INSTITUTE OF AGRICULTURAL RESEARCH STATISTICS

NATIONAL INDEK-

OF

AGRICULTURAL

FIELD

EXPERIMENTS

VOL. 8 PART 1

MAHARASHTRA

1948-53

PUBLISHED BY

INDIAN COUNCIL OF AGRICULTURAL RESEARCH NEW DELHI

FOREWORD

It is a well recognized fact that the level of agricultural production in India is one of the lowest in the world and it is only by the exploitation of scientific methods of agriculture that we can hope to increase our agricultural production to the level necessary for providing a reasonable standard of living to the country's 'population. Properly planned ànd conducted field experiments provide a reliable basis for propagating improved agricultural techniques among farmers. A number of research institutes and other experimental centres are functioning under the Central Ministry of Agriculture, the Commodity Committees and the State Governments, in which research on agricultural problems is going on. The need for an integrated account of the researches done in these organisations and institutions in the country has been felt for a long time, particularly in the context of planning. The absence of such a unified account has often led to duplication of work and delay in the utilisation of the results for practical farming. The Institute of Agricultural Research Statistics of the Indian Council of Agricultural Research has, therefore, rendered a most timely service by preparing a compendium of all agricultural field experiments conducted in India upto 1953 and similar compendia are under preparation by the Institute for subsequent years.

The present compendium contains critical summaries of results of experiments bearing on important agronomic factors such as the responses of crops to fertilizers and manures, inter-relationship of fertilizers, varieties and cultivation practices and other information of value for giving sound advice to farmers in different regions. I am sure that these results will be fully utilised by agricultural institutions, research workers, planners and extension organisations. The chief merit of the present publication is that it brings together in one place the results of experimentation carried out under diverse soil, climatic and agricultural conditions obtaining in India. Workers in one State can thus supplement data for their own area by results from other regions where conditions may be similar and thereby re-inforce their own conclusions. For the same reason I hope that this publication will be of use to workers in other countries also.

A Standing Committee consisting of the Agricultural Commissioner with the Government of India, the Director, Indian Agricultural Research Institute and the Statistical Adviser, Indian Council of Agricultural Research, has been set up to provide general guidance to the work under this scheme. I congratulate the members of this Committee and in particular the Statistical Adviser and his associates at the Institute of Agricultural Research Statistics for bringing out this compendium. The preparation of this compendium has been made possible only by the whole hearted co-operation of the States and other organisations in making available the results of their experimental researches for this purpose. My thanks are due to the officers of the State Departments of Agriculture and other institutions for participating in this work. I hope that the present series will be followed by periodical publication of similar compendia for later years, in order that the availability, in a consolidated form, of results of scientific experiments in agriculture in India may be maintained up-todate.

New Delfi, August 20, 1962.

> A.D. Pandit
> Vice-President,
> Indian Council of Agricultural Research.

PREFACE

A large number of agricultural field experiments on different problems is being conducted in the country by Central and State Governments, Research Institutes, Commodity Committees and other organisations engaged in agricultural research. In addition, a number of schemes involving field experimentation is sponsored by the Indian Council of Agricultural Research in different States. The absence of a unified record of the results of these various experiments has considerably handicapped planning of further research and development and has often led to duplication of efforts.

Vaidyanathan brought out in 1933 a useful catalogue of manurial experiments conducted in India till then. Considering that Vaidyanathan's work was confined to manurial experiments and the fact that an enormous increase has taken place in the number and scope of agronomic experiments in recent years in India, the Indian Council of Agricultural Research launched the scheme of National Index of Field Experiments in 1954. The object of the scheme was two-fold :
(i) the preparation of compendium of all the field experiments for the period 1935-53 and
(ii) the preparation of index cards for individual experiments from 1954 onwards.

Under the scheme, results of all agricultural field experiments other than purely varietal trials were to be consolidated. Subsequently at the time of the extension of the scheme in 1959 it , was decided that the compendium would be prepared in the first instance for the period 1948-53 and a similar compendium would be prepared for the period 195459. The present series for the period 1948-53 has been prepared in pursuance of this decision.

The compendium is divided into 15 volumes one each for (1) Andhra Pradesh (2) "Assam, Manipur and Tripura (3) Bihar (4) Gujarat (5) Kerala (6) Madhya Pradesh (7) Madras (8) Maharashtra (9) Mysore (10) Orissa (11) Punjab, Jammu \& Kashmir and Himachal Pradesh (12) Rajasthan (13) Uttar Pradesh (14) West Bengal and (15) all Central Institutes. In each volume back-ground information of the respective State regarding its physical features, soils, rainfall and climate, agricultural production and area under different crops is given. A map showing different regions of the State, soils and agricultural research farms is also included. The experiments reported in each volume have been arranged cropwise for each State. All the experiments belonging to a particular crop at various research stations are grouped together. For a particular crop, experiments are arranged according to the following classification :

Manurial (M), Cultural (C), Irrigational (I), Diseases, Pests and Chemicals other than fertilisers (D), Rotational (R), Mixed Cropping (X) and combinations of these wherever they occur (e.g., CM as Cultural-cum-Manurial). Experiments in which crop varieties also form a factor are denoted by adding V to their symbol and are given together (e.g., MV as Manurial-cum-Varietal). The results of an experiment are given along with other basic information such as rotation of crops followed, cultural practices adopted, etc.

For making maximum use of the experimental data all the important tables giving the average yields of various treatments along with the appropriate standard errors have been presented. No attempt has, however, been made to summarise the data of groups of experiments on any particular item and to draw any general conclusions. This will be done for the period 1948-59 while publishing the compendium for the period 1954-59.

This publication is the result of the co-operative endeavour of a large number of persons both at the Centre and in the States. I should particularly mention in this connection, guidance and help rendered in the formulation of the scheme by Dr. D.J. Finney F.R.S. of Aberdeen University, Scotland, during his stay at the Institute of Agricultural Research Statistics as an F.A.O. Statistical Expert in 1952-53.
(ii)

At the Institute of Agricultural Research Statistics, the work under the scheme was carried out under the supervision and guidance of Shri T.P. Abraham, Assistant Statistical Adviser. Shri G.A. Kulkarni, Statistician, looked after the detailed working of the scheme. These officers have been largely responsible for the preparation of the manuscript of the compendium and it is a pleasure to thank them for the hard work they have put in for getting this compendium ready. Messrs O.P. Kathuria, B.V. Srikantiah, M.L. Sahni, B.P. Dyundi, S.D. Bal and P.K. Jain of the statistical stdff of the Institute deserve special mention for their careful scrutiny of the data and preparation of the material for the compendium. Thanks are also due to Dr. Uttam Chand, Professor of Statistics, now with the Central Statistical Orgainsation, Shri K.S. Avadhany, Assistant Statistician; also now with the Central Statistical Organisation, and Shri K.C. Raut, Statistician in this office who were associated with the scheme in its initial stages.

The burden of collecting data from original records by visiting different research stations and the analysis of a large number of experiments, only the primary data for which had been recorded in the files, fell on the regional staff appointed by the Indian Council of Agricultural Research in different States. They deserve to be congratulated for the patient work they have put in. The State Departments of Agriculture, Central Institutes and Commodity Committees made data for the experiments conducted within their jurisdiction readily available. The Indian Council of Agricultural Research acknowledges this willing co-operation without which the consolidation of the results would not have been possible. Various State officers who helped the project by making the data accessible to the satistical staff of the project and worked as the regional supervisors for the scheme also deserve thanks by the Council for their active help. The list of names of the regional supervisors is given on the following/page.
V.G. Panse

New Delfi,
August 16, 1962.
Statistical Adviser
Institute of Agricultural Research Statistics (I.C.A.R.)

REGIONAL SUPERVISORS FOR THE SCHEME OF THE NATIONAL INDEX OF FIELD EXPERIMENTS

	Region and headquaters	Regional Supervisors:
1.	Andhra Pradesh (Hyderabad)	Shri D.V.G. Krishnamoorthy, Deputy Director of Food Production, Andhra Pradesh. Shri Jagannath Rao, Joint Director of Agriculture (Research), Andhra Pradesh. Dr. Khadruddin Khan, . Joint Director of Agriculture (Research), Andhra Pradesh. Dr. Wahiuddin, Headquarters Deputy Director of Agriculture (Research), Andhra Pradesh.
	Assam, Manipur and Tripura (Shillong) 1	Shri L.K. Handique, Director of Agriculture, Assam. Shri S. Majid, Director of Agriculture, Assam. Dr. S.R. Barooha, Director of Agriculture, Assam.
	Bihar (Sabour)	Dr. R. Richaria, Principal, Agriculture College, Sabour. Shri R.S. Roy, Principal, Agriculture College, Sabour.
4.	Kerala (Trivandrum)	Shri N. Shankara Menon, Director of Agriculture, Kerala. Shri P.D. Nair, Director of Agriculture, Kerala.
5.	Madhya Pradesh (Gwalior)	Dr. T.R. Mehta, Principal, Agriculture College, Gwalior.
6.	Madras (Combatore)	Shri C.R. Sheshadrt, Vice-Principal \& Secretary, Research Council, Agriculture College, Coimbatore. Shri P.A. Venkateswaran, Vice-Principal \& Secretary, Research Council, Agriculture College, Coimbatore. Làte Shri M. Bhavani Sankara Rao, Vice-Principal \& Secretary, Research Council, Agriculture College, Coimbatore. Shri T. Natarajan, Agronomist \& Secretary, Research Council, Agriculture College, Coimbatore. Shri A.H. Sarma, Extension Specialist \& Secretary, Research Council, Agriculture College, Coimbatore.
7.	 Gujarat (Former Bombay State) (Poona)	Shri D.S. Ranga Rao, Statistician, Department of Agriculture, Poona.

Owing to transfers and other changes more than one Regional Supervisor have been shown against several states as these officers have acted as Regional Supervisors during different periods from 1955 tu 1962.

(iv)

8. Mysore
(Bangalore)
9. Orissa
(Bhubaneshwar)
10. Punjab, Jammu \& Kashmir and Himachal Pradesh(Chandigarh)
11. Rajastan
(Jaipur)
12. Uttar Pradesh (Lucknow)
13. West Bengal
(Calcutta)

Shri A, Anant Padmanabha Rau.
State Statistican, Mysore State.
Dr. U.N. Mohanty.
Dy. Director of Agriculture (H.Q.), Orissa.
Shri P.S. Sahota,
Satistician, Department of Agriculture, Punjab.

Shri. H.C. Kothari,
Satistician, Department of Agriculture, Rajastan.
Dr. K. Kishen,
Chief Statistician to Govt. of U.P.
Department of Agriculture, U.P.
Shri S.N. Mukherjee,
Statistical Officer,
Directorate of Agriculture, West Bengal.
Dr. S. Basu,
Statistical Officer,
Directorate of Agriculture,
West Bengal.

ABBREVIATIONS COMMON TO EXPERIMENTS ON ANNUAL AND PERENNIAL CROPS AND EXPERIMENTS ON CULTIVATORS' FIELDS

Crop :- In the top left corner is given the name of the crop on which the experiment is conducted. Within brackets along side the crop is mentioned the season wherever the information is available.

Ref :- Against the sub-title 'reference' is mentioned the name of the State, the year in which the experiment is conducted and the serial number of the experiment for that year given in brackets.

Abbreviations adopted for States are as follows :-

A.P.	Andhra Pradesh	Mn.	Manipur
As.	Assam	Mh.	Maharashtra
Bh.	Bihar	Ms.	Mysore
Dl.	Delhi	M.P.	Madhya Pradesh
Gj.	Gujarat	Or.	Orissa
H.P.	Himachal Pradesh	Pb.	Punjab
J.K.	Jammu \& Kashmir	Rj.	Rajasthan
K.	Kerala	Tr.	Tripura
M.	Madras	U.P.	Uttar Pradesh
		W.B.	West Bengal

Repetition of the experiment in other years is indicated in the same line against 'reference' by stating the year and serial number for each repetition side by side e.g. U.P. 53(19)/52(42)/51 (20) etc.

Site :- Name of the Research Station is mentioned along with the place where it is located, e.g. Agri. Res. Stn. for Agricultural Research Station.

For Central Institutes, the corresponding standard abbreviations have been adopted e.g. I.A.R.I. for Indian Agricultural Research Institute.

Type :- Abbreviations used against this item are one or more than one of the following:-

C-Cultural ; D-Control of Diseases and Pests ; I-Irrigational ; M-Manurial; R-Rotational ; V-Varietal and X-Mixed cropping e.g. CM is to be read as Cultural-cum-Manurial.

Results:- Information under this heading should be read against the following items:-
(i) General mean. (ii) S.E. per plot. (iii) Result of test of significance. (iv) Summary table (s) with S.E. of comparison (s).

Abbreviations used in the text of the experiments :-
ac.-acre.
Ammo. Phos.-Ammonium Phosphate. A/N-Ammonium Nitrate.
A/S—Ammonium Sulphate.
B.D.-Basal Dressing.
B.M.-Bone Meal.
C.L.-Cart load.
C.M.-Cattle Manure.
C / N-Chilean Nitrate.
C/S—Copper Sulphate.
F.M.-Fish Meal or Fish Manure.
F.W.C.-Farm Waste Compost.
F.Y.M.-Farm Yard Manure.
G.M.-Green Manure.
G.N.C.-Groundnut cake.

K-Potash.
lb. - Pounds.
M.G.-Municipal Compost.

Mur. Pot.-Muriate of Potash.

N -Nitrogen.
Nitro phos-Nitro phosphate.
P -Phosphate.
Pot. Sul.-Potassium Sulphate.
Super-Super Phosphate.
T.C.-Town compost.

Zn. Sul.-Zinc Sulphate.

BASAL CONDITIONS

Information under the above heading to be read against the following items:

A. For annual crops :

(i) (a) Crop rotation if any. (b) Previous crop. (c) Manuring of previous crop. (State amount and kind). (ii) (a) Soil type. (b) Soil analysis. (iii) Date of sowing/ planting. (iv) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing/planting. (c) Seed-rate. (d) Spacing. (e) No. of seedlings per hole. (v) Basal manuring with time and method of application. (vi) Variety. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season (State name of the season along with the month). (x) Date of harvest.
B. For perennial crops :
(i) History of site including manuring and other operations. (ii) (a) Soil type. (b) Soil analysis. (iii) Method of propagation of plants. (iv) Variety. (v) Date and method of sowing/planting. (vi) Age of seedling at the time of planting. (vii) Basal dressing with time and method of application. (viii) Cultural operations during the year. (ix) Inter cropping if any. (x) Irrigated or Unirrigated. (xi) Rainfall during crop season. (xii) Date of harvest.
C. For experiments on cultivators' fields :
(i) (a), Grop rotation, if any. (b) Previous crop. (c) Manuring of previous crop. (ii) Soil type in general. (iii) Basal manuring with time and method of application. (iv) Variety. (v) Cultural practices. (a) Preparatory cultivation. (b) Method of sowing. (c) Seed-rate. (d) Spacing. (e) No. of seedings per hole. (vi) Period of sowing/planting per hold. (vii) Irrigated or Unirrigated. (viii) Post-sowing/planting cultural operations. (ix) Rainfall during crop season. (x) Period of harvesting.

DESIGN

Information under this heading to be read against the following items :
A. For annual crops :
(i) Abbreviations for designs : C.R.D.-Completely Randomised Design; R.B.D.Randomised Block Design ; L. Sq.-Latin Square ; Confd.-Confounded ; Fact.-Factorial. (other designs and modifications of the above to be indicated in full). (ii) (a) No. of plots per block. (b) Block dimensions (iii) No. of replications. (iv) Plot size; (a) Gross. (b) Net. .(v) Border or guard rows kept. (vi) Whether treatments are randomised (separately in each block).
B. For perennial crops :
(i) Abbreviations for designs : G.R.D.-Completely Randomised Design ; R.B.D.Randomised Block Design ; L. Sq.-Latin Square ; Confd.-Confounded. (other designs and modifications of the above indicated in full). (ii) (a) No. of plots per block. (b) Block dimensions. (iii) No. of replications. (iv) No. of trees/plot. (v) Border or guard rows kept. (vi) Are treatments randomised.
C. For experiments on cultivators' fields :
(i) Method of selection of experimental sites. (ii) No. and distribution of experiments.
(iii) Plot size. (a) Gross. (b) Net. (iv) Whether treatments are randomised.

GENERAL

Information under this heading to be read against the following items : -
A. For annual crops:
(i) Crop conditions during growth with date of lodging, if any. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken (iv) In case of repetition in successive years-(a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places, (a) names of the places along with reference. (b) reference to combined analysis, if any. (vi) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vii) Any other important information.
B. For perennial crops:
(i) Crop condition during the year. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv) In case of repetition in successive years-(a) from what year to what year, (b) reference to combined analysis, if any. (v) Abnormal occurrences like heavy rains, frost, storm etc., if any. (vi) Any other important information.
C. For experiments on cultivators' fields :
(i) Crop condition during growth. (ii) Incidence of pests and diseases with control measures taken. (iii) Quantitative observations taken. (iv). In case of repetition in successive years; (a) from what year to what year, (b) whether treatments were assigned to the same plots in the same manner every year, (c) reference to combined analysis, if any. (v) In case of repetition in other places names of places along with reference. (vi) Abnormal occurrences, like heavy rains, frost, storm etc., if any. (vii) Any other important information.
glossary of vernacular names of crops

S. No.	Name of Crop	Botanical name	Assamese	Bengali	Oriya	Telagu	Tamil	Malayalam	Kannada	Marathi	Gujarati	Hindi	Punjabi \& Kashmiri
1.	Paddy	Oryza sativa L.	Dhan	Dhan	Dhano	Vadlu, Biyyamu	Nel	Nellu	Bhatta	Bhat	Dangar	Dhan; Chawal	$\begin{aligned} & \text { Chaul; ; } \\ & \text { Dhan } \end{aligned}$
2.	Wheat	Triticum Sativum Lamk; Triticum aestivum L.	Gaum ;	Gam	Gaham	Godumalu	Kothumai	Gotha- mbu	Godhi	Gahu	Ghahu	Gehun	Kanak
3.	Jowar	Andropogon sorghum Brot; Sorghum vulgare Pers.	-	Jowar	Juara	Jonna	Cholam	Cholam	Jola	Jowari ; Jondhla	Jowari ; Juar	Jowar ; Juar	Jowar
4.	Bajra	Pennisetum typhoides stapf Ex Hubbard	-	Bajra	Bajra	Sajja	Kambu	Kambu	Saje	Bajri	Bajri	Bajra	Bajra
5.	Nagli	Eleusine caracana Gaertn.	-	Marwa	Mandia	Ragi, chodi	Keppai ;	Muthari ; Ragi	Ragi	Nagli ; \uparrow achni	Nagli; Bavto	Ragi ; Mandika; Marwah	Mandhuka; Mandhal
6.	Gram	Cicer arietinum ${ }^{\text {L }}$.	Butmah	Chola	Boot	Sanagalu	Kadalai ; Sundal Kadalai	Kadala	Kadale	Harbara	Chana	Chana	Chhole ; Chana
7.	Chinamug (Green Gram)	Phascolus aureus Roxb.	$\begin{aligned} & \text { Magu- } \\ & \text { mah } \end{aligned}$	Sonamug	Mung	Pachape- salu	Pachaipayru;	Cerupayaru ; Payaru	Hesaru	Mug ; Chinamug	Mag	Moong	Moong ; Mug
8.	$\begin{aligned} & \text { Wal } \\ & \text { (Indian bean) } \end{aligned}$	Dolichos lablab L.	Desi Urahi	Deshi shim	Jhata Simba	Anapa	Mochchai	Ramacha	Avare	Wal	Wal	Sem	Lobia desi
9.	$\begin{aligned} & \text { Tur } \\ & \text { (Pigeon Pea) } \end{aligned}$	Cajanus cajan Milsp ; Cajanus Indicus sprengl.	Arhar	Arhar	Harad	Kandulu	Thuvarai	Thuvaran payaru	Thogari	Tur	Tuvar	Arhar	Harhar ; Arhar
10.	Lentil	Lens esculenta Moench.	Masurmah	Masuri	Masur	Chiruse- naga	Masur paruppu	-	$\begin{aligned} & \text { Masooru } \\ & \text { bele } \end{aligned}$	Masur	Masur	Masur	Massar
11.	Pea	Pisum arvense L.	Motor	Chota ; Pyaramatar	$\begin{aligned} & \text { Bada- } \\ & \text { china } \end{aligned}$	Desaval Batni	Pattaani	-	Holada bataani	Vatana; Matar	Vatana	Mutar	Mutar
12.	Sweet Potato	Ipomoea batatas Lam.	$\begin{aligned} & \text { Mitha } \\ & \text { Aloo } \end{aligned}$	$\begin{aligned} & \text { Mishti } \\ & \text { Alu } \end{aligned}$	Kanda- mula	Chilagadadumpa	Seeni kilangu	Cheeni kizangu	Genasu'	Ratalu	Shakaria	Shakarkandi	Shakarkandi
13.	Tapioca	Manihot utilissima; Manihot esculenta Crantz.	$\begin{aligned} & \text { Simolu } \\ & \text { Alu } \end{aligned}$	Simul Alu	-	Karra Pendalamu		$\begin{aligned} & \text { Mara } \\ & \text { cheeni } \end{aligned}$	Mara genasu	Tapioca	--	Tapioca	Tapioca

GLOSSARY OF VERNACULAR NAMES OF CROPS (Contd)

S. No.	Name of Crop	Botanical name	Assamese	Bengali	Oriya	Teluga	Tamil	Malayam	Kannada	Marathi	Gujarati	Hindi	Punjabi \& Kasbmiri
14.	Onion	- Allium Capa L.	Piyaz	- Piaj	Peas; Ulli	Ulli	Vengayam	Ulli	Eerulli	Kanda	Dungli ; Kando	Piaz	Ganda; Payaz
'15.	Tomato	Lycopersicum esculent um Mill.	Belahi	Belati begun	Bilati baigan	Tomato	Thakkali	Thakkali	Tomato	Welwangi; Tambata	Vilaiti wagan ; Tomato	Tamatter	Tamatar
16.	Sugarcane	Saccharum officinarum L.	Kuhiar	Akh	-	'Cheruku	Karumbu	Karimbu	Kabbu*	Oos	Sherdi	Ganna; Kamad ; Naishakar	Kamad; Ganna; Eakh
' 17.	Cotton	Gossypium spp.	Kapah	$\begin{aligned} & \text { Karpas ; } \\ & \text { Tula } \end{aligned}$	Kapa	Pratti'	Paruthi	Paruthi	Hatti	Kapus	Kapas	Kapas	Kapah
18.	Groundnut	Arachis hypogaea L.	China Badam	Cheena badam	China badam	Nelash. anga	Nilkadalai	Nilakkadla)	Kadale kayi	Bhuimug	Magafali	Mungphali	Mungfali
19.	Chillies	Capsicum frutescens L.	Jalakiya	Lanka; Marich	Lanka	Mirapakaya	Milakai	Mulaku	Menasina kayi	Mirchi	Marcha	Lalmirch	Lalmirch
20.	Garlic ,	Allium sativum L.	Nohoyu	$`$ Rashun	Rasun	Vellulii	Poodu ; Vella podu	Velluthuli	Belluili	Lasun .	Lasan	Lehsoon	Thom; Lassan
21.	Ginger	Zingiber officinale Rosc.	Ada	Ada	Ada	Allam	Tinji	Inchi	Shunti ; Alla	Ale :	Adu	Adrakh ${ }^{-}$	Adrak
22.	Turmeric	Curcuma longa; Curcuma domestica Val.	Halodhi	Halud; Haldi	Haldi	Pasupu	Manjal	Manjal	Arisina	Halad	Haldar	Haldi	Haldi
23.	Guar (Cluster bean)	Cyamopsis psoraloides Dc.	Thupi Urahi	Guar	Gunar : chhuin	Goruchikkudu	Kothavarnkai	Kothavara	Gori kayi	Guxar	Gavar	Guar	Guara -
24.	Lucerne	Medicago sativa L.	Lucerne ghah	Lucern	Lusarna	Garam	Kuthiraimasal	Lucerne	Kudure masale	Lasun ghas; Vilaiti	Gadab Rajko	-	Lustan
25.	Barseem	Trifolium alexandrinum L.	-	Barseem	Gini ghasa	-	\cdots	\longrightarrow	-	ghavat Barsim gavat	Barsim	Barseem	Barseom

CONTENTS

FOREWORD		Page
PREFACE	-."	(i)
LIST OF ABBREVIATIONS	-.	(v)
GLOSSARY OF VERNACULAR NAMES OF CROPS	\cdots	(viii)
MAHARASHTRA STATE	...	1
STATEMENT SHOWING DETAILS OF EXPERIMENTAL		
STATIONS		8
EXPERIMENTAL RESULTS (CROP-WISE)		
Paddy	-.	37
\checkmark Wheat	...	207
\checkmark Jowar	\cdots	305
/ Bajra	...	472
Nagli	...	502
\checkmark Pulses (Gram, Chinamug, Wal, 'Tur, Lentils \& Peas)	`...	516
Sweet Potato	-.	566
Tapioca	...	568
Onion	\cdots	569
Tomato	...	571
Sugarcane	.".	572
\checkmark Cotton	\cdots	675
\checkmark Groundnut	...	767
Spices (Chillies, Garlic, Ginger and Turmeric)	...	811
Fodder crops (Guar, Lucerne \& Berseem)	\cdots	819
/ Mixed cropping	-.	822
/ Rotational Experiments	-..	829
Fruit crops (Banana and Grapes)	...	873
Addendum	-."	879

MAHARASHTRA STATE

1. GENERAL DESCRIPTION

The present Maharashtra State came into existence on lst May 1960 as a result of bifurcation of the former bilingual Bombay State into two states of Maharashtra and Gujerat. It comprises of 26 districts (enumerated under physical features). The state is bound by Gujerat and Madhya Pradesh on North, by Mysore on South, by Andhra-Pradesh on South-east and part of Madhya Pradesh on East. On West, lies the vast Arabian Sea. The State has a coast running nearly 350 miles. The State-occupies an area of 118,608 square miles (or 75.9 million acres). Area according to village records (i.e. reporting area) is 76.0 million acres. The distribution of area under different categories is as follows. (Figures for reporting area for 1956-57).

2. PHYSICAL FEATURES

Physiographically, the State lies in two main natural regions (i) peninsular hills and plateau region and (ii) Western ghats and coastal regions. The sub-regions of these main regions and the ultimate divisions of each sub-region are given below.

Natural-Region

1. Peninsular Hills and Plateau region.
2. Western Ghats and coastal region.
Sub-Region
1.1 \quad North
Deccan Sub-
region.

2.1 Konkan

 sub-regionThe North-Deccan sub region includes the northern districts of Bombay Deccan, parts of north Hyderabad i.e. the present districts of the Marathwada and the Vidarbha region. The area forms the north western part of the peninsular plateau and is bound on the north by the Satpuras and on the west by Western Ghats. The area generally slopes from west to east except in the north where river Tapti flowing West-wards enters into the Arabian sea. The major portion of this sub region lies in the rain shadow of the Ghats and except a narrow strip along the Ghats, the area is dry and the rainfall is low.

The Konkan sub-region includes the west coast of the Indian Peninsula consisting of Greater Bombay division and Bombay Konkan division. The principal feature is that the Western Ghats runs north to south roughly parallel to the coast. The subregion thus comprises of area of very varied topography with consequent wide variations in the climatic features.

The districts in the different divisions are as below :-

Division
(i) Vidarbha Division.
(ii) Marathwada.
(iii) Bombay-Deccan Northern Division.
(iv) Greater Bombay Division.
(v) Bombay-Konkan Division.

Districts

Amravati, Akola, Yeotmal, Wardha, Nagpur, Bhandara, Chanda and Buldhana.

Parbhani, Nanded, Aurangabad, Osmanabad, and Bhir.
East Khandesh, West Khandesh, Ahmednagar, Poona, North Satara, South Satara, Kolhapur and Sholapur.
Greater Bombay. Thana, Kolaba, and Ratnagiri.
3. Soils.

The soils of different regions are described as below :-
(i) Vidarbha division :-In the plain tracts of this division, the regur or the black cotton soils of the first quality or heavy type are found. They occupy central plains of Berar, Purna valley, the Wardha valley and stretching to just east of Nagpur. These soils are largely deep black loam which bake into a solid mass in the beginning of dry weather. The depth of soil varies from place to place upto a stratum of unknown depth. They reach their greatest depth in the valleys into which they have been washed as a fine silt from the higher lands. This soil is locally known as 'awal kali'. It is of very fine structure.

The soils of the plains rest on a layer of karl of light yellow colour. Black soil containing small percentage of lime in this tract in a finely powdered state is known as 'Kali'. If there is still higher percentage of lime present in the form of nodules as large as peas, the soil is known as 'Morandi'. These soils are comparatively lighter in texture and less fertile, and found particularly in places by the sides of Wardha river and in some parts of Akola and Amravti districts.

Bordering this central plain to the north and south, lie second quality of medium regur soils. Not so black in colour, often brown, less deep in character, carrying more stones and lime and occupying rather higher areas, these constitute soils of less mature type intermediate between the immature thin red and brown soils on the trap high lands and full regur of the plain. Wuntalug is predominatly hilly, the soils here are locally known as follows:-
(i) The shallow stony soils found on high lying places are called 'bar di'. (ii) The layer of red soil overlying trap rock of murrum on the plateau is known as "Murmati". (iii) A shallow hilly soil interspersed with stones and boulder is known as 'gotar'. (iv) The patches of greyish coloured marly soils which occur in sub soil being impervious to water are known as 'chopan' and (v) Land lying high or on slopes liable to dry up quickly is known as "pashar".
(ii) Marathawada division :-Deep black soils, medium black soil, and laterite are the predominating types of soils in the tract. Only a portion of Bidar district is covered by laterite, a tract of deep black soil runs west covering the Aurangabad and Parbhani districts on the north and Bin in the south. Remaining portion of the division is occupied by medium black soils.
(iii) Bombay Deccan Northern division :- Medium black soil on trap (Kali) characterises much of the area. The soils of East and West Khandesh are similar to these of Broach and Surat. Strips of rich deep black alluvial soil are found (10 to 20 miles wide) on both sides of Tapti and Girna rivers. In addition red soils (mal), reddish black soil and a light brown soil called bared are found on hilly slopes.

The districts of Nasik, Poona, Ahmednagar, North and South Satara, and Northeast portion of Kolhapur comprise the Deccan Plateau and are covered by soils derived from Deccan trap and derived in situ. Broadly three types of soils can be distinguished. They are : (i) Coarse and grey as light brown soil (Tandi), (ii) Medium black soils (Kali), (iii) Coarse and gravelly soil along the ghats. The soils in the valley and along river banks are blaek and of medium depth and rich in fertility. With the approach of hills, the soils are grey or light brown. The red soils are usually found on hill tops.

The coarse, shallow murmad soils are found scattered throughout the Deccan, more specially in Mawal tract, the high lying strip of land running , along the Western Ghats. The medium black soils, found in the east of the Mawal tracts, are loamy to clay loam in texture. The lime reserve in these soils is high, and frequently occurs in the form of nodules of Kankars. Red or reddish black soils are found on hill tops, along the ridges and down the slopes, particularly where there is heavy rainfall and a moist hot climate. The soils are laterite in Mahabaleshwar where the red soils are furmed from a trap. They are fertile and grow good garden crops, such as vegetables and potato.
(iv) Bombay Konkan Division: - The soils of Thana and Kolaba are mainly of trap origin and are of three main types. The black coloured soils are loamy and fairly deep. Soils on the hill slopes are light red, shallow coarse and poor, and are locally known as varkas soils. There is also a type of sticky, clayey deep soil known as menat which is inaccessible during the rains and cracks heavily in summer. Along the coast lies a strip of coastal alluvium. The soils of Ratnagiri are derived from laterite in the north and gneiss in the south. Both are red in colour. Poorer coarse varkas soils are found along the hill slopes.

4. RAINFALL AND CLIMATE

The rainfall of the State is chiefly derived from the South-west monsoon between June and October. The amount of rainfall varies widely from $20^{\prime \prime}$ to about $\mathbf{2 5 0} 0^{\prime \prime}$.

North-Deccan Sub-Region. In the North-Deccan sub-region, the cold weather commences in December and continues till the end of February. December is the coldest month of the year when the mean minimum temperature varies from $52^{\circ} \mathrm{F}$ to $61^{\circ} \mathrm{F}$. The season is practically without rain.

From March, the temperature begins to rise, and the hot weather continues till the on-set of the monsoon. The month of May (in some places April) is the hottest when the mean maximum temperature ranges between 101° to $109^{\circ} \mathrm{F}$. At Mahabaleshwar, a station in the Ghats at a height of 4500 . ft above sea level the mean maximum temperature during April is only $85^{\circ} \mathrm{F}$. The north eastern part of this sub-region i.e, Vidarbha division is one of the hottest areas in India during summer. During the day the heat is severe but after sunset the temperature drops considerably. The hot weather is generally dry except for occasional thunder-storms.

The area comes under the influence of the south west monsoon by the middle of Junc. June to September are the months of heavy rains when most of the annual rainfall occurs. The monsoon rain is not continuous but occurs in spells of wet days broken by days of fair weather. The rainfall is heavier and more regular in the mountaineous areas of the west and is scanty and less regular farther east in the rain shadow area. Mahabaleshwar in the Ghats receives a rainfall of 261 inches per year but Dahiwadi at a distance of a few miles from Mahabaleshwar receives only 19 " per year.

TAble 1

Season wise Normal Rainfall in inches for regions of Maharashtra State

Region	Monsoon (June to September)	Post Monsoon . (Oct. to December)	Winter. (Jan. to Feb.)	Pre-Monsoon (March to May)	Total for the year
(1) Bombay-Deccan.	22.01	4.65	-	1.86	28.52
(2) Vídarbha and Marthwada	da 34.58	3.30	0.18	1.72	39.78
(3) Konkan	76.15	3.77	-	0.42	80.34
State (Simple average)	44.25	3.91	-	1.33	49.49 -

By about first week of October, the monsoon withdraws from the area. A few postmonsoon thunder storms occur in October. There after. the weather gradually clears up and dry weather prevails.

Konkan suburegion :-The climate of this sub-region becomes severely oppressive during the hot season. The south west monsoon rainfall is heaviest here for the whole of India outside the sub-mountaineous regions of Bengal and Assam. The annual rainfall is over $100^{\prime \prime}$ along the west coast from Alibag near Bombay to Cochin in the south.

5. IRRIGATION

Maharashtra state has an independent Irrigation and Power sector comprising of (i) Multi-purpose projects, (ii) Major and Medium Irrigation projects and (iii) Power projects. The Koyna Hydro-electric project, and the Purna Hydro-electric project comprise the multi-purpose projects. In the state there is provision under the Second Five Year Plan for 3 multi-purpose projects; 15 major 81 medium and 22 minor projects, to provide irrigation to several lakhs of acres of land in the State.

The major spill-over works at Gangapin and Ranad are already benefiting vast areas of land in the State. In addition a number of major irrigation schemes are being taken up. Vir, Khadakawasla, Mula, Girna, Varna, Kurnoor, Ghod, Bor and Nalganga works are few among the major irrigation scheme: These are spread all over the state and on completion, will irrigate several lakhs of acres.

Nearly 5.6% of the total cultivated area is irrigated. The area irrigated by different sources is given in table below :-

TABLE 2
Area irrigated by sources (figures for 1956-1957).

Source	Area 000 acres.	$\%$ over net area irrigated	
(1) Government Canals.			21.84
(2) Private Canals		494	2.83
(3) Tanks	64	19.89	
(4) Wells.		450	51.77
(5) Other sources	1,171	3.67	
Net irrigated area (Total)		83	

6. AGRICULTURAL PRODUCTION AND NORMAL CROPPING PATTERN

The important food crops of the State are Jowar, Bajra, Paddy, Wheat, Pulses and Groundnut, Cash crop cotton occupies considerable area in the State. The area, production and yield per acre (lbs.) of different crops is given in the table below.

TABLE 3

Crop	Area, production and yield/ac for (1958-1959)					
		Area (000 acres)		$\begin{gathered} \text { Production } \\ \text { (000 tons) } \end{gathered}$		Yield/ac. (lb.)
(1) Paddy		3,003		1,267		947
(2) Jowar	"	14,183	,	3,256		514
(3) Bajra		4,366		453	!	232
(4) Maize		69		14		454
(5) Others		3,269		669		458
(6) Pulses		5,696		855		336
(7) Sugarcane		263		716		6098
(8) Cotton		6,352		1,184 'a'		73
(9) Groundnut		2,809		637		508
(10) Other oilseeds		940		90		214
' a ' in availables of	395					

In Bombay Deccan region Jowar, Bajra, and Groundnut are main field crops grown. Sugarcane is an important cash crop grown in this area wherever the area is extensively irrigated. Sugarcane is taken in rotation with Jowar, wheat, onion and Banana Cotton and groundnut are main crops in Vidarbha and Marathawada region. Paddy is the main crop in Bombay-Konkan area.

7. AGRICULTURAL EXPERIMENTATION AND RESEARCH FARMS

Research in field crops is directed towards genetic improvement leading to evolution of high yielding, disease resistant strains of superior quality. At the same time, agronomic aspects are studied and standard agriculture at practices evolved leading to higher yield.

There'were 42 experimental farms which reported experiments for the period 1948-1953. These farms are almost distributed evenly among the districts. The majority of farms are situated in black cotton soil region. The farms in the coastal region represent the loamy soil derived from gneiss and laterite. The main farms are at Jalgaon, Karjat, Akola, Mohol, Kopergaon etc. The experiments on Paddy crop is concentrated at the farms situated in coastal area viz. Igatpuri, Karjat, Ratnagiri farms. The experiments on other cereal crops like Jowar, Bajra etc. are conducted at other farms located in Deccan region of the state. Jalgaon, Mohol, Parbani etc. are main farms carrying out experiments on these crops. Experiments on cash crop-sugarcane are carried out mainly at Deolali, Kolhapur and Padegaon farms. The farms at Akola and Nanded carry out experiments on cotton crop. In the farms located at Deccan area the cereal crop is usually rotated with either a leguminous crop or cotton. In Sugarcane growing areas, the crops like fowar and Groundnut are rotated with Sugarcane. The paddy crop is rotated with leguminous crops like wal or chinamug in the farms of the coastal area. Paddy after paddy is also a common practice in this area. The experiments on fruit crops are carried out at Aurangabad, Ganeshkhind, Poona and Tharsa farms. The experiments on pulses and oilseeds are carried at all the farms situated in Deccan area.

8. EXPERIMENTS

There were 975 experiments reported for the period 1948-1953 in the State. The root stock trials at Tharsa and Aurangabad are excluded from the compendium. The distribution of 975 experiments according to crops and types of treatments studied is given below.

TABLE 4

Statement showing distribution of experiments according to crops and treatments tried.

Crop	M	MV	C	CV	CM	CM	IM+M	D+DV	Total
Paddy	124	-	28	3	24	-	-	1	180
Wheat	75	2	25	-	-	-	-	7	109
Jowar	${ }^{\prime} 114$	-	/ 52	${ }^{5} 9$	${ }^{J} 15$	-	-	${ }_{20}$	210
Bajra	32	-	4	-	-	\cdots	-	-	36
Nagli	8	-	12	-	-	-	-	-	20
Pulses	66	-	5	-	-	-	-	4	75
Vegetables	6	-	2	-	-	-	-	-	8
Sugarcane	77	-	-	7	20	-	12	-	116
Cotton	61	5	8	2	30	3	-	9	118
Groundnut	39	-	19	-	-	-	-	5	63
Spices	10	-	-	-	-	-	-	-	10
Fodder crops	2	-	-	-	2	-	-	-	4
Mixed Cropping	-	-	-	-	-	-	-	-	10
Rotational	-	-	-	-	-	-	-	-	13
Fruit Crops	2	-	4	-	-	-	-	-	6
Total	616	7	159	21°	91	3	12	46	975

From the table above it is seen that experimentation on Paddy and Jowar the two principal crops of the State received considerable importance. About 22 and 20% of total experiments are carried out on these two crops. Cash crops like Cotton and Sugarcane also have almost equal number of experiments, the order being 11% on each of them. It is also seen that nearly 70% of the experiments had manurial treatments.

The experiments commonly found were to study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to the leguminous crop on the succeeding cereal crop. The leguminous crops for this purpose were Wal, Chinamug, Gram and Groundnut. The cereal crops were Paddy, Jowar, Bajra and Wheat. The doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ varied from $50 \mathrm{lb} . / \mathrm{ac}$. to $150 \mathrm{lb} . / \mathrm{ac}$. besides control. The other type of treatments tried were combinations of different levels of N and $\mathrm{P}_{2} \mathrm{O}_{5}$. The source for N was either Ammonium Sulphate or Groundnut cake. The source for $\mathrm{P}_{2} \mathrm{O}_{5}$ was invariably super-phosphate. The levels of N and $\mathrm{P}_{2} \mathrm{O}_{5}$. varied from 20 lb ./ac. to 96 lb ./ac. Sometimes Farmyard manure was also included along with N and $\mathrm{P}_{2} \mathrm{O}_{5}$. The amount of F.Y.M. applied varied from 2 to 5 cart loads per acre.

The organic manures tried to compare their efficiency with other organic manures and fertilizers were town compost and farm yard manure. Chilean nitrate was also used as source of N in a few experiments. The amount of bulky manures varied from 5 C.L. per acre to 10 C.L. per acre.

The design adopted usually was randomised blocks. The number of plotz per block varied from 3 to as many as 32. System of confounding was a practice seldom found in factorial experiments, although few experiments are available of the type 2^{3} and 3^{8} with confounding. The split-plot design was the next popular design adopted for
cultural and cultural-cum-manurial type of experiments and also for purely manurial experiments in a few cases, and wherever irrigation formed one of the treatments this design was adopted. The number of main-plots varied from 2 to 8 and number of sub-plots per main-plot varied from 2 to 9 , and in few cases the number of main-plots was as high as 16 and number of sub-plots per main-plot as high as 12 . The net plot size usually varied from $1 / 80$ th of an acre to $1 / 40$ th of an acre, although in a few experiments it was as big as $1 / 20$ th of an acre and as small as $1 / 640$ th of an acre. The number of replications varied from 4 to 6 usually.

The results of the experiments conducted under Stewart's scheme of the I.C.A.R. on cultivator's fields during the period 1948-1953 and under the Fertilizer Use Project (T.C.M. trials) are also included in the compendium. The experiments under Stewart's scheme in this State were conducted in Nasik district on wheat crop during the year 1953-1954.

The details of Fertilizer Use Project are given in the two reports published by I.C.A R. (1955) on Paddy and Wheat crops. Results for different centres are presented here.

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS

Statement showing details of experimental stations.
maharashtra (Contd.)

1	2 . 3	4		5	6	7
2.	Akluj : Agri. Res. Stn. Distt. Sholapur, June 1940. It represents the tract comprising of left bank and right bank of Nira canal covered by districts of Poona, North Satara Sholapur. It is dry tract. Major crops : Sugarcane and Jowar. 1. The soils are derived from trap rock, are medium, deep, blackish in colour, possess well developed crumb structure, exhibit 2-3 well marked horizons, highly base salinated calcarious in nature, alkaline in reaction, good in Potash but poor in $\mathrm{P}_{2} \mathrm{O}_{5}$ and N . 2. Depth:-6"-4'. 3. Colour:-Blakish grey. 4. Structure:-clay. 5. Soil analysis :- (\%) (i) Chemical analysis :Avl. $\mathrm{P}_{2} \mathrm{O}_{5} 0.005$ (Major portion) Avl. $\mathrm{K}_{2} \mathrm{O} 0.02$ to 0.06 ; Lime reserve 1.0 to 5.0 (50% area) 5.0 to 10.0 (other half); pH 8.5 to 9.0 ; Total 0.05 to 1.0 (ii) Mechanical analysis; N.A.	June July : Aug. Sept. Oct. Nov. Dec. Jan. to March April May \qquad Total (Figures for	$\begin{gathered} 2.56 \\ 1.60 \\ 6.19 \\ 0.53 \\ - \\ 5.19 \\ 0.67 \\ \\ \text { Nil. } \\ 0.43 \\ 1.63 \\ \hline 18.60 \\ \hline 1958-59 \end{gathered}$	Canal irrigation from Nira Righit Bank Canal, since 1940. Drainage system is natural as the soil has got slope and there is 'nala' at a distance of 1 furlong.	$\begin{aligned} & \text { 16-Sugarcane. } \\ & \text { 1-Wheat. } \\ & \text { 1-Jowar } \\ & \text { 1-Bajra. } \\ & \text { 1-Paddy. } \\ & \text { 20-Total. } \end{aligned}$	It has got general slope from West to East and secondary slopes on Southern and Nothern sides, i.e. it has ridge at the centre.

STATEMENT SHOWING DETAILS OR EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

tion.
Dist. Aurangabad. It miles away from Aurangabad Rly

Year of establishment 1940-41. It lies in Marathawada region Research on Grape and Citrus fruits.
rum black soil
3. Deph: 10
4. Structure :-N.A
anysis :
pH 7.9 ; Soluble sats pH 7.9 ; Soluble salts 0.32%; Org. matte (ii) Mech analysis :-NA
facilities tase watr fron Facilties are availabl since 1940-41.

13-Jowar,
6-Mixed-cropping.
+1 Rotational experiments.
51-Total.

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS.
MAHARASHTRA (Contd.)

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATION; MAHARASHTRA (Contd,

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS
MAHARASHTRA (Condt.)

STATEMENT SHOWING DETAILS OR EXPERIMENTAL STATIONS.

 MAHARASHTRA (Contd.)

MAHARASHTRA (Contd.)

statement showing details of research stations
MAHARASHTRA (Contd.)

STATEMENT SHOWING DETALS OF EXPERIMENTAL STATIONS
MAHARASHTRA (Contd.)

Karad : Agri. Res. Sto Dist: North Satara. 5 miles 1946. It represents Satara zone of Sahyaddi mountains. Bajra, Oilseeds, Pulses, Mathi, and Gram.

1. Soil types : Shallow Medium Heavy
2. Colour: Dull yellow Medium Black black.
3. Structure: Light
4. Soil analysis: Not available.

3-Jowar
1-Wheat

13-Total

Statement showing details of experimental stations.

MAHARASHTRA (Contd.)

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

MAHARASHTRA (Contd.)

STATEMENT SHOWING DETAILS OR EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

Statement showing details or experimental stations.
MAHARASHTRA (Contd.)

Statement showing details of experimental stations

MAHARASHTRA (Contd.)

statement showing details of experimental stations

MAHARASHTRA (Contd.)

Statement showing detalls of experimental stations
maharashtra (Contd.)

Parbhani : M. Agri. College
Parbhani Rly. Stn.
Year of est. 1952. It represents cotton tract.
Main crops : Jowar, Groundnut, Pulse and Wheat.

1. Soil type : Medium black cotton soil
2. Colour-Black.
3. Structure : Coarse crup and plasty.

Soil analysis:
(i) Chemical analysis:
, to 0.09%; Avl. $\mathrm{P}_{2} \mathrm{O}_{5}$: 6.40 to 8.00 ; 0.10 to $0.20 ; \mathrm{pH}: 8.1$ to 8.2

Mechanical analysis
2071 to 41.50 : 5 to 6.60 , 81.60 ,

Ingation since 1929 No prop se system. Excess wäter passes through trenches,
slope on the farm is east to west. On the West and south of the from, a nalla runs.

3- Wheat
5-Cotton
2-Grounidnut

22-Total

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS MAFARASHTRA (Contd.)

1	- 2	3	4		5	6	7
30.	Phondaghat : Agri. Res. Stn. Dist : Ratnagiri. 57 miles from Kolhapur Rly. Stn. Year of est. 1947. It represents heavy rainfall tract. Major crop : Paddy.	1. Soil type : Loams derived from gneiss and laterite. 2. Depth: $6^{\circ \prime}$ to 2 1 $^{\prime \prime}$. 3. Colour : Medium black to medium red. 4. Structure : Loams of laterites and gneiss and sand stones. 5. Soil analysis : Not available.	Junē July	$\begin{array}{r} 46.72 \\ 69.45 \end{array}$	Nil. No proper drainage system.	$\begin{aligned} & \text { 9-Paddy } \\ & \text { 1-Tapioca } \end{aligned}$	Low lying area ; situated at the foot of the
			Aug.	63.62			Western Ghats.
			Sept.	19.03		10-Total	
			Oct.	13.59			
			Nov.	3.87			
			Dec, to			.	
			Feb.	Nil			-
	,	.	March	0.40			
		,	April	0.80			
	- .		May	4.65			
			Total	222.13			
	. .		Av. of 3 yea 1958.	$\text { rs } 1956 \text { to }$.

STATEMENT SHOWING DETAILS OF EXPERLMENTAL STATIONS

MAHARASHTRA (Contd.)

Stiatementi showing detatiś ó experimental stations
maharashtra (Contd.)

(ii) Mechanical analysis :-Not available,

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS
MAHARASHTRA (Contd.)

1	2	$\overline{3}$	4		5	6	7
35.					No irrigation facilities and no	43-Jowar.	Undulating tract.
					drainage system.	7-Bajra.	
						7-Groundnut.	
						4-Gram.	
					.		
						61-Total.	
						+2-Rotational	
						experiments.	
						1. 1949-50 to	.
						- 1959-60	
						2. 1949-50	
					.	contd.	

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS MAHARASHTRA (Ćontd)

Statement showing details of experimental stations
MAHARASHTRA (Contd.)

STATEMENT SHOWING DETALLS OF EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

STATEMENT SHOWING DETAILS OF EXPERIMENTAL STATIONS

MAHARASHTRA (Contd.)

1	2	4	4		5	6	7
40.					Nil. No drainage system.	5-Jowar	Alt. 1481 a.s. 1. There
						6 -Cotton	are hard sub-soil
					:	1-Groudnut	mother rocks which
							affect the percolation
						12-Total	thus causing water
							lodging in some por-
							tions.
					-		

Soil Analysis of Agri. Res. Stn., Karjat.

B. Soils.

(a) Broad soil types	-	Sandy loam to clay loam.
(i) Depth	-	Varying from $6^{\prime \prime}$ to $2^{\prime \prime}$.
(ii) Colour	-	Grey with black when dry and dark grey when wet.
(iii) Structure	-	Cloddy.

(b) Chemical analysis (if available)
(Indicate the \% of various)
constituents analysed for)

1. Moisture.	- -	percent on fine matter	
		5.48	6.18
2. Loss on Ignition.	-	6.58	6.24
3. Acid insoluable matter.	-	64.94	64.72
4. Iron oxide ($\mathrm{Fe}_{2} \mathrm{O}_{3}$).	-	10.87	10.24
5. Alluminium oxide ($\mathrm{Al}_{2} \mathrm{O}_{3}$).	-	10.87	9.34
6. Lime (CaO).	-	0.88	0.90
7. Magnesia (MgO).	-	0.71	0.52
8. Potash ($\mathrm{K}_{2} \mathrm{O}$).	-	0.10	0.10
9. Phosphoric acid ($\mathrm{P}_{2} \mathrm{O}_{5}$).	-	0.08	0.08
10. Sulphate (SO 3).	-	0.32	0.18
11. Nitrogen.	-	0.08	0.77
12. Organic Carbon.	-	1.23	1.13
13. C / N ratio.	-	14.47	14.67
14. Humus.	-	0.35	0.38
Available Constituents		Mgm-Percent.	
Phosphoric acid ($\mathrm{P}_{2} \mathrm{O}_{5}$).		12.73	13.92
Potash ($\mathrm{K}_{2} \mathrm{O}$).Exchangeable bases		Trace	Traces.
		Mil	ts percen

(e) Mechanical analysis (Indicate the \% of the various constituents analysed for):
(e) Mechanical analysis.

1. Moisture.	-		6.15	6.53
2. Carbonate ($\mathrm{Ca} \mathrm{CO}_{3}$).	-		0.01	1.01
3. Organic Matter.	-	-	1.99	1.82
4. Clay.	-		20.90	19.10
5. Silt.	-		31.60	22.25
6. Fine sand (by difference).	-		28.57	27.51
7. Coarse sand. -	-		10.78	22.78

Crop :~ Paddy (Kharif)
Ref:~Mh. 48(79).
Site :- Agri. Res. Stn., Akluj.
Type :- ' M '.
Object:-To study the effect of Bone-super top dressed on Paddy.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Sugarcane. (c) $375 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}$. in $1: 1$ ratio. (ii) (a) ' D ' type.
(b) Refer soil analysis, Akluj. . (iii) 18.6.1948. (iv) (a) Ploughing, and harrowing. (b) to (e) N.A. (v) Nil.
(vi) Local. (vii) Irrigated. (viii) Weeding. (ix) $21.78^{\prime \prime}$ (18.6.1948 to 16.11.1948). (x) 16.11.1948.
2. TREATMENTS:
3. 56 lb . ac . of Bone-super.
4. 56 lb ./ac. of Bone-super +56 lb ./ac. of A / S.
5. $56 \mathrm{lb} . / \mathrm{ac}$. of A / S.
6. 150 lb ./ac. of G.N.C.
7. No manure.
8. DESIGN:
(i) R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 6 .
9. (iv) (a) N.A.
(b) $1 / 80$ ac. (v) N.A. (vi) Yes.
10. GENERAL :
(i) No lodging. (ii) Nil. (iii) Yield of grain. (iv) (a) 1946-1948. (b) No. (c) Nil. (v) (a) Kopergaon, Deolali, Lakhampur. (b) N.A. (vi) Nil. (vii) N.A.
11. RESULTS :

| (i) 848 | lb |
| :--- | :--- | :--- | ac.

(ii) $238.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Tre_tment	Av. yield
1.	853
2.	880
3.	946
4.	813
5.	746
S.E./mean	$=97.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy. (Kharif).
Site :- Rice Breeding Stn., Chiplun.

Ref:- Mh. 52(320).
Type: ' 'M'.

Object :-To study the effect of Di-calcium phosphate as compared to B.M. on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) Nil. (ii) (a) Laterite soil. (b) N.A. (iii) 8.6.1952/28.7.1952. (iv) (a) N.A. (b) Transplanting. (c) 一. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. +32 lb ./ac. of N as A / S applied on 25.7.1952. (vi) Varangal-487. (vii) Unirrigated. (viii) 2 weedings. (ix) N.A. (x) 1.11.1952.

2. TREATMENTS :

1. 32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Di-calcium phosphate.
2. 32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 25.7.1952.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) $40^{\prime} \times 20^{\prime}$. (b) $30^{\circ} \times 10^{\prime}$. (v) 5^{\prime} ring. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Attack of Karpa. (iii) Grain and straw yield (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii)Nil.
5. RESULTS:
(i) $1621 \mathrm{lb} / / \mathrm{ac}$.
(ii) $130.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1612
2.	1630
S.E./mean	$=37.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Rice Breeding Stn., Chiplun.
Ref :- Mh. 50(107).
Type :- ' M '.

Object :-To study the effect of graded doses of Dolomite on Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) N.A. (b) N.A. (iii) 3.6.1950/31.7.1950. (iv) (a) and (b) N.A.
(c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (c) 8 seedling/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Varangal-487. (vii) N.A. (viii) 4 weedings. (ix) N.A. (x) 7.11.1950.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 5 levels of Dolomite : $D_{0}=0, D_{1}=0.5 D_{2}=1, D_{3}=1.5$ and $D_{4}=2$ ton/ac.
(2) 2 manures: $\mathrm{M}_{0}=$ No manure and $\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}$. as N of G.N.C. +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. DESIGN:
(i) 2×5 Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime \prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime} 4^{\prime \prime}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) More vegetative growth in plots where G.N.C. was given. (ii) Slight attack of kapra in 3rd week of August. Crop dusted with gammaxene. (iii) Grain and straw yield. (iv) (a) 1950-1951. (b) and (c) N.A, (v) (a) Phondaghat. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $3457 \mathrm{lb} . / \mathrm{ac}$.
(ii) $328.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of D and M and their interaction are significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{D}_{\mathbf{Q}}$	D_{1}	D_{2}	D_{3}	D	Mean
$\mathrm{M}_{0}{ }^{\text {b }}$	2021	1745	3648	3866	4029	3062
M_{1}	2222	4029	4302	4574	4138	3853
Mean	2122	2887	3975	4220	4084	3457

S.E. of marginal mean of $M \quad=73.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of $D \quad=116.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=164.1 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Rice Breeding Stn., Chiplun.

Ref:- Mh. 51(141).
Type:- ' \mathbf{M} '.

Object :-To study the effect of graded doses of Dolomite on Paddy crop.

1. BASAL CONDITIONS:
(i) (a) No particular rotation. (b) Paddy. (c) N.A. (ii) (a) and (b) N.A. (iii) 29.5.1951/29 to 31.7.1951. (iv) (a) N.A. (b) Transplanting. (c) N.A. (d) $10^{\prime \prime} \times 10^{\circ}$. (e). 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (v) Varangal-487. (vii) N.A. (viii) 3 weedings. (ix) N.A. (x) 14,15.11.1951.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 5 levels of Dolomite : $D_{0}=0, D_{1}=0.5, D_{2}=1, D_{3}=1.5$, and $D_{4}=2$ ton/ac.
(2) 2 manures : $\mathbf{M}_{0}=$ No manure and $\mathrm{M}_{1}=40 \mathrm{lb}$./ac. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. DESIGN :
(i) 2×5 Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime \prime} 4^{\prime \prime}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(ii) There was complete lodging of crop in the last week of Sept. due to heavy rains and wind. (ii) Nil. (iii) Grain and straw yield. (iv) 1950-1952. (b) No. (c) N.A. (v) (a) Phondaghat. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2356 \mathrm{lb} . / \mathrm{ac}$.
(ii) $253.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of D and M and their interaction are significant.
(iv) Av. yield of grain in lb ./ac.

	D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	Mean
M_{0}	$1854{ }^{\circ}$	1919	2395	2409	2307	2177
M_{1}	2586	2508	2474	2654	2457	2536
Mean	2220	2213	2434	2531	2382	2356

S.E. of marginal mean of M	$=56.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of D	$=88.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=126.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Rice Breeding Stn., Chiplun.

Ref : Mh. 52(172).
Type :- ' M '.

O $:$ ject :-To study the effect of graded doses of Dolomite on Paddy crop.

1. BASAL CONDITIONS:

(i) (a) N.l. (b) Paddy. (c) N.A. (ii) (a) N.A. (b) N.A. (iii) N.A. (iv) (a) and (b) N.A. (c) N.A. (d; $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Varangal-487. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 5 levels of Dolomite : $D_{0}=0, D_{1}=0.5, D_{2}=1, D_{3}=1.5$, and $D_{4}=2$ ton/ac.
(2) 2 manures: $\mathrm{M}_{0}=$ No manure and $\mathrm{M}_{1}=40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.

3. DESIGN

(i) 2×5 Fact. in' R.B.D. (ii) (a) 10. (b) N.A. (iii) 4 . (iv) (a) $26^{\prime \prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime}-4^{\prime \prime}$. ring round the net plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain and straw yield. (iv) (a) 1950-1952. (b) and (c) N.A. (v) (a) Phondaghat. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) ì216 $\mathrm{lb} . / \mathrm{ac}$.
(ii) $207.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Interaction $\mathrm{D} \times \mathrm{M}$ alone is significant.
(iv) Av. yield of grain in lb :/ac.

	$\mathrm{D}_{\mathbf{0}}$	$\mathrm{D}_{\mathbf{1}}$	$\mathrm{D}_{\mathbf{2}}$	$\mathrm{D}_{\mathbf{3}}$	$\dot{\mathrm{D}}_{\mathbf{4}}$	Mean
$\mathrm{M}_{\mathbf{0}}$	1293	990	1187	1290	1279	1208 M_{1}
Mean	1143	1239	1092	1361	1286	1224
	1218	1114	1140	1325	1283	1216

S.E. of marginal mean of M	$=46.5 \mathrm{lb} / \mathrm{ac}$.
S.E. of marginal mean of D	$=72.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=104.0 \mathrm{lb} . / \mathrm{ac}$.

Crop:- (Kharif).
Site :- Rice Breeding Stno, Chiplun.

Ref:- Mh. 49(91).
Type : ' ' M '.

Object:-To study the effect of degiued B.M. as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ as compared to B.M. on the yield of Paddy crop.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) and (c) N.A. (ii) (a) N.A. (b) N.A. (iii) N.A. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Varangal-487. (vii) N.A. (viii) N.A. (ix) $160^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

1. No manure.
2. F.Y.M. at 5 C.L /ac. + G.N.C. at 40 lb ./ac. of $\mathrm{N}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. F.Y.M. at 5 C.L./ac. + G.N.C. at 40 lb ./ac. of $\mathrm{N}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M.
4. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime \prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime \prime}-4^{\prime \prime}$ ring round the net plot. (vi) Yes.
5. GENERAL :
(i) Normal. (ii) Severe attack of blast was observed. (iii) Grain yield. (iv) (a) 1949-1952. (b) and (c) N.A. (v) (a) Phondaghat. (b) N.A. (vi) and (vii) Nil.
6. RESULTS:
(i) 1206 : lb./ac.
(ii) $\quad 79.92 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatment differences are highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
Treatment Av. yield ${ }^{-}$

1.	998
2.	1384
3.	1236

S.E./mean $\pm 32.62^{\prime} \mathrm{lb} /$ /ac.

Crop :- Paddy (Kharif).
Ref :- Mh. 50(106).
Site :~ Rice Breeding Stn., Chiplun.
Type :- 'M'.

Object :-To study the effect of deglued B.M. as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ as compared to B.M. on the yield of Paddy crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) and (b) N.A. (iii) 1.6.1950/28.7.1950. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Varangal-487. (vii) N.A. (viii) 5 weedings (ix) N.A. (x) 6.11.1950.
2. TREATMENTS:

1. No manure.
2. 5 C.L./ac. of F.Y.M. $+40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. +40 Jb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. 5 C.L./ac. of F.Y.M. +40 lb ./ac. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M.
4. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime} .8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime}-4^{\prime \prime}$ ring round the net plot. (vi) Yes.

4. GENERAL :

(i) Good vegetative growth in B.M. and D.B.M. plots, however, more vegetative growth in D.B.M. plotslodging in plots in first week of October due to heavy rains, less no. of tillers in no manure plots. (ii) Slight attack of karpa in 4th week of August. Crop dusted with gammaxene powder ; Damage is negligible. (iii) Grain and straw yield. (iv) (a) 1949-1952. (b) N.A. (c) N.A. (v) (a) Phondaghat. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2316 \mathrm{lb} . / \mathrm{ac}$.
(ii) $184.5 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield.
1.	1799
2.	2611
3.	2538.
S.E./mean	$=75.3 \mathrm{lb} . / \mathrm{ac}$.

> Crop :~ Paddy (Kharif).
> Site :- Rice Breeding Stn., Chiplun.

$$
\begin{aligned}
& \text { Ref :- Mh. } 51(140) . \\
& \text { Type :- 'M'. }
\end{aligned}
$$

Object :-To study the effect of deglued B.M. as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ as compared to B.M. on the yield of Paddy crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) and (b) N.A. (iii) 29.5.1951/26,27.7.1951. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Varangal-487. (vii) N.A. (viii) 3 weedings, 3 rogueing. (ix) N.A. (x) 9, 13.11.1951.
2. TREATMENTS :

1. No manure.
2. 5 C.L./ac. of F.Y.M. $+40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. $5 \mathrm{CL} . / a c$. of F.Y.M. $+40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M.
4. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$ (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime} .4^{\prime \prime}$ ring round the net plot. (vi) Yes.
5. GENERAL :
(i) Growth in manured clots was vigorous, plant height was more in D.B.M. plots, lodging in one plot in the last week of Sept. and ist week of Oct. Break of rains in the middle of Sept. (ii) Slight attack of karpa in the last week of August. P'ants were dusted with gammaxene. (iii) Grain and straw yield. (iv) (a) 194;-1952. (b) N A. (c) N.A. (v) (a) Phondaghat. (b) N.A. (vi) and (vii) Nil.
6. RESULTS
(i) $1834 \mathrm{lb} . / \mathrm{ac}$.
(ii) $130.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$:

Treatment	Av. yield
1.	1288
2.	2026
3.	2189
S.E./mean	$=53.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Ricè Breeding Stn., Chiplun.

Ref : $\boldsymbol{\sim}$ Mh. 52(321).

Object :-To study the residual effect of degiued B.M. as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ as compared to B.M. applied to previous Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-P.addy, (b) Paddy. (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) N.A. (iv) (a) N.A. (b) Transplanting. (c) - (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 !seedlings/bunch. (v) Nil. (vi) Varangal-487. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :
3. No manure.
4. 5 C.L./ac. of F.Y.M. +40 lb ./ac. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
5. 5 C.L./ac. of F.Y.M. $+40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M.

Manures applied to previous Paddy crop.
3. DESIGN:
(i) R.B D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 13^{\prime} 4^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-1952 (residual effect in 1952). (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $856 . \overline{6} \mathrm{lb} . / \mathrm{ac}$.
(ii) $88.35 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $1 b / a c$.

Treatment	Av. yield
1.	809.8
2.	882.3
3.	877.8
S.E./mean	$=36.07 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.
Ref :- Mh. 48(13).
Type :- ' M '.
Object:-To find out the N and P requirements of Paddy (without F.Y.M.).

1. BASAL CONDITIONS :
(i) (a) Paddy after paddy. (b) Paddy. (c) Nil. (ii) .(a) Medium Black. (b) Refer soil analysis, Igatpuri. (iii) $8.6 .1948 / 25$ th and 27 th July, 1948. (iv) (a) 3 ploughings. (b) Sowing by broadcasting in seed bed. (c) 40 lb ./ac. (d) $10^{\prime \prime} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) Nil. (vi) K-226. (vii) Irrigated. (viii) Nil. (ix) 115.67°. (x) 3rd and 5th Nov. 1948.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$, and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manuring on 5.8.1948.
3. DESIGN :
(i) 4×4 Factorial in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $22.5^{\prime} \times 15^{\prime}$. (b) $17.5^{\prime} \times 10^{\circ}$. (v) 2.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal growth. (ii) Crab trouble. (iii) Grain yield. (iv) (a) 1948-1951 (from 1952, residual effects studied). (b) Yes. (c) N.A. (v) (a) Karjat, Amreli. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1612 \mathrm{lb} . / \mathrm{ac}$.
(ii) $229.0 \mathrm{Ib} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is highly significant.
(iv) Av. yield of grain in lb./ac.

	$\overline{\mathbf{N}}_{0}$	N_{1}	N_{2}	N_{3}	Mean
P_{0}	1034	1467	1737	1889	1532
P_{1}	1360	1315	1836	1966	1620
P_{2}	1242	1533	1734	2146	1664
P_{3}	1235	1732	1769	1795	1635
Mean	1218	1513	1769	1949	1612
S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =57.3 \mathrm{lb} / / \mathrm{ac} \\ & =114.5 \mathrm{lb} . / \mathrm{ac} \end{aligned}$	

Crop :- Paddy (Kharif).
Site Agri. Res. Stn., Igatpuri.

Ref:- Mh. 49(23)/48(13).
Type:- 'M'.

Object :-To study the \mathbf{N} and P requirements of Paddy (without F.Y.M.).

1. BASAL CONDITIONS :

(i) (a) Paddy after paddy. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Igatpuri. (iii) $4.6 .1949 / 30$ th and 31st July, 1949. (iv) (a) 4 ploughings. (b) Line sowing in nursery and transplanting. (c) -. (d) $10^{\circ \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) K-226. (vii) Unirrigated. (viii) Hand weeeding on 14th and 15th Sept. 1949. (ix) 125.68". (x) 9.11.1949.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \quad \mathrm{~N}_{1}=32, \quad \mathrm{~N}_{2}=64$, and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2, 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.
N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D, (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $22.5^{\prime} \times 15^{\prime}$. (b) $17.5^{\prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Crabtrouble. (iii) Grain yield. (iv) (a) 1948-1951. (b) Yes. (c) N.A. (v) (a) Karjat. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1478 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $257.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant.
(iv) Av yield of grain in lb./ac.

	N_{0}	N_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	Mean
$\mathbf{P}_{\mathbf{0}}$	934	1724	1714	1651	1506
P_{1}	1153	1539.	1760	1456	1477
P_{2}	870	1353	1684	1525	1358
\mathbf{P}_{3}	1339	1624	1828	1487	1570
Mean	1074	1560	1746	1530	1478
S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =64.4 \mathrm{lb} / / \mathrm{ac} . \\ & =128.8 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 50(32)/49(23)/48(13).
Type:- ' M '.

Object :--To study the \mathbf{N} and \mathbf{P} requirements of Paddy (without F.Y.M.).

1. BASAL CONDITIONS :
(i) (a) Paddy in Kharif.and fallow in Rabi. (b) Paddy. (c) As per treatments. (ii) (a) Coarse to medium black. (b) Refer soil analysis, Igatpuri. (iii) $12.6 .1950 / 6.8 .1950$. (iv) (a) 3 ploughings. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Kolamba-226 (late). (vii) Unirrigated. (viii) Hand weeding 3rd week of August 1950. (ix) $147.25^{\prime \prime}$. (x) 13.11.1950.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96$ lb./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N applied as G.N.C and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $22^{\prime} 6^{\prime \prime} \times 15^{\prime}$. (b) $17^{\prime} 6^{\prime \prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was fairly good. (ii) Nil. (iii) Grain and straw yield. (v) (a) 1948-1951. $\begin{array}{lll}\text { (b) Yes. } & \text { (c) N.A. (v) (a) Karjat. (b) N.A. (vi) and (vii) Nil. }\end{array}$
5. RESULTS:
(i) $2327 \mathrm{lb} . / \mathrm{ac}$.
(ii) $298.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is highly significant.
(iv) Av. y:eld of grain in $\cdot \mathrm{lb}$./ac.

		N_{0}	N_{1}	N_{2}	\mathbf{N}_{3}	Mean
1	P_{0}	978	2428	2469	3049	2231
	P_{1}	1379	2104	2905	3065	2363
	P_{2}	1458	2196	2713	2783	2288
	\mathbf{P}_{3}	1491	2402	2723	3087	2426
	Mean	1326	2283	2702	2996	2327
	S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =74.7 \mathrm{lb} . / \mathrm{ac} \\ & =149.4 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop:- Paddy (Kharif).
Ref:- Mh. 51(36)/50(32)/49(23)/48(13).
Site := Agri. Res. Stn., Igatpuri. . Type :- 'M'.
Object :-To find the N and P requirements of Paddy (without F.Y.M.)

1. BASAL CONDITIONS :
(i) (a) Paddy after paddy. (b) Fallow in Rabi, Paddy in Kharif. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Igatpuri. (iii) $6.6 .1951 / 7.7 .1951$. (iv) (a) 4 ploughings. (b) Transplanting line sowing. (c) ——————— (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Kolamba-226 (late). (vii) Rainfed. (viii) Hand weeding in 3rd week of Aug. 1951. (ix) 166.88". (x) 14.10.1951 and 15.10.1951.

2: TREATMENTS :
All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ 'as Super.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $22.5^{\prime} \times 15^{\prime}$. (b) $17.5^{\circ} \times 10^{\prime}$. (v) 2.5° ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Little crab trouble. (iii) Grain yield. (iv) (a) 1948-1951. (b) Yes. (c) N.A. (v) (a) Amrali, Karjat. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2868 \mathrm{lb} / \mathrm{ac}$.
(ii) $271.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is highly significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	N_{1}	N_{2}	N_{8}	Mean
P_{0}	1313	2554	3436	3627	2733
P_{1}	1991	2404	3546	3447	2847
P_{2}	1820	2550	3603	3580	2888
P_{3}	1900	2820	3443	3850	3003
Mean	1756	2582	3507	3626	2868
S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =67.8 \mathrm{lb} . / \mathrm{ac} \\ & =135.6 \mathrm{lb} . / \mathrm{ac} \end{aligned}$	

Crop:~Paddy (Kharif). Site :~ Agri. Res. Stn., Igatpuri. Type :- 'M'.

Object :-To study the residual effect of N and P applied to previous Paddy crop (without $\mathrm{F} . \mathrm{Y} . \mathrm{M}$.).

1. BASAL CONDITIONS :
(i) (a) Fallow in Rabi, Paddy after paddy. (b) Paddy. (c) As per treatments. (ii) (a) Coarse to medium black. (b) Refer soil analysis, Igatpuri. (iii) $9.6 .1952 / 10.7 .1952$. (iv) (a) 4 ploughings. (b) Transplanted : line sowing. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Kolamba- 226 (late.) (vii) Rainfed. (viii) Hand weeding in 4th week of Sept. (ix) 127.91". (x) 10.11.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.

Manures applied to last year crop.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $22^{\prime}-6^{\prime \prime} \times 15^{\prime}$. (b) $17^{\prime}-6^{\prime \prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight crab trouble. (iii) Grain and straw yield. (iv) (a) 1948-1954 (from 1952, residual effect studied). (b) Yes. (c) N.A. (v) (a) Amreli, Karjat. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1828 \mathrm{lb} / \mathrm{ac}$.
(ii) $412.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{P} and interaction NP are not significant.
: (iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	N_{1}	N_{2}	N_{3}	Mean
\mathbf{P}_{0}	1762	1506	1883	1838	1747
P_{1}	2119	1383	1890	2003	1849
P_{2}	2078	1908	1847	2151	1996
P_{3}	1814	1810	1747	1520	1723
Mean	1943	1652	1842	1878	1828
S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =103.0 \mathrm{lb} . / \mathrm{ac} \\ & =206.0 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

$$
\begin{aligned}
& \text { Crop :- Paddy (Kharif). Ref :- Mh. } 53 \text { (346)/52(62)/51(36)/50(32)/49(23)/48(13). } \\
& \text { Site :- Agri. Rés. Stn., Igatpuri. } \\
& \text { Type :~ 'M'. }
\end{aligned}
$$

Object :-To study the residual effect of N and P applied to previous Paddy crop (without F. Y. M.).

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse soil. (b) Refer soil analysis, Igatpuri. (iii) 15.6.1953/24.7.1953. (iv) (a) 1 ploughing. (b) Transplanting. (c) - . (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) K-226 (late). (vii) Unirrigated. (viii) Nil, (ix) 123.06*
(x) 22.11.1953.
2. TREATMENTS :

All combinations of (t) and (2) -
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=O, P_{1}=32, P_{2}=64$ and $P_{3}=96 \mathrm{lb} . / \mathrm{ac}$.

Manures applied to paddy crop during 1948 to 1951.
3. DESIGN
(i) 4×4 Fa:t. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $17.5^{\prime} \times 10^{\prime}$. (v) N-A.
(vi) Yes.
4. GENERAL:
(i) Normal. (ii) Attack of crats. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) Yes. (c) Nil. (\%) (a) Karjat. (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1865 \mathrm{lb} . / \mathrm{ac}$.
(ii) $418.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of N and P and their interaction are not significant.
(iv) Av. yield of grain in lb ./ac.

Crop Paddy (Kharif).
Ref :- Mh. 48 (97).
Site :- Agri. Res. Stn., Igatpuri.
Type :~' \mathbf{M} '.

Object :-To study the \mathbf{N} and \mathbf{P} requirements of Paddy with basal manuring of F.Y.M.

1. BASAL CONDITIONS
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse soil. (b) Refer soil analysis, Igatpuri. (iii) 8.6.1948/22.7.1948. (iv) (a) 3 ploughings. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) 5 C.L.,/ac. of F.Y.M. (vi) K-226 (late). (vii) Unirrigated. (viii) 1 weeding. (ix) 115.67°. (x) 31.10.1948.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb} . / a c$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.
3. DESIGN
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $22^{\prime} 6^{\prime \prime} \times 15^{\prime}$. (b) $14^{\prime} 2^{\prime \prime} \times 6^{\prime} 8^{\prime \prime}$. (v) N.A. (vi) Yes.
4. GENERAL
(i) Normal. (ii) Crab attack. (iii) Grain yield. (iv) (a) 1948 to 1951 ; (then residual effect upto 1953),
(b) Yes. (c) Nil. (v) (a) Kopergaon, Ratnagiri and Vadagaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS

(i) $1686 \mathrm{lb} . / \mathrm{ac}$.
(ii) $244.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
$\mathbf{P}_{\mathbf{0}}$	1035	1752	1802	2119	1677
\mathbf{P}_{1}	1143	1770	1795	2013	1680
$\mathbf{P}_{\mathbf{2}}$	1066	1667	1847	2151	1683
\mathbf{P}_{3}	1170	1699	1939	2005	1703
Mean	1104	1722	1846	2072	1686

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } N \text { or } P & =61.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =122.2 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :-Paddy (Kharif).
Site :-Agri. Res. Stri, Igatpuri.

Ref : \quad Mh. 49(22)/48(12).
Type:-'M'.

Object :-To find the N and P requirements of. Paddy with basal dose of F. Y. M.

1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Medium black soil. (b) Refer soil analysis, Igatpuri. (iii) 4.6.1949/28.7.1949 and 29.7.1949. (iv) (a), 2 ploughings. (b) Transplanting, (c) 一. (d) $10^{\prime \prime} \times 10^{\circ}$. (c) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) K-226. (vii) Unirrigated. (viii) Hand-weeding on 15th and 16th September. (ix) $125.68^{\prime \prime}$. (x) 6.11.1949.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.

N applicd as $\mathrm{G} . \mathrm{N}: C$. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16_{0}. (b) N.A. (iii) 4 . (iv) (a) $22^{\prime} \times 15^{\prime}$. (b) $17.5^{\prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal growth. (ii) Border plants eaten away by crabs. (iii) Grain and fodder yield. (iv) (a) 19481951. (b) Jes. (c) N.A. (v) (a) Kopergaon, Ratnagiri, Navapur; Vadagaon. (b) N.A. (vi) and (vii) .Nil.

5. RESULTS :

(i) $1613 \mathrm{lb} . / \mathrm{ac}$.
(ii) $227.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Ma'n effect of N alone is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of marginal mean of N or P	$=56.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=113.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Site :-Agri. Res. Stn., Igatpuri.

Ref :-Mh. 50(145)/49(22)/48(12).
Type :~ ${ }^{\prime} \mathbf{M}^{\prime}$.

Object:-To study the \mathbf{N} and \mathbf{P} requirements of Paddy with basal dose of F.Y.M.

1. BASAL CONDITIONS:
(i) (a) Paddy-Paddy. (b) Paddy. (c) As per treatreents (ii) (a) Shallow and coarse soil. (b) Refer soil analysis, Igatpuri. (iii) 12.6.1950/2.8.19s0. (iv) (a) 2 ploughings. (b) Transplanting. (c) -. (d) $10^{\circ} \times 10^{*}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) K-226 (late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 147.25°. (x) 15.11 .1950.
2. TREATMENTS :

All combinations of (1) and (2)
(1; 4 levels of N as G.N.C.: $\quad N_{0}=0, N_{2}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (b) (a) $22^{\circ} 6^{\circ} \times 15^{\prime}$. (b) $176^{\circ} \times 10^{\circ}$. (v) 25 , ring. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1948-1951$. (b) Yes. (c) Nil. (v) (a) Kopergaon. Ratnagiri, Vadagaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2460 \mathrm{lb} / \mathrm{ac}$
(ii) $398.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} is significant while that of N is highly significant. Interaction NP is not significant. (iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	$\mathbf{N}_{\mathbf{3}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
\mathbf{P}_{0}	1011	2024	2654	3184	2218
\mathbf{P}_{1}	1489	2757	3243	3238	2682
$\mathbf{P}_{\mathbf{2}}$	1285	1830	3133	2932	2295
$\mathbf{P}_{\mathbf{2}}$	1426	2423	3222	3511	2645
Mean	1303	2258	3063	3216	2460
S.E. of marginal mean of \mathbf{N} or \mathbf{P}	$=99.5 \mathrm{lb} . / \mathrm{ac}$.				

Crop :- Paddy (Kharif). Ref :- Mh. 51(147)/50(145)/49(22);48(12).
Site :- Agri. Res. Stn., Igat puri. Type :- 'M'.
Object :-To find out the \mathbf{N} and P requirements of Paddy with basal does of F.Y.M.

1. BASAL CONDITIONS:
(i) (a) Paddy after Paddy (fallow in Rabi). (b) Paddy. (c) As per treatments. (ii) (a) Coarse to medium black. (b) Refer soil analysis, Igatpuri. (iii) $5.6 .1951 / 18.7 .1951$. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $10^{\circ} \times 10^{\circ}$. (c) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M (vi) Kolamba- 226 (late). (vii) Unirrigated. (viii) Hand weeding in 3rd week of Sept. 1951. (ix) 116.88。 (x) 16.10.1951.
2. TREATMENTS:

All combinations of (1) and (2).
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{2}=96 \mathrm{lb} . / \mathrm{sc}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{\mathbf{2}}=32, \mathrm{P}_{\mathbf{2}}=64$ and $\mathrm{P}_{3}=96 \mathrm{Ib} . / \mathrm{ac}$. N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $22^{\prime} 6^{\prime \prime} \times 15^{\prime}$. (b) $17^{\prime} 6^{\prime \prime} \times 10^{\prime}$. (v) $2 \frac{1^{\prime}}{}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) The general growth of crop was fairly good. (ii) Little crab trouble. (iii) Grain yield. (iv) (a) 1948 to 1951. (b) Yes. (c) N.A. (v) (a) Amreli, Kopergoan, Ratnagiri, Navapur, Vadagaon, (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2894 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $330.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is highly significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
$\mathbf{P}_{\mathbf{0}}$	1561	2485	3244	3543	2708
$\mathbf{P}_{\mathbf{1}}$	1887	2749	3495	3748	2970
$\mathbf{P}_{\mathbf{2}}$	1848	2930	3339	3525	2911
$\mathbf{P}_{\mathbf{3}}$	1843	2741	3607	3759	2988
Mean	1785	2726	3421	3644	2894

S.E. of marginal mean of N or $P \quad=82.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table , , $=165.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). \quad Ref $!-\mathrm{Mh}^{\text {52(61)/51(147)/50(145)/49(22)/48(12). }}$
Site :~ Agri. Res. Stn., Igatpuri. Type': © (M’.
Object :-To find out the N and P requirements of Paddy with basal dose of F.Y.M. (residual effect).

1. BASAL CONDITIONS :

(i. (a) Paddy after Paddy (fallow in Rabi). (b) Faddy. (c) As per treatments. (ii) (a) Coarse to medium black. (b) Refer soil analysis, Igatpuri. (iii) 9.6.1952/8.7.1952. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Kolamba- 226 (late). (vii) Unirrigated (viii) Hand weeding in 3rd week of Sept. 1957. (ix) 127.91". (x) 9.11.1952.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manures applied to previous crop.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) $22^{\prime} 6^{\prime \prime} \times 15^{\prime}$. (b) $17^{\prime} 6^{\prime \prime} \times 10^{\prime}$. (v) $2 t^{\prime}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was fairly good. (ii) Slight crab trouble. No Control measures taken. (iii) Grain and straw yield. (iv). (a) 1948-54 (from 1952 residual effect). (b) Yes. (c) No. (v) (a) Kopergaon, Ratnagiri, Navagaon, Vadagaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1954 \mathrm{lb} . / \mathrm{ac}$.
(ii) $379.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Only the interaction $N \times P$ is significant.
(iv. Av. sield of grain in lb.jac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
\mathbf{P}_{0}	1749	1910	1778	1923	1840
\mathbf{P}_{1}	1713	2125	2126	2091	2014
P_{2}	1725	2116	1700	1969	1877
P_{3}	1804	2029	2561	1947	$2 \mathrm{C85}$
Mean	1748	2045	2041	1982	1954
S.E. of marginal mean of \mathbf{N} or \mathbf{P} $=98.8$ S.E. of tody of table $=189.6$					

Crop :- Paddy (Kharif). Ref :-Mh. 53(3)/52(61)/51(147)/50(145)/49(22)/48(12).
Site :-Agri. Res. Stn., Igatpuri. Type:- ' M '.
Object :- To study the N and P requirements of Paddy with tasal dose of F.Y.M. (residual effect).

1. BASAL CONDITIONS:
(i) (a) Paddy in Kharif and Pulses in Rabi. (b) Gram in Rabi. (c) Nil. (ii) (a) Shallow coarse soil derived from Deccan trap rocks. (b) Refer soil analysis, Igatpuri. (iii) 15 th June, 19531 last week of July, 1953. (iv) (a) One ploughing in Rabi and 3 ploughings in Kharif. (b) Transplanting. (c) -. (d) $10^{\circ} \times 10^{\circ}$. (c) N.A. (v) F.Y.M. at 5 C.L./ac. (vi) K. 226 (late) (vii) Rainfed. (viii) Transplanting, interculturing done as per departmental method. Puddling and planting on 21st and 22nd July, 1953. (ix) $123^{\prime \prime}$. (x) 23 rd Nov. 1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$, and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manures applied during 1948 to 1951.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $22^{\prime} 6^{\circ} \times 15^{\circ}$. (b) $17^{\prime} 6^{\circ} \times 10^{\circ}$. (v) 3 guard rows on each side. (vi) Yes.
4. GENERAL :
(i) Paddy crop was fairly good through out the season. (ii) Nil. (iii) Grain Yield. (iv) (a) 1948-1954 (from 1952 residual effect.) (b) Yes. (c) N.A. (v) (a) Karjat and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1592 \mathrm{lb} . / \mathrm{ac}$.
(ii) $500.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	Mean
\mathbf{P}_{0}	1510	1363	1537	1716	1531
\mathbf{P}_{1}	1276	1705	1910	1385	1569
$\mathbf{P}_{\mathbf{2}}$	1574	1728	2126	1457	1721
$\mathbf{P}_{\mathbf{3}}$	1576	1459	1373	1785	1548
Mean	1484	1564	1736	1586	1592

S.E. of marginal mean of \mathbf{N} or $\mathbf{P} \quad=125.1 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table
$=250.2 \mathrm{lb} . / \mathrm{ac}$.

Crop : - Paddy (Kharif).	Ref:- Mh. 49(21).
Site :- Agri. Res. Stn., Igatpuri.	Type :- 'M'.

Object:-To study the effect of leguminous crop (Peas) grown with and without $\mathrm{P}_{2} \mathrm{O}_{6}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Peas-Paddy. (b) Peas. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $4.6 .1949 / 20.7 .1249$. (iv) (a) 2 ploughings and 1 puddling. (b) Transplanted. (c) (d) $10^{\circ} \times 10^{\prime \prime}$. (d) 8 seedlings/bunch. (v) Nil. (vi) Z-31. (vii) Unirrigated. (viii) 1 weeding. (ix) 123.64°. (x) 23.10 .1949 .

2. TREATMENTS:

1. Control (ńo $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.

Manure applied to previous peas crop.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\circ}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 2.5^{\prime} ring. (vi) As per treatments.
4. GENERAL
(i) The growth was not satisfactory due to continuous rains. (ii) Crab pests. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to 1954-55 (Kharif). (b) Yes. (c) Nil, (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESUlTS:
(i) $865 \mathrm{lb} . / \mathrm{ac}$.
(ii) $121.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv/ Av. yield of grain in lb. fac.

Treatment	Av. yield
1.	813
2.	793
3.	897
4.	928
5.	893
S.E./mean	$=54.3 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :~ Paddy (Kharif). } & \text { Ref :- Mh. 50(30)/49(21). } \\
\text { Site :- Agri. Res. Stn., Igatpuri. } & \text { Type :- 'M'. }
\end{array}
$$

Object:-To study the effect of leguminous crop (Peas) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Peas-Paddy. (b) Peas. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) 12.6 1950/21.7.1950. (iv) (a) 2 ploughings, 1 puddling and planting. (b) Seedlings raised in rabbed seed-bed and transplanted. (c) 一. (d) $10^{7} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Z. 31 (mid-late). (vii) Unirrigated. (viii) 1 weeding. (ix) 150.85". (x) 26.10.1950.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$)
4. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.

Manure applied to previous peas crop.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $20^{\prime} \times 10^{\prime}$. (v) N.A. (vi) As per treatments.
4. GENERAL :
(i) The growth was excellent. (ii) Common crab pests appeared. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to 1954-55 (Kharif). (b) Yes. (c) Nil. '(v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS:-
(i) $1645 \mathrm{lb} / \mathrm{ac}$.
(ii) $253.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1320
2.	1308
3.	1752
4,	1964
5.	1380
S.E./mean	$=113.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.
Ref :- Mh. 51(34)/50(30)/49(21).
Type :- ' M^{\prime} '

Object:-To study the effect of leguminous crop (Peas) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ manure on the succeeding cereal crop of Paddy.

1. BASAL CONDITIONS :
(i) (a) Peas-Paddy. (b) Peas. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $6.6 .1951 / 6.7 .1951$. (iv) (a) 1 ploughing and 1 pudding. (b) Transplanting. (c) (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Z-31. (vii) Unirrigated. (viii) 1 weeding. (ix) $105.15^{\prime \prime}$. (x) 20.10 .1951 .
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$)
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.

Manures applied to previous peas crop.
3. DESIGN :
(i) R.B.D. ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\circ} \times 10^{\circ}$. (v) 2.5^{\prime} ring. (vi) As per
treatments.
4. GENERAL :
(i) Growth was normal. (ii) Slight attack of Crab pests. (iii) Grain yield. (iv) (a) 1948-1949 (Rabi), 1954. 1955 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1798 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $254.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1486
2.	1914
3.	2081
4.	2094
5.	1417
S.E./mean	$=113.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy. (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref:- Mh. 52(60)/51(34)/50(30)/49(21).
Type:- ' M '.

Object :-To study the effect of leguminous crop (Peas) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) Peas-Paddy. (b) Peas. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $9.6 .1952 / 12.7 .1952$. (iv) (a) 1 ploughing and 1 puddling. (b) Transplanting. (c) 一. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Z-31. (vii) Unirrigated. (viij) Interculturing. (ix) 121.54" (Kharif), 2.34" (Rabi). (x) 31.10.1952.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$)
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.

Manures applied to previous peas crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring. (vi) As per treatments.
4. GENERAL :
(i) Growth was normal. (ii) Common crab pest observed. (iii) Grain yield. (iv) (a) 1948-1949 (Rabi), 1954-1955 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1459 \mathrm{lb} . / \mathrm{ac}$.
(ii) $134.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1297
2.	1516
3.	1504
4.	1610
5.	1371
S.E./mean	$=60.3 \mathrm{lb}$./ac.

Crop :- Paddy (Kharif). Ref :- Mh. 53(2)/52(60)/51(34)/50(30)/49(21).
Site :- Agri. Res. Stn., Igatpuri. Type :- 'M'.
Object : -To study the effect of leguminous crop (Peas) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Peas-Paddy. (b) Peas, (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $15.6 .1953 / 24,25.7 .1953$. (iv) (a) 1 ploughing; 1 puddling. (b) Transplanting. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (c) 8 seedlings/bunch. (v) Nil. (vi) $\mathrm{Z}-31$ (mid-late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 29.99. (x) 25.10.1953.
2. TREATMENTS :
3. Control ($\mathrm{nO} \mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.

Manure applied to previous peas crop.
3. DESIGN:
(i) R.B.D
(ii) (a)
(b) N.A
(iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$.
(b) $20^{\prime} \times 10^{\prime}$.
(v) 2.5' ring. (vi) Yes.
4. GENERAL :
(i) Not good. (ii) Severe attack of jassids and army worms. (iii) Grain yield. (iv) (a) 1948 to 1949 (Rabi) 1954 to 1955 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $950 \mathrm{lb} . / \mathrm{ac}$.
(ii) $165.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	707
2.	1082
3.	1156
4.	1052
5.	803
S.E./mean	$=74.0 \mathrm{lb} . / \mathrm{ac}$.

Crop: Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 49(147).
Type :~ ' M '.

Object:-To study the effect of leguminous crop (Lentils) grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop of Paddy.

1. BASAL CONDITIONS :
(i) (a) Lentils-Paddy. (b) Lentils. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $4.6 .1949 / 20.7 .1949$ and 21.7.1949. (iv) (a) 2 ploughings, 2 puddlings. (b) Transplanting. (c) - . (b) $40^{\prime \prime} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) Nil. (vi)' Z-31. (vii) Unirrigated. (viii) 1 weeding. (ix) 123.64". (x) 29.10.1949.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$)
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.

Manures applied to previous lentils crop.
3. DESIGN
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5 . (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring. (vi) Yes.
4. GENERAL :
(i) The growth of the crop was checked due to heavy and continuous rains. (ii) Crab pest was observed which created a number of gaps. (iii) Grain yield (iv) (a) 1948 to 1949 (Rabi) to 1955 to 1955 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $637 \mathrm{lb} / / \mathrm{ac}$.
(ii) 140.7 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	658
2.	573
3.	674
4.	657
5.	622
S.E./mean	$=62.9 \mathrm{lb} . / a c$.

Crop : maddy (Kharif).
Site :-Agri. Res. Stn, Igatpuri.

Ref :-Mh. 50(168)/49(147).
Type:-‘M'.

Object :-To study the effect of leguminous crop (Lentils) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS

(i) (a) Lentils-Paddy. (b) Lentils. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) 12.6.1950/20,21.7.1950. (iv) (a) 2 ploughings and 1 puddling. (b) Seedlings raised in rabbed seed beds and transplanted. (c) 一. (d) $10^{\circ} \times 10^{\circ}$. (e) 8 seedlings/bunch (v) Nil. (vi) Z-31 (mid-late). (vii) Unirrigated. (viii) 1 weeding. (ix) 150.85". (x) 27.10.1950.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.

Manures applied to previous lentils crop.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 5.
v) (a) $25^{\prime} \times 15^{\prime}$.
(b) ${ }^{\prime} 20^{\prime} \times 10^{\prime}$.
(v) 2.5^{\prime} ring.
(vi) As per treatments.
4. GENERAL:
(i) The growth was good. (ii) (a) Common crab pest attack observed but it was very mild. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to 1954-55 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1153 \mathrm{lb} . / \mathrm{ac}$.
(ii) $231.3 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Ay. yield of grain in $\mathrm{lb}_{\mathrm{I}} / \mathrm{ac}$.

Treatment	Av. yield
1.	1151
2.	1032
3.	1272
4.	1238
5.	1071
S.E./mean	$=103.4 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :-Pad dy (Kharif). } & \text { Ref :-Mh. } 51(238) / 50(168) / 49(147) . \\
\text { Site :-Agri. Res. Stn., Igatpuri. } & \text { Type : } \text { ‘'M'. }^{\prime} .
\end{array}
$$

Object:-To study the effect of leguminous crop (Lentils) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Lentils-Paddy. (b) Lentils. . (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $5.6 .1951 / 8$ and 9.7.1951. (iv) (a) 1 ploughing and 1 puddling. (b) Transplanted. (c) -. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (c) 8 seedlings/bunch. (v) Nil.j(vi) Z-31. (vii) Unirrigated. (viii) 1 weeding. (ix) $105.15^{\prime \prime}$. (x) 15.10 .1951.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.

Manures applied to previous lentils crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\circ} \times 10^{\circ}$. (v) 2.5^{\prime} ring. (vi) As per treatments.
4. GENERAL :
(i) Growth was normal. (ii) Slight attack of crab pests. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to 1954-55 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1077 \mathrm{lb} . / \mathrm{ac}$.
(ii) $155.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1021
2.	954
3.	1102
4.	1236
5.	1071
S.E./mean	$=69.6 \mathrm{lb} . / a c$.

Crop :- Paddy (Kharif). Ref :- Mh. 52(380)/51(238)/50(168);49(147).
Site :- Agri. Res. Stn., Igatpuri.
Object:-To study the effect of leguminous crop (Lentils) grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop of Paddy.

1. BASAL CONDITIONS :

(i) (a) Lentils-Paddy. (b) Lentils. (c) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $9.6 .1952 / 13,14.7 .1952$. (iv) (a) 1 ploughing, 1 planking. (b) Transplanting. (c) -. (d) $10^{\circ} \times 10^{\prime \prime}$. (c) 8 seedlings/bunch. (v) Nil. (vi) Z-31. (vii) Unirrigated. (viii) I interculturing, (ix) $\mathbf{1 2 1 . 5 4}{ }^{\circ}$. (x) 30.10.1952.
2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$ as Super.
3. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super.
4. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super*
5. Fallow in Rabi.

Manures applied to previous lentils crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\circ}$. (v) 2.5^{\prime} ring. (vi) As per treatments.
4. GENERAL :
(i) Normal growth. (ii) The common crab pest observed. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to 1954-55 (Kharif). (b) Yes. ${ }^{-}$(c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1041 \mathrm{lb} . / \mathrm{ac}$.
(ii) $187.6 \mathrm{lb} . / \mathrm{ac}$
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	977
2.	908
3.	1020
4.	1183
S.	1118
S.E./mean	$=83.9 \mathrm{lb} . / \mathrm{ac}$.

3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $25^{\prime} \times 65^{\prime}$. (b) $20^{\prime} \times 55^{\prime}$. (v) $2.5^{\prime} \times 5^{\prime}$ ring. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952-1954. (b) Yès. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1945 \mathrm{Jb} / \mathrm{ac}$.
(ii) $66.13 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	2158
2.	1881
3.	1901
4.	
S.E /mean	$=46.76 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 53(260)/52(362).
Type: ' ' \mathbf{M}^{\prime}.

Object :- To assess the relative merits of G.N.C.; A/S and Calcium cynamide.

1. BASAL CONDITIONS :

(i) (a) Pu'ses in Rabi and Paddy in Kharif. (b) Gram in Rabi. (c) Nil. (ii) (a) Shallow and coarse soil derived from Deccan trap rock. (b) Refer soil analysis, Igatpuri. (iii) 18.6.1953/28.7.1953. (iv) (a) One ploughing for Rabi and 3 ploughings in Kharif. (b) to (e) N.A. (v) Nil. (vi) Z-31 (mid-late). (vii) Unirrigated. (viii) Weeding and interculturing. (ix) $123^{\prime \prime}$. (x) 26.10.1953.

2. TREATMENTS :

1. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
2. $64 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. $+\mathrm{A} / \mathrm{S}$ in $1: 1$ ratio.
3. 64 lb ./ac. of N as Calcium cynamide.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N as calcium Cynamide+G.N.C. in $1: 1$ ratio.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $65^{\prime} \times 25^{\prime}$: (b) $55^{\prime} \times 20^{\circ}$. (v) N.A. (vi) Yes.
6. GENERAL :
(i) Crop was fairly good throughout the season. (ii) Jassids and army worms noticed. (iii) Height, no, of tillers, date of flowering and grain yield. (iv) (a) 1952-54. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) N:A.
7. RESULTS :
(i) $638 \mathrm{lb} / \mathrm{ac}$.
(ii) $129.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	782
2.	422
3.	545
4.	802
S.E./mean	$=91.4 \mathrm{lb} . / \mathrm{ac}$.

> Crop:- Paddy (Kharif). Ref :- Mh- $53(381) / 52(380) / 51(238) / 50(168) / 49(147)$.
> Site :- Agri. Res. Stn., Igatpuri.
> Type :- 'M'.

Object :-To study the effect of leguminous crop (Lentils) raised with and without $\mathrm{P}_{6} \mathrm{O}_{5}$ on the succeeding cereal crop of Paddy.

1. BASAL CONDITIONS :
(i) (a) Lentils-Paddy. (b) Lentils, (e) As per treatments. (ii) (a) Shallow and coarse trap soil. (b) Refer soil analysis, Igatpuri. (iii) $15.6 .1953 / 22,23.7 .1953$. (iv) (a) 1 ploughing and 1 puddling. (b) Transplanting. (c) - (d) $10^{\circ} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Z-31 (mid-late). (vii) Unirrigated. (viii) 1 interculturing. (x) $129.99^{\prime \prime}$. (x) 25.10 .1953 .
2. TREATMENTS :
3. Control ($\mathrm{nO} \mathrm{P}_{2} \mathrm{O}_{5}$)
4. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $150 \mathrm{lb} . / \mathrm{ac}$. af $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.

Manures applied to previous lentils crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 2.5^{\prime} ring. (vi) As per treatments.
4. GENERAL:
(i) The growth was checked due to attack of pests. (ii) The expt. was afiected by two pests, jassids followed by army worms. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to 1954-55 (Kharif). (b) Yes. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $817.6 \mathrm{lb} . / \mathrm{ac}$.
(ii) $126.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac. -

Treatment	Av. yield
1.	665
2.	833
3.	931
4.	945
5.	714
S.E./mean	$=56.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref: Mh. 52(362).
Type:- ' M '.

Object :-To test the efficiency of Calcium cynamide as compared to A/S and G.N.C.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Coarse to medium black. (b) Refer soil analysis, Igatpur.
(iii) 9.6.1952/30.7.1952. (iv) (a) 1 ploughing and 1 puddling. (b) Transplanting. (c) - (d) $10^{\circ} \times 10^{\circ}$.
(e) 6 seedlings/bunch. (v) Nil. (vi) Z-31 (mid.-late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 127.94*.
(x) 1.11.1952.
2. TREATMENTS :
3. 64 lb ./ac. of N as A / S.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{G} . \mathrm{N} . \mathrm{C} .+\mathrm{A} / \mathrm{S}$ in $1: 1$ ratio.
5. 64 lb ./ac. of N as Calcium cynamide.
6. 64 lb ./ac. of N as Calcium cynamide + G.N.C. in $1: 1$ ratio.
```
Crop: Paddy (Kharif).
```

Site :~ Ağri. Res. Stn., Karjat. \quad Type :~ ' M '.
Ref:- Mh. 50(18).

Object :-To study the effect of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ to the leguminuous crop (Wal) for fixation of nitrogen in soils which should benefit the succeeding Paddy crop.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Wal. (c) Manured as per treatments. (ii) (a) Sandy loam. Medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii; 12.6.1950/11.8.1950. (iv) (a) N.A. (b) Transplanting. (c) - . (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) N.A. (ix) $124^{\prime \prime}$. (x) 1.12 .1950 .

2. TREATMENTS :

1. Fallow in Rabi (no manure).
2. Control ($\mathrm{no} \mathrm{P}_{2} \mathrm{O}_{5}$).
3. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
4. 100 lb . ac . of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super was applied to the previous crop Wal (Rabi) and its residual effect was studied on Paddy in Kharif.

3. DESIGN:

(i) R:B D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $20^{\prime} \times 10^{\prime}$. (b) $16.33^{\prime} \times 8.33^{\prime}$. (v) 1.8^{\prime} on either side, with 2 rows of 0.83^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) The growth was poor due to the absence of rains for about 3 weeks immediately after planting. There was no lodging of the crop. (ii) The attack of paddy Mealy Bug was very severe in all the plots. Abnormal season. (iii) Grạin yield. (iv) (a) 1949-N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $249.2 \mathrm{lb} . / \mathrm{ac}$.
(ii) $157.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	136.8
2.	306.4
3.	190.2
4.	400.4
5.	212.3
S.E./mean	$=70.23 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Resi Stn., Karjat.

Ref:- Mh. 52(34).
Type:- ' M '.

Object :-To study the effect of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ to leguminous crop (Wal) for fixation of nitrogen in the soil which should benefit the succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Wal in Rabi. (c) Manured as per treatments. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) $10.6 .1952 / 6.7 .1952$. (iv) (a) 2 ploughings. (b) Sowing in the seedbeds and transplanting in the fields. (c) -. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Paddy, K-S40. (vii) Unirrigated. (viii) N. A. (ix) $109^{\prime \prime}$. (x) 12.11.1952.
2. TREATMENTS :
3. Fallow in Rabl (no manure).
4. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
5. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. $150 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super was applied to the previous crop Wal (Rabi) and the residual effect was studied on paddy in Kharif.
8. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 10^{\prime}$. (b) $18.33^{\prime} \times 8.33^{\prime}$. (v) 0.83^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) Four plots lost moisture earlier, hence poor growth. For all other plots uniform growth. (ii) Attack of stem borer was seen in a mild form. Gursoral spray was given. (iii) Grain yield. (iv) (a) N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $1832 \mathrm{lb} . / \mathrm{ac}$.
(ii) $685.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2047
2.	1747
3.	1355
4.	2113
S.	1900
S.E./mean	$=342.9 \mathrm{Ib} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site:- Agri. Res. Stn., Karjat.
Ref :- Mh. $53(121)$.
Type:- ' M '.

Objeet:-To study the effect of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ to leguminous crop (Wal) for fixation of nitrogen in the soil which should benefit the succeeding cereal crop of Paddy.

1. BASAL CONDITIONS :
(i) (a) Wal-Paddy. (b) Wal in Rabi. (c) As per treatments. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 14.6.1953/16.7.1953. (iv) (a) 2 ploughings. (b) Transplanting. (c) -. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Paddy K-42 (late). (vii) Unirrigated. (viii) 2 ploughings were given prior to puddling. (ix) 133". (x) 22.11.1953.
2. TREATMENTS :
3. Fallow in Rabi (no manure).
4. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
5. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super was applied to the previous leguminous crop Wal (Rabi) and its residual effect was studied on Paddy (Kharif).
8. DESIGN :
(i) R.B.D. (ii) (a) 5 . $^{\prime}$ (b) N.A. (iii) 4. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $21^{\prime} \times 11^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) Less height ; no lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) Yes. (c) N.A. (v) (a) Bulsar, Ratnagiri. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $1255 \mathrm{lb} . / \mathrm{ac}$.
(ii) $243.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield	
1.		1494
2.		1085
3.		1058
4.		1297
S.		1341
S.E./mean	$=121.7 \mathrm{lb} . / a c$.	

Crop :~ Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

> Ref :- Mh. $49(17)$.
> Type :- 'M'.

Object :-To ascertain the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Paddy.

1. BASAL CONDITIONS :

(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 6.6 .1949 : Transplanting Replication I-15.7.1949. II-17.7.1949, III-19.7.1949 and IV20.7.1949. (iv) (a) 2 ploughings. (b) Transplanting. (c) 40 lb ./ac. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) K. 42 late. (vii) Unirrigated. (viii) 2 weedings in August. Rain-water kept circulating throughout. (ix) 133". (x) Replication I-14.11.1949, II-15.11.1949, III—16.11.1949, IV-17.11.1949.

2. TREATMENTS :

All combinations of (1) and (2).
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac. of N .
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super, N as G.N.C. $\frac{1}{2}$ dose of N and full dose of $\mathrm{P}_{2} \mathrm{O}_{5}$ at puddling and remaining $\frac{1}{2}$ dose of N 6 weeks after planting.
3. DESIGN :
(i) 4×4 Factorial in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 30^{\prime}$. (b) $10^{\prime} \times 20^{\prime}$. (v) 5^{\prime} guard ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) No major pest or disease; seedlings were affected by blast but were treated with paronox. (iii) Grain yield and straw yield. (iv) (a) 1949 to 1951. (b) Yes. (c) N.A. (v) (a) Amreli, Igatpuri, Kopergaon, Nawapur, Ratnagiri and Vadgaon. (b) N.A.' (vi) and (vii) Nil.
5. RESULTS :
(i) $2345 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $263.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of N alone in highly significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.

-	N_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	N_{8}	Mean
P_{0}	1516	2196	2693	2790	2299
P_{1}	. 1635	2411	2635	2877	2389
\mathbf{P}_{2}	1636	2212	2704	2858	2353
\mathbf{P}_{3}	1765	2217	2564	2815	2340
Mean	1638	2259	2649	2835	2345
S.E. of marginal means of N or P $=65.8 \mathrm{lb} . / \mathrm{r}$ S.E. of body of table $=131.6 \mathrm{lb} . / \mathrm{c}$					

Crop :mPaddy (Kharif)
Site :-Agri. Res. Stn., Karjat.

Ref:-Mh. 50(26)/49(17).
Type :-' M '.

Object :-To find out the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 10.6.1950; Transplanting Repli. I-19.7.1950, I-20.7.1950, II-21.7.1950 and IV-22.7.1950. (iv) (a) and (b) Transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) K-42 (late). (wii) Unirrigated. (viii) Rain-water kept circulating. (ix) $124^{\prime \prime}$. (x) Rep. I-12.11.1950, II-13.11.1950, III-14.11.1950 and IV-15.11.1950.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $N: \quad N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb}$./ac. of N.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{8}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\frac{1}{2}$ dose of N and full dose of P at puddling and the other $\frac{1}{2}$ dose of N applied 6 weeks after planting.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . '(iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 3 rows on all sides. (vi) Yes.
4. GENERAL:
(i) Normal. Crop lodged badly in maturity stage. (ii) Little attack of crabs. (iii) Grain yield. (iv) (a) 1949-1951. (b) Yes. (c) N.A. (v) (a) Amreli, Igatpuri, Kopergaon, Nawapur, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2821 \mathrm{lb} . / \mathrm{ac}$.
(ii) 270.2 lb /ac.
(iii) Effect of N alone is significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	N_{0}	N_{1}	N_{2}	\mathbf{N}_{8}	Mean
P_{0}	1871	2565	3327.	3504	2817
P_{1}	1888	2705	1358	3535	2822
\mathbf{P}_{2}	2041	2629	2871	3644	2796
\mathbf{P}_{3}	1847	2698	3287	3559	2848
Mean	1912	2649	3161	3561	2821

S.E. of marginal mean of \mathbf{N} or $\mathbf{P}=67.6 \mathrm{lb}$./ac.
S.E. of body of table $\quad=135.1 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif).
Site :-Agri. Res. Stn., Karjat.

Ref :-Mh. 51(28)/50(26)/49(17).
Type:-‘M'.

Object:-To find out the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 13.6.1951/19.7.1951. (iv) (a) N.A. (b) Transplanting. (c) 40 lb./ac. (d) Spacing $10^{\circ} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) Nil. (vi) $K-42$ (late). (vii) Unirrigated. (viii) One weeding. (ix) $124^{\prime \prime}$. (x) 12.11.1951.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $N: \quad N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb}$./ac. of N.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\frac{1}{2}$ dose of N and all dose of P at puddling and the remaining $\frac{1}{2}$ dose of N applied 6 weeks after sowing.'
3. DESIGN :
$\begin{array}{llllll}\text { (i) } 4 \times 4 \text { Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) } 25^{\prime} \times 15^{\prime} \text {. } & \text { (b) } 20^{\prime} \times 10^{\prime} \text {. (v) } 2.5^{\prime} \text { ring }\end{array}$ round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1949-1951$. (b) Yes. (c) N.A. (v) (a) Amreh, Igatpuri, Kopergaon, Nawapur, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2758 \mathrm{lb} / \mathrm{ac}$.
(ii) $405.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is significant.
(iv) Av. yield of grain in lb,/ac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
P_{0}	2164	2555	3283	3059	2765
P_{1}	1827	2426	3225	3545	2756
P_{2}	2324	2450	3151	3654	2895
P_{8}	1725	2392	3045	3307	2617
Mean	2010	2456	3176	3391	2758

S.E. of marginal mean of N or $P \quad=101.4 \mathrm{lb} / \mathrm{ac}$.	
S.E. of body of table	$=202.9 \mathrm{lb} / \mathrm{ac}$.

Crop: Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref: Mh. 52(55).
Type :- 'M'.

Object :-To study the residual effect of the application of N and P to Paddy for three years.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) $10.6 .1952 / 4.7 .1952$ and 5.7.1952. (iv) (a) Ploughing and puddling. (b) N.A. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) N.A. (ix) $109^{\prime \prime}$. (x) 8.11.1952 and 9.11.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac. of N .
(2) 4 levels of $\dot{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manures applied during last 3 years and now the residual effect studied.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) $100^{\prime} \times 60^{\prime}$. (iii) 3. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $2 \frac{1_{2}^{\prime}}{}$ ring round the net plot. (vi) Yes.

4. GENERAL:

(i) Uniform and good. (ii) No major pest or disease. (iii) Grain yield. (iv) (a) 1949-54 (direct effect upto 1951, thereafter residual effect). (b) Yes. (c) N.A. (v) (a) Amreli, Igatpuri, Kopergaon, Nowapur, Ratuagiri and Vadgaon. (b) N.A. (vi) Nil. (vii) Originally-it was laid out with 4 replications but one replication was dropped due to low yields.
5. RESULTS :
(i) $2386 \mathrm{lb} . / \mathrm{ac}$.
(ii) $346.8 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{P} and their interaction are not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{8}}$	Mean
\mathbf{P}_{6}	2491	2546	2074	2160	2318
\mathbf{P}_{1}	2614	2105	1990	2128	2209
$\mathbf{P}_{\mathbf{2}}$	2543	2666	2575	2255	2510
$\mathbf{P}_{\mathbf{3}}$	2219	2487	2723	2605	2509
Mean	2466	2451	2341	2287	2386

$\begin{array}{ll}\text { S.E. of matginal mean of } N \text { or } P & =100.1 \mathrm{lb} . / \mathrm{ac} \\ \text { S.E. of body of table } & =200.2 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop: : Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref:~Mh. 53(122)/52(55).
Type :- ' M '.

Object :-To study the residual effect of \mathbf{N} and \mathbf{P} to Paddy for three years.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Karjat. (iii) 10.6.1953/ 13,14.7.1953. (iv) (a) 2 ploughings and puddlings (b) transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Kolamba-42. (vii) Unirrigated. (viii) 1 weeding. (ix) 133". (x) 1.11.1953.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac. of N .
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as A/S, $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manures applied during three years 1949-50 to 1951-52 and residual effect studied for this year.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 3 lines on each side all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Mean height, no. of tillers, yield of grain and straw. (iv) (a) 1949 to 1954 (direct effect up to 1952, thereafter residual effect). (b) Yes. (c) N.A. (v) (a) Amreli, Igatpuri, Kopergaon, Nawapur, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2074 \mathrm{lb} / \mathrm{ac}$.
(ii) $371.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and P and interaction $\mathrm{N} \times \mathrm{P}$ are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{N}_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	\mathbf{N}_{2}
\mathbf{P}_{0}	1903	2417	1987	1753
\mathbf{P}_{1}	2087	1845	1954	1978
\mathbf{P}_{2}	2454	2514	1964	2100
\mathbf{P}_{3}	1957	2029	2277	1967
Mean	2100	2201	2046	1949
2056				

S.E. of marginal mean of \mathbf{N} or $\mathbf{P} \quad=92.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=185.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref :- Mh. 51(150).
Type:-'M'.

Object:-To find out the optimum quantity of lime required to make in the loss caused by the application of A / S.

1. BASAL CONDITIONS:

(i) (a) No, (b) Kharif Paddy. (c) As per treatments. (ii) (a) Sandy loam, black medium soil derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 13.6.1951/23.7.1951. (iv) (a) 2 ploughings and 4 puddlings. (b) transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) N.A. (v) $40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S applied one week after transplanting. (vi) K-42. (vii) Unirrigated. (viii) N.A. (ix) 56.03". (x) 19.11.1951.

2. TREATMENTS:

All combinations of (1) and (2)+ a control (no lime).
(1) 4 levels of lime: $\quad L_{1}=300, \quad L_{2}=900, \quad L_{3}=1800$ and $L_{4}=3600 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 times of application : $T_{1}=$ every year, $T_{2}=$ every alternate year and $T_{3}=$ every third year.
3. DESIGN:
(i) R.B.D. (ii) (a) 13 (only 5 independent treatments). (b) N.A. (iii) 2 . (iv) (a) $20^{\circ} \times 15^{\prime}$. (b) $18^{\prime}-8^{\prime \prime} \times 13^{\prime}-8^{\prime \prime}$. (v) 2 lines each side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-contd. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1948 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $355.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Doses of lime do not differ significantly, control νs. others is not significant.
(iv) Av. yield of grain in lb,/ac.

Control	$=2031 \mathrm{lb} . / \mathrm{ac}$	
Treatment	Av. yield	
\mathbf{L}_{1}	1732	
\mathbf{L}_{2}	1865	
\mathbf{L}_{3}	1877	
\mathbf{L}_{4}	2291	
S.E. of control mean	$=\mathbf{2 5 1 . 5} \mathrm{lb} . / \mathrm{ac}$.	
S.E./mean (other than control)	$=145.2 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Paddy (Kharif).

- Site :- Agri. Res. Stn., Karjat.

Ref :- Mh. 52(148)/51(150):
Type :- ' M '.

Object :-To find out the quantity of lime required to make up the loss caused by the application of A / S to. Paddy crop.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Paddy. (c) As under treatments. (ii) (a) Sandy loam, medium-black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) $10.6 .1952 / 2.7 .1952$. (iv) (a) 2 ploughings and puddlings. (b) Transplanting, (c) to (c) N.A. (v) $40 \mathrm{lb} / \mathrm{ac}$. of N as A/S. (vi) K-42. (vii) Unirrigated. (viii) N.A. (ix) $10.9^{\prime \prime}$. (x) 8.11.1952.

2. TREATMENTS :

All combinations of (1) and (2)+a control (no lime)
(1) 4 levels of lime: $L_{1}=300, \quad L_{2}=900, \quad L_{3}=1800$ and $L_{4}=3600 \mathrm{lb} / \mathrm{ac}$.
(2) 3 Limes of application : $T_{1}=$ every year, $T_{2}=$ every alternate year and $T_{3}=$ every third year. J.2.aN:3.N6
3. DESIGN :
(i) R.B.D. (ii) (a) 13 (only 9 independent treatments). (b) N.A. (iii) 2. (iv) (a) $20^{\prime} \times 15^{\prime}$. (b) $18^{\prime}-8^{\prime \prime} \times 13^{\prime}-8^{\prime \prime}$. (v) Two lines on each side. (vi) Yes.

4. GENERAL :

(i) Normal. (ii) Attacked by crabs. Border lines suffered and gap filling was done. (iii) Grain and straw yield. (iv) (a) 1951-contd. (b) Yes. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2764 \mathrm{lb} . / \mathrm{ac}$.
(ii) 329.3 lb ./ac.
(iii) None of the effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref : - Mh. 53(231)/52(148)/51(150), Type : ' \mathbf{M} '.

Object:-To find cut the optimum quantity of lime necessary to recoup the loss caused by continuous application of A / S.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black. (b) Refer soil analysis, Karjat. (iii) $14.6 .1953 / 14.7 .1953$. (iv) (a) Two ploughings and puddlings. (b) Transplanting. (c) 40 lb ./ac. (d) $10^{\prime \prime} \times 10^{\circ}$. (e) N.A. (v) One week after transplanting, $40 \mathrm{lb} . / \mathrm{ac}$. of. N in the form of A / S given to all plots. (vi) Kolamba-42. (vii) Unirrigated. (viii) One weeding. (ix) $132^{\prime \prime}$ (x) 30.10.1953.

2. TREATMENTS :

All combinations of (1) and (2)+one control.
(1) 4 levels of lime : $L_{1}=300 L_{2}=900, L_{3}=1800$ and $L_{1}=3600 \mathrm{lb}$./ac.
(2) 3 times of application : $\mathrm{T}_{1}=$ every year, $\mathrm{T}_{2}=$ every alternate year and $\mathrm{T}_{3}=$ every third year.
3. DESIGN:
(i) R.B.D. (ii) (a) 13 . (b) N.A. (iii) 2. (iv) (a) $20^{\prime} \times 15^{\prime}$. (b) $18^{\prime}-8^{\prime \prime} \times 13^{\prime}-8^{\prime \prime}$. (v) Two lines on each side. (vi) Yes.
4. GENERAL :-
(i) Normal. (ii) Nil. (iii) Height of tillers and straw. (iv) (a) 1951-contd. (b) Yes. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2182 \mathrm{lb} . / \mathrm{ac}$.
(ii) $259.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of L and T and their interaction do not differ significantly.
(iv) Av . yield of fodder in $\mathrm{lb} . / \mathrm{ac}$.

Control $=2130 \mathrm{lb} . / \mathrm{ac}$.					
	L_{1}	L_{2}	\mathbf{L}_{8}	L_{4}	Mean
T ${ }_{1}$	2300	2180	2160	2280	2230
T_{2}	2120	2360	2200	2240	2230
T3	1940	2220	2300	1940	2100
Mean	2120	2253	2220	2153	2187
S.E. of marginal mean of L S.E. of marginal mean of \mathbf{T} S.E. of body of table			$\begin{aligned} & =106.0 \mathrm{lb} . / \mathrm{ac} . \\ & =91.8 \mathrm{lb} . \mathrm{ac} . \\ & =183.6 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$		

Object :-To find the best time and method of application of N in the form of A / S to Paddy.

1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 10.6.1952/21.7.1952. (iv) (a) 2 ploughings and 4 puddlings. (b) Transplanting. (c) 40 lb /ac. (d) $8^{\prime \prime} \times 8^{\circ}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) K-42. (vii) Unirrigated. (viii) N.A. (ix) 109". (x) 15.11.1952.

2. TREATMENTS:

$64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S was given to all plots as :

1. $\frac{3}{3}$ at puddling $+\frac{1}{2}$ at tillering (surface application).
2. $\frac{z}{3}$ at puddling $+\frac{b}{3}$ at tillering in pellet form. (deep application)
3. $\frac{1}{2}$ dose at pudding $+\frac{1}{\frac{1}{2}}$ at tillering (surface application).
4. $\frac{1}{2}$ dose at puddling $+\frac{1}{2}$ at tillering in pellet form (deep application).
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $40^{\circ} \times 15^{\circ}$. (b) $36^{\prime} \times 11^{\circ}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
6. GENERAL :
(i) Normal. (ii) Replication I was attacked by rats. Damage was caused to the extent of about $\mathbf{1 0 \%}$ by cutting earheads. (iii) Grain yield. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Nil.
7. RESULTS :
(i) $3413 \mathrm{lb} . / \mathrm{ac}$.
(ii) $121.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	3438
2.	3383
3.	3273
4.	3558
S.E./mean	$=85.77 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.
Ref :- Mh. }53\mathrm{ (195)/52 (182).
Type :- 'M'.
```

Object :-To find out the best time and method of application of N to Paddy.

1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Karjat. (iii) 14.6.1953 to 17.7.1953. (iv) (a) Two ploughings. (b) Transplanting. (c) $40 \mathrm{Ib} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Kolamba-42. (vii) Irrigated. (viii) One weeding. (ix) $132.02^{\prime \prime}$ • (x) 11.11.1953.
2. TREATMENTS:

64 lb ./ac. of N as A / S was given to all the plots as :-

1. $\frac{3}{3}$ at puddling $+\frac{1}{3}$ at tillering (surface application).
2. $\frac{?}{3}$ at puddling $+\frac{1}{3}$ at tillering in pellet form (deep application).
3. $\frac{1}{2}$ at puddling $+\frac{1}{2}$ at tillering (surface application).
4. $\frac{1}{2}$ at puddling $+\frac{1}{2}$ at tillering in pellet form (deep application).

3. DESIGN :

(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $15^{\prime} \times 40^{\prime}$. (b) $11^{\prime} \times 366^{\prime}$ (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) The crop growth was vigorous on average. All the plots were almost completely lodged by the middle of October. (ii) Nil. iiii) Grain yield, height and no. of tillers. (iv) (a) 1952 to 1953 . (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) $1796 \mathrm{lb} . / \mathrm{ac}$.
(ii) $263.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment		Av. yield	
1.		2008	
2.		1564	
3.		1940	
4.			1671
S.E./mean			$=186.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref: $\boldsymbol{\sim}$ Mh. 52 (183).
Type : ' M '.

Object:-To compare sann and dhaincha as green manures for Paddy and to study if application of $\mathrm{P}_{2} \mathrm{O}_{5}$ increases their value as green manure.

1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) High level, low level and varkas soil, (b) Refer soil analysis, Karjat. (iii) $10.6 .1952 / 13.7 .1952$ to 26.7.1952. (iv) (a) Two ploughings and puddlings. (b) Transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Paddy K-42. (vii) Irrigated. (viii) N,A. (ix) $109^{\prime \prime}$. (x) 8.10.1952 to 7.11.1952.
2. TREATMENTS :
3. Sann only.
4. Sann with $\mathrm{P}_{2} \mathrm{O}_{5}$ at $\mathbf{5 0} \mathbf{l b}$./ac.
5. Dhaincha only.
6. Dhaincha with $\mathrm{P}_{2} \mathrm{O}_{5}$ at 50 lb ./ac.
7. Control.
8. DESIGN :
(i) R.B.D. (ii) (a) (Unequal plots in a block) 4 plots in Rep I and II with treatments 1 to 4, 3 plots in Rep III and IV with treatments 3 to 5. (b) N.A. (iii) 4 . (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 21^{\prime}. ring round the net plot. (vi) Yes.
9. GENERAL :
(i) Normal. (ii) No major pest or disease except mild attack of skipper. (iii) Grain yield. (iv) (a) 1952 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Nil.
10. RESULTS:
(i) $2428 \mathrm{lb} . / \mathrm{ac}$.
(ii) $375.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	2507
2.	2651
3.	2230
4.	2761
5.	1989
S.E./mean	$=187.6 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif).	Ref :- Mh. 53(185).
Site :- Agri. Res. Stn., Karjat.	Type :- 'M'.

Object:-To compare Sann and Dhaincha (with and without Phosphatic manure) as green manures for Paddy.

1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Deep and clay loam. (b) Refer soil analysis, Karjat. (iii) K. 42 on 14.6.1953 and 23.7.1953. E.K. -70 on 13.6 .1953 and 27.7.1953. (iv) (a) Two ploughings and puddlings at transplanting. (b) Transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$ (e) N.A. (v) Nill. (vi) Kolamba. 42 and Early Kolpi 70. (vii) Unirrigated. (viii) One weeding. (ix) $132.02^{\prime \prime}$. (x) 11.10.1953.

2. TREATMENTS :

1. Sann only (without $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. Sann with $\mathrm{P}_{2} \mathrm{O}_{5}$ applied at 50 lb ./ac.
3. Dhaincha only (without $\mathrm{P}_{2} \mathrm{O}_{6}$).
4. Dhaincha with $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. DESIGN:
(i) R.B.D. (with unequal No. of plots in a block). (ii) (a) 4 plots block in two blocks, 2 plots/block in two blocks. (b) N.A. (iii) 4 . (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $21^{\prime} \times 11^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
6. GENERAL :
(i) Growth of green manure, crop was poor on average as compared with sann and Dhaincha in lodged areas. (ii) Nil. (iii) Grain yield. (iv) (a) 1952 to 1954 . (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) The design is R.B.D. with unequal number of plots per block the treatments $1,2,3,4$ are based on 4, 4,2,2 plots respectively.
7. RESULTS:
(i) $2136 \quad \mathrm{lb} / \mathrm{ac}$:
(ii) $35.50 \mathrm{Jb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2227
2.	2055
3.	2313
4.	1948
S.E./mean	$=17.75 \mathrm{lb} . / \mathrm{ac}$.

Crop: Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref:- Mh. 48(55).
Type:- ' M '.

Object:-To find out which of the four mixtures is beneficial to the Paddy crop under Karjat conditions.

1. BASAL CONDITIONS :

(i) (a) Paddy-Paddy. (b) Paddy. (c) Various doses of nitrogen viz, 0, 32, 64, 96 and $128 \mathrm{lb} . / \mathrm{ac}$. of N . (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 11.6 .1948 / 18.7.1948 (iv) (a) N.A. b) Transplanting. (c) N.A. (d) $12^{\prime \prime}$ apart. (e) 10 seedlings per bunch. (v) N.A. (vi) Paddy K-42. (vii) Unirrigated. (viii) N.A. (ix) $130^{\prime \prime}$. (x) 18.11.1948.
2. TREATMENTS:

1. Control.
2. Mix No. 1 at $280 \mathrm{lb} / \mathrm{ac}$.
3. Mix No. II at 273 lb ./ac.
4. Mix No. III at 251 lb ./ac.
5. Mix No. IV at $270 \mathrm{lb} . / \mathrm{ac}$.

Details of mixture N.A.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) $29^{\prime} \times 16^{\prime} . \quad$ (b) $23^{\prime} \times 12^{\circ} . \quad$ (v) N.A. (vi) Yes.
4. GENERAL :
(i) All the treatments entered at various stages of growth at the same time. There was lodging of the plants which was prevented by tying jute twice in bundles. (ii) Serious pests of any kind were absent. Damage was negligible. Just after transplanting crabs were noticed, also leaf eating catterpillers were noticed. (iii) Padd and straw yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS

Object :-To study the effect of \mathbf{N} and P on Paddy yield.

1. BASAL CONDITIONS :
(i) (a) Not fixed. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) N.A. (ii) 24.6.1953/4.8.1953. (iv)
(a) N.A. (b) On raised seed beds and transplanted. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d). $12^{\text {a }} \times 9^{\prime \prime}$. (e) 4 seedlings/bunch.
(v) Nil. (vi) K-42. (vii) Unirrigated. (viii) 1 weeding and 2 interculturings. (ix) 124.4". (x) 11.11 .1953.
2. TREATMENTS :
3. 64 lb ./ac. of N as A / S.
4. 64 lb ./ac. of N as $A / S+32 \mathrm{lb} /$ ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 32 lb ./ac of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 32 lb .jac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

Manuring done on 4.8.1953.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $27^{\prime} \times 23^{\prime}$. (b) $24^{\prime} \times 20^{\prime}$. (v) 1.5^{\prime} ring. (vi) Yes.

4. GENERAL :

(i) Season was rather late. (ii) Nil. (iii) Grain yield. (iv) (a) 1953-54. (b) N.A. (c) Nil. (v) (a) Igatpuri, Karjat, Koper gaon and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1880 \mathrm{lb} . / \mathrm{ac}$.
(ii) $314.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2223
2.	2155
3.	1872
4.	1270
S.E./mean	$=57.28 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- Mh. 53(343). } \\
\text { Site :- Agri. Res. Stn., Khopoli. } & \text { Type :- ‘M'. }
\end{array}
$$

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the form of Super in comparison with a normal dose of compost on Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fallow. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) $26.6 .1953 / 20.7 .1953$. (iv) (a) 1 ploughing. (b) and (c) Seed sown on raised seed beds at the rate of $15 \mathrm{lb} . / \mathrm{gu} \mathrm{ntha}$ of seed bed area, (d) $12^{\prime \prime} \times 12^{\prime \prime}$. (e) 5. (v) Nil. (vi) K-54e. (vii) Unirrigated. (viii) 1 weeding and 2 interculturings. (ix) 124.4°. (x) 31.10.1953.
2. 'TREATMENTS :
3. 0 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. $50 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. 10 C.L./ac. of compost.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manures applied on 3.7.1953.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 3. (iv) (a) $33.5^{\prime} \times 11.5^{\prime}$. (b) $31.5^{\circ} \times 9.5^{\prime}$. (v) 1^{\prime} ring. (vi) Yes.
9. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953-N.A. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $1766 \mathrm{lb} . / \mathrm{ac}$.
(ii) $375.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Trealment	Av. yield
1.	1795
2.	1819
3.	1625
4.	1698
5.	1892
S.E./mean	$=216.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Site :-Agri. Res. Stn. Khopoli.

Ref :-Mh. 53(317).
Type:-‘M'.

Object :-To observe the effects of green manuring on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Brinjal. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 25.6 .1953 . (iv) (a) N.A. (b) Transplanting. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Z-31 (mid late). (vii) Unirrigated. (viii) N.A. (ix) 124.04". (x) 4.8.1953.
2. TREATMENTS :
3. Control.
4. 2000 lb . lac . of Green material.
5. 4000 lb ./ac. of Green material.
6. $8000 \mathrm{lb} . / \mathrm{ac}$. of Green material.
7. DESIGN :
(i) R.B.D
(ii) (a) 4.
(b) $56^{\prime} \times 21^{\prime}$.
(iii) 3. (iv) (a) $21^{\prime} \times 14^{\prime}$.
(b) $20^{\prime} \times 14^{\prime}$.
(v) One guard row.
(vi) Yes.
8. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield data. (iv) (a) 1953-56. (b) No. (c) Nil. (v) (a) N.A. (b) -. (vi) and (vii) Nil.
9. RESULTS:
(i) $724 \mathrm{lb} . / \mathrm{ac}$.
(ii) $84.24 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	602
2.	745
3.	717
4.	831
S.E./mean	$=48.64 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Pa ddy (Kharif).
Site : Agri. Res. Stn., Kopergaon.

Ref:-Mh. 49 (33).
Type: ${ }^{\prime} \mathbf{M}$ '.

Object:-To study the effect of leguminous crop. Gram grown with and without $P_{2} \mathrm{O}_{5}$ on the succeeding cereal crop of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Gram. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 5.7.1949. (iv) (a) N.A. (b) Drilling. (c) Seedrate $40 \mathrm{lb} . / \mathrm{ac}$, (d) Spacing between rows -12°. (e) N.A. (v) 42 lb ./ac. of N as G.N.C. at sowing and 22 lb ./ac. of N as A / S at flowering. (vi) Krishnasal (mid late). (vii) Irrigated. (viii) Gap filling on 15.7 .1949 and hoeing on 5, 16.8.1949. (ix) 17.69". (x) 30.10.1949.
2. TREATMENTS :
3. No manure.
4. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{3} \mathrm{O}_{5}$ applied to gram.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram .
7. Local method (Control) (Fallow in Rabi and sown in Kharif with $64 \mathrm{lb} . / \mathrm{ac}$. of N). $\mathrm{P}_{2} \mathrm{O}_{5}$ was applied to the previous crop gram and the residual effect on Paddy is studied. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
8. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $56^{\prime} \times 26^{\prime}$. (b) $^{\prime} 46^{\circ} \times 12^{\prime}$. (v) $5^{\prime} \times 7^{\prime}$. (vi) Yes.
9. GENERAL:
(i) The germination was good. The crop was not so healthy because of no rains in June and July. The general condition was good, after September when there was rain. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948-49 to Kharif 1955-56. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad, Vadgaon. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $1275 \mathrm{lb} / \mathrm{ac}$.
(ii) $175.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1283
2.	1214
3.	1255
4.	1235
5.	1392
S.E./mean	$=78.6 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Kopergaon.
```

Ref:- Mh. 50(47)/49(33).
Type :- ' M '.

Object:-To study the effect of leguminous crop Gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

』. BASAL CONDITIONS :
(i) (a) Paddy-Gram. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 27.6.1950. (iv) (a) N.A. (b) Drilling. (c) N.A. (d) Distance between two plants not constant; between rows-12". (e) NA. (v) $42 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. at sowing and $22 \mathrm{lb} . / \mathrm{ac}$. of N as A / S at flowering. (vi) Krishnasa (mid-late). (vii) Irrigated. (viii) Hoeing thrice and weeding once. (ix) 21.26".
(x) 1.11.1950.
2. TREATMENTS :

1. No manure.
:2. $\quad 50 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
2. $103 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as applied to gram.
-4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as applied to gram.
3. Control , Fallow in rabi and sowd in kharif with $64 \mathrm{lb} . / \mathrm{ac}$. of N).
$\therefore \mathrm{P}_{2} \mathrm{O}_{5}$ was applied to gram and its residual effects studied on Paddy. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
4. DESIGN :
(i)
5. GENERAL
(i) The germination of the crop was satisfactory. The average height of the crop was $2 \mathbf{q}^{\prime}$ but the crop was poor. (ii) Attack of blast disease. (iii) Grain yield. (iv) (a) Rabi 1948-49 to kharif 1955-56. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (v) (a) and (b) N.A. (vi) and (vii) Nil.
6. RESULTS
(i) 474 lb ./ac.
(ii) $31.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatments differ highly significantly.
(iv) Áv. yield of grain in lb./ac.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Kopergaon.
Ref :- Mh. 51(50)/50(47)'49(33). Type:- 'M'

Object:-To study the effect of leguminous crop grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on succeeding cereal crop Padd.

1. BASAL CONDITIONS:

(i) (a) Paddy-Gram. (b) Gram. (c) As per treatments. ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 23.5 .1951 . (i) (a) N A. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Distance bet. rows-12". (e) N.A. (v) $42 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. at sowing and $22 \mathrm{lb} . / \mathrm{ac}$. of N as A / S at flowering. (vi) Krishnasal (Mid late). (vii) Irrigated (viii) Hoeing-28.7.1951, 12,29.8.1951; weeeding 31.7.1951. 1.8.1951, 3.8.1951, 4.8.1951, 4.9.1951 and 5.9.1951. (ix) 34.67". (x) 18.19.11 .1951.
2. TREATMENTS:

1. No manure.
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to gram.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to gram.
4. $150 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to gram.

5 Control (Faliow in rabi and sown in kharif with 64 lb ./ac. of N).
$\mathrm{P}_{2} \mathrm{O}_{5}$ was applied to gram at sowing and its residual effect studied on paddy.
3. DESIGN:
(i) R.B.D
(ii) (a) 5 .
(b) N.A.
(iii) $5 . \quad$ (iv) (a) $57^{\prime} \times 24^{\prime}$.
(b) $46^{\prime} \times 12^{\prime}$.
(v) $5.5^{\prime} \times 6^{\prime}$. (vi) Yes.
4. GENERAL:
(i) The germination was good; few gaps were seen here and there. Untimely rains ruined the crop; the growth was poor. (ii) Blast was observed and the yield was affected to a great extent. (iii) Grain yield. (iv) (a) 1948-49 (rabi) to $1955-56$ (kharif). (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) $72 \mathrm{lb} / \mathrm{ac}$.
(ii) $170.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	673
2.	788
3.	687
4.	665
5.	793
S.E./mean	$=76.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- Mh. 52 (77)/51 (50)/50 (47)/49 (33).
Site :- Agri. Res. Stn., Kopergaon. Type :- 'M'.

Object:-To study the effect of leguminous crop gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy-Gram. (b) Gram. (c) According to treatments. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 26.6.1952. (iv) (a) 1 ploughing. (b) Drilling. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) Distance between two rows- $12^{\prime \prime}$ between plants irregular. (c) N.A. (v) $42 \mathrm{lb} . / \mathrm{ac}$. of N in the form of G.N.C. at the time of sowing and 22 lb ./ac. of N in the form of A / S at the time of flowering. (vi) Krishnasal (mid-late). (vii) Irrigated. (viii) 1 gap filling, 2 harrowings, 3 weedings and 1 interculturing. (ix) 11.73'. (x) 1 and 2.11.1952.
2. TREATMENTS :
3. No manure.
4. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{8} \mathrm{O}_{5}$.
5. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Control. (Fallow in Rabi and sown in Kharif with $64 \mathrm{lb} . / a c$. of $\mathrm{N}_{\text {. }}$)
$\mathbf{P}_{2} \mathrm{O}_{5}$ was applied to gram and its residual effect studied on paddy. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
8. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A.
(iii) 5 .
(iv) (a) $57^{\prime} \times 24^{\prime}$.
(b) $46^{\prime} \times 12^{\prime}$.
(v) $5.5^{\prime} \times 6^{\prime}$. (vi) Yes.
9. GENERAL :
(i) The germination was 70 to 72%; few gaps were seen. Average height of the crop was $18^{\prime \prime}$ to 20° with 7 to 8 tilers. The crop was not vigorous as there were no rains. (ii) Slight attack of blast. (iii) Grain yield. (iv) (a) Rabi 1948-49 to Kharif 1955-56. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (b) N.A. (vi) Nil. (vii) NiJ.
10. RESULTS:
(i) $1218 \mathrm{lb} . / \mathrm{ac}$.
(ii) $228.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatments differ highly significantly.
(iv) Av yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1240
2.	1003
3.	1105
4.	1023
5.	1721
S.E./nean	$=1023 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- Mh. 53 (37)/52 (77)/51 (50)/50 (94)/49(33).
Site :- Agri. Res. Stn., Kopergaon. Type :- ' \mathbf{M} '.
Object :-To study the effect of leguminous crop gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.
2. BASAL, CONDITIONS :
(i) (a) Nil. (b) Gram. (c) As per treatments. (ii) (a) A type. (b) Refer soil analysis, Kopergaon.
(iii) 7.7.1953. (iv) (a) 1 ploughing and 1 loading. (b) to (e) N.A. (v) Nil. (vi) Dodki (mid late).
(vii) Irrigated. (viii) 2 weedings and 4 hoeings (ix) 17.22*. (x) 1.11.1953.
2. TREATMENTS :

1. Control.
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
3. 100 lo ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. $150 \mathrm{Jb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow in rabi tut 42 lb ./ac. of N as $\mathrm{G} . \mathrm{N} . C$. and 22 lb ./ac. of N as A / S applied during this season. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to previous crop gram.
6. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) $57^{\prime} \times 24^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$. (v) $5.5^{\prime} \times 6^{\prime}$. (vi) Yes.
7. GENERAL :
(i) Good. (ii) Nil. (iii) Germination date, flowering date, heights, tillers etc. (iv) (a) 1948-55 (b) Yes. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Nil.

5. RESULTS:-

(i) 1882 lb./ac.
(ii) $644.0 \mathrm{lb} / \mathrm{ac}$:
(iii) Treatments differ bighly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1177
2.	1824
3.	1724
4.	1741
S.	2943
S.E./mean	$-288.8 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Kopergaon.
Ref:- Mh. 48(18),
Type :- 'M'.

Object :-To study the N and P requirements of Paddy.

1. BASAL CONDITIONS :
(i) (a) Wheat Paddy. (b) Wheat. (c) 3 C.L./ac. of compost $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+2$ bags of G.N.C. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 30.6.1948. (iv) (a) N.A. (b) Drilled. (c) 40 lb./ac. (d) Between rows $12^{\prime \prime}$. (e) N.A (v) 5 C.L./ac.of F.Y,M. applied on 25th June, 1948. (vi) Krishnasal (mid-late). (vii! Irrigated. (viii) 1 interculturing, 2 weedings and 1 roguing. (ix) 33.20". (x) 29.11.1948.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=32, P_{2}=64$ and $P_{3}=96 \mathrm{lb}$./ac.

N as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. N broadcast on 20.6.1948 and $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled on 20.6.1948.
3. DESIGN :
(i) 4×4 Factorial in R.B.D. (ii) -(a) 16. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 22^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Crop suffered from leaf rust to a little extent. (iii) Grain yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) Amreli, Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2180 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $617.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	N_{1}	N_{2}	N_{3}	Mean
P_{0}	1622	1977	2125	2467	2048
P_{1}	1802	1762	2666	2386	2154
P_{2}	1684	2095	2057	2669	2126
P_{3}	2163	2455	2231	2713	2391
Mean	1818	2072	2270	2559	2180
S.E. of marginal mean of \mathbf{N} or \mathbf{P} S.E of body of table				$\begin{aligned} & =154.4 \mathrm{lb} . / \mathrm{ac} \\ & =308.8 \mathrm{lb} . / \mathrm{ac} \end{aligned}$	

```
Crop :- Paddy (Kharif).
Site :m Agri. Res. Stn., Kopergaon.
```

Ref:- Mh. 49(32).
Type :- ' M '.

Object :-To study the N and P requirements of Paddy.

1. BȦSAL CONDITIONS:

(i) (a) Wheat-Paddy. (b) Wheat. (c) 2 bags/ac, of G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 5.7.1949. (iv) (a) N.A. (b; Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Krish nasal (mid-late). (vii) Irrigated. (viii) 1 hoeing, 3 weedings and 2 harrowings and gap filling on 15.7.1949. (ix) 17.69". (x) 12.11.1949.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{\mathrm{O}}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5} ; \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled on 5.7.1949 and N broadcast one month after sowing.

3. DESIGN :

(i) 4×4 Factorial in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 22^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) 5^{\prime} ring round the net plat. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) Amreli, Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1379 \mathrm{lb} . / \mathrm{ac}$.
(ii) $208.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of N is highly significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

	\mathbf{N}_{0}	N_{1}	N_{2}	N_{3}	Mean
\mathbf{P}_{0}	988	1349	1624	1991	1488
\mathbf{P}_{1}	1156	1188	1390	1561	1324
P_{2}	1084	1195	1649	1638	1392
P_{3}	1138	1203	1334	1583	1314
Mean	1091	1234	1499	1693	1379

S.E. of marginal mean of N or P
S.E. of body of table
$=52.2 \mathrm{lb} . / \mathrm{ac}$.
$=104.4 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Paddy (Kharif):
Site :- Agri. Res. Stn., Kopergaon.
Ref:- Mh. 50(46).
Type :m 'M'.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Paddy.

1. BASAL CONDITIONS:
(i) (a) Wheat in Rabi-Paddy in Kharif. (b) Wheat. (c) 3 bags of G.N.C./ac. $+75 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Medium black (b) Refer soil analysis, Kopergaon. (iii) 1.7.1950. (iv) (a) 2 ploughings and 4 harrowings. (b) Drilled. (c) 40 bb/ac. (d) Spacing between rows $12^{\prime \prime}$. (e) -. (v) 5 C.L./ac. of F.Y.M. on 25.6.1950. (vi) Krishnasal (mid-late). (vii) Irrigated. (viii) 3 hoeings. (ix) $21.2 j^{\prime \prime}$. (x) 20 to 22.11.1950.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N as G.N.C. aad $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with Paddy and N applied on 30.6.1950.
3. DESIGN :
(i) 4×4 Fact. in R.B.D.
(ii) (a) 16.
(b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 22^{\prime}$
(b) $30^{\prime} \times 12^{\prime}$.
(v) 6 ring at round the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast disease observed. (iii) Grain yield. (iv) (a) 1948 -1951. (b) No. (c) N.A. (v) (a) Amreli, Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1321 \mathrm{lb} / \mathrm{ac}$.
(il) $369.6 \mathrm{lb} . / \mathrm{ac}$.
(ili) Main effect of N alone is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
\mathbf{P}_{0}	955	1314	1613	1623	1376
P_{1}	1129	1008	1499	1622	1314
P_{2}	1055	992	1355	1410	1203
P_{3}	1098	1198	1548	1718	1391
Mean	1059	1128	1504	1593	1321

$$
\begin{aligned}
\text { S.E. of marginal mean of } \mathrm{N} \text { or } \mathrm{P} & =92.4 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =184.8 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref. :- Mh. 51(49). } \\
\text { Site :- Agri. Res. Stn., Kopergaon. } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Paddy.

1. BASAL CONDITIONS :
(i) (a) Gram • Paddy. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 6,7.7.1951. (iv) (a) N.A. (b) Drilling. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Krishnasal (mid-late). (vii) Irrigated, (viii) 3 weedings and 1 harrowing. (ix) $34.67^{\prime \prime}$. (x) 28.11 .1951 and 29.11.1951.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.
N as G.N.C. and $P_{2} O_{5}$ as Super. Manuring of N and P on 5.7.1951.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) $40^{\prime} \times 22^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blast disease observed. (iii) Grain yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) Amreli, Igatpuri, Ratnagiri and Vadgaon. (vi) and (vii) Nil.

5. RESULTS:

(i) $1380 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $240.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of N alone is highly significant. Others are not significant.
(iv) Av. yield of grain in 1 lb ./ac.

	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$	Mean
$\mathrm{P}_{\mathbf{0}}$	989	1157	1814	1512	1368
P_{1}	984	1100	1412	1773	1308
$\mathrm{P}_{\mathbf{2}}$	1126	1266	1410	2063	1466
P_{3}	995	1498	1284	1742	1379
Mean	1014	1255	1480	1772	1380

S.E. of marginal mean of N or P	$=60.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=120.0 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res: Stn., Padegaon.

Ref:- Mh. 52(189).
Type :- ' M '.

Object :-To find out the comparative merits of A/S and A.S.N on the growth of Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) Nil. (ii) (a) B'Type. (b) Refer soil analysis, Padegaon. (iii) 27.6.1952.
(iv) (a) N.A. . (b) Hand sowing. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) Between rows 2^{\prime}. (e) N.A. (v) Nil. (vi) Krishnasal.
(vii) Irrigated. (viii) Weedings on 3.8.1952 and 23.8.1952. (ix) 11.01". (x) 21.11.1952.

2. TREATMENTS:

1. G.N.C. at $32 \mathrm{lb} / \mathrm{ac}$. of N+A.S.N. at $10 \mathrm{lb} . / \mathrm{ac}$. of N and A/S.N. at 22 lb ./ac. of N. Mixture of G.N.C. and A.S.N. at sowing ; and A.S.N. at flowering.
2. G.N.C. at $32 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+\mathrm{A} / \mathrm{S}$ at 10 lb ./ac. of N and A / S at $22 \mathrm{lb} . / \mathrm{ac}$. of N . Mixture of G.N.C. $+\mathrm{A} / \mathrm{S}$ at sowing and A / S at flowering.
3. G.N.C. at $32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+$ A.S.N. at $10 \mathrm{lb} . / \mathrm{ac}$. of N and A.S.N. at $22 \mathrm{lb} . / \mathrm{ac}$. of N. Mixture of G.N.C.+ A.S.N. at sowing and A.S.N. at tillering.
4. G.N.C. at $32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+\mathrm{A} / \mathrm{S}$ at 10 lb ./ac. of N and A / S at 22 lb ./ac. of N . Mixture of G.N.C.+A/S at sowing and A / S at til ering.
5. G.N.C. at $42 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+\mathrm{A} / \mathrm{S}$ at $22 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N} . \mathrm{G} . \mathrm{N} . C$. at sowing and A / S at flowering.
6. DESIGN:
(i) R.B.D. (ii) (a) 5 : (b) N.A. (iii) 4. (iv) (a) $26^{\prime} \times 24^{\prime}$. (b) $20^{\prime} \times 20^{\prime}$. (v) 2 rows on either side 3^{\prime} either end. (vi) Yes.
7. GENERAL:
(i) Due to late sowing of paddy the crop, growth was slightly retared and the yields were below average. (ii) Nil. (iii) Grain yield. (iv) (a) $1952 .-$ N.A. (b) N.A. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $1384 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $216.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. vield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	Av. yield.
1.	1366
2.	1368
3.	1351
4.	1365
5.	1470
S.E./mean	$=108.3 \mathrm{lb} . / \mathrm{/ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 52(190).
Type :- ' M '

Object :-To study the effect of Mahuwa cake for normal top dressing of Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sugarcane. (c) 375 lb ./ac. of \mathbf{N} as A / S. (ii) (a) 'B' type. (b) Refer soil agalysis, Padegaon (iii) 27.6.1952. (iv) (a) N.A. (b) Hand sowing. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) I^{\prime} between rows. (e) N.A. (v). Nil. (vi) Krishnasal. (vii) Irrigated. (viii) Interculturing on 13.8.1952, 4.9.1952 and 18.9.1952. (ix) 11.01". (x) 25.11.1952.

2. TREATMENTS :

1. G.N.C. and A / S in $2: 1$; G.N.C. at sowing and A / S at flowering.
2. Mahuwa cake and A / S in $2: 1 . ;$ Mahuwa cake at sowing and A / S at flowering.
3. Mahuwa cake, G.N.C. and A/S in 1:1:1.; Mixture of Mahuwa cake and G.N.C. at sowing and A/S at flowering.
4. Mahuwa cake+A/S in 1:2.; Mixture of Mahuwa cake and balf of A / S at sowing and half of A / S at flowering.
5. G.N.C. and A/S in $1: 2$; Mixture of G.N.C. and half of A / S at sowing and half of A / S at flowering.
6. Mahuwa cake and A / S in $2: 1$.; Decomposed Mohuwa cake 22 days after sowing and A / S at flowering.
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $26^{\prime} \times 18^{\prime}$. (b) $20^{\circ} \times 14^{\prime}$. (v) 2 rows on either side, 3^{\prime} at either end. (vi) Yes.
8. GENERAL :
(i) Due to late sowing, growth was slightly less and yields were below normal. (ii) Nil. ((iii) Grain and straw yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
9. RESULTS:
() $1204 \mathrm{lb} . / \mathrm{ac}$.
(ii) $194.9 \mathrm{lb} / \mathrm{ac}$.
(ii) Treatments do not differ signiflcantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1314
2.	1067
3.	1122
4.	1266
5.	1342
6.	1112
S.E./mean	$=97.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).	Ref :-Mh. 49(3).
Site :-Agri. Res. Stn., Phondaghat.	Type :-'M'.

Object :-To study the effect of deglued B.M. as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ 'as compared to B.M. on Paddy crop.'

1.5 BASAL CONDITIONS :

(i) (a) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Laterite soil. (b) N.A. (iii) 26.4 .1949 ; transplanting 29.5.1949. (iv) (a) to (c) N.A, (d) $10^{\prime \prime} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Patni (early). (vii) Unirrigated. (viii) Weeding on 3rd August 1949. (ix) i59.82". (x) 19.9.1949.

2. TREATMENTS:

1. Control (no manure).
2. $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. +40 lb ./ac. of N as G.N.C.
3. 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M. +40 lb ./ac. of N as G.N.C.

Manuring on 29.6.1949.
3. DESIGN:
$\begin{array}{lllll}\text { (i) R.B.D. (ii) (a) 3. (b) } 80^{\prime} \times 16^{\prime}-8^{\prime \prime} \text {. } & \text { (iii) } 6 \text {. (iv) (a) } 26^{\prime}-8^{\prime \prime} \times 16^{\prime}-8^{\prime \prime} \text {. } & \text { (b) } 20^{\prime} \times 10^{\prime} \text {. (v) } 3^{\prime}-4^{\prime \prime} \text { ring all }\end{array}$ round the net plot, 4 rows all round the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) No. of tillers, height of plants, and grain yield. (iv) (a) 1949-1952. (b) and (c) Yes. (v) (a) Chiplun. (b) N.A. (vi) and (vii) Nil.

5: RESULTS:
(i) $1472 \mathrm{lb} / \mathrm{ac}$.
(ii) $243.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	758
2.	1990
3.	1668
$:$	S.E./mean
	$=99.7 \mathrm{lb} . /$ ac.

1. Crop :-Paddy (Kharif).

Site :-Agri. Res. Stn., Phondaghat.

Ref :-Mh. 50(3)/49(3).
Type: : ‘M'.

Object:-To study the effect of deglued bonemeal as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ as compared to B.M. on yield of Paddy.

1. BASAL CONDITIONS :

(i) (a) Paddy after Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) 28.5.195/5.7.1950. (iv) (a) to (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) F.Y.M. at 5 C.L./ac. (vi) Waksal-207 (mid-late). (vii) Unirrigated. (viii) Weeding on 14.8.1950. (ix) $164.37^{\prime \prime}$. (x) 15.10.1950.

2. TREATMENTS

1. Control (no manure).
2. 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. +40 lb ./ac. of N as G.N.C.
3. $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M. $+40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. Manuring on 5.7.1950.
4. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) $80^{\prime} \times 16^{\prime}-8^{\prime \prime}$. (iii) 6. (iv) (a) $26^{\prime}-8^{\prime \prime} \times 16^{\prime}-8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime}-4^{\prime \prime}$ ring all round the net plot. (vi) Yes.
5. GENERAL:
(i) Lodging observed due to constant heavy rains. (ii) Nil. (iii) Grain yield, straw yield, Av. height. and Av. no. of tillers. (iv) (a) 1949-1952. (b) Yes. (c) N.A. (v) (a) Chiplun. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1844 \mathrm{lb} / \mathrm{ac}$.
(ii) $276.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av: yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield	
1.	973	
2.	2482	
3.		2078
S.E./mean		$=113.0 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Phondaghat.

Ref :- Mh. 51(3)/50(3)/49(3).
Type: ' M '.

Object :-To study the effect of deglued bonemeal as a source of $\mathrm{P}_{2} \mathrm{O}_{5}$ as compared to B.M. on the yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) Paddy after Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Laterite soil. (b) N.A, (iii) 28.5.1951; Transplanting 9.7.1951. (iv) (a) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Waksal-207 (mid-late). (vii) Unirrigated. (viii) Weeding on 12.8.1951.. (ix) $153.40^{\prime \prime}$. (x) $12,13.10 .1951$

2. TREATMENTS :

1. Control (no manure).
2. 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. +40 lb ./ac. of N as G.N.C.
3. 40 lb ./ac' of $\mathrm{P}_{2} \mathrm{O}_{5}$ as deglued B.M. +40 lb ./ac. of N as G.N.C.

Manuring on 9.7.1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\circ}$. (v) $3^{\prime} 4^{\prime \prime}$ ring round the net plot. (vi) Yes.
4. GENERAL:
(i) Lodging due to constant rains. (ii) Nil. (iii) Grain yield, Av. no. of tillers and Av. height of plants. (iv) (a) $1949-1952$. (b) Yes. (c) N.A. (v) (a) Chiplun. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1519 \mathrm{lb} . / \mathrm{ac}$.
(ii) $197.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	880
2.	1862
3.	1814
S.E./mean	$=80.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Phondaghat.

Ref :- Mh. 52(173).
Type :- 'M';

Object :-To study the suitability of dicalcium phosphate for Paddy crop."

』. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Loam derived from gniess and laterite. (b) N.A. (iii) 24.5.10s2; Transplanting on 5.7.1952 to 14.7.1952. (iv) (a) to (e) N.A. (v) Nil. (vi) Waksal-207 (mid-late). (vii) Unirrigated. (viii) Weeding on 30.7. 1952, 6.7.1952 and 7.8.1952. (ix) 135.77". (x) 1.10.1952 and 30.9.1952.
2. TREATMENTS :

1. 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the.form of dicalicum phosphate.
2. 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied in the form of. B.M.
3. DESIGN:
(i) R.B.D. (ii) (a) 2 , (b) N.A. (iii) 12 . (iv) (a) $40^{\prime} \times 20^{\prime}$. (b) $30^{\prime} \times 10^{\prime},\left(\right.$ v) 5^{\prime} ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Lo ${ }^{-}$ging occurred in last week of September. (ii) Nil. (iii) Grain §yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1867 \mathrm{lb} . / \mathrm{ac}$.
(ii) $310.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1874
2.	1861
S.B./mean	$=89.7 \mathrm{lb}$./ac.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Phondaghat. Type :~' ${ }^{\mathbf{M}}$ '.

Ref :- Mh. 53 (261)/52 (173).

Object :-To study the suitability of dicalcium phosphate as a source of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.

1. BASAL CONDITIONS :

(i) (a) Paddy after Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Loam, derived from gniess and laterite. (b) N.A. (iii) 17.6.1953/23 and 24.7.1953. (iv) (a) to (e) N.A. (v) Nil. (vi) Waksal-207 (mid-late). (vii) Unirrigated. : (viii) Weeding in the 2nd week of August. (ix) $170.78^{\prime \prime}$. (x) N.A.

2. TREATMENTS :

1. 32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the form of dicalcium phosphate.
2. 32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the form of B.M.
3. DESIGN :
(i) Paired plot. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) $40^{\prime} \times 20^{\circ}$. (b) $30^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring. (vi) Systematic allocation.
4. GENERAL :
(i) Lodging observed. (ii) Crop was heavily affected by army-worms. (iii) Grain and straw yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1550 \mathrm{lb} . / \mathrm{ac}$.
(ii) $369.0 \mathrm{lb} /$ ac.
(iii) Treatments do pot differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1545
2.	1555
S.E./mean	$=106.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Paddy (Kharif).	Ref :- Mh. 50 (4).
Site :- Agri. Res. Stn., Phondghat.	Type :- 'M'.

Object :-TTo study the effect of graded doses of dolomite on Paddy yield.

1. BASAL CONDITIONS :
(i) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Laterite soil. (b) N.A. (iii) 28.5 .1950 ; transplanting on 6.7.1950, (iv) (a), (b) apd (c) N,A. (d) $10^{\circ} \times 10^{\prime \prime}$. (c) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Waksal-207 (mid-late.) (vii) Unirrigated. (viii) Weeding 0n 6.7.1950. (ix) 164.37'. (x) 16.10.1950.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 5 levels of dolomite : $D_{0}=0, D_{1}=0.5, D_{2}=1, D_{3}=1.5$ and $D_{4}=2$ ton/ac.
(2) 2 manures: $\mathrm{M}_{0}=$ No manure and $\mathrm{M}_{1}=40 \mathrm{lb}$./ac. of N as G.N.C. $+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{z}}$ as B, M.
3. DESIGN
(i) 2×5 factorial in R.B.D. (ii) (a) 10. (b) $16^{\prime \prime} 8^{\prime \prime} \times 266^{\prime} 8^{\prime \prime}$. (iii) 4. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime \prime} 4^{\prime \prime}$ ring all round the net plot. (vi) Yes.
4. GENERAL
(i) Due to constant heavy showers, crop was lodged. Otherewise satisfactory. (ii) Nil. (iii) Average height, no. of tillers and grain yield. (iv) (a) 1950 to 1951. (b) and (c) N.A. (v) (a) and (b) Chiplun. (vi) and (vii) Nil.
5. RESULTS :
(i) $1974 \mathrm{lb} . / \mathrm{ac}$.
(ii) $213.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of dolomite and manures and their interaction are significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{M}_{0}	\mathbf{M}_{1}	Mean
D_{0}	1072	2525 ${ }^{\circ}$	1798
D_{1}	1201	2358	1780
D_{2}	1405	2467	1936
D_{3}	1875	2335	2.105
D_{4}	1923	2576	2249
Mean	1495	2452	1973
S.E. of marginal mean of D S.E. of marginat mean of M S.E. of body of table			$\begin{aligned} & =75.4 \mathrm{lb} . / \mathrm{ac} . \\ & =47.7 \mathrm{lb} / \mathrm{ac} \\ & =106.7 \mathrm{~b} . / \mathrm{ac} . \end{aligned}$

Crop:-Paddy (Kharif).
Ref :- Mh. 51(4).
Site :- Agri. Res. Stn., Phondaghat.
Type :- 'M'.

Object :-To study the effect of graded doses of dolomite on the yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Laterite soil. (b) N.A. (iii) $28,5.1951$; transplanting on 5 and 8.7.1951. (iv) (a) to (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Waksal-207 (mid-late). (vii) Unirrigated. (viii) Weeding on 1.8.1951.
(ix) $153.40^{\prime \prime}$. (x) 12.10 .1951 and 13.10.1951.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 5 levels of dolomite : $\mathrm{D}_{0}=0, \mathrm{D}_{1}=0.5, \overline{D_{2}}=1, \mathrm{D}_{3}=1.5$ and $\mathrm{D}_{4}=2$ ton/ac.
(2) 2 manures: $\mathrm{M}_{0}=$ No manure and $\mathrm{M}_{1}=40 \mathrm{lb}$./ac. of N as G.N.C. +40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. Bonemeal applied on 5.7.1951.

3. DESIGN :

(i) 2×5 Fact. in R.B.D. (ii) (a) 10 . (b) N. A. (iii) 4. (iv) (a) $26^{\prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) $3^{\prime \prime} 4^{\prime \prime}$ ring
round the net plot. (vi) Yes.

4. GENERAL:

(i) Good. Lodging due to heavy showers. (ii) Nil. (iii) Grain yield, Av. no. of tillers and height. (iv) (a) 1950-1951. (b) and (c) N.A. (v) (a) Chiplun. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1759 \mathrm{lb} / \mathrm{ac}$.
(ii) 265.6 lb ./ac.
(iii) Main effect of dolomite and manure are significant, while their interaction is not significant. (iv) Av. yield of grain in lb./ac.

	\mathbf{M}_{0}	$\mathbf{M}_{\mathbf{1}}$	Mean
$\mathrm{D}_{\mathbf{0}}$	1080	2082	1581
D_{1}	1192	2055	1623
$\mathrm{D}_{\mathbf{8}}$	1373	2024	1698
$\mathrm{D}_{\mathbf{3}}$	1742	2089	1915
$\mathrm{D}_{\mathbf{6}}$	1771	2188	1979
Mean	1431	2088	1759

S.E. of marginal mean of \mathbf{D}	$=93.9 \mathrm{lb} / / \mathrm{ac}$,
S.E. of marginal mean of M	$=29.6 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table	

Crop :~ Paddy (Kharif).
Site :- Agri. Res. Stn., Phondaghat.

Ref:- Mh. 53(112).
Type:- ' M '.

Object :-To study the optimum dose of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ in combination with lime.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Laterite soil. (b) N.A. (iii) 16th [June 1953/21st July 1953. (iv) (a) and (b) N.A. (c) 40 lb ./ac. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) N.A. (v) N.A. (vi) Varangal-487 (late). (vii) Unirrigated. (viii) Weeding 2nd week of August. (ix) 170.78". (x) 13th Nov. 1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac. of N .
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(3) 3 levels of lime: $L_{1}=1.25, L_{2}=2.50$ and $L_{3}=3.75$ ton/ac.

N and P applied on 21.7.1953; lime applied on 20.7.1953.-
3. DESIGN :
(i) 3^{3} confounded factorial. (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) $I_{\text {: }}$ (iv) (a) $10^{\prime} 10^{\prime \prime} \times 33^{\prime} 4^{\prime \prime}$. (b) $7^{\prime} 6^{\prime \prime} \times 30^{\prime} 0^{\prime \prime}$. (v) $3^{\prime} 4^{\prime \prime}$ ring all round the plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Crop affected by black-smut and army-worm. 10% B.H.C. dusting was done. (iii) Grain, straw and average no, of tillers, beight. (iv) (a) 1953-contd. (b) and (c) No. (v) (a) Ratangiri, and Karajat. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1814 \mathrm{lb} / \mathrm{ac}$.
(ii) $327.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) All the main effects and their interactions are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	Mean	L_{1}	L_{2}	\mathbf{L}_{3}
P_{0}	2065	1766	2081	1970	1855	2008	2048
P_{1}	2117	1730	1601	` 1816	1839	1819	1790
P_{2}	1903	1645	1419	1656	1552	1798	1617
Mean	2028	1714	1700	1814	1748	1875	1818
\mathbf{L}_{1}	1754	1693	1798				
L_{2}	2145	1794	1685				
\mathbf{L}_{3}	2186	1653	1617				

$$
\begin{array}{ll}
\text { S.E. of marginal mean of N, P or L } & =109.2 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =189.1 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :-Paddy (Kharif).
Site :-Agri. Res. Stn., Ratnagiri.

Ref :-Mh. 53(103).
.Type :-'M'.

Object :-To ascertain the optimum dose of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ in combination with lime to get maximum yield of Paddy.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Laterite. (b) N.A. (iii) 4.6.1953/54 and 25.7.1953. (iv) (a) Puddling was done by ploughing the field 5 times. (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\circ} \times 10^{\circ}$. (e) N.A. (v) N.A. (vi) Bhadas-79. (vii) Unirrigated, (viii) Interculturing and weeding was undertaken at the time of application of N. (ix) $148.06^{\prime \prime}$. (x) 10.11 .1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as Calcium Cynamide : $N_{0}=0, N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac. of N_{0}.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. : $\mathbf{P}_{\mathbf{0}}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{\mathbf{2}}=60 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(3) 3 levels of lime: $L_{1}=2, L_{2}=4$ and $L_{3}=6$ ton/ac.
3. DESIGN :
(i). 3^{3} Fact. in R B.D. (confounded). (ii) (a) 9. (b) N.A. (iii) 1. (iv) (a) $33^{\prime} 4^{\prime \prime} \times 10^{\prime} 10^{\prime \prime}$. (b) $30^{\prime} \times 7^{\prime} 6^{\prime \prime}$. (v) $1^{\prime} 8^{\prime \prime}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Blue-beetle, case-worms and army-worms observed. (iii) Grain and straw yield. (iv) (a) 1953 -contd. (b) No. (c) N.A. (v) (a) Hatakhamba. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2049 \mathrm{lb} . / \mathrm{ac}$.
(ii) $336.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects and interactions are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	Mean	\mathbf{L}_{1}	L_{8}	L_{2}
P_{0}	2004	2295	1956	2085	2242	2000	2012
\mathbf{P}_{1}	1844	1969	1976	1929	1803	2045	1940
$\mathbf{P}_{\mathbf{2}}$	2432	2000	1977	2136	1867	2351	2190
Mean	2093	2088	1970	2049	1971	2132	2048
L_{1}	1847°	2097	1968	-			
L_{2}	2452	2122	1823				
$\mathbf{L}_{\mathbf{a}}$. 1980	2045	2117				

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } N, P \text { or } L & =112.3 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. o body of table } & =194.5 \mathrm{lb} . / \mathrm{ac}
\end{array}
$$

Crop :"Paddy (Kharif). . Ref :-Mh. 48(1).
Site :-Agri. Res. Stn.; Ratnagiri.
Type:-'M'.

Object :-To study the combined effect of \mathbf{N} and \mathbf{P} manures on Paddy crop.

1. BASAL CONDITIONS:

(i) (a) Paddy after Paddy. (b) Kulthi mixture in Rabi. (c) Nil. (ii) (a) Mala or low lying. (b) pH value 5.0. Lime requirement in ton/ac. of CaCo_{3} 4.4. (iii) 11th June 1948 ; transplanted between 3rd and 7th August, 1948. (iv) (a) to (c) N.A. (d) $10^{\circ} \times 10^{\circ}$. (c) 8 seedlings/bunch. (v) 5 C,L./ac. of F.Y.M. (vi) Waksal-207 (mid-latẹ). (vii) Unirrigated. (viii) No weeding or interculturing. (ix) 141.51". (x) 7th November 1948.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: P_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.

N as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
N applied on 17.81948
3. DĒSIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring. alround the net plot. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv), (a) 1948-1956 (Residual effects from 1952 onwards). (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (b) Nil.
5. RESULTS
(i) $1694 \mathrm{lb} / \mathrm{ac}$.
(ii) $166.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N is not significant while main effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ and the interaction are significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
P_{0}	1331	1446	1562	1585	1481
P_{1}	1562	1776	1763	1719	1705
\mathbf{P}_{2}	1596	1790	1776	1808	1743
\mathbf{P}_{3}	1742	1923	1875	1834	1844
Mean	1558	1734	1744	1737	1694
S.E. of marginal mean of \mathbf{N} or \mathbf{P} S.E. of body of table				$\begin{aligned} & =41.5 \mathrm{lb} . / \mathrm{ac} . \\ & =83.0 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop: Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref :- Mh. 49(1)/48(1).
Type:- ' M '.

Object :-To study the combined effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ on Paddy.

1. BASAL CONDITIONS
(i) (a) N.A. (b) Kulthi mixture in Rabi. (c) Nil. (ii) (a) Mala or low lying. (b) pH value 5.0 lime requirement in terms of $\mathrm{CaCO}_{3}=4.4$ ton/ac. (iii) 3 and 4.6. 1949 ; Transplanting bet. 28.7.1949. to 1.8.1949. (iv) (a), (b) and (c) N.A. (d) $10^{\prime \prime} \times 10^{*}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Wak sal-207. (vii) Unirrigated. (viii) Nil. (ix) $105.90^{* \prime}$. (x) 24.10 .1949 to 3.11 .1949.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $N: \quad N_{0}=0, \quad N_{1}=32, \quad N_{2}=64$ and $N_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: P_{0}=0, P_{1}=32, P_{2}=64$ and $P_{3}=96 \mathrm{lb}$./ac.

N as G.N.C. applied on 16.8 .1949 and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied prior to transplanting.
3. DESIGN:
(i) 4×4 Fact. in ${ }^{\circ}$ R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $30^{\circ} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\circ}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL
(i) Harvesting delayed due to heavy rain; shedding of grain about 15%; complete lodging. (ii) Attack of: karpa in August. (iii) Straw and grain yield. (iv) (a) 1948-1956 (Residual effect from 1952 onwards); (b) Yes. (c) N.A. (v) (a) Igatapuri, Vadgaon, Karjat, Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) 1819 lb./ac.
(ii) $388.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av, yield of grain in lb ./ac.

Crop :- Paddy (Khariff).
Site :m Agri. Res. Stn., Ratnagiri.

Ref: \sim Mh. 50(1)/49(1)/48(1).
Type:- 'M.'

Object :-To study the combined effect of N and P on Paddy crop.

1. BASAL CONDITIONS :

(i) (a) Paddy after Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 2,4.6.1950; Transplanting between 11 to 14.6 .1950 . (iv) (a) to (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. at the time of puddling. (vi) Waksal-207 (mid-late). (vii) Unirrigated. (viii) Nil. (ix) 129.08". (x) 3rd week of Oct. 1950.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \quad \mathrm{~N}_{1}=32, \quad \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=32, P_{2}=64$ and $P_{3}=96 \mathrm{lb}$./ac.

N as G N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. N applied on 2.8.1950.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) $30^{\circ} \times 20^{\prime}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Crop slightly affected by karpa. Hexaglane dusted. (iii) Grain and straw yiekd. (iv) (a) 1948-56 (Residual effect from 1952 onwards). (b) Yes. (c) N.A. (v) (a) Igatpuri, Vadgaon, Karajat, and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2292 \mathrm{lb} / \mathrm{ac}$.
(ii) $238.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} is significant while main effect of \mathbf{N} and the interaction are not significant.
(iv) Av. yield of grain in lb ./ac.

	N_{0}	N_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	Mean
P_{0}	2001	2069	2273	$2096{ }^{\circ}$	2110
P_{1}	2055	2314	2219	2518	2277
\mathbf{P}_{2}	2178	2355	2505	2205	2311
P_{3}	2396	2396	2423	2668	- 2471
Mean	2158	2282	2355	2372	2292
S.E. of marginal mean of N or P S.E. of tody of table					

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref:- Mh. $51(1) / 50(1) / 49(1) / 48(1)$.
Type:- ' M '.

Object :-To study the \mathbf{N} and \mathbf{P} requirements of Paddy.

1. BASAL CONDITIONS :

(i) (a) Paddy in Kharif-fallow in Ràbi. (b) Paddy. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 2nd and 4th June 1951. Transplanting between 28 th and 3 1st July 1951. (iv) (a), (b) and (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (c) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. given at the time of puddling. (vi) Waksal207 (mid-late). (vii) Unirrigated. (viii) Nil. (ix) $129.08^{\prime \prime}$. 'v) lst week of November 1951.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb} . / \mathrm{ac}$. of N .
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. and N as G.N.C.
3. DESIGN:
(i) 4×4 Factorial in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Fairly good germination. Crop was not normal due to absence of rain. (ii) Attack of Karpa; Gammaxene dusting was done during the 1st week and 3rd week of August 1951. (iii) Grain and straw yield. (iv) (a) 1948 to 1956 (residual effect studied from 1952 onwards), (b) Yes. (c) N.A. (v) (a) Igatpuri. Vadagaon, Karjat. (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) $1604 \mathrm{lb} . / \mathrm{ac}$.
(ii) $222.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects and their interaction are not significant.
(iv) Av. yield of grain in lb./ac.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref:- Mh. 52(17)/51(1)/50(1)/49(1)/48(1). Type:- ' $\mathbf{M '}^{\prime}$.

Object :-To study the residual effect of the application of N and P to Paddy applied during last five years.

1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 2.6.1952, Transplanting - Replication I and II on 27.6.1952, III and IV on 22.6.1952. (iv) (a) Puddling before transplanting, 3 ploughings, (b) Transplanting. (c) 一. (d) $10^{\pi} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Waksal-207. (mid,-late). (vii) Unirrigated. (viii) Nil. (ix) 70.20°. (x) 20.10 .1952 and 21.10.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb}$./ac. of N.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. and N as A / S; manures applied last year.
3. DESIGN
(i) 4×4 Factorial in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 2 \%^{\circ}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1948 to 1956. (b) Yes. (c) N.A. (v) (a) Igatpuri, Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2562 \mathrm{lb} / \mathrm{ac}$.
(ii) $313.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{P} and their interaction are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	Mean
P_{0}	2442	2556	2540	2284	2455
P_{1}	2628	2461	2521	2477	2522
$\mathrm{P}_{\mathbf{2}}$	2610	2456	2694	2617	2594
P_{2}.	2777	2572	2733	2624	2676
Mean	2614	2511	2622	2500	2562
S.E. of marginal mean of \mathbf{N} or \mathbf{P} S.E. of body of table				$\begin{aligned} & =78.3 \mathrm{lb} / / \mathrm{ac} . \\ & =156.6 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Object :-To study the residual effect of application of N and P to Paddy crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) 2nd year of residual effect. No manure last year. (ii) (a) Laterite
(b) N.A. (iii) 3 and 4.6 .1953 ; transplanting from 18 to 21.7.1953. (iv) (a) to (c) N.A. (d) $10^{\circ \prime} \times 10^{\circ}$.
(e) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Waksal-207 (mid-late). (vii) Unirrigated. (viii) Weeding and interculturing done on 6,7 and 8th of August. (ix) $148.06^{\prime \prime}$. (x) 26 to 28th Oct. 1953.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb}$./ac. of N.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=95 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as bonemeal ; N as A/S. Manures applied 2 years back.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 3. (iv) (a) $30^{\prime} \times 20^{\prime}$. '(b) $20^{\prime} \times 10^{\prime}$: (v) 5^{\prime} ring all round the net plot. (vi) Yeso
4. GENERAL :
(i) Not good due to heavy rain and attack of beetles and army-worm. (ii) Attack of blue-beetles and armyworms ; gammaxene was dusted to check the attack on 25.8.1953 and 2.9.1953. (iii) Grain and straw yield. (iv) (a) 1948-1956. (b) Yes. (c) N.A. (v) (a) Igatpuri and Vadgaon. (b) N.A. (vi) Nil. (vii) Experiment laid out with 4 replications.

5. RESULTS:

(i) 2079 lb ./ac.
(ii) 419.8 lb ./ac.
(iii) Main effect of N is not significant, "main effect of P and the interaction are significant.
(iv) Av. yield of grain in lb/ac.

	N_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	Mean
P_{0}	2006	2019	1920	1117	1765
P_{1}	1357	2279	2287	2373	2074
\mathbf{P}_{2}	1924	2391	1847	2524	2171
P_{3}	2287	1965	2305	2650	2301
Mean	1893	2163	2090	2166	2079
.E. of marginal mean of N or P S,E. of body of table				$\begin{aligned} & =121.2 \mathrm{lb} . / \mathrm{ac} . \\ & =242.3 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop :- Paddy (Kharif). \quad Ref :- Mh. 52(30).
Site :- Agri. Res. Stn., Ratnagiri. \quad Type :-'M'.

Object:-To find out the effect of Sann green manuring on Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) Red loam. (b) N.A. (iii) 2.6.1952/23.7.1952. (iv) (a) 2 ploughings. (b) and (c) N.A. (d) $10^{\prime \prime} \times 10^{\circ}$. (c) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. on 16.5.1952. (vi) Patni-6 (early). (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 1.10.1952.
2. TREATMENTS
3. Sann green mantire.
4. No green manure.

Manure mixture at 160 lb ./ac. was applied both the treatments. Sann sown on $\mathbf{5 . 5} \mathbf{5}$.1952.
3. DESIGN :
(i) R.B.D. (ii) (a) 2 . (b) N.A. (iii) 8. (iv) (a) $33^{\prime}-4^{\prime \prime} \times 33^{\prime}-4^{\prime \prime}$. (b) $25^{\prime} \times 25^{\prime}$. (v) 5 rows all round the: net plot. (vi) Yes.
4. GENL AL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1951-$ N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and: (vii) Nil.
5. RESULTS:
(i) $4883 \mathrm{lb} . / \mathrm{ac}$.
(ii) $492.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	5510
2.	4256
S.E $/$ mean	$=174.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref :- Mh. 49 (5).
Type:- ' M '

Object :-To study the effect of leguminous crop grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeding cereal crop.

1. BASAL CONDITIONS :

(i) (a) Wal \ln Rabi, Paddy in Kharif (b) Wal in Rabi. (c) As per treatment. (ii) (a) Malad or low lying laterite (b) Lime requirement in terms of $\mathrm{CaCO}_{3}=4.4$ ton/ac. pH value 5.0. (iii) $3,4.6 .1949 ; 16,19.7 .1949$. (iv) (a), (b) and (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (c) 5 seedlings/bunch. (v) 5 C.L./ac, of F.Y.M. (vi) Panvel.61. (vii) Irrigated. (viii) Nil. (ix) 105.90°. (x) 23, 298.1949.

2. TREATMENTS :

1. No $\mathrm{P}_{8} \mathrm{O}_{6}$ to wal in Rabi.
2. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{8} \mathrm{O}_{5}$ to wal in Rabi.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ to wal in Rabi.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$ to wal in Rabl.
5. Fallow in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6 . (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL :
(i) Good. (ii) Slightly affected by Karpa. (iii) Grain and straw yield. (iv) (a) 1948 to 1956. (b) Yes, (c) N A. (v) (a) Karajat. (b) N.A. (vi) Nil. (vii) Nil.
8. RESUL'TS :
(i) $2736 \mathrm{lb} . / \mathrm{ac}$.
(ii) $414.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb /ac.

Treatment	Av. yield
1.	2414
2.	2795
3.	3028
4.	3040
S.	2405
S.E./mean	$=169.3 \mathrm{lb} . / \mathrm{ac}$

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.
Ref :- Mh. 50 (12)/49 (5).
Type:- 'M'.
Object:-To study the effect of leguminous crop Wal raised with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop of Paddy.
1.- BASAL CONDITIJNS:
(i) (a) Paddy in Kharif, pulse in Rabi. (b) Wal in Rabi. (c) As per treatments. (ii) (a) Laterite. (b) N.A (iii) 2 and $4.6 .1950 / 26$ to 28.6.1950. (iv) (a), (b), (c) N.A. (d) $10^{\circ} \times 10^{\circ}$. (c) 8 seedlings/bunch. (v) 5 C.L./ac. of F.Y.M. Top dressing $8 \mathrm{lb} . / \mathrm{guntha}$ of manure mixture. (vi) Panvel-61. (vii) Unirrigated. (viii) Nil. (ix) $97.65^{\prime \prime}$. (x) 16 to 18.10 .1950 .
2. TREATMENTS:

1. Control ($\mathrm{nO} \mathrm{P}_{2} \mathrm{O}_{5}$-)
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow in Rabi.
$\mathbf{P}_{2} \mathrm{O}_{5}$ was applied to the previous crop"wal and its residual effect is studied on Paddy this year.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring alround the net plot. (vi) Yes.
7. GENERAL :
(i) Good. (ii) Nil. (iii) Grain and straw yield, (iv) (a) 1949 to 1955 . (b) Yes. (c) N.A.(v) (a) Karjat. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $2350 \mathrm{lb} . / \mathrm{ac}$
(ii) $237.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) A'r. yield of grain in lb./ac.

Treatment	Av. yield.
1.	2276
2.	2320
3.	2418
4.	2712
5.	2026
S.E./mean	$=106.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Site : Agri. Res. Stn., Ratnagiri.

Ref : $\boldsymbol{\sim}$ Mh. 51(15)/50(12)/49(5).
Type:-‘M'.

Object:-To study the effect of leguminous crop Wal raised with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding Paddy crop:

1. BASAL CONDITIONS:
(i) (a) Paddy in Kharif-wal in Rabi. (b) Wal in Rabi. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) $3.6 .1951 / 13$ to 18.7 .1951 . (iv) (a) N.A. (b) Trar splanting. (c) -. (d) $10^{\circ} \times 10^{\prime \prime}$. (e) 8 seedlings/ bunch. (v) 5 C.L./ac. of F.Y.M. (vi) Panvel-61 (mid-late). (vii) Unirrigated. (viii) Nil. (ix) 129.02*. (x) 16 to 18.10.1951.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Fallow in Rabi.
$\mathrm{P}_{2} \mathrm{O}_{5}$ was applied to the previous crop wal and its residual effect is studied on Paddy this year.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $30^{\prime} \times 20^{\circ}$. (b) $20^{\circ} \times 10^{\circ}$. (v) 5^{\prime} alround the net plot. (vi) Yes.
9. GENERAL :
(i) Fairly good. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1949-1955. (b) Yes. (c) N.A. (v)
(a) Karjat. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $2090 \mathrm{lb} . / \mathrm{ac}$.
(ii) $307.3 \mathrm{lb} . / \mathrm{ac}$.
(iil) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	2058
2.	2113
3.	2045
4.	2287
5.	1949
S.E./mean	$=137.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).	Ref:~Mh. $52(29) / 51(15) / 50(12) / 49(5)$.
Site :-Agri. Res. Stn., Ratnagiri.	Type :-'M'.

Object:-To study the effect of leguminous Wal crop raised with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop.

1. BASAL CONDITIONS :
(i) (a) Paddy - Wal. (b) Wal in Rabi (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 3.6.1952; transplanting. Replication. I, II and III on 1.7.1952; IV and V on 30.6.1952. (iv) (a) to (c) N.A. (d) $10^{\circ \prime} \times 10^{\circ}$.
(e) 8 seedlings/bunch.
(v) 5 C L /ac. of F.Y.M. (vi) Panvel-61. (vii) Unirrigated
(x) 9 10.19s2.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
5. 100 lb /ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Fallow in Rabi
$\mathrm{P}_{2} \mathrm{O}_{5}$ was applied to the previous crop wal and its residual effect studied on Paddy this year.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $30^{\circ} \times 20^{\circ}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
-4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grsin and straw yield. (iv) (a) 1949-1955. (b) Yes. (c) N.A. (v) (a) Karjat. (b) 'N.A. (vi) and (vii) Nil.

-5. RESULTS

(i) $2755 \mathrm{lb} / \mathrm{ac}$.
(ii) $467.1 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
-(iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1. 2738
2. 2921
3. 2730
4. , 3108
$5 . \quad 2278$
.S.E./mean $\quad=208.7 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- Mh. } 53(110) / 52(2 \theta) / 51(15) / 50(12) / 49(5) . \\
\text { Site :- Agri. Res. Stn., Ratnagiri. } & \text { Type : : ‘M’. }
\end{array}
$$

Object :--To study the effect of leguminous crop Wal raised with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) Wal-Paddy. (b) Wal. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 4.6 .1953 ; Transplanting-Replications I, II and III, 8.7.1953 IV and V, 7.7.1953. (iv) (a) Puddling and ploughing the field 4 or 5 times. (b) Transplanting. (c) - . (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Panvel 61 (mid-late). (vii) Unirrigated. (viii) Weeding and interculturing on 16.8.1953. (ix) 148.06". (x) 18.10.19:3 and 20.10.1953.
2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow is Rabi.
$\mathbf{P}_{2} \mathrm{O}_{6}$ was applied to the previous crop wal and its residual effect studied on Paddy this year.
6. DESIGN :
(i) R.B.D. (ii) 5. (b) N.A. (iii) 5. (iv) (a) $30^{\circ} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL:
(i) Fairly satisfactory, 10-12 tillers in a bunch. (ii) No incidence of pest and disease. (iii) Grain and straw yield. (iv) (a) 1948-1956. (b) Yes. (c) N.A. (v) (a) Karjat. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $3321 \mathrm{lb} . / \mathrm{ac}$.
(ii) $503.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

Treatment	Av. yield
1.	3354
2.	3430
3.	3447
4.	3188
5.	3188
S.E./mean	$=225.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- Mh. 51(153).
Site:- Govt. Seed and Demonstration Farm, Sindewahi. \quad Type :- 'M'.

Object :-To assess the effect of common dose of different manures on yield of Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) Luchai (medium). (vii) Irrigated. (viii) N.A. (ix) $56.03^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control.
4. Cotton seed cake decorticated at 20 lb ./ac. of N .
5. Cotton seed cake undecorticated at 20 lb ./ac. of N .
6. A / S at $20 \mathrm{lb} . / \mathrm{ac}$. of N .
7. G.N.C. at $20 \mathrm{lb} . / \mathrm{ac}$. of N .
8. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 40$ th of an ac. (v) N.A. (vi) Yes.
9. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) $1951-$ N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $2365 \mathrm{lb} . / \mathrm{ac}$.
(ii) $381.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	2288
2.	2412
3.	2404
4.	2368
S.	2356
S.E./mean	$=170.6 \mathrm{lb} . / \mathrm{ac}$.

Crop: Paddy (Kharif).
Ref :- Mh. 53(275).
Site :- Govt. Seed and Demonstration Farm, Sindewahi.
Type : " ${ }^{\prime}$ '.
Object:-To study the effect of placement of manures on the yield of Paddy.

'1. BASAL CONDIIIONS

(i) (a) N.A. (b) N.A. (c) N.A. ${ }^{-}$(ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) Luchai. (vii) Irrigated. (viii) N.A. (ix) $65.34^{\prime \prime}$. (x) N.A.

2. TREATMENTS

1. Broadcast at 30 lb ./ac. of $\mathrm{N}+15 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. Smearing manures to the roots at $30 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+15 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 2.
(b) N.A. (iii) 4 .
(a) N.A.
(b) $1 / 100$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1953-56. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2215 \mathrm{lb} . / \mathrm{ac}$.
(ii) $731.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2350
2.	2081
S.E./mean	$=365.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif.). Ref :- Mh. 5 2(185).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :- 'M'.

Object :-To find out the best time of sowing sannhemp as green manure for Pad dy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam، (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) $44.90^{\prime \prime}$. (x) N.A).
2. TREATMENTS :

Sowing of sannhemp on

1. 15.3.1952.
2. 1.4.1952.
3. 15.4.1952.
4. 1.5 .1952 .
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv). (a) N.A. (b) $1 / 80$ th of an acre. (v) N.A. (vi) Yes,
6. GENERAL:
(i) N.A. (ii) N A. (iii) Grain yield. (iv) (a) 1952-N.A. (b) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $2255 \mathrm{lb} . / \mathrm{ac}$.
(ii) $391.9 \mathrm{lb} / \mathrm{ac}$.
(ii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb,/ac.

Treatment	Av. yield
1.	2050
2.	2380
3.	2540
4.	2050
S.E./mean	$=195.9 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Govt. Seed and Demonstration Farm, Sindewahi.

Ref: Mh. 50(114).
Type :- 'M'.

Object:-To find out the effect of application of Mohuwa cake to Paddy crop.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) $51.86^{\prime \prime}$ ((x) N.A.
2. TREATMENTS :
3. No manure.
4. 20 lb ./ac. of N as Mohuwa cake.
5. 40 lb ./ac. of N as Mohuwa cake.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield.
(iv) (a) 1950 to 1952.
(b) N.A.
(c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $2045 \mathrm{lb} . / \mathrm{ac}$.
(ii) $236,6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Ay. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1872
2.	2212
3.	2052
S.e./mean	$=105.8 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lr}
\text { Crop :~ Paddy (Kharif). } & \text { Ref :~ Mh. 51(151). } \\
\text { Site :-Govt. Seed and Demonstration Farm, Sindewahi. } & \text { Type :~ ' } \mathbf{M} \text { ': }
\end{array}
$$

Object :-To find the effect of application of Mohuwa cake to Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A.
(vi) N.A. (vii) Irrigated. (viii) N.A. (ix) $56.03^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control.
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N as Mohuwa cake.
5. $40 \mathrm{lb} / \mathrm{ac}$. of N as Mohuwa cake.
6. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $\mathbf{1 / 4 0}$ ac. (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield.' (iv) (a) 1950 to 1952. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $2155 \mathrm{lb} / \mathrm{ac}$.
(ii) $544.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1860
2.	2308
3.	$2298 \quad$
S.E./mean	$=243.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref :- Mh. 52 (184).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :- ' M '.
Object :-To find out the utility of application of Mohuwa cake to Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) Luchai (medium). (vii) Irrigated. (viii) N.A. (ix) $44.90^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control.
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N as Mohuwa cake.
5. 40 lb ./ac. of N as Mohuwa cake.
6. DESIGN:
(i) R.B.D.
(ii) (a) 3.
(b) N.A. (iii) 5.
(iv) (a) N.A.
(b) $1 / 80$ ac. (v) N.A.
(vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield (iv) (a) 1950 to 1952 . (b) No. (c) N.A. (v) (a) N.A. (b) N.... (vi) Nil. (vii) Nil.
8. RESULTS :
(i) $4665 \mathrm{lb} / \mathrm{ac}$.
(ii) $1656 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	4388
2.	5232
3.	4376
S.E./mean	$=740.6 \mathrm{lb}$./ac.

```
Crop:- Paddy (Kharif). \ddots Ref:- Mh. 49 (93).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :- 'M'.
```

Object:-To find out the usefulness of applying green leaf before transplanting Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A.
(b) N.A
(c) N.A. (ii) (a) Sandy loam.
(b) N.A.
(iii) N.A
(v) N.A. (vi) Red luchai. (vii) Irrigated. (viii) N.A. (ix) $80.13^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. 1 ton/ac. of green leaves.
4. 2 ton/ac of green leaves.
5. 3 ton/ac. of green leaves.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 40$ th of an acre, (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) N.A. (iv) (a) 1949, to 1952
(b) N, A
(c) N.A. (v) (a) N.A.
(b) N, A.
(vi) Nil. (vii) Nil.
8. RESULTS :
(i) $2320 \mathrm{lb} . / \mathrm{ac}$.
(ii) $521.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2080
2.	2480
3.	2409,
S.E./mean	$=301.2 \mathrm{ib} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Govt. seed and Demonstration Farm, Sindewahi.

Ref :- Mh, 50(112).
Type : $\boldsymbol{\prime} \mathbf{~ ' ~} \mathrm{M}$ '.

Object :-To find out the suitability of green leaf as manure for Paddy.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) $51.86^{\prime \prime}$ ((x) N.A.
2. TREATMENTS :
3. 1 ton/ac. of green leaves.
4. 2 ton/ac. of green leaves.
5. 3 ton/ac. of green leaves.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1943 to 1952 (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $2224 \mathrm{lb} / \mathrm{ac}$.
(ii) $128.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	2133
2.	2367
3.	2173
S.E. $/$ mean	$=73.9 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref:- Mh. 51(152).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :" ' M '.
Object :-To find out the suitability of green leaf as manure for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) $56.03^{\prime \prime}$. (x) N.A.

2. TREATMENTS:

1. Control.
2. 1 ton green leaves/ac.
3. 2 ton green leaves/ac.
4. 3 ton green teaves/ac.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) No. (iii) 3. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) N.A. (vi) Yes.
6. GENERAL
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1943 to 1952. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $1396 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $222.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment Av. yield

1. 1253
2.
3. 1567
4. 1313
S.E. $/$ mean $\quad=128.60 \mathrm{lb} / \mathrm{ac}$.
Crop :-Paddy (Kharif).
Site :-Govt. Expt. Farm, Tharsa.
Ref:-Mh. 51(177). Type : ${ }^{\prime}$ M'.

Object :-To study the effect of application of decorticated cotton seed cake to Paddy crop.

1. BASAL CONDITIONS:

(i) (a) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Tharsa. (iii) 4 to 6.8.1951. (iv) (a) and (b) N.A. (c) 80 lb./ac. (d) $4^{\prime \prime} \times 4^{\prime \prime}$. (c) N.A.(v) Nil. (vi) E.B-17 (early). (vii) Irrigated. (viii) 2 interculturings. (ix) 42.90°. (x) 5.11.1951.
2. TREATMENTS :

1. 20 lb ./ac. of N as G.N.C.
2. 20 lb ./ac. of \mathbf{N} as decorticated cotton seedcake.
3. $20 \mathrm{lb} . / \mathrm{ac}$. of N as undecorticated cotton seedcake.
4. 20 lb ./ac. of N as A / S.
5. Control.

Manuring done at the time of transplanting.
3. DESIGN :
(i) L. Sq. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $66^{\prime} \times 16 \frac{2^{\circ}}{}$. (v) N.A. (vi) Yes,
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1951 -N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) No reasons are given for low yields. (vii) Nil.
5. RESULTS :
(i) $739 \mathrm{lb} / \mathrm{ac}$.
(ii) $120.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $1 \mathrm{~b}, / \mathrm{ac}$.

Treatment	Av. yield
1.	768
2.	872
3.	848
4.	640
5.	568
S.E./mean	$=54.02 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif).	Ref :-Mh. 52(208).
Site :-Govt. Expt. Farm, Tharsa.	Type : ${ }^{\prime} \mathrm{M}$ '.

Object :-To study the effect of decorticated and undecorticated cotton seed cake on Paddy,

1. BASAL CONDITIONS :
(i) (a) Paddy-Paddy. (b) Paddy. (c) N.A. (ii) (a) High fertility soil. (b) Refer soil analysis, Tharsa. (iii) 24.6.1952/27.8.1952. iv) (a) N.A. (b) Transplanting. (c) -. (d) and (e) N.A. (v) Nil. (vi) E.B.-17 (early). (vii) Irrigated. (viii) 2 interculturings. (ix) 27.39*. (x) 10.11.1952.

2. TREATMENTS :

1. G.N.C. at 20 lb ./ac. of N .
2. Decorticated cotton seed cake at 20 lb ./ac. of N .
3. Undecorticated cotton seed cake at 20 lb ./ac. of N.
4. A/S at 20 lb ./ac. of N .
5. Control.

Manures applied at transplanting.
3. DESIGN
(i) L.Sq. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $69^{\prime} \times 16 \frac{1}{2}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil, (iii) Grain yield. (iv) (a) $1951-$ N.A. (b) No. (c) N.A. (v) (a) and (b) N.A.
(vi) No reasons are given for low yields. (vii) Nil.
5. RESULTS :
(i) $403 \mathrm{lb} / \mathrm{ac}$.
(ii) $71.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	388
2.	456
3.	470
4.	448
5.	252
S.E./mean	$=31.8 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref:- Mh. 53(295).
Site :- Govt. Expt. Farm, Tharsa.
Type:- 'M'.
Object :-To study the effect of decorticated and undecorticated cotton seed cake on Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy. (b) Paddy. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil analysis, Tharsa. (iii) 20.6.1953, transplanting on 28.7.1953. (iv) (a) N.A. (b) Transplanting. (c) -.'(d) Between rows and plants $4^{\prime \prime}$. (e) N.A. (v) N.A. (vi) E.B-17 (early). (vii) Unirrigated. (viii) N.A. (x) 43.72". (x) 21.10.1953.

2. TREATMENTS :

1. $20 \mathrm{lb} . / \mathrm{ac}$ of N as $\mathbf{G} . \mathrm{N} . C$.
2. $20 \mathrm{lb} . / \mathrm{ac}$. of N as cotton seed cake decorticated (4.10% of N .)
3. 20 lb ./ac. of N as cotton seed cake undecorticated (3.10% of N).
4. A / S at 20 lb ./ac. of N.
5. Control.

Manured on 24.7.1953.
3. 'DESIGN:
(i) L. Sq.' (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $66^{\prime} \times 16 \frac{1}{2^{\prime}}$ (v) N.A. '(vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) No. reasons are given for low yièlds. (vii) Nil.
5. RESULTS :
(i) $778 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) 183.1 lb . ac .
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	748
2.	916
3.	832
4.	786
5.	608
- S.E./mean	$=81.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).	Ref:- Mh. 49(96).
Site :- Agr. Res. Stn., Vadgaon.	Type :- 'M'.

Object:-To study the effect of leguminous crop Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding. cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 6.6.1949/10.8.1949. (iv) (a) N.A. (b) Transplanting. (c) to (e) N.A. (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) $34.83^{\prime \prime}$ (x) 23.11.1949.
2. TREATMENTS:
3. Control (no. $\mathrm{P}_{2} \mathrm{O}_{5}$)
4. 50 lb ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrow.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrow.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrow.
7. Fallow in Rabi and sown in Kharif.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to previous crop and its residual effect is studied on Paddy this year.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $26^{\prime} \times 18^{\prime}$. (b) $15^{\prime} \times 9^{\prime}$. (v) $4 \frac{1}{2}^{\prime}$ ring round the net plot. (vi) Yes.
9. GENERAL :
(i) The crop had a yellowish appearance throughout. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 (Rabi)1953 (Kharif). (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) No cross bunds between plots
10. RESULTS :
(i) $1707 \mathrm{lb} . / \mathrm{ac}$.
(ii) $250.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1710
2.	1714
3.	1735
4.	1557
5.	1819
S.E./mean	$=111.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Vadgaon.

Ref :- Mh. 50(121).
Type:- ' M '.

Object .-To study the effect of leguminous crop Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding. cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 3.6.1950/1.8.1950. (iv) (a) N.A. (b) Broadcasting in seedbed and transplanting the seedlings when about a month old. (c) (d) $9^{\circ} \times 9^{\prime \prime}$. (e) N A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) Gap filling on 10.9.1950; Weeding on 11.9.1950. (ix) $48.45^{\prime \prime}$. (x) 13.11.1950.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$)
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the plough furrow.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the plough furrow.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the plough furrow.
5. Fallow for gram.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as super to previous crop gram and its residual effect is studied on Paddy this year.
6. DESIGN :
(i) R.B D. (ii) (a) 5. (b) N.A. (iii) S. (iv) (a) $22^{\prime} \times 16^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL :
(i) Uniform and good crop. (ii) Long break in rains after sowing, which caused delay in transplanting. (iii) Grain yield. (iv) (a) 1948 (Rabl)-1953 (Kharif). (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Nil.
8. RESULTS :
(i) $1871 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $145.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb}, / \mathrm{ac}$.

Treatment	Av. yield
1.	1913
2.	1868
3.	1883
4.	1928
5.	1765
S.E./mean	$=64.9$ lb. $/ \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Vadgaon.

Ref:~Mh. 51(164).
Type :- 'M'.

Object :-To study the effect of the leguminous crop Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1, BASAL CONDITIONS:
(i) (a) N.A. (b) Gram. (c) As per treatments. (ii) (a) Medium .black. (b) N.A. (iii) 5.6.1951. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) Weeding on 7.9.1951. (ix) $35.96^{\circ \prime}$ (x) 14.11.1951.
2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$)
2. 50 ib ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the plough furrow.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the plough furrow.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the plough furrow.
5. Fallow in Rabi.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to the previous crop gram and its residual effect studied on Paddy this year.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) a $^{\prime}$ (a) $\left\{22^{\prime} \times 16^{\prime}\right.$. (b) $18^{\prime} \times 12^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL :
(i) Fairly good. (ii) Nil. (iii) Grain yield. (iノ) $1948-49$ (Rabi) to 1953-54 (Kharif). (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1376 \mathrm{lb} . / \mathrm{ac}$.
(ii) $32.88 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av, yield of grain in lb ./ac.

Treatment	Av. yield
1.	1369
2.	1408
3.	1429
4.	1419
5.	1258
S.E./mean	$=14.70$ lb./ec.

```
Crop:- Paddy (Kharif). Ref:- Mh. 52(196).
Site :- Agri. Res. Stn., Vadgaon.
Type :m 'M'.
```

Object:-To study the effect of the 'leguminous crop Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS

(i) (a) N.A. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 15.6.1952/25.7.1952. (iv) (a) N.A. (b) Seed broadcast on seed bed and then transplanted. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) Weeding on 3.9.1952. (ix) $74.90^{\prime \prime}$ (15.5.1952 to 17.11.1952). (x) 17.11.1952.
2. TREATMENTS:

1. 0 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrows.
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrows.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrows.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in plough furrows.
5. Fallow in Rabi.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Treatments applied to previous crop gram and residual effect studied on paddy this year.
6. DESIGN :
(i) R B.D.
(ii) (a) 5.
(b) N.A. (iii) $5 .^{-}$(iv)
(a) $22^{\prime} \times 16^{\prime}$.
(b) $18^{\prime} \times 12^{\prime}$.
(v) 2^{\prime} alround the net plot. (vi) Yes.
7. GENERAL :
(i) The seedlings in the seed bed suffered from the long spell of rains in Sept. affecting the crop very badly.
(ii) Slight attack of Rice hoppers and blast appeared. Damage was not much. (iii) Grain yield. (iv) (a) 1948-49 (Rabi) to (Kharif) 1953-54. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Experiment failed io 1953.
8. RESULTS :
(i) $1530 \mathrm{lb} . / \mathrm{ac}$.
(ii) $142.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1528
2.	1573
3.	1553
4.	1573
5.	1422
S.E./mean	$=63.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Vadgaon.

Ref: $\boldsymbol{\sim}$ Mh. 49(86).
Type :- 'M'.

Object :-To evolve an optimum dose of N and P for Paddy crop.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) 275 lb ./ac. of manure mixture. (ii) (a) Medium black. (b) N.A. (iii) 6.6.1949 Transplanting on 13.8 .1949 . (iv) (a) N.A. (b) Transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings per bunch. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viij) One weeding on 15.9.1949. (ix) 34.83°. (x) N.A.

2. TREATMENTS

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \quad N_{1}=32, \quad N_{2}=64$ and $N_{8}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{8}=64$ and $\mathrm{P}_{8}=96 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $27^{\prime} \times 21^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 4.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Height and grain yield. (iv) (a) 1949-54 (residual effect studied from 1952 onwards) (b) N.A. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratnagiri. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1499 \mathrm{lb} . / \mathrm{ac}$.
(ii) $469.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	$\mathbf{N a}_{\mathbf{8}}$	\mathbf{N}_{3}	Mean
P_{0}	687	1489	1553	1761	1373
P_{1}	1158	1353	1314	2054	1470
P_{2}	898	1500	1760	2108	1566
P_{3}	737	1465	2124	2021	1587
Mean	870	1452	1688	1986	1499
S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =117.3 \mathrm{lb} . / \mathrm{ac} . \\ & =234.6 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop:- Paddy (Kharif).
Site :~Agri. Res. Stn., Vadgaon.

Ref: ${ }^{\text {Mh. }}$ 50(104)/49(86).
Type : $\boldsymbol{\sim}$ ' M '.

Object :-To evolve an optimum dose of N and P for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 3.6.1950/3.7.1950.
(iv) (a) and (b) N.A. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\circ}$. (e) 8 seedlings per bunch. (v) 5 C.L./ac. of F.Y.M.
(vi) N.A. (vii) Unirrigated (viii) One weeding on 12.9.1950. (ix) N.A. (x) 25.11.1950.
2. TREĀTMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N applied as G.N C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

3. DESIGN

(i) 4×4 Factorial in R.B.D. (ii) (a) 16 . (b) N,A. (iii) 4 . (iv) (a) $27^{\prime} \times 21^{\prime}$. (b) $18^{\prime} \times 12^{\prime \prime}$. (v) 4.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Height and grain yield. (iv) (a) 1949 to 1954 (residual effect studied from 1952 onwards). (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2906 \mathrm{lb} . / \mathrm{ac}$.
(ii) $466.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . \mathrm{ac}$.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
P_{0}	2064	2692	3205	3819	2943
\mathbf{P}_{1}	1900	2650	2631	3668	2712
P_{2}	1935	2691	3268	3649	2886
P_{3}	1750	2678	3724	4162	3081
Mean	1914	2675	3207	3825	$2^{\text {r }} 06$
S.E. of marginal mean of N or P S.E. of body of table				$\begin{aligned} & =116.6 \mathrm{lb} . / \mathrm{ac} . \\ & =233.2 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop :- Paddy (Kharif). Ref :- Mh. 51(142)/50(104)/49(86).
Site :- Agri. Res. Stn., Vadgaon. . Type :- 'M'.
Object :-To evolve an optimum dose of \mathbf{N} and \mathbf{P} for Paddy crop.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 5.6.1951/27.7.1951.
(iv) (a) and (b) N.A. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings per bunch. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) One weeding. (ix) $35.96^{\prime \prime}$ (x) 16.11.1951.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=32, P_{2}=64$ and $P_{3}=96 \mathrm{lb}$,/ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Factorial in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $27^{\prime} \times 21^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 4.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Fairly good. (ii) Nil. (iii) Heights and grain yield. (iv) (a) 1949 to 1954 (residual effect studied from 1952 onwards.) (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2280 \mathrm{lb} . / \mathrm{ac}$.
(ii) $402.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
\mathbf{P}_{0}	1472	2094	2767	2968	2325
\mathbf{P}_{1}	1530	2088	2225	2661	2126
\mathbf{P}_{2}	1407	2125	2697	3118	2337
$\mathbf{P}_{\mathbf{3}}$	1347	2121	2790	3072	2333
Mean	1439	2107	2620	2955	2280

$\begin{array}{ll}\text { S.E. of marginal mean of } \mathrm{N} \text { or } \mathrm{P} . \quad=100.6 \mathrm{lb} . / \mathrm{ac}, \\ \text { S.E. of body of table } & =201.3 \mathrm{lb} . / \mathrm{ac}\end{array}$

Crop:-Paddy (Kharif).
. Ref : Mh. 52(166)/51(142)/50(104)/49(86).
Site :- Agri. Res. Stn., Vadgaon. Type :- 'M'.
Object :-To study the effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Paddy during past three years.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 15.6.1952/11.8.1952.
(iv) (a) N A. (b) Transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings per bunch. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) One weeding on 5.9.1952. (ix) 74.70". (15.6.1952 to 29.11.1952). (x) 29.11.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{2}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super. Manures were applied during the last three years and its residual effect is studied this year.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $27^{\prime} \times 21^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 4.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Poor due to heavy rains. (ii) Nil. (iii) Height and grain yield. (iv) (a) $1949-1954$ (residual effect studied from 1952 onwards). (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratnagiri. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1856 \mathrm{lb} . / \mathrm{ac}$.
(ii) $308.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) All the main effects and interactions are not significant.
(iv) Av: yield of grain in lb./ac.

| | \mathbf{N}_{0} | \mathbf{N}_{1} | \mathbf{N}_{2} | \mathbf{N}_{3} | Mean |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \mathbf{P}_{0} | 2061 | 1960 | 1948 | 1708 | 1919 |
| \mathbf{P}_{1} | 2029 | 1689 | 1487 | 1449 | 1664 |
| \mathbf{P}_{2} | 1696 | 2157 | 1948 | 1865 | 1924 |
| \mathbf{P}_{3} | 1714 | 1991 | 2086 | 1872 | 1916 |
| Mean | 1875 | 1957 | 1867 | 1724 | 1850 |

$\begin{array}{ll}\text { S.E. of any marginal mean } & =154.1 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =77.0 \mathrm{Jb} . / \mathrm{ac} .\end{array}$

Crop: Paddy (Kharif).
Ref :- Mh. 53(252)/52(166)/51(142)/50(104)/49(86).
Site :- Agri. Res. Stn., Vadgaon. Type :- 'M'.
Ohject :-To study the residual effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Paddy during past three years.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Pađdy. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 12.6.1953/17,18.7.19:3. (iv) (a) N.A. (b) Transplanting. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings per bunch. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) One weeding on 19,20.9.1953. (ix) $4638^{\prime \prime}$ (12.6.1953 to 19.11.1953). (x) 19.11.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=95 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=32, P_{2}=64$ and $P_{3}=96 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ af Super. These manures were applied during the three years and its residual effect is studied this year.
3. DESIGN :
(i) 4×4 Fact. in R.B D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $27^{\prime} \times 21^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 4.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Poor. (ii) Nil. (iii) Height and grain yield. (iv) (a) 1949-1954 (residual effect studied from 1952 onwards). (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratnagiri. (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1942 \mathrm{lb} . / \mathrm{ac}$.
(ii) $576.3 \mathrm{Ib} . / \mathrm{ac}$.
(iii) All the main effects and interaction are not significant.
(iv) Av. yield of grain in lb./ac.

Crop :~ Paddy. - Ref :- Complex experiments (T.C.M), 1953.
Centre :- Karjat (Maharashtra). Type :- ' M '.
Object :-I (a) To study the effect of N obtained from different sources in combination with P in non-acid. soils.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy to clay loam. (b) Poor in Lime, $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}$, slightlyacidic ; well supplied with organic matter. (iii) Transplanting on 28.7.1953. (iv) N.A. (v) N.A. (vi) K-42 (Kolaba). (vil) Unirrigated. (viii) N.A. (ix) N.A. (x) 9.11.1953.

2. TREATMENTS:

All combinations of (1), (2) and (3) +3 extra treatments.
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \quad \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
(2) 3 sources of $\mathrm{N} . \quad \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}, \mathrm{S}_{2}=\mathrm{A} / \mathrm{N}$ and $\mathrm{S}_{3}=$ Urea.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{6}: \mathrm{P}_{0}=0, \quad \mathrm{P}_{1}=20$ and $\mathrm{P}_{3}=40 \mathrm{lb} . / \mathrm{ac}$.
and 3 extra treatments.
$\mathrm{T}_{1}=60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{T}_{2}=40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{T}_{3}=60 \mathrm{lb}$./ac. of $\mathrm{N}+80 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
N applied in two equal doses; half 5 days after planting and other half 20 days after planting. $\mathrm{P}_{2} \mathrm{O}_{5}$ at pudddling.
3. DESIGN :
(i) 3^{2} confounded factorial with 3 extra treatments in each block. (ii) (a) 12 and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A. (b) $1 / 59$. ac. (v) N.A. (vi) Yes.

GENERAL:
(i) Lodging occurred in plots receiving higher doses of N. (ii) Severe attack by swarming catterpillar resulting in considerable damage to crop. (iii) Grain yield (iv) (a) 1953-56. (b) No. (c) N.A. (v) (a) Aduthurai, Sahaspur, Burdwan, Mankhanda and Chalvai. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2789 \mathrm{lb} . / \mathrm{ac}$.
(ii) $610.1 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

	N_{0}	N_{1}	N_{2}	Mean	S_{1}	S_{2}	\mathbf{S}_{3}
P_{0}	2394	2496	2313	2401	2131	2557	2516
P_{1}	2892	2679	2902	2827	2638	2861	2983
P_{2}	2821	3186	3328	3111	3429	2780	3125
Mean	2706	2787	2848	2780	2733	2733	2874
S_{1}	-	2597	2577	2587			
S_{2}	-	3166	2679	2922			
S_{3}	-	2597	3287	2942			

Mean yield for extra treatments.

T1	$\mathrm{T}_{1}=2313 \mathrm{lb} / \mathrm{ac}$	
T2	$2=3003 \mathrm{lb} / \mathrm{ac}$.	
T_{3}	3 $\quad=2456 \mathrm{lb} . / \mathrm{ac}$.	
	.E./mean $=352.3 \mathrm{lb}$./ac.	
	tables $\mathrm{N} \times \mathrm{P}$ and $\mathrm{S} \times \mathrm{P}$.	
	.E. of any marginal mean	$=203.4 \mathrm{lb} / \mathrm{ac}$.
	.E. of body of table	$=352.3 \mathrm{lb}$. $/ \mathrm{ac}$.
		e $\mathbf{S} \times \mathrm{N}$
	E. of marginal mean of S	$=249.1 \mathrm{lb}$./ac.
	E. of marginal mean of N	$=203.4 \mathrm{lb} . / \mathrm{ac}$.
	E. of body of table	$=352.3 \mathrm{lb} . / \mathrm{ac}$ 。

Crop :- Paddy. (Kharif). Ref :- Expts. on Cultivators' fields Mh. 52(276).
Site :- Mhasala Kolaba. Type :m ‘M'.
Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Late. (v) (a), (b) and (c) N.A. (d) $12^{\prime \prime} \times 12^{\prime \prime}$ and $12^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 1 and 2.11.1952.

2. TREATMENTS :

1. $64 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}_{\text {. in } 1: 1 \text { ratio. }}$ in
2. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Control.
4. DESIGN:
(i) and (ii) 2 villages are selected at random and 2 fields within the selected villages were selected at random. (iii) (a) $66^{\prime} \times 33^{\prime}$. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
5. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield. (iv) (a) to (c) Nil. (v) N.A. (vi) and (vii) Nil.
6. RESULTS:
(i) $2015 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $138.52 \mathrm{lb} . / \mathrm{ac}$. :
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2080
2.	2123
3.	1841
S.E./mean	$=69.26 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :~ Expts. on cultivators' fields ; Mh. 52 (277).
 Site :- Karjat (Kolaba.) Type :m ' \mathbf{M}^{\prime}.

Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Nil. (c) Nil. (ii) Medium black. (iii) Nil. (iv) Late K-42. (v) (a), (b), (c) N.A. (d) $9^{\circ \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 31.10.1952 and 5.11.1952.
2. TREATMENTS :
3. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Control.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within the selected villages were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) Poor. (ii) Attack of rice skippers. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. '(v) N.A. (vi) Nil. (vii) Nil.
8. RESULTS :
(i) $1353 \mathrm{lb} . / \mathrm{ac}$.
(ii) $150.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly sign ficantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1278
2.	1785
3.	995
S.E./mean	$=75.16 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :m Expts. on cultivators' fields; Mh. } 52 \text { (279).' } \\
\text { Site :- Pen (Kolaba.) } & \text { Type := 'M'. }
\end{array}
$$

Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Late K-42. (v) (a) to (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) Transplanting on 1.7 .1952 in one village. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 26 and 29.10.1952.

2. TREATMENTS :

1. 64 lb ./ac. of N as A / S and G.N.C. in $1: 1$ ratio.
2. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Control.
4. DESIGN
(i), (ii) 2 villages were selected at random and 2 fields within a selected village were selected at random. (iii) (a) $66^{\prime} \times 33^{\prime}$. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
5. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.

5. RESULTS:

(i) $2448 \mathrm{lb} . / \mathrm{ac}$.
(ii) $239.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	2404.
2.	3026
3.	1914
S.E./mean	$=119.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Paddy (Kharif).
Ref :- Expts. on cultivators' fields ; Mh. 52(280).
Site :- Sudhogadh (Kolaba.) Type:r ' M '.

Object :-To study the effect of N and P manures on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A, (b) Paddy. (c) Nil. (ii) Black. (iii) 5 C.L./ac. of F.Y.M. (iv) K-42. (v) (a), (b), (c), N.A. (d) $12^{\prime \prime} \times 9^{\prime \prime}$ (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 22.10 .1952 and 1.11.1952.
2. TREATMENTS :
3. 64 lb ./ac. of N as A / S and G.N.C. in $1: 1$ ratio.
4. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super.
5. Control.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within the selected village were selected at random. (iii) (a) $66^{\prime} \times 33^{\prime}$. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL:
(i) Fair. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil,
8. RESULTS:
(i) $2226 \mathrm{lb} / \mathrm{ac}$.
(ii) $446.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2458
2.	2377
3.	1843
S.E./mean	$=223.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Alibag (Kolaba.)

Ref :- Expts. on cultivators' fields; Mh. 52(281). Type :- 'M'.

Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy in one village. (c) Nil. (ii) Black. (iii) 5 C.L./ac. of F.Y.M. (iv) Garlei-late. (v) (a), (b) and (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$ and $12^{\prime \prime} \times 10^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 3.11.1952 and 7.11.1952.
2. TREATMENTS :
3. 64 lb ./ac. of N as A / S and G.N.C. in 1: 1 ratio.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb}$./ac. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Control.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within the selected viliages were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) ${ }^{2}$ Nil.
8. RESULTS :
(i) $4165 \mathrm{lb} . / \mathrm{ac}$.
(ii) $539.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac. Treatment Av. yield

1.	4595
2.	4550

3.3351
S.E./mean $\quad=269.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).	Ref :-Expts. on cultivators' fields; Mh. 52(283).
Site : m Murud (Kolaba.)	Type :-'M'.

Object :-To study the effect of \mathbf{N} and P manures on yield of Paddy.

1. BASAL CONDITIONS
(i) (a) N.A. (b) Wal in one field. (c) Nil. (ii) Medium black. . (iii) 5 C.L./ac. cf F.Y.M. (iv) N.A (v) (a), (b), (c) N.A. (d) $12^{\prime \prime} \times 10^{\prime \prime}$. and $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 28,29,30 and 31.10.1952.
2. TREATMENTS
3. 64 lb ./ac. of N as A / S and G.N.C. in 1:1 ratio.
4. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Control.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within selected village were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 3^{\prime}$. (iv) N.A.
7. GENERAL :
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $3163 \mathrm{lb} . / \mathrm{ac}$.
(ii) $152.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	3112
2.	3469
3.	2907
S.E./mean	$=76.30 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :-Paddy (Kharif). } & \text { Ref : }- \text { Expts. on cultivators fields ; Mh. 52(284): } \\
\text { Site :-Mangaon, (Kolaba.) } & \text { Type ;-'M'. }
\end{array}
$$

Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) Nil. (ii) Medium and loamy medium, (iii) 5 C.L./ac. of F.Y.M. (iv) Late variety. (v) (a), (b), (c) (d) $9^{\prime \prime} \times 9^{\prime \prime}$ and $10^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 29.10.1952 and 3.11.1952.

2. TREATMENTS :

1. $64 \mathrm{lb} / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio.
2. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Control.

3. DESIGN:

(i), (ii) 2 villages were selected at random and 2 fields within the selected village were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1934 \mathrm{lb} . / \mathrm{ac}$.
(ii) $198.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1992
2.	2103
3.	1710
S.E./mean	$=89.30 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref :-Expts. on cultivators' fields; Mh. 52 (285).
Site :m Poladpur (Kolaba.)

Type :- ' M '.

Object:-To study the effect of N and P maneres on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Late variety. (v) (a), (b), (c) N.A. (d) $9^{\prime \prime} \times 6^{\prime \prime}$ and $6^{\prime \prime} \times 6^{\circ}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A.
(x) 5 and 6,11.1952.
2. TREATMENTS :
3. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio.
4. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Control.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within the selected villages were selected at random, (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
8. RESULTS :
(i) $1110 \mathrm{lb} . / \mathrm{ac}$.
(ii) $327.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac} . \overline{\mathrm{j}}$

Treatment	Av. yield
1.	1004
2.	1322
3.	1005
S.E./mean	$=163.66 \mathrm{lb} / \mathrm{ac}$.

```
Crop :- Paddy (Kharif). Ref :~ Expts. on cultivators' fieds ; Mh. 52 (286). .
Site :~ Uran (Kolaba.) Type :~ 'M'.
```

Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Late to medium late. (v) (a), (b), (c) N.A. (d) $12^{\prime \prime} \times 9^{\prime \prime}$ and $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 31.10.1952, 2.11.1952, 4.11.1952 and 5.11.1952.
2. TREATMENTS:
3. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio.
4. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Control.

3. DESIGN :

(i), (ii) 2 villages were selected at random and 2 fields within the selected villages were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) Satisfactory. (ii) Slight attack of rice skippers. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) $3552 \mathrm{lb} / \mathrm{ac}$.
(ii) $660.8 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	3375
2.	4859
3.	2421
S.E./mean	$=330.4 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- Expt. on cultivators' fields; Mh. 52(287). } \\
\text { Site :- Roha (Kolaba.) } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the effect of \mathbf{N} and \mathbf{P} manures on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Late. (v) (a) to (c) N.A. (d) $12^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 4.11 .1952 and 7.11.1952.
2. TREATMENTS :
3. 64 lb ./ac. of N as A / S and G.N.C. in $1: 1$ ratio.
4. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Control.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within the selected villages were selected at random. (iii) (a) N.A. (b) $33^{\circ} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2346 \mathrm{lb} / \mathrm{ac}$.
(ii) $204.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$. Treatment Av. yield

1. 2312

2. 2731
3. 1995
S.E./mean $=102.4 \mathrm{fb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- Expt. on cultivators' fields; Mh. 52 (288). Site :- Shrivardham (Kolaba.) Type :- ' \mathbf{M} '.

Object :-To study the effect of N and P manures on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. . (iii) 5 C.L./ac. of F.Y.M. (iv) Late. (v) (a) to (c) N.A. (d) $10^{\circ} \times 10^{\circ}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 2223 and 27.10.1952 and 3.11.1950.

2. TREATMENTS:

1. $64 \mathrm{lb} . / \mathrm{ac}$. of \mathbf{N} as \mathbf{A} / S nad G.N.C. in $1: 1$ ratio.
2. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Control.
4. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within the selected villages were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
5. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
6. RESULTS:
(i) $3118 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1104.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$

Treatment	Av. yield
1.	3096
2.	338 I
3.	2877
S E./mean	$=552.4 \mathrm{Jb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif). Ref :- Expts. on cultivators' fields; Mh. 52(289)
Site :- Mahad (Kolaba.) Type:- 'M'.
```

Object :-To study the effect of N and P manures on yield of Paddy.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medinm black. (iii) 5 C.L./ac. of F.Y.M. (iv) Late. (v) (a) (b) and (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 30.10.1952 to 11.11.1952.

2. TREATMENTS:

1. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C in $1: 1$ ratio.
2. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb}, / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Control.
4. DESIGN:
(i), (ii) 2 villages were selected at random and 2 fields within the selected villages were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$ (iv) N.A.
5. GENERAL :
(i) Good. (ii) N.l. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A.' (v) N.A. (vi) Nil. (vii) Nil.
6. RESULTS :
(i) $2954 \mathrm{lb} . / \mathrm{ac}$.
(ii) $172.9 \mathrm{lb}_{\mathrm{s}} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	3067
2.	3435
3.	2362
S.E./mean	$=86.46 \mathrm{lb} . / a c$.

Crop :- Paddy (Kharif). Ref :-Expts. on cultivators' fields; Mh. 52(258).
Site :- Bavala (Kolhapur.) Type :- 'M'.
Object :-To study the response of Paddy to application of N and P.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M in one village. (iv) Local (medium). (v) (a) to (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 21 and 25.10.1952.
2. TREATMENTS :
3. Control.
4. 96 lb /ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
5. 32 lb ./ac. of N as A / S and G.N.C in $1: 1$ ratio +32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.

3. DESIGN:

(i), (ii) 2 villages were selected at random and 2 fields within a village were selected at random. (iii) (a) and (b) N.A. (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) $813 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $37.12 \mathrm{lb} / \mathrm{ac}$.
(iii) N.A.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	760
2.	850
3.	.830
S.E./mean	$=18.56 \mathrm{lb} . / \mathrm{ac}$

Crop :- Paddy (Kharif). . Ref :-Expts. on cultivators' fields ; Mh. 53 (259).
Sitè :- Ajara (Kolhapur.) Type :- 'M'.

Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium reddish and black. (iii) 5 C.L./ac. of F.Y.M. (iv) Yedsal (medium), Somsal (late), Havala (medium) and Panwel (medium) one in each field. (v) (a) to (c) N.A. (d) $6^{\prime \prime} \times 4^{\prime \prime}$ and $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) 9.6.1952. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 14.10 .1952 , 22.10.1952, 9.11.1952 and 22.11.1952.

2. TREATMENTS :

1. Control.
2. $96 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
3. $32 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. +32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
4. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within a village were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
5. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) For one year only. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
6. RESULTS :
(i) $2388 \mathrm{lb} . / \mathrm{ac}$.
(ii) $526.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) ${ }^{\perp} \mathbf{N} \cdot \mathbf{A}$.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$

Treatment	Av. yield
1.	2095
2.	2237
3.	2834
S.E./mean	$=263.4 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif). \quad Ref :-Expts. on cultivators' fields; Mh. 52(260).
Site :- Bhudargadh (Kolhapur.) Type :- ' \mathbf{M}^{\prime}.
Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Medium and black. (iii) 5 C.L./ac. of F.Y.M. (iv) Medium and Warangal. (v) (a) to (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 12.11.1952 for one field only.
2. TREATMENTS :
3. Control.
4. 96 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
5. 32 lb ./ac. of N as A / S and G.N.C. in $1: 1$ ratio $+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
6. DESIGN :
(i), (ii) 2 villages were selected at random and 2 fields within these villages were selected at random. (iii) (a). N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nıl.
8. RESULTS :
(i) $1520 \mathrm{lb} . / \mathrm{ac}$.
(ii) $528.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) N.A.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1115
2.	1866
3.	1586
S.E./mean	$=264.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :-Expts. on cultivators' fields; Mh. 52(261).
Site:- Gadhinglaj (Kolhapur.) Type:m' \mathbf{M} '.
Object :-To study the response of Paddy to application of N and P.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Grain in one village Paddy in other two villages. (c) Nil and 4-6 C.L./ac. of F.Y.M. in two villages. (ii) Medium to deep black. (iii) 5 C.L /ac. of F.Y.M. (iv) Khavanisal (late), Motusal (medium) and Dharwoar (medium). (v) (a) to (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 27.10.1952, 3.11.1952, 10.14.1952 and 18.11.1952.

2. TREATMENTS :

1. Control.
2. $96 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
3. $32 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and $\mathrm{G} . \mathrm{N} . C$. in $1: 1$ ratio +32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
4. DESIGN :
(i) and (ii) 3 villages were selectej at random and within these villages 2 fields were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
5. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
6. RESULTS :
(i) 1567 lb./ac.
(ii) $397.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatnent differences are significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1288
2.	1510
3.	1904
S.E./mean	$=162.3 \mathrm{lb} / \mathrm{ac}$

Crop :- Paddy (Kharif). Ref :- Experiments on cultivators' fields; Mh. 52(262).
Site :- Paubala (Kolhapur.) Type :- ' M '.

Object :-To study the response of Paddy to the applications of N and P.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy, (c) Nil. (ii) Reddish, medium black and tlack. (iii) 5 C.L./ac. of F.Y.M. (iv) Medium and late. (v) (a) to (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 6 to 27.10,1952.
2. TREATMENTS:
3. Control.
4. 96 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
5. $32 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and $\mathrm{G} . \mathrm{N} . C$. in $1: 1$ ratio $+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
6. DESIGN :
(i) and (ii) 3 villages were selected at random and within these villages 2 fields were selected at random. (iii (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) Poor. (ii) N.A. (iii) Grain yield. (iv) (a) For one year only. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $616 \mathrm{lb} . / \mathrm{ac}$.
(ii) $101.5 \mathrm{lb} . / \mathrm{ac}$.
(iiii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	531
2.	621
3.	692
S.E./mean	$=, 41.44 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif). Ref :- Experiments on cultivators' fields; Mh. 52(263). Site :- Radhanagari (Kolhapur.) Type :- ' M^{\prime} '.

Object :-To study the response of Paddy to the applications of \mathbf{N} and P.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Sugarcane in one field and Paddy in others. (c) 2 bags/ac. of A/S and 4 C.L./ac. of F.Y.M. and 8 C.L./ac. of F.Y.M. in three fields and nil in other three. (ii) Reddish medium, medium black, sandy reddish and reddish. (iii) 5 C.L./ac. of F.Y.M. (iv) Havala, big aviste, medium and early. (v) (a) to (c) N.A. (d) $6^{\prime \prime} \times 6^{\prime \prime}$ and $5^{\prime \prime} \times 5^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 15.10 .1952 to 3.11.1952.
2. TREATMENTS :
3. Control.
4. $96 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
5. 32 lb ./ac. of N as A / S and G.N.C. in $1: 1$ ratio $+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.
6. DESIGN:
(i) and (ii) 3 villages were selected at random and 2 fields within the selected villages were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) For one year only. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1825 \mathrm{lb} / \mathrm{ac}$.
(ii) $269.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	1768
2.	1782
3.	1924
S.E./mean	$=110.2 \mathrm{lb} . / \mathrm{zc}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- Expts. on cultivators' fields; Mh. 52(1). } \\
\text { Site :- Dindori (Nasik.) } & \text { Type :- ' } M \text { '. }
\end{array}
$$

Object --To study the response of Paddy to the application of \mathbf{N} and P .

1. BASAL CONDITIONS :

(i) (a) and (b) Paddy in 2 villages. No previous crop in 1 village. (c) 1 bag of G.N.C. in paddy villages. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local (early). (v) (a) to (c) N.A. (d) Between plants $8^{\prime \prime}$ to $6^{\prime \prime}$. (e) N.A. (vi), (vii) and (viii) N.A. (ix) 23.48". (x) Last two weeks of Nov: 1952.

2. TREATMENTS :

1. Control.
2. $64 \mathrm{lb} . / \mathrm{ac}$. of N as (A/S+G.N.C).
3. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ (as bonemeal).

Nitrogen as a mixture of G.N.C. and A/S in 1:1 ratio of N. Phosphate was applied after ploughing. Nitrogen was applied in two equal doses one at transplanting and the other at the tillering stage.

3. DESIGN:

(i), (ii) A list of villages randomly selected from all the villages in the taluka is formed and 3 villages were randomly selected from the list. Two fields in each village were located by randomly selected numbers. (iii) (a) $15^{\prime} \times 50^{\prime}$. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.

4. GENERAL:

(i) At 1 village due to scarsity of water, development of grain was poor. (ii) No. (iii) Straw and grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil.
5. RESULTS :
(i) $1149^{\prime} \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $62.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differences are significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	930
2.	1211
3.	1306
S.E./mean	$=25.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :m Paddy. \quad. \quad Expts. on cultivators' fields; Mh. 52(2).
Site :- Igatpuri (Nasik.) Type :- 'M'.
Object :-To study the response of Paddy to the application of \mathbf{N} and P.

1. BASAL COONDITIONS :
(i) (a) N.A. (b) Kadwa wal at one village. Harbhare (gram) at 2 villages. (c) No. (ií) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local kolpi. (v) (a) to (c) N.A. (d) Between plants $7^{\prime \prime}$ to $10^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) N.A. (vịii) N.A. (ix) $123.88^{\prime \prime}$. (x) 20th October to 10 November 1952 and 4th of Nov, 1952.
2. TREATMENTS :
3. Control.

264 lb ./ac. of N .
3. $64 \mathrm{lb} . j \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Bonemeal.

Nitrogen as a mixture of G.N.C. and A/S; phosphate dose was applied after ploughing. Nitrogen was applied in 2 equal doses one at transplanting and the other at tillering.
3. DESIGN :
(i), (ii) A list of villages, randomly selected from all the villages in the taluka was formed and 2 villages were randomly selected from the list retaining the order of the list. The site in a village was located randomly from each selected village two fields were randomly selected. (iii) $72^{\prime} \times 33^{\prime}$. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) Good. (ii) No. (iii) Straw and grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2227 \mathrm{lb} . / \mathrm{ac}$.
(ii) $56.40 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1786
2.	2066
3.	2828
S.E./mean	$=40.0 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif). Ref :- Expts, on cultivators' fields;Mh. 52(3).
Site :- Nasik (Nasik.) Type :- 'M'.
```

Object :-To study the response of Paddy to the application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :

(i) (a) and (b) N.A. (c) No. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local (late). (v) (a) N.A. (b) Sowing is not done in rows. (c) N.A. (d) Between plants 3° to $4^{\prime \prime}$. (c) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) 12.83°. (x) 10.11 .1952 at one village and 23.11 .1952 at the other.
2. TREATMENTS:

1. Control.
2. $64 \mathrm{lb} / \mathrm{ac}$. of N .
3. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{3}$ as bonemeal.

Nitrogen as a mixture of G.N.C• and A/S. Phosphate was applied after ploughing Nitrogen in two equal doses one at transplanting and the other at tillering.
3. DESIGN :
(i), (ii) A list of villages randomly selected from all the villages in the taluka was formed and necessary no. of suitable villages were taken from the list retaining the order of the list. The site in a village was located by a randomly selected survey number. No. of exptal. site 2. (iii) (a) N.A. (b) $66^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) The crop affected by late rains at one village. (ii) No. (iii) Straw and grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) In one trial the yicld of treatment 3 was very high and was treated as a missing value.
5. RESULTS :
(i) $1502 \mathrm{lb} . / \mathrm{ac}$.
(ii) $179.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yjeld of grain in lb./ac.

Treatment	Av. yield
1.	1272
2.	1713
3.	1521

S.E. of mean of (1 and 2$) \quad=89.6 \mathrm{lb} . / \mathrm{ac}$.

Treatment 3 vs 1 or 2
$=141.9 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :- Expts. on cultivators' fields ; Mh. 52(4). } \\
\text { Site :- Haveli (Poona.) } & \text { Type :- ' } \mathrm{M}^{\prime} .
\end{array}
$$

Object :-To study the response of Paddy to the application of \mathbf{N} and P.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Paddy. (c) 3 to 7 C.L./ac. of F.Y.M. (ii) Reddish black. (iii) $280 \mathrm{lb} . / \mathrm{plot}$ of F.Y.M. (iv) Ambe-Mohor (early). (v) (a) to (c) N.A. (d) Between plants 9\%. (c) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) 20.74". (x) 1611.1952 to 27.11 .1952.
2. TREATMENTS :
3. Control.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N .
5. $64 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N was applied as a mixture of G.N.C. and A / s in $1: 1$ ratio of $\mathrm{N} . \mathrm{P}_{2} \mathrm{O}_{5}$ (as Super) was applied after ploushing. Nitrogen in two equal doses, one at transplanting and the other at tillering.
3. DESIGN:
(i), (ii) A list of villages randomly selected from all the villages in the taluka was formed and a necessary no. of suitable villages were taken from the list retaining the serial order of the list. The site in a village was located by randomly selected survey no. No. of exptal. site 3. (iij) (a) Varies from village to village and aite to site. (b) $36^{\prime} \times 30^{\circ}$. (iv) N.A.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Straw and grain yield. (iv) (a) 1952-1953. (b) N.A. (c) N.A .(v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1918 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $42.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) N.A.
, (iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1. 944
2. 1931
3. 2880
S.E. $/$ mean $=24.40 \mathrm{lb} . / \mathrm{ac}$.
Crop : $:-$ Paddy(Kharif) $\quad \because \quad$ Ref: : Expts. on cultivators' fields; Mh. 52(5).
Site :- Mulshi (Poona.) \quad Type :- 'M'.

Object :-To study the response of Paddy to the application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) No. (ii) Medium black. (iii) $280 \mathrm{lb} . / \mathrm{plot}$ of F.Y.M. (iv) Ambe-Mohor no. 157. (v) (a) to (c) N.A. (d) Between plants $12^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) $59.53^{\prime \prime}$. (x) 8.11.1952 to 14.11.1952.
2. TREATMENTS:
3. Control.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N .
5. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N was applied as a mixture of G.N.C. and A / S in 1:1 ratio of $\mathrm{N} . \mathrm{P}_{2} \mathrm{O}_{5}$ as Super was applied after ploughıng. Nitrogen was applied in two doses one at transplanting and the other at tillering.

3. DESIGN :

(i), (ii) A list of villages, randomly selected from all the villages in the taluka is formed and a necessary number of suitable villages were taken from the list retaining the order of the list. The site in a village was located by a randomly selected survey no. No. of exptal. sites 4. (iii) (a) $72^{\prime} \times 36^{\prime}$. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) Good. (ii) No. (iii) Straw and grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2070 \mathrm{lb} / \mathrm{ac}$.
(ii) 122.0 ib./ac.
(iii) N.A.
(iv) Av. yield of grain in Ib ./ac. Treatment Av. yield

$1 . \quad 1480.0$

2. 2214.5
$3 . \quad 2516.8$
S.E./mean $=60.80 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif). Ref :-Expts. on cultivators' fields; Mh. 52(6). Site :-Bhor (Poona.) Type : ${ }^{\prime} \mathbf{M}^{\prime}$.

Object :-To study the response of Paddy to N and P .

1. BASAL CONDITIONS :
(i (a) N.A. (b) Gram in one village and sugarcane in the other. (c) No manure for gram. Two bags/ac. of F.Y.M for sugarcane.(ii) Black at 3 sites, loamy at 1 site and reddish at 2 sites. (iii) 280 lb /plot of F.Y.M. (iv) Ambe-mohor no. 157. (v) (a), (b) and (c) N.A. (d) Between rows $9^{\prime \prime}$ to 1^{\prime} and between plants $6^{\prime \prime}$ to $9^{\prime \prime}$. (vi), (vii) and (viii) N.A. (ix) $35 \cdot 33^{\prime \prime}$. (x) 12.11.1952 and 23.11.1952.
2. TREATMENTS :
3. Control.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N .
5. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N was applied as a mixture of G.N.C. and A/S in 1:1 ratio of N. Phosphate as Super was applied after ploughing. Nitrogen was applied in two equal doses one at transplanting and the other at tillering.
3. DESIGN
(i), (ii) A list of villages, randomly selected from all the villages in a talùka was made and a necessary number of suitable villages were taken from the list retaining the order of the list. The site in a village was located by a randomly selected survey no. No. of exptal. sites 4 . (iii) (a) Varies from site to site. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL
(i) Good. (ii) No. (iii) Straw and grain yield. (iv) (a) $1952-1953$ for 1 year only. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.

5. RESULTS

For village Nasarpur

(i) $3536 \mathrm{lb} . / \mathrm{ac}$.
(ii) $196.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av, yield of grain in lb./ac.

Treatment	Av. yield
1.	2342
2.	3835
3.	4430
S.E./mean	$=139.6 \mathrm{lb} . / \mathrm{ac}$.

(i) For village Hathashi
(i) $3889 \mathrm{lb} . / \mathrm{ac}$.
(ii) $31.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	3862
2.	3891
3.	3912
S.E./mean	$=\mathbf{= 2 2 . 0} \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif). Ref:-Expt. on cultivators' field; Mh. 52(7).
Site :-Maval (Poona.) Type: ${ }^{\prime} \mathrm{M}^{\prime}$.

Object :-To study the response of Paddy to the application of \mathbf{N} and P .

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) No. (ii) Loamy at one village ; loamy and black at other village. (iii) 280 lb./plot of F.Y.M. (iv) Local. (late) (v) (a), (b) and (c) N.A. (d) Between rows $12^{\prime \prime}$; between plants $9^{\prime \prime}$. (e) N.A. (vi), (vii) and (viii) N.A. (ix) 73.84^{*}. (x) 29.10.1952 and 5.11.1952.

2. TREATMENTS:

1. Control.
2. 64 lb ./ac. of N .
3. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
\mathbf{N} was applied as a mixture of G.N.C. and A/S in $1: 1$ ratio of N. Phosphate was applied after ploughing. Nitrogen was applied in two doses one at transplanting and the other at tillering.
4. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages in a taluka is formed and a necessary no. of suitable villages were taken from the list retaining the serial order of the list. The site in a village was located by a randomly selected survey no. No. of expltt. sites 4 . (iii) Varies from site to site. (b) $33^{\circ} \times 33^{\circ}$. (iv) N.A.
5. GENERAL :
(i) Good. (ii) No. (iii) Straw and grain yield. (iv) (a) 1952-1953 (one year). (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
6. RESULTS :
(i) $2265 \mathrm{lb} / \mathrm{ac}$.
(ii) $56.40 \mathrm{lb} / \mathrm{ac}$.
(iii) N.A.
(iv) Av. yield of grain in $1 \vec{b}$./ac.

Treatment	Av. yield
1.	1340
2.	2084
3.	3371
S.E./mean	$=28.80 \mathrm{lb} . / \mathrm{ac}$.

'Crop : $\boldsymbol{r l}$ Paddy (Kharif). Ref :- Expts. on cultivators' fields Mh. 52(8).
Site :- Vahle Petha (Poona.) Type :~ ' M '.

Object :-To study the response of Paddy to the application of N and P.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Paddy. (c) No. (ii) Reddish. (iii) 280 lb /plot of F.Y.M. (iv) Amme-Mohor no. 157. (v) (a) to (c) N.A. (d) Between rows $9^{\prime \prime}$ and between plants $9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) 22.11.1952.
2. TREATMENTS :
3. Control.
$264 \mathrm{lb} . / \mathrm{ac}$. of N .
4. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N was applied as a mixture of $\dot{\mathrm{G}} . \mathrm{N} . \mathrm{C}$. and A / S in $1: 1$ ratio of $\mathrm{N} \mathrm{P}_{2} \mathrm{O}_{5}$ as Super was applied after ploughing. Nitrogen in two equal doses one at transplanting and the other at tillering.
3. DESIGN :
(i), (ii) A list of villages randomly selected from all the villages in a taluka is formed and necessary no. of suitable villages were taken from the list retaining the serial order of the list. The site in a village was located by randomly selected survey no. No. of exptal. sites 4 . (iii) (a) N.A. (b) $33^{\prime} \times 33^{\circ}$. (iv) N.A.
4. GENERAL :
(i) Go d. (ii) No. (iii) Straw and grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vil) Nil.
5. RESULTS :
(i) $2022 \mathrm{lb} / \mathrm{ac}$.
(ii) $284.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
Treatment Av. yield

1. 1616
2. 2060
3. 2389
S.E./mean $=142.4 \mathrm{lb} . / \mathrm{ac}$.
```
Crop :- Paddy (Kharif). Ref :- Expts. on cultivators' fields; Mh. 52(342).
Site :- Rajapur (Ratnagiri.) Type:- ' \(\mathrm{M}^{\prime}\).
```

Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy in all villages. (c) Nil. (ii) Sandy. (iii) Nil. (iv) Lavesal. (v) (a) to (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 14.10.1952 and 21.10.1952.

2. TREATMENTS :

1. Control.
2. $96 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. 32 lb ./ac. of $\mathrm{N}+32 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as A / S and G.N.C. in 1:1 ratio.
3. DESIGN :
(i), (ii) Villages were selected at random from among the Paddy growing villages and 2 fields were selected at random within each village (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain and straw yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1624 \mathrm{lb} . / \mathrm{ac}$.
(ii) $128.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	1028
2.	1690
3.	2154
S.E. $/$ mean	$=64.20 \mathrm{tb} . / \mathrm{ac}$.

$\begin{array}{ll}\text { Crop :-Paddy (Kharif). } & \text { Ref :- Expts. on cultivators' fields; Mh. 52(343). } \\ \text { Site : } \sim \text { Lanja (Ratnagiri.) } & \text { Type :- ' } \mathrm{M} \text { '. }\end{array}$

Object :-To study the response of Paddy to application of N and P.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy-Paddy. (c) 5 to 10 C.L./ac. of F.Y.M. (ii) Sandy laterite. (iii) 5 C.L./ac. of F.Y.M. (iv) Patani waksal (mid late) and Bhadas. (v) (a) to (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 1.10.1952, 20.10.2952 and 28.10.1952.
2. TREATMENTS:
3. Control.
4. 96 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
5. $32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$. N as A / S and G.N.C. in $1: 1$ ratio.
6. DESIGN :
(i) and (ii) Villages were selected at random form among the Paddy growing villages and 2 fields were selected at random within each village. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and straw yield. (iv) (a) N.A. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1761 \mathrm{lb} . / \mathrm{ac}$.
(ii) $139.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1352
2.	2054
3.	1877
S.E./mean	$=69.80 \mathrm{lb}$./ac.

Crop :- Paddy (Kharif). Ref :-Expts. on.cultivators' fields; Mh. 52(344).
Site :- Ratnagiri (Ratnagiri.) Type :~ ' \mathbf{M} '.
Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Nil. (c) Nil. (ii) Laterite. (iii) 5 C.L./ac. of F.Y.M. (iv) : Patani (early). (v) (a) to (c) N.A. (d) $9^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 19 to 25.9.1952.
2. TREATMENTS :
3. Control.
4. 96 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
5. $32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$. N as A / S and G.N.C. in $1: 1$ ratio.
6. DESIGN :
(i), (ii) Villages were selected at random form among the Paddy growing villages and 2 fields were selected at random within each village. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain 'and straw yield. (iv) (a) N.A. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $1834 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $998.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1576
2.	1892
3.	2035
S.E./mean	$=499.4 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{ll}\text { Crop :- Paddy (Kharif). } & \text { Ref :- Expts. on cultivators' fields; Mh. 52(345). } \\ \text { Site :- Sangameshwer (Ratnagiri.) } & \text { Type :- ' } \mathbf{M}^{\prime} .\end{array}$

Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) 5 taskets/Guntha of F.Y.M. (ii) Laterite. (iii) 5 baskets/Guntha, of F.Y.M. (iv) Bhadas (midlate) ; Patani (early) and Kolamba (midlate). (v) (a) to (e) N.A. (vi).N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 28.10.1952.

2. TREATMENTS :

1. Control.
2. 96 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. $32 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as A / S and cake in $1: 1$ ratio.
3. DESIGN:
(i), (ii) Villages were selected at random from among the paddy growing villages and 2 fields were selected at random within each village. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and straw yield. (iv) (a) N.A. (b) N.A, (c) N.A. (v) N.A. (vii) Nil. (vii) Nil.
5. RESULTS :
(i) $2214 \mathrm{lb} . / \mathrm{ac}$
(ii) $214.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1937
2.	2416
3.	2290
S.E./mean	$=107.3 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Paddy (Kharif). Ref :- Expts. on cultivators' fields; Mh. 52(268).
Site :- Dahanu (Thana.) Type :- ' \(M\) '
Object :-To study the response of Paddy to application of N and P .
```

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy, (c) N.A. (ii) Clayey soft, medium black and reddish clayey. (iii) 5 C.L./ac. F.Y.M. (iv) Kolamba (mid late) and Local (medium). (v) (a), (b) and (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 12.10.1952 and 24.10.1952.
2. TREATMENTS :
3. Control.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio.
5. $64 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. DESIGN:
(i), (ii 2 villages were selected at random within the taluka and within each village 2 fields were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield . (iv) (a) N.A. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
8. RESULTS:
(i) $1827 \mathrm{lb} . / \mathrm{ac}$.
(ii) $37.20 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1674
2.	1842
3.	1966
S.E./mean	$=18.60 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :-Paddy (Kharif). Ref :-Expts. on cultivators' fields;M. M2(269).
Site :-Javhar (Thana.) Type :r'M'.
```

Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) Black. (jii) 5 C.L./ac. of P.Y.M. (iv) $Z-149$. (v) (a), (b) and (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) and (ix) N.A. (x) 1 to 5.11 .1951 .

2. TREATMENTS :

1. Control.
2. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. $1: 1$ ratio.
3. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. DESIGN:
(i) and (ii) 2 villages were selected at random within the taluka and within each village 2 fields were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
5. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
6. RESULTS:
(i) $1745 \mathrm{lb} . / \mathrm{ac}$.
(ii) $45.60 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment Av. yield

1. 1150
2. 1747
$3 . \quad 2337$.
S.E./mean $\quad=22.80 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif). Ref :-Expts. on cultivators' fields; Mh. 52(270).
Site :-Borivali (Thana.) Type:-‘M’.

Object :-To study the response of Paddy to application of N and P .

1. BASAL CONDITIONS :
(i) (a) and (b) N.A. (c) 20 C.L./ac. of F.Y.M. in one village only. (ii) Laterite. (iii) 5 C.L./ac. of F.Y.M. (iv) E.K. 70 (early) and 2149 (late). (v) (a), (b) and (c) N.A. (d) $10^{\prime \prime} \times 10^{\circ}$. (e) N.A. (vi) N.A.- (vii) Unirrigated. (viii) and (ix) N.A. (x) 29 and 30.10.1952.
2. TREATMENTS:
3. Control.
4. 64 lb ./ac, of N as A / S and cake in $1: 1$ ratio.
5. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. DESIGN :
(i) and (ii) 2 villages were selected at random within the taluka and within each village 2 fields were selected at random. (iii) (a) N.A. (b) $33^{\circ} \times 33^{\prime}$: (iv) N.A.
7. GENERAL :
(i) and ii) N.A. (iii) Grain yield. (iv) (a) No. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $967 \mathrm{lb} . / \mathrm{ac}$.
(ii) 47.16 lb /ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	800
2.	982
3.	1120
S.B./mean	$=23.58 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{ll}\text { Crop :- Paddy (Kharif). } & \text { Ref :- Expts. on cultivators' fields ; Mh 52(271). } \\ \text { Site :- Wada, (Thana.) } & \text { Type :- ' } \mathrm{M} \text { '. }\end{array}$
Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Gram and wal. (c) Nil. (ii) Black clayey. (iii) 5 C.L./ac. of F Y.M. (iv) Garwal (late); chali; Ziniya (late) ; Kolamba 226. (v) (a) to (c) N.A. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) Nil. (vi) N.A. (vii) Unirrigated. (viii)N.A. (ix) N.A. (x) 14 to 17.11.1952.
2. TREATMENTS :
3. Control.
4. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and $\mathrm{G} . \mathrm{N}, \mathrm{C} .1 .: 1$ ratio.

3: 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super.
3. DESIGN :
(i), (ii) 2 villages were selected at random within the taluka and 2 fields were selected within ${ }^{\text {a }}$ village. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $3473 \mathrm{lb} . / \mathrm{ac}$.
(ii) $146.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	3138
2.	3823
3.	3459
S.E./mean	$=73.18 \mathrm{lb} . / \mathrm{ac}$.

> Crop :-Paddy (Kharif). \quad Ref :m Expts. on cultivators' fields; Mh. 52(274).
> Site :- Thana (Thana.) \quad Type :- 'M'.

Object :-To study the response of Paddy to application of N and P.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy, (c) Nil. (ii) Black loamy, reddish black. (iii) 5. C.L./ac. of F.Y.M. (iv) Mid-late. (v) (a) to (c) N.A. (d) $10^{\prime \prime} \times 10^{\prime \prime}$ and $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 28.10.1952; 2,11.1952 and 7.11.1952.
2. TREATMENTS :
3. Control.
4. $64 \mathrm{Ib} . / \mathrm{ac}$. of N as A / S and G.N.C.in 1:1 ratio,
5. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. DESIGN:
(i), (ii) 2 villages were selected at random within the taluka and 2 fields were selected at random within the selected village. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
7. GENERAL :
(i) N.A.
(ii) N.A.
(iii) Grain yield.
(iv) (a) No.
(b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $2275 \mathrm{lb} . / \mathrm{ac}$.
(ii) $90.92 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1652
2.	2281
3.	2891
S.E./mean	$=45.46 \mathrm{lb} . / a c$.

$$
\begin{array}{ll}
\text { Crop :- Paddy (Kharif). } & \text { Ref :-Expts. on cultivators' fields; Mh. 52(275). } \\
\text { Site :- Murhad (Thana.) } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the response of Paddy to application of \mathbf{N} and \mathbf{P}.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) N.A. (iii) N.A. (iv) N.A. (v) (a) to (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.

2. TREATMENTS :

1. Control.
2. $64 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio.
3. 64 lb ./ac. of $\mathrm{N}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

Basal dose of 5 C.L./ac. of F.Y.M.
3. DESIGN :
(i), (ii) 2 villages were selected at random within the taluka and within each village, 2 fields were selected at random. (iii) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (iv) N.A.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) N.A. (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2849 lb./ac.
(ii) $236.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1. 2777
2. 2988
$3 . \quad 2784$
S.E. $/$ mean $=118.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy.
Centre :~ Karjat (Maharashtra). Type :- 'MV'.

Object :-VIII, To study the effect of N and P on yield of different varieties of Paddy.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam to clay loam. (b) Poor in lime, $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{s}}$ slightly acidic, well supplied with organic matter. (iii) Transplanting on 25.7.1953. (iv) N.A. (v) N.A. (vi) As under treatments. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 30.10.1953.
2. TREATMENTS:

All combinations (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 3 varieties: $V_{1}=1 B 12-11, V_{2}=Z-31$ and $V_{3}=K-540$ (Improved).

N applied in two equal doses; half dose 5 days after planting and half dose 20 days after planting. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied at puddling.
3. DESIGN :
(i) 3^{3} Confounded. (ii) (a) 9 plots/blovk and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A. (b) $1 / 60.5$ acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Lodging occurred in plots receiving higher doses of N . (ii) Considerable damage to crop by swarming catterpillar. (jii) Grain yield. (iv) (a) 1953 to 1956. (b) No. (c) N.A. (v) (a) Ponnampet, Sahaspur, Burdwan, Mankhanda, Maruteru and Chalvai. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) $2050 \mathrm{lb} . / \mathrm{ac}$.
(ii) $592.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects and interactions are not significant.
(iv) Av. yield of grain in $\mathrm{lb}, / \mathrm{ac}$.

	N_{0}	N_{1}	N_{2}	Mean	V_{1}	\mathbf{V}_{2}	V_{3}
\mathbf{P}_{0}	2074	1608	1608	1763	1825	1929	1535
P_{1}	1971	2178	2572	2240	3008	1473	2240
P_{2}	2261	2054	2126	2147	2033	2188	2219
Mean	2102	1946	2102	2050	2289	1863	1998
V_{1}	2054	2966	1846				
V_{2}	2137	1182	2271				
V_{3}	2116	1691	2188				

S.E. of any marginal mean $\quad=197.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=341.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Paddy (Kharif).
Site :~ Agri. Res. Stn., Chiplun.

Ref:- Mh. 50(146).
Type :- 'C'.

Object :-To study the effect of spacing and number of seedlings per bunch on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Laterite soil. (b) Refer soil analysis, Chiplun. (iii) N.A. (iv) (a) N.A. (b) Transplanting. (c) -. (d) As per treatments. (e) As per treatments. (v) Nil. (vi) Warangal-487. (vii) Unirrigated. (viii) to (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2) +4 selective treatments
(1) No. of seedlings/bunch: $R_{1}=1, R_{2}=2$ and $R_{8}=3$.
(2) 4 spacings: $S_{1}=4^{\prime \prime}, S_{2}=6^{\prime \prime}, S_{3}=9^{\prime \prime}$ and $S_{4}=12^{\prime \prime}$.

And 4 selective treatments are :
(a) $9^{\prime \prime}$ spacing with 6 seedlings/bunch.
(b) $12^{\prime \prime}$ spacing with 6 seedlings/bunch.
(c) $9^{\prime \prime}$ spacing with 9 seedlings/bunch.
(d) $12^{\prime \prime}$ spacing with 9 seedlings/bunch.
3. DESIGN :
(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 12^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain and straw yield. (iv) (a) 1950 to 1951. (b) No. (c) Nil. (v) (a) Igatpuri, Ratnagiri and Vadgaon. (b) N.A, (vi) and (vii) Nil.
5. RESULTS :
(i) $1476 \mathrm{lb} / \mathrm{ac}$.
(ii) $343.9 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of spacing, seedlings anđ selective νs others are highly significant ; Spacing \times seedlings, and selective treatments are not significant.
(iv) Av. yield of grain in lb./ac.

(a)	$=1610 \mathrm{lb} . / \mathrm{ac}$.
(b)	$=1806 \mathrm{lb} . / \mathrm{cac}$
(c)	$=1834 \mathrm{lb} . / \mathrm{ac}$.
(d)	$=1632 \mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	1421	1276	1201	788	1171
$\mathbf{R}_{\mathbf{2}}$	1670	1576	1185	1059	1372
$\mathbf{R}_{\mathbf{a}}$	1796	1796	1875	1100	1642
Mean	1629	1549	1420	982	

S.E. of marginal mean of $S \quad=99.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of $R \quad=86.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=172.0 \mathrm{lb} . / \mathrm{ac}$.
\qquad \because

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Chiplun.

Ref:- Mh. 51 (214).
Type:- 'C'.

Object :-To study the effect of spacing and number of seedlings per bunch on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) and (b) Paddy. (c) N.A. (ii) (a) Laterite soil. (b) Refer soil analysis, Chiplun. (iii) N.A. (iv) (a). N.A. (b) Transplanting. (c) -. (d) and (e) As per treatments. (v) Nil. (vi) Warangal-487. (vii) Unirrigated. (viii) to (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2) +4 selective treatments
(1) No. of seedlings bunch : $R_{1}=1, R_{2}=2$ and $R_{8}=3$.
(2) 4 spacings : $S_{1}=4^{\prime \prime}, S_{2}=6^{\prime \prime}, S_{8}=9^{\prime \prime}$ and $S_{d}=12^{\prime \prime}$.

And 4 selective treatments are :
(a) $9^{\prime \prime}$ spacing with 6 seedlings/bunch.
(b) $12^{\prime \prime}$ spacing with 6 seedlings/bunch.
(c) $9^{\prime \prime}$ spacing with 9 seedlings/bunch.
(d) $12^{\prime \prime}$ spacing with 9 seedlings/bunch.
3. DESIGN :
(i) R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 12^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) Grain and straw yield. (iv) (a) 1950 to 1951. (b) No. (c) Nil. (v) (a) Igatpuri, Vadgaon, Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1311 \mathrm{lb} . / \mathrm{ac}$.
(ii) $226.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of spacing and selective vs others are highly significant. Main effect of seedlings, spacing \times seedlings and selective treat ments are not significant.
(iv) Av. yield of grain in lb./ac.

| (a) | | $=1642 \mathrm{lb} / \mathrm{ac}$. |
| ---: | :--- | ---: | :--- |
| (b) | | $=1308 \mathrm{lb} . / \mathrm{ac}$. |
| (c) | | $=1418 \mathrm{lb} . / \mathrm{cc}$. |
| (d) | | $=1613 \mathrm{lb} / \mathrm{ac}$. |

\(\left.\begin{array}{c|cccc} \& \mathbf{S}_{\mathbf{1}} \& \mathbf{S}_{\mathbf{2}} \& \mathbf{S}_{\mathbf{3}} \& \mathbf{S}_{\mathbf{4}}

\hline \mathbf{R}_{\mathbf{1}} \& 1213 \& 1349 \& 1090 \& 1046

\mathbf{R}_{\mathbf{2}} \& 1339 \& 1339 \& 1138 \& 1147

\mathbf{R}_{\mathbf{3}} \& 1279 \& 1648 \& 1156 \& 1245\end{array}\right]\)| 1174 |
| :---: |
| Mean |

S.E. of marginal mean of S	$=65.2 \mathrm{lb} / \mathrm{ac}$.
S.E. of marginal mean of R	$=56.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=113.0 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{lr}\text { Crop :- Paddy (Kharif). } & \text { Ref :- Mh. } 48 \text { (14). } \\ \text { Site :- Agri. Res. Stn., Igatpuri. } & \text { Type :- 'C'. }\end{array}$
'Type :- 'C'.
Object :- To find out the optimum spacing and number of seedlings/bunch to get maximum yield.

1. BASAL CONDITIONS :
(i) (a) Paddy after paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Igatpurí. (iii) $8.6 .1948 / 18$ to 20.7 .1948 . (iv) (a) 2 ploughings. (b) transplanting. (c) -. (d) As per treatments. (e) N.A. (v) Nil. (vi) K-226 (late). (vii) Unirrigated. (viii) Puddling and planting on 18 and 20.7.1948; interculturing from 1 to 5.9.1948. (ix) 115.69°. (x) 4 and 6.11.1948.
2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments:
Seedlings/bunch : $\mathbf{R}_{1}=4, R_{2}=6, R_{3}=8 R_{4}=10$ and $R_{5}=12$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) sub-plot $22^{\prime}-5^{\prime \prime} \times 20^{\prime} ; 23^{\prime}-4^{\prime \prime} \times 20^{\prime} ; 24^{\prime} \times 20^{\prime}$ for $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacings respectively. (b) Sub-plot $20^{\prime} \times 10^{\prime}$. Maio-plot $22^{\prime}-8^{\prime \prime} \times 100^{\prime} ; 23^{\prime \prime} \times 100^{\prime} ; 24 \times 100^{\prime}$ for $8^{\prime \prime}, 10^{\circ}$ and $12^{\prime \prime}$ spacings respectively. (v) 5^{\prime} at either end, 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Greatly affected by crabs. (iii) Grain and straw yield. (iv) (a) 1948 to 1951. (b) Yes. (c) N.A. (v) (a) Chiplun, Karjat, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1449 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $274.0 \mathrm{lb} . / \mathrm{ac}$. i
(b) $222.6 \mathrm{Ib} . / \mathrm{ac}$.
(iii) Only main-plot treatment effects are significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	1542	1480	1101	1374
$\mathbf{R}_{\mathbf{2}}$	1599	1405	1370	1458
$\mathbf{R}_{\mathbf{3}}$	1582	1533	1381	1499
$\mathbf{R}_{\mathbf{4}}$	1691	1404	1331	1475
\mathbf{R}_{5}	.1515	1522	1274	1437
Mean	1586	1469	1291	1449

S.E. of difference of two

1. S marginal means $\quad=77.5 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means $\quad=81.2 \mathrm{lb} . / \mathrm{ac}$.
3. R means at a level of $S \quad=147.7 \mathrm{Jb} . / \mathrm{ac}$.
4. S means at a level of R $=140.7 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref:- Mh. 49(24)/48(14).
Type: ' C '.

Object :-To find out the optimum spacing and number of seedlings per bunch to get maximum yield.

1. BASAL CONDITIONS:
(i) (a) Paddy after paddy. Fallow in Rabi. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Igatpuri. (iii) 4.6.1949/24, 25 and 27.7.1949. (iv) (a) 2 ploughings. (b) Transplanting. (c) -. (d) and (e) As per treatments. (v) Nil. (vi) K-226 (late). (vii) Unirrigated. (viii) Puddling and planting on 24 to 26.7.1949, interculturing on 16.9.1949. (ix) $125.68^{\prime \prime}$. (x) 10.11.1949; 13.11.1949.
2. TREATMENTS :

Main-plot treatments :
3 spacings: $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\circ}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments:
Seedlings/bunch : $\mathrm{R}_{1}=4, \mathrm{R}_{2}=6, \mathrm{R}_{3}=8, \mathrm{R}_{4}=10$ and $\mathrm{R}_{5}=12$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block ; 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $22^{\prime}-8^{\prime \prime} \times 20$; $23^{\prime}-4^{\prime \prime} \times 20^{\prime \prime} ; 24^{\prime} \times 20^{\prime}$ for $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacings respectively ; main-plot ($8^{\prime \prime}$ spacing- $22^{\prime}-8^{\prime \prime} \times 100^{\prime} ; 10^{\prime \prime}$ spacing- $23^{\prime}-33^{\prime} \times 100^{\prime} ; 12^{\prime \prime}$ spacing- $24^{\prime} \times 100^{\prime}$). (b) $20^{\prime} \times 10^{\prime}$. (v) 5 rows at either end, 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Few border plants eaten away by crab. (iii) Grain and fodder yield. (iv) (a) 1948-1951. (b) Yes. ,c) N.A. (v) (a) Chiplun, Karjat, Ratnagiri and Vadgaon (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1016 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $150.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $136.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main-plot treatment effects are significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	S_{1}	S_{2}	\mathbf{S}_{3}	Mean
R_{1}	982	979	975	979
R_{2}	1189	850	945	995
R_{3}	1230	10:0	854	1045
R_{4}	1154	1102	873	1043
R_{5}	1158	1001	894	1018
Mean	1143	996	908	1016

S.E. of difference of two

1. S marginal means $\quad=38.9 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means $\quad=45.4 \mathrm{lb} . / \mathrm{ac}$.
3. R means at a level of $S=78.6 \mathrm{lb}$./ac.
4. S means at a level of $R=80.4 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref:- Mh. 50(33)/49(24)/48(14).
Type:- ' C '.

Object:-To find out the optimum spacing and number of seedlings per bunch for getting maximum yield.

1. BASAL CONDITIONS :

(i) (a) Paddy after paddy (fallow in Rabi). (b) Paddy. (c) Nil. (ii) (a) Coarse to medium black soil. (b) Refer soil analysis, Igatpuri. (iii) 12.6.1950/30.7.1950. (iv) (a) N.A. (b) Transplanting. (c) -. (d) and (e) As per treatments. (v) Nil. (vi) K-226 (late). (vii) Unirrigated. (viii) Hand weeding 1st week of Sept. 1950. (ix) $147.25^{\prime \prime}$. (x) 15.11.1950 to 17.11.1950.

2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments :
Seedlings/bunch : $\dot{R}_{1}=4, R_{2}=6, R_{3}=8, R_{4}=10$ and $R_{5}=12$.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 5 sub plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) $22^{\prime}-8^{\prime \prime} \times 20^{\prime}$; $23^{\prime}-4^{\prime \prime} \times 20^{\prime} ; 24^{\prime} \times 20^{\prime}$ for $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacings respectively ; main-plot: $-22^{\prime}-8^{\prime} \times 100^{\prime} ; 23^{\prime}-4^{\prime \prime} \times 100^{\prime} ; 24^{\prime} \times$ 100^{\prime} for $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacing respectively. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} at either end and 2 rows on either side (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was fairly good. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948-1951. (b) Yes. (c) N.A. (v) (a) Chiplun, Karjat, Ratnagiri, Vadgaon. (b) N.A. i (vi) and (vii) Nil.
5. RESULTS :
(i) $1032 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $366.8 \mathrm{lb} . / \mathrm{ac}$.
(b) 202.6 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	1081	1002	978	1020
$\mathbf{R}_{\mathbf{2}}$	1057	994	918	990
$\mathbf{R}_{\mathbf{3}}$	1155	975	1054	1061
$\mathbf{R}_{\mathbf{4}}$	1087	1061	884	1011
\mathbf{R}_{5}	1179	1097	952	1076
Mean	1112	1026	957	1032

S E. of difference of two

1. S marginal means	$=94.7 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means	
3. R means at a level of S	$=67.4 \mathrm{lb} . / \mathrm{ac}$.
4. S means at a level of R	
	$=117.0 \mathrm{lb} . / \mathrm{ac}$.
	$=141.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif). Ref:- Mh. 51 (37)/50(33)/49(24)/48(14).
Site : $\boldsymbol{\sim}$ Agri. Res. Stn., Igatpuri. Type :- 'C'. .

Object:-To find out the optimum spacing and number of seedlings per bunch for getting maximum yield.

1. BASAL CONDITIONS :
(i) (a) Paddy after Paddy (fallow in Rabi). (b) Paddy. (c) Nil. (ii) (a) Coarse to medium black soil. (b) Refer soil analysis, Igatpuri. (iii) $6.6 .1951 / 16.7 .1951$. (iv) (a) N.A. (b) Transplanting. (c) (d) and (e) As per treatments. (v) Nil. (vi) K-226 (late). (vii) Unirrigated. (viii) Hand weeding on Ist week of Sept. 1951. (ix) $116.88^{\prime \prime}$. (x) 7.11.1951.
2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments :
Seedlings/bunch : $R_{1}=4, R_{2}=6, R_{3}=8, \dot{R}_{4}=10$ and $R_{5}=12$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $22^{\prime}-8^{\prime \prime} \times 22^{\prime}$. $23^{\prime}-4^{\prime \prime} \times 20^{\prime} ; 24^{\prime} \times 20^{\prime}$ for $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacings respectively. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} on either end and 2 rows on either side. (vi) Yes.
4. GENERAL:
(i) The general growth of the crop was fairly good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1951. (b) Yes. (c) N.A. (v) (a) Chiplun, Karjat, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1543 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $300.7 \mathrm{lb} . / \mathrm{ae}$.
(b) $134.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of R is significant, interaction $S \times R$ is highly significant. Effect of S is not significant.

141
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

		$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$
\mathbf{R}_{1}	1470	1619	1470	Mean
$\mathbf{R}_{\mathbf{2}}$	1632	1530	1271	1520
$\mathbf{R}_{\mathbf{3}}$	1549	1561	1472	1478
$\mathbf{R}_{\mathbf{4}}$	1695	1587	1537	1527
\mathbf{R}_{5}	1601	1572	1574	1606
Mean		1589	1574	1465

S.E. of difference of two

1. S marginal means	$=77.6 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means	$=45.0 \mathrm{lb} . / \mathrm{ac}$.
3. R means at a level of S	$=77.9 \mathrm{lb} . / \mathrm{ac}$.
4. S means at a level of R	$=104.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :~ Agri. Res. Stn., Karjat.

Ref:~Mh. 49(16).
Type:- 'C'.

Object :-To find out the optimum spacing and bunch size required for Paddy crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Sandy loam (medium black) derived from trap rock. (b) Refer soil analysis, Karjat. (iii) $6.6 .1949 / 6$ to 11.8 .1949 (iv) (a) 2 ploughings. (b) Transplanting. (c) (d) and (e) As per treatments. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) No. (ix) $133^{\prime \prime}$. (x) 27 to 30.11 .1949 .

1. TREATMENTS:

Main-plot treatments
3 spacings: $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments :
Seedlings/bunch : $R_{1}=4, R_{2}=6, R_{6}=8, R_{4}=10$ and $R_{6}=12$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block ; 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $22^{\prime}-8^{\prime \prime} \times 20^{\circ}$ $23^{\prime}-4^{\prime \prime} \times 20^{\prime} ; 24^{\prime} \times 20^{\prime}$ for $8^{\prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacings respectively; Gross main-plot: $22^{\prime}-8^{\prime \prime} \times 100^{\prime}, 23^{\prime}-4^{\prime \prime} \times 100^{\prime \prime}$ and $24^{\prime} \times 10^{\prime}$ respectively. (b) $20^{\prime} \times 10^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. Flowering started from 6.10.1949. (ii) Seedlings were affected by b'ast disease but were treated with perenox ($2 \frac{1}{2} \mathrm{lb}$. in 100 galls.) at the time of transplanting. (iii) Grain and fodder yield. (iv) (a) 1947-51. (b) Yes. (c) N.A (v) (a) Chiplun, Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) Nil. (vii) Two replications have been dropped from statistical analysis. In all there were 6 replications.

5. RESULTS :

(i) $1771 \mathrm{lb} . / \mathrm{ac}$,
(ii) (a) $386.7 \mathrm{lb} / \mathrm{ac}$.
(b) $188.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Effect of S is not significant, effect of R and interaction $S \times R$ are significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{S}_{1}	S_{2}	S_{3}	Mean
R_{1}	1521	1769	1531	1607
$\mathbf{R}_{\mathbf{2}}$	1857	1669	1615	1714
\mathbf{R}_{3}	1965	1865	1789	1873
\mathbf{R}_{4}	2073	1765	1758	1865
R_{5}	1745	1911	1741	1799
Mean	1832	1796	1687	1771
S.E. of difference of two				
1. S marginal means		$=122.2 \mathrm{lb} . / \mathrm{ac}$.		
2. R marginal means		$=77.0 \mathrm{lb} . / \mathrm{ac}$.		
3. R means at a level of		$=133.4 \mathrm{lb} / \mathrm{ac}$.		
4. S means at a level of R		$=17 \mathrm{C} .3 \mathrm{lb} . / \mathrm{ac}$.		

Crop :-Paddy (Kharif).
Site :-Agri. Res. Str., Karjat.

Ref :-Mh. 50(25)/49(16).
Type :-‘C’.

Object:-To find out the optimum spacing and banch size required for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Sandy loam, mediom black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 11.6.1950\%4-9.8.1950. (iv) (a) 2 ploughings. (b) Transplanting. (c) -. (d) and (e) As per treatments. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) Transplanting 'was done about 3 weeks late. Weeding was done twice in September. threshing was done on the next day of harvest. (ix) $124^{\prime \prime}$. (x) $26.11 .1950,29.11 .1950,30.11 .1950$ and 1.12.1950.

