Central Board of Irrigation, India. Publication No. 12. (Reprint)

.

DESIGN OF WEIRS

ON

PERMEABLE FOUNDATIONS

BY

,

RAI BAHADUR A. N. KHOSLA, I.S.E. B.A. (Hons.), M.Am.Soc.C.E., Punjab,

Dr. N. K. BOSE, M.Sc., Ph.D., Punjab,

Fellow of National Academy of Sciences, India,

AND

Dr. E. McKENZIE TAYLOR, M.B.E., Ph.D., D.Sc., F.I.C., Punjab.

PUBLISHED BY ORDER OF THE BOARD

I.I.B. 624·13:631·432:626·83. NEW DELHI, June, 1954.

Printed at Ashoka Press Deihi Gate, Delhi.

This publication is available for sale with the Manager, Publication, Government of India, Delhi-8.

Central Board of Irrigation, India. Publication No. 12. (Reprint)

DESIGN OF WEIRS

· ON

PERMEABLE FOUNDATIONS

 $\mathbf{B}\mathbf{X}$

RAI BAHADUR A. N. KHOSLA, I.S.E. B.A. (Hons.), M.Am.Soc.C.E., Punjab,

Dr. N. K. BOSE, M.Sc., Ph.D., Punjab,

Fellow of National Academy of Sciences, India,

AND

Dr. E. McKENZIE TAYLOR, M.B.E., Ph.D., D.Sc., F.I.C., Punjab.

PUBLISHED BY ORDER OF THE BOARD

I.I.B.

624·13:631·432:626·83.

NEW DELHI, June, 1954.

		C	ONTENTS		· ·		<i>,</i> ,
Forew	ord ·· ·	• ••	•••	7 j i •	1 T (1 4 • 1		
	luction	· ••	· · · ·		العقوبة بمعاديا الرا	1 - A - 1 - 1 (1	șii)
	ď		HAPTER 1		:	r, see	
Hietor	y of Development of the Science	of Subsail	Hydraulics in	Relation to	the Design of	Weirs on	•
	ermeable Foundations		·				1
	ermeable roundations		CHAPTER II		1		
	· · ·						8
•	of Seepage Flow	••	· •	-	••		8
	arcey's Law and its Extension	•••	• • •	••	••		n
τ	Insaturated Flow	· •• ·	· · · ·	• •	• •	••	
		-	CHAPTER III		•		12
Poten	tial Law and its Application to 1			sign	· · · · · · ·	4 •	14
	-		HAPTER IV		•		_
Expe	Imental Verification of the Pote	ntial Law	by means of M	Iodels	••	••	14
	I. Mathematical	• ••	1	• •	••	••	14
	II. Trial and Error or Grap	hical Meth	10d	••	••	• •	14
	111. Viscous Fluid Method		••	••		••	16
	IV. The Hydraulic Scale M				•••	•	17
	Experimental Tank		•••		••	•	17
	Construction of the l	•• Iefole	•• *	••			20
		ι.	••	••	••	• •	
	Pressure Observation	· ·		· . • •	· · * *	₹ ●● -{	20
	V. Electric Analogy Metho	-	••	◆,◆,	•	in 1 1•••	21 02
	Method of Observati					•• •	23
• :	Comparison of Resul	ts—Models	and Theory	•• •	, • ,•	6	23
	Model Characteristic	s in Subsoi	l Works	••)		28
	i. Hydraulie 1	fodel	••	••	·	· 4• ·	28
-	ii. Electric Mod			• •	· •	• •	28
	Stratification	· ••		• ••	. .	. ••	29
	Relative Merits of the Hyd	raulic and	Electric Mod	els	• 1: ••	• • • . • •	29
	· · · · · · · · · · · · · · · · · · ·		CHAPTER V		i la tali	2	
The 1	ocation and Erection of Pressur			•		Record	31
	Geological Formation of Sabsoil		•				83
			•••	•••	••	••	03 84
	Location of Pressure Points		*•	••			_
	•	• •	••	••	•••	* * *	34
	Precautions to be observed in Er			••	••	••	36
	Observations and Instruments u			֥	, 	••	37
	Point of Strainer to which a Pip	e Reading	relates	••		••	38
	Frequency of Observations	• • • •	••	••	• •	. • •	38
	Time Lag	••	••	••	•••	••	38
1	Method of Record and Standard	Forms used	a	••	, ••	••	39
	Plotting of Graphs		••	.	·	• • • •	42
			CHAPTER VI	••		•.•	
Mode	ls and the Prototypes						43
		- 6 4	••		• • •		
	Comparison of Results	· 3	••			••	43 51
	Theory and Models offer safe gui			. 	. 	•• 7 F	51
	Seasonal variations in value of	Φ	.• •		• •	5 g 6 6	51
					€C •••		52
	Effect of Temperature	••	••	F 4	1. 8. 8. 1		52
	Temperature Effect on Models	••	· ••	• • •			57
	Vaidhianathan's Experiments	• • •	••	• • • •	••	.ai et	57
-	Harbans Lal's Experiments wit	h the Panj	nad Model		: <u></u>		58
	Seasonal variations in Subsoil 7	emperatur?			••	••	60
	Seasonal variations of Silt and	Cemperatu	re as influenci	ng Stahili++	of Works	••	61
	Interpretation of seasonal varia	tions	· · · · · · · · · · · · · · · · · · ·			••	62
					••	••	U4
The	Mathematics of Weir Design		CHAPTER VII			f	. ,
	Determination of Uplift Pressu	** Teg and To	nt Gradiante	••	• •	••	63 63
	General Form	res and La		••	••	••	63 85
	Case 1. Floor with Pile Line a		*** ***	· · ·	••	••	65 50
	Case 2. Single Pile Ting with	n DOWESTE Rall	am End with	Step	••		70
	Case 2. Single Pile Line with 1 Case 3. Single Sheet Pile		pron Upstrea	m or Downs	stream	••	72
	Case 3. Single Sheet Pile Eq	ual Fill-1	No Aprons	• •	' u a		73
	Case 4. Floor with Pile Line n	ot at end	••	••	••		74
•	Case 5. Floor with Pile Line a	t end	•••	••	•	••	.75
	Case 6. Simple floor-No Pile	Line .	* e1e	 • •	• •	a7.94 • ● ●	76
•	Case 7. Depressed Floor		•••	A Reality	· .		78
	Case 8. Floor with multiple lin		a	a			79
	and a second with multiple lit	Les OI Dile	8 . _{A 8} .	A A			1.14

