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"We see that the theory of probabilities is at bottom 
only commonsense reduced to calculation : it makes us 
appreciate with exactitude what reasonable minds feel by 
a sort of instinct." 

P. S. LAPLACE 

"Mathematics may be compared to a mill of exquisite 
workmanship which grinds you stuff of any degree of 
fineness, but nevertheless what you get out depends on 
what you put in-and as the grandest mill in the world 
will not extract wheat flour from peaspods so pages of 
formulae will not get a definite result out of loose data." 

T.H.HUXLEY 

"We have usually no knowledge that any one factor 
will exert its effects independently of all others that can 
be varied, or that its effects are particularly simply related 
to variations in these other factors. . • • 

" ... If the investigator, in these circumstances, 
confines his attention to any single factor, we may infer 
either that he is the unfortunate victim of a doctrinaire 
theory as to how experimentation should proceed, or that 
the time, material or equipment at his disposal is too 
limited to allow him to give attention to more than one 
narrow aspect of his problem." 

R. A. FISHER 



FOREWORD 

The present Monograph is based on an earlier Memorandum produced by 
the Directorate of Ordnance Factories (Explosives) for the use, primarily, of 
those concerned with pilot plant and plant scale experiments on chemical manu­
facturing processes in the Royal Ordnance Factories (Explosives). Much work 
of this type was being carried out and it had become evident that it was desirable 
for the results of such experiments to be subjected to critical tests of significance. 
A convenient account of the straightforward tests of significance, written from 
the point of view of the individual who has to apply them in practice without 
necessarily a full knowledge of their theoretical background, was not readily 
available, and an attempt was therefore made to prepare one. 

It was evident that to apply tests of significance conveniently and economically 
the experiments had to be planned in appropriate forms. It is considered that 
the methods outlined should be as much a standard tool of the industrial experi­
menter as a chemical balance is of the laboratory experimenter. In carrying out 
an industrial experiment the choice is not between using a statistical design with 
the application of the appropriate tests of significance or the ordinary methods : 
the choice is between correct or incorrect methods. Even the simplest experiment 
requires an estimate of the significance of its results. 

The practice sometimes followed of consulting the statistician only after the 
experiment is completed and asking him "what he can make of the results" cannot 
be too strongly condemned. It is essential to have the experiment in a form 
suitable for analysis and in general this can only be attained by designing the 
!!Xperiment in consultation with the statistician, or with due regard to the 
statistical principles involved. 

The present Monograph, therefore, is intended to be a guide to both the 
planning and the interpretation of experiments on the industrial scale, and it is 
hoped that the methods described will become part of the everyday technique 
to those who carry out such experiments. 

January, 1946 

R. C. BOWDEN, 
Director of Ordnance Factories (Explosives) 

Ministry of Supply 
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FROM TilE PREFACE TO TilE FIRST EDITIO:-J 

The present monograph is intended to provide for those who carry out 
investigational work a guide to modem statistical methods, both the use of tests 
of significance to attain reliability in deductions from experimental data and the 
use of statistical design to attain the maximum precision with the minimum 
expenditure. . 

The subject is treated entirely from the practical point of view. Theory 
is at a minimum and the only mathematics involved is simple arithmetic. Each 
statistical method discussed is illustrated with practical examples worked out in 
detail to show what exactly is involved in its use. Some of the more advanced 
techniques may appear rather formidable, but it is strongly recommended that 
they should be approached through the use of the simpler methods. A little 
practice in these will lead to a familiarity and confidence with which it will be 
realized that the advanced techniques are merely comparatively easy extensions 
of the simpler. 

The theoretical background on which the author has drawn is of course that 
largely developed by Professor R. A. Fisher, expounded in his "Statistical Methods 
for Research \Vorkers" and "The Design of Experiments." 

Indebtedness is expressed to Prof. R. A. Fisher and Dr. Frank A. Yates for 
permission to reprint Tables III-VI, IX, XII and XXIII from their book 
"Statistical Tables for Biological, Agricultural, and Medical Research" (Oliver & 
Boyd, Edinburgh and London), and to the British Standards Institution for 
permission to reprint certain factors of Quality Control Charts from B.S. 600R, 
""Quality Control Charts." 

The examples used here are all the results of experimental and investigational 
work in the Royal Ordnance Factories (Explosives), and the author's thanks are 
due to 1\Ir. A. C. H. Cairns, Mr. A. H. Woodhead, Mr. D. Newman and others 
wh~ collaboration has been invaluable in the development of the ideas and 
outlook presented here. The author is also indebted to Dr. R. C. Bowden, 
Director of Ordnance Factories (Explosives), for his active interest and encourage­
ment throughout this work. 
January, 1946. K. A. B. 

PREFACE TO TilE SECOND EDITION 
The principal additions to this Edition are a substantial enlargement of 

Chapter I and two new chapters, Chapter XIII on balanced incomplete blocks 
amd Chapter XIV on confounding. Further additions are the components of 
variance for unequal column size in Chapter VII (d), the exact formula for the 
residual variance about a regression line in Chapter IX (h), the Doolittle method 
of computation in multiple regression in Chapter X (d), and the partitioning of 
sums of squares in Chapter XII (c). 

Minor additions have also been made at many points. 
NMJmlber, 1946 K. A. B. 

PREFACE TO TilE TillRD EDITION 
Chapter I has been extended by sections on Youden Squares and on Random­

isation. In Chapter IX (g) the comparison of regression lines is discussed at 
greater length. Chapter XII (g) has a numerical example of a Latin Square. 
The methods of computation for Youden Squares and some examples of them 
are given in Chapter XIII (e). Chapter XIV is extended by discussions of con­
founding with factors at three levels (Section (g)) and four levels (Section (h)). 
Tables of the angular transformation (VI) and of random numbers (VII) are 
added to the Appendix. A number of minor additions have also been made. 
Ocrober, 1947 K. A. B. 
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PREFACE TO THE FOURTH EDITION 

The principal addition to this Edition is Chapter XVI on the fractional 
replication of factorial experiments. 

Of the other modifications the most important is the expansion and rearrange­
ment of the earlier material on Latin Squares into a new Chapter, Chapter XIII. 
Others are the calculation of the percentage of the normal curve lying outside 
any particular limit (Chapter II G)), Bartlett's test for variances with unequal 
numbers of degrees of freedom (Chapter IV (c)), proofs of the simple equations 
for simple and multiple regression (Chapter IX(d) and ChapterX(b) respectively), 
the treatment of missing values in factorial experiments (Chapter XII (k)), the 
possible designs for balanced incomplete blocks (Chapter XIV (c)) and their 
efficiency (Chapter XIV (d)). . · 

A Bibliography and an Index have been added. 

November, 1948 K.A.B. 
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CHAPTER I 

INTRODUCTION 
(a} Experimental Error 
In all experimental work our observations are always subject to experimental 

error. No experimenter would seriously dispute this statement. This makes it 
all the more remarkable that only recently has it begun to be generally admitted 
that in order to judge the trustworthiness of any experimental result it must be 
compared with an estimate of its error, an operation known to the statistician as 
a "test of significance." It can be said at once that the lack of this test of signi­
ficance is the main origin -of the unsatisfactory nature of most industrial experi­
mentation : the errors are large, larger than is realised, and the apparent effects, 
attributed by the experimenter to such factors as he has varied, are in reality 
arising solely through the accidental fluctuations due to these errors. If rigorous 
tests of significance were applied, many of the assertions made would be shown 
to be based on quite inadequate evidence and many would also be found to be 
fallacious (the fact that an assertion has been made on inadequate evidence of 
course does not imply that that assertion is incorrect : it may tum out that the 
asserter was lucky in his gamble. However, the plant manager in taking the 
advice of his experimenter does want to know whether he is acting on a scientifically 
proved fact or on a subjective guess). 

(b} Classical and Industrial Experimentation 
In this question of the importance of error we have one of the principal 

differences between laboratory and industrial, or plant scale, experimentation. 
The laboratory experimenter is generally in the fortunate position of being able 
to have all his independent variables under complete control : his materials can 
be of the highest possible purity : his measuring apparatus can all be of the highest 
accuracy, and usually his errors are small. 

In referring above to the laboratory experimenter, we meant particularly 
those working on physical-chemical systems. Any work involving living matter, 
bacteria, fungi, etc., is always found to have relatively large variability outside 
the control of the experimenter, and as far as the magnitude of his experimental 
error is concerned he is more in the position of the industrial experimenter even 
if he is working on the laboratory scale. 

The industrial experimenter, on the other hand, often cannot obtain complete­
control of all his variables, for frequently the scale of the experiment is so vast 
that an army of supervisors would be required to keep them under control. The 
attainment of good control may also be a difficult technical matter : thus it is 
generally easy in a well-equipped laboratory to control temperatures within very 
fine limits with the usual thermostatic equipment. For a plant scale experiment 
this is generally quite impracticable. Again, it is easy enough to provide excellent 
lagging for any laboratory apparatus : to lag an absorption column SO feet high, 
on the other hand, may be absurdly expensive. 

Further, for the industrial experimenter it may be in practice essential to 
carry out the investigation with only the slightest hindrance to normal production. 
Thus it might be possible to obtain control of the independent variables, but only 
through taking such time and care on each batch that the throughput through the 
plant would be seriously reduced. Or we might wish to vary some of the inde­
pendent variables over a wide range, in order to get points spaced well apart, so 
that their effect on the dependent variable would show up clearly: this might 
lead to the production of a large amount of out-of-specification scrap material. 
It would thus be necessary to work in a narrow range of the independent variable, 
which means that the magnitudes of the effects that we have to observe will be 
much reduced and may well be swamped by errors. 

10 



These factors result in industrial experiments generally having a much larger 
error than laboratory work. Under these conditions it is difficult to decide 
whether a particular result is genuine or due to the erro~, ~d this calls ~or a 
statistical test of significance. Fufili:er, !.n ?rder to get a significant result (1.e .. a 
result in which the apparent effect IS stgnificantly .greater than ~e ~rror ~ 1ts 
determination) we need a larger number of expenments (and this IS preCisely 
what is so undesirable in industrial work on account of the expense) unless we 
use a number of special statistical devices. 

Finally, it might not be out of place to remark that it has been the ~u~or's 
experience that even in laboratory work the errors, when calculated obj~vely 
with exact statistical technique, are often much larger than the expenmenter 
believes or claims them to be. 

It is clear from the above considerations that the industrial experimenter has 
to face a set of problems additional to those of the laboratory experimenter, and 
hence requires an additional set of techniques. These have been developed in 
recent years by research workers in agriculture (notably R. A. Fisher and .his 
colleagues at the Rothamsted Experiment Station) who have to contend with the 
weather and with variations in the fertility of the soil amongst the variables outside 
their control. . 

The reader is strongly recommended to study R. A. Fisher's "The Design 
of Experiments" (Oliver and Boyd, Fourth Edition, 1947), particularly the first 
half, for an authoritative exposition of the philosophy of experimentation. 

(c) Replication 
If the error of our estimate of an effect is too great, generally there are two 

alternative methods of reducing it. One is to refine the technique, e.g. by using 
more precise thermostatic equipment, weighing on better balances, taking more 
meticulous precaution against evaporation, etc. Alternatively, and often on the 
industrial scale this is the only alternative, we can replicate (repeat) the experiment 
a number of times and take the average of the results. Unfortunately this process 
is not very efficient, for the error of the average is inversely proportional to the 
square root of the number of observations. Thus averaging four observations 
brings the error of the average down to one-half that of a single observation : 
the average of sixteen observations has one-quarter of the error of a single 
observation.' 

On the laboratory scale, experiments are relatively cheap, and we can afford 
to take many more observations than are strictly necessary to establish a given 
conclusion with a given level of significance. We can easily take so many that 
the error of the average, if it ever was very high, has become· so small that an 
exact test of significance is obviously unnecessary. On the mdustrial scale, 
however, the work is so expensive, involving a large consumption of supervisory 
man-power, raw materials, power, etc., that to take more observations than would 
suffice for our purpose, defined above as the establishing of a given conclusion 
with a given level of significance, would be scandalously extravagant.(l) 

(d) Experimental Design : Randomised Blocks 
Statistical theory has so far only been mentioned in connection with the 

theory of errors, to which of course it is fundamental. It has, however, a great 
deal to say on how experiments should be designed so as to allow the obtaining 
of an unbiassed estimate of error and to allow the error to be at a minimum. 

(l) Thia aspect of statistics has been developed considerably recently: c.f. "Sequential 
An~lys~ of Statisti<;al ~ata :. Applications": Statistical Research Group, Columbia 
Uruverstty: Columbia Umverstty Press, and G. A. Barnard : "Sequential Tests in Industrial 
Statistics" (Supplement to the Journal of the Royal Statistical Society, Vol. VIII, No. t, 
P· 1, 1946). Also Abraham Wald "Sequential Analysis" Oohn Wiley, Chapman and Hall, 
1947). 
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Let us start with one of the simplest conceptions in experimental design, the 
so-called "Randomised Block." 

Suppose we wish to compare four "treatments." We are using "treatment" 
in a generalised sense : the four treatments may e.g. be literally four fertiliser 
treatments for wheat, or four diets for rats, or four temperatures for a nitration 
process, or four concentrations of plasticiser in a plastic. Further suppose that 
the material to which the treatments are applied arrives in batches large enough 
to allow only four experiments per batch. We will suppose that it is probable 
that successive batches differ appreciably in their quality. We will call these 
batches by the general term "blocks." In the wheat example quoted above, four 
adjacent plots of ground may be considered as the "block" : they are more likely 
to resemble each other in their fertility than other plots belonging to other blocks 
which will be further away, possibly in a different field. In the case of the rats, 
it is probable that rats from the same litter resemble each other more than rats 
from other litters. In the case of the nitration process, a tank full of well-stirred 
acid and a batch of material to be nitrated mixed thoroughly till it is homogeneous 
would be the equivalent of the "block." Further suppose that we are going to 
replicate four times (that is, carry out each observation four times<1 l). If the 
Treatments are A, B, C, and D and the Blocks are 1, 2, 3 and 4 we could execute 
the experiment as in Table 1.1. 

Table 1.1 

Block Treatment 

1 A A A A 
2 B B B B 
3 c c c c 
4 D D D D 

A moment's thought will show that a scheme such as that in Table 1.1 is 
obviously absurd, for whatever differences show up are as likely to be due to 
·differences between blocks as to differences between treatments. 

A slightly better procedure would be to distribute the treatments completely 
at random. We can label16 cards A, B, ,C, D each 4 times, place them in a hat, 
and withdraw them one by one, writing them down in order from left to right in 
successive blocks. The result of one such operation is in Table 1.2. 

Table 1.2 

Block Treatments 

1 D B B D 
2 c D A 'B 
3 B A c A 
4 c c D A 

If we take the averages of the four results for each treatment they will be 
statistically sound if the randomisation was properly carried out, but the error in 
each mean (average) will be inflated because it includes in itself the differences 
between blocks. The experiment will thus not be as accurate as it might be. 
. It would obviously be better to allocate each treatment once to each block, 
as in Table 1.3. 

(I} It will be convenient if we decide that a "single replication" means an experiment 
carried out once, "double replication" means an experiment carried out twice, and so on. 

12 



Table 1.3 

Block Treatment 

1 A B c D 
2 A B c D 
3 A B c D 
4 A B c D 

When we take the average of the four A's, and compare it with the average 
of, say, the four B's, the difference between the average is completely independent 
of any block differences. . . . • 

It might, however, be more satiSfactory if the order of carrymg out the expen­
ments were randomised (as they stand in Table 3 it is systematic, the order being 
A, B, C, D in each block). If there was any tendency for the first experiment in 
each case to be high, then this would appear as a high result for A which would 
be fallacious. Randomisation, such as has been carried out in Table 1.4, would 
avoid this. 

Table 1.4 

Block Treatment 

1 D B A c 
2 B c A D 
3 c B A D 
4 A c D B 

We have now arrived at the concept of the "randomised block." All treat­
ments to be compared occur an equal number of times in each block, the block 
being large enough to take all treatments at least once. The replication is achieved 
by repeating the experiment on further blocks, the order of experiments always 
being randomised. Of course, if the size of the block is such that several replica­
tions can be placed in a single block, then this can be done and nothing is gained 
by replicating in different blocks. <1> 

The analysis of the results of such an experiment, with the testing of the 
significance of the results, is discussed in Chapter VII (e). · 

(e) The Latin Square 
The hypothetical experiment discussed in the previous section, though now 

rigorous in design in that it cannot lead to false conclusions, is in some cases 
capable of further refinement. 

To particularise slightly, suppose that in a multi-stage process batches of a 
ton are split into four sub-batches which are processed simultaneously (approxi­
mately) in four reactors, and we wish to compare the effects of four different 
treatments at this latter stage. With the four treatments on the four sub-batches 
in each batch we have the randomised block technique, the allocation of the four 
treatments to the four reactors being decided by randomisation. It is possible, 
however, to arrange that with such treatment each of the four reactors occurs 
once and once only, so that the treatment averages are completely independent 
of any possible differences between reactors. Such an arrangement is that iD 
Table 1.5, where the letters refer to the treatments. 

( 1) See, however, the end of Chapter XII (e). 
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Table 1.5 

Batch Reactor 1 Reactor 2 Reactor 3 Reactor 4 

1 A B c D 
2 c D A B 
3 B A D c 
4 D c B A 

Examining Table 1.5, it will be seen that the four sub-batches of each batch 
include all four treatments. At the same time, with each of the four treatments 
all four reactors occur once and only once and all four batches occur once and 
only once. Possible errors due to differences between Batches and between 
Reactors are thus eliminated both from the averages, thus allowing unbiassed 
estimates to be obtained, and also from the error, thus making the latter a minimum. 

The computation of the results of a Latin Square is discussed in Chapter 
XIII (c). 

(f) Balanced Incomplete Blocks 
In the ordinary Randomised Block the block must be large enough to take 

one complete set of treatments. It may happen, however, that we wish to compare 
more treatments than can be got into one block. 

Suppose we have raw material in batches that are only large enough to allow 
4 experiments to be carried out on one batch, and further suppose that there is an 
appreciable V2riance between batches. If we wish to carry out a comparison of 
2. 3, or 4 treatments this between batch variance would not worry us, as each set of 
2. 3 or 4 treatments could be carried out on the same batch. If, however, we 
wished to compare 5 or more treatments, then one or more of these would have 
to be carried out on a different batch from that on which the first 4 treatments 
were tested, and the comparison would be invalidated by the confusing element 
of the between batch variance. The standard method of avoiding this difficulty 
is to select one of the treatments as a .. standard," and include it in each batch. 
All treatments are then compared directly with the standard, and of the other 
comparisons some are direct through the treatments occurring in the same block 
and others are indirect, from treatment M to the standard in its block to the 
standard in the other block concerned to the treatment N. 

Although this procedure does work it is by no means very satisfactory, as 
there are three different errors for the three different types of comparison. Further, 
it is not the most efficient possible. 

Consider the alternative design in Table 1.6 where we haYe the five treatments 
replicated four times in fiye batches of four. 

Table 1.6 

Batch Number 

1 2 3 4 5 

A A A A B 
B B B c c 
c c D D D 
D E E E I E 
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There are a number of points about this design :-
(a) Each treatment occurs once and only once in+ of the 5 batches. 
(b) Any specified pair of treatments, e.g. A and B, or C and E, occur together 

in 3 of the 5 batches. Thus direct comparisons between B and D are 
possible in Batches 1, 3 and 5. : 

(c) Direct comparison between a specified pair of treatments is not possible 
in the other 2 batches ; thus there is no D in Batch 2 and no B in batch +. 
Nevertheless a very satisfactory comparison can be made, for A, C and E 
occur in both Batches 2 and + and we can in effect use the average of 
these three as a "standard." It will be noted that to use the average of 
three as a standard is more satisfactory than using a single individual. 

These experimental designs are known as balanced incomplete blocks. They 
are balanced because each treatment occurs to exactly the same extent : they are 
incomplete because no block contains the full number of. treatments. They suffer 
from the restriction that balanced arrangements are not possible for all experi­
mental set-ups. Broadly speaking, if we fix the number of treatments that we 
wish to compare, and if the number of experiments per batch (or "block") is also 
fixed, then the number of replication of each treatment is thereby determined. 
This is the principal disadvantage of these designs: the number of replications 
they require may be greater than we think are necessary to attain sufficient accuracy. 

Some of the designs are more satisfactory from this point of view than others. 
In general, for a given number of treatments, the larger the block we can use the 
smaller the number of replications that are required to establish balance. Thus 
if we have 21 treatments to be compared, then working with blocks of 3 we require 
10 replications. Working with blocks of+ we could use the scheme for 25 treat­
ments (duplicating 4 of the most important if we wished to bring the total up to 25) 
which would require 8 replications. Blocks of 5 are a very satisfactory size as 
only 5 replications are required. It is a curious property that blocks of 6 and 7 
are less desirable, requiring 8 and 10 replications respectively. The exact require­
ments in any particular instance are a consequence of the combinatorial properties 
of numbers. 

The computation for these designs is discussed in Chapter XIV. 

(g) Youden Squares 
Let us go back to the example used in Section (e) on the Latin Square; there 

we had each batch being split into four sub-batches, each to be used in four 
reactors. Using the Latin Square layout, it was possible to have each of the four 
treatments that we wished to compare, arranged in such a way that they all occurred 
once and only once with each batch and also once and only once with each reactor. 
Batch differences and reactor differences were thereby eliminated from our com-
parison of the treatment effects. · 

Now suppose that the number of treatments to be compared is five and not 
four. We can no longer use the + X + Latin Square. If there were five sub­
batches to the batch and five reactors we could use a 5 X 5 Latin Square, but we 
are supposing that we are limited to four sub-batches per batch. 

A solution is to adopt the Balanced Incomplete Block design outlined in the 
previous section. We can use four of the five treatments in each batch in the 
design given in Table 1.6. In order to deal with the uncontrolled variability due 
to differences between reactors we must allot the treatments in each batch to the 
four reactors purely at random. This will avoid our obtaining faulty conclusions, 
but this variability due to differences between reactors will enter into the residual 
error against which we compare the observed effects. The precision of the 
~-xp~riment wi_ll therefore, be reduced, and in order to obtain results of a given 
l.urut of error 1t may be necessary to repeat the experiment several times. 
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Incidentally, it will be obvious that should we know, or suspect, that the 
variability between reactors is greater than that between batches, then it would 
be preferable to make the "blocks" the reactors rather than the batches, i.e. we 
would carry out a randomised block design, with all five treatments occurring in 
random order on each reactor. The variability due to differences between batches 
would then enter into the residual error and therefore inflate it. 

It is possible, however, to do better than the arrangements of either of the 
two previous paragraphs and remove both sources of variability, batches and 
reactors, from the residual error, by the use of the design known as Youden's 
Square. The title is not very felicitous, incidentally, as in the usual manner of 
representing them they are rectangular. 

Referring to Table 1.6, a little thought will show that it is possible to re-arrange 
the order of matments in each batch so that each row, which we will make 
correspond to reactor, contains all five treatments. 

Table 1.7 

Batch Number 

1 2 3 4 s 

Reactor 1 A E D c B 

Reactor 2 B A E D c 
Reactor 3 c B A E D 

Reactor4 D c B A E 

It is now possible to remove variability due both to batches and to reactor 
from the residual error, and the experiment will therefore have the greatest possible 
accuracy. For using a design such as that above, the treatment should be allocated 
to the letter at random and also the reactors should be allocated to the row at 
random and also the columns corresponding to the batches should be taken in a 
random order. 

Designs of this type are only possible when the number of blocks equals the 
number of treatments. This restriction is not so severe as might appear at first 
sight as many of the designs most likely to be used, in particular those requiring 
the fewest replications, satisfy this condition. Where these conditions can be 
satisfied the number of replications is equal to the number of units per block. 
Thus four or seven treatments can be compared in blocks of three with three 
replications, either five, seven, or thirteen treatments in blocks of four with four 
replications, six or eleven treatments in blocks of five with five replications, and 
so on. Several examples are given in Chapter XIV (e). 

(h) Lattice Squares 
The outstanding disadvantage of the Balanced Incomplete Blocks is that to 

obtain balance the number of replications necessary becomes rather high as the 
number of treatments increases. Generally, p1 treatments require (p + 1) repli­
cations, e.g. 36 treatments require 7 replications, and this we may consider to 
be more than is justified. 
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The Lattice Square is probably the most suitable device for this situation. 
Suppose we have 25 treatments which we wish to compare. We can write them 
down in the form of a square as in Table 1.7. 

Table 1.7 

11 12 13 14 15 
21 22 23 24 25 
31 32 33 34 35 
41 42 43 44 45 
51 52 53 54 55 

These 25 treatments can be tested in blocks of 5 by taking first the rows as 
blocks and then the columns as blocks. Repeating each set gives a total of 4 
replications for each treatment. It will be noted that these designs are not 
balanced. For example, treatment 11 occurs in the same blocks as treatments 
12, 13, 14 and 15 and also 21, 31, 41 and 51, but never with the remaining 16 
treatments. Satisfactory comparisons are nevertheless possible through inter­
mediates, and with the appropriate algebraic treatment the designs are very 
efficient. <'l 

The chief virtue of these lattice designs is that the number of replications 
required is independent of the number of treatments. Thus, for example, to 
test 49 treatments we require only 4 replications, whereas using the Balanced 
Incomplete Block technique we require 8 replications. 

{i) The Nature of "Blocks" 
We have been discussing in the previous sections devices for circumventing 

the difficulties arising through the restricting size of the "blocks" available. The 
concept of block is an extremely general one, but the following are some examples : 

(a) In the science of agriculture, of course, the block is made up of plots 
of ground immediately adjoining each other, it having been: found that 
plots close together tend to have fertilities more comparable than plots 
widely separated. · 

(b) For experiments on the nutrition of animals, it has been found that 
animals from the same litter resemble each other in t)leir response to a 
given diet more than animals from ·other litters. 

(c) In experiments on the purification of the products of fermentations, each 
fermentation may be conceivably different from the others in some slight 
degree, so may be considered as a block. 

(d) If, in any experiment in which the personal idiosyncracies of the operator 
may effect the result, the total number of treatments to be compared 
involves the use of more than one operator, then clearly the operator is 
the block. 

(e) There are many other possible sources of inhomogeneity in the experi­
mental background that may be considered as blocks. For example, in 
a comparison of treatments involving use of a thermostat or incubator 

<•> This design will not be discussed in detail as the author has not found instances 
in industrial work where the comparison of such large numbers of treatments is necessary. 
It is described here, however, as it is the simplest of a series of such designs. A general 
description with references is by F. Yates: Empire Journal of Experimental Agticulture 
Vlll, page 223, 1940. Descriptions and methods of computation of several are in C. H. 
Goulden: "Methods of Statistical Analysis" (John Wiley) 1939. 
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it is obviously preferable if possible to place all the units with all the 
treatments in the same thermostat or incubator at the same time. Errors 
due to lack of perfection in the equipment will then be at an absolute 
minimum. It may be, however, that the thermostat is not large enough 
to take all the treatments at one time. We then either have to use several 
thermostats, in which case the thermostat is obviously the block, or to 
use the same thermostat at successive intervals of time, in which case 
the time is obviously the block. 

(g) In any experiment in which a number of treatments are to be compared 
.and in which the material on which they are applied may change slightly 
with time, and in which only a given number of treatments can be tried 
out in one day, then the day is the block. Examples are where there 
might be differential leakage from a gas holder in the case of a mixture 

(h) 
of gases, or where a broth, e.g. of penicillin, may be appreciably unstable. 
In many cases there are no clear-cut distinctions of the type illustrated 
above, but nevertheless advantages will result from splitting the experi-
ment up into blocks. In general experiments done as close together as 
possible in time and space will resemble each other more than those 
remote from them. The air temperature, atmospheric pressure, humidity, 
adjustment of the machines, mood and behaviour of the operators, and 
many other less tangible factors will all tend to vary less within a short 
space of time than over a longer period. Accordingly, if the experiment 
can be so split up into blocks the effective error will be appreciably 
reduced. 

(j) Multiple Factor Experiments 
The type of experiment which we have been discussing up to now has had only 

one "independent variable" or "factor." In much industrial work, of course, 
there are a relatively large number of independent variables which we wish to 
investigate, and we therefore require a further. set of techniques. · 

The classical ideal of experimentation is to have all the independent variables 
but one constant. It is frequently not recognized that this may sometimes be 
far from the ideal, for in order to get ~ fair assessment of the effects of varying 
the particular variable one must allow the others to vary over their full range as 
well. If they were held constant, they would have inevitably to be held constant 
at completely arbitrary values. Thus varying factor A from its normal value 
A1 to some other value A2 may produce a given change in the quality of the pro­
duct when factor B is at a value of B1 but a different change in the quality of the 
product when factor B is at a value B2• The factorial design of experiment is 
designed to detect this type of effect, and at the same time gives maximum effi­
ciency, i.e. gives the maximum amount of information about the system being 
experimented upon for a given amount of work. 

The technique of factorial experimentation was developed in the science of 
agriculture in the twenties and thirties largely at the Rothamsted Experiment 
Station by R. A. Fisher and his colleagues. 

Fisher's approach to experimentation differs in two fundamental aspects 
from the classical one-variable-at-a-time ideology. Firstly, he stresses the 
importance of obtaining an accurate estimate of the magnitude of the error varia­
tion, rather than its minimisation. The accurate estimate of the error variation 
is necessary in order to apply an exact test of significance. 

Secondly, Fisher emphasises the advantages to be gained from including in 
the same experiment as many as possible of the factors whose effects are to be 
determined. The advantages of this are-

(a) much greater efficiency ; estimates of a given standard of accuracy for 
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the effects can be obtained in a much smaller total number of observa­
tions. When the experiments are on the full industrial scale this may 
represent a very considerable reduction in their cost ; 

(b) information is given on the extent to which the factors interact, i.e. the 
way in which the effect of one factor is affected by the other factors ; the 
experiments will therefore give a wider inductive basis for any conclusions 
that may be reached. To give an illustration of this, imagine one man 
carrying out a comparison of two catalysts for a contact oleum plant, the 
conversion efficiency being the dependent variable of interest. He would 
hold constant all his other factors, e.g. in particular gas inlet temperature 
and rate of loading. He might conclude from his experiments that 
catalyst A was better than catalyst B. Meanwhile a second experimenter 
could conclude from experiments on inlet gas temperature that 420°C. 
was the best ; the experiments on catalyst may have been made with a 
temperature of 450°C., and hence were invalid. The first experimenter 
could point out that the second experimenter's work was made with 
catalyst B and hence his conclusions are not valid. Similarly, a third 
set of experiments on rate of loading might show that the rates chosen 
for the first two sets of experiments were incorrect, and hence the con­
clusions drawn therefrom are invalid. However, the loading experi­
ments might have been carried out at the wrong temperature and with 
the wrong catalyst, and hence would not be valid. It is possible, of 
course, that 420°C. is the best temperature irrespective of which catalyst 
and loading rate was employed, and that catalyst A is the best catalyst 
irrespective of which temperature and loading rates were employed, and · 
that the best rate of loading remains the best irrespective of which catalyst 
and temperature are employed. To make these assumptions without 
demonstrating their validity is quite unjustified, however. This type of 
effect, namely the effect of one factor being dependent upon the value of 
another factor, is known as an "interaction." 

(k) The Three Factor Experiment 
(i) Classical 
Let us consider a hypothetical experiment, in which we wish to investigate 

the effects of three independent variables P, Q and R (which may be temperatures, 
pressures, flow rates, concentrations, etc.) upon a dependent variable x (which 
may be yield, purity, etc.). . . 

Suppose that in the first instance it will be adequate to investigate them each 
at only two levels. Thus suppose the normal values for the.process are P1, O~o 
and R1, and we wish to find the effects of increasing them to P1 , Q1 and R1 
respectively. How would we carry out this experiment in the classical style? 

We would first do an experimental control with values P 1 Q1 R1• A value 
of x would be obtained which we denote by (P 1 Q1 R1)x. 

To obtain the effect on x of changing P from P 1 to P 1 (which we will symbol­
ically denote by (P 1-:- P 1)x we do an experiment with values P 1 Q1 R1• A value 
of x will be obtained which we denote by {P1 Q1 R1)x. It is then clear that 

(P1- Pa)x = (P1 Ot Rt)x- (Pa 01 Rt)x 
Similarly, experiments at P1 Q1 R1 and P1 Q1 R1 give us 

(Qt- Oa)x = (P1 01 R1)x- (Pt 01 Rt)x 
and {R1- Ra)x = (Pt Ot Rt)x- (Pt Ot Ra)x 
Now a very important point is that each of these experiments would have 

to be repeated not less than once, for without not less than two observations it 
is quite impossible to make any estimate of experimental error. Without such 
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an estimate it is quite impossible to say whether any apparent difference between, 
say, (P 1 Ot R1)z and (P a Ot R1)z is real or is due to the errors of measurement 
and sampling, etc. We therefore require our four experiments to be repeated 
once, making ei~ht o.bservatio!ls in all. E~ch level of each effect will .he given 
by two observatlons, 1.e. we will be comparmg the mean of two observatlons with 
the mean of two observations. 

No information is given by this experiment as to any possible interactions 
between the factors. Thus for example, (R1 - R1}z with P at P 1 may well be 
different from (R1 - R1:o:) with P at P 1, but our experiment is quite unable to 
detect such an effect. 

(ii) Factorial 
With the factorial design we should carry out experiments at all combinations 

of P, Q, and R, namely (Pt 0 1 Rt), (Pa Q1 Rt), (Pt Q 1 R1), (P1 Q 1 R1), (P1 Q 1 R1), 

(P1 Q1 R.), (Pt Oa R2), and (Pa 0 1 R1), making a total of eight observations, the 
same total as in the classical design. 

It may make it easier to grasp the significance of the above set of combinations 
if we realize that they are the co-ordinates of eight corners of a cube whose axes 
are P, Q, and R (Figure 1 ). 

Figure 1. 

Having such a picture we can now visualise how we obtain our estimates of 
the three main effects. We obtain our estimate of (P 1 - P 2}z by comparing the 
average of the P 1 plane with the average of the P 1 plane ; in detail, the average 
of (P1 Q1 R1)z, (P1 Q1 R1):o:, (P1 Q1 R2):o:, (P1 Q1 R1)z with the corresponding set 
{P1 Q1 R1)z, (P1 Q 1 R1}z, {P1 Q 1 R2):o:, (Ps Q1 R1}z. Although· the other two 
variables Q and R are varying, they are varying in such a way that they correspond 
in the two sets, and thus to a first approximation their disturbing effects cancel 
out. The other main effects {Q1 - Q1}z and (R1 - R2}z are obtained similarly. 

The first advantage of our factorial design is that our main effects are obtained 
as the difference between the mean of one set of four observations and the mean 
of another set of four observations. In the classical design our main effects were 
the differences between means of two observations. We have thus obtained 
double the accuracy for the same number of experiments. If this experiment is 
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being carried out on the full industrial scale at considerable cost and trouble, this 
factor can be of the greatest economic importance. 

The second advantage of the factorial design is that it provides us with an 
estimate of the possible interactions between the main effects. 

Consider our cube again. To obtain the interaction between P and R, 
average the front plane with the back plane, i.e. we average our Q. This gives 
us a table as below, the superscript Q indicating that figures are averaged over Q. 

Q Q 
~1RJz ~~RJz 

. 0 0 
~1RJz ~aRJz 

The top line gives us (P1 - P 2)z at R = R1 and the bottom line gives us 
(P 1 - P 1)z at R = R1• Since each figure in the table is the average of two results, 
we have a valid estimate of error, and can determine whether (P1 -P1)Rl, the z 
superscript indicating that the figure is obtained with R at R1, is significantly 
not equal to (P 1 - P 1)~•· If they do differ significantly, then there is an inter­
action between P and R. The other interactions can be derived similarly. 

The computation of the three factor experiment is discussed in Chapter 
XI (d). 

(l) Higher Factorial Experiments 
We have been discussing a three factor experiment, all factors being at two 

levels. We can represent this symbolically as 2 X 2 X 2, or 21• The extension 
to a fourth factor is obvious, though not capable of a geometrical representation 
in three dimensions. If the fourth factor is represented by S, then we can regard 
the eight experiments so far mentioned as having been carried out with S at its 
lower value, Su and to introduce the fourth factor S we carry out a similar eight 
experiments with S now at its upper level S1 • The estimate of the main effect 
of S is then given by the difference between the average of the first eight with 
S = 8 1 and the average of the second eight with S = S 8• The main effects of 
the other three factors are obtained similarly. There are now six possible first 
order interactions, taking the factors in pairs, namely PQ, QR, PR, PS, QS, RS, 
and to obtain each of these we average over the two factors not mentioned in the 
interaction, e.g. for PQ we average over R and S. 

It will be apparent that the introduction of the fourth factor has improved 
the experiment appreciably. The main effects are given as a result of the com­
parison of averages of eight results (instead of four): the first" order interactions 
are given as a· result of the comparison of averages of four results (instead of two). 
Further, it is now possible to check on the possible existence of what are known as 
second order interactions. As an example of one of these, consider the interaction 
PQ : it is possible that its magnitude may depend on the value of R, being different 
when R = R1 from what it is when R = R8• Such an effect we call a second 
order interaction and denote as PQR or P x Q x R. Actually such interactions 
are symmetrical with respect to three factors. PQR can be regarded as the 
interaction of PQ with R, QR with P, or RP with Q. With four factors there 
are four possible second order interactions, PQR, QRS, RSP and PQS. Our 
four factor experiment will estimate the existence of all these possible effects 
(the procedure is given in Chapter XI (e)). 

It will be noted that the four factor experiment is even more efficient relative 
to the classical design than the three factor experiment, which achieved double 
the accuracy for the main effects. 

The four factor experiment requires 2' = 16 runs, and its main effects are 
given as the comparison of the average of 8 runs with the average of 8. The 
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nearest equivalent classical experiment is to carry out the five combinations 
P1 Q1 R1 S1 P1 Q1 R1 S1 

P, Q1 R1 S1 
P1 Q1 R1 S1 
P1 Q, R1 S1 

each three times which would require a total of 15 runs. The main effects are 
then given as the comparison of averages of 3 runs. which are markedly inferior 
to the factorial experiment. The latter of course also checks on the existence of 
the six possible first order interactions and the four possible second order inter­
actions. 

It is clear where the immense superiority of the factorial experiment is arising. 
In the classical experiment all the 12 observations on the last four combinations 
are each only being used once. to contribute information on only one effect. Thus 
the three replications of P 1Q 1R1S1 contribute information only on the main effect 
of P. and add nothing whatever to our knowledge of the other three factors or to 
the various possible interactions. Similarly for P1Q 1R1S.. P1Q 1R1S1 and 
R1Q 1R1Sa- Only the combination of P 1Q1R1S1 is used several times. In the 
factorial experiment, on the other hand, every observation is used many times 
over in a different manner each time. 

The extension to more than four factors or to factors at more than two levels 
follows naturally. 

Finally, it will have been noted that the larger factorial experiments require 
a fair number of experiments, e.g. a 2• or 2 x 2 x 2 X 2 experiment requires 
2• = 16 runs. This number may be larger than can be comfortably put into a 
block. .i\Iethods have been worked out which evade these difficulties and enable 
us to put these 16 runs into 2 blocks of 8 runs or into 4 blocks of 4 runs. These 
methods are lwown as confounding and are discussed in Chapter XV. 

(m) Randomisation 
In any experimental design it is of the greatest importance that the various 

units of the experiment should be randomised. Sometimes this is randomisation 
in space. as the layout of plots in a field experiment or the positioning of flasks in 
an incubator or thermostat. It may be randomisation in time, as where a series 
of batch experiments are carried out on a single reactor. Where there are several 
reactors in use, the question of which experiment is done on which reactor should 
always be decided by randomisation. 

In a simple unconfounded factorial experiment the position of any unit can 
be randomised by giving each unit a serial number and then choosing these numbers 
randomly. H the experiment is confounded, then we should randomise the order 
of the blocks and then randomise the order of units within the block. 

Where we are using a Latin: Square, the treatment should be allocated to 
the letters randomly, and the rows and columns should be allocated to their 
respective factors. With balanced incomplete blocks the treatments should be 
allocated to the letters randomly, and the blocks then arranged in a random order . 

. For carrying out the operation of randomisation the simplest method is, if 
we have to randomise 16 units, to label 16 cards from 1 to 16 and draw them 
from a hat. It is generally more convenient to use a table of random numbers 
for the purpose. Table VITI in the Appendix is the first third of the table of 
random numbers in Fisher and Yates' Tables. 

There are various methods of· usmg the tables. For example, to select a 
series of numbers from the numbers 1 to 16 in a random order, we can choose 
any row, column, or diagonal of two figure numbers and read along recording 
the numbers 1 to 16 u they occur. This is a lengthy process, however, and it is 
quicker to divide each two figure number by 16 and take the remainder. These 
will run from 0 to 15, so we need to consider 0 as 16, which thus gives us the 
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numbers from 1 to 16. The two figure random numbers go from 00 to 99, and 
this means that the remainders 0, 1, 2 and 3 have an extra chance of occurring 
since they can be derived from the two figure numbers 96, 97, 98 and 99 which 
form the beginning of the seventh cycle. To avoid this the numbers 96, 97, 98 
and 99 should be discarded when they occur. Similarly in choosing numbers 
from the numbers 1 to 27, in dividing by 27 we should omit the two figure numbers 
81 up to 99. 

·The arrangement of a set of say, 16 units in a random order can be made 
by the process in the previous paragraph, rejecting numbers after they have 
occurred once. After about half the numbers have been selected, however, the 
rejections become more frequent than the selections. Fisher and Yates point out 
that this can be avoided by making the first selection from 1 to 16, which leaves 
15 treatments. We can now select a number from 1 to 15, and that will leave 
14 treatments, and so on. 

Randomisation in this systematic manner may sound a lengthy procedure, 
but actually it can be carried out in a minute or two and since it is essential to 
the obtaining of valid results it never should be omitted. 

CHAPTER II 
FUNDAMENTAL STATISTICAL CONCEPTIONS 

(a) Statistical Terminology 
Statistics, like every other science, has its own words and symbols of special 

meaning. These may be confusing to the newcomer, but are almost essential 
for the normal use of its methods. 

We apply our statistical methods to sets of numbers obtained by making 
measurements upon some property of our product or process. The property 
might be yield, purity, or such qualities as the life in days or in tons throughput 
of a piece of plant before failure. Or a machine may be making articles whose 
size, weight, or metallurgical hardness we measure. This variable we refer to 
as the "dependent variable," and we are frequently interested in the effect upon 
it of the conditions under which it is obtained. These conditions can generally 
be specified in terms of a number of "independent variables," which we can 
refer to as "factors." Thus in many chemical processes the conditions can be 
determined by specifying values for the temperature, pressure, time of reaction, 
proportions of reactants. A given value for an independent variable is referred 
to as a "level." A given observation on a dependent variable is referred to as an 
"individual." . 

An important concept is that of "population," broadly speaking a large 
number of individuals from a particular source. We frequently wish to estimate 
the mean value of a property of a whole set of individuals from a small number 
of them : this part withdrawn from the whole we refer to as a "sample." 

The use of a bar over a symbol indicates that the average is meant-thus 
x is the average of the set of x's considered. l: indicates summation, i.e. addition, 
of the series of terms considered. 

An awkward conception is "degrees of freedom." It is closely related to the 
number of observations, in general the number of observations minus the number 
of constraints imposed on the system. An accurate definition is difficult, how­
ever, and we will be content with giving an explicit account for each particular 
application. It is interesting to note that rather similar conceptions will be 
familiar to physical chemists in the application of the phase rule and in the 
quantum mechanics of molecules. 

(b) Probability 
Pro~ability is expressed on the scale 0 to 1, the former implying that an 

event wlll certainly not occur (or that a hypothesis is not true) and the latter 
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implying that the event is certain to occur (or that the hypothesis is definitely 
true). On this scale a value of 0.5 implies that the event is as likely to occur 
as not (or that the hypothesis is as likely to be true as not). 

Frequently in practice this scale of fractions is transformed into one of 
percentages, e.g. a probability of 0.05 is referred to as a 5% probability. 

(c) Populations: Tests of Significance 
"The idea of an infinite population distributed in a frequency distribution 

in respect of one or more characteristics is fundamental to all statistical work." 
From a limite~ experi~ce of some. fun~on or of ~dividuals ?fa given type 
"we may obtam some tdea of the infinite hypothetical population from which 
our sample is drawn, and so of the probable nature of future samples to which 
our conclusions are to be applied. U a second sample belies this expectation we 
infer that it is, in the language of statistics, drawn from a different population ; 
that the treatment to which the second sample" has been subjected "did make a 
material difference • • • Critical tests of this kind may be called tests of signi­
ficance, and when such tests are available we may discover whether a second 
sample is or is not significantly different from the first" (Fisher, "Statistical 
Methods for Research Workers''). 

The most common type of test has the form in which we assume that the 
means (Student's t test), the variances (Fisher's z test), or the fit of the assumed 
distribution to the actual data (Use of x•) are the same for the two samples and 
calculate the probability of getting such results as we did get on the basis of this 
hypothesis being true. So long as the probability is greater than 0.05 (5%) there 
is no strong reason to doubt the hypothesis. When the probability is 0.05 how­
ever, a value as small as this would only be obtained once in 20 times if there 
were really no difference, and hence it is generally taken that this indicates that 
the hypothesis is not true. Smaller values of the probability are, of course, an 
even stronger indication that the hypothesis is incorrect. Thus a small probability 
corresponds to a high degree of significance. 

(d) Significance Levels 
It is entirely a matter of judgment what probability level we take as being 

significant. For many purposes the 5% level is accepted, but we must realise 
that this means that if we tested a long series of possible effects, none of which 
actually existed, in 1 in every 20 tests we would incorrectly assert that the effect 
did exist. If we adopt a higher significance level, say 1%, then we reduce the 
frequency with which we make this type of error but we increase the frequency 
with which we ignore effects which really do exist. The best practical compromise 
is probably to regard results at or even just under the 5% level of significance as 
well worth following up. For presentation of final results and conclusions, 
however, one would prefer a higher level. This can be obtained, if the effect 
really does exist, by obtaining more observations. 

Throughout this book we shall use the word "significant" in the sense 
"statistically significant." "Significant" accordingly will mean merely that the 
data in question is sufficient to establish that such and such an effect exists with 
the stated level of significance : it is not meant to imply that the effect is necessarily 
of great importance from the practical point of view, though of course it might 
be. The converse also holds : an effect may appear on a given set of data to be 
non-significant, but this may be merely because the data is inadequate to show it 
and the effect may be of the greatest practical importance. Our aim generally 
is to ~e an estimate of each effect together with the so-called fiducial or confidence 
limits within which it probably (with a stated level of probability) lies, though in 
some cases the solution of this problem is by no means simple. 

For example, if an effect has to be of magnitude 15% to be of practical 
importance, and our data gives us as our estimate of it 5% ± 2%, it is clear that 
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the effect is statistically significant but not of practical importance. Alternatively 
if our result was 5% ± 10%, then it is not statistically significant on our present 
data but may still be of practical importance. 

(e) Computation 
The application of statistical methods generally involves a certain amount of 

computation. A large part of this is the summing of numbers and of their squares ; 
this can easily be performed with a table of squares ("Barlow's Tables of Squares, 
etc." (E. and F. M. Spon) is a very complete set), and with a simple adding machine. 
For much correlation work a calculating machine (one that will multiply and 
divide) is almost essential. There are a variety of models available ; it can be 
safely said that the better the machine the more accurately and rapidly can the 
work be carried out. An electric machine with automatic division and multi­
plication is really desirable. 

With these machines it is remarkable with what speed an apparently long 
and tedious calculation can be carried through. Certain of them allow the square 
of a number to be obtained with the number being entered only once on to the 
keyboard. In forming the sum of the squares of a series of numbers the sum 
of the numbers themselves can be obtained simultaneously : if this checks with 
the sum of the numbers obtained independently, as can often be arranged without 
extra work, then there is strong presumption that the correct numbers have been 
entered on to the keyboard and hence the sum of squares is correct. Further, 
in calculating correlation coefficients (see Chapter IX) we have a set of pairs of 
values of x and y, and we require l:x, l:y, l:x8, l:y1 and l:xy. These five sums 
can be obtained simultaneously with entering each pair of values of x and y only 
once on to the keyboard, in the case where x andy are each two figure numbers.(1) 

Straightforward addition, for example the checking the sums l:x and T.y 
described in the previous paragraph, or the formation of the two-way, three-way, 
etc., tables in an analysis of variance, can of course be performed on a calculating 
machine. These operations can be done more quickly, however, on an adding 
and listing machine, which has the further advantage that its printed roll facilitates 
the location of errors. 

If there is much work to be done, ready access to both an adding and listing 
machine and to a calculating machine of the type described above will greatly ease 
the burden. 

A problem on which it is difficult to generalise but nevertheless is of con­
siderable practical importance is the number of significant figures one should 
retain in a statistical analysis. Often the data as presented contains too many, 
and the fewer we can work with the less the labour. One can only judge by 
commonsense and learn by experience. 

For example, if from a set of experiments to determine the yield of a complex 
organic reaction we are presented with results such as 

49.71, 53.72, 51.94, 59.83, 61.28, 47.36, 
it is obvious that the figure in the last decimal place means very little. No doubt 
the weights of raw material and product can be estimated with that accuracy but 
the control of the reaction is such that much larger errors are present. It would 
therefore be a waste of time to retain the last figure in calculating the mean and 
its standard error. If we are rather pressed for time we could also discard the 
penultimate with comparatively little loss in information. 1•1 

11) A description of advanced computational procedures is by H. 0. Hartley, Supplement 
to the Journal of the Royal Statistical Society, Vol. VIII, No. 2, p. 154, 1946. 

<•> For a lengthy discussion of this problem see Churchill Eisenhart, "Effects of Round­
ing .or. Grouping Data", Chapter 4, in "Selected Techniques of Statistical Analysis", 
Statistical Research Group, Colwnbia University (McGraw Hill, 1947). 
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(f) Measures of Variability 

In statistical work we are largely concerned with the variability in determina­
tion of some property of a system, e.g. the variability in yield or in quality of 
some chemical process. 

The variability of a set of observations can be assessed in a variety of ways :­
(a) The "range," i.e. the difference between the largest and the smallest of 

the set, generally denoted by the symbol w. 
(b) The "mean deviation," i.e. the mean of the deviations of the observations 

from their mean. 
(c) The "variance," i.e. the sum of the squares of the deviations. of the 

observations from their mean, divided by one less than the total number 
of observations, generally denoted by the symbol a•. 
Thus for the set of observations 

9, 11, 14, 11, 13, 12, 10, 13, 12, 15 
(a) the range would be 15 - 9 = 6. 
(b) the mean deviation would be obtained by calculating the mean as 

(9 + 11 + 14 ... + 12 + 15)/10 = 120/10 = 12.0, the deviations as 
(12- 9) = 3, (12- 11) = 1, (14- 12) = 2, etc., and taking the mean 
of these deviations as (3 + 1 + 2 + ... )/10 = 14/10 = 1.4. 

c) the variance denoted by a• would be defined as 
a• = l:(x-i)1 

n-1 
where i is the mean of the x's, n is the number of observations, (x- x)• 
represents the square of the deviation of an x from the mean, and the 
summation sign l: indicates that (x- i}1 is to be obtained from all the 
x's and summed for them. Thus the variance of the set of numbers 
quoted above would be (the mean x is here equal to 12.0) 
I= (12-9)1 + (12-11) 1 + (14-12)1 +. • • • = 30 = 3 33 

a · 10-1 9 · 
Of these three measures of variability, the range is much used for small 

. samples (n not greater than 10) in process control work (the quality control chart, 
discussed in Chapter VIII) on account of its arithmetical simplicity. It is clear 
that it does not utilise the whole of the information from the data, for the detail 
of the intermediate results does not enter into the determination. 

The mean deviation has the virtue of arithmetical simplicity, but its properties are 
such thatitisdiffi.culttoemploymathematically, and it must be considered obsolete. 
· The variance is generally greatly to be preferred as a measure of variability, 
for its properties are well known and tests of significance based upon it are avail­
able. It also has the valuable property of being additive, i.e. if a process is subject 
to a number of separate variances a1

1, a1
1, •••• due to several independent causes, 

then the total variance at is numerically equal to their sum, i.e. at= a11 

+ a1
1 + a1

1 +..... The converse of this is of particular importance, where 
we analyse the total variance of a system into components attributable to various 
parts of the· process. This is discussed at length in Chapter VII. A fi,Irther 
advantage of the variance as a measure of variability is that it has the maximum 
efficiency, i.e. it extracts more information about the variability from the data 
than the other measures. 

The square root of the variance is termed the "standard deviation" and 
denoted by the symbol a. 

The standard deviation of an average is often referred to as its standard error. 
A term sometimes met in the older literature but falling into disuse is 

"probable error." This is the limit such that the probability that a deviation 
exceeds it is 50%. In the case of a Gaussian distribution (see Section (i)) the 

· probable error is approximately 0.6745 times the standard error. 
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The relation between range and standard deviation is discussed in Chapter 
VIII (e). 

(g) The Calculation of Variances 
It is often troublesome to calculate the mean x and then find the deviation 

of each observation x from it before squaring and summing these deviations. 
We therefore use the algebraically equivalent formula 

a1 = [ l: (x1)- ( l:nx)•J /(n -1) 

For the above set of numbers 

a1 =[9• + 11 1 + 141 + ... + 151 -(
9 

+ 
11 ~O · ·+ 

15
)

1

]/(10 -1) 

1201 

= CH7o - 10 )/9 = (1470- 1440)/9 = 30/9 = 3.33 

To lighten the arithmetic in calculating variances, it is frequently worth. 
while to take an arbitrary zero and transform all the numbers on to the new scale. 
Thus with the above set of numbers we might shift the axis by 9 units so that 
they now become 

0, 2, 5, 2, 4, 3, 1, 4, 3, 6. 
The variance of these observations is then 

a•=[o• + 21 +5•+ ... +61 - (0+
2 +\t· .. + 

6
>']/(10-1) 

= (120-
31~) /9 = (120- 90)/9 = ,30/9 = 3.33 

as before. Thus shifting the zero has not affected the estimate of the variance. 
It should be clear that this should be so : we are measuring the variability about the 
mean, and even if we added 100 to all the observations the variability remains 
the same. 

If the numbers had all been 100 larger, then the sum of squares would have 
been of the order of 100,000, i.e. the arithmetic would have been rather unpleasant, 
and would have been very much lightened by shifting the zero by 100 units, 
giving us our first calculation in which the sum of squares was 1470, or by 109 
units, giving us our second calculation in which the sum of squares was only 120. 

The business of shifting the origin is largely a matter of personal taste. It 
has to be done carefully, but when done the subsequent arithmetic is much lighter .. 
It has two advantages. Firstly, one will then be working with numbers less than 
100, and with a little practice it is easy to carry the squares of these numbers in 
one's head. Secondly, the squares of two figure numbers cannot have more than 
four figures, and since one has only four fingers on one's hand this makes entering 
them on an adding machine easier. 

If one is using a calculating machine, however, particularly one with automatic 
multiplication, the shifting of the origin is rarely worth while. 

(h) The Definition of Variance 
The definition of variance is formally not l:(x- x)1 /(n -1), as quoted 

above, but l:(x- x)• /n, and it is quoted as the latter in many statistical texts. 
In any practical application, however, we should use the formula with (n-1) 
as the denominator. 

The reason for this apparent confusion is as follows :-
In calculating l:(x- x)1 we should be calculating the sum of squares of the 

deviations from the true mean of the population from which the sample is drawn. 
We have only an estimate of the mean, the mean of our sample, which will not 
in general be identical with the true mean of the whole population. The sum 
of squares of the deviations from the mean of the sample will be smaller than 
the sum of the squares of the deviations from the true mean. To see this, suppose 
we have two observations 1 and 3, and that the true population mean is actually 1. 
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The sum of the squares ofthe deviations from the true mean is (1-1)1 + (3 -1)' 
= 4 : working from the true mean we would use n as the divisor to get the esti­
mate of the variance as 4/2 = 2. The sum of the squares of the deviations from 
the sample mean is (2- 1)1 + (3- 2)1 = 2: if we used n as the divisor the 
estimate of the variance is 2/2 = 1, whereas if we use (n -1) as the divisor we 
get 2/(2 -1) = 2 as our estimate of the variance. It is apparent that the use 
of (n- 1) instead of n as the divisor helps to compensate for the use of the sample 
mean instead of the true mean. 

The number (n -1) is known as the degrees of freedom of the variance, 
and is used in making tests of significance in comparing one variance with another 
(Chapter IV). 

(i) Distributions 
It is a matter of common experience that we cannot manufacture articles 

identically; successive individuals differ slightly in their size, quality, etc. 
Similarly, if we make repeat determinations of some physico-chemical quantity, 
e.g. the yield from some process, the values we obtain will not be exactly similar : 
this variability would be due not only to the (possible) variability of the process, 
but also to the errors of measurement. 

It can be shown theoretically that if we assume that there is a very large 
number of very small errors all operating independently, then we get a distribution 
of the form shown in figure 2, known as the Gaussian distribution. 

This Gaussian distribution has the following valuable properties :-
(a) it is completely defined by two statistical parameters, (i) the mean (fixing 

its position along the x-axis) and (ii) the standard deviation (fixing its 
width or spread). 
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(b) There is a relation, for which tables are already calculated, between the 
deviation from the mean, expressed as a multiple of a, and the frequency 
with which these deviations occur. Thus to particularise, 95% of the 
individuals should lie between -1.96 a and + 1.96 a on each side of 
the mean, and 99.8% between - 3.09 a and + 3.09 a on .each side of 
the mean. Similarly, if we get a deviation from the mean of d, we cal­
culate the quantity known as Student's t defined by d/ a, and tables are 
available to show how often a deviation of this size should occur. 

Figure 3 shows a typical distribution occurring in the chemical industry. It 
refers to the quantity of one ingredient in a four component mixture. The 
hei~ht of the y-axis at any interval of the x-axis indicates the number of batches 
wh1ch. had their content of this ingredient in that interval. A distribution curve 
of this type, with the x-axis changing in finite intervals, is known as a "histogram.'' 
Clearly, as the size of interval decreases and the total number of observations 
increases the histogram will tend towards the true continuous frequency distribution 
curve. It will be seen that though the experimental distribution does not follow 
exactly the theoretical Gaussian curve, yet its features are very similar. It must be 
remembered that we have here only a total of 138 observations: in any given 
interval the number to be expected is quite small, therefore, and we must expect 
random fluctuations about the expected value. As the total number of observa­
tions increases the observed distribution will approximate closer and closer to the 
true population distribution. In practice few of the distributions found indus­
trially are exactly Gaussian, but the departures from it are generally slight and 
usually not less than about 500 observations are necessary to establish significance 
for departures from normality. 

Most of the tests of significance that we make are based on the assumption 
that our variable 1s distributed in the Gaussian form. It is fortunate that the 
departure from it has to be severe before our tests of significance on averages 
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b.ecome appreciably inaccurate. The discrepancies for any distribution with a 
smgle hump somewhere near the middle and tailing off to zero on either side are 
quite negligible for practical purposes. 

(j) Grouped Frequency Distributions 
. If the number of observations whose standard deviation is to be calculated 
IS large, say 40 or more, the labour involved can be reduced by using what is 
called a grouped frequency distribution. 

29 



We will use the data of the previous section as an illustration (see Table 2.1}. 
We divide the variable (here percentage of the component} into about 10 to 

20 equal sized groups (column headed X}. We count up the number of observa­
tions occurring in each of these groups (column headed f). This column f is tbe 
vertical axis in figure 2. We select a new origin somewhere near tbe middle of 
the range, and lay out a new scale as shown in the column headed x. The 
remainder of the arithmetic should be clear. \Ye obtain a,. in our x units. Since 
1 x-unit equal 0.1 X-unit, ax= 0.182. Since i = 0.59 this means that the 
mean is 0.59 units up from the x-origin, or 0.59 = 0.06 units up from the X -origin. 
The X-origin was at 2.20, hence the mean is at 2.20 + 0.06 = 2.26 X-units. 

ax• = [so2- <:;r]/(138 -1) 

. (502-48.72)/137 = 453.28/137 
= 3.31 

CJx = 1.82 
ax= 0.182 
i = 82/138 = 0.59 
:X = 2.20 + 0.59/10 = 2.26 

In our discussion of the properties of the Gaussian distribution it was remarked 
that 95% of the total number of observations would lie within ± 1.96 a of the 
mean. These limits here are at 2.26-1.96 X 0.18 = 1.91 and at 2.26 + 
1.96 X 0.18 = 2.61. Inspecting our table we find that those in the two end 
intervals are 1 and 3, making a total of 4 out of 138, or 2.9%. However, the 
1.85- 1.94 and 2.55 - 2.64 intervals probably contain some outside the limits 
less than 1.91 and greater than 2.61, so the actual agreement is reasonable. 

Similarly, we would expect very few (of the order of 2 out of 1000) observations 
outside the limits 2.26-3.09 X 0.18 = 1.70 and 2.26 + 3.09 X 0.18 = 2.82. 
Inspecting our table we find none of our 138 outside these limits, in good accord 
with this prediction based on the Gaussian distribution. • 

Table 2.1 

X f X fx fx1 

1.75-1.84 1 -4 -4 16 
1.85-1.94 6 -3 -18 54 
1.95-2.04 8 -2 -16 32 
2.05-2.14 24 -1 -24 24 

2.15-2.24 26 0 -62 0 

2.25-2.34 32 1 32 32 
2.35-2.44 23 2 46 92 
2.45-2.54 9 3 27 81 
2.55-2.64 6 4 24 96 
2.65-2.74 3 5 15 75 r 138 

+144 502 
-62 

+ 82 
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It is often worth while making a rough comparison of this type in order to 
check that one's calculations of the variance and standard deviation are not grossly 
in error. The check is sufficiently sensitive to detect the two commonest errors, 
a misplaced decimal point and the reading of the wrong square root from the tables. 

We often need in industry to predict the proportion of the population which 
will lie outside a specified limit. For example, we may be selling packeted material 
with the claim that all packets contain not less than a specified amount, and we 
may be interested in finding what proportion actually fail to meet the claim. 

In the present case we may wish to determine the fraction of batches which 
have less than 2.0% of the specified ingredient. We have that the observed 
mean was 2.26, so the deviation of the limit 2.0 (say L) from the mean is 2.26-2.00 
= 0.26. We require t = (:X:-L)/a = 0.26/0.182 = 1.429. We need a table of 
one tail of the normal curve. The so-called "pro bit" table (Appendix, Table VII) 
is such, with the quantity (t + 5.0) tabulated. We find 5.00 + 1.43 = 6.43 
corresponds to 92.4%, i.e. 7.6% of the population will lie outside the limit of 2.0%. 

Predictions of this nature are of course based on the assumption of normality 
in the population, and before placing any great weight upon them we should have 
satisfied ourselves by an inspection of the distribution curve of a considerable 
amount of data that the population does not deviate appreciably from normality. 

(k) Lo!1normal Distributions 
For certain types of data there are sometimes good reasons for considering 

the use of the logarithm of the variable rather than the variable itself. Thus 
in some cases the larger the value of the variable the more erratic will it become, 
e.g. in corrosion experiments the larger the corrosion the less the agreement there 
is between duplicates. Under these circumstances we would expect a skewed 
distribution with a long tail to the upper end. However, any deviation which 
is proportional to the mean of the unlogged data when expressed logarithmically 
becomes constant. Figure 4 gives the distribution of throughputs before failure 
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in thousands of tons of a piece of acid planL Figure S is the same data grouped 
according to the logarithm of the throughpuL One individual tends to give the 
impression of a tail at the lower end, but taking an overall view it is doubtful if 
the logarithmic distribution departs significantly from normality. 

When we have a variable which clearly has a lognormal distribution and we 
wish to make a test of significance, e.g. compare two means, then it is probably 
advisable to carry out the test on the logarithms of the variable. An example of 
this is given in Chapter XII {i). 
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CHAPTER III 

SIGNIFICANCE OF MEANS 
(a) Significance of a Single Mean 

3·0 

Sup~se we have a population distributed with standard deviation a about 
its mean X.. Suppose we take samples of n individuals at a time. The first 
sample will have a mean x1 , the second sample will have a mean x1 not necessarily 
the same as x., and so on. It is a valuable pr~erty of these sample means that 
they are distributed about the population mean X with standard deviation (a/ .yii). 

Now if we take an individual at random and find that it lies further from 
the population mean X than 1.96 a then we conclude that this individual is not 
very likely to belong to the population we are considering. In exactly the same 
way if we take a sample of n individuals and find that its mean is more than 
1.96 a/v'Ji from the population mean X then we conclude that it is not very 
likely that this sample of n individuals was drawn from the population we are 
considering. 

· The ratio of the deviation of the mean x of a particular sample of n individuals 
from an expected value E to its standard deviation a/vii is known as Student's t, 
i.e. 

x-E 
t =a/vii 

We will deal with a specific example. Two analysts A and B analysed a 
series of chemical mixtures, and obtained the results below for the percentage of 
one ingredienL \Y e would expect the differences between the operators for each 
mixture to average zero if there was no systematic difference between the operators. 
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The essential point about this example is that we have ten numbers (the last 
row in Table 3.1) and we wish to test whether their mean differs significantly 
from zero. 

Table 3.1 
' 

Mixture 1 2 3 4 5 6 7 8 9 10 
--------1-----

Analyst A .. .. . . 7 9 8 10 8 11 9 8 9 8 
Analyst B .. .. . . 11 7 10 10 9 10 10 9 11 11 

------------1-
A-B=x .. .. -4 2 -2 0 -1 1 -1 -1 -2 1-3 

The average value i for A- B is -1.10, and the expected value E is 0. 
We calculate the standard deviation of these individuals as 
v[[(-4)• + 2• + ... + (-3)•- (-4 + 2 + ... -3)'/10J/(10-1)J = 1.79. 

The standard deviation of the mean i is given by a/v'ii = 1.79/vlO = 0.565. 

We then calculate t as 1.10/0.565 = 1.95. 
Now the value we used for a is of course only an estimate of the population 

value. Being based on ten individuals it is not as accurate as if it were based on 
one hundred or one thousand individuals. The table of the significant values of 
t takes this into account (Table I in the Appendix). Examining this Table, we 
see that for infinite degrees of freedom (the degrees of freedom here are numeric­
ally one less than the numbers of observations) a value oft as large as 1.96 should· 
only occur 1 in 20 times (P = 0.05) if the hypothesis being tested is true. Here 
the number of observations is 10, so the degrees of freedom are 9. For the 
5% level of significance we would need a value oft of 2.26. Our present value 
is 1.95 and this is less than the value for the 5% level but is greater than the value 
1.83 for the 10% level. The significance of the present result is thus between 
10% and 5%, i.e. our hypothesis that there is no difference "between the two 
analysts is in reasonable accord with the data. If our values of t had been a 
little larger, however, we would have had to regard the hypothesis as incorrect 
and had to accept the conclusion that there almost certainly was a genuine difference 
between the analysts. 

(b) Confidence Limits for a Single Mean 
We have shown that the difference of the mean of this quantity (A-B) is not 

significantly different from zero. This attainment of non-significance might be 
due to the quantity not differing from zero, but alternatively it might be due to 
the inadequacy of our data, i.e. our data may be insufficient to give us a reasonably 
accurate estimate of the quantity. We can estimate which of these two alternatives 
is operating as follows. 

We are going to determine the limits between which we can be reasonably 
confident that the true value of the mean, as determined from our sample, lies. 

The first requirement is to decide what we mean by "reasonably confident." 
We might consider that if we are right 19 out of 20 times (equivalent to 95%) 
we would be satisfied. 

We would then look up in the table oft for 9 degrees of freedom its value 
for the 5% level (95% chance of being right is equivalent to a 5% chance of being 
wrong). Here t is 2.26. Then the limits ±L on either side of the sample mean, 
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where cr = the standard deviation of the population and n is the number of 
individuals in the sample, are 

±L= ± t(a/vn) 
= ± 2.26 X 0.565 = ± 1.28. 

Thus it is reasonably certain (within that chosen probability level) that the true 
value of the mean lies between -1.10 + 1.28 = 0.18 and -1.10-1.28 = -2.38. 
These limits are known as 95% confidence limits.<1l 

If 19 out of 20 was not sufficiently certain for us, we might choose 999 out 
of 1000 (99.9%) and find from the table for t the value for 9 degrees of freedom 
and the 0.001 level as 4.78. The limits would then be -1.10 ± 4.78 X 0.565 
or from -3.80 to 1.60. 

We now consider the actual width of these limits (the 95% or 99.9%, or 
whatever level we have chosen). They fix the accuracy with which we have 
determined the mean. If the limits are narrow our determination is accurate, 
if they are wide the determination is not very accurate. These considerations 
should indicate whether the non-significant result we obtained was due to the 
real equality of the mean with the expected value or due to the inadequacy of the 
data. Here, where the mean has a 95% chance of lying anywhere between 0.18 
and -2.38, it would seem that our determination is rather inaccurate.<1 l 

Greater accuracy in a mean can be obtained by taking more observations, 
i.e. by increasing n, since the standard deviation of the mean (or standard error) 
is cr/vn. Doubling the number of observations will give limits approximately 

~2 = 0. 707 of the present ones. Quadrupling the numbers would give limits 

1 "v
4 

= 0.500 of the present ones. 

(c) Comparison of Two Means 

We obtain two sets of numbers, and wish to test whether the mean of one 
set is significantly different from the mean of the other set, or whether the two 
sets can be regarded as drawn from one population. 

Let Xlt Xa• •.•...•.... Xnlt and X11
, Xa', ••.....••.•. x'na 

be the two samples. 

We calculate the following terms. :E denotes summation. 
_ :E(x) , :E(x') x=--,x = --

nl na 

cr• = [ :E(x'1)- ( !:(x'))• + :E(x1)- ( !:(x))•J /(n
1 
+ na- 2) 

n 1 n1 

x-x' {;n1 x n. t =--- . 
cr n 1 + n 1 

Having found the value of t, we enter the table of t with degrees of freedom 
(n1 + n 1 -2). If our value of t exceeds that for the 5% level we may take it 
with that degree of assurance that the populations are different. 

(1) Strictly speaking, these-are "fiducial limits" and not confidence limits. Fo~ practical 
purposes the distinction is so slight as to be not worth making, and because of 1ts greater 
intelligibility the term confidence_ limit is used here. 

(I} A more accurate statement would be "H we say that the true population mean lies 
between 0.18 and -2.38, then the probability of our being correct is 0.95." 
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Let us consider a specific example. The numbers below represent the 
throughputs in hundreds of tons of acid before failure for two sets of pots, one 
from Foundry A, the other from Foundry B, used in sulph~ric acid pot con­
centration. Is there any reason to suppose that one foundry ts better than the 
other? 

Foundry A. 

Foundry B. 

71, 67, 33, 79, 42 

73, 80 

292 
XA = (71 + 67 + 33 + 79 + 42); 5 =s- = 58.4 

153 
iB = (73 + 80)/2 = T = 76.5 

G1 = [ (71 1 + 671 + ... + 421 -
29
:- + 73 1 + so• 15;'>] /(5 + _2 -2) 

= 1596/5 = 319.2 
G = 17.9 
t = 76.5 - 58.4 , /5 X 2 

17.9 v 5 + 2 
= 1.21 for (5 + 2 -2) = 5 degrees of freedom. 

Consulting the table of t, we find that for 5 degrees of freedom t must be 
not less than 2.57 to be significant at the 5% level. Accordingly there is no 
evidence that here the populations are different. 

Looking up this value of t in a more complete table of t than the one in the 
Appendix, we find it corresponds to a level of significance of approximately 25%. 
That is to say, in the absence of any difference between the two foundries, if we 
repeatedly sampled from them we would get as large an apparent difference 
between them as we did here 1 out of every 4 times. The present result, therefore, 
is only a very slight indication of the possible superiority of Foundry B. 

We have shown that the difference in these means is not significantly greater 
than zero. We can further lay down the confidence limits within which the 
difference will have a chosen probability of lying. We proceed on the same lines 
as before. 

We have that the standard error of the difference in the means of the two 
samples, denoted by am, is . 

am= G v':: t :: 17.9 X v'~ t ~ = 14.9 

We also have t = its value in the table oft corresponding to (n1 + n1 -2) = 
(5 + 2- 2) = 5 degrees of freedom and to the significance level chosen. If we 
select the 5% level of significance (95% chance of being correct in the prediction 
that the true value of the difference in the means of the two samples lies between 
the limits stated) then for 5 degrees of freedom, t = 2.57. 

Then if ±Lis the maximum deviation likely (at this significance level) we 
have 

L = t Gm = 2.57 X 14.9 = 38.3 
The actual mean value obtained for the difference between the two types of 

pot was 18.1 The true value will lie 95% of cases ± 38.3 on either side of this, 
i.e. from -20.2 to+ 56.4 We thus see what a poor comparison is afforded by 
"the data cited. There may well be marked differences between the foundries, 
but the present data is quite inadequate to answer these queries. 
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(d) Conclusions 
In general, therefore, in any account of experimental work involving the 

determination of a mean in addition to the value obtained, its standard deviation 
and the number of observations upon which it is based should also be given. 
This will enable readers to assess the level of significance of the result. 

An important proviso in the calculation of a standard deviation is that the 
individuals should be independent. Thus if we made 10 batches of some material, 
and took duplicate samples from each batch, we could not calculate the standard 
deviation on the assumption that we made 20 observations. Clearly the duplicate 
observations on each batch are not independent of each other. The methods of 
dealing with this type of situation are discussed later (Chapter XII (h)). 

CHAPTER IV 

COMPARISON OF VARIANCES 

(a) Comparison of Two Variances 
When we wish to compare the means of two groups of numbers we use the 

Student t test. It is sometimes the case, however, that what we wish to compare 
is the spreads or variabilities of the two sets of figures, and this is a different 
problem. 

The test of significance for this type of problem is due. to Fisher (Fisher 
actually dealt with the natural logarithm of the ratio of the square roots of the 
variances, which he called z, but here we will use the simple variance ratio which 
is denoted by F). 

To deal with an example, suppose we have two alternative methods of tech­
nical chemical analysis. One or both of the methods may have a systemati£ bias, 
but that does not matter, for all we require is a method that will give a reproducible 
result. 

Table 4.1 gives the results of 6 analyses by Method A on a sample and 7 
analyses by Method B on the same sample. 

Table 4.1 

Method A. 95.6 94.9 96.2 95.1 95.8 96.3 

Method B. 93.3 92.1 94.7 90.1 95.6 90.0 94.7 

The averages for Methods A and B are 95.65 and 92.93 respectively. If we 
wished to test the significance of this apparent difference we would use the 
Student t test. Here we are comparing the variances, which we proceed to 
calculate. 

aa1 [ (5.61 + 4.91 + ... + 6.31)- (
5
·
6 + 4·

9 ~ · · · + 6·
3
)'] /(6- 1) 

(193.15- 191.53)/5 = 0.324 

Ob1 = [<3.3 1 + 2.1 1 + ... + 4.71) _(
3·3 + 2·

1 ~ ... + 4·
7>'] /(7 -1). 

= (90.85 - 60.04)/6 = 5.14. 
We now calculate the ratio of the larger variance to the smaller, termed the 

variance ratio or F. Attached to the variance ratio are two sets of degrees of 
freedom, n1 for the larger variance and n1 for the smaller. 
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Here the variance ratio is 5.14/0.324 = 15.9 for degrees of freedom n 1 = 6, 
n1 = 5. In the Appendix are tables for the variance ratio for a comprehensive 
series of values of n1 and n 1 for the 20%, 5%, 1% and 0.1% levels of significance. 
If our value of the variance ratio is greater than that given in a particular table 
for the corresponding degrees of freedom, then our result is more significant than 
the significance level for the table. 

Thus for degrees of freedom n1 = 6, n1 = 5, for the 20%, 5%, 1% and 
0.1% levels of significance the values of the variance ratio are 2.2, 5.0, 10.7 and 
28.8 respectively. Our value of the variance ratio was 15.9: its significance thus 
lies between the 1% and the 0.1% levels (but see below). 

That is to say, assuming our hypothesis to be correct we would be very 
unlikely to get the result ·we did. Accordingly it is very probable that our hypo­
thesis is incorrect. Our hypothesis was that the two sets of figures were drawn 
from the same population, i.e. the variabilities of the two methods were the same. 
Our hypothesis having been proved incorrect, we can assert that the variabilities 
of the two methods do differ significantly; 

A point of some subtlety arises here. The variance tables were constructed 
for the purpose of testing whether a variance A was greater than a variance B, 
A being known beforehand as derived in a particular way which distinguished it 
from B. Here we are testing whether a variance A is greater than a variance A\ 
and until we have calculated them we do not know which is A and which is A1 : 

A is that one which turns out to be the larger. The effect of this distinction is 
to alter the level of significance of the 20%, 5%, 1%, and 0.1% tables to 40%, 
10%, 2%, and 0.2% respectively. 

(b) A vera~in~ of Several Variances 
Suppose, extending our previous example, we h~d a number of determinations 

of variability for each method on a number of different samples. Suppose a 
second sample analysed by Method B gave results 93.1, 91.2 and 92.6. Its variance 
would then (using the revised zero by subtracting 90 from every observation) be 
[3.1 1 + 1.21 + 2.61

- (3.1 + 1.2 + 2.6)8/3]/(3- 1) = (17.81- 6.91/3)/2 
= 1.94/2 = 0.97. 

To form the average of the two variances, we weight them in accordance 
with their degrees of freedom. Thus the average would be 

2 X 0.97 + 6 X 5.14 
2+6 

This average is the same as obtained by pooling the sums of squares and 
degrees of freedom for the two samples, i.e. (30.82 + 1.94)/(6 + 2). 

This is the correct method for obtaining an average variance. It is incorrect 
(a) to take the average of the variances without regard for the degrees of 

freedom; 
(b) to take the average of the standard deviations. 
If we have the variances expressed as standard deviations, we should. square 

them to convert them to variances, and take the average as indicated. 
The average variance, correctly obtained, can be regarded as having as its 

degrees of freedom the sum of the degrees of freedom of the separate variances 
going to make up that average. Thus in the present example the degrees of 
freedom of the average variance are (6 + 2) = 8. 

In parenthesis, it might be pointed out that in the calculation of the average 
variance of the two samples, the two variances must be calculated separately and 
then pooled. It would be incorrect to pool all the 7 + 3 = 10 observations 
together and calculate their variance, because the variance so obtained includes 
not only_ the variance of repeat measurements on the same sample (which is what 
we requ1re) but also the variance between samples, which is quite irrelevant. 
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(c) Comparison of Several Variances 
The Fisher variance ratio test will compare two variances, but not more 

than two. Suppose we have a group of ten machines turning out batches of 
-some product, and we measure some quality x on each batch. Suppose we suspect 
that some machines manufacture the product more regularly than others, i.e. that 
there is less variability in their product. The test of significance for this type of 
problem is generally known as Bartlett's test. 

Column 2 in the table below represents the value of the property x of six 
O>nsecutive batches off machines 1 to 10. The figures in column 2 actually are 
transformed by shifting the zero to simplify the arithmetic : originally each had 
2200 added on to them. 

Machine Data l:(x) l:(x•) {l:{x))1/s l:(x-i)2 a~ log.(an 

1 28, 14, 15, 2, 9, 2, 70 1294 816.7 -477.3 95.46 4.5587 
2 11, 3, 0, 9, 2, 12 37. 359 228.2 130.8 26.16 3.2642 
3 7, 0, -1, -1, 0, 1 6 52 6.0 46.0 9.20 2.2192 
4 8, 0, 3, -1, 6, -1 15 111 37.5 73.5 14.70 2.6878 
5 10, 5, 3, 0, 0, 1 19 135 60.2 74.8 14.96 2.7054 
6 4, 8, 7, 0, -1, 1 19 131 60.2 70.8 14.16 2.6502 
7 11, 2, 3, 11, 10, 0. 37 355 228.2 126.8 25.36 3.2331 
8 15, 10, 0, 8, 10, 10 53 589 468.2 120.8 24.16 3.1847 
9 7, 7, 4, 9, 5, 6 38 256 240.7 15.3 3.06 1.1184 

10 10,2,-1,10,-1,7 27 255 121.5 133.5 26.70 3.2847 

253.92 28.8906 

The columns headed l:(x), ·l:(x2), ( l:(x))2 /6 and l:(x -i)1 where l: denotes 
summation, are merely the steps in calculating the variances for the ten machines. 

The latter are given in the column headed a,. 
We now wish to test the hypothesis that these ten variances could reasonably 

have been obtained from the same population, i.e. that the batches from the ten 
machines are of the same variability. 

We proceed by obtaining (from tables) the natural logarithm of each variance 
(last column), and summing these. Let us denote this sum by l:(logeah. We 
take the mean of the variances as 253.92/10 = 25.392: we can denote this mean 
variance as S•. We take its natural logarithm log.S•, here 3.2343. Let k equal 
-the number of variances being compared (here 10) and n equal the degrees of 
freedom of these individual variances (here 5). Then we calculate two terms 
.Band Cas 

· B = k n log.S1 - n l:(logeah 
= 10 X 5 X 3.2343 '- 5 X 28.8906 = 17.18 

.andC ...:....1+k+ 1 
3 n k 

10+ 1 
= L+ 3 X 10 X 5 = 1·073 

If B/C is greater than x• at the 5% level of significance for (k- 1) degrees 
of freedom, then there is an indication of that level of significance that the variances 
are not drawn from a homogeneous population. 
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Here B/C = 17.18/1.073 = 16.0 with (10 -1) = 9 degrees of freedom.. 
For 9 degrees of freedom for the 10%, 5% and 2% levels of significance x•. or 
here B/C, needs to reach values of 14.68, 16.92 and 19.68 respectively. Here 
our present value does not reach the 5% level, but is near it, and there is some 
indication that the machines do differ significantly in the variability of their 
product. 

It should be clear that if the largest and smallest variances of a set do not 
differ significantly as tested by the variance ratio test, then clearly those lying 
between cannot differ significantly either, and the whole set can be reasonably 
regarded as coming from a single population. In these circumstances there would 
be no need to employ the Bartlett Test. 

As an example of the necessity for comparing several variances where they 
have an unequal number of degrees of freedom, the data below gives the through­
puts obtained from units of chemical plant before failure through corrosion. 
The units are categorised according to the foundry manufacturing them. 

Degrees of Sums of 
Foundry Throughput obtained Freedom Squares Variance 

A 84, 60, 40, 47, 34 4 1576.000 394.000 
B 67, 92, 95, 40, 98, 8 4098.000 512.250 

60, 59, 108, 86 
c 46, 93, 100 2 1724,667 862,833 

The variances of the three foundries are calculated in the final column and 
it might be thought that they differ significantly, i.e. it may be that the work­
manship of the different foundries differs in consistency (the different problem of 
whether they differ in their averages will be considered in Chapter .VII (b)). · 

In the general case suppose we have k groups each with variance ai1 (i = 1~ 
2, . . . k), with degrees of freedom n1 respectively. Pool the individual variances 
to give the pooled variance S8• Then Bartlett's test says that B/C is distributed 
as x• with (k -1) degrees of freedom, where 

B = (En;) log.S 1 - :E(n;log0ai1) . , 

1 [ 1 1 ] 
C = 1 + 3(k-1) :E(n;) - :Eni · 

Here S• = (1576.0 + 4098.0 + 1724.667)/(4 + 8 + 2) = 528.476, 
:En1 = 4 + 8 + 2 = 14, . . 
:E(n;logeai2

) = 4 log.394.0 + 8 log.512.25 + 2 loge862.833 
= 87.7800 

whence B = 14log.S28.476- 87.7800 = 0.44366 
1 [1 1 1 1] and c = 1 + .,..3(=3-=-"""'"1) (4 + 8 + z) -14 = 1.13393, 

and therefore B/C = 0.391 with degrees of freedom (k-1) = 2, 
i.e. the apparent difference in the variances is entirely non-significant. 

(d) Confidence Limits for Variances 
In the same way as we laid down confidence limits for means, we can lay­

down confidence limits for variances. 
(i) Small Samples 
If we wish to calculate the probable upper limit for the true variance (say f). 

at say the 5% level of significance, we calculate • 
n 

'!1=-o• x• 
where a• is the variance as calculated from our sample with n degrees of freedom, 
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and x• has its value corresponding to n degrees of freedom and the 5% level of 
significance. 

Thus suppose we have a variance a1 of 10.0 units, based on a sample of ten 
individuals (nine degrees of freedom), then for the 5% level of significance 

x• = 16.92 and 
9 

cp = 16.92 X 10.0 = 5.31 

This is the lower limit. The corresponding upper limit is given by the 95% level 
of x•. for which x• for 9 degrees of freedom is 3.32, whence 
. 9 

cp = 3.32 X 10.0 = 27.1 

Regarding these limits together, we have a 5% probability of the true population 
variance being less than 5.31 and a 5% probability of its exceeding 27.1. The 
total probability of the true value being outside these limits is thus (5% + 5%) 
= 10%. 

Speaking generally, therefore, our confidence limits should be regarded as 
10% and not 5% ; if we wish to have limits nearer 5% we can use the 98% and 
2% levels of x• giving us confidence limits of 4%. 

(ii) Large Samples 

For larger sample (greater than 30 individuals) we can use the fact that the 
a 

standard deviation a of a standard deviation a is • / where n is the number 
a v2n 

of observations. 
Thus if we have a sample of 50 individuals whose standard deviation is 10.0, 

the standard deviation of the sample standard deviation is 10.0/v2 x 50 =1.0. 
The 95% confidence limits are thus 10.0 ± 2.01 X 1.0 (2.01 is the value of t for 
the 5% level of significance and 50 degrees of freedom). 

(a) Introduction 

CHAPTER V 

THE x• TEST 

We now tum to a different type of problem which requires a technique 
different from those previously discussed. The x 1 test is applied in general to 
those problems in which we wish to determine whether the frequency with which 
a given event has occurred is significantly different from that which we expected. 

The technique is applied, therefore, to such phenomena as the occurrence 
of heads or tails in the spinning of a coin : the frequency of bursting of drums 
in transit : the numbers of accidents on different shifts : the number of defective 
castings made by different methods. 

To apply the method we calculate the expected frequencies of the events on 
the basis of the theory we are testing, and we then test whether the observed 
frequency differs significantly from the expected. If it does, of course, then our 
theory is unlikely to be correct : if it does not, then our theory is in reasonable 
accordance with the data, and the differences can be due to random error. 

The statistic x• is defined as 

x• = 1:[(0; E)•] 
where 0 is the observed class frequency, E is the expected class frequency, and 
l: denotes summation over all the classes. 

In general, it is inadvisable to use the x• test where any expected class 
frequency is less than 5. This point is discussed later in Chapter V (h). 

We will now discuss a series of examples. 
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(b) The 1 x 2 Table 
Suppose we tossed a coin 100 times, and we obtained 60 heads and 40 tails. 

Could we say that the coin was definitely biassed ? 
Here we have two classes, heads and tails, and on the hypothesis which we 

are testing the expectation E in each class is 50. ; 
We have to make a correction for the fact that our actual distribution is 

discontinuous whereas x• is a continuous variable.(IJ. This correction for con­
tinuity, as it is called, consists in reducing by 0.5 the values which are greater 
than expectation and increasing by 0.5 those which are less. 'Ve thus have 

I (59.5- 50)1 (40.5- 50)1 

X = 50 + 50 
= 3.61 

The appropriate number of degrees of freedom is found as the number of 
classes to which values can be assigned arbitrarily. Here, given the total, we 
can only fill one class arbitrarily, because when that is done the second class is 
automatically determined, i.e. if we make 100 tosses and obtain 60 heads, then 
the number of tails must be 40. Accordingly, entering the table of x• with one 
degree of freedom, we see that to reach the 5% level of significance x• would have 
to be equal to or greater than 3.84. Hence our result does not reach significance 
at the 5% level, and so we cannot assert that the coin is definitely· biassed. 

It might perhaps be stressed that the probability we have derived is not that of 
getting 60 heads exactly, but that of getting either 60 or more heads or 60 or more 
tails. The probability of getting exactly 60 heads with an unbiassed coin is 

100 I 1 
60 I 40 I 2100 = 0.010843 867 

(this at first sight rather formidable calculation is made easy by the tables of 
powers and of factorials contained in Barlow's Tables of Squares, etc. (E. & F. N. 
Spon)). The probability of getting exactly 61 heads is 

100! 1 
61 I 39 I 2100 = 0.007110 733. 

Proceeding in this manner, we can get the series for 62, 63, etc., heads, and sum­
ming this series we get for the sum of probabilities 0.028 443 968. This is the 
probability of getting 60 or more heads. Adding the similar probability of getting 
60 or more tails, the total probability is 0.056 887 436, or 5.69%. 

The x• test gives as the probability, using a detailed table of x• for 1 degree 
of freedom< 1 J, as 5.8%. The two methods are thus in close agreement. 

As a further example, in measuring the diameters of sticks of cordite the 
measurers were instructed to make two measurements at right angles and record 
the measurements in the order they obtained them. For one measurer, it was 
found that out of 309 sticks, in 123 cases the smaller diameter was recorded first, 
and in the remaining 186 the larger diameter was recorded first. Is there a sig­
nificant tendency to take the larger diameter first ? Treating this as a 1 x 2 
table and using the correction for continuity, we obtain x•= 11.8, which corre­
sponds to a probability of less than 1%. The result can therefore be taken as 
definitely significant. 

(c) The x• Table 

It will be noted that the x• Table (Table II in the Appendix) is given for 
values of P greater than 0.10, namely 0.50, and 0.90, 0.95, 0.98, and 0.99. 

(tJ F. Yates (1934). "Contingency Tables Involving Small Numbers and the x• 
Test." Supplement to the Journal of the Royal Statistical Society, VoL I, 217-235. 

<•J Such as that in "An Introduction to the Theory of Statistics": G. U. Yule and 
M. G. Kendall (Charles Griffin), Appendix Table 4A. 
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The latter values are those which occur when a fit is better than it should 
be. It may seem surprising that this could be so. However, consider the case 
o0f a trial of 1,000 tosses to decide whether a coin is biassed. Our expectation 
for each of the two classes are 500. If we got exactly 500 of each in our trial, 
this agreement would be remarkable. Thus suppose we repeated the experiment 
.a large number of times, then in general we should expect to get observed values 
-of the frequencies corresponding to values of x• corresponding to values of P 
.cattered over the range Q-.95 to 0.05, with 1 out of 40 outside the upper limit 
and 1 out of 40 outside the lower limit. The value of x• which turns up most 
frequently is that corresponding to P = 0.50. Close fits should only occur with 
that frequency given the x• test, and if they occurred more frequently we might 
.reasonably suspect that the data was being "cooked." 

'(d) The I x n Table 
An example ~fa I x n table, in which n = 3, is below. 

Shift Accidents in a particular period 

A 1 
B 7 
c 7 

We formulate the hypothesis that there is no association of number of acci­
dents with-shift, and proceed to test it with the x• test. On our hypothesis the 
expectations for the three classes are 5, 5, and 5 respectively. 

(5 -1)1 (7- 5)1 (7- 5)1 

x•= 5 + 5 + 5 
=4.80 

The degrees of freedom are two (given the total, we can fill in two classes 
-arbitrarily but then the third class is uniquely determined). Entering the x• 
-table, we find that for 2 degrees of freedom, to reach the 5% level of significance 
x• has to be equal to or greater than 5.99. Since our value of x• is less than 
that, our hypothesis is reasonable, i.e. there are insufficient grounds for asserting 
that the three shifts differ in their liability to accidents. 

This result will probably be surprising to the non-statistician, who almost 
.certainly would have assumed that it was quite certain that the three shifts did 
differ. It is important to note that the statistician does not assert that the three 
shifts do not differ : he merely states that the evidence that they differ is inadequate. 
()f course, we might formulate the hypothesis that the accidents are in the ratio 
1:7:7; x• would then be zero, i.e. there is no evidence that the accidents depart 

.from the ratio 1: 7:7. It is thus apparent that the data is simply inadequate to 
.draw any conclusion. 

Suppose we waited for a further period, and the accidents in the total period 
were 2, 14, and 14 respectively. The table would then become 

Shift Accidents in total period 

A 2 
B 14 
c 14 

42 



Again testing our hypot~esis t~at there is no ~sociation ?f accidents ":ith 
shift, the total number of acctdents 1s 30, and on thts hypothes1s the expectation 
E for each category is 10. 

Accordingly 
(2- 10)1 (14- 10)1 (14- 10)1 

x• = 10 + 10 + 10 
= 9.60 

Such a value of x• with 2 degrees of freedom is more significant than the-
1% level. i.e. on our hypothesis such a value would have been obtained less than. 
1 in 100 times. Thus the additional evidence has now made it very probable­
that the shifts do differ in their liability to accident. 

Table 5.1 gives some data obtained on a process for beating paper in a beater. 
Four alternative methods of loading the beater were tried, the numbers of cycles. 
carried out for the four cycles being given by the first row in Table 5.1. The 
second row gives the number of chokes of paper between the bed-plate and the: 
roll that occurred. 

Table 5.1 

Method of Loading A B c D Total 
------------

Number of cycles .. .. 8 10 9 13 40 
Chokes occurring .. .. 5 8 9 10 32 
Chokes expected .. .. 6.4 8.0 7.2 10.4 32 

We wtsh to test the hypothesis that there is no association of frequency of 
choking with method of loading, i.e that frequency of choking is independent of 
method of loading. On this hypothesis the expectation of a choke, the same for 
all methods, is given by 32/40 = 0.80 chokes per cycle. The third row in. 
Table 5.1 gives the expectat10n for the four methods. We have therefore 

x• = 1.4' + ~ + 1.8
1 + 0.4• 

6.4 8.0 7.2 10.4 
=0.77 

We have used one degree of freedom in making the restriction that our expected 
total is equal to the actual total. (If we had an a priori expectation, e.g. if we­
had the hypothesi,; that there was one choke per cycle, then we wouldn't have­
lost this degree of freedom). Entering the table for x• with 3 degrees of freedom .. 
we see that to reach the 5% level of significance we would have to have a x• of 
7.82. It is clear that the present data is in excellent accord with the hypothesis. 
that the frcq uency of choking is independent of the method of loading. 

It will be noted. that Table 5.1 at first sight is a 2 X n table (see Section (f)}. 
In a 2 X n table the frequencies being compared relate to the same general class 
of events. Here, however, the occurrence of a cycle is not of the same class as 
the occurrence of a choke. Accordingly we are concerned with the 1 X n table 
of chokes occurring and only use the other row to derive our expected frequencies. 

(e) The 2 x 2 Table 
A problem frequently occurring can be reduced to the following form :­
One type of process produces (a) defectives in a sample of (a+ b)individuals: 

another type of process produces (c) defectives in a sample of (c +d) individuals.. 
Are the two populations the same or different ? · 

This type of problem can occur, for example, in cordite manufacture, where 
the defectives might be sticks rejected for e.g. surface blemishes, and we are 
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interested in whether e.g., one method of packing the press cylinder gives less 
rejects than another. 

The problem is formally exactly the same when articles are being tested with 
go-not go gauges instead of continuously measuring gauges ; if an article fails to 
pass on one or the other of the gauges it is a defective, if it passes the gauges it 
is a non-defective. 

To take an example, suppose that in our first sample of 1000 there were 
100 defectives (fraction defective 10%) and in the second sample of 500 there 
were 60 defectives (fraction defective 12%). Are we justified in taking it as 
reasonably certain that the populations represented by these two samples are 
different? 

The data can be assembled in the form below where it is sometimes referred 
to as a "contingency table." 

Defective Non-Defective Totals 

Process A a~ 100 b = 900 a+ b = 1000 
Process B C= 60 d= 440 c+d= 500 

Totals a+ C= 160 b + d = 1340 1500 

The hypothesis we are going to test is that there is no association between 
the occurrences of defective articles and the type of process. On this hypothesis, 
we shall calculate the expectation for each cell of the table. To consider the first 
cell, a, this refers to defectives, and the probability of a defective is given by 
160/1500. It also refers to process A, and the probability of any individual 
belonging to process A is 1000/1500. The probability of any individual falling 
into cell a is therefore (160/1500) (1000/1500) and the actual expectation is this 
probability times the total number, i.e. 

160 1000 1500 = 160 X 1000 = 106 7 1500 X 1500 X 1500 . 

Similarly, the expectations for b, c, and d are 

1340 X 1000 = 893 3 160 X 500 = 53 3 d 1340 X 500 = 446 7 1500 · ' 1500 · ' an 1500 · 

Accordingly 
I _ 6.71 + 6.71 + 6.71 + 6.71 

X - 106.7 893.3 53.3 446.7 
= 1.4 

For one degree of freedom (given the marginal totals; we can only fill in 
one cell arbitrarily, for then the others are uniquely determined) this is about 
the 20% level of significance, i.e. the apparent superiority of process A is not 
established by this experiment. 

We omitted in the above example to apply the correction for continuity: 
with large numbers such as are in the above example this is permissible, for the 

_ ~esulting difference is only slight. 
In the above example we calculated the cell expectations separately, and 

summed the_ series of terms for x•. There is, however, a convenient mechanical 
method, which merely involves calculating 

(ad- bc)1 X N 
x• = (a+ b) (b + d) (c + d) (a+ c) 
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where a, b, c, and d have the meanings as in the contingency table quoted above 
and N = a + b + c + d. Thus in the above example 

{100 X 440- 900 X 60)1 X 1500 
x• = 160 X 1340 X 500 X 1000 

= 1.4 
as before. 

With small sample sizes it is essential to apply the correction for continuity, 
as in the following example. 

A pressing process using one batch of powder gave 9 defective pellets out 
of 45 pressed (20% defective) and with a second batch of powder 29 defectives 
out of 87 pressed (33% defective). 

Batch A BatchB Totals 

Non-Defective 58=a 36= b 94 
Defective 29=c 9=d 38 

Totals 87 45 132 

As before, the method of correcting for continuity is to add l to the observa­
tion in those cells which are below expectation and subtract l from those above 
expectation. The marginal totals are, of course, unchanged by this operation. 

1 
_ (58.5 X 9.5 - 28.5 X 35.5)1 X 132 _ 

1 96 X - 94 X 45 X 38 X 87 - . 

For 1 degree of freedom this is quite non-significant. If we had neglected 
to apply the correction for continuity we would have obtained a value for x• of 
2.57, in this case still non-significant. In borderline cases, however, the difference 
may be important. . 

An extensive discussion of the exact ideas behind a 2 X 2 table and the 
importance of being clear exactly what hypotheses we are testing has been given 
by Barnard <3 l and by Pearson <'l. See also Berksen (5 ). 

(f) The 2 x n Table 
The data in Table 5.2 below refers to two types of incident, two certain types 

of breakdown, A and B, which can occur in a certain process. The process can 
be run on three grades of raw material, L, M, and N. . 

Table 5.2 

L M N Totals 

A 42 13 33 88 
B 20 8 25 53 

Totals I 62 21 58 141 

<•l G. A. Barnard (1947). "Significance Tests for 2 X 2 Tables". Biometrika, 
XXXIV, 123-138. 

{')E. S. Pearson (1947). "The Choice of Statistical Tests illustrated on the Inter­
pretation of a 2 X 2 Table." Biometrika, XXXIV, 139-167. 

( ~) An interesting discussion of how faulty conclusions can easily be reached from 2 x 2 
table 18 by J. llerkson on hospital data: Biometrics Bulletin, Vol. 2, No.3, page 47, 1946. 
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We form the hypothesis that there is no association of type of incident with 
raw material. In other words, that the relative likelihood of incidents is the same 
for the three types of raw material. We proceed to test this hypothesis with the 
x• test. 

The expectation for the cell LA is 62 X 88/141 = 38.7 and the contribution 
to x• is (42-38.7)1/38.7 = 0.28. Similarly, the expectation for the cell M A 
is 21 X 88/141, etc. . 

The degrees of freedom for n1 X n1 tables are (n1 - 1) X (n1 - 1 ), or here 
(2 - 1) (3 - 1) = 2. The value of x 1 comes out, summing for all six cells, as 
1.5, which is very much less significant than the 5% level. Accordingly we can· 
conclude that the data is in excellent accord with our hypothesis. . 

Non-statistically, we would have calculated the ratios A/B for raw material 
classes L, M, and .N as 42/20 = 2.10, 13/8 = 1.63, and 33/25 = 1.32. We 
would probably have concluded that these ratios were significantly differ.ent. The 
use of the x• test,. however, shows that such a conclusion would be unwarranted. 

. As for a 2 X 2 table, so for a 2 X n there is a convenient mechanical method 
for computing x•. Suppose the frequencies in pairs of cells are a and A, band B, 
etc., and the corresponding totals n and N. Then we calculate for each pair 

p =-a/(a +A) and 
ap = a1/(a +A) 

and from the totals 
P = n/(n + N) 

and then 
1 x• = P(P _ 1) [I: (ap)- nP] 

Our three pairs give as values of ap 
421/62 = 28.452, 13 1/21 = 8.048, and 33 1/58 = 18.776 

I: (ap) is then 55.276 
and P = 88/141 = 0.624 
and nP = 881/141 = 54.972 

Whence x• = (55.276- 54.972)/0.624 X 0.376 = 1.51 as before. 

(g) The n 1 X n 8 Table 
An n 1 X n 1 table, with n 1 = 3, n1 = 6 is given below. 

a b c d e f Total 
------

A 11 23 8 5 18 18 83 
B 17 29 10 17 7 15 95 
c 6 21 8 24 15 9 83 

------------
Totals 34 73 26 46 40 42 261 

A product was being produced on three shifts, A, B, and C and was classified 
into six grades, the order of quality being a to f. 

On the average each of the three shifts would be supplied with raw material 
of the same average quality. The question arose as to whether any shift was 
tending to produce better quality material than the others, i.e. was there a relative 
excess of particular qualities on any one shift. 

To test the hypothesis that there is no association of quality with shift, we 
calculate x• for this table. The expectation of the cell Aa is 83 X 34/261 = 10.8, 
and the contribution to x• is (11-10.8)1/10.8 = 0.004. Similarly the expect­
ation for the cell Ba is 95 X 34/261 = 12.38, and the contribution to x• is 
(17 -12.38)1/12.38 = 1.72. 
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Performing the operation for all the cells and summing all the contributions, . 
we get for x• the value 26.3. The degrees of freedom with which we enter the 
x• table is given by the number of independent ways the contingency table can be 
filled up, given the marginal totals. For an n 1 X n1 contingency table this is 
(n1 -1} (n1 -1}, here 5 X 2 = 10. Entering the x• table for 10 degrees of 
freedom with the value 26.3 for x• we h'lve the probability of getting so large 
a value as less than 0.01 (i.e. 1 %). Accordin!;ly the hypothesis that there is no 
association of grade with shift would seem to be incorrect, i.e. there is an association 
of quality and shift. 

The x1 test, should it give significance to the association between the two 
variables, does not give any information as to the type of association. This can 
only be found by inspection of the original contingency table. To assist in this 
it is convenient to enter in each cell, alongside the observed frequency, the expected 
frequency. Doing this for the present example, we find that A shift were 
producing a relative excess of e and f, B shift of a and C shift of d. 

(h) Restriction of Expected Cell Frequency to be not less than 5 
As mentioned at the beginning of this discussion of x•, it is not safe to use 

the x• test where any expected class frequency is less than 5. Sometimes this 
means that the test cannot be applied. On other occasions the difficulty can be 
evaded. 

Consider the table below : 

Ll La M N1 Na Total 
------

A 5 37 13 28 5 88 
B 3 17 8 20 5 53 

---------
Totals 8 54 21 48 10 141 

It represents the data from which Table 5 in section (f) was built up. The 
expectations for cells L 1B, and N 1B are both less than 5. As the table stands, 
therefore, the x• test cannot be applied. However, if we pool the data in columns 
L1 and L 1 and in columns N 1 and N 1, we get the 2 X 3 table quoted in section (f), 
Table 5.2, which is perfectly satisfactory. 

CHAPTER VI 

· THE POISSON DISTRIBUTION 

(a) Introduction 
Consider a manufacturing process in which an operation is being repeated 

a great many times each day, and occasionally an inflammation occurs. If we 
set out in time sequence the daily number of inflammations we may get such a 
~~~~as . 

00100203000130140002 ........ . 
Some days will be without any, others will have a relatively large number. The 
question we will discuss is whether the probability of obtaining an inflammation 
is constant throughout. Prime facie we might consider that the days wil h 0 or 1 
incidents have low probabilities of obtaining an inflammation and the days with 
~. 4 or more high probabilities. If this were the case, then we could look for 
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assignable causes of variation in the probability, i.e. find out in what way the 
days with high numbers of inflammations differed from days with low numbers, 
with a view to correcting the manufacturing practice. On the other hand, if the 
probability were really constant throughout we should be wasting our time trying 
to find out in what ways the days differed. 

If we assume that the probability of obtaining an incident at any one instant 
is small but finite and constant, then over a finite period the chance of obtaining 
an incident will be appreciable. The incident can be of any type (we are con­
sidering spontaneous ignitions in a manufacturing process) and can include the 
occurrence of defective articles in their mass production. In this latter case we 
must pay due regard to the proviso that the probability of obtaining an incident 
at any one instant (in the terminology of this example of obtaining a defective on 
selecting any particular article) is small. In practice the approximation is good 
enough if the percentage defective is less than 10%. 

(b) Number of Incidents per Interval 
To revert to our example of spontaneous inflammation, let us count up the 

number of days on which no incident occurs, on which 1 incident occurs, on 
which 2 incidents occur, etc. Then if our hypothesis is correct, the relative 
frequencies will be as in Table 6.1 below (thee is the base of natural logarithms, 
m is the average frequency, and e.g. 41 is factorial 4, i.e. 4 X 3 X 2 X 1). 

Table 6.1 

Number of 
Incidents Relative 

in one day Frequency 

0 e-m 
1 me-m/11 
2 m1e-m/21 
3 m 1e-m/31 
4 m4e-m/4! 

etc. etc. 

This series of terms is known as the Poisson series. 

The sum of the Relative Frequencies is unity, for it is 
e-m+ m e-m/1 ! + m 1e-m/21 + m1e-m/3 I+ .•.... 

= e-m[1 + m/11 + m1/2! + m'/31 + •.•... ] 
=e-mxem=1 

The first two columns in Table 6.2 summarise the results o}?served on 201 
days working of an industrial process. The incident was an inflammation that 
would occur in a repetition process that was being repeated a large number of 
times each day. Over this period of 201 days there were 150 incidents, and they 
were distributed as in Table 6.2. Thus there were 102 days without any incidents, 
59 days with 1 incident, 31 days with 2 incidents, etc. The total number of 
days is given by 

102 +59+ 31 + 8 + 0 + 1 = 201 
and the total number of incidents is given by 

102 X 0 + 59 X 1 + 31 X 2 + 8 X 3 + 0 X 4 + 1 X 5 = 150 

48 



Table 6.2 

I 

Number of Number of Expectation 
Incidents Occurrences of 

on one Day of this type Occurrences ' 

0 102 95.3 
l 59 71.1 
2 31 26.5 
3 

n9 6.6} 4 A:! s.1 5 
6 

Total 201 201.0 

We have 150 incidents in 201 days, so the daily average frequency m is 0.7463. 
A table of natural logarithms gives us em as 2.109: e-m is the reciprocal of this, 
namely 0.4742. The initial term of the series, corresponding to 0 incidents in 
a day, is Ne-m = 201 X 0.474 = 95.3. The next term is mNe-m/11 = 
0.7463 X 95.3 = 71.1. The next term is m•Ne-m/2 I = 0.7463 X 71.1/2 = 
26.5, and so on. These Poissonian expectations are given in the last column of 
Table 6.2. · 

To test the significance of the departure of the observed frequencies from 
the expected frequencies we use the x• test in the usual way, as for a 1 X n table. 
Thus the first cell's contribution to x• is 

(102- 95.3)1 = 0 47 
95.3 . 

and similarly for the other cells. In applying the x• test it is essential to pool 
sufficient cells at the bottom end of the table to satisfy the condition that the 
expected frequency in any cell should not be less than 5. 

A further essential condition in applying the x• test is that we should take as 
the degrees of freedom (n- 2). The reason for losing 2 degrees of freedom as 
compared with 1 as in the usual n X 1 table is that we have not only made the 
totals agree (as in the 1 X n table, this taking up 1 degree of freedom) but also 
used one constant in fitting the shape of the distribution, this latter taking the 
second degree of freedom. 

In the above example we obtain a value of 3.4 for x• with 2 degrees of freedom. 
This corresponds to a probability of 15%, so the fit can be considered satisfactory 
(P would have to be 5% or less before we could consider the hypothesis of agree­
ment between the observed and expected distribution disproved). 

It will be noted that the shape of the Poisson distribution depends on the 
value of m, the average frequency. If m is less than 1, as in the previous example, 
then each term must be less than the preceding one, and the first term will be 
the largest. 

If m is greater than 1 but less than 2, then the second term is larger than 
the first, since it is equal to the first multiplied by m and divided by 1. It will 
also be greater than the third, so it is the maximum term of the series. If m 
is greater than 2, but less than 3, then the third term will be larger than the second 
and larger than the fourth. · 
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Table 6.3 below is derived from the same data as the previous example. The 
interval taken was 3 days, so the average frequency is now 2.2537. 

Table6.3 

Number of 
Incidents in Number of Expectation 
periods of Occurrences of 
three days. of this type. Occurrences. 

0 8 7.04 
1 20 15.86 
2 13 17.87 
3 12 13.42 
4 6 7.56 
5 5 

}a.o HI} 6 2 1.28 
7 0 0.41 5.24 
8 1 0.11 
9 0.03 

It will be observed that the expected frequencies correspond closely to the 
observed frequencies. x• = 4.49 for 4 degrees of freedom, this corresponding to 
a probability of 40%. 

(c) Distribution of Time Intervals 
'Ve have considered the number of incidents per time interval. A slightly 

different way of looking at the matter is to consider the size of interval between 
each incident. The interval can range from zero up to . ten days or more. If 
we assume that the probability of obtaining an incident is constant throughout, 
we can predict the relative frequencies of the various sizes of intervals. Let m 
be the reciprocal of the average interval, and N the total number of intervals 
observed. Then the number of intervals laying between t, and t 1 , would be given by 

N ( e-mt1 - e-mta) 
where e is the base of natural logarithms. 

Table 6.4 gives the distribution of time intervals, derived from the same data 
as the previous table. 

Table 6.4 

Intervals Number Number 
(hours) Observed. Expected. 

0-7.9 48 44.46 
8-15.9 36 34.63 

16---23.9 27 26.95 . 
2~31.9 24 21.00 
32-39.9 10 16.44 
40-47.9 13 12.64 

I 48-55.9 10 10.ot 
56---63.9 8 7.64 
64-71.9 9 6.03 
72-79.9 3 4.76 
80 to infinity 13 16.45 

Total I 201 201.01 
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The computation for this table is easier if we take 8 hours as a unit of time. 
Using a finer distribution of intervals than is shown in Table 6.4, the average 
interval is 3.9950 units and m its reciprocal was found to be 0.2503. 

The expectation for the first interval is then 
N( e-mt1 - e-mt1) 

= 201 (e-G.2603XO_e-0.2&03Xl) 

= 201 (1 - 0.7788) 
= 44.46 

The expectation for the second interval is then 
N(e-mt2 - e-mta) 
= 201 (e-o.uoa x t_ e-o.uoa x 2) 
= 201 (0.7788- 0.6065) 
= 34.63 

The complete expectations are given in the last column of Table 6.4. 
The closeness of fit can be tested with the x• test. Here a value of 6.13 is 

obtained which with (11 - 2) = 9 degrees of freedom corresponds to a probability 
to 75%. The fit is thus excellent. 

The time distribution of incidents when expressed in the present form is 
rather curious in that the commonest interval is the shortest. 

It is interesting to note that the two methods test rather different aspects of 
the distribution. A large number of long periods (say 4 days or more) would 
show up in the present method as an excessive number in the last category, and 
since the expected number in this category is small it would not require many 
to give a significantly large contribution to x•. The first method described, 
however, would record this in the category of days with zero incidents, and since 
this is frequently a large class the additional number would have to be very large 
to make this cell give a significantly large contribution to x•. Clearly a number 
of days with zero incidents is more remarkable if they occur as a series consecutively 
than if they are interspersed with days with incidents, and the latter treatment is 
more sensitive to this form of departure from the Poisson distribution. On the 
other hand, the former treatment is more sensitive to the occurrence of a large 
number of incidents in a short time. 

CHAPTER VII 

THE ANALYSIS OF VARIANCE 

(a) Introduction 

It is a valuable property of variance that if a process has a number of factors 
each making a contribution to the variance of the final product, then this total 
variance is equal to the sum of the component variances!1 l. 

This statement is less obvious than it may seem. Thus, if we were using 
standard deviations as our measure of variability, it would not be true to say that 
the standard deviation of the final product was equal to the sum of the standard 
deviations produced by the several factors. 

This property of additiveness of variance makes possible the technique known 
as the "Analysis of Variance," whereby the total variance of a process can be 
analysed into its component factors, the relative importance of wbjch can then be 
assessed. 

(I) Assuming the Factors are acting independently. 
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The Analysis of Variance can take many forms according to the structure of 
the process being analysed, and one of the principal difficulties usually found in 
its application is deciding which is the appropriate form. In the present chapter 
ol}ly the two simplest forms will be discussed, and in the succeeding chapter a 
more general treatment for dealing with the more complex cases frequently met 
in practice will be attempted. 

(b) Analysis of Variance Between and Within Batches 
Suppose that we have a two stage process. Stage A takes the raw material 

in batches of 300 lb. at a time and performs operation A on it. This operation 
is not perfectly reproducible and gives rise to a variance a ~ in the final product. 
For stage B of the process, each 300 lb. batch is split into three 100 lb. units and 
operation B performed on these units. Operation B is also not perfectly repro­
ducible and gives rise to a variance a~ in the final product. The problem consists 
of observing the total variance in the final product and analysing it into its two 
components a l and a;. Having done this, we will then be able to decide which 
is the part of the process which requires the more careful control in order to 
reduce the total variability. 

In evaluating a~ and a; we proceed by first estimating ( n a ~ + a ~) and a: (in the general case where there are n units per batch). The reason for this 
is that it makes the estimation of the significance of a~ practicable. The function 
(n ai + ~) has (m -1) degrees of freedom, where m is the number of batches, 
and a~ has m (n -1) degrees of freedom. For ai to exist, therefore, (n a A+ a~) 
must be greater than a~, and we can readily test this with the variance ratio test. 

In Table 7.1, below, the value of the property for each unit has been set down 
in columns of 3, the three units in each column coming from a single batch. 

In order to reduce the numbers to small numbers (for convenience in arith­
metical computation) a constant has been subtracted from all of them : it is 
obvious that this shift in level will in no way affect the relative variability. 

Table 7.1 

Batch No. 1 2 3 4 s 6 7 8 9 10 

-3 --4 -3 -1 4 -2 1 2 -1 -1 
-:-2 -3 -1 3 3 3 0 1 -1 1 
-3 -5 --4 2 6 1 1 1 2 1 

Totals -8-12 --8 4 13 2 2 4 0 1 

The process of computation is as follows :­
(1) Square the individuals and add, i.e. 

(-3)' + (-4)1 + (-3)1 + ... + 11 + 21 + 11 = 204 

Grand 
Total 

-2 

(2) Obtain the total for each column, square these totals, sum these squares, 
and divide this total by the number of individuals in each column, i.e. 

((--8)• + (-12)• + (--8)• + ... + o• + 1')/3 = 160.67 
(3) Obtain the grand total for all individuals, square this grand total, and 

divide by the grand total number of individuals, i.e. 
(-3 --4-3 .......... + 1 + 2 + 1)1/30 = 0.13 
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We then form a table of this analysis of variance:­

Table 7.2 

Source of Degrees of Mean 
Variance Sum of Squares Freedom Squares 

Between columns (2}-(3) = 160.54 m-1= 9 17.84 

\Vithin columns (1HZ)= 43.33 mn-m= 20 2.17 

Total .. .. (1)-(3)=203.87 mn-1 = 29 

m = number of columns. 
n number of individuals in each column. 
ai = Variance due to differences between columns. 
a~ = Variance within columns. 

Components 
of Variance 

n al +a~ 

cr.. 

The three Sums of Squares are the differences between the appropriate 
terms (1), (2) and (3), calculated above. The degrees of freedom are derived 
as follows :-

(a) Between Columns. There are m columns, hence the degrees of freedom 
for this term is (m -1) (the degrees of freedom in general equal the 
number of ways the group concerned can be arbitrarily filled in if the 
total is determined, thus when (m- 1) have been filled in the last one is 
uniquely determined, i.e. we can only fill (m-1) classes arbitrarily.) 

(b) Within Columns. There are n individuals in each column : each column 
therefore contributes (n -1) degrees of freedom to this term: there are 
m columns, hence the total degrees offreedom is m (n- 1) = mn- m. 

(c) Total. The total degrees of freedom are mn -1, one less than the total 
number of observations. 

The Mean Squares are the Sums of Squares divided by the degrees of freedom. 
The word "Squares" in the column headings in the table refers to Squares 

of deviations from means, and so the Mean Squares terms have some of the 
characteristics of variances. 

The last column shows that the Between Column Mean Square estimates 
(n ai +a~) and the Within Column Mean Square estimates a~. Thus if ai 
exists significantly, then the Between Column Mean Square must be significantly 
greater than the Within Column Mean Square. 

Accordingly, we wish to test whether the Between Column Mean Square is 
significantly greater than the Within Column Mean Square. This can be done 
with the Fisher variance ratio test, discussed earlier in Chapter IV (a). 

We merely calculate the ratio of the larger mean square to the smaller, here 
17.84/2.17 = 8.22, and enter the table for F with n 1 =degrees of freedom of 
the larger variance (here n1 = 9) and n1 =degrees of freedom of the smaller 
variance (here n1 = 20). If our value for F is greater than that given in the table, 
then the result is more significant than the level of the table. Here for example, 
for n 1 = 8 (the table does not give n 1 = 9), n1 = 20, F has the values 2.45, 3.56 
and 5.44 for the 5%, 1% and 0.1% levels of significance. Accordingly this 
particular result is more significant than 0.1%-
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Having thus established that the Between Columns Mean Square is signi­
ficantly greater than the Within Column Mean Square, i.e. that the Between 
Column Variance does exist, we can proceed to calculate its value. \Ve have 

n ai + a~ = 17.84 
a~= 2.17 

where n = number of individuals in each column, here 3. 
Thus ai = (17.84- 2.17)/3 

= 5.22 
0~ = 2.17 

The total variance observed in our original data is thus made up of these 
two components ai = 5.22 due to differences between columns (here columns = 
batches) and a~= 2.17 due to variability within columns (here within batches, 
that is to say, between units for a given batch). 

(c) The Investigation of Multi-Stage Processes 
We can thus see that the larger proportion of the total variability in the above 

process is arising at stage A, and only a minor part at stage B. Thus in any 
attempt to standardise the process, to reduce the total variability in the final 
product, almost all the attention should be directed towards stage A. 

The total variance as the process is at present is ai = a!+ a~= 5.22 + 
2.17 = 7.39, i.e. its standard deviation is v7.39. Our estimate of the spread 
within which 95% of all individuals should lie is thus ± 1.96 X v7.39 = ± 5.3, 
or a total spread of 2 X 5.3 = 10.6. From inspection of the original data this 
is seen to be reasonable : out of the thirty observations the smallest is -5 and 
the largest is +6, a spread of 11.0. 

Suppose we directed our efforts at standardising stage B, and were com­
pletely successful, and reduced a~ to zero. The total variance would now be 
ai = 5.22, i.e. the standard deviation would be 2.29 and the 95% spread 
± 1.96 X 2.29 = ± 4.5, or the total spread of 9.0. The total spread originally 
was 10.6, so the improvement has been comparatively slight. 

If, on the other hand, we had directed our efforts at standardising stage A 
and were completely successful in reducing a1 to zero, the total variance would 
now be a~= 2.17 or the standard deviation 1.47. The 95% spread would then 
be ±1.96 X 1..47 = ±2.9 and the total spread 5.8. 

The improvement effected by standardising stage A is thus very much more 
substantial than that achieved by standardising stage B. It is clear that effort 
spent in investigating stage B would have been largely wasted. Before carrying 
out a detailed physico-chemical investigation on a multi-stage process, it is clearly 
desirable to find out with such an analysis of variance which are the stages giving 
rise to the variability, and concentrate upon them. The advantage of this pro­
cedure is that the stages subsequently ignored may have contained a large number 
of variables, each of which would have required investigation. In carrying out 
these investigations, we could not be confident that we were including the signi­
ficant variable, and the failure to obtain a significant correlation might be due to 
the investigation of the wrong variables rather than to the fact that there was no 
significant variable for this part of the process. 

The analysis of variance proceeds by c )ncentrating initially upon the structure 
of the process, and only subsequently investigating individual variables. 

(d) Analysis of Variance of Columns of Unequal Size 
It will have been realized that the analysis of variance between and within 

columns is in effect an extension of the Student t test : instead of comparing 
two means we are comparing m means, where m is the number of columns. It 
might be thought that we might make a series of t tests for the column means 
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taken two at a time. This would involve a lot of labour, and in addition involves 
us in certain complications. Thus if we had 20 comparisons, and we are working 
to the 5% level of significance, then on the average even if the columns were 
drawn from the same population we would expect one of them to give us a value 
of Student's t as large as the 5% value. The use of the analysis pf variance 
evades these difficulties. ' · 

It sometimes happens, however, that the number of individuals in each 
column arc not the same, when the treatment given in Section (b) will not be 
directly applicable. 

Consider the data in the table below. It represents the throughputs obtained 
from units of plant before failure through corrosion. The units are categorised 
according to the foundry manufacturing them. 

Foundry Throughput obtained Total Mean 

A 84,60,40,47, 34 26S 53.0 
B 67, 92, 95,40,98,60, 59,108,86 705 78.3 
c 46, 93, 100 239 79.7 

Prima facie it might be concluded that the pots from Foundry A are giving 
lower throughputs on the average than those from Foundries B and C. 

The analysis proceeds by obtaining the following terms:­
(1) Square the individuals and add, i.e. 

84• + 601 + 40• + ........... ·+ 931 + 1001 = 95,709 
(2} Square each row total, divide by the number of individuals in that row, 

and sum these terms, i.e. 
265 1/5 + 705 1/9 + 2391/3 = 88,310 

(3) Square the grand total and divide by the total number of individuals, i.e. 
(265 + 705 + 239}1/17 = 85,981 

The analysis of variance is then as below : 

Degrees of Mean 
Source of Variance Sums of Squares Freedom Squares 

Between Foundries (2H3) = 2329 2 1164 
Within Foundries (1HZ)= 7399 14 528.5 

Total .. .. (1}-(3) = 9728 16 

The degrees of freedom are derived as follows :-
(a) Between Foundries: one less than the number of foundries. 
(b) Within Foundries: each foundry contributes one less than the number 

of observations on that foundry, viz., 4 + 8 + 2 = 14. 
(c) Total: one less than the total number of observations. 
Testing the Between Foundries Mean Square in the above analysis, it gives 

a variance ratio of 1164/528.5 = 2.20 for degrees of freedom n 1 = 2, n1 = 14. · 
!his is. con~ide.rabl:>: less signific~t than the 5% level of significance, so there is 
msuffic1ent JUStification for regardmg the Foundry A pots as giving smaller average 
throughputs than those from the other foundries. 

55 



In the present instance we are more interested in the actual averaaes for the 
three foundries, and are using the analysis of variance to test the si~ficance of 
the apparent difference between the averages. In the more general case, of the 
analysis between and within batches, as discussed in the two previous sections, 
we probably wish to calculate the two components of variance. The Within 
Foundries" Mean Square as before estimates the Within Foundries variance, i.e. 
a A= 528.5. The calculation of the Between Foundries variance is more com­
plicated when the batch (column) sizes are unequal. 

If N is the total number of observations, and fii is the number in each batch 
fori= I to k, there being k batches, then the Between Foundries (Between Batches 
or Columns) Mean Square estimates 

N'- I:ni1 
1 1 

N(k-1) aB+aA 
It will be noted that in the case where all the batches (columns) are of equal size, 
i.e. all the nis are equal to n this reduces to 

(n k)1 -kn• 1 1 

nk(k-1) aB+aA 

= n a.fl +a A. 
as quoted in Chapter VIII (b). 

In our present example our ni are respectively 5, 9, 3, N = 5 + 9 + 3 = 17, 
k = 3, and thus we get 

1164 5 = 171
- (5 1 + 91 + 31

) 1 + 1 

. 17 (3- 1) aB a A 

= 5.118 a!J +a ,A 
Subtracting 

528.5 == a.A 
We obtain 

636.0 = 5.118 a!J 

or a.fl · = 124.3 
It might be re-emphasised that the calculation of the component of variance 

had been given here only to illustrate the method of calculation. In practice 
with this particular problem it would not be done because firstly we would be more 
interested in the averages, secondly the effect is so non-significant that its calcula­
tion would be meaningless, the component being indistinguishable on the present 
data from zero. It further would not be desirable practice to estimate the variance 
between batches (column) from only three batches: a variance so estimated would 
have a very large error. Finally, this is a case where it might be held that it 
was unreasonable to suppose that there was an infinite population of foundries 
from which these three are a sample : this point is commented on further in 
Chapter XII (b). 

(e) Analysis of Variance into Components due to Rows, Columns, 
and a Residual 

It frequently happens that not only can the individuals (units) be categorised 
according to batches (columns) but also simultaneously according to rows. Thus 
in the previous example, the first individual in every column (batch) was processed 
on a particular machine, all the second individuals in every column on another 
machine, and all the third individuals on a third machine. Each row thus corres­
ponds to one particular machine. There may be a systematic difference between 
these machines ; we wish to test whether such an effect exists, and if it does exist 
estimate its contribution to the total variance of the final product. 
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Formally what we have to deal with here is a twofold classification; every 
individual belongs to a particular row and to a particular column. 

Other examples of twofold categorisation are the output from a shop accord­
ing to machine and according to the shift operating the machines. Or, in an 
experiment on conditions of nitration of cellulose, we could have n1 different acid 
concentrations, corresponding to rows, and n1 different acid temperatures, corres­
ponding to columns, where n1 and n 1 could be any convenient numbers. 

To revert to our example of batches split into three units, we proceed by 
calculating the following terms :- · 

(1) Square the individuals and add (we have done this already-term (1) of 
the previous analysis). 

(2) Obtain the total for each row, square these totals, sum these squares, 
and divide this total by the number of individuals in each row (this is 
the new term, here equal to 8.40). 

(3) Obtain the total for each column, square these totals, sum these squares, 
and divide this total by the number of individuals in each column (term 
(2) of the previous analysis). . 

(4) Obtain the grand total for all individuals, square this grand total and 
divide by the grand total number of individuals (term (3) of the previous 
analysis). 

We then form a table of this analysis of variance. 

Source of Sum of Squares Degrees of Mean 
Variance Freedom Square 

Between (2)- (4) = n1-1 = 2 4.13 
Rows 8.40-0.13 

Between (3)- (4) = n1 -l = 9 17.84 
Columns 160.67-0.13 

Residual (1) + (4) (n1-1)(n1 -1) = 18 1.94 
-(2)-(3) 

Total (1)- (4) = n1 n1 -1 = 29 
203.87 

n1 = number of rows = 3 

n1 = number of columns= 10 

a~ = variance due to differences between rows 

a: = variance due to differences between columns 

a! = residual variance 

Components 
of Variance 

n, ai + erg 

n1 ~ + erg 

cro 

I 

The Residual Sum of Squares can be obtained as that combination of terms 
indicated, but in practice it is easier to calculate the Row and Column Sums of 
Squares, and find the Residual as the difference between their sum and the Total 
Sum of Squares. 
. !o test for the significance of the Between Rows Mean Square we compare 
1t Wlth the Residual using the variance ratio test. Here the variance ratio is 
4.13/1.94 = 2.12 for degrees of freedom n 1 = 2, n1 = 18. Referring to the 
tables in the Appendix we see that this is not significant. Thus our hypothesis, 
that there was no systematic difference between the rows (machines), is in reason­
a?le. accord with this data. If the Between Rows Mean Square had proved 
Significant,. we could have proceeded to estimate the magnitude of ai, the variance 
due to d1fferences between rows (machines) from the pair of equations 
n, ai + cro = 4.13, IJ~ = 1.94, whence ai = (4.13 -1.94)/n •. 
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CHAPTER VIII 

THE QUALITY CONTROL CHART 

(a) Introduction 
The Quality Control Chart has been much used in recent years as a means 

of control of quality of production, particularly in light engineering processes such 
as the use of automatic lathes, presses, etc. It has not been used much hitherto 
in the chemical industry though certain types of process seem suitable for its 
application. Here it will only be discussed with reference to investigational 
work. 

The quality control chart is designed to detect the presence of "assignable 
causes of variation" in a sequence of individuals. In effect it takes "rational 
sub-groups" (that is, a group of individuals more likely to be similar than the 
general population, e.g. individuals from a particular machine, operator, day, 
consignment of raw material, etc.), obtains from these rational sub-groups a measure 
of the population variance, and then checks that the sub-group means do not 
vary more than they should do on the assumption that all individuals are drawn 

· from the same population, i.e. that there is no significant difference between the 
sub-group means. · It will be apparent that the result of this test is the same as 
the analvsis of variance for between and within batches. 

The quality control chart as used in practice almost invariably derives its 
estimate of variance within the sub-groups not from the variance but from the 
mean range within the sub-groups, there being available factors for converting 
mean range to standard deviation (see Section (e)). Having obtained an estimate 
of a (the within sub-group standard deviation) we can assert that the means of 
samples of n will be distributed with standard deviation a I yn. Thus 95% will 
be within 1.96alvn on either side of X (the grand mean, assumed equal to the 
population mean. This is the same as 1 in 40 below X-1.96alvii and 1 in 40 
above X + 1. 96a I vii. The quality control chart normally uses these limits as 
"inner" limits and also "outer" limits at 3.09alv'ii, these giving 99.8% within 
the limits, or 1 in 1000 below the lower and 1 in 1000 above the upper limit. 

If the mean of a particular sample falls outside the limits, it is probable that 
the underlying assumptions are not being satisfied. These assumptions are, of 
course, that the sample is drawn from a population of standard deviation a and 
grand mean X. The former point is checked by a control chart on the sub-group 
ranges (see next section), and therefore it is probable that the sample's mean does 
differ significantly from the value X. 

(b) Within Batch Variability: the Control Chart for Range 
Consider the data used previously in Table 7.1, Chapter VII (b). We wish 

now to test the hypothesis that the variabilities within each column (batch) are 
drawn from a homogeneous population : in other words, that batches do not 
differ in their internal variability. 

Table 81 . 
-

-3 -4 -3 -1 4 -2 1 2 -1 -1 
Data -2 -3 -1 3 3 3 0 1 -1 l 

-3 -5 -4 2 6 1 1 1 2 1 

x -2.67-4.00 -2.67 1.33 4.33 0.67 0.67 1. 33 0 0.33 
w 1 2 3 4 3 5 1 1 3 2 

I:(x) --8 -12 -8 4 13 2 2 4 0 1 
I:(xa) 22 so 26 14 61 14 2 6 6 3 

I:(x-x) 1 0.67 2.00 4.67 8.67. 4.67 12.67 0.67 0.67 6.00 2.67 
I 0.33 1.00 2.33 4.33 2.33 6.33 0.33 0.33 3.00 1.33 ai 
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For this purpose we obtain the range w for each batch and plot these con­
secutively on a chart as in figure 6. We then calculate the mean range w, here 
equal to 2.50, and plot on the chart an inner control line at D' o-m w = 2.17 
x 2.50 = 5.4 and an outer control line at D' o-m w = 2.98 X 2.50 = 7.5. 
These D factors are obtained from Table V in the Appendix for sample size 3. 
If the batches are similar in their internal variability, then on the average not 
more than 1 out of 40 points will lie outside the inner control line, and only 1 
out of 1000 points outside the outer control line. The occurrence of two points 
outside the inner control line within two or three points, or of a single point 
outside the outer control line, therefore, is strong eYidence that we cannot regard 
the batches as having the same internal variability. 

eONTROt. CHRRT FOR RflNO€S. 

, 
-II 
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Figure 6 

In the present instance it is clear from figure 6 that there are not poi.ilts 
outside either of the control lines, so there is no reason to suppose that the batches 
differ in their internal variability. 

(c) The Control Chart for Ranges compared with Bartlett's Test 
To digress from the present theme, it will be noted that the control chart 

for range is testing exactly the same hypothesis as Bartlett's test(see Chapter IV (c)). 
To apply the latter, we first calculate the variance of each batch ai1 through the 
steps indicated, namely by obtaining l:(x), l:(x1), and thus l:{x- x)•. The 
sum of the natural logarithms of the within batch variances ai1 is l:(log. ( ai1)) 

= 3.06039. The degrees of freedom n of the individual variances are 2. The 
mean of the batch variances, 8 1 is 2.164, and k, the number of variances being 
compared, is 10. 

Whence we have 
B = k n loge S•- n l: loge (ai1) 

= 10 X 2 X loge 2.164-2 X 3.06039 = 9.31862 
k + 1 10 + 1 

C = 1 + 3 n k = 1 + 3 X 2 X 10 = 1.183 

Thus B/C = 9.319/1.183 = 7.87 and is distributed as x• with (k-1) = 9 
degrees of freedom. This is much less significant than the 10% level of signi­
ficance, so there is no reason to suppose that the batches differ from each other 
in their internal variability. 
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The use of Bartlett's Test thus leads to the same conclusion as the control 
chart for ranges. It requires more calculation, but on the other hand has the 
advantages of being more sensitive and precise. 

(d) Between Batch Variability: the Control Chart for Means 
We wish to test whether the batches differ significantly in their means, having 

regard to the observed amount of variability of the individuals. 
We obtain the mean for each batch (first row in lower part of Table 8.1) and plot 

this consecutively as in Figure 7. We calculate the grand mean X as -0.67, and 
draw in inner control lines at X ± A' 0•016 w = - 0.67 ± 0.668 X 2.50 or 1.60 and 
-1.74 and outer control lines at X ± A' o·oo1 w = -0.67 ± 1.054 X 2.5 or 2.57 
and -2.70. Thus, if the Between Batch variability is no greater than that due 
to the Within Batch variability, 1 point out of 20 will lie outside the inner control 
lines and 2 out of 1000 outside the outer control lines. Here 4 out of 10 lie outside 
the inner control lines and 2 out of 10 outside the outer control lines. It is thus 
evident that the hypothesis of no between batch variability is untenable. 

CONTROl. CHRRT /"OR JVIEIINS. 
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Figure 7 
This is in complete agreement with the conclusion reached using the analysis 

of variance in Chapter VII (b). \Vith the control chart the arithmetical labour 
is much less, but the analysis of variance has the advantage of giving numerical 
estimates of the relative importance of the Between Batch and Within Batch 
variabilities, and of the exact significance of the existence of the Between Batch 
variability. For detailed and exact work, therefore, the analysis of variance is to 
be preferred, but for preliminary and exploratory investigations the control chart 
is very useful.(l l . 

An important proviso in the use of control charts is that the control lines 
should be based upon at least 10 and, preferably, 20 batches: otherwise the 
estimate of the mean range w is not very accurate. 

(e) The Conversion of Range to Standard Deviation· 
It frequently happens that we have a seri~ of samples of I! i~dividuals drawn 

from a population and we wish to know their standard deviation. We can of 
(1) Henry Scheffe, 1947. "The Relation of Control Charts to Analysis of Variance 

and Chi-Square Tests". J. Am. Stat. Assoc., 42, 425-431. 
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course calculate the variance for each sample and take the average (since the 
samples are all of n individuals the simple average variance will be the same ll$ 

that obtained by pooling the sums of squares and the degrees of freedom). The 
arithmetic required is much less, however, if we obtain the range for each sample, 
calculate the average range, and divide this average range by the factor dn given 
in the last column of Table V in the Appendix, selecting that da corresponding 
to the actual size of sample. The resulting figure is the standard deviation. 
The standard deviation so calculated is an approximation and can only be used 
when the number of samples taken is reasonably large, say not less than 20. The 
estimate is then assumed to have nearly infinite degrees of freedom. 

It will be seen that except when the sample size is 2 we are sacrificing some 
accuracy in our estimate of a, the compensating gain being the ease of computation, 
of course. This loss of information is not very serious, however, being Jess than 
20% for samples of size 10 and less for smaller samples. Under the conditions 
in which we use this method this does not really matter, as since we have such a 
large sample our estimate will be accurate enough for almost all purposes. 

The reader will note that it is this factor da which is the basis of the factor 
A' 0 .021 and A' 0•001 used for the formulation of the control lines for means. Thus 
it is clear, that for a sample of size n, control lines for 1 in 40 limits (1 in 40 about 
the upper limit and 1 in 40 below the lower limit, i.e. 1 in 20 outside the limits) 
should be at 1.96ajy'n, where a is the standard deviation, 1.96 is the value of 
t for infinite degrees of freedom (it is assumed that a is known exactly as we have 