2. TREATMENTS :

Main-plot treatments :
3 spacings: $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\circ} \times 12^{\circ}$.
Sub-plot treatments :
Seedings/bunch : $R_{1}=4, R_{2}=6, R_{8}=8, R_{4}=10$ and $R_{5}=12$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/tlock; 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $22^{\prime}-8^{\prime \prime} \times 20^{\prime}$; $23^{\prime}-4^{\prime \prime} \times 20^{\prime \prime} ; 24^{\prime} \times 20^{\prime}$ for $8^{\prime \prime \prime}, 10^{\prime \prime}$ and $12^{\prime \prime}$ spacings respeciveiy; gross main-plot $22^{\prime}-8^{\prime \prime} \times 100^{\prime} ; 23^{\prime}-4^{\prime \prime} \times 100^{\prime \prime}$; $24^{\prime} \times 100^{\circ}$ (b) $20^{\prime} \times 10^{\circ}$. (v) 5^{\prime} at either end and 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Long break of rains affected the growth. Difference in height and growth due to different spacings. (ii) At flowering, attack of rice mealy bugs. Slight attack of blast. (iii) Dates of flowerings and grain yleld. (iv) (a) 1947-1951. (b) Yes. (c) N.A (v) Chiplun, Igatpuri, Ratnagisi and Vadgaon. (b) N.A (vi) Nil. (vii) Two replications were dropped as the yield were very low. The expt. was laid out with 6 replications.
5. RESULTS :
(i) $1351 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $523.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $471.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S alone is highly significant.
(iv) Av. yleld of grain in lb./ac.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	Mean	
$\mathbf{R}_{\mathbf{1}}$	1442	1503		1350	1432
$\mathbf{R}_{\mathbf{2}}$	1956	1510		962	1476
$\mathbf{R}_{\mathbf{8}}$	1673	1241		1010	1308
$\mathbf{R}_{\mathbf{4}}$	1654	735	1388	1259	
$\mathbf{R}_{\mathbf{3}}$	1456	1207	1180	1281	
Mean	1636	1239	1178	1351	

S.E. of difference of two

1. S marginal means $\quad=165.6 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means $\quad=191.8 \mathrm{lb} . / \mathrm{ac}$.
3. R means at a level of $S \quad=333.6 \mathrm{lb} . / \mathrm{ac}$.
4. S means at a level of $R \quad=341.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Site :-Agri. Res. Stn., Karjat.

Ref :-Mh. 51(32)/50(25)/49(16).
Type: ب̌'C’.

Objeet :-To find out the optimum"spacing and bunch size required for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) Nil. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 13.6.1951/7.8.1951. to 14.8.1951. (iv) (a) 2 ploughings. (b) Transplanting (c) (d) and (e) As per treatments. (v) Nil. (vi) K-42 late. (vii) Unirrigated. (viii) N.A. (ix) 109".
(x) 27.111951 to 30.11 .1951.
2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments :
Seedlings/bunch : $R_{1}=4, R_{2}=6, R_{3}=8, R_{4}=10$ and $R_{5}=12$.
3. DESIGN :
(i Split-plot. (ii) (a) 3 main-plots/blocks; 5 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $22^{\prime}-8^{\prime \prime} \times 20^{\prime}$;
 $23^{\prime}-4^{\prime \prime} \times 100^{\prime}$; $24^{\prime} \times 100^{\prime}$ (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} at either end, 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield alone. (iv) $1947-1951$. (b) Yes. (c) N.A. (v) Chiplun, Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) Nil. (vii) Originally there were 6 replications. Two of them were dropped from analysis as these were vitiated.
5. RESULTS :
(i) 1413 lb ./ac.
(ii) (a) $466.0 \mathrm{lb} . / \mathrm{ac}$.
(b) 249.1 lb ./ac.
(iii) Effect of \mathbf{R} alone is significant.

144

(iv) Av. yield of grain in lb./ac.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	1326	1204	696	1075
$\mathbf{R}_{\mathbf{2}}$	1568	1449	1231	1416
$\mathbf{R}_{\mathbf{3}}$	1936	1497	1289	1574
$\mathbf{R}_{\mathbf{4}}$	1588	1374	1462	1474
$\mathbf{R}_{\mathbf{5}}$	1562	1496	1527	1528
Mean	1596	1404	1241	1413

S.E. of difference of two

1. S marginal means $\quad=147.3 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means $\quad=101.7 \mathrm{lb} . / \mathrm{ac}$.
3. R means at a level of $S=176.1 \mathrm{lb}$./ac.
4. S means at a level of $R=216.3 \mathrm{lb}$./ac.
Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat. \quad Ref :- Mh. 52(59).

Object :-To study the effect of keeping seedlings for few days before transplanting on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) $10.6 .1952 / 28.7$.1952. (iv) (a) 2 ploughings. (b) Transplanting. (c) - (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) K-42. (vii) Unirrigated. (viii) N.A. (ix) 109. (x) 18.11.1952.
2. TREATMENTS:

Transplanting seedlings after being kept for

1. 2 days.
2. 4 days.
3. 6 days.
4. 8 days.
5. 10 days.
6. Fresh seedlings (control).
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 8. (iv) (a) N.A. (b) $16^{\prime} \times 1^{\prime}-4^{\prime}$, (v) N.A. (vi) Yes.
8. GENERAL :
(i) N.A.' (ii) Nil. (iii) Grain yield, height and no. of tillers. (iv) (a) 1951-54. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) $811.4 \mathrm{lb} / \mathrm{ac}$.
(ii) $238.3 \mathrm{lb} . / \mathrm{ac}$.
(iii). Treatments differ significantly.
(iv) Av. yield of grain in lb. /ac.

Treatment	Av. yield
1.	965
2.	728
3.	1024
4.	622
5.	678
6.	851.
S.E./mean	$=84.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Ref: ${ }^{-w}$ Mh. 53(123).
Site :- Agri. Res. Stn., Karjat.

- Type :- 'C'.

Object :-To study the effect of keeping seedlings for few days before transplanting on yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Sandy loam; medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) $14.6 .1953 / 3.8 .1953$. (iv) (a) N.A. (b) Transplanting. (c) - . (d) $8^{\prime \prime} \times 8^{\text {² }}$. (e) N.A. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) 1 weeding. (ix) 133°. (x) N.A.
2. TREATMENTS :

Transplanting seedlings afer being kept for

1. 2 days.
2. 4 days.
3. 6 days.
4. 8 days.
5. 10 days.
6. Fresh seedings (control).
7. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 6 . (iv) (a) $20^{\prime} \times 2^{\prime}$. (b) $16^{\prime} \times 2^{\prime}$. (v) 2^{\prime} on either side (3 lines). (vi) Yes.
8. GENERAL :
(i) Growth in the beginaing was less vigorous. (ii) N.A. (iiii) Grain and straw yield. (iv) (a) 1951-54. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) $1149 \mathrm{lb} . / \mathrm{ac}$.
(ii) $255.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gra n in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1262
2.	1312
3.	1156
4.	1113
5.	837
6.	1212
S.E./mean	$=104.1 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lc}
\text { Crop :- Paddy (Kharif). } & \text { Ref:- Mh. 53(281). } \\
\text { Site :- Agri. Res. Stn., Karjat. } & \text { Type:- 'C'. }
\end{array}
$$

Object :-To compare slant with straight method of transplanting seedlings.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (iii) N.A. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) K-42; (vii) Unirrigated. (viii, N.A. (ix) $134.02^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Slant method of transplanting.
4. Straight transplanting.
5. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $60^{\circ} \times 18^{\prime}$. (v) N.A. , (vi) Yes.
6. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) $1953-1955$. (b) No. (c) N.A. (v) (a) Ratnagiri and Vadgaon. (b) N.A. (vi) Nil. (vii) Nil.
7. RESULTS:
(i) $1373 \mathrm{lb} . / \mathrm{ac}$.
(ii) 191.8 lb /ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac. Treatment Av. yjeld

1.	1306
2.	1440
S.E./mean	$=78.31 \mathrm{lb} . / \mathrm{ac}$.

Crop :m Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.
Ref: Mh. 53(144).
Type : ' C '.
Object :-To study the effect of early harvesting of crop on the yield and germination quality of the produce.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) No manuring is given. (ii) (a) Sandy loam, medium black derived from trap rock. (b) Refer soil analysis, Karjat. (jii) 25.6.1953/28.7.1953. (iv) (a) Two pleughings and one puddling for transplanting. (b) Transplanting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $8^{\prime \prime} \times 8^{\prime \prime}$. (e) N.A. (v) Nil. (vi) K-42 (late), (vii) Unirrigated. (viii) One weeding. (ix) $133^{\prime \prime}$. (x) A. per treatments between 3.11.1953 and 27.11.1953.

2. TREATMENTS :

1. Harvesting 20 days after flowering.
2. Harvesting 25 days after flowering.
3. Harvesting 30 days after flowering.
4. Harvesting 35 days after flowering.
5. Harvesting 40 days after flowering.
6. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 3. (iv) (a) $30^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 25^{\prime}$. (v) Nil. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Moderate attack of severing catter pillers. (iii) Grain yield. (iv) (a) 1952-1956. (b) Yes. (c) N.A. , (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $1635 \mathrm{lb} . / \mathrm{ac}$.
(ii) $2586 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1431
2.	1942
3.	1825
4.	1326
5.	1650
S.E /mean	$=149.3 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lc}
\text { Crop :-Paddy (Kharif). } & \text { Ref :-Mh. 52(231). } \\
\text { Site :-Agri. Res. Stn., Karjat. } & \text { Type :-‘C’. }
\end{array}
$$

Object :-To study the effect of broadcast vs dibble method of planting on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Karjat. (iii) 22.6.1952/
128.1952. (iv) (a) 2 ploughings. (b) and (c) As per treatments. (d) and (e) N.A. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) One weeding. (ix) 95". (x) 15.11.1952.
2. TREATMENTS:
I. $320 \mathrm{lb} . / \mathrm{ac}$. of seed troadcast.
3. 160 lb ./ac. of seed broadcast.
4. $80 \mathrm{lb} . / \mathrm{ac}$. of seed broadcast.
5. 40 lb ./ac. of seed dibbled.
6. 20 lb ./ac. of seed dibbled.
7. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) and (b) $7.5^{\prime} \times 7.5^{\prime}$. (v) Nil. (vi) Yes.
8. GENERAL :
(i. Sowing was much delayed. As the soil was cold the seedlings did not show proper growth in seedbed, they showed yellowing appearance. (ii) Nil. (iii) Initial weights, weight of straw and weight of grain. (iv) (a) 1952-N.A. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.
9. RESULTS :
(i) $542 \mathrm{lb} / \mathrm{ac}$.
(ii) $128.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1.	481
2.	603
3.	595
4.	504
5.	439
S.E./mean	$=64.0 \mathrm{lb} . / \mathrm{ac}$.

Crop : P Paddy (Kharif).
Site :- Agri. Res. Stn., Panavel.

Ref:- Mh. 52(33).
Type:- 'M'.

Object :-To find the best seed-rate for Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) N.A. (iii (a) Salt land from moderately saline to highly saline. (b) Refer soil analysis, Panavel. (iii) 28.6.1952. (iv) al N.A. (b) Rahu. (c) As per treatments. (d) N.A. (e) N.A. (v) Nil. (vi) Kala Rata 1-24. (vii) Unirrigated. (viii) N.A. (ix) 98". (x) 24.10.1952.

2. TREATMENTS:

Seed-rates:-

1. $25 \mathrm{lb} . / \mathrm{ac}$.
2. $30 \mathrm{lb} . / \mathrm{ac}$.
3. 35 lb ./ac.
4. $40 \mathrm{lb} . / \mathrm{ac}$.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $15^{\prime} \times 20^{\circ}$. (v: N.A. (vi) Yes.
6. GENERAL :
(i) One replication was withered to some ex'ent. The crop was virying from poor to fairly good in different plots. (ii) Nil. (iii urain and straw yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) Nil. vii) Yiel J data N.A. and hence not analysed.
7. RESULTS:
(i) $444.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) N.A.
(iii) N.A.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	408.4
2.	471.9
3.	462.0
4.	435.6
S.E./mean	N.A.

Crop:- Paddy (Kharif).
Ref :- Mh. 53(116)/52(33).
Site :- Agri. Res. Stn., Panavel.
Type:- ' C '.
Object :-To find the best seed-rate for Paddy.

1. 'BASAI CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) Nil. (ii) (a) Salt land from moderately saline to highly saline. (b) Refer soil analysis, Panaval. (iii) 25.6.1953. (iv) (a), (b) N.A. (c) As per treatments. (d) and (e) N.A. (v) Nil. (vi) Kala Rata 1-24. (vii) Unirtigated. (viii) Pruning 1.8.1953 and flowering 13.9.1953. (ix) 128". (x) 27.10.1953.

2. TREATMENTS:

Seed-rates :-

1. $25 \mathrm{lb} . / \mathrm{ac}$.
2. $30 \mathrm{lb} . / \mathrm{ac}$.
3. $35 \mathrm{lb} . / \mathrm{ac}$.
4. $40 \mathrm{lb} . / \mathrm{ac}$.
5. DESIGN :
(i) R.B.D.
(ii) (a) 4.
(b) N.A.
(iii) 4.
(a) N.A.
(b) $15^{\prime} \times 20^{\prime}$. (v) N.A. (vi) Yes.
6. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1952-N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
7. RESULTS:
(i) $889 \mathrm{lb} . / \mathrm{ac}$.
(ii) $219.8 \mathrm{lb}, / \mathrm{ac}$.
(iii) The treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	815
2.	926
3.	944
4.	853
S.E./mean	$=109.9 \mathrm{lb}$./ac.

Crop:- Paddy (Kharif).	Ref:- Mh. 48 (2).
Ste :- Agri. Res. Stn, Ratnagiri.	Type:- ${ }^{\text {C }}$ '

Site :- Agri. Res. Stn., Ratnagiri. Type :- 'C'.
Object:-To find out the optimum number of seedlings per bunch and spacings for getting maximum yield of Paddy.

1. BASAL CONDITIONS :

(i) (a) No. (b) Replication I vegetables, replication II, III and IV pine-apples and replication V and VI paddy. (c) Rep. I 800 lb . of G.N C., Rep. II, III and IV $\frac{1}{2} \mathrm{lb}$. of G.N C. $\frac{1}{2} \mathrm{lb}$. of fish and $\frac{1}{8} \mathrm{Ib}$. of F.Y.M./ plant. Rep. VI and VI $560 \mathrm{lb} / \mathrm{ac}$. of G N.C. (ii) (a) Laterite. (b) N.A. (iii) From 9 to 11.6.1948/19 to 29.7.1948. (iv) (a) N.A. (b) Transplanting. (c) -. (d), (e) As per treatments. (v) 5 C.L./ac. of F.Y.M. (vi) Patni-6 (early). (vii) Unirrigated. (viii) Nil. (ix) 141.51". (x) Between 7 and 9.10.1948.

2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments:
No. of seedlings/bunch : $R_{1}=4, R_{2}=6, R_{3}=8, R_{4}=10$ and $R_{5}=12$.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Main-plot : $24^{\prime} \times 100^{\prime}, 23^{\prime}-4^{\prime \prime} \times 100^{\prime}$ and $22^{\prime} 8^{\prime \prime} \times 100^{\prime}$ and sub-plot $24^{\prime} \times 20^{\prime}, 23^{\prime} 4^{\prime \prime} \times 20^{\prime}$ and $22^{\prime} 8^{\prime \prime} \times 20^{\prime}$ for spacings. $12^{\prime \prime}, 10^{\circ}$ and $8^{\prime \prime}$ respectively. (b) Sub-plot $20^{\prime} \times 10^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory; late transplanting. Lodging due to late harvest and because of heavy rains. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1947 to 1953. (b) Yes. (c) N.A. (v) (a) Chiplun, Igatpuri, Karjat and Vadgaon (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) $2004 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $394.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $269.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Effect of R alone is significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{8}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	2003	1749	1618	1790
$\mathbf{R}_{\mathbf{2}}$	2153	1786	1799	1913
$\mathbf{R}_{\mathbf{3}}$	2187	2126	2117	2143
\mathbf{R}_{4}	2262	2060	1804	2042
\mathbf{R}_{5}	2078	2055	2260	2131
Mean	2137	1955	1920	2004

S.E. of difference of two

1. S marginal means
$=101.8 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means $\quad=89.6 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of $S \quad=155.3 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of $R \quad=172.2 \mathrm{lc} . / \mathrm{ac}$.

Crop :- Pad dy (Kharif).
Site :- Agri. Res. Stn.; Ratnagiri.

Ref :- Mh. 49 (2)/48 (2).
Type : ' C '.

Object : - To find out the optimum no. of seedlings per bunch and spacing for getting the maximum yield.

1. BASAL CONDITIONS :
(i) (a) No definite rotation. (b) Replication I, II, III and IV cabbage; replication VI-fallow. (c) 5 C.L./ac. of F.Y.M. and $800 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. (ii) (a) Mala (low lying.) (b) N.A. (iii) 3, 4.6.1949, 8 to 247.1949. (iv) (a) N.A. (b) Transplanting. (c) N.A. (d) and (e) As per treatments. (v) 5 C.L./ac. of F.Y.M in June. (vi) Patni (early) . (vii) Unirrigated. (viii) Top dressing of $6 \mathrm{lb} . / \mathrm{g} u n t h a$ manure mixture on 27.7.1949 2nd dose of 2 lb /gun iha on 5.8.1949. (ix) $105.90^{\prime \prime}$. (x) 6, to8 .8.1949.

2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$ and $S_{8}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments:
No. of seedlings/bunch : $R_{1} \doteq 4, R_{2}=6, R_{3}=8, R_{4}=10$ and $R_{5}=12$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) main-plot : $24^{\prime} \times 100^{\prime}, 23^{\prime}-4^{\prime \prime} \times 100^{\prime}$ and $22^{\prime}-8^{\prime \prime} \times 100^{\prime}$ and sub-plot: $24^{\prime} \times 20^{\prime}, 23^{\prime}-4^{\prime \prime} \times 20^{\prime}$, and $22^{\prime}-8^{\prime \prime} \times 20^{\prime}$ for spacings $12^{\prime \prime}$, $10^{\prime \prime}$ and $8^{\prime \prime}$ respectively. (b) Sub-plot: $20^{\prime} \times 10^{\prime}$. (v) Guard ring for each sub-plot of $10^{\prime \prime} \times 10^{\prime \prime}$ and $12^{\prime \prime} \times 12^{\prime \prime}$ spacing would consist of two rows on either side; 5^{\prime} of rows on either end. In case of $8^{\circ \prime} \times 8^{\prime \prime}$ spacing, however, a ring of 2 rows on either side and 7 plants at one end and 8 plants at the other end (vii) Yes.
4. GENERAL :
(i) Normal ; satisfactory growth. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1947 to 1953. (b) Yes. (c) N.A. (v) (a) Chiplun, Igatpuri, Karjat and Vadgaon. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) $2980 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $709.1 \mathrm{lb} / / \mathrm{ac}$.
(b) $349.8 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects and interaction is significant.
(iv) Av. yield of grain in lb ./ac.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	3184	3141	2688	3004
$\mathbf{R}_{\mathbf{2}}$	3286	2995	2986	3089
$\mathbf{R}_{\mathbf{3}}$	2627	3116	3079	2941
$\mathbf{R}_{\mathbf{4}}$	3079	3051	2905	3012
$\mathbf{R}_{\mathbf{5}}$	2801	2955	2814	2857
Mean	2995	3052	2894	2980

S.E. of difference of two

1. S marginal means
2. \mathbf{R} marginal means
3. \mathbf{R} means at the same level of \mathbf{S}
4. S means at the same level of R

$$
\begin{aligned}
& =183.0 \mathrm{lb} . / \mathrm{ac} . \\
& =116.5 \mathrm{lb} . / \mathrm{ac} . \\
& =201.9 \mathrm{lb} . / \mathrm{ac} . \\
& =257.2 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
$$

Crop :-Paddy (Kharif).
Site : Agri. Res. Stn., Ratnagiri.

Ref :-Mh. 50(2)/49(2)/48(2).
Type :-‘C’.

Object:-To find out the optimum number of seedlings per bunch and spacing for getting maximum yield of Paddy.
2. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 2, 4.6.1950/29.6.1950 to 25.7.1950. (iv) (a) N.A. (b) Transplanting. (c) N.A. (d) and (e) As per treatments.
(v) 5 C.L./ac. of F.Y.M. and top-dressing of manure mixture at the rate of $8 \mathrm{lb} . / \mathrm{guntha}$
(vi) Patni-6 (early). (vii) Unirrigated. (viii) Top-dressing in 3rd week of July. (ix) $97.65^{\prime \prime}$ (\mathbf{x})
27.9.1950 to 18.10.1950.

2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}, S_{2}=10^{\circ} \times 10^{\prime \prime}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treatments :
No. of seedlings/bunch : $R_{1}=4, R_{2}=6, R_{3}=8, R_{4}=10$ and $R_{5}=12$.
3. DESIGN :
(i) Split-plot. (ij) (a) 3 main-plots/block; 5 sub-plots/main plot. (b) N.A. (iii) 6. (iv) (a) Main-plot: $24^{\prime} \times 100^{\prime}, 23^{\prime} 4^{\prime \prime} \times 100^{\prime}$ and $22^{\prime \prime} 8^{\prime \prime} \times 100^{\prime}$ and sub-plot : $24^{\prime} \times 20^{\prime}, 23^{\prime} 4^{\prime \prime} \times 20^{\prime}$ and $22^{\prime} .8^{\prime} \times 20^{\prime}$ for spacings $12^{\prime \prime}, 10^{\prime \prime}$ and $8^{\prime \prime}$ respectively. (b) $20^{\prime} \times 10^{\prime}$. (v) Gurrd ring of each sub-plot for $10^{\prime \prime} \times 10^{\prime \prime}$ and $12^{\prime \prime} \times 12^{\prime \prime}$ spacing would consist of two rows on either side and 5^{\prime} of rows on either end. In case of $8^{\prime \prime} \times 8^{\prime \prime}$ spacing, however, guard ring would be of two rows on either side and 7 plants at one end and 8 at the other.
(vi) Yes.
4. GENERAL :
(i) Germination was fairly good. Normal growth. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1947--1953. (b) Yes. (c) N.A. (v) (a) Chiplun, Igatpuri, Karjat and Vadgaon. (b) N.A. (vi) and (vii) Nil
5. RESULTS :
(i) $2389 \quad \mathrm{lb} . / \mathrm{ac}$,
(ii) (a) $389.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $183.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of S alone is significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{z}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	2496	2369	2124	2330
$\mathbf{R}_{\mathbf{2}}$	2432	2505	2251	2396
$\mathbf{R}_{\mathbf{8}}$	2632	2487	2114	2411
$\mathbf{R}_{\mathbf{8}}$	2568	2491	2242	2434
$\mathbf{R}_{\mathbf{6}}$	2541	2360	2223	2375
Mean		2534	2443	2191

S.E. of difference of two

1. S marginal means

$$
\begin{aligned}
& =100.5 \mathrm{lb} / \mathrm{ac} \\
& =61.2 \mathrm{lb} . / \mathrm{ac} \\
& =105.9 \mathrm{lb} . / \mathrm{ac} \\
& =138.3 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

2. \mathbf{R} marginal means
3. R means at the same level of S
4. S means at the same level of R

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref:- Mh. 51(2)/50(2)/49(2)/48(2).
Type:- 'C'.

Object: -To find out the optimum number of seedlings per bunch and spacing for getting maximum yield of Paddy.

1. BASAL CONDITIONS:

(i) (a) No. (b) Paddy. (c) $32 \mathrm{lb} / \mathrm{ac}$ of N as (A/S+G.N.C. mixed in $1: 1$ ratio +64 lb ./ac. of $\mathrm{P}_{3} \mathrm{O}_{5}$ as B.M. (ii) (a) Laterite. (b) N.A. (iii) 3.6.1951/30.6.1951 to 11.7.1951. (iv) (a) 4 to 12 ploughings. (b) Transplanting. (c) N.A. (d) and (c) As per treatments. (v) 5 C.L. of F.Y.M. between 28th June to mid July 195i. Top-dressing of manure mixture at $8 \mathrm{lb} . / \mathrm{guntha}$ applied in 3rd week of July 195 I . (vi) Patni-6 (early). (vii) Unirrigated. (viii) N.A. (ix) 129.08°. (x) 5.10 .1951 to 9.10 .1951 .
2. TREATMENTS:

Main-plot treatments :
3 spacings: $S_{1}=8^{\circ} \times 8^{\circ}, S_{2}=10^{\circ} \times 10^{\circ}$ and $S_{3}=12^{\prime \prime} \times 12^{\prime \prime}$.
Sub-plot treat menis :
No. of seedlings/bunch : $R_{1}=4, R_{2}=6, R_{3}=8, R_{4}=10$ and $R_{5}=12$.

3. DESIGN :

(i) Split-plot design. (ii) (a) 3 main-plots/block; 5 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Main-plot : $24^{\prime} \times 100^{\circ}, 23^{\prime \prime} 4^{\prime \prime} \times 100^{\prime}$ and $22^{\prime} 8^{\prime \prime} \times 100^{\circ}$: and sub-plot : $24^{\prime} \times 20^{\prime}, 23^{\prime \prime} 4^{\circ} \times 20^{\prime}$ and $22^{\prime \prime} 8^{\circ} \times 20^{\prime}$ for spacings $12^{\circ}, 10^{\circ}$ and 8° respectively (b) $70^{\circ} \times 10^{\circ}$. (v) The guard ring of each sub-plot for $10^{\circ} \times 10^{\circ}$ and $12^{\prime \prime} \times 12^{\prime \prime}$ spacings would consists of 2 rows on either side and 5^{\prime} of rows on either end. In case of $8^{\prime \prime} \times 8^{\prime \prime}$ spacing the guard ring would te 7 plants at one end and 8 plants at the other. (vi) Yes.
4. GENERAL :
(i) Crop growth normal. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1947-1953. (b) Yes. (c) N.A (v) (a) Chiplun, Igatpuri, Karjat and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 2899 lb./ac.
(ii) (a) $700.3 \mathrm{lb} / \mathrm{ac}$.
(b) $411.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of S alone is significant.
(iv) Av. yield of grain in lb,/ac.

	S_{1}	S_{2}	S_{3}	Mean
\mathbf{R}_{1}	3085	3206	2291	2861
R_{2}	2727	3364	2543	2878
R_{3}	2904	3485	2636	- 3025
\mathbf{R}_{4}	2682	3235	' 2580	2832
\mathbf{R}_{5}	2940	3138	2616	2898
Mean	2868	$\checkmark 3285$	2543	2899

S.E. of difference of two

1. S marginal means

$$
=180.6 \mathrm{lb} . / \mathrm{ac}
$$

2. \mathbf{R} marginal means

$$
=137.0 \mathrm{lb} . \mathrm{Jac}
$$

3. R means at the same level of S
$=237.3 \mathrm{lb}$./ac.
4. S means at the same level of R

$$
=277.7 \mathrm{lb} . / \mathrm{ac}
$$

Crop :- Paddy (Kharif).

Site :- Agri. Res. Stn., Ratnagiri.

> Ref :- Mh. $52(308)$.
> Type :- 'C'.

Object :-To ascertain whether drilling Paddy seed is better than transplanting.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Laterite soil. (b) N.A. (iii) Drilling 28.5.1942, Transplanting 27,29.6.1952. (iv) (a), (b), (c) and (d) As per treatments, (e) 8 seedlings/bunch. (v) Nil. (vi) Panael-61 (mid-late). (vii) Unirrigated. (viii) As per treatments. (ix) N.A. (x) 15.10.1952.
2. TREATMENTS:

1 Drilling: 2 ploughings, 1 harrowing and weeding once, spacing $9^{\prime \prime} \times 4^{\prime \prime}$ and seed rate 25 lb ./ac.
2. Transplanting : 4 ploughings, sowing on raised seed bed, spacing $10^{\prime \prime} \times 10^{\prime \prime}$ and seed rate $30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) R.B.D
(ii) (a) 2.
(b) N.A.
(iii) 8
8. (iv) (a) $33^{\prime} \times 33^{\prime}$
(b) $25^{\prime} \times 25^{\prime}$.
(v) 4^{\prime} ring.
(vi) Yes.
4. GENERAL :
(i) Satisfactory, (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1952-1955. (b) N.A. (c) Nil. (v) (a) Karjat and Padegaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $3650 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $271.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly sigoificantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	2352
2.	4948
S.E./mean	$=95.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).	Ref:- Mh. 51(120).
Site :- Govt. Seed and Demonstration Farm, Sindewahi.	Type:~ ' C '.

Object :-To compare different methods of planting Paddy.

1. BASAL CONDITIONS :
(i)'(a) Nil. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) Transplanting 19.8.1951; Drilling 29.6.1951 and Broadcasting 29.6.1951. (iv) (a) 1 ploughing, 3 bakharings. (b) As per treatments (c) Transplar.ting-80 lb./ac., broadcasting- 100 lb ./ac, and drilling-60 $\mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) 100 lb ./ac. of N as A/S. (vi) N.A. (vii) Unirrigated. (viii) 1 interculturing. (ix) N.A. (x) 28.11.1951.
2. TREATMENTS :

Methods of planting Paddy :

1. Transplanting.
2. Broadcasting the seed.
3. Drilling the seed.
4. DESIGN :
i) R.B.D. (ii) (a) 3 . (b) N.A. (iii) 2. (iv) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (v) N.A. (vi) Yes.
5. GENERAL :
(i) N.A. (ii) N.A. (iii) Heights, tillers, grain and straw yield. (iv) (a) 1951-1952. (b) No. (c) N.A. (v)
(a) N.A. (b) N.A. (vi) and (vii) Nil.
6. RESULTS :
(i) $1403 \mathrm{lb} . / \mathrm{ac}$.
(ii) $462.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1070
2.	1710
3.	1430.
S.E. mean	$=327.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
 Ref :-Mh. 52(142).
 Site : $\boldsymbol{\sim}$ Govt. Seed and Demonstration Farm, Sindewahi. Type :- ' C '.

Object:-To compare different methods of planting Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) 4.7.1952/8.8.1952. (iv) (a) 1 ploughing and 3 bakharings. (b) As per treatments. (c) Transplanting $80 \mathrm{lb} . / \mathrm{ac}$. , broadcasting-100 lb./ac. and drilling- $60 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) R. 8 (luchai). (vii) Unin rigated. (viii) N.A. (ix) 44.07". (x) 29.11.1952.
2. TREATMENTS:
3. Paddy transplanted.
4. Paddy broadeast.
5. Paddy drilled.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 2. (iv) (a) N.A. (b) I/40ac. (v) Nil.' (vi) Yes.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1951-1952. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $1570 \mathrm{lb} / \mathrm{ac}$.
(ii) $369.2 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Jb./ac.

Treatment	Av. yield
1.	1530
2.	1230
3.	1950
S.B./mean	$=261.1 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Rabi).
Ref:~Mh. 48(54).
Site :-Govt. Seed and Demonstration Farm, Sindewahi. Type :- 'C'.'
Object :-To find out the best method of taking a second crop of Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) Nil., (ii) (a) Sandy loam. (b) N.A. (iii) 26.12.1948./29.2.1949. (iv) (a) 2 ploughings and 2 bakharings. (b) As per treatments. (c) to (e) N.A. (v) $100 \mathrm{lb} . / \mathrm{ac}$. of N as A/S. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) 53.97". (x) N.A.
2. TREATMENTS:
3. Transplanting.
4. Lehi.
5. Broadcast.
6. Broadcast biasi.
7. DESIGN :
(i) R.B.D. (ii) (a) 4. b) N.A. (iii) 2. (iv) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (v) N.A. (vi) Yes.
8. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1948-1949. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) As it is a second crop (winter paddy) the yields are low. (wii) Nil.
.4. RESULTS :
(i) 285 1b./ac.
(ii) $178.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	380
2.	380
3.	280
4.	100
S.E./mean	$=126.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Rabi).
Ref:-Mh. 49(79).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :- ${ }^{\text {c }} \mathrm{C}$ ’.
Object:-To find out the best method of growing winter Paddy.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) 21.12.1949. (iv) (a) N.A. (b) As per treatments. (c), (d) and (e) N.A. (v) $145 \mathrm{lb} . / \mathrm{ac}$. of A/S on 3.2.1950. (vi) N.A. (vii) Irrigated. (viii) Nil. (ix) 80.13°. (x) 21.5.1950.

2. TREATMENTS:

1. Transplanted.
2. Lehi.
3. Broadcast.
4. Biasi.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2 (iv) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (v) Nil. (vi) Yes.
6. GENERAL :
(i) N A. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1948-1949. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) As it is second crop, namely winter paddy the yields are low. (vii) Nil

RESULTS :
(i) $65 \mathrm{lb} . / \mathrm{ac}$.
(ii) $17.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	70
2.	60
3.	60
4.	70
S.E./mean	$=12.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref :- Mh. 50(92).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :- 'C'.
Object :-To find out the effect of early and late harvesting on grain formation of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (c) N.A. (v) N.A. (vi) Paddy-116. (vii) Irrigated. (viii) N.A. (ix) 51.86°. (x) As per treatments.
2. TREATMENTS :

Dates of harvest.

1. 15 days early harvesting (1.11.1950).
2. 8 days early harvesting (8.11 .1950).
3. Right time harvesting ($\mathbf{1 5 . 1 1 . 1 9 5 0 \text {). }}$
4. 8 days Jate barvesting (22.11.1950).
5. 15 days late harvesting (29.11.1950).
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) N.A. (b) $66^{\circ} \times 33^{\circ}$. (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) $1950-$ N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Nil.
8. RESULTS:
(i) $1672 \mathrm{lb} / \mathrm{ac}$.
(ii) $515.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	1870
2.	2130
3.	2210
4.	1900
5.	250
S.E./mean	$=364.5 \mathrm{lb} . / \mathrm{ac}$

Crop :-Paddy (Kharif).
Site :-Agri, Res. Stn., Kopergaon.

Ref:-Mh. 53(177).
Type :-‘CV'.

Object:-To study the performance of transplanting in Deccan-canal areas.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Wheat in Rabi. (c) 3 bags of G.N.C. $+75 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) A-type soil. (b) Refer soil analysis, Kopergaion. (iii) 25 and 26.7.1953. (iv) (a) N.A. (b) As per treatments. (c) 40 lb ./ac. (d) Drilling $12^{\prime \prime}$ and transplanting $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 4 plants at each spot. (v) 64 lb ./ac. of N in the form of G.N.C. and A/S in $1: 1$ ratio, 32 lb ./ac. of N at sowing; $16 \mathrm{lb} / \mathrm{ac}$. of N 21 days after and 16 lb ./ac. of N 50 days alter sowing ; 10 C.L./ac. of F.Y.M. and 32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at 'sowing. (vi) As per treatments. (vii) Irrigated. (iiiv) N. $\dot{\mathrm{A}}$. (ix) 17.22 . (x) 24.10.1953 to 29.10.1953.

2. TREATMENTS :

Main-plot treatments :
2 methods of planting : $P_{1}=$ Transplanting and $P_{2}=$ Drilling.
Sub-plot treatments :
3 varieties: $\quad V_{1}=$ Koda 6-8-1, $V_{2}=$ Early kolky 70 and $\mathrm{V}_{3}=$ Mahade 8-2.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block ; 3 sub-plots/main-plot. (b) $\ddot{\mathrm{N} . A .}$ (iii) 3. (iv) (a) $28^{\prime} \times 20^{\circ}$. (b) $20^{\circ} \times 12^{\prime}$. (v) 4^{\prime} ring a round the plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii; Grain yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2151 lb/ac.
(ii) (a) $388.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $406.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.

\cdot	P_{1}	$\mathbf{P}_{\mathbf{2}}$
\mathbf{V}_{1}	2009	1659
\mathbf{V}_{2}	2240	2418
\mathbf{V}_{3}	2174	2405
Mean	2141	2161

S.E. of difference of two

1. P marginal means
$=183.1 \mathrm{lb} . / \mathrm{ac}$.
2. V marginal means
$=234.4 \mathrm{lb} . / \mathrm{ac}$.
3. V means at the same level of P

$$
=331.5 \mathrm{lb} / \mathrm{ac}
$$

4. \mathbf{P} means at the same level of $V \quad=326.7 \mathrm{lb} . / \mathrm{ac}$.
Crop : ${ }^{\text {Paddy (Kharif). }}$
Site :-Agri. Res. Stn., Padegaon.
Ref:-Mh. 51(215).
Type :-‘CV’.

Object :-To study the effect of drilling and transplanting on the yield of different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Cotton. (c) $20 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}$. in $1: 2$. (ii) (a) B-type soil. (b) Refer soil analysis, Padegaon. (iii) 20.6.1951/16.7.1951. (iv) (a) N.A. (b) As per treatmeats. (c) $40 \mathrm{lb} / \mathrm{ac}$. for drilled. (d) $12^{\prime \prime}$ drilled and $6^{\prime \prime} \times 6^{\prime \prime}$ transplanted. (e) 8 seedings/bunch for transplanted. (v) $96 \mathrm{lb} . / \mathrm{ac}$. of N, $\frac{8}{2}$ dose at sowing as G.N.C. $+\frac{1}{2}$ dose at flowering as A / S. (vi) As per treatments. (vii) Irrigated. (viii) 2 weedings. (ix) $14.68^{\prime \prime}$. (x) $\mathrm{N}^{\mathbf{6} .10 .1951 \text { to 29.11.1951. }}$

2. TREATMENTS :

Main-plot treat ments :
8 varieties: $\mathrm{V}_{1}=\mathrm{K}-540 ; \quad \mathrm{V}_{2}=$ Pankharia; $\quad \mathrm{V}_{3} \doteq$ Jiresal ; $\quad \mathrm{V}_{4}=\mathrm{A}-90 ; \quad \mathrm{V}_{5}=\mathrm{M}-81 ; \quad \mathrm{V}_{6}=\mathrm{M}-249$; $\mathrm{V}_{7}=$ Krishnasal and $\mathrm{V}_{8}=$ Dodki.
Sub-plot treatments :
2 methods of planting : $P_{1}=$ Drilling and $P_{2}=$ Transplanting.
3. DESIGN :
(i) Split-plot. (ii) (a) 8 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $24^{\prime} \times 36^{\prime}$. (b) $20^{\prime} \times 27.2^{\prime}$. (v) N.A. (vi) Yes.

4. GENERAL :

(i) Normal. (ii) Mild attack of blast and papdi which was controlled by spraying Perenox. (iii), Grain yield. (iv) (a) $1951-$ N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nıl.
5. RESULTS:
(i) $1209 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $431.6 \mathrm{bb} / \mathrm{ac}$.
(b) $215.5 \mathrm{Ib} . / \mathrm{ac}$.
(iii) Effect of V and interaction $V \times P$ are highly significant. Effect of P is not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{V}_{1}	V_{2}	V_{3}	V_{4}	V_{5}	V_{6}	V_{7}	V_{8}	Mean
\mathbf{P}_{1}	930	973	685	1423	1031	1355	1373	1944	1214
P_{2}	925	620	1078	1470	1540	1203	1339	1462	1204
Mean	927	797	881	1447	1285	1279	1356	1703	1209

S.E. of difference of two

1. V marginal means

$$
\begin{aligned}
& =215.8 \mathrm{lb} . / \mathrm{ac} \\
& =53.9 \mathrm{lb} . / \mathrm{ac} \\
& =152.4 \mathrm{lb} . / \mathrm{ac} \\
& =241.2 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

2. \mathbf{P} marginal means
3. P means at a level of V
4. V means at a level of P
Crop :~ Paddy (Kharif).
Site :- Agri, Res. Stn., Padegaon.

$$
\begin{aligned}
& \text { Ref: Mh. 52(324). } \\
& \text { Type:- 'CV'. }
\end{aligned}
$$

Object :-To study the effect of drilling and transplanting on the yield of different varieties of Paddy.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Sugarcane. (c) $375 \mathrm{lb} . / \mathrm{ac}$. of N. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) $18.6 .1952 / 26.7 .1952$. (iv) (a) N.A. (b) As per treatments. (c) $40 \mathrm{lb} . / \mathrm{ac}$. for drilled paddy. (d) $12^{\prime \prime}$ for drilling and $6^{4} \times 6^{\prime \prime}$ for transplanting. (e) 8 seedlings/bunch for dibbling. (v) 96 lb ./ac. of N : $\frac{2}{2}$ rd at sowing as G.N.C. and $\frac{1}{2}$ rd at flowering as A/S. (vi) As per treatments. (vii) Irrigated. (viii) 3 weedings. (ix) 11.01°. (x) 17.11.1952 to 1.12.1952.
2. TREATMENTS :

Main-plot treatments :
8 varieties : $\mathrm{V}_{1}=\mathrm{K}-540, \quad \mathrm{~V}_{2}=$ Pankharia, $\mathrm{V}_{3}=$ Jiresal, $\mathrm{V}_{4}=\mathrm{A}-90, \quad \mathrm{~V}_{5}=\mathrm{M}-81 \quad \mathrm{~V}_{0}=\mathrm{M}-249 ; \quad \mathrm{V}_{7}=$ Krishasal and $\mathrm{V}_{8}=$ Dodki.
Sub-plot treatments :
2 methods of planting : $P_{1}=$ Drilling and $P_{\mathbf{2}}=$ Transplanting.
3. DESIGN :
$\begin{array}{lll}\text { (i) Split-plot. (ii) (a) } 8 \text { main-plots/block; } 2 \text { sub-plots/rain-plot. (b) N.A. (iii) 4. (iv) (a) } 30^{\prime} \times 26^{\prime} \text {. (b) } \\ 24^{\prime} \times 20^{\prime} & \text { (y) } 3^{\prime} \text { (bing. }\end{array}$ $24^{\prime} \times 20^{\prime}$. (v) 3^{\prime} ring. (vi) Yes.

4. GBNERAL:

(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1951-$ N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1967 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $269.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $248.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) All effects and interactions are highly significant.
(iv) Av. yield of grain in lb./ac.

\mathbf{P}_{1}	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{4}}$	$\mathbf{V}_{\mathbf{5}}$	$\mathbf{V}_{\mathbf{6}}$	$\mathbf{V}_{\mathbf{7}}$	$\mathbf{V}_{\mathbf{8}}$	Mean
$\mathbf{P}_{\mathbf{2}}$	1774	1669	2119	2756	2334	2551	2729	2790	2340
Mean	1618	1016	1635	1169	1645	1422	2187	2059	1594

S E. of difference of two

1. V marginal means $\quad=134.6 \mathrm{lb} . / \mathrm{ac}$.
2. P marginal means . $\quad=62.1 \mathrm{lb} . / \mathrm{ac}$.
3. P means at a level of $V \quad=175.4 \mathrm{lb} . / \mathrm{ac}$.
4. V, means at a level of $P \quad=182.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 53(349).
Type: ' $C \mathbf{C V}$ '.

Object :-To study the effect of drilling and transplanting on the yield of different varieties of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Sugarcand. (c) 375 lb .lac. of N. (ii) (a) ' B ' type. (b) Refer soil analysis, Padegaon. (iii) $20.6 .1953 / 1.8 .1953$. (iv) (a) N.A. (b) As per treatments. (c) $40 \mathrm{lb} . / \mathrm{ac}$. for drilled. (d) $12^{* *}$-drilled and $6^{\prime \prime} \times 6^{\prime \prime}$ transplanting. (c) 8 seedlings/bunch for transplanting. (v) 96 lb ./ac. of N. $2 / 3 \mathrm{rd}$ dose at sowing as G.N.C.+1rd dose at flowering as A/S. (vi) As per treatments. (vii) Irrigated. (viii) 3 weedings and 2 interculturings. (ix) $16.35^{\prime \prime}$. (x) 6.10.1932 to 22.11.1953.
.2. TREATMENTS:
Main-plot treatments :
12 varieties: $\mathrm{V}_{1}=$ Dodki, $\quad \mathrm{V}_{2}=$ Krishnasal, $\quad \mathrm{V}_{3}=$ Jiresal, $\mathrm{V}_{4}=\mathrm{A}-90, \quad \mathrm{~V}_{5}=$ Bhavadi, $\mathrm{V}_{6}=$ Patni, No. 6, $\mathrm{V}_{7}=$ K. 184, $\mathrm{V}_{\mathrm{B}}=$ E.K. 7.,, $\mathrm{V}_{0}=$ Early Kolum-161-62, $\mathrm{V}_{10}=$ Sathi 44.51, $\mathrm{V}_{11}=$ Waner-1, $\mathrm{V}_{12}=$ Sorta.
Sub-plot treatments:
2 methods of planting : $\mathbf{P}_{\mathbf{1}}=$ Driling and $\mathbf{P}_{\mathbf{2}}=$ Transplanting.

3. DESIGN:

(i) Split-plot (ii) (a) 12 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $36^{\prime} \times 22^{\prime}$; main-plot size : $72^{\prime} \times 22^{\prime}$. (b) $32^{\prime} \times 17^{\circ}$. (v) $2^{\prime} \times 2.5^{\prime}$ ring. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Mild attack of blast was noticed which was controlled by spraying Perenox. (iii) Grain yield. (iv) (a) 1951 -N.A. (b) No. (c) Nil (v) (a) and (b) N.A. (vi, Nil. (vii) V_{10} was omitted from statistical analysis as the yield data was not available for one sub treatment viz transplanting under V_{10} for all the four replications.
5. RESULTS :
(i) $1600 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $243.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $195.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of V and interaction $V \times P$ are highly significant. Effect of P is not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	Mean
V_{1}	2413	2089	2251
$\mathrm{~V}_{2}$	2022	2286	2154
$\mathrm{~V}_{8}$	632	1069	851
$\mathrm{~V}_{4}$	1574	1406	1490
$\mathrm{~V}_{5}$	2496	1900	2198
$\mathrm{~V}_{6}$	1278	1101.	1190
$\mathrm{~V}_{7}$	1187	1678	1433
$\mathrm{~V}_{8}$	1049	1548	1299
$\mathrm{~V}_{9}$	2234	939	1587
$\mathrm{~V}_{11}$	1792	2045	1919
$\mathrm{~V}_{12}$	1114	1353	1234
Mean	1617	1583	1600

S E. of difference of two

1. V marginal means
$=121.3 \mathrm{lb} . / \mathrm{ac}$.
2. \mathbf{P} marginal means
3. P means at the same level of V
$=41.8 \mathrm{lb} / \mathrm{ac}$.
4. V means at the same level of P
$=138.5 \mathrm{lb} / \mathrm{ac}$.

Crop:- Paddy (Kharif)...
Ref : - Mh. $52(171)$.
Type : ${ }^{\prime} \mathrm{CM}$ '.
Site :- Rice Breeding Station, Chiplun.
Object:-To study the effect of different combinations of \mathbf{N} and \mathbf{P} and spacings on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) N.A. (ii) (a) N.A. (b) Refer soil analysis, Chiplun. (iii) 7.6.1952/8 to. 10.8.1952. (iv) (a) N.A. (b) Transplanting. (c) -. (d As per treitments. (e) 8 seedlings/bunch. (v) Nil.. (vi) Warangal-487. (vii) N.A. (viii) 5 weedings. (ix) N.A. (x) 7.to 9.11.1952.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4).
(1) 2 levels of F.Y.M. : $F_{1}=5$ C.L. and $F_{2}=10$ C.L./ac.
(2) 2 levels af spacings: $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}$ and $S_{2}=10^{\prime \prime} \times 10^{\prime \prime}$.
(3) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=32 \mathrm{lb}$./ac.
(4) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=64, \mathrm{P}_{2}=96$ and $\mathrm{P}_{3}=128 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) $2^{3} \times 3$ factorial in R.B.D. (ii) (a) 24. (b) N.A. (iii) 3. (iv) (a) $36^{\prime} 8^{\prime \prime} \times 16^{\prime} 8^{\prime \prime}$. (b) $30^{\prime} \times 10^{\prime}$. (v). $3^{\prime}-4^{\prime \prime}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Below normal; break in rains in the month of Sept. had a very bad effect on growth of Paddy. (ii) Heavy attack of kapra during 1st ane 2nd weeks of August, crop w-s dusted with Gammaxene and plants were shaken machanically to disturb the bettles. (iii) Grain and straw yield. (iv) (a) to (c) No. (v) (a) Igatpuri, Karjat, Kopergaon, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 885 lb ./ac.
(ii) 146.4 lb ./ac.
(iii) Main effects of N and S are highly significant and that of $\mathrm{P}_{2} \mathrm{O}_{5}$ is significant. All two factor interactions are significant. Other effects and interactions are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	F_{1}	F_{2}	S_{1}	S_{2}	Mean
P_{1}	712	971	828	854	899	783	841
P_{2}	726	1006	857	875	977	755	866
P_{3}	812	1079	926	966	1067	824	946
Mean	750	1019	870	898	981	787	885
S_{1}	805	1158	956	1006			
S_{2}	695	880	785	790			
F_{1}	724	1017					
F_{2}	776	1020					

S.E. of marginal mean of N, F or S	$=24.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P	$=29.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $N \times P, F \times P$ or $S \times P$ table	$=42.3 \mathrm{lb} . / \mathrm{ac}$.
S E. of body of $N \times F, N \times S$ or $F \times S$ table	$=34.5 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{ll}\text { Crop:- Padd y(Kharif). } & \text { Ref :- Mh. 52(63). } \\ \text { Site :- Agri. Res. Stn., Igatpuri } & \text { Type :- ‘CM'. }\end{array}$

Object :-To study the effect of different combinations of \mathbf{N} and \mathbf{P} and spacings on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Fallow in Rabi. (b) Paddy. (c) Nil. (ii) (a) Coarse to medium black. (b) N.A. (iii) 9.6.1952/ 23.7.1952. (iv) (a) 1 ploughing before sowing and 2 ploughings after sowing. (b) Tansplanting. (c) 40 lb ./ac. (d) As per treatments. (e) N.A. (v) Nit. (vi) K-226 (late). (vii) Unirrigated. (viii) Hand weeding-3rd week of Sept. 1952. (ix) 127.91". (x) 9.11.1952.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=96, \mathrm{~N}_{2}=128$ and $\mathrm{N}_{3}=160 \mathrm{lb}$./ac.
(2) 2 levels of F.Y.M. : $\mathrm{F}_{1}=5$ C.L. and $\mathrm{F}_{2}=10$ C.L./ac.
(3) 2 levels of spacings: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $F_{2}=8^{\prime \prime} \times 8^{\prime \prime}$.
(4) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0 \mathrm{lb}$,/ac. and $\mathrm{P}_{1}=32 \mathrm{lb} / \mathrm{lac}$.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) 3×2^{3} factorial in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3 . (iv) (a) $24^{\prime} \times 14^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight crab attack. (iii) Grain yield. (iv) (a) 1952-N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $3448 \mathrm{lb} / \mathrm{ac}$.
(ii) $314.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Ncne of the effects and interctions is significant.
(iv) Av. yield of grain in lb.jac.

	N_{1}	N_{2}	N_{3}	S 1	S_{3}	P_{0}	P_{1}	Mean
F_{1}	3380	3435	3535	3476	3424	3424	3476	3450
F_{3}	3458	3471	3408	3388	3503	3433	3457	3446
Mean	3419	3453	3471	3432	3463	3429	3466	3448
P_{0}	3362	3403	3521	3379	3479			
$\mathrm{P}_{1}{ }^{\text {. }}$	3476	3503	3421	3485	3449			
S_{1}	3444	3448	3403					
S_{2}	3458	3458	3539					

S.E. of marginal mean of N	$=64.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of matginal mean of P, F or S	$=52.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of cody of $\mathrm{N} \times \mathrm{F}, \mathrm{N} \times \mathrm{P}$ or $\mathrm{N} \times \mathrm{S}$ table	$=90.9 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of $\mathrm{F} \times \mathrm{P}, \mathrm{F} \times \mathrm{S}$ or $\mathrm{P} \times \mathrm{S}$ table	$=74.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharij).
Site :- Agri. Res. Stn., Igatpuri.

Ref:- Mh. 53(4)/52(63).
Type:- 'CM'.j

Otject:-To find out the optimum dose of \mathbf{N} and \mathbf{P} required for Paddy, combined with the optimum spacing to be adopted at the time of transplanting.

1. BASAL CONDITIONS:
(i) (a; Paddy in Kharif and Pulses in Rabi. (b) Gram in Rabi. (c) Nil. (ii) (a) Shallow coarse soil. derived from Deccan trap rock. (b) N.A. (iii) 15.6.1953/17.7.1953. (iv) (a) 3 ploughings Puddling and planting on 17th,18th and 19th July, 1953. (b) Transplanting. (c) —. (d) and (e) N.A. (v) Nil. (vi) K-226 (l:te). (vii) Rainfed. (viii) Transplanting and interculturing done as per departmental method. (ix) 123°. (x) 2nd week of November 1953.
2. TREATMENTS:

All possible combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=96, \quad \mathrm{~N}_{2}=128$ and $\mathrm{N}_{3}=160 \mathrm{lb}$./ac. of N .
(2) 2 lerels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \quad \mathrm{P}_{1}=32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(3) 2 levels of F.Y.M. : $F_{1}=5$ and $F_{2}=10$ C.L./ac. of F.Y,M.
(4) 2 spacings: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $S_{2}=8^{\prime \prime} \times 8^{\prime \prime}$.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) 3×2^{8} Fact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 3. (iv) (a) $24^{\prime} \times 14^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 2^{\prime} ring. alround. (vi) Yes.
4. GENERAL :
(i) Padd crop was fairly good throughout the season. (ii) Two months after transplanting the crop was affected by Jassids and then followed by severe attack of army-worms. (iii) Height, no. of tillers, date of flowering and yield data. (iv) (a) 1952-1954. (b) Yes. (c) N.A. (v) (a) Kumtha, Ratnagiri, Karjat. (b) N.A. (vi) and (vii) Nil
5. RESULTS:
(i) $286 \$ \mathrm{lb} . / \mathrm{ac}$.
(ii) $315.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S and interaction, $P \times S$ and $N \times S$ are significant. Other effects and interactions are not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{1}	N_{2}	\mathbf{N}_{3}	S_{1}	S_{1}	P_{0}	P_{1}	Mean
F_{1}	2784	2896	2781	2680	2961	2832	2809	2820
F_{2}	2977	2852	2898	2848	2970	3019	2800	2909
- Mean	2881	2874	2839	2764	2965	2926	2804	2864
P_{0}	2899	2971	2906	2769	3082		.	
$\cdots \mathbf{P}_{1}$	2862	2777	2773	2760	2849			
S_{1}	2780	2894	2619					
S_{2}	2982	2855	3060					

S.E. of marginal mean of N	$=52.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P, F or S	$=64.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $N \times P, N \times F$ or $N \times S$ table	$=915 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of $P \times P, F \times S$ or $P \times S$ table	$=74.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :~Paddy (Kharif).
Site : Agri. Res. Stn., Igatpuri.
Ref:~Mh. 53(6).
Type :- ‘CM'.
Object :-To compare the Japanese method of Paddy cultivation with the Departmental method.

1. BASAL CONDITIONS :

(i) (a) Pulses in Rabi and Paddy in Kharif. (b) Gram in Rabi. (c) Nil. (ii) (a) Shallow and coarse soil derived from Deccan trap rock. (b) N.A. (iii) 16.6.1953/31.7.1953. (iv) (a) 3 ploughings puddling and planting. Interculturing in August and September. (b) N.A. (c) $5 \mathrm{lb} . / \mathrm{guntha}$. (d) and (e) N.A. (v) Nii. (vi) Z-31 (mid-late . (vii) Rainfed. (viii) Weeding, interculturing as per .treatments. (ix) 123°. (x) 31.10.1953.

2. TREATMENTS:

All combinations of the following

Departmental
$A_{0}=$ Flat bed with I C.L./ac. of F.Y.M.
$\mathrm{B}_{0}=8 \mathrm{lb} . /$ guntha of A / S
$\mathrm{C}_{0}=$ Spacing $10^{\circ} \times 10^{\prime \prime}$
$D_{0}=8$ seedlings $/$ bunch $\quad D_{1}=4$ seedinings $/$ bunch.
$\mathrm{E}_{0}=5$ C.L./ac. of F.Y.M. + Green manuring $\mathrm{E}_{1}=5$ C.L./ac. of F.Y.M. + Green manuring $+100 \mathrm{lb} . / \mathrm{ac}$. +64 lb ./ac. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ of N as $\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}$. . of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. as Super
$F_{0}=1$ hand weeding . $F_{1}=1$ hand weeding +3 intercultures.
Note : A and B are seed bed treatments while others are field treatments.
3. DESIGN:
(i) 2^{6} Fact. Confd. (ii) (a) 8 plots/block; 8 blocks/replication. (b) N.A. (iii) 2. (iv) (a) For spacing $9^{\prime \prime} \times 9^{\prime \prime}-18^{\prime} \times 10.5^{\prime}$; for spacing $10^{\prime \prime} \times 10^{\prime \prime}-18^{\prime}-4^{\prime \prime} \times 10^{\prime}$. (b) For spacing $9^{\circ} \times 9^{\prime \prime}-15^{\prime} \times 7.5^{\prime}$ for spacing $10^{\prime \prime} \times 10^{\prime \prime}-15^{\prime} \times 7.5^{\prime}$. (v) Two lines on each side. (vi) Yes.
4. GENERAL :
(i) Growth fairly good till flowering and harvesting. (ii) Crop severely affected by Jassids and Army-worms, Spraying of 50% D.D.T. was done at intervals. (iii) Height, no. of tillers, date of flowering, yield data noted for 10 plants in each treatment. (iv) (a) 1953-N.A. (b) Yes. (c) N.A. (iv) (a) Ratnagiri, Karjat. Kosbad, Kopergaon, Khopoli, Phondaghat and Padegaon. (vi) and (vii) Nil.
5. RESULTS :
(i) $1644 \mathrm{lb} . / \mathrm{ac}$.
(ii) $363.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of D, E and interactions $A E, B E$, are significant while other effects and interactions aro not significant.
(iv) Table of mean and differantial responses.:

$$
\begin{aligned}
& \text { Crop :- Paddy (Kharif). } \\
& \text { Site :- Agri. Res. Stn., Igatpuri. }
\end{aligned}
$$

Ref:- Mh. 49(120).
Type: : 'CM'.

Object :-To evolve a suitable substitute for method of rabbing for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) $6.6 .1949 / 1,3.7 .1949$. (iv) (a) 2 ploughings. (b) Transplanting. (c) - (d) $10^{\prime \prime} \times 10^{\circ}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Z-31. (vii) Unirrigated. (viii) 1 weeding. (ix) $125.68^{\prime \prime}$. (x) $27,28.10 .1949$.
2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M.
Sub-plot treatments:

1. Rabbing every year.
2. Village compost every year at $10000 \mathrm{lb} . / \mathrm{ac}$.
3. A/S every year at $30 \mathrm{lb} . / \mathrm{ac}$. of N .
4. G.N.C. every year at 30 lb ./ac. of N.
5. Rabbing in 1 st year and $10,000 \mathrm{lb}$./ac. of compost in 2 nd yea .
6. 10000 lb ./ac. of compost in 1 st year and rabbing in 2 nd year.
7. Rabbing in Ist year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in 2 nd year.
8. 30 lb ./ac. of N as A / S in 1st year and rabbing in 2nd year.
9. Rabbing in 1st year and 30 lb ./ac. of N as G.N.C. in 2 nd year.
10. $30 \mathrm{lb} . / \mathrm{ac}$. of \mathbf{N} as G.N.C. in Ist year and rabbing in $2 n d$ year.
11. Proper tillage (deep ploughing and clod crushing so that the plot is maintained in a good condition for sowing seed.
12. Sterl'zing the soil with Formaldehyde (40% formaline).

As this happens to be the 1st year of the expt., there are only 6 independent sub-plot treatments i.e.
$\mathrm{T}_{1}=$ Rabbing 1,5,7 and 9).
$\mathrm{T}_{2}=$ Compost at 10000 lb ./ac. (2 and 6).
$\mathrm{T}_{3}=\mathrm{A} / \mathrm{S}$ at 30 lb ./ac. of N (3 and 8) .
$\mathbf{T}_{4}=$ G.N.C. at $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}(4$ and 10).
$\mathrm{T}_{5}=$ Propper tillage (11).
$\mathrm{T}_{\mathrm{G}}=$ Sterlizing the soil (12).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $18^{\circ}-4^{\prime \prime} \times 13^{\circ}-4^{\prime \prime}$. (b) $15^{\prime} \times 10^{\prime}$. (v) $1^{\prime}-8^{\prime \prime}$ ring, (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) No. (c) Nıl. (v) (a) Karjat, Ratnagir and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) $648 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $158.7 \mathrm{lb} . / \mathrm{ac}$.
(b) $218.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T	614	638	627
T	737	598	667
T3	694	605	679
T4	706	628	667
$\mathrm{T}_{\mathbf{5}}$: 639	583	611
T6	554	720	637
Mean	657	639	648

S.E. of marginal mean of \mathbf{F}
$=18.7 \mathrm{lb}$./ac.
S.E. of marginal mean of \mathbf{T}_{1}
S.E: of marginal mean of T_{2}, T_{3} or T_{4}
$=31.6 \mathrm{lb} . / \mathrm{ac}$.
$=44.7 \mathrm{lb}$./ac.
S.E. of marginal mean of T_{5} or T_{6}
$=63.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 50(34)/49(120).
Type:- ‘CM'.

Object :-To evolve a suitable substitute for method of rabbing for Paddy crop.

1. BASAL CONDITIONS:
(i) (a) Paddy after paddy (fallow in Rabi). (b) Paddy. (c) As per treatments.' (ii) (a) Coarse to medium black soil. (b) N.A. (iii) 12.6.1950/20.7.1950. (iv) (a) Two ploughings. (b) Transplanting. (c):(d) $10^{\circ} \times 10^{\circ}$. (e) N.A. (v) Nil. (vi) Z-31 (mid-late). (vii) Unirrigated. (viii) Hand weeding in 3rd week of September 1950. (ix) 147.25'. (x) 29.10.1950.

2. TREATMENTS :

Main-plot treatments :

2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M.
Sub-plot treatments :
$\mathrm{T}_{1}=$ Rabbing every year.
$T_{2}=$ Compost every year (10000 lb ./ac.).
$T_{3}=A / S$ every year (30 lb ./ac. of N).
$T_{4}=$ G.N.C. every year (30 lb ./ac. of N).
$\mathrm{T}_{5}=$ Rabbing in first year and 10000 lb ./ac. of compost in the second year.
$\mathrm{T}_{6}=10000 \mathrm{lb}$./ac. of compost in the first year and rabbing in second year.
$T_{7}=$ Rabbing in the first year and 30 lb ./ac. of N as A / S in second year.
$T_{8}=30 \mathrm{lb} / \mathrm{ac}$, of N as A / S in the first year and rabbing in second year.
$T_{9}=$ Rabbing in the 1st year and 201b./ac. of N as G.N.C. in second year.
$\mathrm{T}_{\mathbf{1 0}_{0}}=30 \mathrm{lb}$./ac. of \mathbf{N} as $\mathbf{G} . \mathrm{N} . C$. in 1st year and rabbing in second year.
$\mathrm{T}_{11}=$ Proper tillage.
$\mathrm{T}_{12}=$ Sterlizing the soil with formaline.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 5 (originaly with 6 replications). (iv) (a) (main-plot) $173^{\prime}-4^{\prime \prime} \times 40^{\prime}$, (sub-plot) $18^{\prime}-4^{\prime \prime} \times 13^{\prime}-4^{\prime \prime}$. (b) (sub-plot) $15^{\prime} \times 10^{\prime}$. (v) With two rows on either side and $1^{\prime}-8^{\prime \prime}$ at either end. (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was fairly good. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1949-1954. (b) Yes. (c) N.A. (v) (a) Karjat, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1348 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $390.4 \mathrm{lb} . / \mathrm{ac}$.
(b) $336.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of F.Y.M. alone is significant.
(iv) Av. yield of grain in lb ./ac.

S.E of difference of two
i. main-plot treatment means. $\quad=50.4 \mathrm{lb} . / \mathrm{ac} .$.
2. sub-plot treatment means. . $=106.4 \mathrm{lb} . / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment $\quad=213.0 \mathrm{lb} . / \mathrm{ac}$.
4. main-plot treatment means at a level of sub-plot treatment, $1=216.1 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif).
Site :-Agri. Kes. Stn., Igatpuri.
Object :-To evolve a suitable substitute for method of rabbing for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fallow. (c) Nil. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) 5.6.1951/6.7.1951. (iv) (a) 2 ploughings. (b) Broadcasting in the raised seed beds. (c) 40 lb ./ac. (d) $10^{\circ} \times 10^{\prime \prime}$: (e) 8 seedlings/bunch. (v) Nil. (vi) Z-31. (vii) Unirrigated. (viii) 3 interculturings. (ix) 116.88". (x) 21, 22, 23 and 26.10.1951.

2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M.: $\quad \mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M.
Sub-plot treatments: (Seed bed treatments)
$\mathrm{T}_{1}=$ Rabbing every year.
$T_{2}=$ Village compost every year at $10000 / \mathrm{ac}$. of F.Y.M.
$T_{3}=A / S$ every year at 30 lb ./ac. of N .
$\mathrm{T}_{4}=$ G.N.C. every year at $30 \mathrm{lb} . / \mathrm{ac}$. of N .
$T_{5}=$ Rabbing first year and 10000 lb ./ac. of compost in 2 nd year.
$T_{6}=10000 \mathrm{lb} / \mathrm{ac}$. of compost in Ist year and rabbing in 2nd year.
$\mathrm{T}_{7}=$ Rabbing in Ist year and 30 lb ./ac. of N as A / S in 2 nd year.
$\mathrm{T}_{\mathbf{8}}=\mathbf{3 0} \mathrm{lb}$./ac. of N as A / S in 1 st year and rabbing in 2 nd year.
$T_{9}=$ Rabbing in lst year and $\mathbf{3 0} \mathrm{lb}$./ac. of N as G.N.C. in 2 nd year.
$\mathrm{T}_{1_{0}}=30 \mathrm{lb}$./ac. of N as $\mathbf{G} . \mathrm{N} . C$. in ist year and rabbing in 2nd year.
$\mathrm{T}_{11}=$ Proper tillage (deep ploughing and clod-crushing so that the plot is maintained in good condition for sowing seed).
$\mathrm{T}_{12}=$ Sterilizing the soil with Formaldehyde (50% formaline).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/replication; 12 sub-plot/main-plot. (b) N.A. (iii) 6. (iv) (a) $18^{\prime \prime} 4^{\prime \prime} \times 13^{\prime} 4^{\prime \prime}$.
(b) $15^{\prime} \times 10^{\prime}$. (v) $1^{\prime} 8^{\prime \prime}$ ring alround. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of crabs. (iii) Grain yield. (iv) (a) 1949-54. (b) Yes. (c) Nil. (v) (a) Karjat, Ratnagiri, Vadgaon. (b) N.A. (vi) and (vii) ivil.
5. RESULTS:
(i) $1321 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $480.6 \mathrm{lb} / \mathrm{ac}$.
(b) $394.9 \mathrm{Jb} . / \mathrm{ac}$.
(iii) Main-plot treatments, sub-plot treatments and their interactions are not significant.
(iv) Av. yield of grain in lb ./ac.

	F_{0}	F_{1}	Mean
T 1	1366	1358	1362
T2	1254	1394	1324
T3	1269	1430	1349
T4	12:2	1391	1321
T 5	1310	1474	1392
T ${ }_{6}$	1331	1229	1280
T 7	1255	1500	1377
T8	1461	1263	1362
T9	1236	1618	1427
T_{10}	117;	1308	1241
T 11	733	1198	965
T_{18}	1163	1732	1447
Mean	1233	1408	1321

S.E. of difference of two

1. main-plot treatment means $\quad=80.1 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means
$=161.2 \mathrm{Ib} . / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment
4. main-plot treatment means at a level of sub-plot treatment
$=228.0 \mathrm{lb} / \mathrm{ac}$.
$=232.4 \mathrm{lb}$./ac.

Crop :-Paddy (Kharif).
Site :-Agri. Res. Stn., Igatpuri. Type :-‘CM'.

Object :-To evolve a suitable substitute for method of rabbing for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 8.6 .1952 and 9.6.1952/16,17 and 18.7.1952. (iv) (a) Two ploughings. (b) Transplanting. (c) - (d) $10^{\circ} \times 10^{\prime \prime}$. (e) 8 seedings/bunch (v) Nil. (vi) Paddy Z-31. (vii) Unirrigated. (viii) 3 interculturings on 4, 12, and 16.9.1952. (ix) $127.91^{\prime \prime}$. (x) 1 and 2.11.1952.

2. TREATMENTS:

Main-plot treatments :
2 levels of F.Y.M.: $\quad F_{0}=0, F_{1}=5$ C.L./ac. of F.Y.M.
Sub-plot treatments :
Seed bed treatments
$\mathrm{T}_{1}=$ Rabbing every year.
$T_{2}=$ Village compost every year at $10,000 \mathrm{lb}$./ac. of F.Y.M.
$\mathrm{T}_{3}=\mathrm{A} / \mathrm{S}$ every year at 30 lb ./ac of N .
$\mathrm{T}_{4}=\mathbf{G} . \mathrm{N} . C$. every year at 30 lb ./ac. of N
$\mathrm{T}_{5}=$ Rabbing in the first year and $10,000 \mathrm{lb}$./ac. of compost in the 2nd year.
$T_{6}=10,000 \mathrm{lb} . / \mathrm{ac}$. of compost in the first year and rabbing in the 2 nd year.
$T_{7}=$ Rabbing in the 1st year and 30 lb ./ac. of N as A / S in the 2 nd year.
$\mathrm{T}_{8}=30 \mathrm{lb}$./ac. of N as A / S in the 1st year and rabbing in the 2nd year.
$\mathrm{T}_{9}=$ Rabbing in the 1st year and $30 \mathrm{lb} / \mathrm{ac}$. of N as $3 . N . C$. in the 2 ad year.
$\mathrm{T}_{\mathbf{1 0}_{0}}=30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. in the 1st year and rabbing in the 2 nd year.
$\mathrm{T}_{11}=$ Proper tillage (deep ploughing and clod crushing so that the plot is maintained in a good condition for sowing seed).
$\mathrm{T}_{18}=$ Sterilizing the soil with phenol.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4 (planned with 6 replications). (iv) (a) $18^{\prime} .4^{\circ} \times 13^{\prime} .4^{\prime \prime}$. (b) $15^{\prime} \times 10^{\prime}$. (v) A ring of 20° kept round the net plot. (vi) Yes.
4. GENERAL :
(i) The growth of the crop was, in general, quite good. (ii) The common crab pest of the paddy tract had created a large number of gaps. (iii) Grain yield. (iv) (a) 1949-1954. (b) Yes. (c) N.A. (v) (a) Karjat, Ratnagiri and Vadgaon. (b) N.A. (vi) Nil. (vii) N.A.
5. RESULTS:
(i) $1234 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $239.8 \mathrm{lb} . / \mathrm{ac}$.
(b) 393.4 lb ./ac.
(iii) Effect of main-plot treatments and interaction main \times sub are significant.
(iv) Av. yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T1	1360	1046	1203
T ${ }_{2}$	1156	1143	1149
T3	1074	1594	1334
T4	1212	1144	1178
T5	1208	1687	1447
T_{8}	1205	960	1082
T_{7} :	1254	1473	1363
T_{8}	: 1289	1178	1233
T9	961	1817.	1389
T_{10}	1254	1194	1224
T_{11}	720	1120	920
T_{12}	915	1652	1283
- Mean	1134	1334	1234

S.E. of difference of two

1. main-plot treatment means	$=48.9 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means	$=191.7 \mathrm{lb} / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment	$=278.4 \mathrm{lb} . / \mathrm{ac}$.
4. main-plot treatment means at a level of sub.plot treatment	$=270.8 \mathrm{lb} . / \mathrm{ac}$.

4. main-plot treatment means at a level of sub.plot treatment $=270.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Site:-Agri. Res. Stn., Igatpuri.

Ref :- Mh. 53(7)/52(65)/51(213)/50(34)/49(120). Type :-‘CM'.

Object :-To find out a suitable substitute to replace the method of rabbing which is particularly followed in the Konkan tract for raising the seedlings.

1. BASAL CONDITIONS :
(i) (a) Pulse in Rabi and Paddy in Kharif. (b) Gram in Rabi. (c) Nil. (ii) (a) Shallow and coarse derived from Deccan tract. (b) N.A. (iii) 15.6.1953/18.7.1953. (iv) (a) 3 ploughings. (b) Broadcasting in seed bed. (c) $30 \mathrm{lb}, / \mathrm{ac}$. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) Paddy.Z-31 (mid-late). (vii) Rainfed. (viii) Puddling and planting in July, 1953 weeding and interculturing done as per treatments. (ix) 123°. (x) 28.10.1953.
2. TREATMENTS:

Main-plot treatments :
2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.of F.Y.M.
Sub-plot treatments :
Seed bed treatments :
$T_{1}=$ Rabbing every year.
$\mathrm{T}_{\mathbf{2}}=$ Compost at 10 C.L./ac. every year.
$\mathrm{T}_{3}=\mathrm{A} / \mathrm{S}$ at $30 \mathrm{lb} . / \mathrm{ac}$. of N every year.
$T_{4}=G . N . G$ at $30 \mathrm{lb} . / \mathrm{ac}$. of N every year.
$T_{5}=$ Rabbing in the 1 st year and compost at 10 C.L./ac in the 2 nd year.
$\mathrm{T}_{\mathrm{\theta}}=$ Compost at $10 \mathrm{C} . \mathrm{L} / \mathrm{dc}$. in the 1 st year and rabbing in the 2 nd year.
$T_{7}=$ Rabbing in lst year and A / S at 30 lb ./ac. of N in 2 nd year.
$T_{8}=A / S$ at 30 lb ./ac. of N in lst year and rabbing in 2 nd year.
$\mathrm{T}_{9}=$ Rabbing in 1st year and G.N.C. at 30 lb ./ac. of N in 2 nd year.
$T_{10}=$ G.N.C. at 30 lb ./ac. of N in 1st year and rabbing in 2 nd year.
$\mathrm{T}_{11}=$ Proper tillage.
$T_{12}=$ Sterlizing the seed ted with formaline.
3. DESIGN:
(i) Split-plot. ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 6. .(iv) (a) $18^{\prime} .4^{\prime \prime} \times 13^{\prime} .4^{\prime \prime}$. (b) $15 \times 10^{\prime}$. (v) 2 rows on each side. (vi) Yes.
4. GENERAL :
(i) Crop was poor throughout the season. (ii) The experiment was affected by the pests Jassids followed by Army-worms. The growth was affected. (iii) Height, no. of tillers, date of flowering' and yield. (iv) (a) 1949-54. (b) Yes. (c) N.A. (v) (a) Karjat and Vadgaon. (b) N.A. (vi) Rains started late. Heavy. rains in the beginning. Seedlings of all the treatments were poor at the time of transplanting. (vii) Nil.
.5. RESULTS :
(i) $767.2 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $209.1 \mathrm{lb} . / \mathrm{ac}$:
(b) $139.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and interaction is significant.
(iv) Av. yield of grain in lb,/ac.

	F_{0}	F_{1}	Mean
T1	694.5	742.5	718.5
. T_{2}	802.0	783.6	792.8
T3	742.5	761.3	751.9
T4	856.7	896.4	876.5
T5	718.7	745.4	732.1
T_{6}	734.2	781.7	757.9
T_{7}	822.3	760.9	791.6
T_{8}	805.9	759.4	782,6.
T_{9}	682.9	785.5	734.2
T_{10}	773.4	754.6	764.0
T_{11}	729.9	774.9	752.4
T_{12}	699.9	809.7	754.8
Mean	755.2	779.6	767.2

S.E. of difference of two

1. 'main-plot treatment means
$=34.9 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means $\square 56.9 \mathrm{lb} . / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment.
$=80.5 \mathrm{lb}$./ac.
4. main-plot treatment means at a level of sub-plot treatment $\quad=84,6 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref:- Mh. 49(18).
Type:- ‘CM'.

Object:-To find out a suitable substitute for method of rabbing.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Sandy loam, medium black soil derived from trap rock $6^{\prime \prime}$ to $2 \frac{1^{\prime}}{}{ }^{\prime}$ deep $\mathrm{pH}=6.5$ to 7. (b) Refer soil analysis, Karjat. (iii) $10.6 .1949 / 23$ to 27.7.49. (iv) (a) 2 ploughings before puddlings and one after puddlings. (b) Transplanting (c) - (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 6 seedlings/bunch. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) One weeding in 3rd week of August. (ix) 133°. (x) 21 to 24..11.1949,

2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M.
Sub-plot treatments :

1. Rabbing every year.
2. $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost every year.
3. $30 \mathrm{lb} . / \mathrm{ac}$ of N as A / S every year.
4. $30 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathbf{G} . \mathrm{N} . C$. every year.
5. Proper tillage alone every year.
6. 3300 lb ./ac. of formaline every year.
7. Rabbing in the first year and 10 C.L./ac. of compost in the second year.
8. First year 10 C.L./ac. of compost and rabbing in the second year.
9. Rabbing in the first year and $30 \mathrm{lb} / \mathrm{ac}$. of N as A / S in the second year.
10. $30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in the first year and rabbing in the second year.
11. Rabbing in the first year and 30 lb ./ac. of N as G.N.C. in the second year.
12. 30 lb ./ac. of N as. G.N.C C_{4} in the first year and rabbing in the second year.

In the first year there are only 6 distinct sub-plot treatments as follows :-
$T_{1}=$ Rabbing (1, 7, 9 and 11). $T_{2}=10$ C.L./ac. of compost (2 and 8).
$T_{3}=30 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}\left(3\right.$ and 10). $\mathrm{T}_{4}=30 \mathrm{lb}$./ac. of \dot{N} as $\dot{G} . \mathrm{N} . C$. (4 and 12).
$T_{5}=$ Proper tillage (5). $\quad T_{6}=3300 \mathrm{lb} . / \mathrm{ac}$. of formaline (6).

3. DESIGN :

(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Main-plot $60^{\prime} \times 40^{\prime}$; sub-plot: $20^{\prime} \times 10^{\prime}$. (b) $16^{\prime}-8^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$. (v) $1^{\prime} .8^{\prime \prime}$ ring all round the net plot. (vi). Yes.
4. GENERAL :
(l) Normal. (ii) Attack of blast disease in seed bed from 1st July 1949 ; seedlings were treated with Perenox at the time of transplanting. No pest or disease in field trial. (iii) Grain yield (iv) (a) 1949-1954. . (b) Yes. (c) N.A. (v) (a) Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1502 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $352.5 \mathrm{lb} . / \mathrm{ac}$.
(b) $276.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and their interaction is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

		F_{0}	F_{1}	Mean
T ${ }_{1}$		1437	1420	1428
T ${ }_{1}$		1686	1581	1634
T3		1539	1364	1451
T4	勺.	1612	1404	1508
T 5	\cdots	1626	1614	1620
$\therefore \mathbf{T}_{6}$.	1755	1267	1511
Mean		1567	1438	1502

S.E. of marginal mean of main-plot
S.E. of marginal mean of T_{1}
S.E. of marginal mean of T_{2}, T_{3} or T_{4}
S.E. of marginal mean of T_{5} or T_{6}
$=50.9 \mathrm{lb} . / \mathrm{ac}$.
$=48.9 \mathrm{lb} / \mathrm{ac}$.
$=69.1 \mathrm{lb} / \mathrm{ac}$.
$=97.8 \mathrm{lb} . / \mathrm{ac}$.

Crop : Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref :- Mh. 50(27)/49(18).
Type:- 'CM'.

Object :-To find out a suitable substitute for method of rabbing.

1. BASAL CONDITINOS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black soil derived from trap rock $6^{\prime \prime}$ to 2.5^{\prime} deep $\mathrm{pH}=6.5$ to 7. (b) Refer soil analysis, Karjat. (iii) 13.6.1950/24 to 28.7.1950. (iv) (a) N.A. (b) broadcast. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) 6 seedlings/bunch. (v) Nil. (vi) K. 42 (late). (vii) Unirrigated. (viii) One weeding done in the end of August. Rain water kept circulating. (ix) $124^{\prime \prime}$. (x) 22 to 25,11.1950.

2. TREATMENTS:

Main-plot treatments :
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M. before puddling.
Sub-plot treatments:
$T_{1}=$ Rabbing every year ${ }^{\prime}$.
$\mathrm{T}_{2}=10$ C.L./ac. compost every year.
$\mathrm{T}_{8}=30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S every year.
$\mathrm{T}_{\mathbf{4}}=30 \mathrm{lb}$./ac of N as G.N.C. every year.
$\mathrm{T}_{5}=$ Proper tillage alone every year.
, $\mathbf{T}_{6}=3300 \mathrm{lb} . / \mathrm{ac}$. of formaline every year.
$\therefore \because \mathbf{T}_{7}=$ Rabbing in the first year and 10 C.L./ac. compost in the second year.
$\mathbf{T}_{\mathbf{8}}=10$ C.L./ac. compost in the first year and rabbing in the second year.
$T_{9}=$ Rabbing in the first year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in the second year.
$T_{10}=30 \mathrm{lb}$./ac. of N as A/S in the first year and rabbing in the second year.
$\mathrm{T}_{11}=$ Rabbing in the first year and 30 lb ./ac. of N as G.N.C. in the second year.
$\mathrm{T}_{12}=30^{\circ} \mathrm{lb}$./ac. of N as G.N.C. in the first year and rabbing in the second year.

3. DESIGN:

(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Main-plot: $60^{\prime} \times 40^{\prime}$. Sub-plot: $20^{\prime} \times 10^{\prime}$. (b) $15^{\prime}-8^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$. (v) $1^{\prime}: 8^{\prime \prime}$ ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) No disease in seed bed; sporadic attack of blast was observed by 3rd week of September but it was partly checked by Perenox. Attack of paddy mealy-bugs to some extent. (iii) Grain yield. (iv) a) 1949 to 1954. (b) Yes. (c) N.A. (v) (a) Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1447 \mathrm{Jb} . / \mathrm{ac}$.
(ii) (a) $900.1 \mathrm{lb} . / \mathrm{ac}$.
(b) $318.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and their interaction is significant.
(iv) Av. yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T ${ }_{1}$	1540	1591	1566
T2	1364	1549	1457
T3	1285	1266	1276.
T4.	1205	1652	1429
T5	1485	1474	1480
T6	1354	1757	1556
T_{7}	1156	1555	1355
T_{8}	1442	1402	1422
T9	1390	1254	1322
T_{10}	1347	1688	1518
T11	1530	1628	1579
T_{12}	1347	1475	1411
Mean	1371	1524	1447

S.E. of difference of two.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref Mh. 51(31)/50(27)/49(18).
Type :- 'CM'.

Object :-To find out a suitable substitute for the method of rabbing.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy, (c) As per treatments. (ii) (a) Sandy loam, medium black soil derived from trap rock $6^{\prime \prime}$ to $2 \frac{1}{2}{ }^{\prime}$ deep. (b) Refer soil analysis, Karjat. (iii) $13.6 .1951 / 25.7 .1951$. (iv) (a) to (e) N.A. (v) Nil. (vi) K-42 (ldte). (vii) Unirrigated. (viii) Two ploughings prior to puddling, one puddling to field plots and one hand digging, one weeding. (ix) $124^{\prime \prime}$. (x) 20.11.1951 and 21.11.1951.
2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M. before puddling.

Sub-plot treatments :

$\mathrm{T}_{1}=$ Rabbing every year.
$\mathrm{T}_{2}=10$ C.L./ac. compost every year.
$T_{3}=30 \mathrm{lb}$./ac. of N as A / S every year.
$T_{4}=30 \mathrm{lb}$./ac. of N as G.N.C. every year.
$\mathrm{T}_{5}=$ Proper tillage only.
$T_{6}=3300 \mathrm{lb}$./ac. of formaline every year.
$T_{7}=$ Rabbing in the first year and 10 C.L./ac. compost in the second year.
$\mathrm{T}_{8}=10$ C.L./ac. compost in the first year and rabbing in the second year.
$\mathrm{T}_{\mathrm{g}}=$ Rabbing in the first year and 30 lb ./ac. of N as A / S in the second year.
$\mathrm{T}_{1_{0}}=30 \mathrm{lb} . / \mathrm{ac}$ of N as A / S in the first year and rabbing in the second year.
$\mathrm{T}_{11}=$ Rabbing in the first year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{G} . \mathrm{N} . \mathrm{C}$, in the second year.
$\mathrm{T}_{12}=30 \mathrm{lb}$./ac. of N as G.N.C. in the first year and rabbing in the second year.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Main-plot $60^{\prime} \times 40^{\prime}$. sup-plot : $20^{\prime} \times 10^{\prime}$. (b) $15^{\prime} .8^{\prime \prime} \times 6^{\prime} .8^{\prime \prime}$. (v) $1^{\prime} .8^{\prime \prime}$ ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Rabbing showed the best results. The effect of rabbing and formaline are the best. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) Yes. (c) N.A. (v) (a) Igatpuri, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1801 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $788.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $380.1 \mathrm{ib} . / \mathrm{ac}$
(iii) None of the effects and their interaction is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

'	F_{0}	F_{1}	Mean
T1	1484	1557	1520
T ${ }_{2}$	1605	2164	1884
T3	1679	1864	1771
T_{4}.	2059	1906	1982
T_{5}	1465	1725	1595
T ${ }_{6}$	1986	1882	1934
T 7	1540	1783	1661
T_{8}	2090	1636	1863
T9	1435	2183	1809
T_{10}	1827 ,	2016	1921
T 11	1746	. 1760	1753
T_{12}	1802	2043	1922
Mean	1726	1876	1801

S.E. of difference of two

1. main-plot treatment means
$=160.8 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means
3. sub-plot treatment means at a level of main-plot treatment
$=190.0 \mathrm{lb} . / \mathrm{ac}$.
4. sub-plot treatment means at a level of main-plot treatment
$=268.7 \mathrm{lb} . / \mathrm{ac}$.
5. main-plot treatment means at a level of sub-plot treatment
$=303.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref: : Mh. 52(56)/51(31)/50(27)/49(18).
Type :- 'CM'.

Object:- To find out a suitable substitute for rabbing for Paddy crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black derived from trap roek, $6^{\prime \prime}$ to $2 \frac{1}{\prime}{ }^{\prime}$ deep. (b) Refer soil analysis, Karjat. (iii) 14.6.1952/25.7.1952. (iv) (a) 3 ploughings. (b) Broadcast. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\circ} \times 10^{\circ}$. (c) N.A. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) N.A. (ix) $109^{\prime \prime}$. (x) 13.11.1952, 14.11.1952 and 18.11.1952.
2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac. of F.Y.M. tefore puddling.
Sub-plot treatments :
$\mathrm{T}_{1}=$ Rabbing every year.
$\mathrm{T}_{2}=10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost every year.
$\mathrm{T}_{4}=\mathbf{3 0} \mathrm{lb}$./ac. of N as A/S every year.
$\mathrm{T}_{4}=30 \mathrm{lb} / \mathrm{ac}$. cf N as G.N.C. every year.
$\mathrm{T}_{5}=$ Proper tillage only.
$T_{6}=3300 \mathrm{ib} / \mathrm{ac}$. of formaline every year.
$\mathrm{T}_{7}=$ Rabbing in the first year and 10 C.L./ac. of compost in the second year. $T_{s}=10$ C.L./ac. of compost in the first year and rabbing in the second year. $\mathrm{T}_{9}=$ Rabbing in the first year and 30 lb ./ac. of N as A / S in the second year. $\mathrm{T}_{1_{0}}=30 \mathrm{lb}$./ac. of N as A / S in the first year and rabbing in the second year.
$\mathrm{T}_{11}=$ Rabbing in the first year and 30 lb ./ac. of N as $\mathrm{G} . \mathrm{N} . C$. in the second year. $\mathrm{T}_{12}=30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. in the first year and rabbing in the second year.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) main-plot : $60^{\prime} \times 40^{\prime}$. Sub-plot: $20^{\prime} \times 10^{\prime}$, (b) $15^{\prime}-8^{\prime \prime} \times 6^{\prime}-8^{\prime \prime}$. (v) $1^{\prime}-8^{\prime \prime}$ ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Mild attack of rice skipper observed. (iii) Grain and straw yield. (iv) (a) 1949-1954.
(b) Yes. (c) N.A. (v) (a) Igatpuri, Ratnagiri and Vadgaon. (vi) and (vii Nil.
5. RESULTS:
(i) $1615 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $554.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $250.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Effect of main-plot treatments alone is significant.
(iv) Av. yield of grain in $1 \mathrm{lb} . / \mathrm{ac}$.

		F_{0}	F_{1}	Mean
T 1	-	1415	1369	1392
T2		1492	1776	1634
T3		1394	1710	1552
T4		1623	1761	1692
T_{5}		1379	1642	1511
T ${ }_{6}$		1473	. 1942	1708
T_{7}		1305	1764 -	1535
T ${ }_{\text {B }}$		1804	1807	1806
T		1514	1773	1644
T_{10}		1421	1816	1619
T_{11}		1669 :	1853	1761
T_{12}		1487.	1568	1528
Mean		1498	1732	1615

S.E. of difference of two

1. main-plot treatment means $\quad=113.1 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means $=125.0 \mathrm{lb} / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment $=176.7 \mathrm{lb} . / \mathrm{ac}$.
4. main-plot treatment means at a level of sub-plot treatment
$=203.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref:- Mh. 53(124)/52(56)/51(31)/50(27)/49(18).
Site :- Agri. Res. Stn., Karjat. Type :- 'CM'.
Object :-To find out a suitable substitute for the method of rabbing.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam, medium black derived from trap rock $6^{\prime \prime}$ to $2 \frac{1}{\prime}^{\prime}$ deep. (b) Refer soil analysis, Karjat. (iii) 14.6 .1953 ; 27.7 .1953 . (iv) (a) Two ploughings. (b) Broadcasting seed in seed bed. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (o) N.A. (v) Nil. (vi) K-42 (late). (vii) Unirrigated. (viii) N.A. (jx) 133". (x) 22.11.1953.

2. 1 TREATMENTS:

Main-plot treatments :
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac. of F.Y.M. before puddling.
Sub-plot treatments :
$\mathrm{T}_{1}=$ Rabbing every year.
$\mathrm{T}_{2}=10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost every year.
$\mathrm{T}_{3}=30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S every year.
$T_{4}=30 \mathrm{lb}$./ac. of N as G.N.C. every year.
$T_{5}=$ Proper tillage only.
$\mathrm{T}_{8}=3300 \mathrm{lb}$./ac. formaline every year.
$\mathrm{T}_{7}=$ Rabbing in the first year and 10 C.L./ac. of compost in the second year.
$T_{8}=10$ C.L./ac. of compost in the first year and rabbing in the second year.
$T_{9}=$ Rabbing \ln the first year and 30 lb ./ac. of N as A / S in the second year.
$T_{10}=30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in the first year and rabbing in the second year.
$T_{11}=$ Rabbing in the first year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. in the second year.
$\mathrm{T}_{12}=30 \mathrm{lb}$./ac. of N as G.N.C. in the first year and rabbing in the second year.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block, 12 sub-plots/main plot. (b) N.A. (iii) 4. (iv) (a) Main-plot :

4. GENERAL :
(i) Normal. (ii) Slight crab attack observed in some places. Stemborer attack in mid.-October. (iii) Grain yield, straw yield and no. of tillers. (iv) (a) 1949-1954. (b) Yes. (c) N.A. (v) (a) Igatpuri, Ratnagiri, and Vadgaon. (vi) and (vii) Nil.
5. RESULTS :
(i) $1360 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $300.5 \mathrm{lb} . / \mathrm{ac}$.
(b) $325.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Only the sub-plot treatments differ significantly.
(iv) Av, yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T ${ }_{1}$	1509	1426	1468
T8	1212	1248	1230
T_{3}	1356 ${ }^{\text {, }}$	1457	1406
T4	1010	1089 :	1064
T5	1178	1423	1300
T6	1662	1857	1759
T7	1163	1383	1273
T8	1255	1282	1268
T9	1304.	1496	1400
' T_{10}	1148	1536	1342
T_{11}	1389	1420.	: 1404
T 19	1132	1686	1409
Mean	1279	1442	1360

S.E. of difference of two
$\begin{array}{lll}\text { 1. main-plot treatment means } & =61.3 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. sub-plot treatment means } & =162.6 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. sub-plot treatment means at a level of main-plot treatment } & =230.0 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. main-plot treatment means at a level of sub-plot treatment } & =228.6 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop:- Paddy (Khatif).
Site :- Agri. Res. Stn., Karjat

Ref:- Mh, $52(31)$.
Type :- 'CM'.

Object :-To find the test combination of spacing and manurial dose for Paddy.

1. BASAL CONDITIONS :
(i) (a) No. (b) Paddy. (c) N.A. (ii) (a) Sandy loam, medium black soil derived from trap rock.
(b) Refer soil analysis, Karjat. (iii) 10.6.1952/9.7.1952, 10.7.1952 and 11.7.1952. (iv) (a) and (b) N.A.
(c) $40 \mathrm{lb}, / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v) Nil. (vi) K-42. (vii) Unirrigated: (viii) N.A. (ix)
(x) 2,11.1952 and 8.11.1952.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=96, \quad \mathrm{~N}_{2}=128$, and $\mathrm{N}_{3}=160 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $F_{1}=5$ and $F_{2}=10$ C.L./ac. of F.Y.M.
(4) 2 spacings: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $S_{2}=8^{\prime \prime} \times 8^{\prime \prime}$.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 3×2^{8} Fact.in R.B.D. (ii) (a) 24. (b) N.A. (iii) 3., (iv) (a) $28^{\prime} \times 10^{\prime}$. (b) $24^{\prime} \times 6^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of rice skippers and insects. (iii) Grain yield. (iv) (a) 1952-continued. (b) Yes. (c) N.A. (v) (a) Chiplun, Igatpuri, Kopergaon, Kosbad Phondaghat, Ratnagiri and Vadgaon. (vi) and (vii) Nil.

5. RESULTS

(i) $1626 \mathrm{lb} . / \mathrm{ac}$.
(ii) $493.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and S are highly significant others are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{1}	N_{2}	N_{3}		F_{1}	F_{2}	S_{1}	S_{2}	Mean
P_{0}	2305	1624	1219		1629	1804	1529	1904	1716
\mathbf{P}_{1}	1849	1589	1177	-	1655	1420	1334	1742	1537
Mean	2077	1605	1198		1642	1612	1432	1823	1626
S_{1}	1767	1507	1021		1519	1345			
S_{2}	2388	1704	1376		1766	1880			
F_{1}	2073	1612	1242				\checkmark		
F_{2}	2082	1599	1155						

S.E. of marginal mean of N	$=100.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of F, P or S	$=82.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $N \times P, N \times F$ or $N \times S$ table	$=142.4 \mathrm{lb} / \mathrm{cac}$.
S.E. of body of $P \times F, P \times S$ or $F \times S$. table	$=116.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Ref :- Mh. 53(120)/52(31).
Site :~ Agri. Res. Stn., Karjat.
Type:- 'CM'.

Object :-To find out the best combination of spacing and manurial fidose for Paddy.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Sandy loam medium black soil derived from trap rock $6^{\prime \prime}$ to $2 \frac{1}{2}$ deep; pH 6.5 to 7. (b) Refer soil analysis, Karjat. (iii) $14.6 .1953 / 17.3 .1953$. (iv) (a) 2 ploughings. (b) N.A. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v) Nil. (vi) K-42 (late), (vii) Unirrigated. (viii) One weedıng. (ix) 133°. (x) 12.11.1953.

2. TREATMENTS

All combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=96, \quad \mathrm{~N}_{2}=128$ and $\mathrm{N}_{s}=160 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=2 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M.: $F_{1}=5$ and $F_{2}=10$ C.L./ac.
(iv) 2 spacing: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $S_{2}=8^{\prime \prime} \times 8^{\prime \prime}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Supar of N and A / S and G.N.C. mixed in $\mathrm{I}: 1$ ratio. $\frac{1}{2}$ dose of N and full dose of P applied at puddling and the remaining $\frac{1}{2}$ dose of N applied 6 weeks after sowing.
3. DESIGN :
(i) 3×2^{3} Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3. (iv) (a) $28^{\prime} \times 10^{\prime}$. (b) $24^{\prime} \times 6^{\prime}$. (v) 2^{\prime} at either end and 4 lines each side for $6^{\circ} \times 6^{\prime \prime}$ spacing and 3 lines each side for $8^{\prime \prime} \times 8^{\prime \prime}$ spacing. (vi) Yes.
4. GENERAL :
(i) Normal. In plots treated with N there is vegetative growth. Lodging and low yield observed. (ii) Attack of army-worms. (iii) Grain yield (iv) (a)/ 1952-1954. (b) Yes. (c) N.A. (v) (a) Chiplun, Igatpuri, Kopergaon, Kosbad, Phondaghat, Ratnagiri and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 913 lb./ac.
(Ii) $366.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant while other effects and interactions are not sigoificant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of marginal mean of N	$=74.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P, F or S	$=61.6 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of $N \times P, N \times F$ or $N \times S$ table	$=105.8 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of $P \times F, P \times S$ or $F \times S$ table	$=86.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Karjat.

Ref :- Mh. 53(139).
Type :-‘CM'.

Object:-To study the Japanese method of Paddy cultivation in relation to cultivation according to the departmentally recommended method.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy K-42. (c) N.A. (ii) (a) Sandy loam, medium black, derived from trap rock. (b) Refer soil analysis, Karjat. (iii) 16.6.1953 and 22.6.1953/28,29 and 30.7.1953. (iv) (a) 2 to 3 ploughings. (b) As per treatments. (c) N.A. (d) As per treatments. (e) N.A. (v) NiI. (vi) K-42. (vii) Unirrigated. (viii) As per treatments. (ix) $133^{\prime \prime}$. (x) Repl. I-13.11.1953; 14.11.1953 and II-15.11.1953; 16.11.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) Departmental method

B. Manuring of secd bed
$b_{1}=1$ C.L. of F.Y.M. +16 lb. of $A / S+16 \mathrm{lb} . / \mathrm{guntha}$ of Super + 1 layer of ash.
$\mathrm{c}_{1}=1$ C.L. of F.Y.M. +16 lb . of A/S $+16 \mathrm{lb} . \lg$ untha of Super +1 layer of ash.
$\mathrm{d}_{1}=9^{\prime \prime} \times 9^{\prime \prime}$.
$e_{1}=4$.
$f_{1}=$ One weeding; 3 interculturings.

3. DESIGN :

(i) 2° confounded Fact. (ii) (a) 8. (b) N.A. (iii) 2. (iv) (a) $10^{\prime} .6^{\prime \prime} \times 25^{\prime} .6^{\prime \prime}$ and $10^{\prime} .10^{\circ \prime} \times 25^{\prime} .10^{\prime \prime}$ for $9^{\prime \prime}$ and $10^{\prime \prime}$ spacings respectively. (b) $7^{\prime} .6^{\prime \prime} \times 22^{\prime} .6^{\prime \prime}$. (v) 1.5^{\prime} ring all round the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Mild attack of swarming caterpilles. (iii) Grain yield. (iv) (e) 1953 - N.A. (b) No. (c) N.A. (v) (a) Igatpuri, Khopoli and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS : See Page (178)

$$
\begin{array}{ll}
\text { Crop :- Paddy. (Kharif). } & \text { Ref :- Mh. 53(359). } \\
\text { Site :- Agri. Res. Stn., Khopoli. } & \text { T'ype :- 'CM'. }
\end{array}
$$

Object :-To assess the relative merits of Japanese method and departmental method of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Nil. (c) Nit. (ii) (a) Medium black to light soil. (b) Refer soil analysis, Khopoli. (iii) $23.6 .1953 / 1$ and 2.8.1953. (iv) (a) N.A. (b) As per treatments. (c) $20 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) As per treatments. (v) Nil. (vi) K-42. (vii) Unirrigated. (viii) As per treatments. (ix) $124^{\prime} .04^{\prime \prime}$. (x) 12.11.1953.
. 5 RESULTS: Ref:-Mh. 53 (139),
(i) $2148 \mathrm{lb} . / \mathrm{ac}$. \quad (ii) $558.08 \mathrm{lb} / \mathrm{ac}$
(iii) Main effects of A, C and E are significant. All other main effects and interactions are not significant.
(iv) Means and differential response in $\mathrm{lb} . / \mathrm{ac}$.

Factor	Mean response	a_{0}	a_{1}	b_{0}	b_{1}	$\mathrm{c}_{0}{ }^{-}$	c_{1}	d_{0}	d_{1}	e_{0}	C_{1}	f_{0}	f_{1}
A	-314	-	-	-496	-132	-331	-297	-401	-227	-388	-240	-311	-317
B	148	-34	330	-	-	200	96	251		11	285	186	110
C	-464	-481	-447	-412	-516	- -	-	-537	-391	-292	-636	-505	-423
D	-179	$\bigcirc-266$	-92	-76	-282.	-252	-106	-	-	-302	-56	-133	-225
E	' 244	170	318	107	- 381	416	72	121	367	-	-	385	103
F	. 154	157	151	192	116	113	195	200	108	295	13	-	-

S.E. of mean response $=98.67 \mathrm{lb} . / \mathrm{ac}$.
S.E. of differential response $=139.52 \mathrm{lb} . / \mathrm{ac}$.
5. RESULTS: Ref :- Mh. 53(359).
(i) $2992 \mathrm{lb} . / \mathrm{ac}$.
(ii) $365.06 \mathrm{lb} . / \mathrm{ac}$
(iii) Main effects of B and D and interactions $\mathrm{AF}, \mathrm{BD}, \mathrm{CD}$ and EF are highly significant. Others are not significant. (iv) Mean and differential response in lb ./ac.

S.E. of mean response $=91.26 \mathrm{lb} . / \mathrm{ac}$.
S.E. of differential response $=129.04 \mathrm{lb} . / \mathrm{ac}$.

2. TREATMENTS :

All combinations of (1) and (

1) Departmental method
(2) Japanese method
A. Seed bed
$a_{0}=$ Flat.
$a_{1}=$ Raised.
B. Manuring of seed bed
$b_{0}=1$ C.L. of F.Y.M. $+8 \mathrm{lb} . /$ guntha of A / S.
$b_{1}=1$ C.L. of F.Y.M. +16 lb . of $A / S+16$ lb. /guntha of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super +1 layer of ash.
C. Manuring of field
$\mathrm{c}_{0}=5$ C.L. of F.Y.M. + green manure $+64 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super
$\mathrm{c}_{1}=5$ C.L./ac. of F.Y.M. + green manure + $100 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
D. Spacing
$\mathrm{d}_{0}=10^{\prime \prime} \times 10^{\prime \prime}$. $\mathrm{d}_{1}=9^{\prime \prime} \times 9^{\prime \prime}$.
E. No, of seedling/bunch
$e_{0}=8 . \quad ; e_{1}=4$.
F. No, of interculturing
$f_{0}=1$ hand weeding and no interculturing.
$\mathrm{f}_{1}=1$ hand weeding and 3 interculturings. Green manure and Ist dose of fertilisers applied on 31.7.1953. 2nd dose of manures on 4.9.1953. 3rd dose of manures on 30.9.1953.
3. DESIGN :
(i) 2° confounded. (ii) (a) 8 . (b) N.A. (iii) 1 . (iv) (a) $22.5^{\prime} \times 7.5^{\prime}$. (b) $19.5^{\prime} \times 4.5^{\circ}$ and $19^{\prime} .2^{\prime \prime} \times 4^{\prime} .2^{\prime \prime}$ for 9° and $10^{\prime \prime}$ spacings respectively. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Little attack of bacteria blight. (iii) Grain and straw yield. (iv) (a) 1953-N.A. (b) N.A. (c) Nil. (v) (a) Igatpuri, Kopargaon, Karjat. (b) N.A. (vi) Nil. (vii) Effects confounded are ABC $\mathrm{ADF}, \mathrm{CEF}, \mathrm{ABEF}, \mathrm{BCDF}, \mathrm{ACDE}$ and BDEF.
5. RESULTS : See page (178)

Crop:- Paddy (Kharif).
Site : Agri. Res. Stn., Kolhapur.

Ref:- Mh. 53(344).
Type :- 'CM'.

Object :-To study the combination of manurial applications with different cultural practices on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) N.A. (ii) (a) Deep black soil. (b) Refer soil analysis, Kolhapur. (iii) 27.6.1953. (iv) (a) N.A. (b) As per treatments. (c) 60 lb ./ac. in drilled. (d) As per treatments. (e) 6 seed/dibble. (v) 5 C.L./ac. of F.Y.M. (vi) Waksal 207/(mid-late). (vii) Irrigated. (viii) 3 weedings, interculturings as per treatment. (ix) 43.03". (x) 30.10.1953 and 31.10.1953.

2. TREATMENTS :

All combinations of (1) and (2).

1. 2 levels of manures: $\mathrm{M}_{1}=64 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

$$
\mathrm{M}_{2}=100 \mathrm{lb} . / \mathrm{ac} . \text { of } \mathrm{N} \text { as } \mathrm{A} / \mathrm{S}+80 \mathrm{lb} \text {./ac. of } \mathrm{P}_{2} \mathrm{O}_{5} \text { as Super. }
$$

2. 8 cultural operations.
$C_{1}=$ Drilling 15° spacing between rows with 3 interculturings.
$\mathrm{C}_{2}=$ Drilling $15^{\prime \prime}$ spacing between rows with 5 interculturings.
$\mathrm{C}_{3}=$ Drillings $12^{\prime \prime}$ spacing between rows with 3 interculturings.
$\mathrm{C}_{4}=$ Drilling $12^{\prime \prime}$ spacing between rows with 5 interculturings.
$C_{5}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing between rows with 3 interculturings one way. $\mathrm{C}_{6}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing between rows with 3 interculturings two way. $\mathrm{C}_{7}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing between rows with 5 interculturings one way. $\mathrm{C}_{9}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing between rows with 5 interculturings two way.

3. DESIGN :

(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $33^{\prime} \times 15^{\prime}$. (b) For $9^{\prime \prime}$ spacing $30^{\prime} \times 9^{\prime}$; for $12^{\prime \prime}$ spacing $30^{\prime} \times 9^{\prime}$. and for $15^{\prime \prime}$ spacing $27^{\prime} \times 10^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1953 to 1954. (b) Nil. (c) Nil. (v) (a) Kopergaon, Padegaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 2777 lb./ac.
(ii) $444.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) (a) Main effect of M alone is highly significant.
(iv) Av. yield of grain in lb./ac.

	M_{1}	$\mathbf{M}_{\mathbf{2}}$	Mean
C_{1}	2803	2728	2765
C_{2}	2438	3260	2849
C_{3}	2813	3023	2918
C4	2753	3290	3021
C5	1954	3010	2482
C_{6}	2224	2881	2552
C_{7}	2365	3368	2866
C_{8}	2599	2929	2764
- Mean	2494	. 3061	. 2777
.S.E. of marginal mean of M 'S.E. of varginal mean of cultural operations S.E. of body of table			$=78.7 \mathrm{lb} . / \mathrm{ac}$.
			$\begin{aligned} & =157.3 \mathrm{lb} . / \mathrm{ac} . \\ & =222.5 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Kopergaon.
Ref :- Mh. 53(39).
Type :- 'CM'.

Object :-To study the combinations of manurial applications with different cultural practices on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Gram. (c) Nil. (ii) (a) "A" type. (b) Refer soil analysis, Kopergaon. (iii) 15.7.1953.
(iv) (a) 1 ploughing. (b) As per treatments. (c) In drilled plot seed rate $60 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments.
(e) 6 -seed/dibble (v) 5 C.L. of F.Y.M. before sowing. (vi) Krishnasal (late variety). (vii) Irrigated.
(viii) Weeding 4 times, 2 harrowings and 1 bund making. (ix) 17.22". (x) 22.11.1953 and 23.11.1953.
2. TREATMENTS:

All combinations of (1) and (2).

1. 2 manures : $\mathrm{M}_{\mathbf{1}}=64 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{M}_{2}=100 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
2. 8 cultural practices :
$\mathrm{C}_{1}=$ Drilling $15^{\prime \prime}$ spacing 3 interculturings
$\mathrm{C}_{2}=$ Drilling $12^{\prime \prime}$ spacing 3 interculturings
$\mathrm{C}_{3}=$ Drilling 15° spacing 5 interculturings
$\mathrm{C}_{4}=$ Drilling 12^{*} spacing 5 interculturings
$\mathrm{C}_{5}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing 3 interculturings (one way).
$\mathrm{C}_{6}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing 3 interculturings (two way).
$\mathrm{C}_{7}=$ Dibbling $9^{\prime \prime} \times 9^{\prime \prime}$ spacing 5 interculturings (one way). $\mathrm{C}_{8}=$ Dibbling $9^{\prime \prime} \times 9^{\circ}$ spacing 5 interculturings (two way).
3. DESIGN :
(i) 2×8 Factorial in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $15^{\prime} \times 33^{\prime}$. (b) $9^{\prime} \times 30^{\prime}, 9^{\prime} \times 30^{\prime}, 10^{\prime} \times 27^{\prime}$.
(v) 3^{\prime} and $2 \frac{1}{\frac{1}{\prime}}$ around net plot. (vi) Yes.
4. GENERAL :
(i) The germination in all plots was fair. No gaps were observed. The dibbled plots were more uniform compared with drilled plots. The crop was healthy with vigorous growth. The plots with higher doses of \mathbf{N} were dark green in colour. (ii) Slight attack of blast disease. No control measures were taken. (iii) Germination date, flowering date, ploughing, height and tillers. (iv) (a) 1953 to 1954. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nit.
5. RESULTS
(i) $2950 \mathrm{lb} . / \mathrm{ac}$.
(ii) $487.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Only interaction MC is significant.
(iv) Av. yield of grain in lb./ac.

	M_{1}	\mathbf{M}_{2}	Mean
C_{1}	3146	2404	2775
C_{2}	2984	2561	2772
C_{3}	2531	2884	2707
C_{4}	2894	2833	2863
C_{5}	2843	3489	'3166
C_{6}	3196	3398	3297
C_{7}	2944	2944	2944
C_{8}	2954	3196	3075
Mean	2936	2964	2950

S.E. of marginal mean of manures	$=86.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of cultural operations	$=172.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=243.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Paddy (Kharif).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(76).
Type : $\boldsymbol{\sim}$ ' CM '.

Object :-To study the manurial requirements in combination with different spacings for Paddy.

1. BASAL CONDITIONS:
(i) (a) Gram-Paddy. (b) Gram in Rabi. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 30th June and 1st July 1952. (iv) (a) 1 ploughing. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v) N.A. (vi) Krishnasal (mid-late). (vii) Irrigated. (viii) 3 weedings, 1 harrowing. (ix) 11.87". (x) 17 and 18.11.1952.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=96, \mathrm{~N}_{1}=128$ and $\mathrm{N}_{3}=160 \mathrm{lb}$./ac.
(2) 2 levels of P.Y.M. : $\mathrm{F}_{1}=5$ and $\mathrm{F}_{2}=10$ C.L./ac.
(3) 2 spacings : $S_{1}=9^{\prime \prime}$ and $S_{2}=12^{\prime \prime}$ between rows.
(4) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=32 \mathrm{lb}$./ac.

N applied as A/S. and G.N.C. in the ratio 1: 1, $\mathrm{P}_{2} \mathrm{O}_{5}$ as super. G.N.C. and Super drilled on 28.6.1952. A/S broadcast on 6.10.1952. F.Y.M. spread in June.

3. DESIGN:

(i) 3×2^{3} Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3. (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $36^{\prime} \times 12^{\prime}$. (v) 3^{\prime} alround the net plot. (vi) Yes.
4. GENERAL
(i) Satisfactory. (ii) Slight attack of blast disease. (iii) Grain yield. (iv) (a) 1952-1955. (b) Yes.
(c) N.A. (v) (a) Chiplun, Igatpuri, Karjat, Kosbad, Nawapur, Phondaghat, Ratangiri and Vadgaon.
(b) N.A. (vi) and (vii)Nil.
5. RESULTS :
(i) $1887 \mathrm{ib} . / \mathrm{ac}$.
(ii) $478.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of F.Y.M. is significant. Other main effects and interactions are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{1}	N_{2}	N_{3}	F_{1}	F_{2}	S_{1}	S_{2}	Mean
P_{0}	1921	1984	1917	1871	2011		1901	1941
P_{1}	1699	1816	1986	1662	2006	1881	1787	1834
Mean	1810	1900	1951	1766	2008	1931	1844	1887
S_{1}	1722	1973	2100	1788	2075			
S_{2}	1899	1828	1804	1745	1942			
F_{1}	1522	1883	1894		'			
F_{2}	2099	1917	2009					
-								
	S.E. of marginal mean of N $=97.8 \mathrm{lb} . / \mathrm{ac}$. S.E. of marginal mean of P or F or S $=79.8 \mathrm{lb} / \mathrm{ac}$. S.E. of body of table $N \times P, N \times F$ or $N \times S$ $=138.2 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table $P \times F$, or $P \times S$ or $F \times S$ $=112.8 \mathrm{lb} . / \mathrm{ac}$.							
.								

Crop : PPaddy (Kharif).	Ref :-Mh. 53(i8).
Site : Agri. Res. Stn., Kopergaon.	Type:- ${ }^{\text {c }}$ (${ }^{\text {P }}$.

Object:-To study the manurial requirements in combinations with different spacings for Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Gram. (c) Nil. (ii) (a) 'A' type. (b) Refer soil analysis, Kopergaon. (iii) 97.1953 (iv) (a) 1 ploughing and 1 planking. (b) Drilled. (c) 40 lb ./ac. (d) As per treatments. (e) N.A. (v) Nii. (vi) Krishnasal (late variety). (vii) Irrigated. (viii) Hoeings 4 times and weedings 3 times. (x) 17.22°.
(x) 20.11.1953.
2. TREATMENTS:

Alı combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=96, \mathrm{~N}_{2}=128$ and $\mathrm{N}_{2}=160 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=32 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 le els of F.Y.M.: $\mathrm{F}_{1}=5$ and $\mathrm{F}_{\mathrm{E}}=10$ C.L./ac.
(4) 2 spacings: $S_{1}=9^{\prime \prime}$ and $S_{2}=12^{\prime \prime}$ between rows.

N as $\mathrm{A} / \mathrm{S}, \mathrm{P}_{2} \mathrm{O}_{5}$ as Super. F.Y.M. applied before sowing. A/S and Super applied on 8.7.1953
3. DESIGN :
(i) 3×2^{3} Fact. in R.B D. (ii) (a) 24 . (b) N.A. (iii) 3. (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $36^{\prime} \times 12^{\prime}$. (v) 3^{\prime} all round the net plot. (vi) Yes.'

4. GENERAL :

(i) Satisfactory. (ii) Slight attack of blast disease; no. control measures were taken. (iii) Germination date, flowering, theight, tillering and grain yield. (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2601 \mathrm{lb} . / \mathrm{ac}$.
(ii) $387.1 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.

	N_{1}	\mathbf{N}_{2}	N_{3}	F_{1}	$\mathrm{F}_{\mathbf{2}}$	S_{1}	S_{2}	Mean
P_{0}	2313	2706	2740	2584	2588	2587	2586	2586
\mathbf{P}_{1}	2552	2687	2609	2693	2539	2610	2621	2616
Mean	2433	2696	2674	2639	2563	2598	2604	2601
S_{1}	2405	2683	2708					
S_{2}	2460	2710	2641	2715	2493			
F_{1}	2481	2722	2/13					
F_{2}	2384	2670	2636					

S.E. of marginal mean of N	$=79.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P, F or S	$=64.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\mathbf{N} \times P, N \times F$ or $N \times S$	$=111.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $P \times F, P \times S$ or $F \times S$	$=91.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Kosbad.

Ref:- Mh. 53(342).
Type :- 'CM'.

Object :-To study the manurial requirements in combination with different spacings for Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) 8 C.L./ac. of F.Y.M. (ii) (a) Sandy loam to cla/. (b) Refer soil analysis, Kosbad. (iii) 5.7.1953/10 8.1953. (iv) (a) N.A. (b) Transplanting. (c) \rightarrow. (d) As per treatments. (e) 8 seedlings/bunch. (v) Nil. (vi) K-68-1. (vii) Unirrigated. (viii) 1 Hoeing and weeding. (ix) $93^{\prime \prime}$. (x) 21.10.19.3.
2. TREATMENTS:

All combinations of (1), (2), (3) and (4)
(l) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \quad \mathrm{~N}_{1}=32$ and $\mathrm{N}_{2}=64 \mathrm{lb} . / \mathrm{ac}$.
(!) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=32 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.
() 2 spacings: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $S_{2}=4^{\prime \prime} \times 4^{\prime \prime}$.
N as A/S and G.N.C. in the ratio $1: 1$ and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. N applied in two doses on 10.8.1953 a nd 6.9.1953, $\mathrm{P}_{2} \mathrm{O}_{5}$ on 10.81953 and F.Y.M on 1.7.1953.
3. DESIGN:
(i) $3 \times 2^{\prime}$ Fact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 2 . (iv) (a) $30^{\circ} \times 10^{\prime}$. (b) $24^{\circ} \times 6^{\prime}$. (v) $3^{\prime} \times 2^{\prime}$ alrou nd the net plot. (vi) Yes.
4. GENERAL:
(i) Glowh was checked due to attack of bugs. (ii) Bugs attack; Gammaxene was sprayed. (iii) Grain an fodder yield. (iv) (a) 1953-54. (b) N.A. (c) Nil. (v) (a) Igatpuri, Ratnagiri, Vadgaon, Kopergaon and Karjat. (b) N A. (vi) and (vii) Nil.
5. RESULTS:
(i) 1925 lb /ac.
(ii) $481.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} and S and interaction $N \times P$ aro highly significant while other main effects and interactions are not significant.
(iv) Av. yield of grain in lb.'ae.

	\mathbf{N}_{0}	N_{1}	Na_{2}	F_{0}	$\mathbf{F}_{\mathbf{1}}$	S_{1}	S_{2}	Mean
P_{0}	1763	1602	1515	1687	1566	1364	1889	1627
\mathbf{P}_{1}	2195	2436	2038	2055	2391	2104	2343	2223
Mean	1979	2019	1776	1871	1978	1734	2116	1925
S_{1}	1782	1585	1835	1666	2076			
S_{2}	2176	2453	1719	1802	2155			
F_{0}		1930	1670	$-$				
F_{1}	1945	2108	1883	,				

S.E. of marginal mean of \mathbf{N}
$=120.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P, F or S
$=98.2 \mathrm{lb} / \mathrm{ac}$
S.E. of body of $N \times P, N \times F$ or $N \times S$ table
$=170.2 \mathrm{lb} . / \mathrm{kc}$.
S.E. of body of $P \times F, P \times S$ or $S \times F$ table

Crop : Paddy (Kharif).
Site :-Agri. Res. Stn., Kosbad.

Ref :-Mh. 53 (341).
Type :-‘CM'.

Object :-To assess the relative merits of Japanese method and deparmental method of Paddy cultivation.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) 8 C.L./ac. of F.Y.M. (ii) (a) Sandy loam to clay. (b) Refer soil analysis, kosbad. (iii) 23 to 29.6.1959/31.7.1953 to 6.8.1953. (iv) (a) N.A. (b) Transplanting. (c) -. (d) As per treatments. (e) - (v) Nil. (vi) Kolpi-70 (early). (vii) Irrigated. (viii) As per treatments. (ix) 93° (x) 9.10.1953 to 13.10.1953.

2. TREATMENTS :

All combinations of 6 factors each at two levels.
A. Seed bed: $A_{0}=$ Flat and $A_{1}=$ Raised.
B. Manuring of seed bed: $\quad B_{0}=$ Departmental method :l C.L./guntha of F.Y.M. $+8 \mathrm{lb} . / \mathrm{Igunth} a \mathrm{of} \mathrm{A} / \mathrm{S}$. $\mathbf{B}_{1}=$ Japanese method: 1 C.L/guntha of F.Y.M. $+16 \mathrm{lb} . / \mathrm{guntha}$ of \mathbf{A} / \mathbf{S} + layer of ash.
C. Manuring of field : $\mathrm{C}_{0}=$ Departmental method :' 5 C.L./ac. of F.Y.M+Green manuring $+64 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. $\mathrm{C}_{1}=$ Japanese method: $5 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. ofF.Y.M + Green manuring +100 lb ./ac. of N as $\mathrm{A} / \mathrm{S}+80 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
D. Spacing: $D_{0}^{\prime}=10^{\prime \prime} \times 10^{\prime \prime}$ and $D_{1}^{\prime}=9^{\prime \prime} \times 9^{\prime \prime}$,
E. Number of seedings/bunch : $E_{0}=8$ and $E_{1}=4$.
F. No. of interculturings: $F_{0}=1$ hand weeding and no interculturing and $F_{1}=1$ hand weeding and 3 interculturing.
3. DESIGN :
(i) 2^{6} confounded. (ii) (a) 8 blocks/replication; 8 plots/block. (b) N.A. (iii) 2. (iv) (a) $9^{\prime \prime} \times 9^{\prime \prime}$ spacing $33 \times 10^{\prime}-6^{\prime \prime} ; 20^{\prime \prime} \times 10^{\prime \prime}$ spacing $33^{\prime}-4^{\prime \prime} \times 10^{\prime}-10^{\prime \prime}$. (b) $30^{\prime} \times 7^{\prime}-6^{\prime \prime}$. (v) N.A. (vi) Yes.

4. GENERAL :

(i) Attack of bugs checked the growth of crop to a great extent. (ii) Attack of bugs. Gammaxene was sprayed. (iii) Grain and straw yield. (iv) (a) 1953-1954. (b) N.A. (c) Nil. (v) (a) Igatpuri, Karjat and Khopoli. (b) Nil. (vi) and (vii) Nil.
5. RESULTS : (See page 186)

Crop: Paddy (Kharif).
Site : - Agri. Res. Stn., Kosbad.

Ref:- Mh. 52(378).
Type:- ‘CM':

Object :-To compare Japanese method of Paddy cultivation with the local method.

1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) 5 C.L./ac. of F.Y.M. $+320 \mathrm{lb} / \mathrm{ac}$. of manure mixture $+100 \mathrm{lb} . / \mathrm{ac}$. of super. (ii) (a) Medium black. (b) Refer soil analysis, Kosbad. (iii) 10.4.19:2/2.7.1952. (iv (a) 2 ploughings, 2 puddlings. (b) to (e) As per treatments. (v) S C.L./ac. of F.Y.M. (vi) Zenia-31. (vii) Unirrigated. (viii) As per treatments. (ix) N.A. ix) 28.10.1952.

2. TREATMENTS:

1. Local method.
2. Japanese method.
3. Local method+Seed beds highly manured as Japanese method.
4. Local method+interculturings as per Japanese method.
5. Local method (without manure mixture) $+64 \mathrm{lb} / \mathrm{ac}$. of N as G.N.C. $+32 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. ($\frac{1}{2}$ dose at planting $+\frac{1}{2}$ at tillering).
6. Local method (without manure mixture) +64 lb ./ac. of N as G N C. $+32 \mathrm{Jb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. '1 dose at planting $+\frac{1}{2}$ at tillering)+Interculturing as per. Japancse me hod.

Japanese Method : 1 Seed dipped in brine solution and treated with formaline diluted solutions for three hours. A layer of fine silted compost spread over the seed ted. It was :own, broadcast at the rate of 5 to 6 lb . for 1 or $1 \frac{1}{2}$ gumh has of seed bed area, in long and narrow teds (6° broad and $3^{\prime \prime}$ high). Compost manure given at 1 C.L. per guntha to seed bed. Fertilizers applied after germination at the following rate per square yard.

$$
0.5 \mathrm{oz} \text {. of } \mathrm{N} \text { as } \mathrm{A} / \mathrm{S} 15 \text { days after germination. }
$$

0.4 oz . of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super 15 days afier germi ation.
$0.4 \mathrm{oz} . \mathrm{K}_{2} \mathrm{O}$ as Sulphate of potash 15 days after germination. light dressing.
(2) 1 weeding cf seedlings.
(3) Transplanting done in straight rows of $9^{\prime \prime} \times 9^{\prime \prime}$ with 4 seedlings/bunch. The seedlings thrust straight in the puddle.
(4) 3 to 5 interculturings.
(5) Fertilizers given to supply the following quantities of nutrients per ac. of the field
$80 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
$70 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super
$60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ as Sulphate of Potash.
One half of the total dose applied at the time of transplanting, \ddagger at tillering and \ddagger at emergence stage. Local Method : (1) Seedling raised in long and narrow beds. Compost given before sowing at the rate of
5. RESULTS: Ref : Mh. 53 (341)
(i) 954 Jb,/ac. (ii) $306.9 \mathrm{lb} . / \mathrm{ac} . \quad$ (iii) Main effects of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and interact ${ }_{\text {ion }} \mathrm{AC}$ are highly significant. Others are not significant.
(iv) Table of mean and differential responses in lb./ac.

						iffer	tial	Respo					
Factor	Mean response												
		Presence	Absence										
A	634.83	-	-	681.29	588.37	471.12	798.54	643.12	626.54	705.80	563.86	738.53	531.13
B	171.64	218.10	125.18	-	-	242.55	100.73	109.87	- 233.41	173.58	169.70	119.01	224.27
C	-344.18	-507.89	-180.47	-273.27	-415.09	-	-	-262.22	-426.14	-203.82	-484.54	-337.65	-350.71
D	128.57	136.86	120.28	66.80	190.34	210.55	46.59	-	-	56.76	200.38	174.01	83.13
E	-176.60	-105.63	-247.57	-174.66	-178.54	-36.24	-316.96	-248.41	-104.79	-	-	-153.97	-199.23
F	50.28	153.98	-53.42	-2.35	102.91	56.81	43.75	95.72	4.84	72.91	27.65	- -	-
	.			S.E. of mean response S.E. of differential response		$\begin{aligned} & =54.25 \mathrm{lb} . / \mathrm{ac} . \\ & =76.71 \mathrm{lb} . / \mathrm{ac.} \end{aligned}$							

1 C.L./guntha. Seedrate 27 lb . for 5 gunthas of seed bed area. Manure mixture given at 12 to $15 \mathrm{lb} . /$ guntha. Seed treated with perenox.
(2) 1 weeding of seedlings.
(3) Transplanting; done $8^{\prime \prime} \times 8^{\prime \prime}$ with 8 seedlings.
(4) 2 hand weedings
(5) Manure mixture will be given at the time of puddling to supply 20 lb ./ac. of $\mathrm{N}+16 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 3. (iv) (a) $60^{\circ} \times 12^{\prime}$. (b) $58.5^{\prime} \times 10.5^{\prime}$. (v) $9^{\prime \prime}$ alround the net plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yleld. (iv) (a) 1952-N.A. (b) This is the first year of the experimet. (c) Nil. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2612 \mathrm{lb} . / \mathrm{ac}$.
(ii) $416.3 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	1791
2,	3511
3.	2281
4.	2518
5.	2654
6.	2920
S.E./mean	$=240.4 \mathrm{lb} / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Padegaon.
Ref. :- Mh. 50(119).
Type : ' $C M$ '.

Object:-To find out the best time of sowing and optimum dose of manure for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil (b) NA. (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) As per treatments, (iv) (a) N.A. (b) N.A. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Retween rows 12°. e) N.A. (v) Nil. (vi) Krishnasal. (vii) Irrigated. (viii) Weeding; 14.6.1950, 9.7.1950, 23.7.1950, 13.8 .1950 and 5.9 .1950 ; (ix) $22.91^{\prime \prime}$. (x) 27.10.1950 for 1st and $2 \mathrm{nd}, 1.11 .1950$ for 3 rd and 4 th and 14.11.1950 for 5 th dates of sowing.

2. TREATMENTS:

Main-plot treatments
5 dates of sowing : $\mathrm{D}_{1}=16.5 .1950, \mathrm{D}_{2}=31.5 .1950, \mathrm{D}_{3}=15.6 .1950, \mathrm{D}_{4}=30.6 .1950$ and $\mathrm{D}_{5}=15.7 .1950$.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=64$ and $\mathrm{N}_{2}=128 \mathrm{lb}$./ac.
(2) 3 levels of $P_{2} O_{6}: P_{0}=0, P_{1}=32$ and $P_{2}=64 \mathrm{lb} / \mathrm{ac}$.

N as A/S and G.N.C. in $1: 2$ ratio and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

3. DESIGN:

(i) Split-plot. (ii) (a) 5 main-plots/block; 9 sut-plot/main-plot. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 20^{\prime}$. (b) $17^{\prime} \times 16^{\prime}$. (v) 2^{\prime} alround the net plot. (vi) Yes.
! 4. GENERAL :
(i) Good. (ii) Affected by blast of Rui and Papade. (iii) Grain and straw yield. (iv) (a) 1949-1952. (b) No. (c) N.A. (v) (a) N.A (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1448 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $570.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $429.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and D are significant. Also the interaction $N \times D$ is significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{N}_{0}	N_{1}	N_{2}	Mean	P_{0}	P_{1}	\mathbf{P}_{2}
D_{1}	1132	1766	2244	1714	1745	1577	1821
- $\mathrm{D}_{\mathbf{8}}$	838	1888	2462	1729	1700	1738	1749
D_{3}	899	1981	2138	1673	1506	1844	1668
D_{4}	898	1027	1509	1145	1093	1303	1038
D_{5}	741	1052	1145	979	904	972	1062
Mean	902	1543	1900	1448	1390	1487	1468
\mathbf{P}_{0}	850	1571	1746				
P_{1}	909	1587	1965				
\mathbf{P}_{2}	945	1470	1988				

S.E. of difference of two

1. D marginal mean

$$
\begin{aligned}
& =133.0 \mathrm{lb} . / \mathrm{ac} \\
& =77.56 \mathrm{lb} / \mathrm{ac} \\
& =175.5 \mathrm{lb} . / \mathrm{ac} \\
& =196.4 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

2. \mathbf{N} or \mathbf{P} marginal means
3. N or P means at a level of D
4. \mathbf{D} means at a level of N or P

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Padegaon.

Ref :- Mh. 51(161).
Type : ${ }^{\text {'CM' }}$.

Object :-To find out the best time of sowing and optimum dose of manure for Paddy crop.

1. EASAL CONDITIONS :

(i) (a) Nil. (b) Jowar in one block and wheat in the other. (c) $20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S to Jowar and $40 \mathrm{lb} / \mathrm{ac}$. of N as A / S and G.N.C. ih $1: 2$ ratio to wheat. (ii) (a) ' B ' type. (b) Refer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) N.A. (b) Dibbling. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) 1^{\prime} between rows. (e) N.A.
 September. (ix) $14.68^{\prime \prime}$. (x) For 1st sowing date; 27.10.1951. for 2 nd sowing date; 31.10.1951 and for 3rd, 4th and 5 th sowing date ; 16.11.1951.

2. TREATMENTS:

Main-plot treatments :
5 dates of sowing : $D_{1}=16.5 .1951, D_{2}=31.5 .1951, D_{3}=15.6 .1951, D_{4}=30.6 .1951$ and $D_{5}=15.7 .1951$.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=64$ and $\mathrm{N}_{\mathbf{2}}=128 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 leiels of $\mathrm{P}_{2} \mathrm{O}_{5}$: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=32$ and $\mathrm{P}_{8}=64 \mathrm{lb} . / \mathrm{ac}$.

N as A / S and G.N.C. in $1: 2$ ratio, $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/block; 9 sub-plots/main-jlot. (b) N.A. (iii) 4. (iv) (a) $33^{\prime} \times 14^{\prime}$. (b) $27.22^{\prime} \times 10^{\circ}$. (v) $2.89^{\prime} \times 2^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Blast and papade attack. (iii) Grain and straw yield. (iv) (a) 1949-1952. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1642 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $454.2 \mathrm{lb} / \mathrm{ac}$.
(b) $311.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N is bighly significant, interaction $\mathrm{N} \times \mathrm{D}$ is significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{8}	Mean	P_{0}	P_{1}	P_{2}
D_{1}	838	1938	1910	1562	1710	1690	1286
D_{2}	896	2041	2418	1785	1732	1762	1861
D_{3}	1024	1868	2120	1671	1651	1725	1636
D_{4}	1000	1731	2180	1637	1694	1587	1630
D_{5}	1130	1593	1940	1554	1592	1480	1586
Mean	978	1834	2114	1642	1676	1649	1600
P_{0}	942	1826	22,0				
P_{1}	1030	1798	2119				
\mathbf{P}_{2}	960	1879	1961				

S.E. of difference of two

1. D marginal means	$=107.0 \mathrm{lb} . / \mathrm{ac}$.
2. N or P marginal means	$=56.8 \mathrm{lb} . / \mathrm{ac}$.
3. N or P means at a level of D	$=127.1 \mathrm{lb} / \mathrm{ac}$.
4. D means at a level of N or P	$=149.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Site :- Agri. Res. Stn., Padegaon.
Ref:- Mh. 52(191).
Type :m 'CM'.

Object :-To find out the optimum manurial dose and best sowing date for Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sweet Potato. (c) Nil. (ii) (a) ' B ' type. (b) Rtfer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) N.A. (b) Hand sowing. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows 1^{\prime}. (e) N.A. (v) Nil. (vi' Krishnasal. (vii) Irrigated. (viii) Weeding on 15.6.1952, 1.7.1952, 24.7.1952, 8.8.1952, 28.8 .1952 and 3.9.1952. (ix) 11.01". (x) 2.11.1952, 11.11.1952, 14.11.1952 and 22.11.1952.
2. TREATMENTS:

Main-plot treatments :
5 dates of sowing : $D_{1}=16.5 .1952, D_{2}=31.5 .1952, D_{3}=15.6 .1952, D_{4}=30.6 .1952$ and $D_{5}=15.7 .1952$.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=64$ and $\mathrm{N}_{2}=128 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32$ and $\mathrm{P}_{2}=64 \mathrm{lb} / \mathrm{ac}$.

N as A / S and G.N.C. in $1: 1$ ratio and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manuring done at sowing and on 6.9.1952 and 4.10.1952.
3. DESIGN:
(i) Split-plot. (ii) (a) main-plots/block; 9 sub-plots/main-plot. (b).N.A. (iii) 4. (iv) (a) $26^{\prime} \times 18^{\prime}$. (b) $20^{\prime} \times 14^{\prime}$. (v) 2^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of tlast." (iii) Grain yield. (iv) (a) 1949-1952." (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1560 \quad \mathrm{Jb}, / \mathrm{ac}$.
(ii) (a) $583.2 \mathrm{lb} / \mathrm{ac}$.
(b) $365.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and P are significant." Effect of D and interactions $N \times D$ and $P \times D$ are significant. Interaction $\mathrm{N} \times \mathrm{P}$ is not significant.
(iv) Av. yield of grain in lb./ac.

S.E. of difference of two

1. D marginal means
$=137.4 \mathrm{lb} . / \mathrm{ac}$.
2. N or \mathbf{P} marginal means $=66.7 \mathrm{lb} . / \mathrm{ac}$.
3. N or P means at a level of D $=149.2 \mathrm{lb} . / \mathrm{ac}$.
4. D means at a level of \mathbf{N} or \mathbf{P} $=183.6 \mathrm{lb} . / \mathrm{ac}$.

Crop:~Paddy (Kharif).
Site :-Agri. Res. Stn., Padegaon.

Ref:- Mh. 53(278).
Type :- 'CM'.
Object :-To study the effect of manurial doses combined with different cultural operations on the yield of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) 'B’ type. (b) Refer soil analysis, Padegaon. (iii) 20.6.1953. (iv) (a) to (e) As per treatments. (v) 5 C.L./ac. of F.Y.M. (vi) Krishnasal. (vii) Irrigated. (viii) Weeding on 8.7.1953 and 18.8.1953 ; Interculturing on 16.7.1953, 27.7.1953, 8.8.1953, 24.8.1953 and 3.9.1953, (ix) 16.35". (x), 11.11.1953 and 12.11.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 manurial doses : $M_{1}=64 \mathrm{lb}$./ac. of $\mathrm{N}+32 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{2}=100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
(2) 8 cultural operations :

	Method of sowing	Spacing	Interculturing	Seedrate
(a)	Drilling	15*	3	$60 \mathrm{lb} . / \mathrm{ac}$.
(b)	Drilling	12"	3	$60 \mathrm{lb} . / \mathrm{ac}$.
(c)	Drilling	15"	5	$60 \mathrm{lb} . / \mathrm{ac}$.
(d)	Drilling	12^{*}	5	60 lb /ac.
(e)	Dibbling	$9^{\prime \prime} \times 9^{\prime \prime}$	3 one way	6 seeds/dibble
(f)	Dibbling	$9^{\prime \prime} \times 9^{\prime \prime}$	3 two way	6 seeds/dibble
(g)	Dibbling	$9^{\prime \prime} \times 9^{\prime \prime}$	5 one way	6 seeds/dibble
(h)	Dibbling	$9^{\prime \prime} \times 9^{\circ}$	5 two way	6 seeds/dibble

3. DESIGN :
(i) R.B.D. (ii) (a) 16 . (b) $132^{\prime} \times 74^{\prime}$ including water canal and bud. (iii) 4 . (iv). (a) $33^{\prime} \times 15^{\prime}$ for $9^{\prime \prime}$, $12^{\prime \prime}$ and $15^{\prime \prime}$ spacings respectively. (b) $30^{\prime} \times 9^{\prime}$ for $9^{\prime \prime}$ and $12^{\prime \prime}$ spacing. $27^{\prime} \times 10^{\prime}$. for $15^{\prime \prime}$ spacing. (v) 4, 3 and 2 rows on either side respectively for $9^{\prime \prime}, 12^{\prime \prime}$ and $15^{\prime \prime}$ spacing and $1^{\prime \prime}-6^{\prime \prime}$ at either end of the plot for $9^{\prime \prime}$ and $12^{\prime \prime}$ spacing and 3^{\prime} in case of $15^{\prime \prime}$ spacing. . (vi) Yes.
4. GENERAL :
(i) Healthy and Normal. (ii) Slight attack of blast disease and was controlled by spraying perenox. (iii) Grain and straw yield. (iv) (a) 1953-N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $2604 \mathrm{lb} . / \mathrm{ac}$.
(ii) $405.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of manure alone is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of marginal mean of cultural operations
$=143.4 \mathrm{lb} / \mathrm{ac}$.
S.E. of marginal mean of manures
$=71.7 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table
$=202.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Padegaon.
Ref :- Mh. 53(279).
Type: ' CM '.
Object:-To assess the relative merits of Japanese and departmentally recommended methods of Paddy cultivation.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type, (b) Refer soil analysis, Padegaon, (iii) 26.1953/ 25.7.1953. (iv) (a) N.A. (b) As per treatments. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) and e) As per treatments. (v) 5 C.L./ac. of F.Y.M. Sann green manuring sown at 40 lb ./ac. in early June and ploughed in the 1st week of July; $32 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and 80 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as per treatmentsfrom triple Super. (vi) Krishnasal. (vii) Irrigated (viii) Weeding 28.6.1953 and 9.10.1953, interculturing on 6.9.1953, 25.9.1953 and 10.10.1953. (ix) $16.35^{\prime \prime}$. (x) 24.11.1953.

2. TREATMENTS :

(1) Departmental method
$A_{0}=$ Flat.
A. Seed bed
B. Manuring of seed bed
$\mathrm{B}_{0}=1$ C.L./ac. of F.Y.M. $+8 \mathrm{lb} . / \mathrm{gun}$ tha of A/S.
C. Manuring of field
$C_{0}=5$ C.L./ae. of F.Y.M. + G.M. $+64 \mathrm{lb} . / \mathrm{ac}$.
of $A / S+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
D. Spacing between bunches
$D_{0}=10^{\prime \prime} \times 10^{\prime \prime}$. $\quad D_{1}=9^{\prime \prime} \times 9^{\prime \prime}$.
E. Number of seedlings/bunch
$\mathrm{E}_{0}=8$.
F. Number of interculturings
$\mathrm{F}_{0}=$ One hand weeding and no interculturing.

(2) Japanese method

$A_{1}=$ Raised.
$\mathrm{B}_{1}=1$ C.L./ac. of F.Y.M. $+16 \mathrm{lb} . / \mathrm{ac}$. of $A / S+16 \mathrm{lb} . / \mathrm{g}$ untha of $\mathrm{P}_{2} \mathrm{O}_{5}+$ layer of ash. $\mathrm{C}_{1}=5$ C.L./ac. of F.Y.M. + G.M. +100 lb. /ac. of $\mathrm{A} / \mathrm{S}+80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$. $E_{1}=4$.
$\mathrm{F}_{1}=$ One hand weeding and 3 interculturing!

3. DESIGN:

(i) 2^{6} Fact. in R.B.D.(ii) (a) 64 (Plot wise yield data N.A. Hence analysed as R.B.D. with 64 treatments/ block). (b) N.A. (iii) 2. (iv) (a) $10.5^{\prime} \times 33^{\prime}$ and $10^{\prime} .11^{\prime \prime} \times 33^{\prime} .0^{\prime \prime}$ for $9^{\prime \prime}$ and 10° spacings respectively. (b)
; $7.5^{\prime} \times 30^{\prime}$ and $7.5^{\prime} \times 36^{\prime}$, for $9^{\prime \prime}$ and $10^{\prime \prime}$ spacing respectively. (v) Two rows on each side and two plants of each row at each end of the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1953 -N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2224 \mathrm{lb} . / \mathrm{ac}$.
(ii) $332.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of B, C and E and interactions $A \times F$ and $C \times D$ are significant. Other main effects and interactions are not significant.
(iv) Mean and differential response in lb./ac.

Crop:- Paddy '(Kharif).
Site :- Agri. Res. Stn., Phondaghat.

Ref:-Mh. 53(335).
Type :-‘CM'.

Object :-To study the optimum dose of N and P with different spacings for Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy, (c) 300 lb /ac. of manure mixture. (ii) (a) Loam. (b) N.A. (iii) 15.6.1953/12 to 19.7:1953. (iv). (a) N.A. (b) Transplanting, (c) - . (d) As per treatments. (e) 8 seedlings/ bunch. (v) N.A. (vi) Panavel-61 (mid-late). '(vii)' Unirrigated. (viii) 1 weeding. (ix) 170". (x) 8,9,10.10.1953.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)
(1) 2 levels of $N: N_{0}=0$ and $N_{1}=64 \mathrm{lb} . / \mathrm{ac}$. of N .
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=64, \mathrm{P}_{2}=96$ and $\mathrm{P}_{3}=128 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(3) 2 levels of F.Y.M. : $F_{1}=5$ and $F_{2}=10$ C.L./ac.
(4) 2 spacings : $S_{1}=8^{\prime \prime} \times 8^{\prime \prime}$ and $S_{2}=10^{\circ} \times 10^{\prime \prime}$.

N as A / S and G.N.C. in $1: 1$ ratio and $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. DESIGN :
(i) 3×2^{8} Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3 . (iv) (a) $33^{\circ}-4^{\prime \prime} \times 13^{\prime}-4^{\prime \prime}$. (b) $30^{\circ} \times 10^{\prime \prime}$ (v) $1^{\prime} 8^{\prime \prime \prime}$ ring. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) : Attack of Army worms. (iii) Grain and straw yield. (iv) (a) 1953-54. (b) N.A. (c) Nil. (v) (a) Kosbad, Ratnagiri, Vadgaon, Karjat and Igatpuri. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $975 \mathrm{lb} / \mathrm{ac}$.
(ii) $294.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and interactions is significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	F_{1}	F_{2}	S_{1}	Sz	Mean
P_{1}	923	971	917	977	937	957	947
$\mathrm{P}_{\mathbf{2}}$	1069	930	1036	963	1 C65	933	999
Pa_{3}	907	1053	955	1006	996	964	980
Mean	966	985	969	982	999	951	975
S_{1}	1034	965	1002	997			
S_{2}	898	1005	936	567			
F_{1}	943	995					
F_{2}	989	975					

S.E. of marginal mean of P	$=60.0 \mathrm{lb} . / \mathrm{ac}$
S.E. of marginal mean of N, F or S	$=49.0 \mathrm{lb} / \mathrm{ac}$
$S . E$. of body of $P \times N, P \times F$ or $P \times S$ table	$=84.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $N \times F, N \times S$ or $F \times S$ talie	$=69.2 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{lr}\text { Crop :- Paddy (Kharif). } & \text { Ref :- Mh. 52(19). } \\ \text { Site :- Agri. Res. Stn., Ratnagiri. } & \text { Type :- ‘CM'. }\end{array}$

Object :-To study the optimum requirements of N and P with basal dose of F.Y.M. in combination with spacings.

1. BASAL CONDITIONS :
(i) (a) Paddy after Pac'dy (b) Paddy in Kharif. (c) N.A. (ii) (a) Laterite. (b) N.A. (iii) 3.6.1952/ 236.1953 and 26.10.1952. (iv) (a) Ploughing and barrowing before transplanting. (b) Transplanting (c) to (e) N.A. (v) N.A. (vi) Wak sal-207 (mid-late). (vii) Unirrigated. (viii) Nil. (ix) 70.20.. (x) 27 to 29.10.1952.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4).
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=32 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=64, \mathrm{P}_{2}=96$ and $\mathrm{P}_{3}=128 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $\mathrm{F}_{1}=5$ and $\mathrm{F}_{2}=10$ C.L./ac.
(4) 2 spacings: $S_{1}=8^{\prime \prime} \times 8^{\circ}$ and $S_{2}=10^{\circ} \times 10^{\circ}$.
$\mathrm{P}_{2} \mathrm{O}_{6}$ as B.M.
3. DESIGN :
(i) $3 \times 2 \times 2 \times 2$ Factorial in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3. (iv) (a) $33^{\prime \prime}-4^{\prime \prime} \times 16^{\circ}-8^{\prime \prime}$. (b) $26^{\circ}-8^{\circ} \times 1 \sigma^{\prime}$. (v) 5 rows on ether side of the net plot for $8^{\prime \prime} \times 8^{\prime \prime}$ spacing and 4 rows for $1^{\circ \prime} \times 10^{\circ}$ spacing. $3^{\prime \prime}$ all round the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1952 to 19>4. (b) Yes. (c) N.A. (v) (a) Hatakhamba. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2944 \mathrm{lb} . / \mathrm{ac}$.
(ii) $338.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and P and interactions $N \times P, S \times F$ are significant, while other effects and interactions are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of marginal mean of P	$=69.1 \mathrm{lb} . / \mathrm{ac}$
S.E. of marginal mean of N or F or S	$=56.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $P \times N, P \times F$ or $P \times S$	$=97.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $N \times F$ or $F \times S$ or $S \times N$	$=79.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref:- Mh. 53(105)/52(19).
Type :- 'CM'.

Object :-To study the optimum requirements of N and P with basal dose of F.Y.M. in combination with spacing required for paddy crop.

1. BASAL CONDITIONS:
(i) (a) No. (b) Paddy. (c) As per treatments. (ii) (a) Laterite. (b) N.A. (iii) 3.6.1953/ 13 to 17.7.1953, (iv) (a) 4 ploughings. (b) Transplanting. (c) -. (d) N.A. (e) 8 seedlings/ bunch. (v) Nil. (vi) Waksal-207. (vii) Unirrigated. (viii) Interculturing and weeding at the time of application of, N, 1st dose of N on 5.8.1953 and 2 nd on 21.8.1953. (ix) 148.06". (x) 1 to 2.11.1953.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4).
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$, and $\mathrm{N}_{1}=32 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=64, \mathrm{P}_{2}=96$ and $\mathrm{P}_{3}=128 \mathrm{lb}$./ac.
(3) 2 levels of F Y.M. : $F_{1}=5$ and $F_{2}=10$ C.L./ac.
(4) 2 'spacings: $\mathrm{S}_{1}=8^{\prime \prime} \times 8^{\prime \prime}$ and $\mathrm{S}_{2}=10^{\prime \prime} \times 10^{\prime \prime}$.

N as $\mathrm{A} / \mathrm{S}+\mathrm{G}$.N.C. in $1: 1$ ratio and $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. DESIGN:
(i) 3×2^{3} Factorial in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3 . (iv) (a) $33^{\prime} .4^{\prime \prime} \times 16^{\prime} .8^{\prime \prime}$. (b) $26^{\prime} .8^{\prime \prime} \times 10^{\prime}$. (v). $3^{\prime} .4^{*}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Fairly good. (ii) Slight attack of blue beetle. (iii) Grain yield. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $3037 \mathrm{lb} / \mathrm{ac}$.
(ii) $367.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of \mathbf{F} and interaction $\mathbf{F} \times P$ are significant, while other main effects and interactions are not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{P}_{1}	P_{2}	P_{2}	F_{1}	F_{2}	\mathbf{S}_{1}	\mathbf{S}_{8}	Mean
N_{0}	2978	2955	2935	2968	2944	3064	2848	2956
N_{1}	3037	3065	3253	3094	3142	3355	2881	3118
Mean	3007	3010	3094	3031	3043	3210	2865	3037
S_{1}	3219	3166	3244	3287	3133			
S_{2}	2796	2854	2945	2776	2954			
F_{1}	3132	$\longdiv { 2 9 9 6 }$	2966		-			
F_{2}	2883	3024	3223					

S.E. of marginal mean of P	$=75.1 \mathrm{lb} . / \mathrm{ac}$.
S.E of marginal mean of N or F or S	$=61.3 \mathrm{lb} . / \mathrm{ac}$.
$S . E$ of body of table $P \times N$ or $P \times F$ or $P \times S$	$=106.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $N \times F$ or $F \times S$ or $S \times N$	$=86.6 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Ratnagiri.

Ref:- Mh. 52(18).
Type :- 'CM'.

Object: To find out a suitable substitute for rabbing of Paddy.

1. BASAL CONDITIONS

(i) (a) Paddy after paddy. (b) Paddy. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Laterite. (b) N.A. (iii) 3.6.1952/ Replication lst-14.7.1952, 2nd-13.7.1952, 3rd-7.7.1952, 4th-7.7.1952 and 5th-29.6.1952. (iv) (a) Puddling before transplanting: Seed-bed growth satisfactory. (b) Transplanting. (c) 一. (d) $10^{\circ} \times 10^{\circ}$. (e) 8 seedlings per bunch. (v) Mil. (vi) Patni-6 (early). (vii) Unirrigated. (viii) Weeding on 27th and 30th July, 1952. (ix) 70.20°. (x) 1st and 2nd on 25.9.1952, 3rd and 4th 0n 23.9.1952 and 5th and 6th on 22.9.1952.
2. TREATMENTS :

Main-plot treatments:
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{4}=5$ C.L./ac. of F.Y.M.

Sub-plot treatments :

1. Rabbing every year.
2. $10,000 \mathrm{lb}$./ac. of F Y.M. every year.
3. A / S at $30 \mathrm{lb} . / \mathrm{ac}$. of N every year.

4 G.N C. at 30 lb ./ac. of N every year.
5. Rabbing in the Ist year and $10,100 \mathrm{lb}$./ac. of F.Y.M. in the 2 nd year.
6. $10,000 \mathrm{lb} . / a c$. of F.Y.M. in the 1 st year and rabting in the 2nd year.
7. Rabbing in the lst year and A / S at 30 lb ./ac. of N in the 2 nd year.
8. A / S at $30 \mathrm{lb} . / \mathrm{a}$. of N in the 1 st year and rabbing in the 2 nd year.
9. Rabbing in the lst year and G.N.C. at 30 lb ./ac. of N in the 2 nd year.
10. G.N.C. at 30 lb ./ac. of N in the 1 st year and rabbing in the 2 ad year.
11. Proper tillage.
12. Sterlising the soil with Formaline.

Being first year of the experiment, there are 6 distinct treatments as follows :
$T_{1}=$ Rabbing ($1,5,7,9$).
$T_{2}=10,000 \mathrm{lb}$./ac. of F.Y.M. $(2,6)$.
$T_{3}=A / S$ at $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}(3,8)$.
$T_{4}=$ G.N.C. at $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}(4,10)$.
$T_{5}=$ Proper tillage.
and $\mathrm{T}_{6}=$ Sterilising the soil with Formaline.

3. DESIGN :

(i) Split-plot. (ii) (a) 2 main-plots/ block; 12 sub-plots/main-plot (b) N.A. (iii) 4. (originally planned with 6 replications). (iv) (a) $23^{\prime}-4^{\prime \prime} \times 13^{\prime}-4^{\prime \prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) Two rows all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Replications 5 and 6 affected by Sparrows, which were scared away. (iii) Grain and straw yield. (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $2351 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $872.3 \mathrm{lb} / \mathrm{ac}$.
(b) $297.9 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T1	2494	2321	2407 (32)
T_{2}	2151	2270	2210 (16)
T_{3}	2289	2377	2333 (16)
T4	2297	2397.	2347 (16)
T_{5}	2317	2399	2358 (8)
T ${ }_{6}$	2447	2443	2445 (8)
Mean	2351	2351	2351

S.E. of marginal mean of main-plot	$=125.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of T_{1}	$=52.7 \mathrm{lb} / \mathrm{ac}$.
S.E, of m rginal mean of T_{2}, T_{8} or T_{4}	$=74.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of T_{5} or T_{6}	$=105.4 \mathrm{lb} / \mathrm{ac}$.

Crop :- Paddy (Kharif).	Ref:- Mh. 53(104)/52(18).
Site :- Agri. Res. Stn., Ratnagiri.	Type :~'CM'.

Object:-To find out suitable substitute for rabbing of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Mala inter lying. Lime requirments in terms of $\mathrm{CaCo}_{3}=4.4$ ton/ac., pH value 5. (b) $\mathrm{N} . \mathrm{A}$: (iii) $4.6 .1953 / 6.7 .53$. to 8.7 .53 (iv) (a) N.A. (b) Transplanting (c) —. (d) $10^{\prime \prime} \times 10^{\prime \prime}$. (e) N.A. (v) Nil (vi) Patni-6. (vii) Unirrigated. (viii) Weeding on 22.6 1953. and 24.7.1953. Interculturing 12 to 14th August 1953. (ix) 148.06". (x) 10.10 .1953 16.10.1953.
2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{2}=5$ C.L./ac. of F.Y.M. Sub-plot treatments:

1. Rabbing every year.
2. $10,000 \mathrm{lb} . / \mathrm{ac}$. of F.Y.M. every year.
3. A / S at $30 \mathrm{lb} . / \mathrm{ac}$. of N every year.
4. \quad., $\mathrm{N} . \mathrm{C}^{2}$ at $30 \mathrm{lb} . / \mathrm{ac}$. of N every year.
5. Rabbing in the ist year and $10,000 \mathrm{lb}$./ac. of F.Y.M. in the 2 nd year,
6. $10,000 \mathrm{lb}$./ac of F.Y.M. in the first year and rabbing in the 2nd year.
7. Rabbing in the 1 st year and A / S at 30 lb ./ac. of N in the 2 nd year.
8. A / S at $30 \mathrm{lb} . / \mathrm{ac}$. of N in the 1 st year and rabbing in the 2 nd year.
9. Rabbing in the Ist year and G.N.C. at $30 \mathrm{lb} . / \mathrm{ac}$. of N in the 2 nd year.
10. G.N.C. at $30 \mathrm{lb} . / \mathrm{ac}$. of N in the 1 st year and rabbing in the 2 nd year.
11. Proper tillage.
12. Sterilising the soil with Formaldehyde. (Formaline)

A/S applied on 17.6.1953. and G.N.C. on 18.6.1953.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $23^{\prime}-4^{\prime \prime} \times 13^{\prime}-4^{\prime \prime}$.
(b) $20^{\prime} \times 10^{\prime}$. (v) $1^{\prime} .8^{\prime \prime}$ ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Germination poor in formaldehyde plots. F.Y.M. plots could. produce medjum type seedlings. In field plots, the growth was normal. (ii) Slight attack of blue beetle. (iii) Grain and straw yield. (iv) (a) 19521955. (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat and Vadgaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $3201 \quad$ lb./ac.
(ii) (a) 702.2 lb./ac.
(b) $520.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Sub-plot treatment means are highly significantly different, while others are not significant.
(iv) Av. yield of grain in lb./ac.

		F_{0}	F_{1}	Mean
T1		3331	3181	3256
T ${ }_{2}$		3174	3315	3245
T3	-	3402	3006	3204
T_{4}		3317	3435	3376
T5		3574	3346	3460
T_{6}		3081	3533	3307
T 7		3236	3496	3366
T_{8}		3263	3555	3409
T		3306	3342	3324
T_{10}		3501	3403	3452
T_{11}		3428	3247	3338
T_{12}		1878	1462	1670
Mean		3208	3194	3201

S.E. of difference of two

1. main-plot treatment means $\quad=117.0 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means

$$
=212.2 \mathrm{lb} . / \mathrm{ac}
$$

3. sub-plot treatment means at a level of main-plot treatment $=300.6 \mathrm{lb}$./ac.
4. main-plot treatment means at a level of sub-plot treatment

$$
=311.5 \mathrm{lb} . / \mathrm{ac}
$$

Crop :- Paddy (Kharif).
Ref :- Mh. 52(168).
Site :- Agri. Res. Stn., Vadgaon.
. Type : $\sim^{‘} \mathrm{CM}$ ’.

Object :-To study the optimum dose of N and P with basal manuring of F.Y.M. in combination with spacing for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar in Rabi. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 15.6.1952/29.7.1952. (iv) (a) N.A. (b) Transplanting. (c) -. (d) As per treatments. (e) N.A. (v) Nil. (vi) Ambemohor-157. (vii) Unirrigated. (viii) One interculturing. (ix) $74.70^{\prime \prime}$ (x) 22.11.19ફ2.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=96, \mathrm{~N}_{2}=128$ and $\mathrm{N}_{3}=160 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0$, and $\mathrm{P}_{1}=32 \mathrm{lb}$./ac.
(3) 2 levels of P.Y.M.: $F_{1}=5$ and $F_{2}=10$ C.L./ac. -
(4) 2 spacings: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $S_{2}=8^{\prime \prime} \times 8^{\prime \prime}$.
' N in the form of A / S and G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 3×2^{3} Fact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 3. (iv) (a) $28^{\prime} \times 10^{\prime}$. (b) $24^{\prime} \times 6^{\circ}$. (v) 2^{\prime} ring all round the plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Stem borer and leaf-roller affected the crop very severely, (iii) Grain yield (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratoagiri. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 1993 lb ./ac.
(ii) 4392 lb ./ac.
(iii) Spacing and F.Y.M. effects are significant while other effects and interactions are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	F_{1}	F_{2}	S_{1}	S_{9}	Mean
N_{1}	1999	1838	1731	2106	1970	1866	1919
N_{2}	2061	2216	2106	2171	2203	2074	2139
N_{3}	1841	$2 \mathrm{CO2}$	1806	2036	2121	1721	- 1921
Mean	'1967	2019	1881	2104	2098	1887	1993
S_{1}	2173	2024	2060	2137			
S_{2}	1761	2013	1702	2072			
\bar{F}_{1}	1868	1894					
F2	2066	2143			-		

S.E. of marginal mean of \mathbf{N}	$=89.7 \mathrm{lb} . / \mathrm{ac}$,
S.E. of marginal of P or F or S	$=73.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $N \times P$ or $N \times S$ or $N \times F$	$=126.7 \mathrm{lb} . / \mathrm{cac}$.
S.E. of body of table $P \times S$ or $P \times F$ or $S \times F$	$=103.5 \mathrm{lb} . / \mathrm{ac}$.

Ref:-Mh. 53(254)/52(168).
Type :-‘CM'.
Object :-To study the optimum dose of N and P with basal manuring of F.Y.M. in combination with spacing for Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 12.6.1953/ 22, 23.7.19j3. (iv) (a) N.A. (b) Transplanting. (c) 一. (d) As per treatments. (e) N.A. (v) Nil. (vi) Ambemohor-157. (vii) Unirrigated. (viii) 2 interculturings. (ix) 46.38°. (x) 18.11 .1953.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=96, \mathrm{~N}_{2}=128$ and $\mathrm{N}_{3}=160 \mathrm{lb}$./ac.
(2) 2 leve's of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=32 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of F.Y.M.: $F_{1}=5$ and $F_{2}=10$ C.L./ac.
(4) 2 spacings: $S_{1}=6^{\prime \prime} \times 6^{\prime \prime}$ and $S_{2}=8^{\prime \prime} \times 8^{\prime \prime}$.
3. DESIGN :
(i) 3×2^{3} Fact. in R.B.D. (ii) (a) 24 . (b) N.A. (iii) 3 . (iv) (a) $28^{\prime} \times 10^{\prime}$. (b) $24^{\prime} \times 6^{\prime}$. (v) 2^{\prime} ring all round the plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1955. (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat, Kopergaon and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $2502 \mathrm{lb} / \mathrm{ac}$.
(ii) $458.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{P}_{0}	P_{1}	F_{1}	F_{2}	S_{1}	$\mathbf{S}_{\mathbf{2}}$	Mean
N_{1}	2115	2347	2140	2321	2411	2050	2231
N_{2}	2611	2719	2721	2609	2604	2726	2665
N_{3}	2526	2693	2628	2590	2523	2696	2609
Mean	2417	2586	2496	2507	2513	2491	2502
S_{1}	2460	2565	2528	2497	,		
S_{2}	2374	2607	2465	2517			
F_{1}	2402	2591					
F_{2}	2432	2582					

S.E. of marginal mean of N	$=93.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P or F or S	$=75.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $N \times P$ or $N \times S$ or $N \times F$	$=132.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $S \times P$ or $S \times F$ or $F \times P$	$=108.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Ref:-Mh, 53(334).
Site :-Agri. Res. Stn., Vadgaon.
Type :-'CM'.

Object :-To study the Japanese method of Paddy cultivation in relation to the departmental method.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 13.6.1953/21.7.1953.
(iv) (a) N.A. (b) Transplanting. (c) -. (d) and (e) As per treatments. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) As per treatments. (ix) $46.38^{\prime \prime}$ (x) 17.11.1953.

2. TREATMENTS :

All combinations of the following :-
(1) Departmental method
(2) Japanese method
A. Seed bed

$A_{0}=$ Flat	$\mathrm{A}_{1}=$ Raised bed.
B. Manuring of seed bed	
$\mathrm{B}_{0}=1$ C.L./ac of F.Y.M. $+8 \mathrm{lb} . /$ guntha of A / S	$\mathrm{B}_{1}=1$ C.L./ac. of F Y.M. +16 lb ./ac. of A/S + $16 \mathrm{lb} . / \mathrm{gunth} a$ of $\mathrm{P}_{2} \mathrm{O}_{5}+$ layer of ash

C. Manuring of field
$\mathrm{C}_{0}=5$ C.L./ac. of F.Y.M. + green
manuring +64 lb ./ac. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb} . \mathrm{Jac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
D. Spacing
$D_{0}=10^{\prime \prime} \times 10^{\prime \prime} . \quad \quad D_{1}=9^{\prime \prime} \times 9^{\prime \prime}$.
E. Number of seedlings/bunch
$\mathrm{E}_{0}=8$.
F. Number of interculturings
$F_{0}=1$ hand weeding and no interculturing.
$E_{1}=4$.
$\mathrm{C}_{\mathbf{1}}=5$ C.L./ac. of F.Y.M + green manuring + 100 lb ./ac. of N as $\mathrm{A} / \mathrm{S}+80 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$F_{1}=1$ hand weeding and 3 interculturings.
3. DESIGN :
(i) $2^{\text {a }}$ Confounded. (ii) (a) 8 plots/block; 8 blocks/replication. (b) N.A. (iii) 1 . (iv) (a) $10^{\prime} .6^{\prime \prime} \times 25^{\prime} .6^{\circ}$ and $10^{\prime} .10^{\prime \prime} \times 25^{\prime} .10^{\prime \prime}$ for $9^{\prime \prime}$ and $10^{\prime \prime}$ spacings respectively. (b) $7^{\prime} .6^{\prime \prime} \times 22^{\prime} .6^{\prime \prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight attack of Bacterial - blight. (iii) Grain yield. (iv) (a) 1953-54. (b) No. (c) Nil. (v) (a) and (b) Karjat, Khopoli, Kosbad and Kopergaon. (vi) and (vii) Nil.
5. RESULTS : See page 201

```
Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Vadgaon.
Ref:- Mh. 49(87).
Type:^'CM'.
```

Object:-To find out a suitable substitue for rabbing Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) $320 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. (ii) (a) Medium black. (b) N.A. (iii) 23.6.194918.8.1949. (iv) (a) N.A. (b) Transplanting. (c) --. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) N.A (vii) Unirrigated. (viii) 1 harrowing. (ix) $34.83^{\prime \prime}$ (x) 4.12.1949.

RESULTS: Ref, :-Mh. 53 (334).
(i) $2553 \mathrm{lb} / \mathrm{ac}$. .
(ii) $304.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of A, B, C and E aro highly significant ; other main effects and interactions are not significant.
(iv) Mean and differential response in $\mathrm{lb} . / \mathrm{ac}$.

S.E. of mean response $\quad=76.22 \mathrm{lb} . / \mathrm{ac}$.
S.E. of differential response $=107.77 \mathrm{lb} . /$ ac.

2. TREATMENTS:

Main-plot treatments :

2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.
Sub-plot treatments :

1. Rabbing every year.
2. Compost every year at $10 \mathrm{C} . \mathrm{L} / \mathrm{ac}$.
3. 30 lb ./ac of N as A / S every year.
4. 30 lb ./ac. of N as $\mathrm{G} . \mathrm{N} . \mathrm{C}$ every year.
5. Rabbing in first year and 10 C.L./ac. of compost in the second year.
6. 10 C.L./ac compost in first year and rabbing in the second year.
7. Rabbing in first year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in second year.
8. $30 \mathrm{lb} / \mathrm{ac}$. of N as A / S in the first year and rabbing in the second year.
9. Rabbing in the first year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. in the second year.
10. 30 lb ./ac. of N as $G . N . C$. in the first year and rabbing in the second year.
11. Proper tillage alone.
12. Sterlising the soil with formaline.

In the first year of the experiment, there are only 6 distinct treatments as follows: $T_{1}=$ Rabbing ($1,5,7$ and 9), $T_{2}=$ Compost at $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. (2 and 6), ${ }^{\prime} \mathrm{T}_{3}=30 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}\left(3\right.$ and 8), $\mathrm{T}_{4}=30 \mathrm{lb}$./ac. of N as G.N.C. (4 and 10). $T_{5}=$ Proper tillage and $T_{6}=$ Sterilising the soil with formaline.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 marn-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 15^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-54. (b) Yes. (c) N.A, (v) (a) Igatpuri, Karjat and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $923 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $132.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $206.8 \mathrm{1b} . / \mathrm{ac}$.
(iii) Main effect of sub-plot treatments alone is significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	F_{0}	F_{1}	Mean
T1	970	949	959 (32)
T	785	953	869 (16)
T_{3}	1030	1093	1061 (16)
T4	885	970	927 (16)
T ${ }_{5}$	786	819	802 (8)
T 6	803	817	810 (8)
Mean	906	955	1973
S.E. of S.E, of S.E. of S.E. of			./ac. ./ac. ./ac. ./ac.

Crop:- Paddy (Kharif).
Site :- Agri. Res. Stn., Vadgaon.

Ref: Mh. 50(105)/49(87).
Type :~ 'CM'.

Object :-To find out a suitable substitute for rabbing of Paddy.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 17.6.1950/ 24.8.1950. (iv) (a) N.A. (b) Transplanting. (c) - (d) $9^{n} \times 9^{\circ}$. (c) 8 seedlings/bunch. (v) Nil. (vi) N.A. (vii Unirrigated. (viii) One weeding. (ix) N.A. (x) 7.12.1950.

2. TREATMENTS:

Main-plot treatments :
2 levels of F.Y.M.; $F_{0}=0$ and $F_{1}=5$ C.L./ac.
Sub-plot treatments:
$T_{1}=$ Rabbing every year.
$\mathrm{T}_{\mathbf{2}}=$ Compost every sear at $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$.
$T_{3}=30 \mathrm{lb} . / \mathrm{ac}$ of N as A / S every year.
$T_{4}=30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. every year.
$T_{5}=$ Rabbing in the first year and 10 C.L./ac. of compost in the second year.
$T_{6}=10 \mathrm{C} . \mathrm{L}$ /ac. of compost in the first year and rabbing in the second year.
$\mathrm{T}_{7}=$ Rabbing in first year aud 30 lb ./ac. of N as A / S in the se:ond year.
$T_{8}=30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in the first year and rabbing in the second year.
$\mathrm{T}_{9}=$ Rabbing in the first year and $30 \mathrm{lb} / \mathrm{ac}$. of N as G.N.C. in the second year.
$\mathrm{T}_{10}=30 \mathrm{lb} . / \mathrm{c}$. of N as G.N.C. in the first year and rabbing in the second year.
$\mathrm{T}_{11}=$ Proper tillage alone.
$\mathrm{T}_{12}=$ Sterlising the soil with formaline.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 3 (oricinally planned with 4 replications.) (iv) (a) $21^{\prime} \times 15^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} ring round the net plot. (vi) and (vii) Yes.
4. GENERAL :
(i) Crop was damaged due to continuous rains. (ii) Nil. (iii) Height, vigour of seedlings and grain yield. (iv) (a) 1949 to 1954. (b) Yes, (c) N.A. (v) (a) Igatpuri, Karjat, and Ratnagiri. (b) N.A. (vi) Nil. .
5. RESULTS :
(i) $1302 \quad$ lb./ac.
(ii) (a) $1233.0 \mathrm{lb} / \mathrm{ac}$.
(b) $317.9 \mathrm{lb} . / \mathrm{ac}$
(iii) Main plot treatments, sub-plot treatment and their interaction are not significant.
(iv) Av. yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T_{1}	1500	1445	1473
T2	983	1227	1105
T3	1399	1496	1448
T4	1101	1420	1261
T ${ }_{6}$	1281	1340	1311
T ${ }_{6}$	1172	1428	1300
T 7	1433	1445	1439
T ${ }_{8}$	1113	1332	1223
T	1399	1256	1328
T_{10}	950	1378	1164
T_{11}	1147	1399	1273
T_{12}	1147	1441	1294
Mean	1219	1384	1302

S.E. of difference of two
$\begin{array}{ll}\text { 1. main-plot treatment means } & =290.7 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. sub-plot treatment means } & =183.5 \mathrm{lb} . / \mathrm{ac} \\ \text { 3. sub-p'ot treatment means at a level of mean-plot treatment } & =258.2 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. main-plot treatment means at a level of sub-plot treatment } & =382.0 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Paddy (Kharif).
Site :- Agri. Res. Stn., Vadgaon.

Ref:- Mh. 51(143)/50(105)/49(87).
Type:- 'CM'.

Object :-To find out a suitable substitute for rabbing of Paddy crop.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 6.6.1951/1.8.1951. (iv) (a) N.A. (b) Transplanting. (c) - . (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) One weeding on 11.9.1951. (ix) $35.96^{\prime \prime}$ (x) 28,29.11.1951.
2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac.
Sub-plot treatments :
$\mathrm{T}_{1}=$ Rabbing every year.
$T_{2}=10$ C.L./ac. of compost every year.
$\mathrm{T}_{\mathbf{8}}=30 \mathrm{lb} . / \mathrm{ac}$ of N as A / S every year.
$T_{4}=30 \mathrm{lb}$ /ac. of N as G.N.C. everv year.
$\mathrm{T}_{5}=$ Rabbing in the first year and 10 C.L./ac. of compost in the second year.
$T_{6}=10$ C.L./ac. of compost in the first year and rabbing in the second year.
$T_{7}=$ Rabbing in the first year and $30 \mathrm{lb} / \mathrm{ac}$. of N as A / S in the second year.
$T_{8}=30 \mathrm{lb}$./ac of N as A / S in the first year and rabbing in the second year.
$T_{9}=$ Rabbing in the first year and 30 lb ./ac. of N as G.N.C. in the second year.
$T_{10}=30 \mathrm{lb}$./ac. of N as $G . N . C$. in the first year and rabbing in the second year.
$\mathrm{T}_{11}=$ Proper tillage alone.
$\mathbf{T}_{12}=$ Sterlising the soil with Formaline.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $21^{\circ} \times 15^{\circ}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yiel1. (iv) (a) $1949-1954 .{ }^{\prime}$ (b) Yes. (c) N.A. (v) (a) Igatpuri, 'Karjai and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
,
5. RESULTS :
(i) $1232 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $198.8 \mathrm{Ib} . / \mathrm{ac}$.
(b) $129.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main-plot treatments; sub-plot treatments and their interaction are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	F_{0}	F_{1}	Mean
TI	1169	1276	1222
T 2	1248	1100	1174
T3	1327	1145	1236
T_{4}	1251	1271	1261
T 5	1270	1164	1217
T6	1227	1160	1193
T7	1297	1309	1303
T_{8}	1254	1155	1205
T_{9}	1314	1303	1308
T_{10}	1265	1256	1260
T 11	1290	1180	1235
$\mathbf{T i s}_{18}$	$1245{ }^{\circ}$	1093	1169
Mean	1263	1201	1232

S.E. of difference of two

1. main-plot treatment means	$=40.6 \mathrm{lb} . / \mathrm{ac}$.
2.	sub-plot treatment means
3. sub-plot treatment means at a level of main-plot treatment	$=94.6 \mathrm{lb} / \mathrm{ac}$.
4. main-plot treatment means at a level of sub-plot treatment	$=96.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Paddy (Kharif).
Ref:-Mh. 52(167)/51(143)/50(105)/49(87).
Site :-Agri. Res. Stn., Vadgaon. Type :-‘CM'.
Object :-To find out a suitable substitute for rabbing of Paddy crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 20.6 .19521 6.7.1952. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) One interculturing. (ix) $74.70^{\prime \prime}$ (x) 24 and 25.11.1952.

2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M.: $\quad F_{0}=0$ and $F_{1}=5$ C.L./ac.
Sub-plot treatments :
$\mathrm{T}_{1}=$ Rabbing every year.
$\mathrm{T}_{2}=10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost every year.
$\mathrm{T}_{3}=30 \mathrm{lb}$./ac. of N as A / S every year.
$T_{4}=30 \mathrm{lb}$./ac. of N as $G . N . C$. every year.
$\mathrm{T}_{5}=$ Rabbing in the first year and 10 C.L./ac. of compost in the second year.
$\mathrm{T}_{6}=10$ C.L./ac. of compost in the first year and rabbing in the second year.
$T_{7}=$ Rabbing in the first year and 30 lb ./ac. of N as A / S in the second year.
$T_{8}=301$ //ac. of N as A / S in the first year and rabbing in the second year.
$T_{9}=$ Rabbing in the first year and $30 \mathrm{lb} . / \mathrm{ac}$ of N as G.N.C. in the second year.
$\mathrm{T}_{10}=30 \mathrm{lb} / \mathrm{ac}$. of N as G.N.C. in the first year and rabbing in the second year.
$T_{11}=$ Proper tillage alone.
$\mathrm{T}_{12}=$ Sterlising the soil with Formaline.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot.
(b) N.A.
(iii) 4. (iv) (a) $21^{\prime} \times 15^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949—1954. (b) Yes. \quad (c) N.A. (v) (a) Igatpuri, Karjat and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1372 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $546.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $163.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main-plot treatments, sub-plot treatments and their interaction are not significant.
(iv) Av. yield of grain in lb./ac.

	F_{0}	F_{1}	Mean
T_{1}	1342	1330	1336
T_{2}	1280	1450	1365
T_{3}	1428	1494	1461
T_{4}	1409	1374	1391
T_{3}	1315	1321	1318
T_{6}	1389	1478	1434
T_{7}	1377	1491	1434
T_{8}	1248	1352	1300
T_{9}	1295	1383	1352
T_{10}	1396	1204	1389
T_{11}	1333	1358	1408
T_{12}	1459	1387	
Mean	1356		

S.E. of difference of two

1. main-plot treatment means

$$
=111.5 \mathrm{lb} . / \mathrm{ac} .
$$

2. sub-plot treatment means
$=81.9 \mathrm{lb} . / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment
$=115.8 \mathrm{lb} . / \mathrm{ac}$.
4. main-plot treatment means at a level of sub-plot treatment
$=159.2 \mathrm{lb} / \mathrm{ac}$.

Crop : Paddy (Kharif). Ref :- Mh. 53(253)/52(167)/51(143)/50(105)/49(87).
Site :- Agri. Res. Stn., Vadgaon. Type :- 'CM'.
Object :--To find out a suitable substitute for rabbing of Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Paddy. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 15.6.1953/ 2.8.1953. (iv) (a) N.A. (b) Transplanting (c) -. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) 8 seedlings/bunch. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) $46.38^{\prime \prime}$ (x) 23.11.1953.
2. TREATMENTS :

Main-plot treatments :
2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.
Sub-plot treatments :
$-T_{1}=$ Rabbing every year.
$\mathrm{T}_{\mathbf{2}}=10 \mathrm{C} . \mathrm{L} / \mathrm{ac}$. of compost every year.
$T_{3}=30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S every year.
$T_{4}=30 \mathrm{lb}$./ac. of N as G.N.C. every year.
$T_{5}=$ Rabring in the first year and 10 C.L /ac. of compost in the second year.
$\mathbf{T}_{8}=10$ C.L./ac. of compost in the first year and rabbing in the second year.
$T_{7}=$ Rabbing in the first year and $30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S in the second year.
$T_{8}=30 \mathrm{lb}$./ac. of N as A / S in the first year and rabbing in the second year.
$T_{9}=$ Rabbing in the first year and $30 \mathrm{lb} / \mathrm{ac}$. of N as $\mathbf{G} . N . C$. in the second year.
$\mathrm{T}_{1_{0}}=30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. in the first year and rabbing in the second year.
$\mathrm{T}_{11}=$ Proper tillage alone.
$\mathrm{T}_{12}=$ Sterilising the soil with Formaline.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 12 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 15^{\circ}$.
(b) $18^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} alround the net plot. (vi) \cdot Yes.
4. GENERAL :
(i) Repln. I suffered from uneven water level and had poor yield. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) Yes. (c) N.A. (v) (a) Igatpuri, Karjat and Ratnagiri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1305 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $1265.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $428.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main-plot treatments, sub-plot treatments and their interaction are not significant.
(iv) Av. yield of grain in lb ./ac.

S.E. of difference of two

| 1. main-plot treatment means | $=258.2 \mathrm{lb} . / \mathrm{ac}$. |
| :--- | :--- | :--- |
| 2. sub-plot treatment means | $=214.2 \mathrm{lb} / \mathrm{ac}$. |
| 3. sub-plot treatment means at a level of main-plot treatment | $=303.0 \mathrm{lb} . / \mathrm{ac}$. |
| 4. main-plot treatment means at a level of sub-plot treatment | $=388.3 \mathrm{lb} . / \mathrm{ac}$. |

\int Crop :- Wheat (Rabi). Ref:- Mh. 48(57).
Site :- Govt. Seed Demonstration Farm, Achalpur. Type :m 'M'.

Object :-To determine the efficacy of P manure and its method of application.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 30.10.1948. (iv) (a) 2.bakherings and 2 heavy bakherings. (b) By Rabi Tiffan. (c) N.A. (d) Between rows-18". (e) N.A. (v) Nil. (vi) I.P.52. (vii) Unirrigated. (viii) One weeding on 29.2.1948. (ix) Nil. (x) 4.3.1949.
2. TREATMENTS :
3. Control.
4. Seed soaked in solution of double Super ($50 \mathrm{lb} . / \mathrm{ac}$. of Super).
5. Seed soaked in solution of Ammo. phosphate ($50 \mathrm{lb} . / \mathrm{ac}$. of A / S).
6. $100 \mathrm{lb} . / \mathrm{ac}$. of A / S broadcasted.
7. $100 \mathrm{lb} . / \mathrm{ac}$. of A / S drilled.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) N.A. (b) $601^{\prime} \times 18^{\prime}$. (v) N.A. (vi) Yes.
9. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) and (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) No reasons given in the records for low yields.
10. RESULTS :
(i) $218.8 \mathrm{lb} / \mathrm{ac}$.
(ii) $44.30 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yyield
1.	200.8.
2.	142.4
3.	252.4
4.	281.6
5.	217.2
S.E./mean	$=31.33 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:- Wheat (Rabi).
Site :- Agri. Res. Stn., Akluj.
Ref:~ Mh. 48(81).
Type:- 'M'.
```

Object:-To see the effect of Bone Super for top dressing on Wheat.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Sugarcane. (c) $375 \mathrm{lb} . / \mathrm{ac}$. of N as ' A / S and G.N.C. in $1: 1$ ratio. (ii) (a) 'D' type. (b) Refer soil analysis, Akluj. (iii) October 1948. (iv) (a) Ploughings and harrowing. (b) to (e) N.A. (v) Nil. (vi) Niphad. (vii) Irrigated. (viii) Weeding. (ix) 6.49". (x) February 1949.

2. TREATMENTS:

1. No manure.
2. 56 lb ./ac. of Bone Super.
3. $56 \mathrm{lb} . / \mathrm{ac}$. of Bone Super $+56 \mathrm{lb} . / \mathrm{ac}$. of A / S.
4. $56 \mathrm{lb} . / \mathrm{ac}$. of A / S.
5. $150 \mathrm{lb} . / \mathrm{ac}$. of G.N.C.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 0.50 gunthas. (v) N.A. (vi) Yes.
7. GENERAL :
(i) No lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1946 to 1948 (alternate year). (b) No. (c) Nil. (v) (a) Kopergaon, Deolali and Lakhmanpar. (b) N.A. (vi) No reason given by A.R.S. for low yields. (vii) Nil.
8. RESULTS :
(i) $269 \mathrm{lb} / \mathrm{ac}$.
(ii) $96.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	297
2.	309
3.	227
4.	253
5.	260
S.E./mean	$=38.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).	Ref:- Mh. 53(14).
Site :- Crop Res. Stn., Badnapur.	Type:- ' \mathbf{M} '.

Object :-To compare C / \dot{N} as a source of N with A / S and Ammonium chloride for increasing the yield of Wueat.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Badnapur. (iii) 11.10 .1953 and 12.10.1953. (iv) (a) Bakharing on 3.10.1953. (b) to (e) N.A. (v) N.A. (vi) P.W. 5. (vii) N.A. (viii) N.A. (ix) $1.62^{\prime \prime}$ (x) 26.2.1954 to 1.3.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=A / S, S_{2}=$ Ammonium chloride and $S_{3}=C / N$.
3. DESIGN :
(i) 3×3 Fact. in R.B D. (ii) (a) 9. (b) N.A. (iii) 5 . (iv) (a) $60^{\circ} \times 17^{\prime}$. (b) $57^{\prime} \times 14^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Due to continuous absence of rain during Rabi season, the growth of the crop remained stunted. (ii) N.A. (iii) Grain yield. (iv) (a) $1953-$ N.A. (b) N.A. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $304 \mathrm{lb} . / \mathrm{ac}$.

(iii) Main effect of 'level of N ' alone is significant.
(iv) Av. yield of grain in lb ./ac.

	S_{1}	$\mathbf{S}_{\mathbf{2}}$	S_{3}	Mean
N_{0}	-	-	-	290
N_{1}	330	299	307	312
N_{2}	315	315	302	311
Mean	323	337	305	304
S.E. of marginal mean of $\mathrm{N}=597$ S.E. of marginal mean of $S=7.10$ S.E. of body of taHle $\quad=10.37$				

```
Crop: Wheat (Rabi).
Site :- Agri. Res. Stn., Chas.
Ref:- Mh. 51 (209).
Type :- 'M'.
```

Object :-To study the effect of different doses of $\mathrm{Zn} \mathrm{SO}_{4}$ on Wheat.

1. BASAL CONDITIONS:
(i) (a) NA. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) N A. (iii) N.A. (iv) (a) 1 ploughing and 1 harrowing. (b) to (e) N.A. (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) 3 intercultures, (ix) 6.00° from Sept. to Dec. (x) 9.2.1952.
2. TREATMENTS :
3. Control.
4. $10 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{Zn} \mathrm{SO}_{4}$.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{Zn} \mathrm{SO}_{4}$.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $15^{\prime} \times 24^{\prime}$. (b) $13^{\prime} \times 21^{\prime}$. (v) $1^{\prime} \times 1.5^{\prime}$ alround the plot. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) $19 j 1-$ N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $235 \mathrm{lb} / \mathrm{ac}$.
(ii) $77.07 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
, Treatment Av. yield

1.	220
2.	223

$3 . \quad 261$
S.E. $/$ mean $\quad=27.25 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lc}
\text { Crop :- Wheat }(R a b i) . & \text { Ref :- Mh. 52(328). } \\
\text { Site :- Agri. Res. Stn., Dhullia. } & \text { Type :- 'M'. }
\end{array}
$$

Object :- To compare calcium cynamide with A/S as a source of N for Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Chavall and Bajri. (c) 5 C.L./ac. of F.Y.M. +2 bags of manure mixture. (ii) (a) Medium black. (b) N,A. (iii) 21.11.1952. (iv) (a) N.A. (b) Drilling. (c) 40 lb./ac. (d) 10° between rows. (e) -. (v) 5 C.L./ac. of F.Y.M. (vi) Motia. (vii) Irrigated. (viii) Nil. (ix) N.A. (x) 19.3.1953.
2. TREATMENTS:
3. $40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
4. 40 lb ./ac. of N as G.N.C. and A / S in $1: 1$ ratio.
5. 40 lb ./ac. of N as calcium cynamide.
6. 40 lb ./ac. of N as $\mathrm{G} . \mathrm{N} . C$. and calcium cynamide in $1: 1$ ratio.
7. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $65^{\prime} \times 25^{\prime}$. (b) $55^{\prime} \times 20^{\prime}$. (v) $5^{\prime} \times 2.5^{\prime}$. (vi) Yes.
8. GENERAL :
(i) Unsatisfactory growth due to low rainfall. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-N.A. (b) No. (c) Nil. (v) (a) Kopergaon and Padegaon, (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $377 \mathrm{lb} . / \mathrm{ac}$.
(ii) $46.13 \mathrm{lb} . \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	393
2.	396
3.	339
4.	381
S.E./mean	$=32.62 \mathrm{lb} . / a c$.

$$
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref:- Mh. 53(350). } \\
\text { Site :- Agri. Res. Stn., Dhullia. } & \text { Type :- ‘M'. }
\end{array}
$$

Object :-To compare calcium cynamide with A / S as a source of N for Wheat.

1. BASAL CONDITIONS :
(i) (a) N.A.
(b) Groundnut.
(c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 7.11.1953. (iv) (a) N.A.
(b) Drilling (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) Nil. (v) Nil. (vi) Kenphad-Improved. (vii) Irrigated.
(viii) 1 weediag. (ix) N.A. (x) 24.3.1954.
2. TREATMENTS :
3. 40 lb ./ac. of N as A / S.
4. 40 lb ./ac. of N as $G . N . C$. and A / S in $1: 1$ ratio.
5. 40 lb ./ac. of N as calcium cynamide.
6. $40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. and calcium cynamide in $1: 1$ ratio.
7. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $50^{\prime} \times 24^{\prime}$. (b) $45^{\prime} \times 24^{\prime}$. (v) 5^{\prime} on one side only. (vi) Yes.
8. GENERAL :
(i) Satisfactory. (ii) Rust attack. (iii) Grain yield. (iv) (a) 1952-N.A. (b) No. (c) Nil, (v) (a) Kopergaon, Padegaon and Amreli. (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) $715 \mathrm{lb} . / \mathrm{ac}$.
(ii) $154.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	596
2.	831
3.	868
4.	565
S.E./mean	$=108.9 \mathrm{lb} / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 53(383). } \\
\text { Site :- Agri. Res. Stn., Jalagaon. } & \text { Type :- 'M’. }
\end{array}
$$

Object :-To study the usefulness of Chinamug as G.M. to Wheat.

1. BASAL CONDITIONS:
(i) (a) Chinamug-Wheat. (b) Chinamng.i (c) Nil. (ii) (a), Deep black soil. (b) Refer soil analysis, Jalagaon. (iii) 28.10.1953. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Kenphad. (vii) Unirrigated. (viii) Nil. (ix) 0.47". (x) 10.2.1954.
2. TREATMENTS :
3. Growing Chinamug (Wheat in Rabi).
4. Burying Chinamug from plot 1 (Wheat in Rabi).
5. Growing Chinamug and burying in situ.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 2 . (iv) (a) and (b) $33^{\circ} \times 33^{\prime}$. (v) Nil. (vi) Yes.
7. GENERAL :
(i) Growth was satisfactory. (ii) White-ants trouble observed. (iii) Grain and fodder yield. (iv) (a) 1952 to 1955. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $426 \mathrm{lb} / \mathrm{ac}$.
(ii) 259.6 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	496
2.	327
3.	454
S.E./mean	$=183.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site : Agri. Res. Stn., Jalagaon. / Type :='M'.

Ref: Mh. 53(384).

Object :-To study the effect of Sannhemp as G.M. on dry Wheat.

1. BASAL CONDITIONS:
(i) (a) Sannhemp-Wheat. (b) Sannhemp. (c) Nil. (ii) (a) Deep black soil, (b) Refer soil analysis, Jalagaon. (iii) 22.10.1953. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\boldsymbol{\prime}}$ between rows. (e) N.A. (v) Nil. (vi) Kenphad. (vii) Unirrigated. (viii) Nil. (ix) 0.47": (x) 10.2.1954.

2. TREATMENTS:

1. Sann grown for green manuring and tender tops and leaves burried in the same site.
2. Sann grown and removed.
3. Tender shoots and stripped leaves from treatment 2 burried.
4. Control (Wheat in Rabij.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) and (b) $33^{\prime} \times 33^{\prime}$. (v) Nil. (vi) Yes.
6. GENERAL :
(i) Growth was satisfactory. (ii) Slight attack of white-ants. (iii) Grain and fodder yield. (iv) (a) 1952 to 1954. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $310 \mathrm{lb} . / \mathrm{ac}$.
(ii) 160.8 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1.	Av. yield
2.	284
3.	408
4.	373
S.E./mean	174
	$=113.7 \mathrm{lb} . / \mathrm{ac}$.

```
    Crop :- Wheat (Kharif). Ref:~ Mh. 53(385).
    Site :- Agri. Res. Stn., Jalagaon. Type :- 'M'.
Object :-To study the effect of compost prepared from legume (Sann and Chinamug) grown in Kharif, on
    Wheat in Rabi.
```

1. BASAL GONDITIONS:
(i) (a) Chinamug and Sann-Wheat. (b) Chinamug and Sann. (c) Nil. (ii) (a) Deep black soil. (b) Refer soil analysis, Jalagaon. (iii) Chinamug and Sann; 24.6.1953, Wheat $26 .!0.1953$. (iv) (a) N.A. (b) Drilling. (c) 60 lb ./ac. (d) $12^{\circ \prime}$ between rows. (e) N.A. (v) Nil. (vi) Kemphad. (viii) Unirrıgated. (viii) Nil. (ix) 0.47". (x) Chinamug and Sann; 7.8, 1953 and Wheat ; 25.2.1954.

2. TREATMENTS :

1. Control (Wheat in Rabi).
2. Sann grown (Compost to be applied to the same plot).
3. Chinamug grown (Compost to be applied to the same plot).
4. New Site plot (Compost of Chinamug to be applied).
5. New Site plot (Compost of Sann to be applied).
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) and (b) $33^{\prime} \times 33^{\prime}$. (v) Nil. (vi) Yes.
7. GENERAL :
(i) Growth was satisfactory. (ii) White-ants trouble observed. (iii) Grain and fodder yield. (iv) (a) 19521955. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $814 \mathrm{lb} / \mathrm{ac}$.
(ii) $78.52 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	765
2.	884
3.	794
4.	880
5.	749
S.E./mean	$=55.53 \mathrm{lb} . / \mathrm{ac}$.

Crop: - Wheat (Rabi). \quad Ref:- Mh. 49(45).
Site :- Agri. Res. Stn., Jalagaon.
Type:- ' M '.
Object:-To find out a suitable time and method of application of different kinds of manures to dry Wheat.

1. BASAL CO.\DITIONS:

(i) (a) No. (b) Groundnut. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer s il analysis, Jalagaon. (iii) 9.11 .1949 . (iv) (a) N.A. (b) Driling. (c) $50 \mathrm{lb} / \mathrm{ac}$. (d) $13^{\prime \prime}$ between ruws. (e) N.A. (v) Nil. (vi) Motia. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 27.2.1950.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4).
(1) 3 dates of application of $N: D_{1}=8.10 .1949$., $D_{2}=10.10 .1949$ and $D_{3}=9.11 .1949$.
(2) 2 sources of $N: S_{1}=G . N . C$. and $S_{2}=A / S$.
(3) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=40, \mathrm{lb} / \mathrm{ac}$.
(4) 2 methods of application : $M_{1}=$ Surface and $M_{2}=$ Drilling.
3. DESIGN :
(i) 3×2^{3} Fact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 30^{\prime}-4^{\prime \prime}$. (b) $38^{\prime} \times 26^{\prime}$. (v) $3^{\prime} \times 2^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Drying of plants in early stage was observed. (ii) Very few plants were attacked by loose-smut. The attack was not considerable. (iii) Grain and chaff yield. (iv) (a) 1948 to 1952 . (b) No. (c) N.A. (v) (a) No. (b) No. (vi) Nil. (vii) Expt. failed in 1948.
5. RESULTS:
(i) $1004 \mathrm{lb} . / \mathrm{ac}$.
(ii) $114.9 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the main effects or interactions differs significantly.
(iv) Av. yield of grain in lb./ac.

	D_{1}	D_{2}	D_{3}	Mean	\mathbf{M}_{1}	\mathbf{M}_{2}
$\mathrm{N}_{1} \mathrm{~S}_{1}$	933	1003	1004	980	948	1013
$\mathrm{N}_{1} \mathrm{~S}_{2}$	1000	1018	952	990	973	1007
Mean	966	1011	978	985		
M_{1}	933	1015	933	960		
M_{2}	1000	1007	1023	1010		

S.E. of marginal mean of D	
S.E. of marginal mean of $N S$ or M	$=28.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{D} \times \mathrm{NS}$ or $\mathrm{D} \times \mathrm{M}$ tables	$=23.4 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{NS} \times \mathrm{M}$ table	$=40.6 \mathrm{lb} / \mathrm{ac}$.
S.E. of control mean	$=33.2 \mathrm{lb} . / \mathrm{ac}$.
	$=16.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Ref :-Mh. 50(62).
Site :-Agri. Res: Stn., Jalagaon.
Type :m‘M’.

Object :-To find out a suitable time and method of application of different kinds of manures to dry Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Groundnut. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet.
(b) Refer soil analysis, Jalagaon. (iii) 26.10.1950. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $13^{\prime \prime}$ between rows. (e) N.A. (v) Nil, (vi) Motia. (vii) Unirrigated. (viii) Nil. (ix) 91 cents. (x) 15.2.1951.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 dates of applications of $\mathrm{N}: \quad \mathrm{D}_{1}=24.9 .1950, \mathrm{D}_{2}=9.10 .1950$ and $\mathrm{D}_{3}=24.10 .1950$.
(2) 2 sources of $N: S_{1}=$ G.N.C. and $S_{2}=A / S$.
(3) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=40 \mathrm{lb} . / \mathrm{ac}$.
(4) 2 methods of application: $\mathbf{M}_{1}=$ Surface and $M_{2}=$ Drilling.
3. DESIGN :
(i) 3×2^{3} Fact. in R.B.D. (ii) (a) 24. (b) N.A. (iii) 4 . (iv) (a) $44^{\prime} \times 30^{\prime} 4^{\prime \prime}$. (b) $38^{\prime} \times 26^{\prime}$. "(v) 2 rows on either side and 3^{\prime} on either ends. (vi) Yes.
4. GENERAL :
(i) Drying of plants in early stage was observed. Rainfall was less than average. (ii) Infection of loose smut of wheat in few plots was observed. (iii) Grain and chaff yield. (iv) (a) 1948 to 1952. (b) No. (c) N.A. (v) (a) No. (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) 1043 lb ./ac.
(ii) $77.86 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the main effects or interactions differs significantly.
(iv) Av. yield of grain in lb ./ac.

$$
\text { Control }=1042 \mathrm{lb} . / \mathrm{ac}
$$

	D_{1}	D_{2}	\mathbf{D}_{3}	Mean	M_{1}	$\mathbf{M}_{\mathbf{2}}$
$\mathrm{N}_{1} \mathrm{~S}_{1}$	1016	1037	1035	1029	1022	1036
$\mathrm{N}_{1} \mathrm{~S}_{2}$	1077	1062	1037	1059	1058	1056
Mean	1046	1050	1036	1044		
\mathbf{M}_{1}	1040	1026	1054	1040		
M_{2}	1048	1073	1018	1046		

S.E. of marginal mean of D	$=19.47 \mathrm{lb} / \mathrm{ac}$.
S.E. of marginal mean of NS or M	$=15.90 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{D} \times \mathrm{NS}$ or $\mathrm{D} \times \mathrm{M}$ table	$=27.53 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $N S \times M$ table	$=22.48 \mathrm{lb} . / \mathrm{ac}$
S.E. of control mean	$=11.24 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Jalagaon.

Ref:-Mh. 51(74).
Type :-‘M'.

Object :-To find out a suitable time and method of application of different kinds of manures to dry Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10^{\prime} to $\mathbf{1 3}^{\prime}$ (b) Refer soil analysis, Jalagaon. (iii) 2.11.1951. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $13^{\prime \prime}$ (between rows). (e) N.A. (v) Nil. (vi) 'Motia. (vii) Unirrigated (viii) Nil. (ix) 0.2". (x) 22.2.1952.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 3 dates of application of $N: D_{1}=24.9 .1951, D_{2}=9.10 .1951$ and $D_{3}=24.10 .1951$.
(2) 2 sources of $N: S_{1}=$ G.N.C. and $S_{2}=A / S$.
(3) 2 levels of $\mathrm{N}: \quad N_{n}=0$ and $N_{2}=40 \mathrm{lb}$ lac.
(4) 2 methods of application: $\mathbf{M}_{1}=$ Surface and $\mathbf{M}_{\mathbf{2}}=$ Drilling.
3. DESIGN :
(i) 3×2^{3} Fact. in R.B.D.
(ii) (a) 24.
(b) N.A
(iii) 4. (iv) (a) $44^{\prime} \times 30^{\prime} 4^{\prime \prime}$
(b) $38^{\prime} \times 26^{\prime}$
(v) 2 rows on either side and 3^{\prime} on either ends. (vi) Yes.
4. GENERAL :
(i) Drying of seedlings observed in early stage. (ii) Attack of white-ants observed at the time of flowering. Attack of loosè-smut also observed. Grain and chaff yield. (iv) (a) 1948 to 1952 . (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Expt. vitiated during 1952.

5. RESULTS :

(i) 643 lb ./ac.
(ii) $120.4 \mathrm{Ib} . / \mathrm{ac}$.
(iii) Main effects of sources, methods and dates and their interactions are not significant. Control vs. others also is not significant.
(iv) Av. yield of grain in lb./ac.

$$
\text { Control mean } \quad=631 \mathrm{lb} . / \mathrm{ac}
$$

	D_{1}	D_{2}	D_{3}	Mean	M_{1}	
$\mathrm{N}_{1} \mathrm{~S}_{1}$	673	709	634	672	667	678
$\mathrm{N}_{1} \mathrm{~S}_{2}$	629	636	649	638	625	650
Mean	651	672	641	655		
M_{1}	620	708	610	646		
M_{2}	682	637	672	663		

S.E. of marginal mean of D

$$
\begin{aligned}
& =30.1 \mathrm{lb} / \mathrm{ac} \\
& =24.6 \mathrm{lb} . / \mathrm{ac} \\
& =42.6 \mathrm{lb} . / \mathrm{ac} \\
& =34.8 \mathrm{lb} . / \mathrm{ac} \\
& =17.4 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

S.E. of marginal mean of NS or M
S.E. of body of $\mathrm{D} \times \mathrm{NS}$ or $\mathrm{D} \times \mathrm{M}$ table
S.E. of body of $\mathrm{M} \times \mathrm{NS}$ table
S.E. of control mean

Crop :- Wheat (Rabi).
Ref:- Mh. 49(30).
Site :- Agri. Res. Stn., Jalagaon.
Type : ' M '.

Object:-To study the effects of leguminous crop (chinamug) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments. (ii) (a) Deep black cotton type having a depth of 10^{\prime} to 13^{\prime}. (b) Refer soil analysis, Jalagaon. (iii) 4.11.1949. (iv) (a) N.A. (b) Drilling. (c) 50 lb./ac. (d) $13^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gulab (mid-late). (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 27.2.1950.
2. TREATMENTS :
3. Control (no manure).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. No manure (fallow in Kharif and sown in Rabi).

Treatments applied to previous crop Chinamug.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime}-6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime}$. (v) $6^{\prime} \times 3^{\prime}-3^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Germination and stand was good, normal uniform growth in all plots (ii) Nil. (iii) Grain yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A: (vi) and (vii) Nil.
5. RESULTS :
(i) $965 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $70.17 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	935
2.	943
3.	927
4.	959
5.	1050
S.E./mean	$=31.37 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site : - Agri. Res. Stn., Jalagaon.
Object:-To study the effects of leguminous crop (Chinamug) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments. (ii) (a) Deep black cotton type with depth of 10^{\prime} to 13^{\prime}. (b) Refer soil analysis, Jalagaon. (iii) 19.10.1950. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $13^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gulab (mid-late). (vii) Unirrigated. (viii) Nil. (ix) 91 cents. (x) 14.2.1951.

2. TREATMENTS :

1. Control (no manure).
2. $50 \mathrm{lb} . / \mathrm{c}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 'No manure (fallow in Kharif and sown in Rabi).

Treatments applied to previous crop Chinamug.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iji) 5. (iv) (a) $42^{\prime} \times 19^{\prime}-6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime}$. (v) $6^{\prime} \times 3^{\prime}-3^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Rainfall was less than average and it affected the growth. (ii) Drying of plants in eariy stage of the crop was observed. Infection of loose-smut was also marked in many of the plots. (iii) Grain yield. (iv, (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $555 \mathrm{lb} . / \mathrm{ac}$.
(ii) $-55.81 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	506
2.	574
3.	498
4.	545
5.	652
S.E./mean	$=\mathbf{2 4 . 9 5} \mathrm{lb} . / \mathrm{ac}$

Crop:- Wheat (Rabi).
Site :- Agri. Res. Stn., Jalagaon.

Ref :- Mh. 51(45).
Type :- 'M'.

Object :-To study the effect of leguminous crop (Chinamug) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) Chinamug-Wheat (b) Chinamug. (c) As per treatments. (ii) (a) Deep black cotton type having depth of 10^{\prime} to 13^{\prime}. (b) Refer soil analysis, Jalagaon. (iii) 2.11.1951. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} / \mathrm{ac}$. (d) $13^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Motia (early). (vii) Unirrigated. (viii) Nil. (ix) 19 cents. (x) 22.2.1952.

2. TREATMENTS:

1. Control (no manure).
2. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. No manure (fallow in Kharif and sown in Rabi).

Treatments applied to previous crop Chinamug.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime}-6^{\prime \prime}$ (b) $30^{\circ} \times 13^{\prime}$. (v) $6^{\prime} \times 3^{\prime} .3^{\prime \prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Drying of seedlings observed in early stage. Attack of white-ants observed. Attack of loose-smut also observed. (iii) Grain yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) No. (vi) and (vii) Nil.

5. RESULTS :

(i) $550 \mathrm{lb} / \mathrm{ac}$.
(ii) $103.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	Av. yield
1.	508
2.	507
3.	478
4.	538
5.	723
S.E./meaan	$=46.17 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).	Ref :- Mh. 52(71).
Site :- Agri. Res. Stn., Jalagaon.	Type :-, 'M'.

Object:-To study the effect of leguminous crop (Chinamug) grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments, (ii) (a) Deep black cotton type having a depth of 10^{\prime} to 13^{\prime}. (b) Refer soil analysis, Jalagaon. (iii) 20.10.1952. (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $13^{\prime \prime}$ between rows; irregu'ar between 'plants. (e) N.A. (v) Nil. (vi) Motia (early). (vii) Unirrigated. (viii) N.A. (ix) 20 cents. (x) 6.3.1953.
2. TREATMENTS :
3. Control (no manure).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. No manuring (fallow in Kharlf and sown in Rabl). Treatments applied to previous crop Chinamug.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime} .6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime}$. (v) $6^{\prime} \times 3^{\prime}-3^{\prime \prime}$. (vi) Yes,

4. GENERAL :

(i) The growth was not vigorous owing to the lack of sufficient rains. The height was below normal The grain size was thin. (ii) Plants were attacked by white-ants and root-rot. Hence the quantity of yield was very much less. (iii) Grain and chaff yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $95 \mathrm{lb} / \mathrm{ac}$.
(ii) $53.71 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments ciffer significantly.
(iv) Av. yield of grain in $\mathbf{l b}$./ac.

Treatment	Av. yield
1.	67
2.	77
3.	74
4.	84
S.	176
S.E./mean	$=24.01 \mathrm{lb} . / a c$.

Crop :-Wheat (Rabi). . Ref:-Mh. 50(134).
Site :-Agri. Res. Stn., Jalagaon. Type :~‘M’.

Object :-To study the effect of leguminous crop (Chinamug) grown with and without. $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments. (ii) (a) Deep black cotton type hiving a depth of 10^{\prime} to 13^{\prime}. (b) Refer soiljanalysis, Jalagaon. $]$ (iii) 28.10 .1953 . (iv) (a) N.A. (b) Drilling. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $13^{\prime \prime}$. (e) N A. (v) Nil. (vi) Motia (early). (vii) Unirrigated. (viii) N.A. (ix) 48 cents. (x) 10.2.1954.
2. TREATME VTS :
3. Control (no manure).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. No manure (fallow in Kharif and sown in Rabi).

Treatments applied to previous crop Chinamug.
3. DESIGN:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime} .6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime} .6^{\prime \prime}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
4. GENERAL':
(i) Tie growth was satisfactory. (ii) Few plots dried due to attack of white-ants. The damage was negligible. (iii) Grain and chaff yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $501 \mathrm{lb} . / \mathrm{ac}$.
(ii) $79.77 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	510
2.	513
3.	526
4.	452
5.	507
S.E./mean	$=35.66 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Wheat (Rabi),
Site :-Agri. Res. Stn., Jeur.
Object :-To study the effect of Zinc Sulphate on Wheat.

1. BASAL CONDITIONS :
(i) (a) Wheat-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 12.10.1951. (iv) (a) N.A. (b) Seed drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Vijaya .(vii) Unirrigated. (vi i) 3 intercultures. (ix) N.A. (x) 21.1.1952.

2. TREATMENTS :

1. No manure (control).
2. $10 \mathrm{lb} . / \mathrm{ac}$. of ZnSO_{4}.
3. $20 \mathrm{lb} . / \mathrm{ac}$. of ZnSO_{4}.
ZnSO_{4} applied with seed.
4. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $33^{\prime} \times 20^{\prime}$. (b) $27^{\prime} \times 14^{\prime}$. (v) 3^{\prime} all round the net plot. (vi) Yes.
5. GENERAL :
(i) Due to the scanty rains after sowing the crop could not gain its maximum growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 -continued. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Late rains were absent. (vii) Nil.
6. RESULTS :
(i) $409 \mathrm{lb} . / \mathrm{cc}$.
(ii) $115.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av, yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
Treatment Av. yield
7. 328
8. . 481
9. 417
S.E./mean $\quad=40.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi). Site :- Agri Res. Stn., Jeur.

Ref:- Mh. 52(363).
Type:- 'M'.

Object:-To study the effect of Zinc Sulphate on Wheat.

1. BASAL CONDITIONS:
(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 11.10 .1952 . (iv) (a) 4 harrowings. (d) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Vijaya. (vii) Unirrigated. (viii) 2 interculturings. (ix) 19.51". (x) 18.1.1953.
2. TREATMENTS :
3. No manure (Control).
4. 10 lb ./ac. of $\mathrm{Zn} \mathrm{SO}_{4}$.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{Zn} \mathrm{SO}_{4}$.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) $84^{\prime} \times 19^{\prime}$. (iii) 8 . (iv) (a) $28^{\prime} \times 19^{\prime}$. (b) $24^{\prime} \times 15^{\prime}$. (v) 2^{\prime} alround the plot. (vi) Yes.
7. GENERAL :
(i) Growth was checked due to scanty rains. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-continued. (b) Yes. (c) Nil. (v) (a) Sholapur, Chas. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $67 \mathrm{lb} . / \mathrm{ac}$.
(ii) $42.11 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yjeld
1.	62
2.	44
3.	95
S.E./mean	$=14.89 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Jeur.

Ref:- Mh. 53(5).
Type : ${ }^{〔} \mathbf{M}{ }^{\prime}$.

Object :-To study the effect of Zine Sulphate on Wheat.

1. BASAL CONDITIONS :
(i) (a) Wheat-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 11.10.1953. (iv) (a) 2 harrowings. (b) Seed drilled. (c) 40 lb ./ac. (d) 12° apart. (v) Nil. (vi) Vijaya. (vii) Unirrigated. (viii) 2 Intercultures. (ix) 5.88". (x) 30.1.1954.
2. TREATMENTS :
3. No manure (Control).
4. $10 \mathrm{lb} . / \mathrm{ac}$. of ZnSO_{4}.
5. 20 lb ./ac. of $\mathrm{Zn} \mathrm{SO}_{4}$.
$\mathrm{Zn} \mathrm{SO}_{4}$ applied on 11.10.1953.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $33^{\prime} \times 20^{\prime}$. (b) $27^{\prime} \times 14^{\prime}$. (v) 3^{\prime} alround the net plot. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and bhusa yield. (iv) (a) 1951-continued. (b) No. (c) N.A. (v) (a) Nil. (b) N.A (vi) and (vii) Nil.
8. RESULTS :
(i) $583 \mathrm{lb} . / \mathrm{ac}$.
(ii) $184.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib./ac.
Treatment Av. yield
9. 515
10. 683
$3 . \quad 550$
S.E. $/$ mean $\quad=65.9 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Wheat (Rabi).
Site :- Agri. Res. Stn, Kopergaon.

Object :-To see the effect of Calcereous Ammonium Nitrate, Urea fertilizers, Calcium Cynamide and other fertilizers on Wheat crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) and (c) N.A. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) 25.10.1952, (iv) (a) 3 ploughings and 2 harrowings. (b) Drilled, (c) 40 lb .'ac. (d) $12^{\prime \prime}$ tetween rows. (e) 一. (v) 5 C.L./ac. of F.Y.M. (vi) Kenphad-25. (vii) Irrigated. (viii) 2 hoeings and 2 weedings. (ix) 11.73°. (x) 13.3.1953.
2. TREATMENTS:

1. No top dressing.
2. Urea alone at 40 lb ./ac. of N .
3. A/S alone at $40 \mathrm{lb} . / \mathrm{ac}$. of N .
4. Calcereous Ammonium Nitrate alone at 40 lb ./ac. of \mathbf{N}.
5. Calcium Cynamide alone at $-0 \mathrm{lb} . / \mathrm{ac}$. of N .
6. G.N.C. + Urea (ratio $1: 1$) at $40 \mathrm{lb} . / \mathrm{ac}$. of N .
7. G.N.C.+A/S (1:1) at $40 \mathrm{ib} . / \mathrm{ac}$. of N.
8. G.N.C.+Calcereous Ammonium Nitrate (1:1) at $40 \mathrm{lb} . / \mathrm{ac}$. of N.
9. G N.C. + Calcium Cynamide in $1: 1$ at $40 \mathrm{lb} . / \mathrm{ac}$. of N .
10. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 2. (iv) (a) $20^{\circ} \times 60^{\prime}$. (b) $16^{\circ} \times 56^{\prime}$. (v) 2^{\prime} ring alround. (vi) Yes.
11. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1955. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
12. RESULTS:
(i) $785 \mathrm{lb} . / \mathrm{ac}$.
(ii) $171.70 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	790
2.	815
3.	764
4.	815
5.	783
6.	861
7.	727
8.	736
9.	780
S E./mean	$=121.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :~Agri. Res. Stn., Kopergaon.

Ref:- Mh. 48(92)
Type: " 'M'.

Object :-To study the effect of Mr. Huskells' fertilizers on Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Fallow. (c) Nil. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) 23.9.1948. (iv) (a) N.A. (b) Drilled. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) 12° between rows. (e) - (v) Nil. (vi) Niphad-4. (vii) Unirrigated. (viii) One weeding. (ix) $33.20^{\prime \prime}$. (x) 8.3.1949.

2. TREATMENTS :

1. Control.
2. 10 C.L./ac. of F.Y.M.
3. Mr. Huskells' fertilizers at $600 \mathrm{lb} . / \mathrm{ac}$.
4. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 3. (iv) (a) $44^{\prime} \times 22^{\prime}$. (b) $34^{\prime} \times 16^{\prime}$. (v) $5^{\prime} \times 3^{\prime}$. (vi) Yes.
5. GENERAL :
(i) Growth was cheked due to continuous rains. (ii) Rust was observed but it was checked by dusting sulphur. (iii) Grain yield. (iv) (a) 1948-N.A. (b) N.A. (c) No. (v) (a) and (b) N.A. (vi) and (vii) N.A.
6. RESULTS :
(i) $434 \mathrm{lb} . / \mathrm{ac}$.
(ii) $172.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av yield of grain in lb ./ac.

Treatment	Av. yield
1.	464
2.	407
3.	432
S.E./mean	$=99.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Wheat (Rabi).
Ref :-Mh. 50(143).
Site :-Agri. Res. Stn., Kopergaon.
Type :-'M'.
Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) 16.10.1950.
(iv) (a) 1 ploughing and 1 harrowing. (b) Drilled. (c) 50 lb ./ac. (d) $12^{\prime \prime}$ between rows, (e) -. (v)

Nil. (vi) Niphad-4. (vii) Irrigated. (viii) 1 hoeing and 1 weeding, (ix) 21.26". (x) 27.3.1951.

2. TREATMENTS :

1. $3 \mathrm{bags} / \mathrm{ac}$. of G.N.C. $+50 \mathrm{lb} . / \mathrm{ac}$ of A/S.
2. 32 lb ./ac. of N as G.N.C. +32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 2. (iv) (a) $32^{\prime} \times 154^{\prime}$. (b) $24^{\prime} \times 136^{\prime}$. (v) $4^{\prime} \times 9^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1950-$ N.A. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

IRESULTS :
(i) $1357 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $16.70 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathbf{l b} . / \mathrm{ac}$.

Treatment Av. yield

1.	1325
2.	1389

S.B./mean $\quad=11.81 \mathrm{lb} / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Ref : Mh . 51 (210).
Site :-Agri. Res. Stn., Kopergaon.

Type : ${ }^{\prime} \mathbf{M}$ '.

Object: -To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Wheat:

1. BASAL CONDITIONS :
(i) (a) No. (b) Sann. (c) Nil. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) 24.10.1951. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilled. (c) 50 lb ./ac. (d) $12^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) Kenphad-25. (vii) Irrigated. (viii) 2 weedings. (ix) $34.67^{\prime \prime}$. (x) 13.3.1952.

2. TREATMENTS:

1. $3 \mathrm{bags} / \mathrm{ac}$. of G.N.C. $+50 \mathrm{lb} . / \mathrm{ac}$. of A / S.
2. 32 lb ./ac. of N as G.N.C. +32 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 2. (iv) (a) $32^{\prime} \times 154^{\prime}$. (b) $24^{\prime} \times 136^{\prime}$. (v) $4^{\prime} \times 9^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) $1950-\mathrm{N} . A$. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.

5. RESULTS:

(i) $2018 \mathrm{lb} . / \mathrm{ac}$.
(ii) $193.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment Av. yield

1. 1859
2. 2178
S.E. $/$ mean $\quad=136.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Ref:- Mh. 51(211)
Site :- Agri. Res. Stn., Kopergaon.
Type :~ ' M '.

Object:-To find out the suitability of green manuring in comparison with F.Y.M.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) A typs. (b) Refer soil analysis, Kopergaon. (iii) 18.11.1951. (iv) (a) 4 ploughings and 7 harrowings. (b) Drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) -. (v) Nil_ (vi) Kenphad-25. (vii) Irrigated. (viii) 1 hoeing and 1 weeding. (ix) 34.67*. (x) 5,6,7-4-1952.

2. TREATMENTS :

1. 5000 lb ./ac. of F.Y.M.
2. Sann green manuring. (Quantity N.A.)
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 3. (iv) (a) N.A. (b) 1 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield, (iv) (a) $1951-$ N.A. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) $1161 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $86.40 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1050
2.	1273
S.E./mean	$=49.80 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Ref :- Mh. 53(245).
Site :- Agri. Res. Stn., Kopergaon.
Type:- ' M '.

Object:-To study the effect of Sann green manuring with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on Wheat.

1. BASAL CONDITIONS :

(i) (a) Jowar (Rabi)-Wheat. (b) Sann green manuring. (c) As per treatments. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) 23.10.19j3. (iv) (a) Twice harrowing. (b) to (e) N.A. (v) Nil. (vi) KenphaJ (early). (vii) Irrigated. (viii) Interculturing once. (ix) 4.17". (x) 13.3.1954.

2. TREATMENTS:

1. Sann grown for G.M.
2. .50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Sann crop at sowing and then Sann used as G.M.
3. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied at the time of burying of Sann crop.
4. $30 \mathrm{lb} . / \mathrm{ac}$. of N as A / S applied at the time of burying of Sann.

5 , 60 lb ./ac. of N as A / S applied at the time of burying of Sann.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) $42^{\prime} \times 40^{\prime}$. (b) $34^{\prime} \times 32^{\prime}$. (v) 4^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Very light attack of rust. (iii) Grain yield. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) $1641 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $282.0 \quad \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly
(iv) Av. yield of grain in $1 \mathrm{~b} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1477
2.	1692
3.	1785
4.	1604
S.	1645
S.E./mean	$=199.4 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Wheat (Rabi).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 53(247).
Type :- ‘M'.

Object:-To find out the suitability of green manuring as compared to F.Y.M.

1. BASAL CONDITIONS :
(i) (a) No. (b) Sann for green manuring. (c) Nil. (ii) (a) A type. (b) Refer sail analysis, Kopergaon. (iii) 22.10.1953. (iv) (a) 1 harrowing. (b) to (e) N.A. (v) Nil. (vi) Kenphad (early). (vii) Irrigated. (vii) N.A. (ix) 4.17". (x) 14.3.1954.

2. TREATMENTS :

1. Control (no manure).
2. Sann green manuring only.
3. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at sowing of Sann.
4. 5 C L./ac. of F.Y.M. before sowing Wheat.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) $78^{\prime} \times 36^{\circ}$. (b) $72^{\prime} \times 30^{\prime}$. (v) 3^{\prime} alround. (vi) Yes.
6. GENERAL :
(i) Satisfactory. (ii) Very light attack of rust. (iii) Grain yield. (iv) (a) 1951-55. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
7. RESULTS:
(i) $987 \mathrm{lb} . / \mathrm{ac}$.
(ii) $339.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	830
2.	889
3.	1255
4.	973
S.E./mean	$=151.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn.; Mohol.

Ref :-Mh. 52(346).
Type: ' 'M'.

Object :-To study the effect of compost prepared from legume crops (Sann and Chinamug) on Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Sann and Chinamug. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol.
(iii) N.A. (iv) (a) Ploughing and 4 harrowings. (b) Drill. (c) 40 lb ./ac. (d) 12° between rows. (e) -.
(v) Nil. (vi) K-25. (vii) Unirrigated. (viii) 4 interculturings and 1 weeding. (ix) $503^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control (no manure).
4. Growing Sann in Kharif and using its compost for Wheat crop on the same site.
5. Growing Chinamug in Kharif and using it as compost in Rabi on the same site.
6. Sann compost brought from out side.
7. Chinamug compost brought from out side.

Amount of different green manuring crops N.A.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) $54^{\prime} \times 21^{\prime}$. (b) $51^{\prime} \times 21^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952-1953. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $236 \mathrm{lb} . / \mathrm{ac}$.
(ii) $60.68 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.

(iv) Av. yield of grain in lb./ac.	
Treatment	Av. yield
1.	316
2.	161
3.	183
4.	235
5.	285
S.E./mean	$=42.91 \mathrm{lb} . / \mathrm{a} \mathrm{c}$.

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Mohol.
Ref :-Mh. 53(354).
Type:-‘ ${ }^{-}$'.
Object :-To study the effect of compost prepared from Sann and Chinamug on Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Sann+Chinamug. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 1 ploughing and 4 harrowings. (b) Drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) K-52. (vii) Unirrigated. (viii) 3 interculturings and 1 weeding. (ix) 8.89". (x) N.A.
2. TREATMENTS :
3. Control.
4. Growing Sann in Kharif and use it as compost for wheat in Rabi.
5. Growing Chinamug in Kharif and used it as compost for wheat in Rabi.
6. Sarin compost brought from out side.
7. Chinamug compost brought from out side.

Other details N.A.
3. DESIGN :
(i) R.B.D.
(ii) (a) 5.
(b) N.A.
(iii) 2. (iv) (a) N.A.
(b) $51^{\prime} \times 21^{\prime}$.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1950-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $142 \mathrm{lb} / \mathrm{ac}$.
(ii) $20.73 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	132
2.	130
3.	150
4.	161
5.	136
S.E/mean	$=14.66 \mathrm{lb}$./ac.

Crop:-Wheat (Rabi).
Site :-Agri. Res Stn., Mohol.

Ref :-Mh. 49(141).
Type :- ' M '.

Object:-To study the effect of leguminous crop (gram) raised with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) Gram-Wheat. (b) Gram (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 1 ploughing and 4 harrowings. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Kenphad-25. (vii) Unirrigated. (viii) 3 interculturings and 1 weeding. (ix) $1.14^{\prime \prime}$ (x) N.A.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
5. Fallow in Kharif and grown in Rabi.
6. DESIGN :
(i, R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $30^{\prime} \times 15^{\prime}$. (v) N.A. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi! and (vii) Nil.
8. RESULTS:
(i) $293 \mathrm{lb} . / \mathrm{ac}$.
(ii) $43.30 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yreld of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	288
2.	300
3.	297
4.	279
5.	303
S.E./mean	$=19.35 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi),
Ref :- Mh. 50(9).
Site :- Agri. Res. Stn., Mohol.
Type:-' M '.

Object:-To study the effect of leguminous crop Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.
4. BASAL CONDITIONS :
(i) (a) No. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 25.10 .1950 . (iv) (a) N.A. (b) Drilled with 3 coultered drill. (c) $40 \mathrm{lb} / / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) F.Y.M. at 5 C.L./ac. once in 3 years. (vi) Jay. (vii) Unirrigated. (viii) Interculturing 4 times. (ix) $9.91^{\prime \prime}$. (x) 13.2.1951.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}^{2} \mathrm{O}_{5}$ applied to Gram crop.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
4. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
5. Fallow in Kharif and grown in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) $115^{\prime} \times 38^{\prime}$. (iii) 5 . (iv) (a) $23^{\prime} \times 38^{\prime}$. (b) $15^{\prime} \times 30^{\prime}$. (v) 4^{\prime} alround net plot. (vi) Yes.
7. GENERAL:
(i) Stunted growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Rainfall was $n_{i} t$ well distributed. Due to want of mulch and cordition of soil, sowing was delayed. After sowing no rain was received which affected the growth of the crop.

5. RESULTS :

(i) $261 \mathrm{lb} . / \mathrm{ac}$.
(ii) $69.70 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	247
2.	235
3.	296
4.	269
5.	258
S E./mean	$=31.22 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Mohol.
Ref:- Mh. 51(9).
Type :~'M'.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) No. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 29.9.1951. (iv) (a) 4 times harrowing. (b) Drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil, (vi) Jay. (vii) Unirrigated. (viii) 3 times interculturing. (ix) 7.49". (x) 25.1.1952.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{9} \mathrm{O}_{5}$ applied to Gram crop.
5. Fallow in Kharif and grown in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) $38^{\prime} \times 115^{\prime}$. (iii) 5. (iv) (a) $38^{\prime} \times 23^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 4^{\prime} alround net plot. (vi) Yes.
7. GENERAL :
(i) Crop was fair and normal. But the yield was not satisfactory. (ii) No. (iii) Grain yield. (iv) (a) 19491954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) The atmosphere was not cloudy during the time of grain formation. No rains were received during growth and there was no moisture in the soil.
8. RESULTS:
(i) $288 \mathrm{lb} . / \mathrm{ac}$.
(ii) $88.09 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	265
2.	299
3.	269
4.	295
5.	312
S.E./mean	$=39.69 \mathrm{lb} . / a c$.

Crop:- Wheat (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref:- Mh. 52(111).
Type:- ' M '.

Object:-To study the effect of leguminous crop Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) No. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (ii) 1.10 .1952 . (iv) (a) Harrowed 5 times. (b) Drilled with 3 coultered seed drill. (c) 40 lb ./ac. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) F.Y.M. at 5 C.L./ac. once in 3 years. (vi) Jay. (vii) Unirrigated. (viii) 2 interculturings and weeding. (ix) 5.03*. (x) 2.1.1953.
2. TREATMENTS :

1. Control no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
3. $100 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram crop.
5. Fallow in Kharif and grown in Rabi
6. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) $115^{\prime} \times 38^{\prime}$. (iii) 5 . (iv) (a) $23^{\prime} \times 38^{\prime}$. (b) $15^{\prime} \times 30^{\prime}$. (v) 4^{\prime} alround net plot. (vi) Yes.
7. GENERAL :
(ii) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Experiment failed in 1953. (vii) Nil.
8. RESULTS :
(i) $1738 \mathrm{lb} / \mathrm{ac}$.
(ii) $786.5 \mathrm{lb} . \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yleld of grain in lb./ac.

Treatment	Av. yield
1.	1684
2.	1800
3.	1704
4.	2013
5.	1491
S.E./mean	$=351.6 \mathrm{lb}$. iac.

$\begin{array}{ll}\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 53(211). } \\ \text { Site :- Agri. Res. Stn., Mo hol. } & \text { Type :- 'M'. }\end{array}$
Object:-To study the effect of leguminous crop Groundnut grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) No. (t) Groundnut. . (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 23.9.1953. (iv) (a) N.A. (b) Drilled with 3 coultered drill. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Jay. (vii) Unirrigated. (viii) Interculturing on 21.11.1953 and bullock hoeing on 8.12.1953.
(ix) 8.89". (x) 8,9.2.19>4.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Groundnut crop.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Groundnut crop.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Groundnut crop.
5. Fallow in Kharif and grown in Rabi.

3. DESIGN :

(i) R.B.D. (iii) (a). 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} all round net plot. (vi) Yes.

4. GENERAL :

(i) Fair. (ii) Nil. (iii) Weight of grain. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $319 \mathrm{lb} . / \mathrm{ac}$.
(ii) $31.05 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	310
2.	343
3.	319
4.	353
5.	271
S.E./mean	$=13.91 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Site :^Agri. Res. Stn., Mohol.

Ref:-Mh. 49(59).
Type :- 'M'.

Object:-To study the effect of a leguminous crop Chinamug grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS:
(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 18.9 .1949 . (iv) (a) N.A. (b) Drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) 12^{n} between rows. (c) Nil. (v) Nil. (vi) Jay. (vii) Unirrigated. (viii) One interculturing. (ix) 1.14". (x) 16.1.1950.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
5. $\mathbf{j 0 0} \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
7. Fallow in Kharif and grown in Rabi.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42{ }^{\circ} \times 27^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 6^{\prime} all round net plot. (vi) Yes.
9. GENERAL :
(i) N.A. (ii) Nil. (iii) N.A. (iv) (a) 1949-1954. (b) No. (c) Nil. (v) (a) Niphad. (b) N.A. (iv) and (vii) Nil.
10. RESULTS :
(i) $363 \cdot \mathrm{lb} / \mathrm{ac}$.
(ii) $59.67 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	334
2.	346
3.	364
4.	396
5.	374
S.E./mean	$=26.68 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref:-Mh. 53(209).
Type: : ‘'M'.
Object :-To study the effects of leguminous crop Chinamug grown with and without $\mathrm{P}_{\mathbf{3}} \mathrm{O}_{5}$ on the succeeding crop Wheat,

1. BASAL CONDITIONS:

(i) (a) Chinamug - Wheat. (b) Chinamug. (b) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 18.10 .1953 . (iv) (a) N.A. (b) Drilled with 4 coultered drill. (c) 40 lb ./ac. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Jay. . (vii) Unirrigated. (viii) 2 bullock interculturings. (ix) 8.89°. (x) 22 to 25.2.1954.
2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
5. Fallow in Kharif and grown in Rabi.
6. DESIGN :
(i) R B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 27^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 6^{\prime} all round net plot. (vi) Yes.
7. GENERAL :
(i) The crop was very much affected owing to heavy moisture cor tent in the soil. The stand of the crop was also very much uneven. (ii) The crop was attacked slightly by root-rot. (iii) Grain yield. (iv) (a) 1949-1954. (b) No. (c) N.A. (v) (a) Niphad and Jalagaon. (vi) and (vii) Nil.
8. RESULTS :
(i) $191 \mathrm{lb} . / \mathrm{ac}$.
(ii) $100.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

Treatment Av yiel

1. 174
2. 184
3. 192
4. 197
$5 . \quad 209$
S.E./mean $\quad=45.02 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :- Govt. Expt. Farm, Nagpur.
Ref :- Mh. 51(118).
Type:- ' M '.

Object :-To determine the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Wheat crop.

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) N.A. (ii) (a) Blaç cotton. (b) Refer soil analysis, Nagpur. (iii) 7, 8.11.1951. (iv) (a) N.A. (b) Drill (c) $50 \mathrm{lb} / \mathrm{ac}$. (d) Between rows $10^{\prime \prime}$; between plants-irregular. (e) N.A. (v) N 1. (vi) NP-52. (vii) Unirrigated. (viii) N.A. (ix) 5.28". (x) 28.3.1952.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 leve's of $N: N_{0}=0, N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac.
(2) 5 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{\mathbf{2}}=30, \mathrm{P}_{3}=45$ and $\mathrm{P}_{4}=60 \mathrm{lb}$./ac.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) 3×5 Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3 . (iv) (a) N.A. . (b) $49.5^{\prime} \times 11^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A.
(vi) and (vii) Nil.
5. RESULTS :
(i) 747 lb ./ac.
(ii) $117.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

		P_{0}	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	\mathbf{P}_{3}	\mathbf{P}_{4}	Mean
N_{0}		827	773	787	760	720	773
N_{1}		613	760	813	613	747	709
\mathbf{N}_{2}		667	907 .	760	780	773	757
Mean		702	813	787	684	747	747

S.E. of marginal mean of \mathbf{N}	$=30.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of \mathbf{P}	$=39.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=67.7 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:- Wheat (Rabi).
Site :- Govt. Expt. Farm, Nagpur:
```

Ref:- Mh. 52(147).
Type :- 'M'.

Object :-To determine the N and $\mathrm{P}_{3} \mathrm{O}_{5}$ requirements of Wheat crop.

1. BASAL CONDITIONS :

(i) (a) No. (b) Wheat. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 28.19.1952. (iv) (a) N.A. (b) By tiffan. (c) $50 \mathrm{lb} . / \mathrm{ac}$. (d) Between lines 10°. (c)-. (v) Nil. (vi) NP-52. (vii) Unirrigated. (viii) 3 weedings and 2 hoeings. (ix) 1.79". (x) 20.2.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=\mathbf{0}, \mathrm{N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb}$./ac.
(2). 5 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45$ and $\mathrm{P}_{4}=60 \mathrm{lb} . / \mathrm{ac}$.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 3×5 Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3 . (iv) (a) N.A. (b) $49.5^{\prime} \times 11^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) λ il. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A
(vi) and (vii) Nil.
5. RESULTS:
(i) $633 \mathrm{lb} / \mathrm{ac}$.
(ii) $90.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} alone is significant.
(iv) Av. yield of grain in lb $/ \mathrm{ac}$.

	P	P_{1}	P_{2}	$\mathbf{P z}_{\mathbf{z}}$	P_{4}	Mean
N_{0}	635	582	524	680	624	609
N_{1}	580	620	624	660	697	636
N_{2}	614	544	657	667	787	654
Mean	610	582	601	669	702	633
S.E of marginal mean of N S.E of marginal mean of P S.E. of body of table					$=23.3 \mathrm{lb} / \mathrm{ac}$	
					$=30.1 \mathrm{lb} / \mathrm{ac}$.	
					$=52.1 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Wheat (Rabi).
Site:-Govt. Expt. Farm, Nagour.

Ref:- Mh. 53(200).
Type:- ' \mathbf{M}^{\prime}.

Object :-To determine the N and $\mathrm{P}_{2} \mathrm{O}_{3}$ requirements of Wheat.

1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpar. (iii) 26.10.1953. (iv) (a) 2 ploughings and 4 bakharings. (b) N.A. (c) $50 \mathrm{lb} / \mathrm{/ac}$. (d) N.A. (c) -. (v) Nil. (vi) NP-52 (early). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 1.58". (x) 2)2. 1954 to 21.2.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(I) 3 levels of $\mathrm{N}: \mathrm{N}_{6}=0, \mathrm{~N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb} . / \mathrm{lac}$.
(2) 5 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=15, P_{2}=30, P_{3}=45$ and $P_{4}=60 \mathrm{lb} / \mathrm{ac}$.
N applied as A / S and $P_{2} O_{5}$ as Super.
3. DESIGV:
(i) 3×5 Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3 . (iv) (a) $33.8^{\circ} \times 17.3^{\circ}$. (b) $33.0 \times 16.5^{\circ}$. (v) 10° round the plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) No (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 526 lb ./ac.
(ii) $160.2 \mathrm{lb} / / \mathrm{ac}$
(iii) None of the effects is significant.
(iv) Av. yield of grain is $\mathrm{lb}, / \mathrm{ac}$.

	P_{0}	\mathbf{P}_{1}	P_{2}	P_{s}	\mathbf{P}_{4}	Mean
\mathbf{N}_{0}	633	607	510	550	377	535
N_{1}	570	467	540	555	414	509
N_{2}	507	515	630	494	513	5:2
Mean	570	530	560	533	435	526

S.E. of marginal mean of N
S.E. of marginal mean of P
S.E. of body of table
$=41.4 \mathrm{lb} / \mathrm{ac}$
$=53.4 \mathrm{lb} / \mathrm{lac}$
$=92.5 \mathrm{lb} / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Ref:- Mh. 53(228).
Site :- Govt. Expt. Farm, Nagpur.
Type :~'M'.
Object :-To compare the effects of C / N and A / S on the yield of Wheat.

1. BASAL CONDITIONS :

(i) (a) No. (b) Wheat. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 25.10.1953. (iv) (a) 2 ploughings and 4 bakhering. (b) Sown by tiffan. (c) 50 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) NP-52. (vii) Unirrigated. (viii) N.A. (ix) 1.58". (x) 20.2.1954 to 21.2.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 sources of $N: S_{1}=A / S$ and $S_{2}=$ G.N.C.
(2) 3 levels of $N: N_{0}=0, N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac.
3. DESIGN:
(i) 3×2 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 5 . (iv) (a) $50.3^{\circ} \times 22.8^{\circ}$. (b) $49.5^{\circ} \times 22.0^{\circ}$. (v) 10° round the plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $591 \mathrm{lb} . / \mathrm{ac}$.
(ii) $115.8 \mathrm{lb} / / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv): Av. yield of grain in lb./ac.

	\mathbf{S}_{1}	S_{2}	Mean
N_{0}	-	-	608
N_{1}	647	601	624
\mathbf{N}_{2}	537	545	541
Mean	592	573	-:

S.E. of any marginal mean	$=36.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=51.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Site :- Govt. Expt. Farm, Nagpur.

> Ref :- Mh. $53(229)$.
> Type :- 'M'.

Object:-To study the effect of green manuring on Wheat in comparison with A/S.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 24.10 .1953. (v) (a) 4 bakharings and 2 ploughings. (b) N.A. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (c) \rightarrow (v) Nil. (vi) Hawral. (medium). (vii) Unirrigated, (viii) N.A. (ix) 1.58'. (x) 19,20.2.1954.

2. TREATMENTS :

1. Control.
2. Green manuring with Sannhemp +20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of sowing.
3. Sowing early mung during Kharif to be followed by Wheat (Mung $20 \mathrm{lb} . / \mathrm{ac}$.).
4. Ammo. Phos. at $20 \mathrm{lb} . / \mathrm{ac}$. of N one month before sowing.
5. Ammo. Phos. at 20 lb ./ac. of N at the time of sowing.
6. \mathbf{A} / S at $20 \mathrm{lb} . / \mathrm{ac}$. of \mathbf{N} at the time of sowing. Sannhemp and mung were sown on 25.6.1953 and were buried on 8.3.1953.
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 5 . (iv) (a) $50.5^{\prime} \times 12^{\prime}$. (b) $49.5^{\prime} \times 11^{\prime}$. (v) 1^{\prime} all around the plot. (vi) Yes.
8. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) $1953-$ N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) $1143 \mathrm{lb} . / \mathrm{ac}$.
(ii) $238.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatmetns do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1028
2.	1110
3.	1142
4.	1056
5.	1420.
6.	1102
S.E./mean	$=106.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).	Ref :-Mh. 53(230).
Site :- Govt. Expt. Farm, Nagpur.	

Object :-To study the effect of methods of application of different doses of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield and quality of Wheat.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) $29,30.10 .1953$. (iv) (a) to (e) N.A. (v) Nil. (vi) Wheat, Hawaral (medium). (vii) Unirrigated. (viii) N.A. (ix) $0.24^{\prime \prime}$. (x) Last week of Peb. 1954.
2. TREATMENTS:

Main-plot treatments :
4 methods of application of N and $P_{2} O_{5}: M_{1}=B y$ hand placement, $M_{2}=$ By hill placement, $\mathbf{M}_{\mathbf{3}}=$ By mixing with seeds and $\mathbf{M}_{4}=$ By broadcasting.

Sub-plot treatments:

All combinations of (1) and (2)
(1) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=15$ and $\mathrm{P}_{\mathbf{2}}=30 \mathrm{lb}$./ac.
3. DESIGN:
(i) Split-plot. (ii) .(a) 4 main-plots/block ; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) :N.A. (b) $1 / 67$ th of an ac. (v) N.A. (vi) Yes.
4. GENERAL :
:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) and (b) N.A: (vi) and (vii) Nil.

5. RESULTS:

(i) $169 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $85.69 \mathrm{lb} . / \mathrm{ac}$.
(b) $44.52 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only the interaction $M \times N$ is significant.
(iv) Av. yield of grain in lb./ac.

	$\mathrm{M}_{\mathbf{i}}$	M_{2}	\mathbf{M}_{8}	M_{4}	Mean	N_{i}	N_{2}
\mathbf{P}_{1}	168	213	162	151	173	186	161
$\mathbf{P a}_{\mathbf{2}}$	158	178	170	156	166	165	166
Mean	163	195	166	153	169	175	163
N	164	199	201	139	175		
N_{8}	163	192	131	168	163		

S.E. of difference of two
$\begin{array}{ll}\text { 1. } M \text { marginal means } & =11.13 \mathrm{lb} / \mathrm{ac} . \\ \text { 2. } \mathrm{N} \text { or } \mathrm{P} \text { marginal means } & =30.26 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } \mathrm{N} \text { or } \mathrm{P} \text { means at the same level of } \mathrm{M} & =22.33 \mathrm{lb} . \mathrm{oc} . \\ \text { 4. } \mathrm{M} \text { means at the same level of } \mathrm{N} \text { or } \mathrm{P} & =34.21 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop:- Wheat (Rabi).
Site :- Govt. Expt. Farm, Nagpur,

Ref:- Mh. 52(146).
Type:- ' \mathbf{M}^{\prime}.

Object :-To study the effect of pre-treated wheat seed with different fertilizers on Wheat crop.

1. BASAL CONDITIONS:
(i) (a) Wheat -Wheat. (b) Wheat. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur.
(iii) 1.11.1952. (iv) (a) 5 bakharings and 2 ploughings. (b) By tiffan. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (c)-. (v) Nil. (vi) Wheat-Hawral. (vii) Unirrigated. (viii) N.A. (ix) 1.78". (x) 23.2.1953.
2. TREATMENTS :
3. Dry seed (control).
4. Seed soaked in water.
5. A/S solution (one molar).
6. Mono. Pot Phosphate solution (one molar).

Seed soaked for 24 hours.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 80$ th. ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 552 lb./ac.
(ii) $126.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb}_{\mathrm{o}} / \mathrm{ac}$.

Treatment	Av. yield
1.	549
2.	653
3.	503
4.	501
S.E./mean	$56.50 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :- Govt. Expt. Farm, Nagpur.

Ref:- Mh. 53(199).
Type = ' \mathbf{M}.

Object :-To study the effect of wheat seed pre-treated with different fertilizer solations on the yield of Wheat crop. -

1. BASAL CONDITIONS:

(i) (a) No particular crop rotation. (b) Wheat. (c) N A. (ii) (a) Black cetton soil (b) Refer soil analysis, Nagpur. (iii) 25.10 .1953 . (iv) (a) 4 bakharings and 2 pioughings. (b) N.A. (c) $60 \mathrm{lb} / \mathrm{ac}$. (d) N.A. (e) N.A. (v) Nil. (vi) Wheat-Hawral. (vii) Unirrigated. (viii) N.A. (ix) 1.58\% (x) 20.2.1954,
2. TREATMENTS :

1. Dry seed (control).
2. Seed soaked in pure water.
3. Ammonium sulphate solution (one molar).
4. Mono. Pot. Phosphate (one molar).
5. Sodium nitrate (one molar).

Seed soaked for 24 hours.
3. DESIGN :
(i) L. sq. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $33^{\prime} \times 16.5^{\circ}$ (b) $1 / 90$ th ac. (v) 11^{\prime} plot to plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1096 \mathrm{lb} / \mathrm{ac}$.
(ii) $188.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1. 1076
2. 1103
3. 1019
4. 1148
5.1135
S.E $/$ mean $=84.40 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wheat (Rabi).
Ref:-Mh. 53(337).
Site : m Agri. Res. Stn., Niphad.
Type :~'M'.
Object:-To find out the \mathbf{N} requirements of Wheat.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Niphad. (iī) 2.11.1953. (iv) (a) N.A. (b) Drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) 10° between rows. (e) 一. (v) 5 C.L./ac. of F.Y.M, (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) 4.65". (x) 16.3.1954.

2. TREATMENTS :

1. Control.
2. $40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
3. 40 lb ./ac. of N as $\mathrm{G} . \mathrm{N} . \mathrm{C} .+\mathrm{A} / \mathrm{S}$ in $1: 1$ ratio.
4. 40 lb ./ac. of N as Calcium Cynamide.
5. 40 lb ./ac. of \mathbf{N} as G.N.C.+Calcium Cynamide in $1: 1$ ratio.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) $15^{\circ} \times 70^{\circ}$. (b) $8.3^{\circ} \times 60^{\circ}$. (v) N.A. (vi) Yeh
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1953-$ N.A. (b) N.A. (c) Nil. (v) (a) Dhullia and Kopergaon. (b) Nil. (vi) and (vii) Nil.
8. RESULTS :
(i) $1408 \mathrm{lb} / \mathrm{ac}$.
(ii) $324.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	1495
2.	$1: 80$
3.	1400
4.	1283
5.	1585
S. B./mean	$=229.3 \mathrm{lb} . / \mathrm{ac}$.

Crop : Wheat (Rabi).	Kef :-Mh. 52(310).
Site :-Agri. Res. Stn., Niphad.	Type :ب‘'M'.

Object :-To study the utility of Sann hemp as a green manuring crop for Wheat.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) Nil. (ii) (a) Medium black-loamy. (b) Refer soil analysis, Niphad. (iii) 1.8.1952. (iv) (a) N.A. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) Kenphad-25. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 11.3.1953.

2. TREATMENTS :

1. Fallow in Kharif.
2. Sann hemp grown in Kharif and buried.
3. Sann hemp grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super grown in Kharif and dumped.
4. Sann hemp grown in K arif, buried +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to Wheat crop.
5. Sann hemp grown in Kharif; buried +30 lb ./ac. of N as A / S applied to Wheat.
6. Sann hemp grown in Kharif, buried $+60 \mathrm{lb} / \mathrm{ac}$. of N as A / S applied to Wheat crop.
7. Design :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 2. (iv) (a) $72^{\prime} \times 15^{\prime}$. (b) $60^{\prime} \times 10^{\prime}$. (v) $6 \times 2.5^{\prime}$. (vi) Yes.
8. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1958. (b) N.A. (c) Nil. (v) (a) Kopergaon and Khopoli. (b) Nil. (vi) and (vii) Nil.
9. RESULTS :
(i) $1565 \mathrm{ib} . / \mathrm{ac}$.
(ii) $230.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	1379
2.	1379
3.	1570
4.	1645
S.	1720
6.	1697
S.E./mean	$=162.8$ lb./ac.

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Niphad.

Ref:- Mh. 52(330).
Type:- 'M'.
Object :-To study the utility of Mung crop as a green manuring crop for Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Medium black, loamy. (b) Refer soil ianalysis, Niphad. (iii) 1.8 .1952 . (iv) (a) Nil. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\text {n }}$ between rows. (e) -. (v) Nil. (vi) Niphad-4. (vii) Irri gated. (viii) 2 weedings. (ix) N.A. (x) 11.3.1953.
2. TREATMENTS :
3. Control (fallow in the past).
4. Situ-green manure buried in the same site.
5. Burying mung grown in another plot.
6. Rotational effect.
7. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $72^{\prime} \times 15^{\prime}$. (b) $60^{\prime} \times 10^{\prime}$. (v) N.A. (vi) Yes.
8. GENERAL :
(i) Growth good. Rainfall was inadequate. The area was heavily infested with weeds especially, hariyali, (ii) Nil. (iii) Grain yield. (iv) (a) 1952 to 1954 (modified in 1953 to 19.4). (b) N.A. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) $1297 \mathrm{lb} . / \mathrm{ac}$.
(ii) $249.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1193
2.	1511
3.	1327
4.	1157
S.E./mean	$=176.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn, Niphad.

Ref:- Mh. 53(353).
Type :- 'M'.

Object :-To study the utility of Mung crop as a green manuring crop for Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Sweet-potato. (c) Nil. (ii) (a) Medium black, loamy. (b) Refer soil analysis, Niphad. (iii) 1.11 .1953 . (iv) (a) Nil. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) Niphad-4. (vii) Irrigated. (viii) Nil. (ix) 4.65". (x) 16.3.1954.
2. TREATMENTS :
3. Control (Fallow in the past).
4. Situ green manure buried in the same plot.
5. Burying Mung grown in another plot.
6. Rotational effect.
7. Fallow (another plot).
8. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 2. (iv) (a) $72^{\prime} \times 15^{\prime}$. (b) $56^{\prime} \times 5^{\prime}-10^{\prime \prime}$. (v) N.A. (vi) Yes.
9. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1954 (modified in 1953-1954), (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. ${ }^{\text {I. RESULTS }}$:

(i) $806 \mathrm{lb} . / \mathrm{ac}$.
(ii) $122.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	692
2.	971
3.	708
4.	813
5.	846
S.E./mean	$=86.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :~Wheat (Rabi).
Site:- Agri. Res. Stn., Niphad.

Ref:- Mh. 50(57)
Type: $\boldsymbol{n}^{\prime} \mathrm{M}^{\prime}$.

Object:-To study the effect of Chinamag raised with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal Wheat crop.

1. BASAL CONDITIONS:

(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments. (ii) (a) Loamy, medium. (b) Refer soil analysis, Niphad. (iii) 24.7.1950. (iv) (a) N.A. (b) Drilled. (c) 40 lb ./ac. (d) Between rows $10^{\prime \prime}$ and between plants irregular. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Jay-Vijay. (vii) Irrigated. (viii) Gap filling and hand weeding. (ix) Nil. (x) 17.2.1951.

2. TREATMENTS:

1. Control ($n 0 \mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinzmug in Kharif.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug in Kharif.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ applied to Chinamug in Kharif.
5. Fallow in Kharif and sann in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\circ} \times 15^{\circ}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL:
(i) Fair stand and growth gappy. (ii) Nil. (iii) Grain yield. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil..

5. RESULTS :

(i) $263 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $43.04 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb,/ac.

Treatment	Av. yield
1.	242
2.	267
3.	232
4.	255
5.	321
S.E./mean	$=19: 24 \mathrm{lb} . /$ ac.

Crop:- Wheat (Rabi).
Site :- Agri. Res. Stn., Niphad.
Object :-To study the effect of leguminous crop Chinamug grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) Chinamug-Wheat. (b) Chinamug. (c) As per treatments. (ii). (a) Loamy, medium black.
(b) Refer soil analysis Niphad. (iii) 25.10 .1951 . (iv) (a) No ploughings. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $10^{\prime \prime}$ and between plants irregular. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Vijay. (vii) Unirrigated. (viii) Nil. (ix) $1^{\prime \prime}$. (x) 16.2.1952.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug in Kharif.
3. $103 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug in Kharif.
4. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug in Kharif.
5. Fallow in Kharif and grown in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1950-1953$. (b) No. (c) N.A. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i, 382 lb ./ac.
(ii) $76.33 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield ${ }^{\circ}$
1.	312
2.	363
3.	330
4.	421
5.	486
S.E./mean	$=34.12 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (kabi).
Site :- Agrí. Res. Stn., Niphad.
Ref :- Mh. 53(60).
Type:- ' M '.
Object :-To study the residual effect of $\mathrm{N}, \mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ and F.Y.M. manures applied to Bajra in Kharif on Wheat in Rabi.

BASAL CONDITIONS :

(i) (a) Gram-Bajra-Wheat. (b) Bajra. (c) As per treatments. (ii) (a) Loamy to clay loam, medium black to deep black. (b) Refer soil analysis, Niphad. (iii) 18.10.1953. (iv). (a) One iron and 2 wooden ploughings. (b) to (e) N.A. (v) Nil. (vi) Kenphad-28 (yellow, early). (vii) Unirrigated. (viii) 3 harrowings. (ix) 4.65". (x) 13 and 14.3.1954.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{1}=40, N_{2}=60$ and $N_{3}=80 \mathrm{lb}$./ac.
(2) 2 levels of $P_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $\mathrm{F}_{1}=2.5$ and $\mathrm{F}_{2}=5$ C.L./ac.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
These manures were applled to the previous crop Bajra in Kharif and the residual effect on wheat in Rabi is studied.
3. DESIGN :
(i) $3 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round net plot. (vi) Yes.
4. GENERAL :
(i) Growth was normal ; however gappy growth in few plots due to foot rot and rat trouble. (ii) Foot rot and rat trouble. (iii) Grain yield. (iv) (a) $1951-$ N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $486 \mathrm{lb} / \mathrm{ac}$
(ii) $110.4 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb/ac.

	\mathbf{N}_{1}	N_{3}	\mathbf{N}_{3}	Mean	P_{1}	F_{2}
\mathbf{P}_{1}	449	461	498	470	506	434
P_{8}	501	502	508	504	523	485
Mean	475	481	503	486	514	459
F_{1}	529	492	521			
F_{2}	420	472	485			

S.E. of marginal mean of $N \quad=27.1 \mathrm{lb} . / \mathrm{ac}$
S.E. of marginal mean of P or $F \quad=22.3 \mathrm{lb} . / \mathrm{ac}$
S.E of body of table $\mathbf{N} \times \mathbf{P}$ or $\mathbf{N} \times \mathbf{F} \quad=39.0 \mathrm{lb} / \mathrm{ac}$.
S.E of body of table $\mathbf{P} \times \mathbf{P} \quad-31.9 \mathrm{lb} . \mathrm{jac}$.

Crop:-Wheat (Rabi).
Site : -Agri. Res. Stn., Niphad.

Ref :-Mh. 53(61).
Type :-'M'.

Object:-To study the residual effect of leguminous crop (Mung) grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{4}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS:
(i) (a) Mung-Wheat. (b) Mung. (c) As per treatments. (ii) (a) iLoamy to clay loam in texture: medium black in colour. Depth of the soil 3^{\prime} to $7^{\prime \prime}$. (b) Refer soil analysis, Niphad. (iii) 20.10.1953. (iv) (a) I iron and 2 wooden ploughings. (b) to (e) N.A. (v) N.A. (vi) Kenphad K-2s (yellow, carly). (vii) Unirrigated. (viii) 2 to 3 harrowings. (ix) 4.65'. (x) 15.2.1954.

2. TREATMENTS:

1. $\mathrm{N} O \mathrm{P}_{2} \mathrm{O}_{5}$ to Mung in Kharif.
2. 50 ib ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Mung in Kharif.
3. $100 \mathrm{Jb} . / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Mung in Kharif.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$ to Mung in Kharif.
5. Fallow in Kharif and sown in Rabi.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super was applied to the previous legume (Mung in 'Kharif) crop and its residual effect was studied on the succeeding cereal (Wheat in Rabi).
6. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\circ} \times 15^{\circ}$. (v) 5° all round the net plot. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Foot rot was seen. (iii) Grain yield. (iv) (a) 1953-1954. (b) No. (c) N.A. (v) (a) and (b) N.A (vi) and (vii) Nil.
8. RESULTS:
(i) $315 \mathrm{lb} / \mathrm{ac}$.
(ii) $46.46 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	292
2.	319
3.	315
4.	305
S.	344
S E./mean	$=20.76 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Wheat (Rabi).
Site :-Agri. Res. Stn., Padegaon.

Ref:-Mh. 48(60).
Type :- ${ }^{\prime} \mathbf{M}$ '.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of irrigated Wheat.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) 'B' typs. (b) Refer soil analysis, Padegaon. (iii) 4.11.1948. (iv) (a) to (c) N.A. (d) 12° between rows. (e) N.A. (v) 5 C.L.fac. of F.Y.M. (vi) Niphad-4. (vii) lrrigated. (viii) N.A. (ix) 22.47". (x) 13.3.1949.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=56 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact in R.B.D. (ii) (a) 16. (b) N.A. (iii) $4 . \quad$ (iv) (a) $28^{\prime} \times 24^{\prime} . \quad$ (b) $20^{\circ} \times 18^{\prime} . \quad$ (v) $4^{\prime} \times 3^{\prime}$. (vi) Yes.
4. GENERAL :
(i) and (i) N.A. (iii) Grain yield. (iv) (a) 1948-1949 (modified in 1950). (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $323 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $120.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significiant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{N}_{0}	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
\mathbf{P}_{0}	387	343	389	409	382
\mathbf{P}_{1}	324	348	299	343	329
$\mathbf{P}_{\mathbf{2}}$	263	263	335	288	287
\mathbf{P}_{9}	263	325	243	349	295
Mean	309	320	317	347	323

S.E.-of marginal mean of N or P
S.E. of body of table

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Padegaon.

Ref: Mh. 49(94).
Type:- ' M '.

Object :-To study the N and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ requirement of Wheat.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 7.11.1949. (iv) a), (b) and (c) N.A. (d) $12^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Niphad-4. (vii) Irrigated. (viii) 2 weedings. (ix) $23.32^{\prime \prime}$. (x) 12.3.1950 to 13.3.1950.
2. TREATMENTS:

All combinations of (1) and (2).
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{\mathbf{2}}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$ 。/ac.

N applied as A / S and $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super on 6, 7.11.1949.
3. DESIGN .
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $28^{\prime} \times 24^{\prime}$. (b) $20^{\prime} \times 18^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil, (iii) Grain yield. (iv) (a) $1948-1949$ (modified in 1950). (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $444 \mathrm{lb} . / \mathrm{ac}$.
(ii) $168.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	$\mathbf{N}_{\mathbf{1}}$	N_{2}	$\mathbf{N}_{\mathbf{g}}$	Mean
P.	351	571	369	607	475
\mathbf{P}_{1}	495	506	490	523	504
P_{2}	455	300	459	412	407
$\mathbf{P}_{\mathbf{3}}$	319	356	445	458	395
Mean	405	433	441	500	444
S.E. of marginal mean of \mathbf{N} or \mathbf{P} S.E. of body of table			$\begin{aligned} & =42.0 \mathrm{lb} . / \mathrm{ac} . \\ & =84.0 \mathrm{lb} . \mathrm{ac} . \end{aligned}$		

[^0]Ref :- Mh. 49(95).
Type :- 'M'.

Object:-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirement of Wheat.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) 'B' type, (b) Refer soil analysis, Padegaon. (iii) 1.11.1949. (iv) (a) N.A. (b) N.A. (c) N.A. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Niphad-4. (vii) Irrigated. (viii) N.A. (ix) 23.32°. (x) 6.3.1950 to 7.3.1950.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{3}=64$ and $N_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{8}=96 \mathrm{lb}$./ac.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super on 27.10.1949 and 28.10.1949.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $16^{\prime} \times 42^{\prime}$. (b) $12^{\prime} \times 36.3^{\circ}$ (v) N_{A}.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1949 (modified in 1950). (b) No. (c) No. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
S. RESULTS:
(i) $1007 \mathrm{lb} . / \mathrm{ac}$.
(ii) 180.8 lb ./ac.
(iii) Main effect of N is bighly significant while P and NP are significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	N_{1}	N_{2}	N_{3}	Mean
\mathbf{P}_{0}	782	956	925	1169	958
\mathbf{P}_{1}	715	1024	1212	1206	1039
P_{2}	830	995	1263	1004	1023
P_{3}	898	908	1008	1218	1008
Mean	806	970	1102	1149	1007
S.E. of marginal mean of \mathbf{N} or \mathbf{P}				$=48.20 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of table				$=50.42 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Wheat (Rabi).
Ref :- Mh. 50(117).
Site :- Agri. Res. Stn., Padegaon.
Type :- ' \mathbf{M}^{\prime}.
Object :-To find out the optimum dose of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ for Wheat crop with and without basal dose.

4. BASAL CONDITIONS :

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 30.10.1950. (iv) (a) N.A. (b) Drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) 12°. (c) N.A. (v) Nil. (vi) Niphad-4. (vii) Irrigated. (viii) 1 harrowing. (ix) 22.91". (x) 24.2.1951.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{2}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{1}=32, P_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super on 30.10.1950.
3. DESIGN :
(i) $4 \times 4 \times 2$ Fact, in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) $27^{\prime} \times 20^{\prime}$. (b) $22.7^{\prime} \times 16^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1953 (modified in 1950). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
3. RESULTS :
(i) $528 \mathrm{lb} / \mathrm{ac}$.
(ii) $110.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of P and interactions NP, PF are significant. Others are not significant.
(iv) Av. yield of grain in lb ./ac.

	P_{0}	P_{1}	$\mathrm{P}_{\mathbf{8}}$	$\mathrm{P}_{\mathbf{8}}$	Mean	F_{0}	F_{1}
N_{0}	432	507	603	646	547	521	572
N_{1}	352	435 '	556	620	491	469	513
N_{2}	415	513	576	597	526	532	519
N_{3}	346	485	652	712	549	560	537
Mean	387	485	597	644	528	521	535
F_{0}	370	457	606	651			
F_{1}	404	514	588	638			

S.E. of marginal mean of N or P	$=19.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of \mathbf{F}	$=13.8 \mathrm{lb} . \mathrm{ac}$.
S.E. of body of $N \times P$ table	$=39.1 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of $\mathbf{F} \times \mathbf{N}$ or $\mathbf{F} \times P$ table	$=27.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wheat (Rabi).
Ref :» Mh. 51(160).
Site :- Agri. Res. Stn., Padegaon.
Type :- ' M '.
Object:-To find out the optimum dose of N and $\mathrm{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{5}}$ with and without F.Y.M. for Wheat crop

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) No manure. (ii) (a) 'B' type. (b) Refer.soil analysis, Padegaon. (iii) 27.10.1951. (iv) (a) N.A. (b) Drilling by $12^{\prime \prime}$ drill. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$.. (e) N.A. (v) Nil. (vi) Niphad-4. (vii) Irrigated. (viii) 1 harrowing and 1 weeding. (ix) 14.68". (x) 29.2.1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 4 levels of $N: N_{0}=0, N_{1}=32, N_{2}=64$ and $N_{8}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{1}=32, P_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(3). 2 levels of $F . Y . M: F_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESİGN :
(i) $4 \times 4 \times 2$ Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) $24^{\circ} \times 22.5^{\prime}$. (b) $20^{\prime} \times 18.1^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1953 (modified in 1950). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $963 \mathrm{lb} . / \mathrm{ac}$.
(ii) $286.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N and interactions NP, NF are significant. Others are not significant.
(iv) Av. yield of grain in $\mathrm{Ib} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 52(194). } \\
\text { Site :- Agri. Res. Stn., Padegaon. } & \text { Type :- 'M'. }
\end{array}
$$

Object:-To find out the optimum requirement of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ with and without F.Y.M.

1. BASAL CONDITIONS

(i) (a) Nil. (b) Gram. (c) Nil, (ii) (a) 'B’ type. (b) Refer soil analysis, Padegaon. (iii) 27.10.1952, (iv) (a) N.A. (b) Drilled by $12^{\prime \prime}$ drill. (c) 40 $1 \mathrm{~b}, / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) R.R. Wheat. (vii) Irrigated. (viii) 2 weedings. (ix) $11.01^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=32, \mathrm{P}_{2}=64$ and $\mathrm{P}_{3}=96 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.

N applied as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) $4 \times 4 \times 2$ Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4 . (iv) (a) $42^{\prime} \times 15^{\prime}$. (b) $36^{\prime} \times 11^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) 1948-1953 (modified in 1950). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1294 \mathrm{lb} . / \mathrm{ac}$.
(ii) $244.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} is highly significant, that of \mathbf{P} is significant while other effects not significant.
(iv) Av. yield of grain in lb ./ac.

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } N \text { or } P \text { :. } & =43.29 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of marginal mean of } F & =30.60 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of } N \times F \text { or } P \times F \text { table } & =61.22 \mathrm{lb} / \mathrm{ac} . \\
\text { S.E. of body of } N \times P \text { table } & =86.60 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop: Wheat (Rabi).
Site :- Agri. Res. Stn., Padegaon.

Ref :- Mh. 53(280).
Type : ${ }^{\prime} \mathbf{M}$ '.

Object :-To find out the optimum requirement of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ with and without F.Y.M for Wheat.

1. BASAL CONDITIONS :
(i)' (a) Nil. (b) and (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 26.101952. (iv) (a) N.A. (b) Drilled by $12^{\prime \prime}$ drill. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) R.R. Wheat.
(vii) Irrigated. (viii) 1 weeding. (ix) 16.35°. (x) 8.3.1954.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=32, \mathrm{~N}_{2}=64$ and $\mathrm{N}_{3}=96 \mathrm{lb} / \mathrm{ac}$.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=32, P_{2}=6 \downarrow$ and $P_{3}=96 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of P.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.
3. DESIGN:
(i) $4 \times 4 \times 2$ Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4 . (iv) (a) $35^{\prime} \times 18^{\prime}$. (b) $28.3^{\prime} \times 14^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A., (i) Attack of rust was observed. (iii) Grain yield. (iv) (a) 1948-1953 (modified in 1950). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1012 \mathrm{lb} . / \mathrm{ac}$.
(ii) $245.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and interactions NP and NF are significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.

	P_{0}	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{2}}$	\mathbf{P}_{3}	Mean	$\mathbf{F}_{\text {¢ }}$	\mathbf{P}_{1}
N_{0}	881	915	917	973	922	894	950
N_{1}	910	901	919	1029	940	936	944
N_{2}	949	1061	$1 \mathrm{C99}$	1236	1061	1086	1036
N_{3}	1056	1191	1089	1146	1020	1143	1097
Mean	949	1017	1006	1071	1012	1015	1007
- F_{e}	983	1048	998	1028	1015		
F_{1}	914	986	1014	1114	1007		

```
S.E. of marginal mean of N or P
S.E of marginal mean of P
S.E. of body of N}\timesP\mathrm{ table
S.E. of body of N\timesF or P}\times\mathbf{F}\mathrm{ table
```

$=43.39 \mathrm{lb} . / \mathrm{ac}$
$=30.68 \mathrm{lb} . / \mathrm{ac}$.
$=86.80 \mathrm{lb} . / \mathrm{ac}$.
$=61.37 \mathrm{lb}$./ac.

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Padegaon.

Ref :-Mh. 52(325).
Type :- \mathbf{M}^{\prime}.

Object : - To study the effect of Calcium Cynamide on growih and yield of Wheat.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Bajri. (c) Nil. (ii) (a) 'B' type. (b; Refer soil analysis, Padegaon. (iii) 31.10 .1952 (iv) (a) N.A. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.YM. (vi) R.R. Wheat. (vii) Irrigated. (viii) 2 weedings. (ix) 11.01'. (x) 5.3.1953.
2. TREATMENTS :
3. A / S alone.
4. G.N.C. $+A / S$ in $1: 1$ ratio
5. Cakium Cynamide alone.
6. G.N.C.+Cakium Cyoamide in $1: 1$. ratio

Total \mathbf{N} in top dressed is 40 lb ./ac. Calcium Cynamide applied to soil a fortnight before sowing. Hall dowo of A / S and cake at sowing and half dose at tilering.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 3. (iv) (a) $56^{\prime} \times 30^{\prime}$. (b) $45.376^{\prime} \times 24^{\prime}$. (v) N.A. (vi) Yea.
4. GENERAL :
(i) Poor. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $560.5 \mathrm{lb} . / \mathrm{ac}$.
(ii) $92.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	616
2.	612
3.	545
4.	469
S.E./mean	$=53.0 \mathrm{lb} . / \mathrm{lac}$.

Crop :mWheat (Rabi).

Site :-Govt. Main Farm, Parbhani.

Ref:-Mh. 51(22).
Type: © ${ }^{\prime}$ '.
1

Object :-To determine the highest yield obtainable under different manurial treatments.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Wheat. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Parbhani. (iii) 2.10.1951. (iv) (a) Harrowing, cleaning before sowing. (b) and (c) N.A. (d) $18^{\circ \prime}$ apart. (e) N.A. (v) Nil. (vi) P.W. 3. (vii) Irrigated. (viii) Bund making and hoeing. (ix) 4.03". (x) 1.3.1952.
2. TREATMENTS:
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. $80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+80 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+40 \mathrm{lb} . \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. DESIGN :
(i) R.B.D.
(ii) (a) 4.
(b) N.A.
iii) 6. (iv) (a) N.A.
(b) $50^{\circ} \times 13 \frac{1}{2}^{\prime}$. (v) N.A. (vi; Yes.
8. GENERAL :
(i) and (ii) N.A. (iii) Grain yield, (iv) (a) 1951-N.A. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
9. RBSULTS :
(i) $1480 \mathrm{lb} . / \mathrm{ac}$.
(ii) $215.4 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Δv. yield
1.	1564
2.	1470
3.	1467
4.	1419
S.E./mean	$=88.0 \mathrm{lb} . / \mathrm{ac}$

$$
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 52(42). } \\
\text { Site :- Govt. Main Farm, Parbháni. } & \text { Type :- 'M'. }
\end{array}
$$

Ohject :-To determine the highest yield obtainable under different manurial treatments.

1. BASAL CONDITIONS

(i) (a) N.A. (b) Groundnut. (c) 5200 lb ./ac. of Paddy Fertilizer Mixture. (ii) (a) Medium black.
(b) Refer soil analysis, Parbhani. (iii) 10.10.1952. (iv) (a) One ploughing and 5 harrowings before sowing.
(b) Sown behind a two cultered seed drill. (c) N.A. (d) $18^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Wheat P.W.3. (vii) Irrigated. (viii) One cultivator and 2 weedings. (ix) $0.81^{\prime \prime}$. (x) 4.3.1953 to 9.3.1953.
2. TREATMENTS:

1. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. 80 lb ./ac. of $\mathrm{N}+80 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
4. 40 lb ./ac of $\mathrm{N}+40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
\mathbf{N} as 'Paddy Fertilizer Mixture' and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Manures applied in two equal doses, one at sowing and the other after two months.
5. DESIGN : .
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $56^{\prime} \times 16.5^{\circ}$. (b) $50^{\circ} \times 13.5^{\circ}$. (v) N.A. (vi) Yes.
6. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Nil. (iv) (a) $1951-$ N.A. (b) No. (c) No. (v) (a) Nil. (b) Nil. (vi) and (vii) Nil.
7. RESULTS :
(i) 2212° lb./ac.
(ii) $188.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in 1 b ./ac.

Treatment	Av. yicld
1.	2286
2.	2280
3.	2127
4.	2157
S.E./mean	$=77.0 \mathrm{lb} . \mathrm{Jac}$.

```
Crop :- Wheat (Rabi).
Site :- Govt. Main Farm, Parbhani.
Ref:- Mh. 53(19).
Type :- 'M'.
```

Object:-To determine the highest yield obtainable under different manurial treatments.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Yellow soyabean. (c) 200 lb ./ac. of Super. (ii) (a) Medium light black soil. (b) Refer soil analysis, Parbhani. (iii) 12.10.1953. (iv) (a) Twice harrowing and twice cleaning of plots. (b) Sown by country seed drils. (c) Nil. (d) $18^{\prime \prime}$ apart. (c) Nil. (v) Nil. (vi) Wheat PW.3. (vii) Irrigated. (viii) I bullock hoeing and I working of cultivator. (ix) 2.65". (x) 25.2.1954 to 28.2.1954.
2. TREATMENTS :
3. 100 lb ./ac. of $\mathrm{N}+100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
4. $80 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+80 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $60 \mathrm{lb} . / \mathrm{ac}$, of $\mathrm{N}+60 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+40 \mathrm{lb}$ /ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

N as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4.
(b) N.A.
(iii) 6
(iv) (a) $16.5^{\prime} \times 56^{\prime}$.
(b) $13.5^{\prime} \times 50^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Nil. (iv) (a) 1951 -contd. (b) No. (c) No. (v) (a) Nil, (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1401 \quad 1 \mathrm{lb} . / \mathrm{ac}$.
ii) $158.0 \mathrm{Jb}, 1 \mathrm{ac}$.
(iii) Treatment difference are not significant.
(iv) Av yield of grain in lb./ac.

Treatment	Av. yield
1.	1526
2.	1376
3.	1316
4.	1384
S.E./mean	$=64.0 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:- Wheat.
Ref:- Mh. 53(69).
Site :- Agricultural College Farm, Poona.

Object :-To study the availability of N from calcium cynamide in comparison with \(\mathrm{A} / \mathrm{S}\) and G.N.C.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Sann for green manuring. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 21st October 1953. (iv) (a) 2 harrowings in Sept. (b) to (e) N.A. (v) Sann green manured. (vi) Niphad-4. (vii) Irrigated. (viii) One interculturing and top dressing with 20 lb ./ac. of N. (ix) \(3.65^{\prime \prime}\). (x) 17th March 1954.
2. TREATMENTS:
1. Control.
2. 40 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
3. \(40 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) and G.N.C. in \(1: 1\) ratio.
4. 40 lb ./ac. of N as calcium cynamide.
5. 40 lb ./ac. of N as calcium cynamide and G.N.C. in \(1: 1\) ratio.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 3. (iv) (a) \(42^{\prime} \times 14^{\prime}\). (b) \(34^{\circ} \times 10^{\prime}\). (v) \(4^{\prime}\) along length and \(2^{\prime}\) along breadth. (vi) Yes.

\section*{4.I GENERAL :}
(i) N srmal. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1953. (b) No. (c) N.A. (v) (a), (b) No. (vi) Nu. (vii) This expt. was a failure in 1952.
5. RESULTS :
(i) \(1622 ;\) Ib./ac.
(ii) \(161.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly:
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 1580 \\
2. & 1601 \\
3. & 1762 \\
4. & 1580 \\
5. & 1591 \\
S.E./mean & \(=96.9\) lo./ac
\end{tabular}

Crop:- Wheat (Rabi).
Ref :- Mh. 51(154).
Site :- Govt. Seed and Demonstration Farm, Sindewahi. Type :- ' M '.
Object :-To find out the proper time and method of application of fertilizers.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) NP—52. (vii) Irrigated. (viii) N.A. (ix) Nil. (x) N.A.

\section*{2. TREATMENTS:}
1. Control.
2. 20 lb ./ac. of N as Ammo. Phos. drilled.
3. 20 lb ./ac. of N as Ammo. Phos. broadcasted.
4. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as Ammo. Phos. applied at planting.
5. 20 lb ./ac. of N as Ammo. Phos. applied at 2nd irrigation.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(1 / 40\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1956. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Originally the expt. was laid out as Latin square but as replication wise data was not available it was analysed as R.B.D.
5. RESULTS:
(i) \(260 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(74.68 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 208 \\
2. & 412 \\
3. & 260 \\
4. & 276 \\
5. & 190 \\
S.E./mean & \(=33.38 \mathrm{lb} . / a c\).
\end{tabular}

Crop :- Wheat (Rabi).
Ref:- Mh. 53(274).
Site :- Govt. Seed Demonstration Farm; Sindewahi. Type :='M'.
Object :-To find out the optimum dose of \(N\) to be glven in the form of \(C / N\) and \(A / S\).
1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) Nil (as it is rabl season). (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2) .
(1) 2 sources of \(N: S_{1}=A / S\) and \(S_{2}=C / N\).
(2) 3 doses of \(\mathrm{N}: \mathrm{N}_{\mathbf{0}}=\mathbf{0}, \mathrm{N}_{\mathbf{2}}=15\) and \(\mathrm{N}_{\mathbf{2}}=30 \mathrm{lb}\)./ac.

\section*{3. DESIGN:}
(i) \(3 \times 2\) Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(1 / 80\) th ac. (v) N.A. (yi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1953 N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) N.A.
5. RESULTS :
(i) \(748 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(195.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(S\) alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ll|l} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & - & - & 680 \\
\(\mathrm{~N}_{1}\) & 862 & 647 & 754 \\
\(\mathrm{~N}_{2}\) & 901 & 721 & 811 \\
\hline Mean & 882 & 684 \\
\begin{tabular}{l} 
S.E. of any marginal mean \\
S.E. of body of table
\end{tabular} & \(=61.8 \mathrm{lb} . / \mathrm{ac}\). \\
\end{tabular}
```

Crop :- Wheat (Rabi).
Site :m Govt. Expt. Farm, Tharsa.
Ref :- Mh. 48(70).
Type :- 'M'.

