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PREFACE 

Despite the recognition accorded statistical methods by 
active workers in psychology, education, and the social sci
ences, the average undergraduate major in these fields often 
tegards the customary course in statistics as dull and 
uninteresting. And there is no denying the fact that his 
actual experience in the course may serve to bolster rather 
than to change his original opinions. This is apt to be true, 
I believe, when the instructor assumes a degree of mathe
matical training, however elementary, which the under
graduate major in the social sciences fails to have. Even 
when the student has had such training, its value may be 
largely nullified by the time interval which separates it from 
the course in statistics. 
· Another factor producing lack of interest, I believe, is the 

stress which is often placed upon long and involved problems 
which are essentially exercises in multiplication, subtractiqn, 
division, and addition. The student often regards these 
problems-and perhaps rightfully so-as so much "busy
work." Such problems subtract from the time which the 
student feels could be more profitably spent in learning to 
appreciate the use and value of statistical techniques in his 
chosen field •. 

Under these conditions the student's memories of statistics 
are memories of laborious computations and mysterious for
mulas, and it is these memories which he passes on to next 
semester's class. , 

This text attempts to break the vicious circle. Little stress· 
is placed upon calculative ability. I have tried in most cases 
to minimize the labor of computations by the use of illustra
tions and problems constructed With that end in view. In 

v 
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addition, coding techniques for reducing the size of numbers 
are introduced early and stressed throughout. I would not 
change this emphasis in the introdw;tmy course even if a suf
ficient number of calculating machines were on hand to make 
one available to each student. In my opinion, it is not the 
function of this first course in statistics to train computers 
and machine operators. Let the beginning student get a 
picture of the use to which statistical techniques can be put 
in answering questions in his field of specialization. Let him 
see that statistical techniques are tools, instruments. Let 
him understand the simple formll1.M and the meaning of vari
ous statistics. He can then learn machine techniques of 
calculation if he ever needs to handle large m.asses of data. 

To avoid assumptions concerning the student's mathemati
cal training, a review of elementary principles has been 
included. An understanding of these should enable the 
student to follow subsequent developments. Stress on this 
section of the text will assist greatly in minimizing a major 
source of confusion for most students. Some theory and 
derivations are introduced throughout the text, but nothing 
is presented, I feel, which is beyond the comprehension of the 
nonmathematically trained student, if he is assisted by the 
instructor. In the last analysis, I am convinced that statis
tics, unlike many other college courses,.must be taught, not 
lectured. 

The content of the book follows what I hope is a pedagogi-
. cal as well· as a logical order. Correlatjon is introduced 
earlier than in most texts because it has been my experience 
that students follow this development quite easily and that 
interest and motivation are increased because they see in 
correlation a technique of practical use. A good case could 
be made for introducing correlation by way of regression. 
But since regression is most often. used in psychology and 
education for prediction, it is reserved for a later chapter on 
this topic. 

Tests of significance have been stressed. One chapter has 
been devoted to the "t test," two to the "F test," and one 
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to the "x" test." It has been my experience again that .. 
students are able to relate these tests to problems in their 
own fields and are consequently interested in them. It is not 
uncommon to hear students exclaim with some degree of 
elation that for the first time they have some idea of what is 
meant by the frequent references to "critical ratios" and 
"significant differences" that they have encountered in their 
textbooks in other courses. . 

In discussing tests o{ significance, I have emphasized small 
sample theory since, whether the traditional attitude ap
proves or not, more and more· research as published in 
psychological and educational journals is being evaluated by 
small sample techniques. This does not mean, however, that 
there is a rigid division between large and small sample 
theory, but rather, as Kenney has said, that the "continuity 
between large and small sample theory is an essential part of 
the newer attitude" (63, II, 123). 

There are omissions as well as additions in this text. The 
reader will look in vain for the customary treatments of par
tial and multiple correlation. They have been omitted 
because I have searched without much success to find many 
applications of these statistical techniques in _the literature. · 
That they have their uses as wen as their limitations is 
fully recognized, but I feel that they may be developed more 
profitably, as far as the student is concerned, in advanced 
courses, where time spent on these topics will not be at the 
expense of statistical techniques which are more commonly 
in use. I have no excuse to offer for certain other omissions 
-for example, the customary chapter on the reliability and 
validity of tests, and the usual extended treatment of centiles 
and scaling techniques-other than the fact that I do not 
feel that they fall within the general orientation of the rest of 
the book and that these are problems which might well be -
taken up in a course in tests and measurements. . 

I have, as any student must, a desire to acknowledge my 
indebtedness to various individuals. Professor Harold Ed
gerton of Ohio State University first impressed upon me the 
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desirability of knowing more about statistical methods and 
theory. Professor Lloyd G. Humphreys of Northwestern 
University aroused my interest in small sample theory in 1939 
and gave freely of his time in discussions of the subject. His 
a pleasure also to acknowledge that I owe much to the various 
publications of Professor George W. Snedecor, Professor 
Helen M. W~lker, Professor R. A. Fisher, and Professor C. C. 
Peters. In addition, Professor Walker and Professor Peters 
were .kind enough to clarify, in personal communications, 
certain points of interpretation. 

To Professors Herbert S. Conrad and Robert J. Wherry 
and Dr. Steu~rt H. Britt, who read a draft of the manuscript 
in its entirety, and to Dr. Edward E. Cureton, who read 
Chapters 10 and 11, and Professor Quinn McNemar, who 
read Chapter14, a mere acknowledgment is hardly sufficient 
reward for the careful and painstaking service which they 
have rendered. I can only say that their comments proved 
invaluable in guiding me when I started to work on the 
revision of the original draft. The present text owes much 
to their efforts. 

I am indebted to Professor R. A. Fisher, also to Messrs. 
Oliver & Boyd Ltd. of Edinburgh, for permission to reprint 
T.ables C, D, and H, from .their book Statistical Methods for 
Research Workers. Professors Peters and Van Voorhis and 
their publishers, The McGraw-Hill Book Company, kindly 
granted permission to reproduce Table F from their book 
Statistical Procedures and Their Mathematical Bases. Table E 
has been reproduced from Professor Snedecor's book Statisti
cal Methods by permission of the· author and his publisher, the 
Iowa State College Press. Additional values of t at the 
1 and the 5 per cent levels were also taken from Professor 
Snedecor's book by permission. Table G was prepared by 
J. G. Peatman and R. Schafer and is reproduced by their 
permission and by the consent of Carl Murchison from the 
Journal of Psychology, where it first appeared. Other 
acknowledgments are made at variouS points throughout the 
text. · 
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Phyllis Covington and Jacqueline Charlton shared the 
major responsibility of typing the manuscript. Sidney S. 
Culbert assisted in the reading and proofing of the typed copy 
and Grace French in the checking of various computations. 
I am grateful to all of them for their assistance. 

Finally, I owe a very special debt to Professor W. R. Clark 
of the University of Maryland, who encouraged me in my 
varied efforts to arouse student interest in statistical methods, 
and to my students both at the University of Maryland and 
at the. University of Washington who responded to these 
effo~ts. · 

·· A.L.E. 
&atlle, Washington 
April, 19_/IJ 
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CHAPTER 1 

INTRODUCfiON 

1. THE TEXT AND THE STUDENT 

Approached from the point of view that statistical rech
niques are tools to be used in experimentation and research, 
and in the discovery of new facts, the study of statistical 
methods can be a very interesting as well as valuable subject. 
As social scientists, are we interested in descriptions? Then 
statistical -methods can assist us in making our descriptions 
more precise. Are we interested in differences between 
individuals and groups? Then statistical methods can 
assist us in describing and evaluating the reliability of 
observed differences. Are we interested in discovering 
whether there 'is any relationship between two traits, two 
abilities, or between information and attitude, or between 
juvenile delinquency rates and various areas of a city? 
Statistical methods again come to our assistance. These 
are applications of statistical methods to problems and 
there is no reason why such applications cannot be learned 
at the ·same time that the techniques are learned. That is 
the point of view stressed in this book. · 

a. Previous mathematical training~ Not everyone who 
uses a stop watch is interested, or need be, in the detailed 
construction of the watch. The stop watch is a tool, an 
instrument, .which can be used for measuring, describing, or 
evaluating time intervals. In a similar fashion statistical 
methods may be regarded as techniques for measuring, 
describing and evaluating data. To learn to apply ele~ 
mentary statistical techniques does not require any elaborate 
previous mathematical preparation. The field of mathe~ 
matical statistics is so highly developed that not every 
worker in the field of psychology or education can be ex
pected to be a specialist in both fields. 

3 



4 Introduction 

Automobile manufacturers publish two different sets of 
instructions to accompany the automobiles they produce; 
one book is intended for the driver of the car and the other 

·is intended for the mechanic. Nee.dless to say, the contents 
of the two books are not the same. The mechanic's book 
explains the working of the engine and other details. The 
driver's book tells him how to operate the car. The driver 
himself may ·never see the engine which makes his car go, 
but he takes it for granted that it is there and in good work-

. ing order. Of course, if the car breaks down, then the 
driver must take it to the mechanic to get it repaired • 
. This text is more like the automobile book for drivers 

than. like the one for mechanics. If while reading it you 
become • interested in getting a better knowledge of the 
mathematical bases behind the techniques presented, then 
more advanced texts such as Peters and Van Voorhis (7 4) 
may be consulted.l · 

. b. Examples and problems. It is a generally recognized 
principle in psychology and education that one learns by 
doing. That is the purpose of the exercises and examples 
scattered throughout the text. Insofar as possible these 
examples have been selected for simplicity, but some are 
more complicated than others. Emphasis in the text is 
placed upon the procedures to be followed in making various 

. computations and in interpreting the results of these com
putatioil£1. It is possible to learn to do this just as well with 
numbers that are small as with numbers that are large. In 
the few cases where large numbers have been used, you will 
find that the chapter on "simplifying computations" will 
enable you t'o "code" these numbers, i.e., to reduce their 
size, so that computations will be facilitated. 

c. Use of tables. In the back of the book you will find a 
number of statistical tables which you will have occasion to 
refer to constantly. It is important that you know how 
to use these tables accurately. Each one will be .explained 

t Numbers in parentheses in boldface type refer to the bibliography at the 
end of the book. · · · 
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in detail at the time at which it is first introduced in the 
discussion. Some of these tables are designed to simplify 
your work, such as the table of squares and square roots. 
This table will enable you to obtain square roots easily and 
will also give you the squares of numbers so that you may 
avoid unnecessary multiplication. 

d. Symbols. A word or two should be said about the 
use of symbols. They are relatively few in number and 
each one has a specialized meaning. These symbols are in 
reality a form of shorthand, a simplified way of expressing 
something that would otherwise have to be written .out in 
longhand ... Some of these symbols stand for quantities and 
others stand for operations to be perfo~ed. You have 
used symbols before and they are nothing to be frightened 
about. See how much easier it is to write "2 + 2 = 4" 
than it is to say, "The quantity two plus the quantity two 
gives the sum of four." 

Here is a slightly different example and one which may be 
unfamiliar: R = H- L. If we were to have to put this 
into words we would say, "The range of measurements is 
equal to the highest measurement minus the lowest measure
ment." In the symbolic statement, R = H- L, R stands 
for range, H stands for the highest measurement, and L 
stands for the lowest measurement. Once having memor
ized the symbolic statement we can use it over and over 
again in place of the longer definition. In essence, then, 
symbols enable us to say a lot with little effort. Take them 
in stride, memorize each one as it is introduced, and you 
will find that they will give you little trouble. 

What we have just said with respect to symbols applies 
also to formulas which are stated in terms of symbols. If 
you think of each formula as consisting of symbols which 
stand for quantities and operations to be performed, and 
that this is merely an abbreviated way of saying something, 
you will soon realize their value. The purpose of a formula, 
don't forget, js to simplify your work, not to make it more 
complicated. 
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e. Daily preparation. A book written about the subject 
of statistical techniques and a course in statistical techniques 
may not be quite like the usual texts and courses to which 
you-· are accustomed. Some· courses do not require daily 

· preparation, and many students get into the habit of waiting 
until just before an examination before getting down to 
work. By cramming they may succeed in absorbing a 
sufficient amount of knowledge, tempors¢ly at least, to pass 
an bbjective or essay type of examination. But research 
upon the problem of retention of material learned in this 
fashion indicates that it is soon forgotten. Students may 
not consider this too great a handicap if they find that an 
understanding of. later topics is not dependent on what has 
come before. 

This is not the case with statistical methods. · They can
not be successfully learned or mastered by cramming. Nor 
can the student, once having taken an examination, afford 
to forget the material studied and still expect to understand 
what is to come later. Statistical methods, as presented in 
this book, start from scratch; the assumption is that the 
student knows nothing at all about the subject. But there 
is a continuity of development, each new topic or section 
building upon the foundation established in the beginning. 
In certain respects this approach is like the construction of 
a house, in which the foundation, sides, and roof are built 
one upon the other. No good contractor attempts to put a 
roof on a house until he is sure of his foundation. The first 
few chapters in this book are ~he foundation of everything 
which appears later. -Don't make the mistake of rushing 
through them because they may seem familiar or easy. The 
chances are very good that many of the questions you may 
ask about later developments have their answers in one of 
the earlier chapters. _ 

f. Empirical approach. For practically every topic de
veloped in this book there are several possible approaches. 
There is an algebraic development, a geometrical develop
ment, and an "empirical" or, as some might prefer to call 
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it, arithmetical development. By the"'empirical approach is · 
meant the actual working through of a simple set of arith
metical comJ)Utabons to see that certam theorems or state: 
ments check as they should. · More will be said about the 
empirical approach in the third chapter when we take up. 
the subject of uaverages and measures of variability." The 
empirical approach is stressed throughout the discussion so 
that the student without much previous knowledge of mathe
matics can follow the development of various topics. The 
interested or advanced student .should re~ that there is 
nothing to prevent him from deriving some of the formulas 
and proof$ by other means. Some examples will be cited 
later. 

t. _ STATISTICAL. TERJIS AND STATEMENTS 

:a. Averages. In our daily conversation we often use the . 
term <~average." We say that "John is better than average" 
when someone questions liB about his golfing ability. Or 
that "~Ia.IJ" is slightly below -average as a dancer" and 
uslightly above average in height." Some of our college 
courses we say we like ubetter than average." Some of the 
shoes we buy are "poorer than average.,, And, although 
we may not have defined the term in our OWn thinking as 
precisely as a statistician would, we have some general 
understanding of the concept. We may be vaguely aware 
that our statements concerning averages are based upon a 
series of observations or measurements and that each of 
these observations or measurements taken singly may not 
be the same as the average we luive in mind. We perhaps 
have some scale in mind when we refer to John's ability as 
a goHer or Mary's height, and our average represents some 
middle position or value. The statements that "John is 
better than average" and that ul\Iary is slightly above 
average" indicate that we do not believe they represent this 
middle position. 

We can find statements similar to these in books about 
psychology, education, and the social scie?-ces, but they are 
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usually expressed more precisely than the statements we 
make about averages in our daily conversation. 

"A group of 50 high school students, after viewing a motion 
picture ·which presented the Chihese in a very favorable 
light, showed an average shift toward the favorable end of 
a scale measuring attitude toward the Chinese of 2.5 scale 
points. A control group which had not seen the motion 
picture showed a shift of only 1.2 scale points." 

. "'rhe average reading comprehension test score for 200 
sixth-grade students was 82.3,_ while the average score on 
the same test for a group of seventh-grade students was 
96.8." 

"A group of subjects which had been given one hour of 
practice daily for five days in simple arithmetic computations 
made an ·average of 13.3 errors on a speed test. Another 
·group with ten days of daily practice made an average of 
8.4 errors on the same test." 

All of these statements concermng averages were made 
possible by statistical methods. 

b. Variability. We encounter another kind of statement 
which is made possible by statistical methods. In their 
simplest form they may appear as follows: 
· . "The individual shifts in attitude scores for the group 
viewing the motion picture ranged from .8 to 7 .3. For the 
group which did not see the motion picture the shifts ranged 
from .2 to 3.4 points." · · 

"The range of scores on the reading comprehension test 
for the sixth-grade students was from 30 to 101; for the 
seventh-grade students the range was from 39 to 135." 

"The number of errors for the group with one week of 
practice ranged from 2 to 21, while for the group with two 
weeks of practice the range WR.$ from 2 to 11." 

These statements . indicate something of the spread or 
differences among measures of individual performance. 
They tell us, taken in conjunction with statements about 
averages, that some of the measurements were above average 
and that others were below. ';I.'hese differences are as much 
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a matter of interest as are the averages, so much so to some 
psychologists that entire books have been devot~d to the 
subject (2, 34). But we experience variability also outside 
our books in daily life. - We note that not all incomes are 
the same but that some are very high and others very low; 
that the temperature is not the same but varies from hour 
to hour, from day to day, and from month to month. Not 
sl1 synthetic tires have the same life span. Some give more 
mileage than others. Not all individuals are equally good 
at golf, dancing, and other skills. -

c. Relationships. Sometimes we find statements which 
are -not directly about averages or differences, but about 
relations between averages or differences. For example, 
in connection with the previous statements about reading 
comprehension scores for the 200 sixth-graders, we might 
find something like this: . 

"Those students who were above average on the reading 
comprehension test also tended to be above average in 
intelligence, as measured by an intelligence test, while those 
who were below average on one test also terided to be below 
average on the other. There was, in other wordS, a decided 
relationship between performance on the two tests, the 
correlation coejficient being .78.'' 

We need not concern ourselves at this time with the mean.
ing of "correlation coefficient" other than to note that it is 
a measure of relationship or association. Our interest here 
is in pointing out that relationships are . also a subject of 
discussion in psychology and education. Statements con
cerning relationships probably appear as often in these fields 
as do statements concerning averages and differences. They 
too are made possible by statistical methods. 

We also make constant reference to relationships in daily 
life~ although these statements; like those about averages 
and differences, are not expressed as precisely as the statisti· 
cian would like to make them. -. We note that a person's . 
income may be related to the number of years of education 
he has; or that the amount of rainfall .is related to the 
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season _of the year; or that an individual's opinions on 
political questions may be related to the section of the 
country in which he lives. Or we might say about John's 
golf: "He's good. He practices· a great deal." In this 
case we would indicate that we thought there was some 
relationship between his ability and the amount of practice 
he puts in on his golf. 

8. fUNCTIONS OF STATISTICAL METHODS . . 
a. Precise description. If you have followed the rather 

elementary discussion up to .this point, then you are already 
familiar with some of the chief functions of statistical meth
ods. In the behavioral or social sciences (and the examples 
in this book are selected largely from these fields) statistical 
methods enable us to study and to describe averages, differ
ences, and relationships in a precise fashion. The problem 
of studying averages and differences may seem simple 
enough. If we are interested in the performance of college 
freshmen on a test of verbal facility, for example, we give a 
group of freshmen the test, find some measure of average 
performances and some measure of variability or individual 
differences. We shall have more to say about this problem 
later, but now let us see how we might investigate rela
tionships. 
· b. Study of relationships. One obvious method of study
ing relationships is . by making comparisons. We might 
compare the average performance of freshmen on our test 
with the average performance of college sophomores to deter
mine if there is any relationship between year in college and 
performance. If we found that sophomores made a higher 
average score than freshm.Em, then we might assume that 
such a relationship does exist. We might feel even more 
confident of our assumption if we had also tested a group 
of juniors and a group of seniors and found that average 
performance increased from year to year, If we were so 
inclined, we might even carry our investigation en down 
through the various grades in high school.. Note here, in 
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this example, that the problem of studying relatiouships is 
essentially the problem of studying differences; we observe 
differences in average perfol'lllll.nce for different year groups. 
We find out, in other words, whether there is any tendency 
for these differences to go together, to be associated. 

On some occasions we may not find any basis upon which 
to classify individuals in order to get more than two groups. 
If we were interested in the relationship between sex and 
performance on our test of verbal facility we should have to 
be content with classifying our subjects as men or women 
and studying the average performance of -each of these two 
groups on. our test. 

There is another method of approaching the problem of 
relationships. Instead of studying average differences be
tween groups, we study the difference or relationship be
tween paired measurements. Some examples with which 
you are probably already familiar are the relationship be- · 
tween point hour ratio in college and intelligence test scores, 
the relationship between height and weight, the relationship 
between motivation and learning. The problem here is 
similar to that discussed above, except that all of our sub
jects are considered as members of a single group. For each 
subject_ we have a pair of measurements and ·we determine 

· the relationship between these pairs. 
c. Formulation of experimental designs. It is sometimes 

possible for an investigator to control various factors in 
which he is interested and to manipulate experimentally 
others in order to study the relationships between them. 
Such a situation may be called an experiment. The example 
cited earlier concerning the influence of a motion picture on 
attitudes is a case in point. The factor introduced into the 
situation was the motion picture about the Chinese. By 
testing attitudes before and after the children had seen it, 
the influence of the picture on attitudes could be measured 
(75). Practice periods of different lengths may be given . 
subjects in order to study the relationship between the 
amount of practice and performance. The behavior of 
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children may be observed· under normal play conditions, 
and then factors designed to produce frustration in the 
children may be introduced into the situation in order to 
observe whether these factors resUlt in any changes in play 
behavior (4). 

Usually this approach to the study of differences and rela
tionships involves an experimentol and a control group, and 
the behavior or performance of the two groups is compared. 
The experimental group is the group for which some factor 
(practice, frustration) is varied while the control group does 
not experience the factor. The factor which is introduced 
into the experimental situation. is ordinarily called the 
experimentol or independent variable; the variable for which 
we observe changes is called the dependent variable. 

There are various techniques for selecting and equating 
the experimental and control groups so that various factors 
which are pertinent to the probl~ms under investigation 
may be controlled. If we had reason to believe that, in a 
particular investigation, age might be related to the be-

. havior under study, then obviously we would want to have 
some assurance that this factor would not account for the 
results of our experiment. One way in which we might 
accomplish this would be by matching each individual in 
our experimental group with another individual of the same · 
age in the control group. 

Sometimes a particular experiment demands that our 
groups already differ with respect to a variable in which we 

. are interested. This might be the case if we wished to 
· study the effects of differing attitudes upon the learning and 

retention of different kinds of prose (14, 15). Will, for 
example, individu$ who favor a given issue learn material 
which presents a favorable picture of the issue more readily 
than material which is opposed to it? Will the opposite 
tendency be present in individuals who are opposed to the 
issue? In this instance we might select for study groups 
which differ with respect to the attitude they hold on the 
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issue but which are matched with respect to some other 
variable, such as level of intelligence. 

Statistical methods play a very important part in the 
~ planning of experiments as well as in the evaluation of the 

results of experiments. Setting up an experiment so that. 
the most advantageous analysis of the results is possible is 
called a problem in experimental design. A sound experi
mental design is like a good blueprint; it gives con:fiden,ce 
that the various parts are all going to fit together at the end. 

d. Statistical inference. . Having conducted an experi-· 
ment or having made a series of observations and haVing 
described .JSUCh things 8S averages, differences, and rela-
tionships, and having quantified these descriptions, we find 
that statistical methods enable us to make another step. 
We are often interested in knowing how reliable our descrip
tions are. If we repeated the experiment with other groups, 
to what extent would the new averages, measures of varia-
tion, and relationships differ from those we obtained the 
first time? Statistical methods enable us to determine the 
reliability of observed differences and relationships so that 
we may make generalizations with a given degree of confidence. 
The process by which we arrive at such generalizations is 
known as statistical inference. · · 

e. Prediction. Suppose that we had studied a group of 
workmen operating a particular machine and that we had 
then constructed a test of some sort which we believed to 
be capable of measuring performance on the machine itself. 
Giving the test to a group of ugood'' workmen, we find that 
they make an average score of so many points and that a 
group of Hpoor" workmen make a much lower average score. 
Could we then predict from the scores of a new group of 
workmen how well they would probably perform on the 
machine in question? If we find the relationship between 
a scholastic aptitude test and college grades, then how 
accurately can we predict the average grades of other indi- · 
viduals, knowing only their scholastic aptitude test scores 
when they have not taken any college wor~? 

.. 
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If 70 per cent of a group of "maladjusted" individuals 
answer "Yes" to an item in a personality inventory and 
only 30 per cent of a group of "adjusted" individuals give a 
"Yes" response, then how effectively can we predict whether 
a person is adjusted or maladjusted merely from knowledge 
of his response to this item? Our prediction, of course, 
might be in reverse form; knowing that an individual is 
adjusted or maladjusted, how well can we predict his answer 
to the item? The problem of prediction and the accuracy 
of prediction is the final function of statistical methods with 
which we shall be concerned. · 

ln summary, we now know something about the kinds of 
problems to which statistical methods can be applied. The 
chapters which follow simply discuss in greater detail the 
use of statistical methods: (1} in making precise descri~ 
tions of averages, differences, and relationships; (2) in the 
planning and design of experiments; (3) in determining the 
degree of confidence we may place in certain generalizations 
about our observations; and {4) in making predictions. 

As a final note to this introduction and survey of what is 
to come, we might add that there are a number of statistical 
problems peculiar to test construction which are dealt with 
by various statistical techniques. But this is a field which 
has expanded so rapidly that it requires separate treatment. 
We shall touch upon l!iuch problems only indirectly; the 
student who .desires additional information should consult 
Guilford (39) ap.d Greene (37). 



CHAPTER 2, 

SURVEY OF RULES AND PRINCIPLES 

The rules and principles outlined in this chapter are 
extremely .simple as well as extremely important. They 
deal with fractions, decimals, positive and negative numbers, 
squares and square roots, and simple equations. The ma
terial may be familiar to many students, but merely being 
able to w~rk the examples is not sufficient. Working a 
problem when it is expressed in simple form is one thing, 
but unless you clearly understand the rule -or principle 
involved which guided you fu determining the answer, you 
may not be able to apply it to some of the formulas developed 
later. · 

1. FRACTIONS 

A fraction is one method of stating that we are dealing 
with a sum which has been divided into a number of equal 
parts. The numerator of a fraction indicates the number. 
of parts considered and the denominator indicates the equal 
parts. For example, 3/4 indicates that a given sum or 
number has been ·divided into four eq-ual parts and that we 
are dealing with three of these four parts. 

Rule 1. The numerator and denominator of a fraction 
may be multiplied or divided by the same number or symbol 
without changing the value of the fraction. Thus starting 
with the fraction on the left and multiplying both the 
numerator and denominator by the same value we get the 
following identities: 

4 8 24 48 · 2x 4x 12x 24xy 
5 = 10 = 30 = 60 ~d 3y = 6y = 18y = 36y1 

Observe, however, that adding or subtracting the same 
number or symbol from the numerator and. denominator of 

15 
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a fraction will, in general, change the value of the fraction. 
If we subtract 1 from both the numerator and the denomi
nator of the fraction 4/5 we get.3/4, which is not the same 
value as the original fraction; and if we add 2 to the numera
tor and denominator of the fraction 2/3 we get 4/S., which is 

. not· the same value as our first fraction. ·An exception to 
the rule would occur when the numerator of the fraction is 

· equal to the denominator. Thus subtracting 3 from the 
numerator and denominator of 9/9 gives 6/6, which does 
not change the value of the original; and adding2 to both 
the ;numerator and denominator of the fraction 3/3 gives 
5/5, which is also equal to the original value. 

Rule 2. To add or subtract fractions they must first be 
reduced. to a common denominator. We then add or sub
. tract the numerators only; the denominator of the answer 
is the common denominator of the group of fractions added 
or subtracted. Thus 

!+~+!~!+!+!=2+4+3=~ 
-6 3 2 6 6 6 6 6 

Rule 3. To ·multiply fraction~ merely multiply the 
numerators and multiply the denominators. This, in effect, 

· serves to reduce them all to a common denominator. Thus 

2 3 5 4 2X3X5X4 60 1 
3X4X6Xs=3X4X6X5=360=3 

Rule 4. To divide fractions, · invert the divisor and . 
multiply according to Rule 3 above. Thus 

• J •• 

S. DECIMALS 

2 1 2 2 2X2 4 
~+2=3X1=ax1=a 

/ 

Common fractions, as we have seen above, may have very 
different denominators. Decimals or decimal fractions, on 
the other hand, always have a denominator of 10 or some 
power of 10 such as 100, 1,000, 10,000, 100,000, and so on. 
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Thus .3 equals 3/~0, .03 equals 3/100, .003 equals 3/1,000, 
and .0003 equals 3/10,000. Common fractions such as 1/2, 
3/4, and 2/5 may be written as decimals by dividing the 
numerator by the denominator. Thus 1/2, 3/4, and 2/5 
may also be written .5, .75, and .4, respectively. 

Rule 1. When adding or subtracting decimals, keep the 
decimal points' in a straight line and the decimal point in the 
answer should be directly under the decimal points of the 
figures subtracted or added. Thus 

~82 .333 and 1.28 
.90 1.222 -.05 

' ~ 1.72 1.555 1.23 

.. 83 
-.11 

.72 

Rule 2. In multiplying numbers involving decimals, 
point off as many decimal places in the product as there are 
decimal places in the multiplier and multiplicand together. 
The answer, in other words, will have as many decimal 
places as the sum of those in the two numbers multiplied. 
Thus 

.03 .222 
.09 .. 10 ---

.0027 .02220 

2.20 
.03 

.0660 

.0005 
.2 

.00010 

Rule 3. When dividing, place the decimal point in the 
quotient as many places to the right of the decimal point in 
the dividend a.s there are decimal places in the diviSor. In 
other words, the number of decimal places in the dividend 
minus the number of decimal places in the divisor equals· 
the number of decimal places in the answer. Thus 

.2!.004 
.02 

.21 4.2 
21 

.02!.008 
.4 

S. PROPORTIONS AND PER CENTS 

.03~ 
30 

Rule 1. To find what proportion of a sum or total a given . 
number is, divide the number by the sumo~ total •. If, in a 
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class of 60 students, 15 students receive a grade of "C," 
and we wish to find the proportion receiVing this grade, we 
divide 15 by 60 and qur answer is .25. If, in an experiment, 
35~subjects out of a total of 70 show a characteristic in which 
we are interested, and we wish to know the proportion 
showing ·the characteristic, we divide 35 by 70 and our 
answer is ~50. 

Rule ~ To translate a proportion into a per cent, multi~ 
ply the proportion by 100. In the example above, the 
proportion of the subjects showing the characteristic is .5 
and the per cent showing the characteristic is (.5) (100) or 
50 per cent.1 . .-·We see from this also that if we wish to trans. 
late a per cent into a proportion, we must divide the per 
cent by i.OO. · • 

Rule 3~ To find the number that a given proportion of a 
total equals, multiply the total by the proportion. If in a 
group of 40 students the proportion receiving a grade of 
"B" is .1, the number receiving this grade is (40} (.1) or 4 . 
. 'fhe same rule applies to a per cent, the per cent being 
written, of course, as a proportion or decimal. 

Rule 4. ,Just as the sum of ·all per cents of a given total is 
equal to 100 per c~t, so also the sum of all proportions of 
any given total is equal to 1.00. We shall see the importance 
of this later when we deal with the normal curve, which is 
tabled in terms of proportions. 

4. POSITIVE AND NEGATIVE NUMBERS 

Perhaps the simplest illustration of the meaning -of a 
negative number can be given .in terms of readings on a 
thermometer. Suppose that the temperature is now 20 
degrees above zero and the weather man says that we can 
expect a drop of 25 degrees by nightfall. What temperature 
will it be then? On the thermometer we have numbers 
above and below zero, and if the weather man's prediction 

I When numbers or symbols a.re enclosed in I?arentheses without any inter· 
vening signs, the operation of multiplication i.i mdicated. 
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comes true, we would say that the temperature is 5° below 
zero, or -5°. Temperatures that are above zero are repre
sented by a plus sign and those below-zero by a minus sign. 
Ordinarily we omit the plus sign for numbers above zero, 
but whenever the number is below zero, we write a minus' 
sign in front of it. 

Just as minus and plus signs can be used to indicate 
temperatures above and below zero, they can also be used 
to indicate directions or deviations from some value other 
than zero. For example, knowing that the average height · 
of a group of students is 67 inches, we could designate an 
individual with a height of 69 inches as being 2 inches above 
the average and an individual with a height of 65 inches as 
being 2 inches below the average. For these two values 
we could write 2 and -2, respectively. And for all other 
values above the average we could write the values without 
any sign, the plus being understqod but each value below 
the average would carry a minus sign. 

Rule 1. To add numbers with the same sign we merely 
add and give the sum the common sign. Thus, adding the 
following, we get 

2 + 3 + 4 + 6 + 8 + 10 + 1 = 34-
(-2) + (-3) + (-4) + (-6) + (-8) + {-10) + {-1) = -34 

Rule 2. To add two numbers with unlike signs, take the 
difference between the two numbers and attach the sign of 
the larger number. Thus, adding the following pairs, we 
get 

-2 
6 
4 

4 
-8 
-4 

-10 
9 

-1 

8 
-9 
-1 

-5 
6 
1 

Rule 3. When adding a group of numbers with unlike 
signs, add the positive and add the negative numbers sepa
rately, following Rule 1, and then take tl;te difference be-
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tween the two sums and attach the sign of the larger quanw 
tity, following Rule 2. Thus 

2 -20 
-3 -10 
-7 5 
-5 15 
-1 10 

4 -5 --,.10 -5 

.:....4 
-6 
-5 
10 
5 
5 -5 

7 
-6 
-4 

3 
5 

-10 
-5 . 

Rule 4. To subtract one signed number from another, 
·change the sign of the subtrahend and add according to 
the rules above. ·Thus, subtracting the following pairs, 
remembering that the sign of the number is written only 
when the number is negative, we get 

. • . 

.5 4 -4 -4: - .4: -4 4: 6 
~3 ~6 -3 . ·-s 3 8 5 2 -· -.8 _· . . 1Q . -1 4 -7 -12 -1 4 

· · Rule 5.. 'The mUltiplication of numbers with like signs 
gives a positive product; the multiplication of numbers 
with tinlike signs gives a negative product. Thus, multiply

. ing the following pairs, remembering that the sign of the 
nw,nber is written only when it is negative, we get 

6 .:_4 -4 4 3 7-5 - 5 4 
-3 .2 -2 2 -3 ,·. t 2 -5 - 3 - - -.-18 . -8 8 8 -9 . -10 25 -12 

:Rule 6. . The division of numbers with like signs gives a 
positive quotient~ · the division of · numbers with unlike 
Signs gives a negative quotient. Thus, dividing the follow
ing pairs, remembering that the sign of the number is written 
only when the number is negative, we get ·-. . 

-31-6 
2 

· 21-6 
-3 

31.!_ 
2 

-21_! , 
.... 2 
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5. NUMBERS IN A SERIES 

Rule 1. Numbers in a series involving oDly the operation 
of multiplication or addition may be multiplied or added 
in any order without changing the answer. Thus 

2 X 3 X 4 X 5 · 120 5 X 3 X 2 X 4 120 ~ 
1 X 2 X 3 X 4 .= 24 and 2 X 1 X 4 X 3 24 

2+4+5+3+6=20 and 4+2+3+6+5=20 

Rule 2. When the operations of division· and multipli-
cation are involved in numbers in a series along with the 
operations of subtraction ·and addition,· the multiplication 
and division should be performed first. Thus · 

2 + 3 X 8 = 26 4 + 4 + 2 = 6 4 + 8 X 2 - 2 X 1 = "18 
3 X 2 - 1 = 5 6 + 2 .:_ 1 = 2 3 + 2 + 2 X 4 - 3 = 10 

Rule 3. Terms within parentheses should be treated as a 
single number. Thus · 

(8-2)(6) =36 (4+2-1)(-2) = -10 ~3X2)+6+2=3 

Rule 4. A quantity cannot be divided by zero, and multi
plication of a quantity by zero gives zero. . Thus 

8 X 0 = 0 4 X 2 X 0 = 0 --

6. SQUARES AND SQUARE ROOTS 

At the back of this book you will find a table of squares . 
and square roots for numbers from 1 to 1,000 (Table A~ 
p. 390). It is important that you know how to use this 
table correctly and how to locate approximate values for 
the square roots of numbers with over four figures. After 
you practice with a few examples, you will find this fairly 
easy to do. 

a. Finding squares and square roots. There are three 
columns in the table. One column is headed N, the second 
is headed N 2

, and the third column is headed VI{. To 
find the square root of any number from 1 to 1,000 find the 
number in the column headed N and read. the square ~ot 
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in the column headed VN. To find the square of any 
number from 1 to 1,000; find the number in the column 
headed N and read the answer in the column headed N2• 

Suppose you wanted to find the ,square root of 49. By 
looking in the N column until you came to 49, you could 
then read the answer--which, of course, is 7-in the column 
VN. ' Now look in the N column at the number 7. Across 
the table in the N 2 column you find that · 7 squared is 49. 
This .should give you an indication of a second way of finding· 
the square root of a number, a method that is particularly 
valuable when you have to find the square root of a number 
larger than any of those given in the N column or a number 
with four or more figures. If 7 squared is 49, then the 
square root of 49 is 7. Therefore, if you have a number 
larger than 1,000 or with four or ·more figures, look for the 
closest approximation of it that you can find in the N 2 

column and read the square root in the N column. In thiS 
yvay you can find a good approxi.ID.ation of the square root 
of any number with as many as six figures. , 

b. Locating the decimal point. Before using the table of 
squares and square roots to find the square root of a number, 
always point off the number in pairs starting at the decimal 
point. Thlis 30.8025 and 2,520.04, when pointed off, would 
be 30 .80 25 and 25 20 .04, respectively. When the number 
of figures to the right or left of the decimal point is odd, 
assume that a zero has been added. Thus 63,001, 2,294.4, 
778.41, and 21.068," when pointed off, would be 06 30 01, 
22 94 ,40, 07 78 .41, and 21 .06 80, respectively. 

For convenience, you may assume that the square root 
will have one figure for every pair in the number, the decimal 
point being located according to the number of pairs on each . 
side of it in.the nUmber for which you are seeking the square 
root. Thus, for the figures given above: 

V30 · .80 25 ;;;;; 5.55 Since there is one pair to the left and 
two pairs to the right of the decimal 
point. 
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V25 20 ~04 = 50.2 Since there are two pairs to the left and 
one pair to the right of the ·decimal 
point • . 

v'oo 30 01 = 25i Since there are three pairs to ~he left of 
the decimal point . 

. V22 94 · .40 ·= 47.9 Since there are iwo pairs to the left and 
one pair to the right of the decimal 
point. , 

v07 78 .41·- 27.9 Since there ale two pairs to the left and 
one pair to the right of the decimal 
point. . 

v21 .06 80:.. 4.59 Since there is one pair to the left and 
two pairs to the right of the decimal 
point. 

. c. Squares and square roots of numbers less than 1. 
The square root of a number less than 1 is always greater 
than the number itself, and the square of a number less than 
1 is always less than the number itself. Thus · 

v':8i = .9 (.4)1 ""' .16 
VM · = .8 and (.3)1 = .09 

v'1>025 = .05 (.02)' = .0004-

7. SUMMATION 
To summate means to add. When, for example, we sum

mate a. variable (a quantity which ma.y assume a succession 
of values or simply that which varies) such as X for a given 
series of N measurements, we would merely add all of the 
N values of . X in the series. This operation is indicated 
by~~ the Greek capital letter sigma. Thus2 

:tX =X,+ X!+ X,+ X,+ X,+ . .. +XN 
w A more precise method of indicating the summation in this instance would 

N . • 
be to write it thus 2: Xo. These additional aymbola above a.nd below the 

f-1 . 
aummation sign would indicate the limita of the summation and would be 
necessary in order to avoid coofUBion when the summation might not extend 
over the entire series. However, einoe the summation in most elementary - · 
statistical problems is over the entire series of N t\ases, the limits wiU not be 
written but will be undel'l!tood to be from 1 to N. 

.. 
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Rule 1. · ~e summation of a constant (a value which 
does not change for a given series) is obtained by.multiplying 
the constant by N, the number of times the constant appears 
in the series. For example, if we'Iet k represent a constant, 
then I,k is equal to Nk. If k is equal to 3 and N equals 6, 
then 

· . Rule 2. ' The summation of an algebraic sum of two or 
more terms is the same as the algebraic sum of the sums of 
these terms taken separately. What this rather compli
cated · sounding rule means is that it is possible to write 
I,(x + y + z) as "I,x + "I,y + "I,z and that the two are iden-. 
tical. . We may illustrate this by letting N equal 3 and 
assigning numerical values to x, y, _and z. Thus 

X1 = 4· , Y1 = 2· , Z1 = -2; 

Xz = 3· . , Y2 =. -2; Zz= 3; 

Xa = -6; Ya = 4; Za = 3; 
'· 

2:(x + y 4- z) = (4+ 2- 2) + (3- 2 + 3) + (-6 + 4 + 3) 
=4+4+1=9 

~x ·+ ~y + ~z = 1 + 4 + 4 = 9 

Thus 

Rule 3. The summation of a variable times a constant is 
~alto the constant trmes the summation of the variable. 
Thus if k is· a constant and X is a variable,· and if N equalS 
3,· k equals 2, and X1 ·= 2, X2 = 3, and Xa = 4, we may 
write 

~(kX) = (2)(2) + (2)(3) + (2)(4) = 4 + 6 + 8 = 18 
- k~X = (2)(2 + 3 + 4) = (2)(9) = 18 
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Thus 
~(kX) = k'ZX 

25 

Rule 4. The summation of a variable divided by a con
stant is equal to the summation of the variable, divided by 
the constant. Thus if k lS a constant and X is a,vanable, 

·and if N equiiis 3, k equals 2, and X1 = 2, X2 = ·4, and Xs = 
6, we may write 

·Thus 

8. SIMPLE EQUATIONS 

For performing operations upon equations there is one 
simple rule: whatever is done to one side o! the equation 
must also be done to the other side. If you multiply one 
side by a number or symbol you must multiply the other 
side by the same number or symbol. The same rule applies 
to diviSion, addition, subtraction, squaring, and extracting 
the square root. If you have difficulty in seeing the rela.
tionships in the following examples, try substituting numeri
cal values for: the symbols. But it is important, very impor-

. tant, that you learn to do these operations with symbols 
other than numbers. Study the illustrations carefully. 

1. Division 

~X=NM and dividing both sides by 
N we get 

and dividing both sides by 
N we get · 
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2. Multiplication 

~=t and multiplying both sides 
%=tJ 8 by 8 we get 

ttl = :l;zl 
N 

and multiplying both sides 
by Nweget N:t' = l;zl . 

3. Subtraction • 
• X=z+M and subtra.cting z from both X-%=M . sides we get 

4. Addition 

z = X _ M and adding M to both ~des z.+ M = X 
·we get 

6. Extracting square root 

sa= "2.x2 
-N 

G.. Squaring 

and extracting the· square ~ 
root of both BideS we get • =-vN 

z = (X _ M) and squaring both sides we %" = (X _ M)t 
get 

There is another point to remember in dealing with equa
tions~ It is possible to substitute any identity for a ~rm 
already present in the equatio!4 Here is an example: 

1. If M = 'T.; and multiplying b~th sides by N we get 

2. NM = U and if 

3 
'Zzl _ %Xl- (};X)' then we may substitute the identity 

• - . N NM for XX and get . 

4. :2;~ =' l;P ~ (N:t~ 
These principles are fundamental. H you ·understand 

them they will take away any of the mystery which might 
. surround some of the formulas we shall develop later. We 

.. 
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shall also point out various identities as we go along. · If 
you memorize them wLen they first appear you· should be 
able to recognize them when they are substituted for one 
another later. · 

SURVEY OF RULES AND PRINCIPLES 
Example 1.-Md each of the following; 

(a) (b) (c) (d) (e) (f) (g) 
-8 4 8 20 10 -6 -6 
-3 -2 -9 -10 -8 2 3 
(h) '· (i) (j) 
-9 0 -4 

1 -16 -2 ~·.: .. 
Example 2.-Bubtract each of the following: 

(a) (b) (c). (d) (e) (0 (g) 
-8 4 8 20 10 -6 -6 
-3 -2 -9 -10 ..:.g . 2 .a 
(h) (i) (j) 
-9 0 -4 

1 -16 -2 

Example a.-check each of the following by marking (1) if true 
or (2) if false: · 

. (a) (49: 8) = 7 + 8 (e) (6 X22 X 2) = (3)(2)(2) 

(b) 2(2 X 5) = (4)(10) . 

(c) (~)(4 X 6) = (~)(~) 

(d) (4 + 2) -2 
4 -

(O (6 X 5) = (~)(~) 
(2 X 3) , 2 3 

(g) 2x =! · 
211 11. 

(h) 4x = 12x 
3y 9y 
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(i) (~) (2) 
(~) = 18 

G) (i} = (12) 
<D 4 . 

Survey of Rules and Principles 

(1) (8 - 3) - 4 - 3 J. -

Emmple 4.-Perform the operations indicated:. 

( ) ( l)t (h) 8 I. ) .04 
a 6 + -2 \o .02 

(b) (4: + 1.- 2) (i) _: (p) .0~2 

(c) (2 + 3)1 G> ( -3)( -8) (q) ·'}i 
(d) (8.- 2)1 (k) (2)(-5} (r) :Oi 
(e) (4: - 1 - 2)Z (1) '( -3)(2) 

.3 
(s} -.5 -

(0 (8- 5 + 1)2 (m) ( -1)( -6) (t) {.02)(.02) 
..:..8' 

(n) (-1)(0) (u) (.1) (.1) (g)-
2 

Example 5~-There are 60 students in a class and 15 receive a 
grade of B. 

. . (a) What per cent received a grade of B? 
(b) What proportion failed to get B? 

Example 6.-Bixteen out of 64 students passed an item on a test. 
(a) What per cent failed the item? 
(b) What proportion succeeded in passing the item! 

Example 7.~A~udent poll showed that in a sample of 200, 60 
voted~'No!, 

(a) What per cent voted ttNo"? 
(b) What proportion failed to vote uNo"? 
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Example 8.-:-Find the square root of each of the following from 
Table A in the appendix: 

(a) .04: (f) 20,736 
(b) .81 (g) 1,024 
(c) .0016 (h) 4,356 
(d) .000025 (i) 9,801 
(e) .4624 (j) 6,724 

(k) 5.9536 
(1) 10.0489 
(m) 51.6961 
(n) 99.6004 
(o) 37.21 

(p) 38,809 
(q) 98,596 
(r) 157,609 
(s) 30,276 
(t) 966,289 



CHAPTER 8 

MEASURES OF CENTRAL TENDENCY AND 
VARIABILITY 

A simple and effective experimental design is to observe 
changes in performance or behavior of members of the same 
group under differ:i.D.g sets of conditions or before and after 
they have experienced some variable which the experimenter 
has introduced. When variables which might have in
fluenced the results have been excluded or equated, any 
observed changes may be assumed to be the result of _the 
differing conditions. In this way one might study the 
in:fluence of motion pictures upon attitudes, the effect of a 

· course in· propaganda analysis upon ability to analyze , 
propaganda, and, in general, the effect of any variable or 
set of conditions which it is possible for the experimenter 
to introduce upon behavior. · 

· , When it is not possible or feasible to study the behavior 
of the same individuals under differing conditions, the 
experimenter may resort to a matching procedure in order 
to select two comparable groups for observation. Indi
viduals might be matched upon the basis of intelligence test 
scores, reading comprehension scores, attitudes, or some 
other variable which may be related to the variable under 
study.! We need not concern ourselves at this point with 
. why this p~icular type of experimental design is efficient; 
we have mentioned. the subject by way of introduction to 
the hypothetical experiment, the data of which we wish to 
discuss. 

1 The reasons for this must await the development of correlational tech· 
niquea and tests of significance. 

3a · 
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1. AN EXPERIMENT ON RETENTION 

Suppose that on some nights we read a sociology_ text 
just before going to bed and that on other qccasions we do _ 
our reading in the morning. After a period of several weeks 
we have the impression that our memory of what we have 
read is much better when our period of study has been 
followed by sleep than when it has been followed by a period 
of waking activity. In order to investigate the problem 
further, we design a simple experiment to "test retention 
under the two conditions. 

We have as subjects for our experiment two groups. Each 
individual 'in one group has been matched with another 
individual in the second group on the basis of an academic 
aptitude test which we already have reason to believe is a . 
variable related to retention and learning. Our experi- · 
mental procedure is to have both groups of subjects learn. 
a list of twenty words by the method of paired associates. 
In this method words are presented in pairs, and the subject 
is supposed to learn to respond with the second member of 
a pair when the first is presented. We have all of our 
subjects go through the list until they achieve one perfect 
trial, i.e., one trial with no ~rrors. This learning period in 
the case of one of our groups is followed by eight hours of 
sleep and in the case of the other group is followed by eight 
hours of uncontrolled waking activity. At the end of the 
eight-hour period both groups are retested. The figures 
given in Table 1 show the number of correct responses on 
this .second test. 

2. THE RANGE AS A MEASURE OF VARIATION. 

In this idealized and hypothetical experiment, the su
periority of the members of the usleep" group is, as we see 
by the figures in Table 1, apparent in every case.2 Every 
one of the members of this group make& a higher score than 

2 The data cited are hypothetical for purposes of illustration and simplicity, 
but see the study by Jenkins and Dallenbo.ch (48), _ . 
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TABLE I.-RETENTION ScoRES OF MATCHED INDIVIDUALS FoLLOWING 
EIGHT HoURS Oil' DIFFERING DEGREES Oil' ACTIVITY 

GROUP 

PAIR 
Sleep Wake 

-
(1) (2) (3) 

X y 

1 18 14: 
2 12 8 
3 15 10 
4 16 9 
5 14 8 
6 15 10 
7 15 9 
8 17 11 
9 18 13 

10 13 6 
11 16 10 
12 19 14 
13 20 16 
14 17 8 
15 14 8 
16 10 8 
17 14 9 
18 15 10 
19 13 11 
20' 9 8 

::& 300 200 

M~ = g = 300 = 15 N 20 

::&Y 200 M.=-=-=10 · N 20 

M• = ::&D = 100 ~ 5 
N L20. 

DIFFERENCE ' 
BETWEEN DEVIATIONS AND SQUARED 

PAIBB DEVIATIONS 

(4) (5) (6) (7) (8) (9) (10) 
D :I; zl 11 ., d d' 

1-----
4 3 9 4 16 -1 1 
4 -3 9 -2 4 -1 1 
5 0 0 0 0 0 0 
7 1 1 -1 1 2 4 
6 -1 1 -2 4 1 1 
5 0 0 0 0 0 0 
6 0 0 -1 1 1 1 
6 2 4 1 1 1 1 
5 3 9 3 9 0 0 
7 -2 4 -4 16 2 4 
6 1 1 0 0 1 1 
5 4 16 4 16 .. 0 0 
4 5 25 6 36 -1 1 
9 2 4 -2 4 4 16 
6 -1 1 -2 4 1 1 
2 -:-5 25 -2 4 -3 9 
5 -1 1 -1 1 0 0 
5 0 0 0 0 0 0 
2 -2 4 1 1 -3 9 
1 -6 36 -2 4 .-4 16 

---------~ 
100 0 150 0 122 0 66 

~ B:x~ ~ ff50 - r.;-;; 
u,. = 'JN = Y'2o = v 7.5 = 2.74 

u.= ~ = ~= V6J =2.47 

fT.=~=~= v'3.3 ~1.82 

his mate in the "wake" group. But observe the .variation 
exhibited by the scores within each group. If there were 
no differences in the retention scores of the members within 
each group, then the differences in the retention scores 
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between pairs of matched individuals would all be the same. 
In fact, the differences would all be the same whether match
ing had taken place or not. In this case we would have no 
need of statistical methods nor would we have any need to 
observe more than one pair of individuals, since all addi
tional pairs would show the same constant ·difference in 
retention. The difference in retention for a single · pair 
would, under these circumstances, give us complete infor
mation. But the tendency for individual measurements to 
vary is a fundamental fact of nature. That is one reason 
why we need the assistance of statistical methods in evaluat
ing data •.. 

A simple measure of the variation present iii each group 
would be the range, which we have already defined as being 
the difference between the highest and the lowest measure
ment. For the ttsleep" group the highest score is 20 and 
the lowest score is 9 and the r.ange is therefore 11. For 
the "wake" group the highest score is 16 and the lowest . 
score is 6 and the range is 10 .. We could find a similar 
measure of spread or variation for the differences between 
pairs. The range of these differences is from 9 to 1 and 
the range is therefore 8. · Symbolically, we detine the range 
as 

R=H-L 
where R = the range 

· H = the highest measurement in the series 
L = the lowest measurement in the series 

(1)1 

There is another type of range which is similar to the 
range discussed above. It is known as the inclusive range 
and tells us the number of possible different measurements 
we may have in a series with a given range. The range 
for a simple set of measurements might be, for example, 
from 15 to 10 or, in other words, 5. The inclusive range is 
merely the range plus 1, or, in this instance, 6. This means 

• Formulas are numbered at the time they are fimt introduced and then 
referred to later by these numbers. 
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that there could be 6 different possible values or scores in 
our series: 15, 14, 13, 12, 11, and 10. Symbolically, then, 
the inclusive range is defined as , 

R, = (H - L) + 1 (2) 

where R, is the inclusive range and Hand L have the same 
tneaning as before. 

S. THE MEAN AS A MEASURE OF CONCENTRATION 
' 

Note that despite the spread or variability of the scores 
within each group, there is also a tendency for the various 
scores to cluster around the riddle values rather than at 
the extretnes. A single score toward the riddle of the 
range would be tnore representative of all of the scores than 
a value' selected from either extreme. The statistics which 
we use to tneasure this concentration are known as averages 
or measures of central tendency. 'fhe statistician may not 
alway~ mean by average; however, the measure you may 
have in rind. The tneasure of which you are thinking is 
probably the mean, which is found by adding all of the 
scores and dividing by the number of scores. The mean is 
only one among several possible kinds of averages. 

Let us find the mean for the "sleep" group, for the "wake" 
group, and for the differences between pairs. The totals 
or sums of the scores for each series are given at the bottom 
of Table 1. For the "sleep" group the total is 300, . and 
since this sum is based on 20 observations we divide 300 by 
20 and find the tnean score for the group to be 15. In a 
sitnilar manner we detertnine that the mean for the "wake" 
group is 10 and that the mean of the differences is 5. Note 
that the difference petween the two means is equal to the mean 
of the differences, a relationship that will always hold true 
when tneasurements have been paired • 

.f.. SOME BASIC. SYMBOLS 
Let us see now how it is possible to indicate symbolically 

the computations involved in finding the mean. We shall 
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let N equal the number of scores in a given series and let X 
represent the scores in the series. Then the individual 
~cores might be represented by XI, x2, Xa, x~ . . . XN, 
where the subscripts, 1, 2, 3, ••• N, stand for the par
ticular measures. In the example under consideration we · 
may let X represent scores for the "sleep" group. In a 
similar manner we may let Y represent scores for the ''wake" 
group, Y1 corresponding to X 11 Y, to X 2, and so on for each 
matched pair. The differences between the paired values 
of X andY may be represented by D, and particular values 
of D may be represented by D1, D2, D3, and s() forth. 

Since N .is the same for the X,· Y and D scores, we do not 
need to worry about a separate symbol for indicating the 
number of cases in each series. H this were not true, how
ever, we could use N ,., N • and N d to represent the different . 
N's. We shall use the symbol M to represent the mean, 
and the mean of the X series would be M ,., the mean of the 
Y series M 11, and the mean of the differences, M 4• We 
need one more symbol, one that we shall use very frequently, 
2':, which is the Greek capital sigma. The symbol is an 
operational as well as a descriptive symbol and means to 
sum. Thus l':X would mean "to sum the variable· X," or 
simply Hsummation X," or "sum of the X's.'' l':Y would 
mean "to sum the variable Y," or "summation Y;" and 
l':D would mean uto sum the variable D." ·· 

In terms of the symbols we have just discussed, it would 
now be possible for us to represent the mean of the X series 
by the following formula 

M* = X1 +Xz+X• +Xc +X,+ Xe+X7+Xs + ... + XN 
N 

But since we have the symboll':, meaning to sum, we may 
merely write, in abbreviated form, · 

(3) 
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where M == the mean 
}; == the sum of 

. X = each of the individual measurements or scores 
N = the number of measurements in the series 

. Formula (3) is the generalized formula for the mean. We 
would only need to substitute Y for X to apply it to the Y 
series or D for X if we wished to find the mean of the D 
series. We have already pointed out that symbols and 
formUlas are a kind of shorthand. You may observe, in 

. · this instance, how much more quickly,· and with how much 
. ~X 

less space, M = N . can be written than the statement for 

which it stands: "The mean of a series is equal to the sum 
of the individual measures in the series divided by the 
number of measures in the series." 

5 • . THE . AVERAGE DEVIATION -AS A MEASURE OF 
VARIATION 

· We are .now ready for a new symbol. You will soon 
learn to recognize its meaning as quickly as you now recog-

. nize that green is a symbol for "go." The new symbol 
that we want is one that will represent the deuiation of an 
observed measure from the mean of the series. We shall 
use the symbol z to designate a deviation of X from the 
mean of the X series. Thus 

z=X-M (4) 

where z = a deviation from the mean 
X = the original measurement 
M =:: the mean 

In a similar manher we could use y to represent the devia
tion of a Y score from the mean of the Y's and d to represent 

· the deviation of a difference score (D) from the mean of the 
differences. 

If we were to subtract the mean of the X scores from 
. each of the X scores and sum for the series, in other words, 
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~(X- M) or ~x, as we have done in column (5) of Table 1, 
we should find that the aum of the tkviations from the mean 
equals zero, i.e., l;x = 0. This is a basic statistical theorem. 
You will find it holds true for any series of measurements 
and can easily be verified in the case of" the Y arid D dis
tributions of scores. This is one reason why we cannot 
simply add the deviations from the mean and divide by N 
in order to get a measure of . average deviation or spread. of 
scores from the mean. The simple average deviation would 
always equal zero and consequently would be' of no value 
as a measure of variability. ' 

We could, however, ignore the signs of the deviations and 
find the sum of the absolute values and divide this by N. 
The resulting value is called the average tkuiation. Sym· 
bolically, we would write · 

AD ... l:!x! (5} 
N 

where AD = the · average deviation 
lxl - the absolute value of. z, i.e., without regard to 

algebraic sign . 
N = the number of measures in the series 

The average deviation is one of. the easiest measures of 
variability to understand and had great popularity at one 
time. .It is still of value if one must describe variation to a 
group of statistically inexperienced individuals, but it has 
been found to be of limited utility in statistical theory. 
You may wonder, if the average deviation is of so little 
value, why have we bothered to mention it? Why not 
simply use the range as our measure of variability? The 
answer to the fust question is that the average deviation 
provides an introduction to the standard deviation, the 
measure of variability that we shall pse most often. The 
answer to the second question is that the range also has its 
disadvantages. It is determined by only two scores and . 
fluctuates much more from one series to another than do 
the other measures of variation such as t~e average devia.. 
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tion or standard deviation. If we were to repeat our experi
ment on the effect of sieeping and waking periods on reten
tion, for example, the range for, each group and for the 
differences between pairs might differ greatly from the 

. values we got the first time. 

6. THE VARIANCE AND STANDARD DEVIATION 

The most valuable measure of variability is the standard 
deViation, which is computed from the squares of the devia,. 
tions from the mean and is represented by the symbol u. 
We have already pointed out that ignoring the signs of the 
deviations as we did in calculating the average deviation 
does not lead to the development of any very signi:ficaLt 
statistical techniques. Squaring is the next step in sim
plicity of operations and, incidentally, the squared devia,. 
tions will all be· positive. Squared deviations from the 
mean, as we shall see later, form tlie basis of much of statis
tical theory. 

If we square each of the deviations from the mean, sum, 
and divide by N, we obtain a measure which is called the 
mean square or variance and which is symbolized by v. The 
standard deviation is simply the square root of the variance. 

Thu8, if the variance is equal to "2.~
2

, then the standard 

·deviation is equal tQ "\\V; or, as it is more commonly expressed 
'ffii 

u = '\JN 
where u = the standard deviation 

x2 = a deviation from the mean squared 
N = the number of cases 

(6) 

The ·'calculation of the standard deviation may be sum
marized in the following steps: 

. 1. Firid the mean M=};: 
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2. Find the deviation .of each score from the 
mean 

3. Square each deviation 
4. Find the sum of the squared deviat~ons 

(sum of squares) 

5. Divide the sum of squares by N to find the 
variance or mean square 

6. Extract the square root to find the stand
ard deviation 

39 

x =(X~ M) 

:C-, 

Extracting the square root (Step 6) returns us to our 
original unit of measurement. You may follow these steps 
in the calculation of the standard deviations of the X, Y,
and D series of measurements in Table 1. For the D series, 
for example, column (4) gives the scores which we sum to 
find the mean. Column (9) gives the deviations of each of 
these scores from the mean, and column (10). gives the 
deviation squared. The sum of the squared· deviations is 
66, which, divided by N = 20, gives the variance, 3.3. The 
standard deviation is the square root of 3.3 and from Table 
A, page 311, we find this to be equal to approximately 1.82. 

7. THE NORMAL DISTRIBUTION CURVE-

You may already be familiar with the concept of a normal 
distribution from other sources. A normal distribution· is 
represented by a bell-shaped, symmetrical frequency curve, · 
with very few measurements at the extremes and more and 
more as you move in toward the middle. It may look 
something like the curve shown in Figure 1. 

Suppose that this distribution curve represented measure
ments of differences in retention for 10,000 pairs of subjects. 
That is, suppose that instead of merely 20 pairs as we had 
in the experiment mentioned earlier we had 10,000. w~ 
would not expect all of the differences in retention to be the 
same for these 10,000 pairs any more than they were ior 
our 20 pairs. If we had 10,000 pairs we might sometimes 
get a difference of zero; sometimes, also, differences might 
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be in reverse, i.e., in some of the pairs the "waking'' member 
might show a higher retention score than the "sleeping'' 
member. But in terms of what we have already observed 

·we would expect most of these iO,OOO differences to tend 
toward the middle or mean of the distribution. 

-GIJ' -2• 
u 

lhci. 1-Normal distributi~n curve with mean equal to 
, 5 and standard deviation equal to 1.8. 

H the mean and standard deviation of this new -distribu
tion were the same as the mean and standard deviation of 
our 20 observations, then between the mean (5) plus and 
minus one standard deviation (1.8) would fall approximately 
68.26 per cent of these 10,000 differences. In other words, 
between 5 ± 1.8 or between 3.2 and 6.8 would fall 68.26 per 
cent of the cases, and outside these limits would lie approxi
mately 31.7 4 per cent of the differences. About 15.87 per 
cent of the differences would be greater than 6.8 and about 
15.87 per cent wol,l].d be smaller than 3.2. These statements 
are made possible by the fact that the equation for the 
normal curve is known, and tables have been prepared 
which enable us to find the proportion or per cent of cases 
between the mean and any given distance from the mean 
expressed in terms of standard deviation units. These tables 
are discussed in detail in a later chapter. 
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8. THE MEDIAN AS A MEASURE OF CENTRAL 
TENDENCY 

In general, if a distribution is approximately normal, the' 
mean is the appropriate measure to use to describe the 
central tendency of the group. If the distribution departs 
very much from the normal form so that scores are piled up 
at one end or the other of the scale, then another measure . 
of central tendency may be used to supplement the descrip
tion provided by the mean. This measure of central tend
ency is called the median and is defined as that point in a' 
distribution of measurement above which and below which 
50 per cent of the measurements lie. The median would 
also be the appropriate measure of central tendency to use 
if a distribution is truncated, i.e., cut off at one end so that 
we have no knowledge of the exact values of the measures at 
this end, as, for example, in a distribution of incomes where 
we might have at one end 7 cases which are simply recorded 
as $15,000 and over. In a perfectly normal distribution the 
mean and median coincide, have the same value. 

To illustrate the calculation of the median, let us suppose 
that we have a number of ratings on a 5-point scale and 
wish to find the median. Instead of writing out the value 
of each rating, we shall simply list the five possible values 
under the heading ''Ratings" and then under J list the 
frequency or number of times eacl?- value occurs, as in Table 2. 
The rating "5," for example, occurs 4 times, the rating "4," 
occurs 3 times, and so on. Measurements arranged in the 
manner of Table 2 are called frequency distributions. 

Since we have defined the median as a point, we shall 
have to pause for a moment to consider whether a score or 
a rating can be considered a precise point or not. It is 
customary in statistical work to think of a measurement, 
regardless of the instruments used in making it, as repre
senting an interval ranging from half a unit below to half 
a unit above the given value. A height reported in terms 
of inches, for example, may be considered as representing 

,• 
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an interval ranging one-half inch below to one-half inch 
·above. the reported value. A height of 61 inches, in other 
words, may indicate a value ranging from 60.5 to 61.5. 
Even if the height were reported to the nearest 1/10 inch, 
61.8 inches, for example, it might still represent an interval 
l'anging from 61.75 to 61.85. This is because there are 

TABLE 2.-FREQUENCJ' OF RATINGS ON 
.& 5-PoiNT ScALE 

RATING LnnT I 

5 4.5-5.5 4 
4 3.5--4.5 3 
a 2.5-3.5 2 
2 1.5-2.5 1 
1 .5-1.5 1 

limits to the accuracy of any measuring instrument. Re.. 
· gardless of how fine we may make our units of measurement, 

i.e., how many decimal places may be used in reporting them, 
we still do not know the "precise value of the final number. 
Considered·in this fashion, then, a rating of 5 may mean a 
-value from 4.5 to 5.5 and a rating of 1 may mean from 
-5 to 1.5. 

To find the median we must first find out how many ratings 
we. have under consideration. This we do by adding the 
frequencies, 4, 3, 2, 1, and 1. N, then~ is 11, and we wish 
to find.the point above which and below which exactly 50 
per cent or 5.5 of these 11 cases will fall. If we start count-

. ing upward from the lowest rating, we find that 1 + 1 + 2 
will give us 4 of the needed · 5.5 cases. This carries .UE 

through the rating 3, the upper limit of which is 3.5. · We 
have moved up the scale, in othe~ words, to the point 3.5 
and have found 4 cases below here. But this is not su.fficien t; 
we need 5.5 cases or 1.5 more than the 4 we have so far. 
The rating 4 occupies the interval front 3.5 to 4.5, and there 
are 3 cases located within this interval. We do not know 
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how these 3 cases are distributed in the interval 3.5 to 4.5, 
but for convenience we assume that they are distributed evenly 
throughout the inlert'Ol. We must move up into this interval 

·until we have 1.5 more cases. We need, in other words, 
1.5 of the 3 cases or 1.5/3, which is equal to .5. We add 
this value (.5) to the lower limit (3.5) of the interval in 

· which we know the median falls and this gives us the value 
of the median, 4.0. 

We may, if we wish, check this value by counting down 
from the highest rating. We have 4 cases for the rating 
5 which extends down to 4.5. We still need 1.5 more cases 
in order to .get our 50 per cent. ·We need to go down into 
the interval 4.5 to 3.5 far enough to include 1.5 of the 3 
cases which we assume to be distributed evenly throughout 
the interval. And 1.5/3 gives us .5 which we now subtract 
(we are moving downward) from the upper limit {4.5) of 
the interval in which we know the median falls and arrive 
at the same value as before, 4.0, for the median. 

Sometimes in computing the median we may find that 
50 per cent of the measurements or scores take us exactly 
through a given score but that there is a gap between the 
upper limit of this score and the next score. For exsmple, 
suppose we had the following measurements: 18, 17, 16, 14, 
10, 8, 7, 5. N is equal to 8 and 50 per cent or 1/2 N is 
equal to 4. We need to find the point above which and 
below which 4 scores will fall. Counting up from the 
bottom or lowest score we find that 4 scores take us through 
10, the upper limit of which is 10.5. It is true that 50 per 
cent of the scores do fall below the point 10.5, and that 
50 per cent fall above this point. But it is also true that 
50 per cent fall above and below any other point we might 
choose to select between 10.5 and 13.5. Under these cir
cumstances we assume that the val~ which best represents the 
median is the middle of the gap. The range of the gap is 
equal to 13.5 - 10.5 or 3. One half of 3 is equal to 1.5 and 
1.5 added to the UpJ*!r limit of 10.5 gives us a value of 12 
for the median. You may check these ,calculations by 
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counting doWn. from the top, only in this instance, since 
you are moving downward, you would have to subtract 1.5 
from the lower limit of the sco.re 14. The value of the 
median remains the same, regardless of whether we calculate 
it by counting up or down. 

If, in the .distribution above, there had been no gap, i.e., 
ji 10 had been followed by 11 rather than by 14, then the 
median would become the dividing point between t'IJ£se two 
scores. Since the upper limit of 10 is 10.5 and the lower · 
limit of 11 is 10.5, the value arrived at for the median would 
be 10.5. · 

The following formula for computing the median will 
handle all situations except when the median falls in a gap 
in the ~tribution of measurements • 

. . N ) 
-- '1:f,. . . 2 

. Mdn ~ I + ( /. i (7) 

where Mdn = the median 
· l = the .lower limit of the interval containing the 

median 
N = the total number of scores 

· I.f., = the sum of the frequencies or number of scores up 
to the interval containing the median · 

f,. = the frequency or number of scores within the in
terval containing the median 

i = the size o!' range of the interval (in the illustrations 
consideredt since i has always equaled 1, it may be 
ignored-we include it here because this is a more 
generalized formula which can be used later) 

The value of the median obtained with formula (7) may 
be checked; in the manner indicated earlier, by working 
from the top interval down. The formula in this case 
becomes 

(
N ) - -"I.fo 

M dn = U -
2 

fw _i (8) 
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where u = the upper limit of the interval containing the 
median, and '];j, = the sum of the frequencies or number of · 
scores down to the interval containing the median. 

9. THE SEMI-INTERQUARTILE RANGE 

The mea.sure of variation which is generally used in 'con
nection with the median is the semi-inte7VUllrt1.'1e range or 
Q. To find the value of Q, two other values must be com
puted, Q1, the first quartile, and Qa, the third quartile. 
These two values are aLso points on a scale, Q1 being the 
point below which 25 per cent of the measurements fall and 
above which 75 per cent fall, and Q1 being the point below 

- which 75 per cent fall and above which 25 per cent falL 
~ Qt and Q, are found in the same way that the median is 
found, i.e., by means of formula (7), the only difference_. 

N · N· · 
being that for '2 we substitute I for Q1 and for Q3 we s~b-

stitute aN· 
4 

The interval Qa - Qt contains the middle 50 per cent of the 
mea.surements and is known as the interg:uartile _range. The 
semi-interquartile range is one half the range of the middle 
50 per cent of the cases and is given by the following formula 

Q = Q.; Ql (9) 

where Q == the semi-interquartile range 
Qa =the third quartile 

. Q1 = the first quartile 

10. GENTILES 

Just as we used formula (7) to find the median or point 
above which and below which 50 per cent of the cases fall, 
and to find QI and Qa, so also it can be used to find the point 
in a distribution above which and. below which any given 
per cent of the cases fall. Such points are commonly called · .. 
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cenl:iles. Since the median marks the point above which 
and below which 50 per cent of the cases fall, it is also the 
50th centile. The 25th centile is the same 88 Ql and the 
75th centile is the same 88 Q3• The points dividing the 
distribution into tenths are also given special names; they 
are called deet"les. Thus the lOth centile iB also the 1st 
decile, the 20th centile is also the 2nd decile, and so forth. 

If we wished to find a given centile, we would only need 
to 'substitute that per cent of the total scores or measure-

men.tS for ~ in formula, (7). Thus, if we wished to find the 

80th centile, which would be the point below which 80 per 

cent ·qr the cases fall, ~ would rn: replaced by (
1
:) (N) or 

by i· To find the 33rd centile we would substitute (1~) 
{N) or~~- The 50th centile, ~e median, would be, of 

50N hih- Iifid. N course, 100 , w c , srmp e , IS 2· 
Centiles are often used to describe an individual's relative 

position in a group with respect to some variable. For 
example, if we were told that John's score on a reading test 
was 49, and this was all that we were told, we would know · 
no more about his ability than if we had not been told his 
score. If we knew that the mean score for college freshmen 
on the test was 40, we would ·at least know that he per
formed better than the average freshman. But if we were 
told that hiB score corresponded. to the 75th centile, we 
would know that he· does better than 75 per cent of the 
students who take the test. 

One major difficulty with centiles 88 a means of expressing 
relativ~ position is that, when distributions are fairly normal, 
individual differences relatively near the center of the dis

. tribution are exaggerated in comparison with the extremes. 
The actual measured differences represented by the centil~ 
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range 40 to 60, for example, are not as great as the actual 
measured differences represen~d by the centile range 1 to 21 
and 79 to 99. This is because, as we know from our earlier 
discussion of the normal curve, frequencies are greater iu 
the center of the distribution than at the extremes. 

11. STANDARD SCORES 

When a: distribution of measures is approximately normal 
we may overcome the difficulty mentioned above in connec
tion with centiles by expressing scores in terms of relative 
deui.a.I£S or' ·standard scores, symbolized by z. Standard 

. scores derived from one distribution may also be compared 

.. directly With standard scores derived from another dis. 
tribution, when both distributions are normal in form. 

To illustrate the use of z scores, let us suppose we wish 
to find an average of an individual's score on a history test 
and on an English test. The history test is scored in terms 
of the number of right answers and shows a spread of scores 
from 10 to 190 with a mean of 95. The English test, how
ever, is scored in terms of the number of right answers 
minus the number of wrong, and the range of scores is from 
50 to 70 with a mean of 59. Obviously, we cannot com4 

pare directly the standing of our subject on one test with 
his standing on the other. We could not find his average 
standing on both tests by adding his score on the history 
examination with his score on the English examination and 
dividing by 2. This average would have no meaning, for we. 
would be combining different units from different scales. 
It is as though we added together an individual's height, as 
measured in tenns of inches, and his weight, as measured in 
terms of pounds, and divided by 2 to get an average. 
Suppose that we were foolish enough to do so and found 
that this average was 110. This would be 110, but 110 what? 
Inches? Pounds? Surely not either of these,-nor would such 
an average have any other meaning. 

If we wish to compare measurements from various ffis.;. 
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tributions, we must first reduce the measurements of each 
distribution to a common scale. To do this for the dis-

. tribution of scores on the history. test, which we may desig
nate as the X variable,. we would subtract the mean of the 
distribution from each score in the distribution to reduce the 
measurements to. deviation scores. Then we divide each 
deviation score by the standard deviation of the distribution 
to arrive at z scores. Thus 

where z = a standard score 

X z.,=
fT., 

x = a deviation from the mean of the series 
· f1., = the standard deviation of the series 

I 

(10) 

In tlie same manner we would transform each of the scores 
·on the.English examination, which we may designate as. the 
Y variable, to z f\lCOres by subtracting the mean of the dis
tribution from each score and dividing the resulting devia
tion scores by the standard .deviation of the distribution. 
We may then add the z score of our subject on the history 
examination with the z score he obtained on the English 
examination and divide the sum of these by 2 in order to 
get an average. If we were interested -in comparing indi-

. vidual scores on various other tests with those on the history 
and English examinations, these scores could also be reduced 
to z scores. AP. long as the various distributions are approxi
mately normal in form,' z scores derived from one distribution 
may be compared with z scores derived from other distribu
tions. By followmg the procedure outlined we have, in 
effect, reduced the scores of each distribution to a common 
scale. Some of the z scores will, of course, carry negative 
signs, since some of the scores will be smaller than the mean. 
In general, a distribution of z scores will range in size from 
about plus 3 to minus 3. The mean of this distribution 
will be equal to zero and the standard deviation will be 
equal to 1. That the mean will be equal to . zero, we know 
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becauSe we have already found that the sum of deviations 
from the mean is equal to zero. The fact that the standard 
deviation of a full set of z scores equals 1 can be shown as 
follows:' 

12. OTHER MEASURES OF CENTRAL TENDENCY AND 
VARIABILITY 

There are other kinds of averages than those we have 
· mentioned. One is the mode, or measure which occurs most 
frequently in a distribution of measurements. · Another is 
the geometric mean which is the nth root of the product of 
the N values in a series. The geometric mean of 3 and 12, 
for example, would be V{3)(12) = -v'36 = 6, whereas the 
arithmetic mean would be 7.5. We shall have occasion to 
refer again briefly to the geometric mean in connection with · 
measures of relationships. Another measure of central 
tendency is. the harmonic mean, which is defined as the 
reciprocal5 of the arithmetic mean of the reciprocals of the 
values. The harmonic mean is used in problems involving 
the averaging of rates, but we shall have no need to refer 
to it again in this text. 

