Central Waterways,'Irrigation and Navigation Research Station, Poona. .

Director
K. K. FRAMJI, M. B. E., I. S. E.

RESEARCH PUBLICATION No. 12 ANNUAL REPORT(TECHNICAI.) OF WORK DONE DURING THE YEAR 1947

AND INDEX FOR 1943-1947.
BY
K. K. FRAMJI, M. B, E., B. A. (Bom.), B, Sc. (Lond.), A. K. C. (Lond.), A. M. Am. S.C. E., M..I. E., I. S. E., Rao Bahadur D. V. JOGLEKAR, B. E.; Deputy Director

AND
STAFF AT KHADAKVASLA

[^0]

H8
Central Waterways, Irrifation and Navigation Research Station, Poons.,

Director :
K. K. FRAMJI, M. B. E., I. S. E.

RESEARCH PUBLICATION No. 12
ANNUAL REPORT (TECHNICAL) OF WORK DONE DURING THE YEAR 1947

AND INDEX FOR 1943-1947:
BY
K. K. FRAMJI, M. B. E., B. A. (Bom.), B. Sc. (Lond.),
A. K. C. (Lond.), A. M. Am. S. C. E., M. I. E., I. S. E.,

Rao Bahadur D. V. JOGLEKAR, B. E.,
Deputy Director
AND
STAFF AT KHADAKVASLA

List of Research Publications of the Central Waterways, Irrigation and Navigation Research
Station, Poona, available for Sale with the Manager of Publications, Delhi, and Agents.

$\begin{gathered} \text { Symbol } \\ \text { No. } \end{gathered}$	Research Publica. tion No.	Subject.	Price.	Year of Publica. tion.
1HR. 1.38	1	Annual Report of work done during 1937-38 by C. C. Inglis, A. R. Thomas, Rao Sahib D.V. Joglekar and staff at Khadakvasla.	$\begin{array}{ccc}\text { Ks. A. } & & \text { P } \\ 7 & 8 & 0\end{array}$	$1939{ }^{\circ}$
IHR. 1.3!	2	Annual Report of wort done during 1938-'39 by same authors as in 1:	7880	1940
IHR. $2 .$.	3	Note on the theory, design and construction of Gibb Modules, which, without moving parts, give a constant discharge within working limits irrespective of variations in upstream and downstream water levels by C. 0. Inglis, and Rao Sahib D. V. Joglekar.	300	1941
IHR. 1.40	4	Annual Report of work done during 1939-'40 by C. C. Inglis, A. R. Thomas, Rao Sahib D. V. Joglekar and staff at Khadakvasla.	780	1941
IHR. 1.41	5	Annual Teport (Technical) of work done during the year 1940-'41 and Index for 1937-'41 by C. C. Inglis, A. R. Thomas, Rao Sahib D. V. Joglekar. and staff at Khadakvasla.	$7 \quad 8 \quad 0$	1942
IHR. 1.43	6	Annual Report (Technical) of work done during the year 1941-'42 by C. C. Inglis, J. S. Reid, Rao Bahadur D. V. Joglekar and staff at Khadakvasla.	780	1944
IHR. 1.43	7	Annual Report (Technical) of work done during the year: 1942-' 43 by C. C. Inglis, J. S. Reid, Rao Bahadur D. V. Joglekar and staff at Khadakvasla.	788	1945
IWE. 1.43	8	Annnal Report (Teohnical) of work done during the year 1943 by O. O. Inglis, Rao Bahadur D, V. Joglekar and staff at Khadakrasla.	788	1945
IWE. 1.44	9	Annual Report (Technical) of work done daring the year 1944 and Index for 1940-'44 by Sir Claude Inglis, Rao Bahadur D. V. Joglekar and staff at Khadakvasia.	788	1945
IWE. 1.45	10	Annual Report (Technical) of work done during year 1945 and Index for 1937 to 1945 by Rao Bahadur D. V. Joglekar and Btaff at Khadakvasla.	**	In Press.
IWE. 1.46	11	Angual Report (Technisal) of work done auring the year 1946 by K. K. Framji, Rao Bahadur D. V. Joglekar and staff at Khadakvasla.	$7 \begin{array}{lll}7 & 8 & 0\end{array}$	1947

Errata for Annnal Report (Technical) 1947.

Page	Line	Incorrect	Correct
ii	21 from top.	sanction	station
3	20 from	Mr. J. J. Marray	Mr. J. B. Marray
23	Para 4. lines $1 \& 2$.	The width of the oill and sides is 3.5^{\prime}	The width of the cill is $\mathbf{3 . 5}^{\circ}$
25	Para 7. line 7.	'C' by ourrent mater	- 0 ' by current meter
35	12 from bottom	Bisnasi	Birnasi
37	$\begin{array}{r} \text { heading of } \\ \text { column } 2 . \\ \text { " } \quad 4 . \\ \text { " } \\ \hline \end{array}$	Total quantity of sand collected in all branches. Qs Qs Qs	Total quantity of sand collected in all branches in Cft. Qs in Cft. Qs in Cft. Qs in Cft.
59	5 from top.	$\int_{.248}^{\mathrm{R}=}\left[\frac{\mathrm{Q}}{\mathrm{f}}\right]^{\frac{1}{3}}=\frac{\mathrm{Q} \frac{1}{6}}{\mathrm{~m}} \frac{1}{6}$	$R \propto\left[\frac{Q}{f}\right]{ }^{\frac{1}{8}} \propto \frac{Q \frac{1}{3}}{m \frac{1}{6}}$
61	3 from "	assumed to be 0.7 mm .	assumed to be 0.17 mm .
61	bottom. 2 from bottom.	$\mathrm{f}=\sqrt{\mathrm{m}} \times 1 \cdot 76=73$.	$\mathrm{f}=\sqrt{ } \overline{\mathrm{m}} \times 1.76=0.73$.
70	Para 3. 2,	deths	depths
77	line 8.	extent	extent
77	Table Ita,	Bansbassa	Banbassa
77	Table IIA, Item 6.	Yamana dear	Yamana near
77	Foot Note.	Prototope	Prototype
81	Itom against Page 12.	Prototopa	Prototype
101	6 - from bottom.	faot that	fact but
103	$\begin{aligned} & 9 \text { from } \\ & \text { bottom. } \end{aligned}$	$h^{3} \theta \sqrt{\frac{\bar{H}}{30}}=\left(\frac{3}{20}\right)^{3} \times 40 \sqrt{\frac{3}{30}}$	$h^{3} 0 \sqrt{\frac{\mathrm{E}}{30}}=\left(\frac{3}{25}\right)^{3} \times 40 \sqrt{\frac{3}{30}}$
103	3 bulow table 1.	$\mathrm{V}=1 \cdot 059 \times 10^{5}$	$\mathrm{V}=1.05 \mathrm{y}^{+} \times{ }_{10}{ }^{-5}$
11i	23 from bottom.	thin	the
117	22 from	strengte	strength
118	17 from top.	respec	respect
118	18 rrom boltom.	Barraage .	Barrage
123	Para 6. 4. 2 line 8.	cocave	concave
135	5 from top.	nogas	vogne
135	8 from bottom.	oross	cross
145	column 11, Item 4.	14,0000	14,000
154	Para 4 (a),	a00n	soon
155	Para 4. 3, line 14.	opproved	approved
156	Para 4. 4(b) $\text { line } 7 .$	condtitons	conditions
156	Line 5 from	thr	the
	bottorn.		
156	Line 4 from bottom.	rathee	rather
166	3. 2 line 5 .	0.056	$0 \cdot 056=202 \mathrm{ft}$.
173	9 from top.	fouling	falling
180	Para 2. 2. line 2.	60,0000 ousecs	60,000 ensecs
189	Line 2 from bottom.	A four foot wide feet-bridse	A four feet wide foot-bridge
204	14 from top	envolvga	evolved
205 214	8 from? ${ }^{\text {apa }}$. Para 4.	briged	bridge
21	Para 4. 3, line 3.	linely,	likely.

CONTENTS

Page
Introduction.

1. Introductory Note by Mr. A. N. Khosla, Consulting Engineer to the Government of India for Waterways, Irrigation and Navigation, New Delhi.
2. Staff and their activities. 1
A. HYDROLOGY.
3. Rainfall and Run-off.
(i) Total volume of run-off including the Standardisation of hydro-; graphs and their analysis.
A-1 (i)-1 Some features of precipitational variations in the Upper Indus Catchment-a probability method of approach. 6
(ii) Maximum run-off discharge.
A-1 (ii)-1 Maximum run-off formulae and their applications. 19
4. Measurement of flowing water.
A-3-1 Coefficient of discharge in Notch type and Weir type Falls on the Mahanadi Main Canal (C. P.) 23
… B - THEORY OF FLOW AND DESTGN OR CHANNELS.
1 Flow in rivers and Canals.(ii) Flow in channels in incoherent and coherent. ailluvium.,
B-1_(ii)-1 Comparative analysis of sand by Pari sand meter and Air 26
C-hydraulic works.
5. Limitation of model experiments and comparison of model and) prototypes.
C-1-1. Protecting the right bank of the Luni River at Balotra by means of a repelling spar. 34
C-1-2 Scour below the Central Sluices of the Mahanadi Anicat at- Cuttack-Orissa. 34
6. River control.
(i) Flood Protection Work.
C-2 (i)-1. Redistribution of sand load between the Mahanadi and ${ }^{-}$ Katjuri systems at Cuttack-Orissa. : 35
(ii) River Training Work.
C-2 (ii)-1 Protecting the Right bank of the Kuakhai River above the B. N. Railway Bridge, near Cuttack-Orissa. 39
C-2 (ii)-2 Protection of the left bank of the Katjuri River at Khann-: , nagar upstream of the Katjuri Railway .Bridge-Orissa. 43;
C-2 (ii) -3 Training of the Ganga River at Kanpur. 46
C-2 (ii)-4 Kshipra River at Ujjgin-Gwaliar State-Preliminary Note and design of Model Scales. \cdot 47
C-2 (ii)-5 Measures for arresting bank erosion near Bhadeli and Bhagda villages on Auranga River--Bombay. 51
C-2 (ii)-6 Protective measures for several railway bridges on Madras -Bombay line of M. S. M. Railway, between_miles 82 and 113. 52
Pago.
O-2 (ii)-7 Training of the Tapti River at Surat-Bombay. 64
(iii) Scour and erosion.
O-2 (iii)-1 Mid-season scouring operations of the Right Pocket of Sukkur Barrage-Sind. 61.
C-2 (iii:)-2 Apron design for the South Guide Bank of the Alexandra Bridge on the Chenab (N.W. Railway). 65.
C-2 (iii)-3 Scour below weirs. 67
(vi) Tidal action including that in estuaries.
C-2 (vi) -1 Measures adopted to reduce turbulence in the Hooghly River downstream of the Knuckle at the Titaghar Jute Mill. 83.
C-2 (vị)-2 Preliminary note on the Cochin Harbour Model. 91(4) Dams and Weirs.(ii) Designs.
C-4 (ii)-1 Propoced design of Lower Sind Barrage at Kotri for effective sand exclusion from Canals-Sind.... 116
C=4 (ii)-2. Regulation of Kotri Barrage -"Still Pond" or "Semi- open flow"-and consequent height of Pocket gates. 134
(6) Spillways.
0-6-1 Automatic Gates on Tansa Waste Weir (Bombay)-Experi- ments with hall size model. 153
C-6-2 Volute Siphon Spillways-preventing scour below volute siphon spillways by fanning out jets with dispersers and ledges. 165.
(8) Canal Falls.
Q-8-1 Dissipation of energy below Iflumed Vertical Falls and Non- flumed S. W. Baffle, Falls: 162
(10) Excluders and Ejectors.
C-10-1 Comparative Sand exclusion at the nose and at the raised sill of the Approach Channel under present conditions and with the Outer Bank extended to position Q-Experiments in $1 / 80: 1 / 40$ part-width, Sukkur Barrage Model. 177
C-10-2. Effect of change in regulation operations of the Right Pocket on sand exclusion-Experiments in $1 / 80: 1 / 40$ part-width. Sukkur Barrage Model. 179
(12) Other Works.
C-12-1 Supply of sand-free water to Jamshedpur Pump House. 18%
C-12-2 Experiments to test the suitability of the position of the Lock Span proposed in the Sind Design. 191
G-General.
7. Projects existing and proposed.
C-1-1 The Sakri River Project-(Bihar). 199
G-1-2 Proposal for a Road-cum-Rail Bridge over the river Ganga at Patns or Mokameh. 203
Q-1-3 Indus Water to Cutch State- A note on the possibility of bringing. 218.

Index of The Cetnral Waterways, Irrigation \& Naxigation Research Stn, Poona-1, Annual Report (Technical), for I9\$3-1947.
Note:- Questions dealt with by The Director, but not described in Annual Reports are marked with an asterisk.