```

Object:-To compape different sources of N for Wheat crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) N.A. (b) Wheat. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Tharsa. (iii) 21.10.1948. (iv) (a) and (b) N.A. (c) 60 to \(80 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Improved Wheat (medium). (vii) Irrigated. (viii) 2 weedings. (ix) Nil. (x) Ist week of Feb. 1949.

\section*{2. TREATMENTS :}
1. No manure.
2. \(25 \mathrm{lb} / \mathrm{ac}\). of N as cattle dung.
3. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathbf{G} . \mathrm{N} . C\). at sowing +15 lb ./ac. of N as G.N.C. top dressed.
4. 10 lb ./ac. of \(N\) as \(A / S\) at sowing drilled with seed +15 lb ./ac. of \(N\) as \(A / S\) top dressed.
5. 10 lb ./ac. of N as Ammo. Phos, with seed \(+15 \mathrm{lb} . / \mathrm{ac}\). of N as Ammo. Phos. top dressed.
6. 10 lb ./ac. of \(N\) as F.Y.M. +7.5 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\) with seed \(+7.5 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) top dressed.
7. \(10 \mathrm{lb} / \mathrm{ac}\). of N as F.Y.M. basal dressing \(+7.5 \mathrm{lb} . / \mathrm{ac}\). of N as Ammo. Phos. with seed +7.5 lb ./ac. of N as Ammo. Phos. top dressed.
8. \(10 \mathrm{lb} . / \mathrm{ac}\) of N as F.Y.M. basal dressing \(+7.5 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as G.N.C. with seed \(+7.5 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as G.N.C. top dressed.
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(1 / 40\) th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (iii) Nil. (iii) Grain yield. (iv) (a) \(1940-\) N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(556 \mathrm{lb} / \mathrm{ac}\).
(ii) \(175.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 455 \\
2. & 530 \\
3. & 605 \\
4. & 510 \\
S. & 620 \\
6. & 660 \\
7. & 650 \\
.8. & 420 \\
S.E./mean & \(=62.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :-Wheat (Rabi). Site :-Govt. Expt. Farm, Tharsa.
Ref :-Mh. 53(292).
Type:-'M'.

```

Object : - To study the effect of \(\mathbf{N}\) in different forms alone and in combination with \(\mathbf{P}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}\).

\section*{1. BASAL CONDITIONS:}
(i) (a) N.A. (b) Gram and Wheat. (c) N.A. (ii) (a) Medium black soil. (b) Refer soil analysis, Tharsa. (iii) 26.10 .1953 . (iv) (a) 3 bakharings. (b) Tiffan sowing. (c) \(80 \mathrm{lb} . / \mathrm{ac}\).' (d) and (e) N.A. (v) Nil. (vi) Howrah Wheat (medium). (vii) Unirrigated. (vii) 1 weeding. (ix) N.A. (x) 13 and 14.2.1954.
2. TREATMENTS:
1. Control.
2. 15 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
3. \(15 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathbf{G} . \mathbf{N . C}\).
4. 15 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
5. \(15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{3} \mathrm{O}_{5}+15 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
6. \(15 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}+15 \mathrm{lb}\)./ac. of N as G.N.C.
7. 7.5 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}+7.5 \mathrm{Ib} . / \mathrm{ac}\). of N as \(\mathrm{G} . \mathrm{N} . \mathrm{C} .+15 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 5. (iv) (a) \(39^{\prime} \times 39^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (v) \(3^{\prime}\) on all sides. (vi) Yes.
4. GENERAL :
(i) Normal. Lodging to the extent of \(10 \%\). (ii) No. , (iii) Grain and straw yield. (iv) 1951-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(505 \mathrm{lb} . / \mathrm{ac}\).
(ii) 136.7 lb ./ac.
(iii) Tieatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 472 \\
2. & 557 \\
3. & 541 \\
4. & 519 \\
5. & 577 \\
6. & 420 \\
7. & 450 \\
S.E./mean & \(=61.18\) lb./ac.
\end{tabular}

> Crop :-Wheat (Rabi).
> Site :-Govt. Expt. Farm, Tharsa.

Ref:-Mh. 51(176).
Type: \(\boldsymbol{r}^{-} \mathrm{M}^{\prime}\).

Obj ct:-To find out a suitable combination of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) for Wheat crop.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A.' (ii) (a) Low fertility soil. (b) Refer soil. analysis, Tharsa. (iii) 14.11.1951. (iv) (a) N.A. (b) Sowing by tiffan. (c) 60 to \(80 \mathrm{lb}, / \mathrm{ac}\). (d) \(12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Improved Wheat. (medium). (vii) Irrigated. (viii) 1 interculturing. (ix) N.A. (x) 20.3.1952.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super: \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb}\)./ac.
(2) 3 levels of \(N\) as \(A / S\) : \(N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) \(5 \times 3\) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(1 / 80\) th ac. (v) N.A. (vi) Yes.

\section*{4. GENERAL:}
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1951-1953\). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(749.8 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(124.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain lb./ac.
\begin{tabular}{c|rcccc|r} 
& \(\mathbf{P}_{\mathbf{0}}\) & \(\mathbf{P}_{\mathbf{1}}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P}_{\mathbf{3}}\) & \(\mathbf{P}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{N}_{\mathbf{0}}\) & 726.8 & 6668 & 781.0 & 860.1 & 781.0 & 763.1 \\
\(\mathrm{~N}_{\mathbf{1}}\) & 773.4 & 733.4 & 640.1 & 773.4 & 853.4 & 754.8 \\
\(\mathrm{~N}_{\mathbf{2}}\) & 673.4 & 833.4 & 753.4 & 726.8 & 673.4 & 732.1 \\
\hline Mean & 724.5 & 744.5 & 724.8 & 786.8 & 769.3 &
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of marginal mean of } \mathbf{N} & =37.8 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of marginal mean of } \mathbf{P} & =41.0 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table } & =71.0 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]
\[
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 52(206). } \\
\text { Site :- Govt. Expt. Farm, Tharsa. } & \text { Type :- 'M'. }
\end{array}
\]

Object:-To find out a suitable combination of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) for Wheat.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Wheat. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Tharsa. \({ }^{-}\)(iii) 1.11.1952. (iv) (a) N.A. (b) Sowing by tiffan. (c) \(80-\mathrm{lb} . / \mathrm{ac}\). (d) Between rows- \(9^{\prime \prime}\) and \(4^{\prime \prime}\) plant to plant. (c) N.A. (v) N.A. (vi) Wheat Hy-65. (vii) Irrigated. (viii) N.A. (ix) NiI. (x) 19.2.1953.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{2}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb}\)./ac.

Ssed mixed with respective dose of manure.
3. DESIGN
(i) \(5 \times 3\) Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (ii) 3.: (iv) (a) N.A. (b) \(33^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1953 . (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(435.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(167.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P s}_{8}\) & \(\mathbf{P}_{4}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 313.3 & 480.1 & 473.4 & 346.7 & 460.1 & 414.7 \\
\hline \(\mathrm{N}_{1}\) & 360.0 & 553.4 & 513.4 & 340.0 & 413.4 & 436.1 \\
\hline \(\mathrm{N}_{2}\) & 440.1 & 460.1 & 460.1 & 346.7 & 566.7 & 454.7 \\
\hline Mean & 371.2 & 497.8 & 482.3 & 344.5 & 480.1 & \\
\hline \multicolumn{3}{|l|}{S.E. of marginal mean of \(N\) S.E. of marginal mean of \(P\) S.E. of body of table} & & \multicolumn{2}{|r|}{\[
\begin{aligned}
& =43.2 \mathrm{lb} . / \mathrm{ac} \\
& =55.8 \mathrm{lb} . / \mathrm{ac} \\
& =96.7 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]} & \\
\hline
\end{tabular}
```

Crop :: Wheat (Rabi).
Site :m Govt. Expt. Farm, Tharsa.
Ref:m Mh. 53(294).
Type:- 'M'.

```

Object :-To find out a suitable combination of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) for Wheat crop (low fertility soil).
1. BASAL CONDITIONS :
(i) (a) N.A (b) Wheat. (c) N.A. (ii) (a) Medium black soil. (b) Refer soil analysis, Tharsa. (iii) 30.10.1953. (iv) (a) 6 bakharings. (b) Tiffan sowing. (c) \(80 \mathrm{lb} / \mathrm{ac}\). (d) N.A. (e) N.A. (v) Ni. (vi) Hy-65 (medium). (vii) Irrigated. (viii) 2 weedings. (ix) Nil. (x) 4.2.1954 to 5.2.1954.
2. TREATMENTS :

All combinations of ( 1 ) and (2)
(1) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=\mathbf{0}, \mathrm{N}_{\mathbf{1}}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.

Manures drilled with seed.
3. DESIGN :
(i) \(5 \times 3\) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(33^{\prime} \times 16.5^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1953 . (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) \(1473 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(225.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{N}\) alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ccccc|c} 
\\
\hline \(\mathbf{N}_{\mathbf{0}}\) & \(\mathbf{P}_{\mathbf{0}}\) & \(\mathbf{P}_{\mathbf{1}}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P}_{\mathbf{3}}\) & \(\mathbf{P}_{\mathbf{4}}\) & Mean \\
\(\mathbf{N}_{\mathbf{1}}\) & 1467 & 1363 & 1226 & 1577 & 1732 & 1473 \\
\(\mathbf{N}_{\mathbf{2}}\) & 1480 & 1220 & 1257 & 1613 & 1627 & 1439 \\
1754 & 1167 & 1430 & 1508 & 1674 & 1506 \\
\hline Mean & 1567 & 1250. & 1304 & 1566 & 1677, &
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of N & \(=58.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of P & \(=75.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=130.1 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi).
Site :- Govt. Expt. Farm, Tharsa.

Ref:- Mh. \(\mathbf{5 2 ( 2 0 7 )}\).
Type :~ ' M '.

Object :-To find out the optimum dose of N and \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathrm{A}}\) on Wheat (high fertility soil).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Wheat. (c) N.A. (ii) (a) High fertility soil. (b) Refer soil analysis, Tharsa. (iii) 30.10.1952. (iv) (a) N.A. (b) Sowing by ilfan. (c) 60 to \(80 \mathrm{lb} . / \mathrm{ac}\). (d) Spacing between rows-1'. (e) N.A. (v) Nil. (vi Hy-65-4. (vii) Irrigated. (viii) 1 interculturing. (ix) Nil. (x) 17.2.1953.
2. TREATMENTS:
A.ll combinations of (1) and (2)
(1) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{\mathbf{8}}=30, \dot{\mathrm{P}_{2}}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb} . / \mathrm{ac}\).
(?) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{3}=30 \mathrm{lb}\)./ac.
N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied mixed with seed.
3. DESIGN:
(i) \(5 \times 3\) Fact. in R.B.D. (ii) (a) \(15 . \quad\) (b) N.A. (iii) \(3 .{ }^{\prime}\) (iv) (a) N.A. (b) \(33^{\prime} \times 16.5^{\prime \prime}\) (v) N.A. \({ }^{\prime}(\mathrm{ivi})\) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil, (iii) Grain yield. (iv) (a) 1951-1953. (b) No. (c) N.A. (v) (a) N.A. (b) (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 623.7 lb./ac.
(ii) \(87.04 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ccccc|c} 
& \(\mathbf{P}_{0}\) & \(\mathbf{P}_{\mathbf{1}}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P}_{\mathbf{3}}\) & \(\mathbf{P}_{\mathbf{4}}\) & Mean \\
\hline \(\mathbf{N}_{0}\) & 646.8 & 613.4 & 580.1 & 540.1 & 6001 & 596.1 \\
\(\mathbf{N}_{1}\) & 620.1 & 620.1 & 633.4 & 586.7 & 686.8 & 629.4 \\
\(\mathbf{N}_{2}\) & 686.8 & 653.4 & 626.7 & 646.8 & 600.1 & 642.7 \\
\hline Mean & 651.2 & 629.0 & 613.4 & 591.2 & 629.0 &
\end{tabular}
\begin{tabular}{lr} 
S.E. of marginal mean of N & \(=22.41 \mathrm{lb} . / \mathrm{ac}\). \\
S.B. of marginal mean of \(P\) & \(=29.01 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table &
\end{tabular}
\begin{tabular}{ll} 
Crop :- Wheat (Rabi). & Ref Mh. 53(293). \\
Site :- Govt. Expt. Farm, Tharsa. &
\end{tabular}

Object : - To determine the optimum dosage of \(\mathbf{N}\) and \(\mathbf{P}_{\mathbf{2}} \mathrm{O}_{6}\) for Wheat (high fertility soil).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Wheat. (c) N.A. (ii) (a) Medium black soil. (b) Refer soil analysis, Tharsa. (iii) 29.10.1953. (iv) (a) 2 ploughings and 6 bakharings. (b) N.A. (c) \(60 \mathrm{lb} . / \mathrm{ac} .^{\prime}\) (d) \(10^{\prime \prime}\) between lines and \(3^{\prime \prime}\) between plants (e) N.A. (v) Nil. (vi) Hy-65 (medium). (vii) Irrigated. (viii, 2 weedings. (ix) Nil. (x) 4, 5.2.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.

N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super drilled with seed.
3. DESIGN :

4. GENERAL :
(i) Fairly good. (ii) Nil (iii) Grain and straw yield. (iv) (a) \(1951-1953\) (b) No. (c) N,A (b) (a) N.A. (b) N.A. (vi) and (vii) Nil.'
5. RESULTS :
(i) \(1836 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(202.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
. \(\because \therefore\)

\begin{tabular}{lll} 
S.E. of marginal mean of N \\
S.E. of marginal mean of \(\mathbf{P}\) & & \(=52.3 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of body of table
\end{tabular}\(\quad\)\begin{tabular}{ll} 
& \(=67.4 \mathrm{lb} . / \mathrm{ac}\). \\
&
\end{tabular}
\[
\mathcal{J} \text { Crop:-Wheat }(R a b i)
\]

Ref :-Mh. 50(80).
Site :-Govt. Seed and Demonstration Farm, Washim.
Type : \({ }^{\prime} \mathbf{M}^{\prime}\) '.
Object :-To study the residual effect of manures applied in 1948.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 18.10.1950. (iv) (a) 5 bakharings. (b) N.A. (c) \(45 \mathrm{lb} . / \mathrm{ac}\). (d) 18 lines/plot. (e) N.A. (v) Nil. (vi) N.P. 52. (vii) Unirrigated. (viii) N.A. (ix) \(1.34^{\circ}\). (x) 22 to 24.2.1951.
2. TREATMENTS:
1. Control (no manure).
2. \(20 \mathrm{lb} / \mathrm{ac}\). of N as T.C.
3. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
4. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
5. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
8. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
9. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).

Manures applied in 1948.
3. DESIGN
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\circ} \times 16 \frac{1}{2}^{\prime}\). (v) \(2 \frac{1}{2}^{\prime}\) between plots. (vi) Yes.
4. GENERAL :
(i) Good. ' (ii) Nil. (iii) Wheat grain yield. (iv) (a) 1948-N.A. (Residual effect from 1949). (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil:
5. RESULTS :
(i) \(490.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(59.84 \mathrm{lb} . / \mathrm{ac}\).
(ii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 467 \\
2. & 463 \\
3. & 540 \\
4. & 497 \\
5. & 495 \\
6. & 493 \\
7. & 493 \\
8. & 466 \\
9. & 493 \\
S.E./mean & \(=24.43 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Wheat (Rabi).
Ref :~Mh. 51(106).
Site :mGovt. Seed and Demonstration Farm, Washim. Type :-‘M'.
Object :-To study the effect of cotton seedcake in comparison with other manures on Wheat yield.

\section*{1. BASAL CONDITIONS:}
(i) (a Nil. (b) and (c) N.A. (ii) (a) MeJium black. (b) N.A. (iii) 28.10 .1951 . (iv) (a) N.A. (b) Sowing by tiffan with 3 pairs. (c) 50 lb./ac. (d) and (e) N.A. (v) Nil. (vi) HY-65-4. (vii) Unirrigated. (viii) N.A. (ix) 3:79". (x) 17.2.1952.
2. TREATMENTS:
1. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G. N.C.
2. 20 lb ./ac. of N is cotton seed cake decorticated.
3. 20 lb ./ac. of N as cotton seed cake undecorticated.
4. 20 lb ./ac. of N as A/S.
5. No manure (Control).
3. DESIGN :
(i) R.B.D.
(ii) (a) 5.
(b) N.A. (iii) 5.
(iv) (a) N.A.
(b) \(66^{\prime} \times 16 \frac{1}{2}^{\circ}\). (v) \(5^{\prime}\) between plots. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Germination counts and grain yield. (iv) (a) 1951-1952. (b) N.A. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(620 \quad 1\)./ac.
(ii) 60.32 :b./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 608 \\
2. & 605 \\
3. & 628 \\
4. & 682 \\
5. & 577 \\
S.E./mean & \(=26.96 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 52(89). } \\
\text { Site :- Govt. Seed and Demonstration Farm, Washim. Type :- ' } M \text { '. }
\end{array}
\]

Object :-To study the effect of Cotton seed cake in comparison with other manures on Wheat yield.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Mug-Udid followed by Jowar. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 26.10.1952. (iv) (a) N.A. (b) Sowing by tiffan with 3 pairs. (c) 50 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) Hy-65-4. (vii) Unirrigated. (viii) N.A. (ix) \(1.48{ }^{\circ}\). (x) 14.2.1953.

\section*{2. TREATMENTS}
1. 20 lb ./ac. of N as G.N.C.
2. 20 lb ./ac. of N as Cotton seed cake decorticated.
3. 20 lb ./ac. of N as Cotton seed cake undecorticated.
4. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
5. Control (no manure).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\prime} \times 161^{\prime} \cdot\) (v) \(4^{\prime}\) between plots. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Graio yield. (iv) (a) 1951-1952. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(438 \mathrm{lb} / \mathrm{ac}\).
(ii) \(11.57 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 459 \\
2. & 420 \\
3. & 428 \\
4. & 436 \\
5. & 445 \\
S.E./mean & \(=5.17 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi).
Site :- Govt. Seed and Demonstration Farm, Washim.

Ref:- Mh. 53(264).
Type:- 'M'.

Object :-To study the effect of different doses of \(\mathbf{N}\) in different forms.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 25.10.1953. (iv) (a) N.A. (b) Sowing by fiffan with two pairs. (c) N.A. (d) 24 lides/plot. (e) N.A. (v) Nil. (vi) Hybrid-l2. (vii) Unirtigated. (viii) Nil. (ix) 1.64. (x) 15.2.1954.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 sources of \(N: S_{1}=A / S\) and \(S_{2}=C / N\).
(2) 3 levels of \(N: N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb} . / \mathrm{ac}\).

Fertilizers drilled with the seed.
3. DESIGN :
(i) R.B D. (ii) (a) 6. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(45^{\circ}-5^{\circ} \times 24^{\circ}\). (v) \(3^{\circ}\) berween plots. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Germination counts and grain yield. (iv) 1953-continued. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(514.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(12 . \mathrm{c}^{\mathrm{lb}} / \mathrm{lac}\).
(iii) Main effects of \(\mathbf{N}\) and \(\mathbf{S}\) and control ws., others are highly significant. Interaction \(\mathbf{S} \times \mathbf{N}\) is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \(S_{1}\) & \(S_{2}\) & Mean \\
\hline \(\mathbf{N}_{0}\) & & - & - & 496.7 \\
\hline \(\mathbf{N}_{1}\) & & 522.5 & 506.7 & 514.6 \\
\hline \(\mathrm{N}_{8}\) & & 537.1 & 527.2 & 532.1 \\
\hline Mean & & 529.8 & 5169 & \\
\hline
\end{tabular}
S.E. of marginal mean \(\quad=3.48 \mathrm{Ib} . / \mathrm{ac}\).
S.E. of body of table \(\quad=4.90 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Wheat (Rabi).
Ref: Complex experiments (T.C.M.), 1953.
Centre :- Niphad (Maharashtra). Type : ' ' \(\mathbf{M}^{\prime}\).
Object .-I (a) To study the effect of types and levels of N and P on non-acid soils.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loam to clay loam in texture, medium to deep black in colour. (b) Deficient in organic matter, non-acidic in reaction, pH . varies from 7.5 to 8.0. (iii) 3.11.1953. (iv) (a) N.A. (b) N.A. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\circ}\). (e) N.A. (v) N,A. (vi) Kenphad No. 25 (improved rust resistant varietỳ). (vii) Irrigated, (viii) Two weedings and one intercultivation. (ix) \(35.00^{\prime \prime}\). ( \(x\) ) 2nd and 3rd week of April, 1954.
2. TREATMENTS :

All combinations of (1) and (2), (3) +3 extra treatments.
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 sources of \(N: S_{1}=A / S, S_{2}=A / N\) and \(S_{y}=\) Urea.
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lt}\)./ac. (as triple super).

3 extra treatments are : \(\mathrm{T}_{1}=60 \mathrm{lb}\)./ac. of \(\mathrm{N}+40 \mathrm{lb}\) /ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{~T}_{2}=40 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\), \(\mathrm{T}_{8}=60 \mathrm{lb}\)./ac. of \(\mathrm{N}+80 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5} . \mathrm{N}\) as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Triple super drilled a week before the seed was sown. Nitrogenous fertilizers were drilled at the time of sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 plots/block and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A. (b) \(44^{\prime} \times 15^{\circ}\). (v) N:A. (vi) Yes.
4. GENERAL ;
(i) Normal. (ii) Slight damage caused ty rats. (iii) Grain yield. (iv) (a) 1953 to 1956. (b) No. (c) N.A. (v) (a) Kotah, Obedullaganj. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(1245 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(376.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects and their interactions are significant
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{\mathbf{2}}\) & \(\mathrm{S}_{8}\) \\
\hline \(\mathrm{P}_{0}\) & 1264 & 1276 & 994 & 1178 & 1247 & 1303 & 983 \\
\hline \(\mathbf{P r}_{1}\) & 1195 & 1000 & 1436 & 1210 & 1285 & 1007 & 1338 \\
\hline \(\mathrm{P}_{2}\) & 1530 & 972 & 1533 & 1345 & . 1474 & 1261 & 1300 \\
\hline Mean & 1330 & 1084 & 1321 & 1244 & 1335 & 1190 & 1207 \\
\hline \(\mathrm{S}_{1}\) & - & 1112 & 1526 & 1319 & & & \\
\hline \(S_{2}\) & - & 953 & 1112 & 1032 & & & \\
\hline \(\mathrm{S}_{3}\) & - & 1181 & 1325 & 1253 & & & \\
\hline
\end{tabular}
\(\mathrm{T}_{1}=1482 \mathrm{lb} . / \mathrm{ac}\).
\(\mathrm{T}_{2}=1035 \mathrm{lb} . / \mathrm{ac}\).
\(\mathrm{T}_{3}=1225 \mathrm{lb} . / \mathrm{ac}\).

In \(N \times P\) and \(S \times P\) tables.
\(S . E\) of marginal means of \(N, P\) or \(S\)
\(=125.3 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=217.1 \mathrm{lb}\). \(/ \mathrm{ac}\).
In \(\mathrm{S} \times \mathrm{N}\) table.
S.E. of marginal means of \(S \quad \ddots \quad=153.5 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop:- Wheat (Rabi).}

Ref :- Complex experiments (T.C.M.), 1953.
Centre :- Niphad (Maharashtra). Type :- 'M'.
Object :--II, To study the best time of application of \(N\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loam to clay loam in texture-medium to deep black in colour. (b) Deficient in organic matter; non-acidic in reaction ; pH. varies from 7.5 to 8.0. (iii) 4.11.1953. (iv) (a, N.A. (b) N.A. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\prime \prime}\). (e) N.A. (v) N.A. (vi) Kenphad -25 (improved rust resistant variety). (vii) Irrigated. (viii) Iwo weedings and one intercultivation. (ix) 35.00". (x) April 1954.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)+one control (no manure).
(1) 3 sources of \(N\) (each at 20 lb ./ac of \(N\) ): \(S_{1}=A / B, S_{2}=A / N\) and \(S_{3}=\) Urea.
(2) 2 times of application: \(T_{1}=\) at sowing and \(T_{2}=\) at first irrigation.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(44^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal, no lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1953 to 1956. (b) No. (c) N.A. (v) (a) Kotah, Banaras, Pusa, Satna, Paliad. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(1070 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(119.9 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effects, control \(v s\). others and interaction are not significant.
(iv) Av. yield of grain in lb./ac.


Crop :- Wheat (Rabi).
-Ref :- Compl ex experiments (T.C.M.), 1953.
Centre :- Niphad (Maharashtra). Type :m 'M'.
Object :-To study the effect of artificial fertilizers in conjunction with organic manures.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) N.A. (ii) (a) Loam to clay loam in texture, medium to deep black in colour. (b) Deficient in organic matter; non-acidic in reaction pH. 7.5 to 8.0. (iii) 3.11.1953. (iv) (a) and (b) N.A. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\circ}\). (e) N.A. (v) N.A. (vi) Kenphad-25. (vii) Irrigated. (viii) Two weedings and one intercultivation. (ix) \(35.00^{\prime \prime}\). (x) 30.3.1954.

\section*{2. TREATMENTS:}

All combinations of (1), ( 2 and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{\mathbf{1}}=20\) and \(\mathrm{P}_{\mathbf{2}}=40 \mathrm{lb} / \mathrm{ac}\).
(3) 3 levels of F.Y.M. : \(F_{0}=0, F_{1}=5\) C.L. and \(F_{2}=10\) C.L. \(/ \mathrm{sc}\).
\(\mathrm{P}_{2} \mathrm{O}_{5}\) as triple super and N as \(A / S\). Triple Super drilled a week before sowing and \(A / S\) drilled at the time of sowing. F.Y.M. spread oder the plot evenly and mixed with the soil a week before sowing.
3. DESIGN:
(i) \(3^{3}\) factorial (confounded). (ii) (a) 9 plots/block and 3 blocks/replication. (b) N.A. (iii) 1. (iv) (a) N.A.
(b) \(40^{\circ} \times 20^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GBNERAL:}
(i) Normal. (ii) Crop slightly damaged by rats. (ii) Grain yield. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) (a) Obedullagaaj. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(877 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(164.4 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{P}\) alone is significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{F}_{0}\) & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{2}\) \\
\hline \(\mathbf{P}_{0}\) & 726 & 691 & 709 & 709 & 630 & 778 & 718 \\
\hline \(\mathbf{P}_{1}\) & 846 & 948 & 1083 & 959 & 1071 & 756 & 1049 \\
\hline \(\mathbf{P}_{2}\) & 890 & 833 & 1171 & 965 & 881 & 1016 & 997 \\
\hline Mean & 821 & 824 & 987 & 877 & 861 & 850 & 921 \\
\hline \(\mathrm{F}_{0}\) & 812 & 809 & 961 & \multicolumn{4}{|c|}{\multirow[t]{3}{*}{-}} \\
\hline \(\mathrm{F}_{1}\) & 879 & 750 & 922 & & & & \\
\hline \(\mathrm{F}_{2}\) & \[
771
\] & 913 & 1079 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=54.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=94.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi).
Ref :- Complex Experiments (T.C.M.), 1953.
Centre :- Niphad (Maharashtra). Type :- 'M'.
Object :-III To study the effect of Potash and minor elements on the yield of Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loam to clay loam in \(t x t u r e\) medium to deep black in colour. (b) Deficient in organic matter, non-acidic in reaction pH. 7.5 to 8.0 . (iiii) 6.11.1453. (iv) (a) and (b) N.A. (c) \(40 \mathrm{lb} / \mathrm{ac}\). (d) \(10^{\prime \prime}\). (e) N.A. (v) N.A. (vi) Kenphad- 25 (improved, rust resistant variety). (vii) Irrigated. (viii) Two weedings and one intercultivation. (ix) \(35.00^{\prime \prime}\). (x) 31.3.1954 and 1.4.1954.

\section*{2. TREATMENTS:}

A set of \(\mathbf{3 2}\) out of \(\mathbf{2 5 6}\) treatment combinations formed of \(\mathbf{7}\) minor elements and \(\mathrm{K}_{\mathbf{2}} \mathbf{O}\).
A. Magnesium - Mg. Sulphate) at 0 and 2 cwt./ac.
B. Iron (Ferrous Sulphate) at 0 and \(100 \mathrm{lb} . / \mathrm{ac}\).
C. Manganese (Mn. Sulphate) at 0 and \(80 \mathrm{lb} . / \mathrm{ac}\).
D. Zinc ( Zn . Sulphate) at 0 and \(20 \mathrm{lb} . / \mathrm{ac}\).
E. Copper ( \(\mathrm{Cu} . \mathrm{Su}\) Iphate) at 0 and \(20 \mathrm{lb} . / \mathrm{ac}\).
F. Borax (granulated Borax) at 0 and 10 lb ./ac.
G. Molybdenum (Sod. Molybdate). at 0 and 2 oz.!ac.
K. Potassium (Pot. Sulphate) at 0 and \(20 \mathrm{lb} . / \mathrm{ac}\). 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Triple Super given to all the plots.
3. DESIGN:
(i) \(1 / 8\) of \(2^{8}\) factorial (confounded). (ii) (a) 8 plots/block and 4 blocks/replication. (b) N.A. (iii) 1. (iv) (a) 'N.A. (b) \(44^{\prime} \times 15^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal, (ii) Nil, (iii) Grain yleld. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.

\section*{Ref. : Complex Experiments (T.C.M.), \(19 \mathbf{3}\)}
5. RESULTS :
(i) \(1307 \mathrm{lb} . / \mathrm{ac}\)
(ii) \(193.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects are not significant
(iv) Mean and differential response in lb ./ac
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Mean & & & B & C & D & E & F & G & K \\
\hline Factor & Response & -ve & +ve & -ve +ve & -ve +ve & -ve tre & -ve +ve & -ve tre & -ve +ve & -ve +ve \\
\hline A & -18.10 & - & - . & +100.38-136.58 & +2222 --58.41 & \(-63.36+27.15\) & \(-73.23 \cdot+37.03\) & \(-128.36+92.15\) & \(-98.74+62.53\) & +60.06-96.26 \\
\hline B & -11.52 & +106.96 & -130.00 & & Confounded & . Confounded & +20.57 -43.61 & - \(51.84+28.80\) & Confounded & Confounded \\
\hline C & -91.33 & \(-51.00\) & - 131.65 & Confounded & & Confounded & Confounded & \(-323.36+140.70\) & \(-116.01-66.65\) & Confounded \\
\hline D & -13.99 & -59.24 & +31.27 & Confounded & Confounded & - . - & +74.87-102.85 & + 0.82 -28.80 & \(-46.08+18.10\) & Confounded \\
\hline E & -18.92 & -74.05 & +36.20 & +13.16 51.01 & Confounded & +69.94 -107.79 & & Confounded & Confounded & Confounded \\
\hline F & -15.63 & -125.89 & +94.62 & \(-55.95+24.68\) & -247.66 +216.40 & \(-0.82-30.44\) & Confounded & - - & Confounded & Confounded \\
\hline G & -38.67 & -119.31 & +41.96 & Confounded & -63.36 -13.99 & \(-70.76-6.58\) & Confounded & Confounded & - - & Confounded \\
\hline K & -35.38 & +42.79 & -113.55 & Confounded & Confounded & Confounded & Confounded & Confounded & Confounded & - - \\
\hline
\end{tabular}

\footnotetext{
S.E. of mean response \(\quad=24.16 \mathrm{lb} . / \mathrm{ac}\)
S.E. of differential response \(\quad=34.16 \mathrm{lb} . / \mathrm{ac}\).
}

\section*{Crop:-Wheat (Rabi).}

Site :malegaon, (Nasik.)

Ref :-Expts. on cultivators' fields Mh. 53(78). .
Type : \(\boldsymbol{\sim}^{\prime} \mathbf{M}\) '.

Object:-To find the response of irrigated Wheat under cultivators' farming conditions to different levels of N and \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\).

\section*{1. BASAL CONDITIONS:}
(i) (a) N A. (b) Bajri. (c) N.A. (ii) Black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local. (v) (a) N.A.
(b) Cross-wise sowing. (c) N.A. (d) Distance between rows varying from \(8^{\prime \prime}\) to \(12^{\prime \prime}\). (e) N.A. (vi) N.A.
(vii) Irrigated. (viii) N.A. (ix) \(0.44^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}
\(\mathrm{O}=\) Control.
\(N_{1}=20 \mathrm{lb}\)./ac of N as \(\mathrm{A} / \mathrm{S}\).
\(N_{2}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{1}^{\prime}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{1} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as \(A / S+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
A/S and Urea were applied in 2 doses. 1st dose was applied 8 days prior to sowing and \(2 n d\) dose was applied one month after sowing. \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\) as Super was applied in one dose.
3. DESIGN :
(i) and (il) A list of villages, randomly selected from all the villages in the taluk was formed and a necessary number of suitable villages (growing wheat) were taken from the list retaining the serial order of the list. The site in a village was located by a randomly selected survey no. No: of exptal. sites 3 . (Originally planned with 4). (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.

\section*{4. GENERAL :}
(i) N.A. (ii) No. (iii) Height, no. of tillerings, length of earhead, no. of grain per earhead were noted at random for each treatment. (iv) (a) 1953-1956. (b) and (c) N.A. (v) N.A.. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1927 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(308.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
\(\mathbf{O}\) & 1995 \\
\(\mathbf{N}_{1}\) & 1604 \\
\(\mathbf{N}_{2}\) & 1968 \\
\(\mathbf{N}_{1}^{\prime}\) & 1674 \\
\(\mathbf{N}_{1} \mathbf{P}_{1}\) & 2103 \\
\(\mathbf{N}_{2} \mathbf{P}\) & 2218 \\
S.E./mean & \(=178.1 \mathrm{lb} . / \mathrm{ac}\)
\end{tabular}

Crop :-Wheat (Rabi). Ref:m Expts, on cultivators' fields Mh. 53(59).
Site :-Baglan (Nasik) Type: ©M’.
Object :--To find out the response of irrigated Wheat under cultivators' farming conditions to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Bajrl at 5 villages. Sunnhemp at 1 village. (c) N.A. (ii) Medium black. (iii) 5000 lb./ac. of F.Y.M: (iv) Local at 5 villages. Pusa-4 at 1 village. (v) (a) N.A. (b Triplicate sowing. (c), (d) and (o) N.A. (vi) 3rd week of November to 1st of Decèmber 1953. (vii) Irrigated. (viii) N.A. (ix) \(065^{\circ}\). ( \(x\) ) 3rd and 4th week of March 1954.
2. TREATMENTS:
\(0=\) Control.
\(N_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{N}_{2}=40 \mathrm{lb} / \mathrm{ac}\). of N as \(A / S\).
\(\mathrm{N}_{1}{ }^{\prime}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{2} \mathrm{P}=20 \mathrm{lb}\). \(/ \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\). \(/ \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
A/S and Urea were applied in two doses. Ist dose was applied 8 days prior to sowing and 2 nd dose one month after sowing. \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super was given with 1st dose of N .
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages in a taluk uas formed and a necessary number of suitable villages (growing wheat) were taken from the list retaining the serial order of the list. The site in a village was located by a randomly selected survey no. No. of experimental site 6. (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillering, length of earhead, no. of grain/earhead were noted at random for each treatment. (iv) (a) 1953-1956. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
S. RESULTS :
(i) \(1149 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(102.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
0 & 978 \\
\(N_{1}\) & 1083 \\
\(\mathrm{~N}_{2}\) & 1173 \\
\(\mathrm{~N}_{1}{ }^{\prime}\) & 1084 \\
\(\mathrm{~N}_{1} \mathrm{P}\) & 1244 \\
\(\mathrm{~N}_{2} \mathrm{P}\) & 1333 \\
S.E./mean & \(=41.69 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Object:-To find the response of irrigated Wheat under cultivators' farming conditions to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) No. (b) Bajri. (c) N.A. (ii) Black. (iii) \(5000 \mathrm{lb} . / \mathrm{ac}\). of F.Y.M. at one village and 4000 lb ./ac. at the other village. (iv) Local. (v) (a) N.A. (b) Triplicate sowing. (c) to (e) N.A. (vi) Last week of Nov. 1953. : vii) Irrigated. (viii) N.A. (ix) \(0.67^{\prime \prime}\). (x) 2nd week of March 1954.
2. TREATMENTS :
\(0=\) Control.
\(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathbf{N}_{\mathbf{2}}=40 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{\mathbf{1}}{ }^{\prime}=20 \mathrm{lb}\) /ac of N as Urea.
\(\mathrm{N}_{1} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Half dose of \(A / S\) and Urea with \(\mathrm{P}_{2} \mathrm{O}_{5}\) was applied 8 days prior to sowing and remaining half of \(\mathrm{A} / \mathrm{S}\) and Urea was applied one month after sowing.

\section*{3. DESIGN :}
(i), (ii) A list of villages, randomly selected from all villages in a taluk was formed and a necessary number of suitable villages (growing wheat) were taken from the list retaining the serial order of the list. The site in a village was located by a randomly selecled survey no . No. of experimental site 2 . (iii) (a) \(53^{\circ} \times 41^{\circ}\) (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GBNERAL:
(i) N.A. (ii) No. (iii) Height, no. of tillering, length of earhead, no. of grain per earhead were noted at random for each treatment. (iv) (a) 1953-1956. (b) N.A.' (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(827 \mathrm{lb} . / \mathrm{ac}\).
(i) \(33.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in Ib ./ac. Treatment Av. yield
\(0 \quad 665\)
\(\mathrm{N}_{1} \quad 749\)
\(\mathrm{N}_{2} \quad 855\)
\(\mathrm{N}_{\mathbf{i}}{ }^{\mathbf{\prime}} \quad 804\)
\(\mathrm{N}_{\mathbf{1}} \mathrm{P} \quad 914\)
\(\mathrm{N}_{2} \mathrm{P} \quad 976\)
S.E/mean \(=24.0 \mathrm{lb} . / \mathrm{ac}\).

Crop :~Wheat (Rabi). Ref :m Expts. on cultivators' fields Mh. 53(81).
Site :- Chandor (Nasik.) Type :- ' \(M\) '.

Object:-To find the response of Wheat under cultivators' farming conditions to different levels of \(\mathbf{N}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
3. BASAL CONDITIONS :
(i) (a) N.A. (b) Bairi at two villages, Paddy at 1 village and Lucerne at 1 village. (c) No manure at two villages, 10 C.L./ac. of F.Y.M. at one village of paddy and 60 C.L./ac. of F.Y.M. at another village (ii) Black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local. (v) (a) N.A. (b) Duplicate sowing. (c) to (e) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.58^{\circ}{ }^{\circ}\) ( \(\mathbf{( x )}\) Last week of February to 1 st neek of March 1954.
2. TREATMENTS:
\(0=\) Control.
\(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{2}=40 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{\mathrm{l}^{\prime}}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{N}_{2} \mathrm{P}_{1}=20 \mathrm{lb} / \mathrm{ac}\), of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{3} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{ip} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing and the remaining half of \(A / S\) and Urea was applied one month after sowing.

\section*{3. DESIGN:}
(i), (ii) A list of villages, randomly selected from all the villages in the taluk was formed and a necessary number of suitable villages (growing wheat) were taken from the list retaining the serial order of the list. The site in a village was located by a randomly selected survey number. No: of experimental site 4. (iii) (a) \(53^{\prime} \times 41^{\circ}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, No. of tillering, length of earhead, No. of, grain. per earhead were, noted at random for each treatment. (iv) (a) 1953-1956. (b) N.A. (c) N.A. (v) N.A.' (vi) and (vii) Nil.
5. RESULTS:
(i) \(1858 \quad \mathrm{lb} . / \mathrm{ac}\)
(ii) \(224.4 \mathrm{lb} . / \mathrm{ac}\).
(i.i) Treatment differences are highly significant
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
0 & 1389 \\
\(\mathbf{N}_{1}\) & 1435 \\
\(\mathbf{N}_{\mathbf{2}}\) & 1678 \\
\(\mathbf{N}_{1}^{\prime}\) & \(\cdot 1794\) \\
\(\mathbf{N}_{\mathbf{1}} \mathrm{P}\) & 2225 \\
\(\mathbf{N}_{2} \mathrm{P}\) & 2625 \\
S.E./mean & \(=112.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref :- Expts. on cultivators' fields Mh. 53(82).
Site :- Niphad, (Nasik.) Type:- 'M'.

Object :-To find the response of Wheat under cultivators \({ }^{\circ}\) farming conditions to different levely of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Kulthi at one village-Bajri at other. (c) N.A. (ii) Deep black. (iii) 5 C.L./ac. of P.Y.M.
(iv) Local at one village and Kenphad at other village. (v) (a) N.A. (b) Cross-wise sowing. (c) N.A.
(d) N.A. (e) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.81^{\prime \prime}\) ( (x) N.A.
2. TREATMENTS
\(0=\) Control
\(\mathrm{N}_{1}=20 \mathrm{Jb} / \mathrm{ac}\). of N as A/S.
\(\mathbf{N}_{2}=40 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\),
\(\mathrm{N}_{1}{ }_{1}=20 \mathrm{lb} . / \mathrm{sc}\). of N as Urea.
\(\mathrm{N}_{\mathbf{1}} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{6}\) as Super.
Super and half of Urea and \(A / S\) were broadcasted 8 days prior to sowing and the remaining half dose of: Urea and A/S was applied one month after.
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages in the Taluk was formed and a necessary: number of suitable villages (growing wheat) were taken from the list retaining the seria' crder of the list. The site in a village was located by a randomly selected survey number. No. of experimental site 2. (iii), (a) \(53^{\circ} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillerings, length of earhead and no. of grain per earhead. (Iv) (a) 1953 to 1956. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(1323 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(96.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
0 & 1060 \\
\(\mathbf{N}_{1}\) & 1365 \\
\(\mathrm{~N}_{2}\) & 1410 \\
\(\mathrm{~N}_{\mathbf{1}}^{\prime}\) & 1375 \\
\(\mathrm{~N}_{2} \mathrm{P}\) & 1330 \\
\(\mathrm{~N}_{2} \mathrm{P}\) & 1400 \\
S.E./mean & \(=68.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop : \(\boldsymbol{\sim}\) Wheat (Rabi). & Ref :- Expts. on cultivators' fields Mh. 53(83). \\
Site : Yeola (Nasik.) & Type :m 'M'.
\end{tabular}

Object : - To find the response of irrigated Wheat under cultivators' farming conditions to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{\mathbf{6}}\).

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Sugarcane at one village, Bajri at other village. (c) 60 C.L./ac. of F.Y.M. to sugarcane. (ii) Deep black. (iii) 5 C.L./ac, of F.Y.M. (iv) Local at one village and Kenphad at other. (v) (a) N.A. (b) Duplicate sowing. (c) to (e) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.39^{\prime \prime}\). (x) 2nd and 4th week of March 1954.

\section*{2. TREATMENTS :}
\(0=\) Control.
\(\mathrm{N}_{\mathbf{1}}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \dot{\mathrm{S}}\).
\(\mathbf{N}_{2}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{\mathbf{1}}{ }^{\prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{N}_{1} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing. The remaining half of \(A / S\) and Urea was applied one month after sowing.

\section*{3. DESIGN:}
\(\because\) (i) and (ii) A list of villages, randomly selected from all the villages in the taluk. was formed and a necessary number of suitable villages (growing wheat) were taken from the list retaining the order of the list. The site in the village was located by a randomly selected survey no. No. of experimental site 2 . (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.

4: 'GENERAL'
(i) N.A. (ii) No. (iii) Height, no. of tillering, length of earhead, no. of grain/earhead. (iv) (a) 19531956. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.

\section*{5. RESULTS :}
(i) \(2148 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(312.4 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
0 & 1678 \\
\(\mathbf{N}_{1}\) & 2223 \\
\(\mathbf{N}_{\mathbf{2}}\) & 2169 \\
\(\mathbf{N}_{1}\) & \\
\(\mathbf{N}_{\mathbf{1}} \mathbf{P}\) & 2113 \\
\(\mathbf{N}_{\mathbf{2}} \mathbf{P}\) & 2395 \\
S.E./mean & 2313 \\
& \(=220.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi). Ref :- Expts. on cultivators' fields Mh. 53(84). Site :- Sinnar. (Nasik.) . . Type :- 'M'.

Object :-To find the response of irrigated Wheat under cultivators' farming conditions to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Bajra. (c) N.A. (ii) Medium Black. (iii) 5 C.L./ac. (iv) Local. (v) (a) N.A. (b) Cross-wise sowing. (c) to (e) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.76^{\circ}\). (d) N.A.

\section*{2. TREATMENTS :}
\(0=\) Control.
\(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{1^{\prime}}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{N}_{1} \mathrm{P}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super.
\(\mathrm{N}_{2} \mathrm{P}=40 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing, The remaining half of Urea and A/S was applied one month after sowing.

\section*{3. DESIGN :}
(i) and (ii) A list of villages, randomly selected from all the villages in the Taluk was formed and a necessary number of suitable villages (growing wheat, were taken from the list, retaining the serial order of the list. The site in the village was located by randomly selected survey no. No. of experimental site 2. (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillering, length of earhead, no of grains in each earhead. (iv) (a) 1953-1956. (b) N.A. (c) Nil. (v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) 1237 lb./ac. \({ }^{\prime}\)
(ii) 43.6 lb ./ac.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield. \\
0 & 1071 \\
\(\mathbf{N}_{1}\) & 1155 \\
\(\mathbf{N}_{\mathbf{2}}\) & 1234 \\
\(\mathbf{N}_{\mathbf{1}}\) & \\
\(\mathbf{N}_{\mathbf{1}} \mathbf{P}\) & 1275 \\
\(\mathbf{N}_{\mathbf{2}} \mathbf{P}\) & 1325 \\
S.E./mean & 1359 \\
& \(=30.8\) lb./ac.
\end{tabular}

Crop:- Wheat (Rabi).... Ref :- Expts. on cultivators' fields Mh. 53(87).
Site :- Malegaon. Nasik.
Type :- 'M'.
Object:-To find the response of irrigated Wheat under cultivators' farming conditions to different level of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Bajra. (c) N.A. (ii) Black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local. (v) (a) N.A. (b) Cross-wise-sowing. (c) N.A. (d) Spacing between rows varied from \(9^{\prime \prime}\) to \(12^{\prime \prime}\). (e) N.A. (vi) N.A. (vii), Irrigated. . (viii) N.A. (ix) 0 , \(44^{\prime \prime}:\) (x) N.A.
2. TREATMENTS:
\(0=\) Control.
\(\mathrm{N}_{1}{ }^{\prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{N}_{2}^{\prime}=40 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{N}_{1}{ }^{\prime} \mathrm{P}=20 \mathrm{lb} / \mathrm{ac}\). of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing. The remaining, half of \(A / S\) and Urea was applied one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages of the Taluk was formed and a necessary number of suitable villages (growing wheat) were taken from the list retaining the serial order of the list. The site in a village was located by a randomly selected survey no. Number of experimental aite 6 . (iii) (a) \(53^{\circ} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL:
(i) N.A. (ii) No. (iii) Hisht, no. of tillering, length of earhead, no. grain per earhead. (iv) (a) 1953-1956. (b) N.A. (c) N:A. (v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(1243 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(274.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(\mathbf{O}\) & 1009 \\
\(\mathbf{N}_{\mathbf{1}}{ }^{\prime}\) & 1233 \\
\(\mathbf{N}_{\mathbf{\prime}}\) & 1185 \\
\(\mathbf{N}_{\mathbf{\prime}}\) & 1118 \\
\(\mathbf{N a}_{1} \mathbf{P}\) & 1533 \\
\(\mathbf{N a}_{\mathbf{\prime}} \mathbf{P}\) & 1377 \\
& S.E/mean \\
& \(=111.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\(\begin{array}{ll}\text { Crop :- Wheat (Rabi). } & \text { Ref :-Expts. on cultivators' fields Mh. 53(88). } \\ \text { Site :- Baglan (Nasik.) } & \text { Type : ' ' } \mathrm{M}^{\prime} \text { '. }\end{array}\)
Object:-To find the response of irrigated Wheat under cultivatiors farming, conditions' to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Bajri at 5 villages. Sannhemp at 1 village. (c) N.A. (ii) Medium black. (iii) \(5000 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{F}\) Y.M. (iv) Local at 5 villages and Pusa-4 at 1 village. (v) (a) N.A. (b) Triplicate sowing. (c) to (e) N.A. (vi) 3rd week of Nov. and 1st of Dec. 1953 (vii) Irrigated. (viii) N.A. (ix) 0.65'. (x) 3rd and 4th week of March 1954.
2. TREATMENTS :
\(0=\) Control.
\(\mathrm{N}_{\mathbf{1}^{\prime}}=\mathbf{2 0} \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathbf{N}_{\mathbf{3}}^{\prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathbf{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{2}\) as Super.
\(\cdot \mathrm{N}_{2} \cdot \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and \(A / S\) were broadcasted 8 days prior to sowing and remaining half of Urea and A/S was supplied one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages randomly selected from all the villages of taluk was formed and a necessary num er of suitable villages (growing Wheat) were taken from the list retaining the serial order of the list. The si e in a village was located by a randomly selected survey no. No. of experimental site 4. (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Height, no. of tillerings, length of earhead and no. of grain per earhead. (iv) (a)_1953-1956. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1078 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(81.2 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in \(1 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(\mathbf{O}\) & 881 \\
\(\mathbf{N}_{1}^{\prime}\) & 1019 \\
\(\mathbf{N}_{\mathbf{2}}^{\prime}\) & 1134 \\
\(\mathbf{N}_{\mathbf{1}}\) & 1046 \\
\(1 \mathbf{N}_{4}{ }^{\prime} \mathbf{P}\) & 1179 \\
\(\mathbf{N}_{2}{ }^{4} \mathbf{P}\) & 1210 \\
S.E./mean & \(=40.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop:- Wheat (Rabi).
Site :- Chandori (Nasik.)
Ref :- Expt. on cultivators' fields, Mh. 53(89).
Type :- ' \mathbf{M} '.

```

Object :-To find the response of irrigated Wheat, under cultivators' farming conditions, to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Bajra at 3 villages and Paddy at 1 village. (c) 10 to 15 C.L./ac. of F.Y.M. for Bajra. No manure for Paddy. (ii) Black at 3 places. Loamy or laterite at one village. (iii) 5 C.L /ac. of P.Y.M. (iv) Local at 3 villages and Niphad at 1 village. (v) (a) N.A. (b) Cross-wise sowing. (c) N.A. (d) Spacing between rows varied from \(9^{\prime \prime}\) to \(12^{\circ}\). (e) N.A. (vi) 10 to 20.11.1953. (vii) Irrigated. (viii) N.A. (ix) 0.58*. (x) 25.2.1954 to 17.3.1954.
2. TREATMENTS :

0 Control.
\(\mathbf{N}_{\mathbf{1}}{ }^{\prime}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathbf{N}_{\mathbf{g}}{ }^{\prime}=40 \mathrm{lb} /\) /ac. of N as Urea.
\(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathbf{N}_{1}{ }^{\prime} \mathbf{P}=20 \mathrm{lb}\)./ac. of N as Urea \(+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{3}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing and remaining half of Urea and A/S was supplie I one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages of the taluk was formed and a necessary number of suitable villages (growing Wheat) was taken from thelst retaining the serial order of the Jist. The site in a village was located by a survey no. No. of experimental sites \(=4\). (iii (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\circ} \times 33^{\prime \prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillers, length of earhead, no. of grains per earhead and grain yield. (iv) (a) 1953-1956. (b) and (c) N.A. (v) N.A. (vi) atd (vii) Nil.

\section*{5. RESULTS:}
(i) \(1660 \mathrm{lb} / \mathrm{ac}\).
(ii) \(137.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
0 & 1095 \\
\(\mathbf{N}_{\mathbf{n}^{\prime}}\) & 1559 \\
\(\mathbf{N}_{2}^{\prime}\) & 1664 \\
\(\mathbf{N}_{1}\) & 1549 \\
\(\mathbf{N}_{1}^{\prime} \mathbf{P}\) & 1952 \\
\(\mathbf{N}_{\mathbf{2}}{ }^{\prime} \mathbf{P}\) & 2143 \\
S.E./mean & \(=68.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Wheat (Rabi). Ref:-Expt. on cultivators' fields, Mh. 53(90).
Site :-Niphad (Nasik.) Type :-‘M’.
Object :-To find the response of irrigated Wheat, under cultivators farming covditions, to different levels of N and \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\)
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Bajra, (c) N.A. (ii) Deep black. (iii) 5 C.L./ac. of P.Y.M. (iv) Local variety at 2 villages and Kenphad variety at 1 village. (v) (a) N.A. (b) Cross-wise sowing. (c) to (e) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.81^{\circ}\) ( (x) N.A.
2. TREATMENTS:
\(0=\) Control.
\(\mathrm{N}_{\mathbf{1}^{\prime}}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{N}_{\mathbf{2}}{ }^{\prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as Urea.
\(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac. of N as A/S.
\(\mathrm{N}_{1}^{\prime} \mathrm{P}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea+20 lb./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and \(\mathrm{A} / \mathrm{S}\) were broadcasted 8 days prior to sowing and the remaining half of Urea and A/S was supplied one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages randomly selected from all the villages in a taluk was formed and a necessary number of suitable villages (growing wheat) was taken from the list retaining the serial order of the list. The site in a village was located by a randmly selected survey no. No. of experimental sites 3. (iii) (a) \(53^{\circ} \times 41^{\circ}\). (b) \(33^{\circ} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillers, length of earhead, no. of grains per earhead and grain yield (iv) (a) 1953-1956. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1387 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(158.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in !b./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(\mathbf{O}\) & 1150 \\
\(\mathbf{N}_{1}^{\prime}\) & 1352 \\
\(\mathbf{N}_{2}^{\prime}\) & 1540 \\
\(\mathbf{N}_{1}\) & 1278 \\
\(\mathbf{N}_{1} \mathbf{P}\) & 1440 \\
\(\mathbf{N}_{2}{ }^{\prime} \mathbf{P}\) & 1560 \\
S.E./mean &.\(=91.60 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Wheat (Rabi). Ref :سExpt. on cultivators' fields, Mh. 53(91).
Site :-Dindori (Nasik.) Type :- \({ }^{\prime} \mathrm{M}^{\prime}\).
Object :-To find the response of irrigated Wheat, under cultivators' farming conditions, to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) 6 C.L./ac. of F.Y.M. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local. (v) (a) N.A. (b) Cross-wise sowing. (c) N.A. (d) Between rows \(9^{\circ}\). (e) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.71^{\prime \prime}\). (x) N.A.
2. TREATMENTS :
\(\mathrm{O}^{-}=\)Control.
\(\mathrm{N}_{\mathrm{I}^{\prime}}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{2}{ }^{\prime}=40 \mathrm{lb} . / \mathrm{ac}\). of N as. Urea.
\(N_{1}=20 \mathrm{lb}\)./ac. of N as \(A / \mathrm{S}\).
\(\mathrm{N}_{1}^{\prime} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing and remaining half Urea and A/S was applied one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages of the taluk was formed and a necessary number of suitable villages (growing wheat) was taken from the list retaining the serial order of the list. The site in a village was located by a survey no. No. of experimental sites 2 . (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iy) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, number of tillers, length of earhead, no. of grains per earhead and grain yield. (iv) (a) 1953-1956. (b) and (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1564 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(62.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are sigoificant.
(iv) Av. yjeld of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(\mathbf{O}\) & 1096 \\
\(\mathbf{N}_{1}^{\prime}\) & 1306 \\
\(\mathrm{~N}_{2}^{\prime}\) & 1399 \\
\(\mathrm{~N}_{1}\) & 1320 \\
\(\mathrm{~N}_{1}{ }^{\prime} \mathbf{P}\) & 1384 \\
\(\mathrm{~N}_{2}{ }^{\prime} \mathbf{P}\) & 1681 \\
S.E./mean & \(=44.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Expt. on cultivators' fields, Mh. 53(92). } \\
\text { Site :- Yeola (Nasik). } & \text { Type :- ‘M'. }
\end{array}
\]

Object:-To find the response of irrigated Wheat, under cultivators' farming conditions, to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Bajra at one village and Tag at other village. (c) 15 to 20 C.L. of F.Y.M. to Bajra crop. (ii) Deep black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local at one village and Kenphad variety at other village.
(v) (a) N.A. (b) Duplicate sowing. (c) N.A. (d) and (e) N.A. (vi) 5th to 9th of December 1954.
(vii) Irrigated. (viii) N.A. (ix) \(0.39^{\prime \prime}\). (x) 2 nd and 4 th week of March 1954.
2. TREATMENTS :
\(0=\) Control.
\(\mathrm{N}_{\mathbf{1}}{ }^{\prime}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{2}{ }^{\prime}=40 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{1} \mathbf{P}=20 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and A/S were broadcasted 8 days prior to sowing and the remaining half was supplied one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages in a taluk was formed and a necessary number of suitable villages (growing wheat) was taken from the list retaining the serial order of the list. The site in a village was located by a randomly selected survey no. No of experimental sites=2, (iii) (a) \(53 \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillers, length of earhead, no. of grains per earhead and grain yield. (iv) (a) 1953 to 1956. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.

\section*{5. RESULTS :}
(i) \(1351 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(413.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. vield of grain in lb./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
\(\mathbf{0}\), & 890 \\
\(\mathbf{N}_{\mathbf{1}}{ }^{\prime}\) & 1120 \\
\(\mathbf{N}_{\mathbf{2}}^{\prime}\) & 1185 \\
\(\mathbf{N}_{\mathbf{1}}\) & 1290 \\
\(\mathbf{N}_{\mathbf{\prime}} \mathbf{I}^{\prime}\) & 1560 \\
\(\mathbf{N}_{\mathbf{\prime}} \mathbf{P}\) & 2060 \\
S.E./mean & \(=292.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop :- Wheat (Rabi). & Ref :- Expt. on cultivators' fields, Mh. 53(93). \\
Site :- Sinnar (Nasik) & Type:- 'M'.
\end{tabular}

Object :-To find the response of irrigated Wheat, under cultivators' farming conditions, to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Bajra. (c) N.A. (ii) Medium black. (iii) 5 C.L./ac. of F.Y.M. (iv) Local. (v) (a) N.A. (b) Cross-wise sowing. (c) N.A. (d) and (c) N.A. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) \(0.76^{\prime \prime}\). (x) N.A:
2. TREATMENTS :
\(0=\) Control.
\(\mathbf{N}_{\mathbf{1}}{ }^{\prime}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{2^{\prime}}=40 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}\).
\(\mathrm{N}_{1}{ }^{\prime} \mathrm{P}=20 \mathrm{lb}\)./ac. of N as Urea+20 lb./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as Urea +20 lb ./ac. of \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\) as Super.
Super and half of Urea and \(A / S\) was broadcasted 8 days prior to sowing and the remaining half was supplied one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages, randomly selected from all the villages in a taluk was formed and a necessary number of suitable villages (growing wheat) was taken from the list. . The site in a village was located by randomly selected survey no. No. of experimental. sites \(=2\). (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (iv) N.A
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, number of tillers, length of earheads, number of grains per earhead and grain yield. (iv) (a) 1953 to 1956 . (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.'
5. RESULTS :
(i) \(1207 \quad \mathrm{lb}\)./ac.
(ii) \(28.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|}
\hline Treatment & Av. yield \\
\hline 0 & 950 \\
\hline \(\mathrm{N}_{\mathbf{1}}{ }^{\prime}\) & 1194 \\
\hline \(\mathrm{N}_{2}{ }^{\prime}\) & 1295 \\
\hline \(\mathrm{N}_{1}\) & 1234 \\
\hline \(\mathbf{N a}_{\mathbf{1}}{ }^{\text {P }}\) & 1287 \\
\hline \(\mathrm{N}_{2}{ }^{\text {P }}\) & 1280 \\
\hline S.E./mean & \(=20.00 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}
```

Crop :- Wheat (Rabi) . Ref :- Expt. on cultivators' fields, Mh. 53(94).
Site :- Nandgaon (Nasik.)
Type :- ' M ’.

```

Object :-To find the response of irrigated Wheat, under cultivators' normal practices, to different levels of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\).

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Bajra. (c) 5 to 6 C.L./ac. of F.Y.M. at one viliage. 15 to 16 C.L./ac. of F.Y.M. at 2nd village. (ii) Medium Black (iii) S C.L./ac. of F.Y.M. (iv) Local. (v) (a) N.A. (b) Duplicate sowing at one place. No. of rows harvested at 2 nd place is 44. (c) N.A. (d) Spacing between rows \(9^{\text {r. }}\) (e) N.A. (vi) 30.11.1953 to 1.12.1953. (vii) Irrigated. (viii) N.A. (ix) 2.02". (x) 3.3.1954 at one village. 13.3.1954 at 2nd village.

\section*{2. TREATMENTS :}
\(0=\) Control.
\(\mathrm{N}_{\mathbf{\prime}}{ }^{\prime}=20 \mathrm{lb}\)./ac. of N as Urea.
\(\mathrm{N}_{\mathbf{\prime}}^{\prime}=40 \mathrm{lb}\)./ac. of N as Urea.
\(N_{1}=20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
\(\mathrm{N}_{1}{ }^{\prime} \mathrm{P}_{1}=20 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{N}_{2}{ }^{\prime} \mathrm{P}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
Super and half of Urea and \(A / S\) were broadcasted 8 days prior to sowing and the remaining half one month after sowing.
3. DESIGN :
(i) and (ii) A list of villages randomly selected from all the villages in a taluk was formed and a necessary number of suitable villages was taken from the list retaining the serial order of the list. The site in the village was located by randomly selected survey no. No. of experimental site=2. (iii) (a) \(53^{\prime} \times 41^{\prime}\). (b) \(33^{\circ} \times 33^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) No. (iii) Height, no. of tillers, length of earhead, number of grains per earhead and grain yield (iv) (a) 1953-1956. (b) N.A. (c) N.A. (v) N.A.
5. RESULTS :
(i) \(1299 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(228.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{O}\) & 918 \\
\(\mathrm{~N}_{\mathbf{1}}{ }^{\prime}\) & 1385 \\
\(\mathrm{~N}_{2}{ }^{\prime}\) & 1170 \\
\(\mathrm{~N}_{1}\) & 1278 \\
\(\mathrm{~N}_{1} \mathbf{P}^{\prime}\) & -1373 \\
\(\mathrm{~N}_{2}{ }^{\prime} \mathbf{P}\) & 1670 \\
S.E \(/\) mean & \(=161.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 51(166). } \\
\text { Site :- Govt. Exptl. Farm, Nagpur. } & \text { Type :- 'MV'. }
\end{array}
\]

Object :-To study the effect of N in combination with \(\mathrm{P}_{2} \mathrm{O}_{5}\) on yield of different varieties of Wheat.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) N.A. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 4 and , 5.11.1951. ،(iv) (a) N.A. (b) Sowing by \(10^{\circ}\) Tiffan. (c) \(50 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 1 weeding and 2 hoeings. (ix) 5.28*. (x) 21 and 22.3.52.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 varieties: \(\mathrm{V}_{1}=\mathrm{NP}=52, \mathrm{~V}_{2}=\) Hawara and \(\mathrm{V}_{3}=\mathrm{AO}=90\).
(2) 3 doses of \(N\) as \(A / S: N_{0}=0, N_{1}=10\) and \(N_{2}=20 \mathrm{lb} . / \mathrm{ac}\). of N .
(3) 3 doses of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=10\) and \(\mathrm{P}_{2}=20 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) confounding. (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(66^{\prime} \times 161^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(628 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(136.4 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{\mathbf{2}}\) & Mean & \(\mathrm{V}_{1}\) & \(V_{2}\) & \(\mathrm{V}_{3}\) \\
\hline \(\mathrm{P}_{0}\) & 637 & 603 & 477 & 572 & 537 & 610 & 570 \\
\hline \(\mathrm{P}_{1}\) & 583 & 680 & 750 & 671 & 693 & 680 & 640 \\
\hline \(\mathbf{P}_{\mathbf{2}}\) & 637 & 713. & 577 & 642 & 533 & 717 & 677 \\
\hline Mean & 619 & 665 & 601 & 628 & 588 & 669 & 629 \\
\hline \(\mathrm{V}_{1}\) & 580 & 647 & 537 & & & & \\
\hline \(\mathrm{V}_{2}\) & 657 & 760 & 590 & & & & \\
\hline \(V_{3}\) & 620 & 590 & 677 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=32.16 \mathrm{lb} . / \mathrm{ac}\). \\
S. E. of body of table & \\
& \(=55.70 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}

Crop:- Wheat (Rabi).
Ref : Mh. 52 (154).
Site :- Govt. Exptl. Farm, Nagpur.
'Type :~ 'MV'.
Object :-To study the effect of N in combination with \(\mathrm{P}_{2} \mathrm{O}_{5}\) on yield of different varieties of Wheat.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Wheat. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 26.10.1952. (iv) (a) N.A. (b) Drilled with Argada. (c) \(50 \mathrm{lb} . / \mathrm{ac}\). (d) N.A. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) N.A. (ix) \(0.70^{\circ}\). (x) 21.2.1953.
2. TREATMENTS:

All comdinations of (1), (2) and (3)
(1) 3 yarieties: \(\mathrm{V}_{1}=\mathrm{NP}-2, \mathrm{~V}_{2}=A O-90\) and \(\mathrm{V}_{3}=\) Hansa 3.
(2) 3 levels of N as \(\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10\) and \(\mathrm{N}_{2}=20 \mathrm{lb}\)./ac.
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, P_{1}=10\) and \(\mathrm{P}_{2}=20 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) \(3^{3}\) confounded. (iii) (a) 9 plots/block ; 3 blocks/replicatiod. (b) N.A. (iii) 2 . (iv) (a) N.A. (b) \(66^{\prime} \times 16 j^{\prime}\).
(v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS}
(i) \(590.4 \mathrm{lb}, / \mathrm{ac}\).
(ii) 255.2 lb ./ac.
(iii) All the main effects and their interactions are not significant.
(iv) Av, yield of grain in lb,/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathbf{V}_{3}\) \\
\hline \(\mathrm{P}_{0}\) & 546.5 & 640.3 & 559.4 & 582.1 & 531.9 & 566.9 & 646.1 \\
\hline \(\mathrm{P}_{1}\) & 602.8 & 573.6 & 606.1 & 594.2 & 534.4 & 659.5 & 588.6 \\
\hline \(\mathrm{P}_{2}\) & 610.3 & 605.3 & 570.3 & 595.3 & 553.6 & 578.6 & 653.7 \\
\hline Mean & 586.5 & 606.4 & 578.6 & 590.4 & 539.9 & 601.7 & 629.4 \\
\hline \(\mathrm{V}_{1}\) & 473.6 & 558.6 & 587.8 & \multicolumn{4}{|l|}{\multirow[b]{3}{*}{-}} \\
\hline \(\mathrm{V}_{2}\) & 652.7 & 613.6 & 538.6 & & & & \\
\hline \(\mathrm{V}_{3}\) & 631.9 & 646.9 & 609.4 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=60.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=104.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop: Wheat (Rabi).
Ref. : Complex experiments (T.C.M.), 1953.
Centre : Niphad (Maharashtra) Type:- \({ }^{\prime} \mathbf{M}^{\prime}\) '
Object : VIII, To study the effect of \(\mathbf{N}\) and \(\mathbf{P}\) on yield of different varieties of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (ii) (a) Loam to clay loam in texture, medium to deep black in colour. (b) Deficient in organic matter, non-acidic in reaction, pH. 7.5 to 8.0 (iii) 5.11 .53 . (iv) (a) N.A. (b) N.A. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\circ}\). (e) N.A. (v) N.A. (vi) As under treatments. (vii) Irrigated. (viii) Two weedings and one intercultivation- (ix) \(35.00^{\prime \prime}\). (x) \(26,27.3 .1953\).
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \quad \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0,1 \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 varieties: \(-\mathrm{V}_{1}=\) Niphad-4; \(\mathrm{V}_{2}=\) Kenphad No. 25 and \(\mathrm{V}_{3}=\) B.N. No. 177. N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Triple Super.
Triple super drilled one week before sowing and A/S drilled at the time of sowing.

DESIGN:
(l) \(3^{3}\) Fact. (confounded) (ii) (a) 9 plots/block ; \(3^{\prime}\) blocks/replication. (b) N.A. (iii) 1 . (iv) (a) N.A. (b) \(40^{\circ} \times 20^{\circ}\) (vi) N.A. (vii) Nil.
4. GENERAL:
(i) Normal (ii) Nil. (iii) Grain yield. (iv) (a) 1953-56. (b) No (c) N.A. (v). (a) Kotah, Banaras, Pura, and Paliad (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS
(i) \(1357 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(110.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects and their interactions are not significant.
(iv) Av, yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\mathrm{V}_{\mathbf{8}}\) \\
\hline \(\mathrm{P}_{0}\) & 1141 & 1453 & 1463 & 1352 & 1323 & 1426 & 1308 \\
\hline \(\mathrm{P}_{1}\) & 1275 & 1297 & 1263 & 1279 & 1183 & 1445 & 1209 \\
\hline \(\mathbf{P}_{2}\) & 1322 & 1486 & 1513. & 1440 & 1449. & 1542 & 1330 \\
\hline Mean & 1246 & 1412 & 1413 & 1357 & 1318 & 1471 & 1282 \\
\hline \(\mathrm{V}_{1}\) & 1197 & 1456 & 1302 & & & & \\
\hline \(\mathrm{V}_{2}\) & 1396 & 1522 & 1495 & & & & \\
\hline \(\mathrm{V}_{3}\) & 1146 & 1259 & 1442 & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=36.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table
\end{tabular}\(\quad=63.7 \mathrm{lb} . / \mathrm{ac}\).

Crop. : Wheat (Rabi).
Site : Agri. Res. Stn., Jalagaon.

Ref :- Mh. 49 (31).
Type :m 'C'

Object :-To find out a suitable date and spacing for sowing Wheat in Khandesh tract.
1. BASAL CONDITIONS :
(i) (a) No. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet
(b) Refer soil analysis, Jalgaon. (iii) According to treatments. (iv) (a) N.A. (b) Drilling. (c) \(50 \mathrm{lb} . / \mathrm{ac}\).
(d) According to treatments. (e) N.A. (v) Nil. (vi) Gulab (Mid-late) (vii) Unirrigated (viii) N.A.
(ix) Nil. (x) 19 to 22.2.1950.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 sowing dates : \(D_{1}=8.10 .49, D_{2}=15.10 .49,{ }_{2} D_{3}=22.10 .49, D_{4}=29.10 .49\) and \(D_{5}=8.11 .49\).
Sub-plot treatments:
2 spacings between rows : \(-S_{1}=13^{\prime \prime}\) and \(S_{2}=16^{\prime \prime}\)
3. DESIGN :
(i) Split-plot (ii) (a) 5 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Main-plot \(39^{\prime} \times 44^{\prime}-4^{\prime \prime}\) (b) Sub-plot \(33^{\prime} \times 17^{\prime}-4^{\prime \prime}\). (v) 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and chaff yield. (iv) (a) 1947-50. (b) No. (c) N.A. (v) (a) Karad, Mohol, Niphad, Padegaon, Shahada. (b) N.A. (vi) Nil. (vii) Expt. failed in 1948.
5. RESULTS:
(i) \(1101 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(117.40 \mathrm{lb} . / \mathrm{ac}\),
(b) \(123.06 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main plot treatments, sub-plot treatments and their interactions are not significant.
(iv) Av. yieid of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{D}_{1}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{3}\) & \(\mathrm{D}_{2}\) & \(\mathrm{D}_{5}\) & Mean \\
\hline St & 1052 & 1053 & 1163 & 1206 & 1080 & 1111 \\
\hline \(S_{2}\) & 1134 & 995 & 1155 & 1055 & 1119 & 1092 \\
\hline Mean & 1093 & 1025 & 1159 & 1131 & 1099 & 1101 \\
\hline \multicolumn{7}{|l|}{S.E. of difference of two} \\
\hline \multicolumn{3}{|c|}{1. D marginal means} & \multicolumn{4}{|l|}{\(=47.9 \mathrm{lb} / \mathrm{ac}\).} \\
\hline \multicolumn{3}{|c|}{2. S marginal means} & \multicolumn{4}{|l|}{\(=31.8 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{3}{|r|}{3. S means at a level of \(D\)} & \multicolumn{3}{|l|}{\(=69.8 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline \multicolumn{6}{|c|}{4. D means at a level of \(S=71.0 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline
\end{tabular}

Crop: Wheat (Rabi).
Site : Agri. Res. Stn., Jalagaon.

Ref :- Mh. 50(42)
Type :- 'C'.

Objest :-To find out a suitable date and spacing for sowing Wheat in Khandesh tract.
1. BASAL CONDITIONS :
(i) (a) No. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type baving a depth of 10 to 13 feet. (b) Refer to soil analysis, Jalagaon. (iii) According to treatments (iv) (a) 1 ploughing, 5 to 6 harrowings. (b) Drilling. (c) \(50 \mathrm{lb} . / \mathrm{ac}\). (d) According to treatments. (e) N.A. (v) Nil. (vi) Gulab (Mid-late). (vii) Unirrigated. (viii) N.A. (ix) 0 inches 91 cents. (x) 15 to 25.2.1951.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

Sowing dates: \(D_{2}=6.10 .50\). (Two weeks before normal sowing date) \(D_{2}=13.10 .50\). (one week before nermal sowing date) \(D_{3}=20.10 .50\). (Normal sowing date) \(D_{4}=27.10 .50\). (One week after normal sowing date) \(D_{5}=3.11 .50\). (Two weeks after normal sowing date)
Sub-plot treatments :
2 spacings between rows : \(S_{1}=13^{\circ}\) and \(S_{2}=16^{\circ}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(39^{\prime} \times 21^{\circ}-8^{*}\) and \(30^{\circ} \times 2:^{\circ}-3^{\circ}\) (main-plot) \(39^{\circ} \times 44^{\circ}-4^{\circ}\). (b) Sub \(33^{\circ} \times 17^{\circ}-4^{\circ}\). (v) 2 rows on either side and \(3^{\circ}\) on either end. (vi) Yes.
4. GENERAL :
(i) This year the rain fall was less than average. (ii) New plants dried in eariy stage and infection of loosesmut was observed to some extent. (iii) Grain and chaff yield. (iv) (a) 1947-1950. (b) No. (c) N.A. (v) (a) Karad, Mohol, Niphad, Padegaon and Shahada. (b) N.A. (vi) and (vii) Nil.

\section*{5 RESULTS :}
(i) \(915.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(71.39 \mathrm{lb} . / \mathrm{ac}\).
(b) \(97.56 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main-plot treatments and sub-plot treatments are highly significant. Interaction is not significant.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{r|ccccc:c} 
& \(D_{1}\) & \(D_{2}\) & \(D_{1}\) & \(D_{i}\) & \(D_{5}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 820 & 944 & 986 & 1039 & 1026 & 963 \\
\(\mathrm{~S}_{2}\) & 766 & 770 & 989 & 888 & 923 & 867 \\
\hline Mean & 793 & 857 & 987 & 964 & 974 & 915
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. D marginal means & \(=29.10 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=25.10 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(D\) & \(=56.33 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(D\) means at the same level of \(S\) & \(=49.35 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Jalagaon.

\author{
Ref :- Mh. 53(135). \\ Type:- ' \(C\) '.
}

Object :-To find out a suitable spacing and seedrate for dry Wheat

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) Cotton. (c) N.A. (ii) (a) Deep black type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) \(2+.10 .1953\). (iv) (a) N.A. (b) Drilling. (c) As per treatments. (d) As per treatments. (e) N.A. (v) Nil. (vi) Gulab (mid-late). (vii) Unirrigated. (viii) N A. (ix) \(0.48^{\prime \prime}\). (x) 14.2.1954.
2. TREATMENTS :

Main-plot treatments :
3 seedrates : \(\mathbf{R}_{1}=30, R_{2}=40\) and \(R_{y}=50 \mathrm{lb} / \mathrm{ac}\).
Sub-plot treatments:
2 spacings between rows: \(S_{1}=9^{\prime \prime}\) and \(S_{2}=12^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(42^{\prime} \times 21^{\prime}\) (main-plot) \(84^{\prime} \times 63^{\prime}\). (b) \(36^{\prime} \times 15^{\prime}\). (v) \(3^{\prime}\) alround the net plot. (vi) Yes.

\section*{4. GENERAL}
(i) Germination was quite satisfactory. Growth of the crop was vigorous. General condition of the crop was satisfactory. (ii) Plants dried up to some extent by the attack of white ants. (iii) Grain and chaff yield. (iv) (a) 1952-1954. (b) N.A. (c) N.A. (v) N.A. (b) N A. (vi) Nil. (vii) Experiment failed in 1952.
5. RESULTS :
(i) \(827 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(223.6 \mathrm{lb} / \mathrm{ac}\).
(b) \(123.2 \mathrm{lb} / \mathrm{ac}\).
(iii) Main-plot treatments, sub-plot treatments and interaction are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathbf{R}_{2}\) & \(\mathbf{R}_{3}\) & Mean \\
\hline \(\mathbf{S}_{1}{ }^{\prime}\) & 861 & 826 & 765 & 817 \\
\hline \(S_{2}\) & - 761 & 860 & 888 & 836 \\
\hline Mean & 811 & 843 & 826 & 827 \\
\hline , ' & \(\cdots\) & & 's & \\
\hline
\end{tabular}
S.E. of difference of two
1. R marginal means
\[
=91.3 \mathrm{lb} . / \mathrm{ac}
\]
2. \(S\) marginal means
\(=41.1 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) means at a level of \(R\)
\(=72.6 \mathrm{lb} . / \mathrm{ac}\).
4. \(R\) means at a level of \(S \quad=104.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Wheat (Rabi).
Site 'zm Agri. Res. Stn., Karad.
Ref :-Mh. 48(96).
Type:-‘C'.

Object :-To study the effect of different spacings with different sowing dates on yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) and (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (iv) (a) N.A. (b) and (c) N.A. (d) As per ,treatments. (e) N.A. (v) Nil, (vi). N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) N.A.

\section*{2. TREATMENTS:}

Main-plot treatments:
5 sowing dates : \(D_{1}=1.10 .1948, D_{2}=8.10 .1948, D_{3}=15.10 .1948, D_{4}=22.10 .1948\) and \(D_{5}=29.10 .1948\).
Sub-plot treatments :
2 spacings between rows : \(\mathrm{S}_{1}=12^{\prime \prime}\) and \(\mathrm{S}_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(35^{\circ} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Not good. Higbly affected by hariyali (weeds). (ii) Nil. (iii) Grain yield. (iv) (a) 1948-contd. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(108.8 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(76.01 \mathrm{lb} . / \mathrm{ac}\).
(b) \(29.74 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects and interaction are not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 74 & 62 & 68 \\
\hline \(\mathrm{D}_{2}\) & 81 & 61 & 71 \\
\hline \(\mathrm{D}_{3}\) & 135 & 126 & 131 \\
\hline \(\mathrm{D}_{4}\) & 156 & 136 & 146 \\
\hline \(\mathrm{D}_{5}\) & 117 & 141 & 129 \\
\hline Mean & 113 & 105 & \\
\hline
\end{tabular}
S.E. of difference of twq
\(\begin{array}{ll}\text { 1. } D \text { marginal means } & =31.04 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } S \text { marginal means } & =7.68 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } S \text { means at the same level of } D & =17.17 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. } D \text { means at the same level of } S & =33.33 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

Crop :-Wheat (Rabi).
Ref :-Mh. 48(21).
Site : Agri. Res. Stn., Kopergaon.
Type :-‘'C'.
Object :-To find out a suitable date and spacing for sowing Wheat crop so as to avoid rust and obtain high yield.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Sann. (c) Nil. (ii) (a) Medium black, A type. (b) Refer soil analysis, Kopergaon. (iii) As per treatments. (iv) (a) N.A. (b) Drilling. (c) \([50 \mathrm{lb} . / \mathrm{ac}\). (d) N.A. (e) -. (v) 2 bags/ac. of G.N.C. on 10.10 .1948 and Sulphur dusting. (vi) Niphad 4 (early). (vii) Irrigated. (viii) 1 weeding. (ix) Nil. (x) 2.3.1949.

\section*{2. TREATMENTS:}

Main-plot treatments :
5 dates of sowing : \(\quad D_{1}=10.10 .1948, \quad D_{2}=20.10 .1948, \quad D_{3}=30.10 .1948, \quad D_{4}=9.11 .1948\) and \(D_{5}=\) 19.11.1948.

Sub-plot treatments:
2 spacings between rows : \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replications ; 2 【sub-plọts/main-plot. '(b) N.A. (iii) 6. (iv). (a) \(41^{\prime} \times 20^{\prime}\). (b) Sub-plot \(33^{\prime} \times 15^{\prime}\) and main-plot \(36^{\prime} \times 69^{\prime}\) (net). (v) N.A. (vi) Yes.

\section*{4. GENERAL:}
(i). Satisfactory. (ii) Crop affected by rust. (iii) Height, length of the pannicle, no of grain/pannicle and grain yield, (iv) (a) 1948-1950. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1001 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(403 \mathrm{lb} . / \mathrm{ac}\).
(b) \(178 \mathrm{lb} . / \mathrm{ac}\).
(iii) Noce of the main effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathrm{S}_{2}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 1111 & 1171 & 1141 \\
\hline \(\mathrm{D}_{2}\) & 1236 & 1125 & 1180 \\
\hline \(\mathrm{D}_{3}\) & 1048 & 1045 & . 1047 \\
\hline \(\mathrm{D}_{4}\) & 847 & 1021 & 934 \\
\hline \(\mathrm{D}_{\text {¢ }}\) & 703 & 703 & 703 \\
\hline Mean & 989 & 1013 & 1001 \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=164.5 \mathrm{lb} . / \mathrm{ac}\).
2. S marginal means
\(=45.8 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) means at the same level of \(D\)
\(=102.5 \mathrm{lb} . / \mathrm{ac}\).
4. D means at the same level of \(S\)
\(=179.7 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Kopergaon.

Ref : - Mh. 49(36)/48(21).
Type :~' C ’.

Object :-To find a suitable date and spacing for sowing Wheat crop so as to avoid rust and obtain high yield.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) As per treatments. (iv) (a) 2 harrowings and 2 levelings. (b) Drilling. (c) \(50 \mathrm{lb} . / \mathrm{ac}\). (d) N.A. (e) (v) Top-dressing of \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. at the time of sowing on \(9.10 .1949 .10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) at the time of flowering on 28.11.1949. (vi) Niphad 4. (vii) Irrigated. (viii) 1 weeding. (ix) Nil. (x) 20.2.1950.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 dates of sowing : . \(D_{1}=10.10 .1949, \quad D_{2}=20.10 .1949, \quad D_{3}=30.10 .1949, \quad D_{4}=9.11 .1949\) and \(D_{5}=\) 19.11.1949.

\section*{Sub-plot treatments :}
" 2 spacings between rows: \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Gross main-plot : \(40^{\prime} \times 41^{\prime}\) and \(38^{\prime} \times 41^{\prime}\). Sub-plot : \(20^{\prime} \times 41^{\prime}\) for \(15^{\prime \prime}\) spacing and \(19^{\prime} \times 41^{\prime}\) for \(12^{\prime \prime}\) spacing. (b) Sub-plot: \(15^{\prime} \times 33^{\prime}\) for \(15^{\prime \prime}\) spacing and \(15^{\prime} \times 33^{\prime}\) for \(12^{\prime \prime}\) spacing. (v) \(4^{\prime}\) along the read lines for both spacings. 2 rows on each side. (vi) Yes.

\section*{4. GENERAL}
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1950. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(129 \mathrm{lb} / \mathrm{lac}\).
(ii) (a) \(373.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(201.4 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the main effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ll|l} 
& \(S_{1}\) & \(S_{2}\) & Mean \\
\hline\(D_{1}\) & 1345 & 1263 & 1315 \\
\(D_{2}\) & 1322 & 1210 & 1304 \\
\(D_{3}\) & 1227 & 1352 & 1319 \\
\(D_{4}\) & 1350 & 1180 & 13518 \\
\(D_{5}\) & 1351 & 1264 & \\
\hline Mean & & & \\
& & &
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(D\) marginal means & \(=152.6 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=52.0 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(D\) & \(=116.3 \mathrm{lb} / \mathrm{ac}\). \\
4. \(D\) means at the same level of \(S\) & \(=173.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop :- Wheat (Rabi). & Ref :- Mh. \(50(50) / 49(26) / 48(21)\). \\
Site :- Agri. Res. Stn., -Kopergaon. & Type :- 'C'.
\end{tabular}

Object :-To find out a suitable date and spacing for sowing! Wheat crop so as to avoid rust and obtain high yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Sann. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kol er£aon. (iii) As per treatments. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) \(50 \mathrm{lb} / \mathrm{ac}\). (d) As per treatments. (e) -. (v) Top dressing \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. at the time of sowing and \(4 \mathrm{lb} .11 \mathrm{oz} . / \mathrm{sut}-\mathrm{plct}\) of G.N.C. at flowering and \(10 \mathrm{lb} . / \mathrm{sub}-\mathrm{plot}\) as \(\mathrm{A} / \mathrm{S}\) at fl.,wering. Manuring on 1 ) and 12.10 .1950 . (vi) Niphad 4 (early). (vii) 12 irrigations as and when required. (viii) I weeding. (ix) Nil. (x) 22.3.1951 to 30.3.1951.
2. TREATMENTS :

Main-plot treatments :
5 dates of sowing : \(D_{1}=10.10 .1950, D_{2}=20.10 .1950, D_{3}=30.10 .1950, D_{4}=9.11 .1950\), and \(D_{5}=19.11 .1950\). Sub-plot treatments :

2 spacings between rows: \(S_{1}=12^{\prime \prime}\) and \(S_{y}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Subplot \(20^{\prime} \times 36^{\prime}\) for \(15^{\prime \prime}\) spacing and \(19^{\prime} \times 30^{\prime}\) for \(12^{\prime \prime}\) spacing. (b) Sub-plot \(15^{\prime} \times 24^{\prime}\) for \(15^{\prime \prime}\) spacing and \(15^{\prime} \times 24^{\prime}\) for \(12^{\prime \prime}\) spacing. (v) 2 rows on either sides \(3^{\prime}\) at either head-lines. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield and straw yield. (iv) (a) 1948 to 1950. (b) Yes. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1670 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(219.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(203.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{D}\) is highly significant. Main effect of \(S\) is significant and interaction is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|c|c|c} 
& \(\mathbf{S}_{\mathbf{1}}\) & \(\mathbf{S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{D}_{\mathbf{1}}\) & 1686 & 1791 & 1739 \\
\(\mathrm{D}_{\mathbf{2}}\) & 1873 & 1941 & 1907 \\
\(\mathrm{D}_{\mathbf{3}}\) & 1671 & 1719 & 1695 \\
\(\mathrm{D}_{\mathbf{4}}\) & 1440 & 1668 & 1554 \\
\(\mathrm{D}_{\mathbf{5}}\) & 1479 & 1437 & 1458 \\
\hline Mean & 1630 & 1711 & 1670
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(D\) marginal means & \(=89.7 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(\doteq 52.5 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(D\) & \(=117.3 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(D\) means at the same level of \(S\) & \(=122.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Mohol.
Ref :- Mh. 48(33).
Type:- ' C '.

Object :-To see the effect of different spacings and sowing dates on the yield of Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) No definite rotation followed. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 16.9 1948. (iv) (a) N.A. (b) Drilling. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) -. (v) Nil. (vi) Wheat (Jay). (vii) Unirrigated. (viii) 2 interculturings. (ix) \(5.38^{\prime \prime}\). (x) 31.1.1949.
2. TREATMENTS :

Main-plot treatments :
5 dates of sowing : \(D_{1}=16.9 .1948, D_{2}=23.9 .1948, D_{3}=30.9 .1948\) (normal date of sowing), \(D_{4}=7.10 .1948\) and \(D_{5}=14.10 .1948\).
Sub-plot treatments :
2 spacings between rows: \(\mathrm{S}_{1}=12^{\prime \prime}\) and \(\mathrm{S}_{3}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(39^{\circ} \times 20^{\prime}\). (b) \(33^{\circ} \times 15^{\prime}\). (v) 2 rows on either side and \(3^{\prime}\) of rows on either ends. (vi) Yes.
4. GENERAL :
(i) Much variation in the growth of crop. (ii) Rust was seen on wheat. (iii) Grain yield. (iv) (a) 19481949 to 1950. (b) No. (c) N.A. (v) (a) Jalagaon, Karad, Niphad, Padegaon, Shahada. (b) N.A. (vi) Nil. (vii) Reasons are not known for very great variation in yield.
5. RESULTS:
(i). \(64 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(102.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(84.14 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the main effects and interaction is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccc} 
& \(S_{1}\) & \(S_{2}\) & Mean \\
\hline\(D_{1}\) & 35 & 46 & 41 \\
\(D_{2}\) & 28 & 40 & 34 \\
\(D_{3}\) & 64 & 59 & 62 \\
\(D_{4}\) & 72 & 75 & 74 \\
\(D_{5}\) & 108 & 108 & \\
\hline Mean & 61 & 66 & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=41.8 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
\(=21.7 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) means at the same level of \(D\)
\(=48.6 \mathrm{lb} . / \mathrm{ac}\).
4. D means at the same level of \(\mathbf{S}\)
\(=54.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi).
Ref :- Mh. 49(55).
Site :~ Agri. Res. Stn., Mohol.
Type :- 'C'.

Object :-To see the effect of different spacings and sowing dates on the yield of Wheat crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) No definite rotation. (b) Groundnut. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 16,23 and \(30.9 .1949,7\) and 14.10.1949. (iv) (a) N.A. (b) Drilling. (c) 40 lb ./ac. (d) As per treatments. (e)-. (v) Nil. (vi) Jay. (vii) Unirrigated. (viii) Interculturing 6 times. (ix) \(1.14^{\prime \prime}\). (x) 6, 10 and 16th January 1950.
2. TREATMENTS :

Main-plot treatments :
5 dates of sowing : \(D_{1}=16.9 .1949, D_{2}=23.9 .1949, D_{3}=30.9 .1949\) (bormal sowing date), \(D_{4}=7.10 .1949\) and \(D_{5}=14.10 .1949\).

\section*{Sub-plot treatments:}

2 spacings between rows : \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN
(i) Split-plot. (ii) (a) 5 main-plots/replication, 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) \(39^{\prime} \times 20^{\prime}\) (b) \(33^{\prime} \times 15^{\prime}\). (v) 2 rows on either side and \(3^{\prime}\) of rows on either ends. (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1949. (b) No. (c) N.A. (v) (a) Jalagaon, Karad, Niphad, Padegaon and Shahada. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(198 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(51.34 \mathrm{lb} . / \mathrm{ac}\).
(b) \(26.29 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{D}\) alone is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 149 & 138 & 143 \\
\hline \(\mathrm{D}_{2}\) & 210 & 205 & 207 \\
\hline \(\mathrm{D}_{3}\) & 207 & 208 & 207 \\
\hline \(\mathrm{D}_{4}\) & 213 & 222 & 217 \\
\hline \(\mathrm{D}_{5}\) & 214 & 214 & 214 \\
\hline Mean & 159 & 197 & 198 \\
\hline \multicolumn{4}{|l|}{S.E. of difference of two} \\
\hline \multicolumn{2}{|l|}{1. D marginal means} & \(=20.96 \mathrm{lb} . / \mathrm{ac}\). & \\
\hline \multicolumn{2}{|l|}{2. \(S\) marginal means} & \(=6.77 \mathrm{lb} . / \mathrm{ac}\). & \\
\hline \multicolumn{2}{|l|}{3. S means at the same level of D} & \(=15.36 \mathrm{lb} / \mathrm{ac}\). & \\
\hline \multicolumn{2}{|l|}{4. D means at the same level of \(\mathbf{S}\)} & \(=23.27 \mathrm{lb} . / \mathrm{ac}\). & \\
\hline
\end{tabular}

Crop:- Wheat (Rabi).
Site :- Govt. Expt. Farm, Nagpur.

Ref :- Mh. 49(90).
Type:- 'C'.

Object :-To study the effect of different seed rates and different spacings on yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) No particuiar crop rotation followed. (b) N.A. (c).N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nigpur. (iii) 6, 7.11.19 49. (iv) (a) N.A. (b) N.A. (c) and (d) As per treatments. (e)-. (v) Nil. (vi) NP—s2. (vii) Unirrigated. (viii) N.A. (ix) 1.95". (x) 23.2.1950.

\section*{2. TREATMENTS:}

Main-plot treatments :
4 spacings between lines: \(S_{1}=6^{\prime \prime}, S_{2}=9^{\prime \prime}, S_{3}=12^{\prime \prime}\) and \(S_{4}=15^{\prime \prime}\).
Sub-plot treatments :
3 seed rates; \(\mathrm{R}_{1}=40, \mathrm{R}_{2}=50\) and \(\mathrm{R}_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 3 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :-
(i) Satisfactory. (ii) General damage due to foot rot. (iii) Grain and straw yield. (iv) (a) 1949—1952. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(747.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) 208.4 lb ./ac.
(b) \(72.0 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av, yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & \(\mathbf{S}_{3}\) & \(S_{4}\) & Mean \\
\hline \(\mathbf{R}_{1}\) & 688.0 & 792.0 & 720.0 & 776.0 & 744.0 \\
\hline \(\mathbf{R}_{\mathbf{2}}\) & 752:0 & 824.0 & 704.0 & 752.0 & 758.0 \\
\hline \(\mathbf{R}_{\mathbf{3}}\) & 728.0 & 808.0 & 664.0 & 760.9 & 740.2 \\
\hline Mean & 722.7 & 808.0 & 696.0 & 762.9 & 747.2 \\
\hline
\end{tabular}
- S.E. of difference of two
1. \(S\) margioal means
\[
=76.1 \mathrm{lb} . / \mathrm{ac}
\]
2. \(R\) marginal means \(=22.8 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathbf{R}\) means at the same level of \(\mathbf{S}\) \(=45.5 \mathrm{lb} . / \mathrm{ac}\).
4. \(S\) means at the same level of \(R\) \(=84.7 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi).
Ref:- Mh, 50(108).
Site :-Govt. Exptl. Farm, Nagpur.
Type :- 'C'.
Object : -To study the effect of spacings (tine to line) and different seed rates on the yield of Wheat.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Nagpur. (iii) 22.10.1950. (iv) (a) and (b) N.A. (c) and (d) As per treatments. (c) N.A. (v) Nil. (vi) N.P.S2. (vii) Unirrigated. (viii) N.A. (ix) \(3.23^{\prime \prime}\). (x) N.A.
2. TREATMENTS :

Main-plot treatments :
4 spacings between lines: \(S_{1}=6^{\prime \prime}, S_{2}=9^{\prime \prime}, S_{3}=12^{\prime \prime}\) and \(S_{4}=15^{\prime \prime}\).
Sub-plot treatments :
3 seed rates: \(R_{1}=40, R_{2}=50\) and \(\mathbf{R}_{\mathbf{3}}=60 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 3 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(40^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) N.A.
5. RESULTS:
(i) \(624.7 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(144.5 \mathrm{lb} / \mathrm{ac}\)
(b) \(87.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of \(S\) and \(R\) are significant while interaction is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cccc|c} 
& \(\mathrm{S}_{1}\) & \(\mathrm{~S}_{2}\) & \(\mathrm{~S}_{3}\) & \(\mathrm{~S}_{\mathbf{4}}\) & Mean \\
\hline \(\mathrm{R}_{1}\) & 414.4 & 657.0 & 582.3 & 614.4 & 569.9 \\
\(\mathbf{R}_{\mathbf{2}}\) & 507.4 & 740.9 & 644.3 & 682.6 & 643.8 \\
\(\mathbf{R}_{\mathbf{3}}\) & 452.5 & 753.8 & 752.1 & 675.3 & 658.4 \\
\hline Mean & 458.1 & 717.2 & 659.5 & 657.4 & 624.7
\end{tabular}
S.E. of difference of two
1. \(S\) marginal means
\[
\begin{aligned}
& =52.7 \mathrm{lb} . / \mathrm{ac} \\
& =27.6 \mathrm{lb} . / \mathrm{ac} . \\
& =55.4 \mathrm{lb} . / \mathrm{ac} \\
& =69.4 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
3. \(R\) means at the same level of \(S\)
4. \(S\) means at the same level of \(R\)

Ref:- Mh. 51(119).
Type :- 'C'.

Object :-To find out suitable line to line spacing and seed rate for Wheat in Nagpur tract.

\section*{1. BASAL CONDITIONS:}
(i) (a) No particular rotation followed. (b) Wheat. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 6.11 .1951 . (iv) (a) 3 ploughings. (b) Drilling. (c) and (d) As under treatments. (e) -. (v) Nil. (vi) N.P. 52 (early). (vii) Unirrigated. (viii) N.A. (ix) Negligible (Rabi season). (x) 10.3.1952.

\section*{2. TREATMENTS:}

Main-plot treatments :
4 spacings between lines : \(S_{1}=6^{\circ}, S_{2}=9^{\prime \prime}, S_{8}=12^{*}\) and \(S_{4}=15^{\prime \prime}\).
Sub-plot treatments :
3 seed rates : \(R_{1}=40, R_{2}=50\) and \(R_{8}=60 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 3 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(40^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Grain yield. (iv) (a) and (b) N.A. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(565 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(117.9 \mathrm{lb} . / \mathrm{ac}\).
(b) \(83.7^{\circ} \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb}, / \mathrm{ac}\).
\begin{tabular}{r|cccc|l} 
& \(S_{1}\) & \(S_{2}\) & \(S_{3}\) & \(\mathbf{S}_{4}\) & Mean \\
\hline \(\mathbf{R}_{1}\) & 588 & 552 & 501 & 566 & 552 \\
\(\mathbf{R}_{\mathbf{2}}\) & 552 & 545 & 501 & 595 & 548 \\
\(\mathbf{R}_{3}\) & 552 & 646 & 545 & 639 & 595 \\
\hline Mean & 564 & 581 & 516 & 600 & 565
\end{tabular}
S.E. of difference of two
1. \(S\) marginal means \(\quad=43.1 \mathrm{lb}\)./ac.
2. \(R\) marginal means \(\quad=26.4 \mathrm{lb} . / a c\).
3. \(R\) means at the same level of \(S=52.9 \mathrm{lb}\)./ac.
4. \(S\) means at the same level of \(R=61.2 \mathrm{lb}\)./ac.

Crop :- Wheat (Rabi).
Ref:- Mh. 52(I34).
Site : Govt. Exptl. Farm, Nagpur.
Type :- 'C'.

Object :-To find out most suitable line to line spacing and seed rate for Wheat in Nagpur tract.
1. BASAL CONDITIONS :
(i) (a) No particular rotation followed. (b) Wheat. (c) N.A. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 29.10.1952. (iv) (a) 4 bakharings and 2 ploughings. (b) Tiffan sowings. (c) and (d) As under treatments. (e) -. (v) Nil. (vi) N.P. 52 (early). (vii) Unirrigated. (viii) N.A. (ix) 1.78'. (x) 20.2.1953.

\section*{2. TREATMENTS :}

Main-plot treatments:
4 spacings between lines : \(S_{1}=6^{\prime \prime}, S_{2}=9^{\prime \prime}, S_{3}=12^{\prime \prime}\) and \(S_{4}=15^{\prime \prime}\).
Sub-plot treatments :
3 seed rates : \(R_{1}=40, R_{2}=50\) and \(R_{2}=60 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication and 3 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) N.A.
(b) Sub-plot \(40^{\prime} \times 15^{\prime}\); main-plot size \(40^{\prime} \times 45^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1950-1951\) (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 544.7 lb ./ac.
(ii) (a) \(128.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(50.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only the main effect of \(R\) is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cccc|c} 
& \(\mathrm{S}_{\mathbf{1}}\) & \(\mathbf{S}_{\mathbf{2}}\) & \(\mathbf{S}_{\mathbf{3}}\) & \(\mathbf{S}_{\mathbf{4}}\) & Mean \\
\hline \(\mathbf{R}_{\mathbf{1}}\) & 480.9 & 584.4 & 546.3 & 486.4 & 524.5 \\
\(\mathbf{R}_{\mathbf{2}}\) & 520.9 & 580.8 & 711.5 & 625.6 & 532.2 \\
\(\mathbf{R}_{\mathbf{3}}\) & 568.1 & 711.5 & 517.3 & 511.8 & 577.2 \\
\hline Mean & 523.2 & 625.6 & 517.3 & 511.8 & 544.7
\end{tabular}
S.E. of difference of two
1. \(S\) marginal means
\(=46.9 \mathrm{lb}\). \(/ \mathrm{ac}\).
2. \(R\) marginal means
\(=16.0 \mathrm{lb}\)./ac.
3. \(R\) means at the same level of \(S\)
\(=32.3 \mathrm{lb} . / \mathrm{ac}\).
4. \(S\) means at the same level of \(R \quad=53.8 \mathrm{lb} . / \mathrm{ac}\).

\author{
Crop :- Wheat (Rabi): \\ Ref:- Mh. 48(27). \\ Site :- Agri. Res. Stn., Niphad. \\ Type :- 'C'.
}

Object:-To ascertain the economic seed rate for Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) No particular. (b) Lucerne. (c) F.Y.M. and G.N.C. (amount N.A.). (ii) (a) Loamy-Mediumdepth upto \(6^{\circ}\), (b) A good percentage of silt; clay and fine sand; \(\mathrm{pH}-7.5\) to 8 . (iii) 16.11 .1948 . (iv) (a) N.A. (b) Sowing by drilling with 3 coultered drill \(10^{\circ}\). (c) As under treatments. (d) N.A. (e) -- (v) 5 C.L./ac. of F.Y.M. (vi) N-4. (vii) Irrigated. (viii) N.A. (ix) \(3.89^{\prime \prime}\). (x) N.A.
2. TREATMENTS:

5 seed rates :
1. \(40 \mathrm{lb} / \mathrm{ac}\).
2. 50 lb ./ac.
3. \(60 \mathrm{lb} . / \mathrm{ac}\)
4. 70 lb ./ac.
5. \(80 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) \(45^{\prime} \times 20^{\prime}\). (b) \(32.75^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1944-1945 to 19481949 (Rabi). (b) No. (c) N.A. (v) (a) Kopergaon and Jalagaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1456 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(90.85 \mathrm{ib} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av, yield of grain in lb,/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1560 \\
2. & 1465 \\
3. & 1468 \\
4. & 1408 \\
5. & 1380 \\
S.E./mean & \(=37.05 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Niphad.
Ref : \(\mathbf{N M}\). 48(26).
Type:-‘C'.
Object :-To ascertain the proper time of sowing of dry Wheat with suitable spacing.
1. BASAĹ CONDITIONS:
(i). (a) No particular. (b) Gram. (c) Nil. (ii) (a) Loamy-Medium-depih upto 6 feet. (b) A good percentage of silt-clay and fine sand ; \(\mathrm{pH}-7.5\) to 8. (iii) As per treatments. • (iv) (a) N.A. (b) Drilled with 3 coultered drill. (c) 40 lb./ac. (d) As per treatments. (e) -. (v) 5 C.L./ac. of F.Y.M. (vi) Vijay. (vii) Unirrigated. (viii) N.A. (ix) \(3.89^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 dates of sowing : \(D_{1}=24.9 .1948, \quad D_{2}=1.10 .1948, \quad D_{2}=8.10 .1948, \quad D_{4}=15.10 .1948\) and \(\mathrm{D}_{5}=22.10 .1948\).
Sub-plot treatments :
2 spacings: \(S_{1}=10^{\prime \prime}\) and \(S_{2}=13^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Mainplot: \(36^{\prime} \times 25^{\prime}-5^{\prime \prime}\); Sub-plot: \(36^{\prime} \times 12^{\prime}-6^{\prime \prime}\) for \(S_{1}\) and \(36^{\prime} \times 13^{\prime}\) for \(S_{2}\). (b) Main-plot : \(30^{\prime} \times 21^{\prime}-8^{\prime \prime}\); Sub-plot: \(30^{\prime} \times 10^{\prime}-10^{\prime \prime}\). (v) \(3^{\prime}\) on either length wise direction and 2 rows on either breadth wise direction (vi) Yes.
4. GENERAL :
(i) and (ii) N.A. (iii) G rain yield. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a) Jalagaon, Karad, Mohol, Padegaon and Shahada. (b) N.A. (vi) and. (vii) Nil.

\section*{5. RESULTS:}
(i) \(\quad 530 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(36.37 \mathrm{lb} / \mathrm{ac}\).
(b) \(22.29 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of \(D\) alone is significant.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline & \(S_{1}\) & \(\mathbf{S}_{2}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 400 & 378 & 389 \\
\hline \(\mathrm{D}_{2}\) & 372 & 562 & 467 \\
\hline \(\mathrm{D}_{3}\) & 572 & 546 & 559 \\
\hline \(\mathrm{D}_{4}\) & 644 & 600 & 622 \\
\hline \(\mathrm{D}_{5}\) & 618 & 604 & 511 \\
\hline Mean & 521 & 538 & 530 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. D marginal means & \(=14.83 \mathrm{lb} . / \mathrm{ac}\) \\
2. \(S\) marginal means \\
3. \(S\) means at the same level of \(D\) & \(=5.75 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(D\) means at the same level of \(S\) & \(=12.86 \mathrm{lb} . / \mathrm{ac}\) \\
\end{tabular}

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Niphad.

Ref :-Mh. 49(42).
Type:- 'C'.

Object:-To find out the optimum spacing and date of sowing.
1. BASAL CONDITIONS :
(i) (a) No particular. (b) Gram. (c) Nil. (ii) (a) Loamy-Medium-depth upto 6 feet. (b) Agood percentage of silt-clay and fine sand; pH 7.5 to 8. (iii) As per treatments. (iv) (a) N.A. (b) Drilling. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) Between rows: as per treatments and between plants : irregular. (e) -. (v) 5 C.L./ac. of F.Y.M. (vi) Wheat Vijay. (vii) Unirrigated. (viii) N.A. (ix) Nil. (x) 19.2.1950.
2. TREATMENTS :

Main-plot treatments :
5 dates of sowing : \(D_{1}=24\) to 26.9.1949, \(D_{2}=1\) to \(3.10 .1949, D_{3}=8\) to 10.10.1949, \(D_{4}=15\) to 17.10.1949 and \(D_{5}=22\) to 24.10.1949.
Sub-plot treatments :
2 spacings : \(S_{1}=10^{\prime \prime}\) and \(S_{2}=13^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) Sub-plot: \(36^{\prime} \times 12^{\prime}-6^{\prime \prime}\) for \(S_{1}\) and \(36^{\prime} \times 13^{\prime}\) for \(S_{2}\). (b) Main-plot: \(30^{\prime} \times 21^{\prime}-8^{\prime \prime}\) and sub-plot: \(30^{\prime} \times 10^{\prime}-10^{\prime \prime}\). (v) Two rows on either side and \(3^{\prime}\) of rows on either end. (vi) Yes.
4. GENERAL :
(i) Late rains and heavy rains in the middle of October affected the crop. The crop was below normal. (ii) Crop affected by seedling blight and slightly from loose smut. (iii) Grain yield. (iv) (a) 1948 to 1951.
(b) No.
(c) N.A.
(v) (a) Jalagaon, Karad, Mohol, Padegaon and Shahada.
(b) N.A. (vi) and
(vii) Nil.
5. RESUULTS :
(i) \(245.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(79.32 \mathrm{lb} . / \mathrm{ac}\).
(b) \(46.63 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only the main effect of \(S\) is highly significant.
(iv) Ar. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|ll|l} 
& \(\mathbf{S}_{1}\) & \(\mathbf{S}_{2}\) & Mean \\
\hline \(\mathbf{D}_{1}\) & 204 & 200 & 202 \\
\(\mathbf{D}_{2}\) & 239 & 237 & 238 \\
\(\mathbf{D}_{\mathbf{1}}\) & 226 & 296 & 220 \\
\(\mathbf{D}_{4}\) & 316 & 250 & 306 \\
\(\mathbf{D}_{5}\) & 370 & 240 & 260 \\
\hline Mean & 251 &
\end{tabular}
S.E. of difference of two
1. D marginal means \(\quad=32.66 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means \(\quad=12.03 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) means at the same level of \(D \quad=27.29 \mathrm{lb} . / \mathrm{ac}\).
4. \(\mathbf{D}\) means at the same level of \(\mathbf{S} \quad=37.50 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi).
Site :- Agri. Res. Stn., Niphad.

Ref :- Mh. 50(58).
Type :- 'C'. .

Object :-To find the proper time of sowing with different spacing for dry Wheat.
1. BASAL CONDITIONS :
(i)(a) No particular rotation followed. (b) Gram. (c) Nil. (ii) (a) Loamy-medium-depth upto \(6^{\prime}\). (b) A good percentage of silt-clay and fine sand ; pH 7.5 to 8 . (iii) As per treatments. (iv) (a) N.A. (b) Drilling. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) As under treatments. (e)-. (v) 5 C.L./ac. of F.Y.M. (vi) Vijay. (vii) Unirrigated. (viii) Hand weeding. (ix) Nil. (x) 20th and 21st February 1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
4 dates of sowing : \(D_{1}=1.10 .1950, D_{2}=8.10 .1950, D_{8}=15.10 .1950\) and \(D_{4}=22.10 .1950\).
Splb-plot treatments :
2 spacings : \(S_{1}=10^{\prime \prime}\) and \(S_{2}=13^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Mainplot : \(36^{\prime} \times 25^{\prime}-6^{\prime \prime}\); sub-plot: \(36^{\prime} \times 12^{\prime}-6^{\prime \prime}\) for \(S_{1}\) and \(36^{\prime} \times 13^{\prime}\) for \(S_{2}\). (b) Sub-plot: \(30^{\prime} \times 10^{\prime}-10^{\circ}\) for \(S_{1}\) and \(\mathbf{S}_{2}\). (v) \(\mathbf{3}^{\prime}\) on either length wise direction and 2 rows on either breadth wise. (vi) Yes.
4. 'GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) Jalagaon, Karad, Mohol, Padegaon and Shahada. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(326.0 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(47.80 \mathrm{lb} . / \mathrm{ac}\).
(b) \(24.20 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{D}\) is highly significant and main effect of \(S\) is significant. Interaction is not significant.
(iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).

S.E. of difference of two
1. D marginal means
\(=19.50 \mathrm{lb} . / \mathrm{ac}\).
2. S marginal means
\(=6.99 \mathrm{lb} . / \mathrm{ac}\).
3. \(S\) means at the same level of \(D\)
\(=13.97 \mathrm{lb} . / \mathrm{ac}\).
4. \(D\) means at the same level of \(S\)
\(=21.91 \mathrm{lb} . / \mathrm{ac}\).
```

 Crop:- Wheat (Rabi).
 Site :- Agri. Res. Stn., Padegaon.
 Ref:- Mh. 48(98).
 Type:- ' C '.
 Object :- To find out whether there is any inter-relation between sowing dates and spacing on lncidence of on Wheat (irrigated).

```

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) 'B’ type soil. (b) Refer soil analysis, Padegaon. (iii) As under treatments. (iv) (a) N.A. (b) N.A. (c) N.A. (d) As under treatments. (c)-. (v) 5 C.L./ac. of F.Y.M. (vi) Niphad-4. (vii) As under treatments. (viii) N.A. (ix) 22.47* (x) 13.2.1949.
2. TREATMENTS :

Main-plot treatments :
5 dates of sowing : \(D_{1}=6.10 .1948, D_{2}=13.10 .1948, D_{8}=20.10 .1948 ; D_{4}=27.10 .1948\) and \(D_{5}=3.11 .1948\).
Sub-plot treatments :
2 spacings : \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot: (ii) (a) 5 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 6. , (iv) (a) Subplot : \(14^{\prime} \times 46^{\prime}\) for \(S_{1}\) and \(15^{\prime} \times 46^{\prime}\) for \(S_{9^{\prime \prime}}\). (b) \(10^{\prime} \times 40^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1948-1949 (variety changed in 1951-1952.). (b) N.A. (c) Nil. (v) (a) Jalgaon, Shahada and Mohol. (b) N.A. (vi) and (vii) Nil.
- RESULTS :
(i) \(358 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(128.5 \mathrm{lb} / \mathrm{ac}\).
(b) \(80.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{D}\) alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(S_{1}\) & \(S_{2}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 279 & 266 & 272 \\
\hline \(\mathrm{D}_{3}\) & 356 & 297 & 327 \\
\hline \(\mathrm{D}_{3}\) & 349 & 356 & 352 \\
\hline \(\mathrm{D}_{4}\) & 245 & 310 & 278 \\
\hline \(\mathrm{D}_{5}\) & 563 & 559 & 561 \\
\hline Mean & 358 & 357 & 358 \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=52.5 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means \(\quad=20.0 \mathrm{lb}\)./ac.
3. \(S\) means at the same level of \(D \quad=46.6 \mathrm{lb}\)./ac.
4. D means at the same level of \(S \quad=61.9 \mathrm{lb} . / \mathrm{ac}\).
\[
\begin{array}{ll}
\text { Crop :- Wheat (Rabi). } & \text { Ref :- Mh. 49(121). } \\
\text { Site :- Agri. Res. Stn., Padegaon. } & \text { Type : ' } \mathrm{C} \text { '. }
\end{array}
\]

Object :-To find out whether there is any inter relation between sowing dates and spacings on incidence of rust on Wheat crop.
1. F BASAL CONDITIONS:
(i) (a) No fixed rotation. (b) and (c) N.A. (ii) (a) B type soil. (b) Refer soil analysis, Padegaon.
(iii) As per treatments. (iv) (a) to (c) N.A. (d) As per treatments. (e) -. (v) S C.L./ac. of F.Y.M-
(vi) Niphad-4. (vii) Irrigated. (viii) Nil. (ix) 23.32". (x) 24.2.1950.
2. TREATMENTS :

Main-plot treatments :
5 sowing dates : \(D_{1}=6.10 .1949, D_{2}=13.10 .1949, D_{3}=20.10 .1949, D_{4}=27.10 .1949\) and \(D_{5}=3.11 .1949\).
Sub-plot treatments :
2 spacings : \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(25^{\prime} \times 17.42^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Rust appeared in the middle of Dec. 1949. (iii) Grain yield. (iv) (a) 1948 to N.A. (b) No. (c) N.A. (v) (a) Jalagaon, Shahada and Mohol. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1119 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(261.5 \mathrm{lb} . / \mathrm{ac}\).
(b) \(204.0 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cc|c} 
& \(S_{2}\) & \(\mathbf{S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{D}_{\mathbf{1}}\) & 897 & 1022 & 959 \\
\(\mathrm{D}_{\mathbf{2}}\) & 1064 & 1160 & 1112 \\
\(\mathrm{D}_{\mathbf{3}}\) & 1232 & 1177 & 1204 \\
\(\mathrm{D}_{\mathbf{4}}\) & 1012 & 1139 & 1076 \\
\(\mathrm{D}_{5}\) & 1312 & 1177 & 1244 \\
\hline Mean & 1103 & 1135 & \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means: \(\quad=106.8 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means . \(\quad=52.6 \mathrm{lb} . / \mathrm{ac}\).
3. S means at the same level of \(D \quad=117.8 \mathrm{lb} . / \mathrm{ac}\).
4. D means at the same level of \(S \quad=149.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Wheat (Rabi). \(\quad\) Ref :- Mh. 50(147).
Site :-Agri. Res. Stn., Padegaon.
Object:-To find out whether there is any inter-relation between sowing date and spacing on incidence of rust on Wheat.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) to (c) N.A. (d) As per treatments. (e) - . (v) 5 C.L./ac. of F.Y.M. on 3.12.1950. (vi) Niphad-4. (vii) Irrigated. (viii) One weeding. (ix) \(22.91^{\prime \prime}\). (x) 24.2 .1951.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 dates of sowing: \(D_{1}=6.10 .1950, D_{2}=13.10 .1950, D_{3}=20.10 .1950, D_{4}=27.10 .1950\) and \(D_{5}=3.11 .1950\). Sub-plot treatments :

2 spacings : \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Subplot : \(29^{\prime} \times 21.5^{\prime}\) for \(S_{1}\) and \(30^{\prime} \times 21.5^{\prime}\) for \(S_{2}\). (b) Sub-plot : \(25^{\prime} \times 17.42^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-N.A. (b) N.A. (c) No. (v) (a) Shahada, Niphad, Mohol and Jalagaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(832 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(282.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(184.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 686 & 680 & 683 \\
\hline \(\mathrm{D}_{2}\) & 868 & 667 & 768 \\
\hline \(\mathrm{D}_{3}\) & 762 & 820 & 791 \\
\hline \(\mathrm{D}_{4}\) & 1025 & 989 & 1007 \\
\hline \(\mathrm{D}_{5}\) & 873 & 947 & 910 \\
\hline Mean & 843 & 821 & 832 \\
\hline
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=115.1 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
\(=47.7 \mathrm{lb}\). ac .
3. \(S\) means at the same level of \(D\)
\(=106.6 \mathrm{lb} . / \mathrm{ac}\).
4. \(D\) means at the same level of \(S \quad=137.6 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Wheat (Rabi).
Site :-Agri. Res. Stn., Padegaon.

Ref :-Mh. 51(216).
Type :-‘C'.

Object:-To find out the optimum spacing and sowing date for Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Sugarcane. (c) \(300 \mathrm{lb} . / \mathrm{ac}\). of N. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) NiI. (b) Hand sowing. (c) 40 lb ./ac. (d) As per treatments. (e) N.A. (v) Nil. (vi) R.R. variety. (vii) Irrigated. (viii) One weeding. (ix) \(14.68^{\prime \prime}\). (x) 1.3 .1952 for first two sowing dates ands 14.3.1952 for last three sowing dates.
2. TREATMENTS :

Main-plot treatments :
5 dates of sowing : \(\quad D_{1}=6.10 .1951, \quad D_{2}=13.10 .1951, \quad D_{3}=20.10 .1951, \quad D_{4}=27.10 .1951\) and \(D_{5}=3.11 .1951\).
Sub-plot treatments :
2 spacings : \(S_{1}=12^{\prime \prime}\) and \(S_{2}=15^{\prime \prime}\).
3. DESIGN :
(i) Sp it-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Sub-plot : \(29^{\prime} \times 21.5^{\prime}\) for \(S_{1}\) and \(30^{\prime} \times 21.5^{\prime}\) for \(S_{2}\). (b) Sub-plot : \(25^{\prime} \times 17.42^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-N.A. (modified in 1951-1952 with different variety) (b) No. (c) Nil. (v) (a) Shahada, Niphad, Mohol and Jalagaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1494 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(238.6 \mathrm{lb} . / \mathrm{ac}\).
(b) \(163.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av: yield of grain in lb./ac.
\begin{tabular}{c|ccc} 
& \(\mathbf{S}_{\mathbf{1}}\) & \(\mathbf{S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{D}_{\mathbf{1}}\) & 1506 & 1373 & \(\cdots\) \\
\(\mathbf{D}_{\mathbf{2}}\) & 1410 & 1484 & \\
\(\mathbf{D}_{\mathbf{3}}\) & 1417 & 1473 & 1440 \\
\(\mathbf{D}_{\mathbf{4}}\) & 1675 & 1579 & 1447 \\
\(\mathbf{D}_{\mathbf{5}}\) & 1586 & 1442 & 1627 \\
\hline Mean & 1519 & 1470 & \\
\hline & &
\end{tabular}
S.E. of difference of two
\begin{tabular}{|c|c|}
\hline 1. D marginal means & \(=97.4 \mathrm{lb} / \mathrm{ac}\). \\
\hline 2. \(S\) marginal means & \(=42.2 \mathrm{lb} / \mathrm{ac}\). \\
\hline 4. \(S\) means at the same 'evel of \(D\) & \(=94.4 \mathrm{lb} / \mathrm{/ac}\). \\
\hline 4. D means at the same level of \(S\) & \(=118.0 \mathrm{lb} / \mathrm{ac}\). \\
\hline
\end{tabular}
\[
\begin{array}{lc}
\text { Crop :-Wheat (Rabi). } & \text { Ref :-Mh. 48(49). } \\
\text { Site :-Agri. Res. Stn., Shahada: } & \text { Type :-‘C'. }
\end{array}
\]

Object :-To determine the suitable sowiag date and spacing for maximum yield of Wheat.

\section*{1. BASAL CONDITIONS :}
(i) (a) No definite rotation. (b) Chafa gram. (c) Nil. (ii) (a) Madium black. (b) N.A. (iii) As per treatments. (iv) (a) N.A. (b) Drilled. (c) \(65 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) Rabi season hence rainfall negligible. (x) 7 and 8.1 .1949 ; 20, 23 and 25.2.1949 and 4, 5 and 6.3.1949.

\section*{2. TREATMENTS :}

Main-plot treatments :
5 sowing dates : \(\quad D_{1}=3.10 .1948, \quad D_{2}=6.10 .1948, \quad D_{3}=13.10 .1948, \quad D_{4}=20.10 .1948\) and \(D_{6}=27.10 .1948\).

\section*{Sub-plot treatments :}

2 spacings: \(S_{1}=10^{\prime \prime}\) and \(S_{2}=13^{\prime \prime}\).

\section*{3. DFSIGN :}
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) \(36^{\prime} \times 51^{\prime}\). (iii) 6. (iv) (a) Sub-plot: \(36^{\prime} \times 25^{\prime}\) for \(S_{1}\) and \(36^{\circ} \times 26^{\prime}\) for \(S_{2}\). (b) \(30^{\prime} \times 21^{\prime}-8^{\prime \prime}\). (v) 2 rows on either side and \(3^{\prime}\) of rows on either end of plot. (vi) Yes.
4. GENERAL :
(i) Not satisfactory (ii) Some of the plants died due to the attack of white ants on their roots. (iii) Weight of grain and bhusa yield. (iv) (a) 1948-1949 to 1950-1951. (b) and (c) No. (v) (a) Padegaon, Jalagaon, Mohol and Niphad. (b) N.A. (vi) Many plants after germination became dry and died. Some plants died when they were in earhead stage. This is probably due to soil being unfavourable "'to wheat crop. (vii) Originally it was proposed that the first date of sowing be 29.9.1948; but due to the rain, it xas done on 3.10.1948.

\section*{5. RESULTS}
(i) \(145.5 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(77.07 \mathrm{lb} . / \mathrm{ac}\).
(b) \(32.17 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

\[
\begin{aligned}
& \text { Crop :- Wheat (Rabi) } \\
& \text { Site :- Agri. Res. Stn., Shahada. }
\end{aligned}
\]

Ref:-Mh. 49(6).
Type :- 'C'.

Object :-To find out the optimulm sowing date and spacing for high yield in dry land.

\section*{1. BASAL CONDITIONS:}
(i) (a) No definite rotation. (b) Lucerne. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) As per treatments. (jv) (a) N.A. (b) Drilied. (c) \(65 \mathrm{lb} . / \mathrm{ac}\). (d) N.A. (e) - . (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) \(37.30^{\circ}\). (x) \(1,2,3,14\) and 21.2.1950.

\section*{2. TREATMENTS :}

Main-plot treatments:
5 sowing dates : \(D_{1}=6.10 .1949, D_{2}=20.10 .1949\), (Local sowing date), \(D_{3}=27.10 .1949, D_{4}=3.11 .1949\) and \(\mathrm{D}_{5}=10.11 .1949\).
Sub-plot treatments :
2 spacings : \(S_{1}=10^{\prime \prime}\) and \(S_{2}=13^{\prime \prime}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 6 . : (iv) (a) Mainplot : \(36^{\prime} \times 51^{\prime}\); sub-plot: \(36^{\prime} \times 25^{\prime}\) for \(S_{1}\) and \(36^{\prime} \times 26^{\prime}\) for \(S_{2}\). (b) \(30^{\prime} \times 21^{\prime} 8^{\prime \prime}\). (v) Two rows on either side; \(3^{\prime}\) length of row on either end of net plot. (vi) Yes.

\section*{4. GENERAL :}
(i) Crop was normal except for the fact that there was \(3^{\prime \prime}\) rain on 12th October thich slightly affected treatment \(D_{1}\). (ii) Nil. (iii) Weight of grain. (iv) (a) 1948-49 to \(1950-51 .{ }^{\circ}\) (b) No:' (c) No. (v) (a) Padegaon, Jalagaon, Mohol and Niphad. (b) N.A. (c) N A. (vi) \$ince there was continuous rains from 25th Sept. to 1st Oct., soil was not in a condition for drilling hence the first sowing was tone on 6.10.1949. Due to \(3^{\prime \prime}\) rain on 12 th Oct. night, sowing of 13 th had to ke postponed \(t y^{7}\) days and 2 nd sowing could be done only on 20.10.1949. (vii) Expt. failed in 1950.

\section*{RESULTS :}
(i) \(386.9 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(113.3 \mathrm{lb} / \mathrm{ac}\).
(b) \(88.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{D}\) alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ll|l} 
& \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{2}}\) & Mean \\
\hline \(\mathrm{D}_{\mathbf{1}}\) & 164 & 187 & 175 \\
\(\mathrm{D}_{\mathbf{2}}\) & 374 & 370 & 372 \\
\(\mathrm{D}_{\mathbf{3}}\) & 501 & 517 & 509 \\
\(\mathrm{D}_{\mathbf{4}}\) & 478 & 521 & 499 \\
\(\mathrm{D}_{\mathbf{5}}\) & 369 & 388 & 378 \\
\hline Mean & 377 & 397 & 387
\end{tabular}
S.E. of difference of two
1. D marginal means
\(=46.2 \mathrm{lb} . \mathrm{ac}\).
2. \(S\) marginal means
3. \(S\) means at the same level of \(D\)
\(=23.0 \mathrm{lb} / \mathrm{ac}\).
4. D means at the same level of \(S\)
\[
\Rightarrow 51.1 \mathrm{lb} . / \mathrm{ac} .
\]
\(=58.7 \mathrm{lb} . / \mathrm{ac}\).
Crop :- Wheat (Rabi).
Site :~ Govt. Exptl. Farm, Tharsa.
Ref:- Mh. 48(71)
Type :- ' C '.

Object :-To find out the optimum seed rate for Wheat crop (irrigated).
1. BASAL CONDITIONS :
(i) (a) Wheat-Wheat-Gram. (b) Wheat. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil analysis, Tharsa. (iii) 10.10 .1948 . (iv) (a) N.A. (b) N.A. (c) As per treatments. (d) N.A. (e) - . (v) Nil. (vi) Imported wheat (medium). (vii) Irrigated, (viii) N.A. (ix) Nil (Rabi season). (x) 1st week of Feb. 1949.
2. TREATMENTS :

Three seed rates :-
1. 40 lb ./ac.
2. \(50 \mathrm{lb} . / \mathrm{ac}\).
3. \(60 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) th of an acre (dimensions N.A.) (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1940-41 to 1948-49. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(766 \quad \mathrm{lb} / / \mathrm{ac}\).
(ii) \(210.5 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 767 \\
2. & 733 \\
3. & 800 \\
S.E./mean & \(=85.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop:- Wheat (Rabi). \\ Site :- Govt. Exptl. Farm, Tharsa.
}

Ref:- Mh. 48(72).
Type:- 'C'.
Object : - To find out the optimum seed rate for Wheat crop (unirrigated).
1. BASAL CONDITIONS:
(i) (a) Wheat-Wheat-Gram. (b) Wheat. (c) N.A. (ii) (a) Morand no. II (medium black). (b) Refer soil analysis, Tharsa. (iii) 10th Oct. 1948. (iv) (a) N.A. (b) Tiffan sowing. (c) As per treatments. (d) \(12^{\prime \prime}\). (e) -. (v) Nil. (vi) Improved Wheat (medium). (vii) Unirrigated. (viii) 2 weedings on 24.10.1948 and 16.12.1948. (ix) Nil (Rabi season). (x) First week of Feb. 1949.
2. TREATMENTS :

Three seed rates :
1. \(40 \mathrm{lb} . / \mathrm{ac}\).
2. \(50 \mathrm{lb} . / \mathrm{ac}\).
3. \(60 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) th of an acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1940-41 to 1948-49. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(907 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(95.48 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 860 \\
2. & 933 \\
3. & 957. \\
S.E./mean & \(=38.99 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{lc}
\text { Crop :- Wheat (Rabi). } & \text { Ref :~ Mh. 52(145). } \\
\text { Site :- Govt. Exptl. Farm,Nagpur. } & \text { Type :- 'D'. }
\end{array}
\]

Object :-To study the effect of harmones and chemicals for the control of weeds.
1. BASAL CONDITIONS :
(i) (a) No particular crop rotation followed. (b) Wheat. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) Last week of Oct-1952. (iv) (a) 2 ploughings and 5 bakharings. (b) to (e) N.A. (v) Nii. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) \(1.78^{\prime \prime}\). (x) Last week of Feb. 1953.
2. TREATMENTS :
1. Control.
2. Hand weeding.
3. Feronoxene.
4. Chloroxene.
5. Feronoxene and Diesel oil.
(Details N.A.).
3. DESIGN :
(i) L. Sq. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(24^{\prime} \times 15^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(551 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(56.87 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 495 \\
2. & 565 \\
3. & 582 \\
4. & 536 \\
5. & 575 \\
S.e./mean & \(=25.42 \mathrm{lb}\). /ac..
\end{tabular}

\author{
Crop :- Wheat.(Rabi). \\ Site :- Govt. Exptl. Farm, Nagpur. \\ Ref :- Mh. 53(227). \\ Type :~ ' \(D\) '.
}

Object :-To study the effect of harmones and chemicals on weeds of Wheat crop.
1. BASAL CONDITIONS :
(i) (a) No particular crop rotation followed. (b) Wheat. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) Last week of October 1953. (iv) (a) 2 ploughings and 5 bakharings. (b) By Tiffan. (c) \(60 \mathrm{lb} . / \mathrm{ac}\). (d) N.A. (e) -. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) \(1.58^{\prime \prime}\). (x) Last week of Feb. 1954.
2. TREATMENTS :
1. Control (No harmones or chemical or weeding).
2. Hand weeding.
3. Feronoxene.
4. Chloroxene.
5. Feronoxene and Diesel oil.
(Details N.A.).
3. DESIGN :
(i) L.Sq. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(24^{\prime} \times 15^{\prime}\). (v) N.A. (vi) Yes. \(=\)

4: GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(495 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(211.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{cc} 
Treatment & Av. yield. \\
1. & 483 \\
2. & 530 \\
3. & 467 \\
4. & 518 \\
5. & 475 \\
S.E./mean & \(=94.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop:- Wheat (Rabi).
Site :- Agri. Res. Stn., Niphad.

```

\section*{Ref :- Mh. 48(93).}
```

Type :- ' D '.

```

Object : - To control the incidence of loose-smut in Wheat by seed treatment.
1. BASAL CONDITIONS :
(i) (a) No fixed rotation. (b) N.A. (c) N.A. (ii) (a) Medium black loamy. (b) Refer soil analysis, Niphad. (iii) N.A. (iv) (a) 2 ploughings and 1 harrowing. (b) Drilling. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime}\) between rows. (e) -- (v) Nil. (vi) Broach in all cases except. Tr. 7. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :

Seed treated with :
1. Control.
2. \(\frac{1}{2}\) hour solar heat.
3. I hour solar heat.
4. \(1 \frac{1}{2}\) hours solar heat.
5. 2 hours solar heat.
6. N.P. 165.
7. Untreated seed of Vijay.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4 . (iv) (a) \(25^{\prime} \times 21^{\prime}\). (b) \(23^{\prime}-4^{\prime \prime \prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1948-\) N.A. (b) First year of the expt. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(302 \mathrm{lb} / \mathrm{ac}\).
(ii) \(6.30 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ bighly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Av. yeld of grain \\
Treatment & Av. yield \\
1. & 297 \\
2. & 316 \\
3. & 312 \\
4. & 382 \\
5. & 300 \\
6. & 164 \\
7. & 345 \\
S.E./mean & \(=3.15 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Wheat (Rabi).
Site :m Agri. Res. Stn., Niphad. . Type :- 'D'.

```

Object :-To control the incidence of blight disease on Wheat seedlings.
1. BASAL CONDITIONS:
(i) (a) Not fixed. (b) and (c) N.A. (ii) (a) Medium black loamy. (b) Refer soil analysis, Niphad. (iii) 24.10.1948. (iv) (a) 2 ploughings and 1 harrowing. (b) Drilling. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime}\) between rows. (e) -. (v) Nil, (vi) Vijay. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :

Seed treated with :
1. Cereson.
2. Untreated.
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 10 . (iv) (a) \(36^{\prime} \times 30^{\prime}\). (b) \(30.5^{\prime} \times 26.67^{\prime}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL:}
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1948-N.A. (b) First year. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(525 \quad \mathrm{lb} / \mathrm{ac}\)
(ii) \(34.92 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 554 \\
2. & 497 \\
S.E./mean & \(=11.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\(\begin{array}{ll}\text { Crop :- Wheat (Rabi). } & \text { Ref:- Mh. 48(95). } \\ \text { Site :- Agri. Res. Stn., Niphad. } & \text { Type :- 'D'. }\end{array}\)

Object :-To control the incidence of blight discase on Wheat seedlings.
1. BASAL CONDITIONS:
(i) (a) No particular. (b) and (c) N.A. (ii) (a) Medium black loamy. (b) Refer soil analysis, Niphad, (iii) 24.10 .1948 . (iv) (a) 1 harrowing and 2 ploughings. (b) Drilling. (c) \(40 \mathrm{lb} / \mathrm{ac}\) : (d) \(12^{2}\) between rows, (e) -. (v) Nil. (vi) Vijay. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :
1. Ceres.n treated.
2. T.M.T.D.
3. Spergon.
4. A.A. Grano.
5. Untreated.
(Details N.A.).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) \(36^{\prime} \times 30^{\circ}\). (b) \(30.5^{\prime} \times 26.67^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1948-49. (b) First year of the experiment. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(489 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(46.05 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 447 \\
2. & 512 \\
3. & 516 \\
4. & 487 \\
5. & 486 \\
S.E \(/\) mean & \(=23.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Jowar (Kharif). \\ Site :- Govt. Seed and Demonstration Farm, Achalpur. \\ Ref :- Mh. 53(238). \\ Type :- ' M '.}

Object :-To compare C/N with A/S on yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 16.7.1953. (iv) (a) 2 heavy and 3 light bakharings. (b) By tiffan. (c) \(60 \mathrm{lb} / \mathrm{ac}\). (d) \(15^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 4 hoeings and I weeding. (ix) 34.91". (x) 16.12.1953.

\section*{TREATMENTS :}

All combinations of (1) and (2)
(1) 4 levels of \(N: N_{0}=0, N_{1}=15, N_{2}=30\) and \(N_{8}=45 \mathrm{lb} . / \mathrm{ac}\). of \(N\).
(2) 2 sources of \(N: S_{1}=A / S\) and \(S_{2}=C / N\).
3. DESIGN :
(i) \(2 \times 4\) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\circ} \times 16 \frac{1}{2}^{\circ}\) ( (v) N.A. (vi) Xes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1850 \quad\) lb./ac.
(ii) \(778.8 \mathrm{lb} . / \mathrm{ac}\).
v (ii:j) No effect is significant.
(iv) Av. yield of grain in lb./ac.

Control \(=1679 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll} 
& \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & \(\mathbf{N}_{3}\) \\
\hline \(\mathbf{S}_{1}\) & 1932 & 1983 & 2061 \\
\(\mathbf{S}_{2}\) & 1600 & 1693 & 2154 \\
Mean & 1776 & 1838 & 2007 \\
1816
\end{tabular}
S.E. of N or control mean \(\quad=246.2 \mathrm{lb} . / \mathrm{ac}\).
S.E. of S means \(\quad=201.1 \mathrm{lb} . / \mathrm{ac}\).
S.E. of control \(\nu\). any other mean in the table \(\quad=426.5 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=348.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Ref:- Mh. 49(105).
Site :- Govt. Seed and Demonstration Farm, Achalpur. Type:- 'M'.
Object :-To study the effect of different organic and inorganic manures on Jowar yield.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 21.7.1949. (iv) (a), (b) N.A. (c) 10 lb./ac. (d) \(15^{\prime \prime}\) line to line. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) \(38.39^{\prime \prime}\). (x) 11.12 .1949.
2. TREATMENTS:
1. Control (no manure).
\(\vee 2.20 \mathrm{lb}\)./ac. of N as T.C.
3. 40 lb ./ac. of N as T.C.
4. \(25 \mathrm{lb} / \mathrm{ac}\). of N as Cattle dung.
5. \(40 \mathrm{lb} / \mathrm{ac}\). of N as Cattle dung.
6. 10 lb ./ac. of N as G.N.C.
7. 20 lb ./ac of N as G.N.C.
8. \(10 \mathrm{lb} / \mathrm{ac}\). of N as \(A / 5\).
9. \(20 \mathrm{lb} . / \mathrm{lac}\) of N as \(\mathrm{A} / \mathrm{S}\).

Manuring on 20.7.1949.
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(66^{\prime} \times 162^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Grain and kadbi yield. (iv) (a) 1949-continued. (b) No. (c) N.A. (v) (a) Akola. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2201 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(368.3 \mathrm{lb} / \mathrm{ac}\).
\(\psi\) (iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment Av. yield
1. 2100
\(J 2.2146\)
3. 2266

ノ 4.2246
5. 2026
6. 2153
\(-7 . \quad 2253\)
8. 2153
/ 9. 2466 . S.E./mean , \(=150.4 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop:- Jowar (Kharif). \\ Ref:- Mh. 50(132)}

Site :- Govt. Seed and Demonstration Farm, Achalpur. Type:- 'M'.
\(\checkmark\) Object :-To study the effect of different organic and inorganic manures on Jowar yield.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 21.7.1950. (iv) (a) and (b) N.A. (c) \(10 \mathrm{lb} /\) ac. (d) \(15^{n^{2}}\) line to line. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 3 boeings and 2 weedings. (ix) 22.78". (x) 14.1.1951.
2. TREATMENTS :
1. Control (No manure)
2. \(20 \mathrm{lb} . \mathrm{ac}\). of N as T.C.
3. 40 lb ./ac. of N as T.C.
4. 20 lb ./ac. of N as Cattle dung.
5. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as Cattle dung.,
6. To lb./ac. of N as G.N.C:
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathbf{G} . \mathrm{N} . C\).
8. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
9. \(20 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).

Manures applied on 13.7.1950.
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) \(66^{\prime} \times 16 \mathrm{t}^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 -Contd. (b) No. (c) N.A. (v) (a) Akola. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1218 \mathrm{lb} / \mathrm{ac}\).
(ii) 224.8 lb ./ac.
\(\therefore\) (iii) Treatments do not differ significantly.
- (iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\checkmark 1\). & 1186 \\
\(\checkmark 2\). & 1246 \\
3. & 1133 \\
-4. & 1320 \\
5. & 1146 \\
6. & 1160 \\
\(\checkmark 7\). & 1353 \\
8. & 1246 \\
\(\checkmark 9\). & \(=91.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar, (Kharif).
Ref:- Mh. 51(185)
Site :- Govt. Seed \& Demonstration Farm, Achalpur. Type =- 'M'.
Object: - To study the effect of different organic and inorganic manures on Jowar yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 20.7.1951.
(iv) (a) N.A. (b) N.A. (c) \(10 \mathrm{lb} . / \mathrm{ac}\), (d) \(15^{\circ}\) line to line. (e) N.A. (v) Nil. (vi) Saoner (medium.)
(vii) Unirrigated. (viii) 4 hoeings and 1 weeding. (ix) 26.30\%. (x) 4, 5.1.1952.

\section*{2. TREATMENTS :}
\(\checkmark\) 1. Control (no manure).
2. 20 lb ./ac. of \(\mathbf{N}\) as T.C.
3. 40 lb ./ac. of N as T.C.
4. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as Cattle dung.
5. 40 lb ./ac. of N as Cattle dung.

610 lb ./ac. of N as G.N.C.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
8. 10 lb ./ac. of \(N\) as \(A / S\).
\(\checkmark\) 9. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.
Manuring on 19 and 20.7.1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain and bhusa yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a) Akola (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1606 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(302.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1533 \\
2. & 1643 \\
3. & 1657 \\
4. & 1506 \\
5. & 1513 \\
6. & 1556 \\
7. & 1583 \\
8. & 1658 \\
9. & 1805. \\
S.E./mean & \(=123.4 \mathrm{lb} . / \mathrm{ac}\)
\end{tabular}

Crop :-Jowar (Kharif).
Ref :-Mh. 52(225).
Site :-Govt. Seed and Demonstration Farm, Achalpur. Type :-‘M'.

Object :-To study the effect of different organic and inorganic manures on Jowar yield.
1. BASAL CONDITIONS:
(i). (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 1.8.1952. (iv) (a) 2 heavy and 3 light bakharings. (b) N.A. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(15^{\circ}\) line to line. (e) N.A. (v) Nil. (vi) Saoner (medium). (vii) Unirrigated, (viii) 2 hoeings and 1 weeding. (ix) 12.09". (x) 5.1.1953.

\section*{2. TREATMENTS :}
1. Control (no manure).
2. 20 lb ./ac. of \(\mathbf{N}\) as T.C.
3. \(40 \mathrm{lb} / \mathrm{ac}\) of N as T.C.
4. 20 lb ./ac. of N as Cattle dung.
5. 40 lb ./ac. of N as Cattle dung.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathbf{G} . N . C\).
7. 20 lb ./ac. of N as G.N.C.
8. 10 lb ./ac. of N as A/S.
9. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).

Manuring on 1.8.1952
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1^{\prime}}{}\). (v) N.A. (vil Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and bhusa yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a) Akola. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(681 \mathrm{lb} / \mathrm{ac}\).
(ii) \(402.0 \mathrm{lb} . / \mathrm{ac}\).
\(Y\) (iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 542 \\
\(\sim 2\). & 899 \\
3. & 506 \\
4. & 788 \\
5. & 864 \\
6. & 626 \\
7. & 623 \\
8. & 490 \\
\hline 9. & 789 \\
S.E./mean & \(=164.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Kharif). Ref :-Mh. 53(236).

Site :-Govt. Seed and Demonstration Farm, Achalpur. Type :-‘M’.
Object :-To study the effect of different organic and inorganic manures on Jowar yield.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar: (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 12.7.1953. (iv) (a) 2 heavy and 3 light bakharings in April. (b) and (c) N.A. (d) \(15^{\prime \prime}\) line to line. (e) N.A. (v) Nil. (vi) Saoner (medium). (vii) Unirrigated. (viii) 3 hoeings, 1 thinning and 1 weeding, (ix) 34.91* (x) 2.1.1954.
2. TREATMENTS :
1. Control (no manure).
2. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
3. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
4. 20 lb ./ac. of N as Cattle dung.
5. \(40 \mathrm{lb} / \mathrm{ac}\). of N as Cattle dung.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
8. 10 lb ./ac. of N as \(A / S\).
9. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2} \cdot\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1953. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1159 \mathrm{lb} / \mathrm{ac}\).
(ii) \(472.4 \mathrm{lb} . / \mathrm{ac}\).
\(Y_{\text {. }}\) (iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\gamma 1\). & 1189 \\
\(\checkmark 2\). & 1400 \\
3. & 1200 \\
\(\checkmark 4\). & 899 \\
5. & 1217 \\
6. & 983 \\
\(\checkmark 7\). & 873 \\
8. & 1413 \\
\(\checkmark 9\). & 1260 \\
\hline S.E /mean & \(=192.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop:- Jowar (Kharif). Ref :- Mh. 50(133).
Site :- Govt. Seed and Demonstration Farm, Achalpur. Type :- 'M'.

Object:-To study the residual effect of different organic and inorganic manures on Jowar yield.
1. BASAL CONDITIONS :
(i) (a) Jowar after Jowar. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 21.7.1950. (iv) (a) N.A. (b) N.A. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(15^{\prime}\) line to line. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 22.78". (x) 13.1.1951.

\section*{2. TREATMENTS:}
\(\checkmark\) 1. Control (no manure).
\(\checkmark 2\). \(20 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
3. 40 lb ./ac. of N as T.C.
\(\checkmark 4\). 20 lb /ace of N as Cattle dung.
5. 40 lb ./ac. of N as Cattle dung.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
\(\checkmark\) 7. 20 lb ./ac. of N as G.N.C.
8. 10 lb ./ac. of \(N\) as \(A / S\).
\(\checkmark\) 9. 20 lb ./ac. of N as A/S.
Manures appli=d to previous Jowar crop.
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{\mathbf{J}^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) Yes, (c) N.A. (v) (a) and (b) N.A. (vi) and,(vii) Nil.
5. RESULTS :
(i) 1266 lb /ac.
(ii) \(265.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\checkmark 1\). & 1266 \\
\(\checkmark 2\). & 1300 \\
\(\checkmark 3\). & 1293 \\
\(\vee 4\). & 12.33 \\
5. & 1146 \\
\(\checkmark 6\). & 1260 \\
\(\sim 7\). & \(1380^{\circ}\) \\
\(\vee 8\). & 1200 \\
\(\vee 9\). & 1320 \\
S.E. \(/\) mean & \(=108.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
Ref :- Mh. 53 (235).
Site :- Govt. Seed and Demonstration Farm, Achalpur. Type :- ' \(M\) '.

Object :-To study the residual effect of different organic and inorganic manures on Jowar yield.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 12.7.1953. (iv) (a) 2 heavy and 3 light bakharings. (b) Sowing by tiffan. (c) to (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 hoeings, 1 weeding and I thinning. (ix) 34.91". (x) 3.1.1954.
2. TREATMENTS :
1. Control (no manure).

2, 20 lb ./ac. of N as T.C.
3. 40 lb ./ac. of N as T.C.
4. 20 lb ./ac. of N as Cattle dung.
5. 40 lb ./ac. of \(\mathbf{N}\) as Cattle dung.
6. 10 lb ./ac. of N as G.N.C:
7. 20 lb ./ac. of N as G.N.C.
8. 10 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
9. 20 lb ./ac. of N as \(A / S\).

Manures applied to previous year Jowar crop.
3. DESIGN :
(i)'R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{t^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1568 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(532.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain lb,/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1680 \\
2. & 1527 \\
3. & 1360 \\
4. & 1320 \\
5 & 2033 \\
6. & 1260 \\
7. & 1687 \\
8. & 1537 \\
9. & 1710 \\
S.E./mean & \(=217.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
Ref :~ Mh. 51 (186).
\(\mathcal{X}\) Site :- Govt. Seed and Demonstration Farm, Achalpur. Type := ' \(\mathbf{M}\) '.

Object :-To judge the manurial value of cotton seed cake on Jowar yield.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 16.7.1951. (iv) (a) 1 ploughing and 3 bakharings. (b) N.A. (c) 10 b./ac.. (d) \(18^{\prime \prime} \times 9^{\prime \prime}\). (e) N.A. (v) Nii. (vi) Saoner (medium). (vii) Unirrigated. (viii) 4 hoeings and 1 weeding. (ix) \(26.30^{\circ}\). (x) \(26,27.12 .1951\).
2. TREATMENTS :
1. \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as G.N.C.
2. \(20 \mathrm{lb} . / a c\). of N as decorticated cotton seed cake.
3. 20 lb ./ac. of N as updecorticated cotton seed cake.
4. 20 lb ./ac. of \(\mathbf{N}\) as \(\mathbf{A} / \mathbf{S}\).

Manuring on 16.7.1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) S. (iv) (a) N.A. (b) \(1 / 40\) th ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Grain and bhusa yield. (iv) (a) 1951-N.A. (b) No. (c) N.A. (v) (a) Akola and Nagpur. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(2181 \mathrm{lb} / \mathrm{ac}\).
(ii) \(204.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{ll} 
Treatment & Av. yield \\
1. & 2080 \\
2. & 2276 \\
3. & 2224 \\
4. & 2144 \\
S.E./mean & \(=91.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Akluj.

Ref :- Mh. 48(80)
Type :- ' \(M\) '.

Object :-To study the effect of Bone Super as top dressing of rabi Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Sugarcane. (c) \(375 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . C\). in \(1: 1\) ratio, (ii) (a) D type.
(b) Refer soil analysis, Akluj. (iii) September 1948. (iv) (a) Ploughing and harrowing. (b) N.A.
(c) N.A. (d) and (e) N.A. (v) Nil. (vi) M.35-1. (vii) Irrigated. (viii) Weeding. (ix) \(6.49^{\circ}\).
(x) February 1949.
2. TREATMENTS :
1. No manure,
2. \(56 \mathrm{lb} . / \mathrm{ac}\), of Bone Super.
3. 56 lb ./ac. of Bone Super \(+56 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\).
4. \(56 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{A} / \mathrm{S}\).
5. \(150 \mathrm{lb} . / \mathrm{ac}\). of G.N.C.
3. DESIGN:
(i) R.B.D.
(ii) (a) 5. (b) N.A.
(iii) 6. (iv) (a) N.A.
(b) 0.50 gunthas.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Nil, (iii) Grain yield. (iv) (a) 1946-1948. (b) No. (c) Nil. (v) (a) Kopergaon, Deolali and Lakhmapur. (b) N.A.' (vi) No reason given for low yields. (vii) Nil.
5. RESULTS :
(i) 445 lb./ac.
(ii) \(165.6 \mathrm{lb}, / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccc} 
Treatment & Av. yield & \\
1. & 380 & \\
2. & 507 & \\
3. & 387 & \\
4. & 424 & \(X\) \\
5. & 529 & \\
S.E./mean & \(=67.6 \mathrm{lb} . / a c\).
\end{tabular}

Ref:- Mh. 51(92).
Type :~ ' \(M\) '.

Object:-To study the residual effect of manures applied to Cotton crop in the form of F.Y.M. and C/N in previous year.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 24.7.1951. (iv). (a) 2 bakharings. (b) Sowing by tiffan, (c) 8 to 10 lb ./ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 2 hoeings and 1 weeding. (ix) \(24.32^{\prime \prime}\). (x) 4.1.1952.
2. TREATMENTS :

All combinations of (1) and (2) + a control (no manure).
(1) 3 levels of \(N: N_{1}=20, N_{2}=30\) and \(N_{3}=40 \mathrm{lb}\) /ac. of \(N\).
(2) 3 sources of \(N: S_{1}=\) F.Y.M., \(S_{2}=C / N\) and \(S_{8}=\) F.Y.M. \(+C / N\) in the ratio \(1: 1\).

Manures applied to previous crop cotton.
3. DESIGN
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(66^{\prime} \times 16 y^{\prime}\). (v) One row on either side of a plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1953 . (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1376 \mathrm{lb} / \mathrm{ac}\).
(ii) \(250.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & & & ./ac. & \\
\hline & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(S_{1}\) & 1358 & 1468 & 1145 ' & 1324 \\
\hline \(\mathrm{S}_{2}\) & 1503 * & 1485 & 1340 & 1443 \\
\hline \(\mathrm{S}_{3}\) & 1458 & 1368 & 1458 & 1428 \\
\hline Mean & 1439 & 1440 & 1314 & \\
\hline \multicolumn{3}{|l|}{S.E. of any marginal mean} & \multicolumn{2}{|r|}{\(=72.4 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

Crop :- Jowar (Kharif). .
Ref :- Mh. 52(122).
Site :- Govt. Exptl. Farm, Akola.
Type :- ‘M'.

Object :-To study the residual effect of manures (F.Y.M and C/N) applied to cotton crop in previous year-
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 25.6 .1952 . (iv) (a) and (b) N.A. (c) \(8-10 \mathrm{lb}\)./ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Improved Soaner (late). (vii) Unirrigated. (viii) 4 hoeings, 2 weedings. (ix) 22.03". (x) 26.11.1952.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) +a control (no manure).
(1) 3 levels of \(N: N_{1}=20, N_{2}=30\) and \(N_{3}=40 \mathrm{lb}\), /ac.
(2) 3 sources of \(N: S_{1}=\) F.Y.M., \(S_{2}=C / N\) and \(S_{3}=F . Y . M .+C / N\) in the ratio 1:1.

Manures applied to previous cotton crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One row on either side of a plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1953. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(435 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(264.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of N,S and their interaction are not significant. "Control vs. others" effect is not significant.
(iv) Av. yield of grain in Ib ./ac.

Crop -: Jowar (Kharif).
Site :- Govt. Expel. Farm, Akola.
Ref:- Mb. 51(93)
- Type :- 'M'.
\(P\)
Object :-To test the residual effect of manures applied to Cotton crop in the previous year.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 24.7.1951. (iv) (a) 2 bakharings. (b) Sowing by tiffin. (c) \(8-10 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saner (late). (vii) Unirrigated. (viii) 2 hoeing and weeding. (ix) 24.32". (x) 3.1.1952.
2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure).
(1) 3 levels of \(N: N_{1}=20,9 N_{2}=30\) and \(N_{3}=40 \mathrm{lb}\)./ac.
(2) 3 sources of \(\mathrm{N}: \mathrm{S}_{1}=\) G.N.C., \(\mathrm{S}_{2}=\mathrm{C} / \mathrm{N}\) and \(\mathrm{S}_{3}=\mathrm{G} . \mathrm{N} . \mathrm{C} .+\mathrm{C} / \mathrm{N}\) in the ratio 1:1.

Manures applied to previous crop cotton.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One . row on either side of the plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1954 . (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1158 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(182.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) No effect is significant.
(iv). Av. yield of grain in lb./ac.

Control \(=1070 \mathrm{lb} . / \mathrm{ac}\).

S.E. of marginal means of S or N
m 52.68 lb ./ac. S.E. of body of table
\[
=91.24 \mathrm{lb} / \mathrm{ac} .
\]
```

Crop :- Jowar (Kharif).
Ref :- Mh. 52 (121)
Site :- Govt. Exptl. Farm, Akola.
Type :- ' M '.

```

Object :-To study the residual effect of manures (G.N.C. and C/N) applied during previous year to Cotton crop.
1. BASAL CONDITIONS :
(i) (al Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 24.6.1952. (iv) (a) and (b) N.A, (c) \(8-10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Improved Saoner (late). (vii) Unirrigated. (viii) 4 hoeings and 2 wèedings. (ix) 22.03". (x) 27.11.1952.
2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{1}=20 . \mathrm{N}_{2}=30\) and \(\mathrm{N}_{3}=40 \mathrm{lb}\)./ac.
(2) 3 sources of \(N: S_{1}=\) G.N.C., \(S_{2}=C / N\) and \(S_{3}=\) G.N.C. \(+C / N\) in 1: 1. ratio Manures applied to previous crop cotton.
3. DESIGN :
(i) R.B.D.
(ii) (a) 10.
(b) N.A
iii) 4. (iv) (a) N.A.
(b) \(66^{\prime} \times 16 \frac{1^{\prime}}{}\). (v) One row on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1953. (b) Yes (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5, RESULTS :
(i) \(244 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(179.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) No effect is significant.
(iv) Av. yield of grain in lb./ac.
\[
\text { Control } \quad=127 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 245 & 265 & 450 - & 320 \\
\hline \(\mathrm{S}_{2}\) & 192 & 180 & 107 & 159 \\
\hline \(\mathrm{S}_{3}\) & 322 & 297 & 250 & 290 \\
\hline Mean & 253 & 247 & 269 & \\
\hline
\end{tabular}
S.E. of marginal mean of \(S\) or \(N \quad=51.77 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=89.66 \mathrm{lb} . / \mathrm{ac}\).

Crop :~ Jowar (Kharif).
Site ;- Govt. Exptl. Farm, Akola.
Ref :m Mh. 48(45).
Type:- 'M'.

Object:-To test the effect of the application of different manures in varying quantities by different methods.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar. (b) Cotton. (c) 5 C.L./ac. of F.Y.M. \(+550 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 14.7.1948. (iv) (a) 1 heavy and 1 light bakharing. (b) Sowing by tiffan. (c) \(8-10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) - (v) Nil. (vi) Saoner (late). (vii) Unirrigated (viii) Nil. (ix) \(31.52^{\prime \prime}\), (x) 24.12.1948.
2. TREATMENTS:
\({ }^{\checkmark}\) All combinations of (1) and (2) + a control (no manure).
(i) 2 manures : \(\mathrm{N}_{1}=10 \mathrm{lb}\)./ac. of N drilled with seed and \(\mathrm{N}_{2}=20 \mathrm{lb}\)./ac. of N ; half drilled with seed and half top dressed.
(2) 4 sources of \(N: S_{1}=\) G.N.C., \(S_{2}=A / S, S_{3}=\) Red label mixture and \(S_{4}=\) F.Y.M.

\section*{3. DESIGN :}
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One row on either side of a plot. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1945-1949. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(976 \mathrm{lb} . / \mathrm{ac}\).
(ii) 175.9 lb ./ac.
(iii) Main effect of \(N\) is significant while main effect of \(S\), interaction \(S \times N\) and control \(v\). others are not significant.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Control \(=877 \mathrm{lb} . / \mathrm{ac}\).} & \multirow[b]{2}{*}{Mean} \\
\hline & \(S_{1}\) & \(S_{2}\) & \(\mathbf{S}_{3}\) & \(S_{4}\) & \\
\hline \(\mathrm{N}_{1}\) & 880 & 1000 & 933 & 966 & 945 \\
\hline \(\sqrt{\mathbf{N}_{2}}\) & 1023 & 1198 & 1000 & 903 & 1031 \\
\hline Mean & 951 & 1097 & 965 & 934 & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of marginal mean of } \mathrm{N} & =35.92 \mathrm{lb} / / \mathrm{ac} \\
\text { S.E. of marginal mean of } \mathrm{S} & =50.79 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =71.83 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]
Crop :- Jowar (Kharif).
Site: Govt. Exptl. Farm, Akola.
Ref:-Mhisis(72).
Type :- ' \(\mathbf{M}^{\prime}\) '.

Object:-To test the effect of the application of different manures in varying quantities by different methods of application.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar. (b) Cotton. (c) 5 C.L./ac., of F.Y.M. \(+550 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 24.7.1949. (iv) (a) 1 heavy and 1 light bakharings. (b) Sowing by tiffan. (c) 8 to \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 3 hoeings and 1 weeding. (ix) 42.93". (x) 19.1.1950.

\section*{2. TREATMENTS:}

All combinations of (1) and (2) + a control (no manure)
(1) 2 manures: \(\mathrm{N}_{1}=10 \mathrm{lb}\)./ac. of N drilled with seed and \(\mathrm{N}_{2}=20 \mathrm{lb} / \mathrm{ac}\). of N , half drilled with seed and half top dressed.
(2) 4 sources of \(N: S_{2}=\) G.N.C., \(S_{2}=A / S, S_{3}={ }^{\prime}\) Red label' mixture and \(S_{4}=\) F.Y.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\), (v) One row on either side of a plot. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Nil. (iii) Grain yield. (iv) (a) 1945-1949. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RÉSULTS :
(i) \(880 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(102.6 \mathrm{lb}, / \mathrm{ac}\).
(iii) Main effect of \(S\) and "control \(v s\). others" are significant while \(N\) and interaction \(N \times S\) are not significant.
( \(v\); Av. yield of grain in lb, /ac.

> Control=777 lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{S}_{1}\) & \(S_{2}\) & \(\mathbf{S}_{3}\) & \(S_{4}\) & Meau \\
\hline \(\mathrm{N}_{1}\) & 822 & 970 & 858 & 863 & 877 \\
\hline \(\mathrm{N}_{2}\) & 867 & 998. & 875 & 895 & 909 \\
\hline Mean & 844 & 984 & 866 & 877 & \\
\hline
\end{tabular}
S.E. of marginal mean of \(\mathbf{N}\)
S.E. of marginal mean of \(S\) S.E. of body of table
\[
\begin{aligned}
& =29.62 \mathrm{lb} . / \mathrm{ac} . \\
& =20.95 \mathrm{lb} . / \mathrm{ac} . \\
& =41.90 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
\]

Crop :-Jowar (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref :-Mh. 48(44).
Type :-‘'M'.

Object :-To find out the effect of 20 lb ./ac. of N in the form of G.N.C., and A/S singly and in combination.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) 5 C.L./ac. of F.Y.M. \(+550 \mathrm{lb} . / \mathrm{ac}\). of G.N.C. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 14.7.1948. (iv) (a) 1 heavy and 2 light bakharings. (b) Sowing by tiffan. (c) 8 to 10 lb ./ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Improved Saoner (late). (vii) Unirrigated. (viii) 2 hoeings and 1 weeding. (ix) \(31.52^{\prime \prime}\). (x) 24.12.1948.
2. TREATMENTS :

1 1. No manure.
\(\checkmark\) 2. \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as G.N.C.
3. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
- 4. 20 lb ./ac. of N as Cattle dung (F.Y.M.).
. 5. 10 lb ./ac. of \(\mathbf{N}\) as \(G . N . C .+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as \(\mathbf{A} / \mathrm{S}\).
- 6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. +10 lb ./ac. of N as A/S.

Manuring on 24.6.1948.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One row on either side of each plot. (vi) Yes.
4. GENERAL :
(i) Normal. .(ii) Nil. (iii) Grain and kadbi yield. (iv) (a) 1945-1949. (b) No. (c) N.A. (v) (a) and! (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(997 \mathrm{lb} / \mathrm{ac}\).
(ii) \(142.0 \mathrm{lb} . / \mathrm{ac}\).
\(\checkmark\) (iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 910 \\
2. & 987 \\
3. & 1073 \\
4. & 990 \\
5. & 978 \\
6. & 1042 \\
S.E./mean & \(=57.98 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref:-Mh. 49(71).
Type:-‘M'.

Object :-To study the effect of 20 lb ./ac. of N in the form of G.N.C., F.Y.M. and A/S applied alone and in combination.

\section*{1. BASAL CONDITIONS:}
(i) (a) Cotton-Jowar. (b) Cotton. (c) 5 C.L./ac. of F.Y.M. \(+550 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 24.7.1949. (iv) (a) 1 heavy and 3 light bakharings. (b) Sowing by tiffan. (c) 8 to 10 lb ./ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N A. (v) Nil. (vi) Improved saoner (late). (vii) Unirrgated. (viii) 3 hoeings and 1 weeding. (ix) \(42.93^{\circ} \ldots\) (x) 18.1.1950.
2. TREATMENTS:
1. No manure.
2. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
3. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
4. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as Catle dung (F.Y.M.).
5. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. \(+10 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. \(+10 \mathrm{lb} . / \mathrm{ac}\). of N as A/S.

Time and method of application N.A.
3. DESIGN :
(i) R.B D. (ii) (a) 6, (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One row on either side of each plct. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) \(1945-1949\). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(935 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(118.6 \mathrm{lb} . / \mathrm{ac}\).
\(\int\) (iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 898 \\
2. & 922 \\
3. & 967 \\
4. & 917 \\
5. & 950 \\
6. & 953 \\
S.E./mean & \(=48.43 \mathrm{lb} . / \mathrm{ac}\)
\end{tabular}

Crop :- Jowar (Kharif).
H. Site :-Govtl. Exptl. Farm, Akola.

Ref :-Mh. 48(38).
Type :-‘M:.
Object :-To study the residual effect of manures applied to cotton crop in previous year.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 12.7.1948. (iv) (a) 1 heavy and 2 light bakharings, (b) Sowing by tiffan. (c) 8 to 10 \(1 \mathrm{~b} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (c) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) \(31.52^{\prime \prime}\). (x) 27̀.12.1948.
2. TREATMENTS :
1. Control (no manure).
2. \(40 \mathrm{lb} / \mathrm{ac}\). of N as F.Y.M.
3. 20 lb ./ac. of N as F.Y.M. +20 lb ./ac. of N as pondretta compost.
4. 40 lb ./ac. of N as pondretra compost.
5. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathbf{F} . \dot{Y} . \mathrm{M} .+20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathbf{G} . \mathrm{N} . C\).
6. 40 lb ./ac. of N as G.N.C.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. +20 lb ./ac. of N as 'red label' mixture.
8. 40 ll ./ac. of N as 'red label' mixrure.

Manure: applied to cotton crop in previous year.
3. DESIGN :
(i) R.B.D. (ii) 8. (b) N.A. (iii) 6. (iv) (a) \(35^{\prime} \times 36^{\prime}\). (b) \(33^{\circ} \times 33^{\circ}\). (v) One row on either side of each plot. (vi) Yes.
4. GENERAL :
(i) Gcod. (ii) Powdery mildew attack in Nov. 1948. No control measures. (iii) Grain and kadbi yield. (iv) (a) 1946-49. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(862 \mathrm{lb} . \mathrm{lac}\).
(ii) \(133.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ sigaificantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 913 \\
2. & 827 \\
3. & 817 \\
4. & 887 \\
5. & 903 \\
6. & 797 \\
7. & 888 \\
8. & 865 \\
S.E /mean & \(=54.63 \mathrm{lb}\)./ac.
\end{tabular}
Crop :- Jowar (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref :-Mh. 49(65).
Type :-'M'.
Object :-To study the residual effect of manures applied to Cotton crop in previous year.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 14.7.1949. (iv) (a) 2 bakharings. (b) Sowing by tiffan. (c) 8 to \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late). (viii) Unirrigated. (viii) 2 hoeings, 2 weedings and 1 thinning. (ix) 42.93". (x) 18.1.1950.
2. TREATMENTS :
1. Control (no manure).
2. 40 lb ./ac. of \(\mathbf{N}\) as F.Y.M.
3. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M. +20 lb ./ac. of N as pondretia compost.
4. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as pondretta compost.
5. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M +20 lb ./ac. of N as G.N.C.
6. 40 lb ./ac. of N as G.N.C.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathbf{N}\) as F.Y.M. \(+20 \mathrm{lb} . / \mathrm{ac}\). of N as 'red label' mixture.
8. 40 lb ./ac. of N as 'red label' mixture.

Manures applied to cotton crop in previous year.
3. DESIGN :
(i) R.B.D. (ii) (a) 8 . (b) N.A. (iii) 6 . (iv) (a) \(35^{\prime} \times 36^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (v) One row on either side of each plot. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-49. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(877 \mathrm{ib} . / \mathrm{ac}\).
(ii) \(197.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 822 \\
2. & 997 \\
3. & 792 \\
4. & 793 \\
5. & 950 \\
6. & 925 \\
7. & 943 \\
8. & 893 \\
S.E./mean & \(=80.7\) lb./ac.
\end{tabular}
\begin{tabular}{ll} 
Crop :- Jowar (Kharif). & Ref:- Mh. 48(39). \\
Site :- Govt. Exptl. Farm, Akola. & Type :- 'M'.
\end{tabular}

Object :-To test the residual effect of manures applied to Groundnut crop during previous year on Jowar yield.
A. BASAL CONDITIONS : 1
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 12.7.1948. (iv) (a) 1 heavy and 2 light bakharings. (b) Sowing by tiffan. (c) \(10 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated (viii) 3 hoeings, 2 weedings and 1 thinning. (ix) \(31.52^{\prime \prime}\). (x) 26.12.1948.
2. TREATMENTS :
1. Control (no manure).
\(\times 2\). \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
\(\checkmark 3.20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
4. 30 lb ./ac. of \(\mathbf{N}\) as G.N.C.
5. \(40 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathbf{G} . \mathrm{N} . \mathrm{C}\).

Manures applied to groundnut crop in 1947.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 1 \not \frac{1}{2}^{\prime} \cdot\) (v) One row on either side of each iplot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-49. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(975 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(145.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1022 \\
2. & 917 \\
3. & 947 \\
4. & 1023 \\
S. & 967 \\
S.E./mean & \(=59.57 \mathrm{lb} . \mathrm{fac}\).
\end{tabular}

\section*{Crop :- Jowar (Kharif). \\ Ref :- Mh. 49(66). \\ \(\mathcal{Z}\) Site :- Govt. Exptl. Farm, Akola. \\ Type:-'M'.}

Object:-To test the residual effect of manures applied to Groundnut crop in previous year on Jowar yield.

\section*{1. BASAL CONDITIONS :}
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 14.7.1949. (iv) (a) 1 heavy and 1 light bakharings. (b) Sowing by tiffan. (c) 10 lb./ac. (d) \(18^{\text {a }} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 42.93". (x) 18.1.1950.
2. TREATMENTS:
1. Control (no manure).
2. 10 lb ./ac. of \(\mathbf{N}\) as \(\mathbf{G} . \mathrm{N} . \mathrm{C}\).
3. 20 lb ./ac. of N as G.N.C.
4. \(30 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
5. 40 lb ./ac. of N as G.N.C.

Manures applied to groundnut crop in 1948.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One row on either side of each . plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1946 to 1949. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1461 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(137.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. . & 1353 \\
2. & 1443 \\
3. & 1457 \\
4. & 1502 \\
5. & \(1552 \quad \sim\) \\
S E./mean & \(=56.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :-Jowar (Kharif).-
/ Site :-Govt. Exptl. Farm, Akola.
Ref:-Mh. 53(172).
Type :- ' \(M\) '.

X Object:-To compare and test the effect of different doses of \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{C} / \mathrm{N}\) on the yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Cotton. (c) 30 lb ./ac. of N ; half as compost and half as \(\mathrm{A} / \mathrm{S}\) top dressed. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 11.8.1953. (iv) (a) and (b) N.A. (c) 8 to 10 lb ./ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 2 hoeings, 1 weeding and 1 thinning. (ix) \(26.38^{\circ}\). ( \(x\) ) 27.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15, \mathrm{~N}_{2}=30\) and \(\mathrm{N}_{3}=45 \mathrm{lb}\)./ac. of N
(2) 2 sources of \(N: S_{1}=A / S\) and \(S_{2}=C / N\).

Manures drilled with seed.
3. DESIGN :
(i) \(2 \times 4\) Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) One row on either side of each plot. (vi) Yes.
4. GENERAL :
(i) Normal., (ii) Nill. (iii) Kadbi and grain yield. (iv) (a) Not contd. (b) and (c).No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1461 \mathrm{lb} . / \mathrm{ac}\).
(ii) 188.6 lb ./ac.
(iii) Main effect of N and interaction \(\mathrm{N} \times \mathrm{S}\) are significant while main effect of S is not significant.
(iv) Av. yield of graip in lb./ac.
\[
\text { Control } \quad=1288 \mathrm{lb} \text {, fac. }
\]
\begin{tabular}{c|ccc|c} 
& \(\mathrm{N}_{1}\) & \(\mathrm{~N}_{\mathbf{2}}\) & \(\mathrm{N}_{\mathbf{3}}\) & Mean \\
\hline • \(\mathrm{S}_{1}\) & 1416 & 1560 & 1688 & 1555 \\
\(\mathrm{~S}_{2}\) & 1272 & 1584 & 1592 & 1483 \\
\hline Mean & 1344 & 1572 & 1640 & \\
\hline
\end{tabular}
\begin{tabular}{lr} 
S.E. of control mean & \(=59.61 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(N\) marginal mean & \(=59.61 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(S\) marginal mean & \(=48.67 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of control \(\nu / s\). any other mean in the table & \(=103.26 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of table & \(=84.29 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Kharif).
Ref :-Mh. 49(48).
Site :-Govt. Seed and Demonstration Farm, Buldana. Type :-‘M'.
\(\checkmark\) Object:-To compare the effect of T.C. on Jowar with other manures.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 22.7.1949. (iv) (a) 3 bakharings. (b) N.A. (c) 5 to \(7 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late)
(vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) \(49.64^{\prime \prime}\). (x) \(22.12,1949\)
2. TREATMENTS :
1. Control
- 2. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
3. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
4. 20 lb /ac. of N as Cattle dung.

5; 40 lb ./ac. of N as Cattle dung.
6. 10 lb ./ac. of N as G.N.C.
\(\checkmark 7.20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
8. \(10 \mathrm{lb} / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
-9. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
Manures top dressed on 28.7.1949.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) \(68^{\prime} \times 18 \frac{1}{2}^{\prime}\). (b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) \(2^{\prime}\) all round the plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1947 (expt. in 1948 failed due to late sowing and adverse weather conditions. Modified in 1949). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 877 lb /ac.
(ii) \(160.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 764 \\
2. & 1110 \\
3. & 861 \\
4. & 774 \\
5. & 840 \\
6. & 816 \\
7. & 994 \\
8. & 759 \\
9. & 976 \\
S.E./mean & \(=65.54 \mathrm{lb} . / \mathrm{lac}\)
\end{tabular}

\section*{Crop :- Jowar (Kharif). Ref :- Mh. 49(74). \\ Site :- Govt. Seed and Demonstration Farm, Buldana. Type:- 'M'.}

Object :-To find out the residual effect of T.C. and other manures applied to Jowar in 1947-48.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Buldana (iii) 22.7.1949. (iv) (a) 3 bakharings. (b) N.A. (c) 8 to 10 lb ./ac. (d) \(18^{\circ} \times 12^{\circ}\). (c) N.A. (v) Nil. (vi) Saoner. (late) (vii) Unirrigated. (viii) N.A. (ix) \(49.64^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}
1. Control (nn manure).
2. 10 C.L_/ac. of Farm compost.
3. 20 C.L.lac. of Farm compost.
4. 10 C.L./ac of Cattle dung.
5. 20 C.L./ac. of Cattle dung.
6. 4 maunds of G.N.C. with seed at sowing.
7. \(20 \mathrm{lb} . / a c\). of N as \(\mathrm{A} / \mathrm{S}\) with seed at sowing.

Manures applied in 1947-48.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1}{2^{\circ}}\). (v) \(22^{\prime}\) all round the plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1947 -contd. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
ii) \(891 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(128.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av! yield \\
1. & 770 \\
2. & 910 \\
3. & 963 \\
4. & 887 \\
5. & 1000 \\
6. & 900 \\
7. & 810 \\
S.E./mean & \(=52.24 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Jowar (Kharif).
Ref:- Mh. 51(111).
Site :- Govt. Seed and Demonstration Farm, Buldana. Type :- 'M'.

```

Object :-To find out the effect of T.C. in comparison with other manures on Jowar.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 16.7.1951. (iv) (a) and (b) N.A. (c) 8 to 10 lb /ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner (late!. (vii) Unirrigated. (viii) N.A. (ix) 33.22". (x) 18.12.1951.

\section*{2. TREATMENTS:}
1. Control.
\(\sqrt{ }\) 2. \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}^{\prime}\) as T.C.
3. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
\(\sqrt{ }\) 4. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
5. \(40 \mathrm{lb} / \mathrm{ac}\). of N as F.Y.M.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
\(\checkmark 7.20 \mathrm{lb} / \mathrm{ac}\). of N as G.N.C.
8. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
/ 9. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
Manures applied on 28.7.1951.
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1947 -Contd.. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2079 \mathrm{lb} . / \mathrm{ac}\).
(ii) 237.5 lb . \(/ \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cl} 
Treatment & Av. yield \\
1. & 2025 \\
2. & 2043 \\
3. & 2043 \\
4. & 2044 \\
5. & 1941 \\
6. & 2016 \\
7. & 2109 \\
8. & 2085 \\
9. & 2407 \\
S.E./mean & \(=96.97 \mathrm{lb} . / \mathrm{ac}:\)
\end{tabular}.
\begin{tabular}{ll} 
Crop :- Jowar (Kharif). & Ref:~Mh. 51(110). \\
Site : \(\quad\) Govt. Seed and Demonstration. Farm, Buldana. & Type :~ 'M'.
\end{tabular}

Object:-To judge the manurial value of cotton-seed cake to Jowar crop in comparison with other manures.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 16.7.1951.
(iv) (a) 3 bakharings. (b) Sowing by tiffan. (c) 5 to \(6 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 9^{\prime \prime}\). (e) N.A. (v) Nil.
(vi) Saoner (late). (vii) Unirrigated. (viii) 1 weeding, 2 hoeing. \({ }^{\text {ts }}\) (ix) \(33.22^{\prime \prime}\) (x) 18.12.1951.

\section*{2. TREATMENTS:}

15 lb ./ac. of N in the form of
1. Decorticated cotton-seed cake.
2. Undecorticated cotton-seed cake.
3. G.N.C.
4. A/S.
5. Control (no manure)

Manuring on 28.7.1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-contd. (b) No. (c) N.A. (v) (a) Washim. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1886 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(192.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield. \\
1. & 1972 \\
2. & 1813 \\
3. & 1915 \\
4. & 1942 \\
5. & 1790 \\
S.E./mean & \(=85.92 \mathrm{lb} . / a c\).
\end{tabular}


Crop:- Jowar (Rabi).
Ref :-Mh. 51(208).
Site :- Agri. Res. Stn.; Chas.
Type :-'M'*
Object :-To study the effect of different doses of Zinc Sulphate on Jowar.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) N.A. (iv) (a) 1 ploughing and 1 harrowing. (b) to (e) N.A. (v) Nil: (vi) Medium. (vii) Unirrigated. (viii) 3 Interculture. (ix) \(6.10^{\prime \prime}\) from Sept. to Dec: (x) 9.2.1952.
2. TREATMENTS :
1. Control.
2. 10 lb ./ac. of Zinc Sulphate.
3. 20 lb ./ac. of Zinc Sulphate.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(15^{\prime} \times 24^{\prime}\). (b) \(13^{\prime} \times 21^{\prime}\). (v) \(1^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951-N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
.5. RESULTS :
(i) \(355 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(96.39 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment. & Av. yield \\
1. & 343 \\
2. & 404 \\
3. & 317 \\
S.E./mean & \(=34.08 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar (Rabi).
Site :- Agri. Res. Stn., Chas.

Ref:- Mh. 53(154).
Type:- ' \(M\) '.

Object :-To find out suitable combination of N and P with and without F.Y.M. to Rabl Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) \(40 \mathrm{lb} . / \mathrm{ac}\). of Super. (ii) (a) Medium and deep black. (b) N.A. (iii) 22.9.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturing. (ix) \(7.66^{\prime \prime}\). (x) 18.2.1954.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \quad \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{3}=30 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \quad \mathrm{P}_{1}=10, \quad \mathrm{P}_{2}=20\) and \(\mathrm{P}_{8}=30 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of F.Y.M.: \(F_{0}=0\) and \(F_{1}=5\) C.L./ac.

N applied as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 2 . (iv) (a) \(54^{\prime} \times 15^{\prime}\). (b) \(52^{\prime} \times 12^{\prime}\). (v) \(2^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENER'AL:
(i) Normal. (ii) Nil. (iii) 3 Counts, 3 heights and yield data. (iv) (a) 1953 to 1955. (b) No (c) N.A. (v) (a) Sholapur. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(628 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(198.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N is significant while other main effects and interactions are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{3}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{F}_{0}\) & \(\mathrm{F}_{1}\) \\
\hline \(\mathbf{P}_{0}\) & 466 & 536 & 695 & 601 & 574 & 576 & 573 \\
\hline \(\mathrm{P}_{1}\) & 536 & 667 & 823 & 569 & 649 & 652 & 645 \\
\hline \(\mathrm{P}_{2}\) & 544 & 719 & 685 & 691 & 660 & 590 & 731 \\
\hline \(\mathbf{P}_{8}\) & 486 & 702 & 728 & 599 & 629 & 576 & 682 \\
\hline Mean & 508 & 656 & 733 & 615 & 628 & . 598 & 658 \\
\hline \(\mathrm{F}_{0}\) & 473 & 627 & 716 & 579 & & & \\
\hline \(\mathrm{F}_{1}\) & 544 & 685 & 750 & 652 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(N\) or \(P\) & \(=49.61 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of F & \(=35.08 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of \(\mathrm{N} \times \mathrm{F}\) or \(\mathrm{P} \times \mathrm{F}\) table & \(=70.18 \mathrm{lb} . / \mathrm{ac}\), \\
S.E. of body of \(\mathrm{N} \times \mathrm{P}\) table & \(=99.23 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar'(Kharif).
Site :- Agri. Res. Stn., Jalagaon.
Ref: \({ }^{-\sim}\) Mh, 50(38).
Type :- ' M '.
Object:-To find the effect of applying \(\mathrm{P}_{2} \dot{\mathrm{O}}_{5}\) to leguminous crop (Groundnut) and its after effects on the succeeding cereal crop Jowar.
1. BASAL CONDITIONS:
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) As per treatments. (ii) (a) Deep black cotton type having depth of \(10^{\prime}\) to \(13^{\prime}\). (b) Refer soil analysis, Jalagaon. (iii) 12.7.1950. (iv) (a) N.A. (b) Drilling. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) 。 (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Weedings on 15.7.1950, 27.7.1950 and 30.8 .1950 ; hoeings on 18.7.1950, 30.8.1950 and 2.9.1950. (ix) 21.73". (x) 12.10.1950.

\section*{2. TREATMENTS :}
1. \(\mathrm{No} \mathrm{P}_{3} \mathrm{O}_{5}\) (control).
2. \(50 \mathrm{ib} . / \mathrm{ac}\) of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. I50 lb./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
5. Fallow (No Groundnut crop in the previous year).

These treatments applied to previous Groundaut crop. All manures applied before sowing in full and spread evenly over the field.
3. DESIGN :
) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(42^{\circ} \times 30^{\circ}\). (b) \(30^{\circ} \times 18^{\prime}\). (v) \(6^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of stem borer and red spot observed on leaves of jowar. (iii) Grain and chaff yield of jowar and udid. (iv) (a) 1949-50; 1954-55. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Jowar was mixed with udid. Experiment vitiated in 1949 for jowar crop.
5. RESULTS :

Jowar crop
(i) \(2537 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(360.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 2639 \\
2. & 2557 \\
3. & 2704 \\
4. & 2750 \\
5. & 2535 \\
S.E./mean & \(=161.2 \mathrm{lb} . / a c\).
\end{tabular}

Udld crop
(i) \(256 \mathrm{lb} / \mathrm{ac}\).
(ii) \(44.3 \mathrm{lb} / \mathrm{ac}_{\text {. }}\)
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 255 \\
2. & 261 \\
3. & 256 \\
4. & 276 \\
5. & 234 \\
S.E./mean & \(=19.8 \mathrm{lb} . / a \mathrm{c}\).
\end{tabular}

Ref = Mh. 51(41).
Crop :-Jowar (Kharif).
Site :-Agri. Res. Stn., Jalagaon.

Type :-'M'.

Object:-To-find out the effects of applying \(\mathrm{P}_{2} \mathrm{O}_{5}\) to the leguminous crop (Groundnut) and its after effects on the succeeding cereal crop Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Groundut-Jowar. (b) Groundnut. (c) As per treatments. (ii) (a) Deep black cotton type baving a depth of 10 to \(13^{\prime}\) (b) Refer soil analysis, Jalagaon. (iii) 5.7.1951. (iv) (a) N.A. (b) Drilling (c) \(3 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows and irregular between plants. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Weeding on 23.8.1951; hocings on 30.7.1951, 13.8.1951 and 21.8.1951. (ix) 20.14* (x) 5.12.1951.

\section*{2. TREATMENTS :}
1. \(\mathrm{No} \mathrm{P}_{2} \mathrm{O}_{5}\) (control).

50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{3}\) as Super.
5. No manure (fallow for Groundnut).

Treatments applied to Groundnut crop. All manures applied before sowing in full and spread evenly in the field.

DESIGN:

\footnotetext{
(i) R.B.D. (ii) (a) 5. (b) N,A. (iii) S. (iv) (a) \(42^{\prime} \times 30^{\prime}\). (b) \(30^{\prime} \times 18^{\prime}\). (v) \(6^{\prime}\) cing round the net plot. (vi) Yes.
}
4. GENERAL:
(i) N.A. (ii) Attack of stem-borer observed on Jowar. Damage not serious. (iii) Grain and chaff yield. (iv) (a) 1949-50; 1954-55. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Udid grown in Jowar rows and for which analysis was carried out separately and separate form filled.
5. RESULTS :

\(t\)
```

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

```

Ref:- Mh. 52(67).
Type :-'M'.

Object :-To find out the effect of applying \(\mathrm{P}_{2} \mathrm{O}_{5}\) to leguminous crop (Groundnut) and its after effects on the - succeeding cereal crop Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) As per treatments, (ii) (a) Deep black cotton type having a depth of \(10^{\prime}\) to \(13^{\circ}\) (b) Refer soil analysis, Jalagaon. (iii) 27.6.1952. (iv) (a) N.A. (b) Drilling. (c) \(3 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows and irregular between plants. (e) N.A. (v) Nil. (vi) N.A. (vii) - Unirrigated. (viii) Weeding on 14.8.1952; hoeings on 7.7.1952 and 10.8.1952. (ix) 17.61": (x) 26.11.1952.

\section*{2. TREATMENTS:}
1. No \(\mathrm{P}_{2} \mathrm{O}_{5}\) (control)
2. \(50 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. \(150 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
5. No manure (fallow for Groundnut of previous year).

Treatments applied to leguminous crop. All manures applied tefore sowing in full and spread evenly in the field.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(42^{\prime} \times 30^{\circ}\). (b) \(30^{\prime} \times 18^{\prime}\). (v) \(6^{\prime}\) alround the net plot. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Attack of loose-smut disease and stem-borer. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Udid grown in between Jowar rows for which analysis was carried out separately.

\section*{5. RESULTS :}

Jowar crop
(i) \(738 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(134.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cl} 
Treatment & Av. yield \\
1. & 607 \\
2. & 787 \\
3. & 693 \\
4. & 709 \\
5. & 896 \\
S.E./mean & \(=60.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\(\boldsymbol{U}\) did crop
(i) \(233 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(52.08 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ s'gnificantly
(iv) Av. yield of grain ln lb./ac.

\section*{Treatment Av. yield}
\begin{tabular}{ll} 
1. & 228 \\
2. & 205 \\
3. & 240 \\
4. & 275 \\
5. & 215 \\
S.E \(/\) mean & \(=23.28 \mathrm{lb} / \mathrm{ac}\).
\end{tabular}
Crop : - Jowar (Kharif). Ref :- Mh. 53(126).

Site :- Agri. Res. Stn., Jalagaon. . Type :- ' \(\mathbf{M}^{\prime}\).
Object:-To find out the effect of applying \(\mathrm{P}_{2} \mathrm{O}_{5}\) to leguminous crop (Groundnut) and its after effects on the succeeding cereal crop Jowar.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) As per treatments. (ii) (a) Deep black cotton type having a depth of \(10^{\prime}\) to \(13^{\prime}\). (b) Refer soil analysis, Jalagaon. (iii) 25.6.1953. (iv) (a) N.A. (b) Drilling (c) \(3 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) beetween rows and irregular between plants. (v) Nil. (vi) Aispuri. (vii) Unirrigated. (vii) Hoeings on 16.7.1953 to 12.8.1953; weedings on 16.7.1953 and 12.8.1953. (ix) 23.77"." (x) 24.11.1953.

2 TREATMENTS:
1. No \(\mathrm{P}_{2} \mathrm{O}_{5}\) (control).
2. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
4. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
5. No manure (fallow for Groundnut of previous year).

Treatments applied to leguminoue crop. Manures applied before sowing in full and spread evenly in the field.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(42^{\prime} \times 30^{\prime}\). (b) \(30^{\prime} \times 18^{\prime}\). (v) \(6^{\prime}\) alround the net plot. (vi) Yes.

\section*{4. GENERAL:}
(i) Growth and general condition of the crop was satisfactory. (ii) Nil. (iii) Grain and chaff yield. (iv) (a) 1949 to 1954. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) Uaid grown in between Jowar rows for which analysis was carried out separately.

\section*{5. RESULTS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Jowar yield} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(i) \(1394 \mathrm{lb} . / \mathrm{ac}\). \\
(ii) \(128.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(iii) The treatments differences are highly significant. \\
(iv) Av. yield of grain in lb/ac.
\end{tabular}}} \\
\hline & \\
\hline Treatments & Av. yield \\
\hline 1. & 1254 \\
\hline 2. & 1248 \\
\hline 3. & 1226 \\
\hline 4. & 1383 \\
\hline 5. & 1861 \\
\hline S.E /mean & \(=57.3 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Udid crop} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
(i) \(486 \mathrm{lb} / \mathrm{ac}\). \\
(ii) \(89.28 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{(iii) Treatment do not differ significantly.} \\
\hline \multicolumn{2}{|l|}{(iv) Av, yield of grain in lb,/ac.} \\
\hline Treatment & Av. yield \\
\hline 1. & 482 \\
\hline 2. & 483 \\
\hline 3. & 593 \\
\hline 4. & 523 \\
\hline 5. & 350 \\
\hline S.E./mean & \(=39.91 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :~ Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.
Ref:- Mh. 49(27).
Type :- ' \(M\) '.

Object :-To study the \(N\) and \(P\) requirements of Jowar (without F.Y.M.)

\section*{1. BASAL CO. DITIONS :}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a deepth of \(10^{\prime}\) to 13'. (b) Refer'soil analysis, Jalagaon. (iii) 2.7.1949. (iv) (a) N.A. (b) Seed drilled. (c) 3 lb . Jowar and 6 lb. udid per acre. (d) Between rows is \(18^{\prime \prime}\). (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Thinning on 14.7.1949. ; 4 times weeding and 3 times hoeing. (ix) 44.17". (x) 7.12.1949. for Jowar ; 19:10.1949 for udid.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb}\)./ac. of N .
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{3}=60 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. Manures applied before sowing.
3. DESIGN:
(i) \(4 \times 4\) Fact. in R.B.D. (ii) (a) 16. (b) \(108^{\prime} \times 168^{\prime}\). (iii) 4 . (iv) (a) \(27^{\prime} \times 42^{\prime}\). (b) \(15^{\prime} \times 30^{\prime}\). (v) \(6^{\prime}\) all round net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Stem-borer attack is not considerable. (iii) Weight of udid grain. Weight of Jowar grain and kadbi. (iv) (a) 1949 to 1951. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Purpose was to study the yield of Jowar only and as such yield of udid is not given.
5. RESULTS:
(i) \(1213 \mathrm{lb} . / \mathrm{ac}\).
(ii) 158.8 lb ./ac.
(iii) Main effects of N alone is highly significant.
(iv) Av, yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathbf{N}_{3}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 858 & 1081 & 1214 & 1472 & 1156 \\
\hline \(\mathbf{P}_{1}\) & 1002 & 1125 & 1214 & 1475 & 1204 \\
\hline \(\mathbf{P}_{\mathbf{2}}\) & 1007 & 1110 & 1392 & 1581 & 1273 \\
\hline \(\mathrm{P}_{8}\) & 906 & 1234 & 1255 & 1472 & 1217 \\
\hline Mean & 943 & 1138 & 1269 & 1500 & 1213 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
S.E. of marginal mean of N or P \\
- S.E. for body of table
\end{tabular}} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& =39.7 \mathrm{lb} / / \mathrm{ac} . \\
& =79.4 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]} & \\
\hline
\end{tabular}
Crop: \(\quad\) Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref :- Mh. 50(37).
Type :- ' \(M\) '.

Object :-To study the N and P requirements of kharif Jowar (without F.Y.M.).

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of \(10^{\prime}\) to \(13^{\prime}\). (b) Refer soil analysis, Jalagaon, (iii) 8.7.1950. (iv) (a) N.A. (b) Seeds drilled. (c) \(.3 \mathrm{lb} . / \mathrm{ac}\). of jowar with \(6 \mathrm{lb} . / \mathrm{ac}\). udid. (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 3 times hoeing and 2 times weeding. (ix) \(21.73^{\prime \prime}\). (x) 2.10 .1950 for udid, 7.12.1950 for jowar.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{2}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{3}: P_{4}=0, P_{1}=20, P_{2}=40\) and \(P_{3}=60 \mathrm{lb} . / \mathrm{lac}\).

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied before sowing
3. DESIGN :
(i) \(4 \times 4\) Fact. in R.B.D. (ii) (a) 16 (b) \(168^{\prime} \times 108^{\circ}\). (iii) 4. (iv) (a) \(42^{\circ} \times 27^{\prime}\). (b) \(30^{\circ} \times 15^{\prime \prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) The jowar crop was attacked by borer and Millipeds. (iii) Weight of udid and jowar grain and kadbi. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a) No (b) N.A. (vi) Nil (vii) Purpose was to study the yield of jowar only hence only Jowar yield is given.
5. RESULTS :
(i) 1634 lb./ac.
(ii) \(450.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|llll|l} 
& \(\mathbf{N}_{0}\) & \(\mathbf{N}_{\mathbf{1}}\) & \(\mathbf{N}_{\mathbf{2}}\) & \(\mathbf{N}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{P}_{\mathbf{0}}\) & 1293 & 1792 & 1363 & 1803 & 1563 \\
\(\mathbf{P}_{1}\) & 1236 & 1484 & 1856 & 1806 & 1596 \\
\(\mathbf{P}_{\mathbf{2}}\) & 1392 & 1582 & 1528 & 2025 & 1632 \\
\(\mathbf{P}_{\mathbf{3}}\) & 1479 & 1546 & 1810 & 2139 & 1744 \\
\hline Mean & 1350 & 1601 & 1639 & 1943 & 1634
\end{tabular}

> S.E. of any marginal mean
\(=112.5 \mathrm{Jb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=225.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Jowar (Kharif).
Site :-Agri. Res. Stn., Jalagaon.
Ref:-Mh. 51(40).
Type: \({ }^{\prime} \mathrm{M}\) '.
Object:-To study the \(\mathbf{N}\) and P requirement of kharif Jowar (without F.Y.M.).

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13'. (b) Refer soi[ analysis, Jalagaon. (iii) Il.7.195 t. (iv) (a) N.A. (b) Drilled. (c) \(3 \mathrm{lb} / \mathrm{ac}\). for jowar and \(6 \mathrm{lb} / \mathrm{ac}\). for udid. (d) Rows \(18^{\circ}\) apart. (e) N.A. (v) Nil. (vi) N.A. (vii) Uairrigated. (viii) 3 times hocing and 2 simes weeding (ix) 20.14*. (x) 30.9.1951 for udid and 5.12.1951 for jowar.

\section*{2. TREATMENTS}

All combinations of (1) and (2)
(1) 4 levels of \(N: N_{0}=0, N_{1}=20, N_{2}=40\) and \(N_{2}=60 \mathrm{lh} . / a c\).
(2) 4 leveis of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}\).

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied before sowing.
3. DESIGN:
(i) \(4 \times 4\) Fact. in R.B.D. (ii) (a) 16. (b) \(168^{\prime} \times 108^{\prime}\). (iii) 4. (iv) (a) \(42^{\prime} \times 27^{\prime}\) (b) \(30^{\prime} \times 15^{\prime}\). (v) \(6^{\prime \prime}\) all round. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Weight of Jowar and udid grain and kadbi. (iv) (a) 1949 to 1951. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) The season was not favourable for pulse crop as there was a long break of rains at a time when pulse crop was in flowering stage. (vii) Purpose was to study the yield of jowar crop only. Hence the yield of udid not recorded.
5. RESULTS :
(i) \(841 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(151.0 \quad \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av, yield of grain in \(\mathrm{lb}, / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 695 & 875 & 835 & 782 & 797 \\
\hline \(\mathrm{P}_{1}\) & 896 & 853 & 967 & 789 & 876 \\
\hline \(\mathrm{P}_{2}\) & 805 & 799 & 837 & 841 & 821 \\
\hline \(\mathrm{P}_{3}\) & 920 & 844 & 862 & 846 & 868 \\
\hline Mean & 829 & 843 & 875 & 815 & 841 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { S.E. of any marginal mean } & =37.8 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =75.5 \mathrm{lb} / \mathrm{ac} .\end{array}\)

Crop :- Jowar (Kharif). Ref :- Mh. 48(17).
Site :- Agri. Res. Stn., Jalagaon. Type :- ' \(\mathbf{M}^{\prime}\) :
Object :-To study the N and P requirements of kharif Jowar (with F.Y.M.)
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Deep black cotton type having a depth of \(10^{\prime}\) to \(13^{\prime}\). (b) Refer soil analysis, Jalagaon. (iii) 25.6.1948. (iv) (a) N.A. (b) Drilled. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). jowar with \(6 \mathrm{lb} . / \mathrm{ac}\). of \(u\) did. (d) Rows \(18^{\circ}\) apart. (e) N.A. (v) 5 C.L./ac. of F.Y.M. given on 8.8.1948 (vi) N.A. (vii) Unirrigated. (viii) 2 interculturings. (ix) 24.46". (x) 1.12.1948.
2. TREATMENTS :

All combinations of (1) and) (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb}\)./ac.
(2) 4 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=20, P_{2}=40\) and \(P_{3}=60 \mathrm{lb}\)./ac.

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied before sowing.
3. DESIGN :
(i) \(4 \times 4\) Fact. in R.B.D. (ii) (a) 16. (b) \(108^{\prime} \times 168^{\prime}\). (iii) 4. (iv) (a) \(27^{\prime} \times 42^{\prime}\). (b) \(15^{\prime} \times 30^{\prime}\). (v) \(6^{\prime}\) all sound. (vi) Yes.

\section*{4. GENERAL :}
(i) Continuous rainfall during July and August caused weekness in plants. Rainfall in November caused ludging in Jowar. Some grain germinated on the earheads. Grain became black. Yield reduced to 40\% due to November rains. (ii) The crop was attacked by caterpillers and stemborers. (iii) 'Weight of udid and jowar grain. (iv) (a) 1948-1951. (b) No. ic) N.A. (v) (a) No. (bl N.A. (vi) Continuous rainfall during July and August. (vii) Purpose was to study the yield of jawar only and as such yield of udid not given.
5. RESULTS :
(i) \(1392 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(280.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N and interaction NP are significant. Effect of P is not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{c|cccc|c} 
& \(N_{0}\) & \(N_{1}\) & \(N_{2}\) & \(N_{3}\) & Mean \\
\hline\(P_{0}\) & 1138 & 1383 & 1643 & 1359 & 1381 \\
\(P_{1}\) & 1201 & 1398 & 1481 & 1169 & 1312 \\
\(P_{2}\) & 1392 & 1200 & 1800 & 1368 & 1440 \\
\(P_{3}\) & 1404 & 1249 & 1310 & 1788 & 1438 \\
\hline Mean & 1284 & 1307 & 1558 & 1421 & 1392
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=70.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=140.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

> Crop :- Jowar (Kharif).
> Site :- Agri. Res. Stn., Jalagaon.
Ref:-Mh. 49(26).
Type :- 'M'.

Object :-To study the N and P requirement of kharif Jowar (with F.Y.M.).

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Gram. (c) N.A. (ii) (a) Deep black cotton type having a depth of \(10^{\circ}\) to \(13^{\circ}\) (b) Refer soil analysis, Jalagaon. (iii) 1.7 .1949 . (iv) (a) N.A. (b) Drilled. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). of jowar and 6 jb./ac. of udid. (d) \(18^{\prime}\) row spacing for jowar. (e) N.A. (v) F.Y.M. at 5 C.L./ac. (vi) N.A. (vii) Unirrigated (viii) Thianing on 14.7.1949, 4 weedings and 3 hoeings. (ix) 44.17". (x) 5.10.1949 for udid and 5.12.1949 for jowar.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 4 levels of \(N: N_{0}=0, N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=20, P_{2}=40\) and \(P_{3}=60 \mathrm{lb} . / \mathrm{ac}\).

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied before sowing.
3. DESIGN :
(i) \(4 \times 4\) Fact. in R.B.D. (ii) (a) 16 . (b) \(108^{\prime} \times 168^{\prime}\). (iii) 4 . (iv) (a) \(27^{\prime} \times 42^{\circ}\). (b) \(15^{\prime} \times 30^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Stem-borer attack. (iii) Weight of udid grain, Jowar grain and kadbl. (iv) 1948 to 1951. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Purpose was to study the yields of jowar only and as such yield of udid not given.
5. RESULTS:
(i) \(1508 \mathrm{lb} / \mathrm{ac}\).
(ii) 182.0 lb ./ac.
(iii) Main effect of N alone is highly significant.
(iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{r|rrrr|c} 
& \(\mathrm{N}_{\mathbf{0}}\) & \(\mathrm{N}_{\mathbf{1}}\) & \(\mathbf{N}_{\mathbf{2}}\) & \(\mathrm{N}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{P}_{\mathbf{0}}\) & 1121 & 1348 & 1339 & 1942 & 1438 \\
\(\mathrm{P}_{\mathbf{1}}\) & 1195 & 1497 & 1582 & 1965 & 1560 \\
\(\mathrm{P}_{\mathbf{2}}\) & 1140 & 1492 & 1710 & .1887 & 1557 \\
\(\mathrm{P}_{\mathbf{3}}\) & 1302 & 1309 & 1625 & 1671 & 1477 \\
\hline Mean & 1190 & 1412 & 1564 & 1866 & 1508
\end{tabular}.
\(\begin{array}{ll}\text { S.E. of any marginal mean } \quad & =45.5 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =91.0 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

\section*{Crop :- Jowar (Kharif).}

Site :- Agri. Res. Stn., Jalagaon.

Ref: \(:\) Mh. 50(36).
Type :~ ' \(M\) '.

Object :-To study the N and P requirement of Kharif Jowar (wit h F.Y.M.)
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13'. (b) Refer soil analysis, Jalagaon. (iii) 8.7.1950, (iv) (a) N.A. (b) Drilled. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). of jowar and \(6 \mathrm{lb} . / \mathrm{ac}\). of udid. (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) 5 C.L. of F.Y.M./ac. (vi) N.A. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) \(21.74^{\circ}\). (x) 1.10.1950 for udid, 7.12.1950 for jowar.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{3}=60 \mathrm{lb}\)./ac.

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied befor sowing.
3. DEESIGN :
(i) \(4 \times 4\) Fact. in R.B.D. (ii) (a) 16. (b) \(168^{\prime} \times 108^{\prime}\). (iii) 4 . (iv) (a) \(42^{\prime} \times 27^{\prime}\). (b) \(30^{\prime} \times 15^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(ii) Good. (ii) Attack of borers and Millipeds on jowar crop. (iii). Weight of udid and jowar grain and kadbi. (iv) (a) 1948-51. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Purpose was to study the yields of jowar crop only and as such yield of udid not given.
5. RESULTS :
(i) \(2410 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(441.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathbf{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & \(\mathbf{N}_{\mathbf{3}}\) & Mean \\
\hline \(\mathbf{P}_{0}\) & 2222 & 2553 & 2251 & 2742 & 2442 \\
\hline \(\mathbf{P}_{1}\) & \(2+56\) & 2169 & 2369 & 2671 & 2416 \\
\hline \(\mathrm{P}_{2}\) & 2221 & 2465 & 2461 & 2837 & 2496 \\
\hline \(\mathrm{P}_{3}\) & 2009 & 2061 & 2417 & 2662 & 2287 \\
\hline Mean & 2227 & 2312 & 2375 & 2728 & 2410 \\
\hline & \multicolumn{3}{|l|}{S.E. of any marginal mean S.E. of bocy of table} & \multicolumn{2}{|r|}{\[
\begin{aligned}
& =110.4 \mathrm{lb} . / \mathrm{ac} \\
& =220.7 \mathrm{lb} . / \mathrm{ac.}
\end{aligned}
\]} \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { Crop :- Jowar (Kharif). } & \text { Ref :- Mh. 51(39). } \\
\text { Site :- Agri. Res. Stn., Jalagaon. } & \text { Type :- 'M'. }
\end{array}
\]

Obj:ct :-To study the \(N\) and \(P\) requirement of kharif Jowar (with F.Y.M.)
1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of \(10^{\prime}\) to \(13^{\circ}\). (b) Refer soil analysis, Jalagaon. (iii) 10.7.1951. (iv) (a) N.A. (b) Seeds drilled. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). Jowar and \(6 \mathrm{lb} . / a c\). udid. (d) Rows \(18^{\circ}\) apart. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) 3 times hoeing and 2 times weeding. (jx) 20.14". (ix) j0.9.1951 for udid, 5.12.!951. for Jowar.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 4 levels of \(N: \quad N_{0}=0, N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb} / \mathrm{ac}\).
(2) 4 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=20, P_{2}=40\) and \(P_{2}=60 \mathrm{lb} . / \mathrm{ac}\).

N as G.N.C. and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as super applied before sowirg.
3. DESIGN :
(i) \(4 \times 4\) Fact. in R.B.D.
(ii) (a) 16
(b) \(168^{\circ} \times 108^{\prime}\) (iii) 4. (iv) (a) \(42^{\prime} \times 27^{\prime}\)
(b) \(30^{\circ} \times 15^{\prime}\).
(v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Weight of jowar and udid grain and kadbi, (iv) (a) 1948 to 1951. (b) No. (c) No. (v)'a) No. (b) N.A. (vi) The season was not favourable for pulse crop as there was a long break of rains at time when pulse crop was in flowering stage. (vii) Purpose was to study the yield of jowar crop only and as such yield of udid not given.
5. RESULTS:
(i) \(920 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(135.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N alone is significant.
(iv) Av. yield of grain in ib./ac.
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}\) & \(\mathrm{N}_{3}\) & Mean \\
\hline \(\mathrm{P}_{0}\) & 939 & 903 & 839 & 871 & 888 \\
\hline \(\mathrm{P}_{1}\) & 850 & 1116 & 852 & 800 & 905 \\
\hline \(\mathrm{P}_{2}\) & 850 & 1026 & 877 & 929 & 921 \\
\hline \(\mathrm{P}_{3}\) & 918 & 994 & 950 & 994 & 964 \\
\hline Mean & 889 & 1010 & 880 & 899 & 920 \\
\hline \multicolumn{6}{|c|}{S.E. of any marginal mean S.E. of body of table} \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Ref:- Mh. 52(68).
Site :- Agri. Res. Stn., Jalagaon.
Type:- ' \(M\) '.
Object :-To study the manurial (N, P and F.Y.M.) requirements of kharif Jowar.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Gram. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13 fect. (b) Refer soil analysis, Jalagaon. (iii) 25.6 .1952 . (iv) (a) N.A. (b) Drilled. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e) Nil. (v) Nil. (vi) Aispuri. (vii) Unirrigated. (viii) Hoeings 2 times, weeding 2 times. (ix) 17.61". (x) 27.11.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=60\) and \(\mathrm{N}_{3}=80 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M. : \(\mathrm{F}_{1}=5\) and \(\mathrm{F}_{8}=10\) C.L./ac.

N as \(\mathrm{A} / \mathrm{S}\) and G.N.C. in \(1: 1\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied before sowing.
3. DESIGN :
(i) \(3 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 12. (b) \(84^{\prime} \times 108^{\prime}\). (iii) 4 . (iv) (a) \(42^{\prime} \times 18^{\prime}\). (b) \(36^{\prime} \times 12^{\prime}\). (v) \(3^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Germination was satisfactory. The Jowar crop suffered as there was no rain at proper time. The Udid crop also suffered due to break of rain at the time of its flowering. (ii) Serious attack of stem-borer. Attack of long smut disease. (iii) Dates of germination, flowering and maturity. Weight of Jowar grain and kabdi and udid. (iv) (a) 1952 to 1955. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Break of rain. (vii) Purpose was to study the yields of jowar only and as such yield of udid was not given.

\section*{5. RESULTS :}
(i) \(956 \mathrm{lb} / / \mathrm{ac}\).
(ii) \(164.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) The interaction \(N \times F\) alone is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{2}\) \\
\hline \(\mathbf{P}_{1}\) & 959 & 1059 & 872 & 963 & 967 & 959 \\
\hline \(\mathrm{P}_{2}\) & 961 & 943 & 940 & 948 & 932 & 964 \\
\hline Mean & 960 & 1001 & 906 & 956 & & \\
\hline \(!\) & 982 & 905 & 963 & 950 & & \\
\hline \(\mathrm{F}_{2}\) & 939 & 1098 & 848 & 961 & & \\
\hline & \multicolumn{4}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
S.E. of \(N\) marginal mean \\
S.E. of \(P\) or \(F\) marginal mean \\
S.E. of body of \(N \times P\) or \(N \times F\) table \\
\(S\) E. of body of \(P \times F\) table
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& =41.1 \mathrm{lb} . / \mathrm{ac} . \\
& =33.3 \mathrm{lb} . / \mathrm{ac} . \\
& =58.5 \mathrm{lb} . / \mathrm{ac} \\
& =47.4 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]}} \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Crop :- Jowar (Kharif ). } \\
& \text { Site :- Agri. Res. Stn., Jalagaon. }
\end{aligned}
\]

> Ref :- Mh. 53(127).

Type :- 'M'.

Object :-To study the manurial (N, P and F.Y.M.) requirement of Kharifjowar.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) \(7 \frac{1}{2}\) C.L./ac. of F.Y.M. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 27.6.1953. (iv) (a) N.A. (b) Drilled. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) No. (vi) Aispurt. (vii) Unirrigated. (viii) Hoeings on 17.7.1953. and 23.8.1953 (ix) 23.77". (x) 14.11.1953.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=60\) and \(\mathrm{N}_{3}=80 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M. : \(\mathrm{F}_{1}=5\) and \(\mathrm{F}_{2}=10\) C.L./ac.

N as \(\mathrm{A} / \mathrm{S}\) and G.N.C. in \(1: 1\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied before sowing.
3. DESIGN :
(i) \(3 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 12 . (b) \(84^{\prime} \times 108^{\prime}\). (iii) 4 . (iv) (a) \(42^{\prime} \times 18^{\prime}\). (b) \(36^{\prime} \times 12^{\prime}\). (v) \(3^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Dates of germination, flowering and maturity. Weight of jowar grain and kadbi. (iv) (a) 1952 to 1955. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Purpose was to study the yield of jowar only and hence the yield of udid not given.
5. RESULTS :
(i) \(1845 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(167.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{F}\) alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathbf{N}_{3}\) & Mean & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{2}\) \\
\hline \(\mathbf{P}_{1}\) & 1793 & 1810 & 1877 & 1827 & 1747 & 1910 \\
\hline \(\mathbf{P}_{2}\) & 1829 & 1824 & 1932 & 1862 & 1794 & 1930 \\
\hline Mean & 1811 & 1817 & 1904 & 1845 & & \\
\hline \(\mathrm{F}_{1}\) & 1699 & 1771 & 1838 & 1769 & & \\
\hline \(\mathrm{F}_{2}\) & 1924 & 1864 & 1972 & 1920 & & \\
\hline \multicolumn{5}{|c|}{S.E. of N marginal mean} & b./ac. & \\
\hline \multicolumn{5}{|c|}{S.E. of \(F\) or \(P\) marginal mean} & b./ac. & \\
\hline \multicolumn{5}{|c|}{S.E. of body of \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{F}\) table} & b./ac. & \\
\hline \multicolumn{5}{|c|}{S.E. of body of \(\mathrm{P} \times \mathrm{F}\) table} & b/ac. & \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref. :- Mh. 52(315)
Type:- ' M '
. Object :-To study the residual effect of manures without a basal dose of F.Y.M. applied to cotton crop on yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Cotton. (c) As per treatments. (ii) (a) Deep black cotton soil. (b) Refer soil analysis, Jalagaon. (iii) 30.6.1952. (iv) (a) Nil. (b) Drilling. (c) 3 lb ./ac. (d) \(18^{\circ}\) between rows. (e) -. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) 17.61". (x) 25.12.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30\) and \(\mathrm{N}_{2}=60 \mathrm{lb}\)./ac.
(2) 2 sources of \(N: S_{1}=\) G.N.C. and \(S_{2}=A / S\).
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) : \(\mathrm{P}_{0}=\mathrm{O}, \mathrm{P}_{1}=30\) and \(\mathrm{P}_{2}=60 \mathrm{lb} / \mathrm{ac}\). \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. Manures applied to previous crop cotton.
3. DESIGN:
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . (iv) (a) \(42^{\prime} \times 18^{\prime}\). (b) \(36^{\prime} \times 12^{\prime}\). (v) \(3^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of millipeds, stemborer and long smut. (iii) Grain yield. (iv) (a) No. (b) Nil. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(566 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(86.46 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of N and selective \(v s\) others are significant while all other effects and interactions are not significant,
(iv) Av. yield of grain in lb./ac. Selective treatments.
\(\mathrm{P}_{0}=572 \mathrm{lb}\) /ac.
\(P_{1}=600 \mathrm{lb} . / \mathrm{ac}\).
\(P_{2}=636 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(P_{0}\) & \(P_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{N}_{1} \mathrm{~S}_{1}\) & 566 & 585 & 582 & 578 \\
\(\mathrm{~N}_{1} \mathrm{~S}_{2}\) & 558 & 577 & 634 & 590 \\
\(\mathrm{~N}_{2} \mathrm{~S}_{1}\) & 487 & 462 & 512 & 487 \\
\(\mathrm{~N}_{2} \mathrm{~S}_{2}\) & 569 & 521 & 470 & 543 \\
\hline Mean & 545 & 554 & 549 &
\end{tabular}
\begin{tabular}{ll} 
S.E. of the maginal mean of NS & \(=24.96 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of the maginal mean of P & \(=21.61 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of the body of table & \\
S.E. of selective treatments & \(=43.23 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of selective vs any other mean in the body of table & \(=52.57 \mathrm{lb} . / \mathrm{ac}\). \\
\end{tabular}

Crop :- Jowar (Kharif)
Ref. :- Mh. 52(103).
Site :~ Agri. Res. Stn., Jalagaon.
- Type:- 'M'

Object :--To study the residual effect of manures with basal dose of F.Y.M. applied to Cotton crop on yield of Jowar.

\section*{1. BASAL CONDITIONS:}
(i) (a) N.A. (b) Cotton. (c) As per treatments. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 30. 6. 1951. (iv) (a) N.A. (b) Drilling. (c) \(3 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) Aispuri. (vii) Unirrigated. (viii) Weeding 16.7. 1952 and 14.8.1952, hoeing on 10. 7. 1952 and 8.8.1952. (ix) \(17.61^{\prime \prime}\). (x) 24.11. 1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of \(N \quad N_{0}=0, N_{1}=30\) and \(N_{2}=60 \mathrm{lb}\)./ac.
(2) 2 sources of \(N \quad S_{1}=\) G.N.C. and \(S_{2}=A / S\).
(3) 3 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=30\) and \(P_{2}=60 \mathrm{lb}\)./ac. \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super. Manures applied to previous cotton crop.
3. DESIGN :
(i) \(3 \times 3 \times 2\) Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) \(42^{\prime} \times 18^{\prime}\), (b) \(36^{\prime} \times 12^{\prime}\). (v) \(3^{\prime}\) all round. (vi) Yes.
4. GENERAL:
(i) Germination was not satisfactory. No rains at proper time. (ii) Attack of Millipeds, stemborer and long smut and seasonal abnormalities, hence less yield. (iii) Grain and fodder yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) and (b) No. (vi) Nil. (vii) Udid is a minor crop and hence the yield is not given.
5. RESULTS:
(i) \(424 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(146.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Selective treatments S and N effects are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Selective treatments
\(P_{0}=470 \mathrm{lb}\)./ac.
\(\mathrm{P}_{\mathbf{1}}=529 \mathrm{lb}\)./ac.
\(\mathrm{P}_{2}=295 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathbf{P}_{0}\) & \(\mathrm{P}_{1}\) & \(P_{2}\) & Mean \\
\hline \(\mathrm{N}_{1} \mathrm{~S}_{1}\) & 456 & 399 & 416 & 424 \\
\hline \(\mathrm{N}_{1} \mathrm{~S}_{2}\) & 481 & 589 & 572 & 547 \\
\hline \(\mathrm{N}_{2} \mathrm{~S}_{1}\) & 273 & 342 & 386 & 334 \\
\hline \(\mathrm{N}_{2} \mathrm{~S}_{2}\) & 301 & 507 & 331 & 380 \\
\hline Mean & 378 & 459 & 426 & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of the marginal mean of NS & \(=42.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of the marginal mean of \(P\) & \(=36.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of the body of table & \(=72.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of selective treatments & \(=51.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
S.E. of selective \(\nu s\) any other mean
in the body of table \(=89.6 \mathrm{lb}\)./ac.
Crop :-Jowar (Rabi). \(\quad\) Ref :-Mh. 51(101).
Site :-Agri. Res. Stn., Jeur.

Site :-Agri. Res. Stn., J eur.
Type: : ‘ \(M\) ’.
Object :-To study the N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) requirements of Jowar (with and without F. Y.M.)
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Gram and Jowar. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 30.9.1951. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) Nil. (ix) N.A. (x) 26.1.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{3}=30 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20\) and \(\mathrm{P}_{3}=30 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=5\) C.L./ac.
\(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and N as G.N.C. applied on 5.9.1951 and F.Y.M. on 5.8.1951.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 2. (iv) (a) \(46^{\prime} \times 33^{\prime}\). (b) \(40^{\prime} \times 27^{\prime}\). (v) \(3^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Sugary secretion. (iii) Grain and fodder yield. (iv) (a) 1951-continued. (b) No. (c) Nil. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(593 \mathrm{lb} / \mathrm{ac}\)
(ii) \(203.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

\begin{tabular}{lr} 
S.E. of marginal mean of \(N\) or \(P\) & \(=50.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(\mathbf{F}\) & \(=35.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of tables \(\mathbf{P} \times \mathbf{F}\) or \(\mathrm{N} \times \mathrm{F}\) & \(=71.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table \(\mathbf{P} \times \mathrm{N}\) & \(=101.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop : Jowar (Rabi).
Site :- Agri. Res. Stn., Jeur.
Ref :- Mh. 52(377).
Type :- ' M '.

Objec̄t :-To study the optimum N and \(\mathrm{P}_{2} \mathrm{O}_{6}\) requirements of Jowar (with and without F.Y.M.)

\section*{1. BASAL CONDITIONS :}
(i) (a) Jowar-Gram. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 5.10.1952. (iv) (a) 2 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 3.44*. (x) 27.1.1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{3}=30 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super : \(\mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20\) and \(\mathrm{P}_{3}=30 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M.: \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=5\) C.L./ac.
3. DESIGN :
(i) \(2 \times 4 \times 4\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 3. (iv) (a) \(32^{\prime} \times 25^{\prime}\). (b) \(27^{\prime} \times 20^{\prime}\). (v) \(2.5^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Very poor growth. . (ii) Nil. (iii) Grain yield. (iv) (a) \(1951-52\); contd. (b) No. (c) Nil. (v) (a) Chas and Sholapur. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(85 \mathrm{lb} / \mathrm{ac}\).
(ii) \(96.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & \(\mathbf{N}_{\mathbf{B}}\) & Mean & \(\mathrm{F}_{0}\) & \(F_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 34 & 36 & 211 & 55 & 84 & 53 & 115 \\
\hline \(\mathrm{P}_{1}\) & 135 & 48 & 49 & 77 & 77 & 96 & 58 \\
\hline \(\mathbf{P}_{2}\) & 72 & 62 & : & 91 & 88 & 106 & 69 \\
\hline \(\mathbf{P}_{3}\) & 102 & 92 & 119 & 54 & 92 & 94 & 89 \\
\hline Mean & 86 & 59 & 126 & 69 & 85 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline \(F_{0}\) & 94 & 79 & 96 & 79 & 87 & & \\
\hline \(\mathrm{F}_{1}\) & 78 & 40 & 156 & 59 & 83 & & \\
\hline
\end{tabular}
S.E. of marginal mean of N or P
S.E. of marginal mean of \(F\)
S.E. of body of table \(N \times P\)
S.E. of the body of table \(N \times F\) or \(P \times F\)
\(=24.2 \mathrm{lb} . / \mathrm{ac}\).
\(=17.1 \mathrm{lb} . / \mathrm{ac}\).
\(=48.4 \mathrm{lb} . / \mathrm{ac}\).
\(=34.2 \mathrm{lb}\)./ac.

Crop :~ Jowar (Rabi)
Site :- Agri. Res. Stn., Jeur.

Ref. :- Mh. 53(178).
Type :- ' \(\mathbf{M}\) '.

Object: -To study the \(\mathrm{N} \& \mathrm{P}_{2} \mathrm{O}\) requirements of Jowar (with and without F.Y.M.)
1. BASAL CONDITIONS :
(i) (a) No. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 23.9.1953. (iv) (a) 2 harrowings and one ploughing. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\). (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 1 interculturing. (ix) \(5.88^{\circ}\). (x) 5. 2. 1954.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{3}=30 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20\) and \(\mathrm{P}_{3}=30 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M. : \(\quad \mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=5\) C.L./ac.
\(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super and N as G.N.C. applied on 23. 9. 1953 and F.Y.M, on 17.5.1953.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 2 . (iv) (a) \(46^{\prime} \times 33^{\circ}\). (b) \(40^{\circ} \times 27^{\prime}\). (v) \(3^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951 -continued. (b) No. (c) Nil. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(777 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(299.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Interaction \(\mathbf{N} \times \mathrm{F}\) alone is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline , & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{Na}_{3}\). & Mean & \(\mathrm{F}_{\mathbf{0}}\) & \(\mathrm{F}_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 773 & . 789 & 943 & 808 & 828 & 818 & 839 \\
\hline \(\mathrm{P}_{1}\) & 668 & 697 & 716 & 768 & 712 & 795 & 629 \\
\hline \(\mathrm{P}_{2}\) & 675 & 1031 & 773 & 827 & 827 & 853 & 798 \\
\hline \(\mathrm{P}_{3}\) & 844 & 685 & 586 & 847 & 745 & 687 & 794 \\
\hline Mean & 740 & 801 & 754 & 813 & 777 & & \\
\hline \(\mathrm{F}_{0}\) & 613 & 806 & 949 & 783 & 789 & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} \\
\hline \(\mathrm{F}_{1}\) & 866 & 791 & 561 & 842 & 765 & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(N\) or \(\mathbf{P}\) & \(=74.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of the marginal mean of \(\mathbf{F}\) & \(=53.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table \(N \times P\) & \(=149.9 \mathrm{lb} . / \mathrm{Pc}\). \\
S.E. of body of tables \(N \times F\) or \(F \times P\). & \(=106.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop :- Jowar (Kharif). & Ref. :- Mh. 53(298). \\
Site :- Agri. Res. Stn., Karad. & Type : \({ }^{〔} \mathbf{M}\) '.
\end{tabular}

Object :-To study the effect of Calcium Cynamide in comparison with the other manures.
1. BASAL CONDITIONS:
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) N.A. (iii) 16.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied one month before sowing. (vi) Shendli 4-5. (vii) Unirrigated. (viii) N.A. (ix) 38". (x) 16.7. 1953.
2. TREATMENTS :
1. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
2. 60 lb ./ac. of \(N\) as \(A / S+G . N . C\). in \(1: 1\) ratio.
3. 60 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}+\) Calcium Cynamide
4. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as Calcium Cynamide+G.N.C. in \(1: 1\) ratio.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) \(43^{\prime} \times 36^{\prime}\). (b) \(34^{\prime} \times 32^{\prime}\). (v) \(4.5^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight attack of stemborer ; affected plants removed. (iii) Grain yield. (iv) (a) 1952 to N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(1304 \mathrm{lb} / \mathrm{ac}\).
(ii) \(216.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are not significantly different.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1367 \\
2. & 1360 \\
3. & 935 \\
4. & 1552 \\
S.E./mean & \(=152.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\(\qquad\)

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(81).
Type :- 'M'.

Object:-To study the suitability of Dicalcium Phosphate in place of other phosphatic manures.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fallow. (c) No. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 29.9.1952. (iv) (a) 1 ploughing and 1 harrowing. (b) Drilling. (c) \(6 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\). (e) N.A. (v) 5 C.L./ac. of F.Y.M. \(+60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) applied on 28.9.1952. (vi) M.35-1. (vii) Irrigated. (viii) 1 weeding. (ix) Nil. (x) 1.3.1953 to 3.3.1953.
2. TREATMENTS:
- 1. \(20 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Dicalcium Phosphate.
2. 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.

Manures broadcast on 29.9.1952.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12 . (iv) (a) \(42^{\prime} \times 21^{\prime}\). (b) \(30^{\circ} \times 9^{\prime}\). (v) \(6^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) White chiklta disease. (iii) Grain and fodder yield. (iv) (a) 1952-1953. (b) and (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1612 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(385.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments are not signficantly different.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
\multicolumn{1}{l}{1.} & 1648 \\
2. & 1075 \\
S.E./mean & \(=111.5\) lb./ac.
\end{tabular}
\(\begin{array}{lc}\text { Crop :- Jowar (Rabi). } & \text { Ref :m Mh. 53(40). } \\ \text { Site :- Agri. Res. Stn., Kopergaon. } & \text { Type :-'M’.' }\end{array}\)

Object :-To study the suitability of Dicalcium phosphate in place of other phosphatic manures:
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) A type. (b) Refer soil analysis, Kopergaon, (iii) 22.9.1953.
(iv) (a) to (e) N.A. (v) 5 C.L/.ac. of F.Y.M. applied before sowing. (vi) M.35-1 (late). (vii) Irrigated.
(viii) 1 interculturing and 2 weedings. (ix) Nil. (x) 11.3 .1954 .
2. TREATMENTS
1. 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Dicalcium Phosphate.
2. 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12 . (iv) (a) \(42^{\prime} \times 21^{\prime}\). (b) \(30^{\prime} \times 9^{\prime}\). (v) \(6^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Uniform and healthy. (ii) Nil. (iii) Germination, dates of flowering, height, tillers and fodder yield etc. (iv) (a) 1952 to 1955. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) \(1432 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(304.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1399 \\
2. & 1465 \\
S.E./mean & \(=89.1\) lb./ac.
\end{tabular}
\begin{tabular}{ll} 
Crop :- Jowar (Rabi). & Ref :- Mh. 53(251). \\
Site :- Agri. Res. Stn., Kopergaon. & Type :- 'M'.
\end{tabular}

Object :-To study the effect of inorganic manures in combination with green manuring on Rabi Jowar.

\section*{1. BASAL CONDITIONS}
(i) (a) N.A. (b) Sann. (c) As per treatments. (ii) (a) H type. (b) Refer soil analysis, Kopergaon. (iii) 18.9.1953. (iv) !(a) Harrowing. (b) to (e) N.A. (v) Nil. (vi) M-35-I (late). (vii) Irrigated. (viii) N.A. (ix) 4.17". (x) 17.2.1954.

\section*{2. TREATMENTS:}
1. Sann for G.M.
2. 50 lb . ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to sann and sann used as G.M.
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to Jowar at burying of sann as G.M.
4. \(30 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) applied to Jowar at burying of sann as G.M.
5. \(60 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\) applied to Jowar at burying of sann as G.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 2. (iv) (a) \(42^{\prime} \times 40^{\prime}\). (b) \(34^{\prime} \times 22^{\prime}\). (v) \(4^{\prime}\) all around. (vi) Yes.
4. GENERAL:
(i) The crop was healthy but due to attack of chiklta disease the crop suffered to a considerable extent. (ii) Chiklta disease. (iii) Germination data, flowering data, height, tillers etc, and grain yield. (iv) (a) 1952 to 1955. (b) No. (c) N.A. (v) (a) Not known. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1011 \mathrm{lb} / \mathrm{ac}\).
(ii) \(287.6 \mathrm{lb} . / \mathrm{ac}\)
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lcc} 
Treatment & \(\ddots\) & Av. yield \\
1. & 1290 \\
2. & 860 \\
3. & 914 \\
4. & 1112 \\
5. & 880 \\
S.E./mean & \(=203.4 \mathrm{lb}\)./ac.
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.

Object :-To study the residual effect of leguminous crop Groundnut grown with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut, (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 23.9.1953. (iv) (a) Ploughing once in 3 years and 4 barrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) F.Y.M. at 5 C.L./ac. applied once in 3 years. (vi) M-35-1. (vii) Unirrigated. (viii) Interculturing on 21.11.1953 and 8.12.1953. (ix) 8.89". (x) 3.3.1954.

\section*{2. TREATMENTS:}
1. Fallow in previous season.
2. No \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Groundnut (control).
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Groundnut.
4. \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Groundnut.
5. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Groundnut.
3. DESIGN:
(i) R.B D.
(ii) (a) 5 .
(b) N.A.
(iii) 5. (iv) (a) \(42^{\circ} \times 30^{\prime}\).
(b) \(30^{\prime} \times 18^{\prime}\). (v) \(6^{\prime}\) alround.
(vi) Yes.
4. GENERAL :
(i) Below normal. (ii) The crop was attacked by stemborer, root-rot, sugar disease; aphis were also seen during grain formation. (iii) Weight of fodder and grain yield. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) The soil in which the crop was grown is very heavy. Continuous and heavy rain in october had adverse effect on crop growth.
5. RESULTS :
(i) \(286 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(68.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 236 \\
2. & 272 \\
3. & 268 \\
4. & 337 \\
5. & 316 \\
S.E./mean & \(=30.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Mohol.

Ref : Mh. 49(61). Type: © \({ }^{\prime} \mathrm{M}\) ’.

Object :-To see the residual effect of a leguminous crop Chinamug grown with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\) on succeeding cereal jowar crop.
1. BASAL CONDITIONS:
(i) (a) Chinamug-Jowar. (b) Chinamug. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 18.9 .1949 . (iv) (a) N.A. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\). (e) N:A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) One interculturing. (ix) 1.14'. (x) 16.2.1950.

\section*{2. TREATMENTS :}
1. Fallow in previous crop season.
2. No \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug (control).
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug.
4. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chi namiag.
5. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(42^{\prime} \times 27^{\prime}\) (b) \(30^{\circ} \times 15^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL:
(i) and (ii) N.A. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(553 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(156.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av, yield \\
1. & 457 \\
2. & 591 \\
3. & 547 \\
4. & 509 \\
5. & 660 \\
S.E./mean & \(=69.7 \mathrm{lb} . / a c\).
\end{tabular}

Crop:-Jowar (Rabi).
Site :-Agri. Res. Stn., Mohol.
Ref:-Mh. 53(214).
Type : \({ }^{\prime} \mathbf{M}^{\prime}\).
Object :-To study the effect of Chinamug grown with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Jowar (Rabi).
1. BASAL CONDITIONS :
(i) (a) Chinamug_Jowar. (b) Chinamug. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 18.10.1953. (iv) (a) Ploughing once in three years and harrowing 4 times. (b) Seeds drilled with 3 coultered drill. (c) \(4 \mathrm{lb} . / a c\). (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) F.Y.M. at 5 C.L./ac. is applied once in three years. (vi) M-35-1. (vii) Unirrigated. (viii) 3 bullock hoeings. (ix) 8.89. (x) 4.3.1954.

\section*{2. TREATMENTS:}
1. Fallow in previous crop season.
2. No \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug (control).
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug.
4. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug.
5. \(150 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Chinamug.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(42^{\prime} \times 27^{\prime}\). (b) \(30^{\prime} \times 15^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4., GENERAL:
(i) Fairly good. (ii) In early stage, the crop was slightly affected by sugary disease and in the advanced stage by aphis. (iii). Weight of fodder and grain. (iv) (a) 1949—1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(516 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(114.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 486 \\
2. & 465 \\
3. & 540 \\
4. & 524 \\
5. & 566 \\
S.E./mean & \(=51.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop : Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.
Object :-To study the effect of leguminous crop Gram raised with and without \(\mathrm{P}_{8} \mathrm{O}_{5}\) on succeeding cereal crop Jowar.
8. BASAL CONDITIONS :
(i) (a) Gram -Jowar. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-3S-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 1.14*. (x) N.A.

\section*{2. TREATMENTS :}
1. Fallow in previous season.
2. No manure applied to previous crop Gram.
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super ar plied to previous crop Gram.
4. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied to previous crop Gram.
5. \(150 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied to previous crop Gram.
3. DESIGN :
(i) R B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(\frac{1}{2}\) guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(233 \mathrm{lb} / \mathrm{ac}\).
(ii) \(116.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 124 \\
2. & 209 \\
2. & 235 \\
4. & 250 \\
5. & 197 \\
S.E./mean & \(=51.8 \mathrm{lb}\)./ac.
\end{tabular}

> Crop :- Jowar (Rabi). . Ref :- Mh. 50(7).

Site :- Agri. Res. Stn., Mohol.
Type :- 'M'.
Object:-To study the effect of leguminous crop Gram grown with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\) on the succeeding cereal crop Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 288.1950 . (iv) (a) Ploughing once in 3 years. (b) Drilled. (c) 4 lb ./ac. (d) \(18^{\circ}\) between rows. (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied once in 3 years. (vi) M-35-1. (vii) Unirrigated. (viii) 4 interculturings. (ix) \(9.91^{\prime \prime}\). (x) 22.2.1951.
2. TREATMENTS:
1. Fallow in previous season.
2. No manure applied to previous crop Gram.
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied to previous crop Gram.
4. 100 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied to previouscrop Gram.
5. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super applied to previous crop Gram.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) \(150^{\prime} \times 42^{\prime}\). (iii) \(5 . \quad\) (iv) (a) \(30^{\prime} \times 42^{\prime}\). (b) \(18^{\prime} \times 30^{\prime}\). (v) \(6^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) Sowing was delayed for want of proper mulch condition of soil. Germination satisfactory but growth of the crop was adversely affected by rains after sowing. (ii) Nil. (iii) Weight of grain. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(960 \mathrm{lb}, / \mathrm{ac}\).
(ii) \(302.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 944 \\
2. & 973 \\
3. & 943 \\
4. & 963 \\
5. & 975 \\
S.E./mean & \(=135.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :~ Jowar (Rabi). \\ Site : Agri. Res. Stn., Mohol.
}

Ref :-Mh. 51(11).
Type:-‘ M '.
Object :-To study the effect of leguminous crop Gram grown with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\) on succeeding cerea crop Jowar.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 20.9.1951. (iv) (a) Ploughing once in 3 years and 4 harrowings. (b) Seeds drilled. (c) 4 lb./ac. (d) \(18^{\prime \prime}\) spacing between rows. (e) N.A. (v) 5 C.L./ac. of F.Y.M. given once in 3 years. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings and weeding. (ix) \(7.49^{\circ}\). (x) 7.2.1952.
2. TREATMENTS :
1. Fallow in previous season.
2. No manure applied to previous crop Gram.
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. applied to previous crop Gram.
4. \(100 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. applied to previous crop Gram.
5. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. applied to previous crop Gram.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) \(150^{\prime} \times 42^{\prime}\). (iii) 5. (iv) (a) \(30^{\prime} \times 42^{\prime}\). (b) \(18^{\prime} \times 30^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Very good. (ii) Sugary disease was noted. (iii) Weight of grain. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) The atmosphere was not cloudy as is essential at the time of grain formation. There was no rain during the life of the crop. There was no moisture in the soil.
5. RESULTS:
(i) \(956 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(183.1 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1123 \\
2. & 736 \\
3. & 861 \\
4. & 974 \\
5. & 1085 \\
S.E./mean & \(=82.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop:- Jowar (Rabi). Site :m Agri. Res. Stn, Mohol.
}

Ref :- Mh. 53(212).
Type :- ' M '.

Object :-To study the effect of Gram, raised with and without \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Rabi Jowar.
1. BASAL CONDITIONS :
(i) (a) Jowar-Gram-Jowar. (b) Gram. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 19.9.1953. (iv) (a) Ploughing once in 3 years and 4 harrowings. (b) Drilling with a 3 coultered drill. (c) 4 lb ./ac. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied once in 3 years. (vi) M-35-1. (vii) Unirrigated. (viii) One bullock hoeing and 2 interculturings. (ix) 8.89". (x) 3.3.1954.

\section*{2. TREATMENTS:}
1. Fallow in previous year.
2. No manure applied to previous crop Gram.
3. 50 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Gram.
4. \(100 \mathrm{lb} / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Gram.
5. 150 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied to previous crop Gram.
3. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) \(42^{\prime} \times 30^{\prime}\). (b) \(30^{\prime} \times 48^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) The crop was attacked by aphis at grain formation stage. Sugary disease was seen during early stage of the crop. (iii) Fodder and grain yield. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) September and October rains were not favourable to the crop. (vii) Nil.
5. RESULTS:
(i) 276 lb //ac.
(ii) \(125 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 332 \\
2. & 263 \\
3. & 250 \\
4. & 296 \\
5. & 241 \\
S.E./mean & \(=55.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Jowar (Rabi). \(\quad\) Ref :- Mh. 48(35).

Site :- Agri. Res. Stn., Mohol. Type :m 'M'.

Object :-To study the deleterious effect of town compost on Rabi Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 3.10.1948. (iv) (a) N.A. (b) Drilling. (c) 4 lb ./ac. (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) M. 35-1. (vii) Unirrigated. (viii) One weeding, hand hoeing and interculturing. (ix) 5.38". (ix) 15.2.1949.
2. TREATMENTS :

All combinations of (1) and (2) + a control (no manure.)
(1) 2 levels of T.C.: \(C_{1}=2 \frac{1}{2}\) and \(C_{2}=5\) C.L./ac. of T.C.
(2) 3 times of application of T.C. : \(\mathrm{T}_{1}=\) Every year, \(\mathrm{T}_{2}=\) Every alterrate year starting from 1948 and \(T_{2}=\) Every alternate year starting from 1949.
There are only three independent treatments this year viz. \(M_{1}=\) control, \(M_{2}=2 \frac{1}{2}\) C.L./ac. and \(M_{3}=5\) C.L./ac. of T.C.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. ( 3 for \(M_{1}\) and 2 each for \(M_{2}\) and \(M_{3}\) ). (b) N.A. (iii) 6. (iv) (a) \(42^{\prime} \times 27^{\prime}\). (b) \(30^{\prime} \times 15^{\prime}\). (v) \(6^{\prime}\) allround. (vi) Yes.
4. GENERAL :
(i) Growth normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948-1952. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(250.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) 683 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(\mathbf{M}_{\mathbf{1}}\) & 235 \\
\(\mathrm{M}_{\mathbf{2}}\) & 265 \\
\(\mathrm{M}_{\mathbf{3}}\) & 258 \\
S.E. for \(\mathrm{M}_{1}\) & \(16.11 \mathrm{lb} / \mathrm{ac}\). \\
S.E. for \(\mathrm{M}_{\mathbf{2}}\) and \(\mathbf{M}_{\mathbf{3}}\) & \(19.72 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\(\begin{array}{lc}\text { Crop :- Jowar (Rabi). } & \text { Ref :- Mh. 49(57)/48(35). } \\ \text { Site :- Agri. Res. Stn., Mohol. } & \text { Type :-' } \mathbf{M}^{\prime} .\end{array}\)
Object :-To study the deleterious effect of town compost on Rabi Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b)Jowar. (c) As per treatments. (ii) (a) Medium black. I(b) Refer soil analysis, Mohol. (iii) 17.9.1949. (iv) (a) N.A. (b) Drilling. (c) \(14 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) One interculturing on 25.10.1949. (ix) 1.14". (x) 9.2.1950.
2. TREATMENTS:

All combinations of (1) and (2) + a control (no manure.)
(1) 2 levels of T.C. : \(\mathrm{C}_{1}=2 \frac{1}{2}\) and \(\mathrm{C}_{2}=5\) C.L./ac.
(2) 3 times of application of T.C.: \(\mathrm{T}_{1}=\) Every year, \(\mathrm{T}_{2}=\) Every alternate year starting from 1948 and \(\mathrm{T}_{3}=\) Every alternate year starting from 1949.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) \(42^{\prime} \times 27^{\prime}\). (b) \(30^{\prime} \times 15^{\prime}\). (v) \(6^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) Germination poor. Grain formation and yield affected for want of cloudy weather. (ii) Sugary disease. (iii) Grain and fodder yield. (iv) (a) 1948 to 1952. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(199 \mathrm{lb} / / \mathrm{ac}\).
(ii) \(71.15 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\[
\text { Control=171 } 1 \mathrm{lb} . / \mathrm{ac}
\]
\begin{tabular}{c|ccc} 
& \(T_{1}\) & \(T_{2}\) & \(\mathbf{T}_{3}\) \\
\hline \(\mathbf{C l}_{1}\) & 223 & 203 & 205 \\
\(\mathbf{C}_{2}\) & 184 & 189 & 219 \\
\hline Mean & 203 & 196 & 212 \\
\hline
\end{tabular}
S.E. of C marginal mean S.E. of \(T\) marginal mean S.E. of body of table
\(=16.8 \mathrm{lb} . / \mathrm{ac}\). \(=20.5 \mathrm{lb} . / \mathrm{ac}\). \(=29.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref :~Mh. 50(72)/49(57)/48(35).
Type : ' \({ }^{\prime}\) ' .

Object :-To study the deleterious effect of town compost on Rabi Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 12.10.1950. (iv) (a) N.A. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) 4 interculturings. (ix) 9.91". (x) 14.3.1951.
2. TREATMENTS:

All combinations of (1) and (2)+a control (no manure).
(1) 2 levels of T.C. : \(\mathrm{C}_{1}=2 \frac{1}{2}\) and \(\mathrm{C}_{2}=5\) C.L./ac.
(2) 3 times of application of \(T . C\) : \(T_{1}=\) Every year, \(T_{2}=\) Every alternate year starting from 1948 and \(T_{3}=\) Every alternate year starting from 1949.
3. DESIGN :
(i) R.B.D.
(ii) (a) 7.
(b) N.A.
(iii) 6.
(iv) (a) \(42^{\prime} \times 27^{\prime}\).
(b) \(30^{\circ} \times 15^{\prime}\).
(v) \(6^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Germination satisfactory. Crop had a stunted growth for want of rains after sowing. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948-1952, (b) Yes. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESUĹTS :
(i) \(195 \mathrm{lb} / \mathrm{ac}\).
(ii) \(59.00 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

Control \(=147 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll} 
& \(\mathrm{T}_{1}\) & \(\mathrm{~T}_{2}\) & \(\mathrm{~T}_{3}\) \\
\hline \(\mathrm{C}_{1}\) & 210 & 184 & 216 \\
\(\mathrm{C}_{2}\) & 203 & 206 & 201 \\
\hline Mean & 206 & 195 & 208
\end{tabular}\(|\)\begin{tabular}{l} 
Mean \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of C marginal mean & \(=13.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of \(\mathbf{T}\) marginal mean & \(=17.0 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of table & \(=24.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar (Rabi).
Ref :~Mh. 51(83)/50(72)/49(57)/48(35).
Site :- Agri. Res. Stn., Mohol. Type :- 'M'.

Object :-To study the deleterious effect of town compost on Rabi Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 5.10.1951. (iv) (a) N.A. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) 4 harrowings and 3 interculturings. (ix) 7.49․ (x) 12.2.1952.

\section*{TREATMENTS :}

All combinations of (1) and (2)+a control (no manure).
(1) 2 levels of C.T. : \(\mathrm{C}_{1}=2 \frac{1}{2}\) and \(\mathrm{C}_{2}=5\) C.L./ac.
(2) 3 times of application of T.C.: \(T_{1}=\) Every year, \(T_{2}=\) Every alternate year starting from 1948 and \(\mathrm{T}_{3}=\) Every alternate year starting from 1949.
3. DESIGN:
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6.. (iv) (a) \(42^{\prime} \times 27^{\prime}\). (b) \(30^{\prime} \times 15^{\prime}\). (v) \(6^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Very bad. (ii) The sugary disesease noted. (iii) Grain and fodder yield. (iv) (a) 1948 to 1952. (b) Yes. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Experiment failed in 1952. (vii) Nil.

\section*{5. RESULTS:}
(i) 106 lb /ac.
(ii) \(65.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\[
\text { Control } \quad=97 \mathrm{lb} / \mathrm{ac} .
\]
\begin{tabular}{c|ccc|c} 
& \(T_{1}\) & \(T_{\mathbf{2}}\) & \(T_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{C}_{1}\) & 98 & 114 & 155 & 122 \\
\(\mathrm{C}_{\mathbf{8}}\) & 74 & 127 & 79 & \begin{tabular}{c}
93 \\
\hline Mean
\end{tabular}\(\quad 86\) \\
& 120 & 117 & 104
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of C marginal mean } & =15.4 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of } \mathbf{T} \text { marginal mean } & =18.8 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E of body of table } & =26.6 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop : \({ }^{-}\)Jowar (Rabi). Ref:~Mh. 52(348).
Site :- Agri. Res. Stn., Mohol. Type :- 'M'.
Object :-To stuily the effect of burying the green leaves and tender tops of the Sann crop on Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sann. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv)
(a) 3 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) Rows \(18^{\circ}\) apart. (e)一. (v) Nil (vi) M-35-1. (vii) Unirrigated, (viii) 2 interculture. (ix) \(5.03^{\prime \prime}\). (x) N.A.
2. TREATMENTS :
1. Sann grown for green manure ; the leaves and teader tops are cut and buried on the same site.
2. Sann grown for G.M. ; cut and left as such.
3. Bury the stripped leaves and tender shoots from Treat. 2 on a new site.
4. No manure (control).
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) \(58^{\prime} \times 18^{\prime}\). (b) \(55^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Unsatisfactory. (ii) Nil, (iii) Grain yield. (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(132 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(86.59 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv).Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 203 \\
2. & 156 \\
3. & 86 \\
4. & 83 \\
S.E./mean & \(=61.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Ref: \({ }^{\text {Mh. 53(357). }}\)
Site : Agri. Res. Stn., Mohol.
Type :-'M'.

Object:-To study the effect of burying only green leaves and tender tops of Sann crop on Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Sann. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Molol. (iii) N.A. (iv) (a) 3 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) apart. (e)-. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(8.89^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}
1. Sann grown for G.M. ; the leaves and tender tops are cut and buried on same site.
2. Sann grown for G.M., cut and left as such.
3. Bury the stripped leaves and tender shoots from Treatment (2) on a new site.
4. No manure (control).
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) \(58^{\prime} \times 18^{\prime}\). (b) \(55^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(238 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(23.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 275 \\
2. & 220 \\
3. & 261 \\
4. & 198 \\
S.E./mean & \(=16.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Mohol.

Ref. :-Mh. 52(347).
Type :- ' \(M\) '.

Object :-To study the effect of only burying the green leaves and tender tops of Chinamug crop on Rabi Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Chinamug. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowing. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e) - . (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(5.03^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}
1. Chinamng grown for G.M., ; the tender tops and leaves are cut and buried on the same site.
2. Chinamug grown for G.M.; cut and left as such.
3. Bury the stripped leaves and tender shoots from Treat. 2 on some new site.
4. No manure (control).
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) \(58^{\prime} \times 18^{\prime}\). (b) \(55^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1952 to 1953 . (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(205 \mathrm{lb} / \mathrm{ac}\).
(ii) \(27.02 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 243 \\
2. & 147 \\
3. & 240 \\
4. & 190 \\
S.E./mean & \(=19.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop: mJowar (Rabi).
Site :-Agri. Res. Stn., Mohol.
Ref. :-Mh. 53(356). *
Type :- \({ }^{〔} \mathbf{M}^{\prime}\).
Object :-To study the effect of only burying the green leaves and tender tops of Chinamug crop on Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Chinamug. (c) Nil. (ii) (a) Medium _black. (b) Refer soil analysis, Mohol, (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(18^{\prime \prime}\) apart. (e)-. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(8.89^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}
1. Chinamng grown and buried on the same site.
2. Chinamug grown, cut and left as such.
3. Bury the stripped leaves and tender shoots from Treat. 2 on new site.
4. No manure (control).
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(55^{\prime} \times 18^{\prime}\) : (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield: (iv) (a) 1952 to 1953. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(963 \quad\) lb./ac.
(ii) \(184.99 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{llc} 
Treatment & & Av. yield \\
1. & 917 \\
2. & 1090 \\
3. & 902 \\
4. & 943 \\
S.E./mean & \(=130.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Kharif).
Site :-Govt. Expll. Farm, Nagpur.
Ref :-Mh. 51(124).
Type : \({ }^{\prime} \mathbf{M}^{\prime}\).
Object :-To study the effect of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Jowar crop.
1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 14.7.1951. (iv) (a) N.A. (b) Drilled. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) Lines \(18^{\circ}\) apart. (c) N.A. (v) Nil. (vi) Saoner (medium). (vii) Unirrigated. (viii) 2 hocings and 3 weedings. (is) 38.29". (x) 6.1.1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
(2) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb} . / \mathrm{ac}\).

Source of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) is N.A. Manures drilled with seed.
3. DESIGN :
(i) \(3 \times 5\) Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(66^{\circ} \times 16 \frac{1}{2}^{\circ}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1951 -N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1107 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(254.8 \mathrm{lb} / / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccccc|c} 
& \(\mathbf{P}_{\mathbf{0}}\) & \(\mathbf{P}_{\mathbf{1}}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P}_{\mathbf{a}}\) & \(\mathbf{P}_{\mathbf{4}}\) & Mean \\
\hline \(\mathbf{N}_{\mathbf{0}}\) & 1000 & 1080 & 1147 & 960 & 907 & 1018 \\
\(\mathbf{N}_{\mathbf{1}}\) & 1347. & 1107 & 1147 & 1027 & 1120 & 1149 \\
\(\mathbf{N}_{\mathbf{2}}\) & 1013 & 1187 & 1160 & 1213 & 1200 & 1155 \\
\hline Mean & 1120 & 1124 & 1151 & 1067 & 1076 & 1107
\end{tabular}
\begin{tabular}{ll} 
S.E. of N marginal mean & \(=65.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of P marginal mean & \(=84.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=147.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop:-Jowar (Kharif). \\ Site :,Govt. Exptl. Farm, Nagpur.}

Ref :-Mh. 52(137).
Type : \({ }^{‘}\) 'M'.

Object:-To study the effect of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Jowar crop.
1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 16.7.1952. (iv) (a) 5 bakharings. (b) Argada sown. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) Saoner (medium). (vii) Unirrigated. (viii) 4 hoeings and 1 weedings. (ix) 29.32". (x) 19.12.1952.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\) //ac.
(2) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb}\)./ac.

Source of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) is N.A. Manures drilled with seed.
3. DESIGN :
(i) \(3 \times 5\) Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1951-\) N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vj) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1215 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(215.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{N}\) alone is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).


Crop :- Jowar (Kharif).
Site :- Govt. Exptl. Farm, Nagpur.

Ref:- Mh. 53(226).
Type :~ ' \(M\) '.

Object :-To study the effect of N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) on Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 17.7.1953. (iv) (a) and (b) N.A. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18_{1}^{\prime \prime} \times 12^{\circ}\). (e) N.A. (v) Nil. (vi) Improved Saoner (late). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 39.10". (x) 22.12.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\).ac.
(2) 5 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=15, \mathrm{P}_{2}=30, \mathrm{P}_{3}=45\) and \(\mathrm{P}_{4}=60 \mathrm{lb} / \mathrm{ac}\).

N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super drilled along with the seed.
3. DESIGN:
(i) \(3 \times 5\) Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Jowar grain and cobs yield. (iv) (a) 1951 -N.A. (b) No. (c) N.A. (v) (a) N.A.
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1789 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(249.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccccc} 
\\
\hline \(\mathbf{N}_{0}\) & \(\mathbf{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P}_{\mathbf{s}}\) & \(\mathbf{P}_{\mathbf{4}}\) \\
\(\mathbf{N}_{1}\) \\
\(\mathbf{N}_{\mathbf{2}}\) & 1750 & 1790 & 2030 & 1557 & 1777 \\
1933 & 1950 & 1683 & 1630 & 1523 & 1781 \\
2030 & 1904 & 1790 & 1923 & 1563 & 1744 \\
\hline Mean & 1904 & 1882 & 1834 & 1703 & 1621
\end{tabular}
S.E. of N marginal mean
\(=64.5 \mathrm{lb} / \mathrm{ac}\).
S.E. of \(P\) marginal mean
\(=83.2 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table
\(=144.1 \mathrm{lb} . / \mathrm{a}\)
```

 Crop :- Jowar (Kharif).
 \checkmark Site :- Govt. Exptl. Farm, Nagpur.

```

Ref:- Mh. 51(125).
Type :- ' M '.

Object :-To study the effect of different doses of \(\mathbf{N}\) and method of their application.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 13th and 14th July 1951. (iv) (a) 2 harrowings. (b) Argada sown. (c) \(10 \mathrm{lb} / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) Saoner-late. (vii) Unirrigated. (viii) 3 hoeings and 3 weedings. '(ix) 38.29". (x) 4.1.1952.
2. TREATMENTS :

Main-plot treatments : \(\quad J\)
5 levels of \(N\) as A/S : \(N_{0}=0, N_{1}=5, N_{2}=10, N_{3}=15\) and \(N_{4}=20 \mathrm{lb} . / \mathrm{ac}\).
Sub-plot treatments:
2 methods of application of \(A / S: M_{\mathbf{1}}=\) drilled and \(\mathbf{M}_{\mathbf{2}}=\) broadcast.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) N.A. '(b) \(66^{\prime} \times 16 \frac{1}{2}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Jowar cobs and grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1933 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(192.0 \mathrm{lb} / \mathrm{ac}\).
(b) \(186.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\(\left.\begin{array}{l|lllll} & \mathbf{N}_{0} & \mathbf{N}_{\mathbf{1}} & \mathbf{N}_{\mathbf{2}} & \mathbf{N}_{\mathbf{3}} & \mathbf{N}_{\mathbf{4}} \\
\hline \mathbf{M}_{\mathbf{1}} & - & 1928 & 1960 & 1888 & 2008 \\
\mathbf{M}_{2} & - & 1936 & 1776 & 2024 & 2040 \\
\hline \text { Mean } & 1884 & 1932 & 1868 & 1956 & 2024\end{array}\right]\)\begin{tabular}{l}
1946 \\
1944 \\
\hline
\end{tabular}
S.E. of difference of two.
1. N marginal means
\[
\begin{aligned}
& =85.8 \mathrm{lb} / \mathrm{ac} \\
& =58.8 \mathrm{lb} . / \mathrm{ac} \\
& =117.6 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
2. \(M\) marginal means
3. \(\mathbf{M}\) means at the same level of \(\mathbf{N}\)
4. N means at the same level of M
\[
=119.5 \mathrm{lb} . / \mathrm{ac}
\]

\section*{Crop :-Jowar (Kharif).}

Site :-Govt. Exptl. Farm, Nagpur.

Ref :-Mh. 52(139).
Type : ' \({ }^{\prime}\) '

Object :-To study the effect of different doses of N and method of their application.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton. Jowar (b) Cotton. (c) N.A. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 15.7.1952. (iv) (a) 5 bakharings. (b) Sowing by Argada. (c) \(10 \mathrm{lb} / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) Saoner (medium). (viii) Unirrigated. (vii) 4 hoeings and 1 weeding. (ix) 29.32". (x) 18.12.1952.
2. TREATMENTS :

Main-plot treatments :
5 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=5, N_{2}=10, N_{2}=15\) and \(N_{4}=20 \mathrm{lb}\)./ac.
Sub-plot treatments -
2 methods of application of \(A / S: M_{1}=\) drilled and \(M_{2}=\) broadcast.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1950-\) N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1352 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(363.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(146.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv): Av. yield of grain in lb./ac.
\begin{tabular}{l|ccccc|c} 
& \(\mathbf{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & \(\mathbf{N}_{3}\) & \(\mathbf{N}_{4}\) & Mean \\
\hline \(\mathrm{M}_{1}\) & \(-T\) & 1240 & 1360 & 1488 & 1568 & 1414 \\
\(\mathrm{M}_{2}\) & - & 1312 & 1336 & 1408 & 1488 & 1386 \\
\hline Mean & 1160 & 1276 & 1348 & 1448 & 1528 & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(\mathbf{N}\) marginal means
\[
\begin{aligned}
& =161.2 \mathrm{lb} . / \mathrm{ac} \\
& =46.3 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
2. \(\mathbf{M}\) marginal means
3. \(\mathbf{M}\) means at the same level of \(\mathbf{N} \quad=92.5 \mathrm{lb}\)./ac.
4. \(N\) means at the same level of \(M \quad=175.0 \mathrm{lb}\)./ac.

Crop :- Jowar (Kharif).
Site :-Govt. Exptl. Farm, Nagpur.

Ref :-Mb. 53(225).
Type :- ' \(M\) '.

Object :-To study the residual effect of various manures applied to previous cotton crop on Jowar yield.

\section*{1. BASAL CONDITIONS:}
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 15.7.1953. (iv) (a) and (b) N.A. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime} \times 12^{\circ}\). (e) N.A. (v) Nil (vi) Saner (medium). (vii) Unirrigated. (viii) 3 hoeing and 2 weedings. (ix) 39.10". (x) 23.12.1953.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 2 row spacings for cotton crop : \(S_{1}=18^{\prime \prime}\) and \(S_{2}=24^{\prime \prime}\).
(2) 8 manurial doses : \(\mathrm{M}_{0}=\) No manure, \(\mathrm{M}_{1}=10\) C.L./ac. of F.Y.M., \(\mathrm{M}_{2}=20 \mathrm{lb} . / \mathrm{ac}\). of N drilled, \(\mathrm{M}_{8}=20 \mathrm{lb}\)./ac. of N top dressed, \(\mathrm{M}_{4}=\) Sannhemp without \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{5}=\) Sannhemp with \(\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{6}=U\) did without \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{M}_{7}=\) Udid with \(\mathrm{P}_{2} \mathrm{O}_{5}\).
N as \(\mathrm{A} / \mathrm{S}\), manures applied to previous cotton crop and now residual effects studied.
3. DESIGN :
(i) \(8 \times 2\) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(36.3^{\prime} \times 12^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Very good. (ii) Nil. (iii) Jowar grain and cobs yield. (iv) (a) N.A. (b) Yes (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(3940 \mathrm{lb} / / \mathrm{ac}\).
(ii) \(387.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{l|cccccccc|c} 
& \(\mathbf{M}_{\mathbf{0}}\) & \(\mathbf{M}_{\mathbf{1}}\) & \(\mathbf{M}_{\mathbf{2}}\) & \(\mathbf{M}_{\mathbf{3}}\) & \(\mathbf{M}_{\mathbf{4}}\) & \(\mathbf{M}_{\mathbf{5}}\) & \(\mathbf{M}_{\mathbf{6}}\) & \(\mathbf{M}_{\mathbf{7}}\) & Mean \\
\hline \(\mathbf{S}_{\mathbf{1}}\) & 3613 & 4200 & 4012 & 4075 & 4319 & 4013 & 4125 & 3766 & 4015 \\
\hline \(\mathbf{S _ { 2 }}\) & 3656 & 3878 & 3897 & 3937 & 3972 & 4131 & 3400 & 4044 & 3865 \\
\hline Mean & 3634 & 4039 & 3954 & 4006 & 4145 & 4072 & 3763 & 3905 & 3940
\end{tabular}
S.E. of M marginal means \(\quad=136.8 \mathrm{lb} . / \mathrm{ac}\).
S.E. of \(S\) marginal means \(\quad=68.4 \mathrm{Ib} . / \mathrm{ac}\).
S.E. of body of table \(\quad=193.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Site :- Cotton Res. Stn., Nanded.

Ref :- Mh. 53(56).
Type :- 'M'.

Object :-To study the effect of repeated manuring of soil with different kinds of fertilizers.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 30.6.1953. (iv) (a) Three bakharings. (b) Seed mixed with sulphur was drilled with a three coultered \(12^{\prime \prime}\) wooden drill. (c) \(8 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(12^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) PJ 4K. (vii) Unirrigated. (viii) 1 weeding and 1 hoeing. (ix) \(45.1^{\circ}\). (x) 9.1 .1954 .
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 sources of \(N: S_{1}=C / N, S_{2}=A / S\) and \(S_{3}=\) Ammo. chloride.

Manures drilled at sowing on 29.6.1953.
3. DESIGN :
(i) \(3 \times 3\) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) \(127^{\prime} \times 12^{\prime}\). (b) \(124^{\prime} \times 8^{\prime}\). (v) 2 rows on either flank and \(1 \frac{1^{\prime}}{}\) at each extremity of every row. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) No. (iii) Yield of straw and final stand. (iv) (a) 1953 to N.A. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) To study the cumulative effect of repeated manuring, soil samples studied before and after application of manures.
5. RESULTS :
(i) 306 lb ./ac.
(ii) \(87.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N effect is significant.
(iv) Av. yieid of grain in lb./ac.
\begin{tabular}{c|ccc|c} 
& \(\mathbf{N}_{\mathbf{0}}\) & \(\mathbf{N}_{\mathbf{1}}\) & \(\mathrm{N}_{\mathbf{2}}\) & \multirow{2}{\text{Mean}}{} \\
\hline \(\mathrm{S}_{\mathbf{1}}\) & - & 298 & 370 & 334 \\
\(\mathrm{~S}_{\mathbf{2}}\) & - & 310 & 358 & 334 \\
\(\mathrm{~S}_{\mathbf{3}}\) & - & 317 & 367 & 342 \\
\hline Mean & 245 & 308 & 365 &
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of } N \text { marginal mean } & =20.7 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of S marginal mean } & =25.4 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table } & =35.9 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop :- Jowar (Rabi).
Site:- Cotton Res. Stn., Nanded.
Ref :- Mh. 53(54).
Type:- \({ }^{\prime}\) M'.
Object :-To study the residual effect of organic and inorganic manures applied to the pre vious Cotton crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 21.10.1953. (iv) (a) 3 bakharings. (b) Seed mixed with Sulphur was drilled with a 3 coultered \(12^{\prime \prime}\) wooden drill. (c) 10 lb /ac. (d) Rows \(12^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) PJ 4R. (vii) Unirrigated. (viii) 1 hoeing only. (ix) 45.31". (x) 18.3.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of organic manures: \(M_{0}=0, M_{1}=4\) ton/ac. of F.Y.M. and \(M_{2}=4\) ton/ac. of T.C.
(2) 2 levels of \(N\) as \(A / S\) : \(N_{n}=0\) and \(N_{1}=100 \mathrm{lb}\)./ac.

Residual effect of treatments applied to previous cotton crop studied on Jowar.
3. DESIGN :
(i) \(3 \times 2\) Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) \(127^{\prime} \times 15^{\prime}\). (b) \(121 \times 9^{\prime}\). (v) 3 rows on either flank and \(3^{\prime}\) at each extremity of every row. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of stem borer. Affected plants removed on 17.12.1953. (iii) Germination and final stand, plant height and weight of earhead. (iv) (a) 1953 to 1955. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(599 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(65.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effects of M and N are highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(M_{0}\) & \(M_{1}\) & \(M_{2}\) & Mean \\
\hline \(\mathrm{N}_{0}\) & 509 & 611 & 613 & 578 \\
\(\mathrm{~N}_{1}\) & 606 & 626 & 626 & 619 \\
\hline Mean & 528 & 619 & 620 & 599
\end{tabular}
S.E. of marginal mean of \(M \quad, \quad=23.0 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of \(N \quad=18.2 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=32.5 \mathrm{lb}\)./ac.

\section*{Crop : - Jowar (Rabi).}

Site :- Agri. Res. Stn., Padegaon.
Ref:- Mh. 51(159).
Type: ' \({ }^{\prime}\) '
Object:-To find out the optimum N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) requirements of Jowar.
1. BASAL CONDITIONS
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 6.10.1951. (iv) (a) N.A. (b) Drilling. (c) \(8 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(12^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Irrigated. (viii) One hoeing and 2 weedings. (ix) \(14.68^{\prime \prime}\). (x) 6.3.1952.
2. TREATMENTS

All combinations of (1), (2) and (3)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30, \mathrm{~N}_{2}=60\) and \(\mathrm{N}_{3}=90 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30, \mathrm{P}_{2}=60\) and \(\mathrm{P}_{3}=90 \mathrm{lb}\)./ac.
(3) 2 doses of F.Y.M. : \(F_{1}=5\) and \(F_{2}=10\) C.L./ac.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4. (iv) (a) \(22^{\prime} \times 20^{\prime}\), (b) \(17^{\circ} \times 16^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1950 to 1952. (b), (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2241 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(481.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) All main effects and interections are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{P}_{0}\) & \(\mathbf{P r}_{1}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathrm{P}_{3}\) & Mean & \(\mathrm{F}_{1}\) & \(\mathrm{F}_{2}\) \\
\hline \(\mathrm{N}_{0}\) & 1484 & 1647 & 1877 & 2003 & 1753 & 1834 & 1671 \\
\hline \(\mathrm{N}_{1}\) & 2081 & 2435 & 2389 & 2165 & 2267 & 2375 & 2159 \\
\hline \(\mathrm{N}_{2}\) & 2007 & 2205 & 2433 & 2544 & 2298 & 2450 & 2146 \\
\hline \(\mathrm{N}_{3}\) & 2184 & 2541 & 2663 & 3196 & 2646 & 2724 & 2566 \\
\hline Mean & 1939 & 2207 & 2340 & 2477 & 2241 & & \\
\hline \(\mathrm{F}_{1}\) & 2097 & 2327 & 2470 & 2491 & 2346 & & \\
\hline \(\mathrm{F}_{2}\) & 1782 & 2087 & 2211 & 2463 & 2136 & & \\
\hline
\end{tabular}
S.E. of marginal mean of \(N\) or \(P\)
\(=85.1 \mathrm{lb} . \mathrm{ac}\).
S.E. of marginal mean of \(F\)
\(=60.2 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\mathbf{N} \times \mathbf{P}\)
\(=170.3 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\mathbf{F} \times \mathrm{N}\) or \(\mathrm{F} \times \mathrm{P}\)
\(=120.4 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 52(323).
Type':~ 'M'.

Object:-To find out the optimum N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) requirements of Jowar

\section*{1. BASAL CONDITIONS:}
(i) N.A. (b) Sugarcane. (c) 300 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}+\) Cake (1;2). (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 26.9 .1952 . (iv) (a) N.A. (b) Drilling. (c) \(8 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime}\) between rows.(e)-. (v) Nil. (vi) M-35-1. (vii) Irrigated. (viii) 1 interculturing and 2 weedings. (ix) 11.01". (x) 22.2.1953.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 4 levels of \(N: N_{0}=0, N_{1}=30, N_{2}=60\) and \(N_{3}=90 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=30, P_{2}=60\) and \(P_{3}=90 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of compost: \(C_{1}=5\) and \(C_{2}=10\) C.L./ac.
\(\mathrm{P}_{2} \mathrm{O}_{6}\) as Super. N applied in 3 doses viz. \(\frac{1}{3}\) at sowing as cake, \(\frac{1}{2} \mathrm{~N}\) as \(\mathrm{A} / \mathrm{S}\) and cake ( \(1: 1\) ) and \(1 / 6 \mathrm{~N}\) as \(\mathrm{A} / \mathrm{S}\) applied at flowering.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 4 . (iv) (a) \(24^{\prime} \times 18^{\prime}\). (b) \(20^{\prime} \times 14^{\prime}\). (v) \(2^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1950-1951\). (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Yields are very high but no reason is attributed. (vii) Nil.
5. RESULTS:
(i) \(3127 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(984.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the main effects and their interactions is significant.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) \\
\hline \(\mathbf{P}_{0}\) & 2798 & 3340 & 3558 & 3435 & 3283 & 3210 & 3355 \\
\hline \(\mathbf{P}_{1}\) & 2794 & 2617 & 3603 & 3325 & 3085 & 3.113 & 3056 \\
\hline \(\mathbf{P}_{\mathbf{2}}\) & 2881 & 2792 & 3208 & 3199 & 3020 & 3208 & 2832 \\
\hline \(\mathrm{P}_{3}\) & 2902 & 3266 & 2962 & 3349 & 3120 & 3195 & 3044 \\
\hline Mean & 2844 & 3004 & 3332 & 3327 & 3127 & & \\
\hline \(\mathrm{C}_{1}\) & 3010 & 3180 & 3248 & 3288 & 3181 & & \multirow[t]{2}{*}{} \\
\hline \(C_{2}\) & 2677 & 2827 & 3417 & 3366 & 3072 & & \\
\hline
\end{tabular}

> S.E. of marginal mean of \(N\) or \(P\)
> S.E. of marginal mean of C
> S.E. of body of table \(\mathrm{N} \times \mathrm{P}\)
> S.E. of body of table \(\mathrm{C} \times \mathrm{N}\) or \(\mathrm{C} \times \mathrm{P}\)
\(=174.0 \mathrm{lb} . / \mathrm{ac}\).
\(=123.0 \mathrm{lb} . / \mathrm{ac}\).
\(=348.1 \mathrm{lb} . / \mathrm{ac}\).
\(=246.1 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Jowar (Kharif).
Site: -Govt. Main Farm, Parbhani.

Ref :-Mh. 53(20).
Type :-‘M'.

Object :-To determine the effect of \(\mathrm{C} / \mathrm{N}\) on Jowar and its residual effect on the soil.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Tur. (c) Compost at 10 C.L./ac. (ii) (a) Light black. (b) Refer soil analysis, Parbhani. (iii) 28.6.1953. (iv) Tractor ploughing on 2.2.1953. Harrowings on 15.5.1953, 18.6.1953 and 28.6.1953. (b) Sown by 3 coulter country seed drill. (c) N.A. (d) \(15^{\prime \prime} \times 6^{\circ}\) : (e) N.A. (v) Nil. (vi) PJ-4R. (vii) Nil. (viii) One hoeing and 2 weedings. (ix) 33.03* (During Kharif 1953-54 i.e. from April 1953 to September 1953). (x) 3.12.1953.

\section*{2. TREATMENTS :}
\(\mathrm{T}_{1}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{A} / \mathrm{S}+10 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{T}_{2}=20 \mathrm{lb} . / \mathrm{ac}\). of N as Am . Chloride +10 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{T}_{3}=20 \mathrm{lb}\)./ac. of N as \(\mathrm{C} / \mathrm{N}+10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{6}\) as Super.
\(\mathrm{T}_{4}=40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{T}_{5}=40 \mathrm{lb}\)./ac. of N as Am . Chloride \(+20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{T}_{6}=40 \mathrm{lb}\)./ac. of N as \(\mathrm{C} / \mathrm{N}+20 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
\(\mathrm{T}_{7}=\) No manure ( 3 plots/block) .
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) \(60^{\circ} \times 8.50^{\prime}\). (b) \(58^{\prime} \times 6.25^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain and kadbi yield. (iv) (a) 1953-N.A. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(734.3 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(237.9 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{T}_{\mathbf{1}}\) & .583 .3 \\
\(\mathbf{T}_{\mathbf{2}}\) & 856.1 \\
\(\mathbf{T}_{\mathbf{3}}\) & 826.1 \\
\(\mathbf{T}_{\mathbf{4}}\) & 786.1 \\
\(\mathbf{T}_{5}\) & 883.7 \\
\(\mathbf{T}_{\mathbf{6}}\) & 853.6 \\
\(\mathbf{T}_{\mathbf{7}}\) & 606.6 \\
S.E for \(\mathrm{T}_{\mathbf{7}}\) & \(=56.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. for any other mean & \(=97.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of difference of \(\mathrm{T}_{\mathbf{7}}\) and any other mean & \(=112.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:-Jowar (Kharif). . . . Ref :-Mh. 52(210).
Site : Agri. College Farm, Poona.
Type :- 'M'.
Object :-To study the effect of dicalcium phosphate as compared to Super on the yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 18.6.1952. (iv) (a) Ploughing on 1.6 .1952 . (b) Drilling. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) Rows \(12^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) Godgaraye (medium-late). (vii) Irrigated. (viii) 1 interculturing. (ix) 22.03". (x) 23.11.1952.

\section*{2. TREATMENTS :}
1. 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as dicalcium phosphate.
2. 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) \(42^{\prime} \times 21^{\prime}\). (b) \(30^{\prime} \times 9^{\prime}\). (v) \(6^{\prime}\) allround. (vi) Yes.
4. GENERAL :
(i) Due to vigorous vegetative growth of plants the height was \(11^{\prime}\) to \(13^{\prime \prime}\). The crop lodged during October by winds. (ii) Attack of stemborer noticed. (iii) Fodder yield. (ivi (a) 1952 to 1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) As there was no grain formation, fodder yield data analysed.
5. RESULTS:
(i) \(15409 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(1892 . \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of fodder in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 16087 \\
2. & 14730 \\
S.E./mean & \(=546.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{lc}
\text { Crop :- Jowar (Kharif). } & \text { Ref :- Mh. 53(115). } \\
\text { Site :- Agri. College Farm, Poona. } & \text { Type :- 'M'. }
\end{array}
\]

Object :-To compare the yield data of Jowar treated with dicalcium phosphate and single Super.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) Double bean. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 26.6.1953 (iv) (a) Ploughing with 4 bullock plough to a depth of \(7^{\prime \prime}-8^{\prime \prime}\) on 5.4 .1953 and 2 harrowings (b) Drilled. (c) to (e) N.A. (v) 15. C.L./ac. of F.Y.M. +top dressing of 60 lb ./ac. of \(\mathbf{N}\) to the whole expt. on 26.6.1953. (vi) Madgarya (Mid-late). (vii) Rainfed. (viii) Interculturing by slit blade on 15.7.1953. (ix) \(10.85^{\prime \prime}\). (x) 11.11 .1953 to 16.11.1953.

\section*{2. TREATMENTS :}
1. 20 lb ./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as dicalcium phosphate.
2. \(20 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) \(42^{\prime} \times 21^{\prime}\). (b) \(30^{\circ} \times 9^{\prime}\). (v) \(6^{\prime}\) all round. (vi) Yes.
4. GENERAL :
(i) \(95 \%\) germination; uniform growth. (ii) Army-worms. Dusting of Gammaxene. (iii) Grain and fodder yield. (iv) (a) 1952 to 1953. (b) and (c) No. (v) (a) Nil, (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(1270 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(306.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{cl} 
Treatment & Av. yield \\
. 1. & 1230 \\
2. & 1310 \\
S.E./mean & \(=88.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop:~Jowar (Rabi).
Site :~Agri. Res. Stn., Shahada.
Ref :- Mh. 52(327).
Site :-Agri. Res. Stn., Shahada.
Type:- ' M '.

```

Object :-To study the usefulness of Chinamug as a green manure on Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Chinamug in Kharif. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 19.9.1952. (iv) (a) 1 ploughing. (b) Drilling. (c) \(20 \mathrm{lb} . / \mathrm{ac}\). (d) \(10^{\circ}\). (e) 一. (v) Nil. (vj) N.A. (vii) Irrigated. (viii) 1 interculture. (ix) N.A. (x) 19.1.1953.