•	,			-	
General Solution for Exit Gra	adient 🚬 👝		••	P	age 79 .
ase I. Sheet. Pile at Step.w	-	••	· ••	••	80
ase II. Sheet Pile at Downs	-		••	••	80
ase III. Sheet Pile in uneque		••	••		. 80 7
ase IV. Floor with Pile Line		•	••• ••	••	81
ase V. Single Sheet Pile -E	- ,	••	••	••	81
ase VI. Floor with Pile Line	· •	••	•••	••**	81
aae VII. Simple Floor-No Pil		•• ••	••	••	81
motional Invoctional of the C	APPENDIX TO CHAPT		•• ** •	: · ·	
matical Investigations of the S ase 1. Depressed Floor witho	udsoll flow under two S		of Structures	••	101
ase II. Equal Sheet Piles at he			••	••	103
·	CHAPTER IX		••	••	104
radients as Related to Weir		• Contraction of the second			105
xperiments with Water Flowin		••••	••	•••	107 111
xperiments with Water Flowin	••	••	· · · ·		112
he True Significance of Exit G			••		113
actor of Safety	•• ••	••	3 ••	••	113
etermination of Exit Gradien	its	•••	••	••	114
	CHAPTER V	III (· · ·	- •	0
rd Forms	•• ••	••	••	·••	117
e General Case, Stepped Flo		· •	••	••	317
se I. Foor with Sheet Pile			••	••	118
se II. Single Sheet Pile, N			••	••	119
ase III. Single Sheet Pile. No		i i i i i	••	••	120
ase IV. Floor with Sheet Pil		••	••	• •	120
ise V. Floor with Pile at E		••	••	**	121
se VI. Simple Floor—No Pi		••	• • • • • • • •	••	121
se VII. Depressed Floor-N	1	••		••	121
se VIII. Floor and Multiple (• •	••	••	••	122
(a) Floor with a Sheet I	rneat gitner End	•••		• • •	122
(1) End Piles Equal (2) Biles Unequal	· • • · · · · · · · · ·			. a''*€¶ 	122 123
(2) Piles Unequal			••		123 123
(b) Floor with Piles at E	•••	. *.*	••	•••	123 125
(c) Floor with a Pair of P		••• •••	••, • ₁ , •		120
g Rules and Genéral Principl	CHAPTER X . les of Design	• •	• •	••	129
osla's Method of Independent		ermination of U	plift Pressures	and Exit	
Gradients	•• ••	•••	••	••	129
tual Interference of Piles	••	••	••	·••	133
ping Floors	··· ··· ·	••	••	••	140
e Method of Independent Van			•• ••	••	140
e Application of the new Met			ne actual weirs.		142
njnad Weir	•••	. • •	••		142
anki Weir	•• ••		** **	د که هور در	143
g Escape Head	••	••	* ** ` ** `***		145
oyd Barrage	•••	* * *	* ••	••	146
alabagh Weir (proposed)	••	• • • •	••	•••	147
esign of New Works	•• ••	•••	• • • • • •	••	149
pth of scour		••••	• ••	•••	149
pth of Sheet Piling	····	••• ·*·	**	· ••	153
les at the Upstream and Dow	nstream Ends necessary	•••	***	••	153 T54
termediate Piling	••	••	••		I54 154
ells		••	•••	· · · · · · ·	155
camples of Designs	···· ·		•• • • •		157
oor to act as one mass	••	. ••	••	••	157
le Inverted Filter	•• ••	••	•••		157
essure Relief or Drainage	•••	5 F. 199 .	2 4 -	••	158
sign of Flanks			te floor	••••	164
rength of Sheet Piles at the i	-		I HOUT	••	164
agnitude of Uplift Pressure fo	or Design of Floor Thick		see sta	·	166
ime Lag	Appendix to Chap	TER X	, •• L = s at a t a		
	To norcentance at the in	TER A		pile to a flo	o r , '
			• • .	•••	168
pirical formula for the pressu hich is also provided with equ			••••••	•	100
hich is also provided with equ	·· CHAPTER XI				169
pirical formula for the pressu which is also provided with equ n of Weirs in relation to Surfa Afflux	ce Flow	· • •	••	••	169
hich is also provided with equ of Weirs in relation to Surfa	ce Flow	· • •	•• • • •	••	