A \& B	Pages of Annual Report (Technical): for the year				
	1943	1944	1945	1946	1947.
Apron design for the Soath Gulde Bank of the Alexandra Bridge on the Chenab River N. W. Railway.	\cdots	...	\cdots	\cdots	5
Aqueduot No. 23 of the Nira Right Bank CanalFluming of	\cdots	\cdots	\cdots	122	\ldots
Assam Access Road-prevention of Scour in Garang River on-	...	3^{\bullet}	\cdots	\cdots	...
Assam, Neamati in-Prevention of erosion at-	...	3*	...	\cdots	\cdots
Attraoting groyne - Revetment acts as	...	$\stackrel{2}{104}$...	\cdots	...
Attracting island-Bukkur island in the Indus aots as an-	...	97	\ldots
Attracting Iblands to reduce turbulence in the Hooghly River d / s of the Kunckle at Titaghar Jute Mill.	.	\cdots	83.
Attracting Spurs - the use of -for training a river upstream of a bridge or a Barrage.	47	97.	...	-."	...
Attrition of sand-minimum velocity required for	62"	\cdots
Attrition-Rate of attrition of sand in channels."	...	115	...
Augmentation of ., Bombay Water Supply.	\cdots	\cdots	\cdots	137	.-s
Auranga River, Training the-to protect Bhadeli village, District Surat (Bombay).		'	51
Antomatio feed for maintaining a constant water Ievel.	."0	65	.."	...	\cdots
Automatio gates spillway for the Tansa DamDetermination of the coefficient of disoharge of the	29.36	...	153
B					
Baffle Fall-Hurdling over-	\cdots	30	\cdots	\cdots	\cdots
Baffle platforms below S. W. F. s - Design of-	...	38"
Baffles-to dissipate energy below S. W. F. s- Design of	...	39
Bagaha-Gandak River at -on the Oudh ${ }^{2}$ Tirhat Railway which has outflanked the' bridge -how to divert the-to its original course through the bridge.	(iii) ${ }^{\circ}$	10	\cdots
Bakshi Khal.	\cdots	13	
Balta Jheel, \& Solani Khadir in U.P.-Director's visit to the-	(iii) ${ }^{-}$"
Balta Jheel, \& Solani Khadir schemes in U.P. -Model experiments in connection with-	\therefore	59	

	Pages of Annual Report (Technical)for the year				
	1943	1944	1945	1946	1947.
Baluohistan - Proteotion of retaining : walls from soour by means of repelling spurs.	...	\cdots	8	\cdots	...
Barrage - Effect of constructing a - across a river, on bed levels and water levels $\mathrm{a} / \mathrm{s} \& \mathrm{~d} / \mathrm{s}$, with partioular reference to the Indus (sind).	$\begin{aligned} & 18, \\ & 19 \end{aligned}$	99	\cdots	\cdots	
Barrage - Lower Sind Barrage on Indus at Kotri-design so as to exclude sand from entering the canals at	\ldots		\cdots	98	116
Barrage-Design of Lower Sind Barrage on Indus at Kotri - Optimum shape of the nose of central island at Kotri.		\cdots		- 110	
Barrage-Lloyd Barrage at sukkur on Indus-to control sand entering the canals taking off the	126	
Barrage - Lloyd. Barrage at ankkar on Indus midseason scouring operations of the right pooket of			_....	\cdots	61.
Barrage - Scour below Kotri Barrage.				\because	72.
Barrage-Scour round divide wall noses of Kotri Barrage.		\cdots		\because	73
Barrage - proposed design of Lower Sind Barr- age - Long pocket versus short pooket.		\cdots		- \cdots	120.
Barrage proposed at Kotri - design of right and - left pooket divide walls..	...	\cdots		\cdots	125
Barrage proposed at Kotri - Comparisons of velocitios during scouring oparations with different number of left pocket spans.	...	\cdots	\cdots	, \cdots	130
Barrage proposed at Kotri-_ "still pond or semi open flow" regulation and consquent height of pooket gates.	\cdots		...	\cdots	134
B. B. and C.I. Railway bridge at Brọach scour caused by left bank groyne.	...	$\begin{aligned} & 77, \\ & 85 \end{aligned}$...		
Beas River - Control of - by attracting spurs.	(ii)*	\cdots	\cdots	...	
Bed load formulae - Schoklitsch's and Meyer Peter's \& their comparison with Station formalae.	$\begin{aligned} & 49 \\ & 50 \end{aligned}$...	\ldots	\cdots	
Bed ripples and bed waves.	53	\cdots	\cdots	\ldots	
Beki, Balkadoba and Manas Rivers - How to train and control the -	(ii)*	3,69	
Bell-mouth entrance of flumes and falls side contractions and humps -	\cdots	$\begin{aligned} & 29, \\ & 32 \end{aligned}$		\cdots	
Bhivpuri soheme recommended for the angmentation of Bombay Water Sapply.:	...	74	\because	\cdots	
Bibar-Ejectors for canals taking off the Son at Dehri-Head available for working the -	43	\cdots	- :-	\cdots	\cdots

	Pages of Annual Report (Teohnical)for the year				
	1943	1944	1945	1946	1947.
Bihar-Soï aniout at Dehri-Present method of regulating the -	40	\cdots	\cdots	..'	
Bihar-Soni river at Dehri- eand drawn by the canals and Opderslaiges n / s of the anicut.	41	38	.."	\because	
Bilot creek and Pharpar cana! -A nalysis of data.	32	\ldots	
Bombay Presidency -- Raising the waste weir at Lake Arthur Hill, Bhandardara, with High Coofficiont weir.	..	\cdots	\cdots	27	
Bombay (Ahmedabad) - Khari river al Raj-pur-how lo prevent ont - flanking of: Barrage on --	(ii) ${ }^{\circ}$..'	\cdots	\cdots	
Bombay City Water supply-Augmentation of -	$2{ }^{\circ}$	6,70	...	137	15
Bombay foreshore - Prevention of erosion on - and reolsmation of land bearing S. No. 71, part of Juhn and creek - land.	\cdots	$1 *$	\cdots	\cdots	
Bombay, Nira L. B. Canal - Jeur aqueduct on the - Discharge formulae for	(ii)*	
Brahmaputra bridge near Amingaon - design of	(ii)*	...	\cdots	...	
Brahmapatra -- whether river ghat on - likely to be eroded.	(ii)*	ז	-..	..	
Breaches in the Däodar "Oeft Bank Embank: ment d/s of Burdwan (Bengal).	7	\cdots	\cdots	\cdots	
Breaches in the Damodar River -- proposals to prevent a reourrence of damage resulting from breaches in the -	(i)*	\cdots	\cdots	...	
Breaches in the marginal bunds of the indus above Sukkur - Rohri- Quetta Railway Realigament of the - neoessitated py the danger of -	(ii)*	\cdots	
Breaches in River Bunds in Sind -Technical enquiry into the causes of and steps required to minimize the danger of recurrence.	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	
Bridges - Dissipation of energy below	\cdots**	139	
Bridge --depth of foundations for bridge piers.*	14	
Bridges-- maximam depth of scour downstream of	\ldots	140	69
Bridge-maximnm depth of scour at the heads of gaide-bank $\&$ shanks, at the proposed C. K. 'Railway" Bridge over "Ramaganga River.'	...	13	
Bridge - waterway required for Jodahpur Railway Bridgy over Sakri River. :		- ${ }^{\prime}$...	37	
Bridge - waterway required for Jodhpur kail way Bridge over Sagi River.*	37	

	1943	1944	1943	1946	1947
Bridge Alexandra on the N: W: Railway-Apron design for the south Guide Bank on the Chenab River-	...	\cdots	\cdots	a.	65
Bridges-scour at Guide banks.	\cdots		70
Bridge on Beas River near Beas Station on the N. W. Railway on Lahore-Ludhiana seetion.	...	$2 *$	\cdots		..
Bridges on Madras Bombay line of M. \& S.M. Railway between miles 82 \& 113-protective measures of	...	\cdots	\cdots	\cdots	52
Bridge piers-scour round	\cdots	129	'..
Bridge over Ganga River at Patna or Mokameh Ghat-proposed for combined Road and Railway Bridgo-	, \cdots	\cdots	20
Broach-Scour cansed by left bank groyne of the B. B. and C. I Railway Bridge at-	...	$\begin{gathered} 77, \\ 85 \end{gathered}$...		+
Bruokner curve for sunspot numbers.	86-87		$\cdots{ }^{3}$
Brashwood groynes, effective in eliminating "bellies" and return flow with "jetting " prevented by lowering pavement.	...	25	\cdots	...	
Bukkur island in the Indus acts as an ATTRACTING island.	...	97	\cdots
Bulk proportionality and height of humpRelation' between-	...	44	
Bands-River bunds in Sind-causes of	..*	\cdots	...	129	
C					
Calibration of a flumed bridge near Pimpra on the Nira L. B. Canal in Bombay Province.	...	4*	\cdots		
Canals at Sukkur-Right and Left Bank, difference in the behaviour of-	21	**	...		
Canals, eradication of weeds from-during . losures.	\because	\cdots	124	\cdots
Canals-Rivers and canals-flow in channels in incolierent \& coherent alluvium.	\because	85	*
Canals-Exclusion of anand from entering the : canals at Lower Sind Barrage on Indus at Kotri.	98	116
Cannals-Remodelling of	...	\cdots		123	
Canals in - Sind-Design of-Part I-New Cauals and Part II-Inundation Canals.	21	\cdots	..-	.	
Causes of accretion of river bed at Sukkur Barrage and how to reduce rate of Rise, Part 1.	...	99	. \quad.	\cdots	$\because \cdots$

C	$\begin{gathered} \text { Pages of Annual Report (Technical) } \\ \text { for the year } \end{gathered}$				
	1943	1944	1945	1946	1947.
Causes of accretion of the river bed at Sukkur Barrage and how to reduce rate of rise-Part II.	**	...	59-66	...	**
Causes leading to erosion of the left bank of the Rupnarain River u / s of the Kolaghat bridge on the B. N. Bailway.	\cdots	14	-	...	**.
Causea of floods in Sind.	12	\cdots	**	\cdots	**
Cawnpore Flectric Supply Corporation-How to secure an adequate supply of water for the river-side power station of the-	\cdots	$3 *$..*	\cdots	\cdots
Central island or spur for river training.	47	97	\cdots	\cdots	**
Central Provinces-form drag of cylinders in connecion with bridge foundations for-	(iii)*	**	\cdots	, \quad "	\cdots
Ceylon-advice regarding probable maximum run - off from catchments in-		$2 *$			
Ceylon-advioe regarding waterway of bridges in -	***	$2 \bullet$	**	-	**
Channels-allavial-factors affecting flow in	**	-	...	134	***
Channels-Factors affecting shapes of	22	**	**	**	**
Channels-Factors affecting silting \& soouring of	\cdots	\cdots	-	132	**
Channels-Panjab and Sind data of-Analysis of-	21	\cdots	\cdots	\cdots	**
Chashma on Indus-Cause of changes of course of the river and how to control	(ii)*	**	\cdots	**	**
Chenab river near Wazirabad-Alexandra Bridge over the-steps required to prevent damage to the	(i) ${ }^{\circ}$	3*,5	**	\cdots	65
CHOS Act passed by the Punjab Govt. for afforestation.	3	\cdots	\cdots
Cistern-Desiga of-below flumes.		36, 40			**
Classification of ripples and waves.	54	**	...	**	**
Closing of spills on right bank ofs of Hope Bridge led to heavy erosion of the Rander Road.	...	87	**
Cochin Harbour Model-Preliminary note on	...	**	...	- $\cdot \cdots$	91
Coohin Harbour-formation of mud banks at. Extracts of Report of the Speoial Committee 1938. ...	***	...	\ldots	...	92
Cochin Harlour-movement of mud banks at	\cdots	**	\cdots		112
Cochin Harbour-Notes on Tides near	**	\cdots	..*	-••	115

C

$0 \& D$	Pages of Annual Report (Technical) for the year				
	1943	1944	1945	1946	1947.
Control of sand entering the oanals taking off the Lloyd Barrage at Sukkur. .Control of the Jumna River at Tajewals by means of spars.					
Control of sand entering the Mithrao \& Khipro Canals-Ex-Nara River at Makhi, Sind.	\cdots	\cdots	\cdots	127	**
Controlling the band entering the canals- off Son Aniout at Dehri (Bihar).	41	58	**	...	**
Cramp's original design of S.W. F.	*	29	***	\cdots	**
Calverts-road. Design of vent approaches \& exits.	-••	\cdots	**	37	-*
Corvature of flow-in a parallel sided 5^{\prime} wide S. W. F. ander various stages of fIow.	\cdots	***	***	88	\cdots
Curvature of flow-in rivers and oansls for controlling sand entering canals and training of tidal and non-tidal waters.	\cdots	\cdots	..'	125	-."
Cut-off channel-new-factors favourable for opening a- (i) enrvature of flow n / s; (ii) relative slope d/s of the bifurcation; and (iii) relative discharges.	...	69	**	**	...'
Caypature of flow:	8, 32,		5, 7, 11.		
	33,35,	13, 8, 10, 10.	19,43,	$\begin{array}{\|l} 5,17,38 \\ 42,44,52 \end{array}$	$\begin{aligned} & 34, ~ 35, ~ 99, ~ \\ & 43 \\ & 4647 \end{aligned}$
	37, 39,	55,58,69.	48,	$60.64 .68 .$	$\begin{aligned} & 43,46,47, \\ & 54 . \\ & 65.83 \end{aligned}$
	40, 47,	$\begin{gathered} 74,84,87 \\ 97 \end{gathered}$	83, 96.	${ }^{98}$	$\begin{gathered} 116,134,177, \\ 179,187 \end{gathered}$
Catoh .State - possibility of bringing Indus ...water to	*-	**	***	..'	219
Cattack, Orisss - Katjuri and Mahanadi group of rivers nesr-Experiments with a model of the -	37	-*	19	44	35
Cuttack (Orissa)- Kendrapara canal taking off Birupa River u/s of Mahanadi Aniout at - how to prevent silting of -	(iii)*	***	..	**	**
Cattack (Orissa)-Mahanadi \& Katjuri-Distribution of flood waters between-	37	\cdots	...	**	**
Cattack (Orisse)-Naraj weir at-standing wave and drowned condition of the-and their effeot on the sand drawn by the Katjuri.	38	...	\cdots	***	**
D					
Damage in 1944 to the Surat Rander Road and the City wall of Surat d / s of the Hope - Bridge at Surat and recommendations to smeliorate present conditions.	.	87	**	-*	**
Damsge to lands bordering on the Tapti, Narbada and Sabarmati rivers during 1944 flood beason.	*-.	84	***	-••	**

