THE ANCESTRY OF THE LONG-LIVED

OTHER BOOKS BY RAYMOND PEARL
modes of researci in genetics
diseases of poultry. Their Etiology, Diagnosis, Treatment and Prevention. (With F. N. Surface and M. R. Curtis) the natron's food. A Statistical Study of a Physiological and Social Problem. (Out of Print)

THE BIOLOGY OF DEATH
(Swedish translation: Liv Och Dod)
INTRODUCTION TO MEDICAL BIOMETRY AND STATISTICS (Revised Edition, 1930)
studies in human biology
the biology of population growth
ALCOHOL AND LONGEVTY
(German translation: Alkohol und Lebensdauer)
to begrin with
(Revised Edition, 1930)
the present status of eugenics
the rate of living
CONSTITUTION AND HEALTH

WTRUY'Y'LONGEVOUS PERSON

this phötobiaph óf mrs. emily shaw griffith was made when she was ioo years old. She lived to be over roz years old. while her portrait exhibits the wrinkling characteristic of old age, it shows at the same time a truly refreshing general aliveness and sprightiy participation in the situation. it is an excellent example of THE FACT THAT NOT ALI CENTENARIANS
 MKS. GRIFFITE WAS THE'MIOTEER OF SIX CHILIRENE AND GRANDMOTEER OF FOUR. when we last heard from her she was keenly interested in all that Was going on in the world about her, of which she had been a resident for stech a very long time.

THE ANCESTRY OF THE LONG-LIVED

BY

RAYMOND PEARL and RUTH DeWITT PEARL
The Johns Hopkins University

BAITIMORE: THE JOHNS HOPEINS PEESS
LONDON: HUMPHEEX MILFORD OXTOED CNIVERSITY PELSE

1934

Copyright, 1934, by Raymond Pearl

PRINTED IN THE DNITED ETATES OF AMERICA BI MEYER \& THALEEIMER, BALTMORT, MD.

PREFACE

This book represents one stage in the development of the general program of investigation of human life duration in the Department of Biology of the School of Hygiene and Public Health of The Johns Hopkins University. The results of this particular phase of the work have already appeared in part as No. VI of the series of Studies on Human Longevity in the journal Human Biology. Owing to limitations of space it was impossible to present all our data and results in journal publication.

In particular we have added two chapters (IV and IX). The first of these deals in some detail with a discussion of the effects upon the age distributions of the progeny of certain types of selection of the ancestry. The increasing use by biostatisticians of family data for the study of various problems makes such an investigation as that reported in Chapter IV highly desirable at this time, quite apart from its relation to the present study. Chapter IX presents a detailed analysis of the relation between the ages of groups of living individuals and the summed ages at death of their six immediate ancestors, for the purpose of making possible a better judgment of the significance of the results presented relative to the inheritance factor in longevity.

We are conscious of the fact and regret it, that this book cannot be looked upon as easy reading. It is a report of an extensive and extremely laborious piece of research upon an involved and difficult problem in human biology, and the story of the results necessarily has to be told mainly in figures and charts. But, on the other hand, we believe that any reader who is really interested in the problems of human longevity will have no difficulty in following the reasoning and understanding the results if he will take the trouble to read the book carefully.

It may be a convenience to the reader to have assembled in one place the bibliographic references to the earlier studies in this series. They are as follows:

Studies on Human Longevity

I. A note on the inheritance of duration of life in man. By R. P. Amer. Jour. Hyg., Vol. 2, pp. 229-233, 1922.
II. Preliminary account of an investigation of factors influencing longevity. By R. P. Jour. Amer. Med. Assoc., Vol. 82, pp. 259-264, 1924.
III. Longevity: a pedigree. By R. P. Human Biology, Vol. 3, pp. 133-137, 1931.
IV. The inheritance of longevity. By R. P. Human Biology, Vol. 3, pp. 245-269, 1931.
V. Constitutional factors in mortality at advanced ages. By R. P. and T. Raenkham. Human Biology, Vol. 4, pp. 80-118, 1932.
VI. The distribution and correlation of variation in the total immediate ancestral longevity of nonagenarians and centenarians, in relation to the inheritance factor in duration of life. By R. P. and Ruth DeWitt Pearl. Human Biology, Vol. 6, pp. 98-223, 1934.
In the preparation of this book we are indebted to Dr. John Rice Miner and Miss Marjorie E. Gooch, for aid in a variety of ways; to Prof. Lowell J. Reed for critically reading the major part of the manuscript; and to the late Mrs. Emily Shaw Griffith for permitting us to use her charming portrait as a frontispiece to this volume.
Good Friday
R. P. and R. D. P.
1934

CONTENTS

I The Problem I
II The Material 8
III Cearacteristics of tee Compared Groups 18
IV The Effect of Certain Types of Selection of the Immediate Ancestry on the Age Cearacteristics of the Progeny 28
V Birthplace, Race Stocks, and Alcohol Habits of the Group of Nonagenarians and Centenarians 37
VI Variation in TiAL 46
VII Paternal and Maternal, Male and Female, and Generational Contributions to TIAL 55
VIII Individual Contributions to tial 63
IX Living Age and TIAL 71
X Biometrical Comparisons 85
XI Actuarial Comparisons 97
Xil Siblings of the Longevous 126
XIII Corbelations 135
XiV Matings that Produced the Longevous 146
XV Summary and Discussion 152
Index 16I

ILLUSTRATIONS

Frontispiece-Portrait of Mrs. Emily Shaw Griffith
A Decrease in Mean Age of Offspring With Increase in Number of Living Ancestors 35
B Trends of TIAL and Age of Propositi 74
I Pedigree Defining TIAL 6
2 First Page of Longevity Questionnaire 9
3 Second Page of Longevity Questionnaire го
4 Third Page of Longevity Questionnaire II
5 Fourti Page of Longevity Questionnaire 12
6 Means and Standards Deviations for Age of Com- pared Groups 23
7 Frequency Polygons for Compared Groups 24
8 Birthplaces of Nonagenarians and Centenarians 40
9 Pedigree of Individual Having Lowest Observed TIAL 47
io Pedigree of Individual Having Highest Observed TIAL 49
if Histograms and Fitted Curves for Vartation in TIAL 52
12 Cumulated Curves of Variation in TIAL 53
13 Influence of Immediate Ancestors Upon Mean Longevity 66
14 Influence of Immediate Ancestors Upon Median Longevity 67
15 Variation in Ancestral Longevity 68
16 Frequency Polygons Showing Variation in CML(20) 125
17 Frequency Polygons for Sibship Size 129
18 Bar Diagram Showing the Breeding of the Longevous 147

INDEX

INDEX

Abstainers, 104; longevous, 44
Accidental causes of death, 152, 153
Actuarial comparisons, 97-125
Age 92, survivors at, 2
Age, living, and TIAL, 7r-84; of living sibs FHR Series, biometric.constants for, 21; of propositi, 19; of
propositi, trends of TIAL with, 74 ;
of white population of U. S., bio-
metric constants for, 21
Alabama, 38, 40
Aicohol and longevity, 15, 124
Alcoholic habits of longevous, 44-45
American Experience Mortality Tables, 105; Offices Life Tables, 105 ; physicians, 102; Standard Industrial Mortality Table, 109
American-Canadian Mortality Investigation, 103
Ancestors, biometric constants for individual, 64; classes of, 120-123; male and female compared, 58, 59; number of, 69
Ancestral longevity, variation in, 68
Ancestry, burden of, 69; influence of immediate, upon mean longevity, 66; influence of immediate, upon median longevity, 67 ; mediocrity of remote, 69, 70; vital status of, 29, 34
Arithmetic factor in family statistics, theory of, 77-83
Asia Minor, 69
Asthenic, 140
Australia, 2, 102, 103, 105, 107, 110, 111, 113, 115
Austria, 107, 109, 115, 116, 117
Automobile, 152