					•	
		(iii)				•
	• *	• •				Page
~	ie Changes on Weir	Design	••		• ••	. 1 9
	ression of Levels	••	••	•.•	• ••	1
(b) Restor	ation of the original sl	ope upstream of	the weir	••	••	1
(c) Recover	ry of downstream bed :	levels	••	••		1
Discharge per fo	ot run and waterway	••	••'	••		1
Undersluices	•• (•• ,	••	• •	••	••	1
Wei r	•• ••	. ••	••	••	••	1
Barrage	. 	• • ,	· •• , \	••	••,	1
Depth of Scour at	nd Section of Aprons	••		••	••	1
Depth of Scour fo	or Design of Aprons	••	••	••	. ••	1
Length, Shape as	id Free-board of guide	banks	••	••	••	1
The Standing-W	ave	••	· • •	••	•• '	1
The Momentum]	Formula 🕚 🗤	••	• •	•• .	· ••	1
Standing-wave a	nd Design of Downstre	am Floor	••		••	1
Thickness (of floor as determined	by the Standin	g-wave	••	•	1
Length of 1	Horizontal floor as det	ermined by the	Standing-wave		••	1
The Glacis	•• •	••	•• •	••		1
Level of De	ownstream Floor as de	termined by th	e Standing-wav	e	• • ••	1
Summary of Proc	edure in Design	••	••	••	••	1
Energy Dissipati	on and Prevention of I	Dangerous Scour	Downstream of	Aprons		1
	and their Lessons		••	•• *	•• 1	1
Need for further		••	••	••	••	1
List of Board Pu			••		••	1
	mittees provided by th	e Central Board	or Irrigation	••	••	· 1
x	•• ••	••	••	••	••	1
et containing ext	ra copies of certain gra	phs mounted of	1 lines	•		
						•

.

CENTRAL BOARD OF IRRIGATION, SIMLA.

The Central Board of Irrigation published in December 1934 its eighth publication under the title "Observation and record of Pressures below Works on Permeable Foundations", which was edited by Rai Bahadur A.N. Khosla, I.S.E., B.A., M.Am.S.C.E., A.M.I.E. (India). The object of that publication was, primarily, to set forth the factors involved in the design of hydraulic works on permeable foundations, the up-to-date knowledge on the subject, and the information further required for the solution of the problem. That Publication also described the methods by which further information could be acquired, and recommended the introduction of observation pressure pipes on all new works of that type. The Publication was given a wide distribution and recipients were asked to provide the Board with any information likely to prove useful in further study of the problem. Very little information has been received however, chiefly owing to the fact that few works of this nature have recently been constructed and provided with the necessary observation pipes. Fortunately, however, exhaustive investigations have been carried out by the Authors of this new Publication, with the result that they are now able to present a complete solution to the problem, which is supported by data from prototypes in the field, models in the laboratory, and by mathematical theory. The contents of this Publication are the result of an investigation in the Punjab Irrigation Department over a period of nine years, and the Board is indebted to the Punjab Members of the Board, and to the Authors, for the opportunity of publishing this valuable treatise on one of the first problems which received the attention of the Board at the time of its constitution in November 1930.

This Publication has been compiled by Rai Bahadur A. N. Khosla, who has also been responsible for the field research, for the engineering interpretation of the laboratory investigations and their application to design. The laboratory investigations at the Punjab Irrigation Research Institute have been carried out by Dr. V. I. Vaidhianatban, Dr. H. L. Uppal and Mr. J. K. Malhotra under the direction of Dr. E. McKenzie Taylor. The theory of subsoil flow and the mathematics of weir design is the work of Dr. N. K. Bose.

