30/40) ton ca	pacity	••	••	10 tons
	8. Total weight of a	all above.			• • ·	••	42 tons
	0 Totol cost						Rs. 1,38,000/-
	9. Total cost	•• ••	••	••	••	••	(including erection
1	0. Cost per ton of t	otal weight	••	••	••	. • •	Rs. 3,280/-
		•					
$E. S_{I}$	oillway Gates						
-	1 0:					• •	60 ft. \times 20 ft.
			••	• •	••		19,000 cusecs
	2. Discharge		••	• •	••	••	
	3. Weight of built-i	n parts	 		••	••	10 tons
	4. Weight of operat	ion bridge		••			18 tons
	5 Watche - f						49 tons
	 Weight of gates Weight of chain 		••	 		••	12 tons
	6. Weight of chain	hoists 25/35 to	ons cap	acity		•••	12 (0113
	7. Weight of gates	built-in part	ts, oper	ation 1	bridge a	ind	
	hoists.	,					39 tons
			1.1			••	Rs. 1,64,400/-
	8. Total cost		••	••	••		Rs. 1,850/-
	9. Cost per ton		• •	• •	•		AND. 190041-
M7CW&	PC/63-14		••••	· •			
	· · · ·						

TABLE 12.5.1. (ii) Madras P.W.D. Workshop

A. Embedded steel-work for Grooves at sides and still beams for the surplus Gates for the Lower Bhawani Project

Size of Gates 1. Steel materials 100 cwt. @ 23/- per cwt. (approx.) 2. Other materials such as bolts and nuts, paint, electr		40 ft.×20 ft. Rs. 2,300/-
etc. including handling charges.	L.S	. Rs. 1,400/-
 Labour (Fitter, Welder, Turner, etc.) Machine and forges 	•••	Rs. 1,400/- Rs. 460 -
5. Centage (Indirect charges)6. Contingencies		Rs. 2,150/- Rs. 330/-
Total for vent	•••	Rs. 7,640/-
Weight of each unit Total for 1 vent Cost per ton	•••	5 tons. Rs. 7,640/- Rs. 1,528/-

B. Manufacturing Surplus Gates for vents 36'-0"

Excluding Roller Assembly and Posts

1. Steel materials 536 cwt. @ 21/8/-cwt. average	Rs. 11,524/-
2. Other materials such as rivets, bolts and nuts, paint, electrodes etc. including handling charges.	Rs. 4,711/-
 Labour (Fitter, Welder, Blacksmith Rivetter etc.) contingencies etc. and including general charges @ 30%. Materials storage 1%	Rs. 14,300/- Rs. 165/-
	Rs. 30,700/- 26 ·8 tons Rs. 1,144/-

C. Manufacturing Post Frames at Madras for one vent

1. Steel material 55 4 cwt. @	22/- cwt.		Rs. 1,226/-
2. Other matrials, such as ele	ctrodes, paint, bolts a	and nuts,	,
etc. including handling cl	harges.	e te di se	Rs. 834/-
3. Labour (Fitter, Turner, We	lder, Machanics)		Rs. 1,020/-
4. Machining		••	Rs. 200/-
5. Centage (Indirect charges)	•• ••	•• ••	Rs. 1,354/-
6. Contingencies	•• •• ••		Rs. 366/-
	Total for one vent		Rs. 5,000/-
	Total weight.		2.77 tons
	Cost/ton		Rs. 1,805/-

D. Manufacturing Roller Assembly at Madras Workshop for one vent

1. Steel materials	• •	••		••		Rs. 200/-
2. Direct debit for bearing		••	••		••	Rs. 340/-
 Labour (Fitter, Mechanic Machining 	etc.)	••	• •			Rs. $40/=$
5. Centage (Indirect charges)		••	•••			Rs. 15/- Rs. 50/-
6. Contingencies.	•••	••*	••	•••	••	Rs. 51/-

Total for one set of rollers Rs. 650/-

E. Man	ufacturing Roller Path	Assen	nbly at	Madra	s Worl	kshop			
· 1.	Steel materials 120 cv Other materials such	vt. (ap as bol	prox.) ts and	@ Rs. nuts, e	21/8/-	cwt.	int,	Rs. 2	2,580/-
	etc. including hand	ling ch	harges.			· •	,	Rs. 1	1,959/-
	Labour (Fitter, Weld			:s)	••	••	••		1,840/-
4.	Centage (Indirect cha	rges)	••	••	••	••	••	Rs. 2	2,423/-
	Machining	••	••	••	••	••	••		
6.	Contingencies .	••	••	••	••	••	••	Rs.	398/-
			Total	L	••	••	•••	Rs. 9	9,700/-
			Cost	per tor	1	••	••		1,617/-
F Ton I	Deck Bridge for Hoist	Gear 1	Manuf	actured	at I. F	RP W	orket		
_								-	
	Steel materials cost (1 Other materials such						 ing	Rs.	3,859/ -
	handling charges.						•	Rs.	738/-
3.	Storage	•	••	••	••	••	••	Rs.	46/-
4.	Labour charges includ	ling ge	eneral	charges	s (Fitte	er Weld	ler,	÷	
-	Painter etc.)	•	••	••	••	••	••		3,380/-
5.	Contingencies, 30%.	•	••	••	••	••	••	Rs.	1,014/-
			Total	for on	e vent		• •	Rs. 9	9,037/-
				weight		••	••		tons
				per ton		••	••	Rs.	982/-
G. Hoist	Gear Complete Asse	mbly a	at Mad	lras W	orkshoj	p for o	ne ve	nt	
1.	Steel materials 90-3/4	cwt. (a Rs.	22/8/- d	cwt. av	erage	••	Rs. 2	2,042/-
2.	Other materials such	as b	olts a	nd nut	ts, rive	ts, pair	ıts,		•
	electrodes etc. inclu	ding h	andlin	g char	ges.			Rs. 4	1,768/-
	Labour (Fitter, Welde		mer ete	c.)	••	••	••		1,820/-
	Machines for forges.		••	••	••	••	••	Rs.	900/-
5.	Centage (Indirect char	rges)	••	••	••	••	••	Rs. 3	3,116/-
	Contingencies	•	•••	••	••	••	••	Rs.	554/-
			Total	for on	e vent	••	••	Rs.	13,200/-
				weight		•••	••		tons
			Cost	per ton	ı	••	••	Rs.	2,900/-

H. Transport and Conveyance including loading etc. for one vent

1. From P.W. Workshop, Madras to Railway wagon at Salt	
Containers loading and unloading.	Rs. 980/-
2. Rly. Freight for about 1,8,3,15 cwt. or say 60 tons	Rs. 2,600/-
3. Loading & unloading at Mottupalayam at site	Rs. 200/-
	Rs. 1,680/-
	Rs. 40/-
Total for one vent	Rs. 5,500/-
Weight	59 tons
	Rs. 93/-
J. Erection	
1. Labour (Foreman, Fitter, Erector, gang mazdoor etc.)	
for six months.	Rs. 5,340/-

2. Erection materials such as Manilla rope, pulleys etc.	••	Rs.	660/-
- · · · ·			5,000/-
Cost per ton ,,	••	Ŗs,	102/-

TABLE 12.5.1. (iii)

Amritsar Workshop

Statement showing weight and rates per ton of Gates and Hoists

SI. Item we	pprox. ight in ons	Rate per ton	Rate per sq. ft. for gate area
1 2	3 .	4	5
1. Canal head Regulator, Nangal	831.5	1341.0	367.0
2. Nangal Dam	6200 0	1420.0	373.0
3. Silt Ejector @ R.D. 9575-N.C.H.	31.0	1668.75	165.0
4. Silt Ejector @ R.D. 72720-UBDC mainline	20.75	1733 - 5	100.0
5. Gates & Gearing for Escapes Charn Ganga	61.0	1823-2	145.0
6. Gates Canal Charan Ganga	105.0	1640.5	88.0
7. Gates Canal Nakian Drainage Syphon	100.0	1814.4	90.0
8. Gates Escape — Do	62.0	1831.6	140.0
9. Automatic Radial Gate for Ganguwal Spillway			
for Power House No. 1	147.0	3322.0	630.00
10. Draft Tube Gate for Ganguwal P.H. No. 1	109.0	1362.5	100.0
11. Gates & Gearing for Bhakra Canals	Fla	te Rate.	155.0
12. Intake Radial Gate for Ganguwal Power House No. 1	213.0	1707.0	188·0

STONE MASONRY

13.1. STONE MASONRY CLASSIFICATION

13.1.1. Stone Masonry can be classified under the following heads:—

- 1. Rubble stone masonry, composed of rough undressed stone as it comes from the quarry.
- 2. Hammer dressed and square stone masonry comprising stones squared and dressed on beds and joints by means of hammers. The stones may be laid in course straight, broken, or random.
- 3. Ashlar or cut stone masonry is generally used for face work. It may or may not be laid in courses.
- 4. Dry stone masonry in which no mortar is used. Riprap, pavements, retaining and breast walls are examples.

13.1.2. The various classes of masonry are generally used in combination on works viz. the face masonry of dams is laid in squared stone or ashlar and the hearting comprises the uncoarsed rubble. Combined rates of masonry to include classes of masonry and pointing (Table 13.1.2.) show that stone masonry dams built in the last decade have cost Rs. 125 to 233 per CFC.

13.2. UNCOARSED RUBBLE STONE MASONRY

13.2.1. Uncoarsed rubble masonry forms the bulk in a stone masonry dams. Table 13.2.1. gives the comparative primary and overall rates of U.C.R. hearting masonry for the various projects. A detailed statement is appended (Appendix 10).

13.3. ESTIMATING STONES

13.3.1. The units of measurement for all kinds of masonry is CFC (%CFT). The quantity of rough rubble stone per CF in a rubble masonry wall is 120 cft. but in case of large dams where the mortar used is considerably more than that in ordinary walls the quantity or rough stone required is about 100 F.C. of which 2/3rd may be large slightly dressed

TABLE

1. Projects under

Sl. Name of	Height of Dam	Qty. of		Primary rat	e in lakhs	
No. Project	above A.O. Bed Level	Masonry in CFC Executed	Hearting EXPR	Face in Lakhs	Pointing	Total in Lakhs
	Foundation	LACCULCU	······································			
1. Matatila		115150*	(127 • 3)	· · · · · · · · · · · · · · · · · · ·	0.5	127.8
	110′					
				· · · · · · · · · · · · · · · · · · ·		
2. Hirakud	200′	92129				129.0
	130'					
3. Bhadra	245'	36200	•		· · · · · ·	45 •4
	187′					
4. Gandhisagar	212'	2486000			· · · · · · · · · · · · · · · · · · ·	
	202'					

STONE MASONRY

	4	â
15.	I	.Z.

Execution

Combined primary rate per CFC	On cost	Total cost per CFC	Remarks
110 .8	(15%) 16·6	127 •4	*Qty. as per latest Revised Estimate for complete DAM (2 stages). Amount also as per Revised Estimate. R.R Masonry in C.M. 1:4; 1:5. Actual expr. qty. executed so far is not available. On cost percentage is based or this latest Revised Estimate figs. (for indirect & over head charges).
140.0	(30%) 42·0	182-0	Figs. are as per estimate-contract rate for R.R. work in Power Dam is Rs. 75 per CFC. Cement supplied free by the Department. For extra lead & lift over the ini tial lead & lift extra rate is paid. For face work also extra amount is paid. On cost percentage is as pe estimated figures.
125 4	(35%) 44·0	169 •4	Amount & qty. executed as per Proforma IV (actual) Period not given. R.R. Masonry in Lime Surkhi Morta 1:4 proportion. The primary rate does not includ lift charges (P. 312). On cost percentage is as pe estimated figure.
133.86	(22%) 29·45	163.3	Qty. is as per actual executed—Primary Rate is as per analysis given by the Project Authority for R.R. in R.C.M. 1:2-3/4. Rate is without any lift charges. Work is still in initial stage. These are two propor tions executed viz. R.R. in R.C.M. 1:2-3/4 & 1:4. On cost percentage is as per estimated figure.

TABLE

Sl. Name of	Height	Qty. of Masonry in CFC Executed	Primary Rate in Lakhs					
No. Project	of Dam above Bed Level		Hearting EXPR	Face in lakhs	Pointing	Total in Lakhs		
	Foundation		<u></u>					
	en de la compañía de							
l. Kakrapar	601′	22951	26.3	3.0		29.6		
	451'							
2. Mayurakshi	155'	90450			، ۲۰۰۰ ۱۹۹۹ - ۲۰۰۰ ۱۹۹۹ - ۲۰۰۰	112-43		
3. Tungabhadra (Andh.)	160′	152608				264·3		
	150′							
I. Tungabhadra	160′	152608	• • • • • • • • • • • • • • • • • • •			293.23		
(Ħ̃yd.)	150'	(assumed)						
5. Lower Bhawani	204′	131722	141 • 2	14.3	1.3	156.7		
	140′	an An Anna Anna An Anna Anna An Anna Anna						
5. Peechi	۲۵ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ ۱۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲۹۹۹ - ۲	19912				37.30		
	130'							
. Perinchani		17762	17.25	0.33	0.2	17.78		

STONE MASONRY

13.1.2.

Completed

			-				
Combined Primary Rate per CFC	On Cost	Total Cost per CFC	Remarks				
	• · · · · · · · · · · · · · · · · · · ·		Figures & qty. and amount are as per <i>Proforma</i> II (actual) supplied by the Project. On cost percentage is based on estimated figures.				
128.8	(45%) 58·0	186.8	R.R. in C.H. 1:4				
124.3	(20%) 24·86	149•16	Qty. & amount are as per latest figure sent on 23/11/55 by S.E. On cost percentage is as per estimated Figure R.R. Masonry in various R.C.M. 1:2-3/4 to 1:5. On cost percentage is as per estimated figure.				
173 • 18	(35%) 60·6	233.78	Qty. & amount are as per Andhra. On cost per- centage is as per estimated Figure R.R. Masonry in R.C.M. 1:3-3/4, 1:4, 1:5; Lime Surkhi mortar 1:1:1, 1:2:2:, and Face Stone Masonry.				
192•2	(35 %) 67 · 27	259 • 47	Amount is as per Ex. Engr. in 4/54. Reservoir constn. Dn. On cost percentage is as per estimated Fig. R.R. in R.C.M. 1:2-3/4, 1:4 and Face Stone Masonry.				
119•9	(19%) 22·6	141•6	Qty. & amount are as per <i>Proforma</i> IV (actual). Figs. are not final as the final adjustments are still to be made on various expr. On cost is as per estimated Fig. R.R. Masonry in C.M. 1:6, 1:2, 1:5, 1:4, 1:2-3/4; & R.C.M. 1:5, 1:4, 1:2-3/4, and Face Masonry. On cost percentage is as per estimated figure.				
187•3	(12·25%) 23·0	210•3	Qty. & amount are collected by Sri Varadharajan (actual). On cost percentage is as per Sri Varadharajan's calcula- tions. R.R. in C.M. 1:2-3/4, 1:5, 1:4, Face Stone Work.				
100+1	(44 %) 44 · 0	144 • 1	Qty. & amount are as per <i>Proforma</i> IV (actual). On cost percentage is as per actual Fig. R.R. in C.M. 1:2-1/2, 1:3, 1:4, 1:5 & 1:6 and Face Stone Masonry.				

TABLE 13.2.1.

	$1:2_{4}^{3}$	RCM	1:4 CM		1:4 RCM		1:5 CM	
Sl. F No. Projects	Primary Rate per CFC	Overall Rate per CFC	Primary Rate per CFC	Overall Rate per CFC	Primary Rate per CFC	Overall Rate per CFC	Primary Rate per CFC	Overall Rate per CFC
1 2	3	4	5	6	7	8	9	10
					*	the second		
1. Matatila				· · · · · ·			99	111
2. Gandhisagar	131	154			112	131		
3. Hirakud			139	163	· · · · ·			
4. Kakrapar	: \``` 			·	93	126	· · · · · ·	
5. Tungabhadra (Andhra)	134	181	۲۰۰۰ ۱۹۹۹ - ۲۰۰۰ ۱۹۹۹ - ۲۰۰۰	· · · · · · · · · · · · · · · · · · ·	116	157		· .
6. Tungabhadra (Hyderabad)	165	223			148	200		
7. Lower Bhawani	104	117	100	111	100	111	95	105
8. Malampuzha	104	124	94	111		·	88	103
9. Peechi		·	170	185			147	160
10. Perinchani		·	87	115		· ·	78	102

Rates of U.C.R. Masonry on River Valley Projects

NOTE : U.C.R. Masonry in mortars other than those specified above being of relatively small quantities have been deleted from our study.

stone and 1/3rd as small stones and spalls. The quantity and weight of stones used per CFC would depend on the individual and collective volume of large stones and on their density. The larger the size of the individual stones the greater would be the quantity of stone going into the masonry and the heavier the density the greater the weight to be handled.

13.3.2. The waste of stone in case of veneer would be as much as 20% in cutting and dressing at site while there would be very little in the case of rubble masonry provided the stone is passed at the quarry. For the same reason that concrete aggregate should be graded, the stone should also be of all sizes from spalls to the largest that can be economically handled.

13.3.3. The quantities of stone and other constituents used for CFC masonry for hearting of dams are given in Appendix 10.

STONE MASONRY

13.4. COST OF STONE

13.4.1. The cost of stone per CFC in stacks at the quarry site for a number of projects has been given below:—

TABLE 13.4.1.

Sl. No.	Proje	cts	-	Nature of Work	Drill- ing Labour	Drill- ing Total	Blast- ing Mate- rial	Blast- ing Labour	Muck- ing	Grand Total Rs.
1	2	,	·	3	4	5	6	7	8	9
1. Mata	tila	••	••	Hard granite	0·45 [°] .	2·96	4.95	0.416		16.32
2. Mayu	rakshi	· 	••	_		·			_	17.8
3. Hirak	ud	••		Granite	4 • 44	5.54	2.83	9.58		17.95
4. Tunga	abhadra	(Andh.	.)	do	3 • 50	4.22	1.04	6.56	3.0	14.82
5. Tunga	abhadra	(Hyd.)	••	Granite free to veins & cracks	3.213	0.51	2.71	7.51	1.05	14.78
6. Bhadu	ra	••	••			5.00	4.00	1.00	13.00	23.00
7. Lower	r Bhawa	ıni	••	Hard granite			—			8·23
8. Malar	npuzha	••	••	do		_	_		_	11.00
9. Perino	chani	•••		Hard & tough granite		—				14.13

Comparative Statement of Quarrying Rubble (Stack measurements) per CFC

13.4.2. Table 8.4.5. gives an analysis of figures for carriage of stone from quarry to site of work.

13.4.3. Cost of dressing of stone for coarsed masonry will vary with the types of masonry which are described in para 13.1.1. and is included under respective labour constants. The quantity of rough stone repuired for coarsed masonry would be 150 F.C. for ordinary walls.

13.5. MORTAR FOR HYDRAULIC WORKS

13.5.1. The proportions for the mortar used in stone masonry may vary from 1:2 to 1:5 for cement mortar, 1:1:3, 1:1:4, 1:1:5 and 1:1:6 for cement, lime and sand mortar to 1:2:4, 1:2:5, 1:2:6 to 1:2:9 when large proportion of lime is desired. Proportions are by volume, although there is a tendency to introduce proportions by weight. When *surkhi* is used as an admixture to cement it is known as red cement mortar. Generally, *surkhi* powder finely ground is mixed in the proportion 1:14 in cement quantity. Measures of sand is for dry sand only. If the sand is wet, bulkage allowance must always be taken into account.

13.5.2. The amount of mortar required will depend on the size of individual stone and the type of masonry. Table 13.5.2. gives minimum and maximum quantities of mortar required per CFC of masonry depending on the size of individual stones used.

TABLE 13.5.2.

Mortar per CFC Masonry (UCR)

Kind of Masonry		Mortar	in (F.C.) Masonry	per CFC
And of Masonly		From	То	Average
1		2	3	4
Rubble	••	40	50	45
Squared-stone coarsed	••	25	40	32.5
Cut stone Ashlar	••	15	25	20

13.6. COST OF MORTAR, MATERIALS

13.6.1. The issue rates of cement on projects have been dealt with in Chapter 3 and their variations in cost explained.

13.6.2. The rate for manufacturing sand may be anything like Rs. 40/- to 60/- per CFC of solid rock or at 35% voids it would be Rs. 26/- to 39/- per CFC approximately for crushed sand.

13.6.3. Comparative table of the cost of sand used on various projects is given in Table 13.6.3.

STONE MASONRY

TABLE 13.6.3.

Comparative Statement of Rate of Sand per CFC on River Valley Projects

				Sand			
SI. No.	Name of Project		Rate per CFC Quarry Site (Rs.)	Carriage Charges	Issue Rate at Site of Work	Remarks	
1	2		3	4	5	6	
1. M	atatila	•••	5.0	17·0	22.0	Contract rate. Lead not given.	
2. Ga	andhisagar	••	25 · 1	11-2	36-3	Quarried under very difficult conditions Lead 6 miles.	
3. M	ayurakshi	••	1.0*	7.0	8.0**	*For local river sand included in the con tract rate.	
			•			**Inclusive of Transport Lead not given.	
4. Ka	akrapar	••	.* 10.0	2.4	12.4	Lead $1\frac{1}{2}$ to $\frac{3}{4}$ mile (car ried by donkey).	
5. Tu	angabhadra (Andhra)	•••	8 • 1	16.9	25.0	Transport by railway wagon for 26 miles.	
6. Tu	ingabhadra (Hyd.)	••			25.9	Average rate at Dam site with average lea 11.4 miles by Rly wagon, storage & was age etc. included.	
7. Lo	ower Bhawani	••	. 		11.5	Inslusive of lead charge for $5\frac{1}{2}$ —6 miles.	
8. M	alampuzha	•••	1.5	12.8	14.3	Quarry site lead charge 6 miles.	
9. Pe	echi	••	4.0	17.4	21.4	Lead 5 miles. Contrac rate.	
10. Pe	erinchani	••	3.3	11.7	14.0	Lead 5 miles. Contrac rate.	

13.6.4. Cost of grinding *surkhi* mortar as observed in Bhadra Project is given in Table 13.6.4. This does not include Tools and Plant charges.

T		Pla	ace	
Item		Right Bank	Left Bank	
1		2	3	
Total qty. of mortar groundTotal power chargesTotal cost of stock articles issuedTotal labour chargesTotal water supply charges	··· ·· ·· ·· ·· ·· ·· ··	25,420 cyds. 17,373 9 0 18,386 7 0 15,363 9 0 1,243 4 0	9,237 cyds. 7,374 12 0 13,362 7 0 4,506 8 0 235 2 0	
TOTAL CHARGES	••• ••	52,366 13 0	25,478 13 0	
Remarks Rate per cyd	 2-0-11 -	2 0 11	2 12 2	
Average rate per cyd.=		=2-6-7 without plant cha	rges	

TABLE 13.6.4.

13.6.5. Comparative strength and cost of labour employed per CFC for different kinds of masonry on various projects is indicated in Table 13.6.5.

TABLE 13.6.5.

	Labo	ur used pe				
Sl. No. Name of Project	Skille	d	Unsk	tilled	Cost	Remarks
	No.	Avg.	No.	Avg.		
. 1 2	3	4	5	6	7	8
1. Matatila	2.5	3.7	7.6	1.4	19.6	Contract rate between RL 905 to RL 935.
2. Gandhisagar	1.0	4.0	6.4	2.3	18.5	Labour without lift charges.
3. Mayurakshi					28.0	Includes mixing, laying, curing, hire charges of machines.
4. Kakrapar	1.25	5.0	4	1.5	12.3	Includes basic lead of 50 to 100 ft. & 5 to 10 ft. lift.

1	2	3	4	5	6	7	8
5.	Tugabhadra (Hyd.).				·	22.8	Break-up not given.
6.	Tungabhadra (Andh.)	2.0	3.0	9 • 2	1 .0	15.1	No lift & lead in- cluded.
7.	Bhadra	2.5	3.0	10 • 0	2.0	27 • 5	Do.
8.	Lower Bhawani					16 • 3	Including curing charges, break-up not given.
9.	Malampuzha		. —			16.0	Do.
10.	Perinchani	·	_			17.0	Labour contract includes for all lead and lift.

Table 13.6.5.—contd.

13.7. LEAD AND LIFT

13.7.1. The cost of lead for materials has already been dealt with elsewhere and comparative cost of transport on various projects tabulated.

13.7.2. Hauling Mortar (Manual)

Extra labour involved on account of lifting mortar, water, etc. as the work goes up can be expressed in the form of multipliers.

TABLE 13.7.2.

Heights from g	ground	up	to
----------------	--------	----	----

20'	 1.0
20' to 40'	 1.2
40' to 60'	 1.3
60' to 80'	 1.4
80' to 100'	 1.5
and so on	

13.7.3. Hauling Stone

On large works the stone would be lifted up by crane. Data collected in respect of crane working in Tungabhadra is given below; the price of harbour crane stated to be Rs. 26,000/- is very low and this price has been assumed at Rs. 1,34,000 — the present market price.

Depreciation charges per hour

Cost of the crane including cost of repairs & renewals at 35% and	Rs. 1,83,900
railway transport charges.	183900
Depreciation per working hour :	

Erection charges

Total expenditure incurred on erection Quantity of masonry likely to be tackled.	1 Rs. 9,000 4000 CFC	
incory to be tackied.	9000 CI C	
.: Erection charges per unit	$=\frac{9000}{4000}$	=Rs. 2.25
Taking one week or 6 working days the 1	abour charges a	are as below :
(i) Labour charges for rehandling	g materials	Rs. 120.00
(ii) Machine crew.		Rs. 505.7
(iii) Depreciation charges for 6 dates 47.5×12.26	ys, 47=1/2 ho	urs : Rs. 582.50
(iv) Cost of consumables		Rs. 104.75
(v) Erection charges at 2.25 per u	unit of	Rs. 216.00
masonry $96 \times 2.25 = 216$.		Rs. 1074.00
na 1997 - Alexandra Maria ang antara ang ang	1074	
Working cost per day of 8 hours	= <u> </u>	
	= 179.0	
Working cost per CFC	$=\frac{179.0}{16}$	= Rs. 11.2

In the non-spillway section the height over ground level to be tackled is about 80 ft. For lifts under than this separate trestle arrangements or longer boom length would be required. Lift charges will vary according to the height and section of the dam. In Hirakud contract rate for lift charges is Rs. 2.5 for every lift of 10 ft. by manual labour. For lift if 50 ft. and less the manual operation will be cheaper and for lift more than 50 ft. working by crane is advisable.

13.8. **RIP-RAP**

13.8.1. This item consists of a protective layer of stone laid on slopes and filled with spalls. The stones are bedded, one against the other. The slopes of soils where rip-rap is used shall not be steeper than their angles of repose. There are occasions when rip-rap is grouted with cement mortar as grout filler. The stone may comprise boulders collected from a stream bed or a natural quarry or alternatively it may be obtained by blasting from a stone quarry. The data collected from the projects is given in Table 13.8.1.

STONE MASONRY

TABLE 13.8.1.

SI. No.	Name of	Project	Unit	Stone	Carriage	Ļaying	Unit Rate
1	2		3	4	5	6	7
1.	*Hirakud		100 cft.	3/-	9/7	3/7	20/14
2.	**Gangapur	••	• • • • • • • •	8/15	9/15	3/7	23/15
3.	†Malampuzha		• • > >>	10/-	9/12	7/8	30/-
4.	‡Lower Bhawani		• • 92	26/9		8/-	34/12
5.	§Konar (DVC)		••• ••	18/-	12/10	6/9	37/3

Rockfilling hand packed U/S & D/S toe.
Also includes Rs. 1/7 as, overhead charges.
Also includes Rs. 2/12/- as miscellaneous charges.
Also includes -/13/- as incidental charges.
Original rate.

CONCRETE AND FORMWORK

14.1. BETTER CONCRETE

14.1.1. More recently, as the knowledge of 'Better Concrete' has widened, we find a growing tendency on the part of the Engineers to specify their concrete only in terms of strength. Such a move is decidedly in the right direction as this would lead to better quality and greater economy, in the use of cement and other ingredients of concrete. Many a treatise, explaining in detail the production of concrete of a predetermined strength from available materials, are now available.

14.1.2. For producing concrete of a particular strength, a somewhat more complicated concreting plant than the common mechanical mixer will be required, but the added expense of the same is found to usually off-sets by the more economical use of cement which becomes permissible. A testing laboratory is also an essential complement.

14.2. PROPORTIONING OF INGREDIENTS

14.2.1. In the proportioning and measuring of the several ingredients entering into concrete, recourse should first be had to the specifications which would vary with the requirements of strength and use. (Table 14.2.1.). Representative proportions of concrete mixes by volume, the order being cement, sand and coarse aggregate are shown below for various uses of concrete in construction.

14.2.2. Conventional quantities of constituents for the abovecrete mixes are tabulated in Table 14.2.2.

14.3. Formwork

14.3.1. Proper design of forms will secure adequate safety with economy. The factors which affect design are :

- 1. The consistency of concrete.
- 2. The rate of filling between the forms.
- 3. The method of placing concrete.
- 4. The method of taping or vibrating.
- 5. The depth of drop and distribution of steel in case of reinforced concrete.

TABLE 14.2.1.

Cement Concrete Mixes

Туре	Quality	Proportion	Use
1	2	3	4.
A	Rich	1:11:13	R.C.C. special parts e.g. arches, copings, mouldings, stairs, columns, engine beds, piles etc., occasional use in P.C.C.
В	Standard	1:2:4	R.C.C. generally, roof slabs, lintels, beams, pillars, & P.C.C. in face work of dams and spillways, workshop floors etc.
С	Medium	$1:2\frac{1}{2}:5$	P.C.C. generally, abutments, piers, thin retaining walls, sirong foundations, etc.
D	Lean	1:3:6	P.C.C. only used for good foundation, mass concrete work, backing to masonry works, spillways and thick training walls.
Ε	Weak	1:4:8	P.C.C. only used in ordinary foundations, mass concrete in compression, for hearting in dams of low height etc.
F	Cheap	1:5:10	P.C.C. as substitute for brick masonry retaining walls to earth, precast blocks for walls, in foundation to temporary and unimportant structures.
G	Poor	1:8:16	P.C.C. in bottoming to concrete foundation as a cheap backing, substituting poor soils in foundations, etc.

TABLE 14.2.2.

Propo	ortion	Description	Cement	Sand	Coarse	T = 4 = 1
Cement, fine & coarse aggregates	Cement & aggregates	of Coarse Materials	cwts.	Dry FC	Materials FC	Total Aggre gates FC
1	2	3	4	5	6	7
1:1.5:3	1:4:5	Shingle Broken	22.0	41	82	123
		stone	21.3	43	86	129
1:2:4	1:6	Shingle Broken	17 •2	43	86	129
		stone	18 • 1	45	90	13:
1:2.5:5	1:7:5	Shingle Broken	14 • 2	44	88	132
•		stone	14 • 9	46	92	13
1:3:6	1:9	Shingle Broken	12.0	45	90	13:
		stone	12.65	47	· 94	14
1:4:8	1:12	Shingle Broken	9.25	46	92	13
		stone	· 9 •70	48	97	14
1:5:10	1:15	Shingle Broken	7.60	47	94	14
	•	stone	8 .05	50	100	15
1:8:16	1:24	Shingle Broken	4.82	48	96	14
		stone	5 • 11	51	102	15

Conventional Material Constants for Various Concrete Mixes

NOTE: 1. Add after testing for bulkage of sand to quantities given in col. 5.

2. The aggregates for each mix should be proportioned after sieve analysis of their piles.

3. Variation of 5% on the above quantities may be the tolerance on the constants on account of the variation in densities of stone.

4. Waste in transit or handling on large works should not exceed $2\frac{1}{2}$ %.

14.3.2. The unit of measurement for forms should be actual area in square feet of the surface of the concrete in contact with the forms. The estimated materials should include materials for struts, posts, bracing, horizontal runners, wedges, bolts, wire, ties, oiling, cleaning and repairing but as also materials for staging and bridging.

14.3.3. Cost of forms is generally about 5 to 10% of the cost of concrete in dams construction while it is as high as 25-50% in case of structural parts of buildings. Where large quantities are involved, small saving in the unit cost amount to a large sum on the whole work which can be possible only if the forms are well planned for the job. Forms should preferably be manufactured in penal sections or other shapes which can be used several times, the greater number of uses obtainable with metal forms would generally result in a lower cost for use than with lumbber. The cost of erection and stripping may be considered as uniform for each use, although there would be some saving in subsequent use. Small salvage value of formwork at the completion of the job may be ignored in calculating costs.

14.3.4. In order to resist the internal pressure resulting from the concrete some positive method of holding the forms in position is necessary. These methods will vary with the nature of work. In most cases, however, the ties used would be left inside the concrete and their cost should therefore be included in the unit cost.

14.4. WOODEN FORMS FOR ROOF SLABS

14.4.1. Simple flat centering for concrete floors or roofs for 12 ft. height requires 10-20 c. ft. (15 F.C. average) timber per CFS. The quantity of timber required will increase in the height is increased mainly because of increase in the height of the vertical posts. Labour will also increase for greater heights. Analysis of rate for formwork for roof slabs is given below assuming 6 uses:

 (i) 1-1/2" boards machine planned one side cages shot delivered on site (Rate includes wastage) C.F.S. 150/- 	Rs. 150/-
(ii) 4 Nos.×12.0×4"×4"=5.3 F.C. posts for upright.	•
$45 \times 10' - 0'' \times 9'' \times 3'' = 2.2$ F.C. tiles and braces.	

15 F.C.@ 8/-	120/-
Wedges and cleats say 16 including top and bottom $@ -/12/-$ each.	12/-
Clamps dogiran alamna string 1/9 and	1

(iv) Clamps, dogiron, clamps strips 1/8 cwt. @Rs. 35/- per cwt.

(iii)

286/6

4/6

Preparing the initial shuttering.		31/4
· · ·		317/10
Assume 6 uses of the above.		
Therefore use and waste of materials per F.S.	Rs.	52/15
(v) (2.0) Carpenter and (5.0) labourer repairing and fixing @ 5/- and 1/12 and stripping.	Rs.	18/12
(vi) Add for oiling etc. to prevent concrete sticking to shuttering.	Rs.	2/-
Total	Rs.	73/11
Say :	Rs.	74/-
(vii) Add for sundry materials.	Re.	1/-
GRAND TOTAL	Rs.	75/- per CFC

14.4.2. For different types of shuttering work the labour in erecting and striking per CFS would pay.

14.5. P.G.I. COVERED TIMBER PLANKS OVER TIMBER FRAMES

14.5.1. The shuttering in panels of $6' \times 3'$ fixed to planks with wooden framework can, if well constructed be used at least eight times and on this basis the rate per C.F.S. is analysed below. The forms will have to be of a heavier construction than that dealt with in previous para 14.4.1. and would require 20—30 F.C. (25 F.C. average) lumber per hundred sq. ft. P.G.I. sheets 24 gauge in addition. The repairs, however, will not call for great deal of new timber.

14.5.2. Analyses of (Primary) rates per C.F.S.

A. Formwork and planking.

1. Planking 100 F.S. $\times 1\frac{1}{2}$ of hardwood = 12.5 @ 12/-

Rs, 15-0/

2. Cut sized for a panel of $6' \times 3'$ $6 \cdot \frac{3}{4}' \times 2 \times 5'' = 1.4$ F.C. $4 \times 3 \cdot 1/4'' \times 2 \cdot 1/4'' \times 5'' = .94$

2.34 per 18 F.S. or 2.34×100/18=13 F.C. @ 8/-

Rs. 104/-Rs. 254/-Rs. 254/-

Preparation of shuttering

B. G.I. Plain sheets (24 gauge) 100 F.S.=106 lbs. @ 25/- per cwt.	Rs. 31/4 Rs. 23/-
C. 5 lbs. Nails for fixing 100 sft. of sheet @ -/8/- lb.	Rs. 2/8/-
	Rs. 310/12/-
Assume 8 uses. Cost per use and waste.	Rs. 38/14
D. Steel for anchoring bolts and ties including labour 36 lbs @ -/15/- per lb.	Rs. 12/4
E. Share of bulli supports etc. 20% of Rs. 35/-	Rs. 7/-
F. Erection and stripping	Rs. 18/12/-
G. Miscellaneous	Rs. 2/-
	Rs.78/14/-

14.6. MANUFACTURE OF HEAVIER TYPE OF SHUTTERING FOR USE OF DAMS

14.6.1. Based on the data furnished by the Superintending Engineer, Konar, the cost of manufacturing steel shuttering and then using it eight times inclusive of labour in erecting and stripping is given below:—

Steel Shuttering-Analysis working which Crane

(a) Steel

	Quantity (tons)	Rate	Cost (Rs.)
(1) M S. Plate 1/8"	57 ∙0 R	Rs. 423/- per	ton 24,111/-
(2) M.S. Plate 12 gauge	23 ·7 R	ls. 423/- "	10,025/2/-
(3) M.S. Angle $2\frac{1}{2}'' \times 2\frac{1}{2}'' \times 4\frac{1}{2}''$.	52 ·81 R	.s. 378/12 "	20,001/13/-
(4) M.S. Angle $2\frac{1}{2}'' \times 2'' \times \frac{1}{4}''$	16.00 R	.s. 378/12 "	6,060/-
(5) M.S. Channel 4"×2"	67 •35 R	s. 389/- "	26,199/8/-
(6) Do. $5'' \times 2\frac{1}{2}''$	35 5 R	.s. 389/- "	13,908/8/-
(7) Do. $3'' \times 1\frac{1}{2}''$	20 • 25 R	.s. 389/- "	7,875/4/-
(8) M.S. Flat $2\frac{1}{2}'' \times \frac{1}{4}''$	20.37 R	s. 378/- "	7,699/14/-
(9) 2" dia. G.I. pipe	3.52 R	s. 1/7 per r. ft.	. 506/-
	To	TAL	1,16,287/11/-

(b) Fabrication charges 293 tons @ 300/- per t	Say: 1,16,300/-/-	87,900/-/-
 (c) Transportation @ -/12/- per ton/mile, distan way 3 miles. Loading, unloading and any other rehan 		2/4/- -/12/-
$\therefore 293 \text{ tons} = 293 \times 3 = \text{Rs. } 879/\text{-}$	Rate per ton	3/-/-

6,300/-

Bolts and nuts 1/2'' dia. 3-1/2'' long. Total No. required for 8 sets, 33,000. Total weight-90 cwts. @ 70/-

CONCRETE & FORMWORK

(e) Slotted pins and wedges 1/2" dia. $2\frac{1}{2}"$ long-32,000 @1/4/- each (f) Tube and nuts 5/5" dia. 27000 @ 25/- (g) Tube nuts 1" dia. 750 Nos. @ 22/-

l	40,000/- 67,500/- 16,500/-	
0/-	33,53,791/- 67,303/- 1,35,000/-	

4,03,303/-

11,336 Units

		Salvage at 20%
(h) M.S. Rods 5/8"	dia. and 1" dia	for anchorage 250 tons at Rs. 700/-

Total shuttering work to be done Cost per unit = $\frac{4,03,303}{11,330}$ = Rs. 35.5

Labour cost with crane

Shuttering one sub-block $50' \times 40' \times 5''$ Total area = 900 sq.ft. Shuttering time : 12 hours.

Machines

Machines	Rs.
Cost of 35-ton crane	2,74,000
 (a) ∴ Depreciation per hour (b) Major repairs and maintenance 	17 • 13
(a) 60% of depreciation $\dots \dots \dots \dots \dots \dots$	10 - 28
(c) Labour-Operator and maintenance	2 • 256
P.O.L. charges	7.875
Total use rate per hour	37 • 54
Taking crane use 10 Hrs. Per 9 Units. Cost per unit	41 • 71
Labour	
4 Foreman @ Rs. 300 - p.m	7 -50
8 Khalasis at Rs. 20	24.00
8 Male Mazdoors at 1.75	21.00
3 Carpenters at Rs. 5/	22.50
	75.00
Materials : Linseed oil 1.5 Gals. at Rs. 8.5	12.75
Total	87.75
Cost per unit	9 • 75
1. Capital cost of materials etc. per unit	35 - 50
2. Machineries (P. & H. Crane)	41 • 71
3. Labour and materials	9 ·7 5
	86 .96

Say: Rs. 87/- per C.F.S.

14.7. COST OF STEEL FORMWORK AT MAITHON

14.7.1. Cost of manufacturing heavy steel shuttering for Maithon Dam is Rs. 1,428/- per CFS shuttering and it is expected that these

B. G.I. Plain sheets (24 gauge) 100 F.S.=106 lbs. @ 25/- per cwt.	Rs. 31/4 Rs. 23/-
C. 5 lbs. Nails for fixing 100 sft. of sheet @ -/8/- lb.	Rs. 2/8/-
	Rs. 310/12/-
Assume 8 uses. Cost per use and waste.	Rs. 38/14
D. Steel for anchoring bolts and ties including labour 36 lbs @ -/15/- per lb.	Rs. 12/4
E. Share of bulli supports etc. 20% of Rs. 35/-	Rs. 7/-
F. Erection and stripping	Rs. 18/12/-
G. Miscellaneous	Rs. 2/-
	Rs.78/14/-
	······

14.6. MANUFACTURE OF HEAVIER TYPE OF SHUTTERING FOR USE OF DAMS

14.6.1. Based on the data furnished by the Superintending Engineer, Konar, the cost of manufacturing steel shuttering and then using it eight times inclusive of labour in erecting and stripping is given below:—

Steel Shuttering-Analysis working which Crane

z) Steel	Quantity (ton	is) Rate	Cost (Rs.)
(1) M S. Plate 1/8"	57 ·0	Rs. 423/- per ton	n 24,111/-
(2) M.S. Plate 12 gauge	23.7	Rs. 423/- "	10,025/2/-
(3) M.S. Angle $2\frac{1}{2}'' \times 2\frac{1}{2}'' \times 4\frac{1}{2}''$.	52.81	Rs. 378/12 "	20,001/13/-
(4) M.S. Angle $2\frac{1}{2}'' \times 2'' \times \frac{1}{4}''$	16.00	Rs. 378/12 "	6,060/-
(5) M.S. Channel $4'' \times 2''$	67 - 35	Rs. 389/- "	26,199/8/-
(6) Do. $5'' \times 2\frac{1}{2}''$	35.5	Rs. 389/- "	13,908/8/-
(7) Do. $3'' \times 1\frac{1}{2}''$	20.25	Rs. 389/- "	7,875/4/-
(8) M.S. Flat $2\frac{1}{2}'' \times \frac{1}{4}''$	20.37	Rs. 378/- "	7,699/14/-
(9) 2" dia. G.I. pipe	3 . 52	Rs. 1/7 per r. ft.	506/-
	an a	Total	1,16,287/11/-
 (b) Fabrication charges 293 tons (c) Transportation @ -/12/- per to way 3 miles. Loading, unloading and an 	n/mile, distan	ce 1.5 miles, both	87,900/-/- 2/4/- -/12/-
	- 	Rate per ton	3/-/-

...293 tons= 293×3 =Rs. 879/-Bolts and nuts 1/2" dia. 3-1/2" long. Total No. required for 8 sets, 33,000. Total weight=90 cwts. @ 70/-

6,300/-

Salvage at 20% (h) M.S. Rods 5/8" dia. and 1" dia. for anchorage 250 tons at Rs. 700/-				,791/- 03/- 00/-
Total shuttering work to be done Cost per unit $=\frac{4,03,303}{11,330}$ =Rs. 35.5			4,03,3 11,33	303/- 36 Units
Labour cost with crane			•	
Shuttering one sub-block $50' \times 40' \times 5''$ Total area=900 sq.ft. Shuttering time : 12 hours.				
Machines				Rs.
Cost of 35-ton crane	• •	••	••	2,74,000
(a) Depreciation per hour (b) Major repairs and maintenance	••	••	••	17 • 13
(a) 60% of depreciation $\dots \dots$				10.28
(c) Labour—Operator and maintenance				2.256
P.O.L. charges	••			7.875
Total use rate per hour	••	••	••	37 • 54
Taking crane use 10 Hrs. Per 9 Units. Cost per u	nit	• • •	••	41 • 71
	••	••	••	
Labour				
$\frac{1}{2}$ Foreman \hat{a} Rs. 300/- p.m. $\frac{1}{2}$				7 - 50

					••	••	••	
Labour								
½ Foreman @ Rs. 300/- p	.m. 🔥				••		••	7 • 50
8 Khalasis at Rs. 2 0	••	••	••		••	••	••	24 .00
8 Male Mazdoors at 1.75	••	••		• • •	••	••	••	21.00
3 Carpenters at Rs. 5/-	••	••	••	••	••	••	••	22.50
Materials :Linseed oil 1.5	Gals. at	Rs.	8.5	••	••	••	•••	75.00 12.75
			Т	OTAL	••	••		87 ·75
Cost per un	nit		•••		• •	••	••	9 • 75
1. Capital cost of materials etc.		t .	• •		• •	•••		35 • 50
2. Machineries (P. & H. Crane)					••	••	••	41 •71
3. Labour and materials	••	••	••	••	••	••	••	9 ·7 5
								86.96

Say: Rs. 87/- per C.F.S.

14.7. COST OF STEEL FORMWORK AT MAITHON

14.7.1. Cost of manufacturing heavy steel shuttering for Maithon Dam is Rs. 1,428/- per CFS shuttering and it is expected that these

40,000/-67,500/-16,500/- will be used thirty-four times with minor occasional repairs. Details of cost of manufacture are :---

Sl. Item No.		t i Singan Singan		Unit	Quantity	Rate	Amount
1. Steel.							
1.1 M.S. Plate		••	•••	Ton	0.52	527.00	274 ·04
1.2 Structural					0.07	540 DC	104 00
1.2.1. Chann		••	••	••	0.37	549.06	
1.2.2. Angle		••	• •		0.012	527.00	
1.2.3. Joints	3	1 1	· · ·	••	0.039	527-00	
1.3. Other materi	als	• •		L.S.			183 - 38
1.4. Bolts, nuts a	ind edges et	c		Ton	0.32	856-25	276.00
2. Fabrication	••• •••	• •					141-31
				То	tal	. 	1105 .60

3. Depreciation $= \frac{\text{Total Amount}}{\text{Number of uses}} = \frac{1105 \cdot 60}{34}$

Use rate per panel of 78 sq. ft.=Rs.32 ·5 Use rate per CFS =Rs. 42/-

14.7.2. Analysis for steel formwork per CFS of concrete surface

51. I No.	tem	Unit	Quantity	Rate	Amount Rema
1. Depreciati shuttering.	on of CFS steel	CFC			42.0
Fixing and 2.1 Cost	d removing of materials for orage.				75.0
(Supp ballal	porting, pipes, hooks, h, cotton waste, etc).	sal,			
2.2 Crane 2.3 Labor mova	ir fixing and re-				43 ·0 75 ·0
	ed Oil etc.				0.1
	ortation of			· · · · · · · · · · · · · · · · · · ·	0 ·1 8 ·0
mater work 3.3 Clear		to			T 1:. J. J
J.J Chai					- Included in crane & labou charges.
of :	l proportionate cost				
workshop	s and fire hydrants.				3.8
Shop co	cost of wooden panels ost of drainage gallery		· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	10 ·8 13 ·4
panels. Shop co lery pane	ost of operating gal- ls.	n an an taon 1997 - Anna Anna Anna Anna Anna Anna Anna An			11.0

IOTAL PRIMARY COST

 $283 \cdot 2$ per CFS

14.8. CONCRETING EQUIPMENT

14.8.1. A complete concreting plant from crushing aggregate to laying concrete is a combination of several units and its output is linked up with that of the weakest unit. It is, therefore, essential that the entire plant should have a complete and continuous co-ordination among the units.

14.8.2. In planning a large crushing operation the economics of the related quarrying of the rock are directly involved and govern the selection of the crushing machinery. A careful study of the best combination for primary and secondary crushing may justify the installation of a larger crusher to receive larger pieces of rock from the quarry thus reducing secondary blasting and increasing the output.

14.8.3. A crushing and screening plant should be designed with some excess capacity over the expected continuous consumption, because the intermittent feed into the primary crusher may cause serious overloads on the belt conveyors and screens.

14.9. The Crushing Equipment

14.9.1. A modern stone and sand crushing plant usually consists of the following component parts: Primary Crusher, Scalping Screen, Secondary Crusher, Belt Conveyors, Sizing Screens, Sand Mills, Sand Screens, Classifiers or Washer, Storage Piles and Reclaiming system. The primary crusher of the jaw or gyratory type is installed with its top below the level of the quarry floor to permit direct loading from dumpers, wagons or railroad cars into a hopper above the crusher. A jaw crusher can generally take large pieces but has considerably less capacity than a gyratory crusher.

14.9.2. The secondary crusher for breaking down oversize rock is usually of the gyratory or cone type, which can be adjusted to smaller settings. In order to reduce the load on the secondary crusher, it is a standard practice to scalp out the acceptable sizes of crushed aggregate and deliver only the oversize to the secondary. Vibrating scalping screens for this class of service are very satisfactory.

14.9.3. Where the product from the primary crusher goes to a screening and secondary crushing operation the feed to the secondary crusher should be as constant as possible, and for this reason a surage pile beyond the primary crusher is desirable. From this pile a mechanical or vibrating feeder and belts deliver the crushed material at a uniform rate to succeeding operations.

14.9.4. The revolving screen is one of the simplest types and usually has relatively long life. However, it is more suitable for smaller installations or in connection with large natural gravel-pit operations.

Heavy duty single or multi-deck vibrating screens have now been developed for rock sizes up to 6 and 8 inches which, as a rule, are superior in operation, space requirements, in screening efficiency.

14.9.5. Sand may be produced either by direct grinding, attrition grinding, or by impact grinding. The most important elements to be met in a sand manufacturing process are sizes of the particles, gradation, shape and cleanliness. These factors dictate special precautions in the selection of sand making machinery.

14.10. Cost of Crushing and Screening

14.10.1. The data for crushing Basalt rock, obtained from Cost Accounting by HCC on Vaitarna Project, is given below :—

(1) C-1 Primary Crusher Jaw type Hadfield 200 tons capacity.

(2) Secondary Crusher C-2 Gyratory type 100 tons capacity.

	Owner- ship Cost (Rs.)	Spares (Rs.)	Total (Rs.)	Life in Working hrs. (thousand)	Depre- ciation & Spares	Operat- ing Cost
and the second	2	3	4	5	6	7
Primary crusher with conveyors and civil en- gineering work for erection.	4,51,684	3,73,000	8.24,684	20	41 • 23	46 • 96
		et e	- , _ ,			
do secondary crusher with belts, screens,						
bins etc. kubit breakers	12,10,193	7,20,000	19,30,193	18	107 - 23	68 ·06
Rod mills, marcy one of 12 ft. and second of		ere e la				
8 ft. length.	2,32,699	90,000	3,22,699	18	17.92	17.85

	Equipment	Use-rate per hour	Hour	Cost (Rs.)
	1	2	3	4
١.	Primarý	41 ·23 46 ·96		
		88.19	7,000	6,17,330
2.	Secondary	107 ·23 68 ·06		
		175 - 29	10,000	17,52,900
3.	Rod Mills	17 ·92 17 ·85		
		35.77	12,000	4,29,240
		Тот	AL COST	27,99,470
	solid rock of 6"×3":	bing% Cft. of Basalt into aggregates. $\times 1\frac{1}{2}^{"} \times \frac{1}{2}^{"} \times 3/8^{"}$ and below. rushing aggregates per CFC voids.	1 ·66 17 ·45 × 100	s. 17 ·45

14.10.2. The above crushing units were worked for 7,000, 10,000 and 12,000 hours to crush 1,66,44,000 cft. of solid rock into aggregate (coarse and fine sand). The total cost is :--

Note : (a) The plant was used for crushing sand also otherwise cost of crushing would have been less.
(b) In the case of abrasive stones viz. Granite and sandstone, the above cost would increase up to 30%, according to the nature of the stone crusher.

14.10.3. The cost of crushing stone into coarse aggregates per CFC is indicated in Table 14.10.3. All rates relate to stack measurements.

Sl. No.	Projects	Type of Rock	Cost of cr per CFC a Crusher (Stack with voids)	it Remarks
1	2	3	4	5
1.	Nangal	Shingle	10.0	Crushing round boulders.
2.	Maithon	Sandstone	24.5	-
3.	Tilaiya	Sandstone	22.4	
4.	Hirakud	Granite	30.6	
5.	Vaitarna	Basalt	12.5	

TABLE 14.10.3

•

,

14.11. WASHING AGGREGATES (MECHANICAL)

14.11.1. For primary washing of aggregates up to 6 or 8 inches in size and containing considerable clay, special scrubbers are used. These are large revolving cylinders with vanes and paddles which lift and tumble the gravel over itself in a bath of water. Another type for washing stone and gravel is the log washer which operates as a screws washer does for sand. Further effective means of washing the aggregates as they go through a screening plant may be obtained by directing sprays or jets of water on the aggregate as it flows over the screens. An important point here is that high pressure is less effective in washing the aggregate as compared with greater volume at lower pressure. In some cases there is danger of washing out too many fines, from the 100 mesh screens, a size which is of considerable importance in making good concrete.