\section*{2. TREATMENTS :}
1. Grow Chinamug in Kharif and bury in situ.
2. Grow Chinamug in Kharif and bury in another plot,
3. Observe the effect of Chinamug grown in treatment 2 (this was fallow in Kharif).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 2. (iv) (a) \(100^{\prime} \times 17.5^{\prime}\). (b) \(88^{\prime} \times 12.5^{\prime}\), (v) \(6^{\prime} \times 2.5^{\circ}\). (vi) Yes.
4. GENERAL :
(i) Gaps in crop growth due to defective soil moisture. (ii) Attack of leaf hoppers; gammaxene dusted. (iii) Grain yield. (iv) (a) 1952. (b) First year of experiment. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(780.3 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(132.5 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 814 \\
2. & 676 \\
3. & .851 \\
S.E./mean & \(=93.70 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :-Agri. Res. Stn., Sholapur.
Ref :mMh. 48(102).
Type : "'M'.

Object :-To study the manurial requirements of Jowar.
1. BASAL CONDITIONS :
(i) (a) Jowar after gram. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 16.10.1948. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) beetween rous. (e) 一. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(39.18^{\prime \prime}\). (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of N as G.N.C. : \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=12.5, \mathrm{~N}_{2}=25\) and \(\mathrm{N}_{3}=37.5 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=25 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=2.5\) ton/ac.
3. DESIGN :
(i) \(4 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(33^{\prime} \times 24^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) N.A.-1950-51. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS
(i) \(262 \mathrm{lb} / \mathrm{ac}\).
(ii) \(118.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{F}_{0}\) & \(F_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 277 & 259 & 315 & 249 & 275 & 248 & 302 \\
\hline \(\mathrm{P}_{1}\) & 259 & 259 & 273 & 207 & 249 & 271 & 227 \\
\hline Mean & 268 & 259 & 294 & 227 & 262 & & \\
\hline \(\mathrm{F}_{0}\) & 228 & 254 & 307 & 249 & 259 & & \\
\hline F1 & 309 & 264 & 281 & 204 & 265 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline S.E. of marginal mean of N & \(=29.70 \mathrm{lb}\)./ac. \\
\hline S.E. of marginal mean of P or F & \(=21.00 \mathrm{lb} / \mathrm{ac}\). \\
\hline S.E. of body of table \(\mathrm{N} \times \mathrm{P}\) or \(\mathrm{N} \times \mathrm{F}\) & \(=41.97 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of table \(\mathrm{P} \times \mathrm{F}\) & \(=29.70 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { Crop :-Jowar (Rabi). } & \text { Ref :~ Mh. 49(135). } \\ \text { Site : } \mathrm{Agri} . \text { Res. Stn., Sholapur. } & \text { Type :- 'M'. }\end{array}\)

Object:-To study the manurial requirements of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(38.17^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 4 levels of N as G.N.C. : \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=12.5, \mathrm{~N}_{2}=25\) and \(\mathrm{N}_{3}=37.5 \mathrm{lb}\)./ac.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. : \(\mathrm{P}_{0}=0\), and \(\mathrm{P}_{1}=25 \mathrm{lb}\)./ac.
(3) 2 levels F Y.M : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=2.5\) ton/ac.
3. DESIGN :
(i) \(4 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(33^{\prime} \times 33^{\prime}\). (v) N A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) N.A.-1950-1951. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 672 lb /ac.
(ii) \(235.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|cccc|cc} 
& \(N_{0}\) & \(N_{1}\) & \(N_{2}\) & \(N_{3}\) & Mean & \(F_{0}\) \\
\hline\(P_{0}\) & 712 & 631 & 647 & 725 \\
\(P_{1 .}\) & 632 & 687 & 768 & 577 & \(F_{1}\) \\
\hline Mean & 672 & 659 & 707 & 651 & \begin{tabular}{ll}
666 & 692 \\
699 & 633
\end{tabular} \\
\hline \(\mathrm{~F}_{0}\) & 686 & 661 & 725 & 658 & 672 \\
\(\mathrm{~F}_{1}\) & 658 & 657 & 690 & 644 & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of marginal mean of } \mathrm{N} & =58.9 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of marginal mean of } \mathrm{P} \text { or } \mathrm{F} & =41.7 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of bocy of table } \mathrm{N} \times \mathrm{P} \text { or } \mathrm{N} \times F=83.3 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table } \mathrm{P} \times \mathrm{F} & =58.9 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]
Crop :- Jowar (Rabi).
Site : \(\sim\) Agri. Res. Stn., Sholapur.

Ref :- Mh. 50(155).
Type :- ' M '.

Object :-To study the manurial requirements of Jowar.
1. BASAL CONDITIONS:
\({ }^{\circ}\) (i) (a) Jowar after gram. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) 4 lb ./ac. (d) \(18^{\text {fo }}\) between rows. (e) --. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 4 intercuiturings. (ix) \(24.04^{\text {n }}\). (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 4 levels of N as G.N.C.: \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=12.5, \mathrm{~N}_{2}=25\) and \(\mathrm{N}_{3}=37.5 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. : \(\mathrm{P}_{0}=0\) and \(\mathrm{P}_{1}=25 \mathrm{lb}\)./ac.
(3) 2 levels F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{\mathbf{1}}=2.5\) ton/ac.
3. DESIGN :
(i) \(4 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) \(36^{\prime} \times 36^{\prime}\). (b) \(33^{\prime} \times 33^{\circ}\). (v) \(1.5^{\circ}\) all round. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) Nil. (b) N.A.-1950-1951. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(867 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(218.60 \mathrm{lb} . / \mathrm{ac}\).
(iii) \(\mathrm{N}, \mathrm{F}\) effects and interaction \(\mathrm{F} \times \mathrm{P}\) are highly significant.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{Na}_{\mathbf{3}}{ }^{\text {a }}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{F}_{0}\) & F1 \\
\hline \(\mathrm{P}_{0}\) & 573 & 832 & 913 & 952 & 817 & 669 & 966 \\
\hline \(\mathrm{P}_{1}\) & 759 & 898 & 911 & 1100 & 917 & 901 & 933 \\
\hline Mean & 666 & 865 & 912 & 1026 & 867 & \multicolumn{2}{|l|}{} \\
\hline \(\mathrm{F}_{0}\) & 576 & 755 & 822 & 988 & 785 & \multirow[b]{2}{*}{\(\checkmark\)} & \\
\hline \(\mathrm{F}_{1}\) & 756 & 975 & 1002. & 1063 & 948 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline E. of marginal mean of N & \(=54.6 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of marginal mean of P or F & \(=38.6\) \%./ac. \\
\hline S.E. of body of table \(\mathbf{N} \times \mathrm{P}\) or \(\mathbf{N} \times \mathbf{F}\) & \(=77.3 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of table \(\mathrm{P} \times \mathrm{F}\) & \(=54.6 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

\author{
Crop :- Jowar. (Rabi). \\ Site :- Agri. Res. Stn., Sholapur.
}

Ref:-Mh. 51(66).
Type :- 'M'.

Object :-To study the \(\mathbf{N}\) and P requirements of Jowar.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Sholapur. (iii) 7.10.1951. (iv) (a) 2 harrowings. (b) Broadcast. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) .M.35-1 (medium). (vii) Unirrigated. (viii) 2 interculturings. (ix) 6.36". (x) 8.2.1952.
2. TREATMENTS :

All combination of (1), (2) and (3)
(1) 4 levels of \(N: N_{0}=0, N_{1}=10, N_{2}=20\) and \(N_{3}=30 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{2}=10, P_{2}=20\) and \(\mathrm{P}_{3}=30 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=5\) C.L./ac.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32 . (b) N.A. (iii) 2 . (iv) (a) \(29^{\prime} \times 24^{\prime}\). (b) \(23^{\prime} \times 18^{\prime}\). (v) \(3^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Normal. (iii) Nil. (iii) Height and count per plot. (iv) (a) 1951 to 1955. (b) and (c) No. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(636 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(166.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|llll|l|ll|} 
\\
\hline\(P_{0}\) & \(N_{0}\) & \(N_{1}\) & \(N_{2}\) & \(N_{3}\) & Mean & \(F_{0}\) & \(F_{1}\) \\
\hline\(P_{1}\) & 535 & 597 & 642 & 643 & 604 & 608 & 600 \\
\(P_{2}\) & 688 & 742 & 653 & 636 & 680 & 779 & 580 \\
\(P_{3}\) & 625 & 579 & 607 & 586 & 599 & 588 & 610 \\
\hline Mean & 664 & 694 & 665 & 615 & 660 & 687 & 632 \\
\hline\(F_{0}\) & 628 & 653 & 642 & 620 & 636 & & \\
\hline\(F_{1}\) & 691 & 679 & 665 & 627 & 666 & 606 & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(N\) or \(P\) & \(=41.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(F\) & \(=29.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table \(\mathrm{N} \times \mathrm{P}\) & \(=83.4 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table \(\mathrm{F} \times \mathrm{N}\) or \(\mathrm{F} \times \mathrm{P}\). & \(=58.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 52(95).
Type :- ' \(M\) '.

Object :-To study the N and P requirements of Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Sholapur, (iii) 8.10.1952. (iv) (a) 4 harrowings. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\). (e) N.A. (v) Nul. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) 2 interculturings. (ix) \(2^{\prime \prime}\). (x) 10.2.1953.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 4 leve's of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{3}=30 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20\) and \(\mathrm{P}_{3} \pm 30 \mathrm{lb}\)./ac.
(3) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=5\) C.L./ac.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 2. (iv) (a) \(32^{\prime} \times 29^{\prime}\). (b) \(27^{\prime} \times 23^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Above normal. (ii) Nil. (iii) Height, count and grain yield. (iv) (a) 1951 to 1955. (b) No. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1404 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(291.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av, yield of grain in lb,/ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline : & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{\mathbf{2}}\) & \(\mathbf{N}_{3}\) & Mean & \(\mathrm{F}_{0}\) & \(F_{1}\) \\
\hline \(\mathbf{P}_{0}\) & 1166 & 1315 & 1420 & 1284 & 1296 & 1286 & 1307 \\
\hline \(\mathrm{P}_{1}\) & 1455 & 1308 & 1519. & 1170 & 1363 & 1366 & 1360 \\
\hline \(\mathrm{P}_{2}\) & 1539 & 1514. & 1475 & 1446 & 1494 & 1546 & 1441 \\
\hline \(\mathbf{P}_{8}\) & : 1300 & 1482 & \(1677^{\circ}\) & 1383 & 1460 & 1309 & 1611 \\
\hline Mean & 1365 & 1404 & 1523 & 1321 & 1404 & & \\
\hline \(\mathrm{F}_{0}\) & 1350 & 1309 & 1554 & 1294 & 1377 & & \\
\hline \(F_{1}\) & 1380 & 1500 & 1491 & 1348 & 1430 & & \\
\hline
\end{tabular}
S.E. of marginal means of \(\mathbf{N}\) or \(\mathbf{P} \quad=72.8 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of \(F \quad=51.4 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(N \times P \quad=145.5 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(F \times N\) or \(F \times P=102.9 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur,
Object:-To study the \(\mathbf{N}\) and \(P\) requirements of Jowar.

\section*{1. BASAL CONDITIONS :}
(i) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Sholapur. (iii) 15.10.1953. (iv) (a) 3 harrowings. (b) Broadcast. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M—35-1 (medium). (vii) Unirrigated. (viii) 2 interculturings. (ix) 9.18". (x) 27.2.1954.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{3}=30 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(P_{2} O_{5}: P_{0}=0, P_{1}=10, P_{2}=20\) and \(P_{3}=30 \mathrm{lb} / \mathrm{ac}\).
(3) 2 levels of F.Y.M. : \(\mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=5\) C.L./ac.
3. DESIGN :
(i) \(4 \times 4 \times 2\) Fact. in R B.D. (ii) (a) 32. (b) N.A. (iii) 2 . (iv) (a) \(29^{\prime} \times 24^{\prime}\). (b) \(23^{\prime} \times 18^{\prime}\). (vi) \(3^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Just below normal. (ii) Nil. (iii) Height, count and grain yield. (iv) (a) 1951 to 1955. (b) and (c) No. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(705 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(171.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only N and F effects are significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathrm{F}_{0}\) & \(\mathrm{F}_{1}\) \\
\hline \(\mathrm{P}_{0}\) & 521 & 668 & 766 & 850 & 701 & 774 & 629 \\
\hline \(\mathrm{P}_{1}\) & 547 & 619 & 753 & 656 & 644 & 614 & 674 \\
\hline \(\mathrm{P}_{2}\) & 584 & 661 & 761 & 678 & 671 & 783 & 559 \\
\hline \(\mathrm{P}_{3}\) & 521 & 820 & 987 & 896 & 806 & 929 & 683 \\
\hline Mean & 543 & 692 & 817 & 770 & 705 & & \\
\hline \(\mathrm{F}_{0}\) & 591 & 811 & 843 & 854 & 775 & & \\
\hline \(\mathrm{F}_{1}\) & 496 & 573 & 791 & 686 & 636 & \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(N\) or \(P\) & \(=42.9 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(F\) & \(=30.4 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of body of table \(\mathrm{N} \times \mathrm{P}\) & \(=85.9 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of body of table \(F \times N\) or \(F \times P\) & \(=60.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\footnotetext{
Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.
Ref:- Mh. 51(234).
Type:- ' \(\mathbf{M}\) '.
}

Object :-To study the direct and residual effect of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) to Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) As per treatments. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur.:(iii) 7.10.1951. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) \(\mathbf{M}-35-1\). (vii) Unirrigated. (viii) 3 interculturings. (ix) \(24.81^{\prime \prime}\) (x) 12.2.1952.
2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure)
(1) 2 sources of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=\) B.M. and \(\mathrm{S}_{2}=\) Super.
(2) 7 intervals of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) with its levels :-
(a) \(10 \mathrm{lb} . / \mathrm{ac}\). every year.
(b) 20 lb ./ac. every alternate year starting with 1951.
(c) 20 lb ./ac. every alternate year starting with 1952.
(d) 40 lb ./ac. every 4th year starting with 1951.
(e) \(40 \mathrm{lb} . / \mathrm{ac}\). every 4th year starting with 1952.
(f) 40 lb ./ac. every 4th year starting with 1953.
(g) \(40 \mathrm{lb} / \mathrm{ac}\). elery 4th year starting with 1954.

For this year, control plots are 9 .
3. DESIGN :
(i) R.B.D.
i) (a) 15 .
(b) N.A.
(iii) 4.
(iv) (a) N.A.
(b) \(33^{\prime} \times 11^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield, (iv) (a) 1951-1954. (b) Yes. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(682 \mathrm{lb} . / \mathrm{ac}\).
(ii) 184.6 lb ./ac.
(iii) None of the effects is significant.
(iv) Av, yield of grain in lb ./ac.

\section*{Control \(=656 \mathrm{lb} . / \mathrm{ac}\).}
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{8}\) & Mean \\
\hline a & 705 & 725 & 715 \\
\hline b & 915 & 680 & 797 \\
\hline d & 596 & 709 & 652 \\
\hline Mean & 739 & 705 & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(S\) & \(=53.3 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of time of application & \(=65.3 \mathrm{lb} / / \mathrm{ac}\). \\
S.E. of body of table & \(=92.3 \mathrm{lb} . / \mathrm{ac}\) \\
S.E. of control \(v S\). any mean in the body of table & \(=48.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 52(370)/51(234).
Type :- ' M '.

Object :-To study the direct and residual effect of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) to Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Jowar after Jowar. (b) Jowar. (c) As per treatments. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 10.10 .1952 . (iv) (a) 4 harrowing. (b) Drillings. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated, ' (viii) 4 interculturings. (ix) 20.76". (x) 9.2.1953.

\section*{2. \(\cdot\) TREATMENTS :}

All combinations of (1) and (2) + a control (no manure.)
(1) 2 sources of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=\) B.M. and \(\mathrm{S}_{2}=\) Super.
(2) 7 intervals of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) with its levels :-
(a) 10 lb .ac. every year.
(b) \(20 \mathrm{lb} . / \mathrm{ac}\). every alternate year starting with 1951.
(c) 20 lb ./ac. every alternate year starting with 1952 .
(d) \(40 \mathrm{lb} . / \mathrm{ac}\). every 4 th year starting with 1951.
(e) \(40 \mathrm{lb} . / \mathrm{ac}\). every 4th year starting with 1952.
(f) \(40 \mathrm{lb} / \mathrm{ac}\). every 4 th year starting with 1953.
(g) 40 lb ./ac. every 4th year starting with 1954.

For this year control plots are 5.
3. DESIGN:
(i) R.B.D. (ii) (a) 15.
(b) N.A.
(iii) 4. (iv) (a) N.A.
(b) \(33^{\prime} \times 11^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-1954. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(809 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(172.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\[
\text { Cortrol } \quad=758 \mathrm{lb} . / \mathrm{ac}
\]


Crop :~Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 53(370)/52(370)/51(234).
Type:- 'M'.

Object :-To study the direct and residual effect of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) to Jowar.
1. BASAL CONDITIONS :
(i) (a) Jowar-Jowar. (b) Jowar. (c) As per treatments. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 12.10 .1953 . (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 35.96*. (x) 1.3.1954.
2. TREATMENTS :

All combinations of ( 1 ) and (2)+a control (no manure)
(1) 2 sources of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=\) B.M. and \(\mathrm{S}_{2}=\) Super.
(2) 7 intervals of application of \(\mathrm{P}_{2} \mathrm{O}_{5}\) with its levels :
(a) \(10 \mathrm{lb} . / \mathrm{ac}\). every year.
(b) 20 lb ./ac. every alternate year starting with 1951.
(c) 20 lb ./ac. every alternate year starting with 1952.
(d) \(40 \mathrm{lb} . / \mathrm{ac}\), every 4 th year starting with 1951.
(e) 40 lb ./ac. every 4th year starting with 1952.
(f) 40 lb ./ac. every 4th year starting with 1953.
(g) \(40 \mathrm{lb} . / \mathrm{ac}\). every 4 th year starting with 1954.

For this year control plots are 3.
3. DESIGN :
(i) R.B.D. (ii) (a) 15 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(33^{\prime} \times 11^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Graia yield. (iv) (a) \(1951-1954\). (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(473 \mathrm{lb} / \mathrm{ac}\).
(ii) \(103.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(\quad=479 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|cc|c} 
& \(\mathrm{S}_{\mathbf{1}}\) & \(\mathrm{S}_{\mathbf{z}}\) & Mean \\
\hline a & 433 & 463 & 448 \\
b & 420 & 469 & 444 \\
c & 425 & 504 & 464 \\
d & 487 & 433 & 460 \\
e & 551 & 476 & 513 \\
f & 547 & 453 & \\
\hline Mean & 477 & &
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of S & \(=21.2 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of time of application & \(=36.7 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=51.9 \mathrm{lb} / \mathrm{ac}\). \\
\hline S.E. of control \(v s\) any mean in the body of table & \(=33.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Ref :- Mh. 48(107).
Site :- Agri. Res. Stn., Sholapur.
Type :- ' M '.

Object :-To study the time and method of application of G.N.C. to Jowar.

\section*{1. BASAL CONDITIONS :}
(i) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 9.10.1948. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 4 interculturings. (ix) \(39.18^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(N\) as G.N.C. : \(\quad N_{0}=0, N_{1}=12.5\) and \(N_{2}=25 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 methods of application of \(N: \quad R_{1}=\) Placement of G.N.C. in rows and \(R_{2}=\) Placement of G.N.C. between rows.
(3) 3 times of application of \(\mathrm{N}: \mathrm{T}_{1}=30\) days before sowing, \(\mathrm{T}_{2}=15\) days before sowing and \(\mathrm{T}_{3}=\) At the time of sowing.
3. DESIGN:
(i) \(3 \times 2 \times 3\) Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4. (iv) (a) \(35^{\prime} \times 20^{\prime}\). (b) \(32^{\prime} \times 17^{\prime}\). (v) \(1.5^{\prime}\). alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (ii) Grain and fodder yield. (iv) (a) 1948-1950. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(452 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(108.6 \mathrm{lb} . / \mathrm{ac}\)
(iii) Control \(\downarrow s\) Others effect is highly significant. Other effects are not significant.
(iv) Av. yield of grain in lb.lac.

Control \(=356 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & T1 & T \({ }_{2}\) & T3 & Mean & \(\mathbf{R}_{1}\) & \(\mathrm{R}_{2}\) \\
\hline \(\mathrm{N}_{1}\) & . 487 & 510 & 507 & 501 & 510 & 492 \\
\hline \(\mathrm{N}_{2}\) & 450 & 569 & 481 & 500 & 519 & 480 \\
\hline Mean & 468 & 539 & 494 & 500 & & \\
\hline \(\mathbf{R}_{1}\) & 462 & 536 & 544 & 514 & & \\
\hline \(\mathbf{R}_{2}\) & 474 & 542 & 442 & 486 & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of marginal mean of } T & =27.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of marginal means of } \mathrm{N} \text { or } R & =22.2 \mathrm{lb} . / \mathrm{ac} \\
\text { S.E. of body of table } T \times N \text { or } T \times R & =38.4 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } \mathrm{N} \times R & =31.3 \mathrm{lb} . / \mathrm{ac}
\end{array}
\]
\begin{tabular}{ll} 
Crop :- Jowar (Rabi). & Ref:- Mh. 49(130). \\
Site :- Agri. Res. Stn \(_{3}\), Sholapur. \(\quad\) Type :- 'M'.
\end{tabular}

Object :-To study the time and method of application of G.N.C. to Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 2 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(38.17^{\prime \prime}\). (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as G.N.C. : \(\mathrm{N}_{0}=0, \mathrm{~N}_{1}=12.5\) and \(\mathrm{N}_{2}=25 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 methods of application of \(N: \quad R_{1}=\) Placement of G.N.C. in rows and \(R_{2}=\) Placement of G.N.C. between rows.
(3) 3 times of application of \(\mathrm{N}: \mathrm{T}_{1}=30\) days before sowing, \(\mathrm{T}_{2}=15\) days before sowing and \(\mathrm{T}_{3}=\) At the time of sowing.
3. DESIGN :
(i) \(3 \times 2 \times 3\) Fact. in R.B.D.
(ii) (a) 18
(b) N.A.
(iii) 4. (iv) (a)
) N.A. (b) \(32^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948-1950. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(714 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(231.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(T\) and control vs others are highly significant. Other effects are not significant.
(iv) Av. yield of grain in lb./ac.

\(\begin{array}{ll}\text { Crop :- Jowar (Rabi). } & \text { Ref :-Mh. 50(164). } \\ \text { Site :-Agri. Res. Stn., Sholapur. } & \text { Type : } \quad{ }^{‘} \mathbf{M}^{\prime} .\end{array}\)
Object:-To study the time and method of application of G.N.C. to Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black (deep). (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(24.04^{*}\). (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as G.N.C. : \(\mathrm{N}_{0}=0, \mathrm{~N}_{2}=12.5\) and \(\mathrm{N}_{2}=25 \mathrm{lb}\)./ac.
(2) 2 methods of application of \(N: \quad R_{1}=\) Placement of G.N.C. in rows and \(R_{2}=\) Placement of G.N.C. between rows.
(3) 3 times of application : \(T_{1}=30\) days before sowing, \(T_{2}=15\) days before sowing and \(T_{3}=\) At the time of sowing.
3. DESIGN :
(i) \(3 \times 2 \times 3\) Fact. in R.B.D.
(ii) (a) 18. (b) N.A. (iii) 3. (iv)
(a) \(35^{\circ} \times 20^{\prime}\)
(b) \(32^{\prime} \times 17\)
(v) \(1.5^{\circ}\) alround. (vi) Yes.
4. GENERAL :
(i) Normal growth. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948-1950. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 897 lb /ac.
(ii) \(148.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Control vs others effect is highly significant. Other effects are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Control} & \multirow[b]{2}{*}{\(\mathrm{R}_{1}\)} & \multirow[b]{2}{*}{\(\mathbf{R}_{2}\)} & \multirow[t]{2}{*}{} \\
\hline & \(\mathrm{T}_{1}\) & T \({ }_{2}\) & T3 & Mean & & & \\
\hline \(\mathrm{N}_{1}\) & 996 & 1018 & 918 & 977 & 986 & 967 & \\
\hline \(\mathrm{N}_{2}\) & 943 & 977 & 907 & 943 & 995 & 889 & \\
\hline Mean & 969 & 998 & 913 & 960 & & & \\
\hline \(\mathbf{R}_{1}\) & 954 & 1093 & 919 & 991 & & & \\
\hline \(\mathrm{R}_{2}\) & 985 & 896 & 906 & 929 & & & \\
\hline \multicolumn{6}{|c|}{S.E. of marginal mean of \(\mathbf{T}\)} & \multicolumn{2}{|l|}{\(=37.0 \mathrm{lb} / \mathrm{ac}\).} \\
\hline \multicolumn{6}{|c|}{S.E. of marginal mean of N or \(\mathbf{R}\)} & \multicolumn{2}{|l|}{\(=30.2 \mathrm{lb} / \mathrm{/ac}\).} \\
\hline \multicolumn{6}{|c|}{S.E. of body of table \(T \times N\) or \(T \times R\)} & \multicolumn{2}{|l|}{\(=52.3 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline \multicolumn{6}{|c|}{S E. of body of table \(\mathbf{N} \times \mathrm{R}\)} & \multicolumn{2}{|l|}{\(=42.8 \mathrm{lb} . / \mathrm{ac}\).} \\
\hline
\end{tabular}

> Crop :-Jowar. (Rabi).
> Site :-Agri. Res. Stn., Sholapur.

Ref:-Mh. 48(108).
Type:-'M'.

Object :-To find out the optimum dose and frequency of applying F.Y.M. to Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 14.10 .1948 . (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) - (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 39.18". (x) N.A.
2. TREATMENTS :
1. Control (no manure; 3 plots/block).
2. 3 ton/ac. of F.Y.M. once in 3 years starting with 1946.
3. 6 ton/ac. of F.Y.M. once in 3 years starting with 1946.
4. 4 ton/ac. of F.Y.M. once in 4 years starting with 1946.
5. 8 ton/ac. of F.Y.M. once in 4 years starting with 1946.
6. 6 ton/ac. of F.Y.M. once in 6 years starting with 1946.
7. 12 ton/ac. of F.Y.M. once in 6 years starting with 1946.
5. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) \(66^{\prime} \times 40^{\prime}\). (b) \(63^{\prime} \times 37^{\prime}\). (v) \(1.5^{\prime}\) ring alround. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Graip and straw yield. (iv) (a) 1946-1951. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(333 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(99.04 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly. 'Control \(v s\) others' is also not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lc} 
Av. yield \\
Treatment & 328 \\
1. & 320 \\
2. & 290 \\
3. & 333 \\
4. & 379 \\
5. & 350 \\
6. & 332 \\
7. & \(=49.52 \mathrm{lb} . / \mathrm{ac}\). \\
S.E./mean (other than control) & \\
S.E. of control \(\nu s\). any other mean & \(=57.18 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Sholapur.

Ref. :-Mh. 49(134).
Type:-‘'M'.

Object:-To find out the optimum dose and frequency of applying F.Y.M. to Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) M-35-1
(vii) Unirrigated. (viii) 2 interculturings. (ix) 38.17". (x) N.A.

\section*{2. TREATMENTS :}
1. Control (no manure ; in 3 plots/block).
2. 3 ton/ac. of F.Y.M. once in 3 years starting with 1946.
3. 6 ton/ac. of F.Y.M. once in 3 years starting with 1946.
4. 4 ton/ac. of F.Y.M. once in 4 years starting with 1946.
5. 8 ton/ac. of F.Y.M. once in 4 years starting with 1946.
6. 6 ton/ac. of F.Y.M. once in 6 years starting with 1946.
7. 12 ton/ac. of F.Y.M. once in 6 years starting with 1946.
3. DESIGN :
(i) R.B.D
(vi) Yes.
4. DESIGN :
(i) N.A. (il) Nil. (iii) Grain and fodder yield. (iv) (a) 1946-1951. (b) No. (c) - Nil. (v) (a) N.A.
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(372 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(102.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly. Control vs others is also not significant.
(iv) Av, yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 336 \\
2. & 331 \\
3. & 347 \\
4. & 416 \\
5. & 401 \\
6. & 441 \\
7. & 406 \\
S E./mean (other than control) \(=51.2 \mathrm{lb} / \mathrm{ac}:\) \\
S.E. of control \(v s\) any other mean \(=59.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Rabi).
Site :- Agri. Res., Stn., Sholapur.

Ref. :-Mh. 50(163).
Type :- 'M'.

Object :-To find out the optimum dose and frequency of applying F.Y.M. to Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Gram-Jowar. (b) Gram. (c) Nil, (ii) (a) Medium black (deep). (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vil M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) \(24.04^{*}\). (x) N.A.
2. TREATMENTS :
1. Control (no manure; in 3 plots/block).
2. 3 ton/ac of F.Y.M. once in 3 years starting with 1946.
3. 6 ton/ac. of F.Y.M. once in 3 years starting with \(19+6\).
4. 4 ton/ac. of F.Y.M. once in 3 years starting with 1946.
5. 8 ton/ac. of F.Y.M. once in 3 years starting with 1946.
6. 6 ton/ac. of F.Y.M. once in 3 years starting with 1946.
7. 12 ton/ac. of F.Y.M. once in 3 years starting with 1946.
3. DESIGN :
(i) R B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(63^{\prime} \times 37^{\prime}\). (v) N.A. (vi) Yea.
4. GENERAL :
(i) Normal-growth. (ii) Nil. (iii) Grain \(\varepsilon\) ad fodder yield. (iv) (a) 1546-1951. (b) No. (c) Nil (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(423 \mathrm{lb} . / \mathrm{ac}\).
(ii) 123.6 lb ./ac.
(iii) Treatments do not differ significantly. Control ys others is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccl} 
Treatments & Av. yield \\
1. & 389 \\
2. & 350 \\
3. & 460 \\
4. & 424 \\
5. & 613 & \\
6. & 395 & \\
7. & 389 & \\
S.E./mean (other than control) & \(=61.8 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of control \(v s\) any other mean & \(=71.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:-Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:-Mh. 51(233)
Type :-'M'.

Object :-To find out the optimum dose and frequency of applying F.Y.M. to Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil anaiysis, Sholapur.
(iii) 299.1951 and 25.10 .1951 . (iv) (a) 3 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows.
(e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 24.81*. (x) 13 and 18.2.1952.

\section*{2. TREATMENTS:}
1. Control (no manure; in 3 plots/block).
2. 3 ton/ac. of F.Y.M. once in 3 years starting with 1946.
3. 6 ton/ac. of F.Y.M. once in 3 years starting with 1946.
4. 4 ton/ac. of F.Y.M. once in 4 years starting with 1946.
5. 8 ton/ac. of F.Y.M. once in 4 years starting with 1946.
6. 6 ton/ac. of F.Y.M. once in 6 years starting with 1946.
7. 12 ton/ac. of F.Y.M. once in 6 years starting with 1946.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(63^{\circ} \times 37^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Growth was checked to a considerable extent due to excess of moisture in the soil. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1946-1951. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(267 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(67.43 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly. Control \(v s\). others is not significant.
(iv) Av. yield of grain in \(\mathbf{l b}\)./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
1. & 236 \\
2. & 243 \\
3. & 273 \\
4. & 261 \\
5. & 300 \\
6. & 201 \\
7. & 276 \\
S.E./mean (other than control) & \(-33.71 \mathrm{lb} / / \mathrm{ac}\). \\
S.E. of control vs. any other mean & \(=38.93 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :-Jowar (Rabi). . Ref:mMh. 51(220).
Site :- Agri. Res.Stn., Sholapur.
Type :m 'M'.

```

Object :-To study the effect of zinc sulphate on Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) No. (b) and (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 8.10.1951. (iv) (a) 4 harrowings. (b) Drilled: (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) - (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 4 interculturings. (ix) 24.81". (x) 14.2.1952.

\section*{2. TREATMENTS:}
1. Control.
2. \(10 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{Zn} \mathrm{SO}_{4}\).
3. 20 lb ./ac. of \(\mathrm{Zn} \mathrm{SO}_{4}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8 . (iv) (a) \(32^{\prime} \times 20^{\prime}\). (b) \(26^{\circ} \times 14^{\prime}\). (v) \(3^{\prime}\) ring alround. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951-1954. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(687 \mathrm{lb} / \mathrm{ac}\).
(ii) \(177.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 705 \\
2. & 656 \\
3. & 701 \\
S.E./mean & \(=62.6 \mathrm{lb} . / \mathrm{cc}\).
\end{tabular}

\author{
Crop :- Jowar (Rabi). \\ Site :- Agri. Res. Stn., Sholapur.
}

Ref:- Mh. 52(367).
Type :- ' \(M\) '.

Object:-To study the effect of zinc sulphate on Jowar.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) N.A. (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 10.10.1953. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) \(\mathrm{M}-35-1\). (vii) Unirrigated. (viii) 3 interculturings. (ix) 20.76". (x) 11.2.1953.
2. TREATMENTS:
1. Control.
2. 10 lb ./ac. of \(\mathrm{ZnSO}_{4}\).
3. 20 lb ./ac. of \(\mathrm{ZnSO}_{4}\).

Manuring done on 10.10 .1952 .
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(32^{\prime} \times 20^{\prime}\). (b) \(26^{\prime} \times 14^{\prime}\). (v) \(3^{\prime}\) ring alround. (vi) Yes,
4. GENERAL :
(i) Normal. (ii) Nil, (iii) Grain yicld. (iv) (a) 1951-1954. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(594 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(176.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac. Treatment Av. yield
\begin{tabular}{ll} 
1. & 559 \\
2. & 599 \\
3. & 623 \\
S.E & mean \\
& 62.4
\end{tabular}
S.E./mean \(=62.4 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lr} 
Crop :- Jowar (Rabi). & Ref :- Mh. 53(372). \\
Site :- Agri. Res. Stn., Sholapur. & Type :- 'M'.
\end{tabular}

Object :-To study the effect of zinc sulphate on Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) N.A. (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 16.10.1953. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) \(M-35-1\). (vii) Unirrigated. (viii) 3 interculturings. (ix) \(35.96^{\prime \prime}\). (x) 4.3.1954.
2. TREATMENTS :
1. Control.
2. 10 lb ./ac. of \(\mathrm{ZnSO}_{4}\).
3. 20 lb ./ac. of \(\mathrm{ZnSO}_{4}\).

Manured on 16.10.1953.
3. DESIGN :
(i) R.B.D.
(ii) (a) 3. (b) N.A.
(iii) 8. (iv) (a) \(20^{\circ} \times 32^{\prime}\).
(b) \(14^{\prime} \times 26^{\prime}\).
(v) \(3^{\prime}\) ring alround. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) \(1951-1954\). (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(584 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(282.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 670 \\
2. & 573 \\
3. & 508 \\
S.E./mean & \(=99.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :~Agri. Res. Stn., Sholapur.

Ref:- Mh. 52(369).
Type :- ' \(M\) '.

Object :-To study the effect of application of different minor elements on Jowar.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 9.10.1952. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 20.76". (x) 9.2.1953.

\section*{2. TREATMENTS :}
1. Control.
7. \(1 \mathrm{lb} . / \mathrm{ac}\). of \(\cdot \mathrm{MnSO}_{4}\),
2. \(1 \mathrm{lb} . / \mathrm{ac}\). of Ammonium Molybdate.
8. \(2 \frac{1}{2}\) ton/ac. of F.Y.M.
3. 1 lb ./ac. of \(\mathrm{FeSO}_{4}\)
9. 1 lb ./ac. of Sulphur.
4. \(1 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{ZnSO}_{4}\).
10. 1 lb ./ac. of Cobalt chloride.
5. \(1 \mathrm{lb} . / \mathrm{ac}\) of \(\mathrm{CuSO}_{4}\)
6. \(1 \mathrm{lb} . / \mathrm{ac}\). of Borax
3. DESIGN :
(i) R.B.D. (ii) (a) 11. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(11^{\prime} \times 11^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1952-1955 (modified in 1953-54). (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(720 \cdot \mathrm{lb} / \mathrm{ac}\).
(ii) \(153.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly .
(iv) Av. yield of grain in lb,/ac.


Crop :- Jowar (Rabi).
\(\mathcal{X}\) Site :- Agri. Res. Stn., Sholapur.
Ref:- Mh. 53(371).
Type:- 'M'.
Object :-To study the effect of the application of different minor elements on Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 15.10.1953. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 35.96". (x) 6.3.1954.
2. TREATMENTS
1. All manures present.
2. Only Boron absent, all others present.
3. Only Manganese absent, all others present.
4. Only Magnesium absent, all others present.
5. Only Copper absent, all others present.
6. Only Zinc absent, all others present.
7. Only Cobalt absent, all others present.
8. Only Sodium absent, all others present.
9. Only Sulphur absent, all others present.
10. Only Iron absent, all others present.
[Boron as Borax at \(6 \mathrm{lb} . / \mathrm{ac}\). ; Ma as \(\mathrm{MoSO}_{4}\) at \(9 \mathrm{lb} . / \mathrm{ac}\).; Mg as \(\mathrm{MgSO}_{4}\) at \(2 \mathrm{lb} / \mathrm{ac}\).; Cu as \(\mathrm{CuSO}_{4}\) at \(\frac{1}{2} \mathrm{lb} . / \mathrm{ac} . ; \mathrm{Zn}^{2} \mathrm{ZnSO}_{4}\) at \(4 \mathrm{ib} / \mathrm{ac} . ; \mathrm{Co}\) as \(\mathrm{CoCL}_{2}\) at \(2 \mathrm{lb} . / \mathrm{ac}\).; Sodium as Sodium Molybdate at \(\frac{1}{2}\) lb./ac.; Sulpher at \(2 \mathrm{lb} . / \mathrm{ac}\). and Fe as \(\mathrm{FeSO}_{4}\) at \(\left.\frac{1}{2} \mathrm{lb} . / \mathrm{ac}.\right]\)
3. DESIGN :
(i) R.B.D.
(ii) (a) 10 .
(b) N.A.
(iii) 2. (iv) (a) N.A.
(b) \(20^{\prime} \times 6^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Crop growth checked due to excess of moisture in the soil. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1952-1956 (modified in 1953.) (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(303 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(59.89 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|}
\hline Treatment & Av. yield \\
\hline 1. & 278 * \\
\hline 2. & 231 \\
\hline 3. & 276 \\
\hline 4. & 299 \\
\hline 5. & 358 * \\
\hline 6. & 356 \\
\hline 7. & 289 \\
\hline 8. & 283 \\
\hline 9. & 323 \\
\hline 10. & 334 \\
\hline S.E./mean & \(=42.36 \mathrm{lb} / \mathrm{ac}\). \\
\hline
\end{tabular}


Object :-To see the effect of cotton-seed-cake in comparison with other manures on Jowar yield.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Cotton. (c) Nii. (ii) (a) Medium black. (b) N.A. (iii) 14.7.1951. (iv) (a) 4 bakharings (b) N.A. (c) \(6 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 4 hoeing and 1 thinning. (ix) 29.74". (x) 10.1.1952.

\section*{2. TREATMENTS:}
1. Control (no manure).
2. G.N.C. at \(15 \mathrm{lb} . / \mathrm{ac}\). of N.
3. Cotton-seed-cake (decorticated) at 15 lb ./ac. of N .
4. Cotton-seed-cake (undecorticated) at \(15 \mathrm{lb} . / \mathrm{ac}\). of N .
5. \(A / S\) at 15 lb ./ac. of \(N\).

Manures applied on 13.7.1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\circ} \times 16 \frac{1}{\prime}^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Attack of top-shoot borers. (iii) Germination counts and grain yield. (iv) (a) 19511952. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) NiL.
5. RESULTS:
(i) \(1618 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(125.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatments & Av. yieid \\
1. & 1407 \\
2. & 1651 \\
3. & 1606 \\
4. & 1643 \\
5. & 1785 \\
S.E./mean & \(=56.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :- Jowar (Kharif). \\ Site :- Govt. Seed and Demonstration Farm, Washim.
}

Ref :- Mh. 52(130).

Object :-To study the effect of cotton-seed-cake in comparison with other manures on Jowar yield.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Cotton. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 17.7.1952. (iv) (a) 3 bakharings. (b) By tiffan. (c), (d) and (e) N.A. (v) Nil. (vi) Saoner. (vii) Unirrigated. (viii) 3 hoeings, 1 weeding and 1 thinning. (ix) \(17.95^{\circ}\). (x) N.A.

\section*{2. TREATMENTS :}
1. Control (no manure).
2. G.N.C. at \(15 \mathrm{lb} . / \mathrm{ac}\). of N .
3. Cotton-seed-cake (decorticated) at 15 lb ./ac. of N .
4. Cotton-seed-cake (undecorticated) at \(15 \mathrm{lb} . / \mathrm{ac}\). of N .
5. \(\mathrm{A} / \mathrm{S}\) at \(15 \mathrm{lb} . / \mathrm{ac}\). of N .
3. DESIGN :
(i) R.B.D.
(ii) (a) 5.
(b) N.A.
(iii) 5. (iv) (a) N.A.
(b) \(66^{\prime} \times 16 \frac{1_{2}^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Mild attack of top-shoot borers which was controlled by removing affected shoots. (iii) Germination counts, height and grain yield. (iv) (a) 1951 to 1952 . (b) and (c) No. (v) (a) and.(b) Nil. (vi) and (vii) Nil.
5. RESUL̇TS :
(i) \(979 \mathrm{lb} / \mathrm{ac}\).
(ii) \(222.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1062 \\
2. & 1042 \\
3. & 948 \\
4. & 979 \\
5. & 867 \\
S.E./mean & \(=99.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\section*{Crop :-Jowar (Kharif).}

Ref:-Mh. 49(125).
Site :^Govt. Seed and Demonstration Farm, Washim. Type :r'M'.
Object :-To study the residual effect of T. C. and other manures on Jowar.
1. BASAL CONDITIONS:
(i) (a) Jowar-Groundnut-Cotton. (b) Cotton. (c) As per treatments. (ii) (a) Medium black. (b) N.^. (iii) 14.7.1949. (iv) (a) 1 bakharing. (b) N.A. (c) 6 lb./ac. (d) \(18^{\prime \prime} \times 12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner. (vii) Unirrigated. (viii) 3 hoeings and 3 weedings. (ix) \(63.59^{\circ}\). (x) 18.12.1949.
2. TREATMENTS :
1. Control.
2. T.C. st 10 C.L./ac.
3. T.C. at 20 C.L./ac.
4. F.Y.M. at 10 C.L./ac.
5. F.Y.M. at 20 C.L./ac.
6. G.N.C. at \(4 \mathrm{md} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) th of an acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil, (iii) Grain yield. (iv) (a) 1946-1950. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) . and (vii) Nil.
5. RESULTS :
(i) \(427 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(107.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
Treatment Av. yield
\begin{tabular}{lc} 
1. & 427 \\
2. & 468 \\
3. & 370 \\
4. & 480 \\
5. & 395 \\
6. & 421 \\
S.E./mean & \(=43.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :-Jowar (Kharif). \(\quad\) Ref :-Mh. 51(107).
Site :-Govt. Seed and Demonstration Farm, Washim. \(\quad\) Type :-‘M’.

Object :-To study the residual effect of manures applied in 1948-1949.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Wheat. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 16.7.1951. (iv) (a) 3. bakharings. (b) N,A. (c) 6 lb ./ac. (d) 14 lines per plot. (c) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 4 hoeings and 2 weedings. (ix) 29.75". (x) 19,20.12.1951.
2. TREATMENTS :
1. Control. (no manure).
2. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
3. 40 lb . ac . of N as T.C.
4. 20 lb /ac. of N as F.Y.M.
5. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
7. \(20 \mathrm{lb} . \mathrm{lac}\). of N as G.N.C.
8. 10 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
9. 20 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN :
(i) R.B.D. (i) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\circ} \times 16 \frac{1}{2}^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Attack of top-shoot borers. (iii) Germination count, height and grain yield. (iv) (a) 1948-1953 (residual effect from 1949). (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1261 \quad \mathrm{ib} . / \mathrm{ac}\).
(ii) \(139.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathbf{I b}\)./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1237 \\
2. & 1362 \\
3. & 1087 \\
4. & 1254 \\
5. & 1175 \\
6. & 1277 \\
7. & 1260 \\
8. & 1195 \\
9. & ras6.9 lb./ac.
\end{tabular}
```

 Crop :m Jowar (Kharif).
 Ref. :- Mh. 53(169)/51(107)
 Site :- Govt. Seed and Demonstration. Farm, Washim. Type :- 'M'.
 F
Object :-To study the residual effect of manures applied in 1948-1949.

```
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 10.7. 1953. (iv) (a) N.A. (b) By tiffan. (c) \(8-10 \mathrm{lb} / \mathrm{ac}. .^{\prime}\) (d) \(18^{\prime \prime} \times 9^{\prime \prime}\). (e) N.A. (v) Nil. (vi) Saoner. (late). (vii) Unirrigated. (viii) 4 hoeings and 1 thinning. (ix) \(38.55^{\circ}\). (x) 25.12.1953.
2. TREATMENTS :
1. Control (no manure).
2. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as T.C.
3. \(40 \mathrm{lb} . / \mathrm{ac}\). of N as T. C.
4. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as F.Y.M.
5. 40 lb ./ac. of N as F.Y.M.
6. \(10 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
7. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C.
8. \(10 \mathrm{lb} . / \mathrm{ac}\) of N as \(\mathrm{A} / \mathrm{S}\).
9. \(20 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. DESIGN:
(i) R.B.D.
(ii) (a) 9.
(b) N.A. (iii)
ii) 6.
(iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1^{\prime}}{}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Due to heavy rains the crop suffered; the crop was seen to be sickly pale yellow in colour. (ii) Attack of top-shoot borers ; no control measures taken. (iii) Grain yield. (iv) (a) 1948-1953 (residual effect from 1949). (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1367 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(137.8 \quad \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly. •
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatments & Av. yield \\
1. & 1333 \\
2. & 1418 \\
3. & 1429 \\
4. & 1402 \\
5. & 1339 \\
6. & 1424 \\
7. & 1318 \\
8. & 1280 \\
9. & \(=56.3 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
\(/\) Site :- Govt. seed and Demons. Farm, Washim.

Ref. :~ Mh. 53(168)
Type ' \(M\) '.

Object :-To study the effect of different doses of N applied in different forms on Jowar.

\section*{1. BASAL CONDITIONS}
(i) (a) Nil. (b) Cotton. (c) N.A. (ii) (a) Medium black, (b) N.A. (iii) 11.7.1953. (iv) (a) 4 bakharings. (b) By tiffan. (c) \(8-10 \mathrm{lb} . / \mathrm{ac}\). (d) 14 rows/plot. (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 2 weedings and 4 hoeings. (ix) 38.55". (x) 25.12.1953.
2. TREATMENTS :
1. No manure ( 2 plots/block).
2. \(15 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
3. 30 lb ./ac. of N as \(\mathrm{A} / \mathrm{S}\).
4. \(45 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}\).
5. 15 lb ./ac. of N as \(\mathrm{C} / \mathrm{N}\).
6. 30 lb ./ac. of N as \(\mathrm{C} / \mathrm{N}\).
7. \(45 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{C} / \mathrm{N}\).
8. 10 lb ./ac. of N as Fertilizer mixture. ( 80 lb . of G.N.C. +27 lb . of \(\mathrm{A} / \mathrm{S}\).) Manures applied at sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{1^{\prime}}{}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of top-shoot borers. No control measures taken. (iii) Grain yield. (iv) (a) 1953contd. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1700 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(137.6 \mathrm{Ib} . / \mathrm{ac}\).
(iii) Treatment differences are highly significánt.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccl} 
Treatment & Av. yield \\
1. & 1548 \\
2. & 1587 & \\
3. & 1747 & \\
4. & 1870 & \\
5. & 1619 & \\
6. & 1837 & \\
7. & 1965. & \\
8. & 1581 & \\
S.E /mean (Treat 1) & & \(=43.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E./mean (Treats. 2, 3,..8) & \(=61.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop : . Jowar (Kharif). \\ Ref:- Mh. 49(92). \\ Site :- Govt. Exptl. Farm, Yeotmal. \\ Type:- ' \(M\) '.
}

Object:-To study the effect of different manures on Jowar.
1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut-Cotton. (b) Cotton. (c) N.A. (ii) (a) Black medium loam. (b) Refer soil analysis, Yeomtal. (iii) 13.7.1949. (iv) (a) 3 bakharings. (b) Dibbling. (c) 4 to \(6 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) \(4 \frac{1}{\text { ton/ac. of T.C. (vi) Saoner (medium). (vii) Unirrigated. (viii) } 3 \text { hoeings }}\) and 2 weedings. (ix) \(46.91^{\prime \prime}\). (x) Nov. 1949.

\section*{2. TREATMENTS :}
~ 1. Control (no manure).
- 2. T.C. at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
3. T.C. at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
\(\checkmark\) 4. Cow-dung manure at \(20 \mathrm{lb} / \mathrm{ac}\). of N .
5. Cow-dung manure at 40 lb ./ac. of N .
6. G.N.C. at \(10 \mathrm{lb} . / \mathrm{ac}\). of N .
\(\checkmark\) 7. G.N.C at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
8. A/S at 10 lb ./ac. of N .
\(\checkmark\) 9. A/S at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .

\section*{3. DESIGN:}
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) th of an acre. (v) N.A. (vi) Yes.
-4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-continued. (b) No. (b) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{: 5. RESULTS:}
(i) \(1001 \mathrm{lb} / \mathrm{ac}\).
(ii) \(218.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\sim\) 1. & 1034 \\
- 2. & 954 \\
3. & 960 \\
\(\sim\) 4. & 780 \\
5. & 840 \\
6. & 1074 \\
\(\sim 7\). & 1141 \\
8. & 1007 \\
9. & 1221 \\
S.E./mean & \(=89.04 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Kharif).
Site :- Govt. Exptl. Farm, Yeotmal.

Ref:- Mh. 50(111).
Type:- ' \(M\) '.

Object :-To study the effect of different manures on Jowar.
: 1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut-Cotton. (b) Cotton. (c) N.A. (ii) (a) Medium black loam. (b) Refer soil analysis, Yeotmal. (iii) 2nd week of July 1950. (iv) (a) 4 bakharings. (b) N.A. (c) 4 to \(6 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) 4 ton/ac. of T.C. (vi) Saoner (medium). (vii) Unirrigated. (viii) N.A. (ix) 27.96".
(x) Last week of Dec. 1950.

\section*{:2. TREATMENTS :}
\(\checkmark\) 1. Control (no manure).
2. T.C. at \(20 \mathrm{lb} . / \mathrm{ac}\) of N .
3. T.C. at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
4. Cow-dung manure at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
5. Cow-dung manure at \(40 \mathrm{lb} . / \mathrm{ac}\), of N .
6. G.N.C. at \(10 \mathrm{lb} . / \mathrm{ac}\). of N .
7. G.N.C. at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
8. A/S at \(10 \mathrm{lb} . / \mathrm{ac}\). of N .
9. \(\mathrm{A} / \mathrm{S}\) at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
:3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\circ} \times 16 \frac{1}{\prime}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Unsatisfactory owing to draught. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 -continued. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Crop was adversely affected by draught. (vii) Nil.
5. RESULTS :
(i) \(479 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(353.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(Iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
-1. & 647 \\
-2. & 430 \\
3. & 337 \\
-4. & 250 \\
5. & 430 \\
6. & 800 \\
- 7. & 527 \\
8. & 367 \\
9. & 524 \\
S.E./mean & \(=1445 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :- Jowar (Kharif). \\ Site :- Govt. Exptl. Farm, Yeotmal.
}

Ref :- Mh. 51(149).
Type :- ' M '.
Object :-To study the effect of different manures on Jowar.
1. BASAL CONDITIONS:
(i) (a) Jowar-Groundnut-Cotton. (b) Cotton. (c) N.A. (ii) (a) Black medium loam. (b) Refer soil analysis, Yeotmal. (iii) 3rd week of July 1951. (iv) (a) 3 bakharing s. (b) Dibbling. (c) \(5 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) N.A. (vi) Saoner (medium). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 39.57". (x) Last week of Dec. 1951.
2. TREATMENTS :
1. Control (no manure).
2. T.C. at \(20 \mathrm{lb} . / \mathrm{ac}\). of N.
3. T.C. at 40 lb ./ac. of N .
4. Cattle-dung at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
5. Cattle-dung at \(40 \mathrm{lb} . / \mathrm{ac}\). of N .
6. G.N.C. at \(10 \mathrm{lb} . / \mathrm{ac}\). of N.
7. G.N.C. at 20 lb ./ac. of N.
8. A/S at \(10 \mathrm{lb} / / \mathrm{ac}\). of N .
9. \(\mathrm{A} / \mathrm{S}\) at \(20 \mathrm{lb} . / \mathrm{ac}\). of N .
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 40\) th of an acre. (v) One line on two sides and 4 plants of each line on the other two sides. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-contd. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(738 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(162.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|}
\hline Treatment & Av. yield \\
\hline 1. & 764 - \\
\hline 2. & 674 - \\
\hline 3. & 707 \\
\hline 4. & 620 - \\
\hline 5. & 600 \\
\hline 6. & 795 \\
\hline 7. & 844 • \\
\hline 8. & 744 \\
\hline 9. & 904 \\
\hline S.E./mean & \(=60.4 \mathrm{lb} . / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Site :~ Govt. Exptl. Farm, Yeotmal.

Ref:- Mh. 51 (148).
Type :- ' \(M\) '.

Object :- To study the effect of different sources of N on Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Jowar-Groundnut-Cotton. (b) Cotton. (c) N.A. (ii) (a) Medium black loam. (b) Refer soil analysis, Yeotmal. (iii) 3rd week of July 19S1. (iv) (a) 3 bakharings. (b) Hand dibbling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) N.A. (vi) Saoner (medium). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 39.57". (x) Last week of Dec. 1951.
2. TREATMENTS :
1. G.N.C.
2. Decorticated cotton-seed-cake.
3. Undecorticated cotton-seed-cake.
4. A/S.

Quantity, time and method of application of \(N\) are N.A.
3. DESIGN :
(i) R.B.D.
(ii) (a) 4.
(b) N.A.
(iii) 5. (iv) (a) N.A.
(b) \(1 / 40\) th of an acre.
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-contd. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(400 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(142.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb,/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 416 \\
2. & 384 \\
3. & 368 \\
4. & 432 \\
S.E./mean & \(=63.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :-Jowar (Kharif). Site :-Govt. Exptl. Farm, Yeotmal.
}

Ref:-Mh. 53(273). Type :-‘' \({ }^{\prime}\).

Object : -To study the effect of Sodium Nitrate on Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut-Cotton. (b) Cotton. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil analysis, Yeotmal. (iii) 15.7.1953. (iv) (a) 3 bakharings on 10, 18 and 25.6.1953. (b) Hand dibbling. (c) N.A. (d) N.A. (e) N.A. (v) Nil. (vi) Saoner (medium). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) \(37.63^{\prime \prime}\). (x) 31.12.1953.
2. TREATMENTS :
1. Control (two plots/block).
2. A/S at \(15 \mathrm{lb} . / \mathrm{ac}\). of N .
3. \(A / S\) at \(30 \mathrm{lb} . / \mathrm{ac}\). of N .
4. A/S at 45 lb ./ac. of N .

5 Sodium Nitrate at 15 lb ./ac. of N .
6. Sodium Nitrate at \(30 \mathrm{lb} / \mathrm{ac}\). of N .

7 Sodium Nitrate at 45 lb ./ac. of N .
8. G.N.C. at \(1 \mathrm{md} . / \mathrm{ac} .+\mathrm{A} / \mathrm{S}\) at \(\ddagger \mathrm{md} . / \mathrm{ac}\).

\section*{3. DESIGV}
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(1 / 40\) th of an acre. (v) One line on each side and 4 plants on the other two sides. (vi) Yes.
4. GENERAL :
(i) Good. (ii. Nil. (iii) Grain yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
ii) \(959.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(209.2 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 852 \\
2. & 736 \\
3. & 1152. \\
4. & 1080 \\
5. & 1104 \\
6. & 968 \\
7. & 1096 \\
8. & 792 \\
S.E/mean (Treat 1 ) & \(=93.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E./mean (Treats \(2,3, \ldots . .8)\) & \(=66.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\(\sqrt{\text { Crop :-Jowar. }}\)\begin{tabular}{ll} 
Centre :-Akola (Maharashtra). & Ref :-Complex Expts. (T.C.M.), 1953. \\
&
\end{tabular}

Object : - III, To study the best time of application of N .
1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Loam to clay loam. (b) Neutral in reaction. (iii) 3rd week of July, 1953. (iv) (a) N.A. (b) Drilled. (c) \(7 \mathrm{lb} . / \mathrm{ac}\). (d) Between plants \(9^{\circ}\) to \(12^{\circ}\) and between rows \(16.5^{\circ}\). (e) N.A. (v) N.A. (vi) N.J. 164 (improved). (vii) Unirrigated. (viii) N.A. (ix) \(25^{\circ}-30^{\circ}\). (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure).
(1) 2 times of application of \(N: \quad D_{1}=\) At sowing and \(D_{2}=\) At first irrigation.
(2) 2 sources of \(N\) (at \(20 \mathrm{lb} . / \mathrm{ac}\).): \(S_{1}=A / S\) and \(S_{2}=\) Urea.

Manures troadcast 3-4 days tefore sowing and thorougbly mixed with soil by one bakharing.
5. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) N.A. (b) \(34.57^{\prime} \times 21^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Incidence of striga in patches was fairly common. (iii) Grain yield. (iv) (a) 1953-1956.
(b) No. (c) N.A. (v) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1745 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(297.3 \mathrm{lb} / \mathrm{ac}\).
(iii) Time of application of \(\mathbf{N}\) is significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.


Crop :-Jowar.
Centre : Akola (Maharashtra).

Ref :-Co mplex Expts. (T.C.M.), 1953.
Type :~' \({ }^{\prime}\) '.

Object :-IV To study the effect of types, levels and methods of application of phosphatic manures.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Loam to clay loam. (b) Neutral in reaction. (iii) 3rd week of July, 1953. (iv) (a) N.A. (b) Drilled. (c) 7 lb ./ac. (d) Between plants \(9^{\prime \prime}-12^{\prime \prime}\) and between rows \(16.5^{\prime \prime}\). (e) N.A. (v) N.A. (vi) N.J. 164 (improved). (vii) Unirrigated. (viii) N.A. (ix) \(20^{\circ}\) to \(30^{\circ}\). (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) and (3) +2 control plots/block.
(1) 3 sources of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{S}_{1}=\) Super, \(\mathrm{S}_{2}=\) Nitro. Phos and \(\mathrm{S}_{8}=\) Ammo. Phos.
(2) 2 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}\) : \(\mathrm{P}_{1}=15 \mathrm{lb} / \mathrm{ac}\). and \(\mathrm{P}_{2}=30 \mathrm{lb} . / \mathrm{ac}\).
(3) 2 methods of application : \(M_{1}=\) Broadcast before final cultivation and \(M_{2}=\) applied \(2 \frac{1}{2}\) below seed. Manures applied 3-4 days before sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 3. (iv) (a) N.A. (b) \(27^{\circ} \times 27^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Incidence of striga in patches was fairly common throughout the experiment. (iii) Grain yield. (iv) (a) \(1953-56\). (b) No. (c) N.A. (v) No. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2549 \mathrm{lb} . / \mathrm{ac}\).
(ii) 254.5 lb ./ac.
(iii) Main effects, interactions and control \(v s\) others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|r|}{Control} & \multicolumn{2}{|l|}{\(=2459 \mathrm{lb} . / \mathrm{ac}\).} & \multirow[b]{2}{*}{\(\mathrm{P}_{2}\)} \\
\hline & \(\mathrm{S}_{1}\) & \(\mathrm{S}_{2}\) & \(\mathbf{S}_{3}\) & M ean & \(\mathbf{P}_{1}\) & \\
\hline \(\mathbf{M}_{1}\) & 2621 & 2575 & 2482 & 2559 & 2524 & 2594 \\
\hline \(\mathbf{M}_{2}\) & 2542 & 2534 & 2631 & 2569 & 2514 & 2624 \\
\hline Mean & 2582 & 2555 & 2556 & 2564 & 2519 & 2609 \\
\hline \(\mathrm{P}_{1}\) & 2579 & 2468 & 2511 & & & \\
\hline \(\mathrm{P}_{2}\) & 2584 & 2641 & 2602 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline S.E. of marginal mean of \(S\) & \(=73.4 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of marginal mean of \(P\) or M & \(=59.9 \mathrm{lb} / \mathrm{ac}\). \\
\hline S.E. of body of \(S \times M\) or \(S \times P\) table & \(=103.9 \mathrm{lb} . / \mathrm{ac}\). \\
\hline S.E. of body of M \(\times \mathrm{P}\) table & \(=84.8 \mathrm{lb} / \mathrm{ac}\). \\
\hline S.E. of control mean & \(=103.9 \mathrm{lb} / \mathrm{ac}\). \\
\hline
\end{tabular}

Crop :- Jowar.
Site :- Akola (Maharashtra).

Ref. :- Complex Expts. (T. C. M.), 1953.
Type:- ' \(\mathbf{M}^{\prime}\)

Object :-I (a) To study the effect of types and levels of \(N\) and \(\mathbf{P}\) on non-acidic soils.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loam to clay loam. (b) Neutral in reaction. (iii) 3rd week of July, 1953. (iv) (a) N.A. (b) Drilled. (c) \(7 \mathrm{lb} . / a c\). (d) between plants \(9^{\prime \prime}-12^{\prime \prime}\) and between rows \(16.5^{\prime \prime}\). (e) N.A. (v) N.A. (vi) N. J. 164 (improved). (vii) Unirrigated. (viii) N.A. (ix) \(20^{\prime \prime}\) to \(30^{\circ}\). ( \(x\) ) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}\).
(2) 2 sources of \(\mathrm{N}: \mathrm{S}_{1}=\mathrm{A} / \mathrm{S}\) and \(\mathrm{S}_{2}=\) Urea.
(3) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.

Manures applied 3-4 days before sowing by broadcast.
3. DESIGN :
(i) R.B.D.
(ii) (a) 15 .
(b) N.A. (iii) 3. (iv) (a) N.A. (b) \(27^{\prime} \times 27^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Incidence of striga in patches. (iii) Yield data. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(2685 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(241.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects and interactions are not significant.
(iv) Av. yield of gre in in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \[
\widetilde{N_{1}}
\] & \(\mathrm{N}_{2}\) & Mean & \(S_{1}\) & \(\mathrm{S}_{2}\) & Mean \\
\hline \(\mathbf{P}_{0}\) & 2359 & 2633 & 2823 & 2654 & 2730 & 2726 & 2728 \\
\hline \(\mathrm{P}_{\mathbf{J}}\) & 2608 & 2682 & 2719 & 2682 . & 2669 & 2732 & 2700 \\
\hline \(\mathrm{P}_{2}\) & 2509 & 2821 & 2672 & 2719 & 2643 & 2850 & 2747 \\
\hline Mean & 2525 & 2712 & 2738 & 2685 & 2681 & 2769 & \\
\hline \(S_{1}\) & - & 2728 & 2633 & 2681 & & & \\
\hline \(S_{2}\) & - & 2696 & 2842 & 2769 & & & \\
\hline
\end{tabular}

\section*{For \(\mathbf{N} \times \mathbf{P}\) table}
S.E. of marginal mean of \(\mathrm{N}_{0}\) column \(\quad=80.6 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of \(N_{1}\) or \(\mathbf{N}_{2}\) column \(\quad=56.9 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of rows \(\quad=62.4 \mathrm{lb} . / \mathrm{ac}\).

For \(\mathbf{S} \times \mathbf{P}\) table
S.E. of body of table
S.E. of marginal mean of columns
S.E. of marginal mean of rows

For \(\mathrm{S} \times \mathrm{N}\) table
S.E. of tody of table
S.E. of any marginal mean
\(=98.7 \mathrm{lb} . / \mathrm{ac}\).
\(=56.9 \mathrm{lb} . / \mathrm{ac}\).
\(=69.8 \mathrm{lb} . / \mathrm{ac}\).
\(=80.6 \mathrm{lb}\). \(/ \mathrm{ac}\).
\(=56.9 \mathrm{lb} . / \mathrm{ac}\).
\[
\begin{array}{ll}
\text { Crop :-Jowar (Kharif). } & \text { Ref. :- Expts. on cultivators' fields Mh. 52(337) } \\
\text { Site :- Karbir (Kolhapur). } & \text { Type :- 'M' }
\end{array}
\]

Object :-To find the effect of manures on the yield of Jowar under cultivators' field conditions.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) N.A. (iii) N.A. (iv) N.A. (v) (a) to (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) 18. 12. 1952 and 30. 12.1952.
2. TREATMENTS :
1. Control.
2. Manure mixture at 14.25 lb ./guntha.
3. Manure mixture at 14.25 lb ./guntha+Bonemeal at \(22.5 \mathrm{lb} . / \mathrm{guniha}\).
3. DESIGN:
(i) and (ii) 2 fields were selected at random in each of two villages selected at random from Jowar growing villages. (iii) (a) N.A. (b) \(18^{\prime} \times 60^{\circ}\). (iv) N.A.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) N.A. (b) N.A. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(892 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(490 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatments & Av. yield \\
1. & 760 \\
2. & 888 \\
3. & 1030 \\
S.E./mean & \(=28.30 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{lc} 
Crop :- Jowar (Kharif). & Ref :- Expts. on cultivators' fields Mh. 52(338). \\
Site :- Godhingly (Kolhapur). & Type :- 'M'.
\end{tabular}

Object :-Tu find the effect of manure mixtures on the yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) N.A. (iii) N.A. (iv) N.A. (v) (a) to (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) N.A.
2. TREATMENTS :
1. Control.
2. Manure mixture at 14.25 lb ./guntha.
3. Manure mixture at 14.25 lb ./guntha+Bonemeal at \(22.5 \mathrm{lb} . / g u n t h a\).
3. DESIGN :
(i) and (ii) 2 fields were selected at random from each of two villages selected at random from Jowar growing villages. (iii) (a) N.A. (b) \(18^{\prime} \times 60^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) N.A. (b) and (c) .N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTTS :
(i) \(1120 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) 74.40 lb ./ac.
(iii) Treaments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ccc} 
Treatment & Av. yield \\
1. & 996 \\
2. & 1102 \\
3. & 1262 \\
S.E./mean & \(=37.20 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Jowar (Kharif).
Ref :- Expts, on cultivators' fields Mh. 52(339).
Site :- Hatkanglde (Kolhapur).
Type :- 'M'.

```

Object :-To find the effect of manure mixture on the yield of Jowar under cultivators' field conditions.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) and (c) N.A. (ii) N.A. (iii) N.A. (iv) N.A. (v) (a) to (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) 22 and 28.12 .1952 .
2. TREATMENTS:
1. Control.
2. Manure mixture at \(14.25 \mathrm{lb} . /\) guntha.
3. Manure mixture at \(14.25 \mathrm{lb} . / \mathrm{g}\) untha+Bonemeal at 22.5 lb ./guntha.
3. DESIGN :
(i) and (ii) 2 fields were selected at random from each of two villages. selected at random from Jowar growing villages. (iii) (a) N.A. (b) \(18^{\prime} \times 60^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) to (c) N.A. (v) N.A. (vi) and (vii) N.A.
5. RESULTS :
(i) \(1620 \mathrm{lb} / \mathrm{ac}\).
(ii) \(355.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment. & Av. yield \\
1. & 1280 \\
2. & 1740 \\
3. & 1840 \\
S.E./mean & \(=177.6 \quad\) lb./ac.
\end{tabular}

Crop :- Jowar (Kharif). Ref :~ Expts. on cultivators' fields Mh. 52(340). Site :- Shilor Dist. (Kolhapur). Type:- ' \(M\) '.

Object :-To find the effect of manure mixture on the yield of Jowar under cultivators' field conditions.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) N.A. (iii) N.A. (iv) N.A. (v) (a) to (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N,A. (x) 5 and 23.12.1952.

\section*{2. TREATMENTS:}
1. Control.
2. Manure mixture at \(14.25 \mathrm{lb} . /\) guntha.
3. Manure mixtureat 14.25 lb ./guntha + Bonemeal at 22.5 lb ./guntha.
3. DESIGN :
(i) and (ii) 2 fields were selected at random in each of the 2 villages selected at random from jowar growing villages. Results from one field were, however, not available. (iii) (a) N.A. (b) \(18^{\circ} \times 60^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii)
ii) N.A. (iii) Grain yield. (iv)
(a) N.A.
(b) N.A. (c) N.A.
(v) N.A. (vi) Nil. (vii) Nil.
5. RESULTS:
(i) \(1541 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(312 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{ll} 
Treatment & Av. yield \\
1. & 1330 \\
2. & 1774 \\
3. & 1519 \\
S.E./mean & \(=180.1 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif). Ref :- Expts. on cultivators' fields Mh. 52(341).
Site :- Kagal (Distt. Kolhapur).
Type :- ' \(M\) '.
Object :-To find the effect of manure mixture on the yield of Jowar under cultivators' field conditions.
1. BASAL CONDITIONS ;
(i) (a) N.A. (b) N.A. (c) N.A. (ii) N.A. (iii) N.A. (iv) N.A. (v) (a) to (e) N.A. (vi) N.A. (vii) N.A. (viii) N.A. (ix) N.A. (x) 20.12.1952.
2. TREATMENTS:
1. Control.
2. Manure mixture at 14.25 lb ./guntha.
3. Manure mixture at 14.25 lb ./ guntha+Bonemeal at 22.5 lb ./guutha.
3. DESIGN :
(i) and (ii) 2 fields were randomly selected in the village selected at random from the jowar growing villagec. (iii) (a) N.A. (b) \(18^{\prime} \times 60^{\prime}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv/ (a) N.A. (b) N.Á. (c) N.A. (v) N.A. (vi) Nil. (vii) Nil.
.5. RESULTS:
(i) \(1502 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(136 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1512 \\
2. & 1673 \\
3. & 1320 \\
S.E./mean & \(=96.18 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{lc}
\text { Crop :- Jowar (Kharif). } & \text { Ref :- Expts. on cultivators' fields Mh. 52(264). } \\
\text { Site :- Tasgaon (South Satara). } & \text { Type:- 'M'. }
\end{array}
\]

Object :-To find the effect of manure mixture on the yield of Jowar under cultivaters' field conditions.
1. BASAL CONDITIONS:
(i) (a) N.A. (b) Jowar. (c) Nil. (ii) Black. (iii) 5 C.L./ac. of F.Y.M. (iv) Mandapuri. (v) (a) to (c) N.A. (d) \(18^{\prime \prime} \times 4^{\prime \prime}\) and \(15^{\prime \prime} \times 15^{\prime \prime}\). (c) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 25.11.1952; 5 to 26.12.1952 and 11.1.1953.
2. TREATMENTS :
1. Control.
2. \(64 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}_{\text {. }}\) in 1: 1 ratio.
3. DESIGN :
(i) and (ii) \(\mathbf{2}\) villages were selected at random and 2 fields within the selected villages were also selected at random. (iii) (a) \(42^{\circ} \times 30^{\circ}\). (b) \(18^{\circ} \times 60^{\circ}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yicld. (iv) (a) to (c) N.A. (v) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 3153 lb /ac.
(ii) 168.4 Jb ./ac.
(iii) Treatments differ bighly significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 2881 \\
2. & 3122 \\
3. & 3462 \\
S.E./mean. & \(=84.18 \mathrm{lb}\)./ac.
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Miraj (South Satara).

Ref :- Expts. on cultivators' fields Mh. 52(266). Type :- ' \(M\) '.

Object :-To study the effect of manures on the yield of Jowar under cultivators' fields conditions.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) Gram-Tobacco ; Jowar-Turmeric. (c) Nil. (ii) Deep black, (iii) S C.L./ac. of F.Y.M.
(iv) Marna depuri (late) ; Digraji and Tabmbad bhondi (mid late). (v) (a) One clod crushing and two harrowings ; one ploughing and three harrowings. (b) and (c) N.A. (d) \(18^{\circ} \times 6^{\prime \prime} ; 12^{\prime \prime} \times 6^{\circ}\) and \(12^{\prime \prime} \times 3^{\prime \prime}\). (c) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) N.A. (x) 23.11 .1952 ; 5 and 28.12.1952.

\section*{2. TREATMENTS :}
1. Control.
2. \(64 \mathrm{lb} . / \mathrm{ac}\), of N as \(\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . C\). in \(1: 1\) ratio.
3. \(64 \mathrm{lb} . / \mathrm{ac}\). of \(\mathrm{N}+32 \mathrm{lb}\)./ac. of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN:
(i) and (ii) 2 villages were selected at random and 2 fields within the selected villages were also selected at random. (iii) (a) \(72^{\circ} \times 30^{\circ}\). (b) \(18^{\circ} \times 60^{\circ}\). (iv) N.A.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) One year only. (b) and (c) N.A. (v) N.A. •(vi) and (vii) Nil:
5. RESULTS :
(i) \(1544 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(440.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 1352 \\
2. & 1534 \\
3. & 1747 \\
S.E./mean & \(=220.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar.
Site :- Akola (Maharashtra).

Ref. :-Complex Expts. (T.C.M.), 1953.
Type :~ 'MV'

Object :-To study the effect of N and P on the yield of different varieties of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loam to clay loam. (b) Neutral in reaction. (iii) 3rd week of July, 1953. (iv) (a) N.A. (b) Drilled. (c) \(7 \mathrm{ib} . / \mathrm{ac}\). (d) Between plants \(9^{\prime \prime} \times 12^{\prime \prime}\) and between rows \(16.5^{\prime \prime}\). (e) N.A. (vi) As per treatments. (vii) Unirrigated. (viii) N.A. (ix) \(20^{\circ \prime}\) to \(30^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{2}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 varieties: \(\quad V_{1}, V_{2}\) and \(V_{3}\); details N.A.

Manures applied 3-4 days before sowing by broadcast.

\section*{3. DESIGN :}
(i) \(3^{3}\) factorial in R.B.D. (confounded). (ii) (a) 3 blocks/replication; 9 plots/block. (b) N.A. (iii) 1. (iv) (a)N.A. (b) \(27^{\prime} \times 27^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Incidence of striga in patches was fairly common. (iii) Yield data. (iv) (a) 1953-1956.
(b) No. (c) N.A. (v) No. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) \(3043 \mathrm{lb} / \mathrm{ac}\).
(ii) \(124.5 \quad \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of \(N, P\) and \(V\) and interactions NP, VP are highly significant. Interaction VN is also significant.
(iv) Av, yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & \(\nabla_{3}\) \\
\hline \(\mathrm{P}_{0}\) & 2066 - & 2737 & 3048 & 2617 & 2463 & 2824 & 2564 \\
\hline \(\mathrm{P}_{1}\) & 2956 & 3501 & 3176 & 3211 & 2930 & 3062 & 3641 \\
\hline \(\mathrm{P}_{2}\) & 3305. & 3297 & 3302 & 3301 & 2935 & 3676 * & 3292 \\
\hline Mean & 2776 & 3178 & 3175 & 3043 & 2776 & 3187 & 3166 \\
\hline \(\mathrm{V}_{1}\) & 2388 & 3073 & 2868 & & & & \\
\hline \(V_{2}\) & 3032 & 3391. & 3140 & & & & \\
\hline \(V_{3}\) & 2909 & 3071 & 3517. & & & & \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=41.5 \mathrm{lb} . / \mathrm{ac}\).
\(S\) E. of body of table \(\quad=71.8 \mathrm{lb}\)./ac.

> Crop :- Jowar (Rabi).
> Site :. Agri.Res., Stn., Chas.

Ref. :- Mh. 51(72).
Type:-‘C'.

Object:- To study the effect of tillage operations (harrowing-cum-interculturing) on the growth and yield of Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black and medium. (b) N.A. (iii) 29. 9. 1951. (iv) (a) 1 ploughing. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1., medium. (vii) Unirrigated. (viii) N.A. (ix) 8.63". (29. 9. 1951 to 15. 2. 1952). (x) 15. 2. 1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) Number of interculturings:- \(\mathrm{I}_{1}=1, \mathrm{I}_{2}=2, \mathrm{I}_{3}=3\) and \(\mathrm{I}_{4}=4\).
(2) Number of harrowings :- \(\quad \mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
3. DESIGN :
(i) \(3 \times 4\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) \(33^{\circ} \times 33^{\prime}\). (b) \(30^{\circ} \times 30^{\prime}\). (v) \(1.5^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Count, height and grain yield. (iv) (a) 1951-1952 to 1955-1956. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(336 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(115.8 \mathrm{lb} . / \mathrm{ac}\).
(i.i) Main effect of H alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) & Mean \\
\hline \(\mathrm{I}_{1}\) & 334 & 336 & 462 & 377 \\
\hline \(\mathrm{I}_{2}\) & 178 & 329 & 472 & 326 \\
\hline \(\mathrm{I}_{3}\) & 378 & 328 & 392 & 366 \\
\hline \(\mathrm{I}_{4}\) & 238 & 280 & 313 & 277 \\
\hline Mean & 282 & 318 & 410 & 336 \\
\hline
\end{tabular}
S.E. of marginal mean of \(I \quad=33.42 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of \(\mathbf{H}=28.94 \mathrm{lb}\)./ac.
S.E. of body of table \(=57.88 \mathrm{Ib} . / \mathrm{ac}\).

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Chas.

Ref:-Mh. 52(101).
Type:-‘'C'.

Object:-To study the effect of tillage operations (harrowing-cum-interculturing) on the growth and yield of Jowar.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black and medium. (b) N.A. (iii) 3.10.1952. (iv) (a) 1 ploughing. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (c) N.A. (v) Nil. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) N.A. (ix) \(2.24^{\prime \prime}\) (3.10.1952 to 1.2.1953), (x) 1.2.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) Number of interculturings :- \(\mathrm{I}_{1}=1, \mathrm{I}_{2}=2, \mathrm{I}_{3}=3\) and \(\mathrm{I}_{4}=4\).
(2) Number of harrowings:- \(\mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
3. DESIGN :
\(\begin{array}{llllll}\text { (i) } 4 \times 3 \text { Fact. in R.B.D. (ii) (a) } 12 . & \text { (b) N.A. } & \text { (iii) } 4 . & \text { (iv) (a) } 33^{\prime} \times 33^{\prime} . & \text { (b) } 30^{\prime} \times 30^{\prime} . & \text { (v) } 1.5^{\prime} \text { ring }\end{array}\) round the net plot. (vi) Yes.
// Crop :- Jowar.
Site :- Akola (Maharashtra).

Ref. :-Complex Expts. (T.C.M.), 1953.
Type :~ 'MV'

Object :-To study the effect of N ajd P on the yield of different varieties of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loam to clay loam. (b) Neutral in reaction. (iii) 3rd week of July, 1953. (iv) (a) N.A. (b) Drilled. (c) 7 lb ./ac. (d) Between plants \(9^{\prime \prime} \times 12^{\prime \prime}\) and between rows \(16.5^{\prime \prime}\). (e) N.A. (vi) As per treatments. (vii) Unirrigated. (viii) N.A. (ix) \(20^{\circ}\) to \(30^{\prime \prime}\). (x) N.A.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of \(\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20\) and \(\mathrm{N}_{2}=40 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{2}=20\) and \(\mathrm{P}_{2}=40 \mathrm{lb}\)./ac.
(3) 3 varieties: \(\quad V_{1}, V_{1}\) and \(V_{3}\); details N.A.

Manures applied 3-4 days before sowing by broadcast.
3. DESIGN :
(i) \(3^{3}\) factorial in R.B.D. (confounded). (ii) (a) 3 blocks/replication; 9 plots/block. (b) N.A. (iii) 1. (iv) (a) N.A. (b) \(27^{\prime} \times 27^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Incidence of striga in patches was fairly common. (iii) Yield data. (iv) (a) 1953-1956. (b) No. (c) N.A. '(v) No. (vi) Nil. (vii) Nil.

\section*{5. RESULTS :}
(i) \(3043 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(124.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of N, P and V and interactions NP, VP are highly significant. Interaction VN is also significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & V3 \\
\hline \(\mathrm{P}_{0}\) & 2066 - & 2737 & 3048 & 2617 & 2463 & 2824 & 2564 \\
\hline \(\mathrm{P}_{1}\) & 2956 & 3501 & 3176 & 3211 & 2930 & 3062 & 3641 \\
\hline \(\mathrm{P}_{2}\) & 3305 - & 3297 & 3302 & 3301 & 2935 & 3676 * & 3292 \\
\hline Mean & 2776 & 3178 & 3175 & 3043 & 2776 & 3187 & 3166 \\
\hline \(V_{1}\) & 2388 & 3073 & 2868 & & & & \\
\hline \(V_{2}\) & 3032 & 3391. & 31.40 & & & & \\
\hline \(\mathrm{V}_{3}\) & 2909 & 3071 & 3517. & & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=41.5 \mathrm{lb} . / \mathrm{ac}\). \\
\(S\) E. of body of table & \(=71.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop : Jowar (Rabi).
Site : Agri.Res., Stn., Chas.

Ref. :- Mh. 51(72).
Type :-‘C'.

Object :- To study the effect of tillage operations (harrowing-cum-interculturing) on the growth and yield of Jowar.
1. BASAL CON̄DITIONS:
(i) (a) Gram-Jowar. (b) Gram, (c) Nil. (ii) (a) Deep black and medium. (b) N.A. (iii) 29.9.1951. (iv) (a) 1 ploughing. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1., medium. (vii) Unirrigated. (viii) N.A. (ix) 8.63". (29.9.1951 to 15. 2. 1952). (x) 15.2.1952.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(I) Number of interculturings:- \(\mathrm{I}_{1}=1, \mathrm{I}_{2}=2, \mathrm{I}_{3}=3\) and \(\mathrm{I}_{4}=4\).
(2) Number of harrowings :- \(\quad \mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
3. DESIGN :
(i) \(3 \times 4\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) \(33^{\prime} \times 33^{\prime}\). (b) \(30^{\prime} \times 30^{\prime}\). (v) \(1.5^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Count, height and grain yield. (iv) (a) 1951-1952 to 1955-1956. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(336 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(115.8 \mathrm{lb} . / \mathrm{ac}\).
(i.i) Main effect of H alone is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|c} 
& \(\mathbf{H}_{\mathbf{1}}\) & \(\mathbf{H}_{\mathbf{2}}\) & \(\mathbf{H}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{I}_{\mathbf{1}}\) & 334 & 336 & 462 & 377 \\
\(\mathrm{I}_{\mathbf{2}}\) & 178 & 329 & 472 & 326 \\
\(\mathrm{I}_{\mathbf{3}}\) & 378 & 328 & 392 \\
\(\mathrm{I}_{\mathbf{4}}\) & 238 & 280 & 313 & 366 \\
\hline Mean & 282 & 318 & 410 & 277 \\
\hline
\end{tabular}
\(\begin{array}{ll}\text { S.E. of marginal mean of } \mathrm{I} & =33.42 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of marginal mean of } \mathbf{H} & =28.94 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =57.88 \mathrm{lb} . / \mathrm{ac} .\end{array}\)

Crop : - Jowar (Rabi).
Site :-Agri. Res. Stn., Chas.
Ref: \(\boldsymbol{m}\) Mh. 52(101).
Type :-‘'.

Object :-To study the effect of tillage operations (harrowing-cum-interculturing) on the growth and yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black and medium. (b) N.A. (iii) 3.10.1952. (iv) (a) 1 ploughing. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) N.A. (ix) \(2.24^{\prime \prime}\) (3.10.1952 to 1.2.1953). (x) 1.2.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) Number of interculturings :- \(I_{1}=1, I_{2}=2, I_{3}=3\) and \(I_{4}=4\).
(2) Number of harrowings :- \(\mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
3. DESIGN :
(i) \(4 \times 3\) Fact. in R.B.D. (ii) (a) \(12 . \quad\) (b) N.A. \(\quad\) (iii) 4 . (iv) (a) \(33^{\prime} \times 33^{\prime}\). (b) \(30^{\prime} \times 30^{\prime}\). (v) \(1.5^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Height, count and grain yield. (iv) (a) 1951-52 to 1955-56. (b) No, (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(504 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(119.5 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|lll|l} 
& \(\mathbf{H}_{\mathbf{1}}\) & \(\mathbf{H}_{\mathbf{2}}\) & \(\mathbf{H}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{I}_{\mathbf{1}}\) & 581 & 463 & 443 & 496 \\
\(\mathrm{I}_{\mathbf{2}}\) & 477 & 450 & 554 &. \\
\(\mathrm{I}_{\mathbf{3}}\) & 456 & 526 & 684 & 494 \\
\(\mathrm{I}_{\mathbf{4}}\) & 446 & 531 & 417 & 555 \\
\hline Mean & & 490 & 497 & 524 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of I & \(=34.48 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of H & \(=29.88 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of body of table & \(=59.77 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Chas.

Ref :-Mh. 5 3(153).
Type:-‘'C'

Object :-To study the effect of tillage operations (harrowing-cum-interculturing) on the growth and yield of Jowar.
1. BASAL. CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black and medium. (b) N.A. (iii) 21.9.1953. (iv) (a) 1 ploughing. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) Nil. (ix) 7.66\% (21.9.1953 to 11.2.1954). (x) 11.2.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) Number of interculturings: \(\mathrm{I}_{1}=1, \mathrm{I}_{8}=2, \mathrm{I}_{8}=3\) and \(\mathrm{I}_{4}=4\).
(2) Number of harrowings: \(\mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{2}=4\).
3. DESIGN :
(i) \(4 \times 3\) Fact. inf R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) \(33^{\prime} \times 33^{\prime}\). (b \(30^{\prime} \times 30^{\prime}\). (v) \(1.5^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nit. (iii) height, count and grain yield. (iv) (a) 1951-52 to 1955-56. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \({ }^{6} 615 \mathrm{lb} . / \overline{\mathrm{ac}}\).
(ii) \(150.0 \mathrm{lb} / \mathrm{ac}\).
(jii) None of the effects is significant.

\section*{401}
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{H}_{\mathbf{1}}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{8}\) & Mean \\
\hline \(\mathrm{I}_{1}\) & 594 & 585 & 568 & 582 \\
\hline \(\mathrm{I}_{2}\) & 636 & 603 & 650 & 630 \\
\hline \(\mathrm{I}_{3}\) & 659 & 587 & 715 & 654 \\
\hline \(\mathrm{I}_{4}\) & 600 & 603 & 570 & 591 \\
\hline Mean & 622 & 595 & 626 & \\
\hline \multicolumn{3}{|l|}{S.E. of marginal mean of I} & \(=43.3 \mathrm{lb}\) & \\
\hline \multicolumn{3}{|l|}{S.E. of marginal mean of \(\mathbf{H}\)} & \(=37.51 \mathrm{lb}\) & \\
\hline \multicolumn{3}{|l|}{S.E. of body of table} & \(=75.01\) & \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref :- Mh. 48(16).
Type :m 'C'.

Object :-To find out the optimum spacing and economic seed rate for Jowar.
1. BASAL CONDITIONS: -
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Deep black cotton type having a depih of \(\mathbf{1 0}^{\prime}\) to \(\mathbf{1 3}^{\prime}\). (b) Refer soil analysis, Jalagaon. (iii) 26.8.1948. (iv) (a) 2 ploughings. (b) Seeds drilled. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Weeding and interculturing on 19.9.1948. (ix) \(34.46^{\prime \prime}\). (x) 2.12.1948.

\section*{2. TREATMENTS :}

Main-plof treatments :
3 spacings: \(C_{1}=12^{*}, C_{2}=15^{\prime}\) and \(C_{8}=18^{\circ}\).
Sub-plot treatments :
3 seed rates : \(S_{1}=4, S_{2}=6\) and \(S_{3}=8 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) \(150^{\prime} \times 120^{\prime}\). (iii) 6. (iv) (a) For mainplots ; \(150^{\prime} \times 38^{\prime}, 150^{\prime} \times 40^{\prime}\) and \(150^{\prime} \times 42^{\prime}\) for \(12^{\prime \prime}, 15^{\prime \prime}\) and \(18^{\prime \prime}\) spacings respectively. For sub-plots; \(50^{\prime} \times 38^{\prime}\). \(50^{\prime} \times 40^{\prime}\) and \(50^{\prime} \times 42^{\prime}\) for \(12^{\prime \prime}, 15^{\prime \prime}\) and \(18^{\prime \prime}\) spacings respectively. (b) \(40^{\prime} \times 30^{\prime}\). (v) 4 rows on either side and \(5^{\prime}\) of row at each end of net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Stemborer attack at the young stage, caterpillers on leaves. (iii) Grain and kadbi yield. (iv) (a) 1948-49 to 1954-55. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(729 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(72.9 \mathrm{lb} . / \mathrm{ac}\).
(b) \(107.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Spacing alone is highly significant.
(iv) Av. yield of grain in lb,/ac.


Crop : Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref:- Mh.49(148).
Type:- 'C'.

Object :-To study the spacing-cum-seed rate effect on Jowar under Khandesh conditions.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Deep black cotton soil. (b) Refer soil analysis, Jalagaon. (iii) 3.7.1949. (iv) (a) N.A. (b) Drilling. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Aispuri(late). vii) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 31.18. (x) 11.12.1949.
2. TREATMENTS :

Main-plot treatments :
3 spacings between rows : \(C_{1}=12^{\prime \prime}, C_{2}=15^{\prime \prime}\) and \(C_{8}=18^{\prime \prime}\).
Sub-plot treatments:
3 seed rates : \(S_{1}=4, S_{2}=6\) and \(S_{3}=8 \mathrm{lb}\)./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication, 3 sub-plots/main-plot. (b) \(150^{\prime} \times 120^{\prime}\). (iii) 6. (iv) (a) \(40^{\prime} \times 50^{\prime}, 42^{\prime} \times 50^{\prime}\) and \(38^{\prime} \times 50^{\prime}\) for \(C_{1}, C_{2}\) and \(C_{3}\) respectively. (b) \(40^{\prime} \times 30^{\circ}\). (v) 4 rows on either side. (vi) Yes.
4. GENERAL :
(i) Growth was satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1954, (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(823 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(106.2 \mathrm{lb} / \mathrm{ac}\).
(b) \(98.4 \mathrm{lb} / \mathrm{ac}\).
(iii None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{r|ccc|c} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & Mean \\
\hline\(S_{1}\) & 775 & 766 & 814 & 785 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 820 & 805 & 831 & 819 \\
\(\mathrm{~S}_{3}\) & 816 & 837 & 940 & 864 \\
\hline Mean & & 804 & 803 & 862
\end{tabular}
S.E. of difference of two
1. C marginal means
2. \(S\) marginal means
3. \(S\) means at the same level of \(C\)
4. C means at the same level of \(\mathbf{S}\)
\(=35.4 \mathrm{lb} . / \mathrm{ac}\).
\(=32.8 \mathrm{lb} . / \mathrm{ac}\).
\(=56.8 \mathrm{lb} . / \mathrm{ac}\)
\(=58.3 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref:- Mh. \(50(35) . \therefore\). . Type:- ‘C’:

Object :-To find out optimum spacing and economic seed rate for Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 11.7.1950. (iv) a) N.A. (b) Seeds drilled. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Weeding on 24.8.1950. hoeing on 1.8.1950 and 8.8.1950. (ix) 21.73'. (x) 10.12.1950.
2. TREATMENTS :

Main-Plot treatments :
3 spacings: \(\mathrm{C}_{1}=12^{\prime \prime}, \mathrm{C}_{2}=15^{\circ}\) and \(\mathrm{C}_{3}=18^{\prime \prime}\).
Sub-plot treatments :
3 seed rates : \(S_{1}=4, S_{2}=6\) and \(S_{3}=8 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) \(150^{\prime} \times 120^{\prime}\). (iii) 6 . (iv) (a) For subplots \(50^{\circ} \times 38^{\prime} ; 50^{\prime} \times 40^{\prime} 50^{\circ} \times 42\) for \(C_{1}, C_{2}\) and \(C_{3}\) spacing respectively. (b) \(40^{\circ} \times 30^{\prime}\). (v) 4 rows on either side and 5 ' of row at both ends. (vi) Yes.
4. GENERAL:
(i) The plots sown with 4 lb . seed rate and \(15^{\prime \prime}\) spacing produced very small earheads and also thin type of kadbi. Plots with 4 lb . seed rate and \(12^{\circ}\) spacing have produced bigger earheads. (ii) Attack of stem borer to a small extent was observed at the early stage of the crop. (iii) Weight of jowar grain and kadbi. (iv) (a) 1948-49 to 1954-55. (b) No. (c) N A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(929 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(150.3 \mathrm{lb} . / \mathrm{ac}\).
(b) \(91.5 \mathrm{lb} . / \mathrm{ac}\).
(iii) Interaction \(C \times S\) is highly significant and main effect of \(\mathbf{S}\) is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) \\
\hline \(\mathbf{S}_{1}\) & 882 & 854 & 910 \\
\(\mathbf{S}_{\mathbf{2}}\) & 877 & 907 & 973 \\
\(\mathbf{S}_{3}\) & 1000 & 1022 & 906 \\
\hline N.ean & 920 & 928 & 940 \\
979 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(C\) marginal means & \(=49.8 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=30.3 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(C\) & \(=52.6 \mathrm{lb} / \mathrm{ac}\). \\
4. \(C\) means at the same level of \(S\) & \\
\end{tabular}
\begin{tabular}{ll} 
Crop :- Jowar (Kharif). & Ref :- Mh. 51(38). \\
Site :- Agri. Res. Sin., Jalagaon. . & Type:-'C'.
\end{tabular}

Object :-To find out optimum spacing and economic seed rate for Jowar.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 10.7.1951. (iv) (a) N.A. (b) Drilling. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Weeding on 15.8 .1951 and 23.8.1951 ; hoeing 13.8.1951, 17.8.1951 and 23.8.1951. (ix) 20.14". (x) 4.12.1951.

\section*{2. TREATMENTS:}

Main oplot treatments :
3 spacings : \(\mathrm{C}_{2}=18^{\prime \prime}, \mathrm{C}_{2}=24^{\prime \prime}\) and \(\mathrm{C}_{3}=30^{\prime \prime}\).
Sub-plot treatments :
3 seed rates : \(S_{1}=4, S_{2}=6\) and \(S_{3}=8 \mathrm{lb}\)./ac.
3. DESIGN:
(i) Split-plot. (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) \(150^{\circ} \times 114^{\prime}\) (iii) .6. (iv) (a) Gross plot size of main-plot : \(150^{\circ} \times 36^{\prime}\) for \(18^{\prime \prime}\) spacing, \(150^{\circ} \times 38^{\prime}\) for \(24^{\prime \prime}\) spacing and \(150^{\circ} \times 40^{\prime}\) for \(30^{\circ}\) spacing Sub-plot \(50^{\prime} / 36^{\prime}\) for \(18^{\prime \prime}\) spacing, \(50^{\prime} \times 38^{\prime}\) for \(24^{\prime \prime}\) spacing and \(50^{\circ} \times 40^{\prime}\) for \(30^{\prime \prime}\) spacing. (b) \(40^{\circ} \times 30^{\circ}\). (v) Two rows on either side and \(5^{\prime}\) of row at both ends. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain and kadbl yield. (iv) (a) 1948-49 to 1954-55. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) The spacing i.e. main-plot treatment is diffarent from those of last two years.
5. RESULTS:
(i) \(1370 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(419.6 \mathrm{lb} / \mathrm{ac}\).
(b) \(156,8 \mathrm{lb}\)./ac.
(iii) Seed rate alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{r|ccc|c} 
& \(\mathrm{C}_{1}\) & \(\mathrm{C}_{\mathbf{2}}\) & \(\mathrm{C}_{\mathbf{3}}\) & Mean \\
\hline \(\mathrm{S}_{\mathbf{1}}\) & 1414 & 1445 & 1507 & 1459 \\
\(\mathrm{~S}_{\mathbf{3}}\) & 1339 & 1350 & 1257 & 1315 \\
\(\mathrm{~S}_{3}\) & 1257 & 1334 & 1418 & 1336 \\
\hline Mean & 1337 & 1380 & 1394 & - \\
\hline & & & &
\end{tabular}
S.E. of difference of two
1. C marginal means \(\quad=140.1 \mathrm{lb}, / \mathrm{ac}\).
2. S marginal means \(\quad=52.3 \mathrm{lb} / \mathrm{ac}\).
3. S mean at the same level of \(C \quad=90.4 \mathrm{lb}\)./ac.
4. C means at the same level of \(S \quad=158.3 \mathrm{lb}, \mathrm{ac}\).

Crop :- Jowar (K harif). . Ref:- Mh. 52(66).
Site :- Agri. Res. Stn., Jalagaon.
Type:- 'C'.

Object :-To find out optimum spacing and economic seed rate for Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) 71 C.L./ac. of F.Y.M. \(+100.1 \mathrm{~b} . / \mathrm{ac}\), of A/S. (ii)
(a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon.
(iii) 29.6.1952. (iv) (a) N.A. (b) Seeds drilled. (c) and (d)"As per treatments: (e) N.A. (l) Nil.
(vi) Aispuri. (vii) Unirrigated. (vii) N.A. (ix) 17.61". (x) 24.11.1952.

\section*{2. TREATMENTS :}

Main-plot treatments:
3 spacings : \(\mathrm{C}_{1}-18^{\prime \prime} \mathrm{C}_{2}=24^{\prime \prime}\) and \(\mathrm{C}_{3}=30^{\prime \prime}\),
Sub-plot treatments:
3 seed rates \(: S_{1}=4, S_{2}=6\) and \(S_{g}=8 \mathrm{lb} \cdot / \mathrm{ac}\)

\section*{3. DESIGN :}
(i) Split plot. (iii) (a) 3 main-plots/block, 3 sub-plots/main-plot. (b) \(150^{\circ} \times 114^{\circ}\). (iii) 6 . (iv) (a) \(50^{\circ} \times 36^{\circ}\) for \(18^{\prime}\) spacing, \(50^{\circ} \times 39^{\prime}\) for \(24^{\prime \prime}\) spaing and \(50^{\prime} \times 40^{\prime}\) for \(30^{\prime \prime}\) spacing. (b) \(40^{\prime} \times 30^{\prime}\). (v) \(3^{\prime}\) rows on either side and \(5^{\prime}\) of row at both ends. (vi) Yes.
4. GENERAL:
(i) Not satisfactory. (ii) Altack of stemborers was observed in the early stage. Attack of long smut disease was also observed in all the plots. (ii) Grain and kadbi yield. (iv) (a) 1948-49 to 1954-5;. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(696 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(195.3 \mathrm{lb} / \mathrm{ac}\).
(b) \(1565 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{rlll|l} 
& \(C_{1}\) & \(C_{\mathbf{1}}\) & \(C_{3}\) & Mean \\
\hline\(S_{\mathbf{1}}\) & 68 J & 804 & 728 & 737 \\
\(S_{\mathbf{2}}\) & 723 & 650 & 651 & 675 \\
\(S_{3}\) & 670 & 718 & 640 & 6.6 \\
\hline Mean & 691 & 724 & 673 &
\end{tabular}
S.E. of difference of two
1. C marginal means \(=65.2 \mathrm{lb} . / \mathrm{ac}\).
2. S marginal means \(=51.9 \mathrm{lb} . / \mathrm{ac}\).
3. S means at the same level of \(\mathbf{C}\)
\(=90.4 \mathrm{lb} / \mathrm{ac}\).
4. C means at the same level of \(S\) \(=98.4 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref:- Mh. 53(125).
Type :- 'C'.

Object :-To find out optimum spacing and economic seed rate for Jowar.

\section*{1. BASAL CONDITIONS :}
(l) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) \(7 \frac{1}{2}\) C.L./ac. of F.Y.M. \(+100 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jılagaon. (iii) 28.61953. (iv) (a) N.A. (b) Seeds drilled. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Aispuri. (vii) Unirrigated. (viii) Hoeing on 18.7.1953, weeding on 25.7.1953 and 10.9.1953. (ix) 23.77". (x) 24.11.1953.
2. TREATMENTS :

Main-plot treatments :
3 spacings: \(C_{1}=18^{\prime \prime}, C_{2}=24^{\prime \prime}\) and \(C_{3}=30^{\circ}\).
Sub-plot treatments :
3 seed rates: \(S_{1}=4, S_{-}=6\) and \(S_{3}=8 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) \(150 \times 114\). (iii) K. (iv) (a) Gross plot size of main-plot; \(50 \times 36^{\prime}\) for \(18^{\prime \prime}\) spacing; \(50^{\prime} \times 38^{\prime}\) for \(24^{\prime \prime}\) spacing and \(50^{\prime} \times 40^{\prime}\) for \(30^{\prime \prime}\) spacing. For sub-plot : \(50^{\prime \prime} \times 36^{\prime \prime}, 50^{\prime} \times 38^{\prime}\) and \(50^{\prime} \times 40^{\prime}\) for \(18^{\prime \prime}, 24^{\prime \prime}\) and \(30^{\prime \prime}\) spacings respectively. (b) \(40^{\prime} \times 30^{\circ}\). (v) 2 rows on cither side and \(5^{\prime}\) of row at both ends. (vi) Yes.
4. GENERAL:
(i) General condition of the crop was good. (ii) Nil. (iii) Grain and kadbi yield. (iv) (a) 1948-1949 to 1954-1955. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1595 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(161.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(183.7 \mathrm{Ib} . / \mathrm{ac}\).
(iii) Main effect of C alone is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{r|ccc|c} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & \begin{tabular}{c} 
Mean \\
\hline\(S_{1}\) \\
\(S_{2}\) \\
\(S_{3}\)
\end{tabular} \\
\hline 1479 & 1759 & 1634 & 1624 \\
\hline Mean & 1500 & 1669 & 1451 & 1607 \\
159 & 1619 & 1447 & 1553 \\
\hline 1590 & 1682 & 1511 & 1595
\end{tabular}
S.E. of difference of two
1. C marginal means
\(=53.9 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
\(=61.2 \mathrm{lb} . / \mathrm{ac}\).
3. S means at the same level of \(C\)
\(=106.0 \mathrm{lb} . / \mathrm{ac}\).
4. \(C\) means at the same level of \(S \quad=101.8 \mathrm{lb} . / \mathrm{ac}\).

Crop:-Jowar (Rabi).
Site :-Agri. Res. Stn., Jeur.

Ref :-Mh. 53(53).
Type :-‘C’.

Object :-To find out the suitable combination of harrowings and interculturings.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 24.9.1953. (iv) (a) N.A. (b) Seeds drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) apart. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 5.88". (x) 3.2.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) Number of interculturings: \(\mathrm{I}_{1}=1, \mathrm{I}_{8}=2, \mathrm{I}_{3}=3\) and \(\mathrm{I}_{4}=4\).
(2) Number of harrowings: \(\mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{2}=4\).
3. DESIGN :
(i) \(3 \times 4\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) \(46^{\prime} \times 33^{\prime}\). (b) \(40^{\prime} \times 27^{\prime}\). (v) \(3^{\prime}\) all romad the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) NiI. (iii) Grain and fodder yield. (iv) (a) \(195!-\) continued. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Experiment failed in 1951. (vii) Nil.
5. RESULTS:
(i) \(560 \mathrm{lb} . / \mathrm{ac}\).
(ii) 243.6 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{H}_{1}\) & \(\mathrm{H}_{3}\) & \(\mathrm{H}_{3}\) & Mean \\
\hline \(\mathrm{I}_{1}\) & 487 & 575 & 836 & 633 \\
\hline \(\mathrm{I}_{2}\) & 623 & 379 & 441 & 481 \\
\hline \(\mathrm{I}_{2}\) & 535 & 742 & 527 & 601 \\
\hline \(\mathrm{I}_{4}\) & 628 & 534 & 415 & 526 \\
\hline Mean & 568 & 558 & 555 & 560 \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{ll} 
S.E. of marginal mean of \(\mathbf{I}\) & \(=70.20 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(\mathbf{H}\) & \(=60.98 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=121.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}} & \\
\hline
\end{tabular}

Crop:- Jowar.
Site :- Agri. Res. Stn., Mohol.

Ref :- Mh. 48(34).
Type: ' C '.

Object :-To find out suitable spacing and seed rate for Jowar crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Wheat. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a)
N.A. (b) Drilling with coultered drills. (c) As per treatments. (d) As per treatments. (e) N.A. (v)

Nil. (vi) M \(-35-1\). (late). (vii) Unirrigated. (viii) N.A. (ix) 5.38". (x) N.A.
2. TREATMENTS :

Main-plot treatments :
3 row spacings : \(\mathrm{C}_{2}=12^{\prime \prime}, \mathrm{C}_{2}=15^{\prime \prime}\) and \(\mathrm{C}_{3}=18^{\prime \prime}\).
Sab-plot treatments:
3 seed rates : \(S_{1}=3, S_{2}=4\) and \(S_{3}=5 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(30^{\prime} \times 15^{\prime}\). (v) 2 rows on either side and \(3^{\prime}\) of rows on either end of the sub-plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1948-1949 to 1952-1953. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(862 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(136.0 \mathrm{lb} . / \mathrm{ac}\).
(b) \(150.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Noi:e of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|lll|l} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & Mean \\
\hline\(S_{1}\) & 832 & 936 & 968 & 909 \\
\(S_{8}\) & 839 & 919 & 871 & 876 \\
\(S_{3}\) & 887 & 758 & 758 & 801 \\
\hline Mean & 850 & 871 & 866 & 862
\end{tabular}

S E. of difference of two
1. C marginal means
\[
\begin{aligned}
&= 45.3 \mathrm{lb} . / \mathrm{ac} \\
&= 50.2 \mathrm{lb} . / \mathrm{ac} \\
&=86.9 \mathrm{lb} . / \mathrm{ac} \\
&=83.8 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
2. \(S\) marginal means
3. \(S\) means at the same level of \(C\)
4. C means at the same level of \(S\)

Crop :- Jowar.
Site :m Agri. Res. Stn. Mohol.

Ref :- Mh. 49 (56).
Type :m 'C'.

Object :-To find out suitable spacing and seed rate for Jowar crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 4.10.1949. (iv)
(a) N.A. (b) Drilling with coultered drill. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) M-35-1 (late). (vii) Unirrigated. (viii) 6 interculturings. (ix) 1.14*. (x) 23.2.1950.
2. TREATMENTS :

Main-plot treatments :
3 row spacings: \(\mathrm{C}_{1}=12^{\prime \prime}, \mathrm{C}_{2}=15^{\circ}\) and \(\mathrm{C}_{3}=18^{\prime \prime}\).
Sub-plot treatments :
3 seed rates: \(S_{1}=3, S_{2}=4\) and \(S_{3}=5 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub plots-main plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(30^{\circ} \times 15^{\circ}\). (v) Two rows on either side and \(3^{\prime}\) of rows on either end of the net plot. (vi) Yes.
4. GENERAL :
(i) Normal growth. (ii) Sugary disease was observed. (iii) Grain yield. (iv) (a) 1948-49 to 1952-53. (b) \(\cdot a\) (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(462 \cdot \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(143.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(78.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(S\) alone is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 560 & 540 & 387 & 496 \\
\hline \(\mathrm{S}_{2}\) & 527 & 439 & 429 & 465 \\
\hline \(\mathrm{S}_{3}\) & 450 & 457 & 365 & 424 \\
\hline Mean & 512 & 479 & 394 & 462. \\
\hline
\end{tabular}

S E. of difference of two
1. C marginal means
\(=47.9 \mathrm{lb} . / \mathrm{ac}\).
2. \(S\) marginal means
3. \(S\) means at the same level of \(C\)
\(=26.3 \mathrm{lb}\)./ac.
\(=45.7 \mathrm{lb} / \mathrm{ac}\).
4. \(C\) mears at the same level of \(S\)
\(=60.7 \mathrm{lb}\)./ac.

Crop:- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref:- Mh. 50 (10).
Type:- 'C'.

Object :--To find out suitable spacing and economic seed rate for Jowar crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) Wheat. (c) No. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 27-28.10.1950.
(iv) (a) 4 harrowings and ploughing once in 3 years. (b) Seeds drilled. (c) and (d) As per treatments.
(e) N.A. (v) N.A. (vi) M-35-1. (vii) Unirrigated. (viii) Interculturings 4 times. (ix) 9.91".
(x) 14.3.1951.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}
\[
3 \text { spacings: } C_{1}=12^{*}, C_{2}=15^{\circ} \text { and } C_{3}=18^{\prime \prime} .
\]

Sub-plot treatments : 3 seed rates: \(S_{1}=3, S_{2}=4\) and \(S_{3}=5 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) \(36^{\prime} \times 19^{\prime}\).
\(36^{\prime} \times 20^{\prime}\) and \(36^{\prime} \times 21^{\prime}\) for \(12^{\prime \prime}, 15^{\prime \prime}\) and \(18^{\prime \prime}\) spacings respectively. (b) \(30^{\prime} \times 15^{\prime}\). (v) 2 rows on each side and 3 feet of row at both the ends. (vi) Yes.
4. GENERAL :
(i) Stunted growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-49 to 1951-52. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) For want of mulch condition in the soil, the sowing was delayed. There was no rain after sowing which affected badly the growth of the crop, though the germination was satisfactory.
5. RESULTS :
(i) \(202 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(90.99 \mathrm{lb} . / \mathrm{ac}\).
(b) \(58.08 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & \(\mathrm{C}_{2}\) & \(\mathrm{C}_{3}\) & Mean \\
\hline \(\mathrm{S}_{1}\) & 231 & 230 & 223 & 228 \\
\hline \(S_{2}\) & 186 & 202 & 188 & 192 \\
\hline \(S_{3}\) & 173 & 218 & 166 & 186 \\
\hline Mean & 197 & 217 & 192 & 202 \\
\hline
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(C\) marginal means & \(=30.33 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(S\) marginal means & \(=19.36 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(S\) means at the same level of \(C\) & \(=32.91 \mathrm{lb} . / \mathrm{cc}\). \\
4. \(C\) means at the same level of \(S\) &
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn, Mohol.
Ref:- Mh. 51(12).
Type:- 'C'.
Object:-To find the optimum spacing and economic seed rate for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analvsis, Mohol. (iii) 12.10.1951: (iv) (a) 4 harrowings. (b) Seeds drilled. (c) and (d) As per treatments. (e) N.A. (v) N.A. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 7.49". (x) 12.2.1952.
2. TREATMENTS :

Main-plot treatments :
3 row spacings : \(C_{1}=12^{\prime \prime}, C_{2}=15^{\prime \prime}\) and \(C_{3}=18^{\prime \prime}\).
Sub-plof treatments :
3 seed rates: \(S_{1}=3, S_{2}=4\) and \(S_{3}=5 \mathrm{Jb} / / \mathrm{ac}\).
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (iii) 6 . (iv) (a) \(36^{\prime} \times 19^{\prime}, 36^{\prime} \times 20^{\prime}\) and \(36^{\circ} \times 21^{\prime}\) for \(12^{\prime \prime}, 15^{\prime \prime}\) and \(18^{\prime \prime}\) spacings respectively. (b) \(30^{\prime} \times 15^{\prime}\). (v) 2 rows on each side and \(3^{\prime \prime}\) at both ends of net plot. (vi) Yes.

\section*{4. GENERAL:}
(i) Normal and healthy, (ii) Sugary disease was noted. (iii) Grain yield. (iv) (a) 1948-49 to 1951-52. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) It was not cloudy as was desired during the stage of grain formation, no rains were received during crop period. There was no moisture in the soil.
5. RESULTS:
(i) \(966 \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(130.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(206.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & C \({ }_{8}\) & \(\mathrm{C}_{3}\) & Mean \\
\hline \(S_{1}\) & 868 & 1041 & 1078 & 996 \\
\hline \(\mathrm{S}_{2}\) & 993 & 902 & 894 & 929 \\
\hline \(\mathrm{S}_{3}\) & 863 & 1041 & 1011 & 972 \\
\hline Mean & 908 & 995 & 994 & 966 \\
\hline
\end{tabular}
S.E. of difference of two
1. C marginal means
\(=43.6 \mathrm{lb} / \mathrm{ac}\).
2. S marginal means
\(=68.7 \mathrm{lb} . / \mathrm{ac}\).
8. S means at the same level of \(C\)
\(\Rightarrow 119.1 \mathrm{lb} . / \mathrm{ac}\).
4. \(C\) means at the same level of \(S\)
\(=106.5 \mathrm{lb} . / \mathrm{ac}\).

Crop - Jowar (Kharif).
Site :- Govt. Exptl, Farm, Nagpur.

Ref:-Mh. 51(122).
Type:- 'C'.

Object:-To find out the optimum spacing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur.
(iii) 16.7.1951. (iv) (a) and (b) N.A. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) N.A. (vi) Saoner (medium). (vii) Unirrigated. (viii) 4 hoeings. (ix) \(38.29^{\circ}\). (x) 4.1.1952.
2. TREATMENTS :

3 row to row spacings : \(C_{1}=12^{\circ}, C_{2}=18^{\prime \prime}\) and \(C_{3}=24^{\prime \prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(66^{\prime} \times 16 \frac{2}{2}^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Grain and cobs yield. (iv) (a) N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(2073 \mathrm{lb} / \mathrm{ac}\).
(ii) \(225.2 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(C_{1}\) & 2144 \\
\(C_{2}\) & 1980 \\
\(C_{3}\) & 2100 \\
S.E./mean & \(=112.6 . \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Jowar (Kharif).
Site :- Govt. Exptl. Farm, Nagpur.

```
Ref:- Mh. 52(140).
Type:- 'C'.

Opject :-To find out the optimum spacing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 15.7.1952. (iv) (a) 5-6 bakharings. (b) Sown by argada with Sarata. (c) 10 lb ./ac. (d) As per treatments. (e) N.A. (v) Nil. (vi) Soaner (medium). (vii) Unirrigated. (viii) 4 to 5 hoeings and 1 weeding. \(\begin{array}{lll}\text { (ix) } 29.32^{*} & \text { (x) } 8.121952 .\end{array}\)
2. TREATMENTS:

3 row spacings : \(C_{1}=12^{\prime \prime}, C_{3}=18^{\prime \prime}\) and \(C_{8}=24^{\prime \prime}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.

4, GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESUCLTS :
(i) \(1037 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(125.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Treatment Av. yield
\begin{tabular}{lc}
\(\mathrm{C}_{1}\) & 1040 \\
\(\mathrm{C}_{2}\) & 1050 \\
\(\mathrm{C}_{3}\) & 1020 \\
S.E./mean & \(=62.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Govt. Exptl. Farm, Nagpur .

Ref:- Mh. 53(223).
Type:- 'C'.

Object :-To study the effest of different methods of sowing Jowar.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Magpur.
(iii) 19.7.1953. (iv) (a) 5-6 bakharings. (b) As per treatments. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) N.A. (e) N.A.
(v) Nil. (vi) Saoner (medium). (vii) Unirrigated. (viii) 4 hoeings and 3 weedings. (ix) \(33.70^{\circ}\).
(x) 23.12 .1953.
2. TREATMENTS :

3 methods of sowing :
1. Argada sowing.
2. Dibbling one plant at a place.
3. Dibbling two plants at a place.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(40^{\prime} \times 27.2^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Cobs and grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b). N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 1993 lb ./ac.
(ii) \(166.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not"differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\). Treatment Av. yield
\begin{tabular}{ll} 
1. & 2068 \\
2. & 1875 \\
3. & 2038 \\
S.e./mean & \(=83.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop :- Jowar (Kharif). \\ Site :- Govt. Exptl. Farm, Nagpur. \\ Ref:- Mh. 53(224). \\ Type:- 'C'.
}

Object :-To find out the effect of topping on Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analvsis, Nagpur.
(iii) 18.7.1953. (iv) (a) N.A. (b) Sowing by Argada. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) and (e) N.A. (v) Nil.
(vi) Improved Saonar (late). (vii) Unirrigated. (viii) 3 hoeings and 3 weedings. (ix) \(3910^{\circ}\).
(x) 23.121953.

\section*{2. TREATMENTS:}
1. No topping.
2. Topping after 40 days of sowing.
3. Topping after 60 days of sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(36.3^{\prime} \times 30^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iil) Grain yield. (iv) (a) N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1713 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(203.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
Treatment Av. yield
1. 1998
2. 1520
3. 1622
S.E./mean \(=83.1 \mathrm{lb} . / \mathrm{ac}\).
\(-\begin{aligned} & \text { Crop :- Jowar. } \\ & \text { Site :- Govt. Exptl. Farm, Nagpur. }\end{aligned}\)
Ref :-Mh. 53(222).
Type:- ' C '.

Ohject : -To compare the effect on yield of Jowar sown mixed with udld and Tur.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 197.1953. (iv) (a) and (b) N.A. (c) As per treatments. (d) and (e) N.A. (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) N.A. (ix) 39.10". (x) 24.12.1953.
2. TREATMENTS:
1. Jowar alone, seed rate \(10 \mathrm{lb} . / \mathrm{ac}\).
2. Jowar at \(7 \frac{1}{2} \mathrm{lb} . / \mathrm{ac} .+\) udid at \(2 \frac{1}{2} \mathrm{lb} . / \mathrm{ac}\).
3. Jowar at \(7 \frac{1}{2} \mathrm{lb} . / \mathrm{ac} .+t u r\) at \(2 \frac{1}{2} \mathrm{lb} . / \mathrm{ac}\).
4. Jowar manured at 20 lb ./ac. of N as A/S.
3. DESIG \(V\) :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5 . (iv) (a) 0.62 th. ac. (b) \(66^{\prime} \times 16.5^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) N.A. (b) and (c) No. (v) (a) N.A. (b) Nil. (vi) Nil. (vii) Yield of \(u\) ur and udid. N.A.
5. RESULTS:
(i) \(1796 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(309.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 1778 \\
2. & 1446 \\
3. & 1830 \\
\(\sim\) 4. & 2131 \\
S.E./mean & \(=138.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Padegaon.

Ref: \(\boldsymbol{\sim}\) Mh. 51(158).
Type:- 'C'.
Object:-To find out the suitable sowing date for Jowar.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) to (c) N.A. (v) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as \(\mathrm{A} / \mathrm{S}+\) cake in 1:2 (vi) M-35-1. (vii) Irrigated. (viii) 2 weedings. (ix) \(14.68^{\prime \prime}\). ( \(x\) ) \(D_{1}\) on 29.12.1951, \(D_{2}\) on 12.1.1952, \(D_{3}\) on 2.2.1952, \(D_{4}\) on 15.2.1952, \(D_{5}=21.2 .1952\).
2. TREATMENTS :

5 sowing dates : \(D_{1}=1.8 .1951, D_{2}=15.8 .1951, D_{3}=30.8 .1951, D_{4}=14.9 .1951\) and \(D_{5}=30.9 .1951\).
3. DESIGN :
(i) R.B.D. (ii) (a) \(5 . \quad\) (b) N.A. (iii) 4 . (iv) (a) \(48^{\prime} \times 28^{\circ}\). (b) \(34.03^{\prime} \times 24^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not good. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(348 \mathrm{lb} / \mathrm{ac}\).
(ii) \(48.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are bighly significant.
(iv) Av. yield of grain in lbi/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{D}_{\mathbf{1}}\) & 272 \\
\(\mathbf{D}_{\mathbf{2}}\) & 286 \\
\(\mathbf{D}_{\mathbf{3}}\) & \(\ddots 374\) \\
\(\mathbf{D}_{\mathbf{4}}\) & 427 \\
\(\mathbf{D}_{\mathbf{6}}\) & 380 \\
S.E./mean & \(=24.2 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif). ' Ref :- Mh. 51(157).
Site :- Agri. Res. Stn., Padegaon. Type :- 'C'.
Object :-To find the suitable sowing date for Jowar crop.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) N.A. (b) Sowing by drilling. (c) \(8 \mathrm{lb} / \mathrm{ac}\). (d) \(12^{\prime \prime}\) between rows. (e) N.A. (v) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as cake at sowing. (vi) Elichpuri. (vii) Irrigated. (viii) 3 weedings. (ix) \(14.68^{\prime \prime}\). ( x ) \(\mathrm{D}_{1}, \mathrm{D}_{2}\) and \(\mathrm{D}_{3}\) on 27.11.1951, \(\mathrm{D}_{4}\) on 1.12.1951 and \(\mathrm{D}_{5}\) on 9.12.1951.
2. TREATMENTS :

5 sowing dates: \(D_{1}=15.6 .1951, D_{8}=30.6 .1951, D_{3}=15.7 .1951, D_{4}=30.7 .1951\) and \(D_{5}=14.8 .1951\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5.
(b) N.A. (iii) 4
(iv) (a) \(48^{\prime} \times 28^{\prime}\).
(b) \(30.03^{\prime} \times 24^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) About 50\% damage due to attack of birds. (iii) Grain and fodder yield. (iv) (a) 1951-1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(696 \mathrm{lb} / \mathrm{ac}\).
(ii) \(238.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatmènt differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|}
\hline Treatment & Av. yield \\
\hline \(\mathbf{D}_{1}\) & 360 \\
\hline \(\mathrm{D}_{2}\) & 470 \\
\hline \(\mathrm{D}_{3}\) & - 1290 \\
\hline \(\mathrm{P}_{4}\) & \(\therefore 1287\) \\
\hline \(D_{5}\) & 274 \\
\hline S.E./mean & \(=119.0\) \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Padegaon.
Object :-To find a suitable sowing date for Jowar crop.

\section*{1. BASAL CONDITIONS :}
-(i) (a) Nil. (b) Wheat. (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) As per treatments. (iv) (a) N.A. (b) Hand sowing. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(1^{\prime}\) between rows. (e) N.A. (v) \(40 \mathrm{lb} . / \mathrm{ac}\). of N as cake. (vil Elichpuri. (vii) Irrigated. (viii) 3 weedings. (ix) \(11.01^{\prime \prime}\). (x) \(\mathrm{D}_{1} \& \mathrm{D}_{2}\) on 4. 12. 1952, \(D_{3}\) on 20.12.1952. \(D_{4}\) on 25.12.1952 and \(D_{5}\) on 25.12.1952.
2. TREATMENTS:-

5 sowing dates : \(-D_{1}=15\) th June, 1952, \(\quad D_{2}=30\) th June, 1952, \(\quad D_{3}=15\) th July, \(\quad\) 1952, \(\quad D_{4}=30\) th Jüly, 1952 and \(D_{5}=14\) th August, 1952.
3. DESIGN:
(i) R.BD. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) \(48^{\prime} \times 28^{\prime}\). (b) \(34.03^{\prime} \times 24^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Very low yield. (ii) Attack of stemborer and birds. (iii) Grain and fodder yield. (iv) (a) 19511953. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i). \(56 \quad \mathrm{Bb} / \mathrm{ac}\)
(ii) \(173.8 \mathrm{lb} / \mathrm{ac}\)
(iii. Treatment differences are highly significant.
(iv) Av. yieid of grain in Ib./ac.
\begin{tabular}{|c|c|}
\hline Treatment & Av. yield \\
\hline \(D_{1}\) & 533 \\
\hline \(\mathrm{D}_{3}\) & 546 \\
\hline \(\mathrm{D}_{3}\) & 586 \\
\hline \(\mathrm{D}_{6}\) & 896 \\
\hline \(\mathrm{D}_{5}\) & 320 \\
\hline S.E/mean & = 86.9 D \\
\hline
\end{tabular}

Crop :-Jowar (Rabi).
Ref :-Mh. 5z(45)
Site :-Govt. Main Farm, Parbhani.
Type =-‘C'。
Object:-To determine the optimum spacing for Jomar crop.
1. BASAL CONDITIONS :
i) Groundnut-Jowar. (b) Groundnut. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil amalyais, Parthani. (iii) 6. 10. 1952 (iv) (a) 6 harrowings. (b) Sown by ditbling (c) N.A. (d) As per treaments. (e) 2-3 seed per dibtle thinned to one (v) NiL (vi) P. J-4 R. (vii) Unirrigated. (viii) 2 weedingn (ix) \(25.38^{\circ}\). (x) 21.3.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 plant to plant spacings: \(P_{1}=12^{\circ}, P_{1}=15^{\circ}\) and \(P_{3}=18^{\circ}\).
(2) 3 row to row spacings : \(R_{i}=3^{\circ}, R_{2}=6^{\circ}\) and \(R_{2}=\boldsymbol{q}^{\prime}\).
3. DESIGN :
(i) \(3 \times 3\) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 120\) th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal (ii) Nil. (iii) Stem thickness and grain yield. (iv) (a) 1:52 to 1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil
5. RESULTS:
(i) \(1388 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(291.6 \mathrm{lb} / \mathrm{sec}\).
(iii) Main effect of \(\mathbf{P}\) alone is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathbf{P}_{1}\) & \(\mathrm{P}_{\mathbf{2}}\) & \(\mathbf{P a}_{1}\) & Mean \\
\hline \(\mathbf{R}_{1}\) & 1062 & 1469 & 1289 & 1273 \\
\hline \(\mathrm{R}_{2}\) & 1283 & 1297 & 1534 & 1371 \\
\hline \(\mathbf{R}_{2}\) & 1268 & 1640 & 1651 & 1520 \\
\hline Meen & 1204 & 1468 & 1491 & 1388 \\
\hline \multicolumn{2}{|r|}{S.E of marginal means S.E. of body of table} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& =68.0 \mathrm{lb} . / \mathrm{ac} \\
& =121.0 \mathrm{Jb} . / \mathrm{mC}
\end{aligned}
\]} & \\
\hline
\end{tabular}

\author{
Crop :-Jowar (Kharif). \\ Ref :-Mh. 53(24). \\ Site :-Govt. Main Farm, Parbhani. \\ Type : \({ }^{\mathbf{\prime}} \mathbf{C}\) ',
}

Object :-To determine the optimum spacing for Jowar crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Groundnut—Jowar. (b) Groundnut. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 4.10.1953. (iv) (a) 5 harrowings. (b) Sown by dibbling. (c) N.A. (d) As per treatments.(e) 2-3 seed per dibble thinned to one. (v) Nil. (vi) P.J.-4 R. (vii) Unirrigated. (viii) 3 weedings. (ix) 34.23'. (x) 7.4.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 3 plant to plant spacings: \(P_{1}=12^{\prime \prime}, P_{2}=15^{\prime}\) and \(P_{3}=18^{\prime}\).
(2) 3 row to row spacings: \(R_{1}=3^{\prime \prime}, R_{2}=6^{\prime \prime}\) and \(R_{8}=9^{\prime}\).
3. DESIGN :
(i) \(3 \times 3\) Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 120\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and Kadbi yield and stem thickness. (iv) (a) 1952-1954. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(777.9 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(258.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(1 \mathrm{~b} . / \mathrm{ac}\).
\begin{tabular}{l|rrr|l} 
& \multicolumn{1}{c}{\(\mathbf{P}_{1}\)} & \(\mathbf{P}_{\mathbf{2}}\) & \(\mathbf{P}_{\mathbf{3}}\) & \multicolumn{1}{l}{ Mean } \\
\hline \(\mathbf{R}_{1}\) & 794.4 & 7512 & 777.6 & 774.4 \\
\(\mathbf{R}_{\mathbf{2}}\) & 842.4 & 764.4 & 700.8 & 769.2 \\
\(\mathbf{R}_{3}\) & 854.4 & 741.6 & 774.0 & 790.0 \\
\hline Mean & 830.4 & 752.4 & 750.8 & 777.9
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=61.0 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of tatle & \(=105.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:-Jowar (Kharif).
Site :-Govt. Main Farm, Parbhani.

Ref :-Mh. 53(22).
Type :-‘C’.

Object :-To determine the optimum spacing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Jowar a Groundnut-Cotton. (b) Cotton. (c) Nil. (ii) (a) Medium black. (b) Refer soilanalysis, Parbhani. (iii) 26.6.1953. (iv) (a) 3 harrowings. (b) By dibbling. (c) N.A. (d) As per treatments. (c) 2-3 seeds per hill thinne 1 to one. (v) Nil. (vi) P.J. 4-K. (vii) Unirrigated. (viii) 3 weedings. (ix) \(34.64^{\prime \prime}\). (x) 15.12.1953.
2. TREATMENTS :

Main-plot treatments :
3 row to row spacings : \({ }^{*} R_{1}=12^{\prime \prime}, R_{2}=15^{\prime \prime}\) and \(R_{3}=18^{\prime \prime}\).
Sub-plot treatments :
3 plant to plant spacings : \(P_{1}=3^{\prime \prime}, P_{2}=6^{\prime \prime}\) and \(P_{3}=9^{\prime \prime}\).
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block, 3 sub-plots/main-plot. (b) N.A.- (iii) 6. (iv) (a) \(1 / 172\) th a.c.o \(1 / 1^{32}\) th ac., and \(1 / 110\) th ac., for \(12^{\circ}, 15^{\circ}\) and \(18^{\circ}\) spacings respectively. (b) \(1 / 272\) th ac., \(1 / 218\) th ac., and \(1 / 181\) th ac. for \(12^{\prime \prime}, 15^{\prime \prime}\) and \(18^{\prime \prime}\) spacings respectively. (v) Two border rows were discarded for fevery plot at harvest. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Katbi thickness and grain yield. (lv). (a) 1952-1954. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(673 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(242.8 \mathrm{lb} / \mathrm{ac}\).
(b) \(163.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll} 
& \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{1}}\) & \(\mathbf{R}_{\mathbf{3}}\) \\
\hline \(\mathbf{P}_{\mathbf{1}}\) & 702 & 628 & 684 \\
\(\mathbf{P}_{\mathbf{1}}\) & 632 & 685 & 715 \\
\hline 618 & 658 & 735 & \begin{tabular}{l} 
Mean \\
\hline
\end{tabular}\(|\)\begin{tabular}{ll}
671 \\
671 & 657 \\
671
\end{tabular} \\
\hline 673
\end{tabular}
S.E. of difference of two
\begin{tabular}{ll} 
1. \(R\) marginal means & \(=80.9 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(P\) marginal means & \(=54.6 \mathrm{lb} . / \mathrm{ac}\). \\
3. \(P\) means at the same level of \(R\) & \(=94.6 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(R\) means at the same level of \(P\) & \(=111.9 \mathrm{lb} / / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Govt. Main Farm, Parbhani.
Ref:- Mh. 48(7).
Type:- 'C'.
Object:-To ascertain the best seed rate for Jowar crop.
b. BASAL CONDITIONS .
(i) (a) Cotton-Groundnut or Gram - Jowar. (b) Groundnut. (c) Nil. (ii) ia) Light black soil. (b) Refer soil analysis, Parbhani. (iii) 25.6.1948. (iv) (a) One ploughing and 4 bakh arings. (b) and (d) Sown \(15^{\prime \prime}\) apart by seed dril. (c) As per treatments. (e) N.A. (v) Nil (vi) P.J.4-K. (vii) Unirrigated. (viii) One hoeing and one weeding: (ix) 42.12 \({ }^{\circ}\). (x) 1.12.1948.
2. TREATMENTS:

3 seed rates : \(\mathbf{R}_{\mathbf{1}}=8 \mathrm{lb} . / \mathrm{ac}, \mathrm{R}_{\mathrm{g}}=10 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{R}_{\mathbf{3}}=12 \mathrm{lb} / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A, (iii) 8. (iv) (a) \(63^{\prime} \times 22\) k' \(^{\prime}\). (b) \(57^{\prime} \times 20^{\prime}\). (v) Two border rows discarded by every plot at harvest. (vi) Yes.
4. GENERAL:
(i) Stand was gappy. (ii) Nil. (iii) Measurements of kadbi thickness (bottom and central node) of 25 plants for each plot. Kadbi and grain yield. (iv) (a) 1947-1949. (b) and (c) No. (v) (a) and (b) Nil. (vi) Nil. (vii)
The stand was gappy and hence the results are not reliable.

\section*{5. RESULTS:}
(i) \(35.01 \mathrm{lb} . / \mathrm{ac}\).
(ii) 2622 lb ./ac.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 41.26 \\
\(\mathbf{R}_{\mathbf{2}}\) & 35.14 \\
\(\mathbf{R}_{\mathbf{3}}\) & 28.65 \\
S.E./mean & \(=9.23 \mathrm{lb} . /\) ac.
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Govt. Main Farm, Farbhani.
Ref:- Mh. 49(14).
Type:- 'C':
Object :-To ascertain the best seed rate for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Groundnut or Gram—Jowar. (b) Groundnut. (c) Nil. (ii) (a) Light black. (b) Refer soil analysis, Parbahani. (iii) 27.6.1949. (iv) (a) One ploughing and 4 bakharings. (b) By seed drill. (c) As per treatments. (d) \(15^{\prime \prime}\) (e) N.A. (v) Nil. (vi)-P.J.4-K. (vii) Unirrigated. (viii) 1 weeding and 1 hoeing. (ix) 39.05". (x) 8.12.1249.
2. TREATMENTS :

3 seed rates : \(R_{1}=8, R_{2}=10\) and \(R_{8}=12 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(63^{\prime} \times 22 \frac{1}{2}^{\prime}\). (b) \(57^{\prime} \times 20^{\prime}\). (v) Two border rows were discarded for every plot at harvest. (vi) Yes.
4. GENERAL :
(i) Stand was gappy. (ii) Nil. (iii) Measurements of kadbi thickness (bottom and central node) of 25 plants for each plot and grain yield. (iv) (a) 1947-1949. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(219.2 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(44.46 \mathrm{lb} . / \mathrm{ac}\).
(ii!) Treatment differences are not significant.
(iv, Av. yield of grain in Ib./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 234.3 \\
\(\mathbf{R}_{\mathbf{2}}\) & 220.8 \\
\(\mathbf{R}_{\mathbf{8}}\) & 201.8 \\
S.E./mean & \(-15.72 \mathrm{lb} . /\) ac. \\
& \\
&
\end{tabular}
- Crop :- Jowar (Rabi).

Site :- Govt. Main Farm, Parbhani.

Ref:- Mh. 48(8).
Type :- 'C'.

Object :-To determine the optimum seed rate for Jowar crop.
1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 13.10.1948. (iv) (a) One ploughing and 4 harrowings. (b) Sown by seed dril. (c) As per treatments. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) P.J.-4-R. (vii) Unirrigated. (viii) 1 weeding and . 2 hoeings. (ix) 44.49". (x) 21.3.1949.
2. TREATMENTS:

3 seed rates: \(8 \mathrm{lb} . / \mathrm{ac} . \quad \mathrm{R}_{\mathbf{2}}=10 \mathrm{lb} . / \mathrm{ac}\), and \(\mathrm{R}_{\mathbf{2}}=12 \mathrm{lb} . / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(63^{\prime} \times 22.5^{\prime}\). (b) \(57^{\prime} \times 20^{\prime}\). (v) 2 rows all round plot. (vi) Yes.

\section*{4. GENERAL :}
(i) Uneven stand. (ii) Heavy attack of sugary disease and aphids. (iil) Diameter of stalk at lower most internode and central internodes, grain and kadbi yield. (iv) (a) 1947 to 1954. (b) and (c) N.A. (v) (a) and, b ) \(\wedge\) il. (vi) Nil. (vii) Excessive rains in November affected the yield.
5. RESULTS :
(i) \(76.00 \mathrm{lb} / \mathrm{ac}\).
(ii) \(20.52 \mathrm{lo} . / \mathrm{ac} .1\)
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 55.48 \\
\(\mathbf{R}_{\mathbf{2}}\) & 95.76 \\
\(\mathbf{R}_{\mathbf{3}}\) & 76.76 \\
S.E./mean & \(=7.20 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Govt. Main Farm, Parbhani.

Ref :- Mh. 49(15).
Type:- 'C’.

Object: - To determine the optimum seed rate for Jowar crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) NiI. (ii) (a) Black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 14.10 .1949 . (iv) (a) 4 harrowings. (b) Sown by seed drill. (c) As per treatments. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) P.J.-4-R. (vii) Unirrigated. (viii) N.A. (ix) 40.30". (x) 25.3.1950.
2. TREATMENTS :

3 seed rates : \(\mathrm{R}_{1}=8 \mathrm{lb} . / \mathrm{ac} ., \mathrm{R}_{2}=10 \mathrm{lb}\)./ac. and \(\mathrm{R}_{3}=12 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(63^{\prime} \times 22.5^{\prime}\) (b) \(57^{\prime} \times 20^{\prime}\). (v) 2 rows on all sides of the net plot size. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Kadbi and grain yield. (iv) (a) 1947-1954. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(2568 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(44.54 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cl} 
Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 262.4 \\
\(\mathbf{R}_{\mathbf{2}}\) & 244.3 \\
\(\mathbf{K}_{\mathbf{a}}\) & 263.6 \\
S.E./mean & \(=15.75 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar (Rabi).
Site :- Govt. Main Farm, Parbhani.

Ref:- Mh. 50(23).
Type :- ' C '.

Object :-To determine the optimum seed rate for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Black cotton soil. (b) Refer scil analysis, Parbhani. (iii) 9.10.1950. (iv) (a) 4 horrowings. (b) Sown by seed drill. (c As per treatments. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) P.J.-4-R. (vii) Unirrigated. (viii) Weedings. (ix) 29.34". (x) 20.3.1951.
2. TREATMENTS :

3 seed rates : \(R_{1}=8 \mathrm{lb} . / \mathrm{ac} ., \mathrm{R}_{2}=10 \mathrm{lb}\)./ac. and \(\mathrm{R}_{\mathbf{3}}=12 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(63^{\prime} \times 22.5^{\prime}\). (b) \(57^{\prime} \times 20^{\prime}\). (v) 2 rows all round the net plot. . (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Diameter of stalk at lower most internode and central internode and grain yield. (iv) (a) 1947-1954. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(583.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(76.38 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significañt.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\). Treatment Av. yield
\begin{tabular}{ll}
\(\mathbf{R}_{\mathbf{1}}\) & 605.0 \\
\(\mathbf{R}_{\mathbf{2}}\) & 561.0 \\
\(\mathbf{R}_{\mathbf{s}}\). & 582.0 \\
S.E \(/\) mean & \(=27.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Govt. Main Farm, Parbhani.

Ref :- Mh. 51(23).
Type:- 'C'.

Object :-To determine the optimum seed rate for Jowar crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 15.10.1951. (iv) (a) 3 harrowings. (b) Sown by seed drill. (c) As per treatments. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) P.J-4-R. (vii) Unirrigated. (viii) N.A. (ix) \(28.60^{\prime \prime}\). (x) 26.3.1952.
2. TREATMENTS :

3 seed rates : \(\mathrm{R}_{1}=8 \mathrm{lb} . / \mathrm{ac} ., \mathrm{R}_{2}=10 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{R}_{\mathbf{3}}=12 \mathrm{lb} / \mathrm{ac}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. E(iii) 8. (iv) (a) \(63^{\prime} \times 22.5^{\prime}\). (b) \(1 / 38\) th ac. (v) 2 rows on all sides. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and kadbi yield. Thickness of the stem at the lowest and at the central internodes. (iv) (a) 1947-1954. (b) and (c) N.A. (v) (a) and (b) Nil. (vi) Crop received little or no rain. during growth period. Conditions were generally droughty. (vii) Nil.
5. RESULTS :
(i) \(1120 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(34.20 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(v) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathbf{R}_{\mathbf{1}}\) & 1161 \\
\(\mathbf{R}_{\mathbf{2}}\) & 1137 \\
\(\mathbf{R}_{\mathbf{g}}\) & - \\
S.E./mean & \(=1064\) \\
&
\end{tabular}
```

 Crop :- Jowar (Rabi).
 Ref :- Mh..52(44).
 Site :- Govt. Main Farm, Parbhani.
 Type :- 'C'.
 Object :-To determine the optimum seed rate for Jowar crop.

```
1. BASAL CONDITIONS :
(i) (a) Cotton-Sowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 7.10.1952. (iv) (a) 3 harrowings. (b) Sown by seed drill. (c) As per treatments. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) P.J.-4-R. (vii) Unirrigated. (viii) N.A. (ix) \(25.38^{\prime \prime}\) (x) 22.3.1953.
2. TREATMENTS :

3 seed rates : \(R_{1}=8 \mathrm{lb} . / \mathrm{ac} ., \mathrm{R}_{\mathbf{2}}=10 \mathrm{lb} . / \mathrm{ac}\). and \(\mathrm{R}_{\mathbf{3}}=12 \mathrm{lb}\)./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(63^{\prime} \times 22.5^{\prime}\). (b) \(1 / 38\) th ac. (v) 2 rows on all sides. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain and kadbi yield, thickness of the stem at the lowest and at the central internodes. (iv) (a) 1947-1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1128 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(174.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) . Treatment differences are not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
\(R_{1}\) & 1189 \\
\(R_{2}\) & 1125 \\
\(R_{8}\) & \(1068 \quad V\) \\
S.E./mean & \(=62.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

> C rop :- Jowar (Rabi).
> Site :- Govt. Main Farm, Parbhani.

Ref:- Mh. 53(23).
Type :~ 'C'.
Ot ject: - To determine the optimum seed rate for Jowar crop.
4. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 8.10.1953. (iv) (a) One ploughing and 3 harrowings. (b) Sown by seed drill. (c) As per treatments. (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil. (vi) P.J.-4-R. (vii) Unirrigated. (viii) N.A. (ix) \(34.23^{\prime \prime}\). (x) 10.4.1954.
2. TREATMENTS :

3 seed rates : \(\mathbf{R}_{1}=4 \mathrm{lb}\)./ac., \(\mathbf{R}_{2}=8 \mathrm{lb}\)./ac. and \(\mathrm{R}_{3}=12 \mathrm{lb}\)./ac.
3. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) \(1 / 33.5\) th ac. (b) \(1 / 40\) th ac. (v) 2 rows on all sides.
(vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain and kadbl yield. Thickness of the stem at the lowest and at the central internodes. (iv) (a) 1947-1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(846.0 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(272.8 \quad \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./2c.
\begin{tabular}{ccll} 
Treatment & Av. yield & \\
\(\mathbf{R}_{\mathbf{1}}\) & 734.0 & \\
\(\mathbf{R}_{\mathbf{2}}\). & 826.0 & \\
\(\mathbf{R}_{\mathbf{3}}\) & 976.0 & \\
S.E./mean & \(=96.0 \mathrm{lb}\). /ac. &
\end{tabular}

\author{
Crop :- Jowar (Rabi). \\ Site :- Agri. College Farm, Poona.
}

\section*{Ref :- Mh. 51(178).}

Type:- 'C'.
Object :-To find out the effect of dates of sowing on the growth and yield of Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Medium black soil. (b) Refer soil analysis, Poona. (iii) As per treatments. (iv) (a) N.A. (b) Drilling by 3 coultered Poona seed drill. (c) 8 lb ./ac. (d) Between rows \(18^{\prime \prime}\); between plants-irregular. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Irrigated. (viii) 2 to 3 weedings and hoeings. (ix) \(26.62^{\prime \prime}\). (x) N.A.
2. TREATMENTS :

6 dates of sowing: \(\quad D_{1}=17.8 .1951, \quad D_{2}=30.8 .1951, \quad D_{8}=24.9 .1951, \quad D_{4}=6.10 .1951, \quad D_{5}=17.10 .1951\) and \(D_{6}=27.10 .1951\).
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 5. (iv) (a) \(38^{\prime} \times 18^{\prime}\). (b) \(35^{\prime} \times 15^{\prime}\). (v) \(1.5^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) The crop was affected in seedling stage by Jowar stem fly. (iii) Grain and fodder yield. (iv) (a) N.A. (b) No. (c) No. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(861 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(254.2 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(1 b_{i} / a c\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(\mathrm{D}_{1}\) & 1097 \\
\(\mathrm{D}_{2}\) & 619 \\
\(\mathrm{D}_{3}\) & 844 \\
\(\mathrm{D}_{4}\) & 865 \\
\(\mathrm{D}_{5}\) & 959 \\
\(\mathrm{D}_{6}\) & 778 \\
S.E./mean & \(=113.6 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{array}{ll}
\text { Crop : }- \text { Jowar (Rabi). } & \text { Ref :-Mh. } 52(211) . \\
\text { Site :- Agri. College Farm, Poona. } & \text { Type :-‘C'. }
\end{array}
\]

Object :- To find out the effect of dates of sowing on growth and yield of Jowar.
1. BASALCONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) As per treatmenis. (iv) (a) N.A. (b) Drilling by 3 coultered Poona seed drill. (c) 8 lb ./ac. (d) Between rows \(18^{\prime \prime}\); between plants-irregular. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Irrigated. (viii) 2 to 3 weedings and hoeings, (ix) 22.03". (x) N.A.
2. TREATMENTS:

5 sowing dates : \(D_{1}=17.8 .1952, D_{2}=30.8 .1952, D_{3}=24.9 .1952, D_{4}=6.10 .1952\) and \(D_{5}=17.10 .1952\).
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) \(38^{\prime} \times 18^{\prime}\). (b) \(35^{\prime} \times 15^{\prime}\). (v) \(1.5^{\prime}\) ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) The treatments were affected in early atages by Jowar stem fly. (iii) Grain and fodder yield. (iv) (a) N.A. (b) No. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1277 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(413.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ sigaificantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
\(D_{1}\) & 1301 \\
\(D_{2}\) & 1301 \\
\(D_{3}\) & 1410 \\
\(D_{4}\) & 1338 \\
\(D_{5}\) & 1032 \\
S.E./mean & \(=206.7 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{lc} 
Crop :-Jowar (Kharif). & Ref:-Mh. 52(213). \\
Site : Agri. College Farm, Poona. & Type:".
\end{tabular}

Object :-To study the effect of different preparatory tillages on yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 20.6.1952. (iv) (a) One ploughing. (b) Drilling. (c) 10 lb ./ac. (d) Between rows \(18^{\prime \prime}\) and between plants-irregular. (e) -. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Weeding from 27.6.1952 to 30.6.1952 and interculturing on 7.7.1952. (ix) 22.03". (x) 16.12.1952.
2. TREATMENTS:
1. Harrowing only.
2. Ploughing year after year.
3. Plcughing every alternate year.
4. Ploughing every third year.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) \(132^{\prime} \times 12^{\prime}\). (b) \(124^{\prime} \times 9^{\prime}\). (v) \(4^{\prime} \times 1.5^{\prime}\). (vi) Yes.
4. GENERAL :
(i) Withering was noticed. For want of rain, the growth was checked. There was [no grain formation (ii) Attack of stem borer was noticed to the extent of \(20 \%\). (iii) Fodder yield. (iv) (a) 1949-1956. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) \(9030 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(967.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of fodder in lb ./ac.

Treatment Av. yield
1 Av. 742
2. 10302
3. 9464
\(4 . \quad 8911\)
S.E./mean \(\quad=395.1 \mathrm{lb} . / \mathrm{ac}\).

\section*{Crop :-Jowar (Rabi). \\ Site :-Agri. College Farm, Poona.}

Ref :-Mh. 53(191).

Object : -To study the effect cf different tillages on the yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Jowar-Cotton. (b) Cotton. (c) Nil. (ii) (a) Light brown, shallow to medium; depth 1 foot. (b) Refer soil analysis, Poona. (iii) 16.9.1953. (iv) (a) As per treatments. (b) to (e) N.A. (v) Nil. (vi) Maldandl. 35-1. (vii) Unirrigated. (viii) Interculturing thrice and weeding oncs.' (ix) 5.24". (x) 26. 1. 1954.
2. TREATMENTS :
1. Harrowing only.
2. Ploughing every year.
3. Ploughing alternate year.
4. Ploughing every third year.
3. DESIGN :
(i) R.B.D. (ii) (a) 7 (including 3 dummies). (b) N.A. (iii) 6 . (iv) (a) \(132^{\prime} \times 12^{\prime}\). (b) \(124^{\prime} \times 8^{\prime}\). (v) N,A. (vi) Yes.
4. GENERAL:
(i) Faulty germination. Yield affected due to heavy rains. (ii) Attack of stem fly at early stage. (iii) Grain and fodder yield. (iv) (a) 1949-1956. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(267.3 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(90.60 \mathrm{lb} / \mathrm{ac}\)
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Avi. yield \\
1. & 290.4 \\
2. & 202.4 \\
3. & 303.6 \\
4. & 272.8 \\
S.E./mean & \(=37.04 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 48(105).
Type : ' C '.

Object:-To study the optimum frequency and time of harrowings.
1. BASAL CONDITIONS :
(i) (a)'Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) \({ }^{\prime}\) N.A.' (iv) (a) As per treatments. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 39.18". (x) N.A.
2. TREATMENTS :

One harrowing in each month as follows:-
1. May.
2. May and June.
3. May, June and July.
4. May, June, July and August.
5. June.
6. June and July.
7. June, July and August.
8. July.
9. July and August.
10. August.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) \(36^{\prime} \times 36^{\prime}\). (b) \(33^{\prime} \times 33^{\prime}\). (v) \(1.5^{\prime}\) ring alround the net plot.' (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield:' (iv) (a) 1946-1949. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
- RESULTS :
(i) \(359 \mathrm{lb} / \mathrm{ac}\).
(ii) \(133.6 \mathrm{lb} . / \mathrm{ac}\)
(iii) Treatmente do not differ sigdificantly.
(iv) Ar. yield of grain in th./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 295 \\
2. & 242 \\
3. & 403 \\
4. & 392 \\
5. & 276 \\
6. & 441 \\
7. & 340 \\
8. & 357 \\
9. & 421 \\
10. & 422 \\
S.E./meap & \(-66.8 \mathrm{lb} . / \mathrm{mc}\).
\end{tabular}

Crop :- Jowar (Rabi).
Ref = Mh. 49(133).
Site :- Agri. Rez. Stn., Shola pur.
Type \({ }^{-1} \mathrm{C}\) '.
Otject :-To stocy the optimun frequency and time of barrowing.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil apalssis, Sholapur. (iii) N.A. (iv) (a) Harrowings as per treatments. (b) Drilling (c) \(4 \mathrm{lb} / \mathrm{ac}\) (d) \(18^{\circ}\) between rowa. (c) N.A. (v) NiL (vi) M-35-1. (vii) Unirrigated. (viii) 2 ioterculturings. (ix) 38.17. (x) N.A.
2. TREATMENTS :

Ope barrowing each in the following moaths:
1. May.
2. May and June.
3. May, June and July.
4. May, June, July and Anguni.
5. Jupe.
6. Jupe and Jai'y.
7. June, July and August.
8. July.
9. July and August.
10. August.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(33^{\circ} \times 33^{\circ}\) (v) N.A. (vi) Yea.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1946-1949. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) NiJ.
5. RESULTS :
(i) \(205 \mathrm{lb} / \mathrm{ac}\)
(ii) \(114.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Ar. yield of grain in Ib./ac.
Treatment Av. yield
1. 154
2. 106
3. 307
4. 273
\(5 . \quad 87\)
6. 198
7. 142
\(8 . \quad 302\)
9. 306
10.177
S.E./mead - \(57.2 \mathrm{Ib} /\) ac.
\begin{tabular}{ll} 
Crop :- Jowar (Rabi). & Ref :- Mh. 48(103) \\
Site :- Agri. Res. Stn., Sholapur. & Type :- C.
\end{tabular}

Object : -To study the optimum frequency and time of interculturing of Jowar crop.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) 一. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) 39.18". (x) N.A.
2. TREATMENTS :

One interculturing per month :
1. October.
2. October and November.
3. October, November and December.
4. October, November, December and January.
5. November.
6. November and Decemter.
7. November, December and January.
8. December.
9. December and January.
10. January.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) \(200^{\circ} \times 20^{\circ}\). (b) \(197^{\prime} \times 17^{\prime}\). (v) \({ }^{5} 1.5^{\prime}\) alaround the net plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) N.A. (b) No. (c) Nil. (v) (a) Mohol, (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(229 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(60.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av yield of grain in lb-/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 232 \\
2. & 334 \\
3. & 207 \\
4. & 176 \\
5. & 214 \\
6. & 261 \\
7. & 205 \\
8. & 202 \\
9. & 270 \\
I0. & 188 \\
S.E./mean & \(=30.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 49(129).
Site :- Agri. Res. Stn., Sholapur.
Type:- 'C'.

Object :-To study optimum frequency and time of interculturing.
I. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) 4 lb ./ac. (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) As per treatments. (ix) \(38.17^{\circ}\). (x) N.A.
2. TREATMENTS :

One interculturing each month :
1. November.
2. November and December.
3. November, December and January.
4. November, December, January and February.
5. December.
6. December and January.
7. December, January and February.
8. January.
9. January and February.
10. February.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(197^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield: (iv) (a) N.A. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(209 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(86.48 \mathrm{ib} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(i) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 270 \\
2. & \(2^{7} 1\) \\
3. & 222 \\
4. & 143 \\
5. & 220 \\
6. & 264 \\
7. & 191 \\
8. & 177 \\
9. & 129 \\
10. & 204 \\
S.E./mean & \(=43.24 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.
Ref: Mh. 50(153).
Type :- 'C'.
Object : To find out optimum frequency and time of interculturing for Jowar crop.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vii) M-35-1. (vi) Unirrigated. (viii) As per treatments. (ix) \(24.04^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS:}

One interculturing each month :
1. October.
2. Octater and November.
3. October, Novemter and December.
4. October, November, December' and January.
5. November.
6. November and December.
7. November, December and January.
8. December.
9. December and January.
10. January.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(197^{\prime} \times 17^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) and (b) N.A. (c) Nil. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(331 \mathrm{lb} / \mathrm{ac}\).
(ii) 110.8 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 352 \\
2. & 380 \\
3. & 366 \\
4. & 360 \\
5 & 464 \\
6. & 331 \\
7. & 234 \\
8. & 347 \\
9. & 240 \\
10. & 238 \\
S.E./mean & \(55.4 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 51(65).
Type:- 'C'.

Object :-To find out the effect of harrowing and interculturing on Jowar.
1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Sholapur. (iii) 6.10.1951. (iv) (a) As per treatments. (b) N.A. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\). (c) N.A. (v) Nil. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) As per'treatments. (ix) \(6^{\prime \prime}\). (x) 12.2.1952.
2. TREATMENTS:

All combinations of (1) and (2)
(1) Numter of harrowings: \(\mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
(2) Number of interculturings: \(I_{1}=1, I_{2}=2, I_{8}=3\) and \(I_{4}=4\).
3. DESIGN :
(i) \(3 \times 4\) Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) \(32^{\prime} .7^{\prime \prime} \times 48^{\prime}\). (b) \(26^{\prime} .7^{\prime \prime} \times 42^{\prime}\). (v) \(3^{\prime}\) alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Height, count of plants and grain yield. (iv) (a) 1951-1955. (b) and (c) No. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(381 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(110.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{H}\) alone is highly significant. Others are not significant.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|}
\hline & \(\mathrm{H}_{1}\) & \(\mathrm{H}_{8}\) & \(\mathrm{H}_{3}\) & Mean \\
\hline \(\mathrm{I}_{1}\) & 263 & 430 & 449 & 381 \\
\hline \(\mathrm{I}_{3}\) & 297 & 399 & 538 & 411 \\
\hline \(\mathrm{I}_{3}\) & 226 & 482 & 4:0 & 399 \\
\hline \(\mathrm{I}_{4}\) & 240 & 403 & 361 & 335 \\
\hline Mean & \(2 \subseteq 6\) & 428 & 459 & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
S.E. of marginal mean of \(I\) \\
S.E. of margiral mean of H \\
S.E. of body of table
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& =31.93 \mathrm{lb} . / \mathrm{ac} . \\
& =27.65 \mathrm{lb} / \mathrm{ac} . \\
& =55.31 \mathrm{lb} / \mathrm{ac} .
\end{aligned}
\]}} \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
\begin{tabular}{lr} 
Crop:- Jowar (Rabi). & Ref:- Mh. 52(94). \\
Site :- Agri. Res. Stn., Sholapur. & Type :- 'C'
\end{tabular}

Object:-To find out the effect of harrowing and interculturing on yield of Jowar in dry tract.
1. BASAL CONDITIONS :
(il (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Sholapur. (iii) 10.10.1952. (iv) (a) 2 harrowings. (b) N.A. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\circ}\). (c) N.A. (v) Ni. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) As per treatments. (ix) \(2^{\prime \prime}\). (x) 12.2.1953.
2. TREATMENTS:

All combinations of (1) and (2) -
(1) Number of harrowings: \(\mathrm{H}_{1}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
(2) Number of interculturings : \(\mathrm{I}_{1}=1, \mathrm{I}_{2}=2, \mathrm{I}_{3}=3\) and \(\mathrm{I}_{4}=4\).
3. DESIGN :
(i) \(3 \times 4\) Fact. in R.B.D. (ii) (a) 12 (b) N.A. (iii) 4. (iv) \(31^{\prime}-7^{\circ \prime} \times 48^{\prime}\). (b) \(26^{\circ} 7^{\circ} \times 42^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Above normal. (ii) Nil. (iii) 3 heigts and 2 counts. (iv) (a) 1951 to 1955. (b) No. (c) N A. (v) (a) Chas and Jeur. (b) N.A. (vi) Nil. (vii) As the sowing was delayed, only 2 interculturings were given instead of 3 and 4 interculturings. Hence \(I_{8}\) and \(I_{4}\) were pooled with \(I_{2}\).
5. RESULTS:
(i) \(984 \mathrm{lb} / \mathrm{ac}\).
(ii) \(156.4 \mathrm{lb} / \mathrm{ac}\).
(iii) Masn effect of \(\mathbf{H}\) and interaction \(\mathbf{H} \times I\) are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{r|ccc} 
& \(H_{1}\) & \(H_{2}\) & \(H_{3}\) \\
\(\mathrm{I}_{\mathbf{1}}\) & 751 & 1214 & 936 \\
\(\mathrm{I}_{\mathbf{8}}\) & 936 & 1041 & 991 \\
\hline M4an & 890 & 1084 & 977 \\
\hline
\end{tabular}
S.E. of marginal mean of H
S.E. of marginal mean of I

S E. of body of table
- \(39.1 \mathrm{lb} . / \mathrm{ac}\).
\(-45.1 \mathrm{lb} . / \mathrm{ac}\).
\(=78.2 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 53(146).
Type :- 'C'.

Object :-To find out the effect of harrowing and interculturing on yield of Jowar in dry tract.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Sholapur. (iii) 14 10.1953. (iv) (a) As per treatments. (b) N.A. (c) 4 lb./ac. (d) \(18^{\prime \prime}\). (e) N.A. (v) Nil. (vi) M-35-1 (medium). (vii) Unirrigated. (viii) As per treatments. (ix) \(9^{\prime \prime}\). (x) 28.2.1954.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) Number of harrowings: \(\mathrm{H}_{3}=2, \mathrm{H}_{2}=3\) and \(\mathrm{H}_{3}=4\).
(2) Number of interculturings: \(I_{1}=1, I_{2}=2, I_{3}=3\) and \(I_{4}=4\).
3. DESIGN :
(i) \(3 \times 4\) Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4. (iv) (a) \(32^{\prime}-7^{\prime \prime} \times 48^{\prime}\). (b) \(26^{\prime}-7^{\prime \prime} \times 42^{\prime}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Height, count of plants and grain yield. (iv) (a) 1951 to 1955. (b) No. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) Nil. (vii) As the sowing of Rabi Jowar was delayed. only 3 interculturings were given instead of 4 interculturings. Hence \(I_{4}\) pooled with \(I_{3}\).

\section*{5. RESULTS :}
(i) \(466.6 \mathrm{lb} / \mathrm{ac}\).
(ii) \(95.83 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of H and interaction \(\mathrm{H} \times \mathrm{I}\) are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{c|ccc} 
& \(\mathrm{H}_{1}\) & \(\mathrm{H}_{2}\) & \(\mathrm{H}_{3}\) \\
\(\mathrm{I}_{1}\) & 394 & 456 & 472 \\
\(\mathrm{I}_{\mathbf{2}}\) & 444 & 521 & 503 \\
\(\mathrm{I}_{3}\) & 370 & 490 & 543 \\
\hline Mean & 395 & 490 & 515 \\
441 \\
489 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of marginal mean of \(\mathrm{H}^{2}\) & \(=23.96 \mathrm{lb} / \mathrm{ac}\). \\
S.E. of merginal mean of \(\mathrm{I}_{1}\) and \(\mathrm{I}_{\mathbf{2}}\) & \(=27.66 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of marginal mean of \(\mathrm{I}_{\mathbf{3}}\) & \(=19.56 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=58.46 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site: :- Agri, Res. Stn., Sholapur.
Ref :- Mh. 48 (104).

Object :-To find out the proper time of sowing Jowar.
1. BASAL CONDITIONS:
(i) (a) Jowar after gram. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) As per treatments. (iv) 4 harrowings. (b) Drilling. (c) 4 lb ./ac. (d) \(18^{\prime \prime}\) between rows. (e) N.A.
(v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 4 interculturings. (ix) \(39 \times 18^{\prime \prime}\). (x) N.A.
2. TREATMENTS:

15 dates of sowing: \(D_{1}=13.9 .1948, \quad D_{2}=15.9 .1948, \quad D_{3}=17.9 .1948, \quad D_{4}=19.9 .1948\), \(D_{6}=21.9 .1948, \quad D_{6}=23.9\).1948, \(\quad D_{7}=25.10 .1948, \quad D_{8}=15.10 .1948\), \(D_{0}=17.10 .1948, \quad D_{10}=19.10 .1948 . \quad D_{11}=23.10 .1948 . \quad D_{10}=25.10 .1948\), \(D_{18}=27.10 .1948, \quad D_{14}=29.10 .1948\). and \(D_{15}=31.10 .1948\).
3. DESIGN :
(i) R.B.D
(ii) (a) 15 .
(b) N.A. (iii) 4
(iv) (a) N.A.
(b) \(27^{\prime} \times 27^{\prime}\).
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) N.A.-1949. (b) Nc. (c) NiI. (v) (a) Mohol. (b) N.A. (vi) and (vii, Nil.
5. RESULTS:
(i) \(123 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(81.56 \mathrm{ib} . / \mathrm{ac}\).
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.


Crop :-Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref: \(\mathbf{w h}\). 49(132).
Type :- ' C '.

Object :-To find out suitable time of sowing Jowar.
1. BASAL CONDITIONS .
(i) (a) Jowar after gram. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur.
(iii) As per treatments. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 4 interculturings. (ix) 38.17". (x) N.A.
2. TREATMENTS:

6 sowing dates : \(D_{1}=13.9 .1949, D_{2}=15.9 .1949, D_{3}=17.9 .1949, D_{4}=7.10 .1949, D_{5}=9.10 .1949\) and \(D_{8}=11.10 .1949\).
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(27^{\prime} \times 30^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iiii) Grain and fodder yield. (iv) (a) N.A.-1949. (b) No. (b) Nil. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(222 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(87.28 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Treatment Av. yield
\(\mathrm{D}_{1}\). 239
\(\mathrm{D}_{2} \quad 177\)
\(\mathrm{D}_{3} \quad 225\)
\(\mathrm{D}_{4} \quad 176\)
\(\mathrm{D}_{5} \quad 240\)
\(\mathrm{D}_{6} \quad 277\)
S.E. \(/\) mean \(\quad=43.64 \mathrm{lb} . / \mathrm{ac}\).

Crop:- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref :- Mh. 48(112).
Type : \({ }^{〔} \mathrm{C}\) ’.

Object :-To determine the optimum frequency of ploughing for Jowar crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Gram-Jowar. (b) Gram. (c) Nit. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N A. (iv) (a) 4 harrowings. Ploughings as per treatment. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\text { }}\) between rows, (e) N.A. (v) Nid. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(39.18^{\circ}\). (x) N.A.

\section*{2. TREATMENTS :}

A = Harrowed only.
\(B_{1}=\) Ploughed every 3 years starting with 1946. \(B_{2}=\) Ploughed every 3 years ssarting with 1947. \(B_{3}=\) Ploughed every 3 years starting with 1948. \(C_{1}=\) Ploughed every 4 years starting with 1946. \(C_{2}=\) Ploughed elery 4 years starting with 1947. \(\mathrm{C}_{3}=\) Ploughed every 4 years starting with 1948. For this year treatments are:
1. Harrowed only (A).
2. Ploughed in \(1946\left(B_{1}, C_{1}\right.\) and \(\left.D_{1}\right)\).
3. Ploughed in \(1947\left(B_{2}, C_{2}\right.\) and \(\left.D_{2}\right)\).
4. Ploughed in \(1948\left(B_{3}, C_{3}\right.\) and \(\left.D_{3}\right)\).
5. No ploughing \(\left(C_{4}, D_{4}\right.\) and \(D_{5}\) and \(\left.D_{6}\right)\).

\section*{3. DESIGN :}
(i) R.B.D. rotations.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-1956. (b) As per ploughing rotation. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(301 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(84 . \mathrm{c} 4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(tv) Av. yield of grain in Ib./ac. Treatment Av. yield
1. A 298
2. \(\left(B_{1}+C_{1}+D_{1}\right) 281\)
3. \(\left(B_{2}+C_{2}+D_{2}\right) \quad 312\)
4. \(\left(B_{3}+C_{3}+D_{3}\right) \quad 316\)
5. \(\left(C_{4}+D_{4}+D_{6}+D_{6}\right) \quad 297\)
S.B/mean \(\quad=52.87 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.
\(\mathrm{C}_{4}=\) Ploughed every 4 years starting with 1949.
\(D_{1}=\) Ploughed every 6 years starting with 1946.
\(\mathbf{D}_{\mathbf{2}}=\) Ploughed every 6 years starting with 1947. \(D_{3}=\) Ploughed every 6 years starting with 1948. \(D_{4}=\) Ploughed every 6 years starting with 1949. \(D_{5}=\) Ploughed every 6 years starting with 1950. \(D_{6}=\) Ploughed every 6 years starting with 1951 .

五
\(\qquad\)

Object :-To determine the optimum frequency of ploughing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) Ploughing as per treatments. 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb}, / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(38.17^{\prime \prime}\). (x) N.A.

\section*{2. TREATMENTS :}
\(A=\) Harrowed only.
\(\mathbf{B}_{\mathbf{1}}=\) Ploughed every 3 years starting with 1946.
\(\mathbf{B}_{\mathbf{2}}=\) Ploughed every 3 years starting with 1947. \(B_{3}=\) Ploughed every 3 years starting with 1948. \(\mathbf{C}_{\mathbf{1}}=\) Ploughed every 4 years starting with 1946. \(\mathrm{C}_{2}=\) Ploughed every 4 years starting with 1947. \(\mathrm{C}_{3}=\) Ploughed every 4 years starting with 1948.
\(C_{4}=\) Ploughed every 4 years starting with 1949.
\(D_{\mathbf{1}}=\) Ploughed every 6 years starting with 1946.
\(D_{\mathbf{2}}=\) Ploughed every 6 years starting with 1947.
\(D_{\mathbf{8}}=\) Ploughed every 6 years starting with 1948.
\(D_{4}=\) Ploughed every 6 years starting with 1949.
\(D_{5}=\) Ploughed every 6 years starting with 1950.
\(D_{6}=\) Ploughed every 6 years starting with 1951.

Treatments for this year are :
1. Harrowed only (A).
2. Ploughed in \(1946\left(B_{1}, C_{1}\right.\) and \(\left.D_{1}\right)\).
3. Ploughed in \(1947\left(B_{2}, C_{2}\right.\) and \(\left.D_{2}\right)\).
4. Ploughed in \(1948\left(\mathrm{~B}_{3}, \mathrm{C}_{3}\right.\) and \(\left.\mathrm{D}_{3}\right)\).
5. Ploughed in \(1949\left(C_{4}\right.\) and \(\left.D_{4}\right)\).
6. No p oughing. \(\left(D_{5}\right.\) and \(\left.D_{6}\right)\).
3. DESIGN :
(i) R.B.D. (i) (a) 14. (b) N.A. (iii) 4. (iv) (a) \(36^{\circ} \times 45^{\circ}\). (b) \(33^{\prime} \times 42^{\prime}\). (v) \(1.5^{\prime}\) alround. (vi) As per rotation.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) \(1946-1956\). (b) As per ploughing rotations. (c) Nil. (v) (a) and (b) N.A: (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(\vdots 28 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(48.79 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. \(A\) & 347 \\
2. \(\left(B_{1}+C_{1}+D_{1}\right)\) & 337 \\
3. \(\left(B_{2}+C_{2}+D_{2}\right)\) & 307 \\
4. \(\left(B_{3}+C_{3}+D_{3}\right)\) & 291 \\
5. \(\left(C_{4}+D_{4}\right)\) & 347 \\
6. \(\left(D_{5}+D_{6}\right)\) & 339 \\
S.E./mean & \(=33.03 \mathrm{lb} . / a c\).
\end{tabular}

Crop:- Jowar (Rabi).
Site :- Agri. Res.Stn., Sholapur.

Ref :- Mh. 50(165)/49(144)/48(112).
Type :- \({ }^{〔}\) C.

Object:-To determine the optimum frequency of ploughing for Jowar crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. Ploughing as per treatments. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-I. .(vii) Unirrigated. (viii) 4 interculturings. (ix) 24.04". (x) N A.

\section*{2. TREATMENTS:}
\(A=\) Harrowed only.
\(\mathbf{B}_{1}=\) Ploughed every 3 years starting with
\(B_{2}=\) Ploughed every 3 years starting with 1947.
\(B_{3}=\) Ploughed every 3 years starting with 1948.
\(C_{1}=\) Ploughed èvery 4 years starting with 1946.
\(C_{2}=\) Ploughed every 4 years starting with 1947.
\(C_{3}=\) Ploughed every 4 years starting with 1948.
\(C_{4}=\) Ploughed every 4 years starting with 1949.
\(\mathrm{D}_{1}=\) Ploughed every 6 years starting with 1946.
\(\mathbf{D}_{2}=\) Ploughed every 6 years starting with 1947.
\(\mathrm{D}_{3}=\) Ploughed every 6 years starting with 1948.
\(D_{4}=\) Ploughed every 6 years starting with 1949.
\(D_{5}=\) Ploughed every 6 years starting with 1950.
\(D_{6}=\) Ploughed every 6 years starting with 1951.

\section*{Treatment for this year are :}
1. Harrowed only (A).
2. Ploughed in 1946, 1949 ( \(\mathrm{B}_{1}\) ).
3. Ploughed in 1947, 1950 ( \(\mathrm{B}_{2}\) ).
4. Ploughed in \(1948\left(\mathrm{~B}_{3}, \mathrm{C}_{3}, \mathrm{D}_{3}\right)\).
5. Ploughed in 1946, \(1950\left(\mathrm{C}_{1}\right)\).
6. Ploughed in \(1947\left(C_{2}, D_{2}\right)\).
7. Ploughed in \(1949\left(C_{4}, D_{4}\right)\).
8. Ploughed in \(1946\left(\mathrm{D}_{1}\right)\).
9. Ploughed in \(1950\left(D_{5}\right)\).
10. No ploughing ( \(\mathrm{D}_{6}\) ).
3. DESIGN:
(i) R.B.D. (ii) (a) 14 . (b) N.A. (iii) 4 . (iv) (a) \(45^{\prime} \times 36^{\prime}\). (b) \(42^{\prime} \times 33^{\prime}\). (v) \(1.5^{\prime}\) alround. (vi)
As per rotation:
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yie'd. (iv) (a) 1946-1956. (b) As per ploughing rotation. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(440 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) \(76.73 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. \(A\) & 426 \\
2. \(B_{1}\) & 470 \\
3. \(\mathrm{B}_{2}\) & 444 \\
4. \(\left(B_{3}+C_{3}+D_{3}\right)\) & 443 \\
5. \(C_{1}\) & 435 \\
6. \(\left(C_{2}+D_{2}\right)\) & 415 \\
7. \(\left(C_{4}+D_{4}\right)\) & 402 \\
8. \(D_{1}\) & 453 \\
9. \(D_{5}\) & 448 \\
10. \(D_{6}\) & 466. \\
S.E./mean & \(=91.95 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :~ Jowar (Rabi). Ref :- Mh. 51(235)/50(165)/49(144)/48(112).
Site :- Agri. Res. Stn., S holapur. Type :- 'C'.
Object :-To determine the optimum frequency of ploughing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 28.9.1951. (iv) (a) 4 harrowings. Ploughings as per treatments. (b) Drilling. (c) 4 lb ./ac. (d) \(18^{\prime \prime}\). between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 4 interculturings. (ix) \(24.81^{*}\) (x) 7.2.1952.
2. TREATMENTS :
\(A=\) Harrowed only.
\(B_{1}=\) Ploughed every 3 years starting with 1946.
\(B_{2}=\) Ploughed every 3 years starting with 1947.
\(B_{3}=\) Ploughed every 3 years starting with 1948.
\(C_{1}=\) Ploughed every 4 years starting with 1946.
\(C_{2}=\) Ploughed every 4 years starting with 1947.
\(C_{3}=\) Ploughed every 4 years starting with 1948.
\(C_{4}=\) Ploughed every 4 years starting with 1949.
\(D_{1}=\) Ploughed every 6 years starting with 1946.
\(D_{2}=\) Ploughed every 6 years starting with 1947.
\(D_{8}=\) Ploughed every 6 years starting with 1948.
\(D_{4}=\) Ploughed every 6 years starting with 1949.
\(D_{5}=\) Ploughed every 6 years starting with 1950.
\(D_{6}=\) Ploughed every 6 years starting with 1951.

Treatmeats for this year are
1. Harrowed ooly (A).
7. Ploughed in \(1948\left(C_{5}, D_{3}\right)\).
2. Ploughed in 1946, \(1949\left(B_{1}\right)\).
8. Ploughed in \(1949\left(C_{6}, D_{4}\right)\).
3. Ploughed in 1947, 19:0 \(\left(\mathrm{B}_{\mathrm{g}}\right)\).
9. Ploughed in \(1946\left(\mathrm{D}_{1}\right)\).
4. Ploughed in 1948, \(1951\left(\mathrm{~B}_{3}\right)\).
10. Ploughed in \(1947\left(D_{2}\right)\).
5. Ploughed in \(1946,1950\left(C_{1}\right)\).
11. Ploughed in \(1950\left(D_{5}\right)\).
6. Ploughed in 1947 , \(1951\left(C_{2}\right)\).
12. Ploughed in \(1951\left(D_{4}\right)\).
3. DESIGN :
(i) R.B.D. (ii) (a) 14 . (b) N.A. (iii) 4 (iv) (a) \(36^{\circ} \times 45^{\circ}\). (b) \(33^{\circ} \times 42^{\circ}\). (v) \(1.5^{\prime \prime}\) alround. (vi) As per rotation.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) \(1946-1956\). (b) As per ploughing rotation. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(35 \mathrm{lb} / \mathrm{ac}\).
(ii) \(60.22 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|}
\hline Treatment & Av. yield & Treatment & Av. yield \\
\hline 1. A. & 340 & 7. \(\left(C_{3}+D_{3}\right)\) & 365 \\
\hline 2. \(\mathrm{B}_{1}\) & 394 & 8. \(\left(C_{4}+D_{4}\right)\) & 364 \\
\hline 3. \(\mathrm{B}_{2}\) & 397 & 9. \(\mathrm{D}_{1}\) & 294 \\
\hline 4. \(\mathrm{B}_{3}\) & 350 & 10. \(D_{2}\) & 295 \\
\hline 5. \(C_{1}\) & 376 & 11. \(D_{5}\) & 345 \\
\hline 6. \(\mathrm{C}_{3}\) & 352 & 12. Ds & 343 \\
\hline & S.E./mean & \(=36.38 \mathrm{lb} / \mathrm{ac}\) & \\
\hline
\end{tabular}

Site :-Agri. Res. Stn., Sholapur. Type :-‘C’.
Object :-To determine the optimum frequency of ploughing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) NiL. (ii) (a) Medium deep. (b) Refer sail analysis, Sholapur. (iii) 5.10 .1952 . (iv) (a) 4 harrowings, ploughing as per treatrents. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 20.76\% (x) 9.2.1953.
2. TREATMENTS:

A = Harrowed only.
\(B_{1}=\) Ploughed every 3 jears starting with 1946.
\(B_{2}=\) Ploughed every 3 years starting with 1947.
\(\mathrm{B}_{3}=\) Ploughed every 3 years starting with 1948.
\(C_{1}=\) Ploughed every 4 years startiog with 1946.
\(\mathrm{C}_{9}=\) Plou \({ }^{\text {hhed }}\) every 4 years starting with 1947.
\(\mathrm{C}_{3}=\) Ploughed every 4 years starting with 1948.
Treatments for this year are
1. Harrowed oaly (A).
2. Ploughed in 1946,1949 and \(195!\left(\mathrm{B}_{1}\right)\).
3. Ploughed in \(1947,1950\left(\mathrm{~B}_{3}\right)\).
4. Ploughed in \(1948,1951\left(\mathrm{~B}_{3}\right.\).
5. Ploughed in 1946, \(1950\left(\mathrm{C}_{1}\right)\).
6. Ploughed in \(1947,1951\left(C_{3}\right)\).
7. Ploughed in \(1948,1952\left(\mathrm{C}_{\mathrm{s}}\right)\).
\(\mathrm{C}_{6}=\) Ploughed every 4 years starting with 1949.
\(D_{1}=\) Ploughed every 6 years starting with 1946.
\(D_{2}=\) Ploughed every 6 years starting with 1947.
\(D_{3}=\) Ploughed every 6 years starting with 1948.
\(D_{3}=\) Ploughed every 6 years starting with 1949.
\(D_{5}=\) Ploughed every 6 years starting with 1950.
\(D_{8}=\) Ploughed every 6 years starting with 1951.
8. Ploughed in \(1949\left(C_{4}, D_{3}\right)\).
9. Ploughed in \(1946,1952\left(\mathrm{D}_{1}\right)\).
10. Ploughed in \(1947\left(\mathrm{D}_{9}\right)\).
11. Ploughed in \(1948\left(\mathrm{D}_{3}\right)\).
12. Ploughed in \(1950\left(\mathrm{D}_{5}\right)\).

13 Ploughed in 1951 ( \(\mathrm{D}_{6}\).
3. DESIGN :
(i) R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) \(36^{\prime} \times 45^{\circ}\). (b) \(33^{\circ} \times 42^{\circ}\). (v) \(1.5^{\circ}\) alround. (vi) As per totation.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1946 to 1956. (b) As per rotation, (c) Nil (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(524 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(89.51 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|}
\hline Treatment & Av. yield & Treatment & Av. yield \\
\hline 1. \(\mathbf{A}\) & 498 & 8. \(\left(C_{4}+D_{4}\right)\) & 500 \\
\hline 2. \(\mathrm{B}_{1}\) & 456 & 9. \(\mathrm{D}_{1}\) & 664 \\
\hline 3. \(\mathrm{B}_{2}\) & 519 & 10. \(\mathrm{D}_{2}\) & 484 \\
\hline 4. \(B_{3}\) & 555 & 11. \(\mathrm{D}_{3}\) & 601 \\
\hline 5. \(\mathrm{C}_{1}\) & 493 & 12. \(\mathrm{D}_{5}\) & 445 \\
\hline 6. \(\mathrm{C}_{2}\) & , 521 & 13. \(\mathrm{D}_{6}\) & 458 \\
\hline 7. \(\mathrm{C}_{3}\) & 620 & & \\
\hline & S.E./mean & \(1 \mathrm{lb} / \mathrm{ac}\). & \\
\hline
\end{tabular}

Crop: :- Jowar (Rabi). . Ref :- Mh. 53(375)/52(373)/52(235)/50(165)/4 9(144)/48(112).
Site :- Agri. Res. Stn., Sholapur.
Type :- 'C'.
Object :-To determine thę optimum frequency of ploughing for Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 14.10.1953. (iv) (a) 4 harrowings. Ploughing as per treatment. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) U̇nirrigated. (viii) 3 interculturings. (ix) 35.96". (x) 13.1954.
2. TREATMENTS:

A = Harrowed only.
\(\mathbf{B}_{1}=\) Ploughed every 3 years starting with 1946.
\(B_{2}=\) Ploughed every 3 years starting with 1947. \(\mathrm{B}_{3}=\) Ploughed every 3 years starting with 1948. \(C_{1}=\) Ploughed eiery 4 years starting with 1946. \(\mathbf{C}_{2}=\) Ploughed every 4 years starting with 1947. \(\mathrm{C}_{3}=\) Ploughed every 4 years starting with 1948.
\(C_{4}=\) Ploughed every 4 years starting with 1949.
\(D_{1}=\) Ploughed every 6 years starting with 1946.
\(D_{2} \doteq\) Ploughed every 6 years starting with 1947.
\(D_{3}=\) Ploughed every 6 years starting with 1948.
\(D_{4}=\) Ploughed every 6 years starting with 1949.
\(\mathbf{D}_{5}=\) Ploughed every 6 years starting with 1950.
\(D_{6}=\) Ploughed every 6 years starting with 1951.
3. DESIGN :
(i) R.B.D.
(ii) (a) 14.
(b) N.A. (iii) 4. (iv)
(a) \(36^{\prime} \times 45^{\prime}\)
(b) \(33^{\prime} \times 42^{\prime}\). (
1.5' alround. (vi) per rotation.
4. GENERAL:
(i) Growth was checked due to excess of rainfall and late sowing. (ii) Nil. (iii) Grain yield. (iv) (a) 1946 to 1956. (b) As per ploughing rotations. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(168 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(50.16 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|}
\hline Treatment & Av. yield & Treatment & Av. yield \\
\hline 1. \(\mathbf{A}\) & 166 & 8. \(C_{4}\) & 189 \\
\hline 2. \(\mathrm{B}_{1}\) & 188 & 9. \(\mathrm{D}_{1}\) & 176 \\
\hline 3. \(\mathrm{B}_{2}\) & 185 & 10. \(\mathrm{D}_{2}\) & 137 \\
\hline 4. \(\mathrm{B}_{3}\) & 182 & 11. \(\mathrm{D}_{3}\) & 127 \\
\hline 5. \(\mathrm{C}_{1}\) & 173 & 12. \(\mathrm{D}_{4}\) & 170 \\
\hline 6. \(\mathrm{C}_{2}\) & 155 & 13. \(\mathrm{D}_{5}\) & 173 \\
\hline 7. \(\mathrm{C}_{3}\) & 146 & 14. \(\mathrm{D}_{6}\) & 181 \\
\hline & S.E./mean & = 25.08 lb //ac. & \\
\hline
\end{tabular}

Crop : m Jowar (Rabi).
Site :-Agri. Res. Stn., Mohol.

Ref:-Mh. 51(231).
Type:-‘CV’.

Ot ject:-To study the suitable sowing date for Jowar varieties.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a; Medium black. (b) Refer soil analysis, Mohol. (iii) As per treatments. (iv) (a) 3 harrowings. (b) Drilling. (c) 4 lb ./ac. (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 3 interculturings. (ix) \(7.49^{\prime \prime}\). (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 varieties: \(\mathrm{V}_{1}=\mathrm{M}-35 \mathrm{I}\) and \(\mathrm{V}_{2}=\) Nandyal.
(2) 5 dates of sowing: \(D_{1}=1.8 .1951, D_{2}=16.8 .1951, D_{2}=1.9 .1951, D_{4}=16.9 .1951\) and \(D_{5}=1.10 .1951\).
3. DESIGN
(i) \(2 \times 5\) Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) \(1 / 80\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-1953. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) \(252 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(72.67 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(D\) alone is highly significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{8}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & & 136 & 208 & 172 \\
\hline \(\mathrm{D}_{2}\) & - & 223 & 265 & 244 \\
\hline \(\mathrm{D}_{3}\) & & 184 & 181 & 183 \\
\hline \(\mathrm{D}_{4}\) & & 353 & 208 & 280 \\
\hline \(\mathrm{D}_{5}\) & & 439 & 324 & 382 \\
\hline Mean & & 267 & 237 & 252 \\
\hline
\end{tabular}
\[
\text { S.E. of marginal mean of } \mathrm{V}
\]
\(=16.25 \mathrm{lb} . / \mathrm{ac}\).
\(=25.69 \mathrm{lb} . / \mathrm{ac}\).
\(=36.33 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Jowar (Rabi).
Ref :-Mh. 52(366).
Site :-Agri. Res. Stn., Mohol.
Type :-‘CV’.
Object : -To study the suitable sowing dates of Jowar varieties.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol.
(iii) As per treatments. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(5.03^{*}\). (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 2 varieties: \(V_{1}=M-35-1\) and \(V_{2}=\) Nandyal.
(2) 5 dates of sowing: \(D_{1}=1.8 .1952, D_{3}=16.8 .1952, D_{3}=1.9 .1952, D_{4}=16.9 .1952\) and \(D_{5}=1.10 .1952\).
3. DESIGN :
(i) \(2 \times 5\) Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4 . (iv) (a) \(46^{\prime} \times 19.50^{\prime}\). (b) \(40^{\circ} \times 13.50^{\prime}\). (v) \(3^{\circ}\) alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1953. (b) No. (c) Nil. (v) (a and (b) N.A. (vi) Nil. (vii) Nil.

\section*{5. RESULTS :}
(i) \(253 \mathrm{lb} / \mathrm{ac}\).
(ii) \(268.6 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.


Crop :- Jowar.
Site :~Agri. Res. Stn., Mohol.

Ref: \(\mathbf{~ M h . ~ 5 3 ( 3 3 8 ) . ~}\)
Type :- \({ }^{〔} \mathrm{CV}\) '.

Object :-To find out a suitable sowing date for Jowar varieties.
1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) As per treatments. (iv) (a) N.A. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\). (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) N.A. (ix) \(8.89^{\prime \prime}\) ' (x) 8 and 9.3.1954.
2. TREATMENTS:

Main-plot treatments :
5 sowing dates : \(D_{1}=1.8 .1953, D_{2}=16.8 .1953, D_{3}=1.9 .1953, D_{4}=16.9 .1953\) and \(D_{5}=1.10 .1953\).
Sub-plot treatments :
- 2 varieties: \(\mathrm{V}_{1}=\mathrm{M}-35-1\) and \(\mathrm{V}_{\mathbf{2}}=\) Nandyal.
3. DESIGN :
(i) Split-plot. (ii) (a) 5 main -plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(46^{\prime} \times 19 \frac{1}{2}^{\prime}\). (b) \(40^{\prime} \times 13 \frac{1}{2}^{\prime}\). (v) \(3^{\prime}\) alround. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Attack of stem-borer and sugary disease observed. (iii) Grain and fodder yield. (iv) (a) \(1951-\) N.A. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(338 \quad \mathrm{lb} / \mathrm{ac}\).
(ii) (a) \(88.74 \mathrm{lb} / \mathrm{ac}\).
(b) \(56.06 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{D}\) alone is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{l|ll|l} 
& \(\mathbf{V}_{\mathbf{1}}\) & \(\mathbf{V}_{\mathbf{2}}\) & Mean \\
\hline \(\mathbf{D}_{\mathbf{1}}\) & 285 & 369 & 327 \\
\(\mathbf{D}_{\mathbf{2}}\) & 292 & 278 & \(\cdots\) \\
\(\mathbf{D}_{\mathbf{3}}\) & 271 & 255 & 285 \\
\(\mathbf{D}_{\mathbf{4}}\) & 473 & 393 & 263 \\
\(\mathbf{D}_{\mathbf{5}}\) & 398 & 368 & 433 \\
\hline Mean & 344 & 333 & 383 \\
& & & 338 \\
\hline
\end{tabular}

\section*{S.E. of difference of two}
1. \(\mathbf{D}\) marginal means
\[
\begin{aligned}
& =44.38 \mathrm{lb} . / \mathrm{ac} \\
& =17.72 \mathrm{lb} . / \mathrm{ac} \\
& =39.65 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
\]
2. \(V\) marginal means
3. \(V\) means at the same level of \(D\)
4. D means at the same level of \(V \quad=52.48 \mathrm{lb} . / \mathrm{ac}\).
Crop:-Jowar (Rabi).
Site :-Agri. Res. Stn., Sholapur.

\section*{Ref:-Mh. 51(219).}

Type:-‘CV’.

Object :-To study a suitable sowing date and variety of Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) As par treatments. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 4 interculturings. (ix) \(24 \cdot 81^{\prime \prime}\). (x) 15.2.1952.

\section*{2. TREATMENTS :}

All combinations of (1) and (2)
(1) 2 varieties: \(\mathrm{V}_{1}=\mathrm{M}-35-1\) and \(\mathrm{V}_{2}=\) Nandyal.
(2) 5 dates of sowing : \(D_{1}=29.7 .1951, D_{2}=14.8 .1951, \quad D_{3}=28.8 .1951, D_{4}=12.9 .1951\) and \(D_{5}=\) 27.9.1951.
3. DESIGN :
(i) \(2 \times 5\) Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 3 . (iv) (a) \(40^{\prime} \times 22^{\prime}\). (b) \(34^{\prime} \times 16^{\circ}\). (v) \(3^{\prime}\) alround the plot. (vi) Yes.
4. GENERAL :
(i) Growth checked due to excess of moisture in soil. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951-1953. (b) No. (c) Nil. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(151 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(5524 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of D and V are highly significant while their interaction is not significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{V}_{1}\) & \(\mathrm{Y}_{2}\) & Mean \\
\hline \(\mathrm{D}_{1}\) & 82 & 72 & 77 \\
\hline \(\mathrm{D}_{2}\) & 78 & 62 & 70 \\
\hline \(\mathrm{D}_{8}\) & 122 & 133 & 127 \\
\hline \(\mathrm{D}_{4}\) & 280 & 119 & 199 \\
\hline \(\mathrm{D}_{5}\) & 325 & 237 & 281 \\
\hline Mean & 177 & 124 & \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\begin{tabular}{l}
S.E. of marginal mean of \(D\) \\
S.E. of marginal mean of \(V\) \\
S.E. of body of table
\end{tabular}}} & & \multirow[t]{3}{*}{\[
\begin{aligned}
& =22.56 \mathrm{lb} / \mathrm{ac} . \\
& =14.26 \mathrm{lb} / \mathrm{ac} . \\
& =31.89 \mathrm{lb} / \mathrm{ac} .
\end{aligned}
\]} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

Crop : Jowar (Rabi).
Site :-Agri. Res. Stn., Sholapur.

Ref :-Mh. 52(351).
Type :-‘CV’.

Object :-To study suitable sowing date and variety of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) As per treatments. (iv) (a) 4 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi). As per treatments. (vii) Unirrigated. (viii) 3 interculturings. (ix) 20.76". (x) 16.2.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 varieties: \(\mathrm{V}_{1}=\mathrm{M}-35-1\) and \(\mathrm{V}_{2}=\) Nandyal.
(2) 5 dates of sowing: \(\mathrm{D}_{1}=25.7 .1952, \mathrm{D}_{2}=9.8 .1952, \mathrm{D}_{3}=24.8 .1952, \mathrm{D}_{4}=11.9 .1952\) and \(\mathrm{D}_{5}=25.9 .1952\).
3. DESIGN:
(i) \(2 \times 5\) Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 3. (iv) \(\left\{(a) 40^{\prime} \times 22^{\prime}\right.\). (b) \(34^{\prime} \times 16^{\prime}\). (v) \(3^{\prime}\) alround. (vi) Yes.
4. GENERAL:
(i) Growth was checked due to severe attack of pests. (ii) Appearance of sugary disease and also attack of stemborer. (iii) Grain and fodder yield. (iv) (a) 1951-1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(287 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) 73.50 lb ./ac.
(iii) Main effects of D and V are highly significant while their interaction is not significant.
(iv)_Av. yield of grain in lb,/ac.


Crop :- Jowar (Rabi).
Site :- Agi. Res. Stn., Sholapur.

Ref:- Mh. 53(361).
Type :- 'CV'.

Object :-To study the effect of sowing dates on yield of different varieties of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) As per treatments. (iv) (a) 3 harrowings. (b) Drilling. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) As per (reatments. (vii) Unirrigated. (viii) 3 interculturings. (ix) 35.96". (x) 5.3.1954.

\section*{2. TREATMENTS:}

All combinations of (1) and (2)
(1) 2 varieties: \(\mathrm{V}_{1}=\mathrm{M}=35-1\) and \(\mathrm{V}_{2}=\) Nandyal.
(2) 5 dates of sowing : \(D_{1}=27.7 .1953, D_{2}=10.8 .1953, D_{3}=25.8 .1953, D_{4}=17.9 .1953\) and \(D_{5}=23.9 .1953\).

\section*{3. DESIGN :}
(i) \(2 \times 5\) Fact. in R.B.D. (ii) (a) 10 . (b) N.A. (iii) 3. (iv) (a) \(40^{\prime} \times 22^{\prime}\). (b) \(34^{\prime} \times 16^{\prime}\). (v) \(3^{\prime}\). alround. (vi) Yes.
4. GENERAL :
(i) Growth poor (ii) Severe attack of stem borer and chikata disease. (iii) Grain and fodder yield. (iv) (a) 1951-53. (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(120 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(47.44 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of D and V are highly significant while their interaction is not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|}
\hline & & \(\mathrm{V}_{1}\) & \(\mathrm{V}_{2}\) & - Mean \\
\hline \(\mathrm{D}_{1}\) & & 122 & 56 & 89 \\
\hline \(\mathrm{D}_{2}\) & & 138 & 63 & 100 \\
\hline \(\mathrm{D}_{3}\) & - & 78 & 70 & 74 \\
\hline \(\mathrm{D}_{4}\) & & 203 & 107 & 155 \\
\hline \(\mathrm{D}_{\mathbf{0}}\) & & 220 & 139 & 179 \\
\hline Mean & & 152 & 87 & \\
\hline
\end{tabular}
S.E. of marginal mean of \(V\) S.E. of marginal mean of \(D\) S.E. of body of table
\(=12.25 \mathrm{lb} . / \mathrm{ac}\).
\(=19.37 \mathrm{lb} . / \mathrm{ac}\).
\(=27.39 \mathrm{lb} / \mathrm{ac}\).

Cop :~Jowar (Rabi).
Site :- Govt. Expt. Farm, Tharsa.

Ref:- Mh. 49(104).
Type :- 'CV'.

Object:-To find out the economic method of Jowar cultivation.

\section*{1. BASAL CONDITIONS :}
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil analysis, Tharsa. (iii) 1st week of Octoter 1949. (iv) (a) As per treatments. (b) As per treatments; (c) \(12 \mathrm{lb} . / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) 49.70". (x) Ist week of March 1950.

\section*{2. TREATMENTS:}

Main-plot treatments :
2 methods of cultivation: \(C_{1}=\) Local method and \(C_{2}=\) Improved (Dr. Kulkarni's) method.
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\) Unarlehi and \(\dot{\mathrm{V}}_{\mathbf{2}}=\mathrm{M}-35\) Sholapur.
Details of Dr. Kulkarni's method.
1. Jowar to be taken after leguminous crop or fallow.
2. Deep ploughing in summer and 4 to 5 bakharings in monsoon.
3. Application of G.N.C. at \(8 \mathrm{md} / \mathrm{ac}\). and mixing it in soil.
4. Preparing ridges and furrows at \(10^{\prime \prime}\) distance. Breadth of ridges should be \(18^{\prime \prime}\). Ridges are to be cut at the euds on one of the either sides as in sugarcane.
5. Dibbling of seeds in both sides of ridges keeping \(18^{\prime \prime}\) distance between two dibbles. Dibbling on both sides should not be opposite but diagonal.
6. Irrigation at an interval of 10 to 12 days according to soil moisture.
7. When crop has grown up to \(6^{\prime \prime}\) height 1 or 2 weedings by hand at an interval of 15 days.
8. Bone super phosphate at 4 cwt /ac. mixed with G.N.C. at 4 tags/ac. to be spread by hand around each plant, a little away from stem, about an inch or two deep and covered with earth.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 20\) ac. (v) N.A. (vi) Yes.
4. GENERA.L :
(i) N.A. (ii) Nil. iiii) Grain yield. (iv) (a) 1949- N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) No reasons are given for low yields. (vii) Plot wise yield N.A.
5. RESULTS :
(i) \(416 \mathrm{lb} . / \mathrm{ac}\).
(ii) N.A.
(iii) N.A.
(iv) Av. yield of grain in Ib./ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{C}_{1}\) & C 2 & Mean \\
\hline \(\mathrm{V}_{1}\) & 580 & 254 & 417 \\
\hline \(\mathrm{V}_{2}\) & 640 & 188 & 414 \\
\hline Mean & 610 & 221 & \\
\hline
\end{tabular}
S.E.-N.A.

Crop:- Jowar (Rabi).
Site :- Govt. Expt. Farm, Tharsa.

Ref :- Mh. 50(131).
Type :- 'CV'.

Object :-To find out the economic method of Jowar cultivation.
1. BASAL CONDITIONS:
(i) (a) Jowar-Gram. (b) Gram. (c) N.A. (ii) (a) Medium black. (b) Refer soil anal, sis, Tharsa: (iii) 2nd week of October 1950 . (iv) (a) As per treatments. (b) As per treatments. (c) \(12 \mathrm{lb} / \mathrm{ac}\). (d) As per treatments. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) \(35.73^{\prime \prime}\). (x) 22.2.1951.
2. TREATMENTS:

\section*{Main-plot treatments :}

2 methods of cultivation: \(\mathrm{C}_{1}=\) Local and \(\mathrm{C}_{2}=\) Dr. Kulkarni's method.
Sub-plot treatments:
2 varieties: \(\mathrm{V}_{1}=\) Unarlehi, \(\mathrm{V}_{2}=\mathrm{M}-35\) Sholapur.
For details of Dr. Kulkarni's method refer to Mh. 49(104) above.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 2 main-plots/block ; 2 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) 1/20 ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-N.A. (b) N.A. (c) No. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1642 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(206.2 \mathrm{lb} . / \mathrm{ac}\).
(b) \(437.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of C alone is highly significant.
(iv) Av. yield of grain in \(\mathrm{lb} / \mathrm{ac}\).
\begin{tabular}{c|cc|c} 
& \(C_{1}\) & \(C_{2}\) & Mean \\
\hline\(V_{1}\) & 1919 & 1462 & 1282 \\
\(V_{2}\) & 1905 & 1372 & 1690 \\
\hline Mean & 1911 &
\end{tabular}
S.E. of difference of two
\(\begin{array}{ll}\text { 1. } \mathbf{C} \text { marginal means } & =84.1 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } V \text { marginal means } & =178.6 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. } V \text { means at the same level of } C & \\ \text { 4. } C \text { means at the same level of } V & \\ \end{array}\)

Crop:- Jowar (Rabi).
Ref :- Mh. 53(296).
Site :- Govt. Expt. Farm, Tharsa.

Object:-To find out the economic method of Jowar cultivation.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Peas. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil analysis, Tharsa. (iii) \(12,10.1953\).
(iv) (a) As per treatments. (b) As per treatments. (c) N.A. (d) As per treatments. (e) N.A. (v) Nil.
(vi) As per treatments. (vii) Irrigated. (viii) As per treatments. (ix) Nil. (x) 22, 23.3.1954.
2. TREATMENTS:

Main-plot treatments :
2 methods of cultivation : \(\mathrm{C}_{1}=\) Local method and \(\mathrm{C}_{2}=\) Dr. Kulkarni's method.
Sub-plot treatments :
2 varieties: \(\mathrm{V}_{1}=\) Unarlehi (local) and \(\mathrm{V}_{\mathbf{2}}=\mathrm{M}-35\), Sholapur.
For detals of Dr. Kulkarni's method refer to Mh. 49(104).
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Local method-satisfactory ; Dr. Kulkarni's method-better. (ii) Nil. (iii) Straw and grain yield. (iv) (a) \(1950-\) N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1792 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(496.8 \mathrm{lb} . / \mathrm{ac}\).
(b) \(397.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).

S.E. of difference of two
1. C marginnl means . \(=202.8 \mathrm{lb} . / \mathrm{ac}\).
2. \(V\) marginal means \(\quad=162.2 \mathrm{lb}\). \(/ \mathrm{ac}\).
3. V means at the same level of \(C \quad=259.8 \mathrm{Jb}\)./ac.
4. \(\mathbf{C}\) means at the same level of \(\mathrm{V} \quad=229.5 \mathrm{lb} . / \mathrm{ac}\).

\section*{\(\int\) Crop :- Jowar (Kharif). \\ Ref :- Mh. 52(226). \\ Site :- Govt. Seed and Demonstration Farm, Achalpur. Type :- ‘CM'.}

Object :-To study the effect of manures and cultural practices on Jowar yield.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar—Groundnut. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 31.7.1952 and 1.8.1952. (iv) (a) 2 heavy and 3 light bakharings. (b) to (e) N.A. (v) Nil. (vi) Saoner (medium). (vii) Unirrigated. (viii) 2 boeings and 1 weeding. (ix) \(12.09^{\circ}\). (x) 5.1.1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) \(3^{\circ}\) seed rates : \(\mathrm{R}_{1}=10, \mathrm{R}_{2}=15\) and \(\mathrm{R}_{3}=20 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{N}: \mathrm{N}_{\mathbf{0}}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{\mathbf{3}}=30 \mathrm{lb}\)./ac.
(3) 3 spacings : \(S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}\) and \(S_{3}=18^{\prime \prime}\).
3. DESIGN :
(i) \(3^{3}\) completely confounding RNS \(^{2}\). (ii) (a) 9 plots/block ; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(66^{\circ} \times 16.5^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisiactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(423 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(234.0 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb,/ac.


Crop :-Jowar (Kharif).

\section*{Ref:-Mh. 53(237)}

Site :-Govt. Seed and Demonstration Farm, Achalpur. Type :~'CM'.

Object :-To study the effect of manures and cultural practices on Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 11.7.1953. (iv) (a) 2 heavy and 3 light bakharings in March 1953. (b) Sowing by tiffan. (c) to (e) N.A. (v) N.A. (vi) Saoner (medium). (vii) Unirrigated. (viii) 3 hoeings and 1 weeding. (ix) \(34.91^{\prime \prime}\). (x) 13.12.1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 seed rates : \(\mathrm{R}_{1}=6, \mathrm{R}_{2}=9\) and \(\mathrm{R}_{3}=12 \mathrm{lb}\)./ac.
(2) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
(3) 3 spacings: \(S_{1}=12^{\prime \prime}, S_{2}=15^{\circ}\) and \(S_{3}=18^{\prime \prime}\).
3. DESIGN :
(i) \(3^{3}\) confounded. (ii) (a) 27 . (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Plot wise yield data N.A. and hence analysed as R.B.D. with 27 treatments.
5. RESULTS :
(i) \(1764 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(403.6 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb ./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{1}\) & \(\mathbf{R}_{2}\) & \(\mathbf{R}_{3}\) & Mean & \(S_{1}\) & \(\mathrm{S}_{2}\) & \(S_{3}\) \\
\hline \(\mathrm{N}_{0}\) & 1671 & 1941 & 1773 & 1795 & 162 & 1830 & 1931 \\
\hline \(\mathrm{N}_{1}\) & 1802 & 1474 & 1820 & 1699 & 1673 & 1754 & 1669 \\
\hline \(\mathrm{N}_{2}\) & 1613 & 1977 & 1807 & 1759 & 1763 & 1691 & 1942 \\
\hline Mean & 1695 & 1797 & 1800 & 1764 & 1687 & 1758 & 1847 \\
\hline \(S_{1}\) & 1648 & 1765 & 1649 & 1687 & & & \\
\hline \(\mathrm{S}_{2}\) & 1981 & 1666 & 1628 & 1758 & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{-}} \\
\hline \(\mathrm{S}_{3}\) & 1457 & 1961 & 2124 & 1847 & & & \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =95.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of tables } & =164.8 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

Crop :-Jowar (Kharif).
Ref :~Mh. 53(123).
Site :-Govt. Seed and Demonstration Farm, Buldana.
Object :-To study the effect of manures and cultural practices on Jowar crop.

\section*{1. BASAL CONDITIONS:}
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Buladna. (iii) 16.7.1953. (iv) (a) and (b) N.A. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 2 hoeings. (ix) \(36.52^{\prime \prime}\). (x) 14.12.1953.

\section*{2. TREATMENTS :}

All combinations (1), (2) and (3)
(1) 3 seed rates: \(R_{1}=6, R_{2}=9\) and \(R_{3}=12 \mathrm{jb}\)./ac.
(2) 3 spacings between rows: \(S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}\) and \(S_{8}=18^{\prime \prime}\).
(3) 3 levels of \(N\) as \(A / S: \quad N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb}\)./ac.
3. DESIGN :
(i) \(3^{3}\) Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 2 . (iv) (a) N.A. (b) \(66^{\circ} \times 16.5^{\circ}\) (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(815 \mathrm{lb} . / \mathrm{ac}\),
(ii) \(294.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Interaction \(\mathbf{R} \times \mathbf{S} \times \mathrm{N}\) is highly significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{R}_{2}\) & \(\mathbf{R}_{2}\) & \(\mathbf{R}_{3}\) & Mean & S & \(S_{2}\) & \(S_{3}\) \\
\hline \(N_{0}\) & 808 & 638 & 737 & 728 & 716 & 802 & 666 \\
\hline \(\mathrm{N}_{1}\) & 827 & 786 & 918 & 844 & 949 & 846 & 737 \\
\hline \(\mathrm{N}_{2}\) & -937 & 714 & 971 & 874 & 823 & 1098 & 701 \\
\hline Mean & 857 & 713 & 876 & 815 & 829 & 915 & 701 \\
\hline \(S_{1}\) & 871 & 765 & 852 & 829 & & & \\
\hline \(\mathrm{S}_{2}\) & 977 & 605 & 1164 & 915 & & & \\
\hline \(\mathrm{S}_{3}\) & 724 & 769 & 611 & 701 & \multicolumn{3}{|c|}{1-} \\
\hline
\end{tabular}
S.E. of any marginal mean
\(=69.5 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of tables
\(=120.4 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Jowar (Rabi).
Site:- Agri. Res. Stn., Kopergaon.

Ref :-Mh. 48(22).
Type :-‘CM'.

Object :-To study the N and \(\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}\) requirements of irrigated Jowar with different seed rates.
1. BASAL CONDITIONS :
(i) (a) Nil. '(b) Fallow. (c) 2 bags/ac. of G.N.C. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 18.10.1948. (iv) (a) N.A. (b) Drilling. (c) As per treatments. (d) \(12^{\prime \prime}\) between rows. (e) N.A. (v) S C.L./ac of F.Y.M. (vi) M-35-1. (vii) Irrigated. (vii) 1 top dressing, 1 weeding and 1 hoeing. (ix) Nil. (x) 9.3.1949.
2. TREATMENTS :

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{3}=60 \mathrm{lb}\)./ac.

Sub-plot treatments :
3 seed rates : \(\mathbf{R}_{1}=10, R_{2}=15\) and \(\mathbf{R}_{3}=20 \mathrm{lb}\)./ac.
N as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) Split-plot., (ii) (a) 16 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(35^{\circ} \times 20^{\circ}\). (b) Sub-plot \(27^{\prime} \times 10^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Germination was fair; heavy lodging due to heavy rains during November. (ii) Chikata disease and rust. (iii) Grain yield: (iv) (a) 1948-1953. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(655.6 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(497.2 \mathrm{lb} / \mathrm{ac}\).
(b) \(303.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & - \(\mathbf{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathbf{P}_{0}\) & \(\mathbf{P}_{1}\) & \(\mathbf{P}_{2}\) & \(\mathbf{P}_{3}\) \\
\hline \(\mathrm{R}_{1}\) & 646.0 & 603.0 & 733.8 & 690.8 & 668.5 & 622.4 & 690.4 & 613.0 & 747.6 \\
\hline \(\mathrm{R}_{2}\) & 595.2 & 665.0 & 573.6 & 688.8. & 630.6 & 649.6 & 687.0 & 569.4 & 616.6 \\
\hline \(\mathbf{R}_{3}\) & 722.0 & 645.8 & 590.8 & 713.2 & 668.0 & 599.8 & 742.0 & 691.0 & 639.0 \\
\hline Mean & 654.4 & 638.1 & 632.7 & 697.5 & 655.6 & 6239 & 706.5 & 624.7 & 667.7 \\
\hline \(\mathrm{P}_{0}\) & 545.3 & 654.1 & 548.8 & 747.4 & 623.9 & & & & \\
\hline \(\mathrm{P}_{1}\) & 718.6 & 693.3 & 685.3 & 728.5 & 706.5 & & & & \\
\hline \(\mathrm{P}_{2}\) & 713.3 & 553.6 & 583.4 & 648.5 & 624.7 & & & & \\
\hline \(\mathrm{P}_{3}\) & 640.2 & 651.4 & 713.3 & 665.8 & 667.7 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. N or P marginal means
\(=101.5 \mathrm{lb} . / \mathrm{ac}\).
2. \(R\) marginal means
3. \(R\) means at the same level of \(N\) or \(P\)
\(=53.7 \mathrm{lb} . / \mathrm{ac}\).
4. \(N\) or \(P\) means at the same level of \(R\)
\(=107.5 \mathrm{lb} . / \mathrm{ac}\).
4. \(N\) or \(P\) means at the same level of \(R\)
5. means in body of \(N \times P\) table
\(=134.2 \mathrm{lb} . / \mathrm{ac}\).
\(=203.0 \mathrm{lb} . / \mathrm{ac}\).
Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Kopergaon

Ref:- Mh. 49 (37).
Type :- 'CM'.

Ocject :-To study the N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) requirements of irrigated Jowar with different seed rates.
1. BASAL CONDITIOṄS :
(i) (a) Nil. (b) Fallow in Kharif, Jowar in Rabi. (c) 2 bags/ac. of G.N.C. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 13.10 .1949 . (iv) (a) N.A. (b) Drilling. (c) As per treatments. (d) \(12^{\circ}\). (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) M-35-1. (vii) Irrigated. (viii) 1 hoeing and 2 weedings. (ix) Nil. (x) 28,29.2.1950 and 6.7.3.1950.

\section*{2. TREATMENTS :}

Main-plot treatments :
All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}\).

Sub-plot treatments :
3 seed rates : \(R_{1}=10, R_{2}=15\) and \(R_{3}=20 \mathrm{lb}\)./ac.
N applied as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots'block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(34.5^{\prime} \times 16^{\prime}\). (b) \(28^{\prime} \times 10^{\prime}\).(v) \(3^{\prime}\) rows on either side. (vi) Yes.
4. GENERAL :
(i) Germination satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1953. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) There was severe cold in middle of February. .
5. RESULTS:
(i) \(637 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(645.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(182.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(R\) is highly significant and interactions \(N \times P, N \times R\) and \(P \times R\) are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathbf{N}_{0}\) & \(N_{1}\) & \(\mathrm{N}_{2}\) & \(\mathrm{N}_{8}\) & Mean & , \(\mathrm{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathrm{P}_{2}\) & \(\mathbf{P}_{8}\) \\
\hline \(\mathbf{R}_{1}\) & (28 & 587 & 713 & 672 & 650 & 605 & 671 & 597 & 727 \\
\hline \(\mathbf{R a}_{\mathbf{2}}\) & 579 & 646 & 558 & 670 & 613 & 631 & 668 & 554 & 599 \\
\hline \(\mathbf{R}_{3}\) & 702 & 628 & 574 & 693 & 649 & 583 & 721 & 672 - & 621 \\
\hline Mean & 636 & 620 & 615 & 678 & 637 & 606 & 687 & 607 & 649 \\
\hline \(\mathbf{P}_{0}\) & 530 & 636 & 533 & 726 & 606 & & & & \\
\hline \(\mathrm{P}_{1}\) & 699 & 674 & 666 & 708 & 687 & & & & \\
\hline \(\mathbf{P}_{2}\) & 693 & 538 & 567 & 630 & 607 & & & & \\
\hline \(\mathrm{P}_{3}\) & 622 & 633 & 693 & 647 & 649 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. \(N\) or \(P\) marginal means \(\quad=131.8 \mathrm{lb} . / \mathrm{ac}\).
2. \(R\) marginal means \(\quad=32.2 \mathrm{lb} . / \mathrm{ac}\).
3. \(\mathbf{R}\) means at the same level of \(\mathbf{N}\) or \(\mathbf{P} \quad=64.4 \mathrm{lb} . / \mathrm{ac}\).
4. N or P means at the same level of \(\mathbf{R} \quad=141.9 \mathrm{lb} . / \mathrm{ac}\).
5. means in body of \(N \times P\) table \(\quad=263.6 \mathrm{lb} / \mathrm{ac}\).

Crop :- Jowar (Rabi).
- Site :- Agri. Res. Stn., Kopergaon.

Ref :- Mh. 50(51).
Type :- \({ }^{6} \mathbf{C M}\) '.

Object :-To study the N and \(\mathrm{P}_{3} \mathrm{O}_{5}\) requirements of irrigated Jowar with different seed rates.
1. BASAL CONDITIȮNS :
(i) (a) Nil.
(b) Fallow. (c)
(c) Ni
3.10.1950. (iv) (a) N.A. (b) Drilling. \(\begin{array}{ll}\text { (c) As per treatack. (b) Refer soil adalysis, Kopergaon. (iii) }\end{array}\)
(vi) M-35-l. (vii) Irrigated. (viii) 2 weedings and 2 threahing. (ix) Nil. (x) 16 to 19.2.1951.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 4 levels of \(N: N_{0}=0, N_{1}=20, N_{2}=40\) and \(N_{3}=60 \mathrm{lb} . / \mathrm{ac}\).
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{1}=20, P_{2}=40\) and \(\mathrm{P}_{3}=60 \mathrm{lb}\)./ac.

\section*{Sub-plot treatments :}

3 seed rates: \(R_{1}=10, R_{2}=15\) and \(R_{8}=20 \mathrm{lb} . / \mathrm{ac}\).
Napplied as \(A / S\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.
3. DESIGN :
(i) Split-plot. (ii) (a) 16 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(18^{\prime} \times 30^{\circ}\). (b) \(12^{\prime} \times 33^{\prime}\). (v) Approx \(3 \frac{1}{\prime}^{\prime}\) or 3 lines on either side. (vi) Yes.
4. GENERAL :
(i) Germination good and growth normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1953. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(2527 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(820.7 \mathrm{lb} . / \mathrm{ac}\).
(b) \(606.2 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of \(N\) is highly significant and interaction \(N \times R\) is significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathrm{N}_{2}\) & \(\mathbf{N}_{3}\) & Mean & \(\mathbf{P}_{0}\) & \(\mathrm{P}_{1}\) & \(\mathbf{P}_{\mathbf{2}}\) & \(P_{3}\) \\
\hline \(\mathbf{R}_{1}\) & 2191 & 2566 & 2882 & 2698 & 2584 & 2369 & 2577 & 2669 & 2721 \\
\hline \(\mathbf{R}_{2}\) & 2305 & 2210 & 2272 & 2674 & 2440 & 2431 & 2326 & 2582 & 2421 \\
\hline \(\mathbf{R}_{3}\) & 2177 & 2271 & 2692 & 3096 & 2558 & 2207 & 2623 & 2705 & 2699 \\
\hline Mean & 2224 & 2349 & 2615 & 2823 & 2527 & 2336 & 2509 & 2652 & 2614 \\
\hline \(r_{0}\) & 1868 & 1689 & 2895 & 2891 & 2336 & & & & \\
\hline \(\mathrm{P}_{1}\) & 2418 & 2571 & 2308 & 2740 & 2509 & & & . & \\
\hline \(\mathrm{P}_{2}\) & 2399 & 2514 & 2570 & 3126 & 2652 & & & & \\
\hline \(\mathbf{P}_{8}\) & 2212 & 2621 & 2688 & 2934 & 2614 & & & & \\
\hline \multicolumn{10}{|c|}{- S.E. of difference of two} \\
\hline & \multicolumn{5}{|l|}{\begin{tabular}{l}
1. N or P marginal means \\
2. \(\mathbf{R}\) marginal means
\end{tabular}} & & \multicolumn{2}{|l|}{\(=167.6 \mathrm{lb} . / \mathrm{ac}\).} & \\
\hline &  & eavs at P mea sin bo & same at the of N & vel of me le & & & 4.3 lb & & \\
\hline
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stnr; Kopergaon.

Ref :- Mh. 51(53).
Type :- 'CM'.

Object :-To study the N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) requirements of irrigated Jowar with different seed rates.

\section*{ม. BASAL CONDITIONS :}
(i) (a) N.A. (b) Wheat. (c) 3 bags/ac. of G.N.C. and \(50 \mathrm{lb} . / \mathrm{ac}\). of A/S. (ii) (a) Medium black (b) Refer soil analysis, Kopergaon. (iii) 30.9.1951. (iv) (a) N.A. (b) Drilling. (c) As per treatments. (d) 12". (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) M-35-1. (vii) Irrigated. (viii) 1 hoeing and 1 thinning. (ix) Nil. (x) 25, 26.2.1952.

\section*{2. TREATMENTS :}

\section*{Main-plot treatments :}

All combinations of (1) and (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{9}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{6}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{3}=60 \mathrm{lb}\)./ac.

\section*{Sub-plot treatments :}

3 seed rates: \(R_{1}=10, R_{2}=15\) and \(R_{2}=20 \mathrm{lb}\). \(/ \mathrm{ac}\).
N applied as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.

\section*{3. DESIGN :}
(i) Split-plot. (ii) (a) 16 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) \(30^{\prime} \times 18^{\prime}\). (b) \(\mathbf{2 3}^{\prime} \times \mathbf{1 2}^{\prime}\). (v) \(\mathbf{3}^{\prime}\) at either end. 4 lines on east side and 3 lines on west side. (vi) Yes.
4. GENERAL :
(i) Germination good. Growth normal. (ii) Chikata attack. (iii) Grain yield. (iv) (a) 1948 to 1953. (b) No. (c) N.A. (v) (b) (a) Nil. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) : \(2509 \mathrm{lb} . / \mathrm{ac}\).
(ii) (a) \(785.1 \mathrm{lb} . / \mathrm{ac}\).
(b) \(509.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{N}\) and interaction \(\mathrm{P} \times \mathrm{R}\) are significant. Others are not significant. (iv) Av. yield of grain in Jb,/ac.


\section*{S.E. of difference of two}
\begin{tabular}{lr} 
1. \(N\) or \(P\) marginal means & \(=160.6 \mathrm{lb} . / \mathrm{ac}\). \\
2. \(R\) marginal means & \(=90.1 \mathrm{lb} / \mathrm{ac}\). \\
3. \(R\) means at the same level of \(N\) or \(P\) & \(=180.3 \mathrm{lb} . / \mathrm{ac}\). \\
4. \(N\) or \(P\) means at the same level of \(R\) & \(=217.7 \mathrm{lb} . / \mathrm{ac}\). \\
5. means in body of \(N \times P\) table & \(=320.5 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\[
\begin{aligned}
& \text { Crop :- Jowar (Rabi). } \\
& \text { Site :- Agri. Res. Stn., Kopergaon. }
\end{aligned}
\]

Ref: \({ }^{-}\)Mh.52(82).
Type : ' \(\mathbf{C M}\) '.

Objec \(\vec{t}\) :-To study the N and \(\mathrm{P}_{2} \mathrm{O}_{5}\) requirements of irrigated Jowar with different seed rates.
1. BASAL CONDITIONS:
(i) (a) Wheat-Jowar. (b) Rabi-Wheat and Kharif-Fallow. (c) 3 bags/ac. of G.N.C. \(+75 \mathrm{lb} / \mathrm{ac} . \mathrm{of} \mathrm{A} / \mathrm{S}\). (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 27,28 and 29.9.1952. (iv) (a) N.A. (b) Drilling. (c) As per treatments. (d) \(12^{\prime \prime}\). (e) N.A. (v) Nil. (vi) M-35-1. (vii) Irrigated. (viii) 1 weeding. (ix) Nil. (x) 19 to 22.2.1953.
2. TREATMENTS :

Main-plot treatments : All combination of (1) \& (2)
(1) 4 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40\) and \(\mathrm{N}_{3}=60 \mathrm{lb}\)./ac.
(2) 4 levels of \(\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40\) and \(\mathrm{P}_{8}=60 \mathrm{lb} / \mathrm{ac}\).

Sub-plot treatments :
3 seed rates : \(\mathrm{R}_{1}=10, \mathrm{R}_{2}=15\) and \(\mathrm{R}_{3}=20 \mathrm{lb}\). \(/ \mathrm{ac}\).
N applied as \(\mathrm{A} / \mathrm{S}\) and \(\mathrm{P}_{2} \mathrm{O}_{5}\) as Super.

DESIGN:
(i) Split-plot. (ii) (a) 16 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) \(26^{\circ} \times 21^{\circ}\). (b) \(20^{\circ} \times 14^{\prime}\). (v) 3 rows on one sic \(e\) and 4 rows on other. \(3^{\prime}\) at either end. (vi) Yes.

\section*{4. GENERAL :}
(i Growth was satisfactory. (ii) Slight attack of white chikata disease. (iii) Grain and fodder yield. (iv) (a) 1948-1953. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1759 \mathrm{lb} . / \mathrm{ac}\)
(ii) (a) \(409.9 \mathrm{lb} / \mathrm{ac}\).
(b) \(231.4 \mathrm{lb} / \mathrm{ac}\).
(iii) Only main effect of \(\mathbf{N}\) and \(P\) are significant. All others are not significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & \(\mathrm{N}_{3}\) & Mean & \(\mathbf{P}_{\mathfrak{a}}\) & \(\mathbf{P}_{1}\) & \(\mathbf{P a}_{\mathbf{8}}\) & \(\mathrm{P}_{2}\) \\
\hline \(\mathbf{R}_{\mathbf{I}}\) & 1521 & 1787 & 1779 & 1963 & 1763 & 1439 & 1819 & 1934 & 1858 \\
\hline \(\mathrm{R}_{2}\) & 1654 & 1781 & 1903 & 1803 & 1785 & 1541 & 1791 & 2009 & 1797 \\
\hline \(\mathbf{R}_{3}\) & 1552 & 1691 & 1873 & 1800 & 1729 & 1471 & 1799 & 1765 & 1881 \\
\hline Mean & 1576 & 1753 & 1852 & 1854 & 1759 & 1483 & 1803 & 1903 & 1845 \\
\hline \(\mathrm{P}_{0}\) & 1361 & 1524 & 1590 & 1461 & 1483 & & & & \\
\hline \(\mathbf{P}_{1}\) & 1596 & 1864 & 1876 & 1878 & 1803 & & & & \\
\hline \(\mathrm{P}_{2}\) & 1670 & 1851 & 1991 & 2100 & 1903 & & & & \\
\hline \(\mathrm{P}_{3}\) & 1678 & 1774 & 1950 & 1980 & 1845 & & & & \\
\hline
\end{tabular}
S.E. of difference of two
1. N or P marginal means
\(=83.7 \mathrm{lb} . / \mathrm{ac}\).
2. \(R\) marginal means
3. \(\mathbf{R}\) means at the same level of \(\mathbf{N}\) or \(\mathbf{P}\)
4. \(N\) or \(P\) means at the same level of \(R\)
\(=40.9 \mathrm{lb} / \mathrm{ac}\).
\(=81.9 \mathrm{lb} . / \mathrm{ac}\)
5. means in body of \(N \times P\) table

\author{
Crop:- Jowar (Kharif). \\ Site :- Govt. Exptl. Farm, Nagpur.
}

Ref:- Mh. 51(128).
Type :- 'CM'.

Object :- To study the effect of \(\mathbf{N}\) with different seed rates and spacing for Juwar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) N.A. (iv) (a) N.A. (b) NA. (c) As per treatments. (d) As per treatmedts. (e) N.A. (v) Nil. (vi) Saoner-(late). (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) \(38.29^{\circ}\). (x) N.A.

\section*{2. TREATMENTS:}

All combinations of (1), (2) and (3).
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb} . / a c\). of \(N\).
(2) 3 spacings : \(S_{1}=12^{\circ}, S_{3}=15^{\circ}\), and \(S_{3}=18^{\prime \prime}\).
(3) 3 sced rates: \(R_{1}=10, R_{9}=15\) and \(R_{3}=20 \mathrm{lb} . / \mathrm{ac}\)
3. DESIGN :
(i) \(3^{3}\) partially confounding \(\mathrm{RNS}^{2}\) and \(\mathrm{RN}_{3} \mathrm{~S}\) (ii) (a) 9 plots/block; 3 blocks/replication. (b) N.A. (iii) 2. (iv) (a) N.A. (b) \(66^{\circ} \times 16.5^{\circ}\). (v) N.A. (vi) Yes.

\section*{4. GENERAL :}
(i) Good. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) N.A. (b) No. (c) N.A (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS :}
(i) \(1763 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(316.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) Interactions \(R \times N\) and \(N \times S\) alone are significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathrm{N}_{1}\) & \(\mathrm{N}_{2}\) & Mean & \(\mathbf{S}_{1}\) & \(\mathbf{S}_{\mathbf{2}}\) & \(S_{2}\) \\
\hline \(\mathbf{R}_{1}\) & 1688 & 1959 & 2395 & 2014 & 1896 & 2135 & 2010 \\
\hline \(\mathbf{R}_{2}\) & 1472 & 1592 & 2037 & 1700 & 1841 & 1747 & 1513 \\
\hline \(\mathbf{R}_{3}\) & 1557 & 1435 & 1744 & 1579 & 1689 & 1584 & 1463 \\
\hline Mean & 1572 & 1662 & 2059 & 1763 & 1809 & 1822 & 1662 \\
\hline Sı & 1666 & 1838 & 1923 & 1809 & & & \\
\hline \(\mathrm{S}_{2}\) & 1429 & 1678 & 2359 & 1822 & & & \\
\hline \(\mathrm{S}_{3}\) & 1622 & 1470 & 1895 & 1662 & & & \\
\hline
\end{tabular}
S.E. of marginal mean of \(N, S\) or \(R \quad=74.5 \mathrm{lb} . / \mathrm{ac} . \quad \int\) S.E. of body of any table \(\quad=129.0 \mathrm{lb} . / \mathrm{ac}\).

Crop : JJowar (Kharif).
/ Site :-Govt. Exptl. Farm, Nagpur.

Ref :-Mh. 52(138).
Type: ©‘CM’.

Object :-To study the effect of \(\mathbf{N}\) with different seed rates and line to line spacing on Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Jowar-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 18.7.1952. (iv) (a) 2 ploughings and 5 bakharings. (b) N.A. (c) and (d) As per treatments. (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) Saoner (medium), (vii) Unirrigated. (viii) 3 interculturings and 3 weedings. (ix) \(29.32^{\prime \prime}\). (x) 11.12.1952.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3)
- (1) 3 levels of \(\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15\) and \(\mathrm{N}_{2}=30 \mathrm{lb}\)./ac.
(2) 3 line to line spacings: \(S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}\) and \(S_{3}=18^{\prime \prime}\).
(3) 3 seed rates: \(R_{1}=10, R_{2}=15\) and \(\mathbf{R}_{3}=20 \mathrm{lb}\)./ac.
3. DESIGN ;
(i) \(3^{3}\) partially confounding. RNS \(^{2}\) and RNS \(^{2}\) (ii) (a) 9 plots/block; 3 blocks/replication. (iii) 2. (iv) (a) N.A. (b) \(66^{\prime} \times 16.5^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of top shoot-borer. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Rep. I had a poor growth.

\section*{5. RESULTS :}
(i) \(834 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(458.0 \mathrm{lb} / \mathrm{ac}\).
(iii) Main effect of \(\mathbf{N}\) alone is highly significant. Others are not significant.
(iv) Av. yield of grain in lblac.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{6}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{\mathbf{2}}\) & Mean & \(S_{1}\) & \(S_{2}\) & S 9 \\
\hline \(\mathrm{R}_{1}\) & 755 & 1028 & 1270 & 1018 & 1137 & 638 & 1258 \\
\hline \(\mathbf{R a}_{\mathbf{1}}\) & 382 & 753 & 1043 & 726 & 894 & 717 & 567 \\
\hline Rs & 540 & 883 & 854 & 759 & 740 & 1015 & 521 \\
\hline Mean & 559 & 887 & 1056 & 834 & 924 & 797 & 782 \\
\hline \(S_{1}\) & 706 & 972 & 1093 & 924 & & & \\
\hline \(S_{3}\) & 438 & 892 & 1060 & 797 & & & \\
\hline \(S_{3}\) & 533 & 798 & 1014 & 782 & & & \\
\hline \multicolumn{4}{|c|}{\multirow[t]{2}{*}{S.E. of any marginal mean S.E of body of any table}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& =108.0 \mathrm{lb} / \mathrm{ac} \\
& =187.0 \mathrm{lb} / \mathrm{ac}
\end{aligned}
\]} & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Govt. Exptl. Farm, Nag pur.

Ref :- Mh. 53(239).
Type:- 'CM'.

Object:-To study the effect of N with different seed rates and line to line spacing on Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysia, Nagpur. (iii) 22.7.1953. (iv) (a) and (b) N.A. (c) and (d) As per treatments. (c) N.A. (v) Nil. (vi) Saoner (late). (vii) Unirrigated. (viii) 2 hosings and 3 weedings. (ix) 39.34. (x) 27.12.1953.
2. TREATMENTS :

All combinations of ( I ) (2) and (3)
(1) 3 levels of \(N\) as \(A / S: N_{0}=0, N_{1}=15\) and \(N_{2}=30 \mathrm{lb} / / \mathrm{ac}\).
(2) 3 spacings \(b: t w e e n\) lines: \(S_{1}=12^{\circ}, S_{2}=15^{* *}\) and \(S_{3}=18^{*}\).
(3) 3 seed rates: \(R_{1}=10, R_{2}=15\) and \(R_{3}=20 \mathrm{lb} / \mathrm{ac}\).
3. DESIGN :
(i) \({ }^{3}\) partially confounding RNS \({ }^{2}\) and RNS (ii) (a) 9 plocs/block; 3 blocks/replication (b) N.A. (iii) 2 (iv) (a) N.A. (b) \(1 / 44\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) NiL. (iii) Grain yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
S. RESULTS :
(i) \(2775 \mathrm{lb} / \mathrm{ac}\)
(ii) \(371.5 \mathrm{lb} / \mathrm{ac}\).
(iii) All the effects are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \(\mathrm{N}_{0}\) & \(\mathbf{N}_{1}\) & \(\mathbf{N}_{2}\) & Mean & \(\mathrm{S}_{\mathbf{2}}\) & \(S_{8}\) & \(S_{3}\) \\
\hline \(\mathrm{R}_{1}\) & 2736 & 2988 & 3328 & 3017 & 3058 & 3143 & 2851 \\
\hline \(\mathbf{R e}_{\mathbf{g}}\) & 2835 & 2085 & 2909 & 2810 & 2791 & 2637 & 3001 \\
\hline \(\mathbf{R s}_{s}\) & 20:0 & 2725 & 2715 & 2493 & 2406 & 2414 & 2659 \\
\hline Mean & 2537 & 2799 & 2984 & 2775 & 2752 & 2731 & 2837 \\
\hline \(S_{1}\) & 2602 & -686 & 2967 & 2751 & & & \\
\hline \(S_{3}\) & 2450 & 2641 & 3103 & 2731 & & & \\
\hline Ss & 2558 & 3071 & 2832 & :837 & & & \\
\hline
\end{tabular}
S.E. of any marginal mean
S.E. of body of any cable
\(-87.6 \mathrm{lb} / \mathrm{ac}\)
\(=151.7 \mathrm{lb} / \mathrm{ac}\).

Crop :- Jowar (Kharif).
Ref :- Mh. 51(182).
Site :- Agri. College Farm, Poona.
Type :- 'CM'.
Object :-To study the effect of deep and shallow tillage with and without F.Y.M. on the yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 17.7.1951. (iv) (a) As per treatments.' (b) Drilling. (c) 10 lb ./ac. (d) Between rows \(24^{\text {c }}\); between plants irregular. (e) N A. (v) Nil. (vi) Nilwa (vii) Unirrigated. (viii) 3 interculturings. (ix) \(26.62^{\prime \prime}\). (x) 10.12.1951.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y. \(\dot{\mathrm{M}} .: \mathrm{F}_{0}=0\) and \(\mathrm{F}_{1}=5\) C.L./ac.
(2) 2 cultural c perations : \(\mathrm{C}_{1}=\) Harrowing only and \(\mathrm{C}_{2}=\) Ploughing to a depth of \(5^{\prime \prime}\) to \(6^{\prime \prime}\).
3. DESIGN :
(i) \(2 \times 2\) Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 8 . (iv) (a) \(132^{\prime} \times 20.5^{\prime}\). (b) \(124^{\prime} \times 16^{\prime}\). (v) \(4^{\prime} \times 2.25^{\prime}\). (vi) Yes.
4. GENERAL :
(i) The effect of draught period seriously checked the growth of plants (ii) There was an attack of stemborer and leaf rust. (iii) Grain and fodder yield. Number of earheads and weight of earheads. (iv) (a) 1930-N.A. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(188.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(140.0 \mathrm{lb} / \mathrm{ac}\).
(iii) None of the effects is signifiant.
(iv) Av. yield of grain in lb/ac.
\begin{tabular}{|c|c|c|c|}
\hline & \(\mathrm{F}_{0}\) & \(\mathrm{F}_{1}\) & Mean \\
\hline . \(\mathrm{C}_{1}\) & 173.0 & 132.0 & 152.0 \\
\hline \(\mathrm{C}_{2}\) & 198.0 & 248.0 & 223.0 \\
\hline Mean & 185.0 & 190.0 & 188.0 \\
\hline
\end{tabular}
S.E. of any marginal mean \(\quad=35.0 \mathrm{lb} . / \mathrm{ac}\).
S.E. of body of table \(\quad=49.5 \mathrm{lb} . / \mathrm{ac}\).
\(\overline{\text { Crop : }}\) - Jowar (Kharif).
Ref :- Mh. 52(212).
Site :- Agri. College Farm, Poona.
Type:- 'CM'.
Object :-To study the effect of deep and shallow tillage with and without F.Y.M. on Jowar crop.
1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 20,21.6.1952. (iv) (a) As per treatments. (b) Drilling. (c) 10 lb ./ac. (d) Spacing between rows \(24^{\circ}\); between plants irregular. (e) N.A. (v) Nil. (vi) Nilwa. (vii) Unirrigated. (viii) 1 interculturing and 2 weedings. (jx) 22.03". (x) 29.1.1953.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=5\) C.L./ac.
(2) 2 cultural operations: \(C_{1}=\) Harrowing and \(C_{2}=\) Ploughing to a depth of \(5^{\prime \prime}\) to \(6^{\prime \prime}\).
3. DESIGN.:
(i) \(2 \times 2\) Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 8. (iv) (a) \(132^{\prime} \times 20^{\circ}\). (b) \(124^{\prime} \times 16^{\prime}\). (v) \(4^{\prime} \times 2^{\prime}\). (vi) Yes.
4. GENERAL :
(i) The growth of the crop was not good. Due to failure of rains at later stages, there was no grain formation. (ii' Stemborer attack during the month of August and September. (iii) Fodder yield. (iv) (a) 1930N.A. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) Nil. (vii) As the yield data for grain could not be procured due to failure of rains, alysis of fodder yield was carried out.
5. RESULTS:
(i) \(5056 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(666 \cdot 1 \mathrm{lb} . / \mathrm{ac}\).
(iii) Main effects of \(F\) and \(C\) are highly significant while their interaction is not significant. (iv) Av. yield of fodder in lb./ac.

S.E. of any marginal mean \(\quad=166.5 \mathrm{lb}\)./ac.
S.E. of body of table \(\quad=235.6 \mathrm{lb} . / \mathrm{ac}\).

Crop :-Jowar.
Site :-Agri. College Farm, Poona.

Ref :-Mh. 53(67).
Type :-‘CM'.

Object :-To see the effect of deep and shallow tillage with and without F.Y.M. on Jowar crop.

\section*{1. BASAL CONDITIONS :}
(i) (a) Jowar-Cotton. (b) Cotton. (c) 5 C.L./ac. of F.Y.M. as per manured treatments only. F.Y.M. is applied as a basal dose. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 16.6.1953. (iv) (a) As per treatments. (b) to (e) N.A. (v) Nil. (vi) Nilwa (medium). (vii) Unirrigated. (viii) 2 interculturings. (ix) \(16.64^{\circ}\). (x) Nipping on 21 to 29.11.1953 and thrashing was done on 22-25.1.1954.

\section*{TREATMENTS :}

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. : \(F_{0}=0\) and \(F_{1}=5\) C.L./ac.
(2) 2 cultural operations: \(C_{1}=\) Harrowing only and \(C_{2}=\) Ploughing only to \(4^{\prime \prime}-5^{\prime \prime}\) depth by victory plough.
F.Y.M. applied as basal dose by spreading.
3. DESIGN :
(i) \(2 \times 2\) Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 8 . (iv) (a) \(132^{\prime} \times 20^{\prime}\). (b) \(124^{\prime} \times 16^{\prime}\). (v) One row along length, \(4^{\prime}\) along breadth. (vi) Yes.

\section*{4. GENERAL:}
(i) Stand of the crop was excellent in all plots. (ii) Crop affected by army-worms, catterpillars in early stage. Central shoots and ears were eaten by them. Due to good rains in August and September, this was made up and growth was good. (iii) Grain yield. (iv) (a) \(1930-\) N.A. (b) Yes. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) \(132.0 \mathrm{lb} . / \mathrm{ac}\).
(ii) 67.17 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{l|ll|l} 
& \(\mathrm{F}_{0}\) & \(\mathrm{~F}_{1}\) & Mean \\
\hline \(\mathrm{C}_{\mathbf{1}}\) & 162.0 & 136.0 & 149.0 \\
\(\mathrm{C}_{\mathbf{2}}\) & 122.0 & 107.0 & 114.0 \\
\hline Mean & 142.0 & 122.0 & 132.0
\end{tabular}
\[
\begin{array}{ll}
\text { S.E. of any marginal mean } & =17.95 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E of body of table } & =25.38 \mathrm{lb} . / \mathrm{ac} .
\end{array}
\]

\begin{tabular}{lc} 
Crop :-Jowar (Rabi). & Ref :-Mh. 50(154). \\
Site :-Agri. Res. Stn., Sholapur. & Type :-‘CM'.
\end{tabular}

Object :-To study the different methods of Jowar cultivation.
1. BASAL CONDITIONS:
(i) (a) Gram-Jowar.' (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapar. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilling. (c) 4 lb. /ac. (d) As per treatments. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings to Bombay dry farming method. (ix) \(24.04^{\text { }}\). (x) N.A.
2. TREATMENTS :
i. \(12.5 \mathrm{lb} . / \mathrm{ac}\). of N as G.N.C. +25 lb . \(/ \mathrm{ac}\). of \(\mathrm{P}_{2} \mathrm{O}_{5}\) as B.M. \(+2 \frac{1}{2}\) ton/ac. of P.Y.M. with usual \(12^{\prime \prime}\) spacing.
2. Bombay dry farming method-18 \(8^{\text {s }}\) spacing, 5 C.L./ac. of F.Y.M.
3. Local cultivators' method- \(12^{\prime \prime}\) spacing.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) N.A. (iv) N.A. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) N.A. (iv) (a) and (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(554 \mathrm{lb} / \mathrm{ac}\).
(ii) N.A.
(iii) N.A.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{ccc} 
Treatment & Av. yield & \\
1. & 711 & \\
2. & 590 & \\
3. & 360 & \\
S.E./mean & N.A. &.\(J\)
\end{tabular}
```

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.
Ref:- Mh. 48(106).
Type :- 'CM'.

```

Object :-To study the effect of organic manures along with cultural practices on Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iī) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (c) -. (v) Nil. (vi) M-35-1. ( iii) Unirrigated. (viii) 3 interculturings. (ix) 39.18". (x) N.A.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 2 sources of organic manures: \(\mathrm{O}_{1}=\) G.M. and \(\mathrm{O}_{2}=\) Compost.
(2) 3 leveis of organic manures: \(L_{0}=0, L_{1}=2500\) and \(L_{2}=5000 \mathrm{lb} / \mathrm{ac}\).
(3) 2 cultural practices: \(C_{L}=\) ploughing once and \(C_{2}=\) Discing once.
3. DESIGN :
(i) \(3 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 12 (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(33^{\prime} \times 27^{\prime}\). (v) N.A. (vi) Yer.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948 to 1949 . (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(330 \mathrm{ib} / \mathrm{ac}\).
(ii) \(91.46 \mathrm{lb} / \mathrm{ac}\).
(iii) L effect is significant and 'selective vs others' effect is highly significant. Others are not significant.
(iv) Av. yield of grain in lb./ac.

Selective treatments (averaged over \(\mathfrak{L}_{\mathbf{0}}\) plots)
\begin{tabular}{rrr}
\(C_{1}\) only & \(=269 \mathrm{lb} . / \mathrm{ac}\), \\
\(C_{2}\) only & \(=268 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. \(/\) mean & \(=33.40 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(L_{1}\) & \(L_{2}\) & Mean & \(C_{1}\) & \(\mathrm{C}_{3}\) \\
\hline \(\mathrm{O}_{1}\) & 348 & 437 & 392 & 400 & 386 \\
\hline \(\mathrm{O}_{2}\) & 304 & 355 & \(329^{\circ}\) & 365 & 294 \\
\hline Mean & 326 & 396 & 361 & 382 & 340 \\
\hline \(C_{1}\) & 336 & 429 & & & ; \\
\hline \(\mathrm{C}_{2}\) & 316 & 364 & & & \(v\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal meaa & \(=23.61 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of any table & \(=33.40 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 49(131).
Type :-'CM'.

Object :-To study the effect of organic manures along with cultural practice on Jowar.
1. BASAL CONDITIONS :
(i) (a) GramJowar. (b) Gram. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) 4 lb ./ac. (d) \(18^{\circ}\) between rows. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 38.17". (x) N.A.

\section*{2. TREATMENTS :}

All combinations of (1), (2) and (3).
(1) 2 sources of organic manures : \(\mathrm{O}_{1}=\) G.M. and \(\mathrm{O}_{2}=\) Compost.
(2) 3 levels of organic manure : \(L_{0}=0, L_{1}=2500\), and \(L_{2}=5000 \mathrm{lb}\).ac.
(3) 2 cultural operations: \(\mathbf{C}_{1}=\) Ploughing once and \(\mathrm{C}_{2}=\) Discing once.
3. DESIGN :
(i) \(3 \times 2 \times 2\) Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) \(33^{\prime} \times 33^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1948 to 1949 . (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(372 \mathrm{lb} / / \mathrm{ac}\).
(ii) \(127.3 \mathrm{lb} . / \mathrm{ac}\).
(iii) Only main effect of \(L\) is highly significant. Others are not significant.
(iv) Av. yield of grain in lb/ac.

Selective treatments (averaged over \(\mathrm{L}_{0}\) plots.)
\begin{tabular}{rl}
\(\mathbf{C}_{1}\) only & \(=361 \mathrm{lb} . / \mathrm{ac}\). \\
\(\mathbf{C}_{2}\) only & \(=346 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. \(/\) mean & \(=45.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \(\mathrm{L}_{1}\) & \(L_{2}\) & Mean & \(\mathrm{C}_{1}\) & C \\
\hline \(\mathrm{O}_{1}\) & 304 & 469 & 386 & 418 & 355 \\
\hline \(\mathrm{O}_{\mathbf{2}}\) & 333 & 419 & 376 & 409 & 343 \\
\hline Mean & 318 & 444 & 381 & 414 & 349 \\
\hline \(\mathrm{C}_{1}\) & 352 & 474 & , & & \\
\hline \(\mathrm{C}_{2}\) & 285 & 414 & & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal tnean & \(=31.8 \mathrm{lb} . / \mathrm{ac}\). \\
S. E. of body of any table & \(=45.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop: Jowar (Kharif).
Ref :~ Mh. 53(216).
Site :- Agri. Res. Stn., Dhulia.
Type :- 'D'.
Object :-To study the effect of Indol acetic acid (Hormone treatment) on Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil. (b) Cotton in Kharif 1952-53. (c) 10 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) N.A.
(iii) 27.6.1953. (iv) (a) N.A. (b) Seeds drilled. (c) \(10 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) apart. (e) N.A. (v) Nil.
(vi) Satpani. (vii) Unirrigated. (viii) 2 interculturings and 1 weeding. (ix) 21.84". (x) 26.10.1953.
2. TREATMENTS:

All combinations of (1) and (2) + a control (untreated).
(I) 3 concentrations of "Indol Acetic Acid" with which the seeds were treated :
\(C_{1}=0.10, C_{2}=1.00\) and \(C_{3}=10.00\) P.P.M.
(2) 3 durations of treatment of seed: \(\mathrm{T}_{1}=12\) minutes, \(\mathrm{T}_{2}=2\) hours and \(\mathrm{T}_{3}=20\) hours:
3. DESIGN:
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) \(40^{\prime} \times 18^{\prime}\). (b) \(30^{\prime} \times 12^{\prime}\). (v) \(5^{\prime}\) on both the sides and 2 rows on each side. (vi) Yes.

\section*{4. GENERAL :}
(i) Plants slender and tall with smaller earheads, probably due to thick sowing. (ii) Nil. (iii) No. of plants, average height of 5 week old and 10 week old crop, grain and fodder yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) Jalagaon. (b) N.A. (vi) and (vii) Nil.

\section*{5. RESULTS:}
(i) \(872 \mathrm{lb} / \mathrm{ac}\).
(ii) \(197.0 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

Control \(=1068 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{l|lll|l} 
& \(T_{1}\) & \(T_{2}\) & \(T_{3}\) & Mean \\
\hline\(C_{1}\) & 804 & 743 & 809 & 785 \\
\(C_{2}\) & 851 & 796 & 794 & 814 \\
\(C_{3}\) & 879 & 1055 & 923 & 952 \\
\hline Mean & 845 & 865 & 842 & 850
\end{tabular}
, S.E. of marginal mean of C
\(=56.9 \mathrm{lb} . / \mathrm{ac}\).
S.E. of marginal mean of \(T\)
\(=56.9 \mathrm{lb} . / \mathrm{ac}\)
S.E. of body of table
\(=98.5 \mathrm{lb} . / \mathrm{ac}\).

Crop :- Jowar (Kharif). Ref:- Mh. 53(217).
Site :- Agri. Res. Stn., Dhulia.
Type:- ' D '.

Object :-To study the effect of hormone treatment (2-4-D) of seed on the yield of Jowar.
1. BASAL CONDITIONS:
(i) (a) Nil. (b) Cotton in Kharif 1952-53. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Medium black, (b) \({ }_{2} N . A\).
(iii) 30.6.1953. (iv) (a) N.A. (b) Seeds drilled with 3 coultered seed drill. (c) \(10 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) apart.
(e) N.A. (v) N.A. (vi) Satpani. (vii Unirrigated. (viii) 2 interculturings and 1 weeding. (ix) \(21,84^{\prime \prime}\).
(x) 26.10.1953.
2. TREATMENTS:

All combinations of (1) and (2) + a control (untreated seeds).
(1) 3 durations of treatment of seed: \(\mathrm{T}_{1}=12\) minutes, \(\mathrm{T}_{2}=2 \mathrm{hrs}\). and \(\mathrm{T}_{3}=20 \mathrm{hrs}\).
(2) 3 seed treatments : \(C_{1}=\) Water, \(C_{2}=2-4-D\) of 0.10 P.P.M. and \(C_{8}=2-4-D\) of 0.01 P.P.M.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) \(40^{\prime} \times 18^{\prime}\). (b) \(30^{\circ} \times 12^{\prime}\). (v) \(5^{\prime}\) length wise and \(3^{\prime}\) breadth wise on both the sides of net plot. (vi) Yes.
4. GENERAL :
(i) Plants tall and thin with smaller earheads, probabaly due to dense sowing. (ii) Nil. (iii) No. of plants, average height of 5 week and 10 week old crop, grain and fodder yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) Jalagaon and Kopergaon. (b) N.A. (vi) and (vii) Nil,

\section*{5. RESULTS :}
(i) \(1264 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(237.6 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

Control \(=1448 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{r|ccc} 
& \(\mathrm{T}_{\mathbf{1}}\) & \(\mathrm{T}_{\mathbf{2}}\) & \(\mathrm{T}_{\mathbf{3}}\) \\
\hline \(\mathrm{C}_{1}\) & 1121 & 1142 & \(1085^{\circ}\) \\
\(\mathrm{C}_{\mathbf{2}}\) & 1459 & 1216 & 1359 \\
\(\mathrm{C}_{3}\) & 1242 & 1390 & 1168 \\
\hline Mean & 1274 & 1249 & 1204 \\
\hline & & Mean \\
111645 \\
1267 \\
\hline 1243
\end{tabular}.
\begin{tabular}{ll} 
S.E. of any marginal nrean & \(=68.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of tatle & \(=118.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
\begin{tabular}{ll} 
Crop :-Jowar (Kharif). & Ref:-Mh 52(381). \\
Site :-Agri. Res. Stn., Jalagaon. & Type :- ‘D'.
\end{tabular}

Object: - To see the effect of harmone treatment of seed on growth and yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Nil (ii) Gram. (c) Nil. (ii) (a) Deep black cotton soil. (b) Refer soil analysis, Jalagaon. (iii) 10.7.1952. (iv) (a' N.A. (b) Drilling. (c) \(6 \mathrm{lb} . / \mathrm{ac}\). (d) \(12^{\prime \prime}\) ketween rows. (e) N.A. (v) Nil. (vi) Aishpuri (late). (vii) Unirrigated. (viii) 1 hosing and 1 weeding. (ix) 16.41". (x) 29.11.1952.
2. TREATMENTS :
1. Seeds treated with water for 30 minutes.
2. Seeds treated with 0.01 p.p.m. 2-4-D for 30 minutes.
3. Seeds treated with 0.1 p.p.m. 2-4-D for 30 minutes.
4. Seeds treated with water for two hours.
5. Seeds treated with 0.01 p.p m. 2-4-D for 2 hours.
6. Seeds treated with 0.1 p.p.m. 2-4-D for hours.
7. Seeds treated with 1.0 p.p.m. 2-4-D for 2 hours.
8. Control iuntreated seed).
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) \(42^{\prime} \times 18^{\prime}\). (b) \(36^{\prime} \times 12^{\prime}\). (v) \(3^{\prime}\) ring. (vi) Yes.
4. GENERAL :
(i) Growth was fairly good. (ii) Attack of stemborer and striga observed. (iii) Grain yield, plant count etc. (iv) (a) 1952-1954. (b) N.A. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(298 \mathrm{lb} / / \mathrm{c}\).
(ii) \(45.40 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatment differences are significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 310 \\
2. & 304 \\
3. & 273 \\
4. & 258 \\
5. & 388 \\
6. & 286 \\
7. & 284 \\
8. & 284 \\
S.E /mean & \(=22.70 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref:-Mh. 53(128).
Type:- 'D'.

Object :-To see the effect of hormone treatment of seed on growth and yield of Jowar.
1. BASAL CON DITIONS:
(i) (a) Nil. (b) Groundnut. (c) N.A. (ii) (a) Deep black cotton type baving a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 10.7.1953. (iv) (a) N.A. (b) Seeds drilled (c) \(6 \mathrm{lb} . / \mathrm{ae}\) (d) \(18^{\circ}\) spacing between rows. (e) N.A. (v) Nil. (vi) Aispuri. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) \(23.77^{\circ}\). (x) 29.11.1953.

\section*{2. TREATMENTS :}

All combinations of (1) and (2) + a Control (seed not soaked)
(1) Seed soaked in: \(C_{1}=\) Water, \(C_{4}=0.01\) p.p.m. of 2-4-D and \(C_{3}=0\) 10 p.p.m. of 2-4-D.
(2) Duration for which seeds soaked: \(T_{1}=12\) minutes, \(T_{2}=2\) hours and \(T_{3}=20\) hours.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) \(84^{\circ} \times 90^{\circ}\). (iii) 4. (iv) (a) \(42^{\circ} \times 18^{\circ}\). (b) \(36^{\circ} \times 12^{\circ}\). (v) \(3^{\circ}\) all round the net plot. (vi) Yes.
4. GENERAL :
(i) The germination was satisfactory. (ii) In the beginning attack of stemborer was observed to some extent. Attack of striga was also observed on many plants. (iii) Weight of Jowar grain and kadbi; percentage germination at the end of 10 days; height and two measurements of diameters of 4 random plants in each plot on 5th and 10th week after sowing of Jowar. (iv) (a) 1953-1954. (b) Na (c) N.A. (v) (a) Dhulia. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(1223 \mathrm{lb} / / \mathrm{ac}\).
(ii) \(232.9 \mathrm{lb} . / \mathrm{ac}\).
(iii) Noce of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).

\begin{tabular}{ll} 
S.E. of any marginal mean & \(=67.2 \mathrm{lb} / \mathrm{ac}\), \\
S.E. of body of table & \(=116.5 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of control \(v s\) any other mean in the body o table & \(=164.7 \mathrm{lb} . \mathrm{ac}\).
\end{tabular}

\section*{Crop:- Jowar (Kharif).}

Site :- Agri. Res. Stn., Jalagaon.

Ref :- Mh. 53(129).
Type :- 'D'.

Object :-To study the effect of treating sesd with Indol acetic acid on the growth and yeld of Jowar.
1. BASAL CONDITIONS :
(i) (a) No. (b) Groundnut. (c) N.A. (iii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 10.7.1953. (iv) (a) N.A. (b) Drilled. (c) \(6 \mathrm{lb} . / \mathrm{ac}\) (d) Between rows \(13^{\circ}\). (c) -. (v) Nil. (vi) Aispuri. (vii) Unirrigated. (viii) Hocing on 22.7.1953 and 19.8.1953 weeding on 23.7.1953 and 19.8.1953. (ix) 23.77". (x) 29.11.1953.

\section*{2. TREATMENTS :}

All combinations (1) and (2) + a control (seeds untreated).
(1) 3 concentrations of Indol acetic acid in P.P.M. : \(C_{1}=0.10, C_{2}=1.00\) and \(C_{3}=10.00\).
(2) 3 intervals of applications : \(\mathrm{T}_{1}=12\) minutes, \(\mathrm{T}_{2}=2\) hours and \(\mathrm{T}_{3}=20\) hours.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) \(81^{\prime} \times 90^{\prime}\). (iii) 4. (iv) (a) \(42^{\prime} \times 18^{\prime}\). (b) \(36^{\prime} \times 12^{\prime}\). (v) \(3^{\prime}\) all round the net plot. (vi) Yes.
4. GENERAL :
(i) Stand of the crop was some what uneven. Condition of the experiment was fairly good. (ii) Attack of stem borer and striga was observed. (iii) Weight of jowar grain and kadbi; percentage germination after 10 days. ; height and diameter of 4 random plants in each sub-plot on 5 th and 10 th week after sowing.
(v) (a) 1953 to 1954.
(b) No.
(c) No.
(v) (a) Dhulia.
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(1217 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(253.1 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in \(\mathrm{Ib} . / \mathrm{ac}\).

Control \(\quad=1227 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccc|l} 
& \(\mathbf{T}_{1}\) & \(\mathbf{T}_{\mathbf{2}}\) & \(\mathbf{T}_{\mathbf{3}}\) & Mean \\
\hline \(\mathbf{C}_{1}\) & 1289 & 1251 & 1193 & 1245 \\
\(\mathbf{C}_{2}\) & 1047 & 1152 & 1347 & 1182 \\
\(\mathbf{C}_{3}\) & 1154 & 1207 & 1300 & 1220 \\
\hline Mean & 1163 & 1204 & 1280 &
\end{tabular}
\begin{tabular}{ll} 
S.E. of any marginal mean & \(=73.1 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of body of table & \(=126.6 \mathrm{lb} . / \mathrm{ac}\). \\
S.E. of control \(v s\) any other mean in the body of table & \(=178.9 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

\author{
Crop : Jowar (Kharif). \\ Site :~Agri. Res. Stn., Karad.
}

Ref :~Mh. 52(24).
Type :-'D'.
Object:-To test the effect of 2-4-D on the yield of Jowar.

\section*{1. BASAL CONDITIONS :}
(i) (a) Jowar-Groundnut. (b) Groundnut. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Clay-loam. (b) Refer soil analysis, Karad (iii) 24.6.1952. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. appl cation one month before sowing. (vi) Shenoll 3-1 (late). (vii) Unirrigated. (viii) N.A. (ix) \(27.10^{\prime \prime}\). (x) 10.12 .1952.
2. TREATMENTS :

Seed soaked in the following chemicals for the stated duration :
1. Water (for 30 minutes).
2. 0.01 p.p.m. of \(2-4-\mathrm{D}\) ( 30 minutes).
3. 0.1 p.p.m. of 2-4-D ( 30 minutes).
4. Water (for 5 hours).
5. 0.01 p.p.m. of 2-4-D (for five hours).
6. 0.10 p.p.m. of 2-4-D (for five hours).
7. 1.00 p.p.m. of \(2-4-\mathrm{D}\) (for five hours).
8. Control (seed untreated).
3. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (u, \(-4^{\prime} \times 18^{\prime}\). (b) \(36^{\circ} \times 12^{\prime}\). (v) \(3^{\circ}\) on each side. (vi) Yes,
4. GENERAL:
(i) No lodging. (ii) Slight attack of stemborer. Affected plants uprooted and buried (iii) Grain yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) N.A. (b) N.A (vi) and (vii) Nil.
5. RESULTS:
(i) \(818 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(4080 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 703 \\
2. & 1328 \\
3. & 635 \\
4. & 711 \\
5. & 745 \\
6. & 446 \\
7. & 898 \\
8. & 1111 \\
S.E./mean & \(=204.0 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

> Crop:- Jowar. (Kharif).
> Site :- Agri. Res. Stn., Karad.

Ref:- Mh. 53(299).
Type:- ' \(D\) '.
Object:-To study the effect of 2-4-D hormone on yield of Jowar.
1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Groundnut. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Karad. (iii) 18.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. one month before sowing. (vi) Shenoli 4-5. (vii) Unirrigated. (viii) N.A. (ix) \(38^{\prime \prime}\). (x) 1.11.1953.
2. TREATMENTS :

Seeds soaked as below:
1. In water for 20 hours.
2. In 0.00033 p.p.m. of \(\mathbf{2 - 4}-\mathrm{D}\) solution for 20 hours.
3. In 0.001 p.p.m. of \(2-4-\mathrm{D}\) solution for 20 hours.
4. In 0.0033 p.p.m. of 2-4-D solution for 20 hours.
5. In 0.01 p.p.m. of 2-4-D solution for 20 hours.
6. In 0.033 p.p.m. of \(2-4-\mathrm{D}\) solution for 23 hours.
7. Control (seeds untreated; 2 plots/block.)
3. DESIGN
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) \(15^{\prime} \times 35^{\circ}\). (b) \(12^{\circ} \times 33^{\prime}\). (v) 1 row on either side. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Attack of stemborer. Affected plants removed. (iii) Grain yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nii.
5. RESULTS :
(i) \(975 \mathrm{lb} / \mathrm{ac}\).
(ii) \(363.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
J. & 966 \\
2. & 636 \\
3. & 815 \\
4. & 1282 \\
5. & 1275 \\
6. & 890 \\
7. & 966 \\
S.E./mean & \(=181.8 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Jowar (Rabi).
Ref :- Mh. 49(126).
Site :- Agri. Res. Stn., Mohol.
Type:~ 'D'.

```

Object:-To study the efficacy of chemicals in controlling smut disease of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) 4 lb ./ac. (d) \(18^{\prime \prime}\) between rows. (c) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 1.14". (x) N.A.
2. TREATMENTS :
1. Control.
2. Sulphur tieatment.
3. Solar treatment.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(1 / 4\) guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) \(1949-1953\). (b) N.A. (c) N.A. (v) (a) and (b) N.A. (vi) ard (vii) Nil.
5. RESULTS:
(i) \(1065 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(173.8 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv). Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
Treatment Av. yield
\begin{tabular}{lc} 
1. & 1026 \\
2. & 1076 \\
3. & 1092 \\
S. & \(=61.4\)
\end{tabular}
S.E. \(/\) mean \(=61.4 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{ll} 
Crop :-Jowar (Rabi). & Ref:-Mh. 50(151). \\
Site :-Agri Res. Stn., Mohol. & Type :m'.
\end{tabular}

Object: -To study the efficacy of chemicals in controlling smut disease of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) 9.91". (x) N.A.
2. TREATMENTS:
1. Control.
2. Sulphur treatment.
3. Solar treatment.
3. DESIGN :
(i) R.B D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 270 sq. ft. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1953. (b) No. (c) Nil. (v) (a), and (bl N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(412 \quad \mathrm{lb} . / \mathrm{ac}\).
(ii) \(70.02 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
\begin{tabular}{lc} 
Treatment & Av. yield \\
1. & 372 \\
2. & 397 \\
3, & 467 \\
S.E./mean & \(=28.59 \mathrm{lb}\)./ac.
\end{tabular}

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Mohol.
Ref :-Mh. 51(230).
Type :-‘D'.

Object:-To study the efficacy of chemicals in controlling smut disease of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ}\) between rows. (c) 一. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(7.49^{\prime \prime}\). (x) N.A.
2. TREATMENTS :
1. Control.
2. Sulphur treatment.
3. Solar treatment.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) N.A. (b) \(20^{\prime} \times 13.5^{\circ}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(205 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(109.4 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
Treatment Av. yield
1. 140
2. 197
\(3 . \quad 278\)
S.E./mean \(\quad=38.7 \mathrm{lb}\)./ac.
```

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.
Ref :- Mh. 53(355).
Type:- 'D'.

```

Object :--To study the efficacy of chemicals in controlling smut disease of Jowar.
1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 3 harrowings (b) Drilled. (c) \(4 \mathrm{lb} / / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e)-. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(8.89^{\prime \prime}\). (x) N.A.
2. TREATMENTS:
1. Control.
2. Sulphur treatment.
- Solar treatment.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 9. (iv) (a) N.A. (b) \(30^{\prime} \times 9^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-1953. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 267 lb .ac.
(ii) \(48.17 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 192 \\
2. & 338 \\
3. & 272 \\
S.E./mean & \(=16.06 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.
Ref:- Mh. 49(143).
Type :- 'D'.

Object :-To study the effect of Weedicides, Agroxone and Fernoxone, on striga disease of Jowar.
3. BASAL CONDITIONS :
(1) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 3 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e)-. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 1.14'. (x) N.A.

\section*{2. TREATMENTS :}
1. Control.
2. Spraying of Agroxone on 6th, 8th, 10th and 12th weeks after sowing.
3. Spraying of Fernoxone on 6 th, 8 th, 10 th and 12 th \(x\) eeks after sowing.
4. Spraying of Agroxone on \(8 \mathrm{th}, 10 \mathrm{th}, 12 \mathrm{th}\) and 14 th weeks after sowing.
5. Spraying of Fernoxone on 8 th, 10 th, 12 th and 14 th, weeks after sowing.
6. Spraying of Agroxone on \(10 \mathrm{th}, 12 \mathrm{th}, 14\) th and 16 th weeks after sowing.
7. Spraying of Fernoxone on \(10 \mathrm{th}, 12 \mathrm{th}, 14 \mathrm{th}\) and 16 th weeks after sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(1 / 80\) ac. (v) N.A. (vi) Yes.
4. GENERAL :
- (i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949-195l. (b) N.A. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) \(120 \mathrm{Jb} . / \mathrm{ac}\).
(ii) \(49.15 \mathrm{lb} / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield
\begin{tabular}{cc} 
1. & 125 \\
2 & 118 \\
3. & 142 \\
-4. & 97 \\
5. & 153 \\
6. & 116 \\
7. & 87 \\
S.E./mean & \(=20.07 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}
```

Crop :- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.

```

Ref :- Mh. 50(150).
Type :- 'D'.

Object :-To study the effect of Fernoxone, a weedicide, on striga disease of Jowar. , i;
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) \(9.91^{\prime \prime}\). (x) N.A.
2. TREATMENTS :
1. Control (no spraying).
2. Spraying of Fernoxone on \(6 \mathrm{th}, 8 \mathrm{th}\), 10 th and 12 th week after sowing.
3. Spraying of Fernoxone on 8th, 10th. 12th and 14th week after sowing.
4. Spraying of Fernoxone on 10th, 12th, 14th and 16 th week after sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 525 Sq. ft. (v) N.A. (vi) Yes.
. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 to 1951. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(50 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(29.54 \mathrm{lb} . / \mathrm{ac}\).
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in \(\mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 63 \\
2. & 44 \\
3. & \(58 \quad\) \\
4. & 36 \\
S.E./mean & \(=14.70 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop :- Jowar (Rabi).
Site :- Agivi. Res. Stn., Mohol.

Ref:- Mh. 51(232).
Type:- ' \(D\) '.

Object :-To study the effect of Fernoxone. a weedicide, on striga disease of Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 3 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\prime \prime}\) between rows. (e) N.A. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 interculturings. (ix) \(7.49^{\circ}\). (x) N.A.
2. TREATMENTS :
1. Control.
2. Spraying of Fernoxone after 5th and 7th week of sowing.
3. Spraying of Fernoxone after 5th, 7th and 9th week of sowing.
4. Spraying of Fernoxone after 5th, 7th, 9th and 11th week of sowing.
5. Spraying of Fernoxone after 6 th, 8 th and 11 th week of sowing.
6. Hand weeding only.
3. DESIGN :
(i) R.B.D. (ii) 'a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) \(35^{\prime} \times 15\) '. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield: (iv) (a) 1949 to 1951 . (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Experiment totally failed-reasons N.A.
5. RESULTS :
(i) \(23.50 \mathrm{Bb} / \mathrm{ac}\).
(ii) 27.88 lb /ac.
(iii) Treatment do not differ significantly.
(iv) Av. yield of grait iti lb:/ac.
\begin{tabular}{cc} 
Treatment & Av. yield \\
1. & 23 \\
2. & 20 \\
3. & 33 \\
4. & 27 \\
5. & 5 \\
6. & 33 \\
S.E.jmean & \(=11.38 \mathrm{lb} . / \mathrm{ac}\).
\end{tabular}

Crop:- Jowar (Rabi).
Site :- Agri. Res. Stn., Mohol.

> Ref :m Mh. \(51(229)\).
> Type :- 'D'.

Object :-To see the effect of harmone treatment (2-4-D) on Jowar.
1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 3 harrowings. (b) Drilled. (c) \(4 \mathrm{lb} . / \mathrm{ac}\). (d) \(18^{\circ \prime}\) between rows. (c) --. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) 7.49". (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2) + control (seeds untreated).
(1) 5 concentrations of 2-4-D : \(\mathrm{C}_{1}=0.00\) i.e. seeds treated with water only, \(\mathrm{C}_{2}=0.10\) P.P. M. of 2-4-D, \(C_{3}=1.00\) P.P.M. of 2-4-D, \(C_{4}=10.00\) P.P.M. of 2-4-D and \(\mathrm{C}_{5}=100.00\) P.P.M. of 2-4-D.
(2) 3 durations of soaking: \(\quad T_{1}=\) Soaked for 12 minutes, \(T_{2}=\) Soaked for 2 hours and \(\mathrm{T}_{3}=\) Soaked for 20 hours.
3. DESIGN :
(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 3 . (iv) (a) N.A. (b) \(27^{\prime} \times 18^{\prime}\). (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1954 (Modified in \(11952-53\).\() (b) N.A. (c) Nil. (v)\) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) \(550 \mathrm{lb} . / \mathrm{ac}\).
(ii) \(140.7 \mathrm{lb} . / \mathrm{ac}\).
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

Control \(=586 \mathrm{lb} . / \mathrm{ac}\).
\begin{tabular}{c|ccccc|c} 
& \(C_{1}\) & \(C_{2}\) & \(C_{3}\) & \(C_{\mathbf{3}}\) & \(C_{3}\) & Mean \\
\hline\(\Gamma T_{1}\) & 526 & 586 & 530 & 691 & 665 & 600 \\
\(T_{2}\) & 379 & 557 & 626 & 605 & 612 & 556 \\
\(T_{3}\) & 467 & 551 & 471 & 465 & 517 & 494 \\
\hline Mean & 457 & 565 & 542 & 587 & 598 &
\end{tabular}
S.E. of marginal mean of \(C \quad=46.9 \mathrm{lb}\)./ac.
S.E. of marginal mean of \(T \quad=36.3 \mathrm{lb} . / \mathrm{ac}\). S.E. of body of table
```

Crop :- Jowar (Rabi).
Ref :- Mh. 52(364).
Site :- Agri. Res. Stn., Mohol.

Object :-To study the effect of different harmones qn Jowar.

1. BASAL CONDITIONS :
(i) (a Gram-Jowar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 3 harrowings. (b) Drilled. (c) 4 lb ./ac. (d) $18^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 2 interculturings. (ix) $5.03^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control (seeds untreated).
4. Seeds treated with water only for 2 hours.
5. Seeds treated with $2-4-\mathrm{D}$ in 0.10 P.P.M. for 2 hours.
6. Seeds treated with 2-4-D in 1.00 P.P.M. for 2 hours.
7. Seeds treated with 2-4-D in 0.01 P.P.M. for 20 hours.
8. Seeds treated with 2-4-D in 0.10 P.P.M. for 20 hours.
9. Seeds treated with 2-4-D in 1.00 P.P.M. for 20 hours.
10. Seeds treated with I.A.A. in 1.00 P.P.M. for 2 hours.
11. Seeds treated with I.A.A. in 10.00 P.P.M. for 2 hours.
12. Seeds treated with I.A.A. in 1.00 P.P.M. for 20 hours.
13. DESIGN :
(i) R.B D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) $36^{\prime} \times 12^{\prime}$. (b) $32^{\prime} \times 9^{\prime}$. (v) $2^{\prime} \times 1.5^{\prime}$. (vi) Yes.
14. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1951-1954 (modified in 1952-53). (b) and (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Experiment totally failed; reason-N.A.
15. RESULTS :
(i) $35.50 \mathrm{lb} . / \mathrm{ac}$.
(ii) $38.68 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield
16. 26

2.

4. 14
$5 . \quad 30$
$6 . \quad 43$
5. - 26
$9 . \quad 63$
$10 . \quad 51$
S.E./mean $\quad=19.34 \mathrm{lb} . / \mathrm{ac}$.
Crop :-Jowar (Rabi). " Ref :-Mh. 53(215).

Site :-Agri. Res. Stn., Mohol. Type :-'D'.
Object :-To study the effect of different hormories on Jowar yield.

1. BASAL CONDITIONS :
(i) (a) No. (b) Gram. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 22.10 .1953.
(iv) (a) N.A. (b) Drilled with 3 coultered seed drill. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime}$ apart. (e) -. (v) Nil. (vi) M-35-1. (vii) Unirrigated. (viii) 3 bullock hoeings and 2 bullock interculturings. (ix) 8.89". (x) 13.3.19:4. -

2. TREATMENTS:

1. Seed soaked in water for 2 hours.
2. Seed soaked in 2-4-D of concentration 0.10 P.P.M. for 2 hours.
3. Seed soaked in 2-4-D of concentration 1.00 P.P.M. for 2 hours.
4. Seed soaked in I.A.A. of concentration 1.00 P.P.M. for 2 hours.
5. Seed soaked in I.A.A. of concentration 10.00 P.P.M. for 2 hours.
6. Seed soaked in 2-4-D of concentration 0.01 P.P.M. for 20 hours.
7. Seed soaked in 2-4-D of concentration 0.10 P.P.M. for 20 hours.
8. Seed soaked in 2-4-D of concentration 1.00 P.P.M. for 20 hours.
9. Seed soaked in I.A.A. of concentration 1.00 P.P.M. for 20 hours.
10. Control (untreated seed).
11. DESIGN :
(i) R.B.D.
(ii) (a) 10
(b) N.A. (iii) 4. (iv) (a) $36^{\prime} \times 12^{\prime}$.
(b) $32^{\prime} \times 9^{\prime}$. (v) One row on each side and 2^{\prime} row at both the ends. (vi) Yes.
12. GENERAL :
(i) Not sat sfactory. (ii) Root rot was seen, may be due to high moisture content in the soil. Appearance of sugary disease may be attr buted to cool and dry winter. Stemborer and aphids were also noticed on the crop. (iii) Grain and fodder yield. (iv) (a) and (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
13. RESULTS :
(i) $147 \mathrm{Jb} . / \mathrm{ac}$.
(ii) $54.92 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yiel

1.	113
2.	161
3.	137
4.	132
5.	156
6.	156
7.	125
8.	135
9.	173
10.	177
S.E./mean	$=27.46 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Jowar (Rabi).
Site :-Agri. Res. Stn., Mohol.

Ref :-Mh. 48(52).
Type :-'D’.

Object :-To study the effect of methozone and YF-1541 on striga disease of Jowar.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) 13.10 .1948. (iv) (a) 4 harrowings. (b) Drilled. (c) N.A. (d) $18^{\prime \prime}$ apart. (e) -. (v) Nil. (vi) M-35-1. (vii)

Unirrigated. (viii) 2 interculturings. (ix) 5.38". (x) 7.3.1949.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 chemicals: $\mathrm{C}_{1}-$ Methozone and $\mathrm{C}_{2}=\mathrm{YF}-1541$.
(2) 2 times of application : $\mathrm{T}_{1}=$ Pre-emergence and $\mathrm{T}_{2}=$ Post-emergence of shoots.
(3) 4 levels of chemical: $L_{0}=0, L_{1}=\frac{1}{2}, L_{2}=1$ and $L_{3}=2 \mathrm{lb}$./plot.
3. DESIGN :
(i) $4 \times 2 \times 2$ Fact. in R.B.D.
(ii) (a) 16 .
(b) N.A. (iii) 4 .
(iv) (a) N.A.
(b) $22^{\prime} \times 20^{\prime}$. (v) N.A.
(vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) and (b) Na (c) NA. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $97.1 \mathrm{lb} / \mathrm{ac}$
(ii) $54.29 \mathrm{lb} . / \mathrm{ac}$
(iii) None of the effects is significanc.
(iv) Av. yield of grain in lb./ac.

	Control			$=113.5 \mathrm{lb} / \mathrm{mc}$		
	L_{L}	L_{2}	L*	Mean	- T_{1}	T
C 1	62.	86.5	928	80.6	75.1	86.0
C	105.1	108.9	94.2	102.7	96.3	109.2
Mean	83.7	97.7	93.5	97.1	85.7	97.6
T	82.5	85.6	88.9			
T_{2}	84.9	109.3	98.1			

S.E. of marginal mean of L	$=13.57 \mathrm{lb} / \mathrm{ac}$.
$S E$ of marginal mean of C or T	$=11.08 \mathrm{mb} / \mathrm{ac}$
S.E. of body of table $\mathrm{L} \times \mathrm{C}$ or $\mathrm{L} \times \mathrm{T}$	$=19.20 \mathrm{lb} / \mathrm{ac}$
S.E. of tody of table CXT	$=15.67 \mathrm{lb} / \mathrm{/ac}$.

> Crop :- Jowar (Kharif).
> Site = Government Exptl. Farm, Nagpur.

Ref :- Mh. 51(123).

Type :- 'D'.
Object :-To find out the effect of commercial manures on Jowar crop.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Black cotion soil. (b) Refer soil analysis, Nagpur. (iii) 17.T.1951. (iv) (a) N.A. (b) N.A. (c) $10 \mathrm{lb} / \mathrm{ac}$ (d) $13^{\circ} \times 12^{\circ}$. (e) N.A. (v) N.A. (vi) Saoner (medium) (vii) Unirrigated. (viii) 5 hoeings. (ix) 38.29°. (x) 5.t. 1952.
2. TREATMENTS:
3. Control (no manure).
4. Seed treated with Growmore.
5. Seed treated with Annapurna.

SOL. of Annapurna was mixed with 50 oc. of water and $1 \& \mathrm{lb}$. of seed kept in sol. for 12 br . and dried in sum. 1 lb . of Growmore dissolved in 4 lb . of water and then 14 lb . of seed kept in sol . for 1 ltr . and dried in shade.
3. DESIGN :
(i) R.B.D (ii) (a) 3. (b) N.A. (iii) S. (iv) (a) N.A. (b) $66^{\circ} \times 16.5^{\circ}$. (v) N.A. (vi) Yes
4. GENERAL :
(i) Good. (ii N.A. (iii) Yield data for grain and cobs (iv) (a) N.A. (b) N.A (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nii.
5. RESULTS:
(i) $2000 \mathrm{lb} / \mathrm{ac}$
(ii) $252.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do aot differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
A.	1840
2.	2128
3.	2032
S.E $/$ mean	$=112.8 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Jowar (Kharif).
    Site :- Govt. Exptl. Farm, Nagpur.
```

 Ref :- Mh. 52(144).
 Type :- 'D'.
 Object :-To determine the effect of commercial manures on Jowar crop in comparison with A/S and G.N.C.