D	Pages of Annusl Report (Technical)for the year				
	1943	1944	1945	1946	1947.
Delhi-Training of the Jumna at Delhi Gate Pumping Station,	$\left({ }^{1 i i}\right)^{1}$	8	\cdots
Delhi Water Supply Committee appointed by the Government of India.	$1 *$	5	-	\cdots	\cdots
Denadation, erosion \& floods.	3
Denudation-soil-excess sand charge dae tom	5*
Depth of scour - maximum, for apron protee tion at the truncated nose of extended outer bank of approach channel in the 1ndus above Sukkar Barrage.	\cdots	24	...
Depth of scour-maximum, at the heads of guide banks-Ramganga River at proposed C. K. Railway Bridge.	\cdots	13	...
Depth of scour - maximam at the shanks of proposed C. K. Railway Bridge over Ramganga River.	\cdots	...	\cdots	13	...
Depth of ecour - maximum at Bridge asection Ramganga River - at proposed C. K. Railway Bridge.	14	...
Depth of foundation for Bridge piers at the proposed C. K. Railway Bridge over Ramganga River.	\cdots	.."	...	14	\cdots
Design of a stilling basin d / s of the overflow seation of the main Erinpara Dam in Jodhpar State.	...	$2 *$	-*
Design of approacti channel of Flomes and Falls.	...	31	..*
Design of canals, in Sind, Part I-New canals and Part II - Inundation canals.	21	136	...
Design of channels n/s of S. W. F. s.	...	31	...	\cdots	...
Design of canals - comparative analysis of sand by Puri sand-meter and Air sand-meter.	.-	26
Design of cistern below flumes.	**	36, 40	...	\cdots	...
Design of downstream portion of S. W. Flumes, standard design-where very high recovery of head is not essential.		35.	\cdots	...	**
Design of downstream portions of S. W. Flumes, standard design-where it is important to lose as little head as possible.	\ldots	37.	\cdots
Design of gaide banks and divide walls downstream of the new undersluices of the Son at Dehri (Bihar).	'*	22	- ...
Design of the Lower Sind Barrago-Experiments to test the design for scour and sand exclusion from canals - Sind.	48-59	127	116,134
Design of Lower Siad Barrage at Hajipur.	4,6,55			...	\cdots

D	Pages of Annual Report (Teohnical)for: the year				
	1943	1944	1945	1946	1947.
Design of new canals in Sind-recommendations for bed width, depth, slope.	27	2^{*}	\cdots
Design of off-take at the entrance to the right pooket from the approach channel at Sukkur.	96 \cdot
Desilting and dredging of Tanks in Sangli State.	\cdots	$2 *$
Determination of the coefficient of discharge of the automatic gates spillway for the Tansa Dam.	29-36	*	...
Determination of the variable coefficient of the 10,595 cs. Tando Mastikhan Fall on the Rohri Canal, Sind.	...	\cdots	94	...	- ...
Device to ensure stilling before water is let into a model.	...	105	-	
Dickens' run-off formula.	67	
Difficalties experienced in river model experiments due to effects caused by vertical exaggeration.	:."	$\begin{aligned} & 110- \\ & 115 \end{aligned}$...
Discharge - Accuracy of different methods of taking disoharges.	86	
Discharge measurement - coefficient of discharge in Notch type and weir type falls on the Mahanadi Main Canal (C.P.)*	23.
Discharge Table of S. W. Flumes and Falls.	...	34	
Dispersers -- to prevent scour below volute Siphons by fanning ont the siphon jets.	...	\cdots	165.
Disposal of Poona Sewage by irrigation.	123	
Dissipation of energy below falls.	...	29	...	139	167
Dissipation of energy d/s of Lower Sind Barrage (2400 ft . a / s of site B near Hajipur)-Experiments in connection with -	9-11	\cdots	-..
Dissipation of energy of flow of the jets issuing from "Ganosh Iyer". Yolute siphon by matual impact of jets.	91	\cdots
Divergence from regime in stable channels in alluviam-Note on, by the Director.	\cdots	135	\cdots
Dock - How to redace waves in a, cansed by swell in a harbour.	66	\ldots
Downstream expansions - Reotangular Hyperbolic U. P. design adopted in flumes and falls.	\cdots	$\begin{aligned} & 35, \\ & 37, \\ & 40 \end{aligned}$	\cdots
Drainage ohannels of the Damodar Rivor.	...	13	\cdots	...	
Dunbar Cotton Mill - Training the Hooghly River at - with a bypass channel.	11-18	...	**

D\&E.	Pages of Annual Report (Teohnioal)for the year				
	1943	1944	1945	1946	1947,
Dunbar Mill-Longltudinal and oross row of piles at the-to enable accretion and silting to thke place.		7	...	:-	."
Danbar Mill on the hooghly - Erosion of bank near the, how to prevent, by a tidal model.	...	7	\cdots
Eastern and Western Jumaa Canals - Headworks at Tajewala.	\cdots	91	\cdots
Eastorn Nara\& Rohri Canals (Sind)-Fluotuations of grade of materials exposed on the beds of -	35	\cdots
Effect of constracting a burraga across a river on bed levels and water levels \dot{u} / s and d / s with particalar refersace to the Indas (Sind).	17	99	..*
Effeet of olosing the Head Regulator of the Rohri Canal (Sind) from the top downwards, on the canal regimen.	35	...	\cdots
Effect of constracting a trench d / s of a soil dam on the saturation line.	...	61
Effeot of high level bridge pavement on soour d/s of the Rallway bridge on the N. W. oanal at Ralk, Sind.	...	23	\cdots
TEfect of shape of eatehment on the run-off.		68			...
Effect of stannohing due to silting upstream of the Solani dam.	...	63	..'*
Effeat : of storazes in Tons and Giri catohments on supplies in the Jumna during flood seasion and regeneration in the fair season.	...	94	**
Effect of variation of a / s and d / s water levels of the Solani Khadir dam model on Hydeautic gradients or saturation lines,	...	61	...	\cdots	...
, Effect of shortening Barrage on accretion in the Indus d/s of sukkar Barrage.	...	3	...	\cdots	...
Effect of size distribution of particles, apsaific gravity, oharge of bad sand and discharge, on ripples.	56	\cdots	...
Effluent Experimental Farm - disposal of Poona sewage by irrigation.	...	\cdots	...	123	...
Ejectors for canals taking off the Son at Debri (Bibar). Head available for working the-	43
Elatriator-sand and silt-grading sand and silt by washing.	64
Embankment near Nanpara (U, P.) to divert the whole of the Saraju river into the Gograi, thas preventing spill flowing into the Saraju Tirhí ohannels.	...	$2 *$...	\cdots	\cdots

E\&F	Pages of Annual Report (Technioal)for the year				
	1943	1944	1945	1946	1947.
Excluders and Ejectors-Effective exalusion of sand from canals at the proposed Lower Sind Barrage on Indus River at Kotri.	\cdots	\cdots	..	98	...
Exolusion of sand from entering canals by oonstruction of submerged vane at the proposed Lower Sind Barrage on Indus River at Kotri.	\cdots	\cdots	\cdots	101	- ...
Exolasion of sand by Central Ibland at the proposed Lower Sind Barrage on the Indus at Kotri.	\cdots	105	...
Exolusion of sand-factors affecting the exolusion at the proposed Lower Sind Barrage on Indus at Kotri,	..*	\cdots	...	105	\ldots
Exolusion of sand from canals taking off the Son river in Bihar,	...	58	--
Experiments in connection with dissipation of energy downatream of Lower Sind Barrage (2400 ft . upstream of site B near Hajipur).	9-11	...	\cdots
Experiments to determine a a aitable profile of the Lower Sind Barrage to cause minimum afflux with gates fully open.	.."	...	22-29	-	\cdots
Experiments with a vertically exaggerated model ($1 / 400: 1 / 66$) of the Mahanadi and its branches at Cattack (Orissa).	...	\cdots	19-22	...	\cdots
F					
Faotors affecting del					
Faotors affecting del	8	...	\cdots	...	\cdots
Factors affecting meander of channels.	51	\cdots
Factors affecting the coefficient of discharge of - Ganesh Iyer's volute siphon.	72.78	...	\cdots
Factors affecting the shape and dimensions of ripples \& waves.	56**	\cdots
Factors affecting Blope in alluvial channels.	134	\cdots
$\left.\begin{array}{l}\text { Factors favourable for opening a new cut- } \\ \text { off channel. } \\ \text { (i) Curvature of flow ajs. } \\ \text { (ii) Relative slope di/g oi the bifurcation. } \\ \text { (iii) Relative discharges. }\end{array}\right\}$	\cdots	69	\cdots
Fair weather and freshet spring tides in the Rapnarain River at Kolaghat Rly. Bridge on the B. N. Railway in 1944 and in its mobile bed model.	...	17	\cdots
Falling aprons-oharacteristics of"	...	129	-*
Falls on Mahanad! Main Cannal (C.P.)-60efliciont of discharge of Notch Type and Weir Type Falls-	...	\cdots	...	**	23
Falls-dissipation of energy below		139	167

F	Pages of Annual Report (Technical)for the year				
	1943	1944	1945	1946	1947.
Falls, Flumed-scour d\|s of	\ldots	...	, 93	..'	...
Field resalts of measures adopted after model experiments.	...	\cdots	...	5	"•
Flood control.	...	\cdots	...	131	\cdots
Flood contro	...	\cdots	...	133	
Flood control on Tapti River at Surat,	\cdots		...	\cdots	54
Flood discharge-maximum, of Ramganga River for proposed O. K. Railway.	\cdots	13	
Flood protection measures for Nuna-Pothi Rivers \ln Orissa.	\cdots	3^{*}	...	\cdots	...
Flood proteotion-Redistribution of sand load between the Mahanadi and Katjuri systems at Cuttack-Orissa.	\ldots	\cdots	19	44	35
Floods-causes of-in Sind.	12				
Floods, denudation and erosion.	3				
Floods, river-Sunspot intensity cycles as a medium of predicting the probable dates of occurrence of -	...	\cdots	86-87	...	"•
Fluctuations of grade of materials exposed on the beds of the Eastern Nara and Rohri , Canale (Sind).	35		...	\cdots	
Flames-Dissipation of energy below	\cdots			139	
Flume Meter Baffle Falls-Design of downstream portion of -		35	\cdots		
Flames-pebble-bed-Transportation of pebbles in-	47			..	
Flamo-Standing Wave Flume Design for the Jawai River Project (Jodhpur).	-.	\cdots		86	
Flume-Water surface profile in a 5 ft . wide S. W. F. with parallel sides, at various stages of flow.	**	86	
Fluming of Aqueduct 23 of the Nira Right Bank Canal.	\cdots	..	\cdots	122	
Flumed Falls-Scour downstream of-	\cdots	...	97	...	
Form drag of cylinders in connection with bridge investigation for Central Provinces.	(iii) ${ }^{*}$	$4 *$...	, ${ }^{-}$	
Forty cusecs Standing Wave Flume in the masonry conduit, taking off from the Haleji Reservoir-Karachi Water Supply scheme.	...	2^{*}	\cdots	...	
Freshet spring and fair weather tide in the Rupuarian River at Kolaghat Railway Bridge on the B. N. Railway in 1944 and in its mobile bed model.	\cdots	17	...	- ...	

G	Pag		e		al)
	1943	1944	1943	1946	1947.
Gandak River at Begaha on the Oudh and Tirhat Railway which has outflanked the Bridge-How to divert the-to its original course throagh the Bridge.	(iii)*	3, 10 13	*	..	**
Gandak at Bagaha on the Ondh and Tirhut Railway-conditions leading to the outflanking of the Railway Bridge.	\cdots	10	**	\cdots	-
-Do-ing -Do- as an © attracting © epur in pulling the acting as river round its nose.	\cdots	10	-**	* 9	\cdots
-Do. -Do- Prediotion of the fature movement of	-••	13	. ${ }^{\circ}$	-••	...
-Do- -Do- Band on the bed of the		11	-••		\cdots
-Do- -Do- ase of the MissiBippi formula for astimating the maximum flood discharge in the-in 1924.	\cdots	12	...	**	...
Ganesh Iyer's volute siphon-Factors effecting the coefficient of discharge of-	-	..*	72-78	..*	-**
Ganga River-Safeguarding the Harding Bridge across--against 'the danger of outflanking.	:-	\cdots	**	128	.."
Ganga-Maximam scour profile between guide banks of the-at the Harding Bridge.	4	**	...	'**	...
Ganga River-Proposal for a combined Bridge at Patna or Mokameh Ghat over the	**	-•*	.'.	-**	203
Ganga River-Training the river at Kanpur.	-•*	\cdots	**	\cdots	46
Garang River on Assam access Road-Prevention of ecour in-	-•*	3*	**	**	**
Geometrically-similax models which give geo-metrically-similar results.	."	...	92-95	***	\cdots
Geometricalls-similar models which do not . give geometrioally-similar resalts.	**	...	95-101	-	\cdots
Gibb modeles-Theory, design \& construction of-	"'	122	**
Giri and Tons catohments-effect of storages in-on supplies in the Jumns during flood season \& regeneration in the fair season.	..*	94	\ldots	**	...
Glacis slope downstream of S. W. Flames.	\cdots	35	\cdots	*..	...
Glacis slopes of Flume Falls.	***	38	\cdots	...	**
Godavari Right \& Left Bank canal Head Regulators (Bombay Presidency)-Experiments with	**	-*	**	122	-••
Grading sand and silt by washing.	64	..*	\cdots	**	\cdots
Groyne, deflecting-Measures taken to control erosion of the left bank of the Rupnarain upstream of the Bengal Nagpar Railway Bridge at Kolaghat by, means of a-	\cdots	...	$5-7$	-	**

G\& H	Pages of Annual Report (Teehnical)for the year				
	1943	1944	1945	1946	1947.
Groyne repelling-Proposal for protecting the left bank of the Rupnarain River u / s of the Railway Bridge at Kolaghat on the B. N. Railway.	...	15
Groynes \&islands-control of flow, through bridges by means of	(iii) ${ }^{2}$	97	...	\cdots	...
Groynes, attraoting and repelling.	47	104	\cdots
Groynes, Brushwood, effective in eliminating - bellies 'and return flow due to ' jetting ', prevented by lowering pavement.	...	25	-
Groynes-Semi-permeable-construction and lannching of	\cdots	66	.**
Groynes-Timber pile groynes.	...	\cdots	...	67	...
Groynes-to train the Sutlej River at Samasata Railway Station, N. W. Railway.		\cdots	\cdots	72	..•
Groynes-permeable tree groynes to reduce attaok on right bank upstream of B. N. Railway Bridge at Kolaghat.	\ldots	\cdots	...	78	...
Groynes-permeable tree groynes to train the Indus river at mile 21 of the Sukkur Begari Bund-Sind.	\cdots	81	...
Groynes-maximum depth of scour at the head of	\cdots	\cdots	...	140	...
Groynes-for silting a byo-river at its off-take-Indus River opposite mile 5/3 of Kasimpur Nababshah Bund.	\cdots	\cdots	..	83	**
Gaide Bank-Maximum depth of scour at the heads of	...	\cdots	...	140	...
Gaide Bank-design of the left guide bank of the Luni River Bridge on the Samdari-Raniwara branch of the Jo dhpar Railway.	\cdots	...	\cdots	59	...
Gaide Bank-Maximum scour at Ramganga River-proposed bridge on C. K. Railway.	\cdots	\cdots	\cdots	13	**
Guide Bank-Length of, nècessary measures to prevent probable erosion of Railway Embankments.	...	\cdots	\cdots	15	**
Guide Bank design of - at the proposed Lower Sind Barrage at Kocri-Sind.	\cdots	\cdots	...	\cdots	122
Guntakal-Beswada section of the M.\&S. M. Rly.- Heavy run-off from a small catchment u/s of a bridge on the-which caused the river to overflow the embankment and Railway track causing an accident.	44	\cdots	\cdots	*	..*
H					
Hajipur, Sind, Design of Lower Sind Barrage at		55			

H	Pages of Annual Report (Technical)for the year				
	1943	19.44	1945	1946	1947.
Haleji Reservoir - Karaohi water Supply Scheme-Forty cusecs S. W. F. in the masonry conduit taking off from the	...	$2{ }^{*}$
Harbour-How to reduce waves in a dock . cansed by swell.	66	-	\cdots
Harbour-Preliminary noteon model of Cochin-	91
Hardinge Bridge-over the Ganges (Bengal Assam Railway): protection against the danger of being outflanked.	\cdots	128	...
Head Regulator-Godavari Right Bank Canal ,.and Left Bank Canal-Increasing the caps. city of	122	\cdots
Head Regulator-Nira Left Bank Canal-Increasing the discharging eapacity of.	:*	122	**
Headwork-Punjab practice of constructing	...	98
Heavy ran-off from a small catchment n / B of a bridge on the Gnntakal Beswada section of the M, \& S. M. Rly. which caused the river to overflow the embankment and railway traok causing an accident.	44*
High Coefficient Weirs.	99-101	141	...
High level stone pitehing maintained at Hope Bridge near Surat distorted curvature of flow \& cansed damsge upstream and downstream in 1944.	...	88
Historical review of steps taken by the Sind Government to colleck data in oonnection with the Indus and to control it in its passage through Sind.	11	\cdots
Historical Account of the Indian Waterways Experiment Station, Poona (1916-46). 121	...
History of the water supply of Bombay.	...	70	..*	.	\cdots
Hooghly River above_Caloutta-How to improve the-	...	3	\bullet
Hooghly river-Tidal model to prevent bank erosion near Dunbar and Titaghar mills.	35	3,7	\cdots,*
Hooghly River-Measures adopted to reduce turbulence in the river downstream of the Knuckle st the Titaghar Jute Nill (Bengal).	...	\cdots	.*	38	83
Hooghly River-Experiments with sabmerged row of piles at the, knuckle at the Titaghar Jate Mill (Bengal).	39	..
Hooghly rigid tidal models.	105-107	.	\cdots
Hoogly River at Dunbar Cotton Mill-Training the-with a by-pass channel.	13-18	...	-."

H \& I	Pages of Annual Report (Technical) for the year				
	1943	1944	1945	1946	1947.
Hooghly semi-rigid tidal model (long).	\cdots	...	105	\cdots	...
Hooghly River-Experiments with "attracting" artificial Islands.	...	\cdots	...	40	\cdots
Hooghly River-protection of the foreshore of the Anglo-India Jate Afill on the	\cdots"	4.2	\cdots
Hooghly River-Preventing erosion along the foreshore above Caloutta.	\cdots	\cdots	...	130	...
Hooghly semi-rigid tidal model (short).	106		
Hope Bridge near Sarat-closing of apills on right bank a / s of-led to heapy erosion of the Rander Road.	\cdots	88			-
Hur Hura khal.		13	**		\cdots
Hurdling over Baffle wall.	...	30			
Hydranlic elements and constants-Nomograms for determining the	\cdots	...	78-80	- ...	
Hydraulio gradient or saturation lines-offect of a / s and d / s. Water levels of the Solani Khadir dam model on-	...	61		\because	\cdots
I					
Improvement of the Rice Canal due ta the Right Bank approach chanuel at Sokkur.	33		; \cdots	. $\quad \cdots$	
Inoreasing the discharging capacity of Regulators, Outlets \& Aqueduots by framing \& remodelling.			\cdots	122	
Indian Waterways Experiment Station, Historical Account of-1916-1946.	\cdots	21	
Indus above Rohri-Erosion on tha right bants of the-and danger of breach of the main line N. W. Railway.	(ii)*	\cdots	. \quad.	.	
Indus River, training of-Above Sakkur Barrage to prevent slips of the right bank below the nose of the Approach channel.	\cdots	\cdots	...	17	
Indus above Sukkur (Sind)-Realignment of the Rohri-Quetta Rly. necessitated by the danger of breaches in the marginal bayds of the-	(ii) ${ }^{\text {a }}$	\cdots
Indus-Analysis of Bilot creels and Paharpur Canal data (Ex Indus) 35 miles d/s of Kalabagh, N. W.F. P. in-				...	\ldots
Indus and the Li yod Barrage at Sukkur-Experiments with a model of the, for sand control of the right bank canals.	...			26	$\begin{gathered} 61,177 \\ 179 \end{gathered}$
Indus, Sukkur-acoretion in-	...	6, 99			
Indus, Bukkur island, in the-acts as an - attracting' island.		97			

I			al Repo the y	$\mathrm{rt}\left(\mathrm{~T}_{x}\right.$	
	1943	1944	1945	1946	1947.
Indus at Sukkur (Sind)-New factors which will affeot rate of rise of water levels in the-	17	\cdots	\cdots	...	\cdots
Indus-downstream of Kalabagh-analysis of changes in the course of the-	7	\cdots	\cdots	...	-*
Indus-Jamshoro bund on the left bank of the-near Hydrabad (Sind).	39	.."	\cdots	."	.*
Indus River-Experiments to improve conditions in the Approash Channel.	\cdots"	19	...
Indus River-Stability of the proposed trancated nose for a saper-flood of $9,00,000$ casecs in the $1 / 80 \mathrm{G}$. S. Model.	..*	...	\cdots	22	\ldots
Indus River-Maximum depth of boour for apron proteotion at tranoated nose of Approach Channel.*	\cdots	24	..:
Indus River-Afflux due to the proposed extension of the outer bank of Approach Channel.	\cdots	...	**	23	...
Indus River-Training of the River at ${ }^{\circ}$ mile 21 of Sukkur Begari Bund by means of permeable tree groynes.	\cdots	...	- -..	81	-..
Indus River-Design of Lower Sind Barrage at Kotri, so as to exolude band from entering canals.	\cdots	98, 127	\cdots
Indus-River-Experiments with model, with \& without proposed Lower Sind Barrage at Kotri.	...	-.	...	99	\cdots
Indus River- Factors affecting the exalnsion of sand from the canals, at the proposed Lower Sind Baraage at Kotri.	.."	\cdots	...	105	...
Indas River-Soale ratios of the Lower Sind Barrage model at Kotri.'	107	..
Indus near Umerkhel-action to be taken regarding erosion of spur 2 in the-	...	3^{\bullet}	\cdots	...	\cdots
Indus-rate of rise of water levels in the-	15	99	...	\cdots	...
Indus near Cashma-Canse of change of course of-and how to control-	(ii) ${ }^{*}$...	\cdots	..	\cdots
Indus-Probable effedt of constructing the Kalabagh Barrage on the course of the-	10•	\cdots	\cdots
Indas- Protection of N. W. Railway embankment u / s of the Bukkur gorge.	13	\cdots	...
Indus (Sind)-Breaches in them	20	\cdots
Indus (Sind)-effect of oonstructing a barrage across a river on bed levels and water levels z / s and d / s with particular referenoe to the-	18	99	...	\cdots	...
Indus (Sind)-Specific discharge gauges at Bachalshah on the-	**	101*	\cdots

J	Pages of Annual Report (Teehnioal) -4.for the year				
	1943	1944	1945	1946	1947.
Indus-Technical analysis of available data regarding the rise of the water levels of the-in the past and to be anticipated in future.	15	...	\cdots	\cdots	\cdots
Indus- Technical enquiry into the causes of breaches in the River. Bunds in Sind and steps required to minimize the danger of recurrence.		. \cdot.	\cdots
Inforination regarding raiofall, run-off Formu las and rate of silting of reserrvirs required in connection with a scheme in Transval, Soath Afrioa.	\cdots	2^{*}	\cdots	..	-
Inglis' fan catchment discolarge formula; introduction of shape factor in-	67				
Inundation Canals in Sind-Analysis ofand its comparison with the data of perennial oamals.	29	\cdots	\cdots	...	\cdots
Inundation Canals in Sind	29		\cdots		
Irrigation-Controlled, in the Bombay (Decean).	\cdots	122.	
Island at Suleimanki.	...	99	...	-...	
Island for the Lower Sind Ba	...	98.		...	
Islands and attracting spurs-use of-for training a river.	47	97		...	
Tblands and groynes-Control of flow through bridges by means of-	(ii)*	\cdots	\cdots	...	
Islands for holding a river.	47				
Islands o/s of the Barrage at Kalabagh.	...	98			
Islands-Experiments with artificial " Attracting" islands to train the Hooghly River at Titaghar Jute Mill (Bengal).	...	\cdots		40	83
Islands-Experiments with artificial "attracting" iblands at Lumi River Railway Bridge No. 3, of the Samdari Raniwara Branch of the Jodhpar Rail way.		...		53	
IBlands-Effect of central island on exclasion of sand from canals, at the proposed Lower Sind Barrage on the 1ndus at Kotri.	105	
Island-Optimum shape of the nose of central Island at Kotri for the proposed Lower Sind Barrage on Indus.	\cdots	110	
J					
Jamrao \& Sukkur Bartage Canals-Relationship between surface width and Q of-	25	\cdots		...	
.Jamrao and Sukkur Barrage Canals-Relationship between S \& Q .	26			: $\begin{gathered}\text { - } \\ \\ \end{gathered}$	

J	Pages of Annual Report (Technical)for the year				
	1943	1944	1943	1946	1947.
J Jamrao Canals, Sukkur Barrage Canals, J. C. C. L. J. C. (Punjab)-Relationship between area and discharge of	23	...	\cdots	...	**
Jamshoro Bund on the Left Bank of the Indus near Hyderabad (Sind).	39
Jawai River-Design of S. W. F. for (Jodhpur).	86
"Jetting" below Canal Falls \& Bridger.	- ...	25, 30	\cdots
"Jetting" prevented by Lowering pavement level at Railway Bridges. 25"
Jeur Aqueduct on the Nira L. B. Canal (Bombay)-Discharge formula for-	(ii)*	-	\cdots
Jodhpur Railway line-Training of Lani River to prevent it damaging the-	30-42	...	\cdots
Jodhpur Railway-How to control Luni River where it is crossed by the Samdari-Raniwara Branch Line on-	\cdots	3*	*-*
Jodhpur Railway-Steps necessary to protect main Lino-from Hyderabad to Lani Janotion on-from damage by Luni River floods.	...	$\stackrel{3}{5}$
Jodhpur State-Design of a stilling basin d/s of the overflow section of the main Krinpura Dam in-	...	$2 *$
Jodhpur State-Construction of a 500 cuseos Standing Wave Flume in-2*
Jodhpur State-Erinpura Irrigation and Hydroelectrical Project siphon spillways in-	.**	$2 *$	\cdots
Jodhpur State-Runoff from Erinpura Reservoir.	...	68	-
Jumna at New Delhi-Present and future water requirements and supplies in the-	...	91	...	138	**
Jumna at New Delhi-Training of the, near Delhi Gate Pumping Station.	(iii)*	4.	\cdots	60	**
Jumpa River at Delhi Gate Pumping StationTraining of-with pitched embankment on the right bank.	43-48	\cdots	-*
Jumna, River at Tajowala-Control of-by means of spars.	(ii) ${ }^{\text {* }}$	\cdots
Jumna River-Relation between floods in the monsoon and regeneration in the hot weather in the-	...	93	...	\cdots	**
. $\quad \mathbf{K}$					
Kalabagh-Analysis of changes in the course of the River Indus downstream of -	8	...	\cdots	\cdots	**
Kalabagh Barrage-Islands n / s of the	...	98	\cdots	**	\cdots

\therefore K	Pages of Annual Report (Technical) for the year				
	1943	1944	1945	1946	1947.
Kalabagh Barrage-Probable effect of construct ing the-on the course of the Indas.	9	\cdots	...	\cdots	\cdots
Karaehi water supply scheme- 40 onsecs Standing Wave Flume in the masonry conduit taking off from the Haleji Reservoir.	- $\cdot \cdots$	2*	...	\cdots	-.*
Katjuri and Mahañadi at Cattack (Orissa)Distribation of flood waters between-	- 37	...	19	44	35
Katjuri-Standing wave and drowned conditions of the Naraj weir at Cuttack (Orissa) and their effect on the sand drawn by the-	39	\cdots	. .**
Katjuri River-protection of the left bank ofat Khannagar upstream of the Railway Bridge-Orissa.	\cdots	...	\cdots	...	43
Kendrapara Canal taking off Birupa river ofs of Mahanadi aniout at Cottaok, Orissa-How to prevent silting of -	(iii)*	..*	...	**	**
Khairpur State (Sind)-Danger of waterlogging in the Eastern Nara tract in-	...	$3 *$	
'Khari River-Minimum waterway required for Jodhpur Railway Bridge on	...	-."	\%.	37	
Khari River at Rajpur, near Ahmedabad (Bom:-bay)-How to prevent outflanking of Barrage on-	(ii) ${ }^{\text {a }}$	$2{ }^{\circ}$ \cdot	
Khipro Canal (Sind)-Remodelling the, for sand exclusion.	-**	\cdots	\cdots	127	
Knnckle at Dunbar Cotton Mills- Longitudinal and oross row of piles at the-to enable acaretion and silting to take place.	...	7, 8	\cdots	...	
Kosai River.		13	...	\cdots	
Kosi gorge-Land slides in the	3	
Kosi River-Factors affecting rapid westerly movement of-	5	**	...	132	-*
Kotri and Sulskur-Silt in suspension at-since 1913-Quality of-	19	. ${ }^{\text {a }}$	\cdots	...	
Kotri Barrage-proposed design of, for effective saud exclusion from canals-Sind.	...	**	**	***	116.
Kotri Barrage-Regulation of- "Still pond " or "Semi open flow"-and consequent height of pocket gates at	*.	134
Kshipra River at Ujjain-Erosion of-control of	(ii) ${ }^{*}$	$2^{\circ}, 5$...	\cdots	47
Kuakhai River-protecting the right bank of, above the B. N. Railway Bridge near Cuttack (Orissa).	\cdots	\cdots	**	\cdots	39
Kuakhai River-design of gaide bank, above the B. N. Railway Bridge at Cuttack.	\cdots	\cdots	"•		41

L	Pages of Annual Report (Teobuical)for the year				
	1943	1944	1945	1946	1047.
Land Drainage-In the Bombay Deacau.'	...	121	\cdots
Landslides in the Kosi gorge.	3	\cdots	\cdots	...	
Leakage through Solani embankment. ${ }^{\text {- }}$	\cdots	63
Littoral drift-oontrol of erosion due to--	(ii)*	\cdots	\cdots
Lloyd Barrage-Soil survey of area commanded by	\cdots	\cdots	...	123	...
Lloyd Barrage-Training of the Indus River above Sukkur Barrage to prevent slips of the right bank below the nose of the Approach Channel.	\cdots	\cdots	...	17	\cdots
Lloyd Barrage-Stability of the proposed truncated nose for a super-flood of $9,00,000$ casees, in the $1 / 80 \mathrm{G}$. S. model.	22	...
Lloyd Barrage-Afflux due to the proposed extension of the outer bank of Approaoh Channel at	\cdots	25	...
Lock Span-proposed design of-in Lower Sind Barrage at Kotri.	191
Low level Weir downstream of Delhi Gate Pumping Station-effect of construoting a-on the low water channel at the Pumping Station.	...	8,9	**
Lower Sind Barrage (2400^{\prime} upstream of site B near Hajipur)-Experiments in. connection with dissipation of energy downstream of-	10-11
Lower Sind Barrage-Comparision of sites for the-	...	55	.**
Lower Sind Barrage-Design of the \rightarrow Experiments to test the design for scour and sand exclusion from cianals-Sind.	\cdots	...	48-59	98	\cdots
Lower Sind Barrage-Experiments to determine a suitable profile of the-to canse minimum afllux with gates fully open.	22-29	\cdots	...
Lower Sind Barrage, site C -island for		9 9"
Lower Sind Barrage at Kotri-Factors affeoting the exclusion of sand from the canals, at the proposed-	\cdots	\cdots	\cdots	105	...
Lower Sind Earrage at Kotri-Scale ratios of the model.	...	\cdots	..	107	\cdots
Lower Sind Barrage at Kotri-design of Look Spar.	\cdots	\cdots	...	\cdots	191
Lowest hed levels in the Bukkur-Rohrl gorge at Landsdowne Bridge daring 1928-1944.	\cdots		**
Luni River-How to control-where it is ,. crossed by the Samadari-Raniwara Lranch line on Jodhpur Railway.	\cdots	3^{*}	...	53, 52	**

$\mathrm{L} \& \mathrm{M}$	Fages of Annual Report (Technical)for the year				
	1943	1944*	1945	1946	1947.
Lani River Floods-Steps necessary to protect main line from Hyderabad to Luní Junction on Jodhpur Railway from-	...	3,5	...	3	...
Luni River-Training of the-to prevent it damaging Jodhpur Railway line.	36-42	\cdots	..•
M	\cdot				
M. \&S. M. Railway-Heavy ranoff from a small catchment ufs of a bridge of the, on the Gun-takal-Bezawada section of the-which caused the river to overflow the embankment and railway tract, causing an accident.	44	\cdots	\cdots
Mahanadi anicat at Cuttack, Orisba-Kendrapara canal taking off Birapa river a/s of-how to - prevent silting of	(iii*)	.."	\cdots	...	\cdots
Mahanadi and Katjori at Cuttaok (Orissa) Distribation of flood waters between-	37,38	...	19-22	\ldots	...
Mahanadi group of rivers at Cuttack (Orissa) How to control deterioration of the-	(iii) ${ }^{*}$	\cdots	...	\cdots	-
Mahanadi River-preventing scour below the - central slaices of-at the Mahanadi Anicat at Cuttack (Orissa).	\cdots	-•	...	5, 27	34
Mahanadi River-Test of measures to dissipate energy to prevent serious damage to the central slaices of - at Cattack (Orissa).	:-	...		31	".
Mahanadi River-Calcalations for the Standing Wave, Baffle parament, eto.-proposed design to prevent damage to the contral slaices of at Cuttaok (Orissa).	\cdots	36	\therefore
Mahanadi River-Redistribution of sand lead between the Mahanadi \& Katjuri river Bystem at Cuttack (Orissa).	\cdots	\cdots	...	44	35
Mahanadi River-Experiments with reduced and unreduced Naraj weir length to find the distribation of sand load between Mahanadi and Katjuri Sytem.	.'.	...	\cdots	45	
Mahanadi Main canalFalls (C.P.)-ooefficient of disoharge of Notoh type and Weir type Falls on	...	\cdots	23
Major Gorie's Paper on soil denudation.	3
Malaprabha river-Training the-to protect the left bank and abatment of the M.siS. M. Ry. Bridge No. 8 at Hole-Alur on the HotgiGadag line.	...	\cdots	7-8	5	
Manas, Beki and Balkadoba rivers (Assam)How to train and control-	(ii)*	$\begin{array}{r} 3,69, \\ 70 \end{array}$	\because	...	\cdots
Mandeswari River.	\cdots	13	...	\cdots	.
Maps- Rain Gauge Station maps of India, Barma and Ceylon.	..'	162	**

M	Pages of Annual Report (Teohnical)for the jear				
	1943	1944	1945	1946	1947.
Marginal bands of the Indus above Sukkur (Sind)-Realigoment of the Rohri-Quetta Railway necessitated by the danger of breaches in the-	(ii)*"	\cdots
Maximum depth of scour at heads of guide banks and groynes, pier noses and d/a of Bridges.	...	74	\cdots	" ${ }^{\prime}$	-••
Maximum depth of scour at noses of gaide banks, groynes and at sharp bends.	\cdots	75, 83	-
Maximum depth of scour related to ∇^{2} / d which is related to tarbalence.	.."	74	...	-	."
Maximum depth of scour round piers of Bridges in-					
(a) the Brahmapatra at Amingaon;	...	75, 82	-*
(b) the Chenab at Aleyandra Railway Bridge near Wazirabad (N. W. Rly.) :	\cdots	"
(0) the Chenab at Chiniot (N. W. Rly.) ;	-*	"	-	\cdots
(d) the Chonab at Chand (N. W. Bly.) ;	...	"
(e) the Chenab at Shershah (N. W. Rly.) ;	...	""
(f) the Gandak Railway Bridge at Bagaha (O. \& T. Bly.)	...	*	-
(g) the Ganges near the Hardinge Bridge (B. A. Rly.) :	-	75, 82
(h) the Indus in Rohri-Bukkur gorge ;	...	"
(i) the Jhelum near Jhelum Railway Bridge (N. W. Rly.) ;	...	"	\cdots
(j) the Jhelum near Shahpur (N. W. Rly.):	...	"	**
(k) the Jumna Railway Bridge at Delhi ;	...	"	-*
(1) the Karnaphnli Railway Bridge ;	...	75,78,82
(m) the Meghna near Railway Bridge (B. A. Bly.) ;	...	"
(n) the Par near Rly. Bridge (B. B. \& C. I. Rly.);	\cdots	"'	...
(0) the Ravi near Rly. Bridge at Dera Baba Nanak(N. W. Rly.) ;	...	75,77,82	**
(p) the Sutlej near Empress Rly. Bridge at A damwahan;	..-	\bullet0	\cdots
(q) the Sutlej near Rly. Bridge at Phillaur.	**	\cdots	\cdots
Maximam depth of scour at noses of guide banks, groynes and at sharp bends in-					
(a) Ganga at Sara Guide bank, 3 miles n / s of the Hardinge Bridge ;	...	75, 83	...	\cdots	-

M	Pages of Annual Report ('Technical) for the year				
	1943	1944	1945	1946	1947.
(b) Ganga near the nose of the Right Guide Bank of the Hardinge Bridge ;	...	75,83
(0) Hooghly near Dunbar Cotton Mill ;	...	"	...	\cdots	\cdots
(d) Jumna near Delhi Gate Pumping Stn. at spar 5 ;	..'	"	\cdots	\cdots	\cdots
(θ^{-}) Narbada River, old Railway Bridge at Broach, B. B. \& O. I. Rly.;	...	$\left\|\begin{array}{r} 75,77 \\ 79,83 \end{array}\right\|$	\cdots	\cdots	...
(f) Right Bank approach channel at Sakkur ;	...	75,77,83	\therefore
(g) Ravi a / s of Balloki Weir- $\left.\begin{array}{l}\text { (i) at nose of spar } 5 \text { on the Right } \\ \text { Bank; } \\ \text { (ii) at nose of spar } 6 \text { on the Right } \\ \text { Bank ; }\end{array}\right\}$..	$\left\|\begin{array}{r} 76,77,79 \\ 80,83 \end{array}\right\|$	\cdots	...	\cdots
(h) Sutiej at u/s of the Rly. Bridge, Ferozepore (N. W. Rly.) (i) at nose of apur 4; (ii) at nose of the old Right Gaide Bank.	...	$\left\|\begin{array}{l} 76,77, \\ 79,83 \end{array}\right\|$	\cdots	\cdots	. $\cdot \cdots$
Maximum depth of scour d/s of bridges in- (a) the Ganga d/s of pier 3 of the Hardinge Bridge;	...	76,77,83	\cdots	- ...	\cdots
(b) the N. W. Canal d/s of the Rly. Bridge near Ruk (N. W. Rly.) ;	..'	"	\cdots	\cdots	\cdots
(o) the Rice Canal dje of the Rly. Bridge at R. D. 75, 000 (N. W. Rly.) ;	...	*	\cdots	...	\cdots
(d) the Rohri Canal d/s of the Rohri Multan Road Bridge at R. D. 52,000 ;	...	$\begin{aligned} & 76,77, \\ & 81,83 \end{aligned}$	\cdots	...	\cdots
(e) the Rohri Canal d / s of the Head Regulator at Sulkkur ;	...	$\begin{aligned} & 76,77, \\ & 80,83 \end{aligned}$	\cdots
(f) scour d/s of the Road Bridges on the Eastern Jumna Canal.	..*	$\begin{gathered} 76,77, \\ 83 \\ \hline \end{gathered}$	\cdots	\cdots	- .
Maximam depth of scour d/s of Bridges.	...	$\left\|\begin{array}{l} 75,76,77 \\ 80,81,83 \end{array}\right\|$	$\therefore \cdots$	- ...	\cdots
Maximum freshet ebb disoharge in the Rapnarain River.at Kolaghat Railway Bridge on the B. N. Rly. in 1944, estimation of		14	\cdots	...	\cdots
Meandering of the River Sutlej between Ferozepore and Suleimanke Headworks.	(ii)*	\cdots	- $\cdot \cdots$...	\ldots
Meander length of the Rapnarian RiverIncrease in the-due to increase in freshet discharge.	\cdots	14	\cdots	...	\cdots
Meander lengths in pebble bed flumes.	50	\cdots	...	\cdots	\cdots
Meander Belt- probable maximum development to be allowed for; to provent erosion of Railway embankment at the proposed C.K. Railway Bridge over Ramgana River.	\cdots	\cdots	\cdots	6	\cdots

M	Pages of Annual Report (Technical)for the year				
	1943	1944	1945	1946	1947.
Meandering of Rivers factors determining the size and shape of	."	-•*	\cdots	131	...
Measares to prevent bank erosion at the Rupnarian Bridge near Kolaghat on the B. N. Railway in Bengal.	..'	3,13
Measures taken to control orosion of the left bank of the Rupnarian upstream of the Bengal Nagpur Railway Bridge at Kolaghat by means of defleoting groyne.	..	\cdots	5-7
Mechanism of ripple formation.	53
Methods followed in fixing model soale ratios and overcoming model limitations, based on experience gained at the Indian Waterways Experiment Station, Poona.	\cdots	."	$\begin{aligned} & 88- \\ & 116 \end{aligned}$	\cdots	- ${ }^{\circ}$
Method of calculating scale ratios in verticallyL. exaggerated mobile river models.	..'	...	$\begin{array}{r} 107- \\ 110 \end{array}$	\cdots	\bullet
Meyer Peter's \& Schoklitsch's Bed load formulae \& their comparison with station formalae.	49	...	\cdots	...	\cdot
Military Board bet up in 1850 to study Damodar River flood and realignment of embankments.	\cdots	14"	\cdots
Mississippi formula-use of-for estimating the maximum flood discharge in the Gandak River at Bagaha on the Oadh and Tirhut Railway in 1924.	...	12"
Mithrao and Khipro Canals-Control of sand entering, Ex-Nara at Makhi (Sind).	..'	\cdots	...	127	...
Mobile river models, vertically exaggeratedMethod of caloulating scale ratios in -"	$\begin{gathered} 107- \\ 110 \end{gathered}$..*	."
Model Experiments-Field results of measares adopted after.	5	34
Model-Equivalent size and spacifio gravity of stones and blocks in a-	\cdots	\cdots	$\begin{gathered} 115- \\ 116 \end{gathered}$
Model limitations-Methods followed in over-coming-and model scals ratios-methods followed in fixing-based on experience gained at the Indian Waterways Experiment Station, Poona.'	$\begin{aligned} & 864 \\ & 116 \end{aligned}$...	34
Model limitations-action of tree groynes as regards bank erosion and acoretion upstream and downstream of the groynes.	\cdots	...	\cdots	5	..0
Model-Pilot \& mobile bed-Experiments with	\cdots	15	\cdots	...	\cdots
Model-reproduction of curvature in a-	59	\cdots
Nodel scale ratios-methods followed in firingand model limitations-methods followed in overooning-based on experience gained at the Tndian Waterways Experiment Station, 1 volu.	$\begin{aligned} & 88- \\ & 116 \end{aligned}$	\cdots	\cdots

M \& N	Pages of Annual Report (Terhnical) for the year				
	1943	1944	1945	1946	1947.
Model-Scale Ratios of the Sutlej River model at Samabata Station-N. W, Railway.	**	**	\cdots	76	\cdots
Model-Soale Ratios of the Lower Sind Barrage model on Indus River at Kotri.	...		1. \cdot	107.	**
Model Soale ratios-Time scale, based on tractive force formula used in Kotri Island nose experiments-Lower Sind Barrage.	, ${ }^{\text {P }}$	***	*.*	110	...
ModeI ($1 / 400,1 / 66$), vertically-exaggeratedof the Mahhanadi and its Branches at Cuttack (Orissa)-Experiments with the $*$	19-22	44	35
Model soale ratios of model of Kahipra River at Ujjain.	..*	-**	...	$\cdots{ }^{*}$	47
Model scale ratios of Tapti River at Suratdesign of	**	...	\cdots	\cdots	58
Model scale ratios of Cochin Harbour-design of	..	\cdots	\cdots	...	102
Models, geometrically-similar which give geo-metrically-similar results.	92	...	**
Models, geometrically-similar which do not give geometrically-similar results.	..*	-.4	99-101	...	\cdots
Models, rigid and vertically-exaggerated.	\cdots		103	...	**
Modely, semi-rigid and vertically exaggerated.	\cdots	...	105	***	
Model Experiments-Technique of	\cdots	142	
Models, tidal-scale ratios of-	\cdots	\cdots	104-105	**	\cdots
Models, vertically-exaggerated of rivers (tidal and non-tidal).		**	102	...	\cdots
Models vertically-exaggerated and mobileMethods of calculating scale ratios in-	..		107-110	-	..
Moja-Damodar River.		31	\cdots	...	**
Motaguri Band on the Manas River-Breaommg the-	...	5	$\therefore \quad \cdots$...	\cdots
Mud Banks-Report of the Special Committee 1938, on formation of Mud Bank at Cochin Harbour.	...	*	* ...	\cdots	92
Mad Banks-at Coohin Harbour-movement of-	\cdots		\square^{*}	**	112
\mathbf{N}					
Nara-Eastern and Rohri canals (Sind) Fluctuation of grade of materials exposed on the beds of the-	35	**	**	**	-*
Naraj Weir at Guttack (Orissa) -Standing wave and drowned condition of the-and their effeet on the sand drawn by the Katjuri. 8	38		-••	**	\cdots

N\& 0	Pages of Annual Report (Teohnical)for the year				
	1943	1944	1945	1946	1947.
Narbada River-Water levels of maximum floods in the-during 1886 to 1944.	...	85	..*
Narbada, Tapti and Sabarmátì Rivers-Prevention of erosion of agricultural lands along the-	...	$2,3,5$...	-	.."
Neamati in Assam-Prevention of erosion at-	...	3^{*}
Nira L. B, Oanal Head Regulator-Coefficient of discharge of the-	95	122	...
Nira L. B. canal (Bombay)-Jeur aqueduct on the-Discharge formala for-	(ii)*"
Nira Right Bank Canal Aqueduct No. 23Fluming of	122	...
Nomograms for determining commonly required hydraulic elements and constants.	78-80
Nomograms-Punjab Irrigation-by Mr. E. S. Lindley.	...	6"
North Western Canal-Sukkur Barrage on Indus River-Flattening the slope of	...	\cdots	...	85	\cdots
Number of dry days during which Tansa storoge (Bombay) was depleted-years 1896-1944.	...	73	\cdots
Number of wet days before depletion started in Tansa (Bombay)-years 1896 to 1944.	. \cdot	73"
Nuna-Pothi rivers in Orissa-Flood protection measures for-	...	$3{ }^{\circ}$"
N. W. Canal in Sind--Prevention of soour below a bridge on the-	...	3	..-	...	\cdots
N. W. Railway Bridge over the N. W. ctansl near Ruk, Sind-Deep scour d/s of the-experiments oarried out to evolve a saitable design of pavement and side expansion to induce acoretion.	...	23	**
0					
Offtake-Design of-at the entrance to the right poeket from the approach ohannel at Sukkur.	\ldots	\cdots	96	\cdots	\cdots
Orissa, experiments with a vertioally exaggerated model ($1 / 400,1 / 66$) of the Mahanadi and its branches at Cattack.	19-22	\cdots	**
Orisss, Cuttack-Katjuri and Mahanadi group of rivers near-Experiments with a model of the	37	...	19	44	35
Orlssa, Cuttack-How to control deterioration of the Mahanadi groop of rivers in-	(iii)*	\cdots	\cdots
Orissa, Cuttack-How to prevent gilting of Kenn- $^{\text {n }}$ drapara Canal taking off Birupa river, a / s of Mahanadi Anicat.	(iii)*	...	\cdots	..	**

$0 \& P$	Pages of Annual Report (Technical) for the year				
	1943	1944	1945	. 1946	1947.
Orissa, Cuttack-Mahanadi and Katjuri atDistribution of flood waters between-	37	*.'	19	-•*	\cdots
Orisea, Cuttack-Naraj weir at-Standirg wave and drowned conditicn of the-and their effect on the sand drawn by the Katjuri.	38	...	19	*-	.-*
Orissa-Flood protection measures for Nuna Pothi Rivers in-	: $\cdot \cdot$	3*	-	\cdots	...
Orissa, Prevention of silt going into the Surada Reservoir at its Padma Intake in-	...	2^{*}	***	-**	**
Oudh and Tirhnt Railway-Gandak River at Bagaha on the-which has outflanked the bridge-how to divert the-to its original course through the bridge.	(iii)*	10	-
\mathbf{P}					
Paharpar Canal and Bilot creek-Analysis of data of	32	\ldots	. 6
Pebble bed flume-Experiments to see what changes occur when the charge of nniform bed material is suddenly increased.	50	-*	-*	-••	**
Pebbles in pebble-bed filumes-Transportation of-	47	- ${ }^{-}$...	***	
Periyar River-Dominant discharge of	\cdots	\cdots	105
Permissibility or otherwise of reducing spillway eapaoity; Berar (Akols Mnnicipality).	\cdots	2*	*-*	\cdots	.
Piers-depth of foundation of-for the proposed C. K. Railway Bridge over Ramaganga River.	...	-	**	14	
Piers-maximum depth,of scour at the nose of	-••		-••	140	
Piers-scour round the	...		*-	129	*:-
Piles-Longitudinal and cross row of-at the knackle at Dunbar cotton Mills to enable accretion and silting to take place.	...	7	\cdots	39	-
Pilot Model and mobile bed model-Experiments with-	..*	15	
Port of Rangoon Tidal Model.		...	107	**	
Positioning of 'attracting' islands as related to meander length.	\cdots	97	-..	*-*	
Prediction of the future movement of the Gandak River at Bagaha.	...	13	**	...	
Present and future water requirements and supplies in the Jumns at Delhi.	, ...	91	\cdots	138	- ...
Prevention of collapse of Rohri Multan Road Bridge over Rohri Canal at R. D. 52,000 in Sind.	-*	3	...	- ...	**

\mathbf{P}	Pages of Annual Report (Technioal)for the year				
	1943	1944	1945	1946	1947.
Prevention of damage to the Surat-Rander Road and the city well of Surat d/s of the Hope Bridge from floods in the Tapti River in Gujarat.	...	3, 6, 87	\cdots	\cdots	...
Proventing gerious damage to the central slaioes of Mahanadi Anicut at Cuttack (Orissa).	...	\cdots	\cdots	27	\cdots
Prevention of erosion at Neamati in Assam.	...	3*	**
Prevention of erosion of agrical taral lands along. the Tapti, Narbada and Sabarmati rivers.	\cdots	3, 5, 84	**
Prevention of erosion on Bombay foreshore and reolamation of land bearing S. No. 71, part of Juhu and oreek-land.	\cdots	$1{ }^{\bullet}$...	\cdots	.*
Prevention of foreshore erosion at Vizagapattam.	...	3*
Srevention of further erosion on the Jeft bank of the Rapnarian river above Kolaghat Railway Bridge of the B. N• Railway.	\cdots	13	...	130	...
Provention of further erosion of the left bank of Sutlej River at Samasata Station, N. W. Rly.	...	\cdots	- ...	68	...
Prevention of erosion along the foreshore of the Hooghly River sbove Calcatta.	...	-..	...	130	-
Prevention of further erosion of the left bank of Watrak River upetream of Kaira Town (Bombay).	\cdots	64	...
Prevention of soour below a bridge on the N. W. Canal in Sind.	...	3,23	..*	**	..
Prevention of scour in Garang river on Assam access Road.	\cdots	3°	...	\cdots	**
Prevention of scour below the central slaices of the Jobra Aniout on the Mahanadi at Cattack (Orissa).	\cdots	\cdots	...	5	. \times
Prevention of sea wall erosion at Bombay.	\cdots	$1{ }^{\bullet}$	\cdots	...	**
Prevention of silt going into the Surada Reservoir at its Padna Intake in Orissa.	.."	$2 \bullet$...	\cdots	...
Prevention of slips of the right bank of Indus below the nose of approanoh channel-upstream of Sakkur Barrage.	\cdots	\cdots	\cdots	17	...
Proposal to construct a Barrage on Tank Zam in N. W. F. Province to split up water between several areas.	\cdots	$2 \cdot$	\ldots	\cdots	\cdots
Proposals to prevent 2 recorrence of damage resulting from breaches in the Damodar river, Bengal.	\cdots	3^{*}	-..	\cdots	\cdots
Proposed diversion of $40,000 \mathrm{cs}$. to relieve flooding at Gorakhpur on O. and T. Railway.	\cdots	$2{ }^{\circ}$	**
P-oportinnality of discharge in S. W. F. s. and height of hump-Relation between	...	43	...	**	...

