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With rapidly growing development and uses of wuter, a correspondingly
~ great demand has developed for advance estimates of tho volumes or rates of
flow which are supplied by streams. Therefore much attention is being
. devoted to hydrologic forecasting, and numerous methods huave been tested
~ in efforts to make inorea.singly reliable aatima’ces of future supplies.

This problem can be divided into two main parts: first, finding one
‘or more factors that can be measured in advunce of the runoff to be pre-
" dicted and that are hiphly correlated with it; and second, working out a
reliable method for expressing this correlation und for predicting the
expected yields or discharge rates.

. An excellent illustration of the I‘irst purt of the problem is given .
by Garstke 1/ who describes work that he and other technicians of the

. Bureau of Reclamation have done in improving the precision of water ylield
forecasts on the Snake River watershed in Wyoming. Good results were ob-
tained by weighting the water contents of emow measured at each snow course
‘by the relative area of the watershed to which the course data should apply.
From this work Garstka obtained an "elevation-weighted® average water con-

- tent of snow for each year, which could be correlated with the water yleld

\ for the subsequent period from April.through July. 8uch investigations are

Z_l/ 'Garatka, &, U., Interpretation .of.snow surveys, Trans., American
Geovhvsical Union 30(3): 412-20. 1949, -



very important as the precision of forecasts can be progressively improved
enly by finding and meesuring variables thut are more highly correlated
with runoff.

After some factor or factors have been measured, however, the second
phase of the problem enters the piocture. It becomes necessary for the
forecaster to work out a reliable means of expressin~ the relation of
water yields to the measured fuctor, and of obtaining forecasts of future
yields through the use of this relation und new data on the correlated
factor, Because the relation cunnot be exact end the forecasts.are there=-.
fore subject to error, it is also naoessary to provide an estimate as to
the magnitude of this eryor. :

This statistical aspect of foreoasting has teen reoeiving ‘increused
attention. Although a number of workers still employ the graphic methods
which ere commonly used by hydrologists, others are applying the methods"
- of regressgion and correlation analysis which have been presented by -
Ezekiel £ and others., When these are modified to fit the requirements
imposed by rolatively short-term records, they ere woll adapted to use
© in water=-yield forecasting. . '

It is the purpose of this article to assemble and present available
knowledge on statistiocal methods that can be applied {0 these problems,
and particularly to =small samples; to review briefly the assumptions that .
underlie and limit the methods; to outline an. efficlent technique for
analyzing the required data and.for moking the forecasts, together with
their errors and fiduolal limits; and to give a detuiled illustration
and test of the technique, using actual dute from the Snake River watershed.
A useful part of this technique is the deteotion &and adjustment of dis--
crepancies in the 'data and shifts in the population, so as to provide im-
proved accuracy and efficliency with a given set’ of variables. The dis-
cussion will be pointed mainly at those who are familier with hydrologic:
forecasting end mathematics, but not with this kind of atatistical enalysis,

The Method Without Repression

To start examining the statistical techniques of foieoaating, it may™
be desirable to imagine that we'are just beginning the study of a water=-
shed with a view to forecasting anual water yields from snow stored on
the area. At this early stuge in our work we have obtained only a short
periocd of records from a gaging station at the mouth of the watershed.
Also, we are "installing a series of snow courses at which we can sample

g/ Ezekiel, Mordecai, Methods of Correlation Analysis. 2d edition, 531 |
pages. John Wiley and Soms, New York. 1941., .

-2 a



the emount of water stored in snow about April 1 of eaoch year, before tne
spring runoff begins. This case may seem acudemig, as foresusts are not
.ordinarily made under such conditions. But it will serve us a basis for
outlining the basic assumptions and princlples thut underlie hydrologioe
forecasting, -

At this time we have no statistical control through which foreousts
may be incorgased in precision; all we have is & set of datu from which
can ‘be calculated an average water yield und en egtimute of its variution
from year to year. Henge uny forecasts will nocessarily be quite unpre=
cise, though even now we can give the water user some idou as to what he
may expect. As we do so, one or two fundamental assumptions need to be
made. These should be kept in mind as we proceed with statistical
enalyses, although experience has shown that moderate.deviationa from
their requirements have only minor effects on the reliability of forecusts.

For cne thing, we assume that the available data may be considered a
random sample of a larger population of data, and tnat the next yeur's
runoff (as yet unmeasured) cen be considered as drawn independently from
this same population. -In thinking of the sumple set of n years, we say
that its average water yield (y) is a sample estimate of the true uverage
() for the indefinitely longer series of N years, Second, we ussuno
that the deviations of the annuael water yields around their averuge value
maey be taken eas reniom and normally distributed, at least within reuson-
able 1imits. At first glance these assumptions may not seem well-founded,
especially because we ure deuling with a consecutive sories of gbservationa
rather then a true random sample. It has been repeatedly shown,_/ however,
that deviations of individual yearly records like these can be tuken us
random, and that ordinarily cyclie trends are not detectable within short
series of recorda. . . :

With the assumptions in mind, we oun try the method by estimuting
the lowest and highest amounts of water that the water user muy expect in
the first season following our short serles of data. ®&e know thut the
range of past yields is not likely to be as great as for & longer record,
but we can estimate the possible deviation of & new year from our sample
average, ,This is derived from the standard deviation, calouluted as
follows . '

By= fysyz/n-l ooo.oo-oo;---'-a-oo_oooo (1) .

3/ See, for example, "The Yield of Streams as a Measure of Climatic
Fluctuations,™ by W. G, Hoyt and W. B. Langbein, (eographical Review,
Volume 34, No. 2, Pages 218 to 234, 1944.

For definitions of symbols, see Glossary of Symbols and Terms, at end
of the psper- '
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Expressed in words, the stundard deviation of Y equuls the square root of
the summed squared deviations ("sum of squares™) of the sample observa-
tions around their mean, divided by the number of degrees of freedom.

In thinking about the possible magnitude of & new’annual water yield,
we realize that it muy deviate in two ways from the sample ‘average: the
deviation of the new yleld from the true population average, and the devia-
tion of the sample average from this true average of N yoars., These devia-
tions may be expressed as: '

’

Y-F=(Foh) - (Yall)s coerdieencnennnennaneendi(2)

end their combined variance (squared stmdard deviation) is estima.t.ed'bﬁ

* []

sgz = Byz/n + syz '. or syzcl/n +* 1) .u-_.-M...‘.--.".1.'..-.'}..(3)

.

where BEZ is the varimoe of the yield to be forecast.