14.12. TRANSPORT FROM STOCK-PILES TO BATCHING AND MIXING PLANT

14.12.1. For transporting materials from stock-piles to batching plant, use is made either of a continuous belt conveyor (or skip buckets operated by hoist cable). For this purpose at Maithon Dam (D.V.C.) reclamation tunnel has been laid under the full length of storage piles. Two belt conveyors have been installed. One is horizontal running under the stock-piles and other is inclined at 17.5 degrees to reach the bins in the batching plant. Working cost of the operation depends to a great extent on the working of the batching plant. If the latter cannot work continuously at optimum output, conveyor belts will have to remain idle intermittently, thereby increasing labour cost per unit of work.

14.12.2. Analysis of cost for transport from stock-piles to batching and mixing plant is given below :--

A. Depreciation

Cost of discharge gates	Rs. 57,500	
Cost of conveyor belts and screens	2,67,500	
Cost of steel structure	16,260	
T : C : in h 10 000	3,41,260	
Life in hours 10,000		
Depreciation per hour	34.1	
B. Repairs and maintenance at 80% of depreciation.	27.3	
C. Energy—Total H.P. 85 @ -/1/- per unit.	4.17	
(a) Electrical Materials	1.0 5	Rs. 6.1
(b) Sundry Materials	1.0	
D. Labour Operation and maintenance per hour		
3 operators (1 for gate and 2 for 2 belts) @ Rs. 4/8/-	1.70	
3 Helpers @Rs.3/- per day per shift	1.12	
3 Mazdoors @Rs. 1/8/-	0.56	
1/2 Foreman @Rs. 12/- per day per shift	0.75	
2 Fitters @Rs. 5/-	1.25	
1 Mechanic @Rs. 5/-	0.62	
Rs.	6.00	
Total cost per hour = $34 \cdot 1 + 27 \cdot 3 + 6 \cdot 1 + 6 \cdot 0 = 73 \cdot 5$		

Output

Cost per CFC 2.26 Add for erection, dismantling etc. as obtained at Maithon, 2.41 For dozing 0.86

Total per CFC 5.53

14.13. BATCHING AND MIXING

14.13.1. There have been radical improvements in batching and mixing equipment in recent years on account of the demand for better speed and control in manufacturing concrete. Automatic batching and recording has been introduced on some of the dams under construction.

14.13.2. The tilting mixer is the only type that can satisfactorily handle mixes containing cobbles. The mixer should be so located and arranged as to permit the operator to view the mixing operation during the processing rather than to judge the qualities of the mix after it is dumped. The mixing cycle of batch mixer of 2 cyds., and up, including charging the mixer mixing the concrete and discharging it, the maximum period required is 3 minutes.

14.13.3. Analysis of cost of batching and mixing operation is given below. The figures for the cost of plant is based on Maithon Project figures.

1. Cost of Batching Plant with 3 mixers of 3 cyds	Rs.
each at site	7,45,900
2 Life—16,000 hrs.	
3. Depreciation per hr.	46.6
4. Repair and Maintenance @60%	28.0
5. Labour and Field maintenance per hr.	6.7
6. P.O.L. etc. per hr.	
(a) Electric Energy	2.5
(b) Electric Material	0-8
(c) P.O.L.	0.3
(d) Sundries	0.5
Total cycle rate per hr.	85.4
Expected average output per 100 cyds. or 27 CFC per hour	
Use rate per CFC	3.16
Cost of water	0.03
Cost of erection and dismantling	2.00
	5.19
	5٠

Operation of Batching and Mixing Plant (for cost of mixing)

223

32.40 CFC/hr.

14.13.4. Analysis of cost of conveying mixed concrete from batching plant to pick up point by Diesel Locomotive and 6 cyds. buckets is given below :—

1. Cost of Diesel Locomotive (B.H.P.) 55	Rs. 44,000
2. Life—12000 hrs.	
3. Depreciation per hour.	3.67
4. Repairs & Maintenance	3.67
5. Labour operation & Field maintenance per hour with POL.	7.00
Total cycle rate per hour.	14.34
Output per hour 3 Locomotives on the site and 2 always working and giving an output of 27 CFC or 13.5 CFC per Loco.	
: Use rate per CFC	1.31
Cost of Flat Wagon and Bucket per CFC	1.00
Cost and maintenance of Trolley Line	0.35
Say, Rs. 2.66 per C.F.C.	2.66

14.13.5. Analysis of cost of Revolving Crane operation for lifting concrete bucket and placing is given below :---

1. Cost of the 2 No. electric revolving crane 40 Ton capacity	Rs. 1,73,500	
2. Life, 12000 hours each-24000 hours.		
3. Depreciation per hour.	72.25	•
4. Repairs and Maintenance per hour @ 60%.	43.40	
5. Labour operation and Field maintenance per hour.	7.09	
6. P.O.L. etc. per hour.		
(a) Electric Energy	62.50	
(b) Electric Material	0.95	
(c) P.O.L.	2.38	
Total Cycle rate per hour	188.57	
Output per hour the same as batching plant	27.00	CFC
: Use rate per CFC	7.00	
Cost of erection and dismantling Crane.	2.04	
Cost of Steel Structure 1000 Tons, after allowing salvage		
value.	6.60	
Maintenance of structure.	0.11	
Erection and dismantling of steel structure, 1000 Tons @ Rs. 300 per ton and distributed over the whole concrete 87000 CFC.	3.45	
Total rate per CFC	1,920	

CONCRETE AND FORMWORK

l below	4.13.6. Analysis of cost of vibrating conc	rete	per CFC is	given
1.	Cost 8 Nos. Electric Vibrators with frequency changers	••	Rs.	40,000
	-		Rs.	40,000
2.	L [:] fe—10,000 hours.			
3.	Depreciation per hour	••	Rs.	4 · 00
4.	Repairs and Maintenance per hour 100%		Rs.	4.00
5.	Labour Operation and field maintenance per hour 2 Labourer per vibrator		Rs.	1.50
6.	Cost of P.O.L. with electrical mixing and sundries		Rs.	$\frac{02 \cdot 0}{11 \cdot 50}$
_				

Output per vibrator, on the assumption that 4 vibrators work continuously for 27.0 CFC per hour.

 $\therefore \text{Use Rate per CFC} \frac{11 \cdot 50}{6.75} = 1.7$

14.14. Admixture

14.14.1. In U.S.A., since 1944, millions of cubic yards of air-entrained concrete have been placed in the construction of dams. The use of air entraining agents permitted an appreciable reduction in the cement content and the water/cement ratio. Beside special cements, which are generally more economical than portland cement have been lately used in the United States and laboratory investigations have indicated that the concrete containing these cements blended with portland cement compared favourably with concrete containing portland cement along.

14.14.2. As an element of cost of concrete the admixtures do not form an appreciable percentage and it is not considered necessary to discuss their price difference. However, the cost incurred on their use has not been added to the cost of cement element in the analysis of mass concrete rates.

14.15. Overall Rates Of Mass Concrete

14.15.1. Overall rates of mass concrete (Table 14.15.1.) inclusive (i) of all leads and lifts (ii) burden in addition to (i) and (iii) formwork in addition to (ii) are given. They vary from Rs. 228 to Rs. 329 per CFC.

	Nam) of project	Cement			pe	ary exp er CFC		•	В	urden			Rate per CFC ex-	work in-	
SI. No.		quantity p3r CFC Cwt.	crete in CFC	Cost in rupces (Lakhs)	Dopara ment	- Cont ract	- Con)- ract	% on col. (6)	Am- ount	% on col. (7)	Am- ount	Total col. (10+	work	clusive of on cost per CFC	CFC in clusive of form work
1	2	3	4	5	. 6	7	8	9	10	11	12	13	14	15	16
• •	Maithon (Dam)					· · · ·								· · · · · · · · · · · · · · · · · · ·	
	Class 'A' 300 lbs/Cyd.	9.9	64071	100	169	<u> </u>	169	42	71			71	240	38	278
	Class 'B' 460 lb3/Cyd.	15.2	18862	36	197		197	42	83	⁻		83	280	38	318
•	Panchet Hill (Dam)								• •						
	Ciass 'A' 398 lbs/Cyd.	13.2	30267	48	186		186	40	-74		· ·	74	260	42	302
	Class 'B' 506 lbs/Cyd.	16.7	29087	47	205		205	40	82			82	287	42	329
	Tilaiya (Dam)	14.0	38408	67.	195		195	36	70			70	265	6	271
•	Konar (Dam)	13.0	91800	224		244	244	-		9	22	22	266	4	270
	Hirakud (Dam) 1:3:6	14.53	185270	338	119	59	178	30	36	11	` e	6 41	2 220	21	241
ő.	Vaitarna (Dam)	12.0	191000	416		218	218	-		2	4		4 222	6	228

REPORT OF RATES & COSTS COMMITTEE

CONCRETE AND FORMWORK

14.16. Formwork

14.16.1. Formwork for concrete are fabricated from lumber, plywood, steel and aluminium, either separately or in continuation. If the form materials is not going to find its re-use, the forms would prove to be prohibitive in price. If, however, the forms are to be used 2-3 times then it will prove to be economical to manufacture them in timber only. Where they are required to be used many times it would pay to use durable materials. Special plywood for formwork is used when very smooth surface is required, and this is not necessary for concrete dams, as they are costly.

A combined table for mass concrete inclusive and exclusive of formwork is given in Table $\frac{14.15.1}{14.16.1}$

CHAPTER 15

ANALYSIS AND SCHEDULE OF RATES

15.1. INTRODUCTORY

15.1.1. We have dealt with before the principal items of work and have reproduced the data which we had collected. We will give here their analysis of rates.

15.2. BASIC SCHEDULE OF WAGES

15.2.1. The labour rates given in Table 15.2.1. will be applied to pricing the labour element in the analysis of rates. The rates for skilled and semi-skilled labour should be considered inclusive of all necessary tools which are normally carried by them.

TABLE 15.2.1

Basic wages per day of 8 working hours

Item	Description of labourers	Rate
	Un-skilled Labour	
1.	Bhisty including mussack	Rs. 2·5
2.	Chokidar	1.75
3.	Mate (1 for 10 Mazdoors)	2.0
4.	Mazdoor Man [Grass cutter, Stone breaker or Packer Driver for donkeys (1 for 10) mules, camels (1 for 3 camels or mules or for bullocks)]	1.75
5.	Mazdoor Woman 18 years and above	1.25
<i>'</i> 6.	Mazdoor Boy (not less than 15 yrs. and under 18 years)	1.0
7.	Wadar Cooly Male	2.5
8.	Wadar Cooly Female	1.5
9.	Wadar Cooly Boy	1.0
	Semi-skilled and skilled	
10.	Blaster	4.5
11.	Crow Bar Man	3.5
12.	Fitter Coly and Greaser	2.0
13.	Cleaner (Mech. Plant & Transport)	2.0

ANALYSIS AND SCHEDULE OF RATES

_____ 14. Fireman (any static or mobile machinery) . . 3.0 •• , •• . . 15. Glazier • • •• .. 3.0 16. Hammerman 2.5 17. Moulder (bricks or tiles) • • .. •• •• 2.5.. 18. Pump Attendant •• •• 2.0 19. Quarryman •• .. ••• . . 3.5 20. Roof Tiller or Thatcher ... • • 2.5 . . 21. Sawyer •• •• •• 3.5 . . 22. Well Sinker •• • • •• •• . . 4.0 23. Lime Washer ••• •• • • .. 2.0 . . 24. Carpenter Boy, Bellows Boy .. •• •• .. • • 2.0 .. 25. Mason (Stone) II • • 3.5 . . 26. Brick layer, Plaster Floor II or Wall Tiler ... •• 4.0 •• 27. Carpenter II • • .. 4.0 28. Fitter II ••• • • 3.0 29. Blacksmith II ... • • •• • • •• 3.5 . . . 30. Mechanic II • •• •• .. • • 5.0 •• 31. Painter II ... • • • • •••[•]• .. •• • • 3.0 • • •• 32. Plumber II •• . . $4 \cdot 0$ 33. Turner II ... • • •• •• 3.5 . . •• . . 34. Welder II .. • • • • • •• .. •• 4.5 .. Artisans and Technicians 35. Armature Winder . · · · · •• . . 6.0 · . . 36. Blacksmith I •• • • . . • • 5.0 37. Boiler Attendant 3.5 38. Brick-layers Plasterer 1 •• 5.0 •• 39. Carpenter I •• .. •• ,•• 5.0 • • 40. Driller (Well boring) 4.5 •• 41. Driver (Mechanical transport) •• 4.5. . •• 42. Driver (Engine Static) $4 \cdot 5$ •• • • 43. Dresser 5.0 • • • • . . 44. Fitter I (Structural) •• 4.5 • • 45. Line-man · . 4.5 • • 46. Mason (Stone) I • • 5.0 •• •• 47. Mechanic 1 •• .. • • 6.0 •• . 48. Painter I ... •• •• . . . 4.0 •• 49. Pattern Maker 5.5 .. •• . •• • • • • 50. Plumber I .. •• •• •• 5.0 • • •• •• .. • • 51. Switch board Attendant ••• 2.5 •• .. 52. Turner I 5.0 · . . • • •• 53. Welder I .. •• •• •• 6.0 • • • • 54. Wireman and Electrician •• 4.5 •• • • 55. Foreman Monthly Rated Labour 200-10-300-20-400 Operators (100-8-140-10-200) 56. .

TABLE 15.2.1—contd.

15.3. BASIC SCHEDULE OF PRICES

15:3.1. The rates given in Table 15.3.1. have been applied to workout the material component of the rates.

TABLE 15.3.1.

Basic Schedule of Materials Rates

	•				•		
SI. No.		Item wi	th description		Unit	Rate	Remarks
1			2		3	4	5
			A. Ce	ment & Stee	1	2	· · · · · · · · · · · · · · · · · · ·
1. 2. 3. 4. 5. 6. 7. 8.	Portland Cem Steel Rolled S Mild Steel Ba B.S.W. Bindin Petrol Diesel Oil High Speed D Mobile Oil	Sections irs ng Wire		B. Oils	Cwt. ,, ,, ,, Gal. ,,	5/ 20/- 24/- 30/- 2/12 1/8 1/2 4/-	Ex-Project Godown Do. Do. Do. Do. Do. Do. Do. Do.
9. 10. 11. 12.	Lubricating C Grease Cotton Waste Gear Oil				,, Lb. Gal.	4/- -/8/- -/5/- 5/-	Do. Do. Do. Do.
			<i>C. R</i>	ubber Goods			
	Indian P	rices Ply					
13.	6·0×15	6	Tractor Tyre		Each	101/15	
14.	6· 0 ×19	6	Tractor Tube Tractor Tyre		"" ""	12/2 114/2	

A 1.	0 0/19	. 0	flactor ryre	,,	114/2	
			Tractor Tube	••	12/İ0	
15.	7 ∙5 ×16	8	Trailer Tyre	.,	166/12	
		٠	Trailer Tube	••	25/-	
16.	7 5×16	8	Ribbed Earthmover		/	
			Tyre	,,	186/10	
		· · · ·	Ribbed Earthmover		- (
			Tube	, ,,	17/2	
17.	7.5×18	6	Tractor Tyre	>>	143/5	
			Tractor Tube	22	17/5	
18.	10·0×28	6	Tractor Tyre	• •	282/2	
			Tractor Tube	• •	42/5	
19.	11.0×28	6	Ground Grip Tyre		402/8	
			Ground Grip Tube	••	40/4	
20.	11· 0 ×36	6	Ground Grip Tyre	,,	434/15	
			Ground Grip Tube	22	62/5	
			-		· / -	

ANALYSIS AND SCHEDULE OF RATES

2 3 4 1 5 Ply Rock Grip Tyre Rock Grip Tube 16 1037/4 21. 12.0×24 Each 61/3 ,, Grader Tyre 781/7 22. 13.0×24 8 ,, Grader Tube 70/**7** ,, Power Grip Tyre Power Grip Tube 1406/-23. $14 \cdot 0 \times 24$ 20 ,, 114/8 • • 24. $18 \cdot 0 \times 24$ 16 Ground Grip Tyre 2478/10 ,, Ground Grip Tube 207/7 ,, Earthmover Tyre 3261/2 25. 18.0×24 24 ,, Earthmover Tube 207/7 " 26. 18.0×24 24 Earthmover Tyre 3979/14/-,, Earthmover Tube 207/7 ,, Ground Grip Tyre Ground Grip Tube 2478/10 27. 18.0×25 16 ,, 207/7 ,, 20 Ground Grip Tyre 3261/2 28. 18.0×25 ,, Ground Grip Tube 207/7 ,, Ground Grip Tyre 3879/14 29. 18.0×25 24 ,, Ground Grip Tube 207/7 ,, Ground Grip Tyre 3717/-30. $21 \cdot 0 \times 25$ 20 ,, Ground Grip Tube 256/8 ,, Ground Grip Tyre 31. 21.0×25 20 3816/14 ,, Ground Grip Tube 256/8 ,, Ground Grip Tyre 4383/4 24 32. $21 \cdot 0 \times 25$,, Ground Grip Tube 256/8 • • U.K. Prices 33. $8 \cdot 2 \times 20$ Rock Grip Tyre Rock Grip Tyre 12 417/7 ,, $34. \quad 9 \cdot 0 \times 20$ 12 479/14 ,, Grader Tyre 35. $9 \cdot 0 \times 24$ 12 576/15 ,, Rock Grip Tyre Rock Grip Tyre Rock Grip Tyre 36. 10.0×24 14 656/3 •• 37. 10.0×20 14 580/12 ,, 38. 11.0×20 39. 12.0×24 4 660/8 ,, 8 Earthmover Tyre 543/12 ,, Earthmover Tube 49/13 ,, Earthmover Tyre 40. 14.0×24 8 758/10 ,, Earthmover Tube 63/11 ,, Earthmover Tyre 16 41. 14.0×24 1165/2 ,, Earthmover Tyre 42. 16.0×20 16 1363/15 ,, Earthmover Tube 119/4 ,, Earthmover Tyre 43. 16·0×20 20 1667/14 ,, Earthmover Tube 119/4 ,, Rock Grip Tyre Rock Grip Tube Rock Grip Tyre Rock Grip Tube .24 44. 18·0×24 4030/11 ,, 202/10 ,, 45. 18·0×25 24 4030/11 ,, 202/10 ,, Ground Grip Tyre Ground Grip Tube 46. 21·0×29 20 4065/5 ,, 260/9 ,, Ground Grip Tyre Ground Grip Tube 4620/7 47. 21·0×29 24 ,, 260/9 ,, Ground Grip Tyre 48. 24·0×25 18 5095/13 ,, Ground Grip Tube 340/8 ,,

TABLE 15.3.1.—contd.

1.	A Constant of A		2	3	4	5
	U.S.A. Pric	65				
		Ply				
				a ser e ser		
49.	9.0×24	10	Rib Tread Road builder Ture	Fach	52115	
			Road-builder Tyre Rib Tread Road-builder	Each .	524/5	
			tube	, ,,	40/4	
50.	10.0×24	10	Road Builder Tyre	,,	619/11	
			Road Builder Tube	,,	33/2	
51.	$12 0 \times 28$	6	Road Builder Tyre	,,	685/11	•
52.	14·0×24	10	Road Builder Tube	,,,	57/1	
52.	14-0 × 24	10	Road Builder Tyre Road Builder Tube	••	923/13 63/11	
53,	14.0×32	16	Road Builder Tyre	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1743/6	
		1.1.1	Road Builder Tube	• • • •	78/4	
54.	16.0×24	16	Earthmover Tyre	"	2398/8	
			Earthmover Tube	,,,	200/5	`
55.	24.0×25	24	Ground Grip Tyre	""	6418/1	
56.	24·0×25	30	Ground Grip Tube Ground Grip Tyre	39	340/8	
50.	24 0/25	50	Ground Grip Tube	""	7380/13 340/8	
57.	24.0×29	24	Ground Grip Tyre	• •	8170/2	سر ه
			Ground Grip Tube	,, ,,	534/6	
58.	24.0×29	36	Ground Grip Tyre	••	10035/12	
50	77 0 27	10	Ground Grip Tube	· · · ·	534/3	
59.	27.0×33	30	Rock Grip Tyre		13128/15	·
60.	27.0×33	36	Rock Grip Tube Rock Grip Tyre	, ,	910/9 15210/	
			Rock Grip Tube	••	15219/- 910/9	
61.	$27 \cdot 0 \times 33$	30	Ground Grip Tyre	· · · · · · · · · · · · · · · · · · ·	12809/-	
_			Ground Grip Tube	3 3	910/9	· · · · ·
62.	30.0×33	40	Ground Grip Tyre	29	18910/14	
· · ·	·		Ground Grip Tube	••	1192/12	
			and the second			
			D. Explosives		•	
63.	Gelignite	an ta da ita		Lb.	1 /0	
001	Genghate			LU.	1/8	Ex-Project Godown
	Fuse Wire c	or. Coil		Coil	2/-	Godown
65.	Detonators			100 Nos.	6/-	
			E. Principal Building Mat	erials		
cc .	Dath 1. Co					
66.	and stock	ne inclusiv	e of over burden removal			
	and stoci	king.		CFC	18/-	At quarry
				· ·		with 40%
67.	Rubbles Sto	one for Pit	ching		12/-	Void.
68.	Boulders		~	22	5/-	At quarry
69.	Gravel & S	hingle		, ,	8/-	Do.
70.	Stone Aggr	egate $\frac{1}{4}$ " to	⊃ ≩″		30/-	Do.
71.	Stone Aggr	egate I"	to 2"	••	27/-	Do.

.

TABLE 15.3.1-contd.

ANALYSIS AND SCHEDULE OF RATES

TABLE 15.3.1-contd.

1	2	3	4	5
72.	Stone Aggregate above 2"	CFC	25/-	At quarry
73. (Quarried Sand	,,	10/-	Do.
74. (Crushed Sand	,,	35/-	
75.	Stone Dust	,,	35/-	
76. 2	Bricks 1st Class	1000 Nos.	22/-	At kiln
77.	Bricks IInd Class	,,	18/-	Do.
78.	Bricks IIIrd Class		15/-	Do.
7 9. .	Brick Ballast of Sizes	CFC	20/-	Do.
30 . :	Brick Bats	,,	12/-	Do.
	Unslaked Lime	Md.	3/-	Site of work
	a) Surkhi (Coarse)	CFC	30/-	Do
•	b) Surkhi (Fine)	, ,,	75/-	Do.
	Scantlings Teak Wood (CP)	Cft.	12/-	Do.
	Scantlings Salwood	,,	6/-	Do.
	Planks Teak Wood	,,	15/-	Do.
	Planks Salwood	,,	8/-	Do.
	sbestos Cement Products			
011 1	(a) Plain Sheets	Sft.	-/7/-	
•	(b) Corrugated Sheets ·	,,	-/8/9	
	(c) Corrugated Sheets Super 13	""	-/8/3	
	(d) Corrugated Sheets big 6	**	-/8/9·	
	(e) Corrugated Sheets Trafford	33	-/8/6	
	(f) Ridges $3' \times 6_4^{3''}$	Pair	6/3/-	-
88.	Ballies Sal			
00.	(a) 3" dia. 8' to 10' long	Score	31/-	
	(b) 4" dia. 12' long	,,	41/-	
	(c) 5" dia. 12' long	. ,,	- 51/-	
	(d) 6" dia. 12' long	,,	77/-	
	(e) 7" dia. 12' long	,,	129/-	
	(f) 8" dia. 12' long	"	180/-	
89.	Bitumen			
•	(a) For hot application (Asphalt, maxphalt, cutbacks, etc.)	Ton	412 /-	
	(b) For cold application (Asphalt, maxphalt, cutbacks, etc.)	;,	397/-	
	Bhusa	Md.	3/-	

.

1 2 2 2 3 3	3	4	5
91. Bamboos of Sizes			• •
(a) 1" dia	Score	4/-	
(b) 2" dia		6/-	
(c) 3" dia	,,	. 8/8	
92. Baskets (Cane) 18" internal dia	Each	1/6	
93. Board insulated	F.S.	6/-	
94. Board laminated (Sitapur)	5 •	3/8/-	
95. Bleaching Powder	Lb.	1/8/-	
96. Celotax sheeting	F.S.	-/6/3	
97. Coal Steam	Ton	41/-	
98. Charcoal	Md.	6/8/-	
99. Coke	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2/4/-	
00. Coal Dust	,,	1/8/-	
01. Coal Tar	Gl.	1/4/-	

TABLE 15.3.1-concld.

TABLE 15.3.2.

Trade Price of Mechanical Equipment

Sl. No.		Type of equipmen	t T		Size or capa- city	Price in Rs
1		2			3	4
1.	Air Compressors		•		· · ·	
	(a) Portable	(i) Diesel	•• ••	 ••• •	210 C.F.M. 315 C.F.M.	23,700 34,800
	(b) Stationary	(ii) Diesel	•• ••	•• ••	500 C.F.M. 210 C.F.M. 315 C.F.M.	52,700 22,850 33,700
		(iii) Electrical			500 C.F.M. 600 C.F.M. 315 C.F.M.	51,700 73,500 19,100
2.	Batching and M	ixing Plant with 3	Nos. of 3 C.	yd. Mixers	500 C.F.M.	28,400 7,26,200
3.	Bins, Cement (etc.)	with accessories l	ike indicator	s, valves	20″ dia. 1244 cft. capacity	64,000

ANALYSIS AND SCHEDULE OF RATES

TABLE 15.3.2-contd.

1	2					3	4
4.	Boilers : Vertical, Crosstube .	•		•••••	· ·	10 H.P.	11,200
5	Redial Cableway with hoist mot	12 H.P. 2100' span	12,800				
5.	Radial Cableway with hoist mot other accessories with civil eng	vineeri	iu ing wor	ks .		85' height	7,00,000
						fixed headmast	•,-•,••
						10 Ton Gross	
						load Skips and	
6.	Core drilling machine					Slings.	
0.	(Diamond Core Drills)					Max. Depth.	
	(a) Power operated					500 ft.	15,600
	(a) 10 01 0F 01 0					1000 ,,	25,500
						2000 "	33,000
	(b) Air operated	••	••	••	••	500 ,,	18,000
7.	Concrete Buckets	••	••		••	3 Cyd.	10 500
	•					$4\frac{1}{2}$,,	10,500 15,000
0				•		6 " 17 Ton	1,00,000
8.	Cranes (a) Crawlers	••	••	••	• •	25 "	1,34,00
						.35 "	2,49,00
						50 "	3,14,00
	(b) Pneumatic Tyred		••		• •	20 "	2,04,00
						30 "	2,12,00
	(c) Truck mounted	••	••	••	••	20 ,,	1,87,80
9.	Crusher (a) Jaw	••	••	••	••	150 to 200 Ton pe 48" × 36"	2,20,00
	(b) Gyratory				••.	200 Ton per/hou	
. ^	Engines, Diesel	••	••	••		75 H.P.	12,00
10.	Engines, Dieser	••	••	• •		115 H.P.	17,00
						190 H.P.	29,00
11.	Electric light plant, Diesel Driv	е	••	••	• •	12 K.W.	12,50 14,50
						20 K.W. 25 K.W.	26,50
						$\frac{3}{4}$ Cyds.	1,10,00
12.	Excavators (a) Diesel	• •	••	••	••		2,11,00
	(i) Shovels	••	••	••	••	$1\frac{1}{2}$,, 2 ,,	2,32,50
						$2\frac{1}{2}$,,	3,54,00
						3 ¹ / ₂ ,,	5,17,00
	(ii) Draglines			••	. 	³ 4 ", 1 <u>5</u> ", 2 ,,	1,10,50
						۱ <u>۶</u> "	1,97,00 3,10,00
						2^{2} , 2^{1}	3,22,00
						$2\frac{1}{2}$, ,, $3\frac{1}{2}$, ,,	4,58,00
	(b) Electrical					<i>4 ''</i>	
	(i) Shovels		• • •		••	3 4 »	1,35,00
		• •				$ \frac{3}{12}, $ $ \frac{1}{2}, $ $ \frac{2}{5}, $ $ \frac{3}{2}, $	2,27,80
						$2\frac{1}{2}$,	3,24,50 5,64,00
						3	5,64,00
	(ii) Draglines	••	• •	••	••	$1\frac{\frac{3}{4}}{\frac{1}{2}}$ to 2 ",	2,19,00
						$2 \text{ to } 2\frac{1}{2}$,	2,58,60

TABLE 15.3.2—contd.										
	2					3	4			
Grader	•	•		••	si	75 H.P.	84,000			
						104 H.P.	87,000			
Hoists	(a) Air Hoist	• •			• •	10 Cwt.	2,900			
		5)	••		- -		3,000			
						9 Cwt.	1,560			
			• •	••			6,850			
Loaders	(0) Diocetto monse	•		• •			2,13,000			
Dodders			1 * * 3.1	• •	••		2,40,000			
Loomatin	n Diarat									
		• •	•	•••	• •		40,000			
witzers, CC	Juciele	· · · · ·	••	• •	••		7,300			
					· · · .		27,500			
Pile Drive	r (Complete plant y	with all st	eel fram	ne moiu	nted	. Z	67,000			
on swivelli	ng jucking rail,	wheels,	hammer	r, dou	ıble-					
hammer,	drum steam and Bo	oiler with	50 ft.	and si	ngle					
acting (S.A	.) Hammers					. 2 Ton	91,500			
Pile Ha	mmers (Single	acting	complet	te	with					
		8	F			2 Ton	12,200			
							13,600			
			••••••	i se est			16,000			
Pneumatic	Tools	a de la cal			· · ·	5 1011.	10,000			
1 neumatic						21 Doro	A 500			
s de la compañía de la			• •	••	•••		4,500			
	(b) Jack Hammer	s	• •	••	•••		680			
					•	48 "	780			
						55	920			
	(c) Pumps-Sum									
				1.1						
						and the second se	980			
							300			
				1. 			1,130			
	(d) Vibrators		٠.	• • •	• •	$2\frac{1}{2}$ Casing	575			
	(e) Wagon drills	••		• •		Light duty	10,000			
	(-)						10,000			
- - بر د د ر						Heavy duty				
Pumps						Heavy duty				
Pumps		n Diesel					17, 000			
Pumps	(a) Concrete Pum	p, Diesel	••	••		10 Yds.	17, 000			
Pumps	(a) Concrete Pum	-	•	••			17, 000			
Pumps	(a) Concrete Pum(b) Cement Grou	t Pump	•••	•••		10 Yds. 24 "	17, 000			
Pumps	(a) Concrete Pum	t Pump				10 Yds. 24 ,, 20 to 22	17, 000 42,900 48,500			
Pumps	(a) Concrete Pum(b) Cement Grou	t Pump				10 Yds. 24 ,, 20 to 22 Tons per hr.	17, 000			
Pumps	(a) Concrete Pum(b) Cement Grou(c) Cement Pump	t Pump 		••	•••	10 Yds. 24 ,, 20 to 22 Tons per hr. 76'/distance	17, 000 42,900 48,500 52,500			
Pumps	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu 	t Pump		••		10 Yds. 24 ,, 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H.	17, 000 42,900 48,500 52,500 2,000			
	(a) Concrete Pum(b) Cement Grou(c) Cement Pump	t Pump				10 Yds. 24 ,, 20 to 22 Tons per hr. 76'/distance	17, 000 42,900 48,500			
Pumps Rollers	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu (maximum he) 	t Pump				10 Yds. 24 " 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H.	17, 000 42,900 48,500 52,500 2,000 3,400			
	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu 	t Pump				10 Yds. 24 ,, 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H. Single drum	17, 000 42,900 48,500 52,500 2,000 3,400			
	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu (maximum he) 	t Pump				10 Yds. 24 " 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H.	17, 000 42,900 48,500 52,500 2,000 3,400 3,900			
	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu (maximum he) 	t Pump				10 Yds. 24 ,, 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H. Single drum	17, 000 42,900 48,500 52,500 2,000 3,400 3,900 6,200			
	 (a) Concrete Pum (b) Cement Grout (c) Cement Pump (d) Centrifugal Pu (maximum het (a) Sheepsfoot (b) Road rollers 	t Pump				10 Yds. 24 " 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H. Single drum Twin drum 6 to 8 Tons	17, 000 42,900 48,500 52,500 2,000 3,400 3,900 6,200 31,100			
Rollers	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu (maximum he) (a) Sheepsfoot (b) Road rollers (Diesel) 	t Pump imps ead 150') 				10 Yds. 24 " 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H. Single drum Twin drum 6 to 8 Tons 8 to 10 "	17, 000 42,900 48,500 52,500 2,000 3,400 3,900 6,200 31,100 38,500			
Rollers Blast Out-f	 (a) Concrete Pum (b) Cement Grout (c) Cement Pump (d) Centrifugal Pu (maximum het (a) Sheepsfoot (b) Road rollers 	t Pump imps ead 150') 				10 Yds. 24 " 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H. Single drum Twin drum 6 to 8 Tons 8 to 10 " 44" × 40"	17, 000 42,900 48,500 52,500 2,000 3,400 3,900 6,200 31,100 38,500 38,500			
Rollers	 (a) Concrete Pum (b) Cement Grou (c) Cement Pump (d) Centrifugal Pu (maximum he) (a) Sheepsfoot (b) Road rollers (Diesel) 	t Pump imps ead 150') 				10 Yds. 24 " 20 to 22 Tons per hr. 76'/distance 2,200 G.P.H. 3,000 G.P.H. Single drum Twin drum 6 to 8 Tons 8 to 10 "	17, 000 42,900 48,500 52,500 2,000 3,400 3,900 6,200 31,100 38,500			
	Hoists Loaders Locomotiv Mixers, Co Pile Drive on swivelli hammer, acting (S.A Pile Ha valves)	Hoists(a) Air Hoist (Total Lift 15 (b) Chain Hoist (c) Electric Hoist LoadersLocomotives, Diesel Mixers, ConcretePile Driver (Complete plant v on swivelling jucking rail, hammer, drum steam and Bo acting (S.A.) Hammers Pile Hammers (Single valves)Pneumatic Tools (a) Drifters	Hoists (a) Air Hoist (b) Chain Hoist (c) Electric Hoist Loaders Locomotives, Diesel Mixers, Concrete Pile Driver (Complete plant with all st on swivelling jucking rail, wheels, hammer, drum steam and Boiler with acting (S.A.) Hammers Pile Hammers (Single acting valves) (c) Pumps-Sum	Hoists (a) Air Hoist (b) Chain Hoist (c) Electric Hoist Loaders Locomotives, Diesel Mixers, Concrete Pile Driver (Complete plant with all steel fram on swivelling jucking rail, wheels, hammer hammer, drum steam and Boiler with 50 ft. acting (S.A.) Hammers Pile Hammers (Single acting complete valves) (a) Drifters (b) Jack Hammers (c) Pumps-Sum	Hoists (a) Air Hoist (Total Lift 15') (b) Chain Hoist (c) Electric Hoist Loaders Locomotives, Diesel Mixers, Concrete Pile Driver (Complete plant with all steel frame mou on swivelling jucking rail, wheels, hammer, dou hammer, drum steam and Boiler with 50 ft. and si acting (S.A.) Hammers Pile Hammers (Single acting complete valves) Yalves) (b) Jack Hammers (c) Puntps-Sum	Hoists (a) Air Hoist	Hoists (a) Air Hoist 104 H.P. (Total Lift 15') 10 Cwt. (b) Chain Hoist 20, (c) Electric Hoist 1 Ton Loaders 9 B.V. 10 B.V. 9 B.V. Locomotives, Diesel 10 B.V. Mixers, Concrete 10/7 Cft. 11/2 Cyd. 2 Pile Driver (Complete plant with all steel frame mounted on swivelling jucking rail, wheels, hammer, double-hammer, drum steam and Boiler with 50 ft. and single acting (S.A.) Hammers 2 Ton Pile Hammers (Single acting complete with valves) 2 Ton. 21/2 Ton 3 Ton. Pneumatic Tools 3 Ton. 3 Hore 3 Hore (b) Jack Hammers 37 Lbs. 48, , (c) Puntps-Sum (a) 133 G.P.M. at 100' total head and 21 G.P.M. at 100' total head and 21 G.P.M. at 100' total head and 21 G.P.M.			

٩.

. . .

TABLE 15.3.2-contd.

ANALYSIS AND SCHEDULE OF RATES

TABLE	15.3.2.—concld.
	•

1	2						3	4
25.	Screens-vibrating (a) Single Deck						48″×96″	(a) 7,700
	(b) Double Deck	••	••	••	••	••	48"×120"	(b) 9,200 (a) 8,250 (b) 10,000
						•	60"×120"	(a) 8,850 (b) 12,400
							60"×160"	(a) 12,100 (b) 12,300
26.	Tractors		••	•• .	••	••	90 B.H.P.	80,500
	(a) Crawlers	••			••		130 B.H.P. 25 B.H.P. 45 B.H.P. 55 B.H.P.	1,08,100 13,500 18,750 20,000
27.	Trucks—Dumpers (a) Bottom Dump	••	· • •	••	••	••	13 Cyds. 17 Cyds.	1,49,500 1,97,600
	(b) Rear Dump	••	••	••	•••		6.6 Cyds. 10 Tons	1,10,000
					a.		9 •7 Cyds. 15 Tons 14 •8 Cyds. 22 Tons.	1,35,000 2,04,000
28.	Well-drilling Machine	. ^{\$} .		••		:.	From 6" di holes750' 2 500' to 16" 100'-	8″—
29.	Welding Machine	••		• •		·••	(a) Continuous output of 20	
•	(Diesel Engine Drive	Weld	ing Set)			••	(b) -do- 300)A 13,000

NOTES : 1. The prices listed are approximate.
2. The prices for F.O.R. Indian Port.
3. They are subject to variation, trade discount and the like.

15.4. Use Rates and Outputs of Machines

15.4.1. Table 15.4.1. gives the hourly use rates of mechanical equipments.

15.4.2. Outputs of various machines have been dealt with in Chapter 6.

TABLE 15.4.1.

		•		•				Hourly U Rates in F
1	2						<u></u>	3
1.	Air Compressors					1. J.		· · · · · · · · · · · · · · · · · · ·
111	(a) 210 C.F.M. Diesel, Portab	le .						10.5
	(b) 315 C.F.M. Diesel, Portab	le .						14.0
1	(c) 500 C.F.M. Diesel, Portal			-				20.0
	(d) 500 C.F.M. Electrical, Stat							16.5
2	Belt Loader							
2.								
	18 B. V. Belt Loader	•• . •	•	••	• •	••		55 ·0
3.	Dump Truck							
	(a) 9.7 Cyd. 15 Tons Rear Du	mn .						34-0
	(b) 14 ·8 Cyd. 22 Tons Rear D)umn	•	••	••	• •	••	52.0
	(c) 13 Cyd. Struck Bottom Du	imn	•	••	••	••	••	37 ·0
	(d) 17 Cyd. Struck Bottom Di	ump .		••	. • •	••	••	47.0
		amp .	•	••	•••	•••	•••	17 0
4.	Excavators							
	(a) Shovel							
$(\mathbf{y}_{i}) \in \mathbf{s}$	(i) $\frac{3}{4}$ Cyd. Shovel			••	• •	· · · ·	••	31.0
1.	(<i>ii</i>) $1\frac{1}{2}$ Cyd. Shovel	•••	•	· • •		· • •	• •	50 ·0
	(<i>iii</i>) $2\frac{1}{2}$ Cyd. Shovel					· · · •		64 -0
	$(i\nu)$ $3\frac{1}{2}$ Cyd. Shovel	•• •		••			••	89-0
	(b) Draglines							
	(i) $\frac{3}{4}$ Cyd. Dragline							29.0
	(ii) $1\frac{1}{2}$ Cyd. Dragline	•••••	•	• •	••	••	••	43.0
	(<i>iii</i>) $2\frac{1}{2}$ Cyd. Dragline	•• •	•	••	••	••	••	55.0
	(iv) $3\frac{1}{2}$ Cyd. Dragline	•••••	•	••	• •	• •	• •	74-0
-		•• •	•	•••	•.•	••	••	14.0
5.	Scrappers.—		`	1 1				and a second
	(a) 10/12 5 Cyd. Drawn Scrat	oper .		••	••		••	14.0
		•		••	••	••	••	20.0
	(c) 10/13 ,, Motorised			••		••	••	43 ·0
	(d) 15/20 , -do-	•• •	•	• •	• • •	••	••	56.0
6.	Tractors							
	(a) 81 H.P. Crawler Tractor							25.0
	(b) 130 H.P. Crawler Tractor	•	•	••	••	••	••	23-0 29-0
	(c) 81 H.P. Tractor Dozer	•	•	••	••	••	• •	29.0
		•••••	•	••	••	. • •	••	28 ·0 32 ·0
	(e) D-4 Tractor with Sheepsfo		• or	••	••	•••	• •	15.15
	· · · · · · · · · · · · · · · · · · ·	or Koll	UI .	•• •	••	••	••	12.12
7.	Motor Grader							
14 - A.	115 H.P					••		25 •0

Hourly Use Rate of Mechanical Equipment

15.5. LABOUR AND MATERIAL CONSTANTS

Labour and material constants for various items are given below :---

15.5.1. Earthwork by Manual Labour.

SI. No.	Т	Type of Soil							Range of rates per CFC		
1			2					3	4		
1.	Sand and silt	•••		••	••		••	0.25-0.4	0.450.72		
2.	Top soil	••		•••	••	••	••	0.4-0.6	0.72-1.08		
3.	Common earth	••	••	••	••	· .		0.50.8	0.9-1.44		
4.	Clay, light	••	• •	- ,	••	.:		0.71.0	1 • 261 • 8		
5.	Clay, heavy	••	••	n .	••		•	0.85-1.2	1.5-2.2		
6.	Soft rock		rock				••	÷	1.4-2.5	2.5-4.5	

TABLE 7.2.2.

Labour Effort Constants in Man-days and Rates in rupees for removal of Spoil per CFC.

			Remova			
Sl. No:	Horizontal distance	Soí		Ro	ck	Remarks
	between (CFR units)	Labour	Rate	Labour	Rate	h ·
1	2	3	4	5	6	7
1.	0.25	0.13	0.17	0.17	0.22	It is assumed that a
2.	0.50	0.23	0.30	0.30	0.39	It is assumed that a person carrying soil travels 200 ft. per
3.	1.0	0.43	0.58	0.59	0.77	travels 200 ft. per minute and it takes 0.06 minute to unload
4.	1.5	0.63	0 .82	0.86	1.12	a basket. For carrying rock the speed be
5.	2.0	0.83	1.08	1.14	1.48	reduced to 150 ft.
6	2.5	1.03	1.34	1.43	1.86	per minute.

TABLE 7.3.3.

Rates of Earthwork (CFC) by Manual Labour

SI.		Range of	Rates at average wages					
No	. Type of Soil	labour effort (man-days)	Rs. 1.5	Rs. 1.8	Rs. 2·1			
1	2	3	4	5	6			
1.	Sand & silt	. 0.48-0.63	0.72-0.94	0.86-1.13	1.01-1.32			
2.	Top soil	. 0.63-0.83	0.94-1.35	1 • 13 - 1 • 49	1 • 32-1 • 74			
3.	Common earth	. 0.73-1.03	1.09-1.54	1.31-1.85	1 • 53-2 • 16			
4.	Clay, light	. 0.93-1.36	1 • 4 - 2 • 04	1.63-2.45	1.95-2.85			
5.	Clay, heavy	. 1.06-1.53	1.62-2.29	1.95-2.76	2.27-3.21			
6.	Soft rock	. 1.70-2.3	2 • 55-4 • 20	3.06-5.04	3 • 57 - 5 • 88			
	· · · · · · · · · · · · · · · · · · ·	·····			· · · · · · · · · · · · · · · · · · ·			

TABLE 7.3.4. (i)

Sl.	T C C C 1		Lal	Labour effort in man-days for digging and disposal of spoil for leads									
No	. Type of So	•25	•5	1.0	1.5	2.0	2.5						
1	2		3	4	5	6	7	8					
1.	Sand & silt	•	0.38-0.53	0.48-0.63	0.68-0.83	0.88-1.03	1.08-1.23	1.28-1.43					
2.	Top soil	••••	0.53-0.73	0.63-0.83	0.83-1.03	1.03-1.23	1 • 23 - 1 • 43	1 • 43 - 1 • 63					
3.	Common earth	.••	0.63-0.93	0 • 73 - 1 • 03	0-93-1-23	1.13-1.43	1 • 33-1 • 63	1 • 53 - 1 • 83					
4.	Clay, light	••	0 • 93 - 1 • 33	1.03-1.53	1 • 23 - 1 • 63	1 • 43 - 1 • 83	1.63-2.03	1.83-2.23					
5.	Clay, heavy.	••	1 • 13 - 1 • 63	1 • 23 - 1 • 73	1 • 43 - 1 • 93	1.63-2.13	1.83-2.33	2.03-2.53					
6.	Soft rock	••	1 • 57-2 • 67	1.70-2.80	1.90-3.09	2.26-3.36	2.54-3.64	2·83-3·93					

Rates of Earthwork (CFC) by Manual Labour

15.5.2. Transpor

SI. No	Weights of Meights of Mature of materials			Weig	ts	
				Lbs. per FC	Tons pe CFC	r Remarks
1	2			3	4	5
1.	Quarried or crushed stone					
	(i) Limestone	• •		80	3.57	The data given
	(ii) Granite	• •		92	4.11	is based on
	(iii) Basalt			95	4.24	45% voids.
2.	Bankrum shingle containing san	d	:.	100	4.46	70
3	Gravel or shingle without sand	••		94	4.20	
4.	Clean pits & dry	• •	••	90	4.02	
5.	Slaked lime powder	• •		60	2.68	1

TABLE 8.2.1.

15.5.3. Drilling and Quarrying

TABLE 9.2.1.

Diamatan of hole	Class of C	Rock	Drills	Core D	Prills
Diameter of hole (inches)	Class of rock,	Jack- hammer	Wagon drill	Diamond drill	Shot drill
1 ¹ / ₄ (Core1 1/8)	Soft to medium	10 to 12	25 to 35	3 to 7	
$2\frac{3}{5}$ (Core 1-5/8) $2\frac{3}{8}$ (Core 1-1/5)	Soft to medium Hard	5 to 10	20 to 25	2 to 4	
3 (Core 2-1/8)	Soft to medium hard	3 to 8	15 to 25		
4 (Core 3)	Soft to medium hard		5 to 10 3 to 5		1 to 2
$6 \text{ or } 5\frac{1}{2} (\text{Core } 4-3/4)$	Soft to medium hard		3 to 6 1 to 3		$\frac{3}{4}$ to $2\frac{1}{2}$ $\frac{1}{2}$ to $\frac{3}{4}$
12 36	Soft to medium hard Soft to medium hard		1 to 4		$\frac{1}{2}$ to 1 $\frac{1}{2}$ to $\frac{1}{2}$

Drilling Performance (feet per hour)

. •

TABLE 9.5.1.

Air Consumption of Pneumatic Tools

0.	Tool	· · · · · · · · · · · · · · · · · · ·			2 - ¹ -		CFM	
Drills rock jacl		•	•				60	
• • • • • • • • • • • • • • • • • • •	•• ••	••	••	••	••	••	60	
45 ,,	•• ••	•• ••	••	••	••	••	85	
55 ,,	•• • ••	•• ••	••	••	••	••	95 125	
80 ,,	••	•• • •	••	••	••	••	85	
Augurs Drifters (Wago	n drille)	•• ••	• •	••	••	••	65	
85 lbs. Weight							125	
100 -do-	•••••	•• ••	••	••	•••	•••	155	
140 -do-	•••••		••	•••		••	200	
Hoists-500100	00 lbs. capa		sumptio	n/ft. of	lift)	••	200	
2000 lb.							2.0	
3000 lb							3.0	
4000 lb.	•• ••						6.5	
5000 lb					•••		8.5	
Pavement Brea	kers							
30 lbs. Weight			• •		••	••	45	
55 -do-		•• ••		••	• •		- 50	
85 -do-	• • • •			·	••	••	75	
Sump Pumps				•				
Up to 100 ft. h	ead	· · · · · · ·	••	• •	• •		65	
Up to 185 ft. h			• •	••	, 		115	
Tampers-backf	ill	· ·						
25 lbs. Weight	•••	•• •	• • •	••		••	30	
32 lbsdo-	••		•	• •			35	
Trench diggers								
25 lbs. Weight	•• •		• •		-	••	35	
45 lbsdo-	•• ••	•• ••	• •	••	· •	••	45	
		TARI	E 9.6.2.					
					7.			
		lysis of Rates	jor Blas	ting Ro	оск			
Gelatine 2.25 l	lbs. at Rs. 1	•5 per lb	••	••	••	· ·	3-38	
Detonators 4 N	Nos. at Rs. (6 per 100 Nos	• ••	• •	• • •	• •	0·24	
Labour								
3.1. Blaster 0.0 3.2. helper or c			 ach	••	•••	•	0·05 0·70	
							4.27	
	. .			-	, Rs.	••	4·37 4·5	
5.5.4. Brickw	vork and	Lining of	Canals	7				
		TARI	E 11.1.3					

Number of Bricks per CFC (exclusive of wastage)

Size of Brick				Thickness of joints				
Size of Brien						1/4"	5/16"	· 3/8"
9"×4-3/8"×2-11/16"	(Standard Bri	ck)			••	1350	1200	1270
$10'' \times 5'' \times 2\frac{1}{4}'' $. ·	••	•••	••	1040	1000	975

242

ана. Артария •

TABLE 11.2.2.

Quantity of Mortar used in a $1\frac{1}{2}$ ' thick wall

Thickness of joints in in	ches			·	1/4″	5/16"	3/8"
Mortar per 1000 bricks Mortar per CFC of brickwork	•••	••	••	••	Cft. 14 19	Cft. 17 22	Cft. 21 25

TABLE 11.2.5.

Туре	Ratio		Ingredients per FC						
of Mix.	Katio	Cement Cwt.	Lime Mdş.	Sand FC	Surkhi FC	Labour mixing/FC (man-day)			
LSM	1:2		0.27	1.0		0.012			
	1:3		0.20	1.1					
	1:4	·	0.15	1.2		33			
CLM	1:1:4	0.21	0.14	1.0		0.015			
	1:1:6	0.15	0.10	1.1		,,			
	1:1:8	0.12	0.08	1.2	<u> </u>	,,			
CK	1:2	0.49		1.0		0.012			
	1:3	0.29		1.1	—	,,			
	[·] 1:4	0.29		1.2		,,			
	1:5	0:21		1.3		,,			
RCM	4:1:10	0.34		1.0	0 •08	0.05			
	4:1:15	0.25		1.1	0.06	**			
	4:1:20	0.19		1.2	0.05	59			

Quantities of various ingredients of Mortar

TABLE 11.3.2.

Nature of mortar					Plant hour per CFC	Labour days per CFC
Lime, Sand (LSM)	 			••	4	1.00
Cement, Lime, Sand (CLM)	 ••		••	••	4.5	1.25
Cement, Sand (CM)	 		••	••	5	1.33
Cement, Surkhi, Sand (RCM)	 	••	• •	••	6.0	1.50
Lime, Ashes or Surkhi.	 ••	••	••	••	6.5	1.66

Plant and Labour required for CFC Mortar

M7CW&PC/63-17

TABLE 11.4.1.

Sl. Thickness of walls	No. of bricks laid with struck joints (per day per mason)						
Sl. Thickness of walls No.	On one face			On two faces			
	From	To	Average	From	То	Average	
1	2	3	4	5	6	7	
1. $\frac{1}{2}$ Brick Wall	300	500	400	250	400	325	
2. $1\frac{1}{4}$ -do	400	600	500	300	570	400	
3. $1\frac{1}{3}$ -do	500	800	650	400	600	500	
4. 2 ² -do- · · · · ·	600	1000	800	500	700	600	
5. 2 ¹ / ₂ -do- · · · · ·	700	1200	950	550	750	650	
6. 3 -do- ··· ··	800	1400	1100	600	800	700	

Approximate Rate of laying Bricks for Heights not exceeding 10 ft. (Common Brickwork)

11.4.2. The amount of work done per day by a helper can be any one of the following to his credit.

1. Mix 100 to 120 F.C. of mortar.

2. Deliver 3000 to 5000 bricks to a distance of 50'.

3. Deliver mortar 150 to 250 F.C.

4. Two good helpers can handle 100 to 200 ton of pole staging.

15.5.5. Stone Masonry

Recommended quantities of mortar per CFC of masonry are given in table below :---

TABLE 13.5.2.