Baker, G. W, 43

Baltimore, 44
Barred Plymouth Rock, 159

Bavaria, 102, 105, 106, 107, III, 114, 115
Beeton, M., 87, 88, 89, 90, 91, 92. 95, 145
Belgium, 39, 40, 106, 114
Bell, A. G., 88, 9I, 95
Biological superiority of the longevous, 132
Biometric constants for age at death of fathers, $87-89$; of grandfathers, 93; of grandmothers, 94 ; of mothers, 90-92
Biometric constants for age of all dead sibs, 33; of all living sibs, 32; of individual ancestors, 64; of living sibs FHR Series, 21; of oldest dead sib, 31; of oldest living sib, 30; of siblings, 133 ; of white population of U. S., 21

Biometric constants for grandparental and parental contributions to TIAL, 6 I ; for male and female moieties of TIAL, 59; for paternal and maternal moieties of TIAL, 55; for sexratio, 229 ; for sibship size, 129; for TIAL, 48; for TIALs of propositi of increasing ages, 72
Biometrical comparisons, 85-96
Birth interval, 36 ; order and mortality, 36
Birthplace of longevous, 37-44
Births over 55 years, 121 ; under 15 years, 78
Blank forms, 8-12
Body weight, 54
British born whites, 105, 114; Offices Life Tables, 105
Burke's Landed Gentry, 88
Canada, 39, 40
Causes of death, accidental, 152, 153

Cell volume of blood, 54
Cephalic index, 140
Chicago, 2
Chinese, 124; family data, 99, 100, 109, 110, 117
Classes of ancestors, $\mathbf{1 2 0 - 1 2 3}$
CML (20) for fathers, 119; for grandfathers, 120; for grandmothers, 120; for mothers, 119; variation of, 124, 125
CML (30) for fathers, 119; for grandfathers, 120 ; for grandmothers, 120; for mothers, 119
CML (92), 1, 2, 4, 5
Comparisons, actuarial, 97-125; biometrical, 85-96
Complete and incomplete families, 22
Compound homogamic correlations, 138
Computing mean TIAL, 55-57
Connecticut, 38, 40, 42
Constantinople, 69
Control, impossibility of, 16
Correlation tables for sex-ratio and sibship size, 127, 128
Correlations, 135-145; compound homogamic, 138; homogamic, 135-141; kinship (genetic), 135, 141-145; nonsense homogamic, 137 ; nonsense parent-offspring, 143, 145
Crux, J., 140
Curves, TIAL, 50, 52, 53

Darwin, C., 69
Death, accidental causes of, 152, 153
Decrements, rule of equal proportional, 35
Delaware, 38, 40, 42
Denmark, 102, 103, 104, 105, 106, 108, IIO, 111, 112, 113, 115, 116, 124
DePorte, J. V., 102, 106, 108, 118
Doering, C. R., 87, 88, 91, 93, 95
Dublin, L. I., 43, 103, 104, 105, 107, $108,109,110,112,113,114,115$, 117, 118

Duration of life, $\mathbf{1}$; inheritance of, 71, 157; of fathers, life table data on, 99; of females; life table data on, 110-118; of grandfathers and grandmothers, life table data on, 101 ; of males, life table data on, 102-110; of mothers, life table data on, 100. See also Longevity

Endamoeba histolytica, 153
England, 2, 39, 40, 43, 103, 104, 105, 107, 108, $111,113,115,116$
Eugenic significance of TIAL, 6
Evolution, 139
Expectation of life, 2, 3, 4, 19, 26 ; meaning of, 97,98