The square root of this variance, the standard error of the forecast,
provides us with a basis for estimating the fiducial limits between which
the next year's water yleld should lie, with any desired degree of likeli-
hood, This estimate is given by multiplying the standard errord ta.bu-
lated value of Student's "t", obtained from any published table, .
portion of a table of t is reproduced in Table l. For samples of any. a
size, t gives values corresponding to the conventional multiples of the
standard deviation which are used in lerge samples, For a likelihood of
"19%1," for example (probability 0.056 in the table), t is about 2 in
large samples, , ,

For the forecast we are about to meke, suppose we select t to give
a probability of 0.10. Then we cun say that, unless next year's yield is
so extreme that it is likely to ocour less theam once in, 10 yeurs, its
magnitude should lie between the following limits:

§/ Snedecor, George W. "Statistical Methods,” Table 3.8, page 65, 4th
Edition, 485 pages, Iowa State College Press. 1946.



Table 1

Valuea of Student's ¢
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This is & shortened edition of Table 3.8 in "Statistical Methods,”

(see footnote 6).

by Snedecor



Fiduoial 1imita=? t t luﬂy VJ-/n + 1 sevescerrone (4)

To show how this method is used, let ug test it on some of the data
from Table 2 8 s looking only at Column 3: Water Yield, Inches. We
may imagine ulso that ‘at present only the years 1918-26 are available,
and we want to estimate the fiducial limits between which the 1927 yield
may lie., Based on the veriation of these 8 years! da.ta.iwa egtimate:

s, =+ /128,96/7T = % 4.29 inches

v

Then the expeoted fiduoial 1imits, with odde of O, 10 a.nd on 7 degrees of
freedom, are

Limits = y + (1.90)(4.zs)vﬂ:TE€
= 16,6 2+ 8.6 = from 7.0 to 24.2 :l.ncsheul of water,

If desired, similur calculations may be made with s likelihopd other than
0.10. If we want to be more oonservative, we might decide to use an 0.06
probabilityr sinoce t o5 % 7 degreas of freedom is 2,36, the expeoted
yield should fall betwéen 4.8 and 26.4 inches (that 1s, 15.6 + 10.8).
And at the 0,60 level of t, the oorresponding runge of the expeoted yield
should be from 12.4 to 18.8 inches,

As it haeppens, the yleld in 1927 wasg unusually high, exoeeding the
upper fiducial limit at the 0.10 level of t — an event that may happen
about once per ten trials, in the long run. This ooourrence may nake
You wonder how uther years behaved; so, although it ig not oconsidered a
safe procedure to forecast so far into the future from a small sample,
let us look at the rest of the yleld data in Column 3 of both Tgbles 2
and 3, end see howmany fell outside the various fiducial boundaries as
estimated from our 8-year sample. ‘In’'the 19 years after 1926, 11 yields
(58 percent) remained inside the limits specified on 1:1 probability;
only 2 fell outside the 0.10 limits; and none exceeded or fell below the
0.05 limits. Thus, it seems thub these duta conform reasonably well to
the mathematioul model associated with our fundamental assumptions.-

_6/ Data in these tables obtained from ™Interpretation of Snow Surveys,"”
by W. U. Garstka (see footnote 1).



Table 2
L

Annual Hater Yields spd Water Content of Snow
Sneke River Above Jackson Lake, Wyoming

(1919-1930)
(1)« (2] ()
- ¢ Water content 1 Water Yield
Year :_of mowd/ b
) s :
1919 : edel H 10.5
1920 ] 352.8 t - 16.7
S | ’ _
1921 31.8 . s+ | 18.2
1922 : 32.0 3 17.0
1923 3 30.4 $ 18.%
1924 t 24.0 g 10.5
\1925 H 39.5 . H 2301
t
1926 3 | 24.2 t 12.4
1927 H 2.5 T 24.9
1928 4 . 3T7.9 : 22.8
. 1929 t 30.5 3 14.1
1930 t - 25.1 : 12,9
? H
- Total t 383.8 - 199.4
t 8
Average :  $1.98 : - 16.62
S : . .
1931- : 12.4 . .8
t [

8/ Elevation-woighted average water oontent
of snow on snow courses, about April 1
each year. . .

}y/. Total yield of water from watershed above
' Jackson Lake, April through July each year.



Forecasting With the Aid of Regression

Linear Regression

Results like these give the forecaster confidence in statements
based on statistical methods; although, as time goes on, he is sure to
run into enough of the "unusual™ years to keep him conservative. But
even 80, it is obvious that forecasts with such wide fiducial limits
are not very useful, and that it is essential to inocrease their preci-
sion by any practical means. This is,the reason for the perennial
searoch of forecasters for variables that are highly correlated with
water yield and can be measured ahead of times then the probable magni-
tude of the new yield can be estimated with & smaller error.

In the Snake River data of ?ables 2 and 3, such & variable is sup=-
plied by the elevation-weighted average water content of smow on the
watershed, as sampled sbout April 1 of each year, Although for our
preceding example we assumed that snow surveys were not being made until
after 1926, actually the Bureau of Reclamation started these measurements
in 1919 and has obtained them each year since’then,

‘With these snow survey data available we can use a better forecast-
ing tool: +the regression of water yields on snow water content. In
Garstka's article this relation is expressed graphically, and the fidu-
cial limits shown as & "band of error.™ ' This method of eanalysis is
widely used and gives satisfactory resulis where moderate precision is
required, If the data fall seriously to meet the necessary statistical
assumptions, it may be the soundest method, But in most cases mathemati-
oal oontrol, using least-squares regression and associated statistiocs,
is likely to give more reliable results.

Before we demonstrate this tool let us reconsider our preliminary

- assumptions (page 3) and see how they need to be modified. The first
assumption 1s unaltered by the introduction of an independent variable
(X), the water content of snow. The second, however, must be changed
somewhat; we now assume that the deviations of water yields (Y) around-
any single value of X are random and normally distributed, Note that
the values of X themselves need not meet this requirement; but any values
of Y are assumed to be drawn in & random menner from all possible Y's
corresponding to a particular value of X. Ordinarily this assumption and
the first one may be considered fairly safe in the analysis of water-
yield data over relatively short periods; the second, in fact, is likely
to be safler.than 1ts analogue when regression is not employed. But there
is another assumption that may occasionally be important; if it is
seriously violated, the use of least-squares regression in this kind of
analysis maey give unrelliable results. It is assumed that X is measured
without error, either errors of measurement or so-called ™biological
variation.® If this assumption is umtrue, the slope of the regression
is biased toward the horizontal, end the error of the forecast.nay be



Table 3

Annual Water Yields and Waeter Contents of Snow
Snuke River Above Jackson Lake, Wyoming