Mortar per CFC Masonry (UCR)

Kind of Mosonwy	•	•]	Mortar in	(CFC) Masonr	per CFC
Kind of Masonry			to sur T				From	To	Average
1			1 .				2	3	4
Rubble Squared-stone Coarsed Cut-stone Ashlar	• •	•••	•••		• •		40 25	50 40	45 32.5
Cut-stone Ashlar	••	••	••	••	••	••	15	25	20

13.7.2. Hauling Mortar (Manual)

Extra labour involved on account of lifting mortar water etc., as the work goes up can be expressed in the form of multipliers.

TA	BLE	13	.7.2.	

Heights from ground up to	20′	1.0
	20 to 40	1.2
	40 to 60	
	60 to 80	1.4
	80 to 100	1.5
· · · ·	and so on.	
Concrata		

15.5.6. Concrete

Convention of material constants for various concrete mixes are given below in Table 14.2.2.

Proportion cement, fine & coarse aggregates	Proportion cement & aggregates	Description of coarse materials	Cement Cwt.	Sundry FC	Coarse materials FC	Total aggre- gates FC
1:1.5:3	1:4:5	Shingle Broken	22.0	41	82	123
·		Stone	21.3	43	86	129
1:2:4	1:6	Shingle Broken	17.2	43	86	129
		Stone	18.2	45	90	135
1:2.5:5	1:7:5	Shingle Broken	14.2	44	88	132
		Stone	14.9	46	92	133
1:3:6	1:9	Shingle Broken	12.0	45	90	125
•		Stone	12.65	47	·94	141
1:4:8	1:12	Shingle Broken	9.25	46	92	138
		Stone	9•70	48	· 97	145
1:5:10	1:15	Shingle Broken	7.60	47	94	141
		Stone	8.05	50	100	150
1:8:16	1:24	Shingle Broken	4.82	48	96	144
		Stone	5.11	51	102	153

TABLE 14.2.2.

NOTES: 1. Add after testing for bulkage of sand to quantities given in Col. 5.

2. The aggregates for each mix should be proportioned after sieve analysis of their piles.

Variation 5 % on the above quantities may be tolerance on the constants on account of the variation in densities of stone.

4. Waste in transit or handling on large works should not exceed 21 per cent:

15.6. RATES FOR PRELIMINARY WORK

15.6.1. The rates of expenditure on preliminary surveys as stipulated by the Survey of India are given below for guidance :---

Air mapping	Re/10/8	per acre
Detailed ground contour survey	Rs. 1/10/-	-do-
Land use Survey and Planning	Re/12/6	-do-
Forest Survey	Re/10/6	-do-
Upland Irrigation survey including drilling, test pits, canal layouts, dam design	Rs. 1/8/-	-do-

15.6.2. Analysis and schedule of rates for site clearance by Manual Labour are given in Table 15.6.2.

	•					•
Item	Unit	No. of labour	Rate Rs.	Per	Amount Rs.	acre
		s (*		 		Rs.
1	2	3	4	5	6	7
Clearing scrub jungle without rooting out	MFS	. 1	1.8	Each	1.8	78.4
Clearing scrub jungle including rooting out	MFS	2	1.8	Each	3.6	156.8
Clearing light jungle without rooting out	MFS	2	1.8	Each	3.6	156.8
Clearing light jungle including rooting out	MFS	4	1.8	Each	7.2	313.6
Clearing heavy jungle without rooting out	MFS	4	1.8	Each	7.2	313.6
Clearing heavy jungle including rooting out	MFS	8	1.8	Each	14.4	627 • 2
Clearing thick & thorny jungle including rooting out	MFS	9	1.8	Each	16.2	705 6

TABLE 15.6.2.

Note : Labour Constant relates to a particular project.

No yardstick can be laid down for general application.

15.6.3. Analysis and schedule of rates for site clearance and reclamation work by machines are given below :—

S1.				Tractor (84 H.P.)	Tractor (190 H.P.)	Tractor (130 H.P.)
No.	Details of Expenditure			1950-52	1950-52	1950-52
			<u> </u>	Cost per hour Rs.	Cost per hour Rs.	Cost per hour Rs.
1	2		•	3	4	5
1.	Salaries and Wages	• • • •		7.2	6.3	4.8
2.	Stores consumed		••	4.3	3.6	3.4
3.	P.O.L. consumed		·. •.•	8.6	8.7	6.1
4.	Contingencies			0.4	0.5	0.2
5.	Transportation charges		•••	2.6	• 3.8	1.0
6.	Depreciation	· • • •	••	14 ·9	13.7	11-7
7.	Maintenance charges		••	0.4	0.4	0.4
8.	Repairs and renewals reserve	s ·	••	14.1	12.8	11.0
9.	Rehabilitation charges		••	0.2	0.2	0.2
10.	Preliminary expenses		••	0.8	0.8	0.8
11.	Interest on capital		••	4.3	4.3	4.3
12.	Audit charges		••	0.1	0.1	0.1
13.	Direction charges		••	1.6	1.2	1.0
14.	Deficiency in workshop	•••	••	0.4	0.4	0.4
			-	59.9	56.8	45.4
	Total hour ploughed		••	52,230	18,979	22,520
	Total Average			51,809	21,311	22,119
	Average per hour	•• ••	••	0.99	1.1	1.0
	Cost per Acre (Rs.)			60 • 5	49·0	45.4

TABLE 15.6.3.

NOTE: The data given above is obtained from the reclamation work executed by the Central Tractor Organization in Bundelkhand (U. P.).

15.7. TRANSPORT RATES

15.7.1. Cost of transport of materials by petrol trucks is given below :---

TABLE 8,4.3.

Lead in miles	Cost of vari- able $(a+b+c=Rs.$ 0.723 per mile) per round trip		o. of trips per day	Cost of constants (Rs. 20.75) per trip. Col. 3/4	Total cost per mile round trip Col 2+	Capa- city per trip	Prim- ary Rate per CFC Rs.
1	2	3	4	5	6	7	8
		**************************************	Rubble St	one	· · · · · · · · · · · · · · · · · · ·		······
1. 2. 3.	1 • 446 2 • 892 4 • 338	20·75 20·75 20·75	8 8 7	2·594 2·594 2·964	4.040 5.486 7.302	CFC CFC CFC	4.0 5·5 7·3
	anna an Anna Anna Anna Anna Anna		Brick	c <i>s</i>	۰.		
						•	Primary rate per 1000 Nos.
1.	1 • 446	20.75	. 8	2.594	4.040	1250	3.2
2.	2.892	20.75	8	2.594	5 486	No. 1250	4.4
3.	4•338	20.75	7	2.964	7.302	No. 1250 No.	5.8
•		an a	•	•		•	· · ·
•		Fine a	nd Coarse A	lggregates			Primary rate per CFC
1. 2. 3.	1 • 446 2 • 892 4 • 338	20.75 20.75 20.75	7 7 6	2·964 2·964 3·458	4∙410 5∙856 7∙796	CFC CFC CFC	4·4 5·9 7·8

Cost of transport by petrol trucks (5 tons)

Notes: 1. Rates include cost of labour for loading and unloading.

2. Rates are applicable to type 'A' roads-Cement, Oil bound, and good metalled roads.

3. Add to the above 15, 20 and 30% for class B, C and D type roads respectively.

TYPE : B. Gravel, kankar and murum roads.

C. Rough metal Roads.

D. Soft Roads.

15.7.2. Cost of transport of materials by diesel trucks (5 tons) is given below :—

Lead in miles	Cost of vari- ables (a+b+c = Rs. 0.54) per mile per round trip	Cost of constants (d+e+f= Rs. 20.75) per day of 8 hrs.	trips per	f Cost of constants (Rs. 20.75 per trip (Col. 3/4)) per mil	Capa- city per trip	Primary Rate per CFC. Rs.
1	. 2	3	4	5	6	7	8
		<u> </u>		Rubble Ston	е	<u>,</u>	······
1.	1.096	20.75	8	· 2·594	3.690	CFC	3.7
2.	2.192	20.75	. 8			CFC	4.8
3.	3 • 288	20.75	7	2.964	6.252	CFC	6•3
			. •			•	•
•				Bricks		Nos.	Primary rate per 100 Nos.
1	1.096	20·75	8	2.594	3.690	1250	3.0
1. 2.	2.192	20.75	8			1250	9.8
3.	3.288	20.75				1250	5.0
-			Fine & Co	arse Aggreg	zates		
					, -		Primary rate per CFC
1.	1.096	20.75	7	2.964	4.060	CFC	4.1
1. 2.	2.192	20.75	7	2.964	5.156	CFC	5.2
3.	3.288	20.75	6	3.458	6 ·7 46	CFC	6.7

TABLE 8.4.5.

NOTES : 1. Rates include cost of labour for loading and un-loading.

2. Rates are applicable to type 'A' roads-cemented, oil bound and good metalled roads.

3. Add to the above 15, 20, and 30 per cent for Class B, C & D type roads respectively.

TYPE : B. Gravel, kankar and murum Road.

.

C. Rough & metal Roads

D Soft Roads.

15.8. Earthwork by Machines

15.8.1. Cost of mucking rock by $2\frac{1}{2}$ cyds. shovel and 9.7 cyds. dumper is given below :—

TABLE 6.11.4.(iii)

Rate per CFC of Blasted Rock excavated and loaded by $2\frac{1}{2}$ cyds. Shovel and hauled by Rear Dumper (9.7 cyds.)

Load one way haul	Equipment	Output	Rate per
in feet	Cost (Rs.)	CFC	CFC (Rs.)
1000 2000 2000	160 194 228	34 34 24	4·7 5·7
3000	228	34	6·7
5000	296	34	8·7
6000	264	34	10·7
8000	432	34	12.7

15.8.2. Earthwork rates by shovels per CFC are tabulated below :---

TABLE 6.11.6.

4				v	Lea	d one way h	aul in feet	14
	Soils		1000	2000	3000	5000	6000	8000
Mois	t loam or light		· · · · · ·	<u>.</u>		· · · · · · · · · · · · · · · · · · ·		<u> </u>
Sand	y clay	••	2.75	2.75	3.5	4.5	5.6	6
Sand	and Gravel		2.75	2.75	3.75	5	5.6	6
Good	d common earth		3	3	3.75	5	6	6.5
Clay,	, hard and tough		3.5	3.5	4.5	5.75	7	7.5
	, wet and sticky	• •	4.5	4.5	5.75	7.5	9	10

15.8.3. Rates of Earthwork by Tractor-Scrappers per CFC are tabulated below :---

TABLE 6.11.10.

S1.		Lead one way haul in feet								
No.	Soils	500	600	800	1000	1200C	1500			
1	2	3	4	5	6	7	8			
1.	Light loam or	· · · · · · · · · · · · · · · · · · ·								
	crumbly silt	1.85	1.96	2.09	2.24	2.0	2.90			
2.	Sand and Gravel	2.24	2.33	2.46	2.60	2.41	3.32			
3.	Good common									
	earth	1.93	2.06	2·20	2.36	2.07	2.99			
4.	Clay, hard and	The second			200	201				
-,	tough	2.35	3.53	3.68	2.86	2.61	3.58			
5.	Murum	2.26	2.37	2.50	2.64	2.95	3.36			
6.	Hard murum	2.50	2.60	2.76	2.86	3.17	3.66			
7.	Clay, wet and		- 00	2 10	2 00	517	5.00			
••	sticky	2.50	2.60	2.76	2.86	3.17	3.66			

15.8.4. Rates for Earthwork by Motorised Scrappers are tabulated below :—

TABLE 6.11.12

SI.		Lead one way haul in feet						
No.	Soils	1000	1500	2000	2500	3000	4000	5000
1	2	3	4	5	6	7	8	. 9
1.	Light or crumbly silt	1.72	1.83	2.01	2.23	2.34	2.66	3.06
2.	Sand and gravel	2.19	2 •35	2.43	2.70	2.80	3.16	3.56
3.	Good common earth	1.78	1 • 95 •	2.10	2.34	2 47	2.81	3.13
4.	Clay, hard and tough	2.39	2.52	2.67	2.93	3.05	3•41	3.98
5.	Murum	2.23	2.39	2.52	2.74	2.84	3.20	3.60
6.	Hard murum	2.42	2.61	2.77	3.01	3.05	3.41	3.89
7.	Clay, wet and sticky	2.42	2.61	2.77	3.01	3.05	3 • 41	3.89

Rates for Excavation and Hauling by Motorised Scrapper

15.8.5. The rates for consolidation of earthwork by sheepsfoot rollers are given below :---

Analysis of rate of consolidation

•

(a) Cost of per CFC dozing @ Rs. 32 per hour	••	Re. 0.38
(b) Cost of water CFC	••	Re. 0.25
(c) Cost of Rolling output of twin drum sheepsfoot rol for 8" depth layer and 10 passes	ller 	72 CFC per hr.
Use rate per hour D.4 of tractor drawn roller	•••	Rs. 15.1
Cost per CFC of rolling		Re. 0.21

15.9. EARTHWORK BY MANUAL LABOUR

15.9.1. The analysis of rates for earthwork by manual labour is given below :---

Sl.	•	Rates of excavation for distance (CFR)							
No Type of soil	•25	•5	1.0	1.5	2.0	2.5			
1 2	3	4	5	6	7	8			
1. Sand & silt	0:62-	0 · 75-	1·03-	1 · 27-	1 · 53-	1 · 79-			
	0:89	1 · 0	1·23	1 · 47	1 · 75	2 · 00			
2. Top soil	0·89-	1 · 0-	1 · 23-	1·47-	1·73-	2·00-			
	1·25	1 · 4	1 · 68	1·90	2·16	2·42			
3. Common earth	1·07-	1 · 2-	1 · 48-	1 · 72-	1·98-	2·24-			
	1·57	1 · 7	1 · 98	2 · 22	2·54	3·74			
4. Clay, light	1 · 43- 1 · 87	1 · 56- 2 · 1	$1 \cdot 84 - 2 \cdot 38$	2.08-2.62	2·34- 2·88	2·60- 3·14			
5. Clay, heavy	1·67-	1 · 8-	2.08-	2·32-	2·58-	2·34-			
	2·37	2 · 8	2.78	3·02	2·58	3·54			
6. Soft rock	2·72-	2·89-	3·27-	3·62-	3·98-`	4·36-			
	4·72	4·89	5·27	5·62	5·98	6·36			
	- 72		5 21	5 02	5 70	0			

TABLE 7.3.4.(*iii*)

15.9.2. The following is the analysis of rates of transport by donkeys :---

TABLE 7.6.1.

Lead		Tim	e taken per trip)	No of thing	Dote mor
	· · · ·	Haulage (min.)	Loading & unloading (min.)	Total (min.)	No. of trips per day	Rate per CFC (Rs.)
200	 ······································	1.50	2.0	3.5	137	1.8
300	•	2.25	2.0	4.25	113	2.1
400	*	3.00	2.0	5.0	[′] 96	2.6
500	•	3.75	2.0	5.75	84	3.0
600		4.50	2.0	6.50	74	3.4
700		5.25	2.0	7.25	66	3.8
800		6.00	2.0	8.00	60	4.2
900		6.75	2.0	8.75	55	4.6
1000		7.50	2.0	9.50	50	5.0
1500		10.25	2.0	12.25	39	6.4
2000		15.00	2.0	17.00	28	8.9
2500		18.75	2.0	20.75	23	10.8

15.10. DRILLING AND BLASTING

15.10.1. The analysis of rates of drilling and blasting is given below :—

9.3.2. Drilling cost will vary according to the type of rock drilled. A typical analysis of cost of drilling in Basalt is given below. In the case of hard and abrasive rock like Granite or Sandstone, the cost will increase by 25 to 30% depending on the nature of rock. About 6 Rft. of drilling in Basalt is required to blast 100 cft.

Analysis of rate for Drilling one Rft. in Basalt

Drilling 20 ft. deep holes from 40 mm. at top to 33 mm. at bottom with Carbide tipped Coromont drills.

(a) Average cost of 8 sets of Coromont drills of different length. Average rft. drilled by the drills allowing for	Rs. 90
breakages. 550 ft. Cost of drill per rft. of drilling.	Re. 0.18
(b) Sharpening charge L.S	Re. 0.04
(c) Pipes & Pipe fittings	Re. 0.08
(d) Machinery charges :	
Depreciation of Jackhammer @3% per month Depreciation per hour @200 hrs. per month	Rs. 30 Re. 0.15
A jackhammer can drill 100 rft. in 8 hrs. Depreciation per rft. $\frac{8 \times 0.15}{100} =$	Re. 0.012
Repairs @ 40% of depreciation.	Re. 0.005
 (e) Air Charges. Using 315 C.F.M. air compressor Supplying air to 4 Jackhammers Use-rate of air compressor	Rs. 14 Rs. 3.5 Rc. 0.28 Rc. 0.11
Abstract (a) Cost of drill	Re. 0.18
(b) Sharpening charges	Re. 0.04
(c) Pipes & pipe fittings	Re. 0.08
(d) Machinery charges	Re. 0.17
(e) Air charges	Re. 0.28
(f) Labour $\cdots \cdots	Re. 0.11
Total rate drilling per rft.	Re. 0.707

15.11. BRICKWORK AND LINING

15.11.1. Typical analysis for rate of common brickwork in walls is given below :--

TABLE 15.11.1

Analysis of Cost per CFC of Brick Masonry

1. Size of Bricks: $9'' \times 4-3/8'' \times 2-11/16''$

2. Brief Specifications : Cement Mortar 1: 4. Thickness of joint 5/15" (single storey)— Height not exceeding 15 ft. in superstructure.

SI. No.	Items	Unit	Quantity	Rate	Amount	Remarks
1	2	3	4	5	6	7
1.	Brick I Class	Nos.		· •		
	1.1. Cost ex-kiln	1000	1350	22.0	29.70	Tables 11.1.3, & 15.3.1.
						4%break- age of bricks.
	1.2. Transport to the site of work 3 miles	1000	1350	5.0	6.75	Table 8.4.5.
۷.	2.1. Cost of quarrying or manufacture	CFC	0.31	10.0	3.10	Tabie 15.3.1.
	2.2. Transport to the site of work 3 miles	CFC	0.31	6.7	2.08	Table 13.4.5.
	2.3. Storage & handling up to mills.	CFC	0.31	2.0	0.62	
3.	Cement					
	3.1. Cost ex-project godown	Cwt.	5.7	5.0	28.59	Tables 11.2.5. & 15.3.1.
	3.2. Transport to the site of work			.:	1 	
	3.3. Storage and handling up to mills	Cwt.	5.7	0.02	0.11	

TABLE	15.11	.1contd.
-------	-------	----------

		<i>TA</i>	BLE 15.1	1.1.—contd.			
1	2		3	4	5	6	7
4.	Water	•• ••	CFC			1.00	
5.	Mixing of Mortar Male mazdoor Female mazdoor	••	CFC	26.0	0.021	0.55	Table 11.3. 3
6.	Lead and lift						
	6.1. Scaffolding	••••••	CFC	1.0	1.6	1.60	
	6.2. Lead & lift of bri	cks		•			
	6.3. Lead & lift of mo	ortar	CFC	1.0	1.5	1 · 50	
7.	Laying and Curing Soaking	including					
	7.1. Cleaning & Male mazdoor. 7.2. Soaking.	racking	No.	No. 1/8	1 • 75	0.22	
	7.3. Cost of laying handling, site lead one storey.	including & lift for				· ·	
	Mason I class	••••••	No.	1.25	5.0	6•25	Table 15.2.1.
	Mason II class	•	No.	1.25	3.5	4.38	
	Male Mazdoor		No.	2.0	1.75	3.50	
	Female Mazdoor		No.	2.0	1.25	2.50	
	Bhishti or water ca	arrier.	No.	0.5	2.5	1.25	
	7.4. Wetting Bhishti or water ca	arrier.	Included	1 under item 7.3			
			Total Pi	imary Rate		93.0	1
				s. 93 per CFC			

TABLE 15.11.2

Analysis of Cost per CFC of Brick Masonry

1. Size of Bricks : $9'' \times 4-3/8'' \times 2-11/16''$

2. Brief specifications : R.C.M. 4:1:20; Thickness of joint 5/16" (single storey)-Height not exceeding 15 ft.

. S1. Unit Quantity Rate Amount Remarks No. Item . 2 3 5 4 6 7 1 1. Brick I Class Nos. Tables 1000 29.70 1.1. Cost ex- klin. 1350 22.0 11.1.3., 15.3.1. 4% breakage of bricks. 1.2. Transport to the site of Table work 3 miles 1000 5.0 6.75 8.4.5. 1350 Sand . 2.1. Cost of quarrying or Table manufacture. CFC 0.31 10.0 3.10 15.3.1. 2.2. Transport to the site of Table work 3 miles • CFC 0.31 6.7 2.08 8.4.5 - ÷. 2.3. Storage & handling up to mills. CFC 0.31 2.0 0.62 Cement 3.1. Cost ex-project godown Cwt. 4.9 5.0 24.50 Tables 11.2.5., 15.3.1. 3.2. Transport to the site of work ••• 3.3. Storage & handling up to mills. . . Cwt. 4.9 ·. . ••• 0.020.10

	TABLE 15.11.2-	contd.	•
2	3	4	5

T	2	5	-	5	0	
4.	Water	CFC	<u>, , , , , , , , , , , , , , , , , , , </u>		1.00	
	Admixtures—Surkhi	••				
	 5.1. Purchase or manufaturing cost 5.2. Transport to the site 	CFC	1·3 FC	30.00	0.39	
	work	j	1.3 FC	2.00	0.03	
5.	Mixing of Mortar					· .
	Male Mazdoor Female Mazdoor	FC	2.6	0.035	0.91	Table 11.3.3
7.	Lead and Lift		•			
	7.1. Scaffolding	CFC	1.0	1.0	1.00	
	7.2. Lead & lift of brick 7.3. Lead & lift of mort		1.0	1.5	1.50	
8.	Laying and Curing includin Soaking) 1g	،	·	•	
	8.1. Cleaning & rack Male mazdoor 8.2. Soaking	ing] } No. }	No. 1/8	1.75	0.22	
	8.3. Cost of laying includi handling, site lead & lift one storey.	ng for				
•	Mason I Class	No.	1 • 25	5.0	6.25	Table 15.2.1
	Mason II Class	No.	1.25	3.5	4.38	
	Male Mazdoor	No.	2.0	1.75	3.50	÷
	Female Mazdoor	No.	2.0	1.25	2.50	
	Bhishti or water carrier	No.	0.5	2.5	1.25	
	8.4. Wetting. Bhishti or water carrier.	 Included	under item 8	•3	:	
		Total Prin	nary Rate		89.78	
		S	Say, Rs. 90 pe	r CFC		

•

TABLE 15.11.3

Analysis of Cost per CFC of Brick Masonry

1. Size of Bricks: $9'' \times 4-3/8'' \times 2-11/16''$

2. Brief specifications : Lime-sand mortar (2 S.M.) 1:3, thickness of joint : 5/16" (single storey)—Height not exceeding 15 ft. (in superstructure).

Sl. No.	Items	Unit		Quantity	Rate	Amount	Remarks
1	2	3		4	5	6	7
1.	Brick I Class 1.1. Cost ex-kiln	Nos. 1000		1350	22.0	29·70	Tables 11.1.3, 15.3.1. 4%break-
		- 12 -					age of bricks.
	1.2. Transport to the site of work 3 miles	1000		1350	6.0	6.75	Table 8.4.5.
2.	Sand						•
	2.1. Cost of quarrying or manufacture	CFC	•	0.29	10.0	2.90	Table 15.3.1.
	2.2. Transport to the site of work 3 miles	CFC		0.29	10.0	2.90	Table 8.4.5.
	2.3. Storage & handling up to mills	CFC		0•29	2.0	0.58	
3.	Lime	• •					•
	3.1. Cost ex-project godown3.2. Transport to the site of work	Cwt.		5•2	3.0	15.60	Tables 11.2.5., 15.3.1.
	3.3. Storage and handling up to mills.	Cwt.		5.2	0.02	0.10	- ·
						~ 10	
4.	Water	CFC		 	· .	1.00	

	2	3	4	5	6	7
5.	Grinding of Mortar	CFC	0.29	2.00	2.32	
					61.03	
		•				
6.	Lead and Lift	•				
	6.1. Scaffolding	CFC	1.0	1.0	1.00	
	6.2. Lead & lift of bricks 6.3. Lead & lift of mortar	} CFC	1.0	1.5	1.50	
		-				
7.	Laying and Curing inclu Soaking	ding	`. •_			
	7.1. Cleaning & racking Male mazdoor7.2. Soaking	} No.	No. 1/8	1•75	0.22	
	7.3. Cost of laying includ handling, site lead & lift one-storey	ing for				
	handling, site lead & lift	ing for No.	1 • 25	5.0	6-25	
	handling, site lead & lift one-storey	for	1 · 25 1 · 25	5·0 3·5	6·25 4·38	
	handling, site lead & lift one-storey Mason I Class	for No.				
	handling, site lead & lift one-storey Mason I Class Mason II Class	for No. No.	1.25	3.5	4.38	Table 15.2.1
	handling, site lead & lift one-storey Mason I Class Mason II Class Male Mazdoor	for No. No. No.	1·25 2·0	3·5 1·75	4·38 3·50	
	handling, site lead & lift one-storey Mason I Class Mason II Class Male Mazdoor Female Mazdoor	for No. No. No. No.	1 · 25 2 · 0 2 · 0	3.5 1.75 1.25	4·38 3·50 2·50	
	handling, site lead & lift one-storey Mason I Class Mason II Class Male Mazdoor Female Mazdoor	for No. No. No. No. No.	1 · 25 2 · 0 2 · 0	3.5 1.75 1.25 2.5	4·38 3·50 2·50	
	handling, site lead & lift one-storey Mason I Class Mason II Class Male Mazdoor Female Mazdoor Bhishti or water carrier	for No. No. No. No. No. No.	1.25 2.0 2.0 0.5	3.5 1.75 1.25 2.5 7.3	4·38 3·50 2·50	

•

TABLE 5.11.3.-contd.

•

TABLE 15.11.4

Analysis of Cost per CFC of Brick Masonry

1. Size of Bricks: $9'' \times 4-3/8'' \times 2-11/16''$

2. Brief specifications : Cement, Lime & Sand Mortar (CLM) 1:1:6. Thickness of joint : 5/16" (single storey)—Height not exceeding 15 ft. (in superstructure).

Sl. No.	Items	Unit	Quantity	Rate	Amount	Remarks
1	2	3	4	5	6	7
						• · · · · · · · · · · · · · · · · ·
1.	Brick I Class . 1.1. Cost ex-kiln	Nos. 1000	1350	22.0	29.70	Tables 11.1.3., 15.3.1.
	 A state of the sta					4% break age of bricks.
	1.2. Transport to the site of work 3 miles	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1350	5.0	6.75	Table
	na serie de la construcción de la c Construcción de la construcción de l Construcción de la construcción de			•		8.4.5.
2.	Sand					
	2.1 Cost of quarrying or manufacture	CFC	0.29	10.0	2.90	Table 15.3.1.
	2.2 Transport to the site of work 3 miles2.3. Storage & handling up to	"	0.29	6.7	2.08	Table 8.4.5.
· · ·	mills	"	0.29	2.0	0.52	
	Cement					
	3.1. Cost ex-project godown.3.2. Transport to the site of work	Cwt.	3.9	5∙0	19.50	Tables 11.2.5.,
	3.3. Storage and handling up to mills	>>	3.9	0.02	0.08	15.3.1
4.	Water	CFC			1.0	

TABLE 15.11.4-contd.

1	2	3	4	5	6	7
	Admixtures-Lime					
	 5.1. Purchase or manu- facturing cost. 5.2. Transport to the site of work 	IND	2.6	3.0	7.80	Tables 11.2.5., 15.3.1.
•	5.3. Storage & handling up to mills.	IND	2.6	0.02	0.05	
	Mixing of mortar					Table
	Male Mazdoor	FC	· 26·0	0.29	0.75	`11.3.3.
	Lead and Lift		• •		<i>;</i>	
	 7.1. Scaffolding 7.2. Lead & lift of bricks \ 7.3. Lead & lift of mortar ∫ 	CFC CFC	1 · 0 1 · 0	$1 \cdot 0$ $1 \cdot 5$	1 ·00 1 · 50	
	Laying and Curing including Soaking			•		
	8.1. Cleaning & racking Male mazdoor 8.2. Soaking	No.	No. 1/8	1.75	0.22	
	8.3. Cost of laying including handling, site lead & lift for		. ·	•		
	one storey. Mason I Class	No.	1.25	5.0	6.25	Table 15.2.1.
	Mason II Class	No.	1.25	3.5	4.38	
	Male Mazdoor	No.	2.0	1.75	3.50	
	Female Mazdoor	No.	2.0	1.25	2.50	
	Bhishti or water carrier	No.	0.5	2.5	1.25	
	8.4. Wetting Bhishti or water carrier	Included	under item 8	•3		
	Durant of these times	Tota	al Primary Rat	.e	91 • 79	•
			Rs. 92 per CF			•

,

. TABLE 15.11.5.

Analysis of Cost per CFS of Tile-lining

1. Size of Tiles : $12'' \times 6'' \times 2''$

2. Brief specifications : 2 layers in bed, Bottom layer 3/8" in CM 1 : 5, sandwitched layer 5/8" in CM 1:3, 1/4" layer of cement plaster on sandwitched layer in CM 1:3, vertical joints 1/4" thick in CM 1:5 for bottom layer and CM 1:3 for top layer joints.

•

Sl. No.	Items	Unit	Quantity	/ Rate	Amount	Remarks
1	2	3	4	5	6	7
	Pricks Class I	Nos. 1000	380	35.0	13.30	Table 15.3.1; 5% breakage & 3/8" vertical joints.
1	2. Transport to the site of work 3 miles	1000	380	6.25	2.38	25 %extra bricks transpor- tation rațe.
	and	.* .:				
2.	1. Cost of quarrying or manufacture	CFC	0.12	10.20	1.20	Table 15.3.1.
2.	2. Transport to the site work 3 miles	of CFC	0.12	6•7	0.80	Table 8.4.5.
2.:	3. Storage & handling up mills	to CFC	0.12	2.0	0.24	
3. C	ement					
3. 3.	1. Cost ex-project godown 2. Transport to the site of work.	Cwt.	2.8	5.0	14.00	Table 15.3.1.
3.	3. Storage and handling up mills	to . Cwt.	2.8	0.02	0.06	

1 2		3	4	5	6	7
4. Water :		CFC			0.50	
5. Mixing of mortar Male Mazdoor Female Mazdoor	}	FC	12.0	0.21	0.25	Table 11.3.3
6. Laying and Curin ing Soaking	ng includ-					
6.1. Cleaning & Male mazdoor 6.2. Soaking	racking }	No.	No. 1/8	1.75	0.22	
6.3. Cost of laying handling site lead for one storey.	including and lift					
Mason I class	•• ••	No.	0.75	5.0	3.75	Table 15.2.1.
Mason II class	• •	No.	0.75	3.5	2.68	
Male Mazdoor		No.	1.00	1.75	1.75	
Female Mazdoor		No.	1.00	1.25	1.25	
Bhishti or water	carrier	No.	0.50	2.5	1.25	
6.4. Wetting		, •		. •		
Bhishti or water	carrier	Inclu	ded under item	6.3.		• .
			Total Primary R	ate	43.63	-
			Say, Rs. 44 per	CFC		

TABLE 15.11.5—contd.

Note : For lining on slopes Re. 0.5 extra may be allowed for every 3 ft. height or part thereof.

15.12. STONE MASONRY

15.12.1. Typical analysis of rates for stone masonry in various proportions of mortar are given below :---

TABLE 15.12.1

Analysis per CFC of Stone Masonry for hearting in Dams—Height up to 100 feet.

Brief Specifications:-R.R. Masonry in CM 1:4.

SI. No	Item	Unit	Quantity	Rate	Amount	Remarks
1	2	3	4	5	6	7
	Rubble					······································
	1.1. Quarrying	CFC	1.0	18.0*	18.0	*Table 15.3.1.
	1.2. Dressing Masons	No.	1.0	3.5*	3.5	*Table 15.2.1.
	1.3. Transport to the site of work say 3 miles	CFC	1.0	7•4*	7.3	*Table 8.4.5.
2.	Sand 2.1. Quarrying or manufactur ing	r- . CFC	0 • 54	10.0*	5•4	*Table 15.3.1.
	2.2. Transport to site of wor say 3 miles.	k . CFC	0.54	7.3*	3.9	*Table 8.5.4
3.	2.3. Storage & handling up t mills Cement	o CFC	0.54	2.0	1.1	£ .
	3.1. Cost at source of supply3.2. Transport to site of work	⊱Cwt.	9.0	5.0	45.0	Table 15.3.1.
	3.3. Storage & handling up to mills	Cwt.	9.0	0.02	0.5	

.

TABLE 15.12.1-contd.

	· · · ·			· · · · · · · · · · · · · · · · · · ·			
1	2 .		3 .	4	5	6	7
4.	Water and Curing		CFC	1.0	4.0	4 ∙0	
5.	Mixing of mortar By manual labour Male Mazdoor Female Mazdoor Bhishti or water carrier	•••	CFC	0.45	2.5	1.1	
6.	Lead and Lift						
	6.1. Scaffolding	••	CFC	1.0	0•25	0.3	
	6.2. Lead & lift of stone mortar by crane weigh lead 100'		No.	0.5	15.0	7.5	Table 13.7.2.
	6.3. Do. 80' lift	••	CFC	1.0	11.2	11.2	Para 13.7.3.
7.	Cost of laying including Handling	ŗ				•	
	Mason I Class	••	No.	1.0	5.0*	5.0	*Table 15.2.1
	Mason II Class	•:	No.	1.0	3.5	3.5	10.2.1
	Male Mazdoor	••	No.	2.0	1.75	3.5	
	Female Mazdoor	••	No.	2.0	1.25	2.5	
	Bhishti or water carrier	•••	No.	0.2	2.5	0.5	_
				Total Primar	y Rate	123.5	
				Or say, Rs. 1	24		

Notes : 1. Transport by 'A' class road only provide

2. Rate of Rs. 10.0 per CFC of sand provided, includes washing charges also.

- 3. Bond stones and extra for face masonry not included.
- 4. Lift only up to 100' height and lead for 100' only.

.

TABLE 15.12.2.

Analysis per CFC of Stone Masonry for hearting in Dams—Height up to 100 ft. Brief Specifications : R.R. Masonry in C.M. 1:3

SI. No.	Item	Unit	Qty.	Rate	Amount	Remark
	аланан (т. т. т		· · · · · · · · · · · · · · · · · · ·	**		
1	2	3	4	5	6	7
1.	Rubble				• • •	-
	1.1. Quarrying	CFC	1.0	18.0	18.0	Table 15.3.1.
	1.2. Dressing Masons	No.	1.0	3.5	3.5	Table 15.2.1.
	1.3. Transport to the site of work say 3 miles	CFC	1.0	7.3	7.3	Table 8.4.5.
2.	Sand				н. 	
2.	Sand 2.1. Quarrying or manufac-					Table
	turing	CFC	0.54	10.0	5.4	15.3.1.
į.	2.2. Transport to site of work say 3 miles		0.54	7.3	3.9	Table 8.4.5.
	2.3. Storage & handling up to mills	CFC	0.54	2.0	1.1	
		1997 - 1997 2007 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				•
3.	Cement					
	3.1. Cost at source of supply	1				
	3.2. Transport to site of work	Cwt.	12.0	5.0	60.0	Table 15.3.1.
	3 3. Storage & handling up to milis	Cwt.	12.0	0.02	0.2	

1	2	3	4	5	6	7
 1 .	Water and Curing	. CFC	1.0	4.0	4.0	<u> </u>
5.	Mixing of mortar					
	By manual labour Male Mazdoor Female Mazdoor Bhishti or water carrier	CFC	0•45	2.5	· 1·1	
						• •
5.	Lead & Lift					
	6.1. Scaffolding	CFC	1.0	0.25	0.3	
	6.2. Lead & lift of stone mortar by Crane—weighted lead 100'.	No. 1	0.2	15.0	7.5	Table 13.7.2.
	6·3 —do— Lift 80'.	CFC	1.0	11.2	11.2	
7.	.* Cost of laying including handling		•			
	Mason I Class	. No.	1.0	5.0	5.0	Table 15.2.1
•	Mason II Class	. No. [']	1.0	3.5	3.5	
	Male Mazdoor	. No.	2.0	1.75	3.5	
	Female Mazdoor	. No.	2.0	1 • 25	2.5	
	Bhishti or water carrier .	. No.	0.2	2.5	0.5	
	· · ·		Total Primar	y Rate	138.5	
			Or say, Rs.	139		

TABLE 15.12.2-contd.

NOTES :--- 1. Transport by 'A' Class road only provided.

.

2. Rate of Rs. 10.0 per CFC of sand provided, includes washing charges also.

Bond stones and extra for face masonry not included.
 Lift only up to 100' height and lead for 100' only.

.

TABLE 15.12.3.

Analysis per CFC of Stone Masonry for hearting in Dams—height up to 100 ft.

Brief specifications : Random Rubble Masonry in C.M. 1 : 2-3/4

SI.	Item	Unit	Qty.	Rate	Amount	Remark
No.		4		**		
1	2	3	4	5	6	7
1. <i>R</i>	ubble			<u></u>		
	1. Quarrying	CFC	1.0	18.0	18.0	Table 15.3.1.
1.	2. Dressing Masons	No.	1.0	3.5	3.5	Table 15.2.1.
1.	3. Transport to the site of work say 3 miles	CFC	1.0	7.3	7.3	Table 8.4.5.
			• .			
2. Sa	ind		n an			
2.	1. Quarrying or manufactur- ing	CFC	0.54	10.0	5•4	Table 15.3.1.
2.	2. Transport to site of work say 3 miles	CFC	0.54	7.3	3.9	Table 8.4.5.
2.	3. Storage & handling up to mills	CFC	0.54	2.0	1.1	
3. Ca	ement					
3 3	.1. Cost at source of supply .2. Transport to site of work	\mathbf{C} wt.	13.1	5.0	65.5	Table 15.3.1.
3	.3. Storage & handling up to mills	Cwt.	13.1	0.02	0.3	
4.	Water and Curing	CFC	1.0	4.0	4.0	

•

1	2			3	4	5	6	7
5.	Mixing of Mortar (By manual la	bour)						
	Male Mazdoor Female Mazdoor Bhishti or water car	rrier	}	CFC	0.45	. 2.5	1.1	
5.	Lead and Lift							
	6.1. Scaffolding	••	••	CFC	1.0	0.25	0.3	
	6.2. Lead & lift of	stone	mor-			-		
	tar by crane we 100'	ignted	lead	No.	0.5	15.0	7.5	Table 13.7.2
	6·3do- lift 80'	••		CFC	1.0	11 • 2	11.2	Para 17.7.3
				•				
•	Cost of laying includ ing.	ing Ha	าที่ดีไ-					
	Mason I Class	••	••	No.	1.0	5.0	5.0	Table 15.2.1
	Mason II Class	••		No.	1.0	3.5	3.5	
	Male Mazdoor	••	••	No.	2.0	1.75	3.5	
	Female Mazdoor	••	••	No.	2.0	1.25	2.5	
	Bhishti or water carr	ier '	••	No.	0.2	2 ·50	0.5	
					Total Prima	ry Rate	144.1	
					Or say, Rs.	- 144		

TABLE 15.12.3-contd.

Notes : 1. Transport by 'A' class road only provided. 2. Rate of Rs. 10.0 per CFC of sand provided, includes washing charges also.

3. Bond stones and extra for face masonry not included.

4. Lift only up to 100 ft. height and lead for 100 ft. only.

TABLE 15.12.4.

Analysis per CFC of Stone Masonry for hearting in Dams-height up to 100 ft.

Sl. No.	Item	Unit	Qty	Rate	Amount	Remark
1	2	3	4	5	6	7
1.	Rubble			Rs.	Rs.	
	1.1 Quarrying	CFC	1.0	18-0	18.0	Table 15.3.1.
	1.2 Dressing Masons	No.	1.0	3.5	3.5	Table 15.2.1.
	1.3 Transport to the site work say 3 miles	of CFC	1.0	7.0	7.0	Table 8.4.5.
2.	Sand 2.1 Quarrying or manu					
	turing	CFC	0.54	10.0	5-4	Table 15.3.1.
	2.2 Transport to site of w say 3 miles	vork CFC	0.54	7.3	3.9	Table 8.4.5.
	2.3 Storage & handling up mills	o to CFC	0.54	2.0	1.1	
3.	Cement					
	3.1 Cost at source of sup 3.2 Transport to site of w	Cwt :	10.45	5.0	52.3	Total 15.3.1.
	3.3 Storage & handling up mills	• to •• Cwt.	10.45	0.02	0.2	• • •
4.	Water land Curing	CFC	1.0	4.0	4.0	• • • •

Brief Specifications : Random Rubble Masonry in red cement mortar $1:2\frac{3}{4}$

en en 1999. En la constante de la constante

			1 A B	LE 15.1	2.4.—contd.			
1	2			3	4	5	6	7
5.	Admixtures (Surkhi)			· · · · · · · · · · · · · · · · · · ·			
	5.1 Purchase or turing cost	manufa	ic-]		, ·	Rs.	Rs.	
	5.2 Transport to site	••	••	CFC	0.086	7.5	2.5	Table 15.3.1.
	5.3 Storage & hand mills	ling up	to				• • • • • • • • • • • • • • • • • • • •	
6.	Mixing of Morta (By manual labour)	ı r					· · · · · ·	
	Male Mazdoor Female Mazdoor Bhishti or water car	rier	·}	CFC	0.45	2.5	1.1	
1. L	ead and Lift					•		
	7.1 Scaffolding	••	••	CFC	1.0	0.25	0.3	
	7.2 Lead & lift o mortar by crane lead 100'	f stone weigh	& ted	No.	0.5	15.0	7.5	Table 13.7.2
	7.3 -do- lift 80'	••	•••	CFC	. 1.0	11.2	11•	2
8.	Cost of laying incl ling	uding h	aņd-		·			
	Mason I Class		••	No.	1.0	5.0	5.0	Table 15.2.1
	Mason II Class			No.	1.0	3.5	3.5	
	Male Mazdoor		••	No.	2.0	1.75	3.5	••
	Female Mazdoor	••	••	No.	2.0	1.25	2.5	•
	Bhishti or water car	rier	•••	No.	0.2	2.5	0.5	
					Total Prima Or say, Rs.		133.3	

TABLE 15.12.4.-contd.

.

Notes :--1. Transport by 'A' class road only provided.
2. Rate of Rs. 10.0 per CFC of sand provided includes washing charges also,
3. Bond stores and extra for face masonry not included.
4. Lift only up to 100' height and lead for 100' only.

TABLE 15.12.5.

Analysis per CFC of Stone Masonry for hearting in Dams—height up to 100 ft.

Brief Specifications : Random Rubble Masonry in red cement mortar 1 : 4.

SI. No.		Unit	Quantity	Rate	Amount	Remarks
1	2	3	4	5	6	7
1.	Rubble			- Rs.	Rs.	
	1.1 Quarrying	CFC	N. AUTO 1.0	13.0	18.0	Table 15.3.1.
	1.2 Dressing Masons	No.	1.0	3.5	3•5	Table 15.2.1.
				•		
	1.3 Transport to the site of work sav 3 miles	ATA	1.0	7.3	7.3	Table 8.4.5.
2.	Sand					
	2.1 Quarrying , or manufac turing	CFC	0.54	10.0	5•4	Table 15.3.1.
	2.2 Transport to site of work say 3 miles	CFC	0∙54	7.3	3.9	Table 8.4.5.
	2.3 Storage & handling up to mills	CFC	0.54	2.0	1.1	
3.	Cement					
· · · ·	3.1 Cost at source of supply	Cwt	8.1	5.0	40.5	Table
	3.2 Transport to site of work	J		5.0	40.5	15.3.1.
	3.3 Storage and handling up to mills	Cwt.	8.1	0.02	0.2	
				•		
4.	Water and Curing	CFC	1.0	4.0	4.0	

TABLE 15.12.5.—contd.

	2		3		4	5	6	7
5.	Admixtures (Surkhi)				<u> </u>			
	5.1 Purchase or manu turing cost	ifac-				Rs.	Rs.	
	5.2 Transport to site	••	CFC	0.0	025	75.0	1.9	
	5.3 Storage and handling to mills.	g up						
5.	Mixing of Mortar (By manual labour)							
	Male Mazdoor Female Mazdoor Bhishti or water carrie	}	CFC	0	-45	2.5	1 • 1	
7.	Lead and Lift				•			
	7.1 Scaffolding		CFC		1.0	0.25	0.3	
	7.2 Lead and lift of ston mortar by crane, weighted lead 100'	e &	No.		0.5	15.0	7.5	Table 13.7.2
,	7.3 Weighted lift 80'	· • • • •	CFC	1	l •0	11.2	11.2	Table 13.7.3
8.	Cost of laying including ha	ınd-	,					
	Mason I Class	••	No.		1.0	5.0	5.0	. •
	Mason II Class		No.		1.0	3.5	3.5	
	Male Mazdoor	••	No.		2.0	1.75	3.5	
	Female Mazdoor		No.		2.0	1.25	2.5	
	Bhishti or water carrier		No.		0.2	2.5	0.5	
	· · · · ·	•		Total	Primar	y Rate	Rs. 120.9	
				Or say	, Rs	. 121	· ·	

NOTES : 1. Transport by 'A' class road only provided.

2. Rate of Rs. 10.0 per CFC of sand provided, includes washing charges also

3. Bond stones and extra for face masonry not included.

4. Lift only up to 100' height and lead for 100' only.

•

TABLE 15.12.6.

Analysis of Cost per CFC of Stone Rip-Rap or Pitching

Brief specifications : Hand-packed

입장 옷에 집 집에 가지 않는 것이 있는 것이 가지 않는 것이 같이 있다.

SL No.	Item	Unit	Qty.	Rate	Amount	Reference
1	2	3	4	5	6	7
	oble stone at quarry in g spalls	clu- CFC	1.15	Rs. 12·0	Rs. 13·80	e da constante Statut
2. Lab	our					** x
2.1	Mason II Class	No.	0.2	3.5	1.75	
2.2	Male Mazdoor	No.	1.5	1.75	2.63	•
2.3	Female Mazdoor	No.	1.5	1.25	1.87	
2.4	Other workcharged tablishment	es-				
3. Carr snall	iage of rubble stone is from quarry to works	&				
say	3 miles	CFC	1.15	7.3	8.40	Table 8.4.5.
· · · .						
4. Sund	lries & T. & P	L.S.	• •	· - ·	0.53	
		Total	Primary Rate		28.98	
			Say, Rs. 29 p	er CFC		

TABLE 15.12.7.

Analysis per CFC of Stone Masonry Facework (Tungabhadra—Andhra)

Brief specification : —Frace stone masonry in R.C.M. 1 : 23 (Cement & Surkhi mixed by weight)

SI. No.	Item	Unit	Quantity	Rate	Amount	Remark
1	2 .	3	4	5	6	7
1.	Rubble					
	1.1 Quarrying 1.2 Dressing Masons }	CFC	1.05	Rs. 138 • 0 ·	Rs. 144 • 90	
	1.3 Transport to the site of work	CFC	1.05	20.63	21.63	Lead, not given
2.	Sand (By Lorry).					
	2.1 Quarrying or manufactur- ing including haulage	CFC	0.53	8.125	4-31	
	2.2 Transport to site of work (By Rly Wagon, 26 Miles)	CFC	0.55	16.875	8.94	
	2.3 Storage & handling up to mills.				·	
3.	Cement					
	3.1 Cost of source of supply	Cwt.	9.55	5.0	47.75	
•	3.2 Transport to site of work	Cwt.	9.55	0.10	0.96	•
	3.3 Storage and handling up to mills	Cwt.	9•55	0.09	0.86	
4.	Water		Cost is neg	gligible		
5.	Admixture, Surkhi					
	5.1 Purchase or manufactur- ing cost	Cwt.	2.16	2.33	5.05	
	5 2 Transport to site	Cwt.	2.16	0.14	0.31	
	5.3 Storage and handling up to mills					

1 2	3	4	5	6	7
6. Mixing Mortar		<u> </u>		· · · · · · · · · · · · · · · · · · ·	
(a) By manual labour Male Mazdoor. Female Mazdoor Bhishti or water carrier or			Rs.	Rs. 234·7	1 •.
(b) By mixer or manual	CFC	0.42	3.0	1 · 26 0 · 84 1 · 63	
Operation Labour Other Labour (i) Male Mazdoor (ii) Female Mazdoor (iii) Bhishti or water carrier					
 7. Lead and Lift 7.1 Scaffolding 7.2 Lead & Lift of Stone) 				2.25	
7.3 Lead & Lift of Mortar				2.25	
8. Cleaning and Curing				5.14	This inc- lude cost of Cement
8.1 Cleaning & Slurry					slurrywire brush
 (a) Cement for slurry mortar (b) Cleaning 					pumping, watering including
Male Mazdoor ⁸ ² Cost of laying including handling				· · · · · · · · · · · · · · · · · · ·	running & maintenan- ce of pump & cost of
Mason I Class	No.	1.0	3.38	3.38	hose pipes.
Mason II Class	No	1.0	2.63	2.63	1 A
	No. No.	3.0 6.0	1 · 50 0 · 75	4·50 4·50	
	No	0.16	0.75	0.13	
). Petty Supervision					
Contingencies				0.72	
Miscellaneous like template, etc.				1.62	. 1
		Primary 1	Rate	265 .56	<u>-</u>
Sundry & Overhead charges	@ 35%			92.96	-
		To	otal	358-52	
		Or	r say,	Rs. 359	

TABLE 15.12.7.—contd.

276

15.13. CONCRETE

15.13.1. Typical analysis of rates of concrete by manual labour and mechanical means are given below :---

TABLE 15.13.1.

Analysis of Cost per CFC of Cement-Concrete by Manual Labour

Brief specifications : 1:2:4 (1:6), aggregate is of broken stone of size up to 3/4'' gauge.

SI. No.	Item	Unit	Quantity	Rate	Amount	Reference
1.	Coarse Aggregate			·	- <u></u>	
	1.1 Quarrying & breaking stone to size up to 3/4" gauge	CFC	0·90	Rs. 30∙0	Rs. 27·0	Tables 14.2.2. & 15.3.1.
	1.2 Transport from quarrysite to worksite—3 miles	CFC	0.90	6.7	6.9	Table 8.4.5.
2.	Sand				· •	
	2.1 Quarrying	CFC	0.45	10.0	4.5	Tables 14.2.2. & 15.3.1.
	2.2 Transport from quarry-	CFC	0.45	6.7	3.0	Table
	site to worksite-3 miles		•			8.4.5.
3.	Cement					
	3.1 Ex-godown	Cwt.	18.1	5 0 .	90-5	Tables 14.2.2. & 15.3.1.
4.	Labour					
	4.1 Mixing, laying and vibra-					
	ting etc. up to 10 ft. lift and 50 ft. lead	CFC	1.0	15.0	15.0	
	4.2 Curing inclusive of cost of water	CFC	1.0	0.5	0.5	
5.	Sundries	CFC	1.0	1.0	1.0	
		,	Total Prima	ry Rate	147.5	
			Say, Rs. 148	per CFC		•

.

TABLE 15.13.2.

Analysis of Cost per CFC of Cement-Concrete by Manual Labour

1. Primary rate per CFC per Table 15.14.1	••	R	s. 148	·0
2. Deduct cost due to difference in rate of coarse @ Rs. $30-27=3\cdot0$ per CFC of aggregate	aggreg	ate Rs	. 2.	7
· · · · · · · · · · · · · · · · · · ·		Rs	. 145.	3
		Say, Rs	. 145 1	per CFC
TABLE 15.13.2	3.			
Analysis of Cost per CFC of Cement Concrete 1:1.5:3 (1:4.5 stone of size up to $\frac{3}{4}$ " gauge	5) by m	anual lab	our wit	h brokeń
1. Primary rate per CFC per Table 15.14.1	• •		R	s. 148·(
2. Add cost due to difference in quantity of cement 3.2 @ Rs. 5 per cwt	cwt.	•	R	s. 16·(
			R	s. 164.
3. Deduct cost due to difference in quantity of sand @ Rs.10 per CFC	2 FC	Re.	0.2	······
4. Deduct cost due to difference in quantity of coarse agg 4 FC @ Rs. 30 per CFC	regate	Rs.	1.2	
	•	Rs.	1.4	1.4
			R	s. 162·6
		Say, Rs.	163 p	er CFC
TABLE 15.13.4.				•
Analysis of Cost per CFC of Cement-Concrete 1:2.5:5 (1:7: stone of size 1-1/2" gauge	5) by m	anual lab	our with	broken
1. Primary rate per CFC per Table 15.13.2	••		Rs	s. 145·C
2. Add cost due to difference in quantity of sand 1 FC @	Rs. 10		_	
per CFC			Re	$0 \cdot 1$
3. Add cost due to difference in quantity of aggregate @ Rs. 27 per CFC	2 FC		Re	e. 0.5
			Rs	. 145.6
4. Deduct cost due to difference in quantity of cement 3.2 @ Rs. 5.0 per cwt.	cwt.	• • • •	Rs	s. 16·C
			P	s. 129·6
			1/2). <u>1</u> 27 (

TABLE 15.13.5.