supposedly taken a large number, preferably greater than 20, of samples) and the 
5% probability level, and n is the size of sample. If for example n is 4, and w is 
the mean range, then the limits should be at 1.96(w /2.059)/ v4 = 0.476 w, where 
2.059 is the value of dn for n = 4. It will be seen that this is the value for A'0.o11 
given in Table V of the Appendix. 

CHAPTER IX 

THE RELATION BETWEEN TWO VARIABLES 
(a) Introduction <1 l 
A problem that arises frequently is to determine whether an apparent relation 

between two variables is significant, and having shown it to be significant, to 
determine the best form of representation. 

The statistical methods available for dealing with this problem are not very 
satisfactory. The treatment in general is to test whether the data can be repre­
sented by the equation for the simple straight line, y = a + bx, whether the 
deviations from this straight line are significant and if so can these deviations be 
represented by the equation y = a + bx + ex• or y = a + bx + ex• + dx•, etc. 
In practice, the computational labour is excessively heavy for any of the steps 
but the first, namely, seeing whether the data can be approximately represented 
by a straight line of the form y =a+ bx.< 1 > 

It is clear where the unsatisfactory nature of this treatment lies : there is 
no a priori reason why a complex system should give a straight line relationship 
between two of its variables, or even the more complex relationship y = a + bx 
+ ex•, etc. The case where the treatment is most appropriate is where the data 
when plotted on a graph has the appearance of an elliptical cloud, and we are 
dubious whether this ellipticity is genuinely due to a real relationship or an accident 

(I) A comprehensive survey of the field is given by W. E. Deming: "Statistical Adjust­
ment of Data" (John Wiley: Chapman & Hall), 1943. 

(t) An exception is where the independent variable is changing in equal stages: c.£. 
Fisher's "Statistical Methods for Research Workers," Sections 27 and 28. Also, G. Egloff 
a~d R. C. Kuder, Journal of Physical Chemistry: Vol. 46, page 926, 1942; and L. H. C. 
Tippett: "Methods of Statistics" (William & Norgate), Section 9. 3. 
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of sampling. Alternatively there might be little doubt about the genuineness of 
the existence of a relationship but we want to have the best estimate of the 
relationship. 

If the data when plotted on a graph fall on a smooth curve of complex shape 
then the present techniques are not applicable. In practice, therefore, we should 
only use the present statistical treatment when the pairs of observations on the two 
variables plotted on a graph give something that looks approximately a straight line. 

(b)· Transformations 
We may have a priori reasons, from the theory of the process, to suspect 

that the relationship should have the form 
Y=ABX 

which is equivalent to the exponential form 
Y = AeC% 

We can transform this to a linear function by taking logarithms, 
log Y = log A + x log B 

or putting log Y = y, log A= a, log B = b, we now have the relation in the 
convenient linear form. 

y =a+ bx. 
. Also, if we suspect that relationship should have the form :-

Y=AXB 
where B can have any value, e.g. 2, when the relation would be 

Y=AX1 

we can take logarithms 
Log Y = log A + B log X 

or putting log Y = y, log A = a, log X = x, we again have the relation in the 
convenient linear form 

y =a+ Bx 
Jn the fitting of the be3t straight line to data, the definition of the best line 

is that line which makes a minimum the sum of squares of the deviations from the 
line of the measurements of y : the independent variable x is assumed to be free 
of error .. It will be apparent that when this process is applied to a pair of variables 
transformed in the manner indicated abO\·e what is being minimised is not the 
deviations of y but the deviations of log y. In practice this distinction is usually 
n.ot of great importance, and in any event if we bear it in mind we should not 
be led into faulty conclusions. 

(c) The Correlation Coefficient 
To test for the significance of an apparently linear relation we calculate the 

correlation coefficient r defined by ( l:: denotes summation over all pairs of 
observations) 

r = v'( l::(x- x)1 l::(y- :Y}I) 
It has the characteristics such that if the relationship between the data can 

be represented exactly by a straight line then r = ± 1, positive if the straight 
line has a positive slope and negative if the line has a negative slope ; if on the 
other hand there is no relation at all between the variables then r = 0. Even 
when the variables may have no relationship we will usually get a non-zero value 
for r, since the accidents of sampling will often lead to an apparent trend one way 
or the other. We can, however, test whether an observed value for r is larger 
than would have been obtained accidentally in the absence of a correlation. We 
enter the table for r with degrees of freedom two less than the number of observa-

-tions (the reason for it being two less than the number of pairs of observations is 
that we have in effect fitted two constants, a and b, to the data). If our value 
for r exceeds that given in the table for say, the S% level of significance, then 
we may regard it as being 19 to 1 that there really is a correlation. 

l::(x - x) (y - y) 
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We will illustrate the use of the statistical treatment of data suspected of being 
expressed in the form y = a + bx with the data partially (there are actually 
30 pairs of observations) given by 

y 
X 

1.66 2.0 
6 8 

1.66 1.78 1.89 1.82 •••.•• 2.07: 2.29 
17 16 19 16 •..•••• 13 12 

In the table, y represents stick weight of cordite made from nitro-cellulose 
with acetone viscosities x. The variables have been transformed, however, to 
make the arithmetic lighter ; y actually represents stick weight in ounces minus 
13 lbs. 1 oz., and x actually viscosity in centipoises minus SO. On plotting y 
against x one obtains a graph with a wide scatter but, apparently, a decided 
tendency for higher viscosities to give lower stick weights. 

We obtain the following terms (n = number o{ pairs of observations). 
( l: x)• 

l:(x - i) 1 = l:(x1) - --
n 

= (6• + 8• + ... + 12•) (6 + 8 + ... + 12)• 
30 

= 3213 
l:(y - y)• = l:(y•) - ( l:y)• 

n 

= (1.66• + 2.oo• + ... + 2.29•)- (1.66 + 2.oo to ••• + 2.29)• 

= 9.060 
l:(x- i) (y- y) = l:(xy) - l:{x) l:(y) 

n . 

= (1.66 X 6 + 2.00 X 8 + ... ) - (1.66 + 2·0 + JO .) (6 +. 8 + ... ) _ 
= -47.84 

We then calculate the correlation coefficient r, defined as 
l:(x- i) (y- y) 

- v l:(x-x)• l:(y-y)• 
-47.84 

= V 9.060 X 3213 = -0.2SO 
We see from the table for r (Table IV in the Appendix) tha~ the probability 

of getting such a value for r in the absence of any correlation is about 0.10, that. 
is to say 1 in 10 times we could get as large a value for r as we did here even in 
the absence of a correlation. The evidence for the correlation is thus inadequate. 

(d) The Equation for the Regression Line 
If r proved to be significantly greater than zero we would take the matter a 

little further : although in the example considered here r was not significantly 
greater than zero we will use its data to illustrate the point. 

If we wished to use the data to predict values of y from known values of x 
we would calculate 

a = l:y = y = 49.58/30 = 1.65 
n 

b = l:(y- y) (x-i) = -47.84 _ -0 0149 l:(x- i}1 3213 - · 

X- = l:x = 670 _ 22 3 n 30- • 
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. The formula for d~ducing the most probable yalue of y corresponding to a 
gnen value of x (technically known as the regress1on of y upon x) is then 

y =a+ b (x -x) 
= 1.65 - 0.0149 (x- 22.3) 
= 1.98- 0.0149 X 

This regression line of y upon x is the line which gives the squares of the 
deviation of every point, measured parallel to the y-axis in units of y, summed 
for all points, as a minimum. It gives the best estimate of y from a known value 
of x. 

If we wished to predict the value of x from a known value of y we would 
use the similar but different equation derived by calculating 

, ~x) a=-­
n 

b' = l:(y - y) (x - x) 
l:(y- y)• 

- ~y) 
y=--;} 

leading to the equation 
x = a' + b' (y - y) 

This line gives the deviations of every point, measured parallel to the x-axis in 
units of x, summed for all points, as a minimum. It gives the best estimate of 
x from a known value of y. 

Non-statisticians frequently object to the concept of two "best" lines, two 
regression lines. They hold that there must be one line which represents the 
"true" relation. That may be so, but we are not concerned with "true" relations : 
we are concerned with making the best possible estimate of y from a known value 
of x, using a certain amount of experimental data to estimate the relationship. 
In one case we assume that we know x and wish to estimate y, in the other case 
we assume that we know y and wish to estimate x. These are two different 
operations, so it is not surprising that we use two different functions.< 3 l 

A proof of the formula for calculating the regression line can be written as 
follows. Suppose we have n pairs of observations (x1, y1), (x11 y1), etc. Then 
the value Y1 predicted by the regression equation y =a+ bx is Y1 =a+ bx1. 
The deviation between the actual value and the predicted value is 

Y1- Y1 = Y1- (a+ bx1). 
Now the so-called method of least squares is that which chooses values of 

a and b such that the sum of the squares of these deviations, which we will call 
E, is a minimum. This can be done by differentiating E partially with respect 
to a and to b : the two equations so obtained are put equal to zero and solved 
for a and b, i.e. 

3E/3a = -21: [y- (a + bx)] = 0. 
3E/3b = -21: [y - (a + bx)] = 0. 

This leads to 
na + bl:x = l:y 
al:x + bl:x1 = l:xy. 

The first equation gives as the solution for a, 
a = l:y /n - bl:x/n = y- bx, 

and substituting in the second we get 
b = l:xy -l:xl:y /n 

l:x1 - (l:x)1/n. 

(I) Charles P. Winsor, 1946. "Which Regression?" Biometrics Bulletin, Vol. 2, 
No. 6, 101-109. 
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This is the usual practical formula. To get the more theoretical formula we 
note that 

!:(x - i) (y- y) = !:y(x- i) - y!:(x- i). 
Obviously, by definition of i, !:(x - i) = 0. Therefore 

!:(x - i) (y - y) = !:xy - i!:y 
= !:xy - !:x!:y /n. 

Similarly, 
!:(x - i)1 = !:(x1 - 2xi + i 1

) 

= !:xl - 2(!:x) 8 /n + n i 1 

= !:x1 - (!:x) 2 /n, 
since ni1 = n (!:x/n)1

• 

Making these two substitutions, we obtain 

b 
_ !:(x - i) (y- y) 
- !:(x- i)2 • 

To find the residual sum of squares we substitute for a and b in the expression 
for E, namely, 

E = !:[y- (a + bx)] 8 

= !:[(y - y) - b (x - i))B 
= !:(y- y)1 - 2b!:(X - i) (y - y) + b2!:(X - i)8 

= !:(y- y)1 - 2[!:(x- i) (y- y)[1 [!:(x-i) (y- y)] 1 

!:(x - x)a + !:(x- i)1 

= !:(y _ y)• _ [!:(x- i) (y- y)}l 
!:(x- i)1 

= !:(y- y)• - b 2!:(x- i)1, 

or in an alternative form, 
E = !: (y- y) 8 - !:(y- y)1 • [!:(x-i) (y- y)]B /!:(x- i)1!:(y- y)1 

= (1 - ra)!:(y- y)s. 
The residual standard deviation is the square root of this sum of squares divided 
by its degrees of freedom, two less than the total number of observations. 

(e) The Residual Variance about the Regression Line 
We assume that we now have our regression line of y upon x with the points 

scattered about on either side of it. The standard deviation ar of this scatter, 
measured in units of y parallel to the y-axis, is given by 

CJr = 1 G 1 /!:(y- y)• V l-r• y· N-2 

= V,-1---0-.2-80-. X V_9i~6 = 0.546 

This figure affords a good measure of the usefulness of the equation for the 
regression line for predicting values of y for given values of x. 

Thus suppose we wish to draw 95% confidence limits on either side of the 
regression line, within which 95% of all points should lie, we look up the value 
of t for N - 2 = 28 degrees of freedom and the 5% level of significance, and 
calculate tar= 2.05 X 0.546 = 1.12. We then draw in two lines parallel to 
the regression line, but pne displaced 1.12 units of y downwards and one displaced 
1.12 units of y upwards. Thus if we use the regression line to predict the value 
of y from a known value of x, these confidence limits give us the limits between 
which we have a 95% chance of being correct in our prediction.<'! 

<•I This statemt>.nt ia approximate: the exact treatment follows in Section (h) 
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(f) The Use of the Analysis of Variance for Examining Regression 
An alternative method of testing the significance of a regression is by analysing 

the variance of the dependent variable y into its component factors. 
The total sum of squares of y is I:(y- y)1 = 9.060. The sum of squares 

accountable for by the regression line is 
[I:(y- y) (x- i)] 1 = 47.841 = 

0
.
7123 I:(x- x)• 3213 

We then enter these into a table of analysis of variance as below: 

Source of Sums of Degrees of Mean 
Variance Squares Freedom Squares 

Regression .. 0.7123 1 0.7123 
Residual .• .. 8.3477 28 0.2981 

Total .. 9.060 29 

The degrees of freedom are 1 for the regression line, one less than the total number 
of pairs of observations for the Total, and the residual is the difference between 
these two. Similarly the residual sum of squares is obtained as the difference 
between the Total and the Regression. 

The significance of the Regression Line is estimated by comparing its mean 
square with the residual in the usual way. Here it lies between the 20% and 
S% levels. 

The residual is the same as the residual variance about the regression line 
that we calculated earlier in the previous section ; thus the square root of this 
residual variance is V0.2981 = 0.546 as obtained earlier. 

It will be noted that the results obtained by the present approach are identical 
with those found by calculating the correlation coefficient. 

(g) Comparison of Regression Coefficients 
We might wish to test whether two regression coefficients were significantly 

different. Thus we might be conducting experiments upon some system, (a) 
with clockwise stirring and (b) with anti-clockwise stirring. We might plot 
graphs for the two series and suspect that they were different. <5 > 

We can make this test by using the fact that the variance of a regression 
coefficient is given by 

Residual Variance of y 
I:(x- :i)1 

i.e. in the present instance 0.2981/3213. The standard deviation is the square 
root of this, namely 0.0096, with two less than the total number of observations, 
namely 28, as its degrees of freedom. 

For comparing two regression coefficients b 1 and b 8 which have residual 
variances about the regression lines of a1

2 and a2
1 with degrees of freedom n1 and 

n 8 we form the weighted average residual variance 
a1 = (n1a1

1 + n 1 a8
1)/(n1 + n2) 

( 6) F. Yates, 1938. "Tests of Significance of the Differences between Regression 
Coefficients Derived from Two Sets of Correlated Variates". Proc. Roy. Soc. Edin., 
LIX, 184-194. 
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The variance of b1 is then 
a• /~1 (x - i)1 

where ~1(x- i)1 is the sum of the squares of the deviations of x for the first 
regression coefficient, and similarly for b 1• The variance of their difference is then 

a 1 a 1 

au• = ~ ( -)• t+ ~ ( -)• .. 1 x-x ... x-x 
We then calculate t = (b1 - b1)/a11, and the degrees of freedom for this t are 
(n1 + n.). 

An alternative method of making the comparison between two regression 
coefficients, which at the same time allows the comparison of the intercepts on 
the y - axis, is with the analysis of variance. The table below gives the results 
of an experiment on the measurement of a reaction velocity (y). We get this 
measured at four different concentrations of a catalyst (x) and two different con­
centrations of an emulsifier (z). 

Emulsifier Catalyst concentration (x) Total 
Concentration 0 3 6 9 18 

zl 100 230 301 506 1137 

Za 177 324 360 532 1393 

The analysis of variance of y, the reaction velocity, proceeds quite logically. 
The total variance for all observations with 8 - 1 = 7 degrees of freedom is 

1001 + 230• + .. + 532• - (1137 + 1393)1 /8 = 158353.50 

Considering the line with the emulsifier concentration at z11 the total variance is 
1001 + 2301 + 301 1 + 5061

- 11371/4 = 86344.750 

To determine the variance accounted for by the best regression line for z11 
we use the method of Section (f). We need 

I:(x - i)1 = I:x1 - (I:x)1/N 
= o• + 3• + 6• + 9•-181/4 = 45.oo 

I:(y - y) (x - i) = I:xy-~ ~YJN 
= 0 X 100 + 3 X 230 + 6 X 301 + 9 X 506 -

18 X 1137/4 
= 1933.50 

and the sum of squares accounted for by the regression line is then 1933.501/45 = 
83076.05. The residual variance about this regression line is (863#.75 -
83076.05) = 3268.70. 

A similar set of operations for the best regression line for z1 gives us as the 
sum of squares accounted for by this regression line 60610.05 and the residual 
variance about it 3206.70 . 

. Accordingly we can enter in the table of analysis of variance (Table 9.1) the 
r~1d~al sum of squares, (3268.70 + 3206.70) = 6475.40. Each separate regres­
SIOn hne, based on 4 observations, will have 2 degrees of freedom for its residual, 
so together we have 4. 
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We now need to consider what happens when we ignore the distinction between 
z1 and z1• We have 

l:(z - x)• = o• + o• + 6• + 61 + .... - (2 x 18)1/8 = 90 
l:(x- x) (y- y) = 0 X 100 + 0 X 177 + .. - (2 X 18) (1137 + 1393)/8 

= 3585.00 

The sum of squares accounted for by the best single line, with 1 degree of freedom, 
is then 3585.002/90 = 142802.50, and this is entered in the table. 

The improvement due to the use of the two separate lines in place of the 
single line is the difference between this and the sum of the two sums of squares 
for the separate regressions :-

142802.50- (83076.05 + 60 610.05) = 883.60 

This has 1 degree of freedom. 

There is 1 degree of freedom not yet accounted for ; this and its sum of 
squares, found by difference, are attributable to the difference in intercepts. 

Table·9.1 

Degrees of Sums of Mean 
Source of Variance Freedom Squares Squares 

Common Regression Line .. 1 142802.50 142802.50 
Difference between Common 

Line and Separate Lines .. 1 883.60 883.60 
Difference in Intercepts .. . . 1 8192.00 8192.00 
Residual . . .. . . .. 4 6475.40 1618.85 

Total 
.. 

7 158353.50 .. . . . . . . 

Using the variance ratio test, it is obvious that there is no evidence for a 
difference between the two regression coefficients. For the difference between 
intercepts, the variance ratio of 5.06 does not reach the 5% level of significance. 
The difference between the intercepts is therefore not established, and in the 
absence of further data we could regard the best joint regression line as an adequate 
fit. On the other hand, if we had reason to suppose that the lines would be different 
there is nothing to stop us using the separate lines. 

(h) Exact Formula for the Residual Variance about the Regression 
Line 

As stated earlier, the formula given in Section (e) for the residual variance 
about the regression lin~ is not quite exact. If ar2 is the residual variance as 
already defined, and <Jba is the variance of the regression coefficient itself, calculated 
as in Section (g), then the exact formula (6 ) for ar11 is 

Grll = (ar2 + X 1ab1) 

where X is the distance in units of x from the midpoint of x, x. For example, 

( 8) H. Schultz, Journal of the American Statistical Association, Vol. XXV, page 139, 
1930, gives a full treatment of this and the more complicated cases of parabolas, etc. 
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in the case we have been considering, :i is quoted in section (d) as 22.3. In 
section (e) l:(x- i)l is quoted as 3213, whence a ... 1 = 110.79. We have as of 
the order of 10, and thus to select a point towards one end of the x scale we can 
take :i + 2as = 22.3 + 2 X 10 = 42.3 : this corresponds to X = 20. Inserting 
the appropriate values for ar and t1b we get 

ar11 = (0.2981 + 201 X 0.00009278) 

= 0.3352 
whence ar1 = 0.5790 

In the present instance, it is clear that the use of the approximate formula 
would have given results close to the truth, and of course the nearer we are to 
the midpoint of x the smaller is X and the less important the correction. 

(i) The Use of the Analysis of Variance for Checking Linearity 
A problem arising frequently is to determine whether a set of observations 

which to the first approximation can be represented by a straight line can be 
said to depart significantly from the straight line. This question can be readily 
settled if the data is in the symmetrical form suitable for the application of the 
analysis of variance. 

Consider the data below :-

X 10 20 30 I 40 

y 92.8 94.0 95.1 94.9 
93.0 94.3 94.8 94.8 

y 92.9 94.15 94.95 94.85 

We can regard x as representing the temperature in •c of a certain part of 
a process and the two values of y repeat determinations on the yield at that tem­
perature. We are interested in the effect of temperature upon the yield. To the 
first approximation the yield y appears to increase linearly with the temperature 
x, but the value for x = 40 is less than that for x = 30. We shall test whether 
this apparent departure from linearity is significant. 

We first transform the variables to give us smaller, and hence easier, numbers 
to work with. Thus we can use X= x/10, and Y = (y- 92) X 10. The data 
then becomes : 

X 1 2 3 4 

y 8 20 31 29 
10 23 28 28 

We can in the first instance analyse the variance of the data into between columns 
(given values of X) and within columns. 

Proceeding on these lines, we calculate the terms 
(1) = 81 + 101 + ... + 281 = 4463 
(2) = [(8 + 10)1 + (20 + 23}1 + (31 + 28)1 + (29 + 28)1]/2 = 4451.5 
(3) = (8 + 10 + 20 + ... + 28)•/8 = 3916.1 
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We enter these terms into a table as below :-

Sums of Degrees of Mean 
Source of Variance Squares Freedom Squares 

Between Temperatures {2)- {3) = 
535.4 

3 178.5 

Within Temperatures {1)- {2) =· 4 2.87 
11.5 

Total .• . . .. {1)- (3) = 
546.9 

7 

Testing the Between Temperature Mean Square against the Within Tem­
perature Mean Square, we see that it is significant. 

We now divide the Between Temperature Sum of Squares into that due to 
the linear regression line and that due to departure from it. 

We calculate 
l:(X) = 2 {1 + 2 + 3 + 4) = 2 X 10 = 20 
l:(X1

) = 2 {1 1 + 21 + 31 + 41
) = 2 X 30 = 60 

l:(X- X)• = 60- 201/(4 X 2) = 10 
l:(XY) = 1 (8 + 10) + 2 (20 + 23) + 3 (31 + 28) + 4 (29 + 28) = 509 
l:(Y- ?) (X-::&:)) = l:(XY)- l:(X) l:(Y)/N 

= 509 - 20 X 177/8 = 66.5 
The factor 2 in the expressions for l:(X) and l:(X1) arises through there being 
2 observations on Y for each level of X. 

The sum of squares attributable to the regression line is then 
[l:(Y- ?) {X- X)]1 66.5 1 

l:(X _ X)• = 10 = 442.22 

Since the total sum of squares attributable to differences between temperatures 
is 535.4, the sum of squares due to deviations from the regression line is 

535.4 - 442.2 = 93.2 
The degrees of freedom for the regression line are 1 and for the deviations from 
it the remainder of those belonging to differences between temperatures. 

We enter up these expressions in a table as below : 

Sums of Degrees of Mean 
Source of Variance Squares Freedom Squares 

Between Temperatures : 
442.2 1 442.2 Regression 

Deviatioh from Regression 93.2 2 46.6 
Within Temperatures 

11.5 4 2.87 (Residual) 

Total 546.9 7 
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The general significanc.e of the re~ession line ~~ be tested ~y coml?~ng the 
Regression Mean Square w1th the Res1dual. Here 1t 1s clearly highly s1gnificant. 
To test whether the departure from the straight line is significant, we calculate 
the variance ratio for the Deviation from Regression as 46.6/2.87 = 16.2 for 
degrees of freedom n 1 = 2, n 1 = 4. This is nearly significant at the, 1% level, 
so we may take it with that degree of confidence that the data cannot be com­
pletely represented by a straight line. 

The best estimate of the regression coefficient of Y upon X is given by 

b _ :E((Y- 'V"){X-:X:)] = 66.5 = 6 65 - :E(X-:X:)• 10 . 

U) The Calculation of Correlation Coefficient, etc., from Grouped 
Data 

If the number of pairs of observations is large, say about 100, the labour in 
calculating the correlation coefficient as in Section X (c) becomes considerable, 
and can be lightened by grouping the data on the same general lines as in Chapter 
II (j). 

We divide each axis into about 10 or 20 equal-sized groups, and count up 
the number of observations occurring in each cell. 

The data in Table 9.2 refers to a manufacturing process involving the form­
ation of an emulsion in water. The independent variable x is a function of the 
quality of the water (hardness) and the dependent variable y is a quality of the 
final product. Table 9.2 is a graph with Ax representing the x-axis and Ay the 
y-axis. For each set of values of Ax and Ay, i.e. for each point on the graph, 
the number gives the number of observations occurring with those values (when 
none occur then the space is left blank). The column headed B gives the frequency 
with which the corresponding values have occurred. Thus to take Ax= 10, it 
will be seen that there are points with Ax= 10 at Ay = 23, 17, and 16, so the 
corresponding entry for Bx is 3. C is the arbitrary scale with shifted origin used 
to lighten the arithmetic. D and E are the terms B X C and B X C1 respectively. 
The total number of observations is given by the sum of the frequencies in Column 
B, here 101. 

Thus we have 

:E(x - i)1 = :E(x1) - ( :Ex)• 
N 

(25)1 

- 915- 101 = 908.8 

:E(y - y)• :E(y)• - ( :Ey)• . 
N 

= 875 - <:~t = 856.7 

The calculation of the term :E(x- i) (y- y) is rather more difficult. For 
each level of Cy, we multiply the frequency for each cell by its value for Cx, and 
sum for all cells at this level of Cy. This is the column headed F. Thus for 
Cy = -~. we have three cells, the first with unit frequency at Cx = - 3, the 
second w1th frequency 2 at Cx = -2, the third with unit frequency at Cx = 1. 
Thus F = 1 X (-3) + 2 X (-2) + 1 X 1 = -6. As a check upon the accur­
acy of column F its sum should equal :Ex. Column G is then obtained as the 
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product of Cy and F. Its sum is l:{xy). To correct this into terms of deviations 
from the means rather than the arbitrary zeros we subtract the correcting factor 

l:x l:y _ (-25) X (+ 43) = _ 10 64 z;r-- 101 • 

We thus obtain 
l:{x- i) (y- y) = 399.0- (-10.6) 

= 409.6 
The correlation coefficient is then 

a= --::l:={sx=x~-)=:{y~;;;;:;Y:=)~ 
v l:(x - x)• l:{y - y)• 

409.6 
- -v-:=.(9:=:o:=:s=.s==x=;s:::5:::::6=;. 7~) 

= 0.466 
which for 99 degrees of freedom is much more significant than the 0.1% level 
of significance. The regression coefficient of y upon x can be calculated as before 
as 

b = l:(x - i) (y - y) 
:B(x- x)1 

409.6 
= 908.8 = 0.451 

and the regression equation then is 
l:y l:x 

y = N + b (x- N) =0.451 x + 0.537 

(k) Correlation and Causation 

A significant correlation coefficient can be taken as an indication of associa­
tion between two variables, but it is important to realize that this does not auto­
matically imply causation. 

Thus for example suppose we have plant data stretching over a period of 
some months, and we find that the temperature T 1 at a certain stage varies quite 
considerably. We may plot T 1 against the dependent variable y, obtain what 
seems a linear relation, calculate the correlation coefficient and find it significant. 
At this stage it would be dangerous to assume that y is necessarily a function of 
T 1, for it may be that the real operating variable is the temperature T 1 in some 
other part of the process, and that it happens that T 1 has been related to T 1 
through some common operating factor such as weather. 

This type of error is always liable to occur when our data is existing plant 
records which we observe. It is less likely to occur if the data is obtained by 
actual experiment. Thus in an experiment if we raise the temperature T 1 to a 
chosen value, and the running of the plant as measured by the dependent variable 
y (which may be yield, quality, etc.) improves, then for practical purposes it may 
be sufficient to say "run the plant with T 1 at this value." However, this still 
may not be real evidence of the causative effect ofT 1 upon y, for the plant may 
be ·such that in raising T 1 to the new value we have at the same time affected 
the real causative variable T 1 • Thus, for example, in a counter-current process, 
raising the temperature at one point will probably affect the temperature at other 
points. 

The considerations outlined in the last three paragraphs do not in any way 
invalidate the desirability of the testing for significance of any apparent relation. 
They merely imply that having shown a correlation to be significant, caution is 
necessary in assuming that this association is evidence of a causative effect of one 
variable upon the other. 
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(1) Conclusions 
. Where it is suspecte~ ~at th~ relation between two variables is approximately 

linear, there are three stabstlcs which between them summarise the most important 
properties of the available data :-

(a) the correlati?n ~efficient, ~th the associated number of degrees of 
freedom, .w~ch 1S a converuent measure of the degree of reliability of 
the assoctatlon. 

(b) the regression coefficient b that measures the slope of the regression 
line, i.e. the average increase in y per unit increase in x, and 

(c) the residual variance ar that measures the scatter of values of y about 
the regression line, i.e. the reliability of estimates of y for given values 
of x when estimated from the regression line. 

(d) If the experiment has been executed with appropriate replication, it is 
often desirable for the analysis of variance giving the significance of 
departure from linearity to be applied. 

In using a regression equation it must be always remembered that it is only 
valid over the range of the independent variable which occurred in the data used 
in calculating it. Extrapolation is most unwise, except when there is a very 
sound theoretical basis. It is good practice to quote the range used of the 
independent variable in order to discourage extrapolation.(7 1 

(a) Introduction 

CHAPTER X 

MULTIPLE CORRELATION 

We discussed in Chapter IX the determination of the relationship between 
a dependent and an independent variable In many of the cases which arise in 
practice, however, we find that there is more than one independent variable which 
may be of practical importance. In these circumstances it becomes necessary to 
isolate the effect of each independent variable from the effects of the other 
independent variables. 

In the example we shall consider the stack loss from a Pressure Oxidation 
Plant for making nitric acid (about 55%-60%) by the oxidation of ammonia 
with air. The resulting nitric gases are absorbed by being passeci upwards through 
a bubble cap absorption column, nitric acid being circulated down the column. 
The absorption is exothermic, i.e. gives rise to the liberation of heat, and the 
temperature tends to rise. The absorption of the nitric gases is less efficient at 
higher temperatures, so to keep the temperature down water is circulated through 
cooling coils in the column. The column also tends to cool itself by radiation, 
etc., to its surroundings. A small quantity of the nitric gases fails to be absorbed 

.and escapes by the stack: this we will regard as the dependent variable. Its 
minimisation is, of course, of prime economic importance and we will first deter­
mine its dependence upon the two independent variables air temperature, x., 
and cooling water temperature, Xw. In a subsequent section we will consider a 
third independent variable, strength of the nitric acid being circulated in the 
absorption column. 

(b) Two Independent Variables 
We will determine the dependence of the P.O.P. stack loss (to be denoted 

by y) upon the cooling water temperature, xw, and the air temperature, x.. 
(7) A full discussion of various aspects of correlation is to be found in Chapters 11 to 16 

of Yule and Kendall's "An Introduction to the Theory of Statistics" (Charles Griffin). 

74 



Accordingly data was collected giving corresponding volues for these three 
variables for 139 days. 

It was assumed that the stack loss was to a first approximation relat~d linearly 
to the two independent variables, so that it could be represented by an equation 
of the form 

y = ay.wa + byw.a (xw- iw) + by. . ., (x.- X.) 
The meaning of the symbols is as follows :-

a1.wa is the value y would have if x. and x., were he~d constant at their mean 
values. 

byw.a measures the rate of increase of y with increasing x.,, x. being constant. 
bya.w measures the rate of increase of y with increasing x., x., being constant. 
If we had considered it more appropriate, we could, of course have used an 

equation of the type 
y = ay.wa + byw.a (xw1 - Xw2) + bra.w (Xa1

- X.1
) 

which would be based on the assumption that the stack loss y increased as the 
square of the temperature, or in the first of the above equations we could have 
substituted for the temperature the reciprocal of the absolute temperatures, or 
whatever functions we considered most likely to represent the true behaviour of 
the system. 

Taking the straightforward linear equation we will determine the values of 
these three coefficients which give the best general fit to the data. We proceed 
as follows. 

Let us assume that our x1 and x1 (for generality) are measured from their 
means, i.e. if X1 and Xa are the original variables, Xt = X1 - :X:l and Xs = 
X1 - X 2• We wish to find a, bJ., and b1 in the equation 

Y = a + b1x1 + b8x8 

for n sets of observations (y, x1, x1). For any particular observation the deviation 
of the value predicted by the regression equation from the observed value is 

(y- Y) = y - a - b 1x1 - b8x1• 

The sum of squares of these deviations, E, is 
E = ~(y- a- b1x1 - b8x2} 8 

= ~y1 + b,•~x1 1 + b 88~x11 + na1 - 2~y- 2b1~XJ- 2b~.y 
+ 2b 1h1~XtXa + 2a (b1 ~X1 + h 1 ~x1) 

and the last term vanishes as ~x1 = ~x8 = 0 by definition. 
To find the values of a, b1, and b1 which make this error sum of squares a 

minimum we differentiate partially and equate to zero. 
8E/8a = 2na - 2~y = 0, 
8E/8b1 = 2 b1~X11 - 2~x1 y + 2b 8~X1X1 = 0, 
8E/8b1 = 2b 8~X1 1 - 2~x1 y + 2b 1~x1x1 = 0. 

The first of these equations immediately gives that a = ~y fn = y, and the 
other two are 

b1~x11 + b1~x1x1 = ~y x1 = ~(y - y}x1, 

b 1~x1x1 + b1~x11 = ~y x1 = ~(y - y)x1, 

the last step following from 
~yxt = ~(y- Y + y)xt = ~(y- y)x1 + y~x1 = ~(y- y)x1• 

Solving the two equations, we get 

b - ~x.• ~yxt- ~XtXa ~yx. ,-
~Xt1 ~x1 - (~x1x8} 1 ' 

b _ ~X11 ~yx•- ~X1Xa ~yxt ·- I:x,• ~x11 - (I:x1x1) 1 ' 
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To find the residual sum of squares we substitute these values for a, b 1 and b 1 
in the expression for E, or more simply we can multiply the two equations from 
which b 1 and b 1 are derived by b 1 and h1 respectively and substitute the expressions 
obtained for b 1

1l:x1
1 and b 1

1l:x1
1• This gives 

E = I:y• - (I:y)1 /n - h1I:yx1 - b.I;yx1• 

It has (n- 3) degrees of freedom, as three constants have been fitted, namely 
the mean and the two regression coefficients. 

It makes the computation lighter, particularly if we are not using a calculating 
machine, to use arbitrary zeros and to multiply by 10 or 100, etc., if necessary, 
to remove the decimal points. Thus in the present instance the variables used 
are actually :-

y = 10 (stack loss in gmjM1 - 3.0). 
Xw = water temperature in °C- 20"C. 
x. = air temperature in °F- SO"F. 

For each set of observations on the three variables, y, xw, and Xa, we form the 
three pairs of products, yx., XwXa, and x.y. Thus we have a table of 139 sets 
as below:-

. 
Date y Xw Xa XwXa x..y x.y 

30.12.43 -20 -6 -11 66 220 120 
29 -9 1 -3 -3 27 -9 
28 -18 1 -2 -2 36 -18 
27 -6 -1 -1 1 9 6 
25 -3 2 -3 -6 6 -6 
22 -5 -5 -10 so so 25 
22 -20 2 -20 -40 400 -40 
21 +19 5 +14 70 266 +95 
18 -4 -1 -14 14 56 4 
. . . . . . 
. . . . . . . 
. . . . . 

1479 406 1 3533 17340 12797 

We require the sums of the six columns as shown in the last row of the table. 
We will denote a summation by the letter I:. Thus, e.g. I:(xwXa) is the sum of 
the 139 xwx.'s, here 3533. We also require the three sums of the squares of the 
individual observations on the three variables. We thus have :-

I:y = 1,479 I:y• = 99,077 

l:xw 406 l:xw' = 3,456 

I:x. - 1 I:x.• = 10,525 

I:yx. = 12,797 l:yx. = 17,340 l:xwXa = 3,533 

So far these sums of squares and sums of products refer to deviations from 
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the arbitrary zeros. We need to convert these into deviations from the means 
with the usual type of correcting factors. Thus, e.g. :-

l:(y - y)• = l:(y•) - ( ~)· 
14791 

= 99,077 - 139 

= 83,340.0 

