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With rapidly growing development and uses of water, a correspondingly 
great demand has developed for· advance estimates or tho volumes or rates of 
flow which are supplied by streams. Therefor~ much attention is being 
devoted to hydrologic forecasting, und numerous methods have been tested 
in efforts to make increasingly reliable estimu~es or future supplies. 

. . . 

This problem can be divided into two main parts• first, finding one 
·or more factors that can be measured in adv1111ce or the runoff to be pre­
dicted and that are hir;hly correlated with it; ani second, working out a 
reliable method for expressing this .correlation and for predicting the 
expected yields or discharge rates. 

0 
• An exc~l,lent illustration or the first part or the problem h given 

by Garstka ~: who describes work that he and other technicians or the 
. Bureau ·or Reclamation have done in improving the precision of water yield 
forecasts on the :Snake River watershed in Wyominr;. Good results were ob­
_tained by weighting the water contents of snow measured at each sncrrr course 
by the relative area of the watershed to which the course data should apply. 
From this work Garstka o\>tained an •elevation-weighted• average water con-

- tent or snow for each year, which could be correlated w1 th the water yield 
\for the subsequent period ~rom April•through July. Such investigations are 

. 
"]:/- Garstka, •· U., Interpretation .of· snow surveys. Trans. American 

Geoohvsical Union 30(3), 412-20. 1949 •. 



very important as the precision of forecasts can be pro~ressively improved 
only by finding and measuring variables that are more highly correlated 
with runoff. 

After some factor or factors have been measured, however, the second 
phase of the problem enters the picture. It becomes necessary for the 
forecaster to 'Mlrk out 11. reliable means of expre ssin.-; the relation of 
water yields to the measured factor, and of obtaining forecasts of future 
yields through the use of this relation and. new data on the correlated 
factor. Because the relation cannot be exact 11.nd the foreoasts.are there-. 
fore subject to error, it is also necessary to ,provide ap estimate as to 
the m11.cnitude or this error. 

.. . 
This statistical aspect of foreo11.sting has been receiving increased 

attention. Although a number of workers still employ the graphic methods 
which are commonly used by hydrologists, others are applying the methods 

· of rec;re!!l}ion and correlation analysis which have been presented by · . 
Ezekiel Y and others. When these are modified to fit the requirements 
imposed by rolatively short-term records, they are well adapted to use 
in water-yield forecasting. · 

It is the purpose of this article to assemble and'present available 
knowledge on statistical methods that can be applied ~o these problems, 
and particularly to small eample&J to.reviewbriefly the llssumptions.that 
underlie and limit the methods; to outline &:\·efficient technique for 
analyzing the required data and.for making the forecasts, together with 
their errore and fiducial limits; 11.nd to give 11. detailed illustration 
and test of the technique, using actual data from the Snake River watershed. 
A useful part of this teohnique·is the detectio~ and adjustment of die-· 
crepanoies in the·d.ata and shifts in the population, so as to provide im-· 
proved aoouraoy and efficiency with a given set' or variables. The dis- · 
oussion wi 11 be pointed mainly at those whO 11-re. familiar with hydrologic:· . 
forecasting and mathematics, but not with this kind of statistical analysis, 

The Method Without Regression 
. . . . 

To start examining the statistical techniques of forecasting, it may··~ 
be desirable to imagine thllt we 'are just beginning the study of a water­
shed with a view· to foreoastin~ 111nual, water yields from snow: stored on 
the area. At this early sto.c;e in .aur work we have obtained only a short '· · 
period of records from a gaging station at the mouth of the watershed. 
Also, we are·installing a series of snow cotirses at Which~ ~on sample 

Ezekiel, Mordecai. Methods of Correlation Analysis~ 
pages. John Wiley snd Sons, New York. 1941• ·, 
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'j;he amount Of water stored in ll!lOW_about Aprj.l l Of eaoil year, before t11e 
spring runoff bes;ins. Tnis case may eee111 aou.demi0, as foreo~<sts are not 

. ordinarily made under such oondi tione. But 1 t will servo 11.s a bas ill tor 
outlining tho basic assumptions and principle~ th~:~.t underlie hyllrolo,~io 
forecasting. 

At t~time we have no statistical control through which foreou.sts 
may be incr~ased in preci~OnJ all we have is a set or datu. from which 
can 'be c!Uoulatlld an ~t.verage water yiold and an oeti~to of ita variu.tlun 
from year to year. Hence uny i'orooaata will necessarily be quite unpro­
oise, thougq even now wo oan givo the ~tor uoor some idell. as to what he 
may expect. As _wo do so, ono or two !\uldamental assumptions need to be 
made. These should be kept in ~d as we proceed with statistical 
analtses, although experienoo has ~hown that modorate.doviations from 
their requiraments .have only minor_ effeote on tho reliability or forecasts. . ' ~ - . . 

For one thing, wo assume that the availo.blo data may be considered a 
random sample of a larger population of data, and tnat the next you.r 1 s 
runoff (as yet unmeasured) can be considered as drawn independently from 
this same population. ·In thinking of tho sample sot or n yoara, we ao.y 
that its average water yield (y) is a sample estimate of the true u.voro.Ge 
~) for the indefinitely longer sories of .N years. Second, we u.asume 
that the deviations of the aqnual water yields around their averu.ge vu.luo 
may bo taken as ro.njom and normally distributed, at least within reason­
able lWts. At. first gl~oe these assumptions noay not seem well-fourtded, 
especially because we are de~<ling with a consecutive aories of ~~servations 
rather .than a true random eample. It has boon repeatedly snown,.:::t nowev11r, 
tqo.t deviations of individual yearly rocords like these can be tuken u.s 
random, and th~t.t ordinarily oyolio trends w-e not detectable vrithin short 
series of recorda. · 

. 
With the auumptions in mind, we ou.n try the method by estimating 

the lowest and highest amo~ts oi' water that the water Wier mu.y expect in 
the first soason following o~ short series of data. ~e know thu.t the 
range of_past yields is not likely to be as great as for a longer record, 
but we can estimate the possible deviation of a new year from our uample 
average.A 1This is derived from the standard deviation, calculu.ted as 
follows:!~ 

••••••••••••••••••••• (1) 

See, for example, "The Yield ot Streams as a Measure ot Climatic 
Fluctuations, • by W. G. Hoyt and W. B. Langbein. Geographical Review, 
Volume 34, No. 2, Pages 218 to 234, 1944. 

For definitions of ~bola, see Glossary of Symbols and Terms, u.t end 
of the paper, 
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Expressed in words. the st~dard deviation of Y equ~ls the square root of 
the summed squared deviations ("sum of squares") of the semple observa­
tions: o.roUlld their man. divided by the number or degrees or freedom. 

In thinking about the possible uagnitude or o. new·annual water yield• 
we realize that it lllllY deviate in two ways from the sample ·averagec the 
deviation or the new yield from the true population average. and the devia. 
tion or the sample average from this true average or N years. These devia. 
tions may be expressed asz · ' · 

Y- y = (y -AL) - (Y -..tt)J. •••••'•••••••••••••••••••••~.(2) 

and their combined variance (squared st~dard deviation) ii estimated.by& 
. . . ~ . 

2 2.t. 2· 
S = S 1 m + S • B y y or ·• 2(1/n ~ 1) •••••• ~.-•••• .-.