Analysis of Cost per CFC of Cement-Concrete 1:3:6 (1:9) by manual labour with broken stone of size 14" gauge

1. Primary rate per CFC per Table 15.13.2.	. Rs.	145.0
2. Add cost due to difference in quantity of sand 2 FC @ Rs. 10 per CFC	. Re.	0.2
3. Add cost due to difference in quantity of aggregate 4 FG @ Rs. 27 per CFC		1.1
	Rs.	146.3
4. Deduct cost due to difference in quantity of cement $5 \cdot 4$ cwt.		
@ Rs. 5 per cwt	. Rs.	27.0
	Rs.	119.3
	Say,	Rs. 119 per CFC
<i>TABLE</i> 15.13.6.		
Analysis of Cost per CFC of Cement-Concrete 1:4:8 (1:12) by stone of size 1 ⁴ / ₄ " gauge 1. Primary rate per CFC per Table 15.13.2		abour with broken 145•0
	. 13.	145*0
2. Add cost due to difference in quantity of sand 3 FC @ Rs. 10 per CFC	. Re.	0.3
3. Add cost due to difference in quantity of aggregate 7 FC @ Rs. 27 per CFC	. Rs.	1.9
	Rs.	147.2
4. Deduct cost due to difference in quantity of cement 8.4 cwts @ Rs. 5 per cwt	. Rs.	42.0
	Rs.	105.2
	Say	, Rs. 105 per CFC
TABLE 15.13.7.		

TABLE 15.13.7.

Analysis of Cost per CFC of Cement-Concrete 1:5:10 (1:15) by manual labour with broken stone of size 1¹/₄" gauge

1.	Primary rate per CFC per Table 15.13.2	Rs.	145.0	
2.	Add cost due to difference in quantity of sand 5 FC @ Rs. 10 per CFC	Re.	0•5	
3.	Add cost due to difference in quantity of aggregate 10 FC Brite Rs. 27 per CFC	Rs.	2.7	
		Rs.	148.2	
4.	Deduct cost due to difference in quantity of cement 10 cwt. (a) Rs. 5 per cwt.	Rs.	50.0	
		Rs.	98·2	-
		Say,	Rs. 98	per CFC

TABLE 15.13.8.

•

Analysis of Cost per CFC of Cement-Concrete 1:8:16 (1:24) by manual labour with broken stone of size $1\frac{1}{4}$ gauge

1. Primary rate per CFC per Table 15.13.	2	••	••	Rs.	145.0	
2. Add cost due to difference in quantity of per CFC				Re.	0.6	
3. Add cost due to difference in quantity (a) Rs. 27 per CFC				Rs.	3.2	
				Rs.	148.8	· · · ·
4. Deduct cost due to difference in quant @ Rs. 5 per cwt		ent 13 c	wt.	Rs.	65.0	
				Rs. S	83·8 ay, Rs. 84	- per CFC

TABLE 15.13.9.

Analysis of Cost per CFC of Cement-Concrete by manual labour

Sl. No.	Item	Unit	Quantity	Rate	Amount	Remarks
1	Coarse Aggregate			Rs.	Rs.	· · · · · · · · · · · · · · · · · · ·
	1.1 Quarrying and sieving shingle	CFC	0.86	8.0	6.9	Tables 14.2.2 & 15.3.1.
	1.2 Transport from quarry- site to worksite, lead 3 miles	CFC	0.86	6.7	5.8	Table 8.4.5.
2.	Sand				- 	
	2.1 Quarrying	CFC	0.43	10.0	4.3	Tables 14.2.2. &
a M				a de la compañía de l A compañía de la comp	•	15.3.1.
ţ	2. 2 Transport from quarry- site to worksite—3 miles	CFC	0.43	6.7	2.9	Table 8.4.5.
3,	Cement	e gete				
•	3·1 Ex-godown	Cwt.	17.2	5.0	86.0	Tables
					۰ ۱	14.2.2. <i>&</i> 15.3.1.
4.	Labour					
	4.1 Mixing, laying and vibra- ting etc	CFC	1.0	15.0	15.0	•
	4.2 Curing inclusive of cost of water	CFC	0.5	0.5	0.5	
۶.	Sundries	CFC	1.0	1.0	1.0	
			Total Primar Say, Rs. 122	-		-

280

TABLE 15.13.10.

Analysis of Cost per CFC of Cement-Concrete 1:1.5:3 (1:4.5) by manual labour with shingle as coarse aggregate

1.	Primary rate per CFC per Table 15.13.9.			Rs.	122 ·0
2.	Add cost due to difference in quantity of cement 4.8 cwt. @ Rs. 5 per cwt.			Rs.	24.0
				Rs.	146 •0
3.	Deduct cost due to difference in quantity of sand 2 FC				
	@ Rs. 10 per CFC	Re.	0 • 2		
4.	Deduct cost due to difference in quantity of shingle				
	4 FC @ Rs. 8 per CFC	Re.	0.3	•	
		Re.	0.5		
			•••	Re.	0.5
	·			Rs.	145 .5
			Say,	Rs. 14	6 per CFC.
	TABLE 15.13.11.				•

Analysis of Cost per CFC of Cement-Concrete 1:3:6 (1:9) by manual labour with shingle as coarse aggregate

1.	Primary rate per CFC per Table 15.13.9	Rs.	122.0
2.	Add cost due to difference in quantity of sand 2 FC @ Rs. 10 per CFC	Re.	· 0·2
3.	Add cost due to difference in quantity of shingle 4 FC @ Rs. 8 per CFC	Re.	0.3
		Rs.	122.5
4.	Deduct cost due to difference in quantity of cement 5 ·2 cwt@ Rs. 5 per cwt.	Rs.	26 0
		Rs. Say, Rs. 97 p	96.5 er CFC.

TABLE 15.13.12.

.

Analysis of Cost per CFC of Cement-Concrete 1:4:8 (1:12) by manual labour with shingle as coarse aggregate.

1.	Primary rate per CFC per Table 15.13.9	Rs.	122 .0
2.	Add cost due to difference in quantity of sand 3 FC @ Rs. 10 per CFC	Re.	0.3
3.	Add cost due to difference in quantity of shingle 6 FC @ Rs. 6 per CFC	· Re.	0.5
		Rs.	122.8
4.	Deduct cost due to difference in quantity of cement 7.9 cwt. @ Rs. 5 per cwt.	Rs.	39 - 5
		Rs.	83 · 3
		Say, Rs. 83 p	er CFC.

TABLE 15.13.13.

Cost Analysis for mass concrete by mechanical means for Dams above 100 ft. height having total quantity of concrete above 400,000 cu. yds.

SI. No.	Item	Unit	Qty.	Rate	Amount	Remarks
1	2	3	4	5	<u>,</u> 6	7
•1.	Coarse Aggregate	•				
1979 	1.1 Quarrying (without overburden)	CFC	0 •94	Rs. 9 ·61	Rs. 9 ∙03	
-	1.2 Transport to crushers (mention lead) 3 miles	CFC	0.94	7 •80	7 • 33	Table 8.4.5.
	1.3 Crushing, processing and conveyance to stockpiles	CFC	0 •94	12.5	11 •75	Para 14.10.1.
	1.4 Transport from stockpiles to batching plant	CFC	0 •94	5.53	5 •20	Table 14.12.2
2.	Sand	an dh' an Anna An Anna Anna Anna		. •		
	2.1 Quarrying	CFC	0.47	10.0	4.70	Table 15.3.1.
- 4.	2.2 Transport to site (mention lead) 3 miles	CFC	0.47	17.8	3.67.	Table 8.4.5.
	2.3 Crushing and proces- sing, if any	CFC	0.47.	5.0	2.35	· ·
	2.4 Working		a a sa sa sa			
	2.5 Transport from stock piles to batching plant	CFC	0.47	5.53	2.60	Table 14.12.2
1	Cement					
	3.1 Cost ex-factory					
	3.2 Rail or road trans- port and handling to site of work (mention		n an chuir ann ann ann ann ann ann ann ann ann an			•
	lead)	Cwt.	10.0	5.0	50.0	Table 15.3.1.
	3.3 Storage and handling up to batching plant	Cwt.	10.0	0.15	1.50	-
4.	Water					
	With cost of hours	CFC			2.00	
5.	Admixture					
· .	5.1 Cost of purchase or manufacture			- 11 		
	5.2 Cost of transport					· · · ·
	5.3 Storage and handling up to batching plant	•				

•

1	2	3	4	5	6	7
6.	Batching, mixing & laying			Rs.	Rs.	<u> </u>
	6.1 Batching & mixing	CFC	1.0	5 · 19	5 · 19	Para 14.13.3.
	6.2 Placing including transport from batch- ing plant and vibrating	CFC	1.0	23.56	23∙56	Paras 14.13.4; 14.13.5, and 14.13.6.
	6.3 Cleaning, slurry cur- ing and finishing					
	(a) Cement for slurry mortar	CFC	·. —		5.00	
	(b) Sand blasting and cleaning with air and water	CFC		·	2.50	
	6.4 Compressed air for batching plant and other sundries	CFC		 .	1.00	
7.	Other Items					
	7.1 Pre-cooling plants and expenses		 ,			
	7.2 Embedded system and operation cost	- 			-	
 .	Workshop charges	CFC	<u></u>	 .	1.50	
-			Total Pr	imary Rate	138.88	-
•		•		Say,	Rs. 139	

TABLE 15.13.13cont	TABLE	E 15.13	.13	conto	1.
--------------------	-------	---------	-----	-------	----

NOTES 1. Overburden of the quarry not included.

2. Indirect expenses excluded.

- 3. The analysis is for basalt rock and for other varieties proportionate increase to be applied.
- 4. Cost of electric power is assumed as -/1/- per unit, near the site.

5. Formwork and cooling of concrete not included.

16.1. INTRODUCTORY

16.1.1. Studies presented in Section B of Part I of the Report would provide the reader with the data relating to the rates of the various projects as made available to the Committee. The Projects can be grouped into 3 classes according to the Construction Agency employed viz., the piecework contracts, the item rate contracts, and departmental agency.

TABLE 16.1.1.

Cl There of maniput	Cor	T 1			
SIType of project No.	Piecework	Unit rate contract	Departmental execution	Remarks	
1 2	3	4	5	6	
1. Concrete Dams		Konar Vaitarna Rihand	Tilaiya Hirakud Bhakra Maithon Panchet Hill		
2. Stone Masonry Dams	Hirakud Tungabhadra Peechi Perinchani Lower Bhawani Bhadra Massanjore Gandhisagar Matatila	•			
3. Earth Dams and Dykes	Panchet Hill Hirakud	Konar	Gangapur Nangal Hydel Sardasagar Matatila Maithon Lower ¥ Bhawani Panchet Hill Hirakud		

Agencies employed for Execution of Works

16.1.2. In the case of piecework, and single contract execution the project authorities have expressed their total inability to furnishing breakup of rates, as they have made no time and motion studies.

16.1.3. As regards the departmental execution of works, the project authorities cooperated with us to the farthest extent possible consistent with the shape and condition of their accounts. They generally found it difficult to fill up the proformas sent to them but these can serve as a useful guide for future studies, and form Appendix 10.

16.2. THE BURDEN

16.2.1. This subject has been dealt with at length in Chapter 2. Figures for the average burden on projects, split up into various elements, are given in Table 16.2.1. The Cost column shows the names of projects where the departure from these figures is most pronounced.

			INDLL I		
SI. No.	Items of Burden		Average (%) on the pro	expense jects	Projects on which the expense (in brackets) has been above the average
INO.		ſ	Dams	Canals	average
1	2		3	4	5
	Indirect Charges		,		
1.	K-Buildings		8.65	3.63	Perinchani (18.5) Hirakud Canals (5.6) Kakrapar (14.1)
					Durgapur (14.6) Durgapur Canal (6.2)
2.	Service Roads etc.		3.04	0.74	Bhakra-Nangal (6.9)
					Lower Bhawani (6.0)
2	Water supply ato		1.62	0.31	Hirakud (6·1) Kakrapar (7·1) Tungabhadra (Hyd.) (4·4)
3.	Water supply etc.	••	1.02	0.31	Panchet Hill (4·3)
4.	Electricity Telephones	etc.	1.86	0.26	Maithon (5·4)
				~	Tilaiya (6·4)
5.	Worksite amenities	••	1.13	0.44	Tungabhadra (Hyd.) (2·8) Bhadra Canals (1·5)
6.	Ordinary T & P		1.84	1.73	Gangapur $(3 \cdot 6)$ Matatila $(2 \cdot 7)$
					Tungabhadra (Hyd.) (6·1) Panchet Hill (2·9) Malampuzha (2·5)
~	* 1 .		0.85	0.30	Durgapur (3·1) Tungabhadra (Hyd.) (2·6)
7. 8.	Loss on stock Maintenance	••	0.36	0.44	
٥.	Mannenance	••	0.50	• • • •	Gandhisagar (2.0)
9.	Miscellaneous		0.71	0.59	
					Tungabhadra (And.) Canal (1.2)
	Overheads				
10.	Establishment		12.7	9.47	(Hyd.) (16.3) Perinchani (22.1) Maithon (16.8) Panchet Hil
	· ·				(14·2) Tilaiya (14·4) Kakrapa (21·6)
11.	Consulting fees	••	0.26	0.04	
12.	Audit & Accounts	••	1 • 13	0.88	

TABLE 16.2.1.

16.3. Comments on the Burden

16.3.1. It will be noticed that the divergence in the figures for the elements of the burden is fairly wide, and a certain amount of control is needed on the project authorities to avoid waste and to provide a uniform standard for amenities and services. Using averages as the basis until better yardsticks are available, we would recommend the following scale for adoption on future projects.

Sl. No.	Item of work	Allowance tage of d	as percen- irect cost		
190.		Dams	Canals	Remarks	
1	2	3	4	5	
	A. Indirect charges.		· · · · ·		
1.	Buildings	5 to 10	3 to 6	Depending in-	
2.	Service Roads	3 to 4	$\frac{1}{2}$ to 1	versely on the size of the projct	
3.	Water supply	1 to 2	$\frac{1}{2}$		
4.	Lighting				
5.	Compensation for accidents	<u>3</u> 4	$\frac{1}{2}$		
6.	Worksite amenities	2 to 3	1 to $1\frac{1}{2}$		
7.	Small T & P	. 1			
8.	Testing	$\frac{1}{2}$	1/8		
9.	Losses on stock	$\frac{1}{2}$ to 1	$\frac{1}{4}$ to $\frac{1}{2}$		
10.	Maintenance during construction	1	$\frac{1}{2}$ to 1		
11.	Miscellaneous	$\frac{1}{2}$ to 1	$\frac{1}{2}$ to 1		
	Total	16 to 24	8 to 12		
	B. Overheads	e a tra			
1.	Establishment, Furniture, Stationery Bills etc	. 10	7 <u>1</u>		
2.	Consultants' fee	$\frac{1}{2}$ to $\frac{1}{2}$	Nil.		
3.	Audit & Accounts	1	1		
	Total	11	<u></u>		

TABLE 16.3.1.

16.4. EARTHWORK BY MACHINES

16.4.1. The output rates obtained for work by machines are governed by their use-rates and outputs. We have worked out the average expected outputs of the various machines in Chapter 6. The efficiency of a production can be judged against these yardsticks.

286

16.4.2. Tables 16.4.2. (i) and (ii) would show that the actual productive efficiency of Shovel and Draglines obtained over the various projects as against the averages.

TABLE 16.4.2 (i)

Comparative Statement of Output of Shovels per hour in C.F.C. Units (borrow measure)

C1		C 1	Output p	er hour in	CFC	Demonstra	
SI. No.	Project	Soil	Project Actual			Remarks	
1	2	3 . 4	5		6	7	
1.	3½ Cyds. Shovel		•				
	(a) Nangal Hydel Channel	Light clay mixed with gravel	51 •7	58	89	Soil is taken as clay, hard & tough.	
	(b) Hirakud	Semi-pervious	47*	* 58	81	Soil is taken as murum. *Embankment measure is 51.82 The borrow measure is calculated.	
2.	2 ¹ / ₂ Cyds. Shovel						
	(a) Bhakra	Rock	37*	⊧ 40	92	*Worked ou from the registe of works for elec tric shovel.	
		Mixed rock	24 -8*	* 29	86	*Assumed as rock, poorly blasted.	
	(b) Nangal	Light clay with gravel	42	45	94		
	(c) Hirakud	Semi-pervious	37	45	82	Murum assumed	
	(d) Maithon	Earth rock as 2:1	37	72	51		
3.	$1\frac{1}{2}$ Cyds. Shovel					· .	
	Hirakud	Semi-pervious	21	30	70	Murum assume	

COMMENTS: The above table Shows that the Maithon and Hirakud projects have a large leeway to make

Alexan

ч.^П

TABLE 16.4.2 (ii)

Comparative Statement of Outputs of Draglines in CFC units (borrow) per hour

-

	Output	in CFC pe	er hour	Densela		
Sl. Project Soil No.	Project	R.&C.C.	Èffici- ency %age	Remarks		
1 2 3	4	5	6	7		
1. $3\frac{1}{2}$ Cyds.		•••				
Tungabhadra Slushy soft black (Andhra) cotton soil	39 ∙0	35	110			
2. $2\frac{1}{2}$ Cyds.						
(a) Harike Earth	40 • 6	39	104			
(b) Sarda hydel Wet earth, sandy soil	25	25	100	Soil taken as clay, wet & sticky.		
(c) Tungabhadra			tar .			
(Andhra) Slushy soil	28	25	. 112			
 1½ Cyds. Fungabhadra (Andhra) Slushy soil 	20	21	96			
4. 1 <i>Cyd</i> .	4					
Harike Earth	19.5	20	98			
			• • •			
5. ≩ Cyd.						
(a) Harike Earth	14	15	94			
(b) Tungabhadra (Andhra) Stiff black cotton soil	11	13	85	an an Araba An Araba (Araba) An Araba (Araba)		

. ...

COMMENTS: The above figures for efficiencies are more or less satisfactory.

16.5. VARIATION IN USE RATES OF MACHINES

16.5.1. It will be seen from the Table 16.5.1. that in the absence of any standard practice or rules on the subject of the 'Lives of Machines' each project has adopted whatever figure it could lay hands on. We have probed deeper into the subject and made a comparative study of the standards laid down in U.K., U.S.A., Canada, France, Germany, New Zealand, Australia, and Japan and our recommendations are contained in Tables 3.7.6 (i) and (ii).

16.5.2. Figures for expenditure on the repairs and overhaul of equipment are not being maintained on any project, and hence no comments are possible. We have, however, given yardstick (Table 3.12.3.) based on foreign practice to be used provisionally until Indian statistics are available.

16.5.3. While the figures for the actuals are not known the provision for the operation of equipment, as assumed by the projects, can be split up into the following for comparative studies :

(a) Life, Depreciation and Repairs.

(b) Labour, Fuel and Lubricants.

1. Shovels.

2. Draglines.

3. Tractor Dozers.

4. Motorised scrappers and Graders, and their combinations.

16.6. SHOVELS

16.6.1. Table 16.6.1. (i) gives a comparative study of life, depreciation and repairs.

Table 16.6.1. (ii) gives figures of provision under Labour and Fuel and Lubricants.

TABLE 16.6.1.(i)

SI. No.	Equipment/Project	Cost in lakhs	Life hours	Deprecia- tion per hr.	Repairs (major & minor) per hr.	%age o repairs over depre- ciation	f Total deprecia- tion & repairs
1	2	3	4	5	`6	7	8
1.	$3\frac{1}{2}$ Cyds. Shovel					· · ·	
a Star	(a) Bhakra	4.3	22000	19 • 31	33.63	200	57 ·94
	n na Shi shi na Shi sa 2003. Manazarta		15000	28.4	28.4	100	56 .90
:	(b) Nangal	3 - 8	30000	12.67	7.60	60	20.27
			15000	25.34	25.34	100	50.68
,	(c) Hirakud	3.6	16000	22.55	22.55	100	45 ·10
			15000	24.00	24.00	100	48 ·10
2.	- · · · · · · · · · · · · · · · · · · ·						
	(a) Bhakra	3 • 4	22000	15 • 56	35.08	225	50.64
			15000	22.80	22.80	100	45 •60
	(b) Nangal	3.8	30000	12.53	7 -52	60	20.05
			15000	25.06	25.06	100	50.12
	(c) Hirakud	2.0	16000	15.10	15.10	100	30 • 20
			15000	16.00	16.00	100	32.00
	(d) Maithon	3.1	16000	22 • 50	22.50	100	45.00
			15000	24.00	24.00	100	48.00
	(e) Panchet Hill	3.5	16000	21 .70	21 .70	100	43 ·4
			15000	23.10	23.10	100	46.2
3.	$1\frac{1}{2}$ Cyds. Shovel	•			•		
	(a) Bhakra	3.0	17000	17.94	31 - 38	175	49.32
	en anti-transformer Segunda Statesta		12000	25 - 40	25.40	100	50.80
	(b) Hirakud	1 •53	·	12-60	12.60	100	25.20
	• • • • • • • • • • • • • • • • • • •		12000	13.00	13.00	100	26.00
	(c) Maithon	1.5	12000	20.80	20.80	100	41-6
			12000	20.80	20.80	100	41 -6
	(d) Panchet Hill	2.5	12000	20.80	20.80	100	41-6
	and a second		12000	20.80	20.80	100	41.6

17000

10000

 $1 \cdot 1$

. .

4. ³ Cyds. Shovel Bhakra ...

13 •94

1**0 ·5**0

6 ·20

10 . 50

225

100

20.14

21.00

TABLE 16.6.1. (ii)

Fuel & Lubricants etc. and Labour Charges of Shovels

N.B.-The bottom figures in each line are on the basis of Rates & Costs Committee recommendations

SI.	Fauinm	• • • • /D			Fuel & Lub	ricants etc.	Tabaua	The set
No.	Equipm	ent/Pr	oject	,	HSD oil gls./hr.	Total Amount (Rs.)	Labour per hr.	Total (4 & 5)
1		2			3	4	5	. 6
1.	$3\frac{1}{2}$ Cyds. Shovel				<u> </u>			
	(a) Bhakra	••	••	•••	6 .00	16.12	4.31	20.43
	(b) Hirakud		• • •	• •	5·5 4·00	11 ·25 8 ·35	1 ·80 2 ·25	13 ·05 10 ·60
					·5 ·5	11 .25	1.80	13.05
2.	2 12 Cyds. Shovel (a) Bhakra				5.82	15.10	2.25	17.35
	(b) Nangal		••		5 ·00 5 ·00	10 ·6 11 ·50	1 ·80 4 ·81	12 · 3 16 · 31
	(c) Hirakud	••			5 ·00 4 ·00	10 ·5 8 ·82	1 ·8 1 ·99	12 · 3 10 · 81
	(d) Maithon				5 ·00 7 ·50	10 ·50 15 ·00	1 ·80 2 ·64	12 · 3 17 · 64
	(e) Panchet Hill		••		5 ·00 8 ·10	10 ·50 20 ·20	1 .80	12.3
					5.00	10.50		
3.	$1\frac{1}{2}$ Cyds. Shovel			,				
	(a) Bhakra		••	••	3.00	10.50	3 .38	13.88
	(b) Hirakud		••	••	4 •00 4 •00	9 •00 8 •37	1 ·80 1 ·91	10 ∙8 10 •78
	(c) Maithon		••		4 ·00 4 ·25	9 ·0 10 ·00	1.80	10.8
	(d) Panchet Hill			••	4 ·00 4 ·50	9 ·00 6 ·20	1 .80	10 .8
					4.00	9 .00		
4.	§ Cyds. Shovel				1 .75	7 .12	3 •40	10 • 57
	(a) Bhakra			••	2.00	5.25	1 .80	7 05

17CW&PC/63-20

16.6.2. The above tables will show that:--

Bhakru:—It has assumed excessive figures for the life of the equipment, giving low figures for depreciation. Their figures for repairs are again on the high side but the two together tally closely with our recommendations.

The labour charges there, are rather high and can be explained partly by the difficult terrain, and partly by the 3 shift working, which is uneconomical for shovel operations. Their expenditure on fuel and lubricants is also on the high side and requires looking into.

Nangal:—Life assumed is excessive. The rate of depreciation is low. Labour charges are high. Expenditure on P.O.L. on $2\frac{1}{2}$ and $3\frac{1}{2}$ Cyds. shovel are on the low side and need attention.

Maithon:—Life assumed is nearly correct, so is the provision for repairs and overhaul. Their expenditure on labour is 50% higher than justified and is that under P.O.L. The corresponding figures for production are low, indicating a serious state of affairs.

Panchet Hill:—The position here is similar to that at Maithon as regards the use rates. Figures for production are not available and no comments can, therefore, be given.

Harike:—The life assumed is 60% higher as usual and the figures for expenditure on labour and P.O.L. figures for repairs are reasonable. Figures for production are satisfactory.

16.7. DRAGLINES

16.7.1. Table 16.7.1. (i) gives the life rate and depreciation allowance for repairs. Table 16.7.1.(ii) gives figures for expenditure under labour and P.O.L.

16.7.2. Comments

It will be seen that:--

Maithon:—The life assumed is 50% higher than ours while the figures for repair are 25% higher. Data for labour and P.O.L. are not available, nor are the figures for productivity.

Sarda Hydel:—The life assumed is nearly correct, but the provision for repairs is rather low, for charges labour are high. Expenditnre on P.O.L. is on the low side. Their output is reasonable.

TABLE 16.7.1 (i)

SI. No.	Equipment/ Project	Cost in lakhs	Life in hours	Deprecia- tion per hour	Repairs (major & minor)	Percentage repair over depreciation	Total dep. & repairs per hr.
1	2	3	4	5	6	. 7	8
1.	$3\frac{1}{2}$ Cyds. Shovel						
	Tungabhadra (Andhra)	3.7	24000	15.53	3.90		19.4
			15000	24.92	19 94	80	44.8
2.	$2\frac{1}{2}$ Cyds. Shovel			·.			
	(a) Harike	3 • 2	24000	·,13·30	13.94	105	27.8
			15000	21.20	16.96	80	38 • 1
	(b) Sarda Hydel	2.6	14000	19.75	9.90	50	29.6
			15000	18.40	14.72	80	33 • 1
	(c) Tungabhadra (Andhra)	2.8	18000	15.75	3.95	25%	19.8
			15000	19.00	15.20	80	34.2
	(d) Tungabhdra (Hyderabad)	2.2	28800	5.41	6.49	120	11.9
	(Hyderabad)	ه .	15000	10.40	12.4	80	18.
3	$\frac{1}{2}$ Cyds. Shovel						
	(a) Tungabhadra (Andhra)	1.9	18000	10.37	2.59	25	12.9
٠			12000	15.50	12.4	80	27.9
	(b) Maithon	2.4	18000	10.10		100	20.2
			12000	15.00	12-0	80	27.0
4.	³ / ₄ Cyds. Shovel						
	(a) Harike	1-1	16000	6.68	5.63	84	12.
			10000	10.07	8.06		18.
	(b) Lower Bhawani	1.1	10000	10.88	1.06	·	11.
		1.3	10000 10000	10·88 13·15	8·70 3·29		19• 16•
	(c) Tungabhadra	1.2		<u> </u>		<u></u>	23.
			10000	13-15	10.52	80	<u> </u>

Life, Depreciation & Repairs of Draglines

TABLE 16.7.1 (ii)

		Fuel & Lu	ubricants etc.	Labour	Total	
SI. Equipment/Project No.	Equipment/Project				(4 & 5)	
1 2		3	4	5	6	
1. 3 ¹ / ₂ Cyds. Shovel Tungabhadra (Andhra)			7.81	2.92	10.74	
		5.5	11.25	1.80	13.05	
2. 2½ Cyds. Shovel (a) Harike	••	7.0	14.00	6.38	20.38	
(b) Sarda Hydel ••	• 	8.0	10·50 8·5	1 · 80 3 · 00	12·30 11·50	
(c) Tungabhadra	••	2.4	10·50 4·63	1 · 80 1 · 00	12·30 5·63	
(Andhra) (d) Tungabhadra	•	5.0	10·50 16·22	1 · 80 1 · 88	12·30 18·10	
(Hyderabad)			10.50	1.80	12.30	
3. $1\frac{1}{2}$ Cyds. Shovel		•	an an taon an Arraigh An taonachta an taonachta		·	
Tungabhadra	• *	2.5	6.16	2.44	8.60	
(Andhra)		4.0	9.0	1.80	10.80	
4. Cyds. Shovel (a) Harike	••	2.0	5.50	3.56	9 .06	
(b) Lower Bhawani	••	2·0 1·1		1 · 80 1 · 38	7.05 3.38	
ang ngang sang sang sang sang sang sang		2.0	5.25	1.80	7.05	

Fuel & Lubricants etc. and Labour of Draglines

Tungabhadra (Andhra) :— The life assumed is 60% higher for $\cdot 3\frac{1}{2}$ cu. yds. 20% for $2\frac{1}{2}$ cu. yds., 50% for $1\frac{1}{2}$ cu. yds. and is at par for $\frac{3}{4}$ cu. yds. shovel than the figures recommended by us. Provision for repairs and overhaul is very much on the low side, indirectly that the equipment has been used sparingly.

Expenditure under labour and P.O.L. is low. Productivity is above the average.

Tungabhadra (Hyd.):—Life assumed is nearly double of our recommendation. Provision for repairs and overhaul is 50% higher than ours. Labour is at par, while expenditure and P.O.L. is 60% higher. Figures for productivity are not available.

16.8. TRACTOR DOZER

Lower Bhawani :—Life adopted tallies with our figures. Provision for repairs is exceedingly low and so are the figures for expenditure under labour and P.O.L. Production figures are not available.

Table 16.8.1. (i) gives figures for life depreciation, repairs and overhaul, while Table 16.8.1. (ii) gives figures for expenditure on labour and P.O.L. The following is the analysis by Projects :—

TABLE 16.8.1 (i)

Depreciation and Repairs of Tractor Dozer

N.B.—The bottom figures in each line are on the basis of R.C.C. recommendations regarding life and percentage of repairs and maintenance.

SI. No.		Equipment/ Project		Cost in lakhs	Life in hours	Deprecia- tion per hour	Repairs (major & minor)	Percentage of repairs over dep- reciation	deprecia-
1.	175	<i>H.P.</i>							···=··
	(a)	Bhakra	••	1 •4	12000	11 -75	32.31	275	44 •06
					12000	11.75	11.75	100	23 . 50
	(b)	Harike	••	0.9	10000	9 ·41	5.52	60	14 ·93
					12000	11.75	11.75	100	23.50
	(c)	Maithon	••	1.0	8000	13.25	13 25	100	27 · 5
					12000	8.83	8.83	100	17 .66
	(d)	Panchet Hill	••	1 •28	8000	16	16	100	32
					12000	10.7	10.7	100	21 .4
	(e)	Gangapur	••	1 • 2	10000	12.09	10.3	85	22.39
					12000	10.08	10.08	100	70 • 16
	(f)	Kakrapar	••	0 •99	10000	9.9	9.9	,225	30.07
					12000	8.35	8.35	100	18 .50
2.	130	<i>H</i> . <i>P</i> .							
	(a)	Bhakra	••	1.1	12000	9 • 25	20.82	225	30 ∙07
					12000	9 • 25	9.25	100	18 - 50
	(b)	Nangal	••	1.2	10000	10.0	8.0	80	18.0
					12000	10.0	10.0	100	20.0
	(c)	Harike		1.0	10000	9 •61	5.88	60	15 - 49
	-				12000	8.0	8.0	100	16.00

TABLE 16.8.1 (i)-contd.

Depreciation and Repairs of Tractor Dozer

N.B.-The bottom figures in each line are on the basis of R.C.C. recommendations regarding life, percentage of repairs & maintenance. Deprecia-Repairs Percentage Total Cost in Life in SI. Equipment/ deprecia-(major & of repairs lakhs hours tion per No. Project tion & hour minor) over depreciation repairs 7000 11.53 100 23.06 0.8 11.53 (d) Hirakud 12000 6.7 6.7 100 13.4 10000 7.5 10.3 137.5 17.8 Gangapur 0.8 (e) 6.25 100 -12000 6·25 12.5 Tungabhadra (f) 3.44 (Hyd.) 0.8 28800 2.86 120 6.30 100 12000 6.85 6.85 13.70 120 H.P. 3. 0.7 8000 11.5 100 23 ·0 (a) Maithon 11.5 12000 7.65 7.65 100 15.3 (b) Hirakud 0.9 7000 12.85 12.85 100 25.7 12000 7.5 7.5 100 15.0 (c) Lower Bhawani 0.5 10000 77.5 7.82 4.44 3.44 7.40 12000 3.70 3.70 100 4. 81 H.P. 0.8 12000 225 21.13 Bhakra 6 🗄 14.63 (a) 10000 7.8 7.8 100 15.6 0.3 Nangal 10000 75 5.8 (b) 3.3 2.5 100 10000 3.3 3.3 6.6 (c) Harike 0.4 10000 3.82 2.56 67 6·38 3.82 7.64 10000 3.82 100 (d) Sarda Hydel ... 0.8 8000 10.0 100 20.0 10·0 10000 8.0 8.0 100 16.0

and the second secon

TABLE 16.8.1. (i) —concld.

Depreciation and Repairs of Tractor Dozer

N.B.—The bottom figures in each line are on the basis of R.C.C. recommendations regarding life, percentage of repairs and maintenance.

-

Sl. No.		Equipment/ Project	Cost in lakhs	Life in hours	Deprecia- tion per hour		Percentage of repairs over main- tenance	
_	(e)	Gangapur	0.8	10000	7.5	10.3	137	17.8
				10000	7.5	7.5	100	50
	(f)	Tungabhadra	0 .8	10000	7.5	7 ⋅ 5 [~]	100	15 ·0
		(Andhra)		10000	7.5	7.5	100	15.0
	(g)	Tungabhadra	0 • 7	28800	2.5	3.0	120	5 - 5
		(Hyd.)		10000	7.2	7.2	100	14 • 4
	(h)	Lower Bhawani	0.9	10000 .	. 9.69	1 •44	15	11 •13
		·		10000	9.69	6.69	100	19.38
5.	66	<i>Н.Р.</i>						
	(a)	Bhakra	0.7	12000	5.63	12.69	225	18.32
				10000	6.75	6.75	100	13 - 50
	(b)	Nangal	Q·7	12000	5.7	4 • 55	80	10 - 25
			•	10000	6.85	6.85	100	13.70
	(c)	Tungabhadra		28800	1 -88	2.25	120	4.13
		(Hyd.)		10000	5.4	5.4	100	10.8
							•	
6.	44 . (a)	H.P. Bhakra	0.4	12000	3 .12	8 •44	270	11 -56
	(4)	Dhukru		10000	3.74	3.74		7.48
	(b)	Harike	0.2	10000	1.82	1 •44	80	3 • 26
	(0)	· · · · · · · · · · · · · · · · · · ·		10000	1.82	1.82	100	3.64
	(c)	Hirakud	0.3	7000	2.58	2 • 58	100	5 ·16
				10000	1.80	1 .80	100	3.60
	(d)	Tungabhadra	0.3	28800	1.08	1 •28	118	2 · 3 6
	(0)	(Hyd.)		10000	3.12	3.12	100	6 ·2 4

TABLE 16.8.1. (ii)

Fuel and Lubricants and Labour Charges of Tractor Dozer

NOTE:—The bottom figures in each line are on the basis of R.C.C. recommendations regarding fuel & lubricants and labour charges.

<i></i>		Fuel & lubr	T . 1	T1 C1	
SI. No.	Equipment/Project	HSD oil gls./hr.	Total Amount (Rs.)	Labour per hour	Total fuel and lubri cants and labour pe hour
1. 17	75 H.P.		<u> </u>		- <u></u>
	a) Bhakra	5.5	13 .7	3.7	17 •4
		3.9	8.6	1.8	10.4
(t	b) Harike	7.0	16.13	2.35	18 - 48
		3.9	8.6	1.8	10.4
(c	c) Maithon	6-0	12.5	1.7	14 • 2
		3.9	8.6	1.8	10.4
(d) Panchet Hill	6 • 25	13 .14		e de la composition de la comp
		4.00	8.6	ی کر بر م	en e
(e)) Gangapur		7.32	1 .67	8 -9
		3.9	8.6	1.8	10.4
(f) Kakrapar		11 -3	2.75	14 -0
			9.0	1.8	10.8
13	30 H. P.				
(a) Bhakra	3.5	10.56	3 • 38	13 • 9
	· 순도 한 년 같은 것 같이 있다.	2.89	7.5	1.8	9.3
.(b	b) Nangal	4.0	8 • 94	2.56	11.5
		2.89	7.5	1.8	9.
(C	c) Harike	4.5	10.5	3 63	14 • 1
	A) Himphrud	2.89	7.5	1.8	9.3
<u>, (</u>	d) Hirakud	3.13	4.55	2.62	7.1
8 (4	e) Gangapur	2.89	7 ·5 7 ·32	1 ·8 1 ·67	9 • 3 8 • 9
((of Sangapur				_
/ f	f) Tungabhadra (Hyd.)	2.89	7 ·5 7 ·86	1 ·8 1 ·88	9 ·3 9 ·7
(1	/ - angaonaura (1194.)				
	4	2.89	7.5	4 1 - 8	9.3

TABLE 16.8.1 (ii)--contd.

Fuel and Lubricants and Labour Charges of Tractor Dozer

Note:-The bottom figures in each line are on the basis of R.C.C. recommendations regarding fuel & lubricant and labour charges.

·C1		Equipment/Proje	-t			Fuel & lubricants etc.		Lohown Total	
SI. No.		Equipment/Project			C	HSD oil gls./hr.	Total amount (Rs.)	ar	Total fuel and lubricant id labour per hour
3.	120	H.P.				· ·			
	(a)	Maithon		•••	••	4 ·0	12.5	1 •7	14 ·2
					· .	2.7	6.75	1.8	8.55
	(b)	Hirakud	•••	••	••••••				8 • 55
					•	2.7	6.75	1.8	8 - 55
	(c)	Lower Bhawani	••	••	••	2 • 14	3.88	1 - 25	5.13
				•		2.7	6.75	1.8	8 .55
· 4.	81	H.P.							
	(a)	Bhakra	••	••	••`	2.5	8.81	3.0	11.81
			د. ۱			1 .8	5.75	1.8	7 • 55
•	(b)	Nangal	•			1.0	3.5	2.38	5.88
						1.8	5.75	1.8	7.55
	(c)	Harike		••		1.0	3.0	1.75	4 •75
	•					1.8	5.75	1.8	7.55
	(d)	Sarda Hydel		••		2.3	5.75	2.5	8 · 25
	. ,	· · ·				1.8	5.75	1.8	7.55
	(e)	Gangapur			••	· · · ·	7.32	1 .67	8 •99
	• • •					1 .8	5.75	1 .8	7.55
	(f)	Tungabhadra (And	hra)	••		2.75	· 5·7	1 .75	7 • 25
	<u>\</u> -/					1 .8	5.75	1 .8	7.55
	(g)	Tungabhadra (Hyd	i.)	••	••		7 •86	1.88	9.74
	(5)					1.8	5.75	1.8	7.55

TABLE 16.8.1. (ii)—concld.

Fuel & Lubricants and Labour Charges of Tractor Dozer

Note:—The bottom figures in each line are on the basis of R.C.C. recommendations regarding fuel & lubricant and labour charges.

Sl. Equipment/Project No.	Equipment/Project	Fuels & lubr	icants etc.		Total
	HSD oil gls./hr.	Total amount Rs.	per hour	fuel & lubricants and labour per hr.	
	(h) Lower Bhawani	. 2.16	3 •94	1 - 25	5 • 19
		1.8	5.75	1.8	7.75
	:				
5.	66 <i>H. P</i> .				
	(a) Bhakra	. 1.75	6 • 25	3.85	10.13
	[10] A. B. B. B. Market and M. B. Market and M. K. K. Market and M. K.		4.95	1.8	6.75
		1.5	4 • 95	1.0	0.12
	(b) Nangal	. 2.0	4 ·95 5 ·75	2.5	8.25
	(b) Nangal			and and a second se	
	 (b) Nangal	. 2.0	5.75	2.5	<u>8 • 25</u>
		. 2.0	5 ·75 4 ·95	2.5 1.8	8 ·25 6 ·75

6. 44	H.P.

300

(a) Bhakra	1.5	5 • 7	2.2	7.9
la suaènte da clès d'activité de la très.	1.0	4·2	1.8	6.0
(b) Harike	0.75	2.75		2.75
4월 1999년 李慶后史 - 1999년 - 1997년 1997년 - 1 1997년 - 1997년 - 1997년 - 1997년 -	1.0	4.2	1.8	6.0
(c) Tungabhadra (Hyd.)		3.9	1.82	5.78
an ta Alfred Constant ang san ing sa	1.0	4.2	1.8	6.0

16.8.2. Comments on the Maintenance of Tractor Dozers

Bhakra :—Life adopted is corrected in the case of the larger machine but it is on the high side in the case of equipment below 90 h.p. Other remarks are the same as those for shovels in para 16.6.

Nangal :—Life adopted about correct provision for depreciation is 75% to 80% of ours. Expenditure on Labour and P.O.L. is on the high side.

Hirakud :—Life adopted is 60% of ours. Provision for repairs tallies with our recommendations. Labour charges are reasonable while expenditure on P.O.L. is rather low.

Maithon :—Life adopted is 75% of ours while the provision for repairs tallies with our recommendation. Labour charges are reasonable. Expenditure on P.O.L. is 50% higher.

Panchet Hill :—Life adopted is 75% of ours while the provision for repairs tallies with our recommendations. Labour charges are reasonable. Expenditure on P.O.L. is 50% higher.

Harike :—Figures for life of machines below 90 h.p. agreese with us, while those for bigger machines are slightly less. Provision for repairs is 60% of that recommended by us. Expenditure on Labour is at par for small makes and higher for large ones, while that on P.O.L. is 50% higher.

Sarda Hydel :— Figures for life are 20% less than ours while those for repairs tally. Expenditure on Labour and P.O.L. is very much on the high side.

Kakrapar :--Life assumed is 16% less, while provision for repairs is the same as ours. Labour charges are reasonable while fuel charges are 25% higher.

Gangapur :—Life of machines below 90 h.p. is the same as ours, while that of larger machines 16% lower. Provision for repairs is 37% higher than that recommended by us. Labour and P.O.L. are about the same.

Tungabhadra (Andhra) :—Life and provision for repairs are identical with ours while the expenditure on Labour and P.O.L. is nearly the same.

Tungabhadra (Hyd.) :—Life assumed is very excessive $2\frac{1}{2}$ times. Provision for repairs is 20% higher than ours. Expenditure on Labour and P.O.L. is the same as recommended by us.

Lower Bhawani :--- The remarks about draglines (para 16.7.2.) apply to these machines also.

16.9. MOTORISED SCRAPPERS AND GRADERS

16.9.1. Table 16.9.1. (i) gives figures for the life, depreciation and expenditure of these machines, while 16.9.1. (ii) gives those for Labour and P.O.L.

16.9.2. The following comments will be apparent:-

Bhakra (Motorised only) :—Life of the larger machines is the same as recommended by us while that of the smaller machines is 16% less. Provision for repairs is $2\frac{1}{2}$ times our figures. Expenditure on Labour is 50% higher and that on P.O.L. is 10% higher.

Hirakud (Scrappers) :—The life is nearly half of ours; may be, owing to the machines being second hand. Provision for repairs is the same as ours. Expenditure on labour is nearly double, while that on P.O.L. is about the same as ours.

Sarda Hydel :—The life of machines is two-thirds of ours. The provision for repairs is 10% to 20% higher. Expenditure on labour tallies with our recommendations, while that on P.O.L. is 25% higher.

Kakrapar :— The life adopted is 2/3rds that of ours while the provision for repairs is the same as recommended by us. Expenditure on Labour and P.O.L. is 60% to 70% higher.

Gangapur :—Figures for the life and the provision for repairs are 2/3rds of those given by us. Expenditure on Labour is 20% higher while that on P.O.L. is 50% of ours.

Tungabhadra (Hyd.) (Scrappers) :--Figures for life tally with ours; provision for repairs is 60%. Expenditure on Labour tallies while that on P.O.L. is nearly reasonable.

Motorised :—Life is 20% higher. Provision for repairs is 75% of ours. Labour charges are reasonable. Expenditure on P.O.L. is rather low.

TABLE 16.9.1.(i)

Life, Depreciation and Repairs of Motorised Scrappers and Graders

N.B. : 1. The bottom figures are on the basis of Rates & Costs Committee recommendations regarding life hours and percentage of repairs.

- 2. Depreciation & repairs in columns 4 & 5 are inclusive of tyres & tubes.
- Separate provisions for repairs & maintenance of tyres & tubes have not been provided for in projects. Rates & Costs Committee figures are shown.

SI. No.	Equipment/ Project	Cost in lakhs	Life hours	Deprecia- tion per hour	• Repairs per hour	Percentage of repairs over dep- reciation	Total deprecia- tion & repairs (5&6)
1	2	3	. 4	5	6	7	8
I	Motorised Scrappers (R 1. 12 cyds. capacity (a) Sarda Hydel	ubber Tyred	.)	- <u></u> , , , 4 <u>8 - 16 - 17</u>	<u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
		1.56	10000	13.6	14.66	110	28.26
			15000.	9.07	9·07	100.5	18· 1 6
	(b) Gangapur	1.38	10000	13.75	9.13	65	22.88
			15000	10.75	8.5	100.55	19.25
	(c) Tungabhadra	1.28	14400	22.17	5.36	60	7.53
			15000	21.81	15.70	100.55	37.51
	2. 15 cyds. capacity(a) Sarda Hydel	.1.5	10000	15.0		80	27.0
	_		15000	10.0	12.0	100.60	20.0
	(b) Hirakud	1.24	8000	15.55		100	31.10
			15000	8.25	15.55	100.60	16.5
•	(c) Tungabhadra	1 · 14	14400	20.88	5.6	60	26.48
	(Hyd.)		15000	20.44	15.96	100.60	36.30
II.	Motorised Graders 50 H.P. Bhakra	0.58	10000	10.11	10.61	200	20.73
			12000	9.22	· 8·75	80.55	15.97
	115 H.P. (a) Bhakra	0.99	12000	12.70	15.8	200	28.50
			12000	12.70	8.82	80.60	21.52
	(b) Tungabhadra	0.56	14400	6.75	2.33	60	9.08
	(Hyd.)		12000	8.40	5.97	80.60	14.37

TABLE 16.9.1. (ii)

Life, Depreciation and Repairs of Motorised Scrappers and Graders

N. B: 1. The bottom figures are on the basis of Rates & Costs Committee recommendations regarding life hours and percentage of repairs.

2. Depreciation and repairs in columns 4 & 5 are inclusive of tyres & tubes.

3. Separate provisions for repairs & maintenance of tyres & tubes have not been provided for in projects. Rates & Costs Committee figures are shown.

Sl. Equipment/ No. Project	Cost in lakhs	Life hours	Deprecia- tion per hour	Repairs per hour	Percentage of repairs over dep- reciation	
1 . 2	3	4	5	6	7	8
I. Motorised Scrappers 1. 12 cyds. capacity			20	1. •		
(a) Sarda Hydel	1•56	10000	13.6	14.66	110	28.26
		15000	9.07	9.07	100.55	18.16
(b Gangapur	1.38	10000	13.75	9.13	66	22.88
		15000	10.75	8.5	100.55	19.25
(c) Tungabhadra	1 • 28	14400	22.17	5-36	60	27.53
		15000	21.81	15.70	100.55	37.51
2. 15 cyds. capacity (a) Sarda Hydel	1-5	10000	15.0	12.0	80	27.0
		15000	10.0	12.0	100.60	20.0
(b) Hirakud	1 • 24	8000	15.55	10 00	100	31-10
		15000	8.25	15.55	100.60	16.5
(c) Kakrapar	1.64	10000	12.3	12.3	100	426-
		15000	8.2	8.2	100.60	16-4
(d) Tungabhdra	1.14	14400	20.88	5.6	60	26.48
(Hyd.) II. Motorised Graders		15000	20.44	15.86	100.60	36.30
50 H.P. Bhakra	0.58	10000	10.11	10.61	200	20.73
	an a	12000	9.22	6.75	80.55	15.97
115 H.P (a) Bhakra	0.99	12000	12.70	15.8	200	28.50
		12000	12.70	8.82	80.60	21.52
(b) Tungabhdra	. 0.56	14400	6.75	2.33	60	9.08
(Hyd.)		12000	8.40	5.97	80.60	14.37

16.10. EARTHWORK RATES

16.10.1. The overall earthwork rates of projects made available to us were studied and the following are our comments projectwise.

16.10.2. Nangal

Rates for earthwork on the Nangal Project by mechanical equipment have been derived from the corresponding rates for manual labour, after converting lifts into leads and applying a premium on the sanctioned schedule of rates for the year 1942. As stated elsewhere, we do not agree with this method of derivation or comparison of rates, as leads of the range of 2000' to 6000' are not at all economic for manual work. The following table makes a comparison of rates actually obtained on the project for earthwork excavated by shovels and dumpers and those worked out by us.

TABLE 16.10.2.(i)

e per C	Rate	Soil			t	ıd in f	, T og	
R. &	Nangal	5011			eel		Lea	
Rs	Rs.	· · · · · · · · · · · · · · · · · · ·						
		Light clay mixed	•••		••	••		
3	3.86	with gravel						
4	5.36	,,		• •	••	••		3000
5	8.36	,,	••	••		• •	••	5000
6	9.86	,,						6000

(A) Earthwork by Shovels and Carrier Units

It will be seen that although the use rates of these machines are low and their outputs are the same as recorded by us [Table 16.4.2. (i.)] their final rates are on the high side. This can be ascribed to reasons given by us in para. 16.6.2. The provision of 200 as premium provided over the basic leads is high for mechanical work. We have observed that the project executives have worked with these rates despite the fact that the use rates of their machines are already low due to their adoption of abnormally high figures for life of the machines. This indicates that the work by shovels and dumpers was carried out at a higher rate than required.

(B) Earthwork by Motorised Scrappers at Nangal

(Permium over basic rates varies from 190% to 110% depending on lead. For leads 500 to 1100 ft. 190% is allowed and 110% for lead above 1800 ft.)

	Lead in feet Soil	Rate	per CFC
	Lead in feet Soil	Nangal	R.&CC.
1000	Light clay mixed with gravel	Rs. 2·29	Rs. 2 · 39
1500		2.43	2.52
2000		2.75	2.67

Comment :-- The Premium allowed on the basic rate is reasonable.

	an a	 	• . •	
(C) Cor	mpaction	Rate	per	CFC
	17 - Alia - A		-	

	· · · ·	•
Items	Nangal	R.C.C.
Dozing	Rs. 0·21	Rs. 0·38
Watering	0.21	0.25
Compaction	0.86	0.21

Comment :— Compaction rate is high in the project.

16.10.3. Maithon

(a) The project has furnished cost analysis sheets 'Earthwork in the Earth Dam in Borrow (I)' area seems to be mostly done by shovels and hauled by dumpers. The unit rate obtained during Jan.' 53 to Aug.'55 is Rs. 2.19 per cu. yd. or Rs. 8.1 per CFC which included lighting, water supply charges, etc. The primary rate will be Rs. 2.03 per cu. yd. or Rs. 7.5 per CFC for excavation, hauling and compaction. The lead is not known. Assuming a maximum lead of 5000 ft., the R.&C.C. rate will be Rs. 5 for excavation and Re. 0.85 for compaction giving Rs. 5.85 as against Rs. 7.5 of the project.

(b) The earthwork for 'Earth Dam—Embankment' is mostly scrapper work done during Oct.'52 to Aug.'55. The rate exclusive of lighting and overheads is Re. 0.87 per cu. yd. or Rs. 3.22 per CFC. This rate includes compaction rate. The lead is not known. Assuming a maximum lead of 2500 ft., the rate as per R.& C.C. is Rs. 3.18 per CFC.

