THE MYSTERIOUS UNIVERSE

Cambridge University Press Fetter Lane, London Bombay, Calcutta, Madras Toronto Macmillan
 Tokyo
 Maruzen Company, Ltd
 Copyrighted in the United States of Americs by the Macmillan Company
 All rights reserved.

A Cluster of Nebulae in Coma Berenices. This is a photograph of a minute piece of the sky, taken with the largest telescope in existence (Mount Wilson, 100 -inch). The majority of objects are nebulae, at a distance such that their light takes 50 million years to reach us. Each nebula contains some thousands of millions of stars, or the material for their formation. About two million such nebulae can be photographed in all, and there are probably millions of millions of others beyond the range of any telescope (see p. 64).

THE
 MYSTERIOUS
 UNIVERSE

by

SIR JAMES JEANS
M.A. D.SC., So.D.
Lh.D., F.R.S.

CAMBRIDGE

AT THE UNIVERSITY PRESS
First Eaution November 1930Reprinted (three times) November 1930Reprinted (with corrections) December 1930Reprinted (with further corrections) December 1930Reprinted : January 1931

CONTENTS

Foreword page vij
Chapters
I The Dying Sun 1
II The New World of Modern Physics 15
III Matter and Radiation 45
IV Relativity and the Ether 79
V Into the Deep Waters 115
Index 151
Plates
I The Depths of Space frontisplece
II The Diffraction of Light and of Electrons facing page 42

FOREWORD

The present book contains an expansion of the Rede Lecture delivered before the University of Cambridge in November 1930.

There is a widespread conviction that the new teachings of astronomy and physical science are destined to produce an immense change on our outlook on the universe as a whole, and on our views as to the significance of human life. The question at issue is ultimately one for philosophic discussion, but before the philosophers have a right to speak, science ought first to be asked to tell all she can as to ascertained facts and provisional hypotheses. Then, and then only, may discussion legitimately pass into the realms of philosophy.

With some such thoughts as these in my mind, I wrote the present book, obsessed by frequent doubts as to whether I could justify an addition to the great amount which has already been written on the subject. I can claim no special qualifications beyond the proverbially advantageous position of the mere onlooker; I am not a philosopher either by training or inclination, and for many years my scientific work has lain outside the arena of contending physical theories.

The first four chapters, which form the main part of the book, contain brief discussions, on very broad lines, of such scientific questions as seem to me to be
of interest, and to provide useful material, for the discussion of the ultimate philosophical problem. As far as possible I have avoided overlapping my former book, The Universe Around Us, because I hope the present book may be read as a sequel to that. But an exception has been made in favour of material which is essential to the main argument, so as to make the present book complete in itself.

The last chapter stands on a different level. Every one may claim the right to draw his own conclusions from the facts presented by modern science. This chapter merely contains the interpretations which I, a stranger in the realms of philosophical thought, feel inclined to place on the scientific facts and hypotheses discussed in the main part of the book. Many will disagree with it-it was written to this .end.
J. H. JEANS

DOREING, 1830

And now, 1 sald, let me show in a figure howo far our nature is enlightened or unenlightened:-Beholdt human beings living in an underground cave, which has a mouth open towards the light and reaching all along the cave; here they have been from their childhood, and have their legs and necks chained so that they cannot move, and can only see before them, being prevented by the chains from turning round their heads. Above and behind them a fire is blazing at a distance, and betwoen the fire and the prisoners there is a raised way; and you woill see, if you look, a lozo wall buill along the way, like the screen which marionette players have infront of them, over which they showo the puppets.

I see.

And do you see, I said, men passing along the wall carrying all sorts of vessels, and statues and figures of animals made of wood and stone and various materials, which appear over the voall?...

You have shoron me a strange image, and they are strange prisoners.

Like ourselves, 1 replied; and they see only their oron shadozos, or the other shadoros which the fire throws on the opposite roall of the cave?

True, he said; howv could they see anything but the shadows if they weere never allowed to move their heads?

And of the objects which are being carried in like manner they roould only see the shadorvs?

Yes, he said.
To them, I said, the truth voould be literally nothing but the shadoros of the images.

