GIPE-PUNE-141502

```
A GENERALISED COB-WEB MODEL OF PRICES LEADING
TO EQUILIBRIUM IN A FINITE NUMBER OF PERIODS
    by
        V. Mukerji and K. Mukerji**
(University of Calcutta and University of Birmingham).
```


Dhananjayarao Gadgil Library

GIPE-PIINF-14150)

A GENERALISED COB-WEB MODEL OF PRICES LEADING
to Equilibrium in a finite number of periods
by
V. Mukerji and K. Nukerji**
(University of Calcutta and University of Birmingham).
Discussion Paper, Series A, No.134, October, 1971.

** This work was done in 1967-68 and submitted to the Indian Econometric Conference at Poona in 1967.

1. In the usual one-variate cob-web model the producer his knowledge of the supply at time t (in the period t) on price at which the quantity he produced in the earlier period was demanded in that period ignoring completely his knowledge of points on the demand curve, in the earlier periods. This is not only waste of information but may not also be very realistic.
2. If, on the other hand, the price expected by the farmer at time t is

$$
\begin{equation*}
P_{t}^{*}=\frac{1}{t}\left(P_{t-1}+\cdots \cdot+P_{0}\right) \tag{1}
\end{equation*}
$$

then the model is

$$
\begin{gather*}
S_{t}=S\left(P_{t}^{*}\right) \tag{2}\\
D_{t}=D\left(P_{t}\right) \\
\text { with } P_{t}^{*}=\frac{1}{t}\left(P_{t-1}^{+}+P_{0}\right) \\
\text { and } \\
\text { or simplifying. } \tag{3}\\
S_{t}=D_{t} \\
D\left(P_{t}\right)=S\left(\frac{1}{t}\left(P_{t-1}^{+} \cdot+P_{0}\right)\right)
\end{gather*}
$$

If linear demand and supply functions

then equation (3) becomes

[^0]$$
a-b P_{t}=\alpha+\beta \frac{1}{t}\left(P_{t-1}^{-2-}+\cdots P_{0}\right)
$$

The equilibrium price level is given by

$$
\begin{equation*}
P^{*}=\frac{a-\alpha}{b+\beta} \tag{5}
\end{equation*}
$$

If $P_{t}=P_{t}-P^{*}$ denotes the deviation of P_{t} from the quiljbrium price, then equation (4) reduces to

$$
\begin{equation*}
b t P_{t}=-\beta\left(P_{t-1}+\cdots+P_{0}\right) \tag{6}
\end{equation*}
$$

[t. can be proved by the method of induction or otherwise that the solution of (6) for given P_{0} is

$$
\begin{equation*}
F_{n}=\frac{1 B_{0}}{n!b^{n}} \prod_{r=0}^{n-1}(r-b-13) \tag{7}
\end{equation*}
$$

Hence it is evident that if

$$
r b=\beta \text { for any positive integer }{ }_{K}^{1} \text { then } P_{n}=0
$$

for all $n \geqslant r$, or in other words equilibrium is reached at time. For this to happen it is necessary that. $\beta \geqslant b$.

If $\beta=s b, \quad s \neq \quad$ a positive integer, then P_{n} does not become zero for any finite value of n. If $k<s<k+1$ then P_{n} changes sign till $n<k$, and then has the sign of for all $(-1)^{k+1}$ for all $n \geqslant k$

$$
\text { Now } \begin{align*}
P_{n} & =\frac{P_{0}}{n!b^{n}} \frac{\prod_{1}^{n-1}}{1=0}(1-b-\beta) \\
& =P_{0} \prod_{r=0}^{n-1}\left(1-\frac{1+\beta / b}{1+r}\right) \tag{B}
\end{align*}
$$

For $1+\beta / b>0$ this continued product is monotonically decreasing in magnitude for sufficiently large p . and since
$\sum \frac{1}{r}$ diverges to ∞, tends to O as $n \rightarrow \infty{ }^{(2)}$ This is true so long as $\beta+b>0$ or $\beta>-b$ provided $b>0$. If $\beta+b<0$ when $b>0$, then P_{n} diverges to ∞

