A Key to the Soils of Ohio bу G. W. Conrey, A. H. Paschall, and E. M. Burrage Special Circular No. 78 (This publication is a limited revision of Special Circular 44, which it supersedes) Ohio Agricultural Experiment Station Wooster, Ohio 1948 ## CONTENTS | Introduct | ion . | لىرلىرلىرىيىنىنىنىنىنىنىنىنىنىنىنىنىنىنىنىنىنىن | 3 | |-----------|---------|--|---------| | Generaliz | ed Soil | Map of Ohio | 6 | | Legend f | or Gen | eralized Soil Map of Ohio | 7 | | Generaliz | ed Key | to the Soils of Ohio | 8 | | Soil Prof | ile Cha | racteristics | | | Area | ı. | Glacial Limestone Soils and Associated Soils 1 | 0 | | Area | II. | Glacial Sandstone and Shale Soils and Associated Soils 1 | 6 | | Area | . III. | Soils of the Glacial Lake Region, Northwestern Ohio 2 | 1 | | Area | IV. | Soils of the Glacial Lake Region, Northeastern Ohio 2 | 4 | | Area | . V. | Residual Limestone and Shale Soils and Associated Soils. 2 | 6 | | Area | VI. | Residual Sandstone and Shale Soils and Associated Soils. 2 | 9 | | Producti | vity Ra | tings for Selected Soil Types | | | Area | ı I. | Glacial Limestone Soils and Associated Soils 3 | 4 | | Area | ı II. | Glacial Sandstone and Shale Soils and Associated Soils 3 | 6 | | Area | a III. | Soils of the Glacial Lake Region, Northwestern Ohio 3 | 8 | | Area | IV. | Soils of the Glacial Lake Region, Northeastern Ohio 3 | 9 | | Area | . V. | Residual Limestone and Shale Soils and Associated Soils. 4 | 0 | | Area | ı VI. | Residual Sandstone and Shale Soils and Associated Soils 4 | 1 | | Miscellar | neous : | Soils 4 | 3 | | Soils Gr | ouped | by Productivity Ratings 4 | 5 | | Index | | | <u></u> | # A KEY TO THE SOILS OF OHIC by #### G. W. CONREY, A. H. PASCHALL, AND E. M. BURRAGE #### INTRODUCTION More attention is daily being paid to the study of soils and the part they play in our life today. Much work has been done in Ohio in the mapping and classification of the soils of the State and in showing their value in the agricultural economic scale. It has been the aim of the authors of this circular to summarize the characteristics of the important soil types in Ohio and to present data concerning their natural and possible productivity. ### SOIL AREAS The State of Ohio is located in the region of gray-brown podzolic soils, which is to say that the soils in Ohio have been developel in a humid, temperate climate under a deciduous forest vegetation. Within this region Ohio has been divided into six major areas based on the character of the material from which the soils were derived: Area I, glacial limestone soils; Area II, glacial sandstone and shale soils; Area III, soils of the glacial lake region of northwestern Ohio; Area IV, soils of the glacial lake region of northeastern Ohio; Area V, residual limestone and shale soils; Area VI, residual sandstone and shale soils. It is of interest to note that the more productive soils lie in the glaciated areas. #### CLASSIFICATION OF SOILS In order to show the relationship of one soil to another and at the same time to indicate wherein they differ, soils are classified into: - Family (includes soils derived from similar parent material; each difference within the family resulting from variations in natural drainage gives a soil series) - Series (that member of a family which includes soils resulting from similar drainage conditions; each difference within a soil series due to variations in the texture of the surface soil is a soil type) - "Type (that soil individual within a series which includes soils having similar texture) The Wooster family, for example (see Table 1), is composed of the Wooster, Canfield, Trumbull, Ravenna, and Chippewa series. The Wooster soils themselves are the best drained and the Chippewa, the most poorly drained of the family. If the soils of this area had all been developed under the same good drainage conditions, they would all have the characteristics of the Wooster series. The Wooster series is represented in this circular by the loam and the silt loam. These designations are based on the texture of the surface soil. A series name (usually chosen from the town or county in which that soil was first recognized), together with the textural term, forms a soil type: for example, Wooster silt loam. Textural terms, such as loam, silt loam, and silty clay loam, are based on the percentage of sand, silt, and clay' composing a particular soil. Loams, silt loams, and silty clay loams include soils with 50 percent or more of silt and clay, with the remainder of the material sand. Loams contain less than 20 percent clay and less than 50 percent silt; silt loams, less than 20 percent clay and over 50 percent silt; and silty clay loams, between 20 and 30 percent clay and over 50 percent silt. About 75 percent of the soils in Ohio are silt loams and silty clay loams. Because of the larger proportion of clay in the silty clay loams they are spoken of as "heavier" soils than the silt loams. In classifying soils the following features are noted: - (1) Parent material (glacial, residual, alluvial, etc.) - (2) Topography and drainage - (3) Color of the surface soil - (4) Color and character of the subsoil - (5) Character of and depth to parent material - (6) Reaction (neutral or acid) of the surface soil Those soils which are alike in all respects except texture are given the same soil series name. Those soils alike in all respects are given the soil type name. Thus, all soils in (1) the glacial sandstone and shale area having (2) rolling topography and good drainage, (3) brown surface soil, (4) yellowish-brown subsoil heavier than the surface, with (5) glacial drift (derived from sandstone and shale material) below 30 to 36 inches, and (6) acid in reaction, are classified as Wooster soils (see profile description, page 16). Soils having all the above characteristics and a silt loam surface soil are called Wooster silt loams, etc. #### PRODUCTIVITY RATINGS In Ohio the dark-colored soils are the most productive; the light-colored soils, fair to good; and the gray soils, the least productive. These color designations in general are indicative of the amount of organic matter present: The dark soils are high in organic matter content; the light-colored soils, of medium content; and the gray soils have been leached of bases and contain relatively little accumulation of organic matter. The soils with the highest productivity ratings are located in the north-western part of the State (see list on page 44, and map on page 6); the next highest soils, in central western Ohio; and the lowest, in the southeastern portion. ²Sand, silt, and clay are soil separates ranging in diameter as follows: sand, from 1.000 to 0.050 mm.; silt, from 0.050 to 0.005 mm.; clay, from 0.005 to less than 0.005 mm. For field designation, textures are determined by rubbing moist soil lightly between the fingers: loams have a slightly gritty feel; silt loams, a floury feel; and silty clay loams, a smooth, slightly plastic feel. Sands and gravels can be recognized by sight. In rating soils, the authors have used the natural characteristics of the soil, except in regard to drainage. In poorly drained areas where tiling is the accepted practice, the good artificial drainage has been considered in rating the soil. However, in arriving at the figures for the crop index, natural drainage conditions were considered for the first figure and the improved conditions, for the second figure of the index. The soil productivity ratings are State-wide in significance. "1" is the highest rating and "10", the lowest (see page 34, column 1). A soil with the rating of "5" is higher in rating than a soil of "10", but does not necessarily yield twice as good crops; these figures merely indicate that one soil is more or less productive than another. The crop productivity index ranges from "10", the highest, to "1", the lowest. In most cases the figures are significant; for example, a soil indexed as "5" should yield only 5/10 or 1/2 as much as one indexed as "10". Two figures are given in the crop productivity index tables, the second figure, in parentheses. The first figure is indicative of the crop production of the soil without special treatment, and the second figure indicates the possible productivity with adequate drainage and good soil management. Thus, for the Miami silt loam the crop productivity index for corn, 5 (7), means "5" without special treatment and "7" with adequate drainage and good soil management, as compared with the Brookston silt loam, 3 (10), "3" without special treatment and "10" with adequate drainage and good soil management. The soil productivity rating is based on the crop productivity index. Since "10" represents the possible crop production under improved conditions, and since "10" is given for ½ of the major crops produced in the area, Brookston silt loam is rated as a number "1" soil. The Miami silt loam under improved conditions is given a possible crop index of "9" for only ½ of the major crops; this makes it lower in soil productivity, i. e., "3". For orchards and forests the ratings A, B, and C are used. "A" means excellent; "B", fair; and "C", poor or undesirable. Ratings for forests are given both for hardwoods (H) and for conifers (C). #### COUNTY SOIL SURVEY REPORTS About 30 counties in Ohio have been surveyed in detail by the Federal Bureau of Chemistry and Soils in cooperation with the Ohio Agricultural Experiment Station. In recent years there has been some change in the nomenclature used in soil survey reports. These changes have been listed in Special Circular Number 47 of the Ohio Agricultural Experiment Station, entitled "Revised Nomenclature of Soil Type Names", by G. W. Conrey and E. M. Burrage. Detailed county soil survey maps and reports, and Special Circular Number 47 may be had upon request to the Ohio Agricultural Experiment Station, Wooster, Ohio. Generalized Soil Map of
Ohio ### LEGEND ### Generalized Soil Map of Ohio - I. Glacial limestone soils. - a. Late Wisconsin Drift soils. - 1. Miami, Celina, Crosby, Brookston, and Clyde silty clay loam. - 2. Bellefontaine, Miami, Celina, and Crosby silt loam; Brookston and Clyde silty clay loam. - 3. Miami and Crosby loam and silt loam; Brookston clay loam and silty clay loam. - 4. Mixed sands and fine sandy loams—Coloma, Miami, Nappanee, Wauseon, etc. - b. Early Wisconsin Drift soils. - 5. Russell, Zenia, and Fincastle silt loam, with Brookston silt loam. - c. Illinoian Drift soils. - 6. Clermont, Avonburg, Rossmoyne, and Blanchester silt loam. - 7. Cincinnati and Rossmoyne silt loam; Fairmount silty clay loam. - II. Glacial sandstone and shale soils. - Late Wisconsin Drift soils. - 8. Wooster, Canfield, Ravenna, and Trumbull silt loam. - 9. Wooster and Canfield loam and sandy loam. - 10. Rittman, Wadsworth, and Trumbull silt loam. - 11. Ellsworth, Mahoning, and Trumbull silty clay loam and silt loam. - 12. Alexandria, Cardington, and Bennington silt loam; Marengo silty clay loam. - b. Illinoian Drift soils. - 13. Hanover and Fallsbury silt loam. - III. Lacustrine limestone soils. - 14. Brookston clay, with Nappanee clay loam, Wauseon fine sandy loam, etc. - 15. Paulding clay, with Nappanee clay. - 16. Toledo silty clay, with Fulton and Lucas silty clay loam. - 17. Toledo very fine sandy loam, loam, silt loam, and clay loam. - 18. Plainfield, Berrien, and Newton fine sand. - YIV. Lacustrine sandstone and shale soils. - Painesville, Caneadea, and Lorain loam to silty clay loam; Plainfield and Berrien fine sand. - V. Residual limestone and shale soils. - Hagerstown, Bratton, Maddox, and Ellsberry silt loam; Heitt, Eden, and Fairmount silty clay loam. - VI. Residual sandstone and shale soils. - 21. Muskingum silt loam, with Muskingum loam. - 22. Muskingum silt loam (largely steep phase). - 23. Westmoreland and Belmont silty clay loam, with Muskingum silt loam. - Meigs silty clay loam and Upshur clay, with Muskingum silt loam. TABLE 1 .-- A Key to the Soils of Ohio | _ | Color of surface | Ø | Brown | Brown | Brown to grayish-brown | Grayish-
brown | Brownish-
gray | Gray | Very dark
gray | Gray-black | |------|---|--|-------------------------|-------------------------|---|--|--|---|---|----------------------------| | _ | Color of aubsoil | E | Variable | Reddish-
brown | Yellowish-
brown | Mottled
below 18 in. | Mottled
below 8 in. | Mottled
below 8 in. | Mottled
below 8 in. | Mottled
below 8 in. | | _ | Topography
(upland soils) | 17 | Ridges and steep slopes | Rolling | Gently
rolling | Undulating | Gently
undulating | Undulating
to level | Level | Level | | _ | Natural drainage | (C) | Good | Good | Good | Fair | Poor | Very poor | Very poor | Very poor | | Ī. | Glacial limestone so
a. Late Wisconsin I
(leached 24-36 in | Drift soils | Hennepin | Bellefontaine | Miami | Celina | Crosby | Bethel | { Brookston
{ Pandoras | Clyde | | | Very calcareous d
Heavy drift of la
Very heavy drift | rift on 1s.