(v)&(vi)

M. T. GIBLING, Secretary, Central Board of Irrigation.

Dated 1st September, 1936.

The Design of Weirs on Permeable Foundations was one of the first subjects taken up for enquiry by the Central Board of Irrigation in their first¹ meeting in November, 1930.

The flow of water through the subsoil flow below Weirs, with its attendant hydraulic gradients and uplift pressures, has been recognised as the determining factor in design, ever since 1895, when Col. Clibborn carried out his classic experiments with Khanki sand at Roorkee. Until recently, the so-called Bligh Creep Theory- which was no more than an imperfect adaptation of Col. Clibborn's work-held the field. It has been realised, eventually that the subject is more complex than the simple formula of Bligh indicated.

After some considerable discussion at the Central Board meeting of November 1933² the following resolution was adopted unanimously: -• •

(a) that further intensive study of subsoil flow beneath actual works was assential,

- (b) that in view of the active part already taken by Mr. Khosla, and his published papers on the subject, the compilation of a comprehensive note on the subject ٠. ;
 - should be entrusted to him,
 - (c) that Mr. Khosla should be supplied with all available observations on the subject and the state of the second from India,

(d) that in order to secure uniformity of observations he should prepare a note on the nature of observations required and the form in which they should be tabulated;

this note to be communicated to all interested, through the office of the Board. In compliance with item (d) of this resolution, Rai Bahadur A. N. Khosla, I.S.E., presented a note on the Observations and Record of Pressures below Works on Permeable Foundations, which was printed in December, 1934, as Publication No. 8 of the Central Board of Irrigation.

All available copies of this Publication were soon distributed and there was demand for more. It was, at first, proposed to issue a reprint, but in view of the considerable advance that had been made, in the meantime, on the study of the subject, both in the field and in the laboratory, the Executive Committee of the Central Board resolved (20th July, 1935) to have the Publication No. 8 revised or to have a new paper written on the subject. Sir Bernard Darley in his letter No. 9453, dated the 29th July, 1935, suggested that a tentative set of rules for guidance in design be framed by Mr. Khosla and discussed at the November meeting of the Board with a view to their incorporation in the new publication. During the interval before November, the field and laboratory researches reached a stage when the final solution of the problem came within sight so that it was possible to lay down definite, and not merely tentative, rules for guidance in design. This fact along with a general review of the state of knowledge to date, was presented by Mr. Khosla⁸ at the meeting of the Central Board held at Delhi in November, 1935. As a result of discussion of this, and in view of item (b) of the Resolution No. 7 of November, 1933, requiring the writing up of a comprehensive note on the subject, it was decided that the new publication should embody all available information on the subject in addition to the essential matter already contained in the Publication No. 8. The President stressed the necessity for the revised Publication being complete in itself and not in any way supplementary to the first addition⁴.

The present publication incorporates the essence of Field Research in the Punjab since 1927 and of Laboratory Research carried out at the Punjab Irrigation Research Institute since 1932-the latter, under the direction of Dr. E. McKenzie Taylor. An attempt has been made to trace from its inception the history of development of the science of subsoil hydraulics as related to the design of Weirs on Permeable Foundations. Notice has been taken of all contemporary literature within the Authors' knowledge, and any help derived from such literature has been duly acknowledged in the text.

(vii)

⁽¹⁾ Proceedings of the Central Board of Irrigation, first meeting, November, 1930, page 8.

⁽²⁾ Minutes of the Proceedings of the 4th Annual Meeting of the Central Board of Irrigation held in Lahore, 13-15 November, 1933, page 12.

^{(3).} Appendix II, Central Board of Irrigation. Publication No. 11, Annual Report 1934-35. (4) Publication No. 11, page 50.

The publication has been divided into a number of self-contained Chapters. Of these Chapter VI is more or less a reproduction of the relevant matter in Publication No. 8. The remaining Chapters contain mostly new matter. The entire mathematics has been collected in one Chapter, No. VII. Chapter VIII, on exit gradients, deals with some fundamental -principles in design.

The Plates, Diagrams, Equations and Tables in each Chapter bear the number of that Chapter in addition to their own distinctive numbers. Thus Plate VII. 6 indicates Plate No. 6 of Chapter VII. Similarly Equation No. 10. 2 indicates Equation No. 2 of Chapter X.

Every effort has been made to make the publication complete in itself, so that designs' can be worked out in complete detail without much reference to outside literature. The incorporation in Chapter XI, of the essential diagrams relating to Energy of Flow and Standing Wave, originally prepared by Messrs. Montagu and Crump and modified to suit specia problems by Mr. Kanwar Sain, will considerably facilitate the work of the designer.

