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The biclogist often needs to count organisms or events which are distrib-
uted at random in space or in time. This bulletin describes a method for
estimating the average number of individuals in each counting unit when
his count is not recorded completely. It is applicable to experiments in
which the individuals occur at random as defined by the Poisson distri-
bution [5]. Small units are selected for counting so that some of them con-
tain no organism or event. The average number in all units can then be
estimated with the present method even though those with four or more
individuals are grouped. With the tables in the present bulletin one can
estimate rapidly and easily the mean and its standard error from such
incomplete series. Two types of biological data are encountered in prac-
tice to which the Poisson distribution may be applicable.

In the first type randomness is expected from the nature of the data. In
counts with the haemocytometer, for example, the number of cells in each
square is distributed at random when the experimental technique is ade-
quate [5]. From a series of such counts the experimenter can estimate the
concentration of cells in the original suspension. Another example is the
distribution of noxious weed seeds per ounce of field seed. In the inspection

" of clover seed, the number of dodder seeds in 100 gram samples from differ-
.ent parts of the sack or from different sacks in a lot has been found to be

‘random [9]. In cases such as these the variability among replicated ran-
dom counts should follow the Poisson distribution if a single population is
involved. :
- The distribution of most plants or animals in nature, on the other hand,
is modified by non-random factors. Sometimes the latter may contribute
less to the total variability than the part attributable to random or Poisson
variation. This was the case, for example, in the occurrence of Japanese
beetle larvae in relatively light infestations [3]. In studies on the distri-
bution of leafhoppers in fields of sugar beets, Bowen [4] found that the mean
number of leafhoppers per plant could be estimated with the Poisson series
from the percentage of uninfested plants. Even in so favorable a case,
however, the possible occurrence of non-random factors would need to be
checked continuously in order to insure the validity of the estimate. In,

1 Station biometrician.

1The suthor is eapecially indebted to Misa Marian C Jackman, Technician in the Department of Phar-
macology, Yala University. Mim Jackman computed Tablee 1, 2 and § which, as the reader will soon dis-
cover, ars the moat useful parts of the present bulletin. Tho author is equally indebted to Dr. Raimon
L. Beard, entomologist at this atation, for the experimental data in Table 3.
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ecological studies on the occurrence of grasses in nature, Blackman [2] re-
ported several cases where counts of the number of plants per quadrat
square could be deseribed adequately by the Poisson series. Thus, even
though non-random factors usually cause significant departures from a
random distribution of plants and animals in nature, the Poisson series
determines the minimum variability to be expected by chance alone.

When a Poisson series can be assumed, there may be advantages in
truncating the distribution arbitrarily and computing the mean from an
incomplete count. Units containing few individuals, such as 0, 1, 2 and
3, can be identified at a glance and the number of each type counted rapidly.
The number of units with four or more individuals can be counted equally
rapidly when grouped into a single category. If a small enough unit is
selected that the mean number per unit does not exceed 3 to 5, the precision
lost in pooling the larger occurrences can easily be balanced by counting
more units. The method of computation is based upon a paper by Tippett
[10}, which should be eonsulted for 2 mathematical derivation of the under-
lying equations and for nomographs for estimating the mean.

Estimation of the Mean

A Poisson distribution is defined by a single parameter, its mean (m),
Since its variance (¢%) is equal to the mean, the expected frequencies of the
units containing z = 0, 1, 2, 3, - - - events per unit are given by the succes-
sive terms in the series

2 3
Ne_’"{l,m,gi!,%,---}, (1)

where e = 2.7183 or the base of the natural logarithms and ¥ is the total
number of units. Since the parameter m is seldom known a priori, it is
replaced by its estimate »# computed from the observations. When the
series is complete,

Mm =% = S(fx)/N 2

or the arithmetic mean. When the larger units are pooled into a single
class, the total number of individuals in all units S(fz) is unknown and the
mean cannot be computed directly. It can be estimated, however, by
maximum likelihood as deseribed by Tippett [10].

A preliminary approximation to 7 is obtained from a proportionate
cumulative frequency based upon the actual observations. For this pur-
pose the frequencies f for z = 0, 1, 2, - - - may be added until their sum
S(f) is equal to about half of the total or until it includes all classes that
were not pooled in counting. This number is expressed as a proportion
of the total (N) and referred to the appropriate column of Table 1 to obtain
the two or three values of # in the first column which bracket it. Table 1
gives for each value of the mean # the proportionate expected frequency
for = 0 and that accumulated from z = O toz = 1, 2, and 3. It has
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been prepared from a table of the Poisson distribution such as Pearson’s
Table 51 [8] or Molina’s Table 1 [7].