ke plain | 1 | · | Catawba
St. Clair | ı | Nappance | Palmer | Danbury
Brookston
Paulding | Clydo | | | Very sandy drift Shallow drift over b. Early Wisconsin (leached to 40-60 | Drift soils | - | Milton
Bellefontaine | Coloma
Russell | Xenia | Randolph
Fincastle | Delmar | Millsdale
Brookston | } | | | c. Illinoian Drift soi
(leached to 100-12
Heavy drift | ils | Edenton | | Cincinnati
Jesaup | Rossmoyne
Loudon | Avonburg | Clermont | Blanchester | | | īī. | Glacial sandstone an a. Late Wisconsin D With light-texture With moderately l With very heavy a With moderately l (slightly calcareou Shallow drift over b. Illinoian Drift sol With light-textured With heavy subsol | Drift soils d subsoils locay subsoils subsoils heavy subsoils s) sandstone shale ll subsoils | | | Wooster
Wayne
Alexandria
Lordstown
Hanover
Fallsbury | Canfield
Rittman
Ellsworth
Cardington | Ravenna
Wadsworth
Mahoning
Bennington | Trumbull
Trumbull
Trumbull
Condit
Wickliffe | Chippewa
Chippewa
Chippewa
Marengo | | | III. | Glacial lake soils
(limestone area)
Gravelly beach rid
Deep sand
Sand over clay
Very fine sand, sil | | | Belmore | Plainfield
Lucas | Berrien
Dunkirk | Morocco
Rimer
Fulton | | Newton
Wauseon
Toledo | Maumee
Neapolis
Bono | | V. Glacial lake soils (ss. and sh. area) Gravelly beach ridges Deep sand Sand over clay Very fine sand, silt, and clay | | Chenango | Plainfield
Painesville | Berrien | Caneadca | ,
 | Reynolds
Lorain | | |--|--|-----------------|---|--|---------------------------------|----------------------------------|--|----------| | Residual limestone and shale soils Interbedded limestone and shale Ridge tops Steep slopes | Heitt
Eden | | Maddox | Elisberry | | | | | | High-calcium limestone | Fairmount | Hagerstown | | | Bentonville | Į | j l | | | Gray calcareous shale Dolomitic limestons Gray shale | Otway | Bratton | | Bedford | Jacksonville
Fawcett | | Burgin | | | Black bituminous shale
Sandstone rubble over black shale
Red shale | Colyer
Rarden | Coolville | Byington | | Naceville | | l | | | I. Residual sandstone and shale soils Over sandstone and shale Over shale (yellow weathering to red) | Muskingum
· Rardon | Coolville | Zanesville‡
Wellston | Tilsit | Jonsburg | Mullins | | | | Over yellowish gray clay shale— (non-calc.) Over red clay shale (calc.) Over limestone Mixed—Muskingum and Upshur Mixed—Muskingum and Brooke Mixed—Muskingum, Brooke, Upshur | Upshur
Brooke
Meigs
Westmoreland
Belmont | | | Keene
Guernsey | • | | | | | errace (second bottom) soils with
gravelly substratum. Associated with
Glacial limestone soils
Glacial sandstone and shale soils
Ohio River terrace
errace (second bottom) soils with silt | | Fox
Chenango | Wheeling | Bronson
Sciotoville | Homor
Braceville
Weinbach | Ginat | Westland
Atherton
Chilo | Abington | | and clay substratum. Associated with
Glacial limestone soils
With old glacial limestone | - | | Shandon
Williamsburg | | McGary | · | Montgomery | | | Glacial sandstone and shale soils
Residual sandstone and shale soils
Residual limestone, as., and sh. soils
Residual red clay shale soils | | | Mentor
Holston
Elk
Vincent | Glenford
Monongahela
Captina | Fitchville
Tyler
Taft | Sebring
Purdy
Robertsville | Luray
Blago
Bagneli | | | liuvial (first bottom) zoils. Assoc. with
Glacial limestone soils
Glacial sandstone and shale soils
Residual sandstone and shale soils
Residual limestone, sa., and sh. soils
Residual red clay shale soils | | | Genesee
Chagrin
Pope
Huntington
Moshannon | Eel
Lobdell
Philo
Lindside
Senecaville | Shoals
Stendal
Newark | Wayland
Atkins
Melvin | Sloan
Papakating
Eikius
Dunning | Wabash | TABLE 2.—Glacial Limestone Soils and Associated Soils. Area I | | | Uplan | d Soils (Late Wise | onsin Drift) leach | ed to 24-86 inches | | <u> </u> | | |---|--|--|--|--|--|--|--|--| | Topography | Rolling | Gently rolling | Undulatin | g to level | Level | | | | | Color of surface soil | Brown | Grayish-brown | Brownish-gray | Gray | Dark gray | Very dark gray | Gray-black | | | Color and char-
acter of subsoil | Reddish-brown | Yellowish-brown | Mottled yellow-
ish-brown and
gray below 8 in. | Mottled gray
and yellowish-
brown
below 8 in. | Mottled gray
and yellowish-
brown | Mottled dark
gray and yellow-
ish-brown | Mottled bluish-
gray and yel-
lowish-brown | | | Character of
and depth to
parent material | Calcareoua
glacial drift
below 24-86 in. | Calcareous
glacial drift
below 24-36 in. | Calcareous
glacial drift
below 30-40 in. | Calcareous
glacial drift
below 80-40 in. | | | Natural
drainage | Good | Fair to good | Fair to poor | Very poor | Very poor | Very poor | Very poor | | | Reaction of surface soil | Not acid | Slightly acid | Acid | Acid | Slightly acid | Not acid | Not acid | | | Series | Bellefontaine | Miami* ' | Crosby | Bethel | Pandora | Brookston | Clyde | | | Important
textures | loam
ailt loam | silt loam
silty clay loam | silt loam
silty clay loam | silt loam | silty clay loam | silty clay loam | silty clay loam | | ^{*}Celina silt loam, new type, imperfect underdrainage, mottled below 18 to 24 inches. TABLE 2.—Glacial Limestone and Associated Soils (continued) | Upland | Soils (Late
Wise | consin Drift), con | tinued | Upland | Soils (Early V | Visconsin Drift) le | sched to 40-60 in | ches | | |---|---|---|---|--|---|---|--|---|-------------------| | Topography | Undul | <u>-</u> | Level Rolling Undulating to gently rolling | | | | gently rolling | Level | | | Color of surface soil | Brown | Grayish-brown | Very dark gray | Brown | Brown Grayish-brown Brownish-gray | | Brown Grayish-brown Gray | Gray | Very dark
gray | | Color and char-
acter of subsoil | Reddish-brown | Yellowish
brown, mottled
with gray
below 15-18 in. | Mottled dark
gray and yel-
lowish brown | Reddish-brown | Yellowish-
brown | Mottled yellow-
ish-brown
and gray
below 8 in. | Mottled gray
and yellowiah-
brown
below 8 in. | Mottled dark
gray and yel-
lowish-brown | | | Character of
and depth to
parent material | Bedrock
(limestone)
below 20-36 in. | Bedrock
(limestone)
below 15-30 in. | Bedrock
(limestone)
below 24-36 in. | Calcareous
glacial drift
below 24-36 in. | Calcareous
glacial drift
below
40-60 in. | Calcareous
glacial drift
below 40-60 in. | Calcareous
glacial drift
below 40-60 in. | Calcareous
glacial drift
below
80-60 in. | | | Natural
drainage | Good | Fair to poor | Very poor | Good | Good | Fair | Poor | Very poor | | | Reaction of surface soil | Not acid | Slightly scid | Not acid | Not acid | Acid | Acid | Acid | Not acid | | | Series | Milton | Randolph | Millsdale | Bellefontaine | Russell* | Fincastle | Delmar | Brookston | | | Important
textures | silt loam | silt loam | silty clay loam | loam
silt loam | allt loam | silt loam | ailt loam | silt loam | | ^{*}Zenia silt loam, new type, imperfect underdrainage, mottled below 18 to 24 inches. TABLE 2.—Glacial Limestone and Associated Soils (continued) | | | Upli | and Soils (Illinois | n Drift) leached to | 100-120 inche | • | | |---|---|--|---|---|---|---|---| | Topography | Steep slopes | Moderate slopes | Rolling | Gently rolling | Undulating | Le | vel | | Color of surface | Brown | Brown | Brown | Grayish-brown | Brownish-
gray | Gray | Dark gray | | Color and char-
acter of subsoil | Olive yellow
Very heavy | Yellowish-brown | Brownish-yellow | Brownish-yellow,
mottled yellow-
ish-brown and
gray below
16-20 in. | Mottled yel-
lowish-brown
and gray
below 8 in. | Mottled light
gray and
yellowish-brown
below 8 in. | Mottled gray
and yellowish-
brown
below 10 in. | | Character of and
depth to parent
material | Bedrock
(limestone and
shale) at 24.36
in. | Calcareous
glacial drift
below 86-40 in. | Calcareous
glacial drift
below 100-120
in. | Calcareous
glacial drift
below 100-120
in. | Calcareous
glacial drift
below
100-120 in. | Calcareous
glacial drift
below 100-120
in. | Calcareous
glacial drift
below
100-120 in. | | Natural drainage | Good | Good | Good | Fair | Poor | Very poor | Very poor | | Reaction of surface soil | Not acid | Slightly acid | Acid | Very acid | Very acid | Very acid | Acid | | Series | Pairmount* | Edenton | Cincinnati | Rossmoyne | Avonburg | Clermont | Blanchester | | Important
textures | silty clay loam | silt loam | ^{*}Residual limestone and shale soil, recognized in this area where drift is extremely thin. TABLE 2.—Glacial Limestone and Associated Soils (continued) | | · ···································· | | Terrace S | oils (Second botte | om) | · · · · · · · · · · · · · · · · · · · | | | | | | |---|---|--|--|--|--|---|---|--|--|--|--| | Associated soils | Glacial limestone zoils | | | | | | | | | | | | Color of surface soil | Brown | Dark brown | Very dark gray | Gray-black | Graylsh-
brown | Brownish-gray | Very dark gray | | | | | | Color and
character of
subsoil | Reddish-brown | Dull
yellowish-brown | Mottled gray
and yellowish-
brown | Mottled bluish-
gray and
yellowish-brown | Yellowish-
brown | Mottled
yellowish-brown
and gray
below 8 in. | Mottled
dark gray and
yellowish-brown | | | | | | Character of and depth to parent material | Stratified sand
and gravel
below 24-60 in. | Stratified sand
and gravel
below 24-60 in. | Stratified sand
and gravel
below 30-60 in. | Stratified sand
and gravel
below 30-60 in. | Laminated
silt and clay
below 36-50
in. | Laminated
silt and clay
below 86-50 in. | Laminated
silt and clay
below 36-50 in. | | | | | | Natural drainage | Good | Fair to good | Very poor | Very poor | Good | Poor | Very poor | | | | | | Resction of surface soil | Not acid | Slightly acid | Not acid | Not acid | Slightly acld | Acid | Not acid | | | | | | Series | Fox | WastaW | Westland | Abington | Shandon | McGary | Montgomery | | | | | | Important
textures | loam
silt loam | silt loam | silty clay loam | silty clay loam | silt loam | silt loam | silty clay loam | | | | | TABLE 2.—Glacial Limestone and Associated Soils (continued) | Sec | | | Terrace 6 | Bolls (Second bott | om) |
 | | |---|---|--|--|---|--|------|---| | Associated soils | | | | | Cincinnati
Rossmoyne | | | | Color of surface soil | Brown | Graylah-brown | Gray | Dark gray | Graylah-
brown | | | | Color and character of subsoil | Yellowish-brown
with reddish
cast heavy to
60-84 in. | Yellowish-brown
mottled with
gray below
18-20 in. | Mottled gray
and yellowish-
brown
below 8 in. | Mottled
dark gray and
yellowish-brown
below 10 in. | Yellowish-
brown
slightly
mottled | | | | Character of
and depth to
parent material | Stratified sand
and gravel
below 60-84 in. | Laminated
silt and clay
below
36-48 in. | | | | Natural drainage | Good | Fair | Poor | Very poor | Fair | | | | Reaction of surface soil | Slightly acid | Acid | Very acid · | Not acid | Acid | | | | Series | Wheeling† | Sciotoville† | Ginat† | Chilo† | Williamsburg | İ | İ | | Important
textures | silt loam | silt loam | silt loam | silty clay loam | loam
silt loam | | | †Ohio River Terrace: mixed glacial outwash and residual sandatone and shale material. TABLE 2.—Glacial Limestone and Associated Soils (concluded) | | | | | ·· - | | - | | • | |--------------------------------------|---------------|---|---|---|----------------------------|--|---|-----| | Associated soils | <u> </u> | Glacial lime | stone goils | | Hage | and, etc. | | | | Color of surface soil | Graylah-brown | Brownish-gray | Very dark gray | Grayish-black | Brown to dark brown | Brown to
grayish-brown | Gray | | | Color and
character of
aubsoil | Brown . | Mottled gray
and graylsh-
brown below
8-15 in. | Mottled
dark gray and
yellowish-brown | Mottled
bluish-gray and
yellowish-brown | Brown | Brown mottled
with grayish-
brown and gray
below 15 in. | Mottled gray
and grayish
brown
below 8 in. | | | Natural drainage | Fair to good | Fair to poor | · Very poor | Very poor | Good | Fair | Very poor | | | Reaction of surface soil | Not acid | Not acid | Not acid | Not acid | Not acid | Not acid | Acid | * ; | | Series | Genesee | Eel | Sloan | Wabash | Huntington; | Lindside‡ | Melvin‡ | : | | Important
textures | ailt loam | silt loam
silty clay loam | silt loam | silt loam
silty clay loam | silt losm
sil, clay lo. | siit loam
silty clay loam | silt loam
silty clay loam | | These soils occur in the flood plain of the Ohio River. TABLE 3,-Glacial Sandstone and Shale Soils and Associated Soils. Area II | | | | Upland Soils | (Late Wisconsin | Drift) | | | | |---|--|--|---|--|---
--|--|---| | Topography | Rolling | Gently rolling | Undulating | Leve | el | Rolling | Gently rolling | Undulating | | Color of surface soil | Brown | Light brown | Brownish-gray | Gray | Very dark
gray | Brown | Light brown | Brownish-
gray | | Color and
character of
subsoil | Yellowish-brown
slightly heavier
than surface | Pale yellowish-
brown mottled
with gray
below 16-24 in.