Face width, 140; index, 140
Facial index, 140
Families, complete and incomplete, 22
Family History Records, 14, 28, 87, 88, 89, 90, 91, 92, 104, 106, 109, 111, 112
Family statistics, theorr of arithmetic factor in, 77-83
Fathers, biometric constants for age at death of, $87-89$; life table data on duration of life of, 99 ; mean age of, 86
Females, life table data on duration of life of, 110-118
Fertility, 126; and masculinity, 130 ; biometric constants for, 129; superior, of the longevous, 126; variation in, 129; weighting parents with, 95
FHR Series defined, 16
Filipinos, 124
Finland, 39, 40, 106, 109, 114
Fitted straight lines, 73, 75
Florida, 38, 40, 42
Forearm length, 140
Foreign-born population, 41; whites, 106, 107, 115
Forms, blank, 8-12

Foudray, E, 3
France, 2, 105, 106, 107, 112, 113, 114, 115, 116

Galton, F, 135, 143
Gene theory, 77, 157, 158
Generational contributions to TIAL, 60-62
Genetic groups relative to longevity, 76
Georgia, 38, 40, 42
German born whites, 10\%, 113
Germany, 2, 39, 40, 43, 102, 104, 105, 106, 108, 111, 113, 115, 116, 117
Glasgow, 104, 106, 108, 110, 112, 114, 116, 117,118
Glover, J. W., 3, 19, 26, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118
Gooch, M. E, x
Gould, A., 89, 91, 93, 94, 95, 99, 100, 10I, 103, 113
Grandfathers, biometric constants for age at death of, 93 ; life table data on duration of life of, 10 r
Grandmothers, biometric constants for age at death of, 94 ; life table data on duration of life of, rox
Grandparent, lowest living age of, 7
Grandparental and parental contributions compared, 60-62; matings, 148, 149; mean age range of, 86
Great Britain, 69
Griffith, E. S., x
Haeger, F., 140
Head length, 140; width, 140
Heavy drinking longevous, 45 ; drinkers, 109
Heredity, 159
Hernando, E., 109, 117, 118
Holland, 2, 39, 40, 102, 103, 104, 105, 107, 109, 111, 113, 115, 116, 117
Homogamic correlations, 135-14I
Homogamy in man, 139-141
Hyde Genealogy, 88, 91, 95

Iceland, 106, 109, 112, 113, 115
Illinois, 38, 40
Immigration restrictions, 41
India, 2, 3, 4, 110, 118, 124, 125
Indiana, 38, 40
Individual contributions to TIAL, 63-70
Industrial policy holders, 104, 107, 108, 109, 111, 112, 113, 115, 117, 118
Infant mortality, 132
Influence of immediate ancestry on mean longevity, 66; on median longevity, 67
Inheritance of duration of life, 71
Internipple breadth, 54
Interval, birth, 36
Ireland, 39, 40, 43; North, 103, 113
Irish, 42, 43, 124
Irish-born whites, 110,117
Italian-born whites, 104, 113
Italy, 2, 39, 40, 103, 104, 105, 107, 112, 113, 114, 115,117

Japan, 2, 3, 107, 108, 116
Japanese Offices Life Tables, 108
Jews, Russian, 103, 112
Johannsen, W., 158
Jones, E. J. 139
Jones, W., 104, 106, 108, 109, IT2, 114, 116, 117, 118

Kacprzak, M., 15
Kansas whites, 2, 3
Kentucky, 38, 40
Kinship correlations, 135, 141-145
Kopf, E. W., 103, 112, 118
Lee, $A_{1} 140$
Life duration, 1 ; variability of, 4,5
Life, expectation of, 2, 3, 4, 19; span of. 4
Life table data on duration of life of fathers, 99; of females, 110-118; of grandfathers and grandmothers, 101 ; of males, 102-110; of mothers, 100