Comments :—The use rates of the machines per hour are nearly the same as those recommended by R. & C.C. The rate for compaction is high.

(a) The rate for earthwork borrow area is high indicating low output and low efficiency.

(b) The rate for embankment is adequate.

16.10.4. Panchet Hill

The project has furnished 'detailed cost analysis' giving the breakup of the rates obtained during the period 1st November, '54 to 31st July '55.

(a) Dozing and Compaction :—The rate, without miscellaneous overheads, for dozing and compaction is Re. 0.88 per cu.yd. Rs. 3.27 per CFC. The lead is not mentioned.

Assuming an average lead of 150 ft., the rate as per R.&C.C. analysis is Rs. 3.49 per CFC.

(b) Excavation Borrow (Semi & Impervious) :—The work is mostly done by shovels, scrappers and beltloader dumpers, dozers and rooters. Hence the rate is composite. The rate, without lighting and miscellaneous charges is Rs. 1.4 per cu. yd. or Rs. 5.2 per CFC. Lead is not known.

Assuming an average lead of 3,000 ft, the rate, as per R.&C.C. will be about Rs. 4.84 per CFC inclusive of compaction.

(c) Excavation Common :—This is mostly done by shovels and hauled by dumpers. There are no shares of rates for compaction or watering units and hence it is taken that only excavation and hauling is done.

The rate is Rs. 1.7 per cu. yd. or Rs. 6.3 per CFC for maximum lead of 5000 ft. The rate as per R.&C.C. is Rs. 5.

16.10.5. Hirakud

Details of the rate given below are not available.

Excavation and Transport Rs. 9.04 per CFC

Watering, compaction and dressing Rs. 1.20

TOTAL

Rs. 10.24

The rate is inclusive of charges for electrification of borrow area, miscellaneous works, etc. Lead is not known nor are the details of the equipment used.

Assuming average lead of 5000 ft. and earthwork by shovels, the rate as per R.&C.C. is Rs. 5.84. M7CW&PC/63-21

16.10.6. Lower Bhawani Project

(a) Earthwork by Excavators and haulin (Lead one mile)	g by Dumpe	? r S
Rate per CFC (loose) Add for compaction	Rs. 3.46 Rs. 1.75	s - E
🕽 여러 그리면도 2007 중 2011 이번원 등 것 같아. 1977 -		

Rate per CFC (compacted) Rs. 5.21

The soil has a shrinkage of 10% and a swell of 20%. On this basis, the rate per CFC (borrow) excavated, transported and compacted is Rs 4.15 plus 2.10=Rs. 6.25.

As per R.&C.C. rates, assuming the soil as light clay, the rate is Rs. 5.8. plus 0.84=Rs. 6.64.

(b) Earthwork by Scrappers (Lead 3/4 mile).	
Rate per CFC (loose)	Rs. 3.05
Add for compaction	Rs. 1.53

Rate per CFC (compacted)

Rs. 4.58

On the basis of borrow measure the rate will work out to Rs. 3.66 plus 1.83=Rs. 5.49.

As per R.&C.C. rates, assuming the soil as light clay, the rate per CFC borrow measure excavated, hauled and compacted, comes to Rs. 3.41 plus 0.84=Rs. 4.25.

16.10.7. Tungabhadra (Andhra)

(a) Earthwork by Shovels :— The soil excavated is hard stiff clay and red earth.

Excavation rate	Rs. 1.28 per CFC
Hauling this a lead of 6000 ft.	Rs. 2.23

Rs. 3.51

The R.&C.C. rate for this lead is Rs. 5.

(b) Earthwork by scrappers :—For a lead of 1 mile, the rate for scrapping and depositing stiff clay and red earth is Rs. 3.65 per CFC. The R.&C.C. rate is Rs. 3.98 for 5000 ft.

The use rates of the machines are lower than those of R &C.C. and hence lower rates for earthwork.

16.10.8. Kakrapar

Data is available from L.B.M. Canal, Kakrapar. The work is done by scrappers and bulldozers. The lead is 1000 ft. and the rate per CFC of embankment measure is Rs. 4.

The percentage of swell of the soil is not known; assuming that the compacted earth will be 10% less than borrow, the rate per CFC borrow will be Rs. 4.44.

As per R.&C.C. the rate for 1000 ft. lead by scrappers working in murum is Rs. 3.23.

Comments :— The hourly rate of scrapper is Rs. 50 and that of bulldozer is Rs. 37 as against Rs. 56 and Rs. 32 respectively as per R.&C.C.

The rate is reasonable considering the difficult soil conditions and average output.

16.10.9. Gangapur

The earthwork for hearting and casing in embankment was done by scrappers. The average lead is 3,000 ft.

The cost per CFC embankment is Rs. 6.19. The densities of borrow and bank are not stated. As per the project report the borrow pit density is 85 lbs./cu. ft. and that of fill is 105 lbs./cu. ft.

Hence the rate per CFC borrow measure = $\frac{9 \times 105}{85}$ = Rs. 7.65.

The rate as per R.&C.C. for a lead of 3,000 ft. and scrapper work in hard murum, will be Rs. 3.35 per CFC.

Comments :—The rate is high, though the use rates of the machines are near about R.&C.C. rates, because the cost of rolling is 0.51 against 0.21 and dozing 0.51 against 0.38, and the output obtained is 12.4 CFC (borrow) as against about 17 CFC per R.&C.C.

16.10.10. Sarda Hydel Project

(a) Earthwork by 8.1/10.5 cyds. drawn scrapper is sandy soil:— The rate per CFC is Rs. 2.47 for excavation and hauling and Re. 0.265 for compaction giving a total of Rs. 2.74.

The rate as per R.&C.C. analysis works out to Rs. 2.24 plus 0.84 = Rs. 3.08.

(b) Earthwork by Motorised Scrapper in sandy soil (lead 1400 ft.): The rate per CFC is Rs. 2.63 plus Rs. 0.27 for compaction giving a total rate of Rs. 2.9.

As per R.&C.C. the rate is Rs. 2.35 plus 0.84=Rs. 3.19.

Comments :—The compaction rate is Re. 0.21 for CFC bank measure or Re. 0.265 per borrow output; does not provide for dozing and watering charges; hence the unit rate is low.

16.11 DRILLING AND BLASTING

Comparative actual rates of rock excavation per CFC on projects are reproduced from Chapter 9. Table 9.7.1.(i). Comments are given below:

TABLE 16.11.1

Rates of Rock Excavation per CFC on Projects N.B.—The Bottom figures in each line are as per Rates & Costs Committee.

SI. No.	Projects Type of rock	Type of rock	Rate per CFC of Rock in rupees		
		al an an an Albara. An Albara an Albara	Drilling Blasting	Blasting	Total
1	2	3	4	5	6
l.	Bhakra	Mixed rock	2.84	5.60	8.44
			4.20	4.50	8.70
•	Gangapur	Deccan trap	4.32	3.52	7.84
			4.20	4.50	8.70
	Gandhisagar	Highly abrasive foliat-	15.77	6.45	22.22
	ed quartzite	12.60	6.50	19.10	
•	Kakrapar	Deccan trap	4.75	6.0	10.75
			4.20	4.5	8.70
) .	Kotah	Laminated quartzite	5.97	3.26	9.23
			4.20	4.50	.8.70
6.	Peechi	Granite	9.00	5.75	14.7
			6.30	5.62	11.92
7.	Vaitarna	Basalt	3.55	7.03	10.58
			4.20	4.50	8.70

310

OBSERVATIONS

Comments

Bhakra :—The rates are as per the actual data obtained from the Register of Works of the Project. The rock excavated is of mixed type consisting of clay stone, sandstone, etc. The estimated rate for drilling and blasting using jackhammers will be about Rs. 12 as compared to the actuals Rs. 8.44. The actuls are nearly the same as that of R.&C.C.

Gangapur, Kakrapar and Vaitarna :-- The projects being located in the Bombay State have encountered basalt or trap for excavation. The rates at which they have carried out the excavation, though slightly higher than R.&C.C. are reasonable.

Gandhisagar Dam :—Special mention is to be made of the high rate here which is because of the highly abrasive laminated quartzite rock of the Vindhyan range. The depth of drilling required was 18 ft. per CFC of rock and it resulted in abnormal consumption of drill bits. To arrive at a fair rate as per R.&C.C. a premium of 20% in case of laminated quartzite and 50% for granite is added to the basic R.&C.C. drilling rate for basalt. Similarly, approximate cost is added to blasting in these cases.

16.12. EXCAVATION IN ROCK BY SHOVELS

TABLE 16.12.1.

						¥ 4 !	Actual Rate per CFC (Rs.)				
SI. No.	Project & Situation			Lead in r Ft.	Drilling & Blasting	Shovelling Hauling	Total				
1.		2				3	4	5	6		
I. Bhakra							· · · ·				
(a) Lef (b) Lef (c) Rig	tabutme	ent betwee ent above ment betw	RL 17()0		1400	7·9 6·5 7·8	13·7 6·6 15·2	21 · 6 13 · 1 23		
2. Maithon		•••	••	••	••			9.4			
	Hill mediate Rock	Rock	•••	•••	••• ••	_	8.64 13	8·8 14	17•44 27		
4. Gangaput	•	••		••	••	3 Miles Round haul	10.85	17.56	28.41		

Excavation in Rock by Shovles

REPORT OF RATES & COSTS COMMITTEE

Bnakra

Latest estimated analysis of rate of rock excavation in Rs. 8.4 per cu yd. or Rs. 31 per CFC.

As per the actuals obtained in the Register of Works the figures are as follows :

(i) Excavation of Left Abutment between R.L. 1200 and 1700.

Soils : Common, claystone and sandstone as 1:1:5. The factual rate is Rs. 7.9 for drilling and blasting and Rs. 13.7 per CFC for excavation and hauling, giving a total of Rs. 21.6 per CFC.

(ii) Excavation of Left Abutment above R.L. 1700

It is mostly rock lead 1400 ft. The factual rate of drilling and blasting is Rs. 6.5 and for excavation and hauling Rs. 6.8, giving a total of Rs. 13.1 per CFC.

(iii) Excavation of Right Abutment between R.L. 1200 and 1700.

Mainly sandstone was quarried and transported. The rate as calculated by the project is Rs. 26 7 per CFC. The factuals are as Rs. 7.8 and Rs. 15.2 CFC for drilling and blasting and excavation and hauling respectively.

As per the R. & C.C. analysis, the rate for drilling and blasting is Rs. 8.75 and for mucking and hauling through a lead of 8,000 ft. is Rs. 12.7.

Comments

The cost of drilling and blasting is reasonable. In the case of mucking and hauling, between R.L. 1200-1700 for both abutments, the leads being unknown, comments cannot be given.

Maithon

Excavation in Rock in Diversion Channel

As per the 'cost analysis' for the period November, 1952 to June 1953, the rate for mucking and hauling is Rs. 2.54 per cu. yd. of Rs. 9.4 per CFC. The haul distance is not known.

Assuming a maximum lead of 3, 000 ft., the rate for mucking and hauling as per R. & C.C. is Rs. 6.7.

Panchet Hill

The 'cost analysis' sheets for the period 1st November, 1954 to 31st July, 1955 record the following rates :--

(i) Excavation intermediate rock.

Drilling and blasting charges are Rs. 2.23 per cu. yd. or Mucking and hauling (without lighting, interest, etc.)

Rs. 8.64 per CFC Rs. 8.8 per CFC Rs. 17.44

312

The lead is not known.

(ii) Excavation hard rock.

Drilling and blasting Rs. 3	.54 per
cu. yd. Mucking and H	auling
(without lighting, etc. cha	rges).

Total

Rs. 13 per CFC Rs. 14 per CFC Rs. 27 per CFC

The rate as per R. & C.C. analysis for drilling and blasting is Rs. 8.75 and Rs. 6.7 for mucking and hauling for a lead of 3,000 ft.

Gangapur

Rock work at the Waste Weir.

Drilling and blasting Excavation & Hauling

Total

Rs. 10.85 per CFC Rs. 17.56 per CFC Rs. 28.41 per CFC

Average round lead is 3 miles.

As per R. & C.C., average rate for drilling and blasting is Rs. 8.75 and for a lead of 8,000 ft.; 'the excavation and hauling rate is Rs. 12.7.

Comments

3/4 cu. yd. shovel is used for shovelling and hence greater cost per unit of shovelling.

3/4 hour tractor dozer is used per hour of shovel as against 1/3 of R. & C.C.

The drilling and blasting rates are high.

16.13. TUNNELLING

16.13.1. The data available in the country on tunnels is so meagre and the local conditions so varied that it is difficult to make any comments on these rates. A few general observations are, however, given below in Table 16.13.1. which gives comparative rates of rock excavation in tunnels.

			Sostian	I on oth	I	xcavation per CF	
Sl. No.	Name of Project	Nature of fock	al area in sq. ft.	Length of Tunnel in ft.	Pri- mary (Rs.)	On Burden cost	Over- all
· <u>1</u>	2	3	4	5	6	7	8 ,
1.	Bhakra [*] (a) Right Diversion Tunnel.	Varies from inundated clay to jointed	196	2640	72	33	105
	(b) Left Diversion Tunnel.	sandstone Do.	Do.	Do.	118	54	172
2.	**Tungabhadra (Andhra)	Granite	168	1105	207	73	280
3.	†Bhore Giat (Central Rly.)	Trap Shale rock	360	· · · · · · · · · · · · · · · · · · ·	143		143
	†Thal Ghat (Central Rly.)	Trap Shale rock.	360	· · · · · ·	170		170
5.	††Budni Barkhera (Cen- tral Rly.)	Soft ground needing steel sup- port.	s 577	•	117		
6.	§Banihal (Kashmir)	Varies from Punjab Trap, Slate. Shale & Limestone		3819	194 to 197	••••••	194 to 197

TABLE 16.13.1.

*Depertmental work. **Party departmental and contract.

* Contract rate.

Contract rate. Departmental work.

§ Burden not ki ow.

16.13.2. Comments

The above table shows that the primary rates for excavating tunnels in soft rock including drilling, blasting, mucking and haulage vary from Rs. 72 to Rs. 118 while for harder rocks it ranges from Rs. 143 to Rs. 197. The rate of Rs. 209 for Ramasagram Tunnel at Tungabhadra could have been lower but for the reason of commencing work before the approach and exit flumes could be completed which was necessitated for early completion of work to allow water in the canal.

16.14. TRANSPORT RATES

16.14.1. Most of the projects were unable to furnish data for transport rates, their difficulty being that the rates could not be isolated. The projects given below are working against schedule rates which have been compared in Table 16.14.1. The rates derived in columns 4 and 5 are partly for rough metal roads and partly for soft roads and also allow for 3 miles lead 30% is included in R.&C.C. rates for contractors' profit and overheads.

314

TABLE 16.14.1

SI.	Name of Proje	of	Project	R.&C.C	. Rates		
No.			rates for 3 miles lead (Rs.)	Petrol trucks (Rs.)	Diesel trucks (Rs.)	Remarks	
1	2		3	4	5	. 6	
	· · · ·		Rubble Stor	ne		·	
1. 2. 3. 4.	Matatila Mayurakshi Hirakud Lower Bhawani	··· ·· ·· ··	12.0 11.9 12.0 11.9	11 · 8 11 · 8 11 · 8 11 · 8	$ \begin{array}{r} 10 \cdot 3 \\ 10 \cdot 3 \\ 10 \cdot 3 \\ 10 \cdot 3 \end{array} $		
			Bricks				
1. 2. 3. 4.	Matatila Mayurakshi Hirakud Lower Bhawani	··· ·· ·· ··	$ \begin{array}{r} 12 \cdot 0 \\ 13 \cdot 0 \\ 12 \cdot 0 \\ 7 \cdot 3 \end{array} $	9·5 9·5 9·5 9·5	8 · 1 8 · 1 8 · 1 8 · 1		
			Sand				
1. 2. 3. 4.	Nangal Matatila Hirakud Kakrapar	··· ·· ·· ·· ·· ··	13.6 12.0 12.0 11.0 to 15.0	12.7 12.7 12.7 12.7 12.7	10·9 10·9 10.9 10.9		
5.	Lower Bhawani	•• ••	9-4	12.7	10.9		
			Coarse Ag	gregate			
1. 2. 3. 4. 5. 6.	Matatila Mayurakshi Hirakud Kakrapar Bhadra Lower Bhawani	··· ·· ··	12.0 12.5 12.0 14.0 16.6 -11.9	12.7 12.7 12.7 12.7 12.7 12.7 12.7	10.9 10.9 10.9 10.9 10.9 10.9 10.9		

Comparative Rates of Transport

16.14.2. It appears that project rates are more or less comparable with the R.&C. C. rates for petrol trucks. Had diesel trucks been used the cost would have been less.

and the second
16.15. BRICKWORK

16.1.15. Brickwork like earthwork is being carried out on projects by piece-workers on the basis of the sanctioned schedule of rates and the project authorities do not have a break-up of the rates. No comments are, therefore, offered.

16.16. LINING OF CANALS

16.16.1. Table 16.16.1. gives the break-up of the rates into ele-ments of costs for brick lining on three important projects. The rates per CFC hours are round Rs. 120 which is reasonable.

316 REPORT OF RATES & COSTS COMMITTEE

TABLE Break-up of Rates of Brick

			Bi	rick Tiles		•	Sand	
S1. No. ⁻	Name of Project	Mix of A	Qty. Nos.	Rate in- clusive or car- riage per 1000 Nos.	Amount Rs.	Qty. in FC	Rate inclu- sive of carriage per CFC	Amoun Rs.
1	2	3	4	5	6	7	8	9
12	ingal Hydel (Rupar) *×6" ×2" double er tile lining in 1.	1:4 C.M.	908	51.75	47·16	36•3	16.0	5.8
2do	o- on slopes	1:4 C.M.	908	51.75	47.16	36.3	16.0	5•8.
do	wrike $12'' \times 6'' \times 2''$ uble layer tile ing in bed.	1:4 C.M.	908	47•0	42.68	36-3	6.2	2.30
10 do lin	rda Sagar Hydel " $\times 5" \times 2\frac{1}{2}"$ uble layer tile ing in bed and opes.	1:4 C.M.	1100	39•25	43 • 18	40.0	10.0	4.1
	The second s					Bre	ak-up of	Rates oj
9	ingabhadra(Hyd.) thick U.C.R.S. slopes.	1:8 CM.	100	10 • 29	10 - 29	40.0	11.14	4 4 • 4

16.16.1. Tile Lining per CFC

	Cement			a 1.			_		
Qty. in cwt.	Qty. in- clusive of car- riage per cwt.	Rate Rs.	Labour	Soaking, Tank Curing & Water Arrange- ments	sundries profile for Sub-	Rate in Rs. per CFC	per CFC 100	Thicl ness of Lini (inche	s Remarks
10	11	12	13	. 14	15	16	17	18	 19 _.
7.95	4.59	36.49	25.8	5.9	 	121-2	53 • 37	5	 excess Labour- for slope lining Rs. 4.75 per CFC.
7.95	4.59	36•49	32.4		9.13	136.94	60.33	5	(2) Rate for CFS on slope Rs. 49.2
7.95	4.77	37.95	23.25	<u> </u>		106 • 25	47 • 12	5	•
7.40	5.5	40.70	38•60	_	5.5	132.00	66.00	6	
<i>U. C.</i>	. R. S. Ma	isonry Li	ning (Rai	te per CFC	<i>.</i>)				
3.98	5.57	22 17	25 - 12	2 -		62.00	46.5	9	. •

.

317

318 REPORT OF RATES & COSTS COMMITTEE

16.16.2 Table 16.16.2. gives the rates for concrete lining, which has been carried mainly by manual labour, although the normal practice in foreign countries is to go in for mechanisation on all large-scale works.

TABLE 16.16.2.

Break-up Rates of Concrete Lining Rate per CFC

. . .

	n sha N		· · · · ·	Name o	f Project		· · · ·		
Item		Nangal	Hydel Tungabhad Canal (Andhra)						
$\mathbf{v}_{i} = \sum_{\substack{i=1,\dots,N\\ i \in \mathcal{I}}} \sum_{j \in \mathcal{I}} \sum_{i=1}^{N} \frac{1}{i} \mathbf{v}_{i}^{T}		5" thick 6" in bed in	thick 41 slopes in			4" thick in bed, blasting of agg. by Govt.			
1		2	3	4	5	6	7		
1. Mix of Concre 2. (a) Aggregates size. Qua	$1\frac{1}{2}''$	1:3:6	1:3:6	1:6:10	1:312:5	1:6:10	1:4:5		
in FC.		46.6	47.0	77.1	77 • 7	100	85.7		
*Rate inclusi carriage	ve of per				•		• .		
CFC		24 • 26	24.26	40.06			34.3		
Amount (Rs (b) Aggregates size. Quantit	3"	11.3	11 • 4	30.9	31 • 1	12.86	29 • 4		
FC .	· · ·	46.6	47.0	19.3	19.4	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
Rate inclusi	ve of								
carriage	per		in the sea						
CFC		27.26	27.26	54.0	54.0		·		
Amount (Rs	.)	12•7	12.9	10.9	10.5	• · · · · · · ·			
3. Sand Quantity in Rate inclusi		46•6	47.0	57.8	58.2	50.0	69·0		
carriage	per								
CFC		18.06	18.06	35.0	35.0	17-16	10.3		
Amount (Rs 4. Cement	.)	8.4	8.5	20.2	20.4	8.58	7.5		
Quantity cw Rate inclusi		12.68	12.70	7.74	13.52	2 6.66	13.9		
carriage		4.85	4.85	5-15	5-15	5.35	5.57		
Amount (Rs	.)	61.5	61.6	39.9	69.6	35.67	76.5		
5. Labour	í	.15.17	19.75	10.3	31.2		143.1		
6. Plant Use	•••	2.75	2.75	2.72	16.8	_	9 ·37		
7. Formwork		13.7	20.0		33.8				
8. Slurry	• •	17.9	15.0	15.6	16.5	·	· ·		
9. Curing	••	1.8	1.5			4.3			
10. Sundries	••		1.50			0.73	265 0		
11. Total Rate	., * •.	145.2	159.4	130.0	229.9	88.9	265.8		
Per CFC (Rs.)	—AV	149.3	-						
12. Rate Rs	••	61.0	76.75	48.75		29.6	44·12		
Per CFC—A		68.85		· .			· · ·		

Includes (1) Labour per concreting (2) Fixation of Blocks (3) 1:6 cu. mortar quantity of which is not given (4) Conveyance of precast slabs. Rates include washing of aggregates also.

OBSERVATIONS

16.16.3. The specifications vary considerably from project to project. It will be pertinent to remark that despite low rates of wages prevalent on the Tungabhadra Project, their rates compare unfavourably with Nangal, specially in the labour component of cost.

16.17. Hydraulic Gates

16.17.1. Hydraulic Gates have been supplied to the projects by foreign as well as Indian fabrications, both from the public and the private sector. The fluctuations in the price of steel have been so marked during the period under study that comparison of prices becomes difficult. However, prices have been detailed out and tabulated in Table 12.2.3. The prices paid at Tilaiya and Hirakud are very much on the high side. The cost prices at Tungabhadra are still higher but it can be explained by the fact that this was their first venture in the line.

It will be pertinent to remark that had the Amritsar workshop been fully loaded, their shop overheads as shown in Table 12.4.1. would have appreciably come down and the prices would have been still more competitive.

16.18. STONE MASONRY

16.18.1. The primary rates for U.C.R. Stone Masonry for hearting in red cement mortar 1:2.75 and 1:4 are given in Table 13.2.1. They are between Rs. 130 and Rs. 115 per CFC respectively except in the case of Tungabhadra (Hyderabad) where the quantities of materials used and labour charges incurred are excessive (Table 16.18.1.).

110000	TABLE	16.18.1
--------	-------	---------

			Stone	Sa	nd	Sur	khi	Total	
Name of Project	Qty. CFT	Rate per CFC	Qty. CFT	Rate per CFC	Qty. CFT	Rate per CFC	labour cost		
1	2	3	4 ·	5	6	7	8	9	
	= = · · · ·		R.C.M	(. 1:2·75	5				
1.	Gandhisagar Dam	100	37·99 27·10·6+Lea 6 miles			4.7	80.6	18.45	
2. '	Tungabhadra (And.)	100 +10	$\begin{array}{c} 20 \cdot 38 & 14 \cdot 00 + \\ 13 \cdot 06 & \text{lead } 2\frac{1}{2} \\ -3\frac{1}{2} & \text{miles by} \end{array}$		25.0 26 Miles by Rly.	3.4	150∙0 +9∙0	15·14 3359/2	
3. '	Tungabhadra (Hyd.)	121	Loco 14.79+12.15 lead	60	Wagon 25·93	3.3	89.07	AO • 16 • 79 22 • 77	
4.	R.C.C.	100	26.9 (18.0+5 M e.5.) 49	17.4	4.0	75.0	134.6	

Details of	Cost	of	Constituents	of	Stone	Masonry
------------	------	----	---------------------	----	-------	---------

320 REPORT OF RATES & COSTS COMMITTEE

		ندي ارتبار دار فارها ديمور	TABLE 16.1	8.1(con	td.)			
1	2	3	4	5	6	7	8	9
ويتنبيك د د د د د			R.C.M	1:4	•		÷ .	
1. 2.	Gandhisagar . Mayurakshi .	. 100 100	37.99 23+(14) lead=3 T	41 · 4 40 · 0	36·3 8·0		0·6 0·0	112 28·0
	Kakrapar Tungabhadra (And.)	. 110 5+100 +8010	(14+5) lead	51 53·0	12·4 25·0	2.29 1	19 50 +9	12·25 15·14
5.	Tungabhadra (Hyd.)	. 121	miles lead 14.79+12.15	60	25.93	2.28 9	8.07	22.77
. 6	R.C.C	. 100	26•9	54	17 • 4	2 7	5	15-0
S1.				<u></u>		Name	of Pro	ject
No.		tem	jana sa Seria da	e en esta	۰ ، بر	Matatila	R.(c.c.
ь. ¹				•				
1.	Stone		!. <i>R.</i> in C.	M. 1:5				
	Qty. (cu.ft.) Rate per CFC Amount			•••	1	90 18·0+9·0 25·2		100 26·9 26·9
2.	Sand						• N 1	
	Qty. in cu.ft. Rate per CFC Amount			••	••	45·0 5+17 9·90		56 17•4 _9•75
3.	Cement							
	Qty. in cwt. Rate Amount		• • • • • • • • • •		••	7 · 5 5 · 25 39 · 40		9·0 5·02 45·18
4.	Cost of Morta	r per CFC	of Masonry					
	Qty. Amount			•••	••	45 51•9		45 58∙23
5.	Labour			$\frac{2}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2}$				
	Skilled Rate Unskilled Rate	• • • • • • • • •		••• •••		2.5 3.7 7.5		1 · 25 4 · 25 4 · 2 1 · 5
6.	Total Labour	Cost	•		• •	19.6		15.0
7	Total Primary	Rate			••	99.2	0	118.33

TABLE 16.18.1.—(contd.)

16.18.2. The rates for supplies of stone on the Gandhisagar, Matatila, Tungabhadra (Andhra) and Mayurakshi are considerably higher than those paid at Lower Bha wani and Malampuzha, although the methods of execution of the work are the same.

OBSERVATIONS

16.18.3. Barring Tungabhadra (Hyd.), Mayurakshi heads the list in labour charges per CFC of masonry against the usual rate of Rs. 15/without lead and lift sand supplies cost Gandhisagar and Tungabhadra (Andhra) more than others because of difficult terrain out longer leads.

16.19 RIP-RAP

16.19.1. The rate at Konar is the highest, i.e., Rs. 37/3/- per CFC; that at Hirakud being the lowest at Rs. 20/14/- against a rate of Rs. 29 per CFC worked out by us.

SI. No.	Name of Proje	Unit (cu. ft.)		Stone	Carriage	Laying	Unit rate	
1.	Hirakud*	•••		100	8/-	9/7	3/7	20/14
2.	Gangapur**			,,	8/15	9/15	3/-	23/5
3.	Malampuzhat [†]			,,	10/-	9/12	7/8	30/-
4.	Lower Bhawani ^{††}			,,	26/9		8/-	24/12
5.	Konar (DVC) §	••	••	,,	18/-	12/10	6/9	37/3

TABLE 16.19.1.

*Rockfilling hand packed U/S & D/S toe. **Also include Rs. 1/7 as overhead charges. † Also include Rs. 2/12/- as miscellaneous charges. †† Also include Re.-/3/- as incidental charges.

Original rate.

16.20. LIFT

16.20.1. Average rate for lift of every 5 ft., by manual labour ranges from Rs. 2 to Rs. 3 per CFC of stone masonry. This would mean Rs. 12 to Rs. 18 per CFC of stone masonry for a dam of 80 ft. height.

TABLE 16.20.1.

....

Comparative S	Statement oj	f Rates for	extra life per	CFC of S	Stone Masonry

-

Sl. No.	Name of Project		Extra Rates for per CFC		Remarks
1	2			3	4
1.	Matatila	•••	•,•	3.0	This rates is for extra lift of 5 ft. above 20 ft. (Estimate).
2.	Gandhisagar			2.25	Average per lift charges.
2. 3.	N f = 1 = 1 = 1 = 1 = 1			12.50	10 to 30 ft. lift.
4.	Hirakud	••	••	2·5* 4·0**	For every 10' or part thereof, *Contract rate for concrete dam.
					**Contract rate for power dam.
5	Kakrapar			4.5	Lift 10 to 20 ft.
6.	Tungabhadra (Andhra	L		2.25	Average Lead & Lift charges
	Tungabhadra (Hyd.)	-		8.5	For 40 ft. height.

16.20.2. Lift charges for manual labour that are provided for in the analysis in Mayurakshi, Hirakud, Matatila, Tungabhadra (Hyd.) are on the high side. The rates could have been lowered by using crane in those projects instead of employing manual labour. The use of crane for lifting materials on dams is justified on grounds of speed, safety and economy. The rate analyses are given in para 13.7.3.

16.21. MASS CONCRETE

16.21.1. The rates for mass concrete have been very unsteady on the projects.

Table 16.21.1 gives latest known rates for materials and mechanical operations on the principal projects.

TABLE 16.21.1.

Projects.

7

Maithon Hirakud Vaitarna Bhakra SI. Panchet Item Hill No. * 2 3 4 5 6 1 <u> </u> 16.7 50.7 10.07 A

1.	Coarse Aggregate per CFC	61 • 8	46.7	50.7	40.0	23.9 Natural
2.	Sand per CFC	25.0	5-9	13.1	25.0	shingle, crushed saw.
3. 4.		5·3	5•2	4.2	5.0	3.8
	porting, placing, vibrating, cleaning, curing &					n a star An an
	finishing and compressed air per CFC	40.2	55.4	57·1	38.0	28

NOTE : Rates for Bhakra are estimated.

16.21.2. The rates for supplies or manufacture of crushed stone on Maithon, Panchet Hill and Hirakud Project are higher than those at Vaitarana and Bhakra. Similarly, the rate forsand on Maithon Project is higher than Panchet Hill and Hirakud.

16.21.3. The combined rate for aggregate on Bhakra is particularly low as on crushing is involved in obtaining the requisite stone and sand.

16.21.4. The rates for crushed stone are high on Maithon on account of the low efficiency of the crushing plant.

16.21.5. The rates for batching, mixing, transporting, placing, vibrating cleaning, curing and finishing and compressed air are generally high on most of the projects. Hirakud project leads in expense with Rs. 57.1 per CFC on this account against Rs. 38.0 per CFC on Vaitarna, The fair rate should be Rs. 33.25.

OBSERVATIONS

16.21.6. The issue rate for cement at Bhakra is Rs. 3.8 per cent. as against Rs. 5 to Rs. 5.3 from other projects.

16.22. Formwork

16.22.1. Table 16.22.1. gives a comparative statement showing primary rates of shuttering on various projects per CFS.

TABLE 16.22.1.

	Konar	Rs. 1	110
	Tilaiya	Rs. 1	42
	Vaitarna	Rs. 1	18
4.	Maithon	Rs. 2	83.2

16.22.2. The rate for shuttering on the Tilaiya is high and that on the Maithon is excessive.

16.23. SUMMARY

(i) That proper investigations should invariably be carried out before a project is taken up. This has not been the case with many of them.

(*ii*) That proper planning and estimating be done by competent engineers before a project is sanctioned.

(iii) That estimates be prepared in sufficient detail to enable the project authorities to exercise proper control over cost.

(iv) That costing cells be introduced on all projects.

(v) That the existing system of classification of accounts and stores be revised and the decimal system introduced on the pattern given by us.

(vi) That a perpetual inventory of stores be taken on all large projects.

(vii) That stores be issued at a fixed schedule.

(viii) That Manuals on costing and stores be drawn up and our recommendations on the subject be codified to enable all projects to adhere to a uniform pattern of accounting.

(ix) That the life tables for equipment be standardised. Our recommendations on the subject are contained in the report.

(x) That the allowance for major repairs and overhauls be put on standard footing.

(xi) That scales be laid down for provision for fuel, stores and lubricants, and for labour required for equipment.

(xii) That the provision for contingencies for works be scaled down.

(xiii) That greater attention should be given to housing for labour.

(xiv) That the cost of acquisition of land should be excluded when making provision for overhauls.

(xv) That projects should be given greater latitude in the purchase of spares for equipment and special committee be formed for this purpose.

M7CW&PC/63-22

REPORT OF RATES & COSTS COMMITTEE

(xvi) That principal items of construction equipment be standardised and early steps be taken for their manufacture in the country.

(xvii) That a Central Clearing House be formed immediately for the prompt disposal of all surplus equipment and stores on projects.

; (xviii) That a system of incentives in the shape of overtime bonus and recognition of merit be introduced on all projects.

(xix) That for the sake of co-ordinated development and economy in manpower and equipment, it is necessary that River Valley Projects should be made a Central Subject.

16.24. ACKNOWLEDGEMENT BY THE CHAIRMAN

Thanks are due to the various project authorities which ungrudgingly placed their resources at our disposal and undertook the additional burden imposed on them and their staff during our visits and an insatiable desire for more and more data.

The Committee lays on record its deep appreciation of the purely honorary services rendered by Shri M. R. Vardarajan, General Manager Hindusthan Construction Company particularly for the final scrutiny of the Chapters on Schedules and Analyses of Rates. We also feel indebted to the Hindusthan Construction Company for lending his services.

We are grateful to Shri S. Ramier for the able contribution made by him in chacking up the report from the financial angle in spite of his multifarious duties.

The exemplary manner in which Shri B. D. Nanda has discharged his obligations as Secretary, must be mentioned. We would also like to appreciate the willing co-operation extended by the First Secretary, Shri G. G. Dhanak after relinquishing his charge.

The hard work put in by the technical and office staff is appreciated.

Sd - P. C. AGRAWAL,	Chairman.
Sd - M. R. VARDARAJAN,	Member.
Sd/- S. RAMIER,	Member.
Sd/- B. D. NANDA,	Member-Secretary,

* 324

FOURTH IRRIGATION & POWER SEMINAR SUB-CONNITTEE'S INTERIM REPORT ON THE RATES & COSTS COMMITTEE'S REPORT

The following participated in the Sub-committee meeting:-

1. Shri S.D. Khungar

-Chairman

- 2. Shri A.L. Saxena
- 3. Shri Telang
- 4. Shri N.G.K. Murthy
- 5. Shri M.R. Chopra
- 6. Shri H.K. Niwas
- 7. Shri C.M. Bennett
- 8. Shri P.C. Agarwal
- 9. Shri A.L. Kohli
- 10. Shri B.K. Gupta

-Secretary

The Sub-committee recorded with satisfaction the usefulness of large data compiled in the Committee's Report. The following are the broad recommendations, and for detailed recommendations contained in Part I and Part II of the Committee's Report, a small Sub-committee may, however, be appointed.

- (i) That investigations should be carried out properly before a project is taken up.
- (ii) That proper planning and estimating be done by competent engineers before a project is sanctioned.
- (iii) That estimates be prepared in sufficient detail to enable the project authorities to exercise proper control over cost.
- (iv) That costing cells be introduced on all projects over five crores, but details of the system to be worked out later on.
- (v) That the existing system of classification of accounts and stores be revised and the decimal system introduced on the pattern given by the Rates and Costs Committee.
- (vi) That a perpetual inventory of stores be taken on all large projects. It is also desirable to have one annual stock-taking.

324(b) REPORT OF RATES AND COSTS COMMITTEE

- (vii) That manuals on costing and stores be drawn up to enable all projects to adhere to a uniform pattern of accounting.
- (viii) The Rates and Costs Committee have recommended life of equipment used on the projects, in table 3.7.6 (i). As the life of some of the equipment is different from that recommended by the C.P.& M.C., which have been accepted by Government recently, it is considered that no change should be recommended in the life of that equipment as an interim measure. The projects may, however, be requested to keep proper accounts of the working of machines and log books so that the question of their lives and the provision for major repairs and overhauls may be reviewed after a period of one year.

The life of the equipment for items not considered by the C.P. & M.C. and as recommended by the Sub-committee is given in the appendix attached.

- (ix) That the allowance for major repairs and overhauls be put on standard footing.
- (x) That scales be laid down for provision for fuel, stores and lubricants and for labour required for equipment depending upon the type of work.
- (xi) The provision of contingencies on project estimates put up for administrative sanction may continue to be 5 per cent.

In the case of detailed estimates, the provision for contingencies including work-charged establishment may, however, be cut down to 3 per cent.

(xii) That greater attention be given to housing for labour.

- (xiii) That the cost of acquisition of land be excluded in making provision for overheads, since the cost of land acquisition establishment is to be shown under 'B'-Land.
- (xiv) That projects be given greater latitude in the purchase of spares for equipment, unless the item is borne on "Rate Contract" by Director General of Supplies and Disposals.

SUB-COMMITTEE'S INTERIM REPORT

324(c)

- (xv), That, since a number of items of construction equipment have been standardised, early steps be taken for their manufacture in the country. Rigorous inspection of work steps should be introduced by the Ministry concerned for important articles in use on river valley projects.
- (xvi) That a Central Clearing House be formed immediately for the prompt disposal of all surplus equipment and stores on projects.
- (xvii) That a system of incentives and recognition of merit be introduced on all projects.
- xviii) That special steps be taken by competent authority to train accounts-knowing staff to provide sufficient staff for the river valley projects.
- (xix) The recommendations in Chapter VII, Part II of the Report of Rates and Costs Committee for maintenance of stores accounts may be examined by a small sub-committee.

APPENDIX I

Statement showing Recommended Life of Equipment for Items not Covered by the Construction Plant and Machinery Committee Report

Item I (Ref. Table 3.7.6. (i)-Report of Rates and Costs Committee Part I)

Sl.No.	Equipment	Life Recommended
2	Batching Plant	5 years on three- shift working
3	Core drilling machines	6,000 hours
5	Cranes-Crawler:	· · ·
	(a) Up to 3 tons(b) 3 to 10 tons(c) Over 10 tons	10,000 hours 12,000 hours 20,000 hours
7	Crushers:	
	(a) Jaw (b) Gyratory (c) Cone	6 years 10 years 10 years
10	Loaders	15,000 hours
-11	Locomotives – Diesel:	12,000 hours
12	Mixers – Concrete: (a) Less than 1 cu.yd.	6,000 hours
	(b) More than 1cu.yd.	6,000 hours
13	Rollers-Road:	
• • •	(a) Diesel (b) Gasoline (c) Steam	12,000 hours 12,000 hours 20,000 hours
16	Trucks (on road vehicle):	
	(a) Diesel: Up to 3 tons	1,00,000 miles

324(f)

18

REPORT OF RATES AND COSTS COMMITTEE

3 to 5 tons Above 5 tons (b) Gasoline 1,50,000 miles 2,00,000 miles 75 per cent of the figure for diesel truck.

Well drilling machines 5"-6' 12,000 hours

Item II (Ref. Table 3.7.6. (ii) ibid)

5 Cableway

100 per cent cost to be charged to the project.

Item III As regards lives recommended for non-rated equipment in Table 3.7.6. ibid these should be charged to the project and no depreciation account is to be kept for them.

For depreciation of the items under power plant, figures adopted in the Electricity Department may be adopted.

Table 3.12.3. ibid gives recommendation regarding "Repairs and Maintenance" of equipment as percentage of depreciation. Adopt recommendations in the Construction Plant and Machinery Committee's Report for items dealt with by them. For other items shown in the Table 3.12.3. ibid these will depend upon the load of work on each machinery.

No. 1(4)/57-Policy Government of India Ministry of Irrigation & Power

From

Shri K.G.R. Iyer, IAS, Deputy Secretary to the Government of India.

To

All the State Governments.

New Delhi, the 20th July, 1959 the 27 Asadha, 1881

Sir,

As you are perhaps aware, the Government of India set up a Committee of experts in 1954 to examine the existing rates of major items of work prevalent on the more important projects and recommend a comprehensive schedule of rates for adoption as a basic schedule by all projects and to prepare a detailed analysis of such rates. The terms of reference of this Committee were subsequently amplified, in consultation with the Comptroller and Auditor General of India, so as to include the examination of the system of maintenance and accounting of stores in force and make suitable recommendations on the stores accounting procedure and rules.

2. The Committee submitted its report in 1956 in two parts-Part Irelating to the rates and costs of construction items for the consideration of the Government of India, and Part II relating to the stores and other accounting procedure for transmission to the Comptroller and Auditor General of India. The Chapters on 'Cost Control' and 'Stores' which were of interest both to the Ministry of Irrigation and Power and the Comptroller and Auditor General, have been included in both Part I and Part II.

3. The Comptroller and Auditor General will take a final decision on matters with which he is concerned under Article 150 of the Constitution of India.

4. The Rates and Costs Committee's Report was discussed at the Hirakud Seminar in January, 1957. As divergent views were expressed on some of the recommendations, it was decided 324(ii) REPORT OF RATES AND COSTS COMMITTEE

that a Sub-committee be appointed to examine the recommendations of the Committee in the light of the discussions at the Seminar. The team of officers, set up accordingly, has submitted its findings on Part I of the Report.

· As already stated, the chapters on Cost Control and 5. 'Stores' are of interest to this Ministry as well as to the Comptroller and Auditor General of India and have therefore been included by the Committee in both the Parts of the Report. As the Comptroller and Auditor General, however, is primarily concerned with the accounting portion only, these recommendations of the Committee which relate to organisational aspects of the Cost Control may for the present be noted for guidance.

6. Subject to the considerations set out in paras 3 to 5 above. the recommendations of the Rates and Costs Committee contained in Part I of the Report, as modified by the findings of the team of officers, are brought to the notice of the State Governments for their information and guidance. Two copies of the Report and statement containing the findings of the team of officers are enclosed.

The receipt of the letter may please be acknowledged.

Yours faithfully,

Sd/-K.G.R. Iver

ar yan i Deputy Secretary to the Government of India.

Copy to:

7.

- 1. Central Water and Power Commission.
- 2. Secretary to all the Control Boards.
- 3. Chief Engineer, Hirakud Dam Project.
- 4. Secretary, Tungabhadra/Damodar Valley Corporation.

5. Ministry of Finance (Shri Raneda).

L. Strate Colored

A LOUGH AND A LOUGH AND A

- 6. Comptroller and Auditor General of India (Shri H.S. Mac).
- 7. Technical Section (Finance Officer, Shri S. Ramier).
- 8. All Sections in the Ministry (other than Cash, C.R., Wakf and Confidential).

Sd/-T.R. Barker

Under Secretary to the Government of India.

		•	× •
SL. NO.	RECOMMENDATIONS OF THE RATES & COSTS COMMITTEE	VIEWS EXPRESSED DURING THE GENERAL DISCUSSIONS AT HIRAKUD SEMINAR	FINDINGS OF THE TEAM
Ī	2	3	4
1.	Proper investiga- tions should invaria- bly be carried out be- fore a project is taken up. This has not been the case with many of them.	It is rather difficult to insist that no project should be taken up till the investigations are complete. In this coun- try sufficient data are not available and it will not be wise to wait on until such data is avail- able.	We agree with the recommendation of the Rates and Costs Committee.
2.	Proper planning and estimating be done by competent en- gineers before a pro- ject is sanctioned.		
3.	That estimates be prepared in sufficient detail to enable pro- ject authorities to exercise proper con- trol over cost.	,	

.

.

STATEMENT SHOWING THE RECOMMENDATIONS OF THE RATES & COSTS COMMITTEE AND FINDINGS THEREON

.

1	3	4
4. That Costing Cells be introduced on all projects.		Keeping in view that even the exist- ing major projects have no proper cost cells, we feel that for the present, the establishment of the cost cells on all projects costing more than Rs. 5 crores is somewhat ambitious. We, therefore, feel that this limit may be raised to Rs. 15 crores. The costing cells would generally be necessary in projects where construction - work is mostly carried out departmentally.
	Shri Ahuja suggested that not only financial terms but also quantities be indicated in cost re- port. The main object is to mirror performances as compared to program- me schedules.	We agree with this suggestion.
	It is necessary that the costing system be based on audited accoun- ts and not on daily re- ports.	Since speed is the essence of cost accounting, the cost data need not be based on audited accounts, but a re- conciliation between cost and financial account should be carried out at pe- riodical intervals.

<u> 1 </u>	2	33	<u>l</u>	4
· -				

5. That the existing system of classification of accounts and stores be revised and decimal system introduced on the pattern given by us. Shri Guha stated that a Sub-committee of Engineers and Financial Officers may be appointed to study the various fundamentals and suggest suitable changes.

6. That perpetual inventory of stores be taken on all large projects.

7. That stores be issued at fixed schedule rates. Shri Khungar says, for efficient checking of stores, it would be better if security officer is present when the truck is loaded and should countersign the gate pass.

Shri Guha says, it is not fair to issue at fixed rates, as it might involve considerable amount of profit or loss. We do not feel the necessity of appointing another sub-committee to study the various fundamentals and suggest suitable changes. This work may be entrusted to the Costing Cell of the Central Water & Power Commission, who should finalise it in consultation with the Auditor General.

We agree that perpetual inventory of stores should be taken as indicated in paragraph 4.8.3.2 of the Rates and Costs Committee Report, in such a way so as to complete the verification of each item at least once in a year.

This is a matter of detail, which should be left to the discretion of the project authorities.

For the reasons given by the Rates & Costs Committee, we agree with its recommendation that there should be a standard issue rate. This should be initially based on the first purchase

<u>1 1 2 1 3</u>	<u> </u>	32
** **	price of the store for the project. Sub- sequent revisions of the standard issue rate should be made only in the follow- ing circumstances:-	324(vi)
	(a) When a subsequent purchase price- shows material variation from the pre- vious purchase price, the standard issue rate should be refixed with re- ference to the latest purchase price;	R EPORT OF P
	(b) When the store is of a type, such as cement, that it is used in very large quantities and even a minor change in the purchase price would affect the cost of work, the standard issue rate should be refixed every time a fresh purchase is made at a different rate.	REPORT OF RATES AND COSTS COMMITTEE
3. That manuals on costing and stores be drawn up and our re-		ITTEE
commendations on the subject be codified to enable all projects to adhere to an uni-		
form pattern of accounting.		

E H
0
0
~
- 5-
8
3
Q
~
-
2
g
z
⋗
Z
D
Ŧ.
H.
z
Ð
5
Æ
22
U 1

Я

We agree that the table of life equipment as recommended by the Construction Plant & Machinery Committee may be adopted. For those items which were not considered by the Construction Plant & Machinery Committee, but were considered by the Hirakud Sub-Committee at the Engineers' Seminar, the table of lives, as recommended by it may be adopted. We would, however, suggest that the matter should be reviewed, say after 5 years, in the light of actual experience gained. To enable this being done systematically, the projects should be requested to maintain sufficient data.

Presumably, Shri Khungar was referring to the recommendation of the Sub-Committee No.1 (on the Report of the Construction Plant & Machinery Committee) held at New Delhi, on Ist October, 1954. That recommendation reads as follows:-

"In any case, a piece of equipment should be written off by at least 1/12th of its life every year, whether it is used to that extent or not". 24(vii)

9. That life tables on equipment be standardised. Our recommendations on the subject are contained in the report.

2

11

Shri Khungar raised the point that depreciation for idle hours be 1/12 the working hour as it has already been accepted. It is no use taking up this point again by Rates & Costs Committee.

3

4

1.1					1			
1.1	· Automa	_	-				 -	
- S. S.		4				 	 0	
	- 1 er 1	- L	· •	19 A.A.		1.87	~	
		-		10	· · ·	1.1	~	

3

This recommendation has already been accepted by the Co-ordination Board of Ministers. This recommendation merely provides that there should be a minimum' amount of depreciation for any equipment and does not imply that depreciation for idle hours should be made on 1/12th of the working hour, as assumed by Shri Khungar. In this connection, the Rates & Costs Committee has recommended that for idle period "a quarter of the full rate of depreciation be charged to the project for idle hours". The Construction Plant & Machinery Committee had not made any recommendation, in regard to the provision of depreciation for idle period.

4

We also feel that, in the present context of our circumstances, when there is so much shortage of machinery at the projects and there is not much likelihood of our machinery remaining unduly idle, it does not seem to be necessary to take into account the idle time, in working out the depreciation. REPORT OF RATES AND COSTS COMMITTEE

324(viii)

lepreciation etc., should be the same	
as recommended by the Construction	
Plant & Machinery Committee.	

We agree with the recommendation

That the allow-10. ance for major repairs and overhauls be put on standard footing.

2

Shri Chopra stated that it is not possible to make any standard allowance for major overhauls. The rate of overhaul of machinery both minor and major, has to be a factor depending on type of work carried out.

3

Shri Chopra has

raised the question whe-

ther plant hour as suggested by the Plant &

Machinery Committee be taken. He suggested that no change be made

suggested that flat rate of depreciation is not

Chakravarty

now.

Shri

correct.

of the Rates & Costs Committee.

4

We understand that this is also the practice followed in other countries.

The principles for calculation of

1 1 2 1	3 1	4
11. That scales be laid down for provision of fuel, stores and lubri- cants and for labour required for equipment.	Shri Khungar suggests provision for spare parts for imported equip- ment be increased due to difficulty of importing and ready availability.	We agree with the recommendation of the Rates & Costs Committee
	Shri Chopra stated for fuel and lubricants no definite scales can be laid down for various equipment, as these would vary depending on the condition and type of work to be done by the machine.	
 12. The provision of contingencies for works be scaled down. 13. That greater attention be given to housing for labour. 	Shri Guha suggests contingent provision should be more when un- known factors are more. Shri Bansod says contingencies should be 3%.	In view of the Government having accepted 3% for contingencies on esti- mates, this may be adopted, instead of the sliding scale recommended by the Rates & Costs Committee. We, how- ever, agree that in the case of detailed estimates provision for contingencies, including workcharged establishment, may be cut down to 3%.

11	2	. 3	l 4
14.	That cost for acqui-	Shri Chopra agrees	We agree with the recommendation
S	ition of land should be	to the suggestion.	of the Rates and Costs Committee.

15. That projects should be given greater latitude in the purchase of spares for equipment and special committee be formed for these purposes.

excluded when making

for over-

provision

heads.

The intent of this recommendation is not quite clear. It is not clear whether the intention is to increase the purchasing power of the project authori ties, or to give power to the project authorities to depart from the normal stores purchase procedure. So far as the question of powers of purchase is concerned. it does not seem to be necessary to lay down any general rule, because the Government will have to delegate adequate powers to the project authorities, as it deems necessary, consistent with the requirements of a particular project. As regards the procedure for purchase, it would not be desirable to allow any general relaxation. The detailed recommendations made by the Rates & Costs Committee at pages 59-63 of the Report, in this connection may, however, be followed.

324(xi)

RECOMMENDATIONS AND FINDINGS

3<u>9</u>2

.

	3	<u>1</u> 4
16. That principal items of construction equipment be standar- dised and early steps be taken for their manufacture in the country.	The manufacture of Heavy Earth Moving Machinery is already engaging the attention of Ministry of Commer- ce and Industry and proposals for their manufacture are being studied by that Ministry.	On the basis of the recommenda- tions of Standardisation Committee, Government have already taken certain decisions.' We have no further com- ments to make, at this stage.
 17. That a Central Clearing House be formed immediately for the prompt dispo- sal of all surplus equipment and stores on projects. 18. That a system of incentive in the shape of overtime, bonus and recognition of merit be introduced on all projects. 	Shri Chopra wants specific suggestions.	No specific suggestions can be made in this connection; this may be left to the projects concerned.
19. That for the sake of co-ordinated deve- lopment and economy in manpower & equip- ment, it is necessary that River Valley Pro- jects be made a Cen- tral Subject.	Shri Khungar says this is good only in case where there are more than one State.	This is a question of policy, which we would leave to the Irrigation & Power Ministry to consider

r.