1. BASAL CONDITIONS :

(i) (a) Cotton-Jowar. (b) Cotton. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis; Nagpur.
(iii) 17.7.1952. (iv) (a) 5 bakharings. (b) By argada. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (e) N.A. (v) Nil. (vi) Saioner (medium). (vii) Unirrigated. (viii) 4 hoeings. (ix) 29.32". (x) 20.10.1952.

2. TREATMENTS :

1. No manure.
2. Seed treated with Growmore.
3. Seed treated with Annapurna.
4. A / S at $20 \mathrm{lb} . / \mathrm{ac}$. of N drilled.
5. G.N.C. at $20 \mathrm{lb} . / \mathrm{ac}$. of N drilled.

5 oz . of Annapurna with 50 oz . of water and $1 \nmid \mathrm{lb}$. of seed was kept in sol. for 12 hr . and dried in sun. 1 lb . of Growmore was dissolved in 4 lb . of water then $1+\mathrm{lb}$. of seed was kept in sol. for 1 hr . and then seed was dried in shade.
3. DESIGN :
(i) R.B D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $66^{\circ} \times 16.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain and st aw yield. (iv) (a) 1951-N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $976 \mathrm{lb} . / \mathrm{ac}$.
(ii) $462.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1000
2.	864
3.	1000
4.	1096
5.	920
S.E./mean	$=206.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site : \sim Agri. Res. Stn., Akluj.

Ref :- Mh. 48(78).
Type : ${ }^{\prime} \mathbf{M}$ '.

Object :-To see the effect of Bone super on Bajra.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Sugarcane. (c) $375 \mathrm{Jb} . / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 1$ ratio. (ii) (a) ' D ’ type. (b) Refer soil analysis, Akluj. (iii) June 1948. (iv) (a) Ploughing and harrowing. (b) to (c) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Akola. (vii) Irrigated. (viii) Weedings. (ix) 121.78°. (x) September-October 1948.
2. TREATMENTS :
3. No manure.
4. $\leq 6 \mathrm{lb}$./ac. of Bone super.
5. $56 \mathrm{lb} . / \mathrm{ac}$. of Bone super $+56 \mathrm{lb} . / \mathrm{ac}$. of A / S.
6. $56 \mathrm{lb} . / \mathrm{ac}$. of A / S.
7. $150 \mathrm{lb} . / \mathrm{ac}$. of G.N.C.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 0.50 guntha. (v) N.A. (vi) Yes.
9. GENERAL :
(i) No lodging. (ii) Nil. (iii) Grain yield. (iv) (a) 1946 to 1948 . (b) No. (c) Nil. (v) (a) Kopergaon, Deolali, Lakhampur. (b) N.A. (vi) No reason given for low yield. (vii) Nil,
10. RESULTS:
(i) $296 \mathrm{lb} . / \mathrm{ac}$.
(il) $42.24 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	233
2.	253
3.	240
4.	287
5.	467
S.E./mean	$=17.25 \mathrm{jb}$./ac.

```
Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Chas. . Type :m 'M'.
```

Object:-To find out the optimum dose of N and $\mathrm{P}_{2} \mathrm{O}_{\mathrm{B}}$ for Bajra.

1. BASAL CONDITIONS :
(i) (a) Groundinut-Bajra and Tur. (b) N.A. (c) Nil. (ii) (a) Light Kharif soil. (b) N.A. (iii) 13.7.1951, (iv) (a) 2 harrowings. (b) N.A. (c) $3 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 17.47*. (x) 20.10.1951.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $16^{\prime} \times 52^{\prime}$. (b) $12^{\prime} \times 48^{\prime}$ (3 rows of bajra and 1 row of tur). (v) 2^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Nil. (iii) 3 counts, 3 heights and grain yield. (iv) (a) 1951 to 1955 . (b) No, duplicate plots are maintained. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) No reasons given for low yield. (vii) Tur is grown as an inter crop along with bajra; but it is not included for the analysis.
5. RESULTS:
(i) $702 \mathrm{Ib} . / \mathrm{ac}$.
(ii) $156.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N and interaction NP are significant. Main effect of P is not aignificant.
(iv) Av. yield of grain in lb,/ac.

Crop :-Bajra (Kharif).

Site :- Agri. Res. Stn., Chas.

Ref :- Mh. 52(102).
Type :- ' M '.

Object:-To find out the optimum dose of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ for Bajra.

1. BASAL CONDITIONS:

(i) (a) Groundnut-Bajra and Tur. (b) Groundnut. (c) Nil. (ii) (a) Light Kharif soil.- (b) N.A. (iii) 30.6.1952. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) $3 \mathrm{lb} / \mathrm{ac}$. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 7.94". (x) 15.10.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{2}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

3. DESIGN :

(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $16^{\prime} \times 52^{\prime}$ (3 rows of bajra and 1 row of tur).
(b) $12^{\prime} \times 48^{\prime}$. (v) 2^{\prime} alround the net plot. (vi) Yes.
4.' GENERAL :
(i) Below normal. (ii) Nil. (iii) 3 counts, 3 heights and grain yield. (iv) (a) 1951-1955. (b) No, duplicate plots are maintained. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) No reason is given for low yield. (vii) Tur is grown as an intercrop along with bajra, but it is not included for analysis.

5. RESULTS :

(i) $151 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $94.04 \mathrm{lb} . / \mathrm{ac}$.
(iii)-Only idteraction NP is significant.
(iv) Av. yield of grain in ib./ac.

J	, N_{0}	N_{1}	N_{2}	N_{3}	- Mean
P_{0}	254	93	189	112	162
P_{1}	112	126	129	123	124
$\therefore \mathbf{P}_{\mathbf{2}}$	251	"88	101	- 183	156
- $\mathrm{Pa}_{\mathbf{a}}{ }^{\prime}$	109	145.	224	169	162
Mean ${ }^{-}$	182	113	161	148	151
S.E. of marginal mean of N or $\mathrm{P} \quad=23$. S.E. of body of table					

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Chas.

Ref :- Mh. 53(155).
Type :- ‘M'.

Object :-To find out the optimum dose of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ for Bajra.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Bajra and $T_{u r}$. (b) Groundnut. (c) Nil. (ii) (a) Light Kharif soil. (b) N.A. (iii) 3.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) $3 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii 2 interculturings. (ix) 21.00°. (x) 28.10.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $52^{\prime} \times 16^{\prime}$. (b) $48^{\prime} \times 12^{\prime}$ (3 rows of baira and 1 row of tur). (v) N.A. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Nii. (iii) 3 counts, 3 hejghts and grain yield. (iv) (a) 1951-1955. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) No reasons given for low yield. (vii) Tur is grown as an intercrop along with bajra, but it has not been included for analysis.
5. RESULTS :
(i) $268 \mathrm{lb} . / \mathrm{ac}$.
(ii) $65.34 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N, P and interaction NP are significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
\mathbf{P}_{0}	$: 195$	203	241	315	259
\mathbf{P}_{1}	180	192	267	285	231
$\mathbf{P}_{\mathbf{2}}$	216	287	332	322	289
\mathbf{P}_{3}	241	284	336	391	313
Mean	208	242	294	328	268

$\begin{array}{ll}\text { S E. of marginal mean of } \mathrm{N} \text { or } \mathrm{P} & =16.33 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E of body of table } & =32.67 \mathrm{lb} / \mathrm{ac}\end{array}$
S.E. of body of table $\quad=32.67 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif)
Site :~ Agri. Res. Stn., Jeur.

Ref. :- Mh. 51(105).
Type:- 'M'.

Object:-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS :
(i) (a) Bajra-Groundnut. (b) Groundnut. (c) N.A. (ii) (a) Light tending to medium. (b) N.A. (iii) 12.7.1951. (iv) (a) 2 harrowings. (b) Drilled. (c) $4 \mathrm{lb} /$ /ac. (d) 12^{n} apart. (c) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated, (viii) 2 interculturings. (ix) N.A. (x) 7.11.1951.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of N : $\mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{8}=30 \mathrm{lb}$./ac.

N as G.N.C. applied on 1.8.1951 and $\mathrm{P}_{3} \mathrm{O}_{6}$ as Super applied on 22.7.1951.
3. DESIGN :
(b) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $38^{\prime} \times 20^{\prime}$. (b) $34^{\prime} \times 16^{\prime}$. (v) 2 all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Slight attack of blister-beetles ; control meanures were taken. (iii) Grain yield. (iv) (a) 1951 -continued. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) Greater slope of soil ranges from east to west i.e. from Repli. I to Repli. IV; of these, the first two replications are situated in better soil as compared with the latter two. Hence plants in replication I and II have given more yield.

5. RESULTS :

(i) $344 \mathrm{lb} . / \mathrm{ac}$.
(ii) 100.0 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{3}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
$\mathbf{P}_{\mathbf{0}}$	358	298	272	341	317
\mathbf{P}_{1}	240	285	344	348	304
$\mathbf{P}_{\mathbf{2}}$	293	427	362	401	371
$\mathbf{P}_{\mathbf{3}}$	428	353	346	401	382
Mean	330	341	331	373	344

S.E. of marginal mean of N or P
$=25.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=50.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Bajra (Kharif).
Site :-Agri. Res. Stn., Jeur.

Ref:-Mh. 53(47).
Type :-‘M'.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS :

(i) (a) Bajra-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Light tending to medium. (b) N.A. (iii) 29.6.1953. (iv) (a) 2 harrowings. (b) Drilled. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) 12^{2}. (o) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) One interculturings. (ix) 16.62° : (x) 16.11.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $P_{2} O_{6}$: $\quad P_{0}=0, P_{1}=10, P_{2}=20$ and $P_{3}=30 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. . (ii) (a) il6. (b) N.A. (iii) 4 . (iv) (a) $38^{\prime} \times 20^{\prime}$. (b) $34^{\prime} \times 16^{\prime}$. (v) 2^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951 -Continued (b) No. (c) N.A. (v)
(a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $299 \mathrm{lb} . / \mathrm{ac}$.
(ii) $88.88 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} alone is highly significant.
(iv) Av. yield of grain in lb./ac.

Crop :- Bajra (Kharif):
Site :- Agri. Res. Stn., Kopergaon.
Ref:- Mh. 48(20).
Type :~' M '.

Object :- To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Wheat. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 3.7.1948.(iv) (a) N.A. (b) Drilled by a country seed drill. (c) $7 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows-12" ; between plants irregular. (e) N.A. (v) N.A. (vi) Akola. (vii) Irrigated. (viii) Twice weeding and once interculturing. (ix) $33.20^{\prime \prime}$. (x) 3.10.1948.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$, and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb}$./ac.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super drilled at sowing and N as A / S broadcast at sowing.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 22^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) 5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) The growth was very vigorous from the beginning to the end. Tillering was very profuse. In some cases shooting of tops with an earhead for each shoot was observed: (ii) Nil. (iii) Grain yield. (iv) (a) 19481952. (b) No. (c) N.A. (v) (a) Niphad. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $17: 9 \mathrm{lb} / \mathrm{ac}$.
(ii) $\quad 3.4 \mathrm{lb} / \mathrm{ac}$.
(iii) effects are highly significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
\mathbf{P}_{0}	1328	1550	1759	1906	1636
P_{1}	1476	1931	1960	2024	1848
$\mathrm{P}_{\mathbf{2}}$	1271	1751	1773	1539	1584
P_{3}	1445	1641	1915	2237	1810
Mean	1380	1718	1852	1927	1719
S.E. of marginal mean of N or P S.E. of body of table					$\begin{aligned} & =283 \mathrm{lb} . / \mathrm{ac} . \\ & =56.7 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$

> Crop :- Bajra (Kharif).
> Site :-Agri. Res. Stn., Kopergaon.

Ref:- Mh. 49(35).
Type :- ' M '.

Object :- To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Wheat. (c) 2 bags/ac of G.N.C. $+40 \mathrm{lb} /$ /ac. of A/S. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 17, 18.7.1949. (iv) (a) N.A. (b) Drilled by a country seed-drill. (c) $7 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows-12" ; between plants-irregular. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Akola. (vii) Irrigated. (viii) Weeding and hoeing twice. (ix) $17.69^{\prime \prime}$ (x) $15,16.10 .1949$.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super drilled at sowing and N as A / S broadcast at sowing.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $33^{\prime} \times 30^{\prime}$. (b) $20^{\prime} \times 18^{\prime}$. (v) 6 rows on either side, 6.5^{\prime} along the length. (vi) Yes.
4. GENERAL :
(i) The germination was good. The crop was not healthy because of no rains up to mid. of August. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1952. (b) No. (c) N.A. (v) (a) Niphad. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1389 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $346.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Ooly main effect of N is significant.
(iv) Av. yield of grain in lb./ac.

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Kopergaon.

Ref :-Mh. 50(49).
Type:-'M'.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. B ASASL CONDITION :
(i) (a) N.A. (b) Gram. (c) Nii. (ii)(a) Medıum black. (b) Refer soil analysis, Kopergaon. (iii) 19.7.1950. (iv) (a) N.A. (b) Drilled by a country seed drill. (c) $7 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $12^{\text {a }}$ and between plants irregular. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Akola. (vij) Irrigated. (viii) Hoeing on 14.8.1950. (ix) 21.27". (x) 13 to 16.10.1950.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=20, P_{2}=40$ and $P_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super drilled at sowing and N as A / S broadcast at sowing.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $33^{\prime} \times 30^{\prime}$. (b) $20^{\prime} \times 18^{\prime}$. (v) 6 rows on either side, 6.5^{\prime} along the length. (vi) Yes.
4. GENERAL :
(i) The germination of the crop was good. The average height of the crop was 6°. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1953. (b) Ni. (c) N.A. (v) (a) Niphad. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1307 \mathrm{lt} . / \mathrm{ac}$.
(ii) $234.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} is highly significant.
(iv) Av. yield of grain in $\mathrm{Jb} . / \mathrm{ac}$.,

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
P_{0}	127	1328	1415	1606	1369
\mathbf{P}_{1}	955	1254	1428	1401	1260
P_{2}	1048	1122	1501	1423	1274
P_{3}	1131	1420	1194	1563	1327
Mean	1065	1281	1385	1498	1307
S.E. of marginal mean of \mathbf{N} or \mathbf{P} S.E. of body of table			$\begin{aligned} & =58.6 \mathrm{lb} . / \mathrm{ac} . \\ & =117.1 \mathrm{lb} . / \mathrm{ac} \end{aligned}$		

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(79).
Type:- ${ }^{-} \mathbf{M}^{\prime}$.

Object : - To study the N and $\mathrm{P}_{2} \mathrm{O}_{\mathrm{B}}$ requirements of Bajra.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Jowar (Rabi). (c) 2 bags/ac. of G.N.C. (ii) (a) Medium black. (b) Refer coil analysis, Kopergaon. (iii) 16.7 .1952 . (iv) (a) N.A. (b) Drilled by country seed drill. (c) 7 lb ./ac. (d) Between rows 12° and between plants irregular. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Akola. (vii) Irrigated. (viii) Weeding, hoeing and thinning once. (ix) $11.73^{\prime \prime}$. (x) 4,5.10.1952.

2. TREATMBNTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super drilled at sowing and N as A / S broadcast at sowing.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $33^{\prime} \times 24^{\prime}$. (b) $20^{\prime} \times 18^{\prime}$. (v) $6 \frac{y}{\prime}^{\prime}$ along the length and 3 rows on either side. (vi) Yes.
4. GENERAL:
(i) The germination was good. The stand of the crop was normal at the beginning. The growth was not satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1952. (b) No. (c) N.A. (v) (a) Niphad. (b) N.A. (vi) Nil. (vii) Experiment failed in 1951.
5. RESULTS :
(i) $664 \mathrm{lb} . / \mathrm{ac}$.
(ii) $162.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is highly significant.
(iv) Ay. yield of grain in lb./ac.

Crop :- Bajra (Kharif).
Site :~Agri. Res. Stn., Nipahd.

Ref: Mh. 49(39).
Type:- 'M'.

Object :-To study the effect of leguminous crop Gram raised with and without $\mathrm{P}_{\mathbf{9}} \mathrm{O}_{\mathbf{5}}$ on succeeding cereal crop Bajra.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra. (b) Gram. (c) As per treatments, (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 1.8.1949. (iv) (a) N.A. (b) Drilied with a 4 coultered drill. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) 10°. (e) N.A. (v) 5 C.L /ac. of F.Y.M. (vi) N.A. (vii) Unirrigaled. (viii) Intercuituring once and weeding once. (ix) 24.19". (x) 9.11,1949.

2. TREATMENTS :

1. Control ($n o \mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi.
5. Fallow in Rabi ; manured with 5 C.L./ac. of R.Y.M. in Kharif.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5 , (iv) (a) $40^{\circ} \times 25^{\prime}$. (b) $30^{\circ} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot. (vi) Yes.
7. GENERAL:
(i) Not satisfactory. (ii) Nil. (iii) Grain and straw :yield. (iv) (a): Rabi 1948 to :Kharlf 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $256 \mathrm{lb} . / \mathrm{ac}$.
(ii) $187.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ blghly significantly.
(iv) Av. yield of grain in lb /ac.

Treatment	Av. yield
1.	232
2.	277
3.	321
4.	339
S.	111
S.E./mean	$=83.73 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Bajra (Kharif). } & \text { Ref :- Mh. 50(54)/49(39). } \\
\text { Site :- Agri. Res. Stn., Niphad. } & \text { Type :- ‘M'. }
\end{array}
$$

Object : - To study the effect of leguminous crop Gram raised with and without $\mathrm{P}_{2} \mathrm{O}_{6}$ on succeeding cerea crop Bajra.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra. (b) Gram. (c) As per treatments. (ii) (a) Loamy, (b) Refer soil analysis, Niphad. (iii) 28.7.1950. (iv) (a) N.A. (b) Drilled with 4 coultered drill. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) 10° between rows. (c) N.A. (v) 5 C.L./ac. of P.Y.M. (vi) N.A. (vii, Uairrigated. (viii) 1 needing and 1 gap filling. (ix) 27.73". (x) 4.11.1950.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{\mathrm{g}} \mathrm{O}_{5}$).
$250 \mathrm{tb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi.
2. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi.

4150 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{6}}$ as Super to Gram in Rabi.
5. Fallow in Rabi ; manured with 5 C.L./ac. of F.Y.M. in Kharif.
3. DESIGN:
(i) R.B,D. (ii) (a) S. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot. (vi) Yes.
4. GENERAL:
(i) Stunted growth for want of rains. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948 to Kharif 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
.5. RESULTS:
(i) $277.8 \mathrm{lb} . / \mathrm{ac}$.
(ii) $100.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	275
2.	293
3.	270
4.	258
S.	293
S.E./mean	$=\mathbf{4 4 . 7 4}$ lb./ac.

Crop :-Bajra (Kharif).
Site :-Agri. Res. Stn., Niphad.

Ref :-Mh. 51(56)/50(54)/49(39).
Type : $\mathbf{- ' ~}^{\mathbf{\prime}}{ }^{\prime}$ '.

Object:-To study the effect of leguminous crop gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ on the succeeding cereal crop.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra. (b) Gram. (c) As per treatments. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 18.7 .1951 . (iv) (a) N.A. (b) Drilling the seeds by 4 coultered drill. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) 10° apart. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) Gap filling on 23:7.1951. and interculturing on 25.8.1951. (ix) 27.46". (x) 20.10.1951.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Gram in Rabi.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Gram in Rabi.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Gram in Rabl.
7. Fallow in Rabi and sown in Kharif.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\circ} \times 25^{\prime}$. (b) $30^{\circ} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot. (vi) Yes.
9. GENERAL :
(i) Long break of rains affected the growth. (ii) Nil. (iii) Grain yield. (iv) (a) Rabl 1948 to Kharif 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) NiJ.
10. RESULTS:
(i) $280 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $.51 .10 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	293
2.	268
3.	284
4.	281
5.	276
S.E./mean	$=22.83 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Bajra (Kharif).
-Site :-Agri. Res. Stn., Niphad.

Ref :-Mh: 52(86)/51(56)/50(54)/49(39).
Type :-'M'.

Object:-To study the effect of leguminous crop gram raised with and without $\mathrm{P}_{2} \mathrm{O}_{3}$ on succeeding cereal crop Bajra.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra. (b) Gram. (c) Ae per treatments. (ii) (a) Loamy. (b) Refer soil analyais, Niphad (iii) 22.7.1952- (iv) (a) N.A. (b) Sowing by drilling with 4 coultered drill. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) 10^{-} betueen rows. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) Hoeing on 24.8.1952. (fx) 14.17°. (x) 23.10.1952.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 It ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram crop in Rabl.
3. 100 lb ./ac. of $\mathrm{P}_{4} \mathrm{O}_{5}$ as Super to Gram crop in Rabl.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram crop in Rabi.
5. Fallow in Rabi and sown in Kharif.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot. (vi) Yes.
7. GENERAL:
(i) Growth very poor due to very low rains. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948 to Kharif 1954. (b) Yes. (c N A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $274 \mathrm{lb} / \mathrm{ac}$.
(ii) $91.37 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ bighly significantly.
(iv) Av. yield of grain in lb./ac.

Tieatment Av. yield

1. 238
2. 283
3. 367
$4 . \quad 257$
$5 . \quad 227$
S.E $/$ mean $\quad=40.90 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lc}
\text { Crop :- Bajra.(Kharif). } & \text { Ref :- Mh. } 53(58 ; / 52(86) / 51(56) / 50(54) / 49(39) . \\
\text { Site :- Agri. Res. Stn., Niphad. } & \text { Type : ‘ 'M'. }
\end{array}
$$

Object:-To study the effect of leguminous crop gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Bajra.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra, (b) Gram. (c) As per treatments. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 10.7.1953. (iv) (a) N.A. (b) Drilling with 4 coultered drill (c) $5 \mathrm{lb} . / \mathrm{ac}$. (d) $10^{\prime \prime}$ between rows. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) 28-157. (vii) Unirrigated. (viii) 1 interculturing. (ix) $18.33^{\prime \prime}$. (x) 16.10 .1953.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb /ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Gram in Rabi
5. Fallow in Rabl and sown in Kharif.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\circ}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot. (vi) Yes.
7. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield only. (iv) (a) Rabl 1948 to Kharif 1954, (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $291 \mathrm{lb} . / \mathrm{ac}$.
(ii) $52.08 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac. Treatment - Av. yield
9. 231
10. 279
11. 316
12. 313
13. 315
S.E./mean $=23.23 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :-Agri. Res. Stn., Niphad.

Ref :- Mh. 48(24). Type :- ' M^{\prime}.

Object :--To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra (without basal dose of F.Y.M).

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 12 and 13.8.1948. (iv) (a) N.A. (b) Drilling by 4 coultered drill. (c) $4 \mathrm{lb} / \mathrm{ac}$. (d) N.A. (e) N.A. (v) NiI. (vi) N.A. (vii) Unirrigated. (vi.j) Nil. (ix) 22.66". (x) 8.11.1948 and 9.11.1948.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 leve's of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20 ; \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N:C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) $\left\lfloor 5^{\prime}\right.$ atround the net plot. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $391 \mathrm{lb} / \mathrm{ac}$.
(ii) $78.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N is highly significant, main effect of P is significant ; interaction NP is not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{8}}$	Mean
$\mathbf{P}_{\mathbf{0}}$	287	311		330	465
\mathbf{P}_{1}	337	308		427	433
$\mathbf{P}_{\mathbf{2}}$	276	415	470	451	378
$\mathbf{P}_{\mathbf{3}}$	337	439	508	462	403
Mean	309	368	433	853	391

S.E. of marginal mean of N or P
S.E of body of table

$$
=19.6 \mathrm{lb} . / \mathrm{ac} .
$$

$$
\text { S.E. of body of table } \quad \approx 39.2 \mathrm{lb} . / \mathrm{ac}
$$

Crop :- Bajra (Kharif).
Site :-Agri. Res. Stn., Niphad.

Ref: Mh. 49(40).
Type :- ' M '.

Object : -To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra (without basal dose of F.Y.M.).

1. BASAL CONDITIONS :

(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis; Niphad. (iii) 29.7.1949. (iv) (a) N.A. (b) Drilled. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $10^{\prime \prime}$. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Interculturing on 4.9.1949 and weeding on 22 to 26.8.1949: (ix) 24.19". (x) 7, 8.11,1949.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{2}=20, P_{2}=40$ and $P_{1}=60 \mathrm{lb}$./ac.
N applied as G.N.C. and $\mathrm{P}_{\mathbf{g}} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 (iv) (a) $40^{\circ} \times 25^{\circ}$. (b) $15^{\circ} \times 30$. (v) 5° atroued the aet plot. (vi) Yes
4. GENERAL:
(i) Not satisfactory- (ii) Attactr of blister beetle. (iii) Grain yield (i') (a) 1948-1951. (b) Na (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) NiL
5. RESULTS:
(i) $336 \quad \mathrm{ib} . / \mathrm{ac}$
(ii) $7248 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} and P are highly significant and interaction NP is significant.
(iv) Av. yieid of grain in it./ace

	$\mathbf{N}_{\mathbf{6}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{3}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
$\mathbf{P}_{\mathbf{a}}$	$\mathbf{3 6}$	259	316	310	243
$\mathbf{P}_{\mathbf{1}}$	148	292	408	490	335
$\mathbf{P}_{\mathbf{3}}$	138	371	460	603	393
$\mathbf{P}_{\mathbf{3}}$	139	280	473	591	372
Mean	128	301	416	499	336

$\begin{array}{ll}\text { S.E. of marginal mean of } N \text { or } P & =18.12 \mathrm{lb} / \mathrm{ac} . \\ \text { S.E. of body of table } & =36.24 \mathrm{lb} . \mathrm{rac} .\end{array}$

Crop =-Bajra (Kharif).
Site :-Agri. Res- Stn., Niphad.
Ref. - Mh. 50(55).
Type $\boldsymbol{s}^{-} \mathbf{~ M}$ '.
Object :-To study the N and $\mathrm{P}_{3} \mathrm{O}_{\mathbf{5}}$ requirements of Bajre (without basal duse of F.Y.M.)

1. BASAL CONDITIONS:
(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Loany. (b) Refer soil analysis, Niphad (iii) 25 to 28.7 .1950 (iv) (a) N.A. (b) Drilled. (c) 4 lb ./ac. (d) Between rows 10°. (e) N.A. (v) NiL (vi) N.A. (vii) Unirrigated. (viii) 1 interculturing and 1 weeding. (ix) 27.75°. (x) 30.11 .1950
2. TREATMENTS:

All combinations of (1) and (2)
(I) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $P_{2} O_{3}: P_{9}=0, P_{1}=20, P_{8}=40$ and $P_{3}=60 \mathrm{lb} \sqrt{3}$
N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $40^{\circ} \times 25^{\circ}$. (b) $30^{\circ} \times 15^{\circ}$. (v) 5° alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Graio yield. (iv) (a) $1918-1951$. (b) No.(c) N_A. (v) (a) Kopergaca. (b) N.A. (vi) and (vii) Nî.
s. RESULTS :
(i) $520 \mathrm{lb} / \mathrm{ac}$.
(ii) $103.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is highly significant.
(iv) Av. yield of grain in lb./ac.

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Niphad.

Ref. :- Mh. 51(58).
Type: $-\mathbf{C M}$ '.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra (without basal dose of F.Y.M.).

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) N.A. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 16, 17.7.1951.
(iv) (a) 4 ploughings. (b) Drilled. (c) 4 lb./ac. (d) Between rows- $10^{\prime \prime}$; between plants-irregular. (e) N.A. (v) Nil. (vi) 28-15-1. (vii) Unirrigated. (viii) 1 Interculturing and 1 weeding. (ix) 27.46.
(x) 5, 8.10.1951.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, N_{1}=20, N_{2}=40$ and $\mathrm{N}_{8}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1948-1951, (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $313 \quad \mathrm{ib} . / \mathrm{ac}$.
(ii) $73.02 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N is highly significant, ; main effect of P is significant; interaction NP is not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	N_{2}	\mathbf{N}_{3}	Mean
\mathbf{P}_{0}	151	234	256	405	262
\mathbf{P}_{1}	184	260	361	375	295
$\mathbf{P}_{\mathbf{2}}$	234	301	414	430	345
P_{8}	246	318	448	381	348
Mean	204	278	370	398	313

S.E. of marginal mean of \mathbf{N} or \mathbf{P}
$=18.30 \mathrm{lb}$./ac.
S.E. of body of table
$=36.60 \mathrm{lb} / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :-- Agri. Res. Stn., Niphad.

Ref:- Mh. 48(25).
Type :- 'M'.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{6}$ requirements of Bajra (with a basal dose of F.Y.M.).

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 10, 11.8.1948. (iv) (a) N.A. (b) Drilling by 4 coultered drill. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows 0°. (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied on. 16.5.1948. (vi) N.A. (vii) Unirrigated. (vii) N.A. (ix) 22.66°. (x) 4, 8.11.1948.

4. TREATMENTS :

All combinations of (1) and (2)
11) 4 levels of $N: \quad N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-195I. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 462 Jb ./ac.
(ii) $105.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and P are significant ; interaction NP is not significant.
(iv) Av. yield of grain in lb./ac.

Crop :- Bajra (Kharif).	Ref :-Mh. 49(41).
Site :- Agri. Res. Stn., Niphad.	Type :~ 'M'.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{6}$ requirements of Bajra (with a basal dose of F.Y.M.).

1. BASAL CONDITIONS:
(i) (a) No. (b) Wheat. (c) N.A. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 28, 29.7.1949 (iv) (a) N.A. (b) Drilling with 4 coultered drill. (c) 4 ib ./ac. (d) Between rows $10^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied on 21.6.1949. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) 24.19°. (x) 6,7.11.1949.

2. TREATMENTS:

All combination of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{8}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, P_{1}=20, \mathrm{P}_{8}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb}$./ac.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} atround the net plot. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Attack of blister beetle at the time of flowering. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a) Kopergaon, (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $417 \mathrm{lb} / \mathrm{ac}$.
(ii) $1133 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of N and P are significant; interaction NP is not significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{8}}$	Mean
\mathbf{P}_{0}	236	303		395	534
\mathbf{P}_{1}	253	284		439	552
$\mathbf{P}_{\mathbf{2}}$	209	328	532	729	387
$\mathbf{P}_{\mathbf{3}}$	245	401	558	682	450
Mean	236	329	481	624	472

S.E. of marginal mean of N or P	$=28.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of rable	$=56.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Niphad.

Ref:- Mh. 50(56).
Type :- 'M'.

Object :-To find out the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra (with a basal dose of F.Y.M.)

1. BASAL CONDITIONS:

(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (ili) 25 to 28.7.1950
(iv) (a) N.A. (b) Drilling the seed by four coultered drill. (c) 4 lb ./ac. (d) between rows 10°. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) 1 interculturing and 1 weeding. (ix) $27.73^{\prime \prime}$.
(x) 2, 3.11.1950.
2. TREATMENTS :

All combination of (1) and (2)
(1) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{8}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=20, P_{2}=40$ and $P_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $40^{\circ} \times 25^{\circ}$. (b) $30^{\circ} \times 15^{\prime}$. (v) 5^{\prime} alround the net plot. (vi) Yes.

4. GENERAL:

(i) Growth checked for want of rains. (ii) Nil. (iii) Grain sield. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $572 \mathrm{lb} / \mathrm{ac}$.
(ii) $125.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effect of N is highly significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean
P_{0}	321	365	517	803	501
P_{1}	272	492	652	912	582
P_{2}	312	587	619	879	599
P_{3}	346	546	590	945	607
Mean	313	497	594	885	572

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } \mathrm{N} \text { or } \mathrm{P} & =31.34 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of the body of table } & =62.68 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :~ Bajra (Kharif).

Site :- Agri. Res. Stn., Niphad.

Ref :- Mh. 51(59).
Type :~' $\mathbf{~ M}$ '.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{6}$ requirements of Bajra (with a basal dose of F.Y.M.).

1. BASAL CONDITIONS:

(i) (a) No. (b) Linseed. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 14, 15.7.195t. (iv) (a) N A. (b) Drilled. (c) 4 lb ./ac. (d) Between rows- $10^{\prime \prime}$. (e) N.A. (v) 5 C.L/ac. of F.Y.M. (vi) N A. (vii) Unirrigaled. (viii) Interculturing on 24.8 .1951 and weeding on 23.8.1951. (ix) $27.46^{\prime \prime}$. (x) 5, 8.10.1951.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 le eis of $\mathrm{N}: \mathrm{N}_{\mathbf{0}}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=20, P_{2}=40$ and $P_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

N applied as G.N.C. and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Satisfactory ; but treatments with higher dose cf manure suffered for want of moisture. (ii) Nil. (iii) Grain and straw yield. (iv) (a) $1948-1951$. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $320 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $64.8 \mathrm{~b} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{P} are significant; interaction NP is dot significant.

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Niphad.
Ref:-Mh. 52(88).
object :-To study the $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and F.Y.M. requirements of B ajra.

1. BASAL CONDITIONS:
(i) (a) Gram-Bajra. (b) Gram. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 30, 31.7.1952. (iv) (a) N.A. (b) Drilling with 4 coultered drill. (c) 4 lb ./ac. (d) $10^{\prime \prime}$. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) 14.17°. (x) 16.10.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=60$ and $\mathrm{N}_{3}=80 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 2 levels of $\Gamma . Y . M_{.}: F_{1}=2.5$ and $F_{2}=5$ C.L./ac.

N appiied as A / S and G.N.C. in 1:1 ratio and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) $3 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) No. (b) N,A. (vi) and (vii) Nil.
5. RESULTS :
(i) $651 \quad \mathrm{Jb} . / \mathrm{ac}$.
(ii) 80.3 lb /ac.
(iii) Main effect of N alone is highly significant. Other effects are not significant.
(iv) Av. yield of grain in lb./ac.

	N_{1}	N_{2}	N_{3}	Mean	F_{1}	F_{2}
P_{1}	537	599	749	629	613	644
P_{2}	595	699	725	673	656	690
1, .. Mean	566	649	737	651	635	667
F_{1}	564	620	720	635	.	
F_{2}	569	678	755	667		

S.E. of marginal mean of \mathbf{N}
$=20.0 \mathrm{lb} . / \mathrm{ac}$. S.E. of marginal mean of P or $F \quad . \quad=16.4 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table $N \times P$ or $N \times F \quad=284 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table $P \times F \quad=23.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :-Agri. Res. Stn., Niphad..

Ref:-Mh. 53(57).
Type :-'M'.

Object : - To study the $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and F.Y.M. requirements of Bajra.

1. BASAL CONDITIONS :

(i) (a) Wheat-Bajra. (b) Wheat. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 7.7.1953. (iv) (a) 3 harrowings. (b) N.A. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $10^{\prime \prime}$. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (vili) N.A. (ix) 18.33. (x) 16.10.1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{1}=40, N_{2}=60$ and $N_{8}=80$ lb./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of F.Y.M.: $\mathrm{F}_{1}=2.5$ and $\mathrm{F}_{2}=5$ C.L./ac.

N applicd as A / S and $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) $3 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\circ} \times 15^{\prime}$. (v) 5^{\prime} all round the net plot.(vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Weight of the grain only. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1215 \mathrm{lb} . / \mathrm{ac}$.
(ii) $175.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of N, P and F are significant. None of the interaction is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	N_{1}	N_{2}	N_{3}	Mean	F_{1}	F_{8}
\mathbf{P}_{1}	1004	1179	1296	1160	1103	12:7
P_{2}	1206	1229°	1374	1270	1209	1330
Mean	1105	1204	1335	1215	1156	1273
F_{1}	1053	1162	1252			
P_{2}	1156	1245	1418		.	

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } N & =43.7 \mathrm{lb} / \mathrm{ac} . \\
\text { S.E. of marginal mean of } P \text { or } F & =35.7 \mathrm{lb} / \mathrm{ac} \\
\text { S.E. of body of table } N \times P \text { or } N \times F & \\
\text { S.E. of body of table } P \times F & =51.9 \mathrm{lb} . / \mathrm{ac} . \\
& \\
\hline
\end{array}
$$

Crop :-Bajra (Kharif).
Site :mAgri. Res. Stn., Poona.

Ref: : Mh. 53(75).
Type :- ' \mathbf{M} '.

Object :-To study the effect of different minor elements on the yield of Bajra.

1. BASAL CONDITIONS:
(i) (a) No. (b) Gram. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Light jellow type of soil, (b) Refer sollanalysis, Poona. (iii) 20.6.1953. (iv) (a) Ploughing by tractor; discing and harrowing. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied at the time of harrowing. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 13.64°. (x) 3.10.1953.
2. TREATMENTS :
3. Control (no manure).
4. Borax at 20 lb ./ac.
5. Copper Sulphate at $5 \mathrm{lb} . / \mathrm{ac}$.
6. Zinc Sulphate at $5 \mathrm{lb} / \mathrm{ac}$.
7. Molybdium Sul hate at $<\frac{1}{2} \mathrm{lb} . / \mathrm{ac}$.
8. Borax at $20 \mathrm{lb} / \mathrm{lac}+$ Copper Sulphate at $5 \mathrm{lb} . / \mathrm{ac}$.
9. Copper Suiphate at $5 \mathrm{Ib} . / \mathrm{ac} .+$ Zinc Sulphate at $5 \mathrm{Ib} . / \mathrm{ac}$.
10. Zinc Sulphate at $S \mathrm{lb} / \mathrm{ac}$. + Mulybdium Sulphate at $2 \frac{1}{2} \mathrm{lb} . / \mathrm{ac}$.
11. Zinc Sulphate at $2 \ddagger 16 . / a c .+$ Borax at 20 lb ./ac.
12. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 20^{\prime}$. (b) $34^{\prime} \times 16^{\prime}$. (v) Two rows on either sides and 3' at either end of the plot. (vi) Yes.
13. GENERAL :
(i) Good. (ii) No. (iii) Grain yield. (iv) (a) 1951-1953. (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.

RESULTS :
(i) $1285 \mathrm{lb} / \mathrm{ac}$.
(ii) $258.5 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ signifisantly.
(iv) Av. yield of gra n in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield	Treatment	Av. yield
1	1340	6.	1307
2.	1389	7.	1114
3.	1280	8.	1399
4.	1148	9.	1360
5.	1230		
.	S.E $/$ mean		$=129.3 \mathrm{lb} / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :-Agri. Res. Stn., Sholapur.

Ref :- Mh. 51(69).
Type :- 'M'.

Object:-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS :
(i) (a)-Jowar-Bajra-Groundnut. (b) Jowar. (c) Nil. (ii) (a) Light tending to medium black. (b) Refer soil analysis, Sholapur. (iii) 29.6.19j1. (iv) (a) 2 harrowings. (b) N.A. (c) $13 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Akola (medium), (vii) Unirrigated., (viii) 2 interculturings. (ix) 23.44". (x) 2.11.1951
2. - TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $N: \quad N_{0}=0, N_{1}=10, N_{2}=20$ and $N_{3}=30 \mathrm{lb}$./ac.
(2) 4 levels of $P_{3} O_{5}: \quad P_{0}=0, P_{1}=10, P_{2}=20$ and $P_{3}=30 \mathrm{lb}$./ac.
3. DESIGN :
(i) 4×4 Fact. in R B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $51.25^{\circ} \times 18^{\prime}$. (b) $43.25^{\prime} \times 12^{\prime}$. (v) 4^{\prime} at either ends and 3 rows on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) 3 heights, 2 counts and grain yield. (iv) (a) 1951-1955. (b) and (c) No. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $462: \mathrm{lb} . / \mathrm{ac}$.
(ii) $123.5 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Crop:-Bajra (Kharif).
Site :-Agri. Res. Stn., Sholapur.

Ref. :-Mh. 52(98).
Type:- ${ }^{-} \mathrm{M}^{\prime}$.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Bajra. (b) Groundnut. (c) Nil. (ii) (a) Light tending to medium black. (b) Refer soil analysis, Sholapur. (iii) 22.6.1952. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) $3 \mathrm{lb} . / \mathrm{ac}$. (d) 12°. (e) N.A. (v) Nil. (vi) Akola (medium). (vii) Unirrigated. (viii) One interculturing, (ix) 17.49". (x) 23.10.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=10, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb}$./ac.
(3) 4 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=10, P_{2}=20$ and $P_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $51.25^{\prime} \times 18^{\prime}$. (b) $45.25^{\prime} \times 12^{\prime}$. (v) $3^{\prime \prime}$ alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii 3 heights, count 2 counts and grain yield. (iv) (a) 1951-1955. (b) No. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $412 \mathrm{lb} / \mathrm{ac}$.
(ii) $110.0 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	N_{1}	N_{2}	N_{8}	Mean
P_{0}	432	554	374	332	423
\mathbf{P}_{1}	520	411	289	391	403
$\mathbf{P a}_{2}$	353	357	403	457	392
$\mathbf{P}_{\mathbf{s}}$	420	411	470	419	430
Mean	431	433	384	400	412
S.E. of marginal mean of N or P $=27.5$ $\mathrm{~S} . \mathrm{E}$. of body of table $=55.0$					

Crop :~ Bajra (Kharif).
 Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 53(150).
Type :~ ' M '.
Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Bajra.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Bajra. (b) Groundnut. (c) Nil. (ii) (a) Light tending to medium. (b) Refer soil analysis, Sholapur (iii) 19.7.1953. tiv, (d) 2 harrowings. (b) N.A. (c) $3 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Akola (medium). (vii) Unirrigated. (viii) one interculturing. (ix) $34.61^{\prime \prime}$. (x) 10.11 .1 y53.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N : $\backslash_{0}=0, N_{1}=10, N_{2}=20$ and $N_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{N}_{3}=30 \mathrm{lb}$./ac.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $51^{\prime} \times 17^{\prime}$. (b) $48^{\prime} \times 9^{\prime}$. (v) 4 rows on either side. $1 \frac{1}{\prime}$ at either end. (vi) Yes.

4. GENERAL :

(i) Not satisfactory. (ii) Nil. (iii) 3 height, 2 counts and grain yield. (iv) (a) 1951 to 1955. (b) No. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) The crop practically failed due to heavy rains during the flowering season. (vii) Nil.

5. RESULTS :

(i) $83 \mathrm{lb} / \mathrm{ac}$.
(ii) $840 \mathrm{lb} . / \mathrm{ac}$.
(iii) All effect are significant.
(iv) Av. yield of grain in lb./ac.

	N_{0}	$\mathrm{~N}_{1}$	$\mathrm{~N}_{2}$	$\mathrm{~N}_{3}$	Mean
P_{0}	16	25	57	117	54
P_{1}	38	57	117	66	69
$\mathrm{P}_{\mathbf{2}}$	60	66	139	155	105
\mathbf{P}_{3}	82	73	104	152	103
Mean	49	55	104	123	83

S.E. of marginal mean of N or P
S.E. of body of table
$=21.0 \mathrm{lb} . / \mathrm{ac}$.
$=42.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site : Agrí. Res. Stn., Sholapur.

Ref:- Mh. 52(371).
Type :- 'M'.

Object :-To study the residusi effect of rare elements of Boron and Manganese applied to previous Groundnut crop on Bajra.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Bajra. (b) Groundnut. (c) As per treatments, (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii 19.6.1952. (iv) (a) 2 harrowings. (b) Drilled. (c) $3 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\boldsymbol{c}}$ between rows. (o) N.A. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 20.76". (x) 24.10 .1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron : $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb} /$ ac.
(2) 4 levels of Manganese : $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{3}=9 \mathrm{lb}$./ac..

Boron applied as Barox and Manganese as MnSO_{4} to previous crop.
3. DESIGN :
(i) 4×4 Fact. in R.B.D.
(ii) (a) 16.
(b) N.A. (iii) 4.
(iv) (a) N.A
(b) 297 Sq. ft.
(v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1952 to $19 \leq 6$. (b) Yes. (c) Nil. (v) (a) N.A. (b ;N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $141 \mathrm{lb} . / \mathrm{ac}$.
(ii) $5081 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effect of B is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

	B_{0}	$\mathbf{B r}_{1}$	B_{2}	$\mathbf{B a}_{3}$	Mean
M_{0}	151	153	142	\$6	135
M_{1}	174	165	137	146	155
M_{2}	142	201	105	114	140
M_{3}	101	197	128	114	133
Mean	142	179	128	117	141

S.E. of marginal mean of B or M	$=12.70 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=25.40 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Sholapur.

Ref:-Mh. 53(374).
Type:- 'M'.
Object :-To study the residual effect of Boron and Manganese applied on previous Groundnut crop, on Bajra.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Bajra. (b) Groundnut. (c) As per treatments. (ii) (a) Mcdium deep. (b) Refer soil analysis, Sholapur. (iii) 19.7.1953. (iv) (a) 2 harrowings. (b) Drilled. (c) N.A. (d) $12^{* \prime}$ bet ween rops, (e) N.A. (v) Nil." (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) 35.56". (x) 12.11.1953.

2. TREATMENTS :

All cor binations of (1) and (2)
(1) 4 levels of Boron: $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb}$./ac.
(2) 4 levels of Manganese : $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{3}=9 \mathrm{lb}$./ac.

Boron applied as Borax and Manganese as $\mathrm{Mn} \mathrm{So}_{4}$ to previous crop.

DESIGN :

(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $33^{\prime} \times 11^{\circ}$. (v) N.A, (vi) Yea.
4. GENERAL:
(i) Crop practically failed due to excess of moisture in the soil. (ii) Nil. (iii) Grain yield. (iv) (a) 1952-1956. (b) Yes. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Experiment almost vitiated. (vi) Nil.

5. RESULTS :

(i) $21 \mathrm{lb} . / \mathrm{ac}$.
(ii) 2.88 lb ./ac.
(iii) All etfects are significant.
(iv) Av. yield of grain in lb ./ac.

	B_{0}	\mathbf{B}_{1}	B_{2}	B_{3}	Mean
M_{0}	26	25.	12	20	21
M_{1}	19	20	25	17	20
\mathbf{M}_{2}	20	17	26	18	20
$\mathbf{M}_{\mathbf{2}}$	24	32	18	15	22
Mcan	22	23	20	18	21
S.E. of marginal mean of B or M S.E. of body of table					$\begin{aligned} & =0.59 \mathrm{lb} / \mathrm{ac} . \\ & =1.18 \mathrm{bb} . / \mathrm{ac} . \end{aligned}$

Crop :- Bajra (Kharif).	Ref :- Mh. 50(157).
Site :- Agri. Res. Stn., Sholapur.	Type :- 'M'.

Object :-To study the effect of application of G.N.C. on Bajra.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 2 harrowings. (b) Drilled. (c) 3 lb ./ac. (d) $12^{\prime \prime}$ between rows. (c)-. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) 2 interculturings. (ix) $24.04^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control.
4. 12.5 lb ./ac. of N as G.N.C.
5. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $148.5^{\circ} \times 33^{\prime}$. (v) N.A. (vi) Yes.
6. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Tur is grown as an intercrop along with bajra; for tur crop the seed rate is 2 lb ./ac. and is a local variety.
7. RESULTS :

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Niphad.

Ref:- Mh. 51(57).
Type :- 'C'.

Object :--To find the suitable spacing and seed rate for Bajra.

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) N.A. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 18 to 23.7.1951. (iv) (a) 4 ploughings. (b) Drilled. (c) As per treatments. (d) As per treatments. (o) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) 27.46'. '(x) 25.10.1951.

2. TREATMENTS :

Main-plot treatments :
4 seed rates : $R_{1}=4, R_{2}=6, R_{3}=8$ and $R_{4}=10 \mathrm{lb}$./ac.
Sub-plot treatments :
4 spacings : $S_{1}=15^{\prime \prime}, S_{2}=18^{\prime \prime}, S_{3}=21^{\prime \prime}$ and $S_{4}=24^{\prime \prime}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) $268^{\prime} \times 30^{\prime}$. (iii) 4 . (iv) (a) $20^{\prime} \times 30^{\prime}$, $21^{\prime} \times 30^{\prime}, 21^{\prime} \times 30^{\prime}$ and $22^{\prime} \times 30^{\prime}$ for $15^{\prime \prime}, 18^{\prime \prime}, 21^{\prime \prime}$ and $24^{\prime \prime}$ spacings respectively. (b) $15^{\prime} \times 26^{\prime}, 15^{\prime} \times 26^{\prime \prime}$, $14^{\prime} \times 28^{\prime}$ and $14^{\prime} \times 28^{\prime}$ for $15^{\prime \prime}, 18^{\prime \prime}, 21^{\prime \prime}$ and $24^{\prime \prime}$ spacing respectively. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Crop suffered duee to long break in rains, (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $189 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $68.28 \mathrm{lb} . / \mathrm{ac}$.
(b) $40.89 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb,/ac.

	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{8}}$	$\mathbf{R s}_{8}$	\mathbf{R}_{4}	Mean
$\therefore S_{1}$	201	146	187	203	184
${ }_{1} \cdot S_{3}$	236	170	191	137	184
S_{3}	227	187	177	174	191
S	240	186	186	175	197
Mean	226	172	185	172	189

S.E ${ }^{2}$ of difference of two

1. R marginal means
$=24.14 \mathrm{lb} . / \mathrm{ac}$.
2. S marginal means
3. S means at the same level of R
$=14.44 \mathrm{lb} . / \mathrm{ac}$.
4. R means at the same level of S
$\underline{L}=28.91 \mathrm{lb} . / \mathrm{ac}$.
$=34.75, \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :-Agri. Res. Stn., Niphad.

Ref :-Mh. 52(87).
Type :- ${ }^{\prime} \mathrm{C}$ '.

Object :-To study the suitable seed rate and spacing for Bajra.

1. BASAL CONDITIONS :
(i: (a) No. ${ }_{i}$,(b), Wheat. , (c) Nil. (ii). (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 30.7.1952. (iv) (a) N.A. (b) Hand dibbling. (c) As per treatments. (d) As per treatments. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) $28-15-1$ Bajri. (vii) Unirrigated. (viii) Hoeing on 23.8.1952; 15.9.1952. (ix) 14.17".
(x) 25.10.1952.
2. TREATMENTS :

Main-plot treatments :
4 seed rates : $\mathbf{R}_{1}=4, \mathbf{R}_{\mathbf{2}}=6, \mathbf{R}_{\mathbf{8}}=8$ and $\mathbf{R}_{\mathbf{4}}=10 \mathrm{lb}$./ac.
Sub-plot treatments :
4 spacings: $S_{2}=15^{\prime \prime}, S_{2}=18^{\prime \prime}, S_{3}=21^{\circ}$ and $S_{4}=24^{\prime \prime}$.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) $268^{\circ} \times 30^{\circ}$. (iii) 4 . (iv) (a) $20^{\circ} \times 30^{\prime}$, $21^{\prime} \times 30^{\prime}, 21^{\prime} \times 30^{\prime}$ and $22^{\prime} \times 30^{\prime}$ for $15^{\circ}, 18^{\prime \prime}, 21^{\prime \prime}$ and $24^{\prime \prime}$ spacings respectively. (b) $15^{\prime} \times 26^{\prime}, 15^{\prime} \times 26^{\prime}$, $14^{\prime} \times 28^{\prime}$, and $14^{\prime} \times 28^{\prime}$ for $15^{\prime \prime}, 18^{\prime \prime}, 21^{\prime \prime}$ and $24^{\prime \prime}$ spacings respectively. (v) N.A. (vi) Ycs.
4. GENERAL :
(i) Stunted growth due to scarcity of rains. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1951 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $250 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $145.0 \mathrm{lb} . / \mathrm{ac}$
(b) $49.04 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	Mean
$\mathbf{S}_{\mathbf{1}}$	244	272	223	270	252
$\mathbf{S}_{\mathbf{2}}$	173	309	194	285	240
$\mathbf{S}_{\mathbf{3}}$	227	269	220	234	238
$\mathbf{S}_{\mathbf{4}}$	224	285	283	290	271
Mean	217	284	230	270	250

S.E. of difference of two

1. R marginal means
$=51.2 \mathrm{lb} . / \mathrm{ac}$.
2. S marginal means
$=17.3 \mathrm{lb} . / \mathrm{ac}$.
3. S means at the same level of R $=34.7 \mathrm{lb} . / \mathrm{ac}$.
4. R means at the same level of S $=59.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site :- Agri. Res. Stn., Niphad.

Ref:- Mh. 53(59).
Type :- 'C'.

Object :-To study the suitable spacing and seed rate for Bajra.

1. BASAL CONDITIONS :

(i) (a) No. (b) Gram. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 7.7.1953. (iv) (a) 3 harrowings. (b) N.A. (c) and (d) As per treatments. (c) N.A. (v) N.A.
(vi) N.A. (vii) Unirrigated. (viii) Interculturing on 23 and 24.7.1953. (ix) 18.33'. (x) 22.11.1953.
2. TREATMENTS :

Main-plot treatments :
4 seed rates: $R_{1}=4, R_{2}=6, R_{3}=8$ and $R_{4}=10 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
4 spacings: $S_{1}=15^{\prime \prime}, S_{2}=18^{\prime \prime}, S_{3}=21^{\prime \prime}$ and $S_{4}=24^{\prime \prime} \mathrm{lb}$./ac.
3. DESIGN :
(i) Split-plot. . (ii) (a) 4 main-plots/block; 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $20^{\circ} \times 30^{\circ}$, $21^{\prime} \times 30^{\prime}, 21^{\prime} \times 30^{\prime}$ and $22^{\prime} \times 30^{\prime}$ for $15^{\prime \prime}, 18^{\prime \prime}, 21^{\prime \prime}$ and $24^{\prime \prime}$ spacings respectively. (b) $15^{\prime} \times 26^{\prime}, 15^{\prime} \times 26^{\prime}$, $14^{\prime} \times 28^{\prime}$ and $14^{\prime} \times 28^{\prime}$ for $15^{\prime \prime}, 18^{\prime \prime}, 21^{\prime \prime}$ and $24^{\prime \prime}$ spacings respectively. (v) N.A. (vi) Yea.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1951-1954$. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $299 \mathrm{lb}, / \mathrm{ac}$.
(ii) (a) $116.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $50.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield af gran in lb./ac.

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	Mean
\mathbf{S}_{1}	409	269	244	281	301
$\mathbf{S}_{\mathbf{2}}$	325	293	280	265	291
$\mathbf{S}_{\mathbf{3}}$	375	288	264	243	292
$\mathbf{S}_{\mathbf{4}}$	359	279	302	297	309
Mean	367	282	272	271	299

S.E. of difference of two

1. R marginal means $=41.3 \mathrm{lb} . / \mathrm{ac}$.
2. S marginal means $\quad=17.8 \mathrm{lb} . / \mathrm{ac}$.
3. S means at the same level of $R \quad=35.6 \mathrm{lb} . / \mathrm{ac}$.
4. R means at the same level of $S \quad=51.3 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Bajra (Kharif).
Site : Agri. College Farm, Poona.

Ref :-Mh. 51 (179).
Type :- 'C'.

Object :-To study how far the legumes in rotation with cereals keep up the fertiilty of land and increase the yield of cereals.

1. BASAL CONDITIONS :

(i) (a) Bajra-Sesamum, Tur, Soyabean. (b) Sesamum, Tur and Soyakean. (c) Nil (ii) (a) Medium black. (b) Refer soi analysis, Poona. (iii) 24.7.1951. (iv) (a) N.A. (b) Drilled. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Interculturing on 15.8.1951 and 28.8.1951. (ix) 26.62". (x) 13.10.1951.

2. TREATMENTS :

1. Bajra after Bajra.
2. Bajra after Soyabean.
3. Bajra after Sesamum.
4. Bajra - Tur after Bajra-Tur.
5. DESIGN :
(i) R.B D. (ii) (a) 4. (b) N.A. (iii) 9. (iv) (a) $132^{\prime} \times 9^{\prime}$. (b) $124^{\prime} \times 7^{\prime}$. (v) N.A. (vi) Yes.
-4. GENERAL :
(i) Normal. (ii) Serious attack of birds on Bajra when the grains were in milky stage and affected the yield to a great extent. (iii) Grain yield. (iv) (a) 1945-N.A. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nj .
6. RESULTS:
(i) $649 \mathrm{lb} / \mathrm{ac}$.
(ii) $277.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	610
2.	706
3.	672
4.	610
S.E./mean	$=92.4 \mathrm{lb} . \mathrm{Jac}$.

Crop :-Bajra (Kharif).
Site :-Agri. College Farm, Poona.

Ref :-Mh. 52(209)/51(179).
Type $\mathrm{m}^{\prime} \mathrm{C}^{\mathrm{C}}$.

Object :-To study how far the legumes in rotation with cereals keep up the fertility of land and increase the yield of cereals in rotation.

1. BASAL CONDITIONS :
(i) (a) Bajra-Sesamum, Tur and Soyabean. (b) Sesamum, Scyabeen and Tuir. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 4-5.7.1952. (iv) (a) N.A. (b) Drilled. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $-12^{\prime \prime}$, between plants-irregular. (v) Nil. (vi) N.A. (vii) Irrigated. (viij) Interculturing on 6.8.1952. (ix) $22.03^{\prime \prime}$. (x) 5.10 .1952 .
2. TREATMENTS :
3. Bajra after Bajra.
4. Bajra after Soyabean.
5. Bajra after Sesamum.
6. Bajra-Tur after Bajra-Tur.
7. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 9. (iv) (a) $132^{\prime} \times 9^{\circ}$. (b) $124^{\prime} \times 7^{\prime}$. (v) N.A. (vi) Yes.
8. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) $1945 \rightarrow$ N.A. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(j) $443 \mathrm{lb} / \mathrm{ac}$.
(ii) $181.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.
Treatment Av. yield
10. 537
11. 414
$3 . \quad 381$
12. 448
S.E. $/$ mean $\quad=60.4 \mathrm{lb} . / \mathrm{ac}$.
```
Crop :-Bajra (Kharif).
Site :-Agri. College Farm, Poona.
```

Ref: $\mathbf{~ M h}$. 53(324).
Type :-‘C'.

Object :-To study how far the legumes in rotation as well as mixture in the cereal crops help to keep up the fertility of land and increase the yield of cereal in rotation.

1. BASAL CONDITIONS :
(i) (a) As per treatments. (b) As per rotation. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 27, 28.6.1953. (iv) (a) 2 discings and 1 harrowing. (b) to (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 interculturings and 1 weeding. (ix) 105°. (x) Bajra 22.9.1953, Soyabean 10.11.1953, Sesamum 21.10.1953, Groundnut 3.10.1953 and Vur 3.2.1954.
2. TREATMENTS :
3. Bajra after Bajra. 2 plots/block.
4. Bajra after Soyabean.
5. Bajra after Sesamum.
6. Bajra and Tur mixed.
7. Bajra after Groundnut.
8. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) $132^{\prime} \times 9^{\prime}$. (b) $124^{\prime} \times 7^{\prime}$. (v) One row on either side along the length, 4^{\prime} along breadth. (vi) Yes.
9. GENERAL :
(i) Good. (ii) Attack of mildew on Bajra and Tika disease of Groundnut. (iii) Grain yield. (iv) (a) $1930-$ N.A. (b) As per rotation. (c) Nil. (v) (a) N.A. (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $266.0 \mathrm{lb} / \mathrm{ac}$.
(ii) $122.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	214.3
2.	364.6
3.	242.5
4.	301.1
S.	259.3
S.E./mean for tr. 2,3 and 5	$=61.2 \mathrm{lb} . / \mathrm{ac}$.
S.E./mean for tr. 1	$=43.3 \mathrm{lb} . / \mathrm{ac}$.

> Crop :- Bajra (Kharif). Site :- Agri. Res. Stn., Sholapur.

Ref :- Mh. 48(101)
Type:-'C'.

Object :-To find out optimum spacing cum sowing date for Bajra.

1. BASAL CONDITIONS :
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) As per treatments. (iv) (a) 2 harrowings. (b) Drilled. (c) $3 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments.。(e) N.A.. (v) Nil. (vi) Akola. (vii) Unirrigated. (viii) One interculturing and one hóeing. (ix) $39.18^{\prime \prime}$. (x) N.A.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 7 sowing dates : $D_{1}=14$ to $18.6 .1948, D_{2}=19$ to 22.6.1948, $D_{3}=23$ to 26.6.1948, $D_{4}=$ 27.6.1948 to $1.7 .1948, D_{5}=2$ to $6.7 .1948, D_{6}=7$ to 11.7.1948 and $D_{7}=12$ to 16.7.1948.
(2) 2 spacings between rows : $S_{1}=12^{\prime \prime}$ and $S_{2}=15^{\prime \prime}$.
3. DESIGN :
(i) 7×2 Fact. in R.B.D. (ii) (a) 14. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $36^{\prime} \times 20^{\prime}$; (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) . 1948-N.A. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nis.

5. RESULTS:

(i) 148 . 1b./ac.
(ii) : $59.29 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of D alone is highly significant.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

	D_{1}	$\mathrm{D}_{\mathbf{2}}$	D_{3}	D4	D_{5}	D_{6}	D_{7}	Mean
$\mathrm{S}_{\mathbf{1}}$	205	136	150	112	168	136	72	140
\mathbf{S}_{2}	191	97	194	84	189	180	156	156
Mean	198	116	172	98	178	158	114	148

S.E. of marginal mean of D	\cdot	$=20.97 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of S	$=11.28 \mathrm{lb} . \mathrm{ac}$.	
S.E. of body of table	$=29.64 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Nagli (Kharif).

Site :- Agri. Res. Stn., Hatkhamba.

Ref:-Mh. 48(3).
Type: ' $\mathbf{~ ' ~} \mathbf{M}$ '.

Object :-To study the \mathbf{N} and \mathbf{P} requirements of $\mathbf{N a g l i}$.

1. BASAL CONDITIONS :

(i) (a) Nagli after Nagli. (b) Nagli. (c) N.A. (ii) (a) Warkas low lying land. (b) N.A. (iii) $8.6 .1948 / 16$ to 19.8.1948. (iv) (a) and (b) N.A. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 1. (v) 5 C.L./ac. of F.Y.M. (vi) E. 31 (mid-late). (vii) Unirrigated. (viii) Interculturing in 2nd week of September 1948. (ix) 161.63". (x) 1 to 4.11.1948.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $\mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb}$./ac.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $17^{\prime} \times 13^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 2.5^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Fairly good. (ii) Nil. (iii) Grain and straw yield. (jv) (a) 1948 to 1956. From 1952 residual effects studied. (b) Yes. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $1144 \mathrm{lb} / \mathrm{ac}$.
(ii) $308.0 \mathrm{Jb} . / \mathrm{ac}$.
(iii) Main effect of P alone is highly significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	\mathbf{N}_{1}	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$
P_{0}	709	815	794	1191
\mathbf{P}_{1}	957	1099	1361	1042
P_{2}	1170	1517	$103 ;$	1078
P_{3}	1219	1141	1581	1588
Mean	1014	1143	1193	1225

S.E. of marginal mean of P or N
S.E. of body of table

$$
=77.0 \mathrm{lb} . / \mathrm{ac}
$$

$$
=154.0 \mathrm{lb} . / \mathrm{ac}
$$

Crop :~ Nagli (Kharif).
Site :- Agri. Res. Stn., Hatkhamba.

Ref:- Mh. 49(4)/48(3).
Type :- ' M '.

Object:-To study the \mathbf{N} and P requirements of Nagli.

1. BASAL CONDITIONS :
(i) (a) Nagli after Nagli. (b) Nagli. (c) As per treatments. (ii) (a) Warkas low lying land. Laterite soil. (b) N.A. (iii) $30.5 .1949 / 26$ to 28.6 .1949 . (iv) (a) 6 ploughings. (b) N.A. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\circ} \times 6^{\prime \prime}$. (e) 1. (v) N.A. (vi) E-3I (mid-late). (vii) Unirrigated. (viii) 1 interculturing. (ix) $151.96^{\prime \prime}$. (x) November $19+9$.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C.: $N_{0}=0, N_{2}=20, N_{2}=40$ and $N_{8}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) $4 \times 4 \mathrm{~F}$
(vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1956. (b) Yes. (c) N.A. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $896 \mathrm{lb} / \mathrm{ac}$.
(ii) $210.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{P} are significant. Interaction NP is not significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	N_{2}	N_{3}	Mean
P_{0}	521	695	865	815	724
\mathbf{P}_{1}	698	865	1149	1035	937
\mathbf{P}_{2}	773	1056	957	1042	957
\mathbf{P}_{3}	759	872	1173	1063	967
Mean	688	872	1036	989	896
S.E. of any marginal mean S.E. of body of table				$\begin{aligned} & =52.5 \mathrm{lb} . / \mathrm{ac} . \\ & =105.1 \mathrm{lb} . / \mathrm{ac} \end{aligned}$	

Crop:- Nagli (Kharif).
 Site :- Agri. Res. Stn., Hatkhamba.

Ref $\boldsymbol{\varepsilon}$ - Mh. 50(5)/49(4)/48(3).
Type :- ' M '.

Object :-To study the effect of \mathbf{N} and \mathbf{P} on Nagli.

1. BASAL CONDITIONS :

(i) (a) Nagli after Nagli. (b) Nagli. (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) 3.6.1950/ 21 to 29.7.1950. (iv) (a) N.A. (b) Transplanting. (c) - . (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 1 . (v) Nil. (vi) E-31(mid-late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 141.80°. (x) 2 to 4.11 .1950.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C.: $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} / \mathrm{ac}$.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil.
(iii) Grain yield.
(iv) (a) 1948 to 1956.
(b) Yes.'(c) N.A. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1203 \mathrm{lb} . / \mathrm{ac}$.
(ii) $263.8 \mathrm{lb} . / \mathrm{ac}$:
(iii) The main effects of N and P are significant while interaction NP is not significant.
(iv) Av. yield of grain in lb ./ac.

	$\mathrm{N}_{\boldsymbol{\delta}}$	N_{1}	N_{2}	N_{3}	Mean
P_{0}	581	694	. 1106	1198	895
P_{1}	865	1028	1503	1574	1243
$\mathbf{P}_{\mathbf{2}}$	915	1461	1468	1574	1355
P_{8}	. 780	1163	1744	1581	1317
Mean	785	1087	1455	1482	1203
S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =66.0 \mathrm{lb} . / \mathrm{ac} . \\ & =131.9 \mathrm{lb} . \mathrm{ac} . \end{aligned}$		

Crop :-Nagli.
Site :-Agri. Res. Sin., Hatkhamba.

Ref :-Mh. 51(5)/50(5)/49(4)/48(3).
Type: :n'M'.

Object :-To study the effect of N and P on Nagli.

1. BASAL CONDITIONS :
(i) (a) Nagli after Nagli. (b) Nagli. (c) As per treatments. (ii) (a) Warkas low-lying land. (b) N.A. (iii) 5.6.1951./27, 29.7.1951. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $6^{\circ} \times 6^{\circ}$. (e) 1. (v) Nil. (vi)
E. 31. (mid-late) (vii) Unirrigated. (viii) Weeding. (ix) 130.30°. (x) 2.11.1951.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb}$./ac.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Fairly good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1956. (b) Yes. (c) N.A. (v) (a) Igatpuri. . (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1036 \mathrm{lb} . / \mathrm{ac}$.
(ii) $284.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{P} are significant, interaction NP is not significant.
(iv) Av. yield of grain in lb./ac.

	$\mathrm{N}_{\mathbf{0}}$	$\mathrm{N}_{\mathbf{1}}$	$\mathrm{N}_{\mathbf{2}}$	$\mathrm{N}_{\mathbf{3}}$	Mean
$\mathrm{P}_{\mathbf{0}}$	485	734	929	1127	819
P_{1}	638	932	1429	1297	1074
$\mathrm{P}_{\mathbf{2}}$	903	1039	1255	1450	1162
$\mathrm{P}_{\mathbf{3}}$	581	961	1407	1411	1090
Mean	652	917	1255	1321	1036

S.E. of any marginal mean	$=71.0 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of table	$=142.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Nagli.
Ref: . $\mathrm{Mh} .52(20) / 51(5) / 50(5) / 49(4) / 48(3)$.
Site :-Agri. Res. Stn., Hatkhamba.
Type :-' M '.

Object :-To observe the residual effect of \mathbf{N} and P applied during 1948 to 1951.

1. BASAL CONDITIONS :
(i) (a) Nagli after Nagli. (b) Nagli. (c) As per treatments. (ii) (a) Warkas low lying land. (b) N.A. (iii) $4.6 .1952 / 25,26.7 .1952$. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) E. 31. (mid-late). (vii) Unirrigated. (viii) 1 hand weeding. (ix) 109.7"'. (x) 1.11.1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb} / / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

Treatments applied during the years 1948 to 1951.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) Yes.

4. GENERAL :

(i) Fairly good. Heavy rains at the time of flowering. (ii) Nil. . (iii) Grain yield. (iv) (a) 1948 to 1956 (b) Yes. (c) N.A. (v) (a) Igatpuri. (b) N.A. (vi) Nil. (vii) Residual effect from 1952 onwards studied.
5. RESULTS:
(i) $539 \mathrm{lb} . / \mathrm{ac}$.
(ii) 151.2 lb ./ac.
(iii) Main effect of \mathbf{N} and interaction NP are significant.
(iv) Av, yield of grain in lb./ac.

	N_{0}	\mathbf{N}_{1}	N_{2}	N_{3}	Mean
P_{0}	298	447	482	603	458
\mathbf{P}_{1}	411	518	752	617	575
P_{2}	666	574	539	475	564
\mathbf{P}_{3}	454	546	759	468	557
Mean	457	521	633	541	539
S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =37.8 \mathrm{ib} . / \mathrm{ac} . \\ & =75.6 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$		

Crop :- Nagli. Ref :- Mh. 53(108)/52(20)/51(5)/50(5)/49(4)/48(3).
Site :- Agri. Res. Stn., Hatkhamba. Type :- ' M '.
Object :-To observe the residual effect of N , applied on Nagli during 1948-1951.

1. BASAL CONDITIONS :

(i) (a) Nagli after Nagli. (b) Nagli. (c) Nil. (ii) (a) Warkas low lying land. (b) N.A. (iii) $15.6 .1953 /$ 25, 26.7.1953. (iv) (a), (b) N.A. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\circ}$. (ej 1. (v) N.A. (vi) E. 31. (mid-late). (vii) Unirrigated. (viii) I weeding. (ix) $165.47^{\prime \prime} .(x) 10.11 .1953$.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.

Treatments applied during the years 1948 to 1951.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) General stand poor due to continuous washing of the soil. Hespt at flowering was $1^{\prime} 4^{\circ}$. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1948 to 1956. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $696 \mathrm{lb} . / \mathrm{ac}$.
(ii) $384.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

in	N_{0}	N_{1}	N_{2}	$\mathbf{N s}_{3}$	Mean
P_{0}	575	645	667	745	658
P_{1}	609	688	816	772	721
P_{2}	682	667	732	724	701
\mathbf{P}_{3}	682	638	894	609	706
Mean	637	659	777	712	696

S.E. of any marginal mean
$=96.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table

$$
=192.4 \mathrm{lb} . \mathrm{iac}
$$

Crop:- Nagli.
Site :- Agri. Res. Stn., Hatkhamba.

Ref $=$ Mh. 53(107).
Type: ' \mathbf{M} '.

Object :- To find out the optimum dose of \mathbf{N} and \mathbf{P} in combination with F.Y.M. for Nagli crop.

1. BASAL CONDITIONS:

(i) (a) Nagli after Nagli. (b) Wari for replication I. and fallow for remaining 3 replications. (c) Nil. (ii) (a) Warkas low lying land, poor in fertility. (b) N.A. (iii) 4.8.1453. (iv) (a) and (b) N.A. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 1. (v) Nil. (vi) E. 31 (mid-late). (vii) Unirrigated. (viii) 1 weeding (ix) 165.47°. (x) 10.11 .1953.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 4 leveis of $\mathrm{N}: \mathrm{N}_{1}=40, \mathrm{~N}_{2}=60, \mathrm{~N}_{\mathbf{3}}=80$ and $\mathrm{N}_{4}=100 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{2}=20$ and $\mathrm{P}_{2}=40$.
(3) 2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=3$ C.L./ac.
$\mathrm{P}_{2} \mathrm{O}_{\mathrm{E}}$ as B.M. while N applied as a mixture of A / S and G.N.C. in $1: 1$ ratio.
3. DESIGN :
(i) $4 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 16. (b) $48^{\prime} \times 40^{\circ}$. (iii) 4 . (iv) (a) $12^{\circ} \times 10^{\circ}$. (b) $10^{\prime} \times 8^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain and straw yield. (iv) (a) 1953 to 1955. (b) and (c) No. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1055 \mathrm{lb} / \mathrm{ac}$
(ii) $165.0 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	\mathbf{N}_{1}	$\mathbf{N}_{\mathbf{E}}$	N_{3}	\mathbf{N}_{6}	Mean	F_{0}	F_{1}
\mathbf{P}_{1}	1112	984	979	1070	1036	960	1111
P_{2}	1009	1044	1197	1048	1074	1104	1043
Mean	1060	1014	1088	1059	1055		
F_{0}	1048	984	1119	980	1032		
F_{1}	1073	1044	1057	1137	1077		

S E. of marginal mean of F or P	$=29.2 \mathrm{lb} . / \mathrm{ac}$
S.E. of marginal mean of N	
S.E. of body of table $N \times P$ or $N \times F$	$=58.2 \mathrm{lb} / \mathrm{lac} . / \mathrm{ac}$
S.E. of body of table $P \times F$	
	$=41.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Nagli (Kharif).
Site :- Agri. Res. Stn., Igatpuri.
Ref:- Mh. 52(64).
Type :- 'M'.

Object : - To find out the manurial requirements of Nagli (combined with the basic dose of F.Y.M.).

BASAL CONDITIONS:

(i) (a) Nil. (b) Nagli. (c) N.A. (ii) (a) Verkar soil Shallow, reddish in colour. (b) N.A. (iii) 8.6.1952/. 18, 19.7.1952 and 6,7.8.1952. (iv) (a) N.A. (b) Transplanting. (c) -. (d) N.A. (e) N.A. (v) Nil. (vi) Igatpuri 47 (A. 16) Local. (vii) Unirrigated. (viii) Interculturing on 19.9.1952. (ix) 127.91°. (x) 8 and 16.11.1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 4 levels of N as $A / S: N_{1}=40, N_{8}=60, N_{3}=80$ and $N_{4}=100 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=3$ C.L./ac.
3. DESIGN :
(i) $4 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4 . (iv) (a) $11^{\prime} \times 11^{\prime}$. (b) $9^{\prime} \times 9^{\prime}$. (v) 1^{\prime} alround. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) Hatkhamba. (b) N.A. (vi) Nil. (vii) Variety used is high yielding. Expt. failed in 1953.
5. RESULTS :
(i) $1120 \mathrm{lb} / \mathrm{ac}$.
(ii) $279.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and P are significant, other effects are not significant.
(iv) Av. yield of grain in lb./ac.

S.E. of marginal mean of N
$=69.8 \mathrm{lb} . / \mathrm{ac}$.
$=49.3 \mathrm{lb} . / \mathrm{ac}$.
$=98.3 \mathrm{lb} . / \mathrm{ac}$.
$=69.8 \mathrm{lb} . / \mathrm{ac}$:

Crop :- Nagli (Kharif).
Site :- Agri. Res. Stn., Hatkhamba.

Ref:- Mh. 48(90).
Type: ' C '.

Object:-To eliminate the fallow period in cultivation of Nagli.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Warkas low - lying land. (b) N.A. (iii) 8.6.1948/29.7.48 to 1.8.48. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $6^{\circ} \times 6^{*}$. (e) N.A. (v) Nil. (vi) A-16 (late). (vii) Unirrigated. (viii) 1 weeding. (ix) $161.63^{\prime \prime}$. (x) 9 to 11.11 .1948.
2. TREATMENTS:

Details of the 5 rotations (12 plots maintained each year): -

1. Nagli manured with F.Y.M. at 3000 lb /ac. followed by Wari in the 2 nd year and Kodra in the 3rd year and fallow for next three years. (Nf-Wari-Kodra-Fallow-Fallow-Fallow).
2. Every year Nagli manured with F.Y.M. 3000 lb ./ac. (Nf every year).
3. Every year Nagli manured with $15 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. (Ng every year).
4. Nagli every year with F.Y.M. 3000 lb ./ac. in alternate years (Nf-N).
5. Nagli every year with G.N.C. applied at 15 lb ./ac. of N in alternate years ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN:
(i) R.B.D.
(ii) (a) 12.
(b) N.A: (iii) 6.
(iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround.
(vi) Yes.

4. GENERAL:

(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1960 (b) Yes (as per rotations), (c) Nil, (v: (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $502 \mathrm{lb} . / \mathrm{ac}$.
(ii) $150.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av, yield of grain in lb /ac.

Crop :- Nagli (Kharif). Ref:- Mh. 49(117);48(90).

Site :- Agri. Res. Stn., Hatkhamba. . Type :- ‘C'.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatnents. (ii) (a) Warkas low lying land. (b) N.A. (iii) 30.5.1919/22 to 24.7.1849. (iv) (a) N.A. (b) Transplanting. (c) -. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) A-16 (lute). (vii) Unirrigated. (viii) N.A. (ix) 151.96*. (x) 1st and 2nd week of November, 1949.

2. TREATMENTS :

Details of the 5 rotations (12 plots maintained each year) :-

1. Nagli manured with F.Y.M. at 3000 lb .lac. followed by Wari in the ind year, kodra in the 3 rd year and fallow for next three years. (Nf-wari-kodra-Fallow-Fallow-Fallow).
2. Every year Nagli manured with F.Y.M. 3000 lb ./ac. (Ni every year).
3. Every year Nagli manured with 15 lb . lac . of N as $\mathrm{G} . \mathrm{N} . \mathrm{C}$ (Ng every year).
4. Nagli every year with F.Y.M. $3000 \mathrm{lb} . / \mathrm{ac}$. in alternate years ($\mathrm{Nf}-\mathrm{N}$).
5. Nagli every year with G.N.C. applied at 15 lb ./ac. of N in alternate years ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN:
(i) R B D. (ii) (a) 12 . (b) N.A. (iii) 6 . (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) As per rotations.
7. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1960 . (b) Yes (as per rotations). (c) Nil. (v)
(a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $441 \mathrm{lb} / \mathrm{ac}$.
(ii) $119.9 \mathrm{lb} / \mathrm{cc}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	1	2	3	4		5	
Crop	Nf	Nf	Ng	N	Nf	\mathbf{N}	Ng
Previous crop	F	Nf	Ng	Nf	N	Ng	N
Av. yjeld	496	507	351	456	507	338	431
			/ac jac. /ac.				

Crop :- Nagli (Kharif). $\quad \stackrel{510}{:} \quad$ Ref :- Mh. 50(139)/49(117)/48(90).
Site :- Agri. Res. Stn., Hatkhamba. \quad Type :- ' C^{\prime}.

Object :-To determine the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) 3.6.1950/27th and 28.7.1950. (iv) (a) N.A. (b) Transplanting. (c) 一. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) 1 . (v) Nil. (vi) A-16 (late). (vii) Unirrigated. (viii) 1 weeding. (ix) 142°. (x) + to 11.11 .1950 .
2. TREATMENTS :

Details of the 5 rotations (12 plots maintainsd each year) :-

1. Nagli manured with F.Y.M. at 3000 lb ./ac. followed by Wari in the 2nd year and kodra in the 3rd year and fallow for rext three years (Nf-Wari-Kodra-Fallow-Fallow-Fallow).
2. Every year λ agli manured with F.Y.M at $? 000 \mathrm{lb}$./ac. (Nf every year).
3. Every year Nagli manured with $15 \cdot \mathrm{~b} . / \mathrm{ac}$. of N as G.N.C. (Ng every year).
4. Nagli every year with F.Y.M. at $3000 \mathrm{lb} . / \mathrm{ac}$. in alternate years ($\mathrm{Nf}-\mathrm{N}$).
5. Nagli every year with G N.C. applied at $15 \mathrm{lb} / \mathrm{ac}$. of N in alternate years ($\mathrm{Ng}-\mathrm{N}$).

3. DESIGN :

(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 6. (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) Yes (as per rotation).
4. GENERAL :
(i) Satisfactory. (ii) In 2 replications Agiva disease observed. (iii) Grain yield. (iv) (a) 1948 to 1960. (b) Yes, as per rotations. (c) Nil. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $727 \quad$ lo./ac.
(ii) $109.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	1	2	3	4		5	
Crop	Nf	Nf	Ng	Nf	N	Ng	N
Previous crop	F	Nf	Ng	N	Nf	N	Ng
Av. yield	870	740	697	754	664	704	664
S.E./mean $\quad=44.7 \mathrm{lb} . / \mathrm{ac}$. Wari and Kodra yields N.A.							

Crop :- Nagli (Kharif). \quad Ref:- Mh. 51(200)/50(139)/49(117)/48(90).
$-\quad$ Sité :- Agri. Res. Stn., Hatkhambha.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) 5.6.1951/28.7.1951 to 1.8 .1951 . (iv) (a) 3 ploughings. (b) Transplanting. (c) - (d) $6^{\circ} \times 6^{\prime \prime}$. (e) 1. (v) Nil. (vi) A-16 (late). (vii) Unirrigated. (viii) 3 hand weedings. (ix) 131.87°. (x) $30,31.10 .1951$.
2. TREATMENTS :

Details of the 5 rotations (12 plots maintained each year) :-

1. Nagli manured with F.Y.M. at 3000 lb./ac. followed by Wari in the 2nd year and Kodra in the 3rd year and fallow for next three years. (Nf-Wari-Kodra-Fallow-Fallow-Fallow).
2. Every year Nagli manured with F.Y.M. at 3000 lb ./ac. (Nf every year).
3. Every year Nagli manured with 15 lb ./ac. of N as $\mathbf{G} . \mathrm{N} . C$. (Ng every year).
4. Nagli every year with F.Y.M. at $3000 \mathrm{lb} . / \mathrm{ac}$. in allernate years. ($\mathrm{Nf}-\mathrm{N}$).
5. Nagli every year with G.N.C. applied at 15 lb ./ac. of N in alternate years. ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN :
(i) R.B.D. (ii) (a) 12 (b) N.A. (iii) 6. (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\circ}$. (v) 3^{\prime} alround. (vi) Yes. (as per rotation).
7. GENERAL :
(i) Satisfactory. (ii) 2 replications were attacked by Agiya disease. (iii) Grain yield. (iv) (a) 1948 to 1960. (b) Yes, as per rotation. (c) Nil. (v) (a) Igatpuri. (b) N.A. (vi) and , vii, Nil.
8. RESULTS :
(i) $445 \mathrm{lb} . / \mathrm{ac}$
(ii) $214.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	1	2	3	4		5	
Crop	Nf	Nf	Ng	\mathbf{N}	Nf	N	Ng
Previous crop	F	Nf	Ng	Nf	N	Ng	N
Av. yield	659	577	449	440	558	378	404
	S.E./mean		$=87.4 \mathrm{lb} . / \mathrm{ac}$.				

> Crop :-Nagli (Kharif). \quad Ref :- Mh. $52(: 95) ; 51(200) / 50(139) / 49(117) / 48(90)$.
> Site :- Agri. Res. Stn., Hatkhambha. \quad Type :- ${ }^{\circ} \mathrm{C}$.

Object :-To eliminate the fallow period in the cuitivation of Nagli.

1. BASAL CONDITIONS:
(i) (a) to (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) 4.6.1952/26 to 28.7.1952. (iv) (a) 3 ploughings. (b) Transplanting. (c) 8 lb ./ac. (d) $6^{\circ} \times 6^{\circ}$. (e) 1 . (v) Nil. (vi) A-16 (late). (vii) Unirrigated. (viii) 2 weedings. (ix) 110.60°. (x) 2.11 .1952.

2 TREATMENTS :

Details of the S rotations. (12 plots maintained each year) :-

1. Nagii manured with F.Y.M. at 3000 lb.fac. followed by Wari in the 2 nd year and Kodra in the 3rd year and fallow for next three years. (Nf-Wari-Kodra-Fallow-Failow-Fallow).
2. Every year Nagli manured with F.Y.M. at $3000 \mathrm{lb} . / \mathrm{ac}$. (Nf every year).
3. Every year Nagli manured with 15 lb .iac. of N as G.N.C. (Ng every year).
4. Nagli every year with F Y.M. at $3000 \mathrm{lb} . / \mathrm{ac}$. in alternate years. ($\mathbf{N f}-\mathbf{N}$).
5. Nagli every year with G.N.C. applied at $15 \mathrm{lb} . / \mathrm{ac}$. of N in alternate years. ($\mathbf{N g}-\mathbf{N}$).
6. DESIGN :
(i) R.B.D. (ii) (a) 12 (b) N.A. (iii) 6. (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\prime}$. (v) 3^{\prime} alround. (vi) Yes (as per rotation).
7. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1960 . (b) Yes, as per rotation. (c) Nil. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $526 \mathrm{lb} / \mathrm{ac}$.
(ii) $144.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	1	2	3	4		5	
Crop	Nf	Nf	Ng	Nf	N	$\mathbf{N g}$	N
Previous crop	F	Nf	Ng	N	Nf	N	Ng
Av yield	680	652	430	630	529	359	435
		an ad K	$\begin{aligned} & 59.11 \\ & \text { Ids } \mathrm{N} . \end{aligned}$				

```
Crop :- Nagli. Ref :-Mh. 53(322)/52(295)/51(200)/50(139)/49(117)/48(90).
Site :- Agri. Res. Stn., Hatkhamba. Type :- 'C'.
```

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Laterite soil. (b) N.A. (iii) 15.6.1953/7,8.8.1953. (iv) (a) 4 ploughings. (b) Transplanting. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{n} \times 6^{\prime \prime}$. (e) 1. (v) Nil. (vi) A-16. (late) (vii) Uairrigated. (viii) 1 weeding. (ix) N.A. (x) 16,10, 1953.

2. TREATMENTS:

Details of the 5 rotations (12 plots maintained every year): -

1. Nagli manured with F.Y.M. at 3030 lb ./ac. followed by Wari in the 2nd year and Kodra in the 3rd year and fallow for next three years (Nf —Wari-Kodra-Fallow-Fallow-Fallow).
2. Every year Nagli manured w th F.Y.M. at 3000 lb ./ac. Nf every year)
3. Every year Nagli manured with 15 lb ./ac. of N as G.N.C. (Ng every year)
4. Nagli every year with F.Y.M. at 3000 lb ./ac. in alternate years. ($\mathrm{Nf}-\mathrm{N}$)
5. Nagli every year with G.N.C. applied at $15 \mathrm{lo} . / a c$. of N in alternate years. ($\mathrm{Ng}-\mathrm{N}$)
6. DESIGN :
(i) R B D. (ii) (a) 12. (b) N.A. (iii; 6. (iv) (a) $18^{\prime} \times 14^{\prime}$. (b) $12^{\prime} \times 8^{\circ}$. (v) 3^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1960 . (b) Yes, as por rotations. (c) Nil. (v) (a) Igatpuri. (b) N.A. (vi) and (vii) Nil
8. RESULTS :
(i) $437 \mathrm{lb} / \mathrm{ac}$.
(ii) $138.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb ./ac.

Rotation No.	1	2	3	4		5	
Crop	Nf	Nf	Ng	N	Nf	N	Ng
Pre ious Crop	F	Nf	Ng	Nf	N	Ng	N
Av. yield	488	587	346	450	525	308	359
	mean and	$\begin{aligned} & 6.6 \mathrm{It} \\ & \text { ields } \end{aligned}$					

Crop :- Nagli (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

> Ref :- Mh. 48 (89).
> Type :- 'C'.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS:
(i) (a) to (c) As per treatments. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) 3.6.1949 to 11.7.1949. (iv) :(a) 2 ploughings. (b) Transplanting. (c), (d) and (e). N.A. (v) Nil, (vi) Nagli A-16 (Ratnagiri Strain). (vii) Unirrigated. (viii) 1 interculturing. (ix) $115.6^{\prime \prime}$ (x) 6, 7.11.1949.
2. TREATMENTS :

Details of the 5 rotations (12 plots maintained every year).

1. Nagli manured with 3030 lb ./ac. of F.Y.M. followed by Wari in the 2 nd year and $U d i d$ in the 3 rd year and fallow for next three years. (Nf-Wari-Udid-Fallow-Fallow-Fallow).
2 Every year Nagli manured with 3030 lb ./ac. of F.Y.M. (Nf every year).
2. Every year Nagli manured with $15 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. (Ng eveiy year).
3. Nagli every year with F.Y.M. at 3000 Jb ./ac. applied in alternate year. ($\mathbf{N f}-\mathbf{N}$).
4. Nagli every year with $15 \mathrm{lb} . / a c$. of N as $\mathrm{G} . \mathrm{N} . C$. applied in alternate years. ($\mathrm{Ng}-\mathrm{N}$)
5. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 6. (iv) (a) $17^{\prime} \times 13^{\prime}$. (b) $13^{\circ} \times 9^{\circ}$. (v) 2^{\prime} alround. (vi) Yes.
6. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Grain yield, (iv) (a) 1948 to 1957. (b) Yes, as per rotations. (c) Nil. (v) (a) Hatkhamba. (b) N.A. (vi) and (vii) Nil.

5 RESULTS:

(j) $1369 \quad 1 \mathrm{~b} . / \mathrm{ac}$.
(ii) $337.7 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	1	2	3	4		5	
Crop	Nf	Nf	$\mathbf{N g}$	Nf	N	$\mathbf{N g}_{\mathbf{g}}$	N
Av. yjeld	1384	1287	1306	1376	1264	1423	1544
		b./ac.					

Crop :- Nagli (Kharif).
Site :- Agri. Res. Stn., Igatpuri.

Ref:- Mh. 49(116)/48(89).
Type:- 'C'.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments. (ii) (a) Shallow and Coarse soil. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A.
(v) Nil. (vi) Nagli A-16 (Ratoagiri Strain.) (vii) Unirrigated. (viii) N.A. (ix) 125.6". (x) N.A.
2. TREATMENTS :

Details of the 5 rotations (12 plots maintained every year).

1. Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. followed by Wari in 2 nd year and Udid in the 3 rd year and fallow for the next three years (Nf-Wari-Udid-Fallow-Fallow-Fallow)
2. Every year Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. (Nf everys year).
3. Every year Nagli manured with $15 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{G} . \mathrm{N} . C$. (Ng everys year).
4. Nagli every year with F.Y.M. at $3,000 \mathrm{ib} . / \mathrm{ac}$. applied in alternate years ($\mathrm{N} f-\mathrm{N}$).)
5. Nagli every year with $15 \mathrm{lb} / \mathrm{ac}$. of N as G.N.C. applied in alternate year ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN:
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 6. (iv) (a) $17^{\prime} \times 13^{\prime}$. (b) $13^{\circ} \times 9^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
7. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1957 . (b) Yes, as per rotations. (c) Nil.
(v) (a) Hatkhamba. (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $1027 \mathrm{lb} . / \mathrm{ac}$.
(ii) $207.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ eignificantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	1	2	3	4		5	
Crop.	Nf	Nf	Ng	N	Nf	N	Ng
Previous crop	F	Nf	Ng	Nf	N	Ng	N
Av. yield	960	926	983	995	1047	1049	1230
		S.E./		$=84.71 \mathrm{l}$			
		Wari Udid		1031 199			

Crop :- Nagli (Kharif)
Site :- Agri. Res. Stn., Igatpuri.

Ref :- Mh. 50(138)/49(116)/48(89).
Type:- 'C'.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :
(i). (a) to (c) As per treatments. (ii) (a) Sandy. (b) N.A. (iii) 3.6.1950/10.7.1950. (iv) (a) Hill millets for 2 or 3 seasons. (b) Transplanting. (c) -. (d) and (c) N.A. (v) Nil. (vi) Red Nagli 47 (late). (vii) Unirrigated. (viii) Hand weeding 3rd week of August 1950. (ix) 147.3". (x) 25.11 .1950.

2. TREATMENTS :

Details of the 5 rotations (12 plots maintained every year).

1. Nagli manured with $3,000 \mathrm{lb}$ /ac. of F.Y.M. followed by Wari in 2nd year and \boldsymbol{U} did in the 3rd year and fallow for next three years (Nf-Wari-Udid-Fallow-Fallow-Fallow).
2. Every year Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. (Nf every year).
3. Every year Nagli manured with $15 \mathrm{lb} . / \mathrm{ac}$. of Nas G.N.C. (Ng every year).
4. Nagli every year with F.Y.M. at $3,000 \mathrm{lb}$./ac. of applied in alternate years ($\mathrm{Nf}-\mathrm{N}$).
5. Nagli every year with 15 lb ./ac. of N as $\mathrm{G} . \mathrm{N} . C$. applied in alternate years ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN :
(j) R.B.D.
(ii) (a) 12.
(b) N.A.
(iii) 6. (iv) (a) $17^{\circ} \times 13^{\prime}$.
(b) $13^{\prime} \times 9^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Poor due to heavy rains. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1957. (b) Yes, as per rotations. (c) Nil (v) (a) N.A. (b) -. (vi) and (vii) Nil.
8. RESULTS :
(i) $922 \mathrm{lb} . / \mathrm{ac}$.
(ii) 268.0 lb /ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	1	2	3	4		5	
Crop.	Nf	Nf	Ng	Nf	N	Ng	N
Previous crop.	F	Ng^{-}	Ng	N	Nf	N	Ng
Av. yield	894	864	961	949	859	854	1073
		S.E./mean Udid Wari					

Crop : Nagli (Kharif).
Ref :- Mh. 51(199)/50(138)/49(166)/48(89).
Site :- Agri. Res. Stn., İgatpuri. Type :" 'C'.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS

(i) (a) to (c) As per-treatments. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) 4.6.1951/30.6.1951 to 3.7.1951. (iv) (a) 2 ploughings. (b) Transplanting. (c) $5 \mathrm{lb} / \mathrm{ac}$. (d) $6^{\prime \prime} \times 6^{\circ}$. (c) N.A. (v) Nil. (vi) Nagli, Igatpuri-47. (vii) Unirrigated. (viii) 1 weeding. (ix) 116.8". (x) 13.11.1951.
2. TREATMENTS :

Details of the 5 rotations (12 plots maintained every year).

1. Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. followed by Wari in 2 nd year and Udid in the 3 rd year and fallow for next three years (Nf-Wari-Udid-Fallow-Fallow-Fallow).
2. Every year Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. (Nf every year).
3. Every year Nagli manured with $15 \mathrm{lb} / \mathrm{ac}$. of N as G.N.C. (Ng every year).
4. Nagli every year with F.Y.M. at $3,000 \mathrm{lb}$./ac. applied in alternate years ($\mathrm{Nf}-\mathrm{N}$).
5. Nagli every year with $15 \mathrm{Jb} . / \mathrm{ac}$. of N as $\mathrm{G} . \mathrm{N} . C$. applied in alternate years ($\mathbf{N g} \mathbf{- N}$).
6. DESIGN:
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 6. (iv) (a) $17^{\prime} \times 13^{\prime}$. (b) $13^{\prime} \times 9^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Satisfactory. (ii) Attack of field rats on some of the plots badly affected the yield. (iii) Grain yield. (iv) (a) 1948 to 1957. (b) Yes, as per rotation. (c) Nil. (v) (a) Hatkhamba. (b) N.A. (vi) and (vii) NiI.
8. RESULTS :
(i) $752 \mathrm{lb} . / \mathrm{ac}$.
(ii) $66.09 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Crop :- Nagli (Kharif). Ref :- Mh. 52(294)/51(199)/50(138)/49(116)/48(89).
 Site :- Agri. Res. Stn., Igatpuri.
 Type:- 'C'.

Object :- To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS :
(i) a) to (c) As per treatments. (ii) (a) Coarse and shallow soil. (b) N.A. (iii) 8.6.1952/10 to 16.7.1952. (iv) (a) 2 ploughings. (b) Transplanting. (c) 5 lb ./ac. (d) $6^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Nagli, Igatpuri47. (vii) Unirrigated. (viii) 2 interculturings. (ix) 127.9°. (x) 28.11 .1952.
2. TREATMENTS :

Details of the 5 rotations (12 plots maintained every year).

1. Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. followed by Wari in 2nd year and Udid in the 3rd year and fallow for next three years (Nf-Wari-Udid-Fallow-Fallow-Fallow).
2. Every year Nagli manured with $3,000 \mathrm{lb} . / a c$. of F.Y.M. (Nf every year).
3. Every year Nagli manured with $15 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. (Ng every year).
4. Nagli every year with F.Y.M. at $3,000 \mathrm{lb} . / \mathrm{ac}$. applied alternate years (Nf-N).
5. Nagli every year with $15 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathbf{G} . \mathrm{N} . C$. applied in alternate years. ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN :
(i) R.B.D.
(ii) (a) 12.
(b) N.A. (iii) 6.
(iv) (a) $17^{\prime} \times 13^{\prime}$.
(b) $13^{\prime} \times 9^{\prime}$.
(v) 2' alround. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1957. (b) Yes, as per rotations. (c) Nil, (v) (a) Hatkhamba. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $572 \mathrm{lb} . / \mathrm{ac}$.
(ii) $189.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly,
(iv) Av. yield of grain in lb./ac.

Rotation No.	1	2	3	4		5	
Crop.	Nf	Nf	Ng	Nf	N	Ng	N
Previous crop	F	Nf	Ng	N	Nf	N	Ng
f.v. yield	645	489	556	627	444	615	629
		S.E Udid	$\begin{array}{r} 77 . \\ \text { N.A. } \end{array}$				

Crop ;-Nagli (Kharif). \quad Ref :- Mh. 53(1)/52(294)/51(199)/50(138)/4 9(116)/48(89).
 Site :-Agri. Res. Stn', Igatpuri. Type :- 'C'.

Object :-To eliminate the fallow period in the cultivation of Nagli.

1. BASAL CONDITIONS:
(i) (a) to (c) As per treatments. (ii) (a) Shallow, reddish in colour and poor in fertility. (b) N.A. (iii) 14.6.1953/ll to 14.8.1953. (iv) (a) 2 ploughings in kharlf season. (b) Transplanting. (c) $5 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) N.A. (vi) Nagli-47 (late). (vii) Unirrigated. (viii) Weeding. (ix) 123.6". (x) 27.11.1953.
2. TREATMENTS:

Details of the 5 rotaions (12 plots maintained every year).

1. Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. followed by Wari in 2 nd year and Udid in the 3rd year and fallow for next three years. (Nf-Wari-Udid-Fallow-Fallow-Fallow).
2. Every year Nagli manured with $3,000 \mathrm{lb}$./ac. of F.Y.M. (Nf every year).
3. Every yerr Nagli manured with 15 lb ./ac. of \mathbf{N} as G.N.C. (Ng every year).
4. Nagli every year with F.Y.M. at $3,000 \mathrm{lb} . / \mathrm{ac}$, applied in alternate years. $(\mathrm{Ng}-\mathrm{N})$.
5. Naglie very year with $15 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. applied in alternate years. ($\mathrm{Ng}-\mathrm{N}$).
6. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 6. (iv) (a) $17^{\prime} \times 13^{\prime}$. (b) $13^{\prime} \times 9^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Growth was poor in general due to weak seedlings. (ii) Crop affected by field rats at the time of harvest. (iii) General height, no. of tillers, date of flowering and grain yield. (iv) (a) 1948 to 1957. (b) Yes, as per rotations. (c) N.A. (v) (a) Hatkhamba. (b) N.A. (vi) and (vii) Nil.
(5. RESULTS :
(i) $615 \mathrm{lb} . / \mathrm{ac}$.
(ii) $152.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb./ac.

Rotation No	1	2	3	4		5	
Crop	Nf	Nf	Ng	N	Nf	N	Ng
Previous crop	F	Nf	$\mathbf{N g}$	Nf	N	Ng	N
Av. yield	745	637	563	595	531	505	733
S.E./mean 62.3 lb //ac̈.							

Crop:- Gram (Rabi).
Site :- Agri. Res. Stn., Chas.

Ref :- Mh. 51(207).
Type :- 'M'.

Object :-To study the effect of different doses of $\mathrm{Zn} \mathrm{SO}_{\mathbf{4}}$ on Gram.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Gram. (c) Nil. (ii) (a) ${ }_{y}$ Medium black, (b) N.A. (iii) N.A. (iv) (a) I ploughing and 1 harrowing. (b) to (e) N.A. (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) 3 interculturings. (ix) 6.10". (x) 26.1.1952.
2. TREATMENTS :
3. Control.
4. 10 lb ./ac. of ZnSO_{4}.
5. 20 lb ./ac. of ZnSO_{4}.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8. (iv) (a) $15^{\prime} \times 24^{\circ}$. (b) $13^{\prime} \times 21^{\prime}$. (v) $1^{\prime} \times 1.5^{\prime}$ alround the plor. (vi) Yes.
7. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-1952. (b) No.(c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $468 \mathrm{lb} . / \mathrm{ac}$.
(ii) $115.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yeld
1.	413
2.	515
3.	477
S.E./mean	$=40.78 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Gram (Rabi).	Kef. :-Mh. 48(19).
Site :- Agri. Res. Stn., Kopergaon.	Type :- 'M'.

Object:-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{8}} \mathrm{O}_{5}$ on succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Gram-Paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 25.10.1948. (iv) (a) 1 ploughing and 3 harrowings. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows 12". (e) N.A. (v) N.A. (vi) Chafa. (vii) Unirrigated. (viii) Gap filling on 2.11.1948, hoeing on 10. 12.1948 and weeding on 1.2.1949. (ix) Nil. (x) 7.3.1949.
2. TREATMENTS :
3. No manure.
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
6. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied bebind the plough.
8. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5 . (iv) (a) $56^{\prime} \times 26^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$. (v) $5^{\prime} \times 7^{\prime}$. (vi) Yes.
9. GENERAL :
(i) Germination and stand of the crop was satisfactory. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948 to Kharif 195s. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $842 \mathrm{lb} . / \mathrm{ac}$.
(ii) $235.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	713
2.	837
3.	911
4.	910
5.	-
S.E./mean	$=105.3 \mathrm{lb} . / a c$.

```
Crop :-Gram (Rabi).
Ref.:-Mh. 49(34).
Site :-Agri. Res. Stn., Kopergaon.
Type:-`M'.
```

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Paddy.

1. BASAL CONDITIONS:

(i) (a) Gram-Paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 29.10.1949. (iv) (a) 7 ploughings and 3 harrowings. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $-12^{\prime \prime}$ and between plants-irregular. (e) N.A. (v) Nil. (vi) Chafa. (vii) Irrigated. (viii) Weeding on 25.12.1949. (ix) Nil. (x) 18.2.1950.
2. TREATMENTS :

1. No manure.
2. 50 lb /ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super drilled at sowing.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $57^{\prime} \times 24^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$. (v) $5 \frac{1^{\prime}}{} \times 6^{\prime}$. (vi) Yes.
7. GENERAL :
(i) The germination and stand was good. The crop was affected by severe cold in February. (ii) Nil. (iii). Grain yield. (iv) (a) Rabi $1948-$ Kharif 1955. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $980 \mathrm{lb} / \mathrm{ac}$.
(ii) $105.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) The treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	885
2.	985
3.	1118
4.	932
5.	-
S.E./mean	$=47.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Gram (Rabi).
Ref:-Mh. 50(48).
Site :- Agri. Res. Stn., Kopergaon.
Type:-‘'M'.

Object:-To study the effect of Gram grown with and without $P_{2} \mathrm{O}_{5}$ on succeeding cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) Gram-Paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 7.10.1950. (iv) (a) N.A. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows 12° and between plants irregular. (e) N.A. (v) N.A. (vi) Chafa. (vii) Irrigated. (viii) Nil. (ix) Nil. (x) 10.2.1951.

2. TREATMENTS :

1. No manure.
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram .
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
4. $150 \mathrm{Jb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Gram.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied behind the plough at sowing.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $57^{\prime} \times 24^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$. (v) $51^{\prime} \times 6^{\prime}$. (vi) Yen.
7. GENERAL:
(i) Germination and stand was good. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948 to Kharif 1955. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $905 \mathrm{lb} . / \mathrm{ac}$.
(ii) $138.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield	
1.	703	
2.	1001	
3.	920	
4.	996	.
5.	-	
S.E./mean	$=61.8 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Gram (Rabi).
Site :- Agri. Res. Stn., Kopergaon.
Ref:- Mh. 51(51).
Type :- 'M'.
Object :-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on a succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Gram-Paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon: (iii) 7.11.1951. (iv) (a) 3 ploughings and 3 barrowings. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows 12" and between plants irregular. (e) N.A. (v) Nil. (vi) Chafa. (vii) Irrigated. (viii) N.A. (ix) Nil. (x) 9.3.1952.
2. TREATMENTS:
3. No manure.
4. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied behind the plough.
8. DESIGN:
(i) R.B.D. (ii) (a) S. (b) N.A. (iii) S. (iv) (a) $57^{\prime} \times 24^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$. (v) $5 \mathbf{y}^{\prime} \times 6^{\prime}$. (vi) Yes.
9. GENERAL:
(i) The germination and stand were good but few gaps were observed. (ii) Slight insect attack. (iii Grain yield.(iv) (a) Rabi 1948 to Kharif 1955. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $867^{\circ} \mathrm{lb}$ /ac.
(ii) $53.5 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ higbly significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield
11. 826
12. 790
13. 918
$4 . \quad 933$
$5 . \quad$ -
S.E. $/$ mean $=23.9 \mathrm{lb} . / \mathrm{ac}$.

Crop : Gram (Rabi).
Site :m Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(78).
Type :- ' M '.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on a succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Gram-Paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 2.10.1952. (iv) (a) 4 ploughings and 2 harrowings. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows- $12^{\text {n }}$, between plants-irregular. (e) N.A. (v) N.A. (vi) Chafa. (vii) 1rrigated. (viii) Weeding on 2.12 .1952 and gap filling on 24.11.1952. (ix) Nil. (x) 27 to 29.1.1953.
2. TREATMENTS :
3. No'manure.
4. 50 lb ./ac. of $\mathrm{P}_{8} \mathrm{O}_{5}$ applied to gram.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
6. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super drilled at sowing.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $57^{\prime} \times 24^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$. (v) $5 \frac{1}{2}^{\prime} \times 6^{\prime}$. (vi) Yes.
9. GENERAL:
(i) The growth of the crop was rather uneven and gaps were observed. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948-Kharif 1955. (b) Yes. (c) N.A. (v) (a) Karjat, Kosbad and Vadgaon. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $858 \mathrm{lb}, / \mathrm{ac}$.
(ii) $312.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $\mathrm{lb}, / \mathrm{ac}$.

Treatment	Av. yield
1.	693
2.	930
3.	831
4.	981
S.	-
S.E./mean	$=139.7 \mathrm{lb} . / \mathrm{ac}$

Crop :m Gram(Rabi).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 53(36).
Type :- ' M '.
Object :-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 24.10.1953. (iv) (a) to (e) N.A. (v) Nil. (vi) Chafa. (vii) Irrigated. (viii) Hoeing 4 times and weeding 2 times. (ix) 4.17". (x) 23.2.1954.

2. TREATMENTS :

1. No manure.
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to gram.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied behind the ploush.
6. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) $57^{\prime} \times 24^{\prime}$. (b) $46^{\prime} \times 12^{\prime}$, (v) $6^{\prime} \times 5.5^{\circ}$. (vi) Yes.
7. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Germination date, flowering date, height, branching and grain yield. (iv) (a) Rabi 1948-Kharif 1955. (b) Yes. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $1140 \mathrm{lb} / \mathrm{ac}$.
(ii) $165.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac. Treatment Av yield
9. 811
10. 1219
11. 1187
4.1344
S.E./mean $=\overline{74.17 ~ i b} . / \mathrm{ac}$.

Crop:-Gram (Rabi).
Site :-A gri. Res. Stn., Mohol.

Ref :-Mh. 48(36).
Type:-‘M'.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Gram. (c) Nil. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) 20.10.1948. (iv) (a) N.A. (b) N.A. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (c) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) One interculturing. (ix) $5.38^{\prime \prime}$. (x) 28.1.1949.
2. TREATMENTS:
3. Gram grown with out $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Gram grown with $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. Gram grown with 150 lb ./ac. of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super.
7. Fallow.
8. DESIGN :
(i) R.B.D. (ii) (a) S. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\circ}$. (b) $30^{\prime} \times 18^{\circ}$. (v) 6^{\prime} alround the plot. (vi) Yes,
9. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $440 \mathrm{lb} / \mathrm{ac}$.
(ii) $138.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in Ib./ac.

Treatment	Av. yield
1.	371
2.	455
3.	505
4.	430
5.	-
S.E./mean	$=61.70 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref:w Mh. 49(62).
Type :- ' M '.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Jowar. (c) 5 C.L./ac. of compost. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 13.10 .1949 . (iv) (a) N.A. (b) N.A. (c) $4 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) 6 intercultures. '(ix) 1.14'. (x) 17.1.1950.

2. TREATMENTS:

1. Gram grown without $\mathrm{P}_{8} \mathrm{O}_{5}$.
2. Gram grown with 50 lb ./ac. of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super .
3. Gram grown with $100 \mathrm{lb} . / a c$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} alround the plot. (vi) Yes
7. GENERAL :
(i) Normal. (ii। Nil. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) Rain fall was not well distributed ; the grain size and yield was badly affected due to insufficient cold weather.
8. RESULTS:
(i) $797 \mathrm{lb} . / \mathrm{ac}$.
(ii) $48.41 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	748
2.	832
3.	857
4.	752
5.	-
S.E./mean	$=21.64 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Gram (Rabi).	Ref :- Mh. 50(8).
Site :- Agri. Res. Stn., Mohol.	Type :- ‘M’.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{8}} \mathrm{O}_{5}$ on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS :
(i) No. (b) and (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 19.10.1951. (iv) (a) Ploughing once in 3 years and 4 harrowings. (b) Seeds drilled. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ spacing between rows. (e) N.A. (v) F.Y.M. at 5 C.L./ac. to be given once in 3 years. (vi) Chafa. (vii) Unirrigated. (viii) Interculturing 4 times. (ix) $9.91^{\prime \prime}$. (x) 2.2 .1952.
2. TREATMENTS :
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. Gram grown with 150 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super.
7. Fallow.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) $150^{\prime} \times 42^{\prime}$. (iii) 5 . (iv) ${ }^{\prime}\left(\right.$ (a) $30^{\prime} \times 42^{\prime}$. (b) $18^{\prime} \times 30^{\prime}$. (v) 6^{\prime} all round the plot. (vi) Yes,
9. GENERAL :
(i) Stunted growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) Rainfall was not well distributed. After the sowing of Gram no rain was received which affected the growth of the crop very badly, though its germination was quite satisfactory.
10. RESULTS :
(i) $779 \mathrm{lb} / \mathrm{ac}$
(ii) $136.3 \mathrm{lb} / \mathrm{ac}$
(iii) Treatment do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield

1.	731
2.	839
3.	722
4.	823
5.	-
S.E./mean	$=60.90 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Gram (Rabi).
Site :-Agri. Res. Str., Mohol.

Ref :-Mh. 51(10).
Type:- ${ }^{6}$ M'.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on succeeding cereal crop Jowar.

1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 14.10 .1951. (iv) (a) Plcughing once in 3 years and 4 times harrowings. (b) Seeds drilled. (c) 40 lb ./ac. (d) 12° spacing between rows. (e) N A. (v) F.Y.M. at 5 C.L./ac. to be given once in 3 years. (vi) Chafa. (vii) Unirrigated. (viii) 3 intercultures. (ix) $7.49^{\prime \prime}$. (x) 24.1.1952.
2. TREATMENTS:
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Gram grown with $100 \mathrm{lb} / / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow.
8. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) $150^{\circ} \times 42^{\prime}$. (iii) 5 . (iv) (a) $30^{\circ} \times 42^{\circ}$. (b) $18^{\circ} \times 30^{\circ}$. (v) 6° all round the net plot. (vi) Yes.
9. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1948-1954$. (b) No. (c) N.A. (v) (a) Nil. (b) N.A.
(vi) Nil. (vii) There were no rains during the crop period.
10. RESULTS:
(i) $475 \mathrm{lb} / \mathrm{ac}$
(ii) $34.69 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	435
2.	442
3.	504
4.	517
5.	-
S.E./mean	$=15.51 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref:- Mh. 52(23).
Type :- ' ${ }^{\prime}$ '.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium blacck. (b) Refer soil analysis, Mohol. (iii) 3.10.1952. (iv) (a 5 harrowings and ploughing once in 3 years. (b) Seeds drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$ spacings between rows. (e) N.A. (v) F.Y.M. at 5 C.L./ac to be given once in 3 years. (vi) Chafa. (vii) Unirrigated. (viii) 2 intercultures and weedings. (ix) 5.03". (x) 2.1.1953.

2. TREATMENTS :

1. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 27^{\prime}$: (b) $30^{\prime} \times 15^{\prime}$. (v) 6^{\prime} all round the net plot.
(vi) Yes.
7. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1948-1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii, There were irregular and little rains. Sowing was delayed due to late rains.
8. RESULTS:
(i) $190 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $91.96 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	235
2.	162
3.	165
4.	200
S.	-
S.E./mean	$=41.14 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi). Ref:- Mh. 5 3(207).
Site :- Agri. Res. Stn., Mohol. Type :- 'M'.
Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{6}$ on the succeeding cercal crop Jowar.

1. BASAL CONDITIONS:
(i) (a) Gram-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol
(iii) 18.10 .1953 . (iv) (a) N.A. (b) Seeds drilled. (c) $30 \mathrm{lb} / \mathrm{ac}$. with 4 coultered drill. (d) 12° apart.
(c) NA (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) Bullock hoeing on 27.11.1953 and 8.12.1953 and 2

Bullock intercultures. (ix) 8.89". (x) lst and 25th Feb. 1954.

2. TREATMENTS:

1. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{6}$.
2. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. Gram grown with $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as super on 18.10.53.
6. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\circ} \times 18^{\prime}$. (v) 6^{\prime} all round. (vi) Yes.
7. GENERAL :
(i) Good. (ii) NiJ. (iii) Grain yield. (iv) (a) 1948-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil (vii) Due to aon availability of suitable plot, 3 replications were accommodated in one patch and 2 replications in another patch of land leaving scme gulley like and uneven portion of the plot in between the two.
8. RESCLTS:
(i) $543 \mathrm{lb} / \mathrm{ac}$
(ii) $79.71 \mathrm{lb} / \mathrm{ac}$
(iii) Treatments do not differ significantly.
(iv) Av. y eld of grain in lb./ac.

Trearment	Av. yield
1.	485
2	533
3.	580
4.	573
5.	-
S.E./mean	$=35.63 \mathrm{lb} . / \mathrm{ac}$.

Crop =- Gram (Rabi).
Site :- Agri. Res. Stro. Mohol.

Ref. :- Mh. 49(127)
Type = ' $\mathbf{M r}$ '.

Object:-To study the effect of Gram grown with and withcut $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS
(i) (a) Gram-Jowar (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) 4 harrowings (b) Drilling. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) 12° between rows (e) N.A. (v) Nil. (vi) Chafu. (vii) Unirrigated. (viii) Nil. (ix) 1.14. (x) N.A.

2 TREATMENTS:

1. Gram grown with 50 lb . $/ \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.

2 Gram grown with 100 lb ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) N_A. (b) \leq guntha (v) NA. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954 (b) No. (c) Nil (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $554 \mathrm{lb} / \mathrm{se}$.
(ii) $92.72 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{gc}$.

Treatment	Av. yield
1.	526
2.	554
3.	579
4.	555
S.E./mean	$=41.45 \mathrm{lb} . / \mathrm{cc}$.

Crop :-Gram (Rabi).
Site :-Agri. Res. Stn., Mohol.

Ref:-Mh. 50(6).
Type :-' ${ }^{\prime}$ '.

Object :--To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 18.10.1950. (iv) (a) N.A. (b) Seeds drilled. (c) 40 lb ./ac. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) F.Y.M. at 5 C.L./ac. to be given once in 3 years. (vi) Chafa. (vii) Unirrigated. (viii) 4 intercultures. (ix) 9.91". (x) 1.2.1951.
2. TREATMENTS:
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super .
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ was applied at the time of sowing.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) $38^{\prime} \times 115^{\prime}$. (iv) (a) $38^{\prime} \times 23^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 4^{\prime} alround the plot. (vi) Yes.
9. GENERAL:
(i) Stunted growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954 . (b) No. (c) N.A. (v) (a) No. (b) N:A. (vi) and (vii) Nil.
10. RESULTS;
(i) $579 \mathrm{lb} / \mathrm{ac}$.
(ii) $105.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathbf{l b} . / \mathrm{ac}$.

Treatment	Av. yield
1.	506
2.	578
3.	578
4.	653
5.	-
S.E./mean	$=47.18 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Gram (Rabi).
Site :- Agri. Res. Stn., Mohol.
Site :- Agri. Res. Stn., Mohol.
```

Ref:- Mh. 51(14).
Type :- ' M '.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) No. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 14.10.1951.
(iv) (a) Harrowed 4 times. (b) Seeds drilled. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Chafa.
(vii) Unirrigated. (viii) 3 intercultures. (ix) 7.49". (x) 24.1.1951.

2. TREATMENTS :

1. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
3. Gram grown with $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Bone meal.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) $115^{\prime} \times 38^{\prime}$. (iii) S. (iv) (a) $23^{\prime} \times 38^{\prime}$. (b) $15^{\prime} \times 30^{\prime}$. (v) 4^{\prime} alround the plot. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $413 \mathrm{lb} / \mathrm{ac}$.
(ii) $64.86 \mathrm{Ib} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av, yield of grain in $\mathrm{lb} . / \mathrm{ac}$.
Treatment Av. yield

1.	319
2.	425
3.	453
4.	455
5.	-
S.E./mean	$=29.2 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Gram (Kabi).
Site :- Agri. Res. Stn., Mohol.
Ref:- Mh. 52(112).
Type :- ' M '.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 3.10.1952. (iv) (a) 5 harrowings. (b) N.A. (c) $30 \mathrm{lb} . / \mathrm{ac}$. (d) 12°. (c) N.A. (v) 5 C.L./ac. of F.Y.M. to be given once in 3 years. (vi) Chafa. (vii) Unirrigated (viii) 2 interculturings and weedings. (ix) 5.03". (x) 2.1.1953.
2. TREATMENTS :
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$
4. Gram grown with $\mathrm{P}_{2} \mathrm{O}_{6}$ at 50 lb ./ac.
5. Gram grown with $\mathrm{P}_{2} \mathrm{O}_{\mathrm{B}}$ at 100 Jb ./ac.
6. Gram grown with $\mathrm{P}_{2} \mathrm{O}_{5}$ at 150 lb ./ac.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ is applied to gram (Rabi) this year and its residual effect is studied on Wheat (Rabi) next year.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $30^{\prime} \times 15^{\prime}$. (v) 4^{\prime} all round the net plot.
(vi) Yes.
9. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a).1949-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $157 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $75.38 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment Av. yield
11. 182
12. 155
13. 105
14. 186
$5 . \quad=\overline{3}=36 \mathrm{lb} / \mathrm{ac}$.

Crop :-Gram (Rabi). . Ref :-Mh. 53(208).
Site :-Agri. Res. Stn., Mohol.
Type:-'M'.

Object : - To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{6}$ on succeeding cereal crop Wheat.

1: BASAL CONDITIONS :

(i) (a) No. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 17.10.1953. (iv) (a) N.A. (b) Seeds drilled. (c) $30 \mathrm{lb} . / \mathrm{ac}$. with a 4 coultered drill. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) Bullock hoeing on 26.11.1953 and 8.12.1953 and 2 intercultures by bullocks. (ix) 8.89". (x) 26 and 27.2.1954.

2. TREATMENTS :

1. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Grain grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied on 17.10 .1953 .
6. DESIGN :
(i) R.B.D. (ii) (a) S. (b) N.A. (iii) 5. (iv) (a) $38^{\circ} \times 23^{\prime}$. (b) $30^{\circ} \times 15^{\prime}$. (v) 4^{\prime} all round the plot. (vi) Yes.
7. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $672 \mathrm{lb} . / \mathrm{ac}$.
(ii) $134.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	547
2.	687
3.	766
4.	687
5.	-
S.E /mean	$=6026 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Gram (Rabi).
 Site : Agri. Res. Stn., Niphad.
 Ref :-Mh. 48(23).
 Type : $\boldsymbol{\sim}^{\prime} \mathrm{M}$ '.

Object:-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding Bajra crop.

1. BASAL CONDITIONS :
(i) (a) No.
(b) Wheat.
(c) Nil. (ii) (a) Loamy medium. (b) Refer soil analysis, Niphad. (iii) 12.10.1948. (iv) (a) N.A. (b) Sowing with 3 coultered drill. (c) 30 lb ./ac. (d) $10^{\prime \prime}$ spacing between rows. (e) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) N.A. (ix) 3.89". (x) N.A.
2. TREATMENTS :
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{\mathrm{B}}$.
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Gram grown with $100 \mathrm{lb} / \mathrm{ac}$, of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. Gram grown with $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5 (iv) (a) $40^{\circ} \times 25^{\circ}$. (b) $30 \times 15^{\circ}$. (v) 5° all round the ploe.
(vi) Yes

4 GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948-Eharif 1944 (b) Yea (c) NA. (v) (a) No (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $113 ? \mathrm{lb} / \mathrm{ac}$
(ii) $142.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} \sqrt{\mathrm{ac}}$.
Treatment Av. yield

1. 777
2.1133
2. 1320
41316
3.

S.E./mead $\quad=63.9 \mathrm{lb} . / \mathrm{ac}$.

Crop =- Gram (Rabi).
Site :- Agri. Res. Stn., Niphad.

Ref : - Mh_ 49(38)/48(23).
Type $=\mathbf{M}$.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{3} \mathrm{O}_{5}$ on succeeding Bajra crop.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra (b) Bajra (a) Nil (ii) (a) Loamy medium (b) Refer soil analysis, Niphad
(iii) 5.10.1949. (iv) (a) No ploughing. (b) Drilling. (c) $40 \mathrm{lb} / \mathrm{ac}$ (d) Spacing between rows-10 and between plants irregular. (e) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) Nil. (ix) 2.36., (x) 17.1.1950.
2. TREATMENTS:
3. Gram grown without $\mathrm{P}_{\mathbf{3}} \mathrm{O}_{5}$ -
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{3} \mathrm{O}_{5}$ -
5. Gram grown with $100 \mathrm{lb} / \mathrm{ace}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ -
6. Gram grown with $150 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{3} \mathrm{O}_{5}$ -
7. Fallow.
$\mathbf{P}_{\mathbf{2}} \mathrm{O}_{\mathrm{E}}$ as Super broadcast on 3 1st Aug. 1949.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) S. (iv) (a) $40^{\circ} \times 25^{\circ}$. (b) $30^{\circ} \times 15^{\circ}$. (v) 5° all round the plot, (vi) Yes.
9. GENERAL :
(i) The general condition of the crop was below normal though there was no seasconal abnormalitr. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948 to Xherif 1954. (b) Yea (c) N.A. (v) (a) Na (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $464 \mathrm{lb} . / \mathrm{ac}$.
(ii) $86.62 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	442
2.	408
3.	433
4.	572
S.	-
S.E./mean	$=38.72 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi),
Site :-' Agri. Res. Stn., Niphad.

Ref :- Mh. 50(53)/49(38)/48(23).
Type :-' \mathbf{M}^{\prime}.

Object:-To study the effect of Gram grown with and without $\mathrm{P}_{\mathbf{8}} \mathrm{O}_{5}$ on suicceeding cereal crop Bajra.

1. BASAL CONDITIONS:
(i) (a) Gram-Bajra. (b)-Bajra. (c) Nil. (ii) (a) Loamy medium. (b) Refer soil analysis, Niphad. (iii) 12.10.1950. (iv) (a) N.A. (b) Drilling with 4 coultered drill. (c) 30 lb ./ac. (d) Between rows $10^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) Gap filling on 20.10.1950. (ix) Nil. (x) 28.1.1951.

2. TREATMENTS :

1. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. Gram grown with $50 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\circ}$. (b) $30^{\prime} \times 15^{\circ}$. (v) 5^{\prime} all round the plot. (vi) Yes.
7. GENERAL :
(i) Stand was slightly uneven and there were gaps. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948-Kharif 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $378 \mathrm{lb} / \mathrm{ac}$.
(ii) $55.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb}, / \mathrm{ac}$.

Treatment	Av. yield
1.	358
2.	357
3.	396
4.	401
4.	-
S.E./mean	$=24.6 \mathrm{lb} / \mathrm{ac}$.

Crop :- Gram (Rabi). Ref :m Mh. 51(55)/50(53)/49(38)/48(23).
Site :- Agri. Res. Stn., Niphad. Type :- 'M'.

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{8} \mathrm{O}_{5}$ on the succeeding cereal crop Bajra.

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) Loamy. (b) Refer soil analysis, Niphad. (iii) 10.10.1951. (iv) (a) N.A. (b) Drilling by 3 coultered (c) 40 lb ./ac. (d) Spacing 10° between rows. (e) N.A. (v) Nil. (vi) Chafa.
(vi) Unirrigated. (viii) Gap filling. (ix) $1^{\prime \prime}$. (x) 20.1.1952.
2. TREATMENTS :
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Gram grown with $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. Gram grown with 150 lb /ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$, (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round the plot.
(vi) Yes.
9. GENERAL:
(i) Normal. (ii) Ni1. (iii) Grain yield. (iv) (a) Rabi 1948 -Kharif 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $469 \mathrm{lb} . / \mathrm{ac}$.
(ii) $185.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	341
2.	492
3.	485
4.	557
5.	-1
S.E./mean	$=82.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi). \quad Ref:- Mh. 52(85)/51(55)/50(53)/49(38)/48(23).
Site :- Agri. Res. Stn., Niphad. Type :- 'M'.
Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Bajra.

1. BASAL CONDITIONS :
(i) (a) Gram-Bajra. (b) Bajra and Tur. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Loamy medium. (b) Refer soil analysis, Niphad. (iii) 11.10 .1952 . (iv) (a) N.A. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) 10°. (e) N.A. (v) Nil. (vi) Chafa. (vii) Irrigated. (viii) Nil. (ix) Nil. (x) 16.1.1953.
2. TREATMENTS:
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. Gram grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\circ} \times 25^{\circ}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} all round the plot. (vi) Yes.
9. GENERAL :
(i) Not good. (ii) Slight attack of borer at flower setting. (iii) Grain yield. (iv) (a) Rabi 1948-Kharif 1954. (b) Yes. (c) N,A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $471 \mathrm{lb} . / \mathrm{ac}$.
(ii) $43.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	453
2.	484
3.	473
4.	473
S.	-
S.E./mean	$=19.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :m Gram (Rabi). Ref. :- Mh. 53(142)/52(85)/51(55)/50(53)/49(38)/48(23).
Site :- Agri. Res. Stn., Niphad.
Type : ' \mathbf{M} '

Object :-To study the effect of Gram grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Bajra.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Loamy medium. (b) Refer soil analysis, Niphad. (iii) 25.9.1953. (iv) (a) N.A. (b) Drilling with 3 coultered drill. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) $10^{\prime \prime}$. (c) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) Nil. (ix) 4.65". (x) 30.12.1953.
2. TREATMENTS:
3. Gram grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Gram grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Gram grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. Gram grown with $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} alround the plot. (vi) Yes.
9. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) Rabi 1948-Khamif 1954. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $566 \quad$ lb./ac.
(ii) $45.50 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	531
2.	557
3.	550
4.	624
5.	-
S.E./mean	$=20.4 \mathrm{lb} . / \mathrm{ac}$

Crop:- Gram (Rabi).
Site :- Agri. Res. Stn., Sholapur.
Object:-To study the effect of ZnSO_{4} on Gram.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Medium deep, (b) Refer soil analysis, Sholapur. (iii) 10.10.1951. (iv) (a) 2 harrowings. (b) Drilling. (c) 40 lb /ac. (d) Rows $12^{\prime \prime}$ apart. (e) -. (v) Nil, (vi) Chafa. (vii) Unirrigated. (viii) 1 weeding. (ix) Nil. (x) 12.1.1952.
2. TREATMENTS :
3. Control.
4. 10 lb ./ac. of ZnSO_{4}.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of ZnSO_{4}.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 8 . (iv) (a) $32^{\prime} \times 20^{\circ}$. (b) $26^{\circ} \times 14^{\prime}$. (v) 3^{\prime} all round. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951 to 1954. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $249 \mathrm{lb} / \mathrm{ac}$
(ii) $35.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	253
2.	266
3.	228
S.E./mean	$=12.6 \mathrm{Ib} . / \mathrm{ac}$

$\begin{array}{ll}\text { Crop : }- \text { Gram (Rabi). } & \text { Ref :-Mh. 52(368). } \\ \text { Site :-Agri. Res. Str., Sholapur. } & \text { Type :-'M'. }\end{array}$
Object:-To study the effect of ZnSO_{4} on Gram.

1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur. (iii) 10.10.1952 (iv) (a) 1 harrowing. (b) Drilling. (c) 49 lb ./ac. (d) Rows 12° apart. (c) N.A. (v) Nil. (vi) Chafa. (vii) Unirrigated. (viii) 1 weeding. (ix) Nil.. (x) 22.1.1953.
2. TREATMENTS:
3. Contral.
4. 10 lb ./ac. of ZnSO_{4} applied on $\mathbf{1 0 . 1 0 . 1 9 5 2 .}$
5. 20 lb ./ac. of ZnSO_{4} applied on 10.10 .1952 .
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) S. (iv) (a) $32^{\circ} \times 20^{\circ}$. (b) $26^{\circ} \times 14^{\circ}$. (v) 3° all round. (vi) Yes
7. GENERAL :
(i) Normal growth. (ii) Nil. (iii) Grain yield. (iv) (a) 1951 to 1954. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5.1 RESULTS:

(i) $389 \mathrm{lb} / / \mathrm{ac}$.
(ii) $55.53 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	$384 \quad$.
2.	420
3.	363
S.E./mean	$-19.64 \mathrm{lb} / \mathrm{ac}$

Crop :-Gram (Rabi).

Site :-Agri. Res. Stn., Sholapur.

Ref :-Mh. 53(373).
Type :-'M'.

Object :-To study the effect of ZnSO_{4} on Gram.

1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur. (iii) 16.10.1953. (iv) (a) Nil. (b) Drilling. (c) $40 \mathrm{lb} / \mathrm{ac}$. (d) 12° between rows. (e) N.A. (v) Nil.
(vi) Chafa. (vii) Unirrigated. (viii) 2 weedings. (ix) Nil. (x) 2.2.1954.

2. TREATMENTS:

1. Control.
2. 10 lb ./ac. of ZnSO_{4} applied on 16.10.1953.
3. 20 lb ./ac. of ZnSO_{4} applied on 16.10 .1953 .
4. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iv) (a) $20^{\prime} \times 32^{\prime}$. (b) $14^{\prime} \times 26^{\prime}$. (v) 3^{\prime} all round. (vi) Yes.
5. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain and fodder yield. (iv) (a) 1951 to 1954. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
6. RESULTS :
(i) 417 lb ./ac.
(ii) $61.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	417
2.	426
3.	409
S.E./mean	$=21.8 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{ll}\text { Crop :- Gram (Rabi). } & \text { Ref :- Mh. 52(372). } \\ \text { Site :- Agri. Res. Stn., Sholapur. } & \text { Type : ‘ 'M'. }\end{array}$

Object :-To study the effect of Boron and Manganese alone and in combination on Gram.

1. BASAL CONDITIONS :
(i) (a) Gram-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur.
(iii) 10.10 .1952 . (iv) (a) Nil. (b) Drilling. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) 12° between rows. (c) N.A. (v) Nil.
(vi) Chafa. (vii) Unirrigated. (viii) 2 weedings. (ix) 2.76". (x) 21.1.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron : $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of Manganese: $M_{0}=0, M_{1}=2, M_{2}=4$ and $M_{3}=6 \mathrm{lb}$./ac.

Boron as Borax and Manganese as Mn. Sulphate applied on 10.10.1952.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $20^{\prime} \times 18^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal, (ii) Nil. (iii) Grain yield. (iv) (a) No. (b) No. (c) Nil. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $308 \mathrm{lb} . / \mathrm{ac}$.
(ii) $84.70 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

	$\mathbf{B}_{\mathbf{0}}$	\mathbf{B}_{1}	B_{3}	B_{3}	Mean
M_{0}	295	317	322	310	311
M ${ }_{1}$	285	340	308	335	317
M	280	276	315	295	291
M_{3}	348	231	340	342	315
Mean	302	291	321	320	308
S.E. of any marginal mean			$=21.17 \mathrm{lb} / \mathrm{ac}$		
S.E. of body of table			$=42.35 \mathrm{lb} / \mathrm{ac}$		

Crop :- Gram (Rabi).

Ref :- Mh. 53(276).
Site :-Govt. Seed and Demonstration Farm, Sindewahi. Type :- 'M'.

Otject :-To study the effect of application of hime to the Gram crop.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) (a) Sandy loam. (b) N.A. (iii) N.A. (iv) (a) to (e) N.A. (v) N.A. (vi) GramAdt. V. (vii) Unirrigated. (viii) N.A. (ix) 6 Nil (x) N.A.
2. TREATMENTS:

1. Control (no lime).
2. 200 lb ./ace of lime.
3. $400 \mathrm{lb} . / \mathrm{ac}$ of lime
4. $600 \mathrm{lb} / \mathrm{ac}$ of lime.
5. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 80$ ace (v) N.A. (vi) Yes
6. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1953-1956. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Control is not replicated, treatment 2,3 and 4 are based on three replications each.
7. RESULTS:
(i) $596 \mathrm{lb} . / \mathrm{ac}$.
(ii) $103.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment Av. yield
1.560
2.626
$3 . \quad 573$
4. 626
S.E./mean (for treatment 2,3 and 4) $=57.9 \mathrm{id} / \mathrm{ac}$.

Crop :-Gram (Rabi).
Site :-Agri. Res. Stn., Vadgaon.

Ref:-Mh. 49(97).
Type :- ${ }^{\prime} \mathbf{M}^{\prime}$.

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ on Gram and its residual effect on Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) N.A. (iv) (a) and (b) N.A. (c) 40 lb /ac. (d) $9^{\circ} \times 9^{\circ}$. (e) N.A. (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) 3.34° (x) N.A.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrows,
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrows.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrows.
5. Fallow in Rabi and sown in Kharif.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5 . (iv) (a) $22^{\prime} \times 16^{\circ}$. (b) $15^{\prime} \times 9^{\prime}$. (v) $3 \frac{1^{\prime}}{}$ all round. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1948 (rabi) to 1953 (kharif). (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) No reason is given for low yield. (vii) Experiment failed in 1948.
8. RESULTS:
(i) $323 \mathrm{lb} . / \mathrm{ac}$.
(ii) $66.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	314
2.	321
3.	291
4.	365
5.	-
S.E./mean	$=29.8 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lr}
\text { Crop :- Gram (Rabi). } & \text { Ref :- Mh. 50(122). } \\
\text { Site :- Agri. Res. Stn., Vadgaon. } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the direct effect of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on Gram and its residual effect on Paddy.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 15.11 .1950 for 3 replications and 27.11.1950 for 2 replications. (iv) (a) N.A. (b) N.A. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) $9^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) N.A. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) 5.71". (x) 26.2.1951.

2. TREATMENTS :

.1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough urrow.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrow.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrow.
5. Fallow in Rabi and sown in Kharif.
3. DESION:
(i) R.B.D. (ii) (a) 5 . (b) N.A. (iii) 5. (iv) (a) $22^{\prime} \times 16^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 2^{\prime} all round. (vi) Yes,
4. GENERAL :
(i) The earlier sown crop was good. In other plots, it was below normal in vigour and growth. No differential response was observed from the appearance of the gram. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 (Rabr) to 1953 (Kharif). (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Sowing was delayed in 2 replications. Buods of 2^{\prime} width are put round the plots.
5. RESULTS :
(i) $358 \mathrm{lb} . / \mathrm{ac}$.
(ii) $91.36 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	349
2.	364
3.	324
4.	394
S.	-
S.E./mean	$=40.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi).	Ref :~ Mh. 51(165).
Site :- Agri. Res. Stn., Vadgaon.	Type:~ 'M'.

Object :-To study the direct effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ on Gram and its residual effect on Paddy.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 2.12.1951. (iv) (a) and (b) N.A. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) N.A. (vi) N.A. (vii) Unirrigated. (vii) Weeding 15.1.1952. (ix) 10.00°. (x) 5.3.1952.

2. TREATMENTS

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrows.
3. $100 \mathrm{lb} / \mathrm{ac}$, of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrows.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super in the plough furrows.
5. Fallow in rabi and Paddy in kharif.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $22^{\prime} \times 16^{\prime}$. (b) $18^{\prime} \times 12^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
7. GENERAL:
(i) Below normal due to cloudy weather and heavy rainfall. It had to be resown. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 (Rabi) to 1953 (Kharif). (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $274 \mathrm{lb} . / \mathrm{ac}$.
(ii) $73.17 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in 18./ac.

Treatment	Av. yield
1.	285
2.	270
3.	244
4.	296
5.	-
S.E./mean	$=32.71 \mathrm{lb} . / \mathrm{ac}$.

```
Crop:m Gram (Rabi).
Ref:- Mh. 48(51).
Site :- Agri. Res. Stn., Mohol.
Type :- 'C'.
```

Object :-To study the effect of nipping on Gram yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 3.10 .1948 , (iv).(a) 4 harrowings. (b) Drilling. (c) N.A. (d) $12^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. spread with hand at the time of second harrowing. (vi) Gram-Chafa. (vii) Unirrigated. (viii) 2 intercultures (ix) 5.38". (x) 28.1.1949.
2. TREATMENTS :
3. Nipping at the time of flowering.
4. No nipping.
5. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 10. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
6. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1947 to 1948 . (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $626 \mathrm{lb} / \mathrm{ac}$.
(ii) $34.91 \mathrm{lb} / / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.
Treatment : Av. yield
8. 622
9. 629
S.E./mean $=11.04 \mathrm{lb} / \mathrm{ac}$.

Crop: \boldsymbol{m}. Gram (Rabi).
Ref: Mh.49(75).
Site :- Agri. Res. Stn., Mohol.
Type:- 'C'.
Object :-To study the effect of nipping on Gram yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 11.10.1949. (iv) (a) 4 harrowings. .(b) Drilling. (c) N.A. (d) $12^{\prime \prime}$. (e) N.A. (v) S C.L./ac. of R.Y.M. applied at the time of second harrowing. (vi) Gram-Chafa. (vii) Unirrigated. (viii) 2 intercultures. (ix) 1.14°. (x) 15.1.1950.
2. TREATMENTS :
3. Nipping at the time of flowering.
4. No pipping.
5. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 10 . (iv) (a) N.A. (b) $30^{\prime} \times 9^{\prime}$. (v) N.A. (vi) Yes.
6. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1947 to 1948 . (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
7. RESULTS : ,
(i) $184 \mathrm{lb} . / \mathrm{ac}$.
(ii) $12.50 \mathrm{Jb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	184
2.	184
S.E./mean	$=3.95 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Gram (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref. :-Mh. 48(50),
Type :- ' C '.

Object :-To ascertain the optimum seed rate for Gram.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 3.10.1948. (iv) (a) 4 harrowings. (b) Drilling. (c) As per treatments. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gram-Chafa. (vii) Unirrigated. (viii) 2 intercultures. (ix) $5.38^{\prime \prime}$. (x) 28.11.1949.
2. TREATMENTS :

3 seed rates : $\mathbf{R}_{\mathbf{1}}=\mathbf{2 0}, \mathrm{R}_{\mathbf{2}}=30$ and $\mathrm{R}_{\mathbf{3}}=40 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $1 / 80$ th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1947 to 1948. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $671 \mathrm{lb} . / \mathrm{ac}$.
(ii) $69.94 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
$\mathbf{R}_{\mathbf{1}}$	690
$\mathbf{R}_{\mathbf{2}}$	689
$\mathbf{R}_{\mathbf{3}}$	634
S.E./mean	$=\mathbf{2 8 . 5 6 ~ l b} . / \mathrm{ac}$.

Crop:- Gram (Rabi).
Site :- Agri. Res. Stn., Mohol.

Ref:- Mh. 49(76).
Type:" 'C'.
Object :-To ascertain the optimum seedrate for Gram.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 12.10.1949. (iv) (a) 4 harrowings. (b) Driling. (c) As per treatments. (d) $12^{\prime \prime}$. (c) N.A. v) Nil. (vi) Gram - Chafa. (vii) Unirrigated. (viii) 2 intercultures. (ix) 1.14". (x) 17.1.1950.
2. TREATMENTS :

3 seedrates: $\mathbf{R}_{\mathbf{1}}=20, \mathbf{R}_{\mathbf{2}}=30$ and $\mathbf{R}_{\mathbf{3}}=40 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) R.B.D. (ii) 3. (b) N.A. (iii) 8. (iv) (a) N.A. (b) $1 / 80$ th ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal: (ii) Nil. (iii) Grain yield. (iv) (a) 1947 to 1949. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $681 \mathrm{lb}, / \mathrm{ac}$.
(ii) $66.50 \mathrm{lb} . / \mathrm{ac}$.
(iii) Tieatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	667
2.	652
3.	723
S.E./mean	$=23.5 \mathrm{lb}$./ac.

Crop :- Gram (Rabi).
Ref:- Mh. 53(35).
Site :- Agri. Res. Stn., Kopergaon.
Type:- 'D'.

Object :-To control the Penicum 1sachme (Shipi) by pre-emergence treatment of (Netagrone) 2-4-D.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) Nil. (ii) (a) 'H' Type (b) Refer soil analysis, Kopergaon. (iii) 10.12.1953. (iv) (a) One ploughing and harrowing. (b) to (e) N.A. (v) Nil. (vi) Gram-Chafa (early). (vii) Irrigated. (viii) 1 weeting. (ix) 4.17". (x) 29.3.1954.
2. TREATMENTS :

All combinations of (1) and (2)+a control (unweeded).
(1) 3 concentrations of Netagrone 2-4-D : $C_{1}=0.2, C_{2}=0.1$ and $C_{3}=0.05 \%$.
(2) 3 intervals of spraying : $\quad \mathbf{M}_{1}=$ Unweeded and sprayed with Netagrone-4 weeks after sowing,
$\mathbf{M}_{2}=$ Weeded and sprayed with Netagrone-4 weeks after sowing and $\mathbf{M}_{\mathbf{3}}=$ Weeded scron with Gram, sprayed with Netagrone-after sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 2. (iv) (a) $50 \times 20^{\prime}$. (b) $42^{\prime} \times 12^{\prime}$. (v) 4^{\prime} all round. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Nil. (iii) Germination date, flowering date, height, no. of tillers etc. (iv) (a) 1951 to 1955. (b) No (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Due to late receipt of chemicals the sowing of the Gram was delayed. Hence the crop growth was somewhat different than the normal which ultimately affected the yield to a consid.rable extent.
3. RESULTS :
(i) $363 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $92.48 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of grain in lb./ac.

Control $=405 \mathrm{Ib} . / \mathrm{ac}$.

	c_{1}	C_{2}	C3	Mean
\mathbf{M}_{1}	305	340	416	354
\mathbf{M}_{2}	427	359	337	374
\mathbf{M}_{3}	356	335	346	346
Mean	. 363	345	366	
S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =37.76 \mathrm{lb} . / \mathrm{ac} \\ & =64.82 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

54I

```
Crop :- Gram (Rabi).
Ref :- Mh. 52(307).
Site :- Agri. Res. Stn., Kopergaon.
Type:- 'D'.
```

Object :-To control the Penicum Isachme (shipi) by pre-emergence treatment (Netagrone 2-4-D).

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar for fodder. (c) 2 bags/ac. of G.N.C. (ii) (a) A type soil. (b) Refer soil analysis, Kopergaon. (iii) 16.11 .1959 . (iv) (a) 4 ploughings and 2 harrowings. (b) Drilling. (c) 40 lb ./ac. (d) $12^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) Chafa-Gram. (vii) Irrigated. (viii) As per treatments. (ix) 11.73°. (x) 20.3.1953.
2. TREATMENTS :
3. Spraying of Netagrone 6 weeks prior to sowing and not to be weeded.
4. No spraying and no weeding.
5. No spraying but one weeding.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) $76^{\prime} \times 44^{\prime}$. (b) $70^{\circ} \times 38^{\prime}$. (v) 3^{\prime} all round. (vi) Yes.
7. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) $1951-$ N.A. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS :
(i) $621 \mathrm{lb} . / \mathrm{ac}$.
(ii) $56.73 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	480
2.	685
3.	699
S.E./mean	$=28.37 \mathrm{lb} . / \mathrm{ac}$.

/ Crop:- Gram (Rabi).
 Site :- Govt. Exptl. Farm, Nagpur.
 Ref:- Mh. 52(135). Type:- ' D '.

Object:-To study the effect of "pacillas racidicola" used for inocculaing soil and gram seed on the ultimate yield of Gram.

1. BASAL CONDITIONS:
(i) (a) No particular. (b) and (c) N.A. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 13.10.1952. (iv) (a) to (e) N.A. (v) Nil. (vi) Gram-No. 28. (vii) Unirrigated. (viii) N.A. (ix) 1.78". (x) 19.2.1953.
2. TREATMENTS :
3. Control.
4. Seeds inoculated.
5. Soil inoculated.
6. Soil inoculated and last year's gram seeds grown in the area.
7. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 11^{\prime}$. (b) $15^{\prime} \times 9^{\prime}$. (v) 1^{\prime} all round. (vi) Yes.
8. GENERAL:
(i) Normal. (ii) Nil. (iii) Grain yield. (iv) (a) 1951-N.A. (b) No. (c) No. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
9. RESULTS:
(i) $934 \mathrm{lb} . / \mathrm{ac}$.
(ii) 309.1 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	882
2.	933
3.	908
4.	1013
S.E./mean	$=154.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Chinamug (Kharif).	Ref. :- Mh. 49(29).
Site :- Agri. Res. Stn., Jalagaon.	Type:- 'M'.

Object:-To study the effects of leguminous crop grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Dzep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 2.7.1949. (iv) (a) 4 to 5 harrowings. (b) Drilling. (c) $8^{\prime} \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) 44.17. (x) 4.9.1949.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$ applied).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Kharif and sown in Rabl.
6. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime} .6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime} .6^{\prime \prime}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
7. GENERAL :
(i) The growth of the crop was healthy throughout the season. More vegetative growth of the crop was observed due to excessive rain fall. (ii) Nil. (iii) Grain yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $795 \mathrm{lb} . / \mathrm{ac}$.
(ii) 72.4 lb ./ac.
(iii) Treatment differences are highly significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	715
2.	747
3.	819
4.	900
5.	Fallow
S.E./mean	$=32.41 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Chinamug (Kharif).
Site :- Agri. Res. Stn., Jalagaon.
```

Ref $=$ Mh. 50(40).
Type :- ' \mathbf{M} '.

Object :- To study the effects of leguminous crop grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13^{\prime}. (b) Refer soil analysis, Jalagaon. (iii) 7.7.1950. (iv) (a) N.A. (b) Drilling. (c) $8 \mathrm{lb} / \mathrm{ac}$. (d) 18°. (c) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 1 weeding on 8.8 .1950 and 2 hoeings (ix) 21.73". (x) 8.9.1950.

2. TREATMENTS :

1. Control (no manure).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Kharif and sown in Rabi.
$\mathbf{P}_{2} \mathrm{O}_{5}$ drilled with the seeds of the leguminous crop.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime} .6^{\circ}$. (b) $30^{\circ} \times 13.6^{\circ}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv).(a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mobol and Niphad. (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $289 \mathrm{lb} . / \mathrm{ac}$
(ii) $83.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	325
2.	226
3.	309
4.	298
5.	-
S.E./mean	$=37.5 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lr}
\text { Crop :- Chinamug (Kharif). } & \text { Ref }- \text { - Mh. 51(44). } \\
\text { Site :- Agri. Res. Stn., Jalagaon. } & \text { Type }=-\mathrm{M} \text { '. }
\end{array}
$$

Object :-To study the effect of leguminous crop grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Cotton. (c) 7.5 C.L./ac. of F.Y.M. $+100 \mathrm{lb} / \mathrm{ac}$. of A/S. (ii) (a) Deep black cotton type having a depth of 10^{\prime} to 13^{\prime}. (b) Refer soil analysis, Jalagaon. (iii) 13.7.1951. (iv) (a) N.A. (b) Drilling. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) 18° between rows. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 1 weeding and 2 hoeings. (ix) 20.14*. (x) 14.9.1951.
2. TREATMENTS:
3. Control (no manure).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{3} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. fallow in Kharif and sown in Rabi.
$\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with seeds of leguminous crop.
8. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime}-6^{\prime \prime}$. (b) $30^{\circ} \times 13^{\circ}-6^{\circ}$. (v) $6^{\circ} \times 3^{\prime}$. (vi) Yes.
9. GENERAL :
(i) Break of rains when the crop was flowering, hence some bad effect upon the growth. (ii) Nil. (iii) Grain yield. (iv) (a) Kharif 1949 to Rabl 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $283 \mathrm{lb} . / \mathrm{ac}$.
(ii) 64.4 lb /ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of graio in lb./ac.

Treatment	Av. yield
1.	290
2.	266
3.	261
4.	315
5.	Fallow
S.E./mean	$=28.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Chinamug (Kharif).
Ref:- Mh. 52(70).
Site :- Agri. Res. Stn., Jalagaon.
Type :- 'M'.

Object:-To study the effects of leguminous crop grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on succeeding cereal crop, Wheat.

1. BASAL CONDITIONS :
(i) (a) Chinamug-Wheat. (b) Wheat. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10^{\prime} to 13^{\prime}
(b) Refer soil analysis, Jalagaon. (iii) 29.6.1952. (iv) (a) N.A. (b) Drilling. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) Rows $18^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 1 weeding and 2 hoeings. (ix) $17.61^{\prime \prime}$. (x) 3.9.1952.

2. TREATMENTS :

1. Control (no manure).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. $\quad 150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. No manuring (fallow in Kharif and sown in Rabi).
$\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with seeds of leguminous crop.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime}-6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime}-6^{\prime \prime}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
7. GENERAL:
(i) Good. (ii) Nil. (iii) Graim and chaff yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.
8. RESULTS:
(i) $659 \mathrm{ib} . / \mathrm{ac}$.
(ii) $164.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly:
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	589
2.	660
3.	683
4.	705
S.	Fallow
S.E./mean	$=73.7 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Chinamug (Kharif).
Site :- Agri. Res; Stn., Jalagaon,
Ref :- Mh. 53(133).
Type:- 'M'.
```

Object:-To study the effects of a leguminous crop (Chinamug) grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succceding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) Chinamug-Wheat. (b) Wheat. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13'. (b) Refer soil analysis, Jalagaon. (iii) 25.6.1953. (iv) (a) N.A. (b) Drilling. (c) $8 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows 18°. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 1 thinning, 1 gapfilling, 1 hoeing and 1 weeding. (ix) $23.77^{\prime \prime}$. (x) 1.9.1953.
2. TREATMENTS:
3. Control (no manure).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. No manure (fallow in Kharif and sown in Rabi).
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 19^{\prime}-6^{\prime \prime}$. (b) $30^{\prime} \times 13^{\prime}-6^{\prime \prime}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
9. GENERAL:
(i) The growth was normal and satisfactory. (ii) Nil. (iii) Grain and Chaff yield. (iv) (a) Kharif 1949 to Rabi 1954. (b) No. (c) N.A. (v) (a) Mohol and Niphad. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $1863 \mathrm{lb} . / \mathrm{ac}$.
(ii) $329.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of grain in lb ,/ac. .

Treatment	Av. yield
1.	1331
2.	1976
3.	2084
4.	2061
5.	-
S.E./mean	$=147.3 \mathrm{lb} . / a c$.

Crop :- Chinamug (Kharif).
Site :~ Agri. Res. Stn., Mohol.

Ref:- Mh. 49(60).
Type:- " ${ }^{\prime}$ "

Object:-To study the effect of Chinamug grown with and without $\mathrm{P}_{3} \mathrm{O}_{5}$ on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis; Mohol: (iii) 28.6.1949. (iv) (a) and (b) N.A. (c) 10 lb./ac. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Chinamug. (vii) Unirrigated: (viii) 1 interculturing. (ix) 14°. (x) 5.9.1949.

2. TREATMENTS:

1. Chinamug grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. Chinamug grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 28.6.1949.
3. Chinamug grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 28.6.1949.
4. Chinamug grown with 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 28.6.1949.
5. Fallow.
6. DESIGN:
(i) R.B.D. (ii) (a) 5, (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 27^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$ (v) 6^{\prime} all round. (vi) Yes.
7. GENERAL:
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) Jalagaon and Niphad. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $390 \mathrm{lb} . / \mathrm{ac}$.
(ii) $95.74 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	291
2.	369
3.	460
4.	440
5.	-
S.E./mean	$=42.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Chinamug (Kharif).
Site :-Agri. Res. Stn., Mohol.

Ref :-Mh. 51(8).
Type:-‘M'.

Object :- To study the effect of Chinamug grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) Gram. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 3.7.1951. (iv) (a) 4 harrowings. Ploughed once in 3 years (ploughed this year). (b) Seeds drilled. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied once in three years. (vi) Chinamug. (vii) Unirrigated. (viii) Clod crushing, 2 interculturings. (ix) $19.87^{\prime \prime}$. (x) 3 pickings from 29.8 .1951 to 26.9.1951.
2. TREATMENTS:

1. No manure.
2. $50 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
3. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M.
5. Fallow in Kharif and Jowar in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5 . (b) $42^{\prime} \times 135^{\circ}$. (iii) 5 . (iv) (a) $42^{\prime} \times 27^{\prime}$. (b) $30^{\prime} \times 15^{\circ}$. (v) 6^{\prime} alround. (vi) Yes.
7. GENERAL':
(i) Normal.i (ii) Nil. (iii) Weight of Chinamug grain. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) Jalagaon and Niphad. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $320 \mathrm{lb} / \mathrm{ac}$.
(ii) $66.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb/ac.

Treatment	Av. yield
l.	217
2.	265
3.	369
4.	428
S.	-
S.E./mean	$=29.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Chinamug (Kharif).
Site :m Agri. Res. Stn., Mohol.

Ref. :-Mh. 49(58).
Type:- ' M '.

Object:-To study the effect of Chinamug grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 28.6.1949. (iv) (a) and (b) N.A. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Chinamug. (vii) Unirrigated. (viii) 1 interculturing. (ix) 34°. (x) 5.9.1949.
2. TREATMENTS :
3. Chinamug grown without $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. Chinamug grown with 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Chinamug grown with 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. Chinamug grown with $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. DESIGN :
(i) R.B.D. (ii) (a) 4 . (b) N.A. (iii) 4. (iv) (a) $42^{\prime} \times 27^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 6^{\prime} alround. (vi) Yes.
8. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) and (c) No. (v) (a) Jalagaon and Niphad. (b) N.A. (vi) and (vii) Nil.
9. RESULTS:
(i) $418 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $91.27 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	342
2.	356
3.	462
4.	510
S.E/mean	$=40.8 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{lc}
\text { Crop :- Chinamug (Kharif). } & \text { Ref :- Mh. 51(13). } \\
\text { Site :- Agri. Res. Stn., Mohol. } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the effect of Chinamug grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal Crop Wheat.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Gram. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Mohol, (iii) 4.7.1951. (iv) (a) Ploughing, clod crushing, 4 times harrowings. (b) Seeds drilled. (c) $10 \mathrm{lb} . / \mathrm{ac}$. with 3 coultered drill. (d) 12° apart. (e) N.A. (v) N.A. (vi) Chinamug. (vii) Unirrigated. (viii) 2 interculturingg. (ix) 19.87°. (x) 3 pickings of pod from 30.8.1951 to 26.9.1951.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. B.M. at 50 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ applied to Chinamug.
3. B.M. at $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
4. B.M. at $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Chinamug.
5. Fallow in Kharif and wheat in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) $135^{\prime} \times 42^{\prime}$. (iii) 5 . (iv) (a) $27^{\prime} \times 42^{\prime}$. (b) $15^{\prime} \times 30^{\prime}$. (v) 6^{\prime} alround.(vi) Yes.
7. GENERAL:
(i) Normal. (ii) Nil. (iii) Weight of Chinamug grain. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) Jalagaon and Niphad. (b) N.A. (vi) Nil. (vii) The atmosphere was cloudy during the stage of pod formation. Rainfall was well distributed.
8. RESULTS :
(i) $282 \mathrm{lb} . / \mathrm{ac}$.
(ii) 58.1 lb ./ac.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac,

Treatment	Av. yield
1.	169
2.	301
3.	311
4.	345
5.	-
S.E./mean	$=25.97 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Chinamug (Kharif).
Site :- Agri. Res. Stn., Niphad.

Ref :- Mh. 50(52).
Type:- 'M'.

Object :-To study the effect of Chinamug grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) Chinamug-Wheat. (b) Wheat. (c) Nil. (ii) (a) Loamy-medium. (b) Refer soil analysis, Niphad. (iii) 24.7.1950. (iv) (a) N.A. (b) Drilling the seeds by 4 coultered drill. (c) N.A. (d) Rows 10° apart. (e) N.A. (v) Nil. (vi) Chinamug. (vii) Unirrigated. (viii) Gap filled on 29.7.1960 and hand weeding on 25.8.1950. (ix) 27.73. (x) 26.9.1950.

2. TREATMENTS:

1. No $\mathrm{P}_{2} \mathrm{O}_{6}$.
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Chinamug.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Chinamug.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Chinamug.
5. Fallow in Kharif.
6. DESIGN :
$\begin{array}{lllll}\text { DESIGN : } \\ \text { (i) R.B.D. } & \text { (ii) (a) } 5 . & \text { (b) N.A. } & \text { (iii) } 5 . & \text { (iv) (a) } 40^{\prime} \times 25^{\prime} \text {. (b) } 30^{\circ} \times 15^{\prime} . \text { (v) } 5^{\prime} \text { alround. (vi) Yes. }\end{array}$
7. GENERAL :
(i) Stunted growth for want of rain. (ii) Attack of Aphis. (iii) Grain yield. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $217^{\circ} \mathrm{lb}$ /ac.
(ii) $28.70 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in $\mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	128
2.	235
3.	249
4.	255
5.	-
S.E./mean	$=12,83 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Chinamug (Kharif).
Site:- Agri. Res. Stn., Niphad.

Ref:- Mh. 51(54).
Type:- ' M '.

Object:-To study the effect of Chinamug grown with and without $\mathrm{P}_{\mathbf{9}} \mathrm{O}_{\mathbf{5}}$ on the succeeding cercal crop Wheat.

1. BASAL CONDITIONS:

(l) (a) Chinamug-Wheat. (b) Wheat. (c) N.A. (ii) (a) Loamy medium. (b) Refer soil analysis, Niphad. (iii) 236.1951 . (iv) (a) N.A. (b) Drilling with 4 coultered drill. (c) $12 \mathrm{lb} . / \mathrm{ac}$. (d) 10°. (e) N.A. (v) Nil. (vi) Chinamug. '(vii) Unirrigated. (viii) 2 gapfillings and 1 weeding. (ix) 27.46°. ((x) N.A. (v.1951 Nil. 3.9.1951.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Chinamug.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Chinamug.
4. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super to Chinamug.
5. Fallow.
6. DESIGN :
(i) R.B.D.
(ii) (a) 5 .
(b) N.A. (iii)
7. (iv) (a) $40^{\prime} \times 25^{\prime}$.
(b) $30^{\prime} \times 15^{\circ}$. (v) 5^{\prime} alround. (vi) Yes.
8. GENERAL :
(i) Growth satisfactory ; slightly suffered for want of rain. (ii) Nil. (iii) Grain yield. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) Mohol. (b) N,A. (vi) and (vii) Nil.
9. RESULTS :
(i) $372 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $66.28 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $1 \mathrm{lb} / \mathrm{ac}$.

Treatment	Av. yield
1.	207
2.	362
3.	425
4.	496
5.	-
S.E./mean	$=29.63 \mathrm{lb} . / \mathrm{ac}$

Crop:- Chinamug (Kharif).
Ref :-Mh. 52(84).
Site :-Agri. Res. Stn., Niphad.

Object :-To study the effect of Chinamug grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS :

(i) (a) Chinamug-Wheat. (b) Wheat. (c) Nil. (ii) (a) Loamy-medium. (b) Refer soil analysis, Niphad. (iii) 23.7.1952. (iv) (a) N.A. (b) Drilling by 4 coultered row. (c) $12 \mathrm{lb} . / \mathrm{ac}$. (d) Rows 10° apart. (e) N.A. (v) Nil. (vi) Chinamug. (vii) Unirrigated. (viii) 2 weedings. (ix) 14.17". (x) 22.9.1952.

TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{8}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Chinamug.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Chinamug.
4. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Chinamug.
5. Fallow.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\circ} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} alround. (vi) Yes.
7. GERERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) Mohol. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $331 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $72.48 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	254
2.	290
3.	339
4.	440
5.	-
S.E./mean	$=32.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Chinamug (Kharif).
Site :- Agri. Res. Stn., Niphad.

Ref:- Mh. 53(141).
Type :- ' M '.

Object:-To study the effect of Chinamug grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Wheat.

1. BASAL CONDITIONS ;
(l) (a) Chinamug -Wheat. (b) Wheat. (c) Nil. (ii) (a) Loamy-medium. (b) Refer soil analysis, Niphad. (iii) 26.6.1953. (iv) (a) N.A. (b) Drilling by 4 coultred drill. (c) $8 \mathrm{lb} / \mathrm{ac}$. (d) $10^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Chinamug. (vii) Unirrigated. (viii) 1 gapfilling and weeding on 3.7.1953. (ix) 18.33". (x) 1.9.1953.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to Chinamug.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to Chinamug.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super applied to Chinamug .
7. Fallow.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $40^{\prime} \times 25^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 5^{\prime} alround. (vi) Yes.
9. GENERAL :
(i). Fair. Stunted in the beginning. (ii) Nil. (iii) Grain yield. (iv) (a) 1950 to $1953 .{ }^{\text {(b) }}$ (b) No. (c) N.A. (v) (a) Mohol. (b) : N.A, ((vi) and (vii) Nil.
10. RESULTS:
(i) $134, \mathrm{lb} / \mathrm{ac}$,
(ii) 43.30 lb ./ac.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	54.
2.	138
3.	136
4.	209
5.	-
S.E./mean	$=19.4 \mathrm{lb} /$ /ac.

Crop :-Chinamug (Kharif).
Site : Angri. Res. Stn., Mohol.
Ref :-Mh. 53(340).
Type : "'D'.

Object:-To find out the effect on yield of inoculation of legumes with root nodule bacteria.

1. BASAL CONDITIONS :
(i) (a) N.A. (b)Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 27.6.1953. (iv) (a) 2 harrowings. (b) Drilling. (c) N.A. (d) 12°. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 3 interculturings. (ix) $18.80^{\prime \prime}$. (x) 1.9.1953.
2. TREATMENTS
3. Chinamug alone.
4. Chinamug with•A II culture.
5. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 10. (iv) (a) $58^{\prime} \times 18^{\prime}$. (b) $55^{\prime} \times 18^{\prime}$. (v) 1.5^{\prime} along breadth (vi) Yes.
6. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-53. (b) N.A. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.
7. RESULTS :
(i) $149 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $20.10 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	142
2.	156
S.E./mean	$=6.35 \mathrm{lb}$./ac.

Crop :-Wal (Rabi)	Ref :- Mh. 49(19).
Site :- Agri. Res. Stn., Karjat.	Type :- 'M'.

Object :--To study the effect of Wal grown with and without $\mathbf{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS
(i) (a) Paddy-Wal-Paddy. (b) Paddy. (c) Nil. (ii) (a) Sandy loam. (b) Refer soil analysis, Karjat. (iil) $10.12 .19499^{\circ}$ (iv) (a) N.A. (b) Broadcasting behind the plough. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) and (c) N.A. (v) Nil, (vi) Wal (local). (vii) Unirrigated. (viii) N.A. (ix) 5.74". (x) 4.4.1950.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super applied to Wal crop.
7. Fallow in Rabi and Paddy in Kharif.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $20^{\circ} \times 10^{\prime}$. (b) $18^{\prime}-4^{\prime \prime} \times 8^{\prime}-4^{\prime \prime}$. (v) $10^{\prime \prime}$ alround. (vi) Yes.
9. GENERAL :
(i) The growth was normal. In one plot it was poorer due to hariale trouble. Flowering started by midFebruary. (ii) At one month after planting the attack of Aphis was seen. Also virus in the form of yellow patches on leaves was seen but it did not affect the crop very much. (iii) Grain yield. (iv) (a) 1949 to 1954. (b) Yes. (c) N.A. (v) (a) Ratnagiri. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $587.3 \mathrm{ib} . / \mathrm{ac}$.
(ii) $274.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac,

Treatment	Av. yield
1.	437.7
2.	672.1
3.	608.9
4.	630.7
5.	-
S.E./mean	$=122.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Wal (Rabi).
Site :~ Agri. Res. Stn., Karjat.
Ref: Mh. 51(20).
Type:- ' M '.

Object :-To study the effect of Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cercal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Wal-Paddy. (b) Paddy. (c) Nil. (ii) (a) Sandy loam. (b) Refer soil analysis, Karjat.
(iii) 6.12.1951. (iv) (a) N.A. (b) Broadcasting behind a plough. (c) $80 \mathrm{Ib} . / \mathrm{ac}$. (d) and (e) N.A. (v) N.A.
(vi) Wal 2-K-2. (vii) Unirrigated. (viii) N.A. (ix) 11.39". (x) 19.3.1952.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
7. Fallow in Rabi and Paddy in Kharif.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $20^{\circ} \times 10^{\circ}$. (b) $18^{\prime}-4^{\circ} \times 8^{\prime}-4^{\prime \prime}$. (v) 10° alround. (vi) Yes.
9. GENERAL :
(i) 3 plots had stunted growth and there were gaps. (ii) Nil. (iii) Grain yield. (iv) (a) 1949 to 1954.
(b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $615 \mathrm{lb} . / \mathrm{ac}$.
(ii) 64.75 lb ./ac.
(iii) Treatments do not differ significantly:
(iv) Ay. yield of grain in $\mathrm{lb}_{/} / \mathrm{ac}$.

Treatment	Av. yield
1.	798
2.	584
3.	673
4.	405
5.	-
S.E./mean	$=64.75 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Wal (Rabi).
Site :-Agri. Res. Stni, Karjat.

Ref:-Mh.52(32).
Type : $\boldsymbol{\sim}^{〔} \mathbf{M}$ ’.

Object :-To study the effect of Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Wal-Paddy. (b) Paddy. (c) Nil. (ii) (a) Sandy loam. (b) Refer soil analysis, Karjat. (iii) 21.11.1952. (iv) (a) Two plough furrows. (b) Drilled behind the plough. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) N.A. (vi) 2-K-2. (vii) Unirrigated. (viii) N.A. (ix) 7.46". (x) 13.3.1953.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
4. 150 lb ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
5. Fallow in Rabi and Paddy in Kharif.
6. DESIGN :
(i) R.B.D. (ii) (a) 5.
(b) N.A. (iii)
7. (iv)
(a) $25^{\circ} \times 15$
(b) $21^{\prime} \times 11^{\prime}$
(v) 2 alround.
(vi) Yes.
8. GENERAL :
(i) Germination was poor in 4 plots and growth was poor, the moisture in these plots was less. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1954. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil
9. RESULTS :
(i) $1344 \mathrm{lb} . / \mathrm{ac}$
(ii) 295.0 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	1167
2.	1217
3.	1505
4.	1490
5.	-
S.E./mean	$=147.1 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Wal (Rabi).
Site :-Agri, Res. Stn., Karjat.

Ref:-Mh. 53(232).
Type:-‘M'.

Object:-To study the effect of Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy—Wal—Paddy. (b) Paddy. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Karjat. (iii) N.A. (iv) (a) N.A. (b) Behind the plough. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) N.A. (vi) Wal 2-K-2. (vii) Unirrigated. (viii) N.A. (ix) $6.55^{\prime \prime}$. (x) N.A.
2. TREATMENTS :
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super applied to Wal crop.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super applied to Wal crop.
7. Fallow in Rabl and Paddy in Kharif.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4 . (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $21^{\prime} \times 11^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
9. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1949 to 1953. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $1132 \mathrm{lb} . / \mathrm{ac}$.
(ii) $290.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not difier significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1. .	990
2.	1041
3.	1350
4.	1146
5.	-
S.E./mean	$=145.3 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Wal (Rabi).
Ref:- Mh. 48(4).
Site :- Agri. Res. Stn., Ratnagiri.
Type :- ' \(M\) '.
```

Object :-To study the effect of leguminous crop Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy. (bl Paddy. (c) S C.L./ac. of F.Y.M. (ii) (a) Laterite soil. (b) N.A. (iii) 22.12.1948. (iv) (a) N.A., (b) Broadcasting. (c) $50 \mathrm{lb} / \mathrm{/ac}$. (d) and (e) -. (v) Nil. (vi) Wal 2-K 2. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 10.4.1949.
2. TREATMENTS:
3. Control (no $\mathrm{P}_{3} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
7. Fallow in Rabi and Paddy in Kharif.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) $30^{\circ} \times 20^{\circ}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 5^{\prime} alround. (vi) Yes.
9. GENERAL:
(i) Normal. (ii) N.A. (iii) Grain and straw yield. (iv) (a) 1948 to 1954. (b) N.A. (c) N.A. . (v) (a) N.A. (b) N.A. (vi) Nil. (vii) There were 6 replications this year which were subsequently reduced to 5 for all other years
10. RESULTS :
(i) $711 \mathrm{lb} / \mathrm{ac}$.
(ii) $227.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly:
(iv) Av. yield of grain in lb ./ac.

Treatment.	Av. yield
1.	784
2.	734
3.	654
4.	673
5.	-
S.E./mean	$=92.57 \mathrm{lb} . / a c$.

Crop :- Wal (Rabi).	Ref :- Mh. 50(13).
Site_- Agri. Res. Stn., Ratnagiri.	Type :- 'M'.

Object :-To study the effect of leguminous crop Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding coreal crop Paddy.

1. BASAL CONDITIONS:

(i) (a) Wal. (b) Paddy, (c) Nil. (ii) (a) Laterite soil. (b) N.A.- (iii) 8.1.1950. (iv) (a) 2 ploughings.
(b) Broadcasting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d) -. (e) -. (v) Nil. (vi) Wal 2-K-2. (vii) Unirrigated. (viii) Nil.
(ix) Nil. (x) 29.4.1950.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal crop.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal crop.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal crop.
5. Fallow without legume.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $30^{\circ} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Normal in Replications I, II and; III growth was checked completely in Replication IV and V due to excess of moisture. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) No. (c) Nil. (v) (a) Karjat. (b) N.A. (vi) Nil. (vii) Though the date of sowing is in January 1950 the season is regarded as Rabi 1949 and hence the year of the Proforma 1949.
8. RESULTS :
(i) $235 \mathrm{lb} . / \mathrm{ac}$.
(ii) $119.1 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of grain in $1 \mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	168
2.	187
3.	430
4.	156
5.	-
S.E./mean	$=53.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Wal (Rabi).
Site :- Agri. Res. Stn., Ratnagiri.

Ref:- Mh. 51(16).
Type: 'm 'M'.

Object :-To study the effect of leguminous crop Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) Wal-Paddy. (b) Paddy. (c) Nil. (ii) (a) Laterite. (b) N.A. (iii) 5.1.1951. (iv) (a) N.A. (b) Broadcasting. (c) $40 \mathrm{lb} . / \mathrm{ac}$. (d)-. (e)-. (v) Nil. (vi) Wal, 2-K-2. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 27.4.1951.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal crop.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal crop.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal crop.
5. Fallow without legume.
6. DESIGN
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $30^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Growth not satisfactory due to lack of moisture. (ii) Yield affected by leaf-blight. (iii) Grain and straw yield. (iv) (a) 1948-1955. (b) Yes. (c) N.A. (v) (a) Karjat. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $63 \mathrm{lb}, / \mathrm{ac}$.
(ii) $33.78 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments no not differ significantㄹ.
(iv)' Av. yield of grain in lb./ac. Treatment - Av. yield
9. 65
10. 79
$3 . \quad 57$
$4 . \quad 50$
$5 . \quad$ -
S.E. $/$ mean $=15.11 \mathrm{lb} / \mathrm{ac}$.

Crop :- Wal (Rabi).	Ref :- Mh. 52(30).
Site :- Agri. Res. Stn., Katnagiri. .	Type :- 'M'.

Object :-To study the effect of leguminous crop Wal grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITİONS :
(i) (a) Wal-Paddy. (b) Paddy. (c) Nil. (ii) (a) Laterite. (b) N.A. (iii) 8.1.1952. (iv) (a) to (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 15.4.1952.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Wal crop.
5. Fallow in: Rabi and Paddy in Kharif.
6. DESIGN :

7. GENERAL :
(i) Good growth. (ii) Aphis attack in the young stage. (iii) Grain and straw yield. (iv), (a) 1948 to 1955. (b) Yes. (c) N.A. (v) (a)KKarjat, (b) NuAl (vi) and (vii) Nil.
8. RESULTS:
(i) $273.1 \mathrm{lb} / \mathrm{ac}$.
(ii). $57.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treament	Av. yield
1.	245.0
2.	299.5
3.	258.6
4.	289.2
5.	-
- S.E./mean	25.9 lb./ac.

Crop :-Wal (Rabi).
Site :-Agri. Res. Stn., Ratnagiri.

Ref :-Mh. 53(109).
Type:-‘M'.

Object :-To study the effect of leguminous crop Wal grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Wal-Paddy. (b) Paddy. (c) Nil. (ii) (a) Laterite. (b) N.A. (iii) 28.12.1953. (iv) (a) 4 ploughings. (b) N.A. (c) $50 \mathrm{lb} . / a c$. (d) Nil. (e) N.A. (v) Nil. (vi) Local. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 22.4.19j4.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\dot{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as B.M. applied to Wal.
5. Fallow.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $33^{\prime} \times 20^{\prime}$. (b) $20^{\prime} \times 10^{\prime}$. (v) 5^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Good. (ji) Nil. (iii) Grain and straw yield. (iv) (a) 1948 to 1955. (b) Yes. (c) N.A. (v) (a') Karjat. (b) N.A. (vi) and (vii) Yes.
8. RESULTS :
(i) $244.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) $108.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	190.4
2.	307.9
3.	223.0
4.	256.1
5.	-
S.E./mean	$=48.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Tur (Khariff).	Réf:m Mh. 53(198).
Site :- Govt. Exptl. Farm, Nagpur.	Type :- 'C’.

Object :-To find out the optimum line to line spacing for Tur crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 9.7.1953, (iv) (a) to (e) N.A. (v) Nil. (vi) E.B-3. (vii) Unirrigated. (viii) N.A. (ix) 39.34". (x) 27.2.1954.
2. TREATMENTS:

3 spacings between lines : $S_{1}=18^{\circ}, S_{2}=24^{\prime \prime}$ and $S_{8}=30^{\prime \prime}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6 . (iv) (a) 0.54 ac. (b) $36.3^{\prime} \times 30^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Tur and stalk yield. (iv) (a) 1953-N.A. (b) No (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $588 \cdot \mathrm{Jb} / \mathrm{ac}$.
(ii) $183.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Crop :- Lentils (Rabi).
Site :- Agri. Res. Stn., Igatpuri.

Ref:- Mh. 48(114).
Type : $\sim^{〔} \mathrm{M}$ '.

Object:-To study the effect of leguminous crop Lentils grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Lentils -Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) Ist week of December 1948. '(iv) (a) 2 ploughings. (b) Hand sowing in furrows. (c) 55 lb ./ac. (d) Irregular. (e) N.A. (v) Nil. (vi) Local. (vii) Unirrigated. (viii) Nil. (ix) 8.82". (x) lst week of March 1949.

2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\circ} \times 15^{\prime}$. (b) $20^{\circ} \times 10^{\circ}$. (v) 2.5^{\prime} alround. (vi) Yes.

4. GENERAL :

(i) N.A. (ii) Nil. (iii) Lentils yield. (iv) (a) (Rabi) 1948 to (Kharif) 1954. (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5, RESULTS:
(i) 187 It./ac.
(ii) $57.49 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	193
2.	215
3.	132
4.	208
5.	-
S.E./mean	$=25.70 \mathrm{lb} / \mathrm{ac}$.

Crop: Lentils (Rabi).
Site :- Agri. Res. Stn., Igatpuri.

Ref :-Mh. 49(146)
Type :- ' M '.

Object :-To study the effect of leguminous crop Lentils grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy:

1. BASAL CONDITIONS:
(i) (a) Lentils-Paddy.' (b) Paddy. (c) N.A. (ii) (a) Shallow and coarse trap soil. (b) N.A. (iii)

8, 10, 15 and 28.12.1949. (iv) (a) 2 ploughings. (b) Hand sowing. (c) 55 lb ./ac. (d) Irregular. (e) N.A.
(v) Nil. (vi) Local variety. (vii) Unirrigated. (viii) Nil. (ix) 7.13. (x) 22.3.1950 and 1.4.1950.
2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{b}}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{cc}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.

Super was applied in the furrows opened by local ploughs just before sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $20^{\prime} \times 10^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) The growth was poor in one replication due to excessive moisture. (ii) Nil. (iii) Lentils yield. (iv)
(a) (Rabi) 1948 to (Kharif) 1954. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $467 \mathrm{lb}, / \mathrm{ac}$.
(ii) $97.14 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Treatment	Av. yield
1.	349
2.	$512 \quad:$
3.	463
4.	545
S.	-
S.E./mean	$=43.42 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Lentils (Rabi).	Ref :-Mh. 50(167)
Site :-Agri. Res. Stn., Igatpuri.	Type :- ${ }^{\prime}{ }^{\prime}$ '.

Object:-To study the effect of leguminous crop Lentils grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Lentils-Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse trap soil. (b) N.A. (iii) 16.11 .1950 and 11.12.1950. (iv) (a) 2 ploughings and 1 planking. (b) Hand sowing in furrows opened by the plough. (c) 55 lb ./ac. (d) Irregular. (e) N.A. (v) Nil. (vi) Local variety. (vii) Unirrigated. (viii) Nil. (ix) 5.01". (x) 25.2.1951 and 9.3.1951.
2. TREATMENTS:
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$).
4. 50 lb lac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super
6. 150 lb ./ac. of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\circ} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\circ}$. (v) 25^{\prime} alround. (vi) Yes.
9. GENERAL :
(i) Growth was normal. (ii) Nil. (iii) Lentils yield. (iv) (a) (Rabi) 1948 to (Kharif) 1953. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
10. RESULTS :
(i) $443 \mathrm{lb} . / \mathrm{ac}$.
(ii) $164.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.

$\begin{array}{ll}\text { Crop :- Lentils (Rabi). } & \text { Ref:- Mh. 51(237). } \\ \text { Site :- Agri. Res. Stn., Igatpuri. } & \text { Type :- 'M'. }\end{array}$
Object:-To study the effect of leguminous crop Lentils grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.
11. BASAL CONDITIONS :
(i) (a) Paddy-Lentils - Paddy. (b) Paddy. (c) Nil.- (ii) (a) Shallow and coarse trap soil. (b) N.A. (iii) 16.11.1951, S.12.195। and 14.12.1951. (iv) (a) 2 ploughings and 1 planking. (b) Sowing in furrows opened by plough (c) $55 \mathrm{lb} / \mathrm{ac}$. (d) Irregular. (e) N.A. (v) Nil. (vi) Local. (vii) Unirrigated. (viii) Nil. (ix) 13.05". (x) 28.2.1952 and 19.3.1952.

2. TREATMENTS:

1. Control ($\mathrm{no} \mathrm{P}_{9} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $251 \times 15^{\circ}$:' (b) $29^{\circ} \times 10^{\circ}$: (v) 2.5^{\prime} alround: (vif Yes.
-4. GENERAL :
(i) The growth in general was poor due to cloudy weather and continuous rain in 2nd week of February. (if) Nil. (iii) Lentils yield. (iv) (a) (Rabi) 1948 to (Kharif) 1954i (b) No. (c) Nil.' (v) (a) and (b) Nill (vi) and (vii) Nil.

3. RESULTS:

(i) $170 \mathrm{lb} . / \mathrm{ac}$.
(ii) 58.90 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	166
2.	185
3.	122
4.	206
-5.	-
S.E./mean	$=26.33 \mathrm{lb} . / \mathrm{ac}$.

561,
Crop :- Lentils (Rabi).
Site :- Agri. Res. Stn., Igatpuri.
Ref :- Mh. 52(319).
Type :- ' M '.
Object :-To study the effect of leguminous crop Lentils grown with and without $\mathbf{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) Lentils - Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) 16.11 .1952 to 1.2 .1952 . (iv) (a) 2 ploughings. (b) Hand sowing. (c) $55 \mathrm{lb} . / \mathrm{ac}$. (d) Irregular، (e) -. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 23.2.1953 to 4.3.i953:

2. TREATMENTS:

Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Lentils.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Lentils.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Lentils.
5. Fallow.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\prime} \times 10^{\prime} . \quad$ (v) 2.5^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $291.5 \mathrm{lb} . / \mathrm{ac}$.
(ii) $82.36 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment do not differ significantly.
(iv) Av. yield of grain in lb, ac. .

Treatment :	Av. yield
1.	243
2.	302
3.	301
4.	320
5.	-
S.E./mean	$=35.91 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Lentils (Rabi).	Ref :- Mh. 53(348).
Site :- Agri. Res. Stn., Igatpuri.	Type :- ' M '.

Object:-Toistudy: the effect of leguminous orop Lentile grawa with. and without $\mathbf{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy—Lentils. (b) Paddy. (c) Nil, (ii) (a) Shallow and coarse soil. (b) N.A. (iii) 10.11.1953. (iv) (a) 2 ploughings. (b) Hand sowing. (c) $55 \mathrm{lb} . / \mathrm{ac}$. (d) Irregular. (e)-. (v) Nil. (vi) N.A. (vii) Unirrigated (viii) Nil. (ix) Nil. (x) 25.2.1954.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Lentils.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Lentils.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied to Lentils.
5. Fallow.

DESIGN:

(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 2.5^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) Not good. (ii) Nil. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $543 \mathrm{lb} . / \mathrm{ac}$.
(ii) $99.88 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Ay. yield of grain in lb./ac.

Treatment	Av. yield
1.	592
2.	692
3.	474
4.	417
5.	-
S.E./mean	$-44.64 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Peas (Rabi). Ref:- Mh. 48(15).
Site :- Agri. Res. Stn., Igatpuri. Type :- ' \mathbf{M} '.
Object :-To study the effect of leguminous crop Peas grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Peas. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse soil. (b) N.A. (iii) 1st week of December 1948. (iv) (a) 2 ploughings. (b) Hand sowing in the furrows. (c) 45 lb ./ac. (d) Irregular. (e) N.A. (v) Nil. (vi) Local variety. (vii) Unirrigated. (viii) Nil. (ix) $8.82^{\prime \prime}$. (x) 2nd week of March, 1949.

2.' TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.

Super was applied in the furrows opened by local plough just before sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 2.5° alround. (vi) Yes.
4. GENERAL :

- (i Germination in replication 4 was very poor and hence the yield is low. (ii) Nil. (iii) Peas yield. (iv) (a) 1948 (Rabi) to 1954 (Kharif). (b) No. (c) Nil. (v) Nil. (vi) Nil. (vii) Experiment planned with 5 replications, but one replication was omitted from analysis due to low yield.

5. RESULTS :
(i) $182.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $65.04 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathbf{1 b}$./ac.

Treatment	Av. yield
1.	234
2.	128
3.	233
4.	132
S.E /mean	$=32.52 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :- Peas (Rabi). Ref := Mh. 49(20).
```

Site :- Agri. Res.Stn., Igatpuri. Type:- 'M'.
Object : -To study the effect of leguminous crop Peas grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS:
(i) (a) Peas-Paddy. (b) Paddy. (c) N.A. (ii) (a)Shallow and coarso trap soil. (b) N.A. (iii) 7 to 15.12.1949. (iv) (a) 2 ploughings. (b) Hand sowings. (c) $45 \mathrm{lb} . / \mathrm{ac}$. (d) Irregular. (c) N.A. (v) Nil. (vi) Local. (vii) Unirrigated. (viii) Nil. (ix) 7.13". (x) 6 to 22.3.1950.
2. TREATMENTS:
3. Control ($n 0 \mathrm{P}_{2} \mathrm{O}_{5}$).
4. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ as Super.
5. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{8}$ as Super.

150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{\mathbf{5}}$ as Super.
5. Fallow in Rabi.

Super was applied in the furrows opened by local plough just before sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $20^{\circ} \times 10^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) The growth was normal. (ii) The powdery mildew is a common disease of peas in this tract but its effect was negligible in this season. (iii) Peas yield. (iv) (a) 1948 (Rabi) to 1954 (Kharif). (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $800.5 \mathrm{lb} . / \mathrm{ac}$.
(ii) $165.4 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences aro not significant.
(iv) Av. yield of grain in lb./ac.

Treatment	Av, yield
1.	649
2.	777
3.	749
4.	1027
5.	-
S.E./mean	$=73.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Peas (Rabi).
Site :- Agi. Res. Stn., Igatpuri.
Ref :- Mh. 50(29).
Type :- ' M '.
Object:-To study the effect of leguminous crop Peas grown with and without $\mathrm{P}_{8} \mathrm{O}_{5}$ on the suoceeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Peas-Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse trap soil. (b) N.A. (iii) 16.11.1950. (iv) (a) 2 ploughings and 1 planking. (b) Hand sowing in furrows. (c) $45 \mathrm{lb} . / \mathrm{ac}$. (d) Irregular. (e) N.A. (v) Nil. (vi) Local variety. (vii) Unirrigated. (vii) Nil. (ix) 5.01\%. (x) 24.2.1951.
2. TREATMENTS:
3. Control ($\mathrm{nO} \mathrm{P}_{2} \mathrm{O}_{6}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $1 \leq 0 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow in Rabi.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\prime}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 2.5^{\prime} alround. (vi) Yea.

4. GENERAE :

(i) The growth was quite good. (ii) Nil. (iii) Peas yield ,(iv) (a): 1948 (Rabi) to 1954 :(Kharif). (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (b) Nil.

5. RESULTS :

(i) $918 \mathrm{lb} . / \mathrm{ac}$.
(ii) $3003 \mathrm{lb} . / \mathrm{ac}$.
(iii). Treatments do not differ significantly.
(iv) Av.. yield of grain in lb./ac.

Treatment	Av. yield
1.	991
2.	906
3.	746
4.	1030
5.	-
S.E./mean	$=134.2 \mathrm{lb}$./ac.

Crop :- Peas (Rabi).	Ref :- Mh. $\mathbf{~ 5 1 (1 3 3) . ~}$
Site :- Agri. Res. Stn., Igatpuri.	Type :- ' ${ }^{\mathbf{M}}{ }^{\circ}$.

Object :-To study the effect of leguminous crop Peas grown with and without $\mathbf{P}_{2} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :
(i) (a) Paddy-Peas-Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse trap soil. (b) N.A. (iii) 21.11.1951. (iv) (a) 2 ploughings and 1 planking. (b) Sowing in furrows opened by the plough. (c) $45 \mathrm{lb} . / \mathrm{ac}$. (d) Irregular. (e) N.A. (v) Nil. (vi) Local. (vii) Unirrigated. (viii) Nil. (ix) 13.05°.
(x) 10.3.1952.

2. TREATMENTS:

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{6}$).
2. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\circ}$. (b) $20^{\circ} \times 10^{\prime}$. (v) 2.5^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Due to cloudy weather and continuous rains in the second, week of February: the crop growth was checked to a considerable extent in the plots which were sown carlier. (ii) Leaf burn disease effected the crop. Mawa pest was also, observed. Powdery mildew was also observed on peas during the cloudy days. (iii) Peas yield. (iv) (a) (Rabi) 1948 to (Kharif)1954. (b) and (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS :
(i) $108 \mathrm{lb} . / \mathrm{ac}$.
(ii) $35.12 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	126
2.	102
3.	113
4.	-91
S.	-
S.E./mean	$=15.70 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Peas (Rabi).
Site :-Agri. Res. Stn., Igatpuri.

Ref :- Mh. 52(318).
Type :- 'M'.

Object :-To study the effect of leguminous crop Peas grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on the succeeding cereal crop Paddy.

1. BASAL CONDITIONS :

(i) (a) Paddy-Peas. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarso Deccan trap soil. (b) N.A.
(iii) 17.11.1952. (iv) (a) 2 ploughings. (b) Sowing in furrows by the plough. (c) $45 \mathrm{lb} . / \mathrm{ac}$. (d) Not fixed.
(e) -. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) 12.79*. (x) 20.3.1953.
2. TREATMENTS :

1. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
2. 50 lb ./ac. of $\mathrm{P}_{3} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow in Rabi.
6. DESIGN:
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $25^{\prime} \times 15^{\circ}$. (b) $20^{\circ} \times 10^{\circ}$. (v) 2.5^{\prime} alround. (vi) Yes.
7. GENERAL :
(i) Good (ii) Attack of pest known as Mawa (Aphis) was observed. Replication 5 was severly affected by this pest and by field rats also. (iii) Peas yield. (iv) (a) 1948 to 1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS :
(i) $428 \mathrm{lb} . / \mathrm{ac}$.
(ii) $126.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	391
2.	425
3.	451
4.	445
5.	-
S.E./mean	$-56.8 \mathrm{lb} . / \mathrm{lac}$.

Crop :- Peas (Rabi).
Ref :- Mh. 53(347).
Site :- Ágri. Res. Stri", Igatpuri.
Type :- ' \mathbf{M}^{\prime}.
Object:-To study the effect of leguminous crop Peas grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$ on the succoeding cereal crop Paddy:

1. BASAL COONDITIONS :
(i) (a) Paddy-Peas-Paddy. (b) Paddy. (c) Nil. (ii) (a) Shallow and coarse soif.' (b) N.A. (iii) 17.11 .1953 and 23.11.1953. (iv) (a) 2 ploughings (b) Hand sowing (c) $45 \mathrm{lb} . / \mathrm{ac}$. (d) Irregular (c)一. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) Nil. (x) 23.3.1954.
2. TREATMENTS :
3. Control ($n 0 \mathrm{P}_{2} \mathrm{O}_{6}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow.
8. DESIGN:
() R.B.D. (ii) (a) 5. (b) N.A. (iii) 5 . (iv) (a) $25^{\prime} \times 15^{\circ}$. (b) $20^{\circ} \times 10^{\circ}$. (v) 2.5^{\prime} alround. (vi) Yes.
9. GENERAL :
(i) Not satisfactory. (ii) Severe attack of Powdery Mildew and Aphids. (iii) Grain yield. (iv) (a) 1948 to 1954. (b) No. (c) Nil. (v) (a) and (b) Nil. (vi) and (vii) Nil.
10. RESULTS:
(i) $545 \mathrm{lb} . / \mathrm{ac}$.
(ii) $99.88 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Treatment	Av. yield
1.	595
2.	693
3.	476
4.	416
5.	-
S.E./mean	$=44.64 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Sweet Potato (Rabi).
Site :- Agri. Res. Stn., Kopergaon.

Ref :- Mh. 51(212).
Type :- 'M’.

Object :-To study the effect of N, P and K on Sweet Potato.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Fallow. (c) Nil. (ii) (a) 'A' type soil. (b) Refer soil analyis, Kopergaon. (iii) 10 to $\mathbf{1 2 . 1 2 . 1 9 5 1 .}$ (iv) (a) 1 ploughing and 8 harrowings. (b) Planting on one side of the ridge. (c) 19360 setts/ac. (d) $3^{\prime} \times 9^{\prime \prime}$. (e) - (v) 5 C.L./ac. of F.Y.M. (vi) N.A. (vii) Irrigated. (viii) 12 weedings. (ix) Nil. (x) 30.6.1952 to 15.7.1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of N as G.N.C.: $N_{0}=0, N_{1}=50$ and $N_{2}=100 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $P_{2} O_{5}$ as Super : $P_{0}=0, P_{1}=80$ and $P_{2}=160 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. $\mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{1}=80$ and $\mathrm{K}_{\mathbf{2}}=160 \mathrm{lb}$./ac.
3. DESIGN :
(i) 3^{3} confounded. (ii) (a) 3 blocks/replication; 9 plots/block. (iv) (a) $27^{\prime} \times 22^{\prime}$. (b) $21^{\prime} \times 16^{\prime}$. (v) 3^{\prime}. alround. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Mild attack of Aphis, (iii) Yield of Sweet Potato. (iv) (a) 1951 to 1953. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Lay-out N.A., hence analysed as simple factorial.
5. RESULTS :
(i) $7964 \mathrm{lb} . / \mathrm{ac}$.
(ii) $2693 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of K and interactions $N \times K, P \times K$ are significant. 'Other effects are not significant. (iv) Av. yield of tuber in lb ./ac.

S.E. of any marginal mean
S.E. of body of table
$=449 \mathrm{lb} . / \mathrm{ac}$. $=777 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Sweet Potato (Rabi).	Ref :-Mh. 52(202).
Site :-Agri. Res. Stn., Kopergaon.	Type :-‘M’.

Object :-To study the effect of N, P and K on Sweet Potato.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) 'A' type. (b) Refer soil analysis, Kopergaon. (iii) 5-6.11.1952. (iv) (a) 1 ploughing by tractor, 1 harrowing cross wise. (b) N.A. (c) 19360 setts/ac. (d) $3^{\circ} \times 9^{\prime \prime}$. (c) N.A. (v) F.Y.M. spread on 1.6.1952. (vi) C.L. 44. (vii) Irrigated. (viii) 2 weedings. (ix) N.A. (x) 26.4.1953.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of N as G.N.C. : $N_{0}=0, N_{1}=50$ and $N_{2}=100 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=80$ and $\mathrm{P}_{2}=160 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{1}=80$ and $\mathrm{K}_{2}=160 \mathrm{lb}$./ac.
P and K applied on 31.10.1952 and 1.11.1952 and N. applied on 16.11.1952.
3. DESIGN :
(i) 3^{3} Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 2. (iv) (a) $75^{\prime} \times 21^{\prime}$. (b) $69^{\prime} \times 15^{\prime}$. (v) 3^{\prime} alround.
(vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight attack of Aphids. (iii) Potato tuber yield. (iv) (a) 1951 to 1953 (modified in 1952). (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) The expt. was laid out as 3^{3} confounded but the layout was N.A. Only yield data was available hence analysed as 3^{3} R.B.D. Fact.
5. RESULTS:
(i) $7281 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1513 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effcet of N and interactions NP, NK are significant. Other effects are not significant.
(iv) Av. yield of tuber in lb./ac. \cdot.

	\mathbf{N}_{0}	N_{1}	N_{2}	Meà	K_{0}	K_{1}	K_{2}
P_{0}	5702	7511	7994	7069	6586	7700	6921
\mathbf{P}_{1}	6341	8803	7421	7522	7208	7952	7404
P_{2}	5925	8770	7068	7254	7050	6254	8457
Mean	5989	8361	7494	7281	6948	7302	7594
$\mathbf{K}_{\mathbf{0}}$	5646	8184	7014				
K_{1}	6478	7845	7583				
$\mathrm{K}_{\mathbf{2}}$	5844	9054	7885				
	S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =356.9 \mathrm{lb} . / \mathrm{ac} . \\ & =618.2 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$			

Crop :- Sweet Potato (Rabi).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 53(285).
Type:- ' M '.

Object :-To study the effect of \mathbf{N}, \mathbf{P} and K on Sweet Potato.
t. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) 3 bags of G.N.C. and 75 lb ./ac. of A/S. (ii) (a) 'A' type. (b) Refer soil analysis, Kopergaon. (iii) $27-10$ to 1.11 .1953 . (iv) (a) 1 crosswise harrowing; 1 ploughing. (b) N.A. (c) 4840 setts/ac. (d) $3^{\prime} \times 3^{\prime}$. (e) N.A. (v) Nil. (vi) C.L. 44. (vii) Irrigated. (viii) 5 weedings. (ix) Nil. (x) 15 to 20.4.1954.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=60$ and $\mathrm{N}_{2}=120 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=60$ and $\mathrm{P}_{2}=120 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=90$ and $\mathrm{K}_{2}=180 \mathrm{lb}$./ac.

N as G.N.C., $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super and $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ as Pot. Sul, applied on 21.10.1953.
3. DESIGN :
(i) 3^{3} Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 2 . (iv) (a) $75^{\prime} \times 21^{\prime}$. (b) $69^{\prime} \times 15^{\prime}$. (vi) 3^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Tuber yield. (iv) (a) 1951 to 1953 (modified in 1952). (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) Nil. (vii) The expt. was laid out as 3^{3} confounded but as the layout was N.A. the expt. was abalysed as 3^{3} Fact. R.B.D.
5. RESULTS :
(i) $3924 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1328 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effects of \mathbf{N} and \mathbf{P} are significant.
(iv) Av. yield of tuber in Ib,/ac.

$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =313.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =542.2 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Tapioca.

Site :-Agri. Res. Stn., Phondaghat.

Ref :- Mh. 53(287).
Type: © ‘M’.
$\overline{\text { Öbject }}:-$ To study the optimum combination of N, P and.K.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Tapioca. (c) N.A. (ii) (a) Loam, derived from Gniess and laterite. (b) N.A. (iii) 1st week of June, 1953. (iv) (a) N.A. (b) Planting seed sets. (c) N.A. (d) $3^{\prime} \times 3^{\prime}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Travancore. (vii) Unirrigated. (viii) 2 weedings on 13.7.1953 and 29.9.1953. (ix) N.A. ${ }^{\circ}(x)$ 30.5.1954.
2. TREATMENTS :

All comtinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=50$ and $\mathrm{N}_{2}=100 \mathrm{lb}, / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=40$ and $\mathrm{P}_{2}=80 \mathrm{lb} / \mathrm{ac}$.
(3) 3 levels of $\mathrm{K}_{8} \mathrm{O}: \mathrm{K}_{0}=0, \mathrm{~K}_{1}=80$ and $\mathrm{K}_{2}=160 \mathrm{lb}$./ac.
3. DESIGN :
(i) 3^{3} confounded. (ii) (a) 3 blocks/replication and 9 plots/block. (b) N.A. (iii) 1 . (iv) (a) $21^{\prime} \times 15^{\prime}$.
(b) $15^{\prime} \times 9^{\prime}$. (v) 3^{\prime} all round. (vi) Yes.

4. GENERAL :

(i) Satisfactory. (ii) Some plants affected by hedge hover. (iii) Tapioca yield. (iv) (a) 1953-N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $4142 \mathrm{lb} / \mathrm{ac}$.
(ii) $2158 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of tapioca in lb./ac.

	N_{0}	N_{1}	$\mathbf{N a}_{\mathbf{8}}$	Mean	K_{0}	K_{1}	$\mathrm{K}_{\mathbf{8}}$
P_{0}	3448	3711	3986	3715	4672	4375	2097
P_{1}	3769	5788	4087	4548	4820	4679	4145
P_{2}	3992	3535	4962	4163	4948	4437	3105
Mean	3736	4344	4345	4142	4813	4497	3116
K_{0}	2420	6695	5324				
K_{1}	4154	4584	4753				
K_{2}	4636	1754	4345				

$$
\begin{array}{ll}
\text { S.E. of any marginal means } & =719 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =1246 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop:- Onion (Rabi).
Site :- Agri. College Farm, Poona.

Ref :-Mh: 51(180).
Type :-‘'C'.

Object :-To study the effect of size of bulb and spacing on the yield of Onion.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) N.A. (iv)
(a) N.A. (b) Ridges of furrows at $2 \frac{l^{\prime}}{}$ depth. Planting in furrows. (c) N.A. (d) As per treatments.
(e) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) N.A. (ix) $12.84^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

Main-plot treatments :
3 spacings : $S_{1}=12^{\prime \prime}, S_{2}=18^{\prime \prime}$ and $S_{3}=24^{\prime \prime}$.
Sub-plot treatments :
3 sizes of bulb: $B_{1}=2^{\prime \prime}, B_{2}=2 \frac{1}{2}^{\prime \prime}$ and $B_{3}=3^{\prime \prime}$ diameter bulb.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/replication; 3 sub-plots/main-plot. (b) N.A. (iii) 8. (iv) (a) $20^{\prime} \times 2 \frac{1}{2}^{\prime}$. (b) $12^{\prime} \times 7 \frac{1^{\prime}}{}$. (v) $4^{\prime} \times 2 \frac{1}{2}^{\prime}$. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Bulb yield. (iv) (a) $1950-$ N.A. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 54.54 ton/ac.
(ii) (a) 5.37 ton/ac.
(b) 5.68 ton/ac.
(iii) Main effect of S and B and their interaction are highly significant.
(iv) Av. yield of onion in ton/ac.

	$\mathrm{S}_{\mathbf{1}}$	$\mathrm{S}_{\mathbf{2}}$	$\mathrm{S}_{\mathbf{3}}$	Mean
$\mathrm{B}_{\mathbf{1}}$	60.47	74.87	86.29	73.88
$\mathbf{B}_{\mathbf{2}}$	37.92	53.13	55.75	48.93
$\mathrm{~B}_{3}$	33.79	41.43	47.24	40.82
Mean	44.06	56.48	63.09	54.54

S.E. of difference of two

1. S marginal means	$=1.70$ ton/ac.
2. B marginal means	$=1.64$ ton/ac.
3. B means at the same level of S	
4. S means at the same level of B	

Crop :- Onion.
Ref: ${ }^{-M h}$ 53(68).
Site : Agri. College Farm, Poona.
Type:-‘C'.
Object :-To find the effect of different planting dates on the yield of Onion.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Gram. (c) Nil. (ii) (a) Medium black. (c) Refer soil analysis, Poona. (iii) As per treatments. (iv) (a) Ploughing discing and harrowing to get good tilth. (b) to (e) N.A. (v) 16 C.L./ac. of F.Y.M. (vi) Red variety of Onion. (vii) Irrigated. (viii) Two weedings and one top dressing with 30 lb ./ac. of N. (ix) 3.65". (x) D_{1} on 11.3.1954, D_{2} on 13.3.1954, D_{3} on 6.4.1954, D_{4} on 27.4.1954 and D_{5} on 28.4.1954.
2. TREATMENTS :

5 transplanting dates : $\mathrm{D}_{1}=1.9 .1953, \mathrm{D}_{8}=15.9 .1953, \mathrm{D}_{8}=1.10 .1953, \mathrm{D}_{4}=15.10 .1953$ and $\mathrm{D}_{5}=1.11 .1953$.
3. \cdot DESIGN :
(i)' R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) 184 sq. ft. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Bulb yield. (iv) (a) 1952 to 1954 , (b) and (c) No. (v) (a) and (b) No. (vi) and (vii, Nil.

5. RESULTS:

(i) 17.37 ton/ac.
(ii) 2.72 ton/ac.
(iii) Treatment differences are not significant.
(iv) Av. yield of onion in ton/ac.

Treatment	Av. yield
D_{1}	15.92
D_{2}	18.94
D_{3}	17.54
D_{4}	16.57
D_{5}	17.90
S E./mean	$=1.22$ ton/ac.

Crop :-Tomato.
Site :-Agri. College Farm, Poona.

Ref :-Mh. 52(157).
Type $={ }^{-} \mathbf{M}$.

Object : - To find out the best combination of N, P and K to get the maximum yield of Tomato.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Suran. (c) 30 C.Lı/ac. of F.Y.M. $+75 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and Cake. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) $7.7 .1952 / 26.7 .1952$ and 3.8 .1952 (iv) (a) 1 ploughing, 1 harrowing and 1 discing. (b) to (e) N.A. (v) F.Y.M. spread on 1.5.1952. (vi) N.A. (vii) Irrigated. (viii) 1 interculturing, 1 weeding and 1 gap-filling. (ix) 2203*. (x) 6 pickings from 10.9 .1952 to 15.10.1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: \quad N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{2}=20$ and $\mathrm{P}_{\mathbf{2}}=40 \mathrm{lb}$./ac.
(3) 3 levels of $K_{2} \mathrm{O}$ as Pot. Sul.: $\mathrm{K}_{0}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ applied as top dressing on 6.3.1952.
3. DESIGN :
(i) 3^{3} Fact. in R.B.D. (ii) (a) 27 . (b) N.A. (iii) 3. (iv) (a) $40^{\circ} \times 12 \frac{1}{2}^{\prime}$. (b) $35^{\prime} \times 7 \frac{1}{\prime}^{\prime}$. (v) $2 \mathbf{i}^{\prime}$ alround. (vi) Yes
4. GENERAL:
(i) Uniform and normal. (ii) The tops of plants turned blackish. The leaves were curling, spraying with Nicotinia sulphate. (iii) Tomato yield. (iv) (a) 1951 to 1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 473 ton/ac
(ii) 1.27 too/ac.
(iii) None of the effects is significant.
(iv) Av. yield of tomatoes in ton/ac.

	N_{0}	$\mathbf{N}_{\mathbf{L}}$	$\mathbf{N}_{\mathbf{2}}$	Mean	K_{0}	\mathbf{K}_{1}	$\mathrm{K}_{\mathbf{a}}$
$\mathbf{P}_{\mathbf{g}}$	4.70	4.81	4.72	4.74	4.19	5.50	4.54
$\mathrm{P}_{1}-$	4.25	4.36	5.08	4.56	4.99	3.66	5.03
P_{2}	3.93	5.22	5.49	4.88	4.90	4.94	4.79
Mean	4.29	4.80	5.09	4.73	4.69	4.70	4.79
$\mathbf{K}_{\mathbf{0}}$	3.92	4.90	5.26				
K_{1}	4.23	4.99	4.89				
$\mathbf{K}_{\mathbf{2}}$	4.73	4.50	5.13				

S.E. of any marginal mean	$=0.24$ ton/ac.
S.E. of body of table	$=0.42$ ton/ac.

Crop:- Tomato.
Site :- Agri. College Farm, Poona.

Ref:- Mh. 53(74).
Type:- 'M'.

Object :-To find out the best combination of N, P and K to get the maximum yield of Tomato.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Suran. (c) 30 C.L./ac. of F.Y.M. (ii) (a) Medium 'black. (b) Refer soil analysis, Poona. (iii) 15.5 .19 :3/19.6.1953. (iv) (a) Ploughing and harrowing. (b) to tel N.A. (v) 20 C.L./ac. of F.Y.M. vii Bonny best. (vii) Unirrigated. (viii) 1 weeding on 15 th July 1953,2 intercuiturings and 3 top dressings in July 19:6. (ix) 10.50°. (x) 28 and 29.8.1953, 9 and 10.9.1953, 14 to 18.9.1953 and 28 and 29.9.1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{0}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{2}=40 \mathrm{lb}$./ac.
3. DESIGN:
(i) 3^{3} Fact. in R.B.D. (ii) (a) 27 . (b) N.A. (iii) 3. (iv) (a) $40^{\prime} \times 12 \frac{1}{\prime}^{\prime}$. (b) $35^{\prime} \times 7 t^{\prime}$. (v) 1 row all round the plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) During August spraying of pyronox 2\%. (iii) Tomato yield. (iv) (a) 1951 to 1954 . (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 3.70 ton/ac.
(ii) 1.05 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of tomato in ton/ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	N_{2}	Mean	\mathbf{K}_{0}	K_{1}	K_{2}
\mathbf{P}_{0}	3.43	4.20	3.56	3.73	3.53	3.54	4.12
P_{1}	3.85	3.55	441	3.95	3.26	4.41	4.18
P_{2}	3.26	3.91	3.05	3.41	3.38	3.38	3.46
Mean	3.53	3.88	3.67	3.70	3.39	3.78	3.92
K_{0}	3.75	3.28	3.15		'	.	
K_{1}	3.61	3.92	380				
K_{2}	3.23	4.45	4.08				

S E. of any marginal mean $\quad=0.20$ ton/ac.
S.E. of body of table $=0.35$ ton/ac.

Crop :- Sugarcane.
Site :~ Agri. Res. Stn., Akluj.

Ref:- Mh. 50(90).
Type :m ' M '.

Object:-To find out a suitable ratio of A/S and G.N.C. in top dressinig \mathbf{N}^{1} with varying doses of basal dressing.

1. BASAL CONDITIONS:
(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) ' D ' type. (b) Refer soil analysis, Akluj. (iii) 1.12 .1950 . (iv) (a) 1 ploughing, 1 harrowing and 1 opening of furrows. (b) N.A. (c) 10,000 sets/ac. (d) 4^{\prime} between rows. (e) N.A. (v) As per treatments. (vi) CO-475. (vii) Irrigated: (viii) 4 weedings. (ix) $34^{\prime \prime}$. (ix) 18 to 22.3.1952.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $B_{1}=20$ and $B_{8}=40$ C.L./ac.
(2). 4 ratios of A / S and G:N.C. each to supply $375 . \mathrm{lb} . / a c:$ of N :
$R_{1}=A / S$ alone, $R_{2}=$ G.N.C: alóne; $R_{s}^{\prime}=A / S^{\prime}$ and G. N.C. in $^{1: 2}: 2$ and $R_{4}=A / S$ and G.N.C. in 2 !: 1 ratio.
Time and methodi of application $\mathbb{N}: A$:
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) 1.25 guntha. (b) 0.75 'guntha. '(v) One row on either side, 4.4° on either end. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of stem borer and top shoot borer observed. Dusting gammaxene. (iii) Germination count and weight, no. of nodes and yield of cane. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Padegaon and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 57.89 ton/ac.
(ii) $7.16 \mathrm{ron} / \mathrm{ac}$.
(iii) Main effect of R and interaction $R \times B$ are significant. Main effect of B is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	\mathbf{B}_{2}	Mean
R_{1}	50.71	51.08	50.89
R_{2}	58.37	61.59	59.98
R_{3}	60.94	56.20	58.57
R_{4}	57.78	66.47	62.12
Mean	56.95	58.83	57.89

S.E. of B marginal means	$=1.75$ ton $/ \mathrm{ac}$.
S.E. of R marginal means	$=2.53$ ton/ac.
S.E. of body of table	$=3.58$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Akluj.

Ref :- Mh. 51(117).
Type :- ' \mathbf{N} '.

Object :-To find out a suitable ratio of A / S to G.N.C. in top cressing of N with varying doses of basal dressing.

1. BASAL CONDITIONS:

(i) (a) Bajra+tur - Cane. (b) Bajra+tur. (c) Nil. (ii) (a) ' D ' type. (b) Refer soil analysis, Akluj. (iiii) 20.11.1951. (iv) (a) 1 ploughing, 2 harrowing, opening of furrows. (b) N.A. (c) 10,000 sets/ac. (d) between rows 4^{\prime}. (e) N.A. (v) As per treatments. (vi) CO.475. (vii) Irrigated. (viii) 4 weedings; 2 tagarani. (ix) $31^{\prime \prime}$. (x) 3.2.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $\mathrm{B}_{1}=20$ and $\mathrm{B}_{2}=40 \mathrm{lh} . / \mathrm{ac}$.
(2) 4 ratios of A / S and G.N.C. each to supply $375 \mathrm{lb} . / \mathrm{ar}$. of $\mathrm{N}: \mathrm{R}_{2}=\mathrm{A} / \mathrm{S}$ alone, $\mathbf{R}_{2}=$ G.N.C: alone, $R_{3}=A / S$ and G.N.C. in 1:2 and $R_{4}=A / S$ and G.N.C. in 2:1 ratio.
Time and method of application N.A.
3. DESIGN
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) [N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. '(v) One row on either side ; 4.4 ' on either end. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Attack of stem borer and shoot borer observed. Dusting by gammaxene done. (iii) Germination counts, height, growth etc., and yield of cane. (iv) (a) 1950 to 1954. (b) No. (c) N.A. (v) (a) Padegaon and Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS

(i) $60.34 \mathrm{ton} / \mathrm{ac}$.
(ii) 3.61 ton/ac.
(iii) Main effects of R and B and their interaction are not significaat.
(iv) Av. yield sugarcane in ton/ac.

Crop:-Sugarcane.
Site :-Agri. Res. Stn., Akluj.

Ref:- Mh. 52(11).
Type : ${ }^{\prime}$ ' M '.

Object:-To find out suitable ratio of A / S to G.N.C. in top dressing of N with varying doses of basal dressing.

1. BASAL CONDITIONS :

(i) (a) Kharif Mug-Cane-Rabi Jowar. (b) Chinamug. (c) Nil. (ii) (a) 'D' type. (b) Refer soil analysis, Akluj. (iii) 31.10 .1952 . (iv) (a) 2 ploughings, clod crushing, harrowing and opening ridges. (b) The buds of the cane are exposed and allowed to germinate under soil.' (c) to (e) N.A. (v) As per treatments. (vi) CO. 475. (vii) Irrigated. (viii) One light tagarani, one earthing up; 3 weedings. (ix) $18.04^{\prime \prime}$ (x) 13 to 26.3.1954.

-2. TRREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S and G.N.C. each to supply $375 \mathrm{lb} / \mathrm{fac}$. of $N: R_{1}=A / S$ alone, $R_{2}=G . N . C$. alone, $R_{\mathbf{3}}=A / S$ and $G . N . C$. in $1: 2$ and $R_{4}=A / S$ and G.N.C. in $2: 1$ ratio.
3. DESIGN :
(i) 4×2 Fact. in R.B.D. (ii) (a) 8 . (b) N.A. (iii) 4 . (iv) (a) $38^{\prime} \times 36^{\prime}$. (b) $29.2^{\prime} \times 28^{\prime}$. (v) One row on each side of the plot and 4.4^{\prime} on each end of the plot. (vi) Yes.

4. GENERAL:

(i) Good. (ii). The attack of stem borer was severe specially on tillers in May; attack of top shoot borer. (iii) Germination ; tillers ; borer counts ; height, inter nodes etc. and yield of cane. (iv) (a) 1950 - 1952, 1954 to 1956. (b) Not in the 1st cycle. Treatments are assigned to the same plot during second cycle. (c) N.A. (v) (a) Lakhmapur, Deolali, Padegaon and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 50.34 ton $/ \mathrm{ac}$.
(ii) 4.95 ton/ac.
(iii) Main effect of \mathbf{B} alone is significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	30.68	44.63	37.66
$\mathbf{R}_{\mathbf{2}}$	47.65	52.82	50.24
$\mathbf{R}_{\mathbf{3}}$	60.89	56.05	$\ddots 58.47$
$\mathbf{R}_{\mathbf{4}}$	52.64	57.33	54.99
Mean	47.96	52.71	50.34

S.E. of B marginal means
$=1.24$ ton/ac.
S.E. of \mathbf{R} marginal means
S.E. of body of table
$=1.75$ ton/ac.
$=2.48$ ton/ac.

$$
\begin{array}{ll}
\text { Crop :- Sugarcane (Pre-seasonal). } & \text { Ref :-Mh. 53(203). } \\
\text { Site :-Agri: Res. Stn., Akluj. } & \text { Type:- 'M'. }
\end{array}
$$

Object : - To find out a suitable ratio of A/S to G.N.C. i top dressing of \mathbf{N} with varying doses of basal dressing.

BASAL CONDITIONS :

(i) (a) Chinamug-Pre-seasonal, Sugarcane-Rabi Jowur. (b) Chinamug. (c) Nil. (ii) (a) 'D', type. (b) Refer soil analysis, Akluj. (iii) 16.11 .1953 . (iv) (a) 2 ploughings, clod crushing, harrowings and ridging. (b) The buds of the sugarcane are exposed and allowed to germinate under soil. (c) to (e) N.A. (v) As under treatments. (vi) CO. 419. (vii) Irrigated. (viii) One light tagarani, one earthing up and 4 weedings. (ix) 19.19° (x) 22 to 28.2.1955.

TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $\ddot{B}_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S to $G . N . C$. each to supply $375 \mathrm{lb} . / a c$. of N :
$R_{1}=A / S$ alone, $R_{2}=$ G.N.C. alone, $R_{3}=A / S$ and G.N.C. in $1: 2$ and $R_{4}=A / S$ and G.N.C. in $2: 1$ ratio. Time and method of application N.A.

DESIGN:

(i) 4×2 Fact. in R.B.D. (ii) (a) 8 . (b) N.A. (iii) 4 . (iv) (a) $38^{\prime} \times 36^{\prime}$. (b) $29.2^{\prime} \times 28^{\prime}$. (v) One row on each side of the plot and 4.4^{\prime} on each end of the plot. (vi) Yes.

GENERAL:

(i) Normal, no lodging. (ii) The attack of stem berer was upto 15%. The attack of the top shoot borer was upto 5%. The affected shoots were cut and destroyed. (iii) Germination, tillering, borer counts, heights, girth, interondes etc. and yield of cane (iv) (a) 1950-1952 and 1954-1956, (b) Treatments are assigned to the same plots during second cycle but not in the first cycle. (c) N.A. (v) (a) Lakhmapur, Padegaon, Deolali and Kopergaon. (b) N.A. (vi) and (vii) Nil.

RESULTS :
(i) 46.67 ton/ac.
(ii) 6.12 ton/ac.
(iii) Main effect of R and B are highly significant. Interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	
$\mathbf{R}_{\mathbf{1}}$	27.81	45.85	Mean
$\mathbf{R}_{\mathbf{2}}$	44.33	53.56	36.83
$\mathbf{R}_{\mathbf{3}}$	53.44	57.63	48.94
$\mathbf{R}_{\mathbf{4}}$	41.25	49.54	55.53
Mean	41.71	51.64	45.39

S.E. of B marginal means	$=1.53$ ton $/ \mathrm{ac}$.
S.E. of R marginal means	$=2.15$ ton/ac.
S.E. of body of table	$=3.06$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Akluj.

Ref:-Mh. 50(91).
Type : ' M '.

Object :-To study the effect of applying $\mathrm{P}_{2} \mathrm{O}_{5}$ with two levels of top dressing for Adsali crop.

1. BASAL CONDITIONS :

(i) (a) Bajra, Tur mixture-Sugarcane. (b) Bajra, Tur mixture. (c) Nil. (ii) (a) 'D' type soil. (b) Refer soil analysis, Akluj. (iii) 20.8.1950. (iv) (a) Opening ridges and furrows, and harrowing (b) N.A. (c) 10000 setts/ac.. (d) 4^{\prime} between rows. (e) N.A. (v) As per treatments. (vi) CO. 419 . (vii) Irrigated. (viii) 2 weedings, one in October; other in December. Earthing up on 11.4.1952; tagrani on 22.10.1950. (ix) $34^{\prime \prime} .(x)$ 29.1.1952 to 22.2.1952.

2. TREATMENTS:

Main-plot treatments :
All combinatiors of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{\mathbf{2}}=150 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 methods of application of Super, $M_{1}=$ Piacement, at. surface, $M_{2}=$ Placement half. way down the ridge and $\mathbf{M}_{2}=$ Placement at the base of the ridge.

Sub-plot treatments ;

2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb} . / \mathrm{ac}$.
Source of N : A/S and G.N.C. in ratio $1: 2$.
3. DESIGN:
(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plots (b) N.A. (iii) 3. (iv) (a) 1.6 guntha. (b) 1.0 guntha. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) N.A. (iii) Sugarcane yield. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $65 . \overline{9} 5$ ton/ac.
(ii) (a) 6.42 ton/ac.
(t) 396 ton/ac.
(iii) Main effect of P and interaction $P M$ are significant while main effect of M is not significant. Main effect of \mathbf{N} is significant and interaction main \times sub is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	59.33	64.98	62.15
$\mathrm{P}_{1} \mathrm{M}_{1}$	64.74	66.93	65.83
$\mathrm{P}_{2} \mathrm{M}_{2}$	66.40	67.00	66.70
$\mathrm{P}_{1} \mathrm{M}_{3}$	64.13	75.23	69.68
$\mathrm{P}_{2} \mathrm{M}_{1}$	74.39	76.33	75.36
$\mathrm{P}_{2} \mathrm{M}_{2}$	61.97	63.56	62.77
$\mathrm{P}_{2} \mathrm{M}_{3}$	66.53	66.94	66.73
Mean	65.36	68.71	65.95

S.E. of difference of two

1. means in the same row (except lst row) $=3.20$ ton/ac.
2. means in the same colun
$=4.35$ tod/ac.
.
$=1.86$ ton/ac.
3. means in the same column, one of the means being in the lst row
$=3.55$ ton/ac.
S.E. of P_{0} marginal mean
$=1.51$ ton/ac.
S.E. of any PM combination marginal mean
$=2.62$ ton/ac.
S.E. of N marginal mean
$=0.76$ ton/ac.
Crop :-Sugarcane.
Site :-Agri. Res. Stn., Akluj.

Ref :-Mh. 51(116).
Type : ' ${ }^{\prime}$ '.

Object :-To study the placement of phosphoric acid together with N manure.

1. BASAL CONDITIONS :

(i) (a) Bajra-Tur mixture-Sugarcane, (b) Bajra-Tur mixture. (c) Nil. (ii) (a) D type. (b) Refer soil analysis, Akluj. (iii) 23.8.1951. (iv) (a) 2 ploughings, 1 harrowings, making and opening of ridges and furrows. (b) N.A. (c) 10,000 sets/ac. (d) 4^{\prime} between rows. (e) N.A. (v) 20 C.L./ac. of compost. (vi) CO.419. (vii) Irrigated. (viii) 2 weedings and 3 tagranis. (ix) 19". (x) 30.12.1952.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} / \mathrm{ac}$.
(2) 3 methods of application of Super: $\mathbf{M}_{\mathbf{1}}=$ Applied in furrows, $\mathbf{M}_{\mathbf{2}}=$ Applied half way down the ridge and $\mathbf{M}_{3}=$ Applied at the bottom of the ridge.

Sab-plot treatments :

2 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb} . / \mathrm{ac}$.
Source of N : A / S and G.N.C. in 1:2 ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 3 . (iv) (a.) 1.6 guntha. (b) 1.2 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Stem bores 10%; top borer 5%. (iii) Total no. of millable sugarcane, water shoots and yield of cane. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Deolali, Lakhmapur and Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 78.26 ton/ac.
(ii) (a) 5.66 ton/ac.
(b) 3.58 too/ac.
(iii) Only level of $\mathrm{P}_{2} \mathrm{O}_{5}$ is significant. All other effects and interactions are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	72.47	76.49	74.48
$\mathrm{P}_{1} \mathrm{M}_{1}$	77.52	77.56	77.54
$\mathrm{P}_{1} \mathrm{M}_{2}$	79.63	82.27	80.95
$\mathrm{P}_{1} \mathrm{M}_{3}$	77.29	77.78	76.04
$\mathrm{P}_{2} \mathrm{M}_{1}$	84.04	82.04	83.06
$\mathrm{P}_{2} \mathrm{M}_{2}$	83.13	81.35	82.24
$\mathrm{P}_{\mathbf{2}} \mathrm{M}_{8}$	80.32	81.72	81.20
Mean	78.20	79.88	78.26

S.E. of difference of two

1. means in the same row (except 1st row). $\quad=2.91$ ton/ac.
2. means in the same column (except Ist row) $=3.86$ ton/ac.
3. means in the Ist row
4. mean in the same column, one of the means being in the 1st row $=1.68$ ton/ac.
S.E. of P_{0} marginal mean $=3.15$ ton/ac. S.E. of any PM combination marginal mean $=1.33 \mathrm{ton} / \mathrm{ac}_{\mathrm{c}}$. $=2.31$ ton/ac. S.E. of \mathbf{N} marginal mean
$=0.67$ ton/ac.

Crop :-Sugarcane.
Site:- Agri. Res. Stn., Akluj.
Ref :-Mh. 52(379).
Type:-‘M'.

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$, applied at different depths and N on Sugarcane yield.

1. BASAL CONDITIONS :

(i) (a) Tur + Bajra-Sugarcane. (b) Tur + Bajra. (c) N.A. (ii) (a) 'D' type soil. (b) Refer soil analysis, Akluj. (iii) 6.8.1952. (iv) (a) 2 ploughings, harrowings, discing and ridging. (b) Planting in ridges and furrows. (c) 10000 setts/ac. (d) 4^{\prime} between rows. (e) N.A. (v) 20 C.L./ac. of compost. (vi) CO.419. (vii) Irrigated. (viii) 3 weedings. (ix) $11.03^{\prime \prime}$. (x) 30.1.1954.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathbf{M}_{3}=$ Applied at the bottom of the ridge.

Sub-plot treatments:
2 levels of N : $N_{1}=450$ and $N_{2}=600 \mathrm{lb}$./ac.
Source of N : A/S and G.N.C. in 1:2 ratio.
4. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replications; 2 sub-plots/main-plot
(b) N.A.
(iii) 3. (i
(a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) One row kept. (vi) Yes.
4. GENERAL :
(i) Slight lodging. (ii) Stem borer 2.5%, top borer shoots 2.0%, mild attack of pyrilla. (iii) Germination, tillering, girth and yield of cane. (iv) (a) 1950 to 1953. (b) No. (c) Nil. (v) (a) Kopergaon, Deolali and Lakhmapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 72.32 ton/ac.
(ii) (a) 6.70 ton/ac.
(b) 4.45 ton/ac.
(iii) Main effect of M is significant. Control vs others, main effect of P and interaction PM are not significant. Main effect of N is highly significant while the interaction main \times sub is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	70.04	74.07	72.05
$\mathrm{P}_{1} \mathrm{M}_{1}$	69.23	76.20	72.71
$\mathrm{P}_{1} \mathrm{M}_{2}$	72.60	79.50	76.05
$\mathrm{P}_{1} \mathrm{M}_{3}$	67.43	70.33	68.88
$\mathrm{P}_{2} \mathrm{M}_{1}$	72.53	75.23	73.88
$\mathrm{P}_{2} \mathrm{M}_{2}$	77.43	76.17	76.80
$\mathrm{P}_{2} \mathrm{M}_{3}$	64.79	68.03	66.41
Mean	70.46	74.18	72.32

S.E. of difference of two

1. means in the same row (except 1st row) $=3.64$ ton/ac
2. means in the same column (except 1st row)
$=4.64$ ton/ac.
3. means in the Ist row
4. means in the same column, one of the means being in the ist row
S.E. of P_{0} marginal mean
$=1.63$ ton/ac.
S.E. of any PM combination marginal mean
$=3.79 \mathrm{ton} / \mathrm{ac}$.
$=1.58$ ton/ac.
S.E. of \mathbf{N} marginal mean
$=2.73$ ton/ae
$=0.86$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Akluj.

Ref :- Mh. 53(380).
Type :m ' M '.

Object :-To study the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$, applied at different depths and N on Sugarcane yield.

1. BASAL CONDITIONS:

(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) N.A. (ii) (a) 'D' type soil. (b) Refer soil analysis, Akluj. (iii) 10.8 .1953 . (iv) (a) 2 ploughings, harrowing, discing and ridging etc. (b) Planting in ridges and furrows. (c) 10,000 sets/ac. (d) 4^{\prime} between rows. (e) N.A. (v) 20 C.L./ac. of compost. (vi) CO.419. (vii) Irrigated. (viii) 3 weedings. (ix) 20.19". (x) 4.2.1955.

2. TREATMENTS

Main-plot treatments :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 mtehods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathrm{M}_{\mathbf{s}}=$ Applied at the bottom of the ridge.

Sub-plot treatments :

2 levels of $N: N_{1}=450$ and $N_{8}=600 \mathrm{lb} . / a c$.
Source of N : A/S and G.N.C. in 1:2 ratio.
3. DESIGN:
(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot
(b) N.A. (iii)
3. (iv)
(a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) One row kept. (vi) Yes.
4. GENERAL :
(i) Slight lodging. (ii) Stemborer; 2 to 2.5%; top-shoot; 1 to 5%; mild attack of pyrilla noticed (il) Germination, tillering height, girth and yield of cane. (iv) (a) 1950 to 1953. (b) and (c) No. (v) (a) Kopergaon, Deolali and Lakhampur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 67.93 ton/ac.
(ii) (a) 7.68 ton/ac.
(b) 3.96 ton/ac.
(iii) Main effects of P and M and interaction $P M$ and control ws. others 'are not significant. Main effect of N is highly significant. Interaction "main \times sub" is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	64.55	69.56	67.05
$\mathbf{P}_{1} \mathbf{M}_{1}$	68.48	72.83	70.66
$\mathrm{P}_{1} \mathrm{M}_{\mathbf{2}}$	68.52	74.88	71.70
$\mathrm{P}_{1} \mathrm{M}_{3}$	62.91	69.68	66.29
$\mathrm{P}_{2} \mathrm{M}_{1}$	57.13	73.23	65.18
$\mathrm{P}_{2} \mathrm{M}_{2}$	62.73	71.66	67.19
$\mathrm{P}_{2} \mathrm{M}_{3}$	68.11	70.15	69.13
Mean	64.62	71.24	67.93

S.E. of difference of two

1. means in the same row (except 1st row) $\quad=3.23$ ton/ac.
2. means in the same column (except 1st row) $=4.98$ ton/ac.
3. means in the 1st row
$=1.87$ ton/ac.
4. means in the same column, one of the means being in the 1st row $=4.07$ ton/ac. S.E. of P_{0} marginal mean $=1.81$ ton/ac. S.E. of any PM combination marginal mean $=3.14$ ton/ac. S.E. of \mathbf{N} marginal mean $=0.76$ ton/ac.

Crop :-Sugarcane.
-Site :-Agri, Res. Stn., Akluj.

Ref: :Mh. 48(76).
Type : $\boldsymbol{-}^{\prime} \mathrm{M}$ '.

Object :-To find out the ratio of inorganic to organic manures in the ${ }_{\text {ith }}$ top dressing of N on Sugarcane with and without basal manure.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-Nilwa-Gram-Cotton-Bajra.] (b) Cotton-Bajra. (c) Nil. (ii) (a).'D' type. (b) Refer soil analysis, Akluj. (iii) 25.1.1948. (iv) (a) 2 ploughings, harrowings and weedings. (b) to (e) N.A. (v) As per treatments. (vi) CO.419. (vii) Irrigated. (viii) 2,3 weedings, 1 light earthing up and final earthing up. (ix) 21.78". (x) 23.3.1949.
2. TREATMENTS:

All combinations of (1) and (2)]
(1) 2 levels of F.Y.M. as B.M. : $B_{0}=0$ and $B_{1}=20$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=G . N . C$. alone, $R_{2}=A / S$ to G.N.C. in $1: 1, R_{8}=A / S$ to G.N.C. in $1: 2$ and $R_{4}=A / S$ to G.N.C. in $2: 1$ ratio.
Each ratio to supply 300 lb ./ac. of $\mathrm{N} ; \mathbf{N}$ is top-dressed.
3. DESIGN:
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 1.25 gunthas. (b) 0.75 gunthais. (v) N.A.
(vi) Yes.
(vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Stemborer 15 to 16%. (ii) Germination and tillering percentages, height, girth and internodes of sugarcane; total no. of cane total weight and yield of cane. (iv) (a) 1941 to 1949. (b) and (c) No. (v) (a) Kopergaon, Deolali and Lakhmapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 37.24 ton/ac.
(ii) 3.74 ton/ac.
(iii) Main effects of B and R and their interaction are highly significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{B}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{1}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	38.23	47.58.	42.90
$\mathbf{R}_{\mathbf{2}}$	31.18	43.81	37.49
$\mathbf{R}_{\mathbf{3}}$	33.03	41.96	37.49
$\mathbf{R}_{\mathbf{4}}$	26.00	35.66	30.83
Mean	32.11	42.25	37.24
S.E. of B marginal mean	$=0.94$ ton/ac.		
S.E. of \mathbf{R} marginal mean	$=1.32$ ton/ac.		
S.E. of body of table	$=1.87$ ton/ac.		

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Akluj.

Ref : ${ }^{-1}$ Mh. 49(109).
Type :- ' M '.

Object:-To find out the ratio of inorganic to organic manures in top dressing of N on Sugarcane with and without basal.

1.L BASAL CONDITIONS :

(i) (a) Sugarcane-Nilwa-Gram-Cotton+Bajra. (b) Cotton+Bajra. (c) Nil; (ii) (a)'D' type. (b) Refer soil analysis, Akluj. (iii) January 1949. (iv) (a) 2 ploughings; harrowings, ridging. (b) to (e) N.A. (v) As per treatments. (vi) CO; 419, (vii) Irrigated. (viii) 2-3 weedings; one light earthing up and final earthing up. (ix) $23.6 t^{\prime \prime}$. (x) March 1950.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 2 levels of F.Y.M. as B.D.: $B_{0}=0$ and $B_{1}=20$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=$ G.N.C. alone, $R_{2}=A / S$ to G:N.C. in $1: 1, R_{3}=A / S$ to G.N.C. in 1:2 and $R_{4}=A / S$ to G.N.C. in $2: 1$ ratio.
Each ratio to supply 300 lb ./ac. of N ; \mathbf{N} top dressed.
3. DESIGN:
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 1.25 gunthas. (b) 0.75 gunthas. (v) N.A. (vi) Yes.
4. GENERAL:
(i) No lodging. (ii) Stem borer- 10 to 15%. (iii) Germination and tillering $\%$, height, girth and internodes of cane. Total no. of canes and total wht of cane. (iv) (a) 1941'to 1949, (b) No. (c) Nil. (v) (a) Kopergaon, Deolali, Lakhmapur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 40.20 ton/ac:
(ii) 5.88 ton/ac.
(iii) Main effects of B and R are significant while their interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{0}	B_{1}	Mean
$\mathbf{R}_{\mathbf{1}}$	44.66	50.27	47.46
$\mathbf{R}_{\mathbf{2}}$	33.35	40.99	37.17
\mathbf{R}_{8}	39.77	50.27	45.02
R_{4}	25.20	36.54	30.87
Mean	35.74	44.52	
	S.E. of B marginal mean S.E. of R marginal mean S.E. of body of table		$\begin{aligned} & =1.47 \mathrm{ton} / \mathrm{ac} . \\ & =2.08 \mathrm{ton} / \mathrm{ac} . \\ & =2.94 \mathrm{ton} / \mathrm{ac} . \end{aligned}$

Crop: Sugarcane.
Site :- Agri. Res. Stn., Deolali.

Ref :- Mh. 48(28).
Type:- 'M'.

Object :-To find out a suitable ratio of A/S to G.N.C. for top.dressing N with and without basal dressing.

1. BASAL CONDITIONS :

(i) (a) Nilwa-Gram-Cotton-Sugarcane. (b) Cotton. (c) N.A. (ii) (a) 'G' type soil. (b) N.A. (iii) January 1948. (iv) (a) 2 ploughings, 1 harrowing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} spacing between rows. (e) N.A. (v) As per treatments. (vi) CO.419. (vii) Irrigated. (viii) 2 to 3 weedings. (ix) 39.21". (x) First week of March 1950.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $\mathrm{B}_{0}=0$ and $B_{1}=20$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=$ G.N.C. alone, $R_{2}=A / S$ to G.N.C. in $1: 1, R_{3}=A / S$ to G.N.C. in 1:2 and $R_{4}=A / S$ to G.N.C. in $2: 1$ ratio.
Amount of $\mathrm{N}: \mathrm{N} . \mathrm{A} . ; \mathrm{N}$ top dressed.
3. DESIGN:
(i) 2×4 Fact. in R.B.D. (ii) (a).8. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 34^{\prime}$. (b) $32^{\prime} \times 25.5^{\prime}$; (v) 1 row on either side; 4.25' at either end. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Cane yield; no. of tillers. (iv) (a) 1941 to 1949. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 21.31 ton/ac.
(ii) 2.87 ton/ac.
(iii) Main effects of B and R and their interaction are not gignificant.
(iv) Av. yield of sugarcane in ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Deolali.'

Ref:~Mh. 49(43).
Type:- ' M '.

Object :-To find out a suitable ratio of A/S to G.N.C. for top dressing N with varying doses of basal manure.

1. BASAL CONDITIONS :
(i) (a) Nilwa-Gram-Cotton-Sugarcane. (b) Cotton. (c) N.A. (ii) (a) 'G' type soil. (b) N.A. (iii) 3rd week of January 1949. (iv) (a) 2 ploughings and 1 barrowing.' (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} spacing between rows, (e) N.A. (v) As per treatments. (vi) CO. 419. (vii) Irrigated. (viii) 2 to 3 weedings. (ix) $26.52^{\prime \prime}$. (x) 1st week of March 1951.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $B_{0}=0$ and $B_{1}=20$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=$ G.N.C. alone, $R_{2}=A / S$ to G.N.C. in $1: 1, R_{3}=A / S$ to G.N.C. in $1: 2$ and $R_{4}=A / S$ to G.N.C. in $2: 1$ ratio.
Amount of $\mathrm{N}: \mathrm{N} . \mathrm{A}$.
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 34^{\prime}$. (b) $32^{\prime} \times 25.5^{\prime}$. (v) 1^{\prime} row on either side ; 4.25^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Sugarcane jield, no. of tillers. (iv) (a) 1941-1949. (b) No. (c) N.A. (v)
(a) and (b) N.A. (vi) and (vii) Nil.

5. 严 RESULTS :

(i) 22.29 ton/ac.
(ii) 2.93 ton/ac.
(iii) Main effect of B and R and their nteraction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{0}	B_{1}	Mean
R_{1}	22.71	22.56	22.63
\mathbf{R}_{2}	21.44	21.21	21.32
\mathbf{R}_{8}	23.42	21.54	22.48
\mathbf{R}_{4}	21.46	23.95	22.71
Mean	22.26	22.32	22.29
S.E. of B marginal mean S.E. of \mathbf{R} marginal mean S.E. of body of table		$=0.73$ ton/ac.	
		$\text { = } 1.03 \text { ton/ac. }$	
		$=1.47$ ton/ac.	

Crop :- Sugarcane.
Ref :- Mh. $\mathbf{p 0}$ (70).
Site :- Agri. Res. Stn., Deolali.
Type :~ ' M '.
Object :-To find out asuitable ratio of A / S to cake for top dressing N with varying doses of basal manure.

1. BASAL CONDITIONS :

(i) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) 'G’'type soil. (b) N.A. (iii) October 1950. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) N.A. (v) As per treatments. (vi) CO. 419. (vii) Irrigated. (viii) N.A. (ix) 27.71". (x) 3rd week of February 1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. $B_{1}=20$ and $B_{2}=40^{\circ}$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in $2: 1, R_{2}=A / S$ to G.N.C. in $1: 2$ ratio and $R_{4}=G$. N.C. alone.
Each ratio to supply 375 lb ./ac. of N. Manures applied at sowing by broadcast.
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) $\mathrm{N}_{1} \mathrm{~A}$. (iii) 4 . (iv) (a) $40^{\prime} \times 34^{\prime}$. (b) $32^{\prime} \times 25.5^{\prime}$. (v) 1^{\prime} row on either side, 4.25^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Germination \%; milleable and non-millable sugarcane count, height in inches. and yield of cane. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Akluj, Lakhmapur and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 46.15 ton/ac.
(ii) 6.47 ton/ac.
(iii) Main effect of B is not significant. Main effect of R and the interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.

Crop :- Sugarcane. \quad Ref: $:$ Mh. 51(81).

Site:- Agri. Res. Stn., Deolali. Type :- 'M'.
Objeet :-To find out a suitable ratio of \mathbf{A} / S to \mathbf{G}. N.C. for top-dressing \mathbf{N} with varying doses of basal manure.

1. BASAL CONDITIONS :
(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tura. (c) Nil. (ii) (a) 'G' type. (b) N.A. (iii) 21.10.1951. (iv) (a) 2 ploughings and 1 clod crushing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) N.A. (v) As per treatments. (vi) CO. 419. (vii) Irrigated. (viii) 3 weedings and 1 gap-filling. (ix) 8.5°. (x) 15.2.1951.

2. TREA IMENTS

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D.: $\quad B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=A / S$ alone, $R_{1}=A / S$ to G.N.C. in $2: 1, R_{8}=A / S$ to G.NC.in $1: 2$ and $R_{4}=G$. N.C. alone.
Each ratio to supply $375 \mathrm{lb} . / \mathrm{ac}$. of N .
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii)
(ii) (a) 8. (b) N.A. (iii) 4.
(iv) (a) $40^{\prime} \times 34^{\prime}$.
(b) $32^{\prime} \times 25.5^{\prime}$.
1 row on either side and 4.25^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Germination \%, milleable and non-milleable sugarcane; av. height and yield data. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a).Akluj and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 31.04 ton/ac.
(ii) 9.75 ton/ac.
(iii) Main effects of B and R and their interaction are not significant.
(iv) Av. yield of sugercane in ton/ac.

	B_{1}	B_{2}	Mean
R_{1}	29.51	27.50	28.50
R_{2}	26.38	33.77	30.08
\mathbf{R}_{3}	32.93	25.27	29.10
\mathbf{R}_{4}	38.02	34.89	36.46
Mean	31.71	30.37	31.04
S.E. of B marginal mean			$=2.44$ ton/ac.
S.E. of \mathbf{R} marginal mean			$=3.45$ ton/ac.
S.E. of body of table			$=4.88$ ton/ac.

Crop :- Sugarcane.
Site : ${ }^{\text {Agri. Res. Stn., Deolali. }}$

Ref :- Mh. 52(10).
Type :- ' M '.

Object :-To find out a suitable method of manuring for Sugarcane crop.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Bajra+Tur-Chinamug-Sugarcane. (b) Chinamug in Kharif. (c) Nil. (ii) (a) Type ' G ' as per genetic classification of soil. (b) N.A. (iii) 21.10 .1952 . (iv) (a) 2 ploughings, harrowing, mixing, opening ridges, planting, earthing etc. (b) The buds of the sugarcane are exposed and allowed to garminate under soil. (c) to (e) N.A. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii) Weeding, mixing and earthing. (ix) 25.68°. (x) $\mathbf{1 6 . 2 . 1 9 5 4 .}$
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in $2: 1, R_{3}=A / S$ to G.N.C. in 1:2 and $R_{4}=G$. N.C. alone.
Each ratio to supply $375 \mathrm{lb} . / a c$. of N .
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) $40^{\prime} \times 34^{\prime}$. (b) $32^{\prime} \times 25^{\prime}$. (v: One row or each side and $4 \frac{1^{\prime}}{}{ }^{\prime}$ side ways. (vi) Yes.
5. GENERAL:
(i) No lodging. (ii) (a) Attack of top-shoot-borer, stem-borer and pyrilla. (mechanical control). (iii) Germination, tillering, milleable sugarcane counts, borer counts, growth observation, ripeness counts and weight of sugarcane. (iv) (a) 1950-56 (b) No. (c) N.A. (v) (a) Akluj, Lakhmapur and Padegaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 31.75 ton/ac.
(ii) 4.42 ton/ac.
(iii) Only the main effect of R is highly significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{B}_{1}	B_{2}	Mean
R_{1}	25.72	25.59	25.66
\mathbf{R}_{2}	30.62	34.03	32.32
R_{3}	36.88	32.94	34.91
\mathbf{R}_{4}	32.39	35.79.	31.09
Mean	31.40	32.09	31.75
S.E. of S.E. of S.E. of	ean		$\begin{aligned} & =1.10 \text { ton/ac. } \\ & =1.55 \text { ton } / \mathrm{ac} \\ & =2.21 \text { ton } / \mathrm{ac} . \end{aligned}$

Crop: :Sugarcane (Adsali).
Site :-Agri. Res. Stn., Deolali.

Ref:-Mh. 53(201).
Type :-‘ ${ }^{\prime}$ '.

Object :-To find the suitable method of manuring for Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Bajra+Tur-Chinanug -Sugarcane. (b) Chinamug in Kharif. (c) Nil. (ii) (a) 'G' type according to genetic classification of soil. (b) N.A. (iii) 20.10.1953. (iv) (a) 2 ploughings, harrowings, and opening ridges. (b) The buds of the sugarcane are exposed and allowed to germinate in the soil. (c) to (e) N.A. (v) As per treatments. (vi) Adsali sugarcane CO.419. (vii) Irrigated. (viii) Weeding, mixing and earthing etc (ix) $31.76^{\prime \prime}(x)$ 25.2. 1955 to 3.3.1955.

2. TREATMENTS :

Atl combinations of (1) and (2)
(1) 2 levels of F Y.M. as B.D. : $B_{2}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in $2: 1, R_{3}=A / S$ to G.N.C. in $1: 2$ and $R_{\mathbf{4}}=$ G.N.C. alone.
Each ratio to supply 375 lb ./ac. of \mathbf{N}.
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 , (iv) (a) $40^{\prime} \times 34^{\prime}$. (b) $32^{\prime} \times 25^{\prime}$. (v) One row of cane on each side and $4 k^{\prime}$ side ways. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Top-shoot-borer, stemborer ; pyrilla (mechanical control). (iii) Germination, tillering, borer counts, milleable, sugarcane counts, growth observation, ripeness and yield of sugarcane by weight. (iv) (a) 1950 -1956 (b) No. (c) N.A. (v) (a) Akluj, Lakhmapur, Kopergaon and Padegaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 44.24 ton/ac.
(ii) $4.83 \mathrm{ton} / \mathrm{ac}$.
(iii) Only the main effect of R is highly significant.
(iv) Av . yield of sugarcane in ton/ac.

	B_{1}	B_{2}	Mean
R_{1}	35.79	38.92	37.35
R_{2}	45.87	40.56	43.21
R_{3}	47.91	46.00	46.95
R_{1}	50.22	48.72	49.47
Mean	44.95	43.55	44.24
	inal mean	$=1.20$	
	inal mean	$=1.69$	
	table	$=2.41$	

Crop :-Sugarcane.
Site :-Agri. Res. Stn., Deolali.

Ref :-Mh. 50(71).
Type:-‘' ${ }^{\prime}$ '.

Object :-To study the placement of varying doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ with two levels of N as top-dressing.

1. BASAL CONDITIONS:

(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) 'G' type soil. (b) N.A. (iii) October 1950. (iv) (a) and (b) N.A. (c) 10,000 sett/ac. (d) 4^{\prime} spacing between rows. (e) N.A. (v) 20 C.L./ac. of F.Y.M. broadcasted before sowing. (vi) CO.419. (vii) Irrigated. (viii) N.A. (ix) 27.71". (x) 3rd week of Feb. 1952.

2. TREATMENTS :

Main-plot treatments :
All compinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathrm{M}_{8}=$ Applied at the bottom of the ridge.

Sub-plot treatments:

2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb}$./ac.
Source of $\mathrm{N}: \mathrm{A} / \mathrm{S}$ to $\mathbf{G} . \mathrm{N} . C$. in ratio $1: 2$.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block and 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $54.45^{\circ} \times 32^{\prime}$. (b) $45.45^{\prime} \times 24^{\prime}$. (b) 1 row on either side and 4.5^{\prime} at either end. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Germination counts. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Lakhmapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 4864 ton/ac.
(ii) (a) 7.87 ton/ac.
(b) 7.01 ton/ac.
(iii) Main effects of P and M and their interaction are not significant. Sub-plot treatments and interaction 'main \times sub' are also not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	44.36	48.18	46.27
$\mathrm{P}_{1} \mathrm{M}_{1}$	49.90	42.17	46.03
$\mathrm{P}_{\mathbf{1}} \mathrm{M}_{\mathbf{2}}$	52.14	50.01	51.07
$\mathrm{P}_{1} \mathrm{M}_{3}$	42.45	48.75	45.60
$\mathrm{P}_{2} \mathrm{M}_{1}$	50.52	50.36	50.44
$\mathrm{P}_{2} \mathrm{M}_{\mathbf{2}}$	52.55	46.66	49.60
$\mathrm{P}_{2} \mathrm{M}_{3}$	55.50	56.76	56.13
Mean	48.46	48.81	48.64

S.E. of difference of two

1. means in the same row (except 1st row)

$$
\begin{aligned}
& =5.72 \mathrm{ton} / \mathrm{ac} \\
& =6.08 \mathrm{ton} / \mathrm{ac} \\
& =3.30 \mathrm{ton} / \mathrm{ac} \\
& =4.97 \mathrm{ton} / \mathrm{ac} \\
& =1.05 \mathrm{ton} / \mathrm{ac} \\
& =3.21 \mathrm{ton} / \mathrm{ac} \\
& =1.34 \mathrm{ton} / \mathrm{ac}
\end{aligned}
$$

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Deolali.

Ref :- Mh. 51(82).
Type :- 'M'.

Object:-To study the effect of P manure with different methods of placement in combination with two levels of N .

i1. BASAL CONDITIONS:

(i) (a) Bajra+Tur mixture-Sugarcane.' (b) Bajra+Tur. (c) Nil. (ii) (a) 'G' type soili (b) N.A. (iii) :23.8.1951. (iv) (a) 2 ploughings and 1 harrowing. (b): N.A: (c) 10,000 sett/ac. (d) 4^{\prime} spacing between rows. (e) N.A. (v) 20 C.L./ac. of F:Y.M: (vi) CO: 419. (vii) Irrigated. (viii) 3 weedings and 1 gap rifling. (ix) 8.5°. (x) 1.10 .1953.

2. TREATMENTS :

Main-plot treatments :
All combinations of '1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{4}=$ Applied half way down the ridge and $M_{3} \Leftrightarrow$ Applied at the bottom of the ridge.

Sub-plot treatments :

2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb} . / \mathrm{ac}$.
Source of $N=A / S$, to G.N.C. in $1: 2$ ratio.

3. DESIGN :

(i) Split-plot. (ii) (a) 9 main-plots/block and 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $54.45^{\prime} \times 32^{\prime}$ (b) $45.45^{\prime} \times 24^{\prime}$. (v) 1^{\prime} row of sugarcane on each side, 4.5^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) Good." (ii) No. (iii) Gérminatión count, tilléríng na., mileable sugarcane count. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Lakhmapur. (b) N.A. (vi) and" (vii)"Nil.'
5. RESULTS :
(i) 44.64 ton/ac.
(i) (a) 9.37 ton/ac.
(b) 4.47 ton/ac.
(iii) Main effects of P and M and their interaction are not significant. Sub-plot treatments and interaction 'main \times sub' are also not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	42.50	43.81	43.16.
$\mathrm{P}_{1} \mathrm{M}_{1}$	47.38	47.42	47.40
$\mathrm{P}_{1} \mathrm{M}_{2}$	51.07	47.03	49.05
$\mathrm{P}_{1} \mathrm{M}_{3}$	42.24	37.42	39.83
$\mathrm{P}_{2} \mathrm{M}_{1}$	49.05	45.20	47.12
$\mathrm{P}_{2} \mathrm{M}_{2}$	42.80	41.36	42.08
$\mathrm{P}_{2} \mathrm{M}_{3}$	45.53	48.13	46.83
Mean	. 45.06	44.22	44.64

S.E. of difference of two

1. means in the same row (except 1st row) $=3.64$ ton/ac.
2. means in the same column (except 1st row)
3. means in the 1st row
$=5.99$ ton/ac.
4. means in the same column, one of the means being in the Ist row S.E. of P_{0} marginal means
$=4.89 \mathrm{ton} / \mathrm{ac}$.
$=2.20$ ton/ac.
S.E. of any PM combination marginal mean
$=3.82$ ton/ac.
S.E. of N marginal mean
$=0.86$ ton/ac.

Crop:- Sugarcane.
Site : \boldsymbol{m} Agri. Res. Stn., Deolali.

Ref:- Mh. 52(109).
Type :- 'M'.

Object :-To find out the response of Sugarcane to the varying quantities of \mathbf{P} manures with different placements at two levels of N .

1. BASAL ÇONDITIONS :
(i) (a) Sugarcane-Bajra+Tur mixture-Sugarcane. (b) Bajra+Tur mixture. (c) Nil. (ii) (a) 'G' type according to genetic classification of soil. (b) N.A. (iii) 9.8 .19 .52 . (iv) (a) 2 ploughings, clod crushing, harrowing, opening ridges, earthing etc. (b) to (e) N_{i} A. (v) $20,000 \mathrm{lb}$. of compost was added in furrows before planting. (vi) CO. 419. (vii) Irrigated. (viii) Weeding, application of \mathbf{N} as top dressing, mixing and earthing up twice etc. (ix) $25.68^{\prime \prime}$. (x) 21.12.1953.

2. TREATMENTS :

Main-plot treatments :

All combinations of (1) and (2)
(1) 3 levels of $P_{2} O_{5}: P_{0}=0, P_{1}=75$ and $P_{2}=150 \mathrm{lb} / \mathrm{ac}$.
(1) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{2}=$ Applied balf way down the ridge and $\mathrm{M}_{3}=$ Applied at the bottom of the ridge,
Sub-plot treatments :
2 levels of $N: N_{1}=450$ and $N_{2}=600 \mathrm{lb} . / a c$.
Source of $\mathrm{N}: \mathrm{A} / \mathrm{S}$ and G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block ; 2 sub-plots/main-plot. (b) N.A. (iii) 3.' (iv) (a)
$54.45^{\prime} \times 32^{\prime}$.

4.: GENERAL:

(i) No lodging. (ii) Attack of top-shoot-borer, stem-borer, pyrilla, mealy bugs, etc. (iii) Germination, tillering, borer counts, milleable sugarcane counts, ripeness studies and yield of sugarcane in each plot. (iv) (a) 1951-1955. (3 adsali crops). (b) N.A. (c) N.A. (v) (a) Lakhmapur, Akluj, Padegaon and Kolhapur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 46.01 ton/ac.
(ii) (a) 5.92 ton/ac.
(b) 3.35 ton/ac.
(iii) Λ ain effects of P and M and their interaction are not significant; sub-plot treatments and interaction 'main \times sub' are significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{N}_{1}	N_{2}	Mean
P_{0}	46.16	45.52	45.83
$\mathrm{P}_{1} \mathrm{M}_{1}$	43.71	46.92	45.32
$\mathrm{P}_{1} \mathrm{M}_{2}$	43.71	47.58	45.64
$\mathrm{P}_{1} \mathrm{M}_{3}$	45.60	50.76	48.18
$\mathrm{P}_{2} \mathrm{M}_{1}$	41.81	50.62	46.21
$\mathrm{P}_{2} \mathrm{M}_{2}$	39.11	46.96	43.03
$\mathrm{P}_{2} \mathrm{M}_{3}$	48.91	47.57	48.24
Mean	44.59	47.44	46.01

S E. of difference of two

1. means in the same row (except lst row) . $=2.73$ ton/ac.
2. means in the same column (except 1st row) $=3.93$ ton/ac.
3. means in the lst row $\quad=1.58$ ton/ac.
4. means in the same column, one being in the 1st row $=331$ ton/ac. S.E. of P_{0} marginal mean
S.E. of avy PM combination marginal mean $=1.39$ ton/ac. $=2.42$ ton/ac. S.E. of N marginal mean $=0.64 \mathrm{ton} / \mathrm{ac}$.

Crop :- Sugarcane.
Site :- Agri. Res. Stn.، Deolali.

Ref: Mh. 53(162).
Type:- 'M'.

Object :-To find out the response of Sugarcane to varying quantities of \mathbf{P} manures with different methods of placement at two levels of N.

1. BASAL CONDITIONS :
(i) (a. Sugarcane-Bajra+Tur mixture-Sugarcane. (b) Bajra+Tur mixture. (c) Nil. (ii) (a) 'G'type according to genetic classification of soil. (b) N.A. (iii) 5.8.1953. (iv) (a) 2 ploughings, clod crusbing, harrowing, opening ridges and earthing. (b) to (e) N.A. (v) $20,000 \mathrm{lb}$. of F.Y.M. was applied in furrows before planting. (vi) CO. 419. (vii) Irrigated. (viii) Weeding, watering, mixing, carthing up etc. (ix) $31.76^{\prime \prime}$. (x) 28.1.1955 to 9.2.1955.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathbf{M}_{\mathbf{3}}=$ Applied at the bottom of the ridge.

Sub-plot treatments :

2 levels of N : $N_{1}=450$ and $N_{2}=600 \mathrm{lb} . / \mathrm{ac}$.
Source of N : A/S and G.N.C. in 1:2 ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication; 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $54.45^{\prime} \times 32^{\prime}$. (b) $45.45^{\prime} \times 24^{\prime}$. (v) One row of sugarcane each side and $4 \frac{1}{2^{\prime}}$ side ways. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Top-shoot-borers, stem-borer, pyrilla and mealy bugs. (iii) Germination, tillering, borer counts, milleable sugarcare counts, ripeness studies, and yield of cane. (iv) (a) 1951-1955 (4 adsali crops). (b) N.A. (c) N.A. (v) (a) Akluj, Padegaon and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 50.72 ton/ac.
(ii) (a) 4.43 ton/ac.
(b) 6.21 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

S.E. of the difference of two

1. means in the same row (except 1st row) $\quad=5.07 \mathrm{ton} / \mathrm{ac}$.
2. means in the same column (except 1st row) $\quad=4.40$ ton/ac.
3. means in the lst row $=2.93$ ton/ac.
4. means in the same column, one of means being in the 1st row $=3.60$ ton/ac.
S.E. of P_{0} marginal mean $=1.04$ ton/ac.
S.E. of any PM combination marginal mean $=1.81$ ton/ac.
S.E. of N marginal mean $=1.19$ ton/ac.

Crop :- Sugarcane.	Ref :~ Mh. 50(59).
Site :~Agri. Res. Rtn., Kolhapur.	Type :- 'M'.

Object :-To study the effect of ratio of A/S to G.N.C. for top dressing of N for sugarcane with varying quantities of basal manure.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Ratoon-fallow. (b) Fallow. (c) N.A. (il) (a) Black clayey soil. (b) N.A. (iii) 8.12.1950. (iv) (a) 2 ploughings. (b) N.A. (c) 12500 sett/ac. (d) 3.25^{\prime} between rows. (e) -. (v) As per treatments. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 4 weedings, interculturings by cultivators. (ix) $18.55^{\prime \prime}$. (x) Last week of February.
2. TREATMENTS :

All combinations of (1); (2), (3) and (4) +6 extra treatments.
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$, and $\mathrm{P}_{1}=100 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=270$ and $\mathrm{N}_{2}=320 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $F_{0}=0$, and $F_{1}=10$ C.L./ac.
(4) 3 ratios of A/S to G.N.C. : $R_{1}=1: 1, R_{2}=1: 2$ and $R_{2}=2: 1$.

6 extra treatments are :-

All combinations of (1) and (2)
(1) 2 levels of $N: N_{1}=270$ and $N_{2}=320 \mathrm{lb}$./ac.
(2) 3 applications of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{T}_{0}=0, \mathrm{~T}_{1}=100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{T}_{2}=100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}+100$ $\mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 30. (b) N.A. (iii) 2. (iv) (a) $42.5^{\prime} \times 39^{\prime}$. (b) $33.5^{\prime} \times 32.5^{\circ}$. (v) 1 row on either side . and 4.5^{\prime} on either end. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight attack of mealy bugs. (iii) Germination counts, height and yield of cane.(iv) (a) 1950-N.A. (b) Ist year of expt. (c) Nil. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 50.91 ton/ac.
(ii) 7.21 ton/ac.
(iii) None of the effects and interactions is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{0}	F_{1}	Mean	N_{1}	N_{2}	$\mathbf{R 1}_{1}$	\mathbf{R}_{2}	\mathbf{R}_{3}
P_{0}	48.41	51.83	50.12	48.98	51.26	51.97	48.27	50.12
P_{1}	50.30	53.24	51.77	50.36	53.18	49.76	50.19	55.36
Mean	49.35	52.53	50.91	49.67	52.22	50.86	49.23	52.74
\mathbf{R}_{1}	46.99	54.73	50.86	48.82	52.91			
R_{2}	48.62	49.84	49.23	47.15	51.30			
\mathbf{R}_{3}	52.45	53.04	52.74	53.04	52.44			
\mathbf{N}_{1}	46.39	52.95	49.67					
$\mathbf{N}_{\mathbf{2}}$	52.32	52.12	52.22					

Two-way table for the 6 extra treatments :-

	T0	T_{1}	T 2	Mean
\mathbf{N}_{1}	48.59	51.20	56.92	52.24
N_{2}	49.66	49.35	47.50	48.84
Mead	49.12	50.28	52.21	50.54

S.E. of P, N or F marginal means	$=1.47 \mathrm{ton} / \mathrm{ac}$.
S.E. of R marginal mean	$=1.80$ ton/ac.
S.E. of body of PF, PN or NF table	$=2.08$ ton/ac.
S.E. of body of PR, FR or NR table	$=2.55$ ton/ac.
S.E. of T marginal mean	$=3.61$ ton/ac.
S.E. of N marginal (for NT table)	$-=2.94$ ton/ac.
S.E. of body of NT table	$=5.09$ ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Kolhapur.

Ref:- Mh. 51(145).
Type :- ' M '.

Object :-To study the ratio of A/S and G.N.C. for top dressing N for Sugarcane with varying quantities of basal manures.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-ratoon-Paddy. (b) Paddy. (c) N.A. (ii) (a) Black clayey soil. (b) N.A. (iii) 17.11.1951. (iv) (a) 2 ploughings by tractor. (b) N.A. (c) 12,000 setts/ac. (d) 3.25^{\prime} between rows. (e) -. (v) Nil. (vi) CO-419. (mid late). (vii) Irrigated. (viii) 3 weedings and 3 interculturings. (ix) 20.53'. (x) 31.12.1952.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4) +6 extra treatments.
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{4}=0$ and $\mathrm{P}_{1}=100 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{2}=270$ and $\mathrm{N}_{2}=320 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=10$ C.L./ac.
(4) 3 ratios of A / S to G.N.C.: $R_{1}=1: 1, R_{2}=1: 2$ and $R_{3}=2: 1$.

6 extra treatments are :-
All combinations of (1) and (2)
(1) 2 levels of $\mathrm{N}:$ (Factory schedules) $\mathrm{N}_{1}=270$ and $\mathrm{N}_{2}=320 \mathrm{lb}$./ac.
(2) 3 treatments: $\mathrm{T}_{0}=0, \mathrm{~T}_{1}=100 \mathrm{lb}$. ac . of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{T}_{2}=100 \mathrm{lb}$. $/ \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}+100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

Time and method of application : N.A.
3. DESIGN:
(i) R.B.D. (ii) (a) 30 . (b) N.A. (iii) 2 . (iv) (a) $42.5^{\prime} \times 39^{\prime}$. (b) $33.5^{\prime} \times 32.5^{\circ}$. (v) one row on either side and 4.5^{\prime} on either end. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Slight attack of mealy bugs noticed. (iii) No. of tillers, germination count and sugarcane yield. (iv) (a) 1950-51 to 1952-53. (b) No. (c) N A. (v) (a) Not known. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 44.87 too/ac.
(ii) 7.53 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{0}	F_{1}	Mean	N_{1}	N_{2}	$\mathbf{R}_{\mathbf{2}}$	R_{2}	\mathbf{R}_{3}
P_{0}	43.91	43.13	43.52	42.71	44.33	43.20	44.08	43.33
P_{1}	44.43	47.60	46.02	45.19	46.84	43.38	48.04	46.61
Mean	44.17	45.36	44.87	43.95	45.59	43.26	46.07	44.97
\mathbf{R}_{2}	42.88	43.64	43.26	41.37	45.15			
R_{3}	44.03	48.10	46.07	46.69	45.44			
\mathbf{R}_{4}	45.60	44.34	44.97	43.79	46.15			
N_{1}	44.26	43.63	43.95					
N_{2}	44.08	47.09	45.59					

Two-way table for 6 extra treatments.

	T0	T ${ }_{1}$	T ${ }_{2}$	Mean
N_{1}	47.86	44.57	40.56	44.33
N_{2}	44.92	48.91	44.82	46.22
Mean	46.39	46.74	42.69	45.27
S.E. of P, N or F margin al mean				$=1.54$ ton/ac.
S.E. of R marginal mean				$=1.88$ ton/ac.
S.E. of body of PF, PN or NF table				$=2.17$ ton/ac.
S.E. of body of PR, FR or NR table				$=2.66$ ton/ac.
S.E. of T marginal mean				$=3.76$ ton/ac.
S.E. of N marginal mean (NT table)				$=2.17$ ton/ac.
S.E. of body of NT table				$=5.32$ ton/ac.

Crop :- Sugarcane.

Site :- Agri. Res. Stn., Kolhapur.

Ref :- Mh. 52(177).
Type :- ${ }^{-} \mathbf{M}$ '.

Object :-To study the ratio of A/S to G.N.C. for top dressing of \mathbf{N} for Sugarcane with varying quantities of basal manures.

1. BASAL CONDITIONS:

(i) (a) Sugarcane-ratoor-fallow. (b) Paddy. (c) N.A. (ii) (a) Black clayey soil. (b) N.A. (iii) 5.11.1952. (iv)
(a) 2 ploughing with tractor, clod crushing and discing. (b) N.A. (c) 468 setts/plot. (d) 3.25^{\prime} between rows.
(e) -. (v) Nil. (vi) CO. 419: (mid-late). (vii) 15 irrigations at 10 days interval. (viii) 3 weedings and 3 interculturings. (ix) $37.57^{\prime \prime}$. (x) 20.1.1954.

2. TREATMENTS:

All combinations of (1), (2), (3) and (4) +6 extra treatments.
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$, and $\mathrm{P}_{1}=100 \mathrm{lb} / \mathrm{ac}$.
(2) 2 levels of $N: N_{1}=270$ and $N_{2}=320 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=10$ C.L./ac.
(4) 3 ratios of A / S to G.N.C. : $R_{1}=1: 1, R_{2}=1: 2$ and $R_{3}=2: 1$.

6 extra treatments are :
All combinations of (1) and (2)
(1) 2 levels of N (Factory schedules) : $\mathrm{N}_{1}=270$ and $\mathrm{N}_{2}=320 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 treatments: $\mathrm{T}_{0}=0, \mathrm{~T}_{1}=100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{T}_{2}=100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}+100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

Time and method of application-N.A.
3. DESIGN :
(i) R.B.D. (ii) (a) 30 . (b) N.A. (iii) 2. (iv) (a) $42.5^{\circ} \times 39^{\prime}$. (b) $33.5^{\circ} \times 32.5^{\circ}$. (v) 1 row on either side and 4.5^{\prime} either end. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Slight attack of stem borer and mealy bugs. (iii) Germination and tillering counts. (iv) (a) 1950-51 to 1952-53. (b) No. (c) N.A. (v) (a) Not known. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 44.93 ton/ac-
(ii) 5.64 tod/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{0}	F_{1}	Mean	N_{1}	N_{2}	\mathbf{R}_{1}	$\mathbf{R s}_{\mathbf{8}}$	$\mathbf{R z}$
P_{0}	44.35	43.47	43.91	45.14	42.68	44.33	44.46	42.93
P_{1}	45.83	47.37	46.60	45.49	47.71	44.62	47.83	47.34
Mean	45.09	45.42	44.93	45.31	45.19	44.48	46.15	45.14
R1	43.82	45.13	44.48	45.35	43.60			
\mathbf{R}_{2}	44.62	47.67	46.15	46.96	45.32			
$\mathbf{R s}_{3}$	46.83	43.44	45.14	43.62	46.66			
N_{1}	44.92	45.71	45.31					
N_{2}	45.26	45.13	45.19					

Two-way table for 6 extra treatments :-

	T_{0}	$\mathrm{~T}_{\mathbf{1}}$	T_{2}			
$\mathrm{~N}_{1}$	47.86	43.99	39.92			
$\mathrm{~N}_{2}$	42.70	44.62	42.54			
Mean	45.28	44.30	41.23	$	$	Mean
:---						
43.92						
43.29						
43.60						

S.E. of P, N or F marginal mean
S.E. of R marginal mean
S.E. of body of PF, PN or NF table
S.E. of body of PR, FR or NR table
S.E. of T marginal mean
S.E. of N marginal mean (NT table)
S.E. of body of NT table

$$
\begin{aligned}
& =1.15 \text { ton } / \mathrm{ac} . \\
& =1.41 \mathrm{ton} / \mathrm{ac} . \\
& =1.63 \text { ton } / \mathrm{ac} . \\
& =1.99 \text { ton } / \mathrm{ac} . \\
& =2.82 \mathrm{ton} / \mathrm{ac} . \\
& =2.30 \text { ton } / \mathrm{ac} . \\
& =3.99 \mathrm{ton} / \mathrm{ac} .
\end{aligned}
$$

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Kolhapur.

Ref: ${ }^{\text {Mh. }}$ 53(197).
Type: $\sim^{\prime} \mathbf{M}^{\prime}$.

Object :-To find out the ratio of A/S to G.N.C. for N top dressing with various quantities of basal and phosphatic manures.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Paddy. (b) Paddy. (c) 2 bags of paddy mixture. (ii) (a) Deep black soil. (b) N.A. (iii) 14.12.1953. (iv) (a) Ploughing by tractor, clod crushing, discing, opening ridges and furrows. (b) and (c) N.A. (d) 3.25^{\prime} between rows. (e) -. (v) Compost at $10,000 \mathrm{lb} / \mathrm{ac}$. (vi) CO-419 (mid-late).
(vii) Irrigated. (viii) 3 weedings and 3 interculturings. (ix) 43.03*. (x) 7.1.1955.
2. TREATMENTS :

All combinations of $(1),(2),(3)$ and $(4)+6$ extra treatments.
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=100 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=270$ and $\mathrm{N}_{2}=320 \mathrm{lb}$./ac.
(3) 2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=10$ C.L./ac.
(4) 3 ratios of A / S to $G . N . C .: R_{1}=1: 1, R_{2}=1: 2$ and $R_{2}=2: 1$.

6 extra treatments are :
All combinations of (1) and (2).
(1) 2 levels of $\mathrm{N}:$ (Factory schedules) $\mathrm{N}_{1}=270$ and $\mathrm{N}_{2}=320 \mathrm{lb}$./ac.
(2) 3 treatments: $\mathrm{T}_{0}=0, \mathrm{~T}_{1}=100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{T}_{2}=100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}+100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 30. (b) N.A. (iii) 2. (iv) (a) $42.5^{\circ} \times 32^{\prime}$. (b) $33.5^{\circ} \times 32.5^{\circ}$. (v) 1 row on either side and 4.5^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Little attack of top borers and mealy bugs was seen. No measures taken. (iii) Germination counts, no. of tillers and sugarcane yield. (iv) (a) 1950-N.A. (b) Yes (c) N.A. (v) (a)and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 36.27 ton/ac.
(ii) 5.53 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{0}	F_{1}	Mean	N_{1}	\mathbf{N}_{2}	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	\mathbf{R}_{3}
P_{0}	30.65	34.73	32.69	28.81	- 36.48	29.42	32.77	35.87
P_{1}	41.16	41.10	41.13	41.24	41.31	43.48	39.80	40.53
Mean	35.90	37.91	36.91	35.02	38.90	36.45	36.29	38.20
\mathbf{R}_{1}	34.24	38.66	36.45	32.07	40.83			
$\mathbf{R}_{\mathbf{2}}$	36.27	36.30	36.29	36.27	36.30			
$\mathbf{R}_{\mathbf{3}}$	37.19	39.20	38.20	36.72	39.68			
N_{1}	35.35	34.70	35.02					
N_{2}	36.45	41.43	38.94					

Two way table for 6 extra treatments:

	\mathbf{T}_{0}	$\mathbf{T}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$
$\mathbf{N}_{\mathbf{1}}$	26.06	25.53	36.89
$\mathbf{N}_{\mathbf{2}}$	36.76	38.03	37.28
Mean	31.41	31.78	37.08

S.E. of \mathbf{P}, N or F marginal mean
S.E. of \mathbf{R} marginal mean
S.E. of body of PF, PN or NP table
S.E. of body of PR, FR or NR table
S.E. of T marginal mean
S.E. of \mathbf{N} marginal mean (NT table)
S.E. of body of NT table
$=1.125$ ton/ac.
$=1.385$ ton/ac.
$=1.590$ ton/ac.
$=1.950 \mathrm{ton} / \mathrm{ac}$.
$=2.815$ ton/ac.
$=2.257$ ton/ac.
$=3.910$ ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn, Kolhapur.

Ref :- Mh. 51(61).
Type :- 'M'.

Object :-To study the influence of $\mathrm{N}_{3} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ on the growth of Sugarcane iwith dhainche as groen manure.

1. BASAL CONDITIONS:

(i) (a) Sugarcane-Ratoon-Sugarcane. (b) Sugarcane. (c) 5 cwt./ac. of $A / S+1$ ton/ac. of cake. (ii) (a) Black clayey soil. (b) N.A. (iii) 1 st week of August 1951. Ratooning on 16.9.1951. (iv) (a) 2 ploughiogs, cloderushing and discing.(b) N.A. (c) 12,500 setts/ac. (d) 3.25° between rows. (e) -. (v) 10 C.L./ac. or compost at the time of planting $+270 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}$. in the ratio of $1: 2$. (vi) CO.419. (vii) Irrigated. (viii) 3 weedings and 3 interculturings. (ix) 20.83". (x) January, 1952.

2. TREATMENTS:

1. Control (no manure).
2. 100 lb .jac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to sugarcane.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ applied to sugarcane.
4. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to sugarcane.
5. $100 \mathrm{Jb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to dhaincha G.M.
6. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ applied to Dhaincha G.M.
(Dhainche G.M. applied to sugarcane).
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $42^{\prime} .9^{\prime} \times 39^{\prime}$. (b) $33.5^{\prime} \times 32.5^{\prime}$. (v) One row on either side. (vi) Yes.
8. GENERAL:
(i) The general condition of the crop was good. (ii) Slight attack of mealy bugs noticed. (iii) No. of tillers, beight and sugarcane yield. (iv). (a) 1951 to 1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 33.07 ton/ac.
(ii) 5.96 ton/ac.
(iii) Treatments differ significantly.
(iii) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	31.65
2.	33.19
3.	27.98
4.	26.67
5.	38.68
6.	40.26
S.E./mean	$=2.78$ ton/ac.

Crop:-Sugarcane.
Site :-Agri. Res. Stn., Kolhapur.
Ref :-Mh. 52(73).
Type :-'M'.

Object :-To study the influence of $\mathrm{N}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ and $\mathrm{K}_{9} \mathrm{O}$ on the growth of Sugarcanc. with Dhaincha as G.M.

1. BASAL CONDITIONS:

(i) (a) Sugarcane-Paddy. (b) Paddy. (c) 5 cwt./ac. of $\mathbf{A} / \mathbf{S}+1$ ton/ac. of cake. (ii) (a) Black clayey soil. (b) N.A. (iii) 11.9 .1952 . (iv) (a) 2 ploughings, clod crushing and discing. (b) N.A. (c) 12,510 setts/ac. (d) 3.25^{\prime} between rows. (e) -. (v) $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost at the time of planking $+270 \mathrm{lb} / \mathrm{ac}$. of N as A/S+G.N.C. in the ratio of 1:2. (vi) CO. 419 (mid-late). (vii) Irrigated, (viii) 3 weedings and 3 interculturings. (iv) 37.57°. (x) 23.12.1953.

2. TREATMENTS:

1. Control (no manure).
2. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to sugarcane.
3. 100 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to sugarcane.
4. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to sugarcane.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to dhaincha G.M.
6. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to dhaincha G.M.

Dhaincha G.M. applied to sugarcane.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $42^{\prime}-9^{\prime \prime} \times 39^{\prime}$. (b) $33.5^{\prime} \times 32.5^{\prime}$. (v) One row on either side 4.8^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) The general condition of the crop was good. (ii) Slight attack of mealy bugs noticed. (iii) Germination counts, no. of tillers, growth observation and sugarcane yield. (iv) (a) 1951 to 1953. (b) N.A. (c) N.A. (v) (a) Not known. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 34.04 ton/ac
(ii) 5.34 ton/ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of sugarcane in ton/ac.
Treatment Aiv. yield

1.	37.93
2.	30.05
3.	35.51
4.	39.00
5.	33.48
6.	28.27
S.E./mead	$=2.67$ ton/ac.

Crop :-Sugarcane. Site :-Agri. Res. Stn., Kolhapur.

Ref:-Mh. 53(143).
Type:-‘'M’.

Object :-To study the response of sugarcane to application of potash and phosphatic fertilisers with Dhaincha as green manure.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ratoon-Paddy. (b) Paddy. (c) 2 bags/ac. of manure mixture. (ii) (a) Deep black soil. (b) N.A. (iii) 7.9.1953. (iv) (a) Ploughing by tractor, clod crushing, harrowing etc. (b) N.A. (c) 12,500 setts/ac. (d) 3.25^{\prime} between rows. (e) -. (v) $275 \mathrm{lb} . / \mathrm{ac}$. of N as A/S+G.N.C. in 1: 2 ratio. (vi) CO-419 (mid-late). (vii) Irrigated. (viii) 3 weedings and 3 interculturings. (ix) 61.5". (x) 16.12.1954.
2. TREATMENTS :
3. Control (no manure).
4. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to sugarcane.
5. 100 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to sugarcane.
6. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to sugarcane.
7. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to dhaincha G.M.
8. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ applied to dhaincha $\mathrm{G} . \mathrm{M}$.

Dhaincha G.M. applied to sugarcane. Time and method of application-N.A.
3. DESIGN
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4 . (iv) (a) $45.5^{\prime} \times 39^{\prime}$. (b) $33.5^{\circ} \times 32.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight attack of mealy bugs noticed. (iii) Germination counts, no. of tillers, growth observation and yield data. (iv) (a) 1951-N.A. (b) No. (c) N.A. (v) (a) Not known. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 45.62 ton/ac.
(ii) 8.46 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	38.45
2.	48.28
3.	43.10
4.	42.80
5.	50.58
6.	50.52
S.E.Jmean	$=4.23$ ton/ac.

Crop $=$ Sugarcane.	Ref:- Mh. 51(62).
Site :- Agri. Res. Str., Kolhapur,	Type :- 'M'.

Object:-To study the effect of slaked lime and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on growth of Sugarcane.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-Paddy. (b) Paddy. (c) $5 \mathrm{cwt} / \mathrm{ac}$. of $\mathrm{A} / \mathrm{S}+1$ ton/ac. of cake. (ii) (a) Black clayey soil. (b) N.A. (iii) October 195i. Date N.A. (iv) (a) 2 ploughings, 1 clod crushing and discing. (b) N.A. (c) 12,500 setts/ac. (d) 3.25^{\prime} between rows. (e)-. (v) Dhaincha as G.M. $+270 \mathrm{lb} . / \mathrm{ac}$. of N topdressed in the form of $A / S+G . N . C$. in the ratio of $1: 2$ in 4 doses; 8 to 10 weeks after earthing up. (vi) Co. 419 (mid-late). (vii) Irrigated. (viii) 3 hand-weedings and 3 interculturings. (ix) 37.5° (x) 20.12.1952
2. TREATMENTS:
3. Control (no manure).
4. 560 lb /ac. of lime.
5. $560 \mathrm{lb} . / \mathrm{ac}$. of lime $+100 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) $425^{\prime} \times 39^{\prime}$. (b) $33.5^{\prime} \times 32.5^{\prime}$. (v) 1 row on either side, 4.5^{\prime} at either end. (vi) Yes.
7. GENERAL :
(i) Affected due to floods. (ii) Slight attack of mealy bugs noticed. (iii) Germination counts, tillers, growth observations and yield of sugarcane. (iv) (a) $1951-1954$. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $51.12 \mathrm{tod} / \mathrm{ac}$
(ii) 7.11 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of sugareane in ton/ac.

Treatment	Av. yield
1.	52.37
2.	47.87
3.	53.12
S.E./mean	$=3.55$ ton/ace

Crop :- Sugarcane.	Ref :- Mh. 53(137).
Site :- Agri. Res. Stn., Kolhapur.	

Object :-To study the effect of lime and $\mathrm{P}_{2} \mathrm{O}_{5}$ on the growth of Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Paddy. (b) Paddy. (c) 5 cwt./ac. of $A / S+1$ ton/ac. of cake. (ii) (a) Black clayey soil. (b) N.A. (iii) 29.12.1953. (iv) (a) 1 ploughing, clod-crushing and discing. (b) N.A. (c) 12,500 setts/ac. (d) 3.25^{\prime} between rows. (e) -. (v) Dhaincha as G.M. +270 lb ./ac. of N top-dressed in the form of A/S+G.N.C. in ratio of $1: 2$ in 4 doses, 8 weeks after earthing up. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 3 hand weedings and 3 interculturings. (ix) $61.5^{\prime \prime}$. (x) 31.12.1954.

2. TREATMENTS :

1. Control (no manure).
2. $560 \mathrm{lb} . / \mathrm{ac}$. of lime.
3. 560 lb ./ac. of lime +100 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super ; Lime as slaked lime.
4. DESIGN :
(i) R.B.D.
(ii) (a) 3.
(b) N.A. (iii) 4.
(iv) (a) $42.9^{\prime} \times 39^{\prime}$.
(b) $33.5^{\prime} \times 32.5^{\prime}$.
(v) N.A. (vi) Yes.
5. GENERAL :
(i) Normal. (ii) Slight attack of mealy bugs and attack of leaf spots noticed. (iii) Germination, tillering count, growth observation and sugarcane yield. (iv) (a) 1951 to 1954. (b) No. (c) N.A. (v) (a) Not known. (b) N.A. (vi) and (vii) Nil.

5. RESULTS

(i) 34.48 ton/ac.
(ii) 3.42 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	32.98
2.	33.93
3.	36.54
S.E./mean	$=1.71$ ton/ac.

Crop:- Sugarcane.
Ref :-Mh. 50(123).
Site :- Agri. Res. Stn., Kopergaon.
Type :-‘M'.

Object:-To study the effect of placement of varying doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ with two levels of N as top dressing - for Adsali.
d. BASAL CONDITIONS :
(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) 'A' type. (b) Refer soil analysis, Kopergaon. (iii) 9.8 .1950 . (iv) (a) Ploughing $10^{\prime \prime}$ deep, harrowing. (b) N.A. (c) 10,000 setts/ac. (d) $4^{\prime \prime}$ (e)一. (v) 20 C.L./ac. of F.Y.M. (vi) CO.419. (vii) Irrigated. (viii) N.A. (ix) 21.26". (x) 1 to 31.1.1950.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied on surface, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathrm{M}_{8}=$ Applied at the boltom of the ridge.
Sub-plot treatments :
2 levels of $N: N_{1}=450$ and $N_{2}=600 \mathrm{lb}$./ac. of $\mathrm{N}: A / S+G . N . C$ in ratio 1:2.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 3 . (iv) (a) 1.6 guntha. (b) 1 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Sugarcane yield. (iv) (a) 1950 to 1954. (b) No. (c) N.A. (v) (a) Lakhamapur, Akluj and Deolali. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 61.27 ton/ac.
(ii) (a) 5.85 ton/ac.
(b) 4.30 ton/ac.
(iii) Main effect of \mathbf{N} alone is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	$\mathrm{~N}_{2}$	Mean
P_{0}	62.47	62.15	62.31
$\mathrm{P}_{1} \mathrm{M}_{1}$	59.52	51.43	55.48
$\mathrm{P}_{1} \mathrm{M}_{2}$	58.37	57.56	57.97
$\mathrm{P}_{1} \mathrm{M}_{3}$	62.73	64.23	63.48
$\mathrm{P}_{2} \mathrm{M}_{1}$	61.70	56.32	59.01
$\mathrm{P}_{2} \mathrm{M}_{2}$	70.93	60.62	65.68
$\mathrm{P}_{2} \mathrm{M}_{3}$	64.14	61.54	62.84
Mean	62.84	59.12	

S.E of P_{0} marginal mean		$=1.38$ ton/ac.
S.E. of any PM combination marginal mean	$=2.39$ ton/ac.	
S.E. of N marginal mean	$=0.827$ ton/ac.	
. of difference of two		
1. means in same row (except 1st row)	$=2.51$ ton/ac.	
2. means in the 1st row	$=4.19$ ton/ac.	
3. means in the same column (except 1st row)		
4. means in the same column one of the means being in 1st row	$=2.81$ ton/ac.	

Crop :- Sugarcane (Ratoon).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 51(98).
Type :- ' M '.

Object :-To study the effect of placement of varying doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ with two levels of N as top dressing.

1. BASAL CONDITIONS :

(i) (a) Gram-Sugarcane ratoon. (b) Sugarcane. (c) As per treatments. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) Last harvest as date of planting. (iv) (a) No operations as it is ratoon crop. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) -. (v) $300 \mathrm{lb} . / \mathrm{ac}$. of N in the form of A / S and G.N.C. in the ratio of $1: 2$. (vi) CO.419. (vii) Irrigated. (viii) 1 earthing up. (ix) 11.73'. (x) 8.2.1953.

2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied on surface, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathrm{M}_{3}=$ Applied at the bottom of the ridge.
Sub-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb}$./ac.
Source of $\mathrm{N}: A / S+G . N . C$. in ratio $1: 2 . \mathrm{N}$ top dressed.

- DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/replicatlon and 2 sub-plots/main-plot. (b) N.A. (iii) 3 . (iv) (a) 1.6 guntha. (b) 1 guntha (dimensions N.A.). (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Sugarcane yield. (iv) (a) 1951-1954. (b) No. (c) N.A. (v) (a) Lakhamapur, Deolali and Akluj. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 32.47 ton/ac.
(ii) (a) 2.64 ton/ac.
(b) $1.26 \mathrm{ton} / \mathrm{ac}$.
(iii) Main effect of N and interaction main \times sub are significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	31.84	31.01	31.42
$\mathrm{P}_{1} \mathrm{M}_{1}$	31.82	30.87	31.35
$\mathrm{P}_{1} \mathrm{M}_{2}$	32.76 .	31.04	31.90
$\mathrm{P}_{1} \mathrm{M}_{3}$	32.55	33.80	33.17
$\mathrm{P}_{2} \mathrm{M}_{1}$	34.31	31.74	33.03
$\mathrm{P}_{2} \mathrm{M}_{2}$	36.68	33.50	35.09
$\mathrm{P}_{2} \mathrm{M}_{3}$	32.45	34.46	33.45
Mean	32.90	32.05	

S.E. of P_{0} marginal mean	$=0.62$ ton/ac.
S.E. of any PM combination marginal mean	$=1.08$ ton/ac.
S.E. of N marginal mean	$=0.24$ ton/ac.
of difference of two	
1. means in the same row (except Ist row)	$=1.02$ ton/ac.
2. means in the 1st row	$=0.59$ ton/ac.
3. means in the same column (exsept 1st row)	$=1.69$ ton/ac.
4. means in the same column, one of the means being in ist row	$=0.84$ ton/ac.

Crop:-Sugarcane.
Site :-Agri. Res. Stn., Kopergaon.

Ref :-Mh. 52(91).
Type:- 'M'.

Object :-To study the effect of placement of varying doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ with top-dressing of N .

1. BASAL CONDITIONS:
(i) (a) Bajra Tur mixture-Sugarcane. (b) Bajra-Tur mixture. (c) Nil. (ii) (a) 'A' type soil according to genetic classification of soil. (b) Refer soil analysis, Kopergaon. (iii) 6.8.1952. (iv) (a) 1 ploughing and 1 harrowing. (b) to (e) N.A. (v) 2.0 C.L./ac. of F.Y.M. before sowing. (vi) CO. 419. (vii) Irrigated. (viii) 6 weedings. (ix) 28.89. (x) 5.1.19j4.

2. TREATMENTS :

Main-plot treatments :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Applied in furrows, $\mathrm{M}_{2}=$ Applied half way down the ridge and $\mathbf{M}_{\mathbf{g}}=$ Applied at the bottom of the ridge.

Sub-plot treatments :

2 levels of N : $\quad N_{1}=450$ and $N_{2}=600 \mathrm{lb} . / \mathrm{ac}$.
N as A / S and $\mathrm{P}_{8} \mathrm{O}_{5}$ as super.
3. DESIGN
(i) Split-plot. (ii) (a) 9 main-plots/block and 2 sub-plots/main-plot. (b) N.A (iii) 3. (iv) (a) Main-plot : $54.44^{\prime} \times 64^{\prime}$; Sub-plot : $54.44^{\prime} \times 32^{\prime}$. (b) Sub-plot: $45.44^{\prime} \times 24^{\prime}$. (v) $4.5^{\prime} \times 4^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Fair. (ii) Slight attack of black disease noticed. (iii) Germination count, tiller, borer counts, height and sugarcane yield. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 56.90 ton/ac.
(ii) (a) 6.76 ton/ac.
(b) 3.36 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	55.50	55.51	55.50
$\mathrm{P}_{1} \mathrm{M}_{1}$	54.05	56.37	55.21
$\mathrm{P}_{1} \mathrm{M}_{2}$	57.78	55.60	56.69
$\mathrm{P}_{1} \mathrm{M}_{3}$	55.98	56.95	56.47
$\mathrm{P}_{2} \mathrm{M}_{1}$	63.03	60.23	61.61
$\mathrm{P}_{2} \mathrm{M}_{2}$	51.17	59.16	57.16
$\mathrm{P}_{2} \mathrm{M}_{3}$	57.60	59.21	58.40
Mean	56.68	57.12	

S.E. of P_{0} marginal mean	$=1.59$ ton/ac.
S.E. of any $P M$ combination marginal mean	$=2.76$ ton/ac.
S.E. of N marginal mean	$=0.64$ ton/ac.
f difference of two	
1. means in the same row (except 1st row)	$=2.74$ ton/ac.
2. means in the 1 st row	$=1.58$ ton/ac.
3. means in the same column (except 1st row)	$=1.38$ ton/ac.
4. means in the same column, one of the means being in $1 s t$ row	$=1.12$ ton/ac.

Crop: :-Sugarcane.
Site :=Agri. Res. Stn., Kopergaon.

Ref :-Mh. 53(138).
Type:-‘M'.

Object:-To study the effect of placement of varying doses of $\mathrm{P}_{2} \mathrm{O}_{6}$ with top-dressing of N .

1. BASAL CONDITIONS :
(i) (a) Bajra-Tur mixture-Sugarcane. (b) Bajra-Tur mixture. (c) Nil. (ii) (a) 'A' type soil according to genetic classification. (b) Refer soil analysis, Kopergaon. (iii) 29.7.1953. (iv) (a) 1 ploughing and 1 harrowing. (b) to (d) N.A. (e) -. (v) F.Y.M. at 20 C.L./ac. (vi) CO. 419. (vii) Irrigated. (viii) Weeding and bunding. (ix) 1953-1954 17"-16 cents. 1954-1955 21"-76 cents. (x) 9.12.1955.

2. TREATMENTS

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{M}_{1}=$ Applied in furrow, $\mathrm{M}_{2}=$ Applied half way down the ridge and $M_{3}=$ Applied at the bottom of the ridge.
Sub-plot treatments: ,
2 levels of $N \quad N_{1}=450$ and $N_{2}=600 \mathrm{lb} / / \mathrm{ac}$.
Source of $\mathrm{N}: ~ A / S+G . N . C$. in ratio $1: 2$.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) $4.5^{\prime} \times 4^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Slight attack of black disease noticed. (iii) Sugarcane yreld. (iv) (a) 1950-52 and 1953-55 (b) No. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 46.40 ton/ac.
(ii) (a) 4.90 ton/ac.
(b) 4.72 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	47.5	45.5	46.5
$\mathrm{P}_{1} \mathrm{M}_{1}$	45.6	43.2	44.4
$\mathrm{P}_{1} \mathrm{M}_{2}$	44.7	44.8	44.7
$\mathbf{P}_{1} \mathrm{M}_{3}$	43.9	48.7	46.3
$\mathrm{P}_{2} \mathrm{M}_{1}$	50.7	44.8	47.7
$\mathrm{P}_{2} \mathrm{M}_{2}$	47.2	45.4	- 46.3
$\mathbf{P}_{2} \mathrm{M}_{3}$	49.7	48.0	48.8
Mean	47.1	45.7	

S.E. of P_{0} marginal mean	$=1.16$ ton/ac.
S.E. of any PM combination marginal mean	$=2.00$ ton/ac.
S.E. of N marginal mean	$=0.91$ ton/ac.
difference of two	
1. means in the same row (except 1st row)	$=3.85$ ton/ac.
2. means in Ist row	$=2.22$ ton/ac.
3. means in the same column (except 1st row)	$=3.93$ ton/ac.
4. means in the same column, one of the means being in lst row	$=3.93$ ton/ac.

Crop :- Sugarcane.	Ref. :- Mh. 51(99).
Sité :- Agri. Res. Stn., Kopergaon.	Type :- 'M'.

Object :-To study the effect of placement of varying doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ with top-dressing of N .

1. BASAL CONDITIONS:
(i) (a) Gram-Sugarcane \& ratuon. (b) Gram. (c) Nil. (ii) (a) 'A' type soil. (b) Refer soil anàlysis, Kopergaơn. (iii) 18.7.1951. (iv) (a) 2 ploughings, 3 harrowings. (b), N,A. (c) 10,000 setts/ac. (d) 4 between rows. (e) N.A: (v) $20,000 \mathrm{Ib}$./ac. of compost (vi) CO. 4 j9. (vii) Irrigated. (viii) 3 weedings and 1 interculturing. (ix) $46.40^{\prime \prime}$. (x) 4 to $\mathbf{3 1 . 1 . 1 9 5 3 .}$
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}$ =applied on surface, M_{2} - applied in furrows, and $\mathrm{M}_{3}=$ applied at bottom.
Sub-plot treatments:
2 levels of $N: N_{1}=450$ and $\mathrm{N}_{2}^{\prime}=600 \mathrm{lb}$./ac.
Source of $\mathbf{N}: A / S+G . N . C$. in ratio $1: 2$.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/replication and 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) 1 row on either side and 4.5^{\prime} at each end. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Germination count and sugarcane yield. (iv) (a) 1950 to 1954 . (b) No. (c) N.A. (v) (a) Lakhamapur, Deolali and Akluj. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 68.19 ton/ac.
(ii) (a) 5.26 ton/ac.
(b) 3.82 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	68.74	67.81	68.28
$\mathrm{P}_{1} \mathrm{M}_{1}$	65.60	73.56	69.58
$\mathrm{P}_{1} \mathrm{M}_{2}$	68.94	72.01	70.48
$\mathrm{P}_{1} \mathrm{M}_{3}$	67.49	68.54	68.01
$\mathrm{P}_{2} \mathrm{M}_{1}$	60.49	67.01	63.75
$\mathrm{P}_{2} \mathrm{M}_{2}$	66.91	66.82	66.87
$\mathrm{P}_{2} \mathrm{M}_{3}$	71.76	68.59	70.18
Mean	67.49	68.88	68.19

S.E. of P_{0} marginal mean $\quad{ }^{\circ}=1.24$ ton/ac.
S.E. of any PM combination marginal mean
S.E. of N marginal mean
S.E. of difference of two

1. means in the same row (except 1st row)
2. means in the lst row
3. means in the same column (except 1st row)
4. means in the same column, one of the means being in 1st tow
$=2.15$ ton/ac.
$=0.73$ ton/ac.
$=3.17$ ton/ac.
$=1.83$ ton/ac.
$=3.76$ ton/ac.
$=2.55$ ton/ac.

$$
\begin{array}{ll}
\text { Crop :- Sugarcane. } & \text { Ref :- Mh. 50(68). } \\
\text { Site :~ Agri. Res. Stn., Kopergaon. } & \text { Type :- 'M’. }
\end{array}
$$

Object :-To find out the suitable ratio of A/S to G.N.C. for top dressing of \mathbf{N} with varying doses of basal manure.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) N.A. (c) Nil. (ii) (a) 'A' type soil according to genetic classification. (b) Refer soil analysis, Kopergaon. (iii) 18.11.1950. (iv) (a) 2 ploughings and 3 harrowings. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e)-. (v) As per treatments. (vi) CO. 475 (duration N.A.). (vii) Irrigated. (viii) N.A. (ix) 34.67". (x) 2nd and 3rd week of February 1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $\mathrm{B}_{1}=20$ and $\mathrm{B}_{2}=40$ C.L./ac.
(2) 4 ratios of A/S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in 2:1, $R_{9}=A / S$ to G.N.C. in $1: 2$ and $R_{4}=$ G.N.C. alone.
Each source to supply 375 lb ./ac. of N.
3. DESIGN:
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $42.5^{\prime} \times 32^{\prime}$. (b) $34.04^{\prime} \times 24^{\prime}$ (v) 1 row on cither side, 4.23 ' at either end. (vi) Yes.

4. GENERAL :

(i) Good. (i) Attack of stem borer and top borer noticed. (iii) Germination count, height, no. of tillers and sugarcane yield. (iv) (a) 1950 to 1954. (b) No. (c) N.A. (v) (a) Akluj, Lakhamapur and Deolali. (b)N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 50.11 ton/ac.
(ii) 3.04 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	\mathbf{B}_{2}	Mean
\mathbf{R}_{1}	48.21	48.02	48.12
\mathbf{R}_{2}	50.32	47.56	48.94
\mathbf{R}_{3}	51.20	51.62	51.41
\mathbf{R}_{4}	52.66	51.28	51.97
Mean	50.60	49.62	50.11
	margina margin y of		$\begin{aligned} & =0.76 \text { ton } / \mathrm{ac} . \\ & =1.07 \text { ton/ac. } \\ & =1.52 \text { ton } / \mathrm{ac.} \end{aligned}$

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Kopergaon.

Ref :- Mh. 51(79).
Type :- ' M '.

Object:-To find out the suitable ratio of A/S to G.N.C. for top-dressing of \mathbf{N} with varying doses of basal manure.

1. BASAL CONDITIONS :

(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) 'G' type. (b) Refer soil analysis, Kopergaon. (iii) 21.11.1951. (iv) (a) 2 ploughings and 3 harrowings. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e)-. (v) As per treatments. (vi) CO. 419. (vii) Irrigated. (viii) 2 weedings. (ix) $11.73^{\prime \prime}$. (x) 16 to 19.2.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $B_{1}=20$ and $B_{2}=40 \mathrm{C} \mathrm{L./ac}$.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in ratio $2: 1, R_{3}=A / S$ to G.N.C. in ratio 1:2 and $R_{4}=G . N . C$. alone.
Each ratio to supply $375 \mathrm{lb} . / \mathrm{ac}$. of N . Compost applied before sowing and N top-dressed.
3. DESIGN :
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) $32^{\prime} \times 42.5^{\prime}$. (b) $24^{\prime} \times 34.5^{\prime}$. (v) 4^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Height, no. of tilfers, millable and unmillable sugarcane and sugarcane yield. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Deolali and Lakhamapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 36.89 ton/ac.
(ii) 2.63 ton/ac.
(iii) Main effect of \mathbf{N} alone is significant.

607
iv) Av. yield of sugarcane in ton/ac.

	B_{1}	B_{8}	Mean
R_{1}	33.3	28.9	31.10
\mathbf{R}_{2}	34.5	36.2	35.35
\mathbf{R}_{3}	39.8	38.3	39.05
\mathbf{R}_{4}	42.1	42.02	42.06
Mean	$37 \cdot 42$	36.35	36.89
S.E. of B marginal mean S.E. of R marginal mean S.E. of body of table			$=0.65$ ton/ac.
			$=0.93 \mathrm{ton} / \mathrm{ac}$
			$=1.31$ ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(176).
Type:- ' \mathbf{M}^{\prime}.

Object:-To find out the suitable ratio of A/S to G.N.C. for top-dressing of \mathbf{N} with varying doses of basal manure.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Moong. (c) Nil. (ii) (a) 'A' type. (b) Refer soil analysis, Kopergaon. (iii) 16.10 .1952 (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} spacing. (e)-. (v) As per treatments. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) N.A. (ix) 17.22". (x) 12 to 17.2.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A/S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in 21 ratio, $R_{3}=A / S$ to G.N.C in 1:2 ratio and $R_{4}=G . N . C$. alone.
Each ratio to supply $375 \mathrm{lb} . / \mathrm{ac}$. of N. N top-dressed.
3. DESIGN :
(i) 4×2 Fact. in R.B.D. (ii) (a) 8 . (b) N.A. (iii) 4 . (iv) (a) $42.5^{\prime} \times 32^{\circ}$. (b) $24^{\prime} \times 34.5^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Sugarcane yield. (iv) (a) 1950-1952, to 1954-1956. (b) No (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 22.11 ton/ac.
(ii) $3.08 \mathrm{rod} / \mathrm{ac}$.
(iii) Main effects of \mathbf{R} and interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	B_{2}	Mean
R_{1}	19.55	22.18	20.86
$\mathbf{R}_{\mathbf{2}}$	21.34	25.96	23.65
\mathbf{R}_{3}	27.97	25.93	26.95
\mathbf{R}_{4}	31.56	24.53	28.04
Mean	25.11	24.65	22.11
S.E. of B marginal mean S.E. of R marginal mean S.E. of body of talabe			$=0.77$ too/ac. $=1.08$ ton/ac.
			- 1.54 tod/ac

Crop:- Sugarcane.
Ref:- Mh. 53(160).
Site :- Agri. Res. Stn., Kopergaon.
Type :~ 'M'.
Object :-To find out the suitable ratio of A / S to G.N.C. for top dressing of N with two doses of basal manure.

1. BASAL CONDITIONS:
(i) (a) Bajra+Tur mixture-Sugarcane. (b) Baira+Tur mixture. (c) Nil. (ii) (a) 'A' type. (b) Refer soil analysis, Kopergaon. (iii) 13.11.1953. (iv) (a) 2 ploughings and 2 harrowings. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) -. (v) As per treatments. (vi) CO.419. (vii) Irrigated. (viii) 7 weedings and 1 bunding. (ix) 28.89". (x) 5.2.1955.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S to G.N.C. : $R_{1}=A / S$ alone, $R_{2}=A / S$ to G.N.C. in $2: 1, R_{3}=A / S$ to G.N.C. in $1: 2$ and $R_{\mathbf{q}}=$ G.N.C. alone.
Each ratio to supply $375 \mathrm{lb} . j \mathrm{ac}$. of N .
3. DESIGN:
(i) 4×2 Fact. in R.B.D. (ii) 8. (b) N.A. (iii) 4 . (iv) (a) $32^{\prime} \times 42.5^{\prime}$. (b) $24^{\prime} \times 34.5^{\prime}$ 。 (v) 4^{\prime} on either end. 1 row on either side. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of top-shoot and stem-borer and pyrilla only noticed. (iii) Germination count, tiller, borer count, height and sugarcane yield. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 33.23 ton/ac.
(ii) 3.92 ton/ac.
(iii) Effect of \mathbf{R} is highly significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	26.07	29.57	27.82
$\mathbf{R}_{\mathbf{2}}$	28.45	34.61	31.53
$\mathbf{R}_{\mathbf{3}}$	37.29	35.70	36.49
$\mathbf{R}_{\mathbf{4}}$	42.08	32.11	37.09
Mean	33.47	33.00	33.23

S.E. of B marginal mean	$=0.98$ ton/ac.
S.E. of R marginal mean	$=1.38$ ton/ac.
S.E. of body of table	$=1.96$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Lakhamapur.

Ref :- Mh. 50(74).
Type :- 'M'.

Obj ct:-To find out the suitable ratio of A / S and G.N.C. for top dressing of N with varying doses of basal manure.

1. BASAL CONDITIONS :
(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) Shallow, $12^{\prime \prime}$ to $15^{\prime \prime}$ deep, light brown pH-8.1 F type. (b) Refer soil analysis, Lakhamapur. (iii) 12.11.1950. (iv) (a) 1 ploughing and 4 harrowins. (b) Setts planted by hand $1^{\prime \prime}$ to $2^{\prime \prime}$ deep. (c) 10,000 setts/ac. (d) 4^{\prime} between rows and $4^{\prime \prime}$ to $6^{\prime \prime}$ between plants. (e) N.A. (v) Nil. (vi) CO.475 (medium). (vii) Irrigated. (viii) 2 to 3 hand weedings, 3 to 4 interculturings by toothi cultivator implement, 1 light earthing by bahadur plough and 1 final earthing by ridging. (ix) $17.75^{\prime \prime}$. (x) 1.3.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $\mathrm{B}_{1}=20$ and $\mathrm{B}_{2}=40$ C.L./ac.
(2) 4 ratios of N as A / S and G.N.C. to give 450 lb .lac. of $\mathrm{N}: \mathrm{R}_{1}=1: 0, R_{2}=2: 1, R_{3}=1: 2$ and
$\mathrm{R}_{4}=0: 1$.
N top dressed in 4 doses, at planting, 6 and 12 weeks after planting and at the time of earthing
3. DESIGN :
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Major pest-lop borer-cutting off affected shoots, collection, destroying of egg masses and moths. Slight rat rouble controlled by poison bait of zinc phosphate. (iii) Germination counts, monthly height observations, plant population, fortnightly maturity study and sugarcane yield. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Akluj, Deolali and Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 30.95 ton/ac.
(ii) 3.08 ton/ac.
(iii) Main effects of R and the interaction $R \times B$ are significant. Main effect of P, is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	\mathbf{B}_{2}	Mean
$\mathbf{R 1}_{1}$	27.07	30.09	28.38
R_{2}	30.38	30.09	30.24
R_{3}	30.71	34.32	32.52
R_{4}	31.50	33.45	32.48
Mean	29.91	31.99	30.95

S.E. of marginal mean of B S.E. of marginal mean of R S.E. of body of table
$=0.77$ ton/ac.
$=1.09$ ton/ac.
$=1.54$ ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Lakhamapur.

Ref :- Mh. 51(88).
Type : ' M '.

Object :-To find out the suitable ratio of A/S and G.N.C. for top dressing of \mathbf{N} with different doses of basal manure.

1. BASAL CONDITIONS :

(i) (a) Bajra+Tur -Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) Shallow, 12° to $15^{\prime \prime}$ deep, light brown, pH-8.1. 'F' type. (b) Refer soil analysis, Lakhamapur. (iii) 29th and $\mathbf{3 0 . 1 0 . 1 9 5 1 \text { . (iv) (a) } 2 \text { ploughings and } 2 2 0}$ harrowings. (b) Setts planted by hand $1^{\prime \prime}$ to $2^{\prime \prime}$ deep. (c) 10,000 setts/ac. (d) 4^{\prime} between rows $4^{\prime \prime}$ to $6^{\prime \prime}$ between plants. (e) N.A. (v) As per treatments. (vi) CO. 475 (medium). (vii) Irrigated. (viii) Interculturing 2 to 3, one light earthing up by Bahadur plough, and one final earthing up by ridging. (ix) 10.46°. (x) 20.1.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S and G.N.C. to give 450 lb ./ac. of $N: R_{1}=1: 0, R_{2}=2: 1, R_{3}=1: 2$ and $R_{4}=0: 1$.

N top dressed in 4 doses; at planting, 6 and 12 weeks after planting and at the time of earthing.
3. DESIGN
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $42.5^{\prime} \times 32^{\prime}$. (b) $34^{\prime} \times 24^{\prime}$. (v) 1 row each length wise and 4.25^{\prime} breadth wise each side. (vi) Yes.
4. GENERAL :
(i) The general growth and the yield was below normal. (ii) Attack of stem borer. Gammaxene dusted (iii) Germination counts, height and no. of tillers. (iv) (a) $1950-1954$. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 16.60 ton/ac.
(ii) 3.37 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Lakhamapur.

Ref:- Mh. 52(115).
Type :- ' M '.

Object :-To find out the suitable ratio of A/S and G.N.C. with different doses of basal manure.

1. BASAL CONDITIONS :

(i) (a) No. (b) N.A. (c) Nil. (ii) (a) ' F ' type, very shallow, 12 ' to 15 ' deep, light brown $p \mathrm{H}-8.1$. (b) Refer soil analysis, Lakhamapur. (iii) N.A. (iv) (a) 2 ploughings. (b) Setts are planted by hand, 1° to $2^{\prime \prime}$ deep in the soil. (c) 10,000 setts/ac. (d) Between rows 4^{\prime}, between plants- $4^{\prime \prime}$ to $6^{\prime \prime}$. (e) N.A. (v) According to treatments, half after 1st ploughing and half in furrows before planting. (vi) N.A. (vii) Irrigated. (viii) 2 to $\mathbf{3}$ hand ueedings, 3 to 4 interculturings by tooth cultivator implement, one light earthing up by Bahadur plough, one final earthing up and ridging. (ix) $10^{\prime \prime}$ to $24^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratios of A / S and G.N.C. to give 450 lb ./ac. of $\mathrm{N}: \mathrm{R}_{1}=1: 0, \mathbf{R}_{\mathbf{2}}=2: 1, \mathbf{R}_{\mathbf{3}}=1: 2$ and $\mathbf{R}_{\mathbf{4}}=0: 1$.

N top dressed in 4 doses, at planting, 6 and 12 weeks after planting and at the time of earthing.
3. DESIGN :
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) 3.75^{\prime} each length wise and one row each breadth wise. (vi) Yes.
4. GENERAL :
(i) The general growth and the yield was normal. (ii) Major pest-Top borer-cutting off affected shoots, collection, destroying of egg masses and moths. Slight rat trouble controlled by poison bait of zinc phosphate. (iii) Germination counts, monthly height observations, plant population, and fortnightly maturity study. (iv) (a) 1950-1954. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 26.67 ton/ac.
(ii) 4.68 too/ac.
(iii) Main effect of \mathbf{R} alone is highly sigoificant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{B}_{1}	$\mathbf{B}_{\mathbf{1}}$	Mean
\mathbf{R}_{1}	20.85	22.38	21.61
$\mathbf{R}_{\mathbf{2}}$	26.21	26.78	26.49
\mathbf{R}_{3}	22.34	31.45	26.89
$\mathbf{R}_{\mathbf{4}}$	32.66	30.76	31.71
Mean	25.51	27.84	26.67

S.E. of marginal mean of R		$=1.65$ ton/ac.
S.E. of marginal mean of B		$=1.17$ ton/ac.
S.E. of body of table		$=2.34$ ton/ac.

Crop :-S ugarcane.	Ref :-Mh. 53(98).
Site :-Agri. Res. Stn., Lakhamapur.	Type :-‘M'.

Object :-To find the suitable ratio of A/S and G.N.C. for top-dressing of N with different doses of F.Y.M.

1. BASAL CONDITIONS :

(i) (a) No. (b) Chinamug. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Shallow soil $6^{\prime \prime}$ to $9^{\prime \prime}$ deep with light brown colour. (b) Refer soil analysis, Lakhamapur. (iii) 24.10 .1953 . (iv) (a) 2 ploughings $10^{\prime \prime}$ deep with plough, clod crushings, opening ridges and furrows. , (b) Wet planting. (c) 10,000 setts/ac. (d) N.A. (e) 3 budded sett. (v) As per treatments. (vi) CO. 419 (late). (vii) Irrigated. (viii) Interculturing with tooth cultivator twice. Light earthing up by a plough. Final earthing up by plough. (ix) $20^{\prime \prime}$ to 33°. (x) 8 to 11.2.1955.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. as B.D. : $B_{1}=20$ and $B_{2}=40$ C.L./ac.
(2) 4 ratio of A / S and G.N.C. to give 450 lb ./ac. of $N: R_{1}=1: 0, R_{2}=2: 1, R_{3}=1: 2$ and $R_{4}=0: 1$. N top-dressed in 4 doses-at planting, 6 and 12 weeks after planting and at the time of earthing.
3. DESIGN :

1 (i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) 1.25 guntha. (b) 1.00 guntha, (v) 2 border rows. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of stem borer and top shoot borer. Removal of affected plants. Attack of pyrilla. Spraying of 50% B.H.C. (iii) Germination, tillering and borer count and botanical observations. (iv)
(a) 1950-1954.
(b) No.
(c) N.A.
(v) (a) and (b) N.A.
(vi) and (vii) Nil.

5. RESULTS:

(i) 29.54 ton/ac.
(ii) 2.75 ton/ac.
(iii) Main effect of R and interaction $R \times B$ are significant. Main effect of B is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	$\mathbf{B}_{\mathbf{2}}$	Mean
R_{1}	27.84	27.56	27.70
R_{2}	30.79	30.03	30.41
\mathbf{R}_{3}	29.26	27.91	28.58
$\mathbf{R a}_{4}$	30.72	32.21	31.46
Mean	29.65	29.42	29.54
S.E. of marginal mean of B S.E. of marginal mean of R S.E. of body of table		$\begin{aligned} & =0.68 \text { ton/ac. } \\ & =0.97 \text { ton/ac. } \\ & =1.37 \text { ton/ac. } \end{aligned}$	

Crop :-Sugarcane.
Site :-Agri. Res. Stn., Lakhamapur.

Ref: ${ }^{\text {Mh. 50(76). }}$
Type:- ${ }^{\prime}$ M.

Object :-To study the effect of placement of varying doses of Super with two levels of \mathbf{N} top-dressing.

1. BASAL CONDITIONS :
(i) (a) Bajra-Tur-Sugarcane. (b) Bajra+Tur. (c) Nil. (ii) (a) Very shallow, $12^{\prime \prime}$ to $15^{\prime \prime}$ deep, light brown, $p H=8$, ' F ' type. (b) Refer soil analysis, Lakhamapur. (iii) 28.8.1950. (iv) (a) 4 harrowings and 1 ploughing. (b) Setts planted by hand $1^{\prime \prime}$ to $2^{\prime \prime}$ deep in the soil. (c) 10,000 setts/ac. (d) 4^{\prime} between rows and $4^{\prime \prime}$ to $6^{\prime \prime}$ between plants. (e) -. (v) 20 C.L./ac. of F.Y.M. Half after 1 st ploughing and half in furrows before planting. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 to 3 hand weedings and 3-4 interculturinos 8 (ix) $10.46^{\prime \prime}$. (x) 21.1.1952.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of Super : $M_{1}=$ Placement at surface, $M_{2}=$ Half way down the ridge and $M_{8}=$ Placement at the base of the ridge.

Sub-plot treatments :

2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb}$./ac.
N as $\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}$. in $1: 2$ ratio. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied before planting, N applied in 4 equal doses-at planting, 6 weeks later, 12 weeks later and at the time of earthing up.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $54.5^{\prime} \times 33^{\circ}$.
(b) 1 guntha. (v) 1 row each on length side and 4.5^{\prime} on breadth side. (vi) Yes.
4. GENERAL :
(i) The general growth of the crop was normal. (ii) Attack of top borers, controlled by cutting of affected shoots; collection and destroying of egg masses and moths. (iii) Sugarcane yield, germination counts and heights. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 41.40 ton/ac.
(ii) (a) 3.76 ton/ac.
(b) 4.12 ton/ac.
(iii) Main-plot treatment, sub-plot treatment, and their interaction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{3}	Mean
P_{0}	42.07	41.86	41.96
$\mathrm{P}_{1} \mathrm{M}_{1}$	44.05	40.56	42.31
$\mathrm{P}_{1} \mathrm{M}_{2}$	38.23	40.80	39.51
$\mathrm{P}_{1} \mathrm{M}_{3}$	43.44	43.72	43.58
$\mathrm{P}_{2} \mathrm{M}_{1}$	41.12	45.39	43.25
$\mathrm{P}_{2} \mathrm{M}_{2}$	39.53	37.63	38.58
$\mathrm{P}_{2} \mathrm{M}_{3}$	38.32	40.57	39.45
Mean	41.21	41.58	

S.E. of P_{0} marginal mean
S.E of any PM marginal mean
$=0.89$ ton/ac.
S.E. of N marginal mean $\quad=1.53$ ton/ac.
S.E. of difference of two

1. means in the same row (except 1st row)
$=0.79$ ton/ac.
2. means in the same column (except 1st row)
$=3.36$ ton/ac.
$=3.22$ ton/ac.

$$
\begin{array}{lc}
\text { Crop :- Sugarcane. } & \text { Ref :- Mh. 51(89). } \\
\text { Site :-Agri. Res. Stn., Lakhamapur. } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the effect of placement of super with two levels of N top dressing.

1. BASAL CONDITIONS :
(i) (a) Bajra+Tur-Sugarcane. (b) Bajra+Tur. (c) Nil, (ii) (a) 'F' type; very shallow $12^{\prime \prime}$ to $15^{\prime \prime}$ deep light brown, $\mathrm{pH}=8.1$. (b) Refer soil analysis, Lakhmapur. (iii) 22, 24.8.1951. (iv) (a) 4 harrowings 1 ploughing. (b) Setts planted by hand, $1^{\prime \prime}$ to $2^{\prime \prime}$ deep. (c) 10,000 setts/ac. (d) 4^{\prime} between rows; $4^{\prime \prime \prime}$ to $6^{\prime \prime}$ between plants. (e) N.A. (v) 20 C.L./ac. of compost, half after ist ploughing and half in furrows before planting. (yi) CO. 419 (medium). (vii) Irrigated. (viii) 2 to 3 interculturings and 5 weedings. (ix) $10.46^{\prime \prime} .{ }^{\prime}(x) 6$ to 13.1.1953.

2. TREATMENTS :

Main-plot treatments :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$. ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ applied in furrows, $\mathrm{M}_{2}=$ applied half way down the ridge and $\mathrm{M}_{3}=$ applied at the bottom of the ridge.
Sub-plot treatments :
2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{l} \mathrm{l} . / \mathrm{ac}$.
\mathbf{N} as A/S+G.N.C. in $\mathbf{1 : 2} \mathbf{2}$ ratio.
3. DESIGN :
(i) Split-plot (ii) (a) 9 main-plots/block, 2 sub-plots/main-plot. (b) N.A. (iii) 3 . (iy) (a) $40^{\circ} \times 43.5^{\prime}$. (b) $32^{\prime} \times 34^{\prime}$. (v) 1 row each on length side and 4.75^{\prime} on breadth side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of stem borer and top-shoot borer observed, controlled by cutting of affected shoots, collection and destroying of egg masses and moths. (iii) Sugarcane yield, gérmination counts and heights. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon, Deolali. (b) N.A. (vi) and (vii) Nii.
5. RESULTS:
(i) 14.15 ton/ac.
(ii) (a) 2.77 ton/ac.
(b) 3.62 top/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	$\mathrm{N}_{\mathbf{8}}$	Mean
P_{0}	14.57	16.40	15.49
$\mathrm{P}_{1} \mathrm{M}_{1}$	11.43	11.46	11.44
$\mathrm{P}_{1} \mathrm{M}_{2}$	11.92	15.84	13.88
$\mathrm{P}_{1} \mathrm{M}_{3}$	12.53	13.80	13.16
$\mathrm{P}_{\mathbf{2}} \mathrm{M}_{1}$	13.38	15.37	14.37
$\mathrm{P}_{2} \mathrm{M}_{2}$	17.64	13.00	15.32
$\mathrm{P}_{2} \mathrm{M}_{3}$	15.14	10.28	12.71
Mean	13.97	14.33	

S.E. of P_{0} marginal mean	$=0.65$ ton/ac.
S.E. of any $P M$ marginal mean	$=1.13$ ton/ac.
S.E. of N marginal mean	$=0.69$ ton/ac.
S.E. of difference of two	
1. means in the same row (except. 1st row)	
2. means in the same column (except 1st row)	

$$
\begin{array}{ll}
\text { Crop :- Sugarcane. } & \text { Ref :- Mh. 52(150). } \\
\text { Site :- Agri. Res. Stn., Lakhamapur. } & \text { Type :- ‘M’. }
\end{array}
$$

Object :-To study the effect of placement of Super with two levels of N top dressing.

i. BASAL CONDITIONS:

(i) (a) No. (b) N.A. (c) Nil. (ii) (a) ' F ' type, very shallow, 12^{\prime} 'to 15^{\prime} deep, light brown, $\mathrm{p} H=8.1$. (b) Refer soil analysis, Lakhamapur. (iii) 22.8 .1952 . (iv) (a) 2 ploughings. (b) Setts planted by hand, $1^{\prime \prime}$ to 2° deep in the soil. (c) 10,000 setts/ac. (d) Between rows 4^{\prime}; between plants $4^{\circ \prime}$ to 6°. (e) N.A. (v) 10 C.L./ac. compost after first ploughing and 10 C.L./ac. compost in furrows before planting. (vi) N.A. (vii) Irrigated. (viii) 2 to 3 hand weedings, 3 to 4 interculturings, 1 light earthing up and 1 final earthing up. (ix) $10^{\prime \prime}$ to $24^{\prime \prime}$. (x) 26.1.1954.

2. TREATMENTS :

?. Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ applied in furrous, $\mathrm{M}_{2}=$ applied half way down the ridge and $M_{3}=$ applied at the bottom of the ridge.
Sub-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb}$./ac.
N as A/S+G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha. (b) 1 guntha. (v) 4.75^{\prime} each on length wise and one row each on breadth wise. (vi) Yes.
4. GENERAL :
(i) The general growth and yield was normal. (ii) Major pest-top borer; controlled by cutting of affected shoots, collection, destroying of egg masses and moths, slight rat trouble controlled by poison baits of zinc phosphate. (iii) Germination counts, monthly height observation, plant population, fortnightly maturity study. (iv) (a) 1952 to 1955. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 26.69 ton/ac.
(ii) (a) 3.58 ton/ac.
(b) 2.84 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	27.19	28.84	28.01
$\checkmark \mathbf{P}_{1} \mathrm{M}_{1}$	25.93	24.34	25.13
$\mathrm{P}_{1} \mathrm{M}_{2}$	27.25	25.43	26.34
$\mathbf{P} \mathbf{M}_{3}$	23.12	28.26	25.69
$\mathrm{P}_{2} \mathrm{M}_{1}$	25.62	25.82	25.72
$\mathrm{P}_{2} \mathrm{M}_{2}$	26.03	26.72	26.38
$\mathrm{P}_{2} \mathrm{M}_{3}$	25.21	28.50	26.86
Mean	26.08	27.29	

S.E. of P_{0} marginal mean
S.E. of any PM marginal $\quad=0.84$ ton/ac.
S.E. of difference of two

1. means in the same row (except 1 st row) $\quad=2.31$ ton/ac.
2. means in the same column (except $18+$ row)
$=2.64$ ton/ac.

Crop:- Sugarcane (Ratoon).
Site :- Agri. Res. Stn., Lakhamapur.

Ref. :-Mh. 52(151).
Type:~' M '.

Object:-To study the effect of placement of Super with two levels of \mathbf{N} top dressing on Sugarcane (ratoon).

1. BASAL CONDITIONS:

(i) (a) No. (b) N.A. (c) Nil. (ii) (a) ' F ' type, very shallow, $12^{\prime \prime}$ to $15^{\prime \prime}$ deep and light brown, $\mathrm{pH}=8.1$.
(b) Refèr soil analysis, Lakhamapur. (iii) N.A. (iv) (a) 2 ploughings. (b) Setti planted by hand $1^{\prime \prime}$ to $2^{\circ \prime}$ deep in the soil. (c) 10,000 setts/ac. (d) Between rows -4^{\prime} and between plants $4^{\prime \prime}$ to $6^{\prime \prime}$. (e) N.A. (v) 20 : C.L./ac. of F.Y.M., 10 C.L /ac. after first p'oughing and $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. in furrows before planting. (vi) N.A. (vii) Irrigated. (viii) 2-3 hand weedings, 3-4 interculturings by tooth cultivators, 1 light [earthing up by bahadur plough and final earthing up by ridger. (ix) $10.46^{\prime \prime}$ to $24.12^{\prime \prime}$. (x) N.A.

2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels cf $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} . / \mathrm{ac}$.
(1) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ applied in furrows, $\mathrm{M}_{2}=$ applied half way down the ridge and $\mathbf{M}_{\mathbf{3}}=$ applied at the bottom of the ridge.

Sub-plot treatments :

2 levels of $\mathrm{N}: \mathrm{N}_{1}=450$ and $\mathrm{N}_{2}=600 \mathrm{lb}$./ac.
N as $\mathrm{A} / \mathrm{S}+\mathrm{G} . \mathrm{N} . \mathrm{C}_{\text {. in }}$ 1:2 ratio.
3. DESIGN:
(i) Split-plot. (ii) (a) 9 main-plots/block and 2 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha.
(b) 1 guntha. (v) 4.75^{\prime} length wise and 1 row breadtb wise. (vi) Yes.

4. GENERAL :

(i) The general growth and the yield was telow normal. (ii) Major pest-top borer, controlled by cutting off affected shoots, collection and destroying of egg masses and moths; slight rat trouble ; controlled by poison bait and zinc phosphate. (iii) Germination counts, monthly height observation, plant population and fortnightly maturity study. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Deolali. (b) N.A. (vi) and (vii) Nil.

5: RESULTS :
(i) 19.80 ton/ac.
(ii) (a) 2.82 ton/ac.
(b) 2.15 ton/ac.
(iii) Effect of main-plot treatments alone is significant.
(iv) Av. yield of sugarcane in ton/ac.

		\mathbf{N}_{1}	N_{2}	Mean
P_{0}		21.7	21.7	21.7
$\dot{P}_{1} \mathbf{M}_{1}$		23.8	21.2	22.5
$\mathrm{P}_{1} \mathrm{M}_{2}$		16.8	18.3	17.5
$\mathrm{P}_{1} \mathrm{M}_{3}$		15.9	17.6	16.7
$\mathrm{P}_{2} \mathrm{M}_{1}$		17.0	13.8	15.4
$\mathrm{P}_{2} \mathrm{M}_{2}$		20.8	21.3	21.0
$\mathrm{P}_{2} \mathrm{M}_{3}$		19.8	19.7	19.8
Mean		19.9	19.7	

S.E. of P_{0} marginal mean

S.E. of any PM marginal mean
S.E. of \mathbf{N} marginal mean
S.E. of difference of two

1. means in the same row (except 1st row) $\quad=1.76$ tod/ac.
2. means in the same column (except lst row) $\quad=2.05$ ton/ac.
$=0.66$ ton/ac.
$=1.15$ ton/ac.
$=0.41$ ton/ac.

Crop:- Sugarcane.
Site :~'Agri. Res. Stn., Lakhamapur.

Ref:- Mh. 53(284).
Type :- 'M'.

Object :-To find out the effect of placement of Super with two levels of \mathbf{N} top dressing.

1. BASAL CONDITIONS :
(i) (a) Bajra+Tura-Sugarcane (Adsali). (b) Bajra+Tur. (c) 2 md./ac. of manure mixture. (ii) (a) Shallow soil, $6^{\prime \prime}$ to $5^{\prime \prime}$ deep with light brown colour. (b) Refer soil analysis, Lakhamapur. (iii) 16.8.1953. (iv) (a) 2 ploughings $10^{\prime \prime}$ deep, clod crushing and opening ridges, furrows. (b) Wet planting. (c) 10,000 setts/ac. (d) and (e) N.A. (v) 20 C.L./ac. of compost at preparatory tillage. (vi) CO. 419 (late). (vii) Irrigated. (viii) Interculturing with tooth cultivators twice, light earthing up by plough, weeding twice and final earthing up by plough. (ix) 20° to 33°. (x) 19 to 27.1.1955.
2. TREATMENTS :

Main-plot treatments :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} / \mathrm{ac}$.
(2) 3 methods of application of Super: $M_{1}=$ Placement at surface, M_{8} =Placement at half way down the ridge and $\mathbf{M}_{\mathbf{a}}=$ Placement at the base of the ridge.

Sub-plot treatments :

2 levels of $N: N_{3}=450$ and $N_{2}=600 \mathrm{lb} . / a c$.
N as A/S+G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block; 2 sub-plòts/main-plot. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha. (b) 1.0 guntha. (v) 2 rows along the border. (vi) Yes.
4. GENERAL :
(i) Heavy lodging during last week of Sept. 1954 due to heavy rains. (ii) Attack of stem borer. Incidence 1 to 12%, removing affected plants. Top shoot borer 2 to 11% attack, collection of egg mas. Medium attack of pyrilla, spraying 50% B.H.C. (iii) Height, tillering, germination counts and sugarcane yield. (iv) (a) $190-1953$. (b) Treatments assigned to the same plot in a block after every 4th year. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Since the plot wise yield data are not available analysis could not be carried out.
5. RESULTS :
(i) 40.86 ton/ac.
(ii) (a) N.A.
(b) 3.43 ton/ac.
(iii) N.A.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
\mathbf{P}_{0}	39.40	39.73	39.56
$\mathrm{P}_{1} \mathrm{M}_{1}$	47.98	40.67	44.32
$\mathrm{P}_{1} \mathrm{M}_{2}$	38.41	42.33	40.37
$\mathrm{P}_{1} \mathrm{M}_{3}$	41.55	42.83	42.34
$\mathrm{P}_{2} \mathrm{M}_{1}$	41.53	36.80	39.16
$\mathrm{P}_{2} \mathrm{M}_{2}$	47.19	38.37	42.78
$\mathrm{P}_{2} \mathrm{M}_{3}$	41.65	38.68	40.16
Mean	41.83	39.87	

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Padegaon.
Ref:- Mh. 48(58).
Type :- ' M '.

Object :-To find the optimum ratio of A / S and G.N.C. for top dressing \mathbf{N} with basal manuring of compost. 1. BASAL CONDITIONS :
(i) (a) Sugarcane-Jowar-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 21.1 .1948 . (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) $22.47^{\prime \prime}$ (x) 9.2.1949.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $\mathrm{B}_{0}=0$ and $\mathrm{B}_{1}=20$ C.L./ac.
(2) 6 ratios of A / S and G.N.C. to give $300 \mathrm{lb} /$ /ac. of $N: R_{0}=0, R_{1}=G . N . C$. alone, $R_{2}=A / S$ alone, $R_{y}=A / S+G . N . C$. in $1: 1, R_{4}=A / S+$ G.N.C. in $1: 2$ and $R_{5}=A / S+G . N . C$. in $2: 1$ ratio.
3. DESIGN :
(i) 2×6 Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) 4.5° length wise and 4^{\prime} breadth wise. (vi) Yes.

4. GBNERAL:

(i) Normal. (ii) N.A. (iii) Sucrose, glucose, fibre \% and sugarcane yield. (iv) (a) 1939-continued. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) Nil. (vii) $\mathbf{R}_{\mathbf{0}}$ plots gave $1 . w$ yield and hence not included in statistical analysis.

5. RESULTS :

(i) 41.15 ton/ac.
(ii) 4.10 ton/ac.
(iii) Main effects of R, B and their interaction are highly significant.
(iv) Av. yield of sugarcane in ton/ac.
(See (vii) under General)

	B_{0}	B_{1}	Mean
R_{1}	40.20	51.18	45.69
$\mathbf{R a}_{\mathbf{2}}$	14.09	48.92	31.51
\mathbf{R}_{3}	32.20	53.77	42.99
R_{4}	36.33	54.28	45.31
\mathbf{R}_{5}	26.52	53.97	40.25
Mean	29.87	52.42	41.15

S.E. of marginal mean of B	$=0.92$ ton/ac.
S.E. of marginal mean of R	$=1.45$ ton/ac.
S.E of body of table	$=2.05$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Padegaon.

Ref: Mh. 50(95).
Type :- ' M '.

Object :-To find the optimum ratio of A / S and Safflower Cake for top dressing \mathbf{N} with basal manur ng of compost.

1. BASAL CONDITIONS:

(i) (a) Sugarcane-Jowar-Groundnut. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analyis, Padegaon. (iii) 15.1 .1950 . (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (c) N.A. (v) Nil. (vi) CO. 419 (medium). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing. (ix) 2291°. (x) 14.2.1951.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of compost as B.D. : $B_{0}=0$ and $B_{1}=20$ C.L./ac.
(2) 6 ratios of A / S and Saffiower cake to give 300 lb ./ac. of $\mathrm{N}: \mathrm{R}_{\mathbf{0}}=0, \mathrm{R}_{1}=$ Cake alone, $\mathrm{R}_{2}=\mathrm{A} / \mathrm{S}$ alone, $R_{3}=A / S$ and Cake in $1: 1, R_{4}=A / S$ and Cake in $1: 2$ and $R_{5}=A / S$ and Cake in 2:1 ratio.
3. DESIGN :
(i) 2×6 Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) 4.5^{\prime} length wise and 4^{\prime} breadth wise. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Brix, sucrose in juice, fibre and Sugarcane yield. (iv) (a) 1939- contd. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) Nil. (vii) $\mathbf{R}_{\mathbf{0}}$ plots gave low yield and hence not included in statistical analysis.
5. RESULTS : -
(i) 38.23 ton/ac.
(ii) 5.40 ton/ac.
(iii) Main effects of R, B and interaction $R \times B$ are significant.
(iv) Av. yield of sugarcane in ton/ac.
(See (vii) under General)

	\mathbf{B}_{0}	B_{1}	Mean
R_{1}	39.88	49.74	44.81
\mathbf{R}_{2}	29.18	37.77	33.47
\mathbf{R}_{3}	32.60	37.46	35.40
\mathbf{R}_{4}	37.80	-48.49	43.14
R_{5}	27.70	41.70	34.70
Mean	33.43	43.03	38.23
S.E. of marginal mean of B S.E. of marginal mean of R S.E. of body of table			$\begin{aligned} & =1.21 \text { ton/ac. } \\ & =1.90 \text { ton } / \mathrm{ac} . \\ & =2.70 \text { ton } / \mathrm{ac} . \end{aligned}$

Crop:-Sugarcane.
Site :-Agri. Res. Stn., Padegaon.

Ref :-Mh. 51(134).
Type :- ' ${ }^{\prime}{ }^{\prime}$

Object :-To find the optimum ratio of A / S and cake for top dressing N with basal manuring of compost.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'D' type. (b) Refer soil analysis, Padegaon. (iii) 17.1.1951. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 14.68°. (x) 14.4.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $B_{0}=$ No compost, $B_{1}=$ Compost at 20 C.L./ac. and $B_{2}=$ Artificial compost i.e. 120 lb ./ac. of $\mathrm{N}+120 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+650 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
(2) 6 ratios of A / S and Cake to give 300 lb ./ac. of $\mathrm{N}: \quad \mathrm{R}_{0}=0, \quad \mathrm{R}_{1}=$ Cake alone, $\mathrm{R}_{2}=\mathrm{A} / \mathrm{S}$ alone, $\mathrm{R}_{3}=\mathrm{A} / \mathrm{S}$ and Cake in 1:1, $\mathrm{R}_{4}=\mathrm{A} / \mathrm{S}$ and Cake in 1:2 and $R_{5}=A / S$ and Cake in $2: 1$ ratio.

3. DESIGN :

(i) 6×3 Fact. in R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 16^{\prime}$. (b) $45.44^{\prime} \times 8^{\prime}$. (v) 4.5^{\prime} length wise and 4^{\prime} breadth wise. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Sucrose, glucose, fibre \% and sugarcane yield. (iv) (a) 1939-continued. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) Nil. (vii) \mathbf{R}_{0} plots gave low yield and hence not included in statistical analysis.
5. RESULTS :
(i) 35.82 ton/ac.
(ii) 4.36 ton/ac.
(iii) Main effects of \mathbf{R} and B and their interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.
(See (vii) under General)

Crop :-Sugarcane.

Site :-Agri. Res. Stn., Padegaon.

Ref:-Mh. 52(161).
Type:-‘M'.

Object :-To find the optimum ratio of A / S and cake for top dressing N with a basal dressing of compost.

1. BASAL CONDITIONS:

(i) (a) Sugarcane-Jowar, (b) Jowar. (c) Nil: (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 20.1.1952. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (c) N.A. (v) Nil. (vi) CO. 419 (medium). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) $11.01^{\prime \prime}$. (x) 18.3.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $B_{0}=$ No compost, $B_{1}=$ Compost at 20 C.L /ac. and $B_{2}=$ Artifical compost. i.e. $120 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+120 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+650 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
(2) 6 ratios of A / S and Cake to give 300 lb ./ac. of N : $\mathbf{R}_{\mathbf{0}}=\mathbf{0}, \mathbf{R}_{\mathbf{1}}=$ Cake alone, $\mathbf{R}_{\mathbf{2}}=\mathrm{A} / \mathrm{S}$ alone, $\mathbf{R}_{\mathbf{8}}=$ A / S and Cake in $1: 1, R_{4}=A / S$ and Cake in 1:2 and $R_{5}=A / S$ and Cake in 2:1 ratio.
3. DESIGN :
(i) 6×3 Fact in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 16^{\prime}$. (b) $45.44^{\prime} \times 8^{\prime}$. (v) 4.5^{\prime} lenght wise and 4^{\prime} breadth wise. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Sucrose, gulcose, fibre\% and sugarcane yield. (iv) a) 1939-continued. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) Nil. (vii) \mathbf{R}_{0} plots gave low yield and not included in statistical analysis.
5. RESULTS :
(i) 33.14 ton/ac.
(ii) 3.42 ton/ac.
(iii) Main effects of R and B and their interaction are significant.
(iv) Av. yield of sugarcane in tod/ac.
(See (vii) under General).

	$\mathbf{B}_{\mathbf{0}}$	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	33.41	37.15	41.43	37.33
$\mathbf{R}_{\mathbf{2}}$	15.09	21.77	38.14	25.00
$\mathbf{R}_{\mathbf{3}}$	29.72	32.50	39.44	33.89
$\mathbf{R}_{\mathbf{4}}$	31.04	37.85	41.54	36.81
$\mathbf{R}_{\mathbf{5}}$	26.60	33.88	37.51	32.66

Crop:- Sugarcane.
Site :- Agri. Res. Sìn. Padegaon.

Ref:~Mh. 53(241).
Type ;-' M '.

Object:-To find the optimum ratiop of \mathbf{A} / \mathbf{S} and cake for top dressing \mathbf{N} with basgl dressing of compost.

1. BASAL CONDITIONS:

[^1]2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $\mathrm{B}_{0}=$ No compost, $\mathrm{B}_{1}=$ compost at 20 C.L./ac. and $\mathrm{B}_{2}=$ Artificial compost i.e. $120 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+120 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+650 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$.
(2) 6 ratios of A / S and cake to give 300 lb ./ac. of $\mathrm{N}: \mathrm{R}_{0}=0, \mathrm{R}_{\mathbf{1}}=$ Cake alone, $\mathrm{R}_{\mathbf{2}}=\mathrm{A} / \mathrm{S}$ alone, $R_{3}=A / S$ and cake in 1: $1, R_{4}=A / S$ and cake in 1:2 and $R_{5}=A / S$ and cake in $2: 1$ ratio.
3. DESIGN:
(i) 6×3 Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 16^{\prime}$. (b) $45.44^{\prime} \times 8^{\prime}$. (v) 4.5^{\prime} length wise and 4^{\prime} breadth wise. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Attack of stem and top-shoot borers, weekly collection of eggmasses; hand picking and light trapping of moth fortnightly and removal of dead hearts. (iii) Germination counts, tillering counts, botanical observation, milleable and non milleable sugarcane counts and sugarcane yield. (iv) (a) 1939contd. (b) No. (c) N.A. (v) (a) Akluj and Kopergaon. (b) N.A. (vi) Nil. (vii) R_{0} plots gave low yield and hence not taken for statistical analysis.
5. RESULTS :
(i) 45.99 ton/ac.
(ii) 5.16 ton/ac.
(iii) Main effects of R, B and their interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.
(See (vii) under General)

	$\mathrm{B}_{\mathbf{0}}$	$\mathrm{B}_{\mathbf{1}}$	$\mathrm{B}_{\mathbf{2}}$	Mean
R_{1}	42.33	54.56	56.11	51.00
$\mathrm{R}_{\mathbf{2}}$	-25.56	37.06	50.62	37.75
$\mathrm{R}_{\mathbf{3}}$	37.33	48.09	51.50	45.64
$\mathbf{R}_{\mathbf{4}}$	41.57	57.62	57.58	52.26
$\mathbf{R}_{\mathbf{5}}$	28.50	48.81	52.52	43.28
Mean	35.06	49.23	53.69	45.99

S.E. of marginal mean of B	$=1.15$ ton/ac.
S.E. of marginal mean of R	$=1.49$ ton/ac.
S.E. of body of table	$=2.58$ ton/ac.

Crop:- Sugarcane.
Site :-Agri. Res. Stn., Padegaon.

Ref: Mh. 50(93).
Type :- ' \mathbf{M} '.

Object :-To find out the optimum ratio of A / S and cake for top dressing N with basal manuring or compost.

1. BASAL CONDITIONS :

(i (a) Nil. (bi and (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 24.1.1950. (iv) (a) and (b) N.A. (c) 10,000 setts/ac (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO.419 (mid-late).
(vii) Irrigated. (viii) 2 weedings, 2 interculturings and 1 earthing up. (ix).22.91'. (x) 25.2.1951.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $B_{1}=20, B_{2}=30$ and $B_{8}=40$ C.L./ac.
(2) 4 ratios of A / S and cake to give 375 lb ./ac. of $\mathrm{N}: \mathrm{R}_{1}=$ Cake alone, $\mathrm{R}_{2}=A / S$ and Cake in $1: 1$, $R_{3}=A / S$ and Cake in $1: 2$ and $R_{4}=A / S$ and cake in 2: 1 ratio.
3. DESIGN:
(i) 4×3 Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 40 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Brix, sucrose, juice \%, fibre \% and sugarcane yield. (iv) (a) to (c) No. (v) (a) and (b) Nil. (vi) Nil. (vii) As the experiments was taken in an area newly brought under sugarcane cultivation the block variation was very high which has resulted in high error.

5. RESULTS :

(i) 42.3 ton/ac.
(ii) 10.7 ton/ac.
(iii) Main effects of R and B and their interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{2}}$	$\mathbf{B}_{\mathbf{3}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	44.68	45.60	42.10	44.13
$\mathbf{R}_{\mathbf{2}}$	37.50	43.60	42.70	41.30
$\mathbf{R}_{\mathbf{3}}$	42.60	44.80	41.20	42.86
$\mathbf{R}_{\mathbf{4}}$	37.46	40.90	44.80	41.05
Mean	40.56	43.72	42.70	42.33

S.E. of marginal mean of $B \quad=2.40$ ton/ac.
S.E. of marginal mean of $R \quad=2.70$ ton/ac. S.E. of body of tatle

$$
=4.80 \text { ton } / \mathrm{ac}
$$

Crop :- Sugarcane.	Ref :-Mh. 50(94).
Site :-Agri. Res. Stn., Padegaon.	Type :-'M'.

Object : To find the optimum ratio of A / S and G.N.C. for top dressing N with basal manuring of compost.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Jowar. (b) N.A. (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 10.12.1950. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 475 (early). (vii) Irrigated. (viii) 2 weedings, 2 interculturings and 1 earthing up. (ix) 22.91". (x) 11.2.1952.

2. TREATMENTS :

Ail combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $B_{1}=20, B_{2}=30$ and $B_{3}=40$ C.L./ac.
(2) 5 ratio of A / S and G.N.C. to give 375 lb ./ac. of $\mathrm{N}: \mathrm{R}_{\mathbf{1}}=$ G.N.C. alone, $R_{2}=A / S$ alone, $R_{3}=A / S$ and G.N.C. in $1: 1, R_{4}=A / S$ and G.N.C in 1:2, and $R_{5}=A / S$ and G.N.C. in $2: 1$ ratio.

3. DESIGN:

(i) 5×3 Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL ;
(i) Normal. (ii) Nil. (iii) Brix, sucrose, glucose, fibre $\%$ and sugarcane yield. (iv) (a) 1950 to 1951. (b) No. (c) No. (v) (a) Nil. (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) 49.05 ton/ac.
(ii) 6.50 ton/ac.
(iii) Main effects of \mathbf{R} and \mathbf{B} and their interaction are not significant.
(iv) Av. yield of sugarcane in tor/ac.

	\mathbf{B}_{1}	B_{2}	B_{3}	Mean
\mathbf{R}_{1}	46.81	51.94	51.44	50.06
\mathbf{R}_{8}	49.55	45.48	45.74	46.92
Rs	50,21	49.83	48.51	49.52
R.	43.09	48.82	52.04	47.93
R 5	46.87	52.39	53.12	50.79
Mean	47.31	4969	$50.1{ }^{7}$	49.05
S.E. of marginal mean of B S.E. of crarginal mean of R S.E. of tocy of table				$\begin{aligned} & =1.45 \mathrm{ton} / \mathrm{ac} \\ & =1.87 \mathrm{ton} / \mathrm{ac} \\ & =3.25 \text { ton } / \mathrm{ac} \end{aligned}$

Crop:-Sugarcane.

Site :- Agri. Res. Stn., Padegaon.

Ref:-Mh. 51(129).
Type:- ' M '.

Object:-To find the ratio of A / S and cake for top dressing N with basal manuring of compost.

1. BASAL CONDITIONS:
(i) (a Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 28.10.1951. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 475 (early). (vii) Irrigated. (viii) 2 intereulturings, 2 weedings and 1 earthing up. (ix) 14.68". (x) 20.2.1953.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $B_{1}=20, B_{2}=30$ and $B_{3}=40$ C.L./ac.
(2) 5 ratios of A / S and cake to give $375 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{R}_{1}=$ Cake alone, $\mathrm{R}_{2}=\mathrm{A} / \mathrm{S}$ alone, $\mathrm{R}_{3}=\mathrm{A} / \mathrm{S}$ and Cake in 1:1, $R_{4}=A / S$ and Cake in 1:2, and $R_{5}=A / S$ and Cake in $2: 1$ ratio.
3. DESIGN :
(i) 5×3 Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Sucrose, glucose, fibre \% and sugarcare yield." (iv) (a) 1950 to 1951. (b) No.
(c) N.A. (v) (a) Nil. (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) 45.31 ton/ac.
(ii) 8.75 ton/ac.
(iii) Main effect of \mathbf{B} and interaction $\mathbf{R} \times \mathbf{B}$ are significant; while main effect of \mathbf{R} is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{B}_{\mathbf{3}}$	$\mathbf{B}_{\mathbf{3}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	44.00	47.57	3892	43.50
$\mathbf{R}_{\mathbf{2}}$	41.97	44.76	43.79	43.51
$\mathbf{R}_{\mathbf{3}}$	46.88	43.02	39.70	43.20
$\mathbf{R}_{\mathbf{4}}$	49.35	55.84	44.61	49.93
$\mathbf{R}_{\mathbf{5}}$	45.61	53.25	40.26.	46.39

Crop :~ Sugarcane.
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 50(101).
Type :- ' M '.

Object : -To find the optimum ratio of A / S and cake for top dressing N with basal manuring of compost.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) Nil. (c) Nil. (ii) (a) ' B ' type. (b) Refer soil analysis, Padegaon. (iii) N.A. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing. (ix) $22.91^{\prime \prime}$. (x) N.A.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D : $\mathrm{B}_{1}=20, \mathrm{~B}_{2}=40$ and $\mathrm{B}_{3}=60$ C.L./ac.
(2) 5 ratios of A / S and cake to give $450 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}: \mathrm{R}_{1}=$ Cake alone, $\mathrm{R}_{\mathbf{2}}=\mathrm{A} / \mathrm{S}$ alone, $\mathrm{R}_{\mathbf{3}}=\mathrm{A} / \mathrm{S}$ and Cake in $1: 1, R_{4}=A / S$ and Cake in $1: 2$ and $R_{5}=$ A / S and Cake in 2 : 1 ratio.
3. DESIGN :
(i) 5×3 Fact in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Brix, sucrose \%, fibre \% and sugarcane yield. (iv) (a) $1950-1954$. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 64.68 ton/ac.
(ii) 9.00 ton/ac.
(iii) Main effects of R and B and their interaction are significaut.
(iv) Av yield of sugarcane in ton/ac.

		B_{1}	B_{2}	B_{3}
R_{1}	69.20	69.54	60.23	Mean
R_{2}	59.78	61.93	54.20	66.32
$\mathrm{R}_{\mathbf{3}}$	54.98	68.35	7312	58.64
$\mathrm{R}_{\mathbf{4}}$	68.53	68.80	69.77	65.48
$\mathrm{R}_{\mathbf{6}}$	54.87	68.43	68.43	69.03
Mean	61.47	67.41	65.15	63.91

S.E. of marginal mean of B	$=2.01$ ton/ac.
S.E. of marginal mean of R	$=2.59$ ton/ac.
S.E. of tody of table	$=4.50$ ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Padegaon.

Ref :~Mh. 52(165).
Type :- 'M'.

Ot ject :-To find the ratio of A / S and cake for top dressing N with basal manuring of compost.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ratoon. (b) Sugarcane (Adsali). (c) As per treatments. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) Ratooning on 12.2.1952. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and earthing up once. (ix) 11.01*. (x) 28.3.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D.: $B_{1}=20, B_{2}=40$ and $B_{3}=60$ C.L./ac.
(2) 5 ratios of A / S and cake to give 450 lb ./ac. of $N: R_{1}=$ Cake alone, $R_{2}=A / S$ alone, $R_{2}=A / S$ and Cake in $1: 1, R_{4}=A / S$ and cake in $1: 2$ and $R_{6}=A / S$ and Cake in 2:1 ratio.
Manures applied to last year's sugarcane crop.
3. DESIGN :
(i) 5×3 Fact. in R.B.D. (ii) (a) 15 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Brix, glucose, sucrose \%, and sugarcane yield. (iv) (a) 1950-1955. (b) Yes. (c) N.A. (v) (a), (b) N.A. (vi) Nil. (vii) This years ratoon crop received $300 \mathrm{lb} . / \mathrm{ac}$. of N as \mathbf{A} / \mathbf{S} and Cake in 2:1 ratio; no basal dressing of compost was given.
5. RESULTS :
(i) 52.32 ton/ac.
(ii) 7.77 ton/ac.
(iii) Main effects of R and B and their interaction are not sigaificant.
(iv) Av. yield of sugarcane in tov/ac.

	B_{1}	\mathbf{B}_{2}	\mathbf{B}_{3}	Mean
R_{1}	54.59	56.53	54.13	55.08
$\mathbf{R}_{\mathbf{2}}$	49.12	48.14	39.59	45.61
R_{8}	51.78	57.50	53.45	54.24
R_{4}	59.78	52.32	51.71	54.60
R_{5}	47.78	54.38	53.94	52.03
Mean	52.61	53.83	50.56	52.32
S.E. of marginal mean of B			$=1.74$ ton/ac.	
S.E. of marginal mean of R			$=2.24$ ton/ac.	
S.E. of body of table			$=3.88$ ton/ac.	

Crop:-Sugarcane.

Type :-Agri. Res. Stn., Padegaon.

Ref: ${ }^{-M h}$. 52 (13).
Type:-' M '.

Object :-To find the optimum ratio of A/S and G.N.C. for top-dressing \mathbf{N} with basal manuring of bulky manures.

1. BASAL CONDITIONS :

(i) (a) Sugarcane (Adsali)—Ratoon-Bajra and Gram. (b) Bajra and Gram. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 31.8.1952. (iv) (a) Deep ploughing $9^{\prime \prime}$ to 10° deep. (b) The buds of the sugarcane are exposed and allowed to germinate under soil. (c) to (e) N.A. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii) 2 to 3 hand weedings, 2 to 3 interculturings by tooth cultivators 8 to 10 weeks after planting. Partial tilling (tagarni) by sabul plough. Earthing up after a period of 5 to $5 \frac{1}{2}$ months. (ix) 15.35". (x) 20.1.1954.

2. TREATMENTS :

All combinations of (1) and (2)

(1) 3 levels of compost as B.D. : $B_{1}=20, B_{2}=40$ and $B_{8}=60$ C.L./ac.
(2) 5 ratios of A / S and G.N.C. to give $450 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}: \mathbf{R}_{\mathbf{1}}=\mathbf{G}$.N.C. alone, $\mathrm{R}_{2}=\mathrm{A} / \mathrm{S}$ alone, $\mathrm{R}_{8}=\mathrm{A} / \mathrm{S}$ and G.N.C. in $1: 1, R_{4}=A / S$ and G.N.C. in $1: 2$ and $R_{B}=A / S$ and G.N.C. in $2: 1$ retio.
3. DESIGN :
(i) 5×3 Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4 . (iv) (a) $49^{\prime} \times 36^{\prime}$. (b) $38.89^{\circ} \times 28^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. Lodged during 2nd fortaight of May and August. (ii) Attack of stem and top shoot borers ; weekly collection of egg-masses of the borers, hand picking of moth with nets, trapping of moth and fortnightly removal of dead hearts. (iii) Germination counts, tillering counts, milleable and non-milleable sugarcane counts, botanical observations and sugarcane yield. (iv) (a) 1951-55: (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 72.15 ton/ac.
(ii) 7.85 ton/ac.
(iii) Main effect of \mathbf{R} and B and their interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	B_{2}	B_{3}	Mean
\mathbf{R}_{1}	70.59	75.63	79.23	75.15
\mathbf{R}_{2}	58.09	67.56	72.19	65.94
R_{3}	68.97	72.53	80.48	74.00
\mathbf{R}_{4}	70.58	80.39	73.77	74.91
R_{5}	61.81	67.74	80.71	70.79
Mean	66.01	72.77	77.27	72.15
	S.E. of marginal mean of B S.E. of marginal mean of \mathbf{R} S.E. of body of table		$\begin{aligned} & =1.75 \text { ton/ac. } \\ & =3.27 \text { ton/ac. } \\ & =3.93 \text { tod/ac. } \end{aligned}$	

Crop :-Sugarcane (Adsali).
Site :-Agri. Res.Stn., Padegaon.

Ref :-Mh. 53(262).
Type : © \mathbf{M} ’.

Object : -To find the optimum ratio of A/S and G.N.C. for top-dressing \mathbf{N} with basal manuring of F.Y.M.

1. BASAL CONDITIONS:
(i) (a) Sugarcane (Adsali)-Ratoon-Paddy-Gram and Bajra. (b) Gram and Bajra. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Padegaon. (iii) 22.7.1953. (iv) (a) Deep ploughing 1, 2 ploughings across the first $9^{\prime \prime}$ to $10^{\prime \prime}$ deep. (b) N.A. (c) 10,000 setts/ac. of 3 buds. (d) and (c) N.A. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii) 2 to 3 hand weedings, 2 to 3 interculturings by tooth cultivators 8 to 10 weeks after planting, partial .tilling. Earthing up after a period of 5 to $5 \frac{1}{2}$ months. (ix) $20.16^{\prime \prime}$. (x) 6, 12.12.1954.:
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of F.Y.M. as B.D. : $B_{1}=20, B_{2}=40$ and $B_{3}=60$ C.L./ac.
(2) 5 ratios of N as A/S and G.N.C. : $R_{1}=0: 1, R_{2}=1: 1, R_{3}=1: 2, R_{4}=2: 1$ and $R_{5}=1: 0$. N at 450 lb ./ac. applied as top-dressing.
3. DESIGN :
(i) 3×5 Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) Two rows all round the net plot. (vi) Yes.
4. GENERAL :
(i) Good, crop lodged by the end of June. (ii) Attack of stem and top shoot borers; weekly collection of egg-masses, hand picking, light trapping of moth and fortoightly removal of dead hearts. (iii) Yietd of sugarcane. (iv) (a) 1951-55. (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 64.67 ton/ac.
(ii) 6.22 too/ac.
(iii) Main effects of B and R are significant while their interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	B_{2}	B_{3}	Mean
R_{1}	66.14	73.82	67.34	69.10
R_{2}	60.90	69.58	65.38	65.29
R_{8}	63.68	65.95	69.55	66.39
$\mathrm{R}_{\text {d }}$	58.30	61.79	60.86	60.32
Rs	56.76	65.61	64.39	62,25
Mean	61.16	67.35	65.50	64.67
	S.E. of marginal mean of \mathbf{B} $=1.38 \mathrm{ton} / \mathrm{ac}$. S.E. of marginal mean of \mathbf{R} $=1.78 \mathrm{ton/ac}$. S.E. of body of table $=3.09$ ton/ac.			