There are also other measures of variability in addition to 
those which we have described. One such is the middle 
80 per cent range or the spread of scores between the lOth 
and 90th centiles. Another is the probable deviation .or 
probable error which was widely used in the past, but which 
is practically never used now to describe variability. The 
probable deviation ·is approximately 2/3 the size (more 

• Let it be emphasized again that if this development is not perfectly clear, 
you should go back and study the rules of Chapter 2. Nothing is involved here 
except the application of these rules. 

1 A reciprocal of a given value ~ 1 divided by that value, 
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precisely, .6745) of the standard deviation and is found by 
multiplying the standard deviation by that value. In a 
normal distribution the interval established by the mean plus 
and minus one probable deviation contains the middle 50 per 

· cent of ~e measures and is therefore equivalent to Q1-Q1• 

The probable deviation has no advantages over the standard 
deviation; rather, the disadvantage lies in the fact that in 
order to find it we JD.ust first calculate the standard deviation. 

The measures of central tendency and variability which 
we have treated briefly m this section are used very in
frequently in psychology and education and, with the excep
tion of the geoJD.etric JD.ean, have little bearing upon the 
statistical methods developed. later. We shall consequently 
say, no more about them. Our basic measure of central 
tendency will be the mean and our basic measure of vari
ability will be the standard deviation. We shall refer to 
these measures constantly. Be sure that you thoroughly 
understand their calculation. 

18. . SAMPLES AND STATISTICS 

We have more or less avoided the use of the term "sample" 
up to this point but to continue to do so would prove awk
ward. In your own experience you have "sampled" foods 
and then made judgments or based future ~actions on your 
experience with these samples, i.e., you may ask for more 
or you may refuse more because you assume that the re
mainder of the food will be very much like the sample you 
experienced. An observer standing by would probably 
note that you do two things when you sample: (1) you deal 
only with a part or a portion of some whole, and (2) you 
assume that this part or portion is in some way representa
tive of the whole. This is very similar to the meaning of a 
sample in statistics. 

The statistical sample consists of the particular group of 
observations whiCh have been selected for investigation or 
study (88, p. 129) and, generally, the sample under study is 
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assumed to be representative of some larger group from 
which the sample was selected. The·larger group is called 
a population or unirJerse. A measure derived from a sample, 
such as the mean or standard deviation, is called a statistic. 
The corresponding mean or standard deviation which would 
be obtained if the population Instead of the sample had 
been studied is called a parameter. Parameters, since they 
are based upon all the existing cases, have fixed, single 
values. Statistics, on the other hand, since they are based 
upon only a part of the total population, may vary from 
sample to sample. · · 

Statistics,. in the absence of any other information, are the 
best estimates of the population parameters we have. The 

' two statistics which we have demonstrated in this chapter, 
the mean and standard deviation are, as we have empha
sized previously, basic. To find them you need compute 
but two sums: the sum of scores ~X) and the sum of. 
squares ~x2). The sum of scores is necessary for the mean 
and the sum· of squares for the standard deviation. Later 
we shall find that there are easier ways of computing these 
statistics when we have to deal with either a large number 
of observations or when the measures as such have large 
numerical values. · 

MEASURES OF CENTRAL TENDENCY AND 
VARIABILITY 

Example 1.-A class in applied psychology made the following 
scores on a weekly quiz. (a) Find the mean of the scores. (b) 
Now subtract the mean from each score and sum these deviations; 
Axe you surprised at your finding? Could you use thiS device to 
verify the calculation of a mean? 

30 28 26 25 23 21 20 
29 28 26 24 23 21 20 
29 27 26 24 22 21 19 

. 29 27 25 24 22 20 19 
211 21\ 25 24 21 20 .18 .. 
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c=Examp~Fmd the me?ia.n for each ?f the following distribu
~ ~your ca.lculattons by .countmg down from the top. 

(a) 23, 23, 22, 22, 22, 20, 17, 17, 17, 17,15, 15,13, 13, 13, 12, 12 ~ 
(b) 20, 20, 19, 17, 17, 17, 15, 15, 15 
(c) 15, 13, 11, 9, 6, 4, 2 -J ';l • I 
(d) 24, 22, 19, 17, 16, 14, 8, 6..,., at ;J_,! 

. (e) 38, 35, 34, 33, 30, 28, 20, 17 J I~ 

Example 3 . ..:.....Suppose that you had two groups or subjects, each 
~bject in Group 1 being matched with a subject in Group 2. 
Given the following measurements for each subject, find the mean 
for each group, and the difi'erence between the means. Now take 

. the difference betwee~ each pair and find the mean of these diff~ 
ences. • Is this mean equal to the difference between the means? 
Verify each of the three means by summing the deviations. 