(1931-1947)
I+ (2) ¢ (3] & (4 ¢« (6) 1 (6) & (1) 1
t Water :Qbserved:Forecust: 1Standard: Degrees ;
: content : water : water :Differenceserror of: of 1Student's
Year 3 of snow s yield ¢ yield : (3) - (4):forecasts freedom 1 ¢ %
t Inches 3 Inches s Inches :t Inches ¢ Incheat s
: H 3 3 . ) t 1
1831 ¢+ 12.4 ¢+ 8.8 Be® 3 #2.9 1 2.3 1 10 t l.28
1932 ¢+ 35.1 ¢ 17,4 : 18,3 ¢t -=0,9 ¢ 2,0 : 11 : »46
1933 ¢+ 31e5 3 14,9 3 16,4 1 <ly6 1 1.9 12 : 79
1934 ¢ 21,1 &t 10.5 ¢t 1le2 ¢t =0,7 3 2.4 1 13 1 020
1935 27.6 H 16.1 H 1404 H +1I7 s 1.8 ] 14 095
: ! [ $ 3 1 :
1836 ¢+ 30.7 1 18,9 ¢ 16,0 1 42.,9. ¢ 1.8 ¢ 15 1 1.61»
1937 ¢+ 23.2 ¢ 1348 t 124 31 +le2 1 1,9 1t 18 s «83 J
1938 :. 28,6 H 20,0 1 1502 | +4,8 R | 1.8 | 17 1 2,87»e
1939 : 28,2 tH 14,8 H 15.2 : 0,4  } 2.1 | 18 ] 019
1940 1 19.2 H 13.3 H 11.* H “'2-2 3 205 1 13 s 096
: ! : ! . 4 B '
1941 H 17,0 H 1202 ] 10.8 $ +1|4 ) 201 . $ 13 087
1942+ 19.1 : 14,5 ¢+ 12.0 :+ 42,6 1 2.2 1 13 t 1,13
1943 ¢+ 40,1 ¢ 25.2 : 21,0 : 44,2 1 2.6 1 13 t 1,68
1944 ¢+ 17,7 ¢ 13,0 : 1l.4 : +1.6 s 2,56 1 13 3 +84
. 1945 24,6 :+ l15.1 ¢ 14.8 : +0,3 H 2.4 4 13 t +12
e : : : , ] T 3
: $ : t $ ¢ 1

a/ Asterisks indicute the runge
" values of t:

of probabilities wshich include these

No asterisk, probability gfeator than 0;2
* Probebility 0.2 ~ 0,06
s* Probability less than 0,06




increased.” Ordinarily, however, variations from even this assumption
need not cause any material concern unless the errors in X hecome large
in relation to the total variation in X. .

Finally, the assumption is made that the variation in Y is no{
correlated with the magnitude of its mean, but remaing esgentially homg-
geneous throughout the range of the regression. A nptable angd feirly
frequent exception to this assumption ocours when the variation in Y may
properly be expressed as a perceptage of ¥, end the "scatier™ of plotted
points around the regression line grows wider with incr7asing magnitydes
of X and Y. In such cases it is advigsable to transform 9.11 the datq
into logarithms end analyze them in this form.

As an accessory reservetion, when working with small samples (say,
10 to 15 years), the forecaster should use ¢are and conservatism in
interpreting the results of his znalyses and in depending on the¢ calgu-
lated accuracy of the forecasts. This caution epplies espacially if the
range of available data is relagively small, so that further sampling
might disclose a wider range and perhaps g greater degree of veriation.
Much assistance can be provided, of courge, by past experience angd the
-characteristiocs of other sets of da'!;a from similar sqQurces.

. After thinking over &ll of these preocautions, You may feel that it
is hardly safe to make forecasts by staetistical methods. Like eny other
sharp-edged tool, to be sure, thege techniques may cuuse unfortunate
consequences if they are misused; but when carefully end skillfylly
handled they will give precise results with a great deal ¢f efficiency.
Thus the enswer to any doubts ig not ta leave this tool alqne.. put to
handle it with the necessary akill..

With the fairly safé belief that our data fit the varioys assymptions
reasonably well, we can now determine the relation between water yields
‘and snow water contents, and can set up the technique for forecasting emnd
estimating fiducial limits by the least-squares method. First, as in the
first example we must consider that our short series of years (say 1919-
1930 as presented in Tuble 2) provides only a sample estimate-of the true
average values for both X and Y, ahd of the true relation between these
factors if it were to be calculeted from the whole population of N pairs.
of values, We must also set up some logical hypothesis about the true
shape of the regression line: whether it is straight, or what form of
ourve it 'should assume. Although we might argue theoretically that the
regressmn of water yields on snow walter content should be & curve that
is concave upward, this shape is penerally undeteotabla within the range
of observed data.

'_?/ c. 'Eisenha.rt, The Interpretation of Certain Regression Methods,
Annals of Mathematical Statistiecs, X, (2): 162-186, 1939.
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Because this seems true of the Snake River data, it seema desirable %o
make use of the simplest hypothesis: that the true regression is satis.
factorily fitted by a straight line, a sample estimate of whioh is pro-
vided by ths familiar linear equation:

E = a+bX SF+b(X=X) coesceseercsrcanscsaseres (B)

Associated with this sample regression equation are two kinds of
error in its estimate of the true equations the error of the "origin,®
8, and that of the regression ccefficient, b, The variance of the orig!
is estimated by:

-2 '
% .

where s, , is the "standard error of estimate" of the regression equatic

' The squire root of &-° may be stated as the "standard error of the mean

of Y, when X is held”at the mean of X.® Correspondingly, the varience ¢

the regression coefficient is estimated by:

%o

where S 2 is the summed squared deviations of the sample observations of
X around their me an,

, = ay.xzyh,..................................(6)

2 = Ey'xz/sngooooo-ooo;lcnoo-oooc-oooooooocll(?)

When these variances aré;oombined, we can obtain an estimate of
the variance of the sample regression line in estimating & point on the
true line, for eay single wvalue of X:

*

92 = 8y X(1/n + x%/5x%), 0 (8)

where ¥ is a semple estimate of the point at which an ordinate erected
et any value of X (as é) will intersect the true regression line; and
x is the devietion of the desired single value of X from the sample

mean of X. o

If you will glance again at our first forecasting method without
the use of regression, you will note that the whole expression in Equa-
" tion (8) is analogous to the first term (ay?/h) on the right side of
Equation (3): it expresses the,error of a’sample averuge trend in es-
timating the true trend. Thus ? 15 in effect & value of ¥ calculated
for a single X. But if, instead of estimating a new mean ¥, ws wish
to obtain a single new forecast of Y corresponding to a new value X,
we know that it will vary about the sample mean Y 8o that en addition-
al element of error must be included in caloulating fiducial limits,

. In order to complete our statement of the variance of a forecast, we
must then add to Equation (8) & term which corresponds to 8.2, the
squared standard deviation. As you will realize, in our lihear regres-
sion analysis this term is given by s 2, Thus the final expression
for the variance of a forecast in a 1¥{Aidar regression analysis may be
stated as:

-11-



se° = 8y, 141/ -llxz/s::z)..............'.........(9)

-

For those who are not familiar with thess methods, very clear end
readable discussions are given by Snedecor 8/,

As in the analysis without regression, the standard error of the
forecast ( 11/5E2 is mltiplied by an appropriate value of £ in order
to provide an estimate of fiducial intervals around the forecast E:

Limits = E § a5 .......:......................;.;(10)

For a simple linear regression such as we have been discussing, the
fiducial band around the regression line is shown in Figure l. Because
of the likelihood of error associated with the slope of the sample re-.
gression line in estimating the true regression, the lines bounding this

, band are not parallel to the sample regression line. On the .contrary,

* the fiducial limits of a forecast amnual water yield grow larger as the

. average snow water content deviates more and more from the mean; and they.

» mey be very large if forecasts are made from values of X that are close
to or beyond the range of available sample data.

. Now we can illustrate the use of statistical oontrol with ean example
employing the figures on both water yields and water contents of, snow in
Table 2. The procedures outlined in Table 4 lead to the caloulation of
several statistics which are used in obtaining a forecast for 1931, and

" in estimating the fiducial limits of the forecast.

First of these is the regression coeffiocient, which is oalcula‘l;.ed
from the corrected squeres and produots, and incorporated mto e linear
‘regression equation such as (5):

‘E=y+b (x-x) = a +bX
= 16,62 + 0,5477(X-31.98) = 40,5477X - 0,8954
By inserting the average result of the 1931 snow surveys into this-

equation (12.4 inches, see bottom of Table 1) we can obtain a foreca.st of:
the most probable water y:.eld for this new year: :

8/ See footnote 5. Read especially Chapters 6, 7, 12, 13, and 14, on
regression, correlation, und covariance. .

-12 -



. Water Yield, Inches (Y)
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Teble 4
S —

Regression of Water Yields on Water Contents of Snow
Sneke River (1919-1930)

T. Caloulatlon of sums of squares ;
s Squures and products
: N :
: x2 s XY : 2
- ' ' 1 H T
(a) Uncorrected sum of squares, etos & 13,043.66 : 5,798.33 : 3,577.76
’ H
H

Statistio

(b) Correction term 12,276.20 1 6,377.48 : 3,313.36
(e) Corrected sum of squares, eto. 768,46 ¢ 420.85 3 264,40

. Procedure: _ 2 2 2
(a) Uncorrected sum of squares: X§ + X5 + sscess X,zl = 8X%,

| = 23,12 + 32.8%2 + ..... 25.1% = 13,043.66.
And, for SXY = (23.1)(10.5) + (32.8)(1647) ses (25.1)(12.9)
=6,798.33; N

with a similar proocedure for SY?, producing the figure 3,577.76
(b) Correction term (for X) = (SX)2/n = (383.8)2/12 = 12,275.20;

for XY, it is: (8X) (5Y)/n = (383.8)(199.4)/12 = 6,377.48;
with a similar prooedure for SYz, produc;l.ng; the figure 3,313.36.
. i : ]

(e) Corrected sums of squares and products are obtained by subtracting

Line (b) from Line (a), giving Sx2, Sxy, and Sy2; as, Sx2 = 768.46

~

II. Caloulation of Regression Statistics

1)+ (2) t (3} (4) : (5) .
t Degrees of : Errors of estimate 3 Regression
Siz t freedom : dSum of Squares : Mean square @ coefficient
t . 3 : :
250.48 H 10 H 33.92 ? 3

3.392" + 0.5477

-

(1) 592 = (sxy)%/ s::2.=_ (420.85)2/768.4;6..

(2) Degrees of freedom = n-m, where m is the nunber of variables; in’
" simple linear regression, n - .2.
(3) Sum of squares for errors of estimate = Sy? - SP% = 264,40 =
230.48 = 33.,92.
(4) Mean square {errors of estimate) = Sum of squares/DF = 33.92/10
= 3.392 )
' (5) Regression coefficient = Sxy/sz = 420,85 / 768.46 = + 0.5477

- 14 -



E = (0.5477)(12.4) = 0.8954 * 5.9 inches of water.

It is still early in 1931 when this forecast is made, so of course
we have no knowledge as to the actual water yield for this year; but we
can estimute the probable range within which it should lie,, on any de-
sired odds. This procedure is begun by caloulating the varisnce of the
forecast, using Equation (9):

852 = 8y X1 * Vo + x%/6x)

= 3.392 /T.083 + (12.4 = 32,0)%/768.467
= 3,392 (1.583) = 5.3695

You will notice how much the varimmce of the forecast has been affected
by the large deviation of the 1931 water content of snow from the sample
mean, Compared to the variance of a forecast when X iz held at the mean
of X (as estimated by By, x°(1083)), this va.rianoe is about 46 percent
greater-

From the cglculated variance we csn now qQbtain fiduclial limits of
the forecast (Equation 10) at any desired probability level, If we
choose the 0,10 level and with 10 degrees of freedom, the limits ares

E+t 5 = 6.9 % 1.81/5.3695 , or from 1.7 to 10,1 inches
010 E _ '
‘of water. You might also like to figure the limits at the 0,50 level;
. these would be:

5.9 + (0.70)(2.32), or from 4.3 to 7.5 inches.

Then you will want to convey this informati.on to the water user, perhaps
using & statement like this:
"For 1931, the odds are even that the April-July yield of
water will be between 4.3 and 7.5 inches., This might, of
course, be an unusual year. Unless it is the kind that comes
only about once in a decade, however, you will get more than
1.7 and less then 10.1 inches of water.®

Perhaps you can work out a phrasing that is better suited to your needs.
But the important thing is to tell the water user the real limits between
which his water yield should lie, rather than to give him an "exact”
figure which, sooner or later, is sure to weaken his confidence in your
, predicting ability. As to this particular forecast for 1931, obviously
its precision still leaves something to be improved upon; but at least
it is far better tham the statement we could meke without the aid of
linear regression.

- 15 =



When the 1931 water yield has actually been measured (8.8 inches,
in the top line of Table 3), we oan see that it fell safely within the
fiducial 1limits at the 0.10 level; it deviated only 2.9 inches from
the foreocast value. If you wish, you oan ocaloulate the probable fre-
quenoy with whioh a deviation of this size is likely to oocour, by cal-
"oulating for this particular forecast:

t= (Y - E)/EE = 2,9 / 2:¢32 = 142D vevescccssnsssenns (11)

By looking up ¢ (on 10 D/F) in Table 1 we ocan see that this kind of
deviation 1s 1likely to ooour about onoce in four trials in the long runs
'the probability lies between 0.2 and 0.8, -

. To show how 'l:hil mathod of rorecaating worked out for each of &
“series of forecasts up to and inoluding 1945, Table 3 gives the foreoast
value for eaoh year, the difference between observed and foreoast ylelds,
the standard error of eaoch foreocast, and the value of t obtained by
means of Equation (11). If we oompare these +¢'s with the tabylar
‘values for the assoolated degrees of freedom, we ocan see how the fore-
oast deviations for these new years conformed to the theory. A4s shom
by the asterisks, .only 1l of the 16 foreocasts fell outside the fiducial
l1imits oaloulated at the 0,06 level, und three (or 20 percent) outside
the 0,20 limite,

While examining the suoccessive forecasts in Table 3, you mey feel
. that we have again done something alittle rieky in meking foreocasts so
far beyond the period included by our first regression, When you look
tat the "degrees of freedom™ ocolumn, however, you will guess that up to
1539 each forecast was based on a new regression, oont&tning all of the
available observationa up to date,

Progressive Development of the Regressions

The process of building up regressions by edding new observations
does not involve any new principles; but its mechanics cean be greatly
simplified by following a special procedure. In the analytic technique
outlined in Table 4 you will have noticed that we calculated the "sums
of squares and products™ of deviations around sample means by a method
which may be unfamiliar. For a single short analysis such as this one,
the method saves little effort as compared to the more conventional
" method of oalculating and squaring (or multiplying) deviations directly.
But it will help streamline the progressive building up of regressions;
and this is likely to be important to forecasters who have to repeat
these caloulations for a number of separate watersheds each yoar.

The prooedure outlined in Table 4 is expanded in Tahle 5, and may
be summarized as follows:
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(1) OQbtain new sums for both X end Y by adding the 1931
(or n, +1) data ta the previous sums for 1919-1930.

{2) Calculate new correction terms from these sums.

(3) To the wncorrected sums of squares und products for
n years, add the squares und product of X and ¥ for
the one new year.

(4) Subtract the new correction terms from the valusse
caleylated in (3), and proceed as bafore with the
computation of regression statistics, remembering
that a degree of freedom.is added with each new
observation.

Especially when an electric celouletor is available, this process is
extremely rapid.and simple, and can be run through in relatively few
minutes per watershed once the date are ready for anslysis., It may
be repeated for each new year, #s long as the data gre acourate and
you have no reason to éuspect that the relation between water ylelds
and snow is shifting in some way. With thope reservations, each
,addition of datae will tend to improve the regression, an and therefore
to meke the forecasta a little more reliable.

'Keepins;Control Over the Fbrecasts

4 g

, As these. techniques for calculating water yiela forecasts are
carried through, you can exert. g form of control over them' somewhat
like the "guality control® methods employed in manufacturing, and can
‘meke any necessary adjustments as g part of the process. Two features
muy be discussed here: the need t¢ wuatch for and remove errors in the
data which might become persistent, and the use of "moving" regressions
to help compensate for population shifts.

Of these two ‘controls, the first is relatively simple for the
statistical analyst. As each forecast is gcompared with the subsequent
observed water yield, he will naturally notioe whether the deviation
is larger than might be expected by chance, If a t-test indicates--as
it did in the regression forecast computed for 1927--that such a devia~-
tion could be expected only rarely, it is wise to look for possible
causes and see that they are removed before the next season's data are

. collected. In a factory the machinery may be stopped while the super-
visors and technicians lock for otherwise unsuspected changes in the
manufacturing process that might have affected the product. 8imilarly,
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_Table §

Building up the Regressions of Water Yields on
Nater Contents of Snow in Successive Years

Y Tabulation of Date

: Ubservetions s - oums : Averares § No. years
Period 1 t Y 3 T Y & X ¢t Yy n
3 3 2 ' | ] : 3
191830 t 3 363.8 3 199.4 @+ 31.98 ¢+ 16.62 ; 12
: H ] ] H : - H
1918=31 ; 13.4 s 8.8 3 398,2 1 208,23 30,47 : 16.02 1 13
«32 4 35.1 3 1744 1 431.3 1 22546 1 30.81 ¢+ 16,11 : 14
1 ] : ] t t ]
1919«37 3 23,2 3 13.8 1 66544 ¢t 299.6 ¢t 29,76 t 16,77 19
«38 ¢ 28,8 3 2040 3 694.0 1 319,86 ¢ 29,70 : 15,98 20
Tt t : E t ] 1
1926-39 1 28.2 3 14.8 ¢ 448.,1 1 245.2 :+ 29,87 3 16.356 13 16
1928=40 t 19,2 t 13.6 ; 427.8 1 235.7T 1 28.62 ¢+ 165.71 15
1 3 ' | t : H
1930=44 ; 17.7 ¢ 185.0 ; 378,86 1 226.4 r 25.11 ¢+ 15.09 15
1931=46 3 24,5 31 15,1 ¢ S76.,0 1 228,8 ¢+ 25.11 : 15,24 : 16
? 13 t t t t t

1T, ﬁegroasigi Analysfg-ii§1§-15315- R

Statletio

jquares and Products

N B

t N N

g x? 2 XY 1 yé

t T N
(a) Unocorrected 88, eto. : 13,197.42 : 6,907.45 + 3,665.20
(v) Carrection Term, CT r 12,074,895 ) 6,345,29 ] 3,334.40
(o) Corrected S8, eto. : 2122 3 662.18 1 .

? 1 :

Procedure: 2
(2) Uncorrected S5 = 55,95, + X5, (or XY, or Y°) = 13,043.66 +
153,76 = 13,197.42. .
(b) Correction term = (SX)gq) ¥ X5)%/n; + 1 = (383.8 + 12.4)%/13 =
12,074,95

-

6,345,29.
(o) Corrected SS, as usual, is the difference between (a) and (b).