Slightly heavior | Mottled yellow-
ish brown
and gray
below 8 in.
Slightly heavier | Mottled gray,
yellowish-brown
and rust-brown | Mottled blu-
ish-gray,
gray, and
rust-brown | Yellowish-brown | Pale yellowish-
brown mottled
with gray
below 16-24 in. | Mottled yel-
lowish-brown
and gray
below 8 in. | | • | | than surface | than surface | } | | Upper subsoil hea | vier than surface or | lower subsoil | | Character of
and depth to
parent material | Glacial drift
(sandstone and
shale)
below 30-36 in. | Giacial drift
(sandstone and
shale)
below 30-36 in. | Glacial drift
(sandstone and
shale)
below 30-36 in | Glacial drift
(sandstone and
shale)
below 30-36 in. | Glacial drift
(sandstone
and shale)
below
30-36 in. | Glacial drift
(sandstone and
shale)
below 30-36 in. | Glacial drift
(sandstone and
shale)
below 80-86 in. | Glacial drift
(sandstone
and shale)
below
30-36 in. | | Natural drainage | Good | Fair to good | Poor | Very poor | Very poor | Good | Fair | Poor | | Reaction of surface soil | Acid | Acid | Very acid | Very acid | Acid | Acid | Acid | Very acid | | Sories | Wooster | Canfield | Ravenna* | Trumbull | Chippewa | Wayne | Rittman† | Wadsworth† | | Important
textures | loam
silt loam | silt loam | loam
silt loam | loam
silt loam
silty clay loam | sil. clay lo.
silt losm | silt loam | ailt loam | silt loam | ^{*}Formerly called Volusia; name changed to conform with nomenclature of U. S. Bureau of Chemistry and Soils. †Associated poorly drained soils are: Trumbull and Chippewa with moderately heavy subsoils. TABLE 3.—Glacial Sandstone and Shale Soils and Associated Soils (continued) | | | | Upland Soils (Lat | e Wisconsin Drift |), continued | | | |---|---|---|---|--|---|--|--| | Topography | Gently rolling | Undulating | Rolling | Gently rolling | Undulating | Le | evel | | Color of surface soil | Light brown | Brownish-gray | Brown | Grayish-brown | Brownish-
gray | Gray | Very dark gray | | Color and character of subsoil | Yellowish-brown
mottled with
gray below
16-20 in.
Lower subsoil | Mottled yellow-
ish-brown and
gray below 8 in.
Lower subsoil
very heavy | Yellowish-brown | Pale yellowish-
brown mottled
with gray
below 16-24 in. | Mottled yel-
lowish-brown
and gray
below 8 in. | Mottled gray,
yellowish-brown
and rust-brown | Mottled bluish-
gray, gray, and
rust-brown | | | Yery heavy | | Ţ | pper subsoil heav | ier than surfac | e or lower subsei | i | | Character of
and depth to
parent material | Glacial drift (ahabelow S | le and sandstone)
30-86 in. | Glacial drift
alightly calcar-
cous, below
28-30 in. | Glacial drift,
alightly calcar-
eous, below
28-30 in. | Glacial drift,
slightly cal-
careous,
below
28-30 in. | Glacial drift,
slightly calcar-
eous, below
28-30 in. | Glacial drift,
slightly calcar-
cous, below
30-36 in. | | Natural drainage | Fair | Very poor | Good | Fair | Poor | Very poor | Very poor | | Reaction of surface soil | Acid | Very acid | Acld | Acid | Acid | Acid | Slightly acid | | Sories | Ellsworth | Mahoning† | Alexandria | Cardington | Bennington | Condit | Marengo | | Important
textures | silt loam
silty clay loam | silt loam
silty clay loam | silt loam | silt loam | zilt loam | silt loam | silty clay loam | †Associated poorly drained soils are: Trumbull and Chippewa with very heavy subsoils. TABLE 3.—Glacial Sandstone and Shale Soils and Associated Soils (continued) | Upland Solls | Late Wisconsin I | rift), continued | Upland Soils (| Illinoian Drift) |
 | | | |---|---|---|--|--|----------|----|---| | Topography | Rolling | Undulating | Rol | ling | إ | •• | | | Color of
surface soil | Brown | Brownish-gray | Bro | own | | | | | Color and character of subsoil | Yellowish-brown | Mottled
yellowish-brown
and gray;
yery heavy | Yellowish-brown
Moderately
heavy | Yellowish-brown
Heavy | 16
16 | | ļ | | Character of and depth to parent material | Bedrock
(sandstone)
below 12-36 in. | Bedrock
(shale)
below 12-86 in. | Glacial drift
(sandstone and
shale)
below 40-50 in. | Glacial drift
(sandstone and
shale)
below 40-50 in. |
. 4 | | | | Natural drainage | Good | Very poor | Good | Good | | | | | Reaction of auriace soil | Acid | Very acid | Acid | Acid | - | , | | | Series | Lordstown | Allis | Hanover | Fallsbury | | | | | Important
"textures | stony loam
· slit loam | silty clay loam | silt loam | silt loam | | | | TABLE 3.—Glacial Sandstone and Shale Soils and Associated Soils (continued) | | | | Terrace S | oils (Second botto | om). | | | | |---|--|---|--|---|--|---|--|--| | Topography | Level | | Associated soils—glacial sandstone and shale soils | | | | | | | Color of surface soil | Brown | Brownish-gray | Very dark gray | Brown | Light brown | Gray ' | Dark gray to .grayish-black | | | Color and
character of
subsoil | Yellowish-brown | Yellowish-brown
mottled with
gray
below 8-15 in. | Mottled dark
gray and yellow-
ish-brown | Yellowish-brown | Yellowish-
brown
mottled with
gray below
15 in.
Heavy | Mottled gray
and yellowish-
brown
below 8 in.
Heavy | Mottled bluish-
gray and yellow-
ish-brown.
Heavy | | | Character of
and depth to
parent material | Stratified sand and gravel below 24-36 in. | Stratified
sand and gravel
below 24-36 in. | Stratified sand and gravel below 80-40 in. | Laminated
silt and clay
below 24-36 in. | Laminated
silt and clay
below
30-40 in. | Laminated
silt and clay
below 30-40 in, | Laminated
silt and clay
below 80-40 in. | | | atural drainage | Good | Fair to poor | Very poor | Fair to good | Fair | Very poor | Very poor | | | Reaction of surface soil | Acid | Very acid | Slightly acid | Acid | Acid | Very acid | Slightly sold | | | Series | Chenango | Braceville | Atherton | Mentor | Glenford* | Sebring | Luray | | | Important
textures | gravelly loam
silt loam | silt clay loam | | ^{*}Fitchville silt loam, new type, poorly drained, mottled at 8 inches. TABLE 3.—Glacial Sandstone and Shale Soils and Associated Soils (concluded) | | | | Alluvial Solis (1 | first bottom or fi | ood plain) | | | | |--------------------------------------|-------------------|--|--|---|----------------|------|---|----| | Associated solls | | · · | | Blacial sandstone | and shale soil | is _ | | | | Color of surface soil | Brown | Light brown | Gray | Gray-black | | | | | | Color and
character of
subsoil | Brown | Brown mottled
with gray
below 15 in. | Mottled gray and grayish-brown below 8 in. | Mottled bluish-
gray, gray, and
yellowish-brown | | | | | | Natural drainage | Good | Fair | Very poor | Very poor | | 1 | , | 1. | | Reaction of surface soil | Acid | Acid | Acid | Slightly acid | | | | | | Series | Chagrin | Lobdell | Wayland* | Papakating | | | | | | Important
textures | loam
silt loam | silt loam | , silt loam | silty clay loam | | | | | ^{*}Called Holly prior to 1946. TABLE 4.—Soils of the Glacial Lake Region of Northwestern Ohio. Area III | | | | Lacustrine Soi | ls (Glacial lake d | eposita) | _ | | | | | |---|--|---|---|-------------------------|---|---|--|-----|--|--| | Topography . | Beach ridges | | Undulating to gently rolling | | | | | | | | | Color of surface soil | urface soil Color and Reddish-brown Y | | Light brown | | Grayish-h | rown | Brownish-gray | | | | | Color and
character
of
aubsoil | | | Yellowish brown upper subsoil,
pale yellow below 24-28 in. | | Yellowish-brown,
may be slightly
mottled below
28-30 in. | Yellowish-
brown,
mottled
below
18-20 in. | Mottled gray,
yellowish-gray,
and yellow | | | | | Character of and depth to parent material | Stratified sand
and gravel
over clay
at 86-60 in. | Sand or non-
calcareous sand
and gravel
60-120 in, | Clay
below 36-48 in. | Clay
below 24-80 in. | Laminated calc | areous silt and | clay at 86-48 | | | | | Natural drainage | Good | Good | Fair to good | Fair to poor | Good | Fair | Poor . | | | | | Reaction of surface soil | Not acid | Acid | Acid | Acid | Slightly acid | Slightly acid | Acid | | | | | Series | Belmore | Plainfield | Berrien | Rimer | Lucas | Dunkirk | Fulton | | | | | Important
textures | gravelly loam
loam | fine sand | fine sand | fine sandy losm | silt loam
silty clay loam | silt loam
sil. clay lo. | silt loam
silty clay loam | ļ · | | | TABLE 4.—Soils of Glacial Lake Region of Northwestern Ohio (continued) | | | 1 | Lacustrine Soils (| Glacial lake depos | its), continued | | | | | | | |---|---|--|--|---|--------------------------------|---|--|--|--|--|--| | Topography | | Level | | | | | | | | | | | Color of
surface soil | | Very dark gray | | | Grayish-black | | | | | | | | Color and
character of
subsoil | Mottled gray
and yellowish-
brown;
deep sand | Mottled gray
and yellowish-
brown; sandy | Mottled bluish-
gray and yellow-
ish-brown;
heavy | Mottled
bluish-gray
and yellow | Gray
mottled with
yellow | Mottled bluish-
gray and
yellow | Light gray or
mottled gray
and yellowish-
brown | | | | | | Character of
and depth to
parent material | Deep sand or
sand and grave!
to 60-120 in. | Clay
below 24-80 in. | Laminated calcareous silt and clay | Deep sand or
sand and gravel
to 60-120 in | Clay
below
24-30 in. | Laminated
silt and clay
below 36-48 in. | Marl
below 12-24 in. | | | | | | Natural drainage | Poor | Poor | Very poor | Very poor | Very poor | Very poor | Very poor | | | | | | Reaction of surface soil | Slightly acid | Slightly acid | Not acid | Not acid | Not acid | Not acid | ' Not acid | | | | | | Sories | Newton | Wauseon | Toledo | Maumee | Neapolis | Bono | . Warners | | | | | | Important
textures | fine sand | fine sandy loam | ver. fine san. lo.
clay loam
silty clay | fine sand | fine sandy lo. | silty clay | loam | | | | | TABLE 4.—Soils of Glacial Lake Region of Northwestern Ohio (concluded) | | | Glacial Soi | is of the Lake Pi | ain Area | | | LaivoilA | Soils* | |---|---|--|---|---|---|---|--------------------------------|--| | Topography | Gently rolling | Undulating | Level | | | Level Level | | el . | | Color of surface soil | Grayish-brown | Brownish-gray | Gray | Very dar | k gray | Gray-black | Grayish-brown | Brownish-
gray | | Color and character of subsoil | Yellowish-brown,
slightly mottled
below 24-36 in. | Mottled yellow-
ish-brown and
yellowish-gray;
upper subsoil
very heavy | Mottled gray
and yellowish-
brown;
very heavy | Mottled dark
gray and yellow-
ish-brown;
heavy | Mottled dark
gray and yel-
lowish-brown;
very heavy | Mottled bluish-
gray and yellow | Brown | Mottled gray
and yellow-
ish-brown
below
15-18 in. | | Character of
and depth to
parent material | Heavy
calcareous
glacial drift
below 24-36 in. | Heavy
calcareous
glacial drift
below 24-36 in. | Heavy
calcareous
glacial drift
below 24-36 in. | Heavy
calcareous
glacial drift
below 30-40 in. | Very heavy
calcareous
glacial drift
below
30-40 in. | Heavy
calcareous
glacial drift
below 30-40 in. | • | | | Natural drainage | Good | Poor | Very poor | Very poor | Very poor | Very poor | Fair to good | Fair to poor | | Reaction of surface soil | Slightly acid | Acid | Acid | Not acid | Not acid | Not acid | Not acid | Not acid | | Sories | St. Clair | Nappanee | Palmer | Brookston | Paulding | Olyde | Gелегее | Eel | | Important
textures | ailty clay loam | ailty clay loam
clay loam | clay | clay loam
clay. | clay | clay loam
clay | loam
silt loam
clay loam | ail. clay lo. | ^{*}For a complete list of alluvial soils see Table 2. # TABLE 5 .- Soils of the Glacial Lake Region of Northeastern Ohio. Area IV | | | | Lacuatrine So | ils (Glacial lake | deposits) | | | | |---|--|--|----------------------------|---|---|--|---|--| | Topography | Beach ridges | Undu | lating to gently r | olling | Level | | | | | Color of surface soil | Brown | Light brown | | Grayich-brown | Brownish-
gray to gray | Very dark gray
(sandy) | Very dark gray | | | Color and character of subsoil | Yellowish-brown | | upper subsoil,
ow below | Yellowish-
brown;
lower subsoil
heavy lower subsoil
heavy | | Mottled yellow-
ish-brown and
gray; lower
subsoil heavy | Mottled bluish-
gray and
yellowish-brown | | | Character of
and depth to
parent material | Stratified sand
and gravel
below 24-36 in. | Sand or non-
calcareous sand
and gravel
to 60-120 in. | Clny
below 36-48 in. | Laminated
very fine sand,
silt, and clay
below 30-40 in. | Laminated
very fine
sand, silt,
and clay
below
30-40 in. | Clay
below 24-36 in. | Laminated
very fine sand,
silt, and clay
below 36-50 in. | | | Natural drainage | Good | Good | Fair to good | Fair to good | Poor | Very poor | Very poor | | | Reaction of surface soil | Acid | Acid | Acid | Acid | Very acid | Acid | Acid · | | | Series | Chenango
(beach-ridge
phase) | Plainfield | Berrien | Painesville | Caneadea · | Reynolds | Lorain | | | Important
textures | gravelly loam
loam | fine sand | fine sand | fine sandy loam
silt loam | fine san. lo.
sil. clay lo.
silty clay | fine sandy loam | loam
silty clay loam
silty clay | | TABLE 5.—Soils of Glacial Lake Region of Northeastern Ohio (concluded) | | Gla | cial Soils of the | Lake Plain Area | | | | Alluvial Soils* | | |---|--|--|--|---|---|-------------------|--------------------------------------|--| | Topography | Undulating to | gently rolling | Lev | rel | Undulating | | Level | | | Color of
surface soil | Grayish-brown | Brownish-gray | Gray | Dark gray to
grayish-black | Brownish-
gray | Brown | Light brown | Gray , | | Color and character of subsoil | Yellowish-brown
mottled with
gray below
16-20 in.; lower
subaoil
very heavy | Mottled yellow-
ish-brown and
gray below 8
in.; lower sub-
soil very heavy | Mottled gray,
yellowish-brown,
and rust-brown;
moderately
heavy to
very heavy | Mottled bluish-
gray, gray, and
rust-brown;
heavy to
very heavy | Mottled yel-
lowish-brown
and gray;
very heavy | Brown | Brown mottled with gray below 15 in. | Mottled gray
and grayish-
brown
below 8 in. | | Character of
and depth to
parent material | Glacial drift
(shale and
sandstone)
below 80-86 in. | Glacial drift
(shale and
sandstone)
below 30-36 in. | Glacial drift
(sandstone
and shale)
below 30-36 in. | Glacial drift
(sandstone
and shale)
below 30-36 in. | Bedrock
(shale)
below
12-36 in. | | | | | Natural drainage | Fair | Very poor | Very poor | Very poor | Very poor | Good | Fair | Very poor | | Reaction of surface soil | Acid | Very acid | Very acid | Acid | Very acid | Acid | Acid | Acid | | Series | Ellsworth | Mahoning | Trumbull | Chippewa† | Alkis | Chagrin | Lobdell | Wayland‡ | | Important
textures | ailt loam
ailty clay loam | silt loam
silty clay loam | ailt loam | silty clay loam | sil. clay lo. | loam
silt loam | silt loam | silt loam | ^{*}For a complete list of alluvial soils see Table 3. [†]Very heavy subsoil phase. ^{\$}Called Holly prior to 1946. TABLE 6.—Residual Limestone and Shale Soils and Associated Soils. Area V | | | | Upland Soils (Res | sidual limestone an | d shale soils) | | | | |---|---
---|---|---|---|--|---|--| | Topography | | Steep alopes | | | Gently rolling | | Undulating | Gently
rolling | | Color of surface soil | Bro | own | Brown with reddish cast | | Brown | | Brownish-gray | Brown | | Color and
character of
subsoil | Olive-yellow;
very heavy | Yellowish-brown;
very heavy | Reddish-brown;
very heavy | Yellowish-brown;
very heavy | Mottled
yellow
and red
yery heavy | Reddish-brown;
moderately
heavy | Mottled yellow
and yellowish-
brown
below 18 in. | Yellowish-
brown; lower
subsoil red-
dish-brown | | Character of and depth to parent material | Bedrock
(limestone
and shale)
at 24-86 in, | Bedrock
(limestone
and shale)
at 30-40 in. | Bedrock
(limestone
and shale)
at 30-40 in. | Bedrock
(limestone
and shale)
at 40-50 in. | Bedrock
(limestone
and shale)
at 40-50 in. | Bedrock
(limestone
and shale)
below 40-60 in. | Bedrock
(high-calcium
limestone and
shale) | Bedrock
(porous lime-
stone) at
30-50 in. | | Natural drainage | Good | Good | Good | Good | Fair to good | Good | Fair to poor | Good | | Reaction of surface soil | Not acid | Not acid | Not acid | Slightly acid | Slightly acid | Slightly acid | Acid | Slightly acid | | Series | Fairmount | Eden | Heitt | Maddox | Ellsberry | Hagerstown | Bentonville | Cedarville | | Important
textures | silty clay loam | silty clay loam | silty clay loam | silt loam | silt loam | silt loam | silt loam | silt loam | TABLE 6.—Residual Limestone and Shale Soils and Associated Soils (continued) | | Residual from | calcareous shales | and limestones | | Residua | l from noncalcared | nus shale | | |---|--|--|--|---|---|--|------------------------------|--| | Topography | Gently rolling | Undul | ating Level | | Gently
sloping | Gently rolling
to rolling | Rolling | | | Color of surface soil | Brown | Grayish-brown | Brownish-gray | Very dark gray | Brown | Grayish-brown | Вгомв | | | Color and character of aubsoil | Yellowish-brown
to 20 in.;
reddish-brown
below 20 in. | Yellowish-brown
mottled with
gray
below 16-20 in. | Yellowish-brown
mottled
below 16 in. | Mottled bluish-
gray and yel-
lowish-brown
below 8 in. | Yellowish-
brown | Yellowish-brown;
lower subsoil
very heavy | Reddish-brown
- | | | Character of and depth to parent material | Bedrock
(delomitie
limestone) | Bedrock
(limestone
and shale)
below 40-80 in. | Bedrock
(dolomitic
)imestone) | Bedrock
(limestone
and shale)
bolow 40-60 in. | Sandstone
rubble over
black shale | Bedrock
noncalcareous
black shale
below 24-40 in. | Red shale
(noncalcareous) | | | Natural drainage | Good | Fair | Fair to poor | Very poor | Good | Good | Good | | | Reaction of surface soil | Slightly acid | Slightly acid | Acid | Not acid | Acid | Very acid | Acid | | | Series | Bratton | Bedford | Jacksonville | Burgin | Pawcett | Colyer | Latham | | | Important
textures | ailt loam . | ailt loam | silt loam | silt loam | ailt loam | silt loam | silt loam | | TABLE 6.—Residual Limestone and Shale Soils and Associated Soils (concluded) | <u> </u> | | | | Alluvial Soils | | | | | | |--------------------------------------|------------------------------|--|--|--|----------|---|---|---|---| | Topography | | | | | | | | | | | Color of surface soil | Brown to
dark brown . | Brown to
grayish-brown | Gray | Very dark gray | | | - | | ٠ | | Color and
character of
aubsoil | Brown | Brown mottled
with gray
below 15 in. | Mottled gray
and grayish-
brown
below 8 in. | Mottled yellow-
ish-brown
and gray | <i>:</i> | | | | | | Natural drainage | Good | Fair | Very poor | Very poor | | 1 | | | | | Reaction of surface soil | Not acid | Not acid | Acld | Not acid | | | | } | | | Series | Huntington | Lindside | Melvin | Dunning | | 1 | | | | | Important
textures | silt loam
silty clay loam | silt loam
silty clay loam | silt loam
silty clay loam | silt loam | • | , | ļ | 1 | | TABLE 7.—Residual Sandstone and Shale Soils and Associated Soils. Area VI | | | | τ | Jpland Soils | | | | | | | | |---|--|---|--|-------------------------------|--|--|--|--|--|--|--| | Topography | | | Rolling to steep | | | | | | | | | | Color of surface soil | Brown to yell | owish-brown | Grayish-brown | Reddish-brown | Brown to | Mixed soil | Mixed soil | Mixed soil | | | | | Color and
character of
aubsoil | Yellowish-brown
with sandstone
fragments | Variegated red,
yellow, and
gray silty
clay loam
below 18 in. | Yellowish-brown
to 16 in.;
mottled yellow-
ish-brown and
gray at 16 in.
Heavy | Red clay;
very heavy | Yellow-olive;
very heavy | Muskingum
and Upshur | Muskingum
and Brooke | Muskingum,
Brooke, and
Upshur | | | | | Character of and depth to parent material | Sandstone
and shale
below 20-80 in. | Shale and
sandstone
below 30-86 in. | Noncalcareous
clay shale | Clay shale
below 24-40 in: | Limestone
and calcare-
ous shale
below
18-36 in. | Sandstone, shale,
and clay shale
below 24-36 in. | Limestone,
asndstone, and
ahale below
24.36 in. | Limestone,
shale, sand-
stone, and
clay shale
below
24-86 in. | | | | | Natural drainage | Good | Good | Fair | Good | Good | Good | • Good | Good | | | | | Reaction of aurface soil | Acid | Acid | Acid | Not acid to alightly acid | Not acid | Acid to slightly acid | Not acid to slightly acid | Not seld to slightly seld | | | | | Scries | Muskingum | Rarden | Keene | Upshur | Brooke | Meigs | Westmoreland | Belmont | | | | | Important
textures | silt loam
loam | silt loam | ailt loam | clay | silty clay
loam | silty clay loam | silty clay loam | silty clay
loam | | | | TABLE 7.—Residual Sandstone and Shale Soils and Associated Soils (continued) | | | | Upland | Soils (continued) | | | | |--|---|---|---|---|--|----------|---| | Topography | Gently | rolling | Level to u | Level to undulating | | 1 | | | Color of
surface soil | Bro | own . | Grayish-brown | Gray | Brown | <u> </u> | | | Color and
character of
aubsoil | Brownish-yellow
slit loam free
from sandstone
fragments
to 36 in. | Brownish-yellow,
slightly heavy,
with some sand-
stone fragments | Yellowish-brown
mottled with
yellow and gray
below 16-20 in. | Mottled gray
and yellow
below 8 in. | Variegated
red, yellow,
and gray
heavy silty
clay loam
below 24 in. | | | | Character of
and depth to
arent material | Sandstone
and sliate
below 40-60 in. | Sandstone
and shale
below 36-40 in. | Sandstone
and shale
below 36-48 in. | Sandstone
and shale
below 36-48 In. | Shale and
sandstone
below 40-50 in. | |] | | ural drainage | Good | Good | Fair | Very poor | Good | | { | | Reaction of urface soil | Acid | Acid · | Acid | Acid | Acid | | 1 | | Sories | Zanesville* | Wellston | Tilsit | Johnsburg | Coolville | } | } | | Important
textures | silt loam | silt loam | silt loam | silt loam | silt loam | | | ^{*}Soil probably of windblown origin. TABLE 7.—Residual Sandstone and Shale Soils and Associated Soils (continued) | | | | Terrace So | ils (Second botto | m) | | | . | |---|---|---|--|---|--|--|--|---| | Associated soils | Muskingum, | Rarden, Meigs, Za | nesville, Wellston, | and Tilsit | Brooke, V | Upshur and
Meigs | | | | Color of surface soil | | | Grayish-black | Brown | Brown to
grayish-
brown | Gray | Brown | | | Color and character of aubsoil | Yellowish-brown;
moderately
heavy | Yellowish-brown
mottled with
gray and
yellow
below 18-20 in. | Mottled gray
and yellowish-
brown
below 8 in. | Mottled bluishgray and yellowish-brown | Yellowish-
brown;
heavy below
10-15 in. | Yellowish-
brown
mottled with
gray and
yellow below
15-20 in. | Mottled yellow-
ish-brown, gray,
and rust-brown
below 8 in. | Yellowish-brown
upper subsoil;
dark red clay
below 15-20 in. | | Character of and depth to parent material | Laminated
sllt and clay
below 86-48 in. | Laminated
silt and clay
below 36-48 in, | Laminated silt and clay below 80-40 in. | Laminated silt and clay below 30-40 in. | Laminated silt and clay below 24-40 in. | Laminated
silt and clay
below
24-40 in. | Laminated
silt and clay
below 24-40 in. | Laminated
silt and clay
below 24-40 in. | | Natural drainage | Good | Fair | Poor | Very poor | Good | Fair | Poor | Good | | Reaction of surface soil | Acid | Acid | Very acid | Acid | Slightly acid | Slightly acid | Acid | Acid | | Series | Holston | Monongahela | Tyler* | Blago | Elk | Captina | Robertsville | Vincent | | Important
textures | ailt loam | silt loam | silt loam | silty clay loam | silt loam | silt loam | silt loam | silt loam | ^{*}Purdy, now series, surface gray, very poor drainage. TABLE 7,-Residual Sandstone and Shale Soils and Associated Soils (continued) | | | | Terrace S | olls (Second botto | m) | | | | | | | | | | |---|--|---|--|--|---|---|--|--|--|--|--|--|--|--| | Associated soils Outv | | lacial sandstone
lo area | Mixed m | Mixed material from glacial sandstone and shale soils and residual soils | | | | | | | | | | | | Color of surface soil | Brown | Brownish-gray | Brown | Grayish-brown | Gray | Dark gray | | | | | | | | | | Color and character of subsoil | Yellowish-brown | Yellowish-brown
mottled with
gray
below 15 in. | Yellowish-brown
with reddish
cast; heavy
to 60-84 in. | Yellowish-brown mottled with gray below 18-20 in. | Mottled gray
and yellow-
ish-brown
below 8 in. | Mottled dark
gray and yellow-
ish-brown
below 10 in. | | | | | | | | | | Character of and depth to parent material | Stratified sand and gravel below 24-36 in. | Stratified
sand and gravel
below 24-36 in. | Stratified
sand and gravel
below 60-84 in. | Stratified aand and gravel below 60-84 in. | Stratified
sand and
gravel below
60-84 in. | Stratified
sand and gravel
below 60-84 in. | | | | | | | | | | Natural drainage | Good | Fair to poor | Good | Fair | Poor | Very poor | | | | | | | | | | Reaction of surface soil | Acid . | Very acid | Slightly acid | Acid | Very acid | Not acid | | | | | | | | | | Series | Chenango | Braceville | Wheeling | Sciotoville | Ginat | Ohilo | | | | | | | | | | Important
textures | gravelly loam
silt loam | silt loam | silt loam | silt losm | silt loam | silty clay loam | | | | | | | | | TABLE 7.—Residual Sandstone and Shale Soils and Associated Soils (concluded) | Associated soils | Muskingum, Rard | len, Zaneaville, We | oliston, and Tilsit | Brooke, We | estmoreland, an | ,
 | Meigs and
Upshur | | | | | | |--|-----------------------------|---------------------------|--|------------------------------|--------------------------------------|--|--|---------------------------|--|--|--|--| | Color of surface soil | Brown to
yellowish-brown | Brown to
grayish-brown | Gray | Brown to
dark brown | Brown to
grayish-
brown | Gray | Very dark gray | Reddish-
brown | | | | | | Color and character of subsoil . Brown to with gray rust-brown below 15-1 | | | Mottled brown,
gray, and
rust-brown
below 8 in. | Brown | Brown mottled with gray below 15 in. | Mottled gray
and graylsh-
brown
below 8 in. | Mottled yellow-
ish-brown
and gray | w- Reddish-
brown | | | | | | Natural drainage | Good | Fair | Very poor | Good | Fair | Very poor | Very poor | Fair to goo | | | | | | Reaction of surface soil | Acid Acid Acid | | Acid | Not acid | Not acid | Acid | Not acid | Not acid | | | | | | Series | Pope | Philo | Atkins* | Huntington | Lindside | Melvin | Dunning | Moshannon | | | | | | Important
textures | loam
silt loam | silt loam | ailt loam | silt loam
silty clay loam | silt loam
sil. clay lo. | silt loam
silty clay loam | ailt loam | silt loam
sil, clay lo | | | | | ^{*}Elkins, new series, very dark gray surface, mottled subsoil, drainage very poor. TABLE 8.—Glacial Limestone Soils and Associated Soils. Area I | | | | | | | - | | | | | | _= | | == | == | |--|---------------------------------|--|--|---|--|---|---|--|---|---|---|-------------------------|-------------------|------------------|-------------------| | Soil type | Productivity
rating!
Ohio | Corn | Wheat | Oats | Mixed
hay | Red
clover | Alfalfa | | Soy-
beans | To-
bacco | Pota-
toes | Truck
crops | Or-
chard | · | stry ³ | | Upland Soils Late Wisconsin Drift Soils Bellefontaine silt loam Miami silt loam. Miami silty clay loam Crosby silt loam. Crosby silt y clay loam Bethel silt loam. Pandora silty clay loam Brookston silty clay loam Ciyde silty clay loam | 6 | 5 (7)
5 (7)
4 (6)
2 (5)
2 (4)
1 (4)
3 (10)
3 (10)
2 (10) | 6 (9)
6 (8)
4 (7)
3 (5)
2 (4)
1 (4)
3 (7)
3 (6) | 5 (6)
5 (7)
4 (7)
3 (5)
3 (5)
2 (4)
3 (8)
3 (8)
2 (7) | 6 (8)
5 (8)
5 (7)
4 (6)
4 (5)
3 (4)
6 (10)
6 (10)
6 (10) | 8 (10)
6 (9)
5 (8)
4 (6)
3 (6)
2 (4)
5 (10)
5 (10)
5 (10) | 8 (10)
6 (9)
5 (7)
1 (5)
1 (4)
1 (3)
3 (10)
3 (10)
3 (10) | 8 (9)
7 (8)
7 (8)
5 (7)
4 (6)
3 (5)
4 (10)
4 (10)
4 (10) | 7 (8)
7 (8)
6 (7)
5 (7)
4 (7)
3 (6)
4 (9)
4 (9)
4 (9) | 6 (8)
5 (7)
4 (6)
2 (5)
2 (4)
0 (3)
2 (8)
2 (8)
2 (7) | 5 (8)
4 (7)
4 (6)
1 (5)
1 (4)
0 (3)
0 (4)
0 (4)
0 (4) | 6 (8)
4 (7)
4 (7) | A ABCCCCCC | ABBCCCBBC | 000000000 | | Early Wisconsin Drift Soils Russell silt loam. Fincastle silt loam. Delmar silt loam Brookston silt loam | 8
5
7 | 5 (7)
4 (6)
1 (4)
3 (10) | 5 (8)
3 (5)
1 (4)
3 (7) | 5 (7)
4 (6)
2 (4)
4 (7) | 5 (7)
4 (6)
3 (4)
6 (10) | 6 (9)
4 (6)
2 (4)
6 (10) | 6 (9)
1 (5)
1 (3)
4 (10) | 7 (8)
5 (7)
3 (5)
4 (10) | 7 (8)
5 (7)
3 (6)
5 (9) | 5 (7)
2 (5)
0 (3)
2 (9) | 4 (7)
1 (5)
0 (3)
1 (4) | 4 (7) | A B C C | B
C
C
B | CCCC | | Illinoian Drift Soils Fairmount silty clay loam Edenton silt loam Cincinnati silt loam Rossmoyne silt loam Avonburg silt loam Clermont silt loam Blanchester silt loam | 6†
6†
5.5
6.5
7 | 5 (6)
5 (6)
4 (6)
3 (6)
2 (5)
1 (4)
2 (7) | 5 (7)
5 (7)
4 (6)
3 (6)
1 (5)
1 (4)
1 (6) | 5 (6)
5 (6)
3 (4)
3 (4)
1 (3)
1 (3)
2 (4) | 8 (9)
7 (8)
3 (6)
3 (5)
2 (4)
2 (4)
3 (6) | 8 (9)
7 (8)
3 (6)
2 (5)
2 (4)
1 (4)
2 (5) | 9 (10)
7 (9)
0 (5)
0 (4)
0 (3)
0 (2)
0 (3) | 8 (9)
7 (8)
4 (6)
4 (6)
3 (5)
2 (5)
3 (6) | 7 (8)
7 (8)
5 (6)
4 (6)
2 (5)
2 (7) | 7 (9)
6 (8)
5 (7)
2 (4)
0 (2)
0 (1)
0 (3) | 4 (6)
3 (5)
0 (3)
0 (2)
1 (3) | 4 (6)
3 (6) | СВАВССС | 路路路路でで | COBCCC | TABLE 8.—Glacial Limestone Soils and Associated Soils (concluded) | | Productivity | | | | | | Crop p | roductiv | ity inde | C ₃ | | | | | | |---|----------------------------|---|----------------------------------|--|--|---|---|---|---|---|--|-------------------------|--------|-------------|--------------------| | Soil type | rating | 6 | Wheat | | Mixed | Red | A16-16- |
Pas- | Soy- | To- | Pota- | Truck | Or | For | estry ³ | | | Ohio | Corn | wneat | Oats | hay | clover | Alfalfa | ture | beans | bacco | toes | crops | chard | H | С | | Terrace Soils (second bottom) Fox sitt loam Wheeling silt loam Williamsburg silt loam | 2
8
5 | 6 (8)
5 (7)
4 (6) | 8 (10)
6 (9)
4 (6) | 6 (7)
5 (6)
3 (5) | 8 (9)
6 (8)
4 (6) | 9 (10)
7 (9)
3 (7) | 8 (10)
5 (8)
1 (5) | 9 (10)
6 (9)
4 (6) | 8 (9)
8 (9)
5 (6) | 6 (9)
6 (8)
3 (5) | 6 (9)
6 (9)
3 (5) | 6 (8)
6 (8)
4 (6) | B
B | B
B
B | CCC | | Alluvial Soils (first bottom) Genesee silt loam | 2
3
1
2
3
6 | 9 (10)
4 (7)
3 (10)
9 (10)
5 (9)
1 (5) | 5 (6)
3 (4)
5 (6)
4 (5) | 6 (7)
4 (6)
2 (6)
7 (8)
4 (6)
1 (4) | 9 (9)
5 (8)
6 (9)
9 (9)
5 (8)
2 (6) | 9 (10)
5 (9)
4 (10)
9 (10)
5 (9)
2 (6) | 9 (10)
3 (7)
4 (10)
9 (10)
5 (7)
0 (4) | 8 (9)
5 (9)
4 (9)
9 (10)
6 (8)
2 (6) | 10 (10)
5 (8)
4 (10)
10 (10)
6 (8)
2 (5) | 6 (8)
4 (6)
2 (7)
7 (8)
5 (7) | 5 (8)
3 (5)
0 (3)
5 (8)
4 (6)
0 (3) | 5 (8)
5 (8)
2 (5) | | 路路と路路と | 000000 | ^{*}Note: The crop productivity rating tables are not to be reproduced without special permission. †Erosion a serious problem. 1'1' is the highest productivity rating. 2'10' is the highest productivity index. *Forestry: H—Hardwoods, C—Conifers. TABLE 9.—Glacial Sandstone and Shale Soils and Associated Soils. Area II | | | 11 | | == | | - | = | _ | | == | _= | = | Cmn | nr | duct | ivit | y indo | | | = | | | | | |--|---|-----------------------|--|-----------------------|--|----------------------------|--|----------------------------|--|-----------------------|--|-----------------------|--|-------------|--|-----------------------|--|------|-----------------------|---------------------------------|-------------------------|--------------|-----------------------|--------------------| | Soil type | Productivity
rating ¹
Ohio | C |)
 | w | heat | 6 |)ats | | ixed
lay | |
Red
over | 1 | falfa | Ĺ | Pas- | 5 | oy.
eans |
 | | ota- | Truck
crops | Or-
chard | Fore | cstry ⁵ | | Upland Soils Late Wisconsin Drift Soils Wooster silt loam | 3.5
4
5
7
2.6 | 4 3 2 1 2 | (7)
(6)
(5)
(3)
(8) | 5
4
3
1
3 | (10)
(9)
(5)
(4)
(6) | 5
5
3
1
2 | (7)
(7)
(6)
(6)
(4) | 5 5 4 3 4 | (7)
(6)
(6)
(5)
(7) | 33002 | (9)
(9)
(6)
(4)
(8) | 1 1 0 0 2 | (8)
(7)
(5)
(3)
(4) | 55424 | (7)
(7)
(6)
(6)
(7) | 7
6
5
2
4 | (8)
(8)
(7)
(5)
(8) | | 43100 | (9)
(7)
(6)
(3)
(5) | 5 (8)
4 (7)
2 (5) | A B C C C | внось | ВСССС | | Rittman silt loam | 4.5
5.5 | 3 2 | (6)
(4) | 4 3 | (8)
(5) | 4 3 | (6)
(5) | 5 4 | (6)
(6) | 3 0 | (8)
(5) | 10 | (6)
(4) | 4 | (7)
(6) | 6 5 | (8)
(7) | | 2 | (6)
(5) | 3 (6) | B
C | B | ç | | Ellsworth silt loam Ellsworth silty clay loam Mahoning silt loam. Mahoning silty clay loam Trumbull silty clay loam Chippewa silty clay loam | 5
6
7
8 | 3 3 2 2 0 2 | (5)
(4)
(5)
(4)
(3)
(7) | 4 4 3 3 0 2 | (7)
(6)
(5)
(4)
(3)
(5) | 4
3
3
2
1
2 | (6)
(5)
(5)
(4)
(3)
(6) | 5
4
5
4
2
4 | (6)
(6)
(6)
(6)
(5)
(7) | 2 2 0 0 0 2 | (7)
(6)
(6)
(5)
(4)
(7) | 1
0
0
0
1 | (5)
(4)
(3)
(2)
(2)
(3) | 4 4 4 3 2 3 | (7)
(7)
(6)
(6)
(6)
(7) | 655423 | (7)
(7)
(6)
(6)
(4)
(7) | | 2
1
1
0
0 | 655434 | | всссс | 路路路の | CCCCCC | | (Transition Soils) Alexandria silt loam Cardington silt loam Bennington silt loam Condit silt loam Marengo silty clay loam | 4.5
5.5
7 | 4
3
2
1
2 | (?)
(6)
(5)
(3)
(9) | 5
4
3
1
3 | (9)
(8)
(6)
(4)
(7) | 5 4 3 1 2 | (7)
(6)
(6)
(3)
(6) | 5
5
4
3
4 | (7)
(6)
(6)
(5)
(7) | 5
4
3
0
2 | (9)
(8)
(6)
(5)
(8) | 3
2
1
0
2 | (8)
(7)
(5)
(3)
(5) | 6 6 4 2 4 | (8)
(8)
(6)
(6)
(7) | 7
6
5
2
3 | (8)
(8)
(6)
(5)
(8) | | 4
3
1
0
0 | (7)
(6)
(5)
(5) | 4 (7)
4 (6) | A B C C C | B
B
B
C
B | CCCCC | | Illinoisn Drift Soils Hanover sitt loam | 5
5 | 4 (| (6)
(5) | 4 | (8)
(8) | 4 4 | (6)
(6) | 4 4 | (6)
(6) | 2 2 | (8) | 0 | (%) | 3 3 | (6)
(6) | 5 5 | (6)
(6) | | 3 | (6)
(6) | 3 (6)
3 (6) | A
A | B
B | B | TABLE 9.—Glacial Sandstone and Shale Soils and Associated Soils (concluded) | | Productivity | Crop productivity index ² | | | | | | | | | | | | | | | |--|-----------------------------|---|--|---|---|---|---|---|---|--|----------------------------------|--------|-----------------------|-------|--|--| | Soil type | rating ¹
Ohio | C\$ | Wheat | Oats | Mixed | Red | Alfalfa | Pas- | Soy- | Pota- | Truck | Or- | Fore | stryi | | | | | | Corns | Wileat | Vats | hay | clover | Alialia | ture | beans | toes | crops | chard | н | C | | | | Terrace Soils (second bottom) Chenango loam Chenango silt loam Braceville silt loam Mentor silt loam Sebring silt loam | 4
5
4
7 | 3 (5)
5 (7)
2 (5)
4 (6)
1 (4) | 4 (8)
5 (10)
3 (7)
5 (8)
1 (4) | 4 (6)
5 (7)
4 (6)
5 (7)
1 (4) | 4 (6)
5 (7)
4 (7)
5 (7)
3 (5) | 4 (8)
5 (9)
2 (7)
3 (7)
0 (4) | 1 (7)
1 (8)
0 (6)
1 (6)
0 (3) | 4 (6)
5 (7)
4 (6)
5 (7)
3 (6) | 7 (8)
8 (9)
5 (7)
7 (8)
2 (5) | 7 (10)
6 (9)
1 (6)
3 (6)
0 (3) | 7 (9)
6 (8)
2 (5)
3 (6) | BBCBC | B
B
B
B
C | BCCCC | | | | Alluvial Soils (first bottom) Chagrin silt loam Holly silt loam Papakating silty clay loam | 3 | 7 (8)
1 (5)
1 (9) | 6 (7) | 6 (7)
1 (4)
2 (6) | 8 (8)
2 (6)
4 (8) | 7 (9)
2 (6)
2 (7) | 4 (7)
0 (4)
0 (6) | 8 (8)
2 (6)
4 (7) | 8 (8)
2 (5)
3 (8) | 5 (7)
0 (3)
0 (5) | 5 (7) | •••••• | B
C
C | CCC | | | 1''1' is the highest productivity rating. 3''10'' is the highest productivity index. Index somewhat higher for silage corn. 4Forestry: H—Hardwoods, C—Conifers. New name since 1946, Wayland silt loam. TABLE 10.—Soils of the Glacial Lake Area of Northwestern Ohio. Area III | } | Productivity | 11 | | | | | Crop | producti | vity inde | x² | | | | | | |--|----------------------------|--|---|---|--|--|--|---|---|--|---|---|--------|-------------|--------------------| | Soil type | rating | Corn | Wheat | Oats | Mixed | Red | Alfalfa | Pas- | Soy- | Sugar | Pota- | Truck | Or- | Fore | estry ³ | | | Ohio | | - Trineat | - Cats | hay | clover | | ture | beans | beets | toes | стора | chard | H | C | | Lacustrine Soils Belmore loam | 5
8
7
4
5
6 | 4 (5)
2 (3)
3 (4)
4 (6)
3 (5)
3 (5) | 5 (7)
3 (4)
3 (5)
5 (8)
4 (7)
3 (6) | 4 (6)
2 (3)
3 (4)
5 (7)
4 (7)
4 (6) | 5 (6)
3 (5)
3 (5)
5 (7)
4 (7)
4 (6) | 5 (8)
3 (5)
3 (5)
4 (8)
3 (6)
3 (7) | 5 (7)
2 (4)
2 (4)
5 (7)
3 (5)
3 (5) | 7 (8)
2 (4)
2 (4)
6 (8)
5 (7)
4 (6) | 4 (5)
3 (4)
3 (4)
6 (8)
5 (7)
4 (6) | 3 (4)
3 (5)
3 (4) | 6 (8)
1 (3)
1 (3)
4 (6)
3 (5)
3 (6) | 7 (9)
3 (5)
3 (5)
5 (7)
4 (7) | ABBACC | вссввв | CBBCCC | | Newton fine sand | 1 1 2 5 3 | 3 (6)
3 (8)
4 (10)
3 (10)
2 (9)
2 (7)
2 (10) | 3 (6)
4 (8)
4 (8)
3 (8)
2 (7)
2 (6)
2 (5) | 3 (6)
4 (8)
4 (8)
3 (9)
2 (8)
2 (5)
2 (7) | 3 (6)
4 (8)
6 (9)
6 (10)
6 (9)
2 (7)
4 (9) | 3 (6)
5 (10)
6 (10)
5 (10)
4 (9)
2 (7)
3 (9) | 2 (5)
4 (8)
4 (9)
3 (10)
1 (9)
1 (5)
1 (8) | 3 (6)
5 (9)
5 (9)
4 (10)
3 (10)
2 (6)
2 (9) | 2 (5)
3 (7)
3 (8)
2 (8)
1 (8)
1 (6)
1 (8) | 3 (6)
3 (7)
2 (10)
2 (8)
1 (6) | 2 (4)
3 (8)
3 (8)
2 (6)
0 (3)
0 (5)
0 (3) | 2 (6)
6 (8)
8 (10)
5 (9)4
4 (8)4
2 (8)
3 (5)4 | c | СВВВВСС | 0000000 | | Glacial Drift Solis Nappanee silty clay
loam | 5
1
8 | 3 (5)
2 (9)
2 (7) | 4 (7)
3 (7)
2 (6) | 4 (7)
2 (9)
2 (7) | 4 (7)
6 (10)
5 (9) | 3 (6)
4 (10)
3 (9) | 3 (5)
2 (10)
1 (9) | 5 (7)
4 (10)
3 (9) | 5 (7)
2 (8)
1 (8) | 3 (5)
2 (9)
1 (7) | 3 (5)
0 (3)
0 (3) | 4 (8)4
3 (6)4 | ပပပ | C
B
B | ccc | | Alluvial Soils (first bottom) Genesee loam | 4 2 | 7 (8)
9 (10) | 4 (6)
5 (6) | 5 (6)
6 (7) | 7 (7)
9 (9) | 8 (8)
9 (10) | 7 (7)
9 (10) | 8 (8)
8 (9) | 7 (8)
10 (10) | | 5 (8)
5 (8) | 6 (8)
5 (8) | | B
B | င္ပ | ^{1&#}x27;'1'' is the highest productivity rating. 2''10'' is the highest productivity index. 3Forestry: H—Hardwoods, C—Conifers. 4Canning crops, such as tomatoes, etc. TABLE 11.—Soils of the Glacial Lake Area of Northeastern Ohio. Area IV | | Productivity | _ | | | | | | | | | | C | rop j | pro | lucti | vity | inde | X2 | | | | | | | |---|-----------------------|--|--|-----------------------|--|-----------|--|--|--|------------------------------|--|------------------|--|-----------|--|-----------|---|------------------|---|-------------------------------------|--|---------------------|-------------------|--------------------| | Soil type | ratingl | 1 | Corn | ,, | /heat | | ats | Mix | ed] | Re | d | AIF | alfa | F | as- | S | oy. | P | ota- | T | ruck ' | Orchard | For | estry ³ | | | Ohio | <u> </u> | .OI II | | neat | | | ha | | clov | /er | 7111 | aua | t | иге | | ans | t | oes | Ci | ops | Orchard | Н | C | | Chenango gravelly loam, beachridge phase Berrien fine sand Painesville fine sandy loam Painesville silt loam Cancadea fine sandy loam Cancadea silty clay loam Reynolds fine sandy loam Lorain loam Lorain silty clay | 57-54-6-6-4929 | 334432332 | (5)
(4)
(5)
(6)
(5)
(4)
(8)
(8) | 434533332 | (7)
(5)
(7)
(8)
(6)
(4)
(7)
(6) | 434532332 | (6)
(4)
(6)
(7)
(5)
(5)
(7)
(8) | 3 () () () () () () () () () (| 6)
5)
6)
7)
6)
8)
8) | 3 (03) | (7)
(5)
(7)
(8)
(7)
(6) | 123330221 | (7)
(4)
(7)
(7)
(7)
(6)
(6)
(5) | 325543433 | (5)
(4)
(6)
(7)
(5)
(8)
(8)
(8) | 635644341 | (7)
(4)
(7)
(8)
(7)
(6)
(7)
(8)
(8) | 615431330 | (9)
(3)
(8)
(6)
(7)
(4)
(8)
(7)
(3) | 7
3
5
5
4

6
7 | (9)
(5)
(8)
(7)
(7)
(7) | . А ВВВВСССС | всвв
всв
вв | 路路いいいいいい | | Glaciat Drift Solls Ellaworth silty clay loam Mahoning silty clay loam Frumbull silty clay loam hippewa silty clay loam Allia silty clay loam | 5
7
8
8
7 | 32000 | (4)
(4)
(3)
(7)
(4) | 4
3
0
2
3 | (6)
(4)
(3)
(5)
(4) | 3 2 1 2 2 | (5)
(5)
(3)
(6)
(4) | 4 (4 (2 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 | 6)
6)
5)
7)
6) | 2 (0
0 (0
2 (0
0 (0 | 6)
5)
4)
7)
5) | 1
0
0
1 | (4)
(2)
(2)
(3)
(2) | 43233 | (7)
(6)
(6)
(7)
(6) | 54234 | (7)
(6)
(4)
(7)
(6) | 1
1
0
0 | (5)
(4)
(3)
(4)
(4) | 2 | (4) | CCCCC | восос | coccc | | Alluvial Solls (first bottom) Chagrin silt loam folly silt loam | 3 6 | 7 | (8)
(5) | 6 | (7) | 6 | (?)
