REPORT
 ON
 THE SOCIO-ECONOMIC SURVEY OF
 THE NAGLRJUNASIGLR PROJECT AREA

VOLUMES - I to \bar{X}

By

Prof. K. Nagabhushanam, M.A., File. Lice., D.Fil.(Stockholm)

Head of the Department of Statistics
And
Prof. B. Sarveswara Rao, M. I_{2}., Ph.D. (Cantab)
Head of the Department of Economics
DIRECTORS OF THE SOCIO-ECONOMIC SURVEY
Volume I
GENERAL REPORT AND RECOMIMENATIONS.

The Report on the Socio-Economic Survey of the Nagarjunasagar Froject area is in five volumes. The first volume contains the general report and recommendations, and the second deals with the technical aspects. The remaining three volumes contains tables, schedules, instructions, etc.,

We are grateful to the Vice-Chancellor and the Syndicate of the Andhra University for permitting us to carry out the survey and avail of the facilities of the Statistics and Econsmics Departments for this purpose.

Our thanks are due in a great measure, to the authorities of the Nagar junasagar Projest who have given us their valuable co-operation. In particular, express we wish to our thanks to the Administrators of the Project, the Secretaries.: of the Control Beard, the Chi ef Engineers of Canals and Dam and other members of the Technical Committee. Sri S. Chakravarty, Administrator of the Project when the Survey was started and Sri D. Viswanatham, the Secretary of the Control Board were everready to help us innour work. We wish to convey our sincere thanks to them. We must place on record our gratitude to late Sri T.S. Rao, of the Reserve of Bank of India, Bombay, who was deeply interested in the survey being started even when the construction $u f$ the Project was in its initial stages.

We also thank the Authorities of the Agricultur ${ }^{e}$ Department for helping us by sending some of its officers along with us in our familiarisation tours of the Project area.

We thank Dr. T.V.Avedhani, and Dr. D.V.Ramana Honorary Deputy Directors in our Survey, Shri K.V. Satyanarayana, Asst. Director, Sri P.A.V. Bhattana太 ${ }^{\text {a }}$, Swamy and Sri S, Nageswara Rao the Statistical and炇esearch Assistants for the very enthusiastic and
 tse Sri M.Jagadheswara Rao of the Economics. Department Nox has done a good bit of computational and other work for us, though he is not a member of the staff of the survey. To him also we give our thanks. It gives us pleasure to make particular mention f the untiring and sustained work put in by :Sri S. Nageswara Rao but for which, the report would not have been ready even by now. We record our appreciation of his work. rinally we take this opportunity to thank every one who has done work for the survey in some capacity or other.
 * also our recommendations for speedy development of the ayacut. Therefore, it became necessary for us to make extensive studies and carry out discussions to evolve procedures for formulating recommendations. With our other duties as Professors we could not avoid the delay that has occurred in submitting the Report.

[^0]
2.15 L iadilities of farm househitlds 45
2.16 Growth of cattle population 46
2.17 Population of sheep and goats . 46-47
2.18 Resources available to cultivator 47-50 households
2.19 Employment and unemployment of workers 50-54
2.20 Employment and unemployment of work
animals
2.21 Land improvement expenditure during
$1954-55$ to $1958-59$
2.22 Growth of capital assets during the
period $1954-55$ to $1958-59$
2.23 Farm and Non-farm activities 60-62
2. 24 Incomes of cultivator and non-cultiva-
tor households
2.25 Summary 64-65

Appendix 1: Population of Vulages inchuded mineframe 66
Appendix 2: Cutivate farea ni villagen unchinded 67
Survey of trade in agricultural pro$\frac{\text { duce and processing industries in }}{\text { selected urban areas }}$
3.1 Genoral 68-69
3.2 Trade in raw and processed agricul- \quad tural produce
3.3 Capital erployed and turnover of 71-72
3.4 Processing industries 72-74

Tables 75-85
Appendix: Customary unins avet their cquiarinens) 86
Input-output relations in Frrm business and in selected farm and non-farm 87-151 enterprises.
4.1 General 87-88
4.2 Input-output relation in farm business 88-95
4.3 Input-output relation in milkproduction 95-96
4.4 Irrigated paddy 97-102
4.5 Unirrigated paddy 103-105
4.6 Bajra ' 106-109

IV (contd)			Pages
	4.7	Variga	110-113
	4.8	Ragi	114-116
	4.9	Jowar	116-121
	4.10	Chillies	122-125
	4.11	Groundnut	126-131
	4.12	Virginia tobacco	132-135
	4.13	Country tobacco	136-139
	4.14	Nonfarm enterprises	140-151
V		Estimate of the Agricultural output in the project area for 1959-60.	152-193
	5.1	General	152
	5.2	Cultivated area and.cropped area	152-156
	5.3	Estimate of cropping pattern	156-161
	5.4	Crop yields, price8, and gross output	161-170
	5.5	Input structure and total cost of cultivation	170-177
	5.6	Value added to material inputs, profits, and different types of income	1779193
VI		Estimated of agricultural output in the project area after irrigation.	n 194-239
	6.1	General	194
	6.2	Extent of the proposed ayacut	194-301
	6.3	Cropping pattern after irrigation	201-207
	6.4	Cropping pattern suggested by the Department of Agriculture	$207-210$
	6.5	Nature of linear programming	211-212
	6.6	Assumptionsmade in programming for the project area	212-214
	6.7	Programming for the Right Bank Canal area	214-225
	6.8	Programming for the deft Bank Ganal area	225-233
	6.9	Intensity of cropping in the irrigated area	233-235
	6.10	Estimate of twxztatal agricultural output after irrigation	236-239
VII.		Resource requirments for the optimal orop pattern.	240-260

CHAPTER : I

INTRODUCTION - ORICIIT: $\because 3$ AYD METHODS OF ENQUIRY

1.1. Histyry of the Project

As early as 1903 the composite Madras State investigated the construction of a dam across the Krishna river at Pulichintala to irrigate 6.0 lakhs of acres in Guntur district. Later, in 1930, the fyvernment of Hyderabad investigated the construction of a dam on this river at Nandikonda and proposed a joint scheme with the gevernment of Madras. About the year 1947, the composite Madras state considered the Krishna Pennar Scheme, and got estimates ready in 1951. In 1952 the Hyderabad Government formulated proposals for irrigating 7.9 lakhs $\not \subset$ acres in Hyderabad, ana 2.3 lakhs of acres in Nadigama taluk, and alse for developing $168000 \mathrm{~K} . \mathrm{w}$. power under the Nadikinda scheme. Before taking a final decision on these schemes, the Pianning Commission appointed the Khosla Cormittee to examine the above schemes and recommend the most efficient method of utilising ${ }^{\overline{/ h}}$ Krishna waters. It was firally decided to construct a high dam at Nandikonda from which place right bank and left bank canals can be taken out to serve the irrigation and power needs of the two states, lihen the Archra state was constituted and subsequently integrated with Telengana intc Andhra ${ }^{\text {r }}$ radesh, the Project has come to be situated entirely in the state of Andr.ra ${ }^{\text {P }}$ radesh. This próject which was originally known as Nandikonda project has been renamed as the Nagarjune:,agar Project in honour of the Buddist Ahilosopher Nagaz-juna-Charya of 2nd century A.D., as the dam site is just miles down stream from the world famous valley of Naigar jurakonda where the sage Nagar junacharya lived.

As originally conceived, this project was tn be among the world's mighty multipurpose river valley projects, being the highest masonflry dam in the world, the third largest artificial storage reservoir-lake brought into existence by engineers on the globe, with its right canal being the world's biggest irrigation canal.

The Project, as finally decided upon and sanctioned, though not so stupendous, is still a huge undertaking being the largest high dam in India, as judged by the ultimate storage capacity of 9.8 millions acre-feet as compared to 7.4 million acre p-feet at Bhakra. In height it will be the second highest, coming only next to the Bnakra dam. The project is programmed to be completed in two phases. Accordingly, the dam to be built in the first phase is designed and being constructed for taking the super-structure to be built in the second phase. In the first phase of this project, the Right and Left danals are to have lengths of 135 miles and 108 miles respectively. When the second phase of the project is also completed, it will become possible to generate $75,000 \mathrm{~K} . \mathrm{W}$. of power at 60 per cent load factor, besides attaining an ayacut of 31.83 lakhs acres.

1.2 Importance of the Project.

As per the localisation policy decided upon by the - government of Andhra ${ }^{\text {radesh}}$ for the 11.24 lakhs ${ }^{\text {of }}$ acres on the fight danal side and 8.00 lakhs of acres on the Ieft danal side of the ayacut area to be served by the first phase of the Project, 80 per cent of the ayacut on the left canal side and 33.3 per cent on the right canal side will get irrigation facilities for growing paddy, the rest of the ayacut getting facilities for drg irrigation. 1. A small fraction of the area may be lncalised for sugarcane if conditions permit.

It is thus clear that one of the outstanding benefits of this project: is production of rice in respect of which our country is facing a large resurring shortage year after year. Rice being, the staple food for the whole of South India and some parts of North India also, this huge Project will in a great measure serve the national needs and help realice considerably the import of food grains, particularly rice, and thus save for the country a sizeable quantum of foreign aid which can well be used for putting through programmes of the industrial and technical development. Therefore, the Nagar junasagar Project is truly a great national undertaking

The accompanying map shows the areas to be served by the first phase of the project. It may be seen that the ayacut is spread over Palnad, Sattemapalle, Venukonda, Narsaraopet, Guntur, Bapatla, and ongole taluks of Guntur district, Darsi taluk of \mathcal{F} ellore district, Markapur taluk of Kurnool district under the right canal and Miriyalaguda and Huzurnagar taluks of Nalgonda district, Khammam taluk of Khammam district, and Nandigama and Jaggayyapet taluks of Krishna district under the left canal. Besides these: the project waters will be supplied to 1.5 lakhs of acres for the second crop paddy in the Krishna delta area.

The original estimate of the cost of the project in the first phase was Rs91.12 cro:es. The revised estimate was of the order of Rs. 139 crores. This revision has become necessary due to increase in the prices of steel, cement and some items of work.

Though the construction of the Nagarjunasagar dam is bound to incidentally reduce floods in the lower reaches of the river krishna, this aspect has not been a consideration of any importance in the design of the project.

: 6:

In a huge project like this, development of navigation will be a very important benefit. The potentialities of navigation in the canals deserve to be fully examined, and canal transport system evolved as.early as possible so that the ayacut region develops at a quick pace.

1.3 Genesis of the Survey:

With given physical characteristics of a region to be served by a project and trre also the economic and social condition of the people living in that area, it is the programme of comprehensive development drawn up and implemented without delay that will make the project yield the best results. To this end, the potentialities must be fully investigated and plans formulated to realise most of the potential benefit in a reasonably short period of time. In short, the need for economic planning for a project region is no less important than the engineering aspect. In recent years, it has been increasingly realised that the failure to achieve the anticipated benefits of a. project are in a great measure attributable to lack of advance planning for economic development of the region.

In the case of the Nagarjunasagar Project the Authorities realised the need for avoiding the kind of disappointment experienced in the case of some projects. Accordingly; even when the project Was in initial stages of consuftrction, the Control Board decided to constitute two Committees, namely, the Development Committee and the AgroEconomic Survey Technical Advisory Committee to advise in drawing up plans for rapid development of the ayacut.

Late Mr. T.S.Rao of the Agriculture Credit Department of ${ }^{\text {The Reserve Bank }}$ of India, Bombay, Mr. S. Chakravarty, Administrator of the Nagarjuna Sagar Project and Dr.K.L.Rao member, Central Water and Power Commission were strongly
of the view that no time should be lost in having the project region surveyed in respect of the present pattern of eoonomic activities in the ayacut villages which will serve as a bench mark for the future, and obtain an appraisal of the existing resource position in the region so as to assess the shortages when irrigation facilities come into existence.

In 1956, the Control Board invited suggestions from various institutions regarding Agro-economic survey of the project region and constituted the above mentioned Technical Advisory Committee. Prof. B. Sarveswararao, Head of the Economics Department, Andhra University, submitted a comprehensive memorandum, and the Indian Council of Agricultural Research also sent another memorandum. These were circulated to the members of the Technical Committee, consisting of the Administrateŕr, Chief Engineer, Nagarjunasagar canals, Representative of the Gokhale Institute of Politicf and Economics, Representative of the Bureau of Fconomics and Statistics of Andhra Yradesh, Representative of the Indian Council

 of Agriculturg of Andhra Pradesh, and two Representatives of the Andhra University. The Reserve Bank of India agreed to depute Sri T.S. Rao, Deputy Chief of its Agricultural Credit Department for important meetings of the committee. The first meeting of the Fechnical dommittee was convened in 1957, at which it was decided to have a survey of the project region in two parts to cover the socio-economic\& and the agro-economic aspects. It was further decided that the Indian Council of Agricultural Research would be in the supervisory charge of the Agro-economic survey.

As for the Socio-economic survey, no institution commanding the confidence of the Control Board came forward to shoulder the responsibility of constucting it. So the Tech-
 Sxurwsonsx that we twex should be in charge of the survey. It was felt by us that we could supervise the gociomeconomic survey if the "ontrol Board would organise the field-work. As the Control Board $\overline{\text { xppressed }}$ its inability to organise the field work, we also agreed to . the survey in the field. The Andhra University was approached with request to permit us to be jointly in complete charge of the Socioeconomic Survey of the project $\$$ region. The late $\mathrm{Dr} . \mathrm{V} . \mathrm{S}$. Krishna, who was then Vice-Chancellor, was very enthusiastic about this survey and readily gave his approval. A token sum of Rs, 3,000/- was sanctioned by the Control Board towards expenses for preliminary work by way of touring the area anotcollecting data, etc. As the Agro-economic survey came to be dropped subsequently due to lack of funds, some of its important aspects had to be incorporated into the Socio-economic survey itself. This necessitated the giving up of Urban surveys and Employment surveys, originally included in the scope of the Socio-economic survey. It was also decided to cut down the expenditure on the survey to Rs. 2.3 lakhs, because finance was not forth coming from any separate source, and had to be met from. the expenditure on canals.

During dur familiarisation tour of the Project area we found that the farmers on the Right Canal side are quite familiar with the methods of growing irrigated paddy and are enterprising enough to take advantage of Canal waters for dry irrigation. On the left Canal side too tradition
of growing irrigated paddy is fairly widespread. The farmers are anxiously awaiting the supply of waters by this Project for irrigation. Kk F Freer movement of skilled farmers and agricultural labour within and around; the Project region may be expected to result in the removal of deficiencies in agricultural skills and bring about adjustment of manpower resources required for growing crops under irrigated conditions.

Before undertaking the tour of the project to know first hand the various problems likely to arise due to the impact of the project on the area, Sri K.V.Satyanarayana, Research Officer, in the Department of Economics, Andhra University, was sent round in summer 1957 to visit the taluk offices in the project area, and gather information relating to the main features of the economy of the region. The Froject Authorities made available to us in May 1957 the list of villages in the porposed ayacut, and information was gathered in respect of each of these villages. The latter part of summer of 1957 was spent in going through the above data, looking for meaningful criteria for stratification of the villages in the ayacut. After this, questions relating to the preparation of frames and sampling procedures were discussed by us with the late Sri T.S.Rao, Dr. N.S.R. Sastry and Sri V.N.Murty of the Reserve Bank of India, Bombay, and later on the witt Shri N.V.Sovani of the Gokhale Institute of Politics and Economics.

Some Preliminarin 1.4. 里

The total number of town and villages as per the delimination of the ayacht by the project Authorities in the year 1958, came to on the kight danal side and on the left danal side. It is xkxw found that villages
having different population ranges are fairly uniformly distributed in the area. It is als) found that Commercial crops like Chillies, Groundnut, Tobacco and Cotton are raised in a good number of villages on the right canal side. It was felt that villages in which the area under commercial crops is relats nely high may be put into the first stratum, and the other villages on the xixyk right canal side into the second stratum. All the vili'ages on the left canal side are put inte ${ }^{\text {Her }}$ third stratum without distinction of the importance of commercial crops. We may mention here that the first and second strata are not two separate gengraphical regions but the villages lie intersprichd. It may also bë mentioned that, for purposes of the sample surveys, we have excluded from our frames uninhabited or merged villages as well as towns and villages with a pepulation over 5,000 as per 1951 Dopulation census. After this is done, we got 196 villages in the first stratum, 285 in the second and 275 in the third stratum.

Though these preliminaries were finalised in the summer of 1957, the survey could not be commenced till January 1959, because the decision to provide money from the expenditure on canals was taken only towards the end of 1958.

Before going to details of the present survey, Wैe may mention some of the other similar surveys, and the way in which the present survey differs from them. The Gokhale Institute of Politics and Economics at Poona has done pioneering work in its economic survey of the Hirakud Project in Orissa. The Bureau ef Economics and Statisties, Hyderabad, has also made an economic survey of the liungabhadra Project area. Lastly, we may also refer to the survey of the Bhakra Nangal

Project area by the Delhi School of Economics. While all these surveys are essentially of a bench mark nature, the present survey goes further in its scope. It will be seen from the objectives of the survey mentioned at a subsequent stage of this chapter that specific recommendations are to be made.in the 隹eport for attaining full ayacut without undue delay, so that optimal or near-optimal benefits accrue in a short-run period itself. Λ already mentioned, the desire to plan in advance was responsible for the starting of the survey alongside of the construction of the project. The other distinguishing feature of this survey is that, apart from the routine calculation of benefit cost ratios, method of linear programing has been employed to assess the potential benefit in the agricultural sector, and work out resource and credit requirements for adoption of crop patterns which are considered optimal on the basis of certain assumptions.

1.5. Objectives of the Survey:

The objectives of the Socio-Economic survey of project area undertaken by us are as follows:
i) To obtain information in respect of the existing crop pattern, agricultural production and incomes, land holdings, farm and non-farm resources, etco, in the rural areas of the $P_{r o j e c t ~ r e g i o n ~ t o ~ s e r v e ~ a s ~ a ~ b e n c h ~ m a r k ; ~}^{\text {a }}$
ii) To assess the agricultural pertential of the project area;
iii) '「o give an appraisal of the changes that are likely to be brought about in the Crop Pattern in the wake $n f$ supply of Project waters for irrigation;
iv) To assess the requirements of credit and other facilities for utilisation of Project waters without delay; and
v) To make recommendations for quick development of the ayacut.

1.6. Types of surveys undertaken.

For organising the survey in its various aspects we decided upon conducting surveys of the following types.
i) Census Survey of sample villages:- A random sample of 7 villages from the 1 st stratum, of 12 villages from 2nd stratum, and of 10 villages from $3 r d$ stratum were drawn and their names listed. In each of the sample villages, information was collected on a number of items in respect of every household. This information has been used for preparation of frames for drawing appropriate samples for surveying farm and non-farm activities. The underlying idea is that the collection of households in the sample villages in each of the strata are representative of all the households of all the villages in the conrssponding stratum.
ii) Farm Surveys: In each of the sample villages in a stratum the cultivating households (i.e. households engaged in the cultivation of land, owned or leased in, big or small) are arranged in descending order of the extent of the operational holding, and divided into five groups of equal number of holdings. From each of the quintile groups, a random sample of 4 cultivating holdings is drawn, resulting in a sample of 20 per village. The agricultural activities of these households are then taken up for intensive study by investigatjors trained for the purpose and posted to be incharge of a group of 3 to 4 sample villages. Each investigator is to reside in a village for some weeks, post the data relating to the farm activity of the sample households in the schedules, and move to the next villagey, and complete one round in a period of four months. Thus in a year he used to make three rounds, and gather by personal contact reliable details of the agricultural activities rf the households. The investigator was trained to post the
.. information for fixed periods of the crop year 1959-60, irrespective of the place of his actual stay during any give period of time.
iii) Non-farm Surveys: Using the information gathered in our Census survey, frames of households engaged in 16 different types of non-farm activities in the sample villages were drawn up for each of the strata, and listed in descending order of income accruing from the enterprise. In each case, the households were stratified by income, and random samples of suitable sizes were drawn for intensive study. Dometimes; the frames had to be pooled together to form a single one for the entire Right Canal area, and sometimes for the entire project region.

One point has to be made clear in this connection. I'he study is in terms of mutually exclusive activities of farm and non-farm. is such, a household engaged in both activitias may sometimes occur in the lists of sample households for intensive farm studies as well as for non-farm studies.
iv) Village Surveys and Taluq Reports: Apart from the above three surveys, general information was gathered
 ges in the Project region obtainable from records available at the taluk headquarters. These two complilations are sometimes referred to in the report as village surveys and taluk reports.
v) Survey of trade, marketing, transport and credit: A survey of trade in agricultural produce and processing industries in selected urban areas and transport facilities to and from the important market centres in and around the Project area was also carried out.
$: 13:$
vi) Survey of wet villages: With a view to gain insight into the 'likely changes to come about in the villages after receiving the irrigation facilities from the project, four villages near to the Project region which have received the benefit of Canal irrigation in the recent past have also been surveyed. As a matter of fact, this survey alone would not give us a firm basis for projecting into the future, for which we had to draw upon various reports relating to the farm management studies and the like. Another reason for carrying out the survey of these villages is that they would give an idea of the costs of conversion of lands from dry to wet. The survey of these villages is sometimes referred to as Survey of Wet Villages.
vii) Survey of Control Villages: A purposive sample of seven villages four lying close to the Right Canal area and three lying close to the Left Canal area has been selected and the villages have also been surveyed. These will serve as control villages. At a future date, if a resurvey of these villages is made, the disparity in the development of these villages and of the villages in the ayacut area will indicate the order of magnitude of the irrigation benefits. The data are preserved for use at the time of repeat survey at a future date.
1.7. Organisationzt of the Survey:

The organisational set up is as follows:
Headquarters staff at the University Campus
Two Honoplrary Directors in Joint Charge:
Two Honorary Deputy Directors
One Statistical issistant
One Research Assistant
Office staff for computational and tabulation work; typists; clerk, and peons.

$$
: 1 \frac{4}{4}:
$$

Field Staff:

One hssistant $\nu_{\text {irector }}$ in charge of the Area
Office at Guntur
Bhree Field Officers
Investigators, Clerk
Jeep driver and p eons ${ }^{2}$
Besides the above staff enumerators were employed for completing the Census Survey rapidly on payment nn a piecerate system, as the Census Survey formolthe basis for frames for drawing samples for other surveys. . In fact, during the Census Survey, almost all the staff at the headquarters was working in the field to complete the work in as record a time as possible.

1.8. Conduct of the Survey:

Graduates fully familiar with the villages to be surveyed were recruited and given training at the headquarters. During this training not only were they made familiar with definitions and concepts, but they were also taught as to why the various schedules were so drawn up and how the various entries could be combined to yield the required figures relating to the various aspects. Their work in the field weus constantly supervised by Field Officers and the Assistant Director. Notwithstanding all this, difficulties had been experienced at the stage of final processing of the data. In the case of non-farm studies in particular, we had to be content with working out the input-output structure of some 16 enterprises for which the posted information was considered to be meaningful. The rest of the data has been left out of analysis.

On occasions the difficulty was also felt in respect of lack of persons with special knowledge in the fields of engineering, agriculture, and 2. For a detailed statement of the staff see appendix at the end of this chapter.

1.9. Method of rinalysis:

Coming next to the methods of analysis of data, the cost accounting method employed in farm management studies has been used. In forming estimates, appropriately weighted sums of averages have been adopted. In the context of making projections into future, we have used the method of linear programming in combination with the Government's policy of localisation. Assuming increase in farm resources which we have considered reasonable and which leave no part of the land unirrigated, the optimal crop pattern was worked out so as to bring the maximum benefit to the Cormunity at large: The programming has been done in respect of 4 typical sizes of farmys on the Kight Canal side and for four farms of similar nature on the Left Canal side:

The crips judged to be most important during the short run period of ten years after the completion of the first phase of the Project are paddy, Chillies; country tobacco, Ragi; "fowar and fedgram-mixture on the Right Canal side and paddy, Chillies, Eountry tobacco, Vegetables, Groundnut+ redgram, fowar+Cucumber and other mixtures on the Left Canal side. In this connection the following aspects may be touched upon:
i) Position of sugar cane: It is quite likely that a part of the area in the ayacut will be localised for sugarcane. As we have no information as to where and how it will be localised; we have not built this into the picture: This is particularly dependent on the Government's policy of giving perennial irrigation facilities and the establishment of sugar factories.
ii) Position regarding cotton:- Though the croppattern suggested by the Agricultural Hepartment contains
: 1有 :
cotton as one of the important dry irrigated crnps, we feel that with the present quality of yields and the prevailing prices it will not be advantageous to the farmer to grow this crop. There are several other decidedly more profitable crops both from the point of view of the farmer and of the community. Hewever, in the long run, cotton may become a profitable crop if the relative price structure of crops and other factors move favourably to cotton.
iii) Position of groundnuts We feel that the position of groundnut is not really going to be what the results of programming indicate on the Right Canal side where it is not at all in the picture. The value added by this crop comes very close to jowar+redgram. As such, for several reasons cultivators may wish ta grow the groundnut crop. In fact, the picture on the Left Canal side indicates that groundnut as a mixed crop is quite attractive. At one of the meetings of the Fechnical dommittee at which Sri B. Venkatappaiah, then Deputy Governor of the Reserve Bank of India and Dr. K.I. Rao, Member of the Central Water and Power Commission were present, the question of credit requirements was discussed which led us to the question of crop pattern which in its turn was felt to be dep ${ }^{2}$ ndent on the Government's policy with regard to the location of the various processing industries in the Project region. This is being mentioned here be cause, if in any particular area decarticating factories and groundnut oil mills are located, several farmers may prefer to grow groundnut on account of the ready marketability of the produce without having to go in for storage facilities, etc. In such a case, the location of these factories in the area will more than compensate any small difference in the profit which they may have to for go by not growing the slightly more profitable crops. Further, the farmers may, by tradition, grow the groundnut crop if it is nearly as profitable as a crop which occurs in the optimal crop pattern.
: 1\% :
iv) Position of pulses. is the intensity of cropping is likely to go up after the completion of the project, pulses and other oil seeds are also linely to be grown in the paddy fallows and or as second crops.

In the light of the above remarks the optimal crop
the diversification of the crons in the Project area pattern worked out by us will not adversely reduce when the farmers actually come to adnpt it with modifications based on their own tradition and habit.
1.10. The Project Pays itself:

The project is seen to be a paying proposition, judged by the benefit-cost ratio criterion which is estimated to be of the order of $4.7 \mathcal{A}$ even when only the direct benefits to the community are considered. If this question of benefitcost ratio is examined in the context of the completion of also the second phase of the Project, the position will be much more satisfactory, because considerable extension of irrigation facilities can be achieved with marginal expenditures for increasing the height of the dam and the lengths of the canals. The spread effects will also be more pronounced because a much vaster region will receive the benefits. Even judged by consideration of financial $r \in t u r n s$ on the Government's invest ment, the project is paying, especially when the augmentation $n f$ government revenues from sale of hydr-power, and further yields of taxes levied by the dentral and statefgovernments, as trade and industry expand in the area is taken account. In estimating the benefits of the Project in the agricultural sector, we have not assumed any spectacialar changes in agricultural practices. We have only assumed that fertilisers and better seed will be used by the farmers in growing the crops to which they are used, provided that necessary resource requirements become available to them either through self-finance or through the government and other agencies.

Abstract

: 18 : The opening: up of the region by new railway lines and traffic routes will have to be planned and executed expeditiously, as otherwise movements of goods or produce into the Project region and outside it will be greatly hampered and the flow of benefits from development retraded. This point was also stressed by Sri Ttrumala Iyengar, the Chief Engineer of Hirakud Project in a discussion we had with him regarding methods of rafid achievements of the ayacut in an irrigation project. 1.11. Follow-up wurveys:

It will be extremely illuminating and useful to carry out follow up surveys of the region at inter*als of 10 or 15 years to assess the rate of development of the region.

Statement of Personnel who worked in the Sociomenomic Survey
of the Nagarjuna-Sagar Project
(Excunding the enumeriatos employed for the ceuths survey) HeadrQuaxters staff:

Honorary Directors in Joint charge of the survey:

Prof. K, Nagabhushanam, Mo A.s
Fil.Lic.D.Fil.(Stockholm).,
Department of statistics, sndhra Unịversity.

Prof. B. Sarveswara Rao, M.A., PhiD. (Cantab)., Department of Economics; undibra Univésity.

Honorary Deputy Directors

Dr. T. V.Avadhani, M.tos
Ph.D., F.S.S.

Department of Statistics, andhra University.

> Dr. D. V.Ramana, M. A., (Hons)., \quad Ph.D. (Chicago).;
> Department of Economics,
> Andhra University.
> (Mrom Jan, '59 to Sept, 160) Statistical and Research Assistants $M_{0} H_{0}, M_{0}$ Sc., (1-2-59 to 31-3-62).
 (1-1-59 to $31-3-62$)

Computors

Mr. C.Krishnamurty, M.A.g (21-2-59 to 30-6-59)
Mr. B.P.V.Sarma; B. A. (Hons) (13-11-59 to 14-4-60)
Mr. V.V.Bhanoji Rao, M.A.g (15-9-60 to October 1960)
. Clerk -_cum-TabuIatona
Mr. C.Balakrishnamurty, Má, \quad ($10-5-59$ to 30-6-59)
Mr. K.Guruvulu, M.A. $\quad \vdots$ (10-5-59 to 30-6-59)
Mr. A.V.Radhakrishnamurty, M.A. (10-11-59 to 31-7-1960)
Mr. K.V.S.Chalapathirao. . (14-5-59 to 4-10-1960)
Mr. M.Satyanarayanamurty,
Mr. 2.K.V.Sastry
(15-5-61 to 2-1-62)

Mr. P.Soma Raju
(1-7-59 to 12-5-1961)

Mr. D.Sambamurty, M.A., D. C.R.S: (23-8-60 to 2-9-60)

Clerks

Mir. K.Narashimamurty, B.A.
(5-1-59 to 25-9-60)
Mr. R.Gopalakrishnayya
(2-2-59 to 7-4-60)

Mr. M.Satyanarayanamurty (9-8-1960 to 14-5-61)
Ir. V.J.K.Sarma . (8-3-60 to 31-3-62)

Draughtsman

Mr. I.Hanumantharao
(14-5-59 to 6-6-60)
Peons
Mr. Ch.Desi Reddy
(1-1-59 tっ 31-3-62)
Mr. M.A.Subhan
(1-1-59 to 30-10-61)
Mr. S.Fareed.
(12-9~60 to 31-3-62)
Area office Staff (At Guntor)
Assistant Director
Mr. K.V.Natyanarayana, M.h. (Hons) (1-2-59 to 28-3-61)
Field Officers
Mr. K. Chalapathi Rao, Misiog (9-2-59 to 31-3-62)
Mr. V.Thirupathi Naiduz M.A. (1-2-59 to 14-7-60)
Mr. C.Krishnamurty, M.A. (1-7-59 to 31-10w, 1)
Ir. G.Koteswara Rao, M.... (1-8-60 to 2-9-60)
Mr. K.Hanumantha Rao, B.A. (3-9-60 to 30-10-61)

Investigators

Mr. K.Hanumantharao, B.A. (9-2-59 to 2-9-60)
Ir. G.Koteswararao, M.A. (22-12-59 to 31-7-60)
iIr. ...Viswanatham B.A. (9-2-59 to 30-10-61)
Mr. Ch. sbbaiah, B.A. (9-2-59 to 30-10-61)
Mr. K.Masthan, B.sc. (9-2-59 to 19-7-60)
Mr. K.V.Chalapathi Rao, B.A. (9-2-59 to 22-11-59)
Mr. I.Narashima Rao, B. Com.? (1-3-59 to 17-3-60)
Mr. D.Peddi Ready, M.A., B. Com. (16-2-59 to 7-2-61)
Mr. S.Lakshminarayana, B.A. (92-59 to 1-8-60)
Mr. K.Punna Reddi, B.A. (92-59 to Dec, 1960)
Mr. T.Subba Rao, M.A. (20-7-59 to 31-7-1960)
Mr. K.Guruvulu, M. A. (15-10-59 to 9-9-60)
Mr. $C_{\mathbb{M}}^{\boldsymbol{M}}$ Balakrishnamurty, M.A. (1-7-59 to 24-10-60)
SIr N. Hanumareddy, B. A. (1-7-59 to 1-8-60)
Mr. A. Hanumareddy, B.A. (20-7-59 to 1-8-60)
irr. T.C.K.Sastry, B.Com., (1-7-59 to 10-7-60)

Mr. V.V.Subba Rao, B. A. (Hons)	(8-7-59 to 29-7-60)
Mr. A.V.Radhakrishnamurty, M*A.	(1-8-60 to 30-10-61)
Mr. V. ${ }^{\text {P. Bhanoji Rao, M. A. }}$	(October 60 to 31-7-61)
Iir. A. Somasekhar, M. A. i	(16-9-60 to 5-3-61)
Mr. C.S. Miadhavarao, M. A.	(8-8-60 to 23-3-61)
Mr. V. K. M. Tilak, M. A.	(9-8-60 to 30-12-60)
Mr. K. Babu Rao, B. A., B. L. , D. Co	S., (10-11-60 to 3-4-61)
Mr. M. V. Subbarayudu, M. A.	(10-8-60 to 15-11-60)
Mr. M. Subba Rao, M. A., M.Sc.	(16-5-61 to 30-10-61)
Mr. Casankaranand, M. A., B. L.	(8-12-60 to 13-5-61.)
Mr. T.Chittaranjan Sarma, M A., B. Com. $^{\text {, }}$ B: L.	(15-9-60 to 30-10-61)
Mr. N. Appalanaidu, M.A.	(8-8-60 to 31-8-60)
Mr. G. Subr ahmanyam, M. A.	(28 2-8-60 to 8-12-61)
Mr. T. Rama Rao, M. A. . M. Sce g	(10-8-60 to 8-12-61)
Mr. K.V.Subba Rao, M A.	(8-8-60 to 30-10-61)
Mr. K. Subba Rao $\frac{\text { Jeep Driver }}{}$	$\text { (30-3-59 to November } 60 \text {) }$
Clerk	
Mr. B. Radhakris'nnaiah	(1-2-59 to 11-5-60)

Peons

Mr. G.Mallayya	$(1-2-59$ to March 61$)$
Mr. Sheik Masthan	$(1-4-59$ to September 60)

[^1]CHAPTER II.
RURAL ECONOMY OF THE NAGARJUNASAGAR PROJECT AREA -. 2.1. General.

The area of the Nagar junasagar Praject comprises, as indicated in the previous chapter, some of the least developed and least prosperøús parts of the Cóstal Andhra region and of the Telengana region of Andhra Pradesh. The principal source of livelihood for the people of these areas is agriculture which had come to be stabilised at very low levels af productivity on account of lack of irrigation facilities, dependence on uncertain rainfall, and lack of incentives and inability of the farmers ta adopt impreved methods of agriculture. The area also remains extremely backward in respect of the development of pewer, transpnrt and industry. Consequently the Nagarjunasagar Prnject area constitutes at present a most backward region of Andhra Pradesh with extremely low levels of production and standards of living. "It is a matter of considerable interest in this connection to note that even in this area, which forms a contiguous part $\cap f$ the lower Krishna river basin; there are wide disparities between the Andhra part and the Telengana part in resurce productivity, levels af output and standards of liveng. The Telangana part is more backward than the Andhra part, and the marked differences in the economic charateristics that exist between st'atum 1 and stratum 2 on the ne hand (the Andhra part) and Stratum 3 on the other hand (the Telengana part) will be pointed out in detail in the course of this chapter, in. which an attempt is made te describe the dominant features of the rural economy of the Project area dealing with the following aspects in particular.

1. Growth of population and density,
2. Occupational distribution of the ppulatinn,
3. Distribution and fragmentatinn $\cap f$ land holdings,
4. Cropping pattern and crop yields, agricultural practices, and marketing and credit.facilities,
5. Assets and liabilities of farmers,
6. Resources available to the cultivators (land, manpower, work cattle and implements);
T. 7. Employment and unemployment of workers and work cattle,
7. Land improvement expenditure and capital formation; and
8. Incomes of rural households.

The data used in giving this account are mostly based on the information collected in the course of the sample surveys conducted by us and to some extent on the fficial records and statistical publications available to us.

2.2. Growth of population in the Region.

The total population of the sample villages in S_{1} as enumerated in our Census survey came to 21,221 and the number of households to 4,653. According to the 1951 Census the total population was 19,370 persons, the number of households being 4,183. The population -f these villages thus registered an increase of 9.56 per cent during the period 1951-59, which means an annual rate of increase of 1.20 per cent. The population in S_{2} villages came to 15,231 with 3,123 households in 1959, as compared with the 1951 Census figures -f 14,429 with 2,964 households. The increase in population during the period was thus 5.56 per cent or 0.69 per cent per year, which is considerably less than in S_{1}. In S_{3} villages the increase in population was from 18,083 with 3,708 households in 1951 to 18,826 with 3,883 households in 1959. This amounted to an increase of 4.11 per cent or an annual rate of increase of 0.51 per cent which is less than the rate of increase in S_{1} as well as S_{2}.

The population of cultivator households according to our Census survey came to 63.7 per cent of the total population.in S_{1} as compared with 73.6 per cent in S_{2} and 62.6 per cent in S_{3}. It may be noted in this connection that a cultivator household is defined as one having cultivation as main ór subsidiary occupation, irrespective of the size of the operational holding. Oir Census survey thus shows that more than 60 per cent of the population in the sample villages belong to the cultivator households.

Feot Nete: * A separate sheet attached. Page 24
*Foot Note:
Growth of population (in thousands) in the Nagar juna sagar Project area.

	1951 Census	1961 Census	Rate of increase (annual)
Guntur district			

The rates of growth of rural and urban population cannot be calculated separately as the definition of urban popilation (towns) was changed in the Census of 1961. The rate of growth of rural population would be however less than the rate of growth of total population. The abnormal rate of growth of population in Miriyalaguda taluk was due to immigration and the growth of the new town of Vi jayapuri (Nagarjunasagar) with 55.4 thousand population in 1961 and other areas connected with the construction of the Nagar junasagar dam and canals. There was also considerable exedus of population from villages to these areas for employment. The low rate of growth of population noticed in S_{3} has to be attributed to these facters.

Stratum	Population			Percentage of population of cultivator households to t•tal:
	1951	n959	Annual rate of increase	
(1)	(2)	(3)	(4)	(5)
S_{1}	19,370	21,221	1.20	63.7
s_{2}	14,429	15,231	0.69	73.6
S_{3}	18,083	18,826	0.51	6216

2.3. Density of population:

Density or concentration of population in a region is measured by the number of persons per square mile of geographical area. Generally speaking, a higher density of population is to be expected in a region where there is greater prosperity. The density of population in the three strata is given below for the year 1951 and 1959. For purposes of comprisin data for the density of population in the districts of Guntur and Nalgonda and in the different 'regions of Andhra $\stackrel{F}{P}$ radesh are also ε iven for the Census years 1951 and 1961.

Table No. 2.2.
Density of population.
(No. of perisons per Sq. mile)

Stratum	381	418	Guntur district	509

The density in S_{3} was 248 in 1959 as compared with 418 in S_{1} and 301 in S_{2} in the same year. While the whole area of the Project
is of low density, the density in S_{3} villages indicates that they are less developed than S_{1} and S_{2} villages.

2.4. Size of householld.

The average size of a household comes to 4.56 persons in S_{1} as compared with 4.88 persons in S_{2} and 4.85 in S_{3} as shown in tiable No. 2.3. We find however that the average size of a cultivator is larger than that of a non-cultivator household household/in all the three strata. The average cultivator household has 5.00 persons in S_{1} as compared with 5.32 persons in S_{2} and 5.37 persons in S_{3}. The size of the household in $S_{2} \bullet S_{3}$ is considerably larger than in S_{1}. The number of adults per cultivator households is found to be highest in S_{2} equal to 3.48 persons, as compared with 3.37 persons in S_{1} and 3.38 persons in S_{3}. The non-cultivator household as already noted, is considerably smaller in size as sompared with the cultivator household in all the strata. We do nat however find noticeable differences between the three strata in respect of both the size and the average number of adult persons in these households.

Our Census survey shows (Census survey Table Nus. 2 and 3) a * high positive correlation between the size of the perational holding and the size of the cultivatot household. In the case of non' cultivator households we find similarly a high positive cerrelatien between the income size groups and the size of the household. In the case of both types of households and in all the strata the size of the household increases more than two fold between the lower and the high size groups.

Table He. 2.3.

Size of cultivator and non-cultivatar households.

	S_{1}	S_{2}	S_{3}
Average size of all households	- 4.56	4.88	4.85
Average size of cultivator households	5.00	5.32	5.37
Average size of non-cultivator households	3.95	3.96	4.17
Nambeis. of adulto per cultivator household	3.37	3.48	3.38
No. of' adults per non-cultivator household	. 2.56	2.54	2.58

2.5: Classification of households according to livelihood classes (main ccupation).

Adopting the 1951 Census classification of means of'livelihood, tis the households in the sampled villages are divided inte 8 classes according to the principal means of livelihood (Census Table Nn. 5). The occupational distribution of the cultivator households is also shown with reference to the size groups of operational holding. It may be seen from the tables that more than 70 per cent of the households constitute agricultural classes in every stratum. We alsa find that the proportion in S_{2} is higher than in S_{1} and the proportion in S_{3} is higher than in S_{2}. If we take the cultivator households into consideration, this comparative picture of S_{3} becomes even more conspicuous. 87.7 per cent of the cultivator households in S_{3} have agricultural occupations as compared with 82.7 per cent in S_{2} and 83 per cent in S_{1} as shown in the table No. 2.4 given below. Among the non-cultivator households 71.6 per cent of the househiolds in S_{3}, have agrioxltural occupations, the predominant occupation being agricultural'labour, as compared with 59.4 per cent in S_{2} and 58.9 per cent in S_{1}. (1 to 4 Census classes)
Among the households having agricultural occupations/belonging to either we find that agricultural labour households constitute 55.4 per. cent in S_{3} as compared with 45.2 per cent in S_{2} and 48.2 per cent in S_{1}.

Cultivator Households
(a) With agricultural -ccupations
$83.1 \quad 82.7 \quad 87.7$
(b) With non-agricultural -ccupations

16.9	17.3	12.3
100.00	100.00	100.00

Non-cultivator households
(a) With agricultural.

All households

(a) With Agricultural. - ccupations
$71.8 \quad 75.1 \quad 80^{2.7}$
(b) With non-agricultural occupations

| | 28.2 | 24.9 | 19.3 |
| :---: | :---: | :---: | :---: | | 100.0 |
| :---: |

Agricultural households.
(a) With agricultural -abour $\begin{array}{lll}\text { a.s main occupation } & 48.2 \text { 45.2 } 55.4\end{array}$
(b) With owner cultivation as main occupation
39.7 : 48.7 38.7
(c) With tenant cultivation as main occupation
3.9 . 2.9 .6
(d) Rent receiving
8.2
3.2
3.3
Total $100.0 \quad 100.0 \quad 100.00 \quad \therefore$
2.6. Classification of households' accor rding to Livelihood cIasses (subsidiary, occupation)
It is common knowledge that a household in rural areas has generally more than one means of livelihood or source of income. No't-only households with agricultural ccupations as main occupations predominate in rurai areas, but also a high proportion of
non-agricultüral househoids have agricultural coupations as subsidiary means fivelihood, The claissification of hiusehlds according to the first subsidiary occupation (first in importance among the subsidiary occupations) is shown in Census table No, 6 :. It may be seen frim this table that in $\dot{S}_{1} 61,4$ per cent of households with owner-cuilit vation as main occupation have subsidiary accupations which in order ef importance are Industry, Agricultural labour, and Tenant cultivation. 71.3 per cent of housieholds with agricultural labcur as main eccupation have subsidiary occupations which are mainly Industry and owner cultivation in order of importance. 76.3 per cent of the non-agricultural households have subsidiary agricultural ; ccupations which in order of importanc are mainly Agricultural labour and Owner cultivation. In S_{2} villages 74.3 per cent of owner cultivators have subsidiary occupations which are mainly Industry, Agricultural labour and Tenant cultivation in order of importance. 80.6 per cent af Agricultural labour households have mainly Owner cultivation and Industry as subsidiàry occupations. Among the non-egricultural households, 77.9 per cent have owner cultivation, Agri ultural labour and Rent-receiving as their EXXXX subsidiary occupations in arder of impertance. In S_{3} villages 53.9 per cent of owner cultivators have, as in S_{1} and S_{2}, Industry, Agricultural labour and Tenant cultivation as their first subsidiary occupations. 64.8 per cent of agricultural labour households have Owner cultivation, Rent receiving and Industry as their subsidiary means of livelihood. 69.0 per cent of non-agrieultural households have owner cultivation, Agriexltural labour and Rent-receiving as important subsidiary occupations. Taking all households. inte account we find, that 77.3 per cent of them de not have any subsidiary occupations in S_{3} as compared with 22.2 per cent in S_{2} and 29.2 per cent in S_{1}; and of the rest having subsidiary nccupations, those hàving agricultural occupations as subsidiary occupations come to 70.8 per cent in S_{3} as compared with 61.6 per "cent in S_{2} and 60.2 per cent in S_{1}. The number of households which de not have any agricuitual ccupations as main or first subsidiary means of livelihood. constitutes a very small proportion of the total number of households in all the strata, accountifing for 6.1 per cent in $S_{3}, 7.3$ per cent in S_{2} and 9.8 per cent in S_{i}. These percentages will be still less

If they are based on population and not on households, because the average size of a cultivator household is higher than that of a noncultivator household. The main features of the livelihood classification of households ceirding to supsidiary accupations are given in the following table. No. 2.5 .

Table No. 2.5
Livelihood classification of hoúseholds (subsidiary eccupations)

	s_{1}	s_{2}	S_{3}
Owner-cultivator households having subsidiary - ccupations as percent of total ower "oultivater household.	61.4	74.3	53.9
Agricultural. labour households having subsidiary *ecupations as percent of total Agricultural labour households	71.3	80.6	64.8
Non-agricultural households having subsidimary occupations as percent of tital nonagricultural households	76.3	77.9	69.0
Households not having subsidiary ctcupations as percent of total households	29.2	22.2	37.3

Households with subsidiary agricultural vocu-
pations as per:cent of total househeIds
with subsidiary occupations:
Households not having main or subsidiary agricultural occupations as per cent of total households

$$
\begin{array}{lll}
9.8 & 7.3 & 6.1
\end{array}
$$

The number of households engaged in cultivation of land, Irrespective of their principal means of livelihood, will be of course less than the number of households with one or more agricultural occupations as main or subsidiary. Of the households not having owner cultivation or tenant cultivation as their main source of livelihood, 39.0 per cent still constitute çultivator households in S_{1} as compared with 46.9 per cent in S_{2} and 34.8 per cent in S_{3}; and cultivation is more or less equally important in all the strata for all the households with Agricultural labour; Industry, Commerce, Transport and 'Others' as the main sources of livelihood. Taking all householads into consideration:, 58.1 per cent of them constitute cultivator heusehclds in S_{1} compared with 67.5 per cent in S_{2} and 56.5 per cent in S_{3}. These details are given in the following table No. 2.6.

Distribution of households having cultivation as main or subsidiary occupation

Stratum-1				Stratum-2			Stratum-3		
Main Coupation	Number Total	Househo which lds with vation subsidi cupation	(3) as centage (2)	Total/ Thert. of households	No. of house holds with cultivation as amain ox subsidjary focu-	(6) as a percenta ge of (5		No. of Households with culti $\therefore x^{2}=3$ 	(9) as percentage of (8)
(1)	(2).	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1. Owner cultivators	1,325	1,325	100.00	1,142	1,142	100.00	1,214	1,214	100.00
2. 'enant cultivators	129	129	100.00	68	68	100.00	80	80	100.00
3. A6sfocultural labour	1,611	630	39.11	1,059	519	49.01	1,737	627	36.10
4. Relut receivers	275	107	38.91	75	12	16.00	- 103	4	3.88
5. Jncustry	677	264	38.99	306	166	54.25	364	139	38.19
F. Commerce	181	62	34.25	178	64	35.96	115	30	26.09
7. Traispert	43	20	46.51	2	1	50:00	12	7	58.33
8. Others	412	164	39.81	293	135	46.08	258	94	36.43
fotal. (item 3 to	8)3,199	1,247	38.98	1,913	897	46.89	2,589	901	34.80
dotal (items 1 to 8).	4,653	.2,701	58.05	3,123	2,107	67.47	3,883	2,195	56.53

2:7. Working papulation.

The classification of households accerding to means of livelihood indicated the relative importance of agriculture and other sources of income, but does not indicater the size of the economically active population or the labour force and its distribution between the various activities. Hence, the total population of the sample villages is divided inte workers and non-workers. The main and subsidiary employments of the workers are alse studied, the main empleyment of a worker being that in which he spends the maximum
table No. 2.7. part of his time in a year, It may be noted from the following/that the percentage of workers in the total population is nearly the same in" all the three strata, being 54.6 per cent in $S_{1} .55 .8$ per cent in S_{2}, and 53.6 per cent in S_{3}. There are however important differences retween the *oultivator (farm) households and fin-cultivator households within each stratum as alsoobetween the three strata.

Among the ultivator households the number of workers per . household (including adult and children ${ }^{2}$ both sexes) is 2.77 in S_{1} as compared with 3.04 in S_{2} and 2.90 in S_{3}. Among the noncultivator households the numer of workers per household is 2.10 in S_{1} as cempared with 2.06 in S_{2}, and 2.20 in S_{3} : This shews that a cultivater household has mere werkers than a non-cultivator household: We alse find that the number of workers per household steadily increases as the size of holding increases; the number, workers per household in the higher size groups being more than twice the same in the smallersize groups. (Census table No. 7).

The proportion of children in the working population is 2.6 per cent in S_{1} as compared with 4.0 per cent in S_{2} and 4.3 per cent in S_{3}. No noticeable difference is to be found however in, respect of the employment of adult women. Generally speaking, adult female worecer coptributes about 40.0 per cent to the total labour force as compared with about 57.0 per cent osntribution by adult male vorker in. all the three strata. The number of adult non-workers per household is nearly the same in all the strata being one persen for two households. These details may be seen in table No. 2.7.

Workers and Non-workers

The distribution of workers belonging to the cultivator households under the main classes of employment and according to the size groups of holdings is shown in Census table No. 8. It is interesting to find from this table that the workers having. owner-cultivation and tenant cultivation as main employment constitute the highest proportion in the middle size groups of r holdings. Agricultural labour is of importance oniy in the linwer size greups, while annual farm servant liabour is of importance only in the higher size groups. Non-agrievltural employments are found to be dccreasing in their importance as the size group af holdings increa*ses.

2.8. "Size and distribution af owner holdings.

In S_{1} villages, about 65 per cent of the total number of households own land. In S_{2} villages the households owing land constitute nearly 78 per cent. In S_{3} the percentage is about 69. Thus, a high proportion of the households own land in all the three strata. There are however significant differences between the three
butinn $n f$ owner holdings, as may be seen in table N. 2.8. The average size of owner holding in S_{1} is 6.46 acres as ompared with 8.97 acres in S_{2} and 9.70 acres in S_{3}. We find however that there is greater inequality in the distribution of land ownership in S_{1} as compared with S_{2} and S_{3}. If we take the first three size groups of holdirgs (5 acres and below), 61 percent, of the holdings ewn 20 per cent of land in S_{1}, while the proportion of the number of holdings and the extent of land owned respectively come to 51 per cent and 14 per cent in S_{2}, and 50 per cent and 13 per cent in S_{3}. In the higher size groups (abse veres), 10 per cent of the holdings own 58 per cent of the nxtent of land in $S_{1}, 27$ per cent of holdings own 68 per cent of the extent of the land in S_{2}, and the same percentage of holdings own 69 per cent of the extent of land in S_{3}.

$$
\frac{\text { Table No. } 2.8}{\text { Size and distribution of owner holdings }}
$$

A classification of the owner holdings under three heads, namely (i) uncultivated area (ii) grazing land and (iii) cultivated area, shows that the extent of grazing land is considerable in all the three strata. (Census table No. 10). It is as high as 14.84 per cent in S_{3} as compared with 9.40 per cent in S_{2} and 6.78 per cent in S_{1}. In all the three strata the proportion of grazing land
to the total extent of owner holding increases rapidly as the size of holding increases. The extent of uncultivated land comes to 1.02 per cent in $S_{1}, 5.00^{*}$ per cent in S_{2} and 0.43 per cent in S_{3}. The proportion of uncultivated land is found to be mare or less the same in all the size groups.

The percentage of the extent of owner holdings haying irrigation facilities is not inconsiderable in S_{3}, accomating for 6.1 per cent of the cultivated area. It comes to 5.6 per cent in S_{2} and 2.6 per cent in S_{1}. Irrigated area is to be found in all the size groups of holdings; but it is relatively high in the first two size groups in all the three strata.

The extent of leased-out land (including land given out on usufractuary mortgage) comes to 12.6 per cent in $S_{1}, 10.8$ per cent in S_{2} and 10.0 per cent in S_{3}. In all the three strata the ratio of leased-out land to total holding is comparatively high in the smaller size groups of holdings. Details may be seen from the following table.

Table No. 2.9.
Owner holdings - I ind use, irrigated area and leasedout area:

Grazing land as percentage of holding $\quad \frac{S_{1}}{6.78} \quad \frac{S_{2}}{9.40} \quad \frac{S_{3}}{14.84}$
Uncultivated area as percentage of holding
$1.02 \quad 5.00 \quad 0.43$
Irrigated area as percentage cf cultivated land
2.6 5:6 6.1

Leased-out land as percentage of holding

Foot Note: * This high proportion is due to the uncultivated area in the highest size group folding being nearly 25 per cent.
2.9. Size and distribution nf operational holdings.

The average size of an operational holding (including leasedin land and current fallows, but excluding grazing land) is 6.81 acres in S_{1}. This comes to 8.84 acres in S_{2} and 9.94 acres in $S_{3}{ }^{\circ}$ The distribution of cultivator holdings according to the size groups of holdings has the same features as the distribution of owner holdings, and underlines the fact. that there is greater inequality in S_{1} as compared with S_{2} and S_{3}. I'he relavent data are given below.

Table No. 2.10.
Distribution of Operational Holdings

The proportion of leased-in lands (including poramboke lands and lands taken on unsufractuary mortgage) in the total extent of operated area comes te 14.1 per cent in S_{1} as compared with 8.5 per cent in S_{2} and 7.5 per cent in S_{3}. The ratio of leased-in land to total operated area is found to be comparatively high in the higher size groups of holdings. (Census Table No. 11).

2.10 Fragmentation of operational Holdings.

Fragmentation of operational holdings, particularly of holdings which are below one or two acres in size, is considered as a weakness of farm structure in India. In all the strata, the number of fragments per acre decreases rapidly as the size of holding increases
(census table No. 12). It is however worth noting that the single
gragment holdings dominate the first size group of holdings of one acre and below. In the second size group of holdings also (xyxQxtux 2.50 acres) single fragment holdings domina.te, double fragment holdings being next in order of importance. The salient features of frasmentation of holdings are indicated below in tiable No. 2.11.

Table No. 2.11.

Fragmen+ation of Holdings

Size groups of holdings (acres)	S_{1}	S_{2}	S_{3}
0.01-1.00			
(a) Fragments per acre	1.60	1.78	1.35
(b) Percentage of single fragment holding	91.9	86.3	94.6
1.01-2.50			
(a) Fragments per acre	0.86	0.95	0.75
(h) Percentage of single fragment holding	57.7	$47: 8$	63.9
(c) Percentage of double gragment holdings	31.2	36:3	30.7
Overall fragments per acre	0.46	0.51	0.29

2.11. Soils, Cropping Patterns and Crop Yields.

The Project area commanded by the Right Bank Canal is flati.

- pen plain of low elevation, broken by a few low hills here and there. There are no forests worth mentioning in this area. The average annual rainfall in the arez is about $35^{\prime \prime}$ and most of it is received between the months of June and November. The showers received in May and June help the farmers to raise early crops, - but there is the risk of failure of crops uniess the rains in October and November are frequënt and adequate, and the North-east mansoon is favourable during these months. In the area covered by the taluks of Palnad, Vinukonda, Narsaraopet and Sattenapalle where there is a considerable extent of red soil and the subsoil rocky, draught is frequently felt because of lack of adequate rainfall at short intervals. The incidence of draught is not"se much where black soil predominates as in most parts of the

Right Bank Canal area. All these soils are quite suitable for irrigation. At present: however, only a small proportion of the area is under well or tank irrigation. In contrast with the area commanded by the Right Bank Canal, the area commanded by the Laft Bank Canal has all the disadvantages of the rugged and undulating topography of the Telengana region. The soil varies a geod deal mostly in colour and texture from place to place but it "is mostly reddish brown to brownish, red sandy loam known as chalkas., which is poor in plant nutrient reserves. Patches of black soil are also to be found widely dispersed in the region, especially in lew valleys and tracts of even topography. The existence of numerous tanks for irrigation, practically in every village, which are used for storing rain water, is a consequence of the topography of the area. The cropping pattern of these areas has been largely influenced, by these soil, climatic and other physical factors.

The crop pattern or the distribution of the cropped area among the various crops raised is given in the table No. 5 (Farm Surveys) and the percentage distribution of the cropped area under various crops is given in table No. 6 (Farm Surveys). The leading crops in S_{1} villages are jowar (28.09\%) , variga (21.95\%), and virginia tobacce (11.24\%). The area under the four important commercial crops raised in S_{1} villages viz., tobacco, chillies, groundnut and cotton constitutes 32.11% of the total cropped area. The leading cropps in the S_{2} villages are jowar (27.35\%), Variga (24.43\%), Bajra (20.81\%) ar and groundnut (6.47\%). The area under fine important commercial crops viz., tobacco, chillies groundnut, cetton and castor, constitutes 15.29% of the total cropped area. In contrast with S_{1} and S_{2} villages, the leading crops in the S_{3} villages are Jowar (43.39\%), pulses (18.69\%) and groundnut (15.61\%). The area under the important commercial crops viz., grôundnut, chillies, castor, tobacco and cotton constitutes 18.99% of the total cropped area. Virginia tobacco is an important crop only in S_{1} villages. The cereal crop jowar (pure and mixed) is àn important crop in all the three strata, while variga is an important crop only in the S_{1} and S_{2} villages. Chillis is an important crop only in S_{1} villages.

Mixed cropping is a common feature of all the strata, the mixtures varying from one stratum to anther. The most common mixtures in S_{1} villages are groundnut+redgram or cotton or castor, jowar+redgram or greengram, ajra+redgram or castur, and dry paddy+ redgram. In S_{2} villages these mixed crops are even more extensively cultivated, and there is a greater variety f mixtures. In S_{3} villages the main mixture are groundnut+ pulses, jewar+pulses and mixtures of pulsés. The area under mixed crops'in S_{1} villages constitutes 18.85% of the total cropped area as compä̀red with 45.96% in S_{2} villages and 33.97% in S_{3} villages. Mixed cropping is thus not as important in the S_{1} villages where the commercial corps are important, as in S_{2} and. S_{3} villages. Some important features of the cropping pattern are indicated below.

Table No. 2.12.
Crop Pattern: Yercentage Distribution of Area under crops.

Aree under comrercial crops

Total

	$\frac{S_{1}}{32.11}$	$\frac{S_{2}}{15.29}$	$\frac{S_{3}}{18.99}$
	67.89	84.71	81.01
	100.00	100.00	100.00
	18.85	45.96	33.97
	81.15	54.04	66.08
Total	100.00	100.00	100.00

-

$67.89 \quad 84.71 \quad 81.01$

Area under mixed crops Pure crops $\frac{S_{1}}{32.11} \quad \frac{S_{2}}{15.29} \quad \frac{S_{3}}{18.99}$

Information about crof yields collected through our Farm surveys for the year $1959-60$ is given in the following table No. 2.13. It is clear from the data presented that crep yields are generally higher in S_{j} and S_{2} i.e., on the Right Canal side, as compared with the yields in S_{3} i.e.e. on the Left Canal side. In the case of almost all the dry crops both food crops and commercial crops, the yields in S_{3} are significantly less, a feature which
has to be attributed to the comparatively inferior quality of soils and cultural practices, prevailing in S_{3} villages. This fact is also borne out by the data on average crep yields given in the Season and Crop Reports Andhra Pradesh. The relevant information for the districts of Guntur, $N a l g o n d a$ and the State of Andhra Pradesh for the year 1958-59 and 1959-60 are given in the foot ngte.

Tahle Ne. 213.
Crop yields in 1959-60 in Maunds per acre

	S_{1}	S_{2}	S_{3}
Paddy (irrigated)	21.24	14.13	22.61
Jowar	5.92	4.47	3.72
Bajra	3.71	6.98	1.58
Variga	7.72	7.13	4.86
Paddy (unirrigated) Groundnut .	6.18 6.54 Gxy	$\begin{aligned} & 7.32 \\ & 5.15 \\ & 8 \times 88 \end{aligned}$	4.45
Cotton	1.72	2.05	1.64
Country tobacco	5.09	6.41	5.54
Castor	-	1.54	1.49
Chillies	3.82	8.01	1.55

N.B. 1 maund $=822 / 7$ Ibs.

Preliminary asricultural operations like ploughing harrowing etc. are generally commenced as early as :pril and May and with the onset of the South-ilest monsoon in the month of June, the seed is sown. Dry paddy, groundnut, and other oilseed crops are the crops usually raised as first season crops. Jowar and bajra are alse sown during this season but a good proportion ef these crops is used as cattle fedder. Redgram is alse usually sown in this season as a pure crop or more generally as a mixed crop. Commercial crops like chillies and tobacco and food crops like variga and jowar are sown in the months of September and Uctober and if these crops are net preceded by any crop sown during June-jגly, the preliminary "agricuiltural operations and manuring for these crops take place in the months of August and September. Irrigated paddy which is an important crep in S_{3} villages is also sown in the months of June-july and in these villages, a second crep of paddy is alsc some times raised as a summer crop.

Most cultivators in the Project area as in iv other parts of the country, use a part of the produce of the previnus years for seed purposes in the case of mest of the crops. The practice of purchase and sale of seed in the market varies according to the degree ef monetisation of the economy, which to some extent depends - n the importance of commercial creps. For instance, it is found in our Farms Surveys that farmers' cash expenditure on seed (er seedlings) constitute 71% of the total value of seed ir. S_{1} villages as compared with 47.5% in S_{2} and 31.1% in S_{3} villages (Farm surveys Table N•. 49). It is found that in many villages, the use of impreved seed in still a rarity particularly for food crops.

The methods of cultivation are still predominantly traditional, end ploughing, harrowing etc. are done with traditional equipment. Lack of finance, smallness of the farm size, fragmentation of the holding, and lick of knowledge of improved methods are some of the main factors which stand in the farmers' way of adopting improved implements and other cultural practices. Manuring of creps is alse not a developed feature of the far ine in the villares anert \because
in the case of important commerical crops. Farm yard manure is still the most common type of manure used. Preparation of compost and green manure is rarely practised by the cultivators. Chemical fertilisers like superphosphate and mmonium sulphate and Urea are used by some cultivators for selected crops like tobacco, chillies and groundnut and in a small number of cases in irrigated paddy in S_{3} villages. 'The use of pesticides is found only' in me cases of farmers raising chillies and tobacco. Crop rotations are an important feature of farming in the villages winch have the object - f maintaining the fertility of the soil to some extent. For instance some of the important crop rotations are unirrigated paddy or jowar followed by tobacco, groundnut followed by variga or jowar, or bajra, jowar, variga, bajra rotation, bajra followed by cotton etc. These crop rotations are foll wed by farmers according to their experience and tradition and it is difficult to say how far they are scientific and rational.
2.13. Marketing and credit:

Most farmers are found to take their surplus produce to regulated market yarns or traders in towns directly, especially the surplus produce of commerical crops. The existence of regulated markets in S_{1} and S_{2} villages, is a great facility to the farmers in this region. In S_{3} there are regulated markets for all important crops and many farmers are found to take advantage of these markets. The produce of food crops appears to be consumed mostly in the local area itself except in the case f irrigated paddy in S_{3} to some extent. Merchant traders and commission agents however play an important role in the marketing cf the agricultural produce of the villages. The practice of giving loans to cultivators at the time of sowing and purchasing the harvested produce at prices stipulated in advance is still common among these trade agencies. The role of cooperative marketing societies in the villages surveyed is negligible.

As regards the availability of credit for farmers in the villages to meet their short term and long term needs it is found that the field is still dominated by agricultural money lenders and professional money lenders, the rcte of cooperatives and Government being negligible. Cooperative credit societies are functioning in several villages but their contribution to credit supply to farmers is very inadequate and the working of most of the societies is unsatisfactory. The rates of interest charged by the money lenders varied from 12 to 24 percent.

2.14. Agricultural and other assets owned by cultivator and noncultivator households.

Land is the major agricultural asset own d by the rural households in all parts f India. Assets in the form of buildings, implements and work cattle constitute only a small proportion. © the tctal assets. This is one of the conspicuous.基 tion of the major classes of agricultural assets held by the cultivaфor households according to the size-groups of holdings, and the assets owned by the non-cultivator householis are given in íCensus Table No. 13. The value f agricultural assets including land comes to $\mathrm{Rs}_{\mathrm{s}} 9,110$ per cultivator household and Rs. 1,008: per non-cultivator household in S_{1}. In S_{2}, it amounts to Rs. 6, 180 per cultivator household and Rs. 848 per non-cultivator household. The value of agricultural assets in S_{3} is slightly higher than in S_{2} per cultivator household (Rs.6,215) and slightly nenless than in S_{2} per/cultivator household (Rs.719). If we exclude land, the value of agricultural assets per cultivator household comes to only Rs. 757 in $S_{1}, R_{0} 536$ in S_{2} and Rs. 664 in S_{3}; and per acre of operated area it comes to $\mathrm{Rs}_{0} 111$ in S_{1}, Rs. 62 in S_{2}, and Rs. 66 in S_{3}. In our Census Survey, informatien is also collected about tw ther categories of assets for these households, namely milch animals and other live stock, and residential buildings, The value of milch animals and other livestock per cultivator household comes to $\mathrm{Rs}_{0} 212.75$ in S_{1} as ompared with Rs. 219.42 in S_{2} and Rso 275.45 in S_{3}.. The value of residential buildings per cultivatar household comes to $R s_{0} 1,496$ in S_{1} Rs. 624 in S_{2} and .865 in S_{3}.

If we take the non-cultivator households inte consideration we find that the value of milch animals and other live-stock is comparatively small, being $R S_{0} 45$ in $S_{1}, R_{0} 72$ in both S_{2} and S_{3}. The value of residential buildings per household is approximately 50 per cent of the same per cultivator household. The relsvent details are given in the following Table No. 2.14.

Table No. 2.14.

Agricultural and other assets.

Cultivator households:
S
Rs.
$\underset{R s}{ }{ }_{5}{ }_{2}$
${ }_{R S_{6}}$
(a) Agricultural assets:

| i) Value per household (including | | | |
| :---: | :---: | ---: | ---: | ---: |
| land) | 9,110 | 6,180 | 6,215 |
| ii) Value per household (excluding | | | |
| land) | 757 | 536 | 664 |
| iii) Value of land per household | 8,353 | 5,644 | 5,552 |
| iv) Value of land per acre | 1,240 | 638 | 558 |
| v) Value ef assets excluding | | | |
| land, per acre | | | |

(b) Other assets:
i) Value of milch animals and
-ther livestock per household 213219276
ii) Value of residential buildings per household 1,496 624 865

Non-cultivator households:
(a) Agricultural asseds:

Value of assets per household
i) including land 1,008
848
719
ii) excluding land
15
11
16
(b) Other assets:
i) Value of milch animals and -ther livestock per household 45

72
72
ii) Value of Residential buildings per heusehold
$749 \quad 354$
372

2.15. Liabilities of farm households:

Particulars of the financial liabilities of the sample farm households are given in the tables N*s. 14 t 17 (Farm Surveys). It may be seen from these tables that 51.7% of the farm househdid have financial liabilities at the beginning of the year and the percentage has increased to 59.3 at the end of the year in S_{1} villages. In S_{2} villages, 47.92% f the farmers are in debt at the beginning of the year and the percentage has increased to 57.5 at the end of the year. In S_{3} villages also, 53% of the farmers are in debt at the beginning of year and 77% at the end of the year.

Prøfessional money lenders and agricultural money lenders are the major sources of borrowed money for the farmers. It may be seen from the table No. 14 (Farm Surveys) that mere than 90 percent of the amount berrowed by the farmers is taken from moriey lenders in all the strata. It is at the same time a significant feature of indebtedness that nearly 50 per cent of the debt is incurred fer productive agricultural purposes. The indebtedness per farm is highest in S_{1} villages, which amounts te ${ }^{\text {Rs. }} 754$ as compared with Rs, 387 and Rs. 612 in the S_{2} and S_{3} villages respectively. Details are given below.

> Table No: 2.15.
> Liabilities of Farm Hoan seholds.

	S_{1}	S_{2}	S_{3}
Percentage of Farm in debt :			
At the beginning of 1959-60	51.4	47.9	53.0
fit the end of 1959-60	59.3	57.5	77.0
Percentage of borrowings from			
Professional money lenders	37.00	50.50	34.97
Agricultural money lenders	54.06	48.15	54.48
Others	8.94	1.35	10.55
Indebtedness(in Rs.)			
Per farm	752.8	380.8	611.8
Per acre	95.6	39.2	64.1
Percentage of borrowing for agricultural purposes to total	55.55	45.59	47.88
Percentage of amount borrowed for agricultural purposes to paid out cost of cultivation per acre during 1959-60	13.29	4.71	10.91

The population of draught cattle in S_{1} villages according to our Census Survey comes to 2188 in 1959 as compared with 2152 in 1954 (Census Table No. 14). The annual rate of increase thus comes to a lew percentage of 0.33. In S_{2} villages the numbers increased Exw from 2083 in 1954 to 2218 in 1959, the annual growth rate being 1.29 percent. In both S_{1} and S_{2} we find that the population of buffaloes increased and that of bullocks decreased. In S_{3} the numbers increased from 3275 te 3658 during this period, amounting to an annual rate of growth of 2.34 per cent, and we find that in this stratum both categories of animals increased in number. In S_{1} and S_{2} the number of work cattle per cultivator holding in 1959 has come te 0.81 and 1.07 respectively; as compared with 1.69 in $S_{3} \cdot$ Our Census Survey data thus reveal that on average a household maintains more worl...: cattle in S_{3} than in S_{1} and S_{2}; and also that their growth rate is considerably greater than in S_{1} and S_{2}. The number of milch cattle and of young stock available per cultivater household in 1959 and their gfowth rates far the period 1954-59 are also shon in the table. It may be seen that in respect of these two categories of cactle the position in the three strata is not materially different from the position of draught cattle we have discussed above.

Table Ne. 2.16 k
 Growth of cattle pepulation

$\left.\begin{array}{lllll}\text { 1. Draught cattle per cultivator household } & \mathrm{S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} \\ \text { 2. Anntal growth rate of draught cattle } \\ \text { (1954-59) }\end{array}\right)$
2.17. Population of sheep and goats.

The rearing of sheep and goats along with work animals and milch cattle is an important feature of the rural economy in the Project area. The number of sheep and goats maintained by the
cultivator and non-cultivator household and their growth rates during the period 1954-59 may be seen from the following table.

$$
\text { Table No. } 2.17
$$

Population of sheep and goats.

2.18. Resources avaiilable to cultivator households.
(a) Land: As indicated earlimer, the average size of a cultivator rolding in S_{1} villages is 6.81 acres as compared with 8.84 acres and 9.94 acres in S_{2} and S_{3} villages respectively. The average size of a cultivator household is also however larger in S_{3}, comprising 5.37 persons as compared with 5.00 persons in S_{1} and 5.32 persons in $S_{2}:$. The per capita operated area thus comes to 1.36 acres in $S_{1}, 1.66$ acres in S_{2} and 1.85 acres in $S_{3} \ldots$. This is, however, only an average picture. A high proportion of the culti-. vator households constituting more than fifty per cent, do not in fact possess holdings of even half the average size in any stratum. The extent of area irrigated under wells or tanks comes to $3.53 \% \mathrm{f}$. the cultivated area in $S_{1}, 5.12 \%$ in S_{2} and 7.61% in S_{3}. The edtent per household becomes a small fraction of the holding, being 0.24 acres in $S_{1}, 0.45$ acres in S_{2} and 0.76 acres in S_{3}. The extent of grazing land available to the cultivator households in addition to the cultivated area, comes to 0.49 acres in $S_{1} 0.96$ acres in S_{2} and 1.70 acres in S_{3}. The relevant figures are given below.

Table No. 2.18.
Land Resource.

	S_{1}	S_{2}	s_{3}
1) Sije groups of holdings:			
0.01 - 1.00 Acres: Average size: \quad ant Percentage of holdings	$\begin{array}{r} 0.68 \\ 18.00 \end{array}$	$\begin{gathered} 0.68 \\ 12.7 \end{gathered}$	0.79 7.8
1.01 - 2.50 acres: Average size	1.80	1.81	1.99
$\therefore \quad \cdots \quad \%$ percentage of holdings	18.7	14.3	12.6
$2.51-5.00$ acres : Average size:$\cdots \quad \therefore \quad 2.70$		3.82	3.92
		19.5	20.2
Overall Average size	6.81	8.84	9.94
2) Operated area per oxpita (acres)	1.36	1.66	1.85
3) Irrigated area per holding (acres)	0.24	0.45	0.76
4) Grazing land per holding (acres)	0.49	0.96	1.70

B) Man-power: The number of agricultural workers per cultivator holding (main employments being owner cultivation, tenent cclitivation and agricultural labour, and including adults and children of both sexes) comes to 3.23 persons.in $S_{1}, 3.36$ in S_{2} and 3.83 in S_{3}. The number of workers per acre of operated area comes to $0.48,0.38$ and 0.39 in the three strata respectively. We find thus that there is more labour employed per acre in cultivation in S_{1} than in S_{2} or S_{3}.

Table No. 2.19
Manpower Resources

	S_{1}	S_{2}	S_{3}
No. of agricultural workers per holding	3.24	3.36	3.83
No. of agricultural workers per acre of holding	0.48	0.38	0.38
No. of cultivator household agricultural workers per holding.	2.36	2.70	2.70
-do- -do- Per acre	0.35	0.31	0.27
No. of cultivator household non-agricultural workers per holding	0.43	0.40	0.28

C) Work cattle: The number of work cattle owned by the cultivator households comes to 0.81 per operational holding in $S_{1}, 1.07$ in S_{2} and 1.69 in S_{3}. If we take the size f the holding into consideration the number of work cattle per acre comes-to 0.119 in $S_{1}, 0.121$ in S_{2} and 0.170 in S_{3}. We find thus that there are more work cattle available for cultivation in S_{3} as compared with S_{1} and S_{2}, the number of acres commanded by a pair of work cattle being 11.8 in S_{3} as compared with 16.7 and 16.5 respectively in S_{1} and S_{2}.

Table No. 2.20.
Work cattle resource

No. of work cattle:
i) per holding
0.81
$1.07 \quad 1.69$
ii) per acre
0.119
$0.121 \quad 0.170$
No. of acres per pair of work 'cattle $\quad 16.7 \quad 16.5 \quad 11.8$
D) Agricultural implements and carts: The number of work cattle per plough among the cultivator households comes to. 1.68 both in S_{1} and S_{2}, and 1.72 in S_{3}. The position in this respect is thus practically identical in all the strata. The number of carts per cultivator household is almost the same in all the three strata. Further it is a matter of considerable interest to that there is a fixed find/relationship between number of ploughs and work cattle; and also
between $L 0 \%$ of carts and of cultivator households. The actual number of ploughs, other implements and carts are given below:Table No. 2.21
Agricultural implements and carts

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
Number of ploughs	1,301	1,326	2,130
Number of carts	920	714	777
Number of harrows	1,327	1,208	1,641
Number of drills	1,344	1,178	1,635
Number of work cattle per plough	1.68	1.68	1.72
Number of carts per cultivator household	0.34	0.34	0.35

We find thus that more resources per head are available for usi in cultivation, in quantitative terms, in S_{3} as compared with S_{1} and S_{2}. The oOerated area per head in S_{3} is 1.85 acres, while it is 1.66 acres in S_{2} and 1.36 acres in S_{1}. The extent of area irrigated under wells and tanks per holding is 0.76 acres in S_{3} as compared. with 0.45 acres in S_{2} and 0.24 acres in S_{1}. The number of agricultural wnrkers per holding is 3.83 persons in S_{3} while it is 3.36 persons in S_{2} and 3.24 persons in S_{1}. The area commanded by a pair of work cattle is 11.8 acres in S_{3} as compared with 16.5 acres in S_{2} and 16.7 acres in S_{1}. The number of work cattle per plough is pmactically the same in all the strata. The resource position is S_{3} is thus more favourable, but the resources are poor in quality as compared with the resources available in S_{1} or even in S_{2}. is we have already seen, the soil in S_{1}, is predominantly black soil while it is mostly red soil in S_{3}. The cattle stock of the Guntur $D_{i s t r i c t ~ i s ~ o f ~ m u c h ~ h i g h e r ~ q u a l i t y ~ t h a n ~ t h a t ~ o f ~ N a l g o n d a ~ d i s t r i c t . ~}^{\text {it }}$ The farmers in the Guntur district are in a better position to raise commercal crops than the farmers in Nalgonda.
2.19. Employment and unemployment of workers.

Particulars of employment of famidy labour force and Annual servants are given in the Tables Nos. 20 to 25 (Farm Surveys). Employment has been broadly classified int 6 types, namely crop production, farm work other than crop production, exchange er gift labour, hired out for agricultural purposes, hired out for non-agricultural purposes and employment in business or service. Farm work other than crop production includes employment in the maintenance of cattle, and other types of work such as fencing, bunding and rope making which are related to farm work but are not directly included in the operations of crop production. Employment in business or service includes employment in all types of non-farm activities in which family members and annual servants are preductively engaged. It may alsn be nated in this connection that employment is measured in 8 hr . days for the purpose of our study.
a) Employment of adult male workers: It may be seen fram the table No. 20 (Farm Surveys) that on average an adult male member
of the farm family is employed for 219.8 days in S_{1} villages, 226.5 days in S_{2} villages and 230,6 days in S_{3} villages which comes to about 7 to 8 months of employment in the year. Employment in agricultural work comes to 166.8 days in S_{1} villages as compared with 168.5 days in S_{2} villages and 189.2 in S_{3} villages. Nonagricultural employment, amounting to 24.1 percent in S_{1} villages, 25.6 percent in S_{2} villages and 17.9 per cent in S_{3} villages. It is worth noting in the connection that the total employment of an adult male member of the farm family decreases considerably as the size group of the holdings increases in all the three strata. In S_{1} villages, an adult male member is employed for 284 and 253 days in the year in the lower two size groups respectively as compared with employment of 157 and 183 days in the highest two size groups. Similarly, in S_{2} villages the Number of damp of employment comes to 260 and 240 in the lower two size groups as compared with 211 and 182 in the last two size groups. The trend in S_{3} villages is however, not as prominent as in S_{1} amd S_{2} villages.

It is also interesting to note that employment in crop production and in farm work other than crop production taken together is comparatively low in the lower size groups in all the three strata. For instance, in S_{1} villages, employment in crop production and ether farm work is below 117.5 days in the lower four size groups compared with the maximum of 184.8 and minimum of 133.3 days in the other higher size groups. In S_{3} villages the marimum employment in the lower 3 size groups is 147.8 days as compared with the range between 209 and 158.7 days in the other higher size groups. This feature of employment in crop production and farm work other than crop production is in contrast with the trend of total employment between the size groups; and it has te be attributed to two factors viz., (1) the average size of the holding in the lower size groups is not big enough to provide adequate employment for the adult male members of the farm families and (2) the inability of the farmers in these size groups to maintain large number of cattle. These factors also explain another interesting feature of the employment pattern. The number of days of employment hired out for agricultural purposes as well as xe for non-agricultural purposes decrease rapidly as the
size group of holdings increases in all the three strata. The number of days of employment in business or service is comparatively high in the lower size groups. It is a general feature of the employment pattern that in the holdings below 5 acres each in size, the adult male members of the farm families depend a great deal more on non-agricultural activities for employment.

Table No. 2.22
Employment of an adult male worker

b) Employment of adult female worker: The total employment of an adult female worker of the farm families in S_{1} villages comes to 173.7 days in the year as compared with 219.8 days of employment for adult male worker. In the S_{2} villages the total employment per 2 dunt female worker comes to 175.9 days as compared with 226.5 days of employment for the male workers. In the S_{3} villages it is considerably less than in S_{1} and S_{2} villages, and amount to 157.1 days as compared with 230 days of employment per adult male worker. We find thus that the total employment of an adult female worker is considerably less than that of an adult male worker in all the three strata.

The general pattern of employment of an adult female worker adult
differs from the pattern of employment of an male worker in two important respects. Firstly, as a rule in all the three Strata, the proportion of employment in crop production and other farm work in the total employment is considerably higher for the female
worker. Secondly, there is great difference in respect of the ratio * employment in crop production to employment in farm work other than cfop production So far as the male worker is concerned, the number of days of employment in farm work other than crop prodution is ${ }^{1 \frac{1}{2}}$ to ${ }^{2}$ times the number od days of employment in crop production; on the other hand in the case of an adult female worker, employment in farm work other than crop production is 5 to 6 times more than employment in crop production. This shows that woman workers are mostly engaged in dairying and cattle maintenance.

Table No. 2.23.
$\frac{\text { Employment in } 8 \mathrm{hr} \text {. days of male and }}{\text { female workers }}$

	Total		Crop production		Farm work-other than Crop production.	
	No.	\%	No.	\%		
$\frac{\text { Stratum }-1}{\text { Male worker }}$	219.8	100	41.5	18.9	83.6	38.0
Female worker	173.7.	100	17.3	9.9	106.3	61.2
Stratum - 2.						
Male worker	226.5	100	46.8	20.6	80.9	35.7
Female worker	175.9	100	19.8	11.2	115.0\%	65.4
Stratum - 3.						
Male worker	230.6	100	60.9	26.4	97.7	42.4
Female worker	157.1	100	15.4	9.8	71.7	45.7

c) Employment of $x \times m \times x y$ child worker: The total employment for a child worker has come to 129.0 days per year in S_{1} villages as compared with 179.3 in S_{2} villages and 181.4 in S_{3} villages. The number of days of employment in farm work other than crop production constitutes 78.0 to 94.2 per cent of the total employment. It is a curious feature of the pattern of employment of children that a child works for more days in the year than the adult female worker in S_{2} and S_{3} villages, as shown in the following table.
\ddots -

Male worker (Adult)	$\begin{gathered} 519: 8 \\ 219 \end{gathered}$	${ }_{2} \frac{5}{5} 2.5$	$\frac{S_{3}}{230 \cdot \overline{6}}$
Female worker(Adult)	173.7	175.9	157.1
Child worker			
Total	129.0	179.3	181.4
5mployment in crop production as \% in the total.	78.0	81.3	94.2

d) smployment of annual farm servant: The total employment of an annual farm servant comes to 287.1 days in the year in S_{1} villages amxeldxkxim as compared with 286.0 in S_{2} villages and 225.4 in S_{3} villages, which shows that he is fully employed. . The annual farm servant thus works for more days in the year than any other member of^{\prime}. the farm household in S_{1} and S_{2} villages. The pattern of the employment of the annual farm servant differs from the pattern of employment of other members of the household in certain important respects. In the first place, annual farm servants are not employed by farm households in the lower size groups of the holdings. Secondly they are employed almost entirely for crop production and ferm work other than crop production. Thirdly, in all the three strata; an annual farm servant work for crop production for 35 to 56 days each more'than an adult male worker of the family, and for farm work other than crop production, he works for 31 to 99 days more.

$$
\text { Table No. } 2.25 .
$$

Employment of annual farm servants
(in 8 hr . days)

Annual farm servant:

Total	287.1	286.0	225.4
Crop production	96.0	95.9	95.9
Farm work other than			
"rop production	162.8	179.5	128.7

Adult male worker:

Total	219.8	$\cdots 26.5$	230.6
Crop Production	41.5	46.8	60.9
Farm work other than crop production	83.6	80.9	97.7

Details relating to employment of work animals maintained by the sample households are given in table No. 29 (Farm Surveys). The employment of work animals is classified into 6 categories on the same lines as the employment of workers i.e., employment in crop production, employment in farm work other than crop production, etc. It will appear from the table that a pair of work animals is employed only for a total number of 115.58 hr . days in the year in S_{1} villages as compared with 102.4 , and 79.5 days in S_{2} and S_{3} villages
 employment of work animals is a serious problem in comparison with the underemployment of workers, as the farmers are maintaining cattle for 250 to 285 (8 hr . days) in the year without taking any service in return. The problem appears to be more serious in S_{3} villages than in S_{1} villages, or even in S_{2} villages to some extent. The comparatively high degree of underemployment in S_{3} villages is due to the fact that the number of work animals, per farm as well as per acre, in S_{3} villages is considerabley more than in S_{1}.

The pattern of employment of work animals in the three strata shows that 62.3 percent of the total number of days worked is for crop productinn in S_{1} villages as compared with 72.1 percent in S_{2} villages and 83.2 percent in S_{3} villages. Employment for farm work other than crop production constitutes a very small proportion of total employment. Employment under the 2 categories, exchanged or. gifted and hired out for agricultural purposes constitutes 25.9 percent of the total employment in S_{1} villages, 23.2 percent in S_{2} villages and 7.1 percent in S_{3} villages. Employment under the catetory hired out for non-farm work is 7.8 percent of the total employment in S_{1} villages and it is negligible in the other two strata.

The distribution of employment of work animals according to size groups of holdings shows clearly that the number of days of empleyment in crop production per pair of work animals increases rapidly as the size group of the holding increases, while the trend is reversed in the case of employmint under the categories exchanged or gifted and hired out for agricultural purposes. These trends ara explecined by th: fect that in th? ? ower size groups of holdings
the average size of the cultivator holding and average numour of work animals per farm are lower than in the higher size groups:

Table No. 2.26
$\frac{\text { Employment of work animais (in } 8 \mathrm{hr} \text { : }}{\text { work pair days) }}$

	S_{1}	S_{2}	s_{3}
Total employment	115.5	102.4	79.5
$r_{\text {mployment }}$ in crop production bxtaxkatai	72.0	73.8	66.1
Percent to total	62.3	72.1	83.2
Exchanged or gifted or hired out for agricultural purposes (number)	29.9	23.8	5.6
Percent to total	25.9	23.2	7.1

2.2̣1. Land improvement expenditure during 1954-55 to 1958-59.

In our census survey of the sampled villages all the enumerated cultivator and non-cultivator households are asked to give details of expenditure incurred by, them on land improvement: Expenditure on land improvement has been classified under 7 heads namely: (1) prevention of erosion; (2) improvement of drainage; (3) reducing salinity (4) fencing (5) bunding and leveliing (6) - and reclamation, and (7) improvement of irrigation sources.

It will be seen from the table No. 2.27 below that during the period 1954-55 to 1958-59 (5 years), the total expenditure on land improvement incurred by the cultivator households comes to Rs $1,7,98$ per household or Rs 2.65 per acre in S_{1} villages. In S_{2} villages, the expenditure per household is Rs, 8.19 and expenditure per acre is Rs, 0.94. In S_{3} villages the expenditure per household is highest among the three zones and comes to Rs, 21.85 and the expenditure per acre comes to Rs. 2.22 which is slightly less than in S_{j} villages,

In S_{1} villages, 52.3% of the expenditure on land improvement is incurred for improvement of i:rrigation sources like wells, etc. and 21.2 \% of the expenditure on prevention of erosion. Expenditure on land reclamation comes to 14.1% and expenditure on bunding and levelling to $9: 9 \%$. In S_{2} villeges, also, expenditure on improvement of irrigation sources and prevention of erosion are the most important items of.expenditure, constituting 35.9% and 22.0% of the total expenditure respectively, Next ir crdre of importnnce are
the expunditurs on bunding and lovelling, and land reclamatinn. In S_{3} villages the pattern of land improvement expenditure happens to be very much differunt from the pattern observed in S_{1} and S_{2} villages. Ixpenditure on prevention of erosion, bunding and levelling and foncing aro the most important items nf expenditurc in this stratum, accounting for $38.3 \%, 18.6 \%$ and 15.4% of the total expenditure, respectively.

Table No. 2.27
Expenditure on lend improvement 1954-55 to 1958-59.

	S_{1}		S_{2}		S_{3}	
Item of Expenditure	Ameunt Rs.	Percent	Amount Rs.	Percent	imount Rs.	$\begin{aligned} & \text { Per- } \\ & \text { cent } \end{aligned}$
1. Prevention of erosion	10,296	21.20	3,790	21.96	18,339	38.25
2. Improvement of drainage	630	1.30	615	3.56	100	0.22
3. Reducing salinity of land	150	0.31	380	2.22	4,280	8.92
4. Foncing	467	0.96	1,355	7.85	7,382	15.39
5. Bunding and levelling	4,795	9.87	2,161	12.52	8,940	18.6:
6. Land reclamation	6,838	14.09	2,145	12.43	3,730	7.78
7. Improvement of irrigation	25,385	52.27	6,810	39.46	5,180	10.80
Total	48,561	100.00	17,256	100.00	47,9511	100.00
Per household	17.98		8.19		21.85	
Per acre	2.65		0.94		2.22	

2.22. Growth of capital assets during the period 1954-55 to 1958-59.

Details relating to changes in certain important types of assets owned by the cultivator and non-cultivatiory households during tho period 1954-55 to 1958-59 were also collected and presented in the table No. 15 (Census Survey). The foll wing are the types of assets about which information is collccted.
i) extent of land;
iii) agricultural implcments and machinery; and
ii) farm buildings;
iv) liv ostock including work animals,
milk animalx and others. The values of these different types of assets owned by the cultivator households in 1954-55 and 1958-59 are calculated at constant prices i.e., at the average prices of 1958-59. The differen e between the estimates of assets for the two years constitutes increase or decrease in the real value of the assets that has taken place between the two years and it measures the excess of purchase over sales of land, cattle, and other assets, value of increase in livestock, new constructions or improvements of farm buildings and additions to stocks \uparrow fimplements.

For the cultivator households, the annual average increase in assets comes to Rs 48.5 per household" and Rs 6.13 per acre. Expressed as a proportion of the total net income received by the cultivator households in the year 1958-59, the growth of capital assets has been considerably less than in S_{1} villages. The annual average increase comes to Rs 25.6 per household and Rs 3.00 per acre; and constitutes 4.43% of the net income received by the cultivator households in 1958-59. In S_{3} villages, the annual average increase in capital assets is approximately twice the same per household as in S_{1} villages while the increase in assets per acre is $1 \frac{1}{2}$ times the same in S_{1} villages. In these S_{3} villages, the growth of assets expressed as a proportion of the net income received by cultivator households in 1958-59, comes to 17.32% which is nearly $2 \frac{1}{2}$ times the increase in S_{1} villages and 4 times thw increase in S_{2} villages. This is to be attributed to some extent to the comparatively low aggregate income in S_{3} villages and the unusually high rate of increase reported in the extent of land held by the cultivators during the period 1954-55 to 1958-59.

Cultivator households:

S_{1}				S_{2}			S_{3}		
Ttell:	Per house per annum (Rs.)	Per ac per annum (Rs.)	$\%$ of ount total incom 1958-	```per h. per annum. (Rs.)```	per acr per annum (Rs.)	\% of amou in total income of 1958-59	Per h. per annum (Rs.)	per a per annum ($R s_{5}$)	\% of amount in total income of 1958-59.
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1. Lanc	31.11	4.58	4.84	12.72	1.47	2.20	73.20	7.45	14.01
2. i'arm buildi	ngs 11.77	1.73	1.83	5.57	0.64	0.96	2.84	0.29	0.54
3. Iuplunents	0.70	0.10	0.11	1.32	0.15	0.23	1.62	0.16	0.31
4. Livestocl.	4.90	0.72	0.76	6.02	0.69	1.04	12.87	1:31	2.46
Total	- 48.48	6.13	7.54	25.63	2.95	4.43	90.54	9.21	17:32

2.23. Farm and non-farm activities.

It has been pointed out earlier in Section 2.6 dealing with the distribution of households under various livewihood classes (main and subsidiary), that a household in rural areas has generally more than one means of livelihood. Agricultur is however the principal source of livelihood for more than 70 per cent of the households. Agriculture is also a subsidiary occupation for a high proportion of non-agricultural households. The numbers of householdsiengaged in different types of occupations whether main or subsidiary may be seen in the following table No. 2.29.

The relative importance of these occupations or means of livclihood in the economy of the rural areas may be also judged by taking into account their relative shares in the aggregate income of the rural areas. For this purpose the information collected in our Census Survey regarding incomes received by the households in S_{1}, S_{2} and S_{3}, from all farm and non-farm activities, is analysed, and the distribution of the aggregate income according to means -f livelihood (sources of income) is given in Census Table No. 17.

It may be seen from the summary of the data given in the in the table 2.30 below that primary production provides 76.6 of the total income in $S_{1} 79.8 \%$ in S_{2} and 80.2% in S_{3}. Processing and manufacture, which includes mostly cottage industry, provides 9.71% of the total income in S_{1} as compared with 5.79% in S_{2} and 7.21% in S_{3}. Next in order of importance are other services in all the three strata (i.e. karbers, washermen, teachers, etc.) which contribute 6 to 7% of the total income.

Table No. 2.29.
Numbers of households engaged in different types of eccupations.

(Based on Census classes)

	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$
Total No. of households	4,653	3,123	3,883
No. of households having the			

I. Primary Production

1. Cultivation	2,701	2,107	2,195
2. Agricultural labour	2,428	1,561	2,136
3. Rent receivers	610	132	609
4. Annual (farm) Servants	331	468	429

II. Other Primary Production
5. Rearing of sheep 12415292
6. Rearing of Pigs 71 18 20
7. Rearing of poultry $107 \quad 33 \quad 1$
8. Dairying 1,338951354
III. Processing and manufature
9. Tobacco factory workers \mathbb{Z} and graders 672
37 -
10. Cabblers $182170 \quad 132$
11. Tailors $85 \quad 40 \quad \ddots 46$
12. Weavers 92 75 114
13. Carpenters 53 39. 53
14. Petters 31 55. 44
IV. Commerce
15. Retail Traders 207196
V. Transport
16. Cart drivers 71 .-
vI. Other services

17. Barbers	49	36	42
18. Washermen	175	101	128
19. Teachers	54	47	37

		S_{1}		S_{2}		S_{3}	
		Income Rs.	Pereentage of total income	Income $\begin{gathered}\text { Percentage of } \\ \text { Rs } \\ \text { total income }\end{gathered}$		Income Rs. Percentage total income.	
I.	Primery production	18,40,398	70.96	12,13,915	74.00	13,77,514	76.16
II.	$\begin{aligned} & \text { Ot ier Primary } \\ & \text { गुoduction } \end{aligned}$	1,46,642	5.65	95,604	5.83	72,641	4.02
III.	Processing and nanuf¿ccture	2,37,951	9.17	94,953	5.79	1,30,362	7.21
IV.	Commerce	1,27,435	4.91	91,875	5.60.	84,591	4.68
V.	Transpert and communications	- 31,346	1.21	12,842	0.17	7,974	0.44
VI.	Construction	11,800	0.45	4,978	0.30 =	6,724	0.37
VII.	Public Services	13,416	0.52	19,314	1.18	16,817	0.93
VII.	Otner services	1,84,572	7.12	1,16,860	7.13	1,11,972	6.19
	Total	25,93,560	100.00	16,40,341	100.00	18,08,595	100.00

2.24. Incomes if cultivator and non-cultivator households. Information collected in our Census Survey regarding the net incomes of cultivator and non-cultivator households from land and other sources indicates the poverty of the region as a whole as well as the disparity among the three strata. In S_{1} villages the net income of the cultivator households from land comes to Rs. 405.7 per household as compared with Rs. 373.4 in S_{2} and Rs. 317.5 in S_{3}. The net income per acre of operational holding comes th Rs.59.8, 43.1 and 32.3 in S_{1}, S_{2} and S_{3} respectively. The net income from sources other than land for the same cultivator households comes to Rs, 236.8 in S_{1} as compared with 206.1 in S_{2} and Rs. 205.1 in S_{3}. In the case of the non-cultivator households the net income from snurces other than land comes to Rs. 384.6 in S_{1} as compared with Rs 57.0 received from land. In S_{2} villages it comes to Rs. 361.4 and income from land comes to Rs.51.4. In S_{3} villages it amounts to Rs 350.3 while income from land is Rs 41.6 . The per capita income of cultivator households comes to Rss128.5, Rss107.7 and Rs, 97.4 in the 3 strata respectively. While the per capita income of non-cultivator households comes to Rs, 111.7, Rs, 104.2 and Rs, 93.9 respectively.

> Table No. 2.31.
> Incomes during 1958-59 in Rupees.

Cultivators

Income from land			
Per acre of operational holding	59.75	43.05	32.32
Per household	405.73	373.37	\%17.49
Income from other sources			
per household	236.84	206.11	205.11
Total income per household			
, , per head	138.5	107.7	97.4
Non-cultivators			
Income from land per household	57.0	51.35	45.6
Income from other sources per houschold	384.6	361.4	350.3
Total per houschold	441.6	412.8	391.9
,, per head	111.7	104.2	93.9
All households			
Total income per houschold	558.3	525.3	465.8
,, per head	122.4	105.7	96.1

The general backwardness of the rural economy of the project area and the poverty of the people are clearly brought out by sele－ cted economic indicate $\underset{\sim}{\text { grelating to }}$ land holdings，crop yields， incomes etc．The greater degree of backwardness and poverty of the Tclengana part of the area is also similarly indicated．The significant details are summarised in the following table：

Table No． 2.32

Economic Indicators

	s_{1}	S_{2}	S_{3}
Annual average rate of growth of population	1.20	0.69	0.51
Density per sq．mile	418	301	248
Average size of household	4.56	4.88	4.85
Average size of cultivator household	． 5.00	5.32	5.37
Percentage of households with agricultural －ccupation，to total households	71.8	75.9	80.7
Percentage of non－cultivator households with agricultural occupations to total non－ cultivator households	58.9	59.4	71.6
Households not having main or subsidiary agricultural occupations as \％of total households	9.8	7.3	6.1
No．of workers per household	2.49	2.72	2.80
No．of workers per cultivator household	2.07	2.72	2.60
No．of workers per non－cultivator household	2.10	2.06	2.20
Percentage in total workers a）Children			
a）Children b）Female（Adults）	2.6 40.1	4.0 39.5	4.3 38.1
c）Males（adults）	57.4	56.4	57.7
Size of owner holding（acres）	6.46	8.97	9.70
Value of land per holding Rs	8，353	5，644	5，552
Value of land per acre Rs．	1，240	638	558
Size of operational holding	6.81	8.84	9.94
Percentage of leased in land	14.1	8.5	7.5
Fargmentation（No．of fragments per acre）	0.46	0.51	0.29
Work cattle per cultivator household	0.81	1.07	1.69
Milch cattle－do－	1.34	1.41	2.10
Sheep \＆goats－do－	0.97	2.08	1.63

Leading crops
percentage of cropped area
Jowar 29．1 Jowar27．4 Jewar43．4
Vari⿷⿱㇒⿴囗㐅⿰㇒⿻土一𧘇 22.0 Vari－ ga 24.4 ツ．
Bajra20．8 pulses18．7
V．to－G＇nut 6．5 G＇nut15．6

APPENDIX I.
 (CHAPTER II.)

Population of villages included in the frame (1951 Census)

Guntur District :

Palnad Taluk	80,925	39,156	-
Sattenapalli	$1,28,271$	72,946	-
Narasaraøpet	$1,12,599$	$1,08,838$	-
Guntur	56,665	10,525	-
Ongole	80,609	$1,38,246$	-
Vinukonda	6,212	80,800	-
Bapatla	32,953	2,826	-

Nellore District
Darsi -- 90,935
Kurnool District

Nalgonda District

Miryalaguda.	-	-	59,909
Hazurnagar	-	-	$1,14,382$
Suryapet	-	-	2,097

Khammam District

Khammam	-	-	74,396
Krishna District	-		.
Nandigama	-	-	47,989
Jaggayyapeta	-	-	32,317
			-

APPENDIX II. (Chapter II)

Cultivated frea in Villages included in the Frame according 1951 Census(in acres)

Guntur District

1. Palnad
2. Sattenapalli
3. Narasaraopet
4. Guntur
5. Ongole
6. Vinukonda
7. Bapatla

Nellore District
8. Darsi

Nalgonda Dist $_{\perp}$ ict

Miryalaguda	-	-	$2,21,198.00$
Huzurnagar	-	-	$3,34,018.00$
Suryapet	$-\infty$	-	$4,837.00$

Khammam District
Khammam

- - 1,32,050.00

Krishna District

Nandigama	-	-	$61,470.87$
Jaggayyapet	-	-	$38,944.02$

CHAPTER III

SURVEY OF TRADE IN AGRICULTURAL PRODUCE RIND PROCESS ING INDUSTRIES II SELECT URBAN AREAS

3.1 General.

A survey of trade in agricultural produce and processing industries in the important urban areas situated on the Right Bank Canal side and Left Bank Canal side of the Project is taken up as a part of the Project survey with the main purpose of assessing the existing facilities for trade and processing of agricultural produce in the region. Ten centres situated on the Right Bank Canal side are selected for study and one out of these ten, is the city of Guntur which is situated not within the ayacut area but very close to it. On the Left Bank Canal side, four centres are selected and two of them, Suryapet and Khammam, are again close to but not within the ayacut area. These centres which are lying on the fringe of the Project area are nevertheless important marketing centres serving the villages of the ayacut. Information has been collected in 2.11 these areas for the year 1959-60 from traders and millers regarding various types of agricultural produce marketed, sale and purchase prices, fixed capital and working capital employed by traders and millers, etc. On the Right Bank Canal side, information is collected from 83 wholesale traders out of 198 enumerated. Similarly informmation is collected from 52 millers out of 75 enumerated who are distributed as follows:- 13-groundnut oil millers of whom 4 are also engaged in cotton ginning 20 castor oil
 crushers, 9 rice miller on the Left Canal side, 31 traders out of 80 and 15 millers out of 16 enumerated are studied. The distribution of millers is as follows; 14 groundnut oil millers out of whom il are also engaged in rice milling and 3 in cotton ginning, and only one is engaged in castor oil crushing. Altogether a total number of 135 traders and millers are investigated on the Right Bank

Canal side and 46 are investigated on the Left Bank Canal side. The information collected is tabulated and presented In the tables given at the end of the chapter.

3.2 Trade in raw and processed agricultural produce.

 On the Right Canal side there are regulated markets in all selected urban areas except at one place, namely, Kurichedu. These markets are regulated only in the case of commercial crops (groundnut and chillies) predominantly grown in the area at present. The licenced traders in the regulated markets receive several facilities for shorage, and purchase and sale of produce. On the Left Bank Canal side there are regulated markets in all the selected centres except at Miriyalaguda and these markets cover all the important crops grown in the area. It appears from our survey that about 70% of the arrivals of produce at the market centres is brought by the producers directly, Middlemen and petty dealers play an important part in the collection of produce from small cultivators who cannot take their produce themselves to the market centres either for want of transport facilities or on account of the smallness of the quantity of the produce or because they are obliged to sell their produce to the dealers. At the market centres there are various types of agencies engaged in the purchase and sale of agricultural produce such as commission agents, wholesale dealers and millers. It may be seen from tables No. 3.2 and 3.3 appended, giving details of market arrivals for ten agricultural commodities and their purchase and sale prices, for the year 1959-60, that groundnut, chillies, coriander, pulses and cotton are the most important commodities dealt with on the Right Bank Canal side. The trade in paddy on the Right Canal side is found to be confined exclusively to the Guntur City, but paddy is not an important commodity produced in the ayacut villages at present. On the LeftBank Canal side a:lso groundnut is the most important commodity dealt with in the markets. Next to groundnut the important commodities are paddy, grapsl-pulses, and jowar. The total values of market arrivals of selected commodities at the centres on the Right and Left Bank Canal sides are as follows:

Market Arrivals for 1959-60
(in thousands of Bis)

		(in thousands of Bsa)
Commodity	Right Canal side	Left Canal side
1. Paddy		
2. Jowar	10080	10171
3. Redgram	652	474
4. Greengram	2010	1052
5. Coriander	947	568
6. Groundnut	14916	-
7. Castor	1286	20683
8. Chillies	10629	219
9. Cotton	3138	177
10. Sunhemp	419	320
Total	49740	48

As already pointed out, groundnut is a most fmportant common crop on both sides of the Project area.

It is found that the quantity of arrivals of groundnut at the marketed centres are generally in excess of the produce of the ayacut. This may be explained by the fact that the region imports considerable quantities of groundnut terns delta taluks of T enali, Bapatla and Repalle where groundnut is grown as a rabi crop and also from areas outside the ayacut on the Left Bank Canal side. The quantities received at the various markets from within and the: outside the region are almost wholly consumed by the oil mills of the region. About $2 / 5$ of oil
production is exported to Orissa and Bengal and the remaining is consumed in Andhra. Groundnut oil cake which is mostly used as manure is consumed in adjoining delta tit areas, is mainly raised on the Right Bank Canal side and chillies are exported from this region to Madras, Mysore and Kerala. Exports to these areas constitute nearly 75\% of the total exports from this region. There is also considerable export of chillies to Bengal and East Pakistan. Cotton crop is also raised mostly on the Right Bank Canal side and is consumed mostly by the local ginning mill and only ginned cotton is exported. As there are no spinning or weaving mills located in the region, the entire output of ginned cotton is exported to places outside the region. Cotton seed which is used as fodder for cattle finds good market in delta districts of Andhra Pradesh. The surplus produce of grams and pulses is exported to delta areas in Andhra and Madras. The surplus produce of coriander is exported to Madras and Mysore and paddy which is an important crop on the Left Bank Canal side is exported to areas mainly outside the Andhra State. Virginia tobacco, which is raised mostly in Guntur, Narasaraopeta and Sattenapalli talukzon the Right Canal side, is processed in the redrying factories of the region and exported directly to foreign countries like United Kingdom, Holland, and Germany. Tobacco seed oid which some groundnut oil mills are procersing is exported to Hyderabad, Mysore and Bengal. Castor oil finds an export market in the district and in Madras.

3.3 Capital employed and turn over of traders.

Details of fixed capital and working capital and the turnover in goods per trader are given in table No, 3.4 for both sides of the Project area. It is found that on average, a trader has invested in his business Ps. 26,000 as
fixed capital, and his vorking capital amounts to R.61,500 out of which an anount of $\mathrm{F} .25,400$ is borrowed. The value of purchases per trader has come to fo. 4.55 lakhs; and the amount of working capital employed in business has come to 13. 52% of the value of purchases. On the Left Bank Canal side, the total fixed capital per trader has come to Pi. 1,000 only, which is considerably less than the amounton the Right Cenal side. The total working capital per trader anounts to Rs. 39,700 , constituting 26.2% of the value of purchases. As indicated in table I Ho. I2, on the Fisht Bank Canal side 58.75% of the working capital employed in trade is provided by the trader himself, while 23.86% is borrowed from money lenders and 17.4\% from banks. On the Left Bank Canal side 49.84% of the working capital is provided by the tradelhimself, 17.42% is borrowed from money-lenders and 33.1% from banks.

3.4 Processing industriese

The main processing industries of the ayacut area on the Right Canal side are groundnut oil mills, castor oil crushers, and cotton ginning mills, and there are no rice mills at any centre except at Guntur. The main industries on the Left Bank Canal side are rice mills, groundnut oil mills and castor oil crushers, In several cases, the same mills undertake two or three types of processing.

From the information we are able to gather about the fixed capital and working capital employed in these mills and their production, it appears that on the Right Bank Canal side, on average the amount of fixed capital employed in groundnut cil mills comes to ks. 1.11 lakhs and the amount of working capital to Es. 1. 93 lakhs, out of which Ps. I. 17 lakhs is borroned amount. The averaze output per mills is 1703 candies of groundnut oil, and 6.9 bags of oil cake (one bag $=160 \mathrm{lbs} . j$, the value of output of oil and cake together amounting to Rs. 6,50 lakhs. On the Left Bank Cenal side, the amount of fixed capital per groundnut oil
mill is Fs. 1.11 lakhs which is the same as on the Right Canal side. The anount of working capital comes to rs. 2:73 lakhs out of which Rs. 1.7 lakhs is borrowed. The average output per mill is 1791 candies of oil and 6.1 bags of oil cake, the value of output of oil and eake together amounting to Es. 7.17 lakhs.

Information collected about 9 rice mills situated in Guntur shows that the amount of fixed capital is Fs. 84.70 thousands per mill and the amount of working capital is Bs. 1.57 lakhs, out of which Bs. 27.2 thousand is borrowed. The average quantity of rice sold. per mill comes to 31,000 bags valued at is. 12.71 lakhs.

As regards castor oil crushers, the information collected about 20 castor oil crushers on the Right Bank Canal side shows that the amount of fixed capital per mill amounts Ps. 17.1 thousandsand working capital to Rs. 22.4 thousand, out of which an amount of Rs. 7.7 thousands is borrowed. Ihe output per mill is 205.4 candies of castor oil and 806 bags of cake, the total value of output being Rs. 80.9 thousand, Information collected about cotton gins shows that the output of cotton per mill is 232 candies (candy $=784 \mathrm{Ibs}$.) and 959 candies of seed (a candy $=500$ lbs.), the value of output of cotton and seed being Rs. 2.40 lakhs. As regards the sources of working capital employed by mills it is found that on the Right Canal side 32.5% is borrowed from banks, 8.6% is borrowed from money-lenders and the remaining is provided by the owners themselves. On the Left Canal side, however, borrowed finance is comparatively higher, 45.7% being taken from banks and 14.7% from money lenders and the balance of 39.6% from owned resources.

Tobacco redrying factories on the Right Bank Cenal side are situated in Guntur and Chilakaluripeta and these constitute a most profitable processing enterprise in the Guntur district. lost of them process Virginia tobacco and
a few of them also traae in country tobacco. Iniornation collected from 8 factories shows that the total purchases of virginia tobacco per factory amount to 30 lakhs lbs. valued at Fs. 20 lakhs. Thi value of exports per factory amount to Ms. 24.7 lakhs. The tobacco purchasing depots and redrying factories provide seasonal employment for ten to fifteen thousand labourers every year.

There is one jute mill situated in Guntur town which is the only one for the Project region. It manufactures twine and cement bags and the Onzole taluk of the project area contributes about 20% of the raw jute purchasea by the jute mill, the remainder of the raw jute required is imported from Vizianagaram in north Andhra and Cuttack in Orissa. The mill employs about 1400 labourers: Jute twine produced by the mill is mostly consumed in the region itself. The output of cement bags is exported to cement companies.

There is also one cotton yarn mill at a little distance from the town of Guntur, with a fixed capital of Es. 28.8 lakhs and borrowed working capital amounting to Fs. 52,000. The mill employfs 730 workers, and it buys a good ${ }^{\prime}$ proportion of its requirement of raw cotton from the project area on the Right Canal side. The output of the factory for the year $1959-60$ is reported as 32.67 lakhs of lbs. of yarn of counts (20sm6s) valued at Rs. 55.39 lakhs. The output is consumed entirely within the state by the handloom industry.

Table No. 3.1
LOCATIO OFI SELACTED URBAN ARYAS AND DETAILS OF SCHEDULES FILLED

S.No. Name of the Centre	Losation	Traders		Mills (Processing concerns)		Total Schedules filled	Remarks
		Total No.	studied				
				Total No.	Studied		
(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Right Canal side							
1. Chilakaluripet	Stratum 1	6	3	2+3*	1	4	* Tobacco Redrying factories
2. Piduguralla	Stratum 1	7	2	6	6	8	
3. Rentachintala	Stratum 1	5	5	\square	-	5	
4. Addanki	Siratum 1	8	2	1	1	3	
5. Sattenapalli	Stsatum 2	4	-	6	6	6	
6. Narasaraopet	Stratum 2	16	16	14	12	28	* Ercluding Tobacco Dealers
7. Vinukonda	Stratum 2	10	10 8	4 3	2	12	who are about 150
9. Kurichedu	Stratum 2	7	7		-	7	@ 18 Tobacco Redrying facto-
10. Guntur		115*	30	14+20@	$13+9$	52	ries + I Jute Mill + 1
Total		198	83	$50+23$	$43+9$	135	Textiles. out of which 8 Tobacco factories and one
Ifeft Canzi Side							
1. Miriyalguda	Stratum 3	30	20	1	1	21	
2. Jaggayyapet	Stratum 3	20	6	5	4	10	
3. Suryapet		15	2	5	5	7	
4. Khammam		15	3	5	5	- 8	
Total		80	31	16	15	46	

MAnJET ARRIVALS AT SELECTTD URBAN AREAS DURING 19590'60
(rizures are in hundreds of bags except for cotton)

Market Centre	Faddy	Jowar	Redgram	Greengram	Coriander	Groundmut Castor		Chil-Cotton Sunhemp Jies Candiesi		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			(11)
Fight Canal sices										
1. Chilakaluripet	\cdots	25	-	$\bar{\square}$	\cdots	131	-	80	\cdots	*
2. Piduguralla	\pm	-	10	2	$\stackrel{\circ}{\circ}$	926	50	-	36	\cdots
3: Rentachintala	$=$	-	10	\pm	20	128	6	950	49	-
4. Addanki	∞	6	6	-	5	62	-	\cdots	-	c
5. Sattenapalli	-	-	∞	$\overline{0}$	-	515	30	44	19	\cdots
6. Narasaraopet	-	50	S6	40	2	38.28	150	26	33	9
7. Vinukonda	\cdots	$\stackrel{\square}{*}$	42	5	5	-	25	\cdots	43	50
8. Ongole	-	100	100	80	15	141	-	40	\cdots	-
9. Kurichedu	\bigcirc	\cdots	1.00	5	-	-	10	$=$	24	5
10. Guntur	4200	-	165	75	1150	1660	$1{ }^{6}$	3420		5
Total	4200	± 81	530	207	1197	7573	281	4563	204	. 64
Left Canal side:										
İ. Miriyalaguda	1000	40	30	50	-	750	30	3	${ }^{\circ}$	3
2. Jaggayyapet	200	20	80	60	-	1500	-	15	20	-
3. Suryapet	1150	25	36	10	-	2556	18	20	-	-
4. Khammam	1300	50	96	10.	-	4540	2	45	-	5
Total	3650	135	242	130		9346	50	83	$2 C$	8

[^2]Table No. 3.3

WHOLE SALE $\triangle V E R L G E$ PRICES (PURCHASES \& SALES) DURING 1950-'60

(Units are in bags except for cotton for which unit is a candy)

Market Centre (I)	Peciay		Jowar		Bajra		Greengrem		Redigram		Groundnut	
	Purcha-	Sales	Purcham	Sales	Purcham	Sales	urcha-	Sales	Purchases	Sales	chases	$\cdots 1 \in s$
	$\frac{S \in S}{(2)}$	(3)	Ses	(5)	Se (6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
Right Canal Sicie												
Io Chilakaiuri-		-	39.00	41.00	-	\cdots	-	-	-	-	19.09	\cdots
2. Pet Pidugaralla	*	\cdots	-	-	\cdots	-	31.95	10.82	23.41	38.78	22.50	-
3. Rentachintala	\cdots	-	\cdots	-	\cdots	$\cdots{ }^{* *}$-	66.01	39,60	\therefore	-
4: Addanki	-	-	36,00	41.90	40.07	42.50	\cdots	-	-	-	20.00	-
5. Sattenapelili	\cdots	-		\therefore		-	-	-	-		29.73	-.
G. Narasaraopet	\cdots	\cdots	26.0?	37.36	28.60	54.60	40.91	49.04	38.83	39.57	$2 \% .76$	-
7: Vinikonda	-	-	32.55	34.830	34.35	39.13	51.76	50.27	30.42	44.47	-	\sim
3. Onjole	\sim	\cdots	36.11	$42_{4,2} 2$.	$33^{3} .38$	4.3, 78	42.00	45.00	$4 \mathrm{C}, 12$	$44.5 \frac{1}{4}$	14.62	\because
9. Kurjchedu	$=$	-	32.00	34.00	S5.02	39.79	18.30	50.30	40.80	42.93	1	-
10. Guntur	24.00	If. 4	35.61	No. ${ }_{\text {d }}$	39.00	N。A	48.65	46.04	36.54	38,29	1.9.00	\cdots
Overall	24.00	-	36.03	40.61	33.19	42.83	45.76	46.46	37.93	42,32	20.23	-
Left Cenal Side												
1. Miriyalguda	80.65	26.34	32.58	34.51	33.12	36.07	$41: 87$	45.15	47:62	$49: 65$	21.16	22.87
2. Jaggayyapet	Cu.78	27.51	40.17	36.28	32.63	38.39	42.66	43.73	46.34	45.48	22.05	22:27
3. Suryapet	27.59	29.51	31.94	36.72	-	-	44.09	44.41	38.77	37.16	23.44	23.43
4. Khamman	28.31	28.88	33.03	N.A	-	-	44.16	42.76	40.93	41.60	22.46	N. 1
Overall	27.79	28.55	35.08	35.17	32.99	36.69	43.72	43.17	43.48	44.60	22.13	22.82

WYOLE EALE AVERAGE FRICES (FURCHASES \& SATESS DUETNG 1959m: 60
(Units ere in bags except for cotton for which unit is a candy)

Table $\mathrm{NO}_{2} 3.4$

FIX D CAFPTAL, WORKING CAPITAL AFD VALUE OF PURCEASES \& SALES PER TRADER 1959-60

S.No. Centre		Working capital during the year		Total working capital	Pcrcentago of working capital. in t.otal pur$\frac{\text { chases }}{(7)^{2}}$	Total value of (in A_{3})	
		Own	${ }^{\text {Borrowed }}$			Purchases	Sales
(1) (2)		(4)	(5)	(6)		(8)	(9)
Right Canai Side							
7. Chilakaluripet	$\frac{118}{530}$	20,000 6.500	${ }^{8} 9666$	26,666 13,000	88.80	82, 378	34,680 36,08
30 Rentaehintala	11. 600	46,200	21.200	67	78.74	8,719196	8,1/2,450
4.0 Mddanici	103	. 9.000	6,500	15960	59.1.6	26,200	28922¢
5. Sattenapaliit	70,875	20,625	61.930	32,950	35.16	5.44 .460	6,26.704
7. Vinukonda	16.4810	$1.3,450$	$14_{9}^{2}: 170$		13.33	$2,072.33$	2, 36,464
8. Ongole	S:200	38,625	1. 7,	51.375	6.64	7,81,643	8,19, $2 \leq 5$
10. Kurichedu	${ }^{5} 9814$	38,571	? 80 ?	$45_{8} 488$	21.0%	. 29.118 .85	2,25,465
10. Guntur	3,725	59:750	S\%000	612750	11. 2.2	6, 5 50:158	5,76,752
Overall	26,034	36,130	25;363	61,495	13.52	4, 54,957 .	4,87,139
Left Canal Side							
1. Miriyalguda	5,488	119955	7,595				
2. Jaggayyapeta	1,160	27,500	31,666	19,590	25.58 20.86	2,76,576	$\begin{array}{r} 76,251 \\ 2,25,186 \end{array}$
3. Suryapet	12000 22036	12,500 60,000	12,500 85,000	$\begin{array}{r}19,160 \\ \hline 25,000\end{array}$	14.12	1,77,079	$\begin{aligned} & 2,25,186 \\ & 1,92,700 \end{aligned}$
4. Khammam	2,2606	60,000	85,000	1,45,000	37.63	3,85,294	1,51,213
Overall	3,9\%	19,648	20,061	39,709	28.26	1,40,484	1,28,924

Table No. 3.5
GROUNDNUT OIL MILLS (DETAILS PER MILL) 1959-60.

Name of the Centre	No . of mills studied	Fixed oapital in thous ands of		king Capi in thousan -f Rs Borrewed	tal ds Total	Purchase price per bag of Groundnut	「 Purchase in bags \qquad t	Sale price per candy $\rightarrow f+i l$	Sale price for bag cake.		$\begin{gathered} \text { Output } \\ \hline \text { Cake in } \overline{\text { In }} \\ \text { bags. } \end{gathered}$
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
$\frac{\text { Right Caxdi Side }}{\text { 1. Chilalaluri }}$											
pet.	1	75.00	250.00	--0	250.00	19.09	12,559	379.45	24.84	640.065	2,497
2. Piduguralla	3	Not Avai	- 45.67	253.00	298.67	22.50	25,103	365.94	24.28	1547.297	5,412
3. Rentachintela	,	able	-	--	--	--	--	-	-		
4. Addanki	1	102.00	50.00	75.00	125.00	20.00	2,600	390.00	25.00	125.000	1,600
5. Sattenayal li	2	30.00	30.00	50.00	80.00	20.73	18,661	373.40	19.09	987:407	5,290
6. Narasaraopet	2	40.00	35.00	37.50	72.50	22.76	31,948	405.43	26.84	1746.090	5,370
7. Vinukonda 8. Ongole	-	54-75	--	--	85.00'	19-62.		478.94	25-25	379.315	2.475
8. Ongole	2	54.75	27.50°	57.50	$85.00{ }^{\circ}$	19.62	9,400	478.94	25.25	379.315	2,475
10. Guntur	2	299.42	200.00	150.00	350.00	$\therefore 19.00{ }^{1}$	1,32,117	374.99	21.49	5253.334	21,847
Overall	- +3	110.59	76.31	117.10	193.41	20.23	36,517	381.50	22.71	1703.192	6,946
Left Canal Side											
1. Miriyelaguda	1	200.00	150.00	80.00	230.00	25.10.	18,364	408.16	26.20	278.050	1,087
2. Jaggaywapeta		80.00	86.00	184.00	270.00	23.14	20,553	488.56	25.38	1105.005	3,586
3. Suryapet	4	112.50	87.50	35.00	122.50	24:99	43,624	386.27	25.42	1183.242	4,174
4. Khammam	5	124.00	110.00	284.00	394.00	23.40	58,720	37.6 .89	25.00	3008.26010	10,290
- Overall	\cdots	111.33	101.88	170.67	272.55	23.91	37,974	399.82	25.15	1791.315.	6,108

Table Nc. 3.6
Castor Oil Crushers (Details per Crusher) 1959-60

N.A. = Not Available.

> Tbale No. 3.7 $\frac{\text { PADDY MILLS (DETAILS (ePR MIIL) } 1959=60}{(1 \mathrm{Bag}=200 \mathrm{lbs})}$

Table No. 3.8
COTTON MILLS (DETAILS PER MILL) 1959-60
1 candy $=500 \mathrm{lbs} ; \quad 1 \mathrm{mound}=24 \mathrm{llos}$.

SELECTED URBAN AREAS
Table 3.9.
TOBACCO REDRYING FACTORIES (Number of factories studied being 8) GUNTUR 1959-60.

Table 3.10
PERCENTAGE DISTRI BUTION OF WORKING CAPI TAL OF TRADERS AND MI LLERS ACCORDING TO SOURCE 1959-160

	Traders			Millers		
S.No. Centre	Own	Money lender	Banks	Own	M-ney lender	Banks
(1) (2)	(3)	(4)	(5)	(6)	(7)	(8)

Right Canal Side

1. Chilakaluri- pet.	69.77	30.23	--	100.00	--	--
2. Piduguralla	50.00	50.00	--	24.64	31.15	44.21
3. Rentachintal	a68.55	31.45	--	--	--	--
4. Addanki	58.06	41.94	--	40.00	--	60.00
5. Sattanapalli	--	--	--	44.47	6.06	49.47
6. Narsaraopet	24.98	28.01	47.01	54.22	18.00	27.78
7. Vinukenda	48.70	13.76	37.54	77.78	--	22.22
8. Ong le	74.46	12.05	13.49	32.35	11.77	55.88
9. Kurichedu	83.08	16.92	--	--	--	--
10. Guntur	96.76	3.24	--	75.22	--	24.78
Overall	58.75	23.86	17.39	58.89	8.63	32.48

Left Canal Side:

1. Miriyalaguda	61.15	37.70	1.15	100.00	-	-
2. Jaggayyapeta	46.48	13.24	40.28	40.90	34.65	24.45
3. Suryapet	50.00	30.00	20.00	71.77	-	28.23
4. Khammam	41.38	1.15	57.47	27.92	10.15	61.93

$$
\begin{array}{lllllll}
\text { Overall } & 49.48 & 17.42 & 33.10 & 39.64 & 14.65 & 45.71
\end{array}
$$

CHAPTER III
 APPENDIX-1.

Customary Units and thoir equivalents in lbs. Right Canal side:

Commodity	Customary Unit	Equivalent in lbs.
-	(2)	
1. Chillies	Maund	24
2. Ginned cotton	candy	784
3. Cotton seed	candy	590
Otton seed	Bag	160
4. Redgram	Bag	225
5. Betel leaves	Basket	2500 or 3000 leaves
6. Oil cake	Bag	160
7. Ghee	Tin	37
8. Sunhemp	Bag	220
9. Castor seed	Bag	175
10. Gingelly	Bag	225
11. Jowar	Bag	220
12. Coriamer	Bag	95
13. ${ }^{\text {a }}$ Ragi	Bag	220
14. Groundnut	Bag.	84

Left Canal Side:

Commedity	Customary Unit	Equivalent in Lbs.
(1)	(2)	(3)
1. Groundnut (Podst)	Bag	86
2. Groundnut (Kernel)	Bag	177
3. Greundnut (Cake)	Bag	160
4. Greengram	Bag	225
5. Redgraicn	Bag	225
7. Chillies	Maund	25
7. Jowar	Bag	220
8. Paddy	Bag	165
10. Paddy Husk	Bag	123 220
11. Horse Gram	Bag	220
12. Blackgram	Bag	225
13. Black Mung	Bag	225
14. Anumulu	Bag	220

[^3]
CHARTE IV

IHPUT-OUTPUT RELATIOS TIN FAFM BUSLIESS GID III SELECTID
 FAFA MID ITOIT-FARM EITERPRISES

4.1

General.
This charter is devoted to a cetailed study of farm business as a whole and of selected individual enterprises both farm and non-farm, existing in the rural area of the iVagarjunasajar Project. The account ziven here of the se activities is based entirely on the study of samiles of farm and of non-farm activities which we have done for the year
 ;eneral way about the diverity of cropins pattern, and the resource position of farners, and the nature and iarortance of non-farm activities in the three strata of the Project area. In the present Chapter it is our object to make detailed studies of inputrelationstis
outrut steassisers, cost of cultivation or production, profitability and other aspects of farm business and of selected farm and non-farm activities. Generally, detailed input-output studies are undertaken to provide the best possible insifht into the actual situation in respect of economic activities and to serve the ends of price and incone policies in respect of such activities. In orcier to achieve these objects of input-output studies we may adopt one or nore of three well-known approaches in the collection and analysis of data, namely, (I) the sector approach, (2) the farm (irm) approach, and (3) the product (enterprise) amproach. Lack of statistical data for the resion as a whole and for the individual parts of a resion makes it diêincult to acion tile sector aproach. We have
therefore to depend on the Iarn and enterprise approaches only. In our study of the econonic activitics in the rural arca of the ila ;arjunasa ar Project we have attenpted to nake use of both these approaches. We shall first take up the farm approach and study the input-output relation in farm business as a whole; and then take the rroduct aprroach or enterprise approache The latter provides information akout unit-costy of prociucts which is required for the study of absclute or relative prices of pro-
 thouah in an indirett way, as contrasted with the former
 apfroach which is a direct one. (xycx s xwas tw

4.2 Input-output rejation in Form Business. (a) Concepts of cost ind income.

The success or failure of farm business is \%enerally jud.ed on the basis of certain measures such as (1) the net profit (or loss)taking into account both the rixed and variakle costs which have to ke net in the lons-run, (2) farm fanily latour income (3) farm business income, (4) farn investment incone, (5) net returns to capital and lacour, and (6) input-output ratio. Total cost : or input in farm business consists of both fixed and veriable costs including the imputed values of rent on owned land, interest on owned capital and fanily labour. The total output consists of the value of all the prociucts raised on the farn includin; the value of the ky-products. IVet profit (or loss) is oltained as the residual in the value of total output or ross rociuce after neetin; both the variakle and fixec costs or total input. The latter is a comprehensive concept of cost which is :enerally referred to as cost C in
fam Lusiness etudies. Fam fenily lǎour incone is oftained as the resiguel in the xn ;ross profuce after all the costs exceptin: the imputed velue of fenily latour are decuctod. Sinilerly, farr lusiness income is obtained as the residual in the value of ross produce after makin; allowance for 211 the costs except the imputed values of fanily la!our, rent on owned land and interest on owned capital. Farm investnent incone is the resicual in the sross prow duce obtained after deducting all costs except the inputcd values of rent on owned land and interest on own capital. These concepts of net profit (or loss), farn family lakour incone, fam busịness income, etc.g may Iication of costs. Cost C as already pointed out includes all costs, both variatie and fixed eqs, and is used as a lasis for neasuring net profit (or loss) in the lons-run. In farn tusiness studies other concepts of costs are also used for the purpose of determining the shares in the gross produce accruing to land and capital owned by the farme: or to the farm fanily, etc. Cost A_{1} includes the cost oi hired human labour, cost of materials, fuel and power used, interest on crop loans and depreciation on inplements. The value of gross produce ninus cost A_{1} will then EEcome a neasure of farn wusiness income not decluctinz rents payalile on leased-in lands. If rent paick for leasedmin lands is added to Cost A_{1} it kecones cost A_{2} and it can be used to deternine farn business incone, or the net returins to owned capital and land and fanily labour. If the inauted value of fanily latour is added to Cost A_{2} which may then be considered as Cost A_{3}, the latter becones a neasure for deternining farm investrent incone or net returns to
farm land and capital owned li the farmer. Cost B is arrived at in adding; to cost Λ_{2} the imputed value of rent on owned land and interest on owned capital. Th: value of ;ross produce minus cost B will then become a measure of fam family labour income. The way the various cost and income concepts are related to one another may see sen in the following tables ilo. 4.1 and 4.2 relating to the breakciown of total cost of cultivation and the various types of cost and income which ere given separately for the 3 strata in the Nagarjunasajar Project Area.

Table HO. Ane

Breakdown of total cost in Pan Business in Fin. (per acre held) (For Crop-Production only)

Table ilo. 4.2
Different types of Cost and Income ier acre (in Ese)

(b) Breakdown of total cost in farm business

Details of the various components of total cost in farm business calculated on the basis of cost per acre held as well as cost per acre cropped, and the relative importance of the different components of cost are given in table Ilo. 39 (Farm Surveys). The total cost per acre held in farm business, taking into account crop production only has cone to is. 184.52 in S_{1} as compared with Es. 118.28 in S_{2} and 125.41 in S_{3}. It may be seen that
in S_{1} all the components of total cost are'at a higher level than in S_{2} or S_{3}. The cost of materials and bullock -power, for instance is found to lee as high as Fs .75 .11 per acre in S_{1} as compared with Es. 46.07 in S_{2} and is. 46.12 in S_{3}.

It may also be seen from the tales on farm business costs given according to size groups of holedings that the total cost per acre is comparatively high in the lower and middle size groups in all the 3 strata. This has to te attributed to the fact that two important components of total cost, namely human labour and bullock labour have rapidly declined in Volume in higher size groups. It is also found that hire charges for implements and interest on crop-loans have shown a downward trend as the size group of holdin\%s increases.
(c) Output in crop production

The total output per acre in Crop Production has amounted to [s. 192.8 in S_{I} as compared with Es. 107.6 in $S_{2} x^{\text {IS. }} 101.0$ in $S_{2} 3^{\circ}$ It varies considerably between the size groups in the three strata for instance in S_{1}, the output is highest in $A^{\text {the }}$ se group of holdings 12. $00-15.00$ acres amounting to Es. 205.3. In S_{2} the highest value of output is only is. 137.95 , obtained in the size group of holdings 25.00 acres and above. In S_{3} which is obtained in the lowest size group of holding. The minimum output is obtained in S_{1} and S_{2} in the same size group of holding namely 2.51-5.00 acres, amounting to $k s .113 .6$ and is. 82.3 respectively. In S_{3} the minimum output of is. 74.2 is however obtained in the size group of $12.51-15.00$ acres. No simnificant trend is found in the value of output per acre with reference to the size of holding.
(d) Output-input ratios

The overall output-input ratio in farm business is 1.04 in S_{1} as compared with 0.91 in S_{2} and 0.81 in S_{3}. This shows that farm business in S_{2} and S_{3} is a loss, if we take into account both variable and fixed costs which have to be ccrered in the longrun. A study of the distrisution of the output-input ratios according to size of holuin;s reveals that there is a distinctive rising tendency in the ratio in S_{1}, the ratio being greater than unity in the higher size groups. No such tendency is to be observed in S_{2} except that in the two highest size groups of holdin;ss, the output-input ratio rises to 1.00 and 1.13 respectively. In S_{3} also, no rising tendency in the ratio is to be seen and the ratio is less than unity in all the size groups.
(e) Net profit (or loss) in crop proaluction

Net profit is obtained, as already explained, as the surplus of the value of gross produce over Cost C. In Stratum-1, it is found that all the holdings in the 4 higher size groups have received net profit. In S_{2} net profit is obtained only in the hishest size group of holdinss while there is net loss in all the size groups in S_{3}. The overall net profit earned in S_{1} is fis 0.3 per acre while the overall net loss in S_{2} and S_{3} has anounted to Bs. 10.7 and Es . 21.4 respectively . '
(f) Farn business income

Farm business incone i.g. the surplus of the total value of output over Cost Λ_{2} has amounted to E. 76.0 per acre in S_{1}, Fs. 10.0 in $S_{2 x}$ and Ts. 27.5 in S_{3}. We find that farm business incomejis negative
only in the case of the lowest size group of holedings in S_{3} It is worth noting in this connection that in S_{1} the amount of farm business income per acre is nearly 3 tines the same in S_{3} and nearly 2 tines the same in S_{2}.

(8) Famminvestment incorie

Farm investment income i.e. the surplus of the total value of output over Cost Λ_{3} (or net returns to owned land and owned capital) has come to ES. 50.3 in S_{1} as compared with $E S_{2} 23.1$ in S_{2} and B. 8.2 in S_{3}. The disparity in fam investment income per acre as between the 3 strata is thus found to be even more important than the disparity in farm business income. The farm investment income per acre in S_{1} is more than 7 times the same in S_{3} and nearly $2 \frac{1}{2}$ tines the same in S_{2}.

(h) Farm family labour income

The overall amount of farm family labour income ie. the surplus of the total value of output over cost B is highest in S_{1} gad has come to Fi .26 .0 per acre. But it is found to be negative in all the size groups of holdings $E \in I$ ow 12.51 acres with the single exception of $7.51-10.00$ acres \dot{Z} size group. The overall family labour income in S_{2} has come to only Fs.6.2, $b u t$ in this case also it is negative for all size groups 12.50 acres with the exception of the lowest size group. In contrast x sid* S_{1} and S_{2} the overall farm fancily labour income has cone to be negative in S_{3} being Ts .5.1. It is found to be positive only in the two size groups of holdin;s 15.01 - 20.00 and 20.01 - 25.00 acres.

i) Valuemaded to material costs

Value-adced to material cost ${ }^{3}$ including fuel and power is a measure of the efficiency of farm business fron the point of view of society and is thus different fron the neasures already discussed above. It is the value-added to the intermediate products such as seed, manures and fertilisers, and kullock power and represcnts returns to human lakour, profits to farmer and the shares in gross produco accruing to owners of land and capital. If depreciation on fixed capital is ceducted from gross value added, we get the net value added. In stratum-1 the amount of gross value adced has come to Is. 117.4 per acreas compared with $S_{0} 61.5$ in S_{2} and S. 54.9 in S_{3}. The . Atrata in largely a
colich is twice or nearlytwice the same in the othei two At higher level of value-added per acre in $S_{1}{ }^{8} 4 \%$ thas
measure of the difference between s, and the other strata in respect of soil fertility, cropping pattern and cultural practices.

4.3 Input-Output relation in milk procuction.

Prociuction of milk is an important enterprise undertaken by the farmers in all the 3 strata of the Nagarjunasagar Project area. Milch cattle minisoso include both cows and buffaloes which are in milk or tenforarily duy. The nunter of miloh animals maintained per farm is given in table Moj 31 (Farm Surveys), which cones to 1.24 in $S_{1}, 1.13$ in S_{2} and 1.70 in $S_{3}{ }^{\circ}$ In all the three strata, the number of nilch cattle maintained by farmers in the lower size groups of holdings is found to be less than the number maintained by farmers in hirgher size groups.

The details of total cost of maintenance per milch amimal are given in Trible IVo. 35 (Farm Surveys), the two inportant components of total cost being (1) the value of fodders and feeds (2) tavour char;es for the

Upkeep of mitch animals. The over costs of maintenance ofer milch animal has come $q 6$
to RS 253.03 in S_{1}, RS 211.62 in S_{2} and Rs. 108.23 in $S_{3}:$ 2h value of todders to RS 253.03 in S_{1}, RS 211.62 in S_{2} and RS. $108.23 \mathrm{in} S_{3}$: Dw value of fodders and feeds Constitutes the highest propertion of the total cost lin all the 3 strata labour charge for the upkeep of animals coning next in order of importance"

It is also found that the cost of maintenance per milch animaly shows a decreasing tendency as the size group of holdings increases in S_{1}, but such a tenciency is, however, not found in the other two strata. 4 :
The yield of milk per aninal taking koth the animals in milk and those which are temporarily dry has amounted to 249 seers per year in $S_{1}, 183.7$ in S_{2}, and 72,3 seers in S_{3}. The poor yield of milk per aninal in S_{2} and S_{3} is to be attributed to the poor quality and feeding of the animals. Details of cost. . of maintenance and output of nilk per milch animal
are given in the following table No. 4.3

Tetic Ho. 4,3

Maintenance cost and value of output in Milk Procuction ner milch animai(in Ese)

It \in m	S_{1}	S_{2}	S_{3}
1. Value of foaders and $f \in e d s$	117.55	02.65	42.33
2. Upkeep labour charges	115.51	100.52	42.80
3. Other charges	19.97	18.45	14.10
Total cost of maintenance	253.03	211.62	106.23
4. Value of milk output per farm	155.00	132.00	62.84

4.4. Irrigated paddy.

Irrigated paddy is extensively cultivated in S_{3} the sources of irrigation being mostly, It is also cultivated in
 some area is under irrigatid paddy for which water is given from the canals of the Palair river. The area under the crop in S_{3} constitutes 9.14% of the gross cropped area and 50 per cent of the sample cultivatorkhave raised irrigated paddy. Generally, water is available to raise irrigated paddy as a winter crop only, although in a few places it is raised as a summer crop under well irrigation. In the S_{2} villages the area under paddy forms only less than 2% of the gross cropped area. In the whole project area, the irrigated paddy is raised by adopting the practice of transplantation of seedlings, although in some places in S_{3}; broad-cast sowing is still found. Farm-yard manure is the principal type of manure used in raising irrigated paddy, the rate of application of farm yard manure ranging from 5 to 20 cartloads per acre.

The total cost of cultivation of irrigated paddy has amounted to Rs. 360.69 per acre in S_{3} villages as compared to $R_{5} 261.64$ in S_{2}. The higher cost of cultivation in S_{3} is found to be due to the higher inputs of bullock labour and human labour. The cost of bullock labour input per acre has come to Rs. 72.96 in $S_{3}(20.23 \%$ of the total cost) as compared with Rs. 40.87 per acre in $S_{2}(15.62 \%$ of total cost). Similarly the cost of human labour input has come to Rs. 78.82 in S_{2} (29.74% of the total cost) as compared with Rs. 118.16 per acre in $S_{3}(32.75 \%$ of the total cost). The difference in the total cost of cultivation between the two areas is also to be attributed to the considerable difference in output per acre, the average yield per acre in S_{3} being 1861 lbs. as compared with 1124 lbs. per acre in S_{2}. A detailed breakdown of total eost is given in the table No 4.4 .

The estimated gross output per acre in S_{3} has come to Rs.335.25 including the by-product valued at Rs.52.62.In S_{2}, it has amounted to Rs. 241.83 including the byproduct valued at 1349 lus. R.47.26. In S_{3} the yield per acre has varied between kNow 2517 lús. and The range of variation in S_{2} villages is however considerably
 per acre. On cost ' C' basis i.e. taking into account all the घariable and fixed cost, including the imputed vawues of farm family labour, rental value of owned land, etc., there is an overall loss of R. 25.44 per acre in S_{3} villages as compared with an overall loss of $R=19.81$ in S_{2} villages. We find, however, that the amount of net output after deducting the cost of materials, fuel and power and the cost of hired labour has amounted to Rs. 140.58 per acre in S_{3} villages and Rs. 116.8 in S_{2}.

A few important features of physical inputs of human labour and bullock labour in the two strata are also worth noting. The average input of human labour in S_{3} villages, has come to 72.98 mandays per acre of which hired labour constitutes 43.48 mandays. In S_{2} the total input of human labour is 67.59 mandays and out of this 39.50 mandays constitute hired labour. We thus find that the input of human labour per acre for cultivation of irrigated paddy is not materially different between the two strata; but it is considerably higher than the input in the delta areas of coastal Andhra Pradesh. For example, Studies in the Economies of Farm Management in the West Godavari District have shown that the physical labour input varied from 39.37 to 54.71 mandays between 1957-58 and 1959-60. The input of bullock labour is also found to be considerably high in S_{3}, the total number of bullock-pair days amounting to 21.51 per acre and the range of variation between the size groups is from 17.6 to 41.85 days. Almost the entire input of bullock labour in S_{3} is owned bullock labour. In S_{2} however, the total input of
bullock labour is observed to be only 7 days per acre which is nearly the same as reported in the Studies in the Economics Farm Management in the West Godavari district.

Table 4.4.
Cost of cultivation of Irrigated Paddy per acre (in Rs.)

1. Human labour

a. Family labour	39.18	14.97	56.61	15.69
b. Hired Labour	38. 64	14.77	61. 51	17.06
2. Cost of material	78.82	29.74	118.16	32.75
Seed	31.38	11.99	29.46	8.17
Manures and fertilisers	13.14	5.02	28.22	7.82
Bullock labour Hire charges for implements	40.87	15.62	72.96	20.23
	0.78	0.30	0.10	0.03
Pesticides	--	--	--	. --
Fuel	--	--	--	--
Interest on crop loans	0.20	0.08	2.38	0.66
	86.37	53.01	133.12	36.91
3. Interest and Rent.				
Rental value or ren	87.12	33.30	95.98	26.61
Interest on capital	1 0.36	0.14	1.00	0.28
4. Land Revehue and cesses	7.50	2.87	$6.9 \bar{\square}$	1.94
5. Depreciation on Capital	2.47	0.94	5.44	1.51
Total:.	261.64	100.00	360.69	100.00

$$
\frac{\text { Table No. }}{\text { Human Labour per icre }} \frac{4: 5}{(8 \mathrm{Hr} \cdot \text { Mandays })}
$$

Size yrour	Stratum - 2.			Stratum - 3.		
(in acres)	Family labour	Hired labour	Total	$\begin{aligned} & \text { Family } \\ & \text { labour } \end{aligned}$	Hired labour	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
c.01-1.0C	45.84	26.33	72.17	54.28	62.22	116.45
1.01-2.50	24.70	86.75	111.45	41.48	36.02	77.50
$2.51-5.00$	$43.65{ }^{\circ}$	69.66	113.31	34.82	41.66	76.48
$5.01=7.50$	17.02	48.29	65.31	37.63	32.93	70.56
$7.51-10.00$	39.80	26.08	65.88	32.57	53.83	86.40
10.c1-12.50	7.33	27.94	35.27	50.88	29.87	80.75
12.51-15.00	59.30	22.53	81.83	33.60	40.79	74.39
15.01-20.00	52.35	34.58	86.93	24.33	38.71	63.04
20.01-25.00	36.47	18.94	55.41	22.75	48.95	71.70
Above 25.00	12.17	'29.57	41.74	13.71	45.89	59.60
Total	28.09	39.50	67.59	29.50	43.48	72.98

$$
\begin{aligned}
& \text { Table No. } \quad 4 \cdot 6 \text {. } \\
& \text { Bullock labour per acre (} 8 \mathrm{hr} \text {. Bullock pair days) }
\end{aligned}
$$

Size grcur (in acres)	Stratum - 2			Stratum - 3.			
	owned	Hired	Total	Owned	Hired	Total.	
-III	T2	(3)	了 41	(5)	(6)	T75	--
$0.01-1.00$	6.67	6.67	13.34	25.87	--	25.87	
1.C1-2.50	--	4.75	4.75	22.94	0.80	23.74	
2.51-5.10	4.93	2.37	7.30	22.46	0.60	23.06	
5.01-7.50	2.26	4.04	6.30	24.18	1.31	25.49	
7.51-10.10	2.14	4.82	6.96	19.70	--	19.70	
10.01-12.j0	0.62	3.65	4.27	41.85	--	41.85	
12.51-15.00	12.50	--	- 12.50	19.13	--	19.13	
$15.01=$-0.00	9.84	--	9.84	23.00	--	23.00	
20.01-25.00	6.44	--	6.44	15.24	-	15.24	
Above 25.00	7.92	--	7.92	17.60	\cdots	17.60	
To *21	4.78	2.30	7.08	21.21	0.30	21.51	

Table No $\quad 47$.
Total cost and output per acre (in fis)

Size grcuif(in acres)	Stratum 2.			Stratum 3			Yiel	acrec
	Total cost	Output	$\begin{aligned} & \text { Profit or } \\ & \text { loss } \end{aligned}$	Total cost	Output	$\begin{aligned} & \text { Profit } \\ & \text { (or loss) } \end{aligned}$	S_{2}	S_{3}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
c.01- 1.00	242.08	266.68	24.60	571.22	314.98	-256.24	1064.8	1867.8
$1.01-2.50$	281.36	330.00	48.64	420.09	310:62	-109.47	1916.2	1775.4
$2.51-5.00$	248.38	87.97	-160.41	378.80	301.53	- 77.27	407. 0	1740.2
$5.01-7.50$	272.31	296.85	24.54	334.65	246.44	- 88.21	1445.4	13ヶ8.6
7.51-10.00	323.97	412.98	89.01	466.58	434.58	- 32.00	2167.0	2516.8
10.01-12.5c	202.33	95.83	-106.50	347.40	286.72	- 60.68	398.2	1511.4
12.51-15.00	492.23	420.21	72.02	418.22	242.19	-176.03	2081.2	1390.4
15.01-20.00	305.56	504.34	198.78	272.04	382.51	- 110.47	2378.2	1980.0
20.01-25.co	245.24	304.34	59.10	299.50	259.42	- 10.08	1289.2	1656.6
Above 25.00	167.12	280.01	112.89	314.35	359.17	44.82	1278.2	2039.4
Tucfi	261.64	241.83	-19.81	360.69	335.25	- 25.44	1124.2	$\begin{aligned} & 1860.6 \\ & 1586.8 \end{aligned}$

```
4.5. Un-irrigated Paddy.
    Un-irrigated paddy is raised as a kharif erop mainly
on the Right Bank Canal Area of the Projeet, i.e., in S S
villages. In the sample\ farm households of Stratum-1 the
area under this crop came to 18.71 acres, constituting only
1,62% of the gross crop ed area.
The total cost of cultivation of un-irrigated paddy has amounted to Rs, 140.06 per acre, of which the cost of materials and bullock labour amounted to \(36.7 \%\) and the cost of human labour to \(21.3 \%\). The absolute cost of human labour and bullock labour amounted to Rss 29.79 and.Rs, 16.84 per acre respeetively.
```

The estimated gross output per acre amounted to Rs, 89.79 per acre, involving an overall net loss of Rss 50.27 . The value of the by-product is $\mathrm{Rs}_{\mathrm{o}} 21.16$. The grain yield per acre amounted to only 563 lbs .

The total input of human labour came to 24.57 mandays per acre of which 14.27 days constituted hired labour. The input of bullock labour which is mainly owned bullock labour came to 4.62 bullock-pair days only. Unirrigated paddy is thus found to be an enterprise associated with low levels of input as well as output in comparison with irrigated paddy.

Table No. 4.8.

Cost of cultivation of mísigntes Paday fou re

1. Human labour

Table No. 4.9.
Input of human labour per acre (8 hour mandays)

Table No. 4.10.
Input of bullock labour per acre (8 hr . bullock pair daysi

Size group (in acres2	Owned	Hired	Total
(1)	(2)	(3)	(4)
0.01-1.00	--	--	--
$1.01-2.50$	--	3.13	3.13
$2.51-5.00$	2.56	2.99	5.55
5.01 - 7.50	2.80	1.30	4.10
$7.51-10.00$	3.67	--	3.67
10.01-12.50	3.70	--	3.70
$12.51-15.00$	7.86	--	7.86
$15.01-20.00$ 0 O. 25.00	1.14 5.82	1.88	3.02 5.82
$\varepsilon=$ -			
\cdots.. -j.00	2.12	--	2.12
Tutal	3.72	0.90	4.62

Table No. 4.11
Total cost and output per acre (in Rso)

Size group (in acres)	Total cost	Output	$\begin{aligned} & \text { Profit or } \\ & \text { loss } \end{aligned}$	$\begin{aligned} & \text { Yield } \\ & (\text { in lbs..) } \end{aligned}$
--(T)	(2)	(3)	(4)	(5)
0.01-1.00				
1.01 - 2.50	163.90	65.00	-99.90	369.6
2.51 - 5.00	141.98	72.65	-69.33	429.0
5.01 - 7.50	135.57	170.40	+34.83	871.2
7.51-10.00	130.20	306.66	+176:46	1788.6
10.01-12.50	187.53	83.20	-104.33	536.8
12.51-15.00	254.32	91.43	-162.89	521.64
15.01-20.00	110.50	97.52	-12.98	479.6
20.01-25.00	96.03	10.00	-86.03	63.8
Above 25.00	86.01	54.67	-31.34	167.2
Total	140.06	89.79	-50,27	563.2

4.6. Bajra.

Bajra is another cereal crop extensively raised in S_{2} and S_{3} villages, and it is commonly raised as a erop mixed with redgram or e日tton. It does not appear to be an important crop in S_{1} villages.

The total cost of cultivation per aere of bajra has come to $R s_{0} 133.42$ in S_{2} and $R s_{0} 44.31$ in S_{3}. The comparatively high cost of cultivation in S_{2}, whieh is nearly 3 times the cost in S_{3}, is due to the higher level of inputs of labour and materials and also of the high rental values of land in S_{2}. For instance the cost of materials and bullock power has amountid to Rs 46.25 in S_{2} as compared with $\mathrm{Rs}_{6} 19.91$ in S_{3}. The cost of human labour amounted to $R S_{0} 32.41$ in S_{2} as compared to $\mathrm{Rs}_{5} 11.80$ in S_{3}.

The total output of bajra in S_{2} has amounted to Rs. $_{6} 113.35$ as compared with $\mathrm{R}_{6} 34.82$ in S_{3}. In both S_{2} and S_{3} there is thus a net loss per acre on cost ' C ' basis. Taking into account only the cost of materials, bullock labour and hired human labour, we find that the total output net of these costs has amounted to Rs.53.93. . ins S_{2} and $:-R_{s} 10.75$ in S_{3}. The enormous difference between the two areas S_{2} and S_{3} in respect of inputs and output for this crop has to be largely attributed to the difference in yields per acre. In S_{2} the overall yield per acre amounted to 575 lbs, the range of variatior being from 213.4lbs. to 902.0 lbs. in the different size groups of holdings. As compared with this position we find that in S_{3} the overall yield per acre has amounted te 130.1 lbs. only, the range of variation in the size groups of holdings being from 39.6 to 574.2 lbs.

The physical input of human labour has come to $19.0 \frac{0}{8}$ mandays per acre in S_{2} as compared with 7.55 mandays in S_{3}, Similarly in the case of bullock labour, the input per acre in S_{2} amounted to 6.90 bullock pairdays per acre as compared with 3.37 days in S_{3}.

Cost of cultivation of Bejra per acre (in Rs)

	S_{2}		S_{3}	
I tem	Cost	$\frac{\text { \% to }}{\frac{1}{2} \mathrm{ta} \text { ta }}$	Cost (f	$\begin{gathered} \text { to } \\ \text { tal } \end{gathered}$
(1)	(2)	(3)	(4)	(5)

1. Human labour.
a. Family labour

19.28	14.45	7.64	17.24
13.13	9.84	4.16	9.39
32.41	24.29	2.6	26.63

2. Cost of materials

Fuel and Power,

Seed	2.10	1.57	1.83	4.13
Manures and fertilisers	13.31	9.98	5.22	11.78
Bullock labour	30.18	22.62	12.32	27.81
Hirecharges for implements	0.65	0.49	0.06	0.14
Pesticides	. 6		--	--
Fuel	--	--	--	--
Interest on crop loans	0.01	0.01	0.48	1.08
	46.25	34.67	19.91	4.4 .94

3. Interest and Fent.
$\begin{array}{llllll}\text { Rental value or Rent } & 49.29 & 36.94 & 10.77 & 24.30\end{array}$
$\begin{array}{lllll}\text { Interest on capital } & 0.65 & 0.49 & 0.16 & 0.36\end{array}$
4. Land Kevenue and tesses $1.73 \quad 1.30 \quad 0.69 \quad 1.56$
5. Depreciation on capital $3.08 \quad 2.31 \quad 0.98 \quad 2.21$

Total
$133.42 \quad 100.00 \quad 44.31 \quad 100.00$

Table No. 4.13
Human labour per acre (8 hr . mandays)

Size grour: (in acres)	STRUTUM_ $=$?			STRATUM $=3$		
	$\begin{aligned} & \text { Family } \\ & \text { labour } \end{aligned}$	Hired Labour	Total	Family Labour	Hired Labour	Total
0.01-1.00	9.55	17.10	26.65	--	--	--
1.01-2.50	6.29	22.53	28.82	2.02	1.02	3.04
$2.51-5.00$	4.88	8.19	13.07	5.11	4.71	9.82
5.01-7.50	15.45	9.40	24.85	5.40	1.96	7.36
7.51-10.00	15.04	4.36	19.40	9.61	0.22	9.83
10.01-12.50	15.30	13.55	28.85	6.46	1.84	8.30
12.51-15.00	14.43	13.42	27.85	2.83	2.43	5.26
15.01-20.00	5.58	5.02	10.60	7.01	1.60	8.61
20.01-25.00	6.70	7.96	14.66	4.51	4.41	8.92
Above 25.00	1.90	13.75	15.65	0.25	9.48	9.73
Total	9.05	9.98	19.03	5.01	2.54	7.55

Table No. 4.14. Bullock labour per acre (8 hr . pair days)

Size group (in acres)	Stratum-2			Stratum - 3.		
	Owned	Hired	Total	Owned	Hired	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0.01-1.00	4.51	2.82	7.33	--	--	--
1.01-2.50	0.46	6.45	6.91	0.94	0.69	1.63
$2.51-5.00$	2.28	1.15	3.43	3.86	.--	3.86
5.01-7.50	11.99	2.13	14.12	2.77	0.14	2.91
7.51-10.00	7.57	0,42	7.99	4.82	--	4.82
10.01-12.50	11.14	--	11.14	3.34	--	3.34
12.51-15.00	10.29	--	10.29	2.61	--	2.61
15.01-20.00	4.41	--	4.41	3.88	--	3.88
20.01-25.00	4.50	--	4.50	\$.47	--	4.47
libove 25.00	2.65	--	2.65	5.83	--	5.83
Total	5.92	0.98	6.90	3.26	0.11	3.37

Total cost and output per acre (in fupces)

Size grour (in aures)	Stratum_= ?			Stratum_= 3			$\begin{gathered} \text { Yield per acre } \\ \text {-_(in lbs.) } \end{gathered}$	
	Total	- Output	Profit or	Total	Output	Profit		
	cost		Loss	Cost		Loss	S_{2}	S_{3}
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
0.01-1.00	169.90	144.44	-25.46	-	--	--	902.0	--
$1.01-2.50$	203.08	160.03	-43.05	21.32	9.80	-11.52	864.6	39.6
2.51-5.00	116.23	93.71	-22.52	46.00	47.43	- 1.43	497.2	191.4
j.01-7.50	193.35	97.73	-95.62	45.69	36.54	- 9.15	565.4	125.4
7.51-10.c0	130.61	108.59	-22.02	37.99	48.69	-10.70	591.8	224.4
10.01-12.50	179.58	177.57	-2.01	47.99	35.52	-12.47	996.6	129.8
12.51-15.00	167.27	128.90	-38.47	32.06	29.22	- 2.84	708.4	574.2
$15.01=20.00$	68.39	37.92	-30.47	68.15	22.33	-45.82	213.4	107.8
20.01-25.00	122.78	136.73	13.95	42.92	48.16	5.24	741.0	193.6
Abore 25.00	87.73	97.85	10.12	56.39	20.00	-36.39	440.0	81.4
Total	133.42	113.35	-20.07	$4 \% 31$	34.82	-9.49	575.0	130.1

4.7. Variga.

Variga is a crop coming under the description of small millets and is extensively grow $\nless n$ in the S_{1} and S_{2} villages. It is sometimes raised as a crop mixed with jowar.

The total cost of cultivation of variga per acre came to Rs. 154.91 in S_{1} and $R s_{s} 145.71$ in S_{2} : The cost of materials and bullock labour amounted to Rs 83.06 and Rs. 63.66 respectively in the two areas. The cost of human labour amounted to Rs. 24.29 in S_{1} and Rs. 27.72 in S_{2}. The total output per acre has amounted to Rs. 119.01 in S_{1} and Rss 116.81 in S_{2}, including the values of the by-product of Rs. 22.36 and ${ }^{\text {Nos }} 2.68$ in S_{1} and S_{2} respectively. On cost 'C' basis, there is a net loss of Rs. 35.90 per acre in S_{1} and Rs. 28.90 in S_{2}. The gross output per acre net of material costs, bullock labour and hired human labour, comes to $\mathrm{Rs}_{5} 24.83$ in S_{1} and Rs 41.09 in S_{2}. The grain yield of variga per acre is 633 lbs . in S_{1} and 562 lbs . in S_{2}. It varies between 1278 lbs , and 433 lbs , and between 719 lbs. and 405 lbs. in S_{1} and S_{2} respectively. The physical input of human labour has come to 15.61 mandays in S_{1} and 18.41 mandays in S_{2}. The input of bullock labour came to 6.48 bullock pairdays in S_{1} and 7.38 hullock pairdays in S_{2}.

Table No. 4.16.
Cost of cultivation of Variga per aere (in Rso)

1. Human labour

a. Family labour 13.17	8.51	15.66	.10 .75	
H. Hired labour	11.12	7.18	12.06	8.28

2. Cost of materials

Fuol and Power.

Seed	2.43	1.57	3.14	2.15
Manures \& lisers	39.46	25.49	26.63	18.28
Bullock labour	40.18	25:95	33.45	22.96
Hired charges for implements	0,99	0.64	0.30	0.21
Pestieides	-	:-	-	--
Fuel	\rightarrow	--	-	-
Interest on crop loan	--	--	0.14	0.09
	83.06	53.65	63.66	43.69

3. Interest and Rent

Rental value or
$\begin{array}{llll}\text { Rent } & 40.34 \quad 26.06 \quad 48.25 .33 .11\end{array}$
$\begin{array}{lllll}\text { Interest on capital } & 1.00 & 0.65 & 0.72 & 0.49\end{array}$
4, Land Revenue and
Cesses.
1.861 .20
$2.35 \quad 1.61$
5. Depreciation on

Capital
\$. $26 \quad 2.75$. 3.01 2.07

Total
$\begin{array}{llll}154.91 & 100.00 & 145 . \% 1 & 100.00\end{array}$

Human labour per acre (in 8 hr . mandays)

$\begin{aligned} & \text { Size Group } \\ & \text { (in acres) } \end{aligned}$	$\begin{aligned} & \text { Fami } \frac{\text { Sty }}{} \\ & \text { Labour } \end{aligned}$	$\begin{aligned} & \text { ratum }-\frac{-}{\text { Hired }} \\ & \text { Labour } \end{aligned}$	Total		 Labour	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0.01-1.00	9.24	8.41	17.65	4.96	24.31	29.27
1.01-2.50	6.15	13.55	19.70	11.12	14.72	25.84
$2.51-5.00$	6.34	10.53	16.87	8.31	9.97	18.28
5.01-7.50	6.72	9.37	16.09	9.77	5.96	15.73
7.51-10.00	14.19	3.09	17.28	12.12	4.60	16.72
10.01-12.50	15.94	8.82	24.76	11.88	6.04	17.92
12.51-15.00	14.56	2.49	17.05	7.89	8.20	16.92
15.01-20.00	8.72	4.83	13.55	11.29	8.68	19.97
20.01-25.00	7.44	6.17	13.61	10.62	8.55	19.17
Rbove 25.00	3.04	11.00	14.04	4.50	13.33	17.83
Total	7.69	7.92	15.61	8.90	9.51	18.41

Table No. 4.18
Bullock labour per acre (8 hr . pair days)

Size ${ }^{\text {roup }}$ (in acres)	Stratum - 1			Stratum - 2		
	Owned	Hired	Total	Owned	Hired	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0.01-1.00	2.57	4.59	7.16	0.80	6.80	7.60
1.01-2.50	1.65	6.27	7.92	2.50	6.83	9.33
$2.51-5.00$	1.29	4.63	5.92	3.58	3.87	7.45
5.01-7.50	3.23	3.45	6.68	5.85	4.78	10.63
7.51-10.00	7.14	0.35	7.49	5.85	0.83	5.88
10.01-12.50	10.81	--	10.81	8.32	0.49	8.81
12.51-15.00	6.61	--	6.61	6.87	--	6.87
15.01-20.00	7.02	--	7.02	8.10	--	8.10
20.01-25.00	4.82	--	4.82	6.41	--	6.41
4.bove 25.00	5.30	--	5.30	7.09	--	7.09
Total	5.25	1.23	6.48	6.69	0.69	7.38

Table No. 4.19

Total cost and output per acre (in Iss)

size rroup (in acres)	Stratum_=1			Stratum_2		Yield (in_lbs.)	
	Total Cost	Output	Profit or Loss	$\begin{aligned} & \text { Total Output } \\ & \text { Cost } \end{aligned}$	Profit or Loss	S_{1}	S_{2}
- (1)	(2)	(3)	(4)	(5) (6)	(7)	(8)	(9)
0.01-1.00	104.33	140.83	36.50	144.26106 .40	-37.86	794.2	574.2
1.61-2.50	150.27	94.63	-55.64	162.3173 .33	-88.98	501.6	404.8
2.51-5.60	127.09	97.84	-29.25	148.2899 .95	-48.33	583.0	587.4
1.01 $=7.50$	163.38	129.72	-33.66	152.5194 .26	-58.25	728.2	530.2
$7.51-10.00$	210.65	86:463	-11.4 .19 -276.89	$\begin{array}{ll} 134.68 & 89.17 \\ 115.40 & 99.47 \end{array}$	$\begin{aligned} & -45.51 \\ & -15.93 \end{aligned}$	$\begin{aligned} & 675.4 \\ & 534.6 \end{aligned}$	$\begin{aligned} & 455.4 \\ & 470.8 \end{aligned}$
$\begin{aligned} & 10.01-12.50 \\ & 12.51-15.00 \end{aligned}$	$\begin{aligned} & 358.52 \\ & 161.41 \end{aligned}$		-276.89 -14.26	127.45112 .62	-14.83	629.2	719.4
15.01-20.00	129.33	7.3 .78	-55.55	162.32105 .41	-56.91	433.4	532.4
c ${ }^{\text {c }}$. 01 - 25.co	92.38	141.33	48.95	134.9711 .1 .61	-23.36	578.6	569.8
Above 25.00	153.36	201.90	48.54	$151.61 \quad 129.95$	-21.66	1278.2	684.2
To ial	154.91	119.01	-35.90	145.71116 .81	-28.90	633.4	562.2

4.8. Ragi.

Ragi is another important crop raised in S_{2} coming under the description of millets. It is cultivated under well irrigation in S_{2}. It is generally sown during September/ October and harvested in December/January, and it is usually preceded by crops such as jowar or bajra. :

The overall average cost per acre of ragi has amounted to Rs. 330.82 of which human labour came to Rso 131.34 (39.70%) and the cost of materials and bullock power amounted to R_{5} 131:40 (39.73\%)

The gross output has come to Rs. $248: 60$ per acre involving a net loss of Rs 82.22 per acre. The gross output net of cost of materials, bullock power and hired-human labour has come to ${ }^{*}$ Rs 74.16 per acre. The overall yield per acre is 1274 lbs, the yield among size groups varying from 898. lbs to 2400 lbs. The imput of human labour per acre is 85.66 mandays and that of the bullock labour 26.86 pair days.

> | Table No. 4.20 |
| :---: |
| Cost of cultivation of Ragi per acre: |

	S_{2}	
	Cost(Rs)	\% to Total
1. Human labour		
a. Family labour	88.30	26.69
2. b. Hired labour	- 4313004	$\frac{13}{3}=\frac{01}{7}$
Fuel and Power		
Seed	6.60	2.00
Manures \& Fertilisers	35.76	10.81
Bullock labour	87.83	26.55
Hire charges for implements	- 1.18	0.36
Pesticides	--	--
Fuel Interest on Crop loans	--	
Interest on Crop loans	0.03	0.01
	131.40	39.73
3. Interest and Rent		
Interest on Capital	1.01	0.30
4. Land revenue \& Cesses	1.12	0.34
5. Depreciation on capital	6.78	2.05
Total	330.82	100.00

Table No. 4.21.
Human labour per acre (8 hr . mandays)

Sizegroup (in acres)	Family Labour	Hired Labour	Total
0.01-1.00	44.93	36.49	81.42
1.01-2.50	5.37	44.28	49.65
$2.51-5.00$	--	92.33	92.33
5.00-7.50	48.13	31.24	79.37
$7.51-10.00$	38.31	28.82	67.13
10.01-12.50	51.83	35.40	87.23
12.51-15.00	49.66	48.00	97.66
15.01-20.00	106.36	44.00	150.36
20.01-25.00	67.85	35.19	103.04
Above 25.00	--	--	-
Total	48.58	37.08	85.66

Table No. 4.22
Bullock labour per acre (8 hr . pairdays)

Size group 1(in acres)	Owned	Hired	Total
(1)	(2)	(3)	(3)
0.01-1.00	5.55	9.76	15.31
$1.01-2.50$	--	12.50	12.50
$2.50-5.00$	--	26.67	26.67
5.01-7.51	22.67	--	22.67
$7.51-10.00$	15.60	--	15.60
10.01-12.50	30.01	--	30.01
$12.51-15.00$	31.78	--	31.78
15.01-20.00	69.00	--	69.00
20.01-25.00	34.84	--	34.84
libove 25.00	--	--	--
Total	25.36	1.50	26.86

Table No. 4.23
Total cost and output per acre of Ragi
(in Rs)

Size Group (in acres)				$\begin{gathered} \text { YieId per acr } \\ \mathrm{s}_{2} \end{gathered}$
	Total Cost	Output	Profit or Loss	
(1)	(2)	(3)	(4)	(5)
$0.01-1.00$	261.70	228.09	-33.61	898
1.01 - 2.50	186.24	224.18	+37.9.4	1074
2.51 - 5.00	145.57	206.66	+121.09	1334
5.01-7.50	354.31	$\begin{aligned} & 84 \times 888 \\ & 294.83 \end{aligned}$	-59.54	1580
7.51-10.00	278.63	211.78	-66.85	1112
10.01-12.50	295.00	247.15	-47.85	1288
12.51-15.00	398.86	300.70	-98.16	1644
15.01-20.00	588.09	405.00	-183.09	2400
20.01-25.00	419.78	297.42	-122.36	1448
Above 25.00	--	--	--	-
Total	330.82	248.60	-82.22	1274

4.9. Jowar.

This study of input-output relation in the case of cultivation of Jowar is confined only to the crop sown in Sept./ Oct., and harvested in February/March because the crop sown earlier in July/iugust is mostly used as a fo-der crop. Jowar is an important cereal crop extensively raised in all parts of the project area. In the S_{1} villages; 5.1 out of the 140 sample farmers are raising the jowar crop; the area under the crop accounting for 24% of the gross aropped area. poportion Similarly in S_{2} and S_{3}, a high area is under jowar.

The total cost of cultivation of jowar per acre has amounted to $R s_{0} 183.06$ in S_{1} as compared with Rs $133 . \otimes 64$ in S_{2} and Rs. 71.04 in S_{3}. The cost of materials and bullock power amounted to $R_{6} 61.27,44.69$, and 26.03 in the three Strata respectively. . The cost of human labour in S_{1} is $R_{6} 28.47$ as compared with $\mathrm{Rs}_{6} 31.69$ in S_{2} and Rs 23.06 in S_{3}. The
rental value of owned land and rent paidout on leased lanc t. 1 together amounted to Rs. 84.63 in S_{1} and Rs. 50.20 in S_{2} and Rs. $\therefore 19.13$ in S_{3}. The comparatively high cost of cultivation of jowar in S_{1} has thus to be attributed to the high rents on land and the high cost of materials and bullock labour. The gross output of jowar including the value of the by-product came to Rs 157.21 in the S_{1} villages as compared with Rs. 107.56 in S_{2} and $\mathrm{Rs}_{6} 61.34$ in S_{3}. Ine overall position is thus a net loss in all the 3 strata amounting to Rs $2 \sqrt{88} 85$ R_{s} 26.08 and Rs.9.70 respectively in the 3 strata. The gross output net of cost of materials, bullock power and hired human labour, however, comes to $\mathrm{Rs}_{\mathbf{4}} 82.22$ per acre in S_{1} as compared with Rs. 50.98 in S_{2} and Ks 27.99 in $S_{3}{ }^{\circ}$

The grain yield of jowar per acre came to 662 lbs in S_{1} 563 lbs in S_{2}, and 28 䒜lbs. in S_{3}. The yield varies between 878 lbs. and 286 lbs . per acre in S_{1} as between the different size groups of holdings. In S_{2} the variation is between 1192 lbs and 356 lbs: and in S_{3} between 541 Ibs and 209 Ibs. The yieldbin S_{3} are thus comparatively poor.

The physical input of human labour for jowar is nearly the same in $S_{\text {humaw }}$ and S_{2} but considerably low in S_{3}. In $S_{\text {束 }}$ the total input of labour has come to 20.53 mandays of which a littlXe more than half constitutes hired labour. In S_{2} the total input of human labour is 22.78. mandays while it is only 13.4 mandays in S_{3}. The proportion of hired labour in S_{3} is considerably higher than in S_{1} and S_{2}. . In the case of bullock labour i. is not much difference to be seen between S_{1} and S_{2} on the one hand and S_{3} on the other. The total number of bullock pair days has come to 6.37 in $S_{1}, 7.36$ in S_{2} and 5.23 in $S_{3}{ }^{\circ}$

Table No. 4.24.
 Cost of cultivation of fowar per acre

Item \begin{tabular}{c}
Cost $\%$ to total

R_{0}

$\mathrm{Cosst}_{1} \%$ to Ftal

Rs_{5}
\end{tabular}

1. Human labour

a. Famiby b.Hired Labour	14.75 13.72	8.06 7.49	19.80 11.89	14.82 8.90	15.74 7.32	22.16 10.30
	28.47	15.55	31.69	23.72	23.06	32.46

2. Cost of materials,

Fuel and Power.

Seed	2.58	1.41	2.64	1.98	2.54	3.58
Manures \&						
Bullock						
Labour	35.04	19.14	33.34	24.94	18.82	26.49
Hire charges for						
implements	2.65	1.45	0.65	0.49	0.07	0.10
Pesticides		-			--	
Fuel	--	--	--	--	-	--
nterest on						
	61.27	33.47	44.69	33.44	26.03	36.64

3. Interest and Rent.

5. Depreciation on capital	4.94	2.70		3.78	2.83	1.63	2.20
	-183.06	100.00	133.64	100.00	71.04	100.00	

Table No. 4.25 .
Huian labour per acre (in 8 hr . Mandays)

	Stratum - 1			Stratum - 2			Stratum - 3 .		
$\begin{aligned} & \text { Size foxp } \\ & (\text { in actes } \end{aligned}$	Family Labour	Hired Labour	Total	Family Labour	Hired Labour	Total	$\begin{aligned} & \text { Family } \\ & \text { Labour } \end{aligned}$	Hired Labour	Total
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
$0.01-1.00$	6.85	2.08	8.93	4.38	15.38	17.96	34.98	3.33	38.31
1.01-2.50	12.05	13.57	25.62	8.62	7.53	16.15	14.28	2.52	16.80
$2.51-5.00$	9.75	10.93	20.68	28.59	7.93	36.52	11.28	4.18	15.46
$5.01-7.50$	11.05	9.92	20.97	21.42	4.38	25.80	10.18	3.03	13.21
7.51-10.00	15.10	8.45	23.55	24.82	9.68	34.50	7.45	5.74	13.19
$10.01=12.50$	14.59	6.61	21.20	--	--	--.	9.64	3.92	13.56
12.51-15.00	9.06	6.34	15.40	7.62	13.83	21.45	4.32	5.19	9.51
15.01-20.00	6.90	19.20	26.10	5.66	7.01	12.67.	5.50	5.05	10.55
20.01-25.0C	--	--	--	: 6.689	10.93	17.82	6.49	7.34	13.83
Above 25. 20	0.77	16.28	17.05	1.1.56	13.15	24.71	6.10	10.89	16.99
- Iutal	10.01	10.52	20.53	13.05	9.73	22.78	8.35	5.05	13.40

Table No. 4.26.
Bullock labour per acre (8 hr . pair days)

$\begin{aligned} & \text { Sizedroun } \\ & \text { (in acres) } \end{aligned}$	Stratum $=1$.			Stratum_=_2.			Stratum_ 3 .		
	Owned	Hired	Total	Owned	Hired	Total	Owned	Hired	Total
-- (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0.01-1.0c	--	7.10	7.10	--	5.20	5.20	0.28	5.83	6.11
1.01-2.5c	3.08	5.45	8.53	1.33	3.92	5.25	4.26	1.44	5.70
2.51-5.06	3.08	3.14		3.08	5.65	8.73	3.43	0.22	3.65
61 !	\cdots	,	A.		\because				
5.01- 10,	3.41	3.06	6.47	7.59	1.33	8.92	5.72	--	5.72
$7.51-10.00$	5.93	--	5.93	13.75	--	13.75	5.46	0.63	6.09
10.01-12.50	5.40	1.17	6.57	--	--	--	6.25	--	6.25
12.51-15.00	5.41	--	5.41	3.42	--	3.42	3.47	--	3.47
$15.01=20.00$	6.98	--	6.98	6.43	--	6.43	4.77	--	4.77
20.01-25.00	--	--	--	3.78	--	3.78	5.38	--	5.38
Above 25.00	3.78	0.74	4.52	12.41	-	12.41	0.57	--	0.57
Iotel 1	4.41	1.96	6.37	6.14	1.22	7.36	5.05	0.18	5.23

Total Cost and output per acre (in Rss).

$\begin{aligned} & \text { Size-Broup } \\ & (\text { in acres } \end{aligned}$	Stratum-1			Stratum-2			Stratum-3		Yield (in lbs.)		
	Total Cost	Output	Profit or Loss	Total Cost	Output	$\begin{aligned} & \text { Profit } \\ & \text { Or Loss } \end{aligned}$	Total Cost	Output Profit or loss	S_{1}	S_{2}	S_{3}
0.01-1.00	238.55	198.78	-39.77	126.38	124.32	- 2.06	146.56	$62.62-68 \times-2.94$	873.4	589.6	231.0
1.01-2.5c	209.33	327.84	118.51	119.98	91.74	-28.24	108.64	53.39-55.25	877.8	475.2	27.2 .8
2.51-5.00	223.28	169.77	-53.51	178.84	98.85	-79.99	83.12	49.60-33.52	781.0	517.0	"209.0
5.01-7.50	190.06	148.33	-41.73	177.92	94.58	-83.34	67.47	53.84-13.63	662.2	528.0	224.4
7.51-10.00	140.14	79.66	-60.48	143.20	196.00	52.20	69.20	88.1419 .04	286.0	1192.4	378.4
10.01-12.50	183.98	142.47	-41.51	--	--	--	61.09	59.34-1.75	536.8	--	279.2
12.51-15.cJ	149.62	131.58	-18.04	131.41	71.38	-59.53	45.92	$52.77 \quad 6.85$	512.6	356.4	235.4
15.01-20.00	150.39	201.17	10.78	88.22	81.27	- 6.95	58.41	. $32.01-26.40$	754.6	475.2	211.2
20.01-25.00	--	--	--	84.31	119.31	35.00	57.85	85.65 27.80.	--	642.4	415.8
Above 25.00	77.47	160.93	83.46	$\begin{gathered} 1.6 \\ 133.6 y \end{gathered}$	$145 . .1$	$\begin{array}{r} 119 . \\ -9.7 y \end{array}$	10.31	$1 \text { نे } 4.53 \quad 28.16$	732.6	671.0	541.2
Total	183.06	157.21	-25.85	133.64	107.56	-26.08	71.04	61.34-9.70	662.2	563.2	283.8

```
4.10. Chillies.
    Chillies is an imptrtant commereial erop raised in
```

Stratum-1 and stratum-3. The total area under the crop
forms 7.07% of the griss cropped arain S_{1} and 2.19% in S_{3}.
The total cost per acre if chillies is Ras 203.52 in
stratum-1 as enmpared with Rs 174.08 in Stratum-3. The high

- thal cost in S_{1} is due to high costs of materials and bullock pher which ameunted te Rs. 102.71 in S_{1} and Rs. 65.67 in S_{3}.

The gross nutput per acre of chillies in S_{1} has come to Rs 293.65 thus resulting in a net profit if $R=90.13$. But in S_{3} the value of gress output is only Rs. 110.22 thus involving a loss of $\mathrm{K} s$ 63.86. However, the value of output net of hired human labour, materials, and bullock labour power has come to $R s_{0} 150.06$ in S_{1} and $R s_{0} 21.27$ in S_{3}.

The verall yield per acre ef chillies has oome te 314. If lbs. as compared to 127.6 lbs . in S_{3}. The yield varied considerably as between the different size groups of holdings in both the strata, the range of variation being frim 52:8 lbs. te 389.4 lbs . in S_{1} and from 26.4 lbs te 664.4 lbs. in S_{3}.

The ver-all human labour input per acre has come to 38.59 mandays per acre in S_{1} as enmpared with 28.58 in S_{3}. The bullock labour input, which is mainly owned datack labur, has come to 5.07 and 6.92 pairdays per apre in S_{1} and S_{3} respectively.

Table 1. 4. 28.

cost cultivation of chillies per are.

Item。	Straturi-1		Stratum-3.	
	Cost (2)	$\begin{gathered} \text { to } \\ \text { (} 5 \text {) } \end{gathered}$	$\begin{gathered} -\binom{\text { st }}{4} \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & \text { to } \\ & \text { (5) } \\ & \hline \end{aligned}$
1. Fuman labour				
a. Family labour	16.67	8.20	16.99	9.96
b. Hired labour	31.88	15.66	23.28	13.37
	48.55	23.86	40.27	23.13
2. Cest of materials.				
Fuel and pover.				
Seed	12.97	6.37	19.12	10.98
Manures \& bertilisers	66.68	32.76	18.94	10.88
Hire charges for implements	0.37	0.18	0.23	0.13
Bullock labour	22.69	11.15	27.36	15.72
Pesticiajes	--	--	--	--
Fuel	--	--	--	-
Interest on rop 1nan	--	--	0.02	0.02
	102.71	50.46	65.67	37.73

3. Interest and Rent.

Rental value Rent $\quad 39.95 \quad 19.63 \quad 60.95 \quad 35.01$
$\begin{array}{lllll}\text { Interest on eapital } 1.36 & 0.67 & 0.48 & 0.28\end{array}$
4. Land Revenue and

Cesses
$\begin{array}{llll}5.39 & 2.65 & 4.39 & 2.52\end{array}$
5. Lepreciation on
-apital
$\begin{array}{llll}5.56 & 2.73 & 2.32 & 1.33\end{array}$

Table No. 4.29.
 Human :labour per acre (8 hr . mandays)

	Stratum-1		Stratum-3		
$\begin{aligned} & \text { Size group } \\ & \text { (in acres) } \end{aligned}$	Family labour	$\begin{aligned} & \text { Hired } \\ & \text { Labour }{ }^{\text {ta tal }} \end{aligned}$	Family Labour	Hired Labour	Total
(1)	(2)	(3) (4)	(5)	(6)	(7)
0.01-1.00	79.70	9.4089 .10	--	--	
1.01-2.50	114.94	4.17119 .11	9.25	11.00	20.25
$2.51-5.00$	39.63	28.3968 .02	6.51	10.68	17.19
5.01-7.50	13.43	21.0534 .48	30.12	18.08	48.20
7.51-10.00	22.43	45.4667 .89	6.01	20.96	26.97
10.01-12.50	22.14	11.1633 .30	4.28	18.68	22.97
12.51-15.00	25.18	28:09 53.90	14.30	79.99	94.12
15.01-20.00	7.67	27.9735 .64	5.01	24.45	29.46
20.01-25.00	10.72	20.6731 .39	8.09	14.83	22.92
Above 25.00	2.18	31.2333 .41	1.84	24.89	26.73
Total	9.79	28.8038 .59	7.98	20.60	28.53

Table N*. 4.30

Bullock labour per acre (8 hr . pair days)

Size group (in acres)	Stratum-1			Stratum=3		
	Owned	Hired	Tetal	Owned	Hired	Total
-- - (1)	(2)	[3	(4)	T5I	(6)	- 9 I
0.01-1.00	0.30	5.65	5.95	--	--	--
1.01-2.50	--	4.17	4.17	--	7.00	7.00
$2.51-5.00$	0.57	8.98	9.55	3.63	1.06	4.69
$5.01-7.50$	0.90	3.59	4.49	7.24	5.23	12.47
$7.51-10.00$	5.62	0.95	5.57	3.58	3.00	6.58
10.01-12.50	1.75	--	1.75	6.97	-	6.97
12.51-15.00	5.64	--	5.64	18.66	--	18.66
15.01-20.00	2.30	1.34	3.64	4.49	--	4.49
20.01-25.00	4.41	--	4.41	6.00	--	6.00
Abeve 25.00	6.13	--	6.13	7.26	--	7.26
- Tetal	4.24	0.83	5.07	5.69	1.23	6.92

Table No. 4.31.
The cost and output per acre (in Rupees)

		Stratum-1			Stratum-3			Yield per acre (in lbs.)	
Sizadreup (in zur		$\begin{aligned} & \text { Total } \\ & \text { Cost } \end{aligned}$	Output	Prefit or 100 ss	. To tal Cost	Output.	- Profit	s_{1}	s_{3}
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
0.01-1.00		399.41	148.21	-251.20	--	--	--	99.90	--
1.c1-2.50		433.09	277.78	-155.31	213.65	63.00	-150.65	200.2	74.8
$2.51-5.00$		509.74	293.64	-216.10	191.12	178.00	- 13.12	336.6	217.8
5.C1-7.50		163.82	125.57	-38.25	237.70	73.76	-168.94	140.8	85.8
7.j1-10.00		284.27	334.90	50.63	138.95	157.88	+18.93	382.8	193.6
10.01-12.50		258.10	168.80	-93.30	145.38	106.32	-39.06	171.6	94.6
12.51-15.00		250.72	56.67	-194.05	287.70	550.13	+262.43	52.8	664.4
15.41-20.00		161.24	293.81	132.57	175.06	117.86	-.57-2.5	321.2	94.6
2C.C1-25.00		171.48	229.73	58.25	196. 12	110.90	-85.22	202.4	136.4
Above 25.00		206.80	259.37	152.57	150.25	21.05	-129.20	. 389.4	26.4
Toctal	\checkmark	203.52	293.65	. 90.13	174.08	110.22	-63.86	314.4	127.6

4.11 Groundnute

Groundnut is another important commercial crop raised in all the three strata. The area under the crop forms 3.90 per cent of the gross cropped area in $S_{1}, 6.47 \%$ in S_{2}, and 3.77% in S_{3}. However, it is also raised as a mixed crop generally with redgram.

The total cost of cultivation per acre has come to Rs. 126.13 in S_{1}, Fs. 133.71 in S_{2} and Ps. 127.09 in S_{3}. Thus there is no appreciable difference in the total cost, in the three strata. Cost of human labour amounted to Ps. 32.52 in S_{1}, $R S_{32.22}$ in S_{2} and RS. 26.69 in S_{3}.

The gross output per acre of groundnut has come to Rs. 119.6. in S_{1}, Rs. 110.90 in S_{2}, and Rs, 81.26 in $\mathrm{S}_{3}{ }^{\circ}$. Thus there is anpver all net of Ps. - 3.50 in $^{S_{1}}$ - Rs. $^{-22.81 ~ i n ~} S_{2}$, and Ps. ${ }^{45.83}$ in S_{3}. However the value of output net of cost of materials, bullock power and hired. human labour has come to Rs. 48.24 in S_{1}; Rs. $_{6} .35 .67$ in S_{2}) only Ps. $^{\text {and }} 1.18$ in $\mathrm{S}_{3}{ }^{\circ}$

The overall yield per acre in S_{1} has come to 535 lbs. as compared with lbs. in S_{2} and 365.2 lbs. in S_{3}. The yield varied considerably as between the different size groups of holdings, the variation from 334.4 lbs. to 107581 lbs .人 in S_{1}, from 332.2 lbs. to 477.4 lbs . in S_{2} and from 198.0 lbs. to 521.4 lbs. in S_{3}.

The overall human labour input per acre has come to 32.95 mandays in S_{1} as compared to 25.40 in S_{2}) and $21: 29$ in S_{3}. Hired labour forms substantial portion of the human labour input in all the
three strata. The bullock labour input per acre has come to 2,65 pairdays in $S_{1}, 3,96$ pairdays in S_{2} and 5.65 pairdays in S_{3}.

Table 4,32

Cost of cultivation of groundnut per acre

1. Human labos:						
Family labou*	8.24	6 6'53	13.69	10,24	12.72	10.01
Hired labot:	24, 28	19 j 25	18.53	18;86	13.97	10,99
	$3{ }^{3} 52$	$25 ¢ 78$	32.22	24.10	-26.069	21.00
2. Cost of mater	2. Cost of mater					
				\%		
Seec:	28,01	22.22	22.56	16.87	2931	23 06
Manures \& Fer.						
Builock labour.	12.20	9.67	20,52	15.35	20:99	16.52
Hire charges for						
implementi.	0.30	0.24	0.03	0.01	0304	0803
Pesticides					-	
Fuel:						
Interest on Crop						
	47.11	37.36	56.70	42.40	66.11	52.02
3. Interest and						
Rentol value or						
Reni.	40.27	31.93	39.18	29130	29168	23136
Interest on capital	0.99	0.78	0.41	0.31	0.36	0.28
4. Land Revenue						
5. Depreciation on $\begin{array}{lllllll}\text { capita } & 2.31 & 1.83 & 2.29 & 1.21 & 2.00 & 1.57\end{array}$						
Total	126.13	100.00	3.71	100.00	27.09	00.00

Human labour per acre (in 8 hre Mandays)

Bullock labour per acre (8 hr - pairdays)

Size group (in acres)	owned	$\frac{\operatorname{tum}-1}{\text { Hired }}$	Total	Owned	$\frac{\text { Stratum_2 }}{\text { Hired }}$	Total	Owned	$\frac{\text { Stratum_3 }}{\text { Hired }}$	Total	
0.01-1.00	-	-	-	-	4.30	4.30	5.00	-	5.00	
$1.01-2.50$. 0.38	1.33	1.71	-	2.00	2.00	5.88	3.13	9.01	
2.51-5.00	-	1.67	1.67	1.30	-	1.30	5.64	-	5.64	
5.01-7.50	1. 32	1.20	2.52	5.31	-	5.31	5.95	-	5.95	
7.51-10.00	. 2.53	0.77	3.30	4.74	0.02	4.76	3.68	-	3.68	
10.01-12.50	2.87	-	2.87	3.28	-	3.28	3.42	-	3.42	
12.51-15.00	2.25	-	2.25	2.94	-	2.94	3.81	-	3.81	
15.01-20.00	2.64	-	2.64	5.10	-	5.10	3.75	-	3.75	
20.01-25.00	2.15	-	2.15	3.61	0.02	3.	1.21	3.14	4.35	
Above 25.00	2.99	-	2.99	3.92	-	3.92	11.73	0.47	5,65	
Total	2.36	0.29	2.65	3.88	0.08	3,96	5.18	. 0.47	5.65	

Table_4. 35

Total cost and output per acre (in Rupees)
-

Size" group (in acres)	Total cost	$\frac{\text { Siratum }}{0}$		Total cost	Stratum-2	Profit or Loss	Total cost	$\frac{\text { Strat }}{\text { Output }}$	Profit or Loss
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0.01-1.00	\cdots	-	-	185.38	109.33	-76.05	151.00	80.00	-71.00
$1.01-2.50$	133.10	99.35	-49.71	135.64	102.00	-33.64	170.91	111.00	-59.91
2.51-5.00	92.66	24.00	-28.66	166.05	130.44	-35.61	165.54	66.92	-98.62
5.01-7.50	147.16	128.61	-18.55	143.60	104.24	-39.36	127.39	100.80	-26.59
7.51-10.00	140.57	104.45	-36.12	127.25	107.47	-19.78	124.02	71.45	-52.57
10.01-12.50	137.12	233.00	100.88	114.28	102.49	-11.79	62.22	66.69	4.47
12.51-15.00	168.45	196.96	28.51	141.90	102.49	-39.41	111.96	70.50	-41.46
15.01-20.00	133.45	155.Cs	21.64	138.04	114.74	-23.30	83.44	48.46	-34.98
20.01-25.00	97.82	91. ≤ 7	-16.35	126.03	128.70	2.27	72.25	129.09	56.84
Above 25.00	114.15	102.16	-11.99	170.30	98.66	-71.64	249.56	100.67	-148.89
Total	126.13	119.63	-6.50	133.71	110.90	-22.81	127.09	81.26	-45.83

(contd.)

Table No. 4.35 (Contd.)

Yield (in lbs.)

Size-group (in aeres)	S_{1}	S_{2}	S_{3}
1	(19)	(12)	(13)
c.01- $\quad .00$	--	442.2	332.2
1.01-2.50	422.4	413.6	415.8
2.50-5.00	334.4	358.6	255.2
5.01-7.50	528.0	387.2	382.8
	- 420.2	391.6	336.6
10.01-12.50	1075.8.	338.8	275.0
12.51-15.00	847.0	466.4	343.2
15.01-20.00	741.4	420.2	198.0
20.01-25.00	360.8	477.4	521.4
Above 25.00	468.6	332.2	519.2
Total	535.0	423.8	365.2

4.12. Virginia $\frac{1}{1}$ barino.

Virginia tobacco is the nost imprtant of the comnercial crops raised in stratum-1. The area under the erep constitutas 11.24% of the gross cropped area in the stratum.

The total cost of cultivation of Virginia tnbacce per acre has come to Ro. 459.55 of which human labour amounted to R=. 97.29 and cost of materials and bulloek power to Rs. 214.65 The gross mutput per acre has come to $R=614.89$. Thus there is an berall net profit of fis 155.34 per acre. The gross utput netofoost of materialk, bullock power, and hired human laonur ambunted ta Rs 327.48. One interesing feature of this crop is that the cultivatfors incur 1 sses very rarely. There is less only in the thira size group. In all the - ther size groups of holdings, there has been prefit.

The everall yieдld per acre has come te 659.2 lbs. the range ef variation between different size griups of holdings being from 281.6 lbs. te 946.0 lbs.

The verall human labour input per acre has come to $\$ 3.96$ mandays of which family labour amounted te"-only 20.30 mandays. Thus mare than two-thirds of the human 1
labour has been hired labour. It can be seen from the table that in the cultivation of virginia tobace, bired huma labour was used in large quantities in all the size
groups of heldings.
The verall bulleck labour input has eome te 10.68 pairdays per acre, 88% of which has been owned bullock labour.

Table No. 4.36.
Cost of cultivation of Virginia tobaceo per acre

Item.	Stratum - 1.	
	Cost (fiso)	\% to total
「15	(2)	\cdots
1. Human labour.	:	
a. Family labour	24:53	5.34
b. hired labour	72.76	15.83
	97:29	21.17
2. Cest of materials.		
Fuel and Power.		
Seed	25.16	$5: 47$
Manures and fertilisers	66.43	14.46
Bullock labour	44:10	8.59
Hire charges for implements	12.14	2.64
Pesticides	--	--
Fuel	66.82	14.54
Interest on crop Inan	--	--
	214.65	45:70
3. Interest and Rent.		
Rental vaiue or Rent	110.48	24.04
Interest on capital	6.93	1.52
4. Land Frevome \& Cesses	5.67	1.23
5. Depreciation on tapital	24.55	5.34
Total.	459.55	100,00

Tabあe No. 4.38.
Bullock labour per acre (8 hr . pairdays)
Size greup
(in acres)

Table IT. 4.39.
Total cost and nutput per acre (in Rs_{o})

Sixstap (in acres)				
0.01-1.00				
1.01-2.50	459.91	530.7\%	7 T .81	501.6
2.51-5.00	404.67	391.35	-13.32	281.6
$5.01-7.50$	408.66	474.94	66.28	519.2
7.51-10.00	532.80	756.00	223.20	882.2
10.01-12.50	478.98	522.74	43.76	431.2
12.51-15.00	466.14	643.54	177.40	558.8
15.01-20.00	500.20	785.63	285.43	946.0
, $20.01-25.00$	--	--	--	--
Above 25.00	299.46	375.90	76.44	475.2
Total	459.55	614.89	155.34	659.2

4.13. Country tobacce.
 Of the 140 selected cultivators in stratum-1, only 21 are raising country tobacce. The area under the crop forms 4.4% of the total crepped area in the stratum.
 The total cost of cultivation of country tobacco per acre has come to Rs, 194.65. Human labour accounted for Rs, 48.53 and the cost of materials and bullock power to Rs.76.62. The other important component of cost is Xent and rental value which accounted for nearly 30% of the total cest.

The estimated gross output. per acre has come to Rs, 260.79, thus there is a net profit of Rs 66.14 per acre. While the cost per acre is lower in the higher size groups as compared "to the lower size groups, the same cannot be siid in regard to output "or profit. The gross output net of hired human labour, cost of materials and bullock power, has come to Rs. 163.03. The overall yield per acre has come to 414.6 lbs, the range of variation in the size groups of holdings being from 257.4 lbs to 655.6 lbs .

The nverall human labour input per acre has come to 28.42 mandays. Nearly 50 per cent of this has been hired human labour. The overall bullock labour input per acre has come to 7.02 pairdays, of whioh owned bullock labour formed 76 per cent.

Table Ne. 4.40
 Cest of cultivation of country tobacce (in $R s_{0}$)

Iters	Stratum - 1.	
	Cost(Rs)	\% to total
(1)	(2)	(3)
1. Human labour.		
. a. Family labour	27.39	14.07
b. Hired labour	21.14	10.86
	48.53	24.93
2. Cest of materials,		
Seed	17.28	8.88
Manure: and fertilisers	30.90	15.87
Bullock labour	26.77	13.75
Hire charges for implements	1.67	0.86
Pesticides	--	-
Fuel	--	-
Interest on crop loans	--	-
	76.62	39.36
3. Interest and rent.		
Rental value or rent	57.84	29.71
Interest an capital	0.81	0.42
4. Land revenue \& Eesses	4.18	2.15
5. Depreciation on capital	6.67	3.43
Tatal	194.65	100.00

Table Nn. 4.41.
Human labour per acre (8 hr . mandays)

		tratum	
Siz rrdup			
(in acres)	$\begin{aligned} & \text { Family } \\ & \text { labour } \end{aligned}$	Hired Labour	Total
(1)	(2)	(3)	(6)
0.01-1.00	33.36	20.80	54.16
1.01-2.50	--	--	-
2.51-5.00	20.38	22.68	43.06
5.01-7.50	15.79	2.81	18.58
7.51-10.00	17.75	13.02	30.77
10.01-12.50	31.48 .	--	31.48
12.51-15.00	19.77	59.22	78.99
15.01-20.00	7.47	16.38	23.85
20.01-25.00	21.84	1.75	23.59
Rbove 25.00	7.81	22.06	29.87
Total	13.69	14.73	28.42

Table No. 4.42.
Bullock labour per acré (8 hr . pairdays)

Size group (in acres)	Stratum - 1.		
	Owned	Hired	Total
0.01-1.00	--	8.16	8.16
$1.01-2.50$	--	--	--
$2.51-5.00$	0.15	7.87	8.02
5.01-7.50	--	1.55	1.55
7.51-10.00	5.21	1.46	6.67
10.01-12.50	6.13	--	6.13
12.51-15.00	6.28	--	6.28
15.01-20.00	4.63	$2 \cdot 34$	6.97
20.01-25.00	5.00	--	5.00
Above 25.00	7.91	0.12	8.03
Total	5.37	1.65	7.02

4. 14. Non-Farm Enterprises.

The relative importance of the various non-farm activities in the rural area of Nagarjuna Sagar. Project, bnth from the point of view of the number $n f$ households engaged in the enterprises and fromithe point f view of their contribution to the total income $f f$ the region have already been explained in chapterII. Some of the more important of these activities or enterprises have also been selected for the purpose of making detailed input-output studies If the 12 activities or enterprises selected for the purpose, 10 are secondary enterprises, the most important of them being weaving, tailoring, cobblery and Wice"dills. The two tertiary activities selected are transport and laundry services. ${ }^{1 .}$

All the secondary enterprises with the exception of rice mills are found to be household enterprises, the work place ar the place of operations being the residential house and the empleyment of hired labour also being small in these cases. No attempt has therefore been made to evaluate fixed capitai in the form of land and buildings invested in the enterprises. and ne estimate of interest cost on fixed capital has been made. The present value of tools and implements used in the enterprises is however estimated for the purpose of calculating depreciation of thibkind of alapital as a cost. We have considered that 5% depreciation allowance is most reasonable under the conditions in which the enterprises are working.

1. Primary enterprises other than cultivation of land such as dairying, rearing of sheep and goats, rearing of pigs and poultry keeping are alss important enterprises in the Project area. It is however found that dairying is rarely carried on as an independent enterprise and is in most cases, asseciated with cultivation of land. A detailed account of input-output relation in dairying is already included in the studies of Farm Enterprises. Hence this is not selected for study as a non-farm enterprise. The ther primary enterprises were not selected for detailed input-output study because of eertain inherent limitations of such studies under the conditions prevailing in the rural areas in India.

It is also neeessary to point out here that the no attempt has been made to evaluate family labour empleyed in the enterprises, and the labour cost estimated therefore constitutes the wage bill for hired labour only. The major item 'of cost -f production estimated has thus come to be the cost f material inputs only. The type of income estimated is accordingly
i) Net income received after deducting, from the "gross value of production, cost of material inputs, wages paid for hired labmur, maintenance and repair of capital and depreciation. All these cetails are given in the tableiNo4.44. Weaving:- Out of the 45 sample households engaged in weaving, it is found that the value of fixed capital came to Rs.93.11 per household. This is the value of looms, spindles and other tools used in the enterprises and does not include the value of land and buildings. Family members supply the bulk of labour used in the enterprise. It is found that only 2 households are exm employing hired labour. The expenses of Weavers consist Wainly of the outlay on yarn, dyes and chemicals and maintenannance cest of tools and implements, the total cost per household amounting to Rs, 405.48. The important types of clothing commodities produced by heavers are saries, dhoti"es and towels. The net income received during the year in this enterprise has ameunted to Rs. 172.45 per household. It is however to me noted in this connection that only 3 households are selely dependent on weaving as an eccupation. Among others, 23 households are heving this only as a subsidiary occupation. The amount of net income received from other sources is in fact nearly twice the income received from weaving, amounting to Rs 306.3. Most of the households derive considerable ameunt of income from cultivation and agricultural easual labour.

It may be relevant here to make a reference. to the fact that a high preportion of the sample households de business an a purely contractual basis, for instance 18 out of the 45
households are doing business exclusively on a contractual basis. 21 households are doing business exclusively on a commercial basis and 6 households combine both types of business.

The difference between the contractual type and commer-
of business is that in the case of the commencial lype, cial type, the weavers depend on their own resources for purchase of rat materials, prnduction and marketing. If they are working under contracts, they will be mainly supplying labour and receiving wages in return.
Ambercharka: This enterprise is found to be mostly localised in two villages in Stratum-1. Out of the total number of 18 households have ingmercharka spinning as an eccupation in these villages, 17 are found to be located in one village namely Madala. A sample of 5 households is drawn for the purpose of Input-output study, but it is found that 2 out the 5 households, are not using Ambercharka. These Ambercharkas are ... supplied by the Government in 1958 at a price of Rss.120/- each. It is interesting to note here that only women workers are engaged in working on the Ambercharka. The working expenses in this enterprise consist mainly of outlay on cotton which come te only Rs. 5/- per household, the total cost per household amounting to Rs .15.19. The value of the gross production came t- Rs, 14.3 per household and net loos of Ris 0.85. It is generally felt that this enterprise is not at all a remunerative one. Tailoring: Tailoring is an important enterprise in the project area and it is found that 172 households are engaged in this in the sampled villages. A sample of 15 households was taken for the purpose of this study and 14 of them were finally studied. Tailoring is not onlw essentially a household - ccupation, but it is also a men's eccupation. Out of the 17 persons employed in these 14 household enterprimses, 16 are men workers and 1 is a male child worker. Emplayment of hired labour is not a feature of this enterprise. It may
also be pointed out that the work of tailoring is a skilled one and it is also of purely contracutal type.

The value of sewing machine and other tools came to Rs. 228.1 per heusehold, which is a little less than the current market value of the sewing machine. The cost of material inputs is the most important if the cost and the costsef maintenance and repairs comes next in order of importance, the total cost amnunting to Rs, 56. 46per household. The gross vaoue of production come to Rs. 278.63 per hnusehold and net income to Rs 222.17. As in the case of all other fural occupations, the tailoring households also have other sources of income. In fact, the majority of $n \stackrel{\text { them }}{ } \cdot 8$ eut of 14 , have tailoring only as a subsidjary occupation, cultivation of land, and agricul-. tural casual labour are two of the most important other occupations of these housenolds, the net income from other sources amounting to N .353 .2 per household.

Cobblery: Cobblery is an important enterprise widely practised by the Harijan Caste in the Project area, particularly from the point of view the number of households engaged in this enterprise. It is found that 485 households are engaged in mexbex cobblery in the samplel villages. Λ sample of 22 households has been selected and studied. This occupation like tailoring is alse essentially a men's occupation, and hired labour is not used in the enterprise. The value of tools and implements used in the enterprise is estimated to be only Rs. 4.23 per household and this is therefore one of the rural enterprises requiring little capital investment. The working expenses of the households consist mainly of expenditure on leather which forms about 70% of the gross value of output. The total cost of preduction has amounted to Rs. 66.86 per households while the gross value of production amounted to $R s_{8} 89.66$. per household. Net income per household thus comes to a small amount of Rs. 22.8 only. These households, however receive considerable amount

- f income from other oscupations amounting R. 291.30 per
household. The most important of other occupations are agricultural casual labour, and cultivation of land.

Gotinsmithy: It is found that there are 43 households of goldsmiths in all the samplex villages put together. A sample of 10 of these households was taken for study and 9 of them were studied. The work of goldsmiths is essentially skilled work and is undertiken ow contractual basis. It. is also completuly a men's job. The survey of the households shows that the value of capital invested in tools and implements has come to Fs .57 .53 per household. The main items of cost for the goldsaiths is the cost of charcoal and chemicals needed. for the processing of silver and gold. The total cost per household is estimated a.t. Rs. 44.44 and the gross value of production at $R=259.11$. The net income thus amounts to m. 214.67.per household. The chief other occupationx of the goldsmith householdXis cultivation of land, Fhe net income received from other occupations has amounted to Rs. 371.00 per household.

Basket making: The total number of households engaged in basket making in sample\% villages came to 120 and a sample of 15 households was taken for study and 14 households were actually studied. This is an occupation undertaken almost exclusively by one caste by name Brukulas. Both men and women workers of the families, devote their labour to basket making. The ert of basket making may be considered a skilled one but the incomes earned by the basket makers rarely represent returns to skilled labour as in the case of weavers, or tailors or goldsmiths. The value of implements used in this enterprise is pretty small and does not exceed Rs. 4/- per household and in this respect the enterprise is similar to cobblery. The cost of material inputs in the enterprise (value of bamboo and canes of suitable trees purchased as raw meterials) is most important
-f the cost items and contitutes more than 90% of the total cost of production and nearly 25% of gross value of production. The gross value of production is estimated at Rs $171 \% 0$ per household and the net income at Rs, 119.01 per household. The basket making households also receive considerable income from ether eccupations like cultivation, casual labour and from rearing of $\beta_{i g s}$, amounting $R s_{0} 166.98$ per household. Poftery: The number of pottery households in the samplex villages is the same as the number of basket making households (120). A sample of 16 households was taken for study and 14 households were actually studied. Pottery is an occupation in which men, women and children of the family work and no kired labour is employed. The art of making pots of clay may be considered a skilled art but as in the case of basket makers, the returns which potters receive for their labour are rarely high. A peculiar feature of this household occupation is that * the female workers specializex in selling the product while the men workers specialisf in the processing of clay.

The turning wheel of potters is the most important implement of the enterprise. The value of capital invested in the form of tnols and implements is estimated at Rs, 30. 35 per household. As in the case of basket making, the cost of material inputs consisting mainly of outlay on clay and fuel constitutes more than 90% of the total.cost and nearly 20% of the gross value of production. The gross value of production per household comes to Rss 146.79 and net income to Rs, 104.63. Here mya again, as in the case of other enterprises the majority \boldsymbol{f} households have other occupations like agricultural casual labur and cultivation, the net income from which amounts to Rs, 289.00 per household.

Blacksmithy: Generally one or two households of blacksmiths will be found in each village. Of 37 households of blacksmiths situated in the sampled villages, a sample of 18 was taken
and 16 households were studied. The occupation of blacksmiths like that of goldsmith , is exclusively a men's occupation. In a few cases, hired labour is sometimes emplloyed to assist the men workers. The art of blacksmithy is a skilled one and the earnings of blacksmiths are reasonably high and it is mainly a contractual type of work.

The value of investment in implements and tools is estimated at ks. 1 Cor 17 per household, the important tools of blecksmiths being the blow-pipe and the hammer. The working expenses in the enterprise consist mainly of outlay on fuel and maintenance and repairs and wages for hired labour. The total cost is estimated at Ps, 37.76 per household while the gross value of production is estimated at Rs .410 .88 per househotld. The net income received is thus R. 379.27 per household and it is considerably higher than the net income received from other sources. The chief other occupations of blacksmith households are cultivation and agricultural casual labour, the net income from such sources amounting to Rs. 207.16 per household.

Carpentry:-

It is found triat there are more households of carpenters thetn either of goldsmiths or blacksmiths in sampled villages. Out of the total number of 150 households enumerated in the samplex village, a sample of 34 households was taken for study and the actual number of households studied was 28. This occupation is also essentially a men's occupation requiring skill and is also mainly a contractual type of work. Although this is a household occupation,
considerable amoúnt of hired labour is employed in this enterprise. In fact, it is found, that wages paid for hired labour constitute the most important item of working expenses. The value of tools and implements used in the enterprise come to Rs. 84.16 per household. The total cost per household is estimated at Ps. 55.89 and the gross value of produm ction at Rs. 481.16. The net income amounts thus to Es. 425.27 per household, the amount being highest In comparison with all the selected enterprises for the study. The principal other occupations of carpenter households are cultivation, agricultural labour and blacksmithy, the net income from these sources amounting to Rs. 193.04 per household.

Iransport

The means of transport available in sampled villages, other than the double bullock cart availam ble with the farmers; are the single bullock cart, the horse-drawn vehicle and the rickshaw. A sample of 10 households having such means of transport was taken and studied. This occupation is also purely men's occupation, and the ratio of family workers to the vehicles is generally 1:1 and no hired labour is employed. The value of capital invested in the means of transport is estimated at Bs .281 .85 per household and this isherghest figuse for the enter. prises selected for study, with the exception of rice mills. The working expenses in the enter. prise consist mainly of the maintenance of the animals and vehicles and constitute \mathcal{N} the most important item of cost. The gross value of production from the enterprise is estimated at Rs.744.0 per household and the total cost at Rs.340.06. The net earnings

[^4]thus amount to Fs. 403.94 per household. The transport houscholds have also other important occupationbthe most important of which seems to be arricultural casual labour, the net income from such

sources amounting to Rs.162. 8 per household.

Laundry: $\%$

Laundry is an important service in which a large number of households are engaged in the sampled villages. Out of ths 410 houscholds enumerated, a sample of 10 households is drawn for the study. Laundry service or washing of clothes is an essential service in all the villages. It is a family occupation in which men, women and children work. The Laundry households constitute by tbemselves a separate caste by name Rajakas and the service is rendered ona contractual basis, the payments for the laundry services being on a monthly or on an annual basis and are also made in kind. The capital investment in the enterprise does not exceed Ps. 11 per household. The majority of householdsdo not $s \in \in m$ to have investyed capital in the Ironing tools. The working expenses of households include mainly the cost of washing soda, bleaching power, lime, starch, earthen pots etc., and constitute nearly 90% of the total cost. The gross value of production is estimated at Fs. 278.9 per household and the total cost at fis. 30.15 per household. The net income received thus amounts to 喕. 248.75 per households The chief other occupations of the laundry houscholds are cultivation of land and agricultural casual latour, the net income from such sources being Ps. 213.15 per household.

Abstract

Rice Mills: It is found that there are 7 households owining ricemills in the samplea villages. An attempt was made to investigate all these 7 households but only 3 of them responded to our enquiry. This is the only enterprise which is regarded as either non-household enterprise, which makes use of power, the source being either diesel oil or electricity and hired labour plays an important part in $n^{\text {the running }}$ of these mills. The value of capital invested in the mills is estimated at Rs. 6442.25 per household. The total cost of operation is estimated at Ps. 1269.95 per household, of which depreciation on fixed capital constitutes the most important item. The gross value of production* is estimated at Ps. 1382.00 per household, the net income, thus amounting to fs. 112.05 per household. The comparatively low returns in this enterprise are to be attributed to the high capitalisation. $\mathrm{T}_{\text {hc }}$ principal other occuaptions of these households are cultivation of land and retail trade, from which they receive net income amounting Rs. 1299.00 per household.

[^5]Input - Output Structure in Non-Farm Enterprises.

Name of enterprise	$\begin{aligned} & \text { No. of } \\ & \text { h. ho } \\ & \text { saulele } \end{aligned}$	$\begin{aligned} & \text { No. of } \\ & \text { h.h. } \\ & \text { analysed } \end{aligned}$	No. of family workers	No. of hired employee	Fixed Capital	Gross value of produation.	Cost of material inputs	ages paid for hired labour	Depreciaticn	Maintenance and repairs.
(1)	(2)	(3)	-(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
1. Weaving	48	45	111	$4^{4}(93 .$		$\begin{aligned} & 26007.00 \\ & (577.93) \end{aligned}$	17209.10	245.00	209.50	450.00
2. Amberchark	ca 5	3	3	($\begin{aligned} & 360.00 \\ & (120.00) \end{aligned}$	$\begin{aligned} & 43.00 \\ & (14.33) \end{aligned}$	15.56	--	18.00	12.00
3. Tailorin ${ }_{5}$	15	14	17	-	$\begin{aligned} & 3193.24 \\ & (228.09) \end{aligned}$	$\begin{aligned} & 278,63 \\ & 3900.87 \end{aligned}$	326.69	--	159.66	280.00
4. Ccbbiery	2:	22	33	-	$\begin{aligned} & 93.15 \\ & (4.23 \end{aligned}$	$\begin{aligned} & 1972.50 \\ & (89.66) \end{aligned}$	1400.18	--	4.66	66.00
5. Goldenithv		9	9	-	$\begin{aligned} & 517.79 \\ & (57.53) \end{aligned}$	$\begin{aligned} & 2332.00 \\ & (259.11) \end{aligned}$	271.08	--	25.89	27.00
6. Baske: nak	sins 15	$14^{\text { }}$	27	-	$\begin{aligned} & 47.74 \\ & (3.41) \end{aligned}$	$\begin{aligned} & 2395.38 \\ & (171.10) \end{aligned}$	682.50	--	2.39	42.00
7. Pettery	16	14	43	-	$\begin{aligned} & 424.86 \\ & (30.35) \end{aligned}$	$\begin{aligned} & 2055.14 \\ & (146.79) \end{aligned}$	505.05	--	21.24	42.00
8. Blacksmith		16	26	1	$\begin{aligned} & 2706.75 \\ & (169.17) \end{aligned}$	$\begin{aligned} & 6574.00 \\ & (410.88) \end{aligned}$	214.00	78.75	135.34	80.00
9. Carpentry		28	41	3	$\begin{aligned} & 2356.36 \\ & (84.16) \end{aligned}$	$\begin{aligned} & 13472.34 \\ & (481.16) \end{aligned}$	139.00	825.00	117.82	1.40 .00
10. Transport	15	10	10	-	$\begin{aligned} & 2818.50 \\ & (281.85) \end{aligned}$	$\begin{aligned} & 7440.00 \\ & (744.00) \end{aligned}$	1241.25	--	140.93	200.00
11. Laundry	10	10	30	-	$\begin{aligned} & 108.26 \\ & (10.83) \end{aligned}$	$\begin{aligned} & 2789.00 \\ & (278.90) \end{aligned}$	266.13	. --	5.41	30.00
12. Mills	7	3	4	5	$\begin{aligned} & 19326.75 \\ & (6442.25) \end{aligned}$	$\begin{aligned} & 4146.00 \\ & (1382.00) \end{aligned}$	952.50	1450.00	966.34	300.00

Table No. $4.48+$ (contd.)
Input - Output Structure in Non-Farm Enterprises (contd.)

Note: Figures in brackets are averages per household.
h.h. = household.

CHAPT T V .

EGTILTE OF THE AGRICUITURAL OUTPUT IIN THE PROJECT $\triangle R E A$ FOR
1050-60

5.1 General.

In order to estimate the benefits that are likely to arise from irrigation in the $\mathbb{N a}$, garjunasagar Project area, it is first of all necessary to estimate the probable net increase in aricultural production over the existing level consequent on the provision of irrization. The problems involved in making a reliable estimate of this quantity are several. We have to make estimates of the position at present in respect of the extent of cultivated area, intensity of cultivation, cropping pattern, crop yields, input requirements of crops, etc., and also changes in these respects after the Project area is brought under irrigation. The present and the following chapters are devoted to a detailed examination of these problens and estimates of net increase in the total agricultural product in the region. Reference will be made in a subsequent chapter to the indirect and other benefits from irrigation, benefits from hydro-power generation, flood control and such other aspects of the Nagarjunasagar Project.

5.2 Cultivated area and Cropped area.

The Joint Report of the Andhra and Hyderabad States on the liandikonda Project gives estimates of the gross and net commanded areas and the area proposed to be brought under irrigation under the Fight Bank Canal and the Left Bank Canal of the Nagarjunasagar Project, but does not provide any information regarding the extent of area actually cultivated at present in the villages included in the proposed ayacut. It has also not been possible for us to get consolidated figures of :iltivated area and cropped area in these villages, which a::e distributed over several
taluks and districts. These statistics should be available with the. Revenue Department but are not published separately for the Project area. In the course of our investigations, we have, however, collected information regarding the cropping pattern in the villages included in the proposed ayacut to the extent it was available at the headquarters of the taluks. We could not unfortunately get uniform data about the cropping pattern for all the villages and for the year 1959-60. Hence, we could not rely on this information for estinating the extent of cultivated area. Statistics of cultivated area in the villages are also available in the 1951 census, published in the District Census Hand-books. These are however given as average extents for the 5 -year period preceding the 1051 Census. The reliability of data, as given in the Hyderabad State Census, is also open to doubt. Further, there is no way of knowing the changes that might have taken place in the extent of the cultivated area subsequent to 1051. Accordingly, we have not nade use of this information also for the purpose of estimating the cultivated area.

It is possible to make a reasonably dependable estinate of the extent of cultivated area and cropped area in the ayacut villages by making use of the data we have collected. One method of doing this is to first estinate the total number of households in the region and then multiply it by the average cultivated area per household as obtained from our Census Survey of the sampled villages. ${ }^{1}$

[^6]Lnother method of estimation is first to take the total cultivated arear of the resident households in the sampled
asostained in our cenkms surven. reeiprocals 4 villages λ and then to blow up thpsetotals by, appropriate sampling fractions to arrive at the total cultivated area in the region. A third method consists in first taking the total cultivated areas as reported by the village officcrs (and collected in our village schedules), and
thens reciprocals of then blow it up by appropriate sampling fractions to arrive at the total cultivated area in the region.

The estinates arrived at by following the various methods described above are given in the following table $N_{0.5} 5 \cdot 1$

> Table"No. 5.1
> Estimate of cultivated area (in acres)

For the sake of comparability, all the 5 estimates given in the above table are nade only. for the villages included in the frane used for the purpose of sampling. As already explained, we have not accepted the estimates based on Methods 1 and 2. We have also not been able to accept the estimate based on Method 5, as the figures reported by the village officers are based on old settlenent surveys for some villages and as information is not provided for some of the other villarges. The reliability of information given for some of the un-surveyed villazes under the old zamindari systen is also open to doubt. We are thus led to choose between the two estimates based on Methods 3 and 4. The estimate based on Method 3 also appears to be defective as the estimate of total number of households in the non-sample villages for the year 1950-60 could not be obtained independently. We have, therefore, finally accepted the estinate based on Method 4. According to this nethod, the total extent of cultivated area is estinated at 5.14 lakh acres in Stratum-1, 5.86 lakhs in Stratuma -2 and 5.03 lakhs acres in Stratum-3, giving a total acreaze of 16.03 lakhs.

It is now necessary to make an estimate of the cultivated area of the villages in the proposed ayacut which are not included in the trame usece for the purpose. of sampling i.e. villages with nore than 5,000 popuiation, unfinhabited villages anci towis as per 1051 Population Ccasus. The information we have collected at the headquarters of taluks in the Project area covers these areas also. The fizures of cropped arca available for these areas are corrected for intensity of cropping in order to obtain the cultivated area, the intensity of cropping obtained in our Irarn Surveys being used for this purpose. The details of the se calculations are presented in the followin; ta:le No 5.2

Teble ifo. 5.2

Iter	S_{1}	S_{2}	S_{3}
1. Intensity of cropping	1.04	0.53	1.11
2. Gross cropped area in towns (in acres)	33,334	15,127	2,000
3. Cultivated area in towns (in acres)	29,167	15,436	1,333
4. Gross cropped area in villases with population over 5,000 (in acres)	33,233	17,833	20;040
5. CuItivated area in villages with population over 5,000 (in acres)	36,811	13,202	18,872
6. Gross cropped area in unwinhabited villarges	-	11,706	10,059
7. Cultivated area in un-inhabited villajes	-	11,044	0,062
Total gross-cropped arese	63,617	44,671	33,093
Total cultivated area	65,973	45,582	20,817

The final estimates of the total cultivated area and cropped area in the three strata nay be now given as follows:

$$
\begin{array}{llll}
\mathrm{S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} & \text { Total }
\end{array}
$$

1. Cultivated $5,70,432 \quad 6,31,025 \quad 6,22,763 \quad 13,34,170$
2. Cropped areá6,02,661
$6,10,237.6,11,267 \quad 10,13,215$

5.3 Estimate of cropping pettern.

As stated above, the data we have collected from the headquarters of various taluks regarding the cropping pattern, 大rent 2 not vailable for all the villages for the year 1959-60. The data collected do not also
give sufficient details regarding the cropping pattern, especially about the variety of nixed crops raised. The allocation of areas under nixed-cropping to individual crops as reported by the village officers and suppiled to the headquarters of taluks may be also subject to considerable error. We have therefore attempted to ostimatertie cropping pattern.based on the Farm Surveys we have conducted. For the purpose of our Farm Surveys, we have taken samples of cultivator households in each villageg. ${ }^{2}$ 保 final wix crop pattern estimated. for each of the strata is given in the following tables 5.3, 5.4 and 5.5.

STRATUM-I
Table Ne. 5.3
Estimated Crop battern

Name of the crop	$\% \text { intotalara }$	$\begin{gathered} \text { Area } \\ \text { (in acres) } \\ \text { (2) } \end{gathered}$	
(1)	(2)	(3)	
1. Irrigated Paddy	1.13	6810.07	
2. Unirrigated Paddy	2.65	15970.52	
3. Jowar	13.02	83090.41	
4. Variga	22.09	133127.81	
5. Bajra	3.00	13070.03	
6. Korra	0.23	1637.45	
7. Coriander	3.16	10044.00	
8. Ragi	0.12	723.19	
0. Chillies	4.60	27722.41	
10. Groundnut	3.53	21575.26	
11. Virginia tobacco	9.88	59542.91	
12. Country tobacco	7.90	47610.22	
13. Cotton	0.75	4510.96	
14. Greengran	3.11	18742.76	
15. Bengalgram	0.40	2410.64	
			(Contd.)

[^7]STHTYT-1
Table ITe. 5.3 (Contde)
Estimatod Crop Pattern

Nane of the crop		$\begin{gathered} \begin{array}{c} \text { irea } \\ \text { (in acres) } \end{array} \\ (3) \end{gathered}$
16. Horsegran	0.03	130.80
17. Vegetables	0.65	3217.30
10. Podders	0.30	5363.63
15. Miscellaneous	0.41	2470.01
20. Jowar + Redgran	15.53	93593.25
21. Jowar + Others	0.40	2410.64
22. Variga + Others	0.43	2591.44
23. Bajra + Castor	2.20	$1^{3} / 253.54$
24. Bajra + Redgram	1.33	3015.30
25. Redgran + Unirrigated pacidy	d 0.50	3013.31
26. Groundnut + Others	1.03	6207.41
27. Bajra + Cotton	0.03	130.30
Total	100.00	6,02,661.00

STRITUM-2
Table HO , 5. 4
Estinated Crop Pattern

Crop	$\% \text { intotalarea }$	$\begin{gathered} \text { Area } \\ \text { (in acres) } \end{gathered}$
(1)	(2)	(3)
1. Irrigated paddy	1.07	6,626.37
2. Unirrizated paddy	0.35	2,167.50
3. Jowar	11.23	60,545.03
4. Variga	8.44	52,267.82
5. Bajra	2.36	14,615.17
6. Korra	0.57	3,520.04
7. Coriander	0.30	1,357.36
3. Ragi	2.01	12,447.67
-. Chillies	0.30	2,415.22

STRATUM -2.
Table in en 5×4 (Con tale)
Estimated Crop Pattern

Table NO. 5.5
STRATUM-3.
Estimated Crop cattern

Nane of the crop	If in intalarea	$\begin{gathered} \text { Area } \\ \text { (in acres) } \end{gathered}$
(1)	(2)	(3)
1. Irrigated Paddy	7.20	50,324.24.
2. Jowar	23.16	1,04,660.70
3. Variga	2.55	17,627.381
4. Bajra	4.18	23,304.06
5. Korra	1.14	7,080.44
6. Chillies	3.97	27,443.30
7. Groundnut	3.27	22,601.43
3. Country tobacco	- 0.10	601.27
9. Cotton	0.22	1,520.70
10. Greenzram	11.40	79,357.45
11. Bengalgram	0.65	4,493.24
12. Horsegram	1.41	9,746.06
13. Vegetables	0.03	553.02
14. Castor	0.30	2,626:81
15. Fodders	0.05	345.63
16. Jowar + Cucumber	17.60	1,21,662.99
17. Jowar + Redgram etc.	0.23	1,035.55
18. Jowar $\#$ Greengran	0.22	-1,520.70
10. Jowar + zreengram etc.	- 1.22	8,433.46
20. Bajra + Jowar	0.02	- 138.25
21. Bajra + Redgram	0.32	2,2\$2,05
22. Bajra + Gottio	0.07.	433.00
23. Korra + Redgram	0.36	2,438.56
24. Korra + Cotton	0.03	6,774.42
25. Groundnut + Redgram	12.04	$33_{2} 228.55$
66. Greengran + Redgrarı	1.84	12,710.31
27. ${ }^{\text {Castor }+ \text { Hobsegran }}$	0.11	760.30
23. Redgram + pillipesara	0.02	138.25
Total	700.00	6,01,267.00

It may be seen from the tables on cropping patterns that there is a great deal of diversification in crop production in all the three strata. In S_{1}, the total number of crops raised is found to be 27 including 3 aixed crops. In S_{2}, the number is found to be 30 which includes 13 rixed crops. In S_{3}, the number is 23 which includes 13 mixed crops. The leading
 in order of importance of acreage under crops, are variza, jowar aixed with redgram or others, jowarex as an unmixed crop, virginia tobacco, chillies, groundnut, pulses, coriander, bajra and un-irrigated paddy. In S_{2}, the leading crops are variga mixed with jowar and unmixed, jowar mixed with redgran and others and unmixed, groundnut, korra nixed with redgram and unaixed, bajra, ragi, and castor. In S_{3}, the leading crops, in order of importance, are jowar mixed with pulses and unmixed, greengram and other pulses, groundnut mixed with redgram and unnixed, irrigated paddy, bajra and chillies.

5.4 Crop yields, prices and gross output

The total agricultural output may be now estimated by taking into account the crop yields, prices and the value of the m-products. The data about crop yields and prices are obtained from the Farm Surveys we have conducted. The prices are average values arrived at by dividing the value of the produce by the crop yields. The details are given in the following tables Nos. 5.6 to 5.11 .

Straturn - 1

Table IIO.5.6

Stratum - 2.

Table No. 5.7

Average Prices at which the Product is valued (1959-60)

$\xrightarrow[(8)]{\substack{\text { Praduct } \\(1))^{2}}}$		$\frac{\text { Ps. per } \mathrm{md} . \text { of } 822 / 7 \mathrm{Ibs} .}{(2)}$
1. Paddy	:	13.77
2. Black Paddy	:	11.27
3. Jowar	:	13.23
4. Bajra	:	13.66
5. Korra	:	10.09
6. Variga	:	11.80
7. Redgram	:	12.67
8. Greengram	:	12.51
9. Horsegram	:	17.12
10. Bengalgram	:	18.28
11. Groundnut	:	19.83
12. Codriander	:	33.82
13. Chillies	:	61.55
14. Virginia Tobacco	:	87.14
15. Country Tobacco	:	23.36
16. Castor	:	15.92
7. Cotton ${ }^{-1}$!	27.42
18. Ragi	:	13.40
19. Sannhemp	:	23.65
20. Vegetables	:	3.79
21. Gingelly.	:	30.94

BPR.

Stratur - 3:

Table No.5.8

Average Prices at which the Product is valued (1959-60)

Probluet	Rs. ${ }^{\text {per }}$	mamiof 82 2/7 lbs.
1. Paddy (Irrigated)		12.50
2. Venctate,		13.45
3. Jowar		12.76
4. Bajra		13.55
5. Korra		11.51
6. Variga		10.76
7. Redgram		14.23
8. Greengram		13.84
9. Horsegram		13.42
10. Bengalgram		14.81
11. Groundnut		17.85
12. Coriander		36.78
13. Chillies		69.49
14. Country Tobacco		36.68
15. Castor		13.16
16. Cotton		24.50

Stratum - 1. Table No. 5.9.

Main Product value of main product z x byprdduct and
Total utput per acre.

Extent Crop acres.			$\begin{aligned} & \text { Yield } \\ & \text { min } \\ & \text { maunds } \end{aligned}$	Value per acre (in Rs)			
			Main product	Byproduct	Tetal output $14) \pm(5$		
(2)				(3)	(4)	(5)	(6)
1. Irrigated paddy	9.95		21.24	265.92	37.24	303:16	
2. Black paddy	y 18.71		6.18	73.17	21.16	94.33	
3. Jewar	152.10		5.92	87.85	32.95	126.80	
4. Variga	228.88		7.72	96.65	22.36	119.01	
5. Bajra	29.67		3.71	49.31	8.32	57.63	
6. Korra	8.50		1.99**	23.56	7.18	30.74	
7. Coriander	22.80		5.77	152.91	5.81	158.72	
8. Ragi	1.02		8.34	88.24	27.45	115.69	
9. Chillies 8	881.51		3). 82	292.87	0.78	293.65	
10. Groundnut	44.99		6.54	114.38	5.25	119.63	
11. Virginia tobacco	129.66		8:01	611.64	3.25	614.89	
12. Sountry tobacco	50.75		5.09	257.15	3.64	260.79	
13. Cotton	31.65		1.72	48.62	--	48.62	
14. Greengram	35.37		2.81	62.03	--	62.03	
15. Bengalgram	3.90		2.89	43.52	--	43.52	
16. Horsegram	0.49		4.00	61,32	-	61.32	
17: Vegetables	5.30		35:66	100.56	--	100.56	
18. Fodders	10.83		--	51.43	--	51.43	
19. Miscellaneou	us 3.80		--	92.63	--	92.63	
20. Jowartredgram	146.42	Jowar Redgram	$\begin{aligned} & 4.28 \\ & 1.08 \end{aligned}$	76.81	29.87	106.68	
21. Jowar +o thers	s 4.10	Jowar Coriander	$\begin{aligned} & 0.26 \\ & 0.73 \end{aligned}$	20.20	58.85	79.05	
22. Variga+0the	ers3.55	Variga Coariander	$\begin{array}{r} 4.37 \\ r \quad 0.04 \end{array}$	55.77	11.27	67.04	
23. Bajra+Castor	or20.25	Bajra Castor	$\begin{aligned} & 2.22 \\ & 0.16 \end{aligned}$	31.34	9.21	40.55	
24. Bajra+Redgram	28.42	Bajra Redgram	$\begin{aligned} & 1.01 \\ & 1.14 \end{aligned}$	27.47	7.68	35.15	
25. Redgram+ Blackpaddy	3.90	Redgram Blackpaddy	$\begin{array}{r} 3.28 \\ y \quad 7.06 \end{array}$	124.00	25.51	149.51	
26. Groundnut+ Others	11.25	Groundnut Castor Cotton Redgram	$\begin{aligned} & 5.96 \\ & 0.23 \\ & 0.04 \\ & 0.61 \end{aligned}$	115.52	8.18	123.70	
27. Bajra+ cotton	1.50	Bajra Cotton	$\begin{aligned} & 3.01 \\ & 3.03 \end{aligned}$	125.66	20.00	145.66	

Mein Product per acref Value or main product: by product and total output per acpe

BPR.

It may be seen that from the point of view of gross output per acre, the leading crops in S_{1} are virginia tobacco (Rs.614.0), irrigated paddy (Rs. 303.2), chillies (Ps.203.7), country tobacco (Rs. 260.3), coriander (Es.153.7), un-irrizated paddy w mixed with redgran (Rs.140.5), bajra mixed with cotton (Rs.145.7), jowar (Ps.126.0) and ground mi-niked with other crops (Rs. $123 . \%$ The gross output per acre for the majority of crops is found to be less than Ps. 100/\%. In S_{2}, the leading crops, according to gross output per acre, are found to be chillies, (Rs.407.0), virginia tobacco (Rs.371.6), vegetables (Rs. ${ }^{2} 87.8 .8$. 8), Rag1 (Rs.240.6), irrigated paddy (Rs.241.8), country tobacco (Rs.159.6), and variga mixed with jowar (Ps.136.5). In S_{2} also, the gross output per acre in the case of majority tweother of crops is less than Rs. 100/-. In \mathbf{B}_{3} according to the same criterion, the leading crops are in order of importance, irrigated paddy (Rs.335.3), country tobacco (Rs_{s} 205.0) , jowar mixed with redgram (Rs.197.6), jowar mixed with greengram (Rs.155.5) groundnut mixed with redgran (Rs.135.3) and chillies (Rs.110.2). All the other crops give an output of less than Is.100/- per acre.
5.5 Input structure and total cost of cultivation.

Complete details of the input structure for all the crops and the total cost of cultivation are given in the following tables Nos. 5.12 to 5.14.

Stratur-1 Table N.0.5.12 V.

NoBirf $=$ fuel ; Pest $=$ Pesticide.

Table No. 5. 13 .
Value of inputs per acre in 1959-60 (in 1ss) (Contd.)

Crop	Extent (in acres)	$\begin{aligned} & \text { Human } \\ & \text { Family } \\ & \text { labour } \end{aligned}$	$\begin{aligned} & \text { labour } \\ & \text { Hired } \\ & \text { labour. } \end{aligned}$	Bullock labour	Seed	Manures etc.	Hire charges	Depreciation	Interest on crop lean
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
31. Korra + Jowar etc.	15.8.	16.53	$3.52{ }^{\prime}$	26.45	2.66	-	0.57	1.61	-
32. Korra + Redgrar stc.	41.38	$17 \cdot 17$	4.66	30.21	2.18	-		1.72	0.01
33. Korra + Cotton	20.02	17.26	4.38	19.95	2.95	-	-	1.56	0.72
34. Korra + Castor	11.63	21.61	3.03	26.15	2.05	0.52	-	1.10	.
35. Coriander + jowar	2.35	15.69	6.32	30.84	13.68	3.51	-	2.23	,
36. Groundnut + Red,ram	23.69	19.34	10.93	12.46	26.48	2.16	-	1.29	0.09
37. Groundnut + Cas ${ }^{\text {Por }}$	9.50	15.37	13.36 9	27.34 9.50	32.77	6.50	0.23	1.91 0.85	-
38. Groundnut + Cotton	8.10 12.75	$\begin{aligned} & 27.67 \\ & 16.52 \end{aligned}$	9.38	9.50 19.10	24.07 1.57	-	0.23	0.85 2.63	- .

Table No. 5.14
Stratum-3:
Value of Inputs per acre in 1959-60 (in Rupees)

CROP	Extent in (Acies)	Family Hired labour labour	Bullo ck labour	Seed	$\begin{aligned} & \text { Manu- } \\ & \text { res } \end{aligned}$	$\begin{aligned} & \text { Hire } \\ & \text { cha- } \\ & \text { rges } \end{aligned}$	Depreci ation	$\begin{aligned} & \text { Int ond } \\ & \text { crop low } \\ & \text { peodte } \end{aligned}$	Land Revenue	Rent or Rental	Interest on Firad	Total inputs
		(35 - ${ }^{4}$		(6)	(7			-10)		value	eeprital	
1. Paddy	195.12	56.6161 .55	72.96	29.46	28.22	0.10	5.44	2.38	6.99	95.98	1.00	360.69
2. Jowar	419.39	16.647 .64	18.56	2.54	4.27	0110	1.66	0.11	0.92	20.98	0.32	73.74
3. Viriga	59.67	9.467 .10	20.24	2.46	13.17	0.02	1.76	0.47	0.75	17.43	0.31	73.17
4. Bajra	72.56	7.644 .16	12.32	1.83	5.22	0.06	0.98	0.48	0.69	10.77	0.16	44.31
5. Korra	23.90	$5.94 \quad 3.15$	9.25	1.50	2.93	--	0.71	0.53	1.01	12.85	0.09	37.96
6. Chillies	4.63	16.9923 .28	27.36	19.12	18.94	0.23	2.32	0.02	4.39	60.95	0.48	174.08
7. Groundnut	61.49	12.7213 .97	20.99	29.31	15.30	0.04	2.00	0.47	2.25	29.68	0.36	127.09
8. Country Kobacco	4.50	32.6228 .89	40.95	19.56	3.33	--	3.40	1.20	2.26	51.33	0.72	184.26
9. Cotton	2.00	4.9524 .86	16.82	2.50	--	--	2.23	--	3.02	5.00	0.63	60.06
10. Greengram	253.50	$8.65 \quad 5.45$	12.27	3.25	8.00	0.10	1.48	0.28	0.81	21.16	0.23	61.68
11. Bengalgram	15.77	$7.70 \quad 2.87$	14.86	6.66	--	--	1.38	0.10	0.41	25.81	0.28	60.07
12. Horsegram	26.25	10.581 .32	13.90	2.24	--	--	0.96	0.08	0.66	11.83	0.15	41.72
14. Castor	9.15	3.617 .00	3.99	2.13	--	-	0.93	--	0.90	7.68	0.19	26.43
15. Fodders	11.90	$9.04 \quad 5.22$	1.33	9.92	--	--	0.07	0.58	--	21.09	0.01	47.26
16. Jowar+でucumber	419.08	12.0913 .06	21.30	2.61	4.69	0.05	2.38	0.25	1.09	32.23	0.42	90.17

Stratum-3:
Value of inputs per acre in 1959-60 (in Hupees)

Pr $C_{2.0 p}$	$\begin{aligned} & \text { Extent } \\ & \text { in } \\ & \text { (acres) } \end{aligned}$	$\begin{aligned} & \text { Family } \\ & \text { labour } \end{aligned}$	Hired labour	$\begin{aligned} & \text { Bullo- } \\ & \text { ck } \\ & \text { labour } \end{aligned}$	Seed	$\begin{aligned} & \text { Manu- } \\ & \text { res } \end{aligned}$	Hire charges	Depreci ation	Inter on crop tou protur. etiont	Land Reve nue	Rent or Rental value	Interest on fived Sop	Total inputs
C-	(2)	(3)	145	$\underline{5}$	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(3)	(714)
17. Jowr+Redgramete	I¢. 50	13.51	22.69	30.15	2.15	11.20	--	3.31	2.10	1.46	10.90	0.54	98.01
18. Jowar+Greengr m .	$\begin{aligned} & 11.00 \\ & -27.03 \end{aligned}$	$\begin{array}{r} 8 \cdot 10 \\ -8-70 \end{array}$	$\begin{array}{r} 16.65 \\ -16.05 \\ \hline \end{array}$	15.79 15.79	2.32	-	Orit	$=1.71$	0.91	0.56	46.18	0336	92.56
19. Jowar+Greengran	61.93	28.16	7.21	18.79	2.45	3.32	0.81	2.52	0.14	0.99	37.44	0.46	102.29
20. Bajra + Jowar	0.5	18.29	3.27	11.43	2.55	--	--	0.35	--	1.94	10.61	0.04	48.48
21. Bajra +Redgram	6.25	11. 45	1.12	13.88	2.24	--	--	1.11	--	0.41	4.29	0.22	34.72
22. Bajra + Cotton	1.75	4.07	3.77	17.79	2.57	--	--	0.74	--	0.82	4.00	0.09	33.85
23. Korra + Redgram	5.90	17.58	2. 11	17.45	3.06	8.47	--	1.75	--	1.27	29.94	0.24	81.87
24. Korra + Cotton	15.00	10.54	3.10	11.65	3.08	7.67	--	0.99	0.03	1.18	14.47	0. $¢ 9$	52.30
25. Groundnut + P. Gram	¢37.49	10.78	21.77	14.98	29.59	6.93	--	1.74	0.25	2.29	38.91	0.31	127.55
26. Greengram+Redgran	65.65	18.97	9.08	11.56	3.81	13.02	0.17	2. 19	0.35	1.08	42.61	0.35	103.18
27. Castor + Horsezrean	1.00	43.39	--	8.96	5.00	--	--	1.17	--	0.56	5.00	0.14	64.22
28. Redgram + Pilli pesara	1.00	$46.52{ }^{\circ}$	1.85	18.69	1.62	--	--	0.18	1.00	--	50.00	0.03	119.89

The infornation is collected in the Farm Surveys we have conducted. It may be seen that the important inputs in the case of alnost all the crops are human labour, matcrials including bullock labour and fucl, and rent or rental value. The total cost of cultivation per acre is comparatively high in S_{1} for crops like virginia tobacco, country tobacco, irrigated paddy, and vergetables. In S_{2}, the total cost of cultivation per acre is comparatively high for crops like vegetables, chillies, ragi, irrigated paddy and virginia tobacco. Sinilarly in S_{3}, the total cost of cultivation per acre is high for crops like irrigated paddy, vegetables, country tobacco and groundnut.

5.6 Value added to naterial inputs, profits and different types of income.

The details of input-output structure and owr
values of output collected in Farn Surveys are also studied for the purpose of deternining the contribution of various crops to the regional incones of the three strata and returns accruing to land and capital invested by the farmers and to the labour input of farm fanilies. Gross value added, per acre, is found to be highest in the case of virginia tobacco in S_{1}, amounting to Rs. 402.2. Next in order of inportance are chillies, irrigated•paddy, and country tobacco. In S_{2}, the inportant crops from this point of view appear to be virginia tobacco, chillies and irrigated paddy. On the other hand, in S_{3}, the leading crops appear to be irrigated paddy, jowar mixed with redgran, and country tobacco. We thus find that in all the three strata,
crops like yirginia tobacco, country tobacco, irrigated paddy, and chillies are the nost profitable crops. Estimates of farm fanily labour incone, farm business income and farn investrient income also reveal that these crops are the nost valuable crops. For instance, it is found that farm business income per acre in S_{1} is Fs .263 .0 in the case of virginia tobacco and Is. 147.2 in the case of chillies. In S_{2}, farr business income per acre is highest in the case of chillics anounting to Rs, 223.8 and in the case of the next important crop virginia tobacco, it anounts to Rs. 150.7. In S_{3}, the naxinum anount of farm business incone is Rs, 124.5 in the case of jowart Redrran. Next in order of irportance are found to Meddy be Jowar + Greengran and irrigated giving paddy farm business income amounting to Rs. 117.53 and Rs. 107.26 respectively. Details are given in tables Nos. 5.15. to 5.17.

Crop (1)	Value of total output (2)	Total inputs Cost C (3)	let Frofit on loss \qquad	Farm fanily labour incone (5)	Harm Business incore (G)	Invest- ment inconc (7)
1. Irr. Paddv	303.16	339.75	- 36.63	7.03	38.56	54.:5
2. Black Padajy	34.33	140.06	- 45.73	- 20.25	13.26	$1.7)$
3. Jowar	125.30	153.61.	- 26.01	- 14.34	42.30	23.53
4. Variga	110.01	154.01	- 35.00	- 22.63	12. 20	- 2.0t
5. Bajra	57.63	106.72	- 40.00	- 34.75	0.11	- 5.23
6. Korra	30.74	54.14	23.40	- 20.15	3.77	0.52
7. Coriander	156.72	157.40	1.32	22.20	65.52	44.74
S. Ragi	115.60	217.36	-101.59	7.50	55.30	53.21
O. Ghillies	203.65	203.52	00.13	106.00	147.23	130.55
10. Ground That	110. 63	126.13	6.50	1.74	43.00	34.76
11. Virginia tobbu neco	614.50	453.55	155.34	179.07	262. 3	232.46
12. Country toby ${ }^{\text {a- }}$	260.73	104. 65	66.14	93.53	150,21	122.32
13. Cotton	40.62	74.35	- 25.73	- 16.07	2.37	- 7.20
14. Greengram	62.03	112.77	50.74	- 37.02	3.87	- 0.05
15. Bengalgram	43.52	107.53	- 64.01	- 50.40	-17.53	31.11
16. Horsegram	61.32	57.72	3.60	3.21	31.05	3.970
17. Vegetables	100.56	320.80	220. 24	-114.00	- 50.42	-155.76
10. Fodders	51.43	124. 27	-72.04	- 63.55	- 3.34	- 12.75
1). Miscellaneous	02.63	354. 27	-261. 64	- 22.07	- 2.10	-240.07
20."Jowar * Rgei	106.69	104.02	1.77	16.45	61.72	47.05
21. Jowart0thers	70.05	122.10	- 43.14	- 26.21	- 1.47	- 15. 50
22. Varbga+0thers	67.04	126.19	- 50.15	- 44.20	-14.16	- 23.11
23. Bajratcastor	40.55	73.14	- 32.51	- 19.83	0.02	- 4.60
2A. Bajrat Fedsram	3.5 .15	50.65	- 23.50	- 13.50	0.56	- 0.35
25. Kiedg ramotilack	140.51	151.:38	- 2.47	16,70	55.23	36.11
25. Ground Kut+oth	ers 123.70	105.17	17.53	32.73	64.15	40.06
27. Bajratcotton	145. 65	70.41	75.25	00.09	110.46	05. 32

: $2:$

N.B:-F.L.I.: Family iabour income; F.B.I.: Farm Business incomes FaIeI.: Faxm investment income

Crop	Iand Revenue	Rent or rental value	Interest on Fixed Capital		Total
	(II)	(12)	(73)		(14)
1. Irri get Jo Paddy	7.50	87.12	0.36		261.64
2. Blacia Paidj	1.89	53.88	0.16		118.72
3. Jowar	1.67	39.03	0.59		107.98
4. Varina	2.35	48.25	0.72		145.71
C. Bajra	1.73	49.29	0.66		133.42
6. Korra	1.09	37.13	0.55		132.77
7. Coriander	2.97	46.27	0.49		108.14
8. Rasi	1.12	$59.17{ }^{\prime}$	1.01		330.82
9. Chillies	4.44	68.84	1.70		402.58
10. Groundiut	2.91	39.18	Q. 41		133.71
11. Vir jinia tobacco	7.26	62.92	-5.85		292.15
12. Country iobacco	3.52	56.32	0.89		197.89
13. Cotton	2.06	. 27.80	0.33		59.24
14. Ereengraim	1.29	31.99	0.88		68.33
15. Berselgram	0.07	21.48	0.27		40.50
16.. Horsupram	1.34	35.99	0.37	'	61.30
17. Vegetables	1.11	161.96	1.32	,	711.11
18. Caster	0.93	16.67	0.23		55.63
19. Gin ${ }^{\text {celly }}$	0.95	24.77	0.09		47.61
20. Fodders	4.22	56.77	0.69	,	86.12
21. Arikalu (Varagu)	1.44	20.00	0.07		52.04
22. Jowar + Red.gram	1.38	3.41	0.25		48.48
23. Jowar + Redgram etc.	Ex82 1.09	19.15	0.23		55.38
24. Jowar + Greengram	0.23	9.38	0.22		38.09
25. Veriga + jowar	1.39	38.56	0.54		169.39
26. Jajra + Eastor	1.50	35.34	0.20		74.55
27. Зajrr + hedgram	1.44	. 41.84	0.22		81.26
28. Pajru + Redgrem etc.	1.31	25.24	0.23		73.27
29. Bajua + Others	3.07	35.51	0.48		67.18
30. Korre + Jowar	0.83	18.40	0.29		883.47
31. Korra + Jowar etc.	0.75	19.22	0.19		71.50
32. Koria + Redgram etc.	0.83	23.65	0.26		30.69
33. Korra + Cotton	1.24	24.79	0.27		84.04
34. Korra + Castor	1.45	27.93	0.15		73.12
35. Corirnder + Jowar	2.56	26.32	0.32		101.52
36. Groundnut + Red gram	2.03	29.42	0.22		104.42
37. Groununut + Castor	2.10	34.05	0.23	133.63	5807208
33. Ciomncinut + Cotton	3.29 1.47	45.22 13.41	0.13 0.49	120.39	73exace

Types of Income per acre of various crops (in Rs.)

crop	Value of total ourput	Value of total inputs	Net Prom fit(or		FGBuIn business income	FClizan in resthua income.	Fanmbur Haxame rent paid	$\frac{\text { Gross }}{\text { Valueg added }}$	$\frac{\text { to materials }}{\text { Net }}$
Trieigated Pisdy	- 335.65	--35.	-745.44	31.17	107.26	50.65	128	---795---	- $210{ }^{\text {cos }}$
Ircigated Pindy	335.65	360.69	-25.44	31.17	107.26		128.15	204.51	199.07
24. Jowar	64.36	73.74	- 9.38	7.26	25.38	8.74	28.56	38.89	37.23
3. Variga	0.3.c2	73.17	- 9.25	0.21	8.11	-1.35	17.95	28.03	26.27
4. Bajra Korra	$\begin{gathered} 34.82 \\ 18 ; 22 \\ 18.82 \end{gathered}$	$\frac{44.31}{37.76}$	$\begin{array}{r} 9.49 \\ -19: 74 \end{array}$	- 1.85	$\begin{array}{r} 8.65 \\ -\quad .86 \\ -8: 86 \end{array}$	1.01 -8.80	9.08 0.866	15.39 4.54	14.41 3.83
6. Chillies	1i0.22	174.08	-63.86	-46.87	12.96	-4.03	14.56	44.57	42.25
7. Groundnut	81.26	127.09	-45.83	-33.11	-6. 82	-19.54	- 3.07	15.62	13.62
8. Country Tobacco	204.99	184.26	20.73	53.35	98.51	65.89	105.40	141.15	137.75
9. Cotton	40.18	60.06	-19.88	-14.93	- 9.30	-14.25	- 9.30	20.86	18.58
10. Greengram	16.61	61.68	-45.07	-36.42	-17.85	-26.50	-15.03.	-7.01	-8.49
11. Rengal gram	37.03	60.07	- 23.04	- 15.34	- 6.37	-14.07	10.75	15.51	14.13
12. Horsegram	38.93	41.72	-2.79	7.79	19.73	9.15	19.77	22.79	81.83
13. Vegetables	103.97	240.62	-136.65	-30.00	-22.78	-128; 72	31.64	52.78	49.53
14. Castor	19.61	26.43	- 6.82	- 3.21	4.66	1.05	4.66	13.49	12.56
15. Fodders	38.66	47.26	- 8.60	0.44	10.87	1.83	21.54	27.41	27.34
16. Jowar+Cucumber	77.91	90.17	-12.26	-0.17	27.84	-15.75	32.48	49.26	46.88
17. Jowar+Redgran et	197.E9	98.01	99.58	113.09	124.53	111.02	124.53	154.09	150.78
18. Jowar+Greentiã	$155 . \leq 5$	92.56	62.89	70.99	117.53	109.43	117.53	137.34	135.63

Table No. $5 \cdot 17$ (conta)

Stratum-3		Types of income per acre of various crops(in Rupees) (Contd)						
OPF Coup.	Vaiue of total output	Value of total inputs	$\begin{aligned} & \text { Net pro- } \\ & \text { fit or } \\ & \text { loss } \end{aligned}$	Fartur tamily laboun	FCBTHT busuress income.	Fajoun Fain insin argh intidme + invostweit rent income paid	$\frac{\text { Value added }}{\text { Gross }}$	$\frac{\text { materials }}{\text { Net } .}$
--------15---------------	(2)	(3)	(4)	5	(6)	C75----785	(9)	(10)
19. Jowar+Greengiram ntc	70.40	102.29	-31.89	-3.73	29.90	$1.74 \quad 34.16$	45.03	42.51
20. Bajra +Jowar	65.12	48.48	16.64	34.93	45.58	$27.29 \quad 45.58$	51.14	50.79
21. Bajra+Redgram	13. 99	34.72	-17.73	- 6.28	-3.37	-14.82-1.77	0.87	-0.24
22. Bajra+Cotton	36.41	33.85	2.56	6.63	10.72	6.6510 .72	16.05	15.31
23. Korra+Redgram	EJ. 84	81.87	-61.03	-43.45	-15.07	-32.65-13.28	-8.14	-9.89
24. Korra + Cotton	23.13	52.30	-29.17	-18.63	-6.64	-17.18-3.97	1.33	0.34
25. Groundnut+Redgram	130.33	127.55	2.78	13.56	51.31	$40.53 \quad 52.78$	78.83	77.09
26. Greengram+Redgrad	32.10	103.18	-71.08	-52.11	-12.40	-31.37-9.15	3.54	1.35
27. Castor+Horsegram	+0.01	64.22	-24.21.	19.18	24.32	-19.07 24.32	26,05	24.88
28. Nercrame	50.00	119.89	-69.89	-23.37	-23.34	-69.86 26.26	29.69	29.51

Estinates of total agricultural output, total input, total net profit (or loss), total farn business incone etc. for the Project area as a whole may be now given straturn-wise in ten following table No 5.18

Table No. 5.13

(In crores of Bs.)

Details are presented in tables Nos. 5.19 to 5.21.

FETMATPE OF CROPPRD KIRA, TOMEL OUTPUT, TOTAL INPUTE TYPDS OF ITCOMM (COETD.)

Stratum- $1 \quad$ Table yo. $5.19($ Conte $)$.

N. B. :- L. $\mathrm{R}_{0}=$ Land novomue

TacaleNo. 5.20 (eonta) of incoracsetce (in Bs)

Table No.5.21			
Stratum-3 Estimates of total cropped area, total output total inputs various types of incomes etc.			
crop	Estimated total area(in acs)	Value of total output	Value of total inputs
(1)	(2)	(3)	(4)
1. Irrigated Paddy:	$\begin{aligned} & 50324 \cdot 24 \\ & 79357.45 \end{aligned}$	$\begin{gathered} 16871201.46 \\ 13181.27044 \end{gathered}$	$\begin{aligned} & 18151450.13 \\ & -189467.52 \end{aligned}$
2. Jowar	194660.79	12528368.44	14354286.65
3. Variga	17627.31	1126737.65	1289790.27
4. Bajra	28894.96	1006122. 51	1280335,68
5. Korra	7880.44	143581.62	299141.50
6. Chillies	27443.30	3024800,53	- 4777329.67
7. Groundnut	22604.43	1836835.98	2872797.01
81 Country fobacco	691.27	141703.44	127373.41
9. Cotton	1520.79	61105.34	91338.65
10. Greengram	79357.45	1318127.84	4894767,52
11. Bengalgram	4493.24	. 166384.68	269908.93
12. Horsegram	9746.86	379445.26	406639.00
13. Vegetables	553.02	57497.49	133067.67
14. Castor	2626.81	51511.74	69426.58
15. Fodders	345.63	13362.06	16334.48
16. Jowar+Cucumber	121662.99	9478763.55	10970351.81
17. JowartRedgram, cte.	1935.55	382445.32	189703.25
18. Jowar+Greengram	1520.79	2364006. 81	140764. 32
19. Jowar+Greengram, etc	8433.46	593715.58	862658. 62
20. Bajra+Jowar	138.25	9002.84	6702, 36
21. Bajra + Redgram	2212.05	37582.73	76802.38
22. Bajra + Cotton	483.89	17618.43	16379.68
23. Korra +Redgram	2488.56	51861.59	203738.41
24. Korra + Cotion	6774.42	156692.33	354302.16
25. Groundnut+Redgram	83228.55	10847186.92	10615801. 55
26. Greengram+Redgram	12719.31	408289.85	1312378.40
27. Castor + Horsegram	760.39	30423.20	48832.25
28. Redgram+Pillipesara	138.25	6912:50	16574.79
Total:	691267.00	60983677.09	73848977.13

Stratum-3
Table No. 5.21 (Contd. $)$
Estinale of tor it cerpiced area, tital ounfoint, total hiputs,

Gup					stimated and Revenue \& esses to overnment	
			Gross	Netnu ces Gov		
Irrigated paddyz	$25489222.76-6449051.36 \quad 10291810.32 \quad \text { (11) } \quad(18045.46)$					
Jowar 1	1701335.30	56555951.96	7570358.12	$\begin{array}{r} 7247221.21 \\ 463069.43 \\ 179087.93 \\ 13220.48 \end{array}$		
Varigar	23796.87	137635120	494093.50			
Bajra	29183.91	262366.2	444693.43	41637637	19937.52	
Korra	-53586.99	- 6777.18	35777.20	30182.09	7959.24	
Chillies	- -111690.56	- $\begin{array}{r}399574.45 \\ -\quad 6935.60\end{array}$	1223147.88	1159479.43	120476,09	
Country						
Fobacco	45547. 78	72859.86	97572.76	95222.44	1562.27	
Cotton	-21671. 26	-14143.35	31723.68	28256.28	4592.78	
Greengram -	-2102972.43	-1192742.47	-556295.72	-673744.75	64279.53	
Bengalgram	63219.89	48302.33	69690,15	63489.48	1842,23	
Horsegram	89183. 77	192695.42	222130.94	212773,95	6432,93	
Vegetables	- 71184. 73	17497.55	29188.40	27391,08	188.03	
Castor	2758. 15	12240.93	35435.67	32992.73	2364.13	
Fodders	632. 50	7444.87	9473.72	9449.52		
Jowar+Cucumbert		3951613.92	5993178,89	5703560.97	132614,66	
Jowar+ Redgram:	am: 214884.76	241034.04	4 2982.90	291842.23	2825.90	
Jowar+Greengram	ram 166420. 05	188738.45	208865.30	206264.75	851.64	
Jowar+Greengram	am 14674. 22	288,086.99	379758.70	358506.38	8349.13	
Bajra + Jowar	3772. 84	6301.44	47070.11	7021. 72	68.21	
Bajra +Redgram	am -32782. 58	-3915.33	31924.48	-530.89	06	
Bajra+Cotton	3217. 87	5187.30	-7766.43	7408.36	396	
Korra+Redgram	-81251. 48	-33048.08	-20256.88-	-24611.86	3160.47	
Korra+Cotton	-116384. 54	-26894.45	59009.98	2303.30	799	
3roundnut+Redram	品年 3373253.13	39280. 87	76560906.60	06416088.92	190593.33	
Irfeengram* Redgram	-399004.75	-116381.69	945026.36	17171.07	13736.85	
Castor + Horsegram	-14500.64	18492.68	19808.16	6 18918.50	425.82	
Redgram + Pillipesara	$\begin{array}{r} -9658.15 \\ 0650.10 \end{array}$	$\begin{gathered} 3685.75 \\ =-8885.75 \end{gathered}$	- 4104.64	44079.76	--	

AFTER IRRIGATION
6.1" General.

In order to estinate the volume of agricultural output in the Project area arter irrigation, we have to tackle a number of problens concerning changes in the extent of ayacut proposed to be irrigated, input-output coefficients in the case of wet crops and dry irrigated crops, cropping patterns, etc. The procedure adopted in estinating these things has to be nore or less the same as we have adopted in the previous chapter. It is only when we have a reasoflable forecast of future agricultural production in the region, we can have a firn basis for the neasurenent of direct and indirect benefits of the irrigation project.
6.2 Extent of the proposed ayacut.

According to the Joint Report of the Andhra and Hyderabad States on the Nandikonda Project (Nagarjunasagar Project), there is " a vast region of irrigable area of about 20 lakhs of acres under the comand of the Nandikonda Right Bank Canal which is at present lying waste without development, owing to lack of irrigation facilities, although the Krishna river flows along the boundaries of the region ". This is of course a general description of the area of irrigation potential on the Right Bank Canal side of the Project covering both its first and second phases. Sinilarly, it was stated that " vast areas of land extending over a nillion acres " would get irrigation under the Left Bank Canal, besides providing additional water for an extent of over 3 lakhs of acres in the existing Krishna delta.

Taking the extent of ayacut proposed under the Right Bank Canal and the Left Bank Canaly it was assumed in the Joint Report that the total extent would be of the order of 3.2 million acres.

A brief reference may be made to the method adopted by the Joint Report to deternine the net comanded area and the proposed ayacut. "The entire area (under the Right Bank Canal) is divided into a number of small blocks with important drains crossing the canal as their boundaries. The gross net comanded area is planimetered from one-inch maps. High lands (obtained by interpolation between 50-ft. contours) not commanded by the main canal running half-full and river poranbokes are excluded. Of.the net comanded area, 50% is taken as irrigatle except in one block. The per. centage has been fixed as a result of sudy of the data collected in the revenue investigations carried out earlier and an examination of the uplands of. Guntur and Nellore". The Khosla Comittee has also adopted this as reasonable. The Nandikonda Right Bank Canal serves to irrigate 17.0 lakhs of acres situated between Krishna and Pennar rivers including l. 1 lakhs of acres wet under Kavali canal and drops sufficient water into Pennar to irrigate 0.78 lakhs wet under Kanupur canal on the right bank of the Pennar river. Of 17.0 lakhs excluding 1.1 lakhs wet under Kavali canal it is proposed to pernit $\frac{1}{8}$ wet and $\frac{2}{3}$ dry. The big block of 17.3 lakhs will include portions of areas proposed under the earlier schemes like Jublichintala, Krishnam Pennar, etc. Details of the ayacut are given in the following table No. 6.1.

Table Mo. 6.1

1. Randikonda Right

| Bank Canal 32.33 | 3.41 | 29.42 | 14.71 |
| :--- | :--- | :--- | :--- | :--- |

2. Nandikonda Pu-				
\because Blockintala	7.64	0.23	7.36	2.0
3. Kavali Canal	\ldots	\ldots	1.57	1.1
4. Kanpur Canal	\ldots	0.0	1.14	0.78

$\begin{array}{lllll}\text { Total } & 40.47 & 3.60 & 39.40 & 18.59\end{array}$
(Vide Joint Report pp. 32-33)

As regards the area under the Left Bank Canal, the determination of net commanded area and the aycut is referred to as follows:
"The gross area comanded by tho canal upto acres are high lands and 53,000 acres are being irrigated by the existing sources. The net area comanded is thus $12,30,000$ acres. Of this, $9,37,000$ acres is in Hyderabad state and 2,03,000 acres in the Nandigama taluk of Andhra Statec...Of the net comanded area of $12,30,000$ acres, it is proposed to irrigate 70% of it i.e. $0,05,000$ acres. Another 1,23,000 acres i.e. 10% of tho area is provided under forest, fuel and pasture. These will be inferior lands not suited for intensive irrization. There will thus remain 20% of the area for conmunal needs such as village sites, roads, railway lines, cart-tracks, nallas
and stream-belts, dry belt round the villages, etc.".
We, are; however, not concerned with the comprohensive proposals made in the Juint Report for irrigation of the arid Iands under the Na gar junasagar Project lying in the districts of Guntur, Kurnool and Nellore on the right side and Nalgonda, Khamnam, Krishna and West Godavari districts on the left side, involving ultinately utilisation of about 464,000 million c.ft, of Krishna wators. The project sanctioned by the Governnent of India as the First ${ }^{2}$ hase of the Project is restricted in its scope and will cover only sone parts of the Guntur district and the Markapur taluk of the Kurnool district under the Right Canal side, and Miriyalaguda and Huzurnagar taluks of Nalgonda district, Khanman taluk of Khanman district, and Nandigama and Jaggayyapet taluks of Krishna dism trict on the Leit Cenal side. We are therefore concerned with the ayaciut proposed under the first phase of the Nagarjunasagar Projectg the extent of which, according to the Project Au:horities, was originally 0.7 lakhs acres under the Right Bank Canal, 7.9 lakhs acres under the Left Bank Canal and 3 lakhs acres as additional ayacut under the existing Krishna delta area, amounting to a total of 20.6 lakhs of acres. The final position which is comunicated to us by the Project authorities and which we have accepted, is as follows.

Table No 6.2 Final position of the ayacul (Acres in lakhs)				
Iten : R	Right Bank Canal	Left Bank Ad Canal	dditional yacut in Krishna	Total
(1)	(2)	(3)	(4)	(5)
1. Wet ayacut	3.85	$\begin{gathered} 1.70(\text { Andhra) } \\ 4.80(\text { TGIan } \\ \text { ga:ia) } \end{gathered}$	$3 \cdot 60$	$13 \cdot 35$
2. Dry irrigated				
(i) Kharif	3.67	$\begin{aligned} & 0.40 \text { (Andhra) } \\ & 1.10 \text { (Telan } \\ & \text { gana) } \end{aligned}$		ぶ.17
(1i) Rabi or Kharif	f 3.72	"*		3.72
Total	11.24	0.00	3.00	22.24

We may now raise the question whether an irri:jable area of 11.24 lakhs of acres and 0.00 lakhs of acres under the Right and Left Bank Canals respem ctively, is actually available and how it compares with our previous estinates of the area actually cultivated and the extent of grazing land, culturable waste and other fallows available for cultivation in the ayacut villages and towns. We have estimated the extent of grazing land, culturable was. tes etc. depending on the information collected in our Census Survey of sample villages and in our vie llage schedules. The nethod of estimation followed is that the extent of grazing land, or culturable waste or other fallows in each stratur of the Project area constitutes the same proportion in the total cultivated area of the stratur, as the proportion of such lands constitute in the total cultivated area of the sample villages. It is also assumed that the extent of such lands in villajes with more than 5,000 population, uninhabited villages and towns not

Included in the frame used for our sample surveys, bears the same proportion in the total cultivated area of the se villages and towns. It nay be seen from the following table No. 6,3 that the total extent of the land cultivated at prosent together with grazing land, culturable waste and other fallows, cones to 13.6 lakhs acres under the Right Bank Canal and 8.2 lakhs aores under the Left Bank Canal. This nay be considered as the net culturable cormanded area of the Project.

Table No. 6.3
Details of Grigable area. (in acres)

We find that our estinate of the total area actually cultivated plus grazing land, ctc., coninp to 3.2 lakhs acres in stratum-3 (under the Left Bank Canal) compares favourably with the estinate of 0.95 lakhs acres of irrizable area, as given in the Joint Report, N of which an extent of $\mathbf{3 . 0 0}$ lakhs is the proposed ayacut. Sinilarly, our esm timate of 13.6 lakh acres of the totel of cultivated area, and grazing land, Gtc., in S_{1} and S_{2} (under the Right Bank Canal) does not compare unfavourably with the extent of ayacut. proposed equal to 11.24 lakhs acres, if we make due allowance for an extent of 67,000 acres under virginia tobacco at present for which water will not be given, for lands that will go under canals, distributaries and field channels, and for areas proposed to be left out as anti-nalarial zones around villages, etc. The extent of irrizable area in the first phase under the Right Bank Canal as different from the actual extent of proposed ayacut is not shown in the Official Reports. This will be in any case more than the extent of proposed ayacut. It may be also mentioned in this connection that the method adopted in the Joint Report for the determination of net comanded area and irrirable area is subject to greater error than the nethods we have adopted. It is also not clear from the Official Feports to what extent deductions were made on account of land for raising virginia tobacco and for non-agricultural uses from the total estimated net comanded area.

For the purpose of estinating arriculturai output in the Project region after irrigation, we have, however, accepted the cxtents 'of ayacut pro1osed and comunicated to us by the Project \&uthorities.

Croping pattern after irrigation.

Full details of the $\in x i s t i n g$ pattern of cropping in the three strata of the Project area have already been given in the jrevious chapter. In what respects this pattern is goinf to change after the area is brought under irrigation can only be deterained in the lizht of (i) Government's policy regarding surply of water for wet crops, dry crops, etc. (ii) the extent to which water will be made available during the Kharif and Rabi seasons; (iii) suitability of soils for wet and dry crops; and (iv) the cultivators' estinate of relative profitability/of different wet and dry irrigated crops, their experience in raising wet crops; and inzeentives provided to adopt changes in the patterns of cropping. Some of these factors are tryxa intangible and some cannot be precisely determined. It is therefore difficult to give an exact estimate of the cropping pattern that is likely to enerse after the ayacut is developed under irrigated conditions. So far as Government's policy regarding supply of water for wet crops and irrigation of dry crops is concerned, it is definitely known that they have proposed to restrict intensive allwet irrigation with a vicw to protect as large an area as possible against precarious and uncertain rainfall. It is for this reason that the general
pattern of localisation of partly wet and partly dry has been adopted subject to variations in soil concitions and engineering or other factors. Specifically, the formula of $\frac{1}{3}$ wet and $\frac{2}{3}$ clry has been adopted for the ayacut under the Risht Bank Canal and maximum possible wet for the ayacut under the Left Bank Canal. ${ }^{1}$

Localisation of a dry-cum-wet irrigation pattern of cropping raises complicated questions concerning the alignment of canalsand distributgries, discharge

1. The followinis remarks made in the Techno-Economic Survey of Andhra Pradesh (pp. 36-37) regarding the relative merits of wet farming and dry irrigated farming are worth noting:-
"Where the supply of water from the project falls short of the demand of the area it can command, dry irrigated farming is more productive and economical to the society and more profitable to the famers than pure wet farming. The comparison of gross outturn and net profit per acre in dry irrigated farms and wet farms is not justifiable for this purpose.e.. The superiority of dry irrigated systems over wet and their economic potential would be still more conspicuous when the possibilities of developing double cropping are considered. In the entire dry irrigated area another ninor crop, either of pulses or of green manure, can be grown either before or after the main crop. In the Tungabhadra area, although water is supplied only to the main crop, cultivators found it possible to raise Bengalgram after mungari jonna, redgram mixed with groundnut, green manure (Sunhemp) before Combodia cotton or Gluried wheat. At certain places groundnut is grown
of water into the canals, the suitability of soils, the need for irrigation of dry crops in the Kharif scason taking into account the quantity and distribution of rainfall received during the season, storage of water in the reservoir to supply water in the Rabi season, etc. As rezards the question of alignnents of different channels and distributories and the extents of different crops to be irrigated in different reaches of the main canal, the Annual Report of the working of the Project observed as fəllowṣ \dagger
by the cultivators twice in both the seasons. Apart fron these the ryots have a choice between nany alterv native crops of high value in small areas like tobacco, vegetables, sweet potatoes, tomatoes, onions, maize, etc., and fruit crops like Papaya, Pomegranates, Sapotoes, Guavas, etc. The difference in these two sysm tens is that while such double cropping is possible in the entire area in the dry irrigated zone it is limited only to one-third of the area in the wet (assuming 1 cusec discharge of water comands 50 acres of wet or 160 acres of dry irrigated). If three factors are taken into account both the total outturn and net profits of the farm would be nuch more in dry irrigated zones than in the wet ones. Besides this superiority in the economic sense, the dry irrigated farming has an advantage of better utilizing fanily labour, doing away with the seasonal nature of enm ployment and also of distributing the benefits to a large number of families. It thus provides the necessary environment to make agriculture more labour intensive".

Abstract

"It has been proposed to provide irrigation : facilities for instance, under the RIght Canal, on the basis of $\frac{1}{8} r d$ wet and $\frac{2}{3} r d$ dry, the canal running from June to December. A suggestion was, however, made that the ayacut should be split into two areas, one having kharif crop and the other rabi crop. The area under the rabi crop will be differant from the area covered by the kharif crop. The advantage of this proposal is that a smaller canal can supply the whole ayacut and the total supply will be spread over a longer period, live., for one area from Jung to October -November and the other area from Septenber-October to February or so. In effect, it has been suggested that the entire ayacut should be split up into $\frac{1}{3}$ kharif wet, $\frac{1}{3} r d$ kharif dry and $\frac{1}{3} r d$ rabi dry.

The Development Committee examined in great detail the alternative cropping pattern and particularly the possibility of a paddy crop being successful if sown as late as September-October. The Committee considered that in the light of the experiments already conducted at the Research Stations of Samalkot, Marateru, Buchireddipalem and Siruguppa, the division of the irrigated dry and wet crop ayacut into kharif and rabi blocks was not practicable. Even were this possible, one serious objection was that it would result in a permanent fixation of the cropping patterns without any option to the ryots to vary to the crops to their best advantage".

It is generally held that in the tracts under the Right Bank Canal where black cotton soil predom minates, water is not required in the kharif season except when rainfalls for prolonged periods.

Exporience of dry irri zation in the Tungabhadra area has also shown that dry irrigation in the first crop season has not become a firm practice because black cotton soils are retentive of noisture and do not requirc artificial irrisation during kharif season of normal rainfall. It neans, if irrigation is to be confined under the Right Bank Canal to the Ist crop season only, and water is not available dum ring the Rabi season, dry irrigated blocks may have to be localised primarily in the red soil tracts without rigidly axk adhering to the $\frac{1}{3}$ wet and $\frac{2}{3}$ rd dry formula for localisation. If adequate water can be made availablefor supply during the R_{a} bi Scason, black cotton soil tracts as well as red soil tracts may be localised for dry irrigation.

It has not been possible to go more thoroughly into these technical questions which continue to be Controversial. We have therefore accepted twe general pattern of localisation tentatively accepted by the Project authorities as given in an earlier table. According to this pattern it is proposed to have under the Right Bank Canal 3.05 lakhs of acres for wet crops, 3.67 lakhs for dry irrigation during the kharif seam son and 3.12 lakhs for dry irrigation either during the Rabi or Kharif season. The total extent of ayacut under the Right Bank Canal is thus fixed.at 11.24 lakhs of acres. Under the Left Bank Canal it is proposed to have 6.5 lakhs of a cres for wet crops and 1.5 lakhs acres for dry irrigation during the kharif season, the total extcnt of proposcd ayacut being 0.00 lakhs acres.

We may now proceed to consider the cistribution of the proposed ayacut under various crops which are suitcd to the soils and which are likely to be raised aftcr irrigation in the three strata S_{1}, S_{2} and S_{3} of the project area. The following considerations are taken into account in this respect , ${ }_{i t}$ is assurned that the soils prevalent in the three strata are suitable for raising wet paddy as well as other crops under conditions of dry irrigation; : ; Secondy, it is assuned that no part of the proposed ayacut under the Right Bank Canal will be devoted to raising virginia tobacce; ' , Thirdly, in the balance of ayacut remaining after allocation to irrigated paddy, inportant dry crops both commercial and food crops, will continue to be raised. There is however likely to occur considerable reduction in the diversity of the existing cropping pattern. When water is supplied, there is bound to be a lessening of risks and uncertaintics facing the cultivators at present. The enorrous variety of crops and crop mixtures grown at present is then likely to dininish and a few of the nore profitable dry crops like chillies, groundnut, country tobacco, jowar and ragi are likely to be substituted for others; and , lastly, these changes which are likely to occur, will bring about a major shift in the cropping pattern in the Project area. Not only there will be a great increase in the acreage under paddy and reduction in the acreage under other crops, but also the pattern of other crops will be radically different. The Joint Report on the Nandikonda Project (or other reports of the Project authorities) does not however throw much light on this particular aspect, namely, the allocation of ayacut under the various crops other than paddy. It is rossible to make allocations on
an ad-hoc basis making marginal adjustment s to the existing extents under these crops, but the latter will not be of nuch help in this respect because of the considerable reduction in the total arca of the ayacut renaining for these crops after allocation to irrigated paddy.

6.4 Cropping pattern suzzested by the Devartacht of

 A.riculture.The Department of Asriculture of the Government of Andhra Pradesh however suggested a tentative breakdown of the proposed ayacut under different crops, as shown in the following table No. 6.4.

Table No. 6.4
Croppateern suggested Gytun Department of Agricultion

Crop	Arca in lakhs of acres		Total
	Right Canal	Left Canal	
(1)	(2)	(3)	(4)
1. Paddy (Wet)	3,35	6.76	10.61
2. Paddy (Irr. Dry)	0,60	-	0.60
3. Cotton	3.00	0.14	3.14
4. Groundnut	2.00	0.35	2.35
5. Chillies	0.50	-	0.50
6. Jowar	0.36	0.10	0.46
7. Maize	0.54	0.15	0.60
3. Ragi	0.39	-	0.39
9. Suzarcane	-	0.15	0.15
10. Garden Crops like turneric, banana and vegetables	-	0.25	0.25
Total	11.24	.7.00	19.14

The Agriculturgi Department also nade some sugzestions regarding the possibilities of raising a
second crop in the irrigatcd wet paddy fiolds following the kharif season, and sinilarly a second crop in the fields under dry irrization either in the Kharif or rabi season. There is always a possibility of raising crops like fodder, jowar, pillipesara and Sunherp in the rice follows if short duration varietics of paddy are grown in the Khailf season. Such crops can also be grown in shallow black soils following groundnut, cotton or jowar raised in the Kharif season, or under fain-fer eonditions in the Kharif season followed by irrigated crops like cotton, groundnut, chillies and jowar during the rabi season if water is nade available. . It is not however clear from the account given by the Arriculturpi Dunartment whether the relative profitability of tre different crops other than wet paddy under conditions of dry irrigation is taken into account. Λ high proportion of the ayacut proposed for dry irrigation i.e., 5 lakhs out of 7,30 lakhs of acres is allocated to the two crops i.e.g cotton and groundnut, (3 lakhs of acres for cotton and 2 lakhs of acres for groundnut). It is doubtful if the Fepartnent 0. Agriculture has paid adequate attention to the yields, prices and profitability of the se two crops in relation to others, in allocating such a high proportion of the ayacut to then. We mve however attempted to calculate the gross value of output and value added to material costs for the Risht Bank Canal and Left Bank Canal region, on the basis of the cropping patterns suggested by the Department of Agriculture. The calculations are given in the following table No. 6.5.

Table No. 6. 5
Value of eutfut and valus added as per the Exp Palem Suggested bis Tu Deponinnoul of Agricultm

Crop	Ripht Canal			Left Canal		
	Acreage Acres	Value of output Rs. lakhs	Velue ad $\overline{d \in d}$ Fs. lakhs	Acreage Acres La'rhs	Valuc of output Es. Lakhs	Value added Es. Lakhs
(1)	(2)	(3)	(4)	(5)	(6)	(7)
I. Paddy (Wet)	3.35	1335.54	1050.43	6.76	2390.30	1863.87
2. Black Padaj	0.60	113.83	73.21	-	-	-
3. Cotton	3.00	404.01	266.67	0.14	16.67	11.17
4. Groundnut	2.00	435.06	200.28	0.35	69.77	47.15
5. Chillies	0.50	724.36	648.16	-	-	
6. Jowar	0.36	62.32	42.30	0.10	17.31	11.75
7. Maize	0.54	03.48	63.45	0.15	25.97	17.63
O. Ragi	0.39	100.02	74.48	-	-	-
2. Sugarcane	-	-	-	0.15	84.00	46.50
10. Garden crops like Vezctablisjete.	$-$	-	-	0.25	30.97	$\text { 〇. } 16$
Total	11.24	3320.47	2517.98	7.00	2644.40	2007.23

It nay be seen that the value of gross output comes to [s. 3320.5 lakhs for the Ri ht Bank Canal area (nearly fi. 300 jer acre) and $\mathrm{Is} .2,644.5$ lakhs for the Left Bank Canal area (nearly Ps. 340 fer acre). When the cropping pattern is arbitrarily determined as the Defartment of Ariculture seems to have done, it will be difficult to say whether such cropping pattern is optimal or not, and whether it ;ives maximum benefit to the comunity. If at least two or three alternative cropping patterns have been studied by the Department of Arriculture, on the basis of the input-output requirements assumed for irrizated crops, the Department's method could be considered as a kind of restricted Farm Plaming and Budzeting for the region as a whole. An alternative cropping pattern, for instance, which allocates more land to groundnut than cotton might perhaps, give a higher agricultural output in the region, if we take into account the relative crop yields and prices of the two crops. Hence, instead of depencing on such cropping patterns arbitrarily deternened, we have considered it useful to adopt another method which is more reliable and selontific to determine the optimal -aping pattern under conditions of irrization, given the assumptions ahout crop yields, prices and input requirements. This is the nethod of Linear pro,zramming; anf its nature and how it is applied in our case are fully explained in Chapter IV of volume II. It suffices here to point out its essential features, the assumptions we have made regarding the availabil..'y of resources to typical holdings, the input requirements of crops, etc., and to describe the optimal croping pattern finally arrived at.

Linear prosramming rapresents a systematic method of deter:inins mathematically the optimum filan for the selection and combination of farm enterprises with a view to maximise the income of an individual farm or erotip of farms within the linits of available resources. The four infortant assumptions uron which the linear promraming technique is based may be stated as:- (i) a contant input-output ratio or liansformation co-efficient can be used irrespective of the scale of operation; (ii) both farm resources and farm enterprises are divisible and additive in order to achieve the soal of maximisation; (iii) that each farm enterprise is independent of the other enterprises, and the selection of one does not necessitate the selection of any otherg and (iv) that a finite number of enterprises is adopted so tirit the selection and combination of enterprises can be made only within the finite number of enterprises. The various types of information required reģarcing crop yields, prices, etce in order to apply the linear prosramming technigne, are the saine types of information which are required for a flexible method of Farm Planning and Budgeting. But, while the latter method required the preparation of an undeterminable number of alternative plans and budgets in order to determine the best one, the method of linear programming is quite straight-forward and systematic. It may be also observed in this connection that the assumption of linear production function may be considered to hold zood under the farm conditions prevailing in India, since the possible range of variation of the scale of operation of a.

Given farm is relatively small due to the limited availability of land and other reṣource. ${ }^{\text {Z }}$: Further, In the aprilication of linear pro:sraming technique for the choice of a combination of enterrisises yielding maximum returns, the set of restrictions taken into account may relate not only to the quantities and qualities of the input resources available such as land, labour and capital, but may also relate to various other considerations such as (i) the prem ference of farmers to grow food crops upto a certain extent irrespective of their profitability, (ii) provision of employment opportunities for the members of the farm family.irrespective of productivity considerations, and (iii) preference for a relatively more diversified crop pattern or for adoption of crop mixtures, crop rotations, other cultural practices, etc.
6. 6 Assumptions made in Prozrammine for the Project area.

In the light of the above considerations, we have made the following assumptions for the purpose of programming for the Right Bank Canal area and Left Bank Canal area separately。 (i) Programming is done

2 See the article on "Methods of Econometric Analysis-Linear Programming" by Dr. S.C. Hsieh, published in "Farm Management", (Proceedings of the Development Cent re on Farm Management held at Manila, Phillippines in October 1960, under the joint auspices of the F.A.O. and the Government of Phillippines) for an illuminating discussion of the applicability and limitations of linear programming to farm management studies under Asian conditions. See also "Methods of Farm Management Investigations", by W.Y. Yangi F.A.O., Rome, 1958.
for typical or representative individual holdin;is instead of for each region as a whole and the results of prosramming for typical holdin;s are pooled to determine the regional cropping pattern (ii) Four typical holdings have been selected for both the Right and Left Bank Canal areasg (iii) Prozraming is done for each holding to determine the optimal cropping pattern which zives the maximum value-added to material inputs, because this helps in determining the benefit received by the community after irrigation, (iv) In each holding, we have made an ad-hoc allocation of the land resource to irrizated paddy to the full extent that Government has decided to give water for wet crops, because the individual cultivator is expected to give highest priority to paddy in the use of his limited resources (v) We have similariy made adhoc a,llocations to certain other crops such as chillies, country tobacco and vegetables, as they become highly profitable crops under conditions of irrigation requiring hizh levels of inputs per acre, and as they are not likely to be raised on too extensive an area in view of limitation of resources and other considerations, (vi) It is also assumed that (d) human labour, (b) bullock labour and (C (1) other variable inputs consisting of seed, manures and fertilisers etc., are limitational factors. However, human labour is not treated as a limitational factor in programing for the Right Bank Canal area. (V ii) Finally, additional resources are assumed to become available both as a result of their natural rates of growth and as a result of Government's policy: and additions are made
on an ad-hoc basis such that the resources assumed available after irrigation will be sufficient to ensure full utilisation of the land resource remaining after allowing for the ad-hoc allocations to paddy, chillies. and other crops mentioned above.

We may now proceed to describe the procedure we have adopted for programaing and the optimal cropping patterns arrived at for the Right and Left Bank Canal areas separately.

6.7 Proyramming for the Right Bank Canal_Area.

 (a) Gencral.The estimated area under cultivation at present in S_{1} and S_{2} taken together comes to 12.1 lakhs of acres. In addition to this, there is an area of 1.53 lakhs of acres in this region which is cultivable but not cultivated at present. We may assume that this additional extent of cultivable land makes adequate allowance for lands which will not be brought under cultivation as they will be required to be left for cattle grazing, as a lands that will go xixd under canals, distributories and field channels, a nd as lands around villages proposed to be left out from cultivation as antimalarial zones, etc. The total extent of cultivated area may thus be expected to remain the same as at present. Water will not however be available for irrigating this entire extent, because Government has proposed to supply water to an extent of 11.24 lakhs of acres only; 亲 of which will be for wet crops and $\frac{7}{2}$ for dry irrigation. For the purpose of estimating the optimal crup pattern by
lincar programming method, we have accepted this figure as final, and assumed that the balance of 87,000 acres will remain under unirrigated crops including the existing area under virginia tobacco.

In programing for the optimal crop pattern for 11.24 lakhs of acres, we may adopt two alternative methods one method is to take the entire extent of land and the total of human labour, bullock labour and other resources available for the whole area, select certain activities or crops and then determine the optimal crop pattern for the region as a whole. This constitutes an aggregative approach in applying the linear programming technique. The alternative method is first to distribute the total extent of 11.24 lakhs of acres into a certain number of size-groups of holdings, choose the typical size of holding in each of the size groups, and then programe for the typical individual holding in each of these size groups. The optimal cropping patterns thus arrived at for the typical holdings and for the total extents in the different size-groups may then be pooled to give the optimal crop pattern for the region as a whole. The main advantage of the second method lies in its being more realistic and being of practical significance, as programing is done for individual holdings of different sizes taking into account their resources. We have therefore adopted this method.

In distributing the total of 11.24 lakhs of acres under certain size-groups of holdings, we have taken into account only four size-groups instead of
the 12 size-groups of holdings adopted in the study of distribution of holdings in our Census Survey. We have not found it necessary to adopt a large number of size-groups for purposes of programning. We have also assumed that the percentage distribution of holdings according to size is the same as that which is obtained in our Census Survey. As regards the size of the typical holdings in each size-group we have assumed for convenience the same average size as obtained in our Census Survey, ̇̇ger instead of assuaing a different size arbitrarily. The relevant details are given in the following table IJo. 6.6.

Table ilo. 6.6
Distribution of 11.24 lakhs acres among the 4 sizem groups and the sizes of typical holdings.

Size groups (in acres)	Total extent (in acres)	Size of typi- cal holding or Average size (in
(1)	(2)	(3)
$0,01-2.50$	$59,572.00$	1.26
$2,51-7.50$	$2,26,710.00$	4.83
$7.51-15.00$	$3,34,390.80$	10.65
Above 15.00	$5,03,327.20$	24.81
Total	$11,24,000.00$	

It is further assumed that on a part of the holdings localised for wet crops, irrigated paddy will be raised as a matter of first priority, i.e. to an extent of $\frac{2}{3}$ of the typical holdings under the Right Bank Canal. Wc have also found it necessary to make ad-hoc allocations to two crops, namely, chillies and country tobacco,
because they will be highly profitable crops under dry irrigated conditions a nd require high levels of inputs per acre. They are not likely to be raised on too extensive an area partly on account of preference to food crops and partly on account of limitation of available resources. Accordingly, certain extents are set apart in each typical holding for these two crops, the total of such extents being 1.5 lakhs of acres for chillies, and 1.00 lakh acres for country tobacco. After making allocations in this manner to irrigated paddy, chillies and country tobacco in the typical holding and also setting apart the resources required for these three crops, an attempt is made to determine the optimal cropping pattern for the remainder of the area.

Table_Ho. 6.7
Ad-hoc allocations made for specific crops (in acres)

Size -groups (acres)	Average size of holding	$\frac{\text { Allocations made for }}{\text { IrrdPaddy Chillies Coun }}$			
(1)	(2)	(3)	(4)	(5)	(6)
0.01-2.50	1.26	0.42	0.17	0.11	0.56
2,51-7,50	4.83	1.61	0.64	0.43	$2: 15$
7.50-15.00	10.65	3.55	1.42	0.95	4.73
Above 15.00	24.81	8,27	3.31	2.21	11.02

(b) Resources.

The resources required for crop production are classified into four categories; (I) land (II) human iabour (III) bullock labour and (IV) other variable inputs consisting of value of seed, manures and fertilisers, hire charges for implements, etc. Information about the availability of these resources for
each of the four size-groups of holdings is obtained from our Census Survey of the sample villages and Farm Surveys. On the basis of this information we have found that human labour will not be a limitational factor, but bullock labour and other variable inputs at their existing levels of supply will not be adequate for full utilisation of the land resource under irrigated wanditions. We have therefore assumed that 50% more of bullock labour than existing at present will become availede partly due to natural growth in the stock of workanimals over a period of 10-15 years and partly due to Governmental or private programmes to improve the position in regard to supply of bullock-labour in the region. As regards other variable inputs, we have assumed, that 40 to 125 per cent more will be made available by private or official credit agencies for the typical holdings. From the amounts of these two resources thus assumed to become available after irrigation, the requirements of crops for which ad-hoc allocations of land resource are made, are deducted and the remainder of the resources are taken into account for purposes of programming. The details are given in the following tables Nos. 6.8, 6.9 and 6.10.

Table ل1才, 6.8
June/July bullock labour (in 8 hr . bullock pair days)

Size-group (acres)	Assumed availam bility	Set apart for Paddy (Irv.)	Balance
$0.01-2.50$	2.84	1.68	1.16
$2.51-7.50$	15.21	6.44	8.77
$7.51-15.00$	28.76	14.20	14.56
Above 15.00	66.09	33.08	33.01

Table iNo. 6.2

$\begin{aligned} & \text { S1ze-group } \\ & (\text { acres }) \end{aligned}$	Assumed avtailability	Set apart for		Balance
		Chillies	Country tobacco	
(1)	(2)	(3)	(4)	(5)
0.01-2.50	2.84	0.66	0.44	1.74
2.51-7.50	15.21	2.24	1.72	11.25
7.51-15.00	28.76	4.97	3.80	10.09
Above 15.00	66.00	11.50	8.84	46.56

Table ivo. 6.10
Other variable inputs (in_Es)

$\begin{aligned} & \text { Size-group } \\ & \text { (acres) } \end{aligned}$	Assumed availability	Set apart for			$\begin{aligned} & \text { Balance } \\ & \text { available } \end{aligned}$
		Chillies	Country tobacco	Paddy	
(1)		(3)	(4)	(5)	(6)
0,01-2.50	64.82	20,40	6.00	21.50	16.32
2,51-7.50	245.34	76.80	25.80	82.50	60.24
$7.51-15.00$	449.59	170.40	57.00	132.50	89.69
Above 15.00	1385.73	397.20	132.60	425.00	430.03

(c) Inqut-output data for crops (under irrigated conditions).

It is conmon knowledge that the input requirements and yiclds of irrizated crops will be consta erably different and also higher than those of unirrigated crops. It is therefore necessary to have reasonably dependsble input-output data for crops under irrigation before programing is undertaken. The details of input requirements, yields, etc., for irrizated crops as assumed by us are given in the following table $\$ 06.11$ These are based on the informtion available in $F \cdot r$ Managoment Studies in Lnchra Pradesh, Madras, Madhya Pradesh and Punjab; Scason and crop Reports of Andhra
Pradesh, Crqfoutting, experiments conducted by the Bureau of Economics \& Statistics of the Government of Andhra Pradesh; Techno-Economic Survey of Andhra Pradesh; and the Ferm Surveys conducted by us. It may be mentioned in this connection that the physical inputs and outputs and by-product of different crops are valued at their respective average prices prevaiIIng in the year 1959-60, which we have used in esmating the total agricultural input of the re gion before irrization.

```

RIGHT CAIVAL AREA \(\left(S_{1}+S_{2}\right)\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\text { S.iJo. } \begin{gathered}
\text { Name of } \\
\text { crop }
\end{gathered}
\] & 8 hr mandays & \[
\frac{8}{J u}
\] & bul
Sep
Oct & &  & Value other riabl puts & Value matcri input (in Es. & \[
\begin{aligned}
& \frac{Y i}{\text { Wei Ght }} \\
& \text { (in } \\
& \text { md.) }
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { Value } \\
& (\text { in } \mathrm{s})
\end{aligned}
\] & \[
\begin{aligned}
& \text { Value } \\
& \text { of by } \\
& \text { pro- } \\
& \text { duct } \\
& \text { (in } i \\
& \text { Is.) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Value } \\
& \text { of } \\
& \text { total } \\
& \text { output } \\
& \text { @ } 59- \\
& 60 \text { pri } \\
& \text { cos (i }
\end{aligned}
\] &  \\
\hline (1) (2) & (3) & (4) & (5) & (6) & (7) & (8) & (0) & (10) & (11) & (12) & (13) & (14) & (15) \\
\hline & & r & & & & & & & & & & & \\
\hline 1. Faddy & 50 & 4 & - & 8 & 37.04 & 50 & 87.04 & 24.00 & 13.12 & 314.88 & 45,00 & 350.88 & 272.8.1 \\
\hline 2. Black Paddy & 37 & 3 & \(\overline{-}\) & 6 & 27.78 & 40 & 67.78 & 14.00 & 11.70 & 163.80 & 26.00 & 189.80 & 122.02 \\
\hline 3. Ragi & 50 & = & 3 & 6 & 27.78 & 40 & 67.78 & 16.00 & 13.36 & 213.76 & 45,00 & 258.76 & 100.08 \\
\hline 4. Jowar & 25 & 3.0 & - & 7 & 32.41 & 30 & 62.41 & 12.00 & 13.86 & 166.32 & 60.74 & 227.06 & 164.65 \\
\hline 5. Variea & 23 & 4 & - & 8 & 37.04 & 45 & 82.04 & 12.00 & 12.03 & 144,34 & 28.07 & 172.21 & 00,20 \\
\hline 6. Bajra & 30 & 2 & - & 4 & 18.52 & 20 & 38.52 & 9.00 & 13.63 & 122.67 & 25.00 & 117.67 & 1.09 .15 \\
\hline 7. Korra & 25 & 2 & - & 4 & 18.52 & 20 & 38.52 & 12.00 & 10.16 & 121.80 & 25.00 & 146.80 & 108.28 \\
\hline 8. Varagulu & 22 & 3 & - & 6 & 27.78 & 10 & 37.78 & 12.00 & 8.73 & 104.76 & 30.00 & 131.70 & 00.00 \\
\hline O. Coriander & 20 & 3 & - & 6 & 27.78 & 35 & 62.78 & 6.00 & 27.79 & 166.74 & 5.81 & 172.55 & 100.77 \\
\hline 10. Chillies & 60 & - & 3.5 & 7 & 32.41 & 120 & 152.41 & 1600 Ib & 574. 42 & 1446.72 & 2.00 & 1148.72 & 1206.31 \\
\hline 11. Country tobacco & 30 & & 4 & 8 & 37.04 & 60 & 27.04 & 6.00 & 30.73 & 238.38 & .. & 233.38 & 141.35 \\
\hline 12. Cotton & 30 & 3 & - & 6 & 27.78 & 18 & 45.78 & 400 lbs & 27.71 & 83trad & - & 131.67 & 83.80 \\
\hline 13. Groundnut & 50 & 2 & - & 4 & 18.52 & 50 & 68.52 & 11.00 & 10.18 & 210.08 & 7.00 & 217.08 & 1.10.46 \\
\hline 14. Castor & 15 & 2.5 & - & 5 & 23.15 & 10 & 33.15 & 4.00 & 15.68 & 62.72 & - & 62.72 & 22.57 \\
\hline 15. Gingclly & 15 & 2 & - & 4 & 18.52 & 10 & 28.52 & 5.00 & 30.04 & 154.70 & - & 15.10 & 126.18 \\
\hline 16. Fodders & 21 & - & - & 2 & 0.26 & 11 & 20.26 & - & - & - & - & 30.67 & 10.41 \\
\hline 17. Ve?ctables & 70 & - & - & 2 & 0.26 & 78 & 87.26 & - & - & - & - & 128.83 & 36.62 \\
\hline 18. Jowar+Redgram & 37 & 2 & - & 4 & 18.52 & 10 & 28.52 & - & - & 140.90 & 37.2.4 & 187.14 & 153.62 \\
\hline 19. Other mixtures & 28 & 2.5 & - & 5 & 23.15 & 16 & 39.15 & - & - & 121.56 & 27.00 & 148.56 & 100.41 \\
\hline
\end{tabular}
(d) Besults of Prozramming.

After a consideration of the input-output relationship for 14 important crops and crop mixtures, and elimination of inefficient ones, programing is done with the object of maximising the value-added to material costs in crop production. The optimal crop-pattern is then determined by the simplex method. The results of programming done in this manner are shown in the following table Hos. 6.12 and 6.13 for the typical holdings and for the region under the Right Bank Canal as a whole.

Optimal crop-pottcrn for individual farmers of diffurent size-rours
(Rimt Canal arca) (in acres)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Size-rromp } \\
& \text { (in acros) }
\end{aligned}
\]} & \multirow[t]{2}{*}{Average size} & \multicolumn{3}{|c|}{Areas allocated to} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{hroas as detcrmincd by}} \\
\hline & & Chillies & Country & Paddy & & \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline 0.01-2.50 & 1.26 & 0.17 & 0.11 & 0.42 & 0.36 & 0.20 \\
\hline \(2.51-7.50\) & 4.83 & 0.64 & 0.43 & 1.61 & 1.29 & 0.86 \\
\hline \(7.51-15.00\) & 10.65 & 1.42 & 0.05 & 3.55 & 1.41 & 3.32 \\
\hline Above 15.00 & 24.81 & 3.31 & 2.21 & 8.27 & 10.69 & 0.33 \\
\hline
\end{tabular}

\section*{Table rio. 6.13}

OPTIMAL CROP PAITERN OBTAIVLD FOR II 24 IAKHS OF ACRES (RICHT CAHAL LFEAS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{5}{|r|}{(Fiqumes in acess)} \\
\hline \[
\begin{aligned}
& \text { Size-group } \\
& \text { (in acres) }
\end{aligned}
\] & Tutal acreage & Chillies & Country tobacco & - Paddy & Ragi-II & Jowar+redgram \\
\hline (1) & (2) & (3) & (4) & (5) & (6) & (7) \\
\hline 0.01-2.50 & \(50_{2} 372.00\) & 7,950.00 & .5,300¢.00 & 10,853.61 & 17,014.07 & 0,454.32 \\
\hline 2.51-7.50 & \(2,268710.00\) & 30,255.00 & 20,170.00 . & 75,485.58 & 60,483.66 & 40.316 .56 \\
\hline 7.51-15.00 & 3, 34, 390.80 & 44,625.00 & 29,750.00 1, & , 11,468.43 & 44,280.55 & 1,04,266.02 \\
\hline Above 15.00 & 5,03,327.20 & 67,170.00 & 44,780.00 1, & ,67,783.41 & 2,16,901.24 & 6,602.55 \\
\hline Total & 11.21900.00 & 1,50,000.00 & 1,00,000.00 3,7 & ,74,591.03 & 3,38,670.52 & 1,60,720.45 \\
\hline
\end{tabular}

\begin{abstract}
It may be seon from the elove takics thet regi (Second crop) and jowar + redsran mixture are the only two crops which have come into thic optinal crop pattern. These two crofs occury the first and second places amon; the efficient crops when arranjed in the descendin; order of the value added. The value added to material costs anount to Fs.100.03 for raji (second crop), and t. 153.62 for jowar+redwran. Anon; the other crops, the valuc-added per acre is also high for sroundnut, being Ex.145.64, and it is likely to compete with jowar + rederam in the actual choice of crop pattern by the farners, although it has not come out in the pattern
 same reason, oil seecis other than groundnut, and jowar or bajra mixed with pulses, may also compete with the above crops.
\end{abstract}

\subsection*{6.8 Prosranmins for the Left Bank Canal Area.}
(a) Gencral.

On the Left Bank Canal side, the total cxtent of proposed ayacut is 8.00 lakhs of acres. It is divided into four size-groups of holdinjs, as we have done in the case of the Right Bank Canal area. The distribution of the acreage of 8.00 fakh acres under the four size-groups of holdinzs is given below.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Distribution of 8.00 lakh acres among the 4 sizom} \\
\hline \multicolumn{3}{|l|}{groups and the sizes of typical holdings} \\
\hline \[
\begin{aligned}
& \text { Size-zous } \\
& \text { (acred) }
\end{aligned}
\] & Ayacut & Typical holding or average size \\
\hline \(0.01-2,50\) & 24,160 & 1.47 \\
\hline 2.51-7,50 & 1,47,200 & 5.00 \\
\hline 7.51-1500 & 2,07,360 & 10.69 \\
\hline Above 1500 & 4,21,280 & 27.62 \\
\hline Total & 8,00,000 & \\
\hline
\end{tabular}

In poosramming for each of the above four typical lidings, we have adopted the same procedures asil the case of Right Bank Canal area. \(6.5 / 8\), part of each holding is alloted for irrigated pay, as the Government proposed to supply water \(f\) wet crops to an extent of 6.5 lakhs of acres of 8.0 lakhs of \(x\) res. In addition, we have ind it necessary to make ad-hoc allocations to cliles, vegetables.and country tobacco on the Leffink Canal areag the total allocations being 10, acres for chillies, 10,000 acres for vegeta \(\fallingdotseq\) s and 5,000 acres for country tobacco. The biindown of the se allocations in the various size Pups is done in the same way as for the Right irk Canal area. Details may be seen in the ollowing table No. 6.15.

Allocations riado for rocific crös (in acrus)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Size-group } \\
& (a c r e s)
\end{aligned}
\]} & \multicolumn{5}{|l|}{Averaje Allocations made for} & \multirow[t]{2}{*}{Balance available} \\
\hline & size the hol din: & Paddy & Chilli & \[
\begin{aligned}
& \text { Veyet } \\
& \text { bloc }
\end{aligned}
\] & \begin{tabular}{l}
Count \\
tobac
\end{tabular} & \\
\hline 0.01-2.50 & 1.47 & 1.10 & 0.02 & 0.02 & 0.01 & 0.23 \\
\hline 2.51-7.50 & 5.00 & 4.06 & 0.06 & 0.06 & 0.03 & 0.75 \\
\hline 7.51-15.00 & 10.69 & 8.69 & 0.13 & 0.13 & 0.07 & 1.67 \\
\hline Above 15.00 & 27.62 & 22.44 & 0.35 & 0.35 & 0.17 & 4.31 \\
\hline
\end{tabular}
(c) Input-Outrut data for crops under irrigated conditions.

For the purpose of prosraming for the Left Bant Canal area, we have taken into account 7 crops and crop mixtures by ignoring a few unimportant crops and by jrouping or combining certain other crops and crop aixturcs. The dctails of input requirements, yiolds ctc., for these crops under irrizated conditions are assumed as shown in the followins tablep. These are bascd on the various sources of information referred to previously.

\section*{Table No. 6.16}

\section*{IEFT CANAL ARIRA (S \({ }_{3}\) )}

PER ACRE INPUT RE2UTREWENTS AID VALUES OF OUTPUT (INCLUDING VALUE OF BY-PRODUCT) ASSUMED AFTER IRRIGATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\text { S.No. } \frac{\text { Name of }}{\text { crop }}
\] & 8 hr . mandays & \[
\frac{8 h}{J u n}
\] & Kul
Sep
Oct & \[
\frac{\mathrm{k}-\mathrm{pai}}{\mathrm{Tota}}
\] & \begin{tabular}{l}
ays reau \\
Value @ \\
3.66 per \\
hr. bull \\
pair day
\(\qquad\)
\end{tabular} &  & Value materia inputs (in Ps.) \(\cot (7)+\) \(\operatorname{col}(8)\). & \begin{tabular}{l}
Weizh \\
(in \\
mds
\end{tabular} & Yield
Pric
per
(in Rs ) & \[
\begin{aligned}
& \text { Value } \\
& \text { (in } \mathrm{Es} \text { ) }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Value } \\
& \text { (bypro- } \\
& \text { duct } \\
& \text { in lis.) }
\end{aligned}
\] & ```
Value
    of
total
output
at \(50-C\)
60 prï-
CEs ( \(\sin _{4}\)
``` & \[
\begin{aligned}
& \text { Gross } \\
& \text { value } \\
& \text { added } \\
& \text { in Fs) } \\
& \text { ol.(14)- } \\
& \text { Col.(0) }
\end{aligned}
\] \\
\hline (1) (2) & (3) & (4) & (5) & (6) & (7) & (8) & (0) & (10) & (11) & (12) & (13) & (14) & (15) \\
\hline Irrigated & & & & & & & & & & & & & \\
\hline - Paddy & 50 & 4 & \(\overline{5}\) & 8 & 20.28 & 50 & 79.28 & 24.00 & 12.50 & 300.00 & 55.00 & 355.00 & 275.72 \\
\hline 2. Chillies & 60 & - & 3.5 & 7 & 25.62 & 120 & 145.62 & 1600 & 69.40 & 1350.89 & 3.00 & 1353.89 & 1208.27 \\
\hline 3. Country & & & & & & & & 1bs. & & & & & \\
\hline tobacco & 30 & - & 4 & 8 & 20.28 & 60 & 89.28 & 6.01 & 36.63 & 220.03 & 2.00 & 222..03 & 132.80 \\
\hline 4. Cotton & 30 & 3 & 4 & 6 & 21.96 & 18 & 39.26 & 100 & 24.50 & 110.07 & \(\underline{-}\) & 11.0,07 & 79.81 \\
\hline 5. Groundnut & 50 & 2 & - & 4 & 14.64 & 50 & 64.64 & 11. \({ }^{16}\) & 17.85 & 106.35 & 3.00 & 199. 35 & 134.71 \\
\hline 6. Other cercals & 25 & - & 3 & 6 & 21.96 & 40 & 61.26 & 11.25 & 12.05 & 135.53 & 15.00 & 150.53 & 80.32 \\
\hline 7. Castor & 15 & 2.5 & - & 5 & 18.30 & 10 & 28.30 & 4.00 & 13.16 & 52.64 & - & 52.64 & 24.34 \\
\hline 8. Jowar + Cucumber & 25 & - & 3.5 & 7 & 25.62 & 30 & 55.62 & 11.00 & 12:80 & 141.74 & 20.00 & 161.74 & 106.12 \\
\hline O. Groundnut + & & 2 & & & & & & & & & & 211.96 & \\
\hline 10. Otheramix- & ל & 2 & - & 4 & 14.64 & 50 & 64.64 & 12.00 & 17.25 & 206.06 & 5.00 & 211.96 & 147.32 \\
\hline tures & 23 & 2.5 & \(\sim\) & 5 & 18.30 & 16 & 34.30 & 10.50 & 13.50 & 142.74 : & 12.50 & 155.24 & 120.04 \\
\hline 11. Vegetables & - & - & - & 2 & 7.32 & 78 & 85.32 & - & - & - & - & 138.10 & 52.78 \\
\hline
\end{tabular}
(b) Resources.

On the basis of information we have colleacted for the Left Bank Canal area regarding resources available for crop production, it is found that all the three kinds of resources, namely human labour, bullock labour and other variable inputs, constitute limitational factors, and are not adequale at their existing levels of supply for full utilisation of the land resource, under irrigated conditions. This difficulty arises particularly because it is proposed to give water for wet crops for a high proportion (\(6.5 \% 8.0\)) of the ayacut in the Left Bank Canal aria. As we have done in the case of programming for the Right Bank Canal area, we have assumed that additional resources will become available partly due to natural growth of work force and stock of work cattle and partly due to private or Government prozrames for inproving the supply of all these resources in the region. The resources available at present and the additional resources assured to become availabile to the four typical holdings are shown in the following table f \(6.17,6.15\) in 16.19

Ta,07e No. 6.I6.
June / July Human labour (in 8 hr , mandays)
\begin{tabular}{llllc}
\hline \begin{tabular}{c}
Size-group \\
(acres)
\end{tabular} & \begin{tabular}{c}
At present \\
available
\end{tabular} & \begin{tabular}{c}
Assumed \\
available
\end{tabular} & \begin{tabular}{c}
St apart \\
for Paddy
\end{tabular} & \begin{tabular}{c}
Balance \\
available
\end{tabular} \\
\hline \(7.51-15.00\) & 03.40 & 116.76 & 108.63 & 0.13 \\
Above 15.00 & 00.30 & 317.76 & 230.50 & 37.26 \\
\hline
\end{tabular}

Mote:- In the first size group the number of family workers whose main cmploymert in agriculture, is 1.52 per acre. This makes 66.00 manuals available in June/ July for the typical holding, and the June/July requiremont of the Paddy crop (for the 6,5/3. (part of the holding) is only 14.33 mandays. In the second size group the number of family workers whose main employrent is agriculture, is 0.40 per acre. This makes 73.50

\title{
Table No. 5.18 \\ Junc/July bullock labour (in 8 hre bullock pair days)
}
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Size-group \\
(acres)
\end{tabular} & \begin{tabular}{c}
At present \\
available
\end{tabular} & \begin{tabular}{c}
Assumed \\
available
\end{tabular} & \begin{tabular}{c}
Sct apart for \\
paddy
\end{tabular} & \begin{tabular}{l}
Balance \\
available
\end{tabular} \\
\hline \(0.01-2.50\) & 6.03 & 10.25 & 4.76 & 5.49 \\
\(2.51-7.50\) & 16.50 & 24.75 & 16.24 & 3.51 \\
\(7.51-15.00\) & 20.06 & 43.29 & 34.76 & 0.53 \\
Above 15.00 53.00 & 02.80 & 80.76 & 3.04 \\
\hline
\end{tabular}

\section*{Table IIO. 6. 79 \\ Other variable inputs (in bin)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Size-zroup (acres) & Available at present 1 & le Assum available & \begin{tabular}{l}
ed \\
Chil \\
lies
\end{tabular} & \(t\) apart Country tcbacco & for Paddy & \[
\begin{aligned}
& \text { Vege- } \\
& \text { tables }
\end{aligned}
\] & Balance availa ble \\
\hline 0.01-2.50 & 61.41 & 92.12 & 2.40 & 0.60 & 59.50 & 1.56 & 20.06 \\
\hline 2.51-7.50 & 120,65 & 241.30 & 7.20 & 1.80 & 203.00 & 4.68 & 24.62 \\
\hline 7.51-15.00 & 236.14 & 590.36 & 15.60 & 4.20 & 434.50 & 10.14 & 125.92 \\
\hline Abovel5.00 & 496.83 & 1490.65 & 42,00 & 10.20 & 1122.00 & 27.30 & 239.15 \\
\hline
\end{tabular}
(d) Results of inopramming.

For the Left Bank Canal area also, programming is done with the object of maximising the valueadded to materia: costs in crop production. Out of the 7 crops and rop mixtures selected for programming, two have turned out to be inefficient namely castor and other cereals group (Jowar, Variga, Bajra Korra, etc.). The optimal crop pattern finally arrived at by tie simplex method for \(e\) ach of the four typrical hoding and tor the ragion as a whte are shown in the following tables Nos. 6.20 and 6 . 21 .

\section*{to table \(N_{0} 6.17\)}

Hoterie-(Conta,) randays available in June/July for the holding. The paddy crop rearirement in this case is 50.75 mandays. Hence, human labour is not considered a limitational factor in the se \(t\) wo size groups.

Table No. 6.20
Optimal Crvp Jattern for individual famers in different size groups (Left Canal Arca) (in acres)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Size -group } \\
& \text { (in acres) }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Average } \\
& \text { size }
\end{aligned}
\]} & \multicolumn{4}{|l|}{Ariluies Coas allocated to Pady} & \multicolumn{3}{|l|}{Areas as determined by programing} \\
\hline & & Chillies & Country & Paddy & Vegetam & Jowar + Cucumber & Groundnut + & Other mixtures \\
\hline (1) & (2) & (3) & (4). & (5) & (6) & - (7) & (8) & (5) \\
\hline 0.01-2.50 & 1. 47 & 0.02 & 0.01 & 1.19 & 0.02 & - & 0.23 & - \\
\hline 2.51-7.50 & 6.00 & 0.06 & 0.03 & 4.06 & 0.06 & - & 0.35 & 0.44 \\
\hline \(7.51-15.00\) & 10.69 & 0.13 & 0.07 & 8.69 & 0.13 & 1.08 & 0.59 & - \\
\hline Above 15.00 & 27.62 & 0.35 & 0.17 & 22.44 & 0.45 & 2.70 & 1.52 & - \\
\hline
\end{tabular}

Table No. 6.21
OPTIMAL CROP PATTERN OBTAINED FOR B,00 LAKHS OF ACRES (LEFT CANAL AREA)

It is clear fron tho above tables llos. 6.20 and 6.21 that groundnut+ridgram, jowertcucumber and other mixtures have come into the optimal crop pattern. These are alsc tine crops with high value added \(j \in r\) acre undcr conditions of irrization, on the Easis of the input-output coefficients assumed. Under the existing conditions also; jowar mixed with pulses and mixed with others, and groundnut+redigram, show each high value-added, per acre. It is therefore not unreasonable to expect that the ayacut available for dry irrigation excluding allocations for chillies, country tobacco and vegetables will be used for such mixed crop.
6.9 Intensity of cronping in the irri atcd area.

It ray be noted that the optinal crop patterns arrived at by programming for the Right and Left Bank Canal areas, refer only to the net irrigated areas in the region and do not make any allowance for hisher intonsities of cropping. In all irrizeted areas, there is always the possibility oin raising fodder or manure crops, pulse crops or oil seeds in the irrisated paddy fallows when paddy is raised during the kharif scason, especially when short duration paddy crop is raised. Similarly, a second crop of fodder-jowar or pulses may be raised in the fields after the harvest of dry irriejated crops of the kharif season. If water is supplied for irrigating Rabi crops only, some kharif crops are certain to be raised on the arac lands under rain-fed conditions. It is therefore necessary to assume that the intensity of cropping in the irrisated areas will be greater than ene. We have not however found
it nceussary to take note of this in propamin? for the Righ and Left Bank Canal areas bucause the Governaunt's policy is to supi'iy water for one crop only, andif a sccond croi is raisud on a ficld it has to bo an unirri:jated Ex crop with lower ineut requirements per acre as compered with the requirenents of irriratod cropso

On the basis of the information available regardin.; the intcnsity of cropinin in the delta arcas adjacent to the Project, and takin; notc of the fact that \(\begin{gathered}\text { w w w }\end{gathered}\) water is not ronosed to bo given for a second paddy crop in the Projuct area, wo have assumed that the intensity of cropping is not likely to be more than 1.3 (or \(130 \%\)) in the irrigated areas both under the Ripht and Left Bank Canals. We have therefore accepted 1.3 intensity for the purpose of calculating the additi onal output and value-added arising out of higher intensity of cropringe. We have further assumed that under the Right Bank Canal area (in \(S_{1}\) and \(S_{2}\)) \(15 \%\) of the additional cropped area will be used for raising fodders and manure crops, \(10 \%\) for pulse crops or grams and \(5 \%\) for oil seeds (gingelly or castor). Similarly, we have assuncd that in \(S_{3}\) (i.e., under the Left Bank Canal) \(15 \%\) of the additional cropped area will be used for raising fodder or manure crops and another \(15 \%\) for raising pulses or grams. The output and value-added per acre for these crops are assumed to \(r\) emain unchanged because they continue to be unirrigated crops as at prescnt. It may be seen from the following table No. 6.22 which gives the necessary details, that gross value of output increases on account of

We arc now in a pesition to make final estimates of the total value of agricultural output after irrigation in the Project arcal under the Risht Bank Canal and Left Bank Canal and compare them with the estimates alrcady nade for the ycar 1050-60. The details are furnished in the following table ifo. 6.23.

Details of Pstinate of Arricultural output after irriation
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Iten} & \multicolumn{3}{|c|}{R1. ht Bank Cansl side} & \multicolumn{2}{|l|}{Left Bank Canal side} \\
\hline & \[
\begin{aligned}
& \text { (in lakhs) }
\end{aligned}
\] & \(\frac{\text { After irr }}{\text { Trrizated }}\) & \[
\begin{aligned}
& \text { riation } \\
& \text { Unirri 'ated } \\
& \text { in lakhs) }
\end{aligned}
\] & \[
\begin{aligned}
& \left(\frac{1050-60}{\text { in lakhs }}\right)
\end{aligned}
\] & \[
\begin{aligned}
& \text { After irri yation } \\
& \text { (in lakhs) }
\end{aligned}
\] \\
\hline 1. Net cultivated arca (in acres &) 12.11 & 11.24 & 0.07 & 6.23 & 3.00 \\
\hline 2. Gross croped a rea (in icres) & 12.22 & 15.61 & 0.87 & 6.01 & 10.40 \\
\hline 3. Gross value of outeri (in ri) & 1727.0 & 5061.6 & 124.1 & 600.3 & 2777.0 \\
\hline 4. Value added to material in:uts (in Is.) & 1013.5 & 4081.6 & 72.8 & 333.7 & 2130.3 \\
\hline 5. Increase in valuemeded (in \(\mathrm{BS}_{0}\)) & - & 3140.0 & & - & 1701.6 \\
\hline \multicolumn{6}{|l|}{6. Yicids (in mise)} \\
\hline i) Food grains & 50.77 & 153.56(207.70) &) & 26.31 & 162.63 (136.37) \\
\hline ii) Chillies & 1.25 & 20.17(27.02) & - & 0.43 & 1.04 (1.51) \\
\hline iii) Groundnut & 3.65 & - & - & 6.23 & 4.36 (-1.37) \\
\hline iv) Country tobacco & 2.97 & 6.00 (3.03) & - & 0.04 & 0.30 (0.26) \\
\hline v) Red jram, other grams and rulses & 4.54 & \[
3.21+3.04 @
\] & - & - 2.65 & \[
\begin{aligned}
& \text { 1.04 }+2.60^{@} \\
& (0.05)^{@}
\end{aligned}
\] \\
\hline
\end{tabular}

Note:- Fisures in brackets indicte the increases in yields after irrization.
-@!- This is the result of hisher intensity assumed a fter irrisation.

The \(\frac{\text { gloss }}{3}\) value of output in the total cul. tivated area of 12.11 lakhs of acres (or 12.22 lakhs of acres of cropped a rea) under the Risht Bank Cenal has come to IS. 1727.0 lakhs for the year 1050-60, according to our estimate. After irri;ation it has increased ky more than three times, anounting to Ts. 4036.6 lakhs for the 11.24 lakh acres of net irrigated area, plus [s. 125.0 lakhs for the additional cropped area based on cropping intensity of \(130 \%\), Flus [. 124.1 lakhs for the unirrizated a rea of 0.37 lakhs of acres which is assumed to remain שxak constant. The increase in the gross•value of output after irrization amounting to a total of Rs. 3457. 3 lakhs has to be attributed to the hizher yields of crops under irrijated conditions, changes in the cropping pattern and the higher intensity of cropping in the irrizated area. The total amount of value added to material inputs can be raised after irrigation to fs. 4154.4 lakhs which is nearly four times the present value, viz. Is. 1013.5 lakhs, the net increase in value-added amounting to Fs .3140 .9 lakhs.

On the Left Bank Canal side, the gross value of output in the total cultivated a rea of 6.23 lakhs of acres at present (or 6.01 lakhs of cropped area) has amounted to is. 600.0 lakhs. After irrigation this is found to increase more than four times amounting to \(\mathrm{F}_{\mathrm{s}} .2603 .6\) lakhs for the net irrizated area of 0.0 lakhs of acres plus is. 83.4 lakhs for the additional acreage based on cropping intensity of \(130 \%\). The value-added to material inputs is found to increase, after irrigation by more than six times, the net increase in value added amounting to is. 1791.6 lakhs. The substantial increase \(x\) in gross output
and value added on the Left Bank Canal side has to be attributed to the followin; important factors:
(i) an increase of total cultivated area ky 1.77 lakhs of acres, constitutinp nearly \(30 \%\) increase over the existing area;
(ii) a hish proportion of the ayacut coming under irri,jated padidy crop (ioe. 6.5 lakhs of acres out of 8.0 lakhsof acreg.
(iii) the hirger yields assumed for irrigated paddy and other dry irrisated crops;
(iv) the changes in the cropping pattern adopted; and
(v) higher intensity of cropping

As may be seen fron the above takle ITo. 6.23, there is also a substantial increase after irrigation in the estimated outturn of food grains, oil seeds, and other produce both under the \(\mathrm{Fi}_{\mathrm{r}}^{\mathrm{g} h t}\) and Left Bank Canals.

\subsection*{7.1. General.}

As referred to in the two previous chapters, we have classified the resources required in crop production ints three categories, viz., (1) numan labour (2) bulloc labour and (3) other variable inputs comprising seed, manures and fertilisers etc. It is essential to bear in mind that these resources refer to phifical resources required in crop production, The ful三 develcpment if the ayacut both under the Right and Left Bank Canals: according to the optimal crop patterns \(\mathfrak{k} 2\) heve estimated over a period of 10 to 15 years after the Krishna waters hegin to flow into the Nagarjunasagar Sanals, requires additional resources. not only under the above thee categories but alss additirnm al resources for the conversion of diry lands to suit canal irrigation and for trade and trainsport of farm materials and produce. It is proposed to make a detailed study of these resource requirements in this chapter.

\subsection*{7.2. Resource requirements for the Right Bank Canal area.}

As already pointed out, the supply of farm family labour and agricultural labour in the villages under the Right \(B_{a n k}\) Canal will not be a iimitational factor for achieving the optimal cropping pattern. \({ }^{1} \mathrm{hs}\) regards bullock labour, we have found that a high proportion of the June/Juiy bullock labour available at present will be required for the drrigated paddy orop (ioe. 1498 thousand bullock pair days out of 2065 theusand bulicck-pair days available.) Cur estimate of Septerber/October requirementf of bullock labour is 19.1 Iak's of brllock pair days for

\footnotetext{
1 It may be noted in this connection that there is considerable seasonal mignition of labour during the time of transplantation of pediy to neighbouring delta areas in the adjoining districts. Tinis is likely to to cease after irrigation in the Eroject area. It means that shortage of human labour in the peak demand months may be felt in the Jelta areas the Froject region taken together.
}
dry irrigated crops and 4.2 lakhs of bul. ck pair days for the unirrigated part of the land in the zyacut villages. The amount of bullock labour available \(\begin{gathered}\text { raising crops }\end{gathered}\) in 1959т60 according to our estimate i.. 0.67 lakhs nf bullock pair days. A shortage of bullsok labour of 2.96 lakhs \(b_{f}\) bullock pair days (or nearly 10,000 pairs of work cattle) is thus likely to arise on the ? side, unless the supply of bullock labour increases by nearly 15 per cent nver a period of 10 years. According to our Census survey, the annual rate of increase of work cattle is only 0.33 per cent in \(S_{1}\) villaces and 1.29 per cent in \(S_{2}\) villages (0.8 per cent in \(S_{1}\) and \(S_{2}\) put together). \(:\) therefore becomes important for the Project authorities to take special measures to augment the supply o: bullock powe. The rate of growth of supply of bullock labour s.as to be atleast twice the natural rate of growth, unless \(\mathfrak{m}\) :chanizatic" -f some of the agricultural operations during the peak demani months is encouraged?

As already stated, the amount of other variaile inputs which may be treated as current production expense\%, includes the value of seed, manures and fertilisers, pesticides, hire charges for implements and fuel costs, whes.er they are farm produced or purchased. Accerding to cur estimate, the total value oi these inputs for the year 1959-60 comes to Rs 355.6 lakhs. The amount required for the optimal crop pattern in the irrigated ayacut of 11.24 lakhs of acres is estimated at Rs 578.7 lakhs. The requirement for the area of 87,000 acres which continues to be under Jirginia tobacco and other unirrigater orops is

2
Manpower and work cattle are also required for the important purpose of conversion of the existing dry land to suit canal irrigation. The usual operations involved are, digging, levelling, bunding, terracing etc. It is however reasonable to assume in regard to this matter that these operations may be expected to be undertaken when land is fallow and not during the crop seasons. No allowance is therefore made for additional requirements of these physical resources for conversion purposes. The conversion costs, are considered separately and estimated.

Rs 119.9 lakhs. Taking these things together into consideration, we arrive at an estimate of Rs.343.1 lakhs as the additional amount required in the form of other variable inputs, which constitutes an increase of 96.5 per cent - ver the esisting available quantity. On the basis of information available in the Ferm Management Studies and the information collected in our Farm surveys, about 60 per cent of the value of other variable inputs may be conside- red as the value of seed (or seedlings) and about 30 per cent as the value of manures and fertilisers, the remaining 10 per cent being the value of hire charges for implements, pesticides etc.

\section*{7. 3. Resource requirements for the Ieft Bank Canal Area.}

We have found that all the three categories of physical resources taken into account for programming are limitational factors on the Left Bank Canal side. This situation arises primarily because of the fact that the propesed ayacut area has considerably increased and more than 80 per cent of it is localised fer wet crops.

Our estimate of the human labour supply available at present for arop production is \(36,89,662\) man-days fnr the peak demand month. of June/July. We have arrived at this figure by taking into accsunt all the workers in the villages belonging to both cultivator and non-cultivator households and having owner cultivation, tenant cultivation, agricultural labour and annual servant labour as main employments. These categories of workers together constitute about 85 per cent of the total work-force in the villages. Abouth, 50 per cent of the employment of these workers is utilised for farm work ther than crop production such as the maintenance of cattle, dairying and poultry keeping, service or business,etc.

The amount of human labour available for arop production for the year 1959-60 is estimatfa after making due allowance for this. The actual reguirement of human labour during the peak month of June/July after irrigation, is estimated at 88.8 lakhs of man days, out of which 81.2 lakhs are required for 6.5 lakhs of acres under irrigated paddy. A serioussholtage of supply of human labour is thus certain to arise on the Left Bank Canal side. Tne total work force has te be more than doubled over a period of 10 years. The natural rate of growth of work force in the region may provide for an additional 20 per cent of the existing labour supply or approximately 8 lakhs of man days during June/July month. But, this will constitute only 10 to 15 per cent of the additional total requirement. Hence, steps have te be taken immediately for planned uirrmpratuin population to the region on a large scale. How far mechanization of the - perations hormally undertaken in the months of June/July for the cultivation of wet paddy, will meet the problem of shortage of human labour has also to be thoroughly examined.

The tatal amount of bullock labour available at present during the peak demand month of June/July for crop production has been estimated by us at 14.31 lakhs of bullock-pair days. The actual requirement for the optimal crop pattern is estimated at 27.29 lakhs of bullock-pair days; out of which द5.99 lakhs of bullock pair days is the requirement of the paddy crop. Thut serious shortage of bullock labour supply is also certain to arise on the Left Bank Canal side, amounting to 13.0 lakhs of bullock-pair days. It means that the supply of bullock labour has nearly to be doubled as in the case of human labour. According to our Census survey, the natural rate of growth fork cattle in \(S_{3}\) (Left Bank Canal area) is found to be 2.34 per cent per year.

This leads us to tie conclusion that the Project Autheri-
ties have to take empy sters to eurment the supply of bullock labour substantially and else encourage ceohenization of June/july seasnnal oeeretions requiring bullock lebour. \({ }^{3}\)

The total amount of̀ cther variable inputs is estimated at R. 1.30 crorss for the yeer 1959-60, and the actual
 The amount of othor varianle inputs thus recuired after irrigation has to 'je increased by nearly three times the amount available \(a^{\dagger}\) present \(e \underline{r}\) by an additional amount of Rs. 2.63 crores. This anount may be allncated to seed, manures and fertilisers, and others in the ratio of 6:3:1.

\subsection*{7.4. Financiel implication of rescurce requirements for the}

Uptima crop pattern.

In our study of the resource requirements for the optimal crop pattern with reference to human labour, bullock labour and other variabie inputs; we are concerned till now with the physical rescurce requirements for crop preductinn only. It is now necessary for us to evaluate the financial impi ications, ni these rosource requirements. There are two important iactors which must be taken ints account in this connection. Firstly, the farmers provide themselves with certain proportion of their requirements out of their own rescurces. In the case of human labour, for instance the bulk of it is usuelly provided by hired lebour especially in the higher size groups of holdings. On the other hand in the case of bullock labour, a considerable proportion of the required amount is owned by the farmers except in lower size groups. In the case of seed and farm yard manure alsa cash trensavtions usually form a high
```

proportion of the requiremonts, In the case of fertilisers

```
and pesticides, the entire requirements have to be ef course purchased by the farmers. The farmers at present depend partly on their own resources and pariy on the credit provided by \({ }^{\text {money }}\) lenders for purchase of these resources. The second factor for consideration is that farmers have to invest considnrable amcunt of capital in acquiring agricultural assets necessary for crop production like bullocks, machinery and implements, farm buiidings etc. For the acquisition of these assets also, farmers depend partly on credit provided by the money genders. The first consideration raises the question of providing adequate short-term credit for the farmers to meet their current production expenses, while the second consideration raises the question of providing adequate medium and long term credit to enable them to acquire the required agricultural assets.

\section*{7. 5. Short-term capital requirements.}

TGe short term capital requirements of the farmers in the Project area after irrigation may be considered under the following heads:
i) Finance required for payment of wages to hired labour,
ii) finance required for payment of hire charges for bullocks,
iii) finance required for the purchase of seed er seedlings,
iv) finance required for the purchase of manures and fertilisers, and
v) finance required for the purchase of other materials End hire charges for implements etc.

The following procedure is followed for estimating the total short-term capital requirements for both the Right and Left Bank Canal areas. On the basis of input requirements for wet paddy and dry irrigated crops entering into the optimal crnp pattern, we have first estimated the aggregate physical requirements of human labour and bullock labour. We have
next taken the proportion of hired resources in the total as 80 per cont in tho cose of human labour and 20 per cent in the case of billock lebour on the basis of information avaiLable in Farm lianesement Gtudies in the West Godavari district Finally in order to arrive at the financial requirements, We have taken into account the average wage rates for hired labour and hired bullock labour prevailing in sample villages during 1959-60. In the case of ther variable inputs which are calculated in termbof money, we have taken intn account the information available in the Farm Management Studies and our Farm Surveys regarding onenotiatwo of specific inputs and assumed that 70 per cent in the case of seed er seedlings, 60 per cont in the case of manures and fertilisers, and 100 per cent in the case of others (pesticides, hire charges for implements, etc.) will be the financial requirement. Full details are given in the following table No. 7.1.
\begin{tabular}{|c|c|c|}
\hline Item & Right Bank Canal area & Left Bank Canal area \\
\hline 1. Human labour & (2) & (3) \\
\hline (a) Total requirement (in man-days) & 536.11 & 385.72 \\
\hline (b) Requirement of Hired labnur (in man-days) & 428.89 & 308.58 \\
\hline (c) Value of figed labour (in fis) & 579.00 & 533.84 \\
\hline
\end{tabular}
2. Bullock labcur.
\begin{tabular}{|c|c|c|}
\hline (a) Total requirement (in pair days) & 75.22 & 60.34 \\
\hline (b) Requirement of Hired labour (in pair days) & 15.04 & 12.07 \\
\hline (c) Value of Hired labour
\[
(\text { in Rss })^{(2)}
\] & 69.64 & 44.18 \\
\hline
\end{tabular}

3, Other variable inputs
(a) \(\mathrm{Se} \because \mathrm{d}\) (in Rs, \(144.10 \quad 165.06\)
(b) Manures \(\&\) fertilisers (in Rs。)
61.76
70.74
(c) Others (in Rs.)
34.31
39.30
(d) Total of other variable
240.17
275.10
4. Financial requiremert
(a) Total (in Rss)
888.81
853.12
(b) per acre (in 1 b)
79.08
106. 64
Credit Requirement
444.41
639.84

Note:- (1) The average wage rate for hired human labour is Rs. 1.35 (in the Right Bank Canal side and Rs 1.73 d the Left Bank side.
(2) The average wage rate for hired bullock labour is R.s 4.63 In the Right Bank Canal side and Rs. 3 .óocir the Left Bank Canal side.
It may be seen frem the above table that the total ammunt of short-term finance required by the farmers comes th Rs. 888.81 lakhs in the Right Bank Canal side. On the Left Bank Canal side: the tctal amount of finance required is estimated at Rs 853.12 lakhs. The total amount of finance required for the Project area thus comes to Rs 1741.93 lakhs or Rs. 154.98 per acre.

The recuirscents of lone term finance on the part of the farmers in the roject area maj be studied uncer three heads: i) Finance required for purchase of work eattle; ii) finance required fer purchase of macinery and implements such as ploughs, carts etc., and iii) finance required for construction or improverent of farm buildings. In estimating the financial requirements under these three heads, we have followed two different methods; one fnr estimating the finance required for purchase of work cattle and another for estimating the financial requirements in respect of the two other categories. In regard to finance required for purchase of bullocks we merely calculate: the cost of the number of bullock pairs additinnally required to termined. which is already-defied, jn regard to the other two categorien of assets re have taken into account the value of investment per acre as rbtained far predominantly irrigated paddy zone in the West Godavari district in the Farm Management Studies and the value of investment per acre at present' in the Projeci, area TX as indicated in our Farm Surveys. As already pointed out, out arlliticinal
estimates of, bullock labour required for the optimal crop patterns under the Right and Left Bank canals are 10,000 bullock pairs and 44,000 bullock pairs respectively. At the prices prevailing at present (i.e, average value estimated for the year 1959-60), the cost of 10,000 pairs of bullocks required on the Right Canal side at Rs 650 oer pair amounts to \(R s_{6} 65\) lakhs. The cost of 44,000 pairs of bullocks required on the Left Canal side at Rs. 450 per pair amounts to Rs. 198 lakhs. The cost of providing additional bulioc. power required in this the Prnject area as a whole thus amounts to Rs. 263 lakhs. 4 .

\footnotetext{
4. The question of investment in tractors as an alternative to investment in bullocks may have to be Given serious thought in this cen.ection. For wet cultivation, pair of bullocks cosiing Rs. 700 to 800 on average can cuitivate unly 8 to 10 acres while a tractor costing Rs. 20,000 can be used to cultivate abcut 400 acres. The operating expenses of a pair of bullocks (net maintenance cost) is not likely to be less than Rs, 400 th 500 per year, as compared to \(\mathrm{Rs}, 4,000\) to 5,000 per year in the case of tractor. It is thus ciear that on a per acre basis, both capital costs and operating expenses are likely to be less in the case of tractors:
}
on the Right Canal side will be met by the cultivators from out of their current or past savings and 25 per cent on the Left Bank Sanal side, the medium and long term credit requirements may be estimated at Rso 181.0 lakhs.

The value of machiqury and implements per acre in the paddy zone of the West Gedavari district is estimated at Rs.3i.2. According to our Farm Gurveys in the Project area, it is estimated at Rs, 18. 67 :n the Right Bank Canal side and f Rs, 14. 35 on the Left Baik Canal side, From these we may infer that in the Froject area after irrigation, investment in machinery and implements has to be increased by Rs 12.53 per acre on the Right Eank Canal side and Rs 16.85 per acre on the Left Bank Canal side or a totail amount of Rs 140.84 lakhs on and \(R\) s 134.80 laikhs on the Left Bank danal side. the Rigint Pank Cainal side, feliowing the previous procedure of allowing 50 per sent and 25 per cent on the Right and Left Canal sides respectively for self-rinance, the total longw term credit requirament for the purchase of machinery and implements may be estimated at Rss'70.42 lakhs and Rs. 101. 10 Jakhs for the two areas. The value of investment in farmd buiłdings (cattie sheis. storage sheds, etc.) per acre is
 district,y which exceeds sur estimates of the value of investment in Iarn buiidings on the Right and Left Bank Canal sides at present br Rs 50.74 ande 50.64 respectively. On the basis of this information, the total finance required for construction or improvement of farm buildings will come to Rs,570.32. lakhs for the Rigit Bank vana. side and Rs 405. 12 lakhs for the lef't Bank Canal side。 If aliowance is made for self-finance, the total credit requirements will amount to Rs, 285.16 lakhs for the Right Bank vanai side. and Rs, 303, 84 lakhs for the Left... Bank Canal side。

The total amount of long and medium term finance required for investment in work cattle, machinery and implements and farm buildings and the total credit requirments are shon in the following table No. 7.2. for the Right and Left Bank Canal sides.

Table No, 7.2.
Long-term finance and credit requirments (in lakshs of Ruppes)

The total amount of short-term and long-term finance and credit required to enable the farmers in the Project area to achieve the optimal cropping pattern over a period of 10 to 15 years may be given in the follow/ing table No. 7.3.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Right Bank Canal} & \multicolumn{2}{|l|}{Left Bank Canal} & \multicolumn{2}{|l|}{Project area} \\
\hline Itcm & Tctal requirement & \[
\begin{aligned}
& \text { Credit } \\
& \text { require- } \\
& \text { ment }
\end{aligned}
\] & Total require ment & ```
Credit
require-
ment
``` & Total Require ment & \begin{tabular}{l}
 \\
requirement
\end{tabular} \\
\hline 1. Short-tarm finance for crop production & & - \({ }^{13}\) & R & (3) & \$65 &  \\
\hline (a) Human lebour & 579.00 & 289.50 & 533.84 & 400.38 & 1112.84 & 689.88 \\
\hline (b) Bullock labour & 69.64 & 34.82 & 44.18 & 33.14 & 113.82 & 67.96 \\
\hline (c) \({ }^{\text {d }}\) (d d & 144.10 & 72.05 & 165.06 & 123.80 & 309.16 & 195.85 \\
\hline (d) Menures \& fertilisers & 61.76 & 30.88 & 70.74 & 53.05 & 132.50 & 83.93 \\
\hline (e) Others & 34.31 & 17.16 & 39.30 & 29.47 & 73.61 & 46.63 \\
\hline Sccel & 888.81 & 444.41 & 853.12 & 639.84 & 1741. 93 & 1084.25 \\
\hline \multicolumn{7}{|l|}{2. Lons-term finance for crop} \\
\hline (a) Purchase of bullocks & 6.5 .00 & 32.50 & 198.00 & 148.50 & 263.00 & 181.00 \\
\hline (b) rurchase of implements machinery & and
\[
140.84
\] & 72.42 & 134.80 & 101. 10 & 275.64 & 171.52 \\
\hline (c) Investment in farm buildings & \[
\begin{aligned}
& 570.32 \\
& \hline 8 \times x+6
\end{aligned}
\] & 285.16 & 405.12 & 303.84 & 975.44 & \[
\begin{aligned}
& 64.00 \\
& 589.00
\end{aligned}
\] \\
\hline Iotal & 776.16 & 388.08 & 737.92 & 553.44 & 1514.08 & 941.52 \\
\hline \multicolumn{7}{|l|}{- improvement (Sersetion 7.7)} \\
\hline Grand tutal & 3912.97 & 1956.49 & 3191.04 & 2393.28 & 7104.01 & 4349.77 \\
\hline
\end{tabular}

\subsection*{7.7. Chst of land reclamation or cost of conversion of existing dry land for irrigation.}

The problem finating the cost of land reclamation for conversion of the existing dry lands for irrigation is beset with several difficulties because it depends on a number If factors such as the topography and nature of the snils, slope or gradient in fields or blobly of areas/, whether conversion is made by the use of bulldozers and nther meehanical methods or by the use of manual labour service costs of mechanical applicances, wage rates, etc. It alsb depends to some extent on the question whether a given field or block is ldcalized for wet srops or far dry irrigated crops, because it is generally held that the costs of conversion of land to suit dry irrigation will be considerably less than for conversion to suit wet irrigation. At present in the ayacut villages, under the Right Bank Canal, the estimated extent of land irrigated under wells or tanks comes to 3.53 per cent of the cultivated area in \(S_{1}\) and 5.13 per cent in \(S_{2}\) ( 4.32 per cent taking \(S_{1}\) and \(S_{2}\) tegether). In \(S_{3}\) i.e., under the Left Bank Canal area, irrigated area is estimated to constitute cansiderably a higher percentage in total cultivatec area i.e. 7.61 per cent. More than 90 per cent of the land in the Project area is thus dry land, but it is difficult to say precisely what proportion \(\delta_{f}\) this area requires considerable outlay for purpnse of conversion to suit wet or dry irrigation. It is reasonable to assume, hewever, that some outlay, small or large, will be necessary to make every field fit for irrigation, since conversion nperations include not only removal of shrubs and rnots, digging and levelling, but also bunding, terracing, difgging of field channels, etc. As pointed out in an earlier chapter, the is considerably unducating on the Left Canal にiun
side as compared the Right Canal side. There are both red and black soils in the Project area, although there is a greater prednminance of black soil on the Right Bank Canal side.

Surface soil depth is also found to vary considerably in the different parts of the ayacut. Similarly, there is great variation in slope of lands: \#and with fairly level and gentle slope constitutes nearly 40 per cent of the area on the Right Bank Canal side. sfost of the area under the Left Bank Canal has greater than 2 per cent slope.

The cultivators of the Right Bank Canal side seem to think that the cest of reclamation for full wet lands varies from Rs 200 te 500 per acre while the cultivators f the Left Bank Canal area seem to estimate this cost to vary from Rs 100 to 300 per acre. The cost of reclamation of lands for dry irrigation under the Roght Bank Canal may be estimated at a lower figure ranging from Rs 50 to 200 per acre. It is said that in the Musi Preject area where the lands are somewhat less rugged and uneven than the lands under the Left Bank Canal, the cost of conversion has come to an average figure of Rs 200 per acre. The enquiries made by the staff of the Agricultural Credit Department of \(\chi^{\text {The }}\) Reserve Bank of India suggest that Rs. 200 to 300 per acre may be taken as the approximate rate for conversion of dry lands for irrigation under the Left \(B_{\text {ank }}\) Canal, and Rs 300 to 400 for full wet lands and Rs, 100 to 150 for dry irrigated lands under the Right Bank Canal. It is also estimated by engineers that there is an area of about 3 lakhs of acres under the Right Benk Canal and about 1 lakhd acres under the Left Bank Canal which are suitable for conversion by mechanical appliances. Conversion by the use of machines will be somewhat cheaper than conversion by the use of manual labnur. In the conirse of our survey we have also attempted to collect some detailed information about costs of conversion in two furpesively seleoted areas adjacent to the ayacut which have keen
recently brought under irrigatinn. \({ }^{5}\) According to these studies, we find that the cost conversinn for full wet irrigation will vary from Rs, 150 to 275 per acre. The details are cre as tellows.

Cost of comerension per oere.
\begin{tabular}{|c|c|c|c|}
\hline Village & 1946-50 & 1951-56 & 1957-58 \\
\hline 1. Pynampalli & 233.96 & 275.37 & 202.50 \\
\hline 2. Gollapudi, Rayanapadu, and Guntupalli & 192.87 & 158.31 & 145.91 \\
\hline
\end{tabular}

We may therefore finally adopt an average rate of Rs, 200 per acre as cost of conversion both under the Right and Left Bank Canals. This will give us a total estimate of Rs 38.48 crores (i.e., Rs 22.48 crores under the Right Bank Canal and Rs 16.00 crores under the Left Bank Canal) which has to be spread over a period of 10 years. About 50 per centofthe total finance required for conversion on the Right Bank Canal side may be expected to be provided by the cilltivators themselves from out of their carrent or past savings. On the dther hand; cultivators on the Left Bank Canal side may not be expected to contribute môre than 25 per cent of the total finance required from their savings. It becrmes therefore the responsibility of the Government to provide directly Ir through cícoperative societies substantial amount, of credit to the cultivators if land development in the \(\operatorname{Pr}\) ject \(\cdots\) area is to be rapidly brought abnut (i.e., Rs. 11.24 crores for the Right Bank Canal side and Rs. 12.00 crores for the Left Bank Canal side).

\footnotetext{
5. One is the village, Pynampalli which comes under the ayacut of Palair irrigation project on the Left Bank Canal side More than 70 per cent of the area in this village was converted during 1951-56. The other area consists of three villages fellapudi, Rayannapadu, and Guntupalli which comex ji jayawada taluk of the Krishna district. A high proportion of the ayacut of these villages was brought under irrigation in 1946.
}
\(\rightarrow\) the eguntupalli pumping scheure located in the.

\section*{255}
7.8. Trade and transport in the Project area.

It is common knowledge that adequate development of road and rail transport facilities and organisation df trading and financial institutions, taricularly on â co-operative basis, are essential nt only for the rapid development of the ayacut but alse for giving maximum benefit to the preducers and consumers in the areaf the substantial increase in agricultural putput, both under the Right and Left Bank Canals of the \(\therefore\) Project, \(A x+y y\) to be sustained, the region \(\quad\), needs wide and well-orbanised net work of village and district roads, State and National highways, anf railways and extension f commercial and cós - perative banking خो to provide finance, for private and co-operative marketing agencies. It is pripdsed to make a brief reference to these important matters in this sections: Ne attempt will however be made to make a detailed estimate \(\mathbf{d f}_{f}\) the capital and maintenance costis involved in extending and impreving trade and transport organisaticn in the Preject area.

Accerding to nur study of agricultural production in the Project, area, the output of food grains after irrigation is estimated te increase by a little more than three times on the Right Bank Canal side and by nearly six times on the Left Bank Canal side. The output of grams and pulses is estimated to increase by about 50 per cent in both the areas of the Project. The output of all other crops is similarly estimated to increase except in the case of oil seeds as the area under cilseeds has come to be much reduced in the optimal crcpping pattern. The relevant details of the additional output of various crops in the Project areafter irrigation are as follews.

\section*{\(I-\sin m\)}
1. Food grains
2. Chillies
3. Country tobacco

4: Redgram of pulses

Increase (in lakhs of maunds)

\section*{ \\ 244.16}
29.43
3.29
2.70

Agricultural development in the Project area is thus expected to add substantially to the marketable surplus and also to the exportable surplus in rice; pulses, chillies and -ther produce; and in a rapidly developing region demand for trade and transport facilities has also to be expected to grow csrrespondingly. \({ }^{6}\)
7.9. Transport development.
(a) Roads. It is estimated that in the ayacut area of the Prjject taking together beth the Right and Left Bank Canal areas, there are only 1675 miles of roads which work out to a low figure of 0.34 miles length of roads per square mile, compared with 0.70 miles length of roads normall required in a developed agricultural area. It follows that, as the flow of Krishna waters in the Canals begins to bring about rapid agricultural development; provision of roeds has not muxy also to be accelerated. The existing mileage of goads has not only to be improved hut also has to be nearly doubled bver a perind of 10 te 15 years. The Highways Department of the State Government has suggested that the cost cf rdadd develApment in the Project area, taking into account varicus classes of roads to be provided, may come to nearly Rs 33 crores, While keeping in view a long term plan of such dimensiens it will be necessary to give high priority to construction of village rads connecting them to market centres and railway statior:
6. It is interesting to note that the Department of agriculture: Andhra Pradesh, has estimated on the rasis of the cropping pattern suggested by itself, the annual gross returns from the ayacut when fully develeped will be 12.5 lakh tons of frodgrains 3 lakhs bales of cetton, 1.8 lakhs tnns of groundnut, 37,000 tons of chillies and 30,000 tons of jasgery.

A well developed system of district and village roads and State and National Highways is also essential for facilitating the use of motor vephicles for both freight and passenger traffic.
b) Rail transport:
owh a part of the project area on the Right Canal side is served by the \(x+5\) We have the Guntur-Macherla metre gauge line with a length of 80 miles extended recently upto the dam side, and
the Guntur-Guntakal metre gauge line which passes through Sattenapalle, Narasaraopet and Vinukonda taluks. Axay runtry mostly outco the ayacut area. From the accompanying map figure it is clear that a considerable extent of the ayacut arealying to the east and south of the Guntur-Narasaraopet line is very inadequately served by kye railway transport. It is therefore of utmost importance that a new railway line is constructed connecting the Nagarjunasagar dam side with the Ongole railway station as recommended ing the TechnoEconomic Survey of Andhra Pradesh. This Gine will help avoid the transport of the produce to south through the circutous and already over-congested route via. Vi jurrawada.

It is also of vital importance to convert the present Guntur-Macherla metre gauge line into a broad gauge line so as to facilitate not only efficient transport of produce of the ayacut area but also to accelerate the pace of industrialization of area between Guntur and Macherla. In this connection the existing siding of the railway line, Macherla to Dam sife, should be taken over and ratained by the Gailway and converted into a broad gauge line as a permanent rail link between Macherla and dam side.


On the Left Canal sire, there is no railway line running at present through the project area, the Vi jayawada-Kazipet line being: away from the boundary of the ayacut fixed for the 1 st phase. With the policy of localisation of nearly \(80 \%\) wet on the Left Canal side, the area is likely to become densely populated and the trade and commerce increasing ". . Fold. To add to this the Nalgonda district is said to be rich in mineral resources. A railway line from dam site to Hyderabad, the capital of Andhra Pradesh via,Miriyalaguda is a special need of the region for a rapid development of the area, agriculturally and otherwise.

By far the most important requirements of the region it is being opened up by a railway line from the dam site to almost Within heaptacilemit serve. Khanmam. This line will runkentirely as an artery for the flow of traffic between the dam si do and the Vi jayawadaKazipet railway line.
c) Inland navigation: In order to facilitate traffic within the Project area major canals in the Project area have to be developed suitably for traffic. Inland waterways therticqut can become a most valuable facility supplementing road and railway transport. It will also ho l the development \(f\) industries connected with canal traffic such as the manufacture of country craft.

The transport facilities have to be developed at least simaltaneously with the completion of the project if not in advance so that the resources required for crop producdion, equipment needed for processing industries, etc., can be transported to various places in the project area, and the surplus produce moved out of it without leading to serious bottlenecks, and making a good part of the outlay on the project infructious.
7.10. Trade.

As explained in Chapter III dealing with trade and finance in selected important market centres located and widely distributed in the Project area, the region is at present served mostly by private agencies in the spheres of marketing and finance. The agricultural development of the region and the large increase expected in marketable surplus and exportable surplus of agricultural produce rlso
will, bring about a great increase in demand for trade facilities and finanoe. Private agencies may be expected to meet the increase in demand to some extent. But, in order to provide adequate facilities and particularly to promote co-operative agencies in these spheres, the state has to play an active and purposive role. The steps to be specially taken will comprise (i) establishment of fregulated markets with all facilities such as market yards, wærehouses etc., (ii) establishment of co-operative marketing societies; (iii) establishment and promotion of Co-operative banks; and (iv) establishement of branches by the State Bank of India and other commercial banks.

In the foregoing paragraphs we have indicated the various resource requirements and also translated their implication into financial terms. It is very necessary on the part of the Government to evolve requisite machinery and procedures for providing the farmers with the facilities required sufficiently well in advance of the completion of the project. It has been the ex erience in other irrigation projects that the development of the ayacut has been very tardy and disappointing for lack of proper planning in advance. In fact, one of the objectives of the present survey has been to plan for rápid development of the ayacut without bottlenecks.

Thus the moduswoprandi of providing the farmers with the requisite resources should engage the immediate attention of the Government.
```

 CHAPTER - VIII
 BENEFTT-COST APPRAISAL OF THE PROJECT.

```

\subsection*{8.1 General:}

In this chapter we propese to make an appraisal of the benefits and costs of the first phase of the Nagar junasagar irrigation project which is the subject of our Socio-economic Survey and investigation.

We do not propose to go into the larger issue of the optimal utilization of the waters af the river. Krishna from the point of view of attaining maximum net social benefit both in the short run and in the long run. This is an issue which raises several technical and complicated questions which are not easy to settle without reference to objectives and policies national economic development. The problems as to where, i.e. at what points in the course of the river and to what extent and for what purposes such as irrigation, power etc., the waters of a river should be utilised, have to examined taking into consideration the entire river basin or the entire region to which the bene fits of irrigation, power etc., can be extended. However a few general observations on this problem may be relevant here.
8.2 Srme general observations on river water utilisation.

Generally, in discussing the optimal utilisation of river waters from the stand point of maximum net social benefit, a number of factors have to bept in mind. The fact that the waters of a river flow over a certain distance from a highër level to alower level, gives rise .to numerous possibilities of ‘using the waters
at various points in the course of the river, some times the same quantity of the flow being used more than once, for purposes of irrigation of land/or generation of hydroelectric power, etc., At the same time it is a matter of fundamental importance tinat the total volume of waters flowing in the river and its seasonal distribution are mere or less given and determined by nature. Hence. dams built across the river at various points for storage and regulation of the flow of waters not only compete with one another, but also there will be competition among various uses of the waters at each point. The nature of this competition depends on the extent to which \(t\) ere is net withdrawal of waters at each point. There may be complete diversion of waters for irrigation or power; there may be
and There may le lictle diversión. partial diversion; All these are possibilities depending on the use of the waters for generation of pwer, irrigation, flood control etc.,

It is also fcourse to be considered that the construction of a dam across a river at a point does not rigidly fix the incidence of its benefit, because the area to be benefited by irrigatinn or power can be made flexible as canals for wet or dry irrigation and power transmission lines can be taken over short or long distances.

Another point of importance is that once the location point for the construction of a dam is selected by engineers, it is always econmical to raise the height and increase the sterage capacity of the dam to the highest possible level subject to engineering or other considerations because the marginal costs or incremental costs for storage and regulation of the flow of waters decrease
rapidly as the height of the dam inc reases. This consideration becomes extremely relevant where there are possiblities of . carrying irrigat on canals or trasmitting electric power over long distances at reasonaible cost.

Another point worthy of consideration is, there may not be available at reasonable cost alternative methods. of producing either irrigation water or electric power in the different parts of a river basin. This raises a most difficult and technical question of measurement of the social value of irrigation and electric power indifferent parts of the river basin. The private benefit-cost criterion becomes irrelevant here. Social benefits have to be measured by the method of alternative costs avoided and secial costs have to be measured by the method of benefits forgone. We may however, venture to say tha' there are. slternative saurces of electric power like coal, oil or atomic energy, which may be imported into a region if not locally available. This is not usually the case in respect of irrigation waters to be supplied from a river in a specific region, the only alternative to supply of river waters being the tapping of sub-soil waters in the region. The latter again depends on natural factors and in fact, canal irrigation in a region usually improves the supply of sub-soil waters. It is therefore essential to recognise that irrigation has to be given highest possible priority in river waters utilisation. Power may be produced by a suitable selection of location and height of a dam but with least possible sacrifice \(f\) irrlgation.

There is also another point to be borne in mind regarding the supply of irrgatior waters to the different

\begin{abstract}
parts of the river basin. Topograhical, soil, climatic and other factors influencing agricultural productien are usually distributed unevenly over the different parts of the river basin. These factors are senerally found t' be more favourable in the lower reaches of a river basin as in the case of the rivers Krishna and Gcdavari. The supply
of irrigation waters and determination of cropping systems best suited for the different parts of a river basin (i.e. wet or dry irrigated or wet-cum-dry irrigated patterns of croping) has to be therefore based on the principle of comparative cost advantage which is however not easy to determine precisely.
\end{abstract}

The above considerations suggest that the ideal policy regarding the utilisation of river waters is te take the cntire river basin as a unit for planning, te have a multi-purpose plan for the maximum possible production of irrigation waters, power etc., and to make them available to the different parts of the region in such a manner as to maximise net social benefit by way of increased agricultural and industrial producti*n.

We may now proceed to explain the nature of the benerits expected to be received from this project and the nature of costs involved and calculate the traditional benefit-cost ratio with particular reference to primary and direct benefits.

\subsection*{8.3 Nature of benefits and costs.}
reneral.ly, the benefits and costs of an irrigation project (or any similar project) can be divided inte those which are tangible and those which are intangible, Intangible benefits and costs are those to which by their
very nature money value cannt be assigned. A number of economic, social and cultural changes are likely to obcur in a region in the wake f a major irrigation
project which cannot all be evaluated in monetary terms; for instance the benefit of flood control and irrigation which prevent loss of life, damage to property, high incidence of sickness, and which contribute to better opportunities of employment, greater stability and welfare of the community, increased levels of economic and social activitiejs, improvement of conditions of living, improved sou:ces of recreation, etc., are benefits which cannot be measured: On the other hand, there are intangible costs of a project such as those connected with the defacement of a beautiful scenery, submersion of places of historical interest, transfer of population from sibmerged villages; increased incidence of malaria, etc., and certain types of undesirable socialfchanges accompanying the development of a region. Although these intangible benefits and costs cannot be measured in monetary terms, they should be properly recognised and steps should be taken to minimise intangible costs and maximise intangible benefits.

Tangible benefits and costs are those which may be expressed in monetary terms. Tangible benefits refer to increase in production of goods and services emanating from a project directly or indirectly, and tangible costs mean consumption of goods and services required for the construction, maintenance and operation of the preject. Increase in production of crops or other primary produce, increased secindary production, increased transport facilities, etc., have all to be reckened as the tangible of a Project. Whele buch tanjuitle veinefots benefits are capable of measurement in principle, we have to take into account that in several cases, necessary statistical data may not be available, and the known techniques may not be adequate, especially for the measurement of dynamic effects, and of social benefits and costs as distinguished from private benefits and costs.

Tangible benefits and costs of a project are usually classified into primary or direct benefits and costs, and secondary or indirect benefits and costs. Primary benefits represent the value of immediate goods and services resulting from a profect and secondery benefits represent the value of goods and services which are produced in activities connected with processing of the immediate goods emanating from the project or increased activities induced by the generation of incomes during project construction. For instance, in the case of an irrigation project, the primary or direct benefit consists of increase in crop production, while the secondary or indirect benefit consists of increased activities of processing, manufacturing, and trade in the irrigated area, brought about by increased crop production; and also increased economic activity either within the project area or outside, induced by the project construction. The latter is necessarily in the nature of a short term benefit. Primary or direct costs are the value of materials and services used for the construction of the project and fr securing primary benefit i.e., increased crop production. Secondary or indirect costs are those incurred in securing secondary benefits i.e. costs which are inedrred in the processing, manufacturing, transport, and marketing of increased agricultural produce due to the preject. In making a benefit-cost appraisal of an irrigation project both primary and secondary benefits and costs should be carefully identified and evaluated to the extent that it can be done with reasonable degree of accure cy.
8.4 Rppraisal of direct bene fits and costs of the Nagarjunasagar Project

The problems involved in the measurement of
bunefits and coste are (1).identification and measuremont of benefits, (2) identification and measurcrent of costis, (3) trenslation of benefits and costs te a common time basis, and (4) computation of the henefitcost ratio or comparison of total benefits and total costs. In tack ling these problems connected with the first phase of Nagarjunsagar irrigation project, we have proceeeded as follows:-
(1) All costs and benefits are measured at 1959-60 prices. It implies that the relative prices of inputs and outputs may remain more or less constant ever the life time of the project. This may not be a tenable assumpticn, but we have made this assumption for converience and for ensuring comparability of the economic conditions of the region before and after irrigation.
(2) In erder to reduce costs and benefits to an annual basis, we have assumed a uniform rate of interest of \(4 \%\) per annum (the project authorities have used \(3.75 \%\) rate of interest per annum).
(3) With regard to the annual rate of depreciation to be allowed for certain items of physical capital, we have assumed (a) 75 years as the useful period of life for the project which includes the dam and the canals system (b) also 75 years as the useful life for other types of capital investment (for investment in conversion of dry lands for irrigation purposes) and (c) 25 years period of useful life for capital investment in farm buildings.
(4) The annual cost of operation and maintenance of the project is taken as Rs.2/- per acre of net irrigated area.

The benefit-cost ratio computed on the basis of the above assumptions and taking into account the irrigation aspect of the lst phase of the Nagarjunasagar Project only, is given in the following table No.8.1


\section*{Benefits: :}

Increase in value added \(\quad=\) Rs 54.21 Crores
Leşhmincieaserin cost of hired \(=\) Rs. 7.09 "
Less interest and depreciation for cost of conversion (Rs. 38.48 crores \(x 0.04294\) ) \(=\) 列 1.63 I
Less interest and depreciation on new investment in farm buildings lRs.9.75 creres \(x 0.06488\) ) \(=R s_{0} 0.62 \mathrm{n}\)
Net increase in annual production \(\quad=\) Rs. 44.89 Present worth at the beginning of lith year (Rs.44.8\% creres \(x 23.0377\) ) \(=\) Rs.1033.70

Enasent worth of net benefits at the end of construction (Rs.1033.70 crores \(=R_{s} 698.88\)
x 0.6761 )
Annual equivalent net benefit over 75 years (Rs.698.88 cfores x 0.9422d) = Rs. 29.58 "

Benefit-cost rati。

\[
=\frac{\text { Rs }_{0} \quad 29.52}{\text { Rs. } 6.28 \text { crores }}
\]
\[
=4.77
\]
(See P. 41 "Multi-purpose River Basin Development" Part 1, published by ECAFE, 1955, for the formula used in computing annual equivalent costs and benefits).

It may be seen from this table that the annual cost of the total investment of Rs. 139 crores in the project is estimated at Rs. 5.89 crores (interest
and depreciation) \({ }^{1}\)

> The annual cost of operation and maintenance is estimated at Rs.0.39 creres. The total annual cost of investment in the project thus comes to Rs .6 .17 crores. The annual equivalent net benefit in the form of increased crop production, allowing for deductions on account of increased costs of cultivation, and interest and depreciation on capital investment ferfconversion of dry lands for irrigation and farm buildings, is estimated at Rs.29. crores. The benefit-cost ratio thus arrived at is found to be 4.74. The economic justification of the project is therefore beyond question, even if we make \({ }^{a n}\) allowance of 10 te \(20 \%\) (correction factor) because future benefits and costs can never be estimated precisely involying no uncertain ty at all.

\subsection*{8.5 Indirect benefits of the Project.}

As regards the secondary benefits of the irrigation project we have not found it possible to make an estimate for lack of sufficient data. However, the secondary benefits are likely to be substantial and significant because the main agricultural products of the region , paddy and oil seeds, are processed before marketing and these are also surplus agricultural products
1: The cost of the project (lst phase) was estinally at at
Rs. 91.12 crores. This was revised in \(1961-62\) and
raised to Rs. 139.53 crores. The following are the main
grounds on which the original project estimates are
revised(i) Increase in cost die to rise in wages, cost
nf materials particularly cemert, and in the rates
of works (ij) Increase in quantities of masenry for
dam and additonal masonry works necessary as a result
of detailed investigation. The revised estimate of
Rs.l39 crores is accepted by us for purposes of cal-
culating the benefit-cost ratio as the year of survey
is close to the year of revision.
of Andhra Pradessh. About \(5 \%\) of the value of agricultural output purchased by the processing industries and farm inputs purchased from outside the agricultural sector \(X\) (e.g., chemical fertilizers, \(k\) pesticides, etc., ) may be taken as a reasonable estimate of the net indirect bencfit of irrigation. \({ }^{2}\).
8.6 Effect of size and multi-purpose character of the Project on benefit-cost ratio.

It may be noted that our estimate of the direct or primary benefits and costs of the Nagarju nasagar Project is relevant only to the size of the preject restricted. to its lst phase and the irrigation aspect. The henefit-cost ratio is certain to be still higher if (a) a part of the total investment in the dam is allocated for supply of power from the project, and (b) if the size of the project (height of the dam and storage capacity) is increased; as this will bring about considerable economies of scale or reduction in marginal costs.

\subsection*{8.7 Limitations of the benefit-cost ratio:}
- The benefit-cost ratio calculation is traditionally used in the U.S.A. to find out whether a project is justified or not from the economic stand-point. The underlying principle is that a project is net economically : justified unless the benefit-cost ratio is greater than one or at least unity. The concept, however, is subject tc certain limitations. Firstly, as already pointed out, 2: This is the method used by the Bureawof Reclamation of U.S.A. The indirect bencfits ef irrigation can alse re computed by assuming that for a given rise in the output in agricultural sector, the outpuis in the secondary and tertiary sectors will rise by a certain proportion.
the \(x x\) intangible benefits and costs cannot be calculated, and in developing counrios the intangible benefits of irrigestion projects are likely to be substantial and significant. Socondly, it is extremely difficult to take into account various dynamic and long-term and edjnomic effects of irrigation within the preject area and outside the project area. Thirdly, estimation of future benefits and costs, especially when the future is spread over a leng period of 50 to 100 years, involves assumptions abnut the prices of inputs and outputs, wage rates, rates of intcrest, etc., w'sich may not be tenable. Fourthly, the use of prevailing or expected market prices of inputs, outputs, wage rates etc., implies use of measures of private benefit and private cost, where as measures af \(-8\) Xocial benefit and social cost are to be adopted for the purpose of estimating the net benefit of the project from the point of view of the community. In measuring benefits from the point of view of the community for instance, the market prices of crops or agricultural output may have te be suitably modified to take into account costsof alternative methods by which the produets can be made available. For example, if the import price of an agricultural commodity produced in a project region is higher than the denestic cost or price of the commodity and if domestic production replaces imports, the commodity has to be evaluated at the import price in order to measure the \(f\) or intringic benefit,(this is known as the method of alternative cost avoided) \({ }^{3}\). Similarly in the case of 3: "Suppose that the crop raised in rice and that home production is insufficient so that rice is also imported. If the world price should be higher than home priee(imports being subsidized), then clearly the so cial benefit obtained per unit of additional utput is equal to the cost of importting the product, equal, that is to the home price plus the subsidy" (P.4i) "Multipurpose River Basin Development"Part I \(\$\) United Nations.
```

moasurement of costs, moncy costs do net always reflect
opportunity costs (dr benefits forgone), particularly
in doveloping countries where divergence between
private and social costs may be significant.4. For
example, the use of unempleyed or unproductively employed
labour in the construction and maintenance of an irri-
gration, Prject
gation, involves little cost to the community, and its evaluation at market ${ }^{\text {wajge }}$ rates would imply an over-statement of the true cost of labour. On the other hand, in
-rder to arrive at the true social cost of capital
invested in the project, the market rate of interest
may have to be considerably increased.5 Similarly
evaluation at the prevailling exchange rate of imports
of capital goods or ther materials for the construction
of the project, or imports of agricciltural commodities
the domestic production of which\cdotwill increase in the
project area after irrigation, will mean considerable
und erstatement of the true or intrinsic value of
the imported goods.6

```
```

4: "Moreover, the scheme may use up substantisal goods
and services which have a price less than opportunity
costs (benefits foregone). The most important of these
i ems frequently is foreign exchange(command ver imports)
If foreign exchange is scarce, the price at which the
project authori, ties obtain currency for the purehase of
foreign equipnont and materials may be too low te be
taken as a measiare of the social cost f imports". "Multi-
purpose River Basin development"Ibid.Part 1.
n Manual of River Basin Planning, United
Natïons, pp.43-44).

```

5: and 6: Refer 'Design for Develepment' by Tinbergen,p. 39

Net benefit to farmers:

The previous discussion of benefit-cost ratio for the first phase of Nagarjunasagar irrigation Project has shown beyond doubt that it is economically justified both from the narrow stand-point of net direct primary benefit and from the point of net social benefit. This benefit hiwever does not accrue exclusively to" "farmers alone. It is shared by all classes in the community within and outside the Project area. The net direct monetary benefit is howextrshar':d by all the facters of production employed in agriculture and to some extent by the state. It is our object in this section to make a specificerer refer rence to the net benefits received by the farmers in return to therewned land and capital and the labour of their family members utilised for cultivation. 7 This benefit is best measured by the concept of farm business income. Infthe following section, the share of the net primary benefit and other benefits that acerue to the state will be referred to.
ficcording to our estimates of farm business income before and after irrigation in the Project area, the increase in farm business income on the Right Bank Canal side has amounted to a total of Rs.20.03 crores, and Rs. 8.23 crores on the Left Bank Canal side, making tox \(x\) Rs. 28.26 crores for the whole project area. Before irrigation, i.e. in 1959-60, the total amount of farm business income amounted to Rs. 8.35 crores
7. Farmers will also receive considerable amounts of secondary benefits to the extent that they alss undertake processing and manufacturing人alse various kinds of intangible benefits.

\footnotetext{
only. The significance of this increase in farm business income may be better appreciated by considering estimates of farm business income per acre, which is found to increase fiom Rs.46.63 per acre in 1959-60 to. Rs.l91, 31 per acre after irrigation. It may be mentioned here that in computing the farm business income per acre after irrigation we have taken the average rent paid per acre in the Paddy zone as obtained in Farm Management Studies in the West Godavari District. Sim_larly, we have taken the average amount of land revenue and cesses as obtained in Farm Management Studies (Rs.13.04 per acre) for estimating land revenue and cesses on wet land and \(2 / 3\) of it for dry irrigated land. The rate of. depreciation on machinery and farm buildings used is the same as obtained in \({ }^{\text {the }}\) Paddy zone of the West Godavari district. The relevant details of gross value of output, cost of cultivation and farm business income pertaining, to both Right and Lieft Canal areas of the Project are given in the following table No.8.2.
}

\section*{Table Ne. 8.2}

Farm business income before and after irrigation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Right Canal} & \multicolumn{3}{|l|}{Left Canal} & \multicolumn{2}{|l|}{Project Area} \\
\hline & \multicolumn{2}{|l|}{Per Acre} & \multicolumn{2}{|l|}{Total} & Per Acre & Total & & Per acre & Total \\
\hline 1. Farm business Income hefcre irrication(in .953-60) & & \[
55.89
\] & Rs 6.77 & Crores & Rs 28.63 & Rs. 1.78 & crores & Rs 46.63 & Rs 8.55 crores \\
\hline Farm Bu:siness Ir zome after irrigation: & & & & & & & & & \\
\hline Gross valie of output: & & 439.24 & Rs 49.37 & " & Rs 336.75 & - Rss 26.94 & " & & \\
\hline Less cost of material inputs: & & 82.47 & Rs 9.27 & " & Rs 76.75 & As. 6.14 & " & & \\
\hline Less cost of hired human labour & Rs & 51.51 & Rs 5.79 & " & Rs 66.75 & Rs 5.34 & " & & \\
\hline Less rent naid & Rs. & 38.70 & Rs 4.35 & " & Rs 38.70 & Rs 3.10 & " & & \\
\hline Less land fovenue\&Cesses: & Rs & 10.92 & Rs 1.23 & " & Rs 12.23 & Rs 0-98 & " & - & \\
\hline Less depreciation: & Rs & 5.17 & Rs 0.58 & " & Rs 5.17 & Rs 0.41 & " & & \\
\hline Less interest on cost of cunversion & Rs & 12.00 & Rs 1.35 & " & Rs. 12.00 & Rs 0.96 & " & & \\
\hline F.B.I. after irrigation & Rs & 238.43 & Rs 26.80 & " & Rs 125.13 & Rs 10.01 & " & Rs 191. 31 & Rs 36.81 crares \\
\hline Increase in F.B.I. after irrigation & & 182.54 & Rs 20.03 & " & Rs. 96.50 & Rs 8.23 & " & Re 144.68 & Rs 28.76 " \\
\hline
\end{tabular}
after irrigation


\subsection*{8.9 Problem of financial returns onfinvestment in the Project:}

When public funds are invested so as to benefit primarily a particular section of society as it is in the case of \(f_{x}\) irrigation Project, it would* appear natural and just to take from those directly benefited by the Project a total or partial payment of the monies invested. This raises several questions such as -dentifying sections of society which benefit from the Project, their present economic condition and its improvement on account of the Project, the extent to which reimbursement of funds invested in the Project should be limited and the methods of reimbursement, such as taxes, fees and special assessments. However, care should be taken to see that the palicy of recovering monies invested in the Project partially or totally does not adversely affect the
 and successful development of the Project area. In fact the State may have to play a more positive role under certain circumstances by further investing monies on social overheads, like roads and railways, training schools and institutes, research, etc., and secondary investments relating to supply of fertilisers, processing of agricultural produce, warehouses, mechanized equipment for land reclamatien, etc.,

The principles which should generally govern the determination of betterment levies and water rates may be briefly referred te. Firstly, while apetterment levy is proper and just when a particular business or property secures an identifiable benefit out of the Project, this should however have some relation to the amount of net benefit per acre as well as the size of
```

the cultivators' holding. It is but just that small
holdines are not unduly burdened with benefit lev y,
especially because they have to borrow considerable
amounts of lóng-term capital for' land reclamation;
purchase of bullocks and implements etc. In the case of water rates or Government charges of irrigadibn, there are practical difficulties in making snarges proportional to the quantity of water suppliec t, individual cultivators. The charges have to te therefore related to the net return from cultivation, the charges being higher in the case of some commercial crops which usually yield high net returns. In ary case, irrigatin charges cannot be very different from the rates prevailine in the neighbouring delta areas.

```

In the previous sections dealing wioh net benefit to farmers, we have seen that the amount of land revenue and cesses, calculated at the overall average ratas btaining in the Paddy Zone of the Wes; Godavari District ( \(2 / 3\) of the Wet rate being applied to the dry irrigated land) yields a total revenue of Rs. 2.21 crores. In the Joint Reprrt on the Nandikenda Project (1954), a rate of Rs. 15 per acre of wet crops and Rs.lO per aere of dry irrigated crops are assumed for calcula ting the direct financial returns to the State. At these rates, the revenue from the first phase of the Nagarjuna 77 Sagar Project, will be Rs.2. crores. In the scme report, betterment levy on land is suggested at Rs. 200 xrues per acre of wet land and Rs. 100 per acre of dry irrigated land. At these rates, the total amount of betterment levy will be Rs. 30.49 crores for the first phase.

It appers to us that the rates of betterment levy suggested are rather ont \(\mid\) ne ln side and the disparity between rates suggested for wet and dry irrigated lan ds is not fully warranted. According te ur study of the primary benefits of irrigatien in the project area accruing te farmers, the rate of betterment levy suggested is less than one year's value of grnss output or even net -utput in the case \(f\) irrigated paddy, and much less in the case of commercial crnps like chillies, country tobaccrpand groundnut. The rate of betterment levy on wet land may be raised at least to Rs. \(250 /\) - per acre and the rate on dry irrigated land to at least Rs. 200/-lett-mendper acre. The tetal yield of levy at these rates will be Rs. 43.6 crores. Thus if betterment levies and water rates are collected at these rates, the direct financial return in the investment in the project will exceed 3 per cent sororn per annum. If we make all*wance for additional revenue that may accrue from sale of hydro-electric power, the financial return infinvestment will further increase. Further, apart from the question -f net social benefit arising to the community out. of the project, fovernment revenues will increase not \(2 n l y\) from land revenue and esses but also frim all other taxes levied by the State and Central Egvernments, as agriculture, industry and trade expand in the area. Thus if due allowance is made for all these factors, the project will have to be considered a productive one even from the narrew standpeint of financial productivity. If the second phase of the Nagarjuna Sagar irrigationPreject is alse taken up as envisaged originally, the project is likely to yield considerable surplus revenue to the State. It is however well known that the principle of

\begin{abstract}
\(a d\)
fe financial productivity is crue and unscientific measure of the productivity of an irrigation preject nor there is any senctity attached to the policy of recovering full cost of the preject from its direct beneficiaries. If there is inadequacy of financial return estimated at existing levels of taxation, and if increase in tax rates is not considered feasible or even desirable, the problem has to be taokled through apprepriate offsetting taxes in other parts of the economic system as a matter of deliberate policy. This is a matter of great importance because irrigation pröjects (and multi-purpose river prnjects) constitute significant long-term programmes for economic and social development hence
and yield substantial social benefits, and a part of the direct monetary cost may as well be defrayed, if necessary, from public funds.
\end{abstract}

\section*{SUMMARY AND RECOMMENDATIONS}

The Nagar junasagar Project is intended to provide in is trane irrigation facilities to 11.24 lakhs of acres on the Right or side. The general backwardness of the rural economy of the Project area and the nature of meagre resources at the command of the farmers is brought out clearly by the survey. In this connection the following figures portray vividly the existing position.
Indicator
Right Bank Canal

Though the farmers are generally poor and traditional in their outlook they are quite familiar with the agricultural practices of growing irrigated paddy and other important food and commercial crops. They are fully aware of the potential benefits of the Project and are eagerly awaiting the waters from the Project for irrigation. If fertilisers, improved seed and other resources are made availabie to the farmers in requisite quantities
the region may soon be expected to become the scene of intense agricultural activity accompanied by a guidel increase in the:population density and trade and other economic activities.

At present there are about 10 important trading and industrial centres on the Right Canal side and 4 on the Left Canal side. All of them are in the ayacut but those that are outside the ayacut are close to the border of the ayacut. For trade and similar purposes all of them serve are
the ayacut region. The following \(\chi\) 佔 the listg of centres inside or near the berder of the Night-Canal and the leff-Canal areas.

Right Canal area
1. Chilakaluripeta
2. Piduguralla
3. Rentachintala
4. Addanki
5. Sattenapalli
6. Narsaraopet
7. Vinukonda
8. Ongole
9. Kurichedu
10. Guntur.

Except in Guntur there are few rice mills in the Right Canal zone On the Left Canal side mills which are used for \(\rightarrow\) extracting groundrue - oil ane also used for processing paddyd These will have to be greatly increased in number when the ayacut is developed. The food-grains including paddy are likely to increasef, 3 or 4 times the quantum present i- of production and there is a very great need to establish a large number of processing industries in the ayacut area.

Some other important processing industries are castor
oil crushers and cotton ginning mills. . The tobacco redrying
factories are concentrated mostly in the areas surrounding Guntur and Chilakaluripet.

On the Right Canal side the fixed capital per trader is about Rs, 26,000, and the working capital Rs, 61,000 of which \(\mathrm{Rs}_{5} 36,000\) is provided by himself and \(R s_{0} 25 ; 000\) borrdwed from money lenders and banks. On the Left Canal side a trade has, on the average, fixed capital of about Rs, 4, 000, and working capital of about \(R s_{6} 40 ; 000\) of which nearly a half is provided by himself and the remaining half borrowed from money-lenders and banksi

Coming to the millers; a groundnut oil miller on the hight danal side has a fixed hapital Rs. 1.11 lakhs, and a working capital of Rs. 1.93 lakhs of which Rs 1.17 lakhs is borrowed from money lenders and bankst On the Left Canal side the average fixed capital of a groundnut oil miller is Rsi. 1.11 lakhs, and a working capital of Rs 2.73 lakhs of which Rsit 1.1 lakhs is borrowed from money lenders and bans.
- On the Right Canal side the castor oil erushers are mostly situated in the Narasaraopet and Sattenapalle areas. . The fixed capital per erusherp is about Rs, 17,000 and the working capital Rs22,000. Nearly Rs, 15,000 of the working dapital is provided by the owner himself. There are only a few stray castor oil crushers on the feft danal sided

Taking an overall view of the existing position of millers in respect of working capital, we find that the banks play a vital role in providing a high percentage of working capital as crediti The following figures indicate the position

\section*{Working Capital}
\begin{tabular}{llll} 
& Own & \multicolumn{2}{c}{ Borrowed from } \\
Banks & Money lenders \\
Right Canal side & \(58.89 \%\) & \(32.48 \%\) & \(8.63 \%\) \\
Left Canal side & \(39.64 \%\) & \(45.71 \%\) & \(14.65 \%\) \\
After the irrigation facilities are obtained and the
\end{tabular}
must be increased in their numbers, variety, and size. The location of these industries is likely to have some effect on the eventual crop pattern that is going to be raised. A liberal policy in banking combined with a considerable extent sion of the banking system will have to be planned for in advance, and put through speedily.

The existing position in respect of cost per acre in farm business, output per acre in crop production, farm business income per acre, output-input ratios for farm enterprise is as follows
\(\frac{\text { Right Canal side }}{\text { Estimated_Values }} \frac{\text { Left Canal Side }}{\text { EStimated_Values }}\)
1. Cost per acre in
farm business ( Ks 。) \(184.52 \quad 118.28 \quad 125.41\)
2. Output per acre(Rs) 192.8107 .6101 .0
3. Farm rusiness
income per acre ( \(\mathrm{R}_{{ }_{*}}\) ) \(76.0 \quad 40.0\). 27.5
4. Output-input ratio
\(\begin{array}{llll}\text { in crop production } & 1.04 & 0.91 & 0.81\end{array}\)

The following are the estimates of total agricultural output, total input, and total farm Business income in the Orojectrraa.
(All figures are in crores of Rupees)
\begin{tabular}{ccccc} 
Item & \(\frac{\text { Right Canal area }}{\mathrm{S}_{1}}\) & \(\mathrm{~S}_{2}\) & Left Canal area & Total \\
1. Gross agricul- \\
tural output & 10.88 & 6.40 & 6.10 & 23.38 \\
2. Tatal Input & 10.67 & 6.89 & 7.38 & 24.94 \\
3. Farm business \\
\begin{tabular}{ccc} 
income
\end{tabular} & 4.17 & 2.59 & 1.78 & 8.54
\end{tabular}

At present important crops grown in the Preject region are virginia tobacco, country tobacco, irrigated paddy, chillies, ragi, groundnut, vegetables, jowar mixed with redgram, cotton, pulses and oilseeds. Of these virginia tobaceo is grown on the Right Canal side in rich black cotton soils under rainfed conditions where rainfall is not too scanty.

Though this is a very profitable crop the farmers have to amcunt c7-
put in considerable, capital in the crop production; and also face a number of uncertainties. is this crop fetches foreign exchange, a compact area where this crop is widely grown is excluded from the ayacut. It is natural to expect farmers who have some experience of growing virginia tobacco to continue to grow this crop whenever the soil and the weather conditions are favourable. The growing of this crop by farmers will not enter into the picture when benefits from the project are considered. Irrigated paddy is grown mostly under tanks. It is fairly extensively grown on the Left Canal. side, a part of it being cultivated under canals of Palair river. On the Right Canal side too, irrigated paddy is grown but to a lesser extent. Though the yields are high in some places, they are not on the whole high enough, one main likely reason being that the yields under irrigation by river waters are generally better than those under tank and well irrigation.

Country tobacco which is a very important crop at present is likely to retain its position in the new set-up also.

Among other crops, chillige is found to be a profitable crop which has great potentialities of much higher yields under dry irrigation.

On the Left Canal side vegetables are found to be profitables, and as the project region develops it is perhaps going to be an attractive and profitable crop.

We give below the actual and likely values of output of selected crops before and after irrigation.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
after irrigation. \\
After irrigation
\end{tabular} \\
\hline \multirow[t]{2}{*}{Crop} & \begin{tabular}{llll} 
Cost of \\
material & Value of & Cost of & Value of \\
inputs & material & output \\
input
\end{tabular}\(\quad l\) \\
\hline & Rs. Rso Rso Rso \\
\hline 1. Irricated paddy & \[
\begin{aligned}
& 148.59\left(\mathrm{~S}_{1}\right) 303.16\left(\mathrm{~S}_{1}\right) \\
& 86.17\left(\mathrm{~S}_{2}\right) 241.83\left(\mathrm{~S}_{2}\right) \\
& 3.04\left(\mathrm{~S}_{1}+\mathrm{S}_{2}\right) 359.88\left(\mathrm{~S}_{1}+\mathrm{c}_{,}\right. \\
& 130.74\left(\mathrm{~S}_{3}\right) 3.5 .25\left(\mathrm{~S}_{3}\right) 79.28\left(\mathrm{~S}_{3}\right) \quad 355.00\left(\mathrm{~S}_{3}\right)
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{2. Jcwar} & \[
\begin{aligned}
& 48.88\left(\mathrm{~S}_{1}\right) 126.30\left(\mathrm{~S}_{1}\right) \\
& 38.57\left(\mathrm{~S}_{2}\right) 79.87\left(\mathrm{~S}_{2}\right)
\end{aligned}
\] \\
\hline & \(25.47\left(S_{3}\right) 64.36\left(S_{3}\right)\) \\
\hline 3. Ragi & \[
\begin{aligned}
& 44.23\left(S_{1}\right) 115.69\left(S_{1}\right) \\
& 131.37\left(S_{2}\right) 248.60\left(S_{2}\right)
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{4. Variga} & \[
\begin{aligned}
& 83.06\left(S_{1}\right) 119.0\left(S_{1}\right) \\
& 63.52\left(S_{2}\right) 116.81\left(S_{2}\right)
\end{aligned}
\] \\
\hline & \(35.89\left(\mathrm{~S}_{3}\right) 63.92\left(\mathrm{~S}_{3}\right)\) \\
\hline 5. Chillies & \[
\begin{aligned}
& 102.71\left(S_{1}\right) 293.65\left(S_{1}\right) \\
& 210.11\left(S_{2}\right) 496.98\left(S_{2}\right)
\end{aligned}
\] \\
\hline & \(65.65\left(S_{3}\right) 110.22\left(S_{3}\right) 145.62\left(S_{3}\right) 1353.89\left(S_{3}\right)\) \\
\hline \multirow[t]{2}{*}{6. Groundnut} & \[
\begin{aligned}
& 47.11\left(\mathrm{~S}_{1}\right) 119.63\left(\mathrm{~S}_{1}\right) \\
& 56.59\left(\mathrm{~S}_{2}\right) 110.90\left(\mathrm{~S}_{2}\right)
\end{aligned}
\] \\
\hline & \[
65.64\left(\mathrm{~S}_{3}\right) 81.26\left(\mathrm{~S}_{3}\right) 64.64\left(\mathrm{~S}_{3}\right) 199.35\left(\mathrm{~S}_{3}\right)
\] \\
\hline \multirow[t]{2}{*}{7. Cotton} & \[
\begin{aligned}
& 22.60\left(S_{1}\right) 48.62\left(S_{1}\right)^{2} 45.78\left(S_{1}+S_{2}\right) 134.67\left(S_{1}+S_{2}\right. \\
& 15.02\left(S_{2}\right) 56.96\left(S_{2}\right)
\end{aligned}
\] \\
\hline & \(19.32\left(\mathrm{~S}_{3}\right) 40.18\left(\mathrm{~S}_{3}\right) 39.26\left(\mathrm{~S}_{3}\right) \quad 117.07\left(\mathrm{~S}_{3}\right)\) \\
\hline
\end{tabular}

Though cotton, variga, jowar, korra, castor etc. and mixed crops are now grown on vast extents for want of better alternatives, they may be grown only on very limited extents of land when the rroject waters ensble the farmers to grow superior crops. The existing input-output structure estimated from our Farm Surveys and the likely input-output structure after irrigation arrived at nn the basis of Farm Management studies and other Reports are given below for selected crops.


\begin{tabular}{|c|c|}
\hline Activity or enterprise & \[
\frac{\text { Net income per }}{\frac{\text { housenold }}{R_{s}}}
\] \\
\hline 1. Carpentry & 425.27 \\
\hline 2. Transport & 403.94 \\
\hline 3. Blacks \({ }^{\text {fíít }}\) thy & 379. 12 \\
\hline 4. Laundry & 248.75 \\
\hline 5. Tailoring & 222.17 \\
\hline 6. Goldsmithy & 214.67 \\
\hline 7. Weaving & 172,45 \\
\hline 8. Basket making & 119:01 \\
\hline 9. Mills & 112,05 \\
\hline 10. Pottery & 104:63 \\
\hline 11. Cobblery & 22.80 \\
\hline 12. Ambercharkha & -0.85 \\
\hline
\end{tabular}
1. Profitability stands for income over and above wgges and returns to investment.

For making projections for future we have made use of the likely input-output structure of crops after irrigation as the basis for working outp the value added in crop production(which is the benefit received by the
 the maximlisation of which is adopted as the criterion tow anvinit at- Lee apth mal coop palton
Xeve RExin We have employed the method of linear programming t. arrive at the most profitable combination of crops. After settingy apart extents for country tobaces and chillies, and also for vegetables on the Left Canal side, on an adhoc basis which we have felt reasonable, and after setting apart \(80 \%\) of the land on the Left Canal side and \(33.33 \%\) on the Right Canal side for paddy as per the localisation policy of the Project Authorities we have tried out crop programmes for the balance of the land, assuming different levels of resources to know roughly the resource requirements to leave no part of the land unutilised. After this, we have assumed increased resource availability at suitable levels, and carried out linear programming allowing the crops to compete on the basis of their would be input-output relationships. This work was not carried out for the entire \(P_{r o j e c t ~ r e g i o n ~ a s ~ o n e ~ a g g r e g a t e d ~ e x t e n t ~ o f ~ d a n d ~}^{\text {den }}\) for the Right and Left canal areas. Tbe land on each of the Right and Left Canal sides is first allocated to four different size-groups which represent the position in a sufficiently realistic way, since these sizes can be taken to represent the small, the medium, the beg, and the very big holdings. The used up levels of resources for the crop pattern finally emerging out of the linear programming give the requirements for adoption of the optimal crop pattern. The existing resources are estimated from our sample surveys. Using these two, we worked out the shnrtages in resources. We now give the optimal crnp \({ }^{*}\) patterns worked out for the four typical-size farms on the Right and Left Canal \(\ddagger\) sides.
(a) Optimal crop-pattern for the four typical-size (All figures are in cracs)


We next give błlow a comparative statement of the total value added by crop production in the froject region now and by the adoption of optimal crop-pattern after irrigation


Value added after irrigation Rs.
1. Right Canal area

10,12,:8,540:28 42,78,97,746.54
2. Left Canal area

3,38,67,232.92 20,79,50,750.22
The nptimal crop pattern relates only to growing of a single crop on land in the year. It seems very reasonable to assum a cropping intensity of nearly 1.3. This means that pulses and oil seeds, fodders, etc., can be grown in the paddy fallows and as second. season crops in the year: Since groundnut is near substitute for some crops occurring in the optimal crop pattern as per the criterion of value added, some farmers are likely to grow this crop for reasons of diversity of cropping, ready marketability of crop and their own payt tradition. Thus in the final picture the Project area is likely to have a well diversified crop pattern without having to deviate essentially from the optimal crop pattern. The benefits worked out in the linear programming are based only on assumptions of increased resources becoming available without involving any spectacular changes in agricultural practices. Thus optimal crop pattern can be adopted straight-away in the short run period by only planning for providing the requisite resource facilities to the farmers of the Project area.

For the optimal crop pattern the resource requirements, availability of the resources at present and the gaps between them are as follows.
```

Resource availability and additional requirement for the optimal crop r'allerun
\alpha!"-t ..a゙"

```
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{\begin{tabular}{l}
Name of Rescarce. \\
Right Canal ares
\end{tabular}} & \multirow[t]{2}{*}{Resource availability} & \multirow[b]{2}{*}{Resource required} & \multicolumn{2}{|l|}{Gap} \\
\hline & & & Physical & Value(Rs) \\
\hline & & & & \\
\hline 1. Bullock labour (peir days) & s) \(20,66,980.46\) & - 23,62,980.73 & \begin{tabular}{l}
Aront- \\
10,000 pairs
\end{tabular} & 65,00,000.00 \\
\hline - 2. other varacble infuts (in Rs) & 3,55,62,625.95 & \[
6,98,74,309 \cdot 33
\] Qaterer & - 3, & ,43,11,683.38 \\
\hline Left Cancl rea & & & & \\
\hline 1. Human labour ( 8 hr . & 36,89,662.00 & 88,83,285.00 & 1,73,121 workers & s \\
\hline 2. Bullock labour (pair days) & s) 14,31,107.00 & 27,29,280.00 & 43,272 pairs of bullocks & \(s\) 2,63,00,000.00 \\
\hline 3. Other variable inputs (is. Rs ) & 1,30,16,330.78 & 3,93,23,166.00 & - - & 2,63,06;835.22 \\
\hline
\end{tabular}

As per the revised estimates, the outlay on the first phase of the Project is \(x^{\mathrm{K}} \mathrm{s}_{0} 139\) crores, we have examined the question whether for this outlay the project is a paying one by working out the benefit-cost ratio. Taking the bunefit to be received by the Community as the criterion which, in fact, should bef main consideration in analysing the benefits in a big national project like the present one, the benefit-cost ratio has worked out tj 4.74 even without including indirect benefits. If the question of benefit-cost ratio is considered for the two phases of the Project taken together, the position will be much more satisfactory, because considerable extension of irrigation facilities can be achieved with marginal expenditures for increasing the height of the dam and the lengths of the canals. The benefit due to spreadeffect will also be more pronounced. Even judged by consideration of the financial returns on Government's investment, the Project is paying, especially when the augmentaelectic tion of Government revenues from sale of hydroppower and tourther yiclds ef taxes levied bry th. Ceutsat ant State Governments, as trade and industry expand in the area; is taken ințo account.

As the agricultural produce is going to increase several fold after irrigation, it is essential that the ameneties of transparty marketing and credit of the corresponding magnitude should be created forth-with in the Project area if the investment in the roject is to bear fruit in an adequate measure at an early date: To this end the steps indicated below are to be immediately taken as a minimum prngramme.
i) The farmers on the Right and Left Canal areas, as estimated by us, will be in need of Rs 5.79 crores and Rs. 5.34 crores for paying wages for hired human labour for for prepuentsto agricultural operations. The requirement/ hired bullock labour works out to Rs 0.70 ernre for the Right Canal area and Rs 0.44 erore for the Left Canal area.

The rest of the variable inputs required for the Right Canal area is estimated to be Rs, 2.4 crores and for the Left Canal area Rs 2.75 crores.

The wages to be paid for hiring human labour and bullocks and for the value of other variable inputs work out to a total of Rs 8.89 crores for the Right Canal area and Rs 8.53 crores for the Left Canal area. Thus the total requirement comes to \(R s_{1} 17.42\) crores annually. Here we have adopted the uniform principle that the farmes on the Right Canal side will provide for themselves \(50 \%\) of their financial requirements, and the farmers on the Left Canal side will provide for themselves \(25 \%\) of their requirements. The rest of the above short-term requirement of Rs 10.84 crores has to be provided in the form of credit to the farmers by the Government through cooperative credit societies and other suitable agencies.

Coming to the physical aspect of the short-term requirements \(\Phi f\) the farmers for agricultural operations, seed of the value \(R s 3.1\) crores and chemical fertilisers of the value of about Rs. 1 crore will have to be made available for the Project region for adopting the optimal crop pattern.
ii) For purchase of cattle, machinery and implements and for construction of farm buildings long-term finance of the order of \(R s, 15\) crores will be needed by the faves in the Project area. Out of the approximate requirement of Rs 8 crores on the Right Canal side, about Rs 4.0 crores can :will be needed by the farmers of the Right Canal side. The long term financial requirement for the Left Canal side is over Rs. 7.0 crores so that after deducting \(25 \%\) of it as self finance the long-term credit requirement (for this area comes to about Rs 5.5 crores.

iii) Long-term credit is also required for effecting improvement on land. Most of such improvement will now consist of converting lands from dry cultivation to wet cultivation. Adopting an average rate of Rs. 200 per acre for conversion of lands to suit wet cultivation and for other improvements, about Rs 22.5 crores will be required as finance on the Right Canal side, and Rs 16.0 crores as finance on the left canal side: When the \(50 \%\) of the former amount and \(25 \%\) of the latter amount \(\phi\) are deducted \(\alpha x y\) self finance, it will become the responsibility of the Government to provide directly or through cooperative societies a longterm credit of about Rs 11 crores to the farmers of the Right Canal area and \(i 2\) crores for the farmers on the Left Canal area.

Coming to the consideration of resource requirements in physical terms, the shortage of bullock pairs on the Right Canal side is estimated to be 10,000 and on the left Canal side 44,000. Steps should be taken to help the farmer: te secure bullocks of good breed on a very big scale. To meet the difficulty in importing the requisite number of bullocks from outside the region, use of small tractors may be encouraged. In such a case the farmers must be helped either to purchase the tractors or hire them.
iv) On the Right Canal side the present seasonal migration of agricultural labourers to neighbouring delta areas may more or less come to a stop: In peak-seasons of agricultural operations, there may not be any significant shortage of human labour in the Project region, if all the workforce with agriculture as the main or a subsidiary employment is available for agricultural work.

But when we come to consider the situation on the Left Canal side, the position is extremely unsatisfacory. 'The actual requirements of human labour during
the peak month of June/July after irrigation facilities from the Project are obtained, is estimated to be 88.8 lakhs of mandays, out of which 81.2 lakhs are required exclusively for growing i rigated paddy on the 6.5 lakhs of acres localised for it. A serious shortage of supply of human labour is thus certain to arise on the Left Canal side. Even after 10 , the natural increase in work-foree will be only about \(1 / 8\) of the additional requirement. Hence steps must be taken immediately \({ }^{2}\) for planned immigration of population into the Left Canal area on a large scale. How far mechanization will help the situation may also have to be thoroughly examined.

For a developing region to sustain; its development it must be opened up by rail and road routes adequately. \(\dot{A}\) great deal depends on how different parts of the regidn are linked with one another and how it is connected with the rest of the country.

Road transport.
The existing mileage of roads has not only to be improved but also has te be nearly doubled over a períd of 10 to 15 years. It will be necessary to give high priority to construction of village roads connecting them to market centres and railway stations. A well developed system of district and village roads and State and National Highways is also essential for facilitating the use of motor vehicles for both freight and passenger traffic. Rail transport.

As mentioned in previous chapter, a Considerable extent of the ayacut area lying to the south jof Guntur is very inadequately served by It is of utmost importance that a new railway line is constructed, connecting the Nagarjunasagar dam side with the Ongole railws station as recommended by the Tehnioconomic Survey of Andhra radesh. This line will help avoid the transport of the produce to south through the circuitous and already over congested route via, Vi jayawada.

It is also of utmost importance to convert the present Guntur-Macherla meter-gauge line into Broad gauge line so as to facilitate not only efficient transport of produce of the ayacut area but also to accelerate the pace of industrialization of the area between Guntur and Macherla. In this connection, the existing siding of the railway line, Macherla to the Dam side, should be taken over by the Kailway Authorities and converted into a broad gauge line and retained as a permanent rail link between Nacherla and the Dam site.

On the Left Canal side, there is no railway line running at present through the Project area, the \(V_{i}\) jayawada-Kazipet , line being away from the boundary of the ayacut fixed for the first phase. With the policy of localisation of nearly \(80 \%\) wet on the Left Canal side, the area is likely to become dens \(/ 1 y\) populated and trade and commerce increasing several-fold the \(\mathrm{N}_{\mathrm{Al}}\) gonda district is said to be rich in mineral resources.

A railway line from the Dam site to Hyderabad via Miriyalaguda is a special need of the region for a rapid agricultural and industrial develcrment of the area.

By far the most important requirement of the region is that of its being opened up by a railway line from the Dam site to Khammam. This line will run entirely through the project area and will serve as an artery for the flow of traffic between Dam site and the Vijayawada-Kazipet railway line.

Inland Navigation.
In order to facilitate traffic within the Project area, major canals in the Project area have to be developed suitably for navigation. Inland waterwas transport can become a most valuoble facility supplementing road and railway transport. It will also help the development of industries connected with canal traffic such as the manufacture of country craft.

The transport facilities have to be developed at \(\therefore\), least simultaneously with the completion of the Project, if not in advance so that the resources required for crop production, equipment needed for processing industries, etc., can be transported to various places into the Project area, and the surplus produce moved out of it without leading to serious bottlenecks which will otherwise make a good part of the outlay on the Project infructuous.
V) Before concluding the chapter we breifly toufh upon the aspect of betterment levy. In the determination of betterment levies and water rates, it is to be noted that the charges have cullivation to be related to the net income from .- , the chardes being higher in the case of some commercial crops which usually yield high returns. In the \(\bar{d}\) int Report on the Nandikonda Project, betterment levy on land is suggested at: Rs 200 per acre of wet land, and Rs 100 per acre of dry irrigated land. At these rates the total amount of betterment levy will be Rs, 30.49 crores. It appears to us that the rates of betterment levy suggested are rather on the low side and the disparity between rates suggested for wet and dry iirigated lands is not fully warranted. The r.ite of betterment levy suggested is less than one year's value of gross output or even net output in the case of irrigated paddy, and much less in the case of commerical crops like chillies; country tobacco and groundnutd The rate of betterment levy on wet land may be raised to Rs, \(250 /-\) per acre and the rate on dry irrigated land to \(\mathrm{Rs}_{3} 200 /-\) per acre. The total yield of betterment levy at these rates will be Rs 43.6 erores.```


[^0]:    K. Nagabhushanam.
    B. Sarveswara Rao.

    DIRECTORS SOCIO-ECONOMIC SURVEY OF THE NAGARJUNA SAGAR PROJECT.

[^1]:    B. When the Area office was wound $\operatorname{inc}_{k}$ November 1960, The entire staff at this office were transferred to work at the Headquarters at Waltair.

[^2]:    NoB.:- The information about market arrivals is gathered from enquiries at the regulated market yards, merchants $s^{1}$ associations and cooperative marketing societies; besides traders and millers at each centre.

[^3]:    

[^4]:    2 The study of transport enterprise is subject to some limitation because the sample includes animal-driven carts and rickshaws and the rickshaws are owned by the howseholds

[^5]:    \$ The reported gross value of production in the case of this enterprise seems to be considerably an underestimate.

[^6]:    1. In estimating the number of households existing in all the ayacut villages in 1050, we have taken the rate of growth of households in the sampleal villages between 1051 and 1059 on the basis of 1051 Population Census and our
     in 1059 and applied this rate of growth to estimate the number of households innt the non-sampled villages in 1059.
[^7]:    2. For details of sampling and estimation methods, see volurie II.