```
Crop:- Sugarcane (Adsali).
Site :- Agri. Res. Stn., Padegaon.
```

Ref:- Mh. 51(139).
Type :- ' \mathbf{M} '.

Object :-To find the optimum ratio of A / S and Cake for top dressing \mathbf{N} with basal manuring of compont.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 30.8.1951. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4° apart. (c) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 11.01° (x) 28.1.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $\mathrm{B}_{1}=20, \mathrm{~B}_{2}=40$ and $\mathrm{B}_{3}=60$ C.L./ac.
(2) 5 ratios of A / S and Cake to give 450 lb ./ac. of $\mathrm{N}: \mathbf{R}_{\mathbf{1}}=$ Cake alone, $\mathbf{R}_{\mathbf{g}}=\mathrm{A} / \mathrm{S}$ alone, $\mathbf{R}_{\mathrm{B}}=\mathrm{A} / \mathrm{S}$ and Cake in 1:1, $R_{4}=A / S$ and Cako in 1:2 and $R_{5}=A / S$ and Cake in $2: 1$ ratio.
3. DESIGN :
(i) 3×5 Fact. in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Brix, sucrose, glucose $\%$ and sugarcane yield. (iv) (a) $1950-1954$. (b) No. (c) N.A. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $70.62 \mathrm{ton} / \mathrm{ac}$.
(ii) 10.47 ton/ac.
(iii) Main effect of R and interaction $R \times B$ are-significant while the main effect of B is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	$\mathbf{B}_{\mathbf{8}}$	$\mathbf{B}_{\mathbf{g}}$	Mean
\mathbf{R}_{1}	69.39	66.38	64.68	66.82
$\mathbf{R}_{\mathbf{2}}$	62.18	64.65	63.64	63.49
\mathbf{R}_{3}	73.25	79.00	71.61	74.62
$\mathbf{R a}_{4}$	71.01	76.87	79.21	75.69
R_{5}	68.25	81.83	67.31	72.46
Mean	68.81	73.75	69.29	70.62
S.E. of marginal mean of B S.E. of marginal mean of R S.B. of body of table			$\begin{aligned} &= 2.34 \text { ton/ac. } \\ &=3.02 \text { ton/ac. } \\ &=5.23 \text { ton/ac. } \end{aligned}$	

Crop :- Sugarcane.	Ref :- Mh. 53(245).
Site :- Agri. Res. Stn., Padegaon.	Type : ' 'M'.

Object:-To find the optimum combination of A / S and G.N.C. for top dressing N with basal manuring of compost.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ratoon. (b) Adsali sugarcane. (c) As per treatments. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) ratoon, 28.1.1953. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4' apart. (e) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 16.35^{*}. (x) 18.5.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of compost as B.D. : $B_{1}=20, B_{2}=40$ and $B_{3}=60$ C.L./ac.
(2) 5 ratios of A / S and cake to give 450 lb ./ac. of $\mathrm{N}: \mathrm{R}_{1}=$ Cake alone, $\mathrm{R}_{2}=\mathrm{A} / \mathrm{S}$ alone, $\mathrm{R}_{3}=\mathrm{A} / \mathrm{S}$ and Cake in $1: 1, R_{4}=A / S$ and Cake in $1: 2$ and $\mathrm{R}_{5}=\mathrm{A} / \mathrm{S}$ and Cake in 2:1 ratio.
These were applied to last year's adsali crop.
3. DESIGN:
(i) 5×3 Fact: in R.B.D. (ii) (a) 15. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Brix, sucrose, glucose $\%$ and sugarcane yield. (iv) (a) 1950-1955. (b) Yes. (c) N.A. (v) (a) and (b) N.A.(vi) and (vii) Nil.

5. RESULTS :

(i). 50.32 ton/ac.
(ii) 6.63 ton/ac.

1. (iii) Main effect of B alone is significant.
(iv) Av. yield of sugarcane in ton/ac.

	B_{1}	$\mathrm{B}_{\mathbf{2}}$	\mathbf{B}_{8}	Mean
\mathbf{R}_{1}	49.13	52.87	57.01	53.00
\mathbf{R}_{2}	43.55	47.71	52.02	47.76
\mathbf{R}_{3}	46.86	48.75	50.28	48.63
R_{4}	53.23	53.94	54.47	53.88
R_{5}	48.18	49.09	47.69	48.32
Mean	48.19	50.47	52.29	50.32
S.E. of marginal mean of B S.E. of marginal mean of R S.E. of body of table			$\begin{aligned} & =1.48 \text { ton/ac. } \\ & =1.91 \text { ton/ac. } \\ & =3.31 \text { ton/ac. } \end{aligned}$	

Crop :- Sugarcane.
Ref ;-Mh, 52(162 $).$
Site :- Agri. Res. Stn., Padegaon.
Type :- 'M'.

Object :-To study the effect of C / N and A/S along with G.N.C. on growth and maturity of Sugarcane.

1. BASAL COŃDITIONS:
(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 2.2.1952. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO.A19. (mid-late). (vii) Irrigated. (viii) 2 inrerculturings, 2 weedings and 1 earthing up. (ix) 11.01". (x) 20.2.1953.
2. TREATMENTS :

300 lb ./ac. of N applied as follows :-

1. C / N and A / S in 1:2 ratio.
2. A / S and G.N.C. in $1: 2$ ratio.
3. \mathbf{C} / \mathbf{N} and G.N.C. in $1: 1$ ratio.
4. A/S and G.N.C. in $1: 1$ ratio.
5. C / N and G.N.C. $+4 / \mathrm{S}$ in $1: 1: 2$ ratio applied at one time.
6. C / N and G.N.C. $+A / S$ in $1: 1: 2$ fatio with A / S applied at planting and C / N and G.N.C. at earthing up,
7. DESIGN :
(i) R.B.D. (ii) (a) 6.
(b) N.A. (iii) 4.
(iv) (a) N.A.
(b) 192 sq. ft. (v) N.A. (vi) Yes.
8. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Sucrose, glucose, fibre \% and sugarcane yield. (iv) (a) 1952 to 1954.
(b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
9. RESULTS :
(i) 31.81 ton/ac.
(ii) 7.20 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Ay. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	35.55
2.	30.76
3.	33.93
4.	33.50
1.	30.66
6.	26.46
S.E./mean	$=3.60$ ton/ac.

Crop :- Sugarcane.	Ref mh. 53 (242)
Site :m Agri. Res. Str., Padegaon.	'Tỵ'pe s'm'.

Object :-To study the effect of C / N and A / S along with G.N.C. on growth and maturity of Sugarcane.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 8.2.1953. (iv) (a) to (e) N.A. (v) 20 C.L./ac. of F.Y.M. (vi) CO.. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) $16.35^{\prime \prime}$. (x) 11.5.1954.
2. TREATMENTS :
$300 \mathrm{lb} . / \mathrm{ac}$. of N applied as follows: -
3. A/S + G.N C. in 1:2 ratio.
4. $\mathbf{C} / \mathbf{N}+$ G.N.C. in $1: 2$ ratio.
5. $A / S+G . N . C$ in $1: 1$ ratio.
6. $\mathbf{C} / \mathbf{N}+$ G.N.C. in $1: 1$ ratio.
7. A/S+G.N C. $+\mathrm{C} / \mathrm{N}$ in $1: 1: 2$ ratio.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 32^{\prime}$. (b) $26^{\prime} \times 24^{\prime}$. (v) 2^{\prime} length wise and 4^{\prime} breadth wise. (vi) Yes.
9. GENERAL :
(i) Good (ii) Nil. (iii) Sucrose, glucose, fibre \% and sugarcane yield. (iv) (a) 1952, to 1954. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) 55.51 ton $/ \mathrm{ac}$.
(ii) 9.10 ton/ac.
(iii) Treatments do not differ sigaificantly.
(iv) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	60.33
2.	55.65
3.	57.04
4.	52.90
5.	51.64
S.E./mean	$=4.55$ ton/ac.

Crop :- Sugarcane
Site :- Agri. Res. Stn., Padegaon.

Ref:~Mh. 50(100).
Type : ' 'M'.

Object :-To study the effect of placement of $\mathrm{P}_{2} \mathrm{O}_{5}$ with Sann as basal manuring on Sugarcane yield.'

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) N.A. (c) N.A. (ii) (a) 'B' type; medium deep. (b) Refer soil analysis, Padegaon. (iii) 14.12.1950. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Sann as G.M. 375 lb /ac. of N top dressed as A / S and cake in 1:2 ratio. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 14.68". (x) 15.4.1952.

2. TREATMENTS:

1. No $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at surface.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ half way down the ridge.
4. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to sann crop while sowing.
6. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at sowing of sgnn and $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in furrows at planting of sugarcane.
7. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of burrying sann.
8. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ and 100 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ to Sugarcane crop at surface,

For treatments 2, 3, 4 and 8, $\mathrm{P}_{2} \mathrm{O}_{5}$ applied before planting of sugarcane. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super and $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ as Pot. Sul.
3. DESIGN :
(i) R.B.D.
(ii) (a) 8. (b) N.A.
(iii) 5
v) (a) N.A.
(b) 1/40 ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Brix, sucrose \%, fibre \% and sugarcane lyield. (iv) (a) 1950-contd. (modified in 1954). (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 45.11 ton/ac.
(ii) 3.08 ton/ac.
(iii) Treatment differences are significant.
(iv) Av. yield of sugarcane in ton./ac.

Treatment	Av. yield
1.	41.71
2.	48.06
3.	50.64
4.	44.56
5.	46.28
6.	: 46.33
7.	39.80
8.	43.47
S.E./mean	$=1.37$ ton./ac.

$$
\begin{array}{ll}
\text { Crop :- Sugarcane. } & \text { Ref :- Mh. 51(138). } \\
\text { Site :- Agri. Res. Stn., Padegaón. } & \text { Type :- 'M'. }
\end{array}
$$

Object :-To study the effect of placement of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ with Sann as basal manuring on Sugarcane yield.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium soil, 'B' type. (b) Refer soil analysis, Padegaon. (iii) 16.11.1951. (iv) (a) and (b) N.A. (c) 10,000 sett/ac. (d) 4^{\prime} apart. (e) N.A. (v) Sarrm was burried in June. (vi) CO. 419 (mid-late). (vii) Unirrigated. (viii) 2 intercultuṛings, 2 weedings and 1 earthing up. (ix) $11.01^{\prime \prime}$. (x) 232.1953.

2. TREATMENTS :

1. No $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at surface.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ half way down the ridge.
4. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to sann crop while sowing.
6. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of sowing sann +50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ in furrows at planting of sugarcane.
7. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of burrying sann.
8. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}+100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{K}_{2} \mathrm{O}$ at surface.
9. DESIGN :
(i) R.B.D. (ii) 8. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) N.A. (vi) Yes.
10. GENERAL :
(i) Normal. (ii) Nil. (iii) Brix, sucrose, glucose\% and sugarcane yield. (iv) (a) 1950-contd. (Modified in 1954). (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
11. RESULTS:
(i) 50.62 ton/ac.
(ii) 4.92 ton/ac.
(iii) Treatments differ significantly.
(iv) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	41.92
2.	48.44
3.	56.09
4.	5371
5.	49.78
6.	51.13
7.	50.62
8.	53.29
S.E./mean	$=2.19$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Padegaon.

Ref s- Mh. 52(14).

Object :-To study effect of placement of $\mathrm{P}_{2} \mathrm{O}_{5}$ with Sann as basal mianuring on Sugarcane yield.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Rabi Jowar-Sann. (b) Sann. (c) As per treatments. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 26.11.1952. (iv) (a) Deep ploughing 9° to $10^{\prime \prime}$ deep. (b) The buds of the sugarcane are exposed and allowed to germinate under soil. (c) to (e) N.A. (v) $375 \mathrm{lb} / \mathrm{ac}$. of N as A / S and G.N.C. in $1: 2$ ratio. (vi) CO.419. (vii) Irrigated. (viii) 2 to 3 hand weedings, 2 to 3 interculturings by tooth cultivators, 8 to 10 weeks after planting, partial tilling and earthing up after a p riod of 5 to 5i months. (ix) $15.35^{\prime \prime}$. (x) 9.3.1954.
2. TREATMENTS:

1. $\mathrm{No} \mathrm{P}_{2} \mathrm{O}_{5}$.
2. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ on the surface.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ half way down the ridge.
4. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Sann crop while sowing.
6. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of sowing of $S a n n$ and 50 lb ./ac. in furrows at the time of planting of sugarcane.
7. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of burrying Sann.
8. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ at the time of planting.
9. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 5: (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) Two rows. (vi) Yes.
10. GENERAL :
(i) Good, crop lodged during the 2nd fortnight of October. (ii) Attack of stem and top shoot borers, collection of egg-masses, hand picking of moths with nets, light trapping of moths and fortnightly removal of dead hearts. (iii) Germination counts, tillering count, botanical observations, milleable and non-milieable sugarcane counts and cane yield. (iv) (a) 1950-N.A. (b) No. (c) N.A. (v), (a) and (b) No. (vi) and (vii) Nil.
11. RESULTS:
(i) 58.86 ton $/ \mathrm{ac}$.
(ii) 5.10 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	55.58
2.	59.44
3.	61.47
4.	
5.	58.05
6.	57.91
7.	58.65
8.	61.04
S.E./mean	$=28.75$

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Padegaon.
Ref:- Mh. 53(183).
Type :- ' M '.
Object :-To study the time and the method of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ with basal manuring of Sann on Sugarcane yield.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-Rabl Jowar-Sann. (b) Sann. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Padegaon. (iii) 16.11.1953. (iv) (a) Deep ploughing and 2nd ploughing across the first $9^{\prime \prime}$ and $10^{\prime \prime}$ deep harrowing. (b) N.A. (c) 10,000 setts/ac. of 3 buds. (d) and (e) N.A. (v) $375 \mathrm{lb} . / \mathrm{ac}$. of N as A/S and G.N.C. in 1:2 ratio. (vi) CO.419. (vii) Irrigated. (viii) 2 to 3 weedings, 2 to 3 interculturings by tooth cultivators, 8 to 10 weeks after planting and partial tilling. Earthing up after a period of 5 to $5 \frac{1}{2}$ months. (ix) $20.16^{\prime \prime}$. (x) 3 to 5.2.1955.

2. TREATMENTS :

1. No $\mathrm{P}_{2} \mathrm{O}_{5}$.
2. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at surface.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ half way down the ridge.
4. $100 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to Sann crop while sowing.
6. $50 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of sowing of S ann and 50 lb ./ac. in furrows at the time of planting. :
7. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the time of burrying Sann.
8. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}+100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$ at the time of planting of sugarcane.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $\mathrm{K}_{2} \mathrm{O}$ as Mur. of Pot.
9. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 5. (iv) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) 2 rows all round the net plot. (vi) Yes.
10. GENERAL :
(i) Good, crop lodged during the 2 nd fortnight of October. (ii) Atrack of stem and top shoot borers, collection of egg masses, hand picking of moths with nets, light trapping of moths and fortnightly removal of dead hearts. (iii) Sugarcane yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
11. RESULTS:
(i) 57.10 ton/ac.
(ii) 4.00 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of sugarcane in tod/ac.

Treatment	Av. yield
1.	53.90
2.	57.60
3.	55.80
4.	55.70
5.	60.10
6.	59.10
7.	56.30
8.	57.90
S.E./mean	$=1.79$ ton/ac.

Crop :-Sugarcane (Adsali).	Ref :-Mh. $51(137)$.
Site :-Agri Res. Stn., Padegaon.	Type :- \mathbf{M}^{\prime}.

Object :-To study the effect of placement of $\mathrm{P}_{2} \mathrm{O}_{5}$ in ccombination with varying doses of N on yield of Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) Deep soil of alluvial nature. (b) Refer soil analysis, Padegaon. (iii) 14.8 .1951 . (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up.
(ix) 14.68^{*}. (x) 7.2.1953.
2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)+One extra treatment
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 methods of application of Super: $\mathbf{M}_{1} \leftrightharpoons$ Placement at surface, $\mathbf{M}_{2}=$ Placement 3° below the surface and $\mathrm{M}_{3}=$ Placement $6^{\prime \prime}$ below the surface.
Extra treatment is :
150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ appled in two doses half at planting and half at earthing up.
Sub-plot treatments :
2 levels of $N: N_{1}=450 \mathrm{lb}$./ac. of N as A / S and G.N.C. in 1:2 ratio and $N_{2}=600 \mathrm{lb}$:/ac. of N as A/S and G.N.C. in 1:2 ratio.
3. DESIGN :
(i) Split-plot. (ii) (a) 10 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 1 guntha. (v) N.A. (vi) Yes.
4. GENERAL
(i) Good. (ii) Nil. (iii) Sugarcane yield. (iv) (a) $1950-1953$. (b) No. (c) N.A. (v) (a) Kopergaon and Akluj. (b) N.A. (vi) and (vii) NII.
5. RESULTS :
(i) 60.08 too/ac.
(ii) (a) 7.88 ton/ac.
(b) 9.08 too/ac.
(iii) None of the effects and their interaction are significant.
(iv) Av yield of sugarcane in ton/ac.

	N_{1}	N_{2}	Mean
P_{0}	60.13	58.33	59.23
$\mathrm{P}_{1} \mathrm{M}_{1}$	64.00	58.90	61.45
$\mathrm{P}_{2} \mathrm{M}_{1}$	61.40	61.90	61.65
$\mathbf{P}_{1} \mathbf{M}_{2}$	52.20	58.60	55.40
$\mathrm{P}_{2} \mathrm{M}_{2}$	61.10	56.40	58.75
$\mathbf{P}_{1} \mathbf{M}_{3}$	62.50	57.30	59.90
$\mathbf{P}_{\mathbf{2}} \mathrm{M}_{\mathbf{8}}$	66.40	63.60	65.00
Extra treatment	53.10	68.70	60.90
Mean	60.10	60.04	

S.E. of P_{0} marginal mean
S.E. of any other main-plot marginal mean
S.E. of Narginal mean
$=1.61$ ton/ac.
$=2.79$ ton/ac.
$=1.44$ ton/ac.
$=6.42$ tod/ac.

1. means in the same row (except first row
$=6.01$ ton/ac.

Crop:-Sugarcane.
Site :-Agri. Res. Stn., Padegaon.

Ref :-Mh. 52(164).
Type :='M'.

Object:-To study the effect of placement of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ in combination with different doses of N on Sugarcane crop.

i. BASAL CONDITIONS:

(i) (a) Sugarcane-Rabi Jowar. (b) Rabi Jowar. (c) Nil. (ii) (a) Alluvial type; deep soil. (b) Refer soil analysis, Padegaon. (iii) 29.7.1952. (iv) (a) Deep ploughing 9° to 10° deep. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (c) N.A. (v) 20 C.L. of compost at the time of opening of furrows. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 to 3 interculturings by tooth cultivators 8 to 10 weeks after planting, 2 to 3 hand weedings. Partial tilling by sabul plough after a period of $3 \frac{1}{1}$ to 4 months. Earthing up after a period of 5 to $5 \frac{1}{2}$ months. (ix) 15.35°. (x) 6.1.1954*
2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2) + one extra treatment.
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{1}=75$ and $\mathrm{P}_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of Super: $\quad \mathbf{M}_{1} ø$ Placement at surface, $M_{1}=$ Placement at $3^{\prime \prime}$ below surface and $\mathrm{M}_{8}=$ Placement at 6° below surface.

Extra treatment :
150 lb ./ac. of $\mathrm{P}_{\mathbf{8}} \mathrm{O}_{5}$ applied in two doses half at planting and balf at earthing up.
Sub-plot treatments :
2 levels of N : $N_{1}=450 \mathrm{lb} . / a c$. of N as A / S and G.N.C. in I : 2 ratio and $N_{2}=600 \mathrm{lb} / \mathrm{ac}$, of N as A / S and G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i). Split-plot. (ii) (a) 10 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) Two rows on either side. (vi) Yes.
4. GENERAL :
(i) Good; lodging in 2nd fortnight of May. (ii) Attack of stem and top-shoot borers; weekly collection of egg-masses of the borer, hand picking with nets, light trapping and fortnightly removal. of dead hearts. (iii) Germination counts, tillering counts, botanical observations milleable and non-milleable sugarcane counts. (iv) (a) 1950-53. (b) No. (c) N.A. (v) (a) Kopergaon and Akluj. (b) Nil (vi) and (vii) Nil.
5. RESULTS :
(i) 79.39 ton/ac.
(ii) (a) 10.13 ton/ac.
(b) 7.47 ton/ac.
(iii) None of the effects and their interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	$\mathrm{N}_{\mathbf{8}}$	Mean
P_{0}	77.19	72.06	74.62
$\mathrm{P}_{1} \mathrm{M}_{1}$	81.34	83.76	82.50
$\mathrm{P}_{2} \mathrm{M}_{1}$	78.33	81.22	79.77
$\mathrm{P}_{\mathbf{1}} \mathrm{M}_{\mathbf{2}}$	74.33	76.20	75.27
$\mathrm{P}_{2} \mathrm{M}_{2}$	78.62	83.13	80.87
$\mathrm{P}_{1} \mathrm{M}_{\mathbf{3}}$	80.62	86.82	83.72
$\mathrm{P}_{2} \mathrm{M}_{3}$	82.75	86.76	${ }_{\cdot}^{\cdot} 88.76$
Extra treatment	83.25	83.05	83.15
Mean	79.08	79.71	

S.E. of P_{0} marginal mean
S.E. of any other main-plot marginal mean
S.E. of N marginal mean
S.E. of difference of two
$\begin{array}{ll}\text { 1. means in the same row (except lst row) } & =5.28 \text { ton/ac } \\ \text { 2. means in the same column (except } P_{0} \text {) } & =6.29 \text { ton/ac. }\end{array}$

Crop :- Sugarcane (Adsali).
Site :- Agri. Res Stn., Padegaon.

Ref :- Mh. 53(243).
Type :- 'M'.

Object-To study the effect of placement of super in combination with different doses of \mathbf{N}.

1. BASAL CONDITIONS :
(i) (a) Adsall sugarcane - Rabi Jowar. (b) Rabi Jowar. (c) Nil. (ii))a) Alluvial type; deep soil. (b) Refer soil anlysis, Padegaon. (iii) 21.8.1953. (iv) (a) deep ploughing $9^{\prime \prime}$ to $10^{\prime \prime}$ deep. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil (vi) CO. 419. (vii) Irrigated: (viii) 2 to 3 hand weedings 2 to 3 interculturings by tooth cultivators 8 to 10 week after planting, partial tillering (tagarni) by sabul plough after $3 \mathbf{1}$ to 4 months. Earthing up after a period of 5 to $5 \frac{1}{2}$ months. (ix) $20.16^{\prime \prime}$. (x) 20, 27.12.1954.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)+one extra treatment.
(1) . 3 levels of $P_{8} O_{6}: P_{0}=0, P_{1}=75$ and $P_{2}=150 \mathrm{lb}$./ac.
(2) 3 methods of application of Super: $\mathbf{M}_{\mathbf{1}}=$ placement at surface, $\quad \mathbf{M}_{\mathbf{2}}=$ Placement at 3° below surface and $\mathbf{M}_{\mathbf{3}}=$ Placement at $6^{\boldsymbol{7}}$ below surface.'
Extra treatment :
150 lb /ac. of $\mathrm{P}_{2} \mathrm{O}_{8}$ applied in two doses half at planting and half at earthing up,
Sub-plot treatments:
2 lovels of $\mathrm{N}: \mathrm{N}_{1}=450 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and $G . N . C$. and $\mathrm{N}_{2}=600 \mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in 1 : 2 ratio.
3. DESIGN:
(i) Split-plot. (ii) (a) 10 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\circ} \times 24^{\circ}$ (v) Two rows (one ó either side). (vi) Yes.
4. GENERAL : ••
(i) Good, crop lodged by 2nd fortnight of June and August. (ii) Attack of stem and top-shoot borer, weekly collection of egg-masses of the borer, hand picking with nets, light traping and fortnightly removal of dead hearts. (iii) Germination counts, tillering counts, botanical observations mileable and non-milleable Sugarcane count sugarcane yield. (iv) (a) 1950-1953. . (b) No. (c) N.A. (v) (a) Kopergaon and Akluj. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 5450 ton/ac.
(ii) (a) 7.75 ton/ac.
(b) 5.90 ton/ac.
(iii) None of the effects and their interaction a re significant.
(iv) Av. yield of sugarcane in ton/ac.

> S E. of P_{0} marginal mean
> S.E. of any other main-plot marginal mean
> S.E. of N marginal mean
> S.E. of difference of two

| 1. means in the same row (except 1st row) |
| :--- | :--- |
| 2. means in the same column (except P_{0}) |$\quad=4.17$ ton/ac.

$$
\begin{aligned}
& =1.50 \text { ton/ac. } \\
& =2.74 \text { ton/ac. } \\
& =0.93 \text { ton/ac. } \\
& =4.17 \text { ton/ac. } \\
& =4.87 \text { ton/ac. }
\end{aligned}
$$

Crop :- Sugarcane (Adsali).
Site Agri. Res. Stn., Padegaon.

Ref :- Mh. 50(120).

Site
Type:- ' \mathbf{M}^{\prime}.
Object:-To find the optimum dose of N and K and method of placement of Super with and without compost.

1. BASAL CÓNDITIONS :
(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 2.12,19:0. (iy, (a) 1 ploughing and 1 harrowing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO. 419 (midd-late). (vii) Irrigated, (viii) 3 interculturipgs, A weedings and 1 earthing up. (ix) $14.68^{\prime \prime}$ in 1951-1952. (x) 2.4.1952.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 2 levels of compost: $\mathrm{C}_{0}=0$ and $\mathrm{C}_{1}=20$ C.L./ac.
(2) 2 sources of $N: S_{1}=A / S, S_{2}=A / S+$ Cake in $1: 2$. ratio N top dressed at $375 \mathrm{lb} . / \mathrm{ac}$. of N .
(3) 2 leve's of $K: K_{0}=0$ and $K_{1}=100 \mathrm{lb}$./ac.
(4) 4 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{0}=\mathrm{No} \mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{1}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at surface, $\mathrm{M}_{2}=100$ lb./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at half way down the ridge and $\mathrm{M}_{8}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
3. DESIGN :
(i) $2^{3} \times 4$ Fact. in R.B.D.
(ii) (a) 32.
(b) N.A. - (iii) 3.
(iv) (a) N.A.
(b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Brix, sucrose, glucose, fibre \% and sugarcane yield. (iv) (a) 1950-N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 54.17 ton/ac.
(il) 5.94 ton/ac.
(iii) Main effect of M and interaction $M \times C, S \times C, S \times M$ and $M \times K$ are significant. Other effects and nteractions are not signiflcant.
(iv) Av. yield of sugarcane in ton/ac.

S.E. of marginal mean of S, C or K	$=0.86$ ton/ac.
S.E. of marginal mean of M	$=1.22$ ton/ac.
S.E. of body of $S \times M, C \times M$ or $K \times M$ table	$=1.72$ ton/ac.
S.E. of body of $S \times C, S \times K$ or $C \times K$ table	$=1.22$ ton/ac.

Crop :- Sugarcane.
Site :- Agri Res. Stn., Padegaon.

Ref:- Mh. 51 (163)
Type : ${ }^{\prime} \mathbf{M}$ '.

Object :--To find the optimum does of N and K and method of placement of Super with and without compost.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis, Padegaon. (iii) 14-11-51. (iv) (a) 1 Ploughing, and harrowing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (c) N.A. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 3 weedings, 3 interculturings and 1 earthing up. (ix) 11.01° in 1952-53. (x) 26.2.1953

2. TREATMENTS:

All combinations of (1), (2), (3) and (4)
(1) Two levels of compost: $\mathrm{C}_{0}=0$ and $C_{1}=20$ C.L./ac.
(2) Two sources of $N: S_{1}=A / S_{3} S_{2}=A / S$ and Cake in $1: 2$ ratio. N top dressed at 375 lb ./ac. of N .
(3) Two levels of $\mathrm{K}: \mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{1}=100 \mathrm{ib}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
(4) 4 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{0}=\mathrm{No} \mathrm{P}_{2} \mathrm{O}_{6}, \mathrm{M}_{1}=100 \mathrm{lb} . / \mathrm{ac}, \mathrm{P}_{2} \mathrm{O}_{5}$ at surface, $\mathrm{M}_{2}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at half way down the ridge and $\mathrm{M}_{3}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge.
$\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ as Super and $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ as Pot. Sul.
3. DESIGN :
(i) $2 \times 2 \times 2 \times 4$ Pact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.

4. GENERAL :

(i) Good. (ii) Nil. (iii) Sucrose, Glucose, fibre \% and sugarcane yield. (iv) (a) 1950-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

.5. RESULTS :

(i) 44.41 ton $/ \mathrm{ac}$.
(ii) 6.87 ton/ac.
(iii) Only the main effects of S, M and interactions $S \times K, S \times M, M \times K, S \times C, M \times C$ are significant. Others are not significant.
(iv) Ay. yield of sugarcane in ton/ac.

	M_{0}	M_{1}	M_{2}	\mathbf{M}_{3}	\mathbf{S}_{1}	S_{2}	\mathbf{K}_{0}	K_{1}	Mean
C_{0}	39.61	44.31	47.88	41.95	40.34	46.55	43.00	43.90	43.45
C_{1}	41.20	47.61	49.14	43.56	42.64	48.11	44.08	46.66	45.37
Mean	40.41	45.96	48.51	42.75	41.49	47.33	43.54	45.28	44.41
K_{0}	39.97	44.44	47.29	42.42	42.00	45.08			
K_{1}	40.85	47.48	49.73	43.08	40.98	49.58			
S_{1}	35.43	42.90	45.70	41.91					
S_{2}	45.39	49.02	51.32	43.59	-	.			

S.E. of marginal mean of S, K or C	$=0.99$ ton/ac.
S.E. of marginal mean of M	$=1.40$ ton/ac.
S.E. of body of $S \times K$, or $S \times C$ or $K \times C$ table	$=1.40$ ton/ac.
S.E. of body of $M \times S$ or $M \times C$ or $M \times K$ table	$=1.98$ ton/ac.

Crop :~ Sugarcane.
Site :- Agri. Res. Stn., Padegaon.

Ref: : Mh. ${ }^{\text {'52(75) }}$
Type :- ' M '.

Object :-To find the optimum dose of N and K and the method of placement of Super with and without compost,

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Jowar-Chinamug, (b) Chinamug. (c) Nil. (ii) (a) 'B' type. (b) Refer soil analysis,
Padegaon, (iii) 13.11 .52 (iv) (a) Ploughing $9^{\prime \prime}$ to 10° deep. (b) The buds of the Sugarcane are
exposed and allowed to germinate under soil. (c), (d) and (e) N.A. (v) Nil. (vi) CO. 419.
(vil) Irrigated '(viii) 2 to 3 hand weedings, 2 to 3 interculturings 8 to 10 weeks after planting, partial
tilling and earthing up after a period of 5 to $5 \frac{1}{2}$ months.

2 TREATMENTS:

All combinations of (1), (2), (3) and (4)
(1) 2 levels of compost: $C_{0}=0, C_{1}=5$ C.L./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=A / S$ and G.N.C. in 1:2 ratio. N top dressed at 375 lb ./ac. of N.
(3) 2 levels of $K: K_{0}=0$ and $K_{2}=100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$
(4) 4 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{0}=$ No $\mathrm{P}_{2} \mathrm{O}_{5}, \quad \mathrm{M}_{1}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at surface, $\mathrm{M}_{2}=100$ lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at half way down the ridge and $\mathrm{M}_{3}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at the base of the ridge. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
3. DESIGN :
(i) $2^{3} \times 4$ Fact
(ii) (a) 32.
(b) N.A. (iii) 3. (iv)
(a) $54.44^{\prime} \times 32^{\prime}$
(b) $45.44^{\prime} \times 24^{\circ}$. (v) Three rows
on either side. (vi) Yes

4. GENERAL

(i) Good. (ii) Attack of stem and top-shoot borers ; weekly collection of egg-masses, hand picking of moths and light trapping etc. were done as control measures. (iii) Germination counts, tillering counts, botanical observations, milleable and nonmilleable sugarcane counts, maturing tests and cane yield. (iv) (a) 1950 -continued. (b) No. (c) N.A. (v) (a), (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 47.43 ton/ac.
(ii) 6.37 ton/ac.
(iii) Main effect of S, M and interactions $S \times M, M \times K, S \times K, M \times C, K \times C$ and $S \times C$ are significant. Main effect of K is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{M}_{0}	M_{1}	$\mathbf{M}_{\mathbf{2}}$	M_{3}	S_{1}	$\mathrm{S}_{\mathbf{2}}$	K_{0}	K_{1}	Mean
C_{0}	40.40	47.97	51.02	45.90	43.28	49.36	48.26	50.04	46.32
C_{1}	46.87	48.62	50.64	50.47	47.14	51.16	45.12	47.46	49.15
Mean	43.64	48.29	-50.83	48.18	45.21	50.26	46.70	48.75	47.73
\mathbf{K}_{0}	43.87	45.27	49.15	48.50	44.28	49.11			*
\mathbf{K}_{1}	43.40	51.32	52.41	47.87	46.14	51.42			
\mathbf{S}_{1}	39.35	47.67	48.22	45.60					
S_{2}	47.92	48.92	53.44	50.77					

S.E. of marginal mean of S, K or C
S.E. of marginal mean of M
S.E. of body of $M \times S$ or $M \times K$ or $M \times C$ table
S.E. of body of $S \times K$ or $S \times C$ or $C \times K$ table
$=0.92$ tod/ac.
$=1.30$ ton/ac.
$=1.84$ ton/ac.
$=1.30$ ton/ac.

Crop :~ Sugarcane (Adsali).
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 53(181).
Type :- 'M'.

Object :-To find the optimum dose of N and K and method of placement of Super with and without compost.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Kali Jowar-Chinamug. (b) Chinamug. (c) Nil. (ii) (a) ' B ' type. (b) Refer soil analysis, Padegaon. (iii) \{25.11.1953. (iv) (a) Ploughing $9^{\prime \prime}$ to $10^{\prime \prime}$ deep. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (c) N.A. (v) Nil. (vi) CO.419 (mid-late). (viii) Irrigated. (viii) 2 to 3 hand weedings, 2 to 3 interculturings by tooth cultivators 8 to 10 weeks after planting, partial tilling (fagarni) and earthing up after a period of 5 to $5 \frac{1}{2}$ month. (ix) 20.16". (x) 5 to 14.2.1955.

2. TREATMENTS :

All combinations of (1), (2), (3) and (4)
(1) 2 levels of compost : $\mathrm{C}_{0}=0, \mathrm{C}_{1}=2$ C.L./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=A / S$ and Cake in 1:2 ratio. N top dressed at $375 \mathrm{lb} . / \mathrm{ac}$. of N .
(3) 2 levels of $\mathrm{K}: \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=100 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}$.
(4) 4 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{0}=$ No $\mathrm{P}_{2} \mathrm{O}_{6}, \mathrm{M}_{1}=100$ lb./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ at surface, $\mathrm{M}_{2}=100$ lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ half way down the ridge and $\mathrm{M}_{3}=100 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$ at the base of the ridge.
$\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ as Super and $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul.
3. DESIGN:
(i) $2^{3} \times 4$ Fact. in R.B.D. (ii) (a) 32. (b) N.A. (iii) 3. (iv) $54.44^{\prime} \times 32^{\prime}$. (b) $45.44^{\prime} \times 24^{\prime}$. (v) 1 row on either side. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of stem and top-shoot borers; control measures N.A. (iii) Germination count, height, no. of tillers, and sugarcane yield. (iv) (a) 1954-continued. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) 52.00 ton/ac.
(ii) 5.43 ton/ac.
(iii) Main effects of S, M and K and interactions $S \times M, S \times K, M \times K, M \times C$ and $K \times C$ are significant, while interaction $\mathbf{S} \times \mathbf{C}$ is highly significant. Main effect of \mathbf{C} is not significant.
(iv) Av. yield of sugarcane in ton/ac.

S.E of marginal mean of S, K or C	$=0.78$ ton/ac.
S.E. of marginal mean of M	$=1.10$ ton/ac.
S.E. of body of $M \times K, M \times S$ or $M \times C$ table	$=1.57$ ton/ac.
S.E. of body of $S \times K, S \times C$ or $K \times C$ table	$=1.10$ ton/ac.

Crop:- Súgarcane.
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 52(155).
Type :- ' \mathbf{M} '.

Object :-To study the effect of Mohwa cake and G.N.C. on yield of Sugarcane.

1. BASAL CONDITIONS :-
(i) (a) Nil. (b) and (c) N.A. (ii) (a) 'B' type. (b) Refer soil analysis,' Padegaon. (iii) 2.2.1952. (iv) (a) 1 deep ploughing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Nil. (vi) CO.419 (medium). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 11.10 . (x) 20.2.1953.
2. TREATMENTS :
$300 \mathrm{lb} . / \mathrm{ac}$. of N applied as follows :
3. Mohwa cake alone.
4. G.N.C. alone.
5. A/S+Mohwa cake in $1: 2$.
6. $A / S+G . N . C$. in $1: 2$.
7. A/S+G.N.C.+Mohwa cake in $1: 1: 1$.
8. A/S + Mohwa cake in $1: 2$. Mohwa cake previously decomposed before planting.
9. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.5875 guntha. (v) N.A: (vi) Yes.
10. GENERAL:
(i) Normal. (i) N.A. (iii) Sucrose, glucose, fibre $\%$ and sugarcane yield. (iv) (a) 1952-1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
11. RESULTS:
(i) 42.32 ton/ac.
(ii) 14.30 ton/ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of sugarcane in ton/ac.

Treatment	Av. yield
1.	35.95
2.	54.55
3.	44.52
4.	38.22
5.	41.33
6.	39.26
S.E./mean	$=7.15$ ton/ac.

Crop :- Sugarcáne.
Ref :- Min. 53(240).
Site :- Agri. Res. Stn., Padegaon.
Type:- 'M'.

Object :-To study the effect of Mohwa cake and G.N.C. on the yield of Sugarcane.

1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 8.2.1953. (iv) (a) Deep ploughing (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime}. (e) N.A. (v) 20 C.L./ac. of F.Y.M. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings and 2 weedings." (ix) $16.35^{\prime \prime} "^{\prime \prime}$ (x) $7.5 .1954^{\prime}$.
2. TREATMENTS :

300 lb ./ac. of N applied as follows:

1. Mohwa cake alone.
2. G.N.C. alone.
3. A/S+G.N C. in $1: 2$.
4. A/S + Mohwa cake in $1: 2$.
5. A/S + Mohwa cake+G.N.C. in $1: 1: 1$.
6. A/S + Mohwa cake in $1: 2 ;$ Mohwa cake previously decomposed before planting.
7. DESIGN:
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4.' (iv) (a) $32^{\prime} \times 32^{\prime}$. (b) $26^{\prime} \times 24^{\prime}$. (v) One row on either side, 3^{\prime} at either end. (vi) Yes.
8. GENERAL :
(i) Normal. (ii) N.A. (iii) Germination counts, heights, sucrose, glucose $\%$ and sugarcane yield. (iv) (a) 1952-1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) 48.57 ton/ac.
(ii) 6.65 ton/ac,
(iii) Treatments differ significantly.
(iv) Av. yield of sugarcane in ton/ac. Treatment Av. yield

1.	37.59
2.	55.09
3.	51.87
4.	47.07
5.	50.23
6.	49.56
S.E./mean	$=3.32$ ton/ac.

Crop :- Sugarcane.
 Site :- Agri. Res. Stn., Padegaon.
 Ref: Mh. 51(127).
 Type : ${ }^{\prime}$ ' M '.

Object :-To study the effect of inter-cropping Maize with Sugarcane.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 20.12.195I. (iv) (a) N.A. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) $20,000 \mathrm{lb}$./ac. of compost, $375 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+$ cake in $1: 2$ ratio. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 16.35°. (x) 10.3.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of manuring: $M_{0}=$ Normal manure and $M_{1}=$ Normal manure $+50 \mathrm{lb} . / a c$. of N.
(2) Maize drilled at : $\mathrm{D}_{0}=$ No maize crop, $\mathrm{D}_{1}=1^{\prime}, \mathrm{D}_{\mathbf{2}}=2^{\prime}$ and $\mathrm{D}_{\mathrm{g}}=3^{\prime}$ apart.

Normal manuring as under basal conditions.
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 3. (iv) (a) N.A. (b) $34.03^{\prime} \times 8^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of borers. (iii) Brix \%, sucrose, glucose \% and sugarcane yield. (iv) (a) 1950-1952. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 50.35 ton/ac.
(ii) 3.52 ton/ac.
(iii) Main effects of \mathbf{M} and D and their interaction are not significant.
(iv) Av, yield of sugarcane in ton/ac.

	M_{0}	\mathbf{M}_{1}	Mean
$\mathrm{D}_{\mathbf{0}}$	53.02	50.55	51.78
D_{1}	46.55	48.86	47.75
D_{2}	51.04	49.90	50.47
D_{3}	51.83	51.07	51.45
Mean	50.61	50.10	
	ean of M ean of D e	$\begin{aligned} & =1.0 \\ & =1.44 \\ & =2.0 \end{aligned}$	

```
Crop :- Sugarcane (Ratoon).
Site :- Agri. Res. Stn., Deolali.
```


Ref. :- Mh. 48(53).
 Type :- 'CV'.

Object :- To study the different varieties with different times of planting.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) (a) G type soil. (b) N.A. (iii) As per treatments. (iv) (a) and (b) M.A. (c) 10,000 setts./ac. (d) 4^{\prime} between rows. (c) \rightarrow. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) $39.21^{\prime \prime}$. (x) N.A.
2. TREATMENTS :

Main-plot treatments.
3 dates of planting : $D_{1}=$ July 1948, $D_{8}=$ October1948 and $D_{3}=$ January 1949.
Sub-plot treatme:ts.
3 varieties: $\mathrm{V}_{1}=\mathrm{CO} .419, \mathrm{~V}_{\mathbf{2}}=$ CO. 454 and $\mathrm{V}_{8}=\mathrm{CO} .475$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/tlock; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Sugarcane yield. (iv) (a) 1949-1950. (b) N.A. (c) N.A. (v) (a) and (b) N.A. (vi) \& (vii) Nil.
5. RESULTS :
(i) 25.79 ton./ac.
(ii) (a) 4.74 ton./ac.
b) 3.87 ton./ac.
(iii) No effect is significant.
(iv) Av. yield of sugarcane in ton./ac.

S.E. of difference of two

1. main-plot marginal means	$=1.84$ ton./ac.
2. sub-plot marginal means	$=1.58$ ton./ac.
3. sub-plot means at the same level of main-plot	$=2.74$ ton./ac.

4. main-plot means at the same level of sub-plot $=2.95$ ton./ac.

Crop :- Sugarcane (Ratoon).	Ref. :- Mh. 49(78).
Site :- Agri. Res. Stn., Deolali.	Type :- 'CV'.

Object :- To study the different varieties with different times of planting.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) 'G' type soil, (b) N.A. (iii) As per treatments. (iv) (a) and (b) N.A. (c) 10,000 setts./ac. (d) 4^{\prime} spacing between rows. (e) -. (v) N.A. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) $27.71^{\prime \prime}$ (x) N.A.
2. TREATMENTS :

Main-plot treatments.

3 dates of planting : $D_{1}=$ July 1949, $D_{2}=$ October 1949 and $D_{3}=$ Jan. 1950.
Sub-plot treatments :
3 varieties: $\mathrm{V}_{1}=\mathrm{CO} .419, \mathrm{~V}_{2}=\mathrm{CO} .454$ and $\mathrm{V}_{8}=$ CO. 475.
3. DESIGN :
(i). Splitヶplot. (ii) (a) 3 main-plots/block : 3 sub-plots/main-plot. . (b) \cdot N.A. (iii) 4 . (iv) (a) N.A. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Sugarcane yield. (iv) (a) 1949-1950. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (yii) Nil.
5. RESULTS:
(i) 33.59 ton/ac.
(ii) (a) 3.69 ton/ac.
(b) 2.94 top/ac.
(iii) Varieties are significant while others are not significant.
(iv) Av. yield of Sugarcane in ton/ac.

	D_{1}	\mathbf{D}_{2}	D_{3}	Mean
V_{1}	34.36	34.68	34.78	34.61
V_{2}	28.86	31.26	29.23	29.78
\mathbf{V}_{3}	35.96	38.04	. 35.12	36.37
Mean	33.06	34.66	33.04	33.59

S.E. of difference of two

1. $\dot{\text { D marginal means }}$	$=1.51$ ton/ac.
2. V marginal means	$=1.20$ ton/ac.
3. V means at the same level of D	
4. D means at the same level of V	
4.	$=2.27$ ton/ac.

Crop: : Sugarcane.
Site :-Agri. Res. Stn., Deolali.

Ref:-Mh. 49(77).
Type:-‘CV’.

Object :-To study the effect of different times of planting on different varieties of Sugarcane.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) G type soil. (b) N.A. (iii) As per treatments. (iv) (a) 2 ploughings and 1 harrowing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) --. (v) N.A. (vi) As per treatments, (vii) Irrigated. (viii) N.A. (ix) $26.52^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

Main-plot treatments :
3 dates of planting : $D_{1}=$ July 1949, $D_{2}=$ October 1949 and $D_{3}=$ January 1950.
Sub-plot treatments :
3 varieties: $V_{1}=$ CO. $419, V_{2}=$ CO. 454 and $V_{3}=$ CO. 475.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) N.A, (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Sugarcane yield. (iv) (a) 1949-1950. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 42.84 ton/ac.
(ii) (a) 5.73 ton/ac.
(b) 4.58 ton/ac.
(iii) \mathbf{V} and D effects are significant. Interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	D_{1}	D_{2}	D 3	Mean
\mathbf{V}_{1}	52.65	40.99	35.05	42.89
V_{2}	50.49	37.90	32.27	40.22
V_{9}	61.24	38.45	36.47	45.38
Mean	54.79	39.11	34.59	42.84

S.E. of difference of two

1. D marginal means $\quad=2.33$ ton/ac.
2. V marginal means $\quad=1.87$ ton/ac.
3. V means at the same level of $D \quad=3.24$ ton/ac.
4. D means at the same level of $V \quad=3.53$ ton/ac.

Crop :-Sugarcane.
Site : Agri. Res. Stn., Kopergaon.

Ref :-Mh. 49(89).
Type :-‘CV’.

Object:-To study the effect of different times of planting on different varieties of Sugarcane.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) As per treatments. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) - . (v) $20,000 \mathrm{lb} / \mathrm{ac}$. of compost. Top dressing with $375 \mathrm{lb} . / \mathrm{ac}$. of N for July planting and 300 lb ./ac. of N for January planting. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) 21.26°. (x) 12 to 19.3.1951.

2. TREATMENTS :

Main-plot treatments :
3 dates of planting : $D_{1}=$ July 1949, $D_{2}=$ October 1949 and $D_{3}=$ January, 1950.
Sub-plot treatments :
3 varieties: $V_{1}=$ CO. $419, V_{2}=$ CO. 454 and $V_{3}=$ CO. 475.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main.plot. (b) N.A. (iii) 4 . (iv) (a) 1.25 guntha. (b) 0.75 guntha. (v) N.A. (vi) Yes.

GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of sugarcane. (iv) (a) N.A. (b) N.A. (c) N.A. (v) (a) and (b) N.A. (vi) and (yii) Nil.
5. RESULTS :
(i) 47.36 ton/ac.
(ii) (a) 6.12 ton/ac.
(b) 5.53 ton/ac.
(iii) V and D effects are highly significant, while $V \times D$ is not significant.
(iv) Av. yield of sugarcane in ton/ac.

S.E. of difference of two

1. D marginal means
$=2.50$ ton $/ \mathrm{ac}$.
2. V marginal means $=2.26$ ton/ac.
3. V means at the same Eevel of D
$=3.91$ ton/ac.
4. D means at the same level of V
$=4.06$ ton/ac.

Crop :- Sugarcane (Ratoon).
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 50(102).
Type:- 'CV'.

Object :-To study the effect of different times of planting on different varieties.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Sugarcane. (c) 375 lb ./ac. of N for July planting and 300 lb ./ac. of N for other plantings. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) As per treatments. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart. (e) N.A. (v) Top dressing 225 lb ./ac. of \mathbf{N} as mixture of G.N.C. and; A/Sin 2: 1 ratio. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) $21.26^{\prime \prime}$. (x) 20 to 25.3.1951.
2. TREATMENTS:

Main-plot treatments :
3 dates of planting: $D_{1}=$ July 1950, $D_{2}=$ October 1950 and $D_{8}=$ January 1951.
Sub-plot treatments :
3 varieties : $\mathrm{V}_{1}=\mathbf{C O . 4 1 9 ,} \mathrm{V}_{2}=\mathbf{C O . 4 5 4}$ and $\mathrm{V}_{8}=\mathbf{C O . 4 7 5}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 3 sub-plots/main-plot. (b) ${ }^{3}$ N.A. (iii) 4. (iv) (a) $37.8^{\prime} \times 36^{\circ}$. (b) $29.17^{\prime} \times 28^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A.
(iii) Sugarcane yield.
(iv) (a) N.A.
(b) Yes.
(c) N.A.
(v) (a) and (b)
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 34.30 ton/ac.
(ii) (a) 4.03 ton/ac.
(b) 2.63 ton/ac.

- (iii) Only V effect is significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{3}}$	Mean $\mathbf{V}_{\mathbf{1}}$
$\mathbf{V}_{\mathbf{2}}$	35.96	34.53	38.10	36.19
$\mathbf{V}_{\mathbf{3}}$	31.56	29.06	29.39	30.00
Mean	36.61	36.19	36.96	36.58
	34.71	33.26	34.82	34.30

S.E. of difference of two

1. D marginal means
$=1.64$ ton/ac.
2. V marginal means
3. V means at the same level of D $=1.07$ ton/ac.
4. D means at the same level of $V \quad=2.24$ ton/ac. $=1.86$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Lakhamapur.

Ref:- Mh. 49(47).
Type:-'CV'.

Object:-To find out the best planting period for different varieties of Sugarcane.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) ' F ' type-very shallow $12^{\prime \prime}$ to 14°-deep light brown- pH ' $=8.1$. (b) Refer soil analysis, Lakhamapur. (iii) As per treatments. (iv) (a) 2 ploughings. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows and $4^{\prime \prime}$ to $6^{\prime \prime}$ between plants. (e) -. (v) 10 C.L./ac. of compost after 1 st ploughing and 10 C.L./ac. of compost in furrows before planting. (vi) As per treatments. (vii) Irrigated. (viii) 2 to 3 hand weedings, 3-4 interculturings and 1 light earthing up. (ix) N.A. (x) N.A.
2. TREATMENTS :

Main-plot treatments :
3 times of planting: $D_{1}=$ July 1949, $D_{2}=$ October 1949 and $D_{2}=$ January 1950.
Sub-plot treatments :
3 varieties: $\mathrm{V}_{1}=\mathrm{CO.419}, \mathrm{~V}_{2}=\mathrm{CO} .454$ and $\mathrm{V}_{3}=\mathrm{CO.475}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) 3.75^{\prime} each length wise and 1 row each breadth wise. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Attack of top borer : controlled by cutting off affected shoots, collection and destroying of egg-masses and moths. (iii) Sugarcane yield. (iv) (a) 1940-1942, 1942-43 (again started from 194748 to 1950-51 with varieties changed). (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Deolali. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 19.28 ton/ac.
(ii) (a) 2.94 ton/ac.
(b) 3.08 ton/ac.
(iii) V and D effects are highly significant. Interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	D_{1}	D_{2}	D_{8}	Mean
$\mathbf{V}_{\mathbf{1}}$	29.30	21.20	20.40	23.63
$\mathbf{V}_{\mathbf{2}}$	19.00	10.40	14.20	14.53
$\mathbf{V}_{\mathbf{8}}$	24.50	16.00	18.50	19.66
Mean	24.27	15.87	17.70	19.28

S.E. of difference of two

1. D marginal means	$=1.20$ ton/ac.
2. V marginal means	$=1.26$ ton/ac.
3. V means at the same level of D	$=2.15$ ton/ac.
4. D means at the same level of V	$=2.18$ ton/ac.

Crop :-Sugarcane.
Site :-Agri. Res. Stn., Lakhamapur.

Ref :-Mh. 50(75).
Type :-‘CV'.

Object :-To find out the best planting period for different varieties of Sugarcane.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) F type; very shallow; $12^{\circ}-15^{\prime \prime}$-deep light brown; $\mathrm{pH}=8.1$. (b) Refer soil analysis, Lakhamapur. (iii) As per treatments. (iv) (a) 2 ploughings. (b) N.A. (c) 10,000 setts/ac. (d) $4^{\prime \prime}$ between rows and $4^{\prime \prime}$ to $6^{\prime \prime}$ between plants. (e) 一. (v) 10 C.L./ac. of compost after lst ploughing, 10 C.L./ac. of compost in furrows before planting. (vi) As per treatments. (vii) Irrigated. (vii) 2 to 3 hand weedings, 3 to 4 interculturings and 1 light earthing up. (ix) N.A. (x) N A.
2. TREATMENTS :

Main-plot treatments :
3 times of planting : $D_{1}=$ July 1950, $D_{2}=$ October 1950 and $D_{3}=$ January 1951.
Sub-plot treatments :
3 varieties: $V_{1}=$ CO. $419, V_{2}=$ CO. 454 and $V_{3}=$ CO. 475.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) 3.75' each length wise and one row each breadth wise. (vi) Yes.
4. GENERAL :
(i) Below normal. (ii) Attack of top borers; controlled by cutting off attacked shoots; collection and destroying of egg-masses and moths. (iii) Germination counts, height, fortnightly maturity study. (iv) (a) 1947-1950. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Deolali. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 11.42 ton/ac.
(ii) (a) 1.73 ton/ac.
(b) 4.78 ton/ac.
(iii) D effect is significant and V effect is highly significant. Interaction is not significant.
(iv) Av. yield of sugarcane in ton/ac.

		D_{1}	D_{2}	D_{3}
V_{1}	17.60	14.40	13.40	Mean
\mathbf{V}_{2}	7.40	7.70	5.60	15.13
V_{3}	14.70	10.13	11.90	6.90
Mean	13.23	10.74	10.30	12.24

S.E. of difference of two
$\begin{array}{ll}\text { 1. } D \text { marginal means } & =0.71 \text { ton/ac. } \\ \text { 2. V marginal means } & =1.95 \text { ton/ac. } \\ \text { 3. V means at the same level of } D & =2.85 \text { ton/ac. } \\ \text { 4. } D \text { means at the same level of } V & =3.38 \mathrm{ton} / \mathrm{ac.}\end{array}$

Crop :-Sugarcane.
Site : Agri. Res. Stn., Akluj.

Ref :-Mh. 51(115).
Type :^‘CM'.

Object:-To study the effect of different levels of \mathbf{N} in combination with different spacings on Sugarcane yield.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Bajra-Tur (mixed)—Sugarcane. (b) Bajra and Tur (mixed). (c) Nil. (ii) (a) D type.
(b) Refer soil analysis, Akluj. (iii) 12.8.1951. (iv) (a) 2 ploughings and hariowings and opening ridges. (b) and (c) N.A. (d). As per treatments. (e) -. (v) 20 C.L./ac. of F.Y.M. spread in furrows before planting. (vi) CO. 419. (vii) Irrigated. $\$$ (viii) 3 weedings, one light tagarani and earthing up. (ix) $19^{\prime \prime}$ (1951) and 12° (1952). (x) 20.1.1953.
2. TREATMENTS:

- . All combinations of (1) and (2)
(1) 3 spacings between rows: $S_{1}=3 \frac{1}{}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1}{1}^{\circ}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb} . / \mathrm{ac}$.

Other details N.A.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) 1.25 guntha. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Growth normal. Crop lodged in May. (ii) Stem borer 15\%, top borer 10\%. (iii) Yield of sugarcgne. (iv) (a) 1950-1955. (b) No. (c) N.A. (v) (a) Padegaon, Lakhamapur, Deolali and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 76.97 ton/ac.
(ii) 6.31 ton/ac.
(iii) Main effect of N and its interaction with S are significant. S effect is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathrm{S}_{\mathbf{2}}$	S_{2}	$\mathbf{S}_{\mathbf{s}}$	Mean
N_{1}	77.50	76.60	77.20	76.90
N_{2}	80.60	72.90	69.10	74.20
N_{3}	79.60	83.10	76.00	79.50
Mean	79.20	77.50	74.10	76.97
S.E. of marginal mean of N or S S.E. of body of table				

Crop :- Sugarcane.

Site :- Agri. Res. Stn., Akluj.

Ref :- Mh. 52(12).
Type:- 'CM'.

Object :-To study the effect of different spacings and different doses of N on the yield of Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Adsali sugarcane-Bajra and tur mixture-Adsali sugareane. (b) Wheat. (c) Nil. (ii) (a) D type,
(b) Refer soil analysis, Akluj. (iii) 19.7.1952. (iv) (a) 2 ploughings, clod crushing, harrowing and ridging.
(b) The buds of the sugarcane are exposed and allowed to germinate under soil. (c) N.A. (d) As per treatments. (e) -. (v) $20,000 \mathrm{lb} . / \mathrm{ac}$. of compost spread in furrows before planting. (vi) CO. 419. (vii) Irrigated. (viii) 1 light tagarani, eartbing up and 2 weedings. (ix) 18.04". (x) 4 to 29.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{3}=3 \frac{1}{2}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=41^{\prime}$ row to row.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb} . / \mathrm{ac}$.

Double planting in $4 \frac{l^{\prime}}{}$ spacing.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $31 \frac{1}{\prime}^{\prime} \times 42 \frac{1}{2}^{\prime}$ for $3 \frac{1}{2}$ and 4^{\prime} spacing and $32^{\prime} \times 42 \frac{1}{k}^{\prime}$ for $4 \frac{⿺^{\prime}}{}{ }^{\prime}$ spacing. (b) $24.5^{\prime} \times 33.35^{\prime}$ for $3 \frac{2}{}^{\prime}$ spacing, $24^{\prime} \times 34^{\prime}$ for 4^{\prime} spacing and $22.5^{\prime} \times 36.3^{\prime}$ for $4 \frac{1^{\prime}}{}$ spacing. (v) 1 row on each side of the plot: $3 \frac{1^{\prime}}{\prime^{\prime}} 4^{\prime}$ and $4 \frac{1}{\prime}^{\prime}$ at each end of the plot of $3 \frac{1}{\prime}^{\prime}, 4^{\prime}$ and $4 \frac{1}{\prime}^{\prime}$ spacings respectively. (vi) Yes.
4. GENERAL :
(i) Crop growth was normal. Crop lodged in May. (ii) There was a severe attack of top shoot and stemborer totalling up to 15%. (iii) Germination, tillering, borer counts, height, girth, internodes, etc. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) Padegaon, Lakhamapur, Deolali and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 71.91 ton/ac.
(ii) 5.82 ton/ac.
(iii) No effect is significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{S}_{1}	S_{2}	S_{3}	Mean
N_{1}	71.83	69.45	65.04	68.77
N_{2}	72.68	71.97	68.68	71.11
N_{3}	79.58	74.62	73.34	75.85
Mean	74.70	72.01	69.02	. 71.91
S.E. of marginal mean of N or S S.E. of body of table			$\begin{aligned} & =1.68 \text { ton/ac. } \\ & =2.91 \text { ton } / \mathrm{ac} . \end{aligned}$	

Crop :- Sugarcane (Adsali). Site :-Agri. Res. Stn., Akluj.

> Ref :- Mh. 53(204).
> Type :-‘CM’.

Object :-To study the effect of different spacings and different \mathbf{N} doses on the yield of Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Adsali sugarcane-Bajra and tur (mixed). (b) Bajra and tur (mixed). (c) Nil. (ii) (a) D type.
(b) Refer soil analysis, Akluj. (iii) 20.7.1953. (iv) (a) 2 ploughings, clod crushing, harrowing and ridging.
(b) The buds of the sugarcan: are exposed and allowed to germinate under soil. (c) N.A. (d) As per treatments. (e) -. (v) $20,000 \mathrm{lb} . / \mathrm{ac}$. of compost spread in furrows. (vi) CO.419. (vii) Irrigated. (viii) 1 light tagarani, 1 tagarani, earthing up and 3 weedings. (ix) 19.19". (x) 5 to 25.1.1955.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{2}^{\prime}, S_{8}=4^{\prime}$ and $S_{3}=4 \frac{1}{\prime}^{\prime}$ row to row.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb} . / \mathrm{ac}$.

Double planting in $4 \frac{1^{\prime}}{}$ spacing. N as A/S.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $31 \frac{1^{\prime}}{}{ }^{\prime} \times 42 \frac{1}{2}^{\prime}$ for $3 \frac{1}{2}^{\prime}$ spacing and $4 \frac{1^{\prime}}{}$ spacing and $32^{\prime} \times 42 \frac{1}{2}^{\prime}$ for $4 \frac{1}{2}^{\prime}$ spacing, (b) $24 \frac{1^{\prime}}{}{ }^{\prime} \times 33.35^{\prime}$ for $3 \frac{1}{2}^{\prime}$ spacing, $24^{\prime} \times 34^{\prime}$ for 4^{\prime} spacing and $22 \frac{1}{2}^{\prime} \times 36.31^{\prime}$ for $4 \frac{1^{\prime}}{}$ spacing. (v) 1 row on each side of the plot and $3 \frac{1}{2}^{\prime}, 4^{\prime}$ and $4 \frac{1}{2}^{\prime}$ at each end of the plot with $3 \frac{1}{2}^{\prime}, 4{ }^{\prime}$ and $4 \frac{1}{2}$ ' spacings respectively. (vi) Yes.
4. GENERAL :
(i) Growth normal. (ii) There were much dead sugarcanes and water shoots. Crop lodged in May 1954. (iii) There was attack of stem borer to the extent of 15% and top shoot borer to the extent of 18%. Affected shoots were cut and destroyed. (iii) Germination, tillering, borer counts, height, girth, internodes etc. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) Padegaon, Lakhamapur, Deolali and Kopergaon. - (b) N.A. (vil and (vii) Nil.
5. RESULTS :
(i) 78.44 ton/ac.
(ii) 4.02 ton/ac.
(iii) Effect of S is significant. Others are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	S_{1}	S_{8}	\mathbf{S}_{8}	Mean
N_{1}	79.91	77.66	75.59	77.72
N_{2}	81.34	77.38	76.07	78.26
N_{3}	82.29	76.30	79.47	79.35
Mean	81.18	77.11	77.04	78.44
S.E. of marginal mean of S or N S.E. of body of table			$\begin{aligned} & =1.16 \text { ton/ac. } \\ & =2.01 \text { ton/ac. } \end{aligned}$	

Crop :- Sugarcane. \quad Ref :- Mh. $51(84)$.
Site :- Agri. Res. Stn., Deolali. \quad Type :- 'CM'.

Object:-To study the effect of different doses of manures in combination with different spacings on Adsali Sugarcane.

1. BASAL CONDITIONS:

(i) (a) to (c) N.A. (ii) (a)' G type, deep brown in colour, with depth 1^{\prime} to 1.5^{\prime}. (b) N.A. (iii) 14.8.1951. (iv) (a) 2 ploughings and 1 harrowing. (b) Planting in furrows. (c) According to spacings. (d) As per treatments. (e) 一. (v) 20 C.L./ac. of F.Y.M. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) N.A. (ix) 36.2". (x) 15.1.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings : $S_{1}=3 \frac{1}{\prime}^{\prime}, S_{2}=4^{\prime}$ anb $S_{3}=4 \frac{1}{\prime}^{\prime}$ between rows.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.
\mathbf{N} as $A / S+G . N . C$ in $1: 2$ ratio. Time and metbod of application of treatments N.A.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $42.5^{\prime} \times 32^{\prime}$. (b) $34^{\prime} \times 24^{\prime}$. (v) 1 row on either side and 4.25^{\prime} at either end. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Germination counts, and cane yield. (iv) (a) 1951-1955. (b) No. (i) No. (v) (a) and (b) N.A. (vi) and (vii) NiJ.
5. RESULTS :
(i) 39.81 ton/ac.
(ii) 6.72 ton/ac.
(iii) Main effects of N, S and their interactio a not significant.
(iv) Av. yield of sugarcane in ton/ac.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	Mean
N_{1}	38.04	37.52	38.26	37.94
$\mathrm{~N}_{2}$	40.33	43.15	42.90	42.12
$\mathrm{~N}_{3}$	43.10	36.65	38.39	39.38
Mean	40.49	39.11	39.85	39.81

S.E. of marginal mean of S or N	$=1.93 \mathrm{ton} / \mathrm{ac}$.
S.E. of body of table	$=3.36$ ton/ac.

Crop :- Sugarcane.	Ref:- Mh. 52(9).
Site :- Agri. Res. Stn., Deolali.	Type :- 'CM'.

Object:-To determine the optimum spacing and manure for Adsali Sugarcane.

1. BASAL CONDITIONS :
(i) (a) AdsaliSugarcane-Bajra and Tur (mixed)-Sugarcane. (b) Bajra and Tur (mixed). (c) Nil. (ii) (a) G type. (b) N.A. (iii) 24.7.1952. (iv) (a) 2 ploughing, clod crushing, barrowing, opening ridges and: furrows planting, manuring, earthing, etc. (b) Planting in furrows. (c) According to spacings. (d) As per reatments. (e)-. (v) Basal dose of $20,000 \mathrm{lb} . / \mathrm{ac}$. of compost given in furrows and mixed before: ${ }^{n}$ lanting. (vi) Adsali, CO.419, sugarcanc. (vii) Irrigated. (viii) Watering, weeding, application of manurial doses and mixing, earthing up, etc. (ix) 25.68". (x) 27.1.1954.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1^{\prime} b e t w e e n ~ r o w s . ~}{\text { (2) }}$
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac. of N .

N applied as mixture of A / S and G.N.C. mixed in the ratio $1: 2$ and applied in 4 doses, seed-rate 10,000 setts/ac. for $3 \frac{1}{2}^{\prime}$. and 4^{\prime} and 15,003 setts for $4 \frac{1^{\prime}}{}{ }^{\prime}$ spacing.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $43.2^{\prime} \times 31.5^{\prime}$. (b) $33.35^{\prime} \times 24.5^{\prime}$ for 3.5^{\prime} spacing, $34.72^{\prime} \times 23.5^{\prime}$ for 4.0^{\prime} spacing and $36.26^{\prime} \times 22.5^{\prime}$ for 4.5^{\prime} spacing. (v) One row on each side and $4 \frac{1}{\prime}^{\prime}$ at either end. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Mild attack of top-shoot borer, stemborer, pyrilla and mealy-bugs. (iii) Germination counts, tillering, borer growth observation, ripeness studies, yield of sugarcane and milleable sugarcane count. (iv) (a) 1951-1055 (3 Adsali crops). (b) No. (c) N.A. (v) (a) Akluj, Lakhamapura, Padegaon and Kopergaon. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 49.39 ton/ac.
(ii) 5.53 ton/ac.
(iii) Main effects and interaction are not significant.
(iv) Av. yield of sugarcane in tor/ac.

	S_{1}	Sg	S_{8}	Mean
N_{1}	49.62	47.50	47.45	48.19
N_{2}	50.61	53.21	46.41	50.07
$\mathrm{N}_{\mathbf{3}}$	49.23	53.35	47.15	49.91
Mean	49.82	51.35	47.00	49.39
S.E. of marginal mean of N or S S.E. of body of table			$=1.60$ $=2.76$	

Crop :-Sugarcane.
Site :-Agri. Res. Stn., Deolali.

Ref:-Mh. 53(202).
Type :^‘CM’.

Object :-To determine the optimum spacing and manure for Adsali Sugarcane.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Bajra-Tur (mixed)-Sugarcanc. (b) Bajra-Tur (mixed). (c) Nil. (ii) (a) G type. (b) N.A. (iii) 16.7.1953. (iv) (a) 2 ploughings, clod crushing, harrowing, opening ridges and furrows, eartbing, etc. (b) The buds of the sugarcane are exposed and allowed to germinate under soil. (c) and (d) As per treatments. (e) -. (v) $20,000 \mathrm{lb}$. compost was given in furrows mixed before planting. (vi) CO. 419. (vii) Irrigated. (viii) Watering, weeding, light earthing and earthing up. (ix) 31.76". (\mathbf{x}) 16, 25.2.1955.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{2}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1^{\prime}}{}{ }^{\prime}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$.ac.

N applied as mixture of A / S and G.N.C. mixed in the ratio $1: 2$ and applied in 4 doses. Seed rate 10,000 setts/ce. for $3 \frac{1}{\prime}^{\prime}$ and 4^{\prime} and 15,000 setts for 41^{\prime} spacing.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $43.2^{\prime} \times 31.5^{\prime}$. (b) $33.35^{\prime} \times 24.5^{\prime}$ for 3.5^{\prime} spacing; $34.72^{\prime} \times 23.5^{\prime}$ for 4.0^{\prime} spacing and $36.26^{\circ} \times 22.5^{\circ}$ for 4.5^{\prime} spacing. (v) One row on each side and $4 \frac{1}{\prime}$ at either end. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Attack of top-shoot-borer, stem-borer, pyrilla and mealy-bugs. (iii) Germination c cunts, tillering, borer counts, milliable sugarcane counts, growth observation, ripening studies and harvest data. (iv) (a) 1951-1953 (3 crops). (b) No. (c) N.A. (v) (a) Akluj, Lakhamapur, Padegaon and _Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 55.35 ton/ac.
(ii) 9.94 ton/ac.
(iii) Only the main effect of spacing is significant.
(iv) Av. yield of sugariane in ton/ac.

	S_{1}	S_{2}	$\mathbf{S}_{\mathbf{a}}$	Mean
N_{1}	57.75	55.84	52.54	55.38
N_{2}	70.97	59.58	47.61	59.39
N_{3}	56.13	55.44	42.26	51.27
Mean	61.61	56.95	47.47	55.35
S.E of marginal mean of N or S S.E. of body of the table			-2.87 ton/ac. $=4.97$ ton/ac.	

Crop :mSugarcane.
Site :-Agri. Res. Stn., Kolhapur.

Ref:-Mh. 53(262).
Type : $\boldsymbol{c}^{\prime} \mathrm{CM}^{\prime}$.

Object :-To find out the optimum seed rate and manurial requirements for Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Ratoon-Paddy. (b) Paddy. (c) 2 bags/ac. of manure mixture. (ii) (a) Deep black. (b) N.A. (iii) 14.9 .1953 . (iv) (a) 1 ploughing by tractor, harrowing. (b) Planting in furrows. (c) As per treatments. (d) N.A. (e) -. (v) $10,000 \mathrm{lb}$./ac. of compost. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 1 weeding, 1 interculturing and 1 earthing up. (ix) 43.03". (x) 23.12.1954.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 seed rates : $R_{1}=12000, R_{2}=15000$ and $R_{3}=18000$ setts/ac.
(2) 2 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=270$ and $\mathrm{N}_{2}=470 \mathrm{lb}$./ac.

N as A / S top dressed.
3. DESIGN :
(i) 3×2 Fact. in R.B.D. (ii) (a) 6 . (b) N.A. (iii) 4 . (iv) (a) $42.5^{\circ} \times 34^{\circ}$. (b) $33.5^{\prime} \times 32.5^{\prime}$. (v) One row on either side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Yield of sugarcane. (iv) (a) 1951-52 to $1954-55$. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 47.78 ton/ac
(ii) 5.36 ton/ac.
(iii) Main effects and interaction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\ddot{\mathbf{R}_{\mathbf{1}}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$
$\mathbf{N}_{\mathbf{1}}$	44.87	44.52	50.31
$\mathbf{N}_{\mathbf{2}}$	52.29	44.28	50.40
Mean	48.58	44.40	50.35
46.57			
48.99			

S.E. of marginal mean of R
S.E. of marginal mean of N S.E. of body of table
$=1.89$ ton/ac.
$=1.55$ ton/ac.
$=2.68$ ton/ac.

Crop:- Sugarcane.
Site :~ Agri. Res. Stn., Kopergaon.

Ref:- Mh. 51(80).
Type :- 'CM'.

Object :-To study the effect of different levels of N in combination with different spacings on Sugarcane,

1. BASAL CONDITIONS:

(i) (a) Nil. (b) Wheat. (c) 3 bags of G.N.C. and 50 lb ./ac. of A/S. (ii) (a) A type soil. (b) Refer soil analysis, Kopergaon. (iii) 4.8 .1951 . (iv) (a) 2 ploughings and 3 harrowings. (b) Planting in furrows. (c) Seed rate according to spacings. (d) As per treatments. (e)-. (v) 20 C.L./ac. of F.Y.M. (vi) CO. 419 (late). (vii) Irrigated. (viii) 2 interculturings and 3 weedings. (ix) $46.40^{\prime \prime}$ 。 (x) 28.1.1953 to 6.2.1953.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings : $\mathrm{S}_{1}=3.5^{\prime}$ (15000 setts/ac.), $\mathrm{S}_{2}=4^{\prime}$ (12000 setts/ac.) and $\mathrm{S}_{3}=4.5^{\prime}$ (10000 setts/ac.).
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450 \mathrm{lb} . / \mathrm{ac} ., \mathrm{N}_{2}=525 \mathrm{lb}$./ac. and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.

N applied as mixture of A/S and G.N.C. in 1:2 ratio. Manure broadcast at sowing.
3. DESIGN:
(i) 3×3 Fact. in. R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $42.5^{\prime} \times 32^{\prime}$. (b) According to spacing : $34^{\prime} \times 24^{\prime}\left(4^{\prime}\right), 24.5^{\prime} \times 33.35^{\prime}\left(31^{\prime \prime}\right)$ and $22.5^{\prime} \times 36.31^{\prime}\left(41^{\prime}\right)$. (v) 4.25^{\prime} at either end, one row on either side. (vi) Yes.
4. GENERAL :
(i) Good. (ii) N.A. (iii) Height, no. of tillers, milleable and unmilleable sugarcane yield. (iv) (a) 1951 . 1955. (b) No. (c) N.A. (v) (a) Deolali and Akluj. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 60.70 ton/ac.
(ii) 8.16 ton/ac.
(iii) Main effect of S is significant, main effect of N and the interaction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	$\mathrm{~N}_{2}$	$\mathrm{~N}_{8}$	Mean
S_{1}	59.9	65.5	57.6	61.0
$\mathrm{~S}_{8}$	65.0°	65.1	65.6	65.2
$\mathrm{~S}_{8}$	60.3	49.3	58.3	56.0
Mean	61.7	-60.0	60.5	

$\begin{array}{ll}\text { S.E. of marginal mean of } \mathrm{N} \text { or } \mathrm{S} & =2.35 \mathrm{ton} / \mathrm{ac} . \\ \text { S.E. of body of table } & =4.08 \mathrm{ton} / \mathrm{ac} .\end{array}$

Crop :- Sugarcane.
Site :- Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(90).
Type :~ ‘CM'.

Object :-To study the effect of different levels of \mathbf{N} in combination with different spacings on Sugarcane.

1. BASAL CONDITIONS:-

(i) (a) Bajra+Tur(mixed)-Sugarcane. (b) Bajra-Tur (mixture). (c) Nil. (ii) (a) A type soil. (b) Refer soil analysis, Kopergaon. (iii) 6.8.1952. (iv) (a) Ploughing by tractor and clod crushing. (b) N.A. (c) 10,000 setts/ac. (d) As per treatments. (e)一. (v) 20 C.L/ac. of F.Y.M. (vi) CO. 419. (vii) Irrigated. (viii) 6 weedings. (ix) 23.17". (x) January 1954.

2. TREATMENTS :

All combir ations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{\prime}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1}{1}^{\prime}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.
\mathbf{N} applied as mixture of A / S and G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) $31 \frac{1}{\prime}^{\prime} \times 42.5^{\prime}$ for $3 \frac{y}{\prime}^{\prime}$ spacing; $32^{\prime} \times 42^{\prime}$ for 4^{\prime} spacing and $31.5^{\prime} \times 42.5^{\prime}$ for $4 \frac{1^{\prime}}{}$ spacing. (b) $24.5^{\prime} \times 33.5^{\prime}$ for $3 \frac{1^{\prime}}{}{ }^{\prime}$ spacing, $24^{\prime} \times 34^{\prime}$ for 4^{\prime} spacing and $22.5^{\prime} \times 36.5^{\prime}$ for $4 \frac{1}{\prime}^{\prime}$ spacing, (v) $3.5^{\circ} \times 4.5^{\prime}$ for $3 \frac{1}{2}^{\prime}$ spacing, $4^{\prime} \times 4.25^{\prime}$ for $4^{\prime \prime}$ spacing and $4.5^{\prime} \times 3^{\prime}$ for $4 \frac{1}{\prime}^{\prime}$ spacing. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Attack of top-shoot and stem borer observed. (iii) Germination count, tillering and borer count. (iv) (a) 1952-1957. (b) No. (c) Not known. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 53.64 ton/ac.
(ii) 7.52 ton/ac.
(iii) Main effect of N, S and their interaction aro significant.
(iv) Av. yield of sugarcene in ton/ac.

Crop :- Sugarcane.
Site :- Agri. Res. Stri., Kopergaon.

Ref :- Mh. 53(161).
Type :- 'CM'.

Object:-To determine the suitable spacing in combination with difierent manuring for Adsali Sugarcane.

1. BASAL CONDITIONS :
(i) (a) Bajra and Jowar (mixed)-Sugarcane. (b) Bajra-Jowar. (c) Nil. (ii) (a) A type soil. (b) Refer soil analysis, Kopergaod. (jii) 20,7.1953. (iv) (a) 2 ploughings and 3 barrowings. (b) N.A. (c) 10,000 setts/ac. (d) As per treatments. (e) -. (v) 20 C.L./ac. of F.Y.M. (vi) CO-419. (vii) Irrigated. (viii) 6 weedings and 1 bunding. (ix) 39.92". (x) 5.2.1955.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings : $S_{1}=3 \frac{1}{2}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1}{\prime}^{\prime}$ between rows.
(2) 3 levels of $N: N_{1}=450, N_{2}=525$ and $N_{2}=600 \mathrm{lb}$./ac.

N applied as mixture of A / S and G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $31.5^{\prime} \times 42.5^{\prime}$ for 3.5° spacing and 4.5° spacing and $32^{\prime} \times 42.5^{\prime}$ for 4^{\prime} spacing. (b) $24.5^{\prime} \times 33.25^{\prime}$ for 3.5^{\prime} spacing, $24^{\prime} \times 34^{\prime}$ for 4^{\prime} spacing and $22.5^{\prime} \times$ 36.5^{\prime} for 4.5^{\prime} spacing. (v) $3.5^{\prime} \times 4.5^{\prime}$ for 3.5^{\prime} spacing; $4^{\prime} \times 4.5^{\prime}$ for 4^{\prime} spacing and $4.5^{\prime} \times 3^{\prime}$ for 4.5^{\prime} spacing. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Attack of top-shoot, stem-borer and pyrilla. (iii) Germination count, tillering count and height. (iv) (a) 1951 to 1953. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 55.01 ton/ac.
(ii) 4.95 ton/ac.
(iii) Main effect of N, S and their interaction are significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{N}_{1}	\mathbf{N}_{2}	$\mathbf{N s}_{8}$	Mean
S_{1}	60.02	56.53	55.96	57.50
S_{8}	56.90	57.21	58.37	57.49
$\mathbf{S}_{\mathbf{3}}$	48.14	51.27	50.69	50.03
Mean	55.02	55.00	55.01	55.01

S.E. of any maginal mean

$$
\begin{aligned}
& -1.42 \text { ton/ac. } \\
& =2.47 \text { ton/ac. }
\end{aligned}
$$

Crop:- Sugarcane
 Site :- Agri. Res. Stn., Kopergaon.

Reff:- Mh: 50(103),
Type:- 'CM'.

Object :-To determine the suitable spacing in combination with doses of manure.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Wheat. (c) 3 bag; of G.N.C. $+50 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) A type soil. (b) Refer soil analysis, Kopergaon. (iii) 21.8.1950. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) As per treatments. (e) -. (v) $20,000 \mathrm{lb}$ /ac. of compost. (vi) CO-419 (mid-late). (vii) Irrigated. (viii) N.A. (ix) 21.26°. (x) 14 to 28.12.1951,

2. TREATMENTS :

Main-plot treatments :
3 spacings ; $S_{1}=3^{\prime}, S_{2}=3.5^{\prime}$ and $S_{3}=4^{\prime}$.
Sub-plot treatments:
3 levels of $\mathrm{N}: \mathrm{N}_{1}=450$, and $\mathrm{N}_{2}=525$ and $\mathrm{N}_{8}=600 \mathrm{lb}$./ac.
N applied as A / S.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) 1.25 guntha. (b) 0.75 guntha, (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Yield of sugarcane. (iv) (a) N.A. (b) No. (c) N.A; (v) (a) N.A:- (b) N.A. (yi) and (vii) Nil.

5. RESULTS :

(i) 65.84 ton/ac.
(ii) (a) 4.96 ton/ac.
(b) 4.00 ton/ac.
(iii) Main-plot treatments, sub-plot treatments and their interaction are not significant:
(iv) Av. yield of sugarcane in $\mathrm{lb} . / \mathrm{ac}$.

	S_{3}	S_{2}	S_{3}	Mean
N_{1}	62.84	69.22	64.20	65.42
$\mathrm{~N}_{\mathbf{4}}$	63.36	65.28	65.10	64.58
$\mathrm{~N}_{8}$	63.72	70.58	68.26	67.52
Mean	63.31	68.36	65.85	65.84

s.E. of difference of two

| 1. S marginal means | $=2.02$ ton/ac. |
| :--- | :--- | :--- |
| 2. N marginal means | $=1.63$ ton/ac. |
| 3. N means at the same level of S | $=2.83$ ton/ac. |
| 4. S means at the same level of N | $=3.07$ ton/ac. |

Crop :- Sugarcane.
Site :- Agri. Res. Stn.,Lakhamapur,
Object :-To find out the effect of different levels of manures in combination with different spacings.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) N.A. (c) 3 bags of G.N.C. and 50 lb ./ac. of $A^{\prime} \mathrm{S}$. (ii) (a) F type soil-' ery shallow $12^{\prime \prime}$ to $15^{\prime \prime}$ deep light brown, $\mathrm{pH}=8.1$. (b) Refer soil analysis, Lakhamapur. (iii) 25.8.1950. (iv) (a) 2 ploughings. (b) Setts planted by hand $1^{\prime \prime}$ to $2^{\prime \prime}$ deep in soil. (c) 10,000 setts/ac. (d) As per treatments. (c) -. (v) $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost after 1 st ploughing and $10 \mathrm{C} . \mathrm{L} . / \mathrm{ac}$. of compost in furiows before planting. (vi) N.A. (vii) Irrigated. (viii) 2 to 3 hand weedings, 3 to 4 interculturings, 1 light earthing up by Bahadur plough and final earthing up by ridger. (ix) 14.95° to 17.75". (x) $\mathbf{1 5 . 1 2 . 1 9 5 2 .}$
2. TREATMENTS:

Main-plot treatments:
3 spacings: $S_{1}=3^{\prime}, S_{9}=3 \frac{1}{2}^{\prime}$ and $S_{3}=4^{\prime}$.
Sub-plot treatments :
3 levels of $\mathrm{N}^{\cdot} \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$. /ac.
N as A/S sprinkled in 4 doses; at planting, 6 weceks after, 12 weeks after and at the time of earthing up.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) 3.75' each length wise and 1 row each breadth wise. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Attack of top torers, controlled by cutting off affected shoots, collection and destroying of egg-masses and moths, (iii) Germination counts, monthly heights, plant population and sugarcane yield.
(iv) (a) $1950-1953$.
(b) No.
(c) N.A. (v) (a) Kopergaon, Deolali and Akluj.
(b) N.A.
(vi) and (vii) Nil.

5. RESULTS :

(i) 38.8 jon/ac.
(ii) (a) 27.53 ton/ac.
(b) 28.82 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{3}}$	Mean
$\mathbf{N}_{\mathbf{1}}$	42.01	37.20	40.30	39.84
$\mathbf{N}_{\mathbf{3}}$	40.30	39.60	40.00	39.97
$\mathbf{N}_{\mathbf{8}}$	37.20	35.60	37.50	36.77
Mean	39.84	37.47	39.27	38.86

S.E. of difference of two

1. S marginal means

$$
\begin{aligned}
& =11.2 \mathrm{tod} / \mathrm{ac} . \\
& =11.8 \mathrm{ton} / \mathrm{ac} . \\
& =20.4 \text { ton/ac. }
\end{aligned}
$$

2. N marginal means
3. N means at the same level of S
4. S means at the same level of $N \quad=20.1$ ton/ac.

Crop :- Sugarcane.

Site :- Agri. Res. Stn., Lakhamapur.

Ref :- Mh. 51(87).
Type :-‘CM'。

Object :-To find out the effect of different levels of manure in combination with different spacings.

1. BASAL CONDITIONS:

(i) (a) Bajra-Tur (mixed)-Sugarcane. (b) Bajra-Tur. (c) Nil. (ii) (a) Very shallow, $12^{\prime \prime}$ to $15^{\prime \prime}$, deep light brown, $\mathrm{pH}=8.1$. F type soil. (b) Refer soil analysis, Lakhamapur. (iii) 20.8.1951. (iv) (a) 4 ploughings and 4 harrowings. (b) Setts planted by hand 1° to $2^{\prime \prime}$ deep. (c) Seed rate $12,000,10,000$ and 15,000 setts/ac. (d) As per treatments. (e) 一. (v) $20 \mathrm{C} . \mathrm{L}$./ac. of compost half after 1 st ploughing and half in furrows before planting. (vi) $N_{:}$A. (vii) Irrigated. (viii) 2 to 3 hand weedings, 3 to 4 intercullurings by tooth cultivator implement, 1 light earthing up by Bahadur plough and 1 final earthing up by ridger. (ix) $10.46^{\prime \prime} .(x)$ 13.1.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{\prime}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1}{}^{\prime}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{\mathbf{1}}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.

N as A / S sprinkled in 4 doses; at the time of planting, 6 weeks later, 12 weeks later and at the time of earthing up.

3. DESIGN:

(i) 3×3 Fact. in.R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $32^{\prime} \times 42.5^{\prime}$ (b) $24^{\prime} \times 34^{\prime}$ (v) 1 row on each side and 4^{\prime} on either end. (vi) Yes.
4. GENERAL :
(i) The general growth and the final yields were normal. (ii) Major pest-top-borer, cutting off the affected shoots, collection and destroying of egg-masses and moths. Slight rat trouble, controlled by poison baits of zinc phosphate. (iii) Germination counts, monthly height observations, plant population, sugarcane yield and fortnightly maturity study. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Deolali. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 27.2 ton/ac.
(ii) 5.51 ton/ac.
(iii) Main effects and interactions are not significant.
(iv) Av. yield of sugarcane in ton/ac.

,	S_{1}	S_{2}	S_{8}	Mean
N_{1}	26.7	25.7	27.8	26.7
N_{2}	28.3	26.6	37.2	27.3
N_{3}	28.4	31.4	22.7	27.5
Mean	27.8	27.9	27.9	27.2
S.E. of marginal mean of N or S S.E. of body of table			$\begin{aligned} & =1.59 \text { to } \\ & =2.76 \text { to } \end{aligned}$	

Crop:-Sugarcane.

Site :-Agri. Res. Stn., Lakhamapur.
Object:-To find out the effect of different levels of manure in combination with different spacing between rows.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) Nil. (ii) (a) F type ; very shallow $12^{\prime \prime}-15^{\circ}$ deep. (b) Refer soil analysis, Lakhamapur. (iii) 11.7.1952. (iv) (a) Two ploughings. (b) N.A. (c) 10,000 setts/ac. (d) As per treatments. (e) -. (v) 10 C.L./ac. of compost applied after 1 st ploughing and same dose applied in furrows before planting, (vi) N.A, \& (vii) Irrigated. (viii) 2 to 3 hand weedings, 3 to 4 interculturings, one light earthing up by bahadur plough and a final earthing up by ridger. (ix) 10.46° to $24.12^{\prime \prime}$. (x) 4.2.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.
(2) 3 spacings: $S_{1}=3 \frac{1}{2}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1}{2}{ }^{\prime}$ between rows.

N as A/S sprinkled in 4 doses; at planting, 6 weeks later, 12 weeks later and at the time of earthing up.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 0.75 guntha. (v) 3.75^{\prime} on either side length wise and one row on either side breadth wise. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of top borer ; controlled by cutting of affected shoots; collection and destroying of egg-masses and moth. (iii) Germination count, monthly height data, plant population and sugarcane yield. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) Kopergaon, Deolali and Akluj. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 25.95 ton/ac.
(ii) 3.94 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yiedd of sugarcane in toul/ace

	\mathbf{N}_{1}	$\mathbf{N a}_{\mathbf{3}}$	$\mathbf{N s}_{8}$	Mean
S_{1}	27.19	24.83	29.20	27.07
S_{8}	25.57	25.54	27.73	26.28
S_{3}	21.45	25.00	27.07	24.50
Mean	24.73	25.12	28.00	2595
S.E of marginal mean of S or N S.E of body of table			$\begin{aligned} & =1.13 \mathrm{ton} / \mathrm{ac} \\ & =1.97 \mathrm{ton} / \mathrm{ac} \end{aligned}$	

Crop :-Sugarcane.

Site =-Agrio Res. Stn., Lakhamapur.

> Ref $=-\mathrm{Mh} .53(99)$. Type :-‘CM'.

Object:-To find out the suitable spacing and manuring for Adsali Sugarcane crop.

1. BASAL CONDITIONS:
(i) (a) Bajra-Tur mixed-Adsali sugarcane (b) Bajra-Tur mixed. (c) 2 md/ac. of manure mixture
(ii) (a) Shallow type of soil 6° to 9°; deep hight brown in colour. (b) Refer soil analysis, Lakhamapur.
(iii) 9.7.1953. (iv) (a) 2 ploughings with deep plough 10°; clod crushing \& opening furrows. (b) N.A.
(c) 10,000 serts/ac. 3 budded. (d) As per treatments (e) (v) 20 C .L.ac of compost applied
at the time of preparatory illage (vi) CO. 419 (late). (vii) Irrigated. (viii) 2 interculturings with tocth cuitivators, lizht earthing up by a plough, weeding twice at final earthing up by ridger. (ix) 24.72^{*} to 33.52". (x) 27.1.1955 to 22.1955.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings : $S_{1}=33^{\prime}, S_{4}=4^{\prime}$ and $S_{3}=4 \frac{1}{2}^{\prime}$ tetween rows.
(2) 3 top dressing of $N: N_{1}=4.0, N_{2}=525$ and $N_{3}=600 \mathrm{lb} / \mathrm{ac}$.

N applied in 4 doses as mixture of A / S and G.N.C. at different stages; at planting, 6 weeks after planting, 12 we-ks after placting and 6 months after planting.
3. DESIGN :
(i) 3×3 Fact in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $31.5^{\circ} \times 42.5^{\circ}$. (b) $24.5^{\circ} \times 33.35^{\circ}$. (v) 2 rows (vi) Yes
4. GENERAL:
(i) Heavy lodging on 25.9.1954 due to rains (ii) Top shoot borer 1 to 11% and stem borer 1 to 4.5\%; cutting out the affected plants and collection of egg-mass; medium attack of pyrilla, spraying 50% B.H.C. (iii) Sugarcane height, tillering count and germination count, botanical observations etc. and yield. (iv) (a) 1950-1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) NiI.
5. RESULTS:
(i) $45.9500 \mathrm{c} / \mathrm{ac}$
(ii) 6.63 toolac
(iii) None of the effects is significant.
(iv) Av. yieid of sugarcane in too/ac.

	\mathbf{N}_{1}	N_{2}	N_{3}	Mean
S_{1}	49.60	44.20	49.12	47.64
S_{2}	47.14	47.82	45.01	46.65
S_{3}	40.95	45.84	43.96	43.58
Mean	45.89	45.95	46.03	45.95
S.E. of marginal mean of N or S S.E. of body of table			$\begin{aligned} & =1.91 \text { ton/ac. } \\ & =3.32 \text { ton/ac } \end{aligned}$	

Crop :-Sugarcane.

Site :-Agri. Res. Stn., Padegaon.

Ref. :-Mh 50(97).
Type :"'CM’.

Object:-To find out the optimum spacing and dose of N for Sugarcane.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Nil. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 26.11.1950. (iv) (a) and (b) N. A. (c) 10,000 setts/ac. (d) As per treatments. (c) -. (v) Nil. (vi) CO. 419 (mid-late) (vii) Irrigated. (viii) 2 weedings, 1 interculturing and 1 earthing. (ix) $14.68^{\prime \prime}$ in 1951-52. (x) 26.3.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacing: $-S_{2}=3 \frac{1^{\prime}}{}, S_{2}=4^{\prime}$ and $S_{8}=4 \frac{⿺^{\prime}}{}$.
(2) 3 levels of $\mathrm{N}:-\mathrm{N}_{2}=375, \mathrm{~N}_{2}=450$ and $\mathrm{N}_{3}=525 \mathrm{lb}$./ac.

N applied as A/S.
3. DESIGN :
(i) 3×3 Fact in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) The expt. was taken in newly developed area and hence the crop growth was uneven. (ii) Nil. (iii) Brix, Sucrose\% and sugarcane yield. (iv) (a) No. (b), (c) No. (v) (a), (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) 46.88 ton/à.
(ii) 9.65 ton/ac.
(iii) Main effect of S and interaction $\mathrm{N} \times \mathrm{S}$ are significant. Main effect of N is not significant.
(iv) Av. yield of sugarcane in ton/ac.

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{\mathbf{2}}$
N_{1}	41.00	55.10	43.10
$\mathrm{~N}_{2}$	50.10	52.20	45.50
$\mathrm{~N}_{3}$	49.20	44.80	40.90
Mean	46.79	50.70	43.17
46.40			
49.27			
44.97			
46.88.			

S.E. of marginal mean of N or $\mathrm{S} \quad=\mathbf{2 . 2 7}$ ton/ac.
S.E. of body of table $=3.94$ ton/ac.

Crop :-Sugarcane (Adsali).
Site :-Agri. Res. Stn., Padegaon.

Ref. :-Mh. 50(98).
Type: ${ }^{〔}$ 'CM’.

Object :-To find out the optimum spacing and dose of \mathbf{N} for Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Sugar̄cane-Jowar. (b) Nil. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 12.9.1950. (iv) (a) and (b) N.A. (c) Varies according to spacings, the standard being 10,000 three budded setts/ac. for 4^{\prime} spacing. (d) As per treatments. (e) —. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 14.68°. (x) 5.3.1952,
2. TREATMENTS:

All combinations of (1 and (2)
(1) 3 spacings : $-S_{1}=3^{\prime}, S_{9}=3 \frac{1}{\prime}^{\prime}$ and $S_{9}=4$.
(2) 3 levels of $\mathrm{N}:-\mathrm{N}_{\mathrm{I}}^{+}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{8}=600 \mathrm{lb}$./ac.

N applied as A/S+G.N.C. in 1:1 ratio.
3. DESIGN :
(i) 3×3 Fact in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL:
(i) The growth of crop was uneven as the area was brought under cultivation recently. (ii) Nil. (iii) Brix, sucrose\% and sugarcane yield. (iv) (a) 1950-1953. (b), (c) No. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 45.74 ton/ac.
(ii) 1428 ton/ac.
(iii) Only the interaction $\mathrm{N} \times \mathrm{S}$ is significant.
(iv) Av. yield of sugarcane in ton/ac.

	S_{1}	$\mathrm{~S}_{\mathbf{2}}$	S_{3}	Mean $\mathrm{N}_{\mathbf{1}}$
$\mathrm{N}_{\mathbf{2}}$	36.90	48.40	41.50	
$\mathrm{~N}_{3}$	44.70	50.90	43.80	46.47
Mean	44.00	54.10	47.40	48.50
41.87	51.13	44.23	45.74	

S.E. of marginal mean of N or $\mathrm{S}=3.36$ ton/ac.
S E. of body of table $=5.83$ ton/ac.

```
Crop :- Sugarcane(Adsali). ` Ref:- Mh. 51(136).
Site ;- Agri. Res. Stn., Padegaon. . Type :m 'CM'.
```

Object :-To find out the optimum spacing and dose of \mathbf{N} for Sugarcane.

1. -BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 3.8.1951. (iv)(a) N.A. (b) N.A. (c) 12500 (for $3 \frac{t^{\prime}}{}{ }^{\prime}$ spacing), 10,000 (for 4^{\prime} spacing) and 15000 (for $4 \frac{t^{\prime}}{}$ spacing) setts/ac. (d) As per treatments. (e) -. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 intercuiturings, 2 weedings and 1 earthing up. (ix) $14.68^{\prime \prime}$. (x) 18.2.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{2}^{\prime}, S_{2}=4^{\prime}$ and $S_{3}=4 \frac{1}{\prime}^{\prime}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.

N applied as $\mathrm{A} / \mathrm{S}+\mathrm{G}$. N.C. in $1: 1$.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Brix, sucrose and glucose \% and Sugarcane yield. (iv) (a) 1950-1953 (modified in 1951). (b) and (c) No. (v) (a) and (b) N.A. (vi) For $4 \frac{y}{\prime}^{\prime}$ spacing sugarcane is planted in a double line parallel to each other ($4^{\prime \prime}$ to $5^{\prime \prime}$ apart) with seedrate of 15000 setts/ac. (vii) Nil.
5. RESULTS :
(i) 46.83 too/ac.
(ii) 8.87 ton/ac.
(iii) Main effects and interaction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{S}_{1}	S_{2}	\mathbf{S}_{3}	Mean
\mathbf{N}_{1}	40.93	41.94	44.93	42.60
N_{2}	48.86	50.19	46.20	48.42
N_{3}	49.30	48.88	50.25	49.48
Mean	46.36	47.00	47.13	46.83
S.E. of marginal mean of N or S S.E. of body of table			$\begin{aligned} & =2.09 \mathrm{ton} / \mathrm{ac} . \\ & =3.62 \text { ton/ac. } \end{aligned}$	

Crop :- Sugarcane (Adsali).
Site :- Agri. Res. Stn., Padegaon.
Ref:- Mh. 52(163)
Type :- 'CM'.
Object :-To find out the optimum spacing and dose of \mathbf{N} for Sugarcane.

i. BASAL CONDITIONS:

(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 13.8.1952. (iv) (a) N.A. (b) Planting in double lines parallel to each other (for $4 \frac{1}{2}$ spacing). (c) According to spacings: $12500\left(3 \frac{1}{\prime}^{\prime}\right),\left(10,000\left(4^{\prime}\right)\right.$ and $15000\left(4 \frac{1}{2}^{\prime}\right)$ setts/ac. (d). As per treatments. (e)-. (v) Nil. (vi) CO. 419 (Mid late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 11.01° to $16.35^{\prime \prime}$. (x) 27.2.1954.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3 \frac{1}{}^{\prime}, S_{2}=4^{\prime}$ and $S_{8}=4 \frac{1}{}^{\prime}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.

N as $\mathrm{A} / \mathrm{S}+$ cake in $1: 1$ ratio.
3. DESIGN:
(i) $3 \times 3 \mathrm{~F}$ (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil: (iii) Brix, sucrose, glucose \% and sugarcane yield. (iv)' (a) 1950-1953 (modified in 1951). (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 68.39 ton/ac.
(ii) 8.19 ton/ac.
(iii) Main effects and interaction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	S_{1}	S_{2}	$\mathbf{S}_{\mathbf{8}}$	Mean
N_{1}	69.72	69.46	60.64	66.61
N_{2}	66.51	69.60	70.85	68.99
N_{8}	69.45	68.20	71.11	69.59
Mean	68.56	69.09	67.53	68.39
S.E. of marginal mean of N or S S.E. of body of table			$\begin{aligned} & =1.93 \text { ton/ac. } \\ & =3.34 \text { ton/ac. } \end{aligned}$	

Crop:- Sugarcane (Adsali).
Ref:- Mh. 53(244).
Site :- Agri. Res. Stn., Padegoan.
Type : ${ }^{\text {' }} \mathrm{CM}^{\prime}$ '.
Object :-To find out the optimum spacing and manures for Sugarcane.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegoan.
(iii) 7.8.1953. (iv) (a) N.A. (b) Planted in double linc. (c) According to spacingṣ $12,500\left(3.5^{\prime}\right), 10,300$
(4) and $15,000\left(4.5^{\prime}\right)$ setts/ac. (d) As per treatments. (e) -. (v) Nil. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturing, 2 weedings and 1 earthing up. (ix) $16.35^{\prime \prime}$ to 20.16° : (x) 27 to 31.12.1954.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=3.5^{\prime}, S_{2}=4^{\prime}$ and $S_{8}=4.5^{\circ}$.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=450, \mathrm{~N}_{2}=525$ and $\mathrm{N}_{3}=600 \mathrm{lb}$./ac.

N as $\mathrm{A} / \mathrm{S}+$ cake in $1: 1$ ratio.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) 0.75 guntha. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Brix, sucrose, glucose\% and sugarcane yield. (iv) (a) 1950 to 1953 (modified in 1951). (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 62.65 ton/ac.
(ii) 6.29 ton/ac.
(iii) Main effects and interaction are not significant.
(iv) Av. yield of sugarcane in ton/ac.

\ldots	S_{1}	S_{2}	S_{3}	Mean N_{1} $\mathrm{~N}_{2}$
$\mathrm{~N}_{3}$	66.10	63.40	67.60	65.70
Mean	62.90	62.80	58.20	61.30
	63.70	60.10	59.10	60.97
	64.23	62.10	61.63	62.65

S.E. of marginal mean of N or S	$=1.48$ ton/ac.
S E. of body of table	$=2.56$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Akluj.

Ref :••Mh. 48(77).
Type :- 'IM'.

Object :-To find out the requirements of irrigations and manure for Sugarcane.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Rabl Jowar. (b) Rabi Jowar. (c) Nil. (ii) (a) D type. (b) Refer soil analysis, Akluj. (iii) July to September 1948. (iv) (a) 2 ploughings, harrowing and ridging. (b) to (e) N.A. (v) Nil. (vi) CO. 419. (vil) Irrigated. (viii) 2-3 weedings, one light earthing up and a final earthing up. (ix) 21.78 ${ }^{\circ}$. (x) 5.1.1950.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 2 levels of irrigation : $I_{1}=115$ and $\mathrm{I}_{2}=130$ acre inches.
(2) 3 levels of F.Y.M. : $\mathrm{F}_{1}=20, \mathrm{~F}_{8}=30$ and $\mathrm{F}_{3}=40$ C.L./ac.
(3) 3 levels of manure: $\mathrm{N}_{1}=375, \mathrm{~N}_{2}=450$ and $\mathrm{N}_{3}=525 \mathrm{lb} . / \mathrm{ac}$.

Manure applied as mixture of A/S and G.N.C. in $1: 2$ ratio.
3. DESIGN :
(i) $3 \times 3 \times 2$ Fact, in R.B.D. (ii) (a) 18. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha. (b) 1.0 guntha. (v) Nil. (vi) ${ }^{\text {'Yes. }}$
4. GENERAL :
(i) Slight lodging, (ii) Stem-borer 3.5%, top-borer 3.5%. (iii) Germination and tillering \%, height and girth of the sugarcane, total no. of canes and total weight. (iv) (a) 1941-42 to 1946-47 suru planting; 1947-49 to 1949-51 adsall. (b) No. (c) Nil. (v) (a) Kopergoan, Deolali and Lakhamapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 50.55 ton/ac.
(ii) 5.33 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{1}	F_{2}	$\mathrm{F}_{\mathbf{z}}$	Mean	N_{1}	N_{2}	N_{8}
I_{1}	51.17	49.10	50.33 .	50.20	47.71	53.05	49.84
I_{2}	53.53	47.56	51.50	50.86	50.19	52.04	50.36
Mean	52.35	48.33	50.91	50.55	48.95	52.54	50.10
N_{1}	50.75	46.51	49.59				e
N_{2}	53.85	51.59	52.19				
N_{3}	52.43	46.89	50.96				-
S.E. of marginal mean or N or F . S.E. of marginal mean of I . S.E. of body of table $\mathrm{I} \times \mathrm{F}$ or $\mathrm{I} \times \mathrm{N}$ S.E. of body of table $\mathbf{F} \times \mathrm{N}$				$\begin{aligned} & =1.25 \text { ton/ac. } \\ & =1.03 \text { ton/ac. } \\ & =1.78 \text { ton/ac. } \\ & =2.18 \text { ton/ac. } \end{aligned}$			

Crop :- Súgarcane (Ratoon).
Site :- Agri. Res. Stn., Akluj.

Ref:- Mh. 49(108).
Type :- 'IM'.

Object :-To find out the requirements of irrigations and manure for Sugarcane crop.

1. BASAL CONDITIONS :
(i) (a) Sugarcane-Ratoon-Rabi Jowar. (b) Sugarcane. (c) As per treatments. (ii) (a) D type. (b) Refer soil analysis, Akluj. (iii) N.A. (iv) (a) Ridging. (b) to (e) N.A. (v) Nil. (vi) CO.419. (vii) Irrigated. (viii) 2-3 weedings and earthing up. (ix) $23.64^{\prime \prime}$. (x) N.A.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 2 levels of irrigation : $\mathrm{I}_{1}=115$ and $\mathrm{I}_{2}=130$ acre inches.
(2) 3 levels of F.Y.M.: $F_{1}=20, F_{2}=30$ and $F_{3}=40$ C.L./ac.
(3) 3 levels of manure: $N_{1}=375, N_{2}=450$ and $N_{8}=525 \mathrm{lb} . / \mathrm{ac}$.

Manure applied as mixture of A / S and G.N.C. in 1:2 ratio.
3. DESIGN :
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha. (b) 1.0 guntha. (v) N.A. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Stemborer 3 to 3.5% and top borer 3.0 to 3.5%. (iii) Height and girth of sugarcane, total sugarcanes and weight of sugarcane. (iv):(a) 1941-42 to 1946-47 suru planting; 1947-1949 to 1949— 1951 adsall planting. (b) No. (c) No. (v) (a) Kopergaon, Deolali and Lakhamapur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 30.92 ton/ac.
(ii) 4.03 ton/ac.
(iii) Main effect of \mathbf{F} aloce is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{1}	$\mathrm{F}_{\mathbf{2}}$	F_{3}	Mean	\mathbf{N}_{1}	N_{2}	N_{3}
I_{1}	27.29	32.48	32.75	30.84	28.50	32.07	31.95
I_{2}	30.25	32.15	30.50	30.97	29.68	30.65	32.63
Mean	28.77	32.31	31.62	30.92	29.09	31.36	32.29
\mathbf{N}_{1}	25.55	31.19	30.02	/			
N_{2}	29.40	32.28	32.39				
N_{3}	31.35	32.97	32.54				

S.E. of marginal mean of N or F	$=0.95 \cdot$ ton/ac.
S.E. of marginal mean of I	$=0.78$ ton/ac.
S.E. of body of table $F \times N$	$=1.65$ ton/ac.
S.E. of body of tables $I \times F$ and $I \times N$	$=1.34$ ton/ac.

Crop :- Sugarcane (Adeali).
Site :- Agri. Res. Stn., Akluj.

Ref:- Mh. 49(110).
Type:- 'IM'.

Object :-To find out the requirements of irrigation and manure for Sugarcanc crop.

1. BASAL CONDITIONS:

(i) (a) Sugarcade-rabi Jowar. (b) Rabi Jowar. (c) Nil. (ii) (a) D type. (b) Refer soil analysis, Akluj. (iii) 31.7.1949. (iv) (a) 2 ploughings, harrowing and ridging. (b) to (e) N.A. (v) Nil. (vi) CO.419. (vii) Irrigated. (viii) 2 to 3 weedings, 1 light earthing up and final earthing up. (ix) 23.64". (x) 1.2.1951.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of irrigation: $\mathrm{I}_{1}=115$ and $\mathrm{I}_{2}=130$ acre inches.
(2) 3 levels of F.Y.M.: $\mathrm{F}_{1}=20, \mathrm{~F}_{2}=30$ and $\mathrm{F}_{3}=40$ C.L./ac.
(3) 3 levels of manures: $\mathrm{N}_{1}=375, \mathrm{~N}_{2}=450$ and $\mathrm{N}_{3}=525 \mathrm{lb}$./ac. of N .

N applied as mixture of A / S and G.N.C. in 1:2 ratio.
3. DESIGN:
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha. (b) 1.4 guntha. (v) N.A. (vi) Yes.

4. GENERAL :

(i) Lodging to some extent. (ii) Stemborer 3.5% and top borer 3.0%. (iii) Germination and tillering percentages, height and girth of sugarcane, total no. of canes and weight. (iv) (a) 1941-42 to 1946-47 suru planting and 1947-1949 to 1949-1951 adsali planting. (b) and (c) No. (v).(a) Kopergaon, Deolali and Lakhamapur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) 69.96 ton/ac.
(ii) 7.13 ton/ac.
(iii) Main effect of \mathbf{F} is highly significant. Main effect of N is significant. Other effect and interactions are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{1}	F_{8}	F_{3}	Mean	N_{1}	N_{2}	N_{3}
I_{1}	65.99	71.34	70.79	69.37.	64.01	72.88	71.23
$\mathrm{I}_{\mathbf{2}}$	64.35	70.68	76.65	70.52	67.72	68.60	75.26
Mean	65.12	71.01	73.72	69.96	65.86	70.73	73.24
N_{1}	61.26	68.56	67.77				
N_{2}	68.08	70.59	73.54				
N_{3}	66.01	73.87	79.84				

S.E. of marginal mean of N or F	$=1.68$ ton/ac.
S.E. of marginal mean of \mathbf{I}	$=1.37$ ton/ac.
S.E. of body of $N \times I$ or $F \times I$ table	$=2.38$ ton/ac.
S.E. of body of $N \times F$ table	$=2.91$ ton/ac.

Crop :-Sugarcane (Adsali).
Site : \sim Agri. Res. Stn., Deolali.

Ref : $\mathbf{~ M h ~ 4 8 (4 3) . ~}$
Type :- 'IM'.

Object :-To study the requirements of water and the effect of different quantities of manures.

1. BASAL CONDITIONS:
(i) (a) to (c) N.A. (ii) (a) G type soil. (b) N.A. (iii) 27. 7. 1948. (iv) (a) 2 ploughings and 1 harrowing. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) N.A. (v) N.A. (vi) CO. 419 . (vii) Irrigated.
(viii) N.A. (ix) 23.19° to 39.21°. (x) N.A.
2. TREATMENTS:

Main-plot treatments :
3 levels of $N: \quad N_{1}=375, N_{2}=450$ and $N_{3}=525 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
All combinations of (1) and (2).
(1) 2 levels of irrigation: $I_{2}=115$ and $I_{2}=130$ acre inches.
(2) 3 levels of F.Y.M.: $\quad F_{1}=20, F_{8}=30$ and $F_{8}=40$ C.L./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $32^{\prime} \times 54.45^{\circ}$. (b) $1 / 40$ th acre. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) N.A. (iv) (a) 1948-1950. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 50.96 ton/ac.
(ii) (a) 3.35 ton/ac.
(b) 7.28 ton/ac.
(iii) Effect of main-plot treatments alone is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{1}	$\mathrm{F}_{\mathbf{1}}$	F_{3}	Mean	$\mathbf{N a}_{\mathbf{1}}$	\mathbf{N}_{2}	N_{3}
I_{1}	53.84	48.70	52.53	51.69	51.11	48.66	55.30
I_{2}	50.84	49.20	50.68	50.24	50.83	48.89	51.01
Mean	52.34	48.95	51.60	50.96			
N_{1}	53.43	47.58	51.91	50.97			
N_{2}	46.73	50.11	49.45	48.76			
N,	56.89	49.15	53.41	53.15			

S.E. of difference of two

1. N marginal means $\quad=1.12$ ton/ac.
2. F marginal means $=2.43$ ton/ac.
3. 1 marginal means $\quad=1.98$ ton/ac.
4. means in $I \times F$ table $=3.44$ ton/ac.
5. F means at the same level of $\mathbf{N}=4.20$ ton $\angle a c$.
6. I means at the same level of $N=3.44$ ton/ac.
7. N means at the same level of $P=3.61$ ton/ac.
8. N means at the same level of $I=2.67$ ton/ac.

Crop :-Sugarcane (Adsali).
Site :-Agri. Res. Stn., Deolali.

> Ref :-Mh $49(70)$
> Type :-‘M'.

Object :-To study the requirement of water and the effect of different quantities of manures.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) G type soil. (b) N.A. (iii) 15.7.1949. (iv) (a) 2 ploughings and 1 harrowing. (b) N.A. (c) 10,000 setts/ac. (d) $\mathbf{4}^{\prime}$ spacing between rows. (c) -. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii) N.A. (ix) $23.19^{\prime \prime}$ to 26.52°. (x) N.A.
2. TREATMENTS :

Main-plot treatments :
3 levels of $\mathrm{N}: \quad \mathrm{N}_{\mathbf{1}}=375, \mathrm{~N}_{2}=450$ and $\mathrm{N}_{3}=525 \quad \mathrm{lb}$./ac.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 2 levels of irrigation: $\quad I_{1}=115$ and $I_{2}=130$ acre inches.
(2) 3 levels of F.Y.M. :- $F_{1}=20, F_{2}=30$ and $F_{3}=40$ C.L./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $48^{\prime} \times 36^{\prime}$. (b) $1 / 40$ acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A, (iii) N.A. (iv) (a) 1948-1950 to 1950-1952. (b) No. (c) N.A. (v) (a) Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 39.99 ton/ac.
(ii) (a) 3.59 ton/ac.
(b) 5.13 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yieid of sugarcane in ton/ac. *

	F_{1}	F_{9}	Fs	Mean	N_{1}	N_{2}	N_{5}
I	37.78	38.77	42.70	39.75	36.86	42.53	39.86
I_{2}	40.23	40.80	38.54	40.45	42.18	41.51	37.67
Mean	39.01	39.78	40.62	39.99			
N_{1}	41.26	36.66	40.64	39.52			
N_{2}	39.56	41.67	42.15	42.02			
N_{3}	36.19	41.02	39.08	38.76			

S.E. of difference of two

1. N marginal means

$$
=1.20 \mathrm{ton} / \mathrm{ac}
$$

2. F marginal means $=1.71$ ton/ac.
3. I marginal means $\quad=1.40$ ton/ac.
4. means in $I \times F$ table $\quad=2.42$ ton/ac.
5. F means at the same level of $N \quad=2.96$ ton/ac.
6. I means at the same level of $N \quad=2.42$ ton/ac.
7. N means at the same level of $\mathbf{F} \quad=\mathbf{2 . 7 0}$ ton/ac.
8. N means at the same level of $I \quad=2.09$ ton/ac.
Crop:- Sugarcane (Adsali).
Site :- Agri. Res. Stn., Deolali.

Ref:- Mh. 50(84).
Type :m 'IM'.

Object :-To study the requirements of water and the effect of different quantities of manure.

1. BASAL CONDITIONS :
(i) (a) to (c N.A. (ii) (a) G type s il. (b) N.A. (iii) 16.7.1950. (iv) (a) 2 ploughings and 1 harrowing.
(b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) N.A. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii)
N.A. (ix) $1950-26.52^{\prime \prime}$ and $1951-2771^{\circ}$. (x) N.A.
2. TREATMENTS :

Main-plot treatments :
3 levels of $N: N_{1}=375, N_{2}=450$ and $N_{3}=525 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments:
All combinations of (1) and (2)

- (1) 2 levels of irrigation : $I_{1}=115$ and $I_{2}=130$ acre inches.
(2) 3 levels of F.Y.M. : $\mathrm{F}_{2}=20, \mathrm{~F}_{2}=30$ and $\mathrm{F}_{3}=40$ C.L./ac.

3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) $48^{\prime} \times 36^{\prime}$. (b) $1 / 40 \mathrm{ac}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) N.A. (iv) (a) $1948-1950$ to $1950-1952$. (b) No. (c) N.A. (v) (a) Kopergaon.'
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 44.43^{-}ton/ac.
(ii) (a) 4.91 ton/ac.
(b) 5.02 ton/ac.
(iii) Only the interaction $I \times F$ is significant.
(iv) Av. yield of sugarcane in ton/ac.

	F_{1}	$\mathrm{F}_{\mathbf{2}}$	F_{3}	Mean	N_{1}	\mathbf{N}_{2}	$\mathrm{Na}_{\mathbf{a}}$
I_{1}	46.52	44.20	46.13	45.62	45.19	44.35	47.32
I_{8}	41.68	47.01	41.10	43.25	42.25	43.19	44.31
Mean	44.08	45.60	43.61	44.43			
N_{1}	43.29	46.51	41.36	43.72			
N_{2}	43.44	45.10	42.76	43.77			
N_{3}	45.49	45.22	46.73	45.81			

S.E. of difference of two

1. N marginal means
$=1.64$ ton $/ \mathrm{ac}$.
2. \mathbf{F} marginal means
$=1.67$ ton/ac.
3. I marginal means
$=1.37$ ton/ac.
4. means in $I \times F$ table
5. F means at the same level of N $=2.36$ ton/ac. $=2.89$ ton/ac.
6. I means at the same level of \mathbf{N}
7. \mathbf{N} means at the same level of \mathbf{F}
8. N means at the same level of I
$=2.36$ ton/ac.
$=2.88$ ton/ac.
$=0.34$ ton/ac.

Crop:- Sugarcane.
Site :- Agri. Res. Stn., Lakhamapur.

Ref :- Mh. 49(46).
Type :- 'IM'.

Object:-To study the effect of F.Y.M. along with different irrigation and N does on Sugarcane yield

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) F type, very shallow ; $12^{\prime \prime}$ to 15° deep light brown; $p \mathrm{H}=8.1$. (b) Refer soil analysis, Lakhamapur. (iii) 26.8.1949. (iv) (a) Two ploughings. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows and $4^{\prime \prime}$ to 6° between plants. (e) 一. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) 2 to 3 hand weedings, 3 to 4 interculturings and one light earthing up. (ix) 1949-26.95" ; 1950-14.95'. (x) 12.2.1951.

2. TREATMENTS:

Main-plot treatments :
3 levels of F.Y.M. : $\mathrm{F}_{1}=20, \mathrm{~F}_{2}=30$ and $\mathrm{F}_{3}=40$ C.L./ac.
Sub-plot treatments :
All combinations of (1) and (2)
(1) 2 levels of irrigation : $\mathrm{I}_{1}=115$, and $\mathrm{I}_{2}=130$ acre inches.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=375, \mathrm{~N}_{2}=450$ and $\mathrm{N}_{3}=525 \mathrm{lb}$./ac. of A / S.

A/S sprinkled in 4 doses-at planting, 6 weeks after planting, 12 weeks after planting and at the time of earthing up.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 3. (iv) (a) 1.6 guntha
(b) 1 guntha. (v) 4.75^{\prime} each length wise and one row each breadth wise. (vi) Yes.

4. GENERAL :

(i) Below normal. (ii) Attack of top borers; controlled by cutting off affected shoots; collection and destroying of egg masses and moths. (iii) Yield of sugarcane. (iv) (a) First started in 1941 to 1947, revised in 1949. (b) No. (c) N.A. (v) (a) Akluj, Kopergaon and Deolali. (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 21.6 ton/ac.
(ii) (a) 4.13 ton/ac.
(b) 3.83 ton/ac.
(iii) None of the effects is.significant.
(iv) Av. yield of sugarcanc in ton/ac.

	\mathbf{N}_{1}	N_{8}	N_{3}	Mean	I_{1}	I_{2}
F_{1}	20.1	23.4	23.6	22.4	21.1	23.7
F_{8}	18.9	19.3	21.7	20.8	19.8	20.1
F_{8}	21.3	23.6	22.5	22.4	22.1	22.7
Mean	201	22.1	22.6	21.6		
I_{1}	19.9	22.6	20.5	21.0		
I_{3}	20.3	21.6	24.6	22.2		

S.E. of difference of two

1. \mathbf{F} marginal means
2. N marginal means $\quad=1.27 \mathrm{ton} / \mathrm{ac}$.
3. I marginal means $=1.03$ ton/ac.
4. means in $\mathrm{N} \times \mathrm{I}$ table . . $=1.81$ ton/ac.
5. I means at the same level of $F \quad=1.79$ ton/ac.
6. N means at the same level of $F \quad=2.19$ tonjac.
7. F means at the same level of $I \quad=1.83$ ton/ac.
8. F means at the same level of $N \quad=2.24$ ton/ac.
Crop :mSugarcane. \quad Ref :-Mh. 52(16).
Site : Agri. Res. Stn., Padegaon. \quad Type :-'IM'.

Object :-To study the manurial and water requirements of Sugarcane crop.

1. BASAL CONDITIONS :

(i) (a) Sugarcane (Adsali)-Ratoon-Bajra+Tur. (b) Bajra+Tur (mixed). (c) Nil. (ii) (a) B type soil. (b) Refer soil analysis, Padegaon. (iii) 19 and 20.7.1952. (iv) (a) Ploughing 9", to $10^{\prime \prime}$ deep. (b) The buds of the sugarcane are exposed and allowed to germinate under soil. (c) and (d) N.A. (e) -. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii) 2 to 3 hand weedings, 2 to 3 interculturings one earthing up at 5 to $5 \frac{1}{2}$ months after planting. (ix) 15.35°. (x) N.A.

2. TREATMENTS :

Main-plot treatments :

All combinations of (1) and (2)
(1) 2 methods of irrigation : $\mathrm{I}_{1}=$ Serpentine and $\mathrm{I}_{\mathbf{2}}=$ Straight furrow.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=600, \mathrm{~N}_{2}=750$ and $\mathrm{N}_{3}=900 \mathrm{lb}$./ac.

Sub-plot treatments :
2 mixtures of N and P fertilizers : $M_{1}=N$ and P mixed in $2: 1$ ratio and $M_{2}=N$ and P mixed in 4:1 ratio.
N applied as A/S and G.N.C. mixed in 1:3 ratio. Quantity of Pranging from 150 to 450 lb ./ac.
3. DESIGN
(i) Split-plot. (ii) (a) 6 main-plots/block; 2 sub-plots/main-plot. (b) $224^{\circ} \times 163.32^{\prime}$. (iii) 4. (iv) (a) Main-plot : $112^{\prime} \times 54.44^{\prime}$; sub-plot : $54.44^{\prime} \times 56^{\prime}$. (b) Sub-plot: $45.44^{\prime} \times 48^{\circ}$. (v) 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Good, crop lodged by 2nd fortnight of May and August. (ii) Stem-borer and top shoot borers 5.4, and 4.6% attacks respectively. Mealy bugs also caused damage ; infestation of rats controlled by adopting gassing with cyänide dust ; weekly collection of egg-masses of the borers, hand picking with nets and light trapping of moths of both the borers; fortnightly removal of dead hearts. (iii) Germination counts, tillering counts, milleatle and non-milleable sugarcane counts, maturity tests and yield. (iv) (a) 1952-1955. (b) and (c) No (v) (a) end (b) No. (vi) and (vii) Nil.
5. RESULTS :
(i) 95.67 ton/ac.
(ii) (a) 13.34 ton/ac.
(b) 10.05 ton/ac.
(iii) Only the main effect of N and interaction $N \times I$ are significant. Others are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{N}_{1}	N_{2}	N_{3}	Mean	\mathbf{M}_{1}	\mathbf{M}_{2}
I_{1}	87.95	94.24	104.95	95.68	96.45	94.91
I_{2}	90.26	92.87	103.88	95.67	96.61	94.73
Mean	89.10	93.55	104.41	95.67		
M_{1}	89.31	94.68	105.60	96.53		
\mathbf{M}_{2}	88.89	92.33	103.23	94.82		

S.E. of difference of two

1. I marginal mean
$=3.85$ ton/ac.
2. N marginal means
$=4.72$ ton/ac.
3. M marginal means
$=2.90$ ton/ac.
4. means in $I \times N$ table
$=6.67$ tod/ac.
5. M means at the same level of I
$=4.10$ ton/ac.
6. M means at the same level of N
$=5.03$ ton/ac.
7. I means at the same level of \mathbf{M}
$=4.82$ ton $/ \mathrm{ac}$.
8. N r eans at the same level of M
$=5.91$ ton/ac.

Crop:-Sugarcane.
Site :-Agri. Res. Stn., Padegaon.

Ref: $\mathbf{~ M h} .53(182)$.
Type :-'IM'.

Object :-To study the manurial and water requirements of Sugarcane crop.

1. BASAL CONDITIONS:

(i) (a) Sugarcane (Adsali)-Ratoon-Bajra+Tur. (b) Bajra+Tur (mixed). (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Padegaon. (iii) 22.7.1953. (iv) (a) 1 deep plcughing and 2nd ploughing across the first $9^{\prime \prime}$ to $10^{\prime \prime}$ deep. (b) N.A. (c) 10,000 setts/ac. (d) N.A. (e) 3 ludded setts. (v) Nil. (vi) CO. 419. (vii) Irrigated. (viii) 2 to 3 hand weedings 2 to 3 interculturings by tooth cultivators 8 to 10 weeks after planting, partial tillering after $3 \frac{1}{2}$ to 4 months. Earthing up after a period of 5 to $5 \frac{1}{2}$ months. (ix) 20.14". (x) 10/21.1.1955.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 methods of irrigation: $\mathrm{I}_{1}=$ Serpentine and $\mathrm{I}_{2}=$ Straight furrow.
(2) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=600, \mathrm{~N}_{2}=750$ and $\mathrm{N}_{3}=900 \mathrm{lb}$./ac.

Sub-plot treatments:
2 mixtures of N, P fertilizers : $M_{1}=N$ and P mixed in 2:1 ratio and $M_{2}=N$ and P mixed in $4: 1$ ratio. N applied as A / S and G.N.C. mixed in $1: 3$ ratio. Quantity of P ranging from 150 to 450 lb ./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Mainplot : $56^{\prime} \times 108.88^{\prime}$. Sub-plot: $54.44^{\prime} \times 56^{\prime}$. (b) Sub-plot : $45.44^{\prime} \times 48^{\prime}$. (v) 2 rows on either side. (vi) Yes.
4. GENERAL :
(i) Good. Lodged heavily during the 2nd fortnight of May and August. (ii) Stem-borer and top-shoot borers 2.5 and 2.7% attacks. Mealy bugs sael insects and termites were observed on a very small scale control measures adopted collection of egg-masses and moths. Hand picking with nets and light trapping etc. fortnightly removal of dead hearts. (iii) Sugarcane yield. (iv) (a) 1953-1955. (b) and (c) No. (v) (a) and (b) No, (vi) and (vii) Nil.
5. RESULTS:
(i) 73.47 ton/ac.
(ii) (a) 6.34 ton/ac.
(b) 6.70 tod/ac.
(iii) Main effect of M is significant. Others are not significant.
(iv) Av. yield of sugarcane in ton/ac.

	\mathbf{N}_{1}	N_{2}	$\mathrm{N}_{\mathbf{8}}$	Mean	\mathbf{M}_{1}	\mathbf{M}_{2}
. ${ }_{1}$	77.65	76.25	73.30	75.73	76.23	75.23
I_{2}	72.80	72.20	68.40	71.13	69.90	72.37
Mean	75.22	74.22	70.85	73.47		
\mathbf{M}_{1}	74.00	72.85	72.35	73.06		
\mathbf{M}_{2}	76.45	75.60	69.35	73.80		

S E. of d fference of two

1. N marginal means

$$
=2.23 \mathrm{ton} / \mathrm{ac}
$$

2. I marginal means
$=1.82$ ton/ac.
3. M marginal means
$=1.94$ ton/ac.
4. means in $\mathrm{N} \times I$ table
$=3.17 \mathrm{ton} / \mathrm{ac}$.
5. M means at the same ievel of N
$=3.35$ ton/ac.
6. M means at the same level of I $=.1 .93$ ton/ac.
7. I means at the same level of M
$=2.66$ ton $/ \mathrm{ac}$.
8. N means at the same level of M
$=3.26$ ton/ac.

Crop :- Sugarcane (Adsali).	Ref :- Mh. 50(96).
Site :- Agri. Res. Stn., Padegaon.	Type :- ‘'IM'.

Object :-To study the water and manurial requirements of Sugarcane crop.

1. BASAL CONDITIONS :

(i) (a) Sugarcane-Jowar. (b) Jowar. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 4.8.1950. (iv) (a) and b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart between rows. (e) -. (v) 20,000 $\mathrm{lb} . / \mathrm{ac}$. of compost. (vi) CO. 419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 22.91". (x) 17.12.1951.

2. TREATMENTS :

All combinations of (1), (2; and (3)
(1) 2 levels of irrigation: $\mathrm{I}_{1}=115$ and $\mathrm{I}_{2}=130$ acre inches.
(2) 3 levels of N as A/S: $N_{1}=375, N_{2}=450$ and $N_{3}=525 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=100$ and $\mathrm{P}_{2}=200 \mathrm{lb}$./ac.
3. DESIGN:
(i) $2 \times 3 \times 3$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Sucrose and glucose, $\%$ and sugarcane yield. (iv) (a) 1953-51. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i):66.32 ton/ac.
(ii) 2.54 ton/ac.
(iii) Main effects of N and P and interactions $N P, N \times I$ and $P \times I$ are significant. Others are not significant. (iv) Av. yield of sugarcane in ton/ac.

	\mathbf{P}_{0}	\mathbf{P}_{1}	P_{2}	Mean	I_{1}	I_{2}
N_{1}	60.54	64.26	68.21	64.33	65.22	63.46
N_{2} -	65.02	70.49	68.82	68.11	70.41	63.81
\mathbf{N}_{3}	67.21	66.64	65.69	66.51	64.59	68.44
Mean	64.26	67.13	67.57	66.32		
I_{1}	66.82	64.87	68.53	66.74		
I_{2}	61.69	69.39	66.63	65.90		

$$
\begin{array}{ll}
\text { S.E. of marginal mean of } N \text { or } P & =0.52 \text { ton/ac. } \\
\text { S.E. of marginal mean of } I & =0.42 \text { ton/ac. } \\
\text { S.E. of body of } N \times P \text { table } & =0.89 \text { ton/ac. } \\
\text { S.E. of body of } N \times I \text { or } P \times I \text { table } & =0.73 \text { ton/ac. }
\end{array}
$$

Object:-To study the water and manurial requirements of Sugarcane.

1. BASAL CONDITIONS:
(i) (a) Sugarcane-_Jowar, (b), Jowar. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 28.7.1951. (iv) (a) and (b) N.A. (c) 10,000 setts/ac, (d) 4^{\prime} apart between rows. (c) -10 (v) 20,000 lb./ac: of compost. (vi) CO.419 (mid-late). (vii) Irrigated. (viii) 2 interculturings, 2 weedings and 1 earthing up. (ix) 14.68°. (x) 26.12.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of irrigation : $\mathrm{I}_{1}=115$ and $\mathrm{I}_{2}=130$ acre inches.
(2) 3 levels of N as $A / S: N_{1}=375, N_{2}=450$ and $N_{3}=525$ lb./ac."
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{\mathbf{0}}=0, \mathrm{P}_{2}=100$ and $\mathrm{P}_{\mathbf{2}}=200 \mathrm{lb}$./ac.
3. DESIGN:
(i) $2 \times 3 \times 3$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Gpod. (ii) Nil. (iii) Sucrose, glucose; fibre \% and sugarcane yield. (iv) (a) 1950-51. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 73.18 ton/ac.
(ii) 6.66 ton/ac.
(iii) None of the effects is significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	N_{3}	Mean	I_{1}	\mathbf{I}_{2}
P_{0}	70.11°	72.84	71.90	71.62	70.29	72.95
P_{1}	71.87	74.77	74.60	73.75	73.89	73.61
Pa_{3}	72.50	75.02	75.05	74.19	72.20	76.18
Mean	71.49	- 74.21	73.85	73.18		
I 1	70.30	72.82	73.25	72.12		
I_{2}	72.68	75.60	74.45	74.24		

S.E. of marginal mean of \mathbf{N} or P	$=1.36$ ton/ac.
S.E. of marginal mean of \mathbf{I}	$=1.11$ ton/ac.
S.E. of body of table $\mathrm{N} \times \mathrm{I}$ or $\mathrm{P} \times \mathrm{I}$	$=1.92$ ton/ac.
S.E. of body of table $\mathbf{N} \times \mathrm{P}$	$=2.36$ ton/ac.

Crop :-Sugarcane (Adsali).
Site :-Agri. Res. Stn., Padegaon.
Ref. :-Mh. 49(88).
Type :-‘MV'.

Object :-To study the requirements of water and \mathbf{N} for Sugarcane.

1. BASAL CONDIIIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 26. 7. 1949. (iv) (a) and (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} apart between rows. (e) -. (v) Basal dressing of compost at $20,000 \mathrm{lb}$,/ac. (vi) CO. 419 ; CO. 475 (mid-late). (vii) Irrigated. (viii) 2 weedings, 2 interculturings and 1 earthing up. (ix) $23.32^{\prime \prime}$. (x) 29. 12. 1950 to 17. 1. 195.1:i
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 levels of irrigation: $J_{1}=115$ and $I_{2}=130$ acre inches.
(2) 2 varieties: $\quad V_{1}=$ CO. 419 and $V_{2}=$ CO. 475.
(3) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=375, \mathrm{~N}_{2}=450$ and $\mathrm{N}_{8}=525 \mathrm{lb}$./ac.

N applied as A/S+Oilcake mixed in $1: 2$ ratio.
3. DESIGN :
(i) $2 \times 2 \times 3$ Fact. in R.B.D. (ii) (a) 12. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $1 / 40$ th acro. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Brix, Sucrose, Glucose \% and sugarcane yield. (iv) (a) 1946-1949 (Modified in 1949-1951 by introduction of CO. 475 variety) (b) and (c) No. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 59.04 ton/ac.
(ii) 3.92 ton/ac.
(iii) All main effects and twc-factor interactions are significant.
(iv) Av. yield of sugarcane in ton/ac.

	N_{1}	N_{2}	\mathbf{N}_{3}	Mean	I_{1}	I_{2}
$\mathbf{V}_{\mathbf{1}}$	60.40	58.45	61.85	60.23	'59.57	60.90
\mathbf{V}_{2}	53.30	58.65	61.60	57.85	56.40	59.30
Mean	56.85	58.55	61.72	59.04		
I_{1}	56.30	58.50	59.15	57.98		
I_{2}	57.60	58.60	64.30	60.10		

S.E. of marginal mean of N	$=0.80$ ton/ac.
S.E. of marginal mean of V or I	$=0.65$ ton/ac.
S.E. of body of table $N \times V$ or $N \times I$	$=1.13$ ton/ac.
S.E. of body of table $V \times I \quad$.	$=0.92$ ton/ac.

$\sqrt{\text { Crop :-Cotton (Kharif). }}$| Ref. :-Mh. 51(188). | |
| :--- | :--- |
| Site :-Govt. Seed and Demonstration Farm, Achalpur. | Type :- $\mathbf{- M}^{\prime}$ • |

Object :-To study the effect of cotton seed cake on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 29.6.1951. (iv) (a) 1 ploughing and 3 bakharings. (b) N.A. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) 8 C.L./ac. of F.Y.M. (vi) H. 420 deshi. (medium). (vii) Unirrigated. (viii) 5 hoeings and 2 weedings. (ix) 26.30°. (x) Pickings on 28.10. 1951, 4, 16 and 25. 11. 1951. and 17. 12. 1951.
2. TREATMENTS :
3. $20 \mathrm{lb} . \mathrm{N} / \mathrm{ac}$. as G.N.C.
4. $20 \mathrm{lb} . \mathrm{N} / \mathrm{ac}$. as decorticated cotton seed-cake.
5. 20 lb . N/ac. as undecorticated cotton seed-cake.
6. $20 \mathrm{lb}, \mathrm{N} / \mathrm{ac}$. as A/S.

Manuring on 29. 6. 1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 40$ th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) $1951-$ N.A. (b) No. (c) N.A. (v) (a) Akola and Nagpur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
adol recer (i) $1411 \mathrm{lb} / \mathrm{ac}$.
(ii) $444.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb.jac.

Treatment	Av. yield
1.	1196
2.	1335
3.	1571
4.	1541
S.E./mean	
	$=198.5 \mathrm{lb} . / \mathrm{ac}$.

Crop : Cotton (Kharif).
 Ref:-Mh. 51(189).
 Site :- Govt. Seed and Demonstration Farm, Achalpur. Type :-'M'.
 」 Object:-To study the effect of cotton seed cake on Coton yield.

1. BASAL CONDITIQNS:

(i) (a) Cotton-Jowar-Groundnut. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 26.6.1951. (iv) (a) 3 Bakharings and 1 ploughing. (b) N.A. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $24^{\prime \prime} \times 12^{\prime \prime}$. (c) N.A. (v) Nil. (vi) Buri-0394 (late). (vii) Unirrigated. (viii) 8 hoeings and 2 weedings. (ix) 26.30°. (x) Pickings on 27.10.1951, 5 and 19.11.1951, 4 and 23:12.1951 and 20.1:1952.

2. TREATMENTS :

1. $20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathbf{G} . \mathrm{N} . C$.
2. 20 lb ./ac. of N as decorticated cotton seed-cake.
3. 20 lb ./ac. of N as undecorticated cotton seed-cake.
4. 20 lb ./ac. of N as A / S.

Manuring on 26.6.1951v' ${ }^{\prime}$
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N:A. (iii) 5 (iv) (a) N.A. (b) $1 / 40$ th ac: (v) N.A.. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1951-N.A. (b) No. (c) N.A. (v) (a) Akola and Nagpur, (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $621.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) $.87 .20 \mathrm{lb} / \mathrm{ac}$.
\checkmark (iii) Treatments differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
1.	623.9
2. $:$	554.4
3.	570.4
4.	$736: 9$
S.E./mean	$=38.98 \mathrm{lb}$./ac.

\downarrow Crop :- Cotton (Kharif).
Ref :- Mh. 53(290).
Site :- Govt. Seed and Demonstration Farm, Achalpur. Type:d © M
Object :-To study the effect of C / N in comparison with A / S on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 27.6.1953: (iv) (a) N.A, (b) Sowing by drilling., (c). 10 lb./ac. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (c) N.A. (v) Nil. . (vi) $\mathbf{H} .420$ deshi (medium).!(vii) Unirrigated. (viii) 6 hoeings and 3 weedings. (ix) $34.91^{\prime \prime}$. (x) Pickings on 2,5 to 28.11.1953, 21.12.1953 and 11.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{8}=60 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=C / N$.
3. DESIGN :
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 5. (iv) (a) 1.26 guntha. (b) $33^{\circ} \times 33^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) $1953-$ N.A. (b) and (c) No. (v) (a) Akola. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $644 \mathrm{lb} / \mathrm{ac}$.
(ii) $131.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) All effects are significant.
(iv) Av. yield of kapas in lb./ac.

Control=532 lb.jac.

	$\mathbf{N}_{\mathbf{1}}$	$\mathbf{N}_{\mathbf{2}}$	$\mathbf{N}_{\mathbf{3}}$	Mean
$\mathrm{S}_{\mathbf{1}}$	574	738	898	737
$\mathrm{~S}_{\mathbf{2}}$	572	675	626	624
Mean	573	707	762	681

S.E. of control mean	$=41.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of N marginal mean	$-41.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of S maginal mean	$=34.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of control u. any other mean	$=72.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=59.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Ref :- Mh. 51(187).
Site :- Govt. Seed and Demonstration Farm, Achalpur. Type :- 'M'.
Object :-To study the residual effect of manures applied to previous Jowar crop on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 1.7.1951 (iv) (a) 1 ploughing and 3 harrowings. (b) N.A. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) 18° line to line. (e) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated. (viii) 4 hocings and 1 weeding. (ix) 26.30^{*}. (x) Pjckings on 4,16 and 24.11.1951 and 17.12.195 I.

TREATMENTS:

1. No manure.
2. $20 \mathrm{lb} . / \mathrm{ac}$. of N as T.C.
-3. $40 \mathrm{lb} . / \mathrm{ac}$. of N as T.C.
3. $20 \mathrm{lb} . / \mathrm{ac}$. of N as cattle dung.
. 5. $40 \mathrm{lb} . / \mathrm{ac}$. of N as catcle dung.
4. $10 \mathrm{lb} . / \mathrm{ac}$ of N as G.N.C.
5. $20 \mathrm{lb} . / \mathrm{ac}$, of N as G.N.C.
6. $10 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
7. $20 \mathrm{lb} . / \mathrm{ac}$ of N as A / S.

Manures applied to previous Jowar crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $66^{\circ} \times 16 \mathbf{1}^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) $1950-$ N.A. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $761 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $107,2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	717	6.	784
2.	766	7.	794
3.	749	8.	778
4.	713	9.	774
5.	776		
	S.E./mean		$=43.8 \mathrm{lb} . / \mathrm{ac}$

Crop:- Cotton (Kharif),

Ref :-Mh. 48(41).

Site :- Govt. Exptl. Farm; Akola.
Type :- ' M '.

Object :- To find out the best source of \mathbf{N} for Cotton crop.

1. BASAL CONDITIONS :

(i) (a) Cotton-Jowar. (b) Jowar. (c) Nil. (iii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 26.6.1948. (av) (a) 1 ploughing and 2 bakharings. (b) Sowing by tiffan (c) $18-20 \mathrm{lb}$./ac. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Verem 434 deshi (medium). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 5i.52" (x) Picking on 20.11.1948. 4.2.1949, 29.3.1949 and 14.4.1949.
2. TREATMENTS:

1. Control.
2. $40 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M.
3. 20 lb ./ac of N as F.Y.M. +20 lb ./ac. of N as poudrette compost.
4. $40 \mathrm{lb} / \mathrm{ac}$. of N as Poudrette compost.
5. 20 lb ./ac. of N as F.Y.M. $+20 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
6. 40 lb ./ac. of N as G.N.C.
7. $20 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M. $+20 \mathrm{lb} . / \mathrm{ac}$. of N as Red label mixture.
8. $40 \mathrm{lb} . / \mathrm{ac}$. of N as Red label mixtrue.
9. DESIGN :
(i) R.B D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (v) One row on either side of each plot. (vi) Yes.
10. GENERAL :
(i) Satisfactory, (ii) Nil. (iii) Kapas yield. (iv) (a) 1945 to 1946 ; 1949 to 1950. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $258 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $43.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Kapas in lb./ac.

Treatment	Av. yield.
. 1.	195
. 2.	207
. 3.	222
.4	255
5.	258
6.	310
7.	287
8.	327
S.E./mean	$=17.88 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton (Kharif).

- Site :- Govt. Exptl. Farm, Akola.

Ref:- Mh. 49(68).
Type:- ' \mathbf{M}^{\prime}.

Object :-To find out the best source of N for Cotton crop.

1. BASAL CONDITIONS :

(i) (a) Cotton -Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 27.6.1949. (iv) (a) 1 heavy and 2 light bakharings. (b) Sowing by tiffan. (c) $18-20 \mathrm{lb}$./ac. (d) $18^{\circ} \times 9^{\circ}$. (e) N.A. (v) Nil. (vi) H-420 deshl (medium). (vii) Unirrigated. (viii) N.A. (ix) 42.93". (x) Picking on 14.11.1949, 8 12.1549, 20.1.1950, 18.2.1950 and 3.4.1950.
2. TREATMENTS :

1. Control.
2. 40 lb ./ac. of N as F.Y.M.
3. $20 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M. $+20 \mathrm{lb} . / \mathrm{ac}$. of N as Poudrette compost.
4. $40 \mathrm{lb} . / \mathrm{ac}$. of N as Poudrette compost.
$520 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M. $+20 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
5. $40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
6. 20 lb ./ac. of N as F.Y.M. $+20 \mathrm{lb} . / \mathrm{ac}$. of N as Red label mixture.
7. $40 \mathrm{lb} . / \mathrm{ac}$. of N as Red label mixture.
8. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $33^{\prime} \times 33^{\prime}$. (v) One row on either side of each plot. (vi) Yes.
9. GENERAL:
(i) Fair. (ii) Attack of Earias fabia in September. No control measures taken. (iii) Kapas yield. (iv) (a) 1945-1946 to 1949-19:0. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $333 \mathrm{lb} / \mathrm{ac}$.
(ii) $25.30 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
1.	220
2.	285
3.	305
4:	275
5.	390
6.	422
7.	355
8.	412
S.E./mean	$=10.33 \mathrm{lb} . / \mathrm{ac}$

Crop :- Cotton (Kharif). . Ref ;-Mh. 50(85).

- Site : - Govt. Exptl. Farm, Akola.

Type: ' $\mathbf{~} \mathbf{M}$ '.
Object :-To find out the effect of N in different forms on Cotton yield.

1. BASAL CONDITIONS :

(i) (a) Cotton-Jowar. (b) Cotton. (c) 2 C.L./ac. of F.Y.M., $600 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. and $35 \mathrm{lb} / \mathrm{ac} . \mathrm{of} \mathrm{C/N}$. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 15.7.1950. (iv) (a) 2 bakharings. (b) Sowing by tiffan. (c) $18 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H-420 deshi (medium). (vii) Unirrigated. (viii) 3 hoeings and 3 weedings. (ix) $16.89^{\prime \prime}$. (x) Picking on 8 and 27.11.1950, 15.12.1950 and 22.1.1951.
2. TREATMENTS :

All combinations of (1) and (2)+a control (no manure).
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb}$./ac.
(2) 3 sources of N.: $S_{1}=$ G.N.C., $S_{2}=C / N$ and $S_{g}=G . N . C+C / N$ in $1: 1$ ratio.
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) a) N.A. (b) $66^{\prime} \times 16 y^{\prime}$. (v) One row on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1950-1951; 1953-1954, (b) No. (c) N.A. (v) (a) and
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $574 \mathrm{lb} / \mathrm{ac}$.
(ii) $89.56 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only interaction $\mathrm{S} \times \mathrm{N}$ is significant.
(iv) Av. yield of kapas in lb./ac.
$\sqrt{ }$ Control $=510 \mathrm{lb} . / \mathrm{ac}$.

	S_{1}	S_{2}	S_{8}	Mean
N_{1}	485	577	545	536
N_{2}	555	625	660.	613
- N_{3}	570	602	608	593
Mean	537	601	604	581
S.E. of S or N marginal mean			$=25.85 \mathrm{lb} / / \mathrm{ac}$.	
S.E. of body of table or control mean			$=44.78 \mathrm{lb} / \mathrm{ac}$,	

Crop :-Cotton (Kharif)
Site :-Govt. Exptl. Farm, Akola.

Ref. :-Mh. 51(97)
Type :- ' M '.

Object:-To find out the effect of N in different forms on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) No. (b) Cotton. (c) Compost at 19 C.L./ac. and G.N.C. at $75 \mathrm{lb} / \mathrm{ac}$. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 28.6.1951. (iv) (a) 2 bakharings. (b) Sowing by tiffan (c) $18-20 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime} \times 9^{\circ}$. (e) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated: (viii) 5 hoeings, 3 weedings and 1 thinning. (ix) 24.32". (x) Picking on 24. 11. 1951. 4. 12. 1951 and 18. 3. 1952.
2. TREATMENTS :

All combinations of (1) and (2)+a control (no manure)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb}$./ac.
(2) 3 sources of $N: S_{1}=G . N . C, S_{2}=C / N$ and $S_{3}=G . N . C .+C / N$ in $1: 1$ ratio.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\prime} \times 161^{\prime}$. (v) One row on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Kapas yield. (iv) (a) 1950-1951 to 1953-1954. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 793 lb./ac.
(ii) $96.72 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{S} and \mathbf{N} and their interaction are significant.
(iv) Av. yield of kapas in lb ./ac.
\int Control $=770 \mathrm{lb} . / \mathrm{ac}$.

	S_{1}	$\mathbf{S}_{\mathbf{9}}$	$\mathbf{S}_{\mathbf{3}}$	Mean
\mathbf{N}_{1}	657	726	741	708
$\mathbf{N}_{\mathbf{2}}$	887	760	872	840
$\mathbf{N}_{\mathbf{3}}$	914	781	822	.839
Mean	819	756	812	796

S.E. of S or N marginal mean $\quad=27.92 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table or control mean $=48.36 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Akola.
Ref. :- Mh. 52(117).
Type :- M '.
Object :-To find out the effect of \mathbf{N} in different forms on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 27. 6. 1952. (iv) (a) and (b) N.A. (c) $18-20 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated. (viii) 4 hoeings, 2 weedings and 1 thinning. (ix) $22: 03^{3}$ (x) Picking on 12. 11. 1952, 12. 12. 1952 and 23. 1. 1953.
2. TREATMENTS:

All combinations of (1) and (2) +a control (no manure).
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb}$./ac.
(2) 3 sources of $N: S_{1}=$ G.N.C., $S_{2}=C / N$ and $S_{2}=G . N . C .+C / N$ in 1: I ratio.

Manures drilled at sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\prime} \times 16 \frac{1}{2}^{\prime}$. (v) One row on either side of the plot. (vi) Yes.
4. GENERAL:-
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1950-1951 to 1953-1954. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $615 \mathrm{lb} / \mathrm{ac}$.
(ii) $52.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of S, N and their interaction are significant.
(iv) Av. yield of kapas in lb./ac.

	Contr	$\mathrm{lb} . / \mathrm{ac}$.		
	$\ldots{ }_{\text {. }} S_{1}$	S_{2}	S_{2}	Mean
N_{1}	510	594	595	566
N_{2}	619	671	- 610	633
N_{3}	652	748 -	705	702
Mean	594	671	637	634
S.E. of S or N marginal mean			$=15.13 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of table or control mean $=26.20 \mathrm{lb}$./ac.				

Crop:-Cotton (Kharif).
Site : Govt. Exptl. Farm, Akola.

Ref :-Mh. $53(175)$.
Type: ${ }^{-‘}{ }^{\prime}$ '.

Object :- To find out the eflect of N in different forms on Cotton yield:

BASAL CONDIIIONS:

(i) (a) Cotton-Jowar. (b) Jowar. (c) 10 lb ./ac. of N as A / S top dressed. (ii) (a) Black cotton soil.
(b) Refer soil analysis, Akola. (iii) 30.6.1953. (iv) (a) and (b) N.A. (c) $18-20 \mathrm{lb} / \mathrm{ac}$. (d) $18^{\prime \prime} \times 9^{\circ}$.
(e) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated. (viii) 6 hoeings and 2 weedings. (ix) 26.38". (x) Pickings on 30.11.1953, 28.12.1953 and 30.1.1954.

2. TREATMENTS :

All combinations of (1) and (2)+a control (no manure)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=$ G.N.C., $S_{2}=C / N$ and $S_{8}=G . N . C .+C / N$ in $1: 1$ ratio.

Manures drilled at sowing.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\circ} \times 16 y^{\circ}$. (v) One row on either side of the plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1950-51 and 1953-54, (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $340 \mathrm{lb} . / \mathrm{ac}$.
(ii) $52.88 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only 'control vs others' effect is significant.
(iv) Av. yield of kapas in lb./ac.

		$=283$		
	S_{1}	S_{2}	S_{3}	Mean
N_{1}	313	332	319	321
N_{3}	322	354	342	339
$\mathrm{N}_{\mathbf{3}}{ }^{\text {- }}$	383	386.	362	377
Mean	339	357	341	346
S.E. of S or N marginal mean			- $15.27 \mathrm{lb} . / \mathrm{ac}$	
S.E. of body of table or control mean			-26.44 lb/ac.	

Crop :-Cotton (Kharif).

- Site :-Govt. Exptl. Farm, Akola.
Object:-To find out the effect of \mathbf{N} in different forms on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar. . (b) Cotton. (c) 2 C.L /ac. of F.Y.M. $+600 \mathrm{lb} . / \mathrm{ac}$ of G.N.C. powder $+35 \mathrm{lb} . / \mathrm{ac}$. of C / N. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola, (iii) 17.7.1950. (iv) (a) 2 bakharings (b) Sowing by tiffan (c) $18-20 \mathrm{lb}$./ac. (d) $18^{\prime \prime} \times 9^{\circ}$. (e) N.A. (v) Nil. (vi) H-420 deshi (medium) (vii) Unirrigated. (viii) 3 heeings and 3 weedings. (ix) 16.9°. (x) Picking on 8 and 27.11.1950, 16.12.1950. and 22.1.1950.

2. TREATMENTS:

All combinations of (1) and (2) + a control (no manure)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb}$./ac.
(2) 3 sources of $N: S_{1}=$ F.Y.M. $S_{2}=C / N$ and $S_{8}=$ F.Y.M. $+C / N$ in 1: 1 ratio.
$-\quad$ Manuring on 13.7.1950.
3. DESIGN :
(i) R.B.D. (ii) (a) 1
the plot. (vi) Yes.
4. GENERAL:
(i) Stunted growth due to insufficient rains. (ii) Nil. (iii) Kapas yield. (iv) 1950-51 to 1953-54. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $456 \mathrm{lb} . / \mathrm{ac}$.
(ii) 59.24 lb .ac.
(iii) Main effect of S, N and their interaction are significant.
(iv) Av. yield of kapas in lb./ac.

	\checkmark Control $=$			Mian
	S_{1}	Ss	S_{3}	
N_{1}	425	482	417	441
N_{2}	412	540	412	455
N_{2}	415	657.	482	518
Mean	417	560	437	471
S.E. of S or N marginal mean S.E. of body of table or control mean			$\begin{aligned} & =17.10 \mathrm{lb}, / \mathrm{ac} . \\ & =29.62 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop :- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Akola.

Ref:- Mh. 51(96).
Type :- ' M '.
Object:-To find out the effect of N in different forms on Cotton yieid.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Cotton. (c) 2 C.L./ac. of F.Y.M. $+600 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. $+35 \mathrm{lb} . / \mathrm{ac}$, of C/N. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 28.6.1951. (iv) (a) 2 bakharings. (b) Sowing by tiffan. (c) 18 lb ./ac. (d) $18^{\prime \prime} \times 9^{\circ}$. (c) N.A. (v) Nil. (vi) H-420 deshi (medium). (vii) Unirrigated. (viii) 3 weedings and 5 hoeings. (ix) 24.32°. (x) 23.11.1951, 14.12.1951 and 18.3.1952.
2. TREATMENTS :

All combinations of (1) and (2) + a control (no manure).
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb}$./ac. .
(2) 3 sources of $N: S_{1}=$ F.Y.M. $S_{2}=C / N$ and $S_{3}=$ F.Y.M. $+C / N$ in $1: 1$ ratio

Manuring on 20.6.1951.
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\circ} \times 16 \frac{1}{}^{\prime}$. (v) One row on either side of plot. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Kapas yield. (iv) (a) 1950-51 to 1953-54. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vij) Nil.

5. RESULTS:

(i) $928 \mathrm{lb} / \mathrm{ac}$.
(ii) 105.5 lb ./ac.
(iii) Main effect of S and interaction $S \times N$ are significant. Main effect of N is not significant.
(iv) Av. yield of kapas in lb./ac.
$/$ Control $=756 \mathrm{lb} . / \mathrm{ac}$.

	\mathbf{S}_{1}	\mathbf{S}_{2}	\mathbf{S}_{2}	Mean
\mathbf{N}_{1}	832	930	921	894
$\mathbf{N}_{\mathbf{2}}$	906	$1032 \cdot$	1000	979
$\mathbf{N}_{\mathbf{2}}$	897	974	1033	968
Mean	878	979	985	947

[^2]Crop:- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Akola.

Ref :- Mh. 52(119).
Type :- ' M '.

Object :-To study the effect of \mathbf{N} in different forms on Cotton. yield.

1. BASAL CONDITIONS :

(i) (a) Cotton-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 13.7.1952. (iv). (a) and (b) N.A. (c) $18-20^{\prime} \mathrm{lb}$./ac. (d) $18^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated. (viii) 4 hoeings, 2 weedings, and 1 thinning. (ix) 22.03". (x) Picking on 18.12.1952, 17.1.1953 and 23.2.1953.
2. TREATMENTS:

All combinations of (1) and (2) + a control (no manure).
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=2 \rho, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb} . / \mathrm{ac}_{9}$,
(2) 3 sources of $N: S_{1}=$ F.Y.M., $S_{2}=C / N$ and $S_{3}=$ F.Y.M. $+C / N$ in 1:1 ratio.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\circ} \times 16 \frac{1}{\prime}^{\prime}$ (v) 1 row on either side of the plot. (vi) Yes:
4. GENERAL:
 (vi) and (vii) Nil.
5. RESULTTS :
(i) 516 lb, /ac.
(ii) $68.24 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of \mathbf{S} and N and their interaction are significant,
(iv) Av. yield of kapas in lb,/ac.

	$\sqrt{ }$	$402 \mathrm{lb} . /$		
	S_{1}	S_{2}	S_{8}	Mean
N_{1}	438.	549.	479	489
$\mathrm{Na}_{\mathbf{2}}$	490	609	483	527
N_{8}	. 463	655.	595	571
Mean	464	604	519	529.
S.E. for S or N marginal mean			$=19.70 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of table or control mean			$=34.12 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Cotton (Kharif).
Site :- Gout, Exptl. Farm Akola.
Ref ${ }_{1}:-$ Mh. $^{\prime}$ 53(174).
Type :- ' M '.

Object :-To find out the effect of \mathbf{N} in different forms on Cotton yield.

1. BASAL CONDITIONS:-

(i) (a) Cotton-Jowar. (b) Jowar. (c) $10 \mathrm{lb} . / \mathrm{ac}$, of, N, top dressed, (ii) (a); Black cotton soil. (b) Refer soil analysis, Akola. (iii) 29.6.1953. (iv) (a) and (bl, N.A. (c), 18,20 ibs/ac. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (o) N.A. (v) Nil. (vi) H.420 deshi (medium). (vii) Unirrigated. (viii) 6 hocings. 2 weedings and 1 thinning. (ix) 26.38". (x) Picking on 1.12.1953, 29.12.1953 and 1.2.1954r
2. TREATMENTS :

All combinations of (1) and (2) + a control (no manure).
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{1}=20, \mathrm{~N}_{2}=30$ and $\mathrm{N}_{3}=40 \mathrm{lb}$./ac.
(2) 3 sources of $\mathrm{N}_{1}=$ F.Y.M., $S_{2}=C / N$ and $S_{3}=$ F.Y.M. $+C / N$ in $1: 1$ ratio.

Manures drilled with seed.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\circ} \times 161^{\prime}$. (v) One row on either side of the plot. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Kapas yield. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $363 \mathrm{lb} / \mathrm{ac}$.
(ii) $53.28 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S, N and their interaction are significant.
(iv) Av. yield of kapas in lb, /ac.

	Control $=290 \mathrm{lb} . / \mathrm{ac}$.			Mean
	S_{1}	$\mathbf{S}_{\mathbf{2}}$	S_{3}	
N_{1}	304	359	339	334
N_{2}	320	417	403	380
$\mathrm{N}_{\mathbf{1}}$	336	444	416	399
Mean	. 320	407	386	371
S.E. of S or N marginal mean			$=15.38 \mathrm{lb} / \mathrm{/ac}$.	
S.E. of tody of table or control mean			$=26.64 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Cotton (Kharif).

Site :- Govt. Exptl. Farm, Akola.

Ref :- Mh. 51(126).
Type:- ' M '.

Object :-To study the residual effect of Super applied to previous leguminous crop on Cotton.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) and (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 28.6.1951. (iv) (a) One heavy and one light bakharing. (b) Sowing by tiffan. (c) $18-20 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H-420 deshi (medium). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 24.32" . (x) Picking on 16.11.1951, 13.12.1951 and 16.2.1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1, 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb}$./ac.
(2) 5 previous crops : $\mathrm{C}_{1}=$ Groundnut, $\mathrm{C}_{2}=$ Tur, $\mathrm{C}_{3}=$ Soyabean, $\mathrm{C}_{4}=$ Sunnhemp and $\mathrm{C}_{5}=$ Jowar.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied to the above crops in kharif 1950.

DESIGN :
(i) 2×5 Fact. in R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) $70^{\circ} \times 30^{\circ}$. (b) $60^{\circ} \times 18^{\circ}$. (v) N.A. (vi) Yes.

4. GENERAL:

(i) Good. (ii) Nil. (iii) Kapas yield. (iv) (a) 1951-1952 to 1954-1955. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1060 \mathrm{lb} . / \mathrm{ac}$.
(ii) $130.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{C} and interaction $\mathbf{C} \times \mathbf{P}$ are significant.
(iv) Av. yield of kapas in lb./ac.

	\mathbf{P}_{0}	P_{1}	Mean
C	1192	1255	1223
C_{2}	1175	1219	1197
C_{3}	851	925	888
C_{4}	1282	1345	1313
C5	673	686	679
Mean	1035	1086	1060
S.E. of marginal mean of C		$=46$	
S.E. of marginal mean of P		$=29$	
S.E. of body of table		$=65$	

Crop :- Cotton (Kharif).	Ref. :- Mh. 52(230).
Site :- Govt. Expl. Farm, Akola.	Type:- ‘M’.

Object :-To study the residual effect of super applied to the previous leguminous crop on Cotton yield.

1. BASAL CONDITIONS :

(i) (a), (b) and (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 25. 6. 1952. (iv) (a) and (b) N.A. (c) $18-20 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\circ} \times 9^{\circ}$. (c) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated. (viii) 3 hosings and 2 weedings. (ix) 22.03". (x) N.A.
2. TREATMENTS:

All combinations of (1) and (2).
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb}$./ac.
(2) 5 previous crops : $-\mathrm{C}_{1}=$ Groundnut, $\mathrm{C}_{8}=$ Tur, $\mathrm{C}_{3}=$ Soyabean, $\mathrm{C}_{4}=$ Sannhemp and $\mathrm{C}_{5}=$ Jowar. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to the above crops in Kharif 1951-52.
3. DESIGN :
(i) 2×5 Fact. in R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $1 / 40$ th acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1951 to 1953. (b) No (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $761 \mathrm{lb} . / \mathrm{ac}$.
(ii) 85.76 lb ./ac.
(iii) Main effect of \mathbf{C} and interaction $\mathbf{C} \times \mathbf{P}$ are significant.
(v) Av. yield of kapas in lb./ac.

	$\checkmark P_{0}$	$\mathbf{P r}_{\mathbf{1}}$	Mean
C_{1}	1044	1089	1068
C_{8}	681	706	694
C_{3}	703	680	691
C6	916	948	932
C_{5}	419	426	423
Mean	753	769	761
S.E. of marginal mean of \mathbf{P} $=19.17$ S.E. of marginal mean of C $=30.32$ S E. of body of table $=42.88$			

Crop :- Cotton (Kharif).
Site :- Govt. Expl. Farm, Akola.

Ref. :-Mh. 53(268).
Type :- ' M '.

Object :-To study the residual effect of Super applied to the previous leguminous crop on Cotton.

1. BASAL CONDITIONS :
(i) (a) No. (b) Cotton (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iij) 25.6.1953. (iv) (a) 3 bakharings. (b) N.A. (c) $15 \mathrm{lb} /$ /ac. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (c) N.A. (v) Nil. (vi) H. 420 deshi (medium). (vii) Unirrigated. §(viii) Hoeings on 15.7.1953, 9. 8. 1953, 29. 8. 1953, 1. 10. 1953 and 14. 10. 1953 ; weedings on 1.8.1953, 9.9.1953, 16. 10. 1953 and thinaing on 27. 8. 1953. (ix) 26.38^{*}. (x) Picking on 7. 12. 1953, 9. 1. 1954 and 6. 2. 1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb} / \mathrm{ac}$.
(2) 5 previous crops: $C_{1}=$ Groundnut, $C_{2}=T u r, C_{3}=$ Soyabean, $C_{4}=$ Sannhemp and C_{5}-Jowar. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to the above crops grown in Kharif 1951.
3. DESIGN :
(i) 2×5 Fact. in R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $60^{\circ} \times 18^{\prime}$. (v) One line on either side of the plot. (vi) Yes.
4. GENERAL :
(i) Normal crop. (ii) Nil. (iii) Kapas yield. (iv) (a) 1951 to 1953. (b) No., (c) N.A. (v) (a), (b) N.A. (vi) Nil. (vii) 2nd year of the residual effect studied.
5. RESULTS:
(i) $345 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $34.04 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of C and interaction $\mathrm{C} \times \mathrm{P}$ are significant.
(iv) Av. yield of kapas in lb./ac.

Crop : Cotton (Kharif).	Ref :wMh. 53(269)
Site :mGovt. Exptl. Farm, Akola.	Type :-'M'.

Object :-To study the effect of green manuring with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on Cotton crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) N.A. (ii) (a) Deep black cotton soil. (b) Refer soil analysis, Akola. (iii) 6.7.1953. (iv) (a) 3 bakharings. (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) $24^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Buri. 0394 (late). (vii) Unirrigated. (viii) Hoeings on 30.7.1053, 21.8.1953, 11.9.1953 and 12.10.1953. Weedings on 7.8.1953, 21.8.1953, 17.9.1953, 17.10.1953 and 29.10.1953. Thinning on 7.8.1953. (ix) $26.38^{\text {a }}$. (x) 28.11.1953, 30.12.1953 and 24.2.1954.

2. TREATMENTS :

1. No manure
2. $\mathrm{P}_{2} \mathrm{O}_{5}$ at $30 \mathrm{lb} . / \mathrm{ac}$. as Super.
3. 3.79 ton/ac. of Sannhemp.
4. 4.32 ton/ac. of Sannhemp $+P_{2} \mathrm{O}_{5}$ at $30 \mathrm{lb} . / \mathrm{ac}$. as Super.
5. 1.88 ton/ac. of udid.
6. 2.17 ton/ac. of $u d i d+\mathrm{P}_{2} \mathrm{O}_{5}$ at 30 lb ./ac. as Super.
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $60.5^{\prime} \times 18^{\prime}$. (v) One row on either side. (vi) Yes.
8. GENERAL:
(i) Normal crop growth.' (ii) A serious attack of red' leaf disease occurred, lower leaves turned red and dropped. (iii) Kapas yield. (iv) (a) to (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
9. RESULTS :
(i) $218.5 \mathrm{lb} . / \mathrm{ac}$.
(ii) $52.36 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of kapas in lb./ac.

\checkmark Treatment		Av. yield
		180.0
(3) sil:	2.	224.0
	3.	197.0
	4.	250.0
(c)	\%5.	196.0
	6.	264.0
	S.E./mean	$=21.38 \mathrm{lb} / \mathrm{ac}$.

\qquad r.sow.

Crop :-Cdtton (Kharif).
Site : Cropt $^{\prime \prime}$ Res: Stn., Badnàpur.
Ref :-Mh. 53(13).
Type : ${ }^{〔}$ ' ${ }^{\prime}$ '.
ri,
Object :-To compare the effects of A / S, Ammonium Chloride and C / N on yield of Cotton.

1. BASAL CONDITİONS:
rat
(i) (a) N.A. (b) Groundnut. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Badnapur. (iii) 8.7.1953. (iv) (a) Ploughing and"bakharings in summer. (b) to (e) N.A. (v) N.A. (vi) G-12. (vii) N.A. (viii) Gap-filling on 29.7.1953.e. (ix) 26.68". (x) Picking on 8 and 14.12.1953, 5 and 19.1.1954 and 4.2.1954.
[^3]
2. TREATMENTS:

All combinations of (1), and (2)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, N_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=A / S, S_{8}=$ Ammonium Chloride and $S_{3}=C / N$.

Time of application of manure-13.7.1953.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 5. (iv) (a) $127^{\prime} \times 10 \frac{1}{2}^{\prime}$ (b) $121^{\prime} \times 7 \frac{1}{2}^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Plants stunted in growth and stand uneven. Hence results not reliable. (ii) N.A. (iii) Yield of kapas. (iv) (a) 1953-N.A. (b) Yes. (c) N.A. (v) (a) Nanded and Parbhani. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 297 lb./ac.
(ii) $61.20 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S and interaction $S \times N$ are not significant, while the main effect of N is significant. (iv) Av. yield of kapas in lb./ac.

	S_{1}	\mathbf{S}_{2}	S_{8}	Mean
N_{0}	-	-	-	265
N_{1}	312	309	261	-294
$\left(\mathrm{N}_{2}\right.$	2313	3.345	¢337	-332
Mean	313.	327	299	297
S.E. of marginal mean of \mathbf{N}			$=15.77 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of marginal mean of S			$,=19,20.1 \mathrm{lb} / \mathrm{Jac}$.	
S.E. of body of table			, $27.36 \mathrm{lb} / \mathrm{lac}$.	

Crop :- Cotton (Kharif).
Site :- 'Govit. Farm,'Büldana.

Ref:- Mh.51(197).
'Type:- $\mathbf{q}^{\prime} \mathbf{M}^{\prime}$.

Object :-To study the effect of soaking cotton seed in A/S solution before sowing.

t. BASAL CONDITIONS:

(i) (a) No. (b) and (c) N.A. (ii) (a) Medium black. (b) N/A. (iii) 23:6.1951. (iv) (a) 3 bakharings and 1 ploughing. (b) Dibbling. (c) 10 lb ./ac. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (e) 3 to 4 seeds./hill. :(v) 10 C.L,/ac. of tank silt (vi) H. 420 deshi (medium). (vii) Unirrigated. (viii) 2 weedings and 2 , hoeings. (ix) 33.22°. (x) 7.11 .1951 to 31.12.1951.
2. TREATMENTS:

1. Control.
2. Cotton seeds soaked in 13% solution of \mathbf{A} / \mathbf{s}.
3. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 2. (iv) (a)N.A. (b) $1 / 40$ th ac. (v) N.A. (vi) Yes,

4. GENERAL:

(i) Normal. (ii) Nil, (ii) Kapas yield. (iv) (a) 1951-N.A. (b) and (c) No. (v) (a) Akola, Washim and Achalpur. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $581 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $13.89 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in ton/ac.

Treatment	Av. yield
1.	580
2.	582
S.E./mean	$=9.81 \mathrm{lb} . /$ ac.

Crop :- Cotton (Kharif).
Site :-Govt. Seed and Demonstration Farm, Buldana.
Ref :- Mh. 51(113).
Type :- ' M '.

Object :-To compare the manurial value of cotton seed cake with other manures.

1. BASAL CONDITIONS :
(i) (a) Nil. (b)"Jowar. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 21.6.1951. (iv) (a) to (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) 38.22'. (x) 9 to 20.11 .1951 and 11.12.1951.
2. TREATMENTS:
3. Control (no manure).
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
5. 20 lb ./ac. of N as cotton seed cake (undecorticated).
6. 20 lb ./ac. of N as cotton seed cake (decorticated).
7. $20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.

Manures applied on 14.7.1951.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) and (b) $1 / 40$ th ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Kapas yield. (iv) (a) $1951-$ N.A. (b) No. (c) N.A. (v) (a) Washim. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $672 \mathrm{lb} / \mathrm{ac}$.
(ii) $147.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb,/ac.

Treatment	Av. yield
1.	616
2.	736
3.	704
4.	608
5.	696
S.E./mean	$=65.89 \mathrm{lb} / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Ref:- Mh. 53(184).
Site :- Govt. Seed and Demonstration Farm, Buldana. Type :- 'M'.
Object :-To study the effect of C / N in comparison with A / S on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 1.7.1953. (iv) (a) N.A. (b) Drilling. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\circ} \times 9^{\prime \prime}$. (c) N.A. (v) Nil. (vi) H-420 deshi (medium-late). (vii) Unirrigated. (viii) 3 weedings and one hocing. (ix) 36.52". (x) Picking on 18.11.1953, 30.11.1953. 16.12.1953 and 7.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 doses of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=C / N$.
3. DESIGN:
(i) 4×2 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 5 . (iv) (a) N.A. (b) $33^{\circ} \times 33^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Kapas yield. (iv) (a) $1953-$ N.A. (b) No. (c) N.A. (v) (a) Washim. (b) N.A.
(vi) No reason for low yield is given. (vii) Nil.
5. RESULTS :
(i) 357 lb./ac.
(ii) $58.32 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and interaction of $S \times N$ are significant, while main effect of S is not significant.
(iv) Av. yield of kapas in lb./ac.

Control=327 lb. $/ \mathrm{ac}$.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{2}}$	Mean
$\mathbf{N}_{\mathbf{1}}$	307	354	330
$\mathbf{N}_{\mathbf{2}}$	$425 \cdot$	352	383
$\mathbf{N}_{\mathbf{3}}$	408	353	380
Mean	380	366	

S.E. of body of table	$=26.07 \mathrm{lb} . / \mathrm{ac}$.
S.E. of control mean	
S.E. of N marginal mean	$=18.44 \mathrm{lb} . / \mathrm{ac}$.
S.E. of S marginal.mean	
S.E. of control $v s$ any other mean in table	$=15.06 \mathrm{lb} . / \mathrm{ac}$.
	$=31.94 \mathrm{lb} . / \mathrm{ac}$.

Crop: Cotton (Kharif).
Site :- Agri. Res, Str., Jalagaon.

Ref:- Mh. 48(32).
Type : ' ' M '.

Object:-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton with F.Y.M.

1. BASAL CONDITIONS :

(i) (a) No. (b) Jowar. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 17.6.1948. (iv) (a) N.A. (b) Dibbling. (c) $6 \mathrm{lb} . / \mathrm{ac}$. (d) Distance between rows : 18° and distance between plants: 6°. (v) F.Y.M. at 5 C.L./ac. (vi) Jarila (early). (vii) Unirrigated. (viii) Gap filling on 29.6.1948. one weeding and interculturing on 4 and 5.7.1948, 2nd interculturing on 9.8.1948, 3rd on 20.9.1948 and $2 n d$ weeding on 21.9.1948. (ix) 34.46". (x) 29.10.1948, 14 and 15.12.1948.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb} . / a c$.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{3}=G . N . C$.
(3) 3 levels of $\mathrm{P}_{5} \mathrm{O}_{5}: \mathrm{P}_{0}=\mathrm{O}_{1} \mathrm{P}_{1}=30$ and $\mathrm{P}_{\mathbf{8}}=60 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
3. DESIGN:
 (vi) Yes.
4. GENERAL :
(i) Crop remained stunted due to continuous rains for some period, otherwise growth is uniform and,normal. (ii) Pink boll worm'-No considerable'damage. (iii) Kapas yield. (iv)' (a) 1948-1951, (b) No. (c) N.A. (v) (a) Nild (b) N.A. (vi) and '(vii)' Nil.
5. RESULTS :
(i) $616 \mathrm{lb} . / \mathrm{ac}$.
(ii) $140.2 \mathrm{lb} . / \mathrm{ac}$.
(ili) Main effect of \mathbf{N}, interaction NP and selective $v s$ others differ significantly,
(iv) Av. yield of kapas in lb./ac.

Selective treatment P_{0}	$=511 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment P_{1}	$=484 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $\mathrm{P}_{\mathbf{2}}$	$=448 \mathrm{lb} / / \mathrm{ac}$

	\mathbf{P}_{0}	P_{1}	$\mathbf{P}_{\mathbf{2}}$	Mean	S_{1}	$\mathbf{S}_{\mathbf{z}}$
N_{1}	687	626	655	656	713	598
N_{2}	715	733	683	710	765	655
Mean	701	679. ..	669	683	739.	6271
S_{1}	735	735	748	739		
S_{2}	667	624	590	627		

Crop : motton (Kharif)
Site :-Agri. Res. Stn., Jalagaon.

Ref :-Mh. 49(49).
Type:"'M'.

Object :- To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton grown with F.Y.M.

1. BASAL CONDITIONS :
(i) (a) No. (b) Gram. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet: (b) Refer soil analysis, Jalagaon. (iii) 30.6.1949. (iv) (a) N.A. (b) Drilling. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows. $18^{\prime \prime}$. (v) F.Y.M. at 5 C.L./ac. (vi) Jarila early. (vii) Unirrigated. (vili) Thinnings on 14. 7: 1949, weedings on 24.7.1949, 7. 8. 1949 and 17. 8. 1949 and hoeing on 15. 7. 1949, 20. 7. 1949, 12. 8. 1949, and ,16, 8. 1949. (xi) $44.16^{\prime \prime}$. (x) 11 and 30. 11. 1949 and 11. 1. 1950.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30$ ànd $\mathrm{N}_{2}=60 \mathrm{lb} / \mathrm{ac}$.
(2) 2 sources of $\mathcal{N}: S_{1}=A / S$ and $S_{2}=G$.N.C.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN:
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A.! (iii), 4. (iv) (a) $42^{\prime} \times 18^{\prime}$, (b) $30^{\prime} \times 12^{\prime}$ (v) $6^{\prime} \times 3^{\prime} \cdot$ (vi) Yes.
4. GENBRAL:
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1948 Kharif-1951. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $609 \mathrm{lb} / \mathrm{ac}$.
(ii) 131.8 lb ./ac.
(iii) None of the main effects and interaction differ significantly. Selective treatments and selective $v s$ others do not differ significantly.
(iv) Av. yield of kapas in $1 \mathrm{~b} . / \mathrm{ac}$.

Selective treatment $\mathrm{P}_{0}=538 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $\mathrm{P}_{1}=582 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $\mathrm{P}_{2}=548 \mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	P_{2}	Mean	S_{1}	S_{2}
N_{1}	619	625	629	624	638	611
N_{2}	662	633	649	648	657	738
Mean	641	629	639	636	647	625
$\mathrm{~S}_{1}$	683	650	609	647		
$\mathrm{~S}_{\mathbf{2}}$	599	608	668	625		

S.E. of marginal mean of N or S	$=26.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of \mathbf{P}	$=32.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of mean of selective treatments	$=46.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective νS other treatment mean $=32.9 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of NP or $S P$ tables	$=46.6 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of NS table	$=38.0 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref: Mh. 50 (64).
Type :- ' M '.

Object :-To study the N and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$ requirements of Cotton grown with F.Y.M.

BASAL CONDITIONS :

(i) (a) Gram-Cotton. (b) Gram. (c) Nil. (iii) (a) Deep black cotton type having a depth of 10 to 13 feet (b) Refer soil analysis, Jalagaon. (iii) 8, 9.7.1950. (iv) (a) N.A. (b) Drilling. (c) 10 Ib./ac. (d) Distanice between rows $18^{\prime \prime}$ and between plants irregular. (e) N.A. (v) 5 C.L./ac. of F.Y.M. (vi) Jarila (early). (vii) Unirrigated. (viii) Gap filling on 17, 18.7.1950, hocings on 24.7.1950, 30.7.1950 and 20.7.1950 and weedings on 2.8.1950, 17 and 18.8.1950, and 2.9.1950.' "(ix) $21.73^{\prime \prime}$ (x) 15.11.1950, 7.12 .1950 and 2.1.1951.

2. TREATMENTS :

All combinations of (1), (2) and (3)
it ' (1) 3 levels of $\mathrm{N}: \mathrm{N}_{\mathbf{0}}=\mathbf{0} \mathrm{N}_{\mathrm{I}}=30$ and $\mathrm{N}_{\mathbf{2}}=60 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=$ G.N.C.
(3) 3 levels af $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$./ac. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4. (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) $6^{\circ} \times 3^{\prime} \cdot$ (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Anthocrane diseaso 15 days after germination. (iii) Kapas yield. (iv) (a) 1948 (Kharif)1951. (b) No. (c) N.A. (v) (a) Nil. '(b) N'A. (vi) and (vii) Nil.
5. RESULTS :
\therefore (i) 1141 • lb/ac.
(ii) $130.4 \mathrm{lb} / / \mathrm{ac}$.
(iii) Main effect of N , interaction $\mathrm{N} \times \mathrm{P}$ and selective v s others differ significantly.
(iv) Av. yield of kapas in lb./ac.

Selective treatment $P_{0}=1038 \mathrm{lb} / \mathrm{ac}$.
Selective treatment $P_{1}=1048 \mathrm{lb} / \mathrm{ac}$.
Selective treatment $\mathrm{P}_{\mathbf{g}}=1006 \mathrm{lb} / \mathrm{ac}$.

	P_{0}	P_{1}	$\mathbf{P a}_{\mathbf{2}}$	Mean	S_{1}	S_{2}
N_{1}	1154	1126	1176	1152.	1130	1174
N_{2}	1258	1244	1225	1242	1208	1276
Mean	1206	1185	1201	1197	1169	1225
S_{1}	1171	1162	1175	1169		
S_{8}	1241	1208	1226	1225		

S.E. of marginal mean of N or S	$=26.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P	$=32.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective treatment means	$=46.1 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective νs other treatment mean	$=32.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NP or $S P$ table	$=46.1 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of NS table	$=40.5 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :-Cotton (Kharif)
Site :- Agri. Res. Stn., Jalagaon.
```

Ref:-Mh. 51(76).
Type:-'M'.

Object : - To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton grown with F.Y.M.

1. BASAL CONDITIONS :
(i) (a) Gram-Cotton. (b) Gram. (c) Not manured. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 6 and 9.7.1951. (iv) (a) N.A. (b) Drilling. (c) 10 lb./ac. (d) Distance between rows $18^{\prime \prime}$, between plants irregular. (v) 5 C.L./ac. of F.Y.M. (vi) Jarila (early). (vii) Unirrigated (viii) Gap flling on 24. 7. 1951, hoeings on 1,18 and 26.8 .1951 and 13. 9. 1951. (ix) 20.14". (x) 19. 11. 1951 and 2. 1. 1952.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb} / / \mathrm{ac}$.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=$ G.N.C.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$; $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$!
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Kapas yield. (iv) (a) 1948 (Kharif)-1951. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $879 \mathrm{lb} . / \mathrm{ac}$.
(ii) $115.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N, interaction $N \times P$ and selective $v s$ others differ significantly.
(iv) Av. yield of kapas in Ib,/ac.

Selective treatment $P_{0}=748 \mathrm{lb} . / a c$.
Selective treatment $P_{1}=897 \mathrm{lb} / \mathrm{ac}$.
Selective treatment $P_{\mathbf{2}}=884$ lb.ac.

	\mathbf{P}_{0}	\mathbf{P}_{1}	\boldsymbol{P}_{1}	Mean	S_{1}	S
\mathbf{N}_{1}	888	867	813	856	830	882
N_{1}	869	921	1026	939	877	1001
Mean	879	894	920	898	854	942
S_{1}	845	848	868	854		-
Sa	913	940	972	942		

S.E. of marginal mean of \mathbf{N} or S	$=23.5 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P	$=28.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective treatments	$=40.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective $v s$ other treatment means	$=28.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NP or SP tables	$=40.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NS table	$=33.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton (Kharif)
Site :-Agri. Res. Stn., Jalagaon.

Ref :-Mh. 48(29)
Type :-'M'.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton grown without F.Y.M.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Wheat. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 17.6.1948. (iv) (a) N.A. (b) Dibbling. (c) 6 lb./ac. (d) Between rows 18", plant to plant 6°. (e) N.A. (v) Nil. (vi) Jarila. (vii) Unirrigated. (viii) Gap filling on 29.6.1948, weeding and interculturing on 4 and 5.7.1948, 9. 8.1948, 20. 9. 1948 and 21. 8. 1948. (ix) 34.46". (x) 29. 10. 1948, 14 and 15. 12. 1948.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{0}=0, N_{2}=30$ and $N_{2}=60 \mathrm{lb}$./ac.
(2) 3 sources of $N: S_{1}=A / S$ and $S_{2}=G . N . C$.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) $42^{\prime} \times 18^{\circ}$. (b) $30^{\circ} \times 12^{\prime}$. (v) $6^{\prime} \times 3^{\prime \prime}$. (vi) Yes.
4. GENERAL:
(i) Crop remained stunted due to continuous rains for some period, otherwise growth was uniform and normal. (ii) Black arm disease and pink boll worm attack. (iii) Kapay yield. (iv) (a) 1948-1951. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 452 lb./ac.
(ii) $133.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of P, interaction $N \times P$ and selective $p s$ other treatments differ significantly.

66

(iv) Av. yield of kapas in lb,/ac.

Selective treatment $\quad P_{0}=434 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $\mathbf{P}_{\mathbf{1}}=375 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $\quad \mathbf{P}_{\mathbf{g}}=\mathbf{3 3 6} \mathbf{l b} / \mathrm{ac}$.

	P_{0}	P_{1}	$\mathrm{P}_{\mathbf{8}}$	Mean	\mathbf{S}_{1}	S_{2}
N_{1}	440	505	468	471	524	418
N_{2}	400	567	547	504	514	494
Mean	420	536	508	488	519	456
S_{1}	420	566	572	519		
$\mathrm{S}_{\mathbf{2}}$	420	506	443	456		

S.E. of marginal micán óf N or S	$=27.19 \mathrm{lb} / \mathrm{ac}$.
S.E. of marginal mean of P	$=33.30 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective treatments	$=47.09 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective vs other treatment meenans	$\cdots 33.30$ 1b//ac.
S.E. of body of NP or SP tables	$=47.09 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NS table	$=38.455^{\text {lb. } / \mathrm{ac}}$.

Crop :-Cofton (Kharif).
Site :-Agri. Res. Stn., Jalagaon.

Type .-‘M’.

Object :-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton grown without F.Y.M.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) N.A. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 29.6.1949. (iv) (a) N.A. (b) Drilling. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) Row to row 18". (e) N.A. (v) Nil. (vi) Jarila (early). (vii) Unirrigated. (viii) Thinning on 16.7.1949 and weeding on 17.8.1949, 25.7.1949 and 12.8.1949. (ix) 44.17". (x) $11,30.11 .1949$ and 11.1.1950.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30$ and $\mathrm{N}_{2}=60 \mathrm{lb}$./ac.
(2) 2 sources of $\mathrm{N}: \cdot S_{1}=A / S$ and $S_{2}=$ G.N.C.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{0}=0, \mathrm{P}_{2}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.

- $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.

3. DESIGN :
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18 . (b) N.A. (iii) 4 . $^{\prime}$ (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $30^{\circ} \times 12^{\prime}$. (v) $6^{\prime} \times 3^{\prime}$. (vi) Yes.
4. GENERAL:
(i) Nil. (ii) Nil. (iii) Kapas yield. (iv) (a) $1948-1951$. (b) No.: (c) N.A. (v) (a) No. (b) N.A.
(vi) 'and (vii) Nil.
5. RESULTS :
(i) 534 - lb/ac.
(ii) $71.52 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N}, interaction $\mathbf{N} \times \mathbf{P}$ and selective ws other treatments differ significantly.
(iv) Av. yield of kapas in lb./ac.

Selective treatment $P_{0}=423 \mathrm{lb} / \mathrm{ac}$.
Selective treatment $P_{1}=515 \mathrm{lb} . a c$.
Selective treatment $P_{2}=486 \mathrm{lb}, a \mathrm{c}$

	P_{0}	\mathbf{P}_{1}	$\mathbf{P a}_{\mathbf{g}}$	Mean	\mathbf{S}_{1}	S_{2}
${ }^{1} \mathrm{~N}_{1}$	498	551	543	530	557	504
N_{2}	569	594	623	595	564	626
Mean	534	573	583	563	560	565
S_{1}	537	576	569	560	.	
S_{2}	530	569	597	565		

S.E. of marginal means of N or S	$=14.60 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal means of P	$=17.88 \mathrm{lb} / \mathrm{ac}$.
S.E. of selective treatment means	$=25.59 \mathrm{lb} / / \mathrm{ac}$.
S.E. of selective $v s$ other treatment means	$=17.88 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NP or SP tables	$=25.29 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NS table	$=20.65 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Cotton (Kharif).
Site :-Agri. Res. Stn., Jalagaon.

Ref:-Mh. 50(63).

Type:-'M'.

Object:-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton grown without F.Y.M.

1. BASAL CONDITIONS :
(i) (a) Gram-Cotton. (b) Gram. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 8, 9.7.1950. (iv) (a) N.A. (b) Drilling. (c) 10 lb ./ac. (d) Row to row $18^{\prime \prime}$ and between plants irregular. (e) N.A. (v) Nil. (vi) Jarila (early). (vii) Unirrggated. (viii) Gap-filling on 17 and 18.7.1950, hoeings on 24.7.1950, 6.8.1950, 30.2.1950 and 20.7.1950 and weedings on 2.8.1950, 17 and 18.8 .1950 and 2.9 .1950 . (ix) $21.73^{\prime \prime}$. (x) $15.11 .1950,7.12 .1950$ and 2.1.1951.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of $N: \quad N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb} / \mathrm{ac}$.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=G . N . C$.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
3. DESIGN :
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4 . (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) $6^{\circ} \times 3^{\prime}$. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Anthocrane disease 15 days after germination. (iii) Rapas yield. (iv) (a) 1948-1951 (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1243 \mathrm{lb} . / \mathrm{ac}$.
(ii) $203.2 \mathrm{lb} . / \mathrm{ac}$.,
(iii) Only main effect of N, interaction ' $\mathrm{N} \times \mathbf{P}$ and selective νs others are significant.
(iv) Av. yield of kapas in Ib./ac.

Selective treatment $P_{0}=1111 \mathrm{lb} / \mathrm{ac}$.
Selective treatment $P_{1}=1109 \mathrm{lb} / \mathrm{ac}$.
Selective treatment $P_{2}=1288 \mathrm{lb} . a c$.

	\mathbf{P}_{0}	P_{1}	P_{2}	Mean	S_{1}	S_{2}
N_{1}	1196	1203	1318	1239	1152	1326
N_{2}	1347	1363	1249.	1320	1208	1432
Mean	1272	1283	1284	1280	1180	1379
S_{1}	1260	1183	1097	1180		
S_{2}	1283	1383	-1470	- 1379		

S.E. of marginal means of N or S
$=41.49 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal means of P
$=50.80 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective treatment means
$=58.66 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective \boldsymbol{v} other treatment means
$=50.80 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NP or SP tables
$=58.66 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NS table
$=71.84 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Site :~ Agri. Res. Stn., Jalagaon.