1

: ••.• · ••• (3) Y' . • 

where BE 2 is the varimce or the yield, to be forecast. 
. ' . 

The square root of this variance.· the standard error of the forecast. 
provides us with a basis for estimating the fiducial limits between which 
the next year's water yield should lie. with any"desired degree'or likeli­
hood. This estimate is given by multiplying .the standard error o5 ,a tabu­
lated value or Student's "t"• obtained from any published table. 2/, A . 
portion of a table of t is reproduced in .Table 1. For samples or· any. . 
size. t givas values corresponding to the conventional multiples or the , 
standard deviation which are used in lerge samples; For a likelihood or 
"19:1.~ for example (probability 0.05 in the table) •.. t is about 2 in 
large samples. · 

For the forecast we are about to make •. suppose we select ~ to give 
a probability of 0.10. Then we Otul say that. Ullless next year's yield is 
so extrame that it is likely '\;o ooour less than once in, 10 years. its 
magnitude should lie between the fol.lowing, ,limits: · 

' Snedeoor. George W. "Statistical Kethods." Table 3.8. page 65. 4th 
Edition. 485 pages. Iowa State College Press. 1946. 



Table 1 

Valuea of Student'• t 
Probabil_ity of aLar er Value of t, 

D : 0.5 r 0.2 t 0.1 r 0.05 t o. 2 
: . I I. I I I I 

1 t 1.00 I 3.08 I 6.31 t 12. 7l l 31.82 I 63.66 I J. 
2 : .82 I 1~89 I 2,92 I 4.30. I 6.96 I 9.92 I 2 
3 I .76 I 1.64 I 2.35 t 3.1a l 4.54 I 5.84 I 3 
4 I .74 I 1,53 I 2.13 I 2.78 I 3.75 I 4.60 I 4 
5 t .73· : 1,48 . I 2·.o2 t 2.57 I 3.36 I 4.03 I 5 

I : I I I I I 
6 • ~72 .I lo44 I 1.94 I 2.45 : 3.14 I 3.71 I 6 .. 
7 : • 71 I 1,42 I 1,90 I 2.36 I 3.00 I 3.60 I 7 
8 : .71 : 1.40 t 1.86 I 2.31 I· 2.90 I 3.36 I 8 
9 I .70 I 1,38 I l.83 I 2.26 I 2.82 I 3,25 I 9 

10 I .70 I 1,37 I 1.81 2. 23 I 2.76 I 3.17 I 10 
I 1: I I I I 

11 • .70 I 1,36 1 loBO 2o20 . I 2.72 I 3.11 I 11 • 
12 I .70 : 1.36 I 1;.78 2 •. 18 I 2.68 I 3.06 I 12 
13. I ~69 ' 1.35. 1 lo77 2.16 I 2.65 .. 3.01 I 13 

·'. 14 I ,69 : 1.34 I 1.76 2.14 I 2.62 I 2.98 I 14 
15. I .69 I 1,34 I lo75 2.13 I 2.60 I 2.95 I 15 

: I I I .. I 
16 : .69 I 1,34 I 1.1s 2.12 I 2, 56 I 2.92 I lEI 
18 I .69 I 1,33 I 1,73 2.10 I 2.55 I 2.88 I 18 

'20 J .• 69 I 1,32 ;' 1. 72 ' ~.o~ I .2.63. I 2,84 I 20 
t I ' I ; I I 

& 1.'12 • z.83 21 r .69 I 1.32 I 2,08 I ,2.52 l I 21 
23 I • fi8 I 1.32 I 1.71 ' ?.or I 2.50 ' 2.Bt ' 23 
25 : .68 r 1.32 & 1.71 .. 2.06 I 2o4B : 2.7~ I 25 

a I " I I ' ' 26 t: .sa • 1.32 I 1.71 t 2,06 I 2.48 I 2.18 I 26 • 
28 ' .68 I 1o3l I 1,70 I 2.05 I 2.47· I jl.76 I 28 
30 ~ ,68 I 1,31 I lo70 I 2.04 I 2.46 I 2.75 I 30 

: I r I r . I J 

-= .675 ... 1.282 I lo645 I 1.960 I jl,326 I ?.576 l oct 
r I ,I I I I I 

This is a shortened edition of Tal;lle 3.8 in •statistical Methods," 
by Snedecor (see footnote 6), 

- 6-



Fiducial limits • y + t lQs • • y ... 1 •••••••••••• (4) 

To show l;!CJI' this nethod is used, l,et us t13st it on some or the dp.ta 
from Table 2 ~, looking only at Colwmn 3t . Wate~ Yiel4, Inohos. We · 
may imagine ~lao that·at present only the ye~l 1~~9~26 a~e ~va.ilable, 
and we want to estimate the fiducial Umitlil 'betwe~ whiqh '!;he 1927 y.iel4 
may lie. Based on '!;he ve.ri~~otion ot th!tlle 8 re~~ore' data, we ut1.Du!.tet 

. • ' l . 

Then the expected fiducial limits, with odds of 9.10 and on 7 ¢egrees or 
freedom, are · · · 

Limits • y t (1.90)(4.29) v'i.i26 

= 15.6 t 8.6 = from 7.0 to 2 •• 2 inches or ~ter. 
# ' • ' ~ 

If desired, simibr o!Lloulations may be made WI. th e. l~lce~ihopd 9ther than 
0.10. If we want to be more oonseryative, we ~ght decide to use ~ 0.05 
probsbilityr since t 0 05 on 7 degrees ot·freedom is 2o36, t~ expected 
yield should fall betw&an 4.8 and 26.4 i,n~e11 (that is, 19.1$ t· 10.8). 
And at the 0.50 level of t, the oorr~llllonding r~gll or th!l expected yield 
should be from 12.4 to 18.8 inches. ' . ' . 

As it happens, the yield in 1927 wa11 \Ul~sually high, exceeding the 
upper fiducial limit at the 0.10 level or. t -- an evant that may happen 
about once per tan trials, in. the lons run. 1'hil ooo\U'renoe may·JJB.ke 
you 110nder how other years behavedJ so,. Ill though it :1.11 not considered a · 
sate procedure to forecast po tar into the· future from a mnall sample, 
let us look at the rest or th!l yield ~ta in Column 3 of both T~bles .2 
and 3, and see hOII'many tell outaid11 the var~ous fiducial boundaries 11s 
estimated from our 8-yea.r sample. ·ln'the 19 years after 1926, 11 y~elds 
(58 percent) remained inside t~e limits specified on lal·probabllity; 
only 2 tell outside the 0.10 limits; and none exceeded or tell below the 
0.05 limits. Thus, it seems thet these data conform reasonably well to 
the mathematioi!J. model associated with our tund~~~~~ental assumptions •. 

Data in these tables obtained from "Interpretation of Snow Surveys," 
by W. u. Garstka (see footnote 1). 
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Table 2 
UC I p #I 

. Annual Jrater Yields INld lf~~oter Cot1te~t ot &!POll' 
:Snoke River Abovt,t J~~oo~IJOil f,(ike, lfyo~illS 

(1S:).9-lll30) 

(l) I (2) I u> 
1 Water oo~~t 1 Water Y elci 

Year 1 of snow ' b 
I I 

1919 ·= 2;5.1 I 10.5 
1920 I 32.8 I . 16.1 

I I 

1921 I 31.!1 I . 18.2 
1922 I 32.0 I 11.0 
1923 I. 30.4 16.3 
1924 I 24.0 10.5 

' 
1925 I 39.5 23.1 

I 

1926 .I 24.2 12 •• 
1927 I 52.5 24.9 
1928 I 37.9 22.8 
1929. I 30.5 14.1 
1930 I 25.1 12.9 

I 
Total I 383.8 199.4 

r. 
Average ' iS1.98 16.62 

I 
1931· t 12.4 ·I 

t I 

~ Elevation-weighted average water o~tellt 
of snow on snow courses, about April 1 
each year.. . • 

'EI Total yield of water tram. l!'aterahod above 
Jackson Lake, April through July each year. 
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Forecasting With the Aid of Regression 

Linear Regression 

Results like these give the forecaster confidence in statements 
based on statistical methods; although, as time goes on, he is sure to 
run into enough of the •unusual n years to keep him conservative. But 
even so, it is obvious that forecasts with such wide fiducial limits 
are not very useful, and that it is essential to increase their preci­
sion by any practical means. This is,the reason tor the perennial 
search of forecasters tor variables that are highly correlated·with 
water yield and can be measured ahead of timet than the probable magni­
tude or the new yield can be estimated with a smaller error. 

In the Snake River data of ~ables 2 and 3, such a variable is sup­
plied by the elevation-weighted average water content of snow on the 
watershed, as sampled about April 1 of each year. Although for our 
preceding example we assumed that snow surveys were not being ·made until 
after 1926, actually the Bureau of Reclamation started these measurements 
in 1919 and has obtained them each year since· then. 

With these snow survey data available we can use a better forecast­
ing toola the regression of water yields on anew water content. In 
Garstka's article this relation is expressed graphically, and the fidu­
cial limits shown as a "band of error. • ·This method of analysis is 
widely usea and gives satisfactory results where moderate precision is 
required. If the data fail seriously to meet the necessary statistical 
assumptions, it may be the soundest method. .But in most cases mathemati­
cal control, using least-squares regression and associated statistics, 
is likely to give more reliable results. · 

Before we demonstrate this tool let us reconsider our preliminary 
assumptions (page 3) and see how they need to be modified. The first 
assumption is unaltered by the introduction of an independent variable 
(IJ, the water content of snow. The second, however, must be changed 
somewhat; we now assume that the deviations of water yields (Y) around · 
any single value of X are random and normally distributed. Bote that 
the values of X. themselves need not meet this requirementJ but any values 
ot Y are assumed to be drawn in a random manner from all possible Y' s 
corresponding to a particular value of ~ Ordinarily this assumption and 
the first one may be considered fairly safe in the analysis of water­
yield data over relatively short periodSJ the second, .in tact, is likely 
to be safer.than its analogue when regression is not employed. But there 
is another assumption that may occasionally be importantJ if it is 
seriously violated, the use ot least-squares regression tn this kind of 
analysis may give unreliable results. It is assumed that X is measured 
without error, either errors of measurement or so-called ~iologioal 
variation. • If this assumption is untrue, the slope of the regression 
is biased toward the horizontal, and the error of the toreoas:J; • ...Uay be 

}"~ ·~ 
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increased.1f Ordinarily, however, variations from even this assumptio~ 
need not cause any material concern unless the errors in X QQcome lar~e 
in relation. to the total variation in x. . 

Finally, the assumption ~~ made that the vf.f'iatj,Qn in Y is not 
correlated with tho magnitude ot ita ~1111• 'but rem~e eGaentially homQ• 
geneous throughout the range of the re~rose'-on. A n9tabl." an4 fairly 
frequent exception .to thts assumption ooc1.1i"a when the variat'-o~ ~n Y may 
properly be. expressed as a pfilrce~t~e of' y, and the "scatter• ot pl9t'f;;ed 
points around the regross,.on l~e gro~ wider with ~or?asing ma~it~d~s 
of' X and Y. In such cases ~t is ~dviuabl.o ~o trans£9~ all the dat~ 
into logarithms and lll\alyze them in this i'Ol"lllo· · · 

As an accessory reserv~tion, when :work:!,ng ~ th · -11 sa.rnp.les (say, 
10 to 15 years), the forecaster should use oare an~ conservati~ i~ 
interpreting the results of his IIJlalysos and b. (j.epencll.ng on tho calou­
latei accuracy of the forecasts. This caut~on appl.iea eepoclally it tile 
range of' available data is relatively small, so that i'urt~or s~ling 
might disclose a wider range and perhaps 11, groater degree Qf variation. 
Much assistance can be provided, of' oo~roe, by past expori~oe and tho 
characteristics of' other sets of' data from ui~ilar BQ~roes. 

Atte~ thinking over all ~ theGe :prpcautionp, you may i'ofill that it 
is he~.rdly safo to make forecasts by lltatiGti<~al lllf)tho\ls. Like~ any other 
sharp-edged tool, to be sure, these teo~iquell may cause unfortunate 
consequences if' they are misus~d; but when C)~etully ~ skillfully 
handled they will give precise results witb a great deal qi' efficiency. 
Thus the answer to any doubts ie JJ.ot to lea"le tllie tool alqne,, put to 
handle it with the necessary ski11-

With the fairly saf& belief that our data tit the vario~s ass~tions 
reasonably well, we can now determino the relation be~~en ~ter yields 
'and snow water contents, and can set up the technique for .forecasting and 
estimating fiducial limits by the least-squares metho4. First, as in the 
first example we must consider that our short series of years (say 1919-. 
1930 as presented in Table 2) provides only a sample esti~te·oi' the true 
average values for both X and Y, and of the true relation between these 
factors if it were to be calculated from the whole populatioJl of N pll.irs. 
of values. We must also set up some logical hypothesis about the true 
shape of the regression line: whether it is straight, or what form of · 
curve it ·should assume. Although we might argue theorotioal+y.that the 
regression of water yields on snow water content should be a curve that 
is concave upward, .this shape is ~;enerally undetectable within the range 
of' observed data. 

2( c. Eisenhart, The Interpretation of Certain Regression M~thods, 
Annals of' Mathematical.Statistics, X, (2), 162-186, 1939. 
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Because this seems true of the Snake River data, it seems desirable to 
make use of the simplest hypothesis: that the true regression is satis· 
faotorily fitted by a straight.line, a sample estimate of ~oh is pro­
vided by the familiar linear equationr · 

E = a+ bX = y+ b(X~ i1 ••••••••••••••••••••••••• (6) 

Associated with. this sample regression e~uation are two kinds ol 
error in its estimate of the true equationr the error of the "origin,• 
a, and that of the regression coefficient, b. fhe variance or the origl 
is estimated by: 

z 21. ' ~ . = sy.x 1n, ••.•••..............•......•....•. (s) 

where Bv.x is the "standard error of estimate" of the regression aquatic 
The squlre root of s-2 may be stated as the "standard error or the mean 
of Y, when X is. heldy at the mean of X. • Correspondingly, the variance c 
the regression coefficient is estimated byr 

~2 = sy.x2fsx2, ••••••••• ~ •••••••••••••••••••••• (7) 

where S 2 is the summed squared deviations of the sample observations ol 
X arounli thai r me an. 

Whe~ these varionces are. combined, we can obtain an estlmate of 
the variance of the sample regression line in estimating a point on the 
true line, for any single value of' Xr 

t12 = By.x2(1/n + x2/sx2), ••••••••• .' •••••••••••• (8) 

where 9 is a sample estlmate of the point at ~ic~ an ordinate erected 
at any value of X (as Xi) will intersect .the true regression line; and 
X is the deviation of t&e desired single value of X from the sample 
mean of X. 

If you will glance again at our first forecasting nethod withou1 
the use of' regression, you will note that the whole expreuion in Equa­
tion {8) is analogous to the first term (sy2/n) on the right side or 
Equation (3.)1 it expresses theilerror of a sample averuge trend in es­
tima:ting the true trend. Thus Y is in effect a value of y calculated 
tor a single X. But if, instead of estimating a new mean y, we wish 
to obtain a single new forecast of Y corresponding to a new value X, 
we know that it will vary about the sample msan y so that an addition· 
al element of error must be included in calculating fiducial limitlo 
In order to complete our statement of' the variance of a forecast, we 
must then add to Equation (8) a term which corresponds to s 2, the 
squared standard deviation. As you will realize, in our lilear regres­
sion analysis this term is given by a 2. Thus the final expreuion 
for the variance of a forecast in a lln~ar regression analysis may be 
stated asr: 

-11-



For those who are not familiar with th!!!¥1 methods, very clear and 
readable discussions are given by Snedeoor !f. . 

As in the anal:ysis without regression, the standard error of the 
forecast ( "t~ ) is Dmltiplied by an appropriate value of t in order 
to provide an estimate or fiducial intervals around the forecast E: . . . 

Limits= E t t~ •••••··~··••••••••••••••••••••••~(10) 

For a simple linear regression such as we have been discussing, the 
fiducial band around the regression line is shown in Figure 1. Because 
of the likelihood of error associated with the slope of the sample re-· 
gression line in estimating the true regression, the lines bounding this 

, band are not parallel to the sample regression line. On the .contrary, 
the fiducial limits of a forecast annual water yield grow larger as the . 
average snow water content deviates more and more from the mean; and they. 
may be very large if forecasts are made from values of X. that are close 
to or beyond the range of available sample data. 

Now we can illustrate the use of statistical control w!. th an example 
employing the figures on both water yields and water contents of, snow in 
Table 2. The procedures outlined in Table 4 lead to the calculation of 
several statistics which are used in obtaining a forecast for 1931, and 
in estimating the fiducial limits of the forecast. 

First of these is.the regression coefficient, which is calculated 
from the corrected squares and products, and incorporated into a linear 

·regression equation such as (5): 

:E = y + b (.x-;x) = a +.bX 

= 16.62 + 0.5477(.x-;31.98) = ~.5477X - 0.8954 

By inserting the average result or the 1931 snow surveys into this· 
equation (12.4 inches, see bottom of Table 1) we can obtain a forecast of 
the most probable water yield for this new year: 

y See foo'blote 5. Read especially ChaPters 
regression, correlation, and covariance. 
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Table 4 

Regression of }fater Yields on Water Contents of Snow 
Snake River (1919-1930) 

t. Calouiation or sums of Squares . 
t Squares and products 

' Statistio 
I I I 

x2 I I : y2 
I I I 

(a) Unoorreoted sum of' squares, eto. 
(b) Correotion term 

I 13,043.66 I 

I 12,275.20 I 

I 768o46 I 

6,798.33 I 

6,377.48 I 

420o85 I 

3,577.76 
3,313.36 

264.40 (o) Correoted sum of squares, eto. 

Procedure a 
(a) Uncorrected sum of squarest ~ + ~ + •••••• x! = sx2, 

: 23.12 + 32.82 + ••••• 25.12 = 13,043.66. . .. 

And, for SiY = (23.1)(10.5) + (32.8)(16.7) ••• (25.1)(12.9) 

=· 6, 798.33; I 
- ~ •,· 

with a similar prooe"dure for sY2, produoinf!: the figure 3,577.76 
(b) Correction term (for X) = (sx)2/n = (383.8)2/12 ~ 12,275.20; 

for XY, it 1st (SX) (:SY)/n = (383.8)(199.4)/12 = 6,377.48; · 

with a similar procedure for SY2, produoln~; the figure 3,313.36. 
. ' 

(c) Corrected sums of squares and products are obtained by subtracting 
. . 

Line (b) from Line (a), giving sx2, Sxy, and sy-2; as, sx2 = 768.46 

II. Calculation of Regression Statistics 
(1) I (2) I (3) (4) I (5) 

I Errors of estimate I Degrees of 1 Regression 
s92 I freedom 1 Sum of Squares 1 Mean square 1 coefficient 

I I : I 

230.48 I 10 • 33.92 I 3.392' I + 0.5477 • 
: : :· . : 

(2) Degrees of freedom= n-m, where m is the nwrber of variables; in 
· simple linear regression, n -· 2. 

(3) Sum of. squares for errors of estimate = sy-2 - S~ = 264.40 -
230.48 = 33.92. 

(4) Mean square _(errors of estimate) =Sum of squares/DF ~ 33.92/10 
. = 3.392 . 
(5) Regression coefficient= SxyjSx2 = 420.85 / 768.46 = + 0.5477 
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E = (O.ij477)(12.4) - 0.8954 ~ 5.9 ~oheo ot water. 

It is still early in 1931 when thio toreoaot is made, so or course 
we have no knowledge as to the actual 'IY8.ter yielci for this 1l'arJ but we 
can estim~te the probable r~e within whiOh it phould lie,, on ~ de­
sired odds. This prooediU'e is begun by oaloulat:lng thll var~anoa or the 
forecast, using Equation {9)t • 

. 2 
= 3.392 /J.083 + (12.4 - 32,0) /768.4g 

= 3.392 (1.583) = 5.3695 

You will _notice how much the variance or the forecast has been atfeoted 
by the large deviation or the 1931 water content or sn~ from the sample 
mean •. Compared to the variance or a forecast whe11 X is held at the mean 
ot X {as estimated by By.:a:2(1.083)), this variance is about 46 percent 
greater. 

From the calculated variance we OS!l now qbtain fiducial limits ot 
the forecast (Equation 10) at any desired probubility level. It we 
choose the 0.10 level and with 10 degrees of freedom, the limits area 

E t t s = 5.9 t 1.81V5.3695, or trom 1.7 to 10.1 inches 
.10 E 

'of water. You might also like to figure the limits at the 0.50 levelJ 
these would be: 

5.9 t (0.70)(2.32), or from 4.3 to 7.5 inches. 

Then you will want to convey this information to the water user, perhaps 
using a statement like thist 

"For 1931, the odds are even that the .April-Jdy yield ot 
water will be between 4.3 and 7.5 inches. This might, ot 
course, be an unusual year. Unless it is the kind that oomss 
only about once in a decade, however, you will get more than 
-1.7 and_less than 10.1 inches or water.• 

Perhaps you can worlc out a phrasing that is better suited to your needs. 
But the. important thing is to tell the water user the real limits between 
which his water yield should lie, rather than to give him an •exact" 
figure which, sooner or later, is sure to weaken his confidence in your 

, predicting ability. As to this particular forecast for 1931, obviously 
its precision still leaves somsthing to be improved upon1 but at least 
it is ta.r better than the statement we could make without the aid ot 
linear regression. 
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When the 1931 water yield has actudly been measured (8.8 inches• 
in the top line of T•ble 3), we can see thet it feU safely withir/. the 
fiducial lilllits at the 0.10 levelJ it deviated only 2.9 inohes from 
the forecast value. It you wish. you· can calculate the probable fre­
quency with which a deviation of this ai&e is likely to occur, by cal-

. culating for this particular fcrecastt 

t • (Y - E)/a3 • 2.9 / 2.32 = 1~26 •••••••••••••••••• (11) 

By looking up t (on 10 D/F) in Table 1 we can see that .this kind of 
deviation is likely to occur about once in tour trials in the long runt 

. the probability lin between o.a and o.s •. . 
To show how thia method of forecasting worked out for each of a 

aeries or forecasts up to alld including 1946• Tabla 3 gives the forecast 
value for eaoh year. the difference between observed end forecast yield•• 
the atandard error of eaoh forecast. and the value of t obtained by 
uana of Equation (11). It we co111pare thue t'a with the t~~lar 
·values for the associated degreaa of freedom, we can sea how tha·tora­
caat deviation• for thus nn" yeara conformed to the theory. .All shc'lll 
by the aaterhka, .only 1 nf the 16 toracaats tall outllida the fiducial 
111111ta calculated at the 0.06 level. and three (or 20 p~rcen~) outside 
the o.ao 1111lita. 

While examining the ~ccaaaiva forecasts in Table 3, you may r,el 
. that we have again done something alittla risky in making toracaets so 
tar beyond the period included by our firat·ragresaion. When you look 

. :at the· "dagreu of freedom• column, however, you will guaaa that up to 
1939 eaoh forecast was baspd on a new ra~ression, containing all of the 
available observations up .to date~ 

. . 
Progressive Development of the Regressions 

The process ot building up regressions by adding new observations 
does not involve any new principles; but its mechanics can be greatly 
si111plified by following a special procedure. In the analytic technique 
outlined in Table 4 you will have noticed that we calculated the •awns 
ot squares and products" of deviations around sample means by a method 
which may be unfamiliar. For a single short analysis such as this one. 
the method saves little effort as co~~~pared to the more conventional 
method of calculating and squaring (or multiplying) deviations directly. 
But it will help streamline the progressive building up of regressions) 
and this is likely to be illlportant to forecasters who have to repeat 
these calculations for a nUIIlber of separate watersheds eaoh year. 

The procedure. outlined in Table 4 is expanded in Table 6• and may 
be summariled as followst 
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(1) Obtain nEJW llWIIS for both X lllld Y: by adding the 1931 
(or n1 + 1) data ta the previo~s SWIIB for 1919-1930 • 

. ( ~) Calculate neW' oorrectioq terms frc;>m these SWIIOo 

(3) Tq the l.Ulcorrected GW!lfl ot squares und produot11 for. 
n years,_ add the squar!ls ~d prc;>duot of JC ancl Y for 
the one new. 'YV.ar. 

(~) Subtrao~ the new oorreo~ion terms from the va1uee 
calculated 1n (3), and proceed as before with the 
computation of regression statistics, remembering 
that a degree of freedo~ is added with eaoh new 
observation. 

Especially when an electric calculator is av~ilabl~, this proo~s is 
e~tremely rapid·and simple, ~.LnJ can be run through 1n relatively few 
minutes per watershed onoe the d~ta are ready for 'analysis. It may 
be repeated for each new year, as long as the data •re aoourate and 
you have no reason to suspect that the relation betwean water yields 
and snow is shifting 1n some way. With thepe reservations, each 

.addition of data will tend to i~rove the regression, and thfrefore 
to make the forecasts a little more reliable. 

·Keeping Control Over· the Forecasts - . 
I I 0 , \A , 

, As these techniques for calculating water yield furecaeta aro 
carried through, you can e~ert. a form or·oontrol over them· somewhat 
like the •quality control" methods ~loyo~ 1n manufacturing, and can 
make ariy necessary adjustments a~ ~part c;>f'the process. Two features 
m~y be discussed here: . the need tc;> watch for and remove errore in the 
data which might become persistent, ond the use of ~v!nr," regressions 
to help·compensate,for population shifts. · 

Of these two controls, the first is relatively simple for the 
statistical analyst. As each forecast is compared with the subsequent 
observed water yield, he will naturally notice whether the deviation 
is larger than might be expected by chonos. If a t-test indicates--as 
it did in the regression forecast computed for 192.7--that such a devia­
tion oou~d be expected only rarely, it is wise to loo~ for possible 
causes and see that they are removed before the next season 1 s data are 

. collected. In a factory the machinery may bit stopped while the super­
visors and technicians look for othe~se unsuspected changes in the 
manufacturing process that might ha'lte affected the product. Similarly, 
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Period 

1919-30 

1919-31 
·32 

1919-37 
-38 

1925-39 
1926-40 

1930-44 
1931-45 

'!'able 5 

Building up the Regressions ot Water Yields on 
Water Contents ot Snow in Successive Years 

r. TaEu!ation Ol Data. 
C'liservations ~ums IveraEiee 1 No. years 
! y I I y- 'X I l I n 

I I I 

383.8 I 199.4 31o98 I 16.62 J 12 
I I I 

1&.4 8,8 396,2 208.2 30,47 I 16.02 . 13 I 

35.1 17.4 431.3 I 225,6 30.81 I 16.11 14 
I 

23,2 13.6 565.4 I 299,6 29.76 l5p?7 19 
28,6 20.0 594.0 I 319,6 29,70 15,98 20 

J 

28.2 14.8 448.1 I 245,2 29,87 16.35 15 
19.2 13.6 427.8 I 235,7 28.52 15.71 15 

' I 

17.7 I 13.0 376,6 I 226.4 25.11 15.09 15 
24,5 I 15.1 376,0 I zz8.6 25.11 15.24 15 

I 
. 

I 

tt. ~e~ression !ia!lsis !~!~-!~~ 
I !luares an ro ts 

Statilltio I xz I I 

I I xr I y2 
I I I 

(a~ Uncorrected SS, eto, I 13,197.42 I 6,907.45 I 3.6ss.zo 
(b Correction '!'ann, C'l' I 12,074.95 I 61345,29 I 3,334.40 
(c Corrected ss. etc. I 1,122.47 I 662.16 I !20.80 

I I I 

Prooedure1 • 
(a) Uncorrected SS = ss1930 + ~1 (or XI, or Y2) = 13,043,66 + 

153.76 = 13,197.42. . 
{b) Correction term= (sxt930 +~1)2/n1 + 1 = (383,8 + 12.4)2/13 = 

12,074,95 

Correction term tor II= (383,8 + 12,4)(199,4 + 8,8)/13 = 
6,345,29. 

(o) Corrected SS, as usual, is the difference between (a) and (b), 

III. c8lcu1ution or Re ression Statistics (as in Tu.'li!e 3) 
1 egrees o I Errors of estimate I Re~ression 

S
'l\2 .. ! t freedom 1 Sum or squares. r Mean square 1 coefficient 

I t I I 

281,54 .~ 11 I 39.26 I 3,569 I + 0,5008 
I I I 
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the-forecaster immediately examines the. snow-course data and streamflow 
records. He may even take a look at the courses and r;o.ging station 
themselves, and talk with their operators. If deviations from prnorib­
ed techniques are observed, ·their correction cannot help the past year' 1 
forecast; but it may do a great deal to keep future forecasts as reli­
able as possible. If, on the other hand, no changes in technique or 
other sources of error can be found, it can. only be concluded that this 
peculiar year was one of the chance events which must come to every 
forecaster. · 

A more serious problemmay.ariae if a real and pror;resaive change 
develops in'the relation of water yield to snow water content. The 
forecaster should keep a constant lookout for this kind of "population 
shift, • so that he can take any necessary measures if it ber;ina to be 
noticeable. The technique can be nicely illustrated by the ~uke River 
data: apparently such a shift actually occurred in 1936 and continued 
from that time on. The shift in these recorda, as it happens, may not 
have boon tho result of climate or other uncontrollable chanr;es, but is 
,more likely due to a much simpler cause; one which might h~ve been re­
moved by 1938 or 1939 if the methods of statistical control had been 
available for its detection. As indicated in Garstka's puper, in 1938 
the Snake River courses •were· incorporated into the Wostwide system of 
snow surveys coordinated by tho Soil Conservation Service, at which 
time the snow courses wore staked out in the standard manner.• It seems 
likely, judging from the population shift which is apparent in the 
records, that some of the courses mAY have been altered in this proceu, 
Even· though no trouble might have boon. expected to result from these 
alterations when they were maae, the statistical forecaster would have 
detected the ro.sulting shift before very .len~, Then uny neoeu~ry re­
adjustments of the courses could have been made immediately, and the 
only loss would have been a temporary decrease in the precision of the 
forecasts. · 

For our present purpose, however, let us ~ppose that an examina­
tion of the courses and r;o.ging station was made when the shift was 
first observed, and that no cause was detected, Then we can only assume 
that there is a real fchange in the relation of water yields to snow, and 
must compensate for it as best we can, 

But first you will want to know how the analyst can detect the 
onset of such a shift. The basis for his observations is shown in T14ble 
61 which presents the several statistics that may be affected; a table 
like this should be kept currently for each watershed, 

Except for the "Deviation• column, each line in the tabl' is com­
pleted when the forecast is made; and of course that colWIIIl il! filled 
in after the actual yield has been recorded, .As you go doWil through 
the table, one line at a time, imagine that the lines below are blank 
so that the information above is all that you have available. ,You will 
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notice several features ot the data reccrded up to 1935 or even 1936. 
First, the deviations aa observed from tor~cast yields are reaaonable in 
size and random in directionJ none are larger thu.n might ea11ily be ex­
pected by chu.nce. Second, the variance of estimate tends to remain rough­
ly the same from year to year. And t~rd, the oonstu.nts in the regresdon 
equation vary only as one might expect vhen new rand,om observa'\;ions are 
added. . '· · 

In 1936 the deviation ot.the observed ~eld from the forecast was a 
little larger, and both this year and 1937 ~e on the high side ot the 
regression line. By themselvea these facts would not tend to arouse . 
suspicion, as the probab~lity is still lowJ nor would the small put pro~ 
gressive rille in the regression constant· a.. It the analyst happened to 
know of the recent staking-out of '!;he snow courses, these minor slji.t'ts 
might lead him to inquire into sny changes in condi tiona Yihioh might have 
resulted. More likely, though, he would wait to see what &Qether year 
or twp might bring. 

By 1938 an unus1,1al.ly large deviation h acco111panied by a. further 
rise in the regression constant--as a rea1lt of the series of poaitive 
deviations--and by 1939 the extra effect of this unusual deviation is 
expressed in a striking increase in the variance of estilliate, ae ~11 
as still another rise in the magnitude of a. · · 

Let us imagine that by now the ant!.lyst has eee.rched for sny possible 
causes of these deviations; has failed to find any; and therefore must 
conclude that some uncontrollable shirt is occurring in the relation of· 
water yields to snow water contents.· If it is a true.populatio~ shift, 
his forecasts are likely to be affaoted by it for some time, even though 
he makes the best effort he ce.ri to re~e it11 effects. 

He is, however, able to take one useful form of action; he can . 
attempt ~o keep his forecasting equation as nearly abreast of the popula­
tion s~ift as possible. This is done by droplling ott some ot the earli­
est years ot the snow course and water yield records, pasing his regres­
sion only on more recent years. .and from than on he. e111ploys a "moving"· 
regression, dropping ott the earliest year ot his current regression 
series each time he adds a new ~ar. 

After some preliminary trials, for the 1939 forecast he decides that 
his best course is to drop ott the records for 1919-24, inclusiva; and, 
from 1939 on, to e~~~ploy regressions based'only on the most recent series 
of 15 years. Thus, the 1940 forecast is calculated from a regression 
equation based on the years 1925-39, and later years are ·estimated from 
similar 15-year series. 

Now that we know what action the analyst took in 1939, we can· look 
at the rest of Table 6. and observe the. results. The effects of the popu­
lation shit.t and of the control measures taken to offset it are evideut 
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Table 6 

Statistics employed in detecting ahii'ta in 
the water yield-anew relation, Saake River 

1 Forecast 
1 · yield· 

Year ' inches 
, .. I 

1931 I 

1932 : 
1933 I 

1934 I 

1935 I. 

·I 

5.9, 
18.3 
16.4 
11.2 
14.4 

1 

& 1 1 Variance 1 Cons~~ts in 
1 Deviation 1 of estimate 1 regression equation 
1 inches 1 ( By,x2) I' a 1 b 

:· + 2.9 : 3,39d · ~ - o,8939 
1

a + o.5477Y 
I -0,9 I 3,569 I+ ,7699. 1 +0,6008 
I - 1,5 . I\ 3,337 I • 7874 1 ,4973 
I - 0, 7 I 3,255 I o 7149 1 ,4964 
I + 1,7 I 3,052 I ,6224 1 ,5016 
I ~r ~- ' 

1936 I 

' 1937 :. 
1938 I 

1939 : 

16.0 
12.4 
15.2 
15.2 

I + 2, 9•2/ I 3,041 I o 7302 1 

I . + 1,2 I 3.342 I ,8498 1 

I + 4,8•• I 3.218 I 1,087 1 

I - 0,4 I 4,256 I 1,448 1 

.4980 

.4993 

.4934 

.4893 

. ·. 

: 
1940 : ' 
1941-: 
1942 : 
1943 : 
1944 : 
1945 : .. . . . 

11.4 
10.8 
12.0 

. 21.0 
11.4 
14,8 

I I I I 

I + 2,2 2/: 4,648 I '
1 2,486 1 

I + 1,4 I 4,486 I 3,671 I 

I + 2, 5 I . 4, 399 1 4, 220 I 

. I + 4, 2• I 4, 756 I 4, 262 I 

I. + 1,6 I 5,418 I 3,368 I 

·f + 0,3 I 4,732 'I 3,613 I 

: 
: 
I 

: 
I 

I 

3,981 
I 

r 
I 

3,312 
I 

I 

I 

.464221' 

.4266 

.4094 

.4168 

.4646 

.4611 • 

.4736 

Variances and regression constants calculated up to 1939 are based 
on regressions of data fram-1919 to the preceding year • 

The asterisks indicate the probable significance of these Uifferenoes1 
:*_ = probability. less than 0,20; •• = probability less than 0,06 
(compare Table 2). 

From 1940 through 1946, the variances and regression constants are 
based on moving regressions, each including 16 years' data up to and 
including. the year preceding the forecast. The 1940 constants, for 
example, are based on the 1925-39 regression analysis. 

If the forecasts had been made from regressions including all data 
from 1919 to the year preceding each forecast, the deviations in 
this column would have been as follows, starting v4 th 1940r + 2,8, 
~ 2.1, + 3.2,.+ 4.4, + 2.1, and+ 0.9. 
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in these statistics. First, of course, the variance or estimate jumps up 
in a disturbing manner. At least in part, this probably implies· a. bias 
resulting from the shift; but it also means that we must attribute less 
reliability to our forecasts than was previously possible. Bext, the 
deviations remain positive in direction; there is a tendency for the 
yields to exceed the forecasts. And then, the regression constants exhi­
bit a degree of instability which results from adding more and more values 
of X and Y which fall above the regression line. Finally, though, We find 
one good feature; the forecasts adhere more closely to the observed values 
than they 'WOuld have if calculated from regressions based on the whole · 
series of·data from 1919 on (footnote •d•, Table 6). This improvement is, 
or course·, the object of using the moving regressions. 

Because the shift in these data was abrupt rather than the slow trend 
which is more likely to occur in atrue population shift, the non-random 
portions of these effects are probably more pronounced than ordinary. In 
any case, the data. serve to show the symptoms which· can be used in detect-
ing this kind of shift and adjusting for it. . · 

The mechanism of calculations in the moving-regression procedure is 
an extension of the nethod sho'l'll in Table 4, and can be carried 'j;hrough 
with almost equal facility. It is only necessary· to subtract the oldest 
values or X and Y from the sums of both variables, at the same time that 
new- values are added. Similarly, the uncorrected squared end products 
of the oldest values are subtracted from the sums. of squares and products, 
in the same process with the addition of the newest values. With practice 
and the aid or an electric calculator, the whole procedure can be executed 
with surprising rapidity. · , . -· ·" 

Careful use or these techniques tor statistical control ot the fore­
casting procedure, combined with clo11e coordination between field men · 
and statisticians, should provide th& maximum degree or precision ~hat 
can be gained fran the oombinatiop of water·yield data and a sip.gle corre­
lated factor employed in a linear. regression. Further precision may 
sometimes be gained by the use of' additional factors, or by fitting curvi­
linear regressions if they are based on a sound hypothesis. 

Curvilinear end Multiple Regressions in Forecasting 

In an article or this kinciit is not necessary to go into detail on 
the use of these more complex regressions in water yield forecasting, · · 
expecially because complete and interesting discussions are given by both 
Ezekiel and Snedeoor (Footnotes 2 and 6). It maybe desirable, though, 
to indicate the roles that may be played by curvilinear and multiple re­
gressions and to show briefly how they may be extended from the simpler 
linear regression techniques, with a similar streamlining of procedures. 

Considering first the use of curved regression lines, it is essen­
tial that there should exist a logical hypothesis tor curvilinearity, 
which should also specify the probable shape or the curve in general 
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.terms. As previously suggested, the theoretical relation of wuter yield 
to snow wator content might be curvilinear, though not pronounoedly IIOJ 

ani this curve might be satisfactorily fitted by a quadratic equation 
or the forma 

E = a+ bX + cX2 ••••~•••••••••••••••••••••••••••••••(12) 

In other oases the hypothetical curve ~~ght bo or the logarithmic or 
exponential form; then the ~est fit" mi&ht be provided by transforming 
the data for either X or Y, or both, tQ logarithms and fitting a strai&ht 
line to the resulting data: 

E = a+ b(log X). or ~····~·••••••••••••••••••••••••••(13a) 

logE= lot a+ b(log X), tor example ••••••••••••••••••••(13b) 

Where no particular hypothesis as to the shape or the curve cun be ut 
up, it may be desirable to fit a quadratic equation to the data as eug­
gested above. In this case it is easy, in the course of the analysie, 
to test the validity of the curvilinear hypothesis by statistical methods. 

All that is necessary is to add to the anll.lysis a set of values for 
a second independent variable (X2), with each item for this variable 

·supplied by squaring the yearlr values for BnQW water content (XJ:). 
Corrected squares and products are obtained for the various comb ~tiona 
or these X1 s andY, and then the regression statistics are calculated by 
means or equations presented in detail by Snedeoor (Chapters 13 and 14). 
·As a result, you will obttdn a sum of squares for errcra of estimate 
corresponding to that supplied by the 11near re&ression for the same data, 
but with one less degree of freedom. The difference between those two 
sums, on one degree of freedom, is a sum of squares attributable to the 
quadratic regression, and it can be tested for·significance by the stand­
ard methods of variance analysis. 

In interpreting the results, of course you will use the same caution 
that is required otherwise in dealing with sarnpling, especially with 
small sarnples. In this kind of test, your interpretation should be 
greatly assisted by a good logical basis for or against the hypothesis 
of ourvilinearity and as to the shape of the curve. If, for exumple, 
suoh ~ hypothesis is logically untenable, you will probably not bother 
to make the test. And in any case, remember that about once in every 
20 trials ch~oe ~lone is likely to ;Lve you results that are "signifi­
cant" at or beyond the 0.05 level. 
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The use of multiple regressions ~y often Qe more profitable than the 
fitting o.r curves. .As our knowledge of variables that are correlated with 
wa.ter yield increases, we are likely to w~t to a.ueocia.te more ~d more 
independent variables with the one we need to foreoa.sta variables suoh 
a.s total winter precipitation a.s well a.s th~ spring wa.ter content of snow; 
solar radiation during the early spring, when evaporation ~d suplimation 
losses may be expected to subtract importt~At lllpO\Ults of wa.ter from the 
stored snow; antecedent soil moisture, as a. measure of deficits ot water 
stored in the soil reservoir; atream disoha.r~e during the preceding 
autumn, a.s an index of antecedent con<litionu ll!ld others 'llhich have been 
suggested ~ are being studied. 

One variable which might be particularly valuable is the experience 
of some highly trained snd a.oolimated teo)lnician who has v.o rked on a. 
watershed for some time, and has generated a. "feel• for wa.teruhed condi­
tions. As he oolleots data. on ptrea.mtlow, snow water oont~ts, an<l other 
variables he may develop a. current impression that, other measured vari­
ables being equal, this year should pro<luoe more or less water than usual. 
Hydrologists ~e well acquainted with this oa.paoity of trained and exper­
ienced technicians, but it is not ordinarily thought possible to incor­
porate suoh information into a. sta.tistioa.l analysis. 

If, however, suoh a. feel oan be translated into numerical terms--as 
an adjustment percent, for example--it oan be a.dded to the analysis a.s 
one more independent variable, and tested for its significance• This ma.y 
add materially to the precision of wa.ter yi~ld foreoa.stu, expeoia.l~ be- · 
oa.use the observer oan continually improv~ the usefulness of his own ex­
perience by wa.tohing his progressive .and repeated suooesses and failures. 
The value of this variable will depend, of co~rse, on the likelihood 
that the teobnioian oan remD.in 1-n a. single region long enough to make his 
estimates contribute materially to the regression. To retain maxi~ 
control over the information provide<!,. such estimates should be kept a.s 
a separate vu.ria.ble rather thtlll to be oo1nblned with the snow wa.ter content 
as some form of adjustment. By this means the statistician aan keep a. 
constant wa.toh on the efficiency of the variable, and can help the tech­
nician gain experience and thereby add precision to the forecasts • 

. 1'1hatever the variables are. they can be added to the regression 
equation in any desired number and combination of curved and linear rela­
tions, as long a.s enough degrees of freedom are left to provide a. reli­
able estimate of the variance of the forecast. Ordinarily, for wa.ter · 
yield data, a.t least 9 or 10 degrees of freedom are required after all 
deductions have been ma.de tor ourvilinea.rity·and independent variables. 

As in the test for ourvilinearity, the value of each independent 
variable oan be tested by statistical methods. lhen, a.s a. result of these 
tests, the forecaster is fairly certain that one or more of the variables 
being tried out does not contribute significantly to the precision of 
his foreoasts,ithe variable ma.ybe dropped from further consideration; 
and, if desired, its pla.oe can be taken by a. more efficient variable. 
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· Another possible elaboration or tho linear resreasion teolmique 11 
to make preliminary forecasts from tho data available early in the season, 
and then to improve these forecasts as the your coos on by addin& later 
metLsurements as n81'1 independent variables. \fnero thh vathoi has buon 
applied, the precision or the later forecasts is generally soen to bo 
incretLsed. 

as more independent variables are added to the IUUllysis, nuturully 
the lllSchanioal work of calculatins the statistics becomes more bbori­
ous; but these calculations can be strell.llllined in a manner similu.r to 
that outlined for linear regressions. After the oorreoted squares and 
products are obtained for all the necessary combinations of X' s and Y, 
the regression coefficients are calculated through the use or simultan­
eous equations. Their use in this kind or analysis is presented in de­
tail by Snedecor, together with methods tor calculating and employing 
the so-called "Gauss multipliers," required in obtaining ~e variance 
ot a:torecast in multiple regression. ilhon the forecasting equation 
assumes the form 

E = a+ b1..1C1 + b2X2 + b&l3 •••••••••••••••••••••••••(16) 

tor example, tho corresponding variance equation isa 

s2= 
E 

Where the various c1 s are the Gauss multipliers, sometimes termed 
"elements of the inverse matrix" and calculated by the method of deter­
l!liilants from the simultaneous equations; and the x's, as usual, are 
deviations from the means or ..IC. 

. 
With this sketch or the somewhat more complex methods involved in 

curvilinear and multiple regression, we have completed an outline of 
statistical procedures. that are adapted especially to water yield tore­
casting. It is sincerely hoped that techniques suoh as these will help 
forecasters make their predictions more useful" and precise • 

• 
Thanks are due to the start of the Bureau of Reclamation 1 1 Division 

of Hydrology in Denver, Colorado, for supplying the data tor this series 
ot analyses and for other aspects of their friendly cooperation in re­
cent years. Special acknowledgment is due also to Dr. R. A. Fisher and 
his associates and followers, who developed the statistical theory and 
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· metbodl ~whiCh these teobniquee are baeedJ· and to Dr. George Jr. 8De4eoor 
and hie aeeooiatee at Iowa State College. who ~.done a very great ew­
vioe in m&k:I.Dg etatietioal methode ~d.el7 ue•d &lid und.eretood by _1101'kere 
:I.D the biological eoienoee.. · . . . . . . . . . . 
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Symbol 

a. 

GLOSSARY OF SYMBOLS AND TERm -
Definition 

The ~-intercept;u in the regression equation for a simple 
straight line, a = y ~ bi. 

b The regression coefficient. In a. linear equation• 
· b = Sxy/sx2, 

0 

CT 

D/F 

E 

Fiducial 
Limits 

Jl. 

n 

r 

• 

(as c11, o1,, eto.) The Gauss multipliers, calculated by the 
method of determinants from a set of simultaneous equations. 

Correction term, used in analysis to correct the sum of 
squared observations (sx2, SXY, and. sy2) to the •sum of 
squares" or "sum of products" of the deviations of observa­
tions around their sample average. CT = (SX)2jn, Sr!/n, 
or (sy)2jn, in linear regression. · 

Degrees of treedomt n-1!1• where m is the number of vu.ri&blea 
(including l) in an analysis, or the number of oonstiLilta in 
the regr~ssion equation. Without regression, D/F = ~ - 1 • 

• 
The forecast value. obtained with or without regression. . . ' . 

The upper and lowf!r limits, within which the aot1.1al vCLlue 11 
likely to fall, as measured on either side of a forecast 
value. Limits = E ;!" t~. 

. ' 
The true average value for & population of observationa, a1 
water yields, 

The number of observations in a sample sot of data, aa com­
pared with •••• 

I 

The total number in 11. le,rger set (or population) ot data, of 
which the smaller set may be considered a sample, 

Correlation coefficient (in simple correlation of two vari­
ables)t 

r = ± tl(sxy)2/(sx~')(sy2) , or t t's§2Jsy2 

Standard deviation calculated trom a sot of sample observa­
tions; a sample estimate of d, tho popul&tion standard devia­
tion. The equation for calculating ~ 1st 

1y = t Vsy2 - (SY)2/n • or z V(s(y -' y)Z 
n - 1 n - 1 
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Symbol 

B-y 

B y.x 

Definition • 

Standard error of 
sr =:tv s//n 

a sample average of Y. Without regression. 
• With regression aod for a fixed set of 

X.'s• s:y=t(sy.x2Jn • 

Standard error of estimate. expressing the variation of observa­
tions around the regressivn line. In a linear equat~on, 

Standard error· of the regression coefficient. 
tion, 

sb = t v' s 2/ sx2 y.x 
• 

In a lineu.r equa-

. Standu.rd error of a fore cast. Without regression. 

BE=± syVl + 1/n; 

with regression 

s~ = ± sy.x Vl + 1/n + x2/~~2 

Standard error of a point on the sample regression line in esti­
mating the true population vu.lue tor any given value of X: 

.. 

S A symbo 1 meaning "sum of." 

SS A sum of squares or products, ~s sx2, sx2. SXY, Sxy,. etc. 

s~2 Sum of squares attributable to regression. In a linear regres­
sion. 

sta = (sxy)2jsx2 

. s~.x2 

t 

x. y 

Sum of squares of deviu.tions from regression = Sy2 - s92 

-Any single value of student's distribution oft J for a complete 
table, see ."Statistical Methods,• by George W. Snedecor. 4th 
Edition, Page 65. Iowa State College Press, 1946. 

Any sample ·observation of an independent variable (X) or depenqent 
variable (Y). . . 
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Symbol 

'!', "' 

x, y 

Varianoe 

Definition 

The average of a aeries of sample observations of X andY, 

The deviation of any ain~le sample value of X or Y from 
the sample average. 

Squared standard deviation. 
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