Group l 10 5 6 7 10 6 7 8 6 5 
Group 2 7 3 5 'I 8 4: 5 6 3 2 

Example 4.-Find the median for each group fu E.umple 3. 
. Find the range, variance, and standard deviation for each group. 

~~~-d the mean, variance, and standard deviation 
~~tribution of measurements: . . 

25 24: 
25 24 
25 24 
25 23 
24 23 

22 21 20 
22 21 20 
22 . 21 20 
21 21 19 
21 20 19 

19 
19 
18 
18 
18 

18 17 
18 "15 
17 15 
17 14 
17 14 

Example 6.-:-Find the median, Q., and Q, for the distribution of 
scores in Example 5. · 

' Example 7.-Write a symbolic equivalent for each of the follow-
ing. For example, X - .M could a.ls~ be written x. 

(a) X - M (c) ~x1 (e) M 

(b) l:X (d) ~: (f) (X- M)t 
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(g) fl G> NM (m) .3: 

(h) l:xt 
N 

(k) Nul 

(i) l:(X N M)t (1) II 
~how, algebraically, that the sum of the deviations 
Trom-the mean is equal to zero. _ _ . 



CHAPTER 4 

SIMPLI}i'YING STATISTICAL COMPUTATIONS 

The computation of the mean and standard deviation is· 
quite simple, as long as we are dealing with relatively few 
measurements or when the numerical size of the measure
ments is small. But ·when we have a great many scores 
and when the values of these are large, as may often be the 
case, then we need some method for simplifying our work. 
This is achieved through coding, a means of reducing scores 
or measurements. · 

1. THE APPROXIMATE NATURE OF MEASUREMENTS 

you may recall that in the last chapter we touched briefly 
upon the meaning 9f a measurement or score when we con
sidered the calculation of the median. At that time we 
pointed out that measurements are made and reported to 
the nearest unit, whatever that unit happens to be. Height, 

.for example, may be reported to the nearest inch despite the 
fact that there is not a jump from one inch to the·next, but a 
theoretically. infinite gradation of units between each. The 
distance between 61 inches and 62 inches, for example, 
might be divided into tenths and reported 61.1, or divided 
into hundredths and reported 61.01, or thousandths and 
reported 61.001, and so on. A height, then, reported simply 
as 61 inches is not the precise value upon close examination 
that it might at first seem to be. But then neither would 
a reported value of 61.001 inches be an exact figure, for, 
regardless ·_of the units of measurement, theoretically an 
instrument might be constructed which would measure with 
a greater degree of precision. 

This iS true of all measurements. Time may be measured 
in terms of years, months, weeks, days, hours, minutes, 
seconds, milliseconds, and so on, each succeeding unit being 

54 
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·. more precise than the one before, but even milliseconds are 
not exact values but only approximate. What we have said 
about time applies also to other measurements with which 
you may be familiar: temperature, weight, brightness, 
intensity of sound, and so forth. 

Because of the approximate nature of measurements, we 
customarily, in statistics, regard a height reported in terms 
of the nearest inch, such as 61 inches, as representing an 
interval ranging from 60.5 to 61.5, i.e., half a unit above 
and half a unit below the value reported. We r~gard 
psychological test scores and other measurements in the 
same manner. An intelligence test score of 82 is taken to 
mean from 81.5 to 82.5; an attitude test score of 23 is con-

' sidered as representing an interval from 22.5 to 23.5. It is 
conceivable, in each instance, that if our units of measure
ment on these scales had been more refined, then the obtained 
values might have been somewhat higher or somewhat lower 
than the scores, 82 and 23, indicate. H this disturbs your 
previous beliefs about the accuracy of figures, then you 
might take comfort in the thought that most of our units of 
measurement are precise enough for the situations in which 
we are interested. __ 

a. Significant figures. A frequent question coming from 
students is: How many decimal places shall I carry in my 
computations? There is no exact answer to this question 
as it is phrased. More properly, the q\}estion should be: 
How many significant figures should I carry? But even 
here there is no exact answer; there are only "good" or 
"established" practice and""poor" or not common practice
like "good" and "bad'' usage in English. In view of what 
we have said concerning the approximate nature of measure
ments, the figures 28, 280, and 2,800 each contain but two· 
significant figures. That is because the zeros used in the 
second and third numbers are merely used to locate decimal 
points, they are "fillers." The first value, 28, represents a 
range from 27.5 to 28.5; the second, 280, a range from 275 
to 285; and the third, a range from 2,750 to 2,850. How-
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ever, if 280 and 2,800 bad been written 280. and 2,800., 
with a decimal point, then the zeros would have been con
sidered significant figures and the range would be 279.5 to 
280.5 and 2,799.5 to 2,800.5, respectively. In the measure
ments used throughout this hook, we shall follow the fairly 
common practice of not writing the decimal point after 
:figures such as 70 or 60 or 210 but asS'Ume that it is under
.8tood. When a score is written as 60, for example, it will 
be assumed that this represents a range from 59.5 to 60.5. 

There are "rules" governing the number of significant 
:figures in the answers to problems involving multiplication, 
,division, addition, and subtraction, but, as Snedecor (86) 
:has pointed out, they would have to be discarded when an 
:involved series of operations must be performed. Following 
rigidly any single set of rules would involve "exaggerations 
of inaccuracies" (86, p. 87). The best single principle to 
.follow is to carry along more figures in various computations 
than you intend to retain in the final answer, and then to 
;round back to a reasonable number of places in reporting 
your answer. Let's consider. first what we mean by a 
,~'reasonable" number of places in an answer before turning 
to the technique of "rounding." 

b. Common practice in reporting statistics.· An exami
nation of the research literature in a given field will indicate 
current practice.- In psychology, education, and the social 
::;ciences, since many or most of our measures are concerned 
with scores, usually measured in terms of whole numbers 
.and seldom in terms of decimals or fractions, the following 
is common practice: 

r 1. The mean is usually report~d to one or two decimal 
places. · ·-

2. The median is usually reported to one or two decimal 
places. 

3. The standard deviation is usually reported to one or 
two decimal places. 

4. Standard errors, which we have not discussed as yet, 
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are usually reported to two and ·ordinarily not more than to 
three decimal places. 

5. Correlation coefficients are usually reported to two and 
sometimes to three places. 

6. Per cents, written as decimal fractions, . 'are seldom 
reported to more than four places, and usually to two. 

7. Proportions are usually reported to two or sometimes 
to three decimal places. . 

8. Ratios, used in tests of significance, which we shall 
take up later, are usually reported to two or sometimes to 
three decim~ places. 

, When the number of observations with which we are 
dealing is very large, we might report the statistics listed 
above to another decimal place, but when the number of 
observations is small, say less than 100, such "professed 
accuracy" is apt to be looked upon as misleading. Remember 
that if you are going to report the mean of a sample to two 
decim31 places, then you should carry the division '};X/N to 
three places and round back to two. This practice should 
be followed in computing all other statistics also~ carry 
along two or three extra figures in making your computations 
and then round back in your final answer. 

c. Rounding numbers. In rounding numbers to the 
nearest whole number, we would proceed as follows: 
8.4 becomes 8; 7.1 becomes 7; 3.2 becomes 3; 7.6 
becomes 8; 7.8 becomes 8; and 6.6 becomes 7. What 
is the rule we have followed? If the decimal fraction was 
less than .5, we dropped it and let the number stand; if the 
decimal fraction was over .5, we raised the ntimber by one. 
If we round to one decimal we follow the same rule~ 8.46 
becomes 8.5; 7.32 becomes 7.3; 6.11 becomes 6.1; and 
4.654 becomes 4.7. · -_ 

Difficulties in rounding are apt t.., arise when we are asked 
to round numbers such as these: 5.5 and 4.5 to the nearest 
whole number; 8.550 and 4.650 to one decimal place. The . 
answers may surprise you: 5.5 becomes 6;~ ~4.5 remains 4; 
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8.550 becomes 8.6; and 4.65 remains 4.6. All of these 
, numbers involve the dropping of a 5, which is right on the 

border line. The rule, by common practice, is this: if the 
number recedin the 5 which is to be dropped is an even 
nnmber then we do not change it, but if e number prece -
ing the..5 is odd, then it is raised by one. This is an arbi
trary rule, to be sure, and it could just a.s well be the other 
way around. Either one would work and would tend to 
b3lance out errors that might be present in rounding if we 
had a long series to :work with. 

!!. CODING BY SUBTRAC'f'ION 

a. The sum of scores. We are now ready to consider 
some of the techniques of coding measurements. Consider 
the simple set of scores on a Thurstone attitude scale listed 
in Table 3. If you subtracted 5 from each of these scores 

TABLE 3.-A SIMPLE SET OF ScoRBS 
OM A. THUBSTONB A'l'rlTIJDE Sc..u.z 

11 
8 
5 
2 
4 

'· 7 1 
2 
5 
9 
7 

•t 
4 
5 
4 

:z: 75 

and added the resulting deviations you would :find that the 
sum would equal zero. What would this indicate? Do 

. you· recall a theorem introduced earlier, that the sum of 
deviations from the mean is equal to zero? This should 
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tell you, then, that the value we have subtracted from each 
. of these scores is really the mean. · · 

Now try subtracting 4 from each of the scores. The sum 
of the deviations is now no longer zero but 15. If you were 
to divide this value .by N, which is equal to 15, the result 
would be 1, which is just the amount you need to add to the 
value 4, which you subtracted from each score, in order to 
obtain the mean. . Try subtracting 3 from each score and 
you will now find that the sum of the deviations is equal to 
30, and 30 divided by N gives 2, which is just the amount 
you need to add to 3, the v.alue subtracted from each score, 
in order to obtain the mean. 

~ As a matter of fact, any value at all could be subtracted 
~ from these scores and you could still find the mean by sum

m.lng. the deviations from the value subtracted. If you 
subtract a constant value from each score, then that value 
must be subtracted N times (once for each measurement in 
the series). Then N times the value subtracted, added to 
the sum of deviations from this value, will give the sumo£ 
scores (l;X). For example, when 3 was subtracted from· 
each score in the above series, we found the sum of deviations 
to be 30. And (15)(3) + 30 = 75, or the value that would 
be found by summing the original scores. 

We are going to have to resort to some more symbols. 
The deviations we have just used may be symbolized by 
X'. This means that the deviation is not from the actual 
mean (M) of the series, but from ·some other point of arbi-
trary origin, symbolized by M'. Now for some alg~braic 
manipulations, but manipulations which involve nothing 
more complicated than the application of the rules intr~ 
duced in the second chapter •. If the discussion is not clear, 
then you should go back and study the rules. , 

We can arrive at the equation ~X = (N) (M') +~X', 
empirically, that is, by actually working out several prob-. · 
lems, subtracting different values, but we can also arrive 
at it in terms of our rules for equations and summation. 
Thus if we start with -
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X-M'=X' 
:l:(X - M') == ~X' 

Simplifying Statistical Computations 

By definition 
Summating, and since the 
Bl,liiliilation of a constant 
{M') is equal to N times the 
constant, we get 

:l:X - {N) (M') == ~X' And adding (N) (M') to both 
sides we get 

~X == (N) (M') + ~X' 
. Now having arrived at the above equation, we can readily 
~~u~~~~~~~~u~~~~ 

sides of the equation by N, we get "1:.: == M' + "1:.:', and 

since "1:.: is equal to the mean, we may substitute in the left 

- side to arrive at 

M==M'+~X' . N {11)1 

where M = the mean 
M' = some constant which is subtracted from each score 

· ~X' = the sum of deviations from M' 
N = the number of scores in the series 

• 

The value ('};;')is called the correction term for the mean 

wh~n deviations have been taken from some value other 
than the actual mean of the series. : 

b. The sum of squares. Perhaps you are wondering 
whether the X' values can be squared, summed, and then 
corrected in some fashion to arrive at the sum of squares 
('};x2). The answer is "Yes." All that we need to do to 

. . ; ('};X')Z 
obtain the sum of squares is to subtract --g- from "2.X'2• 

. ::tX' 
· t U M' were equal to the mean, then N would, of course, be zero, since 

the "sum of deviations from the mean is equal to zero." 
I 
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In othe;r words, 

. (12) 

where ~x1 = the .SUID. of squared deviations from the mean. or 
the series 

:tX12 = the sum of squared deviations from some value 
(M') other than the mean 

(l:X')1 a. the sum of the deviations from 1.!', squared :· . 
N = the number of cases · 

The ~ed:ion term {];!')" is ~ot a correction term· for 

· ... subtraction as such, but for failure to 'take the deviations 
from the actual mean. Measures of. variation such as the 
standard deviation and range are uninfluenced by subtrac- · 
tion or addition of a constant from every member in the 
series; the variation or spread of scores remains the same. 
For example, ·if the lowest score in a set was 20 and the 
highest was 40, the range would be 20. If a constant such . 
as 10 was subtracted from every score in the series, the 
lowest score would become 10, the highest would become 
30, and the range would remain 20. If 10 were added to 
each score, the lowest score would become 30, the highest 
50, and the range would be the same as before. The stand
ard deviation would also remain the same, regardless of the 
constant which is subtracted or added. 

We may illustrate formula (12) with the series of Thur
stone attitude scale scores we used before. Column (2) of 
Table 4 gives the deviations of each of the scores listed in 
column (1) from the actual mean. Working with these 
deviations from the mean, we can readily see from column(3) 
that the sum of squares is equal to 122. Now let us try the -
formula involving a correction teon, wh(m we work with 
deviations from some value other than the mean. · In 
column (4) we have the values of X' when 4 has been sub
tracted, the sum of the deviation.~ being 15.. In column (5) 
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TABLE 4.-DEVIATIONS AND SQUARED DEVIATIONS 
Fl\014 v ..uuous POINTS 01' Om aUf 

'· 
(X',;,..~ -4) · 

(1) (2) (3) (4) I (5) (6) 
X :1: .z' X'. x-. .P 

If 6 36 7 49 121 
8 3 9 4 16 M 
5 0 0 1 1 25 
2 -3 9 -2 4 4 
4 -1 1 0 0 16 
7 2 4 .3 9 49 

. 1 -4 .16 -3 9 1 
2 -3 9 -2 4 4 
5 0 0 1 1 25 
9 4 16 5 25. 81 
7· 2 4 a 9 49 
1 -4 16 -3 9 1 
4 -1 1 0 0 16 
5 0 0 1 1 25 
4 -1 1 0 0 16 

1:: .75 0 122 . 1 15 137 497 

we have these deviations squared, the sum being 137. · 
Applying formula (12), we have 

. . }.:zt = ~Xtt - (~X')' 
. N 

= 137- (15)* 
15 

= 137-15 . . 
= 122 

which is precisely!the value we obtained when we worked 
directly with the deviations from the actual mean of the 

· distribution. -
In column (6) we ha¥e squared the original scores. We 

may sum these, apply formula (12), and obtain the sum of 
squares sa 'we did before. In this instance we are merely 
~ubtracting zero from each.score, and our correction term 
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becomes the square of the sum of the original scores, divided 
by N. Thus we may write' - · . · · . · . · 

~ ..J..~ . ~X)J (13" 
~;,;-=:2:.4.·- ~ '} 

Substituting the appropriate values in the aboY-e formula, 
we get · 

l:z' = 497 - (75)2 
15 

= 497....:. 5,625 
, 15 

= 497-375 
=122 

We now have several different ways of finding the sum of 
squares: we may work with deviations from the actual 
mean; we may subtract some value other than· the mean 
and apply a correction term to the resulting sum of squared 
deviations; or we may work with the measurements a.s they 
stand. This latter method is particularly valuable if you 
have a calculating machine to assist you in your computa.. 
tions. 

S. CODING BY DIVISION 

a. The sum of scores. We have just seen how we may 
subtract any constant from a series of scores, thus reducing 
the numerical size of the scores. We found also that we 
could work with these reduced or ucoded" scores and, by 
applying a correction term, arrive at the same value for the 
sum of scores and the sum of squares that we would have 
obtained working with the original measures. We shall now 
see how division, too, can be used to reduce the size of scores. 

In Table 5, column {1), we have a set of original measure- .· 
menta, the sum of which is 100. Since N is equal to 10, 
the mean of these scores is 100/10 or 10. Column (2) gives 
the deviation of each score from the mean and the sum of 
this column is zero, as it should be. Column (3) gives the 



64 Simplifying Statistical CompU,tatiO?UJ 

deviations squared, and the sum of square~ is equal to 96. 
In column (4) we have divided each X by 2 and we shall 
symbolize ~his "coded'' score by x'.' We shall let i represent 
the value by which we divided ·the scores. Column (5) 

contains' the squares of the coded scores (;)'. 

I 

'' 

---

I 

TABLE 5.--ContNG Scous BY DIVISioN 

{~ = X/2) 

. 
(1) (2) (3) (4) (5) 

X :1: :r!- %' %'~ 

. 12 2 4 6 36 
10 0 0 5 25 
8 -2 4 4 16 

10 0 0 5 25 
14 4 16 7 49 
6 -4 16 3 9 
8 -2 4 4 16 

16 6 36 8 64 
6 -4 16 3 9 

10 0 0 5 25 

l:: 100 0 · 96 50 274 

Note that the _l;x' needs to be multiplied by 2 (the value 
·by which each X was divided) in order to equal the sum of 
X. In other words~ XX= (1;x')(i). If we divide both 

sid~s of this equation by N, we get'!:;:=(~') (i), and 

. -. l;X - --
since N jg equal to the mean, we may substitute in the 

' l 
left-hand side of the equa~on to get another basic formula: 

(l:x') .. M = N (t) (14) 

Thqs we see that ii we have reduced scores Ly dividing each 
one by the same constant, we may sum th£>.se coded scores, 
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divide by. N, and multiply the result by i, the value by 
which we divided each score, to arrive at the mean. Sub
stituting the appropriate numerical values in formula (14), 
we get 

M =(50) (2) 
. 10 
= (5) (2) . 
= 10 

which is the value we obtained by working with the original 
measures. 

b. The • sum of squares. The formula for the sum . of 
squares now requires a correction term for coding 88 well 88 

one for failure to take the deviations from the mean of the 
series. Measures of variation, although uninfluenced by 
subtraction or addition, are changed by multiplication or 
division. Note, for example, that the range of the scores in 
~olumn (4) is no longer the same as that of the original 
measurements in column (1). The formula we need js 

(15) 

where l:x1 = the sum of sqtia.res 
l:x'~ = the coded sum of squares from some point other 

th.a.n. the mean 

("E.;}t = the correction term for origin 

,,. = the correction term for coding, that is division · 

Substituting in ·formula (15), we get 

l:zt = [274 ~ {~~1 {2}1 

= [ 274- 2·;go]4 
= (274- 250) 4 
= (24) (4) 
= 96 
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which is precisely the value w~ obtained when we worked 
with deviations from the mean of the distribution. 

You may not quite grasp, at· this time, the v~ue of the 
coding techniques we have described. That is because the 

· problems and data we have had to work with up to now 
have been selected for simplicity and ease of computation. 

•In each illustration the mean has been a whole number and 
the figures have been small rather than large. But suppose 
that the mean for a distribution of over 100 scores turned 
out to be 152.67. If you tried to compute the standard 
deviation by working with deviations from this mean, the 
computations would involve squaring four- or five-place 
figures. Coding the series by subtracting some even value 
and redueing them even more by dividing by a constant 
would simplify your computations. 

4.. SUMMARY OF "CODING FORMULAS" 

We might summarize the ·discussion· so far before we turn 
to coding measures by grouping. It is possible, we have 
seen, to code measurements by subtraction and division, 
if we remember to return our coded measurements to the 
units of our original scores for our final answers.2 

1. When scores have been reduced by subtraction only 
_(X - M') then 

M = M' +};:'. 
1 1t is also possible to code by multi_plication and addition, but we seldom 

have need for these coding techniques m handling the data of the social sci
ences. The rules are these: The mean is influenced by every operation; the 
standard deviation only by multiplication and division. When more than 
one operation has been performed, for example, subtraction and then divisign, 
the coded results must be decoded with the inverse operation (the inverse 
operation of subtraction is addition, of division it is multiplication) and in 
reverse order. If we have subtracted 5 and then divided each measure by 2, 
we must decode the resulting mean by first multiplying by 2 and then adding 5. 
The sum of squares, being influenced only by the one operation, division, 
must be multiplied by the square of the value by which each measure was 
divided. 
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2. When scores have been reduced by means of division 

only (f) then . 

and ~xi = [ ix'' - (~~)1 ~"~ 

3. When scores have been reduced first by subtraction 
and then by division, then · · · · · 

if .~ M' + (~) i and . ~x! ·= [ ~x" - (,;~J ~~ 

4. When scores are treated in terms of the original meas
urements, then 

M-~x 
-N 

The formulas given above are basic. Memorize them 
and make sure that you know what every term means and 
what every term does. · . · · 

6. GROUPING MEASURES INTO CLASSES 

.. 

The most common method of coding scores is by "group
ing" data or measurements into "classes" to form a frequency 
distribution. You may recall that earlier in this chapter 
we discussed "precision of measurement.', Grouping may 
be thought of as the equivalent of using a less precise measur
ing unit and· is most valuable when we have a large number 
of measurements. Instead of treating each measurement 
separately, we group them into a ·number of equal in~rvals, 
classes, or steps. We then code the cla.Sses and work "With . 
these coded values in order to simplify our computatioris. · 

Examine the scores in Table 6. They are hypothetical 
but we shall assume that they were made by a class in 
psychology on an objective examination. These scores, as 
they stand, do not give a very concise de13cription of the 
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performance of the group-and one of the purposes of 
statistics is to summarize and describe. Nor are these 
scores, as they stand, very convenient to use in computation. 

a. The number of intervals. · The first thing we need to 
do in making a frequency distribution is to determine how 
we shall group the scores. We could group them in terms 

TABLE 6.-HYPOTBETICAL ScoRES MADE BY STUDENTS 
• ON AN OBJECTIVE TYPE OF EXAMINATION 

87' 76 73 70 . 67 66 64 63 61 60 
85 75 72 69 67 65 64 62 61 60 
82 • 74 71 69 67 65 63 62 61 60 
78 74 71 68 66 65. 63 62 61 60 
77 '74 70 68 66 64 63 62 61 60 

60 59 58 57 56 54 52 50 46 43 
60 59 58 57 55 54 52 49 46 42 
60 59 58 57 55 53 51 49 46 38 
60 59 58 56 55 53 51 48 45 35 
60 59 57 56 54 53 50 47 44 33 

· of a· class interval of 1 by placing numbers ranging from 
87 to 33 at the left-hand side and then making a tally mark 
(/) each time one of these numbers was found in the dis
tribution •. This, however, would "still leave the scores 
spread out; the class range would be from 87 to 33 or 54. 
Fortunately, experience has shown that quite accurate 
results can be obtained in statistics when, for purposes of 
computation, we work.with a much smaller class range, say, 
from 10 to 20 classes. Our first rule for grouping scores, 
then, will be that we shall group them so· as to have from 
10 to 20 classes or groups. The larger the number of in
tervals, the more precise will be the computations, but also 
the· more complicated the computations. Consequently, 
the number of class intervals we decide to work with will be 
dictated by our desire for accuracy and also by our desire 
for convenience. 

·b. Size of the class interval. One method which might 
be used to determine the appropriate size of the class interval 
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to use in grouping scores is first to find the range and then 
to divide this value by the contemplated number of class 
intervals with which you wish to work. In the present 
problem, if we wished to work with the minimum number, 
10, we would divide the range, 54, by 10 and the quotient 
would be 5.4. This quotient rounded off to the nearest 
integer would be 5, which suggests the size of the interval 
to use. We shall let the symbol i represent the value of the 
class interval. 

If we wished to work with approximately 15 class intervals 
. we would divide. the range by 15 and the quotient would 
be 3.6, which, when rounded, is 4. In this instance, how
ever, instead of using 4 for the size of the cla.Ss interval, we 
might prefer to use 3. The reason for this is that, in general, 
an odd number for the size of the clru3S interval is easier to 
work with than an even number. We shall later make t.he · 
assumption that the midpoint of the class interval best 
represents all of the scores located within the interval. If 
the interval has an odd number of units, .then the midpoint 
will be an integer. If the interval has an even number of 
units, then the midpoint will be a fraction. It is to avoid 
the latter situation that intervals with an odd number of 
units are to be preferred.• However, if the quotient ob-
tained by dividing the range by the contemplated number of 
intervals is 9 or 11, then most workers would probably 
select 10 for the size of the interval. This is partly because 
classifying things by lO's is common in everyday life and 
also because computations involving lO's are particularly 
easy. 

c. Limits of the intervals. It is customary in psychology 
and education to start class intervals so that the lowest 
score of the interval is some multiple of the size of the class 
interval. For example, when the size of the interval is 3

1 

~This rule, like most ~ based upon eommon practice, h.a.a exceptions.. 
If we ha.d a range of 25, we would be forced to decide between working with 
the measures as they stand, or using an i of 3, which would give us less than 
the 10 intervals we desire, or using an i of 2. You would probably find a.dvo-- · 
a.tes of each procedure. · 
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intervals are started with some multiple of 3 such as 6, 9, 
12, or 15, and so forth.' Although it .is customary to write 
these intervals as 6--8, 9-11, 12-14, and so forth, for a 
class interval of 3; and 1G-14, 15--19, 2G-24, and so forth, 
for a class interval o£ 5; we must remember what we 
have previously said about the. meaning of a score, i.e., that 
it represents a range extending .5 of a unit above "and 
below the recorded value. The same reasoning applies to 
class intervals; the theoretical limits of the interval 1G-14 

·are 9.5--14.5, that is, .5 of a unit ·below and .5 of a unit 
above the recorded limits. . 

d. Tallying. the scores. The next step in making a fre
quency distribution, after the size of the class interval has . 
been determined, is to tally the scores. The various class 
intervals are listed as in Table 7 according to the accepted 
practice of placing the highest interval at the top. As the 
scores are taken one at a time, a tally mark is placed opposite 
the interval in which each score falls. When four tally 
marks (/ / //) have been made in a given interval, the fifth is 
made as a cross tally, thus fHJ. · The sum of the tally marks 
for each interval gives the frequency of the interval, and the 
sum of all of the frequencies gives the total N. 

e. Assumptions concerning grouped scores. What as
sumptions can we make concerning these scores as they are 
'now grouped? We might assume that the scores within each 
interval are evenly distributed throughout that interval. This 
is the assumption we shall have to make in order to find the 
median which is a point. · A second assumption we might 
make, and one that we use in computing the mean and 
standard deviation, is that the best single value to represent 
·all of the scores within a given interval is the midpoint of that 
interval. ThiS, of course, will not always be true, but the 
errors introduced tend to be small and the errors in one 
direction tend to counterbalance errors in the other direction. 

' This again is an arbitrary practice, and there is much to be said for starting 
intervals in such a way that the midpoint of the interval is an even multiple 
of the size of the interval. When 5, for example, is the size of the interval. 
the intervals may be started with 8, 13, 18, or 23, and so forth. 
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We shall find that the mean and standard deviation based 
upon this assumption will not be seriously in error. 

We could, if we wished, now compute the mean by locat
ing the midpoint of each class interval and multiplying this 

TABLE 7.-FREQUENCY DrsTRIBUnON OF ScoREs 
GIVEN IN TABLE 6 . 

(1) (2) - (3) 
8coRBS TALLY MA.llU I 

'. 85-89 II .2 
. 80-84 I 1 

75-79 Ill/ 4'. 

7G-74 mJ Ill/ 9 . 
65-69 /HJ/HJ/11 13 
60-64 IHJ /'HJ fHJ /'HJ fHJ I 26 
55-59 . /1{./ /1{./ fHJ Ill/ 19 
50--54 mJ IHJ II 12 
45-49 IHJ/11 8 
4o-44 /II 3 
35-39 II 2 
30-34 I --1 

value by j,- the number of scores within the interval; we 
could sum these values and divide by N and this would 
give us the mean. Locating the midpoint of an interval is 
an easy process. The midpoint of the interval is halfway 
between the lower limit and the upper limit of the interval. 
The lower limit of the interval 3Q-34 is 29.5 and the upper 
limit is 34.5, a range of 5. Half of 5 is 2.5 and this value 
added to the lower limit of the interval gives the midpoint, 
32. The midpoint of any class interval, in other words, 
is the lower limit of the interval plus i/2. It is important 
not to forget that the lower limit of any interval extends 
.5 of a unit below the recorded value and the upper limit, 
.5 of a unit above. 
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f. Calculation of the mean and sum of squares. You may 
wonder why we are not now going ahead to find the mean 
of the distribution of scores in Table 8, by multiplying the 
midpoints of the class interval as given in column (2) by 
the corresponding frequencies as listed in column (4). We 
could calculate the mean in this manner, but we may simplify 
our computations even more by coding the values of the 
midpoint. To do this we (1) subtract the midpoint of the 
lowest interval from the midpoint of all of the other intervals 

' and then (2) divide these values by i, the size of the interval. 
· • This will not change the values of the mean and standard 

. deviation, except for the slight errors already introduced by 
grouping, if we take into consideration the proper corrections 
for origin and coding. The formulas are similar to those 
we used before except that we now usefx' to indicate that 
each coded score or midpoint has been multiplied by its 
frequency •. Thus 

M = M' + (};~0 i {16) 

{17) 

The essential steps in the application of formula (16) and 
formula (17) are illustrated in Table 8. You may note 
several things from this table. It would not have been 
necessary to find the midpoint 'of the lowest interval and 
then to subtract this value from the midpoint of every other 
interval, dividing the remainders by i. We could have 
simply coded the lowest interval 0, the next 1, the next 2, 
and so on. This will be true. of all distributions, regardless 
of the size of the class interval or the number of intervals 
or any other C(\DSiderations. We might also have subtracted 
the midpoint of some interval other than the lowest. We 
could have started, for example, with the midpoint of some 
interval toward the center of the distribution and numbered 
this 0. Then intervals above this would be numbered 1, 2, 
3, and so on, and those below would be numbered -1, -2, 
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TABLE 8,-CALCULATION OJ' THE MEAN, MEDIAN, AND STANDARD DEVIATION 
no~o~ ScoRES CoDED BT GROUPING • 

2; 

(3) . (1) (2) 

Mm- M:w-
SCOB.ES 

POINT 
POINT 
-32 

85-89 87 
8(}-84 82 
75-79 77 
7G-74 72 
6!)-69 67 
60--64 62 
55-59 I' 57 
50--54 . 52 
45-49 47 
40-44 42 
35-39 37 
30-M 32 

M = M'.+C'{;') i 

= a2 +G:)s 
.,. 32 + (5.62)(5) . 

... 32 + 28.1 

-60.1 

55 
50 
45 
40 
35 
30 
25 
20 
15 
10 
5 
0 

(~ -%/.) 
Mdt~=l+ ~ l 

... 59.5 +eo; 45)s 

= 59.5 +(2:)5 

= 59.5 + .96 

= 60.46 

(4) (5) (6) (7) 

I z' 
' 

·t:f! j:f/1 . 

2 11 22 242 
1 10 10 100. 
4 9 36 324' 
9 8 72 576 

13 1 91 637 
26 6 156 936 
19 5 95' 475 
12 4 48 192 
8 3 24 . 72 
3 2 6 12 
2 1 2 2 
1 ·o 0 0 

100 562 3,568 

:2:zt .,; [ :2:/z~ ·- cx.z')l] i .. 
= [ 3,568 _ (~:rJ 25 

= [ 3,568 - (3115:4)] 25 

. = (3,568 - 3,158.44) 25 

= (409.56)(25) 

= 10,239 
l:zt rJ=y 

10,239 
= liXf"' 

= l02,3J 

tr= ~-or·~·: 
.., v'102.39 

= 10.1 
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-3, and so. on. This would give us slightly smaller figures 
to deal with, but· would have introduced some negative 
values into our computations. AP. general practice, it is 
better to start. the lowest interval with 0 and number up 
from there. There is perhaps less chance of making a mis
take if you follow this practice. 

g. The "Charlier checks." There are checks on the 
accuracy of your~computations. They are known as the 
"Charlier checks'!. and in the present problem may be 
effected by raising each coded interval by one point. The 0 

'interval in the frequency distribution. becomes 1, the 1 
interval becomes 2, · and so on. We may designate these 
new coded values for the class intervals as x". Now find the 
"'i:.fx" and the "'i:.fx"2 as before. If the computations in the 
first and second instance have both been correctly made, 
then the following relations will hold: 

"Xfx" = "Xfx' + N 

"Xfx"2 = "Xfx'2 + (2) ("Xfx') + N 

(18) 

(19) 

AP. an illustration of these checks we may examine the 
computations in Table 9. 

2: 

TABLE 9.-ILLUSTRA.TION OF THE "CHARLIER CHECKS" 

(1) (2) 
ScoREs I 

3G-32 1 
27-29 2 
24-26 5 
21-23 7, 
18--20 3' 
15-17 2 

--

2:fr1 = 2:/z' + N 
65=45+20 
65= 65 

20 

. (3) 

z' 
--

5 
4 
3 
2~ 

1 
0 

--

(4) (5) (6) (7) (8) 

fz' /z'~ J r' fz" 
---.-----1-

5 25 1 6 6 
8 32 2 5 10 

15 45 5 4 20 
14 28 7 3 21 
3 3' 3 2 6 
0 0 2 1 2 

----------
45 133 

2:/z'11 = 2:/z11 + (2)('1;/z') + N 
243 = 133 + (2)(45) + 20 
243 = 133 + 90 + 20 
243 = 243 

65 

(9) 
Jz''l 
--

36 
50 
80 
63 
12 
2 

--
243 
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h. Calculation of the median. The median, Q11 Oa, and 
centiles can also be found from a frequency distribution. 
Formula (7) given earlier .. will work without any ch:ange. 
But if we have our scores grouped in intervals greater than. 
one, as will usually be the case, the value within the paren-

. theses must be multiplied by the size of the interval, i. Thus 

. 2- I.j. i 
(

N ) . 
Mdn = Z+ . . . J,., 

where M dn = the median 
Z -= the lower limit of the interval containing the 

·median 
"Z.f~ = the sum of frequencies up to the interval oont~ 

the median 
fw = the frequency within the interval containing the 

median 
N = the total number of cases in the distribution · · 
i = the size of the class interval -

The application of formula (7) is illustrated in Table 8. 
The value of the median obtained by means of this formula 
may be checked by calculating the median using formula (8) •. 

6. SUMMARY OF STEPS IN CODING . 

Here is a summary of the steps in coding measurements · 
by first grouping them in a frequency distribution. 

1. Determine the range: (H- L). 
2. Divide the range by the number of intervals you wish 

to work with (10 to 20). This figure gives the approximate 
size of the class interval i. 

3. Begin the lowest interval with some mUltiple of the 
size of the interval. . . 

4. Code the lowest interval 0, the next 1, the next 2, and 
so forth until \be highest interval has been coded. .. ·. 

5. Apply formula (16) for the mean and fo~ula.(17) for 
the sum of squares. : 
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If you are working with a calculating machine, you may 
not want to record the scores in a frequency distribution 
but may still wish to code them: This is easily accom
plished. Follow the procedure above through the third 
step. Then take the lower liniit (recorded limit) of the first 
interval and· divide this by i (the size of the interval). This 
will be a. whole .number since the lower recorded limit is a 
multiple of i, and may be designated as k. Now divide 
each measurement by i, discarding any remainder. Su~ 
tract the value k and this will give you the coded value of 
the score, which is identical withthe value you would have 
obtained· if you had grouped the scores into a frequency 
distribution. ' · · 

SuppOse . ..;.e take a few of the values from Table 6 to 
illustrate how they might have been coded without making 
the frequency distribution. The lower. limit (recorded) of 

. the :first interval is 30, and this divided by the size of the 
interval, .51 gives. the value of k, which is 6. Check th~ 
coded values listed ~ Table 10 against those of Table 8. 

TABLE 10.-CoDING ScoREs WITHOtn. 
GROUPING INTO I~v .u.s 

(i = 5; k = 6) 

X X (f)-k i 

33 6 o· 
35 1'1 1 
38 - 7 1 _ ... 
42 8 2 

\ 43! 8 2 
50 10 4 
68 13 7 
76 15 9 
85 17 11 

-~ 
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· SIMPLIFYING COMPUTATIONS 

Example 1.-Here is an easy practiqe series for coding. 

29 28 27 25 24 22 20 

(a) Find the mean and sum of squares by the usual m~thod. 
(b) Subtract 22 from each score and find the mean and sum 

of squares. . 
(c) Find the sum of squares assuming M' to be zero. 

Exam~iven the following highest and lowest scores in ~ ~ 
number ~r;nt distributions: · 

(1) t : (2) (3) (4) (5) (6) 
87-29-.l4 95-50 185-fi.,D ~6-4a $11 52-le () llo--s.t" I Y 
(a) Find the range. . 
(b) Find the value of i. 
(c) Find the limits of the lowest interval. 
(d) Find the midpoint of the lowest interval. 

Example 3.-code the following scores without making a fre-
quency distribution. The range is from 84 to 33. 

(a) (b) (c) (d) (e) (f) (g) 
80 45 53 39 42 56 43-
33 62 64 66 47 83 58 
84 68 59 55 35 38 60 
76 71 37 84 45 61 77 
42 36 78 72 41 59 52 

Exao@?emonstrate the "Charlier check" with the follow
ing frequency distribution. Check both (a) the sum of scores and 
(b) the sum of squares. 

ScoRES J x' 

~-:tJ/ I 

-a~~ 1 5 
2 4 _

0
23 5 3 

, 22 7 2 
- 21 3 1 -19 20 2 0 
l1 ;i.-11 cl 
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Exampt/s:)_By making a. frequency distribution, code the 
following ~r" scores made by a class in general psychology on 
an objective examination.• Let i z;:o 3. Find the mean and 
standard deviation of the distribution. Check your computa.tion.s 
by means of the "Charlier checks.11 

• 
- 44 - . 40 35 34 32 31 

43 40 35 34 31 31 
. 42 • 37 ' 35 . 33 31 . 30 
40 36 34 aa at ao 
40 35 34 32 31 30 
26 25 24 24 23 23' 
26 25 24 2a 23 23 
26 25· 24 23 23 23 
25 . 25 24 23 23 . 23 

30 
30 
29 
29 
29 
22 
22 
22 
22 
22 25 .. "2jt . 24. 23 23 22 

22 z~ --- 2o · 20 20 19 18 
'22 21 20 20 19 . 18 18 
21 21 20 20 19 18 18 
21 21 20 20 19 18 18 
21 20 20 20 19 18 18 
11 11 16 . 15 14 14 ia 
.17 17 16 15 14 14 13 
17 16 16 15 14 14 13 
17 16 16 15 14 14 ' 13 
u w u u w u ~ u 

29 
29 
29 
28 
28 

27 
27 
27 
26 
26 

22 22 
22 22 
22 22 
22 . 22 
22 22 
18 
18 
18 
18 
18 
12 
12 
12 
11 
11 

18 
17 
17 
17 
It 
9 
9 
9 
8 
7 

Example~Fmd the mean, median, and stand&rd deviation 
of the following distributionr' 

' ~~--~~----.-------

SCORES I z' 

6(}.-62 1 8 
D7-59 3 7 
54--56 2 6 
51-53 7 5 
48-50 11 4 
45--47 10 3 
42-44 9 2 
'39-41 5 1 

. 36--38 5 0 

f.;'\ ~ - (}';X)Z 
Exampl~how, algebraically, that 2:x2 =:= 2:X2-~· 

Example 8.-8how, algebraically, that (a) }';jx' = l:jx' + N. 
and that {b) 2:j~ 11" = ~Jx'* + (2)(~fx') + N. 



CHAPTER 5 
• 

THE PRODUCf-MOMENT CORRELATION 
COEFFICIENT -

The statistical techniques discussed so far are useful for 
describing single variables. We are now ready to consider 
statistical techniques which will permit us to study two 
variables and to describe the relationships between them. 
The problei:n in which we_are interested is the extent to which 

. two variableB are associated. As values· oj one increase . 
~ from small to large can we expect corresponding changes -

in the second? Is it true, for example, that tall men tend 
to marry tall women and short men tend to marry short 
women? If we studied this problem and found that the state
ment were _ true, then we would say that these variables, 
height of husband and height of wife, are positively related. 

There are occasions, however, when we observe not posi
tive but negative relationships. Such a. relationship has 
been reported between an index Df economic prosperity and 
the number of lynchings occurring during a. given year (9). 
A negative relationship between these two variables means 
that as values of one increased, vaiues of the other tended 
to decrease; the higher the index of economic prosperity, 
the fewer the lynchings; the lower the index of economic 
prosperity, the greater the number of" lynchings. We 
describe this relationship by saying that the two variables 
are negatively related. 

We must take care jn studying relationships that we do not 
confuse the concepts of "correlation" and "causation.'' 
When two things are related it does not necessarily follow . · 
that one is the cause of the other. We might find that 
there is a positive relationship between scores on & test of 
aggressiveness and yearly incomeS for a sample of several 
hundred men, but we cannot legitimately say that one is the 

79 . 
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cause of the other. The assumption that changes in one 
variable are the cause of changes in 'the second may or may 
not be valid, but thi8 must be determined by considerations 
other than the mere fact that the two variables are related. 
The changes in each variable, for example, might possibly 
be tlie common result of some third variable. This is per
haps the most probable explanation of the positive rela
tionship that has been found between scores on an academic 
aptitude test and subsequent grades in college. No one would 
assume that the scores on the test determine or cause the stu
dent to get good grades, or that the good grades cause the 
student to get a high score. Whatever it is that causes the 
student to get a high score may also be the cause of hi8 
better than average grades. 

1. THE COEFFICIENT OF' CORRELATION 

One of the statistical techniques for· describing relation
ships, both positive and negative, is the product-moment 

· wrtelation ciJejficient. This coefficient measures the degree 
to which two variables are associated and is symbolized by 
T. In terms of absolute size, 1' may' vary from + 1.00, 
through zero, to -1.00. ~ correlation coefficient of + 1.00 
indicates a perfect positive relationship between two vari
ables; a zero coefficient indicates no relationship; and -1.00 
indicates a perfect negative relationship. It is very seldo~ 
if at all, that perfect relationships are found in the behav
ioral sciences, in part because of the limitations of our 
measuring instruments and also because of the difficulties of 
controlling all possible factors which may influence the two 
variables being studied. But for purposes of illustration and 
understanding let• us see what a perfect relationship would 
mean. 

a. A perfect positive correlation. If we are going to study 
' relationships between variables, then we must take measure
ments in pairs and we must have more than one pair of 
measurements. We might take an individual's score on 
one test and pair it with bjg seore on a second test, and 
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continue to do this for a number of different individuals. 
Or we might study the relationship between scores of broth
ers and sisters on the same test, pairing the score of each boy 
with that of his sister. If we were interested in studying a 
problem in motivation or drive in the psychological labora
tory we might take the number of hours that an animal has 
been without food and pair this value with the number of 
crossings it will make over an electrically charged grid· in 
order to reach food. Suppose, for reasons of simplicity, we 
assume that we have 10 individuals and that each one has 
taken two psychological tests. We shall call one of the 
tests X and ~the other Y. The paired scores for each indi-

-vidual are given in Table 11. · · 
~. Observe that each individual's score on the Y test is 
exactly 1 point higher than his score on the X test. There 
are no exceptions and we 
would find that the correlation 
coefficient is positive· and per
fect and expressed by + 1.00. 

ul--~,..-.4~-+-+~-r-l 

~~--~~~-+-+-+-r~ 
Perhaps the best way to vis- 1--+-+--1-1-li--t-+-l---f .. 10 

ualize what this means is in ~ el-1--l~~-+-+-+-+--i 
terms of a simple graph. 

Figure 2 indicates the cus
tomary method of plotting a 
graph for two variables. The 
base line is called the X-axis 
or axis of abscissas. The left 
vertical line is called the 
Y -axis or axis of urdinates. 
The point at which the two 

0o 1 ' & B 10 1a 14 l6 I& 
Ttot X 

Fla. 2.-Correlation chart for 
score! on Test X and Teat Y given. 
in Table 11. Correlation co-

efficient equal to 1.00. _ 

lines intersect is called the point. of origin or 0. The scale 
on the X-axis always runs from left to right and on the 
Y -axis from the bottom up, as shown in the diagram. k. 
vertical distance from the X-axis to a given point is called 
the ordinate of that point .and a horizontal distance from 
the Y-axis to a given point is called the abscissa of that 
point. Thus to plot a point for a given value of X and Y, 

.• . 
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we would move out the X-axis away from 0 until we come 
to that value of X, and then move up the Y-axis until we 
come to the value for Y. The point would be plotted at the 
intersection of the horizontal line drawn from the value of 

' 

TABLE 11.-8coRES ON TEsTS X AND y FOB 10 INDIVIDUALS 

(r = 1.00) 

INDIVIDUALS 

TEST . ~. -·~~H* 1 
-- --

X "16 14 13 10 8 7 5 4 2 1 
y . 17 15 14 11 9 8 6 5 3 2 

Y and the vertical line drawn from the value or X. To
gether the ordinate and abscissa of the point would be called 
the coordinates of the point.1 

In plotting the test scores of Table 11, values of the X 
test are plotted along the abscissa and along the ordinate 
values of the Y test are plotted. This is similar to plotting 
or making a frequency distribution with a single set of test 
scores, except that here we move the Y scores out to the 
right so that they will be tallied (plotted) also in terms of 
the corresponding X values. 

1 It is sometimes necessary to deal with negative values of X and Y, as might 
be the case if we were plotting the points in 

+10 

+8 

+6 

+4 

~·2 

J 0 

-2 

-4 

· terms of deviation scores. In this instance 
Jl 
I -= J 
I 
I -~ 
Thin!• 

Qoadnm 

,J._ 
~ 

I • 

lrigio 

,..,.., 
Quadnat 

~ 

we would take the origin of the X and Y axes 
at the means of X and Y. The two axes 
would be extended as shown. The upper 
right-hand section takes care of positive val
ues of both X and Y, the upper left-hand 
section takes care of negative values of X 
and positive values of Y, the lower left-hand 
section takes care of negative values of both 
X and Y, and the lower right-hand section 
takes c~ of positive values of X and nega
tive values of Y. These sections are called ·1 I I 

-!!a -6 -4 -2 o +2 •• +6 •B •10 the first, second, third, and fourth quadrants, 
Teii1C respectively. 



The Coefficient of Correlation 83 

We can readily see from Figure 2 that the plotted points 
fall along a straight line and that, therefore, the relationship 
between Test X and Test Y is rectilinear. The line w):rich 
might · be drawn through the plotted points to represent 
their trend is called a regression line and is described more 
fully on pages 262-264. When the relationship between 
the two variables is not perfect, then we have two re
gression lines, one showing the· correlation or regression of 
Y on X and the other showing the correlation or regression · 
of X on Y. The two regression lines always cross at the 
point which would be designated by M"' and M 11 in the 
grap~ The larger the absolute value of r, the closer to-

• gether the two lines tend to lie. When r equals 1.00 the . 
.. lines coincide. When r equals zero, on the other hancl, the . 

two regression lines are perpendicular to each other. The 
correlation coefficient, r, however, has the same value, 
regardless of whether we are speaking of the regression of 
X on Y or the regression of Yon X. That is to say, r,11 
equals r 11,. 

In some instances, the trend of the plotted points may be 
more accurately described by a curved regression line, that 
is, the relationship between X and Y may be curvilinear . 
rather than rectilinear. To describe the degree of associa
tion between two variables related in this fashion, we shall 
need to compute another correlation coefficient, known as 
the correlation ratio. All that we have said concerning the 
product-moment correlation coefficient and all that follows 
assumes that the relationship between the variables under 
consideration can best be described in terms of a straight line, 
i.e., that changes in one variable are accompanied by a 
uniform change in the second.2 . 

b. A perfect negative correlation. Suppose that our 10 
individuals had made the scores given in Table 12. We. 
shall let their X scores remain the same, but we shall change 

1 In a later section, where X and Y are grouped into claBses in order to com
pute the correlation coefficient, it is assumed that the a!Jerage value of Y, from 
class to class, changes uniformly with changes in X. and vice versa. For any 
given class the individual values may, of course, vary a~~ut the class mean. 



The Product-M ~nt Correlation Coefficient 

TABLE 12.-8CORES ON TESTS X AND y FOB 10 INDIVIDUALS 

(r = -1.00) 

INDIVIDUALS 

TEsT 

1 2 3 4 5 6 7 8 9 10 

------------------
X 16 14 13 10 8 7 5 4 2 1 
y 2 4 5 8 10 11 13 14 16 17 

the value of the y scores. If ~e now plot these scores as 
we have done in Figure 3 we may note that the plotted 

. values again fall exactly on a straight line but that the slant 
or direction of the line is different. High values of Y now 
tend to be associated with low values of X. In this instance 

8 

l6 

4 

12 

~~ 0 

·~ 8 

6 

4 

2 

0 

• 

• 
• 

• 

o a ' 6 a w 12 u l6 18 
TeRX 

Flo. a.-Correlation chart illus
trating correlation between scores 
on Test X and Test Y given in 

·Table 12. Correlatimi coefficient 
equal to - 1.00. 

18 

16 

14 

12 

~ 10 

. ~ 8 

6 

' 
0 

• 

• 

• 

0 3 ' 8 8 w 12 u 18 18 
TeolX 

Flo. 4.--Correlation chart for 
scores on Test X and Test Y given 
in Table 13. Correlation co-

efficient equal to • 7 4. 

the correlation coefficient is -1.00 and we say that the 
relationship is negative. . 

c. A high positive correlation. Consider another illustra
tion with the same X ~cores as before for our 10 individuals 
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but with the vahies of Y, as given in Table 13. Observe 
now that although there jg a tendency for large values of X 

TABLE 13.-BcoRES ON TEsTS X AND Y :roB. 10 INDIVIDUALS 

(r = .74) 

INDIVIDUALS 

lEsT 

~2 3 { 5 6 7 8 9 

X 14 13 10 8 '7 5 4 2 
y 17 11 5 8 15 6 9 2 

10 

1 
3 

and Y to be associated, the plotted points in Figure 4 deviate 
somewhat from any straight line that might be drawn among 
them to describe the trend. The correlation coefficient 
between X and Y is now • 7 4. 

d. A high negative correlation. A coefficient similar to 
that obtained from the data in Table 13 but with a negative 
relationship between X and Y would be indic~ted by the 
set of scores in Table 14. The scatter of the plotted points 

TABLE 14.-8COBEB ON TESTS X AND y FOB 10 INDIVIDUALS 

(r-= -.73) 

JNDJVJDUALB 

TEsT 

~· 
3 4 

·~~· 
g 

-- -- . --
X 14 13 10 8 7 5 ' 4 2 
y 3 2 8 9 17 6 15 11 

10 

1 
14 : 

I " · ',, 

in Figure 5 is about the same but the trend is different. · 
The correlation coefficient is -. 73. 



86 The Product-Moment Correlation C oejficient 
• 

e. A low correlation. Perhaps you are wondering what a 
·set . of scores yielding a. very small correlation coefficient 
would look like when plotted. The set of scores in Table 15 

TABLE 15.-scoREs oN TEsTB X Atro Y FOB 10 INDIVIDUALS 

(r""' - .12) 

• . INDIVIDUAU! 

TEST 

1 2 3 4 

-$i~# 
. 
X 16 . 14 13 - 10 5 . 4 2 1 
y 6 a · 17. 11 5 8 9 14. 

' 

yjelds a coefficient of ..... J2 and you may observe from 
Figure 6 that the plotted points tend to scatter all over. 

18 
0

l6 • 
14 

' 
12 

• >o 10 

i 8 

6 

• 
a 
0

11 a ' ' a LO u L4 Ll ll 
roo~x 

Fia. 5.-Co~Iation chart for 
scores on Test X and Tl!st Y given 
in Table 14; . Correlation co-

eflicient equal to- .73. 

Jl 
• 

16 

l4 

u 
.. 10 

! • 
6 

• . ' 
l 

0o a ' 8 a 11 u 1• J& u 
Teo& 1C 

Fla. 6.-correlation chart for 
scores on Tea\ X and Test Y 
given in Table 15. Correlation 

eoefficient equal to - .12. 

There is, fu other words, no very apparent tendency for 
values of X to increase or decrease in any consistent 
fashion with increases or decreases in Y. 
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S. BASIC ·FORMULAS FOR r. 

a. Standard deviations. The formula. for the· coefficient 
of correlation is 

. 'I:.xy 
. r.,,=-N 

ITatT11 

where r,.., =- ·the correlation coefficient of x~on ya 
'Zxy · = the sum of the cross-products or (x)~y) 

u. = the standard deviation of the X variable · 
u, = the standard .deYia.tion of the y variable 
N :o:; the number of paira of measurements 

- (20) 

The only new term involved in formula. {20) is the ~iy. 
·This term, when divided by N, is known as the covariance-

~d is similar to the variance e=;2

) of individual ~ets of 

measurements. The deviation x, as we already know, is. 
X- M. andy is Y- M •. The ~xy is the sum of the, 
products of all of the paired deviations. 

We can now see what makes the correlation negative or 
positive in sign. If an individual is JLOOVe the mean on. 
both the X and Y variable, then xy is positive iD. sign and. 
this will be true of all such cases. On the other hand, if an. 
individual is. below the mean on both variables, then xy· 
will still be positive in sign since ( -x) ( -y) gives a positive, 
product. The sum of xy is positive in sign and at a maxi..:. · 
mum when the "largest value of x is paired with the largest. 
value of y, and other values-of x and 11 are paired accordingly 

A negative relationship between two variables means. 
that values below the mean of one variable tend to be asso
ciated with values above the mean of the second variable. 
The x and 11 deviations will thu8 tend to be associated in 
the manner (x)( -y) and ( -x)(y), and consequently the-" 
products will be negative in sign. The sum of xy will be_.at 

1 The correlation coefficient of Y on X would take the same formula.. The-
two are identical, M pointed out before. · 
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its maximum negative value when the individual farthest 
above the mean on the X variable is also the farthest below 
the mean on the· Y variable, and other :r: and y deviations 
are paired accordingly. 

By having the values us: and u, in the denominator of 
formula {20), the deviations of :r: and y are reduced to a 

common basis. The values of .!. and JL are standard scores, 
. Us: tr, 

which we discussed earlier, and are comparable regardless 
of the unit of measurement involved in X and Y. Thus 

(;J(:) = u~, 
' ~(;:)(!;) ~xy 

and summing for the series and dividing 
by N to get an average we arrive at 

N = Nust~-, which is the formula for r. · 

The coefficient of correlation, in other words, is the mean 
of the products of paired standard scores. 

The steps involved in the calculation of the correlation 
coefficient by means of formula (20) are illustrated in 

· Table 16. The scores are the same as those presented 
earlier in Table 13. 

b. sum• of squares method. H we are not interested in 
the standard deviations of the X and Y variables as such, 
but have as our main objective the determination of the 

· correlation coefficient,· then formula (20) may be simplified 
so that · ' 

~xy 
r = . 
q·~ 

where rl&, =the correlation coefficient of X on Y 
~xy = the sum of the cross-products 
2:zl = the sum of squares for X. . 
2:y1 = the sum of squares for Y 

(21) 

The coefficient obtained by formula (21) would be identical 
with that obtained by formula (20). You may observe 
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TABLE 16.--CALCULATIOK oF THil CoRRELATION CoEFFICIENT FOB THE 
DATA OJ' TABLE 13 

(1) (2) (3) (4) (~) (6) (7) 
X y z 'II zt 71' 1:11 

16 1' 8 5 M 25 ' 40 
14 . 17 6 8 36 64 48 
13 11 5 2 25 4 -10 
10 5 2 -4 4 16 '-8 
8 8 0 -1 0 1 0 
7 15 -1 6 1 36 -6 
lj ! • 6 -3 -3 9 9 9 
4 9 -4 0 16 0 0 
2 2 -6 -1 36 49 42 
1 3 -7 -6 49 36 42 

ll 80 90 0 0 240 240 177 

- ff2j - 1240 . 
,., = "J17 = Yl() = v'24 = 4.9 

,, .. "'* = ~ = v'2i=4.9 

, = llxy = 177 = 177 ., 74 Ntr.v11 (10)(4.9)(4.9) 240.1 . 

that in the formula just given r is the ratio between two 
averages of variance. If both the numerator and the 
denominator are divided by N, then the numerator becomes 

the covariance (x;), and the denominator becomes' the 

geometric mean of the ~ariance e;;2

) of X and the varianc~ 

("Zy2) 
N of Y. The geometric mean of two numbers, you · 

may recall from an earlier discussion, is the square root of 
their product. 

It can easily be demonstrated that the denominators of 
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formulas (20) a.Iid (21) are identical. Thus by substituting 
identities for u. and u ., we get 

. NusU• = N~(ff)(~J ·. and multiplying we get 

= N~'];x21;yl·. 
N" 

• N_~ . = N v 'J;z'l};yl 

== y'J;z'l};yl 

and taking the square root of the 
denominator we arrive at 

and since ~ is equal to 1, then 

Empirically we can determine the identity by substituting 
the values for .l:x2 and .l:y'l and ~olving for r. 

r = 'l:xy = 177 = 177 = _74 .., ~ v (240)(240) 240 

c. Correlation using original measures. The calculation 
of the coefficient of correlation from original measures, 
without subtracting the mean of the Y distribution from 
each Y score and the mean of the X distribution from each 
X score, is usually a more convenient method of finding r 
than either of the two methods described above. In this 
instance, we do as we did before and assume that the means 
in each case are equal to zero. We square each of the 
scores, sum, and apply a correction term for origin to obtain 
the sum of squares. We already know that 

'];zl = '];,X! - ('J;X)" 
N 

f ('J;Y)Z 
. "2-y" = };_¥' - -w-

All that we need to do tQ get the siun of products (.l:xy) is 
to apply a similar correction term for point of origin. Thus 

I.xy = 'l;XY - (};X) ('J;Y) (22) 
N 
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And since we now have identifies for l:x2,l:y2, and l:xy, we 
may substitute in formula (21} to obtain 

~XY - (~X)(~Y) 
N . 

{23)' 

The application of formula (23} is illustrated in Table 17. 
d. Thedifferencemethodforl:xy. Thedifferenceformula 

for obtaining the sum of cross-products ();xy) is sometimes 
valuable. It is obtained as follows 

' {X - Y)1 = XI - 2 XY + Y2 
};(X: - Y)Z = ~XI - 2 ~XY + ~YI 

~ 2 ~XY = ~xz + ~YJ - ~(X - Y)l 

~XY = ~XZ + ~YJ - ~(X - Y)• {24) 
. 2 

Since we already have l:X2 and l:Y2, we merely need to find 
the value of l:(X - Y)2 and then to substitute in formula 
(24} above to solve for l:XY. The steps are illustrated in 
Table 18. 

e. Correlation using coded scores. The techniques of 
simplifying computations by" coding apply especially well to 
the calculation of r. That is because the coded results of 
our computations do not need to be decoded as they do 
when we find the mean and standard deviation. Conse
quently, if we are not interested in these statistics, but only 
in r, we may work directly with the coded values. If we 
code X and Y by division,6 then we obtain the following 
formula for r: 

{25) 

• An alternative fonnula may be obtained by multiplying both the numel'o 
ator and the denominator of fonnula (23) by N. Thus . . 

N};XY - (};X) (}; Y) . 

r,., =:' V[N};XJ - (};X)•] [N};YI- (};nl] 
5 The eum of cross-products, like the sum of sauares,. is uninfluenced by 

addition or subtraction of a constant. · 
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The prime sign indicates that we are dealing with values 
of X and Y which have been coded, and i. and i 1 are . the 
oonstants by which X and Y scores, respectively, were 

TABLE 17.-c.u..Cvw.TIOW O'F TBS CoBB.ELATIOW 
CoJr.~N'l' noaa OJuoouL ~ 

:z 

(1) (2} (3) (4) 

X y .xw }'I 

16 u 256 100 
14 17 196 289 
13 . 11 169 121 
10 5 100 25 
8 . 8 64 6t 
7 15 49 225 
5 6 25 36 
4 9 16 81 
2 · 2 4 4 
1 3 1 9 

so 90 880 1,050 

897 - (80)(90) 

-~~==~~~1=0==~~~ 
"[ 880 - {~d.][ 1,050 - (~:] 

897 _. _(7,200_) - ' 
10 . 

C:ll :~r 880 _ (6,400>][• oso _ (8,100>] 
""~ 10 - • 10 

897-720 
- = -v-ncsso~=_:;;MO~><#t,~oso;;<==-::::;;s~to~) 

177 
- v (240)(240) • 

177 
- 240 

-.74 

(5) 

XY 

224 
238 
H3 
50 
64 

105 
30 
36 
4• 
3 

897 



Basic Formulas for r 

l: 

TABLE 18.-cALCtJLATION or I:XY BT THE 
DIFFERENCE METHOD 

(1) 

X 

16 
14 
13 
10 
8 
1 

'. 5 
4 
2 
1 

I 

(2) (3) (4) 
y (X- Y) (~- Y)* 

14 2 .4 
11 -3 . 9 
11 2 4 
5 5 25 
8 0 0 

15 -8 M 
6 -1 1 
9 -5 25 
2 0 0 
3 -2 4 

136 

I:XS + I:~ - I:(X - Y)2 
:tXY= . 2 

880 + 1,050 - 136 = 2 

1,79! 
=-2-

. = 897 

93 

divided. The numerator of formula (25) is 'equal to. the 
decoded or "true" value of ~xy, and the denominator con-: 
tains the decoded or "true" values for ~x2 and ~y1• There 
is no need to find these "true" values, however, if we are 
not going to compute the standard deviations of the X and 
Y distributions. Since the term, i.,i71, appearing in the 
numerator of formula (25) is canceled by is'· and i 71

1 appearing 
under the radical sign in the denominator, we may write · 

'T.z'y' -. (2:x') (l:y') 
. N . (26). 
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3. CORRELATION COMPUTED FRO~M A SCATTER 
DIAGRAM . 

The technique of calculating a correlation coefficient from 
a scatter diagram involves principles already familiar. The 

· .:Paired X and Y scores are tallied in. a two-way frequency 
diStribution which groups them into class intervals. To 
illustrate the steps involved 'we shall make use of the data 
of Curtis (8) on the relationship between a measure of 
susceptibility to hypnosis· and a measure of intelligence. 
The8e ~ata are given in Table 19. -

TABLE 19.--8coRES ON A MEASURE OP SUSCEPTIBILITY TO HYPNOSIS AND 
. ON A MEASURE OJ' INTELLIGENCE POB 32 SUBJECl'S* 

SUBJECT HYP. Sus. STANPORD- SUBJECT HYP. Sus. STANPORD-
ScALE BINET· ScALE BINET 

MJ 22 136 TF 0 101 
DJR 6 106 AEH 22 128 
IDR 20. 116 RR Jl 16 122 
SRB 8 - 139 . JM - 13 111 
IC 0 103 SN 7 129 
JDC 17 126 WP 10 117 

· MC 21 131 FW 6 116 
JLF 13 137 SR 16 129 
BHH 14 144 HF 13 109 

. MEG 5 130 CEF 0 103 
DC 6 133 MM 0 104 
ss 4 123 Hl\ID 0 111 
GG 9 134 n.m 12 131 
FES 8 132 GA 4 112 
MNS 6 117 GH 12 134 
MLC 0 128 TF' 0 101 

~ 

' -

• Data from Curtis (8). . , .,_ 

a. Preparing the :scatter diagram. Our first step is to 
make the, scatter diagram, which is, in fact, a simple two
way frequency distribution or double-entry table. On the 
left in Table 20 we group scores on the hypnotic scale (Y 
variable) in terms of an interval of 2 with code numbers 
and frequencies at the right. At the top we give the classes 



TABLE 20.-ILLI!BTRATIOM OP ftlll Co11PVTATtOM or 1'811 Paooucr-Moii:&NT CoRULATIOM Coai"J'tCIIINT PROU A Coa~TIOM C11A111' ~ 
DATA TA1t£N :rJIOII TABL& 111 ~ 

-102- lM- 108-

2 101 lot 107 110 - - ~ - -la-2.1 

~ -
10--:11 

l 
1- -

III-I~ 
1------

111-17 -

i 
lt-15 

1-----li-18 I 

10.11 -I H 

J ~ -- -
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I --- ----.. :1-.11 
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(i) = ~ """:"" ~ 
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~ (I) .. 0 I 

(3) /z' 0 a I a ----
(4) /z~ 0 3 4 11 ----
(6) ::..·-··· 0 0 a • ~ - ~ -= ~ 
(6) .~,· .. ~ 0 0 • II 

J<jr - { b'll' - \:1:/z~:I:/Jl] ;. ... 
• [ l,l50 - {230!il41)] (3) ~ 

•(t.l50- sa~so)csJ 
- (I.J50 - l,OlaM)(I) 
- (238.1!1}(8) 
•lttl •. M 

Jl • So .... GO l!lonloni-Bioo' 
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ll3 Ill IJ.!!, Ut ~ 1a1 _.. ~ ~ ~ 
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171 31 41 M 16 

U) 

129- 132- 13&- 1311-- 141- 1«- I 
131 134 137 140 IU 146 
~ -~ - -_.!.._ •I 

~ , ----. ---------- ..,.... 
I ----- --

I I 

I --I I 6 ----- I ------II I a 
_!__ I • 
_!__ a 
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7 

6 • i I 0 l 31 
1-
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~ ~ 484 all IG41 0 22B8 

'29 7 ' 17 4 0 Ul 
~ 

187 ~ - =-= ~ 
290 12 D 106 1200 
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~· Ill lrl" 
~ ~ ~ 

II 12 243 

IB II() illlB 

~ 0 0 --• 24 192 ----
' ' 49 ----0 30 1110 ----
I 6 16 --
4 II n ----3 15 45 --~ a 8 12 

I 0 0 

0 0 0 

141 goa 

'l,fi 

Z/•'-f 
~· 

.,, ... 
lr'11'• 

(6) 

k'·tl 

==--
21 

II 

0 ... ---II ---40 ---8 
~ 

35 ---34 ---II 
II 

18 
~ 

IJO 

I 
. 

(I) 

o'Z.o'·; 

-m"' 
-.;a 
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:101 ---
105 

140 

30 ---uo 
102 ---44 

0 
f-g 
~ 
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S" 
[· 

~ 
l · 
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for the measure of intelligence (X variable) in terms of an 
interval of 3, with the code numbers and frequencies at the 
bottoJI1.6 On each individual we have two measurements, 
the score on the hypnotic scale and 'the score on the intelli
gence test. We make a tally mark in the proper cell in the 
table for each individual, taking both measurements into 
consideration. For example, the first subject, MJ, makes 
a score of 22 on the hypnotic scale and a score of 136 on the 

. intelligence test. To find the cell in which to place the 
tally, we run up the left-hand intervals until we come to 
class 22-23 where, in terms of hypnotic scores, this par
ticular one falls. We now move to the right until we come 
to the class interval 135-137 on the intelligence test. MJ's 

·score on this test is 136 so that it belongs in this interval. 
Consequently, we place a tally mark in the twelfth cell 
from the bottom and the thirteenth cell from the left. In 
this cell we· would make a tally for every other subject who 
has a hypnotic score ranging from 22 to 23 and, at the same 
time, an mtelligence test score of 135-137. In the bottom 
left-hand corner cell, for example, we find 2 tallies. That 
is because there are two subjects who have made hypnotic 
scores from 0 to 1 and intelligence test scores from 99 to 101. 

In a similar manner we make a tally for each pair of scores. 
When we have finished, we could enter numbers to take the 
place of the individual tallies and in this form, the table is 
often called a correlation chart.· We have not entered the 

. numbers in our table because of the small number of cells 
with more than one tally. 

b. The sum of scores and sum of squares. Let us look 
now at the variOW\· entries in the columns at the right of 
Table 20 and the rows at the bottom. The first four columns 
numbered (1), (2), {3), and (4) are already familiar. Column 
{1) is the sum of the tallies for each interval in the Y dis
tribution. It is the f column we used when we worked with· 
a single frequency distribution to find the standard deviation. 

• The Y variable is always placed on the vertical scale and the X variable on 
the horizontal scale in a scatter diagram, as in a graph. · 
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Column (2) is the coded value (y') for the various intervals, 
column (3) is the frequency for each interval times the 
coded value (fy') for that interval, and column (4) is the 
coded value squared times the frequency (fy'''). All of 
these we have already used in our work with a sfugle fre
quency distribution. The first four rows at the bottom of 
the table are the similar entries for the X variable. We 
could easily decode the sums at the bottom of the columns 
and at the end of the rows to find the mean.S and standard 
deviations of the X and Y distributions if we were interested 
in them. 

c. The· sum of cross-products. Columns (5) and (6) and 
rows (5) and (6) are new. They are used to find the sum 
of cross-products (pxy) needed for r. Let us see how. we 
get these entries. Column (5) is the sum of x' values for 
all individuals having a common y' value. For example, 
there are three individuals with a y' value of 8. One of 
these has an x' value of 7, another an x' value of 9, and the 
third an x' value of 10. The sum· of all of these x' values 
is 26 and that is recorded opposite the coded y' value of 8, 
in the column headed ~x' ·y'. 

To take another case: there are seven individuals with 
y' values of 0. What is the sum of their x' values? Looking 
at the table we see that two of these individuals have. an 
x' value of 0, three have an x' value of 1, one has an x' value 
of 4, and another has an x' value of 9. Summing these x' 
values gives uS 16, and that figure is recorded opposite the 
coded y' interval of 0. · 

The other entries are found in a similar fashion. The 
entries in row (5) at the bottom of the table give us ~he 
sum of y' values for all individuals with a common x' value. 
For example, we find that in the interval111-113 there are 
three individuals. What is the sum of their y' values? · 
Running down the table, we find that one of these indi
viduals has a y' value of 6, one has a y' value of 2, and the 
third has a y' value of 0. Their sum is 8 and that figur~ is 
recorded in the ~y' · x' row opposite the coded x' interval of 4. 
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Column (6) and row (6) are simply the products of the 
entries in column (2) and column (5) or (J/) (2;x' ·y') and row 
(2) and (5) or (x') (1;y' • x'), respectively. The total sum of 
column (6), as indicated by the heading at the bottom of the 
column, is the sum of the cross-products which we need in 
the numerator of our formula for r. The total sum of row 

. (6) should che~k exactly with the total sum· of column (6). 
Note. also that other checks are provided. Arrows have been 
draWn to· indicate the values that should be precisely the 

· same if computationS have been correctly made. Once the 
column and row totals have been :found, all that we need 
to do is to substitute in the formulas as shown at the bottom 
of. Table 20 and solve :for r. 7 • 

you now have at your disposal a number of different 
methods of finding a product-moment correlation coefficient • 

. Which method you will want to use depends upon the type 
of problem you may be called upon to work and upon 
whether or not you have available a calculating machine. 
The major advantage of using a scatter diagram is that you 

. can get a picture of the trend' of the paired values which 
unplatted scores will not give. This provides a visual test 
of whether the relationship is rectilinear-which is always 
assumed in computing a product-moment correlation co
efficient. 8 · But there are many opportunities for errors in 
making the entries, and there is no check upon this part of 
the process except to tally the scores a second time. Even 
then, if you find a discrepancy, you have no way of knowing 
whether . an error was made in the first or second plotting 
or in both. 9 . 

Many workers 
1
express a preference for using original 

'Although it would not have been necessary, we have decoded :t:~:'y', I:z'2, 
·and Xy'1 before computing r. We did so because we shnll want to refer to the 
decoded values later on when we discuss "predictions.'' 

• A precise test of whethet or not the relationship is rectilinear is described 
on page 237. 

• It should be pointed out also that the formula for r is based upon measure
ments taken by pairs. The calculation of r from a correlation table results 

~· in a. slight loss in precision. This, however, is negligible if there are 12 or 
' more. cla.ss interval~ nnd if N is at~pro~tely 50 or greater. 
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scores as they stand, but when N is large and the measure
ments are large, the calculations are much too laborious 
without mechanical equipment. In such instances, how
ever, it is possible to code· the scores ·and then to · work 
directly with the coded values. Even when calculating 
machines· are used, it is often timesaving to code the scores 
before beginning calculations. 

4- INTERPRET .AT ION OF CORRELATION 

a. The range of the correlation coefficient. We already 
have some.general ideas about the si~e of r. We kno:w that 
it can range from + 1.00, through zero, to -1.00. And we 
know that a coefficient of + 1.00 indicates a perfect positive 
relationship, -1.00 indicates a perfect negative relationship, 
and .00 indicates complete independence. Our problem 
now is to find some basis for interpreting or evaluating 
correlation coefficients between .00 and 1.00. We must 
remember that the correlation coefficient is not expressed in 
the units of measurement from which it 'is obtained as are 
the mean· and standard deviation. An r of .60, for example, 
does not indicate twice the relationship that. ~ _r_ of .3Q does. 

b. The coefficient of determination. One very useful way 
of looking at r is in terms of the coe.fficient of determination 
and the coefficient of nondetermination. The coefficient of 
determination is r and when multiplied by 100 it gives the 
percentage of variance in Y which is associated with the 
variance in X or the other way around. H r equals .80, 
then r would be .64, and this would indicate the proportion 
or percentage (the proportion times 100) of the variance · 
in X which is associated withthe variance in Y and vice 
versa. This is, in other wordsJ the amount of variance in 
one variable that can be accounted for by the variance in the 
other. The coefficient of nondetermination equals 1 - rt 
and indicates the amount of variance in one variable or the 
other which is independent of changes in the second variable. 
A13 an approximate standard, then, ignof41g other"' factor9 ·. 
such as the size of the sample upon which the riB based, it is 
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possible to view the size of a coefficient of correlation, regard
less of sign, as follows: 

r VARIANCE QUALITATIVE 
ExPLAINED EVALUATION 

.90-1.00 .81-1.00. very high-
' .78- .89 .61- .80 high 

.64- .77 .41- .60 moderate 

.46- .63 .21- .40 low 

.oo- .45 .oo- .20 very low 

c. Common elements. Another way of looking at r is in 
terms of' the theory of coriunon elements. Out of a box in 
whiQh we· had placed several hundred discs numbered vari
ously, we ·might draw three, and let these three numbers 
constitute common factors in a single X and a single Y 
score. Then if we drew a fourth number out of the box 
and added. this to the first three to get the total value of 
the X score and drew a fifth number out of the box to add 
to the three to get the total value of the corresponding Y 
score, we would have a pair of X and Y values, each member 
of which was made up of four numbers or elements. Three 
of the elements or numbers making up the Y score would 
also be common to the X score; the pair would differ in 
only one element. We could draw a whole series of such 
pairs, each member having three elements or numbers in 
common and differing in only one number or element. If 
we computed the correlation coefficient for such paired X 
and Y values, then we would assume that · 

I 

r = --;~N~.,~"::;=;=;=< 
V(N .. )(Nfl) 

where r =-the correlation coefficient 
N ,.71 = the number of elements common to both X and Y 
N" = the total number of elements in X 

· N • = the total number of elements in Y 
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Since, in the case cited above, N ~. equals 3 and N s equals 4 
and N, equals 4, we would assume the resulting correlation. 
coefficient would be equal to 

f' = 
3 

= ~ = .75 
v'(ij(4) 4 

It is doubtful, however, whether there are many correla
tions obtained from data in the social sciences which can 
be advantageously interpreted in terms of the· theozy of 
common elements. We are never sure of the number of 
factors determining such things as traits, abilities, aptitudes. 
motivation, and so forth, which constitute our X and Y 
variables. If we could a.sSume that X and Y have the same 
number of total factors, then the obtained r might be inter-· 

· preted as indicating the proportion of common factors, but 
in most cases this assumption is probably not justified. 
Furthermore, we should also have to assume that the con
tribution of each element is a simple additive function, i.e., 
if one factor should double or triple the effects of other 
factors, the interpretation would be in error (86, p. 131). 

5. PURPOSE FOR WHICH r IS TO BE USED 
It is well to keep in mind, when dealing with correlation 

coefficients, the pUipose for which the r was originally com- . 
puted. If we are merely interested in determining whether 
any relationship at all exists between two variables, then we 
have a means for testing whether a given r differs significantly 
from zero, as we shall see later. By the appropriate "test of 
significance". we can determine whether an obtained r is 
sufficiently high to indicate that the hypothesis of no rela-
tionship is untenable. If, on the other hand, prediction is 
our interest, that is, if we desire to predict individual scores 
on Y from corresponding scores on X, or vice versa, then 
we also have a means of determining the extent to which 
our efficiency of prediction is increased by the presence of 
some relationship. This problem will be taken up later in 
the chapter on "prediction." .. ,, · 
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6. ERRORS OF. MEASUREMENT AND CORRELATION 

Every set of measurements is subject to errors of observa
tion. If, for example, we had several hundred objects ·of 
varying lengths and we measured the length of each one 
twice, we would not expect the pairs of measurements to be 
precisely the same. · Slight errors of observation are apt to 

·be present, despite efforts to reduce these to a minimum. 
Sometimes the second reading might be slightly Ies8 than 
the first~ sometimes it might be slightly more, and in other 
cases we might have exactly the same recorded value for 
both readings. If these errors of observation are chance 

·errors, then they are just as likely to be positive as negative 
.. ·and would, consequently, have a negligible influence upvn 

the mean. But measures of variability are increased by such 
errors and measures of relationship are decreased. This 
,means, of course, tha.t the obtained correlation coefficient 
between two variables is probably always somewhat lower 
than the . correlation which might be obtained between 
"true" measures of these same variables. · _ 

A formula is available for correcting for this state of 
affairs and it is known as the correction for attenuation. By 
correcting for attenuation we 'may estimate the correlation 
which might be obtained between "true" measures of our 
variables rather than those made with our fallible measuring 
instruments.10• Thus 

where 

r· ,· r%. 
!.: '. ·T,.,. =-I 

_-, , • . V T%s Tww 

r..,,. = th~ correlation between "true" measures of X 
and Y 

rss ='the correlation between two sets of measure-
. ments of the X variable made with the same 

measuring instrument 
r 1111 = the· correlation between two sets of measure

ments of the Y variable made with the same 
measuring instrument 

10 We shall not, in this text, directly concern ourselves with the problems of 
reliability an:l validity of educational and psychological measurements. 
These are problems which can be treated in context in cc;>urses in "~st con
struction" or "tests and measurements." Students who WISh further mforma
tion on these problems should consult Greene (37). 
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THE PRODUCT-MOMENT CORRELATION COEFFICIENT 
. Eiampl~Here are 10 pair~d measurements for easy practice. · . 

Find the coefficient of correlation by the following formula. 

"J;xy 
r=-

Nu.,u11 

X Distribution 2 5 4 3 6 3 · 6 4 s_ . 2 ~ c./ · 
YDistribution 1 5 2 3 4 2 5. 3_ 4 11.

1
-/ 

Exampl&Using the .data. of ~ple 1, show that the same 
value of r is .obtained when the following formul8. iB used. 

"J;xy 
r = .,h;xt Ityl 

Exampl&-Now use the ra.w score formula. to find r. .Are you 
. ("J;X)I ("J;Y)3 P:': (2-:X)("J;Y) 

clear as to what the values -- -- and do in the 
N' N · N 

formula, - . 

l:XY - {};X)(}; Y) 
N -·· r= . 

~[];XI- ("J;:)1 [l:Y'- (};~J 

Example 4.-Aa an algebraic exercise you might tzy showing -

that "J;xy = ItXY- (l:X~"J;Y). Start with :t = (X- M.) .and· 

y = (Y- M 11). Then xy =(X- M;..) (Y- M,.). Carry out 
the multiplication of the right-hand term, summate, and try mb. 
stituting identities. · · 

Example 5.-A group of women students at~ university filled ... 
out a Likert-type attitude scale (61). The students also ha.d their 
mothers fill out the questionnaire. The scores are given below. 
Is there any correspondence between mothers~ and daQ,ghters' 
scores? Without ma.king a. frequency distribution. code the scores 
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in the manner described in. the chapter by letting i = 5; k will 
then equal 6. 

MOTBEB DAUOJITEB MOTHER DAUOBTEB 

31 33 43 43 
85 74 58 51 

·, 61 60 66 M 
91 84 56 52 
63 45 71 56 
77 60 59 62 
81 58 60 59 
80 57 70 M 
84 M , 48 61 
58 45 54 56 

Example 6.-A class in applied psychology was given Shaffer's 
fS-ScaJe and C-Scale (82). Shaffer states that there is little rela
tionship between scores on these two scales. Would you be in-

. clined to agree on the basis of the data below? Code the scores 
without making a frequency distribution by subtracting 10 from 
each one. After you have found r, ask yourself whether it would 
have been simpler to have subtracted a smaller number from each 

· score so that negative deviations would not have occurred. 

· c 8 c s c s c s c s 
5 10 . 15 7 14 10 9 10 18 9 

19 g 11 6 13 7 6 19 14 H 
· 17 10 18 11 19 8 8 8 13 6 
u 6 13 11 11 11 18 9 18 \ 8 
13 10 14 4' ' 18 8 16 6 18 7 
1 12 13 8 5 6 5 7 8 4 

13 14 13 6 18 13 14 8 19 12 
8 10 4 7 17 6 15 7 22 17 
6 ' 17 . 8 9 23 18 18 12 

Example~ The data. bel~w are scores on two tests given to an 
introductory claM in general psychology. One test was designed 
to measure the students' general understanding of the subject 
matter of the course. We shall call this variable X. The Yvari
able consists of scores on a vocabulary test of psychological terms. 
Qonstruct a scatter diagram, letting i = 5 on both variables, and 
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determine whether there is any relationship between scores on the 
two tests. · 

X y X y X y x y X y X y X y X y X y X y 
- - 1-- - - - - - r-- -

55 71 50 57 49 53 58 65 76 65 74 65 74 75 72 71 57 63 96 80 
60 59 67 64 53 46 67 67 58 55 68 71 55 65 59 66 63 75 74 76 
56 48 69 70 61 65 59 51 53 61 87 78 68 72 74 61 79 71 I; ~r 56 60 59 68 60 62 63 66 60 59 61 56 55 61 59 52 49 51 
57 61 ~~ 70 45 54 58 61 65 67 66 70 61 63 60 62 58 71 63 74 
55 53 67 71 61 73 61 74 63 58 72 48 58 73 78 82 80 96 85 
61 60 66 58 71 63 48 62 73 73 58 55 69 58 57 62 97 84 90 89 
54 63 49 41 67 57 50 68 67 64 45 55 77 63 71 66 82 75 86 75 
57 61 00 61 52 52 55 59 55 60 76 68 78 78 74 81 79 ~g 82 85 
Ii8 68 45 'v57. 60 ~0 61 ~40 48 1,)6 50 j3 86 )21 55 62 90 

~:~ ~:~ w I v ( 



CHAPTEIJB 

THE CORRELATION RATIO AND OTHER 
MEASURES OF ASSOCIATION 

The Pearson product-moment- correlation coefficient dis
cussed in the last chapter assumes that the relationship 
between the two variables under consideration is rectilinear, 
that is, that a straight line best describes the increase or 
decrease in Y with changes in X or vice versa. Sometimes, 
however, we find variables which do not seem to be related 