(4) | 8 (2 (| 8)
6) | 7 (
2 (| (9)
(6) | 4 0 | [2] | 8 2 | (8)
(6) | 8 2 | (8)
(5) | 5 | (7)
(3) | 5 | (7) | | B | ç | ^{1&}quot;1" is the highest productivity rating. 2"10" is the highest productivity index. Forestry: H-Hardwoods, C-Conifers. TABLE 12.—Residual Limestone and Shale Soils and Associated Soils. Area V | ŀ | Productivity | ⊪ | | | | | | | | | | Crop | pro | ducti | vity | inde ' | X² | | | | | | | | |---|---------------------------------|---------------------------|--|--------------------------------------|--|--------------------------------------|---|--------|--|--|--------|---|-------------|--|--------------------------------------|--|----------|--|--|----------------|----------------------------------|----------|---|----------| | Soil type | rating ¹ Ohlo | | Zorn | 1 | L• | | ats | Mi | xed | Red | īĪ | Alfalfa | Γ, | Pas- | 5 | Soy- | 7 | Γo- | Po | | Truck | Or- | Fore | estry | | | | _ _` | | Wheat | | | ha | | clove | | VIIIII | | ure | | eans | | cco | tato | | crops | chard | Н | C | | | Residual Limestone and Shale Soils Fairmount silty clay loam. Eden silty clay loam. Heitt silty clay loam. Maddox silt loam Ellsberry silt loam Hagerstown silt loam (Bedford) silt loam Burgin silt loam | 6°
6°
5°
4
2.6
5 | 55
54
44
53
2 | (6)
(6)
(6)
(7)
(7)
(8)
(5)
(8) | 5
5
5
4
4
6
4
2 | (7)
(7)
(7)
(6)
(6)
(8)
(6)
(6) | 5
5
5
4
4
5
3
2 | (6)
(6)
(6)
(6)
(6)
(6)
(5) | 775554 | (9)
(8)
(8)
(8)
(8)
(8)
(7)
(8) | 8 (9
7 (8
7 (8
5 (7
5 (7
5 (8
4 (6
3 (8 | | 9 (10)
7 (8)
7 (8)
4 (6)
4 (6)
4 (7)
3 (5)
2 (7) | 87766665 | (9)
(8)
(8)
(7)
(7)
(7)
(7)
(8) | 7
7
6
6
6
6
5
3 | (8)
(8)
(7)
(7)
(7)
(8)
(6)
(8) | 77766732 | (9)
(9)
(8)
(8)
(8)
(9)
(6)
(7) | 4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 (4 | | 3 (5)
3 (5)
5 (7)
2 (4) | ここの田田本ここ | B
B
B
B
B
B
B
C
B | 00000000 | | Residual from Black Shales Colyer silt loam | 6 | 3 | (5) | 4 | (6) | 3 | (5) | 4 | (6) | 3 (4 | , | 0 (2) | 2 | (3) | 3 | (4) | 3 | (5) | 3 (| 5) | ••••• | В | С | С | | Alluvial Solls (first bottom) Huntington silt loam Lindside silt loam Holly silt loam | 2 3 6 | 9
5
1 | (10)
(9)
(5) | 5
4 | (6)
(5) | 7
4
1 | (8)
(6)
(4) | 9 (| (9)
(8)
(6) | 9 (10
5 (9
2 (6) | } | 9 (10)
5 (7)
0 (4) | 9
6
2 | (10)
(8)
(6) | 10
6
2 | (10)
(8)
(5) | 7
5 | (8)
(7) | 5 ()
4 () | 8)
5)
3) | 5 (8)
2 (5) | | B
B | ccc | ^{*}Erosion a serious problem. 1''1'' is the highest productivity rating. 1946, Wayland silt loam. ^{2&#}x27;'10'' is the highest productivity index. *Forestry: H-Hardwoods, C-Conifers. New name since TABLE 13.—Residual Sandstone and Shale Soils and Associated Soils. Area VI | | Productivity | 11 | | | | | Crop | producti | vity inde | X8 | | | | | | |---|--|--|--|--|-------------------------|---|--|---|--|--|---|---|-------------|-------------|-------------------| | Soil type | rating | Corn | Wheat | Oats | Mixed | Red | Alfalfa | Pas- | Soy- | To- | Po- | Truck | Or- | Fore | stry ³ | | | Ohio | | | | hay | clover | | ture | beans | bacco | tatoes | crops | chard | _н | С | | Upland Solls Rolling to Steep Topography Muskingum silt loam Muskingum silt loam, steep phase Upshur clay, steep phase Upshur clay, steep phase Brooke silty clay loam Meigs silty clay loam, steep phase Westmoreland silty clay loam Westmoreland silty clay loam, steep phase Belmont silty clay loam Belmont silty clay loam Belmont silty clay loam, steep phase | 4.5°
9°
6°
8°
8°
4°
6°
4° | 4 (6)
3 (5)
8 (9)
3 (5)
5 (7)
5 (7) | 5 (8)
4 (7)
6 (8)
5 (7)
6 (8)
5 (7) | 4 (6)
3 (5)
5 (6)
3 (5)
4 (6)
4 (6) | 1 | 3 (8)
4 (8)
9 (10)
3 (8)
6 (9)
6 (9) | 0 (7)
5 (7)
8 (9)
3 (7)
6 (9)
5 (8)
7 (9)
5 (8) | 2 (7)
2 (4)
5 (7)
4 (5)
10 (10)
3 (6)
3 (5)
8 (9)
5 (7)
8 (9)
5
(7) | 6 (7)
5 (6)
7 (8)
5 (6)
6 (8)
6 (8) | 3 (6)
2 (2)
6 (8)
3 (4)
6 (7)
4 (6) | 3 (6)
i (2)
4 (5)
3 (4)
4 (5) | 3 (5)
4 (6)
3 (4)
3 (5)
3 (4) | вввввва вав | | BACCCBBC CCC | | Undulating to Gently Rolling Topography Zanesville silt loam Wellston silt loam Tilsit silt loam | 4 4 5 | 4 (7)
4 (7)
3 (6) | 5 (8)
5 (8)
4 (7) | 4 (6)
4 (6)
3 (5) | 4 (8)
4 (8)
4 (7) | 3 (7)
3 (7)
3 (6) | 0 (7)
0 (7)
0 (6) | 3 (7)
3 (7)
3 (6) | 6 (7)
6 (7)
5 (7) | 3 (6)
3 (6)
2 (5) | 3 (7)
3 (7)
2 (5) | 3 (7)
3 (6)
2 (6) | B
B
C | B
B
C | CCC | ^{*}Krosion a serious problem. C-Conifers. ^{1&#}x27;'1'' is the highest productivity rating. ^{2&#}x27;'10" is the highest productivity index. ^{*}Forestry: H-Hardwoods, TABLE 13.—Residual Sandstone and Shale Soils and Associated Soils (concluded) | • | Productivity | Crop productivity index? | | | | | | | | | | | | | | |--|-----------------------------|--|---|---|---|--|--|--|---|--|---|---|--------------|---------------------------------|--------------------| | Soil type | rating ¹
Ohio | Corn | Wheat | Oats | Mixed
hay | Red
clover | Alfalfa | Pas-
ture | Soy-
beans | To-
bacco | Po-
tatoes | Truck
crops | Or-
chard | Fore | cstry ³ | | Terrace Solls (second bottom) Holston silt loam Monongahela silt loam Tyler silt loam Eik silt loam Captina silt loam Robertsville silt loam Vincent silt loam | 4
5
7
4
5
6 | 4 (6)
3 (6)
1 (4)
5 (7)
3 (6)
1 (5)
4 (6) | 4 (8)
3 (7)
1 (4)
5 (8)
3 (7)
1 (5)
4 (8) | 4 (6)
3 (6)
1 (4)
5 (6)
4 (6)
1 (5)
4 (6) | 5 (7)
4 (7)
3 (5)
6 (8)
4 (7)
3 (6)
5 (7) | 3 (7)
3 (6)
0 (4)
5 (8)
3 (6)
0 (4)
3 (7) | 0 (6)
0 (5)
0 (3)
3 (7)
1 (5)
0 (6) | 5 (7)
5 (7)
3 (5)
6 (8)
5 (7)
3 (5)
5 (7) | 6 (7)
5 (7)
5 (5)
6 (8)
5 2 (6)
5 2 (7) | 3 (5)
2 (5)
3 (6)
4 (6)
2 (3)
3 (5) | 3 (6)
2 (5)
0 (3)
4 (6)
2 (5)
0 (3)
3 (6) | 3 (6)
2 (6)
3 (6)
2 (6)
3 (6) | воовоов | B
B
C
B
B
C
B | 0000000 | | Chenango gravelly loam. Chenango silt loam. Wheeling silt loam Sciotoville silt loam Ginat silt loam Chilo silty clay loam. | 5
3
3
4
6 | 3 (5)
5 (7)
5 (7)
4 (6)
1 (4)
2 (9) | 4 (7)
5 (9)
6 (9)
4 (7)
1 (5)
2 (6) | 3 (5)
5 (7)
5 (6)
4 (6)
1 (5)
2 (6) | 4 (6)
5 (7)
6 (8)
5 (7)
3 (5)
2 (8) | 4 (7)
5 (9)
7 (9)
3 (6)
0 (4)
2 (8) | 1 (7)
1 (8)
5 (8)
2 (6)
0 (3)
2 (7) | 4 (5)
5 (7)
6 (9)
5 (7)
3 (5)
5 (7) | 7 (8)
8 (9)
8 (9)
5 (7)
2 (5)
3 (7) | 4 (6)
5 (7)
6 (8)
3 (5)
0 (3)
0 (6) | 7 (10)
6 (9)
6 (9)
4 (6)
0 (3)
0 (5) | 7 (10)
6 (8)
6 (8)
3 (6) | вввосс | вввссс | вооооо | | Alluvisi Soils (first bottom) Pope silt loam Philo silt loam Atkins silt loam Huntington silt loam Lindside silt loam Melvin silt loam Moshannon silt loam | 4572363 | 7 (8)
4 (7)
1 (4)
9 (10)
5 (9)
1 (5)
8 (9) | 6 (7)
4 (5)
5 (6)
4 (5)
5 (6) | 6 (7)
3 (5)
1 (4)
7 (8)
4 (6)
1 (4)
6 (7) | 7 (8)
6 (8)
1 (6)
9 (9)
5 (8)
2 (6)
9 (9) | 6 (8)
5 (8)
9 (10)
5 (9)
5 (9)
2 (6)
8 (9) | 4 (7)
3 (7)
0 (3)
9 (10)
5 (7)
0 (4)
8 (9) | 7 (9)
5 (7)
2 (5)
9 (10)
6 (8)
2 (6)
8 (9) | 8 (8)
6 (8)
1 (5)
10 (10)
6 (8)
2 (5)
8 (8) | 5 (7)
4 (6)
7 (8)
5 (7)
6 (7) | 5 (7)
6 (3)
6 (3)
5 (6)
5 (6)
7 | 5 (7)
2 (5)
5 (8)
2 (5)
3 (5) | ******* | ВВСВВСВ | ούουουο | ^{1&}quot;1" is the highest productivity rating. 2"10" is the highest productivity index. Forestry: H--Hardwoods, C--Conifers. #### TABLE 14.—Miscellaneous Soils - I. Glacial limestone and associated soils. - Rodman gravelly loam. Brown surface soil over stratified calcareous sand and gravel. Occurs on gravel knolls and ridges (kames and eskers). - Warsaw silt loam. Terrace soil. Dark brown surface, dull yellowishbrown subsoil, over stratified sand and gravel. - Ross silt loam. Alluvial soil. Dark brownish-gray soil, with loose sand and gravel below 36-50 inches. - Algiers silt loam. Alluvial soil. Brown surface over grayish-black subsoil (Genesee material over Wabash). - II. Glacial sandstone and shale soils and associated soils. - Otisville gravel. Brown surface soil over stratified sand and gravel (largely sandstone and shale material). Occurs on gravel knolls and ridges (kames and eskers). - Killbuck silt loam. Alluvial soil. Brown surface, yellowish-brown subsoil; grayish-black below 15 inches. Heavy (Chagrin over Papakating). - Wallkill silt loam. Alluvial soil. Brown surface over black peat or muck (Chagrin over muck). - III. Soils of the glacial lake region, northwestern Ohio. - Vaughnsville loam. Brown to reddish-brown soil occurring at base of gravelly beach ridges. - Catawba silt loam. Glacial soil with grayish-brown surface and heavy reddish-brown subsoil. Occurs chiefly on Catawba Island, Ottawa County. - Danbury silty clay loam. Very dark brown surface with dull yellowish-brown subsoil. Largely lacustrine in origin with minor areas of glacial material included. - Coloma fine sand. Very sandy glacial soil. Brown surface, yellow-ish-brown subsoil. - Monclova loam. Terrace soil. Dark grayish-brown surface, yellowish-brown subsoil on stratified sand and gravel at 20-24 inches with bedrock (limestone) below 36-40 inches. - IV. Soils of the glacial lake region, northeastern Ohio. - Wickliffe silty clay loam. Glacial soil. Gray surface, very heavy, mottled subsoil, over shale at 40-50 inches. - V. Residual limestone and shale soils and associated soils. - Dunkinsville silt loam. Brown surface with reddish-brown subsoil over stratified sand and gravel very deeply weathered. - VI. Residual sandstone and shale soils and associated soils. - Eifort silt loam. Brown to yellowish-brown surface over fire clay below 18-36 inches. - Frankstown gravelly silt loam. Residual soil. Grayish-brown soil, yellowish-brown to reddish-brown subsoil resting on flint. Numerous flint fragments on surface and through soil. - Hocking silt loam. Terrace soil. Brown surface with yellowishbrown subsoil over stratified sand and gravel (glacial outwash very deeply weathered). - Waynesboro silt loam. Terrace soil. Brown surface, upper subsoil yellowish-brown, lower subsoil dull red sandy clay. ## Organic Soils. Peat. Raw fibrous organic soils, high in organic matter. Muck. Well-decomposed, finely divided organic soils of moderate content of organic matter. ### TABLE 15.