REPORT ON TYPE-2 STUDY ON WHEAT
UTTAR PRADESH, 1964-65

DIRECTORATE OF NATIONAL SAMPLE SURVEY
(Agricultural Statistics Division)
1966

FOREWORD

Official estimates of production of cerear are framed on the basis of crop estimation surveys carried out by the State Governments under the technical guidance of the Agricultural Statistics Division in the Directorate of National Sample Survey. Independent estimates of cereal production are also available since 1957-58, through crop surveys carried out as an integral part of the Socio-economic rounds of the Directorate of National Sample Survey. As wide divergences were noticed in the estimates of production based on the two series of surveys, it was felt that the reasons for such divergences should be further scrutinized. On the recommendation of a Technical Committee set up by the Planning Commission, type studies designated as "Type 2 Studies" were organised on maize in Bihar and on paddy in Andhra Pradesh during 1963-64 as well as on wheat in Uttar Pradesh during 1964-65. The present report deals with the results of the study carried out on wheat in Uttar Pradesh.

New Delhi

(S.P. Pande) Chief Director, NSS

Report on Type-2 Studies on wheat

in Uttar Pradesh Rabi 1964-65

1. Introduction

L.1 The present report ieals with the results of type-2 studies carried out on wheat crop diring rabi 1964-65 in Uttar Prodesh. It is the third report prepared by the Directorate of National Sanple Survey, New Delinion type-2 studies. The earlier two reports dealt with similer studies conducted on maize in Bihar and on padiy lin Andhra Pracesh $\begin{gathered}\text { iving 1963-64. }\end{gathered}$
1.2 The statistics of area, yield rates, and proruction of cereal crops are, in recent times, available from two sources: The regular source of Agricultural Statistics Including the estimates of foor pronuction is the Stete Governments. They furnish the figures to the Ministry of Food nnd Agriculture who in turn enmpile the all-Indi? estimates. Thisi ner enlled the "officiel estimetes". The sccond source is the National Sampl Survoy which earriss - out multipurpose smplo survers uninr the t-chnical guidnnco of Incizn Stntisticnl Institute. The wis sfris of foon production are referrer to as NSS-ISI estimetes in this rpport. Thes? two sets of ostimetriffrrer widoly. Th2 typ:-2 schem -nvis g"s joint crop cutting rxp riñats
 tho provision fnr suprvision xisting in thr finla t
 shnp and sizo of sanpl cuts on the astimet-s of yi la rat:s of crrol crnps.
1.3 Officinl stimatrs of procuction of crops arc obtrinod for onch Stato is.on profuct of the nernog? uar? r th: crop and corrsponíng 2 v rng yi ic rats. Th acronge undor the crop is mostly obtain $\begin{gathered}\text { m through } \mathrm{complat} \text {. }\end{gathered}$ fiold cnumeration by the villago patwaris of th: Revonuo Doportment whila nvorage yisld ratos are abtain- through crnp cutting exprimonts on the basis of random s?mpling techniqueoriginally developer by the Indian Council of Agricultural Rasonrch. The ficle work of theso crop cutting surveys is corriun out by the staff of Stato Dopartments like Agriculture anc /or Revonue as part of the normal departimental activities. The responsibility for providing technical guidance for the conduct of the surveys was originally with the ICAR and from the boginng of January, 1953 this rospansibility was transferrat to the Directorate of National Samplo Survoy. The Agricultural Statistics Division of the Dircetnrate of NSS has boen providing technical guinance to the State Governments for organizing the crnp estimation surveys since 1953. These surveys which woro initiated first in 1943-44 on 2 pilot basis on rice and whent, now cover all the principal fond and non-foor crops in all the major States.
1.4 . Since 1957-58 the NSS has boon making infependent ostimates of production of importent crops for the wholo of Intia. The ISI which is the Tachnical wing of the NSS has the entire tochnical rosponsibility of the survey while the field Directornte of NSS is in charge of tho field work. The crop surveys of the $\mathbb{T S}$ are an integral
part of the Socio-ecnnomie surveys and are carrich out by well trained full time investigators anopting unforn concepts; definitions and procedures. The NSS-ISI crop surveys cover seven coreal crops viz: (1) rice, (2) whent, (3) jowar, (4) bajra, (5) rngi, (6) maize and (7) barley. 1.5 The official and NSS-ISI estimates of pronuction of the seven cercal crops have differed as may be soon in the Annexure I of the report. The NSS-ISI estimates of production of the seven crops have been higher than the corresponding official estimates for the perion 1957-58 to :1960-61. Since then the divorgence between the two estimates has narrowed. The differences between the estimates of the two agencies may be rue to differences in the estimates of area or yield or both.
2. Beckgrount of the type-2 sturies
2.1 The Central Statistical Organisation set up a working group in 1959 to examine critically the divergence of these two sets of estimates. This working group in its second meeting heid on 6th August, 1960 had recommender that joint studies should be immeriately undertaken to compare the yield rates obtained from circular cuts as adopted in the NSS and rectangular/triangular cuts ns aropted by the State Governments for crop estimation surveys. Later on the work relating to the examination of these two sets of estimates was taken over by a Tochinical Committee set up by the Planning Commission in 1963. The Technical Committee recommen ${ }^{\boldsymbol{N}}$ d among other things the
following types of sturics which were--earlier suggested jy the Central Statistical Organisation.

> Type 1: •Joint crop cutting experiments by both techniques under very close and joint supervision of the two agencies, work being somewhat analogous to experiments conducteत under laboratory conditions;

Type 2: Joint experiments by both techniques conducter under normal fjeld conditions with provision for supervision as existing in the field at present; and

Type 3: Full scale sample survey to determine the area, rate of yield per facre and pronuction of crops.
 on Jowar in Bundi (Rajasthan) and on wheat in Barh (Bihar). The results of the sturies showed that under latoratory conditions yield rates, or crops obtained by the two techniques did not iififer statistically.