Hence provided $B+b>0$, equilibrium is reached whatover the initial value of the price, or there is global stability of equilibrium. As stated earlier, if in particular β 上 r where $\quad \gamma$ is a positive integer then the equilibrium is reached in periods only.
3. : : In the usual cob-web model with the supply and demand functions given by (3a), the price behaviour around the equilibrium value: P^{*} is given by

$$
\begin{equation*}
P_{t}=\left(-\frac{\beta}{b}\right)^{t} P_{0} \tag{9}
\end{equation*}
$$

Hence when $\beta \geqslant b>c$ in the cob-web process, P_{t} oscillates infinitely as $t \rightarrow \infty$ If $0 \leq 3<b$ the cob-web process for $P_{t} \therefore$ oscillates but tends to the equilibrium value. If $-b<\beta<0<b$ then the cob-web process tends to the equilibrium value monotonically.

Whert ti"a iohavaur of the cor-web process is compared with the belavicur of. fic pioreun conidered in section 2 , referred to in this paper ut: the (liripe (unveightedmean paice expectation) process we ort tat following results:

lume th: Whpe process is a better stabilising process then the cohwo prucoss in thet it sonverges to equilifrium more often than the lattar. One wouls zlso expect that for values of $\frac{\beta}{0}$ for which both tie pocasses converge tio u mpe process converges faster than the wowti prucess. This, however, surprisingly does nct happen as the we:t scction shows.
\therefore Lic $P_{r a}$ innote tine value of P_{n} for the cob-reb process and $P_{n u}$ the value of P_{n} for the 1 mpeprocess: Both the noons cs conveze rier $\left|\frac{B}{万}\right|<1$. We consider the limiting behaviour
-5-
of $\left|P_{n u} / P_{n c}\right|$ for $\left|\beta^{3} / b\right|<1$.
$\frac{\left|P_{n u}\right|}{\| P_{n c} \mid}=\left|\frac{1}{n!} \frac{\prod_{r=0}}{r=0}\left(1-\frac{r b}{\beta}\right)\right|=\frac{1}{n!} \frac{n-1}{\prod_{=0}}\left|1-\frac{r}{\beta}\right|=u_{n}$ say
The sequence u_{n} diverges when $\left|\frac{3}{b}\right|<\mid$ for.
$\begin{aligned} & \text { Un+i/un } \\ & \text { Hence when the cobweb process converges it converges }\end{aligned}$
faster than the ump process. In other words when the supply reaction coefficient is smaller in magnitude than the demand reaction coefficient Markovian memory (memory of only the previous instant) is a greater stabilizer than the non-Mc jovian memory (memory of all the previous instants up to the initial instant).
5. If instead of using an unweighted tran price one uses a weighted mean price for the expectation of the price for the supplies and in particular with geometrically decreasing weights $\lambda, \lambda^{2}, \lambda^{3}$ etc. then equation (6) becomes

$$
b p_{t}+\beta \frac{\left(p_{t-1}+\lambda p_{t-2}+\cdots+p_{0} \lambda^{t-1}\right)}{1+\lambda+\cdots+\lambda^{t-1}}=0 \quad 0 \leq \lambda \leq 1
$$

or

$$
b\left(1-\lambda^{\dagger}\right) p_{t}+\beta(1-\lambda)\left(p_{t-1}+\lambda p_{t-2}+\cdots+p_{0} \lambda^{(-1)}\right)=0
$$

$$
\lambda=1
$$

When $\quad \lambda=0 \quad$ we get the cobweb model and when/we get the umpe process. It can again be shown by the method of induction or otherwise that the solution of equation is given by

$$
\begin{equation*}
P_{n}=P_{0} \frac{\prod_{r=0}^{n-1}}{r=0}\left\{\frac{\lambda\left(1+\lambda++\lambda^{1-1}\right)-1^{3 / b}}{1+\lambda+\lambda^{r}}\right\} \tag{12}
\end{equation*}
$$

for T_{0} the factor in brackets is $-\frac{13}{b}$
(12) can be simplified and expressed in the form:

$$
\begin{aligned}
& P_{n}=P_{0} \frac{n}{r_{=1}}\left(1-\frac{x}{1-\lambda}\right) \quad(13) \ldots \\
& \text { where } \quad x=\left(1+\frac{\beta}{b}\right)(1-\lambda) \quad \text { when } 1+\frac{\beta}{b} \geqslant 0 \\
& \quad \text { since } 1-\lambda \geqslant 0 .
\end{aligned}
$$

To investigate the convergence of the continued product in (13), - consider

$$
\begin{align*}
& \left|P_{n+1}\right|=\left|\left(1-\frac{x}{P_{n}}, n+1\right)\right| \rightarrow|1-x| \tag{14}\\
& \text { and } \rightarrow 1 \quad \therefore \quad \text { for } \lambda=1, \text { which has }
\end{align*}
$$

already been considered.
The case of $\lambda=0$ has also been considered.

For $0 \leq \lambda<1$ (i) i_{n} diverges (monotonically) when $x<0$
that is when $1+\frac{\beta}{b}<0$ or $\frac{\beta}{b}<-1$.

$$
\begin{aligned}
& \text { that } \\
& \text { Note for } \\
& \text { sufficiently large } \\
& 1-\lambda
\end{aligned}>\frac{\beta}{b}, P_{n} \text { has the same sign for }
$$

(ii) P_{h} diverges oscillatingly when $x>0$ bit $1-x<\cdots$: or $\quad x>2$
that is $\left(1+\frac{13}{b}\right)(1-\lambda)>2$
or $\frac{\beta}{b}>\frac{1+\lambda}{1-\lambda}$

$$
\begin{align*}
& -7- \\
& P_{n} \text { conereses to o when } \tag{iii}\\
& x>0 \text { but } 1-x>-1 \\
& \text { or } \beta / 6>-1 \text { built }<\frac{1+\lambda}{1-\lambda} \\
& \text { When } \\
& \text { it converges oscillatingly and when } \\
& 13 / 6<\frac{\lambda}{1-\lambda} \text { it converges monotonically. }
\end{align*}
$$

$$
\begin{aligned}
& \text { (iv) When } 1-x=-1 \text { or } x=2 \\
& \text { or } \beta / b=\frac{1+\lambda}{1-\lambda} \\
& \left|\frac{P_{n+1}}{P_{n}}\right|=\frac{1+\lambda^{n}}{1-\lambda^{n}} \\
& \text { and }\left|P_{n}\right|=\Psi\left(1+2 \lambda^{n}\left(1-\lambda^{n}\right) \text { and }{ }^{n}\right. \text { for alterliates in sign. } \\
& \text { butoscillates .finitely. } \\
& \text { Thus in this case the convergence or divergence when } \frac{13}{6}>-1 \\
& \text { depends on the value of } \lambda \quad \text {. The larger the } \lambda \text { (<1) } \\
& \text { the larger the range of convergence and the smaller the } \lambda \\
& \text { the smaller the range of convergence. The range of } \\
& \text { convergence common to all the three processes is the } \\
& \text { range given by }-1<\frac{3}{6}<1 \text {. } \\
& \text { When } \frac{1^{3}}{b}=\lambda\left(1+\lambda_{+} \cdot r \lambda^{r-1}\right) \text { the wipe process reaches equilibrium } \\
& \text { in } r \text { steps. } \\
& \text { 6. To compare the speed of convergence of the wipe } \\
& \text { ump } \\
& \text { process with that of the cobweb and the process in their } \\
& \text { como range of convergence we again compare the relevant } P_{n}^{\prime} s \text {. }
\end{aligned}
$$

 numerator) and the cob-web process is given by $\left|u_{n}\right|=\left|\frac{b}{\beta}\right|^{n} \frac{\prod_{r=1}^{n}}{r_{=1}}\left(1-\frac{x}{1-\lambda^{r}}\right)$ Hence

$$
\begin{align*}
&\left(\frac{u_{n+1}}{u_{n}}\right)=\left|\frac{b}{\beta}\right|\left|1-\frac{x}{1-\lambda}{ }^{3}+1\right| \\
& \rightarrow\left|\frac{b}{\beta}(1-x)\right| \text { a } s n \rightarrow \infty \\
&=\left|\left(-1+\lambda+\frac{\lambda b}{\beta}\right)\right| \\
&=\left|\frac{\lambda b}{\beta}-(1-\lambda)\right| \tag{17}
\end{align*}
$$

If. $\lambda\left(\frac{b}{\beta^{3}}+1\right)-1>0$ or $\lambda\left(\frac{b}{\beta}+1\right)>1$

$$
u_{n} \rightarrow \infty \quad \text { or converges to } 0 \quad \text { according as }
$$

$$
\lambda\left(\frac{b}{\beta}+1\right) \geq 2
$$

If $\quad \lambda\left(\frac{b}{\beta}<1\right)$
then $U_{n} \rightarrow \infty$
or
converges to ω, according as

$$
\lambda\left(\frac{b}{1^{3}}+1\right) \leqslant 0
$$

When both b and $\beta>0$ and $\quad \frac{\beta}{b}<1 . \quad\left(\right.$ or $\left.\frac{b}{\beta}>1\right)$

$$
\lambda\left(\frac{b}{\beta}+1\right)=0
$$

Hence u_{n} converges to or diverges to $\infty \quad$ according as

$$
\lambda\left(\frac{b}{3}+1\right) \lesseqgtr 2
$$

or

$$
\begin{aligned}
& \frac{b}{\beta}>2 \frac{-\lambda}{\lambda} \\
& \text { ar } \frac{B}{b}>\epsilon \frac{\lambda}{2-\lambda}
\end{aligned}
$$

If $b>0$ and $\beta<0$ and $\frac{\beta}{b}>-1$ or $\frac{b}{i^{3}}<-1$
$\lambda(b ; i)>0$; hence the same results as above hold. In
this case however since $\frac{b}{13}<-1$
$\frac{b}{\beta} \ngtr \frac{2-\lambda}{\lambda}$
Hence u_{n} converges to zero.
Thus wa ge the result that
equilibrium faster than the cob-web process and when $\frac{b_{\beta}}{\beta}>\frac{2-\lambda}{\lambda}$
the inverse holds.
7. When the ratio u_{n} stands for the absolute ratio of the $P_{n}{ }^{\prime} s$ for the wipe process in the numerator and the umpe process,
then

$$
\begin{equation*}
u_{n}=I I\left|\frac{1-\left(1+\frac{\beta}{6}\right)(1-\lambda)}{1-\frac{1-\lambda^{n}}{n}}\right| \tag{18}
\end{equation*}
$$

Hence

$$
\begin{aligned}
\quad \frac{u_{n+1}}{u_{n}} & \rightarrow 1-x \quad a \leq n \rightarrow \infty \\
\text { where } \quad x & =\left(1+\frac{3}{b}\right)(1-\lambda) .
\end{aligned}
$$

Hence as before if $\frac{\beta}{b}<\frac{1+\lambda}{1-\lambda}$ the process u_{n} converges to zero and if $\frac{\beta}{b} \geqslant \frac{1+\lambda}{1-\lambda}$ the process diverges.

$$
\frac{\beta}{b}<\frac{1+\lambda}{1-\lambda} \text { is the common range of convergence for the }
$$

ump and the w moe processes and hence in this range the process wipe converges faster than the umped process. Further since $\frac{\lambda}{\alpha-\lambda}<\frac{1+\lambda}{1-\lambda}$, we have from the previous result and the present result, when $\beta<\frac{\lambda}{2}$ - \quad the cob-web process converges to equilibriumpthan the umped process and the Unripe process converges faster than the wimpeprocess. When $\frac{\lambda}{2}-\lambda<\frac{\beta}{b}<\frac{1+\lambda}{1-\lambda}$ the umpe process converges faster than the cob-web process and the wipe process converges faster than the umped process.

If $\frac{\beta}{b}>\frac{1+\lambda}{1-\lambda}$ the wipe and cob-web process do not converge to equilibrium but the 4 m pe . process converges with the exception that if $\frac{\beta}{5}=r$ where r is a positive integer the umped process converges in finite time r.
8. In -the multi-market case in period analysis the counterparts of the equations for the cob-web process with linear demand and supply functions after simplification are

$$
B P_{t}+C_{p_{t-1}}=0 .
$$

where

$$
\begin{equation*}
P_{t}=P_{t}-P^{2} \tag{19}
\end{equation*}
$$

and

$$
D_{r}=\alpha-B P_{t}
$$

$$
\text { and } \quad S_{t}=\Gamma+C P_{t}^{*}
$$

$$
\begin{aligned}
\text { with } P_{t}^{*} & =P_{t-1} \\
\text { and } P^{*} & =(B+C)^{-1}(\alpha-1)
\end{aligned}
$$

the price vector at time t, the expected price-vector at time $\quad t$, and the equilibrium price-vector respectively. The solution of (19) is given by

$$
\begin{equation*}
P_{t}=\left(-B^{-1} C\right)^{t} r_{0} \tag{20}
\end{equation*}
$$

If the latent roots of $B^{-1} C$ are less than one in magnitude then $P_{t} \rightarrow 0$ as $t \rightarrow \infty$ or the process converges to equilibrium. If the latent root with the largest magnitude is greater than l in magnitude then the process diverges and if it is equal to one in magnitude then in general it oscillates about the equilibrium value. For if L and Λ are the latent vector and latent root matrices of $B^{-1} C$ and

$\partial f \wedge \bar{\Lambda} \ll I$, then $P_{t} \rightarrow 0$ and if $\Lambda \bar{\Lambda}>I \quad$ the process w ir verges. If $\Lambda \bar{\Lambda} \leq I$, the process oscillates finitely about the equilibrium. If in particular $B^{-1} C$ is positive definite which follows when B and C are both, : positive-definite, $\Lambda>C$ and is real and hence the condition for convergence becomes the matrix $\Lambda-I$ or $B^{-1} C-I$ must be negative definite the conditions for which can easily he written down.

For the umpe process, equations (19) are replaced by

$$
\begin{align*}
& B P_{t}+\frac{1}{t} C\left(P_{0}+P_{1}+\cdots+P_{t-1}\right)=0 \tag{22}\\
& D_{t}=\alpha-B P_{t} \\
& S_{t}=\Gamma+C P_{t}^{*} \\
& P_{t}^{*}=\frac{1}{t} \cdot\left(P_{0}+P_{1}+\cdots+P_{t-1}\right)
\end{align*}
$$

and

$$
P_{t}=P_{t}-P^{*}
$$

It can again be proved by the method of induction or otherwise that the solution of (22) is given by

$$
\begin{equation*}
P_{n}=A_{n} P_{0} \tag{23}
\end{equation*}
$$

where

It follows that

$$
\begin{align*}
A_{n} & =\frac{1}{n!} \prod^{n-1}\left(r I-B^{-1} C\right) \\
& =\frac{\prod^{n-1}}{r=0}\left(I-\frac{I+B^{-1} C}{r+1}\right) \tag{24}
\end{align*}
$$

$$
A_{n+1}=A_{n}\left(I-\frac{I+\bar{E}^{-1} C}{n+1}\right)
$$

Let

$$
B_{n}=L^{-1} A_{n} L=\frac{T^{n-1}}{r=0}\left(I-\frac{T+\Lambda}{r+1}\right)
$$

which is a diagonal matrix with

$$
\begin{equation*}
b_{s, n}=\frac{\prod_{r=0}^{n-1}}{r=}\left(1-\frac{i+\lambda_{s}}{1+r}\right) \tag{25}
\end{equation*}
$$