TaeLe 1. ProroRTIONATE EXPECTED FREQUENCIES ¢ FOR THE Polsson
DisTRIBUTION CUMULATED FROM z = 0 70 DESIGNATED VALUES OF z.

Cumulated values of x Cumulated values of »

Mean Mean
h h
0 Oand i Oto2 Oto3 ¢ Oand i 0to2 otod
L1 | .90484 | .99532 | 99984 |1.00000 || 3.1 | .04505 | .18470 | .40116 | .62484
-2 | 81873 | 98248 | .99885 | .99994 | 3.2 | ,04076 | .17120 | .37990 | .60252
.3 | .74082 | .96306 | .99640 | .99973 || 3.3 | .03688 | .15860 | .359043 | .58034
4 | .67032 | .93845 | .99207 | .99922 | 3.4 | .03337 | .14684 | .33974 ( ,55836
.5 | .60653 | .90980 | .98561 | .99825 | 3.5} .03020 | .13589 | .32085 | ,53663
6 | .54881 | 87810 | .97688 | .99664 | 3.6 | .02732 | .12569 | .30275 | .51522
.7 | .40658 | .84420 | .96586 | .99425 | 3.7 | .02472 | .11620 | .28543 | .49416
.8 | .44933 | .80879 | .95258 | .99092 || 3.8 | .02237 | .10738 | .26890 | .47348
.9 | 40657 | .77248 | .93714 | .98654 | 3.9 | .02024 | .09918 | .25312 | .45325
1.0 | .36788 | .73576 | .91970 | .98101 || 4.0 { .01832 | .09158 | 23810 | .43347
1.1 | .33287 | .60903 | .90042 | .97426 || 4.1 | .01657 | .08452 | .22381 | .41418
1.2 | .30119 | .66263 | .87040 | .96623 | 4.2 | .01500 | .07798 | .21024 | .39540
1.3 | .27253 | .62682 | .85711 | .95690 | 4.3 | .01357 | .07191 | .19736 | .37715
1.4 | .24660 | .50183 | .83350 | .94628 | 4.4 { .01228 | .06630 | .18514 | ,35945
1.5 | .22313 | .55782 | .80885 | .03436 || 4.5 | .01111 | .06110 | .17368 | .34230
20100 | .52403 | .78336 | .92119 || 4.6 | .01005 | .05620 | .16264 | .32571
.18268 | .49325 | .75722 | .90681 | 4.7 ] .00910 | .05184 | .15230 | .30968

.16530 | .46284 | .73062 | .89129 || 4.8 | .00823 | .04773 | .14254 | .29423
.14957 | .43375 | .70372 | .87470 | 4.9 | .00745 | .04304 | .13333 | .27934
.13534 | .40601 | .67668 | .85712 | 5.0 | .00674 | .04043 | .12465 | ,26503

DS b ek ek
=0 BE S K -~ T

.12246 | .37962 | .64963 | .83864 | 5.1 | .00610 | .03719 | .11648 | .25127
.11080 | .35457 | .62271 | .81935 | 5.2 | .00552 | .03420 | .10879 | .23807
.10026 | .33085 | .59604 | .79935 | 5.3 | .00499 | .03145 | .10155 | .22541
.09072 | .30844 | .56071 | 77872 | 5.4 | .00452 | .02891 | .00476 | .21329
.08208 | .28730 | .54381 | .75768 | 5.5 | .00400 | .02656 | .08838 | .20170

On W WO B =

07427 | .26738 { .51843 | .73600 | 5.6 | .00370 | .02441 | .08239 | .19062
.08721 | .24866 | .49362 | .71409 | 5.7 | .00335 | .02242 | .07677 | .18005
.06081 | .23108 | .46045 | .69194 | 5.8 | .00303 | .02059 | .07151 | .16096
.05502 | .21450 | .44596 | .66062 | 5.9 | .00274 { .01890 | .06658 | .16035
04070 | .19915 | .42319 | .64723 || 6.0 | .00248 | .017356 | .06197 | .15120

b?l\')l\'}!.\?&
oW m=-1h

The total number of individuals expected in the classes which are listed
separately is determined for each provisional #2 by means of the expression

