# IMPERIAL BUREAU SOIL SCIENGE 

TECHNICAL COMMUNICATION No. 35

## THE DESIGN AND ANALYSIS <br> OF FACTORIAL EXPERIMENTS

by
F. YATES, M.A.
(Rothamsted Experimental Station)


Price, 5/-

Imperiial Bureau of Soil Science, Harpenden, England)

# IMPERIAL AGRICULTURAL BUREAUX 

## Executrve Council,

2 Queen Anne's Gate Buildings, London, S.W. I.
Imprrial Bureau of Soll Science, Rothamsted Experimental Station, Harpenden, Herts.

Imprrial Bureau of Animal Nutrition,
The Reid Library, Rowett Institute, Bucksburn, Aberdeen.
Imprral Bureau of Animal Health,
Veterinary Laboratory, New Haw, Weybridge, Surrey.
Imprrial Burrau of Animal Genetics,
King's Buildings, University of Edinburgh; Scotland.
Imprial Bureau of Plant Genetics (for Crops other than Herbage), School of Agriculture, Cambridge.

Imperral Bureau of Plant Genetics (Herbage),
Agricultural Buildings, Alexandra Road, Aberystwyth.

|  | East Malling, Kent. <br> Parasitology, St. Albans, Herts. <br> IAL BUREAU OF SOIL SCIENCE <br> Sir E. J. Russell, D.Sc., F.R.S. <br> G. V. Jacks, M.A., B.Sc. <br> A. J. Lloyd Lawrence, M.A., A.I.C. Miss H. Scherbatoff, Dip. Agric. Miss J. N. Combe, F.L.A. Miss M. B. Staines. |
| :---: | :---: |

# IMPERIAL BUREAU ƠF SOIL SGIENGE 

TECHNICAL COMMUNICATION No. 35

## THE DESIGN AND ANALYSIS <br> OF FACTORIAL EXPERIMENTS

by<br>F. YATES, M.A.<br>(Rothamsted Experimental Station)



Price, 5/-
(Published by the Imperial Bureau of Soil Science, Harpenden, England)

## CONTENTS

I. Introduction
(a) Principles undorlying factorial design.
(b) Criticisms of factorial design.
(c). Scope of the present paper.
(d) New material.
(e) Notation, etc.
2. A simple factorial experiment on potatoes .. .. .. .. .. 8
(a) Yields of the different combinations of treatments.
(b) Main effects.
(c) Interactions.
(d) Calculation of the main effects and interactions from the experimental yields.
(e) Interpretation of main effects and interactions.
(f) General remarks.
3. Statistical analysis of a $2 \times 2 \times 2$ experiment .. .. .. .. .. 14
4. Confounding .. .. .. .. .. .. .. .. .. 18
(a) Example to illustrate confounding.
(b) Statistical analysis.
(c) Presentation of results.
(d) Example of partial confounding.
(e) Statistical analysis.
(f) Presentation of results.
5. Systems of confounding for $2 \times 2 \times 2 \times \ldots$. . designs . . . .. .. 23
(a) Confounding with five factors.
(b) Confounding with six factors.
(c) Confounding with four factors in blocks of 4 plots.
(d) General remarks.
6. Estimation of error from high-order interactions .. .. .. .. 27
7. An exploratory experiment on beans .. .. .. .. .. .. 27
(a) Analysis.
(b) Gain in precision due to confounding.
8. Confounding in Latin square designs with factors at two levels .. .. $3^{1}$
(a) $2 \times 2 \times 2$ design in two $4 \times 4$ Latin squares.
(b) Numerical example.
(c) Arrangements for five and six factors in an $8 \times 8$ square.
9. Factors at more than two levels.
(a) Two factors.
(b) Three or more factors.
(c) Simplification when one of the factors is at two levels only.
(d) Procedure when two or more factors are at two levels only.
(e) Two factors at three levels: formal sub-division of interactions in a $3 \times 3$ table.
(f) Example.
10. Confounding with three and four factors each at three levels .. .. 42
(a) $3 \times 3 \times 3$ designs in blocks of 9 plots.
(b) Example of a $3 \times 3 \times 3$ design.
(c) Adjusted yields of three-factor combinations.
(d) $3 \times 3 \times 3 \times 3$ designs in blocks of 9 plots.
(e) $3^{3}$ and $3^{4}$ designs in quasi-Latin squares.
(f) Extension to $3^{\mathrm{n}}$ in blocks of $3^{\mathrm{n-1}}$ or $3^{\mathrm{n}-2}$

## CONTENTS-continued

II. The subdivision of sets of degrees of freedom
(a) Subdivision of main effects.
(b) Subdivision of interactions.
II. The subdivision of sets of degrees of
(a) Subdivision of main effects.
(b) Subdivision of interactions.
II. The subdivision of sets of degrees of
(a) Subdivision of main effects.
(b) Subdivision of interactions.
(c) Example.
(d) General remarks.
12. The $3 \times 3 \times 3$ design : single replication .. ... .. .. .. 53
(a) Systematic method of analysis.
(b) Alternative method.
(c) The linear component of the three-factor interaction.
13. Confounding with some factors at two and some at three levels
$\because:$
(a) $3 \times 2 \times 2$ design in blocks of 6 plots.
(b) Statistical analysis of $3 \times 2 \times 2$ design.
(c) Example.
(d) $3 \times 2 \times 2 \times 2$ design in blocks of 6 plots.
(e) Extension to $3 \times 2^{\mathrm{n}}$ design in blocks of $3 \times 2^{\mathrm{n}-1}$ and $3 \times 2^{\mathrm{n}-2}$ plots.
(f) $3 \times 3 \times 2$ design in blocks of 6 plots.
(g) $3 \times 3 \times 3 \times 2$ design in blocks of 6 plots.
(h) Extension to $3^{\mathrm{n}} \times 2$ designs in blocks of $3^{\mathrm{n}-1} \times 2$ and $3^{\mathrm{n}-2} \times 2$ plots.
(i) $3 \times 3 \times 2$ design in a $6 \times 6$ quasi-Latin square.
14. Confounding with one or more factors at four levels or eight levels
(a) General method.
(b) Example : $4 \times 4$ designs.
(c) Combined varietal and manurial trials in Latin squares.
15. Dummy treatments
(a) Application of fertilizer at two different times.
(b) Alternative designs.
(c) $3 \times 3 \times 3$ designs including quality differences.
16. Arrangements with split plots
(a) Structure and analysis of split-plot designs.
(b) Example: a varietal and manurial trial on oats.
(c) Calculation of standard errors.
(d) Efficiency.
(e) Confounding of interaction3 in split-plot designs.
(f) Half-plaid Latin squares.
(g) Plaid squares.
(h) Use of Latin squares with split plots in varietal trials.
(i) The Graeco-Latin square.
(j) The hyper-Graeco-Latin square.
17. Varietal trials-quasi-factorial designs .. .. .. .. .. .. 85
(a) The lattice.
(b) Triple and balanced lattices.
(c) Lattice squares.
(d) Three-dimensional lattices.
(e) Non-factorial designs: balanced incomplete blocks.
(f) The introduction of additional treatments in quasi-factorial designs.

Notes

1. Number of figures required in the computations and results.
2. Numerical divisors in the analysis of variance, etc.
3. Orthogonal functions.
4. Hints on the use of calculating machines.

References and material for further reading