Hence when the real part of it $1+\lambda_{s}>0$.... for all s

$$
b_{5, n} \rightarrow 0 \quad \because \text { for all } s
$$

or

$$
B_{n} \rightarrow 0
$$

$$
\text { as } n \rightarrow \infty
$$

or

$$
A_{n} \rightarrow 0
$$

as
$n \rightarrow \infty$
and hence

$$
P_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Hence if

$$
M=-\left(I+B^{-1} C\right) \quad \text { is Kouthian then }
$$

$$
P_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

The necessary and sufficient conditions for \mathcal{M} to be Routhian are that a positive definite matrix S can be found such that $\quad S B$ is quasi negative definite.

If in particular $13^{-1} \mathrm{C}$ is positive definite then

$$
\begin{gathered}
I+\lambda \gg 0_{\text {and hence }} \\
P_{n} \rightarrow 0 \\
\text { as } n \rightarrow \infty
\end{gathered}
$$

and hence the process converges provided $I+\Lambda$ and hence
$I+B^{-1} C^{\text {is positive definite, the conditions for which }}$ can be easily written down. A comparison of this result with the earlier result for the cob-web process shows that the range of convergence for the umpe process is very much greater than
for the cobweb process, the range of convergence/ In order to compare the speed of convergence of the two processes when the converge we consider the matrix ratio of the $B_{n}{ }^{\prime} s$ for the two processes.

$$
\begin{equation*}
u_{n}=\left[(-\Lambda)^{-n} \frac{\prod_{r=0}^{n-1}}{r=}\left(\Gamma-\frac{I+\Lambda}{r+1}\right)\right] \tag{j}
\end{equation*}
$$

with the P_{n}^{\prime} 'for the umpe process in the numerator. Each fermin the diagonal can be treated separately. When

$$
\wedge \ll 1 \text { the two processes converges and '' } n \text { diverges which }
$$ implies that the ump process converges to equilibrium more slowly than the cobweb process.

8. For the multi-market * sump process with linear demand and supply functions we similarly have

$$
\begin{equation*}
B p_{n}+\frac{C}{1+\lambda++}+\lambda^{n-1}\left(p_{n-1}+\lambda p_{n-\frac{1}{2}}+\lambda^{n-1} P_{0}\right) . \tag{27}
\end{equation*}
$$

$$
\lambda \text { is a ecolar. }
$$

The solution of (27), it can be proved by the method of induction, is given by

Let:

$$
P_{n}=\prod_{r=1}^{1}\left\{I-\frac{\left(I+B^{-1} C\right)(1-\lambda)}{\left(1-\lambda^{r}\right)}\right\} p_{0}(28)
$$

Then if $\left.L^{-1} B^{-1} C L=\frac{r_{\bar{N}}}{=1}, \frac{\left(I+B^{-1} C\right)(1-\lambda)}{(1-\lambda r)}\right\}$
where L and λ are as in the previous section latent vector and latent roots of $B^{-1} C$

$$
\left.B_{n} \equiv L^{-1} A_{n} L=\frac{\prod_{r=1}^{h}}{(I-}-\frac{(I+\lambda)(1-\lambda)}{\left(1-\lambda^{r}\right)}\right)_{(29)}
$$

As before each of the elements in the diagonal can be treated separately. If the largest latent root. of $\dot{B}^{-1} C$ is $\frac{1+\lambda}{1-\lambda}$ then each of the elements in B_{n} tends to zero, If the largest of the elements of $B^{-1} C$ is $>\frac{1+\lambda}{1-\lambda}$ then one or more of the elements in $B_{n} \rightarrow \infty \quad . \quad$ Hence in the latter case $A_{n} \rightarrow \infty$. . It is evident that the speed of convergence the swmpeprocess can be compared with the speed of convergence of the umped and the cobweb processes and the results in the one market case can easily be generalised to the multimarket case by comparing the behaviour of the largest elements of: B_{n} in all the three cases.