While it can now be claimed that the design of Weirs on sand foundations in relation to flow of water through the foundation soil can be determined with great exactness in a rational and scientific manner from the simple rules given in Chapter X, its determination in relation to flow over the surface still depends mainly on empiricism. This latter aspect of the subject is dealt with in Chapter XI and calls for further intensive study in the field and more particularly in the Laboratory.

Acknowledgments

Dr. Vaidhianathan, Head of the Physics Section, Punjab Irrigation Research Institute, developed the technique of the Electrical Method used for determination of uplift pressures. The Authors are indebted to him and to his Assistant, Mr. Gurdas Ram, for the valuable investigations that they have carried out in connection with this paper.

The Authors are also indebted to Mr. Harbans Lal of the Hydraulics section for the investigation he carried out on the Hydraulic Models, the results of which form an essential part of this paper.

The Authors wish to thank Bhai Naranjan Singh, Subordinate, for the careful observations and record of field data at Panjnad and Khanki.

The Authors are indebted to Mr. A. Murphy, O. B. E.; Mr. J. B. G. Smith C. I. E. and Sir Bernard Darley, Kt., C.I.E., whose keen interest in the subject has been of very material assistance, and to Messrs. Kanwar Sain, Montagu and Haigh, for their valuable suggestions in Chapters X and XI.

(viii)

. / •

Pages

Abutments, design of	158
Afflux, consideration of, in the design of	•
weirs	169
Afflux, at various weirs in Punjab	170
Angle of repose	161
Application of new method to investi- gite pressures under some actual	
weirs	142
Aprons, sections of, and depth of scour	173
Arrows for dissipation of energy	- 192

, В

...

Baffle walls, for dissig	oati	on of energy		192
Banks, guide, design d				177
Barrage, definition of		••	•••	173
Bell sounder		••		37
Bernoulli's equation	••	••	••	12
Bligh's creep theory		••	••	2
Blocks and arrows	for	dissipation	of	
energy	••		••	192
Borings for determina	tion	ofstrata	••	33

С

8
107
13,65
1
3
23
131
2
6
173
4
14

D '

1

Dams, failures of, and their lesson		194
Darcey's law and its extension		8
Darcey's law of flow of water th	brough	
permeable soils	-iong-	1
Deg Diversion, pressures under fl	0079	50
Deg Escape Head, investigation of		
sures under	n hrea-	145
	••	140
Deg Escape Head, and its model	, com.	F0
parative results of		50
Densities of sands	••	109
Dentated sill, Rehbock's	• • •	192
Depressed floor	••	78, 101
Depressed floor, no sheet pile	• •	121
Depressed floor without aprons	• •	103
Depth of scour, determination of		149
Depth of scour and section of apr	ons	173
Depth of sheet piling	••	153
Design of abutments		158
Design of downstream floor and s	tanding	
wave		183
Design of flanks	••	158
Design of glacis		186
Design of new works		149
Design of weirs in relation to surfa		169

	Pages
	• •
Design of weirs, working rules and gene-	
ral principles	129
Design of weirs, summary of procedure	
in	189
Designs, examples of	155
Discharge per foot run and water way	171
Discharge and scour, relation between	151
Discharge temperature, and viscosity, relative values of	53
	0-192
Downstream floor, design of, and stand- ing wave	183
Downstream floor, level of as determined	186
l, y the standing-wave	164
Downstream piles	104
Drainage, or pressure relief	
Dynamic impact factor in weir design	169

E

and the second contract of	
Electric analogy method, comparison of	
results, models and theory	23
Electric analogy method, description of	21
Electric analogy metdod, method of ob-	
servation in	23
Electric and hydraulic models, compari-	
son of results	43
Electric and hydraulic models, relative	-
merits of	29
Electric model	28
	190-192
Energy of flow curves	187
Examples of designs	155
	, 129, 149
	, 125, 145 115
Exit Gradient, determination of	110
Exit Gradient, general solution for, by	
J. K. Malhotra	.79
Exit Gradient, method of independent	
variables in relation to	140
Exit Gradient as related to weir design	
Exit Gradient, the true significance of	113
Exit Gradient and uplift pressures, mathe-	-
matical determination of	. 63
Experimental tank	· 17
Experimental verification of the potential	
law by means of models	14

Factor of safety114Failures of different weirs, causes of, etc. 149, 194Failures of weirs from scepage flow107Filter, inverted167Flanks, des gn of168Floor to act as one mass157Floor, depressed78, 101Floor, depressed103Floor, depressed, no sheet piles121Floor, depressed, no sheet piles121Floor, depressed, without aprons103Floor, downstream, level of, as determined by the standing wave183Floor, horizontal, rength of, as determined by the standing wave186Floor, simple, no pile line76, 81, 121Floor, stepped, with pile line at the step or fall117 . . . • 197

<u>,</u>

F

Pages

.