324(xii) REPORT OF RATES AND COSTS COMMITTEE

RECOMMENDATIONS AND FINDINGS-Contd.

SL. NO.	RECOMMENDATIONS WHICH WERE DISCUSSED AT THE HIRAKUD SEMINAR, BUT NOT INCLUDED IN THE SUMMARY OF THE RE- COMMENDATIONS OF THE REPORT	VIEWS OF VARIOUS ENGINEERS Attending Hirakud Seminar	VIEWS OF THE TEAN
1	2	·-3	4
ţ .	No quotation re- ceived after the clos- ing of the open tender enquiry may be con- sidered.	Shri Khungar suggests favourable quotations re- ceived even after closing dates may be considered on merits.	We have considered this matter in all its aspects and on administrative grounds we agree with the recommend- ation of the Rates & Costs Committee.
2.	All stores receiv- ed should pass thro- ugh Stock Account, as on big river valley projects all stores are held by Central Stores Organisation.	Shri Khungar is of the opinion that this sugges- tion is impracticable. It is necessary to have site accounts.	The intention behind the Commit- tee's recommendation is that all stores received by a project should be accoun- ted for in the Central Stock Account, so that, a complete picture of the stores transactions of the project, at any stage, is available. This does not, however, dispense with the necessity for the maintenance of the M.A.S. Account, wherever required, except that the M.A.S. Account will be main- tained in terms of quantity only, and not in terms of value.

,

-

RECOMMENDATIONS AND FINDINGS

1 1 2	3	4
3. All consignments of materials received against purchase or- ders should be opened in the presence of an officer responsible for inspection and accoun- ted.	Shri Chopra suggests a rigorous inspection of stores received	It is not the intention that, in ad- dition to being accounted for in the Central Stores Account, stores like bricks etc., should also be physically routed through the central stores. In the case of such stores, the material will be received at the site of works, as at present, by the representative of the Central Stores Organisation and simultaneously handed over to the exe- cutive authorities incharge of the work, who will then be required only to main- tain a quantity account of the issue and receipts of such stores. We agree with the recommendations.
4. Before a machine is transferred from one project to another it should be complete- ly overhauled and put	Shri Khanna agrees with this suggestion.	The intention behind the Rates & Costs Committee's recommendation appears to be that the machines are not allowed to deteriorate on the pro- jects and not left uncared for, and as

be brought to and kept in good	working
order till finally disposed of.	
For the transfer of machine	ry from
one project to another, the for	mula of
Book Value less depreciation,	recom-
mended by the Rates & Costs C	Commit-
tee, will generally serve the pu	irpose.
	-
No comments.	

in perfect mechanical condition.

2

1

- 5. Usual formula for transfer of equipment is Book Value less depreciation.
- 6. Contoperation of equipment is affected by the availability of skilled labour.

7. Cost reports are to be worked out from daily pay rolls with output report, daily materials issued and on hand and daily equipment performance.

pairs and overhauls. Best utilization of equipment is obtained by appointing a good operator with assurance that he will operate the same piece of equipment for its life time - a suggestion by Shri Jatinder Singh.

3

Shri Khungar says

outstanding on

the practice at Bhakra

is Book Value minus

depreciation, minus ba-

account of major re-

lance

324 (xv))

such, we agree that the machines should

1122	3	4
	Shri Khungar says costing system should be based on audited ac- counts and the reports should be monthly.	In this connection, see our remarks on item 4 of the recommendations of the Rates & Costs Committee.
8. Referring to item at page 97 on daily reports, it is sugges- ted that there should, be no system of daily payments or what is called 'muster rolls'.	The work should be done on monthly basis on acquittance rolls.	We feel that the remarks were in- tended for jobs where a centralised system of time keeping is possible, and not where casual labour is employed in other places.
9. Remedial measu- res for clearing sus- pense items in the accounts which go on lying month after month and year after year should be taken.	Shri Banerji stated it is also necessary that the suspense items in the accounts which go on lying month after month and year after year and give a wrong picture of the cost, should be remedied by payment by cheque.	Payment by cheques alone will not wholly serve the purpose, but wherever possible the system of payment by cheques should be introduced.

-

A N N E X U R E S

325-326

ANNEXURES

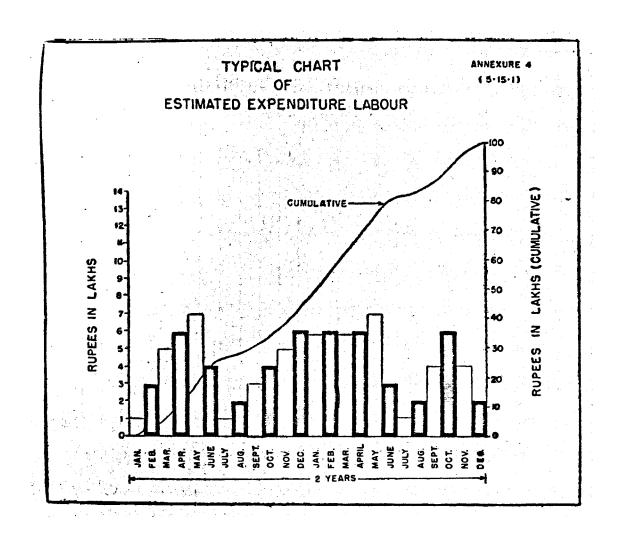
ANNEXURE, 1

(5.3.2.)

.

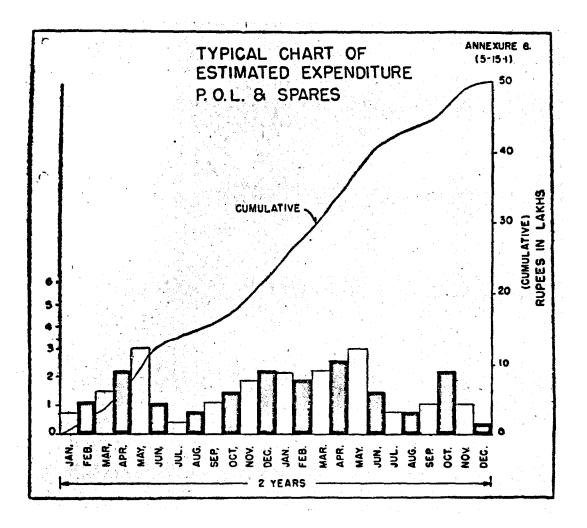
	•		
Principal	Units	of	Measurements

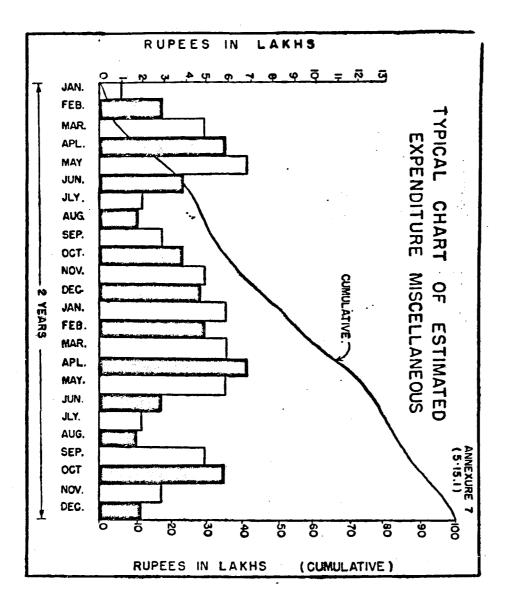
SI. No.	Item								Unit
1.	Jungle clearance	•••	•••		•••	•••			Acre
2.	Excavation	••		••	••	••		••	C.F.C.
3.	Back-fill	••	••		•••	••	••	••	C.F.C.
4.	Drilling and grouting	, holes		••	.:	••		•• `	F.R.
5.	Boulder or quarried s	stone			••	••	••	••	C.F.C.
6.	Aggregate for concre		••	. •	••	•••	••	••	C.F.C.
7.	Dressing of stone sur	face			••	••	••	••	C.F.S.
8.	Sand	••	••	••	••		••	••	C.F.C.
9.	Lime	••	••			••	•.•	••	Maund
10.	Surkhi (ordinary or	fine)	• •		••	• •	••	••	C.F.C.
11.	Cement	•••	• •	••	••	••	••	••	Cwt.
12.	Steel		••	••	••	••	••	••	Cwt.
13.	P.C.C. or Lime Con	crete	••	••	••	••	••	••	C.F.C.
14.	Masonry (Brick) exc	cept wa	ails —	one bri	ck or l	ess	••	••	C.F.C.
15.	Masonry (Stone)		••	••	••	••	••	••	C.F.C.
16.	Masonry in walls—c	ne bri	ck or l	ess	••	••	•• ,	••	C.F.C.
17.	Glass	••	••	••	••	••	••	••	F.S.
18.	Plastering	••	••	••	••	••	••	••	C.F.S.
19	Pointing	••	• •	••	••	••	••	• •	C.F.S.
20.	Timber Boarding	••	••	• •	••	••	••	••	F.S.
21.	Timber Scantling		••	••	••	••	••	••	F.C.
22.	Doors and Windows	s Shutt	ers	• • •	••	••	• • '	. . .	F.S.
23.	Doors and Windows	s Fram	ies	••	••	••	••	••	F.C.
24.	Formwork	•-•		••	••	••	•••	••	C.F.S.
25.	Water Stops (Coppe	er Strip	os etc.)		••	••	••	••	F.R.
26.	Pipes	••	••	••	••	••	••	••	F.R.
27.	Paints, stiff or read	y mix.	••	• • .	••	••	••	••	Lbs.
28.	Varnishes and Oils		r 	••	••	••	••	••	Gallons
29.	P.O.L. Group Galle	ons	••	••	••	••	••	••	Gallons
30.	Gates	••	• •	••	••	• •	••	••	Tons
31.	Pitching work	••	••	••	••	•••	••	••	C.F.C.
32.	Explosives	••	••		••	••	••	••	Lbs
33.	Water	••	••	••'	••	••	••	••	M.G.

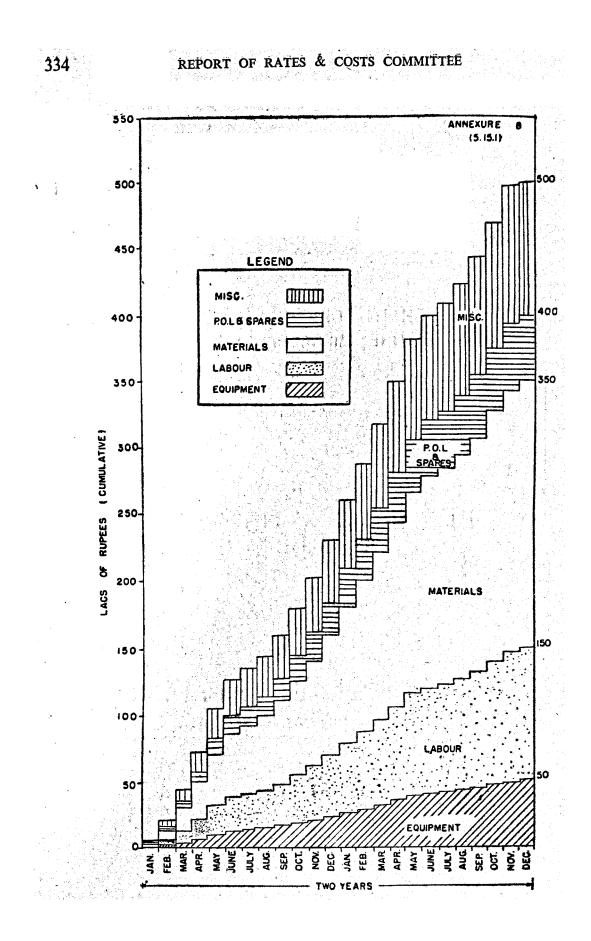

ANNEXURE 2

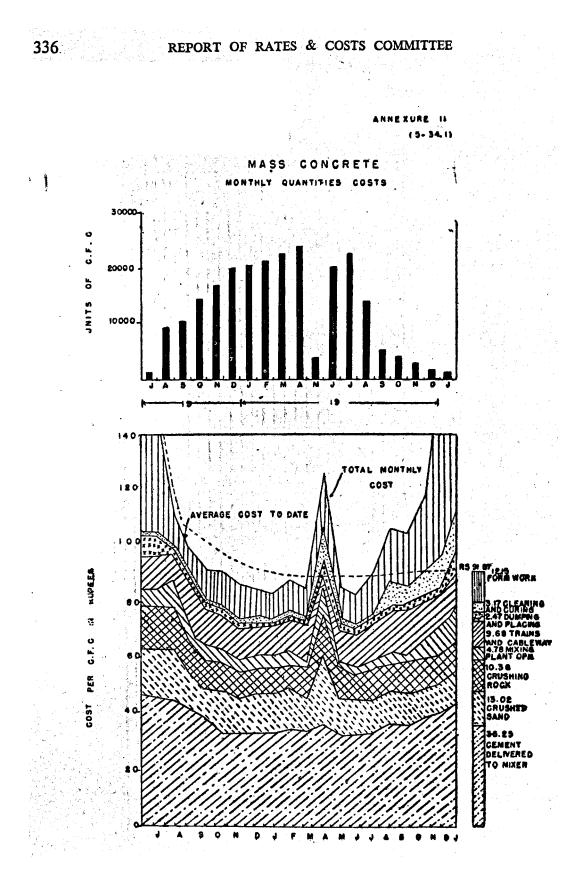
(5.12.3)

PROJECT MANAGER OR CHIEF ENGINEER

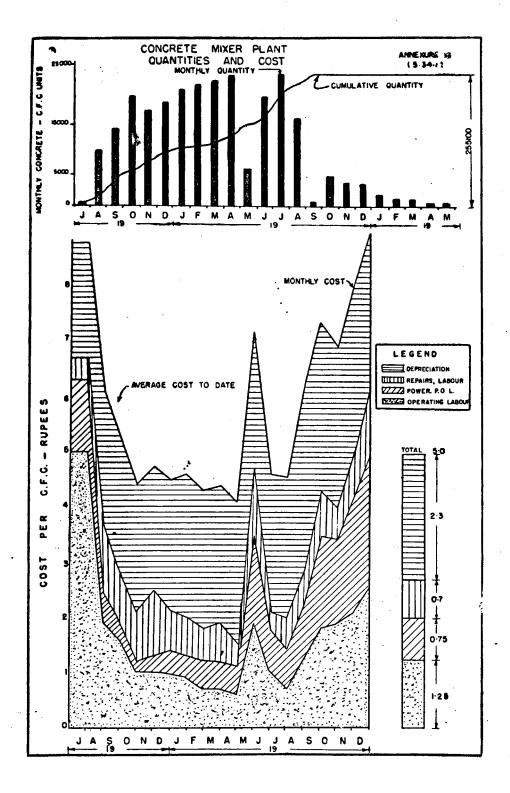

Deputy Project Manager or Superintending Engineer

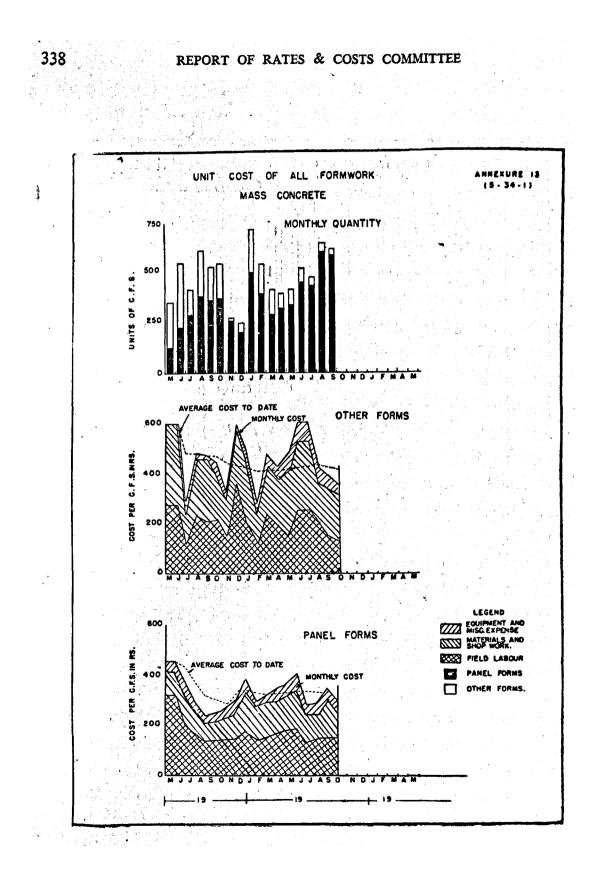

Civil Engineeri Department			Chief Stores Officer	Personnel	Cost Engineer	Field	ccounts Chief
1. Dams & Canals	1. Workshop	1. Lighting 1.	Stores		1. Contracts 2. Rates	1. Design & Speci- fications	1. Accounts & Stores inventory.
	2. Plant	2. Power Gene- 2. ration		. Recruitment of Labour	3. Costing & Budgeting		
2. Field Con- struction	3. Water Supply	3.	Electrical 3 Stores	6. General ameni- ties	. Progress Report		2. Time-Keeping.
		3. Power Utili- 4. sation	Dead Stores 4	. Accommodation	+		
	4. Transport	5.	Procurement. 5 Section 6	6. Public Rela-	5. Deviations 5. Claims	3. Measurements of work.	


ANNEXURES

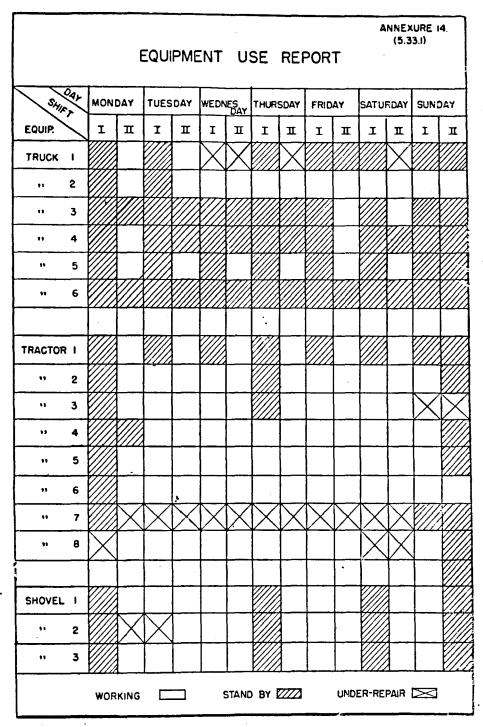


ANNEXURE (5 - 16 -1)

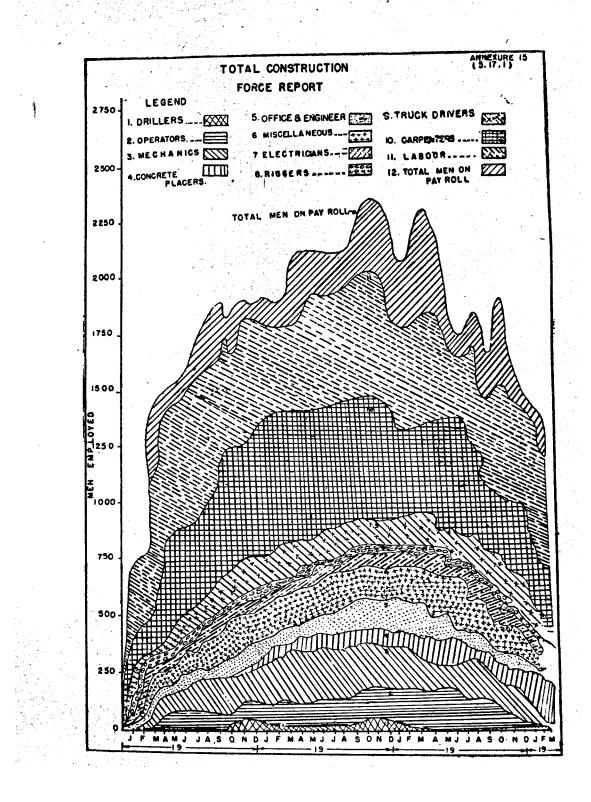

EQUIPMENT SCHEDULE


ITEM						9			_			19						_)			-
	NO	h	Ŗ	4	0	Ν	P	J	F 4	M	A	M	J	J	A	S	0	N	D	J	F	M	A	M	J
SHOVEL 3/4 TO 3CY.	7	ľ		T				041		3	Z	-													
TRACTOR	15	2		15					101	7	5	2													-
TRUCK, DUMP	27			бю Г					7			4		2	1										
TRUCK, TRAILER	14		Ĕ		14				2																
TRUCK, STAKE	7			Į.					5				4		2				Ē						
CARRY-ALL SCRAPER	3			PL	2				•																
AIR COMPRESSOR STATIONARY	1		1																						
AIR COMPRESSOR PORTABLE	5			5		3	2																		
CONCRETE MIXER	4					3		4	3	2															
PUMP, 4"AND LESS	Į9	4		E T			8		7		4				7	5					4				
WAGON DRILL	12		Î	12			91		8	7	•				Ĩ										
CORE DRILL	7	3														ľ		2		3					
WELL DRILL	3					3				2															
ELECTRIC WELDER	3		2	T				3				3				1									ſ
BUCKET LOADER	1			Γ		Ľ																			ſ
PATROL GRADER	1			ľ																					
CONCRETE GUN	3			1									3												
GROUT PUMP	1																								
ROLLER, SHEEPS-	10				8	<u>10</u>	9																	Ļ	

.



ANNEXURES



ANNEXURES

M7CW&PC/63-23

ANNEXURE 16

(5.35.2)

•

.

Monthly Progress Report

(Quantities of Work)

SI. No.	Item	Estimated Amount	Progress to end of pre- vious month	Progress during the month	Total progress up-to-date	Percentage Col. 6/3	Scheduled Progress	Percentage (Col. 6/8)	Remarks
1	2	3	4	5	6	7	8	9	10

· •

(5.35.3)

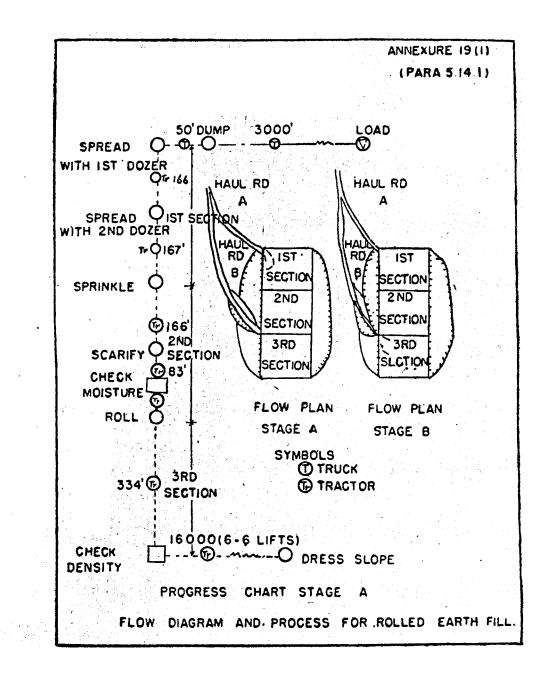
Monthly Progress Report

(Expenditure)

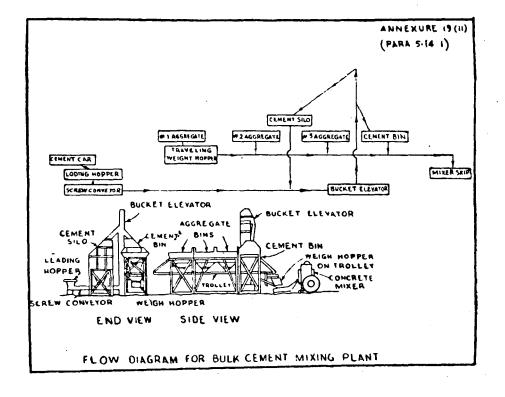
1 Io.	· · · · · · · · · · · · · · · · · · ·	Item	Estima Amou	ited nt	Weigh percer of ac	hted ntage ctual	Expend to end vious r	liture of pre- nonth	Expendi- ture dur- ing the month	Expendi- ture up- to-date	Percentage (Col. 6/3)	Scheduled Expenditure	Weighted percentage (Col. 6/8)	Weighted p centage of completion	er- Remarks
1		2	 3		4		5		6	7	8	9	10	11	12
<u> </u>			 						•					•••	
				÷	•	•		an tha cha			an in suit et that	e da forma de Marane de La			

ANNEXURES

ANNEXURE 18


(5.36.2)

Monthly Forecast of Variations


SI. No.	Item	Est	imates		Actua previo	ul to end	of	· Ac	tual duri month	ing the	Adjust-
		Qty.	Rate	Cost	Qty.	Rate	Cost	Qty.	Rate	Cost	+
1	2	3	4	5	6	7	8	9	10	11	12

nent	Actual up	p-to-date	 Remain	imated Cos Completion		Va	riation	
	Oty.	Rate	ing Qty.	Rate	Cost	~ +	د I	Remarks

.

ANNEXURE

345

.

A P P E N D I C E S

347-348

APPENDICES

APPENDIX 1

(Para 2.7.2.)

Trade		bakra langal	Maithon, Panchet, Tilaiya, Konar	Durgapur Barrage & Canal	Kakra- par	Ganga- pur	Vait- arna	Mayu- rakshi
1		2	3	4	5	6	7	8
Male Mazdoor	••	Rs. 2/∙	Rs. 1/8	Rs. 2/-	Rs. 1/8 to 2/-	Rs. 1/12 to 2/-	Rs. 1/-12 to 2/-	Rs. 2/-
Female Mazdoor	••		1/2	1/8	1/4 to 1/10	1/4 to 1/8	1/- to 1/12	1/8
Boy Mazdoor	••		1/-	· 1/4	1/- to 1/4	-/14/- to 1/-		1/8
Wadar Cooly, Male	••			<u></u>		2/8		
Wadar Cooly, Female				 ,		1/8		·
Wadar Cooly, Boy	、					1/-		

Schedule of Wages on Projects for Common Labour

Schedule	of	Wages	on	Projects	for	Common	Labour-contd	•
----------	----	-------	----	----------	-----	--------	--------------	---

Trade	Н	irakud	Chambal	Bhadra	Tunga- bhadra	Lower Bha- wani	Peechi	Perin- chani
1		9	10	11	12	13	14	15
Male Mazdoor		Rs. 1/8	Rs. 1/4	Rs. 1/4 to 1/8	Rs. 1/2	Rs. 1/8	Rs. 1/8	Rs. 1/8
Female Mazdoor	•••	1/-	1/-	-/14/-to 1/8	-/10/- to -/12/-	-/12/-	1/-	1/-
Boy Mazdoor		-/12/-	1/-	-8/- to -/12/-	-/10/6 • to -/12/-	-/12/-	-12/-	1/-
Stone Packer, Male	•••			1/8 to 2/4	2/-			
Stone Packer, Female					2/12		—	

elektrik foren af strenge for strenge for				Plinth Are	APPEND (2.18.1 ea Rates at	.)	<i>jects</i>			:	ntes 1. t
Description of Item		<u> </u>	, 	C.E.	S.E. Bangalow Type A	E.E.	S.D.O.	Senior staff pay above Rs. 250	Pay Rs. 150 to Rs. 249	Pay Rs. 50 to Rs. 149	Peon & other class IV
1				2	3	4	5	6	7	8	9
		·····			Bhakra-No	ingal					
(i) Plinth Area		֥			2815	1600	1367	916	689	406	260
(ii) Cost in Rs		49. T 1. N	••	52000*	17770	3283	7000	6000	4600	2900	1530
(iii) P.A. Rate per sq. ft.					6/5	5/2/10	5/2	6/9	6/8	.6/3/5	5/15
					Hirakud R	light					
(i) Plinth Area	a 1. 1 •. 1•:			5163	4555		3088	1403	1160	863	288
(ii) Cost in Rs		÷.		76010	37300	کار برد کرد چینیند به	24800	8300	5700	4200	1700
iii) P.A. Rate per sq. ft.				14/11	8/3	140 - 12 12 - 12	7/14	5/14/9	-4/15	4/14	6/-
and your your bot od				- 7	Hirakud L	eft	<		- ····		-1
(i) Plinth Area							3088	1407	ت <u>مبینی</u>	863	288
(ii) Cost in Rs	• •					1992 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 -	28328	8310		4023	1527
(iii) P.A. Rate per sq. ft.	• •					*	9/4	5/12	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4/4	5/4
mj 1.m. Kate per sq. It.	• •	* * .	• •		Maithon		7/4	~/14		דוד	7/7
(i) Plinth Area			4. j.	3462	2213	2741	1759	1502	899	753	738
	• •	•	•••	86449	34190	31188	18158	10887	8094	5866	5412
(ii) Cost in Rs	• •	•••	2 * *								
(iii) P.A. Rate per sq. ft.		• •		24/14/6	15/7/6	11/5/3	10/5	7/4	9/-	7/13/3	7/5/5
					Bhadra	17/1	076	E 1 7	450		
(i) Plinth Area	••	•	•.*		1900	1341	976	547	458		· · · · ·
(ii) Cost in Rs		• •	• •		15200	3600	6800	4000	1600		
(iii) P.A. Rate per sq. ft.	••	• •	۰.		8/-	6/7	7/1	7/5	3/\$		
				Tun	gabhadra (7				-		
(i) Plinth Area	÷.		• •			2018	** 1645	877	701	586	251
(ii) Cost in Rs	• •		· • •	······	·	2000	> 9900	7600	6100	5400	1817
(iii) P.A. Rate per sq. ft.		• •			۰. ۲	914	6/-	8/11	8/11	9/3	7/5
				6	langapur Da	am -					•
(i) Plinth Area	• •			, ¹		1082	1060	447	233		
(ii) Cost in Rs				· · · · · · · · · · · · · · · · · · ·		5199	4190	2149	888		-
(iii) P.A. Rate per sq. ft.				e de la competencia d	251 5. 	4/12	3/14	4/12	3/12		

*The plinth area is not available. **It is double storeyed building.

Description of Item				C.E. Bangalow	S.E. Bangalow Type A	E.E. Bangalow Type B	S.D.O. Bangalow	Senior staff pay above Rs. 250	Pay Rs. 150 to Rs. 249	Pay Rs. 50 to Rs. 149/-	Peon & other class IV
1				2	3	4	5	6	7	8	9
					Gandhisagar	Dam				·	
						nent Buildi	ngs)				
(i) Plinth Area				2819	2263	1712	1236	676	604	357	_
(ii) Cost in Rs	••		••	33732	23761	19474	13751	7436	6136	3055	-
(iii) P.A. Rate per sq. ft.	••			1/8/11	10/8	11/6	11/-/2	11/-	10/2/6	8/8/11	-
(iii) F.A. Kate per sq. it.	••	••	• •			orary Build		11/-	10/2/0	0/0/11	
					1738 17	1270	ungsj		570		
(i) Plinth Area	• •	••	••						3976		_
(ii) Cost in Rs	••	••	• •		12184	9199					-
(iii) P. A. Rate per sq. ft.	••	••	••		7/2	7/3/11	`	<u></u>	6/-		
				Tunga	bhadra (Hyd	l.) (Tempora	ury)				
(i) Plinth Area						3491 Pr	nt. 2192		929	814	37
(ii) Cost in Rs						31990	17331		7800	5871	356
(iii) P.A. Rate per sq. ft.					_	9/2/6	· · 7/14		8/6	7/3	9/8/
(ib) 1.1.1. Rule per sq. Il.	••	••	••	r.	urganur Ra	rrage (DVĊ			0,0	.70	1 - 1
					(i) Pern	nanent	,				
(i) Plinth Area					() 101	1366	1355	863		666	36
(ii) Cost in Rs	••	••	••			18676	17720	11602		9293	244
	• •	• •				13/10	13/1	13/7		13/14	6/12
(iii) P.A. Rate per sq. ft.	••	••	• *				15/1	15/7		15/14	0/12
					(ii) Tem						
(i) Plinth Area	• •	• :			·	1289	895		733	720	45
(ii) Cost in Rs						9226	7415		5577	5344	239
(iii) P.A. Rate per sq. ft.						7/2	8/4		7/7	7/6	5/3
					Lower Bhaw		,		•		
(i) Plinth Area						3108	1669		990	724	68
(ii) Cost in Rs						23394	10009	·	4995	4247	3220
(iii) P.A. Rate per sq. ft.			•			7/8/5	5/15/11		5/8/10	5/13/10	. 5/4/0
(iii) 1 Mate per 89. II.			• •		Malam		5,15,11	-	0/0/10	-11-0	
(i) Plinth Area					Maidnij	2776	1754		806	666	660
	••	• •	••						6268	4867	3050
(ii) Cost in Rs	••	••	••			23618	13727				4/10
(iii) P.A. Rate per sq. ft.	••	••				8/8	7/13		7/12	7/5	4/10

APPENDIX 2-contd.

APPENDICES

3Ś1

APPENDIX 3

1. Applications

These rules shall apply to all construction works in charge of C.P.W.D.

2. Definition

(a) "Work-place" means a place at which, at an average, fifty or more workers are employed in connection with construction work.

(b) "Large work-place" means a place at which, at an average, 500 or more workers are employed in connection with the construction work.

3. First Aid

(a) At every work-place shall be maintained in readily accessible place First AIG appliances including an adequate supply of sterilized dressings and sterilized cotton wool.

(b) At large work-place, where hospital facilities are not available within easy distance of the works, First Aid posts shall be established and be run by a trained compounder.

(c) Where large work-places are remote from regular hospitals, an indoor ward shall be provided with one bed for every 250 employees.

(d) Where large work-places are situated in cities, towns and their suburbs and no beds are considered necessary owing to the proximity of city or town hospitals, an ambulance shall be provided to facilitate removal of urgent cases to those hospitals. At other work-placesd some conveyance facilities, such as car, shall be kept readily available to take injured person or persons suddenly taken seriously ill, to the nearest hospital.

4. Drinking Water

(a) In every work-place there shall be provided and maintained at suitable places, easily accessible to labour, a sufficient supply of water.

(b) Where drinking water is obtained from an intermittent public water supply, each work-place shall be provided with storage where such drinking water shall be stored.

(c) Every water supply or storage shall be at a distance not less than 50 ft. from any latrine, drain or other source of pollution. Where water has to be drawn from an existing well, which is within such proximity of latrine, drain or any other source of pollution, the well shall be properly chlorinated before water is drawn from it for drinking. All such wells shall be entirely closed in and be provided with a trap-door which shall be dust and water-proof.

(d) A reliable pump shall be fitted to each covered well, the trap-door shall be kept locke and opened only for cleaning or inspection which shall be done at least once a month

(e) The temperature of drinking water supplied to workers shall not exceed 90° F.

5. Washing and Bathing Places

(a) Adequate washing and bathing places shall be provided separately for men and women. (Showers, say, 2 per 100 persons are recommended).

(b) Such places shall be kept in clean and drained condition.

6. Scale of Accommodation in Latrines and Urinals

There shall be provided within the precincts of every work-place, latrines and urinals

APPENDICES

in an accessible place, and the accommodation, separately for each, shall not be less than the following scales :--

· · · · ·	No. of Seats
(a) Where the number of persons employed does not exceed 50	2
(b) Where the number of persons employed exceeds 50 but does not exceed 100	3
(The army provide five per 100 in their camps). (c) For every additional 100	3

7. Latrines and Urinals for Women

If women are employed, separate latrines and urinals screened from those for men and marked in the vernacular in conspicuous letters 'FOR WOMEN ONLY' shall be provided on the scale laid in Rule 6. Those for men shall be similarly marked 'FOR MEN ONLY'. A poster showing the figure of a man and a woman shall also be exhibited at the entrance of latrines for each sex. There shall be adequate supply of the water close to the urinals and latrines.

8. Latrines and Urinals

Except in work-places provided with water-flushed latrines, connected with a waterborne sewage system, all latrines shall be provided with receptacles on dry-earth system which shall be cleaned at least four times daily, twice during working hours and kept in a strict sanitary condition. The receptacles shall be tarred inside and outside at least once a year.

9. Construction of Latrines

The inside walls shall be constructed of masonry or some suitable heat-resisting nonabsorbent material and shall be cement-washed inside and outside at least once a year. The dates of cement-washing shall be kept available for inspection.

10. Disposal of Excreta

Unless otherwise arranged for by the local sanitary authority, arrangements for proper disposal of excreta by incineration at the work-place shall be made by means of suitable incinerator approved by the Asstt. Director of Public Health or the Municipal Medical Officer of Health, as the case may be, in whose jurisdiction the work place is situated. Alternatively, excreta may be disposed of by nutting a layer of night soil at the bottom of pucca tank prepared for purpose and covering it with a 6" layer of waste or refuse and then covering it up with a layer of earth for a fortnight (when it will turn into manure).

11. Provision of Shelters during Rest

At every work-place there shall be provided, free of cost, two suitable sheds, one for meals and other for rest, for the use of labour. The height of the shelter shall not be less than 11 ft. from the floor level to the lowest part of the roof.

12. Creches

At every work-place, at which 500 or more women workers are ordinarily employed, shall be provided with two huts for the use of children, under the age of 6 years, belonging to such women. One hut shall be used for infants' games and play and the other as their bed room. The huts shall not be constructed on a lower standard than the following:—

- (i) Thatched roofs;
- (ii) Floors and walls; and
- (iii) Planks spread over the mud floor and covered with matting.

The huts shall be provided with suitable and sufficient openings for light and ventilation. There shall be adequate provision of sweepers to keep the places clean. There shall be two *dais* in attendance. Sanitary utensils shall be provided to the satisfaction of the Health Officer of the area concerned. The use of the huts shall be restricted to children, their attendants and mothers.

13. Canteen

A cooked food canteen on a moderate scale shall be provided for the benefit of workers wherever it is an integral part of the contracts.

354

المراجعة والمحاد

REPORT OF RATES & COSTS COMMITTEE APPENDIX 4 Preventive Maintenance Control Report Unit No.

Type of Due at Done at	Unit No Unit Hours to date							
Type of Inspec- tion dueDue at (Hours)Done at 	Jan.	Feb.	Mar.	Apr.	Мау	June		
	<u> </u>		• 2			·		
	2	<u></u>	<u>.</u>	 				
	3				<u> </u>			
	4							
	5							
	6	an a		•				
	7	<u>lan seja</u>	Angel		· · · · · · · · · · · · · · · · · · ·	i i i i i i i i i i i i i i i i i i i		
	8							
	9							
	10			· · ·		·		
	11		<u> </u>					
	12	•						
	13							
	14		<u> </u>					
	15							
	16				•			
	17	,						
	18							
	19					<u> </u>		
	20					: .		
	21			• • • • • • • • • • • • • • • • • • •				
	22							
	23	4		•••••• •	1	······		
	24			•				
	25	.:	ŧ .					
	26			:				
	27		•					
	28							
	_ 29			- •				
	30							
	31							

APPENDICES

FORM 6.9.5(1)

APPENDIX 4-contd.

Preventive Maintenance-8 Hours

Name of machine : Excavator

Unit No...... Date...... Total operating hours..... Date......

Check and correct, if necessary, using symbol (*) if O.K., (@) if repair or adjustment is made and (0) if repair is needed and not completed.

Work to be done	Before shift 1	Before shift 2

Engine

- (1) Check oil level
- (2) Check radiator level
- (3) Check fuel oil level
- (4) Check water pump grease cup (1 turn)
- (5) Check water temperature
- (6) Check oil temperature
- (7) Check oil pressure
- (8) Check air cleaner and breather caps
- (9) Inspect for fuel oil and water leaks
- (10) Idle engine before starting (10 minutes)

Excavator

- (1.1) Lube all 8-hour grease points with wheel bearing grease
- (12) Lube open gears and sprockets with open gear compoined
- (13) Check controls, clutches, brakes
- (14) Check dipper teeth
- (15) Inspect loose nuts & bolts
- (16) Inspect oil leaks in Hyd. System, etc.

Operator-----

Mechanic-----

Supervisor -----

M 7CW&PC/63-24

APPENDIX 4-contd.

Preventive Maintenance-100 Hours

Unit No.------Total Operating Hours-----

Check and correct, if necessary, the following items using the symbol (*) if O.K., (@) if repair or adjustment is made, (0) if major repair is needed and not completed. List on reverse side of sheet explanation of repairs made, or reasons why they were not completed.

- 1. Lubrication
 - Clean oil filter cap Change engine oil Change lube oil filter (elements) Check differential lube (level) Check rear axle planetaries (L.I.) Check steering gear lube (level) Check transmission lube (level) Check hydraulic oil (level) Check hydraulic oil (level) Clean and re-fill hydraulic (tank breather) Grease clutch release (bearing) Grease tandom units cross (shaft) Grease brake anchor pins
- 2. Oil Can Points Throttle linkage Clutch linkage Clutch air cylinder Emergency brake linkage Cob locks Cob door hinges Hood fasteners Battery case fastener Brake treadle valve Wiper motor (air)
- 3. Engine Lub. System Check— All lines for locks Oil filter for locks Pan bolts for tightness Clean breather cap
- 4. Air Cleaners Tighten hose clamps Clean central tube Check hoses and pipes for cracks or locks
- 5. Belts Check for wear frayed, or cracked spots, adjust slack Fan Compressor Generator Steering Booster Tighten crankshaft nut

6. Engine Mounting Tighten engine supports

-Date-

7. Fuel System Check lines for leaks Check pump for leaks Check injector lines Fuel filters

8. Cooling System Check for leaks-Hoses Water pump Oil Cooler Water manifold Drain Cocks Check anil-freeze strength

9. (a) Clutch Check Linkage for tightness Air cylinder stop Pedal clearance 1" free (travel)

(b) Convertor & Transmission Trans. mounting bolts for (tightness) Convertor mounting bolts for (tightness)
Oil-liners for jacks Engine synchronization Convertor for locks Transmission clutches
Gear shifts for linkage for (tightness) Convertor stall speed

10. Transmission Tighten— Mounting bolts Gear shifts tower bolts Power take-off bolts

1

11. Drive Lines

Tighten companion flange bolts Tighten universal bearing bolts Check for loose universals

- 12. Rear Axle and Differential Check and Tighten— Differential companion flange nut Carrier nuts Axle mounting bolts Clean and open differential breather
- 13. Wheels & Tyres

Tighten lube and wheel nuts Tighten driving flange bolts Check tyre pressure Check for cuts, bruises & breaks Check tyre matting

- 14. Springs and Torque Rods Check and/or tighten Check or tighten items listed on (check sheet)
- 15. Brakes Adjust front and rear brakes
- 16. Air System

.

Air lines Tradle valve Brake chamber Quick release valve Clutch air assist valve Air compressor

17. Emergency Brake

Check brake lining for wear Adjust brake shoes Inspect the ratchet, pawl, and (linkage) Check brake airassist

18. Steering System

Check for loose or bent tie rod (and drag link)

19. Electrical System

20. Batteries

Check liquid level Check Hydrometer reading Check connections.

- 21. Cab Check, adjust or replace Tighten cab hold-down (bolts)
- 22. (a) Instrument Panel
 Air pressure gauge & governor
 operation
 Techometer lubricating oil pressure
 (gauge)
 - (b) Instrument panel (convertor units

Check

23. Accessories

Check operation of the following accessories— Windshielf Wiper, Fire Extinguisher, Horn Heat & Defroster

24. Hydraulic System

(Rear Dump & Scrapper Units only) Test Hydraulic system Check visually for leaks Check hydraulic control (linkage)

25. Scrapper Units Ejector return spring Cutting edges for wear

Cutting edges for wear Sheaves Frayed or worn cables Tighten

26. Trailer Units

Wheel wind for adjustment Door stops Sheaves Frayed or worn cables

27. Road Test

Engine Clutch Brakes Check Steering On Tractor-trailer units

APPENDIX 4-contd.

Preventive Maintenance-500 hours

Total Operating Hours--Date-Unit No.-

Check and correct, if necessary, the following items using the symbol (*) if O.K., (@) if repairs or adjustment is made, (0) if major repairs are needed and not completed. List on reverse side of sheet explanation of repairs made or reasons why they were not completed.

1. Cleaning

Wash unit Steam clean engine

- 2. Lubrication—Drain & Refill Hydraulic transmission oil Clean transmission suction screen (Allison only) Replace fuel filter elements oil Generator and starter
- 3. Frame Examine for cracks inside and out
- 4. Cab Canopy or Dash Check condition of wiring
- 5. Electrical System Check condition of wiring
- Engine (Cummins)
 Clean fuel pump screen Tighten cylinder head bous Adjust valves
 Tighten manifold bolt Check blawby Inspect superchanger for leaks
- 7. Engine (G.M.C.)

Adjust valves Time injectors Position injector control rock Tighten cylinder head nuts Clean air bolts

8. Wheel Bearing—Frong and Irailor Adjust Bearings 9. Front Axle

Check— King pins and bushings Spindle to axle clearance (TD & FFO only)

Toe-in

- 10.(a) Rear Dump Units (Body)

Examine and repair-Moles and cracks Broken welds Loose or bent canopy Broken welds

10.(b) Trailer Units

Check— Holes and cracks Broken welds Tighten hinge bolts Tighten wheel wind mounting (bolts)

10.(c) Scrapper Units

Check— Holes and cracks Broken welds

- 11. Perform 100 Hrs. P.M, Check
- 12. Additions

APPENDICES

APPENDIX 4-contd.

Preventive Maintenance-1000 hours

Unit No. ——— Total Operating Hours ——— Date-

Check and correct, if necessary, the following items using the symbol (*) if O.K., (@) if repairs or adjustment is made, (o) if major repairs are needed and not completed. List on reverse side of sheet explanation of repairs made, or reasons why they were not completed.

1. Lubrication—Drain & Refill

Differential Rear axle planetaries Steering gear Transmission & replace oil (filter element) Change hydraulic oil and (filter) Change wheel wind oil Grease slack adjuster Refill Driver seat slack absorber Oil slack upper bushing •

2. Cooling System

Drain, flush & refill Remove and clean oil cooler

3. Hydraulic System Check relief valve adjustment Check steering booster relief, valve setting 4. Air System

Check— Air compressor discharge valve for carbon (& clean if necessary) Adjust air compressor (unloading valve) Clean compressor (oil supply & return lines) Clean Governor air strainer Clean safety valve pop off pressure

5. (a) Engine (G.M.C.) Inspect intake parts Inspect Piston rings Inspect Blower for wear & leaks

(b) Engine (Cummins) Check crankshaft end ply Clean injectors Grease water pump & fan hub

- 6. Perform 500 Hour checks
- 7. Additions.

Preventive Maintenance-2000 Hours

Unit No. ——— Total Operating Hours————Date—

Check and correct, if necessary, the following items using the symbol (*) if O.K., (@) if repairs or adjustment is made, (0) if major repairs are needed and not completed. List on reverse side of sheet explanation of repairs made, or reasons why they were not completed.

1. Electrical System

Check generator brushes & commutator Tighten generator mounting Check starter brushes and commutator Tighten starter mounting Tighten starter soleniod (Hold-down bolts) Clean and adjust regular

2. Wheel Bearing and Brakes

Examine all brake linings (for wear)

Re-pack wheel bearings Inspect planetaries (Unit with planetaries in wheels)

3. Steering System

Check steering column for alignment Adjust steering gear-cum-thrust (bearings) Adjust steering gear backlash

4. Perform 1000, 500 and 10 Hour checks

5. Additions

APPENDIX 4- concld.

Preventive Maintenance-4000 Hours

Check and correct, if necessary, the following items using the symbol (*) if O.K., ((@) if repairs or adjustment is made, (0) if major repairs are needed and not completed. List on reverse side of sheet explanation of repairs made or reasons why they were not completed.

1. Engine

Re-condition engine Dis-assemble & inspect (Clutch or Convertor & Transmission)

2. Differential & Planetaries

Dis-assemble & inspect (differential) Remove and inspect (planetaries)

3. Air System

Dis-assemble, clean and replace diaphragms or sects. Brake chambers Quick release valv Check valve Treadle valve operatior Check Air Compressor

4. Perform 2000, 1000, 500 & 100 Hour checks

5. Additions

Time speed Time speed Time speed

> Mechanic Mechanic Master Mechanic

APPENDICES

APPENDIX 5

(1) Maintenance Charges per day for a Sentinel Steam 1000

N.B. :- Monthly expenditure for loco working for 6 hours every day; working days assumed to be 25 in a month.

SI. No.	Description of w	ork	Rate Rs.	Amount	Total
. (a) Fuel and consu	mables				
Coal @ 0 4 ton p 10 tons	er loco per day for 2	5 days—	45/- per ton	450/-	
(b) B.B. oil (Mol for 25 days-5	bil oil) 0.2 per loco gals	per day	4/- per gal	20/-	
(c) Cylinder oil, (loco per day fe	600 W : 0 ·1 gal. per or 25 days-2 ·5 gals	•	4/- "	10/-	
(d) Kerosene oil:	1 gal. for 25 days pe	er loco	1/4 "	1/4/-	
(e) Cotton waste	for 25 days for one le	oco 10 lbs	1/- ,,	10/-	
	2 lbs. per loco per day 2×25 = 0.13 ton 2240	••••••	37/- per ton	4/13/-	
(g) Other Misc. such as grea			L.S.	3/15/-	
				500/-	500/-
. Crew					
(a) Driver		•• ••	95/- per month	95/-	
(b) Fireman		•• ••	55/-	55/-	
(c) Cleaner		•••	40/-	40/-	
				190/-	190/-
II. Labour				•	
A) Conveyance of 10 t supplying etc.	ons of coal, breaking	&			

••

(i) One lorry can convey 10 tons in 5 trips

362

APPENDIX 5-contd.

Maintenance Charges per day for a Sentinel Steam 100

Sl. No.	Description of work	Rate Rs.	Amount	Total
side o	for each trip to and fro from back f Genl. Stores to coal dump is 3 miles ips $(5 \times 3) = 15$ miles conveyance	, 1/- per mile	15/-	
(ii) Loadin tons	ng and unloading charges for coal—10	2/- per ton	.20/-	
-/12/- f shift T	ng and supplying of coal 7 females @ for supplying for 9 locos at $5/4-1$ -per otal coal supplied for 9 locos— n (as above) $\times 9=3.6$ tons	For 3.6 tons 5/4/-	14/10/-	
(B) Firewood spli	tting	a	.	
300 lbs. (C) Conveyance o	foil etc.	S. S.	2/- 2/-	
(c) conveyance e				56 (3.0
IV. One loco/mon	th/shift Boiler Inspection		53/10	53/10
	$30/-\times 14$ per year for 2 shifts ting to 9 locos	420/- 9 locos for ye 2 shifts	2/- ear for	2/-
V. Repairs and R	enewals			
-	o/mònth/shift	9 locos 900/- for 2 shifts	50/-	50/-
VI. Petty Supervis	sion and Contingencies	•		
One Mis 2nd Mis Watchm	try	94/- 49/- 34/-	a.	
	for 2 shift to for one month for 1 shift	177 <i> -</i> 177 <i> -</i>	9 locos/ month/ shift	9/13
			TOTAL	805/7/-

: Charges of one day $=\frac{805/7/-}{25}=32/3/2$, or say Rs. 32/-

A sentinel loco can convey about 3000 cu. ft. of spoil per 8 hours with a lead of half a mile.

APPENDICES

APPENDIX 5-concld.

(2) Maintenance Charges per day for a Diesel Loco

N.B. :--Monthly expenditure for one loco working for one shift of 6 hours; working days assumed to be 25 in a month.

SI. No.	Description of	work	Rate (Rs.) At	mount T	Fotal
	Data for ea	ach shift of 6 h	nours		
I. Crew Driver		••••••	95/- per	95/- 40/-	
			–	135/-	135/-
II. Consumables					-
	$5\frac{1}{2}$ gals. per day for 25	days— $162\frac{1}{2}$	1/4 per gal.	203/2/-	÷
2 ·5 ga	B.B. oil. 0.1 gal./day ls.		4/-	10/-/-	ai.
$\times 25=3$ (d) Cotton wa	930, 0 15 gal./day for 75 gals	25 days	4/- 1/- per lb L.S.	15/- 5/- 2/-	
				235/2/-	235/2/-
II. Repairs and rene	wals—servicing in work	shop			
For 4 locos for t	wo shifts for 25 days —	Rs. 160			
So, far 1 lo	co for one shift		$=\frac{160}{4\times 2}=20$	20/-	20/-
V. Labour for conve	vance of oils, etc.	•• ••	L.S.	8/-	8/-
V. Petty supervision	charges and contingenc	ies	•		
1 Mistry @ R shifts.	s. 50/- per month for 4	locos for two			
S. for analog	o for one shift=	0 6/4/-	· .		6/4/-
	4×	2			404/6/-
Total expendit	ture for one loco for 2	5 days =	404/6/- 404/6/16		•
Total expend	iture for one loco for c	lay =	$\frac{404/0}{25} = 16$	·28	
A diesel loco	can convey about 2000	cu. ft. of spoi	or say Rs. 16/-/- 1 per 8 hours with	n a l c ad of	1/2 mile

APPENDIX 6

Tables of Output of Excavators as suggested by Foreign Authors

1. Reference : Construction Planning and Plant by Ackermanu and Locker; McGraw-Hill Book Coy., New York.

C1		Capacity of the Excavator in cyds.									
Sl. No.	Soils	3/4	1	11	2	2 1	3	3 1			
1	2	3	4	5	6	7	8	9			
						· · ·					
-	Light, moist caly or	42 50	EA (0	75.07	04 100	110 100	107 146	143 166			
-	oam	43-50	54-62	75-86	94-109	110-120	127-146	143-10			
	sand and gravel	24-45	43-55	60-77	75-97	88-113	102-131	114-14			
	Light clay mixed with		10 00								
	gravel	28-32	35-40	49-56	61-70	71-82	83-95	93-107			
. 1	Heavy clay & boulders	22-28	27-35	38-49	47-61	55-71	64-83	72-93			
	Blasted rock, hardpan		an an an an Tao ao amin' ao amin' ao amin' amin' ao amin'	N	$(x_{i}) \in [0,\infty)$						
t	ough rubbery clay	15-19	19-24	25-34	33-42	39-50	45-57	50-64			

Maximum Output (Bank Measure) in CFC Units per hour

This Chart indicates the maximum outputs for favourable conditions assuming no lost operating time and 90° swing to dump. The practical output may be 85 to 50% of indicated output depending on skill and experience of operators and local conditions.

^{2.} Reference : Estimating Construction Costs by Peurifoy, McGraw-Hill Book Coy., New York.

Soils	45°	90°	180°	45°	90°	180°	45°	90°	180°
	2	3	4	5	6	7	8	9	10
	<u>3</u> 4	cyd.		1	cyd.			2 cyds.	
Shovels									
Sandy loam	45 37	35 24	25 21	57 48 ∙5	45 38	32 27	97 82	79 65	55 46
Hard earth	26	24	17	40	32	22	82 73	58	40
Rock blasted	21	16	14	34	27	19	64	50	36
		$\frac{1}{2}$ cy	d.		1 cyd.			2 cyds.	
Draglines			- 						
Sandy loam	21	17 •	5 13.5	35	30	23	58	49	38
Ordinary earth	16.5	14	10 ·9	31	26	20	51	43	33
Hard earth	12 7	10	8 4·5	24 16 • 5	21	16	44 5 32	36 27	28 21

Representative Hourly Outputs in CFC (Bank Measure)

APPENDIX 7

Hourly Use Rate of Mechanical Eqipment

 I. Air Compressors (a) 210 C. F. M. Diesel, Portable (b) 315 C. F. M. Diesel, Portable (c) 500 C. F. M. Electrical, Stationary II. Belt Loader 18 B. V. Belt Loaders III. Dump Truck (a) 9.7 Cyd., 15 ton Rear Dump (b) 14.8 Cyd., 22 ton Rear Dump (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump V. Excavators (a) (i) ¹/₂ Cyd. Shovel (ii) 1¹/₂, ", ", ", ", ", ", ", ", ", ", ", ", ",	urly use e in Rs.
 (b) 315 C. F. M. Diesel, Portable (c) 500 C. F. M. Diesel, Portable (d) 500 C. F. M. Electrical, Stationary II. Belt Loader 18 B. V. Belt Loaders III. Dump Truck (a) 9 ·7 Cyd., 15 ton Rear Dump (b) 14 ·8 Cyd., 22 ton Rear Dump (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump V. Excavators (a) (1) ³/₂ Cyd. Shovel (ii) 1¹/₂ ,, (iii) 2¹/₂ ,, (b) (i) ³/₂ Cyd. Dragline (iii) 1¹/₂ ,, (iv) 3¹/₂ ,, (b) (i) ³/₂ Cyd. Dragline (iii) 1¹/₂ ,, (iv) 3¹/₂ ,, (b) (i) ³/₂ Cyd. Drawn Scrapper (b) 15/20 ,,, (c) 10/13 ,, Motorised (d) 15/20 ,,, VI. Tractors (a) 81 H. P. Crawler Tractor (b) 10 H. P,,, (c) 81 H. P. Tractor Dozer 	<u></u>
 18 B. V. Belt Loaders III. Dump Truck (a) 9 ·7 Cyd., 15 ton Rear Dump (b) 14 ·8 Cyd., 22 ton Rear Dump (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump V. Excavators (a) (i) ³/₂ Cyd. Shovel (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , (c) 10/13 , Motorised (d) 15/20 , , , VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , (c) 81 H. P. Tractor Dozer 	10 ·5 14 ·0 20 ·0 16 ·5
 III. Dump Truck (a) 9 • 7 Cyd., 15 ton Rear Dump (b) 14 • 8 Cyd., 22 ton Rear Dump (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump 7. Excavators (a) (i) ³/₄ Cyd. Shovel (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , , (iv) 3¹/₂ , , , V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , , V. Intractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , , (c) 81 H. P. Tractor Dozer 	
 (a) 9.7 Cyd., 15 ton Rear Dump (b) 14.8 Cyd., 22 ton Rear Dump (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump (e) 17 Cyd., Struck Bottom Dump (f) 12 Cyd. Shovel (f) 12 Cyd. Shovel (f) 12 Cyd. Shovel (f) 12 Cyd. Dragline (f) 12 Cyd. Drawn Scrapper (f) 15/20 , , , , Motorised (f) 15/20 , , , , , , , , , , , , , , , , , , ,	55 ·0
 (b) 14 · 8 Cyd., 22 ton Rear Dump (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump V. Excavators (a) (i) ³/₂ Cyd. Shovel (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , (b) (i) ³/₄ Cyd. Dragline (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , , V. Scrappers (a) 10/13 , Motorised (d) 15/20 , , , VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , , (c) 81 H. P. Tractor Dozer 	
 (c) 13 Cyd., Struck Bottom Dump (d) 17 Cyd., Struck Bottom Dump V. Excavators (a) (i) ³/₂ Cyd. Shovel (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , (b) (i) ³/₄ Cyd. Dragline (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , , (iv) 3¹/₂ , , , (iv) 3¹/₂ , , , , V. Scrappers (a) 10/12 .05 Cyd. Drawn Scrapper (b) 15/20 , , , , V. Scrappers (a) 10/13 , Motorised (d) 15/20 , , , , VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , , (c) 81 H. P. Tractor Dozer 	34.0
 (d) 17 Cyd., Struck Bottom Dump <i>Excavators</i> (a) (i) ³/₂ Cyd. Shovel (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , (b) (i) ³/₄ Cyd. Dragline (ii) 1¹/₂ , , , (iii) 2¹/₂ , , , (iii) 2¹/₂ , , , (iv) 3¹/₂ , , , V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , (c) 10/13 , Motorised (d) 15/20 , , , VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , (c) 81 H. P. Tractor Dozer 	52·0
 V. Excavators (a) (i) ³/₂ Cyd. Shovel (ii) ¹¹/₂ , , , (iii) ²¹/₂ , , , (iv) ³¹/₂ , , , (b) (i) ³/₂ Cyd. Dragline (ii) ¹¹/₂ , , , (iii) ²¹/₂ , , , (iv) ³¹/₂ , , , V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , (c) 10/13 , Motorised (d) 15/20 , , , VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , (c) 81 H. P. Tractor Dozer 	37 ∙0 47 ∙0
 (a) (i) \$ Cyd. Shovel (ii) 11/2 ", ", ", (iii) 21/2 ", ", ", (iv) 31/2 ", ", ", ", (iv) 31/2 ", ", ", ", ", ", ", ", ", ", ", ", ",	
(ii) $1\frac{1}{2}$, , , (iii) $2\frac{1}{2}$, , , (iv) $3\frac{1}{2}$, , , (iv) $3\frac{1}{2}$, , , (ii) $1\frac{1}{2}$, , , (iii) $2\frac{1}{2}$, , , (iv) $3\frac{1}{2}$, ,	31 •0
(iii) $2\frac{1}{2}$, , , (iv) $3\frac{1}{2}$, , , (b) (i) $\frac{3}{4}$ Cyd. Dragline (ii) $1\frac{1}{2}$, , , (iii) $2\frac{1}{2}$, , , (iv) $3\frac{1}{2}$, , , (iv) $3\frac$	50.0
(iv) $3\frac{1}{2}$, , , (b) (i) $\frac{3}{4}$ Cyd. Dragline (ii) $1\frac{1}{2}$, , (iii) $2\frac{1}{2}$, , (iv) $3\frac{1}{2}$	64.0
 (b) (i) ³/₂ Cyd. Dragline⁽ⁱⁱⁱ⁾ (ii) ¹/₂ , , , , (iii) ²/₂ , , , , (iv) ³/₂ , , , , (iv) ³/₂ , , , , . V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , , ,,,,,,	89 ·0
(ii) $1\frac{1}{2}$,, ,, (iii) $2\frac{1}{2}$,, ,, (iv) $3\frac{1}{2}$,, ,, V. Scrappers (a) $10/12 \cdot 05$ Cyd. Drawn Scrapper (b) $15/20$,, ,, (c) $10/13$,, Motorised (d) $15/20$,, ,, VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. ,, ,, (c) 81 H. P. Tractor Dozer	29 ·0
(iii) $2\frac{1}{2}$, , , (iv) $3\frac{1}{2}$, , , V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 , , , (c) 10/13 ,, Motorised (d) 15/20 ,, , VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. , , , (c) 81 H. P. Tractor Dozer	43 ∙0
 V. Scrappers (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	55.0
 (a) 10/12 ·05 Cyd. Drawn Scrapper (b) 15/20 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	7 4 · 0
 (b) 15/20 ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	
(c) 10/13 ,, Motorised (d) 15/20 ,, ,, VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. ,, ,, (c) 81 H. P. Tractor Dozer	14·0
(d) 15/20 ", " VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. ", " (c) 81 H. P. Tractor Dozer	20 ∙0 43 ∙0
VI. Tractors (a) 81 H. P. Crawler Tractor (b) 130 H. P. " " (c) 81 H. P. Tractor Dozer	43·0 56·0
 (a) 81 H. P. Crawler Tractor (b) 130 H. P. ", ", (c) 81 H. P. Tractor Dozer 	50 0
(b) 130 H. P. """"""" (c) 81 H. P. Tractor Dozer	25.0
(c) 81 H. P. Tractor Dozer	25 •0 29 •0
	29.0 28.0
(e) D-4 Tractor with Sheepsfoot Roller	32·0
	15.15
11. Motor Grader	
115 Y. P.	25.0

USE RATES OF MECHANICAL EQUIPMENT

1. Air Compressors—Portable

(A) 210 C.F.M. Diesel Compressor (55 H.P.)

人名法法 法法律法 网络拉拉拉 医白色白色 网络白色 法公司 计算法分词				Rs.
Cost of Compressor	• •		••	. 26,100
Depreciation per hour (b) Repairs & maintenance cost @ 80% of deprecia		• •	••	. 2.61 . 2.09
(c) Fuels & lubricants 2.25 gallons Diesel Oil @ Rs. 1.5 per gal.	••	•		. 3.40
Lubricants & grease	•	•	• •	. 0.75 . 0.75
				4.90
(d) Labour Charges				
$\frac{1}{2}$ No. Driver @ Rs. 4 · 5 per day per shift 1 No. Helper @ Rs. 3 · 0 per day per shift	• • •	••	•••	· 0·30 · 0·40
Add 250/ for idle davis & lours reserve				0.70
Add 25% for idle days & leave reserve	•	•		. 0.18
Labour rate per working hour	••	•	• •	. 0.88
stract				A (1
Depreciation		•	•	2.61 2.09
P.O.L. charges	•	•	• •	. <u>2</u> .09 . <u>4</u> .90
Labour charges		•	• •	0.88
Use rate per working hour .		2 g - 1		10.10
Ose fate per working hour .	· •	•	• •	10.48
Ose fate per working nout		•	•	Say, Rs. 10.5
	mpresso	r (78]		
(B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour	mpresso	r (78]		
(B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor	mpresso	r (78]		
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour 		•		Say, Rs. 10·5
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 		•		Say, Rs. 10.5 . 38,300 . 3.83
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 3 gals, Diesel oil @ Rs. 1-5 per gal. 		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50 1.00
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 3 gals, Diesel oil @ Rs. 1-5 per gal. 		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 3 gals, Diesel oil @ Rs. 1-5 per gal. Lubricants and grease Sundries such as cotton waste etc. 		•		Say, Rs. 10.5 . $38,300$. 3.83 . 3.07 . 4.50 1.00 0.75 6.25
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 3 gals, Diesel oil @ Rs. 1-5 per gal. Lubricants and grease 		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50 1.00 0.75
 (B) 315 C.F.M. Diesel Portable Configuration of the Compressor		•		Say, Rs. 10.5 . $38,300$. 3.83 . 3.07 . 4.50 1.00 0.75 6.25
 (B) 315 C.F.M. Diesel Portable Contact (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 3 gals, Diesel oil @ Rs. 1-5 per gal. Lubricants and grease Sundries such as cotton waste etc. (d) Labour charges per working hour 		•		Say, Rs. 10.5 . $38,300$. 3.83 . 3.07 . 4.50 1.00 0.75 6.25
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50 1.00 0.75 <u>6.25</u> 0.88
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50 1.00 0.75 6.25 0.88 3.83 3.07 6.25 0.58
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor		•		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50 1.00 0.75 6.25 0.88 3.83 3.07
 (B) 315 C.F.M. Diesel Portable Con (a) Depreciation per working hour Cost of the Compressor Life —10,000 hours Depreciation per hour (b) Repairs and maintenance @ 80% of depreciation (c) Fuels, lubricants, etc. 3 gals, Diesel oil @ Rs. 1.5 per gal. Lubricants and grease Sundries such as cotton waste etc. (d) Labour charges per working hour stract Depreciation Repairs & Maintenance P.O.L. charges 	n char	ges		Say, Rs. 10.5 . 38,300 . 3.83 . 3.07 . 4.50 1.00 0.75 6.25 0.88 3.83 3.07 6.25 0.58

							Rs.
· (a) Depreciation per working	hou r					
	Cost of the Compressor Life in hours—10,000	•• ••	•• ••	••	••	••	58,000
	Depreciation per hour						5.8
(b) Repairs & Maintenance (a	80% of depr	eciation ch	arges	••	••	4.64
· (c) Fuels, lubricants etc.				••	••	
	4.5 gls. of Diesel oil @ R	s. 1 ·5	•••	••	••	••	6 • 75
	Lubricants & grease Sundries such as cotton wa	•• ••	•• ••	••	• •	••	1.00
	Summer such as cotton wa	iste	•••••	••	••	••	0.75
						_	8 .50
(d) Labour charges						
	$\frac{1}{2}$ No. driver @ Rs. 4.5 pe	r day per shif	t	••	••	••	0.30
	I No. helper @ Rs. 3 per	day per shift	••	••	••	••	0 • 40
							0.70
	Add 25 % for idle days ar	nd leave reserv	e	• •	••	••	0.18
	· · · · · · · · · · · · · · · · · · ·						
Abstrac	4						0.88
Absilat	Depreciation					•	5.80
	Repairs & Maintenance	••••••	•••••		•••	••	4.64
	P.O.L. charges	•• ••	•••••	••			8.50
	Labour charges	•• . ••		••	••	••	0.88
		Use rate per	working ho				19.82
		Ose fate per	working no	ui	••	 Sav 1	Rs. $20/-$
	(D) 500 <i>C</i> . <i>I</i>	F.M. Stationa	ry Electric	Comp	ressor	• •	•
(a) Depreciation per working	hour					
	Cost of the Compressor		•• ••	••			31,200
	Depreciation @ 1% per m	ionth			·.·		312
	Assuming 25 days in a m 200 working hrs. deprecia				day	<i>i.e.</i> 312	
	200 working mis. deprecia	thon rate per	working not	11	••	200	-=1·56
0	Densing & Maintonanas	enel of dome	aciation cha	1000	••	200	1 .25
	o) Repairs & Maintenance @	$00/_0$ of upped	·	ges	••	. • •	1-25
(() Power charges Rated H.P. of the engine	· 120 h p					
	Power consumption per ho	ur at full load		· · ·	••	••	
	Power charges for 89.5 l	Wh @ Re. 0	·125 per uni	t			11.2
	Lubricants and other sund	–	••••	••	• •	••	0.8
	T-4-1	···· 0- •:1 •1• • •					12.0
		er & oil charg	es per hou	Ir	••	••	12.0
(d) Labour charges	an dau aan at:	6 4				0.20
	$\frac{1}{2}$ No. Operator @ Rs. 6 p 1 No. Helper @ Rs. 3 pe	er day per shi	11 H	••	••	••	0.38
	1 No. Helpel (W Ks. 5 per 1 No. France 0 Po 12	a uay per silli	L	••	••	••	0.38
	+ NO Foreman (a) Re 1	пегах пегх	bitts				0 440
	$\frac{1}{4}$ No. Foreman @ Rs. 12 Chowkidar @ Rs. 1 .75 pc	er day of 2 shi	hifts	•••	••	••	0.40

(C) 500 C.F.M. Diesel Portable Compressor (127 H.P.)

Add 25% for non-working season and leave reserve..1.28
0.32Labour charges per hour....1.60

368	REPORT OF RATES & COSTS COMMITTEE
Abstract	Rs.
	Depreciation 1.56
	Repairs & maintenance 1.25
	Power charges
	Labour 1.60
	Use rate per working hour
	Say Rs. 16.50
	2. Excavators
	(A) 3/4 Cyd. Shovels (80 H.P.)
· (a)	Depreciation per working hour
, ,	Cost of the machine 1,21,000
	Life in hours —10,000
· (I)	Depreciation per hour \dots 12.10
(0)	Repairs & maintenance @ 100% of depreciation 12.10
(c)	Fuels, lubricants, etc.
	H.P. of the machine : 80 Fuel consumption in gals. per
	60 min. hr. = $\frac{0.5 \times 80 \times 0.6}{8.26}$ 2.91 gallons
	For 40 min. hr. $=\frac{2.91 \times 4}{6} = 2$ gallons
	2 gals. HSD @ Rs. 1.5
F	P.O.L. charges per working hour $\dots \dots
(d)	Labour per hour
·	1 No. shovel operator @ Rs. 6 per day per shift 0.75
	1 No. helper @ Rs. 3 per day per shift 0.38 1/8 No. Foreman @ Rs.12 per day per shift 0.20
	Chowkidar, etc. 0.12 per day per sint 0.20
	1.45
	Add 25% for non-working season & leave reverse 0.36
	e de la constante de la constan
Abstract	1.81 1.8 1
	Depriciation
	Repairs
	P.O.L. charges 5.25 Labour 1.80
	Use rate per hour

(B) $1\frac{1}{2}$ Cyd. Shovels (170 H.P.)

	• • •							
(a) Depreciation per wo	orking ha	our ·						Rs.
Cost of the machine		••						2,32,100
Life in hours –1200 Depreciation per hou								
		••	••	••	••	••	••	19·4
(b) Repairs and Mainten	ance @ 1	00% d	of depr	eciatior	:	••	••	19·4
(c) Fuels, lubricants, etc								
4 gals. of HSD oil @) Rs. 1 ·5	••			••	•••	••	6.00
Lubricants and greas	se ton wasta	· · · · ·	<u></u>	•••	••	••	••	1.00
Sundries such as cot	ton waste	, petrol,	niters,	etc.	••	••	••	2.00
P.O.L. charges per w	orking ho	our	••	••	••	••	·	9.00
(d) Labour per working	hou r	••	••		••			1.80
11 - 44 4				-				
Abstract							•	
Depreciation Repairs & maintenar	•••	••	••	••	••	••	••	19.40
P.O.L. charges		••	••	•••	••	••	••	19 ·4(9 ·0(
Labour	· · · ·	••		••	•••	••	•••	9.00 1.80
		••					••	
	Us	e rate j	per hou	ır	••	••		49.60
	Us	e rate j	per hou	IT	••	••	 Say	49 •60 Rs. 50/-
		-		.:	 hovel	 (200 H	•	
(a) Depreciation per wor	(C)	$2\frac{1}{2}$ C ₁		.:	hovel	 (200 <i>H</i>	•	
(a) Depreciation per wor	(C)	$2\frac{1}{2}$ C ₁		.:	hovel	 (200 <i>H</i>	•	Rs. 50/-
Cost of the machine	(C)	$2\frac{1}{2}$ C ₁		.:		 (200 <i>H</i>	•	Rs. 50/-
• •	(C) king houi 	$2\frac{1}{2}$ C ₁		.:	hovel	(200 <i>H</i>	•	
Cost of the machine Life —15,000 hours Depreciation per hou	(C) king hou ır	2 <u>1</u> C)	[.] ds. D.	iesel S	hovel	(200 <i>H</i>	•	Rs. 50/- 3,90,000 26 -0
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintend	(C) king hou ur unce @ 1	2 <u>1</u> C)	[.] ds. D.	iesel S	 	 (200 <i>H</i> 	•	Rs. 50/- 3,90,000 26 (
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc.	(C) king hour Ir ance @ 19	2 <u>1</u> C)	[.] ds. D.	iesel S	 	(200 <i>H</i> 	•	Rs. 50/- 3,90,000 26 (26 (
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ R	(C) king hour ur ance @ 19 s. 1.5) 2½ C) 00% oj	[.] ds. D.	iesel S	 	 (200 <i>H</i> 	•	Rs. 50/ 3,90,000 26 -0 7 -50
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ Ra Lubricants and grease	(C) king hour ur ance @ 10 s. 1.5) 2½ C) 00% o) 	rds. D f depred	iesel S	 	 (200 <i>H</i> 		Rs. 50/- 3,90,000 26 -0 7 -50 1 -00
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ R	(C) king hour ur ance @ 10 s. 1.5) 2½ C) 00% o) 	rds. D f depred	iesel S	 	(200 <i>H</i> 	•	Rs. 50/ 3,90,000 26 -0 7 -50 1 -00
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintend (c) Fuels, lubricants, etc. 5 gals. HSD oil @ Ru Lubricants and grease	(C) king hour ur ance @ 10 s. 1.5) 2½ C) 00% o) 	rds. D f depred	iesel S	 	(200 H		Rs. 50/ 3,90,000 26 -0 7 -50 1 -00 2 -00
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ Re Lubricants and grease Sundries such as cott	(C) king hour ir ance @ 1 s. 1 ·5 s. 1 ·5 on waste,) 2½ C) 00% o) 	rds. D f depred	iesel S	 	(200 <i>H</i> 		Rs. 50/ 3,90,000 26 -0 26 -0 7 -50 1 -00 2 -00
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ Ri Lubricants and grease Sundries such as cott	(C) king hour ir ance @ 1 s. 1 ·5 s. 1 ·5 on waste,) 2½ C) 00% o) 	rds. D f depred	iesel S	 	(200 <i>H</i> 		Rs. 50/ 3,90,000 26 -0 26 -0 7 -50 1 -00 2 -00 10 -50 26 -0
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ Ri Lubricants and grease Sundries such as cott Abstract Depreciation per hou Repairs	(C) king hour ir ance @ 1 s. 1 ·5 s. 1 ·5 on waste,) 2½ C) 00% o) 	rds. D f depred	iesel S	 	(200 <i>H</i> 		Rs. 50/- 3,90,000 26 -0 26 -0 2 -00 10 -50 26 -00 26 -00 26 -00
Cost of the machine Life —15,000 hours Depreciation per hou (b) Repairs and maintena (c) Fuels, lubricants, etc. 5 gals. HSD oil @ Ri Lubricants and grease Sundries such as cott	(C) king hour ance @ 10 s. 1.5 s. 1.5 on waste,) 2½ C) 00% o) 	rds. D f depred	iesel S	 	 (200 <i>H</i> 	 	Rs. 50/- 3,90,000

Say Rs. 64/-

. .

64.30

(D) $3\frac{1}{2}$ Cyds. Shovel (225 H.P.)

. .

• •

(a) Depreciation per working hour

Cost of the machin Life—15,000 hours	••	••	••	••	••	••	•••	5,68,700
Depression	••	••	••	••	••	••	 Sa	37 ·9 ay Rs. 38 ·0

Use rate per hour

(b) Repairs & Maintenance @ 100% of depreciation	Rs. 38 -00
 (c) Fuels lubricants etc. 5.5 gals. of HSD oil @ Rs. 1 Lubricants & grease Cotton waste, filters, petrol and other sundries 	8 •25 1 •00 2 •00
	11.25
(d) Labour per working hour	1 -80
Abstract of use rate per working hou	
 (a) Depreciation (b) Repairs & Maintenance (c) P.O.L. charges (d) Labour 	38 -00 38 -00 11 -25 1 -80
	89 -05
	Say Rs. 90/-

(E) Draglines

		Use rate per hour	Use
SI. No.	Capacity	Cost Life in Depre-Repairs Fuel Labour (Rs.) working ciation & hours Lubri- cants	rate (Rs.)
1	2	3 4 5 6 7 8	9
1. 2. 3. 4.	$ \frac{\frac{3}{4} \text{ Cyd.}}{\frac{11}{2} \text{ , } \dots \\ 2\frac{1}{2} \text{ , } \dots \\ 3\frac{1}{2} \text{ , } \dots \\ \dots$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 43 55 74

(A) 81 H.P. Crawler Tractor	Rs.
(a) Depreciation	
Cost of tractor	88,600
Life—10000 hours Depreciation per hr. $= \frac{88600}{10000}$	8 •86
(b) Repairs & Maintenance @ 100% of depreciation	8.86
(c) Fuels, lubricating etc.	al Na sa ang taong tao
2 gals. of H.S.D. oil @ Rs. 1.5 per gallon	3 ·00 0 ·75 2 ·00
	5.75

3. Tractors

370

•

	•							D-
(d) Labour per working hour	•							Rs.
1 No. Driver @ Rs. 6 pe	r day p	er sh	ift	••				0.75
1 No. helper @ Rs. 3 per	t day per	shift			••	••	••	0.38
1/8 No. Foreman @ Rs.	12 per da	av de	r shift	••	• • •	••	••	0 • 20
Chowkidar @ Rs. 1 .75 p	per day of	f 2 sł	hifts	••	••	••	••	0.11
Add 25% for non-workin	g season		•					1 ·44 0 ·36
	-							
								1 .80
Abstract of use rate per work	ing hour	•						
(a) Depreciation		•	••	••	••	••	••	8 ·86
(b) Repairs & Maintenance		•	••	••	••	••	• •	8 ·86
(c) P.O.L. charges	•••••••	•	••	••	••	••	••	5.75
(d) Labour	•• •	•	••	••	••	••	••	1.80
	Use rat	te pe	r hou	ſ	••	••	**	25 ·27
	(<i>B</i>) 130) <i>H</i> .	P. Cra	wler I	Tractor			
(a) Depreciation			•	•				
Cost of the machine	•••••	•	••	••	•	••	••	1,19,000
Life—12,000 hours								0-00
Depreciation per hour	•• •	• ·	••	••	••	••	Sav	9 •92 Rs. 10 •00
(b) Repairs & Maintenance @	0 100 %	of der	reciat	ion		••'	Say .	10.00
(c) Fuel, lubricants etc.		,					••	
	1 6							4 60
3 gals. of HSD oil @ Rs.	1.2 .	•	••	••	••	•••	••	4.50
Lubricants and grease Sundries like cotton waste	noteol	eta	••	••	••	. ••	••	1 ·00 2 ·00
Sundries like cotton waşte		010.	••	••	••	• •	••	
(d) Labour per working hour	•	•	••	••	••	••	••	1•8
bstract								
(a) Depreciation	•• •		••	••	••	••	••	10.00
(b) Repairs & Maintenance		•	••	••	••		••	10.00
(c) P.O.L. charges	••••••	•	••.	••	••	••	••	7.50
(d) Labour	•••••	•	••	• •	••	••	••	1.80
	Use ra	te pe	er wor	king İ	iour	•	• ••	29 ·30
		-					Say	Rs. 30/-
	4	S						
· · · •			ppers	de	176 7	7 11 \		
(A) Motorised		er (1	0/1 <i>3 C</i>	yas.,	170 1	(.)		
(a) Depreciation per working(i) Cost of the scrapper 1		and	tubes					
(1) Cost of the scrapper 1 (Rs. 1,69,	400-16	300)					Rs.	153,100
Life in working hours up	to 10-12 ove 10-1	2,000) 0					
		•			••		••	12.76
Depreciation per hour				••				

•

1120

(ii) Depreciation of tyres and tub Cost	bes	•••	· • • •		••		Rs. 16,296
Life in hours—3000		at sta					
Depreciation of tyres & tuber Total depreciation per hour	s per hou $=(12.76)$	ır +5 •44)	:	• •	**	••	5 •44 18 •20
(b) Repairs & Maintenance @10 of tyres = [12.76+(5.44+0.5	00% of de 55)]	pr. of	machi	ne+55	5% of 	depr.	15.75
(c) Fuel, lubricants etc.			•				
3 gals. HSD oil @ Rs. 1.5		••	••	•••		••	4.50
Lubricants and grease Sundries such as cotton waste	e. petrol.	etc.		•••	• •	••	1.00
a second a second a second a second a second a second a second a second a second a second a second a second a s	-, F,						
(d) Labour per hour							7 •50 1 •80
	nget st e e , lig b		s ≢ ≢ su	, • •	••		1 0
act							
(a) Depreciation	••		•	••	, s 		18 .2
(b) Repairs & Maintenance	÷	•	• •	• •	• •	• •	15.7
(c) P.O.L. charges			• •	••	••	••	7 •5 1 •8
	tinini tini tinini tinini	681 68			1	anti Ang ang ang ang	
	US	e rate	per wo	Jung	nour	Say Rs.	43 •2 43/-
. (1	B) 15/20 C	Cyds.	Motor	ised So	crapper		
(a) Depreciation							
• •	A Arrand	1.5.53					1 62 00
(i) Cost of the machine less	4 tyers	1. .	• •	• •			1,02,00
Life—15,000 hours.	4 Lyers	•		• •			
Life—15,000 hours. Depreciation per hours (<i>ii</i>) Cost of tyres				••			•8 Say 1
Life—15,000 hours. Depreciation per hours (<i>ii</i>) Cost of tyres Life 300 hours				•••			•8 Say 1 32,00
Life—15,000 hours. Depreciation per hours (<i>ii</i>) Cost of tyres Life 300 hours Depreciation per hour							1,62,000 -8 Say 1 32,000 11 -0 22 -0
Life—15,000 hours. Depreciation per hours (<i>ii</i>) Cost of tyres Life 300 hours Depreciation per hour Total depreciation=Rs.	(11+i1)						•8 Say 1 32,00
Life—15,000 hours. Depreciation per hours (<i>ii</i>) Cost of tyres Life 300 hours Depreciation per hour	(11+11) our	alian dan serien dari kan serien dari Serien dari kan serien dari					-8 Say 1 32,00

					1 I I I I I I I I I I I I I I I I I I I
		• •			23.6
1.5	••	5 y • 4	••	••	6.00
aste, petrol, etc.	••	••	••	• • •	1 •00 2 •00
				•	9.00
	1. - ● ●	••		• •	1.80
· · · · · · · · · · · · · · · · · · ·	•• •	••	••	••	22 •00 23 •60
• • • • • • • • • • • •	••	••,	••	• •	9 •00 1 •80
Use rate per worl	cing ho	u r	• •	. •. • •	55 ·40 Rs. 56/-
	aste, petrol, etc.	aste, petrol, etc	aste, petrol, etc	aste, petrol, etc. </td <td>aste, petrol, etc</td>	aste, petrol, etc

372

.

AFPENDICES

5. Belt Loader

(A) 18. B.V.	Belt	Loader	(248	<i>H.P.</i>)		

(a) Depreciation per workin	g hour					Rs.
(i) Cost of the machine Life—15,000 hours	••	••	••	••	••	2,90,000
Depreciation	••	••	••	••	••	19 - 3
(ii) Cost of belt Life—3,000 hours	••	••	••	••	••	12,000
Depreciation per hour Total depreciation (19 ·	3+4·0)	••	••	••	••	4 ·00 23 ·30
(b) Repairs and Maintenance						
(i) For the machine @100 (ii) For belt @ 45% of dep	% of dep reciation	oreciatio)n 	••	••	19·3 1·7
			•			21.0
(c) P.O.L. Charges						
4.5 gls. HSD oil @ Rs. Lubricants and grease Sundries such as cotton		 etrol, e	 tc.	••	•••	6 •75 1 •00 2 •00
						9 .75
(d) Labour per working hour						1.80
tract						
a) Depreciation b) Repairs & Maintenance c) P.O.L. charges d) Labour	•••	•••	•••	•••	••	23 ·30 21 ·00 9 ·75 1 ·80
	Use rat	e per w	orking	hour	••	55.85
•						Say, Rs. 56
	6. 1	15 H.P	. Mot	or Grad	ler	
Depreciation per hour						Rs.
Depresation per nom	• •					91.000

i) Cost of the machine less tryres	• •	••	••	91,000
Life in hours—12,000 Depreciation	••	••	• •	7.6
Cost of tyres	••	••	• •	6000
Depreciation of tyres $=\frac{6,000}{2,500}$, =		2•4
Total Depreciation $=(7.6+2.4)$	ì•	. 1	••	10
$1 \text{ otal Depreciation} = (7 \cdot 0 + 2 \cdot 4)$	11	. 1	•	**

374	REPORT OF RATES & COSTS COMMITT	EE
(b) Re	pairs and Maintenance	Rs.
	(i) Of the machine @ 80% of depr	6·0 1·3
	가지 가지 않는 것같은 가족하였는 것은 것은 것은 것을 가지 않는 것이 있는 것이 있는 것이 가지 않는 것이다. 가지 않는 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이다. 이 제공에 있는 것은 것은 것은 것은 것이다. - 제공에 같은 것은 것은 것은 것은 것이 같은 것이다.	7.3
(c) Fu	els, lubricants, etc.	
, H	S.D. oil per 60 min. working hour $= \frac{0.5 \times 115 \times 0.4}{8.26} = 2$	•78 gals.
Pe	er 40 minute working hr. $\frac{2 \cdot 78 \times 4}{6} = 1 \cdot 79$	
\mathbf{L}_{1}	gls. HSD oil @ Rs. 1.5 ubricants and grease indries like cotton waste, petrol, etc	3.00 0.75 2.00
(d) La	bour per hour	5.75 1.80
Abstract		
(a) De	preciation	10·00 7·30
	D.L. charges	5.75
(d) La		1 • 80
•	Use rate per working hour	24 ·85 Say, Rs. 25
	7. Dumpers (150—165 H.P.)	2
	(A) 9.7 Cyd., 15 Ton Rear Dumper	
(a) De	preciation per working hour	Rs.
. ,	i) Cost of the dumper less tyres	1,40,32
	:. Depreciation per hr. $=\frac{140,300}{12,000}$	11.7
(1	ii) Cost of tyres and tubes Front : 2 Nos. of 12 ·00×24-16 ply @ Rs. 1,099 Rear : 4 Nos. of 14 ·00×24-20 ply @ Rs. 1,529	2,198 6,080
		8,278
	Life in Hours—3,000	•
	Depreciation per Hour $= \frac{8,280}{3,000} =$	2.76
(አ) ወ	Total depreciation per hour $=(11.70+2.76)$ epairs and Maintenance @ 80% of Depr. of the machine	14.46
+	- 60 % of Depr. of tyres. $(11.7 \times 0.8 + 2.76 \times 0.6)$	11-01
	uels, lubricants, etc. •5 gls. of HSD @ Rs. 1 •5	3.75
, L	ubricants and grease	1.00
S S	undries such as cotton waste, petrol, etc	2.00

(d) Labour per working hour	Rs.
1 No. Driver @ Rs. 5 per day per shift 1 No. Helper @ Rs. 3 per day per shift 1/8 No. Foreman @ Rs. 12 per day per shift Chowkidar, etc. Add 25 % for non-working season and leave reserve	$ \begin{array}{r} 0.63 \\ 0.38 \\ 0.20 \\ 0.12 \\ 0.33 \\ \hline 1.66 \end{array} $
Abstract	
(a) Depreciation	$ \begin{array}{r} 14.46 \\ 11.01 \\ 6.75 \\ 1.70 \\ \overline{33.92} \\ Say, Rs. 34 \end{array} $
(a) Depreciation per working hour	Rs.
(i) Cost of dumper less tyres	2,02,735
$\therefore \text{ Depreciation per hour} \qquad \qquad \frac{202,735}{=-12,000} =$	16 -9

(a) Depreciation per work	ling nour			· •		KS.
(i) Cost of dumper l Life-12,000 hou		••	••	••	••	2,02,735
: Depreciation per			=-	02,735	_	16 • 9
Life of tyres-3,000 h	ours			1,660		
Depreciation of tyres	and tubes p	er hour	==-	3,000	••	7.2
Total depreciation per h	our (16·9+	7·2)	••	••	••	24 ·1 Say, Rs. 24
(b) Repairs and maintenant $+60\%$ of depr. of tyre	ce @ 80% o $cs = (16.9 \times$	f depr. 0·8+7	of the $\cdot 2 \times 10^{-10}$	he mach 0•6) .	ine ••	17.84
(c) Fuels, lubricants, etc.						
3.5 gals. of HSD @ 1 Lubricants and greas Sundries such as cotto	e	 trol etc.	••• ••	••• ••	•••	5 ·25 1 ·00 2 ·00
(d) Labour per working ho	ur	••	••	• •	••	8 ·25 1 ·70
bstract of use rate						
 (a) Depreciation (b) Repairs and Main (c) P.O.L. charges 	tenan ce	•••	•••	•••	•••	24 ·00 17 ·84 8 ·25 1 ·70
(d) Labour						

(C) Bottom Dump, 13 Cyds. Payload (200 H P.)

(a) Donvaciation	De
(a) Depreciation	Rs.
(i) Cost of the dumper less the tyres Life hours—15000	1,38,33
Depreciation per hour	9 • 22
(ii) Tyres and Tubes	26 100
Cost of tyres & tubes Life of tyres—3500 hours	26,100
Depreciation of tyres & tubes per hour	7.5
Total depreciation per hour $(9.22+7.50)$	16 - 72
(b) Repairs and maintenance @ 80% of depreciation of the machine $+50\%$ of depreciation of tyres= $(9 \cdot 22 \times 0 \cdot 8 + 7 \cdot 5 \times 0 \cdot 5)$	11-13
(c) Fuels and lubricants	
3 gls. of HSD oil @ Rs. 1.5	4.50
Lubricants & grease	1.00
Sundries such as cotton waste, petrol & others	2.00
	7.50
	0.50
(d) Labour per working hour	1 -70
Abstract	
(a) Depreciation	16.72
(b) Repairs & maintenance	11 -13
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour 	11 ·13 7 ·50 1 ·70
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say 	$\begin{array}{r} 11.13 \\ 7.50 \\ 1.70 \\ \hline 37.05 \\ y, \text{ Rs. } 37/- \end{array}$
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H 	11 · 13 7 · 50 1 · 70 37 · 05 y, Rs. 37/-
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H 	11 · 13 7 · 50 1 · 70 37 · 05 y, Rs. 37/- <i>I.P.</i>) Rs.
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Deprectation (i) Cost of the dumper less tyres and tubes 	11 · 13 7 · 50 1 · 70 37 · 05 y, Rs. 37/-
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Deprectation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 ∴ Deprectation per hour 	11 · 13 7 · 50 1 · 70 37 · 05 y, Rs. 37/- <i>I.P.</i>) Rs.
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Deprectation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Deprectation per hour (ii) Cost of tyres & tubes 	11 · 13 7 · 50 1 · 70 37 · 05 37/- <i>I.P.</i>) Rs. 1,85,500
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours Depreciation of tures and tubes per hour 	11 · 13 7 · 50 1 · 70 37 · 05 37/- <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,940
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 ∴ Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours ∴ Depreciation of tyres and tubes per hour = 31900 3500 	11 · 13 7 · 50 1 · 70 37 · 05 37/- <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,940 9 · 13
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours Depreciation of tyres and tubes per hour = 31900 3500 Total depreciation per hour = (12 ⋅ 37 + 9 ⋅ 13) 	11 · 13 7 · 50 1 · 70 37 · 05 37/- <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,940
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 ∴ Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours ∴ Depreciation of tyres and tubes per hour = 31900 3500 	11 · 13 7 · 50 1 · 70 37 · 05 37/- <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,940 9 · 13
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours Depreciation of tyres and tubes per hour = 31900 3500 Total depreciation per hour = (12 · 37 + 9 · 13) b) Repairs and maintenance @80% of depreciation of the manchine +50% of depreciation of tyres (12 · 37 × 0 · 8 + 9 · 13 × 0 · 5) 	11 · 13 7 · 50 1 · 70 37 · 05 37 · 05 37 / · <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,940 9 · 13 21 · 50
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours Depreciation of tyres and tubes per hour = 31900 3500 Total depreciation per hour = (12 · 37 + 9 · 13) b) Repairs and maintenance @80% of depreciation of the manchine +50% of depreciation of tyres (12 · 37 × 0 · 8 + 9 · 13 × 0 · 5) c) Fuels and lubricants etc. 4 gls. HSD oil @ Rs. 1 · 5 	11 · 13 7 · 50 1 · 70 37 · 05 37 · 05 37 / · <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,940 9 · 13 21 · 50
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours Depreciation of tyres and tubes per hour = 31900 3500 Total depreciation per hour = (12 · 37 + 9 · 13) b) Repairs and maintenance @80% of depreciation of the manchine +50% of depreciation of tyres (12 · 37 × 0 · 8 + 9 · 13 × 0 · 5) c) Fuels and lubricants etc. 4 gls. HSD oil @ Rs. 1 · 5 Lubricants & grease 	$ \begin{array}{r} 11 \cdot 13 \\ 7 \cdot 50 \\ 1 \cdot 70 \\ 37 \cdot 05 \\ 37/- \\ 1.P.) \\ Rs. \\ 1,85,500 \\ 12 \cdot 37 \\ 31,940 \\ 9 \cdot 13 \\ 21 \cdot 50 \\ 14 \cdot 5 \\ 6 \cdot 00 \\ 1 \cdot 00 \end{array} $
 (b) Repairs & maintenance (c) P.O.L. charges (d) Labour Use rate per working hour Say (D) Bottom Dump, 17 Cyds. Struck (260 H (a) Depreciation (i) Cost of the dumper less tyres and tubes Life in working hours—15000 Depreciation per hour (ii) Cost of tyres & tubes Life of tyres—3500 hours Depreciation of tyres and tubes per hour = 31900 3500 Total depreciation per hour = (12 · 37 + 9 · 13) b) Repairs and maintenance @80% of depreciation of the manchine +50% of depreciation of tyres (12 · 37 × 0 · 8 + 9 · 13 × 0 · 5) c) Fuels and lubricants etc. 4 gls. HSD oil @ Rs. 1 · 5 	11 · 13 7 · 50 1 · 70 37 · 05 37/- <i>I.P.</i>) Rs. 1,85,500 12 · 37 31,94C 9 · 13 21 · 50 14 · 5 6 · 00

376

(d) Labour per hour	•• •	• ••	• •	••	••		Rs. 1 •70
Abstract	*						
 (a) Depreciation (b) Repairs & mail (c) P.O.L. charges (d) Labour 		••	••	• •	· · · · · · ·	•••	21 ·50 14 ·59 9 ·00 1 ·70
	Use rat	e per woi	rking	hour	S	 19 , Rs. 4	46.70 7/- per hou:
8.	D-4 Trac	tor with '	Turindr	um She	epsfool	Roller	
Use Rate of D-4 Tr	actor				-		
(i) Depreciation							Rs.
Cost of D-4 7 Life Hours—1 Depreciation	10,000	••	••	•••	••	••	45,000 4 •5
(ii) Repairs and m	- ,	e @ 100 ;	% of de	preciat	ion	••	4.5
(iii) Fuels and lubr	icants etc						
1 ·5 gls. HSD Lubricants & Sundries like	Oil @ Rs grease	.1.5 	••	•••	•••	••	2 ·25 0 ·75 0 ·75
(iv) Labour per ho	ur	••	••	••	••	• •	3 ·75 1 ·50
Use Rate of Sheepsfor	ot Roller						
(i) Depreciation							
Cost Deprectiation Assuming 200		per mont rking per	h month	· · · . · · .	••	••	6,800 102
Depreciation]			••	••	••	••	0.5
(ii) Repairs and m	aintena nce	e@40%	of depi	reciatio	n	••	0 - 2
(iii) Lubricants, etc		••	••	••	••	••	0.2
					-		0.9
Abstract (D-4 Tractor	with Shee	epsfoot R	oller)				
 (a) Depreciation (b) Repairs (c) P.O.L. charges (d) Labour 	· · · · · · · · · · · · · · · · · · ·	••	 	•••	••	••	5·0 4·7 3·95 1·50
						Say,	15.15 Rs. 15/-

APPENDIX 8 (i)

Statement of Sluice Gates and Equipment Manufactured

Sl. No	Name of Project	Type of Gate	Purpose ved	SCI-	No.	Width	Depth	Lift	Max. Head
1	2	3	4	-	5	6	7	8	9
1.	Tilaiya(DVC)	Radial	Spillway		14	30'-0"	10'-0"	14'-0"	10'-0"
2.	Bokaro(DVC)	Free Roller	Spillway Emergency		19 1		13'-0" 15'-6"	33'-0" 33'-10*	15'-0* 15'-10
3.	Durgapur(DVC)	Free Roller "	Wier J'Sluice		24 5 5	60'-0" 60'-0" 60'-0"	16'-~" 18'-0" 19'-0"	24'-0" 26'-0" 27'-0"	16'-6" 18'-6" 19'-6"
4.	(i) Kopai (Mayurakshi Project)	Free Roller Wheel	Weir U'Sluice Regulator		4 2 2	30'-0" 30'-0" 24'-0"	10'-0" 13'-0" 5'-0"	15'-10" 18'-10" 5'-6"	10'-6" 13'-6 10'-0"
	(ii) Dwarka (Mayurakshi Project)	Free Roller Wheel	Weir U'Sluice Regulator		6 2 2	30'-0" 30'-0" 18'-0"	12'-0" 15'-0" 5'-0"	14'-0" 17'-0" 5'-6"	12'-5" 15'-6" 8'-6"
	(iii) Bakreswar Mayurakshi Project)	Automatic "Wheel	Crest U'Sluice U'Sluice Regulator		16 2 2 1 4	12'-0" 13'-2" 24'-0" 17'-0" 24'-0"	2'-6" 2'-6" 7'-0" 9'-0" 3'-9"		3'-0" 3'-0" 8'-0" 10'-0" 15'-0"
	(iv) Brahmani (Mayurakshi Project)	73	Wier U'Sluice Regulator		10 2 2	30'-0" 30'-0" 12'-0"	10'-0" 13'-8" 4'-0"	12'-6-* 15'-6* 4'-6*	10'-6" 13'-6" 9'-6"
5.	Hirkud Main Dam	Radial	Spillway		. 4	51′-0″	20'-0"	16'-0''	20'-0"
6.	Thambrapani	Free Roller	Spillway		6	52'-0"	18'-0"	20'-0"	20'-0"

APPENDIX 8 (i)

for River Valley Projects in India

Type of water seal (each)	Weight of gate leaves (each)	Weight of emb	ght f bed- d rts	Price ex- works of gate em- bedded parts & hoisting gear	Type of hoisting gear	Erection charges	Year of manu- facture
10	11	12	13	14	15	16	17
1. Rubber Flats .	. 5·7 T	— 2	Т	4,56,000	Electric	85,000	1952
2. Music Note Rubber Flats	8 ·3 T 14 T	7 	·5 T	8,20,000	Electric Electric Travelling	1,45,000	1952
3. Rubber Flats	27 T 34 T 35 T	68 T 13	•0 T •5 T •0 T	30,50,000	Electric	7,20,000	1953
4. (i) Rubber Flats & M.S.Flats M.S. Rods & Flats	5 T 8 T 3 ·2 T	16 T 9	•5 T T •6 T	2,94,000	Hand	44,000	1950
(ii) Rubber Flats & M.S. Flats M.S. Rods & Flats	7 ·5 T 9 ·5 T 2 T	15 T 7 19 T 9 4 T 2	Т	3,77,000	Hand	53,000	195
(iii) — Rubber Flats & M.S. Flats Rods & Flats	0 ·3 T 0 ·4 T 3 ·5 T 3 ·0 T 3 ·0 T	6T 3	T T •5 T	1,85,000	Hand	40,000	195
(iv) Rubber Flats & M.S. Flats Rods & Flats	5 ·5 T 8 ·0 T 1 ·0 T		0 T 0 T 0 T	6,42,000	Hand	1,43,000	195.
5. Rubber Flats	28 T (approx.)	(app	9 T 101.)	25,37,360) Electric		195
6. M.S. Rods, M.S. Flats	39 T	39 T	19 T	3,40,000	Electric		194

APPENDIX 8 (ii)

Statements of Tungabhadra Workshops

	Name of project	Type of gate	Purpose served	No.	Width	Depth	Max. head	Type of water seal	Weight of counter- balance (each)
1	2	3	4	5	.6	7	8	9	10
1.	Kotah Barrage	Guide Roller	Radial		40′-0″	41′-6″	44′-0″	Rubber Flats	75
2.	Hirakud Dam, Bargarh Canal	Fixed Wheel	Regula tor	8	8'-6"	9'-6"	49′-5″	Rubber Flats	
3.	(i) Tungabhadra	Fixed Wheel	Spill way	33	60′-0″	20′-0″	20′-0″	Rubber Music Note Flats	
	(ii) Tungabhadra	a Fixed Wheel	Sluice		6′-0'	12'-0"	83'-0"	Rubber Music Note Flats	
(iii) Tungabhadra	Fixed Wheel	Pen- stock		10'-9″	17'-4"	88′-5.″	Rubber Music Note	
4.	Bhadra	Fixed Wheel	Unde: Sluice		6'-0"	15'-0″	141′-0″	Rubber Flats	
5. J	lawai	Fixed Wheel	Spill- way	13	50'-0"	15'-0"	15'-0"	Rubber Flats	17
6. 1	Umtru	Fixed Wheel	Pen- stock		9′-9″	9′-9″	53′-0″	Rubber Flats	

•

APPENDIX 8 (ii)

Details of Equipment Fabrication

Weight of gate leaves (each)	Weight of em- bedded parts (each)	Price ex- works of gate embedded parts & hoisting gear	Type of hoisting gear	Capacity of hoisting gear		Cost per Ton of gate leaves	Cost per Ton of embed- ded parts	Cost of hoisting gear
	12	13	14	15	16	17	18	19
, 72	24	190,400	Rope Drum & Chain Hoist, electric & hand.	25		1550	1200	50,000
31/2	3	31,625	Chain Hoist, elec- tric & hand.	12	1955	2900	.1400	18,000
49	6.2	116,840	Chain Hoist, motor & hand.	25	1952-54	1360	800	45,000
6•5	21	119,000	Rope Drum electric & hand.	, 30	1 952-5 3	4600	1500	57,600
⁻ 14	12	151,140	Chain Hoist electric	43	1953-54	4800	1620	64,500
11	6	79,500	Rope Drum, electric & hand	35	To be man factured	au- 2750	1500	40,250
19	3	46, 55 0 6,	Chain Hoist, elec- tric & hand	<u>`</u> 10	1954-55	1450	1000	16,000
· 4 <u>1</u>	3	43,800	Chain Hoist, elect. & han		To be many factured	u- 3300	1650	24,000

APPENDIX 9 (i)

Comparative Statement of Primary and Overall Rates

	_	1.5 A.Y.			- 	an an an an an an an an an an an an an a	- 	
							Sto	ne
SI. No.		e of Proje	ct			Mix	Quality	Densty
	·		- <u></u>					
1		2				3		5
1.	Matatila	• •	•	14	• • •	CM 1:5 CM 1:4	Granite	165
2.	Gandhisagar	••	•••	•	••	RCM 1:2.75 RCM 1:4	Quartzit	140 ,,
3.	Mayurakshi	••	••	• • `		RCM 1:4		
4.	Hirakud	•••	••	۰.	•	CM	Granite	165
5.	Kakrapar	••	••	no yn ● ● Noar 1	177 1970 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 1977 - 1977 - 1977 1977 - 1977 - 1977 1977 - 1977 - 1977 1977 - 1977 - 1977 - 1977 1977 - 19	RCM 1:3 RCM 1:4 CM 1:5	Rubble	
6.	Tungabhadra (A	Andhra)	4. 1. ● ●	1 1 4 1 4 • • 1 4 4 4 • • 1 4 4		RCM 1:2·75 RCM 1:4 RCM 1:5	Granite ,	16 <u>4</u> ,,
7.	do	(Hyd.)	• •2	••	••	RCM 1:2.75 RCM 1:4	39	165
8.	Lower Bhaw	ani						
•	R.R. Masonry	• • •	• 4. – 4. ∎* •,	• •		CM 1:6		35.
	, ,,		• • • 2	••		CM 1:2	>>	39
	· · · ·	• •	•	• •	• •	CM 1:5	>>	33
	> 7		••	••	••	CM 1:5 CM 1:4	>>	>>
	,, . ,		•	•**•	• •	CM 1:4	>>	22
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		••	•••	2 .	RCM 1:2.75	"	
	99, • •			••		CM 1:2.75	· >>> · >>>	35
9.	Malampuzha						** 	•
	R.R. Masonry					CM 1:4		
					•••	CM 1:2.75	>>	2 22
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					CM 1:5	33	>> >>
	yy 174		1°•.		• •	RCM 1:2.75		22
	,, •		• •	• •	••	RCM 1:5	· , >>	33
		• •	• •	••	••	CM 1:8		
10.	Peechi							
• •	R.R. Masonry	••	• •	••	• 1	CM 1:5	33	>>
l 1.	Perinchani				•	CN 1.2		
1997 1	R.R. Masonry	• •	••	• •	••	CM 1:2	"	>>
	,,	• •	• •	• •	••	CM 1:3 CM 1:4	a (1997) a (1997)	37
	37 **	• •	• •	• •		CM 1:5	33	>>
	>> • •	• •	• •	••	••	CM 1:6	**	39
	· · ·	••	••	••	• •	WATE I.V	25	"

•

APPENDIX 9 (i)

of U.C.R. Hearting Masonry at River Valley Projects

Stone FC	Spall FC	Total FC	Cement Cwt.	Sand FC	Surkhi FC	Lime	Total	Remark
6	7	8	9	10	11	12	13	' 14
90		<u>90</u>	7.5	45				
100 100		B arrara 40	10·0 6·8	43 · 1 41 · 4	4·7 2·6		42∙5 40∙8	×
100	—	100	7.5	40	2.0		40·0	
110	·		8.5					
110 120		110 120	7·2 6·8	· 51 43	2·3		45 45	
100 100 100	10 10 10	110 110 110	9∙6 6∙6 5∙3	53 53 53	3·4 2·3 1·8		42 42 42	
121 121		121 121	11∙5 8∙0	60 60	3·3 2·3		45 46	
100 100 100 100 100 100 100		100 100 100 100 100 100 100 100	5·3 16·0 5·8 6·4 7·2 8·0 10·5 11·7	40 40 40 40 40 40 40			40 40 40 40 40 40 40 40	
110 110 110 110 110 110		110 110 110 110 110 110	8.0 11.7 6.4 9.3 5.1 4.0	40 40 40 40 40 40			40 40 40 40 40 40	
100	•	100	5.6	35	-		35	
100 100 100 100 100		100 100 100 100 100	12·9 10·3 8·0 6·4 5·3	40 40 40 40 40			40 40 40 40 40	

.