Life tables, types of, 97,98
Limits of TIAL, 7
Lips, form of, 140
Living age and TIAL, 71-84
London, 141
Longevity, alcohol and, 15, 124 ; definition of, 1 ; excess, associated with increasing TIAL, I34; genetic groups relative to, 76 ; influence of immediate ancestry on mean, 66; influence of immediate ancestry on median, 67; influence of parenthood on, 97, 119; Nordic superiority in, 124 ; relativity of, 1 ; Studies on Human, ix; variation in ancestral, 68. See also Duration of life.
Longevous abstainers, 44
Longevous, alcohol habits of, 44-45; biological superiority of, 132 ; birthplace of, 37-44; heavy-drinking, 45; matings producing the, 146-151; moderate drinkers, 44, 45; race stocks of, 37-44; series defined, 14 ; siblings of the, 126-134; superior fertility of the, 126
Lotka, A. J., 103, 112, 118

Maine, 38, 40, 42
Males, life table data on duration of life of, 102-IIO
Man, homogamy in, 139-14I
Mandible height, 54
Manila, 109, 117
Maryland, 38, 40, 42
Masculinity and fertility, 130
Mason and Dixon line, 42
Massachusetts, 38, 40, 42
Material, 8-17
Maternal and paternal contributions, 55-58
Matings producing the longevous, 146-151
Mean age of fathers, 86 ; of mothers, 86
Mediocrity of remote ancestry, 69, 70

Mendelian inheritance, 157-160
Michigan, 38, 40
Miner, J. R., x
Missouri, 38, 40
Moderate drinkers, 104, 111; drinking longevous, 44, 45
Mortality and birth order, 36 ; in sibships, 130-134
Mothers, biometric constants for age at death of, 90-92; life table data on duration of life of, 100 ; mean age of, 86

Nasal breadth, 54 ; index, 140
Native whites of foreign or mixed parentage, 108 ; of native parents, 102
Native-born population, 41
Natural selection, 139
Negroes, 2, 109, 110, 117, 118, 124
New Hampshire, 38, 40, 42
New Jersey, 38, 40, 42
New York State, 38, 40, 42, 102, 103, 104, 105, 106, 107, 108, 110, 112, 113, 114, 117
New Zealand, 102, 103, 110, 111,125
Nonagenarians, rarity of, 3
Nonsense homogamic correlations, 137; parent-offspring correlations, 143, 145
Nordic superiority in longevity, 124
North Carolina, 38, 40, 42
Norway, 2, 4, 39, 40, 103, 104, 105, 112, 113
Nose, form of, 140
Nova Scotia, 39, 40

Ohio, 38, 40, 42
Oldest dead sib, age constants for, 31 ; living sib, age constants for, 30
Original Registration States, 2, 102, $103,104,105,106,107,108,109,110$, $112,113,114,115,116,117,118$
Oxfordshire, 141

Panama, 39, 40
Parental and grandparental contributions compared, 60-62; matings, 146, 147
Parenthood, influence of on longevity, 97, 119
Parents-also-grandparents, 123
Parents-not-grandparents, 120, 121
Parents-who-are-not-and-never-can-be-come-grandparents, 121-123
Paternal and maternal contributions, 55-58
Pearl, R., ix, x, 4, 7, 8, 14, 15, 26, 37, $57,87,88,89,90,91,92,93,94,96$, 99, 100, 101, 104, 106, 109, III, II2, 159. 160

Pearl, Ruth D., x
Pearson Family Data, 87, 90
Pearson, K., 69, 87, 88, 89, 90, 91, 92, 95, 135, 140, 141, 145
Pedigree defining TIAL, 6; of highest observed TIAL, 49: of lowest observed TIAL, 47
Peerage, 88
Peirce genealogy, 87, 88, 91, 93, 95
Pennsylvania, 38, 40, 42
Persia, 69
Pitt-Rivers, G. H. L.-F. 130
Pneumonia, 152
Population in 1850, 43: native- and foreign-born, 41
Propositi, age of, 19; selection of, 14, 15, 22, 25, 26, 28-36; sex of, 18; trends of TIAL with age of, 74
Prussia, 104, 105, 106, 107, 109, 112, 113, 114, 115, 117
Pyknic, 140
Quaker genealogies, 87, 88,90,9I, 14I