—Soils by Productivity Ratings 1 Brookston silt loam silty clay loam clay Clyde silty clay loam Dunning silt loam Pandora silty clay loam Toledo very fine sandy loam clay loam Wauseon silt loam 2 Chippewa silt loam (2.5) Fox silt loam Genesee silt loam Huntington silt loam Lorain loam Toledo silty clay 3 Bellefontaine silt loam Bono silty clay Brooke silty clay loam (3.5) Chagrin silt loam Chippewa silty clay loam Eel silt loam Hagerstown silt loam (3.5) Lindside silt loam Lorain silty clay Marengo silty clay loam Miami silt loam Moshannon silt loam Neapolis fine sandy loam Papakating silt loam Paulding clay Russell silt loam Wheeling silt loam Wooster silt loam (3.5) Wauseon fine sandy loam 4 Alexandria silt loam Belmont silty clay loam Burgin silt loam Canfield silt loam Cardington silt loam (4.5) 4 Chenango gravelly loam loam Chilo silty clay loam Elk silt loam Ellsberry silty clay loam (4.5) Genesee loam Holston silt loam Lucas silt loam Maddox silt loam Mentor loam (4.5) silt loam Miami silty clay loam Muskingum silt loam (4.5) Painesville silt loam Pope silt loam Rittman silt loam (4.5) Reynolds fine sandy loam Sciotoville silt loam Vincent silt loam Wellston silt loam Westmoreland silty clay loam Zanesville silt loam 5 Bedford silt loam Belmore loam Bennington silt loam Blanchester silt loam Braceville silt loam Captina silt loam Chenango gravelly loam Cincinnati silt loam Crosby silt loam Ellsworth silt loam Fallsbury silt loam Fincastle silt loam Fulton silty clay loam Hanover silt loam Maumee fine sand Wadsworth silt loam (5.5) Monongahela silt loam Nappanee silty clay loam Painesville fine sandy loam Philo silt loam Rossmoyne silt loam (5.5) Tilsit silt loam Ravenna silt loam Williamsburg silt loam # TABLE 15.—Soils by Productivity Ratings (continued) 6 Avonburg silt loam (6.5) Belmont silty clay loam (steep) Caneadea fine sandy loam . silty clay loam Colyer silt loam Crosby silty clay loam Eden silty clay loam Edenton silt loam Ellsworth silty clay loam Fairmount silty clay loam Ginat silt loam Heitt silty clay loam Holly silt loam Mahoning silt loam Meigs silty clay loam Melvin silt loam Newton fine sand Rimer fine sandy loam Robertsville silt loam Upshur clay Westmoreland silty clay loam (steep) Allis silty clay loam Atkins silt loam Berrien fine sand Bethel silt loam Clermont silt loam Condit silt loam Delmar silt loam Mahoning silty clay loam Sebring silt loam Tyler silt
loam 8 7. Meigs silty clay loam (steep) Plainfield fine sand Trumbull silty clay loam Upshur clay (steep) 9 Muskingum silt loam (steep) # INDEX TO OHIO SOIL TYPES AND PRODUCTIVITY RATINGS | | P. R.* Page | |--|--| | Abington silty clay loam | () 13 | | Alexandria silt loam | (4) 17, 36 | | Algiers silt loam | () 43 | | Allis silty clay loam | (7) 18, 25, 39 | | Atherton silt loam | (2.5) 19 | | Atkins silt loam | (7) 33, 42 | | Avonburg silt loam | (6.5) 12, 34 | | Bedford silt loam | (5) 27, 40 | | Bellefontaine loam | | | Bellefontaine silt loam | (3.5) 10, 11 | | | (3) 10, 11, 34 | | Belmont silty clay loam | (4) 29, 41 | | Belmore gravelly loam Belmore loam | () 21 | | | (5) 21, 38 | | Bennington silt loam | (5) 17, 36 | | Bentonville silt loam | () 26 | | Berrien fine sand | (7) 21, 24, 38, 39 | | Bethel silt loam | (7) 10, 34 | | Blago silty clay loam | () 31 | | Blanchester silt loam | (5) 12, 34 | | Bono silty clay | (3) 22, 38 | | Braceville silt loam | (5) 19, 32, 37 | | Bratton silt loam | (3.5) 27 | | Brooke silty clay loam | (3.5) 29, 41 | | Brookston silt loam | (1) 11, 34 | | Brookston silty clay loam | (1) 10, 34 | | Brookston clay loam | (1) 23 | | Brookston clay | (1) 23, 38 | | Burgin silt loam | (4) 27, 40 | | Caneadea fine sandy loam | (6) 24, 39 | | Caneadea silty clay loam | (6) 24, 39 | | Caneadea silty clay | (6.5) 24 | | Canfield silt loam | (4) 16, 36
(5) 31, 42 | | Captina silt loam | (5) 31, 42
(4.5) 17, 36 | | Cardington silt learn | | | Catawba silt loam | () 43
(3.5) 26 | | Cedarville silt loam | | | Chagrin loam | () 20, 25
(3) 20, 25, 37, 39 | | Chagrin silt loam | (4) 23, 37 | | Chenango loam | | | Chenango gravelly loam | (5) 19, 23, 32, 39, 42 | | Chile silty clay loam | (3) 19, 32, 37, 42
(4) 14, 32, 42 | | Chinese city clay loam | (4) 14, 32, 42
(3) 16, 25, 36, 39 | | Chippewa silty clay loam
Chippewa silt loam | (2.5) 16, 36 | | | (5) 12, 34 | | Cincinnati silt loam | (U) 14, 04 | ^{*}Productivity rating. | | P. | R. | * Page | |--|------------------|----|----------------------| | Clermont silt loam | (7 |) | 12, 34 | | Clyde silty clay loam | | | 10, 34 | | Clyde clay loam | (1 | ń | 23 | | Clyde clay | $\tilde{\alpha}$ | ś | 23
23 | | Coloma fine sand | Ċ | ń | 43 | | Colyer silt loam | (6 | ń | 27, 40 | | Condit silt loam | (7 | í | 17, 36 | | Coolville silt loam | Ü | ń | 30 | | Crosby silt loam | (5 | í | 10, 34 | | Crosby silty clay loam | | | 10, 34 | | Danbury silty clay loam | ٠.(|) | 43 | | Delmar silt loam | | | 11, 34 | | Dunkinsville silt loam | (3 | í | 43 | | Dunkirk silt loam | . (| ń | 21 | | Dunkirk silty clay loam | ં તે | Ń | 21 | | Dunning silt loam | | | 28, 33 | | Edon gilty slav loam | (0 | | 00.40 | | Eden silty clay loam Edenton silt loam | (6 | • | 26, 40 | | Eel silt loam | (0 | , | 12, 34 | | Eel silty clay loam | | | 15, 35 | | Elk silt loam | | Ţ | 15, 23 | | Ellsberry silt loam | (4 | ? | 81, 42
26, 40 | | Ellsworth silt loam | (4 | (| 26, 40 | | Ellsworth silty clay loam | (6
(6 |) | 17, 25, 36 · | | | (0 | , | 17, 25, 36, 39 | | Fairmount silty clay loam | (6 | ١ | 12, 26, 34, 40 | | Fallsbury silt loam | (5 | Ś | 18, 36 | | Fawcett silt loam | Ò | Ó | 27 | | Fincastle silt loam | (5 | j | 11, 34 | | Fox loam | (3 | Ó | 13 | | Fox silt loam | (2 | j | 13, 35 | | Fulton silt loam | . (4, | 5) | 13, 35
21 | | Fulton silty clay loam | (5 |) | 21, 38 | | Genesee loam | 14 | ì | 23, 38 | | Genesee silt loam | (2 | ΄. | 40,00
15 99 95 90 | | Genesee clay loam | (~ | Κ. | 15, 23, 35, 38
23 | | Ginat silt loam | (6 | | 14, 32, 42 | | Glenford silt loam | (5 | | | | (Guernsey) silt loam | (| í | 29 | | Hagerstown silt loam | 19 | E. | | | Hanover silt loam | | | 26, 40 | | Heitt silty clay loam | | | 18, 36 | | Hocking silt loam | (|) | 26, 40 | | | ١. | • | 43 | | | P. R.* Page | |----------------------------|-----------------------------| | Holly silt loam | (6) 20, 25, 37, 39, 40 | | Holston silt loam | (4) 31, 42 | | Huntington silt loam | (2) 15, 28, 33, 35, 40, 42 | | Huntington silty clay loam | () 15, 28, 33 | | - and tour | () 20, 20, 00 | | Jacksonville silt loam | () 97 | | | () 27
() 30 | | Johnsburg silt loam | () 30 | | Killbuck silt loam | (3.5) 43 | | Latham silt loam | () 27 | | Lindside silt loam | (3) 15, 28, 33, 35, 40, 42 | | Lindside silty clay loam | (3) 15, 28, 33 | | Lobdell silt loam | (4) 20, 25 | | Lorain loam | (2) 24, 39 | | Lorain silty clay loam | (2.5) 24 | | Lorain silty clay | (3) 24, 39 | | Lordstown stony loam | (6) 18 | | Lordstown silt loam | (4) 18 | | Lucas silt loam | (4) 21, 38 | | Lucas silty clay loam | () 21 | | Luray silty clay loam | () 19 | | • | | | McGary silt loam | (4) 13 | | Maddox silt loam | (4) 26, 40 | | Mahoning silt loam | (6) 17, 25, 36 | | Mahoning silty clay loam | (7) 17, 25, 36, 39 | | Marengo silty clay loam | (3) 17, 36 | | Maumee fine sand | (5) 22, 38 | | Meigs silty clay loam | (6) 29, 41 | | Melvin silt loam | (6) 15, 28, 33, 35, 42 | | Melvin silty clay loam | (6.5) 15, 28, 33 | | Mentor silt loam | (4) 19, 37 | | Miami silt loam | (3) 10, 34 | | Miami silty clay loam | (4) 10, 34 | | Millsdale silty clay loam | (2) 11 | | Milton silt loam | (3) 11 | | Monongahela silt loam | (5) 31, 42 | | Montgomery silty clay loam | (1) 13 | | Montgomery silty clay loam | (1) 13 | | Moshannon silt loam | (3) 33, 42 | | Moshannon silty clay loam | (3.5) 33 | | Muskingum loam | (5.5) 29
(4.5) 29 41 | | Muskingum silt loam | (4.5) 29, 41 | | | P. R.*, Page | |-----------------------------|-----------------------| | Neapolis fine sandy loam | (3) 22 | | Nappanee clay loam | (4.5) 23 | | Nappanee silty clay loam | (5) 23, 38 | | Newton fine sand | (6) 22, 38 | | Heaven me sand | (0) 12, 00 | | Otisville gravel | () 43 | | Painesville fine sandy loam | (5) 24, 39 | | Painesville silt loam | (4) 24, 39 | | Palmer clay | (6) 23 | | Pandora silty clay loam | (1.5) 10, 34 | | Papakating silty clay loam | (3) 20, 37 | | Paulding clay | (3) 23,38 | | Philo silt loam | (5) 33, 42 | | Plainfield fine sand | (8) 21, 24, 38 | | Pope loam | (5) 33 | | Pope silt loam | (4) 33, 42 | | Randolph silt loam | (5) 11 . | | Rarden silt loam | () 29 | | Ravenna loam | (5.5) 16 | | Ravenna silt loam | (5) 16, 36 | | Reynolds fine sandy loam | (4) 24, 39 | | Rimer fine sandy loam | (6) 21, 38 | | Rimer loam | () 21 | | Rittman silt loam | (4.5) 16, 36 | | Robertsville silt loam | (6) 31, 42 | | Rodman gravelly loam | () 43 | | Ross silt loam | (1) 43 | | Rossmoyne silt loam | (5.5) 12, 34 | | Russell silt loam | (3) 11, 34 | | Sciotoville silt loam | (4) 14 00 10 | | Sebring silt loam | (4) 14, 32, 42 | | Shandon silt loam | (7) 19, 37
() 13 | | Sloan silt loam | () 15 | | St. Clair silty clay loam | () 23 | | | () 23 | | Tilsit silt loam | (5) 30, 41 | | Toledo very fine sandy loam | (1) 22, 38 | | Toledo clay loam | (1) 22, 38 | | Toledo silty clay | (2) 22, 38 | | Trumbull loam | (6.5) 16 | | Trumbull silt loam | (7) 16, 25, 36 | | Trumbull silty clay loam | (8) 16, 36, 39 | | Tyler silt loam | (7) 31, 42 | | | P. R.* Page | |------------------------------|--------------------| | Upshur clay | (6) 29, 41 | | Vaughnsville loam | () 43 | | Vincent silt loam | (4) 31, 42 | | Wabash silt loam | (1) 15, 35 | | Wabash silty clay loam | (2) 15 | | Wadsworth silt loam | (5.5) 16, 36 | | Wallkill silt loam | () 43 | | Warners loam | (5) 22 | | Warsaw silt loam | (2) 13 | | Wauseon fine sandy loam | (3) 22, 38 | | Wayne silt loam | (4) 16 | | Wellston silt loam | (4) 30, 41 | | Westland silty clay loam | (2) 13 | | Westmoreland silty clay loam | (4) 29, 41 | | Wheeling silt loam | (3) 14, 32, 35, 42 | | Wickliffe silty clay loam | (7) 43 | | Williamsburg loam | (5.5) 14 | | Williamsburg silt loam | (5) 14, 35 | | Wooster loam | (4.5) 16 | | Wooster silt loam | (3.5) 16, 36 | | Zanesville silt loam | (4) 30, 41 |