Type 2 Studies: The Technical Committee recommended organisation of the type 2 studies alorigwith the extender crop survey off..18th round of NSS (1963-64), on one crop in each of the following S tates :-

State	Crop
1.. Andhra Praxesh	Padतy
2. Bihar	Maize
3. MaAhya Pranesh	Jowar

(5)

State	Crop
4. Maharashtra	Bajra
5. Uttar Pradesh	Wheat

2.2: The Technical Committee outlined the major objective of the type 2 sturies as finding out the cifect of the circular cuts of small size as aropter in the NSS-ISI technique and rectangular/triangular cuts of larger size aropter by Official State Asency, on yield rates of a number of cereal crops. \bar{F} r this purpose the Committee recommenred that it would be necessary to have at the State level paireत comparison of the yield rates on the NSS and State cuts in about 150 fields for pariyy and wheat and about 250 to 300 fieḷs for jowar, bajra and maize. In respect of the whole-field harvest, although. it would be essential to have arrangenents mace for complete harvesting of all the fields selecter for paired comparison, the Committee felt that the whole-field harvest need not be insisted in districts or tracts whore labour shortage or other serious organisational difficulties are likely to be experienced.
2.3 . The Committee further recommenser that from the operational point of view it would be preferable to select the villages falling in the NSS sample for type-2 sturies and the selection of the fields for NSS/State cuts might be तone according to the State procedures. Since the number of NSS sámple villages"was proportionally smaller
*han corresponding State sample, the Committee felt that NSS sample villages could be treater as an integral part of the State crop survey. This meant that the results of the rectangular/triangular cuts in the selecter villages for the type-2 sturies would be utilised by the State agencies in building up their pronuction estimates.
2.4 The Technical Committee at its meeting hild on 13th and 14th August, 1963 discussed the conceptual and operational details of the type-i sturies with particular emphasis to the concept of whole-field nervest and laid down guide lines f $\cap \mathrm{r}$ the proper confuct of the field work so that there should not be any controversy on the acceptability of the data thrown up by the survey. It was also decided that the analysis and tabulation of the data would be done independently by the ISI, IARS and the Directorate of NSS at New Delhi. The type-2 stưy returns should be sent to the three organisations for this purpose.
2.5 Although the recommendation of the Technical Committee was to carry out the type-2 study in 5 States on 5 crops during 1963-64, it could, however, bo undertaken in that year only in two States viz; Bihar and Andhra Pradesh. By the time arrangements were made in Uttar Pradesh for type-2 study in 1963, harvesting of wheat had already started in some of the districts and subsequently the study was postponed for 1964-65.
3. Technical details of the type-2 stixijes on wheat conducter in U.P. तuring Rabi 1964-65
3.1 It has been stated earlier that villages for type-2 study should be selected fron wS samples and they should also form an integral part of the sample of the State crop estimation surveys. The तesigns of the two surveys are briefly mentioned below.
3.2 .. NSS designs: The sample design in the NSS is a stratificied two stage one for the lan utilisation survey, villages being the first stage unit and cluster of plots the second stage unit. For crop yicld survey, the design is a four stage one with villages, clusters of plots, subplots growing specified cereal crops and circular cuts as the first, second, third and fourt'i stage units respectively. The first an socon stage units for crnp yield survey are a sub-sample of those chosen for the land utilisation survey.
3.3 ... Within a state, contigunus tehsils or part of contiguous tehsils fairly homogenenus with respect to the population density an crop pattern are grouper together to. form compact strata as far as possible such that the size of stratum is exactly equal, the size being 1951-1961 census population. The country is divider into a mind of. strata and within each stratum, 24 villasrs, 4 subsamples of 6 vilages each, are selecter circular systematically with probability proportional to size.
3.4 State series - तesign: The planning of crop cutting experiments in the State series of Uttar Pratesh is तone separately for each érop. The sampling design is a stratified multistage one with tehsils as strata and villages as primary units. Allocation over strata for a crop is made roughly in proportion to the acreage under the crop. The villages are selected with equal probability. The other stages of selection are a survey number growing the crop, a sub-number, a field and an equilateral triangle of side 10 metres.
3.5 Type 2 study: The type- 2 study on wheat in Uttar Pradesh 1964-65 consisted of two parts:-
a) Taking two types of cuts viz; NSS-ISI circular cuts and triangular cuts as anopted by Uttar Prađesh State in a set of common fields.
b) The whole-fielt harvest in a sub-sample of villages selected from (a).

3.6 Selection of villages: Uttar Pradesh State has

 been stratified into 44 strata in the NSS-ISI design of crop survey. The State is also participating in the NSS programme by taking up a matching sample of equal size. The number of sample villages for land utilisation and crop cutting surveys in Uttar Pracesh for NSS central and NSS-State (matching sample) for the 19th round is given below:Table 3.1: Number of villages selecter - NSS LoU.S. and crop yield survey ligth round

	No. of villages for LU.S.Survey	No. of villages for crop yield survey
NSS-Central	$\ddots \frac{1056}{264}$	
NSS-State	$\frac{1056}{2112}$	\ddots

3.7 The sample villages for the type-2 study on wheat rabi 1964-65 werc selected from the NiSS crop cutting villages of the 19 th round. The villages with sampling serial number 1 of sub-sample 1 of both central and State sample from each of the 44 strata. excluding strata 30,31 and 32 comprising the hilly regions were chosen. Thus 82 villages were selected altogether; 41 each from the central and State samples. In all these villages both the NSS-ISI and State cuts were to be taken for paired comparison. Out of these 82 villages, 50 villages (25 from the central and 25 from the State samples) were randcinly sclected for whole-field harvest.
3.8 Concept of wheat crop: For the purpose of State series, all fields in the selected villages growing wheat pure and wheat-gram mixture as definer in the State Land Record system formed the populauion (universe) at the village level. Fields growing wheat-barley mixture were excluded from the population. On the other hand fiselds growing wheat mixe with other crops such as oil seeds but no gram or barley were taken as whoat proviter wheat was the predominarit crop in the aixture. Similarly all fields growing wheat--gram mixture alongwitn other crops were shown unier wheat-gram providen wheat-gram was the predominant constituent in the mi. t tire. As a corollary a field with wheat-gram-barley mixture was shown under wheat-gram if wheat-gram constituent was predominant and as wheat-barley if this was predominant.
3.9