Ref :- Mh. 51(75).
Type :- 'M'.

Object:-To study the N and $\mathrm{P}_{2} \mathrm{O}_{5}$ requirements of Cotton grown without F.Y.M.
a. BASAL CONDITIONS :
(i) (a) Gram-Cotton. (b) Gram. (c) Nil. (ii) (a) Deep black cotton type having a depth of 10 to 13 feet. (b) Refer soil analysis, Jalagaon. (iii) 6 to 9.7.1951. (iv) (a) N.A. (b) Drilling. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) Row to row $18^{\prime \prime}$ and between plants irregular. (e) N.A. (v) Nil (vi) Jarila (early). (vii) Unirrigated. (viii) Gap filling on 24.7.1951 and hoeings on 1.8.1951, 18.8.1951 to 26.8.1951 and 13.9.1951. (ix) 20.14°. (x) 12.11 .1951 and 2.1.1952.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=30$ and $\mathrm{N}_{2}=60 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=$ A/S and $S_{2}=$ G.N.C.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$. $/ \mathrm{ac}$.

- $\quad \mathbf{P}_{2} \mathrm{O}_{5}$ applied as Super.

3. DESIGN:
(i) $3 \times 3 \times 2$ Fact. in R.B.D. (ii) (a) 18. (b) N.A. (iii) 4. (iv) (a) $42^{\prime} \times 18^{\prime}$. (b) $36^{\circ} \times 12^{\prime}$. (v) 3^{\prime} alround the plot. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Kapas yield. (iv) (a) 1948 to 1951. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $717^{\circ} \mathrm{lb} . / \mathrm{ac}$.
(ii) $123.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effect of \mathbf{P}, interaction $\mathbf{N} \times \mathbf{P}$ and selective ws others differ significantly.
(iv) Av. yield of kapas in Ib /ac.

Selective treatment $\mathrm{P}_{0}=575 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $P_{1}=660 \mathrm{lb} . / \mathrm{ac}$.
Selective treatment $\mathrm{P}_{\mathbf{2}}=600 \mathrm{lb}$./ac.

	P_{0}	\mathbf{P}_{1}	$\mathbf{P a}_{\mathbf{z}}$	Mean	\mathbf{S}_{1}	S_{2}
N_{1}	702	778	767	749	739	758
N_{2}	671	843	860	791	749	833
Mean	687	811	814	770	744	796
S_{1}	622	779	832	744		
S_{2}	752	842	795	796		

S.E. of marginal means of N or S	$=25.13 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal means of P	$=30.78 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective treatment means	$=43.52 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective u other treatment means	$=30.78 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of NP'or SP table	$=43.52 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of NS table	$=35.54 \mathrm{lb} . / \mathrm{ac}$.

Crop: ${ }^{\text {Cotton (Kharif). }}$	Ref:- Mh. 52(317).
Site :- Agri. Res. Stn., Jalagaon.	Type:- 'M'.

Object :-To study the residual effect of manures applied to previous Jowar (without a basal dose of F.Y.M) on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Jowar. (c) As per treatments. (ii) (a) Deep black cotton soil. (b) Refer soil analysis, Jalagaon. (iii) 19.6.1952. (iv) (a) N.A. (b) Dril'ing. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime}$ between rows. (c) -. (v) Nil. (vi) 197-3 Virnar. (vii) Unirrigated. (viii) 3 weediogs and 5 hoeings. (ix) 17.0°. ($(x) 6.11 .1952$, 10.12-1952 and 21.1.1953.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20, \mathrm{P}_{2}=40$ and $\mathrm{P}_{3}=60 \mathrm{lb}$./ac.

Manures applied to previous crop Jowar.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (v) N.A. (iii) 4 . (iv) (a) $42^{\prime} \times 27^{\prime}$. (b) $30^{\prime} \times 15^{\prime}$. (v) 6^{\prime} alround the plot. (vi) Yes.
4. GENERAL:
(i) Unsatisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) Experiment conducted on Jowar from 1941 to 1951 and in 1952 residual effect studied on cotton for one year only. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 272 lb ./ac.
(ii) $73.08 \mathrm{lb} . \mathrm{lac}$.
(iii) Main effects of N and P and their interaction are highly significant.
(iv) Av. yield of kapas in lb ./ac.

	\mathbf{P}_{0}	\mathbf{P}_{1}	$\mathbf{P}_{\mathbf{8}}$	P_{9}	Mean
N_{0}	251	206	224	251	233
N_{1}	209	221	248	271	237
N_{2}	275	236	249	278	260
$\mathrm{N}_{\mathbf{y}}$	275	295	454	404	357
Mean	253	240	294	301	272
S.E. of marginal means of N or $\mathbf{P} \quad=18.27 \mathrm{lb}$./ac. S.E. of body of table $=36.54 \mathrm{lb}$./ac.					

Crop :- Cotton (Kharif). .	Ref:- Mh. 52(316)
Site :- Agri. Res. Stn., Jalagaon.	Type :- 'M'.

Object :-To study the residupl effect of manures applied to previous Jowar (with a basal dose of F.Y.M.) on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Jowar (c) As per treatments. (ii) (a) Deep black cotton soil (b) Refer soil analysis, Jalagaon. (iii) 19.6 .1952 . (iv) (a) N.A. (b) Driting. (c) 10 lb /ac. (d) $18^{\prime \prime}$ between rows. (e)-(v) Nil. (vi) 197-3 Virnar. (vii) Unirrigated. (viii) 3 weedings and 5 hoeings. (ix) 17.0" (x) 5.11.1952, 9.12.1952 and 21.1.1953.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of N as G.N.C. : $N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(2) 4 levels of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super: $\mathbf{P}_{\mathbf{0}}=\mathbf{0}, \mathbf{P}_{1}=20, \mathbf{P}_{\mathbf{2}}=40$ and $\mathbf{P}_{\mathbf{3}}=60 \mathrm{lb} . / \mathrm{ac}$.

Manures applied to previous crop Jowar.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 (b) N.A. (iii) 4 (iv) (a) $42^{\circ} \times 27^{\prime}$ (b) $30^{\circ} \times 15^{\prime}$ (v) 6^{\prime} alround the plot. (vi) Yes.
4. GENERAL:
(i) Unsatisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) Experiment conducted on Jowar from 1948 to 1951 and in 1952 residual effect studied on Cotton for one year only. (b) Yes. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $314 \mathrm{lb} / \mathrm{ac}$.
(ii) $58.08 \mathrm{lb} . / \mathrm{ac}$.

- (iii) Main effects of N, P and their interaction are highly significant.
(iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :- Plant Breeding Stn., Latur.

Ref :- Mh. $\mathbf{5 1}^{\text {(114). }}$.
Type: ' ' M '.

Object :-To find out the \mathbf{N} and \mathbf{P} requirements of Cotton.

1. BASAL CONDITIONS:

(i) (a) Jowar-Cotton. (b) Kharif Jowar. (c) 10 C.L./ac. of F.Y.M. (ii) (a) Deep black clayey soil. (b) Refer soil analysis, Latur. (iii) 2.7.1951. (iv) (a) One ploughing. (b) Drilling. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) Row to row $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gaorani-12. (vii) Unirrigated. (viii) One weeding and 2 hoeings, (ix) 26.12". (x) 16.11.1951, 3.12.1951 and 3.1.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 doses of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=30 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=$ G.N.C.
(3) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$, and $\mathrm{P}_{1}=30 \mathrm{lb}$./ac.

A/S and G N.C. were broadcasted. Source of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ is Super which is drilled.
3. DESIGN :
(i) 2^{3} Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . (iv) (a) $127^{\circ} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) 3^{\prime} alround the plot. (vi) Yes.
4. GENERAL :
(i) There was heavy shedding of young bolls due to in sufficient moisture in the soil and so the yields were moderate. (ii) Nil. (iii) Height of plants, yield of kapas. (iv) (a) $1950-1953$. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 534 lb ./ac.
(ii) $72.45 \mathrm{lb} . / \mathrm{ac}$.
(iii) Selective $v s$ others differ significantly while other effects do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

$$
\begin{array}{ll}
\text { Selective treatment } P_{0} & =423 \mathrm{lb} / \mathrm{ac} \\
\text { Selective treatment } P_{1} & =485 \mathrm{lb} . / \mathrm{ac}
\end{array}
$$

	P_{0}	\mathbf{P}_{1}	Mean
$\mathrm{N}_{2} \mathrm{~S}_{1}$	618	569	593
$\mathrm{N}_{1} \mathrm{~S}_{2}$	597	670	633
Mean	607	619	613

S.E. of any marginal mean
$=25.61 \mathrm{lb} . / \mathrm{ac}_{\text {g }}$
S.E. of selective $\boldsymbol{\nu s}$ others
$=44.37 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table
$=36.22 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton (Kharif).
Site :- Plant Breeding Stn., Latur.

Ref:- Mh. 52(132).
Type:- ' M '.

Object :-To find out the \mathbf{N} and \mathbf{P} requirements of Cotton.

BASAL CONDITIONS :

(i) (a) Jowar-Cotton. (b) Jowar. (c) 10 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer. soil analysis, Latur. (iii) 16.7 .1952 . (iv) (a) One ploughing and one cleaning. (b) N.A. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gaorani-12. (vii) Unirrigated. (viii) One weeding and 2 hoeings. (ix) 18.0 . (x) 17.11.1952, 2.12.1952, 17.12.1952 and 8.1.1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 doses of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=30 \mathrm{lb}$./ac.
(2) 2 sources of $N: S_{1}=A / S$ and $S_{2}=$ G.N.C.
(3) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{6}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}$.

A/S and G.N.C. were broadcasted. Source of $\mathrm{P}_{2} \mathrm{O}_{5}$ is Super, which is drilled.
3. DESIGN:
(i) 2^{3} Pact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) Two rows on each flank in a plot together with $\mathbf{3}^{\prime}$ at each extremity. (vi) Yes.
4. GENERAL:
(i) Unsatisfactory due to scanty rainfall. (ii) Heavy attack of bollworms. (iii) Plant height, flowering and yield of kapas. (iv) (a) 1950 to 1952. (b) No. (c) N.A. (v) (a) N.A. (b) No. (vi) and (vii) Nil.

5. RESULTS :

(i) $188 \mathrm{lb} . / \mathrm{ac}$.
(ii) 31.52 lb .ac.
(iii) Only selective vs others differ significantly.
(iv) Av. yield of kapas in lb./ac.

$$
\begin{array}{ll}
\text { Selective treatment } P_{0} & =143 \mathrm{lb} . / \mathrm{ac} . \\
\text { Selective treatment } P_{1} & =133 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

	P_{0}	P_{1}	Mean
$\mathrm{N}_{1} \mathrm{~S}_{1}$	238	252	245
$\mathrm{N}_{1} \mathrm{~S}_{\mathbf{2}}$	210	252	231
Mean	224	252	

S.E. of any marginal mean	$=11.15 \mathrm{lb} . / \mathrm{ac}$.
S.E. of selective νs others	$=19.3 \mathrm{l} \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=15.76 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Site :-Plant Breeding Stn., Latur.

Ref:-Mh. 52(40).
Type:-'M'.

Object :-To study the effect of N by soaking Cotton seed with molar solution of A / S on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Jowar-Cotton. (b) Kharif Jowar. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Deep black clayey soil. (b)

- Refer soil analysis, Latur. (iii) 19.7.1952. (iv) (a) One ploughing. (b) Seeds sown through Moghas, (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime}$. (e) N.A. (v) 3 C.L. of compost. (vi) Gaorani-12. (vii) Unirrigated. (viii) Two whedings and one hoeing. (ix) 18.03". (x) 19.11.1952.

2. TREATMENTS :

1. Control (no manure, no seed treatment).
2. Only molar solution of A / S.
3. Molar solution +20 lb ./ac. of N as A / S by broadcast.
4. 20 lb ./ac. of N as A / S by broadcast at the time of sowing.

Treatment 4 given one month after sowing. 132 gms . of A / S dissolved in water to make 1000 c.c. of molar solution.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) Two rows on each side of the plot and 3° on each extremity of a row. (vi) Yes.
4. GENERAL -
(i) Not satisfactory due to scanty rainfall. (ii) Heavy attack of bollworms. (iii) Plant height at flowering and maturity and yield of kapas. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) Nanded. (b) N,A. (vi) and (vii) Nil.

5. RESULTS:

(i) $320 \mathrm{lb} / \mathrm{ac}$.
(ii) $40.2 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in $\mathrm{lb} . \mathrm{ac}$.

Treatment	Av. yield.
1.	301
2.	325
3.	296
4.	356
S.E./mean	$=20.6 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :-Cotton (Kharif).
Site :-Plant Breeding Stn., Latur.
```

Ref :-Mh. 53(189).
Type :-‘M’.

Otject:-To study the effect af N by soaking Cotton seed with molar solution of A / S on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Coton. (b) Groundnut. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Deep black clayey soil. (b) Refer soil analysis, Latur. (iii) 23.6.1953. (iv) (a) One ploughing and four harrowings. (b) Line sowing. (c) to (e) N.A. (v) Nil. (vi) Gaorani-12. (vii) Unirrigated. (viii) One weeding and 3 hoeings. (ix) 41°. (x) 18.11.1953, 2.12.1953, 18.12.1953 and 15.1.1954.
2. TREATMENTS:
3. Control (no manure, no seed treatment).
4. Only molar solution of A/S.
5. Molar solution $+20 \mathrm{lb} . \mathrm{fac}$. of N as A / S by broadcast.
6. 20 lb ./ac. of \mathbf{N} as A / S by broadcast at the time of sowing.

Treatment 4 given one month after sowing. 132 gms . of A / S dissolved in water to make 1000 c.c. of molar solution.
3. DESIGN :
(1) R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v, Two row: on each side of plot and 3^{\prime} on each extremity of the row. (vi) Yes.
4. GENERAL :
(i) Not satisfactory due to scanty rains. (ii) Nil. (iii) Plant beights and yield of kapas. (iv) (a) 19521954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $32.48 \mathrm{lb} . / \mathrm{ac}$.
(ii) $20.45 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in Ib./ac.
Treatment Av. yield

1.	41.44
2.	23.81
3.	29.00
4.	35.68
S.E./mean	$-10.22 \mathrm{lb} . / \mathrm{ac}$.

Crop ir Cotton (Kharif).

Site: :- Plant Breeding Stn., Latur.
Ref :w Mh. 53(17).
Type : ' ' M '.
Object :-To study the effect of organic manures and A/S on yield of Cotton.

1. BASAL CONDITIONS :

(i) (a) Kharif Jowar-Cotton. (b) Kharif Jowar. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Medium black clayey soil. (b) Refer soil analysis, Latur. (iii) 17.6.1953. (iv) (a) 1 ploughing, 2 harrowings and 1 cleaning. (b) Seeds sown through moghas. (c) 16 lb ./ac. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gaorani-12. (vii) Unirrigated. (viii) Bullock hoeing twice, hand hoeing once, weeding once and uprooting of wild plants. (ix) $41.10^{\prime \prime}$. (x) 12 to 17.11.1953, 14.12.1953 and 13.1.1954.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=4$ ton/ac.
(2) 2 levels of N as $A / S: N_{0}=0$ and $N_{1}=100 \mathrm{lb} / / \mathrm{ac}$.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) 2 rows at each flank and 3^{\prime} at each extremity of a row. (vi) Yes.
4. GENERAL :
(i) Due to excessive rains during 1953-54 and heavy rains in Sept. and Oct. 1953, Cotton yields were low as shedding of bolls was much. (ii) Nil. (iii) Plant height at flowering and at maturity and yield of kapas. (iv) (a) 1953-1956. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $262 \quad$ lb. $/ \mathrm{ac}$.
(ii) $38.40 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effects of \mathbf{N} and \mathbf{F} and interaction are significant.
(iv) 'Av. yield of kapds in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{F}_{0}	\mathbf{F}_{1}
$\mathbf{N}_{\mathbf{0}}$	179	298
$\mathbf{N}_{\mathbf{1}}$	260	308
Mean	220	303

S.E of any marginal mean $\quad=11.1 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table $\quad=15.6 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton (Kharif).
\checkmark Site :- Cotton Res. Stn., Nanded.

Ref:- Mh. ${ }^{\text {52(51). }}$
'Type :-'M'.

Object :-To study the effect of soaking Cotton seed in molar solution of A/S lbefore?sowing, on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) 10 C.L/ac. of T.C. and B.M. at the rate of $30 \mathrm{lb} . / \mathrm{lac}$. of $\mathrm{P}_{8} \mathrm{O}_{5}$ (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 30.6.1952. (iv) (a) Bakharing 4 times. (b) Drilled by three coultered $18^{\prime \prime}$ drill. (c) 16 lb ./ac. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Hocing twice and weeding once. (ix) 28.83°. (x) Pickings on 8.11.1952, 8.12.1952 and 8.1.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 soakings : $S_{0}=$ No soaking and $\dot{S}_{1}=$ Seed soaked for 24 hours in one molar solution of A / S.
(2) 2 levels of N as $A / S: N_{0}=0$ and $N_{1}=20 \mathrm{lb} . / \mathrm{ac}$.

In $\mathrm{N}_{1} \mathrm{~S}_{0}$ plots manure was broadcasted at sowing and in $\mathrm{N}_{1} \mathrm{~S}_{1}$ plots applied one month after sowing in rows.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) 2 rows at each flank and 3 ft . at each extremity of the row. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) No. (iii) Germination and final stand, plant height, boll no., boll weight, ginning percentage, fibre properties and kapas yield. (iv) (a) 1952-53. (b) No. (c) N.A. (v) (a) Latur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $347 \mathrm{lb} . / \mathrm{ac}$.
(ii) $23.20 \mathrm{lb} . / a c$.
(iii) Main effect of \mathbf{N} is highly significant others are not significaat.
(iv) Av. yield of kapas in lb./ac.

	S_{0}		Mean
N_{0}	289	290	290
N_{1}	409	400	404
Mean	349	345	347

S.E. of any marginal mean	$=7.30 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=10.40 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Site :-Cotton Res. Stn., Nanded.

Ref :-Mh. 53(118)
Type :-‘M'.

Object :-To study the effect of soaking Cotton seed in one molar solution of A/S before sowing on the ultimate yield of Cotton.

1. BASAL CONDITIONS:

(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 28.6.1953, (iv) (a) Bakharing thrice (b) to (e) N.A. (v) Nil. (vi) Gaorani-6. '(vii) Unirrigated. (viil) Hoeing twice and weeding once. (ix) 145.13°. (x) Pickings on 24.11. 1953 and 24. 12. 1953.

2. TREATMENTS:

All combinations (1) and (2)
(1) 2 soakings: $S_{0}=$ No soaking and $S_{1}=$ Seed soaked for 24 hours in one molar solution of A/S.
(2) 2 levels of N as $A / S: N_{0}=0$ and $N_{1}=20 \mathrm{lb}$./ac.

In $\mathrm{N}_{1} \mathrm{~S}_{0}$ plots manure was broadcasted at sowing and $\mathrm{N}_{1} \mathrm{~S}_{1}$ plots applied one month after sowing in rows.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 5 . (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) Two rows at each flank and 3 ft . at each extremity of the row. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) No. (iii) Germination and final stand, plant height, boll no., ginning percentage, fibre properties and kapas yield. (iv) (a) 1952-53. (b) No. (c) N.A. (v) (a) Latur. (b) N.A. (vi) and (vii) Nil.
\therefore RESULTS:
(i) $112 \mathrm{lb} / \mathrm{ac}$
(ii) $15.48 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant.
(iv) Av. yield of kapas in lb./ac.

		S_{0}	S_{1}	Mean
$\mathrm{N}_{\mathbf{0}}$		104	104	104
$\mathrm{~N}_{\mathbf{1}}$	118	122	120	
Mean	111	113	112	

S.E. of any marginal mean $\quad=6.90 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=4.90 \mathrm{lb} . \mathrm{ac}$.

Crop :-Cotton (Kharif).
Site :-Cotton Res. Stn., Nanded.

Ref :-Mh. 48(10).
Type $\mathbf{m}^{\prime}{ }^{\prime} \mathrm{M}^{\prime}$.

Object :-To study the effect of leguminous crops, grown with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$, on the yield of succeeding Cotton crop.

1. BASAL CONDITIONS :
(i) (a) As per treatments. (b) As per treatments. (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 30.6.48. (iv) (a) Ploughing once in groundnut plots, harrowing thrice. (b) N.A. (c) $16 \mathrm{lb} . / \mathrm{acre}$. (d) Rows $18^{\text {n }}$ apart. (e) N.A. (v) N.A. (vi) Gaorani-6. (vii) Unirrigated. (viii) One weeding and two hoeings. (ix) 49.14°. (x) 24. 11. 1948 and 25.12.1948.

2. TREATMENTS :

Main-plot treatments : All combinations of (1) and (2)
(1) 3 previous crop rotations: $\mathbf{R}_{1}=$ Groundnut-Jowar, $\mathbf{R}_{\mathbf{2}}=$ Gram-Jowar and $\mathbf{R}_{\mathbf{3}}=$ Mung-Jowar
(2) 2 doses of $\mathrm{P}_{8} \mathrm{O}_{6}$ applied to legumes at sowing : $\mathrm{P}_{\mathbf{0}}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb}$./ac.

Sub-plot treatments :
2 levels of $N: N_{0}=0$ and $N_{1}=30 \mathrm{lb} . / a c$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ as super and N applied as G.N.C. to cotton at sowing.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $127^{\circ} \times 15^{\circ}$. (b) $121^{\prime} \times 9^{\prime}$. (v) 3^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Germination, final stand, plant height, boll no., boll wt., ginning \%, seed wt., fibre properties and kapas yield. (iv) (a) 1947 to 1951. (b) Yes. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $205.8 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $46.14 \mathrm{lb} / \mathrm{ac}$.
(b) $34.68 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{P} and \mathbf{N} are significant.
(iv) Av. yield of kapas in lb./ac.

	N_{0}	\mathbf{N}_{1}	Mean	\mathbf{P}_{0}	P_{1}
\mathbf{R}_{1}	143.5	259.5	201.5	162.0	241.0
$\mathbf{R g}_{\mathbf{1}}$. 163.5	279.5	221.5	191.0	252.0
\mathbf{R}_{3}	137.5	251.0	194.2	17.5	216.0
Mean	148.2	263.3	205.8		
P_{0}	121.3	229.3	175.3		
\mathbf{P}_{1}	175.3	297.3	236.3		

S.E. of difference of two

1. R marginal means

$$
=16.31 \mathrm{lb} / / \mathrm{ac}
$$

2. P marginal means
$=13.32 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{N} marginal means
$=10.01 \mathrm{lb} . / \mathrm{ac}$.
4. N means at a level of R
$=17.33 \mathrm{lb} . / \mathrm{ac}$.
5. N means at a level of P
$=14.16 \mathrm{lb} . / \mathrm{ac}$.
6. R means at a level of N
$=20.41 \mathrm{lb} / \mathrm{ac}$.
7. P means at a level of \mathbf{N}
$=16.60 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif). ..
Site :- Cotton Res. Stn., Nanded.

Ref :- Mh. 49(12)/48(10).
Type :- ' M '.

Object:-To study the effect of leguminous crops grown with and without $\mathrm{P}_{3} \mathrm{O}_{5}$ on the yield of succeeding Cotton crop.

1. BASAL CONDITIONS :

(i) (a) As per treatments. (b) and (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 27.6.1949. (iv) (a) Ploughing once in groundnut plots and harrowing thrice. (b) N.A. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) Rows $18^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. - (viii) Weeding twice and hoeing once. (ix) $44.88^{\prime \prime}$. (x) 1st picking on 13.11 .1949 and 2nd picking on 13.12.1949.

2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 previous crop rotations: $\mathbf{R}_{1}=$ Groundnut-Jowar, $\mathrm{R}_{\mathbf{2}}=$ Gram-Jowar and $\mathrm{R}_{\mathbf{3}}=$ Mung-Jowar.
(2) 2 doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legumes at sowing: $\mathrm{P}_{\mathbf{0}}=0$ and $\mathrm{P}_{\mathbf{1}}=30 \mathrm{lb}$./ac.

Sub-plot treatments :
2 levels of $N: N_{0}=0$ and $N_{1}=30 \mathrm{lb}$./ac.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super and N applied as \mathbf{G}.N.C. to cotton at sowing.
3. DESIGN :
(i) Split-plot.
(ii) (a) 6 main-plots/block; 2 sub-plots/main-plot.
(b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$.
(b) $121^{\prime} \times 9^{\prime}$. (v) 3^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Heavy rains in July and September damaged the crop causing heavy shedding of buds and bolls and infestation of weeds in the plots. The yields are therefore very low. (ii) Nil. (iii) Germination and final stand, plant height, boll po., boll wt., ginning \%, seed wt., fibre properties and kapas yield. (iv) (a) 1947 to 1951. (b) Yes. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $36.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $31.64 \mathrm{lb} . / \mathrm{ac}$.
(b) $15,67 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of \mathbf{R}, P and N and interaction $\mathrm{N} \times \mathbf{R}$ are highly significant.
(iv) Av. yield of kapas in lb./ac.

S.E. of difference of two

1. R marginal means $\quad=\mathbf{1 1 . 1 7} \mathrm{lb}$./ac.
2. P marginal means $\quad=9.14 \mathrm{lb} . / \mathrm{ac}$.
3. N marginal means $\quad=4.53 \mathrm{lb} . / \mathrm{ac}$.
4. N means at a level of $R \quad=7.84 \mathrm{lb} . / \mathrm{ac}$.
5. N means at a level of $P \quad=6.40 \mathrm{lb} . / a c$.
6. R means at a level of $N \quad=12.48 \mathrm{lb} . / \mathrm{ac}$.
7. P means at a level of $N \quad=10.19 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Site :- Cotton Res. Stn., Nanded.

Ref :- Mh. 50(20)/49(12)/48(10).
Type :- 'M'.

Object : - To study the effect of leguminous crops grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ on the yield of succeeding Cottop crop.

1. BASAL CONDITIONS :

(i) (a) As per treatments. (b) and (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 8.7.1950. (iv) (a) Harrowing four times. (b) N.A. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) Rows $18^{\prime \prime}$ apart. (c) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Weeding once and hoeing twice. (ix) $29.37^{\prime \prime}$. (x) 1st picking on 17.11.1950, 2nd picking on 18.12.1950 and 3rd picking on 18.1.1951.
2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 previous crop rotations: $\mathbf{R}_{\mathbf{1}}=$ Groundnut-Jowar, $\mathbf{R}_{\mathbf{2}}=$ Gram-Jowar and $\mathbf{R}_{\mathbf{3}}=$ Mung-Jowar.
(2) 2 doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legumes at sowing: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}$.

Sub-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=30 \mathrm{lb}$./ac. ${ }^{\cdot}$
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super and N applied as G.N.C. to cotton at sowing.
3. DESIGN :
(i) Split-plot. (ii) (a) 6 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$.
(b) $121^{<} \times 9^{\prime}$. (v) 2 rowis on either side and 3^{\prime} at each end of every row. (vi) Yes.
4. GENERAL:
(i) Due to water logging the crop suffered in replication III and replication IV: (ii). Nil. (iii) Germination and final stand, plant height boll no., boll wt., ginning $\%$, seed weight, fibre properties and kapas yield. (iv) (a) 1947 to 1951. (b) Yes. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $450 \quad 1 \mathrm{~b} / \mathrm{ac}$.
(ii) (a) $71.02 \mathrm{lb} . \mathrm{ac}$.
(b) $72.98 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effects of R, P and N are significantly different.
(iv) Av. yield of kapas in lb./ac.

	N_{0}	N_{1}	Mean	P_{0}	P_{1}
R_{1}	409	547	478	437	519
\mathbf{R}_{2}	413	568	491	455	527
$\mathbf{R}_{\mathbf{8}}$	308	456	382	367	397
Mean	377	523	450		
P_{0}	352	487	420		
$\mathrm{P}_{\mathbf{1}}$	401	560	481		

S.E. of difference of two

Crop :-Cotton (Kharif).
Ref:-Mh. 51(24)/50(20)/49(12)/48(10).
Site :-Cotton Res. Stn., Nanded. Type :-‘M’.
Object:-To study the effect of leguminous crops growa with an 1 without $\mathrm{P}_{\mathrm{g}} \mathrm{O}_{5}$ on the yield of succeeding Cotton crop.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 28.6.1951. (iv) (a) Harrowing thrice. (b) N.A. (c) $16 \mathrm{lb} / \mathrm{ac}$. (d) Rows $18^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Weeding thriec and hoeing twice. (ix) 31.84°. (x) Pickings on 7.11.1951, 7.12.1951 and 6.1.1952.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 previous crop rotations: $\mathrm{R}_{1}=$ Gioundnut-Jowar, $\mathrm{R}_{2}=\mathrm{Gram}-$-Jowar and $\mathrm{R}_{3}=$ Mung-Jowar.
(2) 2 doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ applied to legumes at sowing: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}$.

Sub-plot treatments:
2 levels of N : $N_{0}=0$ and $N_{1}=30 \mathrm{ib}$./ac.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super, N applied as G.N.C. to Cotton at sowing.
3. DESIGN:
(i) Split-plot. (ii) (a) 6 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $127^{\circ} \times 15^{\circ}$.
(b) $121^{\prime} \times 9^{\prime}$. (v) 3^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) No. (iii) Germination and final stand, plant height, boll n)., boll wt., sezd wt., gin ning\%, fibre properties and kapas yield. (iv) (a) $19+7$ t) 1951. (b) Ye3. (a) N.A. (v) (a) Ni1. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $584 \quad \mathrm{lb} / / \mathrm{ac}$.
(ii) (a) $84.25 \mathrm{lb} . / \mathrm{ac}$.
(b) $41.63 \mathrm{lb}, / \mathrm{ac}$.
(iii) Main effect of \mathbf{R} and \mathbf{P} are highly significant. Effect of \mathbf{N} and interaction $\mathbf{N} \times \mathbf{R}$ are significant.
(iv) Av. yield of kapas in lb./ac.

S.E. of difference of two

1. R marginal means
$=29.70 \mathrm{lb} . / \mathrm{ac}$.
2. \mathbf{P} marginal means
$=24.32 \mathrm{lb} . / \mathrm{ac}$
3. N marginal means
4. \mathbf{N} means at a level of \mathbf{R}
$=12.02 \mathrm{lb} . / \mathrm{ac}$.
5. N means at a level of P
$=20.81 \mathrm{lb} . / \mathrm{ac}$.
6. R means at a level of N
7. \mathbf{P} means at a level of \mathbf{N}

$$
=17.00 \mathrm{lb} . / \mathrm{ac} .
$$

$$
=33.22 \mathrm{lb} . / \mathrm{ac} .
$$

$=27.13 \mathrm{lb} / \mathrm{ac}$.
Crop :-Cotton (Kharif).
Site :-Cotton Res. Stn., Nanded.
Ref :-Mh. 48(11).
Type : $\mathbf{- c}^{-} \mathbf{M}$ '.

Object:-To study the effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ on yield of Cotton.

1. BASAL CONDITIONS:
(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil adalysis, Nanded. (iii) 2.7.1948. (iv) (a) 3 harrowings. (b) N.A. (c) 15 lb./ac. (d) Rows 18° apart. (e) N.A. (v) Nil. (vi) Gaorani-6. (viii) One weeding and one hoeing. (ix) 49.14. (x) 1st picking on 27.11.1948 and 2nd picking on 27.12.1948.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 sources of $N: S_{1}=G . N . C$. and $S_{2}=A / S$.
(2) 4 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{8}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$./ac.

N applied on 2.7.1948 and $\mathrm{P}_{8} \mathrm{O}_{5}$ applied on 26.6.1948.
3. DESIGN :
(i) $2 \times 4 \times 3$ Fact. in R.B.D. (ii) (a) 24 , arranged in two tiers of 12 each. (b) N.A. (iii) 4. (iv) (a) $100^{\prime} \times 18^{\prime}$. (b) $94^{\prime} \times 12^{\prime}$. (v) Two rows on either side and 3^{\prime} at each end of every row. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Germination and final stand, plant height, boll wt., gianing\%, seed weight and kapas yield. (iv) (a) [1948 to 1950. (b) and (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $202 \mathrm{lb} . / \mathrm{ac}$.
(ii) $43.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of S, N and P and interaction $S \times N$ are significant.
(iv) Av. yield of kapas in lb./ac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean	S_{1}	S_{2}
P_{0}	127	142	143	124	134	160	108
P_{1}	183	241	259	247	233	249	216
$\mathbf{P}_{\mathbf{2}}$	202	257	248	257	241	250	232
Mean	${ }^{171}$	213	216	209	202	220	185
S_{1}	-	227	222	252	234		
S_{2}	-	200	210	167	192	,	

S.E. of marginal mean of N	$=8.80 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of S	$=6.20 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P	$=7.62 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{N} \times \mathrm{S}$ table	$=12.40 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $S \times P$ table	$=10.80 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $\mathrm{N} \times P$ table .	$=15.20 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of S in $S \times N$ table	$=7.19 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :- Cotton Res. Stn., Nanded.

$$
\text { Ref :- Mh. } 49(13)
$$

Type: ' M '.
Object :-To study the effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ on yield of Cotton.

1. BASAL CONDITIONS: ,
(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 28.6.1949. (iv) (a) 3 harrowings. (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) Rows 18° apart. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) 2 hoeings and one weeding. (ix) $44.88^{\prime \prime}$. (x) 1st picking on 14.11.1949 and 2nd picking on 14.12.1949.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 sources of $\mathrm{N}: \mathrm{S}_{1}=$ G.N.C. and $\mathrm{S}_{2}=A / \mathrm{S}_{\text {. }}$
(2) 4 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$./ac.

N applied on 28.6.1949 and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 16.6.1949.
3. DESIGN :
(i) $2 \times 4 \times 3$ Fact. in R.B.D. (ii) 24 , arranged in two tiers of 12 each. (b) N.A. (iii) 4 . (iv) (a) $100^{\prime} \times 18^{\prime}$. (b) $94^{\prime} \times 12^{\prime}$. (v) Two rows on either side and 3^{\prime} at each end of every row. (vi) Yes.
4. GENERAL :
(i) Continuous rains in July affected the crop badly especially in replications IIl and IV. (ii) Nil. (iii) Germination and final stand, plant height, boll weight, ginning $\%$, seed weight, fibre properties and kapas yield. (iv) (a) 1948 to 1950 . (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) N.A. (vii) Analysis carried out for only 2 replications, the other two replications were damaged.
5. RESULTS:
(i) 146 1b./ac.
(ii) $40.17 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only the effects of S and N and interaction $\mathrm{P} \times \mathrm{N}$ are significant.
(iv) Av. yield of kapas in lb./ac.

	N_{0}	N_{1}	N_{2}	N_{3}	Mean	S_{1}	S_{2}
P_{0}	60	85	163	226	136	116	156
P_{1}	70	139	189	203	149	127	171
$\mathrm{P}_{\mathbf{2}}$	79	108	204	227	154	148	160
Mean	70	110	184	222	146	130	163
S_{1}	-	93	159	196	149		
S_{2}	-	128	208	247	194		

S.E. of marginal mean of \mathbf{N}
$=11.50 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of S
$=8.20 \mathrm{lb}$./ac.
S.E. of marginal mean of P
$=10.04 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $N \times S$ table'
$=16.40 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $S \times P$ table
$=14.20 \mathrm{lb}$./ac.
S.E. of body of $N \times P$ table
$=20.08 \mathrm{lb}$./ac.
S.E. of marginal mean of S in $\mathrm{S} \times \mathrm{N}$ table
$=9.47 \mathrm{lb} / \mathrm{ac}$

Crop :- Cotton (Kharif).
Site :- Cotton Res. Stn., Nanded.

Ref :- Mh. 50(21).
Type :- 'M'.

Object :-To study the effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ on yield of Cotton.

1. BASAL CONDITIONS :

(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 9.7.1950. (iv) (a) 3 harrowings. (b) N.A. (c) $15 \mathrm{lb} / \mathrm{ac}$. (d) Rows $18^{\prime \prime}$ apart. (c) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) 2 hoeings and one weeding. (ix) 29.37". (x) 1st picking on 21.11.1950, 2nd picking on 21.12.1950 and 3rd picking on 21.1.1951.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 2 sources of $N: S_{1}=$ G.N.C. and $S_{2}=A / S$.
(2) 4 levels of $N: N_{0}=0, N_{1}=20, N_{2}=40$ and $N_{3}=60 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$./ac.

N applied on 9.7.1950 and $\mathrm{P}_{2} \mathrm{O}_{5}$ applied on 24.6.1950.
B. DESIGN :
(i) $2 \times 4 \times 3$ Fact. in R.B.D. (ii) (a) 24 arranged in two tiers of 12 each. (b) N.A. (iii) 4. (iv) (a) $100^{\circ} \times 18^{\prime}$. (b) $94^{\prime} \times 12^{\prime}$. (v) Two rows on either side and 3^{\prime} at each end of every row. (vi) Yes.
4. GENERAL :
(i) Shedding of buds and flowers due to heavy showers on 12.9.1950. Growth was eatisfactory. (ii) Nil. (iii) Germination and final stand, plant height, boll weight, ginning $\%$, seed weight, fibre properties and kapas yield. (iv) (a) 1948 to 1950. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $496 \mathrm{lb} . / \mathrm{ac}$.
(ii) $41.68 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N, P andjS and interaction $N \times P$ ane significant.
(iv) Av. yield of kapas $n \mathrm{lb} . / \mathrm{ac}$.

	N_{0}	N_{1}	\mathbf{N}_{2}	\mathbf{N}_{8}	Mean	S_{1}	$\mathrm{S}_{\mathbf{2}}$
P_{0}	328	426	502	502	440	437	442.
P_{1}	371	505	570	621	517	503	-531
\mathbf{P}_{2}	366	496	594	666	530	512	549
. Mean	355	476	555	596	496	484	507
S_{1}	-	463	527	593	528		
S_{2}	-	488	584	599	557		

S.E. of marginal mean of \mathbf{N} S.E. of marginal mean of S S.E. of marginal mean of P S.E. of body of $N \times S$ table S.E. of body of $S \times P$ table S.E. of body of $\mathrm{N} \times \mathrm{P}$ table S.E. marginal mean of S in $N \times S$ table

Crop:-Cotton (Kharif)

Site :-Cotton Res. Stn., Nanded.

Ref :-Mh. 50(22).
Type : © \mathbf{M}^{\prime} '.

Object :-To study the effect of N and $\mathrm{P}_{2} \mathrm{O}_{5}$ on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 11. 7. 1950. (iv) (a) Ploughing once and bakharing 4 times. (b) Dibbling. (c) N.A. (d) $9^{\prime \prime} \times 18^{\prime \prime}$. (e) Two seeds per dibble and then thinned to one plant per hole. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Weeding tbrice and hoeing once. (ix) 29.37". (x) Pickings on 13,28.11.1950, 13, 28.12-1950 and 13.1.1951.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of N as $\mathrm{A} / \mathrm{S}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=30 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb}$./ac.
3. DESIGN:
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $18^{\prime}-9^{\prime \prime} \times 9^{\prime}$. (b) $15^{\prime}-9^{\circ} \times 6^{\prime}$. (v) One row on each flank and $1 \frac{1}{2} \mathrm{ft}$. at each extremity of every row. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Germination and final stand, plant height, ginning \%, boll and seed weight boll no. and kapas yield. (iv) (a) 1950 to 1952. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $878 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $91.27 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant.
(iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

	P_{0}	P_{1}	Mean
$\mathbf{N}_{\mathbf{0}}$	728	767	748 N_{1}
982	1034	1008	
Mean	855	900	878

S.E. of any marginal mean
$=26.3 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of table
$=37.2 \mathrm{lb}_{\text {. }} \mathrm{c}$.

Crop : Cottọn (Kharif).
Ref:-Mh. 51(25)
Site :-Cotton Res. Stn., Nanded.
Type: : ' M '.
Object : -To study the effect of N and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Rabl Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 1.7.1951.
(iv) (a) Bakharing twice. (b) Dibbling (c) N.A. (d) $9^{\prime \prime} \times 18^{\prime \prime}$. (e) Two seeds per dibble and then thinned to one plabt per hole. (vi) Gaorani-6. (vi) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 31.84". (x) Pickings on 8, 23.11.1951, 8, 23.12.1951 and 7.1.1952.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of N as $A / S: \quad N_{0}=0$ and $N_{1}=30 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) 2×2 Fact. in R.B.D; (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $18.75^{\prime} \times 9^{\prime}$. (b) $15.75^{\prime} \times 6^{\prime}$. (v) One row on either side and $1 \frac{1}{2} \mathrm{ft}$. at each end of every row. (vi) Yes.
4. GENERAL :
(i) Normal. , (ii) No. (iii) Germination and final stand, plant height, ginning \%, boll and seed weight, boll no., detailed study of plant development and kapas yield. (iv) (a) 1950 to 1952. (b) No. (c) Nil. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $849 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) 73.30 lb ./ac.
(iii) Main effect of \mathbf{N} alone is highly significant.
(iv) Av. yield of kapas in ib./ac.

N_{0}	688	674	681
N_{1}	1023	1009	1016
Mean	856	842	849

S.E. of any marginal mean . $\quad=21.10 \mathrm{lb}$./ac.
S.E. of body of table $\quad=29.80 \mathrm{lb}$./ac.

Crop:-Cotton (Kharif).

Ref :-Mh. 52(50).
Site :-Cotton Res. Stn., Nanded.

Type:-‘M’.

Object :-To study the effect of N and $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Nıl. (b) Rabi Jowar. (c) 10 C.L./ac. of F.Y.M. (ii) (a) Black cotton soil. (b) Refer soil analysiš, Nanded. (iii) 28.6.1952. (iv) (a) Bakharing thrice. (b) Dibbling. (c) N.A. (d) $9^{\circ} \times 18^{\circ}$. (e) Two seeds per dibble and then thinned to one plant per hole. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Weeding once and hoeing once. (ix) 28.83". (x) Pickings on 10, 25.11.1952, 10, 25.12 .1952 and 9.1.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of N as $A / S: \quad N_{0}=0$ and $N_{1}=30 \mathrm{lb}$./ac.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=30 \mathrm{lb}$./ac.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 6. (iv) (a) $18.75^{\circ} \times 9^{\circ}$. (b) $15.75^{\prime} \times 6^{\prime}$. (v) One row on either flank and 11^{\prime} at each extremity of every row. (vi) Yes.
4. GENERAL :
(i) Good. (ii) No. (iii) Germination and final stand, plant height, ginning \%, boll and seed weight, boll no., detailed study of plant development and kapas yield. (iv) (a) 1950 to 1952. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $401 \mathrm{lb} . / \mathrm{ac}$.
(ii) $45.17 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effect of N is highly significant.
(iv) Av. yield of kapas in lb./ac.

	P_{0}	P_{1}	Mean
N_{0}	370	328	349
N_{1}	446	461	454
Mean	408	394	401
S.E. of any marginal mean S.E. of body of table		$\begin{aligned} & =13.00 \mathrm{lb} . / \mathrm{ac} \\ & =18.40 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop :-Cotton (Kharif).
Site :-Cotton Res. Stn., Nanided.

Ref:-Mh. 52(48).
Type : $\sim^{\prime} \mathbf{M}^{\prime}$.

Object:-To study the direct effect of organic manures along with A / S on Cotton and residual effect on Jowar.

1. BASAL CONDITIONS :
(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 27.6.1952. (iv) (a) Three bakharings. (b) Drilling tbrough mogha. (c) 16 lb ./ac (d) $18^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Hoeing twice and weeding once. (ix) $28.83^{\prime \prime}$. (x) 1st picking on 5.11.1952, 2nd picking on 4.12 .1952 and 3rd picking on 5.1.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of N as $\mathrm{A} / \mathrm{S}: \quad \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=100 \mathrm{lb}$./ac,
(2) 3 levels of organic manure : $M_{0}=0, M_{1}=4$ ton/ac. of F.Y.M. and $M_{2}=4$ ton/ac. of T.C.

Manures were broadcasted on 26.5.1952.
3. DESIGN :
(i) 3×2 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) Two rows at each flank and 3 ft . at each extremity of the row were treated as non-experimental. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Plant height, node no., germination and final stand, boll no., boll weight, seed weight, ginning\%, fibre properties and kapas yield. (iv) (a) 1952 to 1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $314 \mathrm{lb} . / \mathrm{ac}$.
(ii) $50.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and M are highly significant. Interaction $\mathrm{N} \times \mathrm{M}$ is not significant.
(iv) Av. yield of kapas in lb./ac.

	M ${ }_{0}$	M_{1}	M_{2}	Mean
N_{0}	226	329	267	274
N_{1}	266	414	383	354
Mean	246	372	325	314
S.E. of marginal mean of \mathbf{N} S.E. of marginal mean of M S.E. of body of table			$\begin{aligned} & =14.6 \mathrm{lb} . / \mathrm{ac} . \\ & =17.9 \mathrm{lb} . \mathrm{ac} . \\ & =25.3 \mathrm{lb} . \mathrm{ac.} . \end{aligned}$	

Crop :-Cotton (Kharif).
Site :- Cotton Res. Stn., Nanded.

Ref :-Mh. 53(28).
Type :- 'M'.

Object :-To study the direct effect of organic manures along with A/S on Cotton and residual effect on Jowar.

1. BASAL CONDITIONS :

(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 25.6.1953. (iv) (a) 3 bakharings. (b) Drilling through moghas. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) 18° between rows. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Hoeing twice and weeding once. (ix) 45.13". (x) lst picking on 10.11.1952, 2nd picking on 10.12.1953 and 3rd picking on 10.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of N as A / S : $N_{0}=0$ and $N_{1}=100 \mathrm{lb} . / a c$.
(2) 3 levels of organic maaure : $M_{0}=0, M_{1}=4$ toa/ac. of F.Y.M. and $M_{2}=4$ ton/ã. of T.C. Manures broadcasted on 26.5.1953.
3. DESIGN:
(i) 3×2 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $127^{\prime} \times 15^{\prime}$. (b) $121^{\prime} \times 9^{\prime}$. (v) 2 rows on either flank and 3 ft . at each end of each row. (vi) Yes.
4. GENERAL :
(i) Below average. (ii) No. (iii) Plant height; node no., germination and final stand, boll no., boll wt., seed wt., ginning \%, fibre properties and kapas yield. (iv) (a) 1952 to 1954. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
.5. RESULTS :
(i) $139 \mathrm{lb} . / \mathrm{ac}$.
(ii) $19.60 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of N and M alone are significant.
(iv) Av. yield of kapas in lb./ac.

	M_{0}	M_{1}	$\mathbf{M}_{\mathbf{2}}$	Mean
N_{0},	94.	141	154	130
N_{1}	112	154	176	147
Mean	103	148	165	139.

S.E. of marginal mean of $N \quad=6.00 \mathrm{ib} . / \mathrm{ac}$.
S.E. of marginal mean of $M \quad=7.00 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of table $\quad=10.00 \mathrm{lb}, / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Ref :- Mh. 53(55).
Site :- Cotton Res. Stn., Nanded.
Type :- 'M'.
Object :-To study the effect of repeated manuring of soil with different kinds of N fertilizers.

1. BASAL CONDITIONS:

(i) (a) Kharif Jowar-Cotton. (b) Kharif Jowar, Maize and Soyabean. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iil) 27.6.1953. (iv) (a) Ploughing once and bakharings twice. (b) Drilled with 3 coultered seed drill. (c) $16 \mathrm{lb} . / \mathrm{ac}$. . (d). Rows $18^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Hoeing twice and weedings twice. (ix) 45.13". (x) Pickings on 30.11.1953, 30.12.1953 and 30.1.1954.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 levels of $N: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=C / N, S_{2}=A / S$ and $S_{8}=$ Ammonium chloride.

Manures were drilled at sowing.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 5 . (iv) (a) $135^{\prime} \times 9^{\prime}$. (b) $132^{\prime} \times 6^{\prime}$. (v) 1 row on either flank, $1 \frac{1}{2} \mathrm{ft}$. at either end of every row. (vi) Yes.
4. GENERAL :
(i) Badly affected by heavy rains. Poor yields. (ii) No. (iii) Germination and final stand, plant height boll and seed weight, boll no., fibre properties and kapas yield. (iv) (a) 1953-N.A. (b) Yes. (c) N.A. (v) (a) No. (b) N.A. (vi) Nil. (vii) Nil.
5. RESULTS :
(i) $120 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $34.49 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only \mathbf{N} effect is highly significant. •
(iv) Av. yield of kapas in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	$\mathbf{N}_{\mathbf{2}}$	Mean
S_{1}	-	104	148	126
$\mathrm{~S}_{\mathbf{2}}$	-	138	146	142
$\mathrm{~S}_{3}$	-	143	147	145
Mean	86	128	147	

S.E. of marginal mean of N	$=8.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of S	$=10.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=15.4 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Ref :-M. 50(116).
Site :-Agri. Res. Stn., Padegaon.
Type :-‘'M'.

Object :-To find the optimum manurial dose and time of application of N for Cotton.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type: (b) Refer soil analysis, Padegaon, (iii) 20, 21. 5. 1950. (iv) (a) and (b) N.A. (c) $10 \mathrm{lb} /$ /ac. (d) $9^{\prime \prime} \times 3^{\prime}$. (e) N.A. (v) Nil. (vi) CO-4-B-40. (vii) Unirrigated. (viij) Weedings on 18.6.1950 and 23.7.1950. (ix) 22.91". (x) 24.10.1950 and 20.11.1950.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $N: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=A / S, S_{2}=$ G.N.C. and $S_{8}=A / S$ and G.N.C. in $1: 1$ ratio.

Sub-plot treatments : 2 times of application of N :
$\mathrm{T}_{1}=$ whole dose of N applied 22 days after sowing.
$\mathrm{T}_{2}=\mathrm{Ha}$ f dose $\mathbf{2 2}$ days after sowing and half dose at fiowering.
3. DESIGN :
(i) Split-plot. (ii) (a) 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a), (b) $54.44^{\prime} \times 30^{\prime}$ main-plot. $24^{\prime} \times 21^{\prime}$ sub-plot. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (b) Affected with aphids and leafspots. Damage can be estimated as 5 to 10%. (iii) Kapas yield (iv) (a) 1950 to 1951. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.

5. RESULTS:

(i) $772 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $179.1 \mathrm{lb} . / \mathrm{ac}$.
(b) $177.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and their interaction are significant.
(iv) Av. yield of kapas in lb./ac.

	$\mathbf{N}_{0} \mathrm{~S}_{1}$	$\mathbf{N}_{1} \mathrm{~S}_{1}$	$\mathbf{N}_{2} \mathbf{S}_{1}$	N_{0}		$\mathrm{N}_{2} \mathrm{~S}_{2}$	$\mathbf{N}_{0} \mathbf{S}_{3}$	$\mathbf{N}_{1} \mathrm{~S}_{3}$	$\mathrm{N}_{2} \mathrm{~S}_{3}$	Mean
T 1	824	816	709	821	760	754	760	602	909	773
T ${ }_{2}$	666	921	658	755	834	763	884	834	623	$77!$
Mean	745	868	683	788	797	759	822	718	766	772

S.E. of difference of two

1. main-plot treatment means $\quad=89.5 \mathrm{lb} . / \mathrm{ac}$.
2. sub-plot treatment means $\quad=41.9 \mathrm{lb} / \mathrm{ac}$.
3. sub-plot treatment means at a level of main-plot treatment $=125.8 \mathrm{lb} . / \mathrm{ac}$.
4. main-plot treatment means at a level of sub-plot treatment $=126.3 \mathrm{lb} . / \mathrm{ac}$.
Crop : Cotton (Kharif).
Ref :-Mh. 51(155).
Site :-Agri. Res. Stn., Padegaon.
Type : $-{ }^{\prime} \mathrm{M}^{\prime}$.

Object : - To find out optimum manurial dose and time of application of N for Cotton.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 30.5.1951. (iv)
(a) and (b) N.A. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) $3^{\prime} \times 9^{\prime \prime}$. (e) N.A. (v) Nil. (vi) $170-\mathrm{CO}_{2}$. (vii) Unirrigated. (viii) 2 weedings 2 interculturings and gap filling. (ix) $14.68^{\prime \prime}$. (x) 16. 10. 1951; 18. 11. 1951 and 25. 12. 1951.

2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $N \cdot: N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} / \mathrm{ac}$.
(2) 3 sources of $N: S_{1}=A / S, S_{2}=G . N . C$. and $S_{3}=A / S$ and G.N.C. in 1:1 ratio.

Sub-plot treatments: Two times of application of \mathbf{N}
$\mathrm{T}_{1}=$ Whole dose of N applied 22 days after sowing.
$\mathrm{T}_{2}=$ Half dose 22 days after sowing and half at flowering.

3. DESIGN:

(i) Split-plot. (ii) (a) 9 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 5. (iv) (a) Main-plot $40.33^{\prime} \times 30^{\prime}$, sub-plot $40.33^{\prime} \times 15^{\prime}$. (b) Sub-plot $9^{\prime} \times 30.25^{\prime}$. (v) N.A. (vi) Yes.

4. GENERAL:

(i) Normal. (ii) Slight attack of Aphides and thripes. (iii) Kapas yield. (iv) (a) 1950 to 1951. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.

5. RESULTS :

(i) $1325 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $321.9 \mathrm{lb} . / \mathrm{ac}$.
(b) $181.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects and their interaction is significant.
(iv) Av. yield of kapas in lb./ac.

	$\mathrm{N}_{0} \mathrm{~S}_{1}$	$\mathrm{N}_{1} \mathrm{~S}_{1}$	$\mathrm{N}_{2} \mathrm{~S}_{1}$		N	N	$\mathrm{N}_{0} \mathrm{~S}_{8}$	$\mathbf{N}_{1} \mathrm{~S}_{3}$	$\mathrm{N}_{2} \mathrm{~S}_{3}$	Mean
T_{1}	1302	1320	1469	1251	1288	1292	1244	1466	1496	1348
T2	1406	1256	1440	1266	1042	1350	1182	1426	1364	1304
Mean	1354	1288	1454	1258	1165	1321	1213	1446	1430	1325
	S E. of difference of two 1. main-plot treatment means 2. sub-plot treatment means 3. sub-plot treatment means at a level of main-plot treatr ent 4. main-plot treatment means at a level of sub-plot treatment								$\begin{aligned} & =144.0 \mathrm{lb} . / \mathrm{ac} \\ & =38.2 \mathrm{lb} . / \mathrm{ac} \\ & =114.3 \mathrm{lb} . / \mathrm{ac} \\ & =164.6 \mathrm{lb} . / \mathrm{ac} \end{aligned}$	

Crop :- Cotton (Kharif).
Site :- Cotton Res. Stn., Parbhani.
Ref:- Mh. 53(11).
Type:- 'M'.

Object :-To study the effect of soaking seed in one molar solution of different fertilizers on yield of Cotton.

1. BASAL CONDITIONS :

(i) (a) Cotton-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Parbhani. (iii) 14.7.1953. (iv) (a) One ploughing and two harrowings. (b) Dibbling. (c) 42 seèds per row of 21 feet. (d) 18° between rows. (e) Drilled rows. (v) Nil. (vi) Parbhani American I. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) $40.32^{\prime \prime}$. (x) Pickings on 16.12.1953, 7.1.1954, 27.1.1954 and 10.2.1954.

2. TREATMENTS:

Seed soaked in one molar solution of the following fertilizers :

1. A/S.
2. Ammo. Phosphate Monobasic.
3. Mono. Potassium Phosphate.
4. Ammo. Phos. Diabasic.
5. Pure water.
6. Control (dry seed).

The following quantities of fertilizers were dirsolved in water to make 100 c.c. of solution :
(1) A/S—132.00 gm. (2) Ammo. Phos. Mono- 115.04 gm and (3), Mono. Phosphate 136.09 gm .
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4 . (iv) (a) $21^{\prime} \times 3^{\prime}$. (b) $19^{\prime} \times 3^{\prime}$. (v) One row at either end and one after each replication. (vi) Yes.
4. GENERAL:
(i) Fair. (ii) Boll worm attack. (iii) Final stand, yield of kapas, halo length and weight of 100 seeds. (iv) (a) 1953-1955. (b) and (c) No. (v) (a) Badnapur. (b) N.A. (vi) Nil. (vii) The treatment Ammonium Phosphate Diabasic has been dropped from analyis as the yield was poor, The seeds did not germinate at all and the treated seeds were damaged by ants.
5. RBSULTS:
(i) $221 \mathrm{lb} . / \mathrm{ac}$.
(ii) $66.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of kapas in lb./ac. Treatment Av. yield

1.	161
2.	278
3.	201
4.	-
5.	270
6.	193
S.E./mean	$=33.4 \mathrm{lb} . / a c$.

Crop :- Cotton (Kharif).
Site :- Agri. Res. Stn., Parbhani.

Ref:~ Mh. 53(12).
Type :- ' M '.

Object : -To study the effect of soaking seed in one molar solution of different fertilizers on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Cotton-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer'soil analysls, Parbhani. (iii) 14.7.1953. (iv) (a) One ploughing and two harrowings. (b) Dibbling. (c) 81 seeds per row of 21 feet. (d) $18^{\prime \prime}$ between rows. (e) 一. (v) Nil. (vi) Gaorani-12. (vii) Unirrigated, (viii) 2 weedings and 2 hoeings. (ix) 40.32°. (x) Pickings on 16.12.1953, 7.1.1954, 27.1.1954 and 10.2.1954. gram.

2. TREATMENTS :

Secd was soaked in one molar solution of the following fertilizers:

1. A / S.
2. Ammo. Phosphate Monobasic.
3. Mono. Potassium Phosphate.
4. Ammonium Phosphate Diabasic.
5. Pure water.
6. Control (dry seed).

The following quantuties of fertilizers were dissolved in water to make 1000 c.c. of solution :
(1) A/S-132.0') gm. (2) Ammo. Phos. Monobasic-115.04 gm. and (3) Mono. Pot.Phosphate-136.09 gm.
3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 3^{\prime}$. (b) $19^{\circ} \times 3^{\prime}$. (v) One row at either end and one after each replication. ivi) Yes.
4. GENERAL :
(i) N.A. (i) Boll worm attack. (iii) Final stand, yield of kapas, halo length and weight of 100 seeds. (iv) (a) 1953-1955. (b) and (c) No. (v) (a) Badnapur. (b) N.A. (vi) Nil. (vii) The treatment Ammonium ,Phosphate Diabasic has been dropped from analysis, as the yield was poor. The seeds did not germinate at all and treated seed was damaged by ants.

RESULTS :
(i) $174 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $35.4 \mathrm{lb} . / a c$.
(iii) Treatment differences are not significant.
(iv) Av. yield of kapas in lb./ac.
Treatment Av. yield

1.	174
2.	175
3.	193
4.	-
5.	$15)$
6.	179
S.E $/$ mean	$=17.7$ lb./ac.

Crop :-Cotton (Kharif).
 Site :-Govt. Main Farm, Parbhani.
 Ref:-Mh. 53(21).
 Type:-'M'.

Object :-To determine the effect of C / N on yield of Cotton and its residual effect on the soil.
I. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) Paddy fertilizer mixture at 200 lb ./ac. (ii) (a) Medium black. (b) Refer soil analysis, Parbhani. (iii) 26.6.1953. (iv) (a) 3 ploughings and 2 harrowings. (b) Sown by mogha behind a 2 coulter local seed drill. (c) N.A. (d) $18^{\circ} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi), Gaorant-12. (vii) Nil. (viii) 2 hoeings and 2 weedings. (ix) 33.03°. (x) Pickings on 14.11.1953, 21.12.1953 and 20.1.1954.

2. TREATMENTS

$\mathrm{T}_{\mathbf{1}}=$ No manure (3 plots per block).
$\mathrm{T}_{2}=20 \mathrm{lb}$./ac. of N as $\mathrm{A} / \mathrm{S}+10 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{8}$ as Super.
$\mathrm{T}_{3}=20 \mathrm{Ib} . / \mathrm{ac}$. of N as Ammo. Chloride $+10 \mathrm{lb} . \mathrm{lac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{T}_{4}=20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{C} / \mathrm{N}+10 \mathrm{lb}$./ac. of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super.
$\mathrm{T}_{5}=40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{T}_{\mathrm{a}}=40 \mathrm{lb} . / \mathrm{ac}$. of N as Ammo. Chloride $+20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
$\mathrm{T}_{7}=40 \mathrm{lb}$./ac. of N as $\mathrm{C} / \mathrm{N}+20 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super .
3. DESIGN :
(i) R.B.D.
(ii) (a) 9
(b) N.A.
(iii) 5. (iv)
(a) $127^{\prime} \times 104^{\prime}$. (b) $121^{\prime} \times 7 t^{\prime}$
(v) N.A. (vi) Yes.
4. GENERAL :
(i) Due to heavy rains in the first fortnight of October 1953 there had been heavy shedding of bolls which greatly affected the yield. (ii) N.A. (iii) Kapas yield. (iv) (a) 1953-N.A. (b) and (c) No. (v) (a) Badnapur. (b) N.A. (vi) Heavy rains in the first fortnight of October 1953. (vii) Nit.
5. RESULTS :
(i) $72.96 \mathrm{lb} . / \mathrm{ac}$.
(ii) $19.20 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of kapas in Ib./ac.

Crop:- Cotton. (Kharif).
Ref :- Mh. 48 (73).
Site : Govt: Seed and Demon'itration Farm, Washim'. Type :- 'M'.
$i-\quad$ Otject :-To find out the residual effect of T.C. on the yield of Cotton.

1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 21.6.1948. (iv) (a) 2 bakharings. (b) to (e) N.A. (v) Nil. (vi) H-420 (medium), (vii) Uoirrigatod. (viii) 5 hocings, 1 weeding and 1 thinning. (ix) 38.8° (x) Pickings on 16,17.11.1948, 10.12.1948 and 7.1.1949.

2. TREATMENTS :

1. Control.
2. 10 C.L./ac. of T.C.
3. 20 C.L./ac. of T.C.
4. 10 C.L./ac. of F.Y.M.
5. 20 C.L./ac. of P.Y.M.
6. 330 lb ./ac. of G.N.C.

Manures applied in 1947-1948.

3. DESION:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $66^{\prime} \times 16.5^{\prime}$ (v) N.A. '(vi) Yes.
4. GENERAL :
(i) Not satisfactory, (ii) Nil. (iii) Kapas yield. (iv) (a) 1946-1949. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $193.5 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) 36.46 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment.	Av. yield.
1.	184.5
2.	211.3
3.	213.7
4.	177.5
5.	168.7
6.	205.0
S.E./mean.	$=14.89 \mathrm{lb}$./ac.

Crop :- Cotton. (Kharif). Ref:- Mh. 51 (109).
Site :- Govt. Seed and Demonstration Farm, Washim. Type:- 'M'.
Object :-To compare the effect of cotton seed cake with other manures on Cotton crop.

1. BASAL CONDITIONS
(i) (a) N.A. (b) Groundnut. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 27.6.1951. (iv) (a) 3 bakharings. (b) Sowing by argada. (c) $18-20$. lb./ac. (d) 12 lines/plot. (c) N.A. (v) Nil. (vi) H-420. (mid-late). (vii) Unirrigated. (viii) 5 hoeings, 2 weedings and 1 thinning. (ix) $29.75^{\prime \prime}$ (x) Pieking on 19.11.1951, 4.12.1951, and 7.1.1952.

2. TREATMENTS :

1. $20 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
2. 20 lb ./ac. of N as cotton seed cake decorticated.
3. 20 lb ./ac. of N as cotton seed cake undecorticated.
4. 20 lb ./ac. of N as A / S.
5. Control (no manures).

A/S applied on 25.7.51, other manures on 27.6.51.
3. DESIGN
(i) R.B.D.
(ii) (a) 5
5. (b) N.A.
i) 5. (iv) (a) N.A
(b) $66^{\prime} \times 16.5^{\prime}$ (v) 3^{\prime} between plots. (vi) Yes.
4. GENERAL:
(i) Germination was poor. (ii) Nil. (iii) Germination count and kapas yield. (iv) (a) 1951 to 1952. (b)

- and (c) No. (v) (a) and (b) N.A. (vi) Tur was sown in the margins between plots but yield was not recorded. (vii) Nil.

5. RESULTS :
(i) $519.6 \mathrm{lb} . / \mathrm{ac}$
(ii) $82.48 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment.	Av. yield.
1.	584.0
2.	452.0
3.	468.0
4.	638.0
5.	456.0
S.E./mean.	$-36.87 \mathrm{lb} . / \mathrm{lac}$.

Crop:- Cotton. (Kharif).
Ref :- Mh. 52 (128).
Site :- Govt. Seed and Demonstration Farm, Washim. Type :n ' M ':
Object :-To compare the effect of cotton seed_cake with other manures on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 25.6.1952. (iv) (a) 3 bakharings. (b) Sowing by argada. (c) 20. lb./ac. (d) and (e) N.A. (v) Nil. (vi) H-420. (vii) Unirrigated. (viii) 5 hoeings, 2 weedings and 1 thinning. (ix) 17.95° (x) Pickings on 4, 17.11.1952, and 23.12.1952.

2. TREATMENTS:

1. $20 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
2. $20 \mathrm{lb} . / \mathrm{ac}$. of N as cotton seed cake decorticated.
3. 20 lb ./ac. of N as cotton seed cake undecorticated.
4. 20 lb ./ac. of N as A/S.
5. No manure (control).

Manures applied on 17.7.1952.
3. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $66^{\prime} \times 161^{\prime}$ (v) 3^{\prime} between plots. (vi) Yes.
4. GENERAL:
(i) Soil was cracked for want of moisture and flower buds were seen shedding. (ii) Attack of aphids which subsided due to lady bird beetles. (iii) Germination counts and kapas yield. (iv) (a) 1951 to 1952. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $731 . \mathrm{lb} . / \mathrm{ac}$.
(ii) $61.36 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment.		Av. yield.
1.		755
2.		753
3.		\cdots
4.		710
5.		715
S.E./mean.		722

Crop: © Cotton. (Kharif).
Ref:- Mh. 53(166).
Site :- Govt. Seed and Demonstration Farm, Washim. Type :~' M '.
Object :-To find out the effect of different doses of \mathbf{N} applied in different forms on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 29.6.1953. (iv) (a) 4 bakharings.
(b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H-420. (medium). (vii) Unirrigated. (viii) 6 hoeings, 2 weedings and 1 hand interculturing. (ix) $38.55^{\prime \prime}$ (x) Pickings on 2 and 22.12.1953 and 22.1. 1954.
2. TREATMENTS :
3. Control (two plots/block).
4. 20 lb ./ac. of N as A / S.
-3. $40 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
5. 60 lb ./ac. of N as A / S.
6. 20 lb ./ac. of N as C / N.
-6. 40 lb ./ac. of N as C / N.
7. $60 \mathrm{lb} . / \mathrm{ac}$. of N as C / N.
8. 20. $\mathrm{lb} . / \mathrm{ac}$. of N as A / S and G.N.C. in 1: 3 ratio.

Manures applied at sowing.

3. DESIGN:

4. GENERAL:
(i) Normal. (ii) Mild attack of Aphids ; heavy rains removed them. (iii) Kapas yield. (iv) (a) 1953. NA. (b) and (c) No. (v) (a), (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $538^{\circ} \mathrm{lb} . / \mathrm{ac}$.
(ii) ${ }^{5} 57.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are highly significant.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
1.	464 -
2.	551
3.	695
4.V	760.
5.	488
6.	419
7.	582
8.	423
S.E./mean. (1).	$=25.7 \mathrm{lb} / \mathrm{ac}$.
S.E./mean. (2,3,...8)	$\cong 18.2 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton. (Kharif).
Site :- Govt. Exptl. Farm, Yeotmal.

Ref :- Mh. 51(183).
Type :- 'M’.

Object :-To compare the manurial value of cotton seed cake with other manures.

1. BASAL CONDITIONS .

(i) (a) Jowar-Groundnut-Cotton. (b) Groundnut. (c) N.A. (ii) (a) Black medium soil.' (b) Refer soil analysis, Yeotmal. (iii) 29.6.1951. (iv) (a) to (e) N.A. (v) N.A. (vi) H-420." (medium). (vii) Unirrigated. (viii) N.A. (ix) 39.57". (x) 1st week of Nov. 1951 to 2nd week of Jan. 1952.

2. TREATMENTS :

1. 20 lb ./ac. of \mathbf{N} top dressed as G.N.C.
2. 20 lb ./ac. of N top dressed as decortricated cotton seed cake.
3. 20 lb ./ac. of N top dressed as undecorticated cotton seed cake.
4. 20 lb ./ac. of N top dressed as A / S.
5. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) N.A. (vi) Yes.
6. GENERAL :
(i) Satisfactory. (ii) N.A. (iii) N.A. (iv) (a) 1951 N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii), As raw data was not available and so average yield was given from annual report.
7. RESULTS :
(i) $313 \mathrm{lb} / \mathrm{ac}$.
(ii) N.A.
(iii) N.A'.
(iv) Av. yield of kapas in lb ./ac.

Treatment	Av. yield
1.	304
2.	296
3.	324
4.	328

```
Crop :- Cotton (Kharif).
Ref :- Mh. 53(272).
Site :- Govt. Expll. Farm, Yeotmal.
Type :- ' \({ }^{\prime}\) '.
```

Object:-To study the effect of Sodium nitrate on Cotton.

1. BASAL CONDITIONS :

(i) (a) Jowar-Groundnut-Cotton. (b) Groundnut. (c) N.A. (ii) (a) Black medium loam. (b) Refer soil analysis, Yeotmal. (iii) 22.6.1953. (iv) (a) 2 bakharings. (b) Argada sowing. (c). (d) and (c) N.A. (v) Nil. (vi) H-420. (medium). (vii) Unirrigated. (viii) 2 weediogs and 4 bocings. (ix) 37.63° (x) Pickings on 23.10.53, 3.11.53, 14.11.53 and 1.12.1953.
2. TREATMENTS :

1. Control (2 plots/replication).
2. 20 lb ./ac. of N as A / S.
3. $40 \mathrm{lb} . / \mathrm{ac}$. of N as A/S.
4. $60 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
5. 20 lb ./ac. of N as Sodium nitrate.
6. $40 \mathrm{lb} . / \mathrm{ac}$ of N as Sodium nitrate.
7. $60 \mathrm{lb} . / \mathrm{ac}$. of N as Sodium nitrate.
8. 2 mds of G.N.C. before sowing and .67md. of A/S at hoeing.
9. DESIGN :
(i) R.B.D. (ii) (a) 9 . (b) N.A. (iii) 6. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) One line on each aido and 4 plants on other two sides. (vi) Yes.
10. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) 1953 -contd. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
11. RESULTS :
(i) $239 \quad 1 \mathrm{~b} . / \mathrm{ac}$.
(ii) $69.80 \mathrm{lb} / \mathrm{ac}$.
(iii) Control us others are significant while other manurial treatments do not differ significantly
(iv) Av. yield of kapas in lb./ac.
Treatment. Av. yieid

1.	181
2.	268
3.	270
4.	305
5.	210
6.	209
7.	261
8.	267

S.E. for treatment mean (other than control). $\quad=28.50 \mathrm{lb} . / \mathrm{ac}$.
S.E. for control mean.
$=20.15 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton.
Site :-Govt. Exptl. Farm, Yeotmal.

Ref :-Mh. 52(179).
Type:-'M'.
Object:-To compare the effect of A/S with A.S.N. on Cotton.

1. BASAL CONDITIONS :
(i) (a) Jowar-Groundaut-Cotton. (b) Groundout. (c) N.A. (ii) (a) Medium black soit. (b) Refer soil analysis, Yeotmal. (iii) 4.7.1952. (iv) (a) 5 bakharings. (b) Hand drilling. (c) to (e) N.A. (v) N.A. (vi) H-420 (medium). (vii) Unirrigated. (viii) 3 hoeings and' 2 weedings. (ix) 40.28'. (x) 1.11.1952 to lst week of January 1953.
2. TREATMENTS :
3. Ammo. Sulphate Nitrate at 20 lb ./ac. of N .
4. A/S at $20 \mathrm{lb} . / \mathrm{ac}$. of N .
5. DESIGN:
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $52^{\circ} \times 21^{\circ}$. (v) N.A. (vi) Yes.

4. GENERAL:

(i) Satisfactory: (ii) Attack of pink boll worm ; no remedy was taken. (iii) Kapas yield. (iv), (a) 195̣2m,A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1146 \mathrm{lb} . / \mathrm{ac}$.
(ii) $162.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	1182
2.	1109
S.E./mean	$=81.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Ref :-Mh. 51(94).
Site :-Govt. Exptl. Farm, Akola:
Type :-'MV'.
Object :-To study the effect of sowing Deshi and American cottons successively in rotation with and without manures.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 30.6.1951. (iv) (a) and (b) N.A. (c) Deshi $18-20 \mathrm{lb} . / \mathrm{ac}$. and American $12-14 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime} \times 9^{\prime \prime}$.Deshi and $24^{\prime \prime} \times 12^{\prime \prime}$ American. (e) N.A. (v) Nil, (vi) H-420 Deshi (medium) and American-0394 (late) (vii) Unirrigated. (viii) 4 hoeings and 2 weedings. (ix) 24.32". (x) Pickings on 15.11.1951, 10.12.1951 and 20.3.1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 rotations : $R_{\mathbf{1}}=$ H. 420 after $H .420, \mathbf{R}_{\mathbf{2}}=$ H. 420 after $0394, \mathbf{R}_{\mathbf{2}}=0394$ after 0394 and $\mathbf{R}_{\mathbf{4}}=0394$ after H. 420.
(2) 2 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0$ and $\mathrm{N}_{2}=20 \mathrm{lb} . / \mathrm{ac}$.

N as A/S drilled with seed.
3. DESIGN :
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac. (v) One row on either side of plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1951-continued. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1025 \mathrm{lb} . / \mathrm{ac}$.
(ii) $125.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N alone is significant.
(iv) Av. yield of kapas in $\mathrm{lb}, / \mathrm{ac}$.

	\mathbf{R}_{1}	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{8}}$	\mathbf{R}_{4}	Mean
N_{0}	888	1053	943	970	963
$\mathbf{N}_{\mathbf{2}}$	1000	1198 -	1056	1093	1086
Mean	944	1125	999	1031	1025

$$
\begin{array}{ll}
\text { S. E. of marginal mean of } \mathrm{N} & -31.30 \mathrm{lb} . / \mathrm{ac} . \\
- \text { S.E. of marginal mean of } R & =44.27 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =62.60 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop:- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Akola.

Ref :- Mh. 52(118)/51(94).
Type:- 'MV'.

Object :-To study the effect of sowing Deshi and American. Cotton successively in rotation with and without manures.

1. BASAL CONDITIONS:

(i) (a) As per treatments. (b) and (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 26.6.1952. (iv) (a) and (b) N.A. (c) Deshi $18-20 \mathrm{lb} / \mathrm{ac}$. American $12-14 \mathrm{lb} / \mathrm{ac}$. (d) $18^{\prime \prime} \times 12^{\prime \prime}$ Deshi and $24^{\prime \prime} \times 12^{\prime \prime}$ American. (e) N.A. (v) Nil. (vi) Deshi-H. 420 (medium) and Ameri-can-0394 (late). (vii) Unirrigated. (viii) 3 hoeings, 2 weedings and 1 thinaing. (ix) 22.03'. (x) Pickinge on 28.10.1952, 27.11.1952, 16.12 .1952 and 6.2.1953 (for both varieties).
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 rotations: $\mathbf{R}_{\mathbf{1}}=\mathbf{H} .420$ after $\mathbf{H} .420, \mathrm{R}_{\mathbf{2}}=\mathrm{H} .420$ after 0394, $\mathrm{R}_{\mathbf{8}}=0394$ after 0394 and $\mathbf{R}_{4}=0394$ after H. 420.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{\mathbf{1}}=20 \mathrm{lb}$./ac.

N as A/S drilled with seed.
3. DESIGN :
(i) 2×4 Fact. in R.B.D.
(ii) (a) 8.
(b) N.A. (iii) 4.
(iv) (a) N.A.
(b) 1/40 ac. (v) 1 row on either side of plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) kapas yield. (iv) (a) 1951 -continued. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $789 \mathrm{lb} . / \mathrm{ac}$.
(ii) $104.8 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of \mathbf{R} and interaction $\mathrm{N} \times \mathrm{R}$ are significant, while the main effect of N is not significant. (iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$	Mean
$\mathbf{N}_{\mathbf{0}}$	1091	523	445	1026	$\mathbf{7 7 1}$
$\mathbf{N}_{\mathbf{1}}$	1098	539	535	1053	806
Mean	1095	531	490	1039	789

S.E. of marginal mean of \mathbf{N}	$=26.2 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of \mathbf{R}	$=37.0 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of table	$=52.4 \mathrm{lb} . / \mathrm{ac}$.

Crop : $\boldsymbol{\sim}$ Cotton (Kharif).
Site :- Govt. Exptl. Farm, Akola. Type :- ‘MV'.

Object :-To study the effect of sowing Deshi and American Cotton successively in rotation with and without manures.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 25.6.1953. (iv) (a) and (b) N.A. (c) Deshl 18-20 lb,/ac. and American 12-14 $\mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime} \times 9^{\prime \prime}$ Deshi and $24^{\circ} \times 12^{\circ}$ American. (e) N.A. (v) Nil. (vi) Deshi . H. 420 (medium) and American-0394 (late). (vii) Unirrigated. (viii) 6 hoeings and 3 weedings. (ix) 26.38". (x) Pickings on 21.11.1953, 17.12.1953 and 22.1.1954.
2. TREATMENTS:

All combinations of (1) aud (2)
(1) 4 rotations : $\mathbf{R}_{\mathbf{1}}=\mathbf{H} .420$ after $\mathbf{H . 4 2 0}, \mathbf{R}_{\mathbf{2}}=\mathbf{H} .42 \mathrm{U}$ after $0394, \mathbf{R}_{\mathbf{8}}=0394$ after 0394 and $\mathbf{R}_{\mathbf{4}}=0394$ after H. $\mathbf{H 2 0}$.
(2) 2 levels of $N: N_{0}=0$ and $N_{1}=20 \mathrm{lb}$, $/ a c$.

N as A / S drilled with seed.
3. DESIGN:
(i) 2×4 Fact. in R.B.D. (ii) (a) 8. (b) N.A. (iii) 4 . $^{\prime}$ (iv) ${ }^{\text {r }}$ (a) N.A. (b) $66^{\circ} \times 16.5^{\circ}$ (v) 1 row on either sido of plot. (vi) Yes.

4. GENERAL:
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1951 -continued. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $412.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) 143.0 lb /ac.
(iii) Main effect of \mathbf{R}, N and their interaction are significant.
(iv) Av. yield of kapas in lb./ac.

S.E. of marginal mean of N	$\mathbf{3 5 . 7 6} \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of R	$=50.58 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=71.52 \mathrm{lb} . / \mathrm{ac}$

Crop:-Cotton (Kharif).
Site :-Plant Breeding Stn., Latur.

Ref:-Mh. 48(56).
Type := ${ }^{6} \mathbf{M V}$ '.

Object :-To study the response of improved varieties of Cotton to the application of G.N.C.
-1. BASAL CONDITIONS :
(i) (a) N.A. (b) Kharif Jowar. (c) N.A. (ii) (a) Deep black, clayey soil. (b) Refer soil analysis, Latur. (iii) Last week of June, 1948. (iv) (a) 3 bakharings. (b) Drilled in furrow by hand. (c) 15 lb ./ac. (d) $18^{\prime \prime}$ spacing. (e) N.A. (v) N.A. (vi) As per treatments. (vii) Unirrigated. (viii) N.A. (ix) $34.84^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

Main-plot treatments :
3 levels of $\mathrm{N}_{\mathrm{I}}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb}$./ac.
Sub-plot treatments:
4 varieties: $\mathrm{V}_{1}=$ Gaorani 12F., $\mathrm{V}_{\mathbf{2}}=\mathrm{P}-11-4335, \mathrm{~V}_{\mathbf{8}}=$ Gaorani 4M-11-6 and $\mathrm{V}_{4}=$ Gaorani-60. N as G.N.C. broadcasted just before sowing.
3. DESKGN:
(i) Split-plot. (ii) (a) 3 main-plots/block, 4 sub-plots/main-plot:" (b) N.A. " (iii) 4: (iv) (a) $62^{\prime \prime} \times 13 \frac{1}{1}^{\prime \prime}$. $55^{\prime} \times 9^{\prime}$. (v) 3.5^{\prime} at either end, I row on oither side änd 1.5^{\prime} for path at ove' end. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Kapas yield. (iv) (a) 1947 to 1948. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 235 lb /ac.
(ii) (a) 108.4 lb ./ac.
(b) $72.63 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main treatments and sub treatments effects are significant.
(iv) Av. yield of kapas in lb ./ac.

	N_{0}	\mathbf{N}_{2}	\mathbf{N}_{2}	Mean
V_{1}	218	248	314	260
V_{2}	190	171	217	192
V_{3}	214	271	381	289
V_{4}	142	227	233	201
Mean	191	229	286	235

S.E. of difference of two
$\begin{array}{ll}\text { 1. main_plot treatments } & =38,34 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. sub-plot treatments } & =29.64 \mathrm{lb} . / \mathrm{ac} .\end{array}$
3. sub-plot means at the same level of main-plot 51.35 lb ./ac.
4. main-plot means at the same level of sub-plot $=58.73 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Cotton (Kharif).

Site :-Plant Breeding Stn., Latur.

Ref :-M M . 49(44).

; Type:- $\boldsymbol{T} \mathbf{M V}$ ':

Object:-To study the response of improved varieties of Cotton to he application of G.N.C.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Kharif Jowar. (c) N.A. (ii) (a) Deep black; clayey soil. (b) Refer soil analysis, Latur.
(iii) Last week of June, 1949. (iv) (a) 1 ploughing and 2 bakharings. (b) Drilled by hand. (c) $16 \mathrm{lb} \cdot / \mathrm{ac}$. (a) $18^{\prime \prime}$ apart. (e) N.A. (v) N.A. (vi) As per treatments. (vii) Unirrigated. (viii) N.A. (ix) 49.75".
(x) 6. 11. 1949 to 3. 1. 1950.
2. TREATMENTS:

Main-plot treatments:
3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{2}=20$ and $\mathrm{N}_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
4 varieties: $\mathrm{V}_{1}=$ Gaorani-12F, $\quad \mathrm{V}_{\mathbf{8}}=$ Goarani $4 \mathrm{M}-11-6, \mathrm{~V}_{3}=$ Goarani 160 and $\mathrm{V}_{4}=$ PI1-4335.
N applied as A / S.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block, 4 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $62^{\prime} \times 13.5^{\circ}$. (b) $55^{\prime} \times 9^{\prime}$. (v) $3 \frac{1}{2}^{\prime}$ at either end, 1 row at either end and 1.5^{\prime} path at one side. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) N.A. (iii) Ginning \%, halo length, height and kapas yield. (iv) (a) 1947 to 1949. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $334 \cdot \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $96.08 \mathrm{lb} . / \mathrm{ac}$.
(b) $174.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.

(iv) Av. yield of kapas in lb./ac.

	$\mathbf{N}_{\mathbf{0}}$	$\mathbf{N}_{\mathbf{l}}$	$\mathbf{N}_{\mathbf{2}}$	Mean
$\mathbf{V}_{\mathbf{1}}$	305	251	413	323
$\mathbf{V}_{\mathbf{2}}$	303	333	509	382
$\mathbf{V}_{\mathbf{3}}$	247	349	329	308
$\mathbf{V}_{\mathbf{4}}$	269	344	353	322
Mean	281	319	401	334

S.E. of difference of two

1. main-plot treatment means
2. sub-plot treatment means
$=74.0 \mathrm{lb} . / \mathrm{ac}$.
3. sub-plot means at the same level of main-plot treatment $=123.1 \mathrm{lb} / \mathrm{ac} / \mathrm{ac}$.
4. main-plot means at the same level of sub-plot treatment $=111.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Nagpur.
Ref :- Mh. 52(201).
Type:- 'MV'.
Object :-To study the effect of application of N on different varieties of Cotton:

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Cotton. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 5 and 7.7.1952., (iv) (a) One decp and two shallow ploughing. (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) As per treatments. (vii) Unirrigated. (viii) 3 weedings and 5 interculturings. (ix) 29.32". (x) November 1952 to January 1953.
n. TREATMENTS:

All combinations of (1), (2), (3) and (4)
(1) 2 varieties: $\mathrm{V}_{1}=\mathrm{H}-420$ and $\mathrm{V}_{2}=$ Buri-0394.
(2) 2 levels of N as $A / S: N_{1}=15$ and $N_{2}=30 \mathrm{lb}$./ac. of N .
(3) 2 times of application of $\mathrm{N}: \mathrm{T}_{1}=$ At sowing and $\mathrm{T}_{2}=6$ weeks after sowing.
(4) 2 methods of application of $N: M_{1}=$ Drilling and $M_{2}=$ Broadcasting.
3. DESIGN:
(i) 2^{4} Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\circ} \times 16 \frac{1}{2}^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nil. (iii) Kapas yield. (iv) (a) $1951-$ N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1194 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $293.64 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of V is highly significant while that of N is significant. All other effects and interactions are not significant.
(iv) Av. yield of kapas in lb./ac.

Crop:- Cotton (Kharif).
Ref :- Mh. 53(283).
Site :- Govt. Exptl. Farm, Nagpur.
Type :- 'MV'.
Object ; - To study the effect of application of N on different varieties of Cotton.

1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 30.6 .1953 and 1.7.1953. (iv) (a) 1 ploughing. (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) N.A. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 1 weeding and 3 interculturings. (ix) 39.34". (x) Picking on 3, 19.11.1953 and 6.12.1953.
2. TREATMENTS:

All combinations of (1), (2), (3) and (4)
(1) 2 varieties: $\mathrm{V}_{1}=\mathrm{H}-420$ and $\mathrm{V}_{2}=$ Buri-0396.
(2) 2 levels of $\mathrm{N}: \mathrm{N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb}$./ac.
(3) 2 times of application of $\mathrm{N}: \mathrm{T}_{1}=$ At sowing and $\mathrm{T}_{\mathbf{2}}=6$ weeks after sowing.
(4) 2 methods of application of $\mathrm{N}: \mathrm{M}_{1}=$ Drilling and $\mathrm{M}_{2}=$ Broadcasting.
3. DESIGN :
(i) 2^{4} Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 60$ th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Height and kapas yield. (iv) (a) 1951-N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Design for the expt. was 2^{4} confounded but since the confounded effects are not available, it is analysed as 2^{4} Fact. in R.B.D.
5. RESULTS :
(i) $931 \mathrm{lb} / \mathrm{ac}$.
(ii) $178.44 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{V} is highly significant. Main effect of N and interactions $\mathrm{N} \times \mathrm{T}$ and $\mathrm{M} \times \mathrm{T}$ are also significant. Other effects are not significant.
(iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Differential response

	Mean response	V		N		M^{+}		${ }^{T}+$	
V	-317	-	-	-320	-314	-243	-391	-259	-375
N	19	16	22	-	-	23	15	-104	142
M	-78.	-4	-152	-74	-82	-	-	16	-172
T	-29	29	-87	-15	94	65	-123	.	\cdots

S.E. of mean response
$=44.61 \mathrm{lb} / \mathrm{ac}$.
S.E. of differential response
$=63.08 \mathrm{lb} . / \mathrm{ac}$.

Ref:- Mh. 52(136).
Crop :- Cotton (Kharif).

Type :- 'MV'.

Object : - To study the effect of N on different varieties of irrigated Cotton.

1. BASAL CONDITIONS :
(i) (a) Maize-Cotton-Sugarcane. (b) Maize. (c) Nil. (ii) (a) Black cotton. (b) Refer soil analysis, Nagpur. (iii) 4.6.1952. (iv) (a) Bakharings and ploughing. (b) Hand dibbling. (c) N.A. (d) American $24^{\prime \prime} \times 18^{\prime \prime}$ and deshl $24^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) 10 C.L./ac. of F.Y.M. (vi) As per treatments. (vii) Irrigated. (viii) 4 weedings and 5 intercultures. (ix) $29.32^{\prime \prime}$. (x) 25.10 .1952 to 1.1.1953.

2. TREATMENTS :

Main-plot treatments :
4 varieties : $\mathbf{V}_{\mathbf{1}}=$ Buri-0394, $\mathbf{V}_{\mathbf{2}}=$ Buri-0396, $\mathrm{V}_{8}=$ No-91 and $\mathrm{V}_{4}=\mathbf{H} .420$.
Sub-plot treatments:
2 levels of $\mathrm{N}: \mathrm{N}_{0}=0$ and $\mathrm{N}_{2}=30 \mathrm{lb} . / \mathrm{ac}$.
N applied as A/S, 6 wecks after sowing.
3. DESIGN:
(i) Split-plot.. (ii) (a) 4 main-plots/block and 2 sub-plots/main-plot. (b). N.A. (iii) 4. (iv) (a) N.A. (b) 1/262th ac. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Below normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1952 -N.A. (b) No. (c) Na!: (v)'(a) ant (b) N.A. (vi) rand (vii) Nil.
5.'. RESULTS:
(i) $132 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $10.74 \mathrm{lb} . / \mathrm{ac}$.
(b) $15.36 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{V} alone is highly significant.
(iv) Av. yield of kapas in lb./ac.

	\mathbf{V}_{1}	\mathbf{V}_{2}	$\mathbf{V}_{\mathbf{s}}$	V_{4}	Meatis
N_{0}	110	105	150	148	128
iv_{1}	112	113	165	152	135
Mean	111	109.	157	150.	132

S.E. of difference of two

1. V marginal means $\quad=5.37 \mathrm{lb} . / \mathrm{ac}$.
2. N marginal means $\quad=5.43 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{N} means at the same level of $\mathbf{V}=10.86 \mathrm{lb} / \mathrm{ac}$.
4. V mieand at the same level of $\mathbf{N} 9.41 \mathrm{lb} . / \mathrm{ac}$:

Crop :- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Akola.

Ref :- Mh. 53(173).
Type:- 'C'.

Object :-To study the effect of different spacings and number of plants per hole on yield of Cotton.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Groundnut. ${ }^{\prime \prime}$ (c) $201 \mathrm{~b} . / \mathrm{ac}$. of N , half as A/S and half as F.Y.M. top dressed. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. '(iii) 9.7.1953. (iv) (a) and (b) N.A. (c) As per treatments. (d) and (c) As per treatments. (v) $40 \mathrm{lb} . / \mathrm{ac}$. of N , half as F.Y.M. and half as A / S in two doses one at sowing and 2nd after one month. (vi) American 0394 (late); (vii) Unirrigated. (viii) 7 hoeings, 4 weedings and 1 thinning. (ix) $26.38^{\prime \prime}$. (x) Pickings on 9.7.1953, 8.12.1953, 23.2.1954 and 21.3.1954.
2. TREATMENTS :

All combinations of (1) and (2) + a control.
(1) 3 spacings : ${ }^{\prime} S_{1}=24^{\circ} \times 24^{\prime \prime}, S_{2}=30^{\prime \prime} \times 30^{\circ}$ and $S_{3}=30^{\circ} \times 24^{\prime \prime}$.
(2) 3 plants/hole: $P_{1}=1, P_{2}=2$ and $P_{3}=3$.
and one control i.e., spacing $24^{\prime \prime} \times 12^{\prime \prime}$ with seed rate $12-14^{\prime} \mathrm{lb}$./ac.
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $44.5^{\circ} \times 20^{\prime}$. (v) 1 row 'oi' either'side of plot. (vi) Yes:
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Ktapas yield: (iv) (a) No. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $225.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) $56.88 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} and interaction $S \times P$ are significant, while the inain effect of \mathbf{S} is notisignificant.
iv) Av. yield of kapas in lb./ac.

Control $=409.4 \mathrm{lb} . / \mathrm{ac}$.

	\mathbf{P}_{1}	\mathbf{P}_{2}	P_{3}	Mean
S_{1}	202.6	63.2	378.8 -	214.9
S_{2}	126.9	182.0	226.9	178.6
S_{3}	183.7	246.8	233.2	221.0
Mean	171.1	164.0	279.6	
S.E. of marginal mean of P			$=16.13 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of marginal mean of S			- 16.13 lb ./ac.	
S.E. of body of table		$=27.94 \mathrm{lb} . \mathrm{Jac}$.		

Crop :-Cotton (Kharif).
Site :-Plant Breeding Stn., Latur.

Ref:-Mh. 52(41).
Type : ${ }^{\prime} \mathrm{C}$ ".

Object :-To study the effect of different spacings on yield of Cotton.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Cotton. (b) Groundnut. (c) F.Y.M, at 10 C.L./ac. (ii) (a) Medium deep black clayey soil. (b) Refer soil analysis, Latur. (iii) 17.7.1952. (iv) (a) One ploughing and three harrowings. (b) Sowing by seed drill. (c) 16 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) Gaorani-12, (vii) Unirrigated. (viii) Hocing by planet junior hand hoe thrice and weeding once. (ix) $\mathbf{1 8 . 0 3}^{\circ}$. (x) 17.11.1952.
2. TREATMENTS :

Three spacings between rows : $S_{1}=12^{\circ}, S_{2}=18^{\circ}$ and $S_{3}=24^{\circ}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) $S_{I}: 127^{\prime} \times 14^{\prime}, S_{2}: 127^{\prime} \times 15^{\prime}$ and $S_{3}: 127^{\prime} \times 16^{\prime}$.
(b) $121^{\prime} \times 12^{\prime}$ in all cases. (v) One border row on each side of the plot and 3^{\prime} on each side of the row.
(vi) Yes.
4. GENERAL :
(j) Unsatisfactory due to scanty rainfall, (ii) Heavy attack of boll worms. (iii) Plant hejght and kapas yield. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) Nanded. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $180 \mathrm{lb}, / \mathrm{ac}$.
(ii) $41.7 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
$\mathbf{S}_{\mathbf{1}}$	197
$\mathbf{S}_{\mathbf{1}}$	169
$\mathbf{S}_{\mathbf{1}}$	173
S.E./mean	$=17.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Cotton (Kharif).
Ref : ${ }^{\text {Mh. }}$ 53(15).
Site :-Plant Breeding Stn., Latur.
Type :-'C'.
Object :-To study the effect of different spacings on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Wheat-Cotton. (b) Wheat. (c) F.Y.M, at 10 C.L./ac. (ii) (a) Deep black clayey soil. (b) Refer soil analysis, Latur. (iii) $16,26.6 .1953$. (iv) (a) One ploughing, two harrowings and one cleaning. (b) Seeds sown through Moghas. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vil Gaorani-12. (vii) Unirrigated. (viii) One weeding, three hoeings by planet junior and hand hoe. (ix) $41.10^{\prime \prime}$. (x) $13,28.11 .1953$, 15.12.1953 and 15.1.1954.

2. TREATMENTS:

Three spacings tetween rows : $S_{1}=12^{\prime \prime}, S_{2}=18^{\prime \prime}$ and $S_{3}=24^{\prime \prime}$.
3. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 6. (iv) (a) S_{1} : $127^{\prime} \times 14^{\prime}, S_{2}: 127^{\prime} \times 15^{\prime}$ and $S_{3}: 127^{\prime} \times 16^{\prime}$. (b) $121^{\prime} \times 12^{\prime}$ in all cases. (v) One border row on each side of the plot and 3^{\prime} on each side of the row. (vi) Yes.
4. GENERAL:
(i) Shedding of bolls was much due to excessive rains in September and October 1953. (ii) Nil. (iii) Plant heights at maturity and kapas yield. (iv) (a) 1952-1954. (b) Yes. (c) N.A. (v) (a) Nanded. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $300 \mathrm{lb} / \mathrm{ac}$.
(ii) $40.8 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield	
$\mathbf{S}_{\mathbf{1}}$		235
$:$	$\mathbf{S}_{\mathbf{2}}$	192
$\mathbf{S}_{\mathbf{3}}$	\cdots	173
	S.E./mean	
	$=16.6 \mathrm{lb} . / \mathrm{ac}$.	

Crop :~Cotton (Kharif).	Ref :-Mh. 53(18).
Site :-Plant Breeding Stn., Latur.	Type :-‘C'.

Object :-To study the effect of early sowing on the yield and quality of Gaorani-12 Cotton.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Cotton. (b) Groundnut. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Deep black claycy. (b) Refer soil analysis, Latur. (iii). As per treatments. (iv) (a) Ploughing, cleaning and ridge formation. (b) to (e) N.A. (v) 20 C.L. of F.Y.M. applied in the beginning of May to cotton crop and 30 lb . of $\mathrm{P}_{2} \mathrm{O}_{5}$ in the form of super to the crop of groundnut before sowing. (vi) Gaorani-12. (vii) Irrigated. (viii) Weeding and hoeing by hand hoe. (ix) $41.10^{\prime \prime}$. (x) Picking on 4, 19.11. 1953, 4. 12. 1953 and 4. 1. 1954.
2. TREATMENTS :

Three dates of sowing : $D_{1}=20.5 .1953, D_{2}=5.6 .1953$ and $D_{3}=$ Normal sowing on 20.6.1953.
3. DESIGN:
(i) R.B D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) $30^{\circ} \times 9^{\prime}$. (b) $28^{\prime} \times 6^{\prime}$. '(v) One row at each flank and one foot at each extremity of the row. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Piant height at flowering and kapas yield. (iv) (a) 1953 to 1955. (b) No. (c) N.A.
(v) (a) Nanded. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $550, \mathrm{lb} . / \mathrm{ac}$.
(ii) $108.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
D_{1}	544
D_{2}	622
D_{3}	
S.E./mean	$=583$

Crop :-Cotton (Kharif).
Site :-Cotton Res. Stn., Nanded.

Ref :-Mh. 52(47).
Type :-'C'.

Object :-To study the effect of early sowing on yield and quality of Gaor ani-6 Cotton.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Cotton. (b) Groundnut. (c) 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super. (ii) (a) Black cotton soil.
(b) Refer soil. analysis, Nanded. (iii) As per treatments. (iv) (a) N.A. (b) Dibbling. (c) N.A.
(d) $18^{\prime \prime} \times 6^{\prime \prime}$. (e) 2 . (v) 20 C.L. of F.Y.M./ac. in the beginning of May. (vi) Gaorani-6. (vii) Irrigated. (viii) Weedings. (ix) 28.81°. (x) Picking on 8, 23.10.1952. 7, 22.11.1952 and 22.12.1952.
2. TREATMENTS:

Three dates of sowing : $D_{1}=20.5 .1952, D_{2}=5.6 .1952$ and $D_{3}=$ Normal sowing on 25.6.1952.
3. DESIG V :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 9^{\prime}$. (b) $28^{\prime} \times 6^{\prime}$. (v) One row at each flank and 1^{\prime} at each extremity of every row. (vi) . Yes.
4. GENERAL :
(i) Good. (ii) No. (iii) Germination and final stand, plant height, boil and seed weight, ginning \%; boll no. and fibre properties. Plant development observations and kapas yield. (iv) (a) 1952 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $792 \mathrm{lb} / \mathrm{ac}$.
(ii) $578.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.

Treatments	Av. yield
$\mathbf{D}_{\mathbf{1}}$	1275
$\mathbf{D}_{\mathbf{2}}$	779
$\mathbf{D}_{\mathbf{2}}$	
S.E./mean	
	$=\mathbf{2 8 9 . 0} \mathrm{lb}$, /ac.

Crop:- Cotton (Kharif).
Ref:- Mh. 53(27).
Site :- Agri. Res. Stn., Nanded.
Type:- ' C '.
Object :-To study the effect of early sowing on yield and quality of Gaorani-6 Cotton.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Cotton. (b) Groundnut. (c) $30 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) As per treatments. (iv) (a) Ploughing once and bakharing once. (b) Dibbling. (c) N.A. (d) $10^{\prime \prime} \times 6^{\circ}$. (e) 2 seeds/hole. (v) 20 C.L./ac. of F.Y.M. (vi) Gaorani-6. (vii) Irrigated. (viii) Hoeing once and 4 weedings. (ix) 45.13". (x) 1st picking on 30.9.1953, 2nd picking on 15.10.1953, 3rd picking on 30.10.1953, 4th picking on 30.11:1953 and 5th picking on 30.12.1953.
2. TREATMENTS:

Three dates of sowing : $D_{1}=20.5 .1953, D_{2}=5.6 .1953$ and $D_{2}=$ Normal sowing on 22.6.1953.
3. DESIGM :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 9^{\prime}$. (b) $28^{\prime} \times 6^{\prime}$. (v) Ono row on either flank and 1^{\prime} at each extremity of every row. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Germination and final stand, plant height, boll and seed weight, ginning \%, boll no. and fibre properties, plant development observations and kapas yield. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) Latur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 528 lb ./ac.
(ii) $170 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
$\mathbf{D}_{\mathbf{1}}$	697
$\mathbf{D}_{\mathbf{2}}$	512
$\mathbf{D}_{\mathbf{3}}$	376
S.E./mean	$=85.0 \mathrm{lb} / \mathrm{ac}$.

Crop : Cotton (Kharif).	Ref:- Mh. 52(215).
Site :- Agri. College Farm, Pooná.	Type :- ‘C'.

Object:-To study the effect of different methods of preparatory tillage on Cotton.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) Nil. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 18.6.1952. (ivy' (a) As per treatments. (b) Drilling. (c) 12 lb ./ac. (d) Spacing between rows $24^{\prime \prime \prime}$, between plants irregular. (e) N.A. (v) Nil. (vi) Jarilla 197-3. (vii) Unirrigated. (viii) 3 intercuíturings and 5 weedings. (ix) 22.03". (x) 25.11.1952, 11.12.1952 and 9.1.1953.
2. TREATMENTS:

4 culturall operations : $\mathrm{C}_{1} \doteq$ Harrowitig only; $\mathrm{C}_{2}=$ Plöughing everýy year, $\mathrm{C}_{\mathbf{2}}=$ Ploughing every alternate year and $\mathrm{C}_{6}=$ Plcughing every third year.
3. DESIGN :
(i) R.B.D
(ii) (a) 7.
(b) N.A.
(iii) 6.
(iv) (a) $132^{\circ} \times 12^{\prime}$.
(b) $124^{\prime} \times 6$
(v) $4^{\prime} \times 3^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Due to draugbt period which was followed just after flowering, boll formation was delayed and hence the yield was poor. (ii) Nil. (iii) Kapas yield. (iv) (a) 1949-N.A. (b) and (c) Nö. (v) (a) and (b) Nil. (vi) Nil. (vii) This is the first year of collection of data though it was started in 1949-50 because the cyclo of C_{4} treatment is completed in 1952-1953.
5. RESULTS:
(i) $447.2 \mathrm{lb} . / \mathrm{ac}$.
(ii) 233.0 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
$\mathbf{C}_{\mathbf{1}}$	350.2
$\mathbf{C}_{\mathbf{z}}$	469.8
$\mathbf{C}_{\mathbf{3}}$	453.8
$\mathbf{C}_{\mathbf{4}}$	517.4
S.E $/$ meán	$=95.2^{\prime} \mathrm{lb} . / \mathrm{ac}$.

Grop :matton (Kharifi)...
Site:- Agri. College Far'mit Podria."
Refitwhi 53(263):
Typés"C'.
Object:-To study the effect of different methods of preparatory tillage on Cotton.

1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar. (b) Jowar. (c) N.A. (ii) (a) Light soil. (b) Refer soil analysis, ' Pòbina: (iii) 5.6.1953. (iv) (a) As per treatments. (b) to (e) N.A. (v) Nile: (vi) Wirnar 197-3. (vii) Untrigated. (viii) 2 weedings and 5 interculturings. (ix) $22.38^{\circ}{ }^{\circ}(\mathrm{x}) 12$ to 17.11 .1953 and. 8 and 9.12.1953.,

2. TREATMENTS :

4 cultural operations: $C_{1}=$ Harrowing only, $C_{2}=$ Ploughing every year, $C_{8}=$ Ploughing every alternate year and $C_{4}=$ Ploughing every third year.
3. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) $132^{\prime} \times 12^{\prime}$. (b) $124^{\prime} \times 8^{\prime}$. (v) 4^{\prime} along length and 1 row along breadth. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Kapas yield. (iv) (a) 1949-1956. (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) $115.7 \mathrm{lb} . / \mathrm{ac}$.
(ii) $51.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in Ib./ac.

Treatment	Av. yield
$C_{\mathbf{2}}$	100.6
$C_{\mathbf{2}}$	102.3
$\mathbf{C}_{\mathbf{3}}$	120.8
$\mathbf{C}_{\mathbf{4}}$	139.2
S.E./mean	$=21.08 \mathrm{lb} / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :- Cotton Res. Stn., Nanded.
Ref :- Mh. 52(46).
Type :- 'CV'.

Object:-To srudy the effect of spacing fon yield: and quality of. Gaorani-6 and ,Gaorani-6.E.3 varieties of Cotton.

1. BASAL CONDITIONS :

(i) (a) Rabi Jowar-Cotton. (b) Rabi Jowar. (c) B.M. at the rate of $30: \mathrm{Jb} / \mathrm{ac}$, of $\mathrm{P}_{2} \mathrm{O}_{5}$ to $\frac{3}{4}$ area and F.Y.M. at the rate of 10 C.L./ac. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 28.6.1952. (iv) (a) 3 bakharings. (b) Drilling the seed through moghas. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v), Nil. (vi) As per treatments. (vii). Unirrigated, (viii). Hoeing twice, and weeding once. (ix) $28,83^{\prime \prime}$. (x) 10.11,1952, 10,12.1952 and 10.1.1953.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 varieties : $\mathrm{V}_{\mathbf{1}}=$ Gaorani-6 and $\mathrm{V}_{\mathbf{2}}=$ Gaorani-6 E.3.
(2) 3 spacings: $S_{1}=12^{\prime \prime}, S_{9}=18^{\prime}$ and $S_{3}=24^{\prime \prime}$ between rows.
3. DESIGN :
(i) 3×2 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 5. (iv) (a) $12^{\prime \prime}$ spacings: $127^{\prime} \times 14^{\prime}, 1^{\prime \prime}$ spacing : $127^{\prime} \times 15^{\prime}$ and $24^{\prime \prime}$ spacing: $127^{\prime} \times 16^{\prime}$. (b) $121^{\prime} \times 12^{\prime}$. (v) 1 row on either side and 3^{\prime} at either extremity of every row was treated as n@n-experimental. (vi) Yes.
4. GENERAL:
(i) GooJ. (ii) No. (iii) Germination and final stand, boll no., boll wt., plant height, ginning \%, fibre properties and kapas yield. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) At Latur, only with one variety. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 214 lb./ac.
(ii) $26.70 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only interaction $\mathbf{S} \times \mathrm{V}$ is significant.
-(iv) Av. yield of kapas in lb./ac.

	S_{1}	S2	$\mathbf{S a}_{3}$	Mean
V_{1}	231	214	220	222
$\mathrm{V}_{\mathbf{2}}$	177	215	227	206
Mean	204	214	224	214

$$
\begin{array}{ll}
\text { S.E. of } S \text { marginal mean } & =8.40 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of } V \text { marginal mean } & =6.90 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =11.90 \mathrm{lb} . / \mathrm{ac.}
\end{array}
$$

Crop :-Cotton (Kharif).
Site :- Cotton Res. Stn., Nanded.
Ref.- Mh. 53(25).
Type :- 'CV'.
Object :-To study the effect of spacing on yield and quality of Gaorani-6 and Gaorani-6-E-3 varieties of Cotton.
-1. BASAL CONDITIONS:
(i) (a) Rabi Jowar-Cotton. (b) Rabl Jowar. ' (c) F.Y.M. at the rate of 20 C.L./ac. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 26.6.1953. (iv) (a) 3 bakharings: (b) Drilling the seed through moghas. © (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (c) N.A., (v) Nil. (vi) As per treatments. ' (vii) Unirrigated. (viii) Hoeing twice and weeding twice. (ix) $45.13^{\prime \prime}$ (x) 12.11.1953,12.12.1953 and 12.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 varieties : $\mathrm{V}_{1}=$ Gaorani-6 and $\mathrm{V}_{\mathbf{2}}=$ Gaorani-6 E.3.
(2) 3 spacings: $S_{1}=12^{\prime \prime}, S_{2}=18^{\prime \prime}$ and $S_{8}=24^{\prime \prime}$ between rows.
-3. DESIGN :
(i) 3×2 Fact. in R.B.D. (ii) (a) 6. (b) N.A. . (iii) S: (iv) (a) $12^{\prime \prime}$ spacings: $127^{\prime} \times 14^{\prime}, 18^{\prime \prime}$ spacings : $127^{\prime} \times 15^{\prime}$ and $24^{\prime \prime}$ spacings: $127^{\prime} \times 16^{\prime}$. (b) $121^{\prime} \times 12^{\prime}$. (v) 1 row on either side and 3 ft . at each extremity of every row was treated as non-experimental. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) No. (iii) Plant height, boll no., boll weight, final stand, ginning \%, fibre properties and kapas yield. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) At Latur, only with one variety. (b) N.A. (vi) and (vii) Nil.
-5. RESULTS :
(i) $174 \mathrm{lb} . / \mathrm{ac}$.
(ii) 18.60 lb ./ac.
(iii) None of the effects is significant:
(iv) Av. yield of kapas in $\mathrm{Ib} . / \mathrm{ac}$.

S.E of S marginal mean	$=5.90 \mathrm{lb} . / \mathrm{ac}$.
S.E. of V marginal mean	$=4.80 \mathrm{lb} . / \mathrm{ac}$,
S.E. of body of table	$=8.30 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton. (Kharif).
Ref :- Mh. 52(227).
Site :- Govt. Seed and Demonstration Farm, Achalpur. Type :- 'CM'.

Object:-To compare the effect of G.M., and F.Y.M. etc. along with different spacings on Cotton yield.
I. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Jowar, (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 23,24.7. 1952. (iv) (a) 2 heavy and 3 light bakharings. (b) N.A. (c) $14 \mathrm{lb} . / \mathrm{ac}$. (d) and (o) N.A. (v) Nil (vi) H-420. (medium). (vii) Unirrigated. (viii) 7 hoeings, 2 weedings and 1 thinning. (ix) $12.09^{\prime \prime}$ (x) Pickings, from 10 to 26.11. 1952 and from 8 to 31.12.1952.
2. TREATMENTS :

1. No manure-spacing 18°.
2. F.Y.M. at 10 C.L./ac. as basal dressing- $18^{\prime \prime}$ spacing.
3. A / S at 20 lb ./ac. of N drilled at sowing. $-18^{\prime \prime}$ spacing.
4. A/S at 20 lb ./ac. of N top dressed between $40-45$ days of sowing-18" spacing.
5. Sann hemp without $\mathrm{P}_{2} \mathrm{O}_{5}$-spacing $9^{\prime \prime}$
6. Sann hemp with $1 \mathrm{cwt} . \mathrm{P}_{2} \mathrm{O}_{5}$ drilled at sowing-spacing $9^{\prime \prime}$.
7. Udid without $\mathrm{P}_{2} \mathrm{O}_{5}$-spacing $9^{\prime \prime}$.
8. Udid with $1 \mathrm{cwt} . \mathrm{P}_{2} \mathrm{O}_{5}$ drilled at sowing-spacing $9^{\text {² }}$.
9. No manure -spacing $24^{\prime \prime}$.
10. As in (2) -spacing $24^{\prime \prime}$.
11. As in (3) -spacing 24^{*}.*
12. As in (4) -spacing $24^{\prime \prime}$.
13. As in (5) -spacing 12°.
14. As in (6) -spacing $12^{\prime \prime}$.
15. As in (7) -spacing $12^{\prime \prime}$.
16. As in (8) -spacing 12^{\prime}.

Green manuring on 22.8.1952 and others top dressed on 23.8.1952.
3. DESIGN :
(i) R.B.D.
(ii) (a) 16
16. (b) N.A.
(iii) 4.
(iv) (a) N.A.
(b) 1/100th acre. (v) N.A. (vi) Yes. .
4. GENERAL :
(i) Normal. (ii) NiI. (iii) Kapas yield. (iv) (a) 1952 to 1954. (b) Yes. (c) N.A. (v) (a) Akolar.
(b) N.A. (vi) Nil. (viii) G.M. crops sown in between two lines of cotton at the time of cotton sowing.

Average G.M. applied.

	5	6	7	8	13	14	15	16.
Treatment No.	5	6.68	1.46	1.29	1.89	1.77	1.33	1.22

5. RESULTS :
(i) 746 lb ./ac.
(ii) $131.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.

Av. yield	in Ib./ac.	Treatment	Av. yield
Treatment		9.	797
1.	930	10.	925
2.	986	11.	1017
4.	753	12.	895
5.	594	13.	529
6.	635	14.	606
7.	616	15.	625
8.	586	16.	657
	nean		

Cropi : (Cotton (Kharif).
 Ref:-Mh. 53(291).

Object :- To study the residual effect of G.M. applied to previous cotton crop along with different spacings on'Cotton yield

1. BASAL CONDITIONS:
(i) (a) (Cotton-Cotton. (b) Cotton. (c) As per treatments. (iii) (a) Medium black. (b) N.A. (iii) 23.6.53. (ivi) (a) 2 heavy \& 3 light bakharings. (b) N.A. (c) 14 lb.fac. (d) \& (d) N.A. (v) Nil. (vi) EL. 420 (medium). (vii) Un-imrigated, (viii) 3 hoeings, 2 weedings and thinnidg. (ix) 34.91*. (x)' Pickings on 31.10.1953, 11 to 27.11.1953, 19.12.1953 and 12.1.1954.
2. TREATMENTS
3. No manure-spacing $\mathbf{1 8}^{\prime \prime}$.
4. F.Y.M. at 10 C.L./ac. as basal dressing- $1^{\prime \prime}$ spacing.
5. A/S at 20 lb ./ac. of N drilled at sowing- $18^{\prime \prime}$ spacing.
6. A/S at 20 lb ./ac. of N top dressed between $40-45$ days of sowing-18" spacing.
7. Sunhemp without $\mathrm{P}_{2} \mathrm{O}_{5}-$ Spacing $9^{\prime \prime}$.
8. Sunhemp with $1 \mathrm{cwt} . \mathrm{P}_{2} \mathrm{O}_{5}$ drilled at sowing-spacing $9^{\prime \prime}$.
9. Udid without $\mathrm{P}_{2} \mathrm{O}_{5}$-spacing $9^{\prime \prime}$.
10. Udid with $1 \mathrm{cwt} . \mathrm{P}_{2} \mathrm{O}_{5}$ drilled at sowing-spacing $\mathbf{9}^{\prime \prime}$.
11. No manure-spacing $\mathbf{2 4}^{\prime \prime}$.
12. As in (2)-spacing 24"
13. As in (3)-spacing 24°.
14. As in (4)-spacing $24^{\prime \prime}$.
15. As in (5)-spacing 12"
16. As in (6)-spacing $12^{\prime \prime}$.
17. As in (7)-spacing $12^{\prime \prime}$.
18. As in (8)-spacing $12^{\prime \prime}$.

Top dressing on 23.8.1952 and G.M. on 22.8.1952. Treatments were applied to the provious cotton crop and residual effects studied this year.
3. DESIGN :
(i) R.B.D.
(ii) (a) 16 .
(b) N.A. (iii) 4
(iv) (a) N_A
(b) 1/100th acre.
(v), N.A: (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield.' (iv) (a) 1952 (residual effect from' 1953-54)-N.A. (b) Yes, (c) N.A. (v) (a, b) N.A. ' (vi) Nil.' (vii) Nil.
5. RESULTS :
(i) $1019 \mathrm{lb} / \mathrm{ac}$.
(ii) . 118.4. lt./ace
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac. (Kapas).

| Treatment | Av. yield | | Treatment |
| :---: | :---: | :---: | :---: | Av. yield.

Crop: :Cotton (Kharif).
Ref :-Mh. 53(234).
Site :-Govt. Seed and Demonstration Farm, Achalpur. Type :-‘CM’.
Object :-To compare the effect of G.M., F.Y.M. etc., along with different spacings, on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Cotton. (c) N.A. (ii) (a) Medium black, (b) N.A. (iii) 3.7.1953, (iv) (a) 2 heavy and 3 light bakharings. (b) N.A. (c) $14 \mathrm{lb}, / \mathrm{ac}$. (d) \& (e) N.A. (v) Nil. (vi) H. 420 . (vii) Unirrigated. (viii) 7 hoeings, 1 thinning and 3 weedings. (ix) $34.91^{\prime \prime}$ (x) 5 to 13.11.1953, 12.12.1953 and 18.1. 1954.

2. TREATMENTS :

- 1. Control- 18° spacing line to line.

2. F.Y.M. 10 C.L./ac. \& $18^{\prime \prime}$ spacing line to line.
3. A/S 20 lb ./ac of $\mathbf{N} \& 18^{\prime \prime}$ spacing line to line.

- 4. $\mathrm{A} / \mathrm{S} 40 \mathrm{lb}$./ac. of $\mathbf{N} \& 18^{\circ \prime}$ spacing line to line.

5. G.M. with sann without $\mathrm{P}_{3} \mathrm{O}_{5}-18^{\prime \prime}$ spacing line to line.
6. G.M. with sann with $\mathrm{P}_{2} \mathrm{O}_{5} 30 \mathrm{lb} . / \mathrm{ac} .-18 \mathrm{R}$ spacing line to line.
7. G.M. with sann without $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\prime \prime}$ spacing line to line.
8. G.M. with sann with $\mathrm{P}_{8} \mathrm{O}_{5} 30 \mathrm{lb} . / \mathrm{ac} .-24{ }^{\prime \prime}$, spacing line to line.
9. G.M. with Udid without $\mathrm{P}_{2} \mathrm{O}_{5}-18^{\circ}$ spacing 1 ne to line
10. G.M. with Udid $18^{\prime \prime}$ line to line spacing with 30 lb ./ac. $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
11. G.M. with Udid without $\mathrm{P}_{8} \mathrm{O}_{5}-24$ spacing line to line.
12. G.M. with Udid - 24° line to line spacing with $30 \mathrm{lb}, / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{B}}$.
13. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4, (iv) (a) N.A. (b) $36.3^{\prime} \times 12^{\prime}$. (v) N.A. (vi) Yes.
14. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) kapas yield. (iv) (a) 1952 to 1957. (b) No. (c) N.A. (v) (a), N,A. (vi) and (vii) Nill
15. RESULTS :
(i) $820 \mathrm{lb} . / \mathrm{ac}$.
(ii) $118.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Ay. yield of kapas in lb. act.

Crop :- Cotton (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref :-Mh. 48(42).
Type :- ${ }^{6} \mathrm{CM}^{2}$:
Object :-To find out the effect of spacing on American Cotton.

1. BASAL CONDITIONS .
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 3.7.1948. (iv) (a) 1 ploughing and 2 bakharings. (b) Dibbling. (c) $12-14 \mathrm{lb}$./ac. (d) As per treatments. (e) N.A. (v) Nil. (vi) Bhri-197 (late). (vii). Upirrigateg: (yiii) 3 hogeings and 3 weedings. (ix) :31.52:. (x) Picking on 20.11.1948, 4.2.1949, 1.4.1949 and 16.4.1949.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of $\mathrm{N}: \quad \mathrm{N}_{0}=0$ and $\mathrm{N}_{1}=40 \mathrm{lb}$./ac.
(2) 3 spacings between plants: $\mathrm{S}_{1}=12^{\prime \prime}, \mathrm{S}_{2} \stackrel{\wedge}{=} 18^{\prime \prime}$ and $\mathrm{S}_{3}=24^{\circ}$.

Manure applied at 20 lb . of N as cattle dung +20 lb . of N as $\mathrm{G} . \mathrm{N} . \mathrm{C}$. on 21.6.1948.
3. DESIGN:
(i) 2×3 Fact. in R.B.D.
(ii)
(a) 6. (b) N.A. (iii) 6
6. (iv) (a)
(a) N.A. (b) $66^{\prime} \times 16 \frac{1}{2}^{\prime}$. (v) N.A.
(vi) \dot{Y} es.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Kapas yield. (iv) (a) 1945 to 1949. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $229.5 \mathrm{lb} / \mathrm{ac}$.
(ii) $41.60 \mathrm{lb} / \mathrm{ac}$.
(iii) Only the main effect of S and interaction $S \times N$ are significant.
(iv) Av. yield of kapasin lb,/ac.

	S_{1}	S,	S_{3}	Mean
N_{0}	210.0	203.0	187.0	200.0
N_{1}	277.0 -	268.0	, 232.0	259.0
Mean	243.5	235.5	209.5	229.5
S.E. of marginal mean of \mathbf{N}, $=9.81 \mathrm{lb}$./ac.				
S.E. of marginal mean of S . $\quad=12.01 \mathrm{lb} . / \mathrm{ac}$.				

Crop :-Cotton (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref:-Mh. 49(69).
Type :-‘CM'.

Object :-To find out the effect of spacing on American Cotton.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) 1 C.L./ac. of F.Y.M. ; 240 lb ./ac. of G.N.C. powder. (ii) (a) Black cotton soil. (b) Refor soil analysis, Akola. (iii) 28.6.1949. (iv) (a) 1 ploughing and 2 bakharings. (b) Dibbling. (c) 12-14 lb./ac. (di) As per treatments. (e) N.A. (v) Nil. (vi) Buri-107 (late). (vii) Unirrigated. (viii) 4 hoeings and 2 weedings. (ix) $42.93^{\prime \prime}$. (x) Picking on 21.11.1949, 13.12.1949, 20.1.1950 and 27.3.1950.
2. TREATMENTS :

All combinations of (i) and (2)
(1) 2 levels of $N: N_{0}=0$ and $N_{1}^{\prime}=40 \mathrm{lb}$./ac.
(2) 3 spacings between plants: $\mathrm{S}_{1}=12^{\prime \prime}, \mathrm{S}_{2}=18^{\prime \prime}$ and $\mathrm{S}_{3}=24^{\circ}$.

Manure were applied at 20 lb ./ac. N as cowdung +20 lb ./ac. N as G. N.C. on $22.6,1949$.
3. DESIGN :
(i) 2×3 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) $66^{\prime} \times 16 \frac{1^{\prime}}{}$. (v) N.A. (vi) Yes. ,
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) 1945 to 1949. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $375.0 \mathrm{lb} / \mathrm{ac}$.
(ii) $50.60 \mathrm{lb}, / \mathrm{ac}$.
(iii) Only the main effect of S and interaction $S \times N$ are significant. N effect is not significant.
(iv) Av. yield of kapas in lb ./ac.

	S_{1}	$\mathbf{S}_{\mathbf{2}}$	\mathbf{S}_{8}	Mean
N_{0}	325.0	340.0	280.0	315.0
N_{1}	438.0	472.0	$\therefore 440.0$	435.0
Mean	381.5	383.5	360.0	375.0

S.E. of marginal mean of N S.E. of marginal mean of S S.E. of body of table

$$
\begin{aligned}
& =11.93 \mathrm{lb} . / \mathrm{ac} . \\
& =14.60 \mathrm{lb} . / \mathrm{ac} . \\
& =20.66 \mathrm{lb} . / \mathrm{ac.}
\end{aligned}
$$

Crop :-Cotton (Kharif).
Site :-Govt. Exptl. Farm, Akola.
Ref :-Mh. 53(270).
Type :-‘CM'.

Object : - To study the effect of different spacings and no. of plants per hole on Cotton.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) $20 \mathrm{lb} . / \mathrm{ac}$. of N. (ii) (a) Deep black cotiton soil. (b) Refer soil analyais, Akola. (iii) 8.7.1953. (iv) (a) 3 bakharings. (b) N.A. (c) $15 \mathrm{lb} / \mathrm{ac} . \quad$ (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (c) N.A. (v) $40 \mathrm{lb} . / \mathrm{ac}$ of N , half as F.Y.M. and half as A / S. (vi) H. 420 (medium). (vii) Unirrigated. (viii) 5 hoeings, 2 thinnings and 3 weedings. (ix) $26.28^{\prime \prime}$. (x) 25.11.1953, 19.12.1953 and 11.2.1954.

2. TREATMENTS:

1. $18^{\circ} \times 9^{\prime \prime}$ (control) 40 lb ./ac. of N , half as F.Y.M. and remaining half as A / S in 2 doses, one at sowing and other after one month of sowing.
2. $18^{\circ} \times 18^{\circ}$ one plant at choufali and with manuring as in treatment No. 1 but F.Y.M. to be given at choufall.
3. $18^{\prime \prime} \times 18^{\prime \prime}-2$ plants at choufali and rest as treatment No. 2 .
4. $18^{\prime \prime} \times 18^{\circ}-3$ plants at choufali and rest as treatment No. 2.
5. $24^{\prime \prime} \times 18^{\prime \prime}-1$ plant at choufali and rest as treatment No. 2.
6. $24^{\circ} \times 18^{\prime \prime}-2$ plants at choufali and rest as treatment No. 2.
7. $24^{\prime \prime} \times 18^{\prime \prime}-3$ plants at choufali and rest as treatment No. 2.
8. DESIGN :
(i) R.B.D. ${ }^{-}$(ii) (a) 7. (b) N.A. ' (iii) 4. (iv) (a) N.A. (b) $60.5^{\prime} \times 18^{\prime}$ ' (v) One line on either side.
(vi) Yes.
9. GENERAL :
(i) Excellent. Treatment having one plant at choufali has good growth. (ii) Nii. (iii) Kapas yield. (iv) (a) to (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $684.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $91.32 \mathrm{lb} / \mathrm{ac}$.
(ili) Treatment differences are significant.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
1.	712.4
2.	650.5
3.	731.1
4.	$821.8 \ldots$
5.	549.3
6.	658.0
7.	664.9
S.E./mean	$=45.66 \mathrm{lb} . / \mathrm{ac}$.

Crop .-Cotton (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref: : Mh. 52(120).
Type :-‘CM’.

Object:-To study the effect of different manures and spacings on Cotton.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) 4 C.L./ac. of F.Y.M. $+100 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. $+50 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii)
(a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) N.A. (iv) (a) and (b) N.A. (c) $18-20 \mathrm{lb} / \mathrm{ac}$.
(d) As per treatments, (c) N.A. (v) Nil. (vi) H. 420 (medium). (viii) Unirrigated. (viii) N.A. (ix)
22.03". (x) N.A.

2. TREATNENTSS

All combinations of (1) and (2)
(1) 2 spacings between rows: $S_{2}=18^{\circ}$ and $S_{2}=24^{\prime \prime}$.
(2) 8 manurial doses: $M_{0}=$ No manure, $\quad M_{1}=10$ C.L./ac. of F.Y.M. as basal dressing, $M_{2}=20$
 between $40-35$ days, $M_{4}=$ Sannhemp alone, $M_{5}=$ Sannhemp with 1 cwt./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with seed, $\mathrm{M}_{6}=$ Udid alone and $\mathrm{M}_{7}{ }^{\text {re }}$ Udid Fith 1 cwt./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with seed.
3. DESNCN:

4. GENERAL :
(i) N.A. (ii) Nil. (iii) Kapas yield. (iv) (a) 1952 to 1953. (modified with 12 treatments). (b) Nेo.

:. RESULTS:

(i) $401.8 \mathrm{lb} / \mathrm{ac}$.
(ii) $71.86 \mathrm{lb} / \mathrm{ac}$.
(iii) Only the main effect of \mathbf{M} and interaction $\mathbf{M} \times \mathbf{S}$ are significant.
(iv) Av. yield of kapas in lb./ac.

Crop: Cotton (Khnrif).
Site :- Govt. Exptl. Farm, Akola.

Ref:- Mh. 5 (267).
Type :~ ‘CM'.

Object :-To study the effect of G.M., F.Y.M. and A/S along with different spacings on Cotton yield.

1. BASAL CONDITIONS :
(i) (a) No definite crop rotation. (b) Jowar. (c) $10 \mathrm{lb} . / \mathrm{ac}$. of N as A/S top dresssed. (ii) (a) Deep black cotton soil. (b) Refer.soil analysis, Akola. (iii) 7.7.1953. (iv) '(a) 3 bakharings. ' (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H-420 cotton (medium). (vii) Unirrigated. (viii) 3 hoeings on 30.7.1953,

- 29.8.1953 and 17.9.1953, 2 weedings on 21.8.1953 and 17.9.1953. (ix) 26.28". (x) 1, 21.12.1953 and 29.1.1954.

2. TREATMENTS :
3. No manure- $18^{\prime \prime}$ line to line.
4. F.Y.M. at 10 C.L./ac. -18° line to line.
5. A/S at 20 lb ./ac. of $\mathrm{N}-18^{\prime \prime}$ line to line.
6. $\mathrm{A} / \mathrm{S}^{\circ}$ at $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{N}-18^{\prime \prime}$ line to line.
7. Sann without $\mathrm{P}_{2} \mathrm{O}_{5}-18^{n}$ line to line.
8. Sann with $\mathrm{P}_{2} \mathrm{O}_{5}$ at 30 lb ./ac. - $-18^{\prime \prime}$ line, to line.
9. Sann without $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\prime \prime}$ line to line.
10. Sann with $30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}-24^{4}$ line to line.
11. Udid without $\mathrm{P}_{2} \mathrm{O}_{5}-18^{\prime \prime}$ line to line.
12. Udid with $30 \mathrm{lb} . / \mathrm{ac}_{e}$ of $\mathrm{P}_{2} \mathrm{O}_{3}-18^{\prime \prime}$ line to line.
13. Udid without $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\prime \prime}$ line to line.
14. Udid with 30 lb ./ac. "of $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\prime \prime}$ line to line.
15. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $36.3^{\prime} \times 12^{\prime}$. (v) N.A. (vi) Yes.
16. GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1952-1953 (modified with 12 treatments). (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
17. RESULTS :
(i) $543.6 \mathrm{lb} . / \mathrm{ac}$.
(ii) $232.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment 1.	Av. yield 372.0	Treatment 7.	Av. yield 503.3
2.	654.8	8.	570.0
3.	560.8	9.	642.0
4.	682.8	10.	448.5
5.	387.3	11.	628.0
6.	621.5	12.	453.0
./mean $=116.35 \mathrm{lb} . / \mathrm{ac}$.			

Crop :-Cotton (Kharif).

Ref:-Mh. 52(131).

Site :- Govt. Seed and Demonstration Farm, Buldana. Type :~ ' $\mathbf{C M}{ }^{\prime}$ ’.
Object :-To compare the effect of G.M., F.Y.M. etc., along with different spacings, on Cotton yield.

1. BASAL CONDITIONS :
(i) (a, Nil. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 25.7.1952. (iv) (a) N.A. (b) Dibbling. (c) 14 lb /ac. (d) As per treatments. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 2 hoeings and 3 weedings. (ix) 21.81". (x) Picking on 9.10.1952, 22.12.1952 and 7.1.1953.

2. TREATMENTS:

All combinations of (i) and (2)
(1) 2 spacings between rows : $S_{1}=18^{\prime \prime}$ and $S_{2}=24^{\prime \prime}$.
(2) 8 manurial doses: $M_{0}=$ No manure, $M_{1}=10$ C.L./ac. of $:$ F.Y.M., $M_{2}=20 \mathrm{lb} . / \mathrm{ac}$. of N as A / S drilled at sowing, $M_{3}=20 \mathrm{lb}$./ac. of N as A/S top dressed 40-45 days, after sowing $M_{4}=$ Sannhemp without Super, $M_{5}=$ Sannhemp with 1 cwt./ac. of Súper drilled at sowing, $\mathrm{M}_{6}=$ Udid without Super and $\mathrm{M}_{7}=$ Udid with 1 cwt ./ac. of Super drilled at sowing.
Manures top-dressed on 8.9.1952. G.M. were given on 26.8.1952.
3. DESIGN :
(i) 8×2 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $12^{\prime} \times 36.3^{\prime}$. (v) 3^{\prime} between plots. (vi) Yes.
4. GENERAL :
(i) Growth of crop was quite stunted for want of rains. (ii) Nil. (iii) Germination counts, height and kapas yield. (iv) (a) 1955-N.A. (b) No. (c) N.A. (v) (a) Akola and Washim. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $475 \mathrm{Jb} . / \mathrm{ac}$.
(ii) $86.66 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S is not significant. Main effect of M and their interaction $S \times M$ are significant.
(iv) Av. yield of kapas in lb./ac.

	M_{0}	M_{1}	M_{2}	M_{8}	M_{4}	M_{5}	M6	M_{7}	Mean
S_{1}	471	592	421	488	420	460	451	576	485
S_{2}	543	474	428	520	399	392	466	499	465
Mean	507	533	425	504	410	. 426	459	538	475
	S.E. of marginal mean of M S.E. of marginal mean of S S.E. of body of table					$\begin{aligned} & =30.64 \mathrm{lb} . / \mathrm{ac} . \\ & =15.32 \mathrm{lb} . / \mathrm{ac} . \\ & =43.33 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$			

Crop :- Cotton (Kharif).
 Ref :- Mh. 53(188).
 Site :-Govt. Seed and Demonstration Farm, Buldana. Type :- 'CM'.

Object :-To compare the effect of G.M. and F.Y.M. etc. along with different spacings on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (iii) (a) Medium black c.ston soil. (b) Refer soil analysis, Buldana. (iii) 8.7.1953. (iv) (a) and (b) N.A. (c) $14^{\circ} \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H. 420 (mid-late). (vii) Unirrigated. (viii) 2 weedings and 3 hoenigs. (ix) 36.52°. (x) Pickings on 18.11.1953, 1.12.1953, 21.12.1953 and 16.1.1954.
2. TREATMENTS :

- 1. Control.

2. 10 C.L./ac. of F.Y.M. $-18^{\prime \prime}$ line to line.
3. 20 lb ./ac. of N as $\mathrm{A} / \mathrm{S}-18^{\prime \prime}$ line to line.
4. $40 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathrm{A} / \mathrm{S}-18^{\prime \prime}$ line to line.
5. Sannhemp without $\mathrm{P}_{2} \mathrm{O}_{5}-18^{\circ}$ line to line.
6. Sannhemp with $30 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}-18^{\prime \prime}$ line to line.
7. Sannhemp without $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\wedge \prime}$ line to line.
8. Sannhemp with 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\prime \prime}$ line to line.
9. Udid without $\mathrm{P}_{2} \mathrm{O}_{5}-18^{8}$. line to line.
10. Udid with 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}-18^{8}$ line to line.
11. Udid without $\mathrm{P}_{2} \mathrm{O}_{5}-2^{4}{ }^{\prime \prime}$ line to line.
12. Udid with 30 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}-24^{\prime \prime}$ line to line.
13. Fertiliser mixture-18 line to line.
(Fertiliser mixture: 20 lb ./ac. of N as 2 mds . of G.N.C. 2 weeks before sowing and ma . A/S at flowering).
14. DESIGN :
(i) R.B.D. (ii) (a) 13 . (b) N.A. (iii) 4 . (iv) (a) N.A. (b) $12^{\prime} \times 36.3^{\prime}$. (v) 3^{\prime} between plots and 4^{\prime} between replication. (vi) Yes.
15. GENERAL :
(i) N.A. (ii) Nil. (iii) Germination, height and kapas yield. (iv) (a) 1952-N.A. (modified in 1953). (b) No. (c) N.A. (v) (a) Akola and Washim. (b) N.A. (vi) No reason for low yield is given, (vii) G.M. crop to be sown in between two cotton lines and to be green manured after $40-45$ days. Sann green manured on 12.8.1950 and Udid green manured on 13.8.1953.
16. RESULTS:
(i) $279 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $84.19 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	214	8.	214
2.	283	9.	284
3.	344.	10.	274
4.	340	11.	282
5.	324	12.	244
6.	271	13.	269
7.	286		
.	S.e./mean		
	$=42.10 \mathrm{lb} . / \mathrm{ac}$.		

Crop :-Cotton (Kharif).	Ref :- Mh. 52(305).
Site :- Agri. Res. Stn., Kopergaon.	Type :- ‘CM'.

Object : - To find out a suitable combination of manure and spacing for Cotton crop.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Gram. (c) Nil. (ii) (a) A type soil. (b) Refer soil analysis, Kopergaon. (iii) 24.5.1952. (iv) (a) 1 ploughing and 2 harrowings. (b) Dibbling, (c) $6 \mathrm{lb} / \mathrm{ac}$. (d) As per treatments. (c) N.A. (v) 10 C.L./ac. of compost. (vi) N.A. (vii) Irrigated. (viii) 4 weedings. (ix) 11.73°. (x) 13.11 .1952 to 19.1.1953.
2. TREATMENTS :

Main-plot treatments:
4 levels of $\mathrm{N}: \mathrm{N}_{2}=30, N_{2}=60, N_{3}=90$ and $N_{4}=120 \mathrm{lb} . / \mathrm{ac}$.
Sub-plot treatments :
All combinations of (1), (2) and (3)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=120 \mathrm{lb}$./ac.
(3) 2 spacings: $S_{1}=2^{\prime} \times 1.5^{\prime}$ and $S_{2}=3^{\prime} \times 1.5^{\circ}$.

N supplied through A/S and G.N.C. in 1: 1 ratio and $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ supplied through Super and Pot. Sul. respectively.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block ; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $45^{\prime} \times 1^{\prime \prime}$. (b) $39^{\prime} \times 6^{\prime}$. (v) 3^{\prime} alround the net plot. (vi) Yes.
4. GENERAL :
(1) The growth was checked due to aphis and red leaf blight attack and also due to low rain fall. (ii) Aphis attack in the early stage and red leaf blight attock observed. (iii) Kapas yield. (iv) (a) 1952-1955. (b) and (c) No. (v) (a) Padegaon and Agri. College, Poona. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 874 lb./ac.
(ii) (a) $179.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $171.1 \mathrm{lb} / \mathrm{ac}$,
(iii) Main effect of N, P, S and irteraction $P \times S$ are bighly. significant. All other effects do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

	\mathbf{N}_{1}	\mathbf{N}_{2}	N_{3}	N_{4}	Mean	K_{0}	$\mathbf{K}_{\mathbf{1}}$	S_{1}	S_{2}
\mathbf{P}_{0}	688	783	918	845	809	802	814	872	745
P_{1}	827	933	971	1025		946	931	947	929
Mean	757	858	945	935	874	874	873		
S_{1}	762	894	1031	953	910	924	895		
S_{2}	752	822	859	917	837	824	850		
K_{0}	771	877	916	933					
\mathbf{K}_{1}	743	838	973	938					

S.E. of difference of two
$\begin{array}{lll}\text { 1. } N \text { marginal means } & =49.78 \mathrm{lb} . / \mathrm{ac} . \\ \text { 2. } P, K \text { or } S \text { marginal means } & =30.26 \mathrm{lb} . / \mathrm{ac} . \\ \text { 3. P, K or } S \text { means at a level of } N & =60.49 \mathrm{lb} . / \mathrm{ac} . \\ \text { 4. } N \text { means at a level of } P, K \text { or } S & =96.92 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :-Cotton (Kharif).
Site :-Govt. Exptl. Farm, Nagpur.
Ref:-Mh. 52(152)
Type : $\mathbf{Z}^{4} \mathrm{CM}^{\prime}$.
Object : To study the effect of G.M. along with spacing and manures on Cotton yield.

1. BASAL CONDITIONS:

(i) (a) Cotton-Jowar-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analygis, Nagpur. (iii) 26, 27.7.1952. (iv) (a) One deep and two shallow ploughings. (b) Dibbling. (c) $14 \mathrm{lb}, / \mathrm{ac}$. (d) 9 . (e) N.A. (v) Nil. (vi) H. 420 (medium). (vii) Unirrigated. (viii) One hand weeding. (ix) 29.32°. ($(x) 6$ pickings from 8.11.1953 to 22.1.1953.
2. TREATMENTS :

Main-plot treatments :
2 spacings: $S_{1}=18^{\prime \prime}$ and $S_{2}=24^{\prime \prime}$.
Sub-plot treatments :
8 manures : $\mathrm{M}_{0}=$ Control, $\mathrm{M}_{1}=$ F.Y.M. at 10 C.L./ac., $\mathrm{M}_{2}=\mathrm{N}$ at 20 , $\mathrm{lb} / \mathrm{ac}$. as A / S drilled at sowing, $\mathbf{M}_{3}=\mathbf{N}$ at $20 \mathrm{lb} . / a c$. as A / S top dressed, $\mathbf{M}_{4}=$ Sannhemp without Super, $M_{5}=$ Sannhemp with Super, $\mathbf{M}_{6}=$ Udid without Super and $\mathbf{M}_{7}=U d i d$ with Super.
3. DESIGN:
(i) Split-plot. (ii) (a) 2 main-plots/blocks; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $36.3^{\prime} \times 12.0^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) Very good. (ii) Nil. (iii) Kapas yield and height observations. (iv) (a) N.A. (b) No, (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $2734 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $254.8 \mathrm{lb} . / \mathrm{ac}$.
(b) $191.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is signifieant.
(iv) Av. yield of kapas in lb,/ac.

Crop:-Cotton (Kharif).
Site :-Govt. Exptl. Farm, Nagpur.
Ref: $-\mathrm{Mh} .53(220)$.
Type :-‘CM’.

Object :-To study the effect of G.M. along with different manures and spacings on Cotton yield.

1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar-Groundnut., (b) Groundnut. (c) Nil. (ii) (a) Black côtton soil. (b) Refer soil analysis, Nagpur. (iii) 20, 21.6. 1953. (iv) (a) 2 ploughings and 5 bakharings, (b) to (c) N.A. (v) Nil. (vi) No.91 (early). (vii) Unirrigated. (viii) N.A.(ix) 39.34". (x) Picking on 4, 20.11.1953. 8, 18.12.1953. 5, 19.1.1954.
2. TREATMENTS :
3. Control $-18^{\prime \prime}$ spacing line to line.
4. F.Y.M. 10 C.L./ac. - $^{\prime \prime} 8^{\prime \prime}$ spacing line to line.
5. A/S at 20 lb ./ac. of $\mathbf{N}-18^{\prime \prime}$ spacing line to line.
6. A / S at 40 lb ./ac. of $N-18^{\prime \prime}$ spacing line to line.
7. Sanohemp without Super $-18^{\prime \prime}$ spacing line to line.
8. Sannhemp with Super-18" spacing line to line.
9. Sanohemp without Super-24" spacing line to line.
10. Sannhemp with Super-24" spacing line to line.
11. Udid without Super-18 spacing line to lino.
12. UdId with Super-18" spacing line to line.
13. Udid without Super- $24^{\prime \prime}$ spacing line to line.
14. Udid with Super-24" spacing line to line.

3.2DESIGN :

(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $188^{\circ} \times 34.5^{\prime}$, (b) $16.5^{\circ} \times 34.5^{\circ}$. (y) 2^{\prime} between plots.
(vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Heights and flower buds, kapas yiela. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1167 \mathrm{lb} . / \mathrm{ac}$.
(ii) $179.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	1347	7.	1171
2.	1238	8.	1045
3.	1291	9.	985.
4.	1211	10.	$1008!$
5.	1182	11.	1117.
6.	1221	12.	1192
	S.E./mean	$=89.89 \mathrm{lb} . / \mathrm{ac}$.	

Crop :-Cotton (Kharif).
Site :-Govt. Exptl. Farm, Nagpur.

Ref : \mathbf{m} Mh. 53(219):
Type: © $\mathbf{C M}^{\prime}$.

Object :-To study the effect of different methods of sowing and influence of green manuring on Cotton.

1. BASAL CONDITIONS :

(i) (a) Cotton-Jowar-Groundnut: (b) Groundhut. (c) Nil.' (ii) (a) Black coton. (b) Refer' soil analysis, Nagpur. (iii) 22, 23.6.1953. (iv) (a) 4 to 5 ploughings. (b) As per treatments. (c) N.A. (d) $2^{\prime} \times 2^{\prime}$. (e) N.A. (v) Nil. (vi) Buri-0394 (late). (vii) Unirrigated. (viii) 5 hoeings and 4^{1} weedings. (ix) $39.34^{\prime \prime}$. (x) 11, 22.11.1953, 8, 25.12.1953 and 5.2.1954.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 methods of sowing: $S_{1}=$ Argada, $S_{2}=$ Hand dibbling one plant hole and $S_{8}=$ Hand dibblingitwo plants hole.
(2) 2 levels of green manuring: $\mathbf{M}_{0}=$ Nil and $M_{1}=$ Green manuring.

Green manuring on 24.7.1953..
3. DESIGN :
(i) 3×2 Fact. in R.B.D. (ii) (a) 6., (b) N.A. (iii) 4. (iv) (a) $30^{\prime} \times 28^{\prime}$. (b) $1 / 52$ th of anac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Heights of plants and kapas yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii). Nil.

5. RESULTS :

(i) $1891 \mathrm{lb} . / \mathrm{ac}$.
(ii) $99.32 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effects of M and S are significant.
(iv) Av. yield of kapas in lb./ac.

	\mathbf{M}_{0}	\mathbf{M}_{1}			Mea
S_{1}.	2056	1871			1963
$\mathbf{S}_{\mathbf{2}}$:	1872	1334			1823
$\mathbf{S}_{\mathbf{8}}{ }^{\prime \prime}$	1976	1801			1888
Mean	1968	1815			1891
S.E. of marginal mean of M S.E. of marginal mean of S S.E. of body of table		$\begin{aligned} & =28.67 \mathrm{lb} . / \mathrm{ac} . \\ & =35.12 \mathrm{lb} . / \mathrm{ac} \\ & =49.66 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$			

Crop :-Cotton (Kharif).
Site :mAgri. Res. Stn., Padegaon.

Ref :mMh. 51(156).
Type : ${ }^{\prime}$ CM'.

Object :-To find out the optimum spacing and optimum doses of manures for Cotton.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) and (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 31.5.1951. (iv) (a) to (c) N.A. (d) As per treatments. (e) N.A. (v) Nil. (vi) CO. 4-B. 40. (vii) Irrigated. (viii)

2 gap-fillings, 4 weediags and 2 interculturings. (ix) 14.68". (x) 16.10.195!, 5.11.195) and 28.11.1951.

2. TREATMENTS :

Main-plot treatments :
All combinations of (1) and (2)
(1) 2 spacings between rows : $S_{1}=2^{\prime}$ and $S_{2}=3^{\circ}$.
(2) 2 spacings between plants : $S_{1}{ }^{\prime}=12^{\prime \prime}$ and $S_{2}{ }^{\prime}=18^{\prime \prime}$ \qquad
Sub-plot treatments :
All combinations of (1) and (2)
(1) 3 levels of $\mathrm{N}: \quad \mathrm{N}_{1}=20, \mathrm{~N}_{2}=40$ and $\mathrm{N}_{3}=60 \mathrm{lb}$ 。/ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb} . / \mathrm{ac}$.

N as A / S and G.N.C. in $1: 1$ ratio aud $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/blosk; 9 sub-plots/main-plot. (iii) 3. (iv) (a) $29^{\prime} \times 16^{\prime}, 29^{\prime} \times 18^{\prime}$ for 2^{\prime} and 3^{\prime} spacings respectively. (b) $22.68^{\prime} \times 12^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) The germination was rather poor. The general §and of the crop was healthy. (ii) Attack of aphids with negligible damage. . (iii) Kapas yield, (iv) (a) to (c). No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $\quad 951 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $320.7 \mathrm{lb} / \mathrm{ac}$.
(b) $247.9 \mathrm{bb} . / \mathrm{ac}$.
(iii) Only the main effect of N and interaction $\mathrm{N} \times \mathrm{P}$ are significanc.
(iv) Av. yield of kapas in Ib./ac.

S.E. of difference of two

1. S or S^{\prime} marginal means
$=61.8 \mathrm{lb} . \stackrel{\mathrm{ac}}{ }$.
2. \mathbf{N} or \mathbf{P} marginal means
$=58.4 \mathrm{lb} . / \mathrm{ac} ;$
3. Nor P means at a level of S or S^{\prime}
$=82.9 \mathrm{lb} . / \mathrm{ac}$.
4. S or S^{\prime} means at a level of N or P
=91.4 lb./ac.

Crop : Cotton (Kharif).
Ref:- Mh. 52(188).
Site :- Agri. Res. Stn., Padegaon.
Type : ' ${ }^{\text {CM'. }}$
Object:-To find out the optimum spacing and manurial requirements of Cotion.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Jowar. (c) 32 lb ./ac. of N as $\mathrm{A} / \mathrm{S}+32 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 23.5 .1952 . (iv) (a) N.A. (b) Dibbled. (c) $101 \mathrm{~b} . / \mathrm{ac}$. (d) As per treatments. (e) 2 seed/dibble. (v) Nil. . (vi) 170 -Co. 2. (vii) Irrigated. (viii) 1 gap filling, 2 weedings and 2 interculturings. (ix) 11.01". (x) 4 pickings on 28.10.1952, 8.11.1952, 15.11.1952 and 20.12.1952.
2. TREATME , TS:

All combinations of (1), (2) and (3) +4 selective treatments.
(1) 4 levels of N as A/S: $N_{1}=30, N_{2}=60, N_{3}=90$ and $N_{4}=120 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb} . / \mathrm{ac}$.
(3) 2 spacings : $\mathrm{S}_{1}=2^{\prime}$ and $\mathrm{S}_{2}=3^{\prime}$.
and 4 seiective treatments having a common dose of 120 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$ with $\mathbf{3}^{\prime}$ spacing :
(a) $60 \mathrm{lb} / \mathrm{ac}$. of N .
(b) $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(c) 120 lb ./ac. of N .
(d) $120 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 20 . (b) N.A. (iii) 4 . (iv) (a) 2^{\prime} spacing : $29^{\circ} \times 16^{\prime}, 3^{\prime}$ spacing : $18^{\prime} \times 19^{\prime}$. (b) $12^{\prime} \times 23^{\prime}$. (v) 2 rows on either side and 3^{\prime} at ends. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1952-1953. (b) No. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1546 \mathrm{lb} . / \mathrm{ac}$.
(ii) 273.4 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of kapas in lb./ac. Selective treatments Av. yield

(a)	1494
(b)	1316
(c)	1655
(d)	1737

	N_{0}	N_{1}	N_{2}	$\dot{N}_{\mathbf{S}}$	Mean	S_{1}	S_{2}
P_{0}	1364	1675	1566	1388	1489	1561	1436
P_{1}	1565	1524	1659	1621	1592	1600	1584
Mean	1464	1599	1613	1504	1546	1580	1510
S_{1}	1539	1631	1563	1589	* -		
S_{2}	1383	1569	1663	1420			

S.E. of marginal mean of N
S.E. of marginal mean of P or S
S.E. of body of $N \times S$ or $N \times P$ table
S.E. of body of $\mathbf{P} \times \mathbf{S}$ table

$$
\begin{aligned}
& =68.4 \mathrm{lb} . / \mathrm{ac} \\
& =48.3 \mathrm{lb} . / \mathrm{ac} \\
& =96.7 \mathrm{lb} . / \mathrm{ac} \\
& =68.4 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

```
(Grop :mCotton (Kharif).
    ,Ref,9-Mh:53(277).
    Site:m,Agri.aRes: Stn., Padegaon.
    Type s-'CM'.
```

Object : - To find out the optimumspacing andimanutial requirements of Coteon.

1. BASAL CONDITIONS :

(i) (a) Nil. Y(b) Jowar. "(c) N:A. (ii)'(a)'B-type, (b) Refer soil analysis, 'Padegaon. (iii) 3.5:1953. (iv)
: (a) N.A.'(b) Seed dibbled with hand. (c) 10 lb, /ac. '(d) Between rows $\mathbf{3}^{\prime \prime}$ ((c) N.A. (v) Nil. (vi)
 20.10.1953, 5.11.1953 and 29:11.1953.

2. TREATMENTS :

All combinations of (1), (2) and (3) +4 selective treatments.
(1) 4 levels of N as $A / S: N_{1}=30, N_{2}=60, N_{3}=90$ and $N_{4}=120 \mathrm{lb} / \mathrm{ac}$.
(2) 2 levels of $\mathrm{P}_{8} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{\mathrm{I}} \neq 60 \mathrm{lb} / \mathrm{lac}$.
(3) 2 spacings : $S_{1}=2^{\prime}$ and $S_{2}=3^{\prime}$.
and 4 selective :treatments having a common dose of 120 , lb./ac. of $\mathrm{K}_{2} \mathrm{O}$ with $\mathbf{3}^{\prime \prime}$ spacing:
(a) $60 \mathrm{lb} . / \mathrm{ac}$ of N .
(b) $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(c) $120 \mathrm{lb} . / \mathrm{ac}$. of N .
(d) $120 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{N}+60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{K}_{\mathbf{y}} \mathrm{O}$ applied as Pot. Sulphate.
3. DESIGN:
 (v) 2 rows on either side and 3^{\prime} at either end. (vi) Yes.,
4. GENERAL :
(i) Normal. (ii) Slight attack of blight and boll worm. (iii) Kapas yield. (iv) (a) 1952-1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Yield data of 4 selective treatments is N.A. at the regional head quarters.
5. RESULTS :
(i) $1878 \mathrm{lb} . / \mathrm{ac}$.
(ii) $288.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S is highly significant while main effect of N_{s} interactiqn $N \times S$ and $P \times S$ differ significantly. Other effects are not significant.
(iv) Av. yield of kapas in lb./ac.

	N_{1}	\mathbf{N}_{2}	N_{8}	N_{4}	Mean	\mathbf{S}_{1}	S 2
P_{0}	1778 .	1800	1874	1964	1854	1992	1716
P_{1}	1728	$\checkmark 1839$	1974.	2064	\therefore : 1901	1971	1832
Mean	1753	1819	1924	2014	1878	1981	1773
\mathbf{S}_{1}	1861	1977	2027	2061			
	1645	1661	1820.	1968			

S.E. of marginal mean of \mathbf{N}

S:E, of marginal mean of P or S
SEE E of body of $N \times S$ or $N \times P$ table
S.E. or body' of $P \times S$ table.
$=72.0 \mathrm{lb} . / \mathrm{ac}$.
$=51,0 \mathrm{db} / \mathrm{ac}$.
$-10119 \cdot 1 \mathrm{~b}: \mathrm{Jac}$.
$\cdots=72.14 b: / a c$.

Crop :-Cotton (Kharif).
Site :-Agri. College Farm, Poona.

Ref: \mathbf{m} Mh. 51(181).

Type :- 'CM'.

Object:-To study the effect of deep and ghallow tillages with and without F.Y.M. on yield of Cotton.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 30.7.1951. (iv) (a) One ploughing. (b) Drilling. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) Spacing between rows-24", Between plots irregular. (e) N.A. (v) N.A. (vi) Jarilla. (vii) Unirrigated. (viii) One thinning, 3 weedings and 5 interculturings. (ix) 26.62^{*}. (x) 12, 27. 11. 1951 and 15. 12. 1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M. : $F_{0}=0$ and $F_{1}=5$ C.L./ac.
(2) 2 cultural operations: $C_{1}=$ Harrowing only and $C_{2}=$ Ploughing to a depth of $6^{\circ}-7^{\circ}$.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 8 . (iv) (a) $132^{\prime} \times 20^{\prime}$. (b) $124^{\prime} \times 16^{\prime}$. (v) $4^{\prime} \times 2^{\prime}$. (vi) Yes.
4. GENERAL :
(i) Not good due to late sowing and draught conditions. (ii) Attack of red cotton bug. (iii) No. of plants and kapas yield. (iv) (a) 1930. N.A. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $234.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $59.39 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects differ significantly.
(iv) Av. yield of kapas in lb./ac.

	F_{0}	F_{1}	Mean $:$
C_{1}	231.0	236.0	233.5
C_{2}	220.0	248.0	234.0
Mean	225.0	242.0	234.0
S.E. of any marginal mean	$=14.85 \mathrm{lb} . / \mathrm{ac}$.		
S.E. of body of table	$=21.00 \mathrm{lb} . / \mathrm{ac}$.		

Crop :-Cotton (Kharif́).	Ref:- Mh. 52(214)
Site :-Agri. College Farm, Poona.	Type :- ‘CM'.

Object : -To study the effects of deep and shallow tillages with F.Y.M. on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Jowar. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 20, 21.6.1952. (iv) (a) 1 ploughing. (b) Drilling. (c) $10 \mathrm{lb} . / \mathrm{ac}$. (d) Spacing between rows $-24^{\prime \prime}$ between plants irregular. (e) N.A. (v) Nil. (vi) 193-7-Jarilla (mid-late). (vii) Unirrigated. (viii) 4 intrrculturings, 2 thinnings and 4 weedings. (ix) 22.03". (x) 11.12. 1952, 1. 1. 1953 and 2.2. 1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of F.Y.M.: $F_{0}=0$ and $F_{1}=5$ C.L./ac.
(2) 2 cultural operations: $\mathrm{C}_{1}=$ Harrowing only and $\mathrm{C}_{2}=$ Ploughing to a depth of $6^{\prime \prime}-7^{\prime \prime}$.
F.Y.M. applied on 20.6.1952.
3. DESIGN:
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 8. (iv) (a) $132^{\prime} \times 20.5^{\prime}$. (b) $124^{\prime} \times 16^{\prime}$. (v) $4^{\prime} \times 2.25^{\prime}$. (vi) Y es.

4. general:

(i) Germination good, but growth hampered due to lack of rains. (ii) Nil. (iii) Kapas yield. (iv) (a) 1930N.A. (b) and (c) N.A. (v) (a) and (b) Nil (vi) and (vii) Nil
5. RESULTS:
(i) $431.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $110.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of F and C differ significantly while interaction is not significant.
(iv) Av. yield of kapas in lb./ac.

	$\mathbf{F}_{\mathbf{0}}$	$\mathbf{F}_{\mathbf{1}}$	
$\mathbf{C}_{\mathbf{1}}$	307.0	459.0	Mean
$\mathbf{C}_{\mathbf{2}}$	412.0	545.0	383.0
Mean	359.0	503.0	579.0
		431.0	

$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =27.74 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of table } & =39.24 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop:-Cotton (Kharif).
Site :- Agri. College Farm, Poona.

Ref :w Mh. 53(166).
Type :- 'CM'.

Object :-To study the effect of deep and shallow tillage with or without P.Y.M. on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar. (b) Jawar. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 15.6.1953. (iv) (a) As per treatments. (b) to (e) N.A. (v) Nil. (vi) Virnar 197-3. (vii) Unirrigated. (viii) 5 interculturings, thinning and 3 weedings. (|x) 16.64*. (x) 21 to 24.11.1953, 24 to 25.12.1953 and 5.1:1954.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of F.Y.M.: $\quad F_{0}=0$ and $F_{1}=5$ C.L./ac.
(2) 2 cultural operations: $C_{1}=$ Harrowing only and $C_{2}=$ Ploughing only to a depth of 6"-7".
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 8 . (iv) (a) $132^{\prime} \times 20^{\prime} 7.5^{\prime \prime}$. (b) $124^{\prime} \times 16^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Poor germination, growth unsatisfactory. (ii) No. (iii) Kapas yield. (iv) (a) 1933-N.A. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $100.1 \mathrm{lb} / \mathrm{ac}$.
(ii) 53.34 lb ./ac.
(iii) Main effect of F alone is significant.
(iv) Av. yield of kapas in lb./ac.


```
Crop :- Cotton (Kharif).
Ref:- Mh. 52(322).
Site :-Agri. College Farm, Poona.
Type :- 'CM'.
```

Object :- To find out a suitable combination of manure and spacing for Cotton crop.

1. BASAL CONDITIONS:
(i) (a) N.A (b) Wheat. (c) Nil. (ii) (a) Mediun black soil. (b) Refer soil analysis, Poona. (iii) 27, 28.5.1952. (iv) (a) 1 ploughing. (b) Dibbling. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatmeots. (c) $6-7$ seeds/hill. (v) 10 C.L./ac. (vi) CO.4. (vii) Irrigated. (viii) 4 interculturings and 3 weedings. (ix) 20.03". (x) 7 pickings from 3.11.1952 to 17.3, 1953 .
2. TREATMENTS :

Main-plot treatments :
4 levels of N as $A / S: N_{1}=30, N_{2}=60, N_{8}=90$ and $N_{4}=120 \mathrm{lb}$./ac.
Sub-plot treatments :
All combinations of (1), (2) and (3)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb}$./ac;
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sulphate : $\mathrm{K}_{\mathbf{0}}=0$ and $\mathrm{K}_{\mathbf{2}}=120 \mathrm{lb}$./ac.
(3) 2 spacings between rows: $S_{1}=2^{\prime}$ and $S_{9}=3^{\circ}$.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $36^{\circ} \times 15^{\circ}$. (b) $30^{\circ} \times 9^{\prime}$. (v) 3^{\prime} alround the plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of stem-borer, pink boll worm, red cotton bugs and aphids was noticed. (iii) Kapas yield. (iv) (a) 1952 -1954. (b) and (c) Nil. (v) (a) Padegaon and Kopergaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1270 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $353.0 \mathrm{lb} / \mathrm{ac}$.
(b) $370.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Only main effects of N, S and interaction $S \times P$ differ significantly.
(iv) Av. yield of kapas in lb.|ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	\mathbf{N}_{3}	Mean	$\mathbf{K}_{\mathbf{0}}$	K_{1}	\mathbf{S}_{1}	\mathbf{S}
Po	1133	1259	1149	1434	1245	1194	1296	1395	1095
\mathbf{P}_{1}	1234	1126	1334	1489	1295	1272	1318	1290	1299
Mean	1184	1192	1241	1460	1270	1233	1307		
S_{1}	1194	1276	1267	1634	1342	1303	1382		
S ${ }_{\mathbf{g}}$	1174	1108	1216	1287	1197	1163	1231	-	1
\mathbf{K}_{0}	1096	1242	1218	1373					
\mathbf{K}_{1}	1272	1142	1266	1548					

S.E. of difference of two

1. N marginal means $\quad=88.3 \mathrm{lb} . / \mathrm{ac}$.
2. P, K or S marginal means $\quad=65.4 \mathrm{lb}$./ac.
3. P, K or S means at a level of $\mathbf{N} .=130.8 \mathrm{lb} . / \mathrm{ac}$.
4. N means at a level of P, K or $S \quad=127.8 \mathrm{lb} . \mathrm{fac}$.

Crop : Cotton.
Site.:-Agri, College Farm, Poona.

Ref : ${ }^{\text {Mh. }}$ 53(71).
Type :-‘CM".

Object :-To study the effect of N, P and K in combination with spacing on the yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) G.M.-Wheat-Cotton-Mug. (b) G.M. and Wheat. (c) G.M., 320 lb . of manure mixture and $25 \mathrm{lb} . / \mathrm{ac}$. of N. (ii) (a) Deep black. (b) Refer soil analysis, Poona. (iii) 13.5.1953. (iv) (a) Ploughing, discing and 2 harrowings. (b) Dibbling. (c) to (e) N.A. (v) 10 C.L./ac. of F.Y.M. spread and mixed during preparatory tillage. (vi) CO. 4 (late). (vii) Irrigated. (viii) 1 gapfilling, 3 weedings, 4 interculturings by cultivator and once earthing up. (ix) $16.64^{\prime \prime}$. (x) 25.12.1953, 23.1.1954 and 19.2.1954.
2. TREATMENTS :

Main-plot treatments :
4 levels of N as $A / S: \quad N_{1}=30, N_{2}=60, N_{3}=90$ and $N_{4}=120 \mathrm{lb}$./ac. of N.
Sub-plot treatments:
All combinations of (1) and (2)
(1) 2 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$: $\mathrm{P}_{0}=0$ and $\mathrm{P}_{1}=60 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$
(2) 2 levels of $\mathrm{K}_{2} \mathrm{O}: \quad \mathrm{K}_{0}=0$ and $\mathrm{K}_{1}=120 \mathrm{lb}$./ac. of $\mathrm{K}_{2} \mathrm{O}_{4}$
(3) 2 spacings: $S_{1}=2^{\prime} \times 3^{\prime}$ and $S_{2}=3^{\prime} \times 3^{\prime}$ 。
3. DESIGN :
(i) Split-plot. (ii) (a) 4 main-plots/block; 8 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $36^{\prime} \times 15^{\prime}$. (b) $24^{\prime} \times 9^{\prime}$. (v) Two lines on either side and 3^{\prime} at each end of the plot. (vi) Yes.

4. GENERAL :

(i) Good. (ii) Red leaf blight disease in early stage. No control measure. İarnids (pest) aphids, control measure taken : Nicotin Sulphate Solution and fish oil rosin soap. (iii) Kapas yield. (iv) (a) 1952-1954' (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1753, \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $717.9 \mathrm{lb} . / \mathrm{ac}$.
(b) $402.9 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} and interaction $\mathbf{N} \times \mathbf{S}$ alone are significant.
(iv) Av. yield of kapas in lb./ac.

	N_{1}	N_{2}	. $\mathbf{N}_{\mathbf{3}}$	N_{5}	\mathbf{K}_{0}	\mathbf{K}_{1}	S_{1}	S_{2}	Mean
P_{0}	1544	1839	1676	1532	1715	1580	1768	1527	1648
P_{1}	1708.	1843	2016	1868	1842	1876	1956	1762	1859
Mean	1626	1841	1846	1700	1778	1728	1862	1644	1753
S_{1}	1790	1792	1924	1941	1872	1852			
S_{2}	1462	1889	1768	1459	1684	1604			
K_{0}	1589	1977	1872	1677					
\mathbf{K}_{1}	1663	1705	1820	1723					

S E. of difference of two

1. N marginal means
$=179.7 \mathrm{lb} . / \mathrm{ac}$.
2. P, K or S marginal means.
$=71.2 \mathrm{lb} . / \mathrm{ac}$.
3. \mathbf{P}, \mathbf{K} or \mathbf{S} means at the same level of \mathbf{N}
$=142.4 \mathrm{lb} . / \mathrm{ac}$.
4. N means at the tame level of P, K or S
$=205.8 \mathrm{lb} . / \mathrm{ac}$,
5. means in body of $P \times K, P \times S$ or $K \times S$ table $=100.7 \mathrm{lb}, / \mathrm{ac}$

Crop :-Cotton (Kharif).

Ref :-Mh. 52(127).
Site :-Govt. Seed and Demonstration Farm, Washim. Type :-‘CM'.
Object :- To study the effect of manures and spacing on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Wheat. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) $27,28.6 .1952$. (iv) (a) 3 bakharings. (b) Sowing by Argada. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H. 420. (vii) Unirrigated. (viii) 2 hoeings, 3 interculturings, 3 weedings and 3 thinnings. (ix) 17.95". (x) 15.11.1952 and 18.12.1952.
2. TREATMENTS:

Main-plot treatments :
2 spacings between rows : $S_{1}=18^{\prime \prime}$ and $S_{2}=24^{\prime \prime}$.
Sub-plot treatments :
8 manures : $\quad M_{0}=$ No manure, $M_{1}=10$ C.L./ac. of F.Y.M. as basal dose, $M_{2}=20 \mathrm{lb}$./ac. of N as A/S drilled at sowing, $M_{3}=20 \mathrm{lb}$./ac. of N as A / S top dressed $40-45$ days after sowing, $\mathrm{M}_{4}=$ Sann without $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{M}_{5}=$ Sann with $1 \mathrm{cwt} / \mathrm{ac}$. of Super at sowing, $\mathrm{M}_{8}=U$ did without $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{M}_{7}=$ Udid with $1 \mathrm{cwt} / \mathrm{ac}$. of Super at sowing.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block ; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $36.3^{\prime} \times 12^{\prime}$. (v) 3^{\prime} between plots. (vi) Yes.
4. GENERAL :
(i) Soil was cracked all over and flower buds were shedding for want of rains. (ii) Nil. (iii) Germination counts and kapas yield. (iv) (a) 1952 -continued. (b) and (c) No. (v) (a) Akola. (b) N.A. (vi) Nil. (vii) $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super. Seedrate :-Sann $=100 \mathrm{lb}$./ac. and Udid $=25 \mathrm{lb}$./ac. Sann and Udid were buried in the soil on 13.8.1952. Sann and Udid seeds were sown exactly in between two rows of cotton.
5. RESULTS :
(i) $575.1 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $75.50 \mathrm{lb} . / \mathrm{ac}$.
(b) $82.96 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{S} is highly significant. Others are not significant.
(iv) Av. yield of kapas in lb./ac.

	\mathbf{M}_{0}	\mathbf{M}_{1}	M_{2}	M_{3}	M_{4}	M_{5}	M_{6}	M_{7}	Mean
S_{1}	470.5	475.3	542.0	528.2	497.0	473.5	462.5	444.2	474.1
S_{2}	692.2	678.2	689.2	683.0	595.5	735.7.	703.2	631.5	676.1
Mean	581.3	576.7	615.6	605.6	496.2	604.6	582.9	537.9	575.1

S.E. of difference of two

1. S marginal means

$$
\begin{aligned}
& =18.88 \mathrm{lb} . / \mathrm{ac} \\
& =41.49 \mathrm{lb} . / \mathrm{ac} \\
& =58.67 \mathrm{lb} . / \mathrm{ac} \\
& =58.02 \mathrm{lb} . / \mathrm{ac}
\end{aligned}
$$

2. M marginal means
3. M means at the same level of
4. S means at the same level of M

Crop: Cotton (Kharif).
Ref :- Mh. 53(165)/52(127).
Site :m Govt. Seed and Demonstration Farm, Washim. Type :- 'CM'.
Object :-To study the residual effect of manures and different spacings on yield of Cotton

1. BAS AL CONDITIONS:

(i) (a) Nil. (b) Cotton. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 28.6.1953. (iv) (a) 4 bakharings. (b) Sowing by Argada and sarfa with bakhar behind it. (c) $20 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H-420 (medium). (vii) Unirrigated. (viii) 7 hoeings, 2 hand interculturings, 3 weedings and 1 thinning. (ix) $38.55^{\prime \prime}$. (x) 7.12.1953; 6.1.1954.

2. TREATMENTS :

Main-plof treatments :
2 spacings between rows : $S_{2}=18^{\circ}$ and $S_{2}=24^{\prime \prime}$.
Sub-plot treatments:
8 manures : $M_{0}=N o$ manure, $M_{1}=10$ C.L./ac. of P.Y.M., $M_{2}=20 \mathrm{lb} . / \mathrm{ac}$, of N as A / S drilled with seed, $M_{3}=20 \mathrm{lb} . / \mathrm{ac}$. of N as A/S top dressed, $M_{4}=$ Sann alone, $M_{5}=$ Sann with $1 \mathrm{cwt} / \mathrm{ac}$. of Super drilled with seed, $\mathbf{M}_{6}=U d i d$ alone, $M_{7}=U d i d$ with $1 \mathrm{cwt} . / \mathrm{ac}$. of Super drilled with seed.
Treatments applied during 1952-53 and residual effect studied this year.
3. DESIGN :
(i) Split-plot. (ii) (a) 2 main-plots/block; 8 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) N.A. (b) 12' $\times 36.3^{\prime}$. (v) 3^{\prime} between plots. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) 1952-53 (residual effect from 1953-54)-continued. (b) Yea, (c) N.A. (v) (a) Akola; Buldana. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $237.5 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $78.83 \mathrm{lb} . / \mathrm{ac}$.
(b) $40.10 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only interaction MS is significant.
(iv) Av. yield of kapas in 1b./ac.

	M_{0}	M_{1}	M_{2}	M_{8}	M	\mathbf{M}_{5}	M_{8}	M_{7}	Mean
S_{1}	238.0	233.0	264.0	226.0	264.0	244.0	218.0	234.0	240.0
S_{2}	198.0	234.0	273.0 .	231.0	248.0	221.0	228.0	246.0	235.0
Mean	218.0	233.5	268.5	228.5	256.0	232.5	223.0	240.0	237.5

S.E. of difference of two

1. S marginal means	$=19.70 \mathrm{lb} . / \mathrm{ac}$.
2. M Marginal means	$=20.04 \mathrm{lb} . / \mathrm{ac}$.
3. M means at the same level of S	
4. S means at the same level of M	
	$=38.33 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site:- Govt. Seed and Demonstration Farm, Washim.

Ref:- Mh. 53(167).
Type :- 'CM'.

Object :-To study the effect of manuring and spacing on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar.
(c) N.A. (b) N.A. (c) $15 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) H. 420 (medium). (vii) Unirrigated. (viii) 4 hoeings; 3 weedings, and 1 interculturing. (ix) 38.55". (x) 2.12.1953; 22.12.1953 and 16.1.1954.
2. TREATMENTS:

Manure
(1) Control (no manure)
(2) 10 C.L./ac, of F.Y.M.
(3) 20 lb ./ac. of N as A / S
(4) 40 lb ./ac. of N as A / S
(5) G.M. with Sann
(6) G.M. with Sann $+30 \mathrm{lb} . / \mathrm{ac}$, of $\mathrm{P}_{2} \mathrm{O}_{6}$

Spacing between rows.
Manure
spacing between rows.

$-18^{\prime \prime}$.	(7) G.M. with Sann	$-24^{\prime \prime}$.
$-18^{\prime \prime}$.	(8) G.M. with Sann $+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$	-24°.
$-18^{\prime \prime}$.	(9) G.M. with Udid	$-18^{\prime \prime}$.
$-18^{\prime \prime}$.	(10) G.M. with Udid $+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$	-18°.
$-18^{\prime \prime}$.	(11) G.M. with Udid	-24°.
$-18^{\prime \prime}$.	(12) G.M. with Udid $+30 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$	-24°.

3. DESIGN:
(i) R.B.D.
(ii) (a) 12.
(b) N.A. (iii) 4. (iv) (a) N.A.
(b) $12^{\prime} \times 36.3^{\circ}$.
(v) 3^{\prime} between plots
(vi) Yes
4. GENERAL :
(i) Normal. (ii) Mild attack of Aphids, which was controlied by lady-bird bettles. (iii) Kapar yiold. (iv) (a) 1952-53 (modified in 1953-54) continued. (b) and (c) No. (v) (a) Akola, Buldana. (b) N.A. (vi) Nil. (vii) G.M. buried in soil on 29.7.1953.

Seed rates: Sann Udid
100 lb ./ac. $\quad 25 \mathrm{lb}, / \mathrm{ac}$.
5. RESULTS:
(i) $381.6 \mathrm{lb} / \mathrm{ac}$.
(ii) 37.47 lb .ac.
(iii) Treatments differ highly significantly.
(iv) Av. yeld of kapas in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
t.	264.0	7.	310.0
2.	333.0	8.	373.0
3.	463.0	9.	344.0
4.	518.0.	10.	454.0
5.	347.0	11.	447.0
6.	376.0	12	390.0

Crop :-Cotton (Kharif).

Ref :-Mh. 52(180).
Site :-Govt. Exptl. Farm, Yeotmal.
Type :~‘CM’.
Object :-To study the effect of manuring and spacing on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut-Cotton. (b) Groundnut. (c) N.A. (ii) (a) Medium black loam. (b) Refor soil analysis, Yeotmal. (iii) 29.6.1952. (iv) (a) 4 bakharings. (b) Sowing by hand dibbling. (c) N.A. (d) As per treatments. (e) N.A. (v) Nil. (vi) H. 420 (medium) (vii) Unirrigated. (viii) 4 weediags. (ix) 40.28". (x) Pickings from 2nd week of October 1952 to 1st week of January 1953.
2. TREATMENTS :
3. Control-18' spacing.
4. F.Y.M. 10 C.L./ac.-18* spacing
5. A / S at 20 lb ./ac. of N drilled at sowing $-18^{\prime \prime}$ spacing.
6. A/S at $20 \mathrm{lb} . / \mathrm{ac}$. of \mathbf{N} top dressed after 40 days of sowing $-18^{\prime \prime}$ spaclog.
7. Sand without Super 9°.
8. Sann with Super at 1 cwt ./ac. drilled at sowing-9" spacing.
9. Udid without Super -9^{*} spacing.

8: Udid with Super at 1 cwt /ac.-9" spacing.
9. Control- $24^{n \prime}$ spacing.

10, F.Y.M. 10 C.L./ac. $-24^{\prime \prime}$ spacing.
11. A/S at 20 lb ./ac. of N at the time of sowing- 24° spacing.
12. A/S at 20 lb ./ac. of \mathbf{N} top dressed after 40 days of sowing $-24^{\prime \prime}$ spacing.
13. Sann without Super $-12^{\prime \prime}$ spacing.
14. Sann with Super at 1 cwt ./ac. drilled at sowing - $^{12^{\prime \prime}}$ spacing.
15. Udid without Super-12' spacing.
16. Udid with Super at sowing-12" spacing.
3. DESIGN:
(i) R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4, (iv) (a) N.A. (b) $36.3^{\prime} \times 12^{\prime}$. (v) 4 plants and one row on eaca side. (vi) Yes.
4. GENERAL:
(i) Satisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) 1952-contd. (b) No. (c) N.A. (v) (a) and (b) N.A.
(vi) and (vii) Nil.
5. RESULTS :
(i) 923 lb //ac.
(ii) 148.0 lb ./ac.
(iii) Treatment differencos are highly significant.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	1028		9.
2.	1086	10.	767
3.	1394.	11.	702
4.	978	12.	914
5.	845	13.	822
6.	783	14.	767
7.	1171	15.	835
8.	1062	16.	762
	S.E./mean	$=74.0 \mathrm{lb} . / \mathrm{ac}$.	858

Crop:-Cotton (Kharif).
Site :.Govt. Exptl. Farm, Yeotmal.

Ref:-Mh. 53(297).
Type :-‘CM’.

Object :-To study the effect of manuring and spacing on yield of Cotton.

1. BASAL CONDITIONS :
(i) (a) Jowar-Groundhut-Cotton. (b) Groundnut. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil analysis, Yeotmal. (iii) 27.6.1953. (iv) (a) 3 bakharings. (b) and (c) N.A. (d) As per treatments. (e) N.A. (v) Nil. (vi) H. 420 (medium). (vii) Unirrigated. (viii) 1 weeding and thinning. (ix) 37.63°. (x) 14. 11. 1953, 1, 29.12. 1953.

2. TREATMENTS :

1. Control-18" spacing between rows.
2. F.Y.M. at 10 C.L./ac. $-18^{\prime \prime}$ spacing.
3. A/S at 20 lb ./ac. of N drilled at sowing $-18^{\prime \prime}$ spacing.
4. A / S at 20 lb ./ac. of N top dressed after 40 days- 18° spacing.
5. Sann without Super-9" spacing.
6. Sann with Super at 1 cwt ./ac. drilled at sowing $9^{\prime \prime}$-spacing.
7. Udid without Super- $9^{\prime \prime}$ spacing.
8. Udid with Super at 1 cwt ./ac. drilled at sowing $-9^{\prime \prime}$ spacing.
9. Control-24 spacing.
10. F.Y.M. at 10 C.L./ac. $-24^{\prime \prime}$ spacing.
11. A / S at 20 lb ./ac. of N at the time of sowing $-24^{\prime \prime}$ spacing.
12. A / S at 20 lb ./ac, of N top dressed after 40 days $-24^{\prime \prime}$ spacing.
13. Sann without Super- -12° spacing.
14. Sann with Super at 1 cwt ./ac. drilled at sowing-12" spacing.
15. Udid without Super-12" spacing.
16. Udid with Super at 1 cwt ./ac. drilled at sowing -1^{*} spacing.
17. DESIGN :
(i) R.B.D. (ii) (a) 16. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 100$ ac. (v) N,A. (vi) Ycs.
18. GENERAL :
(i) Good. (ii) Nil. (iii). Kapas yield. (iv) (a) $1592-$ N.A. (b) No. (c) N.A. (v) (a) and (r) N.A. (vi) and (vii) Nil.
19. RESULTS :
(i) $494 \mathrm{lb} . / \mathrm{ac}$.
(ii) $125.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Kapas in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	441	9.	402
2.	462	10.	494
3.	475	11.	662.
4.	428	12.	613
5.	478	13.	442
6.	425	14.	528
7.	530	15.	530
8.	553.	16.	445
		$=62.5 \mathrm{lb} . / \mathrm{ac}$.	

```
Crop:- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Nagpur.
Ref :- Mh. 53(221);
Type :- 'CMV'.
```

Object :-To study the effect of manuring on different Cotton varieties along with different spacings.

1. BASAL CONDITIONS :
(i) (a) Cotton-Jowar-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 11 and 12.6 .1953 . (iv) (a) 5 ploughings. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. (viii) N.A. (ix) 39.34". (x) Pickings on ${ }^{[28.10 .1953, ~ 5,10,21.11 .1953, ~} 9$, 25.12.1953 and 9.1.1954.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 spacings cum varieties: $S_{1} V_{1}=$ Variety No. 91^{\prime} spacings $9^{\prime \prime} \times 18^{\prime \prime}, S_{2} V_{1}=$ Variety No. 91 spacing $9^{\prime \prime} \times 24^{\prime \prime}, \mathrm{S}_{3} \mathrm{~V}_{2}=$ Variety Buri-0394 spacing $12^{\prime \prime} \times 24^{\prime \prime}$ and $\mathrm{S}_{4} \mathrm{~V}_{2}=$ Variety Buri-0394 spacing $12^{\prime \prime} \times 36^{\prime \prime}$.
(2) 3 manurial doses : $\mathrm{M}_{0}=$ Control (no manure), $\mathrm{M}_{1}=30 \mathrm{lb}$./ac. of N and $\mathrm{M}_{2}=30 \mathrm{lb}$./ac. of $\mathrm{N}+30$ $\mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
Manuring on 20.7.1953.
3. DESIGN :
(i) 3×4 Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4. (iv) (a) N.A. (b) $24^{\prime} \times 14^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Height, flower bud observation and kapas yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1947 \mathrm{lb} . / \mathrm{ac}$.
(ii) 295.4 lb ./ac.
(iii) Only the effect of SV is highly significant.
(iv) Av. yield of kapas in lb/ac.

	$S_{1} V_{1}$	$S_{2} \mathrm{~V}_{1}$	$\mathrm{S}_{\mathbf{S}} \mathrm{V}_{2}$	$S_{4} \mathrm{~V}_{2}$	Mean
M_{0}	2077	1978	1954	2011	2006
M_{1}	2149	1942	1708	1746	1886
M_{2}	2093	2294	1640	1767	1949
Mean	2106	2071	1769	1841	1947

S.E. of SV marginal mean	$=85.3 \mathrm{lb} . / \mathrm{ac}$.
S.E. of M marginal mean	$=73.9 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=147.7 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Site :- Govt. Exptl. Farm, Nagpur.

Ref:-Mh. 51(167).

Type :-‘CMV'。

Object :-To study the effect of manuring on different Cotton varieties along with different spacings.

1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) $9,10.7 .1951$. (iv) (a) N.A. (b) Sowing by hand dibbling. (c) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 38.29". (x) Pickings on 21.11.1951, 13.12.1951 and 11.1.1952.
2. TREATMENTS

All combinations of (1), (2) and (3)
(1) 3 varieties: $\mathrm{V}_{1}=$ Verun-434, $\mathrm{V}_{2}=\mathrm{H} .420$ and $\mathrm{V}_{3}=$ Buri-0396.
(3) 3 levels of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{2}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb}$./ac.
(2) 3 spacings: $S_{1}=6^{\prime \prime}, S_{2}=12^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
3. DESIGN:
(i) 3^{3} confounded, partially confounding VNS ${ }^{4}$ and VN²S effects. (ii) (a) 9 plots/block; 3 blocks/ropliention. (b) N.A. (iii) 2. (iv) (a) N.A. (b) $66^{\circ} \times 16.5^{\circ}$. (v) N.A. (vi) Yes.
4.' GENERAL :
(i) Normal. (ii) Nil. (iii) Kapas yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) aaj (vii) Nil.

S. RESULTS :

(i) $896 \mathrm{lb} . / \mathrm{ac}$.
(ii) $414.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) All the main effects and their interactions are not significant.
(iv) Av. yield of kapas in lb./ac.

$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =97.7 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =169.2 \cdot \mathrm{lb} . / \mathrm{ac}
\end{array}
$$

Crop :- Cotton (Kharif).
:Site : ${ }^{\text {Govt. Exptl. Farm, Nagpur. }}$

Ref :- Mh. 52(153).
Type :~ 'CMV'.
-Object :-To study the effect of manuring on different Cotton varieties along with different spacings.

- 1. BASAL CONDITIONS:
(i) (a) Cotton-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 1.7.1952. (iv) (a) 1 deep and one shallow bakharing. (b) to (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) 3 weedings, 5 interculturings and 1 thinning. (ix) 29.32". (x) 5 pickings from 7.11.1952 to 22.1.1953.

2. TREATMENTS :

- All combinations of (1), (2) and (3)
(1) 3 varieties: $\mathrm{V}_{1}=$ Verun-434, $\mathrm{V}_{2}=\mathrm{H} .420$ and $\mathrm{V}_{3}=$ Buri-0396.
(2) 3 doses of $\mathrm{N}: \mathrm{N}_{0}=0, \mathrm{~N}_{1}=15$ and $\mathrm{N}_{2}=30 \mathrm{lb}$./ac.
(3) 3 spacings : $S_{1}=6^{\prime \prime}, S_{2}=12^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.

3. DESIGN:
(i) 3^{8} confounded, partially confounding VNS ${ }^{2}$ and YNaS effects. (ii) (a) 9 plots/block; 3 blocks/replication.
(b) N.A.
(iii) 2. (iv) (a) N.A.
(b) $66^{\prime} \times 16.5^{\circ}$. (v) Nil. (vi) Yes.
-4. GENERAL :
(i) Very good. (ii) Nil. (iii) Kapas yield. (iv) (a) $1950-$ N.A. (b) Na. (c) N.A. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) These are high yields and no reason given by A.R.S.
:5. RESULTS :
(i) $3380 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $88.48 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main eflects of V and N only are highly significant.
(iv) Av. yield of kapas in lb./ac.

	\mathbf{V}_{1}	V_{2}	\mathbf{V}_{3}	Mean	S_{1}	S_{2}	S_{3}
N_{0}	3312	3140	2608	3020	3115	3162	2786
N_{1}	3651	3453	3168	3424	3475	3490	3307
N_{3}	3718	3838	3528	3695	3579	3763	3742
Mean	3560	3477	3101	3380	3390	3472	3279
S_{1}	3595	3339	3235				
S_{2}	. 3629	3618	3168				
S_{3}	3459	3477	2901				

$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =20.85 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =36.12 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Cotton (Kharif).
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 50(115).
Type :- 'CMV'.

Object :-To find out the best combination of spacing and manure for different Cotton varieties.

1. BASAL CONDITIONS:

(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 25.5.1950. (iv)
(a) to (c) N.A. (d) As per treatments. (e) N.A. (v) Nil. (vi) As per treatments. (vii) Irrigated. viii) 8 weedings. (ix) 22.91^{*}. (x) 17.10.1950, 12.11.1950 and 3.12.1950.
2. TREATMENTS:

Main-plot treatments :
All combinations of (1) and (2)
(1) 4 varieties: $\mathrm{V}_{1}=\mathrm{CO} .4, \mathrm{~V}_{2}=197-3, \mathrm{~V}_{3}=$ CO.4-B4 D and $\mathrm{V}_{4}=$ P-American,
(2) 2 spacings between rows: $S_{1}=2^{\prime}$ and $S_{8}=3^{\prime}$.

Sub-plot treatments :

All combinations of (1) and (2)
(1) 3 levels of N as A / S and G.N.C. in 1:1 ratio : $N_{0}=0, N_{1}=20$ and $N_{2}=40 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 spacings between plants : $S_{1}^{\prime}=9^{*}$ and $S_{2}^{\prime}=12^{\prime \prime}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 8 main-plots/block; 6 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) Sub-plot: $36^{\prime} \times 42^{\prime}$ for 2^{\prime} spacing and $36^{\prime} \times 42^{\prime}$ for 3^{\prime} spacing. (b) $24^{\prime} \times 36^{\prime}$.(v) 3 rous on either cice for 2^{\prime} spacing and 2 rows on either side for 3^{\prime} spacing. (vi) Yes.
4. GENERAL :
(i) Low yield. (ii) Affected with aphis, leaf curl and red cotton bug. Scason atnormal, heavy rains in August and September. (iii) Seed cotton and Kapas yield. (iv) (a) No. (b) and (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Plot wise yield data N.A. Hence not analysed.

5. RESULTS:

(i) $603 \mathrm{lb} . / \mathrm{ac}$.
(ii) N.A.
(iii) N.A.
(iv) Av. yield of kapas in lb./ac.

Crop: Cotton (Kharif).
Site :-Cotton Res. Stn., Parbhani.

Ref:-Mh. 53(9).
Type:-'D'.

Object :-To study the effect of treating seed with perenox on Cotton yield and on black arm disease.

1. BASAL CONDITIONS :

(i) Cotton-Groun, Inut. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 14.7.1953. (iv) (a) One ploughing and 2 harrowings. (b) Dibbling. (c) 81 seeds/row of 21^{\prime}. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Gaorani-12. (vii) Unirrigated. (viii) 2 weedings and 2 hocings. (ix) 40.32". (x) Picking on 16.12.1953, 7 27.1.1954 and 10.2.1954.
2. TREATMENTS :

1. Control (untreated).
2. Seed treated with perenox before sowing at the rate of one ounce of perenox for 10 lb . of seed.

3. DESIGN :

(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 4 \frac{1}{2}^{\prime}$. (b) $19^{\prime} \times 4 \frac{1}{2}^{\prime}$. (v) One non-exerimental row at either end and one after each replication. (vi) Yes.
-4. GENERAL :
(i) Not satisfactory due to late sowing and rains. (ii) Nil. (iii) Final stand, yield of kapas, halo length, ginning and weight of 100 seeds. (iv) (a) 1953-1954. (b) and (c) Nil. (v) (a) Badnapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $295.2 \mathrm{lb} . / \mathrm{ac}$.
(ii) $106.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Ay. yield of kapas in Ib./ac.

Treatment	Av. yield
1.	299
2.	289
S.E./mean	$=52.8 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Cotton (Kharif).
Site :-Cotton Res. Stn., Parbhani.

Kef :~Mh. 53(10).
Type:-‘D'.

Object :-To study the effect of treating seed with perenox on Cotton yield and on black arm disease.

1. BASAL CONDITIONS :
(i) (a) Cotton-Groundnut. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 14.7.1953. (iv) (a) One ploughing and 2 harrowings. (b) Drilling. (c) 42 seeds per row of 21^{\prime}. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Parbhani American I. (vii) Unirrigated. (viii) 2 weedings and 2 hoeings. (ix) $40.32^{\prime \prime}$. (x) Picking on 16.12.1953, 7.1.1954, 27.1.1954 and 10.2.1954.

2. TREATMENTS

1. Control (untreated).
2. Treated with perenox before sowing at the rate of one ounce of perenox for 10 lb . of seed.
3. DESIGN
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 4 \frac{1}{2}^{\prime}$. (b) $19^{\prime} \times 4 \frac{1^{\prime}}{}$. (v) One non-experimental row at either end and one after each replication. (vi) Yes.
4. GENERAL :
(i) Growth not satisfactory due to late sowing and rains. (ii) Nil. (iii) Final stand, yield of kapas, halo length and ginning \%. (iv) (a) 1953-1954. (b) and (c) No. (v) (a) Badnapur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $162.9 \mathrm{lb} . / \mathrm{ac}$.
(ii) $34.10 \mathrm{lb} . j \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield
1.	153
2.	172
S.E./mean	$=17.00 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :- Govt. Exptl. Farm, Yeotmal.

Ref: $\boldsymbol{\sim}$ Mh. 52(178).

Type:- 'D'.

Object :-To study the effect of Agrosan G.N. on Cotton.

1. BASAL CONDITIONS :
(i) (a) Jowar-Groundsut-Cotton. (b) Groundnut. (c) N.A. (ii) (a) Black medium soil. (b) Refer soil' analysis, Yeotmal. (iii) 4.7.1952. (iv) (a) 5 bakharings. (b) Dibbling. (c) to (e) N.A. (v) F.Y.M. at 5 C.L./ac. during May 52. (vi) H.420. (medium). (vii) Unirrigated. (vii) 2 weedings and 4 hoeings. (ix) 40.28". (x) 1st week of Nov. 1952 to 1st week of Jan. 1953.
2. TREATMENTS:
3. Seeds treated with Agrosan G.N.
4. Seeds untreated.
5. DESIGN :
(i) R.B.D. (ii) (a) 2. (b) N.A. (iii) 2. (iv) (a) N.A. (b) $1 / 40$ th of an acre. (v) N.A. (vi) Yes.
6. GENERAL :
(i) Satisfactory and uniform. (ii) Nil. (iii) Kapas yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
7. RESULTS:
(i) $691 \mathrm{lb} . / \mathrm{ac}$.
(ii) 42.80 lb ./ac.
(iii) Treatments do not differ signiflcantly.
(iv) Av. yield of kapas in lb./ac.

Treatment	Av. yield.
1.	707
2.	675
S.E./mean	$=30.27 \mathrm{Jb} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :- Plant Breeding Stn., Latur.
Ref:- Mh. 5 3(16).
Type :- ' D '.
Object :-To study the effect of treating seed with perenox on Cotton yield and on black arm disease.

1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut-Cotton. (b) Kharif Jowar. (c) F.Y.M. at 10 C.L./ac. (ii) (a) Medium Deep black clayey soil. (b) Refer soil analysis, Latur. (iii) 22.6.1953. (iv) (a) One ploughing, once cleaning and bunding of drain channels. (b) Drilling. (c) $16 \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) F.Y.M. at 10 C.L./ac. (vi) As per treatments. (vii) Unirrigated. (ix) 41.10°. (x) Picking on 17.11.1953, 2.12.1953, 17.12.1953. and 16.1.1954.
2. TREATMENTS :

Main-plot treatments :
4 varieties : $-\mathrm{V}_{1}=$ Gaorani-12, $\mathrm{V}_{2}=$ Jarilla, $\mathrm{V}_{8}=2204$ and $\mathrm{V}_{4}=226$.
Sub-plot treatments :
2 seed dressings : $D_{0}=$ untreated seed and $D_{1}=$ seed dressed with perenox at 1 oz. of perenox for 10 lb . of seed, previously treated with cowdung paste.
3. DESIGN :
(i) Split-plot. (ii) (a) 4 majn-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 4 . (iv) (a) $64^{\prime} \times 9^{\prime}$. (b) $60^{\prime} \times 6^{\prime}$. (v) One row on each flank of the plot and 2^{\prime} distance on each extremity of the row. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Kapas yield. (iv) (a) 1953-1955. (b) No. (c) N.A. (v) (a) Nanded. (b) N.A. (vi) Nil. (vii) The attack of blackarm on dressed and undressed plots till September was quite obvious; later on the difference was negligible.
5. RESULTS ;
(i) $88 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $38.81 \mathrm{lb} . / \mathrm{ac}$.
(b) $20.12 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of kapas in lb./ac.

	V_{1}	V_{2}	V_{3}	V_{6}	Mean
D_{0}	65	84	87	119	89
D_{1}	63	76	91	115	86
Mean	64	80	89	117	88

S.E. of difference of two	
1. V marginal means	
2. D marginal means	$=19.40 \mathrm{lb} . / a \mathrm{ac}$
3. D means at the same level of V	
4. V means at the same level of D	
	$=14.11 \mathrm{lb} . / \mathrm{ac}$.
	$=21.86 \mathrm{lb} . / \mathrm{lbc} . / \mathrm{ac}$.

Crop :- Cotton (Kharif).
Site :m Cotton Res. Stn., Nanded.

Ref:- Mh. 53(26).
Type :- 'D'.

Object :-To test the efficacy of treating seeds with perenox on yield of Cotton and on black arm diseaso.

1. BASAL CONDITIONS:

(i) (a) N.A. (b) Rabi Jowar. (c) F.Y.M. at the rate of 30 C.L./ac. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 25.6.1953. (iv) (a) Bakharing thrice. (b) Drilling. (c) 168 seeds per row of 42' length. (d) and (e) N.A. (v) Nil. (vi) As per treatments. (vii) Unirrigated. (viii) Weeding twice and hoeing once. (ix) 45.13*. (x) Picking on 27.11.1953, 12.12.1953 and 12.1.1954.
2. TREATMENTS:

Main-plot treatments :
4 varjeties: $\mathrm{V}_{1}=$ Gaorani-6, $\mathrm{V}_{2}=$ Gaorani-12, $\mathrm{V}_{2}=1422$, and $\mathrm{V}_{4}=$ Jarilla.
Sub-plot treatments:
2 seed dressings : $\mathrm{D}_{0}=$ Control (undressed seed), and $\mathrm{D}_{1}=$ Seed dressed with perenox.
Dressing with perenox was done at the rate of 1 ounce of perenox to 10 lb . of seed, previously treated with cowdung paste.
3. DESIGN:
(i) Split-plot. (ii) (a) 4 main-plots/block; 2 sub-plots/main-plot. (b) N.A. (iii) 6 . (iv) (a) $9^{\prime} \times 42^{\prime}$. (b) $6^{\prime} \times 40^{\prime}$. (v) One row on each flank and 1^{\prime} at each extremity of every row. (vi) Yes.
4. GENERAL:
(i) Nct satisfactory due to heavy rains. (ii) Incidance of black arm, (iii) Germination and final stand, weekly infection of black arm, boll weight, ginning percentage, fibre properties and kapas yield. (iv) (a) 1953 to 1954. (b) No. (c) N.A. (v) (a) Latur. (b) N,A. (vi) and (vii) Nil.
5. RESULTS :
(i) $199 \quad$ ib./ac.
(ii) (a) $45.57 \mathrm{lb} / \mathrm{ac}$.
(b) 37.24 lb ./ac.
(iii) Only V effect is significant.
(iv) Av. yield of Kapas in lb./ac.

	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	$\mathbf{V}_{\mathbf{8}}$	$\mathbf{V}_{\mathbf{4}}$	Mean
D_{0}	150	194	232	218	198
D_{1}	161	230	208	202	200
Mean	156	212	220	210	199

S.E. of difference of two

1. V marginal means	$=18.67 \mathrm{lb} . / \mathrm{ac}$.
2. D marginal means	$=10.75 \mathrm{lb} . / \mathrm{ac}$.
3. D means at the same level of V	
4. V means at the same level of D	

Crop :- Groundnut (Kharif).	Ref:- Mh. 48(40).
Site :- Govt. Exptl. Farm, Akola.	Type :- 'M'.

Object :-To study the effect of different doses of G.N.C. on Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundout-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 4.7.1948. (iv) (a) 1 ploughing and 2 bakharings. (b) Sowing by 4 typed country plough (c) $901 \mathrm{lb} / \mathrm{ac}$, (d) $12^{\prime \prime} \times 6^{\prime}$. (e) N.A. (v) Nil. (vi) AK 12-24 (medjum). (vii) Unirrigated. (viii) 1 hoeing and 2 weedings. (ix) $31.52^{\prime \prime}$. (x) $14,10.1948$.
2. TREATMENTS:
3. No madure.
4. 10 lb /ac. of N as $\mathbf{G} . \mathrm{N} . C$.
5. 20 lb ./ac. of N as $\mathrm{G}, \mathrm{N}, \mathrm{C}$.
6. $30 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
7. $40 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b)N.A. (iii) 6. (iv) (a) N.A. (b) $33^{\circ} \times 33^{\prime}$. (v) One row on eitber aide of each plot. (vi) Yes.
9. GENERAL :
(i) Good. (ii) Aphids attack noticed in August. No control measures taken. (iii) Pods and tops yield. (iv) (a) 1945 to 1949. (b) No. (c) N.A. (v) (a) and (b, N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $853 \mathrm{lb} . / \mathrm{ac}$.
(ii) $156.9 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb ./ac.

Treatment	Av. yield
1.	808
2.	960
3.	840
4.	825
5.	833
S.E./mean	$=64.08 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).	Ref:- Mh. 49(67).
Site :-Govt Exptl. Farm, Akola.	Type :- 'M'.

Object :-To study the effect of different doses of G.N.C. on Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Jowar. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola.
(iii) 3.7.1949. (iv) (a) 2 heavy and 1 light bakharings. (b) By Argada. (c) $90 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\circ} \times 12^{\circ \prime}$. (e)
N.A. (v) Nil. (vi) AK 12-24. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 42.93*. (x) 25.10.1949.
2. TREATMENTS:
3. No manure.
4. $10 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathbf{G} . N . C$.
5. $20 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
6. 30 lb ./ac. of N as G.N.C.
7. 40 lb ./ac. of N as G.N.C.

Manures applied on 20.6.1949.
.3. DESIGN :
(i) R.B D. (ii) (a) 5. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $33^{\prime} \times 3^{\circ}$. (v) One row on either side of each plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of Aphids; No control measures taken. (iii) Pods and tops yield. (iv) (a) 19451949. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

- 5. RESULTS :
(i) $858 \mathrm{lb} . / \mathrm{ac}$.
(ii) $127.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb./ac.

Treatment	Av. yield
1.	783
2.	922
3.	873
4.	832
5.	878
S.E./mean	$=52.18 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut.
 Site :-Govt. Seed and Demonstration Farm, Buldana.
 Ref :- Mh. 50(87),
 Type :- ' M '.

Object :-To study the residual effect of organic and inorganic manures applied to Jowar on Groundnut.

1. BASAL CONDITIONS :
(i) (a) Jowar-Groundnut. (b) Jowar. (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 14.7.1950. (iv) (a) One ploughing and two bakharings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime} \times 6^{\prime \prime}$. (e) N.A. (v) Nil. (vi) AK-12-24 (medium). (vii) Unirrigated. (viii) 1 weeding and i hoeing. (ix) 29.11*. (x) 22.12.1950.

2. TREATMENTS:

1. Control (no manure).
2. T.C. at $20 \mathrm{lb} . / \mathrm{ac}$. of N .
3. T.C. at $40 \mathrm{lb} . / \mathrm{ac}$. of N .
4. F.Y.M. at $20 \mathrm{lb} . / \mathrm{ac}$. of N .
5. F.Y.M. at 40 lb ./ac. of N.
6. G.N.C. at $10 \mathrm{lb} . / \mathrm{ac}$ of N .
7. G.N.C. at $20 \mathrm{lb} . / \mathrm{ac}$. of N.
8. A/S at $10 \mathrm{lb} . / \mathrm{ac}$. of N .
9. A / S at $20 \mathrm{lb} . / \mathrm{ac}$. of N .

Manures applied to previous crop Jowar.
3. DESIGN :
(i) R.B.D. (ii) (a) 9.
(b) N.A.
(iii) 6. (iv) (a) N.A.
(b) $66^{\circ} \times 16.5^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Top and pod yield. (iv) (a) 1950-continued. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $968 \mathrm{lb} . / \mathrm{ac}$.
(ii) $315.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	1048,	6.	.752
2.	952	7.	1152
3.	1132	8.	880
4.	920	9.	808
5.	1064		
	S.E./mean	128.8 lb./ac.	

Crop:- Groundnut (Kharif).
Ref:- Mh. 51(112).
Site :- Govt. Seed and Demonstration Farm, Buldana. Type :- ' M '.
Object :-To study the residual effect of organic and inorganic manures applied to Jowar on Groundnut.

1. BASAL CONDITIONS :

(i) (a) Jowar-Groundnut. (b) Jowar. (c) As per treatments, (ii) (a) Medium black. (b) Refer soil analysis, Buldana. (iii) 28.6.1951. (iv) (a) 1 ploughing. (b) N.A. (c) $80 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\circ} \times 6^{\prime \prime}$. (c) N.A. (v) Nil. (vi) AK-12-24 (mid-late). (vii) Unirtigated. (viii) 1 weeding and 1 hoeing. (ix) 33.22..
(x) 31.10.1951

2. TREATMENTS :

1. Control (no manure).
2. T.C. at 20 lb ./ac. of N .
3. T.C. at $40 \mathrm{lb} . / \mathrm{ac}$. of N .
4. F.Y.M. at $20 \mathrm{lb} . / \mathrm{ac}$, of N .
5. F.Y.M. at 40 lb ./ac. of N .
6. G.N.C. at $10 \mathrm{lb} . / \mathrm{ac}$. of N .
7. G.N.C. at $20 \mathrm{lb} / \mathrm{ac}$. of N.
8. A/S at $10 \mathrm{lb} . / \mathrm{ac}$. of N .
9. A/S at $20 \mathrm{lb} / \mathrm{ac}$. of N .

Manures applied to previous Jowar crop.
3. DESIGN:
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) $66^{\prime} \times 16.5^{\circ}$. (v) N.A. (vi) Yes.

4. GENERÁㄴ:

(i) Normal. (ij) Nil. (iii) Pod and top yield. (iv) (a) 1950 -continued. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) 1332 lb./ac.
(ii) $273.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	1239	6.	1268
2.	1238	7.	1283
3.	1275	8.	1389
4.	1295	9.	1571
5.	1429		
.	S.E./mean	$=111.7 \mathrm{lb}$./ac.	

Crop :- Groundnut (Kharif).
Ref :~ Mh. 51(71).
Site :- Agri. Res.Stn., Chás.
Type :- 'M'.
Object :-To study the effect of different doses of Boron and Manganese on Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. (c) Nil., (ii) (a) Kharif light soils. (b) N.A. (iii) 30,6.1951. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) $60^{\circ} \mathrm{lb}$./ac. (d) $12^{\prime \prime}$ between rows. (c) N.A. (v) Nil. (vi) Big Japan. (vii) Unirrigated. (viii) 1 interculturing. (ix) 20.62". (x) 24.11.1951.
2. TREATMENTS :

All the combinations of (1) and (2)
(1) 4 levels of boron: $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb} / \mathrm{ac}$.
(2) 4 levels of manganese: $\mathrm{M}_{0}=0, M_{1}=3, M_{8}=6$ and $M_{8}=9 \mathrm{lb}$./ac.

Boron as borax and Manganese as $\mathrm{Mn} \mathrm{SO}_{4}$.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $29^{\prime} \times 13^{\prime}$. (b) $25^{\prime} \times 9^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL:
(i) Normal
(ii) Nil. (iii) Pod yield.
(iv) (a) 1951-1955.
(b) No. (c) N.A.
(v) (a) Sholapur and Jeur.
(b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1490 \mathrm{lb}, / \mathrm{ac}$.
(ii) $292.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of podin lb./ac.

	${ }^{\prime} \mathbf{B}_{\mathbf{0}}$	\mathbf{B}_{1}	\mathbf{B}_{2}	B_{3}	Mean
M_{0}	- 1353	1489	1482	1431	1439
M_{1}	1567	1492	1682	1503	1561
M_{2}	1283	1513	1474	1344	1403
M_{8}	1586	1682	1395	1567	1558
Mean	1447	1544	1508	1461	1490
S.E. of any marginal mean $\quad=73.0 \mathrm{lb} . / \mathrm{a}$ S.E. of body of table					

Crop :-Groundnut (Kharif).

Ref : Mh. 52(100).
Site :- Agri. Res. Stn., Chas.
Type : ' \mathbf{M} '.
Object :-To study the effect of different doses of Boron and Manganese on Groundnut.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. (c) Nil. (ii) (a) Kharif light soil. (b) N.A. (iii) 6.6.1952. (iv) (a 1 ploughing and 2 harrowings. (b) N.A. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Big Japan (late). (vii) Unirrigated. (viii) 1 interculturing. (ix) 9.70 . (x) 5.12.1952.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron : $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb} . / a c$.
(2) 4 levels of Manganese: $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{3}=9 \mathrm{lb}$./ac.

Boron as borax and Manganese as $\mathrm{Mn} \mathrm{SO}_{4}$
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 4. (iv) (a) $29^{\prime} \times 13^{\prime}$, (b) $25^{\prime} \times 9^{\prime}$. (v) 2^{\prime} ring rougd the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) 3 counts and pod yield. (iv) (a) 1951-1955. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) No reasons given for low yield. (vii) Nil.
5. RESULTS :
(i) $604 \mathrm{Jb} . / \mathrm{ac}$.
(ii) $124.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

	B_{0}	B_{1}	\mathbf{B}_{2}	$\mathbf{B}_{\mathbf{8}}$	Mean
M_{0}	484	- 581	581	629	569
M_{1}	678	581	581	629	617
M_{2}	678	629	629	629	641
M_{3}	678	484	653.	532	587
Mean	629	569	611	605	604
	S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =31.0 \\ & =62.2 \end{aligned}$	

Crop :-Groundnut (Kharif).
Site :-Agri. Res. Stn., Chas.

Ref :-Mh. 53(152).
Type :- 'M'

Object :-To study the effect of different doses of Boron and Manganese on Groundnut.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. (c) Nil. (ii) (a) Kharif light soil. (b) N.A. (iii) 3.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Big Japan. (vii) Unirrigated. (viii) 1 interculturing. (ix) 21.00°. (x) 4.12 .1953
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron: $B_{0}=0, B_{1}=2, B_{3}=4$ and $B_{3}=6 \mathrm{lb} . / \mathrm{ac}$.
(2) 4 levels of Manganese: $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{2}=9 \mathrm{lb} . / \mathrm{ac}$.

Boron as borax and Manganese as $\mathrm{Mn} \mathrm{SO}_{4}$.
3. DESIGN :
(i) 4×4 Fact. in R.B.B. (ii) (a) 16 . (b) N.A. (iii) 6 . (iv) (a) $29^{\prime} \times 13^{\prime}$. (b) $25^{\prime} \times 9^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) 3 counts and pod yield. (iv) (a) 1951-1955. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $2350^{\circ} \mathrm{lb} / \mathrm{ac}$.
(ii) $688.2 \mathrm{~b} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb,/ac.

	B_{0}	B_{1}	$\mathrm{B}_{\mathbf{2}}$	B_{8}	Mean
M_{0}	2323	2194	2678	2355	2388
$\mathbf{M}_{\mathbf{1}}$	2130	2420	2646	2549	2436
M_{2}	2420	2226	2226	2581	2363
$\mathrm{M}_{\mathbf{8}}$	2420	2162	${ }_{1} 194$	2065	2210
Mean	2323	2251	2436	23888	23,50
	S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =140.5 \mathrm{lb} . / \mathrm{ac} . \\ & =281.0 \mathrm{lb} . \mathrm{ac} . \end{aligned}$	

Crop:- Groundnut. (Kharif).
Ref:- Mh. 51(70).
Site :- Agri. Res. Stn., Chas.
Type : ${ }^{\prime} \mathrm{M}$ '.
Object :-To find out the optimum dose and method of application of $\mathrm{P}_{2} \mathrm{O}_{6}$ to Groundnut.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Bajra + Tur. (b) Bajra + Tur. (c) G.N.C. (amount N.A.) (ii) (a) Light kharif soil. (b) N.A. (iii) 1.7.1951. (iv) (a) 1 ploughing and 2 barrowings. (b) N.A. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Big Japan (late). (vii) Unirrigated, (viii) 1 interculturing, (ix) 20.62°. (x) 26.11.1951.
2. TREATMENTS :

All combinations of (1) and (2) + a control (no manure).
(1) 3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}:-\mathrm{P}_{1}=10, \mathrm{P}_{9}=20$ and $\mathrm{P}_{2}=30 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Broadcasting., $\mathrm{M}_{2}=$ Drilling in rows and $\mathrm{M}_{2}=$ Drilling in between rows.
$\mathbf{P}_{\mathbf{8}} \mathrm{O}_{5}$ applied as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) $55^{\circ} \times 20^{\prime}$. (b) $51^{\prime} \times 16^{\circ}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal.' (ii) Nil. (iii) 2 counts and pod yield. (iv) (a) 1951-1955. (b) No. (c) N.A. (y) (a) Sholapur and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1549 \mathrm{lb} . / \mathrm{ac}$.
(ii) $262.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

Control=1802 lb./ac.				
	M_{1}	$\mathbf{M g}$	$\mathbf{M s}_{8}$	Mean
\mathbf{P}_{1}	1601°	1681	1401	1561
$\mathbf{P}_{\mathbf{2}}$	1495	1521	1508	1508
\mathbf{P}_{3}	1721	1121	1641	1494
Mean	1606	1441	1517	1521
S.E. of any marginal mean			- $75.8 \mathrm{lb} . / \mathrm{ac}$.	-

Crop :- Groundnut. (Kharif).
Site :- Agri. Res. Stn., Chas.

Ref:- Mh. 52(99).
Type : © ${ }^{\mathbf{M}} \mathbf{M}$.

Object :-To find out the optimum dose and method of application of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$ to Groundnut:

1. BASAL CONDITIONS :
(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. . (c) Nil. (ii) (a) Light Kharif -soil. (b) N.A. (iii) 23.6.1952. (iv) (a) 1 ploughings and 2 harrowings. (b) N.A. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Big Japan (late). (vii) Unirrigated. (viii) 2 interculturings. (ix) 9.70". (x) 31.12.1952.
2. TREATMENTS :

All the combinations of (1) and (2) \dagger a control (no manure)
(1) 3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$. $/ \mathrm{ac}$.
(2) 3 methods of application of ${\underset{2}{2}}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Broadcasting, $\mathrm{M}_{2}=$ Drilling in rows and $\mathrm{M}_{3}=$ Drilling in $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
between rows.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) $55^{\prime} \times 20^{\prime}$. (b) $51^{\prime} \times 16^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) 2 counts and pod yield. (iv) (a) 1951-1955. (b) No. (c) N.A. (v) (a) Sholapur and Jeur. (b) N.A.' (vi) and (vii) Nil.

5. RESULTS :

(i) $1285 \mathrm{lb} . / \mathrm{ac}$.
(ii) $127.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Oply centrol ys others effect is highly significant.
(iv) Av. yield of pods in lb./ac.

Control $=527 \mathrm{ib} . / \mathrm{ac}$.

S.E. of any marginal mean $\quad=36.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $\quad=63.8 \mathrm{lb}$./ac.

> Crop :- Groundnut (Kharif).
> Site :- Agri. Res. Stn., Chas.

Ref: Mh. 53(151).
Type :- ' M '.
Object :-To find out the optimum dose and method of application of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ to Groundnut.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. (c) Nil. (ii) (a) Light kharif soil. (b) N.A. (iii) 1.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) N.A. (c) 60 lb /ac. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Big Japan (late). (vii) Unirrigated. (viii) 2 interculturings. (ix) 21.00°. (x) 30.11.1953.

2. TREATMENTS:

All combinations of (1) and (2)+a control (no manure)
(1) 3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Broadcasting, $\mathrm{M}_{2}=$ Drilling in rows and $\mathrm{M}_{3}=$ Drilling in -between rows.
$\mathbf{P}_{2} \mathbf{O}_{5}$ applied as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) $55^{\prime} \times 20^{\prime}$. (b) $51^{\prime} \times 16^{\prime}$. (v) 2^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) 3 counts and pod yield, (iv) (a) 1951-1955. (b) No. (c) NoA. (v) (a) Sholapur and Jeur. - (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1959 \quad \mathrm{lb} / \mathrm{ac}$
(ii) $440.6 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{Ib} . / \mathrm{ac}$.

Control = $1721 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Groundnut (Kharif). \quad Ref:- 52(326).

Object :-To study the effect of Boron and Manganese on the yield of Groundnut.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Wheat. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 11.7.1952. (iv) (a) N.A. (b) Drilled. (c) $73 \mathrm{lb} / \mathrm{ac}$. (d) 14^{\prime} between rows. (e)—. (v) Nil. (vi) Spanish (improved). (vii) Irrigated. (viii) 2 weedings and one interculturing. (ix) N.A. (x) 23.10.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of Boron : $B_{0}=0$ and $B_{1}=4 \mathrm{lb}$./ac:
(2) 2 levels of Manganese : $M_{0}=0$ and $M_{1}=6 \mathrm{lb} . / a c$

Boron as Borax and Manganese as Manganese Sulphate.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 2 . (iv) (a) $78^{\circ} \times 7.5^{\prime}$. (b) $64^{\circ} \times 12.8^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Unsatisfactory growth due to Tikka attack and lack of rains during sowing time. (ii) Mild attack of Tikka disease. (iii) Yield of pod. (iv) (a) 1952-N.A. (b) No. (c) Nil. (v) (a) Kopergaon and Karad. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $442 \mathrm{lb} / / \mathrm{ac}$.
(ii) $172.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{lb}, / \mathrm{ac}$.

	B_{0}	B_{1}	Mean
M_{0}	361	481	421
M_{1}	441	484	462
Mean	401	482	442
S.E. of any marginal mean		- $172.8 \mathrm{lb} . / \mathrm{ac}$.	
S.E. of body of table		- $122.2 \mathrm{lb} / \mathrm{ac}$	

Crop :-Groundnut (Kharif).
Ref :-Mh. 49(28).
Site :-Agri. Rea. Stn., Jalagaon.
Type: " ${ }^{\text {M }}$ ’.
Object:-To find the effects of applying $\mathrm{P}_{4} \mathrm{O}_{5}$ to leguminons crop (Groundnut) and its after effects on the succeeding cereal crop (Jowar).

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Jowar. (c) N.A. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 2.7.1949. (iv) (a) N.A. (b) Drilled. (c) 40 1b./ac. (d) 12°. (c) N.A. (v) Nil. (vi) Spanish poanut (early). (vii) Unirrigated. (viii) 3 weedings and 2 hoeings. (ix) 44.17". (x) 25.10.1949.
2. TREATMENTS :
3. Control ($\mathrm{nO} \mathrm{P}_{2} \mathrm{O}_{5}$).
4. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow for Groundnut and sown for Jowar. $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with reeds of Groundaut.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) S. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) N.A. (ii) Aphis attack on groundnut crop was observed. Rains in the third week of Sept. washed away the Aphis. Also tobacco decoction helped much in removing the attack. (iii) Pod and chaff yield. (iv) (a) 1949 (kharif) to 1954 (kharif). (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
10. RESULTS:
(i) $684 \mathrm{lb}, / \mathrm{ac}$.
(ii) 81.52 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	600
2.	687
3.	710
4.	740
5.	Fallow
S.E./mead	$=36.44$ lb.jac.

Crop :- Groundnut (Kharif)	Ref :- Mh. 50(39).
Site :- Agri. Res. Stn., Jalagaon.	Type :r‘M’.

Object:-To find the effects of applying $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ to leguminons crop (Groundnut) and its after efreets on the succeeding cereal crop (Jowar).

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) N.A. (c) N.A. (ii) (a) Deep black. (b) Refer soil analysis, Jaiagaon. (iii) 12.7.50. (iv) (a) N.A. (b) Drilled. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) 12°. (c) N.A. (v) NiI, (vi) Spanish peanut (early). (vii) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 21.73'. (x) 29.10.1950.
2. TREATMENTS:
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $150 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{\mathrm{g}} \mathrm{O}_{\mathrm{B}}$ as Super.
7. Fallow for Groundnut and sown in Rabl.
$\mathrm{P}_{2} \mathrm{O}_{5}$ drilled with the seeds of Groundnut.
8. DESIGN:
(i) R.B.D. (ii) (a) S. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\circ}$. (b) $30^{\circ} \times 18^{\prime}$. (v) 6^{\prime} ring roand the net plot. (vi) Yea.
9. GENERXAL:
(i) Normal growth. •(ii) Attack of Aphis and Tikka disease observed on groundnut. ${ }^{\text {(iii) Pod and chaff }}$ yield. (iv) (a) 1949 to 1954. (b) No. (c) N.A. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
10. RESULTS:
(i) $990 \mathrm{lb} . / \mathrm{ac}$.
(ii) 323.7 lb ./ac.
(iii) Treatments 'do not differ signaficantly.
(iv). Av. yield of pod in lb./ac.'

Treatmentt	Avi.yield
1.	875
2.	876
3.	1003
4.	1207
5.	Fallow
S.E./mean	$=144.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut (Kharif).
Site:- Agri. Res. Stn., Jalagaon.

Ref:- Mh. 51(42).
Type :-'M'.

Object:-To find the effect of applying $\mathrm{P}_{2} \mathrm{O}_{5}$ to leguminous crop (Groundnút) and its after effects on the succeeding cereal crop (Jowar).

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) N.A! (c) N.A. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 16.7.1951. (iv) (a) N.A. (b) Drilled. (c) 60 lb ./ac. (d) Between rows $18^{\prime \prime}$ and between plants irregular. (e) N.A. (v) Nil. (vi) Spanish peanut (early). (vii) Unirrigated. (viii) Once weeding and 3 hoeings. (ix) 20.14". (x) 16.11.1951.
2. TREATMENTS:
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow for Groundnut and sown for Jowar and Udid. $\mathrm{P}_{2} \mathrm{O}_{5}$ drilled along with the seeds of groundnut.
8. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) Normal growth. (ii) Attack of Aphis observed. (iii) Pod and chaff yield. (iv) (a) 1949-i954. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
10. RESULTS :
(i) $922 \mathrm{lb} / \mathrm{ac}$.
(ii) 216.5 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	975
2.	912
3.	1032
4.	772
5.	Fallow
S.E./mean	$=96.8 \mathrm{lb} / / \mathrm{ac}$.

Object :-To find out the effects of applying $\mathrm{P}_{2} \mathrm{O}_{5}$ to the leguminous crop (Groundnut) and its after effects on the succeeding cereal crop (Jowar).

1. BASAL CONDITIONS:
(i) (a) Groundnut-Jowar. (b) and (c) N.A. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 29.6.1952. (iv) (a) N.A. (b) Drilled. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) [Between rows-12" and between plants irregular. (e) N.A. (v) Nil. (vi) Spanish peanut (early). (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 17.61°. (x) 1.11 .1952.

2. TREATMENTS:

1. Control ($\mathrm{no} \mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
3. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
4. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. Fallow for Groundnut and sown for Jowar and Udid.
$\mathrm{P}_{2} \mathrm{O}_{5}$ drilled along with the seeds of Groundnut.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} ring round the net plot. (vi) Yes.
7. GENERAL:
(i) Normal growth. (ii) Attack of long-smut. Attack of Aphis, Tikka and Root-rot disease. (iii) Pod and chaff yield. (iv) (a) 1949-1954. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
8. RESULTS:
(i) $563 \mathrm{lb} . / \mathrm{ac}$.
(ii) $234.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	516
2.	556
3.	585
4.	597
5.	Fallow
S.E./mean	$=105.0 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Groundnut (Kharif).

Site :-Agri. Res. Stn., Jalagaon.

Ref:-Mh. 53(130).

Type :- 'M'.

Object:-To find out the effects of applying $\mathrm{P}_{2} \mathrm{O}_{5}$ to leguminous crop (Groundnut) and its after effects on the succeeding cereal crop (Jowar).

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) and (c) N.A. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 25.6 .1953 . (iv) (a) N.A. (b) Drilled. (c) 60 lb ./ac. (d) Between rows- 12° and between plants jrregular. (e) N.A. (v) Nil. (vi) Spanish peanut (early). (vii) Unirrigated. (viii) 2 bocings and 2 weedings. (ix) 23.77*. (x) 24.10.1953.
2. TREATMENTS:
3. Control ($\mathrm{no} \mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 Jb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
5. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
6. $150 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super.
7. Fallow for Groundnut and sown for Jowar and Udid.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\circ}$. (b) $30^{\circ} \times 18^{\prime}$. (v) 6^{\prime} ring round the net plot. (vi) Yes.

4. GENERAL

(i) The general growth and condition was satisfactory. (ii) Attack of Aphis, Root-rot and Tikka was observed. (iii) Pod and chaff yield. (iv) (a) 1949-1954. (b) No. (c) N.A.. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) $1273 \mathrm{lb} . / \mathrm{ac}$.
(ii) 118.2 lb /ac.
(iii) Treatment differences are highly significant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av yield
1.	1056
2.	1307
3.	1317
4.	1412
	S.
	Fallow
	S.E./mean
	$=52.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut (Kharif).
Site :-Agri. Res. Stn., Jeur.

Ref :-Mh. 51(103).
Type :-‘M'.

Object :-To study the optimum dose and method of application of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. BASAL CONDITIONS:
(i) (a) Nil. (b) Jowar and gram. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 24.7.1951. (iv) (a) 2 harrowings, (b) Drilled. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) Between plants-12". (e) N.A. (v) Nil. (vi) Big Japan. (vii) Unirrigated. (viii) 1 hand weeding. (ix) N.A. (x) 4 to 8.12.1951.
2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure).
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \quad \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}$: $\quad \mathrm{M}_{1}=\mathrm{By}$ broadcasting, $\mathrm{M}_{2}=\mathrm{By}$ drilling in rows and $\mathrm{M}_{3}=\mathrm{By}$ drilling in tetween rows.
$\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ applied as Super.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) $114^{\prime} \times 16^{\prime}$. (b) $108^{\circ} \times 10^{\prime}$. (v) 3^{\prime} all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 195t-1956. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $499 \mathrm{lb} / \mathrm{ac}$.
(ii) $103.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.


```
Crop :- Groundnut (Kharif).
Site :- Agri. Res. Stn., Jeur.
Ref:- Mh. 53(180).
Type:- ' M '.
```

Object :-To study the optimum dose and method of application of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{3}}$.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium deep. (b) N.A. (iii) 29.7.1953. (iv) (a) 2 harrowings. (b) Drilled. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ apart. (e) N.A. (v) Nil. (vi) Big Japan. (vii) Unirrigated. (viii) 1 interculturing and 1 hand weeding. (ix) $16.62^{\prime \prime}$. (x) 8.12.1953.
2. TREATMENTS :

All combinations of (1) and (2) +a control (no manure).
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac.
(2) $\mathbf{3}$ methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ 'by broadcasting, $\mathrm{M}_{2}=$ by drilling in rows, and $\mathrm{M}_{3}=$ by drilling in between rows.
$\mathrm{P}_{\mathbf{8}} \mathrm{O}_{5}$ applied as Super.
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4 . (iv) (a) $114^{\prime} \times 16^{\prime}$. (b) $108^{\prime} \times 10^{\prime}$. (v) 3^{\prime} all round the net plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Top and pod yield. (iv) (a) 1951-1956. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
3. RESULTS:
(i) $605 \mathrm{lb} . / \mathrm{ac}$.
(ii) $109.3 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

	Control			Mean
	P_{1}	P_{2}	$\mathrm{Pa}_{\mathbf{8}}$	
M_{1}	562	688	626	625
M_{2}	540	544	636	573
M_{3}	666	608	542	605
Mean	589	613	601	601

S.E. of any marginal mean $\quad=31.6 \mathrm{lb} / \mathrm{ac}$.
S.E. of body of table $\quad=54.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut (Kharif).
Site :-Agri. Res. Stn., Jeur.

Ref:mh. 51(102).
Type :-‘M'.

Object:-To study the effect of Boron and Manganese on Groundnut.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Jowar or Gram. (b) Jowar or Gram. (c) N.A. (ii) (a) Medium deep. (b) N.A. (iii) 26.7.1951. (lv) (a) 3 harrowings. (b) Drilled. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) 12°. (e) N.A. (v) Nil. (vi) Big. Japan. (vii) Unirrigated. (viii) 2 hand weedings. (ix) N.A. (x) 10.12.1951.
2. TREATMENTS :

All combinations of (1) and (2).
(1) 4 levels of Boron : $\mathrm{B}_{0}=0, B_{1}=2, B_{2}=4$ and $B_{9}=6 \mathrm{lb}$./ac.
(2) 4 levels of Manganese : $M_{0}=0, M_{2}=3, M_{2}=6$ and $M_{8}=9 \mathrm{lb}$./ac.

Boron as Borax and Manganese as $\mathrm{Mn} \mathrm{SO}_{4}$.
3. DESIGN: :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $30^{\prime} \times 18^{\prime}$. (b) $26^{\prime} \times 14^{\prime}$. (v) 2^{\prime} all round the net plot. (vi) Yes. -

4. GENERAL :

(i) Not good. (ii) Nil. (iii) Pod yield. (iv) (a) 1951-1956. (b) No. (c) N. A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $384 \mathrm{lb} . / \mathrm{ac}$.
(ii) $102.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{lb} / \mathrm{ac}$.

Crop :- Groundnut.	Ref :- Mh. 53(179).
Site :- Agri. Res. Stn., Jeur.	Type :- ' \mathbf{M}^{\prime}.

Object :-To study the effect of Boron and Manganese on Groundnut yield,

1. BASAL CONDITIONS:
(i) (a) Groundnut-Jowar. (b) Jowar. (c) Nil, (ii) (a) Medium deep. (b) N.A. (iii) 28.7.1953. (iv) (a) 2 harrowings. (b) Drilled. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Big Japan. (vii) Unirrigated. (viii) One interculturing and one hand weeding. (ix) 16.62°. (x) 3.12.1953.

2. TREATMENTS:

All combinations of (1) and (2)
(1) 4 levels of Boron : $\mathrm{B}_{0}=0, \mathrm{~B}_{1}=2, \mathrm{~B}_{2}=4$ and $\mathrm{B}_{2}=6 . \mathrm{lb}$./ac.
(2) 4 levels of Manganese : $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{3}=9 \mathrm{lb}$./ac.

Boron as Borax and Manganese as Mn SO4.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 5 . (iv) (a) $30^{\circ} \times 18^{\prime}$. (b) $26^{\prime} \times 14^{\prime}$. (v) 2^{\prime} all round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (iij) Nii. (iii) Top, and pod yield. (iv) (a) 1951-1956. (b) No. (c) N.A. (v) (a) Nil. (b). N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $631 \mathrm{lb} / \mathrm{ac}$.
(ii) $134.0 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.

781

(iv) Av. yield of pod in 1 lb ./ac.

	\mathbf{B}_{0}	B_{1}	B_{2}	B_{3}	Mean
M_{0}	567	646	540	694	612
M_{1}	619	637	525	587	592
M_{2}	639	588	642	702	643
\mathbf{M}_{3}	666	707	690	637	675
Mean	623	645	599	655	631
S.E. of any arginal mean S.E. of body of table			$\begin{aligned} & =29.95 \mathrm{lb} . / \mathrm{ac} . \\ & =59.91 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$		

Crop:- Groundnut (Kharif).
Site :- Agri. Res. Stn., Karad.

Ref:- Mh. 52(27).
Type :- ' M '.

Object :-To find out the $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ requirements of Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Bajra. (b) Bajra, (c) 5 C.L./ac. of F.Y.M. (ii) (a) Clay loam. (b) N.A. (iii) N.A. (iv) (a) 1 ploughing and 3 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied about one month prior to sowing and mixed by harrowing. (vi) Karad-4-11 (late). (vii) Unirrigated. (viii) N.A.. (ix) 27.10°. (x) N.A.
2. TREATMENTS :
3. Control (no manure).
4. Super at $60 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Super at 120 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. Potassium Sulphate at 60 lb ./ac. of $\mathrm{K}_{2} \mathrm{O}$.
7. Potassium Sulphate at $120 \mathrm{lb} . / a c$. of $\mathrm{K}_{\mathbf{2}} \mathbf{O}$.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv). (a) $25^{\prime} \times 8^{\prime}$. (b) $23^{\prime} \times 6^{\circ}$. (v) 1^{\prime} all round the net plot.
(vi) Yes.
9. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) No. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $2706 \mathrm{lb} . / \mathrm{ac}$.
(ii) $376.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	2652
2.	2951
3.	2624
4.	2904
5.	2399
S.E. $/$ mean	$=168.3 \mathrm{lb} . /$ \&c.

Crop:-Groundnut (Kharif).	Ref:-Mh. 52(221).
Site : Agri. Res. Stn., Karad.	Type :-'M'.

Object :-To find out the effect of rare elements (Boron and Manganese) on yield of the Groundnut.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Jowar. (b) Jowar. (c) 5 C.L..ac. of F.Y.M. (ii) (a) Medium black. (b) N.A. (iii) 20.8.1952. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of P.Y.M. one month before sowing. (vi) Spanish-5 (early). (vii) Unirrigated. (viii) N.A. (ix) 33'. (x) 12.I.1953.

2. TREATMBNTS :

All combinations of (1) and (2)
(1) 2 levels of Boron: $B_{0}=0$ and $B_{1}=4 \mathrm{lb} . / a c$.
(2) 2 levels of Manganese : $M_{0}=0$ and $M_{1}=6 \mathrm{lb}$./ac.

Boron as Borax and Manganese as MnSO_{4}.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $29^{\prime} \times 8^{\prime}$. (b) $27^{\prime} \times 6^{\prime}$. (v) 1^{\prime} ring on all sides. (vi) Yes.
4. GENERAL:
(i) Poor. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-N.A. (b) N.A. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $296 \mathrm{lb} . / \mathrm{ac}$.
(ii) $106.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

	\mathbf{B}_{0}	$\mathbf{B}_{\mathbf{1}}$	Mean
$\mathbf{M}_{\mathbf{0}}$	302	252	277
\mathbf{M}_{1}	344	286	315
Mean	323	269	296

$\begin{array}{ll}\text { S E. of any marginal mean } & =53.2 \mathrm{lb} . / \mathrm{ac} . \\ \text { S.E. of body of table } & =75.3 \mathrm{lb} . / \mathrm{ac} .\end{array}$
$\begin{array}{ll}\text { Crop :- Groundnut (Kharif). } & \text { Ref:- Mh. 53(301). } \\ \text { Site :- Agri. Res. Stn., Karad. } & \text { Type :- 'M'. }\end{array}$
Object :-To study the effect of rare elements (Manganese and Boron) on Groundnut.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Jowar. (b) Jowar. (c) 5 C.L /ac. of F.Y.M. (ii) (a) Medium black. (b) N.A. (iii) 11.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. one month before sowing. (vi) Padegaon-2 (medium). (vii) Unirrigated. (viii) N.A. (ix) $38^{\prime \prime}$. (y) N.A.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of Boron: $\mathrm{B}_{0}=0$ and $\mathrm{B}_{1}=4 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of Manganese : $M_{0}=0$ and $M_{1}=6 \mathrm{lb} . / \mathrm{ac}$.

Boron as Borax and Manganese as MnSO_{4}.
3. DESIGN:
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) and (b) $30^{\circ} \times 25^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) 1738 lb /ac.
(ii) $261.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

	B_{0}	B_{1}	Mean
M_{0}	1672	1768	
M_{1}	1726	1786	
Mean	1699	1777	1756

$\begin{array}{ll}\text { S.E. of any marginal mean } & =131.0 \mathrm{lb} . / \mathrm{ac}, \\ \text { S.E. of body of table } & =185.3 \mathrm{lb} . / \mathrm{ac} .\end{array}$

Crop :- Groundnut (Kharif).
Ref:-M h.53(250).
Site :- Agri. Res. Stn.. Kopergaon.
Type :~ ' M ’.
. Object :-To study the effect of application of Manganese and Boron on Groundnut.

1. BASAL CONDITIONS :
(i) (a) No. (b) Wheat. (c) Nil. (ii) (a) A type. (b) Refer soil analysis, Kopergaon. (iii) 11.7.1953.
(iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) Nil. (vi) Groundout-Spanish improved (early). (vii) Irrigated. (viii) 1 weeding and 2 hoeings. (ix) $17,22^{\prime \prime}$. (x) 25.10.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of Boron : $B_{0}=0$ and $B_{1}=4 \mathrm{lb}$./ac.
(2) 2 levels of Manganese : $M_{0}=0$ and $M_{1} \doteq 6 \mathrm{lb}$./ac.

Boron as Borax and Manganese as MnSO_{4}.
3. DESIGN :
(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 2. (iv) (a) $46^{\prime} \times 36^{\prime}$. (b) $36^{\prime} \times 30^{\circ}$. (v) $5^{\prime} \times 3^{\prime}$. (vi) Yes.
4. GENERAL:
(i) The growth of the crop was good. (ii) Slight attack of Tikka disease. (iii) Pod yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.!
5. RESULTS:
(i) $3171 \mathrm{lb} / / \mathrm{ac}$.
(ii) $128.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

	B_{0}	B_{1}	Mean
M_{0}	3275	3115	3195
M_{1}	3139	3155	3147
Mean	3207	3135	3171
S.E. of any marginal mean S.E. of body of table		$\begin{aligned} & =64.4 \mathrm{lb} . / \mathrm{ac} . \\ & =91.1 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop:-Groundnut (Kharif).

Site !m Agri. Res. Stn., Mohol.
Ref:- Mh. 52(349).
Type :m ' M '.
Object :-To find out the effect of Boron and Manganese on yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) No. (b) Jowar, (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) N.A. '(iv) (a) 2 harrowings. (b) Drilled. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) N.A. (v) Nil. (vi) Spanish (improved). (vii) Unirrigated. (viii) 2 interculturings. (ix) 17.49". (x) N.A.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 2 levels of Boron : $B_{0}=0$ and $B_{1}=4 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 levels of Manganese: $M_{0}=0$ and $M_{1}=6 \mathrm{lb}$./ac.

Boron as Borax and Manganese as $\mathrm{Mn} \mathrm{SO}_{\mathbf{4}}$.

3. DESIGN:

(i) 2×2 Fact. in R.B.D. (ii) (a) 4. (b) N.A. (iii) 2 . (iv) (a) $62^{\prime} \times 27^{\prime}$. (b) $52^{\prime} \times 21^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Pod yield. (iv) (a) 1952-53. (b) N.I. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
S. RESULTS :
(i) $304 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $74.59 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of B alone is highly significant.
.(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

	B_{0}	\mathbf{B}_{1}	Mean
\mathbf{M}_{0}	379	219	299
\mathbf{M}_{1}	$419{ }^{\circ}$	199	309
Mean	399	209	304
S.E. of any marginal mean S.E. of body of table		$\begin{aligned} & =37.29 \mathrm{lb} . / \mathrm{ac} . \\ & =52.75 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$	

Crop : Groundnut. (Kharif). \quad : Ref:- Mh. 53(358).
Site : \sim Agri. Res. Stn., Mohol.
Type :- 'M'.
Object :-To find out the effect of Boron and Manganese on the yield of Groundnut.

1. BASAL CONDITIONS :
(i) (a) No. (b) and (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Mohol (iii) N.A. (iv) (a) 2 harrowings. (b) Drilled. (c) $80 \mathrm{lb} / \mathrm{ac}$. (d) $12^{\prime \prime}$ between rows. (e) -. (vi) Nil. (vi) Spanish improved. (vii) Unirrigated. (viii) 1 interculturing. (ix) 36.13". (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 levels of Boron : $B_{0}=0$ and $B_{1}=4 \mathrm{lb} / \mathrm{ac}$.
(2) 2 levels of Manganese : $\mathrm{M}_{0}=0$ and $\mathrm{M}_{1}=6 \mathrm{lb}$./ac.

Boron as Borax and Manganese as $\mathrm{Mn} \mathrm{SO}_{4}$.

3. DESIGN :

(i) 2×2 Fact, in R.B.D. (ii) (a) 4. (b) N.A. (iii) 2 . (iv) (a) N.A. (b) $52^{\prime} \times 21^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) N.A. (iii) Pod yield. (iv) (a) 1952-1953. (b) No. (c) Nil. (v) (a) and (b) N.A. (iv) and (vii) Nil.
5. RESULTS:
(i) $1486 \mathrm{lb} / \mathrm{ac}$.
(ii) $152.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is signlficant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

	B_{0}	\mathbf{B}_{1}	Mean
\mathbf{M}_{0}	1456	1456	1456
M_{1}	1536	1496	1516
Mean	1496	1476	1486
S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =76.4 \mathrm{lb} . / \mathrm{ac} \\ & =108.18 \mathrm{lb} . / \mathrm{ac} \end{aligned}$

Crop :-Groundnut (Kharif).
Site :-Agri. Res. Stn., Mohol.

Ref : ${ }^{-M h . ~ 53(205) . ~}$
Type :-‘M'.

Object :-To study the effect of the leguminous crop Groundaut raised with and without $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ on succeeding cereal crop Wheat.

1. BASAL CONDITIONS :
(i (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mobol. (iii) 7.8.1953. (iv) (a) N.A. (b) Drilled with 3 coultered drill. (c) Nil. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Pondicherry (vii) Unirrigated. (viii) N.A. (ix) 36.93". (x) 4.1.1954.
2. TREATMENTS:
3. Control (no $\mathrm{P}_{2} \mathrm{O}_{5}$).
4. 50 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $100 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
7. Fallow.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super on 7.8.1953.
8. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5. (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} alround the net plot. (vi) Yes.
9. GENERAL :
(i) Stunted growth. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vii Nil. (vii) The crop was sown late owing to non-availability of Super. This had bad effect on the growth of the crop.
10. RESULTS :
(i) $602 \mathrm{lb} . / \mathrm{ac}$.
(ii) $121.8 \mathrm{lb} / / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathbf{l b} . / a c$.

Treatment	Av. yield
1.	591
.2.	645
3.	527
4.	644
5.	Fallow
S.E./mean	$=54.5 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Agri. Res. Stn., Mohol.

Ref :- Mh. 53(206).
Type :- 'M'.

Object :-To study the effect of the leguminous crop Groundnut grown with and without Super on the succeeding cereal crop Jowar.

1. BASAL CONDITIONS:

(i) (a) Jowar-Groundnut-Jowar. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Mohol. (iii) 7.8.1953. (iv) (a) N.A. (b) Drilled with 3 coultered drill. (c) 80 lb ./ac. (d) $18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Pondicherry-8. (vii) Unirrigated. (viii) N.A. (ix) 36.93". (x) 31.12.1953.

2. TREATMENTS :

1. Control ($\mathrm{no} \mathrm{P}_{2} \mathrm{O}_{5}$).
2. $50 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. 100 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. 150 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. Fallow in kharif and sown in rabi. $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super applied on 7.8.1953.
6. DESIGN :
(i) R.B.D. (ii) (a) 5. (b) N.A. (iii) 5 . (iv) (a) $42^{\prime} \times 30^{\prime}$. (b) $30^{\prime} \times 18^{\prime}$. (v) 6^{\prime} all round net plot. (vi) Yes.
7. GENERAL :
(i) The growth of the crop was stunted due to late sowing which is caused by the late receipt of Super. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-1953. (b) No. (c) N.A. (v) (a) Nil. (b) N.A. (vi) and (vii) Nil.
8. RESULTS :
(i) $512 \mathrm{lb} . / \mathrm{ac}$.
(ii) $49.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	505
2.	485
3.	507
4.	550
5.	Fallow
S.E./mean	$=22.1$ lb./ac.

Crop:- Groundnut (Kharif).
Site :-Agri. College Farm, Poona.

Ref:- Mh. 53(72).
Type: © ' M '.

- Object :-To study the effect of F.Y.M. in combination with N, P and K on the yield of Groundnut.

1. BASAL CONDITIONS :
(i) (a) Green manure-Groundnut-Chillies-Jowar. (b) Green manure and JJowar. (c) Green manuring. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 20.6.1953. (iv) (a) Ploughing given by tractor on 14.4.1953 clods were disced 2 times on 23.5.1953. The plots were harrowed 2-3 times after 1 st shower and kept ready for sowing. Top dressing done at the time of sowing. (b) Sown with 4 coultered $\mathbf{1 2}^{\text {n }}$ seed drill. (c) $12^{\prime \prime}$. (d) N.A. (e) N.A. (v) 10 C.L.lac. of compost. (vi) Spanish pea-nut (early). (vii) Unirrigater. (viii) 2 interculturings and 2 weedings. (ix) $10.85^{\prime \prime}$. (x) 29.9.1953.
2. TREATMENTS :

All combinations of (1), (2), (3) and (4).
(1) 2 levels of F.Y.M. : $\mathrm{F}_{0}=0$ and $\mathrm{F}_{1}=5$ C.L./ac.
(2) 2 levels of N as $A / S: N_{0}=0$ and $N_{1}=20 \mathrm{lb} . / \mathrm{ac}$. of N.
(3) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=20$ and $\mathrm{P}_{2}=40 \mathrm{lb}$./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
(4) 3 levels of $K_{2} O$ as Pot. sulphate : $\mathrm{K}_{0}=0, K_{1}=20$ and $K_{2}=40 \mathrm{lb}$./ac. of $\mathrm{K}_{\mathbf{2}} \mathrm{O}$.
3. DESIGN :
(i) $3 \times 3 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 36 . (b) N.A. (iii) $3 .{ }^{\circ}$ (iv) (a) $44^{\prime} \times 8^{\prime}$. (b) $40^{\circ} \times 6^{\circ}$ (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-N.A. (b) and (c) No. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) $2932 \mathrm{lb} . / \mathrm{ac}$.
(ii) $366.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only the main effect of \mathbf{F} and interactions NP and NF are significant. Others are not significant. (iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

	\mathbf{P}_{0}	$\mathbf{P}_{\mathbf{I}}$	P_{2}	N_{0}	N_{1}	F_{0}	F_{1}	Mean
K_{0}	2726	2814.	3028	2843	2869	2939	2773	2856
K_{1}	3235	2985	2926	2961	3136	3199	2898	3048
$\mathbf{K}_{\mathbf{2}}$	2939	2727	3004	2831	2949	2904	2876	2890
Mean	2967	2842	2986	2878	2985	3014	2849	
F_{0}	3153	2888	3001	3046	2982			
F_{1}	2781	2795	2971	2711	2988			
N_{0}	2902	2676	3057					
N_{1}	3033	3008	2915					

S.E. of marginal mean of P or K	$=61.0 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal meap of N or F	$=49.8 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $P \times K$	$=105.7 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $N \times F$	$=70.6 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table $N \times K$ or $N \times P$ or $F \times K$ or $F \times P$	$=86.3 \mathrm{lb} / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 51(68).
Type :- 'M'.

Object :-To study the optimum dose and method of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Groundnut.

1. BASAL CONDITIONS :
(i) Bajra+Tur-Groundnut. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur, (iii) 30.6 .1951 . (iv) (a) 2 harrowings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Big-Japan(late). (vii) Unirrigated. (viii) Nil. (ix) $23^{\prime \prime}$. (x) 18.11.1951.
2. TREATMENTS :

All combinations of (1) and (2) + a Control (no manure).
(1) 3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{2}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Broadcasting, $\mathrm{M}_{2}=$ Drilling in rows and $\mathrm{M}_{3}=$ Drilling in between rows.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
3. DESIGN:
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 36^{\prime}$. (b) $34^{\prime} \times 30^{\prime}$. (v) 3^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield, (iv) (a) 1951-1955. (b) No. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1484 \mathrm{lb} / \mathrm{ac}$.
(ii) $206.7 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{Jb} . / \mathrm{ac}$,

Control=1331 lb./ac.

	$\mathbf{M}_{\mathbf{1}}$	$\mathbf{M}_{\mathbf{2}}$	$\mathbf{M}_{\mathbf{2}}$	Mean
$\mathbf{P}_{\mathbf{1}}$	1484	1299	1708	1497
$\mathbf{P}_{\mathbf{8}}$	1566	1566	1331	1488
$\mathbf{P a}_{\mathbf{a}}$	1569	1533	1516	1519
Mean	1520	1466	1518	1501

S E. of any marginal mean
S.E. of control νs any marginal mean S.B. of body of table
$=59.7 \mathrm{lb} . / \mathrm{ae}$
$=119.4 \mathrm{lb} . / \mathrm{ac}$.
$=103.4 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Agri, Res. Stn., Sholapur.

Ref:- Mh. 52(96).
Type :- 'M'.

Object :-To study the optimum dose and method of application of $\mathrm{P}_{2} \mathrm{O}_{5}$ to Groundnut.

1. BASAL CONDITIONS :
(i) Bajra+Tur-Groundnut. (b) Bajra+Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur. (iii) 22.6.1952. (iv) (a) One ploughing and 2 harrowings. (b) N.A. (c) 80 lb ./ac. (d) 12°. (e) N.A. (v) Nil. (vi) Big-Japan (late). (vii) Unirrigated. (viii) One interculturing. (ix) 17. (x) 25.11.1952.
2. TREATMENTS :

All combinations of (1) and (2) + a Control (no manure).
(1) 3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb}$./ac.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{M}_{1}=$ Broadcasting, $\mathrm{M}_{2}=$ Drilling in rows and $\mathrm{M}_{3}=$ Drilling in between rows.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) $48.5^{\prime} \times 30^{\prime}$. (b) $42.5^{\prime} \times 24^{\prime}$: (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) 1951-1955. (b) No.' (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $462 \mathrm{lb} / / \mathrm{ac}$.
(ii) $106.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

$$
\text { Control }=482 \mathrm{lb} . / \mathrm{ac}
$$

	M_{1}	$\mathbf{M}_{\mathbf{2}}$	M8	Mean
P_{1}	437	514	494	482
P_{2}	565	441	468	491
\mathbf{P}_{3}	456	347 .	422	408
Mean	486	434	461	460
S.E. of any marginal mean $=30.9 \mathrm{lb} . / \mathrm{ac}$. S.E. of control νS. any other marginal mean $=61.7 \mathrm{lb} / \mathrm{ac}$, S.E. of bcdy of table $=53.4 \mathrm{lb} . / \mathrm{ac}$.				

Crop:- Groundnut (Kharif).
Ref:- Mh. 53(149). ,
Type : ' 'M'. . ' . ,
Object :-To study the optimum dose and method of application of $\mathrm{P}_{\mathbf{8}} \mathrm{O}_{\mathbf{5}}$ to Groundnut.

1. BASAL CONDITIONS :

(i) (a) Bajra+Tur-Groundnut. (b) Bajra+Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur. (iii) 24.7 .1953 . (iv) (a) 2 harrowings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12{ }^{\circ}$. " (o) N.A. (v) Nil. (vi) Big-Japan (lato). (vii) Unirrigated. (viii) 1 weeding by hand. (ix) 34. (x) 7.1.1954,
2. TREATMENTS :

All combinations of (1) and (2) + a Control (no manure).
(1) 3 doses of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{1}=10, \mathrm{P}_{2}=20$ and $\mathrm{P}_{3}=30 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 methods of application of $\mathrm{P}_{2} \mathrm{O}_{6}: \mathrm{M}_{1}=$ Broadcasting, $\mathrm{M}_{8}=$ Drilling in rows and $\mathrm{M}_{3}=$ Drilling in between rows.
3. DESIGN:
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 4. (iv) (a) $40^{\prime} \times 36^{\prime}$. (b) $34^{\prime} \times 30^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Not satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) 1951-1955. (b) No. . (c) N,A. (v) (a) Chas and Jeur. (vi) and (vii) Nil.
5. RESULTS :
(i) $1034 \mathrm{lb} . / \mathrm{ac}$.
(ii) 136.8 lb ./ac.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

$$
\text { Control = } 1025 \mathrm{lb} . / \mathrm{ac} .
$$

	\mathbf{M}_{1}	M_{8}	\mathbf{M}_{3}	Mean
\mathbf{P}_{1}	1084	1142	982	1069
$\mathbf{P}_{\mathbf{2}}$	1046	1030	982	1019
${ }_{i f}{ }_{\mathbf{8}}$	940	1030	1078	1016
Mean	1023	1068	1014	
S.E of any marginal mean			- 39.48 lb //ac.	
S.E. of control v s. any marginal mean			$=78.97 \mathrm{lb}$ //ac.	
S.E. of body of table			- $68.39 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Groundnut (Kharif).
Site :- Agri. Res. Stn., Sholapur.

Ref:- Mh. 51(67).
Type :m ' M '.

Object :-To ștudy the effect of raro elements Borax and MnSO_{4} alone and in combination on leguminors crop Groundinut. "

1. BASAL CONDITIONS:

[^4]
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron: $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb}$./ac.
(2) 4 levels of Manganese : $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{8}=9 \mathrm{lb} . / \mathrm{ac}$.

Boron as Borax and Manganese as Manganese sulphate.
3. DESIGN:
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 4 . (iv) (a) $36^{\prime} \times 14^{\prime}$, (b) $33^{\prime} \times 11^{\prime}$. (v) 1.5^{\prime} all round the net plot. (vi) Yes,
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield., (iv) (a) 1951-1955. (b) and (c) No. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil,
.5. RESULTS:
(i) $1023 \mathrm{lb} . / \mathrm{ac}$.
(ii) $262.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effects of M and B are significant. Interaction is not significant.
(iv) Av. yield of pod in lb ./ac.

	B_{0}	B_{1}	B_{2}	\mathbf{B}_{3}	Mean
M_{0}	720	870	1110	1290	$\because 997$
\mathbf{M}_{1}	900	-840	900	900	885
$\mathrm{M}_{\mathbf{8}}$	990	1170	1380	900	1110
M_{3}	1080	. 930	1260	1140	1102
Mean	922	952	1162	1057	1023
S.E. of any marginal mean S.E. of body of table			$=66.0 \mathrm{lb} . / \mathrm{ac}$.		

Crop :-Groundnut (Kharif).
Ref :-Mh. 52(97).
Site :-Agri. Res. Stn., Sholapur.
Type:-‘'M.
Object :-To study the effect of rare elements of Borax and MnSo_{4} alone and in combination on the leguminous crop Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur: (iii) 21.6 .1952 . (iv) (a) One ploughing and 2 harrowings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) 12". (e) N.A. (v) Nil. (vi) Big-Japan. (vii) Unirrigated. (viii) One interculturing. (ix) 17". (x) 26.11.1952.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron : $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{8}=6 \mathrm{lb} / \mathrm{ac}$.
(2) 4 levels of Manganese : $\mathrm{M}_{0}=0, \mathrm{M}_{1}=3, \mathrm{M}_{2}=6$ and $\mathrm{M}_{2}=9 \mathrm{lb}$./ac.

Boron as Borax and Manganese as Manganese Sulphate.
3. DESIGN :
(i) 4×4 Fact- in R.B.D. (ii) (a) 16 . (b) N.A. (iii) 6 . (iv) (a) $36^{\prime} \times 14^{\prime}$, (b) $33^{\prime} \times 11^{\prime}$. (v) 1.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 1951-1955. (b) No. . (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $491 \mathrm{lb} . / \mathrm{ac}$.
(ii) $85.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of Pod in lb, /ac.

	B_{0}	$\mathbf{B r}_{\mathbf{1}}$	\mathbf{H}_{2}	B	Mean
M_{0}	397	485	471	491	461
M_{1}	506	435	471	472	471
M_{3}	525	519	521	512	519
M_{3}	555	491	485	515	511
Mean	496	483	487	497	491
S.E. of any margioal mean S.E. of body of table			$\begin{aligned} & =17.0 \mathrm{lb} / \mathrm{ac} . \\ & =35.0 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$		

$\begin{array}{ll}\text { Crop :- Groundnut (Kharif). } & \text { Ref: Mh. 53(148). } \\ \text { Sie :-Agri. Res. Stn., Sholapur. } & \text { Type:-'M'. }\end{array}$
Object :-To study the effect of rare elements Borax and MnSO ${ }_{4}$ alone and in combination on the leguminous crop of Groundaut.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Bajra+Tur. (b) Bajra+Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur. (iii) 17.7.1953. (iv) (a) 2 harrowings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $12^{\prime \prime}$. (c) N.A. (v) Nil. (vi) Big-Japan (late). (vii) Unirrigated. (viii) One interculturing and One weeding. (ix) 35°. (x) 6.12.1953.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 4 levels of Boron: $B_{0}=0, B_{1}=2, B_{2}=4$ and $B_{3}=6 \mathrm{lb}$./ac.
(2) 4 levels of Manganese: $M_{0}=0, M_{1}=3, M_{2}=6$ and $M_{3}=9 \mathrm{lb} . / a c$.

Boron as Borax and Manganese as Manganese Sulphate.
3. DESIGN :
(i) 4×4 Fact. in R.B.D. (ii) (a) 16. (b) N.A. (iii) 6. (iv) (a) $36^{\circ} \times 14^{\prime}$. (b) $33^{\prime} \times 12^{\prime}$. (v) 1.5^{\prime} ring round the net plot. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 1951-195s. (b) No. (c) N.A. (v) (a) Chas and Jeur. (vi) and (vii) Nil.
5. RESULTS :
(i) $656 \mathrm{lb} / \mathrm{ac}$.
(ii) $79.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of B alono is significant.
(iv) Av. yield of Pod in $16 . / a c$.

	\mathbf{B}_{0}	\mathbf{B}_{1}	B_{2}	Ba	Mean
M_{0}	525	570	675	735	626
\mathbf{M}_{1}	615	585	705	630	634
\mathbf{M}_{2}	660	615	690	675	660
M_{3}	690	680	795	645	702
Mean	622	612	716	671	656
$\begin{array}{ll}\text { S.E. of any marginal mean } & =16.15 \mathrm{lb} . / \mathrm{ac}, \\ \text { S.B. of body of table } & =32.31 \mathrm{lb} . / \mathrm{ac} .\end{array}$					

Crop :-Groundnut (Kharif).
Site :-Govt. Seed and Demonstration Farm, Washím.

Ref: :Mh. 49(63).
Type :-‘M’.

Object :-To study the residual effect of T.C. and other manures on the subsequent crop.

1. BASAL CONDITIONS :
(i) (a) to (c) N.À. (ii) (a) Medium black. (b) N.A. (iii) 29.6.1949. (iv) (a) 3 bakharings. (b) By Argada. (c) to (e) N.A. (v) Nil. (vi) AK-12-24 (medium). (vii) Unirrigated. (viii) 1 weeding and 3 hoeings. (ix) 63.59". (x) 28.10.1949.
2. TREATMENTS :
3. Control (no manure).
4. $20 \mathrm{lb} . / \mathrm{ac}$. of N as T.C.
5. $40 \mathrm{lb} / \mathrm{ac}$ of N as T.C.
6. $20 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M.
7. $40 \mathrm{lb} . / \mathrm{ac}$. of N as F.Y.M.
8. $10 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C.
9. 20 lb ./ac. of N as G.N.C.
10. $10 \mathrm{lb} . / \mathrm{ac}$. of N as A / S.
11. 20 lb ./ac. of N as A / S. Manures applied to last year's crop.
12. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $66^{\circ} \times 16.5^{\prime}$, (v) N.A. (vi) Yes.
13. GENERAL :
(i) Normal. (ii) Attack of aphids. (iii) Pod yield. (iv) (a) 1946-1952 (Direct effect up to 1948 and then residual effect up to 1952). (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
14. RESULTS:
(i) $609 \mathrm{lb} . / \mathrm{ac}$.
(ii) $75.56 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	588	6.	567
2.	628	7.	588
3.	653	8.	595
4.	615	9.	649
5.	597		
	S.E./mean	$=30.85 \mathrm{lb} . / \mathrm{ac}$.	

Crop :-Groundnut (Kharif).	Ref :-Mh. 52(129).
Site :-Govt. Seed and Demonstration Farm, Washim.	Type :-'M’.

Object :-To study the residual effect of manures applied in 1948-49 on Groundnut yield.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) N.A. (iii) 7.7.1952. '(iv) (a) Ono ploughing and 3 bakharings. (b) By Argada. (c) 80 Jb /ac. (d) and (e) N.A. '(v) Nil. (vi) AK—12-24. (vii) Unirrigated. (viii) 2 hoeings and 1 weeding. '(ix) 17.95". (x) 24.10.1952.

2. TREATMENTS:

1. Control (no manuro).
2. 20 lb ./ac. of N as T.C.
3. $40 \mathrm{lb} / \mathrm{ac}$. of N as T.C.

4, 20 lb ./ac. of N as P.Y.M.
5. 40 lb ./ac. of N as F.Y.M.
6. 10 lb ./ac of N as G.N.C.
7. $20 \mathrm{lb} . / \mathrm{ac}$. of N as $\mathbf{G . N . C .}$
8. 10 lb ./ac. of N as A / S.
9. 20 lb ./ac. of N as A / S.

Manures applied in 1948-49.
3. DESIGN
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 6 , (iv) (a) N.A. (b) $66^{\circ} \times 16.5^{\circ}$. (v) $2 \mathbf{l}^{\circ}$ between plots. (vi) Yes,
4. GENERAL :
(i) Germination was not satisfactory in all plots. About 25 to 30% seed was damaged due to fungus (ii) Mild attack of aphids which was minimised by lad $ر$-bird-beetles. (iii) Germination counts and pod yield. (iv) (a) 1946-1952. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(1) $520.3 \mathrm{lb} / \mathrm{ac}$.
(ii) 37.28 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield	Treatment	Av. yield
1.	550	6.	55
2.	533	7.	500.
3.	520	8.	510
4.	528	9.	500
5.	517		
	S.E./mean	-23.39 lb./ac.	1

Crop :m Groundnut (Kharif).

Ref :- Mh. 50(81).
Site :- Govt. Seed and Demonstration Farm, Washim. Type :- 'M'.
Object :-To find out the residual effect of T.C. and other manures on the subsequent crop,

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut. (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) 7.7.1950. (iv) (a) 1 ploughing and 3 bakharings (b) N.A. (c) 80 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) AK-$12-24$ (medium). (vii) Unirrigated. (viii) 1 weeding and 3 hoeings. (ix) 18.42". (x) 24.10.1950.
2. TREATMENTS:
3. No manure (control).
4. 10 C.L./ac. cf compost.
5. 20 C .L./ac. of compost.
6. 10 C.L./ac. of F.Y.M.
7. 20 C.L./ac. of F.Y.M.
8. $330 \mathrm{lb} / \mathrm{ac}$. of G.N.C.

Manures applied to last year's crop.
3. DESIGN :
(i) R.B.D. (ii) (a) 6 . (b) N.A. (iii) 6 . (iv) (a) N.A. (b) $66^{\prime} \times 16.5^{\circ}$. (v) 4^{\prime} between plots and 4^{\prime} between replications. (vi) Yes.
4. GENERAL:
(i) N.A. (ii) Attack of aphids controlled by spraying fish oil. (iii) Pod yield. (iv) (a) 1946-1950. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) 906 lb /ac.
(ii) $142.0 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb ./ac.

Treatment .	Av. yield
1.	970
2.	843
3.	942
4.	888
5.	906
6.	888
S.E./mean	$=57.9 \mathrm{lb} . / \mathrm{ac}$.