P, © \& R			$\mathrm{r} \text { the } \mathrm{y}$		$\mathrm{sal} \text {) }$
!	1943	1944	1945	1946	1947.
Protection of Bridge over Rivers and Canals.	\cdots	. 0	\cdots	128	\cdots
Protection of the foreshore of the Anglo-India Jute Mill on the Hooghly (Bengal).	, ${ }^{\text {² }}$	42	..-
-Proteotion of retaining walls from scour by 'means of repelling spurs (Baluchistan).	\cdots	**	8	- \cdot.	0
Proteoting the toe of a retaining wall from scour, particularly on a ourve, in south Quetta, Baluchistan.	\cdots	1*	\cdots
Protection to the piers of the Elgin Bridge over the Gogra River on O. and T. Railway.	...	1. 1*	-..	**	-.
Proteotive measures below the new andersluices of Son at Dehri-Bihar officers' proposals tested in Model.	**	21	-**	**	**
Protective measures-Dehri (Bihar)-Optimum design of control blocks and deflectors.	: ...	21	* $\cdot \cdot$...	**
Pump House-supply of sand free water to Jamshedpar Pamp House.		-.*	\cdots	\cdots	187
Pump House at Jamshedpur-design of intake to wer.	"•	\cdots	\cdots	\cdots	. 188 "
Panjab Engineering Congress-Written disaassion by Director on Paper No. 275 "Rivertraining and control by pitched 'attracting' islands ".	...	97	**	-•	\cdots \because \because
Punjab Government-CHOS Aot passed by the-for afforestation.	- 3	...	\cdots	**	...*'
Punjab Irrigation Nomograms by Mr. E. S. Lindley.	**	6	**	\cdots	\cdots
Punjab praotice of constructing Headworks.	\cdots	98		...	\cdots
Punjab L. J. C., L. O. C., Jamrao canals and Sukkwr Barrage Canals (Sind)-Relationship between area and discharge.	23	:.	, ${ }^{*}$	**
$\mathbf{0}$				4.	
Quetta-Rohri Railway-realignment of the, necessitated by the danger of breaches in the marginal bands of the Indus above Sukkur.,	- (ii) ${ }^{\circ}$	\cdots	*..	\cdots	- ${ }^{\text {- }}$
R					
Railway bridge d / s of Bagaha on the Gundak river-Proposed	13	..	\cdots	\cdots	\cdots
Railway Bridges-on Madras Bombay line of M. \& S. M. Railway, between Miles 82 \& 113 ; protective measures for	...	\cdots	\cdots	...	52
Rainfall and run-off in Indian catohments.	44,67		...	124,131	19
Rainfall and run-off in American catchments.	69		\cdots		

R	Pages of Annual Report (Technionl)for the year				
	1943	1944	1945	1946	1947.
Rainfall and ran-off from Karambasa river at Silhat weir, U. P.	\cdots	68	\cdots
Rainfall and run-off-In the Upper Indus eatch-ment--some features of precipitational variation in-	\cdots	\cdots	...	\cdots	7
Rain Guage Station Maps of India, Burma and Ceylon.	\cdots	162	\cdots
Rajkot State-Rinn-off from Lalpuri Tank in-	...	68	...	\cdots	...
Rajkot State-Thorala oatchments in-Maximum possible discharge from aatchment of-	(ii)*	\cdots.	**
Ramganga River-probable maximum flood disoharge of, at the C. K. Railway Bridge.	**	\cdots	...	10	-."
Ramganga River-design of Guide Banks for maximam depth of scour at the proposed O. K. Railway Bridge.*	...	13	...
Ramganga River-Length of Gioide Banks at the proposed O. K. Railway Bridge over	\cdots	...	- ...	15	**
Ramganga. River-maximum depth of soour and depth of foundations for the proposed C. K. Railway Bridge Piers over	..*	. $\cdot \cdot$..'	14	**
Rander Road-olosing of epills on right bank u/S of Hope bridge near Sarat led to heavy erosion of the-	...	88	...	**	**
Rangoon Port Tidal Model.	107	...	**
Rate of sand attrition in channels.	62, 64	115	\ldots
Ratnagiri-Erosion at-how to improve conditions and prevent farther-	(ii)*
Recommendations of the Solani dam seotion based on model exporiments.	...	63	...	\cdots	\cdots
Recovery of head, modular limit and range in S. W. Flumes,	...	37	\cdots	...	**
Regeneration in the Jumna river.	...	93"	**
Regime-Divergence from-in stable channele in allavinm.	\cdots	135	.."
Relation between bulk proportionality and height of bamp.	...	43	\cdots	...	"•,
Relation between floods in the Monsoon and regeneration in- the Hot-weather in the Juman River.	:'	93	\cdots	...	**
Relation between the mean rainfall at Wada and Bhivandi and Bombay water bupply1895 to 1944.	...	73	\cdots	\cdots	-
Relation between proportionality of disoharge in S . W. F. s and height of hump.	...	43	...	\cdots	\cdots

R	Pa	Anno	the		Bl)
:	1943	1944	1945	1946	1947.
Ripples to waves-Transition from-	53	".	-**	...	\ldots
Rivers and Canals-flow in	-••	**	...	83	**
Rivier model Experiments-diffioulties experienced in-due to effeots caused by vertical exaggeration.	*..	-••	110	..'	\cdots
Rigid structures in wide ohannels-Scour downstraam of-	\because	**	67- 71	...	-
Rigid, vertically-axaggerated models.	\cdots	**	103	**	-••
River floods-Sunspot intensity oyoles as a medium of predicting the probable dates of ocourrence of	-••	...	-86-87	...	**
River meandering-factors determining the size and shape of	***	*	...	181	\cdots
River Bunds in Sind-causes of breaches and steps required to minimise the danger of recurrence.	\cdots	- \quad -	- ${ }^{*}$	133	**
River training and control by pitched islands.	...	97	.."	...	**
River Training-the use of 'attracting' spars and islands for-	47	97	**	- ${ }^{*}$	**
Road Culverts-design of approaches \& exists of	..'	37	**
Rohri \& Eastern Nara Canals-Fluotuations of grade of materials exposed on the beds of the-	35	\cdots	..*	...	- $*$
Rohri Canal (Sind)-Effect of olosing the Head Regulator of the一from the top downwards, on the canal Regimen.	33	\cdots	**	\cdots	**
Rohri-Erosion on the Right Bank of the Indus above-and danger of breach of the main line, N. W. Rly.	(ii) ${ }^{-}$	\cdots	..'	...	**
Rohri-Multan Road Bridge over Rohri Canal at R.D. 52,000 in Sind-Prevention of collapse of	...	3*	\cdots	-••	-••
Roinri-Quetta Railway-realignment of thenecessitated by the danger of breaches in the marginal bunds of the Indus above Sukkur (Sind).	(ii)*	\cdots*
Run-off formulas-Emperical-	67	...	-••	. $*$	**
Run-off from catchments in Ceylon-advice regarding probable maximam	...	$2 \bullet$..	-•*	**
Ran-off from Lalpuri Tank in Rajkot State.	...	68	**	**	*
Run-off-Heavy, from a small catohment u / s of a bridge of the M. \& S. M. Rly., which caused the river to overfiow the embankment and . railway track, causing an accident.	44	...'	\cdots	**	.*
Ran-off, maximum flood and catchment areaRelation between-	67	...	-•*	***	**

R\&S	Pages of Annual Report (Technical) for the year				
	1943	1944	1945	1946	1947.
Rapnarian Bridge near Kolaghat on the B. N. Railway in Bengal-Neasures to prevent bank erosion at	\cdots	3,13	...	78	
Rupnarian River u / s of the Kolaghat bridge on the B. N. Rly.-Canses leading to erosion of - the left bank of the-	
Rupnarian River a/s of the Kolaghat bridge on the B. N. Rly.,-Fair weather and freshet spring tides in the-in 1944 and in its mobile bud model.	...	17, 20	...	'...	
Rapnarian River a/s of the Kholaghat bridge on the B. N. Rly.,-Maximum freshet ebb discharge in the - in 1944, estimation of	\cdots	14	$\therefore \cdots$	\cdots	
Rupnarian River u/s of the Kolaghat bridge on the B. N. Rly.,-Meander length of theIncrease in the-due to increase in freshet discharge -	...	14	\cdots	\cdots	, …
Rupuarian River above Kolaghat Railway Bridge on the B. N. Railway-Prevention of further erosion on the left bank of the-	(iii)*	13	...	130	
Rapnarian River above Kolaghat Railway Bridge on the B. N. Railway-Repelling groyne a/s of the Bridge-Comparison of resalts in the model and in the river.	\cdots	18	..-	\cdots	
Rupnarian River above Kolaghat Railway Bridge on the B. N. Railway-Tidal Range of the-	...	14			
Rapnarian u/s of the B. N. Railway Bridge at Kolaghat-Measures taken to control erosion of the left bank of the-by means of a deflecting groyne.	...	\cdots	5-7		
Ryve's Run-off formula.	67	\cdots	20
S					
Sabarmati, Narbada and Tapti Rivers-Prevention of: erosion of agricultural lands along the-	\cdots	$\begin{array}{r} 2,3,5 \\ 84 \end{array}$	\cdots	\cdots	
Sabarmati River-Water levels of maximum floods in the-during 1893 to 1944.	\cdots	86	
Sagi River-Minimum waterways required forJodhpur Railway Bridge.	...	\cdots	...	37	
Sakri River project (Bihar)	\cdots	...		**	199
Samasata spar on Sutlej river on the N. W. Railway to prevent dangerons- erosion.	\cdots	$3^{\circ}, 5$	
Sand and silt on the bed of the Rupnarain River at Kolaghat Railway Bridge on the B. N. Rly.	\cdots	16	\cdots	\cdots	
Sand attrition-rate of-in channels.	62	...	\cdots		

8	$\begin{gathered} \text { - Pages of Annual Report (Teohnioal) } \\ ., \text { for the year } \end{gathered}$				
	1943	1944	1945	1946	1947.
Sand-exolusion and soour from canals-Sind. Experiments to test the design for	..*	...	48-59	...	**
Sand-exclusion-at the nose of the outer Bank and at the raised sill of approach ohannel with and withoat outer Bank extension."	177
Sand-exolusion of sand from the canals at the proposed Lower Sind Barrage on Indus at Kotri.	\cdots	105	116
Sand-design of air sand-meter.	...	-"	32
Sand-mechanical analysis of by Puri sandmeter and Air sand-meter.	\cdots	26
Sand-wind Tunnel classifier for sand and silt.	\cdots	28
Sand particles-movement of	53	-*
Sand-Entering R. B. Canals at Sukkur-Control of, by means of approach channel.	126	-*
Sand exoluding heads for the M. E. canal and M. W. Canal on ths Son at Dehri (Bihar).	...	58	...	127	\cdots
Sand Load-Redistribution of-between Mahanadi River and Katjuri River System, at Cuttack (Orissa).	\cdots	...	19	44	35.
Sand-Rate of attrition of, in rivers and oanals.	'...	115	-**
Sangli State-Desilting and dredging Tanks in-	...	$2{ }^{\text {- }}$.."	...	***
Saturation line-effect of constructing a trenoh on the	...	61*
Saturation line or hydranlic gradient-effect of variation of u / s and d / s water levels of the Solani Khadir dam model on-	.."	61	**
Scale ratios-Methods of calculating-in ver-tically-exaggerated mobile river models.	."	."	$\begin{array}{r} 107- \\ 110 \end{array}$**
Scale ratios of tidal model.	\cdots	...	104-105"*
Soale ratios of the Satlej River model-experiments with sitlej river model at Samasata Station-N. W. Kailway.	."	...	\cdots	76	...
Scale ratios of Lower Sind Barragh model on Indus river at Kotri.	"•*	107	-*
Schoklitsch's and Meyer Peter's Bed Load formula and their comparison with Station formala.	49	\cdots	...
Scour and accretion in models and rivers compared with special reference to islands u/s of the Barrage.	...	99 0	**
Scour and sand exolusion from canals, SindExperiments to test the design for-	48-59	**	**

S	Pages of Annual Report (Technical)for the year				
	1943	1944	1945	1946	1947.
Scour below a bridge on the N. W. canal in Sind-Prevention of -	...	3,23	..'
Scoor below the central slaices of the Jobra Anicut on Mahanadi at Cuttack (Orissa).	\cdots	...	\cdots	5, 27	34.
- Scour below weirs.	...	74	67	114	67
Scour-Depth of scour *in river downstream, with Ganesh Iyer Volate Siphon Spillways.	...	\cdots	...	91	165.
Seour downstream of rigid stractures in wide channels.	67-71	114	69.
Soour around the nose of the right bank approaah channel at Sakkur.	...	74	...	**	-
Scour at spars in river models.	...	74	\cdots
Scour downstream of flumed falls.	...	\cdots	97	...	67
Scour d/s of the Sarda Barrage at Banbassa (U. P.)-Prevention of	24	...
Scoar-hole-Reproduction of-in a model, downstream of Hardinge Bridge piers 2 and 3.	...	74	...	\cdots	...
Soour-hole d/s of the Hardinge Bridge.	...	74
Scour-hole, 47 ft . deep, just d / s of the Head Regulator of the Rohri Canal.	...	74	*..
Scour-hole, 35 ft . deep, just d / s of the Road Bridge at R. D. 52,000 of the Rohri Canal, which threatened to undermine the bridge.	.*	74	...	\cdots	\cdots
Soour-hole, in the canal bed and bellied banks d/s of the railway Bridge on the Rice Canal at R. D. 74944.	...	74	**	\cdots	\cdots
Scour-hole d/s of the N. W. Rly. bridge at Rak over the N. W. canal-conditions leading to-	...	23
Scoor-hole-Approximate quantity of stone required for filling the-in the Approach Channel and constracting a pitched truncated nose at Sukkar Barrage.	\cdots	...	\cdots	26
Scour-holes of the present ander-slaices of the Son at Dehri (Bihar).	\cdots	20	-..
Soour in Garang River on Assam Access RoadPrevention of	...	3*	...	\cdots	...
Scour-optimum shape of the island at the proposed lower Sind Barrage at Kotri to get minimam scour at the nose of the island.	112	...
Scour below Kotri Barrage	...	\cdots	\cdots	-."	72
Scour round divide wall noseg-Kotri.					73

S	Pages of Annual Report (Sechnioal) for the year				
	1943	1944	1945	1946	1947.
Soour-Prevention of, d / s of slaices of the Son - Aniont at Dehri.	\cdots	20	**	\cdots	\cdots
Soour round bridge piers.	\cdots	\cdots	\cdots	129	**
Soour-model limitation of tree groyne aotion in reproducing bank erosion and acoretion n/s and d / s.	.*	**	***	5	\bullet
Scour-maximam depth of, at heads of guide bank and groynes, pier noses and d/s of bridges.	**	*.*	..*	140	70
Soour-maximum depth of, at the trunoated nose, Indus River above Sakkur Barrage for designing the apron.	\cdots	**	**	24	**
Scouring of channels-factors affeoting	\cdots	\cdots	\cdots	132	**
Scouring of tail ohannel and regulation, at Sakkar.	\cdots	*."	**	"..	61
Sea wall erosion at Bombay-Prevention of	\cdots	$1 *$	***	*.	**
Semi-rigid, vertioally-exaggerated models.;	$* *$	**	105	"."	**
Sewage-Poona Sewage disposal by irrigation of	.'.	-•	**	123	**
Shape and dimensions of ripples and wavesFactors affecting the	56	\cdots	\cdots	.."	**
Shape of catchment-effect of-on the ran-off	. $*$	68	\cdots	\cdots	20
Shape of channels-factors affeoting the -	22	***	-."	-"'	- 0
Silting and scouring of ohannels-factors affecting the, Note for the Orissa flood Advisory Committee on our present know. ledge of the	**	**	\cdots	132	**
Silt in suspension at Sukkur and Kotri since 1913-Quality of	19	...	**	**	\cdots
Silt-Prevention of-going into the Surada Reservoir at its Padma Intake in Orissa.	\cdots	2*	\cdots	.."	- $*$
Sind-Analysis of Inandation canals in-and its comparison with the data of perennial canals.	...	- 29-32	\cdots ${ }^{\circ}$
Sind-areas flooded as a result of breaches in embankments in-daring the 1942 Good season,	.."	11	...	**	**
Sind-Breaches in the Indus in-How to Prevent.	20	\cdots	".'	...	\cdots
Sind-Canses of floods in	12	\cdots	**	\cdots	\cdots
Sind-Design of canals inPart I-New Canals. Part II-Inandation Canals.	21	.."	**	***	***
Sind-Design of lower Sind Barrage at Hajipur.	(ii)	55	\bullet	**	**