Selection of sample fields:- Two fields growing
wheat as defined above were selected randomy from each sample village according to the state official procedure of crop estimation surveys. The methor of selection was, first to select a is irvey number growing the crop, then a sub-number. in case the survev nunber had sub-divisions and finally a field growing the crop within a survey/sub-number 3.10 Number of cuts:- From ach sample field one triangular cut (equilateral triangle of side 10 metres) was taken by the State official (series) agencies ant one circular cut of 4 ' ratius if the field was under pure wheat and 2 circular cuts if the field was under mixed crops by the Central/State viss staff were taken. The circular cut consisted of two concentric circles of radii $2^{\prime}-3^{\prime \prime}$ and respectively.
3.11 Location and marking of cuts:- The Location and marking of the triangular and circular cuts were done according to the respective state official and NSS-TSI. methods. Since both types of cuts were to be Incater in the same selected field, the following procedure was laid down.
i) In the first field in each village the circular cut would be located first and then the triangular cut. Similarlv, in the second field, the triangular cut was first to be locater and then the circular cut;
ii) Over-lapping of the two types of cuts was to bo avoided by selecting fresh pairs of random numbers;
iii) In case the two cuts could not be accommodated independently, the fiold should be substitutad by. another field according to the State procedure.
3.12 Harvesting, throshing, weighing and driage: Thess operations were done according to the respective practices followed by the two agoncies. The procuce from $2^{\prime}-3^{\prime \prime}$ circle was stored for driage according to the National Sample Survey practice while the entire reduce of the triangular cut was taken for driage by the State agency.
3.13 Whole fieldharvest: The harvesting of the crop was to be done only whin the crop was fully mature. The whole-field :harvesting was to be started only after. taking the sample cuts: It was to be ensured that no damage was done to the residual portion while taking the two types of cuts. The field workers were instructed to take special care to sea that no grain was lost in the field at the time of whole-field harvast. The plants should be cut: from the bottom. Harvested plants should be spread for a couple of hours on a tarpaulin or hession cloth in a place as close as possible to the solectod field. After completing the harvesting operation, aarheads/ grains lying, on the ground in the field srould be collected.
3.14 After threshing and cleaning, the weight of the
green crop was takon. The produce along with the produce of the annular portion of the circular cut was stored for driage. Elaborate procedures were prescribed for drying the produce of the whole field hervest and recording the weight of dried grain.
3.15 The area of the fields selected for whole-fleld harve'st, was measured by the primary workers taking the assistanco of trained survey and settlement staff. This was to be done on the day of harvest or next day. A sketch map of the field with measurenonts was also to be provided.
4. Organisation of field work and supervision
4.1 The field work of the type-2 scheme consisting of circular cut, triangular cut and whole-ficld harvest was done by different set of primary staff. The circular cuts were taken by the central and state Nisi investigators in their respective samples. The official State crop estimation surveys were being carried out by the supervisor kanungos under the technical guidance of the Joint Dircctor of Agriculture (Statistics) Uttar Praウesh。 The same supervisor kanungos conducted the triangular cuts under the type-2 scheme. The administrative and operational responsibility for arranging the whole-field harvest in connection with the type-2 study was assigned to the Joint Diractor of Agriculture (Statistics) Uttar Pradesh. In addition to that, the Government of Uttar

Pradesh had appointed him in over-all charge of the type-2 scheme.
4.2 . The operational details of the type-2 study, such as instructions for the field work, schedules, training, supervision etc. were first discussed in a meating held at Luçknow on November 4 and 5, 1963, which was attended by the representatives of ISI, SSB Uttar Pradesh, D:partmint of Agriculture (Statistics) Uttar Pradesh, CSO and Diractorate of National Sample Survey. .: Even though the I.S.I. had suggested that the scheme for U.P. should provide I.P.N.S. arrangements, in view of the administrative and other considerations involved, it was decided at this meating that the principles of IPNS need not be followed in the case of Uttar Pradesh study which was a departure from the earlier studies conducted in Bihar and Andhra Pradesh. As the type-2 study could not be carried out during Rabi 1963-64 due to unavoidable reasons, the decisions. of Lucknow meeting were reviewed on the basis of a note prepared by the Joint Director of Agriculture (Statistics) Uttar Pradesh at a meeting huld in C.S.O. on 27th October, 1964. It was agreed to make arrangements for transferring the equipment lying with the SSB, Biher in connection wịth the type-2 study undertaken by them to the Joint Director of Agriculture (Sjatistics) Uttar

Pradesh. The officers of National Sample Survey Directorate met the Joint Director of hgriculture (Statistics)U.P. at Lucknow on 10th and llth November and discussed certain
further details of the schome. A further meeting of the representatives of ISI, SSB, U.P., Joint Director of Agriculture (Statistics) Uttar Pradesh, NSS and CSO was held on 6th February, 1965 at Lucknow and finalised all operational details of the prosramme.
4.3 For facilitating the organisation of the survey, It was decided to collect information regarding the availability in the selected villages of wheat crop and storage and labour facilities, approach to sample village; facilities for stay in or near the villages etc. A proforma was prescribed for this purpose and the information was collected by the Assistant Director, NSS (Lucknow) in respect of the central samples and by the Director, SSB, Uttar Pradesh for the State samples.
4.4 It was envisaged for the proper conduct of field work to set up a control room in the office of the Joint Director of Agriculture (Statistics) Üttar Pradesh, with map indicating the sample points with different marks for various stages of field work, charts showing the villagewise dates of harvest, cards for each village showing the name of the primary worker, the stäge of field-work, the supply of equipment, arrangements for storage, details of harvest etc.
4.5 For whole-field harvest operations, 50 whole time special supervisor kanungos; 50 chain men and 20 Naib Tehsildars were appointed on adhoc basis. The scheme also provided for the appointment of 4 Field orficers, one Statistician and ono Statistical Assistant at Headquarters
and necessary clerical and othor assistance. One village was assigned to each of the spocial supervisor kanungos for the whole-field harvesting and subsequent operations of threshing, weishing and driage in accordence with the instruction laid down. The Naib Tehsildars wore required. to supervise the work of the supervisor kanungos.
4.6 Training was given to the primary and süpervisory staff at two levels by the Joint Director of agriculture (Statistics) or by his senfor Statistician. In the first phase, the Naib Tehsildars, Assistant Suporintendents of National Sample Survey and District Statistical Officer of the SSB were trained at three centres viz. Bareilly, Allahabad and Lucknow. This programme was completed by 12th February, 1965. The second. phase of programme was conducted between 18th and 28th February, 1965 at the District Headquarters whera the concerned Lekhpals and regular supervisor kanungos, field officers,- spəecial supervisor kanungos appointed under the type-2 study scheme and the investigators of NSS were givon training. 4.7 Supervision: The field work of the type-2 studies lasted for about three months commencing from 15th February, 1965. During this period close liaison was maintained between the supurvisory staff of the Directorate of National Sample Survey, District Statistical Staff of the SSB and the staff of the Joint: Director of Agriculture (Statistics). In the case of whole-ficla harvest it was envisaged that one representative each of NSS (Central or State) and official state series should be
present at the various stages of operation such as demarication of crop area, harvesting, threshing, driage, recording the weight of tho grain and measurement of the area of the field. Besides there was intensive supervision by the higher level officers of all the organisations involved in: the joint study. The number of villages visited at harvest stage by the different agencies, are shown below:-

Table 4.1: Number of villages visited at harvest stage by different agencies.