Correction term for XY = (383.8 + 12.4)(199,4 + 8,8)/13 =

TIT. Caloulation of Repgression Statistics (as in Tuble 3)

a2 ! Degrees of &__ Errors of estimate ¢ Regression
S? :+ freedom @ Sum of squares. : MNean square : coefficient
: ' 3 :
28l.54 ¢ 11 : 39,26 ] 3569 ¢t + 0,5008




the forecaster immediately examines ths snow-course data and streamflow
records. He may even take a look at the courses amd gaging station
themselves, and talk with their opsrators, If doviations from presorib-
od techniques are observed, thelr correoction ocannot help the past year's
forecast; but it may do a great deal to keep future forecasts as reli-
able as possible. If, on the other hand, no shanges in technique or
other sources of error can be found, it can.only be concluded that this
peculiar year was one of the chance events which must come to every
forecaster.

A more serious problem may arise if a real and propgressive change
develops in’'the relation of water yield to snow water content. The
forecaster should keep a constant lookout for this kind of "population
shif't,®™ so that he can take any necessary measures if it begins to be
noticeable, The technique can be nicely illustrated by the Snuke River
data: apparently such a shift actually ocourred in 1936 and oontinued
from that time on. The shift in these records, as it happens, may not
have been the result of climats or other uncontrollable chunges, but is
more likely due to & much simpler cause; one which might huve been re-
moved by 1938 or 1939 if the methods of statistical control had been
available for its deteotion. As indicated in Garstka's puper, in 1936
the Snske River courses "were incorporated into the Westwide system of
snow surveys coordinated by the Soil Conservation Service, at which
time the snow courses were staked out in the standard munner.®™ It seems
likely, Judging from the population shift which is epparent in the
records, that some of the courses may have been altered in this process.
Even  though no trouble might have been.expected to result from these
alterations when they were made, the statistical forecaster would have
‘detected the resulting shift before very .lonz, Then eny necessury re-
adjustments of the courses could have been made immediately, and the
only loss would have been a temporary decrease in the precision of the
forecasts,

-~

For our present purpose, however, let us suppose that sn examina=
tion of the courses and gaging station was made when the shift was
first observed, and that no ceause was detected. Then we can only assume
that there is a reel ichange in the relation of wuter yields to smow, and
must compensate for it as best we can.

But first you will want to know how the analyst can deteot the
onset of such a shift. The basis for his observations is shown in Tuble
6, which presents the several statistics that may be affected; a table
1ike this should be kept currently for each watershed.

Except for the "Deviation" columm, each line in the tabl? is com~
pleted when the forecast is made; and of course that colwmn is filled
in after the amotual yield has been recorded. As you go down through
the table, one line at a time, imagine that the lines below are blank
so that the information above is all that you have available. You will



notice several features of the data recarded up Yo 1935 or even 1936.
First, the deviations es observed from forecast ylelds are reasonable in
size and random in direction; none are larger than might eagily be ex-
pected by chance., Second, the variance of estimate tends to remain rough-
ly the same from year to year, And third, the constunts in the regression
equation vary only as one might expeot when nBW'random observations are
added,

In 1936 the deviation of the observed yield from the forecast was a
little larger, and both this year and 1937 are on the high side of the
regression line. By themselves these facts would not tend to arouse .
suspiclon, as the probability is still low; nor would the small but pro-
gressive rise in the regression constant  a. If the analyst happemed to
know of the recent staking-out of the snow oourses, these minor shifts
might lead him to inquire Into emy chenges in conditions which might havye
resulted, More likely, though, he would wait to see what another year
or two might bring. . :

By 1938 an unusually large deviation is accompanied by a further
rise in the regression constant--es a result of the series of positive
deviations-~and by 1939 the extra effect of this unusual deviation is
expressed in a striking increase in the variance of estimate, as well
as still another rise in the magnitude of a, '

Let us imagine that by now the enulyst has searched for amy possible
causes of these deviations; has falled to find eny; and therefore must
conclude that some uncontrollable shift is ocourring in the relation of’
water yields to snow water contents. If it is a true population shift,
his forecasts are likely to be affected by it for some time, even though
he mekes the best effort he can to remove its effects.

He is, however, able to take one useful fonm of action; he can
attempt to keep his forecasting equation as nearly abreast of the popula
tion shift as possible. This is done by dropping off some of the earli-
est yeara of the mmow course and water yield records, basing his regres-
sion only on more recent years. And from then on he employs a ﬂmoving
regression, dropping off the earliest year of his current regression
series each time he adds & neW'year. .

After some preliminary triels, for the 1939 forecast he decides that
his best course is to drop off the records for 1919-24, inclusive; end,
from 1939 on, to employ regressions based only on the most recent series
of 15 years. Thus, the 1940 forecast is calculated from a regression
equation based on the years 1925-39, and later years are -estimated from
similar 15-year series.

Now that we know what action the analyst took in 1539, we can lock

at the rest of Tuble 6 and observe the results. The effects of the popu-
lation shift and of the control measures teken to offset it are evident
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Table 6

Statistios emplo&ad in deteoting shifta in
the water yield-snow relation, Snake River

Y

14

t rorecast s t . Varience Conafunts in
t- yleld : Deviation : of estimate @ regression equation
Year ¢ inches : inches : (8y,x%) 1 a 1 b
I T . : o -3 3
1931 ¢ 5.9 ¢+ 2.9 3.5925/ t - 0,839 ; + 0.5477y
1832 ¢ 18,3 ¢ =0.9 3.569 : + L7599 ; + 0,5008
1933 ¢ 16,4 . =1.,5" & 3337 t 27874 «4973
1934+ 11,2 : -0,7 & ~ 3.255 t .7149 «4964
1936 3. 14.4 1 + 1,7 @ 3.052 : 0224 ¢ « 6016
3 : : s S 3
18936+ = 16.0 s + 2, 9*1’/: 3.041 g 7302 ¢ «4580
“ 1937 .- 12.4 s . + 1.2 H 3.342 H 8498 t «4993
1938 : 15.2 3+ 4,8%% ; 3.218 s 1.087 : «4934
1939 : 15,2 H - 0.4 H 4,256 H 1.448 H 04893
S H ’ H : : : P H
1940 :+ 11.4 : +2.29%s 4,648 '2.488 .a642%/
1941 ¢ 10.8 ¢ +1,4 -+ . 4,486 3 3.671 $ «4268
1942 ¢ 12,0 : * 2.5 - 4,399 : 4,220 : +4094
1943 ¢ 21,0 ¢ 4+ 4,2% 3 4,756 s - 4,252 t .4168
. 1944 2 11.4 . +1.6  : 5.418 H 3.368 H Q4546
1945 ¢ © 14,8 ¢ - T 0.3 4,732 t  3.513 $ «4611
- 4 ) H ] H )
: t : 3.981 :  3.312 : 04738
: : ] : $
_/ Variances and regressmn constants calcula.ted up to 1939 are based

on regressions of data from 1919 to the preceding year.