INDEX

Aberration of light, 81
Absolute rest, 89, 00, 108
Accidents in nature, 4, 5, 6, 10
Action-at-a-distance, 80, 07, 136
Ages of stars, 59, 60, 65, 63
Annihilation of matter, 69, 70, 73, 77, 116
Atoms, nature of, 46, 47, 52, 116

Berkeley, philosophy of, 137, 138, 189
Bohr, N. 124
Brace, D. B., 88
Bragg, Sir W., 33
Cameron, G. H., 72
Carbon atom, 7, 8
Causation, 15, 18, 20, 25, 28, 29, 45, 127
Cave, Plato's simile of the, $\mathbf{I x}$, 127, 123
Compton, A. H., 37, 38, 66
Consciousness, 118, 119, 124, 143
Conservation laws, 45, 46, 50, 73
Conservation of energy, 40, 43, 49, 50, 53, 73
Conservation of mass, 46, 47, 48, 50, 51, 53, 70, 73
Conservation of matter, 46, 50, 73
Continuum, defined, 101, 109
nature of, 102, 112, 115, 125, 143
Corpuscular theory of light, 81, 82, 83, 36, 88, 33, 40, 41

Cosmic radiation, 23, 72, 75, 81
Curvature of space, 60, 112
Dauvillier, A., 42
Davisson, C. J., 42
Democritus, 46
Dempster, A. J., 43
de Broglie, Louis, 40
de Sitter, W., 63, 66
Descartes, 81, 130
Determinism, 16, 28, 29, 119, 123, 125
Diffraction, of electrons, 41, 42, 122, 123
of light, 34, 42
of protons, 43
Dirac, P. A. M., 123, 126, 142
Doppler's principle, 65
Earth, future of, 12
origin of, 2
size of, 1, 128
Eddington, Sir A. S., 104, 113
Einstein, A., 53, 55, 60, 62, 63, 89, 00, 08, 111, 113
Electrons, diffraction of, 41,42, 122, 123
nature of, 39, 40, 42, 43, 51, 76, 142
wave-systems of, 40 ff .7 77, 120, 122, 142
Emission of radiation, 24, 69, 117
Energy, conservation of, 46, 48, 49, 50, 53, 73
definition of, 48, 49
mass of, 53, 55, 70
mechanical, 49
source of stellar, 54, 69

Entropy, 144
Ether, deflition of, 70, 104
existence of, 01, 06, 07, 104
nature of, 81, 89, 92, 95, 103, 105
Exclusion-principle, 186
Expanding universe, 62 fi., 136
Faraday, M., 52, 54, 81, 103
Finiteness of space, $60,61,112$, 135, 143
Fitzgerald, G. F., 80
Fitzgerald-Lorentz contraction, 86, 87, 95, 96
Force, physical nature of, 55, 56, 60, 92, 112
Free-will, 16, 29
Fresnel, A., 89
Galileo, 16, 127
Gas, properties of $\mathrm{a}, 17$
Geometrical interpretation of force, 112, 113
Germer, L. H., 42
Gravitation, interpretation of, $16,17,19,60,93,94$, 111
law of, 16, 94, 111 fi.
Heat-death, 13, 144
Heisenberg, W., 25, 26, 123, 124, 126, 142
Helmholtz, H. von, 17
Highly penetrating radiation, 22, 71, 72
Hubble, E., 64
Hull, G. F., 55
Humason, 64
Huyghens, C., 81
Huxley, T. H., 4
Imaginary numbers, 110, 130
Indeterminacy in nature, 25, 28, 37; 123, 125

Indeterminacy principle of Heisenberg, 25, 123
Interference bands, 33
Joule, J. P., 49
Kelvin, Lord (Sir W. Thomson) 17
Kikuchi, S., 43
Lane, M., 88
Lavoisier, A. L., 48
Laws of nature, 45, 118, 140
Lebedew, P., 55
Leibnitz, G. W., 121
Lemaltre, G., 62, 63
Life, beginnings of, 2,143
end of, 11, 12
hostility of universe to, $\mathbf{3 , 1 2}$, 13, 148, 149
Light, aberration of, 81
diffraction of, 84, 42
nature of, 31 II., 36, 77, 142
Light-quanta, 36, 37,70,75, 142
Lines of force, 54
Lives of stars, length of, 59, 60, 65, 68
Locke, J., 131
Lodge, Sir O., 104
Lorentz, H. A., 86, 87
Lucretius, 46, 47
Luminiferous ether, 81 fi., 104, 120, 142