The Director, Central Statistical Organisation and the Chief Director, ${ }^{1}$ National Sample Survey visited one wholefield harvest vilíage in Banaras District and obsirved the harvesting, threshing and weighment operations of the circular cut; triangular cut and whole-ficid harvest. Another village was visited by the Joint Director, Cos.o. at harvest stage in..Saharanpur District. Although the
type-2 studies envisaged only that much supervision normally exercised by the two agencies, the introduction of wholefield harvest in 50 out of 82 villags with provision to inspect all the 50 villages at all the stages of operation had considerably increased the quantum of supervision of the two types of cuts also. Further the primary workers of the two agencies were fully aware of the involvement of many agencies and the great importance attached to the type-2 studies. In the circumstances the normal field condition contemplated in the study could not be said to have'prevailed.
4.8 The inspection reports of the NSS officers showed that necessary items of equipment were-supplied to the field workers in villages visited by them and the work was done satisfactorily according to the prescribed procedure. All possible efforts were made to carry out all the operations with great accuracy and adequate supervision. Even then, in a few villages, harvesting, threshing and cleaning of the produce from whole-fields could not be completed on the same day due to either the harvested crop was very heavy or the weather was not good.- However, such departures from the instructions are unavoidable and they'are not likely to affect the results seriously.
4.9 . Six copies of each of the prescribed forms relating to State triangular cut; NSS-ISI circular cut and the whole-field harvest were prepared by the field staff and
five were mailed to the following agencies:-
i) Indian Statistical Institute, Calcutta.
ii) Board of Revenue (Land Reforms) Uttar Pradesh, Lucknow.

1ii) The Bureau of Economic Intelligence and Statistics, Uttar Pradesh, Lucknow.
iv) The Directorate of National. Sample Survey, New Delhi.
v) Institute of Agricultural Research Statistics, Ministry of Food \& Agriculture, New Delhi.

The receipt of forms in the Directorate of National Sample Survey was spread over a period of 4 months from 24.2 .65 to 30.6.65. All forms were received in respect of triangular and circular cuts. But, in the case of whole-field. harvest form ' F ' for one village was not received in the National Sample Survey Directorate.

5. Scrutiny and analysis

5.1 The forms received from the field staff were. scrutinised in the NSS Directorate and discrepancies if any were pointed out to them for clarification. It was observed that the dried weights reported in respect of the two triangular cuts for Prathapur-Kamaicha village in Sultanpur District were more than the green weights of produce. As the explanation given by the field worker. was not satisfactory, the two experiments were rejected. Consequently the results of circular cuts as well as the whole-field harvest for the village could not be made use of. Scrutiny also revealed that the results of whole-field
harvest in Amkhera village in Jalaun District -- wore of doubtful accuracy because of appreciable loss in the produce during the various opurations, Areas of boch fields were large and from the remarks of the suparvisory officials it was gathered that there was heavy rain on the day of harvest and the produce was drenched. The results of whole-field harvest in the two fields of kmkhora village were therefore rejected. However the yicld de.ta relating to circular and triangular cuts for the village were accepted for analysis.
5.2 The number of villages where type-2 experiments were planned, conducted and analysed is given in table 5.1.

$$
\text { Table 5.1: } \frac{\text { No. of villages where type-2 study was }}{\text { planned, conducted and analysed. }}
$$

N.S.S. Sample	Total No. of Total No.of villages where experi- whilages ments were expori- nlanned				Total No. ofvillages forwhich experi-ments wereanalysed.	
	$\begin{gathered} \text { All } \\ \text { sample } \\ \text { cuts } \end{gathered}$	$\begin{aligned} & \text { Whole- } \\ & \text { field } \\ & \text { harvest } \end{aligned}$	$\begin{aligned} & \text { AiI } \\ & \text { sam- } \\ & \text { ple } \end{aligned}$	$\begin{aligned} & \text { Whole- } \\ & \text { field } \\ & \text { harvest } \end{aligned}$	$\begin{aligned} & \text { All } \\ & \text { sam- } \\ & \text { ple } \end{aligned}$	$\begin{aligned} & \text { Whole- } \\ & \text { field } \\ & \text { harvest } \end{aligned}$
1	2	3	4	5	6	7
Central	41	25	40	24	40	23
State	41	2.5	41	35	41.	24
Total	82	5)	81	49	81	47

Footnote:- " In each villago urder each category 2 cuts/whole-ficld harvest were conducted.
5.3 The scrutiny of the forms showed that only 17.9 per cent of the fields salected for the type-2 study were "sown pure. The distribution of fields according to the nature of sowing given in the returns of State cuts is shown below:-

Table 5.2: Distribution of fields accord-
ing to the nature of sowing

Pure/mixed crop	No. of fields selected	Percentage
l	2	3
1. Wheat pure	29	17.9
2. Wheat + Gram	25	15.4
3. Wheat + Mustard	63	39.0
4. Wheat + Gram + Mustard	20	12.3
5. Wheat + Gram + Linseed	6	3.7
6. Wheat + Mustard + Linseed	6	3.7
7. Wheat + Linseed	6	3.7
8. Wheat + Others	7	4.3