and l:{y- y) (xw- Xw) = l:(yxw) ( l:y) ~xw) 

= 12,797 - 147~3~ 406 

= 8,477.0 

In a similar manner we obtain the other terms as deviations from the means. 
In order to have our symbolism more compact we will denote a summation of 
deviations from the means by l:'. Thus · 

l:{y- y) (xw- iw) = l:'yxw 
and l:(y- y)1 = l:'y1• 

We thus have 
l:'y1 = 83,340.0: l:'xw1 = 2270.1: l:'x.1 = 10,525.0 
l:'yxw = 8,477.0: l:'yx. = 17,329.4: l:'XwXa = 3,530.1 

To obtain the two regression coefficients by., •• and b,.a.w we have to solve 
the two simultaneous equations 

l:'yxw = byw.a • l:'xw1 + bya.w • l:'xwXa 
l:'yxa = byw.a • l:'xwx. + b ya.w. l:'x.1 

Substituting our values, we obtain 
8,477 = byw.a • 2270 + bya.w • 3530 

17,329 = by., .•• 3530 + by •. w • 10525 
(A) 
(B) 

To solve these two simultaneous equations we can, e.g., multiply (A) by the 
ratio 10525/3530 = 2.9816 and obtain . 

25,275 = byw.a • 6768 + bya.w • 10525 {C) 
and subtracting (B) we obtain 

byw.a = 7946/3238 = 2.4540 

To obtain the other regression coefficient we substitute this value for byw.a in, 
say, (A) and find 

whence 
8477 = 5570.6 + bya.w • 3530 

bya.w = 0.8234 

Our equation for estimating y is thus 
(y- y) = 2.4540 (xw- iw) + 0.8234 (xa- X.) 
y- 10.6403 = 2.4540 (xw- 2.9209) + 0.8234 (Xa- 0.0072) 

or y = 3.4665 + 2.4540 Xw + 0.8234 x.. 

Before proceeding, it is as well to test the significance of the two regression co­
t:ffi~ients byw.a and bya.w. This we can do with an application of the analysis of 
vanance. 

We first want the total Sum of Squares of the dependent variable y. This 
is obviously l:'y• = 83,340. 
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We then calculate the Sums of Squares of y explained by the two independent 
variables independently of each other. These are 

(l:'yxw)•- 84771 = 31 656 2 
l:'x.,• - 2270 ' · 

and (l:'yxa)•- 17•3291 - 28 531 5 
l:'xa1 ~ 10,525 - ' • 

for Xw and Xa respectively. We enter the larger of the two in the first line of the 
table below. 

We next calculate the sums of squares of y explained by the two independent 
variables together. This sum of squares is 

b,.. .• l:'yx .. + b,.. .. l:'yx. 
= 2.4540 X 8477 + 0.8234 X 17,329 

. = 35,071 
Then the sum of squares explained by the addition of the second independent 
variable Xa is the difference between the sum of squares explained by xw and 
x. together and the sum of squares explained by xw alone, i.e. 

35,071.0- 31,656.2 = 3414.8 
We finally enter up these various sums of squares in a table of analysis of variance 
as below. 

Table 10.1 

Sums of Degrees of Mean 
Source of Variance Squares Freedom Squares 

Variation explained by Xw 31,656 1 31,656 
Increment explained by the 3,415 1 3,415 

addition of xa 
Total explained by Xw and Xa 

together 
35,071 

Residual 48,269 136 354.9 

Total 83,340 138 

The degrees of freedom are such that each regression coefficient takes 1 and 
the residual takes what is left. Similarly the Residual sum of squares is what is 
left out of the Total after the total explained by the two regression coefficients 
has been subtracted. 

To test for the significance of the second (smaller) regression term we Com­
pare its mean square with the residual. Here the variance ratio is 3415/354.9 
= 9.6 with degrees of freedom n 1 = 1, n 1 = 136. This is more significant than 
the 1% level of significance, so there can be little doubt about the reality of the 
effect of x.. 

Accordingly, to estimate the value of y for any particular values of Xw and 
xa we use the equation 

y = 3.466 + 2.454 Xw + 0.823 Xa 
and the variance of any estimate is given by the Residual variance in the above 
table of analysis of variance, namely 354.9. The standard deviation will be the 
square· root of this, namely 18.8. 

A modification, due to Fisher, of the above procedure is often useful. For 
generality we will use x1 for xw and x1 for x.. Thus we have 
. . l:'yl1 = 83340.0. l:'yxt = 8477.0 

l:'x1
1 = 2270.1. l:'yx1 = 17329.4 

l:'x11 = 10525.0. l:'XtX1 = 3530.1 
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We first solve the simultaneous equations 
b1 ~'(x11) + b1 ~'(x1x,) = 1 (D) 
b1 ~'(x1x,) + b1 ~'(x11) = 0 (E) 

and the solution of b1 we denote by c.1 and the solution of b1 by c.1• The b's 
are, of course, the standard partial regression coefficients, and might be more 
completely defined as in the previous treatment by bn.1 and byl-1. In the present 
treatment we will understand the y and latter halves of the subscripts. Sub­
stituting our values in equations (D) and (E), we get 

Ca1 •. 2270.1 + Ca1 • 3530.1 = 1 (F) 
Ca1 • 3530.1 + Ca1 • 10525.0 = 0 (G) 

which can be solved by e.g. multiplying the first (F) by 10525.0/3530.1 = 2.9816, 
obtaining 

Ca1 • 6768.0 + Ca1 • 10525.0 = 2.9816 
From this we subtract the second equation, (G), to obtain 

Ca1 • 3238.0 = 2.9816 
and 

Ca1 = 0.9208 X 1()-1 

We can obtain Ca1 e.g. by substituting this value of Ca1 in the second equation as 
Ca1 = -0.3088 X lQ-1 

We now require the solutions of 
b1 ~'(x1 1) + b1 ~'(xlxa) = 0 (H) 
b1 ~'(x1x8) + b1 ~'(x1 1) = 1 · (I) 

and we will denote the solutions b 1 and b 1 by Cb1 and Cb1 respectively. 

It will be noted that equations (H) and (I) are identical with (D) and (E) 
except that the right hand sides have been interchanged. As before, we can 
multiply the first equation (H) by 2.9816, obtaining 

Cb 1 • 6768.0 + Cb8 • 10525.0 = 0 
from which we subtract (I). 

We thus have 
Cbt = -0.3088 X tQ-8 

and substituting in either (H) or (I) we get 
Cba = 0.1986 X 10-1 . 

We now can calculate b1 and b1 as 
bl = Cat • ~'(yxl) + Cas ~'(yx,) (J) 

= 0.9208 X 10-• X 8477.0-0.3088 X lQ-1 X 17329.4 
= 2.454 

b, = Cb1 ~'(yxl) + Cb1 ~'(yxs) (K) 
= -0.3088 X to-• X 8477.0 + 0.1986 X tO-• X 17329.4 
= 0.824 

These solutions of b1 and b 1 are of course the same as obtained previously 
for byw.a and b7 •. w. It will be noted now where one of the principal advantages 
of this procedure lies. We can easily obtain the partial regression coefficients for 
a second dependent variable Y without the trouble of re-solving the simultaneous 
equations. Thus in the present instances we are only concerned with one 
dependent variable, the stack loss as combined nitrogen. We might in addition 
be interested in the ratio of nitrous to nitric gases and the variations of this ratio 
with the two independent variables. We merely need to obtain the sums of 
products of the new dependent variable Y with xb and x1, ~'(Yx1) and ~'(Yx1) 
and substitute in equations (J) and (K). The additional labour is thus very slight, 
especially when compared with re-solving the simultaneous equations as with the 
earlier treatment. 
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The second advantage of the present procedure is that we can now readily 
obtain the standard error of each partial regression coefficient. We need the 
residual variance ar1 which we already have in Table 10.1. To repeat, in the 
present symbolism, it is 

ar1 = (n 
1 

3) [l:'(y)1
- b1 l:'(yx1)- b1 l:'(yx1)] 

= 354.9 

Then the standard error of b1 is 
a~r vca1 = v354.9 vo"'".-=-92~0'""8,_x_.,1""'o-....,• 

. = 0.574 
and the standard error of b 8 is 

arveb; = v354.9 v'on.":":19:;-;;876-x--:1:-:::o-~a 

= 0.266 

These standard errors have degrees of freedom equal to (n- 3), and since 
n is generally large any regression coefficient twice its own standard error can be 
assumed significant at the 5% level. This procedure is thus a method of testing 
significance alternative to that set out previously in Table 10.1. We can also set 
the probable limits (95%) for b 1 as 2.454±2 X 0.574 = 1.306 and 3.602. Putting 
it this way makes it clear how many significant figures are worth retaining in the 
final statement of the regression equation. 

(c) The Need for Multiple Regression and Partial Correlation 

In deriving the regression coefficients byw.a and b,..., we have kept the 
variable in the subscript after the full stop constant. For this reason these are 
known as "partial" regression coefficients. The simple regression coefficients 
would have been given by 

l:'yxw 8477 
byw = l:'x.,• = 2270 = 3.734 

and l:'yx. 17329 · 
bya = l:'Xa I = 10525 = 1.646 

It will be noted that these simple regression coefficients are appreciably 
larger than the· corresponding partial regression coefficients. The explanation of 
this is easy to see. If we calculate the correlation coefficient of Xw and Xa we get 

l:' Xw Xa 3530 
rwa- v l:'x.,• l:'x.1 '\12270 X 10525 

= 0.7222 
There is thus a highly significant and very important correlation between Xw and 
x.. This is a consequence of the nature of the process, of .course. Weather 
conditions that lead to low air temperatures (x.) will also tend to give low cooling 
water temperature (xw). 

Thus when we calculate the simple regression coefficient of y upon x.,, since 
the higher figures for xw will tend to be associated with the higher figures for 
xa, the values of y for the larger values of x., will tend to be larger than they should 
be because they are also associated with the larger values of xa. The partial 
regression coefficients, however, have the effect of the other variable eliminated, 
and measure only the effect of the variable specified. 
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and 

- v'(1 - 0.5850 2) (1 - 0.72221) 

= 0.3458 

-~=r=~====ryw~~·=r=•"'==~ r~., = 
· v'(1 - ryw1) (1 - raw1) 

0.5850- 0.6165 X 0.7222 

v'(1-0.6165 1) (1-0.72221) 

= 0.2567 
For testing the significance of a simple correlation coefficient the degrees of 

freedom are (n - 2), if n is the number of observations. For a partial correlation 
coefficient, another degree of freedom is lost, and the number is thus (n - 3). 
In the present case, though both the correlation coefficients are markedly reduced 
in their transformation from simple to partial coefficients, they still remain signi" 
ficant with this large number of degrees of freedom (139 - 3). In general, 
however, it is possible for a positive simple correlation coefficient to be transformed 
into a negative partial correlation coefficient, if, to quote the formula for r,...,, the 
product of ryw and raw is greater than r~. 

While the difference between the simple and partial coefficients was in this 
case of interest but not of immediate practical importance, it might well be other­
wise in other cases. Thus suppose it had been decided that it would be economic 
to instal refrigeration equipment on the basis of the simple regression coefficient 
of 0.373. If the refrigeration would lower the mean cooling water temperature 
by tooC., we could expect a reduction in the stack loss of 3.73 units on the simple 
correlation, and this might be sufficient to justify the installation. The reduction 
which would be actually achieved is 2.44 units (from the partial regression coeffi­
cient), and the difference between this and 3.73 might be the difference between 
an economic and an uneconomic installation. 

(d) Multiple Correlation with Three Independent Variables 
In the example we have been considering, the loss from a P.O.P. stack, there 

is a third variable of considerable interest, namely the strength of acid in the 
absorption tower, which we will denote by x.. 

We are setting out to determine the coefficients (a and the b's) in the equation 
y = ay.waa + byw.aa Xw + b:va.wa Xa + b78.aw Xa 

where the symbolism is as before : thus 
ay.waa is the value y would have if x.,, x., and x. were held constant at their 

mean values. 
byw.aa measures the rate of increase of y with increasing x.,, both x. and x. 

being constant at their mean values. 
Similarly for bya.wa and b78.-. 
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We require the sums, the sums of squares, and the sums of products with 
the other three variables. As it is desirable to retain rather more decimal places, 
the complete set with the earlier ones recalculated are below :-

l:y = 1479 l:y1 = 99077 l:'y1 = 83340.014 
l:xw = 406 l:xw1 = 3456 l:'xw1 = 2270.12950 
l::xa = 1 l:x.1 = 10525 l:'x.1 10524.9928 
l:x. = 70 l:x.• = 36364 l:'x.• = 36328.74820 
l:yxw = 12797 l:'yxw = 8477.0431 
l:yx. = 17340 l:'yx. = 17329.3597 
l:yx. 12931 l:'yx. = 12186.1799 
l:xwXa = 3533 l:'xwx. = 3530.07914 
l:x.x. = 5365 l:':xax. = 5364.49640 
l:x.xw = 1943 l:'x.xw = 1738.5396 

We now need to solve the three sets of three simultaneous equations (A), 
(B) and (C) below. The first set has as right hand side for (A), (B) and (C) 
1, 0 and 0 respectively, and the solutions are Ca1o Cbto and ee1• The second set 
has as right hand sides 0, 1 and 0 and solutions ca1 , Cbs, and Ce1• Similarly the 
third set has right hand sides 0, 0, 1 and solutions Cas, Cbs, and ee1 • 

Ca l:'xw1 + Cb l:'xwXa + Cc l:'xwx. = 1, 0, 0 (A) 
Ca l:'x.xw + Cb l:'x.1 + Ce l:'x.x. = 0, 1, 0 (B) 
Ca l:'x.xw + Cb l:'x.x. + Cc l:'x.1 = 0, 0, 1 (C) 

The solutions of these equations can be obtained empirically, but a systematic 
method is less liable to accidental errors . 

. Whittaker and Robinson! 1l contain a general discussion, but the most satis­
factory method is due to M. H. Doolittle.!1 l We set out the equations as (A'}, 
(B') and (C') in a table as Table 10.2. Inserting the numerical values quoted 
above, we get (A"), (B"), (C"). It will be understood that all the figures occurring 
in the column headed ca are effectively the coefficients of Ca in the successive 
equations, and similarly for Cb and ee. The right hand sides have been multiplied 
by 10' temporarily to avoid the occurrence of excessively large numbers of O's 
after the decimal points. 

The next step is to write down again (A") as (A"'), and then put underneath 
it the result of dividing it by the coefficient of Ca with the sign changed (here by 
-2270.12950). This gives us (D). 

Now set down (B") again as (B"'). Multiply (A"') by the coefficient of Cb 

in (D) (here -0.76583279) ; this is (E). Add to (B"') giving (F). Divide (F) 
by the coefficient of its first term with the sign changed (i.e. by -34997.3536) 
to give (G). 

Now set down (C") again as (C"'). Multiply (A"') by the coefficient of 
Cc in (D) (i.e. by -1.55501223) to give (H). Also multiply (F) by the coefficient 
of Ce in (G) to give (I). Adding (C"'), (H) and (I) we get J, and dividing through 
by the coefficient of ec (4833.3424) we get (K). The three figures on the right 
hand side are the solutions for Ce1> ec1 , and Ce3, all multiplied by 10'. 

U we now take (G), and substitute these solutions for ec1 , Ce1 , and Cea we 
get (L1), (L1) and (L8) respectively. These lead immediately to (L't), (L'a), and 
(L'1 ), which give the solutions for Cb1> Cb1, and Cbs, respectively. 

We now substitute the solutions for Cb and Ce in (D)s getting (Mt), (Ma) and 
(M1), leading to (M' 1), (M' 1) and (M' 8) as the solutions of Ca1, Ca9, and Cas respectively. 

We can summarise these solutions in a matrix as in Table 10.3. 

( 1) E. T. Whittaker and G. Robinson, "The Calculus of Observations" (Blackie), 
3rd edition, Chapter IX. 

( 1) P. S. Dwyer (1941). "The Doolittle Technique". Ann. Math. Stat., XII, 449-458. 
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Table 10.2 

Ca Cb Cc 

(A') l:'x..,• l:'x..,x. l:'xwx1 

(B') l:'x.xw l:'x.• l:'x.x. 
(C') l:'x.xw l:'xax. l:'x.• 

A" 2270.12950 1738.5396 3530.07914 
B" 1738.5396 36328.7482 5364.4960. 
C" 3530.07914 5364.4960 10524.9928 

A"' 2270.12950 1738.5396 3530.07914 
D -1.00000 -0.76583279 -1.55501223 
B"' 1738.5396 36328.7842 5364.4960 
E -1738.5396 -1331.4306 -2703.4503 

F 0.0000 34997.3536 2661.0457 
G -1.0000 -0.076035630 
C"' 3530.07914 5364.4960 10524.9928 
(H) -3530.07904 -2703.4502 -5489.3161 
(I) -2661.0458 -202.3343 

J 0.0000 0.0000 4833.3424 
K 1.00000 

L1 -1.0000 0.2354659 
L. -1.0000 0.0119615 
La -1.0000 -0.1573148 

L'1 1.0000 
L'• 1.0000 
L', 1.0000 

M1 -1.0000 -0.0127435 4.8155366 
M. -1.0000 -0.2279864 0.2446261 
M, -1.000 0.1204768 -3.2172607 

M'1 1.0000 
M'• 1.0000 
M', 1.0000 
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Table 10.2---contd. 

First Set Second Set Third Set 
X 10' X 10' X 10' 

(A') 10,000 0 0 
(B') 0 10,000 0 
(C') 0 0 10,000 

A" 10,000 0 0 
B" 0 10,000 0 
C" 0 0 10,000 

A"' 10,000 0 0 
D -4.4050351 0 0 
B"' 0 10,000 0 
E -7658.3279 0 0 

F -7658.3279 10,000 0 
G 0.218825915 -0.28573589 0 
C"' 0 0 10,000 
(H) -15550.1223 0 0 
(I) 582.3058 -760.35630 0 

J -14967.8165 -760.35630 10,000 
K -3.0967838 -0.1573148 2.0689617 

Lt 0.2188259 
La -0.2857359 
La 0.0 

L't 0.0166400 
L'a 0.2976974 
L'a -0.1573148 

M1 -4.4050351 
Ms 0 
M, 0 

M't 9.2078282 
M'• 0.0166397 
M'a -3.0967839 
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Table t0.3 
All solutions multiplied by tO' 

a b c 

t 9.2078282 O.Ot66400 -3.0967838 

2 0.0166397 0.2976974 -O.t573t48 

3 -3.0967839 -O.t573148 2.0689617 

Like the original equations, this matrix is axi-symmetric ; Cb1 = Cea, 
Cct = Caa, and Ccs = Cbs· 

A good check on the correctness of the solutions is to take the set for Ca and 
substitute them in (C"). There we get for the left hand side : 

(3530.07914 X 9.2078282 + 5364.4960 X 0.01663970 -t0524.9928 X 
3.0967839) X tO'-' = 0.00000025 

which is close enough to the expected value of 0. 
We now have as our values for the regression coefficients 

bw.u = Cat l:'(y Xw) + Cazl:'(y X.) + Cas l:'(y Xa) 
= (9.2078282 X 8477.043t + 0.0166397 X t2186.t799 

- 3.0967839 X t7329.3597] X to-' 
= [78055.t564 + 202.7744- 53665.2795] X to-' 
= 2.459265t 

bo.aw = Cb1l:'(y Xw) + Cba l:'(y X.) + Cba l:'(y Xa) 
= 0.1042687 

ba.aw = Cc1 l:'(y Xw) + Ccal:'(y X.) + Cca l:'(y Xa) 
= 0.7685143 

A useful check on the accuracy of these last proceedings is to substitute these 
values in the equation 

bw.ul:'XaXw + bo.aw l:'xaXo + ba.wo l:'x.1 = l:'y X. 
Here we get t7329.3566 = 17329.3597, a discrepancy of 0.0031 which is 

small enough to be ignored. 
The residual variance is given by 

O'r1 = _.!.__4 [l:'y• - hw.u l:'yxw - bo.aw l:'yx. - ba.ow l:'yx.] n-

= 1~5 [83340.014 - 2.459265t X 8477.043t _:_ O.t042687 X 
t2186.t799- 0.7685143 X t7329.3597] 

= 47904.22t/135 = 354.846 . 
The standard errors of the three regression coefficients are then given by 

O'w.ao = arYC;;" = v'354.847 X 9.2078 X to-, 
= 0.5716 

O'o.aw = arv'Cb;" = 0.1028 

O'a.ow = a.vc;;-·_ 0.2709 

To test the significance of each coefficient, we obtain the value oft as the ratio 
of the regression coefficient to its standard error, and look up this value of t with 
degrees of freedom equal to those of the residual variance. For ba.ow, for example, 
t = 0.7685143/0.2709 = 2.837 with 135 degrees of freedom. Reference to 
Table I in the Appendix shows that this corresponds to a level of significance of 
between 1% and 0.1 %· 
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Confidence limits for each estimate can be derived in the usual way. For 
b.... and 95% limits these are 0.768514 ± 1.98 X 0.2709, or between 0.232132 
and 1.304896. 

Incidentally, it will be obvious that we have retained an excessive number 
of significant figures, and we could comfortably discard the last 4. It is much 
better, however, to carry out this discarding at the very end of the process rather 
than at the beginning. 

The final regression equation is 
y--:- j = h..- (x ... - Xw) + h..- (X.- X.) + h..- (X.- X.) 
y -1479/139 = 2.459265 (x...- 406/139) + 0.104269 (x. -70/139) 

+ 0.768514 (Xa- 1/139) 
or y = 2.459 Xw + 0.104 X. + 0.768 Xa + 3.399 

(e) Conclusions 
The use of this multiple regression technique involves rather heavy arith­

metic, but when we have a mass of data with several independent variables it is 
the only sound way of assessing their several effects. 

Thus in the present instance, we were particularly interested in the inde­
pendent variable with the smallest regression coefficient, x.. Completely elim­
inating the effects of the other two independent variables we obtained an estimate 
of the regression coefficient and were able to test its significance against a residual 
of 354.8, against which it was quite non-significant. If we had ignored the other 
two variables we would have obtained the sum of squares due to x. as 4088, with 
a residual of 79252f137=578.5. Tested against this x. would appear significant 
at the 1% level, an entirely erroneous conclusion. 

The second reason for using the multiple regression technique was discussed 
at length earlier with reference to the misleading results obtained when using 
simple regression when the independent variables happen to be correlated. In 
this case the independent variables both had positive regression coefficients and 
were positively correlated, and so gave fictitiously large values for both the 
regression coefficients. If, however, they were negatively correlated, we would 
obtain fictitiously small values for the regression coefficients using the simple 
regression technique. Of course, if the independent variables are not correlated, 
then this phenomenon will not occur, and the only loss through using simple 
regression instead of partial (or multiple) regression is the loss of precision in 
our estimate through the residual being much larger. 

As with simple regression equations, extrapolation of a multiple regression 
equation is unwise unless there is a very sound theoretical basis. It is good 
practice to quote the ranges of the independent variables that have occurred in 
the data used for calculating the regression equation, in order to discourage 
extrapolation. 

CHAPTER XI 

TilE GENERAL ANALYSIS OF VARIANCE 

(a) Introduction · 
It is important to realize that a situation suitable for the analysis of variance 

may arise in several ways :-
(i) By accident : the process may have a suitable structure as it stands. An 

example of this is discussed in Section (i) of this chapter, where there are three 
factories each handling three types of weak acid. The statistician had no part 
in seeing that there were three factories for each type of weak acid : this happened 
quite fortuitously. 
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(ii) By slight modification of existing manufacturing procedure. Thus it 
may be that in a process to each unit is added a variable amount of rework mat~rial 
of uncertain history, and for the purpose of examination this practice could be 
discontinued temporarily. . 

(iii) By deliberate experiment. Thus several factors may be vaned at the 
levels appropriate to a factorial design. 

' I 
(b) Types of Analysis 
One of the difficulties frequently experienced in the use of the analysis of 

variance is to decide which is the appropriate form of analysis. A further diffi­
culty is deciding the procedure for tests of significance. An attempt will be made 
here to give an outline of a general treatment. 

In the succeeding examples, we shall deal with a hypothetical polymer being 
processed into fibres and the dependent variable is the fibre tensile strength. 
We shall make various modifications to this basic idea in an attempt to show 
how the various forms of analysis of variances are related to each other. After 
each form of this general example we shall deal in detail with another example 
of similar structure. A number of aspects of the use of the analysis of variance 
follow in Chapter XII. 

All analyses can be divided into two broad types :-:-
(i) Those in which categories preserve their one-to-one correspondence : 

these we can define as pure factorial analyses. 
(ii) Those in which certain of the categories do not preserve their one-to-one 

correspondence. These we can define as incomplete analyses. 
The meaning of these two classifications will become clear with detailed 

discussion. 

(c) The Two Factor Analysis 
We can frequently categorise a set of individuals in two ways: thus we can 

have the raw material classified into a number of grades g according to the nominal 
degree of polymerisation. There are available a number of batches of each grade, 
and one batch of each grade can be processed at each of t different temperatures. 
We then have two factors: grade of polymer with g levels and temperature of 
processing with t levels. If we specify the values of g and t for any individual, 
we have completely identified that individual. 

Such an example was discussed in Chapter VII fe). Table 11.1 below gives 
the degrees of freedom and components of variance. 

Table 11.1 

Source of Degrees of Components 
Variance Freedom of Variance 

G g-1 tag1 + ao1 

T t-1 gac1 + ao1 

Residual (g-1) (t-1) ao1 

Total gt-1 

The tests of significance are obvious. If factor G is to exist, i.e. if ag• is to 
be greater than zero, then we must have :-

tae1 + ao1 must be greater than a0 • 

and we can readily check the significance of this with the variance ratio test. 
Factor T can be tested similarly. 
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(d) The Three Factor Analysis 
(i) In the previous section, we had g grades of polymer, one batch of each 

grade being processed at each of t different temperatures. Suppose now that 
each of s suppliers supplies g grades of polymer and from each grade of each supplier 
t batches are processed at each of t temperatures. 

It is important that the first grade from Supplier 1 has the same nominal 
degree of polymerisation as the first grade from Supplier 2, and as the first grade 
from Supplier 3, etc. Thus, the first grades for all the suppliers have a certain 
common property which distinguishes them in some way from the second grades 
of all the suppliers, etc. 

There are now gts individuals, and each can be uniquely determined by 
specifying particular values of g, t, and s. We thus have three factors: suppliers, 
grades of polymer and temperature of processing. The technique of the analysis 
of variance for three factors is given later. The degrees of freedom and the 
components of variance are reproduced in Table 11.2. 

Table 11.2 

Source of Degrees of Components of Variance 
Variance Freedom 

G g-1 a0
1 + 8agt1 + tags1 + tsag1 

T t-1 ao1 + gata1 + 8agt1 + sgac1 

s s-1 ao1 + tasg1 + gasc1 + gtas1 

GxT (g-1)(t-1) ao1 + 8agt1 

TxS (t-1)(s-1) ao1 + gaac1 

SxG (s-1)(g-1) ao1 + taa111 

Residual (g-1)(t-1) (s-1) ao1 

Total gts-1 

For the tests of significance we must start with the smallest interaction and 
test it against the residual. Thus, if the smallest interaction is, say, S X G, we 
test with the variance ratio test (ao1 + tasg1) against ao1 • U it is not significant, 
we pool it with the residual and obtain a new estimate of ao1 ; similarly, with 
the other interactions, taking them in ascending order of magnitude. 

For the testing of the main effects, there are a number of possibilities :­
(i) All three interactions are non-significant. Striking them out in the table 

of components of variance in Table 11.2, and pooling their degrees of freedom 
with the residual, we obtain Table 11.3. :-

Table 11.3 

Source of Degrees of Components 
Variance Freedom of Variance 

G g-1 ao1 + tsag1 

T t-1 ao1 + sgac1 

s s-1 ao1 + gtao1 

Residual gts- (g + t + s) + 2 ao1 

Total gts-1 
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For the three main effects the tests of significance are quite obviously to 
compare (a0

1 + tsa11
1) with ao1 for the factor G, and similarly for T and S. 

(ii) One interaction, say, G X T, is significant,. and the others are not. 
Striking the latter out in Table 11.2, we thereby obtam Table 11.4 :-

Table 11.~ 

Source of Degrees of Components of 
Variance Freedom Variance 

G g-1 ao1 .+ SCJgt1 + tsaa1 

T t-1 ao1 + Sagt1 + sgat1 

s s-1 ao1 + gtas1 

GxT (g-1 (t-1) ao1 + Sagt1 

Residual (gt- 1) (s- 1) ao1 

Total gts-1 

To test for the existence of the S main effect, we need to demonstrate the 
existence of aa1, and this can be rigorously done by testing (ao1 + gtas1) against 
a0

1 . For the G main effect, we need to demonstrate the existence of a11
1, and to 

do this, we must show that 
a0

1 + SCJgt1 + tsa11
1 is greater than ao1 + SCJgt1, 

i.e. we test the G main effect against the G X T interaction. The T main effect 
is tested similarly. 

(iii) The third possibility is that two interactions are significant, e.g. G X T 
and T X S. Table 11.2 then becomes Table 11.5 : 

Table 11.5 

Source of Degrees of Components of 
Variance Freedom Variance 

G g-1 ao1 + SCJgt1 + tsag1 

T t-1 ao1 + gats1 + SCJgt1 + sgat1 

s s-1 ao1 + gast1 + gtas1 

GxT (g-1)(t-1) ao1 + SCJgt1 

TxS (t-1 (s-1) oo1 + tast1 . 

Residual t(g-l)(s-1) ao1 

Total gts-1 

Studying the Components of Variance, it will be apparent that the significance 
of ~he G and S main effects can be established by testing their mean squares 
agat~st the G X T and the T X S interactions respectively. However, there is 
no ngorous test to demonstrate the existence of the T main effect, for while we 
might prove that it was greater than the G X T interaction, this might be due 
to the existence of ats1 as much as to the existence of at1 • 

In practice this impasse is not of any great practical importance, as we would 
break down the analysis into separate two factor G X S analyses for each level 
of T. This procedure is illustrated in Section (e) of this chapter. 
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Let us consider the data in the table below, referring to a purification process. 
The figures (the dependent variable :z:) refer to the purity of a product measured 
in a certain way. The factor Tat three levels represented time of boiling. The 
factor A represents solvent used, and W 1 represents a cold final wash of the product 
and W 1 a hot final wash. · 

T1 Ta Ta 

AI WI 3.1 2.0 1.3 
w. 2.1 1.6 1.9 

A a WI 4.3 2.8 4.1 
w. 6.1 3.9 2.6 

In analysing this data, an arbitrary zero of 3.0 was taken. This reduces 
the magnitude of all the numbers, and therefore their squares, and the arithmetic 
becomes less burdensome. Also, to avoid confusion with the decimal point, the 
numbers were then multiplied by 10. This results in the sums of squares in the 
analysis of variance being 101 = 100 times too large, which does not affect the 
analysis, as in the tests of significance all the terms are compared with each other, 
the change in scale thus being of no importance. If we proceed to calculate any 
particular variance, however, we must correct for this change of scales by dividing 
by 100. 

The result of the transformation is as below : 

Tl Ta Ta 

AI WI 1 -10 -17 
w. -9 -14 -11 

As WI 13 -2 11 
w. 31 9 --4 

It should be remembered that the data is completely symmetrical with respect 
to the three variables, A, W, and T. This might be clearer if we were able, 
using three-dimensional paper, to set the lower half of the table (for A1) on top 
of the upper half of the table (for A1). Then the horizontal axis across the page 
represents difference between times of boiling (T), the vertical axis down the page 
represents type of wash (W), and the axis perpendicular to the page represents 
type of solvent (A). The table as it stands has the form of tables for W and T for 
each value of A : that is an arbitrary choice and it might equally well have been 
W and A tables for each value of T, or A and T tables for each value of W. 

We first form the three two-way tables by summing over each of the three 
variables in tum. Thus we sum over W for each value of A and T, getting the 
table below : 

Tl Ta T, Totals 

AI -8 -24 -28 -60 
As 44 7 7 58 

Totals 36 -17 -21 -2 
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Summing over A for each value of T and W we get the table below : 

T, T, T, Totals 

w, 14 -12 -6 -4 
w. 22 -5 -15 +2 

Totals 36 -17 -21 -2 

The third table is obtained by summing over T for each value of A and W, 
as below: 

A, A a Totals 

w, -26 22 -4 
w. -34 36 2 

Totals -60 58 -2 

We analyse the first of these two-way tables, for A and T, as follows: 

Fonn the following tenns-
(1) Square the individuals, sum the squares, and divide by the number of 

original individuals that have been summed to give the individuals in this two-way 
table. Here each individual is the sum of two original individuals. Thus we have 

[(-8)1 + (-24)1 + (-28) 1 + # 1 + 71 + 7•]/Z = 1729 

(2) Obtain the total for each row, square these totals, sum these squares, 
and divide this total by the number of original individuals that have been summed 
to give the row totals. Here each row total is the sum of 6 original individuals 
{the row totals are each the sum of 3 two-way table individuals, each of which is 
the sum of 2 original individuals). Thus we have 

[(-60)1 + (58)1]/6 = 1160.67 

(3) Perfonn the identical operation for the column totals. Here each column 
total is the sum of 4 original individuals, so the divisor is 4. Thus we have 

(361 + (-17)1 + {-21)1]/4 = 506.5 

(4) Obtain the grand total for all individuals, square this grand total, and 
divide by the grand total number of original individuals 

{-2)1/12 = 0.33 

It will be noted that these operations are similar to the analysis of a row and 
column table, discussed earlier, differing only in that each sum of squares is 
divided, not by the number of individuals in the two-way table in each total 
which is being squared, but by the number of original individuals in each total 
that is being squared. 
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We can now fonn a table for the analysis of variance of this row and column table. 

Degrees of 
Source of Variance Freedom 

Between A a-1=2-1 
=1 

Between T t-1=3-1 
=2 

A X T interaction (a-1) (t-1) 
=2 

Total .. . . at-1 = 5 

a = number of levels of A 
t = number of levels of T 

Mean I Sums of Squares Squares 

(2)- (4) = 1160.33 1160.33 

(3) -(4) = 506.17 253.08 

62.17 31.08 

(1)- (4) = 1728.67 

This table corresponds closely to that previously discussed for row and column 
analysis, except that what was fonnerly "Residual" is now tenned "A X T 
interaction.,. The reason for this will be discussed later. The Sum of Squares 
corresponding to this tenn is best obtained as the difference between the sum 
of the A and T terms and the Total, i.e. 

1728.67- (1160.33 + 506.17) = 62.17 
Precisely similar operations are perfonned on the other two-way tables. 
F"mally, the Total Variance is obtained by squaring all the original indi­

viduals, summing these squares, and subtracting from this sum of squares the 
total squared divided by the total number of original individuals, i.e. 

11 + (-10)1 + (-17)1 + (-9}1 + ... (-4)1 - ( 1;>· = 2139.67 

All these results are now gathered together in Table 11.6. 

Table 11.6 

Sums of Mean 
Source d Variuu:e Degrees of Freedom Squares Squares ComponeDto of Variance 

Between A (a-1)- 1 n6o.33 u6o.3J wt a! + WO:t + taa~ +a~ 
BetweenW (w-1) = 1 J.OO 3·00 at a!. + aa..!t+ ta ;. +a~ 
BetweenT (t-1)- z so6.17 ZSJ•o8 waa~ + ....a!t + aa..!t +a~ 
A X W lntenction (a-1) (w- I)- 1 40·33 40·33 ta;a +a~ 
W X T lntenction (w- 1) (t- 1) = z 45·50 ZZ·75 aa..!t+~ 
T X A Interaction (t- 1) (a- I) = z 6z.17 31-08 WO:a +a~ 
Reoidual (a-1) (t-1) JZZ.I7 161.08 +a~ 

(w-1)- z 

Total awt-1- II ZIJ9·67 

a, w, and t are respectively equal to the number of levels of A, W, and T. 
a!, a! and at

1 are respectively equal to the variances due to general differences 
between levels of A, levels of W, and levels ofT. 

a.':... a!, a,! are respectively equal to the variances due to interactions between 
A and W, between Wand T, and between T and A. 

a! is the residual variance, unattributable to any of the above terms. 
The sum of squares corresponding to the residual is obtained as the difference 

between the total sum of squares and the sum of the six other terms. 
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The meaning of these tenns is as follows : 
a; is the variability that would occur if the other two factors W and T were 

held constant, similarly a!. is the variability that would occur if A and T were held 
constant and IT, the variability that would occur if A and W were held constant. 

The A x W Interaction a ?w is a measure of the extent to which the A effect 
depends on the value of W, and conversely, to which theW effect depends on the 
value of A. Similarly for the other interactions. : · 

The Residual a! is that portion of the variability that cannot be allocated 
to the other six terms. It can be regarded as a measure of error. In the present 
experimental design, the possible second order interaction A X W X T, if it 
exists, will contribute to the same term. The second order A X W X T measures 
the extent to which the A X W interaction depends upon ~he level of T, or 
similarly, to which the A X T interaction depends on the level of W, similarly, 
to which the T X W interaction depends on the level of A. If this effect does 
exist, it will give us an inflated estimate of error, and hence the effects will be 
likely to not attain significance. This situation is discussed later in Chapter XII (e). 
For the present we will assume that the A X W X T interaction does not exist, 
or at any rate is not large. 

We now need to apply a test of significance for the existence of these terms. 
We can see that if, for example a,~ is to exist, then (wa~ + a!) must be signi­
ficantly greater than a!, i.e. the T X A interaction mean square must be signi­
ficantly greater than the residual mean square. 

Here we see that the Mean Squares for theW, A X W, W X T, and T X A 