The asterisks indicate the probable significance of theae d'ifferencem
= probability. less than 0.20; s% = probability less than 0,06

(compare Table 2).

From 1940 through 1946, the varisnces and regression constants are
based on moving regressions, each including 15 years' data up to and
including the year preceding the forecast, The 1940 consta.nts, for
example, are based on the 1925-39 regression analysis,

If the forecasts had been made from regressions including all data
from 1919 to the year preceding each forecast, the deviations in

this columm would have been as follows, starting vith 1840: + 2.8,

+ 2.1, + 3.2, + 4.4, + 2.1, and + 0.9.
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in these statistics. First, of course, the variance of estimate jumps up
in a disturbing manner. At least in part, this probably implies a bias -
resulting from the shift; but it also means that we must attribute less
reliability to our forecasts than was previously pos sible. Next, the
deviations remain positive in direction; there is a tendency for the
yields to exceed the forecasts. And then, the regression constants exhi-
bit a degree of instability which results from adding more and more values
of X and Y which fall above the regression line. Finelly, though, we find
one good feature; the forecasts adhere more closely to the observed values
than they would have if calculated from regressions based on the whole
series of data from 1919 on (footnote "d®, Table 6). This improvement is,
of course, the objeot of using the moving regressions.

Because the shift in these data was abrupt rather than the slow trend
which is more likely to cccur in atrue population shift, the non-random
portions of these effects are probably more pronounced than ordinary. In
any case, the data serve to show the symptoms which can be used in detect-
ing this kind of shift and adjusting for it.

The mechanism of calculations in the moving-regression procedure is
ean extension of the method shown in Table 4, and can be carried through
with almost equal facility. It is only necessary to subtract the cldest
values of X and Y from the sums of both variables, at the same time that
new values are added, Similarly, the uncorreoted squared and products
of the oldest values are subtracted from the sums of squares and products,
in the same process with the addition of the newest values, With practice
and the aid of en electric ca.lculator, the whole procedure can be executed
with surprising rapidity. R

Careful use of these techniques for statistical control of the i‘ore-
casting procedure, combined with close coordination between field men
and statisticians, should provide the maximum degree of precision that
oan be gained from the oombination of water-yleld data and a single corre-
lated factor employed in & linear. regression, Further precision may
sometimes be gained by the use of additional factors, or by fitting curvi..
linear regressions if they are based on a sound hypothesis.

Curvilinear and Multiple Regrossions in Foreeastiné

In an article of thia kind.it is not necessa.ry to go into detail on
the use of these more complex regressions in water yield forecasting,
expecially because complete and interesting discussions are given by both
Ezekiel and Snedecor (Footnotes 2 and §). It may be desirable, though,
to indicate the roles that may be played by curvilinear and multiple re-
gressions and to show briefly how they mey be extended from the simpler
linear regression techmiques, with a similear atreamlining of proosdures.

Considering first the use of curved regression lines, it is essen-

tial that there should exist a logical hypothesis for curvilinearity,
which should also specify the probable shape of the curve in general



.terms. As previously suggested, the theoretical relation of water yield
to snow wator content might be curvilinear, though not pronouncedly so;
and this ocurve might be satisfactorily fitted by a quadratioc equation

of the forms:

E= a-'i’bx+°xz .;'l;........"'....u..!l.....'.t'..(lz)

In other cases the hypothetical curve might be of the logarithmio or
exponential form; then the “best fit" might be provided by transforming
the data for either X or Y, or both, to logarithms and fitting u straight
line to the resultinpg data: '

E

a +'b(log‘X), OF seescsassnssnsasscasesssesssasnssllda)

' 105 E= lo'g a + 'b(log X), for exa-mplﬂ o.oo.-.-.otcoo.oooo.(lsb)

Where no particular hypothesis as to the shape of thes curve cun be set
up, it may be desirable to fit a quadratio equution to the data as sug-
gested ebove. In this case it is eusy, in the ocourse of the analysis,

to test the validity of the curvilinear hypothesis by statistical methods.

All that is necessary is to add to the unulysis a set of values for
a second independent varieble (X,), with each item for this variable
‘supplied by squaring the yearly values for snow water coantent (X,).
Corrected squares and products are obtained for the various ocombinutions
of these X's and ¥, and then the regression stutistios are calculated by
means of equations presented in detuil by Snedecor (Chapters 13 and 14).
‘A5 & result, you will obtain a sum of squares for errars of estimate
corresponding to that supplied by the linear regression for the same data,
but with one less degree of freedom, The difference between those two
sums, on one degree of freedom, is a sum of squares attributable to the
quadratioc regression, and it can be tested for-significance by the stand-
ard msthods of variance analysis.

In interpreting the results, of course you will use the same caution
that is required otherwise in dedaling with sampling, especiully with
small samples, In this kind of test, your interpretation should be
greatly assisted by a good logical busis for or against the hypothesis
of curvilinearity and as to the shape of the curve., If, for exumple,
such an hypothesis is logically untenable, you will probably not bother
to muke the test. And in eny case, remember that about once in every
20 trials chance alone is likely to ;ive you results that ure "signifi-
cant™ at or beyond the 0.05 level.
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The use of multiple regressions may often be more profitable than the
fitting of curves, 48 our knowledge of variables that are correlated with
water yleld increases, we are likely to want to associste more end more
independent vaeriables with the one we need to forgoast: variables such
as total winter precipitation as well as the spring water content of snow;
solar radiation during the early spring, when evaporstion and sublimation
losses may be expected to subtract important agpounts of water from the
stored snow; antecedent soil moisture, as a measure of deficits of water
stored in the soil reservoir; stream discharge during the preceding
autumn, as an index of antecedent conditiong; and others whish have been
suggested und are being studied.

One variable which might be particularly valuable is the experience
of some highly trained end acclimated technician who has worked on a
watershed for some time, and has generated a "feel® for watersghed condi-
tions., As he dollects data on gtreamflow, snow water contents, and other
variables he may develop a current impression that, other measured vari-
ables being equal, this year should produce more or less water than usual,
Hydrologists are well aocquainted with this capaocity of trained and exper-
ienced teochnicians, but 1t is not ordinarily thought possible to inocor=
porate such information into a statistiocal analysis.