McLennan, J. C., 22
Magnetism, 9
Mass, conservation of, 48, 49, 51, 53
definition of, 47
of energy (energy-mass), 53
rest-, 52, 53, 69
Mathematical interpretation of nature, 127, 131, 133, 141, 142, 145, 146

Matter, annihilation of, 69, 70, 73, 77, 116
conservation of, 46, 50, 78
Maxwell, J. Clerk, 17, 52, 54, 55, 81, 103
Mechanical Interpretation of nature, 16, 17, 19, 128, 183, 146
Meteorites, 57, 58
Meteors, 57, 58
Michelson, A. A. 83
Michelson-Morley experiment, 83 In., 87
Millikan, R. A., 72, 75, 76
Minkowski, H., 98, 101, 103
Mitchell, Sir P. C., 139
Molecules, 7, 47
Morley, E. W., 83
Mosharrafa, A. M., 77
Nature, laws of, 45, 118, 140
Nebulae, extra-galactic, Plate I, 64 fir.
Newton, Sir Isaac, 16, 81, 82, 34, 36, 39, 40, 41, 47, 49, $51,82,89,90,93,94,106$, 111
Nichols, E. F. 55
Occam, William of, 96
Perpetual motion machines, $74,88,144$
Photons, 36, 37, 70, 75, 142
Planck, M., 19, 20, 27
Planets, birth of, 2, 59
Plato, ix, 119, 127, 145
Pressure of radiation, 55, 56
Probability in knowledge, 22, 147
in nature, 20, 22, 122, 124
waves of, 122
Protons, nature of, 89, 43, 76

Quantum theory, 19, 25, 30, 36 Quotations:

Arnold, Matthew, 147
Berkeley, Bishop, 187
Dirac, P. A. M., 123
Eddington, Sir A. S., 104
Fitzgerald, E. (Omar), 125
Galileo, 127
Huxley, T. H., 4
Johnson, Samuel, 138
Lodge, Sir O., 104
Maxwell, J. Clerk, 54
Minkowski, H., 103
Mitchell, Sir P. C., 189
Newton, Sir Isaac, 16, 32, 34, 82, 89, 94
Occam, William of, 96
Plato, ix, 145
Schrödinger, E., 121
Wordsworth, W., 130
Radiation, mass of, 55, 56, 57
mechanical interpretation of, 17, 129
pressure of, 55, 56
quantum theory of, 24, 30, 36
Radioactive disintegration, 20, 21, 23
Radiosctivity, 9
Rayleigh (3rd Baron), 88
Reflection and refraction of electrons, 41, 42, 122, 123
and refraction of light, 31, 32, 83, 40
Relativity, theory of, 60, 64, 89, 97 ff.
Rest-mass, 52, 53, 69
Rupp, E., 43
Rutherford, Sir E., 21, 22, 52
Salisbury, Lord, 79
Schrodinger, E., 40, 121
Shapley, H., 58
Shooting-stars, 57, 58

Soap-bubble analogy, 61, 114, Undulatory theory of light, 34, 115
Soddy, F., 21
Space, nature of, 60, 88, 113, 143
Spectrum of light, 85
Spontaneous disintegration, 21, 23, 70
Stars, length of lives of, 50,60, 65, 68
number and size of, 1 source of energy of, 54, 69
ten Bruggencate, P., 66
Thermodynamics, 13, 74, 144
Thomson, G. P.; 42, 122
Thomson, Sir J. J., 51
Time, nature of, 30, 98, 119, X-radiation, 22, 87, 88, 71, 81
143, 145
Trouton, F. T. 88
Uncertainty principle of Heisenberg, 25, 123

39, 81
Uniformity of nature, 15, 140
Universe, size of, Plate 1, 1, 143

Vital force, 7, 8

Waterston, J. J., 17
Wave-length of radiation, 30, 42, 77
Wave-machanics, 40 ff ., 120, 126, 142
Weyl, H., 113, 119

Young, Thomas, 89, 81

Zwicky, F., 66, 67, 68

CAMBRIDGR PRINTESD HI
 - AT TH:

