POTASSIUM IN OKLAHOMA SOILS:

And

Crop Response to Potash Fertilizer

J:13112-2413.7332 J0 037157

OKLAHOMA AGRICULTURAL EXPERIMENT STATION Oklahoma A.& M. College, Stillwater W.L. Blizzard, Director Louis E. Hawkins, Vice Director Bulletin No. B-346 March, 1950

Do Oklahoma Soils Need Potash?

Station soils scientists analyzed 6,379 soil samples, representing every county in Oklahoma, to find areas where the potassium content might be low enough to reduce crop yields. They also analyzed samples representing 85 different soil types, and 28 pairs of samples from virgin soils and adjacent areas of cultivated land.

Eighteen percent of the samples were very low in exchangeable potassium, the form which can be absorbed by plant roots. Most of the "very low" samples came from eastern Oklahoma (see map, back cover.)

Cropping has not yet seriously reduced the potassium content of the cultivated soils studied which contained an adequate supply of this element in their virgin condition.

The soils scientists also compared the exchangeable potassium content of various soils with the results of potash fertilizer experiments on those soils. This gave an indication of the variation among crops in response to potash fertilizers. The results are summarized on pages 15 to 16.

Further research is needed to obtain a detailed picture of potash fertilizer needs throughout the State, but this preliminary report indicates where potassium deficiency is most likely to be found. It also presents some suggestions on how to use potash fertilizer where chemical tests of the soil show that it is needed.

ļ

THE COVER: K is the chemical abbreviation for potassium. The last figure in a fertilizer grade gives the percentage of potash present. (Potash is the oxide of potassium.) For potassium-deficient soils, a 5-10-5 or a 5-10-10 grade is frequently recommended.

Contents

Potassium Content of Oklahoma Soils	5
Exchangeable Potassium, by Areas	5
Counties	
Geologic Areas	
Total Exchangeable Potassium, by Soil Types	8
Relation to Soil Origin and Development	8
Acidity	8
Texture	
Soil Material	_ 11
Age	12
Effect of Cropping	12
Crop Response to Potassium Fertilization	12
General Conditions Affecting Response	12
Soil Type	12
Plant's Ability to Obtain Potassium	
Rate of Plant Growth	
Relation Between Successive Crops	
Average Annual Rainfall	14
Probable Yield	14
Method of Fertilization	14
Potassium Response of Specific Crops	15
Alfalfa	15
Big Hop Clover	15
Corn	15
Cotton	15
Cowpeas	_ 15
Lespedeza	15
Oats	15
Sorghums	15
Soybeans	-
Sweet Clover	
Vegetable Crops	
Wheat	16