APPENDIX 9 (ii)

1.0

Comparative Statement of Primary and Overall Rates

· · · · ·

٠.

` SI. No.		Mix	Nature of work	Maximum height above river bed in feet		Cost in Rs. (lakhs)
1	2	3	4	5	6	7
2.	Matatila	CM 1:5 CM 1:4	Dam		102310 12840	112. 5 14. 8
2.	Gandhisagar	RCM 1:2 ·75 RCM 1:4			48961 169992	68. 6 190. 4
3.	Mayurakshi	RCM			88100	107.7
4.	Hirakud	СМ	n et		147020	224.6
	Kakrapar	RCM 1:4	Weii		14323	18.0
	Tungabhadra (Hyd.)	RCM 1:2 ·75 RCM 1:4	Dam		13133 22262	15.9 31.2
7.	Tungabhadra (And.)	RCM 1:2·75 RCM 1:4 RCM 1:5	Dап			
8.	Bhadra	L.S. 1:4	Dan		231900	347.9
9.	Lower Bhawani	CM 1:6 CM 1:2 RCM 1:5 CM 1:5 RCM 1:4 CM 1:4 RCM 1:2 ·75 CM 1:2 ·75	Dan		466 1030 9960 4388 1291 86022 4299 23175	0.4 1.3 8.8 4.2 1.3 86.0 4.5 26.2
10.	Malampuzha	CM 1:2 •75 CM 1:4 CM 1:5 RCM 1:2 •75 RCM 1:5 CM 1:8	- Dam		26813 35837 9503 4257 2731	29.5 33.7 8.4 4.4 2.4
11.	Peechi and a second	CM 1:2.75 CM 1:4 CM 1:5	Dam		4161 10822 4475	7.7 18.5 6.6
12.	Perinchani	CM 1:2.5 CM 1:4 CCM 1:55	Dam		1930 1700 15020	3.0 2.4 1.57

.

APPENDIX 9(ii)

of U.C.R. Hearting Masonry on River Valley Projects

.

Primary r	ate per CF	C(Rs.)			On Costs			
Depart- mental supply	Contract piece- work	Total	Percen- tage rate of depart- mental	Amount (Rs.)	Percentage rate of contract work	Amount (Rs.)	Total 12+14	Overal Rate per CFC 10+1
8	9	10	11	12	13	14	15	16
54	45	99	15	8	8	4	12	111
78 59	53 53	131 112	22 22	.17 13	-11 11	6 6	23 19	154 131
	121	121			11+9	24	24	145
47	92	139	30	14	=20 11	10	24	163
56	37	93	45	25	21	8	33	126
165		165	35	58			58	223
148 134		148 134		52 47			52 47	200
116 108 34		116 108 124	35	41 38 12	<u> </u>	15	41 38 27	157 140 151
31	48	79	19	6	6	3	9	. 81
78 32 37 39 42 54 58 48	58 61 58 50 55	128 90 95 100 100 104 113 110	19 19 19 19 19 19 19	15 6 7 7 8 10 11 16	6 6 6 6 6 6 8	3 3 3 3 3 3 3 5	18 9 10 11 11 13 14 21	146 99 109 111 111 112 127 13
36 30 45 28 27 85	58 59 58 54	94 88 104 86 81 185	33 33 33 33 33	12 10 15 9 9 10	8 8 8 8 8 7	5 5 5 5 4 7	17 15 20 14 13 19	111 10 12 10 9 20
58 47 71	112 100	170 147	12	7 6 31	7 7 22	8 7 9	15 13 40	18 16 15
59 44 35	43 43	102 87 78	2 4 4 7 44	26 19 15	22 22 22	9 9 9	35 28 24	13 11 10

. .

APPENDIX 10

STATEMENT A

Inalysis of Cost per CFC of Cement Concrete

Basic Weight of Cement per CFC : Brief Specifications

Sl. No.	Item A		Qty.	Raite	Amount	Remarks
1	2	3	4	5	6	7
	and the second second second second second second second second second second second second second second secon			·····		

- 1. Coarse Aggregates
 - 1.1 Quarrying
 - 1.2 Transport to crushers
 - 1.3 Crushing, processing & conveyance to stockpiles
 - 1.4 Transport from stockpiles to batching plant
 - 1.5 Washing of gravel

2. Sana

- 2.1 Quarrying
- 2.2 Transport to site
- 2.3 Crushing & pro essing, if any
- 2.4 Transport from stockpiles to batching plant

3. Cement

- 3.1 Cost ex-factory
- 3.2 Rail or road transport and handling to site of work
- 3.3 Storage & handling up to batching plant

STATEMENT A-contd.

1	2	3	4	5	6	7
4.	Water					
5.	Admixture					
	5.1 Cost of purchase or manu- facture					
	5.2 Cost of transport					
	5.3 Storage and handling up to batching plant					
6.	Batching, Mixing and Laying					
	6.1 Batching & mixing					
	6.2 Placing including trans- port from batching plant and vibrating					
	6.3 Cleaning, slurry, curing and finishing.					
	(a) Cleaning					
	(b) Cement for slurry mor- tar					
	(c) Curing & finishing					
	6.4 Construction joints					
	6.5 Scaffolding, if any					
7.	Other Items					
	7.1 Precooling plant & expenses					
	7.2 Embedded system and operation cost					
	TOTAL Primary Rate					

3. Mention name and brand of admixture.

<sup>Notes :-- 1. Separate analysis should be given for every operation in support of the figures given above such as crushing, cement storage and handling, batching and mixing, pre-cooling, etc.
2. In case of transport, means of transport should be mentioned and analysis given for unit cost of transport.</sup>

M7CW&PC/63-26

STATEMENT A (i)

Sand Washing Operation

1. Average use rate of the sand -washing plant per CFC

- 2. Total quantity of sand to be washed,
- 3. (a) Cost of supporting structure for the plant inclusive of foundations.
 - (b) Rate per CFC (3a)/(2).

Section.

4. Total cost per CFC of sand : (1)+3 (b).

NOTES :—1. Use rate per CFC of the sand-washing plant is obtained from Proforma M (iv.)
 2. Cost of supporting structure is total cost of material used, foundation, erection and dismantling charges less the salvage value, if any. Its details, if available, should be furnished.

STATEMENT A (ii)

Crushing and Screening Operation

1. Use rate per CFC output of : (a) Crushers

(b) Screens & belts.

- 2. Total quantity of aggregate to be handled in CFC units.
- 3. (a) Cost of supporting structure and foundations etc.
 (b) Rate per CFC: (3a)/(2).
- 4. Total Rate per CFC: (1)-(3b)

Notes :--1. Use rates of crushers, belts and screens are obtained from Proforma M (iv). 2. Cost of structure is the total cost of meterials used, foundations, erecting and dismantling charges, less the salvage value. If break-up is available it should be furnished.

STATEMENT A (iii)

Reclaiming Tunnel Operation

- 1. Brief particulars of
 - (i) Discharge gate
 - (ii) Belt conveyors

2. Total quantity of aggregate to be handled

- 3. (a) Cost of
 - (i) Reclaiming tunnel
 - (ii) Supporting structure for conveyor belts Total cost :
 - (b) Cost per CFC: 3(a)/(2).
- 4. (a) Ownership charge
 - (i) Total Cost
 - (ii) Repairs
 - (iii) Salvage value
 - Net total cost
 - (b) Cost per CFC
- 5. (a) Operation cost per hour
 - (i) Power
 - (ii) P.O.L.
 - (iii) Other materials
 - (iv) Labour
 - (b) Cost per hour
- 6. (a) Total output of conveyor belts per hour (b) Rate per CFC: (5b)/(6a)
- 7. Cost of dozing per CFC (share only)
- 8. Total rate per CFC

- The date the hours for which operation cost is given are not clock in hour should be given.
 For all items of operation cost in item 5 details should be given.
 Details of cost of dozing should be given.

Discharge gates

Belt conveyso

Discharge gates

389

Notes :-- 1. Cost of items under (3) includes the cost of foundations, erection and dismantling charge less salvage value if any. Details should be furnished. 2. In case the hours for which operation cost is given are not clock hours, precise definition of the

STATEMENT A (iv

Operation of Cement Pump and Silos

. С.,

- 法教育经济学校主要的方法 1. Use rate per CFC output of cement pump. Sect. Sugar
- 2. Cost of silos.

Quantity to be handled. 3.

Cost of silos per CFC of cement 4.

5. Rate per CFC : (1) + (4)

Notes :--1. The number of silos and their brief particulars should be furnished.
2. The cost of silos should be inclusive of the cost of foundation, erection and dismantling of the structure, less the salvage value, if any. •

390

STATEMENT A (v)

Conveying, Lifting and Placing and Vibrating Concrete 1. Output of the batching and mixing plant per hour 2. (a) Use rate per hour of (i) Diesel locomotive (ii) Crane (iii) Vibrators Total: (b) Rate per CFC 3. (a) Ownership charge Flat wagons Concrete buckets (i) Cost (ii) Repair charges (iii) Salvage value

otal Net cost

4. (a) Quantity of concrete to be handled

(b) Rate per CFC of flat wagons and concrete buckets

- 5. (a) Cost of supporting structure
 - (b) Rate per CFC: (5a)/(4a)

6. (a) Labour per hour

- (b) Labour cost per CFC
- 7. Total rate per CFC

NOTES :---1. Use rate per hour is taken from Performa M (iv).

- Cost rate per nour is taken from Performant (iv).
 Brief details and number flat wagons and concrete buckets used should be given.
 Cost of supporting structure includes cost of foundations, erecting and dismantling charges less the salvage value if any. Details should be furnished.
 Under item (6) details of labour should be given. It would be that required for general purposes not included in the use rate of machines in item (2).

^{4.}

- STATEMENT A (vi)

Curing and Finishing per CFC of concrete

- Cost of equipment, if any. 1.
 - 2. Cost of materials.
 - 3. Cost of water.
 - 4. Cost labour.
 - 5. Miscellaneous, if any.
 - 6. Total cost per CFC.

Note : 1. Details for itcm; 1 & 2 should be given. 2. Under item 4 details of labour should be given.

STATEMENT B(i)

ilysis per CFC of stone Masonry

	Brief Specifications	
Sl. No.	Item	Unit Quantity Rate Amount Remarks
1	2	3 4 5 6 7

- 1. Rubble
 - 1.1 Quarrying
 - 1.2 Dressing Masons
 - 1.3 Transport to the site of work.
- 2. Sand

2.1 Quarrying or manufacturing

- 2.2 Transport to site of work
- and partition
- 2.3 Storage and handling up
- to mills

1	2	3	4	5	6	7
3.	Cement or lime	····				
	3.1 Cost at source of supply					
	3.2 Transport to the site of					
	work					
	3.3 Storage and handling up					
	to mills					
4.	Water					
5.	Admixtures					
	5.1 Purchase or manufacturing cost					
	5.2 Transport to the site of work					
	5.3 Storage and handling up to mills					
6	Mixing of Mortar					
	(a) By Manual labour					
	Male Mazdoor					
	Female Mazdoor					
	Bhishti or Water-carrier					
	OR					
	(b) By mixture and manual labour					
	Depreciation					
	Repairs sumable materials					
	Operation labour					
	Other labour					
	(i) Male Mazdoor					
	(ii) Female Mazdoor					
	(iii) Bhishti or Water-carrier					
7.	Lead and Lift					
	7.1 Scaffolding					
	7.2 Lead and Lift of stone					
	7.3 Lead and lift of mortar					
8,	Laying and Curing					
	8.1 Cleaning and slurry					
	(a) Cement for slurry mortar					
	(b) Cleaning					
	Male Mazdoor					
	8.2 Cost of laying including					
	handling					
	Mason I Class					
	Mason II Class					
	Male Mazdoor					
	Bhishti or Water-carrier					
	8.3 Wetting					
9.	Petty Supervision					
10.	Miscellaneous					

NOTES :--1. In case of transport, means of transport should be mentioned and detailed analysis be given for unit work of transport.
2. Where necessary separate analysis should be given in support of figures in the above proforma.
3. For wetting details must be given.
4. Name and brand of admixture may be given.

STATEMENT B (ii)

Analysis of Cost per CFC of Brick Masonry

1. Size of Bricks.

Sl. No.	Item Unit Quantity Rate Amount Remarks
1	2 3 4 5 6 7
1.	Brick I Class 1.1 Cost ex-kiln. 1.2 Transport to the site of work
2.	 Sand 2.1 Cost of quarrying or manufacture 2.2 Transport to the site of work 2.3 Storage and handling up to mills
3	Cement or Lime 3.1 Cost ex-project godown 3.2 Transport to the site of work 3.3 Storage and handling up to mills
4.	Water
5.	Admixtures 5.1 Purchase or manufacturing cost 5.2 Transport to the site of work 5.3 Storage and handling up to mills
6.	Mixing of Mortar Male Mazdoor Female Madzdoor
7.	Lead and Lift 7.1 Scaffolding 7.2 Lead and lift of bricks 7.3 Lead and lift of morta
8.	Laying and Curing including Soaking 8.1 Cleaning and raking, Male Mazdoor 8.2 Soaking 8.3 Cost of laying including

- handling Mason I Class ung Mason II Class
 - Male Mazdoor
 - Female Mazdoor
 - Bhishti or Water-carrier
- 8.4 Wetting
- Bhishti or Water-carrier-

Total Primary Rate

Nores : 1. In case of transport, means of transport should be mentioned and supproting analysis for unit cost of transport be given. 2. Name and brand of admixture may be given.

- 3. For soaking under 8.2 details may be given.

STATEMENT C (i)

Excavation in Earth by Manual Labour Unit=100 cu. ft.

- Brief description of soil and tools used for excavation and the method of trans-1. port.
- Initial lead and 1 ft. 2.
- Extra for lead and lift. 3.

SI. No.	Description	Unit	Quantity	Rate	Amount	Remarks
1	2	3	4	5	6	7
1.	Labour 1.1 Male Mazdoor 1.2 Female Mazdoor 1.3 Boy Mazdoor					
2.	Ordinary T. & P.					
3.	Sundries such as rope, fl and staves etc.	ags				
4.	Petty Supervision					

STATEMENT C (ii)

Analysis of Rate for Earthwork per CFC by Mechanical Equipment

- Machines used. 1.
- Material handled with brief characteristics. Average weighted lead. Gradient and condition of haul roads. 2.
- 3.
- 4.
- Output of the combined equipment during the period. 5.
- The cost of excavating and transporting the material. 6.

Equipment	Size or Capacity	Number of Machines used	Number of Hours work- ed during the period	Use rate per hour of each machine	Amount

Total Rs.

Rate per unit of excavation and transporting 7.

NOTES :

- Particulars of excavation and transporting the material, only should be given.
 The machines should be those for which use-rate details are given in Proforma M (i).
 The units of output should be given in CFC units and whether they are borrow pit or compacted 3. The units of output should be given in CFC units and whether they are borrow pit or compacted measurements should be stated.
 4. In case of hours worked, if the hours are not clock hours, precise definition of the 'hour' mentioned ushold be given.

. _ .

STATEMENT C (iii)

Analysis of Rate of Earthwork Compaction by Machines.

Zone of operation : pervious/semipervious/impervious. 1.

Type of soil compacted and its ' characteristics. 2.

Machines used. 3.

Output of the machines over the period. 4.

5. Cost of compaction.

1 2 3 4 5 6 7 8	Machine Numbers	Machines	Size or capacity etc.	No. of machines used	hours worked	Use rate per hour of each machine	Amount	Remarks if any	
	1	2	3	4	5	6	7	8	

Total Rs

(a)

(b) Watering charges during the period

 \therefore Total cost of (a) and (b)

6. \therefore Cost of compaction of earthwork per unit =

NOTES :--1. The machines should be those for which use-rate details are given in Proforma M (i).
2. The units of output should be given in CFC units and whether they are borrow-pit or compacted measurements should be clearly stated.
3. In case the hours worked are not clock hours, precise definition of the 'hour' mentioed should be diversed and the state of the state of the state.

- be given.
- 4. Details of watering charges, if available, should be furnished.

STATEMENT D(i)

Analysis of Cost per CFC of Quarrying Rubble or Rock Excavation by Mechanical Means

- 1. Brief description of rock.
- 2. Percentage of recovery in case of quarrying.
- 3. Lift in case of rock excavation.
- 4. No. and depth of hole required per CFC.
- 5. Percentage of voids per CFC.

SI.	Item	Unit	Quantity	Rate	Amount	Remarks	
No.	1					*	
1	2	3	. 4	5	6	7	

- 1. Preliminary
- 2. Drilling
 - 2.1 Bits
 - 2.2 Loss of bits
 - 2.3 Sharpening
 - 2.4 Depreciation of machine
 - 2.5 Repairs
 - 2.6 Cost of air
 - 2.7 Cost of water
- 3. Pipe, pipe fittings and other equipment
- 4. Explosives
 - 4.1 Dynamite etc.
 - 4.2 Detonators
 - 4.3 Fuse coils
- 5. Carriage of materials
- 6. Labour
- 7. Mucking, transport and stacking
 - 6.1 Shovel operation
 - 6.2 Dumper
 - 6.3 Labour for stacking Male Mazdoor Female Mazdoor

Total Primary Rate

Notes :--1. Under 1 expenditure on royalty and removal of over-burden etc. may be given.

- 2. Under 6 all labour engaged with their particulars may be given.
- 3. Under 5 carriages of materials pertains to explosives etc. from stores to the site of work.

.

STATEMENT D (ii)

Analysis of Cost per CFC of Quarrying Rubble by Manual Labour

- 1. Brief description of rock.
- 2. Percentage of recovery.
- 3. No. and depth of hole required per CFC.
- 4. Percentage of voids per CFC.

No					
1 2	3	4	5	6	7

- 1. Preliminary
- 2. Labour
 - 2.1 Drillers
 - 2.2 Male Mazdoors
 - 2.3 Blaster
 - 2.4 Helper
 - 2.5 Mending & Sharpening tools
 - 2.6 Other work-charged establishment

3. Material

- 3.1 Gelignité etc
- 3.2 Detonators
- 3.3 Fuse coil
- 3.4 Gun powde
- 3.5 Coal

4. Carriage of Materials

5. Pro-rata cost of hammers, crowbars & jumper rou etc.

6. Mucking, handling and stacking

- 6.1 Male Mazdoors
- 6.2 Female Mazdoors
- 7. Carriage from quarry stacks to worksite.

Total Primary Rate

Notes :---1. Under 7 mention means of transport and give supporting analysis of unit cost.

2. Under 1 expenditure on royalty & removal of over-burden etc. may be given.

STATEMENT E

Analysis of Gates and Regulators

- 1. Name of Project.
- 2. Type of gate and purpose served.
- 3. Number and size.
- 4. Maximum head for which designed.
- 5. Type of water seals,
- 6. Whether rollers provided, if so, what type-fixed or moving type.
- 7. Whether counter weights are provided; if so, what is the weight.
- 8. Weight of the gate leaves.
- 9. Weight of the embedded parts.
- 10. Cost per ton of the gate leaves.
- 11. Cost per ton of the embedded parts.
- 12. Type of hoisting gear provided and the method of operating the same.
- 13. Capacity of the hoisting gear/gears.
- 14. Cost of the hoisting gear per ton of weight and per ton of capacity.
- 15. Type of operating bridge; giving span, width, design and live loads.
- 16. Weight of the operating bridge and cost per ton.

IOTES :---(a) Whether the costs are inclusive of erections or for workship.

- (b) The prices of raw materials taken into account.
- (c) Specifications of the structural work e.g. welded, rivetted, one shop paint included etc.
- (d) Year of manufacture. Information for jobs executed prior to 1950 is not required.
- (e) The figures for cost should be split up in the following heads and original estimated costs and actual costs separately with explanatory remarks regarding excess, if any :---
 - (i) Cost of materials.
 - (ii) Cost of labour.
 - (iii) Charges for the use of machine and their overhauls,
 - (iv) The over-heads-general.

STATEMENT F

Analysis of Cost per cwt. of Reinforcement

SI. No.	! Item	Unit Quantity Rate Amount Remarks				
1	2	3	4 5	6 7		

- 1. Materials
 - 1.1 M.S. Bars
 - 1.2 Wastage

1.3 Binding Wire

- 2. Labour for handling from stores, binding and placing, in position.
 - 2.1 Blacksmith.
 - 2.2 Male Mazdoors
- 3. Carriage from stores to the worksite, e.g., on canals.
- 4. Sundries, etc.

Total Primary Rate

STATEMENT G-1

Analysis for Manufacture of Steel Shuttering per CFC

- 1. Brief specifications and design.
- 2. Life in terms of number of uses.

SI.	Item	Unit Quantity Rate Amount Remarks
No		a a series a series a series a series a series a series a series a series a series a series a series a series a A series a s

- 1. Steel
 - 1.1 M.S. Plate of sizes
 - 1.2 Structural sections
 - 1.3 Other materials
 - 1.4 Bolts, nuts & wedges, etc.
- 2. Fabrication

Total

3. Depreciation	Total amount Number of uses
Notes : 1. In case of other materials	under 1.3 details may be given.

2. Analysis for fabrication charges should be given separately,

STATEMENT G-2

Analysis for Steel Formwork per CFS of Concrete Surfaces

SI.	Item	Unit	Quantity	Rate	Amount	Remarks
No.			,			•
1	2	3	4	5	6	7

1. Depreciation of steel shuttering

- 2. Fixing and removing
 - 2.1 Cost of materials for anchorage
 - 2.2 Crane charges
 - 2.3 Labour
 - 2.4 Linseed oil, etc.

3. Miscellaneous 🔗

- 3.1 Petty repairs
- 3.2 Transportation of materials from workshop to worksite
- 3.3 Cleaning

Total Primary Rate

rEs :--1. Under 2.1 details of materials for anchorage may be given.

- 2. Under 2.3 details of labour required for fixing and stripping such as carpenters, mazdoors, etc. may be given.
- 3. Any charges for job electricity should be incorporated under Miscellaneous.
- 4. If any painting is done that may be included under 2.4 and its details should also be supplied,

- -

REPORT OF RATES & COSTS COMMITTEE

STATEMENT H

nalysis of Cost per FC of Drilling

1. Brief description of the work and particulars of root

L. S.

- 2. Particulars of drilling machine used.
- 3. Size and depths of holes.
- 4. Average time taken per f

SI.	Item	• Unit	Quantity	Rate	Amount	Remarks	-
No.							

- 1. Preliminary
- 2. Materials
 - 2.1 Drilling Rod
 - 2.2 Drilling bits including allowance for losses and sharpening etc.
 - 2.3 Pipes and pipe fittings
 - 2.4 Other materials
 - 3. Charge of machines
 - 3.1 Depreciation per hour
 - 3.2 Repairs per hour
 - 3.3 Fuel/Power/Air
 - 3.4 Lubricants
 - 3.5 Water charges
 - 3.6 Labour
- 4. Miscellaneous such as
 - 4.1 Shifting charges
 - 4.2 Cradle platform

Total Primary Rate

Notes :	lso be specified	if the	hole is	required	for	exploration,
grouting, weep-holes or drainage.						1

- 2. Preliminary includes expenditure on site clearance, etc., if any.
- 3. Ownership charges of machines per hour should tally with the detailed proforma on use rate of the machine. In case more than one machine is used, depreciation, etc. should be separately shown.
- 4. Any charge for lighting power should be incorporated under Miscellaneous

STATEMENT J

Analysis of Cost per FC of Cement Grouting

- 1. Brief description of the work and particulars of strata.
- 2. Particulars of the machine used.

3. Average time taken for pumping one FC of grout.

4. Specification of grout.

				•		
Sl. No.	Item	Unit	Quantity	Rate	Amount	Remarks
1.	Cleaning and washing	L. S.				
2.	Materials					
	2.1 Coment 2.2 Water 1 2.3 Ninples pipes & pipe					

S. 18

- inipples, pipes & pipe fittings, etc.
- 24 Other materials

3. Charge of machines

- 3.1 Depreciation
- 3.2 Repairs
- 3.3 Fuel/Power/Air
- 3.4 Lubricants
- 3.5 Labour
- 4. Miscellaneous
 - 4.1 Shifting of machine
 - 4.2 Platform, etc.

Total Primary Rate

res :--1. Brief description of the work should also be specified if the work is required for dam oundations or power plant.
2. Charges of machines per hour should tally with the detailed proforma on use-rate of the machine. In case more than one machine is used, depreciation should be separately shown.
3. Any charge for lighting power should be incorporated under Miscellaneous.

REPORT OF RATES & COSTS COMMITTEE

STATEMENT K

Analysis of Cost per CFC of Stone Rip-Rap or Pitching

Brief specifications :---

SI. No.	Item	Unit	Quantity	Rate	Amount	Remarks
1.	Rubble stone at quarry in- cluding spalls.					
2.	Labour					
	 2.1 Mason 2.2 Male Mazdoor 2.3 Female Mazdoor 2.4 Other work-charged establishment 	;-				

- 3. Carriage of Rubble stone and spalls from quarry to worksite
- 4. Sundries and T. & P.

Iotal Primary Rate

Sl. Type of No. soil				Borrowpit volume be-	Volume after ex-	Compaction			Remarks
		content- of the soil		fore exca- vation	cavation	Optimum moisture content descend	No. of passes of the rollers & the pressu- re lbs./sq. in. required	Volume after compac- tion	Remark
1	2	3	4	5	6	7	8	9	10

PROFORMA L Swell and Shrinkage Factors of Soils

.

T CIE :- In case of rock, the type of rock, its specific gravity, its volume before and after excavation need only be mentioned.

PROFORMA M (i)

PROJECT (EARTHWORK MACHINERY)

PART I

- 1. Name of machine.
- Make and Model. 3.
- Year of manufacture. 5.
- 7. Rated h.p. of engine.
- 8. Rated fuel consumption at Full load. Half load.
- 9.
- No load.
- 10. (a) Cost of machine at the Rail Head. exclusive of tyres, tubes and belfs. Transport
 - Assembly
 - Test
 - Dismantling

(b) Cost of tyres, tubes and belts, etc.(a) Life assumed for machine.

- 11.
 - (b) Life assumed for tyres, tubes and bens, etc.
- 12. Number of working shifts each day and duration of each shift
- 13. Assumed salvage value.
- Proposals for disposal of macnine after completion of the work. 14.
- 15 Characteristics of soil-
 - Classification (i)
 - (ii) Density, Natural/Compacted.
 - (iii) Swell.
- 16. Condition of haul road.

PART II

- 17. No. of hours used by years.18. No. of hours lost by years due to
 - - (i) No Work.
 - (ii) Major repairs and overhauls.
 (iii) Bad weather.
 (iv) Strikes.

 - (v) Other causes, if any.
- Expenditure each year on—

 (i) Major repairs and overhauls.
 - (ii) Minor repairs and servicing.
- 20. Expenditure each year showing also quantities of issues and rates-(i) Fuel oil/Electricity energy. (ii) Lubricants. (iii) Air (share). (iv) Water (share).
- Expenditure each year on operating staff-21. (i) Foreman (share only).
 - (ii) Operators.
 - (iii) Helpers.
- 22. Output of work each year.

24. Angle of swing.

25. Depth of cut. 26. Bucket efficiency. 27. Other details, if any.

Notes :-- 1. In Part II of the proforma information should be given in respect of each successive financial year separately. Where necessary average figures may be filled in.

- 3. In case of life assumed and hours worked, if hours are not clock hours, precise definition of the "hour" should be given.

23.

Lead (Average)

Lift (Average)

- 4. In case of output it should be mentioned if the figures given are on borrow measurements or compacted. 5. Units should be mentioned for all the quantities. In case of volumetric, cu. ft. should be used.
- 6. Under major and minor repairs, if break-up is available for labour and spares, it should be given.

- 2. Number.
- 4. Size, rated capacity. 6.
- Date of commencement of use.
- Name of supplier.

PROFORMA M (ii)

Air Compressors

PART I

- 1. No. of the machine.
- 2. (a) Make and model.
- (b) Whether portable or stationary.
- Year of manufacture. 3.
- 4. Date of commencement of use.
- 5. Rated capacity and pressure of air in lbs./sq. in.
- Rated h.p. of the engine.
 Rated fuel/nower consum
- Rated fuel/power consumption per hour at Full load.

Half load.

No Load.

- 8. Name of supplier.
- 9. (a) Cost of the machine at the Rail Head.
 - (b) Cost of Transport. Assembly. Foundation Test Dismantling.
- 10. No. of working shifts each day and duration of each shift.
- 11. Assumed life of the machine.
- 12. Assumed salvage value.
- 13. Propspals for disposal of the machine after the completion of the work.

PART II

- 14. No. of hours used, in consecutive years.
- 15. No. of hours lost during the years due to-
 - (i) No work.
 - (ii) Major repairs and overhauls.
 - (iii) Bad weather.
 - (iv) Strikes.
 - (v) Other causes, if any.
- 16. Expenditure, each year, on
 - (i) Major repairs and overhauls.
 - (ii) Minor repairs and servicing.
- 17. Expenditure, each year, showing also quantities of issues and rates of-(i) Fuel oil/Power.
 - (ii) Lubricants.

 - (iii) Water (share only)
- 18. Expenditure, each year, on operating staff-
 - (i) Foreman (share only)
 - (ii) Operators.
 - (iii) Helpers.
 - (iv) Other W.C. Establishment like Chowkidar, Time-keeper, etc. (share only).
- Notes :-- 1. In Part II, information should be given in respect of each successive financial year separately.
 - 2. Where necessary, average figures may be filled in.
 - 3. In case of life and hours worked, if hours are not clock hours, precise definition of the "hour" should be given.
 - 4. Under Major and Minor repairs if break up is available, of labour, material and spaces it should he aiven

REPORT OF RATES & COSTS COMMITTEE

PROFORMA M (iii)

Druting and Grouting

PART I

- 1. Name of machine.
- 2. No. of machine.
- 3. Make & model.
- 4. Size and rated capacity.
- 5. Year of manufacture.
- 6. Date of commencement of use.
- 7. Rated h.p. of the engine.
- 8. Rated fuel/power/air consumption per hour.
- 9. Name of supplier.
- 10. (a) Cost of equipment at the Rail Head.
 (b) Cost of : Transport
 - - Assembly.

Test.

Dis-assembling.

- 11. (a) Assumed life of the machine.(b) Life of drill bits.
- Assumed salvage value.
 Proposals for disposal of the plant after completion of work.
 No. of working shifts each day and duration of each shift.
 Type of rock, its specific gravity and other characteristics.

- 16. Other particulars, if any.

PART II

- 17. No. of hours used, by years.
- 18. No. of hours lost, by years, due to---
 - (i) No work.
 - (ii) Major repairs and overhauls.
 - (iii) Bad weather.
 - (iv) Strikes.
 - (v) Other causes, if any.
- 19. Expenditure, each year, on-
 - (i) Major repairs and overhauls.
 - (ii) Minor repairs and servicing.
- 20. Expenditure, each year, showing also quantities of issues and rates of-
 - (a) (i) Fuel.
 - (ii) Lubricants.
 - (iii) Air.
 - (iv) Water (share only).
- (b) Other materials like drill bits, cement for grout mix, etc.

- 21. Expenditure, each year, on operating staff-
 - (i) Foreman (share only).
 - (ii) Drillers/pump operator.
 - (iii) Helpers.
 - (iv) Other W.C. Establishment like Chowkidars, etc. (share only).
- 22. (a) Depth of hole in rft.
 - (b) Diameter of hole in inches.
- 23. Average output per working hour.

- In case of life and hours worked, if hours are not clock hours, precise definition of "hour" should be given.
 Under major and minor repairs, if break-up is available for labour, material and spares it should be given.
- be given.

PROFORMA M (*iv*)

Details should be given separately for each type of machine viz., sand-washing plant, crushers, conveyors, belts and screens, batching and mixing plants, diesel locomotives, cranes and vibrators.

PART I

- 1. No. of the equipment.
- Make and model. 2.
- Size and rated capacity. 3.
- Year of manufacture. 4.
- 5. Date of commencement of use.
- 6. Rated h.p. of the engine.
- Rated fuel/power consumption per hour. 7.
- 8. Name of supplier.
- 9. (a) Cost of equipment at Rail Head.
 - (b) Cost of : Transport.
 - Assembly and erection. Foundation.

 - Test.
 - Dismantling.
- 10. Assumed life of the plant.
- 11. Assumed salvage value.
- Proposal for disposal of the plant after completion of the work.
 No. of working shifts each day and duration of each shift.

PART II

- 14. No. of hours used, by consecutive years.
- 15. No. of hours lost, by years, due to-
 - (i) No work.
 - (ii) Major repairs and overhauls.
 - (iii) Bad weather.
 - (iv) Strikes.
 - (v) Other causes, if any.
- 16. Expenditure, each year, on-
 - (i) Major repairs and overhauls.
 - (ii) Minor repairs and servicing.
- 17. Expenditure, each year, showing also quantities of issues and rates of-
 - (i) Fuel oil/power
 - (ii) Lubricants.

 - (iii) Air (share) (iv) Water (share)
- 18. Expenditure, each year, on operating staff-
 - (i) Foreman (share only).
 - (ii) Operators.
 - (iii) Helpers.
- (iv) Other W.C. Establishment like Time-keeper, Khalasis, etc. (share only), 19. Output of each year in CFC units.
- 20. Any other details.
- Nores :-- 1. In part II, information should be given in respect of each consecutive financial year separately. 2. Where necessary, average figures may be filled in.
 - 3. In case of life and hours worked, if hours are not clock hours, definition of the 'hour' should be given.
 - 4. In case of crushers, percentage of voids of the crushed stone should be given.
 - 5. Under major and minor regains if break-up is available for labour, material and spares, it should be given.

APPENDIX .. 11

Decimal system of classification of Detailed eaas and their S b-heads

- 10.10.00 Preliminary Expenses.
 - 11.00 Dam and Spillway.
 - 12.00 Power houses and allied warks
 - 15.00 Weirs and Barrages.
 - 16.00 River training and Diversion Works.
 - 17.00 Main Canal and Branches.
 - 18.00 Distributaries and Minors.
 - 19.00 Flood Control and Drainage Works.
 - 20.00 Navigation.
 - 21.00 Relocation of Highways and Railways.
 - 22.00 Communications.
 - 23.00 Power Generation.
 - 24.00 Power Transformation, Transmission.
 - 25.00 Power Distribution and Supply.
 - 26.00 Ground Water.
 - 27.00 Soil Conservation and Land Reclamation.
 - 28.00 Fish and Games, Reservoir, Navigation, Recreation.
 - 29.00 Gates, Allied Fixture and Equipment.
 - 30.00 Township.
 - 31.00 Construction Plant and Equipmen
 - 32.00 Construction Plant and Equipment Operation.
 - 33.00 Bandhs and Tanks.
 - 34.00 Suspense.
 - 35.00
 - 36.00
 - 98.00
 - 99.00 General Services-operation and Maintenance, Police, Posts and Telegraphs, Fire Protection, Watch and Ward, Health and Sanitation, Medical Facility and Water Supply & Sewage, Camp Operation Maintenance.
- 11.10.00 Preliminary Expenses.
 - 11.00 Reconnaissance.
 - 12.00 Topographical Surveys and Mapping.
 - 13.00 Geological Surveys.
 - 14.00 Hydrological and Meteorological Surveys.
 - 15.00 Economic Surveys.
 - 16.00 Laboratory Tests.
 - 17:00? Consultant's Fees.
 - 18.00 Preparation of Preliminary Projects,
 - 19.00
 - 20.00

	Masonry Dam (Concrete-Stone Masonry) & Spillway.
	Site Clearance.
12.00	Roads etc.
13.00	Electric Distribution System. Fire Alarm System. Drainage.
14.00	Fire Alarm System.
15.00	Drainage.
16.00	Landscoping.
17.00	Photography. Land.
18.00	Land.
. 19.00	Excavation of Foundation.
20.00	Building.
21.00	Building. Plantation.
22.00	
23.00	Mechanical Fittings.
24.00	Bridges.
25.00	Buckets, Baffles.
26.00	Spillway Peirs.
27.00	
	Tunnels.
	Fitters.
	Joints.
31.00	Instrumental Fittings.
32.00	Instrumental Fittings. Miscellaneous Works.
33.00	
34.00	
	Earthen or Rockfill Dam.
	Site Clearance.
12.00	Roads etc. Electric Distribution System.
13.00	Electric Distribution System.
14.00	Fire Alarm System.
	Drainage.
16.00	Landscoping.
17.00	Photography.
18.00	
19.00	Excavation of Foudnation.
20.00	Building. Plantation.
21.00	Plantation.
22.00	Gates, Sluices, Water Conduits and Intake Structure.
23.00	Mechanical Fittings.
24.00	Bridges.
25.00	Buckets, Baffles.
26.00	Spillway Peirs.
27.00	Coffer Dams.
	Tunnels.
	Fitters.
	Joints.
	Instrumental Fittings.
	Miscellaneous Works.
33.00	
34.00	· · · · · · · · · · · · · · · · · · ·
14.10.00	Power House and Allied Works.
	Land.
12.00	Excavation and Treatment of Foundations.
	Power House Building.
	Crane and Hoisting Equipment.
15.00	Gates.
16.00	Draft Tubes.

17.00 Tail Race. 18.00 Upstream and Downstream Regulators. 19.00 Penstocks, Surge Towers etc. 20.00 Spiral Casing. 21.00 Joints and Water Stops. 22.00 Electric Fittings. 23.00 Fire Extinguishers. 24.00 Tanks. 25.00 26.00 15.10.00 Weirs and Barrages (Headworks). 11.00 Site Clearance. 12.00 Foundation Excavation and Treatment. 12.00 Foundation Excertation and Freemann.
13.00 Superstructure.
14.00 Gates, Quantities.
15.00 Bridge and Gangway.
16.00 Aerial Ropeways, Telephones, Cabins. 17.00 Head. 18.00 Downstream Protection Works. 19.00 Buildings including Lighting, Water Supply. 20.00 Miscellaneous Works 21.00 Land. 22.00 23.00 16.10.00 River training and Diversion Works. 11.00 Bunds. 12.00 Groynes and Spurs. 13.00 Cuts. 14.00 Coffer Dams. 15.00 Tunnels. 16.00 Levees and the size Embankments. 17.00 Land. 18.00 19.00 17.10.00 Main Canal and Branches 11.00 Head. 12.00 Channels Excavation and Embankments Liner, Service Road. 13.00 Regulators, Bridges and Falls. 14.00 Gauging. 15.00 Drainage Crossing and Inlets. 16.00 Other Works 17.00 Escapes. 18.00 Buildings. 19.00 Plantations. 20.00 Mills (Water & Wing.) 21.00 Land. 22.00 23.00 18.10.00 Distributaries and Minors. 11.00 Minors. 12.00 Channel Excavation Embankment Lining, Service Road. 13.00 Regulators, Bridges and Falls. 14.00 Other Works. 15.00 Drainage Crossings.

TOTAL DECINE

APPENDIX 11-contd.

16.00 Escapes. 17 00 Buildings. 18.00 Water Courses, Culverts, Outlets, Metres, 19.00 Plantations. 20.00 Land. 21.00 22.00 19.11.00 Diversion. 12.00 Spreading of Flood Waters. 13.00 Channel Rectification. 14.00 Channel Enlargement. 15.00 Channel Cleaning. 16.00 Embankment. 17.00 Reservoirs. 18.00 19.00 20.10.00 Navigation. 11.00 Dredging Operations. 12.00 Wharfs, Quays, Jetties etc. 13.00 Borat, Tugs, Barges, Steamer.
14.00 Gauging and Control.
15.00 Buildings. 16.00 Land. 17.00 18.00 21.10.00 Relocation of Highway and Railway. 11.00 Clearance. 12.00 Deforestation, 13.00 Rim Treatment. 14.00 Road Bridges. 15.00 Embankments. 16.00 Buildings. 17.00 Gauging. 18.00 Recreation. 19.00 Fishing. 20.00 Parks. etc. 21.00 Land. 22.00 23.00 22.10.00 Communication. 11.00 Roads. 12.00 Railways. 13.00 Tramways. 14.00 Rolling Stock and Locomotives. 15.00 Buildings. 16.00 Plantations. 17.00 Land. 18.00 19.00 23.10.00 Power Generation. 11.00 Feed Pumps. 12.00 Boilers. 13.00 Turbines, Steam, Water. 14.00 Diesel Engines.

- 15.00 Generators.
- 16.00 Governors.
- 17.00 Control Equipment.
- 18.00 Switch Gear.
- 19.00 Insulators.
- 20.00 Spray Tanks or an alternative Cooling Arrangement.
- 21.00 Elevators.
- 22.00 Conduits.
- 23.00 Wiring and Cables.
- 24.00 Flutures.
- 25.00 Protective Equipment.
- 26.00 Compressed Air.
- 27.00 Fire Protection.
- 28.00 Forced Draught.
- 29.00 Induced Draught.
- 30.00 Feed Water Heaters or Economisers.
- 31.00 Chimney.
- 32.00 Coal Handling Equipment or Conveyors.
- 33.00 Sootblowers.
- 34.00 Automatic Feed Check Values.
- 35.00 Feed-water arrangement (tubewell etc.) and water for other pumps.
- 36.00 Condensers.
- 37.00 Circulating Water Pumps and Mortars.
- 38.00 Spray Pipe Line.
- 40.00 Coal Buckets.
- 41.00 Ash Handling Equipment.
- 43.00 Boiler Foundation with Enloins.
- 44.00 Boiler House Building.
- 45.00 Turbine room Building.
- 46.00 Oil storage tanks and Arrangement.
- 47.00 Storage tank of water if and where necessary.
- 51.00 Other recording instruments like Carbon dioxide recorder. Carbon Monoxide recorder or Steam recorder etc.
- 52.00 Special tools and plant for Maintenance and Construction.
- 53.00
- 54.00

24.10.00 Power Transformation, Transmission.

11.00 Foundations, Platforms, Support etc.

12.00 Transformers.

- 13.00 Protective Gear.
 14.00 Transmission Lines.
 15.00 Step down Transformers.
 16.00 Compressed Air.
 17.00 Fire Protection.

18.00 19.00

25.10.00 Power Distribution and Supply.

- 11.00 L.T.Lines.
- 12.00 H.P. Meters.

- 13.00 Switch Gear.
 14.00 Transformers.
 15.00 Service Lines.
 16.00 Domestic Meters.
- 17.00 Land.
- 18.00
- 19.00

APPENDIX 11-contd

26.10.00 Ground Water. 11.00 12.00 27.10.00 Soil Conservation and Land Reclamation. 11.00 Son Conservation and Land 1
11.00 Check Dams.
12.00 Cantour Bunding.
13.00 Terracing.
14.00 Ridging.
15.00 Planting trees, shrubs etc. 16.00 Gully Plugging. 17.00 Land. 18.00 19.00 28.10.00 Fish and Games, Reservoir Navigation, Recreation 11.00 Dam development and management of Fisheries and Fish Life. 12.00 Development and management of games, including Kenels and Mam Development and management of games, including Kenels and Mammals. Navigation on the Reservoir. 13.00 14.00 Recreation. 15.00 Land. 16.00 17.00 29.10.00 Gates, Allied Fixture and Equipment. 11.00 Spillway Gates. 12.00 Intake Gates. 13.00 Sluice and outlet Gates and Valves. 14.00 Draft tube Gates. 15.00 Garrage Gates.16.00 Regulator Gates. 17.00 18.00 30.10.00 Township. 11.00 Site Clearance. 12.00 Roads etc. 13.00 Electric Distribution. 14.00 Drainage System.
15.00 Sewerage System.
16.00 Water Supply.
17.00 Residential Buildings—Permanent.
18.00 Residential Buildings—Temporary. 19.00 Streets, Parks, Pavements.20.00 Recreation Grounds. 21.00 Fire Alarm. 22.00 23.00 Godowns. 24.00 Hospitals. Police Station. 25.00 26.00 Workshop Buildings. 27.00 Cafetaria. 28.00 School. 29.00 Garrages. 30.00 Land. 31.00 Fire Station. 32.00 P. & T. Affairs and Wireless Station. 33.00 Maternity Centres, Clubs, Swimming Pools. 34.00 Pumping Stations. 35.00 · · 36.00

- 31.10.00 Construction Plant and Equipment.
 - 11.00 Site preparation.
 - 12.00 Time office.
 - 13.00 Warehouse, Tool House.
 - 14.00 Carpenters Shop.
 - 15.00 Machine Shop.
 - 16.00 Blacksmith Shop.
 - 17.00 Sheet Metal Shop.
 - 18.00 Drilling, Sharpening Shop.
 - 19.00 Servicing Station. 20.00 Railway Siding.

 - Compressed Air. 21.00
 - 22.00 Raw Water System.
 - 31.00 Hauling Equipment.
 - Excavation and Grading Equipment. 32.00
 - 33.00 Hoisting Equipment.
 - 34.00 Tractors.
 - 35.00 Wagon Drills.
 - 41.00 Primary Crushing Plant.
 - Secondary Crushing and Screening Plant. 42.00
 - 43.00 Sand Plant.
 - Conveyor System. 44.00
 - Aggregate Storing and Reclaiming Plant. 45.00
 - Cement handling amd storage Plant. 46.00
 - Concreting, Batching and Mixing Plant. Cableway Plant. 47.00
 - 48.00
 - 49.00 Jackhammers.
 - 50.00
 - Concrete Vibrators. Concrete Boggies and Buckets. 51.00
 - 52.00 Portable Concrete Mixers.
 - 53.00 Portable Air Compressors.
 - Portable Welders. 54.00
 - 55.00
 - 56.00 Dredgers.
 - 57.00 Tractors and Dozers.
 - 58.00 Scrappers.
 - 59.00 Rakes.
 - 60.**00** Cranes, Winches and Cables.
 - 61.00 Draglines.
 - 62.00 Root Cutters.
 - 63.00 Chain Saws.
 - 64.00 Drills.
 - 65.00 Pile Drivers.
 - 66.00 Tow Boats.
 - 71.00 Barges.
 - 72.00 Drill Boats.
 - 73.00
 - · · · · · · · · · · · · · · · • 81.00 Office Furniture.
 - 82.00 Office Equipment.
 - 83.00 Engineering Equipment.
 - 84.00
- 32.10.00 Construction Plant and Equipment Operation.
 - 11.00 Carpenters Shop Operation.
 - 12.00 Blacksmith Shop Operation.
 - 13.00 Electric Shop Operation.
 - 14.00. Compressor Air Operation.
 - 15.00 Reinforcing Yard Operatior.

416

APPENDIX 11-concld. 16.00 Excavation and Grading Equipment Operation. 17.00 Hoisting Operation. 18.00 Tractor Operation. 19.00 Wagon Drill Operation. 20.00 Primary Crushers. 21.00 Secondary Crushing and Screwing Plant. 22.00 Sand Plant Operation. 23.00 Conveyor Plant Operation. 24.00 Aggregate Storage and Reclamation 25.00 Concrete Mixer Plant Operation. 26.00 Job Rail Road Operation. 27.00 Cableway Operation. 28.00 Tow Boat Operation. 29.00 30.00 33.10.00 Bunds and Tanks. 11.00 Site Clearance. 12.00 Rooting. 13.00 Embankment. 14.00 Gates Regulators.
15.00 Rip-Rap.
16.00 Miscellaneous.
17.00 Land. 18.00 19.00 34.00.00 Suspense. 34.10.00 Stock. 11.00 Purchases. 12.00 Miscellaneous Advances. 13.00 Workshop Suspense.
14.00 General Plant.
15.00 Mobile Equipments
16.00 Concrete Plant. 17.00 18.00 99,00.00 General Services-Operation & Maintenance. 11.00 Police. 12.00 Posts & Telegraphs. 13.00 Wireless Station. 14.00 Watch and Ward. 15.00 Fire Protection. 16.00 Medical, Health & Sanitation. 17.00 Social Service. 18.00 Education. 19.00 Accidents. 20.00 Recreation, Entertainments, Public Functions. 21.00 Training Centres. 22.00 Water Supply. 23.00 Lighting. 24.00

M7CW&PC 63-500-15-7-67-GIPF.

ERRATA

.

F age	Line No.	for	Read
2	13	all	large
5	35	Purchase Committee.	Purchase Committee—Ministry of Works, Housing and Supply.
7	6	and two	and no two
	8	local materials,	the materials used,
· 8	17	The Coordination Committee of Engineers was	The committee was
16	16	The financial provision	The provision
17	1 and 2 from bottom	no salvage value.	as little salvage value as possible.
22	last line	cost of works.	cost of works, excluding land.
38	2	Statement of Depreciation Rate per Month of Non-Rated Equipment	Statement of Depreciation Rate per Month of Non-Rated Equipment as Percentage of the Capital Cost
6 9	.15 and 16	will remain constant till such an occasion crops up again.	should remain in force until a simila contingency crops up again.
73	7	Cardools,	the tools,
	8	with	card
	9	tool	with
	10	ther	tool
	32	further	have also
85	5	and be responsible	and is largely responsible
	28	skill, the	skill, in
93	3	executives	the authorities
94	27	recognition	appreciation
96	1	Engineer's Office if it be	Engineer if he be
110	13	Capacity in CFC	Capacity in CFC per Huor
184	21 column 6	11/2	2 1
294	22	4. Cyds.	4. ³ / ₄ Cyds.
358	4	Streeing	Steering
359	42	10	100
362	11	5/4-1	5/4/-
363	17	0 ·15 gal.	•15 gal.
365	last line	115 Y.P.	115 H.P.
368	30	reverse	reserve
389	18	Discharge gates	Discharge gates Belt Conveyors
413	21	Borat,	Boat,

COVER DESIGNED AND PRINTED AT THE PHOTO LITHO WING; GOVT. OF INDIA PRESS, NEW DELHI-1