M{for — nfe); @

where f,, is the observed total frequency from z = 0 to z = {, the largest
class which is recorded separately, and f. is the observed composite fre-
quency for all values of z larger than £, so thatf,, + f: = N. Corresponding
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to each 7 is an expected ratio 9 == ¢:/¢. , which is the ratio of the expected
frequency for x = { to the cumulated expected frequency corresponding fo
fe. These 7 ratios are listed in Table 2 for each # from 0.1 to 6.0 and for
z, from 0 to 3. '

TaABLE 2. RaTtio v oF ExpEcTED FREQUENCY IN LARGEsST CLass (x;) THAT

Is CountEp (¢,) To THE CuMULATED ExrECTED FREQUENCY IN ALL
LaARGER CLASSES (¢c).

Mean Ratio p = ¢¢/d. where 21 is Mean Ration = ¢¢/¢: where ¢ is
h thy
0 1 2 3 0 1 2 3
.1]9.50833 [19.3383 [20.1871 |[37.7500 | 3.1 | .04T7174| .171291| .361469) .596218
.2 (4.51666 | 9.34463 |14,2639 |19.1579 | 3.2 | .042404( ,157383| .336564| .560068
.3 |2.85820 | 6.01699 | 9.26028 |12.5338 || 3.3 | .038205| .144656| .313514| .526404
.4 12,03324 | 4.35612 | 6.76583 | 9.21392 | 3.4 | .034525| .132099| 202155 495008
.5 11.541560 | 3.36199 | 5.269039 | 7.21233 | 3.5 | .031137| .122312| .272338| .465689
.6 |1.21637 | 2.70126 | 4.27368 | 5.88356 (| 3.6 { .028092| .112506| .253936| .438276
L7 .986432( 2.23106 | 3.56344 | 4.93447 || 3.7 | .025351] .103504] .236833| .412615
.8 | .815966( 1.87996 | 3.03197 | 4.22280 || 3.8 | .022883| .005235! ,220022| .388570
.9 .685118| 1.60828 | 2.61961 | 3.67026 (| 3.9 | .020660| .087635| .206112| .366019
1.0 | .581975( 1.39221 | 2.29063 | 3.22004 || 4.0 | .018658| .080649] .102316| .344848
1.1 498960 1.21650 | 2.02228 | 2.86854 | 4.1 | .0168562| .074221] ,179458| .324061
1.2| .431012] 1.07132 | 1.79947 | 2.56875 | 4.2 | .015224| 068307 .167469| .306262
1.3| .374630] .949391; 1.61167 | 2.31563 || 4.3 | .013756| .062866| .156284| .288673
1.4 .327310] .845820] 1.45142 | 2,09915 || 4.4 | .012430{ .057856| .145847| .272117
1.5 | .287216} .75G928| 1.31319 | 1.91205 || 4.5 | .011234] .053243( .136104| .256526
1,6 .252971| .679972( 1.19288 | 1.74880 || 4.6 | .010154| .048996| .127004| .241835
1.7 ] .223516| .612845| 1.08733 | 1.605620 || £.7 | .009178{ .045085| .118505| 227987
1.8 .198033) .553006] .904078| 1.47800 || 4.8 | .008208{ .041483| .1105687| .214930
1.9 .175874| .501862| .911202| 1.36460 || 4.9 | .007503| .038165| .103149| .202613
2.0| .1565617| .455679 .837151| 1.26205 || 5.0 | .008784| .035109 .096218| .100992
2.1 .139544] .414515( .770662| 1.17139 || 5.1 | .006134| .032204| .089741| . 180024
2.2 .124610| .377682| .710718| 1.08852 || 5.2 | .005548( .020702| .083688| .169672
2.3 | .111430] .344611] .656462| 1.01323 || 5.3 | .005017| .027314| .078031| .159899
2.4 | .000769] .314829 .607189| .044581{ 5.4 | .004537] .025116 .072745| . 150669
2.5 .080425) .287935 .562304) .881773 5.5 | .004104| .023000| .067804| .141955
2.6 | .080233| .263501| .521305| .824143| 5.6 | .003712| .021226| .063189| .133725
2.7 .072048| .241508| .483760| .771115 5.7 | .003357| .019500| .058875! ,125052
2.8 .064747| .221437] .449301| .722203( 5.8 | .003037| .017929| .054845) 118612
2.9| .058227) .203164| .417613| .676984) 5.9 | .002746| .016474] .051081] .111679
3.0 .052396| .186503 .388416| .835007] 6.0 | .002485) .015136| .047566| .105131