· · · ·	
Floor thickness as determined by the standing wave	185
Floor thickness, magnitude of uplift pres-	
sure for design of	166
Floor with multiple lines of piles	79, 122
A 1001 WITH MAINPIC HILLS OF PI-40	
Floor with a pair of piles not at the	125
ends	
Floor with pile line at downstream end	81
Floor with pile line at downstream end	
with step,	70, 118
Floor with pile line at end	75, 121
Floor with pile line not at end 74, 81, 89,	
They with piles of and and middle	123
Floor with piles at ends and middle	122
Floor with a sheet pile at either end	
Flotation gradient 4, 107, 1	09,113
Floor, surface, design of weirs in rela-	
tion to	169
Flow, two dimensional, equation of	13
Flow, unsaturated	11
	** ·
Forchheimer's curvilinear square	`` .
method	14
Forms, standard, for recording data	39
Forms, standard, of weirs	117
Foundation wells	154
	· 38
Frequency of pressure observations	90
	•

G

General form of flow			65
Geologieal formation of sub-soil			33
Glacis, design of	•••		186
	••		
Glacis, inclined, standing wave on	• •		181
Gradient, critical	••		- 4
Gradient, exit		6.	149
Gradient, exit, determination of	•••		115
	· · ·		- 10
Gradient, exit, general solution for,	, by		-
J. K. Malhotra	••		79
Gradient, exit, method of indepen	dent		
variables in relation to			140
Gradient, exit, as related to weir de			107
Gradient, exit, the true significant	ce of		103
Gradient, exit, and uplift pressu	ires.		
mathematical determination of			63
	107	100	
	104,	109, 1	113
Gradient, hydraulic, theory of			- 2
Graphical method of verification of	pot-		
ential law		•	14
Graphs of data of readings of diffe	rent		4.0
pressure pipes, plotting of	• •	•	42
Guide bank aprons	••		174
Guide banks, design of		•	177
	••		

Н

Harbans Lal's experiments with Panjnad	
model	. 58
Horizontal floor, length of as determin-	• • = =
ed by the standing wave	186
Hydraulic and electric models, com-	
parison of results	43
	40
Hydraulic and electric models, relative	- 00
merits of	29
Hydraulic gradient, theory of	2
Hydraulic jump	179
Hydraulic scale model	17
Hydraulic scale model, construction of	20
Hydraulic scale model experimental	
tank	· 17
Hydrostatic pressure on abutments and	
hydrostatic pressure on abutments and	161
wing walls	101
· · · · · · · · · · · · · · · · · · ·	
Impact, dynamic, in design of weirs	169
Inclined glacis-standing wave on	181
Independent variables-method for the	

ndependent variables-method for the	·	101
determination of uplift pressures		129

	Pages
Independent variables, method of, in	
relation to exit gradients	140
Induced stratification	55
Instruments used, and observations, for	
pressures	37
Interference, mutual, of piles	133
Intermediate piling	154
Inverted filter	157
•	
- · · · · · · · · · · · · · · · · · · ·	
/ K	
	•
Kalabagh Weir, proposed, application of	
new method to investigate pressures	
under	147
Khanki Weir, application of new method	
to investigate pressures under	142,143
Khanki Weir, arrangement of arrows	
and blocks	193
Khanki Weir, cavity under	107
Khanki Weir, comparative statement of	- 6
pressures on models and prototype	50
Khanki Weir, hydraulic gradients under	
floor	51
Khanki Weir, location of pressure pipes	33
Khanki Weir, pressures on flanks	158
Khanki Weir, pressures under floor	43
Khapki Weir, variation in temperature	
of river and sub-soil water	61

Lane's weighted creep theory	6
Law of flow of water through permeable	1
soils, Darcey's	- 1
Location of pressure points	34
Lloyd Barrage, application of new	
method to investigate pressures under,	146
Lloyd Barrage and its electric model,	
comparative results of	50
Lloyd Barrage pressures under floor	50

١

Μ

and a second	
Mathematical investigation of the sub-	
soil flow under two standard forms of	•
structures	101
Mathematical solution for the determi-	
nation of weir profile	14
	63
Mathematics of weir design	03
Method of independent variables	
for the determination of uplift	
pressures	129
Method of independent variables in re-	
lation to exit gradients	140
Merala Weir, scour under	149
Merala Weir, uplift due to unbalanced	180
head at trough of standing wave	
Model characteristics in sub-soil work	28
Model, electric	28
Model, experimental verification of the	
potential law by	14
Model, hydraulic, construction of	20
Model, hydraulic and electric, relative	
model, hydraulic and electric, relative	29
merits of	20
Model and prototypes, comparison of	43
results	40
Model, temperature effect on sub-soil	
pressures in	57
Model and theory as a guide for design	
of works	51
Momentum formula for standing wave	179
	- 8
Movement of water in capillaries	
Mutual interference of piles	133