If, however, such a feel can be translated into numerical terms--as
an adjustment percent, for example--it can be added to the analysis as
© one more independent variable, and tested for its significence. This may
add materially to the precision of water yield forecasts, expecially be= -
cause the observer cun continually improve the usefulness of his own ex-
perience by watohing his progressive und repeated successes and failures,
The value of this variable will depend, of course, on the likelihood
that the technician can remain jin & single region long enough to make his
estimates contribute materially to the regression. To retain maximum
control over the information provided, such estimates should be kept as
a sepurate vuariable rather thun to be combined with the snow water content
as some form of adjustment. By this means the statistician can keep a
constant watch on the efficiency of the variable, and can help the tech-
nician gain experience and thereby add precision to the forecasts.

-Whatever the variables are, they can be added to the regression
equation in any desired number and combination of curved and linear rela-
tions, as long as enough degrees of freedom are left to provide a reli-
able estimate of the variance of the forecast. Ordinarily, for water -
yield data, at least 9 or 10 degrees of freedom are required after all
deductions have been made for curvilinearity and independent variables.

As in the test for curvilinearity, the value of each independent
variable can be tested by statistical methods. When, as a result of these
tests, the forecaster is fairly certain that one or more of the variables
being tried out does not contribute significantly to the precision of
hig forecasts,ithe variadble mey be dropped from further consideration;
end, if desired, its place can be taken by & more efficient variable,
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" Another possible elaboration of tho linear regression technique is
to make preliminary forecasts from the data uvullable early in the eeason,
and then to improve these forecasts as the year goes on by adding later
measurements as new independent varlebles. ilhsre this nethol nas bueen
applied, the precision of the later forecusts is gensrally swen to be
increused.

48 more independent variables are added to the analysis, nuturally
the mechanical work of calculating the statistics becomes more lubori-
ous; but these ocalculations can be streamlined in a manner similaer to
that outlined for linear regressions, After the oorreoted squares and
products are obtained for all the necessary combinations of X's und Y,
the regression coefficients are caloulated through the use of simultan-
eous equations. Their use in this kind of enalysis is presented in de-
tail by Snedecor, together with methods for caloulating and employing
the so-called "Gauss multipliers,"™ required in obtaining the varianoce
of a forecast in multiple regression. ithen the forecasting equution
assumes the form

E= a+ blxl + 'bng + 'bsXs ‘ll..l...l...t..!lllllll.(ls)

for example, the corresponding variance equation isi

2 _ 2 2 2 2
e = By g (1 +1/n+0pyx,%+ 020X, + 0z4x,

¥ °1211!.x2 + olsxlxs + °23x213)""'"""""'(17)

where the various o¢'s are the Gauss multipliers, sometimes termed
"elements of the inverse matrix™ and calculated by the method of deter-
minants from the simultaneous equations; and the x's, as usual, are
deviations from the means of X.

With this sketch of the somswhat more complex methods involved in
curvilinear and multiple regression, we have completed an outline of
statistical procedures that are adapted especially to water yleld fore-
casting, It is sincerely hoped that techniques such as these will help
forecasters make their predictions more useful and precise,

Thanks are due to the staff of the Bureau of Reclamation's Division
of Bydrology in Denver, Colorado, for supplying the data for this series
of analyses and for other aspects of their friendly cooperation in re-
cent years. Special acknowledgment is due also to Dr. R. A. Fisher and
his associates and followers, who developed the statistical theory and
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- mothods on which thess technigues are based;. and 0 Dr. George W. Snedecor
and his asscoiates at Iowa State College, who have done a very great ser-

vice in making statistiocal methods widaly used and undorstood by workers
in the biélogiocal soiences, . ,



Sm‘bol

CT

D/F

E

Fiducial
Limits

M

GLOSSARY OF SYMBOLS AND TERMS

Definition

The "y-intercept;® in the regression equation for & simple
straight line, a = ¥ ~ bX.

. The regression ccefficients. In a. linear squation,

b = Sxy/sx2,
(as ¢ 12 Cyos etcs) The Gauss multipliers, calculated by the
method of éeterminants from a set of simultaneous equations.

Correction term, used in analysis to correct the sum of
squared observations (sz, SXY, and SY?) to the "sum of
squares" or "sum of products™ of the deviations of observee
tions around their sample average. CT = (SX)2/n, §XY/n,

or (8Y)2/n, in linear regression.

Degrees of freedom: n-m, where m is the number of vuriables
(including ¥) in an enelysis, or the number of constunts in
the regression equation. Without regression, D/F =n -1,

The forecast value, obteined with or Withou‘!; regression.

The upper and lower limits, within which the actual value is
likely to fall, as measured on either side of a forecast
value, Limits =E + tBE. - : _

The true average value for a population of observations, as
water yields,

The number of observations in a sample set of data, as ocome
pared with eese '

[
The total number in u larger set (or population) of data, of
which thé smaller set may be considered a sample,

Correlation coefficient (in simple correlation of two vari-

ables):
r = & (sxy)2/(sx2)(8y2) » or *{sP2/sy2

Standard deviation caloculated from a set of sample observas °
tions; a sample estimate of ¢, the population standard devia-
tion. The equation for calculating sy 1s: .

oy = £V (s0)%a » or +VET =307

n-1 nel
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Symbol | Definition *

B= Stenderd error of a sample average of Y. Without regression,
¥ sp=y sy,z/n . With regression and for a fixed set of
Xtg, 8% = * Vsy.xz?n .
8, .x Standard error of estimate, expressing the variation of observa-
ye tions around the regressicm line. In a linear equation,

Byix = EVsdy x%/n -2 or ¢ Vsy? - s§%/n = 2
5y Standard error of the regression coefficient. In & lineur equa=
tion,
Bb = t Vsy.xé/ sz

Standard error of a -fereca.st. Without regression,

8 = + By V1l + 17n;

with regression

sy = ts, 0 Vi+ 1l/n+ 12/§?;2

50 Standard error of a point on the sample regression line in esti-
mating the true population value for any given value of X:

=% 6, Vi/a * x/ox2
S ‘A symbol meaning "sum of,"
SS A sum of squares or products, as sz, sz, SXY, Sxy,. etce
sh2 Sum of squares attributable to regression. In a linear regres-
sion, g 92 - (Sxy) 2 /sz |
. de_xz Sum of squares of deviations from regression = Sy? - 892
t Any single. ﬁlﬁe of student's distribution of t ; for a complete
table, see "Statistical Methods,™ by George W. Smedecor, 4th

Edition, Page 65. Iowa State Gollege Press, 1946,

X Y Any sample observation of an independent variable (X) or dependent
varieble (Y).

- 28 =



Smbol Definition

%Y The average of a series of sample observations of X and Y.

X, ¥y The deviation of any single sample value of X or Y from
the sample average,

Varianoce Squared standard deviation.