in this fashion; the trend of the plotted points in the scatter 
diagram is not 88 accurately described by a straight line 88 it 
would be by a curved line. In such cases we speak of a 
curvilinear relationship between the variables and we need 
a new measure of association to describe it. 

Think for a moment of a correlation chart in which the 
means of each Y column are the same. A line drawn through 
these means, from left to right, would be a straight line 
across the correlation table at the level of the mean of the 
entire Y distribution. Hence there would be no change in 
Y with change in X; the average Y score for all individuals 
with a given high average X score would be the same as 
the average y score for individuals with a given low average 
value of X. The relationship between~ X and Y would be 
zero. If the means of the Y columns increased with corre
sponding. increases in X, then the relationship between 
X and Y would be positive. If the means of Y decreased 
with increases in X~ then the relationship would be negative. 

Let us suppose, however, that the means of the Y colun:ins 
increase at first with increases in X, then level off and begin 
to drop with values of X beyond a certain point. This 
situation is illustrated in Figure 7, where we have plotted 
the paired values of X andY given in Table 21. Obviously, 
any straight line drawn through these points ~ould not 

106 
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accurately 'describe the trend of the relationship between 
X and Y. There is, however, a very definite relationship 
between the two variables. 

.. 

II 

• 
f • 
• 

..,a 
J~. 

a 
z 

0
o 1 a a " ' • ' e t 10 11 

T..tX 

FIG. 7.-A correlation cha.rt showing the 
relationship between the ecores on Test X 

and Test Y given in Table 21. . 

TABLE 21.-PA.IRED Sco&ES ON TE6'1'8 X AND y i-oB 10 INDJ:!IDUAts . 

--
lNDIVlDUALB 

TEST 

~fil:: 
1 l-3 4 5 6 . 

X 1 3 4 5 -6 
y 1 ~ 7 8 8 6 . . 4 1 

1. THE CORRELATION RATIO 

The txmelation ratio or eta ('1) is used to determine the 
degree of relationship between two variables when the 
assumption of rectilinearity is not warranted.1 Eta will be .. 
equal to r if rectilinearity does prevail, but if it does not; 
then TJ will be greater than the r that would have been ob-. 
tained from the same set of data. Eta has a maximum 
. 1 Page 237 provides a. precise test of whether the relatianship dep&ria euffi- · 
cientJy from rectilinea.rity to make the IIB&umption invalid.· · · 
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value of 1.00 and a minimum value of .00 and does not ever 
carry a negative sign. 
· · Eta differs from r in still other respects. As we shall see 
later, it is possible, knowing the value of the correlation 
coefficient, to write an equation which may be used for 
predicting Y from X or X from Y, but a similar equation 
cannot be written in terms .of TJ.2 And unlike the correlation 
coefficient which has the same value for r :z71 and r 71:z, the 
values of TJ:z 71 and TJ 71:z may be, and usually are, different. We 
shall therefore have two formulas for the correlation r~tio: 
one for Y on X and the other for X on Y. 

In co;mputing TJ, measurements of the X and Y variables 
must first be grouped into classes in a correlation table. 
AB is customary, we place the class intervals for X along the 
horizontal scale and the class intervals for Y along the 
vertical scale. We may .then find for each class interval of 
X the mean Y value of all X's within the class. These 
values· we shall call the means of the columns or m"". In a 
similar manner, we may find for each class interval of Y 
the mean X value of all Y's. within the class. These values 
we sh~ call the means of the rows of the correlation table or 
m,,.. We are now ready for the formulas for the correlation 
ratio: 

'where 

,. .,'! 

~ . 

u,."" d, uW:,-
7171"' = -- an 71"'71 = -" 

U• Us 
(27) 

t]71., =the correlation ratio for Yon X, and 71""' =the 
correlation ratio of X on Y 

u,. = th~ standard deviation of the means of the 
~ ·columns, and u,.,.., = the standard deviation of 

the means of the rows • 
u71 = the standard deviation of the entire Y distribu

tion, and u., = the standard deviation of the 
entire X distributlon 

I If the relationship is curvilinear, a curve may be fitted to the means of the 
columns (or rows, as the case may be) of the correlation table, and the equation 
of this cllrve may serve as a basis for making predictions. 

' 
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Since the computation of.,,,. and '1s11 is basically similar, 
we shall describe only the calculation of '1 11s- We proceed, 
in finding '111s as in computing r from a correlation table. 
The standard deviation of the Y distribution is calculated 
from the values given at the right side of the table (see 
Table 22), and is already a familiar process. The only new 
calculation is finding the standard deviation of the means 
of the columns. One possible way of doing this would be 
to find first the mean of the complete Y distribution from 
the values at the right. We would then find the mean of 
each colUlllll and subtract the mean of the entire Y dis
tribution from each of the column means. These values 

~would represent column mean deviations from the mean 
. of the total. The next step would be to square each of the 
deviations and to weight each squared deviation by multiply
ing by the number of cases in the column upon which it is 
based. The sum of these squared, weighted deviations, 
when divided by the total number of cases (N), is equal to 
the variance of the means of the · columri.s. To find the 
standard deviation of the means, we need only to extract 
the square root. If the relationship between Y_~d X were 

(f. 

perfect, then ~ would equall.OO and the standard devia-
. (T, 

tion of the means of the columns would have to be as great 
as the standard deviation of the entire Y distribution. When 
u., equals zero, then the correlation ratio also equals zero. 

q • 

a. A simple method of computation. There is a simpler · 
method for computing the correlation ratio which eliminates 
the calculation of the mean and standard deviation of the 
Y distribution as such, and the mean Y value of each column. 

· This method deals With the sums of the columns rather than 
the means, but the correlation ratio obtained with this -
method will be identical with that computed according to 
the procedure outlined above. All that we need to do is to 
find the sum of squares for the columns and the sum of ~uares 
for .. the_ complete Y distribution. In terms :of a formula, 
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' . . 

which may appear complicated but in terms of which the 
calculations involved are really f!imple, the correlation ratio 
squared _is . 

(l:y~)' + (l:y~i + (l:y~)~ + ... + (l:yDt ~ (l:fy')' 
, _ no n1 n, . n~o . --,;r- ( ) 

7J 118 - I (1:jy')2 28 
3 

l:fy'-~ .. 
where 7]211• ==the squared correlation ratio of Yon X 

. (2: ')2 . 
· ~ = the squared sum of the coded y' values for the 

flo · first column, divided by the number of cases 
within the column, and the other similar terms 
equal the corresponding values for successive 

' columns 

(2:{%')
2 

= the square of the sum of all the y' values divided 
_. by the N of the complete Y distribution 

l:fy'" - (2:{%')
2 

= the sum of squares for the complete Y dfstribu-
. tion and which is found in the usual way . 

b. Summary of steps in computing 11 11... The method of 
calculating '11 11 .. just described is illustrated in Table 22 
where a problem has been worked out in detail in order 
that you may see where each value in formula (28) is ob
tained. • The steps involved in the calculations may be 
summarized as follows: 

. 1. Make a correlation table as for the correlation co-
efficient. 1 .; 

2. Find the 'T.fy' and the 'T.fy'2 for the entire distribution 
in the customary fashion. 

3. Find the sum of scores for each of the k columns: 
(};y6), (};yO, (};yn, • • • (};y' >· 

• Note that formula (28) is expressed in terms of eta squared and that in 
order to find eta we need to extract the square root of the value obtained with 
the formula. 
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TABLE 22.-A TABLE TO h.Lmmu.Tl'l THE Coln>uTATIOH 0:1' THE Corum
LA'D.OH RATio IN TERMS o.r FoJWUI.A. (27} t>R FoBHUL.A. (28): 

8cALB VALUES (X) AND Q VALUES (Y) OP 129 
ATriTUDE TEsT lTEMB 

Q 
VALUES 

(Y) 0 1 
. 

4.1)....4.4 
3.5-3.9 • 1 
3.0-3.4 4 
2.5-2.9 3 
2.o-2.4 ' 3 
1.5-1.9 8 - :6 
t.o-1.4 6 
.5-.9 3 
. o- .4 I 

n 22 17 
z! 0 1 
%1/ 55 76 

' 
CoL. n '1:.1/ 

0 22 55 
1 17 76 
2 9 51 
3 3 21 
4 14 85 
5 12 79 
6 7 45 
1 14 77 
8 31 68 

ScALE VALUES (X) 

2 3. " 5 

-
• 1 1 1 2 

1 1 4 5 
3 1 6 3 
2 2 2 
2 

1 

9 3 14 12 
2 3 4 5 

51 21 8S 79 

('Z:y')' 
('Z:y')• n 

3,025 137.50 
5,776 339.76 
2,601 289.00 

441 147.00 
7,225 516.07 
6,241 520.08 
2,025 289.29 
5,929 423.50 
4,624 149.16 

I rl 111 fy'-
6 7 8 

·5 8 40 320 
4 2 18 7 126 882 
2 6 2 27 6 162 972 
1 3 13 5 65 325 

3 3 15 4 60 240 
5 20 ·3 60 180 
9 15 2 30 60 

11 14 1 14 14 
1 2 0 0 0 

7 14 31 129 557 2,993 
6 7 8 

45 77 68 557 

• l:yl ..; [ l:fy'- - o:.z"•] il/1 

.,., [2,993 - <i;~·] (.5)1 

[ 2 993 - 310,249] .25 
= ' 129 
= (2,993 - 2,405.03) (.25) 
= (587.97) (.25) 
=: 146.9925 

.1146.9925 
till ., "" 129 

= -v'uags = 1.07 • 
% ..... .... ~ ....... 2,811.36 

"· = I[~-~]~;. 
Formula {28): , 

2 811.36 - (557)1 
I ' 129 

'1 .... = ( 
2993- 557)2 

' .1211 
-406.33 
-587.97 
= .6911; ,~ = .83 

Formula (27): 

'I~=~= ..83 
1.07 

., " N . 
• _ /[2,811.36-~] (.i: 

'\l,.,...,.,.c:-::.,.;.:.12;.::;9= . 
"" .. /(400.33) (.25) ·v 129 

=- 1101.5825 
"" 129 

= -v':7816 
=: .89 .-
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4. Square the sums found in Step 3. 
5. Divide each of the squared sums of Step 4 by its corre

sponding number of cases within the column: no, nt, ~' 
.••.• n~:. 

· 6. Sum the yalues found in Step 5. . 

7. · SiJ.btract the correction term· for origin {I.fy')Z from 
I • . N 

the value obtained in Step 6. 
8. Divide the value obtained in Step 7 by the sum of 

squares, corrected for origin, for the entire Y distribution: 

J;fy'2 ~ ~Z')'. . 
· 9. Extract the square root of the value obtained in Step 8 

to find 1]11 .. • • 

_ To find '1:r::v it is merely necessary to remember that you 
are dealing with rows instead of columns. Consequently, 
all that you need to do is to S\lbstitute the word row for the 
word column and substitute X for Y and x' for y' in the steps 
outlined above and solve for TJ~r 

S. BISERIAL CORRELATION · 

S~metimes an investigator is faced With· ·a:· Situation in 
which he desires to find the relationship between two vari

. abies, but the data for one variable are expressed in terms 
of a dichotomy (only two categories) or else have been 
reduced to a dichotomy.·· We might, for example, be in
terested in the relationship between the classification of a 
group of employees as "satisfactory" and "unsatisfactory" 
and the scores of the group on some test. Or we might 
have individuals classified as "radicals" and "conservatives" 
and wish to determine the relationship between scores on a 
personality inventory and the dichotomy "radical-con
servative., Another problem of this nature is the deter-
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· mination ~f the relationship ~tween response to a single 
item on a test and total scores on the same test. Many 
other problems similar to these arise in. psychological and. 
educational research. · 

If N is at least 50 and preferably larger and if we can 
· make certain assumptions about the data at hand, then 
there is a statistical technique for deten;nining the rela
tionship between a variable expressed in terms of only two 
categories and one 'for which we have a series of measure- _ 
ments. This technique is called the biserial coefficient of 
correlation· and is symbolized as r,. The assumptions 
which are involved in computing biserial r are that the · 
dichotomized variable is really continuous and, further
more, that it is normally distributed. These assumptions 
are usually defended by the argument that if our measure
ment of the dichotomized variable were sufficiently refined, 
we would find not just two categories as we have at hand 
but an infinite gradation along a scale ranging from one 
extreme to the other. And applying this refined measuring 
instrument, we would find not just two categories with indi
viduals piling up in one or the other, but instead a normal 
distribution such as was described earlier. 

There is another condition which must be met before we 
can legitimately compute biserial r. Our dichotomous 
variable must not constitute merely the two extremes of a 
larger group, but must include the entire group. We could 
not, for example, give a test to a large group and then select . 
only the top 25 per cent and the bottom 25 per cent as the 
members of our dichotomy. If we attempted to compute 
biserial r with only these two extreme groups, the assump
tions concerning continuity and normality of the dichoto
mous variable would indeed be difficult to justify. In this 
situation, we would need to make use of a special formula 
for the biserial coefficient of correlation computed from 
widespread classes. This formula is not given here, but is 
developed in Peters and Van Voorhis (74:, pp. 384-389). 
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The formula for biserial r is 

_ (Mp- M')(P) 1\ia - -u, y {29)' 

where MP =the mean score on the continuous variable of the 
individuals in the category with the higher mean 

M, =the mean score on the continuous variable of the. 
entire distribution {both categortes 'combined) 

u, = the standard deviation of the continuous variable 
for the entire distribution 

·o.-J. ..uk..J!U::::.. the proportion of ·the total N in the category -o- . -r- • -~ with the higher mean on the continuous variable 
y = the ordinate or height of the normal curve at the 

#!~~~~~~~point of division ·~etween the two groups 

This form ding biserial r · olves only one new 
value with which we are not familiar, y, the ordinate of the 
normal curve. This we find. from Table B on page 320. 
Determine first the proportion in the group with the higher 
mean by dividing the number in this group by the total N. 
Then look down column B or column C in Table B until 
you find the value most closely approximating this propor
tion. Then read the corresponding value of y from the last 
column of the table. To illustrate the calculation of biserial 
r we have worked out a problem in detail in Table 23. 

If the dichotomous variable cannot be assumed to be 
continuous and normally distributed, as would surely be 
the case if this variable consisted of the two categories, 

' You may also encounter the· following formula for biserial r in other 
sources: 

where M. = the mean score on the continuous variable of the group in the 
category with the lower mean 

q = the proportion of the total N in the category with the lower mean 
and the other values are the same as in formula. (29). Formula (29) is to be 
recommended, however, since as long as the standard devi~tio_n m~t be !ound 
in eith~r case, we may as well find the mean of the total distnbutiOn while we 
are at 1t. 
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· TABLE 23.-ILL'C'S'l'BA.TION oP 'l'H!l CoMPUTATION oP BIBERIAL r'BE'l.'WEI!:N . 

:z: 

RESl'ONBE ro A SmaLB ITEM oN A TEsT AND TOTAL ScoREs 
. ON 'l'H!l TEsT . 

K . 
GROUP t'~lmiG 

TOTAL SAMPLB OB CoMBINED GROUPS 
CoBBECT Rl:Sl'ONBl!.ll 

Somma . -,, .. 
• r . jz!, #1 " 1~ 

.. 

85-89 2 8 16 128 2 
8(}-84 

r • 3 7 21 147 2 
7.'t-79 5 6 30 180 3 
70-74 10 6 50 250 1 
65--69 15 4 60 . 240 11 
60--M 20 3 60 180 8 
5S--:i9 20 2 

i 
40 ·80 10 

50-M " 1 4 4 .1 
45-4.9 1 0 0 0 1 

~.~ ~l 281 1,209 45 
' 

... -
. ~~;;-,A.Jr;r 

M,r= M'i#f(¥) i = 47 + (:) 5 = 47 + 17.56rco. M.56 

[:z:fz'' _ TJ ,., = J[l,209 -80~] 25 = S.a3 

M~ = M' + e;:") i = 47 +.(~) 5 = 47 + 19.11 = 66.1l 

- (1.55) (.5625) 
8.33 .394 

.8719 
-3.282 

-= .zr 

45 
p - so .,. .5625 

71= .3940 

' 

f:t!., . 

16 
14 
18 
35 
44 
24 
20 1. 
0 

tn 
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men . and women, then Richardson and Stalnakeri suggest 
that the following formula be used: · 

where· 

(30) 

r ,..,.._ = the point biserial coefficient of correlation 
M, =the mean score on the continuous variable of 

of the group in the category with the higher . . 
mean 

M • = the mean score on the continuous variable of 
the group in the dichotomy with the lower 
mean 

"' = the standard deviation of the continuous vari
able for the entire distribution 

p = the proportion of the total N in the category 
with the.higher mean 

g = the proportion of the total N in the category 
with the lower mean 

3. · TETRACHORIC CORRELATION 

Another special case of association is where the data for 
both variables are in terms of dichotomies or have been 
reduced to dichotomies. We might, for example, be in
terested in analyzing responses to items in a questionnaire 
and we might wish to determine whether, for any given pair 
of items, a "Yes" response to one is associated with a "Yes" 
response to the other, while a "No" response to one tends 
to be associated with a "No" response to the other. Or we 
might wish to determ.iri.e the association between a dichotomy 
such as "normal-abnormal" and another dichotomy such as 
"Yes" and ""No" responses to an item in a test. Or the 
relationship between being classified as "satisfactory" or 
"unsatisfactory" as an employee and being "above the 
mean" or "below the mean" on a given test. 

Again, if we are willing to make the assumption that both 
I Richardson, M. W., & Stalnaker, J. M. A, note on the use of biserial r in 

test research. . J. gener. Payclwl., 1933, 8, 463--465. 
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of the dichotomous variables are really continuous and. 
normally distributed, we can determine the relationship 
between the two by means of another technique of measuring 
association, tetrachoric correlation. The assumption of con
tinuity of response to a single item demanding a "Yes" or 
"No" answer, for example, might be justified by stating 
that all who respond "Yes" do not do so with equalintensity. 
And likewise all who respond "No" probably do not do so 
with equal feeling. Some of the "Yes" responses indicate 
a very emphatic "YES" and others a very weak "Yes," and 
likewise for .the "No" responses. Assuming such a continu
ous scale, then the additional ·assumption of normality of 

. distribution along this scale might also be justified. 
But even when these assumptions are valid, the labor of 

computing tetrachoric r is excessive, if all of the terms that 
properly belong in the formula are included in the solution. 
Fortunately, a set of computing diagrams, prepared by 
Chesire, Saffir, and Thurstone (7), simplifies the labor of 
calculating tetrachoric r tremendously. For this reason the 
formula for tetrachoric r is not given here. If tetrachoric 
r's are to be computed, the diagrams mentioned should be 
consulted. · 

~. THE PHI COEFFICIENT 

We may, however, inquire as to whether there is not a 
simpler coefficient which" will serve our purpose in deter
mining the degree of association between two dichotomous 
variables. The phi coefficient (c/>) seems to be suited to this 
task for, in the first instance, it is applicable to truly dichoto.. 
mous distributions, that is, where we have discrete cate~ . 
gories such as men-women, married-single, alive-dead, and 

. so forth. 6 In the second instance, the cJ> coefficient may be 

• Some might wish to take issue with the statement that the examples cited 
are true dichotomies, arguin~ that they are really continuous. A case might 
be made for this point of VIew, but m either instance we are dealing with 
assumptions. It we assume continuity, then, as we shall ilee, the 4> coefficient 
may be adapted to the assumpti~n. · · 
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adapted to the assumption of continuity, in which case we 
·may also derive an estimate of the corresponding r. 

a. The cp coefficient and true dichotomies. Let us ex
amine first the application of the cp coefficient to a problem 
where we do not feel justified in assuming that our variables 
are continuous. We shall assume, in other words, that each 
of our variables represents a true dichotomy. 

Suppose we had interviewed a sample of 200 college 
students, of which 75 were men and 125 were women. Sup
pose also that one of the questions we had asked was whether 
they were employed part of the time or not and we found 
that 45 of the men .said "Yes" and 45 of the women said 
"Yes."• We give these data in Table 24, where the cell 

TABLE 24.-RELATIONSBIP BETWEEN SEX AND EMPLOYKENT STATUS IN 
A. SAJIPLE OF 200 CoLLEGE Srm>ENTS 

WoMEN MEN TOTALS 

Employed part time ..•.•.•. 45 45 90 
(a) {b) (a+ b) 

Not employed part time ....• 80 30 110 
(c) (d) (c +d) 

Totals .•. -•............ 125 75 200 
(a +c) (b+d) (a+ b + c +tl> 

entries are also represented symbolically by the letters a, 
b, c, and d. Using these letters, the formula for the cp 
coefficient may be written 

I ' (be) - (ad) 
. t/J = ._Vr.(=a =+=:b=:=) (~c =+=d)~(a=+=c=:=)=;;=(b=+~d) (31) 

where (be) =the number in cell (b) times the number 
in cell (c) 

(ad) =the number in cell (a) times the number 
in cell (d) 

(a + b), (c + d), -
(a+ c), and, (b +d) =the respective border totals 
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If the product of cells (b) and (c) is greater than the 
product of cells (a) and (d), then this will indicate that 
"being employed" and "being a male" are positively associ
ated, while if the product of cells (a) and (d) is greater than 
the product of cells (b) and (c), the association will be neg~ 
· tive. Substituting the values of Table 24 in the formula, 
we get 

'. 

- (45)(80) - (45)(30) - 23 
"'- V{90)(no){t25){75) - · 

The obtained value of t/J, .23, indicates that there is a slight 
".. tendency for sex classification to be associated with em

ployment status. College men, in other words, are more 
apt to be employed than college women. 

b. The assumption of continuity •. Now let us consider a 
case where we feel justified in making the assumption that 
our dichotomized variables are really continuous, as in the 
case where tetrachoric r would customarily be applied to 
determine the relationship between the variables. Suppose 
that we had interviewed a sample of 300 college students 
and found that 200 of them were under 19 years of age and 
that 100 were 19 years of age or over. We shall call these 
two groups the "younger group" and "older group," respec
tively. Of the older group, 20 answered "Yes" to the 
question: "Do you beli~ve that three years of English 
should be required of all college students?" In the younger 
group, 140 answered "Yes" to the same question. Is the 
relationship between age and a "Yes" response to the ques
tion positive or negative? 

We give the essential data in Table 25. Note that the 
data are so arranged as to be consistent with the pattern of 
a correlation table (page 82). A concentration in the first 
and third quadrants (cells b and t:.) represents a positive 
relationship and a concentration of the data in the second 



120 The Correlation Ratio and Other Measures 

TABLE 25.-RELATioNsmP BETWEEN "YEs" AND "No" REsPONSE AND 
AGE STATUS 

: 

No YES TOTALS 

Older students .••••••••.••.• 80 20 100 
Younger students .•.• ; ••••.. 60. 140 200 

.Totals .•••...• , ••••• ·• • •.. ,140 160 300 

and fourth quadrants (cells a and d) represents a negative 
relati~nship. Solving for cp, we get 

rP = (20){60) - {80){140) = - 472 -v (100)(200)(140)(160) • 

The cp. coefficient of.- .472 is based upon the assumption 
that our variables are "true" dichotomies, whereas, in this 
instance, we might feel justified in assuming ~hat the di
chotomies are really artificial, that we have imposed them 

·:upon the data. · If we had allowed for varying degrees of 
response to the question, such as "Strongly Agree," "Agree," 
"Undecided," "Disagree," and "Strongly Disagree," we 
would have had the beginning of a continuum. . And like
wise we might have recorded age as a continuous variable. 
If these assumptions are valid and if we wish to estimate the . 
corresponding r, then we must first find the proportion of 
cases in the category (a+ b)t (c.+ d), (a+ c), or (b +d), 
whichever is the largest. Then by reference to Table 26,7 
we find the value of k, the constant by which the cp co
efficient is to be divided in order to estimate the correspond
ing Pearson .r. In this problem, the category (c +d) has 

T The values in Table 26 are taken from Camp, B. H. The mathematical 
part of elementary statistics. Boston: Heath, 1931, p. 309. Camp points 
out that the use of the constants in the table is limited to those cases where no· 
·one of the frequencies in the 2x2 table is less than 1 per cent of N; the p~opor
tion in no one of the border categories is greater than .9; and r IS not 
greater than .80 {pp. 309-311). Since these assumptions will be met in most 

' cases where tetrachoric r is applicable, the t1> coefficient divided by the proper 
constant from Table 26 may be used profitably to provide a quick approxima
tion of r. 
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the largest frequency and the. proportion of cases in this 
category iB equal to 200/300 :cz .67. According to Table 26, 
when p = .67,·then k is approximately equal to .625. Thus 

- -.472 '76 r,. = .625 =- · 

We would say, in this instance, that there is a very decided 
negative as5ociation between age and a "Yes" response to 
the question~ · 

TABLE 26 . ....SHOWING '!'HE V AL'O"& or k, THB ComANT BY Wmca THE ., 
CoEI'PICIENT Is TO Bl!l DIVIDED, IN TzJWs or Pt TB:& PRoPoRTioN 

:m CELL (11 + c), (c +d), (11 +b), or (b + d!t_ WmCREVEIL . 

p 

k 

Is THE LARGEST, oN THE AssUKPTION oil' I,;ONTINUITY 
oil' BOTH V A.BIAliLEs• 

.5 ~~ .8 

.637 .62 . .60 

.9 

.56 

• From Camp, B. H. The mathematical part of elementary statistics. 
Boston: Heath, 1931, p. 309. · · 

c. The q, coefficient and tetrachoric r.. To illustrate the 
correspondence between the estimate of the Pearson r 
derived by means of the q, coefficient and the corresponding · 
r derived by means of tetrachoric correlation, we cite a· 
specific case. Garrett (31, p. 372) reports a tetrachoric r 
of .53 for the data of Table 27. Using these data and solving 
for t/>, we get 

t/1 = (35) (30) - (25) (10) .. .. 328 
v (60)(40) (55) (45) 

Estimating the corresponding. Pearson r, we get .328/.63, 
which equals .52, aa compared with a tetrachoric r of .53. 
Some other illustrations are cited in the examples at the end 
of the chapter. You will find that, in general, q, divided 
by the proper value of k will correspond very closely to , 
tetrachoric r when the conditions mentioned previously are 
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satisfied. . If you are without copies of the computing 
diagrams for tetrachoric r, cp, in terms of simplicity, might 
well be the most appropriate measure of association to use 
with 2. x· 2 tables. 

TABLE· 27.-RELATIONSHIP BETWEEN SucCEss AS A SALEsMAN 
AND SOCIAL AD.rusTMENT* 

UNSUCCESSFUL SuCCEssFUL TOTALS 
SALESMEN SALESMEN 

Socially adjusted •.....•.•... 25 35 60 
Socially maladjusted ... : ..... 30 10 40 

' Totals ••••••••••••..•.. 55 45 100 
-

• Data from Garrett (31). 

6. THE~ CONTINGENCY COEFFICIENT 
The contingency coefficient (C) is another measure of asso

ciation which may be applied to data arranged in an n X n 
~able. This coefficient may be used when both variables 
can be classified in two or more categories, but when the 
categories themselves are not quantitative. Such might be 
the case if we wish to determine whether there is any rela
tionship between the eye color of fathers and their sons. 
Sons may be classified according to whether the color of 
their eyes is brown, blue, hazel, or gray,-and so may fathers. 
The problem is to find out whether brown-eyed fathers tend 
to have 'brown-eyed sons, blue-eyed fathers tend to have 
blue-eyed sons, and so forth. · 

The contingency coefficient varies between 0 and 1, but 
its sign must be determined by-inspection of the table from 
which it is computed. The contingency coefficient can 
reach its maximum value only when the number of classes or 
categories is large. When the data are arranged in a 4 X 4 
table, for example, as would be the case for the hypothetical 
problem me~tioned above, C cannot exceed .866,_ and for a 
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10 X 10 table, the maximum value of C would be .949 
(102).8 . 

The formula for the contingency coefficient may be stated · 
in teriD.'3 of another statistic, chirsquare (x2) •. The method 
of computing x2 is described in Chapter 12 and we shall not 

. go into the details here. Once x2 has been found, then we 
may substitute in .the following formula to obtain the con-. 
tingency coefficient. · 

'(32) 

where C ·=the contingency coefficient 
x2 = the value of chi-square (obtained in the. manner 

described in Chapter 12) . · 
N = the· total number of cases in the table 

6. RANK-DIFFERENCE COEFFICIENT 

When we have a small number of pairs of observations 
which have been made in teriD.'3 of ranks rather than in 
terms of some measurement, there is another method of. 
measuring the ass6ciation between the two sets. Ranking 
differs from measuring in that it merely arranges things in 
serial order. We might rank individuals in terms of height 
without making any actual measurements of height in terms 
of inches. We could simply line up a group of individualsJ 
put the tallest one at the head of the line, followed by the 
next tallest, and so on until we had arranged all individuals 
in order. We could then assign rank 1 to the tallest, rank 2 
to the next, and so on. Ranks, as contrasted to measure
ments, do not tell us how much.taller the individual ranked 1 . 
is as compared to the individual with rank 27 or rank 3, 
and so forth. · '· · 

The method of measuring association between two sets of 
ranks is known as the "rank.:.difference method" and the 

• For a. further discussion of thls coefficient a.nd the conditions un'der which 
nrious corrections may ne applied, ~ee Kelley (li3, pp. 265-271) and Guilford 
(39, pp. 357-360). . 
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resulting coefficient is called rho. The computations are 
fairly straightforward. · In terms of a formula 

62:D2 

P = 1 - N(N2 -:- 1) {33) 

where . p = the rank-difference correlation coefficient 
D2 = the difference squared between each pair of ranks -
N = the number of pairs of ranks 

The computations are illustrated in Table 28, which gives 
the rank order of importance assigned to various "morale" 
items by two different groups, a group of employers and a 
group of employees (28). We wish to determine whether 
there is any association or relationship between the ranks 
assigned to the items by the two groups. 

TABLE 28;-RANKS AsSIGNED TO V Amous MoRALE ITEMS BY 
. EMPLOYERS AND EMPLOYEES* 

ITEM 
EMPLOYER EMPLOYEE 

DIFFERENCE 
DIFFERENCE 

RANKING RANKING SQUARED 

1. Credit for work done. 1 7 -6 36 
2. Interesting work ..... 2 3 -1 1 
3. Fair pay ..... , ...... 3 1 2 4 
4. Understanding and· 

5. -1 1 appreciation ........ 4 
5. Counsel on personal 

5 8 -3 9 problems .... : ..... 
6. Promotion on merit .. 6 4 2 4 
7. Good physical work-

7 6: 1 1 ing conditions ..... 
8. Job security ......... 8 2 6 36 

92 
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Because formula (33) seems easier to apply than the 
Pearson product-moment formulas, some individuals would 
go so far as to transfer a set of measurements into ranks in 
order to use p as a measure of association. For example, 
when observations were originally made in terms of measure-

. ments, these are then converted into ranks ·by assigning the 
largest measurement in each series rank 1, the next largest· 
rank 2, and so on. When two or more measurements in 
the same series are identical, that is, tied for a given rank, · 
the practice is to give each one the" average of the tied ranks .. 
Thus two individuals with the same score, tied for, let us 
say, rank 8~ would be given the average of ranks 8 and 9 or 
8.5. If three individuals had been tied for rank 8, then each 
would be given the average of the ranks they would ordi
narily occupy, ranks 8, 9, and 10, or the average rank of 9. 

Frankly, however, there is little reason for converting 
measurements into ranks in order to determine the degree 
of association between the two series .. The problem of 
converting, dealing with ties, finding differences, and squar
ing these differences, even for a short series, may require 
more time than the application of one of thelormulas for 
the Pearson product-moment r discussed earlier. 

7. MULTIPLE AND PARTIAL CORRELATION 

We have discussed under measures of association only 
those techniques which enable us to describe the relation- · 
ship between. two variables. A product-moment correlation 
coefficient, for example, describes the relationship between 
one variable, which we call X, and a second, which we call 
Y. Technically, ·correlation coefficients of this nature are 
called zerCHJTder correlations. It is possible, howeve:r, 
through the use of multiple correlation techniques to study 
the relationship between one variable and several. others 
considered simultaneously. We might, for example, be 
interested in the relationship between high school marks 
and intelligence tests scores considered together and later 
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success in ·college as measured by point hour ratio. The 
maximum correlation that we could obtain between these 
first two variables and point hour ratio can be described by 
the coefficient of multiple correlation. :Multiple correlation 
analysis is not limited to studying the relationship between 
two variables considered jointly and a third, but can be 
extended to determine the relationshio between a combi
nation of several factors and some other one. •But since 
the multiple correlation coefficient is not the simple sum of 
the zer()-()rder correlations of each of the combined factors 
with the variable under study, but takes into consideration 
the intercorrelations between the several variables in the 
combination, the law of diminishing returns is soon reached. 
.This is to say that the increase in the size of the multiple 
correlation coefficient as a result of adding new variables is 
quite slow when the variables themselves are correlated 
with one another. 

Partial correlation, in contrast to multiple correlation 
where we comb~e variables, enables us to hold constant 
certai,n variables while we study the relationship between 

· two others. In the problem described above, we might be 
interested in the correlation we would :find between in-

. telligence test scores and college marks, if high school grades 
were held constant. If we hold one variable constant while 
we study the relationship between two others, the resulting 
correlation coefficient is called a first-order partial correla
tion. If two variables are held constant at the same time, 
we have a second-order partial correlation. There is some 
basis, however, for believing that the application of partial
correlation methods much beyond the fus~rder stage is 
inadvisable. · We cannot go into the reasons for this belief 
here, 9 nor can we give a detailed treatment of the applica
tions and limitations of partial and multiple correlation. 
For this the interested student is referred to Peters and Van 
Voorhis (74). 

• See, for example (38, pp. 27Q-271), ('14, pp. 244-245), (64, pp. 251-252). 
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8. SUMMARY OF MEASURES OF ASSOCIATION 
I . 

By way of summary of the methods of measuring associa
tion, let us go back over the various techniques mentioned. 

a. Pearson product-moment r: for measuring relation-
. ships between two variables when both are continuous and 

the relationship is rectilinear. The coefficient of correlation 
is most reliable when based upon a large number of pairs of 
observations. ' An r based upon 15 pairs of o~servations 
would have to be at least .64 to indicate that the correlation 
in the popwation from which the sample was drawn was not 
zero, for example, wher~as the same inference might be 
made for an r of .18 if tlie sample consisted of 200 cases.10 

The coefficient of correlation if compllted from a correlation 
table with a small number of classes is likely to be less than 
the r which would be obtained if calculated directly from 
ungrouped measures. A table· of correction factors . has 
been worked out by Peters and Van Voorhis (74} for r's 
computed from tables with varying numbers of classes and 
should be consulted for more precise estimates of association 
when r is computed from tables with less' than 10 classes. 

b. The correlation ratio: for measuring relationships be
tween two variables which are related in a curvilinear 
fashion. The correlation ratio, 'IIIZJ unlike the correlation 
coefficient, is overestimated when the number of class 
intervals of X is large so. that but a few cases are found in 
each class. Obviously, if only a single case were present 
in each column, then the variance of the means of the col
umns would be as great as the total variance of Y, and the 
correlation ratio would be 1.00. However, if N is sufficiently 
large and the grouping of X is in terms of 8 to 10 intervals, 
each interval is apt to have a sufficient number of cases in . 
it to mak~ the obtained correlation ratio approximately . 
accurate. 

' 
c. Biserial r: for measuring relationships when one vari- · 

able is recorded in terms of a dichotomy and the 'other is 
10 See pages 185-189 for the method of arriving at t~ statement. 
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eontinuous. Biserial r assumes "that the individuals in each 
·of the two categories represent a complete distribution (i.e., 
not just the two extremes), that the dichotomized variable 
is really continuous and normally distributed, and that the 

-relationship between the two variables is rectilinear. 
d. Point biserial r: for measuring the relationship be

tween a· truly dichotomous variable and a continuous 
variable. 

e. Phi coefficient: for measuring the relationship between 
two variables that are truly dichotomous. 

f. Pearson r estimated by q, and tetrachoric r: for measur
. ing the relationship between two variables, when each one is 
Vfecorded in terms of a dichotomy. It is assumed that both 

variables are essentially continuous and normally distributed 
and that the measures in each of the categories represent a 
.complete distribution, and that the relationship is rectilinear. 

• • g the relationship 
l\irooh-ro'!Tn"-hP--£>la ified in two or more 

~e::~~~~Jtle:S/ themselves are not 
qua~wu..L.IU;;l....--

. h. Rank differenc oefficient: for measuring the rela
tionship between two variables, each of which is arranged 
in terms of rank order. . 

i. Multiple · correlation coefficient: for measuring the 
maximum relationship that may be obtaine~ between a 
combination of several variables and some other one variable. 

j. Partial correlation coefficient: for measuring the rela
tionship between two variables with the effects of a third 
(or several others) held constant. 

OTHER MEASURES OF 'ASSOCIATif?N 

v.E~ample 1.-Here is a simple set of data for pra~tice. Assume 
that the X variable represents chronological age and that the Y 
variable represents scores on a vocabulary test. Compute '1111111 to 
determine the correlation ratio of Yon X. 
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VocAJIU- • CHRONOLoGICAL AGE 
LA.RY 
TEST 

Scom.;s 15 16 17 18 19 20 21 22 23 
---- 1--- ------

15~159 3 1 2 1 2 
14(}-149 2 2 4 4 3 1 
130-139 3 1 2 5 5 2 1 
120-129 1 2 2 1 4 -t- 3 4 
110-119 3 1 3 3 2 2 
1()()-109 1 1 1 
90- 99 2 1 
80- 89 ·, J 
70- 79 2 2 
60- 69 4 

Exampre;:--Hay and Blak-emore (41) repo~ the following dis
tributions<){ s91!>res for "inexperienced" and uexperienced" workers 
on the Minnesota Vocational Test for Clerical Workers. Use 
biserial r. to determine whe\-her there is any relationship between 
classification as an "experienced'~ or an "ineXperienced" worker 
and scores on the test.-~' 

. -

ScoRES INEXPERIENCED EXPEIUENCED 
GROUP GROUP 

190-199 1 
1~189 2 4 
170-179 a 5 
160--169 5 8 
150-159 9 30 
140-149 25 26. 
130-139- 27 26 
120-129 33 42 
110-119 48 39 
100-'109 38 28 
90- 99 17 20 
80-89 14 7 
70-79 3 5_ 
60-69 4 ' . 
50-59 1 

Example 3.-The following data were obtained from a'class in 
social psychology on a final examination. Using" the 'formula for 
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'the';oint biserial coefficient of correlation, determine whether the~e 

is any relationship between response tq ltein 22 on the examination 
and total scores. · 

REsPONsE TO ITEM 22 
ToTAL 
ScoRES 

. Incorrect Correct 

80-84 '2 
'75-79 3 
7()-74 1 5 
65-{)9 4 7 
6()-64 3 4 

' 55-59 8 10 
5()-54 5 9 
45-49 1 
40-44 2 
35-39 . ) 

1 I 

EVm~le 4.,---~ group of 100, men and 100 women were polled ~o 
determine whether they liked or disliked a particular radio com
mentator. Of the men, 55 liked the commentator and 45 did not, 
while 40 of the women said they liked him and 60 said they did 
not. Find the cf> coefficient to determine whether there is any 
relationship between response to the question and sex classification. 

Example 5.-Peters and Van Voorhis (74) report a tetraehoric 
r of .569 for the following data. What is the value of r estimated 
by way of the cf> coefficient? 

NuMBER oF HoURs UNSUCCESSFUL SuccEssFuL 
OF PEDAGOGY TEACHERS TEACHERS ·TOTAL 

Six hours or more .... ·r ...... 20 80 100 
Less than 6 hours .•..•.•..... 70 55 125 

Totals ............•..... :. 90 135 225 

Example 6.-Lindquist (64) reports a tetrachoric r of .35 for 
the following data on responses of 150 students to two test items. 
What value of r is obtained when estimated by means of the cf> 
coefficient? · 
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RESPONSE .TO ITEM 1 

RESPONSE TO ITEM 2 
Wrong Right TOTAL 

Right .......................... 24 56 80 
Wrong ..••..................•.. 36 34 70 

Totals .....•..•.......•...... 60 90 150 

E~ 7.~Assign r~s to the sco~es listed bel~w and find the · 
rank difference coefficient of correlation. 

XVariable 8 13 13 18 14 19 8 4 17 15 22 6 18 8 12.1 
Y Variable 4 14 6 13 8 12 10 7 6 7 17 17 9 9 4 

Example 8.-Lo (65) had Chinese men and women and also 
. boys and girls rank the "viees" listed below in order of seriousness. 

Axe the average ranks assigned to these "vices" by boys more 
closely related to the ranks assigned by girls than to the ranks 
assigned by men? 

"VICES" MEN WoMEN BoYS GIRLS 

Snobbishness ..........•... 1. 2 2 2 
Cheating .................. 2 3 1 4 
Sex irregularity ..........•. 5 1 3· 1 
Stealing ..•....•.••........ 4 4 4 3 . 
Selfishness.· .••••.........•. 3 8 5 7 
Lying ....••••••.•......••. 6 5 7 6 
Gambling •••••....•....•.. 8 9 6 8 
Laziness ..•..•••........... 7 6 8 11 
Gossip .......••.. , ...•.... 9 7 10 5 
Extravagance ....•.••...... 10 13.5 9 10. 
Vulgar talk ..... : ........•. 12 10 14 9 
Swearing .••••..•.••..... : . 11 13.5 13 12 
Smoking .••.••.•..•....•.. 15 11 11 13 
Drinking .•.•••............ 14 12 12 14 
Dancing ................... 13 15 15. 15 



CHAPTEll7 

PROBABILITY AND FREQUENCY 
DISTRIBUTIONS 

We have already observed how individual members of a 
group vary from one another and we know how to measure 
this variation in terms of the standard deviation of the 
distribution of measurements. ·Individuals, however, not 
only vary from one another; they also differ from them
selves if measured at different times. Height, for example, 
is sai~ to be different in the morning upon arising and at 
night before retiring; Surely one's weight increases with 
a heavy meal. Individuals tend to perform better on· 
achievement tests w:hen not fatigued, and so on. Now 
since measurements on the same individual made at different 
times may vary, and since measurements of different indi
viduals at the same time may vary, we may expect statistics 
derived from samples of individual measurements to vary 
also. 

The mean achievement score of a group of college fresh- · 
men tested in the morning ·may not be precisely the same 
mean score that would have been obtained if the same 
group had been tested in the afternoon. Nor would we 
necessarily expect another sample of college freshmen, 
drawn from the same larger group or population as the first 
sample and in the saine manner, to have precisely the same 
mean score as theJ first sample. . 

H we found the mean intelligence test score of a group of 
freshmen at a given college to be 115, we might expect the 
mean intelligence test score' of another sample of freshmen 
to differ from this value.. H the difference was only 1 point 
we might be inclined to say that this is just a "chance" 
difference. But woUld we also be willing to attribute a 
difference of 3 points between the two means as being due 

I 132 



lrf eaning of Probability 133 

to "chance"? If so, then what about a difference as great 
as 10 points? How much would the two means have to1 
differ, in other words, before we would be willing to give up. · 
the hypothesis ~hat the difference is due to chance? · 

To take another case: suppose that we were given a box:: 
· and were told that it contained 50 white discs and 50 red 
discs. Suppose that we shook the box and drew out a 
sample of 30 discs. We would expect to have close to IS· 
red and 1S white discs, but we would probably not be too
surprised if our sample had 16 of one color and 14 of the 
other. What if our sample had 20 of one color and 10 of 
the other? ·How far would our sample have to depart from 

' the expected so-so division in order for us to slispect that. 
we had been misinformed concerning the contents pf the: 
box? · · 

These questions bring us to our next problem in statistical 
methods: the problem of how much confidence we can . 
place in means, proportions, and other statistics derived 
from samples. The statistical methods used in investigat
ing this problem are known as "tests oi significance," and 
they enable us to determine, among other things, whether 

·observed differences in sample statistics may be assumed to· 
be the result of chance factors or whether we may reject this. 
hypothesis. But in order to understand the use of these 
statistical techniques we shall have to consider first some
thing of the general nature of probability and chance, and 
some of the properties of known frequency distributions. 

t. MEANING OF PROBABILITY 

The probability of an event may be defined as a ratio,.. 
the numerator of which gives the number of times that the 
event is expected to occur or the number of outcomes favor .... 
able to the event, and the denominator of which gives the
to_tal number of possible outcomes. The probability, for· 
example, of the head of a coin coming up is l/2, the 1 in the 
numerator representing the outcome favorable to the event. 
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and the 2 in the denominator representing the total number 
of possible outcomes-the head or the tail of the coin may 
come up. The probability of an event occurring plus the 
probability that it will not occur equals unity (1.00) assum
ing a dichotomy of "occur" vs. "not occur." The probability 
that the head of a coin will come up is 1/2 and the probability 
that it will not is 1/2. The sum of these two is equal to 
1.00: It is customary to let p equal the probability that an 
event will happen, an~ 1 - p, which is represented by g, 
the probability that the event will not happen. 

· A distinction is made between a priori and empirical 
probability (53, II, pp. 2-3). A priori probability refers to 
assumed probability. It is sometimes called rational or 

. mathe:r,natical probability. An example would be finding 
the probability of getting exactly 7 heads and 3 tails in a 
single toss of 10 coins, on the assumption that each coin is 
as likely to come up heads as it is tails. Empirical prob-

. ability refers to statements of probability based upon the 
actual observation of the number of times that an event 
has occurred in a given number of trials. The ratio of the 
number of times the event has occurred to the total number 
of trials is called the relative frequency of success. . Thus in 
the coin problem we could toss 10 coins up in the air, say 
10,000 times, and note the number of heads and the number 
of tails occurring on each toss. Then the number of times 
that 7 heads and 3 tails come up, divided by the total number 
of tosses, would give the probability of this event occurring. 
This statement of probability would be derived from em-
pirical observation. · . , · 

Let us examine' first a few cases of a priori probability. 
Assume that if we toss a single coin, the probability of its 
head coming up is 1/2. What is the probability of getting 
two heads when two coins are tossed or when a single coin is 
tossed twice? The possible outcomes are HH, HT, TH, and 
TT. Of these four possible outcomes, only one is favorable 
to. getting two heads. The probability then is 1/4. If we 
are not interested in which particular coin comes up "heads" 
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and which one "tails," then the probability of getting one 
head and one tail is 2/4. The probability of getting two 
tails is the same as that of two heads, 1/4 .. The sum of 
these probability ratios equals 1.00. We have, then, an 
answer to the question we raised: the probability of getting 
two heads with two tosses of a single coin is 1/4. We also · 

, have in this simple illustration the basis of a general rule or 
principle: the probability that all" of a set of independent events 
will occur is the product of the . separate probabilities of 
each event. When a single coin is tossed twice, the prolr
ability of getting a head on the first toss is 1/2 and the 
probability of getting a head on the second toss is 1/2; the 

' probability of getting two heads-the two tosses are indepen
dent, i.e., regardless of how the first toss comes out it will not 
influence the second toss-is therefore (1/2) (1/2) or 1/t In 
a similar fashion we could determine that the probability of · 
getting three heads from tossing a single coin three times or 
three coins once would be (1/2)(1/2)(1/2) or 1/8.1 

Suppose we think for a moment of a single item on a 
"true-false" test, and let us suppose that a student is going 
to answer this item by flipping a coin, as students sometimes 
do in answeruig true-false questions. The chances of getting 
a correct answer are 1/2, since there are two possible out
comes, "correct" and "incorrect," and only one of them is 
favorable. If this test consisted of 10 items, and if the 
student answered each item by flipping a coin, then what 
is the probability that he will get a score of 10 correct on 
the basis of chance alone? Since each response is an in-:
dependent event, the chances of getting all correct would be 
the product of the separate probabilities according to the 
rule above. Thus ! X ! X ! X ! X ! X ! X ! X ! X 
! X ! or (!)10 would give the probability of this happen-:
ing. What are the chances that he will get 1t11 10 items 

1 There are a number of possible ways of stating the probabilities just 
described. We sometimes say that the chances of getting a head on a single 
toss are even; that the chances are 5Q-50 of getting a head; that the propor. 
tion of heads expected if ten coins were tossed is .5; or that 50 per cent of the 
coins are expected to be heads. · • 
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wrong?l Since; again on_the basis of chance, this is also 1/2 
for each individual item,· then tl?-e probability of getting a 
score_ of zero would also_ be (!-)1°. 

f. COM BIN A.TIONS · 
· The cases just discussed are simple enough. But suppose 
that we had asked what the probability was of the student 
getti.D.g precisely 7 correct answers and therefore 3 wrong 
ones? _Note that we are not here specifying which par
ticular 7 answers need to be correct, but only that 7 be 
correct. In order to answer this question we need to know 
how many combinations of 10 things taken 7 at a time are 
possib~e, This can be determined by the formula for combi-
nations of independent events · 

C = n! 
" r (n - r)! (r) l . (34) 

where ,.Cr = the number of combinations of n things taken r at 
a time -

nl =factorial nor the product of all the integers from 
· n to 1 

(n - r) I = the product of all the integers from (n - r) to 1 
(r) I = the product of all the integers from r to 1 

In the present problem, we want t~ know the possible 
number of combinations of 10 things (items) taken 7 (7 
correct) at a time. Substituting in formula (34) we get 

. . 101 . 
1007 = (IO r 7)! (7)1 - l 

· 10X9X8X7X6X5X4X3X2Xl 
= (3 X 2 X 1) (7 X 6 X 5 X 4 X 3 X 2 X 1) 

'10 X 9 X 8 . 
=ax2x1 

720 
=6· 
'= 120 
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Thus we find that there are 120 ways in which· a student 
might get precisely 7 items correct and 3 incorrect on a 
10 item test, hut we still do not know how frequently these 
particular combinations will turn up. Out complete formula 
for the probability of getting 7 items correct and 3 incorrect 
on the test should read 

. nl 
aCrprrf'-r = (n- rl! (r)l Prrf'-. (35) 

In this formula, p is the probability of getting a correct 
answer to a ·single item considered alone, and the exponent 
of p indicates the total number of correct items in which we 

:-.. are interested. The value of q is equal to 1 - p, and the 
exponent of q indicates the number . of incorrect items .. 
Substituting in the formula we get 

. I 

c (!.)7(!.)1 - 10! (!.)7(!.)1 - 120 10 7 2 2 - (10 - 7) I (7) I 2 2 - 1,024 

In a similar fashion we could use formula (35) to determine 
the probability of the student getting any" particular score 
ranging from 10 to zero.1 

' 

8. BINOMIAL DISTRIBUTION 

H you have had algebra, then you may have noticed that 
the value of .Cr gives the coefficient of the (n ...... r + 1) 
term in the binomial expansion (p + q)". That is, 1oC7, 

for example, gives the coefficient of the (10 - 7 + 1) or 
fourth term of (p + q)10• Expanding,• we would get 

{p + q)10 = p10 + 10p9q + 45p8q2 + 120p7ql + 210p8q' + ' 
252p5q6 + 210p4q6 + 120p8q7 + 45p2q8 + 10pql' + g_IO 

and the fourth term is 120p7q3, the coefficient being the. 
number 120. The exponent of p in each of the terins of the· · 

I It is customary to let 0! = 1. · ·· 
1 The rulee for expanding the binomial (p + q)" are summarized below: 
1. Each term in the binomial consists of the product of a numerical co-

efficient and a power of p and a power of q. · · · 
2. The first term always has a numerical coefficient of 1 w"hich is understood 
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binomial expansion, 88 in formula (35), indicates the number 
of items correct (successes) and that of q indicates the 
number of items incorrect (failures), and the coefficients 
represent the number of ways in which each of these combi
nations of successes and failures may occur. 

Thus to interpret the expansion above in terms of the 
· true-false test on which each of the 10 answers is deter

mined by chance: the probability of getting a score of 10 
correct is 1/1,024; the probability of getting a score of 
precisely 9 is 10/1,024; the probability of getting a score of 
precisely 8 is 45/1,024, and so forth. The advantage of the 
binomial expansion is that from it we can readily determine 
the probability of obtaining a score 88 large 88 or larger than 
any given score. The probability of getting a score of 7 
or above, for example, is the sum of the probabilities for the 

· and therefore is not written; the power of p is always A and the power of q is 
zero and therefore does not appear; thus the first term is always 'Jf". 

3. In each succeeding term, the power of p decreases by 1 in regular order, 
while the power of q increases by 1 in regular order, until the final term, l/', 
is reached. . 

4. The product of the numerical coefficient and the power of p in any given 
term, divided by 1 plus the power of q in that term, will give the numerical 
coefficient of the term which follows. 

If you have difficulty in remembering these rules, then you may always 
rely upon Pascal' a triangle shown in Table 29 to find the binomial coefficients. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 1 

TABLE 29.-PAScAL's TRIANGLE FOR Fl::NDING THl!l BINoMIAL 
CoEFFICIENTS 

BINOKIAL CoEFFICIENTS 

1 1 
1 2 1 

1 3 3 1 
1 4 '6 4 1 

1 5 1Q 10 5 1 
1 6 15 20 15 6 1 

1 7 21 35 . 35 21 7 1 
1 8 28 56 70 56 28 8 

·1 9 36 8! 126 126 8! 36 9 
1 

10 45 120 210 252 210 120 45 10 
1 

1 
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120 + 45 + 10 + 1 . . . 
scores, 7, 8, 9, and 10, or 

1 024 
, which IS equal , 

to 176/1,024. Thus about 17 times in 100 we would expect 
a score of 7 or higher to occur by chance alone. 

We may now ask another question about our student. How 
high a score must he make before we would begin to suspect 
the hypothesis that his answers were determined by chance 
alone? A score of 8 or above would occur by chance just 
slightly more than 5 per cent of the time, and a score of 9 
or higher would occur by chance just slightly more than 1 
per cent of the time. ·Although the limits are arbitrary, it is 

. customary m most statistical work to refer to the occurrence 
'- of an event that would happen by chance alone 5 per cent 

of the time as representing a significant departure from 
chance expectations, and the occurrence of an event that 
would happen by chance alone 1 per cent of the time is 
regarded as representing a very significant departure. If we 
accept these standards, then we would surely regard a student 
who can consistently; i.e., repeatedly, make scores of 9 or · 
higher as answering each item on some basis other than 
chance. 

Coming back to our true-false test of 10 items, suppose 
that we gave it to 1,024 students and that each student 
answered each item by flipping a coin, that is, by chance. 
The probabilities that we worked out earlier could now be 
considered as the frequencies of each score and we could 
make a frequency distribution of the 1,024 scores as w'e have 
done in Table 30. 

Note the symmetry of the distribution of scores in Table 30 
and observe that the distribution begins to approximate the 
bell-shaped, normal distribution to which we have had 
occasion to refer before. We can perhaps see this more 
clearly when the frequencies are plotted as in Figure 8.' 
Now if the number of items on our test were increased and 
scores were rescaled so that the resulting frequency distribu
tion conformed to the base line of Figure 8, the ordinates 
(the perpendicular straight lines representi.Iig frequencies) 
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of the distribution would be crowded closer and closer· to-
gether, the steps would become s~aller and smaller, and the 
distribution would approach a continuous curve, normal in 
shape. 

2.40 

.180 

TABLE 30.-DrsTRmUTioN Ol' ScoREs ON 
A 10-lTEu: TRUE-FALSE TEsT AB D:s.

TERMINED BY CHANCE 

Soo:u I 
10 1 
9 10 
8 45 
7 120 
6 210 
5 252 
4 210 
3 120 
2 45 
1 10 
0 1 

~ 1,024. 

., 
l12l) 

60 

0 
0 lO 

FIG. 8.-Theoretical distribution of scores of 1,024 students 
on & true-false test of 10 items when response.!! to each item 

' are determined by __ chance. 
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,f.. THE NORMAL DISTRIBUTION CURVE 

The_ equation for the norzn.a:I curve is 

-~ N ... y=--e 
cr-v'2r 
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(36) 

where 11 = the frequency or height of the curve at any given 
point along the base line 

N = the number of cases involved in the distribution 
a :== the standard deviation of the distribution: 
11' = 3.1416, the ratio of the circumference of a circle to 

its diameter .. 

e = 2.718, the base of theN aperian system of logarithms 
z = the deviation of a measurement from the mean of 

the series · 
I 

Since the values for e and 'lr' are known, and for any given 
distribution we would know the values of Nand u, we could 
solve for any given frequency (y) corresponding to any given 
value of x within our series of measurements. 

We could, in this way, determine for any given distribu
tion the best fitting normal 'distribution with the same mean 
and standard deviation as those actually computed from 
the data at hand. We shall do this for the true-false test 
of 10 items and compare the frequencies we obtained by 
the binomial expansion with those to be expected if the 
distribution were normal and had the same mean and 
standard deviation. 

Fortunately the labor which would be involved in the 
calculations based upon formula (36) is greatly simplified 
by the fact that we have available tabled values of the unit 
normal curve, where N is assumed to be equal to 1 and the· 
standard deviation is assumed to be 1. Table B on page 320 
is a table of the unit normal curve. The first column of 

Table B headed z or :!: gives the standard score' value, 
(1' 
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-

(X-M) 
'"'----~. The second column gives the proportion of 

u :· 
cases or area between the mean and the standard score 

value =.. The third column gives the area or proportio~ u 

. below the value ~ or the area in the larger portion of the 
I ' u 

. . X 
curve, and the fourth column gives the area above - or the 

u 
area in the smaller portion of the curve. The ordinate y, 

erected at the point~' is tabled in the fifth column. Since 
' . u 

the normal curve is symmetrical, the tabled values are 
given for only one half of the curve. Deviations below the 
mean would be the same except that we would think of 
them as having a negative sign attached. Thus we see 
from the third and fourth columns of Table B that exactly 
.5 of the total area of the curve is above the mean and .5 
below the mean. 

If we are to fit a normal distribution to the chance dis
tribution of scores on the ·true-false test of 10 items, then 
we need to find the frequencies which would be expected, 
assuming a normal distribution with a mean of 5, standard 
deviation of 1.58, and N of 1,024. The essential calcula
tions are given in Table 31. Column {1) gives the scores, 
column {2) the deviations of each score from the mean of the 
series, and column (3) the deviations divided by the standard 

deviation of the distribution, that is, ~. The values of y 
. I U 

given in column (4) are obtained from Table B. To get 
the value of y corresponding to a z of 3.16, for example, we 
enter column {1) of Table Band run down the tabled values 
of z until we arrive at 3.16. We then read the corresponding 
value of y from column (5), which, for a z of 3.16, is equal 
to .0027. Since these ordinates are for the unit normal 
crirve, where N equals 1 and the standard deviation equals 1, 
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TABLE 31 . .:__Frrn:No .a. Nmuu.x. DISTJUBUTION '1'0 m D.&'l'A OJ!" TAJit.E 30 

(I) (2) (3) (4) (5) {6) 

Scmm (X-M) (;) TABLE B ExJ>ECJ:ED Ol!BEllVllD 
z y '· /. 

!fl. 

10 5 3.16 .0027 1.7 1 
9 4 ' 2.53 .0162 1\>.5 10 
8 3 1.90 .0656 42.5 45 
7 2" - 1.27 .1781 115.4 120 
6 1 .63 .3271 212.0 210 
5 0 .00 .3989 258.5 252 
4 -1· -.63 .3271 212.0 210 
3 -2 -1.27 .1781 115.4 120 
2 -3 -1.90 .0656 42.5 - 45: 
1 -4 -2.53 ,0162 10.5 10 
0 -5 -3.16 .0027 1.7 . 1 

Total ... •. ~ ... -......... . ............. ............ 1,022.7 1,024 

M=5 
.. = 1.58 

we must adjust the tabled values of y for the N of 1,024 and 
the ·standard deviation of 1.58 of our distribution. We · 
need to compute 

k =iN 
t1 

(37) 

where k = a. constant by which each value of y taken from the 
table must be multiplied . . 

i = the size of the interval in which the scores are 
grouped (in this instance i = 1, and can therefore 
be ignored) 

N = the number of cases in the distribution 
t1 = the standard deviation of the distribution 

Substituting in formula (37) we obtain 

k = li~~ = 648.1 

and multiplying each of the values of yin column (4} by 
648.1, we·obtain the expected frequencies given in column 
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(5). In column (6) the frequencies which would result from 
the expansion of the binomial are given. You may note 
that there is a slight discrepancy between the sums of columns 
(5) and {6). The sum of frequencies determined by the 
normal curve will ordinarily be somewhat less than the N 
of the data to which we are fitting the normal distribution. 
This is because the normal curve extends beyond the range 
of the data." But the discrepancy is vecy small. By in-

. spection 'Ye can see that the departure of the "chance" 
frequencies from those expected in terms of a normal dis
tribution is not very great. 

5. THE USE OF TABLE B . . 

· Although we shall not often be concerned with fitting a 
normal distribution to a given set· of measurements, the 
discussion of how this can be accomplished h8.s served to 
introduce us to the tabled values of the unit normal curve. 
We are now ready to consider some of the ways in which 
this table may be used. . .. 

The tabled values are in terms of proportions but we can, 
if we wish, readily think of them in terms of per cents by 
multiplying each by 100. Thus the proportion of scores 
below the mean and above the mean in a normal distribution 
is .5 and the percentage above and below the mean is 50 per 
cent. What percentage of the cases in a normal distribution 
will fall between the mean and plus 1 standard deviation, 

that is ~hen :!: equals 1? From T~bl~ B, column (2), we 
(T 

find that the proportion is .3413 or 34.13 per cent. Since a 
similar per cent will lie on the other side of the curve between 

. the mean and minus 1 standard deviation, we now see the 
basis for the statement made earlier that in a normal dis
tribution 68.26 per cent of the scores will fall within the 
limits set by plus and minus 1 standard deviation from the 
mean. 

Even' more important than the per cent falling between 
the mean plus and minus 1 standard deviation is the per 
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cent falling between the mean and plus and minus 1.96 
standard deviation units. On each side of the curve be
tween the mean and 1.96 standard deviation units would lie 
4 7.5 per cent. These two points will, in a normal ~tribu· 
tion, define the zone which embraces the middle 95 per cent 
of the measures. In a similar fashion we may determine 
that between the mean plus and minus 2.58 standard deviar
tion units will lie the middle 99 per cent of the measures. 
Since the entire area under the curve is tabled as 1.00, it 
follows that the area between ±1.96 or between ±2.58 
standard deviation units can be expressed as a proportion 
of the total area, as can the area outside these limits. This . 
is. the essence of a. probability ratio, as we have ahea.dy 
discovered. 

Suppose we had a. normal distribution of scores with a.. · 
mean of 60 and a standard deviation of 10. Then, if we 
wished to determine the limits which would include the 
middle 95 per cent of the scores, we would solve 

~ = ±1.96 
fT 

:z: 
' 10 - :Cl.96 

:z: ... ±19.6 

Then between 60 ± 19.6 or between 40.4 and 79.6 we would 
expect 95 per cent of the scores to· fall. And we would 
expect scores as high as 79.6 or above and as low as 40.4 
or below to occur only 5 per cent of the time. Suppose we 
wrote the value of each score in the distribution on a disc, 
placed all of the discs in a box, and mixed them thoroughly. 
We then draw out one disc at a time, record the value appear· 
ing on it, and put it back in the box. We do this N times. 
We would expect, in the long run, that scores of 79.6 and 
above and scores of 40.4 and below would account for only 
5 per cent of N, i.e., of the total number of recorded values. 
They would occur, in other words, with a. frequency of about 
5 in 100. The significance of these statements will become 
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clearer when we take up the problem of sampling in the 
next chapter. , 

It should be obvious .that using the same procedure .that 
we have just described, we could determine from Table B 
the answers to the following questions about any given 
normal frequency distribution: 

1. • What per cent of the cases would be expected to fall 
. X 

between the mean and any given value of -? 
. . . fT 

2~ What per cent of the cases would be expected to fall 
. . • •. X 

·above a given value of -? 
• ' fT 

3. What per cent of the cases would be expected to fall 
. - . , X . 
below a given value of -? 

• . fT 

4. What per cent of the cases would be expected to fall 

between any two given values. of~? 
. . ·fT 

6. PRAGMATIC CONSIDERATIONS 

If you are about to place some magical belief in the normal 
probability curve, let·us hasten to point out that it is, in 

· nature, a mathemati<:al ideal. · Seldom, if ever, do distribu
tions of actual measurements · conform precisely to the 
expected frequencies ·of the normal curve. Deviations of 
actual from expected frequencies. occur in the most precise 
set of observations made under the most ideal conditions 
and where the expectance of a normal distribution is logically 
justified, for· example, in the actual tossing of a set of n 
coins several thousand times. Distributions of measure- · 
ments in psychology and education likewise seldom, if ever, 
give a precisely normal distribution. But there are statis
tical tests to determine whether or not the departure of 
observed frequencies from those expected in terms of a 
normal distribution is sufficient to cause us to reject the 
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hypothesis of a normally distributed population. As an 
ideal pattern, the normal distribution curve is not very 
different from such physical ideals as Boyle's law, to which 
gases· are expected to conform in fact but do . so . only in 
theory. . · 

Since many of the measurements in the social sciences 
are concerned with traits, aptitudes, abilities, achievements, 
attitudes, and so forth, and since these measurements are 
usually made by means of a test or scale, we might point 
out that one of the reasons why we so often find approxi
mately normal distributions with these instruments is 
because of the manner in which the instruments are recon-

. structed. If we make up an achievement. test for a particu
. lar grade level and then find that the test we originally . 

constructed fails to give us a normal distribution when we 
administer it to students at that particular grade level, ·we 
proceed to alter the test. We may make it more difficUlt 
if there are too many high scores; or if there are too many 
low scores we may make it a bit easier. Or we may lengthen 
the test so that there will be a greater spread of scores. 
Or we might change some of the items or replace some ·of 
the items with others. We inight alter the method of scor
ing the test or do something else to change the test until we 
do get a normal distribution. There is nothing wrong with 
this practice. As a matter of fact if the normal curve is to 
be used in interpreting scores on a test, then the test should 
be altered or reconstructed to yield a normal distribution of 
scores. . 

A question which is often asked is: How do you know 
whether or not the particular trait. or. ability in which you 
are interested is actually distributed normally in the popula
tion or not? The answer is that we do not. The question 
as it stands is operationally meaningless since our measure
ments are confined to samples and we can only estimate 
the distribution in the population from what we obtain 
from our samples. If we intentionally construct a ineasur
ing instrument to yield a normal distribution with a sample, 
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then, if our sample is representative of some larger group 
which we call the population, we, assume that a similar 
distribution would result if the population were measured 
with the same instrument • 

. 7 . . SKEWED DISTRIBUTIONS 

When a distribution of measurements departs from nor
mality by yielding more measurements at one end of the 
scale than at the other, we say that the distribution is 
skewed. · 'In a normal distribution of measurements the 
mean and median and mode coincide, and there is sym
metry or balance between the areas on each side of these 
measures' of central tendency. When measurements are 
massed at one end or the other· of the distribution, the 
mean, since it is the center of balance, tends to be displaced 
toward the pointed or tail end of the curve. The mean, as 
you recall~ is influenced by the numerical size of the measure
ments; the sum of deviations above the mean· equals the 
sum of deviations below the mean. The median, on the 
other hand, is not influenced by the size of the scores; it is 
merely the point on each side ~:?f which there is an equal 
number of scores. Consequently, when a· distribution is 
skewed negatively, the median will be larger than the mean 
as in FigUre 9, where the horizontal scale, as usual, increases 

Mean MediaD 

FIG. 9.-Relative position of the 
mean and median in a negatively 

skewed distribution. 

FIG. 10.-Relative position of the 
mean and median m a positively 

skewed distribution. 
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from-left to right. When a distribution is skewed positively, 
the median will be smaller in value than the mean, as in 
Figure 10. . . 

Another term which is used to describe distributions is 
kurtosis, which refers to the relative peakedness or flatness 
of a distribution in the neighborhood of the mode. A dis
tribution which is flatter than a normal curve is called 
platykurtic and a distribution which has a higher peak than 
a normal curve fs called leptokurtic. There are measures of 
skewness and kurtosis, but we shall have little need of them 
and they ?lre not included here.' 

PROBABILITY AND FREQUENCY DISTRIBUTIONS 
Example 1.-8uppose a student is taking a true-false test con

sisting of 8 items and answers each question by flipping .a, coin, 
i.e., by chance. 

(a) What is the probability of his getting a score of 8 correct? 
(b) What is the probability of his getting a score of 6 or 

higher? · 

Example 2.-What is the probability of a student getting at least 
one correct answer by chance on two true-false questions? 

Exampl~If you flipped four coins in the air, what is the 
probabilit;iha.t you will get exactly three heads? . ·· 

Example 4.-0n a multiple-choice test of 4 items, each item 
with 4 alternatives, what is the probability of getting a score of 
precisely 3 on the basis of chance? 

Exampl&-Given the following normal distribution of a. large 
sample of measurements with mean of 80 and standard deviation 
of m, what per cent of the measurements would you expect to find: 

$(a) Above 98 (g) Below 110 · 
(b) Above 86 (h) Below 92 
(c) Above 65 (i) Between 68 and 104 
(d) Above 50 G) Between 68 and 92 ·. 
(e) Below 68 (k) Between-56 and 98 
(f) Below 86 (I) Between 68 ·and 98 

• See Tippett (90), Peters and Van Voorhis (74), or K~nney (63). 
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Exampl~iven the following means and standard devia
tions of normal distributions of large samples, within what limits 
would you expect to find the middle 95 and 99 per cent of the · 
measurementsr 

(a) M = 25 u = 5 ./ 
(b) M::::; 30 ,. =//'a 
(c) M = 50 ,.-=K8 

. (d) M = 42 u =M ':J.JJ""' 

(e) M ·= 18.5 u = :1.2- '/. '/ 
(0 M = 22.4 u = u-;?. ~ 
(g) M = 47.0 u =«5'" ~· J _ 
(h)M=~3.1 u=~ 6"·~ 



CHAPTER 8 

SAMPLING DISTRIBUTIONS_ 

You now have at your command a number of statistical 
methods which are capable ·of giving a good description. of 
samples. Central tendency can be described in terms of 
the mean or median, and variation in terms of the standard 
deviation. . Raw scores can be translated into z scores to 
determine -how far above or below the mean a given score 
lies, and to compare standing on one variable with relative 
position on another. In addition, you are familiar with 
various methods of measuring the degree of association be
tween two variables. You have also at your disposal a. 
means of determining by inspection how clo8ely a set of 
obtained sample frequencies corresponds to the frequencies 
to be expected in a normal distribution with the same mean, 
standard deviation, and number pf cases. 

1. SAMPLES AND POPULATIONS 

Samples, howe~er, are not often studied for themselves 
but in order to generalize beyond the samples to the popula,. 
tion.s from which they were drawn.' Why, if our interest is 
in the population, do we not study it instead of a sample 
drawn from it? Some of the more obvious reasona for not 
doing PO are that it would be too time-consuming, expensive, · 
impractical, and, in Iriany instances, impossible. If you 
stop to consider the labor, expense, and time involved in 
-conducting the United States Census once every ten years, _ 
this should be clear.l An investigator who wishes to study 
the state of public opinion on a particular issue could not 
.afford to conduct a census, that is, a study of every member 
of a defined population. Yet, the scientific polling organi~ 

1 Stock (88, p. 127) et~timatea ihat the 1940 censuf cost app~tely 
$50,000,000. . • 

151 
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zations can determine quite accurately the state of public 
opinion by studying a sample drawn from the population 
(30). This is accomplished with relatively little expenditure 
of time, money, and labor as compared to the census •. 

The factors mentioned above are not the only reasons 
that deter us from studying populations. We may experi
ment and control conditions and variables much more 
readily in a small sample than we could in a large popula
tion. · If we were interested in studying the rell).tive effective
ness of two different methods of teaching arit:hmetic at the 
sixth-grade level, we might select as subjects in. our ~eri
ment two small matched grol.}ps, samples, of sixth-grade 
student~. For these small groups we can obviously control 
the experimental situation more effectively than if our 
subjects exhausted the population of sixth-grade students. 
One group we woUld teach by one method and the other by 
the second method, comparing the performance of the two 
groups on some measure of achievement at the end of the 
experimental period. If our samples are representative of 
the population from which they were drawn, then we assume 
that the method of instruction which is found most effective 
in our experiment will also prove to be most effective for 
similarly matched groups in the population at large. 

You are probably "most familiar with "samples" from 
reading about· the opinion polls and, although the samples 
·used in these polls are not samples typical of those we shall 
deal with in this chapter and later ones, they may serve as 
an introduction to the subject of "reliability of statistics." 
The opinion polls, by studying a relatively small sample of 
the voting populat~on, make generalizations from the sample 
data about the population which, experience has shown, 
correspond very closely to the actual outcomes of elections. 
The polls report their data in terms of per cents, and these 
per cents, being measures derived from samples, are statistics 
in the same sense that a mean or standard deviation derived 
from a sample is a statistic. Statistics, you recall, are 
estimates of corresponding measures in the population 
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which are called parameters. The per cent favoring a given 
issue as derived from an opinion-poll sample would be a 
statistic; the per cent favoring the issue if it were possible to 
interview the population from which the· sample has ~en 
drawn would be the corresponding parameter. The mean 
intelligence test score derived from a sample of grade school 
students in New York City is a statistic and is an estimate 
of the corresponding mean or parameter in. the population 
which the sample is supposed to represent. · 

Reports of opinion-polling organizations such as the 
Amedcan . Institute of PubUc Opinion usually include a 
warning statement with pre-election reports of public 
opinion. A poll may state, for example, that a sample. of 
the voting pub:ic shows that Candidate A is favored by 52 · · 
per cent of the voters with a margin of error of 4 per cent. 
This means that the per cent in the population . favoring 
Candidate A can quite confidently be assumed to be between . 
48 and 56 per cent. The 4 per cent margin of error, in other 
words, gives some indication of the reliability of the sample . 
per cent or statistic. The theory underlying the · deter
mination of measures of reliability is known_ 88 sampling 
theory, and sampling theory is based upon frequency dis
tributions and probability (63, II, 98). 

Z. SAMPLING DISTRIBUTIONS 

We know from the discussion in the last chapter that if 
we had a large normal distribution with a given N, mean, 
and standard deviation, we could easily determine what 
proportion of scores to expect at given distances above or 
below the mean if we drew scores at random from the dis
tribution. That is to say, if we put each score on a disc, 
mixed the discs in a box, and drew them forth one at a time, 
we could make a probability 11tatement concerning the fre
quency with which we expect to obtain scores at or above 
a given point, or between two given pointe!. · · 

Let us assume that the distribution of scores in Table 32 
wa.s obtained by giving an objective type: .of examination 
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to a, psychology class of 100 students. If we think of these 
scores as making up a population, we could compute the 
mean and standard deviation of the population, which we 
would find to be 60 and 10, respectively. If our distribution 
of 100 scores is a population, then the mean and standard 

'~:ABLE 32.-HYPOTUETICAL ScoREs oP 100 STuDENTS ON AM OliJECTJVB 
TYP& or Ex..umu.noN 

87 76 73 10 67 66 64 63 61 6() 
85 75 72 69 67 65 64 6Z 61 60 
82 74 71 69 67 65 63 62 61 • 6(} 
78 74 71 68 66 65 63 62 61 60 
77 74 70 68 66 64 '63 62 61 60 

60 . 59 58 57 56 54 52 50 46 43 
60 59 58 57 55 54 52 49 46 42 
60 59 58 57 55 53 51 49 46 38 
60 59 58 56 55 53 51 48 45 35 
60 59. 57 56 54 53 50 47 44 33 

deviation may be considered as fixed values or parameters 
of this populatio!L 

Suppose now that we placed each of the numbers in Table 
32 on a disc and mixed them up in a box and drew samples 
of 1 case each out of the box, replacing the disc after each 

- ~X 
drawing. .The mean of each sample would be equal to N 

and since we have but a single X and since N equals 1, the 
X - . 

mean of each sample would be l or the score itself. If we 

drew a large number of samples· of 1 case each, we could 
plot the means of these samples in. a ~requenc~ ~tri?uti?n. 
If we then found the standard devtation of this distnbution 
of sample means, it would be approxin:J.ately the same as 
the population standard deviation, 10. The reason for this 
is simply that each sample mean would deviate from the 
population mean in the same way that each score does from 
the mean. But if we increased the size of our sample to 10 
cases, and drew a large number of samples of this size from 
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the box, we would find that the sample means now show less 
variation about the population mean. And with samples of 
40 cases each, the variation of sample means would be stilll(lss. 

The relationship between the variation of sample means 
and the size of the sample is illustrated by an actual sampling 
experiment. Figure 11 is' a distribution of meaD$ of 820 
samples of 10 cases each. These samples were drawn by 

FIG. H.-Distribution of 820 means of samples of 10 cases 
each drawn from the scores of Table 32. 

students in statistics classes at the University of Maryland 
and the University of Washington from the scores of Table 
32. Note that the lowest mean is 49 and that the highest 
mean is 71, the range being 22. Observe also the concentra
tion of the sample mearui around the population value of 60, 
and the approximately normal shape of the distribution. 
If we combine the means of four samples, each sample with 
10 cases, and find the mean of these combined samples, it 
would be the same as finding the means of samples of 40 
cases each. This we have done, and the distribution of the 
205 sample means is shown in Figure 12. You may observe 
that the range of means iS now less than it was when each 
sample. consisted of only 10 cases. The ·lowest mean is 
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now 54. and the highest is 66. The range, 12, is only about 
half that for the samples of 10 cases each. 
, Frequency distributions of statiStics, such as the mean, 

derived from a large number of samples of a given size are 
known as sampling distributions and the standard deviation 
of a sampling distribution is called a standard error in order 
to differentiate it from the similar measure, the standard 