Pages

Pages

Observations and instruments used for
pressures37Observations, method of23Observation of pressures, frequency of ...38

O

Paujnad Weir, application of the new method to investigate pressures on ... Panjnad Weir, downstream scour on model of 142 model of ... Panjuad Weir, effect of temperature and 149 silt on uplift pressures Panjnad Weir, location of pressure pipes Panjnad Weir model, hydraulic gradients under, at different temperatures of inflowing water **52** 34 inflowing water Panjnad Weir, pressure pipes, facts estab-58 lished from full scale experiments ... Panjnad Weir, pressures on the flanks ... Panjnad Weir, pressure under floor ... Б 158 43 Panjnad Weir, stream lines under model 21 of Panjnad Weir, temperature effect on pressures Panjnad Weir, uplift pressures, compara-tive statement of model and pro-60 44 totype Pavlovsky's experiments Permeable soil, flow of water through, 3 1 Darcey's Law Permeability of various silts, sands and 54 fine gravels Pile line, single, with fall, no apron up-stream or downstream 72 Pile sheet, at downstream end and step 80 Pile sheet, at downstream Pile sheet, at step with apron ... Pile sheet, inunequal filling, no aprons ... Pile sheet, interference of ... 80 80 .. 133. 168 153 Piling, intermediate 154 •• •• 107 "Piping" .. • • "Piping" Pitching, stone, thickness of Plotting of graphs of data of pressure 174 42 pipes Poiseuille's law • • ł ... Pore space Porosity, values of, for sands and soils Potential function Potential law and its application to the 113 109. 51 10 problems of weir design Potential law, experimental verification by means of models ... Potential law, limitations of ... 12 14 ī1 Pressures along a pile line, comparison of Pressures distribution, causes of deviation 24 66 from normal Pressures, distribution of, on standard forms of weir . Pressure distribution under floors with 117 140 different slopes Pressure, effect of silt and temperature on 55 20 Pressure observations and stream lines .. Pressure percentages at the joins of a variable intermediate pile to a floor, which is also provided with equal end piles Pressure pipe observations, frequency of 168 38 Pressure pipes, erection of 34 Pressure pipes, erection of at different headworks 32

headworks ... 32 Pressure pipes, location of at Khanki ... 33 Pressure pipes, location of at Panjnad .. 83 Pressure pipes, observations and instru-37 ments used Pressure pipes at Panjnad, facts established from the full scale experiments .. Pressure pipes, precautions to be observed in erection of 5 36 Pressure pipes, record method and stan-89 dard forms used Pressure points, location of Pressure relief or drainage • • . . 34 .. •• 157 ... Pressure on sloping floors Pressure types met with in designing the 140 abutments and wing walls of hydraulic 158 structures Pressure under floor, Lloyd Barrage б0 43 50 Pressure under floor, Panjnad Weit ... Pressure under some actual weirs, appli-43 tion of the new method to investigate 142 the Pressure, uplift, effect of silt and scour • Pressure, uplift, effect of temperature of flowing water 51. 52 52, 60 Pressure, uplift, and exit gradients, deter-63 mination of Pressure, uplift, magnitude of, for design of floor thickness 166 Pressure, uplift, the method of Independent variables for the determination of Pres ure, uplift, on the weir floor ... 129 129 Principles, general, and working rules of weir design 129 Prototypes and models, comparison of 43. 51 results results Punjab sands, experiments with 110

R

Recovery of downstream b	ed levels	••	171
Regime changes, effect of,	on weir de	sigu	171
Regime of a river, effect	of constru	ction	
of weirs on	₩ ₩ = ¹	•••	170
Rehbock's dentated cill	b •	••	192
Rehbock's experiments	••		4
Research, need for		••	194
Restoration of the origina	l.slope ups	tream	
of the weir		••	171
Retaining walls, design of	••	••	158
Retrogression of levels	• •	••	171
Rules, working, and gener	al principl	es of	
weir design			1.29

c

Sands, Punjab, experiments with 110 Sands, specific gravity, pore space, trans-mission constants, and flotation gradients Schaffernak's conclusions on stratification 113 29 Schl chter's theoretical treatment of sub-soil flow 9 Schwarz and Christoffel's method of contormal transformation 13. 65 •• ... Scour, classification of 152 Scour, classification or Scour, dangerous, prevention of, down-stream of aprons Scour, depth, determination of . Scour, depth, and section of aprons Scour and discharge, relation between . 190 149 173 151 Scour and silt, effect of, on pressures 52 Seasonal variation of P/H percentage 51