But according to the returns relating to circular cuts the Investigators of the Central and State Nisi had conduc= ted 2 experiments each in 147 . out of the 1 c 2 fields since they were sown mixed.
5.4 Before-taking up the analysis, the data transferred from the vailous forms in the National Sample Survey Directorate were compared with that of the ISI by deputing an officer of the Directorate. The office of the Joint Director of Asiculture (Statistics) U.P.
(21)
was also visited to satisfy the accuracy of the data accepted for analysis.
5.5 Analysis: The analysis has besn done on the basis of dried grain. For circular cuts; the ratio of dried grain to green wheat was obtained in respect of produce from circular cuts of radius $2^{\prime}-3^{\prime \prime}$. This ratio was applied to the produce from each circular cut of radius 4^{\prime} for obtaining the weight of the dried grain. In the case of the trianguler cut, and whole field harvest the produce from every cut/field was dried and hence it did not involve any estimation process. Before making comparisons individual plot yield was reduced to Kilograms per acre using appropriate conversion factors. In the case of whole ficld; the area under crop excluding the area under ails or bunds was considered. The conversion to per acre yleld is done in the following manner:-

Where H is the vield in Kilograms of ith circular cut and Yi^{\prime} is the yield per acre in kg. for the ith circular cut.
$X_{i}^{\prime} \quad($ triangular $c u t)=\frac{X_{i}}{0,0107}$
Where X_{i} is the yield in Kilograms of the ith triangular cut and $X i^{\prime}$ is the yicld ir kg. per acre of the ith triangular cut.
$\mathrm{Zi}^{\prime} \quad($ whole-field $)=\frac{\mathrm{Zi}_{\mathrm{i}}}{\mathrm{ai}}$
Where zi is the yield in kgs. and ai is the area of the ith whole field in acre z_{i}^{\prime} is the yield per acre of ith whole-field.

In the case of mixed fields where two circuiar cuts were taken, the average of the per acre yield from the two circular cuts was worked out.
5.6 For purpose of analysis the sample villages were grouped into three categories viz; (i) hll sample villages, (ii) whole-field villages and (iii) paired sample villages where whole-field harvest was not done, $_$nelysis was done in the following manner.

1. Whole field semple
a) Simple mean yield per acre and sampling error in respect of whole-fields, triangular cuts and circular cuts were worked out for central and state samples separately and for the combined sainples.
b) Miean difference in yield between whole-field and triangular cuts, whole fieid arid circular cuts and triangular and circular cuts and also the sampling errors ware calculated. The significance of the difference in the yield ratos between the different cuts and whole-field was tested by student's 't' test.
2. hll sample and paired sample (where whole-field harvest was not done). Simple mean yiuld in kgs. per acre of triangular cuts, circular cuts, mean difference between triangular and circular cuts, and sampling
error were worked out. The significance of the difference in the yield rates of iriangular and circular cuts was tested by Student's 'tr test. 3. Frequency distributions of positive, negative and zero differences of the per acre yield of the following categorios were studied;
1) Whole-field minus triangular cut
ii) Whole-field minus circular cut
iii)• Triangular cut minus circular cut for
a) whole-field samrle;
b) all sample;
c) paired sample (where whole-field harvest was not done).
5.7

In the State official crop estimation surveys yield data from mixed fields are inflated so as to relate to pure crops. But in the case of type-z studies, no such adjustment was made for mixed crop" 'and all comparisons have been made on un-aduusted yield rates as obtained from the sample cuts/ifilds. The per Acre yield of wheat given in this report, are therefore not comparable with the yield rate estimated by the official state agency in connection with the regular crop estimation surveys.

6. Results

6.1 The unadusted mean yi.id rate of wheat as obtained from the whole-field, triargular cut and circular cut for the three categories of sample
villages are given below: -
Table 6.1: Mean yield of wheat (unadjusted) per acre
Kgs/acre

Category of sample	Whole- field	Triangu- lar cut	Circular cut
1	2	3	4
1. Whole-field sample	466.57	490.69	483.08

2. All sample ... 466.21 466.52
3. Paired sample . . 432.37 . 443.65
(where whole-
field harvest
was not done)

In the case of whole-field villages, the average yield from the traingular cuts is more by 5.2 per cent and that from the circular cut by 3.5 per cent than the whole field average. The yield rate of tritangular cut is more or less the same as thet of circular cut when all sample is considered. In the case of paired cuts where whole-field harvest was not done, the yield rate from circular cut is observed to be 26 per cent more than the triangular cut.
6.2 The average yield rates of wheat with sampling errors for whole-field villages by categories of experiments and by sub-samples are shown in table 6.2.

Table 6.2: Mean yield rates (un-adjusted) of wheat with sempling errors for wholefield, triangular and circular cuts.

Whole-field sample

Sub-sample	Sample sizo (No.of cuts/ fields)	hverage yield kgs/acre	$\begin{aligned} & \frac{\text { Sarp }}{\text { In } \mathrm{kgsi}} \\ & \text { acre } \end{aligned}$	$\begin{aligned} & \text { gerror } \\ & \text { Per - } \\ & \text { centaze } \end{aligned}$
1	2	3	4	5
	Whole-field			
Central	46	465.81	43.46	9.3
State	48	467.30	45.81	9.8
Combined	94	...406.57	31.45	6.7
Triangular cut				
Central	46	496.34	46.06	9.3
Stata	48	- 485.28	-50.50	10.4
Combined	94	490.69	34.08	6.9
Circular cut				
Central	40	477.32	43.61	9.1
State	48	488.59	48.35	9.9
Combined	94	483.08	32.40	6.7

6.3 The percentage sainpling. errors for the combined sample for the two types of cuts and the whole-field harvest are more or less of the saine order. It may be seen that even at the sub-sample level yiald rates of triangular cut and circular cuts are higher than the yield rate of whole fields.
6.4 Individual differences between yield rates of whole-field and triangular cuts, whole-fiold and circular.
cuts and triangular and circuilar cuts were analysed for the whole-field villages and the results shown in table 6.3. The table gives sampling errors of the mean differences, and also the valuss of student's 't'.

Table 6.3: Mean yield of wheat (un-adusted) from whole-field, triangular cut and circular cut with sampling errors of difference in yield rates and value of Students't.
(Whole-field harvest villages)

6.5 It is seen that mean difference is not statistically significant in respect of any of the comparisons. It leads to the inference that differences in yield rates between whole-field and triangular cuts, whole-field and circular cuts and triangular and circular cuts can be attributed to sampling fluctuations. In other words, the results indicate that under the operational conditions obtained for the type-2 studies in Uttar Pradesh both types of cuts are suitable for yield estimation and there is no
6.7 The difference in yield rates between the triangular cut and circular cut in the case of all sample is only 0.32 kgs . It is also not appreciable in respect of central and state sub-samples. The estimates of yield rates of triangular and circular cuts for the paired sample where the whole-field harvest was not done, also do not differ appreciably. The values of 't' for the central and state sub-samples of the two groups indicate that: the differences in yield rates are not statistically significant in respect of all the comparisons made in the above table.... It--confirms the earlier conclusion that there is no evidence that one type of cut is better than the other for estimating yield of wheat crop.
6.8

It is also interesting to study the magnitude and direction of the differences between various trpes of cuts at individual field level. Five tables giving the frequency distribution of sample fields according to the differences of unadjusted yield rates of wheat are appended. : The number of positive and negative differences between different types of cuts is presented below in table 6.5 for whole-field harvest villages and in table 6.6 for all sample and paired sample where whole-field harvest was, not done.