deviation, derived from· a single sample. You should see 

.00 

.20 

10 

0 
" li6 66 57 53 69 60 61 "62 63 64. 66 66 

Vlluea of Means 

Fxa. 12.-Distribution of 205 mee.ns of samples of 40 cases 
each drawu from the scores of Table 32. 

from Figure 11 and Figure 12 that the standard error of a 
distribution of sample means is' telated to the size of the 
sample. As more individuals are included in the sample, 
the less the means will scatter or vary around the population 
mean. The ·standSrd error of a sampling distribution is 
related also to the amount of variability present in the 
population from which the samples are drawn. H the 
standard deviation of the 100 scores making up the popula
tion described above had been greater than 10, then. the 
variability of means of samples drawn from this population 
would be greater also. 
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S. STANDARD ERROR OF THE MEAN 
In the sampling exp~riments just described we.have been 

dealing with samples drawn from .a population .where the 
parameters are known values. Under these circumstances, _ 
the formula for the standard deviation of the ~ampling dis· 
tribution of means drawn from . the population is · 

. ·· (38) 

where cr,. = the standard error of the mean 
' q - the population standard deviation (the tilde . is 

placed over the standard deviation to indieate' 
that it is the population value, not the sample 

· value) · 
N "" the number of cases in the sample 

In most research problems in the past, l.t has been the 
practice to consider the standard deviation of the sample as 
an estimate of the population standard deviation, since the 
latter is seldom, if ever, known. Thus u has usually been: 
substituted for i1 in formula (38). It can be shown, how
ever, that a more precise estimate of.the unknoWn population 
standard deviation is obtained by the following formula:i 

t The proof of this Is not developed here; but ean be found in Lindquist · 
(64, pp. 48-50) or Peters and Van Voorhi.e (74, p. 70). We can, however, 
give some indication of why we divide the Ba.mple sum of square! by N -1 in 
estimating the population standard deviation. The best estimate of the 
population standard deviation Is '\I'X(X- M)1/N, when M is tlie popula.tion. 
mean and N is the number of cases in the sample. But the population mean is 
not known, and devis.tions must be taken from the sample mean. The result · 
is that the estimate of the population standard deviation derived from the 
sample, ~cularly when the sample iB small, is underestimated. The reason 
for thi.e IB that the sum of squares which we calculate, ta.k.ing deviations from 
the sample mean

1 
ia at a. minimum, i.e., less than it would be from any other 

value. Only in tne unUIJual case where the sample mean happened to be identi
cal with the population mean would the sum of squares balled upon the sample -
mean be as large as the sum of squared deviations from the population mean. 
Regardless of how slightly the sample mean varies from the JlOpulation mean, 
any variation at all would give us a smaller sum of sq_uared deviations if the 
deviations are taken from the sample mean than would be found if the devia-
tions were ta.ken from the populatton mean. Division by N would thus give 
us an estimate of the population standard deviation which is biased, an esti- · 
mate which is too small. It can be demonstrated algebraically that this bias 
can be corrected for by dividing by N -1 instead of N. The proof in Lind-

. quist is not beyond the comprehension of the student with an elementary 
knowledge of algebra. 
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i = ~~~ N • 
N-~. 

=·Ji=Q; 
/ T.x2 N ~ 

= "JN(N -1) 

=" T.x' N-1 (39) 

from which we see that if we want an estimate of the popula
tion standard deviation rather than the standard deviation 
of the sample, we simply divide the sum of squares by N - 1 
inStead' of by N. And having computed this estimate of 
the population standard deviation we could substitute in 
formula (38) for the ·standard error of the mean and get 

I T-xt 
=VN(N-1) 

~~ 
= ~N(N-1) 
. N 

N 
= 

vN-1 
fl 

=-vN 1 
(40) 

Thus you can see that the standard error of the mean 
could also be obtained directly from the sample standard 



. 
Large Samples and the Normal Curve _Table 159 

deviation by means of formula (40). It makes no difference 
which procedUre you use. You can divide the sample sum 
of squares by N - 1 and then use the square roOt of N as 
the denominator in the formula for the standard error of the 
mean, or you can divide the sample sum of squares by N 
and use N - 1 as the- denominator in the formula for ~he 
standard error of the mean. · -

.f.. LARGE SAMPLES AND THE NORMAL-CURVE TABLE 

How shall we interpret the standard error of the mean, 
once we hp.ve computed it? Let us take a concrete case. 
Suppose that we have given an achievement test to a random 
sample of 400 students at a given university where the total 
enrollni.ent is 10,000. The mean of our sample is 200 and 
the- estimate of the population standard deviation is 40. 
The standard error of the mean is therefore 2. Suppose 
that our real interest is not in the mean score of our sample 
of 400 students but rather in the mean score that would 
have been obtained if we had given the test to every student 
in the university. We may ask how reliable an estimate of 
the population mean is our obtained sample_ ~ean of 200. 
We might even wish to ask what the probability is that the 
population mean is the same as that derived from our 
sample. Unfortunately, if we insisted upon asking the 
question in this way, we would be in for a disappointment. 
For the manner in which the question is phrased eliminates 
any possibility of an answer. 

But, you may ask, didn't we say before that the statistic 
derived from a sample is an estimate of the population param~ 

. eter? Aren't we justified, therefore, in saying that the 
best estimate of the population mean is 200? True enough, 
but note that this is but another way of stating that the best 
"hypothesis" we can make about the population mean with 
the data at hand is 200. Another sample of 400 cases drawn 
from the same population might have a mean of 201; a, 
third sample might have a mean of 203. Without actually 
drawing a second and third sample, we might make the 
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hypothesis that 'the population mean is actually 201 or 203 
or some other value, and that our: obtained sample mean of 
200 simpfy represents a chance deviation from this value. 
Obviously, whether we care to accept or reject the various 
hypotheses that might be set up concerning the population 
mean will depend upon the relative frequency with which 
observed sample means of 400 cases would deviate from 
these assumed or hypothetical values as a result of sampling 
variation .. · 

· · ··-.Recall that in a normal distribution we may find the· ratio 
X-M · ·x 
--- =;= -:- = z, and that we may then enter the table of 

(F (F 

t~e normal.curve with any given value of z, in order to 
·determine the relative frequency with which deviations as 
large as or larger than the given x occur. Now, since the 
distribution of means of random samples is also normal, 8 and 

' since these means ivill cluster around the population mean at 
the center· of the distribution, it is also possible to write 

z = M • ._ M~a . ~ (41) 
CTm 

· Thu8 formula '(41) tells us that we' may set up some hypo
thetical value of the population mean, find the extent to 

_which our sample mean . deviates from this value of the 
population mean, and then, by reference to the table of the 
normal· curve, determine how frequently such deviations or 
larger may be expected. to occur by chance if the hypothesis 
-is true. If deviations as large as the one we have obtained 
or larger would occur quite frequently as a resul~ of sampling 

. variation, then we would have very little confidence in· 
rejecting the hypothesis that the population mean is the 

· value that we have set up. On the other hand, if a deviation 
from the hypothetical value of the population mean as large 
as or larger than the one we have obtained would occur 

s This is true even when the population from which the samples were drawn 
departs considerably from normality. For evidence bearing upon the problem, 
see Kenney (53}. . 
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quite infrequently as a result of samplliig variation, then 
we might reject the hypothesis concerning the population 
mean with a greater degree of confidence. l . 

Let us test the hypothesis that the population mean 1s 

199, assuming that our sample mean of 200 represents a 
deviation from this value. Substituting in formula (41). 
we get , 

z = 200 - 199 = .5 
2 

Entering Table B of the normal curve, we find that 31 per 
cent of the cases in a normal distribution may be expected 

, to deviate from the mean by plus .5 standard deviation 
units or · more. Op. the assumption, then, of random 
sampling from a population with a mean of 199, sample 
means of 200 or larger would occur in the long run 31 pel' 
cent of the time. We must admit, that if this is the case, 
then we would have very little confidence in rejecting the 
hypothesis that the population mean is 199. 

In a similar manner we could test the hypothesis that the 
population mean is 194. The deviation of_ our observed , 
mean in terms of standard deviation units would be 6/2, 
or 3, and we would find from the table of the normal curve 
that z values of plus 3 or larger may be expected to occur 
by chance much less than 1 per cent of the time,. Conge..; 
quently, if the population mean is 194, then sample means 
of 200 or larger could be expected ·to occur by chance less 
than 1 pe_r cent of the time. In this instance we would 
have much more confidence in rejecting the hypothesis that 
the true mean is 194." 

From these two examples you may see that the degree of 
confidence we may have in rejecting or accepting a given 
hypothesis about the population mean. depends, as we have 
said before, upo~ the relative frequency with which devia-

• Note that in both of the examples cited, we have f'tOt made the 1181!Wllption 
that our sample mean is at the center of the distribution of sample means .. 
It ia M,. whicb. is assumed to be a.t the center of this <fistribution a.nd M. 
represents a. tklnation from M~oo . · · · 
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tions as great as our sample mean or greater might be ex
pected to occur from the hypothetical value as a result of 
sampling variation. In other words, assuming a given 
hypothesis to be true, we test it by finding the relative 
frequency with which deviations from it as large as or larger 
than our sample deviation might be expected to occur by 
chance. If such deviations would occur very frequently by 
chance, then we cannot reject the hypothesis about the 

. population mean with much confidence. On the other 
hand, if su.ch deviations would occur very infrequently by 
chance, then we may reject the hypothesis with a high 
degree of confidence. 

I. 

6. THE CONCEPT OF FIDUCIAL LIMITS . 

. The discussion of the previous section, let us hope, has 
provided a basis for understanding the method now to be· 
described. ln.J:ltead of testing one hypothesis after another, 
as we might possibly do, it is customary to d~termine the 
interval within which any hypothesis might be considered 
tenable and outside which any hypothesis might be con· 
sidered untenable. This interval is known as a confidence 
interval and the limits defining it are called fiducial limits. 
Statements of probability made in terms of the fiducial 
limits are called statements of fiducial probability. 

It may be observed from Table B, page 320, that absolute 
values of zof 1.96 or greater will occur, by chance, 5 per cent 
of the time. It may also be observed that absolute values 
of z of 2.58 or greater will occur, by chance, 1 per cent of 
the time. It has recently become common among statistical 
workers to agree, p.rbitrarily, to reject a hypothesis about 
the population mean such· that our sample mean deviates 
from it to the extent that the resulting value of z or greater 
would occur by chance 5 per cent or less of the time. If we 
set up a hypothesis concerning the population mean value 
and found that our sample mean deviated from this hypo
thetical value to the extent that we obtained an absolute 
value of z equal to 1.96, we would say that we reject this 
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hypothesis at the 5 per cent level of confidence. In a similar 
manner, if we obtained an absolute value of z equal to 2.58, 
we would say that the hypothesis is rejected at the 1 per 
cent level of confidence. A z of 1.96, in other words, indi
cates a significant deviation and a z of 2.58 indicates a very 
Bignificant deviation. If we agree upon these standards, 
then we may determine for a given sample mean the line 
dividing hypotheses that would be acceptable from those 
that would be rejected at these levels of confidence. Let 
us do this for the problem discussed earlier where the sample 
mean was .200 and the q. was 2. The formula. we rectuire 
is the following: 

where z - a deviation of the sample mean from a hypothetical -
value of the population mean · 

cr. = the standard error of the mean 
~ ... an absolute value of z that would cause us to reject 

a hypothesis at the 5 per cent level (1.96) or at 
the 1 per cent level (2.58) . 

Since fT• and z are known v8.Iues, we may substitute in the 
formula and solve for z. · Let us do so for a value of z at the 
5 per cent level of confidence. 

5% Level 

..!. = ±z 

z 2 = ±1.~ 

:r; = (2)(±1.96) 
% = ±3.92 

Having found the value of x (±3.92), we may note (Figure 
13) that if the population mean is as low as 196.08; then 
our sample mean deviates from this value to the extent that 
a pl'U3 value of z of 1.96 is obtained. By reference to Table 
B we find that plus values of z of 1.96 or larger would. occur· 
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~025 or 2M per cent of the time by chance. Similarly, if 
the population mean is as large as 203.92, then our sample 

. mean deviates from this value td ·the extent that a minus 
value of z of 1.96 is obtained (Figure 13). And by reference 
to Table B, we find that minus values of z of 1.96 or larger 

·would occur by chance .025 · or 2M per cent of the time. 
Put.ting these ~wo figures together, we may observe that 

FIG. 13.-The. fiducial limits at the 5 per cent level as 
determlined from the tables of the normal probability 

curve. 

absolute· values of z (regardless of sign) of 1.96 or greater 
. would arise 5 per cent of the time by chance. . 

Hence, any hypothesis that the population mean is as 
low as 196.08 or lower, or as high as 203.92 or higher, will, 

. in terms of the sample mean we have obtained, yield a value 
of z which would occur 5 per cent of the time or less by 
chance. The sample mean would be said, therefore, to 
differ significantly from either of these two hypothetical 
values of the population mean (or any values outside these 
two), and any such hypothesis concerning the population 
mean.would be rejected according to the standards we have 
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agreed upon. We also know that any hypothesis that the 
population mean is greater than 196.08 but less than 203.92. 
will be in accord with the value of the sample mean we have 
obtained, i.e.,.the sample mean will not differ significantly 
from any of these hypothetical values. · 

The limits set by the intet:Val described above have been 
termed by Fisher (26) the fiducial limits of the parameter 
at the 5 per cent level. Just as we saw that the fiducial 
probability that the population mean was 203.92 or greater. 
was 2,72 per cent and that the fiducial probability that the 
population mean was 196.08 or less was 2,72 per cent, so· 
also we may say that the fiducial probability that the popu
lation mean lies within the fiducial limits is 95 per cent (26, 
pp. 19Q-191}. That is to say, in the long run, we shall be 
correct 95 times in 100 in inferring that a population mean 
lies within the 5 per cent fiducial limits. 

If we desire a higher degree of confi<ience before rejecting 
a hypothesis concerning the population mean, then we 
would, of course, work with the fiducial limits of the param
eter at the 1 per cent level. In this case the fiducial 
probability that the population mean is 205.16 or greater is 
.005 (z = -2.58) and the fiducial probability that the 
population mean is 194.84 or less is .005 (z = +2.58}. The 
fiducial probability, therefore, that the population mean lies 
within these limits is 99 per cent. 
. If we consistently follow the rule that a hypothesis is. 
acceptable if it falls within the limits set by one of the above 
levels, then we may be in error because (1) we reject a true 
·hypothesis, or (2) we accept a false one. "Errors of the 
first kind" may be minimized by arbitrarily increasing the 
level of significance we demand before accepting the hy
pothesis and, therefore, making the probability .low that if 
the hypothesis i<J true we would obtain the value we have 
obtained.6 By adopting: the 1 per cent level, for example, 

6 But, as Tippett points out, by choosing a level that is too severe, "the 
proportion of mistaken inferences of the second kind may be too great, and 
advance of knowledge may be unjustifiably impeded. Too much 'scepticism 
may be obstructive" (90, p. 75). 
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"errors of the first· kind" would occur, in the }('ng run, only 
once in every hundred experiments; that is, we would reject 
1 per cent of all of the true hypotheses tested. If we work 
at the 5 per cent level, then we would reject, in the long 

· run, 5 per cent of. the true hypotheses tested. As with any 
rule-of-thumb procedure, caution must be exercised in 
critical cases. Under some circumstances an "error of the 
:first, kind" may be more serious and, under other circum
stances an ''error of the sec~nd" may have more serious 
consequences.' It may be said, by way of conclusion, that 
the 1 and 5 per cent levels that we have cited are the most 
commonly used. 

6. SMALL SAMPLES AND THE TABLE OF I 

h long as the samples with which we are working are 

quite large, the ratio1 ~~ may be interpreted by reference 
cr .. 

to the tables of the· normal curve. But with small samples 
(considered by some statisticians as samples under 30 cases 
and by others as samples under 100 cases) the <listribution 
of the ratio, z, is not precisely normal. This means, of 
course, that the use of the table of the normal curve in inter
preting the ratio is not justified. We must make use of 
the tabled values of f. 7 . 

The t ratio is the same ratio that we have just been dis
cussing under the desigriation of z, and, for large samples, 
the Oistribution of t is equiyalent to z. The sampling dis
tribution of t depends, however, upon the number of cases in . 
the sample or, more precisely, upon the number of degrees of 
freedom involved. The concept of degrees of freedom, sym
bolized by n or df, ~efers to the number of observations that 

s See, for example, the discussion~ by Walker (96, pp. 288-292) and Jack
son (4.7, pp. 13-15). 

. r The problem of satisfactorily dealing with small samples was recognized 
and investigated by W. S. Gosset, who published under the pseudonym of 
"Student." Professor R. A. Fisher ha.!l done much to develop the theory and 
technique of treating small samples and the table of t which we have included 
(page 330) is taken from his book (25) by peunission of the author and his 
publishers, · 
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are free to vary after certain restrictions have been placed 
upon the data. 8 In determining the fiducial limits for tl!e 
mean, the number of degreees of freedom is one less than 
the number of cases in the sample or N - 1. . 

Table C, page 330, gives the 1 and 5 per cent points for t . 
. for samples with varying degrees of freedom. Table C is. 
to be used in the same way that we used the table of the 
normal curve, except that the value of t, instead of being 
1.96 at the 5 per cent level and 2.58 at the 1 per cent level, 
will be somewhat larger, the exact value depending upon 
the number of degrees of freedom involved. Thus for a 
sample of 20 cases, the number of degrees of freedom is 19 · 
and the value of t at the 5 per cent level is 2.09. For a 
sample of 10 cases, the number of degrees of freedom is 9,-
and t at the 5 per cent level is 2.26. · 

In the case which we have already dealt with in terms of 
z, we find that for a sample of 200 cases,. degrees of freedom . 
= 199, t would be 1.97 at the 5 per cent level and 2.60 at 
the 1 per cent level.D Using these values we may find the 
:fiduciallimits. Thus 

1% Level 

-=- = ±t u,. 
X 2 = ±2.60 

z = (2)(±2.60} 
X= ±5.20 

5%Levet' 

-=- = ±t u,. 
X 2 = ±1.97 

X= (2)(±1.97} 
X= ±3.94 

8 An adequate treatment of the concept of degrees of freedom would take us 
beyond the scope of this elementary text. It can be said, in general, 
however, that whenever a sample of N cases is' used for the purpose of 
estimating a population value, 1 degree of freedom is lost for every statistic 
calculated from the sample and used in making the estimate. In the case of 
estimating the standard deviation of the population, the statistic calculated 
from the sample and used in making this est1mate is the mean of the sample. 
Since this is the only staastic used in making the estimate, only 1 degree of 
freedom (N - 1) is lost. An excellent discussion of this problem, in terms 
which are not beyond the comprehension of the beginning student, can be 
found in Goulden (36, pp. 33-34). See also the m(')re technical article by· 
Walker (94). 

1 There is no entry in Table C for degrees of freedom.l99, but we may use 
the entry for 200 degrees of freedom, the discrepancy being very slight. 
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For a sample as large as this {N = 200) the fiducial limits 
would be little 'changed by using the table of t instead of 
the table of the normal curve. The greatest discrepancies 
between the fiducial limits established by z and by t will 
occur when N drops ~low 100. 

7. OTHER STANDARD ERROR FORMULAS 

a. Standard error of the standard deviation. The same 
interpretation that we have applied to the mean of a. sample 
and ita standard error also applies to the standard error 
formulas for other statistics. The sampling distribution 
of . the variance for small samples is, however, slightly 
skewed, as is the sampling distribution of the standard 
deviation, but both approximate a normal distribution when 
N is approximately 50 or greater. We shall not include a 
formula for the standard error of the variance, but you may 
find one in Peters and Van Voorhis (74) or Tippett (90) if 
you should ever have need of it. The standard error of a 
standard deviation may be estimated by the formula 

CJ"• = .V2(N- 1) 
(42) 

when the standard deviation has been computed by dividing 
the suni Of squares by N. If the sum of squares has been 

. divided by N -.1 in computing the standard deviation, 
then formula (42) becomes 

tT 

tT. = v'2N (43) 

In finding the fiducial limits for the standard deviation, 
we would proceed as we did in the case of the mean. If 
we use the table oft, then we must enter it with the appro
priate number of degrees of freedo~ N - 1, or one less 
than the number of cases in our sample. · 

b~ Standard error of a proportion. If, in a given sample, 
our data are expressed in proportions, frequencies, or per 
cents, we may wish to compute standard errors for these sta-
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tistics, and to establish the fiducial limits. If we interviewed · 
a sample of 100 students and found that 60 (p = .6) of them 
favored a. given proposition and 40 (q = .4) were opposed, 
we might be interested in finding the limits within which -
hypotheses concerning the population proportion would be. 

·tenable. · 
On the assumption that the obtained sample value of p 

is the most probable population value, the standard error 
of. a proportion is · 

'. 
(44) 

where p = the proportion in one category (in this instance the 
proportion favoring the proposition) 

q = 1 - p or the proportion in the second category 
N = the number of cases in the sample. 

The standard error of the proportion in the case cited 
above would be, according to formula (44), 

tTl!= 
(.6)(.4) 
----wo 

=~ 
= v.oo24 
= .05 

To establish the fiducial limits we would enter the table of 
t with degrees· of freedom equal toN- ·1. The value oft 
at thP. 5 per cent level is 1.98 and the fiducial limits would 
be (.05) (±1.98) or ±.1 (rounded). Thus we would con
sider any hypothesis concerning the proportion in the popula.... 
tion which fell within the limits .5 and • 7 as tenable, i.e.; 
our sample would offer no evidence against the hypothesis. 
On the other hand, any hypothesis that the population 
proportion was· equal to or outside these limits would be 
considered untenable and rejected. 
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c. Standard error of a per cent or frequency. Since 
we know that a per cent is simply a proportion multiplied 
by 100 and that a frequency in a 'given category is equal to 
the proportion in the category multiplied by the total 
number of cases involved, we may write the formula for a 
standard error of a per cent and a standard error of a fre-
quency as follows: 

up= too.JY 
UJ = N.JY 

(~5) 

(46) 

· A w9rd of caution should be expressed concerning the 
calculation of standard errors for proportions, per cents, and 

·· frequenc1es, and using these values in establishing the fidu
cial limits. The procedure described will give approxi
mately the same results as those obtained with more exact 
methods_ as long as the product N p (or N q if q is less than 
p) equals at least 20. n· this relationship does not hold, 
however, then a more exact treatment is necessary.10 

SAMPLING DISTRIBUTIONS 

Example_l.-Place the scores of -Table 32 on discs or beans. 
Assume that the 100 scores make up a. population with known 

· para~s. From this population each member of the class will 
drfl.w 10 samples of 10 ca8es each, The technique to be used in 
drawing the samples is this: place the numbered discs in a. box 
with a. hole eut in one end; .shake the box and draw out one disc; 
record the number.imd put the disc back in the box; shake it, 
draw out another d.lsc and so on until 10 numbers have been re
corded. These numbers will make up Sample No. 1. Repeat the 
process until you have drawn 10_ samples. · 

. (a.) Find the mean of each of your 10 samples. Do not worry 
about the decimal place; round the number. 

IDSee, for example: C. J. Clopper & E. S. Pee.rson. The :use of.eonfidence or 
fiducial limits illustrated in the case of the binomial B~trika, 1934, 26, 
404-413. -
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(b) To get some idea of the sampling distribution. of means, 
make a frequency distribution of all of the sample means drawn 
by the members of your class. 

(c) What would you expect to happen to the range of means 
if the sample size had been larger than 10? Why? 

(d) To get some idea of the sampling distribution of t you 
can find the standard deviation and standard error of the mean: 
for each of your samples. Then using the formula ' 

t= Mo-M.,. 
Um 

and subst~tuting the mean of the ·population {60), since it is 
known, for M,., solve for t. Some of the values will carry a. 
minus sign and others will be positive. 

(e) Combine all of the t's from the class into a frequency dis
tribution, in terms of absolute values. 

(f) What absolute value of t would you expect to find ex· 
ceeded 1 per cent of the time? 5 per cent of the time? 

Exampl~iven the following means, N's, and sample 
standard ~ti~ns, find the fiducial limits of the para~eter at 
the 5 per cent and 1 per cent levels, using the table of t . 

. .. 
'N M fT N M fT 

(a) 65 25 5 (e) %1 25 10 
(b) .17 30 7 ~f) +1').( 50 12 
~c) 101 35 10. g) ~ 50 7.5 
d) 10 25 5 (h) 22.5 4.25. 

~"""Example@-Assume that the scores given below are "time" 
scores on a maze test. Using the table of t, find the standard 
error of the mean and the fiducial limits at the 1 and the 5 per cent 
levels. . . 

RL 26 TH 17 LW 21 · .. 
ss 20 BM 20 AM 17 
EG . 19 AE 23 VB 22 
RG 15 ww 25 MG 19 
EE 21 sc 16 NK 19 
GH 19 PC 21 ~a • 20 . ' 



CHAPTER 9 

THE t TEST OF SIGNIFICANCE 

In studying the reliability of vanous sample statistics in 
the last chapter, we discussed most of the basic essentials of 
the' t test of significance applied to differences between 
sample statistics. In experimental and research work the 
determination of whether an observed difference is of such 
magnitude that it cannot be attributed to chance factors or 
sampling variation is often our major interest. We may 
find, for example, that a group working under one set of 
experimental conditions has a higher mean output than 
a comparable group working under a different set of experi
mental conditions. Is the observed difference between the 
means one· that might occur frequently by chance, i.e., as a 
result of sampling variation? If not, then we might infer 
that the difference is a product ·of the experimental variables. 

1. AN EXPERIMENT INVOLVING PAIRED 
OBSERVATIONS . 

Let us suppose that we are interested in the problem of · 
whether attitudes toward working conditions are important 
determiners of output. · We have 20 subjects who have been 
practicing adding numbers under quiet conditions. On the 
basis of their performance during these practice periods we 
divide the 20 subjects into 10 pairs, so that each subject is 
matched with another individual of comparable level of 
performance. We assign one member of each pair at random 
to one of two groups. Thus we have two groups or 10 pairs 
of subjects, each pair, and consequently each group, being 
fairly equal in ability to add. One of these groups we shall 
designate as "Group A" and the other as "Group B." 

On the critical trials we tell the members of Group A that 
they are to be subjects in an experiment on distraction which 

172 
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is to be a check on previous experiments which have been 
done. It has previously been found, we add, that working 
under conditions of noise results in an increase in produc
tion, that is, that most individuals find that noise tends to 
facilitate adding. The members of Group B are also told 
. that they are to be subjects in an experiment on distraction, 
but they are told that previous experiments have showu that 
working under conditions of noise tends to decrease produc
tion. Each group is then put to work adding problems 
under noisy condition.S, and performance is ·measured· in 
terms of the number of problems correctly added. The 
scores of Group A and Group B on the critical trials are 

· given in Table 33.1 We see that the mean score of Group A .. . 

TABLE 33.-MEASUBES oP l'ERFoRKANcz oP MATCHED PAIBS WoRKING 
UNDER CoNDITIONS OP NOISE BUT WITH DIP'FERING A'l'TITUDES 

TOWARD INFLUENCE OP NoisE-GROUP A UNDER A'l'TITUDE 

GROUP 

A 
B 

THAT NOISE INCREASES OUTPUT AND GROUP B UNDER 
A'l'TITUDE THAT NoiBB DECBEASES OUTPUT 

MATCHED p AIBS 

SU¥ 

1 ~· 4 5 

~· 
10 

22 25 24 23 26 26 24 25 22 240 
21 25 22 23 24 25 23 24 21 230 

MEAN 

24 
23 

is higher than the mean score of Group B. Is the difference 
between the two means significant? 

If we took· an infinite number of samples of 10 paired 
observations each, the differences between the means, i.e., 
the mean differences, would constitute a sampling distribu
tion in the same sense that means of single samples give us 
a sampling distribution.' We could plot these mean differ
ences in a frequency distribution and . they would. tend . to 

1 The data are hypothetical for the sake of simplicity, but see the exPeriment 
by Baker (3). 

1 It has been demonstrated earlier that the dilference between the means is 
equal to the mean of the paired differences. , • 
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duster around the mean of this distribution, which would 
be the population mean difference. The standard deviation 
<lf this distribution would indicate the amount of variability 
:m mean differences which 1s to be expected when the samples 
-consist of only 10 pairs of observations. How large a mean 
<lifference will we have to observe before we are willing to 
Teject the hypothesis that the population mean difference 
is zero? It should be obvious from earlier discussions 
that we would need to know the standard deviation (standard 
-error) of the distribution of mean differences based upon 
:-samples of ·10 paired observations. As in the case of the 
:standard error of a single mean, we must use our avail
able statistics· to estimate the standard error of the mean 
diff~ence. . 
· a. ·Standard error of a mean difference~ · In the case of 
:matched pairs, the technique of finding the standard error 
of the mean difference is quite simple. We find the 'differ
.ence between each pair of observations and then the mean 
of this distribution of 10 differences. We then find the 
.Sum of squares and the standard deviation of the distribu
. tion of 10 differences; using this standard deviation as the 
.numerator and the square root of the number of pairs minus 
1 as the denominator, we may estimate the standard error . 
.of the mean difference. By formula this is 

u,..., = vN -·1 {47)' 
. . 

-where u.,.
4 

=the standard error of the mean difference (or 
difference between the means) 

tid= ,the standard deviation of the distribution of 
'differences between pairs 

N = the number of pairs 

The essential calculations for the problem at hand are 
given m Table 34. The scores for both groups have been 

& If the numerator is the estimate of the population variance, i.e., if the sum 
.of squares has been· divided by N - I, th.!n the denominator uf formula (47) 
becomes the square root of N. 
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reduced by subtracting 20 from each one. Subtraction, 
you may recall, will not change the resulting sums of squared . 
deviations from the mean: And since the· same constant 
has been subtracted from each series, the difference between 

· TABLE 34.-PEBFORMANCE ScoREs oF MATCHED PAIRS GIVEN IN TABLE 33 
CoDED BY SUBTRACTING 20 AND ARRANGED FOR Co:u;

PUTATIONAL PuRPOSES 

{1) {2) {3) (5) (6) (7} (8) (9) (10) 
GROUP A GROuPB If? (4!~ fJ; ·X •Y d' 3: ·y a:y x,l yl 

:z: 

2 ! 1 1 0 0 
5 5 .0 -1 1 
4 2 2 1 1 
3 3 '0 -1 1 
6 4 2 1 1 
3 2 1 0 0 
6 5 1 0 0 
4 3 1 0 0 
5 4 1 0 0 
2 1 1 0 0 

40 30 10 0 4 

:z:D 10 
Mt~= -=-= 1 

-==--:=- !! . ... -lo- . -

v.= ~ = ~= v'2= 1.41 

~~ ~126. _l_. 
v., = "Vir= "Vt) = v 2 = 1.41 

----1-~ 

-2 -2 4 4 4 
l 2 2 'l 4' 
o- -1 0 0 1 

..:..1 
2 

-1 
2 
0 
1 

-2 

0 

0 0 1 0 
1 2 4 1 

-1 1 1 1 
2 4 4 4 
0 0 0 0 
1 1 1 1 

-2 4 4 4· 
----1--.-

0 18 20 20 

= · fTs '= 1.41•= _47 v.,., v'N -1 3 

tTl/ • 1.41 47 
v,.ll = v'N - 1 = T = • 

~ fi(p ~ 14 - "4 - 63 tTtl t'- .63 - 21 
tTtl = "V!r = -v-w = v .'1 = . v .. , = vN - 1 - a - . 

, - :Z:xy 18 .;. 18 = 90 
'""- v':z:x•r.lf V(20)(20) 20 • ~ 

the pairs and the means will be unchanged. Consequently, • 
we may treat these coded scores as original ,measures;.with~ 
out taking into consideration any correctio~ for coding. , 
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We find, from Table 34, that the mean difference between 
Groups A and B is 1, with a standard error of .21. How 
may we evaluate this observed difference between the means 
of the two groups? Is the difference so small that it might 
simply be the result of sampling variation? One way in 
which we might approach the problem is to set up some 
hypothesis concerning the population mean difference and 
then see whether our sample difference departs significantly 
from this hypothetical value& The deviation of our sample 
.difference from the hypothetical population mean difference 
when divided by the standard error of the· difference would 
give us the familiar t ratio.. Assuming the hypothesis to be 
true, we could, by reference to the table oft, determine how 

· frequently absolute values of t this size or larger would 
occur by chance. · According to the standards we have 
agreed upon, if the value oft is such that it would be expected 
to occur less than 5 per cent of the time by chance we could 
say that t was significant. We might, therefore; conclude 
that the. hypothesis concerning the population mean differ
ence is not likely and reject it as untenable. Suppose, how
ever, that we· found just the opposite, that t was not 
significant at the 5 per cent level. What might we then con
clude? We would have no basis for rejecting the hypothesis, 
put WQuld this mean that ·the. hypothesis was true? The 
ans'weP is definitely no. The hypothetical value we tested 
is but one among many values that might .result in a non
significant value of t. 

· b. Testing the null hyPothesis. There is another ap
proach to the evaluation of our observed mean difference 
that is more satisfactory if we are merely interested in finding 
out whether the difference is significant. The hypothesis 
that we may set up to test iS the null hypoth£sis.4< We 

4 In this section and in those that follow, the term 1'null hypothesis" is often 
used to designate the hypothesis that a given population parameter is zero . 

. It should be pointed out, however, that the term covers any hypothesis which 
is set up to be tested for possible reje<)tion. For a more d~tailed discussion 
of this point, see the footnote on page 281. 
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assume that the population mean difference is zero and that,. 
therefore, any obsen-ed difference such as the one we haYe 
obtained is merely due to chance or sampling fiuctuations.. 
~ in many respects, is the moo logical hypothesis to 
te>t, since the major point we wish to determine~ whether 
our obsen-ed difference betw-een the ID.ea.M of the groups is 
significant. If we assume that the population mean differ-
ence is zero, then · · 

C = M • .:..... M, = 1 - 0 = 4.i& 
.... .21 

:... or the observed mean difference divided by the standard 
error of the difference, since M a is assumed to be zero. 

We may now evaluate this C by entering Table C (page 330) 
with the appropriate number of degrees of freedom. In 
the present problem the number of degrees ·of freedom is 
equal to N - 1, where N is the number of pairs of observa-
tions. According to Table C, if the null hypothesis is true. 
then for 9 degrees of freedom we would expect to get an 
absolute value of C of 2.26 or larger 5 per cent of the ~ 
and an absolute value of t of 3.25 will be exceeded only an 
average of once in 100 times. As before, we agree that if 
our obtained value of C is suclr that it would be ex~ 
5 per cent of the time or less, then we shall reject the hy
pothesis being tested rt infer thAt our obierved mean 
difference is significant. Jn the present experiment, sinee t 
eueeds the 1 per cent point, the null hypothesis must be 
iibandoned "\fe Still do not know, however, what t1ie" 

population mean ffifffrenre iS; we nn!.T hiow that the
_A~ tlleili th.s.t it is zero ~·not tenable a.t the lexd of Big-
. nifieance we haYe agreed upon. -

c. Establishing the fiducial limits. We ID8Y go & step 
further in our deYelopment. In the manner of the last ' 
chapter 1re may determine the fiduciallimitsj that is, find •. 
out something about the limits within which_~ would be 
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willing to accept hypotheses· about1 the population mean 
difference. · Thus 

1% Level 
X ·• 
-=±t 
11m,f 

X . 
.21 = ±3.25 

X = (.21)(±3.25) 
X= ±.68 

5% Level 

~ = ±t 
tT.,., 

X 
-.21 = ±2.26 

X = (.21)(±2.26) 

X= ±.47 

Any hypothesis that the population mean difference is 
. within·.the limits .53 to 1.47 would have to be accepted as 
tenable. On the other hand, any hypothesis that the popu~ 
lation mean difference is as larg~ as 1.47 or larger and as 
small as .53 or smaller would be· considered untenable at 
the 5 per cent level. At the 1 per cent level the fiducial 
limits ~ould be, of course, .32 and 1.68. Observe that in 
this instance also, we do not know what the population mean 
difference is, and that we cannot make any satisfactory 
statement of probability about . its value. We are only 
confident, at a defined lev~l, that it does not equal or exceed, 
in either direction, the fi4uciru limits.6 

d. Another method for . computing the standard error • 
. The method of evaluation 1us_t described is for testing the 
significance of the difference between means of samples 
where mei:nbers of one sample have· bee:ri paire~ against the 
members of the second saniple; as· in the experiment de
scribed. :~~ The method would· apply also when we give the 

1same group a pre- and an end-test designed to measure the 
'same factor, or it :we have observations on the same variable 
'for the same group before and after some intervening experi
,inental situation.:; .. Under any of these conditions, we might, 
if we so desired, work directly with the differences between 
pairs in finding the standard error of the mean difference. 

' In this connection, the student should reread the section of the previous 
· , chapter concerning "errors of the firs~ s.nd second kinds." 
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Another method whicl;t might 00 used, however, would be 
to compute the correlation coefficient between the pairs of 
measurements and then to apply the following formula 

·where 

.· v :1 2 2 v .. 11 =. . u"':t + 11"':1 - r 12 11"'1 11"'2 . (48) 

u .. " =the standard error of the mean difference 
u.,

1 
=the standard error of the mean o~ one group· .. 

o-"'2 = the standard error of the mean of the second 
group 

r u. = the correlation coefficient between the parrs of 
. measurements on the experimental variable. (the ·_ 

variable on which we are comparing the di.fference 
between the means) ~ 

We have all the necessary data in Table 34 to use formula 
(48). Substituting we find 

cr,..
11 

= V(.4.7)2 + (.4.7)2
- (2)(.90)(.47)(.4.7) .. 

= V' .4418 - .3971) 
= v:o«2 
= .21 

which is the same value that we 'obtained by working di· 
rectly with the differences betwe~n pairs. In ·evaluating 
the t based upon formula (48) w~·would again have 9 degrees 
of freedom available or N -·1, where N is the number of 
pairs.6 The application of formula (48), however, is more 
laborious than· working directly with the differences. In 
addition to finding the correlation coefficient1 we. must com- . 

• GuUCord (38) suggests that the number of degrees of freedom in thiS in
stance would be equal to N - 2 where N is the number of pe.irs. If this were 
the case1 however, then the evaiuation of t based upon the difference formula 
(45) ana that based upon the correlation formula. (46) might differ significantly 
in critical cases, despite the fact that the two formulas would lead to equivalent 
standard errors. , 

Professor Helen M. Walker, in a personal communication, bas explained the 
rationale for using N ... 1 with both. formulas: "One arrives at the value of 
N - 1 (where fl is the number of pairs) by either of two legitimate courses of 
reasoning: (1) We may think of the N differences rut mewmrements on a 
random sample of N cases restricted only by the fact that deviations are 
measured from the BB.mple mean, (2) We may think ~f the 2N cases rut pre-
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pute the standard deviations of the scores for each group 
and the standard error of the means. The difference formula 
takes the correlation element into consideration and simplifies 
the work involved. That is why it is preferred. 

S. EXPERIMENTS INVOLVING MATCHED GROUPS .. 
Sometimes in an experiment another method of matching 

groups is used. We do not pair off the individuals in one 
group with the individuals in the other, but arrange our two 
groups so that the means, standard deviations, and dis
tributions of the two groups are comparable on some vari
able, without· regard to individuals as such. The bssis on 
which we match the groups may be preliminary practice or . 
performance on the variable on which we intend to measure 
final outcomes in the experiment; or it may be on the basis 
of some other variable which we have reason to believe will 
be correlated ·with the variable on which we are going to 
measure, outcomes. The reason for matching our groups 
on the basis of a variable which will be correlated with the 
experimental variable is that the standard error of the differ
ence will be reduced it the two are positively correlated. 
The formula for the st~mdard error of the mean difference is 
as follows:7 

' where 

u~~ = V{u,..~ + Um
2 )(1 - T~) 

.. sl s2 
(49) 

a-.,d""' the standard error of the mean difference 
· u.. ""' the standard error of the mean for one group on 

·- .,_ the X variable on which we are testing the dif
ference •. 

~nting an analysis of variance problem, in which the total number of degrees 
<Jf freedom is divided as follows: 

Among pairs N - 1 
Between groups . . 1 
Interaction N - 1 

Total 2N -1 
The N - 1 degrees of freedom among pairs are the same N - 1 obtained. in 

. -considering this as a sample of N pairs" (97). This second line of reas_onmg 
is phr!U!e<i in terms of "analysis of variance," a technique which you will en-
eounter later in Chapters 10 and 11. · 

'See Wilks (99) and McNemar (68). 
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fT.· = the standard error of the mean for the second. 
; group on the X .variable · _ · 

rS¥ ::.. the correlation coefficient between the X variable, 
on which we are testing the difference and the Y 
variable on which the groups were equated. The 
r is based upon the total N, that is, the N of the 
combined samples. 

The difference between the means is then divided by 
the standard error to arrive at t • . The number of de
grees of freedom available for evaluating ' t when the two 
groups have been matched on -only one variable . is equal . 

~to N1 + N.- 3 (96).8 . 

S. EXPERIMENTS INVOLVING INDEPENDENT ' 
GROUPS 

If we have two groups in which the subjects are .not 
matched or paked upon any basis so that them is no reason 
to believe the means of the samples are correlated, 11 then 
the formula for the standard or of the me~ difference 
becomes 

t" 
(50) t 

1 It is po!!Sible, of eo , c e groups upon more than OJ;le variable. 
Pt-ofes50r Walker (96) pointe out that if "r is a. multiple correlation of :e against 
k other traits, there would be (N1 - 1) + (Nt - 1) - k = N 1 + N 1 - (k + 2) 
degrees of freedom. Where r is a. correlation of zero order, of COUI'8e this be
comes N1 + N,- 3." 

Whether much is to be gained, statistically, from the use of several variables 
for matching purposes, however, has been questioned by McNemar, who 
makes the point that " the efficacy of using additional controls is somewhat 
limited by the well-known fact that the increase in the multiple correlation 
coefficient resulting from adding more variables is usually slow. That this 
phenomenon of diminishing returns, a.esociated with the problem of multiple . 
correlation should be operative here has probably not been suspected by ex
perimentalists" (68, p. 357}. · 

• The correlation between means of pain of samples is, of course, unk~ 
since we ordinarily have but one pair of means and a correlation coefficient 
cannot be computed for one pair of observations. Fortunately, the correl~~r
tion between means can be estimated by the correlation between the two ll8ta 
of individual measurements in the two samples. It is th!l. latter coefficieni 
which we ~ve used in the standard error formula. · . 
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To illustrate the application of formula (50) let us suppose 
that we are testing the differenc~ between the means of a 

· ·random sample of Democrats and a random sample of 
Republicans on an attitude test~ The essential data are 

TABLE 35.-81JliKARY OP ATTITUDII TEST DATA. I'OR 50 
' DEMOCRATS AND 50 REPUBLICANS 

Number of cases •....•••..•.• 
Mean of distribution ........ . 
Standard deviation ......... . 
Standard en'Or of mea.n •...••. 

' 

50 
8.7 

' 1.4 
.2 

5() 
6.2 
2.1 
.a 

"given..in Table 35. Substituting the necessary values, we 
obtain· 

·,." = -\/(.2)' + (.3)2 = v'.04 + .09 = ~ = .36 

: t = M1 - Mt = 8.7 - 6.2 = 2.5 = 6 9 . . , .. ., .36 .36 . 

When formula (50) is nsed to compute the standard error 
of the mean difference, the number of degrees of freedom 
available for evaluating t becomes (N1 - 1) + (N. - 1), or 
N1 + N, - 2. According to Table C, for 98 degrees of 
freedom a t of 2.63 is significant at the 1 per cent level. . Our 
observed t of 6.9 is, therefore, highly significant according 
to the standards agreed upon. Can we make any inference 
concerning the limits within which the population mean 
difference may lie? We may determine the fiducial limits 
of the parameter at the 1 per cent level in the same manner 
as before. Thus 1 

I% Level 
_!__ = ±t 
u ... 

X 
.36 = ±2.63 

:z: = {.36)(±:2.63) 
X= ±.95 
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We may irifer, then, at the 1 per cent level of confidence, 
that the population mean difference is within the limits 1.55 
and 3.45. · 

.f.. THE ADVANTAGES OF PAIRING OBSERVATIONS. 

For the experiment cited earlier on the influence of atti- . 
tudes toward conditions of work as a factor influencing out
put, let us find the standard error of the mean difference, 
assuming no correlation, and see what happens to both the 
standard error of the mean difference and the test of. sig..._ 
nifi.cance bn.sed upon it. Substituting in formula (50), we 
get 

cr .. 
41 

= v' (.47)3 + (.47)3 = VA418' = .66 

Note that this value (.66) is-larger than the value (.21) we 
· obtained by use of the proper formula which takes the 
correlation into consideration. Computing the t ratio, -we 
find that our observed mean difference divided by the stand
ard error of the difference is now 1/.66 or 1.52. This value 
oft would not meet the requirements of significance nigard ... 
less of the number of degrees of freedom available. 

The degrees of freedom for evaluating this tare, however, 1 

greater than in the case where we dealt with pairs. Taking 
cognizance of the pairing or the correlation, the number of 
degrees of freedom is the number of pairs minus 1 or, in this 
experiment, 9. For 9 degrees of freedom, t must be at least 
2.26 to be significant ~ the 5 per cent level. When we have 
not paired our subjects, then the number of degrees of free
dom is the number of subjects in one group m.inllit 1, plus 
the number of subjects in the second group minus 1 or, in 
this experiment, 18. For 18 degrees of freedom- a t of 2.10 
is significant at the 5 per cent level. · We can now see that 
in order for a statistical Rdvantage to result from pairing or · 
matching when we are dealing with two groups of 10 cases 
each, assuming the mean difference remains the same, the 
reduction in the standard error must be at least enough to 
raise t from 2.10 to 2.26. · · 
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· If we had matched our groups and the resulting correla
tion coefficient had not been large,,to take the extreme case, 
.zero, then the standard error of the difference would not 
have been reduced at all, thus , 

tTm4 = '\(u .. ~ +cr.,.: - 2ru crm1 cr"'l = V cr.,.~+ cr.,.: - 0 

1~ effect then, oUr experiment would really•have lost in 
precision because we would have only 9 degrees of freedom 

. for evaluating the obtained t instead of 18, and the greater 
the number of degrees of freedom we have available, the 
smaller the required value of t to be significant at the 5 or 

· the 1 per cent level. On the other hand, if we had matched 
- our groups so well that the correlation coefficient had been 

quite high, then the standard error of the difference would 
· have been reduced sufficiently to offset the loss in degrees of 
freedom. 

In the present experiment, if we had not taken the correla
tion element into consideration, we could not have rejected 
the null hypothesis. But let us hasten to emphasize that 
this would only mean that the value of t computed offered 
no basis for rejecting the null hypothesis and that this is 
entirely different from concluding that the population mean 
difference must, therefore, be zero. You must keep clearly 

. ill mind the nature of the hypothesis that is tested and also 
the nature of the inference it is possible to make upon the 
hasis of the test of significance. 

o. TESTING THE SIGNIFICANCE OF A PROPORTION 

·We can apply the t test to observed sample proportions 
or per cents also, in order to determine whether these statis

. tics depart· significantly from some given hypothesis about 
the population parameters. Suppose that in a poll of 
student opinion we found that a sample of 100 was divided 
65 to 35, with 65 individuals favoring the 1issue on which 
they were polled and 35 opposing the issue. What is the 
null hypothesis applied to this problem? We might assume 
that there is no difference between the number favoring 
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and the number disapproving, ie., that the division in the 
population is 50: 50. Assuming this hypothesis tO be true, 
we can then find the standard error of the proportion by 

formula (44), where u. = J~. Thus if the hypothesis we 

set up is true, the standard error of the proportion would be J (-~~5) or ~05. To tra.ru:late this into the standard error 

of a per cent we need only multiply by 100 to get 5 per cent. 
Our observed sample departs from the hypothetical value 
we set by 15 per cent. This is the difference which we 

- divide by the standard error of the hypothetical per cent to 
_ .. :find t. Carrying through our computations, we find t is 

equal to 15/5 or 3. According to Table C., a t of 2.63 is 
required at the 1 per cent level of confidence and our value 
of 3 is, therefore, very significant. We may reject the 
hypothesis of evenly divided opinion which we set up as the 
population division and infer that a majority does favor the 
issue. . 

We shall see later that the chi~quare test of significance 
is particularly useful in dealing with problems 8uch as the 
one just described. In order to apply the standard error 
formulas for proportions and per cents, the data must first. 
be translated into porportions or per cents, whereas the chi
square test enables us to work directly with the data in their 
original form. 

6. TESTING THE SIGNIFICANCE OF r 

When N is large and the population value of the correla
tion coefficient is not excessively high, then the standard 
error of r is given by the following formula: 

1- j'l 
tTr = 

v'N-1 
{51) 

where ;: == the population value of the correlation coefficient 
N = the number of pairs of observationS · 



186 The t Test of Significance 

Since the population value of the correlation coefficient is· 
unknown, it has been the practice of some investigators to 
substitute the sample value of r for r in the formula. The 
standard error of· r thu8 derived has then been given an 
interpretation similar to that which we have given other 
Btandard errors. This practice, however, is not recom
mended. The reason is that the sampling distribution of r 
is normal only under the conditions stated above: when N 
is large and when the populatiott correlation is not very high. 
·. The sampling distribution of r based upon a small number 
of observations drawn from a population having an absolute 
value .of r of .80, for example, is markedly skew. One 
reason for this is that we have placed a limitation on one 
end of the sampling distribution. . If the population r is 
.80, then samples coUld vary from 1.00 to - 1.00, but they 
could exceed the population value by not more than .20 at 
one end of the distribution, whereas in the opposite direction 
they could deviate by as much as 1.80 from the value. 

If, however, the number of pairs in the samples upon 
which the r's are based were increased to, let us say, 300 
pairs, then the restriction of unity at one end of the scale 
would no longer be an important determining factor in the 
·sampling distribution. Samples of 300 pairs of observa
tions, even when the population r is 'as high as .80, :Would 
not tend to ·range more than .05 on each side of the popula
tion value (86, pp. 131-132). · But if the population value 
were .96 or higher, then the restriction would again be a 
factor to consider. 

Even when the population r is zero, however, the sampling 
distribution of r for small samples departs from the normal 
form.10 Figure 14 shows the curves for samples of 8 pairs 

10 Fisher (25) has introduced a transformation of r into another statistic 
which is known as z (not to be confused with the z mentioned earlier), the dis
tribution of which approximates the normal distribution and which remains 
nearly constant in form despite changes in the population parameter. He has 
also developed a formula for the standard error of z which permits the testing 
of any hypothesis concerning the population value or which may be used to 
test the difference between two r's obtained from independent samples. A 
table-has been prepared by Lindquist (64) which facilitates the computation of 
z for a given value of r. These sources should be consulted for testing hy
potheses of the nature just described. 



. Testing fk. Signijica:nce of r 187 
. . 

of observationS which were drawn from a population where 
· the correlation was zero and from a population where the 
correlation was .80. 

a. The direct computation of t. The' ·hypothesis which 
we are probably most interested in testing, onee we have 
·obtained a given value of r, is the hypothesis that the true, 

-100 •.80 . •.60 •.40 -.20 .00 

FJ<J, 14.-Bampliog distribution of correlation coefficients for sa.mples of eight 
pairs drawn from two populations having the indicated values of r. (Repro-

duced b)' permission from Fig. 7.4 in (88) with slight modifications.) · 

i.e., the population, r equals zero. If we set up this hy
pothesis for testing, assuming that our sample value is the 
result of sampling variation or chance, then the formula for 
tis . 

where r =the observed sample value of the correlat ion 
coefficient · · 

N = the number of pairs of observations in the 
sample 

(52) . 
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· According to Fisher (25), the t calculated from formula 
(52) iS distributed in accordance with the tabled values of 
t for degrees of freedom equal to N - 2. In other words, 
once we have obtained the value of t from the formula above, 
'we may enter Table C, page 330, with degrees of freedom 
equal to the numbCJ" of pa.irsof observations minus 2, to deter~ 
mine whether the obtained value is significant at the 5 or 
1 per cent levels. Let us suppose, for example, that we 
obtained an r of .60 with 11 pairs of meMurements. Su~ 
stitut.ing in formula (52) we get 

e = ( v-1 ~~.60)2)<vu ~ 2> 

= ( v~:~)cV9> 
~ (.fi0)(3) 

.80 

= 2.25 

Entering Table C with 9 degrees of freedom, we find that 
.& t of 2.26 is required in order for us to reject the hypothesis 

· tested at the 5 per· cent level of confidence. Our obtained 
-value of 2.25 is, therefore, not qUite significant and, if we 
:abide by the standards we have agreed upon, we would have 
t'o conclude that the hypothesis ·that the population r is 
zero is tenable. · 

}l. The use of Table D.. There is a much simpler method 
for finding out whether an observedvalue of r is sufficiently 

.large to cause us to reject the hypothesis of zero correlation. 
Table D, page 331, gives the values of r which would be 
·needed to meet the requirements of significance at the 5 
and the 1 per cent levels for samples of various sizes. Table 
D is entered with degrees of freedom equal to N - 2, where 
N is the number of pairs. If we enter Table D with the 
9 degrees of freedom available from the example described 
previously, we find that our r would need to be .602 to be 

I 
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significant at the 5 per cent leveL Our sample value of .60 
is just slightly below the value required for· significance. 
This is precisely the same conclusion we arrived at by using 

· formula (52) and entering Table C to evaluate the obtained 
value of t. Obviously, the use of Table D is an easier method 

· for testing the significance of an obtained r. 
It should be evident from TableD that small r's may be 

significant when they are based on a laxge number of pairs 
of observations, whereas largevalues of r may not be sig
nificant when based on a. small number of observations. 
An r of .55 based upon 10 pairs of observations, for example, 
may be expected to occur quite frequently as a result of 

~ sampling variation, even when there is no conelation in the 
population from which the sample was drawn. The larger 
the value of N, on the other hand, then the less the 'value of 
the observed sample r need be in order to consider the 
hypothesis of zero conelation untenable. 

THE t TEST OF SIGNIFICANCE 
Example@-:Watson {98) haS reported the following data con

cerning the performance of eighth-grade and tenth-grade students 
on a test of musical meanings. Is the difference between the 
means significant? 

GROUP N MEAN 
STANDARD 

DEVIATION 

Eighth-gra.de students .•........ 20() 90.76 19.32 
Tenth-grade students .••...•...• 200 99.32 18.36 

_..., 
Exampl~following measurements have been made on i 

an experimental variable for individuals who have been matched 
on some criterion prior to the experiment proper. 

M..LTCHED PA.IBS ol!' S=crs 

A 10 5 6 7 10 6 I 7 1.~ 6' s· 
B 7 3 5 7 8 4 5 3 2 

-
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(a) Assuming that the groups are independent, test the differ· 
ence between the means. 
· (b) Taking cognizance of the fact that the measurements 

have been paired, test the difference between the means. Does 
the new value oft change the conclusions you might have drawn 
from the~st of significance in (a)? 
Exampl 3. Klineberg (54) has reported the mean scores of 

children in veral Europe~ cities on a performance test of ability. 
Do these means difier significantly? To facilitate computations, 
assume that the sums of squares have been divided by N- 1 in 
computing the standard deviations. · 

. Pari• . -~ . ·fi-_: Hamburg ....•• , . . . . . . 10() 
Rome................ . 100 

MEAN 

219.0 
216.4 
211.8 

46.2 
45.6 
42.6 

Example 4:.~In a sample of 100 college students, 63 answered 
"yes" to the question: Would you make use of the library facilities 
if the building were open on Sunday afternoons? Do you have 
any confidence in the hypothesis that opinion is really evenly 
divided pn the question? 

· Example 5.--Qut of 200 adults polled, 110 announced· that they 
approved of "singing commercials" on the radio. Only 90 dis
approved of "singing commercials." Is the hypothesis of evenly 
divided opinion tenable? 

Example 6.~A random sample of 50 students showed that 35 of 
them were going to vote for Candidate A in a student election and 
15 were going to vote for Candidate B. Are you confident that 

' Candidate A will win the election? 

Example 7.~In &awing a sample of 30 balls from a ballot box 
containing both black and white balls, a student obtained 22 black 
balls and 8 white. Is the hypothesis that the box contains an 

· equal number of black and white balls tenable? 

Example 8.-From another box containing white and black balls, 
the same student drew a sample of 50 and found 32 white and 18 
black balls. · Is the hypothesis that the box contains an equal 
number of black and white balls tenable? 

' 
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Exa.nlple 9.-An investigator reports an r. of .88 for 10 pairs of 
measurements. Is the hypothesis that the population r is zero 
tenable? 

Example 10.-Would a value of r of .33 for 10 pairs of measure-. 
ments cause you to reject the null hypothesis? Why? 

Example 11.-What value of r would you want to obtain before 
abandoning the null hypothesis for a sample of 50 pairs of 
measurements? · · · 

Example 12.-An investigator reports anT of .25 for a series of 
paired observations. · · 

(a) How large would his sample have to be before you would 
be willing to reject the null hypothesis? 

(b) What if he had reported an r of .55? 
' 

Example 13.-Lewis and Franklin (60) found that "task
C:riented" subjects recalled a total of 118 interrupted and com
pleted tasks at the end of an experimental session. The total was 
divided as follows: 75 interrupted tasks recalled and 43 completed 
tasks recalled. · Someone proposes the hypothesis that this is just 
the result of sampling variation; that actually interrupted tasks 
are not recalled any more frequently than completed tasks. 
Could you offer -any evidence to the contrary? 



CHAPTER 10 

ANALYSIS OF VARIANCE: INDEPENDENT 
GROUPS 

The test of significance, t, developed in the last chapter is 
. adequate for any experiment which involves only two groups 
and consequently a test of a single mean difference. But 
suppose that we had an experimental design involving three 
variables, for example, the performance of three groups, A, 
B, and C, under three differing sets of conditions. We 

' could ·still use t to evaluate the differences between the 
means, by comparing A and B, B and C, and A and C. Thic:; 
seems a relatively simple procedure and it is, as long :S 

. there are not too many groups in our experiment. But if 
we had five groups, the number· of comparisons we would 
have to make would be 10. And if we had ten groups, then 
the number of comparisons would be 45.1 -And we would 

·have no assurance before going through all of the calcula
tions involved that any single mean difference would be 
significant. Obviously, if we had some method.of testing 
differences among all of the means at the same time, it would 
prove very valuable. . Analysis of vari~nce, and the corre
sponding test of significance, F, permits us to do just this. 

t. NATURE OF ANALYSIS OF VARIANCE 
Analysis of variance, as the name indicates, deals with 

variances rather thap. with standard deviations and standard 
errors. The variance of a sample, you may recall, is the 

stand~d deviation squared or ~;
2

, and the estimate of the 

population variance is N ~~
2 

1 
. The rationale of anal~sis of 

1 ~ ula. ,.. nl h ais 2 · lifi . t n (n - 1) 
The .orm ""• = (n _ r) l(r)! w en r equ , srmp es o 2 • 

' . 192 
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~ariance is that the tot~ sum of squares of a set of measure-· 
ments composed of several groups can be analyzed or broken 
down into specific parts, each part identifiable with a given 
source of variation. In the simplest case, the total sum of 
squares is broken down into two parts, a sum of squares based 
upon variation within the several groups and a sum of squares . 
based upon variation between the group means. Then from 
these two sums of squares, independent . estimates of the 
population variance are computed. On the assumption 
that the groups making up the total series of measurements · 
are random samples from a homogeneous populatiqn, the 
two estimates of the population variance may be expected 
to differ only within the limits of chance fluctuations. This 
is the null hypothesis and it is tested by dividing the larger 
variance by the smaller variance to get the_ratio of the vari
ances. · The 5 per cent and 1 per cent points of the variance 
ratio, which has been designated as F, have been tabled by 
Snedecor (86) and are reproduced in Table E, page 332. H 
the value of F exceeds the value at the level of significance 
agreed upon, then the null hypothesis-namely that there is 
no difference among the popul~tions from which·the samples 
have been drawn-is considered untenable. H we reject 
the null hypothesis, the populations from which the sampleS 
have been drawn may differ in terms of either means or 
variances or both. H the variances are approximately the 
same, then it is the means which differ. Since we are ordi
narily concerned with differences in means, it is fortunate 
that, while possible, it is "unlikely in experimental data, 
that it is the variances which differ" (86, p. 188).• 

This basically, then, is analysis of variance. Our first 
step will be to show that the total sum of squares for a series 
of measurements composed of several groups can be analyzed 

1 Just as the agricultural and biological data Snedecor bas in mind may at 
times prove to be exceptions to this general principle, so may educational and 
~ychological data. E. E. Cureton, for example, in a personal coromunica.
tiOn. reports t~at he bas found such an exception in an analysis of test scores 
of people a.t different salary levels in certain occupations. · · CJ, also Lindquist 
(64, p. 99). ' .. 



194 Analysis of Variance: Independent Groups 

into the two parts mentioned, one, part associated with 
variation within groups and the other with variation between 
group means. Let us take the data of Table 36. Assume 

TABLE 36.-BcoREs (X) AN1i SQuAREs oF ScoREs (XI} 
ON AN AcHIEVEMENT TEsT FOR SUBJECTS TAuGHT 

BY THE LECTURE AND THE PROJECT METHODS 

LECTURE GROUP PROJECT GROuP 

X ' x• X XI 

7 49 2 4: 
I 

10. 
' 

100 2 4 
10 100 ·a 9 
11 121 7 49 
12 144 6 36 

l: 50 514 20 102 

that· the values given are scores on an achievement tesli ror a 
group taught by the lecture method and another group 
taught by the project method.3 

a. The total sum of squares. We first determine the total 
sum of squares by combining the scores of the two groups 
and treating them as one set of measurements. We could 
find ,the mean, which is 7, of the, combined distribution, 

• subtract this value from each of the scores, square the devia
tions and sum, to get the total sum of squares. Since the 
scores are rather small and few. in number, however we shall 
apply the formula for the sum of squares, using the measures 
as they stand. Thus 

(~X)2 
2:x• = 2':X2 - ---w-

= 616- (70)2 
10 

- • It is possible to make use of coding techniques before computing the various 
sums of squares needed in analysis of variance. The same coding constants. 
however, should be applied to every measure in the combined series. If this 
is done, then no corrections for coding are necessary. 
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= _ 616 -
4•;go 

= 616-490 
'= 126 

' ' 

"195 

b. The sum of squares within groups. Now let us find 
the sum of squares within each group. That is, considering 
each group separately, we find the mean of eac~ group and 
the sum of squared deviations within each group from its 
own mean. Again we shall use the formula for the scores 
as they stand. 

Lecture Group 

(~X1)t 
T-x12 = ~X12 --- • n1 

= 514 - (S~)2 

-514-2,500 
- 5 

= 514 - 500 
= 14 

. Project Group 

"I-Xt2 = T-X22 - (~X2)2 
nt 

= 102- (20)2 
5 

== 102-400' 
5 

= 102-80 
= 22--

The sum of these two sums of squares (14 + 22 = 36) .is 
called the sum of squares within groups. It obviously does 
not equal the total sum of squares (126). The reason is 
that for the total sum of ~quares the deviations were taken . 
from the mean of the combined groups which was 7, whereas 
the sum of squares for the lecture group was computed from 
its own mean of 10, and the sum of squares for the project 
group was computed from its own mean, which was 4. If 
the means of the two groups had been equal, then the sum 
of squares computed within the lecture group plus the s~ ' 
of squares computed within the project group would have 
equaled the total sum of squares. · 

·c. The sum of squares between groups. Since the two 
means differ we may compute a second sum of squares based 
upon the variation of the ~oup means. We·find the mean 
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of the total which is 7 and the deviaJ:ion of each of the group 
means from this value. We shalllet.d represent the deviation 
of a group mean from the mean of the total. Then ~ = 
(M1- M)1 and~= (Jf1- .31)1. But since each of these 

, ~quared deviations is based upon 5 cases, each one must be 
weighted or multiplied by n, the number of subjects in each 
·group, in order to put them on a per individual measure 

· basis: Thus the sum of squares based upon variation of 
group means of T groups will be equal to 

n1df + ~ + nstlf + ... + n.d: {53) 

In the case at hand we have only two means, each based 
upon 5 cases. The deviation of the lecture mean from the 
total mean is 3, and the deviation of the project mean from 
the total is -3. Thus the sum of squares is 

{5){3)1 + {5){ -3)1 = {5)(9) + {5)(9) = 90 

The sum of squares between means (90) plus the sum of 
· . squares within groups (36) is now equal to the total sum of 

squares (126). 
d. Generalized formula for T groups. In symbolic form, 

for the case at hand, we may now write 

~ = {2:xf + 2:xD + {thdf + ntdD {54) 
' . 
where 'Zzl =the total sum of sqUares for the combined dis-

. tn"butions · 
"Zxf + 2:~ = the sum of squares "within groups 

n1df + ~ = the sum of squares between group means 

Now,· if we recall that the sum of squares for any given 
set of measurements can be stated in terms of N a-2, since 

• = ~ by definition 

squaring both sides 

multiplying both sides by N 

then we may- ge~~ralize formula (54) for more than two 
I 
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groups and at the same· time put it into an easily ~emem
bered form. We merely· substitute the appropriate symbols, 
ncr2, for the corresponding sums of squares within groups. 
Thus, if we haver groups 

~x2 = (n1uj + ~~ + nat?a + · · · + n,t?,) t 
(n1di +~~ + nadi + ... + n,dr) (55) 

where · ~x2 = the· total sum of squares based upon deviations 
· from the mean of the combined measurements 

n = the number of cases within a given group 
u = the standard deviation of a. given group . · 

' d = the deviation of a. given group mean from the 
mean of the entire distribution 

Thus from formula (55) above we see that the totai sum 
of squares is equal to 

~x2 = ~nu2 + ~nd,2 (56) 

where ~x2 = the total sum of squares 
~nu2 .;, the sum of squares within groups 
~nd,2 = the sum of squares between group means 

Formulas (55) and (56) make apparent what we have said 
before: That the total sum of squares can be analyzed into 
two parts: the 2;ncr2 which is called the sum of squares within 
groups, and the 2;nd2 which is called the sum of squares 
between group means. Each of these sums of squares when 
divided by the appropriate number of degrees of freedom 
provides an independent estimate of the population variance. 
The number of degrees of freedom for the total sum of 
squares, we have already seen, is equal to N - 1 where N 
is the total number of cases in the combined groups. The 
number of degrees of freedom within each group is equal to 
n - 1 where n is the number of' cases within each group •. 
But since we have two groups, in this instance, the number 
of degrees of freedom is equal to r (n - 1), where r is the 
number of groups. The number of degrees of freedom 
between groups is equal tor - 1, where r equals the number . 
-<>£groups. We may see these relations in Table 37. 
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TABLE 37.-ANALYsrs oP VARIANCE OP A~IEVEMENT ScoREs oP GROUPs 
TAuGHT BY THE LECTURE AND THE PROJEcr METHoos 

SoUBCE oP V ABlATION sln.i op sQuABEs df EsTIMATE OJ' VARIANCE 

Between groups ..•..... 90 1 90 
Within groups ..••...... 36 8 4.5 

Total ..... · ......... 126 9 . 
Degrees of Freedom 

. Between groups ................. r- 1 
Within groups ..................• r(n - 1) or N - r 

· Total ••••••••••••••••••• : ••• m - 1 or N - 1 

e. The variance ratio. F, as you recall, is the ratio of the 
two estimates of the population variance, or · · 

F ;,.. larger variance 
smaller variance 

(57) 

ln the present instance F is equal to 90/4.5 or 20. To 
determine whether this F is significant at the 5 per cent or 
1 per cent level, we enter the column of Table E (page 332) 
with the degrees of freedom of the larger variance ( df = 1) 
and follow down to the row entry corresponding to the 
degrees of freedom of the smaller variance (df = 8). The 
values of F at the 5 per cent point are given in lightface 
type; the boldface type is the value "at the 1 per cent point 
These values for df = 1 and =8 are 5.32 at the 5 per cent 
level and 11.26 at the 1 per cent level. Our value of F, 
which is 20, is therefore highly significant, since 11.26 is 
the value of F ·which would be exceeded only 1 per cent of 
the time as a result-of sampling variation if the null hy
pothesis were true. 

Now since (i) the mean for the lecture group is higher than 
that for the project group, and since (ii) the difference be
tween the means (between-groups variance) leads to a 
larger estim~te of the population variance (is greater than 
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the within-groups variance) in (iii) a reliable fashion (the 
F ratio exceeds the 1 per cent level), therefore, (iv) we 
may be quite confident that the difference in achievement 
between the group taught ·by the lecture method and the 
group taught by the project method is indicative of a real , 
difference, or, in other words, that achievement is reliably 
greater under the lecture method of instruction. 

e. A COMPARISON OF F AND t IN THE CASE OF TWO 
GROUPS . . . 

You may ask whether w~ could not have obtained a similar 
test of the null hypothesis by th~ method described in the 
last chapter. The answer would/be "Yes," and the results 
obtained with the t test woul~d .be identical with those we 
arrive at oy means of the F test But consider first another 
method of findin~he ~tanda'r error of the mean and the 
standard error of the ~e~~ ~ efence. 

You rna '!;,e-c~hat \ve ~ th~ the population standard 

cleviatio rnA~ , esti::;;::~:'\ the sample standar? 
deviat'on b ~ -\~an '\ ther~ore, the pop'ulatio~ vari-

aybeestl1 :.x'· 

2 N (};x~( ~ \~ 2:x
2 

• • 2 N - 1 u N _ 1 = N) N _ = N _ 1' m which case u,. = -r 
But if we J;tave more t an · ne group we may co~bine our 
data to arr~'C._e at anothe estimate of the population variance 
on the assum~tion that ur two samples are random samples 
from the sam populat on, or from populations• having a 
common stand d devi tion as well as a common mean.4 
We arrive at our sf te by pooling the sums of squares 

'The assumption that the populations are normally distributed is als~· in~ 
volved. Tippett points out, however, that experience seems to indicate that 
"the tests are not very sensitive to moderate departure~~ from nonnality nor 
to small differences in standard deviations" (90, p. 115). See also the ~ 
cussion in Chapter 14, pp. 295-299. 
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computed within each of the groups along with the associa
ated degrees of freedom. Thus for two groups 

.r = l:,xJ + };~ l:,xJ + };~ (58) 
- (N1 - 1) + (N, - 1) - . N 1 + N, - 2 

;l:,xJ + };~ l:,xJ + };~ 
2 = N1 + Nt. - 2 and _ cr 2 N1 + Nt. - 2 (Sg) 

cr.l Nl ~ Nz 
·' l:,xJ + };~ l:,xJ + };~ 

crll = NI + N, - 2 + NI + Nt. - 2 (60) 
... · N1 · Na 

Since the numerators of the two values in (60) are the same, 
we rewrl,te the formula for the standard error of the difference 
_squ_ared. as 

~: = ( l:,xJ + };~ ) ( 1 + _!_ \ (61) 
.. N1 + Nt. - 2 \.N1 N;} 

. If we have the same number of subjects in each group, 
then the standard error of each sample will be the same, and 
formula (61} may be simplified to 

. cr. = /r-C2)--::(--::l::-n.xJ--:-+-=l:rl--..--2 .,--) (~1:--:-_\ (62) 
.. "'J N1+Nz-2 N;} 

Thus the standard error of the mean difference for the 
lecture group and the project group could be found directly 
from the sum of squares within each group, without first 
finding the standard deviations and the standard errors of 
the means. We merely need to substitute in formula (61) 
or formula (62) and get . 

I>· ,--c---=u-+-=-=-22 -) (-1) 
cr ... =; '\}2 5 + 5 - 2 5 

=~\3:)G) 
=~\!~) 
== Vf.8 

1.34 
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The difference between the means is 6, and t would be 
equal to 6/1.34 or 4.48. The number of degrees of freedom 
is (N1 - 1) + (N2 - 1), or 8, and for 8 degrees of freedom 
a t of 3.355 would be significant at the 1 per cent level. We 
would consider the null hypothesis, that there is no difference 
between the means, as untenable and reach, therefore, the 
very same conclusion that we reached by means of the F 
·test. As a matter of fact, when only· two groups are in
volved, F is equal to t2• That is to say, t which is 4.48 
(rounded), when squared is 20 (rounded), which is the value 
of F we obtained. Thus you can see that there is no advan
tage in usi.itg F rather than t when testing the difference · 
between only two means. It is only when we have a number 
of groups and consequently a number of means involved 
that F can be used to advantage. F provides us with an 
over-all test of significance among a number of different 
means. If F meets the level of significance we have adopted, 
we may then make specific comparisons with the t test. 

What if the value of F which is obtained fails to be sig
nificant? May we then use the t test to test the differences 
between the pairs of means? Let us suppose· that we haq 
10 sample means and found that F was not significant at 
the 5 per cent level. Now let us suppose that we tested, 
by means of t, the difference between the largest and the 
smallest mean in the group of 10. The value of t thus 
obtained may greatly exceed the tabled value at the 5 or 
the 1 per cent points. Could we conclude that the F test 
and the t test are inconsistent: that the former shows :no 
significant differences, yet the latter does? When we ex
amine the hypothesis tested by the t test we see the fallacy 
involved in this comparison. The hypothesis tested by t 
is that the two sample means have been drawn at random 
from the same population. We have selected the largest 
and the smallest for the comparison. The difference we 
are comparing is but 1 out of 45 possible comparisons which 
might be made.6 Fisher (26), although war?ing that com-

5 Determined by the formula for combinations, n(n ..:. 1)/2. 
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parisons suggested after the data are in are open to suspicion, 
proposes that under these circumstances instead of demand
ing that the probability be 1 in 20 (5 per cent level) that 
it be lin (45)(20) = 1 in 900. In other words, t, in this 
particular example, .would have to be equal to a value that 
could be expected to occur as a result of sampling variation 
but 1 time in 900 rather than 1 time in 20. Fisher contends, 

. however, that it would be better to regard such unforeseen 
. comparisons "only_ as suggestions for future experimentation, 
in which they c.an be deliberately tested'' (26, p. 57). 

9.' THE COMPARISON OF THREE GROUPS 

Let us now introduce a third group, taught. by the dis
cussion method, into our experiment. The scores on the 
achievement test for this group are given in Table 38, where, 

TABLE 38 . ...:..SCORES (X) AND SQUARES OF SCORES (X'l ON AN ACHIEVEMENT 
' · TEsT FOR SUBJECTS TAUGHT BY THE LECTURE, DISCUSSION, 

AND PRoJECT METHODS 

LECTURE GROUP DISCUSSION GROUP PRoJECT GRouP 

X xs X xs X }(t 

7. 49 4 16 2 4 
10 100 6 36 . 2 4 
10 100 7 '49 3 9 
11 121 9 81 7 49 
12 144 9 81 6 36 

2: 50 514. 35 263 20 102 
I 

for the sake of comparison and easy examination, we repeat 
the scores of the other two groups. 

a. The total sum of squares. The total sum of squares
we are dealing now with all of the groups combined-could 
be found by finding the mean of the total distribution and 
subtracting this value from each of the 15 scores and squar-
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ing the resulting deviations. We shall, however~ use the 
following formula for treating the measures as they stand 

(l;X)I 
l:z' = l:X' - ---w-

= 879 -. (1~)2 

= 879"- 11,025 
... 15 

= 879 - 735 
= 144 

b. The sum of squares between groups. To find the sum 
of squares between group meaD8 we must first find the mean 

of the entire distribution.· This will be equal to""};;. . Thus 

M = 50 + 35 + 20 ;::::; 105 = 7 . 15 . 15 . 

We then si.btract 7 from each of the group means to get d, 
square each of these deviations, and weight e_ach squared 
deviation by n, the number of cases within each group. 
Thus 

l;7!J:l2 = nx tlf. + 7'1.2 di + na df 
= (5) {3)2 + (5) (0)' + (5) ( -3)1 

= 45+0+45 
= 90 

Another method which is convenient for finding the sum 
of squares between groups is to work directly with the sum 
of scores for each group. If we square the sum of scores for 
each group and divide each of these values by the number 
of cases on which the sum is based, then we need· only to 
apply a correction term for origin to get the sum of squares. 
Thus 

l:nd' = (~Xx)' + (l;X2)2 + (~Xs)2 + •·, + (~Xr)1 
_ (~X)1 

(63) 
nx nt na n,.. • N 
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where 
~niP== the sum of. squares between groups 

. ~X., ~Xz, ~XJ, ~Xr =the sum of scores or measurements for 
each of the r groups 

n1, nz, na, nr == the corresponding number of ca.Ses in 
(~X)1 the v~ous groups . 
--zr- = the correction term for origin or the total 

sum of scores for all of the groups, 
squared, and divided by the total N. 

Substituting in formula (63), we may obtain the sum of 
squares between means for the case at hand. Thus 

~~ = (50)1 + (35)2 + (20)1 
- (105)2 

. 5 5 5 i5. 
2,500 + 1,225 + 400 11,025 

= 5 -15" 
. = 4,125 - 735 

5 
=825-735. 

== 90 

which is the same value that we obtained by the other 
method of computation. Note also that the "correction 

te~,,; ~:>
2

, is the sam~ ~orrection for origin that is 1lsed 

to find the total sum of squares. 
c. The sum of squares within groups. We still have to 

obtain the sum of squares within groups. This we do by 
adding the sum of squares computed for each of the three 
groups when considered separately. We already have the 
sum of squares for the lecture and the project groups and 
we can find the sum of squares for the discussion group in 
the customary fashion. Thus 

~x~ = ~x: - (~X.)I 
a na 

= 263 -' (3:)2 
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. = 263 _1,~5 

= 263-245 

= 18 

205 

The· sum of squares within groups is thus equal to 14 + 
18 + 22 or 54. This is a good place to point out that the 
direct computation of the sum of squares within groups is 
not necessary. We have merely done so up to this point 
in order to illustrltte the source of this sum of squares. 

' Actually, if our other computations are correct, the sllm of 
squares within groups can be ·obtained by subtraction .. The 
reason for this is that the sum of squares within groups 
plus the sum of squares between groups must equal the total 
sum of squares. Consequently, if we have the sum of 
squares between groups, we can subtract this value from the 
total sum of squares in order to get the sum of squares 
within groups. , For example, · the total sum of squares is 
equal to 144, and between groups the sum of squares is 90, . 
and 144 - 90 equals 54 or the sum of squares within groups. 

d. The variance ratio. The results of our various com
putations are summarized in Table 39, where the two in.;, • 

TABLE 39.-ANALYSIS oP VARIANCE OP AcHIEVEMENT ScoRES oP GROUPS 
TAUGHT BY THE LECTURE, DISCUSSION, AND PROJECT METHODS · 

SoURCE OP V AIUATION SUM OP SQUARES df EsTIMATE OP V AIUANCE 

Between groups ••.• , •.. 90 2 45 
Within groups ••• , ...•.. 54 12 4.5 

. 
Total .............. 144 14 

. 

Degrees of Freedom 

Between groups •.•...••••• ,, •••. . r- 1 · ' 
Within groups .................. • r(n- 1) or N ...... r 

Total .•..•..•.....•........• m - 1 or N - 1 
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dep~ndent estimates of the population variance have been 
made by dividing the sum of squares between groups and 
the sum of squares within groups by the appropriate degrees 
of freedom. F is the larger variance divided by the smaller 

variance or :.: = 10. '\y' e enter the column of Table E 

(page 332) · with the 2 degrees of freedom of the larger vari
ance and run down the ·column until we come to the row 

·. entry corresponding to the 12 degrees of freedom of the 
smaller variance; The value of F at the 1 per cent point 
is 6.93. If the null hypothesis, that the groups are random 
samples from the same population, is true, ~hen values of F 
as large1 as 6.93 or larger would be expected to occur as a 
result of samppng variation less than 1 per cent of the time. 
Since our obtained value of F, 10, greatly exceeds the 1 per 
cent point, we may reject the null. hypothesis with a great 
deal of confidence. Consequently, we may infer that the · 
differences in achievement between the three groups taught 
by different 'methods of instruction are indicative of real 
differences. · 

We should note that the F test, although permitting us to 
infer that there are significant differences between the 
groups, does not specify that each group differs significantly 

'from each of the others. It may be that only the difference 
. between the lecture group (M = 10) and the project group 
(M = 4) is significant and that the discussion group (M = 7) 
does not differ significantly from either the lecture or the 
project group. The F test is an over-all test, as we have 
pointed out before. To determine whether any particular 
meari differe:p.ce is significant or not, we wo-uld need to test 
the null hypothesis applied to the mean difference by the t 
test. 

We summarize the computations needed for a simple case 
·of analysis of variance in Table 40. The necessary formulas 
and methods of determining the appropriate degrees of 
freedom are included also for convenient reference. 
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TABLE 40.-8UMJUBY Ol' CoMPUTATIONS IN ANALYSIS OJ' V AB.IANCE roB r: 
GROUPS WITH n !NDEPENDENT SUBJECTS IN ·EACH GROlJ'P--TOTAL 

SuK ol' SQll'AB.Es ANliYzED INTO Two PaTs · 

·- MEA.SlJ'REMENTS 

. INDIVIDUAL 

Group 1 Group 2 Group 3 Groupr 
' 

' 
a x. x. x. x ... 

1!:. 4. - .. 
b x .. X\ X\ X,"-
c x. x •. x. X, . . • • • • . -·-. •· 

'· . x ... x. x. n. .. .. 
Sum of columns .... IX1 ~x. IX1 . 
Computations: _ . . . 

-1. Total sum of scores = ~x. + l:X, + l:Xa + .. , + ~X. 
2. Correction f~r origin = (x~s 

«. Total sum of squares = I:X1 - (z:~• 

4. Sum of squares between groups 
(IX.)1 + (I:Xt)1 + (I:Xa)1 + ... + (I:X,)• (I:X)I = n. ---w-

5. Sum of squares within groups = Total - Between g11_>UPB 

Degrees of freedom: 
1. Between groups = ,. - 1 
2. Within groups= t'(n- 1) or N- r 
3, Total = rn - 1 or N - 1 

~. A MORE COMPLEX ANALYSIS 
' 

. 
. --. 

X, .. 
IX, 

Let us now· consider a somewhat more complicated appli-'· 
cation of analysis of variance. Suppose that we wished to 
study simultaneously the interaction of two or more vari
ables, each varying in several ways. Specific2lly,_ we !night_ 
be interested iri the differential effects of three methods of ·. 
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instruction (the lecture method, the discussion method, and 
the project method) upon three different types of achieve
ment as measured by three different but comparable tests 
(a test of factual information, a test. of understanding of 
general principles, and a test of ability to make applications). 
The questions which we might be interested in answering 
b_y experiment might be these: which of the three methods 
of instruction will result in the greatest over-all achieve-

. ment, that is to say, on the combined. tests? Will achieve
ment be greater in the area of facts, applications, or princi
ple.S? · Is achievement in each area independent of method 
of instruction or will achievement in the various areas be 
dependent upon the type of instruction? 
· For purposes of illustration, let us assume that we have 

45 subjects and that each subject is assigned at random to 
one of the nine experimental conditions of Table 41. 

TABLE 41.-EXPERIMENTAL DESIGN I'OR STUDYING THE INFLUENCE OF 
THRJli: DIFFERENT METHODS OF INSTRUCTION UPON TlmEE 

DIFFERENT KINDS 01' ACHIEVEMENT 

METHOD 01' lNBTRUcriON • TYPE OF 
TOTAL 

AcHIEVEMENT 
Lecture Discussion Project 

Facts ........ a b c (a+ b +c) 
Principles .... tl e I. (d +e +f) 
Applications .. g h l (g+h+i) 

Total .... (a+ d +g) (b + e +h) (c +I+ i) (a+ b + c + d + 
e+f+g+h+i) 

With tlie border totals alone, we would have three com
parisons to make- for achievement and three comparisons to 
make for methods of instruction. If we compared every 
cell in the table, i.e., every experimental condition with 
every other experimental condition, we would have 36 ad
ditional comparisons to make. Since we do not know 
whether .any of these differences are significant or not, we 
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shall make over-all comparisons first by means of the F test. 
We may then make the specific comparisons if F is signifi
cant. The results of the outcomes on the. various achieve-

. TABLE 42.-8CORES ON THREE DIFFERENT MEASURES OF ACHIEVEMENT 
FOR GROUPS TAUGHT BY THREE DIFFERENT METHODS OF INSTRUCTION 

METHOD SUM AND TYPE OF 
ACHIEVEMENT IND. MEAN FOR 

Lecture Discussion Project ACHIEVEMENT 
I' 

1 7 4 
.. 

2 
2 10 6 2 
3 10 7 3 

Facts. 4 11 9 7 
5 12 9 6 

l': 50 35 20 105 
I 

Mean 10 7 4 7 

1 6 10 5 
2 5 10 4 
3 8 11 7 

Principles 4 9 11 8 -5 12 13 11 

l': 40 55 35 130 
Mean 8. 11 7 8.67 " 

1 3 4 7 
2 3 6 9 
3 4 7 9 

A:Pplications 4 8 8 10 
.5 7 10 10 

l': 25 35 45 105 
Mean 5 1 9 7 

Sum for Method •••••••. 115 125 100 340 
Mean for Method ••••.. 7.67 8.33 6.67 7.56 

ment tests for each subject are given in Table 42, We 
proceed with the calculation of the sums of !!Jquares in the 
manner already familiar. · · 



210 Analysis of Variance: Independent Groups 

Sum of squares: 

1. Total = (7)2 + (10)2 + (10)2 + ~ ~ . + (10)2 - (3:~)2 

= 2,938 - 2,568.89 
= 369.11 

. (50)2 (40)2 (45)2 (340)2 
2. Between groups_= - 5- + - 5- + .. ~ + T -~ 

= 2,770- 2,568.89 
= 201.11 

3. Within groups = Total - Between groups 
= 369.11 - 201.11 
.=f' 168 

• 
Before analyzing further the sum of squares between 

groups,· let us test for the significance of the differences 
between groups (cells). Table 43 summarizes the data. 

TABLE 43.-ANALYSIS OF vARIANCE OF SCORES ON THREE DIFFERENT 
MEASURES OF ACHIEVEMENT FOR GROUPS TAUGHT BY THREE 

DIFFERENT METHODS OF INSTRUCTION 

SoURCE OF VARIATION SUM OF SQUARES df EsTIMATE OF VARIANCE 

Between groups .•...•.. 201.11 8 25.14 
Within groups .•••...... 168.00 36 4.67 

' Total .•. , .......... 369.11 44 

. Degrees of freedom 
'· Between groups .••............... r- 1 

Within groups ....••........•.•• • r(n- 1) or N- r 
Total .•.•.••...•.••.••. ,: •.• m- 1 or N- 1 

I 
F is equal to the larger variance divided by the smaller vari-

ance or 25·14 = 5.38.·_ We enter the column of the table of 
4.67 ,. 

F with the 8 degrees of freedom of the larger variance and 
find the row entry corresponding to the 36 degrees of free-· 
dom of the smaller variance and find that an F of 3.04 will 
be significant at the 1 per cent level. According to the 
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standards agreed upon, our obtained· F of 5.38 is highly · 
significant. We find the null hypothesis untenable, since 
if there were no differences in the populations the divergence 
between our eistimates of the variance would occur as a 
result of sampling variation less than 1 per cent of the time. 
Hence we infer that the observed differences between. our 
groups are not the result of chance. . - . 

But the information we have at the present time is not 
entirely satisfactory. We are pretty confident that there 

· are differences between the nine experimental groups, but 
what about~ differences in type of achievement? And are 

. the methods of instruction equally effective as far as total· 
.... achievement is concerned? Or is one method more effective 

with one type of achievement while another method of 
instruction is more effective with another kind of achieve
ment? Let us analyze the sum of squares between groups 
to see if we can get any additional information which would 
assist us in answering these questions. · 

We may compute a sum of squares for achievement, by 
squaring the sum of scores for each type of achievement, 
dividing each of . ~hese values by the number. of cases on 
which it is based, and then subtracting the correction term 
for origin. In a similar manner we may compute a sum of 
squares for methods by squaring the sum of scores for each. 
method, dividing each of these squares by the number of 
cases on which the sum is based, and then subtracting the 
~orrection term for origin. Th'lis · 

'$um of squares: 

1 A hi t - (105)2 + (130)2 + (105)' (340)2 
• c evemen - 15 15 '15 - 4S 

= 2,596.67 - 2,568.89 
= 27.78 

2 Methods = (1::)' + <1;:)2 + (1~~)2 
- (3!~)1 

=·2,590 - 2,568.89 . 
= 21.11 
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The sum of these two sums of squares (27.78 + 21.11} 
which is equal to 48.89 does not equal the sum of squares 
between groups; we have a remainder or residual. We 
shall call this residual the sum of squares for interaction. 
It is found by subtraction. Thus 

3.· Interaction= Between groups- (Methods+ Achievement) 
;,.. 201.11- {21.11 + 27.78) 
=~152.22 

Let us see what we have accomplished. First we analyzed 
the total sum of squares into two· parts, one part associated 
with variation between each of the cells or groups of Table 
42, the 'second part associated with variation within each 
of the groups. We then proceeded to ~alyze further the 
sum of squares between groups. One part can be traced 
to variation between methods of instruction, · another to 
variation between types of achlevement. The third, or 
remainder; is called interaction, since it is the result of the 
joint effect of a particular niethQd of instruction and a 
particular kind of achievement. 

We summarize the results of our analysis in Table 44, 
showing what has happened to the total sum of squares 
and how the total number of degrees of freedom has been 
partitioned. Note that we have 9 experimental groups 
with 5 subjects in each group. Consequently, we have 4 
degrees of freedom within each of these groups or (9)(4) = 
36 degrees of freedom within groups. In the previous 
analysis we had 8 degrees of freedom available for the sum 
of squares based upon differences between the 9 experi
mental groups. This made up our total of 44 degrees of 
freedom (N- 1). But we have further analyzed the sum 
of squares between groups into an achievement sum of 
squares, a methods sum of squares, and a residual or inter
action sum of squares. And the 8 degrees of freedom must 
also be divided among these sums of squares. . The methods 
sum of squares and the achievement sum of squares are 
based upon 3 groups each' and consequently each of these .. 
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sums of squares will have 2 degrees of freedom. Thus, if 
2 of the 8 degrees of freedom are allotted to methods and 
2 to achievement, then we have a remainder of 4 degrees of 
freedom for the residual or interaction sum of squares. The 
degrees of freedom for interaction may also be obtained by 
multiplying the number of degrees of freedom allotted to 
methods by the number of degrees of freedom allotted to 
achievement as shown in Table 44. - · · 

TABLE «.-FuRTHER AtU.LYSIS oF VARIANCE oF ScoREs oN THRE:m 
DIFFERENT MEASURES OF ACHIEVEIIIENT FOR GROUPS TAUGHT 

BY THR~E DIFFERENT METHODS OF INSTRUCTION 

SoURCE OF V ABlATION SUM OF SQUARES df ESTIMATE OF VARIANCE 

Type of achievement .••• 27.78 2 13.89 
Method of instruction ••• 21.11 2 10.56 
Interaction ...•••••••••• 152.22 4 38.06 
Within groups •••••••••• 168.00 36 4.67 

Total ••••••• : •••••• 369.11 44 

Degrees of Freedom* 
Achievement groups .•••.•••••. • r A.- 1 
Method groups ••••••••••••••• . rilL- 1 
Interaction .•.••••••••••••••••• (r A. - 1)(rliL ..;... 1) 
Within groups •••••••••••• , ••• . r.,.(n- 1) or N- rr 

Total ..••.•••.••••.•..... • r.,.n- 1 or N -1. 
• rr = the total number of experimental groups or 9 

r A. = the number of achievement groups or 3 
'I'M = the number of methods groups or 3 
n = the number of subjects in each group or 5 

If we divide the achievement, method, and interaction 
estimates of the population variance by the variance within 
groups, we get the following values ofF: 

Achievement: 13.89 = 2 97 Fat 1% point for df 2 and 
4.67 . 36 = 5.25 

Method: 10.56 = 2 26 F at 1% point for df 2 and 
4.67 . 36 = 5.25 . 

Interaction: 38.06 = 8 15 F at 1% point for df 4 and 
4.67 . 36 = 3.89 
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Each of the above values of F must be evaluated according 
to the number of degrees of freedom involved in computing 
it. For achievement and method of instruction _the degrees 
of freedom are the same, 2 and 36, but for interaction we 
have 4 and 36 degrees of freedom. The values of F at the 
1 per cent point·listed above were found by entering the 
column of Table E with the degrees of freedom of the larger 
variance and finding the row entry corresponding to the 
degrees of freedom for the smaller yariance. The F ratios 
for achievement and method of instruction fail to meet the 
value of .Fat the 5 per cent level (3.26) also. Consequently, 
if we abide by our standards, we must regard the null hy
pothesiS as tenable in each of these cases. 

What conclusions can we now draw from the analysis? 
The failure of the F ratio for methods to meet the require
ments of significance indicates that differences in total 
achievement of groups taught by different methods of in
struction are not significant. Likewise we find that the F 
ratio for achievement is not significant, and hence we cannot 
say that our subjects tend to learn facts better than principles 
or applications. It is the highly significant F ratio for 
interaction that is of primary interest. How· may we 
interpret this? 

The interaction variance, as we have said before, is a 
product of the joint effect of method of instruction and type 
of· achievement. The fact that it is significant indicates 
that the effectiveness of a particular method of instruction 
depends upon the kind of achievement we are interested in 
measuring. One method of instruction is, in other words, 
more effective with 'one kind of achievement than with 
another. Note that again the F test does not tell us spe
cifically' which method is most effective with which kind of 
achievement. To complete our analysis we should now 
proceed to try the t test with the various specific comparisons. 
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ANALYSIS OF VARIANCE: INDEPENDENT GROUPS 

~p"!~e following data consist of measurements of out
oomes of a riment involving a "control" group and an "ex
perimental" group. The two groups were not matched in any 

. manner. . . 
Control group .................. 9 10 20 14 18 . 5 8 11 12 13 
~en~group ............. 21 19 18 13 15 20 22 25 17 10 

(a) Test the difference between the means, using the pooled 
sum of squares in computing the standard error of the mean 

~~pute ; for the same ~ . 

Example 2.~llowiag a&f;a e~ ef BBomjJies &wected 
't:Qm the ~epulatioa we Mea Ml'liel' to stvdy -the samp~Hlg diih 
*rihnl.jon i>F " ne Assume that each value represents a. score 
made by an individual assigned at random to one of five different 
experimental groups. 

I II II~ IV v 
18 T ~ ·~ ~ 
65 
60 ~ li7 
liO 2 

(a) Find the total sum of squares, the sum of squares between 
means, and the sum of squares within groups. W8zlt the dati&: 

-tMeagll fil:iit witb acrt\1&1 daviati.olwe9A''i. A the null hypothesis 
.tenable~ s1 s:J:t.. . 

.,J,!tlf Code the scores by subtracting 60 from each one. Does 
this influence the values for the sums of squares? Is the yaiue 

~
~)cha.ged~t\u. ~ ~~~~ 

. ASsume that we are inte\ested in studying differ
ences in re 1on between groups which have been presented with 
material by different methods. we are also interested in studying 
the relative effectiveness of the method of presentation, a8 far as 
retention is concerned, at three different age levels. We have 
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30 subjects at each age leveL Within each age level subjects have 
been assigned at random to one of the three methods groups. 
The hypothetical outcomes of our experiment are listed below. 

METHODS 
AGB GBOUPS 

I II m 

- 8 9 5 
5 4 3 
6 8 7 
8 ' 4 5 

I 9 3 3 
10 6 1 
9 7 5 
7 6 4 
8 7 3 

10 6 4 

6 6 9 
1 5 8 
1· 9 9 
6 7 11 

n 5 5 8 
4 6 11 
3 6 10 
6 5 7 
4 4 8 
4 7 9 

I 
7 

I 
7 5 

3 5 9 
6 ·s 8 
2 5 7 

m 3 5 7 
5 .8 8 
3 6 6 
3 6. 8 
4 -··· 6 5 
4 4 7 

I 

Find the total sum' of squares, the sum of squares within groups, 
'the sum of squares between methods groups, the sum of squares 
between age groups, and the sum of squares attributed to inter
action. Make the various tests of significance and interpret your 
results. 



CHAPTER 11 

ANALYSIS OF VARIANCE: MATCHED GROUPS 

You may recall that when we discussed the t test applied 
to groups that had been matched 'or in which the individuals 
had been paired, we were forced to modify the simple formula 
for the standard error of the mean difference to take into 
account th¢ correlation.. In the case of analysis of variance, 
where groups have been matched or individuals have been 

' paired on some basis, we must do something very similar. 
AB our illustration of the procedure to be followed we shall 
use the case of two matched groups, from the data of Table 
34 in Chapter 9. Although we would not ordinarily use ,F 
to evaluate a single mean difference, this example will serve 
as an introduction to analysis of variance applied to several 
matched groups. 

Group A, you recall, worked under the suggestion that 
noise facilitated performance, and Group B worked under the 
suggestion that noise resulted in a decrease in output. Indi
viduals in the two groups had been matched on the basis of 
earlier performance. We found that the value of t, when 
we failed to take cognizance of the fact that the subjects 
had been paired, was only 1.52, or not significant at the 
5 per cent level of confidence. On the other hand, when we 
took the pairing into consideration, we obtained a value of 
t equal to 4.76, a highly significant value. In the former 
case, we would have had to accept the null hypothesis as 
tenable, whereas, with the proper evaluation of the mean 
difference, the null hypothesis was rejected. The proper 
evaluation of the mean difference, in other words, determined 
the conclusion we could draw from our experiment. 

We shall now see that if we were to apply the met}:10ds of 
analysis of variance described in the last ·(lhapter to this 
same set of data, we would find. that F is ·not significant, 

217 
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but is equal to the nonSignificant value of t2• That is, the 
F ratio obtained by dividing the estimate of the population 
variance derived from the sum of squares between the two 
groups by the estimate ·of the. population variance based 
upon- the sum of squares within groups should be equal to 
(1.52)2• On the other hand, if we analyze the total sum of 
squares in the manner to be described in this chapter 7 the 
F ratio will be significant and equal to the significant value 

· of t2 or (4.76)2• · 

1. ANALYSIS OF VARIANCE OF TWO MATCHED 
GRO,UPS 

The necessary data are giyen in Table 45. We could, 
if we so desired, work with deviations from the actual means 
of the distributionS. Since the scores have been coded by 
subtraction and are . small in size, we shall work directly 

TABLE 45.-coMPUTATION oF SUM OF SQUARES BASED UPON MEANS OF 
PAIRS AND SUM OF SQUARES BASED UPON MEANS OF GROUPS 

(1) (2) (3) {4) . (5} (6) (7) 

PAIR GROUP GROUP SUM MEAN OF (M, -M,) (/l fUll A B PAIR . d 

. 
1 2 1 3 1.5 -2.0 4.00 8.00 
2 5 5 10 5.0. 1.5 2.25 4.50 
3 4 2 6 3.0 - .5 .25 .50 
4 3 3 6 3.0 -.5 .25 .50 
5 6 4 10 5.0 1.5 2.25 4.50 
6 3 2 5 2.5 -1.0 1.00 2.00 
7 6 5 11 . 5.5 2.0 4.00 8.00 
8 4 3, 7 3.5 .0 .00 .00 
9 5 4 9 4.5 1.0 1.00 2.00 

10 2 1 3 1.5 -2.0 4.00 8.00 

l: 40 30 70 . .. ..... ........... ......... 38.00 

Group 
Mean 4.0 3.0 3.5 

d .5 -.5 
(/l .25 .25 

fUll 2.50 2.50 

' 
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with them as they stand, merely applying a correction term 
for origin. 

Sum of squares: 
1. Total = {2)2 + (5)2 + (4)2 + ... + {1)2_.._ <;~z 

= 290 ~ 4·:go 
= 290...,. 245 
= 45 

(40)2 (30)2 (70)2 

2. Betwee~ gr?ups = 10 +To - 20 
1,600 + 900 4,900 

= 10 -20 
= 2,500 - 245 . 

10 
= 250-245 
=5 

3. Within = Total - Between groups 
= 45-5 
= 40 

We see from Table 46, where the results of our computa
tions have been summarized, that using the methods of the 

TABLE 46.-.A.N.A.LYsrs oP VARIANCE OF ScoREs OP GROUP A AND GROUP B 
INTO Two pARTS 

SouRCE OP VARIATION Suu OP SQUARES df EBTIMATI!I OP V AB.IANCE 

Between groups ...•.•.. 5 1 5 
Within groups ......••.. 40 18 2.22 

Total .............. 45 19 

Degrees of Freedom 
Between groups ......•.......•... r- 1 
Within groups ........•..••••.•.. r(n- 1) or N- r 

Total .........••••...•.•.... m - 1 or N - 1 
F = larger variance = _!__ = 2 25 . • 

smaller variance 2.22 · 
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last ·chapter, analyzing the total sum of squares into only 
two parts, results in an F of 2.25. · This value, as a result 
of errors of rounding, is not quite equal to (1.52) 2, the value 
of t2 obtained by ignoring the correlation. 

Note in Table 45 that if one member of a pair, assigned 
to one of the experimental groups, tends to have a high 
score; the corresponding member in the second group also 

. tends to have a high score (r = .90). We anticipated that 
the previous level of performance of our subjects might be 
a factor influencing their performance ·under the experi-

. mental conditions and we attempted to control this. variable 
by pairing the individuals in the two groups on the basis of 
their previous performance. In analyzing the total sum 
of squares into two parts, however, we have included all of 
the variation due to this factor in the within-groups sum of 
squares. A.B. a result the value of F which we derived was 
underestimated in the same manner that t was under
estimated when we failed to take into account the matching. 
We should take cognizance of this matching by calculating 
a sum of squares based upon differences between pairs which 
may then be subtracted from the within-groups sum of 
squares. 

Since the scores in Table 45 may be classified by rows 
(pairs) as well as by columns (groups), the sum of squares 
between pairs may be computed in the sam,e manner that we 
use to find the sum of squares between groups. We could 
find the sum of each pair and divide by 2 to find the mean 
of each pair. We could then subtract the mean of all 20 
scores from each of the means for pairs, square the devia
tions, weight each 'squared deviation by multiplying by 2, 

· the number of cases on which it is based, and then sum. 
This would give us a sum of squares based upon the varia
tion of the means of pairs and the procedure we have used 
in computing it is simply the application of formula (53). 
The computations are clearly indicated in Table 45. 

A simpler method for finding the sum of squares between 
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pairs, however, would be to work with the sum of scores for 
each pair and apply formula (63). Thus 

. {3)2 (10)2 {6)2 . {3)2 {70)2 

Between pail'S = 2+-2-+:-r+ ··· +2-20 

.. 

9 + 100 + 36 + ... + 9 4,900 • 
= 2 -20 
= 566 - 245 

2. 

= 283-245 
= 38 

The number of degrees of freedom for this sum of squares iS 
equal to the number of pairs ~nus 1. . 

If we now subtract the sum of squares between pairs from 
the sum of squares within groups, we are left with a re
mainder, or the residual BUm of squares. Thus 

Residual = Within groups .....:. Between pairs 
=40-38 
=2 

This residual sum of squares is based upon variation remain
ing in the data that cannot be accounted for in tei'II:l8 of 
variation of the column means (between groups) and the· 
row means (between pairs).· Note that if we add the sum 
of squares between groups and the sum of squares between 
pairs ar i then subtract this value from the total sum of 
squares, we are left with the residual sum of squares. Thus 

Residual = Total - (Between groups + Between pairs) 
= 45 - (5 + 38) ' 
= 45 ;_ 43 
==2 

from which you may see that it would not have been neces
sary to calculate the within-groups sum of squares in order to 
find the residual sum of squares. This sum of squares is 
always found most easily, as shown above,:by subtraction. 

It is possible to calculate the residual sum of squares 
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directly, that is, by working lrith deviations rather than by 
subtraction, but this involves additional work. The residual 
sum of squares, as Snedecor (86) has pointed out, may be 
thought of as the result of the differences between a set of 
expected values and the actual observed values. 
- If we subtract 3.5, the mean of all of the scores, from each 

group mean and from the mean of each pair, we may repre
sent these deviations by d. The expected value for each 
subject then becomes the mean of all the scores (3.5) plus 
the deviation of the mean of the group and the mean of the 
pair of which he is a member. The deviation of the mean 
of Group A -. + .5, and the deviation of the mean of Group 
B = - .5. The deviation of the mean of the first pair = 
- 2.00, the deViation of the mean of the second pair = + 1.5, 
the deviation of the mean of the third pair= - .5, and_so 
on. The expected value for the first subject in the A group 
is thus equal to 3.5 + .5 - 2.0 = 2. For the second sub
ject in the A group, the expected value is equal to 3.5 + 
.5 + 1.5 = 5.5. The expected values for the other subjects 
in the A group are found in the same manner. For the first 
subject in Group B, the expected value is equal to 3.5 - .5 
- 2.0 = 1.00. For the second subject in Group B, the 
expected · value is 3.5 - .5 + 1.5 = 4.5. In a similar 
manner, the expected values for the other subjects are 
found and have been entered in Table 47. · 

If we now take the difference between each of the observed 
scores and the corresponding expected values, square these 
differences, and sum them, we would get 

(2.0 - 2.0)2 + (5.0 - 5.5)1 + ... + (1.0 - 1.0)2 = 2.00 

which is the residual sum of squares. You will probably 
never want to use this method of calculation, however, since 

_ the residual sum of squares can be found so easily by sub
traction. 

The residual sum of squares, when divided by the appro
priate number of degrees of freedom, provides u.s lrith an 
estimate of , the population variance. The number of 
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TABLE 47.-QBsERVED AND ExPECTED ScoREs FOR SUBJECTS IN GROUP A 
AND IN GROUP B ARRANGED. TO ILLUSTRATE THE DIRECT Cou:- · 

PUTATION OF THE RESIDUAL SuM: OF SQUARES 

GROUP A GaouP B 

PAIR Suu: MEAN d 

Observed Expected Observed Expected 
j 

-----;-
1 2.0 2.0 .. 1.0 1.0 3 1.5 -2.0 
2 5.0 5.5 5.0 4.5 10 5.0 . 1.5. 
3 4.0 3.5 2.0 2.5 6 3.0 - .5 
4 '3.0 3.5 3.0 2.5 6 3.0 - .5 
5 6.0 5.5 4.0 4.5 10 5.0 1.5 
6 3.0 3.0 2.0 2.0 5 2.5 -1.0 
7 6.0 6.0 5.0 5.0 11 5.5 2.0 
8 4.0 4.0 3.0 3.0 7 3.5 .0 
9 5.0 5.0 4.0 4.0 9 4.5 1.0 

10 2.0 2.0 1.0 1.0 3 1.5 -2.0 

l: 40.0 ......... 30.0 ......... 70 
j Mean 4.0 ......... 3.0 ········· ....... 3.5 

d .5 . ......... -.5 . .. ;. ..... 

degrees of freedom for this sum of squares is equal to (r - 1) 
(n - 1) where r is the number of matched groups and n 
equals the number of cases in each group.1 In the present 
problem, then, the number of degrees of freedom is equal to 
(2 - 1)(10 - 1) or 9. The residual sum of squares, when 
divided by 9, the number of degrees of freedom, gives 
the estimate of the population variance which we use in the 
denominator of the formula for the F ratio to test the 
between-groups variance.2 

The results of our computations are summarized in Table 
1 The number of degrees of freedom can also be obtained by subtraction 

from the total or from the number allotted to within groups. Thus the 
n.umber of degrees of freedom for the residual sum of squares is 

and also 

dj.., =Total- (Between groups+ Between pairs) 
= 19- (1 + 9) 
=9 

df- =Within groups- Between pairs 
= 18-9 . 
=9 

1 On the basis of the assumptions noted in Chapter 10. 
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48. Let us see what we have accomplished. In this analysis 
the total sum of squares has been' broken down into three 
parts with accompanying degrees of freedom. The variation 
between group means was, of course, our major interest. 
We wanted to know whether the difference was significant 
~r not in mean performance score between a group working 
under _the suggestion that noise was a hindrance and a 

·TABLE '48.-ANALYBIS OJ' VARIANCE OJ' ScoRES oF GROUP A .um GROuP B 
. INTOTHBEEPARTS 

Sou.BCE OJ' V A.BIATION SUII OJ' SQuAREs df EsTIKATE OJ' VARIANCE . 
Between groups .•.•.... 5 1 5 
Between pairs .•••...... 38 9 4.22 
Resid~Ull •.••......•.... 2 9 .22 

Total .• ~ ........... 45 19 

Degrees of Freedom 
Between groups .••............... r - 1 
Between pairs .•................. n - 1 
Residual .........•••............ (r - 1)(n - 1) 
. Total ........•••.••••.•..... rn - 1 or N - 1 

group working under the suggestion that noise facilitated 
performance. But we also realized that the performance of 
our subjects under the experimental conditions might be 
related to performance prior to the experiment proper. We 
took this into account by pairing our subjects on the basis 
of previous performance and then "eliminating" the sum of 
squares attributable to this source of variation from the 
within-groups sum of squares. That is to say, the vari
ation of the means of the groups and the means of the pairs 
ha8 been taken into account and the residual variance is 
based upon whatever variation remains in the data. 

The value of F which we obtain, using the residual vari
ance in the denominator and the variance between groups 
in the numerator, is now equal to 22.73. This value corre-
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sponds, within errors of rounding, to the value of t2, (4.76)2, 

which we obtained when we took cognizance of the fact that 
the groups had been matched. Entering the' column of 
Table E with the 1 degree of freedom corresponding to the 
variance estimated from the between-groups sum of squares 
and running down to the row entry for the 9 degrees of 
freedom of the residual .variance, we find that F need be 
only 10.56 to be significant at the 1 per cent level. Since 
the value we have obtained is 22.52, we would reject the null 
hypothesis. and infer that the difference between the two 
groups could not be the result of sampling variation.3 

S. ANALYSIS OF VARIANCE OF SEVERAL MATCHED 
GROUPS 

We are now ready to extend the method of analysis just 
described to the case of several matched groups. Let· us 
suppose that . we are interested in the effectiveness upon 
attitudes of various methods of presentation of propaganda 
material. We might, for example, be concerned with 
whether the same piece of propaganda presented by radiq, 
by a face-to-face speech, by reading, and so forth, would be 
equally effective in modifying attitudes. Let us ·suppose 
that we have five different methods of presentation and 
that we have available twenty-five subjects, or five for each 
of the experimental groups. We could, of course, merely 
assign the subjects at random to one of the five experimental 
groups, but suppose that the degree of change in attitude 
as a result of the propaganda is related to the intensity of 
the attitude one has before being subjected to the propa
ganda. It is questionable as to whether an individual who. 
has a very intense attitude, either positive or negative, will 
be influenced as much as an individual who has a relatively 
neutral attitude. If there is correlation between attitude 
prior to the experiment and attitude after being ·subjected 

1 We could make a test of significance between pairs alsot if we were interested. 
The F ratio, in this instance, would become the variance oetween pairs divided 
by the residual variance. · 
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to the propaganda material, then we should take this into 
consideration in assigning our subjects to the various experi
mental groups. If we can control this factor, then we can 
reduce the sum of squares within groups as we did in the 
case of the two matched groups discussed previously. 

If we have available scores on the attitude test for the 
twenty-five subjects prior to the experiment, then we may 

. use these as .a basis for equating our groups. We first 
divide our twenty-five subjects into five groups of five 
subjects, ea~h, assigning to each of the five groups subjects 
with approximately the same attitude test scores. These 
five groups we shall designate as the "attitude groups." 
To each experimental group we now assign, at random, one 
subject from each attitude group. This scheme will tend 
to balance the experimental groups so that each will have 
individuals with similar "intensities" of attitudes. That is 
to say, we may have some assurance that no one of the experi
mental groups has all of the subjects with high or low atti
tude test scores, but that each group has approximately the 
same range and mean.' 
··The fictitious attitude test scores of the subjects after the 
presentation of the propaganda material are given in Table 
49. If we ignored the fact that our experimental groups 
had been matched, we would proceed with the customary 
analysis of the total sum of squares. We would find the 
part associated with differences between the means of the 
experimental groups (columns) and the part associated with 
differences within the experimental groups. Thus 

. . 

I 
Sum of squares: 

· 1. Total = (8)2 + (7)2 + (6)2 + ~ .. + (8)2 +_ (6)2 .:._ (2~~)
2 

= 1,678 - 1,600 

. = 78 

& That adequate matching would be ~rtually impossi~le wi!h so few S}lb· 
jects and so many groups must be recognized. The expenment IS hypothetical 
and is for purposes of illustration. It. \s the procedure that is important. 
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{33)2 (38)2 (45)2 (200)2 

2. Between groups = 5 + -5- + " · + 5 - ~· 
= 1,620.8.- 1,600 
= 20.8 

3. Within groups = Total - Between groups · 
= 78-20.8 
= 57.2 

TABLE 49.-ATl'ITUDE TEST SCORES OF GROUPS SUBJECTED TO DIFFER!llTT 
METHODS OF PREsENTATION OF PROPAGANDA. INDIVIDUALS IN 

EACH GROUP MATCHED AccoRDING TO INTENSITY OF 
ATTITUDE PRIOR TO .THE PRESENTATION 

ExPERIMENTAL GROUPS 
ATTITUDE SUK MEAN LEVEL 

1 2 3 4 5 

--------. ---
1 8 10 10 11 11 50 10 
2 .7 9 9 10 10 45 9 
.3 6 7 8 9 10 40 8 
4 6 6 7 8 8 35 7 
5 6 6 5 7 6 30 6 --------·- . 

2: 33 38 39 45 45 200 
Mean 6.6 7.6 • 7.8 9 9 ........ 8 

. The results of our computations, which are summarized 
in Table 50, show that F is equal to 1.82. According to 
Table E, the value of F at the 5 per cent level for 4 and 20 
degrees of freedom is 2.87. We must assume, therefore, 
that the F we obtained could easily have resulted from 
sampling variation and that the null hypothesis is tenable. 

In a similar manner we might test the differences between 
attitude levels, that is, between rows. The new sum of 
squares which we would need is 

• (50)2 (45)2 . (30)2 (200)2 
Between rows = - 5- + -5 + . ~ . + T .- 25, 

= 1,650 - 1,600 
=50 
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and the sum of squares within rows may be obtained by 
subtraction. . Thus ' · 

. · Within rows = Total - Between rows 
= 78-50 
·=28 

TABLE 50.-ANALYBIS ol' VABIANCB INTO Two PARTS o'l' A'l'TlTUDB TEar 
ScoRES 0'1' ExPBBIM.ENTAL GROUPS SUBJECTED TO DIFn:m:NT 

METHoDS Ol' PRESENTATION O'l' PROPAGANDA 

SoURCE 01' V ABlATION SUll 0'1' 89UARES df EsTniATB 01' V ABIANCJil 

Between ~ups: ••.•.•• 20.8 4 5.2 
Within groups •.•..•... 57.2 20 2.86 

Total .••••......•. 78 24 

Degrees of Freedom 

Between groups .................• r - 1 
Within groups .......•..... : • .... r(n - 1) or N - r 

Total .•.•......•..•....••••• m -1 orN -1 

. 

F = larger variance = 5.2 ·.;. 1.82 
smaller variance 2.86 

TABLE 51.-AMALYBIS 01' VARIANCJil 01' A'l'TlTUDE TEST ScoRES CI.AssiFnm 
AccoRDING TO Rows o:r TABLB 49 

SoURCE 01' V ABlATION SUK o:r SQuAREs df EsTI¥A.TB 01' V ABIANCJil 

Between rows •.•••••••• 50 . 4 12.5 
Within rows .•••••••••• 28 20 1.4 

Total ••.•• : ••..... 78 24 

Degrees of Freedom 

Between rows ••••••.••••••....•. n - 1 • 
Within rows ...•••.•.•••••••••.•. n(r- 1} or N- a 

Total .••••..•..•...• : .••.•.• nr- J: or N- 1 

[I =larger vana:nce . = 12.5 = 8.93 
smaller vanance 1.4 
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. In Table 51 we have made. the estimates of the population 
variance based upon these computations. F is 8.93, a 
highly significant value. we· expected that it would be if 
our matching of the various. groups were effective and if· 
intensity of attitude prior to the. experiment. were related 
to subsequent scores. 

The sum of squares within groups in this and in the previ
ous analysis, however, includes a source of variatitm which 
we can control. We shall compute the residual sum of 
squares, which will enable us to hold the variation between 
rows constant while testing the columns, and to hold. ·the 

~ columns constant while testing the rows. This new residual 
sum of squares is the same for both rows and columns and .is 
found by subtraction. Thus 

Residual = Total - (Between columns + Between rows) 
= 78 - (20.8 + 50) ' 
= 7.2 

We may now set up Table 52 and test the columns and 
rows, using the new estimate of the population variance 
based upon the residual sum of squares as the denominator 
in the formula for the F ratio. According to Table E, F 

TABLE 52.-ANALYSIB Ol' VARIANCE INTO THREE PARTS Ol' ATTITUDE TEsT 
ScoREs Oil' TABLE 49 

SoURCE OJ' VARIATION SU¥ 01' SQUARES df ESTIMATE OJ' V AIUANCE 

Between columns ••••••. 20.8 4 5.2 
Between rows .••••••••• 50 4 12.5 
Residual ••••.•••••••••• I 7.2 16 .45 

Total •••••••••••••• 78 24 

• Degrees of Freedom 
Between colhmns ................ ,. - 1 
Between rows ................... n - 1 . . 
Residual. ...•••••.•..•.....•..•. (r - 1)(n ·- 1) 

Total .•..•••.•••.••••••••.• • N -1 
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at the 1 per cent level for 4 and 16 degrees of freedom is 
4.77. The F ratio for col~ is' 5.2}.45 = 11.56; hence 
we may infer that the differences between the colUIIlDS 
{methods of presentation) are_indicative of real differences. 
Althouglr we are not primarily inte~ted in the differences 
between rows (attitude levels), we may test these for sig
nificance also. The F ratio for rows is 12.5/.45 := 27.78, 
a highly significant value for 4 and 16 degrees of freedom, 
and we must conclude that the null hypothesis applied to 
rows is not tenable. · • 

Perhaps you are wondering about the similarity between 
the sum.of squares which we have called.the "residual" in 
this chapter and the sum of squares which we called "inter
action" in the last chapter. If so, then you may note that 
without replication, i.e., without more than one subject, 
within each of the "attitude levels" for each of the "experi
mental groups," we cannot evaluate the residual variance 
in the manner in wlich we evaluated the interaction variance 
in the last chapter. You may see this more clearly if you 
examine more closely the design of our experiment in Table 49. 

If we had five subjects instead of one at each of the atti
tude levels for each of the experimental conditions, so that 
we would have twenty-five groups of five subjects each, we 
could take the deviations within each of these groups from 
the mean of the group to get a sum of squares within each 
of the twenty-five groups. The sum of these sums of squares, 
based upon deviations within each group from the group 
mean, would correspond to the' sum of squares within groups 
which we used ill the methods-achievement experiment, 
described in the 13st chapter, to ev~uate the interaction 
variance. The residual variance in the present experiment, 
in other words, could be evaluated only if a number of sub
jects were included in each of the attitude levels for each of 
the experimental groups. 

In Table 53 we have summarized the computations for 
analysis of . variance into. three parts. The necessary 
formulas and methods of determining the number of degrees 
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TABLE 53.-sUIOlABY Ol' CoHPUTATIONS IN ANALYSIS Ol' VARIANCE FOB r 
GROUPS WITH" M~ SUBJECrS IN EACH GROUP-TOTAL. 

Stll[ Oli' SQUARES .ANALYZED INTO THREE pARTS 

. 
MEASUREMENTS lr . 

INDIVIDUAL 
stll[ oli' 
Rows 

Gr~mp 1 Group2 Group3 Groupr 

a x, x. • • x •• Xr • l:X. 
·b .. x,. x •• x •• x •• .l:X• 

x, x. x •• Xr •l:X. 
.. 

e • • • ·- ---. .. · . . . . . ' 
• . . . . . . 

. . . . . . 
" 

. x, x •. x • Xr l:X • • • • . . 
Sum of columns .. 2:X, 2:Xt 2:X, l:Xr 2:X 

Computations: 

1. Total sum of scores = 2:X, + 2:Xt + 2:X1 + ... + l:Xr-

2. CorrectioU: for origin ':" (2:;'' 

3. Total sum of squares = 2:XI - (2:;'' 

4. Sum of squares between columns 

= (l:X,)1 + (l:X,)1 + (l:Xa)1 + ... + (l:X.)1 (l:X)I 
" ---u-

5. Sum of squares between rows 

(l:X.)1 + (l:X6)• + (l:X.)• + ... + (l:X.)• (l:X)• 
= r ---g-

6. Residuat:sum of squares = Total- (Between columns + Between rows) 

Degrees of freedom: 

1. Between columns = r ..:.. 1 
2. Between rows = n. - 1 
3. Residual = (r - 1)(n - 1) 
4. Total = N - 1 
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of freedom available for each .of the sums of squares have 
been included for convenient reference.5 

S. CORRELATION RATIO AND ANALYSIS OF 
. VARJANCE 

a. The correlation ratio without· bias. Peters and Van 
Voorhis (7 4) ~e a strong case for the use of the correlation 
ratio in place of analysis of variance ·techniques. The 
correlation ratio, however, as we computed it earlier, is 
influenced by the size of the sample and by the number of 
classes into which the sample is divided. But this bias can 
be corrected for by substituting the two estimates of the 
population variance in the formula for 71· • · If 7J2 has already 
been computed, and we assume that it has in cases of in-. 
terest, then the correlation ratio without bias, designated as 
epsilon (e) by T. L. Kelley, who developed the formula, is 
the square root of epsilon-square wl;Uch is given by formula 
(64). 

where 

E"n ·= '1~ (N - .1) - (k - 1) 
· N-k 

(64) 

~ = epsilon-square or the square of the correlation 
ratio without bias 

'1 11s = the value of the correlation ratio 
N = the total number of cases in the distribution 
k = the number of columns in the correlation table 

5 Lindquist (64) provides many illustrations of the use of analysis of variance 
in the field of educational research. Additional illustrations in educational 
and psychological research may be found in Baxter (6), Dunlap (11), Garrett 

·and Zubin (32), Jackson (47), and Shen (83). The critical discussions by 
Grant (36) and Peters (73) should be consulted also. In addition to these 
references, the student would do wcll to read Snedecor (86). He has achieved 
a simplicity of presentation which is notable and to be commended. Tippett 
(90) and Goulden (36) are well worth reading. Kenney (53) approaches analy
sis of variance from a mathematical viewpoint and his text should be of interest 
to advanced students, as should the two classical publications of Fisher (26, 
26). The article by Helen Walker (94), although technical, is a valuable aid 
to an understanding of the concept of degrees of freedom. 

1 The rationale of this is developed in Peters and Van Voorhis (74, pp. 319-
322) from which formula (64) is taken. A further correction for broad cate
gories is suggested if the classes are continuous and groupings are large. This 
will probably not be true of most cases where analysis of variance techniques 
might be applied. If needed, however, tables to facilitate the corrections 
can be found in the reference cited. 
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b. Tables of epsilon-square: Peters and Van Voorhis 
have tabled the values of E2 at the 1 per cent and 5 per cent 
points, assuming the true correlation to be zero. Assuming 
the null hypothesis, that the population correlation is zero, 
Table F, pp. 336-339, gives the values of E2 which can be 
expected to occur by chance 5 per cent and 1 per cent of 
the time. The column of Table F is to be entered with ·1 
less than the number of columns in the correlation table 
from which the correlation ratio was computed, (k- 1),· 
and the value of E1 at the 5 or 1 per cent point is to beJound 
by running down this column to the row entry corresponding 
to the total number of cases le8s the number of columns, · 
(N- k). . 

Before turning to the relationship between the correlation 
ratio without bias and analysis of variance, we may illustrate 
the use of Table F by an example. Let us suppose that we 
had found a correlation ratio of .60 from a correlation table 
consisting of 10 columns, and with a total N of 90 cases. 
Substituting in formula (64), we get 

~ = "~ (N -1)- (k- 1) 
N-k 

(.60)2 (90 - 1) - (10 - 1) 
- 90-10 

(.36) (89) - 9 
= 80 

32.04-9 
= 80 

23.04 =so 
= .288 

. 
If we now assume the null hypothesis, that the population 

correlation is zero, we may test the significance of the ob
fP.rved value of E2

, .288, to find out whether it would occur 
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as a result of sampling variation less than 5 per cent of the 
. time. If our observed value is larger than the tabled value 

ol e2 at the 5 per cent point, then w~ may reject the null 
hypothesis and infer that the population correlation is not 
zero. We enter the column t>f Table F (page 336) with 
(k - 1) = '9, and run down to the row entry corresponding 
to (N - k) = 80. The value of E2 at the 5 per cent point is 

.• 091, and at the 1 per cent point it is .142. Since our ob
.served value exceeds the value of e2 at the 1 per cent point, 
we may reject the hypothesis that the population correlation 
is zero with a high degree of confidence. If the hypothesis 
of zero correlation were true, then we would get such a large 
value of e2 much less than 1 per cent of the time. Thus, you 
see that the table of E2 is used ln much the same fashion that 
the table of F is used. 
~ c. Epsilon-square and analysis of variance. In the simple 

. analysis of variance experiment, where the total sum of 
square!'! is analyzed into two parts, e2 is found readily. By 
formula it is · 

E2 =1-~ (65) 
1/S VI 

where ." 1 ~!IS = epsilon-square 
!. Vw = the population variance estimated from the 
' within-groups sum of squares 
v1 = the population variance estimated from the total 

sum of squares (the sum of squares for total 
divided by N -- 1) 

. I . 

· To illustrate formula (65) we may take the data of Table 
39, where we found that the estimate of the population 
variance based upon variation within groups was 4.5. The 
total sum of squares was equal to 144 and this divided by 
N- 1 or 14 gives ·us 10.29, the denominator for formula 
~65). s Solving for e2

, we get 

E:s = 1 - V.., = 1 - 4·5
9 

= 1 - .44 = .56; E = V:56 = .75 
v. 10.2 
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We may evaluate E2 by reference to Table F. In this in
stance (k - 1) = 2 and (N - k) = 12. Entering the table 
of E2 with these values, we find that an E2 of .291 is significant 
at the 5 per cent level and an E2 of .459 at the 1 per cent 

·level. Our observed E2 of .56 is much greater than. the 
value at the 1 per cent level, which means that if the null 
hypothesis were true, then as large a value of E2 as we ob
tained would occur much less than 1 per cent of the time. 
Thus you see that none of our conclusions is changed by the 
E2 test.. But, in addition to getting a test of significance, 
we also get· an indication of the extent of the relationship 
between achievement and method of instruction. This is 
expressed by the unbiased correlation ratio, .75, the square 
root of E2 (74, p. 325). · 

When the total sum of squares in an analysis of variance 
problem has been analyzed into more than two parts, 
formula (65) must be revised. If, for example, we have 
analyzed the total sum of squares into three parts, one asso
ciated with columns, another with rows, and a third which 
we have called the residual, then we must use a different 
method of obtaining E2• Peters and Van vo·orhis (74) .give 
the following formula: 

~ = (v..,,)(k- 1) - (vru)(k- 1) (
66

) 
(v..,,)(k- 1) + (vru)(dfreo) 

where ~ .. = epsilon-square . 
v..,r = the population variance estimated from the sum 

of squares between columns 
k - 1 = the degrees of freedom associated with the be

tween-oolumn variance or the number of columns 
minus 1 · 

Vru ,., the population variance estimated from the resid- · 
urusumm~u~es . 

i dfreo = the number of degrees of freedom associated with 
the residual sum of ~uares 

The value of E2 at the 5 and 1 per cent points; when formula 
{66) is used, ~ found by entering the column of Table E 
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with (k- 1) and running down to the row entry correspond
ing to the number of degrees of freedom associated with the 
residual variance, that is, dfru· We may illustrate the use 
of formula (66) by applying it to the data of Table 52. 
The estimated population variance from the sum of squares 
between columns was 5.2 for 4 degrees of freedom, and for 
the residual sum of squares the estimated population vari
ance was .45 for 16 degrees of freedom. Substituting in 
formula (66) and solving for E2, we get 

(5.2)(4) ..... (.45)(4) 
~rs = (5.2)(4) + (.45)(16) 

19 
= 28 
=·.68" 

. . . 
We find from the table of E2 that a value of .287 is sig

nificant at the 5 per cent ·point and a value of .43 at the 1 per 
cent point for 4 and 16 degrees of freedom. Our observed 
value of .68 is, therefore, highly significant; and we must 
consider the null hypothesis untenable. Thus we arrive at 
the same conclusion using E2 that we did using F. 

You may wonder at this point whether F or E2 should be 
used as a test of significance in a given problem. There is 
no definite answer to this question, and there are advocates 
of each method. The calculations involved are much the 
same for both F and E2, and tables of the 1 per cent and 
5 per cent points of both E2 and F are available and easily 
used. The results of the tests of sigriificance by both 
methods are cons~tent. Peters and Van Voorhis, however, 
point out that the F test does not "directly indicate the 
strength of the relation that is present, only its reliability. 
Analysis of variance, that is, tells only the negative side of 
the story, limiting itself to confirming or refuting the null 
hypothesis. Epsilon, on the other hand, shows in language 
with a uniform meaning what is the strength of the relation 
that is present and at the same time permits an 'exact' test 
of its reliability" (74, p. 353). 
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4-. A TEST OF RECTILINEAR RELATIONSHIP 
Epsilon-square may also be used to provide a test of 

whether two variables, X andY, are related in a rectilinear 
fashion (74, p. 329). The test involves the computation of 
both E2 and r. The statistic derived from the test may be 
designated as E'2 and is obtained from the following formula.: 

(67) 

Since E'2 'lias the same foim of distribution as E2, we may_ 
~ use the same tables for its interpretation. The table of E2 

_,is entered with degrees· of freedom .equal to k -:- 1 and 
N - k. If E'2 is such that it exceeds. the 5 or 1 per cent 
points, we may infer that the departure from rectilinearity 
is significant. If it does not, then we may infer that the 
relationship between the two variables is essentially recti-
linear. · 

ANALYSIS OF VARIANCE: MATCHED G}WUPS 
Example 1.-Here is the set of scores of Example 2 in Chapter 9 

on "The t Test of Significance." 

Group I .......... 10 5 6 7 10 6 7 8 6 5 
Group II ......... 7 3 5 7 8 4 5 6 3 . 2 

(a) Compute the value of F based upon an analysis into two 
parts: the between and the within sum of squares. Is the value 
of F thus obtained equal to the value of t2 obtained when the 
pooled sum of squares is used in calculating the standard error 
of the mean difference? · · 

(b) Test the difference between the groups, taking cognizance 
of the fact that the measurements have been paired. Analyze. 
the total BUill of squares into three parts, using the estimate of. 
the variance based upon the residual sum of squares as the 
denominator in the F ratio. Is the value of F now equal to the 
value of t2 obtained when the correlation is taken into account? 

(c) Set up a table and compute the "residual" ~um of squares 
directly. Does this value check with that obtained by sub~ 
traction? 
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Example 2.-Here is a set. of score~ for practice. 

EXPERiliiENTAL CONDITIONS 

INDIVIDUALS 

I II III 

1 11 10 12 
2 10 9 11 
3 10 9 12 
4 8 9 10 
5 8 7 8 
6 8' 8 9 
7 8 6 9 
8· 6 5 8. 
9 6 3 5 

10 . 5 4 6 

. (a) Analyze the total sum of squares into two parts and find 
the value of F. 
- (b) Analyze the total sum of squares into three parts, using 

the . estimate of the variance based ·upon the residual sum of 
squares as the denominator in the F ratio. Explain the results 
of this analysis; assuming the subjects have been matched. 

Example 3.-Kellar (51) reports the following data concerning 
Q and S values of items in an attitude scale. Find ~ and 
interpret your results. 

X: ScALE VALUES OF ITEMS 

Y: Q VALUES 

1 2 3 4 5 6 7 8 9 10 
- - - - - - - - -

2.1-2.3 I 5 .9 6 4 5 3 
1.8-2.0 3 3 2 .1 2 5 2 7 
1.5--1.7 1 2 1 2 1 4 

- 1.2-1.4 3 1 8 
.9-1.1 1 1 
.6- .8 4 3 
.3- .5 1 



. CHAPTER 12 

THE x2 TEST OF SIGNIFICANCE 

Chi-square is a statistic similar to t and · F in that its 
sampling distribution is known and in that it is also used for · 
testing hypotheses. It is particularly· applicable· to situa
tions where we wish to test the departure of observed fre-· 
quencies in a given sample from the frequencies we would . 

:'.·expect to obtain on the basis of a given hypothesis. Chi- · 
square is also useful in testing the · hypothesis that two 
samples have been drawn from a homogeneous population; 
We shall see some additional uses to which x2 may be put 
later, but now let us examine a specific case. · 

1. SIMPLE APPLICATIONS OF X2 

Suppose that you are in charge of selecting a title for a 
new college magazine. You have eliminated all of the titles 
except two, but you cannot decide whic~ of the two would . 
have more appeal. To get some basis for making your 
decision, you go out and interview a small random sample of 
60 students, asking each one to state which of the two titles 
he prefers. Your final count shows that 36 prefer Title 
No. 1 and 24 prefer Title No. 2. In this instance, as in 
most others where you are working with samples, it is not 
the sample that is of primary interest, but the population 
from which the sample was drawn. What you really wish 
to know is, if you go ahead and select Title No. 1, will yotir 
choice meet with the approval of a majority of the entire 
student body? -

a. Observed and expected frequencies. When we wanted 
to make an inference on the basis of a sample mean concern
ing the population mean, we found that we could. approach 
the problem by setting up some hypothesis about the popu
lation mean. Then_by finding the deviation of our observed 

. 239 
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sample mean from the hypothet~cal population value and 
dividing this deviation by the standard error of the mean, 
we arrived at a statistic called t. And, since the sampling 
distribution of -t was known, we were able to make a prob
ability statement concerning the frequency with which 
values of t as large as, or larger than, the one we obtained 
would occur by chance, assuming the hypothesis to be true • 
. , Similarly, in the case of x2, we must set up some hypothesis 

concerning the population ratio. We . can then determine 
the frequencies we would expect to get in our sample, assum
ing the hypothesis to be true. Our deviations now become 

· the difference between these expected frequencies and those 
actually observed in our sample. We may then use X2 to 
test· the hypothesis that our sample may have been drawn 
from a population with parameter equal to the theoretical 
ratio. We assume, in other words, that any difference 
between our observed sample frequencies and those to be 
expected on the basis of the hypothesis can be accounted 
for in terms of sampling variation~ The computations are 
simple: we merely take the difference between each ob
served and expected number, square these discrepancies, 
divide each squa'red discrepancy by the corresponding 
expected number, and sum .. ·By formula 

where 

(o- e)2 x2 = 2::--'-----" . e 
. x2 = chi-square 

o = the observed frequency 

(68) 

· e = 1the corresponding expected frequency in terms 
of the hypothesis · 

If the obtained· value of x2 is such that it would occur 
5 per cent of the time or less, then, according to the standards 
we have used before, we would have to assume that the 
hypothesis being tested is untenable. On the other hand, 
if x2 is such that a value as large as, or larger than, the 
obtained value would ~ccur more than 5 per cent of the 
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time, then we would have to consider the hypothesis tenable •. 
The interpretation of x2 corresponds to the interpretation 
we have learned to place upon t, F, and E2• 

· b. Testing a 60:50 hypothesis. In the problem.at hand, 
. since we are really interested in knowing whether or not a 
majority of the students prefer Title No. 1, our working 
hypothesis would be that the population is evenly divided. 
We assume that if we had interviewed every member of the 
population we would find 50 per cent favoring Title No. l 
and 50 per cent favoring Title No.2. If the hypothesis is 
true, then the calculation of x2 proceeds ~ in Table 54. 

TABLE 54.-TEsTING A 50:50 HYPOTHESIS BY MEANs oF x1 

APPROVE APPROVE ToTAL TITLE No. 1 TITLE No.2 .. 

Observed .••••• , •••••• , ••••• 36 24 60 
Expected .•.••••••••••••••.•. 30 30 60 

(o- e) 6 -6 
(o- e)1 36. 36 
~ 1.2 1.2 r=2.4 e 

' ,., 

Note that the computed value of x2 would be zero if our 
observed frequencies were the same as those expected on the 
basis of our hypothesis. The greater the departure of the , 
observed frequencies from the expected, the larger the result
ing value of x2 will be._ If our sample had divided 55 :Q, 
for example, x2 would be equal to 41.66. In this respect, 
X2 is like t, for t also becomes larger the greater the departure 
of an observed sample mean from the hypothetical value · 
of the population mean being tested. But, whereas the 
distribution of t was dependent upon the size of the sample, 
the general form of the distribution of x2 is independent ·of 
sample size. For example, if we drew a large number of . 
random samples of 20 cases each from a box in which we 
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had placed 50 red and 50 white discs, the expected fre
quencies would be 10 red and 10 white. Computing x2 for 
each of these samples, we could plot a frequency distribution 
of the obtained values. H we then repeated the sampling 
process, this time drawing samples of 30 cases each, the 
expected numbers would be 15 and 15. H we made a fre
·quency distribution of the values of x" obtained with samples 
of this size, the two frequency distributions would be quite 

. similar, despite the fact that the values of x" in one case 
were based upon samples of 20 and in the other upon samples 
of 30. · 

To evaluate the x" of 2.4 which we obtained in our illustra
tion, we must enter Table H (page 342) with the number of 
degrees of freedom that are related to our sample data. 
We stated earlier that the concept of degrees of freedom 
may be regarded as having.to do with the number of observa
tio~ that are free to vary once certain restrictions have 
been placed upon a set of data. In the present problem 
we have only 1 degree of freedom because once we have 
entered one of the frequencies in Table 54, the other can 
be determined from the border total by subtraction. H we 
enter Table H with 1 degree of freedom we find that a value 
of x" of 2.4 or larger may be expected to occur by chance 
more than 10 ·per cent of the time Thus we have little 
basis for rejecting the hypothesis that our sample was drawn 
from a population in which the ratio is 50:50. In order for 
us to reject the hypothesis of evenly divided opinion at the 
5 per cent level, our computed value of x" would have to_be 
3.841. ' ~ 

Perhaps you have noticed that whenever a 50:50 hypothe
sis is being tested, the (o - e)2 values are the same, and of 
course the expected numbers are the same also. Thus there 
is a simplified formula for x" which may be used whenever 
this hypothesis is being tested: 

2(o- e)1 
x' = ~-.:...._-.:.... ,. (69) 
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Substituting in the problem under consideration, we get · 

2 - 2(36- 30)2 =· (2)(6)2 = 2(36) = 72 = 2 4 
x- 30 30 30 30 · 

c. Testing any a priori hypothesis. In the same manner 
that we tested the hypothesis that the population ratio was 
50:50 in the last example, we might ~st any hypothesis 
concerning a population ratio. Suppose, for example, that 
on the basis of past experience we knew that about 75 per. 
cent of the ~embers of a general psychology class could be 

, expected to pass· an item on a test. We. now have a new· 
" class consisting of 200 members. On the bas~ of our past 

experience we would predict that about 75 per cent or 150 
of these students would pass the item and that about 25 
per cent or 50 would fail. Of course, we would not expect 
to obtain exactly t~ese numbers; we can assume that some 
variatio:q. will be present as a result of. chance or sampling 
factors. But suppose now, after glving the test, we pnd 
that only 137 pass the item and 63 fail ~t. Is this departure 
from the expected frequencies too great to be attributed to 
chance? Can we assume that our sample was drawn from 
a population in which the ratio of those· passing to those 
failing the item is 75:25? The hypothesis may be tested by 
calculating x2• · 

The value of x'l. based upon the data of Table 55 is 4.51 
and with 1 degree <>f freedom, a value of 3.841 is significant 

TABLE 55.-TESTING A. 75:25 _HYPOTHESIS BY MEANS OF ,c 

FAILING THE p A.SSING THE 
TOTAL ITEM ITEM 

Observed ............... 63 137 200 
Expected •••••..•.•.•••. 50 150 200 

(o- e) 13 -13 . 
(o- e)2 169 169 
(o- e)2 

3.38 e I 
1.13 . r = 4.st 
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at the 5 per cent point. Hence, -jf our sample was drawn 
, from a population in which the ratio of those passing to 
those failing the item is 75:25, something has happened to 
our sample that would occur on the basis of chance less than 
5 per cent of the time. According to our standards, we 
would thus consider the hypothesis untenable. 

d. Jt calculated from per cents. Sometimes data are 
reported in terms of per cents by other investigators; as 
readers of their :reports, we may wish to test their findings 
against some hypothesis which w~ may have. The value of 
x' cannot be found directly from per cents, but requires a 
correction tehn (86). If we work with per cents, then the 

resulting value of x' must be multiplied by 1~, where N is 

the observed sample total. In our title illustration we found 
observed frequencies of 36 and 24.. In terms of per cents 
these-would be 6o and 40. Our expected frequencies must be 
expressed in the same uillts and, on the basis of a hypothesis 
of evenly divided opinion, they would be 50 and 50. Using 
formula {69), we find that x' is equal to (2)(10)2/50 or 4. 
This is not the same value we found before, 2.4. But apply-

ing our correction term, we get (4) {~) = (4) {1:) = 

240 
100 = 2•4. 

You may think that translating the title dat,a into per 
cents has served to increase the sample size {from 60 to 100) 
and that this is the cause of the discrepancy between the 
two values of x1• If so that would be inconsistent with the 
statement we made earlier that the distribution of x2 is 
independent of sample size. It is not the increase in the 
sample size, but rather the increase in the value of the 
deviations that has changed the value of x'. While a devia
tion of 36 -:- 30 or 6 is not uncommon in samples of 60 cases, 
a deviation of 60 - 50 or 10 in samples of 100 drawn from 
the- same population is uncommon. This may become 
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clearer if you think of tossing 10 coins into the air. Accord-:
ing to the laws of probability the expected frequencies are 
5 heads and 5 tails. But if you found 6 of one and 4 of the 
other you would not oo too upset.. Suppose now that you 

· tossed 1,000 coins. Would you be surprised to get 600 heads 
and 400 tails? 

e. r applied to more than two categories. . The applica
tion of x2 is not limited to dichotomous distributions. It 
can be used when we have sample data divided into. three 
or more categories. In the absence of any a priori hypothesis 

. concerning the population, we may assume that the sample· 

... frequencies should be distributed according to chance, that 
is, with an equal number in each category. Suppose, for 
example, we polled 60 students and asked their opinions 
concerning a contemplated change in the hours during which 
the library is to be open. We allow for three categories of 
response: favorable, indifferent, and unfavorable. Accord
ing to chance we would expect to find 20 students in each 

· category. The data and the calculation of x2 are given in 
Table 56. ·-

TABLE 56.-TE!mNG TBB HTPO'l'BESIS OP A UNIPORII DISTBIJIUTIOH 

UNFAVORABLE INDIFFERENT FAVORABLE 
TOTAL R.EsPONSB REsPONSE R.ESPONSB -

Observed .•••••• 15 10 35 60 
Expected .•••••• 20 20 20 60· 

(o- e) -5 -10 15 . 
(o- e)l 25 100 225 
~ 

• 1.25 5 11.25 r= 11.s 

The value of x' now equals 17 .5. How many degrees of 
freedom are involved in our data? In generalp in a. problem 
of this nature, the number of degrees of freedom is equal, to 

_ r - 1, where r equals the number of categories that we have. 
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Thus if we have three categories we have 2 degrees of free
dom, if we have 4 categories we have 3 degrees of freedom, 
and so on. Another way of looking at the matter is this: 
once the frequencies for . two of the categories have been 
entered, then the third can he determined by subtraction 
from the border total. If our sample total is to remain 60, 
and if we had 40 in the first category and 5 in the second, 
the third would have to he 15. If we had 20 frequencies in 
the second category and 10 in the third, then the first would 
have to have 30, if our sample total is to remain the same·. 
According to Table H, a x2 of 17.5 with 2 degrees of freedom 
is significant beyond the 1 per cent point. Hence we may 
,reject the. hypothesis . that our sample was drawn from a 
population in which the same proportion would he found in 
each of the categories. Our observed frequencies, in other 
words, differ significantly from those to he expected, on the 
basis of the hypothesis tested. 

S. x.2 APPLIED TO TWO SAJJIPLES 

In all of the problems considered so far, we have had only 
a single sample and either we have had an a priori hypothesis 
to work with or else we have assumed a chance hypothesis, 
i.e., that the frequencies would be distributed uniformly in 
the various categories. But in many problems our interest 
is in comparing two or more samples, and in such situations 
it sometimes happens that we have no a priori hypothesis, 
and frequencies in each of our samples depart so very far 
from chance expectations that this does not provide us with 
a very good basis for comparing the groups. ·We might 
have, for example, two groups of 100 cases each, one dividing 
70:30 and the other 90:10. In each sample the departure 
from chance or 50:50 is highly significant. 

Let us suppose that the samples we have consist of two 
groups of eighth-grade students and that 90 is the number 
passing an item on a standardized test in one of the samples 
and 70 is the number passing in the other. Since we have 
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only these data and no a priori hypothesis againSt which 
to test the frequencies, how may we compare the two groups? 

If we make the assumption that both of our samples are 
drawn from a homogeneous population, then we may com
bine the frequencies from each sample to get a new common 
estimate of the population and we can measure the devia
tions of each sample from it. . If the resulting value of x" is 
small, i.e., does not reach the 5 per cent point, then we may 
infer that the two samples are drawn from the same popula-
. tion and that the best estimate of the parameter of this · 
population· is given· by the frequencies from the pooled 
samples. On the other hand, if the value of x" exceeds the 

. 5 per cent point, then we may reject the hypothesis that . 
the samples are drawn from a homogeneous population and · 
infer that the observed frequencies in each sample are 
significantly different. · · . 

The hypothesis in the present problem is based upon the 
eombined samples in Table 57. Specifically, we test the 

TABLE 57.-TEBTINo TUB HYPOTHESIS THAT Two SAIIPLES H.&.n: BEKH 
DRAWlf FBOII A. HoMOGENEOus PoPUL&TIOR 

F AIJ..D(O TUB p A.SSIRO TUB Tar.u.· ITEK ITEK 

Sample 1;;;;;; ••••••••••••• 10 90 100 
Sample 2 ••••••••••••••••••• 30 70 100 -

Total •••••• u •••••••••• 40 160 200 

0 • ·-· (o- e)' 
(o- e)S 

e 

10 20 -10 100 5.00. 
90 80 10 100 1.25 
30 20 10 100 5.00 
70 80 -10 100. '1.25 

Total 200 200 ............ .. . . . . . . . . . . .. r=12.so 
-
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hypothesis that the two samples have been drawn from a 
population in which the probability of passing the item is 
160/200 or 80 per cent and the probability of failing the 
item is 40/200 or 20 per cent. On the basis of this hypothe
sis, we calculate the expected frequencies for Sample 1 and 
Sample 2 by simply multiplying the total number in each 
of the samples by the theoretical percentages 80 and 20. 
The calculation of x" then proceeds 88 before. 

The computed value of x", 12.50, must be evaluated in 
terms of the number of degrees of freedom involved in the 
set of data upon which it is based. H we place the restric
tion upon our data that the border totals of Table 57 must 
re:ffiain the same in each sampling, then only one cell in the 
table can be filled in independently. Once a single fre
quency has been entered in any one of the four cells, then 
the values for the remaining three cells can be determined 
by subtraction from the border totals. H 90 is entered in 
the upper right-hand cell, then 100 - 90 or 10 must be 
entered in the upper left-hand cell. Alld if 10 is the value of 
the upper left-hand cell, then 40 - 10 or 30 must be entered 
in the lower left-hand cell. The value for the lower right
hand cell can be determined in a similar manner. Conse-

-quently, we say that only one degree of freedom is involved 
in this problem. 

According to Table H, for one degree of freedom a value 
of x" 88 large as 12.5 or larger would occur much less than 
1 per cent of the time, if the two samples were drawn from 
a homogeneous population. Consequently, we reject the 
hypothesis that we set out to test'and say that the observed 
frequencies in the two sample!'! differ significantly. 

It is worth noting in a problem of this nature that only 
one of the expected frequencies needs to be calculated; the 
others can be obtained by subtraction from the border 
totals, since the sum of the expected frequencies in each row 
and each column must check with these values. There is 
also a very simple rule for determining the number of degrees 
of freedom involved when the hypothesis to be tested is 
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based upon the border totaLs, as in this problem. The rule 
is this: if you have a table with r rows and k columns; the 
number of degrees of freedom is equal to (r -·1)(k -1). 
In a 2 X 2 table, su~h as we have here, the number of degrees 
of freedom is equal to (2- 1)(2- 1) or 1. In a 3 X 4 
table, the number of degrees of freedom would be equ~ to 
~-D~-Dm& . 

The application of x2 to the type of problem we have _ 
just discussed is of much value in psychologi~al and educa
tional rese!u-ch. Suppose that we were interested in the 
effectiveness of two methods of psychotherapy. _ We try the 
two methods out with a sample of 100 patients divided at 
random into two groups of 50 subjects each, and observe 
the number in each group showing "improvement/' and the 
number showing "no improvement." We pool the data of 
the two groups to get our hypothesis and then calculate x2, 

assuming the hypothesis to be true. If x2 exceeds the 5 per 
cent point, we reject the hypothesis that the two groups 
were drawn from the same population and infer that the 
numbers showing improvement and no improvement in the 
two samples differ significantly, i.e., that one method is 
more effective than the other. A problem of this nature is 
illustrated by the data of Table 58. 

If the hypothesis to be tested is true; then we would 
expect to find 70/100 or 70 per cent of the 50 individuals 
treated by Method 1 to show improvement, and 30/100 or 
30 per cent to show no improvement. Since the number of 
cases treated by each of the two methods is the same, the 
expected numbers for each of the two groups will be the 
same. The value of x1 is found as before. 

The computed value of x2, 4.76, exceeds the 5 per cent 
point, 3.841, for 1 degree of freedom. Hence we reject the 
hypothesis that the two samples were drawn from the same 
population · and conclude that the numbers showing im
provement in the two groups differ significantly. Method 1 
is more effective than Method 2, and the difference in the 
numbers showing improvement, we believe, cannot be the 
result of sampling variation. 
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TABLE 58.-T:msTING TEB EFFECTIVJ;NEss oF Two METHoDs ol' 
PsYcHOTHERAPY WITH ~wo SU~:PLEs ol' 50 C.&BEs EACH 

NmmER NmmE:a 
SHOWING No SHOWING TOTAL 
hu>ROVElLENT I¥PIWVEMENT 

·, 
Method 1. ............... 10 40 50 
Method 2 ................ 20 ao 50 

Total ••••••••••••.... ao '10 100 

, 
0 tl o-e (t:J- e)• 

(o- e)l 
IJ . 

10 15 -5 25 1.67 
40 35 5 25 .71 
20 15 5 25 1.67 
ao 35 -5 25 .71 

Total 100 100 .............. .............. -r = 4.'16 

s; x.2 APELIED TO MORE THAN TWO GROUPS 
· . We are not limited to two groups nor need the number of 
subjects iJ;l each group be the same in order to apply the x' 
test of signillcance to problems of the kind described. To 
illustrate the procedure to be used in a more complicated 
,problem, we· have the hypothetical data of Table 59, in 
which 250 subjects have been classilled according to "letter 
grades" on ~ test of general information and according to 
"educational status." We see that 95 of the subjects are 
college graduates, 70 high school graduates, , and 85 ele
mentary school graduates. The subjects in each of these 
three groups are .then classified according to letter grade 
received on the test. 

If we assume that the three educational groups are samples . 
· from the same population, we may pool the data from each. 
On the basis of the pooled frequencies, we estimate the 
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TABLE 59.-TEBTING THE Sm~CANCl!l oY DIFFERENCES BE~ 
GIUJ)ES ON .A. TEsT ol' GENEB.AL IHroBMATION POB THBEB 

EntrC.A.TIONAL LEvELs . 

GIUJ)E ON lm'oJUU.'l'lON TEST 

TOTAL 

c B _A 

College graduates ....••••••••••• 10 35 50 95 
High school graduates .•••••.•••. 20 40 10 70 
Elementary a;chool graduate& ••••• 35- 40 10 85 

Total ••• : •••••••••••••••.. 65 115 '70 '250 

0 fJ o-e (o..;.. e)l 
(&- e)l 

fJ 

10 2U -14.'7 . 216.09 8.'75 
35 43.7 -8.7 75.69 1.73 
50 26.6 23.4 547.56 :20.58 
20 18.2 1.8 3.24 .18 
40 32.2 '7.8 60.84 1.89 
10 19.6 -9.6 92.16 4.70 
35 22.1 12.9 166.41 7.53 
40 39.1 .9 .81 .02 
10 23.8 -13.8 190.44 ~ 8.00. 

Total 250 250.0 . . . . . . . . .. . . .. ............ r=53.ss 

proportion in the population to be found in each letter grade 
category. 'rhus, in the "A" category we have 70/250 = 
.28; in the "B" category we have 115/250 = .46; and. in 
the "C" category we have 65/250 = .26. Now if our 
samples have all been drawn from this population, then the 
expected numbers in each letter grade category for each 
sample will be these proportions of the sample totals. · Thris 
the expected frequencies for the sample of 95 individuals 
who are college graduates will be: (.28)(95}.= 26.6 in the 
"A., category; (.46)(95) = 43.7 in the "B'' category; and 
(.26)(95) = 24.7 in the uc" category. We find the ex .. 
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pected numbers for each of the other groups in the same 
manner. · 

The calculation of x" is the same as before. We subtract 
each of the expected numbers from the corresponding ob
served n_umbers and square the deviations. · Each squared 
deviation is then divided by the corresponding expected 
number. The swn of these value-s which, in the present 
instance, is 53.38,isequal tox2• Wehave (r- l)(k- 1) or 
(3 - 1) (3 -; 1) = 4 degrees of freedom and according to 
Table H a value of X2 of 13.277 is significant at the 1 per 
·cent level. Since our obtained value of 53.38 greatly exceeds 
13.277, we must reject the hypothesis that these samples 

. were drawn from the same population and conclude that the 
observed differences are significant. 

·.f.. TESTING "GOODNESS OF FIT" 

. There is another valuable use of x'. You may recall 
that when we discussed fitting· a normal distribution to a 

: set 'of observed frequencies we had no basis for comparing 
the '"goodness of fit" other than inspection. It should be 
readily apparent, however, that x2 can be used to provide 
us with a more precise answer to the question of whether 
the observed set of frequencies and those to be expected on 
the basis of a normal distribution differ significantly or not. 
All that we need to do is to find the difference between each 
of the observed and expected frequencies for each class 
interva~ square each of these deviations, and divide each 
by the corresponding expected number. The sum of these 
values is X2• . I • 

· How many degrees of freedom do we have in evaluating 
this x2? That depends, as Peters and Van Voorhis (74) 

·point out, upon the question we pose. If the only restriction 
placed upon the set of freql!encies is that their totals remain 
the same, then the number of degrees of freedom is equal to 
the number of class intervrus minus 1. If we place the further 
restriction upon the data that the mean and standard 

· deviation must remain the same, which we ordinarily do in 
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fitting a normal distribution, then the nnmber of degrees of 
freedom is equal to the number of intervals minus 3. -

H the computed value of x 2 is small so that it may be 
expected to occur quite frequently as a result of sampling 
variation, then we may infer that the discrepancies between 
the observed frequencies and those to be exi>ected on the 
basis of a normal distribution are not significant. For 
example, suppose we had a distribution consisting of 12 
class intervals and we fitted a normal distribution to the 
observed frequencies in the manner described in an earlier 
chapter. We compute x2 and find it to be 8.5. By reference 
to Table H we find that for 9 degrees of freedom values of 
x' as large as 8.5 may be expected to occur quite frequently 
(P = .50). Consequently, we may be quite confident that 
our distribution does not depart significantly from. the 
normal form. To reject the hypothesis of normality we 
would have .had to obtain ax" of at least .16.919, the tabled 
value at the 5 per cent level for 9 degrees' of freedom. 

6. x." AND Sl!ALL FREQUENCIES 
. . 

It seems to be generally agreed that the x2 test should not 
ordinarily be applied to tables in which any cell entry is less 
than 5.1 H a given cell entry is less than this value, then a 
correction may be applied to 2 X 2 tables or other tests 
involving 1 d/.2 The correction consists of adding .5 to the 
smallest observed frequency of the table (77). Since the 
marginal totals must remain the same, this means that the. 
other cell entries must be adjusted accordingly.• 

1 This limit is set by Kenney (63) and others (38, 64, 86), but Tippett (90) 
suggests a value of 10. ·· . 

1 In applying the correction to the test of a ratio, for example, a 50:50 
hypothesiS with observed frequencies of 18 and 12, we add .5 to the smaller 
frequency, 12, and subtract .5 from the larger f~uency, 18. We thus reduce 
each deviation of observed from expected by .5, t.e., from 3 to 2.5 in this in
stance. For a more detailed discussion of this point and other limitations of 
the r test which are beyond the scope of this brief treatment, the student is 
referred to Goulden (36, pp. 101-104). . · 

1 Snedecor, however, has recently said: "Accumulating evidence indicates 
that the inaccuracies which may be introduced by small expected numben; 
are not so serious as was formerly thought" (86, p. 169). 
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The limitation imposed by small'frequencies would apply 
also in the fitting of a normal distribution to a set of ob
served frequencies. Since in this instance, it is apt to be 
the extreme class intervals that contain small frequencies, 
the limitation is usually circumvented by combining the 
frequencies in the lowest interval with those in the interval 
directly above it and by combining the frequencies in the 
highest interval with those in the interval directly below. 
Sometimes it may be necessary to combine the frequencies 
of several intervals, the number of degrees of freedom being 
reduced !i'ccordingly. 

6. x.2 AND THE q,· COEFFICIENT 

· We discussed earlier the use of the cp coefficient as a 
measure of association or relationship when two variables 
had been reduced to a 2 X 2 table. Although we found 
that the cp coefficient could be used to give us some indica