200

	• •		
			Pages
•			
•			
·· · · ·	•		,
Seasonal variations, of pres	ssures, in	ter 🕠	
pretation of	••	••	62
Seasonal variations of silt a	and temp	era-	. •
ture influencing stability	of works		61
Seasonal variations in sub-s	oil tempe	catures	· 60 · ·
Seepage flow, failure from	í •• -	••	107
Seepage flow, theory of	· • •		· 8 .
Sheet piles, equal, at heel a	and toe wit	hout	
aprons			104
Sheet piles, strength of, at	the upstr	eam	
and downstream ends of	a weir floo	r.	164
Sheet piling, depth of			.153
Sherman Island Dam, varia	tian of un	olift.	,
head and water temperat	ure under		61
Silt and scour, effect of, on	Dressures		52
Silt and temperature, effect	of on n	Tes-	
sures on Panjnad Weir			52
Silt and temperature, seaso		ions	04
of as influencing stabilit	an variat		61
of, as influencing stabilit	of the m		
Slope original, upstream	OI THE W	ett,	171
restoration of	••	••	140
Sloping floors	•• .	••	113
Specific gravity of sand	hw an		110
Stability of works, influence	ton, by se	450-	61
nal variations of silt and	temperat	ures	39
Standard forms for recordin	ig data	••	117
Standard forms of weirs	••	·• •	120
Standing wave,		• 2	179
Standing wave, calculatcon	is for	1 • • ·	.180
Standing wave, and design	of downstr	ream	100
floor	••		183
Starding wave, profile of			187
Stone in aprons, analysis of		tion	
to discharge per foot run		••	176
stone pitching, thickness of	jî <u>.</u>		174
Strainer, point to which a	reading of	the	
pressure pipe relates	••		38
Stratification	••	••	29,
Stratification induced	••	· • • · · ·	55′
Stream lines, determination	n of		16
Stream lines, and pressure	observat	ions	20
Sub-soil flow, mathematical	investiga	tions	
of		••	101
Sub-soil flow, theoretical	treatment	by	•.
Schlichter			. 9
Sub-soil flow, under two B	andard fo	rms, 🗉	
mathematical investiga	tion of		101
Sub-soil geological, format			33
Sub-soil temperatures, se	asonal va	aria-	
tions in	••	6	31, 62
Sub-soil work, model chara	cteristics		28
Summary of procedure in w			189
Surface flow, design of wein	s in relati	ion to	169
Present and the at Hori			
, , , , , , , , , , , , , , , , , , , ,		·	
• • • •	•		•
••			

Trimmu Weir (proposed), profiles of
standing waves and hydraulic gradient
lines for various discharges ...183Trimmu Weir (proposed), showing effect
of reduction in length of downstream floor187Twe dimensional flow, equation of...13

U

. /			- C	
		• 1		
Undersluices		••		172
Unsaturated flow	••	••	••	11
Uplift pressures	••	• •		149
Uplift pressures, ef				51, 52
Uplift pressures an	d exit gr	adient,	deter-	
mination of	•• -	• • • •		63
Uplift pressures, n	agnitud	e of, fo1	design	• .
of floor thickness		• • •	••	166
Uplift pressures, m	ethod of	indep	endent	
variables for the	determin	iation (of	129
Uplift pressures on	the weir	floor		129
Upstream piles	••		••	164

Vaidhianathan's experiments 5'	r, 110
Variations, seasonal, in pressures, inter- pretation of	62
Variations. seasonal, of silt and tempera-	
ture as influencing stability of works	61
Variations seasonal, in sub-soil temperature	60
Variations, seasonal, in value of P/H per-	
centage	- 51
Velocity of water in sands and soils	54
Viscosity, temperature and discharge,	
relative values of	53 ·
Viscous fluid method, for stream lines	16
Vorticis, erosive and accressive	191

158 Walls, retaining, design of Walls, wing, design of Waterway and discharge per foot run 158 171 Weaver's general case 74 Weaver's mathematical treatment of the flow of water through permeable subsoils under dams 5 • • Weighted creep theory, Lane's...... Weirs, causes of failure Weirs, choice between shutters and coun-6 . 149, 194 173 107 63 169 189 129 173 170 Weirs, failure from seepage flow Weir, Kalabagh (proposed) application of the new method to investigate pres-107 .. 142, 147 sures under •• Weir, Merala Weir, Panjnad, application of the new method to investigate pressures under Weirs, section, complex, splitting up into elementary forms for design porposes Wells, foundation 149 142 131 154 158 129 : d-sign Works, new, design of . . 149

Pages

This Pocket contains the following illustrations :---

1. Plate VII-5	5. Plate X-3
2. Plate VII-6	6. Plate XI-1
3. Plate X-1	7. Plate XI-2
4. Plate X—2	

.