Table 6.5: Count of positive and nogativo diffe rences of yield ratos; whole field-triangular cuts and whole ficld-circular cuts.

Whole-fiald villages

Table 6.6: "Count of positive and negativa differonsos in yield botwoon triangular and circular cut.s in respect of whole field sample, paircd semple where whole field harvest was not done and all sample.

Subsample	Count of positive and negative differences(triangular - circular) cuts										
	Whole field sample				Paired Sample.			All Sall			emple
	$$	$\left[\begin{array}{cc} 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 4 \end{array}\right]$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 1 \\ & 5 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$	$\begin{gathered} 0 \\ \stackrel{\leftrightarrow}{0} \\ { }^{2} \end{gathered}$	$\begin{aligned} & \text { fo } \\ & \text { in } \\ & 0 . \end{aligned}$		-
1	2	3	4	5	6 \%7	8	9	10^{-}	11	12	13
Central	-	24	22	46	16	18	34	-	40°	40	80
State	-	20	28	48	16	18	34			. 46	82
$\begin{aligned} & \text { comb- } \\ & \text { ined } \end{aligned}$		44		94	- 32	36	68				162

6.9 Comparison of whole-ficld with triangular and circular cuts shows that the number of negative differonces is more thän the positive differences in all cases excepting the trianguler cuts of the central sub-sample. The negative differences are far more greater in the case of wholeffield comparison with circular cuts. The same pattern is observed at the sub-sample"level also.. In the case of differences between the triangular and circular cuts it may be seen that out of the 9 comperisons made in Table 6.6, the number of negative differences exceeds the number of positive differences in seven ceses.

7. Conclusion

7.1. The type-2 study on wheat in Uttar. Pradesh suggeste that under the operational conditions which prevailed for the study, the differences between the yisld rates obtained from whole-field harvest, triangular cuts and circular cuts are not statistically significant. In other words, it means thet both types of cuts are suitable for crop yield 'estimation and there is no evidence to say that one type of cut is better than the other. . The field conditions obtained for the type-2 study may be specially notod. One essential requirement of the type-2 study, as laid down by the Technical Comaittee, was thet it should be carried out under normal field conditions which however could not be secured in practice in view of the organisation of
whole-field harvest in 50 out of 82 villages with provi-. siçn to supervise at all stages of whol-field harvest operations. These were conflicting requirements and both of them could not be achieved at the same time. Even in the case of remaining villages, the field staff were fully aware of the great importance attached to the type-2 study and the active participation of many agencies of central and State Governments. This awareness in turn could have resulted in better field work than what would have been obtained otherwise under normal field conditions. Nonetheless the conclusion emerged from the study is valid and important in the sense that under identical controlled field conditions both types of cuts are equally suitable for crop yield estimation surveys.

8. Sunary

8.1 As recomended by the Technical Committee set. up by Planning Commission, type-2 study on wheat was carried out in Uttar Pradesh during rabi 1964-65, under the over-all charge of the Joint Director of Agriculture (Statistics) Uttar Pradesh.
8.2 The objective of the type-2 study was to find out the effect of circular cuts of small size (4' radius) as adopted in the NSS-ISI technique and triangular cuts of large size (equilateral triangle of 10 metres) as adopted by Uttar Pradesh official, State hgency, on the estimation of yicld rate of wheat crop.
8.3 82 villages were selected from the list of sample villages for National Sample Survey 19th round (41 each from the central and stete samples). . Both triangular and circular cuts were taken in two fields each in all the 81 villages. Whole-field harvest was done in respect of a simple random sub-sample of 50 cut of the 82 villages in order to compare with the \because : yield rates obtained from circular and triangular cuts. 8.4 The field work of the triangular cut was done by the regular supervisor kanungos. The circular cut in the central sample was taken by the investigators of the fieid Directorate of National Sample Survey and in the State sample by the State investigators under the charge of the Director, State Statistical Bureau, Uttar Pradesh. The whole-field harvest was done by whole-time supervisory kanungos specially appointed for the whole-field harvest oparation.
8.5 The Indian Statistical Institute, Directorate of National Sample Survey, Central Statistical Organisation, State Statistical Bureau, Uttar Pradesh and the officials of the office of Joint Director of Agriculture (Statistics) Uttar Pradesh, participated in the organisation and suparvision of field work. The reports of the National Sample Survey supervisory staff showed that the field work was carried out satisfactorily and according to instructions.
8. ̂́ Although the avarage yield rates of what obtained from triangular and circular cuts for the combined from triangular and circular cuts for the combined sample are higher than that of the whole-field haryest by 5.2 per cent and 3.5 per-cent respectivoly, they are not statistically different. Thu yield rates obtained from triangular cut and circular cut in respect of all sample are almost the same.
8.7 't' test indicates that the differences between the yield rates obtained from the whole-field harvest triangular cuts and circular cuts are not significant. In other words, both types of cuts are suitable for . crop yield estimation surveys and thore is no evidence to suggest that one is better than the other.
8.8 It was envisaged to carry out the type-2 studies urder normal field conditions. The normal field condition, however, could not be secured because of the organisation of whole-field harvest in 50 out of 82 villages with intensive supervision at all stages of whole field harvest operations in all the 50 villages.

Annexure - 1
Estimates of production of seven principal cereal crops (Rice, Wheat, Jowar, Bajra, Ragi, Maize and Barley).