tion of the strength of the relationship present, we had no 
means of testing whether or not the relationship was sig
nificant, i.e., whether it might be the result of chance or 
not. In the case of r we had a test of the null hypothesis 
by reference to Table D or by the computation of t according 
to formula · (52) and then by reference to the table of t. 
The calculation of x2 provides us with a similar test for the cp 
coefficient. · The cp coefficient and x2 are related in the 
following way 

• 
and 

(70) 

(71) 

Hence, if we have computed cp as a measure of association 
and wish to test the null hypothesis, we need merely square 
the obtained value and multiply by N, the number of cases 
upon which it is based, to arrive at x2

• The number of 
degrees of freedom involved in the computation of x2 is, of 
course, 1, since we have a 2 X 2 table. We evaluate x2 as 
we have before by reference to Table H. 
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H we take the data from Table 27 cited earlier in our 
discussion of ,P, we have a computed value of q, equal to 
.328 with anN of 100. Substituting in formula (71) we get 

· .. 
x" = {100) (.328)2 

= (100)(.107584) 
= 10.76 

. ' 

By reference to Table H we :find that for 1 degree of freedom 
a value of x" of 6.635 is significant at the 1 per· cent level of 
confidence. Since our obtained value is 10.76 we would . 
reject the hypothesis of no relationship with a great deal of 
confidence. 

We could, of course, in ·a 2 X 2 table, reverse the pro- · 
cedure and compu~ x" first. This would tell us whether or 
not there was any association present and whether we could 
reject the null hypothesis with any degree of confidence. 
H we were then interested in getting some indication of the 

· strength of this relationship we could substitute in formula 
(70} and solve for q,. 

· CHI~QUARE · . 
ExampleG}-.Previous experience with a particular achieve~~nt 

test indicated that for seventh-grade children the ratio of those 
receiving a passing mark to those failing was 3 to 1. We wished 
to test whether this hypothesis {3:1) would also hold for sixth
grade children. A sample of 100 students drawn from the sixth
grade revealed that 60 passed. Is the hypothesis te~ble? 

Example 2.-A poll of fraternity men on a univerSity campus 
showed that the ratio of those on the honor list to those not on the 
list was 1:4. To find out whether this ratio would hold for soror- · 
ity members a sample of 150 sorority members was drawn: Forty 
of the sorority members were on the honor list. Must we abandon 
the hypothesis of 1:47 

Example ~A chairman of a committee confronted with a 
choice between the use of two slogans decided to Sa.mple a number 
of individuals to determine which they' preferred. In a sample 
of 80 he found that 50 approved Slogan Nc. 1 and 30 approved 
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Slogan No. 2 .. Can we assume that the two slogans are equally 
popular? . · 

·. Example4')._A sample of 30. schizoid cases in a mental institu
tion gave ttf:"following responses to an item in a personality in
ventory: "Yes" = 18; "?" = 9; ·"No" = 3. Another sample of 
.30 mariic cases gave the following responses to the same item: 
"Yes"'= 6; · "?" = 9; "No" = 15. Test the hypothesi£: that 
there is no difference between the responses of the two groups, 
i.e., that the two samples are drawn .from the same population. 

Example 5.-A group of men and a group of women distributed 
their responses to an item in an attitude test in the fashion listed 
below. Test the hypothesis that there is no difference between the 
distribution of responses of the two groups, i.e., that they are both 
samples from the same population. 

STRONGLY 
DISAGREE UNDECIDED AGREE ~NGLY~ DISAGREE AGREE 

Men ...•.. 5 5 12 18 "60 100 
Women: .. 25 25 20 20 10 100 

Example 6.-Two methods of psychotherapy were trled with· 
two different samples. The results are given below. Can we 
B.ssum.e that one method is mor~ effective than the other? . 

METHOD 
NUMBER SHOWING NUMBER SHOWING 

TOTAL 
No IMPROVEMENT IMPROVEMENT 

1 ·I 10 42 52 
2 58 60 118 

I .. 

Example 7.-Kuo (57) reared kittens under three different con
ditioll:s: (1) one group of kittens was isolated from all contact 
with rats except on the eXperimental test: (2) the kittens in an-. 
other group were reared with their mothers whom they saw kill 
a rat or mouse every 4 days outside the cage; (3) one group lived 
with a single rodent from age 6-8 days onward. The test situa
tion consisted of putting a kitten together with a rat to determine 
whether or .not the kitten would kill. The data are as follows: 
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GROUP No. KILLING No. NOT KILLING ToTAL 

~1) Isolated .•..........•.• 9 11 20 
2) Reared with mother ...• 18 3 21 

(3) Reared with rodent •••.. 3 15 . 18. 

--
Axe there any significant differences between the groups or c:iri we. 
assume that they are all samples drawn from the same populatiqn? 

Example B.-Rosenzweig (80) has studied the recall of subjects. 
for finished and unfinished tasks when they worked on the tasks.· 
under differing sets of instructions. The "informal" group was 
told that the experimenter was interested in knowing something 
about the task, that the ability of the subject was not under in-,· 
vestigation. The "formal" group, on the other hand, was under 
the impression that the tasks were an intelligence test. The data 
for recall are given below. Calculate x2 and interpret your results. 

No. SUBJECTS No. SUBJECTS 
No. SUBJEcTs 

RECALLING RECALLING 
GROUP PREPONDERANCE PREPONDERANCE 

WITH No 

OF FINISHED OF UNFINISHED 
· PREPONDERANT 

TASKS TASKS TENDENCY 

Informal group . 7 19 4 " 
Formal group •• 17 8 5 

' 

Example 9. - Determine whether the following distributions 
came from the same population. Assume that Distribution II 
gives the frequencies expected according to some hypothesis held 
by an experimenter and Distribution I gives the observed fre
quencies. 

ScoRES DISTRIBUTION I DISTRIBUTION II 

7o-74 5 7 
65-69 18 15. 
60-64 24 20 
55-59 20 30' 
50-54 16 20 
45-49 20 15 
4o-44 14 10 



CHAPTER 18 

PREDICTIONS AND THE EVALUATION 
OF PREDICTIONS 

Once we have discovered and measured differences and 
relationships by means of the statistical techniques dis
cussed so far, we are then often interested in making predic
tions based upon our discoveries. The simplest problem 
of prediction is one of predicting the presence or absence of a 
given characteristic from knowledge of some other char-

~ acteristic,· that~~ predictions based upon data classified in 
categories. H we have found by the x' test, for example, 

. that there are significant differences between the responses 
of men and women to an opinion poll on a given issue, then 
we might be interested in determining how accurately we 
can predict the poll results on the basis of this knowledge. 
Or perhaps we have found that employees who are above 
the mean on a psychological test tend to be rated as "satis-

. factory" by their supervisors, while those who are below 
the mean tend to be rated as "unsatisfactory." How 
accurately can we predict the ratings of a group of employees 
on the basis of this knowledge? 

1. PREDICTING SIMPLE CHARACTERISTICS 

Suppose that we 'have polled 200 students to determine 
whether they ·approve or disapprove of a contemplated uni
versity rUling. Our final tabulations show that 120 approve 
and 80 disapprove. · With only the knowledge that our first 
sample divides 120 to 80, our prediction of the responses of 
the members of another similar sample would follow the 
principle of maximum likelilwod or maximum probability 
(43). This means that we would predict for every indi
vidual the p10st probable or most frequent response, which 

258 
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happens to be "approve" since it was made 120 times as 
compared with a frequency of 80 for "disapprove." H we 
made this prediction and if the ratio 120:80 held true for 
the second sample, we would have made 120 correct predic
tions out of a total of 200. We would be correct, in other . 
words, 120/200 = 60 per cent of the time. And we would 
be wrong 80/200 = 40 per cent of the time. 

Now let us suppose that we have knowledge of another 
factor: the manner in which men and women voted on the 
issue. Lei us assume that we had 100 men and 100 women in . 
the first sample andthat the women voted 40 "approve" and 
60 "disapprove," whereas the men voted 80 "approve" 
and 20 "disapprove." With knowledge of this factor what -
will our predictions be? It is obvious tha~ if knowledge of 
the division of opinion within each sex does not increaie 
the number of correct predictions over the number that we 
could successfully predict without this knowledge, then the 
information contributes nothirig. . 

We shall still follow the principle of maximum likelihood, 
but we shall now consider the two groups separately. The 
most frequent response for men is "approve" and conse
quently that will be the predicted response for all men. 
The most frequent response for women, on the other hand, 
is "disapprove" and that will be our predicted response for . 
all women. How many correct predictions will we now 
make? In the two groups combined we would have 80 
correct for the men and 60 correct for the women for a total 
of 140 correct predictions. This is better than the total of 
120 correct predictions we would have made without knowl
edge of the division of opinion within each sex. 

To determine how much better our predictions are with 
knowledge of the vote according to sex, we divide the excess 
correct predictions made with this knowledge by the number 
we. would have had without the knowledge. The result, 
20/120 = 16.7 per cent. Our predictions made with knowl
edge of the division of opinion within each sex are, in other 
words, 16.7 per cent better than predictions made without 
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this knowledge. . Table 60 illustratates the basic computa
tions involved in this evaluation. 

Let. us turn to another example. Suppose that we have 
entrance examination scores on 800 college students and we 

TABLE 60.-l'REDICTIONS OF RESPONSE FROM KNOWLEDGE OF 
SEX CLASSIFICATION 

ACTUAL VOTE NmmER 
GROUP TOTAL· PREDICTION CoRRECTLY 

Disapprove Approve PREDICTED 
I 

Men .•..•.... 20 80 100 (Approve) 80 
Women .••••. 60 40 100 (Disapprove) 60 

Total .• , ..• 80 120 200 .............. 140 

Correct predictions without knowledge of 
division of opinion within each sex ....•. ~ •. 120 or 120/200 = 60 per cent 

Correct predictions with knowledge of di-
vision of opinion within each sex .....••••• 140 or 140/200 = 70 per cent 

Increase in correct predictions with knowl-
edge of division of opinion within each 
sex .••••••••••••••••••••••••••••••••••••• 20 or 20/120. = 16.7 per cent 

then divide the students into two groups: those with scores 
above the median and those with scores below. We then 
classify the subjects within each group according to whether 
they earned average grades of "C or better" or "below C" 

· during their freshman year in college. The results of our 
classification are giv~n in Table 61, where we have evaluated 
the accuracy of our predictions of "academic standing" 
made from knowledge of classification on the entrance 
examination, in terms .of predictions made without such 
knowledge. ' 

Perhaps you are wondering whether or not it is possible 
to make predictions in the opposite direction. The answer 
is "yes," though ordinarily we are interested in predicting 
in only on& direction. As an exercise, you might try pre-
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TABLE 61.-PREDICTIONs o• "AcADEMIC &.rANDJNG'' FROIL KNowi:.E~GE 
OP CLASSIFICATION ON AN ENT&ANCE EXAMnU.TION 

ACTUAL FREQUENCIES 
NUMBER 

GRO'O'P TOTAL PREDICTION CoRREOI'LY 

Below C ·cor PREDICTED 
Above 

Above Mdn ... 150 250 400 {Cor Above) 250 
Below Mdn.,. 225 175 400 (Below C) 225 

Total .... :. 375 425 800 I············ 475" 

Correct Jlredictions without knowledge of ' . . 
classification on entrance examination ....•. 425 or 425/800 = 53 per cent 

Correct predictions with knowled~e of · 
classification on entrance examination ..... .475 or 475/800 = 59 per cent 

Increase in correct predictioll8 with knowl- · 
edge of cb.ssi..fication on entrance exami- . 
nation .••.. , . •., ...•....•..•.. , ..... .- •.. 50 or 50/425 = 12 per cent 

dieting whether an individual will be above or below the 
mean on the entrance examination from' knowledge· of his. 
grades. · • 

2. PREDICTING MEASUREMENTS 

We are now ready to consider another problem of predic·. 
tion. This time our interest is in predicting measurements 
of one quantitative variable from knowledge of measure· 
ments of another quantitative variable. We might wish to 
predict, for example, the most probable scores on one test 
from knowledge of scores on a second test. ObviouslyJ if 
there is no relationship between the two tests, then· we 
cannot expect to use scores on one as a basis for predicting 
scores on the other. It is the presence of correlation or 
association between the two that makes prediction possible, 
and the efficiency or accuracy of such predictions is a func
tion of the degree or strength of the relationship tha:t exists. 
For purposes of illustration; let us take the data cited earlier 
concerning the relationship between scores on a test of 
intelligenfe and scores on· & measure of susceptibility to 
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hypnosis. . We plot these scores 'in a scatter diagram 
(Figure 15). 

a. The regression line. H we can assume that the rela.
tionship be~ween the scores on the two tests is rectilinear, 
then we can draw a straight line through the plotted values 
which. will indicate the trend of the relationship. This line 
is called the regression line.1 It indicates the average 
change to be expected in one variable with change in the 
other. The regression line can then be used for prediction 
purposes. Given an individual's score on the X variable, 
we could erect an ordinate at that point and follow it up to 
the point' where it meets the regression line. The Y value 
corresponding to this point would be the individual's most 
probable Y score. 

It is obvious, however, that a number of straight lines 
xnight be drawn through the plotted values, since they will 
not fall precisely on any single line. We could, perhaps, 
draw one by inspection which seemed to "best fit" the data, 
but we can fit this line much more· accurately by another 
technique, the method of least squares. This simply means 
that we shall demand that the line drawn to describe the 
trend be the· one from which the sum of the squared errors 
of estimate (errors of prediction) is at a minimum. Our 
errors of estimate are the deviations of the observed values 
from the line describing their trend. H we let Y' equal a 
predicted or estimated value (a point on the line correspond
ing to some value of X) and Y equal the actual value, then 
we must find the line for which the 2':(Y- Y') 2 is at a 
JD.inimum. . 

, 
The line just described is the regression line we desire to 

find and it has a nUm.ber of properties. It will pass through 
the point where the mean of the X variable and the mean 

1 Francis Galton firSt used the term ''regression" in studying the inheritance 
.of stature. It was his observation that, on the average, the offspring of ab
normally tall parents and abnormally short parents tend to move back tow~d 
the population mean. The line describing this trend was called a "regressiOn 

! line." The term is still used to describe the line drawn among a group of 
points to represent the trend present, but it no longer necessarily carries the 
.original implications that Galton intended. 
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of the Y variable meet in the scatter diagram. The sum of 
the deviations, 2':(Y- Y1, will be equal to zero. And the· 
sum of the squared deviations, 2':(Y- Y')2

, will be less than 
it would be from any other straight line. 2 

b. The regTession coefficient. The slope of the regression 
line' is given by the regression coefficient, b, which is simply 
the ''covariance" divided by the variance of X. Thus 

(72} 

-
where bp = the regression coefficient of Y on X 

"2;;' = the covariance 

~ .;... the variance of the X distribution . 

. You· are already familiar with both of these values from 
the discussion of the correlation coefficient. The 2':xy is the 
sum of the cross-products and is called, when divided by N 
(the nUm.ber of paired measurements on which it is based), 
the· covariance. We can simplify formula (72) by multi
plying both the numerator and the denominator by N to· get 

(73) 

. ' Since we have the values needed from our earlier calculation 
of the correlation coefficient (Table. 20) . we may substitute 
in formula (73) and get 

1,419.36 
b ... = 4,993.92 = •284 

. 
1 The line described is for the regression of Y on X and is used in the pre

diction of Y from X. When predicting X from Y, as we shall see later, another 
line for the regression of X on Y is used. 
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c. The regression equation. Once we have computed the 
regression coefficient we may substitute in the formula for' . 
the regressi<Jn equation to find the . most probable value of 
Y for any given value of X. The formula for the regression 
equation is 

... ..... 
Y' = brs (X - Ms) + M, (74) 

where · Y' =the predicted or estimated value of Y 
,b,.- the. regression coefficient of Yon X 
X = the value of X for which we a.re predicting a value 

.of,Y 
Ms- the mean of the X distribution 
M 11 ·- the mean of the Y distribution 

In order to avoid subtracting M. from X. each tim.e that 
a prediction .is made, we may rewrite formula (74) so that 

Y' = b11.X + k (75) 

where k- M,- b,..M. 

To illustrate the use of the regression equation, let · us 
suppose that we are given an X score of 132. What is our 
best prediction of the corresponding Y score? . Substituting 
in the above formula with the necessary values calculated 
from .Ta~le 20, we solve for Y'. 

Y' = (.284)(132) + [9.31 - (.284)(121.56)] 
- 37.49 + (9.31 - 34.52) :: ' 
- 37.49 - 25.21 
= 12.28 

In a similar manner we could find the most probable Y 
value for any other given value of X. · ·. 

d. Regression and correlation . coefficients. You · may 
have perceived already that the formula for the regression 
coefficient bears a very close resemblance· to one of the 
formulas we used for the correlation coefficient. As a 
matter of fact, ·when we h~ve already computed the correla.. 
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tion coefficient, we may use it to' find the regression co
efficient. Thus if · 

·~ (~x;,)(~) 
=~((Til) 
· fTz 

then substituting an identity 

and multiplying both numerator and 
denominator by the same value 

rearranging 

simplifying and 

substituting an identity 

• 
(76) 

If we substitute in formula (76) with the value of r that 
we had previously obtained for these test scores, we get 

b . efT~' 7/S = T -;;J 

= .52 c~:::~) 
= (.52)(.546) 

= .284 

· which equals the vaiue we obtained by using formula (73). 
How can we evaluate the reduction in our error of pre

diction when we use th~ regression coefficient and regression 
equation to .predict values of Y? In the absence of any 
knowledge of relationship between X and Y our best pre
diction for any given value of X would, of eourse, be the 
mean of the Y distribution and the extent of the errors of 
our predictions would be the standard deviation of the 
entire Y distribution. If you look for a moment at Figure 
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15, in which we have plotted the paired X and Y scores,. 
you may be able to see more clearly just what influence corre
lation will have in reducing our errors of prediction •. If 
we drew a horizontal line through the mean of the Y distri
bution, then the vertical deviations of each plotted point 
from this line (y deviations) would represent. the actual 
deviations of Y- M 11• The sum of these deviations would 
be equal to zero, but the sum of these squared deviations 
would be .greater than the su.m: of squared deviations from 
the regression line--if there is any relationship between X . 
and Y. It the horizontal line through the mean of the .Y 
distribution is rotated counterclockwise about the point A,. 
where the mean of the X and the mean of the Y distribution · 
fall, then the sum of squared deviations would become 

· smaller and smaller until the line floincides with the regression 
line--line AB in Figure 15. It is the second variable, X,. 

. which makes this regression line meaningful. AB long as 
the Y measures are considered alone, the best predicted 
value of Y for any single X measure would be the horizontal 
line, or mean of the Y distribution. But when there is 
regression of Y on X we find that different values of Y are 
associated with different values of X. It is these associated 
values that become our predictions when we have knowledge 
of the relationship between the two variables. 

e. The standard error of estimate. The extent to which 
we have errors of prediction, i.e., the degree to which our 
predicted Y' values fail to correspond to the actual Y values,. 
is indicated by the standard error of estimate. In terms of a. 
formula· 

_ ~'l:(Y - Y')3 

v •.• - N 

where v._. =the standard error of estimate 
Y' = predicted value of Y correspo:Uding to X 
Y = the corresponding actual value of Y 
N = the number of cases in the series 

(77) 
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Formula (77), however, involves computing theY' value for 
.each X.and finding the discrepancy between this value and 

· the actual· value, squarillg, and summing for all predicted 
values. If we are not interested in individual errors of 

. estimate, we can use the following- formula to :find 
X(Y .;- ~')2, and then divide this by N and extract the 
square root to get tT rr .:· Thus 

l:(Y - Y')2 = !:.yt - (2:xy)t (78) 
!:.# 

== 1486 88 - (1,419.36)• .• 
' . 4,993.92 

= 1,486.88 - 403.41 
= 1,083.47 

Then we find tT11 • .: by formula (77). Thus 

• • /1,083.47 
. u .... =" 32 

= '\1"33.8584' 
= 5.82 

. An eve~ simpler method of deriving the standard error of 
estimate when we have the correlation coefficient available 
is to use the following formula. 

q11·o: = cr11v'f'=Ti" 
=. 6.82-v'..--1 --. .....,.(.--52--)2 

= 6.s2v'1 ..... 27o4 

= 6.82-v:nw 
= (6.82)(.85) 
= 5.80 

. . 

(79) 

· The value 5.80 calculated by means of formula (79) differs 
slightly from the value 5.82, calculated by means of formula 
(77) as a result of the errors of rounding involved in the 
calculations, . Formula (79) is valuable in that it enables 
-us to see how we can evaluate our predictions. If there 
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had been no relationship at all between the two variables, 
then r would be zero, the value under the radical would be 1, 
and the standard error of estimate would therefore be equal 
to the standard deviation of the entire Y distribution. The 
other limiting case would arise if the relationship between 
X and Y we~ perfect. In this instance r would equal 1 
and the value under the radical would be zero; hence the 
standard error of estimate would be zero also. This is as it 
should be, for with a perfect correlation we could predict 
precisely the· corresponding Y value for any given value of 
X with no errors; on the other hand, with no correlation 
present, our best prediction is the mean of the Y distribution 
and our errors would be measured by the standard deviation -
of the Y distribution. 

. f. The index of forecasting efficiency. In the present 
case we can get an indication of the reduction in errors of 
prediction by comparing the standard error of estimate to 
the standard deviation of the Y distribution. The standard 
error of estimate"is 5.82. This is a reduction -of 1.00 point 
compared to the standard deviation, which is 6.82. In 
terms of per cent reduction of error we have 1.00/6.82 = 
15 per cent. We have reduced the extent of our errors of 
prediction, in other words, from knowledge of the correlation 
between the two variables by 15 per cent. 

You may note that the index of forecasting efficiency, in 
this instance .15 per cent, can be obtained with reference to 
the size of the correlation coefficient alone. The formula is 

E=l-~· 
= 1- Vl- (.52)3 

= 1- V-7296 
=1-.85 
= .15 
= 15 per cent 

{SO) 

g. Predicting in the opposite direction. Ordinarily we 
are futerested in predicting in one direction only, but we 
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could, if we were so interest~d, make predictions of X values 
from values of Y. When r = 1.00, the two regression lines 
coincide, but when r is less than 1.00, the two regression 
lines will be different, and if we are to predict X values from 

. given values of Y, then we must do so from the line showing 
the regression of X on Y. Our procedure would be the same 
as that which we have already outlined, except that the 
regression coefficient would now be 

or 

and the regression equation would be 
X' = b.,,(Y - M,) + M., 

or X'= b.,,Y + (M.,- b~,) · 

and the standard error of estimate would be 

,.,.'fl = ,., Vl- r 2 

(81) 

(82) 

(83) 

(84) 

(85) 

h. Coding and regression coefficients. What we have 
said before about coding applies to the computations we 
used in :finding the regression coefficients. H X and Y 
have been divided by the same coding constant, then we 
do not need to worry about decoding, since i.,i, in the numer
ator will cancel i! or i~ in the denominator of formulas (73) 
and (81). H, however, X andY have been coded by divid
ing by different constants, then we must decode as follows 

. 
1 

[""' , , · (~x')(~y')] • . 
~ .. x y - N ~ .. ~" 

b,., = ~x; = [ . (~x')j 
~z'Z·--- ~; 

N 

(86) 

S. PREDICTING FROM NONRECTILINEAR RELATION
SHIPS 

We have still another problem of prediction to consider, 
one that is something of a mixture of the two problems we 
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have already considered.. The • regression coefficient and 
regression equation we have just discussed_are based, you 
recall, upon the assumption that the relationship between 

. X and Y is rectilinear. What predictions can \\e make when. 
this assumption is not warranted, i.e., 'when the relationship 
between X aid Y is curvilinear? Our procedure can best 
be illustrated by a concrete problem. Suppose we had 129 
items we contemplated using in a questionnaire. These 
items have. been scaled by the Thurstone technique (89), 
the details of which are unimportant here. For each item,. 
let us suppose that we also have a measure of ambiguity, 
Q, and a measure of scale value, B~ Our problem is to 
determine the most probable Q value from knowledge of 
the scale value of the item. Our first step is to plot these 
paired values in a correlation table as in Table 62. 

In the absence of any knowledge at all of the relationship 
between scale and Q values, our best prediction for each 
of the items would be the mean Q value of the entire dis-

TABLE 62.-PREDICTION OF Y (Q VALUEs) PROM X (ScALi: VALUEs) WHEN 
. THE RELATIONSHIP BETWEEN THE Tw:» V ABIABLES 

Is CUBVILINEA.B 

Q 
VALUES 

ScALE VALUES (X) 

(Y) 0 1 2 3 4 5 6 7 8 
- -----

4.0-U 1 1 1 2 
3.5-3.9 1 1 1 4 5 4 2 
3.<HJ.4 4 3 1 6 3 2 6 '2 
2.5-2.9 3 2 2 2 1 3 
2.0-2.4 4 3 2 3 a· 
1.5-1.9 8 6 1 5-
UH.4 6 9 
.5- .9 3 11 
.0- .4 1 1 -- --r-:-- r--

Means of col 
~ 

umns ..... 1.45 2.44 3.04 3.70 3.24 3.49 3.42 2.95 1.30 

Mean of entire Y distribution = 2.36 
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tribution. This prediction.· follows from the principle of 
.least squares which; in the present case, means that we wish 
to predict values which will give us the smallest sum of 
squared deviations, i.e., the smallest discrepancy between 
predicted and observed values. The standard deviation of 
the complete distribution of Q values would give· us a measure 
of the extent of our errors of prediction in this instance . 
. But when we have the items classified according to scale 
and Q value, as in Table 62, we note that the means of the 
columns differ from the mean of the entire distribution. 
Could we not predict more accurately for items of a given 
range of scale values (items in a given column) if we pre
dicted the mean Q value of the column rather than the mean 
of the entire distribution? If we predict as the most prob
able Q value for each item in column 0 the mean Q value 
of that column, then the sum of squared deviations of the 
items in the column from the mean would give us a measure 
of our errors of prediction for the single column. If we 
repeat this procedure for the items of column 1, column 2, 
and so on, and divide the total sum of squared deviations 
within groups by N, we could get an over-all measure of our 
errors of prediction. Thus 

(87) 

You may recognize ~1/o, ~?/t, ~~~ ... ~~ as being the 
sum of squares within groups of analysis of variance. We 
did not apply anafysis of variance to these scores when they 
were presented earlier in Table 22, page 111. If we had, 
we could get the sum of squares which we need in formula 
(87) by subtracting the sum of squares between groups 
(columns) from the total sum of squares. But the solution 
for the standard error of estimate is even simpler if we know 
the value of the correlation ratio, since · 

(88) 



Predicting from N onrectilinear Relationships 273 

'Substituting in formula (88) with the value of u11 and fJ2
11:e · 

taken from Table 22, we get 

u" ... = 1.01 v1 - .6911 
= 1.07 .y .3089 
= (1.07) (.556) 
= .595 

The value Of UI/•SI .595, provideS US with an estimate . Of 
our errors of prediction when we predict as the most probable 
Y value for ·any given value of X, the mean of the Y column 
in which the X value is classified. We have reduced the 
e:?dent of the errors of prediction from the standard deviation 
of the entire Y distribution, 1.07, to the value given by u11.:r~ 
.595. This represents a reduction of .475 points, or an 
improvement of .475/1.07 = 47 per cent. ' 

PREDICTIONS AND THE EVALUATION OF 
PREDICTIONS 

Example 1.-A study of 100 women who thought their marriage 
was a success and a study of 100 women who thought their mar~ 
riage was unsuccessful revealed a differential in response to the 
question: Did you have a happy childhood? The data are as 
follows: 

MARITAL STATUS 

CHILDHOOD STATUS TOTAL 
Vnsuccessful Successful 

Marriage Marriage 

H~y ................. 40 70 110 
u ppy .............. 60 30 90· 

Total ••......•..•.. 100 100 200 

(a) What per cent of the predictions would be correct without 
a knowledge of the response to the question concerning' child~ 
hood status? What per cent would be correct with a knowledge 
of the response to this question? To what extent is the; effi~ 
ciency of prediction increased by this knowledge? 
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(b) Reverse the table and deterhi.ine the efficiency of predic
tion of response to the question concerning childhood status 
without knowledge of marital status and with knowledge of 
marital status. To what extent is the efficiency of prediction 
increased by this knowledge? 

Example 2.-The data. below, adapted from Newcomb (69), 
show student preference for presidental candidates in the 1936 
election arranged according to college status. Determine the 
efficiency of prediction without a knowledge of student status and 
with this knowledge. To what extent is the efficiency of predic
tion increased by this knowledge? 

STUDENT PREFERENCE 
CoLLEGE STATUS TOTAL 

Against Roosevelt For Roosevelt 

Jurdors-,Seniors ...... 24 28 52 
Sophomores ..••.•.... 23 17 40 
Freshmen .•.•. _ .•.•... 37 15 52 

Total ... .' ........ 84 60 144 

Example 3.-Dorcus (10) had an industrial concern select two 
extreme groups of workers, a. "satisfactory group" and an "un
satisfactory group." · Each member of both groups was then given 
the Humm-Wadsworth Scale and predictions were made on the 
basis of scores on the scale as to the group in which the individual 
belonged. The resplts were as follows: 

CoMPAN1' RATINGS 
HUMM-WADSWORTH TOTAL ScALE 

Unsatisfactory Satisfactory 

Satisfactory .......... 6 18 24 
Unsatisfactory. ~ ..•.•. 16 8 24 

Total .... · ......•. 22 26 48 
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Determine the efficiency of prediction without a knowledge of 
Humm-Wadsworth score, but assuming you know.the number of 
individuals placed by the company ratings in each of the .two 
groups. Determine the efficiency of prediction with a knowledge 
of Humm-Wadsworth score and the increase in efficiency of predic
tion with this knowledge. 

Example. ~.-Krathwohl (56) reports the following data on re
lationship between classification on the ACE test of academic 
aptitude and grades in the social sciences. Determine the effi
ciency of prediction without and with knowledge of ACE clas
sification. What is the increase in efficiency of predictions with . 
knowledge of ACE classification? 

GRADEs IN SociAL SCIENCE 
ACE TOTAL CLAssiFICATION 

DandE c AandB 

More than 75 .........•.... 7 30 39- 76 
25-75 ..................... 62 59 30 151 
Less than 75 ............... 49 19 a 71 

Total .•..•.•.•••...••. 118 108 72 298 

Example. 5.-:-In an earlier problem (Example 7, Chapter 5, 
page 104) you found the coefficient of correlation between scores 
on a test of su~ject matter and a test of vocabulary in psychology. 

(a) Find the regression coefficients: b11., and b.,11 

(b) Using the regression equation, predict the most likely·· 
score on the test of vocabulary (Y) for the following scores on· 
the test of subject matter (X): 

If X 48 55 73 82 .90 
------

Then Y' 

-
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(c) Using the regression equation, predict the most likely 
score on the test of subject matter (X) for the following scores 
on the test of vocabulary (Y): 

_II_Y~ __ 11_.s_s_l!:_~~.n ~ 
ThenX' ~- I 

(d) Find the standard errors" of estimate, f1,.s and fls- 11, and 
interpret' them. 

Example 6.-In an earlier problem (Example 1, Chapter 6, 
page 128) you found the correlation ratio of vocabulary test scores 
(Y) on chronologi~al age (X).. Find the standard error of estimate 
for the same data, i.e., u 11.z, and interpret it. 



CHAPTER 14 

RESEARCH AND EXPERIMENTATION 

Research . problems consist essentially of defining issues 
operationally, and collecting, analyzing, describing, and 
interpreting data as they bear upon the particular issue or 
question. ·Thus any question on which it is possible -to 
collect data can be the basis of a research problem. To be 
sure, as Lynd (66) has stated, not all questions and conse
quently not all research problems are of equal significance. 
But the exact significance of a question is not always an 
easy matter to determine beforehand, as any trained re
searcher knows. Many problems, which may at first 
thought seem relatively insignificant, may later lead to very 
important contributions to knowledge. 

The following questions illustrate something-of the scope 
of research activities in the behavioral sciences. Will chil
dren, on the average, work harder when they are praised 
than when they are criticized (46)? Is there any relation
ship between grades earned in college and scores on a college 
entrance examination (33)? Does frustration result, on the 
average, in aggression or regression or both (4, 9)? . Will 
one method of teaching mathematics result in greater average 
achievement upon the part of students than another method 
(6)? Do students, on the average, learn just as much from 
straight lectures as they do from discussion groups (100)? 
In terms of average achievement, are small classes to be 
preferred to large classes (100)? Are individuals who are 
honest in one situation likely to be honest in other situations 
(67)? Are personality traits related to. color of the hair 
(71)? What is the greatest source of anxiety for 'college 
students (18)? Do we tend to suppress experiences which 
are unpleasant (17)? Is there any real difference between 
the results obtained by the counseling procedures used in 

277 
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"nondirective" therapy and "directive" therapy (78)? To 
what extent can attitudes be changed as a result of viewing 
motion pictures (75, 79)? To what extent do "stereotypes" 
determine our responses to social issues (16)? How can 
children's fears be eliminated most effectively (49)? To 
what extent can children's intelligence test scores be modi
fied by changes in the environment (84)? Do the attitudes 
we have toward various political concepts influence the 
meaning which these concepts have for us (12, 13)? 

The posing of a question, similar to those just listed, is the 
first step in research. Questions, when properly phrased, 
become hypotQ.eses which can be subjected to empirical test. 
Once a question has been formulated, the next step is plan
ning the experimental design. This consists of determining 
what data will need to be collected, the manner in which 
they will be collected, and the methods by which they will 
be analyzed. The third step is actually carrying out the 
research and analysis. The final steps are interpreting the 
analyzed data and ·seeing that the results are then made 
available to other investigators. 

Since it is the initial step which most often proves to be a 
stumbling block for _the student called upon to undertake 
a research project as part of his academic training, we might 
examine briefly some of the sources of problems suitable for 
·investigation. One of the most fruitful sources of hypothe
ses is to be found in the theories advanced by various writers 
in a given field. In psychology, for example, the learning 
theories of Hull (44), Tolman (91), and Guthrie (40) have 

· been the starting point for many experiments. Allport's 
(1) theory of functional autonomy in the field of motivation 
has been another source of research problems (76). Sears 
(81) has summarized many experiments which had their 
origin in the psychoanalytic . theories of Sigmund Freud. 
Likewise, Gestalt th~ory (55) and the variation of Gestalt 
theory advocated by Lewin (58, 59) have resulted in many 
important research projects. 

Students who have been indoctrinated with critical atti-
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tudes and who read challengingly the literature in their 
field of specialization will not fail to find innumerable 
projects demanding investigation. Students who read .with 
blind acceptance of authority and the printed word, on the 
other hand, are apt to overlook assertions and statements 
made by writers which are not based upon research evidence~ 
Such assertions and statements, when questioned, may very 
well become the basis of research problems for the critical 
reader. The proverb "The grass looks greener on the other 
side of the~ fence" and the many variations of this proverb, 
when questioned, became the basis of a series of ingenious 
experiments for Wright (101). And Irwin's (46) question
ing attitude applied to certain aspects of Wright's research· 
led to additional experimentation. 

1. INTERPRETATION OF TESTS OF SIGNIFICANCE 

Once a problem has been selected for investigation, if 
the investigation requires a test of significance-and this 
will usually be the case-it is important that we understand 
clearly the kind of hypothesis which can be tested by means 
of the x2

, t, t 2
, or F tests. Despite the fact that the ques

tions or hypotheses raised earlier were stated in such forms 
as "Is there any relationship between ••• ," "To what extent 
can attitudes be changed by ••• ," "Is there any difference 
between ••• ," and so forth, these questions must be re
stated when it comes to the application of tests of sig
nificance. To be sure, it is in the forms just given that the 
investigator usually gets his hunch or hypothesis, i.e., it is 
usually the investigator's opinion that one method is more 
effective than another, or that attitudes can be changed by 
motion pictures, or that there is some relationship between 
two variables. But, as MeN emar has pointed out in the 
case of a mean difference, "Regardless of the experimental 
hunch or hypothesis, the only workable statis:tical hypothesis 
is that no difference exists between the universe means" 
(68, pp. 336-337). 

I 
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The hypothesis of no difference is the familiar null hypothe
sis and applies not only to differences between means. It 
is stated in a variety of ways depending upon the particular 
investigation.1 If we are testing the difference between the 
means of achievement scores of children taught by one 
method and children taught by another method, our working 
hypothesis would be that there is no difference between the 
the means of the populations of which our two groups are 
assumed to be samples. Sometimes we state our working 
hypothesis in this form: Two samples have been drawn 
from the same population; consequently there is no differ
ence between them other than would be expected as a. result 
of sampling variation. In testing the significance of an 
observed correlation coefficient, the hypothesis may be that 
the correlation in the population is zero, or that the sample 
value of r does not differ significantly from some other 
specified value of the population r. · The same sort of hy
pothesis is applied to the means of several samples being 
tested by the F test. Our working hypothesis is that they 
have all been drawn from the same population or popula
tions with a. common mean and variance.1 The calculation 
of x1 tests the same null hypothesis: That there is no differ
ence between our observed and expected frequencies or that 
the observed sample data have been drawn from a population 
distributed according to the expected frequencies. 

Our tests of significance are based on the assumption that 

1 A hypothesis which is set up with the poesibility of being rejected at eome 
designated level of si~cance is called a null hypothesis, the term "null" 
referring to our interest in possible rejection rather than to the fact that the 
hypothesis is stated negatively. Fisher has emphasized that "every experi
ment may be said to exist only in order to give the facts a chance of disproving 
the null hypothesis" (26, p. 16). -

In a broad seme, the term is used by some statisticians to refer to any eligible 
hypothesis, thAt is. any hypothesis which is exact and free from vagueness, 
so thAt it may form the basis for the sampling distribution used in making a 
test of significance. (See the note by T. A. Bancroft in Biomdrica Bulletin. 
1945, I, p. 38.) . 

a More precisely; the hypotbesia is that the 1111.1D.plea have been drawn from 
the IIII.ID.e or identical populations, since the a.ssumption is that not only the 
mea.ns and the va.riances are the sa.me, but that the populationa are, in addi~ 
tion. normaUy distributed. 
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th~ null hypothesis is true. If we then obtain a value of t, 
F, e, or x" such that it would occur on the basis of sampling 
variation alone 5 per cent or less of the time, this may lead 
us to reject the null hypothesis at a defined level of sig
nificance.1 And if the null hypothesis is not tenable, this 
tells us that we would not expect to· get the results we have 
obtained on the basis of sampling variation alone. If our 
results are not due to sampling errors, then this fact may, 
through logic and insight, lead us to infer that some differ
ence betw~n our experimental groups does exist and that 
this difference is attributable to one of our variables. But 
this inference must come from our experimental design and 
from analysis of our variables, not from tests of significance. 
Should the value of t, for example, be such that it could be 
expected to occur much more frequently than the 5 per cent 
of the time which we have agreed to regard as significant, 
then we must assume that the null hypothesis is tenable, 
i.e., that we have no evidence against it. But observe that 
the statement that we have no evidence against :t:he hypothe
sis does not prove it to be true; it merely means that this 
particular sample offers insufficient evidence for rejecting it. 

The insistence upon this form of statement of a statistical 
hypothesis, we agree with McNemar, is not umere quib
bling!' If the null hypothesis is true, then successive . 
repetitions of the research would give a sampling distribu-

•It waa pointed out previousJy, but it ill worth repeating, that the null 
hypothesis which is tested is not set up necessarily because we believe it to be 
true, but so that it may be considered for possible rejection at a. de$gnated 
level of significance. On the assumption that the h~othesis is true

1 
then the · 

~~ampling distribution of the statistic under consideratiOn may be UBe<l to deter.. 
mine the _probability that random samplin~ from the population for which the 
hypotheslll holds would yield statistics deviating from the parameter as much .. 
u the sample one does. Since the null hypothesis specifies the frequencies 
with which the different resuiUJ of an experiment Dl&Y occur, we IDa,Y also 
divide these results into two classes, one of which shows a significant discrep
ancy or deviation from the null hypothesis, and the other DO significant dis
crepancy or deviation from this hypothesis (26, pp. 16-17). "If t~ classes 
of results a.re chosen, such that the first will occur when the null hypothesis is 
true ~th a known degree of rarity in, for example, 5 per cent or 1 per cent of 
the trials, then we have a test by which to judge, at a known level of signifi~ 
cance, whether or not the data contradict the hypothesis to be tested'' (26, 
p. 182). Cf. also the. discussion in Walker (96, pp. 290-292). 
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tion of .differences which would have a mean of zero. The 
standard deviation of this sampling distribution is esti
mated from the standard error of the difference we have 
calculated. By reference to the table of t, we can then 
make a statement of the probability of obtaining a value of 
t as large as the one we have obtained. Under no circum
stances, however, can we make any statement· of probability 
that the true population difference is some specified value. 
Population parameters; though single, fixed values, usually 
remain unknown. • · 

But despite the limitations imposed by the fact that 
population values are unknown, we sometimes lose sight of· 
the fact that by establishing the .fiducial limits we may infer 
something as to the degree of the difference between two 
means. That .is, a simple test of significance may lead us to 
reject the hypothesis of no difference, but the fiducial limits 
permit us to determine, again with a given degree of con
fidence, whether we may consider as tenable a hypothesis 
that the population mean difference is within a certain range. 

2. SAMPLES A.ND RESEARCH 

Since most research deals with samples, we may expand 
our earlier discussion to take into consideration certain 
-aspects of sampling which we neglected. When, as is 
generally the case, we are interested in making inferences 
from statistics derived . from samples about the population 
or universe, certain assumptions· are necessary. We must 
assume that our sample is representative of the population 
from which it was drawn. We may, however, define this 
population in various ways. · We may start with a definition 

·of a population of males as consisting of all males in the 
world. We may limit this definition· by restricting oui· 
population to all males of a given age in a given country; 
all males of a given age in a given state; all :IDales of a given 
age in a given college; and so on. If we have conducted an 
experiment with a random sample of male college students 
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selected from a given college, we can safely generalize from 
tests of significance about the population of college students 
in general only if we can make the· assumption that our 
sample is representative of college students in general. 
Generalizations from samples must· always, in other words, 
be considered as applying only to the population of which 
the samples are representative. . . 

Samples used in experimentation and research, and conse
quently statistics derived from these samples, are subject 
to two kin <Is of errors: constant errors a:nd errors of random 
sampling. Constant errors are errors which bias statistics 
in one direction. The Literary Digest poll of 1936, which 
predicted a Republican victory on election day, illustrates 
what happens when constant errors are present in a sample. 
One of the reasons why the Digest poll was in error was that 
much of Roosevelt's support lay in the lower income groups 
which were not represented on the lists of telephone sub
scribers and automobile owners from which the Digest 
largely selected its sample. The results of th~ poll conse
quently were biased. The sample was not representative 
of the voting population, and the inaccuracy of the generali
zation concerning the outcome of the election, based upon 
the sample, was evident to polling experts long before 
election day arrived (29). The important point in this 
connection is that the standard error formulas, upon which . 
statistical tests of significance are based, do not provide 
any estimate · of the direction or magnitude of constant 
errors. Constant errors can possibly be detected by a 
logical examination of the manner in which the sample was 
selected. 

Only the errors of random sampling, the second source of · 
errors to which samples are subject, can be estimated by 
standard error formulas. The standard error of a statistic 
estimates the variation to be expected of th.e statistic from 
sample to sample when the successive samples are of the 
same size and randomly selected from· a given population. 
A random sample is customarily defined as a sample in 
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which each individual in the defined population must have 
an equal chance of appearing. 4 Such a sample, if possible 
to obtain, would insure th«:; fact that the sample is repre
sentative of the population. But strictly speaking, it is 
obvious that, according· to this definition of randomness, 
the samples dealt with by psychologists, educators, sociolo
gists', and others in· the social sciences are never random. 
For all individuals in any, large population never have an 
equal chance of appearing in the sample selected for in
vestigation. 
· In an experiment, for example, involving a comparison of 
two teaching methods for sixth-grade children, the subjects 
being· two classes in a given school, could we generalize 
from the sample results . concerning the effectiveness of the 
two methods for sixth-grade ·students in general? If we 
could assume that our subjects constitute a random sample 
of . the population of sixth-grade students, then we could 
generalize about this population. But our subjects could 
be considered ·a random sample oilly if every sixth-grade 
student had an equal opportunity to appear in the sample. 
Obviously, this is not the case.5 

' The problems of random sampling which are faced by the 
investigator in the social science fields, however, are not 
peculiar to these fields alone. · In the same sense that indi
viduals in· a large population never have an equal chance 
of ·appearing in samples under investigation, the samples 

· used by geologists, agronomists, biologists, physicists, chem
ists, and engineers are not, strictly speaking, random sam
ples. A. geologist, may examine a sample of ore from a 
given area, but does every possible unit of ore have an equal 

' Snedec~r contends, however, that for tests of significance one can specify 
that, after having decided upon the size of the sample to be used, the only 
requirement which needs to be imposed is that "every possible sample of 11. 
individuals shall have the same chance of being drawn" (86, p. 389). Note 
that this says nothing about individuals. 

& We could, of course, define the population about which we were generalizing 
as consisting not of individuals, but of intact sixth-grade classes in schools of a 
given size. We could then select by chance the schools and the classes in the 
schools in which we carried out our experiment and assume that our samples 
were representative of this defined population. 
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opportunity of appearing in the sample? An industrial 
engineer testing the tensile strength of thread or some other 
material in a plant, regardless of how the sample of thread 
is selected, does not have a random sample in which every 
unit in the population has an equal opportunity to appear. 
The sample of thread he studies can be a random sample 
only of the population of thread already manufactured. 
Thread which has not yet been produced does not have an 
equal opportunity to appear in the sample. Yet this does 
not prevent the industrial engineer from assuming that his 
sample is a random sample and that" it is representative of 
all the thread that is currently coming. 

The same is true of the agronomist who conducts research 
'\\ith a variety of com grown in a given soil mixture. He 
may have a random sample of the population of com grown 
this year, but he obviously does not have a random sample 
of the com to be grown next year, for this com does not have 
an equal opportunity to appear in the sample. But, again, 
this does not prevent the agronomist from dealing with his 
sample as if it were random, nor does it prevent him from 
assuming that his sample is representative of the com to 
be grown in the future. From the sample he has he conducts 
tests of significance and generalizes on the basis of them 
about the corn which is yet to be grown. 

The problem here, it seems, is one of an ideal. As an 
ideal, a random sample is to be regarded in much the same 
fashion as Boyle's law in physics, which gases are a.Ssumed 
in theory to obey, but which in practice they do not. The 
concept of the ideal is a useful and convenient way of looking 
at the behavior of gases. The failure of gases to satisfy the 
ideal does not prevent physicists and chemists from experi
menting and making generalizations on the basis of it. 

In the behavioral sciences we may recognize and acknowl
edge that we never have perfectly random samples of a large 
population. But, if we are willing to makq the necessary 
assumptions, we find that in many, many instances the 
assumptions are justified in terms of practical consider~ 
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tions. ~uch has been said against the samples used in 
behavioral research-and that many studies have violated 
even simple precautions to insure representativeness is not 
to be denied-but generalizations based upon samples in 
which care has been taken to eliminate bias and which are 
then treated as if they were random samples from larger 
populations have been found to be sound and useful. The 
fact is that no one has ever studied the correlation between 
college grades and tests of academic aptitude in a strictly 
random sample of college students from the population of 
·all college students. Yet generalizations have held up that 
have been made on the basis of available correlation co
efficients derived from samples and tests of significance have 
been applied to these coefficients as though they were de
rived from random samples. 

McNemar, in the article to which we have referred previ
ously, summarizes the problem of representativeness in this . 
way: 

In the absence of any rule-of-thumb method for checking repre
sentativeness in psychological research, the investigator must re
sort to logical considerations. H the sample has been drawn by 
some mechanical means or by stratifying the universe on the basis 
of pertinent facts, one can feel fairly sure that the sample is repre
sentative. In the absence of an obviously valid scheme for 
drawing the sample, the only thing one can do is to describe the 
sample as completely as possible with regard to knowri. charac
teristics of the universe from which it was drawn. H the sample 
is typical of the universe in several variables which are related to 
the variate being sttidied, it is safe to assume that it is representa
tive. This reasoning is, of course, posterior use of the principles 
of stratified sampling. The importance of fully describing the 
sample and how it was drawn cannot be overemphasized. With
out such information it is impossible to evaluate a given research. 
(68, p. 384.)8 

• For 8 discussion of stratified samples, the article by McNemar (68) should 
be consulted as should Stock (88). The use of tables of random numbers for 
mechanically selecting samples will be discussed in 8 later section. 
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S. SIZE OF. THE SAMPLE 
It would not be difficult to find many articles stressing 

the need and value of large samples in psychological and 
educational research. Indeed, as McNemar points out:· 

Some psychologists frown upon the use of small samples, as, 
for example, N less than 25; a few use such small samples, but scorn 
the necessity of evaluating their results in terms of the mathematics 
of small samples • • • while others will rightfully argue that when 
small samples, properly evaluated, yield a difference which would 
arise by chance only once in a hundred times, the result is just as 
dependable as if the same chance figure had been found for large 
samples. It is assumed .in either ca.se---small or large sampling
that the sampling technique is such as to avoid bias. It is com-
monly and erroneously thought that some magic lies in large 
samples and that bias is less apt to be present. The larger the 
sample, the greater the precision so far as random _errors are con
cerned, but it does not follow that bias is avoided by increasing the 
size of the sample. (68, p. 34:0.) 

If, in comparing the means of two independent samples, 
each consisting of 15 cases, for example, we obtained a t of 
2.76, which is significant at the 1 per cent level for 28 degrees 
of freedom, we could reject the hypothesis being tested with 
the same degree of confidence that we would have if the 
samples had consisted of 100 cases each and the value of t 
obtained was 2.60. Our confidence, in other words, is not 
increased in rejecting a hypothesis at the 1 or 5 per cent 
levels of significance when we are dealing with samples of 
100 cases each, over what it would be if the same hypothesis 
were rejected at the 1 or 5 per cent levels for samples of 
15 cases each. 

Let us suppose, however, that in a given experiment we 
are testing the difference between the means of two samples 
of 25 cases each and that our computed value· of t just fails 
to meet the required value at the 5 per cent level of sig
nificance. Now if we assume that the difference between 
the means will remain fairly constant, regardless of the size 
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of the samples, then we would, o~ course, expect to get a 
significant value of t if the size of the samples were increased. 
We could, in other words, repeat the experiment, if this 
were feasible, with samples sufficiently large to insure more 
or less that we would obtain a significant value of t. 7 

With respect to this persistent question of how many cases 
one should use, there is no one set answer. But we agree 
with McNemar "that the demonstration of a difference (or 
effect) which is large enough to possess any practical or 
social significance will net require large samples; certainly, 

. a difference which is so small as to require 1000 cases in each 
. sample to demonstrate it is apt to possess little psychological 
meaning" (68, p. 340) • 

.4.. CONTROL GROUPS 

Suppose that an investigator reported the following experi
ment: At the beginning of the term in a Latin class, the 
members were given an English vocabulary test. At the 
end of the term the test was repeated and the difference 
between the means of the first and second tests is significant 
at the l per cent level. What conclusions may be drawn 
from: this experiment? Can we assume that the .study of 
Latin increases English vocabulary? This might be the 
. case, but the experiment described does not establish the 
fact. All that we can conclude is that there has been a 
significant increase in the mean English vocabulary score, 
but we do not know whether this is largely due to the Latin 
course or not. The reason that we cannot draw the conclu
sion concerning the effects of the Latin course is that the 
acquisition of English vocabulary is a growth or achievement 
process that may have occurred, and probably did to some 
extent, in students who were not members of the Latin 
class. If the test had been given to an arithmetic class we 
would expect this group to show some increase in vocabulary 
also. 

'See, for example, the discussion in Peters and Van Voorhis ('14, pp. 469-
. 470). 
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In this and every other experiment where the changes in 
behavior we are measuring might possibly occur as a result 
of factors external to the experiment proper, a control group 
which does not experience the experimental variable is neceS
sary for evaluating the changes observed in the experi
mental group. If we fail to take the precaution of having a 
control group, then we have no way of determining how 
much of the change in the experimental group e~ be attrib-
uted to the experimental variable, in this instance the Latin 
course, and how much to other unknown factors. 

a. Control by random selection. Control · groups . are: 
sometimes formed in research by dividing the total number 
of subjects available into two groups by some method of 
random selection. Each subject might be assigned anum
ber, the numbers placed on discs, put into a box, and thor
oughly mixed. The numbers are then drawn out one at a 
time, the first number being assigned to one group and the 
second number to the second, the third to the first, the 
fourth number to the second, and so on, until the numbers 
in the box are exhausted. Then by flipping-a coin one of 
the two groups could be assigned to the experimental condi
tion and the other could serve as a control. 

A still more efficient method of random selection, how
ever, is to make use of a table of random numbers (27, 72) .. 
These tables consist of numbers arranged at random in 
columns and rows. The tables can be used by entering at 
any point and by reading in any direction, down or up, 
right or left, or obliquely. · .... , 

Let us suppose that we wished to divide 80 subjects- into 
two groups of 40 each. We first number our subjects from 
00 to 79. To determine where to enter the table, we might 
close our eyes and put our pencil on the table. Suppose we 
then open our eyes and find that the pencil is resting, let us 
say, on column (5) and row (26). It makes no difference, 
once the point of entry has been determined, in which direc~ 
tion we read. Let us assume that we are going to read 
downward. Since we need two place numbers, we obtain 
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these by· combining the digits in ~djoining columns. We 
read down the column until we have 40 unlike numbers 
below 80. We skip any number which is 80 or above and 
any number which is a repetition of a number previously 
read. Going down columns (5) and (6) of Table 63, which 
is· a section of the table of random numbers, Table G, pp. 
340-341, we would have 31, 14, 17, and 22. We would 
·skip 99, since we have no subject who is assigned a number 
as large as this. If 99 were followed by 31, we would skip 

.TABLE .63.-A BLocx: oF R.ANDo:u NmmEBS SELECTED no:u TA.l!Ll!l G 
.. I 

. COLU¥NS 
,. Row 

(5) .(6) (7) (8) (9) (10) (11) (12) (13) 
----- ----,_____ ----

26 3 1 7 7 5 2 2 3 4 
27 1 4 ·s 5 7 0 9 6 4 
28 1 7 3 8 0 3 6 2 3 
29 2 2 0 9 7 2 3 9 2 
30 9. 9 5 6 9 8 2 8 0 

this :humber also since the subject ru:;signed number 31 has 
:already been selected .. When we have reached the last row 
in the table we may continue to read numbers by going up 
or down the adjoining columns, for example, columns (7) 
arid (8), until we have 40 unlike numbers below 80. ~ 

The individuals with the numbers corresponding to the 
first 40 numbers below 80 that we have read from the table 
of random nUm.bers would constitute one of our groups and 
the remaining 40 individuals would constitute the second 
group. In a similar fashion we could divide a large group 
of subjects at random into any number of smaller groups. 
Tables of random numbers can also be used for selecting at 
random a single small group of subjects from a larger total, 
and for assigning groups at rnndom to one of a number of 
given experimental conditions. 
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When individuals have been assign~d . to control and 
experimental groups in the manner just described or by some 
other method of random selection, then the proper formula 
for the standard error of the difference to use in evaluating· 
the difference between the means of the expenmental and 
control groups is formula (50) or formula (61). . 

b. Control by matching individuals. It is obvious, how
ever, that many experiments will not permit the random 
selection of an experimental and control group and, in many 
instances, greater precision in terms of a reduced standard 
error of the difference can often be achieved by not making · 
use of groups selected at random. In the experiment cited 
on the effect of Latin on· English vocabulary, for example~· 
it would not be possible to assign subjects to the Latin class · 
and to a control group at random. We must deal with the 
Latin class as it stands. In this instance we could establish 
a control group by pairing with every member of the Latin 
class a non-Latin student with a similar English vocabulary
score. At the end of the experiment we repeat the English 
vocabulary test with the experimental and control groups. 
We thus have an initial and final test score for each indi
vidual. We could now test the difference between the 
means of the initial and final test for the Latin group. But 
since correlation is involved between the means we are 
comparing, we must make use of the difference formula, 

tT,.tJ = V;. "_ 
1
, to find the standard error of the mean differ

ence. We could, of course, compute the standard error of 
the difference in terms of formula (48), if we first found the 
correlation coefficient between the initial and final scores 
for the Latin group, but working directly with the differences 
between scores involves less labor. In a similar manner we 
could determine whether the initial and final means ·of the 
control group differ significantly. 

Suppose that we found a significant value of t in each' 
comparison. This would mean that both the Latin group 
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and the non-Latin group show significant differences be
tween the first and final tests. But we would, on the basis 
of the comparisons just made, have no way of knowing 
whether the study of Latin resulted in a greater mean in
(lrease in English vocabulary. It is in comparing the differ
ence between the mean gains (or mean losses or simply mean 
changes, as might be the case in another experiment) that 
we would find the answer to this question. The standard 
error of the difference between the mean gains can be found 
quite simply when we have paired the members of our 
eJg>erimental and control groups. 

We :fust find the difference between the initial and the 
final test for . each member of the two groups. We thus 
have a difference score for each n:i.ember of the two groups, 
and these scores are shown in columns (4) and (7) of Table 
64. And since we have paired ~e members of each group, 

--

TABLE 64.-Tm!l CoMPUTATION o:r THB STANDARD Emwa o:r THB Mux 
DIFPERENCB IN GAINS FOB. MATCHED llmlnDUALS 

LATIN (ExpEB.I¥ENTAL) NoN-LATIN (CoNTROL) 
DIPTERENCB 

. PAIB. IN GAIN 

Initial Final Gain Initial Final Gain 
(1) {2) (3) (4) (5) {6) (7) {8) 

1 35 42 7 35 36 1 6 
2 42 46 4 43 48 5 -1 
3 28 28 0 27 25 -2 2 
4 32 31 -1 30 32 2 -3 
5 37 40 3 38 37 -1 4 

the difference scores are also paired~ All that we need to 
do is to find the difference between each pair of difference 
scores. These scores, listed in column (8), will represent 

· the differences. in gains or losses for each pair of subjects. 
We then find the standard deviation of this distribution. 
This standard deviation divided by the square root of 
N - 1, where N equals the number of pairs, will give us the 
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standard error that we need for evaluating the difference in 
mean gain in English vocabulary for the two groups. Thllil 

u. ~ u,,-
,, vN-1 

{89) 

Perhaps you have noticed from Table 64 that the matched 
pairs do not have precisely the same scores on the. initial 
test. Indeed, it is seldom that we can match the members 
of the twG groups so that they have exactly the same initial 
scores. We must expect to have some discrepancies. Peters· 
and Van Voorhis (74, pp. 448-449) suggest that differences 
between the pairs on the ~tching variable as large as 5 to 
10 per cent of the range of scores are permissible as long as · 
they are balanced between the two groups so as to keep the 
means approximately equal. 

Sometimes it is not feasible to pair individuals· in the 
control and experimental groups on the variable on which 
we are going to make a test of significance, but we :JD.ay be 
able to pair our subjects on the basis of some variable which 
we have reason to believe is correlated with the variable· on 
which the two groups are to be compared. We might be 
able to pair the subjects on the basis of age, intelligence test 
scores, reading speed, or some other factor that has a fair 
degree of correlation with the variable under study~ If we 
match subjects in the experimental and control groups on 
this basis, we may still make use of the difference formula 
for finding the standard error of the mean difference. 

If we succeed in pairing on some variable so that we 
introduce a correlation coefficient as high as .75, then this 
has the effect of reducing the standard error of the difference 
by about one half (68, p. 354). We already know that the 
standard error of the difference can be reduced by increasing 
the number of subjects in each group. But we would have 
to quadruple the number of subjects to achieve this same 
reduction in the standard error of the difference for groups 
selected at random. If we can introduce a correlation co-
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efficient· of .50, th¥ would reduce the standard error of the 
difference as much as would doubling the number of sub
jects for groups selected at random (68, p. 354). • Pairing 
individuals on the basis of some relevant variable, we see, 
is obviously 'advantageous statistically and also from the 
point of view of experimental design. But if the subjects 
are"paired on the basis of a variable which fails to be corre~ 
lated very highly with the experimental variable, then the 
:reduction in the number of degrees of freedom available for 
-evaluating· the t obtained may offset the slight reduction in 
the standard error of. the difference. Our experimental 
design, in this case, would really be less efficient than if we 
had used groups selected at random. 

c. Control by matching groups. . Even when circum~ 
stances do not permit the pairing of individuals, it may still 
be possible to match groups. If we can match individuals 
this insures the matching of groups. We can, however, 
match or equate entire groups, without regard for indi
viduals, by seeing to it that the two groups have approxi
mately the same mean and standard deviation on the initial 
test on the experimental variable or, if this is not possible, 
()n some other relevant variable. If the variable on which 
the two groups are matched is correlated with the variable 
under study, we may still take advantage of this condition 
to -reduce the standard error of the difference. When 
groups have been matched on this basis, the proper formula 
to use in finding the standard error of the mean difference is 
formula (49). 

d. Single group serving as its own control. Earlier in our 
discussion we pointed out that· a single group cannot serve 
as its own control whenever there is any basis for assuming 
that the changes in behavior which we are measuring might 
possibly be the result of factors external to the experimental 
situation. We should point out now that if we have no 
reason to assume that external factors are important, then, 
of ·course, the experimental group may serve as its own 
·control. For example, if we measured the attitudes of sub-. 



Til£ t Test 295 

jects just before and immediarely after theyfhad seen a motion 
pictrire designed to change attitudes, we would have no 
need of a control group. We could logically ru;sume that. 
whatever changes in attitutle occurred were directly ·at. 
tributable to the influence of the motion picture, since it is 

· difficult to see what possible external factors might be at 
work in this particular experiment. When a single group 
serves as its own control~ the presence of correlation must be 
recognized and taken into account in computing the standard 
error of the difference between means. . 

6. THE t TEST· AND THE ASSUMPTION OF HOMO
GENEITY OF VARIANCES . 

The experimental designs and problems we have been 
discussing concern largely the test of significance of a mean 
difference bru;ed upon the sampling distJ::ibution of L · Test. 
ing the significance of the difference between two s3,JI1ple 
means, by dividing the difierence by the standard error of 
the difference and referring the obtained value to the table 
of t, involves, ru; we have said before, the assumption that 
the variances of the populations from which the· samples 
were drawn do not greatly di11er. H the variances of the 
populations do differ, and if a significant value of t is ob
tained, then we can still reject the hypothesis that the two 
samples were drawn from the same or identical populations. 
But we do not know, however, whether the two populations 
differ only with respect to variances or perhaps with respect 
to both means and variances. 

Since our interest is usually in the difference between 
means, it is fortunate that in most experimental work vari-

. ances will not differ significantly. But a test of this hy
pothesis, in cru;e of doubt, is proper and may be eru;ily made.· 
We may determine whether the assumption of homogeneity 
of variances is justified by calculating the ratio between the 
two estimates of the population variance derived from the 
samples. That is, we first find the sum of ·squares within, 
one of our samples and divide this by n1 - 1; then we find 
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the sum of squares within the second sample and divide 
this by nz - 1. We then calculate the ratio between these 
two variances, always placing the larger variance in the 
numerator. The value obtail!.ed is F, ·and we enter the 
column of the table of F with the number of degrees of 
freedom corresponding to the larger variance and find the 
row· entry corresponding to the degrees of freedom of the 
smaller variance. Since the calculated value of F will 
:always be larger than 1, so that only one end of the F dis
tribution is involved, the tabled value at the 1 per cent 
level will indicate the value at the 2 per cent level. 8 Let us 
apply this test to the variances of the "lecture" and "project'' 

· gro"?-ps mentioned earlier in CO:+illection with analysis of 
vanance •. 

From the date of Table 36, we :find that the estimate of the 
population variance based upon the scores of the "lecture" 

·.group is equal to · 

l:x2 14 
--1 =-5 '1 = 3·5· n1- -

For the "project" group, we shall have 
l:x1 22 

nz - 1 = 5 - 1 = 5·5· 

F will be equal to ~:~ = 1.571. By reference to Table E, 

we :find that an F of 15.98 will be required in order for us to 
reject the hypothesis of holllogeneity of variances at the 
2 per cent level for 4 and 4 degrees of freedom. Thus there 
is no reason to 'suspect that the two variances differ sig· 
nificantly. · 

Let us take a case where the two estimates of the popula. 
tion variances do differ significantly, but where we have the 
same number of subjects in eaCh group. When we tested 

a This discussion and the following one are based upon the new, fourth 
edition (1946) of Snedecor's book (86) which appeared too late to be included 
in the list of references. 
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the difference between the means of attitude test scores of 
50 Republicans and 50 Democrats (Table 35), we found a 
value oft equal to 6.9 which, for 98 degrees of freedom,- was 
highly significant. If we apPly the test for homogeneity of 

variances, however, we find that o-
1
: is equal to 2.25. Accord-

.. ~ ' 

ing to Table E, an F equal to 2.25 slightly exceeds the tabled 
value at the 2 per cent point for degrees of freedom equal to 
49 and 49. Thus we would reject the hypothesis of homo
geneity of variances. But can we test the hypothesis that 
the meanS of the population from which the samples were 
drawn are equal, irrespective of variances? As long as the 
number of cases in each sample is the same so that n1 - 1 
equals nz- 1, the solution is fairly simple. Snedecor 
recommends that we merely enter the t table with degrees 
of freedom equal to n1- 1 or iust half the number 
(n1 + nz- 2) we have when the variances do not differ 
significantly. Thus, entering the table oft with degrees of 
freedom equal to 49, we find that our conclusion concerning 
the difference between the me~ remains unchanged. The 
obtained value oft, 6.9, still exceeds the 1 per cent point for 
49 degrees of freedom. 

What is the solution, however, if nt and n2 differ greatly 
as do also the variances? Let us suppose that we have one 
sample of 10 cases and another of 30, and that the two 
estimates of the population variances are 27.04 and 5.76, 

re~pectively. F would be equal to 
2:.70: or 4.694, a highly 

significant value for degrees of freedom equal to 9 and 29, 
and the hypothesis of homogeneity of variances would be 
rejected. Can we, under these circumstances, test the 
hypothesis that the population means are equBl without any 
hypothesis concerning the variances? Snedecor reports an 
unpublished paper by Cochran and Cox in which an approxi .. 
mate method is proposed for testing this hypothesis. 

We calculate the sum of squares within each group and 
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find the estimate of the population yariances by dividing the 
sum ot squares for the first group by n1 - 1 and that for the 
second group by n2- 1. These two values for the case at 

• hand are equal to 27.04 and 5.76, respectively. The vari
ances of _the two .sample means are found by dividing the 
estimates of the population variances by the corresponding 
number of cases in the samples. For the first group the 

- . . 27 04 
variance of the mean would be equal to To= 2.704, and 

. . 5 76 
for the second group we would have 3o = .192. 

Let us suppose that the difference between the means is 
equal to 4.2 and the obtained value of t will then be equal to· 

M 1 -M2 = 4.2 =4.2= 247 
u.,<i v'2.704 + .192 1~7 · 

To find out whether this yalue is significant at the 5 per 
· cent level, we find the tabled value of t at the 5 per cent 
level for both n1- 1 and n2 - 1. For the first sample, 
with 9 degrees of freedom, t at the 5 per cent point is equal 
to 2.262; for the second sample, with 29 degrees of freedom, 
the value oft at the 5 per cent point is equal to 2.045. These 
two values, which for convenience may be called t1 and tz, 
are substituted along with the corresponding variances of 
the means of the two samples in the formula given below to 
.find the approximate value of t required at the 5 per cent 
level of significance. Thus · 

' (u!1) (ti) + (u!J (tV 
5% level = 2 + 2 = t 

<Tml <Tmz 

Substituting in the above formula, we obtain 

5(J1 1 el = (2.704)(2.262) + (.192)(2.045) = 2 248 
EO ev . _2.704 + .192 · 

.The hypothesis tested by comparing the value oft (2.47), 
obtained by dividing the difference between the means by 
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the standard error of the difference, with the value ~f l 
(2.248) approximated above is that the means of the popula
tions from which the two samples were drawn are equal, 
with no hypothesis concerning the population . variances 
involved. Since the calculated value of 2.47 is greater than 
the approximated value of 2.248, we may reject th:e hy
pothesis at the 5 per cent level. We could, of course, have 
used the tabled values of t at the l per cent point instead 
of the 5 per cent point in the approximation formula, 'if we 
had wanted to find the value of t required at the 1 per cent 
level of significance. 

8. ADDITIONAL PROBLEMS IN EXPERIMENTAL 
DESIGN 

Similar problems of experimental design involving ~2, F, 
and xz, could be treated in much the same manner that 
problems involving t have been treated.· For a discussion 
of these, however, the student is referred to Peters and Van 
Voorhis (74), Lindquist (64), Fisher (25, 26), Snedecor (86), 
Tippett (90), and Goulden (35). The articles mentioned 
previously in connection with analysis of variance should be 
consulted also. 
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APPENDIX 

TABLE A.-8QuABEs AND SQuABE RoOTs o:r NmmEBS FROM 1 .;;, i,Ooo 

N HI vii N HI vN 
1 1 1.000 41 1681 6.403 
2 4 1.414 42 1764 6.481 
3 9 1.732 43 1849 6.557· 
4 16 2.000 44 1936 6.633 
5 25 2.236 45 2025 6.708 

6 36 2.449 46 2116 6.782 
7 .. 49 2.646 . 47 2209 6.856 
8 64 2.828 48 2304 6.928 
9 81 3.000 49 2401 7.000. 

10 100 3.162 50 2500 7.071 
~ - --

11 121 3.317 51 2601 7.141 • 
12 144 3.464 52 2704 7.211 
13 169 '3.606 53 2809 7.280 
14 196 3.742 54 2916 7.348 
15 225 3.873 55 3025 7.416 

16 256 4.000 56 3136 7.483 
17 289 • 4.123 57 3249 7.550 
18 324 4.243 58 3364. . 7.616 
19 361 4.359 59 3481 7.681 
20 400 ~ 60 3600- 7.746 - - --
21 441 4.583. 61 3721 7.810 

. 22 484 4.690 62 3844 7.874 
23 529 4.796 63 . 3969 7.937 
24 576 4.899 64 . 4096 8.000 
25 625 5.000 65 4225 8.062 

26 676 5.099 66 4356 8.124 
27 729 5.196 67 4489 8.185 
28 784 5.292 68 4624 8.246 
29 841 5.385 69 4761 8.307 

1Q. !.QQ 2:lli 70 4900 8.367 --
31 961 5.568 71 5041 8.426 
32 1024 5.657 72 5184 8.485 
33 1089 5.745 73 5329 8.544 
34 1156 5.831 74 5476 8.602 
35 1225 5.916 75 5625 8.660 

36 1296 6.000 76 5776 8.718 
37 1369 6.083 77 5929 8.775. 
38 1444 6.164 78 6084 8.832 
39 1521 6.245 79 6241 8.888 
40 1600 6.325 80 6400 8.944 
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• TABLE A.-8QUABEs AND SQuARE Roars-Continued 

N /{1 vN N Nl VN" 

'81 6561 9.000 121 14641 11.000 
82 6724 9.055 122 14884 11.045 
83 6889 9.110 123 15129 11.091 
84 7056 9.165 124 15376 11.136 
85 . 7225 9.220 125 15625 11.180 

86 7396 9.274 126 15876 11.225 
87 7569 9.327 127 16129 11.269 
88 7744 9.381 • 128 16384 11.314 
89 7921 9.434 129 16641 11.358 
90 8100 9.487 130 16900 11.402 ......... ~ - --
91 8281 9.539 131 17161 11.446 
92 8464 9.592 132 17424 . 11.489 
93. 8649 9.644 133 17689 11.533 
94 8836 9.695 134 17956 11.576 
95 9025 9.747 135 18225 11.619 

96 9216 9.798 136 18496 11.662 
97 9409 9.849 137 18769 11.705 
98 9604 9.899 138 0 19044 11.747 
99 9801 9.950 139 19321 11.790 

100 10000 10.000 140 19600 11.832 - --
101 10201 10.050 141 19881 11.874 
102 10404 10.100 142 20164 11.916 
103 10609 10.149 143 20449 11.958 
104 10816 10.198 144 20736 12.000 
105 11025 10.247 145 21025 12.042 

106 11236 10.296 146 21316 12.083 
107 11449 10.344 147 21609 12.124 
108 11664 10.392 148 21904 12.166 
109 11881 10.440 149 22201 12.207 
110 12100 10.488 150 22500 12.247 

~ --
111 1'2321 ! 10.536 151 22801 12.288 
112" 12544 10.583 152 23104 12.329 
113 12769 10.630 153 23409 12.369 
114 12996 10.677 154 23716 12.410 
115 13225 10.724 155 24025 12.450 

116 13456 10.770 156 24336 12.490 
117 13689. 10.817 157 24649 12.530 
118 13924 10.863 158 24964 12.570 
119 14161 10.909 159 25281 12.610 
120 14400 10.954 160 25600 12.649 



Appendix 309 
TABLE A.-8QUARES AND SQUARE RoOTS-Conbnued 

N N• v'N N Na v'N 

161 25921 12.689 201 40401 14.177 
162 26244 12.728. 202 40804 14.213 
163 26569 12.767 203 41209 14.248 
164 26896 12;806 204 41616 14.283 
165 27225 12.845 205 42025 14.318 

166 27556 12.884 206 42436 14.353 
167 27889 12.923 207 42849 14.387 
168 '. 28224 12.961 208 43264 14.422 
169 ' 2 8561 13.000 209 43681 14.457. 
170 28900 13.038 210 44100 14.491 
~ ~ - ~ --

171 29241 13.077 211. 44521 14.526 
172 29584 13.115 212 44944 14.560 
173 29929 13.153 213 45369 14.595 
174 30276 13.191 214 45796 14.629 
175 30625 13.229 215 46225 14.663 

176 30976 13.266 216 .46656 14.697 
177 31329 13.304 217 47089 14.731 
178 31684 13.342 218 47524 14.765 
179 32041 13.379 219 47961 14.799 
180 32400 ~ 220 48400 14.832 
~ - -- --

181 32761 13.454 221 48841 14.866 
182 33124 13.491 222 49284 14.900 