Again the process converges to equilibrium in finite time r may if $B^{-1} C$ is diagonal and equal to $I \lambda\left(1+\lambda+\cdots+\lambda^{r}\right)^{\text {where }} r$ is a positive integer. For the umpe process $\lambda=1$ and thin condition reduces to $B^{-1} C=r I$.

If the reaction coefficients instead of being in the form
$\lambda I, 0<\lambda<$ yare given by the matrix $1-<$ where K is positive definite with all its latent roots less than 1 in magnitude equation (2\%) is replaced by

$$
\begin{equation*}
B P_{n}+C\left(I+K+\cdot+K^{n-1}\right)^{-1}\left(P_{n-1}+K P_{n-1}+K_{(30)}^{n-1} P_{0}\right)=0 \tag{30}
\end{equation*}
$$

The solution of (30) it can be verified is given by

$$
P_{n}=\frac{n}{r=1} M_{r-1}^{-1}\left\{M_{r-2} K-B^{-1} C\right\} P_{0}
$$

where

$$
M_{r-1}=I+1<+\cdots+k^{r-1}
$$

and

$$
M_{-1}=0 .
$$

Hence $\quad P_{n}=\prod_{r=1}^{n} M_{r=1}^{-1}\left(M_{r-1}-\left(I+B^{-1} C\right)\right) P_{0}$

Hence

$$
\begin{align*}
\therefore P_{n} & =A_{n} P_{0} \\
\text { where } A_{n} & \left.=\frac{n}{n \mid 1}\left(I-C I-K^{r}\right)^{-1}(I-K)\left(I+B^{-1} C\right)\right) \\
\text { and hence } A_{n+1} & =A_{n}\left(I-\left(I-K^{n+1}\right)^{-1}(I-K)\left(I+B^{-1} C\right)\right. \\
& =A_{n} Q_{1 n} \text { say } \tag{32}
\end{align*}
$$

$$
\text { As } \begin{aligned}
n \rightarrow \infty \quad Q_{n} \rightarrow & I-(I-K)\left(I+B^{-1} C\right) \\
& =K-(I-K) B^{-1} C
\end{aligned}
$$

If all the latent roots of $1<-(I-1<) B^{-1}$ (are less than one in magnitude then $\left|A_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ and if one or more of the latent roots are greater than one in magnitude then $\left|A_{h}\right| \rightarrow \infty$. Hence all this applies to p_{n}. all. the latent roots of $1<-(\underset{-}{-1}-1<) B^{-1} C$ are less Han or equal to 1 and one oren ore are $=1$ then $|A n| \rightarrow$ a finite matrix.

$$
\begin{aligned}
& \text { If } B^{-1} C=M_{r-1} \mid<\quad \text { then the process converges } \\
& \text { to } \quad \text { equilibrium in time } r .
\end{aligned}
$$

The speed of convergence of this process can be compared with that of the multi-market cob-web and umps and the scalarweighted ape processes.

It should be noticed that when $K=0$, the above process reduces to the multi-market cob-web process. When $K=I$ it reduces to the umpeprocess. When $\quad k=\lambda I$ it reduces to the swmpeprocess. The multimarket models reduce to the single market model when the \dot{m}, the number of commodities considered is put equal to 1 .
9. The generalisations of the above models to the continuous case and the (mpe (limited man price expectation) processes will be considered in another paper. Limited mean price expectation processes stands for processes of the above type when

where k is fixed.

References:-

1. R.G.D. Allen - Mathematical Economics
2. Barnard and Child - Higher Algebra
3. Barnard and Child - Advanced Algebra
4. Ferrar - Algebra.

Kolhapur.
September 11, 1967.

[^0]: * These restrictions are later dropped with certain modifications.