Year	NSS-ISI Million tons)	Oificial Million tons)	$\frac{\text { NSS-ISI - Officialx } 100}{3}$
1	68.06	52.18	0 Official
$1957-58$	82.28	60.84	30.4
$1958-59$	83.86	61.86	35.3
$1959-60$	90.47	65.30	35.6
$1960-61$	82.83	06.37	38.6
$1961-62$	72.78	64.12	24.8
$1962-63$	71.91	66.46	13.5
$1963-64$		8.2	

Note:- (1) 1957-58 estimates of NSS are based on a period If 8 months, which comprised a part of Autumn (August-October), the whole of Winter (NovemberJanuary), the whole of Spring (February-April), and a part of Summer (May-June) Seasons.
(2) NSS estimates for the year from 1958-59 to 1961-62 do not include suminer season.
(3) Official estimates for the year 1957-58 to 1962-63 and INS estimates for the year 1963-64 have been converted from tonnes to tons by using 0.9842 as multiplier.

Source: Official Estimates: (i) Area and Production of Principal Crops in India (Sumnary Tables) issued by the Directorate of Economics \& Statistics(1963).
(ii) All-India final estimates of various crops, issued by the Dte. of Economics \& Statistics during 1964.

National Sample Surver Estimates:-
(i) NSS reports of various rounds.
(ii) Preliainary estinates for the vear 1963-64 supplied by the Indian Statistice ${ }^{-}$stitute.

Table A.l

Frequency distribution jf the sample fields by subsample according to the differences of unadjusted yield rates of wheat - Rabi 1964-65 in Uttar Pradish

Whole-fiald villages

Whole fisld - Trianguler cut

Cláss in- terval of	Cen samp	$\begin{aligned} & \text { ral } \\ & 1 \mathrm{c} \end{aligned}$	$\begin{aligned} & 3 t: \\ & \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \text { tito } \\ & \text { aple } \end{aligned}$		tal	Totel
differences	Posi-	Nega-	Posi-	- Nega-	P.psi-	Neze-1	
in kgs/acre	tive	tive	tive	tive	'tive	tive	
- 1	2	3	I. 4	5	6	7	1-8.
6-25	5	3	8	8	2.3	11	24
$\leqslant 50$	8	-	3	5	11	5	16
$\angle 75$	2	4	3	4	5	8	13
$\angle 100$	6	4	-	2	6	6	12
$\angle 125$	1	4	-	1	1	5	6
L_{150}	-	1	2	3	2	4	6
L_{175}	-	-	2	-	2	-	2
\angle_{200}	1	2	1	3	2	5	7
L_{225}	-	3	-	-	-	3	3
$\angle 250$	-	1	-	-	-	1	1
$\angle 275$	-	-	-	-	-	-	-
$1{ }^{3} 00$	\therefore	-	-	-	-	-	-
$\angle 325$	-	1	-	1	-	2	2
L. 350	-	-	-	-	-	-	-
$\angle 375$	-	-	-	1	-	1	1
$\angle 400$	-	-	-	-	-	-	-
L_{425}	- .	-	-	-	-	-	-
${ }_{450}$	-	-	-	-	-	-	-
$\geqslant 450$	-	-	1	$\because \cdots$	1	-	1
Total	23	23	20	28	43	51	94

Table A. 2

Frequency distribution of the samplo fields by subsamples according to the differences of un-adjusted yield rates of wheat-Rabi 1964-65 in Uttar Pradesh

Whole-field villages
Whole field - circular cut

Class interval of	Cen	ral.		te	Tot		
differencas in $\mathrm{kgs} / \mathrm{acm}$	$\begin{aligned} & \text { Posi- } \\ & \text { tive } \end{aligned}$	$\begin{aligned} & \text { Nesa- } \\ & \text { tive } \end{aligned}$	$\begin{aligned} & \text { Posi- } \\ & \text { tive } \end{aligned}$	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	Posi- tive	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	Total
1	2	3	4.	5	6	7	8
<25	5	8	8	4	13	12	25
<50	2	5	1	9	3	14	17
<75	5	. 6	1.	4	6	10	16
<100	3	2	2	2	5	4	9
<125	2	2	2	2	4	4	8
<150	2	-	1	1	3	1	4
<175	-	-	-	1	-].	1
<200	: -	-	2	2	2	2	4
<225	-	-	-	1	-	1	1
<250	1	-	1	1	2	1	3
<275	-	1	-	1	-	2	2
<300	-	1	-	1	-	2	2
<325	-	-	-	-	-	-	-
<350	-	-	-	-	-	-	-
<375	-	-	1	-	1	-	1
<400	-	1	-	-	-	1	1
<425	-	-	-	-	-	-	$-$
<450	-	-	-	-	... -	-	-
$\geqslant 450$	-	-	-	-	-	- -	-
Total	20	26	19	29	39	55	94

Table A. 3

Frequency distribution of tho semplo fields by subsamples according to the differences of un-adjusted yield rates'of wheat-Rabi 1964-65 in Uttar Pradesh

Whole-field villages
Triangular cut - circular cut

Class interval of differences inkgs/acre	Central sanple		State sample		Total		Total
	Posi- tive	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	Positive	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	Positive	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	
	2	3	4	5	6	7	8
<25	4	3	3	4	7	7	14
<50	4	1	\%	'7	10	8	18
<75	3	5	1	5	4	10	14
$\angle 100$	3	6	2	2	5	8	13
<125	-	1	1	2	1	3	4
<150	2	3	1	2	3	5	8
<175	3	1	-	-	3	1	4
<200	1	2	1	3	2	5	7
<235	1	-	1	-	2	-	2
<250	1	-	-	2	1	2.	3
<275	-	-	-	-	-	-	-
<300	-	-	1	... -	1	-	1
<325	1	-	1	-	2	-	2
<350	- -	\cdots -	-	1	-	1.	1
<375	-	-	. 2	-	. 2	-	2
<400-	-	-	-	-	-	-
<425	-	-	-	-	-	-	-
<450	1	-	-	-	1	-	1
$\geqslant 450$	-	-	-	-	-	-	-
Total	24	22	20	28	44	50	94

Table A. 4

Frequency distribution of the sample fields by subsamples according to the differences of un-adjusted yield rates of wheat-Rebi 1964-65 in Uttar Pradesh