183 33489 '13.528 223 49729 14.933 
184 33856 13.565 224 50176 14.967 
185 34225 ·13.601 225 50625 15.000 

186 34596 13.638 226 51076 15.033 
187 34969 13.675 227 51529 15.067 
188 35344 13.711 228 51984 15.100 ' 
189 35721 13.748 229 52441 15.133 190 36100 13.784 230 52900 15.166 -- -- .--
191 36481 13.820 231 53361' 15.199 192 36864 13.856 232 53824 15.232 
193 37249 13.892 233 54289 15.264 194 37636 13.928 234 547 56 15.297 ; . ' 195 38025 13.964 235 55225 15.330 
196 38416 14.000 236 55696 15.362 197 38809 14.036 237 56169 15.395 198 39204 14.071 238 56644 15.427 199 39601 14.107 239 57121 '15.460 200 40000 14.142 240 57600 15.492 
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TABLE A.-8QUARES AND SQUARE RoOTS-Continued 

N Nl vif N HI VN' 

241 58081 15.524 281 78961 16.763 
242 58564 15.556 282 79524 16.793 
243 59049 . 15.588 283 80089 16.823 
244 59536 15.620 284 80656 16.852 
245 600'25 15.652 285 81225 16.882 

246 60516 15.684 286 81796 16.912 
247 61009 15.716 287 82369 16.941 
248 61504 15.748 288 . 82944 16.971 
249 62001 15.780 289 83521 17.000 
250 62500 15.811 290 84100 17.029 -- -
251 • 63001 15.843 291 84681 17.059 
252 63504 15.875 292 85264 17.088 

. 253 64009 15.906 293 85849 17.117 
254 64516 15.937 294 86436 17.146 
255 65025 15.969 295 87025 17.176 

256 65536 16.000 296 87616 17.205 
257 66049 16.031 297 88209 17.234 
258 . 66564 16.062 298 88804 17.263 

. 259 67081 16.093 299 89401 17.292 
260 67600 16.125 300 90000 17.321 -- --
261 68121 16.155 301 90601 17.349 
262 68644 16.186 302 91204 17.378 
263 . 69169 16.217 303 91809 17.407 . 
264 69696 16.248 304 92416 17.436 
265 70225 16.279 305 93025 17.464 

266 70756 16.310 306 93636 .17.493 
267 71289 16.340 307 94249 17.521 

. 268 71824 16.371 308 94864 17.550 
269 72361 16.401 309 95481 17.578 
270 72900 16.432. 310 96100 17.607 -
271 73441 16.462 311 96721 17.635 
272. 73984 I 16.492 312 97344 17.664 
273 74529 16.523 . 313 97969 17.692 
274 75076 16.553 314 98596 17.720 
275 75625 16.583 315 99225 17.748 

'. 
276. 76176 16.613 316 99856 17.776 
277. 76729 16.643 317 100489 17.804 
278: 77284 16.673 318 101124 17.833 
279'' 77841 16.703 319 101761 17.861 
280 78400 16.733 320 102400 17.889 . 
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TABLE A.-8QuAB.Es AND SQUARE RoOTs-Continued 

N }{I 'vN". N ~ vlr 

321 103041 17.916 361 130321 19.000 
322 103684 17.944 362 131044 19.026 
323 104329 17.972 363 131769 19.053 
324 104976 18.000 364 132496 19.079 
325 105625 18.028 365 133225 19.105 

326 106276 18.055 366 133956 19.131 
327 106929 18.083 367 134689 19.157 
328 • 107584 18.111 368 135424 19.183 
329 . 108241 18.138 369 136161 19.209 
330 108900 18.166 370 136900 ~· -- - --
331 109561 18.193 371 137641 19.261 
332 110224 18.221 372 138384 19.287 
333 110889 18.248 373 139129 19.313 
334 111556 18.276 374 139876 19.339 
335 112225 18.303 375 140625 19.365 

336 112896 18.330 376 141376 19.39i 
337 113569 18.358 377 . 142129 19.416 
338 114244 18.385 378 142884 19.442 
339 114921 18.412 379 143641 19.468 
340 !.!.M.QQ 18.439 380 ~ ~ --
341 116281 18.466 381 145161 19.519 
342 116964 18.493 382 145924 . 19.545 
343 117649 18.520 383 146689 19.570 
344 118336 18.547 384 147456 19.596 
345 119025 18.574 385 148225. 19.621 

346 119716 18.601 386 148996 19.647 
347 120409 18.628 387 149769 19.672 
348 121104 18.655 388 150544 19.698 
349 121801 18.682 389 1513 21 19.723 . 
350 ~ 18.708 390 152100 ~ - -- -
351 123201 18.735 391 152881 19.774• 
352 123904 18.762 392 153664 19.799 
353 124609 18.788 393 154449 19.824 
354 125316 18.815 394 155236 19.849 
355• 126025 18.841 395 156025 19.875. 

356 126736 18.868 396 156816 19.900 
357 127449 18.894 397 157609 . 19.925 
358 128164 18.921 398 158404 19.950 
359 128881 18.947 399 159201 ' 19.975 
360 129600 18.974 400 1?.0000 20.000 

.. 
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TABLE A.--8QUARES AND SQuARE RooTs--Continued 

N N' VN N N' VN 

401 160801 20.025 441 194481 21.000 
402 161604 20.050 442 195364 21.024 
403 162409 20.075 44!l 196249 21.048 
404. 163216. 20.100 444 197136 21.071 
405. 164025 20.125 445 198025 21.095 

406 164836 20.149 446 198916 21.119 
407 165649 20.174 447 199809 21.142 
408 166464 20.199 448 200704 21.166 
409 167281 20.224 449 201601 21.190 

.!!!! 168100 ~- 450 202500 ~ 
411 168921 20.273 451 203401 21.237 
412 1697 44 20.298 452 204304 21.260 
413 170569 20.322 453 205209 21.284 
414 171396 20.347 454 206116 21.307 
415 172225 20.372 455 207025 21.331 

416 173056 20.396 456 207936 21.354 
417 173889 20.421 457 208849 21.378 
418 174724 20.445 . 458 209764 21.401 
419' 17 5561 20.469 459 210681 21.424 
420 176400 20.494 ~ 211600 ~ 
421 177241 20.518 461 212521 21.471 
422 178084 20.543 462 213-!44 . 21.494 
423 178929 20.567 463 214369 21.517 
424 179776 20.591 464 215296 21.541 
425 180625 20.616 465 216225 21.564 

426 181476 20.640 466 217156. 21.587 
427 182329 20.66! 467 "218089 21.610 
428 183184 20.688 468 ~ 219024 21.633 
429 184041 20.712 469 219961 21.656 

·430 184900 20.736 470 220900 21.679 --
"431 185761 20.761 471 221841 21.703 

432• 186624 20.785 472 222784 21.726 
433 187489 20.809 473 223729 21.749 
434 18831;6 20.833 474 2246 76 21.772 
435 189225 20.857 475 225625 21.794 

·436 190096 20.881 476 226576 21.817 
437 190969 20.905 477 227529 21.840 
438 '191844 20.928 478 228484 21.863 
439 192721 20.952 479 229441 21.886 
440 193600 20.976 480 230400 21.909 
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TABLE A.--8QuABEs AND SQUARE RoOTs-Continued 

N N• VN N N• V'N 
-c - v-

481 231361 21.932 521 271441 22.825 
482 232324 21.954 522 272484 22.847 
483 233289 21.977 523 273529 . 22.869 
484 . 234256 22.000 524 . 274576 : 22.891 
485 235225 22.023 525 27 5625 22.913 

486 236196 22.045 526 276676 22.935 
487 237169 22.068 527 277729 22.956 
488 238144 22.091 528 278784 22.978 
489 239121 22.113 529 279841 23.000 
m ~ ~ ~ 280900 .-~ ~ 

491 241081 22.159 531 ' 281961 . 23.043 
492 242064 22.181 532 283024 23.065 
493 243049 22.204 533 284089 . 23.087 
494 244036 22.226 534 285156 23.108 
495 245025 22.249 535 286225 23.130 

496 .246016 22.271 536 . 287296 23.152 
497 247009 22.293 ·"537 288369 23.173 
498 248004 22.316 538 289444 23.195 
499 249001 22.338 539 290521 23.216 
!Q2 ~ 22.361 2!2 291600 ·~ --=-
501 251001 22.383 541 292681 23.259 
502 252004 22.405 542 293764 . 23.281 
503 253009 22.428 .543 294849 23.302 
504 254016 22.450 544 295936 23.324 
505 255025 22.472 545 297025 23.345 

506 256036 22.494 546 298116 23.367 
507 257049 22.517 547 299209 23.388 
508 258064 22.539 548 300304 23.409 
509 259081 22.561 549 301401 23.431 
!!Q ~ 22.583 M2 302500 23.452 ·-· ~ 

511· 261121 22.605 551 303601 23.473 
512 262144 22.627 552 3047.04 23.495 
513 263169 22.650 553 305809 23.516 
514 264196 22.672 554 306916 23.537. 
515 ! 265225 22.694 555 308025 23.558'. 

516 266256 22.716 556 309136 23.580 
517 267289 22.738 557 310249 23.601 
518 268324 22.760 558 311364 23.622 
519 269361 22.782 559 312481 • 23.643 
520 270400 22.804 560 31.3600 23.664 
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TABLE A.-8QUABES AND SQUARE RoOTs-Continued 

N N• V1l N N• .vN 

561 314721 23.685 601 361201 24.515 
562 315844 23.707 602 362404 24.536 
563 316969 23.728 603 363609 24.556 
564 318096 23.749 604 364816 24.576 
565 319225 23.770 605 366025 24.597 

566 320356 23.791 606 367236 24.617 
567 321489 23.812 607 368449 24.637 
568 322624 23.833 608 369664 24.658 
569 323761 23.854 609 370881 24.678 
~ ~ ~ ~ ~ ~~ 
571 326041 23.896 611 373321 24.718 
572 327184 23.917 612 374544 24.739 
573 328329 23.937 613 37 5769 24.759 
574 329476 23.958 614 376996 24.779 
575 330625 23.979 615 378225 24.799 

576 331776 24.000 616 379456 24.819 
. 577 332929 24.021 617 380689 24.839 

578 334084 24.042 618 381924 24.860 
579 335241 24.062 619 383161 24.880 

~ ~ ~ EQ ~ ~ 
581 337561 24.104 621 385641 24.920 
582 338724 24.125 622 386884 24.940 
583 339889 24.145 623 388129 24.960 
584 341056 24.166 624 389376 24.980 
585 342225 24.187 625 390625 25.000 

586 343396 24.207 626 391876 25.020 
587 344569 24.228 627 393129 25.040 
588 345744 24.249 628 394384 25.060 
589 346921 24.269 629 395641 25.080 

.2!!2 348100 ~. ~ 39 6900 25.100 

591 349281 24.310 631 398161 25.120 
592 350464 24.331 632 399424 25.140 
593 351649 24.352 633 400689 25.159 
594 352836 24.372 634 4019 56 25.179 
595 354025 24.393 635 403225 25.199 

596 355216 24.413 636 404496 25.219 
597 356409 24.434 637 405769 25.239 
598 357604 24.454 638 407044 25.259 
599 358801 24.474 639 408321 25.278 
600 360000 24.495 640 409600 25.298 

. 
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N }{2 ~ 
I 

N }{2 VN 

641 410881 25.318 681 463761 26.1.)96 
642 412164 25.338 682 465124 26.115 
643 413449 25.357 683 466489 26.134 
644 414736 25.377 684 467856 26.153 
645 416025 25.397 685 469225 ·26.173 

646 41 '1316 25.417 686 470596 26.192 
647 418609 25.436 687 471969 26.211 
648 . 419904 25.456 688 473344 26.230 
649 . 421201 25.475 689 474721 .26.249 
650 422500 ~ 690 476100 ~ ~ ---
651 423801 25.515 691 477481 26.287 
652 425104 25.534 692 478864 26.306 
653 426409 25.554 693 480249 26.325 
654 427716 25.573 694 481636 26.344 
655 429025 25.593 695 483025 26.363 

656 430336 25.612 696 484416 26.382 
657 431649 25.632 697 485809 26.401 
658 432964 25.652 698 487204 26.420 
659 434281 25.671 699 488601 26.439 
~ 435600 ~ 1QQ 490000 ~ -
661 436921 25.710 701 491401 26.476 
662 428244 25.729 702 492804 26.495 
663 439569 25.749 703 494209 26.514 
664 440896 25.768 704 495616 26.533 
665 442225 25.788 705 497025 26.552 

666 443556 25.807 706 49843f 26.571 
667 444889 25.826 707 49984S 26.589 
668 446224 25.846 708 501264 26.608 
669 447561 25.865 709 502681 26.627 
~ ~ 25.884 710 ~ ~-
671 450241 25.904 711 505521 26.665 
672 451584 25.923 712 506944 26.683 
673 452929 25.942 713 508369 26.702 
674 454276 25.962 714 509796 26.721 i. 
675 455625 . 25.981 715 511225 26.739. 

676 456976 26.000 716 512656. 26.758 
677 458329 26.019 717 514089 26.777 
678 459684 26.038 718 515524 26.796 
679 461041 26.058 719 516961 '26.814 
680 462400 26.077 720 518400 26.833 
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TABLE A.-BQuAREs AND SQUARE Roora-Continued 

N N" VN N N" VN 

721 519841 26.851 761 579121 27.586 
722 521284 26.870 762 580644 27.604 
723 522729 26.889 763 582169 27.622 

.724 524176 26.907 764 583696 27.641 
725 525625 26.926 765 585225 27.659 

726 527076 26.944 766 586756 27.677 
727 528529 26.963 767 588289 27.695 
728 529984 26.981 768 589824 27.713 
729 531441 27.000 769 591361 27.731 
.w ~ 27.019_ 770 592900 27.749 

' 731 534361 27.037 771 594441 27.767 
732 535824 27.055 772 595984 27.785 
733 537289 27.074 773 597529 27.803 
734 538756 27.092 774 599076 27.821 
735 540225 27.111 775 600625 27.839 

736 541696 27.129 776 602176 27.857 
737 . 543169 27.148 777 603729 27.875 
738 544644 27.166 . 778 605284 27.893 
739 546121 27.185 779 606841. 27.911 
w 547600 ~- ~ 608400 ~ 
741 549081 27.221 781 609961 27.946 
742 550564 27.240 782 611524 27.964 
743 552049 27.258 783 613089 27.982 
744 553536 27.276 784 614656 28.000 
745 555025 27.295 785 61_6225 28.018 

746 . 556516 27.313 786 617796 28.036 
747 558009 27.331 787 619369 28.054 
748 559504 27.350 788 620944 28.071 
749 561001 27.368 789 622521 28.089 
750 562500 ~ 790 624100 ~ 

751 564001 27.404 791 625681 28.125 
752 565504 ' 27.423 792 627264 28.142 
753 567009 27.441 793 628849 28.160 
754 568516 27.459 794 630436 28.178 
755 570025 27.477 795 632025 28.196 

756 571536 27.495 796 633616 28.213 
757 573049 27.514 797 635209 28.231 
758 574564 27.532 798 636804 28.249 
759 576081 27.550 799 638401 28.267 
760 577600 . 27.568 800 640000 28.284 

. . . 
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TABLE A.-SQUARES AND SQuARE RoOTS--Continued 

N Nt VN N Nt v'N 
-

801 641601 28.302 841 707281 29.000 
802 643204 28.320 842 708964 29.017 
803 644809 28.337 843 710649 29.034 
804 646416 28.355 844 712336 29.052 
805 648025 28.373 845 714025 29.069 

806 649636 28.390 846 715716 29.086 
807 651249 28.408 847 717409 29.103 
808 652864 28.425 848 719104 29.120 
809 654481 28.443 849 720801 29.138 
810 656100 ~ 850 ~ 29.155 --- ---. 

811 657721 28.478 851 724201 29.172 
812 659344 28.496 852 725904 29.189 
813 660969 28.513 853 727609 29.206 
814 662596 28.531 854 729316 29.223 
815 664225 28.548 855 731025 29.240 

816 665856 28.566 856 732736 29.257 
817 667489 28.583 857 . 734449 29.275 
818 669124 28.601 .858 736164 29.292 
819 670761 28.618 859 737881 29.309 
820 672400 28.636 860 739600 29.326 
~ - -821 67 4041 28.653 861 741321 29.343 

822 67 5684 28.671 862 743044 29.360 
823 677329 28.688 863 744769 29.377 
824 678976 28.705 864 746496 29.394 
825 680625 28.723 865 748225 29.411 

826 682276 28.740 866 749956 29.428 
827 683929 28.758 867 751689 29.445 
828 685584 28.775 868 753424 29.462 
829 687241 28.792 869 755161 29.479 
~ 688900 28.810 870 756900 29.496 -- ----. 
831 690561" 28.827 871 758641 29.513 
832 692224 28.844 872 760384 29.530 
833 693889 . 28.862 873 762129 29.547 
834 695556 28.879 874 763876 29.563 
835 697225 28.896 875 765625 29.580 

836 698896 28.914 876 767376 29.597 
837 700569 28.931 877 769129 29.614 
838 702244 28.948 878 770884 .29.631 
839 703921 28.965 879 772641 • 29.648 
840 705600 28.983 880 7~tH~ 29.665 
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TAI;\LE A.-8QUARES AND SQUARE RoOTs-Continued 
: 

·tv N' Vli N N' VN 

881 776161 29.682 921 848241 30.348 
882 777924 29.698 922 850084 30.364 
883 779689 29.715 923 851929 30.381 
884 781456 29.732 924 853776 30.397 
885 783225 29.749 . 925 855625 30.414 

886 784996 29.766 926 857476 30.430 
887 786769 29.783 927 859329 30.447 

~ 888 788544 29.799 928 861184 30.463 
889 790321 29.816 929 863041 30.480 
~ ~~ ~ ~ 864900 ~ . 
891 793881 29.850 931 866761 30.512 
892 795664 29.866 932 868624 30.529 
893 797449 29.883 933 . 870489 30.545 
894 799236 29.900 934 872356 30.561 
895 801025 29.916 935 874225 30.578 

896 802816 . . 29.933 936 876096 30.594 
897 804609 29.950 937 877969 30.610 
898 806404 29.967 . 938 879844 30.627 
899 . 808201 29.983 939 881721 30.643 

~ ~ 30.000 ~ 883600 ~ 
901 811801 30.017 941 885481 30.676 
902 813604 30.033 942 887364 30.692 
903 815409 30.050 943 889249 30.708 
904 817216 30.067 944 891136 30.725· 

,. 905 819025 30.083 945 893025 30.741 

906 820836 30.100 946 894916 30.757 
907 822649 30.116 947 . 896809 30.773 
908 824464 30.133 948 898704 30.790 
909 826281 30.150 949 900601 30.806 

!!!Q 828100 30.166 .!!@ ~ 30.822 

911 829921 30.183 951 904401 30.838 
912 8317 44 30.199 952 906304 30.854 
913 833569 30.216 953 908209 30.871 
914 835396 30.232 954 910116 30.887 
915 837225 30.249 955 912025 30.903. .. • 
916 839056 30.265 956 913936 30.919 
917 840889 30.282 957 915849 30.935 
918 842724 30.299 958 917764 30.952 
919 844561 30.315 959 919681 30.968 
920 846400 30.332 960 921600 30.984 
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TABLE A.-8QUABEB AND SQUARE RoOTs-Concluded 

N N• VN N Na VN . 
961 923521 31.000 981 962361 31.321 
962 925444 31.016 982 964324. 31.337 
963 927369 31.032 983 966289 31.353 
964 929296 31.048 984 968256 31.369 
965 931225 31.064 985 970225 31.385' 

966 933156 31.081 
-

986 972196 31.401 
967 935089 31.097 987 97 4169 31.417 
968 •937024 31.113 988 976144 31.432 
969 938961 31.129 989 97 8121 31.44S · 
970 940900 31.145 990 980100 31.464 -- - --- --
971 942841 31.161 . 991 . 982081 31.480 
972 944784 31.177 992 984064 31.496 
973 946729 31.193 993 986049 31.512 
974 948676 31.209 994 988036 31.528 
975 950625 31.225 995 990025 31.544 

976 952576 31.241 996 992016 31.559 
977 954529 31.257 997 994009 31.575 
978 956484 . 31.273 998 996004 31.591 
979 958441 31.289 999 998001 31.607 
980 960400 31.305 1000 1000000 31.623 

-
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TABLE B.-AREAs AND 0JmiNATEs ol' TBJ: NoR¥AL CURVE 

IN TERMS oJ. ~ , 

(1) (2) (3) (4) (5) 

z A B c y 

STANDARD AREA FROM AREA IN AREA IN 0JmiNATB 

ScoRE(;) MEAN TO~ LARGER SMALLER z 
PoRTION PoRTION AT·-, , 

0.00 .0000 .5000 .• 5000 .3989 
0.01 .0040 .5040 .4960 .3989 
0.02 .0080 .5080 .4920 .3989 
0.03 .0120 .5120 . .4880 .3988 
0.04 .0160 .5160 .4840 .3986 

0.05 .0199 .5199 .4801 .3984 
0.06 ·.0239 .5239 .4761 .3982 
0.07 .0279 .5279 .4721 .3980 
0.08 .0319 .5319 .4681 .3977 
0.09 .0359 .5359 .4641 .3973 

0.10 .0398 .5398 .4602 .3970 
0.11 .0438 .5438 .4562 .3965 
0.12 .0478 .5478 .4522 .3961 
0.13 .0517 .5517 .4483 .3956 
0.14 .0557· .5557 .4443 .3951 

0.15 .0596 .5596 .4404: .3945 
0.16 .0636 .5636 .4364 .3939 
0.17 .0675 .5675 .4325 .3932 
0.18 .0714 .5714 .4286 .3925 
0.19 .0753 .5753 .4247 .3918 

0.20 .0793 .5793 .4207 .3910 
0.21 .0832 .5832 .4168 .3902 
0.22 .0871 .5871 .4129 .3894 
0.23 .0910 .5910 .4090 .3885 
0.24 .0948 .5948 .4052 .3876 

0.25 .0987 .5987' .4013 .3867 
0.26 .1026 .6026 .3974 .3857 
0.27 .1064 .6064 .3936 .3847 
0.28 .1103 .6103 .3897 .3836 
0.29 .1141. .6141 .3859 .3825 

0.30 .1179 .6179 .3821 .3814 
0.31 .1217 .6217 .3783 .3802 
0.32 .1255 .6255 .3745 .3790 
0.33 .1293 .6293 .3707 .3778 
0.34 .1331 .6331 .3669 .3765 

' 
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TABLE B.-AREAS AND ORDINATES Ol' '1'HB NoJUUL CuRVE 

lN TER¥8 OJ' ~ --C'onlin.ued 
II 

(1) (2) (3) (4) (5) 

• A. B a 11 
STAND.&.BD AREA PBOY: ABEA IN AB.I:A IN ORDINATE 

ScoRE(;) MEAN TO=- LARGER SMALLER :z; 

PoRTION PoRTION AT - ' fT . fT . 
0.35 .1368 .6368 .3632 .3752 
0.36 '. .1406 .6406 .3594: .3739 
0.37 . .1443 .6443 .3557 .3725 
0.38 .1480 .6480 .3520 .3712 
0.39 .1517 .6517 .3483 .3697 

~.40 .1554 .6554 .3446 .3683 
0.41 .1591 .6591 .34:09 .3668 
0.42 .1628 .6628 .3372 .3653 
0.43 .1664 .6664 .3336 .3637 
0.44 .1700 .6700 .3300 .3621 

.3605 
0.45 .1736 .6736 .3264 
0.46 .1772 .6772 .3228 .3589 
0.47 .1808 .6808 .3192 .3572 
0.48 .1844 .6844 .3156 .3555 
0.49 .1879 .6879 .3121 .3538 . 
0.50 .1915 .6915 .3085 .3521 
0.51 .1950 .6950 .3050 .3503 
0.52 .1985 • 6985 ·.3015 .3485 

... 

0.53 .2019 .7019 .2981 .3467 
0.54 .2054 .7054 .2946 .3448 

o.ss .2088 .7088 .2912 .3429 
0.56 .2123 .7123• .2877 .3410 
0.57 .2157 .7157 .2843 .3391 
0.58 .2190 .7190 .2810 .3372 
0.59 .2224 .7224 .2776 .3352 

0.60 .2257 .7257 .2743 .3332 
0.61 .2291 .7291 .2709 .3312 
0.62 .2324 .7324 .2676 .3292 
0.63 .2357 .7357 .2643 .3271 
0.64 ~9 .7389 .2611 .3251 

0.65 .2422 .7422 .2578 .3230. 
0.66 .2454 .7454 .2546 .3209 
0.67 .2486 .7486 .2514. .3187 
0 .68 .2517 .7517 .2483 . .3166 
0.69 .2549 . 7549 .2451 . .3144 
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' 

TABLE B.-Amus AND Oaom.a.TBB oJr '1'BB NoBKAL CUBTB 

IN TEmls Ol' ~ ...::..Continued 
• 

(1) (2) (3) (4) {5) 

• A B c , 
·STANDARD Au:.&. 111011 . Au:.&. 1M Au:.&. 1M Om>m.a.u 

~~(;) MEAN ro ! L.&.aoEB SII.&.LLEB :I& 

PoRTION PoRTION AT-

• • 

0.70 .2580 .7580 . .2420 .3123 
0.71 .2611 .7611 .2389 .3101 
0.72 .2642 .7642 .2358 .3079 
0.73 .2673 .7673 .2327 .3056 
0.74 .2704. .7704 .2296 .3034 

0.75 .2734 .7734 .2266 .3011 
0.76 .2764 .7764 .2236 .2989 
0.77 .2794 .7794 .2206 .2966 
0.78 .2823 .7823 .2177 .2943 
0.79 .2852 .7852 .2148 .2920 . 
0.80 

··-
.2881 .7881 .2119 .28ff1 

0.81 . .2910 .7910 .2090 .2874 
0.82 .2939 .7939 .2061 .2850 

. 0.83 .2967 .7967 .2033 .2f!tJ:1 
0.84 .2995 .7995 .2005 .2803 . 
0.85 .3023 .8023 .1977 .2780 
0.86 .3051 • 8051 .1949 . .2756 
0.87 .3078 .8078 .1922 .2732 
0.88 .3106 .8106 .1894 .2709 
0.89 .3133 .8133 .1867 .2685 

0.90 .3159 .8159 .1841 .2661 
0.91 .3186 -.8186 .1814 .2637 
0.92 .3212 .8212 .1788 .2613 
0.93. .3238 .8238 .1762 .• 2589 

0.94 .3264 - .8264 .• 1736 .2565 

0.95 .3289 .8289 .1711 .2541 
0.96 .3315 .8315 .1685 .2516 
0.97 .3340 .8340 .1660 .2492 
0.98 .3365 .8365 .1635 .2468 
0.99 '.3389 .8389 .1611 .2444 

1.00 .3413 .8413 .1587 .2420 
1.01 .3438 .8438 .1562 .2396 
1.02 .3461 .8461 .• 1539 .2371 
1.03 .3485 .8485 .1515 .2347 
1.04 .3508 .8508 .1492 .2323 

I 
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TABLE B.-ARE.a.s AND ORDINATES Ol' THE NoB.MA.L CuBn: 

(1) 

• 
STANDARD 

Soou (;} 

1.05 
1.06 '. 1.07 
1.08 
1.09 

1.10 
1.11 
1.12 
1.13 
1.14: 

1.15 
1.16 
1.17 
1.18 
1.19 

1.20 
1.21 
1.22 
1.23 
1.24: 

1.25 
1.26 
1.27 
1.28 
1.29 

1.30 
1.31 
1.32 
1.33 
1.34: 

1.35 
1.36 
1.37 
1.38 
1.39 

IN TE1UI8 Ol' ! -continued · , 

(2) (3) (4) 
A B c 

AB.&& I'BOII AB.&& Dl AB.&& Dl 

MEAN TO! L.&xGER SKA.LLEB 
PoRTioN PoRTioN , 

.3531 .8531 .1469 

.3554 .8554 .1446 

.3577 .8577 .1423 

.3599 .8599 .1401 

.3621 .8621 .1379 

.3643 .8643 .1357 

.3665· .8665 .1335 

.3686 .8686 .1314 

.3708 .8708 .1292 

.3729 .8729 .1271 

.3749 .8749 .1251 

.3770 .8770 .1230 

.3790 .8790 .1210 

.3810 .8810 .1190 

.3830 .8830 .1170 

.3849 .8849 .1151 

.3869 .8869 .1131 

.3888 .8888 .1112 

.3907 .8907 .1093 

.3925 .8925 .1075 

.394:4: .8944: .1056 

.3962 .8962 .1038 

.3980 .8980 .1020 

.3997 .8997 .1003 

.4015 .9015 .0985 

.4032 .9032 .0968 

.4049 .9049 .0951 

.4066 .9066 .0934: 

.4082 .90R2 .0918 

.4099 .9099 .0901 

.4115 .9115 .0885 

.4131 .9131 .0869 

.4147 .9147 .0853 

.4162 .9162 •• 0838 

.4177 • 9177 .0823 . 

(5) 

'!/ 
0JmiNATB 

z 
AT-

• , . 
.2299 
.2275 
.2251 
.2227 
.2203 

.2179 

.2155 

.2131 

.2107 

.2083 

.2059 

.2036 

.2012 

.1989 

.1965 ·-

.1942 

.1919 

.1895 

.1872 

.1849 

.1826 

.1804: 

.1781 

.1758 

.1736 

.1714: 

.1691 

.1669 

.1647 

.1626 

.1604: . 

.1582 

.1561 
:1539 
.1518 

• 
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TABLE B.-AREAS AND ORDINATES OJ' THE NoRMAL CURVE 

IN TERMS ~P !o .;...continued 
tl 

. (I). (2) . (3) (4) (5) 
I 'A B c 11 

STANDARD AREA FROII AREA IN AREA Ilf OBDINATI!l 

-.~ORE(;) MEAN TO:!: LARGER 8¥ALLER ~ 

PORTIO~ PORT.! ON AT-
tl tl 

1.40 .4192 .9192 .0808 .1497 
1.41 .4207 .9207 .0793 .1476 
1.42 .4222 :9222 .0718 .1456 
1.43 .4236 .9236 .0764 .1435 

·1.44 .4251 .9251 .0749 .1415 
; 

1.45 :.4265 .9265 .0735 .1394 
1.46 .4279 .9279 .0721 .1374 
1.47 .4292 .9292 .0708 .1354 
1.48 .• 4306 .9306 .0694 .1334 
1.49 .• 4319 .9319 .0681 .1315 

1.50 .4332 .9332 .0668 .1295 
1.51 .4345 .9345 .0655 .1276 
1.52 .4357 .9357 .0643 .1257 
1.53 .4370 .9370 .0630 .1238 
1.54 .4382 1,9382 .0618 .1219 

, . 

. 1.55 .• 4394 .9394 .0606 .1200 
1.56 .4406 .9406 .0594 .1182 
1.57 .4418 .9418 .0582 .1163 

'1.58 .4429 .9429 .0571 .1145 
1.59 ,4441 .9441 .0559 .1127' 

1.60 ' .4452 .9452 .0548 .1109 
1.61 .4463 .9463 .0537 .1092 
1.62 .4474 .9474 .0526 .1074 
1.63 .4484 .9484 .0516 .1057 
1.64 .4495 .9495 .0505 .1040 

1.65 .4505 '.9505 .0495 .1023 
·1.66 •.4515 .9515 .0485 .1006 
1.67 .4525 .9525 .0475 .0989 
1.68 .4535 .9535 .0465 .0973 
1.69' .4545 .9545 . .0455 .0957 

1.70 .4554 .9554 .0446 .0940 
1.71 .4564 .9564 .043n .0925 
1.72 .4573 .9573 .0427 .0909 

I 1.73 .458~ .9582 .0418· .0893 
1.74 .4591 .9591 .0409 .0878 

' 



Appendix 325 

TABLE B.-AREAs AND OlmmATES Oi' THE NoB¥AL CuRVE 

IK TEIUI8 or ~ -Continued , 
"" . 

f\~ (1) (2) (3) (!) (5) 
z A B (J 

" STANDARD AREA FBOII AEu. nr AREA. IN ORnmAn: 

Scou (;) MEAJJ ro. ~ LA.BGEB SMALLEB z 
PoaTioH PoaTioN AT-, , 

1.75 .4599 .9599 .0401 .0863 
1.76 .4608 .9608 .0392 .0848 
1.77 .4616 .9616 .0384 .0833 
1.78 .4625 .9625 .0375 .0818 
1.79 .4633 .9633 .0367 .0804. 

1.80 .464.1 .9641 .0359 .0790 
1.81 .464.9 .9649 .0351 .on; 
1.82 .4656 .9656 .0344 .0761 
1.83 .4664 .9664. .0336 .0748 
1.84 .4671 .9611 .0329 .0734 

1.85 .4678 .9678 .0322 .0721 
1.86 .4686 .9686 .OUl .0707 
1.87 .4693 .9693 .0307 .0694 
1.88 .4699 .9699 .0301 .0681 
1.89 .4706 .9706 ,0294. .0669 

1.90 .4713 .9713 .0287 .0656 
1.91 .4719 .9119 .0281 .Q64.l 
1.92 .4726 .9726 .0274 .0632 
1.93 .4732 .9732 .0268 .0620 

. 1.94 .4738 .9738 ,0262 .0608 

~ .4744 .9744 .0256 .0596 
.4750 .9750 .0250 .OSS4: 

1.97 .4756 .9756 .0244 .0573 
1.98 .4761 .9761 .0239 .()562 
1.99 .4767 .9767 .0233 .0551 

2.00 .4772 .9772 .0228 .0540 
2.01 .4778 .9778 .0222 .0529 
2.02 .4.783 .9783 .0217 .0519 
2.03 .4788 .9788 .0212 .Q508 
2.04 .4793 ,9793 .0207 .0498 

.. 

2.05 .4798 .9798 .0202 .0488 
2.06 .4803 .9803 .0197 .0478 
2.07 .4808 .9808 .0192 .0468 
2.08 .4812 .9812 .0188 .0459 
2.09 .4817 .9817 .0183· .0449 
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TABLE B.-AuAS AND 0BDINATJ:.B or Tllll NoJUUL CUBVB 

IN TEBI(B OP ~ ...o....Continued 
• 

(1) (2) (3) (4) (5) ., . A B c 11 
STANDARD AREA J'BO)[ .ABE.l IN A.ma IN 0RDil!IATE 

ScoR!D (;) MEAN TO! LA~GE& SMALLER :1: 
PORTION POR'l'lOM AT-

(I • 

2.10 .4821 .9821 .0179 .0440 
2.11 .4826 .9826 .0174 .0431 
2.12 .4830 .9830 .0170 .0422 
2.13 .4834 .9834 .0166 .0413 
2.14 • .4838 .9838 .0162 .0404 

2.15 .4842 .9842 .0158 .0396 
2.16 .4846 .9846 .0154 .0387 
2.17 .4850 .9850 .0150 .0379 
2.18 . 4854 .9854 .0146 . .0371 
2.19 .4857 .9857 .0143 .0363 

2.20 .4861 .9861 .0139 .0355 
2.21 .4864 .9864 .0136 .0347 
2.22 .4868 .9868 .0132 .0339 
2.23 .4871 .9871 .0129 .0332 
2.24 .4875 .9875 .0125 .0325 

2.25 .4878 .9878 .0122 .0317 
2.26 .4881 .9881 .0119 .0310 
2.27 .4884 .9884 .0116 .11303 
2.28 .4887 .9887 .0113 .0297 
2.29 .4890 .9890 .0110 .0290 

2.30 .4893 .9893 .0107 .0283 
2.31 .4896 .9896 .0104 .0277 
2.32 .4898 .9898 .()102 .0270 
2.33 .4901 .9901 .0099 .0264 

. 2.34 .4904 .. .9904 .0096 .0258 . 
2.35 A906 .9906 .0094 .0252 
2.36 . .4909 . . 9909 .0091 .0246 
2.37 .4911 ".9911 .0089 .0241 
2.38 .4913 .9913 .0087 .0235 
2.39 .4916 .9916 .0084 .0229 

2.40 .4918 - .9918 .0082 .0224 
2.41 .4920 .992(} .0080 .0219 
2.42 .4922 .9922 .0078 .0213 
2.43 . 4925 .9925 .0075 . .0208 
2.44 .4927 .9927 .0073 .0203 
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TABLE B.-AnEAs AND OBDIN.&TEs o:r THE NoRMAL CuRVE 

IN 'l'Eiws Oi' ~ -Conti:n:um 
fT 

(1) (2) (3) (4) (5) 

IS A B c ll 
STANDARD AREA J'Jt()Jl AREA IN AREA IN 01\DIN.A.TI!: 

ScoRE(;) MEAN TO ~ LARGER SMALLER ,; 
PoRTioN· PoRTION .AT -

or , . 
-

2.45 .4929 .9929 .0071. .0198 
2.46 .4931 .9931 . .0069 .0194 
2.47 I ' .4932 .9932 .0068 .0189 
2.48 .4934 .9934 . .0066 .0184 
2.49 .4936 .9936 .0064 .0180 

2.50 .4938 .9938 .0062 .0175 
2.51 .4940 .9940 .0060 .0171 
2.52 .4941 .9941 .0059 .0167 
2.53 .4943 .9943 .0057 .0163 
2.54 .4945 .9945 .0055 .0158 

2.55 .4946 .9946 :0054 .0154 
2.56 .4948 .9948 .0052 .0151 

~:~~- .4949 .9949 .0051 .0147 
.4951 .9951 .0049 .0143 

2.59 .4952 .9952 .0048 .0139 
.. -

2.60 .4953 .9953 .0047 ,0136 
2.61 .4955 .9955 .0045 .0132 
2.62 .4956 .9956 .• 0044 .0129 
2.63 .4957 .9957 .0043 .0126 
2.64 .4959 .9959 .0041 .0122 

2.65 ,4960 .9960 .0040 .0119 
2.66 .4961 .9961 .0039 .0116 

. 2.67 .4962 .9962 .0038 .0113 
2.68 .4963 .9963 .0037 .0110 
2.69 .4964 .9964 .0036 .0107 

2.70 .4965 .9965 .0035 .0104: 
2.71 .4966 .9966 .0034 .0101 
2.72 .4967 .9967 ,0033 .0099 
2.73 .4968 .9968 .0032 .0096 
2.74 .4969 .9969 .0031 .0093 

2.75 .4970 . 9970 .0030 .0091 . 
2.76 .4971 .9971 .0029 .0088 . 
2.77 .4972 .9972 .0028 .0086 
2.78 .4973 .9973 .0027 :0084 
2.79 .4974 .9974 .0026 .0081 

.. 
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TABLE B.-ABua m OaDIIU.TES oP TJm NoRM.AL CUllVB 

IM TEmsa OJ' = ,...-(Jontimud 
fT 

. (1) (2) (3) (4) (5) 

z A B c ¥ 
STANDARD ABU noll AltEA IN AREA IIf ORDJNATZ 

.~~m(;) . MEAN TO~ LA BOER SMALLl':a u! 
" 

PORTION PoaTION ., 

2.80 . • 4974 .9974 .0026 .0079 
2.81 .4975 .9975 .0025 .0077 
2.82 .4976 .9976 . • 0024 .0075 
2.83 . .4977 .9977 .0023 .0073 
2 .84 . ,4977 .9977 .0023 .0071 

t 

2.85 .~978 .9978 .0022 .0069 
2.86 .4979 .9979 .0021 .0067 
2.87 ·.4979 .9979 .0021 .0065 
2.88 .4980 .9980 .0020 .0063 
2.89 · .4981 .9981 .0019 .0061 

2.90~ .4981 .9981 .0019 .0060 
2.91 . .-.4982 .9982 .0018 .0058 
2.92 .4982 .9982 .0018 .0056 
2.93 .4983 . .9983 .0017 .0055 
2.94 .4984 .9984 .0016 .0053 

2.95 .4984 .9984 .0016 .0051 
2.96 .4985 .9985 .0015 .0050 
2.97 .4985. .9985 ·.0015 .0048 
2.98 .4986 .9986 .0014 .0047 
2.99 .4986 .9986 .0014 .0046 

3.00 . • 4987 .9987 .0013 .0044 
3.01 .4987 .9987 .0013 .0043 
3.02 .4987 .9987 .0013 .0042 
3.03 .4988 . • 9988 . • 0012 .0040 
3.04 .4988 .9988 .0012 .0039 

-

3.05 ,4989 .9989 .0011 .0038 
3.06 ~4989 .9989 .0011 .0031 
3.07 .4989 . . 9989 .0011 .0036 
3.08 .4990 .9990 .0010 .0035 
3.09 .4990 .9990 .OOlQ .0034 

3.10 .4900 .9990 .0010 .0033 
3.11 .4991 .9991 .0009 .0032 
3.12 .4991 .9991 .0009 .0031 
3 .13 .4991 .9991 .0009 .0030 

·.3.14 .4992 .9992 .0008 .0029 
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TABLE B.-AltEAs AND OlwiN.ATEs OP TBII Nom.t:AL CURn 

. IN TEB.KS 01' ! -Concluded 
II 

(1) (2) (3) • (4) (5) 

• A B c fl 
ST.umABD Aln:A FBOII ARE.& IN AREA IN 0JmiN.&TE 

SrollB (;) MEAN TO~ LA.KGEB SMALLER z . 
PoanoN PoaTmN AT-.. II 

3.15 .4992 .9992 .0008. .0028 
3.16 .4992 .9992 .0008 .0027 
3.17 .4992 .9992 .0008 .0026 
3.18 .4993 .9993 .0007 .0025 
3.19 .4993 .9993 .0007 .0025 

3.20 .4993 .9993 .0007 .0024 
3.21 .4993 .9993 .0007 .0023 
3.22 .4994 .9994 .0006 .0022 
3.23 .4994 .9994 .0006 .0022 
3.24 .4994 .9994 .0006 .0021 

3.30 .4995 .9995 .0005 .0017 
3.40 .4997 .9997 .0003 .0012 
3.50 .4998 .9998 .0002 • .0009 
3.60 .4998 .9998 .0002 .0006 
3.70 .4999 .9999 .0001 .()()()! 
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TABLE c.-=-VALUES 01'' AT TllB 5% AND 1% LzVJ:LB OJ' SIGNIFICANCE.. 

DEGREES OJ' 5% 1% DzGBEJ:SOF 5% 1% FJu:EDOII FBEI:DOil 

1 12.706 63.657 32 2.037 2.739 
2 4.303 9.925 34 2.032 2.728 
3 3.182 5.841 36 2.027 2.718 
4 2.776 4.604 ,as 2.025 2.711 
jj 2.571" 4.032 ;40 2.021 2.704 

6 2.\47 3.707 I 
/ 

42 . 2.017 2.t:96 
7 2.365 3.499 

I 
4( 2.015 2.691 

8 2.306 3.355 46 2.012 2.685 
9 2.262 3.250 48 2.010 2.681 

10 2.228 3.169 . 50 2.008 2.678 

ll 2.201 3.106 55 2.005 2.668 
12 2.179 3.055 60 2.000 2.660 
13 2.160 3.012 . 65 1.998 2.653 
14 2.145 2.977 70 1.994 2.648 
15 2.131 2.947 80 1.990 2.638 

16 2.120 2.921 90 1.987 ~2.632 

17 2.110 2.898 100 1.984 2.626 
18 2:101 2.878 125 1.97 9 2.616 
19 2.093 2.861 150 1.976 2.609 
20 2.086 2.845 200 1.972 2.601 

21 2.080 2.831 300 1.968 2.592 
22 2.074 2.819 400 1.966 2.588 
23 2.069 2.807 500 1.965 2.586 
24 2.064 2.797 1000 1.962 2.581 
25 2.060 2.787 CD 1.960 2.576 

26 2.056 2.779 
27 . 2.052 2.771 
28 2.048 ' 2.763 
29 2.045 2.756 
30 2.042 2.750 

1 
• Table C ·is a.bridged from Table IV of Fisher: Stotist.ical Methods for 

RtAMI'ch. Workers. Oliver & Bord, Ltd., Edinburgh, by permission of t.he 
Author and Publishers. Additional entries were taken from Snedecor: 
.Statistic4l MetluKU. Ames, Iowa: Collegiate Press. by permission. 
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TABLS D.-VALUES orr AT THE 5% AND 1% LEVELS or SIGNIFICANCE* 

DEGREES OF 5% 1% 
DEGREES OF 5% 1% 

Fa.EEOOI!Il Fa.EEDOM 

1 .997 1.000 24 .388 :496 
2 .950 .990 25 .run .481 
3 .878 .959 26 .374 .478 
4 .811 .917 27 .367 .470 
5 .754 .874: 28 .361 ".463 

6 .707 .834 29 .355 .456 
7 .666 .798 30 .349 .449 
8 .632 .765 35 .325 .418 
9 .602 .735 40 ,304 .393 

10 .576 .708 45 .288 .372 

11 .553 .684 50 .273 .354 
12 .532 .661 60 • 250 .325 . 
13 .514 .641 70 .232 .302 
14 .497 .623 80 .217 .283 
15 .482 .606 90 .205 .261 

16 .468 .590 100 .195 .254 
17 .456 .575 125 .174 .228 
18 .444 .561 150 .159 .208 
19 .433 .549 200 .138 .181 
20 .423 .537 300 .113 .148 

·.·• 

21 .413 .526 400 .098 ·.128 
22 .404 .515 500 . 088 .115 . 
23 .396 .505 1000 .062 ,081 

• Table D ill abridged from Table V.A. of Fisher: Stati8tical Method.! fiJI' 
R~earch W orbra. Oliver & Boyd, Ltd., Edinburgh, by permission of the 
Author and Publisher, Additional entries were taken from Snedecor: Sta,. 
11tiool Method.&, Ames. Iowa: Collegiate Press, by permission. 



TABLE E.-V.t.x.uu or F A.T Tn 5% (LIGRTFACB TYPE) AND TBJJ 'l% {Bo!.Dua TYPE) Lsvm.s or 8IGNlJ'lCA.NCE• 

2 a 5 6 7 8 

1 161 200 216 225 230 2.14 237 239 
4,151 '·~· 5,403 5,625 11,764 5,859 5,9l8 5,981 

J 18.6119.00 19.16 19.25 19.30 ·19.33 19.36 19.37 
. 98. 49 "·" 99. 17 99.25 99. 30 99.33 99.3t 99.36 

II 10.13 ll . llll 11.28 9 . 12 9.01 8.94 8.88 8 .84 
3 • • 1l 10.8229.46 18.71'18.:14 27.91 17.67 27.49 

' '7.'11 6 .114 (1.59 8.89 6.26 6.16 6.09 6 .04 

'I 

8 

:21 .20 ·18.00 16.69 15,98 15,51 15.:21 141,98 14.80 

8 .61 IU'9 15.41 5. 19 5.05 4.9.5 4.88 4.82 
16. 26 13.:.17 ll.06 U,J9 10,97 11.67 10.45 10. 27 

6 . 99 5. 14 4.76 4.53 4.39 4.28 4. 21 4.1.5 
U.74 10. 9l 9.78 9.15 8.75 8.47 8.26 8.10 · 

5 .69 4 .14 4.85 4.12 8 .97 8.87 3.'70 3 .73 
. 1l.l5 9 .55 8,45 7 . 85 7.46 7.19 7.01 6.84 

5 .82 4 .46 4 .07 8 .84 8.69 8 .58 8.50 8 . « 
U / l6 a.u 7.59 7.tt 6.u 6.37 6,19 6.13 

/ / 

II 5 .12 4 .26 8.86 3 .63 . 8 .48 8.81 8 .29 8 . 23 
11.56 1 .03 6.99 6.41 .... 5.80 5 .61 5 ,47 

10 4.tle 4 . 10 3 .7'1 ! .48 8.33 3.22 3.14 3 .07 
11.04 7.56 . 6 .55 5.99 5.64 5.39 5.21 5. 06 

11 4 .84 8 .98 8 .&11 3 .36 8 .20 3 .011 3 .01 2 .95 
9.65 7. ll 6.21 5.67 5.31 5.17 4.88 4. 74 

12 4.75 8 .88 8 .49 8.28 8.'11 3 .00 2.92 2 .85 
9.U 6,93 11,95 5.41 5,06 4.8l 4, 65 4.58 

13 4 .87 8 .80 8.41 8.18 8.02 2.92 lU4 2. '77 
9 .07 6.70 5.74 5.:10 4.8(, 4.6l 4.U 4.30 

111 deareea of fNedom (for cnater mean ~QU&re) 

II 10 11 

241 242 243 244 ' 245 246 248 2411 
·~·~·~·~·~·~6~6~ 
19.38 19 .39 19.40 19.41 19.42 19.43 19.44 19 .45 
99.38 99. 40 99.41 99.42 99.43 99.44 99.45 99.46 

8 . !11 :·8.7s 8 .76 8 .74 8;71 11.69 8.86 8 .64 
:u,u 27,23 27.13 27,05 26.U 26.83 16.69 26.60 

~. 00 ll.lllt' 5.93 5.91 11.87 11.84 11.80 3.71 
14,66 16.54 14.45 14,37 14.:14 14.15 14.U 13.93 

4 . 78 4.74 4.70 
10.15 10.05 9.96 

4 . 10 4.05 4 .03 
7 .98 7 .87 7.79 

::~7 :::~ . u~ 

4.68 
9.89 

4 .00 
7.72 

8.67 
6 •• 7 

4.64 
9.77 

8.96 
7.60 

3.62 
6.35 

4.60 4.1!6 4.1!3 
9.68 9.55 9.47 

3.92 3.87 8 .84 
7'.51 7.39 7.31 

3.49 8 . 44 3.41 
6.l7 6.15 6.17 

8 .89 8 .84 3 .31 8 . 28 3 . 23 8.20 3.15 8.12 
6,91 6.81 6 ,74 6,67 6.66 11.-68 5.36 5.28 

8 .18 8 . 13 8 . 10 8 .01 8 .02 2 .118 2 .93 2.90 
6.35 5.l6 5. 18 5.11 5.11 4.91 •. 81 4.73 

8 .02 2 .97 2.94 2 .91 2.88 2 .81J 2 .71 2.74 
4 •• 5 4 .85 4 .78 • • .,. 4,60 4 .1il 4.41 4 .33 

2 .110 2 .88 2 .82 2 . '711 2 .74 2 .70 2.811 2.81 
4 .63 4.54 4 .46 4 • .0 4. l9 4 . :.11 4.11 C. Ol 

2 .80 2 .'76 . 2 .'72 2 .69 2 .84 2 .60 2 . 54 2 .110 
4.ll9 4.31 4.n 4.16 4.o5 a.ts a.a6 a.11 

2. 72 2 . 67 2 .63 2 . 60 2.55 2 .51 2.46 2.42 
4 , 19 4.10 4.U 3 . 96 3.85 3.78 3.67 3.!19 

80 . 40 60 . 75 100 200 600 00 

2150 2~1 21!2 253 253 254 254 254 
6,:1S8 6,l~6 6,3U 6,313 6,334 6,351 6,361 6,~ 

111.46 111.4'1' ,19.4'7 19.48 19.49 19.49 111. &0 19.&0 . 
99 •• 7 99.48 99.48 99.49 ..... "·" 99.50 99.50 

8.62 8.80 8 .118 8.117 8.1!8 8.54 8.54 8.113 
26.50 26.41 26.35 26.:17 26.23 .26.18 26.16 l6.U 

11.74 5 .'71 5.'70 ' 11.68 IJ.tl6 5.85 5.84 5.83 
13.83 13.74 13,69 13.61 13.57 13.15l 13.48 13.46 

4.50 
9.38 

8.81 
7.:z:t 

8 .38 
5.98 

3 .08 
5.11 

4 .46 
9 . :.19 

8 :7'7 
7 , 14 

8 .34 
5 .90 

3.05 
5. 11 

4 .44 4 .42 4.40 4.38 
9,24 9,17 9.13 9.07 

8 .75 8 .72 8.71 8 . 159 
7.09 7.01 '·" 6.94. 

! .311 3 .29 8 .28 8.25 
5.85 5. 78 5.75 .. 5.7t 

3 .03 8 .00 2 .98 2.98 
5.06 5.to 4.96 4.91 

4 .37 4.915 
9.04 9.01 

8.68 3 .87 
6.90 6.88 

8 . 24 8.23 
6.67 5.65 

2 .94 1 .93 
,,88 .... 

2 .88 2 .82 2 .80 2 .71 2 . '1'6 2 .73 2.'72 2 .71 
4.64 4.56 4.61 t.u "·" 4.36 t.» ... at 

2 .'70 ! . 6'7 2 .84 2 .81 2 .59 2 .1!e 2 .55 2 . 54 
4.25 4. 17 f.Jl 4.05 4.11 '·" 3.93 3.91 

2 .67 2 .1!3 ll .l!O 2 .4'7 2.45 1.42 2.41 2.40 
a.•• 3 .&6 a.ae a.7t a.7t '·" 3.U 3.61 
2 .48 2 .42 2 .40 2 .38 2.85 2.811 2.31 2.30 
3.71 3.61 1.56 '·" 3.46 3.41 3.38 3,.16 

:1 .38 2 .84 2.82 2 .28 2 . 26 2.24 2 .22 2 .21 
a .s1 a .o 1 .11 a.30 3.l7 3.u 3.18 3.H. 

• Reproduced from G. W. Snedecor. · Statis!ical Method$, ArJ?-es, Iowa: Collegiate Press, 1940, pp. 184-187, by permission of the author 
•nd the publisher. 
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TABLE E.-VALUES oFF AT THE 5% (LIGHTFACE TYPE) AND THE 1% (BoLDP'ACJ!fTYPE) LEVELS OF SIONII"'CANCE-Continutd 

Rl decree• of f""'dom (for greater meaD aquare) -
N 

1 2 3 il 6 II 7 8 9 10 11 12 14 16 20 24 ao 40 60 76 \00 200 &00 00 -
l4 4.60 3.74 8.34 3.11 2.96 2.85 2.77 2.'~0 2.85 2.60 2.56 2.53 2.48 2.44 2.80 2.85 2.31 2.21 2.24 2.21 !.1.19 2.16 2.14 2.13 

8.86 6.51 5.56 5.03 4.69 4.46 4.:18 4,U. t.03 3.94 3.86. 3,80 3.70 3.61 3.51 3.43 3.34 a.l6 3,11 3.14 a.u 1,06 a.u 3.00 
.. 

15 4.54 8.68 8.29 3.08 !1.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.83 2.29 2.25 2.21 2.18 2.15 2.12 2.10 2.08 2.07 
8.68 6.16 5.t1 t.89 t,li6 &.31 4.1C t.oo 3.89 3.80 3.73 3.67 3.56 3.48 3.36 3.19 3.10 3.u 3.07 3.00 2.97 2.91 2.89 1.87 

16 4 .. 49 3.63 3.24 8.01 2.8.5 2.74 2.68 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28 2.24 2.20 2.16 2.13 li.D9 2.0'1' 2.04 2.02 2.01 
8.53 6.13 5.:19 4.71 '·" t.lO t.U 3.8') 3.78 3,69 3,61 3.55 3.45 3.37 3.25 1,18 3.10 a.o1 . :1,96 :1.89 :1.86 :1.80 :1.77 1,75· 

17 4.45 8.59 8.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 ,,41 2.38 2.33 2,29 2.23 2.19 2.1.5 2.11 2.08 2.04 2.02 1.99 1.97 1.96·~ 
8.40 6.11 5.11 4.67 t.U 4.10 3.93 3.79 3.68 3.59 3.5l 3.45 3.35 3.27 3.16 3.08 '3.00 2.91 :1.86 l.79 2.76 2.70 2.67 l.65i 

: 

lil 4.41 8.ll5 11.16 2.93 2.77 2.66 2 . .58 2.~1 2.46 2.41 'l.87 2.34 2.29 !U!S 2.19 2.15 2.n 2.07 2.04 2.00 1.98 1.911 1.9:4 1.92 
8.28 6.01 5.09 t.58 t.25 t.Ot 3.85 3.71 3.61 3.51 3.44 3.37 3.l7 3.19 3.07 3.00 :1.91 l.83 :1.78 ·:~.71 :ue l.6l 2.59 l.57 

19 4.38 8.52 11.13 2.90 2.74 2.83 2.55 2.48 2.43 2.88 2.34 2.81 2.26 2.21 2.15 2.11 2.07 2.02 2.00 1.96 1.94 1.91 1.90 1.88 
8.18 5,91 Jli,01 4.50 t.17 3.9t 3.77 3.63 3.5l 3.t3 3.36 3.30 3.19 3.u 3.00 l.9l 2.84 2.76. 2.70 2 • .63 2.60 l.54 2.51 l.t9 

20 4.3~ 8.49 3.10 2.87 2.11 2.60 2.52 2.45 2.40 2.35 1!.31 2.28 2.23 2.18 2.12 2.08 S!.04 1.99 1.96 1.92 1.90 1.87 1.85 1.84 
8.10 5.85 4.94 4.U 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 , 3.13 3.05 l.94 1.86 2.77 1,69 2.63 2.56 1,51 l.47 l.f4 l.42 

~ . 
21 4.32 8.47 8.0'7 2.84 2.68 2.57 2.49 2.42 2.87 2.82 2.28 2.25- 2.20 2.15 2.09 2.05 2.00 1.96 1.93 1.89 1.8'7 1.84 1.82 1.81 

8.01 5,78 4,87 4,31 4.04 3.81 3.65 3.51 3.40 3.31 3.:14 3.17 3.07 l.99 2.88 l.IO l.72 l.63 2.58 2.51 2.47 2.tl 2.38 l • .J6 

22 4.80 8.f4 8.05 2.82 2.66 2.55 2.4'7 2.40 2.35 2.80 2.26 2.23 2.18 2.13 2.07 2.03 1.98 1.93 1.91 1.87 1.84 1.81 1.80 1.78 
7.94 5.7l 4.81 1.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.01 2.9t 2;83 l.75 2.67 2.511 2.53 :1.46 2.42 2.37 l.33 2.31 

23 -'.28 ll.tt ·s.os 2.80 1!.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04 2.00 1.96 1.91 1.88 1.84 1.82. 1.'79 1.71 1.78 
7.88 5,66 41,76 

··~ 
1,94 3.71 1,54 (1,41 3.30 3,11 (1,14 3,07 2.97 ;1,89 2.78 l.70 2.61 2.n 2,48 1,41 2,37 :1,32 ·;J,l8 2,26 

2t 4.26 3.40 3.01 2.78 2.62 2.61 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02 1.98 1.94 1.89 ~.86 1.82 1.80 1.76 1.74 1.73 
1.8l 5.61 t.7l 411.ll 3.90 3.61 3.50 3.36 3.25 3.11 3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.f4 2.36 2.33 2.27 2.l3 l.21 

25 411.24 8.88 2.99 2.76 2.60 .2.49 2.U 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00 1.96 1.92 1.8'7 1.84 1.80 1.77 1.74 1.72 1.71 
7,77 5.57 t,68 4.18 3.86 3.63 3.46 3,12 3,21 a.u 1,05 l.99 2.89 l.81 2.70 2.6l . :1.5. 2.45 l,40 ;1,31 1,29 l,l3 1.19 2.17 

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.!0. 2.05 1.99 1.95 1.90 1.85 "!.82 1.78 1.76 1.72 1.70 1.69 
:7.7:.1 5.53 411.64 •• 14 I.Bl 3.59 3.4:.1 3.29 3.17 3.09 .3.0l .2.96 l.86. 1.77 .l.66 2.58 2.50 2.41 . l • .J6 2.28 2.~ 2.19 2.15 l.U 

I 

.. 
l'ho !unction, F =• Wlth esponent 2•, lo computed 1n part from Fiaher'• table VI (7). Additional entliell are by ulterpolation, mostly graphioal. 



TABLE E.-VALUES OF F AT THE 5% (LIGHTFACE TYPE) AND THE 1% (BoLDFACE TYPE) LEVELS OF SIGNIFICANCE-Continued 

nt degreea of freedom (for rreater mean aquare) . 
Rl 

1 2 8 4 IS 6 7 8 9 10 11 12 14 16 20 24 80 40 50 75 100 200 500 co -
27 4.21 8.811 2.96 11.'18 2.57 2.46 2.87 2.30 2.211 2.20 2.16 2.13 2.08 2.03 1.97 1.93 1.88 1.84 1.80 1.76 1.74 1.71 1.88 1.67 

7.68 5.49 4.60 4.11 3,79 3.56 3,39 3.:16 3.14 3.06 l.98 :.1.93 :.1.83 :.1.74 :.1.63 :.1.55 :.1.47 :.1.38 :.1.33 :.1.:.15 :.1.:.11 :.1.16 :.J.U :.1,10 

28 4.20 8.84 2.95 2.71 2.56 2.44 2.86 2.29 2.24 2.19 2.111 2.12 2.06 2.02 1.96. 1.91 1.87 1.81 1.78 1.711 1.72 1.69 1.67 1.811 
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.:13 3,11 3.03 :.1.95 2.90 :.1.80 :.1.71 :.1.60 :.1.52. 2.44 :.1.35 2.30 :.J,U :.1.18 :.1,13 :.1.09 :.1.06 

29 4.18 8.83 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94 1.90 1.85 1.80 1.'77 1.'73 1.71 1.68 1.65 1.84 
7.60 5.41 4.54 4.04 3.73 8.50 3.33 3.:.to 3.08 3.oo :.1.9:.1 2.87 :.1.77 :.1.68 2.57 :.1.49 :.1.41 :.1.31 :.J.:.J7 :.1.19 :.1.15 :.1.10 :.1.06 :.J.U 

80 4.1'7 8.82 2.92 2.69 2.53 2.42 2.84 ·2.2'7 2.21 2.16 2.12 2.09 ~:~1- ~:22 1.93 1.89 1.84 1.'79 1.'76 1.'72 1.69 1.86 1.84 1.62 
7.56 5.39 4.51 4.0:.1 3.70 3.47 3.30 3.17 3.06 2.98 :.1.90 2.84 :.1.55 :.J.ff :.1.38 :.1,:.19 :.J.l4 :.1,16 :.1.13 :.1.07 :.1.03 :.1.01 

82 4.111 8.80 2.90 2.6'7 2.111 2.40 2.82 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91 1.86 1.82 1.'78 1.74 1.69 1.67 1.64 1.61 1.119 
7.50 5.34 4.46 3.97 3.66 3.4l 3.l5 3.u 3.01 :.1.94 2.86 :.1.80 :.1.70 :.1.61 :.1.51 :.1.41 2.34 :.1.:.15 :.J,lO :.J.U :.1.08 :.J.U 1.98 1.96 

84 4.13 8.28 2.88 2.611 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.911 1.89 1.84 1.80 1.'74 1. '71 1.67 1.64 1.61 1.159 1.157 
7.44 5.l9 4.4:.1 3.93 3.61 3.38 3.l1 3.08 :.1.97 2.89 :.J.U :.1.76 :.1.66 :.1,58 2.f7 :.1.38 1.30 :.J.:.Jl :.1,15 :.1.08 :.1.04 1.98 1.94 1.91 

86 4.11 8.26 2.86 2.63 2.48 2.36 2.28 2.21 2.115 2.10 2.06 2.03 1.98 1.93 1.87 1.82 1.'78 1.72 1.69 1.611 1.62· 1.119 1.158 1.55 
7.39 5.l5 4.38 3.89 3.58 3.35 3.18 3.04 :.1.94 :.1.86 :.1.78 :.J.7l :.1.6:.1 :.1.5~ :.J.U :.1,35 :.1.26 :.1.17 :.J.U 3.04 3.oo 1.94 1,98 1.87 

88 4.10 3.211 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.011 2.02 1.96 1.92 1.85 1.80 1.'76 1. '71 1.67 1.63 1.60 1.117 1.154 1.113 
7.35 5,:11 4.34 3,86 3.54 3.u 3,15 3.01 3.91 :.J.U :.1.75 :.1.69 :.1.59 :.1.51 :.1.40 :.1.31 :.1.:.11 3.14 :.1.08 3.00 1.97 1.90 1.86 1.84 

40 4.08 8.23 2.84 2.61 2.411 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.911 1.90 1.84 1.'79 1.74 1.69 1.66 1.61 1.159 1.155 1.113 1.151 
7.31 5.18 4.31 3.83 3.51 3,29 3.u :.1.99 3.88 :.1.80 :.1.73 3.66 :.1.56 :.1.49 :.1,37 :.1,19 :.1,10 :.1.11 3.05 1.97 1.94 1.88 1.84 1.81 

42 4.07 8.22 2.83 2.159 2.44 2.82 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82 1.'78 1.'73 1.88 1.64 1.80 1.157 1.154 1.111 1.49 
7.:17 5.15 4.l9 3.80 3,69 3.l6 3.10 :.1.96 2.86 :.1.77 :.1.70 2.64 :.1.54 :.1.46 2.35 :.1.26 3.17 :.1.08 l.U 1.94 1.91 1.85 1.80 1.78 

44 4.06 8.21 2.82 2.58 2.43 2.81 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81 1.'76 1.72 1.68 1.63 1.58 1.156 1.52 1.!10 1.48 
7.24 5.U 4.:16 3.78 3.46 3.:14 3.07 :.1.94 2.84 :.1.75 :.1.68 :.1.6:.1 :.1.52 :.1.44 :.1.31 3.:14 :.1.15 3,06 3,00 1.9l 1.88 1.8l 1.78 1.75 

46 4.05 8.20 2.81 2.57 2.42 2.80 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80 1.711 1.71 1.615 1.62 1.157 1.154 1.51 1.48 1.46 
7.l1 5.10 4.l4 3.76 3.44 3,2l 3,05 :.1,91 3.81 :.1.73 :.1.66 :.1.60 :.1.50 :.1.4:.1 :.1.30 :.J.U :.1,13 :.1.04 1.98 1.90 1.86 1.80 1.76. 1.7l . 

48 4.04 8.19 2.80 2.56 2.41 2.80 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.'79 1.'74 1.70 1.64 1.61 1.6ft 1.153 1.150 1.47 1.411 
7.19 5.08 4.l1 3.74 3.4:.1 3.10 3.04 :.1.90 2.80 2.71 3.64 :.1.118 2.48 :.1.40 :.J.l8 3,20 :.1.11 :.J.Ol &.96 1.88 1.84 1.78 1.73 1.78 



TABLE E.-VALUES OP FAT T_!IE 5% (LI<lBTPACI: T'TPB) AND TEI!I 1% (BoLDPACI!I TYPE) LEVEUI 01' siaNII'1CANCI:-C01llinutd 

"' decreet~ of freedom (for peatu DlANUliiQUare) 

"' s . o 10 11 12 1 2 8 • 5 a 'I u 18 20 u 30 40 60 75 100 ~ 600 0() 

&0 f .OS 3 .18 2 .70 2 .56 2 . .0 2.29 2.20 2.1S 2 .07' 2 .02 1.08 1.95 i .IIO 1.85 1.7'8 1.74 . 1.69 J.IIS 1 .110 1.55 1.62 1.48 . 1.46 1.44 
7.17 5 ... 

··~ 
3.7l 1.41 3.18 .J.U ;us 3.78 3.70 3.63 3.56 2.46 3.a9 ),J6 1.18. 3.10 3.to 1 .91 1.16 1.83 1.76 1.71 1,(>8 

55 4 .02 8 . 17 1 .78 2.54 2.88 2.27 2.18 2.11 1.05 2 .00 1 .97 1.93 . 1.88 1.83 1.76 1.72 1 .67 1.61 1.58 1.52 1.110 1.411. 1 .43 1.41 
.7.U ~.11 f . l6 3.61 3 • .17 3.15 :1.98 l.85 2.75 3.66 1.59 l . Sl 2.43 2.35 ;r,:.a :1.15 3.06 1.96 1.91 l.U 1.78 1.71 1.66 1." 

80 c.oo 8 . 15 2.78 2 . 62 2.37 2.25 2.17 2.10 2 .04 1 .99 1 .95 1.92 1.86 1.81 1.75 1.70 1.86 1.59 l.li6 1.110 1.48 1.44 1.41 1.39 
7.08 4.98 •. u 1.65 3.34 a.u :11.95 :I.U .a.u .a.6a ),56 .a. so :1,40 :I.U 3.:.10 1.U ;r.oJ 1.93 1.17 1.19 1 .74 1.611 1.63 1.60 

415 3 .99 8.1« 2.75 SUI 2.36 2.24 2.15 11.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73 1.68 1.63 l.li7 1. 114 1 .49 1.48 1.42 1.39 1.37 
1.04 4,95 f,IO 3.61 3.31 3.09 3.93 1.79 l.70 :1.61 l.M 1.417 1.37 1.30 .2.18 ),09 3.00 1.90 1.811 1.76 1.71 1.64 1,60 1.56 

70 8 .98 8 .18 2.74 2 .60 2.85 2.23 2.14 2.07 11.01 1.97 1.98 1.89 1.8( 1.79 1.72 1.67 1.82 1.66 1 . 113 1.47 1.415 1 •. 40 1.87 I .35 
7.11 4.9.2 4 . 08 3.60 3.,9 3.07 .2.91 :1.77 :11 .67 :1,59 ).51 l.f5 3.35 3.18 .2.15 3.87 1.98 1.88 1 .U 1.74 1 ... 1.63 1.56 1.53 

80 S.9fJ 8.11 2 .72 2 .48 2.33 2.21 2 . 12 11.05 . l.llll 1.95 1.91 1.88 1.82 1.7'1 1.70 1.65 1.60 l .U 1.151 1.45 1. 42 1.88 1.36 1.82 
6.96 t.88 4.U 3.66 3.25 3.04 2.87 l.7t a ... .2.55 2 ,41 3,41 2.3J 3.241 3.11 :I.U 1.94 1.84 1.78 1 .70 1.65 1.57 l,lil 1.49 

100 8 .94 3 .09 2 .70 2 .46 2 .30 2.19 2 . 10 2.03 1.97 1.92 1.88 1. 85 1 .79 1.75 1.68 1 .fJ3 1 . &7 1 .51 1 .48 1.42 1.39 1 .3t 1.30 1 .28 
6 .90 f .8l 3. 98 3 . 51 3.21 3.99 ).8l l ... 2.59 1 . 51 1.43 · 3.36 l.l6 1.19 2.16 1.98 1 .89 1.79 1 , 73 1.641 1. 59 1.51 1.46 1.4J 

125 8.92 3 .07 2 .88 2 .44 2.29 lU7 2 .08 2 .01 1.915 1 .90 1 .86 1.83 1 .77 1.72 1.65 1 .80 1. 66 1 .49 1 .411 1.89 1.38 1.31 1.27 1.2.5 . 
6.84 4.78 3,94 3,47 3 .17 3.95 3., 3 .65 1.56 2.47 1 . 4o 1 .33 1 . U , l.15 .z.u .. , . 1 ,85 1,75 1.68 1.59 1.5t 1.46 1,41 1.37 

150 S .Ol 8 .06 2 .67 2 .43 2.27 2.18 2 .07 2 .00 1,11, 1.89 1.815 1.82" 1.7fJ i .71 l.M 1 .59 1.54 1.47 1.44 1.37 1.34 1.29 1.215 1 .22 
6 . 111 t . 75 3,91 ..... 3,14 1,U :1.76 1.6:1 3.53 3.44 2 . 37 ) . 31 3.~ 2.ll l.H 1.91 1 .83 1.7:1 1.66 1.66 1.51 1.43 1.37 1 .33 

200 3 .89 3 .04 .2.65 2.41 2.26 2.14 2 .05 1.118 1.92 '1.87 1.83 1.80 1.'74 1.89 1.62 1.57 1.152 1. 415 1. 42 1.35 1 .82 1.28 1.22 1.19 
6.76 4 . 71 3.88 •••• a.u ,,,. 2.71 .2.ft0 .Z.5t 2.41 II.M .2,l8 3,17 3 • ., 1.97 . 1.88 . 1.79 1..69 1.62 t.sa 1.t8 1.:n 1.33 1.28 

400 8 .86 8 .02 2 .62 2.89 11.23 2.12 2 .03 1.96 1.110 1 .85 1.81 1.78 1.72 1.87 1.60 1.54 1 .49 1.42 1 .38 1.32 1.28 1.211 1.18 1.13 
6,70 .... .J.BJ 3.36 3,66 .2.85 :1.69 3.155 .3.46 3.37 3.39 2.33 3.U l.t4 1.9.l 1.84 1.76 1,W 1.57 l .t7 1. U 1.31 1.14 1.19 

J 

1000 3 .85 8.00 2 .61 11.38 11.22 2.10 2.02 1.D5 1.89 1.84 1.80 1. 76 1.70 1.65 I .158 1.153 1 .47 1.41 1.36 1.80 1.26 1.19 1.13 1.08 

'·" 4.62 J , BI a • .w a.ot l.U .3.66 3.53 1.43 2.U l.l6 l.ll 3.09 l.tl 1.69 1.81 ' 1.:71 1 • .a l . M 1.44 l.a& 1.28 1.19 1.11 

00 3 .84 11.99 11.60 2 .37 2 . 21 2.09 2.01 1.04 1.88 1. 83 l.TG 1.75 1.69 1.64 1.67 1.52 1.46 l.fO 1.85 1 .28 1.24. 1.17 1.11 1.00 .... f.60 3.78 3.33 a.ol .z.ao .2.64 l.51 ,,,1 3,:5:1 2 .24 3 . 18 3.01 1.99 1.81 1.79 1.69 1.59 1 . 5l 1 ... 1.36 1,15 1.15 1,01 
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TABLE F.~VALUltS OP ~ AT 'l'BB 5% (Ro:u:.&.N TnB) .iND 1% (ITALlO TnE) LllnLS 0'1' SIGNIFICANCii. 

k -1 . 

1 j 8 ' 5 6 
.,. a · a lO u 12 1, I ~0 I 20 1·u I ao t·,o' f 10 

- .. 
• 988 
.9994 
,85' ,DOO 

•b the body of thi1 tablt it alv.n in 1tandard type the m~ .970 ,980 -
.69& , '776 .805 mum .. that oould be upeoted II timu in 100 and, in ital.ioe, 
,89J ,SIS .934 the muimum c• that oould b• upeated 1 time in 100, Dll 

. ~73 .ee& .'106 .'1211 the buia of ahanoe .8uotu,.tlcm when the true oarHlat.iDil 

.80J .860 ,811 ,BBI !. sero, the v&luea beln11iven for the number of columna 

.483 .1578 ,623 ,651, ,6611 ln the oorrelatioo table lee• 1 (Tt- 1) by ooiUJliDJI ~mel 
, 718 .778 ,B()(J ,811 ,838 the total populatioo of tbe .ample 1881 the number of 
.4.1\1 . GOD .556 ,583 .606 ,621 ' oolumn1 (N - A) by rowe. The reuon the eeot.iOil of 
.64& , 718 .7+6 .'166 .7711 •,1811 tru.. table oovered b:v thie note il blank ia beoauae no 
.865 .454. .101 .63.3 .£53 .&70 .1582 ••lid meanina oould attach to ~ wben .. the uerap 
,684 ,866 .891 .714 . 1111 .741 .760 number of item• In each oolum11 ia 1.a than two. 
. 824 ,.COD .4.66 .486 .£011 .1525 .688 .&60 Thie table , .. made b~ ChariN B. Gri.IJia. hJ' 
.638 ,IJ(JS .8., .867 .884 .897 . 708 .718 the formula derived on pp; 4.21-622, of Pe 
.2Q2 ,372 .417 .447 .470 .-t87 .600 . flU .&2.3 ' aod Va11 Voorhio 8lol\Mleol Proudu..,OIId 2" 
. 489 .681 ,800 ,8£6 .8# .868 .669 .878 .886 ' Ma1Mmafioal BIUOt &od Ia repNK!uoed fr 
.2e4 .au ,885 ,416 .437 .464 ,468 .479 .-t8D .49f pp. 4114-697 by permll&ioa of lb• authon 
·461 , 611 .61JJ ,688 .807 .,.1 ,1$34 .II., .8U .868 \heir publiahen, MoGrr.,.Bill Book C 
.242 , 814 .867 .886 .407 .425 .439 ,461 .461 .470 .4711 paay • 
• 419 . 488 .6£8 .666 .614 ,69() ,801 ,811 ,810 ,818 .as~ 
.224 .291 .832 .861 .8!13 .coo .414 .425 .435 ·"'' .461 ,4158 
.891 .469 .-487 .6£4 .644 .660 ,61,f. ,688 ,691 ,600 ,6011 .811 
.208 .27:11 .au ,8311 .3511 .877 .soa .403 .413 ,421 .428 .434 
,88(1 ,.fS6 .411 .491 ,611 ,6S:J ,6411 , 661 , 661J .61,f. .681 ,681 



TABLE F.-V.u.ns or ~AT TD 5% (RoMAN TYPE) AND 1% (ITALic TYPE) LEVELS or SxoNtFicANcm-Continued 

.k -1 

N-1; 1 2 8 6 " 8 7 8 II .10 11 13 a lG I 20 24 80 40 1. 60 

- ~ - --~ ------- ----------
u .194 .2!;5 . 292 .319 .uo .857 .371 .38~ . 302 .400 .407 .4U .425 

.6# .408 -~48 ,,f.TI .498 ,1;09 ,t;U ,638 ,6-lJ .661 .667 • .s84 .614 
liS , 181 ,240 ,276 .302 .322 ,338 ,351 ,363 ,374 , 383 .890 .397 .408 . 418 

.IJI.J .IJB7 ,4-f.f. .-lt;O ,.f7l ,.f.BT ,600 .611 ,610 .618 ,686 ·,64S ,66S ,I;(} I 

1& .170 .228 ,261 ,287 ,806 ,322 .33B .348 .857 .364 ,371 ,378 ,890 .399 .us 
.IJ01 . SI18 • .404 • .4SO .-lt;O ,.f88 ,.f.80 .491 .600 .609 . 615 .liiS .6SS . 641 ,6611 

17 .161 .214 . 248 .27~ .291 .307 .321 .332 .842 .849 .356 .363 .876 .386" .399 
.191 .860 .IJ86 ,.ftl ·"" • .f.41 .4111 .. m ,.f81 .490 . .~1 .liOS .611 .614 .699 

18 .152 .203 .236 .260 .278 .293 .807 .317 .3.21 .835 .342 .349 .361 .870 .385 
.171 , 61J.4 .Sll9 .S94 ,+J.f .419 .4# ,.f66 ,.f.ll4 , .f.71J .481 .487 .~8 .608 .611 

19 ,1&5 . .1113 .1125 ,248 .206 .281 .294 .305 .316 .322 .329 .336 .348 .356 . 371 
.!tl.f .510 .S64 ,S78 .S98 ,.ft4 .+tr ,41J8 .#8 .466 .-484 .411 ,4§1 

·~· 
, 606 ' 

2() .138 . 185 .215 ,238 .2~ .270 .283 ,293 .aoa .,31() .317 .324 .836 ,3,, ,359 .371 
,1611 .~ .SS9 .1Jf1,4 ,1188 .SOB .,f.t.! ·+'• ·"'' .w .w .-lt;6 ,.fliT .411 .498 ,50 .f. 

21 .131 .177 ,206 .227 .246 .2511 .271 .281 .291 , 299 .306 ,813 .324 .832 ,347 .359 ..... .19~ ,1116 .850 ,869 ,884 • .!98 .409 ,+J9 ,4-t'f .~6 . .«1 .~68 .488 •• 78 ,49Q 
22 .1%6 .169 .1117 .219 .235 .249 .262 .272 .282 .289 ,2116 ,303 .316 . 822 .838 ·.350 

.181 .181 ,814 • .!81 ,356 ,8711 ,386 .996 .406 ·41+ ,4-ft ,4£8 .#0 .460 •. .JBfl ,.f.77 

23 ·• .120 ..• 162 . 1110 .211 .227 ,240 .253 .263 .271 .279 ,286 ,291 ,301 .su .826 .838 
.118 .171 ,1108 ,tJifl ,S.f-4 ,.!59 .S71 .88/J ,S98 .401 .409 ,.f15 .411 ,4S1 ~459 .4f16 

26 .1115 .156 .183 ,203 .218 .232 .24!\ .2~ .262 .270 ,277 ,282 .211ll ,804. .817 .329 
. 114 .161 ,191 ,1116 ,IJ39 ,3-fB .861 .911 • .!80 • .!90 ,1196 -40+ .. us , 4f6 -441 -464 ' 

:!& .111 .150 .176 ,195 .211" .22!\ .236 .245 .253 .262 , 268 .273 .285 .2113 .808 .820 .336 I 

· . 1(11 . 168 .us ,806 ,8111 ,831 .960 .360 .869 .• 1118 .886 ,891 .404 .414 ,.f.SO . 44.1 .-lt;1 
211 .107 .H5 .170 ,188 .204 .218 .228 .237 .246 .253 .260 .266 .278 .286 .801 .813 .8215 

,199 .I# .114 .196 . 81/J • 811 .8SP .860 .868 • .!6'1 ,816 ,881 ,89~ .~08 .419 .481 . .#4 
27 .103 . 139 .164 .182 .197 .21() .22() .2211 .238 .246 .2111 .258 , 2611 .277 .• 292 .304 .317 

.1911 .196 .181 .188 .804 .tJ18 .890 .8~! .849 .668 ,S8.f. .8711 ,986 • .!9.! .410 .411 .~8 



TABLE F.-V.a.LUES o:r ~ AT Tam 5% (ROMAN TYPE) .AND 1% (ITALIC TYPE) LEVELS o:r SIGNIFICANCE-Continued 

Tt-l 

N-11 1 2 8 ' a. 6 'I 8 9 10 11 12. 14. 16 20 24. 80 40 110 . :ii•. - ----- -------------- - --------.-
28 .099 .135 .159 .176 ,191 .203 .214. .223 .231 .238 .245 .251 ,261 .271 .286 ,296 .810 

.186 .119 .161 .171 .196 .S09 .sst .SSt .SS9 .S48 .S68 ,S6S .S78 ,S8S .400 .411 ,4J17 
2G ,096 .131 ,153 .171 .185 .197 .208 .217 .224. .232 ,239 ,244 .255 ,262 .277 ,290 .302 

• 180 .... .149 ,169 .186 .soo .S11 ,SIB .sso ,SS9 .S46 ,S64 ,S66 .S74 .S?t .40S .. us 
80 .093 .127 .149 ,166 .179 .191 .202 .211 .218 .225 .231 .237 .249 .256 .271 .283 .296 

.176 . • 116 .141 ,161 .178 ,191 .sos .S14 ,811 .sst .S88 .SI,8 .S68 ,S66 ,888 ,S98 .408 
82 .087 .119 .140 ,157 .169 .181 .192 .200 .207 ,213 ,220 .226 .237 .244. .259 .269 .284 .297 

.168 ,108 ,119 .148 ,164 ,176 .188 .198 .806 ,8t6 .8BB .819 .SJ,t .861 .861 .878 ,898 .1,10 
84 .082 .112 ,132 .148 .160 .171 ,182 .190 .197 .203 ·.209 .215 .226 .233 .248 .258 ,273 .286 

' ,166 .191 .117 ,186 ,16t ,168 .174 ,184 .191 .800 .SOB .818 .818 .886 ,868 ,868 .S78 .898 
86 .078 .106 .125 .140 .152 .163 .172 .18() .187 .193 ,199 .205 .215 .222 :237 .247 ,262 .275 .286 

.147 ,188 ,106 ·"4 ,189 ,16t ,161 ,B7t ,180 ,188 ,194 ·.sot .811 .SBB .888 .S61 ,884 ,S81 .894 
88 ,074 .101 .119 .134 .145 .155 .164 .171 .179 .185 .191 ,197 .205 .214 .227 .236 .251 .267 .278 

.ti,O .174 ,198 .lt4 ,118 .11,0 .16t .180 .188 .178 .181 .189 .800 ,809 ,818 ,888 ,860 ·;889 .880 
40 .069 .096 .114 .128 .139 .149 .157 .164. .171 .176 .18~ .188 .198 .205 .219 .229 .241 ,257 .268 

,188 .168 ,188 .108 ,118 ,ISO .140 .11,9 .161 ,186 .171 .171 .188 .109 ,814 .816 .840 ,867 .888 
42 ,067 .092 ,109 .121 .133 .142 .150 .158 .164 .169 .175 .180 .190 .197 ,209 ,221 ,233 .249 .258 

.111 .169 .180 .198 .109 ,lBO .sst .189 .11,1 ,164 .181 ,181 .178 ,187 .808 .814 .818 .846 .861 

" .064. ,088 .104 .116 .127 .136 .144. .151 ,157 ,163 .168 .174 .182 .190 ',202 ,211 .226 .239 .251 
,IBB .161 .171 ,188 .101 ,Btl .111 ,ISO ,188 ,11,8 ,161 ,168 ,188 ,171 ,191 ,804 ,818 .886 .841 

46 ,061 ,084 .100 .112 .122 .130 .139 .144 ,151 ,157 .162 .167 .175 .183 .195 .204 .219 .232 .244. 
.117 .148 .188 .181 .198 .104 ,118 .111 ,119 ,188 .148 .149 .169 .168 ,188 ,198 .808 .818 .888 

48 .068 ,081 ,097 ,107 .117 .126 .133 .140 .146 ,151 .156 ,161 .169 .177 ,189 ,198 .212 ,225 .237 
.111 .140 .169 .174 .188 .198 .BOB .118 .111 :118 ,184 .140 .sao .160 ,174 .188 .199 ,817 .819 



TABLE F.-V .u.uEs oF ;. AT THE 5% (RoMAN TYPE) AND 1% (ITALIC TYPE) LEVELs oF SIGNIFICANCE-Continued 

k-1 

N-1: 1 :a 8 ' & 6 7 8 9 10 11 12 u. 16 20 24 80 40 liO 

- ---- ----------------- ------- --------
ro .056 .077 .092 .10' .113 .121 .128 .135 .140 .145 .150 .155 .1M .171 .182 .19' .206 .219 .231 

.108 .1S6 .16S .168 .180 .189 .199 .106 .114 .Ill .118 .lSI ·'+' .161 .186 .171 .191 ,SOB .SIO 
liS .051 .071 .08' .095 .103 .111 .118 .124 .129 .133 .139 .143 .152 .158 .169 .179 .191 .• 204 .216 

.099 .us .140 .164 .166 .176 .tBS .190 .191 ,lOS ,109 .116 .116 .ISS .141 ,169 .171 .188 .soo 
60 .047 .065 .077 .087 .095 .102 .109 .115 .119 .124 .128 .133 .140 ,1,6 .158 .167 .178 .191 .203 

.091 .l14 .ISO .14-f .Z6S .161 .169 .176 .ZBS .189 .196 .100 .109 .111 .sst ·'+' .168 .17t .IBS 
65 .0'3 .060 .072 ,080 .089 .095 .101 .106 .110 .116 .120 .123 .131 .136 .147 .155 .166 .178 .190 

.084 .106 .uo .lSI .Z+t .t60 .168 .164 .t7t .171 .181 .188 .196 .104 .111 .111 .140 .166 .168 
70 .040 .056 .067 ,075 .083 .089 .094 .099 .103 .108 .112 .115 .123 .128 .138 .146 .157 .169 .181 

,078 .098 .ttl .us .lSI .140 ,J,f.B .164 .160 .t611 .170 .176 .184 .190 .104 ,116 .111 ·'+' .166 
80 ,035 .049 .059 .066 .073 .078 .083 ,087 .091 .095 ~099 .103 .109 .114 .123 .130 .141 .153 .1M 

.069 .0811 .099 .t09 .ll1 .U6 .zsz .zs1 .141 .141 .161 ,166 .1114 .111 .tBI .191 .104 .119 .sst 
100 ,028 ,039 .047 ,053 ,058 .063 .067 ,071 .074 .077 .080 .083 .088 .094 .102 .109 .116 .127 .138 

.066 .010 ,080 .088 ,096 .tot .108 .11t .t18 .111 .114 .ZB1 .1S4 .u.z .160 .169 .170 .184 .198 
125 .023 .032 .038 .043 .047 .051 .05' .057 .060 .063 ,065 ,068 .072 .076 .082 .088 .096 .106 .114 

·.o# .068 ,064 .071 .071 .OBI .081 ,090 ,096 ,098 .101 ,104 .110 .116 .114 .lSI .141 .164 .18/J 
150 ,019 .026 .032 .036 .039 .0'3 .046 .• 048 .051 .053 .055 .057 .061 ,064 ,070 .075 .083 .090 .099 

,0!11 .041 ,064 .060 ,066 ,069 .o1s .076 .080 ,OBS ,0811 ,088 ~09S ,091 .106 .111 .us .lSI .14-f 
200 .ou .020 .024 ,027 .030 .032 .034 .036 .038 .040 .041 .043 .046 .049 .053 .058 .064 ;oro .077 

.018 .0!16 .041 .046 .049 ,061 .066 ,068 .061 ,06S .066 .068 .071 .076 .08t .088 .09/J .zos .110 
,00 -;007 .010 ,012 .014 .015 .016 .017 ,018 .019 .020 .021 .022 .024 .025 .028 ,030 ,033 .037 .041 

.Ot4 .018 .011 .oss ,016 ,011 .018 ,019 .ost .oss .oss .OS6 .OSIJ .OS8 .04-f .046 .049 .066 .060 
1,000 .003 .004 .005 .005 .006 .007 .007 ,007 .008 .008 .009 .009 .010 .OlD .011 ,012 .014 .016 .017 

.0011 ,007 .008 .oo9 ,010 .011 .011 ,011 .01} .o1s .014 .014 .016 .018 .017 .019 .oso • .oss .016 



340 Appendix 

TABLE G.-A TABLE OF RANDOM NUMBERS* 

CoLUMN NuMBER 
' 

Row 1 2 3. 4 5 .·6 7 8 9 10 11 12 13 14 15 16 
~ 

1 2 7 8 9 4 0 7 2 3 2 5 4 2 6 7 1 
2 2' 2 6 0 4 1 7 7 3 8 7 3 6 7 9 4 
3 ; 9 l 6 6 .3 9 4 9 1 0 5 1 5 2 2 7 
4 7· 0 5 5 9 2 7 5 7 8 0 8 8 5 0 6 

'5 4 ·7 3 6 6 3 9 8 2 '1 7 9 7 6 4 2 
'6 ' 8 2 0 2 8 7 7 6 0 2 2 3 1 1 1 6 
7 0 8 7 5 3 3 6 4 2 6 8 3 1 6 5 0 
8 9 4 1 9 0 8 4 6 6 8 6 3 3 2 2 3 
9 5 0 0 6 7 4 0 0 0 1 9 5 9 9 1 8 

10 1 9 ·5 '4 1 ·5 2 6 2 9 4 1 1 5 8 4 
11 5 6 4 4 1 8 7 2 8 3 6 1 '5 9 8 6 
12 7 9 2 5 1 9 7 9 3 1 8 6 8 7 7 6 
13 3 3 3 5 9 5 ·1 4 0 8 2 5 6 3 5 4 
H 1, 9 o- 4 0 0 9 9 5 7 4 1 5 9 4 7 
15 5 4 4 7 2 0 3 7 9 1 0 9 6 2 9 7 
16 . 2 9 8 2 5 5 9 3 2 0 4. 9 0 6 4 4 
17 '9 7 6 2 6 7, 7 3 3 3 1 7 5 0 9 6 
18 5 8 2 4 3 3 0 8 5 3 5 7 5 8 3 5 
19 4 3 4 9 .5 .0 .3 6 2 9 7 4 6 2 5 6 
20 1 1 9 8 4 8 0 6 7 0 9 7 9 6 9 9 
21 6 9 1 8 3 3. 7 5 9 6 6 7 7 6 0 4 . 22 7 0 0 3 8 1 3 4 7 9 5 2 6 9 9 7 
23 3 7 2 0 8 1 5 6 9 0 1 7 8 9 6 6 
24 2 7 0 0 0 6 5 0. 6 5 6 0 3 2 9 3 
25 3 0 7 0 7 8 4 9 4 2 8 2 4 7 4 9 
26 6 2 9 3 ·3 1 7 7 5 2 2· 3 4 6 4 2 
27 5 4 9 2 1 4 8 5 7 0 9 6 4 7 2 1 
28 0 3 7 0 1 7 3 8 0 3 6 2 3 1 0 9 

. 29 9 3 6 6 •2 2 0 9 7 2 3 9 2 8 7 3 
30. 2 9 5 6 9 9 5 6 9 8 2 8 0 0 4 4· 
31 8 5 7 2 9 2 6' 5 9 3 9 7 1 8 3 5 
32 8 4 5 7 7 9 9 5 1 4 .5 5 0 9 5 3 
33 8 7 9 8 1 8 4 1 4 3 7 7 0 9 1 9 
34 7 3 2 5 1 8 6 3 •2 8 5 8 6 9 3 4 
35 8 9 9 0 1 8 8 8 9 5 7 5 0 4 1 1 

36 0 2 9 7 8 8 1 7 6 1 6 7 6 4 2 5 
37 0 5 2 3 2 3 8 1 -8 8 1 6 2 3 0 7 
38 2 2 6 8 1 6 9 6 2 6 7 9 1 7 8 0 
39 0 7 8 4 9 5 8 8 0 7 2 1 8 1 7 5 
40 4 8 0 1 0 5 9 9' 4 9 6 9 8 2 0 6 

41 9 2 0 1 6 7 2 8 3 9 8 8 3 4 7 8 
42 0 8 8 3 1 4 0 9 .. 2 2' 8 1' 5 0 4 8 2 
43 2 0 .6 9 7 5 .2 8 2 5 ·s 4 0 7 7 1 
44 3 1· 8 6 8 3 5 6 3 2 7 4 1 8 9 4 
45 0 0 8 6 1 7 5 0 8 5 6 5 0 8 2 7 

46 3 3 2 9 4" 2 5 3 3 8 2 4 2 6 2 5 
47 8 4 7 4 10. 4 5 1 2 1 0 4 2 5 7 7 
48 0 2 4 3 ,. 0 2 0 7 2 8 8 0 8 4 1 6 
49 4 6 5 6" 3 0 4 5 2 0 1 5 2 7 9 5 
50 3 4 8. 3 4 5 8 7 5 9 7 1 6 3 9 9 

* From J. G. Peatman and R. Schafer. A table of random numbers. fr_om Sele~ 
tive Service numbers. J. Psychol., 1942, 14, pp. 296-297, by permiSSion of the 
editor and publisher. · 



Appendix 341 
TABLE G.-A TABLE OF RANno.u: NmmEBS--Continued 

CoLuMN NUMBER 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Row ---
6 8 5 9 1 3 5 4 0 3 6 6 7 6 5 1 1 
2 1 3 8 9 0 3 4 9 0 2 6 '3 0 9 8 2 
5 2 5 3 4 1 3 9 5 8 1 3 8 2 9 2 3 
0 5 9 0 5 7 4 5 2 0 6 1 6 4 2 0 4 
4 9 6 0 3 6 3 5 3 9 9 1 8 0 1 3 5 
4 8 5 2 2 3 4 2 2 6 5 2 2 4 9 6 6 
0 5 5 7 8 1 0 1 2 9 1 4 3 4 7 6 7 
7 4 7 5 1 5 7 6 3 7 9 4 5 5 3 5 8 
1 4 1' 4 9 8 7 2 4 3 0 8 6 4 2 7 9 
4 4 6 1 8 7 8 6 4. 8 7 4 4 0 5 8 10 
2 2. 9 1 9 0 4 8 1 - 0 1 3 5 3 4 4 11 
6 5 ·o 3 8 1 1 2 4 7 8 9 1 7 5 2 12 
6 5 ·7 2 6 7 8 9 9 9 8 0 9 1 5 3 13 
6 4 8 2 6 4 4 1 8 8 1 5 4 3 8 0 .. 14 
4 7 6 1 1 6 1 2 2 9 5 8 4 4 8 6 15 
2 1 5 7 3 6 5 5 4 5 7 9 6 6 4 0 16 
1 1 3 9 2 1 1 0 0 1 3 7 7 3 7 3 17 
9 3 4 5 4 6 3 9 2 7 1 1 4 9 1 3 18 
9 8 3 6 1 4 0 3 5 9 7 1 8 0 6 9 19 
4 0 6 0 0 5 9 6 5 1 4 2 0 4 1 9 20 
5 3 4 5 7 3 0 6 1 0 3 0 0 3 5 0 21 
3 2 5 0 2 3 5 3 9 7 4 8 9 4 1 5 22 
6 0 7 8 1 9 6 7 4 8 9 6 3 6 5 1 23 
1 '7 2 2 8 4 9 0 4 3 2 4 5 5 1 2 24 
6 0 4 3 8 1 7 7 0 9 8 4 6 3 1 2 25 
2 4 7 5 4 4 4 1 7 1 6 7 1 2 6 8 26 
8 9 7 6 1 a· 3 4 6 6 5 9 0 7 0 3 27 
5 5 2 5 9 2 0 2 8 7 7 2 0 . 2 7 2 28 
1 0 7 0 8 9 3 8 8 5 3 1 3 1 0 9 29 
8 8 5 7 2 1 3 4 9 5 2 6 8 3 6 6 30 
6 6 1 2 1 5 5 5 6 1 7 1 5 7 5 .9 31 
1 3 9 3 7 8 1 4 0 5 4 1 5 4 4 0 32 
4 6 1 3 8 6 5 9 2 2 8 1 6 9 0 1 33 
5 2 6 1 9 0 6 9 0 5 4 6 8 0 3 2 34 
6 0 3 1 3 0 3 5 8 9 2 7 8 8 7 1 35 
0 5 8' 3 2 4 7 7 2 2 6 2 6 8 6 0 36 
3 0 1 2 6 2 6 8 3 7 4 4 3 8 9 9 37 
2 4 8 0 4 7 3 3 8 4 4 8 4 3 3 8 38 
3 0 7 4 1 0 3 2 0 1 2 8 6 5· 9 4 39 
4 0 1· 8 1 1 4 2 1 6 7 0 7 3 1 2 40 
4 0 5 1 6 8 7 8 3 5 4 5 0 4 0 6 41 
6 2 9 2 1 9 8 5 3 1 0 7 8 5 3 9 42 
7 8 6 8 5 1 3 7 8 2 7 1 9 3 6 3 43 
5 6 8 0 6 4 6 4 1 0 9 1 9 8 1 4 44 
1 1 6 3 4 6 0 0 9 4 7 9 2 4 8 7 45 
2 9 0 1 3 7 6 5 9 1 4 6 0 1 0 0 46 
9 4 6 5 8 3 3 8 1 0 3 7 7 7 8 6 47 
0 2 3 5 9 7 5 1 3 6 3 2 8 7 5 8 48 
3 0 2 2 1 6 1 1 0 0 9 1 6 1 7_ 7 49 
0 9 4 2 5 8 9 5 3 3 3 6 4 5 2 0 50 



TABLE H.-TABLE oF x2"' 

DIDGRIDIDB \ 
OB' p- .99 .98 .95 .90 .so .70 .50 .80 .20 .10 .os • 02 .01 • 

FRIDIDDOH 

" -- --·----------1-------
1 .000157 .000628 .00393 .0158 .0642 .148 .456 1.074 1.642 2.706 3.841 5.412 6.635 - 2 .0201 .0404 .103 .211 .446 .713 1.386 2.408 3.219 4 605 5.991 7.824 9.210 
a .115 .185 .352 .584 1.005 1.424 2.366 3.665 4.642 6.251 7.815 9.837 11.341' 
4 .297 .429 .711 1.064 1.649 2.195· 3.357 4.878 6.989 7.779 9.488 11.668 13.277 
6 .554 .752 1.145 1.610 2.343 3.000 4.351 6.064 7.289 9.236 ll.D70 13.388 15.086 

6 .872 U34 1.635 2.204 3.070 3.828 5.348 7.231 8.558 10.645 12.592 15.033 16.812 
7 1.239 . 1.564 2.167 2.833 3.822 4.671 6.346 8.383 9.803 12.017 14.067 16.622 18.475 
8 1.646 2.032 2.733 3.490 4.594 6.627 7.344 9.524 11.030 13.362 15.507 18.168 20.090 
9 - 2.088 2.532 3.325 4.168 5.380 6.393 8.343 10.656 12.242 14.684 16919 19.679 21.666 

10 2.558 3.059 3.940 4.865 6.179 7.267 9.342 11.781 13.442 15.987 18.307 21.161 23.209 

11 3.053 3.609 4.575 5.578 6.989 8.148 10.341 12.899 14.631 17.275 19.675 22.618 24.725 
12 3.571 4.178 5.226 6.304 7.807 9.034 11.340 14.011 15.812 18.549 21026 24.054 26.217 
13 4.107 4.765 5.892 7,042 8.634 9.926 12.340 15.119 16.985 19.812 22 3b2 25.472 27.688 
14 4.660 5.368 6.571 7.790 9.467 10.821 13.339 16.222 18.151 21.064 23.685 26.873 29.141 
15 5.229 6.985 7.261 8.547 10.307 11.721 14.339 17.322 19.311 22.307 24.996 28.259 30.578 

16 5.812 6.614 7.962 9.312 11.152 12.624 15.338 18.418 20.465 23.542 26.206 29.633 32.000 
17 6.408 7.255 8.672 10.085 12.002 13.531 16.338 19.611 21.616 24.769 27.587 30.995 33.409 
18 7.015 7.906 9.390 10.865 12.857 14.440 17.338 20.601 22.760 25.989 28.869 32.346 34.805 
19 7.633 8.567 10.117 11.651 13.716 15.352 18.338 21.689 23.900 27.204 30.144 33.687 36.191 
20 8.260 9.237 10.851 12.443 14.578 16.266 19.337 22.775 25.038 28.412 31.410 35.020 37.666 

21 8.897 9.915 11.591 13.240 15.445 17.182 20.337 23.858 26.171 29.615 32.671 36.343 38.932 
22 9.542 10.600 12.338 14.041 16.314 18.101 21.337 24.939 27.~01 30.813 33.924 37.659 40.289 
23 10.196 11.293 13.091 14.848 17.187 19.021 22.337 26.018 28.429 32.007 35.172 38.968 41.638 
24 10.856 11.992 13.848 15.659 18.062 19.943 23.337 27.096 29.553 33.1U6 36.415 40.270 42.980 
25 11.524 12.697 14.611 16.473 18.940 20.867 24.337 28.172 30.676 34.382 37.652 41.566 44.314 

26 12.198 13.409 16.379 17.292 19.820 21.792 25.336 29.246 81.7115 85.563 88.885 42.856 45.642 
27 12.879 14.125 16.151 18.114 20.703 22.719 26.336 80.319 82.912 36.741 40.113 44.140 46.963 
28 13.565 14.847 16.928 18.939 21.588 23.647 27.336 31.31H 84.027 87.916 41.337 46.419 48.278 
29 14.256 15.574 17.708 19.768 22.475 24.577 28.336 32.461 35.139 39.087 42.557 46.693 49.688 
30 14.953 16.306 18.493 20.599 23.364 25.508 29.336 33.530 86.250 40.256 43.773 47.962 60.892 

b:o. 
~ 

• Table H ia reprinted from Table III of Fisher: Btaliatical Methodafur Resaarch Worker~. Oliver & Boyd, Ltd., Edinbur11h, by permisaion ~ 
of the Author and l'ubliahere. For larser valuee of n, the expreaaion v'2iii - yir&=i may be uaed u a normal deviate with llllit etandard error. ti 



ANSWERS TO EXAMPLES 

Chapter 2 
Example 1. (a) -11 (f) -4 

(b) 2 (g) -3 
(c) -1 .(h) -8 
(d) 10 (i) ·-16 
(e) 2 (j) ....;..6 

ExampJe 2. (a) -5 (f) -8 
{b) 6 (g) -9 
(c) 17 {h) -10 
(d) 30 (i) 16 

,_(e) 18 (j) -2 

Example 3. (a) 2 ,(g) 1 
{b) 2 {h) 1 
(c) 2 (i) 2 
(d) 2 (j) 1 
(e) 1 (k) 1 
(f) 1 (1) 2 

Example 4. (a) 49 {h) -4 (o) 2 
{b) 3 (i) -3 (p) 20 
(c) 25 (j) 24 (q) .2 
{d) 36 {k) -10 (r) 40 
(e) 1 (1) -6 (s) .6 
(f) 16 (m) 6 (t) - .0004 
(g) -4 (n) 0 (u) .01 

Example 5. (a) 25 per cent 
(b) .75 

Example 6. (a) 75 per cent 
{b) .25 

Example 7. (a) 30 per cent 
(b) .70 
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344 Answers to Examples 

ExampleS. (a) .2 (0 144 (k.) 2.44 (p) 19/ 
(b) .9 (g) 32 (l) 3.17 (q) 314 
(c) .04: (h) 66 (m)7.19 (r) 397 
(d) .005 (i) 99 (n) 9.98 (s) 174 
(e) .68 (i) 82 (o) 6.1 (t) 983 

Chapftf' 3 
Example 1. (a) M = 24 (b) l:.z = o· 

Example 2. (a.) Mdn = 16.9 (d) Mdn = 16.5 
(b) Mdn = 17.0 (e) ·Md7i = 31.5 
(c) Mdn = 9.0 

Example 3. Group 1: M = 7; l:.z = 0 
Group 2: M = 5; ~=0 

D.Uf.: Jf,. = 2; l:d = 0 

.Example 4:. Group 1: Mdn = 6.5; R = 5; t = 3.0; t1 = 1.73 
Group 2; Mdn = 5.0; R = 6; • = 3.6; a= 1.90 

Example 5. M= ?O; • = 10.1951; tl = 3.19 
·. 

Example 6. Mdn = 20.12; Ql = 17.75; Q. = 22.42 

~ple7. (a) .z 
-· (b) NM 

(c) l:(X- M)'; Nat 
(d) M 

(e) l:X 
N 

(f) :J' 

(g) 
l:r .r; l:(X- .M)' . 
N' N 

(h) 11' .r· l:(X- M)' 
' • N 

(i) l:xl 
a~ -· fli N' 

' G) l:X 



Answers to Examples 

(k) ~z!; l":(~- M)~ 

• /~--:(=XN,_..._......,M=-=).-:o2 
(1) cr; VV; '\}' 
(m) X-M 

· Example 8. x = X - M 

Chapter 4 · 

l:x = l:{X·- M) 
l:z = l:X - l":M 
~x =~X- NM 
l:x = l:X- ~X 
l:x = 0 

345 

. Example 1. .. (a) ~X = 175; M = 25; ~z! = 64 

·(b) M. = 22 + C/) = 25 -

(21)2 . . 
~x~ ':= 127 - -

7
- = 64 

(175)2 

(c) l':x2 = 4,4~9 - - 1- = 64 .. 

Example2. (a) (b) . (c). . (d) 
(1) 65 5 20--24 ·' 22 
(2) 45 3 or 5 48-50 or so-54 49 or 52 
(3) 123 . 10 ., 

6o-69 64.5 
(4) 23 2 42-43 . 42.5 
(5) 36 3 15-17 16 . 
(6) 56 5 so-54 52 

Example 3. (a) (b) (c) (d) (e) (f) ~ (g) . 
X' X' X' • X' . X' X' . X~-, 
10 3 4 1 2 5 2'' 
0 6 6 7 ·3 10 5 

10 7 5 5 1 1 6· 
9 8 1 10 3 6 9 
2 . 1 . 9 8 ~2 5 4 



346 Answers w Examples 

Example 4. · (a) 65 = 45 + 20 
(b) 243 = 133~ (2)~45) + 20 

.. Example 5. M = 22.17; t1 = 7.41 
Check: ~x" = 1,090 = 910 + 180 
Check: T.fx'"' = 7,700 = 5,700 + (2)(910} + 180 

Exa:mple 6: M = 46.79; Mdn = 46.75; r1 = 5.83 

Example 7. x .: X - M 
z' =(X- .M)1 

x2 = X1 ~ 2XM + M1 
~zt = ~Xl - 2M~X + NM' 
T.z' .= ~XI - 2MNM + NM' 
T.x2 = ~XI - 2NM' + NM' 
2:x' = ~XI - N M1 

~x~ = T.X• - N{~J)(2:i) 

l:x'. = 2:X2 - ~;>~. 

Example 8. {a) :~:• ~ z' + 1 
2:z• = ~z' +N · 

(b) :~:." = :t' + 1 

Chapter & 

Example 1. 

Example 2. 

EWnple3. 

z"' = (x' + 1)1 

:~:"' = x11 + 2x' + 1 
, T.:cwt = T.x11 + {2)(2:x'} + N 

18. .. . 
t' = (l0)(1.414){1.414) = ·90 

. 18 
r= =.90 

V(20)(2o) ,. , . 
138 _- ( 40) (30) 

10 

"= ~[tso- (4o)~[uo- (3o)~ - .9o 
•. 10 -J . . 10 "J 
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. Example 4. xy =(X- M,.)(Y- M,) 
xy = XY- YM;- XM.+ M.M, 

' Example 5. 

Example 6. 

Example 7. 

Chapter 6 
Example i. 

Example 2. 

Example 3. 

Example 4. 

Example 5. 

Example 6. 

Example 7. 

Example 8. 

ChapterT 

Example 1. 

Example2. 

Example 3. 

2:xy = UY- M.ZY- M.,2:X + NM,M, 
2:xy = 2:XY- M.,NM.,- M.,NM. + NM.Mw 
2:xy ""'2;XY- 2NM.M, + NM.M, . 
};xy = l;XY- NM,M, 

2:xy - 2:XY - N(,;Jxm 
2:xy - 2:XY .:;. ~X) (l: Y) 

. N 

,. .... 82 

,. - .12 

,. - .73 

, •• = .82 

7\;, = .20 

f'p.-6;, = .24 

~- .15 

"'= .37; "• =.59 

~ = .22; "•- .35 
P -= .ZT 

PBQ =- .84; PBIII = .91 

• 

(a)_l/256 (b) 37/256 

3/4 

1/4 
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Example 4. 3/M 

Example 5. (a) .0668 
(b) .3085 
(c) .8944 
(d) .9938 
(e) .1587 
(f) .6915 

(g) .9938 
(h) .St13 
(i) .8185 
(j) .682«f 
(k) .9104 
(I) .7745 

Ex.:ample 6. A-fiddle 95 per cent . 

Chapter 8 

Example2. 

(a) 25 ± 9.80 (e) 18.5 ± 4.31 
(b) 30 ± 13.72 (f) 22.4 ± 8.62 
{e) 50± 11.76 (g) 47.0 ± 10.78 
(d) 42 ;I: 8.82 (h) 23.1 ± 4.12 

Middle 99 per ~nt 
(a) 25 ± 12.90 (e) 18.5 ± 5.68 
(b) 30 ;I: 18.06 (f) 22.4 ;I: 11.35 
(c) 50 ± 15.48 (g) 47.0 ± H.l9 
(d) 42 ± 11.61 (h) 23.1 ± 5.42 

Fiducial Limits 
at 5% Level 

(a) 23.75---26.25 
(b) 26.29-33.71 
(c) 33.02--36.98 
(d) 21.16-28.84 
(e) 20.88---29.12 
{f) 43.64--56.36 
(g) 47.85-52.15 
(h) 22.01-22.99 

Fiducial Limits 
at 1% Level 

(a) 23.34-26.66 
(b) 24.8~35.11 
(c) 32.37--37.63 
(d) 19.48---30.52 
{e) 19.42--30.58 
(f) 41.2!--58.76 
(g) 47.13-52.87 
(h) 21.85-23.15 

Example 3. M = 20; a-. = .718; df = 16 
Fiducial limits at 5% level: 18.48-21.52 

, Fiducial limits at 1% level: 17.9o-22.10 



Answers to Examples 

Chapter 9 
· Example 1. t = 4.53; 

Example 2. (a) t = 2.35; 
(b) t = 6.71; 

df = 398 

df= 18 
df= 9 

Example 3. Paris-Hamburg: t = .40; · 
Paris-Rome: t = 1.15; 
Hamburg-Rome: t = .74; 

Example 4. t = 2.60; df= 99 

Example 5. t = 1.43; df = 99 

Example 6. t = 2.86; df= 49 

Example 7. t = 2.56; df= 29 

Example 8. t = 2.00; df= 49 

df = 198 
df = 198 
dj = 198 

349 

Example 9. r = .765 would be significant at 1% level for 8 df 

Example 10. T must be at least .632 to be significant at 5% level 
· for 8 df 

Example 11. r must be at least .28 to be significant at 5% level 
for 48 df · 

Example 12. N must be at least 62 in order for T = .25 to be 
· significant at 5% level 
N must be at least 13 in order for r = .55 to be 

significant at 5% level 

Example 13. t = 3.04; · df = 117 

Chapter 10 

Example 1. (a) t = 2.99; 
(b) F = 8.95; 

df= 18 
df = 1 and 18 

Example 2. F = 1.10; . df = 4 and 20 · · 
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Example 3. -Between the 9 groups: 
F = 13.16; df = 8 and 81 

Between the age groups: 
F= 1.35; dj = 2 and 81 

Between the methods groups: 
· F = 5.40; df = 2 and 81 

Cha.pter 11 
Example. I. 

Interaction: 

(a) t = 2.34i 
F = 5.45; 

(b) t = 6.71; 
F = 45.05; 

Example 2. (a) F = 1.98; 
(b) F = 22.52; 

· · Example 3. 'I! = • 717 4; 
N-k=80 

Chapter 12 

F = 22.94; dj = 4 and 81 

df= 18 
df = 1 and 18 
df = 9 
df = 1 and 9 

df = 2 and 27 
dJ = 2 a.nd 18 

~·- = .6856. ..... . ' 

df= 1 
df=l 
df= 1 
df=2 
df=4 
df= 1 

k- 1 = 9; 

Example 1. x1 = 12.00; 
Example 2. x' = 4.15; 
Example 3. x 1 = 5.00; 
Example 4:. X1 = 14.00; 
Example 5. x1 = 64.50; 
Example 6. x1 = 13.47; 
Example 7. X1 = 18.99 i 
Example 8. x• = , 8.76; 
Example 9. · x!::...: 9.20; 

·df= 2 
df= 2 
df=6 

Chapter 13 
Example 1. (a.) Per cent correct without knowledge of 

response to question................. 50 
Per cent correct with knowledge of re

sponse to question ....•........ _ . . . . . 65 
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Per cent increase with know ledge of re
sponse to question. . . . . . . . . . . . . . . . . . . 30 

(b) Per cent correct without knowledge of 
marital status.. .. . .. .. . . . . . . . . . . . . . . · 55 

Per cent correct with knowledge of marital 
Status ................... ·........... 65 

Per cent increase with knowledge of mari-
tal status ........................... · 18 

Example 2. Per cent correct without knowledge of student 
status................................. 58· 

Per cent correct with knowledge of student 
status ................................. · 61 

Per cent increase with knowledge of student 
status................................. 5 

Example 3. Per cent correct without knowledge of Humm-
W adsworth score. . . . . . . . . . . . . . . . . . . . . . . 54 

Per cent correct with knowledge of Humm.- . 
Wadsworth score. ~ .................. ·.. . 71 

Per cent increase with knowledge of Humm-
W adsworth score ............. , . . . . . • . . . 31 

. Example 4. Per cent correct without knowledge of ACE 
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . · 40 

Per cent correct with knowledge of ACE 
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Per cent increase with knowledge of ACE . 
classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Example 5. · M. = 65.25; tt. = 12.77; 
M, = 65.90; u, = 10.04; 

(a) b%¥ = .929 
b.,.= .574: 

(b) X= 48; Y' = 56.00 
X = 55; Y' = 60.02 
X= 73; Y' = 70.35 
X= 82; Y' ::::o 75.52 
X = 90; Y' = 80.11 

r.11 = .73 
r11• = .73 
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(c) Y =58; X',;, 57.91 
Y-= 71; X'= 69.99 

· . Y = '16; X' = 74.63 
Y = 80; X'= 78.35 
Y = 95; X'.= 92.29 

(d) tfs.• = 8.72; E = 32% 
tTw.• = 6.86; E = 32% 

.~ ' ~ t ; . . . 

. Elaun.Ple~ 6. tf•·" == 13.01; E = 43% 
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SUBJECf INDEX 

A.lwiaaa 81 
AsJSJJ.yr;ia, of 'l'lUiance, 192-231 

Gl independent goups, 192-21-1 
Gl matched r;roups, 217..:.231 
nature of. 192-199 
rdatioa. to epsilon-eqoare, 232-236 
rdatio11 tot test in~ of two ind&-

pendlmt p-oups, 199-201 
re1atioa. to t test in case of two 

matched CrouPs. 224-225 
of 8e"Veral independeni ~ 

:102-207 
of ~ matched groups, 22.'t-

231 
A.ma, ODd« DOnDa1 c:une, 40, U1-

142 
AritluDetie ~ 3l 
Atfalnatioa, eort'l!dio!l for, 102 
Attributa, prediction of, 258-261 
A _.age deviation, 36-38 
A~7~M 

eon-elation between. 181 
of rat.ea, 48 

Binomial. rulfa for OJW"'ding, 137-
138 • 

Binomial eoefficients, 137-138 
Binomial distnbution. 137-H.O 
Biaerial ooefficient of correla.t.Hm. 112--

116. 127-128 
MIIU.mptions involved in com

puf.in& 113 
computed from widmpread daa!ea, 

113 

Chi-equare-COIIlifttla'J 
applied to more thaD two eaf&. 
~es,~246 

applied to several samples. 250-252 
applied to two samples, 246--250 
c:alcul&ted from per eents. 2H 
correction for 81D8D. frequencies2 

253--254 
degreee of freedom for, 248 
interpretation of, 240 
rela.tioll to contingency coefficieut,. 

123 
relation to phi coefficient, 254-255 
IIIIUDpling distribution of, 241 
as test of "~of fit," 252-253 

ClaaJ intenala. 67-70 
aMU.mptions COD~ IIOOr'e8 

within, 70 
influence of IWDlher of on a.ccun.cy,. 

68 
midpoiut. of, n 
reoorded limit. or. 69-70 
IIUe of, 6IH)9 • 

theoretical limits of, 70 
Coding. ~7. 270 

and ealcuJation of correlation ooefli
eient, 91-93 

and calcuJation of regrei!Bion eoeffi-
eient, 270 

co~onsfo~ ~7 
by divi!Pon. 63-66 
formulae, 66-67 
by subtraction. 58-63 

Coefficient, biserial, 112-116 
contingency, 122-123 
of oorrelatioo, 9, 79-99 
of determination. 99-100 
of DDD-determination. 99-100 
phi, 117-122 
point-bieeriaJ. 115 
rank-differ-, 123-125. 
ftgn!SSioo. 2M. 266, 270 

Combi.natio1111, 136--137 ' 
Common elements, t.beoryof, lD0-101 

355 
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Confidence intervals, 162-165 
Constant, definition of, 24 
Constant errors, 283 
Contingency coefficient, 122-123 
Control group, 12, 288-295 

formed by matching on experi
mental variable, 294 

formed by matching on related 
variable, 294 

formed by pairing individuals, 291-
294 

formed by random selection, 289--
291 

single group serving as own, 294 
Coordinates, 82 
Correction, for attenuation, 102 

for coding, 60-66 
for small frequencies in calculating 

chi-square, 253-259 
. Correlation, accuracy of predictions 

based upon, 261 
and causation, 79 
chart, 96 
and common elements, 10Q-101 
as means of reducing standard . 

error, 183 
multiple, 125--126, 181 
negative, 83-85 
partial, 125--126 
positive, 80, 84-85 
of ranks, 123-125 
and regression, 265--267 
and standard error of mean differ

ence, 179--181 
tetrachoric, 116--117 

Correlation coefficient, 9, 79--99 
computed_ from coded scores, 91-
. 93 

computed from original measures, 
90--91 I 

computed ·from scatter diagram, 
94-99 

computed from standard scores, 88 
estimated by phi, 120 
as mean of product of paired 

a scores, 88 
multiple, 125 
partial, 125 

. ; purpose for which used, 101 

Subject Index 

Correlation coefficient--Continued 
as ratio of two averages of variance, 
:. 89 
reduction in size from grouping, 127 
relation to regression coefficient, 

265--266 
reliability of, 127 
significance of, 185--189 
size of, 80, 99 
zero order, 125 

Correlation ratio, 83, 107-112, 232-
236 

without bias, 232-236 
relation of size of to number of class 

intervals, 127 
size of, 108 
summary of steps in computing, 

11Q-111 
Covariance, 87, 89 
Cross-products, computation of, 87 
Curvilinear relationships, 83, 106--111 

Deciles, 46 
Decimals, 16--17 
Degree of confidence, 13, 161-162 

in rejecting hypotheses, 165 
Degrees of freedom, 166--167, 168, 

170, 177, 179--180, 182-183, 188-
189,197-198,201,206,210,212-
213, 221-223, 235-236, 242, 245-
246, '248-249, 252-253, 296 

in calculating chi-square, 242, 249 
in determining fiducial limits of 

mean, 167 
formulas for in analysis of variance, 

207,231 
for mean difference between inde

pendent groups, 182 
for mean difference between 

matched groups, 177, 179, 180 
in testing ugoodness of fit" of 

normal distribution, 252-253 
in testing significance of r, 188 

Dependent variable, 12 
Deviation, 36--37 

of observed from expected fre
·quency, 240 

significant, 139, 163 



Subject I~ 

J)eyjaiioo-CGIIliiWid 
from- n1ue ~than mean, 

59 
I>Ugams, scatter, 91 

fOI' computing tetn.ehoric carreL.
tion, 117 
~ ~ distributioa of 

• IDI'.:1Lil of, 281-282 
DisUibutic-. binomial, 137-HO 

freqoeuey, .u .. 
Jept.okurtie, 149 
1IOI'IDal, 39, tl; 139 
platybutic; 149 
reclueed to ClOIDlllOQ ~ 48 
of ample me.os. IM--156 
eamplinf:, 153-156 
skewed, 148-149 
tnmtsted, u 

Epsilon, 232-236 
Ep&iJOD«((laJ'e. ~236 

com:parillon with '· 23!-236 
relatioo to analysi& of Tariant:e. 

23!-236 
.. test. of rectilinear relatiooship. 

237 
use of tables of, 233 

EquaUoaa. ruJee for perf~ opel'
atiooa upoo. 25-27 

Enorw. ooostant, 283 
of ...UmafA\ 262 
of fint kind. 165 
of~t,102 
of raodom eamplin& 28~ 283 

Eta, 107 
Experimental ~ 1~ 13. 30, 192. 

208. ~ 281, 299 
Esperimental crouP. 12 
Erperimeotal ftriable, 12 
~t.. D&ture or. 11 

fidueiallimita. 162-166 
of IDI'.:1Lil dilfereoce, 177-178. 182 
of proportioo, 169 
and small sam plat, 166-1 'lU 

Fiducial pnability, 162 
Fractioos. 15-16 
Ftequeoey, ataodard rnor of, 170 
Frequeuq distributD._ 4.~ 67 

357 

ldentiWs, Bahstitutioo of in formo
las, <JJi-27 

IDdepeodeo\ puups, 181-183, 192-
214 

lodependeni nriable, 12 
loda off~ efficieuey, 269 
lnt.erKtion, 208 
Inten.ctioa ~ 212-214 
lnternl,. .U 
lntern.b, eonfidenoe, 162-16.'i 

Kurtosis. 149 

Least 8qUal'fllo principle of, 272 

Matched croope. 12, 30, 152, 180-181 
Meaa, arithmetic, M 

mlrula&ed from EfOUpell ~ 72-
7t 

pometric, 4.9 
hannonie. 49 
as a DII!'.:UW'8 of~ M-

36 ~-

of a set of 1 llltlOftll, 48 
llltaDdard fn'Or of, 157-151 

J.leaq di1Jenmce, fiducial limita of. 
177- 178 
~ of when "nriaDces 

cWffr, 297-290 
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Mean difference-Continued 
standard error of, 174-176 

Mean square, 38 
Means, variability of in correlation 

chart, 108-109 
. Measurements, approximate nature 

of, 54-58 
errors of, 102 
paired, 11, 80 

• precision of, 67 
predictions of, 261-273 
:reduced to common scales, 47-48, 

88 
· :reliability of, 102 

lin social sciences, 147 
transformed into set of ranks, 125 

Median, .41-45, 75 
Method of least squares, 262 
Midpoint, of class interval, 71 
Mode, 49 
Multiple correlation coefficient, 125-

126, 128, 181 

Normal curve, 39-40, 140-144 
and large samples, 159-162 
ordinates of, 114, 141-143 
and standard scores, 142 
use of ~bles of, 40, 144-146 
zone embracing middle 95 per cent 

of measures, 145 
Normal distribution, 39-40, 139-140 

fitted to sample set of measure
ments, 142-144 

as a mathematical. ideal, 146 
relation of mode, median, and mean 

in,148 
()f test scores, 147 
testing "goodness of fit" of, 252-

253 ' 
Null hypothesis, 176-177, 184-185, 

193, 234, 28Q--281 
Numbers, in a series, 21 

positive and negative, 18-20 
techniques of rounding, 57-58 

Opinion polls, 283 
Ordinate, 81 

of normal curve, 114 

Subject Index 

Paired associates, method of, 31 
Paired observations, 11 

advantages of, 183-184 
reduction in degrees of freedom for, 

183-184 
Parameters, 51, 153 
Partial correlation coefficient, 125-

126, 128 
Per cents, 17-18 

calculation of chi-square from, 244 
standard errors of, 170 

Phi coefficient, 117-122, 128 
applied to true dichotomies, 118-

119 
and assumption of continuity, 119-

121 
estimate of r derived from, 120 
relation to chi-square, 254-255 
as substitute for tetrachoric r, 121-

122 
Point biserial r, 114-116, 128 
Population, definition of, 51 

estimate of mean of, 159 
estimate of variance of, 192, 222 
ratio, 240 

Precision, of measurements, 67 
Predictions, 13 

accuracy of dependent upon corre
lation, 261 

· of attributes, 258-261 
based upon means of columns of 

correlation table, 272 
errors of, 259, 262 
evaluation of efficiency of, 259, 269 
of measurements, 261-273 

Principle of least squares, 272 
. Principle of maximum likelihood, 258 

Principle of maximum probability, 
258 

Probability, a priori, 134 
empirical, 134 
fiducial, 162 
meaning of, 133-136 
principle of maximum, 258 

Probable deviation, 49 
Probable error, 49 
Proportions, 17-18 

standard error of, 168-169 
testing significance of, 184-185 



Subject I ruJ.ex 

Public opinion polls, 152 
margin of error in, 153 
eamples used in. 152 

RAndom numbers, tables of, 289-290 · 
Ra.nge, 5 

of correlation coefficient, 80, 99 
inclusive, 33-34: 
as measlll'e of vviability, 8-9, 31-

M: .. 
middle 80 per cent, 49 
Bemi-int.eTquartile, 45 

Rank-difference coefficient, 123-125 
Ranks, method of dealing with ties. 

125 
Rates, averaging of, 49 
Rectilinear relationship, test of sig. 

nifica.nce of departure from, 237 
Regrtl81lion coefficient, 263 

coding of, 270 
and correlation, 265-267 

Regression equation, 265 
Regression line. 83, 262-263 

fitted by method of least squa.rea. 
263 

Relationships, between a.verages and 
differences, 9 ' 

curvilinear, 83, 106-107 
neg~~.ti.ve, 79, 85 
positive, 79, 84 · 
rectilinear, 83 
study of, 9-10, 79-80 

Relative deviates, 47 
Reliability, 13, 153 
Replication, 230 
~bpmb~~.~-z.m 
~idual sum of squares, 221-222, 

229-230 
Residual variance, 222, 224, 230 

Samples, definition of, 50 
generalisations from, 283 
la.rge, 287 

Samplee-Continutd 
random, 283-286 . 

~59 

reasons for studying. 151-152 
representativeness of, 282, 286 
a.nd research, 282-286 
me of, 287-288 
smaJl, 166-168, 170, 287-288 
used in opinion polls, 283 · 

Samplillg distribution, 153-156, 173 
of chi-equare, 241-242 
of correlation coefficient, 186-187 
of difference between correlated 

means, 181 
of difference between mea.ns, 173 
of epsiloll-8qU&re; 233 
of means, 157 
of standard deviation. 168 

· oft ratio, 166-167 
of variance ratio, 193, 296 

Sampling, errors of random, 281, 283 
Sa.mplillg theory, 153 
Scatter diagram, 94 
Significance, tests of, 57, 297-299 
Significant figures, 55-56 
Skewneee, 148-149 
Squares and square roots, 21- 23 1 
Squares, 8\lm of, 39, 51, 60-63, 65, 

15~ 193-195,202,210,219,226 
Sta.nda.rd deviation, 27-39 

calculated fmm grouped scores, 73 
of a distribution of * scores, 48 
estimate of popula.tion. 157- 158 
of a sampling distribution, 156 
standard error of, 168 

Standard errors, 156-159, 168-170, 
. 174-189, 200 
based on pooled 8\lm. of squa.res, 200 
of difference in mean gains, 293 
of estimate, 267-269, 272-273 , 
of frequencies, 170 A 

of mean differences. 174, 179-180, 
200 

of mean differences of independent 
groups, 181, 200 

of mean differences wheQ. correla.-
tion is present, 179-181 

of means, 157-159 
of per cents. 170, 184-185 
or proportions,168-169, 184-185 . 
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Standard errot'!t--ContiritUd 
relation. to population variability, 

156 
relation to sample size, 156 
of standard deviation, 168 

Standard soores, 47-49, 88, 141 
mea.n of distribution of, 48 
mea.n of products of paired, 88 
u measures of relative position, 
. '47-48 
standard deviation of distribution 

of, 48 
Statistical inference, 13 
Statistical methods, applications of, 3 

approaches to study of, 6 
continuity of development of, 6 

· functions of, 10-14 
mathematical bases of, 4: 

Statistics, 51, 152 
Sum of cross-products, 87 

computed from correlation chart, 
97--98 

computed from original measures, 
90 

oonre~onforcodin~90 
t difference method of computing, 91 
Sum of squares, 51, 60-63, 65, 157, 

193-195, 202, 210, 219, 226 
eomputed from conelation chart, 

: . 96-97 
between groups, l~ 195-196,203-
: 204, 210, 219, 227 

within groups, 193, 195, 204-205, 
210, 219, 227, 230 

interaction, 212, 230 
pooling of within groups, 199, 204-

205,210,219,227 
residual, 221-222, 229-230 .. . 

Summation, 23--25, 35 
of an algebraic sum of two or more 

terms, 24 ' 
·of a constant, 24 
of a variable, 24 
of a variable divided by a constant, 

25 
Symbols, use of, 5, M-36 

Subject Index 

Test construction, 14 
Tests of significance, 133, 184 

··chi-square, 239-255 
comparison ofF and t in case of two 

groups, 199-202, 21&-225 
epsilotHquare, 232-237 
interpretation of, 279-282 
t ratio, 166, 187 
variance ratio, 193, 296 

Tetra.chorio correlation, 116-117 
assumptiona involved in com

puting, 117 
diagrams for computing, 117 
and phi coefficient, 121 

Two-way frequency table, 94 

Universe, definition of, 51 

Variability, &-9 
in population as related to sample, 

156 
·Variable, definition of, 23 

dependent, 12 
dichotomous, 112--113 
experimental, 12 
independent, 12 

Variables, used for ina.tching groups, 
293-294 

V arianoe, analysis of, 192--231 
assumption of homogeneity of, 

295-299 
definition of, 38 
estimB.te of population, 192, 197, 

199 
interaction, 212-214 · 
of means of columns in correlation 
c~, 108-109 · 

· in one variable associated with 
second, 99 

residual, 222, 224, 230 
Variance ratio, 193, 198, 296, 205-

206, 213- 214, 218. 225, 227, 296 

X-axis, 81-82 

Y-axis, 81-82 