We next compute S..(fz), the total number of individuals observed in the
classes which were counted separately. The corresponding expected values
obtained by solving expression (3) at each selected 7 should bracket that
computed from the observations. If not, expression (3) is solved with
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additional values of s until two are obtained which enclose the observed
S,:(fz). The mean #: to which the latter corresponds is then interpolated
linearly from the adjacent expected values. Within the limits imposed by
linear interpolation the result is a maximum likelihood estimate of the mean
of the incomplete distribution, .

The computation may be illustrated by haemocytometer counts, kindly
supplied by Dr. R. L. Beard [1], of blood from an infected Japanese beetle
larva. The infection was milky disease and the object of the count was to
determine the concentration of spores per mg. of blood. One drop weigh-
ing 22.5 mg. was dispersed in 50 cc. of water and the concentration deter-
mined by four series of counts, each of 64 squares. Each square represented
a volume of 25 X 107® cc. of suspension or 11.25 X 10~° mg. of blood.
Squares containing four or more spores were listed under a single heading,
leading to the frequency distributions in Table 3.

TasLE 3. FREQUENCY DISTRIBUTIONS OF SPORE COUNTS FROM THE BLoob
OF A JAPANESE BEETLE LARVA INFECTED WITH MILKY DISEASE.
Data oF R. L. Bearp [1]

Frequency () of squares in series
No, of spores per square

¥ 1 o I v

0 3 4 9 10

1 11 13 15 14

2 19 16 18 12

3 14 12 14 14

>4 17 19 8 i4

Total (N)....covvvivvinian.. 64 64 64 64
S(z) from complete count.... 169 156 135 144

.
The calculation may be illustrated with the counts from series I. In the
range from z = 0 to £ = 3, the cumulated observed frequency was fo; =
3 4+ 11 4 19 + 14 = 47 and the total number of spores recorded was
Su(fz) = 11 + 2 X 19 + 3 X 14 = 91. For a trial estimate of 4, the
frequencies were cumulated from z = § toz = 2 to obtain fp/N = 33/64 =
0.516. When referred to the fourth column of Table 1, 0.516 lay between °
the expected proportions for means of 7t = 2.6 and 7 = 2.7. The expected
total number of spores from z = 0 to x = 3 was then computed for each 1
with the values of % from the fifth column of Table 2 by expression (3) as
2.6(47 — 17 X 0.8241) = 85.77 and 2.7(47 — 17 X 0.7711) = 91.51
respectively. The number of spores observed, Su(fz) = 91, corresponded

to a mean 7 between 2.6 and 2.7. Its value was estimated more exactly
91 — 85.77
by linear interpolation as 7 = 2.6 -+ 0.1 (9—“———1.51 — 85.77) = 2.691 spores

per square. This represented a density of 2.691/11.25 X 107% = 239 X
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10° spores per mg. of blood. The above calculation is summarized in the
following Work Form. '
WORK FORM

For calculating the mean number of spores per square {m) and its standard error
(24) from the data for series I in Table 3.

Haemocytometer counts of First approximalion to 1
the number of spores of milky fo =34 11419 = 33
disease in the blood of a o/ N = 0.516

Japanese beetle larva

No. of spores From Table 1, find forz = 0 to 2
. No. of squares h Do foof/ N
per s:ua.re i Jz 2.6 5184
016
0 3 0 2.7 .4936
1 11 47 11
2 9| = fos 38
3 14 42
Total...... 64 (= N) g1

For range from x = 0.fox = 3:

Compute expected total number of spores for #t = 2.6 and 2.7 with 1
from Table 2:
Mm(fos ~— nf) = 2.6(47 — 8241 X 17) = 85.77 for 1 = 2.6
and 27047 — 7711 X 17) = 91.51 “ + = 2.7
Observed total number of spores, Sa(fz)} = 91.