```
Crop :m Groundnut (Kharif).
Site :- Govt. Exptl. Farm, Yeotmal.
Ref:- Mh, 48(59).
Type:m 'M'.
```

Object :-To study the residual effect of compost on Groundnut.

1. BASAL CONDITIONS :

(i) (a) Jowar-Groundnut-Cotton. (b) Jowar. (c) As per treatments. (ii) (a) Black medium loam. (b) Refer soil analysis, Yeotmal. (ii) 2.7.1948. (iv) (a) 1 ploughing and 3 bakharings. (b) N.A. (c) 70 to 80 lb.lac. (d, and (e) N.A. (v) Njl. (vi) AK-12-24, (vii) Unirrigated. (viii) Interculturing in August. (ix) 48.12*. (x) End of Oct. 1948.

2. TREATMENTS:

1. Control.
2. Compost at 10 C.L./ac.
3. Compost at 20 C.L./ac.
4. Cattle dung at 10 C.L./ac. (F.Y.M.).
5. F.Y.M. at 20 C.L./ac.
6. G.N.C. at 4 md./ac.
7. A / S at $120 \mathrm{lb} . / \mathrm{ac}$. of N .

These treatments were applied to the previous crop Jowar and their residual effect was studied on Groundnut.
3. DESIGN:
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) N.A.- (b) $1 / 40$ acre. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Nil. (iii) Pod yield. (iv) (a) 1947-1S48. (b) Yes. (c) N.A. (v) (a) and (b) N.A. (vi) Excessive rains resulted in low yield. (vii) Nil.
5. RESULTS :
(i) $892 \mathrm{lb} / \mathrm{ac}$.
(ii) $303.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are not significant.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield
1.	987
2.	764
3.	857
4.	890
5.	1047
6.	847.
7.	854
S.E./mean	$=123.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Govt. Exptl. Farm, Akola.

Ref ${ }^{*}$ Mh. 50 (83).
Type : ${ }^{\prime}$ ' C '.

Object:-To find out the most economical spacing for Groundnut.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) 2.5 C.L./ac. of F.Y.M. and 80 lb /ac. of G.N.C. powder. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 19.7.1950. (iv): (a) 2 bakharings and one ploughing. (b) Dibbling. (c) $90 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) Nil. (v) $200 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. on 30.6.1950. (vi) AK-12-24 (medium). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 16.89". (x) 17.10.1950.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings between rows: $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
(2) 3 spacings between plants : $S_{1}^{\prime}=6^{\prime \prime} S_{2}^{\prime}=9^{n}$ and $S_{3}^{\prime}=12^{\circ}$.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Aphid attack. No control measures taken. (iii) Top and pod yield. (iv) (a) 1950-1953. (b) No. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $666 \mathrm{lb} . / \mathrm{ac}$.
(ii) $35.33 \mathrm{lb} / \mathrm{ac}$.
(iii) Main effect of S^{\prime} and interaction $S \times S^{\prime}$ are sigaificant. Main effect of S is not significant.
(iv) Av. yield of pod in lb ./ac.

	S_{1}	S_{2}	$\mathbf{S}_{\mathbf{8}}$	Mean
$S_{1}{ }_{1}$	658	712	682	684
S^{\prime}	690	682	640	671
\mathbf{S}^{\prime}	620	660	645	642
Mean	'656	685	656	666
S.E. of any marginal mean S.E. of body of table			$\begin{aligned} & =10.20 \mathrm{lb} . / \mathrm{ac} \\ & =17.67 \mathrm{lb} . / \mathrm{ac.} \end{aligned}$	

Crop :- Groundnut (Kharif).
Site :- Govt. Exptl. Farm, Akola.

Ref:- Mh. 51(91).
Type :- 'C'.

Object :-To find out the most economical spacing for Groundnut.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Cotton, (c) 4 C.L./ac. of F.Y.M. and $300 \mathrm{lb} . / \mathrm{ac}$. of oil cake+ 100 lb ./ac. of A/S. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola.'(iii) 21.7.1951. (iv) (a) 1 heavy bakharing and one light bakharing. (b) Dibbling. (c) $90 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v) $200 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. ono month before sowing. (vi) AK-12-24 (medium). (vii) Unirrigated. (viii); 3 hoeings and 2 weedings.. (ix) 24.32". (x) 10.11.1951.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings between rows: $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
(2) 3 spacings between plants: $\mathrm{S}_{1}^{\prime}=6^{\prime \prime}, S_{2}^{\prime}=9^{\prime \prime}$ and $S^{\prime}{ }_{3}=12^{\prime \prime}$.
3. DESIGN :
(i) 3×3 Fact. in R.B.D.
(ii) (a) 9.
(b) N.A.
(iii) 4. (iv) (a) N.A.
(b) $66^{\circ} \times 16.5^{\circ}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Aphids attack observed. No control measures taken. (iii) Top and pod yield. (iv) (a) 1950-1953. (b) No. .(c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1609 \mathrm{lb} / \mathrm{ac}$.
(ii) $141.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of S^{\prime} and interaction $S \times S^{\prime}$ are significant. Main effect of S is not significant.
(iv) Av. yield of pod in lb,/ac.

	S_{1}	$S_{\mathbf{2}}$	$S_{\mathbf{3}}$	Mean
S_{1}^{\prime}	1720	1695	1770	1728
S_{1}^{\prime}	1620	1680	1620	1640
S^{\prime}				
Mean	1585	1480	1315	1460

Crop: Groundnut (Kharif)

Ref: Mh. 52(123).
Site :~ Govt. Exptl. Farm, Akola.
Type:- 'C'.
Object :-To find out the most economical spacing for Groundnut.

1. BASAL CONDITIONS:

(i) (a) Nil. (b Jowar. (c) 242 lb /ac. of G.N.C. top dressed. (ii) (a) Black cotton soil. (b) Refer soil analysis; Akola. (iij) 16.7.1952. (iv) (a) and (b), N.A. (c) $90 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (c) N.A. (v) Nil. (vi) AK-12-24. (medium). (vii) Unitrigated. (vii) 3 hoeings and 2 weedings. (ix) 22.03". (x) 20.12.1952.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings between rows: $S_{1}=12^{\circ}, S_{2}=15^{\circ}$ and $S_{3}=18^{\circ}$.
(2) 3 spacings between plants : $S^{\prime} \mathbf{1}^{\prime \prime} 6^{\prime \prime}, S_{2}^{\prime}=9^{\prime \prime}$ and $S^{\prime}{ }_{8}^{\prime}=12^{\prime \prime}$.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a), 9.(b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac, (v) N.A. (vi) Yes.
4. GENERAL :
(i) Due to unusual drought conditions pod formation was not satis'actory. (ii) Nil. (iii) Top and pod yield. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $551 \mathrm{lb} / \mathrm{ac}$.
(ii) 66.80 lb ./ac.
(iii) Main effect of S^{\prime} and interaction $S \times S^{\prime}$ are significant. Main effect of S is not significant.
(iv) Av. yield of pod in lb./ac.

S.E. of any marginal mean $=19.23 \mathrm{lk}$./ac.
S.E. of body of table : $=\mathbf{3 3 . 4 0} \mathrm{lb} . / \mathrm{ac}$

Crop :-Groundnut (Kharif).
Site :-Govt. Exptl Farm. Akola.

Ref:-Mh. 53(171)
'Type: "'C'.

Object: To find out the most economical spacing for Groundnut.

4. BASAL CONDITIONS :

(i) (a) Nil. (b) Cotton. (c) 30 lb .N./ac.; half as F.Y.M. and half as A/S top dressed. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 14.7 1953. (iv) (a) N.A. (b) N.A. (c) 90 lb./ac. (d) As per treatments. (e) N.A. (v) $200 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. (vi) AK-12-24. (medium). (vii) Unirrigated. (viii) 3 hoeings and I weeding. (ix) 26.38. (x) 30.10.1953.
2. TREATMENTS:

All combinations of (1) and (2)
(1) 3 spacings between rows: $S_{1}=12^{\prime \prime}, S_{8}=15^{\prime \prime}$ and $S_{3}=18^{\circ}$.
(2) 3 spacings between plants : $S_{1}^{\prime}=6^{\prime \prime}, S_{2}^{\prime}=9^{\prime \prime}$ and $S_{3}^{\prime}=12^{\prime \prime}$.
:3. DESIGN:
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\prime} \times 16.5^{\prime}$. (v) One row on either side of plot. (vi) Yes.

- GENERAL:
(i) Good. (ii) Aphids observed in Ist week of August. The attack disappeared by the presence of lady bird beetles. (iii) Top and pod yield, (iv) (a) 1996 to 1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Nil.

5. RESULTS :

(i) $1207 \mathrm{lb} . / \mathrm{ac}$.
(ii) $113.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Both the main effects are highly significant while the interaction is not significant.
(iv) Av. yield of pod in lb, /ac.

	S_{1}	S_{2}	Sa	Mean
S_{1}	1550	1350	1370	1423
$\mathrm{S}_{\mathbf{\prime}}$	1200	1200	1070	1157
$\mathrm{S}^{\prime}{ }^{\text {a }}$	1160	1040	920	1040
Mean	1303	1197	1120	1207
S.E. of any marginal mean $\quad=32.75 \mathrm{lb} . / \mathrm{ac}$. S.E. of body of table $\quad=56.72 \mathrm{lb}$.ac.				

Crop:- Groundnut. (Kharif).
Site :- Agri. Res. Stn., Jalagaon.

Ref :- Mh. 51(43).
Type :- ‘C’.

Object :-To find out the suitable spacing and seed rate for Groundnut.

1. BASAL CONDITIONS:
(i) (a) NA. (b) Jowar. (c) Nil. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 13.7.1951. (iv) (a) N.A. (b) Drilled. (c) and (d) As per treatments. (e) N.A. (v) N.A. (vi) Spanish improved (early). (vii) Unirrigated. (viii) 2 weedings and 3 hoeings. (ix) 20.14*. (x) 7.11.1951.
2. TREATMENTS:-

Main-plot treatments :
3 spacings : $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime}$ and $S_{3}=18^{\prime \prime}$.
Sub-plot treatments :
3 seedrates: $R_{1}=60, R_{2}=80$ and $R_{3}=100 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $44^{\circ} \times 30^{\circ}$, $45^{\prime} \times 30^{\prime}$ and $46^{\prime} \times 30^{\prime}$ for $12^{\prime \prime}, 15^{\prime \prime}$ and $18^{\prime \prime}$ spacings respectively. (b) $40^{\prime} \times 26^{\prime}$. (v) $2^{\prime} \times 2^{\prime}, 2.5^{\prime} \times 2^{\prime}$ and $3^{\prime} \times 2^{\prime}$ for $12^{\prime \prime}, 15^{\prime \prime}$ and $18^{\prime \prime}$ spacings respectively. (vi) Yes.
4. GENERAL:
(i) At the time of pod formation, there was not sufficient moisture in the soil and hence there uas not proper development of pods and hence less yield. (ii) Attack of aphis ol served on 13.8.1951. (iii) Pod and chaff yield. (iv) (a) 1951-1954. (b) No. (c) N.A. (v) (a) Dhulia, Karad and Padegaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $990 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $43.9 \mathrm{lb} . / \mathrm{ac}$.
(b) $138.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Spacing effect alone is highly significant.
(iv) Av. yield of pod in $\mathbf{l b} . / a c$.

	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{9}}$	$\mathbf{S}_{\mathbf{z}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	1110	934	871	972
$\mathbf{R}_{\mathbf{2}}$	966	982	1110	1019
$\dot{\mathbf{R}_{\mathbf{3}}}$	1002	954	979	978
Mean	1026	957	987	990

S.B. of difference of two

1. S marginal means	$=14.6 \mathrm{lb} . / \mathrm{ac}$,
2. R marginal means	$=46.3 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of S	
4. S means at the same level of R	
	$=80.2 \mathrm{lb} . / \mathrm{ac}$.
	$=67.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut (Kharif).
Site :-Agri. Res. Stn., Jalagaon.
Ref :-Mh. 52(104).
Type:- ${ }^{\prime} \mathrm{C}$ '.
Object :-To find out the suitable spacing and seed rate for Groundnut.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Cotton. (c) N.A. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 28.6.1952. (iv) (a) N.A. (b) Drilled. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Spanish improved (early). (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 17.61". (x) 27.10.1952.
2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
Sub-plot treatments :
3 seedrates : $R_{1}=60, R_{2}=80$ and $R_{8}=100 \mathrm{lb}$./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Mainplot : $44^{\prime} \times 90^{\prime}, 45 \times 90^{\prime}$ and $46^{\prime} \times 90^{\prime}$ and Sub-plot: $44^{\prime} \times 30^{\prime}, 45^{\prime} \times 30^{\prime}$ and $46^{\prime} \times 30^{\prime}$ for $12^{\prime \prime}, 15^{\prime \prime}$ and $18^{\prime \prime}$ spacings respectively. (b) $40^{\prime} \times 26^{\prime}$. (v) 2 rows on either side and 2^{\prime} at either ends. (vi) Yes.
4. GENERAL :
(i) The germination was satisfactory. Insufficient rain and the diseases hampered the crop to a considerable extent. hence there was low yield. (ii) Attack of aphis observed. Attacked by Tikka and Root-rot disease. (iii) Pod and chaff yield. (iv) (a) 1951-1954. (b) No. (c) N.A. (v) (a) Dhulia, Karad and Padegaon. (b) No. (vi) and (vii) Nil.
5. RESULTS:
(i) $553 \mathrm{lb}, / \mathrm{ac}$.
(ii) (a) $111.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $107.5 \mathrm{lb} / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb ./ac.

	S_{1}	$\mathbf{S}_{\mathbf{1}}$	S_{3}	Mean
\mathbf{R}_{1}	557	. 551	585	564
R_{8}	551	555	520	542
R_{8}	568	482	613	454
Mean	559	529	573	553

S.E. of difference of two

1. S marginal mears
$=37.2 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means
$=35.8 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of S
$=62.1 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of R $=62,9 \mathrm{lb}$./ac.

Crop :- Groundnut (Kharif).

Ref:- Mh. 53(132).
Site :- Agri. Res. Stn., Jalagaon.
Type :- 'C'。
Object :-To find out suitable spacing and seed rate for Groundnut.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Cotton. (c) $7 \frac{1}{2}$ C.L./ac. of F.Y.M. $+100 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 23.6.1953. (iv) (a) 1 ploughing and 4 to 6 harrowings. (b) Drilled. . (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Spanish improved (early). (vii) Unirrigated. (viii) 2 hoeings and 2 weedings. (ix) 23.77". (x) 25.10.1953.
2. TREATMENTS:

Main-plot treatments :

3 spacings : $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
Sub-plot treatments :
3 seed rates: $R_{1}=60, R_{2}=80$ and $R_{8}=100 \mathrm{lb}$./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) Sub plot : $44^{\prime} \times 30^{\prime}, 45^{\prime} \times 30^{\prime}, 46^{\prime} \times 30^{\prime}$ for S_{1}, S_{2} and S_{3} respectively. (b) $40^{\prime} \times 26^{\prime}$. (b) 2 rows on either side and 2^{\prime} at either ends. (vi) Yes.
4. GENERAL :
(i) Few gaps were observed due to break of rains. Growth of the crop was very fine. (ii) Attack of aphis and Tikka observed. (iii) Pod and chaff yield. (iv) (a) 1951-1954. (b) and (c) No. (v) (a) Dhulia, Karad and Padegaon, (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1736 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $209.6 \mathrm{lb} . / \mathrm{ac}$.
(b) $185.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only seedrate effect is significant:
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

	S_{1}	$\mathrm{~S}_{\mathbf{2}}$	\mathbf{S}_{3}
$\mathbf{R}_{\mathbf{1}}$	1763	1593	1676
$\mathbf{R}_{\mathbf{2}}$	1856	1579	1630
$\mathbf{R}_{\mathbf{3}}$	1880	1748	1898
Mean	1833	1640	1735
1677			
1688			
1842			
1736			

S.E. of difference of two

1. S marginal means	$=69.8 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means	$=59.4 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of S	$=106.7 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of R	$=111.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :- Agri. Res., Stn., Karad.

Ref:- Mh. 52(26).
Type : ' $\mathbf{~ M}$ '.

Object :-To find out optimum spacing and seed rate for Groundnut.

1. BASAL CONDITIONS :

(i) (a) Groundnut-Bajra. (b) Bajra. (c) 5 C.L./ac. of F.YM. (ii) (a) Clay loam. (b) N.A. (iii) N.A. (iv) (a) 1 ploughing and 3 harrowings. (b) to (c) N.A. (v) 5 C.L./ac. of F.Y.M. applied about 1 month prior to sowing and mixed by harrowing. (vi) Spanish-5 (early and erect type). (vii) Unirrigated. (viii) N.A. (ix) $27.10^{\prime \prime}$ (x) N.A.

2. TREATMENTS:

Main-plot treatments :
3 spacings: $S_{1}=12^{\prime \prime}, S_{2}=15^{\circ}$ and $S_{8}=18^{\circ}$.
Sub-plot treatments :
3 seedrates : $R_{1}=80, R_{2}=100$ and $\mathbf{R}_{\mathbf{3}}=120 \mathrm{lb}$./ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block and 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $15^{\prime} \times 15^{\prime}$. (b) $15^{\prime} \times 13^{\circ}$. (v) 1^{\prime} on each side. (vi) Yes.
4. GENERAL:
(i) No lodging. (ii) Nil. (iii) Pod yield, (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) Jalagaon and Padegaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1516 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $517.2 \mathrm{lb} . / \mathrm{ac}$.
(b) $472.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Ar. yield of pod in lb //ac.

	S_{1}	S	\mathbf{S}_{3}	Mean
\mathbf{R}_{1}	914	1801	1365	1360
R	1700	1393	1584	1559
\mathbf{R}_{8}	1557	1693	1640	1630
Mean	. 1390	1629	1530	1516

S.E. of difference of two

1. S marginal means
$=210.9 \mathrm{lb} . / \mathrm{ac}$.
$=192.9 \mathrm{lb} . / \mathrm{ac}$.
$=334.2 \mathrm{lb} . / \mathrm{ac}$.
$=345.1 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means
3. R means at the same level of S
4. S means at the same level of R

Crop :~ Groundnut (Kharif).
Ref :-Mh. 53(303).
Site : \sim Agri. Res. Stn., Karad.
Type:- 'C'.
Object :-To find out the optimum spacing and seedrate for Groundnut.

1. BASAL CONDITIONS :

- (i) (a) Groundnut-Jowar. (b) Jowar. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black, (b) N.A. (iii) 9.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. one month before-sowing. (vi) Spanish (early). (vii) Unirrigated. (viii) N.A. (ix) $38^{\prime \prime}$. (x) N.A.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
(2) 3 seed rates: $R_{1}=80, R_{2}=100$ and $R_{8}=120 \mathrm{lb}$./ac.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4 . (iv) (a) and (b) $15^{\prime} \times 15^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) $1952-1954$. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil,
5. RESULTS :
(i) $1016 \mathrm{Ib} . / \mathrm{ac}$.
(ii) $207.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif). \quad Ref :- Mh. 52(25).
Site :- Agri. Res. Stn., Karad. \quad Type :- 'C'.

Object:-To find out the optimum spacing ánd seedrate for Groundnut.

1. BASAL CONDITIONS:
(i) (a) Groundnut-Bajra. (b) Bajra. (c) 3 C.L./ac. of F.Y.M. (ii) (a) Clay loam. (b) N.A. (iii) N.A. (iv) (a) 1 ploughing and 3 harrowings and other details N.A. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied about 1 month prior to sowing and mixed by harrowing. (vi) $K-1$ (late ; spreading type). (vii) Unirrigated (viii) N.A. (ix) $27.10^{\prime \prime}$. (x) N.A.
2. TREATMENTS:

Main-plot treatments :
3 spacings: $S_{1}=12^{\prime \prime}, S_{2}=18^{\prime \prime}$ and $S_{3}=24^{*}$.
Sub-plot treatments :
3 seed rates : $\mathbf{R}_{\mathbf{1}}=80, \mathbf{R}_{\mathbf{2}}=100$ and $\mathbf{R}_{\mathbf{2}}=120 \mathrm{lb}$. ac.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $15^{\prime} \times 12^{\prime}$. (b) $13^{\prime} \times 12^{\prime}$. (v) 1^{\prime} on each side. (vi) Yes.
4. GENERAL :
(i) No lodging. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-1954. (b) No. (c) N.A. (v) (a) Jalagaon and Padegaon. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1330 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $209.3 \mathrm{lb} . / \mathrm{ac}$.
(b) $272.6 \mathrm{lb}, / \mathrm{ac}$.
(iii) S effect is highly significant. Others are not significant.
(iv) Av. yield of pod in lb./ac.

	S_{1}	$S_{\mathbf{2}}$	$S_{\mathbf{3}}$	Mean
\mathbf{R}_{1}	1731	1230	911	1291
$\mathbf{R}_{\mathbf{8}}$	1526	1321	1190	1346
$\mathbf{R}_{\mathbf{g}}$	1596	1230	1234	1353
Mean	1618	1260	1112	1330

S.E. of difference of two

1. S marginal means	$=85.4 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means	$=111.3 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of S	$=192.8 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of R	$=179.1 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Groundnut (Kharif).

Site :-Agri, Res. Stn., Karad.
Object :-To find out the optimum spacing and seedrate for Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Jowar. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) N.A. (iii) 10.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. one month before sowing. (vi) Dombi-1. (late) (vii) Unirrigated. (viii) N.A. (ix) 38". (x) N.A.
2. TREATMENTS :

All combinations of (1) and (2)
(1) 3 spacings: $S_{1}=12^{\prime}, S_{2}=18^{\prime}$ and $S_{3}=24^{\prime \prime}$.
(2) 3 seedrates: $R_{1}=80, R_{8}=100$ aed $R_{s}^{\prime}=120 \mathrm{lb}$./ac.
3. DESIGN :
(i) 3×3 Fact. in R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) and (b) $15^{\prime} \times 12^{\prime}$. (v) Nil. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 1953-N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1033 \mathrm{lb} . / \mathrm{ac}$.
(ii) $321.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb./ac.

	S_{1}	s	S_{3}	Mean
\mathbf{R}_{1}	843	832	1070	915
$\mathrm{R}_{\mathbf{z}}$	979	1270	998	1082
R8	1247	1051	1005	1101
Mean	1023	1051	1024	1033
S.E. of any marginal mean S.E, of body of table			$=92.7 \mathrm{lb} . / \mathrm{ac}$.$=160.6 \mathrm{lb} / \mathrm{ac}$.	

Crop :-Groundnut (Kharif).
Site :-Govt. Exptl. Farm, Nagpur.

Ref : ${ }^{-M h .}$ 51(121).
Type:-‘‘’.

Object :-To find out the optimum line to line spacing for Groundnut.

1. BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 11.7.1951. (iv) (a) 1 ploughing and 3 bakharings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v) Nil. (vi) AK-12-24 (medium), (vii) Unirrigated. (viii) 3 hoeings. (ix) 37.55". (x) 22.10.1951.
2. TREATMENTS:

3 line to line spacings: $S_{1}=12^{\prime \prime}, S_{2}=18^{\prime \prime}$ and $S_{3}=24^{\prime \prime}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\prime} \times 16.5^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil, (iii) Pod yield. (iv) (a) N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1923 \mathrm{lb} . / \mathrm{ac}$.
(ii) $177.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
$\mathbf{S}_{\mathbf{1}}$	1920
$\mathbf{S}_{\mathbf{2}}$	1970
$\mathbf{S}_{\mathbf{8}}$	1880
S.E./mean	$=88.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Ref :- Mh. 52(141).
Site :- Govt. Exptl. Farm, Nagpur.
Type:- 'C'.
Object :-To find out the optimum line to line spacing for Groundant.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nagpur. (iii) 6.7.1952. (iv) (a) 4-5 bakharings and 1 ploughing. (b) Argada sown. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) As per treatments. (e) N.A. (v) Nil. (vi) AK-12-24 (medium). (vii) Unirrigated. (viii) 3 to 4 hoeings. (ix) 29.32". (x) 16.10.1932.
2. TREATMENTS :

3 spacings between rows: $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{2}=18^{\prime \prime}$.
3. DESIGN:
(i) R.B.D. (ii) (a) 3. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ th ac. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal (ii) Nil. (iii) Pod yield. (iv) (a) $1950-$ N.A. (b) No. (c) N.A. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $1449 \mathrm{lb} / \mathrm{ac}$.
(ii) $133.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield
.S_{1}	1468
S_{2}	1490
S_{3}	1388
S.E./mean	$=66.90 \mathrm{lb} . / a c$.

Grop: Groundnut (Kharif).
Site :- Agri. Res. Stn., Padegaon.

Ref:- Mh. 50(118).
Type : " ${ }^{\prime}$ '

Object :-To find out the optimum seedrate and spacing for Groundnat.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) N.A. (iv) (a) N.A. (b) N.A. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Dharwar (improved). (vii) Irrigated. (viii) N.A. (ix) 22.91° (x) N.A.
2. TREATMENTS:

Main-plot treatments :
3 spacings: $\mathrm{S}_{1}=12^{\prime \prime}, \mathrm{S}_{8}=15^{\prime \prime}$ and $\mathrm{S}_{2}=18^{\prime \prime}$.
Sub-plot treatments :
3 scedrates : $R_{1}=80, R_{\mathbf{1}}=100$ and $R_{8}=120 \mathrm{lb}$./ac.
3. DESIGN:
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $21^{\prime} \times 46.9^{\prime \prime}$ $22.5^{\prime} \times 46.9^{\prime}$ and $24^{\prime} \times 46.9^{\prime}$ for S_{1}, S_{2} and S_{3} respectively. (b) $15^{\prime} \times 36.3^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A.
(ii) (vi) and (vii) Nil.
5. RESULTS :
(i) $1887 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $121.6 \mathrm{lb} / \mathrm{ac}$.
(b) $138.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only the interaction $S \times R$ is significant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

	S_{1}	\mathbf{S}	S_{3}	Mean
$\mathbf{R}_{\mathbf{i}}$	2202	1642	1682	1842
R_{2}	2122	2003	1642	1922
\mathbf{R}_{3}	1802	2043	1842	1896
Mean	2042	1896	1722°	1887

S.E. of difference of two

1. S marginal means	$=49.6 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means	$=56.3 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of S	$=97.7 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of R	$=93.9 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut (Kharif).
Site : - Agri. Res., Stn., Padegaon.

Ref :-Mh. 51(162),
Type :-‘'C’.

Object :-To find out the optimum seed rate and spacing for Groundnut.

1. BASAL CONDITIONS:
(i) (a) Nil. (b) N.A. (c) N.A. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 3.7.1951. (iv) (a) and (b) N.A. (c) and (d) As per treatments. (e) N.A. (v) Nil. (vi) Dharwar (Improved). (vii) Unirrigated. (viii) 2 weedings. (ix) 14.68°. (x) 2.11 .1951.
2. TREATMENTS :

Main-plot treatments :
3 spacings : $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
Sub-plot treatments
3 seedrates : $\mathbf{R}_{\mathbf{1}}=80, \mathbf{R}_{\mathbf{2}}=100$ and $\mathbf{R}_{\mathbf{3}}=120 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 4. (iv) (a) $16^{\prime} \times 36^{\prime}$, $15^{\prime} \times 36^{\prime}, 15^{\prime} \times 36^{\prime}$ for $12^{\prime \prime}$, $15^{\prime \prime}$ and $18^{\prime \prime}$ respectively. (b) $12{ }^{\prime} \times 27.6^{\prime}, 12.5^{\prime} \times 26.8^{\prime}$ and $12.5^{\prime} \times 26.1^{\prime}$ for $12^{\prime \prime}, 15^{\prime \prime}$ and $18^{\prime \prime}$ spacings respectively. (v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Pod yield. (iv) (a) 1950 to 1952. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $1555 \mathrm{lb} / \mathrm{ac}$.
(ii) (a) $654.4 \mathrm{lb} / \mathrm{ac}$.
(b) $374.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pod in lb,/ac.

	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$	$\mathbf{S}_{\mathbf{2}}$	Mean
$\mathbf{R}_{\mathbf{1}}$	1658	1544	1591	1598
$\mathbf{R}_{\mathbf{2}}$	1626	1570	1436	1544
$\mathbf{R}_{\mathbf{3}}$	1664	1698	1206	1523
Mean	1649	1604	1411	1555

S.E. of difference of two

1. S marginal means $\quad=267.1 \mathrm{lb} . / \mathrm{ac}$.
2. R marginal means $\quad=153.0 \mathrm{lb} . / \mathrm{ac}$.
3. R means at the same level of $S \quad=265.4 \mathrm{lb} . / \mathrm{ac}$.
4. S means at the same level of $R \quad=343.8 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut

Site :-Agri. Res. Stn., Padegaon.

Ref :-Mh. 52(195).
Type :-‘C’.

Object :-To find out the optimum seed rate and spacing for Groundnut.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Jowar. (c) Nil. (ii) (a) B type. (b) Refer soil analysis, Padegaon. (iii) 29.4.1952. (iv) (a) N.A. (b) Hand sowing. (c) and (d) As per treatnents. (c) N.A. (v) Nil. (vi) Dharwar (improved). (vii) Irrigated. (viii) 2 weedings. (ix) 11.01°. (x) 1.9.1952.
2. TREATMENTS:

Main-plot treatments :
3 spacings: $S_{1}=12^{\prime \prime}, S_{2}=15^{\prime \prime}$ and $S_{3}=18^{\prime \prime}$.
Sub-plot treatments :
3 seedrates : $\mathbf{R}_{\mathbf{1}}=80, \mathbf{R}_{\mathbf{2}}=100$ and $\mathbf{R}_{\mathbf{3}}=120 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) Split-plot. (ii) (a) 3 main-plots/block; 3 sub-plots/main-plot. (b) N.A. (iii) 6. (iv) (a) $19{ }^{\prime} \times 42.0^{\circ}$, $20^{\circ} \times 42.3^{\prime}$ and $21^{\circ} \times 42.3^{\prime}$ for $12^{\prime \prime}, 15^{\prime \prime}$ and 18° respectively. (b) $15^{\prime} \times 36.3^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Pod yield. (iv) (a) 1950 to 1952. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

(i) $1878 \mathrm{lb} . / \mathrm{ac}$.
(ii) (a) $244.0 \mathrm{lb} . / \mathrm{ac}$.
(b) $313.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Ooly S effect is significant.
(iv) Av. yield of pod in lb./ac.

	S_{1}	S	S_{3}	Mean
\mathbf{R}_{1}	2006	1865	1761	1877
$\mathbf{R a}_{\mathbf{2}}$	1960	1874	1775	1870
Rs	2022	1914	1724	1887
Mean	1996	1884	1753	1878

S.E. of difference of two

1. S marginal means

$$
\begin{aligned}
& =81.3 \mathrm{lb} . / \mathrm{ac} . \\
& =104.6 \mathrm{lb} . / \mathrm{ac} . \\
& =168.9 \mathrm{lb} . / \mathrm{ac} . \\
& =181.2 \mathrm{lb} . / \mathrm{ac} .
\end{aligned}
$$

2. \mathbf{R} marginal means
3. S means at the same level of R
4. R means at the same level of S

Crop:- Groundnut (Kharif).
Site :- Cotton Res. Stn., Parbhani.

Ref:-Mh. 52(39).
Type:- 'C'.

Object :-To find out the optimum seedrate for Groundnut.

1. BASAL' CONDITIONS:

(i) (a) Groundnut-Cotton. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 10.7.1952. (iv) (a) 1 ploughing and 2 harrowings in April and May. (b) Sown by 4 coultered $12^{\prime \prime}$ seed drill with moghas (bamboo. tubes). (c) As per treatments. (d) $12^{\prime \prime}$. (c) N.A. (v) Nil. (vi) Spanish peanut No-5 (early). (vii) Unirrigated. (viii) Weeding on :10.8.1952. (ix) $25.56^{\circ \prime}$. (x) 10.11.1952.
2. TREATMENTS:

4 seedrates : $R_{1}=60, R_{2}=80, R_{8}=100$ and $R_{4}=120 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) $93^{\prime} \times 12^{\prime}$. (b) $90^{\prime} \times 12^{\prime}$. (v) 2 non-experimental rows, (vi) Yes.
4. GENERAL :
(i) Satisfactory. (ii) Crop affected by Tikka disease, no control measures taken. (iii) Pod yield. (iv) (b) 1952-1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

(i) $1612 \mathrm{lb}, / \mathrm{ac}$.
(ii) . $145.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment differences are significant.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield
$\mathbf{R}_{\mathbf{1}}$	1408
$\mathbf{R}_{\mathbf{2}}$	1632
$\mathbf{R}_{\mathbf{3}}$	1672
$\mathbf{R}_{\mathbf{4}}$	1736
S.E. $/$ mean	$=66.0 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Groundnut (Kharif).
Site:- Cotton Res. Stn., Parbhani.

Ref:- Mh. 53(8).
Type :- 'C’.

Object :-To find out the optimum seed rate for Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Cotton. (b) Cotton. (c) Nil. (ii) (a) Medium black cotton soil. (b) Refer soil analysis, Parbhani. (iii) 1.7.1953. (iv) (a) 1 ploughing and 2 harrowings in April and May. (b) Sown by 4 coultered 12° seed drill with mogha (bamboo tubes). (c) As per treatments. (d) 12°. (e). N.A. - (v) Nil. (vi) Spanish peanut No. 5 (early). (vii) Unirrigated. (viii) Weeding on 18.7.1953. (ix) 40.32*. (x) 29.10.1953.
2. TREATMENTS:

4 seedrates: $R_{1}=60, R_{2}=80, R_{3}=100$ and $R_{\mathbf{4}}=120 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN:
(i) R.B.D. (ii) (a) 4. (b) N.A. (iii) 5. (iv) (a) $93^{\circ} \times 12^{\circ}$. (b) $90^{\circ} \times 12^{\prime}$. (v) 2 non-experimental rows. (vi) Yes.
4. GENERAL :
(i) Excessive vegetative growth due to heavy rains. (ii) Mild attack of aphis in July 1953. crop affected by Tikkha disease, no control measures adopted. (iii) Pod yield. (iv) (a) (a) 1952-195t. (b) and (c) Na (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $1432 \mathrm{Jb} / \mathrm{ac}$.
(ii) $116.4 \mathrm{lb} . / \mathrm{ac}$.
(ii) Treatment differences are significant.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
$\mathbf{R}_{\mathbf{1}}$	1224
$\mathbf{R}_{\mathbf{2}}$	1400
$\mathbf{R}_{\mathbf{3}}$	1520
$\mathbf{R}_{\mathbf{4}}$	1584
S.E./mean	$=52.5 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Groundnut (Kharif). } & \text { Ref :- Mh. } 50(156) . \\
\text { Site :- Agri. Res. Stn., Sholapur. } & \text { Type :- ‘C’. }
\end{array}
$$

Object :-To find out optimum seed rate for Groundnut crop.
H BASAL CONDITIONS:
(i) (a) No. (b) N.A. (c) N.A. (ii) (a) Medium tlack. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 2 harrowings. (b) Drilled. (c) As per treatments. (d) 12° betwee 1 rows. (e) -. (v) Nil. (vi) Big-Japan. (vii) Unirrigated. (viii) 1 interculturing and 1 weeding. (ix) 24.04*. (x) N.A.

2. TREATMENTS :

2 seedrates : $\mathbf{R}_{\mathbf{1}}=60$ and $\mathbf{R}_{\mathbf{2}}=80 \mathrm{lb}$./ac.
3. DESIGN :
(i) R.B.D. (ii) (a) 2 (b) N.A. (iii) 4. (iv) (a) $150^{\circ} \times 28^{\circ}$. (b) $132^{\prime} \times 22^{\circ}$ (v) N.A. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) No. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
(i) $753 \mathrm{lb} . / \mathrm{ac}$.
(ii) $157.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
R $_{\mathbf{1} \cdot}$	622
R $_{\mathbf{2} .}$	885
S.E./mean	$=78.7 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).	Ref :- Mh. 53(131).
Site :- Agri. Res. Stn., Jalagaon.	Type :- 'D'.

Object :-To study the effect of harmone treatment on growth and yield of Groundnut.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) Jowar. (c) N.A. (iii) (a) Deep black cotton. (b) Refer soil analysis, Jalagaon. (iii)
27.6.1953. (iv) (a) N.A. (b) Drilled. (c) $60 \mathrm{lb} . / \mathrm{ac}$. (d) Between rows $12^{\prime \prime}$; between plants irregular. (e) N.A. (v) Nil. (vi) Spaoish (improved, early). (vii) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 23.77". (x) 24.10.1953.
2. TREATMENTS:

Seeds treated as follows :-

1. Untreated (control).
2. Water for 20 hours.
3. 0.00033 p.p.m. of $2-4-\mathrm{D}$ for 20 hours.
4. 0.00100 p.p.m. of $2-4-\mathrm{D}$ for 20 hours.
5. 0.00330 p.p.m. of $2-4-\mathrm{D}$ for 20 hours.
6. 0.01000 p.p.m. of $2-4-\mathrm{D}$ for 20 hours.
7. 0,03300 p.p.m. of $2-4-\mathrm{D}$ for 20 hours.

3. DESIGN :

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $18^{\prime} \times 36^{\circ}$. (b) $12^{\prime} \times 30^{\prime}$: (v) 3^{\prime} round the net lot. (vi) Yes.
4. GENERAL:
(i) Many gaps were observed as an effect of harmone treatment; germination took place very early and there was complete break of rains after sowing. Growth of the crop was fairly good. (ii) Attack of Aphis and Tikka observed. Attack of root-rot also observed. (iii) Pod and chaff yield. (iv) (a) 1952-1954. (b) No. (c) No. (v) (a) Dhulia and Kopergaon! (b) N.A. (vi) Nil. (vii) Experiment failed in year 1952.
5. RESULTS :
(i) $1130 \mathrm{lb} / \mathrm{ac}$.
(ii) $251.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield
1.	979
2.	1077
3.	1212
4.	1172
5.	1068
6.	1287
7.	1114
S.E./mean	$=125.6 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Groundnut (Kharif).
Site :-Agri. Res. Stn., Karad.

Ref. : - Mh. 52(222).
Type :- 'D'.

Object :-To test the effect of 2-4-D harmone on the yield of Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Jowar. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) N.A. (iii) 16.7.1952. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. one month before sowing. (vi) Dombi-1 (spreading; late). (vii) Unirrigated. (viii) N.A. (ix) 33°. (x) 15.12.1952.

2. TREATMENTS:

Seeds soaked in the solutions of 2-4-D as below :

1. Control (untreated).
2. Water-for 20 hrs .
3. 0.00033 p p.m. for 20 hrs .
4. 0.00100 p.p.m. for 20 hrs .
5. 0.00330 p.p.m. for 20 hrs.
6. 0.01000 p.p.m. for 20 hrs .
7. 0.03300 p.p.m. for 20 hrs .
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $36^{\prime} \times 18^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) 3^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) No lodging. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-N.A. (b) and (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil:
10. RESULTS :
(i) $1033 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $70.47 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of pod in lb./ac

Treatment	Av. yield
1.	1189
2.	1025
3.	1045
4.	1061
5.	1000
6.	973
7.	.940
S.E /mean	$=35.24 \mathrm{lb} / / \mathrm{ac}$.

Crop :-Groundunt (Kharif).
Site :-Agri. Res, Stn., Karad.

Ref :-Mh. 53(300).
Type :-‘D'.

Object :-To study the effect of 2-4-D harmone on Groundnut.

1. BASAL CONDITIONS :
(i) (a) Groundnut-Jowar. (b) Jawar. (c) 5 C.L./ac. of F.Y.M. (ii) Medium black. (b) N.A. (iii) 13.7.1953. (iv) (a) 1 ploughing and 2 harrowings. (b) to (e) N.A. (v) 5 C.L./ac. of F.Y.M. one month before sowing. (vi) Dombi-1 (late). (vii) Unirrigated. (viii) N.A. (ix) 38". (x) N.A.

2. TREATMENTS :

Seeds soaked in 2-4-D solutions as below :

1. Control (untreated).
2. Water-for 20 brs .
3. 0.00033 p.p.m. for 20 hrs .
4. 000100 p.p.m. for 20 hrs .
5. 0.00330 p.p.m. for 20 hrs ,
6. $0.010<0$ p.p.m. for 20 hrs .
7. 0.03300 p.p.m. for 20 hrs .
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $18^{\prime} \times 36^{\prime}$. (b) $12^{\prime} \times 30^{\prime}$. (v) 3^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) Normal. (ii) Nil. (iii) Pod yield. (iv) (a) 1952-N.A. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $1160 \mathrm{lb} . / \mathrm{ac}$.
(ii) $262.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Treatment	Av. yield
1.	1217
2.	1042
3.	1350
4.	1274
5.	1221
6.	930
7.	1083
S.E./mean	$=131.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :- Groundnut (Kharif).
Site :~ Agri. Res. Stn., Kopergaon.

Ref:- Mh. 52(83).
Type :- ' D '.
Object : -To study the effect of treatment of soed with 2-4-D on growth and yield of Groundnut.

1. BASAL CONDITIONS:

(i) (a) Wheat-Groundnut. (b) Wheat. (c) 3 bags/ac. of G.N.C. $+75 \mathrm{lb} . / \mathrm{ac}$. of A/S. (ii) (a) Medium black. (b) Refer soil analysis, Kopergaon. (iii) 87.19 j2. (iv) (a) N.A. (b) Drilled. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime} \times 9^{\prime \prime}$. (e) N.A. (v) N.A. (vi) Spanish (improved, early). (vii) Irrigated. (viii) One hocing and 2 weedings. (ix) 11.73". (x) 25 to 28.10.1952.

2. TREATMENTS :

Seeds soaked as follows :

1. Control (no soaking).
2. Water only for 20 hours.
3. 0.00033 p.p.m. of $2-4 \mathrm{D}$ for 20 hours.
4. 0.00100 p.p.m. of $2-4 \mathrm{D}$ for 20 hours.
5. 0.00330 p p.m. of $2-4 \mathrm{D}$ for 20 hours.
6. 0.01000 p p.m. of $2-4 D$ for 20 hours.
7. 0.03300 p.p.m. of $2-4 \mathrm{D}$ for 20 hours.
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $36^{\prime} \times 18^{\prime}$. (b) $30^{\prime} \times 12^{\prime}$. (v) 3^{\prime} ring round the net plot. (vi) Yes.
9. GENERAL :
(i) Good. (ii) Slight attack of tikka disease. (iii) Pod yield. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) Dhulia and Jalagaon. (b) N.A. (vi) and (vii) Nil.

-5. RESULTS :

(i) $2115 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $302.5 \mathrm{lb} . / \mathrm{ac}$,
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac. Treatment Av. yield

1. 1976
2. . 2374
3. 2215
4. . 1851
5. 1886
6. $2: 59$
$7 . \quad 2348$
S.E./mean $=151.3 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Groundnut (Kharif).
:Site :- Agri. Res. Stñ., Kopergaon.

Ref:- Mh. 53(34)
Type:- 'D'.

Object :-To study the effect of seed treatment with 2-4-D. on the growth and yield of Groundnut.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Fallow. (c) Nil. (ii) (a) H type. (b) Refer soil analysis, Kopergaon. (iil) 7.7.1953. (iv) (a) Ploughing once, harrowing once and planking once, (b) to (e) N.A. (v) 6 bags/ac. of G.N.C. (vi) Spanish (improved, early). (vii) Irrigated. (viii) Werdings 3 times. (ix) $17.22^{\prime \prime} . \backslash(x) 28.10 .19$ 53:
2. TREATMENTS:
3. Control.
4. Seed soaked in water alone for 20 hours.
5. Seed soaked in 2-4-D of 0.00033 p.p.m. for 20 hours.
6. Seed soaked in 2-4-D of 0.00100 p p.m. for 20 hours.
:5. Seed soaked in 2-4-D of 0.00330 p.p.m. for 20 hours.
7. Seed soaked in 2.4-D of 0.01000 p.p.m. for 20 hours.
8. Seed soaked in 2.1-D of 0.03300 p.p.m. for 20 hours,
9. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) $36^{\prime} \times 18^{\prime}$. (b) $30^{\prime} \times 12^{\circ}$. (v) 3^{\prime} all round the net plet. (vi) Yes.
10. GENERAL :
(i) Good. (ii) Slight attack of tikka disease. (iii) Pod yield. (iv) (a) 1952-continucd. (b) No. (c) N.A. (v) (a) N A. (b) N.A. (vi) and (vii) Nil.
11. RESULTS:
(i) $4016 \mathrm{lb} . / \mathrm{ac}$.
(ii) $606.2 \mathrm{lb} / / \mathrm{ac}$.
(iii) Treatments do not differ significantly .
(iv) Av. yield of pods in lb./ac.

Treatment	Av. yield
1.	3735
2.	3879
3.	4381
4.	3910
5.	3812
6.	4488
7.	3910
S.E./mean	$=303.1 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Chillies (Kharif).
 Ref :-Mh. 52(216).
 Site :-Agri. College Farm, Poona.
 Type: :- \mathbf{M}^{\prime}.

Object :-To study the effect of different methods of application of R.Y.M.

1. BASAL CONDITIONS :
(i) (a) to (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 25 6.1952/16.7.1952. (iv) (a) to (e) N.A. (v) N.A. (vi) Forno (local). (vii) Irrigated. (viii) 4 interculturings and 3 weedings. (ix) $22.03^{\prime \prime}$. (x) 15.10.1952, 2.11.1952 and 26.1.1953.
2. TREATMENTS:
(1) General spreading of 15 C.L./ac. of F.Y.M. over the entire irea.
(2) Local application i.e., putting a handful of F.Y.M. at the plice whare the plant is to be transplanted. (2-3 C.L./ac.)
3. DESIGN :
(i) R.B.D. (ii) (a) 2 . (b) N.A. (iii) 12 . (iv) (a) $65^{\prime} \times 20^{\prime}$. (b) $55^{\prime} \times 15^{\prime}$. (v) $5^{\prime} \times 2 \frac{1}{2}^{\prime}$. (vi) Yes,
4. GENERAL:
(i) Good. (ii) Attack of leaf and versases. Dusting of sulphur controlled it. (iii) Dry chillies. (iv) (a) 1952 to 1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $669.9 \mathrm{lb} . / \mathrm{ac}$.
(ii) $119.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment diferences are significant.
(iv) Av. yield of dry chillies in 1 b ./ac.

Treatment	Av. yield
1.	581.8
2.	758.2
S.E./mean	$=34.40 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Chillies (Kharif).
 Site :-Agri. College Farm. Poona.

Ref :-Mh. 53(190).
Type:-'M'.

Object :-To study the effect of applying F.Y.M. at the spot of Chillies at the time of transplanting in comparison with simple broadcasting of the manure in the field.

1. BASAL CONDITIONS :

(i) (a) Jowar-chillies. (b) Jowar. (c) Nil. (ii) (a) Medium black soil. (b) Refer soil analysis, Poona. (iii) 236.1953 . (iv) (a) 2 ploughing by tractor $7^{\prime \prime}$ to $8^{\prime \prime}$ depth. 5 discing, 8 harrowings in May and June. (b) to (e) N.A. (v) Nil. (vi) Byadagi. (vii) Unirrigated. (viii) One weeding and four interculturings, top dressing twice with 25 lb . of N each time through' A / S. (ix) $13^{\prime \prime}$. (x) 3 pickings on 9.10. 1953, 16.11.1953 and 11.12.1953.

2. TREATMENTS :

(1) 15 C.L./ac. of F.Y.M. by spreading all over the area.
(2) 2-3 C.L./ac. of F.Y.M. handful applied at the spot before transplanting).
3. DESIGN :
(i) Paired-plot. (ii) (a) 2. (b) N.A. (iii) 12. (iv) (a) $65^{\prime} \times 20^{\prime}$. (b) $55^{\prime} \times 15^{\prime}$. (v) Two rows along the length and one row along breadth on either side. (vi) Yes.
4. GENERAL:
(i) Normal. (ii) Leaf curl appeared after September rains. (iii) Yield of green chillies. (iv) (a) 1951 to 1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
(i) $4450 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1748 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of green chillies in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	4036
2.	4864
S.E./mean	$=504 \mathrm{lb} . / \mathrm{ac}$.

$$
\begin{array}{ll}
\text { Crop :- Garlic (Rabi). } & \text { Ref :- Mh. 51(133). } \\
\text { Site :- Agri. College Farm, Poona. } & \text { Type :- 'M'. }
\end{array}
$$

Object:-To find out the best combination of N, P \& K doses that will give highest yield of Garlic.

1. BASAL CONDITIONS

- (i) (a) Nilwa-Ginger-Garlic. (b) Nilwa (Jowar). (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 5.11 .1951 . (iv) (a) N.A. (b) Sowing by dibbling. (c) $350 \mathrm{lb} . / \mathrm{ac}$. (d) $6^{\circ} \times 4^{\circ}$.(e) N.A. (v) Nil, (vi) Local. (vii) Irrigated. (viii) 1 gap filling, 3 weedings and 1 interculturing. (ix) 26.62°. (x) 28.2.1952 to 2.3.1952.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$./ac.
(3) 3 levels of $K_{2} O$ as Pot. Sul. : $K_{0}=0, K_{1}=30$ and $K_{2}=60 \mathrm{lb} / \mathrm{ac}$.

Super top dressed on 4.11.1952 and $\mathrm{K}_{2} \mathrm{O}$ and A / S on 22.11.1952 and 20.12.52 respectively.
3. DESIGN:
(i) 3^{8} Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 3. (iv) (a) $24^{\prime} \times 12^{\prime}$. (b) $12^{\prime} \times 12^{\prime}$. (v) 6^{\prime} length wiso. (vi) Ycs.
4. GENERAL :
(i) Good. (ii) Nil. (iii) Heights of plants and garlic bulb yield. (iv) (a) 1951 to 1953. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $5078 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1534 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of N and interactions NP , NK are significant.
(iv) Av. yield of garlic bulb in lb./ac.

	\mathbf{N}_{0}	N_{1}	$\mathbf{N}_{\mathbf{2}}$	Mean	\mathbf{K}_{0}	K_{1}	K_{2}
P_{0}	5187	4999	5322	S170.	4831	5376	5302
P_{1}	4173	4858	6048	5026	5234	4468	5376
$\mathbf{P}_{\mathbf{2}}$	4282	4952	5877	5037	4966	5246	4901
Meao	4547	4936	5749	5078			
K_{0}	4811	4376	4455	5010			
K_{1}	4683	4609	5517	5030			
K_{2}	5537	6101	5608	5193			
S.E. of any marginal mean S.E. of body of any table					$\begin{aligned} & =295 \mathrm{lb} . / \mathrm{ac} . \\ & =511 \mathrm{lb} . / \mathrm{ac} . \end{aligned}$		

Crop :- Garlic (Rabi).	Ref :- Mh. 52(160).
Site :- Agri. College Farm, Poona.	Type :- 'M'.

Object :-To find out ihe suitable combination of N, P \& K doses to get the maximum yield of Garlic.

1. BASAL CONDITIONS:
(i) (a) Nilwa-Ginger-Garlic. (b) Chawll as G.M. (c) Ni. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 23.10.1952. (iv) (a) One harrowing. (b) N.A. (c) 350 lb ./ac. (d) $6^{6} \times 3^{\circ}$. (e) One clove at a place. (v) Green manuring-chawli buried on 13.9.1952. (vi) L.ocal. (vii) Irrigated. (viii) 2 weedungs. (ix) 22.03°. (x) 22.3.1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of $N: N_{0}=0, \Gamma:-{ }^{39}$ 23d $N_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{P}_{0}=0, \mathrm{P}_{1}=30$ and $\mathrm{P}_{2}=60 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}: \mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{\mathbf{2}}=40 \mathrm{lb}$. ac .

N as $\mathrm{A} / \mathrm{S}, \mathrm{P}_{2} \mathrm{O}_{5}$ as Super and $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. applied on 22.10.1952.
3. DESIGN:
(i) $3^{\mathbf{3}}$ Fact. in R.B.D. (ii) (a) 27 . (b) N.A. (iii) $3 .{ }^{\prime}$ (iv) (a) $24^{\circ} \times 12^{\prime}$. (b) $20^{\circ} \times 10^{\prime}$. (v) $2^{\circ} \times 1^{\prime}$. (vi) Yes.

4, GENERAL:
(i) Good. (ii) Nil. (iii) Garlic tulb yield. (iv) (a) 1951 to 1953. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS:

(i) $3080 \mathrm{lb}, / \mathrm{ac}$.
(ii) $565.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{N} alone is significant.

814
(iv) Av. yield of garlic bulb in lb/ac.

	N_{0}	N_{1}	N_{2}	Mean	K_{0}	$\mathbf{K}_{\mathbf{1}}$	$\mathbf{K}_{\mathbf{2}}$
P_{0}	2735	3134	3733	3201	3116	3394	3092.
\mathbf{P}_{1}	2230	2883	3491	2868	2783	2825	2995
$\mathbf{P a}_{\mathbf{g}}$	2626	3415	3473	3171	3100	3370	3043
Mean	2530	3144	3566	3080			
K_{0}	2456	3070	3473	3000			
K_{1}	2732	3221	3636	3196			
K_{2}	$\therefore 2402$	3140	3588	$\because 3043$			
S.E. of any marginal mean S.E. of body of any table					$\begin{aligned} & =108.8 \mathrm{lb} / / \mathrm{ac} \\ & =188.5 \mathrm{lb} . / \mathrm{ac} \end{aligned}$		

Crop :- Garlic.
Site :- Agri. College Farm, Poona.

Ref :- Mh. 53(97).
Type :- ' M '.

Object :-To find out the best combination of N, P end K does to get the highest yield of Garlic.

1. BASAL CONDITIONS :
(i) (a) Nilwa-Ginger-Gṛeen manuring Garlic. (b) Ginger. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 2.4.1953. (iv) (a) 3 ploughings, discing and 2 harrowing. (b) Ditbling. (c) 50 lb./ac. (d) $6^{\prime \prime} \times 3^{\prime \prime}$. (e) l. (v) Green manuring with chawli. (vi) Local. (vii) Irrigated. (viii) Weeding and top dressing. (ix) No rains. (x) N.A.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=30$ and $N_{2}=60 \mathrm{lb} . / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=15$ and $\mathrm{P}_{\mathbf{2}}=30 \mathrm{lb} . / \mathrm{ac}$.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{0}=0, \mathrm{~K}_{1}=20$ and $\mathrm{K}_{\mathbf{9}}=40 \mathrm{lb}$./ac.
3. DESIGN:
(i) 3^{2} Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 3. (iv) (a) $24^{\prime} \times 12^{\prime}$; (b) $20^{\circ} \times 10^{\circ}$. (v) N.A. (vi) Yes.
-4. GENERAL:
(i) Good. (ii) Nil. (iii) Weight of garlic. (iv) (a) 1951 to 1953. (b) No. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
=5. RESULTS:
(i) $4852 \mathrm{lb} / \mathrm{ac}$.
(ii) $1108 \mathrm{lb} . / \mathrm{ac}$.
((iii) N effect alone is highly significant.
(iv) Av. yield of garlic in lb ./ac.

	N_{0}	N_{1}	N_{8}	Mean	\mathbf{K}_{0}	K_{1}	$\mathbf{K}_{\mathbf{2}}$
P_{0}	3978	4810	5732	4840	4825	4795	4900
P_{1}	3690	5097	5642	4810	4583	5188	4658
P_{2}	4386	5052	5279	4905	5354	4779	4583
Mean	4018	4986	5551	4852			
K_{0}	4069	5142	5551	4921		:	
K_{1}	3796	5112	5853	4920			
$\mathrm{K}_{\mathbf{2}}$	4190	4704	5248	4714			
S.E. of any marginal mean S.E. of body of any table				$\begin{aligned} & -213.2 \mathrm{lb} . / \mathrm{ac} . \\ & =369.3 \mathrm{lb} / \mathrm{ac} . \end{aligned}$			

815
Crop - Ginger (Kharif).
Ref:- Mh. 51(131).
Site :- Agri. College, Farm Poona
Type = ${ }^{-} \mathbf{M}$.

Otject:-To find out the best combination of $N_{0} P$ and K doses for Ginger.

1. BASAL CONDITIUNS:
(i) (a) Nil. (b) Fallow. (c) Nil. (i) (a) Medium black. (b) Refer soil analysis, Pooca. (iii) 29.5.1951. (iv) (a) NA. (b) Plantiog sets in pits $4^{\circ} \times 4^{\circ}$ size (c) $1280 \mathrm{ib} / \mathrm{ac}$ (d) $9^{\circ} \times 9^{\circ}$. (c) N.A. (v) Nill (vi) Colleze seed (vii) Irrigated. (viii) 1 interculturing, 1 earthing up and 12 weedings. (ix) 26.620. (x) 8 to $1+3.1952$

2 TREATMENTS:
All combinations of (1), (2) and (3)
(1) 3 levels of N as $A \cdot S: N_{8}=0, N_{3}=50$ and $N_{2}=100 \mathrm{lb} / \mathrm{ac}$
(2) 3 leveis of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{\mathbf{0}}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{\mathbf{2}}=100 \mathrm{lb}$-/ac.
(3) 3 kevels of $K_{2} O$ as Pot Sul: $K_{0}=0, K_{1}=50$ and $K_{2}=100 \mathrm{lb}$.ac

Manaring in two equal doses on 2.8.1951 and 10.9.1951.
3. DESIGN :
(i) 3^{3} Fact
(vi) Yes
4. GENERAL :
(i) Not very satisfactorv. (ii) Nil. (iii) Ginger yield. (iv) (a) 1951 to 1952 (b) and (c) No. (v) (a) and (b) Na (vi) and (vii) Nil
5. RESULTS:
(i) $3560 \mathrm{lb} / \mathrm{ac}$
(ii) $1642 \mathrm{lb} / \mathrm{sc}$
(iii) None of the effects is significant.
(iv) Av. yield of ginger in $\mathrm{lb} / \mathrm{ac}$.

	N_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	Mean	${ }^{\mathbf{K}}$	\mathbf{K}_{1}	$\mathbf{K}_{\mathbf{2}}$
P_{6}	3232	4049	3516	3599	3065	4412	3320
P_{1}	3820	3577	3631	3676	4148	3459	3391
P_{2}	3043	3528	4544	3705	3928	4149	3038
Mean	3365	3718	3897	3660			
$\mathbf{K}_{\mathbf{0}}$	3301	3560	4280	3714			
\mathbf{K}_{1}	3894	4098	4058	4017			
\mathbf{K}_{2}	2901	3496	3353	3250			
S.E. of any marginal means				$=274 \mathrm{lb} / \mathrm{sc}$			
S.E. of body of any table				$=474 \mathrm{lb} . \mathrm{ac}$.			

[^5]Object:-To find out the best combination of N, P \& K doses to give maximum yield of Ginger.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Nilwa (Jowar). (c) N.A. (ii) (a) Medium black. (b) Retor anil analysis, Poona. (iii) 25.5.1952. (iv) (a) 1 ploughing in March and 2 in April aod 1 tarrowirg. (b) Ditbling. (c) 1200 lu/me. (d) 5×9. (e) 1. (v) Nil (vi) College seed. (vii) Irrigated. (viii) 1 carthing up and 3 wedioge. (ix) 22.03 . (a) 28.2 to 3.3.1953.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: \quad N_{0}=0, N_{1}=50$ and $N_{2}=100 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{\mathbf{2}}=100 \mathrm{lb} . / \mathrm{ac}$.
(3) 3 levels of $K_{2} O$ as Pot. Sul.: $K_{\mathbf{0}}=0, K_{1}=50$ and $K_{2}=100 \mathrm{lb} / \mathrm{ac}$.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied before planting $; \mathrm{N} \& \mathrm{~K}$ applied on 15.7.1951 as top dressing.
3. DESIGN :
(i) 3^{3} Fact. in R.B.D. (ii) (a). 27. (b) N.A. (iii) 4. (iv) (a) $20^{\prime} \times 10^{\prime}$. (b) $20^{\prime} \times 5^{\prime}$. (v) 2.5^{\prime} on either end (vi) Yes.
4. GENERAL :
(i) Satisfactory, (ii) The tops of plants were showing whiteness due to excess of moisture. (iii) Ginger yield. (iv) (a) 1951 to 1952. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) $2620 \mathrm{lb} . / \mathrm{ac}$.
(ii) $768.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only the interactions NK and PK are significant.
(iv) Av. yield of ginger in lb./ac.

	N_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	Mean	$\mathbf{K}_{\boldsymbol{0}}$	\mathbf{K}_{1}	K_{2}
P_{0}	2537	2465	2773	2592	2501	3009	2266
P_{1}	2809	2537	3009	2785	3244	2719	2392
$\mathbf{P}_{\mathbf{2}}$	2211	2501	2737	2483	2556	2392	2501
Mean	1519	2501	2840	2620			
K_{0}	2864	2628	2809	2767			
K_{1}	2556	2338	3226	2707			
K_{2}	2139	2537	2483	2380			

$$
\begin{array}{ll}
\text { S.E. of any marginal means } & =128.1 \mathrm{lb} . / \mathrm{ac} . \\
\text { S.E. of body of any table } & =221.8 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :-Turmeric (Kharif).
Site :-Agri. College Farm, Poona.

Ref:- Mh. 51(132).
Type :- 'M'.

- Object :-To find out the best combination of N, P \& K doses to get the maximum yield of Turmeric.

1. BASAL CONDITIONS :
(i) (a) Maize-Gram-Turmeric. (b) Gram. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 96.1951 . (iv) (a) 1 ploughing. (b) Planting sets in a pit. of 6° depth. (c) $1600 \mathrm{lb} . / \mathrm{ac}$. (d) $1^{\prime} \times 1^{\prime}$. (e) 1 set. (v) N.A. (vi) Lokhandi. (vii) Irrigated. (viii) 4 weedings and 1 earthing up. (ix) 26.62'. (x) 17.3.1952.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: \quad N_{0}=0, N_{1}=50$ and $N_{2}=100 \mathrm{lb} / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{2}=100 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{0}=0, K_{1}=50$ and $\mathrm{K}_{2}=100 \mathrm{lb} . / \mathrm{ac}$.

Top dressing of manures in equal doses on 16.7.1951 and 31.8.1951.
3. DESIGN :
 (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Mild attack of leaf-spot disease observed but no measures taken. (iii) Yield of turmeric, (iv) (a) 1951 to 1954. (b) and (c) No. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS:
(i) 10.87 tod/ac.
(ii) 1.14 ton/ac.
(iii) Main effect of \mathbf{N} alone is significant.
(iv) Av. yield of turmeric in ton/ac.

	\mathbf{N}_{0}	N_{1}	N_{2}	Mean	\mathbf{K}_{0}	K_{1}	K_{2}
P_{0}	9.56	11.69	11.68	10.98	11.05	10.64	11.24
P_{1}	9.96	11.28	11.40	10.88	10.91	10.74	10.99
\mathbf{P}_{2}	10.20	10.97	11.06	10.74	10.45	10.84	10.95
Mean	9.91	11.31	11.38	10.87			
K_{0}	9.85	11.30	11.27	. 10.80			
K_{1}	9.32	11.20	11.68	10.74			
$\mathrm{K}_{\mathbf{2}}$	10.55	11.44	11.19	11.06			

S.E. of any marginal mean	$=0.22$ ton/ac.
S.E. of body of any table	$=0.38$ ton/ac.

Crop :- Turmeric.
Site :- Agri. College Farm, Poona.

Ref:- Mh. 52(159).
Type :- ' \mathbf{M} '.

Object : -To find out the best combination of N, P and K. doses to get maximum yield.

1. BASAL CONDITIONS:
(i) Maize-Gram-Turmeric. (b) Gram. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Poona, (iii) 28.5.1952. (iv) (a) 1 ploughing and 1 discing. (b) Planting sets in a pit of $6^{\prime \prime}$ depth. (c) $1600 \mathrm{lb} . / \mathrm{ac}$. (d) $1^{\prime} \times 1^{\prime}$. (e) 1 set. (v) N.A. (vi) Lokhandi. (vii) Irrigated. (viii) 3 weedings and one interculturing. (ix) $22.03^{\prime \prime}$. (x) N.A.

2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as A/S: $N_{0}=0, N_{1}=50$ and $N_{2}=100 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{2}=100 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{2} \mathrm{O}$ as Pot. Sul : $\mathrm{K}_{0}=0, \mathrm{~K}_{1}=50$ and $\mathrm{K}_{2}=100 \mathrm{lb}$./ac.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied before planting N and K top dressed in two equal doses on 11.7.1952 and 9.9.1952.
3. DESIGN :
(i) 3^{3} Fact in R.B.D. (ii) (a) 27. (b) N.A. (iii) 3. (iv) (a) $26^{\prime} \times 10^{\prime}$. (b) $19^{\prime} \times 5^{\prime}$. (v) One row on either sido. (vi) Yes.
4. GENERAL :
(i) Good. (ii) At germination stage attack of caterpillers. Dusting of gammaxene. Leaf spot disease seen from November onwards. (iii) Turmeric yield. (iv)' (a) 1951-1954. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi and (vii) Nil.
5. RESULTS:
(i) 7.12 tod/ac.
(ii) 1.33 ton/ac.
(iii) Main effects of N alone is significant.
(iv) Av. yield of turmeric in ton/ac.

Crop :- Turmeric.	Ref :~ Mh. 53(73).
Site :- Agri. Res. College Farm, Poona. .	Type :~ 'M'.

Object :-To find out the best combination of N, P and K doses to get the maximum yield of Turmeric crop.

1. BASAL CONDITIONS :
(i) (a) Maize-Gram. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 29.5.1953. (iv) (a) Ploughings on 11.3.1953 and 12.5 .1953 followed by clod crushing and harrowings. (b) to (e) N.A. (v) 30 C.L./ac. of F.Y.M. (vi) Soni and lokhandi variety of turmeric. (vii) Irrigated. (viii) 3 weedings and 1 earthing up. (ix) $16.64^{\prime \prime}$. (x) 23.2.1954 and 3.3.1954.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=50$ and $N_{2}=100 \mathrm{lb} / \mathrm{ac}$.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=50$ and $\mathrm{P}_{2}=100 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{\mathbf{1}}=50$ and $\mathrm{K}_{\mathbf{2}}=100 \mathrm{lb}$ /ac.
3. DESIGN :
(i) 3^{3} Fact. in R.B.D. (ii) (a) 27. (b) N.A. (iii) 3. (iv) (a) $20^{\prime} \times 10^{\prime}$. (b) $20^{\prime} \times 5^{\prime}$. (v) Half-bed of $20^{\prime} \times 2 \frac{1}{2}^{\prime}$ size on either sides of treatment bed. (vi) Yes.
4. GENERAL :
(i) Germinatton of soni variety was better than lokhandi variety. The growth was not uniform. (ii) There was slight incidence of leaf-spot during maturity stage. (iii) Turmeic yield. (iv) (a) 1951 to 1954. (b) and (c) No. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :

Crop :-Guwar (Kharif). Site -Agri. College Farm, Poona.

Ref:-Mh. 51(130).
Type :-'M'.

Object:-To find ous the test combination of N, P and K doses to give maximum yield.

1. BASAL CONDITIONS:
(i) (a) Nilwa-Gram-Guvar. (b) Gram. (c) Nii. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 25.7.1951. (iv) (a) N.A. (b) Drilling. (c) $121 \mathrm{lb} / \mathrm{lac}$. (d) Between rows 18° and between planss 2° to 3°. (ejN.A. (v) Nil. (vi) Makhani. (vii) Irrigated. (viii) 1 weeding and 2 interculturings (ix) 26.62 . (x) 4 cultiogs en 21.9.1951, 15, 27.10.1951 and 11.11.1951.
2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 leveis of N as $A / S: N_{0}=0, N_{2}=10$ and $N_{2}=20 \mathrm{lb} / \mathrm{Jac}$.
(2) 3 kevels of $P_{2} O_{5}$ as Super: $P_{0}=U_{3} P_{1}=10$ and $P_{2}=20 \mathrm{lb} / \mathrm{ac}$.
(3) 3 levels of $K_{4} O$ as Pct . Sul. $: K_{Q}=0, K_{1}=10$ and $K_{2}=20 \mathrm{lb} . j a c$.
3. DESIGN :
(i) $3^{\mathbf{2}}$ Fact in R.B.D. (ii) (a) 27. (b) N.A. (iii) 3. (iv) (a) $40^{\circ} \times 9^{\circ}$. (b) $36^{\circ} \times 5^{\circ}$, (v) 2^{2} alroond. (vi) Yes
4. GENERAL:
(i) Good. (ii) Attack of powdery miildew; dusting of sulphur for check. (iii) Guwar (pods) yield. (iv) (a) 1951 to 1953. (b) No. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil
5. RESULTS:
(i) $5242 \mathrm{lb} / \mathrm{ac}$.
(ii) $1336.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Oujy the interaction PK is significant. .
(iv) Av. yield of pods in $\mathrm{Ib} . / \mathrm{ac}$.

Crop:-Guwar (Kharif).
Site :-Agri College Farm, Poona.

Ref:-Mb. 52(156)
Type : ‘'M'.

Object :-To find out the best combination of N, P and K doses to give maximum yield.
L. BASAL CONDITIONS:
(i) (a) Nilwa-Gram-Guwar. (b) Gram. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 22.6 .1952 . (iv) (a) 1 ploughing and I harrowing. (b) Drilled by Tiffan (c) $12 \mathrm{lb} / \mathrm{ac}$. (d) $18^{\circ} \mathrm{apart}$, (e) N.A. (v) Nil. (vi) Makhani. (vii) Irrigated. (vii) 4 weedinga. (ix) 22.03°. (x) 10.9 .1952 to 17.12.1952.
2. TREATMENTS :

All combinations of (1), (2) and (3)
(1) 3 levels of N as $A / S: N_{0}=0, N_{1}=10$ and $N_{2}=20 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=10$ and $\mathrm{P}_{2}=20 \mathrm{lb}$./ac.
(3) 3 levels of $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ as Pot. Sul. : $\mathrm{K}_{\mathbf{0}}=0, \mathrm{~K}_{1}=10$ and $\mathrm{K}_{2}=20 \mathrm{lb}$./ac.
3. DESIGN :
(i) 3^{\prime} Fact. in R.B.D. (ii) (a) 27. (b) N.A (iii) 3. (iv) (a) $40^{\circ} \times 9^{\circ}$: (b) $36^{\circ} \times 5^{\prime}$. (v) 2^{\prime} alround. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) Crop suffered from bacterial disease leaf blight. Rust rot observed. 5% Limesulphur sprayed as check. (iii) Guwar yield (pods). (iv) (a) 1951 to 1953. (b), (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
(i) $4338 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1249.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) None of the effects is significant.
(iv) Av. yield of pods in lb./ac.

	\mathbf{N}_{0}	\mathbf{N}_{1}	\mathbf{N}_{2}	Mean	K_{0}	$\mathrm{K}_{\mathbf{1}}$	K_{2}
\mathbf{P}_{0}	4076	4681	4547	4435	4883	4032	4390
P_{1}	4368	3920	4636	4308	4323	4905	3696
P_{2}	3942 ${ }^{\text {' }}$	4547	4323	4271	4614	4076	4121
Mean	4129	4383	4502	4338			
K_{0}	4300	4748	4771	4606			
\mathbf{K}_{1}	4188	4166	4659	4338			
K_{2}	3897	4233	4076	4069			

$$
\begin{array}{ll}
\text { S.E. of any marginal mean } & =240.0 \mathrm{lb} . / \mathrm{ac} . \\
\text { S E. of body of any table } & =416.0 \mathrm{lb} . / \mathrm{ac} .
\end{array}
$$

Crop :- Lucerene (Rabi).
Site :- Agri. College Farm, Poona.

Ref:- Mh. 52(217).
Type :- ‘CM'.

Object :-To compare the yield of Lucerene and Berseem crops grown with and without $\mathrm{P}_{2} \mathrm{O}_{5}$ along with two seed rates.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Sannhemp. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis. Poona. (iii) 11.10.1952, (iv) (a) N.A. (b) Broadcasting the seeds in flat beds. (c) As per treatments. (d) and (c) N.A. (v) Nil. (vi) N.A. (vii) Irrigated. (viii) Weeding from 21 to 26.12.1952. (ix) 2.07. (x) N.A.

2. TREATMENTS :

All combinations of (1) and (2)
(1) 2 seed rates: $\mathrm{R}_{1}=20$ and $\mathrm{R}_{2}=40 \mathrm{lb}$./ac.
(2) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{5}$ as Super: $\mathrm{P}_{0}=0, \mathrm{P}_{1}=100$ and $\mathrm{P}_{2}=200 \mathrm{lb} . / \mathrm{ac}$.
3. DESIGN :
(i) 2×3 Fact. in R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) (a) $24^{\prime} \times 16^{\circ}$, (b) $20^{\circ} \times 12^{\circ}$. (v) 2^{\prime} alround. (vil Yes.

4. GENERAL:

(i) Due to low frequency of irrigation in the month of February the crop went dry. (ii) Attack of aphids, controlled by cutting. (iii Fodder yiêld. (iv) (a) 1952 tho 1954. (b) and (c) N̉o. (v) (a) and (b) N.A. (vi) Nil: (vii) Due to bad quality of seed Berseen crop was a total failure.
5. RESULTS:
(i) $20407 \mathrm{lb} . / \mathrm{ac}$
(ii) $3336 \mathrm{lb} . / \mathrm{ac}$.
(iii) Main effect of \mathbf{P} alone is significant.
(iv) Av. yield of fodder in lb,/ac.

	$\mathbf{P}_{\mathbf{o}}$	$\mathbf{P}_{\mathbf{i}}$	$\mathbf{P}_{\mathbf{i}}$
$\mathbf{R}_{\mathbf{1}}$	17106	19965	20827
$\mathbf{R}_{\mathbf{2}}$	17583	24253	22710
Mean	17344	22109	21768

S.E. of marginal mean of \mathbf{P}	$=1180 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of R	$=963 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of table	$=1668 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Lucerene and Berseem (Rabi).
Site :- Agri. Collége Farm, Poona.

Ref:-Mh. 53(76).
Type :- 'CM'.

Object :-To study the comparative performince of Lucerene and Bersecm fodder crops with and without $\mathrm{P}_{2} \mathrm{O}_{5}$.

1. BASAL CONDITIONS :

(i) (a) Nil. (b) Lucerene in ridges and furrows. (c) 20 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 21.10.1953. (iv) (a) Ploughing by tractor, discing, harrowing 3 times and levelling by plank. Lay out of fiat bed. (b) N.A. (c) As per treatments. (d) and (e) N.A. (v) Compost at the rate of 20 C.L./ac. was applied at 2 nd harrowing and was mixed with soil. (vi) N.A. (vii) Irrigated. (viii) - N.A. (ix) 3.65" (x) Three cuttings on 7.1.1954, 6.2.1954 and 10.3 .1954.

2. TREATMENTS:

All combinations of (1), (2) and (3)
(1) 3 levels of $\mathrm{P}_{2} \mathrm{O}_{6}$ as Super : $\mathrm{P}_{0}=0, \mathrm{P}_{1}=100$ and $\mathrm{P}_{2}=200 \mathrm{lb} . / \mathrm{ac}$.
(2) 2 seed rates: $R_{1}=20$ and $R_{2}=40 \mathrm{lb}$./ac.
(3) 2 varieties: $\mathrm{V}_{\mathbf{2}}=$ Lucerene and $\mathrm{V}_{2}=$ Berseem,

3, DESIGN :
(i) $3 \times 2 \times 2$ Fact. in R.B.D. (ii) (a) 12 . (b) N.A. (iii) 4 . (iv) (a) $24^{\prime} \times 16^{\prime}\left(4\right.$ flat beds of $\left.12^{\prime} \times 8^{\prime}\right)$ (b) $20^{\prime} \times 12^{\prime}$ (4 flat beds of $10^{\circ} \times 6^{\prime}$). (v) 1^{\prime} alround each bed. (vi) Yes.
4. GENERAL :
(i) Good. (ii) (a) Aphids on Lucerene only. They were controlled by irrigation áfer first cutting.
(ii) Fodder yield. (iv) (a) 1952 to 1954. (b) and (c) No. (v) (a) and (b) Not known. (vi) an 1 (vii) Nil.
5. RESULTS :
(i) $21287 \mathrm{lb} . / \mathrm{ac}$.
(ii) $3250 \mathrm{lb} . / \mathrm{ac}$.
(iii) Only main effect of V and P are significant.
(iv) Av. yield of fodder in lb./ac.

S.E. of marginal mean of V or R	$=663 \mathrm{lb} . / \mathrm{ac}$.
S.E. of marginal mean of P	$=815 \mathrm{lb} . / \mathrm{ac}$
S.E. of body of $V \times P$ or $R \times P$ table	$=1149 \mathrm{lb} . / \mathrm{ac}$.
S.E. of body of $V \times R$ table	$=938 \mathrm{lb} . / \mathrm{ac}$.

Crop :-Bajra and Groundnut.

Site : Agri. College Farm, Poona.

Ref : - Mh. 53(113).
Type :-‘X'.

Object :-To find out a suitable mixture of legume and cereal for increased yields of both.

1. ' BASAL CONDITIONS :

(i) (a) Nil. (b) Jowar. (c) Green manuring of sannhemp at 40 lb ./ac. (ii) (a) Light yellow. (b) Refer soil analysis, Poona. (iii) 22.6.1953. (iv) (a) Ploughing discing and harrowing. (b) to (c) N.A. (v) 5 C.L./ac. of F.Y.M. applied at the time of discing the clods during the preparatory stage. (vi) BajraAkola. Groundnut-Spanish groundnut. (vii) Unirrigated. (viii) 2 interculturing and 1 weeding (ix) 12.80°. (x) 26.9.1953.

2. TREATMENTS

1. One row of bajra and one row of groundnut.
2. One row of bajra and two rows of groundnut.
3. One row of baira and three rows of groundnut.
4. One row of bajra and five rows of groundnut.
5. One row of bajra and seven rows of groundnut.
6. Two rows of bajra and 4 rows of groundnut.
7. 4 rows of groundnut only.
8. , 4 rows of bajra only.
9. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 4. (iv) (a) $40^{\circ} \times 28^{\prime}$. (b) $36^{\prime} \times 24^{\prime}$, (v) -2 rows on either side and 2^{\prime} at either ends. (vi) Yes.
10. GENERAL:
(i) Lodging due to weight of earheads was seen. (ii) (a) Attack of birds on bajra earheads during the ripening stage. (iii) Grain and fodder yield. (iv) (a) 1951-1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Harvest prices of Poona district for the crops taken from Season and Crop Report of Bombay State

5. RESULTS :

(i) 228 Rs./ac.
(ii) 63.78 Rs./ac.
(iii) Treatments do not differ significantly.
(iv) Av. money value of grain and fodder yield in Rs./ac.

Treatment	Av. valuo
1.	216
2.	212
3.	290
4.	208
5.	248
6.	231
7.	255
8.	164
S.E./mean	$=31.89$ Rs./ac.

Crop :-Jowar and Gram.

Site :-Agri. College Farm, Poona.

Ref :-Mh. 53(114).

Type :-‘X'.
Object:-To find out a suitable mixture of legume and cereal for increased yields of both.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Groundnut in Kharif. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Medium black. (b) Refer soil analysis, Poona. (iii) 27.10.1953. (iv) (a) Ploughing and harrowing. (b) to (c) N.A. (v) Nil. (vi) Jowar-M-35-1 ; Gram—Chofa. (vii) Irrigated. (viii) Interculturing 2 times and weeding from 28.1.1954 to 27.2.1954. (ix) Nil. (x) Jowar 8.3.1954; Gram 24.2.1954.
2. TREATMENTS:
3. 6 lines of jowar and 6 lines of groundnut.
4. 8 lines of jowar and 4 lines of groundnut.
5. 10 lines of jowar and 2 lines of groundnut.
6. 11 lines of jowar and 1 line of groundnut.
7. 4 lines of jowar and 8 lines of groundnut.
8. 3 lines of jowar and 9 lines of groundnut.
9. 2 lines of jowar and 10 lines of groundnut.
10. 12 lines of jowar only.
11. 12 lines of groundnut only.
12. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) $36^{\circ} \times 18^{\circ}$. (b) $30^{\prime} \times 14^{\prime}$. (v) 2 rows on either side along length ; $\mathbf{2}^{\prime}$ along headlines. (vi) Yes.
13. GENERAL :
(i) Good. (ii) No. (iii) Griin yield. (iv) (a) 1952-1955. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Harvest prices of Poona district for the crops taken from 'Season and Crop Report of Bombay State'.
14. RESULTS :
(i) 111 Rs./ac.
(ii) 19.13 Rs./ac.
(iii) Treatments differ highly significantly.
(iv) Av. money value of grain yield in Rs./ac.

Treatment	Av. value	Treatment	Av. valde
1.	162	6.	154
2.	100	7.	148
3.	57	8.	22
4.	40	9.	185
5.	133		
	S.E./mean	-9.56 Rs./ac.	

\checkmark Crop :- Wheat and Gram (Rabi).

Ref. ;-Mh. 48(91).
Site :-Govt. Seed and Demonstration Farm, Washim. Type :-‘X'.
Object :-To determine the most suitable mixture of Wheat and Gram.

1. BASAL CONDITIONS:
(i) (a) Wheat-Gram. (b) Wheat. (c) Nil. (ii) (a) Medium black cotton soil. (b) N.A. - (iii) 27.10.1948.
(iv) (a) Ploughing and bakharing. (b) to (e) N.A. (v) Green manuring. "(vi) Wheat-Bansipalli ; Gram-

No. 28. (vii) Unirrigated. (viii) Weeding once. (ix) 33.98". (x) 7.3.1949.

2. TREATMENTS:

1. 85% wheat and 15% gram.
2. 75% wheat and 25% gram.
3. 70% wheat and 30% gram.
4. 65% wheat and 35% gram.
5. 60% wheat and 40% gram.
6. All wheat.
7. Aill gram.
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $16 \frac{1}{\prime}^{\prime} \times 33^{\prime}$. (v) N.A. (vi) Yes.
9. GENERAL :
(i) Satisfactary. (ii) Nil (iii) Grain yield. (iv) (a) 1945-1951. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Whole sale prices of Nagpur district are taken for the crops from 'Indian Agricultural Price Statistics' of the Directorate of Economics and Statistics, Ministry of Agriculture, Govt. of India.
10. RESULTS:
(i) 117 Rs./ac.
(ii) $16.40 \mathrm{Rs} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. money value of grain yield in Rs./ac.

Treatment	Àv. value
1.	107
2.	113
3.	108
4.	113
5.	$116 \checkmark$
6.	92
7.	169
S.E./mean	$=6.70$ Rs./ac.

\checkmark Crop :- Wheat and Gram (Rabi). Ref :~Mh. 50(141).

- Site :- Seed and Demonstration Farm, Washim. Type :- ' X '.

Object : -To determine the most suitable mixture of Wheat and Gram.

1. BASAL CONDITIONS :
(i) (a) N.A. (b) Groundnut. (c) N.A. (ii) (a) Medium black. (b) N.A. (iii) 18,19.10.1950. (iv) (a)
N.A. (b) N.A. (c) $50 \mathrm{lb} . / \mathrm{ac}$.-Wheat and $60 \mathrm{lb} . / \mathrm{ac} .-G r a m$. (d) 12° between rows. (e) N.A. (v)

Nil. (vi) N.A. (vii) Unirrigated, (viii) N.A. (ix) 18.42". (x) 7.2.1951 Wheat and 27.2.1951 Gram.
2. TREATMENTS :

1. 85% wheat and 15% gram.
2. 75% wheat and 25% gram.
3. 70% wheat and 30% gram.
4. 65% wheat and 35% gram.
5. 60% wheat and 40% gram.
-6. All wheat.
6. All gram.
7. DESIGN:
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 6. (iv) (a) N.A. (b) $491^{\prime} \times 11^{\prime}$. (v) 2^{\prime} between plots. 3^{\prime} between blocks. (vi) Yes.
8. GENERAL :
(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1945-1951. (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Expt. in 1949 has not been analysed as yield data was N.A. (vii) Harvest prices of the crops for Amravati District are taken from 'Tables of Agricultural Statistics' of Madhya Pradesh.
9. RESULTS :
(i) 115 Rs./ac.
(ii) 30.98 Rs./ac.
(iii) Treatments differ significantly.
(iv) Av. mor ey value of grain yield in Rs./ac.

Treatment	Av. value
1.	105
2.	117
3.	111
4.	127
5.	136
6.	78Ω
7.	132
S.E./mean	$=12.65$ Rs./ac.

$$
\begin{array}{lc}
\text { Crop :- Wheat and Gram (Rabi). } & \text { Ref :- Mh. 52(297), } \\
\text { Site :- Govt. Expt. Farm }{ }_{2} \text { Tharsa. } & \text { Type :- ' } \mathrm{X} \text { '. }
\end{array}
$$

Object :-To compare the two methods of sowing Wheat and Gram as mixed crop.

1. BASAL CONDITIONS:
(i) (a) N.A. (b) N.A. (c) N.A. (ii) (a) Medium black. (b) Refer soil analysis, Tharsa. (iii) 22.10.1952. (iv) (a) N.A. (b) N.A. (c) As per treatments (d) N.A. (e) N.A. (v) Nil. (vi) Wheat-hawara, and gram-A-D-6. (vii) Unirrigated. (viii) N.A. (ix) 27.39". (x) 18.2.1953.
2. TREATMENTS :
3. Wheat and gram sown in the same row-seed rate 40 lb ./ac.
4. Wheat and gram sown in the same row-seed rate 80 lb ./ac.
5. Wheat and gram sown in cross wise direction-seed rate $40 \mathrm{lb} . / \mathrm{ac}$.
6. Wheat and gram sown in cross wise direction-seed rate 80 lb ./ac.
7. Wheat only-seed rate 80 lb ./ac.
8. Gram only-seed rate $80 . \mathrm{lb}$./ac.
9. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 6 . (iv) (a) N.A. (b) $40^{\circ} \times 30^{\prime}$. (v) N.A. (vj) Yes.
10. GENERAL :
(i) N A. (ii) Nil. (iii) Grain yield. (iv) (a) $1950-1952$, (b) No. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Harvest prices of the crops for Nagpur district are taken from tables of Agricultural Statistics of Madhya Pradesh issued by Government of Madhya Pradesh, Land Records Department.
11. RESULTS :
(i) 114 Rs./ac.
(ii) 14.01 Rs./ac.
(iii) Treatments do not differ significantly.
(iv) Av. money value of grain yield in Rs./ac.

Treatment	Av. value
1.	119
2.	113
3.	119
4.	109
5.	108
6.	118
S.E./mean	$\quad 5.72$ Rs./ac.

```
Crop :- Wheat and Gram (Rabi).
Ref :- Mh. 53(336).
Site :- Agri. Res. Stn., Niphad.
Type:- 'X'.
```

Object :-To find out a suitable mixture of Wheat and Gram.

1. BASAL CONDITIONS :
(i) (a) Nil. (b) Bajra-Tur. (c) Nil. (ii) (a) Medium black. (b) Refer soil analysis, Niphad. (iii) 3.11 .1953.
(iv) (a) N.A. (b) Dibbling.
(c) 40 lb ./ac. for both the crops. (d) 10° between rows. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) Nil. (ix) 18.33". (x) 28.3.1954.
2. TREATMENTS :
3. Gram alono.
4. Wheat alone.
5. Gram and wheat lines in the ratio 2 : 1 .
6. Gram and wheat lines in the ratio $4: 1$.
7. Gram and wheat lines in the ratio 6:1.
8. Gram and wheat lines in the satio $8: 1$.
9. Gram and wheat lines in the ratio $10: 1$.
10. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 2. (iv) (a) $30^{\circ} \times 30^{\circ}$. (b) For treatment: 1, 2,3-7:-30 $\times 27.50^{\circ}$, treatment $4-30^{\circ} \times 25^{\prime}$, treatment $5-30^{\circ} \times 23.33^{\prime}$ and treatment $6-30^{\prime} \times 22.50^{\prime}$. (v)-N.A. (vi) Yes.
11. GENERAL:
(i) Normal. (ii) Nil. (iii, Grain yield. (iv) (a) 1953-N.A. (b) N.A. (c) Nil. (v) (a) N.A. (b) N.A. (vi) Nil. (vii) Harvest prices of Nasik district are taken from for 'Season and Crop Report of Bombay State'.
12. RESULTS :
(i) 117 Rs./ac.
(ii) 25.85 Rs./ac.
(iii) Treatments do not differ significantly.
(iv) Av money value of grain yield in Rs./ac.

Treatment	Av. value
1.	91
2.	149
3.	115
4.	119
5.	125
6.	135
7.	84
S E./mean	$=18.29$ Rs./ac.

Crop :- Cotton and Groundnut (Kharif).
Site :-Govt. Expt. Farm, Akola.

Ref :-Mh. 50(135).
Type:n'X'.

Object :-To find out a suitable mixture of Cotton and Groundnut.

1. BASAL CONDITIONS:
(i) (a) Nil (b) Cotton. (c) 2 C.L./ac. of F.Y.M. and $550 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 21.7.1950. (iv) (a) 1 heavy of 2 light bakharings. (b) Drilling. (c) to (e) N.A (v) 15 lb ./ac. of N as G.N.C on 30.6 .1950 (vi) Cotton: H. 420 and 0394 Groundnut : Ak-12-24. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 16.89". (x) Groundnut on : 24.10.1950. Cotton picked on: 11, 28. 11. 1950, 16. 12. 1950. and 12. 1. 1951.

2. TREATMENTS :

1. Groundnut alone.
2. 2 rows of $\mathbf{H} .420$ cotton +4 rows of groundnut.
3. 2 rows of $\mathbf{H} .420$ cotton +8 rous of groundnut.
4. 2 rows of $H 20$ cotton +12 rows of groundnut.
5. 2 rows of 0394 cotton +4 rows of groundnnt.
6. 2 rows of 0394 cotton +8 rows of groundnut.

72 rows of 0394 cotton +12 rows of groundnut.

3. DESIGN

(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $66^{\circ} \times 16 \frac{2}{2}^{\circ}$. (v) One row on either side of each plot. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Aphid attack on groundnut in August. Also Groundnut suffered from attack of rot of pods and Asparigillus mould on leaves. No control measures taken. (iii) Grain and kapas yield. (iv) (a) 1950 to 1953. (b) No. (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Harvest Prices of Akola District for the crops are taken from Tables of Agricultural Statistic of Madhya Pradesh.
5. RESULTS :
(i) 189 Rs./ac.
(ii) 16.56 Rs./ac.
(iii) Treatments do not differ significantly.
(iv) Av. money value of cotton and groundnut yield in Rs./ac.
Treatment Ay, value

1. 196
2. 191
3. . 199
4. 194
5. $\quad 186$
6. 180
7.175
S.E./mean $\quad=8.28$ Rs./ac.

Crop :-Cotton and Groundnut (Kharif).
Site :-Govt. Exptl. Farm, Akola.

Ref :-Mh. 51(192).
Type:-‘X'.

Object :-To find out a suitable mixture of Cotton and Groundnut.

1. BASAL CONDITIONS:
(i) (a) No. (b) Cotton. (c) 2 C.L./ac. of F.Y.M. and $600 \mathrm{lb} . / \mathrm{ac}$. of G.N.C. (ii) (a) Black cotton soil.
(b) Refer soil analysis, Akola. (iii) 23. 7. 1951. (iv) (a) 1 heavy and 2 light bakharings. (b) Dibbling. (c), (d) and (e) N.A. (v) $15 \mathrm{lb} . / \mathrm{ac}$. of N as G.N.C. (vi) Cotton : H. 420 and 0394, Groundnut : Ak-12-24. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) $24.32^{\prime \prime}$. (x) 10.11 .1951 groundnut and 7. 12. 1951, 9.1.1952 cotton.

2. TREATMENTS:

1. Groundnut alone.
2. 2 rows of $\mathbf{H} .420$ cotton +4 rows of groundnut.
3. 2 rows of $\mathbf{H . ~} 420$ cotton +8 rows of groundaut.
4. 2 rows of H .420 cotton +12 sows of groundnut.
5. 2 rows of 0394 cotton +4 rows of groundnut.
6. 2 rows of 0394 cotton +8 rous of groundnut.
7. 2 rows of 0394 cotton +12 rows of groundnut.
8. DESIGN :
(i) R.B.D. (ii) (a) 7. (b) N.A. (iii) 4. (iv) (a) and (b) $66^{\prime} \times 16.5^{\prime}$. (v) N.A. (vi) Yes.
9. GENERAL:
(i) Good. (ii) Nil. (iii) Pod and kapas yield. (iv) (a) 1950 to 1953. (b) No. (c) N.A. (v) (a) and (b) N.A. (vi) Nil. (vii) Harvest prices of Akola District for the crops are taken from Table of Agricultural Statitics of Madhya Pradesh.
10. RESULTS
(i) 383 Rs./ac.
(ii) 26.32 Rs./ac.
(iii) Treatments difier significantly.
(iv) Av. money value of cotton and groundaut in Rs./ac. freatiment Av. valuo

1.	410
2.	365
3.	380
4.	385
5.	343
6.	406
7.	354
S.E./mean	$=13$.

Crop :- Groundnut and Cotton.
Site :- Govt. Exptl. Farm, Akola.

Ref: Mh. $\mathbf{5 2}$ (232).
Type : ' ' X '.

Object:-To find out a suitable mixture of Cotton and Grootiodunt. .

1. BASAL CONDITIONS :
(i) (a) No. (b) Jowar. (c) G.N.C. at 4 lb./ac. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) 15.4.1952. (iv) (a) 1 heavy and 2 light bakharings. (b) Dibbling. (c) Groundnut $90 \mathrm{lb} . / \mathrm{ac}$. ; cotton H.420-14.20 lb./ac. and cotton $0394-12.14 \mathrm{lb}$./ac. (d) Groundnut $-12^{\circ} \times 6^{\prime \prime}$; cotton $\mathrm{H} .420-18^{\prime \prime} \times 3^{\prime \prime}$ and cotton $0.394-24^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) 15 lb . ac. of N through G.N.C. as basal dressing. (vi) Ground-nut-Ak.12-24; cotton-H. 420 and 0394. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 22.03". (x) 2011.1952.

2. TREATMENTS:

1. Groundnut alone.
2. 2 rows of $\mathbf{H} 420$ cotton after 4 rows of groundnat.
3. 2 rows of $\mathbf{H} .420$ cotton after 8 rows of groundnut.
4. 2 rows of $\mathbf{H} .420$ cotton after 12 rows of groundnut.
5. 2 rows of 0394 cotton after 4 rows of groundnut. .
6. 2 rows of 0394 cotton after 8 rows of groundnut.
7. 2 rows of 0394 cotton after 12 rows of groundnut.
8. H. 420 cottón aloné.
9. 0394 cotton alone.
10. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ ac. (v) N.A. (vi) Yes.
11. GENERAL:
(i) Due to insufficient moisture in soil, pod formation was very poor. (ii) Nil. (iii) Grain and kapas yield. (iv) (a) 1950-1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Harvest prices for the crops of Akola District taken from 'Table of Agricultural statistics of Madhya Pradesh'.
12. RESULTS :
(i) 108 Rs./ac.
(ii) 12.66 Rs /ac.
(iii) Treatments differ significantly.
(iv) Av. money value of cotton and groundnut yield in Rs./ac.

Treatment	Av. value	Treatment	Av. value
1.	112	6.	120
2.	116	7.	111
3.	114	8.	97
4.	107	5.	82
3.	111		
		S.E./mean	$=6.33$ Rs./ac.

Ref :- Mh. 53(314).
Type :- 'X'.
Object :-To find out a suitable mixture of Cotton and Groundnut.

1. BASAL CONDITIONS:

(i) (a) No. (b) Johar. (c) $10 \mathrm{lb} . / \mathrm{ac}$. of N as A / S. (ii) (a) Deep black cotton soil. (b, Refer soil analysis, Akola. (iii) 13.7.1953. (iv) (a) 2 light and 1 heavy bakharing. (b) to (e) $\mathbf{N} A$. (v) $15 \mathrm{lb} / \mathrm{ac}$. of \mathbf{N} through F.Y.M. as basal dressing. (vi) Groundnut-AK.12-24, cotton-H.420 and 0394. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings. (ix) 26.38°. (x) 31.10.1953, 11.2.1953 and 2.2.1954.

2. TREATMENTS :

1. Groundnut crop alone.
2. 2 rows of H .420 cotton with 4 rows of groundnut.
3. 2 rows of H. 420 cotton with 8 rows of groundnut.
4. 2 rows of $\mathbf{H} .420$ cotton with 12 rows of groundnut.
5. 2 rows of 0394 cotton with 4 rows of groundnut.
6. 2 rows of 0394 cotton with 8 rows of groundnut.
7. 2 rows of 0394 cotton with 12 rows of groundnut.
8. H. 420 cotton alone.
9. 0394 cotton alone.
10. DESIGN :
(i) R.B.D. (ii) (a) 9. (b) N.A. (iii) 4. (iv) (a) N.A. (b) $1 / 40$ th ac. (v) N.A. (vi) Yes.

4. GENERAL:

(i) N.A. (ii) Nil. (iii) Pod and kapas yield. (iv) (a) 1950-1953. (b) and (c) No. (v) (a) and (b) N.A. (vi) Nil. (vii) Harvest prices for the scrop of Akola District are taken from 'Table of Agricultural Statistics of Madhya Pradesh'.
5. RESULTS :
(i) 206 Rs./ac.
(ii) 39.40 Rs./ac.
(iii) Treatments differ highly significantly.
(iv) Av. money value of pod and kapas yield in Rs./ac.

Treatment	Av. value	Treatment	Av, value
1.	242	6.	252
2.	214	7.	258
3.	231	8.	96
4.	240	9.	69
5.	249		

\int_{0} Crop :- Cotton-Jowar-Groundnut (Kharif).		Ref :- Mh. 48(83).
	Site :- Govt. Exptl. Farm, Akola.	
	Type :- 'R'.	

Object:-To find out the best rotation along with manuring for the tract.

1. BASAL CONDITIONS:
(i) (a), (b), (c) As per treatments. (ii) (a) Black cotton soil, (b) Refer soil analysis, Akola. (iii) Cotton 27.6.1948; Groundnut 4.7.1948; Jowar 12.7.1948. (iv) (w) 2 heavy and one light bakharing. (b) N.A. (c) Jowar $8 \mathrm{lb} . / \mathrm{ac}$.; Cotton $20 \mathrm{lb} . / \mathrm{ac}$. ; Groundnut $90 \mathrm{lb} . / \mathrm{ac}$. (d) Cotton $18^{\prime \prime} \times 9^{\circ}$, Groundaut $12^{\prime \prime} \times 6^{\prime \prime}$, Jowar $18^{\circ} \times 12^{\prime \prime}$. (e) N.A. (v) Manure is applied every third year to each rotation at 40 lb ./ac. of $\mathrm{N}\left(\frac{1}{2}\right.$ in the form of F.Y.M. and $\frac{1}{2}$ in the form of A/S) (This year it has not been given). (vi) Cotton V-434 (medium); Groundnut Ak-12-24 (early) ; Jowar Saoner (late). (vii) Unirrigated. (viii) 3 hoeings, 2 weedings; 2 hoeings, 2 weedings and 3 hoeings, 2 weedings respectively for cotton, groundnut and jowar. (ix) $31.52^{\circ \prime}$. (x) Cotton pickings 13.1.1949, 31.3.1949, 15.4.1949; Groundnut 15.10.1948 and Jowar 26.12.1948.

2. TREATMENTS :

7 rotations as follows.

1. Groundnut (GN)-Cotton (C).
2. Groundnut-Cotton-Jowar (J).
3. Cotton-Jowar-Groundnut-Cotton.
4. Jowar-Cotton-Cotion.
5. Cotton alone.
6. Jowar-Cotton.
7. Groundnut-Cotton-Cotton.

Manure is applied every third year to each rotation at 40 lb ./ac. of N ; half as F.Y.M. and half as A/S.
3. DESIGN:
(i) R.B.D. (ii) (a) 18. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 20$ th ac. (v) One row on either side of the plot is kept as guard row. (vi) No, as per rotations.
4. GENERAL:
(i) Growth of cotton was not satisfactory. In Jowar, lodging was noticed and also crop black due to late rains, Groundnut crop satisfactory. (ii) Aphid attack has teen noticed on groundnut but washed by rain. Slight attack of stemborer on Jowar. No control measures taken. (iii) Grain, kapas and pod yield. (iv)
(a) 1930-continued.
(b) As per rotations.
(c) Nil.
(v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESU̇LTS :

I. Crop : Cotton.
(i) $122 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) 36.00 lb ./ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of $k a_{i}$ as in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(6)	(5)	(7)	(7)
Previous crop	GN	GN	C	GN	J	C	J	C	GN	C.
Av. yield	151	216	90	192	108	93	121	62	130	62
S.B. $/$ mean $\quad=16.0$										

dI. Crop : Jowar.
(i) $924 \mathrm{lb} / \mathrm{ac}$.
(ii) $139.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Jowar in lb./ac.

Rotation No.	(2)	(3)	(4)	(6)		
Previous crop	C	C	C	C		
Av. yield	895	1062	872	866		
	S.E./mean					$=62.49 \mathrm{lb}$./ac.

nII. Crop: Groundnut.
(i) $1024 \mathrm{lb} . / \mathrm{ac}$.
(ii) $295.8 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly.

- (iv) Av. yield of pod in lb./ac.

Rotation No.	(1)	(2)	(3)	(7)			
IPrevious crop	C	J	J	C			
Av. yield	971	970	1126	1029			
	S E./mean						$=132.2 \mathrm{lb} . / \mathrm{ac}$.

\because
 \checkmark Crop :-Cotton-JowarwGroundnut (Kharif). Ref:- Mh. 49(112)/48(83).
 Site :- Govt. Exptl. Farm, Akola. Type :- 'R'.

Object :-To find out the best rotation along with manuring for the tract.

d. BASAL CONDITIONS :

(i) (a) to (c) As per rotations. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii Cotton 29.6.1949; Groundnut 3.7.1949; Jowar 21.7.1949. (iv) (a) N.A. (b) N.A. (c) Jowar $8 \mathrm{lb} . / \mathrm{ac}$. ; Cotton 20 lb ./ac.; Groundnut 90 lb ./ac. (d) Cotton $18^{\circ} \times 9^{\prime \prime}$; Groundnut $12^{\prime \prime} \times 9^{\prime \prime}$ and Jowar $18^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) Manure is applied this year to each rotation at 40 lb ./ac. of N ; half in form of F.Y.M. and $\frac{1}{2}$ in form of A / S on 19.6.1949. (vi) Cotton H. 420 (medium) ; Groundnut AK-12-24 (early) Jowar Soaner (late). (vii) Unirrigated. (viii) 3 hoeings and one weeding, 2 hoeings and one weeding, and 2 hoeings and one weeding respectively for Cotton, Groundnut and Jowar. (ix) 42.93". (x) Picking of cotton 12.11.1949, 17.12.1949. 19.1.1950, 16.2.1950, 44.1950 ; Groundout 24.11.1949 and Jowar 17.12.1949.
2. TREATMENTS:

7 rotations as follows:

1. Grcundnut (GN)-Cotton (C).
2. Grounjnut-Cotton-Jowar (J).
3. Cotton-Jonvar-Groundnut-Cotton.
4. Jowar-Cotton-Cotton.

5 Cotton alone.
6. Jowar-Cotton.
7. Groundnut-Cotton-Cotton.

Manure is applied every third year to each rotation at $40 \mathrm{lb} . / \mathrm{ac}$ of N ; half as F.Y.M. and half as A/S.
3. DESIGN :
(i) R.B.D. (ii) (a) 18. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 2 \mathrm{Cth}$ ac. (c) One line on either side of plot is left as border. (vi) No, as per rotations.
4. GENERAL:
(i) Germination in all plots satisfactory. Crop grouth good in all crops. Due to late rains in the month of Septemter, the flowers and bolls were affected. There was much shedding of bolls and buds in cotton. (ii) Aphid attack on Groundnut by 6.8 .1949 was noticed. Shedding of bolls and buds. due to Bias-fabia in cotton by 159.1949 . (iii) Grain, kapas and pod sield. (iv) (a) 1930 -continued. (b) As per rotations. (c) No. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

I. Crop: Cotton.
(i) $211 \mathrm{lb}, / \mathrm{ac}$
(ii) $50.80 \mathrm{lb} . / \mathrm{ac}$
(iii) Treatments do not differ significantly. .
(iv) Av. yield of kapas in Ib./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(6)	(7)	(7)
Previous crop	GN	GN	GN	C	J	C	C	J	GN	C
Av. yield	153	236	251	237	227	205	177	213	195	216.
			S.E./mean	$=22.71 \mathrm{lb} . / \mathrm{ac}$.						

II. Crop: Jowar.
(i) $1564 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $159.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Jowar in lb./ac.
Rotation No. (2) (3) (4) (6)

Previous crop	C	C	C	C
Av. yield	1679	1454	1576	1549
	S.E./mean	$-71.2 \mathrm{lb} . / \mathrm{ac}$.		

III. Crop: Gromendnat.
(i) $827 \mathrm{Jb} / \mathrm{ac}$.
(ii) $274.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Av. yetion No.	(1)	(2)	(3)	(7)		
Rotations crop	C	J	J	C		
Previous						
Av. yield	848	780	830	851		
	S.E./mean					$=122.6 \mathrm{lb} . / \mathrm{ac}$.

\checkmark Crop :-Cotton, Jowar and Groundnut (Kharif). Ref :-Mh. 50(113)/49(112)/48(83).

Site :-Govt. Exptl. Farm, Akola. Type :-‘R'.
Object:-To find out the best rotation along with manuring for the tract.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) Cotton 15.7.1950; Groundnut 20.7.1950; Jowar 24.7.1950. (iv) (a) 2 neavy and one light bakharing. (b) By tiffan. (c) Cotton $20 \mathrm{lb} . / \mathrm{ac}$. , Groundnut $9 \mathrm{~J} \mathrm{lb} . / \mathrm{ac}$. and Jowar $8 \mathrm{lb} . / \mathrm{ac}$. (d) Cotton $18^{\circ} \times 9^{\prime \prime}$, Groundnut $12^{\circ} \times 6^{\prime \prime}$ and Jowar $18^{\circ} \times 12^{\prime \prime}$. (e) N.A. (v) Manure is applied every third year to each rotation at 40 lb ./ac. of N ($\frac{1}{2}$ in the form of F.Y.M. and $\frac{1}{2}$ in the form of A / S). This year it has not been given. (vi) Cotton H-42才; Groundnut-AK 12-24; Jowar-Improved Saoner. (vii) Unirrigated. (viii) 3 hoeings and 2 weedings for all crops. (ix) 16.89". (x) Cotion 8, 22.11.1950, 2.12.1950, 11.1.1951 and 17.2.1951; Groundnut 25.10.1950; Jowar 3.1.1951.
2. TREATMENTS :

7 rotations as follows :

1. Groundnut (GN)-Cotton (C).
2. Groundnut-Cotton-Jowar (J).
3. Cotton-Jorar-Groundnut-Cotton.
4. Jowar-Cotton-Cotton.
5. Cotton alone.
6. Jowar-Cotton.
7. Groundnut-Cotton-Cotton.

Manure is appled every third year to each rotation at $40 \mathrm{lo} . / \mathrm{ac}$. of N. (Half as F.Y.M. and half as A/S).

3. DESIGN

(i) R.B.D. (ii) (a) 18 . (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 20$ th ac. (v) 1 row on either side of the plot is left as border. (vi) No, as per rotation.

4. GENERAL :

(i) Stunted growth of crop especially in groundnut and jowar due to long spell of draught in August and early cessation of rain in September and se:ondly late sowing of crops due to late showers in the season. (ii) Aphid attack noticed on groundnut by 2nd week of August., no control measures taken. (iii) Grain, kapas and pod yield. (iv) (a) 1930-1959. (b) As per rotation. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :

I Crop: Cotton.
(i) $397 \mathrm{lb} / \mathrm{ac}$.
(ii) $106.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly
(iv) Av. yield of kapas in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(6)	(7)	(7)
Previous crop	GN	GN	GN	C	C	J	C	J	C	GN
Av. yield	663	656	731	234	190	195	241	177	250	633
	S.E./mean	$=47.43$ lb./ac.								

II Crop: Jowar
(i) $176 \mathrm{lb} . / \mathrm{ac}$.
(ii) $6908 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Rotation No.	(2)	(3)	(4)	(6)
Previous crop	C	C	C	C
Av. yield	178	145	198	182
	S.E./mean	$=30.88 \mathrm{lb} . / \mathrm{ac}$.		

III Crop: Groundnut.
(i) $496 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $63.06 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Rotation No.	(1)	(2)	(3)	(7)
Previous crop	C	J	J	C
Av. yield	531	491	506	458
	S.E. $/$ mean	$=28.19$	$\mathrm{lb} . / \mathrm{ac}.$.	

s Crop r-Cotton, Groundnut and Jowar (Kharif). Ref i-Mh. 51(191)/50(113)/d9(112)/48(83).

 Site :-Govt. Exptl. Farm, Akola. Type :-'R'.Object :-TO And out the bost rotation along with manuring for the tract.

1. BASAL CONDITIONS :
(i) (a) to (o) As per treatmonts. (ii) (a) Black cotton soll. (b) Refor toil analyals, Akola. (ili) Cotton 25.6.1951. Groundnut 19.7.1951 and Jowar 24.7.1951. (iv) (a) 2 hoavy and one liaht bakharint. (b) N.A. (c) Cotton $18-20 \mathrm{lb} / \mathrm{ha}$, Groundnut $90 \mathrm{lb} / \mathrm{ac}$, and Jowar $8.10 \mathrm{lb} / \mathrm{ag}$. (d) Cotton $18^{\circ} \times 9^{\circ}$, Oraundaus $12^{\circ} \times 6^{\circ}$ and Jowbr $18^{\circ} \times 12^{\circ}$. (o) N.A. (v) 40 lb ./ac. of N, half as P.Y.M. and half as A/S. (vi) Colloa H-420, Groundnut AK $12-24$ and Jowar Saoncr. (vil) Unirrigated. (vili) 4 hooings and 2 woedings fue all crops. (ix) 24.92'. (x) Cotton 8.11.1951, 8.12.1951 and 19.3.1952, Groundnut 28.11.1951 and Jower 5.1.1952.

2. TREATMENTS

7 rotations as follows :

1. Groundnut (GN)-Cotion (C).
2. Groundnut-Colton-Jowar (J).
3. Cotton-Jowiar-Groundnut-Cotton.
4. Jowar-Colton-Cotton.
5. Cotton alone.
6. Jowar-Cotton.
7. Groundnut-Cotton-Cottoa.

Manure is applicd every third year to each rotation at $40 \mathrm{lb} . / \mathrm{ac}$. of N. (half as F.Y.M. and half as A/S.)
3. DESIGN :
(i) R.B.D. (ii) (a) 18. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 20 \mathrm{~h}$ ac. (v) Ono row onelther alde of the plot. (vi) No, as per rotations.
4. GENERAL:
(i) N.A. (ii) Jowar suffered from top shoot borer in Auguse. (iil) Oraln, kapas and podyleld. (ili) (a) 1030continued. (b) As per rotations. (c) Nil. (v) (a) and (b) N.A. (vi) and (vil) Nil.

5. RESULTS :

I Crop: Cotton
(i) $792 \mathrm{lb} / \mathrm{ac}$.
(ii) $122.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly eignificantly.
(iv) Av. yield of kapas in lb,/ac.

Av. yield of kapas in lb./ac.										
Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(6)	(5)	(7)	(1)
Previous crop	ON	GN	ON	C	J	C	1	C	ON	C
Av. yield	1127	906	981	682	519	503	537	679	1048	796
			./me		- $54.6 \mathrm{lb} . / \mathrm{ac}$					

, II Crop : Jowar.
(i) $1301 \mathrm{lb} . / \mathrm{ac}$.
(ii) $151.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly,
(iv) Av. yield of grain in lb./ac.

Av. yotion No.	(2)	(3)	(4)	(6)
Rotatious crop	C	C	C	C
Previouel	1168	1504	1400	1134
Av. yield	S.E./mean	$-67.5 \mathrm{lb} . / \mathrm{ac}$.		

III Crop: Groundnat.
(i) $1322 \mathrm{lb} / \mathrm{ac}$.
(ii) $191.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yreld of pod in lb./ac.

Av. yleld of pod in	(1)	(2)	(3)	(7)
Rotation No.	C	J	J	C
Previous crop	1304	1260	1320	1404
Av. yield	S.E./mean	$=85.5 \mathrm{lb} . / \mathrm{ac}$.		

i Crop :- Cotton, Jowar, Groundnut (Kharif).
 Site :- Govt. Exptl. Farm, Akola.
 Ref : M M. 52(229)/51(191)/ 50(113)/49(112)/48(83). Type :- 'R'.

Object :-To find out the best rotation along with manuring for the tract.

1. BASAL CONḊITIONS :

(i) (a), (b) and (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Akola. (iii) Cotton 25.6.1952; Groundnut 14.2.1952; Jowar 18.7.1952. (iv) (a) 2 heavy and one light bakharing. (b) N.A. (c) Cotton $19-20 \mathrm{lb} . / \mathrm{ac} .$, Groundnut $90 \mathrm{lb} . / \mathrm{ac}$. and Jowar $8-10 \mathrm{lb} . / \mathrm{ac}$. (d) Cotton $18^{\prime \prime} \times 9^{\prime \prime}$, Groundnut $12^{\prime \prime} \times 6^{\prime \prime}$ and Jowar $18^{\prime \prime} \times 12^{\prime \prime}$. (e) N.A. (v) Manure is applied every third year to each rotation at the rate of $40 \mathrm{lb} . / \mathrm{ac}$. ; half as F.Y.M. and the other half as A/S on 22.6 .1952 ; F.Y.M. added as basal dose at $20 \mathrm{lb} . / \mathrm{ac}$. of N on 26.8 .1952 ; A/S added as basal dose at 20 lb ./ac. of N . (vi) Cotton-H420; Ground-. nut Ak 12-24; Jowar-saoner. (vii) Unirrigated. (viii) 5 hoeings and 1 thinning. (ix) 22.03". (x) Cotton14.11.1952, 15.12.1952 and 21.1.1953; Groundnut-23.11.52; Jowar-29.12.52.

2. TREATMENTS :

7 rotations as follows :

1. Groundnut (GN)-Cotton (C).
2. Groundnut-Cotton-Jowar (J).
3. Cotton-Jowar-Groundnut-Cotton.
4. Jowar-Cotton-Cotton.
5. Cotton alone.
6. Jowar-Cotton.
7. Groundnut-Cotton-Cotton.

Manure is applied every third year to each rotation at $40 \mathrm{lb} / \mathrm{ac}$ of N (half as F.Y.M. ard half asA/S.)
3. DESIGN:
(i) R.B.D. (ii) (a) 18. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $1 / 20 t h$ ac. (v) One row on either side of
the plot. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain, kapas and pod yield. (iv) (a) 1930-continued. (b) As per rotations. (c) Nil. (v) (a), (b) N.A. (vi) \& (vii) Nil.
5. RESULTS :

1. Crop : Cotton
(i) $424 \mathrm{lb} . / \mathrm{ac}$.
(ii) $72.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.

II. Crop : Jowar

- (i) $1004 \mathrm{lb} . / \mathrm{ac}$.
(ii) 193.0 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	(2)	(3)	(4)	(6)
Previous crop	C	C	C	C
Av. yield	1136	1054	976	850
		S.E./mean	$=86.3 \mathrm{lb}$./ac.	

III Crop : Groundnut
(i) $505 \mathrm{lb} . / \mathrm{ac}$.
(ii) $\quad 90.00 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb ,/ac.

Rotation No.	(1)	(2)	(3)	(7)
Previous crop	C	J	J	C
Av. yield	512	480	492	536

S.E./mean $=40.23 \mathrm{lb} / \mathrm{ac}$.

```
5 Crop :- Cotton, Jowar, Groundnut (Kharif). . Ref:- Mh. 53(313)/52(229)/51(191)
                                    /50(113)/49(112)/48(83).
Site :m Govt. Exptl. Farm, Akola. Type :- `R'.
```

Object :- To find out the best rotation along with manuring for the tract.

1. BASAL CONDITIONS :

* (i) (a), (b), (c) As Sper treatments. (ii) (a) Black cotton soil, (b) Refer soil analysis, Akola. (iii) Cotton 25.6.1953; Groundnut 10.2.1953; Jowar-13.7.1953. (iv) (a) Ploughing on 24.4.1953. (b) Tiffan method for
 Groundnut $12^{\prime \prime} \times 6^{\prime \prime}$; Cotton-18" $\times 9^{\prime \prime}$. (e) N.A. : (v) N.A. (vi) Cotton-H 420 (medium); Jowar-improved saoner; Groundnut AK 12-24. (vii) Unirrigated. (viii) 4 hoeings and 3 weedings. (ix) 26". (\boldsymbol{x}) Cotton 26.11.1953, 31.12.1953, 13.2.1954 ; Groundnut 30.10.1953 : Jowar 25.12.1953.

2. TREATMENTS :

7 rotations as follows :

1. Groundnut (G.V)-Cotton (C).
2. Groundnut-Cotton-Jowar (J)
3. Cotton-Jowar-Groundnut-Cotton.
4. Jowar-Cotton-Cotton.
5. Cotton alone.
6. Jowar-Cotton.
7. Groundnut-Cotton-Cotton.

Manure is applied every third year to each rotation at 40 lb ./ac. of \mathbf{N} (half as F.Y.M. and half as A / S.)
3. DESIGN :
(i) R.B.D. (ii) (a) 18. (b) N.A. (iii) 5. (iv) (a) N.A. (b) $66^{\prime} \times 33^{\prime}$. (v) One line on either side of the plot. (vi) No, as per rotations.
4. GENERAL :
(i) Normal. (ii) Nil. (iii) Grain, kapas and pod yield. (iv) (a) 1930-continued. (b) As per rotations.
(c) Nil. (v) (a), (b) N.A. (vi) \& (vii) Nıl
5. RESULTS:

1 Crop: Cotton
(i) $396 \mathrm{lb} . / \mathrm{ac}$.
(ii) $60.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly signiflcantly.
(iv) Av. yield of kapas in $\mathrm{Ib} . / \mathrm{ac}$.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(6)	(7)	(7)
Previous crop	GN	GN	GN	C	C	J	C	J	C	GN
Av. yield	595	522	565	373	307	198	245	248	295	608

II Crop: Jowar.
(i) $1348 \mathrm{lb} / \mathrm{ac}$.
(ii) $212.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(2)	(3)	(4)	(6)
Previous crop	C	C	C	C
Av. yield	\therefore	1500	1386	1296

III Crop : Groundnat
(i) $1062 \mathrm{lb} . / \mathrm{ac}$.
(ii) $155.7 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

(iv) Av. yied of	(1)	(2)	(3)	(7)
Rotation No.	C	J	J	C
Previous crop	1040	956	1012	1240
Av. yield		S.E./mean $=$	69.60 lb ./ac.	

Crop suJowat-Chinamug-Groundnut-Gram-Wheat. Ref: \boldsymbol{m} Mh. 51(206). Site :-Agri. Res. Stn.; Chas.
 Type :- \mathbf{R}^{\prime} '.

Object:-To find out the best Rabl cereal and legume rotation for the tract.

1. BASAL CONDITIONS :

(i) (a), (b) and (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) Groundnut 30.6.1951; Chino mug 25.6.1951 ; Jowar 23.9.1951; Gram 30.9.1951 and Wheat 6.10.1951. (iv) (a) and (b) N.A. (c) Jowar$4 \mathrm{lb} . / \mathrm{ac} .$, Wheat and Gram 60 lb ./ac., Chinamug 10 lb ./ac. (d) $18^{\prime \prime}$ for Jowar and 12° for others. (e) N.A. (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) N.A.' (ix) From May, to August 10° from September to December 13. (x) 29.11.1951, 30.8.1951, 13, 30.1.1952, 8.2.1952, for Groundnut, Chinamug, Jowar, Gram and Wheat respectively.
2. TREATMENTS:

1. 11 rotations as follows :-
2. J-Jm—J-J. 1
3. Cmp/J every year.
4. Cm / J every year.
5. GNp-J.
6. GN-J.
7. $\mathbf{G p}-\mathrm{J}$.
8. G-J.
9. Wp-J.
10. W-J.
11. F-Jp.
12. $\mathrm{P}-\mathrm{J}$.

Details of rotations :-
J =Jowar unmanured.
Jm =Jowar manured with 5 C.L./aci of F.Y.M.
Cmp = Chinamug manured with 40 lb ./ace of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathrm{s}}$. $\mathrm{Cm}=$ Chinamug unmanured.
$\mathbf{G N p}=$ Groundnut manured with $40 \mathrm{lb} / / \mathrm{ac}$, of $\mathrm{P}_{2} \mathrm{O}_{5 \mathrm{~b}}$
GN =Groundnut unmanured.
$G p=$ Gram manured with $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{3}$:
G. =Gram unmanured.

Wp $=$ Wheat manured with 40 lb . $/ \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathbf{W}=$ Wheat unmanured. $\mathbf{F}=$ Fallow.
$\mathrm{Cmp} / \mathrm{J}, \mathrm{Cm} / \mathrm{J}$ indicates that crops are grown in K harif and Rabi respectively. $\mathbf{P}_{2} \mathrm{O}_{5}$ applied as Supor.
3. DESIGN :
(j) R.B.D.
(ii) (a) 22.
(b) N.A.
(iii) 6. (iv) (a)
(a) N.A. (b)
(b) $45^{\circ} \times 30^{\circ}$
(v) N.A. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) No. (iii) Grain and pod yield. (iv) (a) 1949-continued. (b) As per rotations. (c) N.A (v) (a) Jeur. (b) -. (vi) and (vii) Nil.

5. RESULTS:

I. Crop: Jowar.
(i) $342 \mathrm{lb} / \mathrm{ac}$.
(ii) $150.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of Jowar in lb./ac.

Rotation No.	(1)	(1)	(1)	(1)	(2)	(3)	(4)
Crop	J	J	J	Jm	Cmp/J	Cm/ J	J
Previous crop	J	J	Jm	J	Cmp/J	Cm/J	GNp
Av. yield	225	302	351	405	333	301	336.
Rotation No.	(5)	(6)	(7)	(8)	(9)	(10)	(II)
Crop	J	J	J	J	J	Jp	J
Previous crop	GN	Gp	\mathbf{G}^{\prime}	Wp	W	F	F
Av. yield	462	457	294	455	383	209	283
S.E./mean $\quad=61.5 \mathrm{lb} . / \mathrm{ac}$.							

11. Crop: Chinamug
(i) $352 \mathrm{lb} . / \mathrm{ac}$.
(ii) $98.16 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Chinamug in lb./ac.

Rotation No.	(2)	(3)
Crop	$\mathrm{Cmp} / \mathrm{J}$	Cm / J
Previous crop	$\mathrm{Cmp} / \mathrm{J}$	Cm / J
Av. yield	416	289
S.E./mean	$=40.08 \mathrm{lb} . / \mathrm{ac}$	

III. Crop: Gromidnat.
(i) $944 \mathrm{lb} . / \mathrm{ac}$.
(ii) $170.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of groundnut in Ib./ac.

Rotation No.	(4)	(5)
Crop	GNp	GN
Previous crop	J	J
Av. yield	1126	762
S.E./mean	69.4	

IV. Crop: Gram
(i)
249 lb./ac.

Crop :-Jowar, Chinamug, Groundnut,
Gram and Wheat.
Site :-Agri. Res. Stn., Chas.

Ref:-Mh. 53(333)/51(206).
Type :" ${ }^{\text {R }}$.

Object :-To find out the test Rabi cereals and legume rotation for the tract.

1. BASAL CONDITIONS :
(i) (a). (b) and (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) N.A. (iv) (a) One ploughing. (b) Drilled. (c) Jowar-4 lb./ac.; Wheat and Gram-60 lb./ac. and Chinamug-10 lb./ac. (d) $12^{\prime \prime}$ for Jowar and $18^{\circ \prime}$ for other crops. (e) - . (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) N.A. (ix) $16^{\prime \prime}$. (x) N.A.
2. TREATMENTS :

11 rotations as follows:-

1. $\mathbf{J}-\mathrm{Jm}-\mathrm{J}-\mathrm{J}$.
2. Cmp/J every year.
3. Cm / J every year.
4. $G N p-J$.
5. GN-J.
6. Gp-J.
7. G-J.
8. Wp-J.
9. W-J.
10. $\mathrm{F}-\mathrm{Jp}$.
11. F-J.

[^6]3. DESIGN :
(i) R.B.D. (ii) (a) 22.
(b) N.A.
(iii) 4. (iv) (a) N.A.
(b) $45^{\prime} \times 30^{\prime}$
(v) N.A. (vi) As per rotation.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-continued. (b) As per rotations. (c) Nil. (v) (a) Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
I. Crop: Jowar
(i) $297 \mathrm{lb} . / \mathrm{ac}$.
(ii) $135.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Jowar in Ib,/ac.

Rotation No.	(1)	(1)	(1)	(1)	(2)	(3)	(4)	(5)
Crop	J	J	J,	I	Cmp/J	Cm/J	J	J
Previous crop	J	: Im	, J.	Jm	Cmp/J	Cm/J	GNp	GN
Av. yield	160	259	170	327	373	263	453	369
Rotation No.	(6)	(7)	(8)	(9)	(10)	(11)		
Crop	1	J	J	J	JP	J		
Previous crop	GP	G	Wp	W	F	F		
Av. yield	429	302	272	278	215	291		
	S.E./mean		$=67.6 \mathrm{lb} . / \mathrm{ac}$.					

II. Crop : Gram
(i) $160 \quad \mathrm{lb}$ /ac.
(ii) 36.97 lb /ac.
(iii) Treatments do not differ significantly.
(Iv) Av. yield of gram in lb ./ac.

Rotation No.	(6)	(7)
Crop	$\therefore \quad \mathbf{G p}$	G
Previous crop	J	J
Av. yield	162	158
	S.E./mean	$=18.49 \mathrm{lb} / \mathrm{ac}$.

III. Crop: Wheat
(j) $47 \mathrm{Jb} . / \mathrm{ac}$.
(ii) $18.36 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of wheat in lb./ac.

Rotation No.	(8)	(9)
Crop	Wp	W
Previous crop	J	J
Av. yield	.	60

S.E./mean $\quad=9.18 \mathrm{lb}$./as

Note :-Yields of Chinamug and Groundnut-N.A.
Crop:- Bajra-Tur-Chinamug-Chavali etc.
Site : A Agri. Res. Stn. Chas.
Ref :- Mh. 51(205).
Type :- 'R'.

Object :-To find out the best rotation of Kharif legumes and cereals for the tract.

1. BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) Chinamug 25.6.1951; Chavali 5.7.1951. ; Hulga 5.7.1951 ; Bajri-Tur 5.7.1951 and Groundnut 30.6.1951. (iv) (a) 1 ploughing and 2 harrowing. (b) to (e) N.A. (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) 2 interculturings. (ix) 10.99°. (x) Chinamug 30.8.1951; Chavali 4.11.1951; Hulga 15.11.1951; Bajri-Tur 21.10.1951 and 5.2.1952; Grountnut 26.12.195!.
2. TREATMENTS :

11 rotations as follows :
Details of rotations :

1. BT every year. BT = Bajra and Tur in ratio 3:1.
2. BT every year.

BTp $=$ Bajra and Tur manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
3. BTp-BT. $\quad \mathbf{G N p}=$ Groundnut manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
4. GNp-BT. - GN = Groudnut unmanured.
5. GN-BT. $\mathrm{Hp}=$ Hulga manured with $20 \mathrm{lb} . / \mathrm{ac}$ of $\mathrm{P}_{\mathbf{3}} \mathrm{O}_{5}$.
6. $\mathrm{Hp}-\mathrm{BT}$. $\mathbf{H}=$ Hulga unmanured.

7, H-BT. $\quad \mathrm{Mgp}=$ Chinamug manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
8. Mgp-BT. $\mathbf{M g}=$ Chinamug unmanured.
9. $\mathbf{M g}-\mathrm{BT}$. $\mathbf{C p}=$ Chavali manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
10. $\mathbf{C p}-\mathrm{BT}$. $\mathrm{C}=$ Chavali unmanured.
11. $\mathbf{C}-\mathrm{BT}$.
3. DESIGN :
(i) R.B.D: (ii) (a) 20 . (b) N.A. (iii) 6. (iv) Repl. 1, 2,3 and 4. Gross plot : $35.5^{\prime} \times 35.5^{\prime}$ Net Plot $33.5^{\prime} \times 33.5^{\prime}$; Repl. : 6 -Gross plot : $49^{\prime} \times 26^{\prime}$ Net Plot: $47^{\prime} \times 24^{\prime}$; Repl. 5 -Gross plot $28.75^{\prime} \times 42.50^{\prime}$; Net plot $26.75^{\prime} \times 40.50^{\circ}$. (v) 2^{\prime} at each side. (vi) No; as per rotation.

- GENERAL :
(i) N.A. (ii) Nil. (iii) Plant counts, height, grain and pod yields. (iv) (a) 1948-contd. (b) As per rotation: (c) Nil. (v) (a) Jeur. ${ }^{\text {(}}$ (b) N.A. (vi) Nil. (vii) Data for 1949, 1950 and 1954 are N.A.

5. RESULTS :
I. Crop: Bajra
(i) $145 \mathrm{lb} / \mathrm{ac}$.
(ii) $52.98 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatmente do not differ significantly.
(iv) Av. yield of bajra in lb./ac.

Rotation No.	(I)	(2)	(3)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Crop	BT	BT	BT	BTp	BT ${ }^{\text {- }}$	BT	BT	BT	BT	BT	BT	BT
Previous crop	BT	BT	BTp	BT	GNp	GN	Hp	H	Mgp	Mg	Cp	C
Av. yield	119	143	123	143	134	177	164	169	118	115	175	163

II Crop: Tur
(i) $52 \mathrm{lb} . / \mathrm{ac}$.
(ii) $19.98 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of tur in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Crop	BT	BT	BT	BTp	BT	BT	BT	BT	BT	BT	BT	BT
Previous crop	BT	Br	BTp	BT	GNp	GN	Hp	H	Mgp	Mg	Cp	C
Av. yield	64	65	38	53	53	56	39	48	68	70	37	34
S.E./mean	$=12.15 \mathrm{lb} . / \mathrm{ac}$.											

III Crop: Groandnat
(i) $773 \mathrm{lb} / \mathrm{ac}$.
(ii) $156.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield in lb./ac.

Rotation No.	(4)	(5)
Crop	GNp	GN
Previous crop	BT	BT
Av. yield	767	778
\quad S.E. $/$ mean	$=63.9 \mathrm{lb} . / \mathrm{ac}$.	

v Crop: Chinamag
(i) $70.0 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) 25.46 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield in lb./ac.

Rotation No.	(8)	(9)
Crop	$\mathbf{M g p}$	$\mathbf{M g}$
Previous crop.	BT	BT
Av. yield.	$\mathbf{7 5}$	$\mathbf{6 5}$
S.E./mean	$=10.39 \mathrm{lb} . / \mathrm{ac}$.	

IV Crop. Hulga

(i) $96 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) 17.56 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Hulga in lb.fac.

Rotation No.	(6)	(7)
Crop	$\mathbf{H p}$	H
Previous crop	BT	BT
Av. yield	102	91
\quad S.E./mean	$=7.17 \mathrm{lb}$./ac.	

VI Crop : Chavali

(i) $72 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $28.89 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield in lb./ac.

Rotation No.	(10)	(11)
Crop	Cp	C
Previous crop	Br	BT
Av. yield	92	53
S.E./mean	$=11.79 \mathrm{lb} . / \mathrm{ac}$	

Crop :- Bajra, Tur, Chinamug, Chavali, Groundnut and Hulga.
Site :- Agri. Res. Stn., Chas,

Ref:- Mh. 52(303)/51(205)
Type:- 'R'.

Object :-To find out the kest rotation of Kharif legumes and cereals for the tract.

1. BASAL CONDITIONS:
(i) (a) to (c) As per treatments. (ii) (a) Medium black. (b) N.A, (iii) Bajra-Tur 29.6.1952; Chinamug 16.6.1952.; Chavall and Hulga 29.6.1952; Groundnut 21.6.1952. (iv) (a) to (e) N.A. (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) Interculturing twice. (ix) $9^{\prime \prime \prime}$. (x) N.A.

2. TREATMENTS :

II rotations as follow :-

1. BT every year.
2. BT every year.
3. $\mathrm{BTp}-\mathrm{BT}$.
4. $G N p-B T$.
5. GN BT.
6. $\mathrm{Hp}-\mathrm{BT}$.
7. $\mathrm{H}-\mathrm{BT}$.
8. Mgp-BT.

Details of rotations :
BT $\quad-B$ ijra and Tur in ratio 3:1.
BTp $=$ Bajra and Tur manured with $20 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$. GNp =Groundnut manured with 20 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
GN = Grcundnut unmanured.
$\mathrm{Hp}=$ Hulga manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
H = Hulga unmanured.
$\mathrm{Mgp}=$ Chinamug manured with 20 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$. Mg -Chinamug unmanured.
9. $\mathrm{Mg}-\mathrm{BT}$.
(10. Cp-Br.
i11. C-BT.
$\mathrm{Cp}_{1}=$ Chavall manured with $20 \mathrm{lb} / \mathrm{ac}_{\mathrm{c}}$ of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$C_{\text {. }}=$ Chavali umanured.
3. DESIGN:
R.B.D. (ii) (a) 20. (b) N.A. (iji) 6. (iv) (a) $37^{\circ} \times 37^{\prime}$. (b) $33^{\circ} \times 33^{\prime}$ ', (v) 2^{\prime} ring. (vi) No, as per rotation.
4. GENERAL:
(j) Not satisfactory due to less rain. (ii) Nil. (iii) Plant count, plant hight, grain and pod yield. (iv) (a) 1948-continued. (b) As per rotations. (c) N.A. (v) (a) Jeur. (b) "-. (vi) and (vii) Nil.
5. RESULTS :

1. Crop : Bajrà
(i) $37 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $18.32 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of bajra in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Crop	BT	BT	BTp	BT	BT	BT	BT	BT	BT	BT	BT	BT
Previous crop	BT	BT	BT.	BTp	GNp	GN	Hp	H	Mgp	Mg	Cp	C
Av. yield	29	29	27	29	26	42	34	38	47	43	49	53
-	S.E. $/$ meam $\quad=7.48 \mathrm{lb} . /$											

II. Crop: Groundnut
(i) $190.0^{\circ} \mathrm{lb} . / \mathrm{ac}$.
(ii) 33.00 lb .ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Rotation No.	(4)	(5)
Crop	GNp	GN
Previous crop	Br	BT
Av. yield	213	167
	S.E./mean	$=13.47$ lb./ac.

IV. Crop : Chainamug
(i) $21.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $4.72 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chinamug in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(8)	(9)
Crop	Mgp	Mg
Previous crop	BT	BT
- Av. yield	23	19
S.E./mean		$=1.93 \mathrm{lb} . / \mathrm{ac}$.

III. Crop : Halga
(i) 59.0 lb ./ac.
(ii) $10.72 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of hulga in lb./ac.

Rotation No.	(6)	(7)
Crop	Hp	H
Previous crop	BT	Br
Av. yield	67	$5 i$
	S.E./mean	$4.38 \mathrm{lb} . / \mathrm{ac}$

V. Crop: Chavali
(i) $17.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $6.90 \mathrm{lb} . / \mathrm{ac}$
(iii) Treatments do not differ significantly.
(iv) Av. yield of chavali in lb ./ac.

Rotation No.	(10)	(11)
Crop	Cp	C
Previous crop	BT.	BT
Av. yield	22	13

$$
\begin{aligned}
& \text { Crop : } \begin{array}{l}
\text { Bajra, Tur, Chinamug, Chavali', } \\
\\
\text { Groundnut, and Hulga. } \\
\text { Site :- Agri. Res. Stn., Chas. }
\end{array} . \quad \text { Mh. } \quad \text { Sy(332)/52(303)/51(205). }
\end{aligned}
$$

Object :-To find out the best rotation of kharif legumes and cereals for the tract.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments.' (ii) (a) Medium black. (b) N.A. (iii) N.A. (iv) (a) 1 ploughing and 2 harrowings. (b) Drilling. (c) Bajra 3 lb./ac.; Tur 2 lb./ac.; Chavall, Hulga and Moong $10 \mathrm{lb} . / \mathrm{ac}$, and Groundnut $80 \mathrm{lb} . / \mathrm{ac} .{ }^{\prime}$ (d) $12^{\prime \prime}$. (e) N.A.' (v) Nil. (vi) Medium. (vii) Unirrigated. (viii) 2 interculturings. . (ix) $8.30^{\prime \prime}$ (x) N.A.
2. TREATMENTS :

11 rotations:	Details of rotation :
1. BT every year.	BT = Bojra and Tur in ratio 3: 1 .
2. BT every year.	BTp = Bajra and Tur manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
3. BTp-BT.	$\mathrm{GN}=$ Groundnut manured with $20 \mathrm{lb} / \mathrm{lac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$
4. GNp-BT.	GN = Groundnut unmanured.
5. GN-BT.	$\mathrm{HP}=\mathrm{Hulga}$ manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. $\mathrm{Hp}-\mathrm{BT}$,	$\mathrm{H}=$ Hulga unmanured.
7. H-BT.	$\mathrm{Mgp}=$ Chinamug manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
8. Mgp-BT.	$\mathrm{Mg}=$ Chinamug unmaured.
9. $\mathrm{Mg}-\mathrm{BT}$.	$\mathrm{Cp}=$ Chavali manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$ -
10. $\mathrm{Cp}-\mathrm{BT}$.	C = Chavali unmanured.
11. C-BT.	

3. DESIGN :
(i) R.B D. (ii) (a) 20. (b) N.A. (iii) 6. (iv) (a) $37^{\prime} \times 37^{\prime}$. (b) $33^{\circ} \times 33^{\prime}$. (v) N.A. (vi) No, as per rotations.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) Graio and pod yield. (iv) (a) 1948-continued. (b) As per rotations. (c) Nil.
(v) (a) Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
I. Crop : Bajra
(i) $58 \mathrm{Ib} . / \mathrm{ac}$.
(ii) $17.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of bajra in lb./ac.

II. Crop: Tur
(i) $41 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $16.50 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of $t u r$ in $\mathbf{l b}$./ac.

III. Crop: Ground nut

(i) $673.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $100.64 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Rotation No.	(4)	(5)
Crop	GNp	GN
Previous crop	BT	BT
Av. yield	720	627
	S.E./mean	$=41.09 \mathrm{lb} . / \mathrm{ac}$

IV. Crop : Hulga
(i) 81.0 lb ./ac.
(ii) $28.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of hulga in lb./ac.

Rotation No.	(6)	(7)
Crop	Hp	H
Previous crop	BT	BT
Av. yield	90	72
	S.E./mean	$=11.76 \mathrm{lb} / \mathrm{ac}$.

V. Crop : Chinamug
(i) $39.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $12.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chinamug in lb./ac.

Rotation No.	(8)	(9)
Crop	$\mathbf{M g p}$	$\mathbf{M g}$
Previous crop	BT	BT
Av. yield	38	40
	S.E_/mean	$=5.01$ lb.fac.

VI. Crop :Charali
(i) $78.0 \mathrm{lb} . / \mathrm{ac}$.
(ii) $21.92 \mathrm{Jb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chavali in lb./ac.

Rotation No.	(10)	(11)
Crop	Cp	C
Previous crop	BT	BT
A v. yield	70	87
	S.E./mean	$=8.95 \mathrm{Ib} . / \mathrm{ac}$

```
Crop :m Jowar-Cotton_Groundnut (Kharif).
Site:- Agri. Res. Stn., Jalagaon. Type :m 'R'.
Ref:- Mh. 49(118).
```

Object :-To study the best rotation for Cotton aod Jowar with and without legume.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 30.6.1949. (iv) ' a) N.A. (b) Drilling. (c) $3 \mathrm{lb} . / \mathrm{ac}$. of Jowar, $6 \mathrm{lb} . / \mathrm{ac}$. of Udid, 10 lb ./ac. of Cotton and $50 \mathrm{lb} . / \mathrm{ac}$. of Groundnut. (d) $13^{\prime \prime}$ to Cotton and owar and $12^{\prime \prime}$ for Groundnut. (e) N.A. (v) Nil. (vi) N.A. (vii) Unirrigated. (vii1) 4 weedings and 3 hoeings, (ix) 44.17". (x) Groundnut 26.10.1949: Jowar 8.12 .1949 and Cotton 17 to 21.11.1959.
2. TREATMENTS :

11 rotations:

1. Cm every year
2. $\mathrm{Cm}-\mathrm{C}$
3. Jm'every year
4. $\mathbf{J m}-\mathrm{J}$
J. $\mathrm{Cm}-\mathrm{J}$
-6. $C-G$
5. $\mathrm{Cm}-\mathrm{G}$
-8. J-G
6. $\mathrm{Jm}-\mathrm{G}$
7. $\mathbf{C m}-\mathbf{J}-\mathrm{O}$
8. $\mathbf{C m}-\mathrm{J}-\mathrm{G}$

Details of rotations :

$\mathbf{C m}=$ Cotton manured with 5 C.L./ac. of F.Y.M.
C = Cotton uamanured.
$\mathrm{Jm}=$ Jowar manured with 5 C.L /ac. of F.Y.M.
J \quad Jowar unmanured.
G =Groundnut unmanured.
Jowar is sown mixed with Udid in 1:2 ratio.
[Original plots (22) of size $62^{\circ} \times 30^{\circ}$ (Gross) were further divided from 1951-1952 into two equal parts making in all 44 (sub) plots in each replication. Further, the plots in which Groundnut is sown were suffixed with 1 and 2. The plots suffixed with 1 were given a dose of $100 \mathrm{lb} . / \mathrm{ac}$. of Super.]
3. DESIGN:
(i) R.B.D. (ii) (a) 22. (b) N.A. (iii) 6. (iv) (a) $30^{\circ} \times 62^{\circ}$. (b) $18^{\circ} \times 50^{\prime}$. (v) 6^{\prime} on all sides. (vi) Yes.
4. GENERAL :
(i) Normal. (ii) Attack of Aphids on Groundaut. (iii) Fodder, grain, pods and kapas yield. (iv)
(a) 1949 -contınued. (b) As per rotation. (c) Nil. (v) (a) No. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

I. Crop: Jowar
(i) 1789 lb./ac.
(ii) $246.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb ./ac.

Rotation No.	(3)	(4)	(4)	(5)	(8)	(9)	(10)	(11)
Crop	Jm	$\cdot \mathrm{Jm}$	J	J	J	Jm	J	J
Av. yield	2026	1717	1655	1670	1789	1908	1853	1694
		S.E./mean		$=100.6 \mathrm{lb} . / \mathrm{ac}$ ،				

II. Crop : Cotton
(i) $453 \mathrm{lb} . / \mathrm{ac}$.
(ii) $91.23 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of kapas in Id./ac.

Rotation No.	(1)	(2)	(2)	(5)	(6)	.(7)	(10)	(11)
Crop	Cm	Cm	C	Cm	C	Cm	Cm	Cm
Av. yield	528	491	397	493	338	440	463	472
			S.E./mean	$=37.25 \mathrm{lb} / \mathrm{ac}$.				

III. Crop: Groundnut
(i) $820 \mathrm{lb} . / \mathrm{ac}$.
(ii) $143.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Rotation No.	(6)	(7)	(8)	(9)	(10)	(11)
Crop	G	G	G	G	G	G
Av. yield	819	837	846	772	779	870
		S.E./mean				
	$=$	$58.7 \mathrm{lb} . / \mathrm{cc}$.				

Crop :-Jowar, Cotton and Groundnut (Kharif). Site :-Agri. Res. Stn., Jalagaon.

Ref : Mh. 50(142)/49(118).
 Type :m'R'.

Object : - To study the best rotation for Cotton and Jowar with and without legume.

1. BASAL CONDITIONS:
(i) (a) to (c) As per treatments. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 9.7.1950. (iv) (a) N.A. (b) Drilling. (c) $2 \mathrm{lb} . / \mathrm{ac}$. of Jowar mixed with $6 \mathrm{lb} . / \mathrm{ac}$. of Udid; 10 lb ./ac. of Cotton; 50 lb ./ac. of Groundnut. (d) $18^{\prime \prime}$ for Cotton and Jowar and $12^{\prime \prime}$ for Groundnut. (e) -. (v) Nil. (vi) N.A. (vii) Unirrigated. (viii) 3 weedings and 2 hoeings. (ix) 21.73". (x) Cotton 15.11.1950; Jowar 17.12.1950; Groundnut 28.10.1950.
2. TREATMENTS:

11 rotations as follows :

1. Cm every year
2. $\mathbf{C m}-\mathrm{C}$
3. Im every year
4. Jm-J
5. $\mathrm{Cm}-\mathrm{J}$
6. $\mathbf{C}-\mathbf{G}$
7. $\mathrm{Cm}-\mathrm{G}$
8. J-G
9. Jm-G
10. $\mathrm{Cm}-\mathrm{J}-\mathrm{G}$
11. $\mathbf{C m}-\mathrm{J}-\mathrm{G}$

Details of rotations:
$\mathrm{Cm}=$ Cotton manured with 5 C.L./ac. of F.Y.M.
$\mathbf{C}=$ Cotton unmanured.
$\mathbf{J m}=$ Jowar manured with 5 C.L./ac. of F.Y.M.
J =Jowar unmanured.
G = Groundnut unmanured. •
Jowar is sown mixed with Udid in 1:2 ratio [Original plots (22) of size $62^{\prime} \times 30^{\prime}$ (Gross) were further divided from 1951-1952 into two equal parts making in all 44 (sub) plots in each replication. Further, the plots in which Groundnut is sown were suffixed with 1 and 2. The p'ots suffixed with 1 , were given a dose of 100 lb ./ac. of Super].
3. DESIGN :
(i) R.B.D. (ii) (a) 22 . (b) N.A. (iii) 6 . (iv) (a) $30^{\prime} \times 62^{\prime}$. (b) $18^{\prime} \times 50^{\circ}$. (v) 6^{\prime} ring round. (vi) No.; as per rotation.
4. GENERAL :
(i) Normal. (ii) Aphids and Tikka disease on Groundnut. Attack of stem-borer on Jowar. Anthonare disease on Cotton in young stage. (iii) Grain, kapas and pods yield. (iv) (a) 1949-contd. (b) As per rotations. (c) Nil. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:

I Crop: Jowar
(i) $1593 \mathrm{lb} . / \mathrm{ac}$.
(ii) $200.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	(3)	(4)	(4)	(5)	(8)	(9)	(10)	(11)
Crop	Jm	J	Jm	J	J	Jm	J	J
Av. yield	1450	1282	1365	1252	2211	2211	1262	1715

II Crop: Cotton

(i) $583 \mathrm{lb}, / \mathrm{ac}$.
(ii) 80.59 lb ./ac.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in $1 \mathrm{~b} / \mathrm{ac}$.

Rotation No.	(1)	2	(2)	(5)	(6)	(7)	(10)	(11)
Crop	Cm	C	Cm	Cm	C	Cm	Cm	Cm
Av. yield	523	466	430	575	705	718	532	772
				S.E. $/$ mean	$=32.91 \mathrm{lb} / \mathrm{ac}$			

III Crop: Groundnat
(i) 861 lb ./ac.
(ii) $111.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

Rotation No.	(6)	(7)	(8)	(9)	(10)	(11)		
Crop	G	G	G	G	$-G$	G		
Av. yield	916	933	784	845	820	869		
	S.E./mean							$=45.35 \mathrm{lb}$./ac.

Crop :-Jowar, Cotton and Groun dnut (Kharif). Ref :-Mh. 51(202)/50(142)/49(118):

 Site :-Agri. Res, Stn, Jalagaon. Type : ${ }^{6}$ ' ${ }^{\prime}$.Object :-To study the best rotation for Cotton and Jowar with and without legume.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 117.1951. (iv) (a) NıA. ${ }^{i}$ (b) Drilling. (c) $3^{\prime} \mathrm{lb} . / \mathrm{ac}$. of Jowar mixed with 6 lb . ac. of Udid; $10 \mathrm{lb} . / \mathrm{ac}$. of Cotton; 60 lb ./ac. of Groundnut. (d) $18^{\prime \prime}$ for Cotton and Jowar; $12^{\prime \prime}$ for Groundnut. (e) -. (v) Nil. (vi) N.A: (vii) Unirrigated.' (viii) 2 weedings and 4 hoeings. ' (ix) 20.14". (x) Groundaut 11.1.19s1; Jowar 4.12.1951; Cotton 21.11.1951 to 1.1.1952.
2. TREATMENTS :

3. DESIGN:
(i) R.B.D. (ii) (a) 22. (b) N.A. (iii) 6. (iv) (a) $30^{\prime} \times 31^{\prime}$ (sub-plot); $62^{\prime} \times 30^{\prime}$ (main-plot). (b) $22^{\prime} \times 18^{\prime}$ (sub-plot) : $50^{\prime} \times 18^{\prime}$ (main-plot) (v) 3^{\prime} on the sid of common strip (i.e. in the middle of main-plot) and 6^{\prime} on either ends of main-plot and 6^{\prime} on both sides of main-plot. (vi) No, as per rotations.
4. GENERAL :
(i) Normal. (ii) Attack of Aphids on Groundnut. Attack of stem-borer on Jowar. (iii) Grain, kapas and pod yield. (iv) (a) 1949 (modified in 1951-52)-contd. (b) As per rotations. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

I Crop: Jowar
(i) $1303 \mathrm{lb} / \mathrm{ac}$.
(ii) $273.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	(3)	(4)	(4)	(5)	(8)	(8)	(9)	(9)	(10)	(10)	(11)
Crop	Jm	J	Jm	Cm	J	J	Jm	Jm	J	J	(cmu
Previous crop	Jm	Jm	J	J	G	Gp	G	Gp		Gp	(J) 4
Av. yield	1114	10681143		$\stackrel{1129}{=}$	$\begin{gathered} 1534 \\ 136.5 \mathrm{lb} . \end{gathered}$	1527/ac.	1573	1466	1353	1345	1082
			mean								

II Crop: Cotton

(i) $623 \mathrm{lb} / \mathrm{ac}$.
(ii) $117.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(1)	(2)	(2)	(5)	(6)	(6)	(7)	(7)			(1)
Crop	Cm	Cm	C	Cm	C	C	Cm	Cm	Cm	Cm	Cm
Previous crop	Cm	C	Cm	J	O	Gp	G	Gp	G	Gp	J
Ar, yield	. 617	548	616	383	706	688	745	791	626	733	405
. S.E./mean $=58.6 \mathrm{lb} / \mathrm{ac}$.											

III Crop: Groundnut
(i) $850 \mathrm{lb} / \mathrm{ac}$.
(ii) 163.9 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Ax yield of pod in Ib,'sc.

Rotation Na.	(6)	(6)	(7)	(7)	(8)	(8)
Crop	G	Gp	0	Gp	G	Gp
Ar. yield	813	780	809	902	845	806
Rotation Ne.	(9)	(9)	(10)	(10)	(11)	(11)
Crop	G	Gp	0	Gp	G	Gp
Aky yieid	948	914	804	782	953	786
		S. E/me		lb./a		

Crop : Jowar, Cotton, Groundnut (Kharif). Ref :- Mh. 52(302)/51(202)
 /50(142)/49(118).
 Site so Agri Res. Str. Jalagaon. Type = 'R'.

Object:- To study the best rotation for Cotton and Jowar with and without legume

1. BASAL CONDITIONS:
(i) (a) to (c) As per treatments (ii) (a) Deep black. (b) Refer soil analysis, Jalagaon. (iii) 26.6.1952. (iv) (a) NA. (b) Drilling (c) $3 \mathrm{lb} . / \mathrm{ac}$ of Jowar mixed with $6 \mathrm{lb} . / \mathrm{ac}$. of Udid; 10 lb ./ac. of Cotton; $60 \mathrm{lb} / \mathrm{ac}$. of Groundinut. (d) 18° for Cotton and Jowar: $12^{\prime \prime}$ for Groundnut (c) -. (v) Nil. (vi) Cotton-Jaria dowar-Aispuri ; Gromdnut-Spanish Groundnut. (vii) Unirrigated. (viii) 3 weedings and 3 boeinges (ix) 17.61°. (x) Groundnut 7.11.1952; Jowar 27.11.1952; Cctton 31.10.1952 to 21.1.1953.

2 TREATMENTS:

11 Rotations :
L. Con every year.
2. Con-C
3. Im every year.
4. $\mathrm{Jm}-1$
5. CIIM
6. $C-G$
7. Cm-G
8. I-G
9. Jm-G
10. Cm-1-G
11. $\mathrm{Cm}-\mathrm{I}-\mathrm{G}$

Details of rotations:
Cm=Cotton manured with S C.L., F.Y.M./ac.
C = Cotton unmanared.
Jm = Jowar manured with 5 C.L., F.Y.M./ac.
J = Jowar unmanured.
G =Groundnut unmanured.
$G p=$ Groundnut manured with $100 \mathrm{lb} . / \mathrm{ac}$. of Super.
Jowar is sown mixed with Udid in $1: 2$ ratio.
[Original plots (22) of size $62^{\circ} \times 30^{\circ}$ (Gross) were further divided from 1951-52 into two equal parts making in all 44 (sub.) plots in each replication. Further, the plots in which, groundnut is sown were suffixed with 1 and 2 . The plots suffixed with 1 were given a dese of $100 \mathrm{lb} / 2 \mathrm{c}$. of Superj.
3. DESIGN :
(i) R.B.D. (ii) (a) 22 (44 sat-plot). (b) N.A. (iii) 6. (iv) (a) $31^{\prime} \times 30^{\circ}$ (b) $22^{\prime} \times 18^{\circ}$. (v) N.A. (vi) No, as per rotation.
4. GENERAL :
(i) Normal. (ii) Tikk and roct-rot disease on Crcuncinut. Attack of atem tcrer on Jowar. (iii) Graid, pods and Kapas yield. (iv) (a) 1949-1950 (modified in 1951-1952) continued. (b) Yes, As per rotation. (c) Nil. (v) (a) No. (b) N.A. (vi) and (vii) Nil
5. RESULTS =

1. Crop : Jowar.
(i) $543 \mathrm{lb} . / \mathrm{ac}$
(ii) $223.3 \mathrm{Ib} . / \mathrm{ac}$.
(iii) Treatments differ bighly significantly.
(iv) Av- yield of Jowar in lb./ac.

Rocation No	(3)	(4)	(4)	(5)	(8)	(8)	(9)	(9)	(d)	(10)	(11)
Previous crop	Jm	$\mathrm{Jm}_{\mathbf{m}}$	J	Cm	G	GP	0	GP	G	GP	Cm
Crop	Jm	J	Jm	J	J	J	Jm	Jm	J	J	J
Av. yield	575	442	549	346	661	848	720	562	462	378	434

II. Crop: Cotton.
(i) $3760 \mathrm{lb} . / \mathrm{ac}$.
(ii) $118.6 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of kapas in Ib./ac.

III. Crop : Groundnut.
(i) $396.0 \mathrm{lb} . \mathrm{ac}$.
(ii) 96.25 lb .ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in lb./ac.

$$
\begin{array}{lc}
\text { Crop :- Jowar-Cotton-Groundnut (Kharif). } & \text { Ref :- Mh. 53(329)/52(302)/ } \\
\text { 51(202)/50(142)/49(118). } \\
\text { Site :- Agri. Res. Stn., Jalagaon. } & \text { Type :- 'R'. }
\end{array}
$$

Object :-To study the best rotation for Cotton and Jowar with and without legume.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments. (ii) (a) Desp black. (b) Refer soil analysis, Jalagaon. (iii 226.1953. (iv) (a) N.A. (b) Drilling. (=) $3 \mathrm{lb} . / \mathrm{ac}$. of Jowar mixed with $6 \mathrm{lb} . / \mathrm{ac}$. of Udid; $10 \mathrm{lb} . / \mathrm{ac}$. of cotton ; $6 \mathrm{Jb} / \mathrm{ac}$. of Groundnut. (d) $18^{\prime \prime}$ for cotton and Jowar; $12^{\prime \prime}$ for Groundnut. (e) -. (v) Nil. (vi) Cottun-Jarila ; Groundnut (Spinish Groundnut) ; Jowar-Aispuri. (vii) Unirrigated. (viii) 3 weedings and 3 hoeings. (ix) 23.77". (x) Jowar 4.11.19د3; Grmuninut 21.11.1953; Cotton 2.11.1953 to 27.12.1953.
2. TREATMENTS :

11 rotations:-

1. Cm every year
2. $\mathrm{Cm}-\mathrm{C}$
3. Jm every year
4. $\mathrm{Jm}-\mathrm{J}$
5. $\mathrm{Cm}-\mathrm{J}$
6. $\mathrm{C}-\mathrm{G}$
7. $\mathbf{C m}-\mathrm{G}$
8. $J-G^{\prime}$
9. Jm-G
10. $\mathbf{C m}-\mathrm{J}-\mathrm{G}$
11. $\mathbf{C m}-\mathrm{J}-\mathrm{G}$

Details of rotations:-
$\mathrm{Cm}=$ Cotton manured with 5 C.L./ac. of F.Y.M. C = Cotton unmanured.
$\mathrm{Jm}=$ Jowar manured with 5 C.L./ac. of F.Y.M.
J = Jowar unmanured.
$\boldsymbol{G}=$ Groundnut unmanured.
$\mathbf{G p}=$ Groundnut mavured with 100 lb ./ac. of Super.
Jowar is sown mixed with Udid in $1: 2$ ratio.
[Orig'nal plots (22) of size $02^{\prime} \times 30^{\circ}$ (Gross) were further divided from 1951-52 into two equal parts making in all 44 (:ub) plots in each replication. Further, the plots in which groundnut is sown were suffixed with " 1 " and " 2 ". The plots suffixed with " 1 " ware given a dose of 100 lb ./ac. of Super].
3. DESIGN:
(i) R.B.D
(ii) (a) 22 (44 sub-plots). No, as per rotations.
4. GENERAL :
(i) Normal. (ii) Aphids and Tikka disease on groundnut. (ii) Grain, pods and kapas yield. (iv) (a) 1949-50 (modified in 1951-52)-continued. (b) As per rotations. (c) Nil. (v) (a) No. (b) N.A. (vi) and (vii) Nil.
3. RESLLTS:
L. Crop: Jowar
(i) 1167 10/me
(ii) 150.9 Do /ace
(iii) Treatments differ hixhly siznificancty.
(iv) Ar. yied of Jower in lobec ia

Rocatica Na	(3)	(4)	(4)	(5)	(\$)	(8)	(9)	(9)	(10)	(10)	(11)
Previcus arop	Jmo	J	Jom	Com	0	Gp	G	Gp	G	Gp	Cm
Crop	Jom	Jmo	1	J	J	3	Jm	Jm	1	3	J
Av. yield	1064	985	596	1157	1156	1195	1326	1236	1283	1112	1329
S.E.jurad											

11. Crep: Cotton
(i) 508 Ib/fac
(i) $90.56 \mathrm{~B} / \mathrm{mo}$
(iii) Treatments differ bigh'y sizoificanily.
(iv) Av. yiedd of cotten in lb/ac.

Rocation Na	(1)	(2)	(2)	(5)	(6)	(6)	(7)	(7)	(10)	(10)	(1)
Previous crep	Cm	C	Cm	J	G	Gp	G	Gp	0	Gp	J
Crep	Cm	Cm	C	Cm	c	C	Cm	Cm	0	Cm	Cm
Av. yriedd	553	603	515	436	726	619	735	592	600	489	465
S.E.juean											

IL. Crop: Gromednat
$\begin{array}{ll}\text { (i) } \\ 856 & \mathrm{~B} . / \mathrm{sc}\end{array}$
(ii) $247.7 \mathrm{Bo} . \mathrm{ac}$
(iii) Treatments do not differ sizaificanty.
(iv) Av. yield of groundrus in lb/ac.

Rocation No.	(6)	(6)	(7)	(7)	(8)	(8)	(9)	(9)	(10)	(10)	(11)	(11)
Previous crop	C	C	Cm	Cm	J	J	Jna	170	Cus	Cm	J	J
Crop	G	Gp	G	Gp	G	Gp	G	Gp	G	Gp	G	Gp
Ar. yield	891	916	785	859	703	736	1019	952	960	794	1071	913
			S.E.	cas		01.2						

Crop :-Jowar with legumes and Wheat (Rabi).
Site :-Agri. Res, Stn., Jeur.

Ref - Mb. 51(204).
Type:-‘'.

Object:-To study the best rotation along with manures for the tract.

1. BASAL CONDITIONS :
(i) (a), (b) and (c) As per treatments. (ii) (a) Medium black. (b) N.A. (iii) Jower, Wheat, Gram 2G, 27.10.1951 and Groundiat and Chinconer 22.7.1951. (iv) (a) N.A. (b) Drilinge. (c) Jowar 4 lb/ac: Groundnut $80 \mathrm{lb} . / \mathrm{ac}$; Wheat $40 \mathrm{Ib} / \mathrm{sc}$. Chizcmug $10 \mathrm{Ib} . \mathrm{ac}$; Gram $40 \mathrm{lb} / \mathrm{ac}$ (d) 18° for Jowar, Wheat and Gram ; 12 for Groondeut and Chinamus. (c) -. (v) Nil. (vi) Jower-M-35-1: Groundnut-Bis Japan Gram Chafa; Wbear- Vijay. (vii) Unirrigated. (viii) 3 intercuhturisge (ix) 19.51\%. (x) Jowar 28.11.1952. Wheat 21.1952 : Gram 21.1952

2 TREATMENTS:

12 rotations:

1. J every year.
2. Jmol-J.
3. Comp/J every year.
4. Cm / J every year.
5. GAp-3.

6 GNJ.

Detrils of rotations :
J - Jowar ummanured.
Jm = Jowar manured with S CLL/Ec. of F.YM
$\mathrm{Jp}=$ Jowar manured with $40 \mathrm{lb} / \mathrm{ac}$ of $\mathrm{P}_{\mathbf{8}} \mathrm{O}_{7}$
Cmp = Chincun us manured with $40 \mathrm{lb} . \operatorname{fac}$ of $\mathrm{Ps} \mathrm{O}_{\mathrm{y}}$
$\mathrm{Cm}=$ Chinamng unmanured.
GNP = Groundnut manured with $40 \mathrm{lb} / \sqrt{2} \mathrm{ce}$ of $\mathrm{P}_{2} \mathrm{O}_{\mathbf{y}}$.
7. Gp-J
$\mathbf{G N}=$ Groundnut unmanured.
8. G-J
$\mathrm{Gp}=$ Gram manured with $40 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
9. Wp-I
G = Gram unmanured.
10. W-J
$W p=$ Wheat manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
11. F-Jp
W = Wheat unmanured.
12. F-J
$\mathrm{Cmp} / \mathrm{J}, \mathrm{Cm} / \mathrm{J}$ with the crops are grown in the same year.
3. DESIGN:
(i) R.B.D. (ii) (a) 22. (b
(vi) No as per rotations.
(iii) 6. (iv)
(a) $37^{\prime} \times 26^{\prime}$. (b)
(b) $35^{\circ} \times 24$
(v) 1^{\prime} all round the net plot. (vi) No, as per rotations.
4. GENERAL :
(i) Normal, wheat crop failed due to failure of rains. (ii) Nil. (iii) Grain and pod yield. (iv) (a) 1949continued, (b) As per rotations. (c) Nil. (v) (a) Chas. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
I. Crop: Jowar
(i) $397 \mathrm{lb} . / \mathrm{ac}$.
(ii) $149.9 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of jowar in lb./ac.

Rotation No.	(1)	(2)	(2)	(2)	(3)	(4)	(5)
Crop	J	J	J	Jm	Cmp/s	Cm/J	J
Previous crop	J	J	Jm	J	Cmp/J	Cm/J	GNp
Av. yield	456	428	362	417	231	244	555
Rotation No.	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Crop	J	J	J	J	J	Jp	J
Previous crop	GN	Gp	G	Wp	W	F	F
.yield	431	428	421	275	353	363	342
.	S.E./mean		$=61.2 \mathrm{lb} . / \mathrm{ac}$.				

. . Crop: Chinamug
(i) $73.50 \mathrm{lb} / \mathrm{ac}$.
(ii) $38.12 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chinamug in lb./ac.

Rotation No.	(3)	(4)
Crop	Cmp/J	Cm/J
Previous crop	Cmp/J	Cm/J
Av. yield	73	74
S E./mean		lb./ac

IV. Crop: Gram
(i) $78 \mathrm{lb} / \mathrm{ac}$
(ii) $35.58 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No. (7) (8)
Crop Gp G
Previous crop J J
Av. yield $75 \quad 81$
S.E./mean $\quad=14.53 \mathrm{lb} . / \mathrm{ac}$.

Note : Data of wheat crop not analysed as the crop failed.

> Crop :-Jowar with legumes and Wheat (Rabị). Site : \sim Agri. Res. Stn., Jeur.

Object:-To study the best rotation along with manures' for the tract.

1. BASAL CONDITIONS :
(i) (a), (b) and (c) As per treatments. (ii) (a) Medium hlack. (b) N.A. (iii) N.A. (iv) (a) N.A. (b) Drilling. (c) Jowar-4 $\mathrm{lb} . / \mathrm{ac}$. ; Groundnut- $80 \mathrm{lb} . / \mathrm{ac}$. Gram and Wheat- $40 \mathrm{lb} . / \mathrm{ac}$. (d) $18^{\prime \prime}$. (o) (v) Nil. (vi) JowarnM-35-1 : •Groundnut-mig IJapan. (vii) Wnirrigated. (viii) N.A. (ix) 20.43". :(x) N.A.
2. TREATMENTS:

12 rotations:

1. J every year
2. Jm-J-J
3. Cmp/J every year
4. Cm / J every year
5. GNp-J
6. GN-J
7. Gp-J
8. G-J
9. Wp.J
10. W-J
11. F-Jp
12. F-J

Details of rotations :
$J=$ Jowar unmanured.
$\mathrm{Jm}=$ Jowar manured with 5 C.L./ac. of F.Y.M.
$\mathrm{Jp}=$ Jowar manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathrm{Cmp}=$ Chinamug manured with 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathbf{C m}=$ Chinamug unmanured.
$\mathbf{G N p}=$ Groundnut unmanured with 40 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$.
GN = Groundnut unmanured.
$\mathrm{Gp}=$ Gram manured with 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
G = Gram unmanured.
$W p=$ Wheat manured with 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathbf{W}=$ Wheat unmanured.
F = Fallow.
$\mathrm{Cmp} / \mathrm{J}, \mathrm{Cm} / \mathrm{J}$ with the crops are grown in the same year.
3. DESIGN :
(i) R.B.D. (ii) (a) 22. (b) N.A. (iii) 6. (iv) (a) $37^{\prime} \times 26^{\prime}$ (b) $35^{\prime} \times 24^{\prime}$. (v) 1^{\prime} alround. (vi) No, as peq rotations.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and pod yield. (iv) (a) 1949 -continued. (b) As per rotations. (c) Nil. (v) (a) Chas. (b) NoA. (vi) and (vii) Nil.
5. RESULTS :
I. Crop: Jowar
(i) $515 \mathrm{lb} / \mathrm{ac}$.
(ii) $194.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatment do not differ significantly.
(iv) Av. yield of jowar in $\mathrm{lb}_{\mathrm{o}} / \mathrm{ac}$.

II. Crop: Groundnat
(i) $313 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $92.57 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb ./ac.

Rotation No.	(5)	(6)
Crop	GNp	GN
Previous crop	J	J
Av. yield	311	316
	S.E./mean	$=37.80 \mathrm{lb}$./ac.

III. Crop : Gram
(i) $113 \mathrm{lb} / \mathrm{ac}$.
(ii) $80.88 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in lb./ac.

Rotation No.	(7)	(8)
Crop	Gp	G
Previous crop	J	J
Av. yield	132	94
	S.E./mean	$=33.02 \mathrm{lb}$./ac.

Note :-Chinamug yield was N.A. and wheat yield being too low, the data ha not been analysed.

```
Crop:- Bajra-Tur-Groundnut etc.
Site :- Agri. Res. Stn., Jeur.'
```


Ref :- 51(203)

```
Type:- 'R'.
```

Object :- To find out suitable Kharif rotational crops for Bajra-Tur.

1. BASAL CONDITIONS:
(i) (a), (b) and (c) As per treatments. (ii) (a) Medium balck. (b) N.A. (iii) 13.7.1951 to 15.7.1951. (iv) (a) 3 harrowings. (b) Drilled by 2 coultered country seed drill $12^{\prime \prime}$ apart. (c), (d) and (e) N.A. (v) Nil. (vi) Akola-Bajra; Big Japan-Groundnut. (vii) Unirrigated. (viii) 3 interculturings. (ix) 19.51". (x) Bajra 18.10.1951 to 21.10.1951; Tur on 26.12.1951 ; ${ }_{\text {, Groundnut }}$ on 30.11.1951; Hulga on 30.10.1951. Chavall on 23.10.1951; Chinamug 9.9.1951 to 16.9.1951.
2. TREATMENTS :

11 rotations:

1. BT every year
2. BT every year
3. $\mathbf{B T p}-\mathrm{BT}$
4. GNp - BT
5. GN - BT
6. $\mathrm{Hp}-\mathrm{BT}$
7. $\mathrm{H}-\mathrm{BT}$
8. Mgp - BT
9. $\mathbf{M g}-\mathrm{BT}$
10. $\mathrm{Cp}-\mathrm{BT}$
11. $\mathrm{C}-\mathrm{BT}$

$$
\begin{aligned}
& \text { Details of rotations : } \\
& \mathrm{BT}=\text { Bajra \& Tur in } 3: 1 \text { ratio. } \\
& \mathrm{BTp}=\text { Bajra \& Tur manured with } 20 \mathrm{lb} . / \mathrm{ac} . \text { of } \mathrm{P}_{2} \mathrm{O}_{5} \\
& \mathrm{GNp}=\text { Groundnut manured with } 20 \mathrm{lb} . / \mathrm{ac} . \text { of } \mathrm{P}_{2} \mathrm{O}_{5} . \\
& \mathrm{GN}=\text { Groundnut unmanured. } \\
& \mathrm{Hp}=\text { Hulga manured with } 20 \mathrm{lb} . / \mathrm{ac} . \text { of } \mathrm{P}_{2} \mathrm{O}_{50} \\
& \mathrm{H}=\text { Hulga unmanured. } \\
& \mathrm{Mgp}=\text { Chinamug manured with } 20 \mathrm{lb} . / \mathrm{ac} . \text { of } \mathrm{P}_{2} \mathrm{O}_{5} \\
& \mathrm{Mg}=\text { Chinamug unmanured. } \\
& \mathrm{Cp}=\text { Chavali manured with } 20 \mathrm{lb} . / \mathrm{ac.} \text { of } \mathrm{P}_{2} \mathrm{O}_{5} \\
& \mathrm{C}=\text { Chavali unmanured. }
\end{aligned}
$$

3. DESIGN:
(i) R.B.D. (ii) (a) 20 . (b) N.A. (iii) 6. (iv) (a) $37^{\prime} \times 26^{\prime}$. (b) $35^{\prime} \times 24^{\prime}$. (v) $1^{\prime \prime}$ all round the net plot. (vi) No, as per rotations.
4. GENERAL :
(i) The crop stand was normal. (ii) Slight attack of Blister beetles on bajra flowers. (iii) Dates of flowering, grain \& pod yield. (iv) (a) 1949 -continued. (b) Yes, as per rotations. (c) N.A. (v) (a) Chas. (b) N.A. (vi) \& (vii) Nil.
5. RESULTS:
6. Crop: Bajra
(i) $232 \mathrm{lb} . / \mathrm{ac}$.
(ii) $71.57 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of bajra in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Crop	BT	BT	BT	BTp	BT	BT	BT	BT	BT	BT	BT	BT
Previous crop	BT	BT	BTp	BT	GNp	GN	Hp	H	Mgp	Mg	Cp	C
Ay. yield	244	246	221	203	259	266	203	240	218	232	199	258
S.E. $/$ mean $=29.22 \mathrm{lb} . / \mathrm{ac}$.												

II. Crop : Tur
(i) $36 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $25.93 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of tur in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Crop	BT	BT	BT	BTp	BT	BT	BT	BT	BT	BT	BT	BT
Previous crop	BT	BT	BTp	BT	GNp	GN	Hp	H	Mgp	Mg	Cp	C
Av. yield	$\mathbf{3 8}$	39	47	33	26	40	38	45	30	33	32	31

III. Crop : Groundnat
(i) $409 \mathrm{Ib} . / \mathrm{ac}$.
(ii) $46.99 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.

(iv) Av. yield of pods in lb./ac.		
Rotation No.	(4)	(5)
Crop	GNp	GN
Previons crop	BT	BT
Av, yield	421	397

S.E./mean $=19.19 \mathrm{lb} . / \mathrm{ac}$.
S.E. $/$ mean $=10.59 \mathrm{lb}$./ac.
(i) 137 lb./ac.
(ii) $32.00 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of hulga in Ib./ac.

Rotation No.	(6)	(7)
Crop	$\mathbf{H p}$	H
Previous Crop	BT	BT
Av. yield	148	126

S.E./mean=13.06 lb./ac.
V. Crop: Chinamag
(i) $29 \mathrm{lb} / \mathrm{ac}$.
(ii) $21.39 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chinamug in $\mathrm{Ib} . / \mathrm{ac}$.

Rotation No.	(8)	(9)
Crop	Mgp	$\mathbf{M g}$
Previous crop	BT	BT
Av. yield	$\mathbf{3 3}$	$\mathbf{2 5}$
S.E. $/$ mean		$=8.73 \mathrm{lb}$./ac.

VI. Crop: Chavall
(i) $58.50 \mathrm{lb}, / \mathrm{ac}$.
(ii) $7.33 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chavali in lb./ac.

Rotation No.	(10)	(11)
Crop	Cp	C
Previous crop	BT	BT
Av. yield	59	58
S.E.mean		$=2.99 \mathrm{lb}$./ac.

Crop :- Bajra-Tur-Groundnut etc. (Kharif).
Site :- Agri. Res. Stn., Jeur.

Ref :- Mh. 53(330)/51(203).
Type :- 'R'.

Object :-To find out suitable Kharif rotational crops for Bajra-Tur.

1. BASAL CONDITIONS :

(i) (a) to (c) As per treatments, (ii) (a) Medium black. (b) N.A. (iii) 1.8 .1953 . (iv) (a) N.A. (b) Seeds drilled. (c) Bajra-3 lb./ac., Tur and Groundnut $80 \mathrm{lb} . / \mathrm{ac} .$, Hulga $10 \mathrm{lb} . / \mathrm{ac} .$, Chavali $10 \mathrm{lb} . / a c$. and Chinamug 10 lb ./ac. (d) and (e) N.A. (v) Nil. (vi) Akola: Bajra, Big Japan : Groundnut. (vii) Unirrigated. (viii) 2 harrowings and interculturing. (ix) 20.43". (x) 15.11.1953.

2. TREATMENTS :

11 rotations :

1. BT every year
2. BT every year
3. $\mathbf{B T p}-\mathrm{BT}$
4. $\mathrm{GNp}-\mathrm{BT}$
5. GN-BT
6. $\mathrm{Hp}-\mathrm{BT}$
7. $\mathrm{H}-\mathrm{BT}$
8. $\mathbf{M g p}-\mathrm{BT}$
9. $\mathrm{Mg}-\mathrm{BT}$
10. $\mathrm{Cp}-\mathrm{BT}$
11. $\mathrm{C}-\mathrm{BT}$

Details of rotations :
BT = Bajra and Tur in $3: 1$ ratio.
BTp $=$ Bajra and Tur manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
GNp $=$ Groundnut manured with 20 lo./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$.
GN =Groundnut unmanured.
$\mathrm{Hp}=$ Hulga manured with 20 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$.
$\mathrm{H}=H u l g a$ unmapured.
$\mathrm{Mgp}=$ Chinamug manured with 2.J $\mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{8}}$.
$\mathbf{M g}=$ Chinamug unmanured.
$\mathrm{Cp}=$ Chavali manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
C = Chavali unmanured.
3. DESIGN :
(i) R.B.D. (ii) (a) 20. (b) N.A. (iii) 6. (iv) (a) $37^{\prime} \times 26^{\prime}$. (b) $35^{\prime} \times 2 t^{\prime}$. (v) 1^{\prime} all round the net plot. (vi) No, as per rotations.
4. GENERAL :
(i) The crop stand was normal. (ii) Nil. (iii) Grain and pod yield. (iv) (a) 1949-continued. (b) As per rotations. (c) N.A. (v) (a) Chas. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:

I Crop: Bajra
(i) $210 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $81.68 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantiy. (iv) Av. yield of bajra in lb./ac.

Rotaticn No.	(1)	(2)	(3)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Crop	BT	BT	BT	BTp	BT	BT	BT	BT	Br	BT	BT	BT
Previous crop	BT	BT	BTp	BT	GNp	GN	Hp	H	Mgp	Mg	Cp	C
Av. yield	186	190	242	222	257	227	236	171	221	156	170	243
				S.E./mean $=33.34 \mathrm{lb} / \mathrm{ac}$.								

II. Crop: Tur
(i) $59 \mathrm{lb} . / \mathrm{ac}$.
(ii) $25.93 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treaments do not differ significantly.
(iv) Av. yield of \quad ur in lb./ac.

Crop :- Jowar-Wheat-Gram (Rabi). Site :- Agri. Res. Stn., Mohol.

Ref:- Mh. 48(82)
Type:- 'R'.

Object :-To study the rotational effect of Jowar, Wheat and Gram.

1. BASAL CONDITIONS :
(i) (a) to (c) As per treatments. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) 13.10.1948.
(iv) (a) Ploughing once in three years and 4 harrowings. (b) Sowing with $12^{\prime \prime} \times 18^{\prime \prime}$ drill. (c) to (e) N.A. (v) 6 C.L./ac. of F.Y.M. applied at the time of second harrowing; manure applied by spreading with hand. (vi) Jowar-M-35-1 ; Gram-Chafa; Wheat-Vijay. (vii) Unirrigated. (viii) 2 interculturings on 9.12.1948.
(ix) 31°. (x) Jowar 23.2.1949; Wheat 12.2.1949; Gram 26.1.1949.

2. TREATMENTS:

5 rotations:

1. Jowar every year.
2. Jowar-Gram.
3. Jowar - Wheat.
4. Wheat-Gram.
5. Wheat every year.

3. DESIGN :

(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $96^{\prime} \times 12^{\prime}$. (b) $91^{\prime} \times 12^{\prime}$. (v) $2 \frac{1}{\prime}^{\prime}$ on either sides along the length. (vi) No, as per rotations.
4. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-1955. (b) As per rotations. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
I. Crop : Jowar
(i) $392 \mathrm{lb} / \mathrm{ac}$.
(ii) $131.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb,/ac.

Rotation No.	(1)	(2)	(3)
Previous crop	Jowar	Gram	Wheat
Av. yield	337	454	386
		S.E./mean	$=53.5 \mathrm{lb} . / \mathrm{ac}$,

II. Crop: Wheat
(i) $317 \mathrm{lb} . / \mathrm{ac}$.
(ii) 58.04 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of wheat in lb,/ac.

Rotation No.	(5)	(4)	(3)
Previous crop	Wheat	Gram	Jowar
Av. yield	328	344	280
	S.E. $/$ mean		$=23.70 \mathrm{lb} . / \mathrm{ac}$.

III. Crop: Gram.
(i) $370 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $119.7 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in Ib./ac.

Rotation No.	(4)	(2)
Previous crop	Wheat	Wheat
Av. yield	381	359
S.E./mean		$=48.7 \mathrm{Ib} . / \mathrm{ac}$.

Crop :- Jowar-Wheat-Gram.
Ref:- Mh. 49(106)/48(82).
Site :- Agri. Res. Stn., Mohol.
Type :- 'R'.
Object :-To study the rotational effect of Jowar, Wheat and Gram.

1. BASAL CONDITIONS :
(i) (a) and (b) As per treatments. (c) 5 C.L./ac. of F.Y.M. (ii) (a) Light black, (b) Refer soil analysis, Mohol. (iii) 9.10.1949. (iv) (a) Ploughing once in three years. (b) Sowing with $12^{\circ} \times 1$, drill. (c) N.A. (d) $12^{\prime \prime} \times 15^{\prime}$. (e) N.A. (v) Nil. (vi) Jowar-M-35-1; Gram-Chafa; Wheat-Vijay. (vii) Unirrigated. (viii) 2 interculture on 11.12 .1949 and 4 barrowings. (ix) 34*. (x) Jowar 22.2.1950; Wheat 21.2.1950; and Gram 13.1.1950.
2. TREATMENTS :

5 rotations:

1. Jowar every year.
2. Jowar-Gram.
3. Jowar-Wheat.
4. Wheat-Gram.
5. Wheat every year.
6. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $96^{\prime} \times 12^{\prime}$. (b) $91^{\prime} \times 12^{\prime}$. (v) 2.5^{\prime} on either aide along length. (vi) No, as per rotation.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-1955. (b) As per rotations. (c) Nil. (i) (a) N.A. (b)-. (vi) and (vii) Nil.
8. RESULTS :
I. Crop : Jowar.
(i) $651 \mathrm{lb} / \mathrm{ac}$.
(ii) $103.3 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb./ac.

Rotation No.	(1)	(3)	(2)
Previous crop	Jowar	Wheat	Gram
Av. yield	608	694	651
	S.E./mean		$=42.2 \mathrm{lb}$./ac.

II. Crop: Wheat
(i) 272 lb./ac,
(ii) $98.93 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ sigaificantly.
(iv) Av yield of wheat in $\mathrm{lb} . / \mathrm{ac}$,

Rotation No.	(5)	(4)	(3)		
Previous crop	Wheat	Gram	Jowar		
Av. yield	294	287	234		
	S.E./mean				$\approx 40.39 \mathrm{lb} . / \mathrm{ac}$.

```
Im. Crop:Gram
(i) }447\textrm{lb}/\textrm{ac}
(ii) }69.01\textrm{lb}/\textrm{ac}\mathrm{ .
(iii) Treatments do not differ aignifcantly.
(iv) Av. yield of gram in lb./ac.
\begin{tabular}{lcc}
\begin{tabular}{lll} 
Rotation No. & (4) & (2) \\
Previous crop. & Wheat & Jowar \\
Av. yield & 478 & 416
\end{tabular}\({ }^{2}\) & &
\end{tabular}
Av. yield 478 416
    S.E/mead =28.17 lb./ac.
```


Crop :- Jowar-Wheat-Gràm (Rabi)
 Site :- Agri. Res. Stn., Mohol.

Ref:- Mh. 50(109)/49(106)/48(82). Type :- 'R'.

Object :-To study the rotational effect of Jowar, Wheat and Gram.

1. BASAL CONDITIONS :

(i) (a) As per rotations. (b) According to treatments. (c) Nil. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) Ploughing once in three years, 4 harrowings. (b) Sowing with $12^{\circ} \times 18^{\prime \prime}$ drill. 2. (c) N.A. (d) $12^{\circ} \times 18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Jowar M-35-1; Gram-Chafa; Wheat-Vijay. (vii) Unirrigated. (viii) 2 interculturings. (ix) 29°. (x) N.A.
2. TREATMENTS:

5 rotations:-

1. Jowar every year.
2. Jowar-Gram.
3. Jowar-Wheat.
4. Wheat-Gram.
5. Wheat every year.
6. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $96^{\prime} \times 12^{\prime}$. (b) $91^{\prime} \times 12^{\prime}$. (v) 2.5^{\prime} on either sides along length. (vi) No. as per rotations.
7. GENERAL:
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-1955. (b) As per rotations. (c) Nil. (v) (a) N.A. (b) - (vi) and (vii) Nil.
8. RESULTS :
9. Crop: Jowar
(i) $359 \mathrm{lb} . / \mathrm{ac}$.
(ii) $131.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments difer significantly.
(iv) Av. yield of jowar in lb./ac.

1I. Crop: Wheat
(i) $182 \mathrm{lb} / \mathrm{ac}$.
(ii) $43.08 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of wheat in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(5)	(4)	(3)
Previous crop	Wheat	Gram	Howar.
Av. yield	156	283	108

III. Crop : Gram

(i) $361 \mathrm{lb} . / \mathrm{ac}$.
(ii) $124.1 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of Gram in lb./ac.

Rotation No.	(4)	(2)
Previous crep	Wheat	Jowar
Av. yield	323	399
		S.E./mean
	$=50.7 \mathrm{lb} /$ /ac.	

Crop :- Jowar—Wheat—Gram (Rabi). Ref :- Mh. 51(35)/50(109)/49(106)/48(82).
 Site :- Agri. Res. Stn., Mohol. Type :- 'R'.

Object :-To study the rotational effect of Jowar, Wheat and Gram.

1. BASAL CONDITIONS :

(i) (a) and (b) As per treatments. (c) Nil. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) Ploughing once in three years. (b) Sowing with $12^{\prime \prime} \times 18^{\prime \prime}$ drill. (c) N.A. (d) $12^{\prime \prime} \times 18^{\circ}$. (e) N.A. (v) 5 C.L./ac. of F.Y.M. applied at the time of second harrowing; manure applied by spreading with hand. (vi) Jowar-M-35-1; Gram-Chafa; Wheat-Vijay. (vii) Unirrigated. (viii) 2 interculturings and 4 harrowings. (ix) 28°. (x) N.A.

2. TREATMENTS :

5 rotations :

1. Jowar every year.
2. Jowar-Gram.
3. Jowar-Wheat.
4. Wheat-Gram.
5. Wheat every year.
6. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $96^{\prime} \times 12^{\prime}$. (b) $91^{\prime} \times 12^{\prime}$. (v) $2 \frac{1}{\prime}^{\prime}$ on eithor side along the length. (vi) No. as per rotations.
7. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain yield. (iv) (a) 1946-1955, (b) As per rotations. (c) Nil. (v) (a) N.A. (b) - (vi) and (vii, Nil.
8. RESULTS:
I. Crop: Jowar
(i) $569 \mathrm{lb} . / \mathrm{ac}$
(ii) $113.5 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb./ac.

Rotation No.	(1)	(2)	(3)		
Previous crop	Jowar	Gram	Wheat		
Av. yield	614	611	483		
	S.B./mean				$=46.3 \mathrm{lb} . / \mathrm{ac}_{0}$

II. Crop: Wheat
(i) $270 \quad \mathbf{1 b} / \mathrm{ac}$.
(ii) $76.79 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of wheat in $\mathrm{lb} / \mathrm{ac}$.

Rotation No.	(5)	(4)		(3)
Previous crop	Wheat	Cram	Jowar	
Av. yield	313	275	.	223
	S.E./mean			

III. Crop : Gram
(i) $448 \mathrm{lb} / \mathrm{lac}$.
(ii) $87.56 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in Ib./ac.

Rotation No.	(4)	(2)
Previous crop	Wheat	Jowar
Av. yield	473	424
	S.E. $/$ mean	$=35.75 \mathrm{lb} . / \mathrm{ac}$.

$\begin{array}{ll}\text { Crop :-Jowar-Wheat—Gram (Rabi). } & \text { Ref:-Mh. 52(110)/51(35)/50(109)/49(106)/48(82). } \\ \text { Site :-Agri. Res. Stn., Mohol. } & \text { Type :-‘'. }\end{array}$
Object :-To study the rotational effect of Jowar, Wheat and Gram.

1. BASAL CONDITIONS :
(i) (a) As per rotations. (b) As per treatments. (c) 5 C.L./ac. of F.Y.M. applied at the time of second harrowing. Manure applied by spreading with hand. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) N.A. (iv) (a) Ploughing once in three years. (b) Ṣowing with $12^{\prime \prime} \times 18^{\prime \prime}$ drill. (c) N.A. (d) $12^{\prime \prime} \times 18^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Jowar-M-35-1; Gram-Chafa; Wheat-Vijay. (vii) Unirrigated. (viii) 2 interculturiogs (ix) 17°. (x) N.A.
2. TREATMENTS :

5 rotations:

1. Jowar every year.
2. Jowar-Gram.
3. Jowar-Wheat.
4. Wheat-Gram.
5. Wheat every year.
6. DESIGN :
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $96^{\prime} \times 12^{\prime}$. (b) $91^{\prime} \times 12^{\prime}$. (v) 2.5^{\prime} on either side along length. (vi) No. as per rotations.

4. GENERAL :

(i) N.A. (ii) N.A. (iii) Grain yield. (iv) (a) 1946-1955. (b) As per rotations. (c) Nil. (v) (a) N.A. (b) -. (vi) and (vii) Nil.
5. RESULTS:

1. Crop: Jowar
(i) $514 \mathrm{lb} . / \mathrm{ac}$.
(ii) $152.9 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb./ac.

Rotation No.	(1)	(2)	(3)
Previous crop	Jowar	Gram	Wheat
Av. yield	452	572	519
	S.E./mean	$=62.4 \mathrm{lb} . / \mathrm{ac}$.	

II. Crop : Wheat
(i) $283 \mathrm{lb} / / \mathrm{ac}$.
(ii) $60.63 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.

- (iv) Av. yield of wheat in lb./ac.

Rotation No.	(5)	(4)	(3)
Previous crop	Wheat	Gram	Jowar
Av. yield	273	297	276
	S.E./mean		$=24.75 \cdot 1 \mathrm{lb}$./ac.

III. Crop : Gram
(i) $378 \mathrm{lb} . / \mathrm{ac}$.
(ii) $94.14 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ signjefcantly.
(iv) Av. yield of gram in lb./ac.

Rotation No.	(4)	(2).
Previous crop	Wheat	Jowar
Av. yield	368	389
		S.E./mean

$$
\begin{array}{lc}
\text { Crop :- Jowar—Wheat—Gram (Rabi). } & \text { Ref:- Mh. 53(249)/52(110)/51(35)/ } \\
& \cdot 50(109) / 49(106) / 48(82) . \\
\text { Site :- Agri. Res. Stn., Mohol. } & \\
\hline
\end{array}
$$

Object :-To study the rotational effect of Jowar, Wheat and Gram.

1. BASAL CONDITIONS :
(i) (a) As per rotations. (b) As per treatments. (c) Nil. (ii) (a) Light black. (b) Refer soil analysis, Mohol. (iii) $14,15.10 .1953$. (iv) (a) and (b) N.A. (c) Jowar $4 \mathrm{lb} . / \mathrm{ac}$. , Gram $30 \mathrm{lb} . / \mathrm{ac}$. and Wheat 40 $\mathrm{lb} / \mathrm{ac}$. (d) 15° between lines for all crops. (e) -. (v) Nil. (vi) Jowar-M-35-1; Gram-Chafa, WheatVijay (Dry Wheat). (vii) Unirrigated. (viii) 2-weedings and 2 hoeings. (ix) 18". (x) Gram 30.1.1954, Wheat 17.2.1954 and Jowar 5.3.1954.
2. TREATMENTS:

5 rotations :

1. Jowar every year.
2. Jowar-Gram.
3. Jowar-Wheat.
4. Wheat-Gram.
5. Wheat every year.
6. DESIGN:
(i) R.B.D. (ii) (a) 8. (b) N.A. (iii) 6. (iv) (a) $96^{\prime} \times 12^{\prime}$. (b) $91^{\prime} \times 12^{\circ}$. (v) N.A. (vi) No, as per rotations.
7. GENERAL :
(i) Gram good ; Wheat-slightly below normal, Jowrar-below normal. ; (ii) Sugary disease and Aphids on Jowar crop. (iii) Grain pield. (iv) (a) 1946-1955. (b) As per rotations (c) Nil. (v) (a) N.A. (b) No. (vi) and (vii) Nil.
8. RESULTS:
I. Crop: Jowar
(i) $433 \mathrm{lb} . / \mathrm{ac}$.
(ii) 99.17 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in $\mathrm{lb} . / \mathrm{ac}$.

II. Crop: Wheat
(i) $265 \mathrm{lb} . / \mathrm{ac}$.
(ii) $95.34 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of wheat in lb,/ac.

Rotation No.	(4)	(3)	(5)
Previous crop	Gram	Jowar	Wheat
Av. yield	301	231	261

III. Crop: Gram

(i) 579 lb./ac.
(ii) $130.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in lb./ac.

Rotation No.	(4)	(2)
Previous crop	Wheat	Jowar
Av. yield	588	570
	S E./mean	$=53.3 \mathrm{lb}$./ac.

Crop :- Cotton-Jowar-Groundnut.	
Site :- Cotton Res. Stn., Nanded.	Ref :- Mh. 48(9).

Object :-To determine the most suitable rotation of crops for Cotton.

1. BASAL CONDİTIONS:
(i) (a) As per treatmonts. (b) As per treatments. (c) Nil. (ii). (a) Black cotton soil. (b) Refer soil analyșis, Nanded., (iii) 29.6.1948. (iv) (a) to (el N.A., (v) Nil. (vi) Gaorani-6, (vii) Unirrigated. (viii) Weeding once and hoeing twice in all the cotton plots. (ix) $49^{\circ \prime}$. (x) $16.12 .19+8$. . .

2. TREATMENTS:

5 rotations as follows:-

1. Cotton (C)-Kharif Jowar (KJ).
2. Cotton-Chinamug in Kharif and Jowar in Rabi (RJ).
3. Cotton-Groundnut.
4. Cotton-Kharif Jowar-Groundnut.
5. Cotton-Chinamug in Kharif and Jowar in Rabl-Groundnut.
6. DESIGN :
\therefore (i). R.B.D. (ii) (a) 12. (b) N.A. (iii) 4, (iv).(a) $60.5^{\prime} \times 24^{\prime}$. (b) $55^{\prime} \times 12^{\prime}{ }^{\prime}$ (v) 4 rows on either side of the plot and $2^{\prime}-9^{\prime}$ at each end of every row. (vi) Yes.
7. GENERAL :
(i) Shedding of buds and bolls oceurred due to heavy rains in November. (ii) No. (iii) Germination, final stand; fibre properties, seed wéight, crop growtn and yield. (iv) (a) 1941-1950. (b) As per rotations. (c) N.A. (v, (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS :

I Crop: Cotton
(i) $354 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) 79.94 lb ./ac.
(iii) Treatments differ highly significantly.
(iv) Ar. yield of cotton in lb./ac.

Rotation No.	(1)	(2)	(3)	(4)		(5)
Previous crop	KJ	RJ	G	G	\because	G
Av. yield	215	393	371	287		502.

II Crop: Groundnut
(i) $1056 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $148.63 \mathrm{lb} / \mathrm{lac}$.
(iii) Treatments difier significantly.
(iv) Av. yield of groundnut in $\mathbf{~ J}$. ./ac.

Rotation No.
Previous crop
Av. yield
(3)
C
854

(4)	\ddots
KJ	
RJ	

S.E./mean $=74.30 \mathrm{lb} . / \mathrm{ac}$.
III. Crop: Jowar (Kharin
(i) $166 \mathrm{lb} /$ /ac.
(ii) 49.37 lb ./ac.
(iii) Treatment do not differ sighificantly.
(iv) Av. yield of joway in lb./ac.

Rotation No.	\because	\ddots	(i)
Previous crop	\cdots	C	
Av. yield.		164	

Av. yield.
S.E./mean : $=24.69 \mathrm{lb} . / \mathrm{ac}$.
IV. Crop: Chinamug:
(i) $736 \mathrm{lb} . / \mathrm{ac}$.
(ii) $152.83 \mathrm{Jb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of chinamug in lb ./ac.

Rotation No.	(2)	(5)	
Previous crop	C	C	
Av. yield		680	792
	S.E./mean	$=76.4 \mathrm{lb} / \mathrm{ac}$.	

Note:-Rabi Jowar crop not analysed as the yields are too low.

Crop :- Cotton-Jowar-Groundnut.
Ref:- Mh. 49(11)/48(9).
Site :- Cotton Res. Stn., Nanded.
Object :-To determine the most suitable rotation of crops for Cotton.

1. BASAL CONDITIONS:
(i) (a) As per treatments. (b) As per treatments. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 23.6.1949. (iv) (a) to (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Weeding once and hoeing once in all the cotton plots. (ix) $44.88^{\prime \prime}$. (x) N.A.

2. TREATMENTS:

5 rotations as follows :-

1. Cotton (\mathbf{C})-Kharif Jowar (KJ).
2. Cotton-Mug in Kharif and Jowar in Rabi (RJ).
3. Cotton-Groundnut.
4. Cotton-Kharif Jowar-Groundnut,
5. Cotton-Mug in Kharif and Jowar in Rabl-Groundnut.
6. DESIGN:
(i) R.B.D. (ii) (a) 12., (b) N.A. (iii) 4 . : (iv) (a) $60.5^{\prime} \times 24^{\circ}$. (b) $55^{\circ} \times 12^{\circ}$. (v) 4 rows on , either side of , the plot and $2^{\prime}-9^{\prime \prime}$ at each end of every row. (vi) Yes.
7. GENERAL:
(i) Normal. (ii) Nil. (iii) Germination and final stand, fibre properties, and crop growth. (iv) (a) $1941-$, 1950. (b) As per rotations. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
8. RESULTS:
9. Crop: Cotton
(i) 95 lb./ac.
(ii) $28.17 \mathrm{Jb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of cotton"in lb./ac.

Rotation No.	(1)	(2)	(3)	(4)	(5)
Previous crop	${ }^{\prime}$ / $\mathbf{K J ~}^{\prime \prime}$ "	- $\mathbf{R J}$	G	G	0
Av. yield	255	61	71	45	46
		S:E./mean $\quad 14.0$			

II. Crop: Groundnat .
III. Crop: (Kharif) Jownr
(i) $360 \mathrm{lb} . / \mathrm{ac}$.
(i) $219 \quad \mathrm{lb} . / \mathrm{ac}$
(i) $56.50 \mathrm{lb} . / \mathrm{ac}$.
(ii) $41.71 \mathrm{lb} . / \mathrm{ac}$
(iii) Treatments do not differ significantly.
(iii) Treatments do not differ significantly,
(iv) Av. yield of groundnut in Ib ./ac.

Rotation No.	(3)	(4)	(5)
Previous crop	C	KJ	RJ
Av. yield	319	335	425
S.E./mean	$=28.251 \mathrm{~b}$./ac.		

IV. Crop: Rabi Jowar
(i) $454 \mathrm{lb} . / \mathrm{ac}$.
(ii) $137.50 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Rabi jowar in lb./ac.

Rotation No.	(2)	(5)
Previous crop	$M u g$	$M u g$
Av. yield	495	413
S.E./mean	$=68.74 \mathrm{lb} . / \mathrm{ac}$.	

(iv) Av. yield of Kharif jowar in Ib./ac.

Rotation No.	(1)	(4),
Previous crop	C	C
Av. yield	$267:$	$17!$
S.E./mean	$=20.85 \mathrm{lb} . / \mathrm{ac}$.	

V. Crop: Mug

(i) $715 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $106.3 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly,
(iv) Av yield of mug in $\mathrm{lb} / \mathrm{ac}$.

Rotation No.	(2)	(5);
Previous crop	C	C
Av. yield	683	747
S.E./mean	$=53.17 \mathrm{lb} . / \mathrm{ac}$.	

Crop:- Cotton-Jowar-Ground nut.
Site :- Cotton Res. Stn., Nanded.

Ref :- Mh. 50(19)/49(11)/48(9).
Type : ${ }^{\prime} R$ '.

Object :-To determine the most suitable rotation of crops for Cotton.

1. BASAL CONDITIONS :
(i) (a) As per treatments. (b) As per treatments. (c) Nil. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 6.7.1950. (iv) (a) to (e) N.A. (v) Nil. (vi) Gaorani-6. (vii) Unirrigated. (viii) Weeding once, hoeing twice in all the cotton plots. (ix) 29.37°. (x) N.A.
2. TREATMENTS :

5 rotations as follows :

1. Cotton (C)-Kharif Jowar (KJ).
2. Cotton-Mug in Kharif and Jowar in Rabi (RJ).
3. Cotton-Groundnut.
4. Cotton-Kharif Jowar-Groundnut.
5. Cotton-Mug in Kharif and Jowar in Rabi-Groundnut.

3. DESIGN:

(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 4. (iv) (a) $60.5^{\prime} \times 24^{\prime}$. (b) $55^{\prime} \times 12^{\prime}$. (v) 4 , rows on either side of the plot and $2^{\prime}-9^{\prime \prime}$ at each end of every row. (vi) Yes.
4. GENERAL:
(i) Growth of cotton crop was satisfactory. (ii) Nil. (iii) Germination, final stand, fibre properties, crop growth and yield: (iv) (a) • 1941-1950, (b) As per rotations. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.
5. RESULTS :
\vec{i}. Crop : Cotton:
(i) $479 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $47.70 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of kapas in lb./ac.

Rotation No.	(1)	$\{2)$	(3)	(4)	(5)
Previous crop	KJ	RJ	G	G	G
Av. yield	434	447	473	568	474
		S.E./mean	$=23.85 \mathrm{Hb} / \mathrm{ac}$.		

II. Crop : Groundnut
(i) $820 \mathrm{lb}, / \mathrm{ac}$.
(ii) $123.2 \mathrm{lb}, 1 \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of pods in: Ib ./ac.

Rotation No.	(3) ${ }^{\text {- }}$	(4)	(5)
Previous crop	C	KJ	RJ
Av: yield	693	628	1140
S E./mean $=61.6 \mathrm{lb} . / \mathrm{ac}$.			

III. Crop: Jowar (Kharif)
(i) $796 \mathrm{lb}, / \mathrm{ac}$.
(ii). $207.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb./ac.

Rotation No.	(1)	(4)
Previous crop	C	C
Av. yield :	1029	563
S.E./mean	$=103.7 \mathrm{lb} . / \mathrm{ac}$.	

IV. Crop : Jowar (Rabi)
(i) $452 \mathrm{lb} . / \mathrm{ac}$.
(ii) $173.4 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb./ac.

Rotation No.	(2)	(5)
Previous crop	Mug	c/ug
Av. yield	417	487
S.E./mean	$=86.70$	$\mathrm{lb} / \mathrm{ac}$.

V. Crop : Mug
(i) $457 \mathrm{lb} . / \mathrm{ac}$.
(ii) $123.3 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of mug in lb./ac.

Rotation No.	(2)	(5)
Previous crop	C	C
Av. yield	510	405
S.E./mean		$=61.5 \mathrm{lb} . / \mathrm{ac}$.

Crop:- Cotton-Jowar-Groundnut.

 Site :-Cotton Res. Stn., Nanded.> Ref: Mh. 52(49).
> Type :-‘R'.

Object :-To find out the best rotation along with manuring for Marathwada tract.

1. BASAL CONDITIONS :

(i) (a) As per treatments. (b) Jowar (Rabi). (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 27.6 .1952 . (iv) (a) 4 bakharings. (b) Drilling. (c) Cotton : $16 \mathrm{lb} . / \mathrm{ac} .$, Jowar : $11 \mathrm{lb} . / \mathrm{ac}$. and Groundnut: 60 lb /ac. (d) $18^{\prime \prime}$ cotton, 12° jowar and $12^{\prime \prime}$ groundnut. (e) N.A. (v) Nil. (vi) Cotton : Gaorani-6, Kh. Jowar : PJ4K, Groundnut: Spanish peanut. (vii) Unirrigated. (viii) Hoeing once to Kharif Jowar and twice to cotton. One weeding to groundnut and twice to cotton. (ix) 28.83°. (x) Groundnut 22.10.1952, Kharif Jowar 12.12.1952 and cotton pickings on 6.11.1952.6.12.1952. and 6.1.1953.

2. TREATMENTS :

2 rotations:
(1) Cotton (C)-Kharif Jowar (J).
(2) Cotton-Kharif Jowar-Groundnut (G).

Jowar plot is further divided into two ; One plot (say Jm) receiving . 4 ton/ac. of F.Y.M. and the other plot (say J) remaining unmanured.
Note :-Kharif Jowar was not manured during 1952-1953 in the 2 year rotation plot.
3. DESIGN :
(i) R.B.D. (ii) (a) 10. (b) N.A. (iii) 5. (iv) (a) $63.5^{\prime} \times 15^{\prime}$. (b) $60.5^{\prime} \times 9^{\prime}$. (v) For Kharif Jowar 3 rows on either side, for cotton 2 rows on either side, for groundnut 3 rows on either side. Also distance of $1 \frac{1}{2}^{\prime}$ at either end of every row was non experimental. (vi) Yes.
4. GENERAL :
(i) N.A. (ii) N.A. (iii) For cotton : Germination, final stand, plant height, boll no., boll and seed weight, ginning percentage and fibre properties. For jowar : Final stand and grain yield. For groundnut : pod yield (iv) (a) 1952 to 1957. (b) As per rotations. (c) N.A. (v) (a) and (b) Nil. (vi) and (vii) Nil.

5. RESULTS :

I. Crop : Cotton

(i) $261 \mathrm{lb} . / \mathrm{ac}$.
(ii) $32.72 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of kapas in lb./ac.

2 year rotation 3 year rotation

Crop	C	C	C	C
Av. yield	264	237	283	262
	S.E $/$ mean	$=14.63 \mathrm{lb} . / \mathrm{ac}$.		

II. Crop: Groundnut
(i) 1073 lb /ac.
(ii) $233.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb ./ac.

		3 year rotation	
Crop		G	G
Av. yield		1034	1112
	S.E./mean		$=104.5 \mathrm{lb} . / \mathrm{ac}$.

III. Crop : Jowar
(i) $392 \quad \mathrm{lb} / \mathrm{ac}$.
(ii) $83.56 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of grain in lb./ac.

Crop	J	Jm	J	Jm
Av.yield	260	276	640	391
	S.E./mean	$=37$.		

Crop :-Cotton-Jowar-Groundnut.
 Site :-Cotton Res. Stn., Nanded.

Ref :-Mh. 53(117)|52(49).
Type: ${ }^{\prime}$ 'R'.

Object :-To find out the best rotation along with manuring for Marathwada tract.

1. BASAL CONDITIONS:

(i) (a) to (c) As per treatments. (ii) (a) Black cotton soil. (b) Refer soil analysis, Nanded. (iii) 24.6.1953. (iv) (a) 4 bakharings. (b) Drilling. (c) Cotton: $16 \mathrm{lb} . / a c .$, Jowar: $11 \mathrm{lb} . / \mathrm{ac}$. and Groundnut: $60 \mathrm{lb} . / \mathrm{ac}$. (d) Spacing between rows: Cstton: $18^{\prime \prime}$, Jowar: $12^{\prime \prime}$ and Groundnut : $12^{\prime \prime}$. (e) N.A. (v) Nil. (vi) Cotton: Gaorani-6, Jowar: PJ 4K anj Groundnut: Spanish peanut. (vii) Unirrigated. (viii) Hoeing once to jowar and twice to cotto i, weeding once to cotton and groundnut. (ix) 45.13°. (x) Picking of cotton on 11.11 .1953 , 11.12.1953 and 11.1.195 f, harvesting groundnut on 23.10.1953 and harvesting jowar on 26.12.1953.

1. TREATMENTS :

2 rotations :

1. Cotton (C)-Kharif Jowar (KJ).
2. Cotton-Kharif Jowar-Groundout (G)

Jowar plot is further divided into two: One plot (say Jm) receiving 4 ton/ac. of F.Y.M. and the other plot (say J) remaining unmanured.
Note :-Kharif Jowar was not manured during 1952-53 in the 2 year rotation plots.
3. DESIGN :
(i) R.B.D. (ii) (a) 10 . (b) N.A. (iii) 5. (iv) (a) $63.5^{\circ} \times 15^{\circ}$. (b) $60^{\prime} \times 9^{\prime}$. (v) For Kharif jowar 3 rows on either side. For cotton 2 rows on either side. For groundnut 3 rows on either side. Also a distance of $1 \frac{1}{2^{\prime}}$ at either end of every row was non-experimental. (vi) Yes.
4. GENERAL:
(i) Good. (ii) No. (iii) For -cotton : Germination, final stand, plant height, boll no., boll weight, ginning \% and ubre properties and kapas yield. For Jowar : Final stand and grain yield. For Groundnut: pod yield. (iv) (a) 1952-1957. (b) As per rotations. (c) N.A. (v) (a) and (b) No. (vi) and (vii) Nil.
5. RESULTS :
I. Crop: Cotton
(i) $234 \mathrm{lb} . / \mathrm{ac}$.

- (ii) $21.95 \mathrm{lb} / \mathrm{ac}$.
(iii)' Treatments differ highly significantly.
(iv) Av. yield of kapas in lb./ac.

	Two year rotation		Three year rotation		
Crop	C	C	$:$	C	C
Previous crop	J	J		G	G
Av. yield	176	169		299	292
	S.E./mean		$=9.82$	lb./ac.	

II. Crop: Groundnut
(i) $1049 \mathrm{lb} / \mathrm{ac}$.
(ii) $1528 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb./ac.

Crop	G	G
Previous crop	J	Jm
Av. yield	1048	1050.
	mean	=68.3 lb./ac.

III. Crop: Jowar
(i) $423 \mathrm{lb} . / \mathrm{ac}$.
(ii) 74.72 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb./ac.

Crop	J	Jm	J	Jm
Previous crop	C	C	C	C
Av. yield	396	428	425	444
	S.E./mean		$=33.4 \mathrm{lb} . / \mathrm{ac}$.	

Crop :- Bajra-Tur-Groundnut-Matki (Kharif).
Site :-A gri. Res. Stn., Sholapur.
Ref:- Mh. 49 (128).
Type :- 'R'.
Object :-To fix up suitable crop rotation and to study its effect.

1. BASAL CONDITIONS:
(i) (a) As per treatments. (b), (c) N.A. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 2 harrowing. (b):Drillings. (c) 80 lb ./ac. of Groundnut; $3 \mathrm{lb} . / \mathrm{ac}$. of Bajra; $2 \mathrm{lb} . / \mathrm{ac}$. of Tur and $10 \mathrm{lb} . / \mathrm{ac}$. of Matki. (d) 12^{*} between rows. (e)-. (v) Nil. (vi) Groundnut-Big Japan; Tur and MatkiLocal: Bajra - Akola. (vii) Unirrigated. (viii) 2 interculturings, 1 weeding for groundnut. (ix) $38.17^{\prime \prime}$. (ix) N.A.
2. TREATMENTS .

Rotations as follows :

1. BT every year
2. BT every year
3. $\mathrm{BTp}-\mathrm{BT}$
4. $\mathrm{BT}-\mathrm{BT}-\mathrm{GNp}-\mathrm{GN}$
5. BT-BT-Mtp-Mt

Details of rotations :
BT =Bajra-Tur mixtrre in $3: 1$.
$\mathrm{BTp}=$ Bajra-Tur mixture manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
GN =Groundnut unmanured.
$\mathrm{GNp}=$ Groundnut manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
Mt =Matki, unmanured.
$\mathrm{Mtp}=\mathrm{Matki}$ manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$
3. DESIGN :
(i) R.B.D. (ii) 12. (b) N.A. (iii) 7. (iv) (a) $37 \times 37^{\prime}$. (b) $30^{\circ}-3^{\circ} \times 36^{\circ}$. (v) N.A. (vi) Yes.
4. GENERAL :
(1) Normal. (ii) Nil. (iii) Grain and pod yield. (iv) (a) 1949-1959. (b) Yes, as per rotation. (c) Nil. (v) (a), (b) N.A. (vi) and (vii) Nil.

RESULTS :
I. Crop : Bajra
(i) $196 \mathrm{lb} . / \mathrm{ac}$.
(ii) 4680 lb ./ac.
(iii) Treatments do not differ significanly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(5)
Crop	BT.	BT	BT	BT	BT	BT	BT	BT
Av. yield	188	189	166	181	192	204	191	181
S.E./mean $\quad=17.68 \mathrm{lb}$								

11. Crop: Groundnat
(i) $755 \mathrm{lb} . / \mathrm{ac}$.
(ii) $173.0 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(4)	(4)
Crop	$\mathbf{G N p}$	$\mathbf{G N}$
Av. yield	701	809
	S.E./mean	$=65.4 \mathrm{Ib}$ /ac.

Note :-Tur and Matki yields are N.A.

```
Crop :- Bajra-Tur-Groundnut-Matki (Kharif).
Site :- Agri. Res. Stn., Sholapur.
Ref: \(\boldsymbol{\sim}\) Mh. 50(152)/49(128).
Type :- 'R'.
```

Object :-To fix up a suitable crop rotation and to study its effects.

1. BASAL CONDITIONS :

(i) (a) As per rotation. (b) and (c) As per treatments. (ii) (a) Medium black. (b) Refer soil analysis, Sholapur. (iii) N.A. (iv) (a) 2 ploughings and 2 harrowings. (b) Drilling. (c) $80 \mathrm{lb} . / \mathrm{ac}$. of Groundnut ; $3 \mathrm{lb} . / \mathrm{ac}$. of B.jira, $2 \mathrm{lb} . / \mathrm{ac}$. of Tur and 10 lb ./ac. of Matki. (d) 12° between rows. (e) -. (v) Nil. (vi) Groundnut-Big Japan, Tur and Matki-Local and Bajra-Akola. (vii) Unirrigated. (viii) 1 interculturing. (ix) 24.04*. (x) N.A.
2. TREATMENTS :

5 rotations as follows:

1. BT every year
2. BT every year
3. $\mathrm{BTp}-\mathrm{BT}$
4. $\mathbf{B T}-\mathrm{BT}-\mathbf{G N p}-\mathrm{GN}$
5. $\mathrm{BT}-\mathrm{BT}-\mathrm{Mtp}-\mathrm{Mt}$

> Details of rotations : BT =Bajra-Tur mixture in 3:1.
> BTp = Bajra-Tur mixture manured with $20 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$. GN $=$ Groundnut unmanured.
> $\mathrm{GNp}=$ Groundnut manured with $20 \mathrm{lb} . / a c$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{5}}$.
> Mt =Matki unmanured.
> Mtp $=$ Matki manured with $20 \mathrm{lb} / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 12. (b) N.A. (iii) 7. (iv) (a) N.A. (b) $30^{\circ}-3^{\prime \prime} \times 36^{\prime}$. (v) N.A. (vi) No, as per rotation.
4. GENERAL:
(i) Normal. (ii) Nii. (iii) Grain and pod yield. (iv) (a) 1949-1959. (b) As per treatments. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
I. Crop : Bajra
(i) $226 \mathrm{lb} . / \mathrm{ac}$
(ii) $54.00 \mathrm{lb}, / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of bajra in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(5)	(5)	(5)
Crop	BT	BT	BT	BTp	BT	BT	BT	BT
Previous crop	BT	BT	BTp	BT	GNp	GN	Mtp	Mt
Av. yield	249	194	238	238	234	221	218	220
		S.E./mean	$=20.43 \mathrm{lb} . / \mathrm{ac}$.					

II. Crop : Groundnut
(i) 748 lb./ac.
(ii) $23.00 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of pod in lb/ac.

Rotation No.	(4)	(4)
Crop	GNp	GN
Previous crop	BT	BT
Av. yield	824	673
	S.E./mean	$=8.68 \mathrm{lb}$./ac.

Note : Tur and Matki yields are N.A.

$$
\begin{array}{ll}
\text { Crop :- Bajra-Tur-GroundnutmMatki (Kharif) } & \text { Ref :-Mh. 51(218)/50(152)49(128) } \\
\text { Site :- Agri. Res. Stn., Sholapur. } & \text { Type :- 'R'. }
\end{array}
$$

Object : - To fix up a suitable crop rotation and to study its effects.

1. BASAL CONDITIONS :
(i) (a) As per rotation. (b) and (c) As per treatments. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 28.6 .5 l . (iv) (a) 2 harrowings. (b) Drilling. (c) 80 lb ./ac. of Groundnut; $3 \mathrm{lb} . / \mathrm{ac}$. of Bajra; 2 lb ./ac. of Tur and $10 \mathrm{lb} . / \mathrm{ac}$. of Matki. (d) $12^{\text {e }}$ between rows. (e)-. (v) Nil. (vi) Groundaut-Big Japan. Matki and Tur-Local ; Bajra-Akola. (vii) Unirrigated. (viii) 2 interculturings to Bajra and 1 weeding to Groundnut. (ix) 24.81". (x) Bajra: 3.11.1951, Tur: 14.12.1951, Marki: 20.10.1951 and Groundnut: 22.11.1951.

TREATMENTS -

5 rotations as follows :

1. BT every year
2. BT every year
3. $\mathrm{BTP}-\mathrm{BT}$
4. $\mathbf{B T}-\mathrm{BT}-\mathrm{GNp}-\mathbf{G N}$
5. BT-BT-Mtp-Mt

Details of rotations :

BT =Bajra-Tur mixture in 3:1
BTp $=$ Bajra-Tur mixture manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{g}}$.
GN = Groundnut unmanured.
$\mathbf{G N p}=$ Groundnut manured with 20 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
Mt $=$ Marki unmanured.
Mtp $=$ Matki manured with $20 \mathrm{lb} . / a c$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{6}$.

3. DESIGN

(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 7. (iv) (a) $40^{\prime} \times 40^{\circ}$ (b) $30.25^{\prime} \times 36^{\circ}$. (v) N.A. (vi) No ; as per rotations.
4. GENERAL :
(i) N.A. (ii) Nil (iii) Grain and pod yield. (iv) (a) 1949 to 1959. (b) As per rotations. (c) Nil. (v) (a) N.A. (b) N.A. (vi) and (vii) Nil.

5. RESULTS :

I. Crop: Bajra.
(i) $229 \mathrm{lb} / \mathrm{ac}$.
(ii) $78.16 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ significantly.
(iv) Av. yield of bajra in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(5)
Crop	BT	BT	BTp	BT	BT	BT	BT	.BT
Previous crop	BT	BT	BT	BTp	GNp	GN	Mtp	Mt
Av. yield	178	181	249	201	251	195	302	278
S.E./mean = 29.531								

II. Crop: Groundnat.
(i) $1069 \mathrm{lb} . / \mathrm{ac}$.
(ii) $114.2 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb./ac.

Rotation No.	(4)	(4)
Crop	GNp	GN
Previous crop	BT	BT
Av. yield	1117	1020
	S.E./mean	
		$=43.2 \mathrm{lb} . / a c$.

Note :-Tur and Matki yields are N.A.

$$
\begin{array}{lr}
\text { Crop :- Bajra-Tur-Groundnut—Matki (Kharif). } \begin{array}{c}
\text { Ref :- Mh. 52(350)// } \\
\\
\text { Site :- Agri. Res. Stn., Sholapur. }
\end{array} \quad \text { Type :- ‘R'. }
\end{array}
$$

Object:-To fix up a suitalle crop rotation and to study its effects.

1. BASAL CONDITIONS:
(i) (a) to (c) As per rotation. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 20.6.1952. (iv) (a) 2 ploughings and 2 harrowings. (b) Drilling. (c). 80 lb ./ac. of Groundnut; $3 \mathrm{lb} . / \mathrm{ac}$. of Bajra; $2 \mathrm{lb} . / \mathrm{ac}$. of Tur; 10 lb ./ac of Matkl. (d. $12^{\prime \prime}$ between rows. (e) -. (v) Nil. (vi) Groundnut-Big Japan; BajraAko a ; Tur and Marki-local. (vii) Unırrigated. (viii) 1 interculturing to Bajra and 1 weedjng to Groundnut. (ix) 20.76". (x) Bajra and Tur-23 and 24.10.1952; Matki-30.11.1952 and Groundnut-28.11.1952.

2. TREATMENTS:

5 rotations as follows :

1. BT every year
2. BT every year
3. $\mathrm{BTp}-\mathrm{BT}$
4. $\mathbf{B T}-\mathrm{BT}-\mathbf{G N p}-\mathbf{G N}$

BT-BT-Mtp-Mt

Details of rotations:
$\mathrm{BT}=$ Bajra—Tur mixture in $3: 1$.
BTp $=$ Bajra-Tur mixture manured with 20 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{8}}$.
GN = Groundnut unmanured.
$\mathbf{G N p}=$ Groundnut manured with 20 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
Mt =Matki unmanured.
Mtp $=$ Matki manured with $20 \mathrm{lb} . / \mathrm{ac}$, of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D.
(ii) (a) 12. (b) N.A. (iii) 7. ${ }^{1}$ (iv)
(a) N.A.
(b) $33^{\prime} \times 33^{\prime}$. (v) N.A. (vi) As per rotations.
4. GENERAL:
(i) Growth was checked due to excess of soil moisture. (ii) Nil. (iii) Grain yield. (iv) (a) 1949-1959. (b) As per rotations: ${ }^{\prime}$ (c) Nil: (v) (a) and (b) N.A. '(vi) and (vii) Nil.
5. RESULTS:

I. Crop : Bajra

(i) $178 \mathrm{lb} . / \mathrm{ac}$.
(ii) $53.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of bajra in lb./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(5)
Crop	BT	BT	BT	BTp	BT	BT	BT	BT
Previous crop	BT	BT	BTp	BT	GNp	GN	Mtp	Mt
Av. yield	148	145	141	152	232	184	231	192
				S.E./mean	$=20.17$	lb./ac.		

II. Crop: Groundnut
(i) $336 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $31.48 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of pods in lb,/ac.

| Rotation No. | (4) | (4) |
| :--- | :--- | :--- | :--- |
| Crop | GNp | GN |
| Previous crop | BT | BT |
| Av. yield | $\mathbf{3 7 1}$ | 302 |
| S.E /mean | | $=11.89 \mathrm{lb} . / \mathrm{ac}$. |

Note :-Tur and Matki yields are N.A.

$$
\begin{array}{lc}
\text { Crop :- Bajra—Tur—Groundnut—Matki (Kharif). Ref :- Mh. 53(360)/52(350)/ } \\
& \text { 51(218)/50(152)/49(128). } \\
\text { Site :- Agri. Res. Stn., Sholapur. } & \text { Type :- ‘R’. }
\end{array}
$$

Object :-To fix up a suitable crop rotatation and to study its effects.

1. BASAL CONDITIONS:

(i) (a), (b) and (c) As per rotations. (ii) (a) Medium deep. (b) Refer soil analysis, Sholapur. (iii) 17, 18.7.1952. (iv) (a) 2 harrowings. (b) Drilling. (c) 80 lb ./ac. of Groundnut; $3 \mathrm{lb} . / \mathrm{ac}$. of Bajra; $2 \mathrm{lb} . / \mathrm{ac}$. of Tur; 10 lb ./ac. of Matki. (d) $12^{\prime \prime}$ between rows. (e)-. (v) Nil. (vi) Big Japan-Groundnut ; Tur and MatkiLocal, Bajra-Akola. (vii) Unirrigated. (viii) 2 interculturings and 1 weeding to Groundnut. (ix) 35.96°. (x) Bajra 13.11.1953 ; Tur 23.1.1954; Matki 19.12.1953 and Groundnut 12.12,1953.
2. TREATMENTS :

5 rotations as follows:
BT every year. ,
. BT every year
BTp-BT
BT-BT-GNp-GN
BT-BT-Mtp-Mt

Details of rotations :
$\mathrm{BT}=$ Bajra-Tur mixture in 3:1.
BTp $=$ Bajra-Tiur mixture manured with 20 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$\mathbf{G N}=$ Groundnut unmanured.
$\mathrm{GNp}=$ Groundnut manured with $25 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{6}$.
Mt $=$ Matki unmanured.
Mtp $=$ Matki manured with $20 \mathrm{lb} . / a c$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
3. DESIGN :
(i) R.B.D. (ii) (a) 12 . (b) N.A. (iii) 7. (iv) (a) N.A.' (b) $33^{\prime} \times 33^{\prime}$. (v) N.A. (vi) Yes.
4. GENERAL :
(i) Crop almost failed due to heavy rains. (ii) Nil. (iii) Gṛain yield. (iv) (a) 1949-1959. (b) As per rotations. (c) Nil. (v) (a) and (b) N.A. (vi) and (vii) Nil.

5. RESULTS:

I. Crop : Bajra
(i) 26 Jb./ac.
(ii) $11.10 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do nọt differ signjficantly.
(iv) Av. yield of bajra in Ib./ac.

Rotation No.	(1)	(2)	(3)	(3)	(4)	(4)	(5)	(5)
Crop	BT	BT	BTp	BT	BT	BT	BT	BT
Previous crop	BT	BT	BT	BTp	GNp	GN	Mtp	Mt
Av. yield	24	25	25	18	28	32	30	29
				S.E./mean	$\mathbf{- 4 . 1 9}$	$\mathrm{lb} . / \mathrm{ac}$		

II. Crop: Groundnut
(i) $302 \mathrm{lb} . / \mathrm{ac}$.
(ii) $36.00 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments differ highly significantly.
(iv) Av. yield of pods in lb./ac.

Rotation No.	(4)	(4)
Crop	GNp	GN
Previous crop	BT	BT
Av. yield	370	234
	S.E./mean	$=13.601 \mathrm{lb} . / \mathrm{ac}$.

Note :-Tur and Matki yields are N.A.

Crop :- Jowar-Groundnut-Gram.
 Site :- Agri, Res. Stn., Sholapur.

Ref:- Mh. 49(111)
Type :m ' \mathbf{R} '.

Object:- To find out suitable crop rotations for Rabi Jowar and to determine the effect of $\mathbf{P}_{\mathbf{1}} \mathrm{O}_{\mathbf{5}}$ on them.

1. BASAL CONDITIONS :
(i) (a) Jowar-Gram-Groundnut. (b) Jowar. (c) Nil. (ii) (a) Light, medium black soil. (b) Refer soil analysis, Sholapur. (iii) 9.10.1949. (iv) (a) and (b) N.A. (c) Jowar $4 \mathrm{lb} . / \mathrm{ac}$. ; Groundnut $80 \mathrm{lb} . / \mathrm{ac}$. ; Gram 4) lb./ac. (d) Jowar 18^{-}; Gram and groundnut 12°. (c) N.A. (v) Nil. (vi) Jowar-M-35-1: Gram-Chafa; Groundnut-Big Japan. (vii) Unirrigated. (viii) N.A. (ix) $3^{\circ} . \cdot$ (x) 5.2.1950.
2. TREATMENTS

10 rotations

1. J every year
2. Jm—J—J
3. J-GNp
4. J-GN
5. J—J-GNp
6. J J—GN
7. J-Gp
8. J-G
9. $J-J-G p$
10. J—J—G
11. DESIGN :
(i) R.B.D. (ii) (a) 24. (b) N.A. (iii) 4. (iv) (a) $36.25^{\prime} \times 30^{\prime}$. (b) $30.25^{\prime} \times 18^{\prime}$ (v) N.A. (vi) Yes.
12. GENERAL :
(i) N.A. (ii) Nil. (iii) Grain and pod yield. (iv) (a) 1949 -continued. (b) As per rotations. (c) Nil. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
13. RESULTS :
14. Crop: Jowar
(i) $382 \mathrm{jb} / \mathrm{ac}$.
(ii) $78.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of jowar in lb ./ac.

15. Crop: Gram
(i) $392 \mathrm{lb} / \mathrm{ac}$.
(ii) 77.00 lb ./ac.
(iii) Treatments do not differ signiflea-sly.
(iv) Av. yield of gram in lb ./ac.

Rotation No.	(7)	18)	(9)	(10)	
Crop	Gp	G	Gp	G	
Av. yield		369	373	386	441
	S.E./mean	$=$	38.50	lb./ac.	

III. Crop: Groundnut
(i) $1440 \mathrm{lb} . / \mathrm{ac}$.
(ii) $460.80 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in lb./ac.

| Rotation No. | (3) | (4) | (5) | (6) |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Crop | GNp | GN | GNp | GN |
| Av. yield | 1780 | 1300 | 1340 | 1340 |
| | S.E. $/$ mean | $=230.4$ | $\mathrm{lb} . / \mathrm{ac}$. | |

Crop :- Jowar-Gram-Groundnut.
Site :- Agi. Res. Stn., Sholapur.

Ref :- Mh. 50(110)/49(111).
Type :- 'R'.

Object :-To find out suitable crop rotations for Rabi Jowar and to determine the 「effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ on them.

1. BASAL CONDITIONS :
(i) (a) Jowar-Gram-Groundnut. (b) As per treatments. (c) As per treatments. (ii) (a) Light medium black. (b) Refer soil analysis, Sholapur. (iii) 5.10.1950. (iv) (a) and (b) N.A. (c) Jowar $4 \mathrm{lb} . / \mathrm{ac}$ and Groundnut $80 \mathrm{lb} . / a \mathrm{c}$: (d) Jowar-18", Gram and Groundnut-12" apart. (e) N.A. (v) Nil. (vi) Jowar. M-35-1, Gram-Chafa and Groundnut-Big Japan. (vii) Unirrigated. (vii) N.A. (ix) N.A. (x) 12.2.1951.
2. TREATMENTS:

10 rotations :

1. J every year
2. Jm-J-J
3. J-GNp
4. J-GN
5. J-J-GNp
6. J-J-GN
7. $J-G p$
8. J-G
9. J-J Gp
10. J-J-G
11. DESIGN :
(i) R.B.D. (ii) (a) 24 . (b) N.A. (iii) 4. (iv) (a) $36.25^{\prime} \times 30^{\prime}$. (b) $30.25^{\prime} \times 18^{\prime}$. (v) N.A. (vi) As per rotations.
12. GENERAL :
(i) N.A. (ii) Nil. (iii) Height, no. of plants, grain and pod yield. (iv) (a) 1949-contd. (b) As per rotations (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
13. RESULTS :
14. Crop: Jowar
(i) $524 \mathrm{lb} . / \mathrm{ac}$.
(ii) 186.4 lb ./ac.
(iii) Treatments differ significantly.
(iv) Av. yield of jowar in lb ./ac.

Rotation No.	(1)	(2)	(2)	(2)	(3)	(4)	(5)	(5)
Crop	J	J.	Jm	J	J.	3	3	J
Previous crop	J	Jm	\$	J	GNp	GN	3	GNp
Av. yield	537	386	497	321	596	589	434	805

Rotation No.	(6)	(6)	(7)	(8)	(9)	(9)\%).	(10)	(1i)
Crop	5	8	1	J	3	1	J	J
Previous crop	J	GN	Gp.	G	J	Gp	J	G
Av. yield	435	626	730	468	455	520	364	627
S.E./mean: ${ }^{\text {a }}=93.20 \mathrm{lb} . / \mathrm{ac}$:								

II. Crop: Gram
(i) $343 \mathrm{lb} . / \mathrm{ac}$.
(ii) $64.00 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yie!d of gram in lb./ac.

Rotation No.	(7)	(8)	(9)	(10)
Crop	$\mathbf{G p}$	\mathbf{G}	$\mathbf{G p}$	\mathbf{G}
Previous crop	\mathbf{J}	\mathbf{J}	\mathbf{J}	\mathbf{J}
Av. yield	$\mathbf{3 6 1}$	$\mathbf{3 5 7}$	$\mathbf{3 4 5}$	$\mathbf{3 1 0}$
	S.e./mean		$=$	$32.00 \mathrm{lb} . / \mathrm{ac}$.

III. Crop: Groundnat
(i) $406 \mathrm{lb} . / \mathrm{ac}$.
(ii) $115.6 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pods in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(3)	(4)	(5)	(6)
Crop	GN	GN	GN	GN
Previous crop	J	J	J	J
Av. yield	452	444	406	324
		S E./mean	$=57.82 \mathrm{lb}$./ac.	

Crop:-Jowar-Gram-Groundnut. Site : Agri. Res. Stn., Sholapur.

Ref:-Mh. 51(95)/50(110)/49(111).
bject:-To find out suitable crop rotations for Rabl Jowar and to determine the effect of $\mathrm{P}_{8} \mathrm{O}_{5}$ on them.
d. BASAL CONDITIONS :
(i) (a) Jowar-Gram-Groundnut. (b) and (c) As per treatments. (ii) (a) Light, medium black soil. (b) Refer soil analysis, Sholapur (iii) 29.9 .1951 for Jowar. (iv) (a) One ploughing to some of the plots and 2 harrowings. (b) N.A. (c) Jowar $4 \mathrm{lb} . / a c$., Groundnut $8 \mathrm{~J} \mathrm{lo} . / \mathrm{ac}$. and Gram $4 \mathrm{~J} \mathrm{lb} . / \mathrm{ac}$. (d) and (e) N.A. (v) Nil. (vi) Jowar-M-35-1, Gram-Chafa and Groundnut-Big Japan. (vii) Unirrigated. (viii) 3 interculturings. . (ix) $23^{\prime \prime}$. (x) 12.2.1952.
2. TREATMENTS :

10 rotations:
Details of rotations :

1. J every year
I. =Jowar unmanured.
2. $\mathbf{J m}-\mathbf{J}-\mathbf{J}$
$\mathbf{J}_{\mathrm{m}}=$ Jonar manured with 5 C L./ac. of F.Y.M.
3. J-GNp

GNp = Groundnut manured with 10 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
4. J-GN

GN =Groundnut unmanured.
5. J-J-GNp
$\mathrm{Gp}=$ Gram manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
6. J-J-GN

G =Gram unmanured.
$\mathbf{P}_{2} \mathrm{O}_{5}$ applied as Super.
7. J-Gp.
8. J-G
9. J-J-Gp
10. J-J-G
3. DESIGN :
(i) R.B D. (ii) (a) 24 . (b) N.A. (iii) 4. (iv) (a) $36.25^{\prime} \times 30^{\circ}$. (b) $30.25^{\circ} \times 18^{\circ}$. (v). N.A. (vi) As per rotations.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Height, no. of plants, grain and pod yield. (iv) (a) 1949-contd. (b) As per rotations. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS :
I. Crop: Jowar
(i) $242 \mathrm{lb} / \mathrm{ac}$.
(ii) $31.20 \mathrm{lb} . / \mathrm{pc}$.
(iii) Treatments differ significantly.
(iv) Av. yield of Jower in lb./ac.

Rotation No.	(1)	(2)	(2)	(2)	(3)	(4)	(5)	(5)
Crop .	J.	J	J	Jm	j	J	J	J
Previous crop	3	J	Jm	J	GNp	GN	GNp	J
Av. yield	205	217	272	260	287	240	250	217
Rotation No.	(6)	(6)	(7)	(8)	(9)	(9)	(10)	(10)
Crop	J	J	J	J	J	J	J	J
Previous crop	GN	J	Gp	G	Gp	J	G	J
Av. yield	202	240	272	275	247	240	215	237
	S.E./mean			$=15.60 \mathrm{lb} . / \mathrm{ac}$.				

II. Crop: Gram
(i) $205 \mathrm{lb} / \mathrm{ac}$.
(ii) $38.40 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in lb,/ac.

Rotation No.	(7)	(8)	(9)	(10)
Crop	Gp	G	Gp	G
Previous crop	J	J	J	J
Av. yield	250	190	210	170
S.E./mean $\quad=19.20 \mathrm{lb} . / \mathrm{ac}$.				

III. Crop: Groundant
(i) $1410 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $259.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathbf{1 b}$./ac.

Rotation No.	(3)	(4)	(5)	(6)
Crop	GNp	GN	GNp	GN
Previous crip	J	J	J	J
Av. yield	1480	1220	1540	14 CO
	S.E./mean		$=129.9$ lb./ac.	

Crop:-Jowar-GrammGroundnut.
Site :-Agri. Res. Stn., Sholapur.
Ref : \sim Mh. 52(186)/51(95)/50(110)/49(111). Type :-‘'R'.

Object : - To find out suitable crop rotations for Rabi Jowar and to determine the effect of $\mathrm{P}_{2} \mathrm{O}_{5}$ on them.

1. BASAL CONDITIONS :

- (i) (a) Jowar-Gram-Groundnut. (b) and (c) As per treatments. (ii) (a) Light medium black soil. (b) Refer soil analysis, Sholapur. (iii) 8.10 .1952 -(Jowar). (iv) (a) Ploughing once to particular plots and 4 harrowings (b) N.A. (c) Jowar-4 lb./ac.; Groundnut-80 lb./ac.; Gram $40 \mathrm{lb} . / \mathrm{ac}$. (d) Jowar-18", Gram and Groundnut-12" apart. (e) N.A. (v) Nil. (vi) Jowur-M-35-1 ; Gram-Chafa, Groundnut-Big Japan. (vii) Unirrigated. (viii) 2 interculturings. (ix) 2°. (x) 11.2.1953.

2. TREATMENTS :

10 rotations :

1. J every year.
2. Jm-J.J.
3. J.GNp.
4. J-GN.
5. J.J-GNp.
6. JJ-GN.
7. J-Gp.
8. J-G.
9. J-J-Gp.
10. J-J.G.

Details of rotations :

J - Jowar unmanured.
$J m=$ Jowar manured with 5 C.L./ac. of F.Y.M.
$\mathrm{GNp}=$ Groundnut manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
GN = Groundnut unmanured.
$\mathrm{Gp}=$ Gram manured with 40 lb ./ac. of $\mathrm{P}_{2} \mathrm{O}_{5}$.

- - Gram unmanured.
$\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$ applied as Super.

3. DESIGN :
(i) R.B.D. (ii) (a) 24. (b) N.A. (iii) 4. (iv) (a) $36.25^{\circ} \times 30^{\circ}$. (b) $30.25^{\prime} \times 18^{\circ}$. (v) N.A. (vi) As per rotations.
4. GENERAL :
(i) N.A. (ii) Nil. (iii) Height, no. of plants, grain end fcd yield. (iv) (a) 1949-contd. (b) As fer rotation。 (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi) and (vii) Nil.
5. RESULTS:
I. Crop : Jowar
(i) $702 \mathrm{lb} . / \mathrm{ac}$.
(ii) $188.0 \mathrm{lb} . \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grain in lb./ac.

Rotation No.	(1)	(2)	(2)	(2) ${ }^{\circ}$	(3)	(4)	(5)	(5)
Crop	J	Jm	J	J	J	J	J	5
Previous crop	J	J	J	Jm	GNp	GN	GNp	J
Av. yield	617	645	637	615	865	725	1040	652
Rotation No.	(6)	(6)	(7)	(8)	(9)	(9)	(10)	(10)
Crop	J	J	J	J	J	J	J	J
Previous crop	GN	J	Gp	G	Gp	J	G	J
Av. yield	790	570	717	645	795	612	737	565.

II. Crop: Gram
(i) $305 \mathrm{lb} . / \mathrm{ac}$.
(ii) $100.8 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in lb./ac.

Rotation No.		(7)	(8)	(9)	(10)
Crop		Gp	G	Gp	G
Previous crop		J	J	J	J
Av. yield		307	265	382	265
S.E./mean			$=50.4 \mathrm{lb} . \mathrm{Jac}$.		

III. Crop: Groundnut
(i) $695 \mathrm{lb} . / \mathrm{ac}$.
(ii) $100.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in $\mathrm{lb} . / \mathrm{ac}$.

Rotation No.	(3)	(4)	(5)	(6)
Crop	GNp	GN	GNp	GN
Previous crop	J	J	J	J
Av. yield	780	660	720	620
S E./mean		$=50.40 \mathrm{lb} . / \mathrm{ac}$.		

Crop :~ Jowar-Gram. Ref :- Mh. 53(291)/52(186)/51(95)/50(110)/49(111). Groundnut (Rabi).
Site :- Agri. Res. Stn., Sholapur.
Type:- 'R'.

Object :-To find out suitable crop rotation for Rabl Jowar and to determine the effect of $\mathbf{P}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$ on them.

1. BASAL CONDITIONS :
(i) (a) Jowar-Gram-Groundnut. (b) and (c) As pcr treatments. (ii) (a) Light medium black soil. (b) Refer soil analysis, Sholapur. (iii) 13.10.1953. (iv) (a) Ploughing once, to particular plots and 3 harrowings. (b) N.A. (c) Jowar $4 \mathrm{lt} . / \mathrm{ac}, \mathrm{Gram} 40 \mathrm{lb} . / \mathrm{ac}$. and Groundnut $80 \mathrm{lb} . / \mathrm{ac}$. (d) Jowar-18". Gram and Groundnut-12". (v) Nil. (vi) Jowar-M-35-1, Gram-Chafa and Groundnut-Big-Japan. (vii) Unirrigated. (viii) 3 interculturings. (ix) $9^{\prime \prime}$. (x) 26.2.1954.

2. TREATMENTS :

$\because 10$ rotations:

1. J every year.
2. $\mathrm{Jm}-\mathrm{J}-\mathrm{J}$.
3. J-GNp.
4. J-GN.
5. J-J-GNp.
6. J.-J-GN.
7. J--Gp.
8. J-G.
9. J.-J-Gp.
10. J-J-G.

Details of rotations

3-Jowar unmanured.
Jm =Jowar manured with 5 C.L /ac. of F.Y.M.
G Np $=$ Groundnut manured with 40 lb ./ac, of $\mathrm{P}_{2} \mathrm{O}_{5}$.
GN =Groundnut unmanured.
Gp $=$ Gram manured with 40 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{\mathbf{6}}$.
G =Gram unmanured.
$\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.
3. DESIGN:
(i) R.B.D. (ii) (a) 24. (b) N.A. (iii) 4. (iv) (a) $36-25^{\prime} \times 30^{\prime}$. (b) $30.25^{\circ} \times 30^{\circ}$, (v) N.A. (vi) As pes rotations.
4. GENERAL :
(i) Nil. (ii) Nil. (iii) Height, no. of plants, grain and pod yield. (iv) (a) 1949-contd. (b) As per rotation. (c) N.A. (v) (a) Chas and Jeur. (b) N.A. (vi• and (vii) Nil.
5. RESULTS :
I. Crop: Jowar
(i) 230 lb ./ac.
(ii) 130.4 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of Jowar in lb./ac.

Rotation No.	(1)	(2)	(2)	(2)	(3)	(4)	(5)	(5)
Crop	J	J	Jm	J	J	J	J	J
Previous crop	J	Jm	J	J	GNp	GN	J	GNp
Av. yield	142	172	262	215	335	207	195	332
Rotation No.	(6)	(6)	(7)	(8)	(C)	(9)	(10)	(10)
Crop	J	J	J	J	j	J	J	J
Previous crop	J	GN	Gp	G	1	Gp	j	G
Av. yield	230	310	230	217	175	237	170	247

II. Crop: Gram
(i) $430 \mathrm{lb} / \mathrm{ac}$.
(ii) $126.8 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of gram in lb./ac.

Rotation No.	(7)	(8)	(9)	(10)
Crop	Gp	G	Gp	G
Previous crop	J	J	J	J
Av. yield	510	372	387	450
		/mean	- 63.	

III. Crop: Groundnut
(i) $700 \mathrm{Jb} / \mathrm{ac}$.
(ii) $53.20 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of pod in Ib./ac.

Rotation No.	(3)	(4)	(5)	(6)
Crop	GNp	GN	GNp	GN
Previous crap	J	J	J	J
Av. yield	740	680	740	640
S.E./mean $\quad 26.60$				

Crop :-Basrai Banana.
Site :-College of Agriculture, Poona.

Ref :-Mh. 53(288).
Type : © ${ }^{\mathbf{M}}$ '。

Object :- To find out an economical manurial dose for Basrai Banana.

1. BASAL CONDITIONS :

(i) Banana was grown upto June 1952 then sunnhemp and then gram in Rabi. (ii) Medium tiack. (iii) By suckers. (iv) basrai banana. (v) June 1953, suckers were planted at a distance of $6^{\circ} \times 6^{\circ}$. (vi) N.A. (vii) 40 lb /plant of F.Y.M. in pits. (viii) N.A. (ix) No intcrcropping. (x) Irrigated. (xi) $22^{\prime \prime}$ (x) N.A.

2. TREATMENTS:

1. O.1 lb./plant of N as G.N.C. $+A / S$ in $1: 1$ ratio.
2. 0.2 lb /plant of N as $\mathbf{G} . \mathrm{N} . \mathrm{C}^{2}+\mathrm{A} / \mathrm{S}$ in $1: 1$ ratio.
3. 0.4 lb ./plant of N as G.N.C. $+\mathrm{A} / \mathrm{S}$ in $1: 1$ ratio.
4. $0.2 \mathrm{lb} . /$ plant of $\mathrm{N}+1.8 \mathrm{lb} . /$ plant of $\mathrm{P}_{2} \mathrm{O}_{5}$.
5. $\quad 0.2 \mathrm{lb}$./plant of $\mathrm{N}+0.2 \mathrm{lb}$./plant of $\mathrm{K}_{2} \mathrm{O}$.
6. $0.2 \mathrm{lb} . /$ plant of $\mathrm{N}+1.8 \mathrm{lb}$./plant of $\mathrm{P}_{2} \mathrm{O}_{5}+2 \mathrm{lb}$./plant of $\mathrm{K}_{2} \mathrm{O}$.
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) 6 and 4 (further details N.A.) (v) Two guard rows between two plants in north-south direction; one guard row tetuecn two plants in east-west direction for plots with 6 trees and one guard row all rcund the net plot for plots with 4 trees. (vi) Yes.
8. GENERAL:
(i) Fair crop. (ii) Nij. (iii) Weight and numter of bananas. (iv) (a) 1953-1955. (b) N.A. (v) N.A. (vi) and (vii) Njl.
9. RESULTS :
(i) 23.70 lb //plot.
(ii) $3.408 \mathrm{lb} . /$ plot.
(iii) The treatments do not differ significantly.
(iv) Av- yield of tananas in lb./plot.

Treatment	Av. yield
1.	23.68
2.	21.77
3.	22.38
4.	27.40
5.	25.03
6.	21.92
S.E./mean	$=1.704$ Ib./plot.

Crop:-Grape.
Ref $=\mathbf{- M h} .52(203)$.
Site :-Ganeshkhind Fruit Exptl. Stn., Poona.
Type :-' \mathbf{M}^{\prime}.
Object :-To fix up a suitable manurial dose of N, P and K for Bhokari Grape vine.

1. BASAL CONDITIONS :
(i) Grapes. (ii) Medium black soil varying from 2^{\prime} to 3^{\prime} in depth. (iii) By cutting. (iv) Bhokari. (v) N.A. (vi) N.A. (vii) N.A. (viii) Pruning in April and Octcter, 1952. Ploughing, harrowing and digging in between two lines. (ix) No. (x) Irrigated. (xi) 21°. (xii) N.A.
2. TREATMENTS :
3. 60 lb . of P.Y.M. +1 lb . of $A / S+3 \mathrm{lb}$. of G.N.C. $+0 \mathrm{jb}+0 \mathrm{lb}$. cf Pot. Sul. per tree.
4. 60 lb . of F.Y.M. +1 lb . of A/S +5 lb . of G.N.C. $+0 \mathrm{Jb} .+0 \mathrm{Jb}$. of Pot. Sul. per tree.
5. 60 lb . of F.Y-M. $+1 \frac{1}{2} \mathrm{lb}$. of $A / S+5 \mathrm{lb}$. of G.N.C. $+5 \frac{\mathrm{lb}}{\mathrm{l}}+0 \mathrm{Jb}$. of Pot. Sul. eer tree.
6. 60 lb . of F.Y.M. $+1 \frac{1}{2} \mathrm{lb}$. of A/S +5 lb . of F.. M. $+0 \mathrm{lb} .+\frac{\mathrm{lb}}{\mathrm{l}}$. of Pot. Sul. per tree.
5.60 lb . of F.Y.M. +18 lb . of $A / S+5 \mathrm{lb}$. of F.Y.M. $+5 \frac{1 \mathrm{l}}{\mathrm{l}} \mathrm{l} .+\frac{\mathrm{lb}}{}+$ of Pot. Sul. per tree.
7. 60 lb . of F.Y.M. +1 lb . of $\mathrm{A} / \mathrm{S}+3 \mathrm{lb}$. of F.Y.M. $+5 \frac{1}{2} \mathrm{lb} .+2 \mathrm{lb}$. of Pot. Sul. per tree.
8. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iij) 6. (iv) One vine per plot occupying area of icosq. fl. (v) N.A. (vi) Yes.
9. GENERAL :
(i) Good. (ii) Nil. Ten sprays of hordeaux mixture, two sulphur dustings. (iii) Grape yield. (iv) (a) and (b) N.A. (v) N.A. (vi) and (vii) Nil.
10. RESULTS :
(i) $6806 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $1718.25 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grape in lb./ac.

Treatment	Av. yield
1.	7623
2.	6260
3.	7052
4.	6470
5.	6769
6.	6663
S.E /mean	$=701.61 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Grape.
Site :-Ganeshkhind Fruit Exptl. Stn., Poona.

Ref:-Mh. 50(130).

Object:-To study the effect of close spacing and different systems of training on wire trellis on growth and yield of Bhokari grape.

1. BASAL CONDITIONS :

(i) Grape. (ii) Medium black varying from 2^{\prime} to 4^{\prime} in depth. (iii) By cutting. (iv) Bhokari. (v) 10.21949 to 22.2.1949. Spacing between two vines and two rows as per treatments. (vi) N.A. (vii) N.A. (viii) April and October prunings were done in time. (ix) No. (x) Irrigated. (xi) $28^{\prime \prime}$. (xii) N.A.

2. TREATMENTS:

1. Single standard vines spread 2° apart are trained as single horizontal cordons. Cordons of three successive plants are trained singly on superimposed wires at a distance of $4 \frac{1}{}_{\prime}^{\prime}, 5 \frac{1}{\prime}^{\prime}$ and $6 \frac{1}{\prime}^{\prime}$ re pectively. The length of two cordons of each vine is 6°. The numter of vines being 2722 in one acre the total cordon length would be 16332 feet.
2. Double standard vines spread 2' apart are trained as horizontal cordons in opposite directions tied at the same level The cordons of alternate plants are tied overlapping each other on wires at a height of $4 \frac{1^{\prime}}{}$, $5 \frac{1}{2}$ ' and $6 \frac{1}{2}^{\prime}$, respectively. The length of the cordon of each vine is 8 i.e., 4 and 4 feat in opposite directions. The numter of vines being $272!$ per acre, the cordon length will be 21,766 feet.
3. Single standard vines spread $1 \frac{1}{\prime}$ apart are trained as single horizontal cordons. The cordons of every three successive plants are tied singly on wires at $4 \frac{1}{4}, 5 \frac{1}{2}$ and 6 feet respectively. The length of the cordon of each vine is $4 \frac{1}{2}$ fect. The number of vines being 3630 per acie, the total curdoa length will be 16,335 feet.
4. Twin vines planted at one hill and placed 3^{\prime} apart are trained as single horizontal cordons in opposite directions at the same level. The cordons of alternate plants are tied overlapping each other on wires at a height of $+\frac{1}{2}$ and $\left.6\right|^{\prime}$ respectiveiy. The length of the curdon of each vine is 6°. The number of vines being 3630 , the total cordon length would be 21780°.
5. Single standard vines spread 3^{\prime} apart are trained at two arms kniffen system. The two arms of cordons given out to the same trunk are tied in cpposite directions. The arms of the alternate plants are tied at $4 \frac{1}{2}$ and $6 \frac{1}{2}$ respecti.ely. The arms of one plant will overlap those of its alterlate neighbour on the same level. Each vine his a cordon length of 12 and 6° in opposite directions and the numter of vines per açre being 1815, the total leugth of the corc'on would be 21780°.
6. Single standard vines spread 4^{\prime} apart are trained a; single horizontal cordons. The cordons of every three successive vines aris traine. $\$ singly on wirts at $4 \frac{l^{\prime}}{} 5 \frac{1}{4}^{\prime}$ and $6 \frac{1}{t^{\prime}}$ respectivily. The length of the cordon of each vine is 12 . The number of vines being 1361 per acre, the total cordon lengih would be 16332°.
7. DESIGN:
(i) R.B D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) $69,69,92,90,90$ and 35 for treatments $1,2,3,4,5$ and 6 respectively. (vi) Only two treatments are randomised independently in each block.
8. GENERAL:
(i) The vines continced to remain healthy throughout the year. (ii) 12 sprays of bordeaux mixture were applied along with 4 sulphur dustings (during the fruit season). (iii) Grapes yield. "(iv) (a) 1949continued. (L) N.A. (v) N.A. (vi) Nil. (vii) Nil.
9. RESULTS:
(i) $11517 \mathrm{lb} . / \mathrm{ac}$.
(ii) $1963.69 \mathrm{lb} / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grapes in lb./ac.

Treatment	Av. yield
1.	12718
2.	11421
3.	12765
4.	11839
5.	9646
6.	16715
S.E./mean	$=981.84 \mathrm{lb}$./ac.

Crop :- Grape.
Site :- Ganeshkhind Fruit Exptl. Stn., Poona.

Ref: $\mathbf{~ M h . ~ 5 1 (1 7 5) . ~}$
Site :- Ganeshkhind Fruit Exptl. Stn., Poona.
Type:- 'C'.
Object :-To study the effect of close spacing and different systems of training on wire trellis, on growth and yield of Bhokari grapes.

1. BASAL CONDITIONS :

(i) Grape. (ii) Medium black, varying from 2^{\prime} to 4^{\prime} in depth. (iii) By cutting. (iv) Bhokari. (v) Planting as per treatments. (vi) N.A. (vii) Nil. (viii) Pruning and training of vines continued during the year. (ix) No. (x) Irrigated. (xi) 24^{*}. (xii) N.A.

2. TREATMENTS :

1. Sing'e standard vines spaced 2 feet apart are trained as single horizontal cordons. The cordons of three successive plants are trained, singly on superimposed wires at a distance of $4 \frac{1^{\prime}}{}$, $5 \frac{1^{\prime}}{}$ and $6 \frac{1}{2^{\prime}}$ respectively. The length of the cordon of each vine is 6 feet. The number of vines being 2722 in one acre, the total cordon length would be 16322 feet.
2. Double standard vines spaced 2 feet apart are trained as horizontal cordons in opposite directions tied at the same level. The cordons of alternate plants are tied ove:lapping each other on wires at height of $4 \frac{z^{\prime}}{}{ }^{\prime}$ and $6 \frac{1}{\prime}^{\prime}$ respectively. The length of the cordon of each vines is 8^{\prime} i.e. 4^{\prime} and 4^{\prime} in opposite directions. The number of vines being 2722 per acre the total cordon length will be 21776 feet.
3. Single standard vines spread $1 \frac{1}{2}$ apart are trained as single horizontal cordons. The cordons of every three successi, plants are tied singly on wires at $4 \frac{2^{\prime}}{}, 5 \frac{t^{\prime}}{\prime}$ and 6^{\prime} respectively. The length of the cordon of each vine is $4 \frac{1^{\prime}}{}$. The number of vines being 3630 per acre and the total cordon lengih will be 16335 feet.
4. Twin vines planted at one hill and spaced 3^{\prime} apart are trained as single horizontal cordons in opposite directio.s at the same level. The cordons at alternate plants are tied overlapping each other on wires at a height of $4 \frac{t^{\prime}}{}$ and $6 t^{\prime}$ respectively. The length of cordon is 6^{\prime}. The number of vincs being 3630 per acre, the total cordon length will be $21 ; 80$ feet.
5. Single standard vines spaced 3^{\prime} apart are trained as two arm kniffen system. The two arms of cordons given out by the same trunk are tied in opposite directions.

- 6. Single standard vines spaced 4^{\prime} apart are trained as single horizontol cordons. The cordons of every three successive vines are trained singly on wires at $4 \frac{1}{}^{\prime}, 5 \frac{1}{2}^{\prime}$ and $6 \frac{t^{\prime}}{}$ respectively. The length of the cordon of each vine is 12°. The number of vines being 1361 per acre. The total cordon length would be 16332 feet.

3. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) $69,69,92,90,46$ and 35 for treatments $1,2,3,4,5$ and 6 respectively. (vi) Treatments are independently randomised in each block.

4. GENERAL :

(i) Due to improper nutrition of sulphur and copper in bordeaux mixture, crop was damaged. (ii) 11 sprays of bordeaux mixture and 4 sulphur dustings. (iii) Grape yield. (iv) (a) 1949-contd. (b) N.A. (v)
N.A. (vi) and (vii) Nil. N.A. (vi) and (vii) Nil.

5. RESULTS:

(i) $1268 \quad \mathrm{lb} . / \mathrm{ac}$.
(ii) $497.8 \mathrm{lb} / / \mathrm{ac}$.
(iii) Treatments do not differ sigoificantly.
(iv) Av. yield of grape in lb ./ac.

Treatment	Av. yield
1.	1311
2.	784
3.	1130
4.	1185
5.	1342
6.	1855
S B./mean	$=248.91 \mathrm{lb} . / \mathrm{ac}$.

Crop :~ Grape.
Site :~ Ganeshkhind Fruit Exptl. Stn., Poona.
Ref :- Mh. 52(204).
Type:- 'C'.
Object:-To study the effect of close spacing and different systems of training on wire trellis, on growth and yield of Bhokari grapes. '

1. BASAL CONDITIONS :

(i) Grape. (ii) Medium black varying from 2^{\prime} to 4^{\prime} in depth. (iii) By cutting. (iv) Bhokari. (v) Planted from 10.2 1949. (vi). N.A. (vii) Nil. (viii) No. (ix) No. (x) Irrigated. (xi) $21^{\prime \prime}$. (xii) N.A.

2. TREATMENTS :

1. Single standard vines spaced 2 feet apart are trained as single horizontal cordons. The cordons of three successive plants are trained,singly on superimposed wires at a distance of $4 \frac{1^{\prime}}{2}$, $5 \frac{1}{\frac{1}{2}}$ and $0 \frac{1^{\prime}}{}$ respectively. The length of the cordon of each tine is 6 feet. The number of vines being 2722 in one acre, the total cordon length would te 16332 sect .
2. Double stardard vines spaced 2 feet apart are trained as horiz ontal cordons in orposite directions tied at same level. The cordons of alternate plants are tied over lapping each other on wires at height of $4 \frac{1}{2}$ and $6 \frac{2^{\prime}}{}$ respectively. The length of the cordon of each vine is 8^{\prime} i.e., 4^{\prime} and 4^{\prime} in opposite directions. The number of vines being 2722 J per acre, the tot 1 cordon length will be 21776 f.et.
3. Single standard vines spaced $1 i^{\prime}$ apart are trained as single hoizontal cordons. The cordons of every three successive plants are tied singly on wres at $4 \frac{1}{\prime}^{\prime}, 5 \frac{1}{\prime}^{\prime}$ and $6 \frac{1}{\prime}$ respectively. The length of the cordon of each vine is $4 \mathbf{y}^{\prime}$. The number of vincs being 3630 per acre and the total cordon lengih will be 16335 feet.
4. Twin vines planted at one hill and spaced 3' apart are trained as single horizontal cordons in opposite directions at the same level. The cordons of alteruate plants are tied overlapping each other on wires at a height of $4 \frac{1}{1}^{\prime}$ and $6 \frac{1}{\prime}^{\prime}$ respectively. The length of curdon of each vine is $6 \frac{1}{2}^{\prime}$. . The number of vines being 3630 per acre. The total cordon length will be 21780 feet.
5. Single standard vines spaced 3^{\prime} apart are trained as two arms kniffen system. The two arms of cordon

- given out ty the same trunk are tied in opposite directiors.

6. Single standard vines spaced 4^{\prime} apart are trained as single horizontal cordons. The ceidons of every three successive vines are trained singly on wires at 4t, $5 \frac{z^{\prime}}{}$ and $6 f^{\prime}$ respectuely. The length of the cordon of each vine is 12^{\prime}. The number of vines being 1361 per acre. The total cordon length would be 16332 feet.

3. DESIGN:

(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) $69,69,92,9090$, and 35 for theatments. $1,2,3,4,5$ and 6 respectively. (v) Yes. (vi) Yes.
4. GENERAL:
(i) Good. (ii) Nine sprays of tordeaux mixture and 4 sulphur dusting. (iii) Grapes yield. (iv) (a). 1949— contd. (b) and (c) N.A.(v) N.A. (vi) and (viil) Nil.
5. RESULTS:
(i) $14615 \mathrm{lb} . / \mathrm{ac}$.
(ii) 1540 lb ./ac.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grape in $\mathrm{lb} . / \mathrm{ac}$.

Treatment	Av. yield
1.	16245
2.	13758
3.	13394
4.	14426
5.	15158
6.	14713
S.E./mean	$=769.9 \mathrm{lb} . / \mathrm{ac}$.

Crop:-Grape.
Site :-Ganeshkhind Fruit Exptl، Stn., Poona.

Ref :-Mh. 53(156).

Type:-‘‘’.

Object :-To study the effect of close spacing and different systems of training on wire trellis on growth and yield of Bhokari vines.

1. BASAL CONDITIONS:

(i) The plot, before this crop was under Kandhari grapes trained in four armed system for 15 years 1932— 1947. (ii) Medium black. (iii) Cutṭings were planted in raised bed and then transplanted on permanent area. (iv) Bhokari. (v) The vines were planted on 24.2.1949 as per treatments. (vi) 6 months. (vii) After April pruning, 10 C.L. of F.Y.M., 1620 lb . of G.N.C. and 540 lb . of A/S on 29.4.1953. The manure is broadcasted along the rows (viii) Usual operations like ploughing, harrowing pruning twice a year (October and April). (ix) No. (x) Irrigated. (xi) N.A. (xii) 4.2.1954 to 23.3.1954.

2. TREATMENTS :

1. Single standard vines spaced 2', apart are trained as single horizontal cordons. The cordons of every three seccessive plants are trained singly on superimposed wires at a distance of $4 \frac{1}{2}^{\prime}$, $5 \frac{1}{2}^{\prime}$ and $6 \frac{1}{}^{\circ}$ respectively. The length of the cordon of each vine is 6 feet. The number of vinesin each row is 69. The number of vines in an acre is 2722.
2. Double standard vines, spaced 2^{\prime} apart are trained as horizontal cordons in opposite directions at the same level. The cordons of alternate plants are tied overlapping each other on wires at a height of $4 \frac{1}{2}$ and $6 \frac{1}{2}^{\prime}$ respectively. The length of cordons of each vine is 8^{\prime} i.e. 4^{\prime} and 4^{\prime} in opposite directions. The number of vines in each tract is 69. The number of vines per acre is 2722.
3. Single standard vines spaced $1 \frac{1^{\prime}}{}$ apart are trained as single hortizontal cordons. The cordons of every three seccessive plants are tied single on wires at $4 \frac{1}{2}^{\prime}, 5 \frac{1^{\prime}}{}$ and $6 \frac{1}{2}^{\prime}$ respectively. The length of cordon of each vine is $1 \frac{1^{\prime}}{}{ }^{\prime}$. The number of vines per treatment is 92 . The number of vines per acre is 3630 .
4. Twin vines planted at one hill and spaced 3^{\prime} apart are trained as single horizontal cordons in opposite directions at the same level. The cordon of alternate plants are tried overlapping each other on vines at height of $4 \frac{1^{\prime}}{2}$, and $6 \frac{1}{\prime}^{\prime}$ respectively. The length of cordon of each vine is 6 ft . The number of vines per treatment is 90 . The number of vines per acre is 3630 .
5. Single standard vines spaced 3^{\prime} apart are trained as two arms kniffin system. The two arms of cordons given out by the same trunk are tied in opposite directions. The arms of the alternate plants are tied $4 \frac{1^{\prime}}{}{ }^{\prime}$ and $6 \frac{1}{2}{ }^{\prime}$ respectively. The arms of one plant will overlap those of its alternate neighbour on the same level. Each vine has cordon length of 12^{\prime} (6^{\prime} in opposite directions). The number of vines per treatment is 46 . The number of vine per acre is 1815 .
6. Single standard vine spaced 4^{\prime} apart are trained as single horizontal cordons. The cordons of every three successive vines are trained singly on wires at $4 \frac{1}{}^{\prime}, 5 \frac{2^{\prime}}{}$ and $6 \frac{2^{\prime}}{}$ respectively. The length of cordon of each vine is 12^{\prime}. The number of vine in the treatment is 35 . The number of vine per acre is 1361 .
7. DESIGN :
(i) R.B.D. (ii) (a) 6. (b) N.A. (iii) 4. (iv) The number of vines in each treatment differ and the same is given in the description of the treatment. (v) One guard row. (vi) Yes.
8. GENERAL:
(i) Normal. (ii) No. of bordeaux mixture sprays in rainy season and sulphur dusting in winter. (iii) The weight of the pruned material in October, weight of bunches, number of bunches. Weight of bunches is per vine. (iv) (a) 1949-continued. (b) N.A. (v) N.A. (vi) and (vii) A missing plot for treatment 1 and replication 1.
9. RESULT
(i) $5534 \mathrm{lb} / \mathrm{ac}$.
(ii) $1203 \mathrm{lb} . / \mathrm{ac}$.
(iii) Treatments do not differ significantly.
(iv) Av. yield of grapes in lb./ac.

Treatment Av. yield

1. 5174
$2 . \quad 5964$
2. 5027
3. 6533
4. 5171
5. 5332
S.E. òf mean . of treaments 2 to 6
S.E. of difference of treatment 1 and any other treatment mean
$=601.5 \mathrm{lb} . / \mathrm{ac}$.

ADDENDUM

STATEMENT SHOWING DETAILED SOLL TYPES OF MAHARASHTRA STATE

According to a soil survey of the sugarcane areas under six major Deccan canals, the soils in Maharashtra State have been grouped into twelve distinct soil types chronologi. cally named from ' A ' to ' L '. The classification is briefy summarised below.

GROUP-I

Soils developed under restricted drainage :
These soils are characterised by the presence of high soluble salts in the profiles increasing with depth and finally attain low value. This distribution of salts gives a close type curve. The soils often show high degree of sodium saturation. The soil types under this group are $\mathrm{B}, \mathrm{C}, \mathrm{I}$ and K .

GROUP-II.

The soils developed under free drainage :

The soils of this group show considerable variation in the soil colour and free lime content. Primarily they are divided according to free lime content.
(i) Low lime content-free lime, less than $2 \%-\mathrm{F}$ and H type (ii) Moderate lime content-2 to 5% A, E and G types and (iii) High lime content above $10 \%-D, J$ and L types.

Further classification depends on $\cdot \mathrm{CaO} / \mathrm{MgO}$ ratio and other morphological features.

Toposequence of these types can be briefly given as below :

1. High level shallow soils- \mathbf{F}, G and \mathbf{H} types.
2. Intermediate soils- A, D, E, K and L types.
3. Low level deep soils-B, C, I and J types.

Toposequence chart is given at the end for reference.
Detailed characteristics of soil types are given below :
Soil type ' A ' :
(a) Morphological characters:
' A ' type has two horizons of uniform black colour with a tinge of red, the upper 12 inches or so having a well defined crumb structure and interspersed with roots and the lower horizon with a faintly crystal like structure. The depth of the soil is about 2^{\prime} to 4^{\prime} resting on murum of the medium hardness, impregnated with lime.

(b) Physico-chemical characters:

This type has moderately high clay content over the whole profile which is also usually characterised by an alluviation in the lower horizon. The soil is well supplied with calcium carbonate which shows a tendency of leaching, soil reaction is fairly high (pH 8.6 to 8.8) in the profile, showing a high base status throughout. Humus content is high throughout the profile (abovel percent): The soil is highly colloidal over the whole profile, the total base saturation capacity varying from 77-81 m.e. base percent, which explains the well developed structure of the soil. Exchangeable magnesium and sodium are comparatively much lower and the $\mathrm{CaO} / \mathrm{MgO}$ ratio, whicb is found to be a good index for characterising the Deccan soils, is usually greater than 10 in the surface
horizon in these soils. From the chemical properties, this type can be said to be very suitable for sugarcane cultivation.

Soil type ' B ' :

(a) Morphological characters :

It is characterised by three horizons, the first horizon is about 20 m . thickness, greyish black in colour with a distinct brown shade, with more or less cloddy structure (clods breaking up easily into crumbs under pressure) the second horizon is mottled with black and brown increasing with depth, thickness $20^{\prime \prime}$ to $30^{\prime \prime}$, a pure reddish brown horizon follows which shows concretions of lime and often gypsum crystals. The soil depth is never less than $3 \frac{1 z^{\prime}}{}$ but may extend to a great depth.

(b) Physicouchemical charıcters:

' B ' type has a high percentage of clay ($56-62$ percent) throughout the profiles which also shows alluviation in the lower horizon. There is an accumulation zone of soluble salts and gypsum in the lower horizon which renders it pervious and thus improves the natural drainage. Humus is fairly high in the surface layer (1 percent) but suffers a sharp fall in lower layers which is characteristic of this type; calcium carbonate is quite abundant in the soil varying from 9 to 14 percent over the the profile. Soil reaction is high on the surface (pH 8.8) but the presence of salts helps to lower it down in the lower layer. A low base saturation in spite of its clayey nature is the peculiarity of the soil, the values varying from' $43-64$ m.e. percent of base in the different horizons. Exchangeable calcium is also typically low ($26-45 \mathrm{~m} . \mathrm{e}$.) forming $45-73$ percent of the total bases, the lowest values occurring specially in the upper layers. There is comparatively high exchangeable magnesium and sodium, the latter increasing down the profile, and the $\mathrm{CaO} / \mathrm{MgO}$ ratio is about $\mathbf{3}$ or less.

The structure of this type is, therefore, inferior and the drainage would have been ordinarily bad but for the coagulating action of the soluble salts referred to above. The areas covered by this type are liable to have greater or smaller extents of the degraded phase of this type where the sodium saturation on the surface exceeds a certain limit thus rendering soil alkaline and unsuitable for cultivation. Such alkali soils are locally known as chopan which requires careful management for the cultivation of sugarcane.

Soil type ' C ' :

(a) Morphological characters :

This is also one of the deeper types having two or three horizons which are not sharply differentiated. The greyish black surface horizon has hard and lumpy structure often coated with incrustation of salts but gets definitely sticker and more impervious with depth. Below this, there is occasionally a reddish brown material of silt or in the shallower phase (4 feet) a sandy material with heavy deposits of lime. Profuse black concretions of lime are present through out the profile.

(b) Physico-chemical properties:

' C ' type also possesses fairly abundant proportion of clay in its mineral fraction, which again shows alluviation in the lower horizon. There is an appreciable proportion of silt in the profile (round about 30 percent), calcium corbonate is about 4 percent on the surface and tendency in this soil for high concentration of salts in the surface layer is indicated by a white powdery efflorescence.

This is due to the characteristic topography of this soil type, which is also generally responsible for the occurrance of a high sub-soil water table. Humus is fairly high but decreases gradually in lower layers, in contrast to ' B ' type (varying from 1.5 at top to 1.0 percent below) soil reaction tends to be high throughout the profile (pH 8.5 to 9.00) unlike ' B ' type the colloidal constituents appears to be high in this soil as evidenced by the high base saturation which varies from 6 or to 73 m.e. percent in the profile.

But as in the ' B ' type, exchangeable magnesium and sodium 'form considerable proportion, being $15-33$ percent and 6-17 percent of total bases respectively. :'Exchangeable calcium, though higher than in 〔B' type is proportionately low, varying from 46 m.e. on the surface to $35 \mathrm{~m} . e$. in the lower most layer forming 63 and 50 percent of the total bases respectively. $\mathrm{CaO} / \mathrm{MgO}$ ratio is lower than 3, the high proportion of exchangeable magnesium and sodium thus tending to impart an inferior cloddy structure to the soil. This type has the further disadvantage compared to the ' B ' type having a less pervious second horizon (there being no coagulation constituents and sodium saturation being high) and this soil requires very great care and skillful management for successful cane cultivation. A varying extent of degradation is also found in areas of this týpe.

Soil type 'D' :
(a) Morphological characters:
'D' type has a single horizon possessing a dark grey colour with brown shade, fairly loose and granular with faint structure [appearing in lower depths "which attains distinct lamination in the lowest layer. Intervening between the soil and murum below, is a lime band of dirty white colour and of varying thickness. The depth of the soil. layer varies from 2^{\prime} to $\mathbf{4}^{\prime}$.

(b) Physico-chemical characters:

The ' D ' type has a uniformly high clay content throughout the profile (varying from 55 to 58%) high calcium carbonate content and high pH (8.8 to 9.0) increasing, in lower layers are typical of this soil in spite of its medium depth, though the total soluble salts are fairly low. The Humus contents are fairly high (above 1% throughout), the total base saturation capacity is uniformly high throughout the profile (63 to 66 m.e.) but there is considerable variation in the amounts of different bases in the different layers.

Thus, while exchangeable calcium (which starts from 52.5 m .e. or 80% of the total bases decreases progressively both exchangeable magnesium ánd sodium '(which are 8.8 and $1.34 \mathrm{~m} . e$. or 14 and 2 percent of total bases, respectively): increase in the lower layers. The resultant effect is the inferrior structure and drainage condition, of lower layers. The presence of the lime band which hinders the free movement of the products of weathering is particularly responsible for the high base saturation of this soil, particularly with magnesium and sodium in the lower layers and also for the presence of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in lower layers. In spite of' its "moderate depth, therefore, careful management of this soil'type is necessary under cane cultivation as deterioration , may otherwise result.

Soil type ' E ' :

(a) Morphological characters:

It has an upper loose and friable horizon of about $12^{\prime \prime}$ depth and of dull greyish black colour, loamy 'texture, followed by markedly compact second' horiżon having a slightly därker colour and laminated structure. Clay loam dépth of soil is about $2 \frac{1}{2}$ to 5 féet resting on murum, grey and yellòw with glaconite.

(b) Physico-chemicalicharacters:

A peculiar characteristic of the ' E ' type is that although the percentage of clay is uniformly very high ($\mathbf{0 0 - 6 2 \%}$) throughout the profile, there is loose and granular structure of the surface ${ }^{\text {b }}$ horizon followed by compact second horizon with lamination which is difficult to explain from its chemical properties. The faint zone of accumulation of soluble salts (which are otherwise fairly low, starting from 0.2% at the. surface) and of calcium carbonate, which however is abundant varying from 7 to 9% may indicate certain amount of impedence exerted by second horizon. pH values 'and 'Humus are uniform; pH 'being round about 8.6 in all layers and Humus varying from 1.4 to 1.5%, the high base saturation capacity of the soil ($74-80 \mathrm{~m} . e$. base,$\%$) is well associated with the high clay content of this soil. Exchangeable magnesium is fairly high ($7.8 \mathrm{me} \%$) in
the profile which gives the soil a lower ratio (less than 10) than the ' A ' type which may | account for the inferior structure though exchangeable sodium is quite low (0-5 to 1 m.e. $\%$. The chemical proporties indicate high potential fertility of the soil although some care will be necessary in view of the compact second horizon while bringing those soils under perennial irrigation.

Soil type ' F ' :

(a) Morphological characters :
' F ' type is a shallow soil $12^{\prime \prime}-15^{\prime \prime}$ in depth, consisting of two well defined horizons the upper horizon ($7^{\prime \prime}-8^{\prime \prime}$ thick) has a light brown colour, lighter texture, loose and granular structure with broken pieces of murum. The lower horizon is darker in colour and distinctly compact. This lower horizon is of variable thickness and in very shallow phase may often be entirely absent. The murum is hard with only a faint in crustation of lime.
(b) Physico-chemical characters:

Considering the comparatively shallow depth of the ' F ' type there is a well defined | alluviation of clay in the lower horizon, the values changing from 46 to 56 percent, which tallies with the field observation of the profile. Calcium carbonate is low, starting from about 1 percent in the surface layer but increases gradually to about 5%. Soluble salts are moderately high (round about 0.4%) considering the shallow nature of the soil, pH values are comparatively low and uniform (round about 8.1). The alluviation of clay in the profile corresponds to the increasing base saturation capacity of the soil which starts from about 60 m.e. base percent and reaches' $76 \mathrm{~m} . e$. percent lower down; the exchangeable calcium saturation from 56 to 64 m.e. percent, forming a very high proportion of the total bases, 94% at top changing to 86 percent at bottom. The other bases are thus proportionately low and do not vary much and the compact nature of the second horizon can be attributed more to its higher clay contents than to the base status of the colloidal complex. The presence of a compact horizon in this shallow soil is a favourable factor for cane growing as it improves its retentivity for water and manure.

Soil.type ' G ':

(a) Morphological characters:
' G ' type is a uniform dark brown colour throughout but the upper horizon has a crumb structure which yields small grains under pressure while the Jower horizon shows slight lamination with white concretion of lime and particles of well. Weathered murum is in the lower most parts. The murum below is fairly weathered and coated with lime. The soil depth is from 1-3 feet.
(b) Physico-chemical characters:

The ' G ' type is characterised by a fairly uniform mechanical composition over the $e^{n t i r e}$ profile, the clay varying from 52 percent on the surface to 56 percent in the lower horizon. Calcium carbonate contents are moderate (about 4% at the top) showing a gentic leaching towards lower layers. Soil reaction which starts with about 8.3 on surface, shows a slight tendency to decrease lower down. Humus is moderate and fairly uniform in the profile. The total base saturation, capacity varies from 67 to $73 \mathrm{~m} . e$. percent and exchangeable calcium from 55 to 57 m.e. percent over the profile. The percentage saturation of calcium thus varies from 76 to 82 . This type is characterised by fairly high contents of exchangeable magnesium, the quantities varying from the surface of the bottom layer (12 to 16 percent saturation of total bases). The low $\mathrm{CaO} / \mathrm{MgO}$ ratio indicates a general inferior drainage condition of the soil. Exchangeable sodium, however is fairly low over the entire profile on the whole and it is a moderately good soil for cane growing, although, because of its low $\mathrm{CaO} / \mathrm{MgO}$ ratio, the structure is likely to be rather impaired under heavy irrigation.

[^7]

C Low lying, deep black, clay soils or compact clays often showing high degree of sodium saturation developed under restricted drainage
D Intermediate dark brown, calcarious clay loams. High lime content above 10%-developed under free drainage.
E Intermediate greyish black clays. Lime content moderate 2 to 5%-developed under free drainage.
F. High level, low lime shallow, brown loams-developed under free drainage-free lime less than 2%.

G High level, moderate lime dark brown shallow clay loam. Lime content 2 to 5%-developed under free drainage
H High level, low lime developed under free drainage, free lime less than 2\%.
I Low lying, often shows high degree of sodium saturation, developed under restricted drainage.
J Calcarious clay loams-high lime content above 10%-developed under free drainage.
K Intermediate soils, often showing high degree of sodium saturation developed under restricted drainage.
L. Intermediate soils, high lime content about 10%-developed under free drainage.

Statement showing details of Physico-Chemical properties of soils of some of the Research Stations/farms in 'Mabarashtra State.
I. Government Experimental Farm, Akola.

Mechanical analysis

Chemical analysis

II. Agricultural Research Station Igatpuri.

Soil analysis (expressed as percent on dry fine matter)

1. Moisture	4.75	4. Avl. $\mathrm{K}_{\mathbf{2}} \mathrm{O}$ (mgm, $)$		$\mathbf{7 . 2 3}$
2. Nitrogen	0.08	5. Total soluable salts		0.01
3. Avl. $\mathrm{P}_{2} \mathrm{O}_{5}$ (mgm.)	3.48	6. pH . value	7.0	

iII. Agricultural Research Station, 'Jeur.

Mechanical analysis.

1. Gravel percent	Nii.	8. Total soluble salts \%	0.2 to 0.3
2. Ccarse sand \%	2 to 5.	-9. Exchangeab'e Ca (me.)\%	55 to 65
3. Fine sand \%	3 to 10	10. Exchangeatle Mg. (m.o.) \%	7 to 15
4. Siit \%	10 to 16	11. Exchangeable Na , (m.e.e) $\%$	0.5 to 3.5
5. Clay \%	55 to 65	12. Avl. $\mathrm{P}_{2} \mathrm{O}_{5} \mathrm{mgm} . \%$	9 to 13
6. Free lime \%	10 to 14	13. Avl. $\mathrm{K}_{2} \mathrm{O} \mathrm{mgm} . \%$	20 to 55
7. -Organic Carbon \%	" 0.6 to 0.9	${ }^{-14 .}$ 'Total nitrogen $\%$	0.03 to 0.05

IV. Government Fruit Experimental Station, Poona

Soil analysis (\% on original fine sample)
(Soil samples)

	A	B	C
1. Total soluble salts	0.32	0.32	-0.32
2. Catbonate (CO_{3})	Nil	Nil	${ }^{\text {- Nil }}$
3. Bi-Carbonates (HCO_{3})	0.072	0.070	0.070
4. Chlorides $\mathrm{Cl}_{\mathbf{2}}$)	0.064	0.057	0.064
5. Sulphates (SO_{4})	0.082	0.099	0.082
6. Calcium (Ca)	0.016	0.014	0.017
7. Magnesium (Mg)	0.011	0.008	0.007
8. 'pH. value	7.7	7.5	7.9
9. Total Nitrogen	0.13	$0: 08$	0.18
10. Avl. Phosphate $\mathrm{P}_{2} \mathrm{O}_{\mathbf{5}}$ (mgm)	18.00	17.59	16.12

Statement giving Chemical \& Mechanical analysis of soil samples at Agricultural Research Stn., Achalpur

1				2	1	3		4		5		6				7	8
T.S.S.\%				-		0.068	0.10	-	-	0.095	0.010		-		-	-	0.19
${ }_{\text {p }} \mathrm{H}$. Value				6.6		8.2	7.8	-	-	6.7	7.0		63		-	-	6.1
Percent on air dry matter																	
Caloium as $\mathrm{CaCO}_{\mathbf{a}}$				1.50		-	-	-	-	-	-		-		-	-	-
Lime (CaO)				-		-	-	3.07	6.28	-	-		0.31		3.89	3.30	-
Gravel				-		-	-	-	-	-	-		12.50		-	-	-
Stone				-		-:	-	6.00	20.00	-	-		-		4.00	3.79	-
Coarse Sand				-		-	-	-	-	-	-		39.20		-	-	-
Fine Sand				-			-	-	-	-	-		32.08		-	-	
Silt				-		-	-	-	-	-	-		10.00		-	-	21.25
Clay				-		-	-	-	-	-	-		10.00		-	-	31.25
Organic matter				-		-	-	10.69	12.45	-	-		4.40		-	-	-
Organic carbon				-	-	1.04	0.98	-	-	-	-		-		-	-	-
Other carbonates				-		0025	0.026	-	-	-	-		-		-	-	-
Chlorine (NaCl .)				-		0.018	0.012	-	-	-	-		-		-	-	-
Base Exch. capacity (milli. equivalents)				-		- 67.80	71.61	--	-	-	-		-		-	-	
Exch. Calcium Exch. Sodium	(\quad	")	-		61.53	65.26	-	-	-	-		-	,	-	-	-
	(.	")	-		0.55	0.39	-	-	-	-		-		-	-	
Exch. Magnesium Exch. Potassium C: N Ratio	1 "	")	**		2.30	2.21	-	-	-	-		-		-	-	-
	1%	-)	--		1.84	2.21	-	-	-	-		-		-	-	-
				\cdots		17	21	. -	-	-	..."		-	\cdots	-	-	-

> Printed at Swan Press of Lahore,

3, Chamelian Rodd, Ahata Kidara, Delhi-6.

[^0]: Crop :- Wheat (Rabi).
 Site :- Agri. Res. Stn., Padegaon.

[^1]: (i) (a) Sugarcane-Rabi Jowar-Groundnut. (b) Groundnut. (c) Nil. (ii) (a) 'B' type soil. (b) Refer soil analysis, Padegaon. (iii) 15.1,1953. (iv) (a) Deep ploughing $9^{\prime \prime}$ to 10 f deep. (b) N.A. (c) 10,000 setts/ac. (d) 4^{\prime} between rows. (e) N.A. (v) Nil. (vi) CO. 419 (medium). (vii) Irrigated. (viii) 2 to 3 hand weedings and 2 to 3 interculturings 8 to 10 weeks after planting and 4 earthing up after a period of 5 to 6 months. (ix) 15.35". (x) 19.4.1954;

[^2]: S.E. of S or N marginal mean $\quad=30.46 \mathrm{lb} . / \mathrm{ac}$.
 S.E. of body of table or control mean. $\quad=52.76 \mathrm{lb} . / \mathrm{ac}$.

[^3]: ancel al $\mathrm{I}=$

[^4]: (i) (a) Groundnut-Bajra+Tur-Groundnut. (b) Jowar. (c) Nil. (ii) (a) Medium black. (b) Refer soil analssis, Sholapur. (iii) 1.7.195I. (iv) (a) 2 harrowings. (b) N.A. (c) $80 \mathrm{lb} . / \mathrm{ac}$. (d). 12°. (c) N.A. (v) Nil. (vi) Big-Japan (late). (vii) Uairrigated. (viii) 2 interculturings. (ix) 23'. (x) 19.11.1951.

[^5]: Crop:-Ginger (Kharif).
 Site :-Agri. College Farm, Poona.

 Ref :-Mh. 5.(158).
 Type:-'M'.

[^6]: Details of rotations :-
 J = Jowar unmanured.
 $\mathrm{Jm}=$ Jowar manured with 5 C.L./ac. of F.Y.M.
 Cmp $=$ Chinamug manured with 40 lb ./ac. of $\mathrm{P}_{\mathbf{2}} \mathrm{O}_{5}$.
 $\mathbf{C m}=$ Chinamug unmanured.
 $\mathrm{GNp}=$ Groundnut manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
 GN = Groundnut unmanured.
 $\mathrm{Gp}=$ Gram manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
 G = Gram unmanured.
 $\mathrm{Wp}=$ Wheat manured with $40 \mathrm{lb} . / \mathrm{ac}$. of $\mathrm{P}_{2} \mathrm{O}_{5}$.
 W = Wheat unmanured. $\quad \mathbf{F}=$ Fallow.
 Cmp/J, Cm/J indicates that crops are grown in Khartf and Rabi respectively. $\mathrm{P}_{2} \mathrm{O}_{5}$ applied as Super.

[^7]: A brief summary of soil types in Maharashtra State:
 A Intermediate, medium deep black clay loam with reddish tinge-moderate lime 2 to 5%-developed under free drainage.
 B' Low lying, high lime deep brown black clay loam, often showing high degree of sodium saturationdeveloped under restricted drainage.