Race stocks of longevous, 37-44
Raenkham, T., x
Range of grandparental mean ages, 86
Rarity of nonagenarians, 3
Reed, L. J., x

Relativity of longevity, x
Reproduction after 50 years, 78, 121
Rhode Isiand, 38, 40, 42
Romanes, G. J., 139
Rosinski, B., 140
Rossiter, W. S., 43
Rule of equal proportional decrements, 35
Russell, E. S., 157, 158
Russia, 39, 40, 69: European, 105, 107, III, II6; White, 102, 105, III, 116, 124
Russian Jews, 103, Iiz
Russian Soc. Fed. Sov. Rep., ro5, 107, 1II, II6

San Francisco, 2
Saxony, 102, 104, 107, I10, 114
Scotland, 39, 40, 103, 105, 107, 108, 112, 113, II5, 116
Selection of propositi, effects of, 22, $25,26,28-36$; method of, 14, 15
Sex contributions, 58, 59; of propositi, 18
Sex-ratio, 126; and sibship size, correlation table for, 127 , 128 ; biometric constants for, 129
Siberia, 103, 11 I
Siblings, biometric constants for age of, 133; of the longevous, :26-134
Sibs, age constants for all dead, 33 ; for all living, 32
Sibships, mortality in, 130-134
Skin pigmentation, 54
Smallpox, 152
South Africa, 102, 103, 110, 1 II
South Carolina, 38, 40, 42
Span, 140; of life, 4
Specificity of germinal substance, 159
Starling, E. H., 15
Stature, 140
Stoessiger, B., 87, 90, 95, 141, 153
Straight lines, fitted, 73, 75
Struggle for existence, 74
Studies on Human Longevity, ix

Survivors at age 92, 2, 3, 4
Sweden, 2, 102, 103, 104, 105, 107, 108, 109, IIO, III, II2, II3, II4, 115, 116
Swedish Offices Life Tables, 103
Switzerland, 2, 104, 106, 107, 108, 112, 114, 115, 116

Tennessee, 38, 40
Theory of arithmetic factor in family statistics, 77-83
TIAL, biometric constants for, 48; for grandparental and parental contributions to, 61; for male and female moieties of, 59; for paternal and maternal moieties of, 55
TIAL, computing mean, 55-57; curves, $50,52,53$; defined, 5 ; eugenic significance of, 6 ; excess longevity associated with increasing, 134; generational contributions to, 60-62; individual contributions to, $63-70$; limits of, 7; living age and, 71-84; paternal and maternal contributions to, $55-58$; pedigree of highest observed, 49; pedigree of lowest observed, 47; sex contributions to, 58 , 59; theoretical maximum value of, 78, 79; theoretical minimum value of, 77, 78, 80; trends of, with age of propositi, 74; variation in, 46-54
Tuberculosis, 14, 15, 54, 107, 108, 109, $113,115,117,118$

Types of life tables, 97,98

Ukrainia, 103, 104, 105, 106, 112, 114, 117
U. S. A. aggregate whites, 2, 103, 112 Utah whites, 2

Variability of life duration, 4,5
Variation in ancestral longevity, 68; in fertility, 129; in TIAL, 46-54; of CML (20), 124, 125
Vermont, 38, 40
Virginia, 38, 40, 42
Vital status of ancestry, 29, 34

Wales, 39, 40, 103, 104, 107, 108, III, 115
Weighting parents with their fertility, 95
Wensleydale, 141
Whitney Genealogy, 89, 9I, 92
Whitney, J., 107, 108, 109, 113,115, 117, 118
Willoughby, R. R., 139, 140
Wilson, E. B., 87, 88, 91, 93, 95
Wurtemberg, 10, 105, 106, 107, III, 114, 115, 116

Yuan, 1-C., 99, 100, 109, 110, 117, 118
Yule, G. U., 88, 89, 91, 92, 95