Interpolale 1 corresponding o 91 as

Mm =26 4+0.1 {f)?lsl——sig%} = 2.691 spores per square.
Since 11.25 X 10~° mg. of blood cover each square, each mg, of blood con-
tains 2.691/11.25 X 10~° = 23.9 X 10° spores.
Standard error of . Interpolate g, from Table 5 for # = 2.691 from
values for i = 2.6 and 2.7.

h Tabular o,4?
2.6 28966 X .09 = . .261
2.7 3.0457 X 91 = 2.772
2.601 ‘ 3.033 = o4

Compute sn = Vep?/N = 1/ 3.033/64 = 0.218 spores per square.
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Similar estimates have been computed from the data of the other three
series and listed in Table 4. For comparative purposes the total number
of spores in each series was recorded at the time of counting (Table 3).
The means (£) from the complete counts have been computed by equation
(2) and listed beside the means () estimated from the grouped
distributions. The two estimates agreed within the sampling error in all
series.

TaBLE 4. SraTisTIcS COMPUTED FROM THE OBSERVATIONS IN TABLE 3.

Serics no. Compledt:e oou;:: Pnrual ;:om;:h x* {;;;- i_:g:fe(t:e:t;;ith
1 2.641 £ ,203 2.691 = .218 1.276
II 2,438 2= 195 2.683 = .217 0.528
II1 2.109 X 182 2.020 + .182 1.000
v 2.250 + .188 2.260 = .195 3.547

Standard Error of the Mean

Since the variance of a Poisson distribution is equal to its mean, the
standard error of the mean of a complete count may be computed as

84 = Vm/Nr (4)

where the expected mean (m} is replaced necessarily by its estimate # = Z.
This equation does not apply, however, when the upper end of the distri-
bution is grouped, so that we know the number of units (f.) but not the
number of individuals it contains. Tippett [10] has shown that the vari-
ance (¢, ) applying to the mean (7:) estimated from incomplete data is a
function of the expected proportionate frequencies (¢). On the basis of &
single unit, his equation may be written as

O'm’ = m/{¢ol - ¢I—17ﬁ' + ¢1[(1 + ﬂ)m - 1]}) (5)

" where for a given 7, ¢, is the cumulated proportionate frequency in Table
1, n is the ratio in Table 2 and ¢, and ¢, are the proportionate frequencies
for the largest and next-to-largest values of z that are counted completely
Solvmg this equation for the values of # in Tables 1 and 2 led to the vari-
ances in Table 5.

The standard error of the mean 7 estimated from a given series of N

units is computed as
8n = Vaa®/N, (6)

where o, is interpolated du'ectly from Table 5 at the required 7.
Since for a complete count os. = 1, one can compute how many units
would be needed to estimate the mean with equal precision from an in-
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TABLE 5. VARIANCE oF THE MEAN oF AN INcOMPLETE PoissoN
DistriBuTioN As CoMPuTED BY EQUATION 4.

oplats aglat! =
L h
0 1 2 3 a 1 2 3

1| .10517} .10016/ .10005 .10000) 3.1 | 21.198] 7.5156| 4.6591| 3.7039
.21 .22140[ .20125| .20006] .20000) 3.2 | 23.533] 8.1338| 4.9504] 3.8863
.3| .34086 .30413| .30030| .30002( 3.3 | 26.113| 8.8016| 5.2593| 4.0768
4| .40182| .40956] .40089%; .40007| 3.4 | 28.964 9.5236( 5.5874| 4.2760
.5 .64872) .51830] .50210| 500200 3.5 | 32.116| 10.3040( 5.9350| 4.4846
.6| .82212| .63105| .60417| .60047]3.6 | 35.508| 11.1486| 6.3084 4.7030
.77 1.01376] .74851] .70742] .70096| 3.7 | 39.446| 12.0622| 6.7006| 4.9322
.B | 1.22554) .87141| .81217| .S0180f 3.8 | 43.701) 13.0512] 7.1200| 5.1725
.9 [ 1.45960| 1.00042| .91878| .90309 3.9 | 48.402( 14.1227| 7.5668] 5.4249
1.0 1.71829] 1.13630] 1.02758] 1.00497( 4.0 | 53.507) 15.2824| 8.0428] 5.6902
1.112.0042 | 1.27082| 1.13808] 1.10762( 4.1 | 59.34 | 16.540 | 8.5502; 5.9692
1.212.3201 | 1.43175| 1.25336] 1.2112244.2 | 65.68 | 17.903 9.0912] 6.2629
1.3 | 2.6693 | 1.60207 1.37114| 1.31596( 4.3 | 72.70 | 19.380 0.6688( 6.5721
1.4 3.0552 | 1.76434] 1.40270 1.42204|4.4 | 80.45 | 20.982 | 10.2854| 6.8977
1.5] 3.4817 | 1.94683] 1.61852f 1.52074(14.5 | 89.02 | 22.721 | 10.0438| 7.2415
1.6|3.9530 | 2.1414 | 1.7490 | 1.63925] 4.6 | 98.48 [ 24,608 | 11.648 | 7.6038
1.714.4740 | 2.3492 | 1.8847  1.75083( 4.7 | 108.95 | 26.6566 | 12.400 | 7.9865
1.8 5.0496 | 2.5715 | 2.0260 | 1.86477|| 4.8 | 120.51 | 28.880 | 13.205 | 8.3905
1.9 5.6850 | 2.8094 | 2.1735 | 1.98133) 4.9 | 133.28 | 31.295 | 14.066 | 8.8174
2.0]6.3800 | 3.0642 | 2.3278 | 2.10080( 5.0 | 147.41 | 33.918 | 14.987 | 9.2686
2.1|7.1662 | 3.3376 | 2.4803 | 2.2235 | 5.1 | 163.0 | 36.771 | 15.974 | 9.7460
2.2 8.0250 | 3.6311 | 2.6587 | 2.3497 || 5.2 | 180.0 | 39.870 | 17.031 | 10.2510
2.3 8.9742 | 3.9465 | 2.8367 | 2.4797 || 5.3 | 109.3 | 43.237 | 18.164 | 10.7858
2.4110.0232 | 4.2854 | 3.0230 | 2.6140 | 5.4 | 220.4 | 46.809 | 19.378 | 11.3523
2.5(11.1825 | 4.6501 | 3.2210 | 2.7528 || 5.5 | 243.7 | 50.887 | 20.680 | 11.0522
2.6 (12.464 | 5.0428 | 3.4288 | 2.8966 || 5.6 | 269.4 | 55.216 | 22.076 | 12.589
2.7 |13.880 | 5.4656 | 3.6482 | 3.0457 | 5.7 | 297.9 | 59.932 | 23.576 | 13.263
2.8]156.445 | 5.9214 | 3.8790 | 3.2005 | 5.8 | 329.2 | 65.065 | 25.186 | 13.979
2.9(17.174 16.4129 | 4.1250 | 3.3616 | 5.9 | 364.1 | 70.650 | 26.014 | 14.739
3.0(19.085 §6.9432 | 4.3843 | 3.5202 | 6.0 | 402.% | 76.734 | 28.769 | 15.546

complete distribution and from a complete count. The relative number
of units is measured by the ratio o, /s, which has been plotted in Fig. 1
against the expectation o per cell for four different systems of counting.

Figure 1. Dependence of relative number of units needed for a given accuracy
upon the expected frequency per unit (t) with different methods of counting. The
different curves show the largest number per unit counted individually (z,) for values
of ;= 0, 1, 2 and 3, all larger numbers being pooled in each case.
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It is obvious from the figure that the pooling of all units in which z 3 1,
unavoidable under some experimental conditions [6], leads rapidly to a
marked loss in efficiency as # increases. "Pooling units for which z > 4
gives a relatively efficient estimate when the expected mean frequency per
unit (»7) is less than 4.

The standard errors of the two means for each series in Table 3 have been
computed by equations (4) and (6) respectively, as may be illustrated with
series I. The mean of the grouped series was 7% = 2.691. By linear inter-
polation in the column for ¢ = 3 of Table 5, its variance was determined as
o = 0.09 X 2.8966 + 0.91 X 3.0457 = 3.033, from which s, =
+/3.033/64 = 0.218 by equation (6). The standard error of the mean
from the complete count of the same series by equation (4) was s: =
4/2.641/64 = 0.203. The standard errors for the remaining three series
were obtained similarly (Table 4). In every case the mean determined by
the short-cut agreed well with that based upon the complete count.

To obtain the same precision from a partial as from a complete count of
64 squares, the number of squares in the first series should be increased by
the factor 3.033/2.691 = 1.127 or from 64 to 72 squares. An experimental
test would be needed to determine whether it would be easier to examine
eight additional squares or to record completely the number of spores in
every square, One would also have to allow for the additional computation
required with the partial count.