Villages where whole-field harvest was not done
. Triangular cut - circular cut

Class interval of differences in kgs./acre	Central sample		State sample		Total :		Total
	Posi- tive	ivega- tive.	Posi- tive	Nega- tive	Positiv:	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	
1	2	3	4	5	6	7	8
$<25^{\circ}$	-	5	5	3	5	8	13
<50	3	全	2	1	5	5	10
<75	2	-	1	3	3	3	6
<100	2	3	-	4	2	7	9
<125	3	1	2	-	5	1	5
<150	1	-	2	2	3	2	5
<175	2	-	1	-	3	-	3
<300	-	1	-	1	-	2	2
<225	1	1	1	2	2	3	5
<250	-	1	-	-	-	1	1
<275	-	-	1	1	1	1	2
< 300	-	-	1	-	1	-	1
<325	-	1	-	-	-	1	1
<350	-	-	-	-	-	-	-
<375	-	-	-	-	-	-	-
<400	2	-	-	-	2	-	2
<425	-	-	-	1	-	1	1
<450	-	-	-	-	-	-	1
\geqslant_{450}	-	1	-	-	-	1	1
Total	16	18	16	18	32	36	68

Table A. 5

Frequency distribution of the seinple fields by subsamples according to the differences of un-adjusted Yield rates of wheat-Rabi 1964-65 in Uttar Pradesh

All Sanples

Triangulèr cut - Circular cut

Class interval of differance in kgs/acre	Central sample		State semple		Total		Total
	Posi- tive	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	$\begin{aligned} & \text { Posi- } \\ & \text { tive } \end{aligned}$	$\begin{aligned} & \text { Negna- } \\ & \text { Nive } \end{aligned}$	$\begin{aligned} & \text { Posi- } \\ & \text { tive } \end{aligned}$	$\begin{aligned} & \text { Nega- } \\ & \text { tive } \end{aligned}$	
1	2	3	4	5	6	7	8
<25	4	8	8	7	12	15	27
<50	7	5	8	8	15	13	28
<75	5	5	2	8	7	13	20
<100	5	9	2	6	7	15	22
<125	3	2	3	2	6	4	10
<150	3	3	3	4	6	7	13
<175	5	1	1	-	6	1	7
< 200	1	3	1	4	2	7	9
<225	2	1	2	2	4	3	7
<250	1	1	-	2	1	3	4
<275	-	-	1	1	1	1	2
< 300	-	-	2	-	2	-	2
< 325	1	1	1	-	2	1	3
< 350	-	-	-	1	-	1	1
< 375	-	-	2	-	2	-	2
<400	2	-	-	-	2	-	2
<425	-	-	-	1	-	1	1
<450	1	-	-	-	1	-	1
$\geqslant 450$	-	1	-	-	-	1	1
Total	40	40	36	46	76	86	162

List of Publications

A. Crop Estimation Surveys (State Series)
A.r. Annual results
A.x.I. . . . Consolidated results of crop estimation surveys on principal food crops, 1955-56
A.1.2. . . . Consolidated results of crop estimation surveys on principal food crops, 1956-57
A.1.3. . . . Consolidated results of crop estimation surveys on principal food crops, 1957-58.
A.I.4. Consolidated results of crop estimation surveys on principal non-food crops, 1957-58.
A.1.5. . . . Consolidated results of crop estimation surveys on principal food crops, 1958-59.
A.1.6: . . . Consolidated results of crop estimation surveys on principal non-food crops, 1958-59.
A.r.7. . . . Consolidated results of crop estimation surveys on principal food crops, 1959-60.
A.1.8. . . . Consolidated results of crop estimation surveys on principal non-food crops, 1959-60.
A.1.9. . . . Consolidated results of crop estimation surveys on principal food crops, 1960-61.
A.r.io. . \%. Consolidated results of crop estimation surveys on principal non-food crops, 1960-6I
A.i.II. Consolidated results of crop estimation surveys on principal food crops, 1961-62.
A.x.12. i . Consolidated results of crop estimation surveys on principal non-food crops, 1901-62.
A.t.r3. \quad. Consolidated results of crop estimation surveys on principal food crops, 1949-50 to 1960-6r.
A.x.14. . . Consolidated results of crop estimation surveys on principal food crops, 1962-63
A.r.15. . . Consolidated results of crop estimation surveys on principal non-food crops, 1962-63
A.r.r6 . : . Consolidated results of crop estimation surveys on principal crops, 1963-64.
A.2. Supervision of crop cutting experiments
A.2.I. . . . Report on the inspection of crop cutting experiments at harvest stage on a randomised basis, Kharif, 1960-6i.
A.2.2 - . . Report on the inspection of crop cutting experiments at harvest stage on a randomised basis, Rabi, 1960-61.
A.2.3. . . . Report on the inspection of crop cutting experiments at harvest stage on a randomised basis, 1961-62.
A.2.4. . . Report on the inspection of crop cutting experiments at harvest stage on a randomised basis, 1962-63.
A.2.5. : . . . Report on the inspection of crop cutting experiments at harvest stage on a randomised basis, 1963-64.
A.2.6. . . . Report on the inspection of crop cutting experiments at harvest stage on a randomised basis, 1964-65.

A.3. Special studies

A.3.1. . . . Report on Central driage experiments, 1960-6I.
A.3.2.'. . . Report on the joint crop cutting studies at Bundi (Rajasthan), Kharif, $\mathbf{x} 960$-6I.
A.3.3. . : . Report on the joint crop cutting studies at Barh (Bihar), Rabi, 1960-61.
A.3.4. . . . Report on Central driage experiments, 1961 -62.
A.3.5. . $\quad . \quad$ Report on circular cuts conducted by the NSS supervisory staff in the Agricultural. Statistics Division, 1960-61 and 1961-62.
A.3.6. . . . Report on Central driage experiments, 1962-63.
A.3.7. . . . Report on circular cuts conducted by the NSS supervisory staff in the Agricultural Statistics Division, 1962-63.
A.3.8. . . . Report on Central driage experiments, 1963-64.
A.3.9. . . Report on circular cuts conducted by the NSS supervisory staff in the Agricultural
A.3.10. . . . Report on Central driage experiments at NSS block offices, 1962-63.
A.3.11. . . . Report on Type-2 study on maize, Bihar, 1963-64.

A:3.12.. . . Report on Type-2 study on paddy, Andhra.Pradesh, 1963-64.
A.3.13. . . Report on Type-2 study on wheat, Uttar Pradesh, 1964-65.
A.3.14. . \quad Report on circular cuts conducted by the NSS supervisory staff in the Agricultural
A.3.15. Statistics Division, 1964-65.
Report on Central driage experiments, 1964-65.