S	Pages of Annual Report (Technioal)for the year				
	1943	1944	1945	1946	1947.
Sind Government-Historioal review of steps taken by the-to collect data in conneotion with the Indus and to control it in its passage through Sind.	11	\cdots
Sind-Indus at Sukkur-New facters which will affect the rate of rise of water levels in -the	17	\cdots	,...
Sind-Indus-Effect of constructing a barrage acoross a river on bed levels and water levels u/s and d/s with particular reference to the	18	990
Sind-Iudus in-Technical analysis of the available data regarding the rise of water levels of the-in the past and to be anticipated in future.	15	\cdots	...	\cdots	\cdots
Sind-Jamshoro Bund on the left bank of the Indus near Hyderabad.	39	...	\cdots	\cdots	\cdots
Sind-Prevention of collapse of Rohri-Multan Road Bridge over Rohri Canal of R. D. 52,000 in	...	3^{*}
Sind-Rate of rise of water level in the Indes in	15			...	
Sind-Remodelling Railway Bridge over'the N. W. Canal at R. D. 75,000 on the N. W. Rly.	\cdots	3,23	...	- ...	\because
Sind-Remodelling the Rice Canal in head portion.	...	;	\cdots	...	\bullet
Sind-Rohri canal-Effect of closing the head regulator of the-from the top downwards on the oanal regimen.	35	\cdots	\cdots	...	
Sind-speoifio diṣcharge gange at Bachalshah on the Indus in	\cdots	101	\cdots
Siphons-volute-originated and designed by Mr. Ganesh Iyer-Experiments to improve the design of	(ii)*	\cdots	- ...	\cdots	\% $\cdot \cdots$
Siphon spillways.0	97-98	141	
Siphon spillways: Ganesh Iyer's volute siphon-Factors affecting the coefficient of discharge of	\cdots	...	72-78	...	
Siphon Spillways-preventing soour below Ganesh Iyer Volute Siphon by matual impact of jeta.-	..'	91	165
Siphon Spillway in Jodhpur State-Erinpura Irrigation and Hydro-eleetrical Project.	...	$2 *$...	\cdots	
Slope-design of canals-slopes in perennial and inundation canals in Sind.	136	
Sloping groynes, above the old Rly. bridge on the Narbada River at Broach.	...	85	..	\cdots	

S	Pages of Annual Report (Technioal)for the year				
	1943	1944	1945	1946	1947.
Soil olabsification and demarcation of block area in Bombay Deocan.	**	...	\cdots	121	...
Soil sarveys in Sind.	\cdots	...	\cdots	123	-..
Soil denudation-Exoess sand charge due to	5	...	\cdots	...	-
Solani Dam-Recommendations of the-based on model experiments.	\cdots	63	\cdots*
Solani Dam-staunching dne to silting a/a of the-effect of	...	63	\cdots	\cdots	..
Solani embankment-Leakage through	\cdots	63	\cdots-
Solani Khadir and Balta Jheel reservoirs in the U. P.-model experiments in connection with	...	59	...	\cdots	...
Solani Khadir and Balta Jheel (U. P.)whether material is saitable for constructing y dam in the	(iii)*	\cdots	...		\cdots
Solani Khadir Dam model-offect of variation of x / s and d / s water levels of the-on hydranlic gradient or saturation line.	...	61	\cdots	...	\ldots
Solani Khadir Dam Project-Spooial features of	.."	60	\cdots	\cdots	\cdots
Solani soil-Transmission coefficient of the	\cdots	63	.."*
Son Anicut at Debri (Bibar)-Present method of regulation of -on rising flood and falling flood.	40	\cdots*	\cdots
Son Anicut (Bihar)-sand reducing heads for the M. E. and M. W. Canals n/s of-	(iii)*	58	...	\cdots	\cdots
Sòn at Dêhri (Bihar)-Optimum design of control blocks and deflectors.	...	21.	..*	\cdots	\cdots
Son at Dehri (Bihar)-Proteotive measures below the new undersluices.	...	20,23	\cdots	\cdots	\cdots
Son at Dehri (Bihar)-Remodelling the anicut.	...	\cdots	...	127	\cdots
Son at Dehri (Bibar)-Scoar-hole downstream of the present undersluices of -	\cdots	20	...	\cdots	**
Son at Dehri-Protective measures below the new nudersluices of-Bihar Officers' proposals tested in Model.	\cdots	21	...	\cdots	..*
Son River at Dehri ('Bihar)-Sand drawn by the Canals and undereluices a / s of the aniout.	41	**	...
Special featanes of the Solani Khadir dam projeot.	..	60	...	\because	\cdots
Specific discharge gaugee at Baohalshah on the Indas, Sind.	\cdots	101	**
Specifie gravity and equivalent size of etones and blocks in a model.	...	\cdots	115-116	"*	\cdots

	Pages of Annual Report (Teshnical) for the year				
	1943	1944	1945	1946	1947.
Spillways-Siphon	.."	\cdots	-	141	**
Spur 6 at Tajewala Headworks acts as an - attraoting' spar.	...	97	...	-••	...
Spurs-attracting and repelling	47	97		\cdots	. 0
Spars-' attracting'-in the Beas River.	(ii)*	...	,	...	**
Spurs-Control of the Jumra River at Taje-wala-by means of-	(ii)*	\cdots	\cdots	- $*$	-
Spurs-the use of 'attracting'-for training a river, $\mathfrak{a} / \mathrm{s}$ of a masonry work-	47	97	:-	\cdots	**
Standing Wave Flumes-Cooffioient of discharge of	\cdots	34	92-93	.**	
Standing Wave Flume-Controlled Irrigation.	\because	\cdots	\ldots	122	
Standing Wave Flume-design of-for the Jawai River Project (Jodhpur).	**	..	\cdots	86	. . $\cdot \cdots$
Standing Wave Flume-Water surface profiles in a 5^{\prime} wide S. W. F. with- parallel sides at various stages.	**	\cdots	\cdots	86	
Standing Wave Flume discharge coefficientEffeat of piers on, in Sind falls.	\cdots	\cdots	94	...	\cdots
Standing Wave: Flumes-Effect of friction an coofficient of discharge.	\cdots	47	\cdots	\ldots	**
Standing Wave Flames-Fffect of piers on coefficient of discharge of-	: \because	48	...	\cdots	\because
Standing Wave Flames-Parallel flow through the throat of-	\ldots	31	\cdots	\cdots. \quad *	\cdots
Standing Wave Flumes-Recovery of head, modular limit, and range in-	\ldots	37	...	**	-
Standing Wave Flames-Standard designs of-	...	49		..*'	
Standing Wave Flumes-Trapezoidal	...	34	.."		..*
Standing Wave Flumes and Flume Meter Baflle Falls-design of-	\cdots	29	**	...	***
Standing Wave Flumes and falls-discharge Table of	..	33	\cdots	**	\cdots
Standing Wave Flomes and Falls. U/s gange and gange ohambers-Position of-	.-	32	\cdots	\cdots	**
Standing Wave Flumes and Falls-Velocity of approach-effect of-	\cdots	33	...	- ...	
Standing Wave Flume-currature of flow in the throat of a ${ }^{\text {a }}$	80-85	\cdots	**
Stannching due to silting a/s of the Solani Dam-effect of-	...	63	\cdots	\cdots	\cdots

T	Pages of Annual Report (Technioal) for the year				
	1943	1944	1945	1946	1947.
Tajewala-Headworks of .Eastern and Western Jumna canals at--	-**	13	...	- 0	..
Tansa Dam-Determination of the coefficient of discharge of the automatic gates spillway for the-	**.	. ${ }^{\circ}$	29-36	\cdots	153
Tapti, Narbada and Sabarmati Rivers-Prevention of erosion of agricultural lands along the-	\cdots	3, 5, 84	- 0	...	54
Tapti River-Water levels of maximum floods in the-during 1872 to 1944	84	-••	...	\cdots
Teohnical analysis of available data regarding the rise of water levels of the Indus in the past and to be antioipated in fatare-	15	99	\cdots
Technical enquiry into the causes of breaches in River Bunds in Sind and steps required to minimize the danger of recurrence	20	-••	- 0	-..	
Thorala Tank (in Rajkot State)-Maximam possible discharge from catchment of,	(ii)*	. -	\cdots
Tidal models-scale ratios	-••	...	104-107	. $\cdot \cdots$	
Tidal range of the Rapnarain River at Kolaghat Railway Bridge on the B. N. Railway.	**	14	-..	..'	...
Tons and Giri catchments-effect of storages in-on supplies in the Jumna daring flood season \& regeneration in the fair season.	...	94.	\cdots	. -	\therefore
Tractive force formula-used in fixing time soale of Kotri island model-Lower Sind Barrage on Indus.	-••	$\cdots \cdot \cdots$	\cdots	110	- $\quad \cdots$
Tortuosity-Arc to chord ratio of Sutlej river loop at Samasata Station, N. W. Railway.	...	-••	\cdots	69	- 0
Training á river upstream of a masonry workThe use of 'attracting' spars for-	47	-.•"	-*
Training of Lnoni River to prevent it damaging Jodhpar Railway line	-..*	...	36-42	...	no-
Training of Jumna River at Delhi Gate Pumping Station with pitched embankment on the right bank.	\cdots	\cdots	. $43-48$	**	- 0
Training the Hooghly River at Dunbar Cotton Mill with a by-pass ohannel.	-*	...	11-18	-	\cdots
Training the Jamna at New Delhi Gate Pumping Station.	(iii)*	3	-	**	-
Training the Khari River so as to prevent outflanking of the pick-np weir and Head Regalator of the Khari-ont canal, and damage to Raipur village in Ahmedabad District.	-	$2 *$."	*-*	${ }^{\prime \prime}$
Training the Malaprabha River to protect the left bank \& abutment of the M. \& S. M. Rly. Bridge No. 8 at Hole-alur on the Hotgi-Gadag line.	**	.-.	7-8	-**	\cdots

T, D, \& V		$\overline{\text { anu }}$	$\overline{\text { Repd }}$	CTO	aioal)
	1943	1944	1945	1946	1947.
Training the river Kshipra near Ojjain in Gwalior State.	...	2,5*
Training works at Dingra ghat on the Mabananda river in Bengal.		$2{ }^{\circ}$
Transmission Coéfficient of sand sample from the bed of Damodar River at Sindri.	\cdots'	94	\ldots
Tranemission coefficients of the Solani soil.		63 $\cdot \cdots$	\cdots
Tree-Groynes-semi-permeable tree groynes, to reduce risk of attaek on the goods yard, Kolaghat Station upstream of B. N. Railway Bridge-Rapnarain River.	\cdots	. ${ }^{*}$.	\cdots	78	\cdots
Tube well-yield from, in the Zhob valley, Baluohistan.	...	**	...	97	...
Tabe wells-rield in relation to sab-soil.	\cdots	94	--
Tarbalence-Reduction of, in the River Hooghly downstream of the knuckle at the Titaghar Jate Mill (Bengal).	...	\cdots	. \cdot	38	83:
Types of models.	\cdots		88
U					
Ojjain-Erosion of Kshipra River at-control	(ii)*	- ${ }^{*}$ * 5	:•	..-	"*
Onited Provinces-Balta and Solani Khadirwhether material available is saitable for oonstructing a dam in the-	(iii) ${ }^{\circ}$	\cdots*	
\mathbf{y}					
Vanes-submerged, to exolude sand from canale at Lower Sind Barrage on the Ingus at Kotri.	...	\bullet	...	101	..*
Vertioally-exaggerated, models of rivers $\}$ tidal and non-tidal),	\cdots	."	102	...	\cdots
Vertically-exaggerated model ($1 / 400,1 / 66$) of the Mahanadi and its branohes at Cattack (Orissa)-Experiments with them	\cdots	. $\cdot \cdot$	19-22	...	\cdots
Vortically-exaggerated and semirigid models.	105	..*	
Vertically-exaggerated and rigid models.	103	...	***
Vertical exaggeration-Difficulties experienced in river model experiementa due to effeots caused by-	\cdots	...	110-113	..*	\cdots
Vertically-exaggerated mobile river modelsmethod of calculating seale ratios in	107-110
Vizgapatam-Prevention of foreshore erosion at-	\therefore	3^{\bullet}	...	-*	-
Volate siphon, Ganegh Iyar's-factors affecting the coetfioient of discharge of -	...		72-78	..-	**

	Pages of Annual Report (Techniosi) for the year				
	1943	1944	1945	1946	1947.
Weir-High Coaffioiont weir profle (Hydera-bad-Decoan).	**		***	86	\cdots
Weir-Soomr below weirs.	- \because	- ***	\cdots	\cdots	- 67
Working range of baffles.	"*	41	\cdots	***	**
Field during monsoon from Tansa oatohmentyears 1896 to 1944.		$\therefore 73$	\cdots	**	**
Zam Tank in N. W. F. Provinoo-Proposal to construct a Barrage on-to split up water between several areas.		2	-..	**	**

[^0]: Sale Price :- Ru•251- or 88sh. \quad ad.