" Test for Agreement with the Poisson Series

The statistics computed from a partially-recorded distribution are valid
only if the distribution is Poisson. This is inferred initially from the condi-
tions giving rise to the data. The number of individuals or events in any
given unit should be independent of that in any other unit and all units
should be equally exposed to the chance oceurrence of one or more events.
In using a haemocytometer, for example, the randomness of the distribution
might depend upon the care with which the slide was prepared for counting,.
The number of spores in one square should not modify the number in
another square and all squares should be equally exposed to the chance
occurrence of spores.

Even where a Poisson distribution would be expected from the available
evidence, a given sample may depart significantly from expectation. In
other cases there may be no information other than the cbserved distri-
bution. The agreement of an observed frequency distribution with that
expected by the Poisson series can be tested objectively by »* [5]. An ex-
pected frequency (mi{ = N¢,) is computed to match each observed fre-
quency (f;) and %’ is determined from the paired frequencies as

¢ - s{tzm)

mi

@



Estimation of the Mean 11

For a given # the expected frequencies (m;) at each z; can be computed
directly by equation (1) to obtain the number of units containing z; =
0, 1, 2 and 3 individuals or events. The expected frequency for pooled
values such as beyond z; = 3, is given by subtraction from N. Alterna-
tively and more easily, the expected frequencies can be interpolated from
the proportionate frequencies (¢;) in a table of the Poisson distribution
[7, 8].

To judge the goodness of fit the x* computed with equation (7) is referred
to a table of the x” distribution [5]. The degrees of freedom (n) in x° are
equal to the number of paired frequency groups diminished by two, repre-
senting 7 and N. If the probability P of obtaining as large a x* as that
observed exceeds 0.05, the data are consistent with the Poisson series.
Since the uncounted units may contain an excessive number of individuals
or events, x° provides only a partial check. For this reason it is desirable
to count a few representative series in full and to test their agreement with
the Poisson series.

TapLE §. EstimaTioN oF Exprecrep FREQUENcIES {(m') BY INTERPOLATION

AND THEIR CoMPARISON WITH THE OBSERVED FREQUENCIES (i) BY x?
FoR SeriEs I 1N TasLe 3.

Spores per square Proporuca;tfo:requency :::E:fﬁﬁyugn ‘?:q““m i - "“’)’
x for 2 ™
tho=26 o2 h =260
0 .0743 0672 4.34 . 3 414
1 .1931 .1815 11.68 1 040
2 .2510 .2450 15,71 19 .659
3 .2176 2205 14.10 14 00
>4 .2640 2859 18.17 17 075
Factor....... 5.8 58.2
Total......... 64.00 64 1.219 = yt

The first series in Table 3, with an estimated mean of #ft = 2.691 has heen
tested for goodness of fit. The tabular proportionate frequencies for i =
2.6 and s = 2.7 have been copied in the second and third columns of
Table 6. To obtain the expected frequencies by linear interpolation, each
value of mg for 7 = 2.6 was multiplied by (1 — 0.91)64 = 5.8 and added
to the products of the corresponding value for 2 = 2.7 multiplied by 0.91 X
64 = 58.2. These factors have been entered at the foot of each column.
The expected frequency for z = 0, for example, was computed as m; =
5.8 X .0743 4 58.2 X .0672 = 4.34 and the others were obtained similarly.

The expected frequencies m: were then compared with the observed
values f; by equation (7), computing from each pair its contribution to x*.
The component for the first entry was (3 — 4.34)?/4.34 = 0.414, which has
been listed with the other contributions in the last column of Table 6.



12  Connecticut Experiment Station Bulletin 613

The sum.of the five entries gave x* = 1.219 with 5 — 2 = 3 degrees of free-

dom. - By interpolation in a‘table for x*, P = 0.74, indicating good agree-

ment with the Poisson. The x*'s for the other series (Table 4) gave similar
results. A x” test [5] comparing the total numbers of spores in each of the

four series showed that they differed no more than \vould be expected by

chance (x* = 4.331,n = 3).

Summary

When organisms or events occur at random in space or time the number-
-of individuals in each unit follows the Poisson distribution. It may be
necessary or convenient to record in full only the units containing few
observations such as 0, 1, 2 and 3, combining the rest into a single category.
This paper presents tables to facilitate the estimation of the population
mean and its standard error from such incomplete counts. Agreement of
the observed frequencies with those expected by the Poisson distribution
can be tested readily by x°. The calculation of these statistics is illustrated
by haemocytometer counts for measuring the density of the spores of milky
disease in the blood of an infected Japanese beetle larva.
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