are all less than the Residual Mean Square, so that a!, a.~. a.!t, and a! probably 
do not exist, i.e. can be regarded as zero. We can therefore use these mean squares 
as estimates of a! to get a more accurate estimate. We pool their sums of squares 
and the degrees of freedom, i.e. 

(3.00 + 40.33 + 45.50 + 62.17 + 322.17)/(1 + 1 + 2 + 2 +2) = 59.1 
This new residual has 8 degrees of freedom. 

Considering the T term, the T mean Square now estimates wa IT, + a! 
for a!, and a,!, have been shown to be zero. To establish the existence of IT, we 
therefore test the T mean square against the (new) residual. The variance ratio 
is 253.08/59.1 = 4.3 for degrees of freedom n 1 = 2, n 1 = 8. This lies close to 
the 5% level of significance, so we may assume that T does have an effect. 

Similarly the A term gives a variance ratio of 1160.33/59.1 = 19.6 for degrees 
of freedom n 1 = 1, n 1 = 8, this being considerably more significant than the 
1% level, so we assume that A does have an effect. 

We now can take the means for each level of A and T, and conclude that 
for A1 we have, translating back into terms of the original variable, a mean value 
2.00 and for A1 a mean value of 3.97. ForT 1 the mean is 3.90, forT 1 2.58, and 
for T 1 2.48. It is clear that the difference between T 1 and T 1 is 8o slight as to 
be not significant, but the difference between these two and T 1 is quite consider­
able. We can also conclude that the difference between the two levels of W is 
quite insignificant. 

Each of the averages for the three levels of T is the average of 4 results. In 
the units in which the analysis of variance was carried out the residual variance 
was 59.15, corresponding to a standard deviation of 7.691, or converting to original 
units 0.7691. Accordingly the standard deviation of the average of four results 
will be 0. 7691/ v .f = 0.3845. This then is the standard deviation of each of the 
three averages quoted above for the three levels ofT. The standard deviation 
of the difference between any two is 0.3845 V2 0.5429. 

Proceeding similarly for the two averages for the two levels of A, these each 
have standard deviation of 0.7691jv6 = 0.3140, and the standard error of the 
difference between these two averages, which is 3.97-2.00 = 1.97, is 0.3140v2 
= 0.4440. The residual on which this standard error is based has 8 degrees of 

93 



freedom, for which for the 5% level of significance t = 2.31 (see Table I, 
Appendix). Accordingly the 95% confidence limits for the difference between 
A1 and A1 are 1.97 ± 2.31 X 0.444, or 3.00 and 0.94. 

In this example, having demonstrated the significance of certain effects, we 
. have proceeded to calculate the means for each level of these effects in order to 

demonstrate their mode of action. In this example each factor and its levels 
had precise and obvious meanings, and when we compared A1 with A1 we knew 
what comparison we were making (we were comparing one solvent with another). 
In some types of analysis, however, the difference between different levels of a 
particular factor may not be obvious. Thus a factor may be shift, with 3 levels. 
Or it may be day, with any number of levels. Or it may be machine for a group 
of allegedly similar machines. With this type of factor, where the distinction between 
the levels is rather vague and elusive, it is often better to calculate the actual 
magnitude of the variance due to each term. 

(e) The Four Factor Analysis 
(i) In the previous section, we had g grades of polymer by each of s suppliers 

being processed at each of t temperatures. If we suppose that the suppliers were 
supplied with raw material from each of r sources, then R becomes a fourth main 
factor. There are thus gtsr individuals, and each can be uniquely determined 
by specifying particular of values of the categories. It is important that every 
supplier draws from each source of raw material. 

The components of variance are reproduced in Table 11.8 below, along with 
the respective degrees of freedom. 

Table 11.8 

Source of Degrees of c;omponents of 
Variance Freedom Variance 

G g-1 ao1 + ragta1 + tasr11
1 + SCJrgtt 

+ sragt1 + tsar11
1 + rtago1 

+ tsra11
1 

T t-1 ao1 + ragta1 + gatsr1 + SCJrgt1 

+ sragt1 + rgaat1 + gsart1 

+ gsrat1 

s s-1 ao1 + ragta1 + gatsr1 + ta1arg 
+ rgata1 + gtasr1 + rtaga1 

+gtrao1 

R r-1 ao1 + gatar1 + SCJ1rst + ta1arg 
+ gta1sr + tsa1rs + gsa1rt 
+ sgtar1 

GxT (g-1)(t-1) ao1 + SCJrgt1 + ra1gta + sra1gt 
TxS (t-1) (s-1) a0

1 + ra1gta + ga1tar + rga1ta 
SxR (s-1) (r-1) CJo 1 + ga1tar + ta1srg + gta1or 
RxG (r-1 (g-1) ao1 + ta1org + sa1rst + tsa1re 
GxS (g-1)(s-1) ao1 + ra 1gta + ta1arg + rta 1ga 
TxR (t-1)(r-1) ao1 + ga1tar + sa1rgt + gsa1rt 

GxTxS (g-1)(t-1)(s-1) ao1 + ra1
gto 

TxSxR (t-1) (s-1) (r-1) CJo1 + ga1tar 
SxRxG (s-1)(r-l)(g-1) ao1 + ta1sre 
RxGxT (r-l)(g-1)(t-1) ao 1 + sa 1rat 

Residual (g-1) (t-1) (s-1) (r-1) CJo 1 

Total gtsr- 1 

The appropriate tests of significance can be worked out from the components 
of variance. · 
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(ii) The data below is from a four factor experiment, each factor at two levels. 
The experiment is on a purification process, and high figures for the dependent 
variable conespond to an inferior product. The treatments were such that the 
crude material could be given a hot or cold wash (H1 or H 1), then given a period 
of boiling or not given a period of boiling (B1 or B1), then dissolved, filtered, and 
precipitated from either of two solvents (S1 or 8 1), and finally given a cold or hot 
wash (W1 or W 1). : 

sl s. 

wl w.· 

B1 B1 Bl Ba ,~ Ba Bl Ba 

~ ~ H, H, ..!:!_ ~ ..!:!_ ~ 

w, ~ w, 

~::~:; z.7 1-t 1.3 3·3 3·5 1.3 1.9 -!-------------
z -11 -az 8 10 -az -6 -3 6 IS 16 ZS 5 -3 I 

In carrying out the analysis of variance, for convenience 2.5 was subtracted 
from each figure, and the results multiplied by 10 to remove the decimal point, 
this giving the figures in the last row. The effect of this transformation is that 
all the sums of squares in the analysis of variance are 101 = 100 times too large. 

We proceed <1> as follows:-

(1) We fonn the four tables obtained by summing over each of the four variables 
in tum. Thus the table obtained by summing over S is as below : 

w. w. 
Bl Ba Bt Ba 

------------
~ H, -p= HI Ha H, H. H1 H1 

H 8 4 4 15 r-15 -5 

The table obtained by summing over W is as below : 

s. s. 
B, Ba Bt B. 

~ -~ 
------

* 
H1 H1 HI H. 

12 -23 -18 22 11 7 

~h~ other two three-way tables, obtained by summing over B and over H, 
are smular. 

(l) For an alternative method of calculating the analysis of variance of a 2n experiment 
tee page 138. 
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(2) We form the six tables obtained by summing over the variables two at a time. 
Thus the tables obtained by summing over S and H, and over S and B, are as 
below: 

Sum~d ooer Hand S Summed ooer Sand B 

Bt B. Totals H. H. Totals 

w. 22 8 30 w. 18 12 30 
w. 48 -20 28 w. 18 10 28 

Totals 70 -12 58 Totals 36 22 58 

The other two-way tables are as below : 

Summed ooer H and W Summed ooer B and W 

Bt Ba Totals Ht Ha Totals 

sl 37 -41 -4 s. 2 -6 -4 
s. 33 29 62 s. 34 28 62 

Totals 70 -12 58 Totals 36 22 58 

Summed ooer B and H Summed ooer S and W 

w. w. Totals H. Ha Totals 

s. -4 0 -4 Bt 47 23 70 
s. 34 28 62 B. -11 -1 -12 

Totals 30 28 58 Totals 36 22 58 

(3) We take the square of the grand total and divide it by the grand total number 
of observations :-

581/16 = 210.25 
We shall use this quantity a great deal, and refer to it as "the correcting 

factor," as it corrects all our sums of squares for the fact that they are deviations 
from the zero, not the mean. 
(4) To form the Sum of Squares for the main effect of the factor S, we square 
the S totals, sum these squares, and divide by the number of original individuals 
forming each S total, and subtract from this the correcting factor, i.e. 

[(- 4)1 + 621)/8 - 210.25 = 272.25 
The other main effects are obtained similarly. Thus­
For W: (301 + 281)/8 - 210.25 = 0.25 
ForB: (701 + (-12)2)/8- 210.25 = 420.25 
For H: (361+ 222)/8- 210.25 = 12.25 

(5) The first order interactions measure the extent to which the effect of one 
factor depends upon the value of the other factor. Thus there are three first 
order interactions involving S, namely S X W, S X B, and S X H. 

The Sum of Squares corresponding to the first mentioned, S X W, is obtained 
by squaring the individuals in the two way table for S and W, summing these 
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squares, and dividing by the number of original individuals making up the indi­
viduals in this table, and from this subtracting the correcting factor, the S Sum 
of Squares, and the W Sum of Squares, i.e. 

[(---4)• + o• + 34• + 282)]/4- 210.25- 272.25- o.25 = 6.25 
Similarly, the B X H interaction sum of squares is given by 

(47• + 23 1 + (-11)1 + (-1)2)/4- 210.25-420.25 -12.25 = 72.25 
The other first order interactions are derived likewise. : 

(6) It will be apparent that there is a possibility that the effect of, say, the B X H 
interaction may depend upon the value of W or of S. The former is termed the-­
S X B X H interaction and the latter the W X B X H interaction. Interactions 
of this type are known as second order interactions. 

The sums of squares for these terms are derived from the three way tables. 
Thus to derive the Sum of Squares for the S X B X H interaction we first square 
the individuals in the S X B X H table, sum these squares, and divide by the 
number of original individuals making up each individual in the table, and sub­
tracting the correcting factor, i.e. 

(251 + 121 +(-23)1 + (-18)1 + 221 + 11 1 +121 +171)/2- 210.25 
= 1119.75 

From this figure we subtract the sums of squares for all the main effects and all 
the first order interactions which do not involve the odd variable. Thus with 
the S X B X H sum of squares the odd variable is W, so we subtract from 
1119.75 the sums ofsquares for the S, B, H, S X B, B X H, and H X S terms, i.e. 

1119.75 - 272.25 - 420.25 - 12.25 - 342.25 - 72.25 - 0.25 = 0.25 
The other second order interactions are obtained similarly. 
(7) The Total Sum of Squares is the difference between the sum of the squares 
of the original individuals and the correcting factor, i.e. 

171 + 21 + (-11)1 + ... + (-3)1 + 11 -210.25 = 1877.75 
(8) The Sum of Squares corresponding to the Residual is obtained by subtracting 
the four main effects, the six first order interactions, and the four second order 
interactions from the Total Sum of Squares. 

We thus have a complete analysis as in Table 11.9 below. The degrees of 
freedom are of the following form (small letters represent the number of levels 
at which the factor denoted by the capital letter occurs). 

Table 11.9 

Source of Variance Sums of Squares 

B 420.25 
H 12.25 
s 272.25 
w 0.25 

BxH 72.25 
HxS 0.25 
S X W 6.25 
Wx B 182.25 
WxH 0.25 
BxS 342.25 

BxHxS 0.25 
H X S X W 156.25 
S X W X B 272.25 
W X B X H 30.25 
Residual 110.25 

Total 1877.75 
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(a) for the main effects, e.g. forB, (b- 1) 
(b) for the first order interactions, e.g. for H X B, (h- 1) (b- 1) 
(c) for the second order interactions, e.g. for H X B X W, (h -1) 

(b -1) (w -1) 
(d) for the residual, (h- 1) (b- 1) (w- 1) s- 1) 
(e) for the total, (h b w s- 1). 

In the present case, the degrees of freedom are in every case 1 except for 
the total.C1 l Accordingly, the column for Degrees of Freedom is omitted. Also, 
since the Sums of Squares thus equal their respective Mean Squares the latter 
column is omitted. 

Analysing the various terms it is clear that the W X B X H and B X H X S 
interactions probably do not exist, so we can pool them with the residual giving a 
new residual of 140.75/3 = 46.92 with 3 degrees of freedom. The H X S X W 
interaction is not significant, and we get a new residual of 297.00/4 = 74.25 with 
4 degrees of freedom. Tested against this the S X W X B interaction does not 
reach the 5% level of significance, but it is suspiciously large, and it is desirable 
to split the experiment up into two three factor experiments to check that the 
factors are not interacting. 

With one second order interaction significant, say the S X W X B interaction, 
there is a choice of three methods of splitting, viz. H X W X B for each level 
of S, H X S X W for each level of B, or H X S X B for each level of W. 

Which method of breakdown we employ is largely a matter of choice ; some­
times it may be informative to employ more than one. Here one particular 
method of breakdown is strongly indicated, namely according to the solvent used 
(factor S). 

Accordingly, we carry out two three factor analyses, one for S1 and the other 
for S1• The results of such analyses are below in Table 11.10. 

Table 11.10 

Source of 
Mean Squares 

Variance Experiment with Experiment with 
sat sl Sat S1 

B 760.5 2.0 
H 8.0 4.5 
w 2.0 4.5 
BxH 40.5 32.0 
HxW 72.0 84.5 
W X B 4.5 450.0 
Residual 12.5 128.0 

Total 900.0 705.5 

· (I) In this respect the present example constitutes a special case. The adaptation of 
these methods of computation to the more general case is quite straightforward. The 
formulae for the degrees of freedom have just been given. With regard to the sums of 
squares, if we have a four factor experiment with factors A, B, C, and D at 2, 3, 4, a!ld 5 
levels respectively there are two A totals each the total of 3 x 4 x 5 = 60 observations, 
10 the sum of the ~quares of the A totals is divided by 60 before having the correcting factor 
subtracted from it to give the A sum of squares. There are five D totals, each the. total 
of 2 x 3 x 4 = 24 observations so the division of the sum of the squares of the D total Is 24. 
For the interaction, for example, the B x C table has 3 x 4 = 12 entries, eac~ t~e t«?~ of 
2 x 5 = 10 observations; accordingly the sum of the squares of these 12 entries &s divided 
by 10 before having subtracted from it the correcting factor and the B and C Sums of Squares 
to give the B x C Sum of Squares. 
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The Degrees of Freedom for each of the terms except the Total are 1 in every 
case, so the Mean Squares equal their respective Sums of Squares, and· therefore 
columns for Degrees of Freedom and Sums of Squares are omitted from the above 
table. 

Let us consider the S1 experiment first. The W X B interaction is not 
significant, and neither is the B X H interaction. The H X W interaction is also 
found to be non-significant. Clearly the Hand W main effects are non-significant. 
Pooling all these non-significant terms we get a residual of 23.2 with 6 degrees 
of freedom. The only term left is the B main effect, giving a variance ratio of 
760.5/23.2 = 32.8 with degrees of freedom n1 = 1, n1 = 6. This lies near the 
0.1% level of significance. 

We can thus conclude that the B factor has an effect upon the quality of the 
product, B1 giving a mean of 3.47 and B1 a mean of 1.47. The significance of 
the other factors W and H has not been established, the means for H 1 and H 1 
being 2.55 and 2.35 respectively and for W 1 and W 1 being 2.4 and 2.5 respectively. 

It thus seems a matter of indifference which level of H and of W we use, 
but it is very important to select the right level of B. 

Now let us consider the S1 experiment. We have a large residual. The 
B X H and H X W interactions cannot be significant, and pooled give a new 
residual for 81.5 with 3 degrees of freedom. The H main effect does not contain 
amongst its components of variance awb1, which is contained amongst the com­
ponents of variance of the outstanding interaction W X B : the H term is non­
significant and can therefore be pooled to give a new residual of 62.25 with 4 
degrees of freedom. Tested against this the W X B interaction gives a variance 
ration of 450.00/62.25 = 7.2 with degrees of freedom n 1 = 1, n1 = 4, this being 
close to the 5% level of significance. 

The fact that the W X B interaction is marked for S1 but non-existent for 
S1 implies the existence of a W X B X S interaction, which we had suspected 
from the four factor analysis. The non-existence of a B main effect for S1 as 
compared with its great significance for S1 indicates the existence of a S X B 
interaction : the four factor analysis had showed that this exists but actually in 
the more complicated guise of an S X B X W interaction. 

Here we have a three factor analysis with a significant first order interaction, 
W X B. Accordingly we need to break the three factor experiment down, either 
into W X H experiments for B1 and for B1 or into B X H experiments for W1 
and for W1• 

The results of the former are below in Table 11.11. Here againtheDegreesof 
Freedom for each term except the total are 1, so that column and the Mean Square 
column are omitted. 

Table 11.11 

Sums of Squares 

Source of Variance Bat 
B, Ba 

H 30.25 6.25 
w 182.25 272.25 

Residual 210.25 2.25 

Total 422.75 280.75 
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Considering the B._ experiment, the H term is not significant, and can be 
pooled to give a new residual of 8.50/2 = 4.25 with two degrees of freedom. 
TheW term then gives a variance ratio of 272.25/4.25 = 64.0 for n1 = 1, n 1 = 2, 
this being more significant than 5%. 

We can thus conclude that using the solvent S1 and treatment B1 (boiling) 
it is a matter of indifference which level of H we use, but that it is important 
to select the correct level of W, the averages for W 1 and W 1 being 4.05 and 2.40 
respectively. 

Turning now to the B1 experiment, we have a large residual, which suggests 
that the H X W interaction exists. From the fact that it clearly does not exist for 
B = B1, this suggests that it takes the guise of a B X H X W interaction. This was 
not shown up on the full four factor analysis, but the evidence here is suggestive. 
With such a large residual, the H and W terms will not be significant, but we 
may get an idea of the behaviour of the system by forming an H X W table, 
Table 11.12. 

Table 11.12 

S= S,,B= B1 

w, 
Hl 2.2 
Ha 3.1 

w. 
5.0 
3.0 

This table suggests that with S1 B1, we should use W 1t and possibly that 
H1 is better. However, these suggestions cannot be made as definite assertions. 

That is as much as can be done with that method of breakdown. Turning 
to the other, the results of the analysis are below in Table 11.13. The degrees of 
freedom are 1 for each term (except the total) so that column and the Mean Square 
~olumn are omitted. 

Table 11.13 

Source of Sum of Squares 

Variance Wat 
wl w. 

H 25 64 
B 196 256 

Residual 16 144 

Total 237 464 

Considering the experiment for W 1t clearly the H term is not significant. 
-Pooling it we get a new residual of 41/2 = 20.5 with 2 degrees of freedom. The 
B term then has a variance ratio of 196/20.5 = 9.55 for n1 = 1, na = 2. This 
is considerably more significant than the 20% level but less significant than the 
5%. However, we may regard it provisionally as real. 

We can thus conclude that using solvent S1 and treatment W1 it is a matter 
of indifference which level of H we use but it is important to use the correct level 
of B, the means for B1 and B1 being 2.65 and 4.05 respectively. 
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Considering the experiment for W 1, we have a large residual, and therefore 
we cannot expect significance for the H and B terms. However we may get an 
idea of the behaviour of the system by inspecting a B X H table, as below. 

8= s •. w _: w. 

B1 Ba 

Hl 5.0 2.2 
H, 3.0 2.6 

This table suggests that with S1 W 1 , we should use B1 , and possibly H 1 is 
better. 

Let us now see whether the two methods of breakdown give consistent 
conclusions. The B1 and B1 method gave that with B1 we should use w. to get 
a low figure for the impurity, but that with B1 we should use W 1• The W 1 and 
W 1 method gave that with W 1 we should use B1, and with W 1 we should use 
B1• As regards H, the B1 and B1 method did not give significant results, but the­
W 1 and W 1 method suggested (qualitatively, not with an exact test of significance)' 
that H 1 should be used to give low figures for the impurity. The two methods 
of breakdown thus lead to similar conclusions. 

The effect of the W X B interaction for S1 is shown in Table ll.H below. 

Table 11.14 

S = 8 1 (H afJeraged) 

Bl B. 

wl 2.65 4.05 
w. 4.0 2.4 

This table shows clearly that to obtain a low figure for the impurity, if we 
use treatment B1, then we must use W 1o and if we use B1 then we must use W 1 • 

There is no "best" level for either B or for W : the "best" levels depend upon 
the levels of the other factor. Also solvent S 2 behaves differently in this respect 
to Solvent S~o for which treatment B1 was always best irrespective of the values 
of H or W. The interaction shown above is the B X W interaction, and since 
it operates for S1 but not for S1 we can say that the S X W X B interaction exists. 

It is of interest to note the type of error into which we might have fallen if 
we had carried out this experiment classically rather than factorially. Classically 
we would have investigated each factor at one level. If we were unlucky we 
would have investigated B at W 8 and W at B1• From the first experiment we 
would have decided that in order to get a low figure for the impurity we should 
use B1 and from the second experiment that we should use W 1• We thus would 
have decided to use W 1 B2, an entirely faulty conclusion. 

This has been a lengthy analysis, and we might recapitulate the conclusion$ 
reached:- · 

(1) Using the solvent S1 
(a) it is a matter of indifference whether we use H 1 or H 1 
(b) it is a matter of indifference whether we use W 1 or W 1 
(c) it is desirable to use B1 giving a mean figure for the impurity of 1.47 

as compared with 3.42 for B1• 
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(2) ·using the solvent S1 

(a) it is a matter of indifference whether we use H 1 or H 1• 

(b) using B1 we should use W1 , when we get a figure of 2.65 for the 
impurity. 

(c) using B1 we should use W 1 , when we get a figure of 2.4 fo.r the impurity. 
These conclusions have all been reached rigorously, with no guess work, and 

~ve a complete picture of the behaviour of the system. 
It will be noted that this experiment has been complicated in the sense that 

-there have been second order interactions significant. It would have been simpler 
.if only the main effects, or first order interactions, had b!!en significant. With 
oSCCOnd order interactions existing, however, the operation of the system is com­
plicated, so it is inevitable that its analysis should be also. 

It will also be noted that with significant interactions the factorial experiment 
loses its superiority in the sense of efficiency over the classical, and in effect reduces 
to a series of classical experiments. The point is that if a factorial design is not 
·uaed. then these interactions cannot be detected. 

These questions are discussed further in Chapter XII (d), but meantime it 
'IJlUst be noted that Tables 11.11 and 11.13 must be considered not satisfactory 
-owing to the inadequate number of degrees of freedom. When these high order 
interactions are significant we require more experiments than were made in this 
instance. 

(f) The Five Factor Analysis 
'(i) In the previous section, we had four factors, source of raw material (R), 

'SUpplier of polymer (S), grade of polymer (G), and temperature of Processing (T). 
:Let us now assume there is a fifth factor, namely, pressure of processing (P). 

The procedure for five factor analysis of variance can be readily generalised 
'..from the two, three, and four factor analyses discussed earlier :-

(1) Sum over each of the variables in turn. This will give us five tables, each 
containing four variables. 

~~) Sum over the variables taken two at a time. This will give us ten tables, 
each containing three variables. 

((3) Sum over the variables taken three at a time. This will give us ten tables, 
each containing two variables. 

•{4) Derive the marginal totals of the tables (3). This is equivalent to sum­
ming over the variables taken four at a time. 

-(5) Sum over the variables taken five at a time, i.e. take the grand total. 
.:(6) Sum the squares of all the figures in the tables described in (1) to (5) 

and divide each sum of squares by the number of original individuals 
forming the individuals in each table. Thus, in the table of class (3) 
formed by summing over G, T, and S, i.e. the table for R and P, the 
divisor is gts. 

•(7) The main effects are given by subtracting (5) from each of the sums of 
squares in (4) (both having been divided by their appropriate divisors) . 

... (8) To get say the GTS interaction, we take the table for G, T, and S (i.e. the 
table of class (2) summed over R and P), take its sum of squares divided 
.by the appropriate divisor (here rp) and subtract from this the correcting 
•factor (5) divided by its divisor (gtsrp) and also subtract the sums of 
-.squares already derived for G, T, S, S X G, G X T and T X S. 

•Studying the components of variance for a four factor analysis in Table 11.8, 
1111d comparing them with Table 11.2 for three factors and Table 11.1 for two factors, 
we can readily see how for a five factor experiment the components of yariance 
would be built up :-

.(a) The highest order interaction, used as a residual, ao1 has no coefficient. 
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(b) The interactions of the next highest order have ao1 and the component . 
corresponding to the interaction, the latter having as its coefficient the 
letters not included in the subscripts of the interaction. Thus the: 
G X T X S X R components are 

pagtar1 + ao1 

(c) The interactions of the next highest order have ao1
, the component 

corresponding to the interaction, and all the intermediate interactions­
whose suffices include the interaction suffices. The general rule for 
coefficients applies throughout : the coefficients are those letters which­
are not included in the subscripts. 

Thus the G X T X S components are :­
rpaets1 + ra1gtsP + pa9etsr + ao1 

(d) The first order interactions are built up according to the same general' 
rules. Thus the S X R components are :-

gtpa1sr + gta1Psr + tpa1esr + pga1art + ga1part + ta1earP + pa1
pd 

+ao1 

(e) The main effects are built up similarly. Thus, the S main effect includes. 
aa1, the first order interactions of S, namely, a1ag, a1or, a1aP and a1at, the 
second order interactions of S, namely a1sgr, a1oeP, a1uP, a1"tp a1arr and 
cs 1ste, the third order interaction of S, namely a1rgst, a 1atrP, a-1.,p8 and 
a1oPgt, and the residual ao1• All these components have their coefficients­
determined by the general rule mentioned earlier : thus as• has as its­
coefficient prgt. 

(ii) A five factor experiment was carried out on a process for purifying a. 
crystalline product, all factors being at two levels. The quantity of the substance 
per cycle (T) was tested, one level actually corresponding to double the concentra­
tion of the other. The time to dissolve (D) the crystalline substance in the solvent 
was tested, one level being four times the time of the other level. Time wu· 
relevant because the dissolving was done in hot solution and as the formation of' 
impurities is auto-catalytic a long period at a high temperature might have dele­
terious effects. The third factor W represented two slightly different liquids 
used in the next stage of the process, in which there were two speeds of stirring_ 
(S) and two times (G) to precipitate the pure crystal by steam distillation. 

The original data is given in Table 11.15. The decimal point has. heeD' 
removed and large figures represent an inferior products. 

Table 11.15 

Original Data on Five Factor Crystal Purification Experiment. 

wl w. 
Gt Ga Gl Ga 

Dt n. Dt Da Dt o. Dl n. --
Tt sl 138 108 113 95 103 137 106 116 

1-
s. 116 119 106 114 122 122 128 148 

1-

,~ S, I 155 170 131 172 146 
I 

152 135 1# 

s. 133 172 138 181 150 156 124 146 
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In the anaiysis of variance, all factors being at two levels, the degrees of 
freedom for all terms are unity, and hence the Mean Squares are equal to the 
Sums of Squares. In Table 11.16 giving the Analysis of Variance below the fourth­
order interactions have not been calculated but have been pooled with the Residual 
whose degrees of freedom are thus (1 + 5) = 6. Strictly speaking, these inter­
actions should be calculated, but in practice it is difficult to attach any great 
importance to them, and it is the effects earlier in the table which are of practical 
interest. In Table 11.16 the figures 31 and 6 in brackets after the Total and the 
Residual are the numbers of degrees of freedom for the Total and Residual 
cespectively. 

Table 11.16 
Analysis of Variance for Five Factor Experiment on Crystal Purification. 

Source of Variance Sums of Squares 
s 91.1 
G 325.1 
w 21.1 
T 8256.1 
D 1352.0 
S X G 264.5 
GxW 12.6 
WxT 924.5 
TxD 741.2 
D X S 171.1 
GxT 18.0 
WxD 1.2 
T X S 128.1 
DxG 120.1 
Wx s 112.5 
S X G xW 21.1 
GxWxT 406.1 
WxTxD 1200.4 
T X D X S 0.4 
D X S X G 24.6 
s xWxT 91.1 
S X G X T 91.1 
TxDxG 40.5 
GxWxD 31.9 
D xWx s 288.0 
Residual (6) 661.6 

Total (31) 15396.0 

It is apparent that all the second order interactions except W X T X D are 
non-significant, but the latter is large. To test W X T X D, we must note that 
its components of variance are included amongst the components of variance of 
W X T, T X D, D X W, W, T, and D, and therefore the latter terms cannot 
be less than W X T X D. Of these latter terms, only the T and D main effects 
.are greater than W x T X D. Accordingly we pool the others with W X T X D 
and obtain a new estunate of the latter of 2888.4/5 = 577.7 with 5 degrees of 
freedom. Testing this against the residual of 1656.4/15 = 110.4 with 15 degrees 
of freedom, we get a variance ratio of 5.2 for n1 = 5, n 1 = 15, corresponding to 
a probability of 1%. Since T is the more prominent main effect, it would seem 
most profitable to break down the five factor analysis into two four factor analyses 
for each level ofT, as in Table 11.17. 

Examining the terms for T 1, starting from the Residual and working towards 
che to.p of the table, we find none of them significant. T 1 actually corresponds 
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to the use of the dilute solution. Under these conditions, therefore, we are at 
liberty to choose the four factors at whatever .lev~ls may be convenien~ o~ prac­
tical grounds secure in the knowledge that th1s will not have a deletenous effect 
upon the purity of the product. 

Table 11.17 
Analysis of Variance for two four factor experiments in Crystal Purification... 

Sums of Squares 
Source of Variance 

T1 Ta 

w 333.06 612.56 
s 217.56 1.56 
G 95.06 248.06 
D 45.56 2047.56 
Wx s 203.07 0.57 
S X G 333.07 22.57 
GxD 10.57 150.07 
D X S 76.57 95.07 

' 
WxD 637.57 564.07 
GxW 280.57 138.07 
WX S X G 45.55 175.55 
G X S X D 85.55 5.08 
S X D XW 430.55 10.55 
Wx G xD 27.55 7.55 
Residual 162.58 76.55 

Total 2984.44 4155.# 

Reverting to Table 11.16, it will be noted that the T main effect, when tested 
against W X T X D (all the first order interactions involving Tare non-significant) 
is significant at the 5% level, nearly at the 1% level. The mean for T 1 is lower 
than T 1, and thus for purity we should choose T 1• However, since the charge 
is only half of that for T 1 , the throughput of material through the plant will be 
only half, and it may be necessary therefore to use T 1 if at all possible. 

Reverting to Table 11.17, and examining the analysis for T 1, we find W X D 
is at the 5% level of significance, and accordingly separate analyses were made 
for each level of D, as in Table 11.18. · . -

Table 11.18 · 

Source of Variance 
Sums of Squares 

01 o. 
G 392.0 6.15 
w 0.5 1176.15 
s 60.5 36.15 
GxW 40.5 105.10 
Wx s 8.0 3.10 
S X G 24.5 3.10 
Residual 242.0 10.15 

Total 768.0 1339.90 
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For the D 1 Series, all tenns are non-significant with the possible exception 
of G, the means for G 1 and G 1 being 146 and 132 respectively. For the D 1 
series, on the other hand, the only prominent tenn is W, the means for W 1 and 
W_. being 173.8 and 149.5 respectively. 

We may recall that using T 1, with any value of D, W, S and G, the mean 
'Obtained was 118.2, so as far as purity goes we prefer T 1 . If we use T 1 however 
·we should prefer D., when we will use any value of G, W, and S and get :m averag~ 
·purity of 139. Should we need to use D 1, then we can use either G and S but 
~.it is important to use W 1, giving an average of 149.5. 

It is clear that the complicated behaviour of this system could not possibly 
!:"have been followed without the use of a factorial design. Also, the analysis of 
··nriance was absolutely necessary in order to identify those effects and interactions 
~.which were significant. It would have been quite impossible to do this by 
.qualitative inspection of the results in Table 11.15.<1 > 

(g) Incomplete Two-Factor analysis : One Factor with Replication 
In our two factor analysis (Section (c)), we have g grades of material being 

processed at t different temperatures. Suppose, now, that we make t batches all 
at the same temperature from each of the g grades. Under these circumstances, 
the first unit of Grade 1 has no more correspondence with the first unit of Grade 2 
than it has with the second unit of Grade 2, etc. 

The two-factor analysis has thus become one factor (Grades) with t replica­
-tions. This amounts to pooling the degrees of freedom and the sums of squares 
of the T main effect in Table 11.1 with the Residual. This gives us Table 11.19: 

Table 11.19 
.. 
; Source of Degrees of Components of 

Variance Freedom Variance 

G g-1 ta1g + ao 1 

·, Residual ao1 

(within G's) = g(t- 1) 

T<Jtal gt-) 

It is this type of analysis which was discussed in detail in Chapter VII 
Section (c). 

(h) Incomplete Three-Factor Analysis : Two Factors with Replication 
(i) In our complete three factor analysis we had s suppliers each supplying 

g grades of polymer which were processed at each of the t temperatures. Let 
-ns now assume that t batches were processed at the same temperature, i.e. we 
have two factors G and S, with t replications. Considering Table 11.2, we have 
-that the G X T and T X S interactions and the T main effect all do not exist. 
·The reason for the interactions mentioned disappearing is that, for example, the 
·G main effect is by definition the same for all the replications, and any irregularity 
in it is synonymous with error, for which we use the residual. We then obtain 
'Table 11.20. 

Consider the problem in which we wish to investigate a factor in a process, 
in which, say, we wish to determine its effect at three levels, F b F 1, and F 1 • 

(II An example of a seven factor experiment on a factory process will be found in R. L. 
<Cunningham and J. Ansel Anderson: "Cereal Chemistry," Vol. XX, page, 482, 1943. 
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Table 11.20 
I 

I Source of Degrees of Components of 
Variance Freedom Variance 

G (g-1) a1o + ta1
ga + tsa1~r 

s (s-1) a1o + ta 1ga + tga•., 
GxS (g-1) (s-1) a1o + ta1ga 

Residual (g-1)(s-1)(t-1)+ (t-1)+ 
(g-1)(t-1) + (s-1) (t-1) 

a1o 

=gs(t-1) I 
1 

I Total gst-1 

Suppose that the material at one stage passes through a particular process wh.icD­
we know or suspect may give rise to variability. Then it will be necessary fo. 
eliminate the errors due to this other factor. 

The experimental design below would satisfy the requirements. . A com­
parison of the means of the F's is valid since the disturbing effect of the machines. 
MJJ M1 and M1 is eliminated. The same experiment also gives us a valid com­
parison of the three machines, M1, M 1 and M 1• The data from such an experiment 
would be analysed by the analysis of variance by rows and columns, previo~ 
discussed in Chapter VII (e) and Section (c) of the present chapter. 

Machine 

M1 M, M, 

Fl 
Fa 
F, 

This experimental design has been presented as a means of eliminating eri'Or$ 

due to a particular factor, but of course it is exactly the same as for a two factor 
experiment, i.e. we might be equally interested in both the factors. 

As the design stands we cannot determine whether there is any interactiOD 
between the terms, for though we can compare, say {M1-M1) for F = F:a with. 
(M1- M1) for F = F1, our comparison is pointless because we have no estimate 
of the error of either term and hence of their difference. Without the estimate oE 
the error we cannot estimate the significance of any apparent difference.. 

We would get an estimate of error if we had repeated each experiment. whea 
the design would be called a row and column or two factor analysis with replicatiou... 

Consider the data in the table below. 

N1 Na Totals 

Dl -12 -5 27 27 37 
D, -29 -22 34 24 7 

Totals -68 112 44 
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It refers to a two factor experiment N X D, each factor at two levels and 
there are two observations for each point. We proceed as follows :- ' 

~1) F?r:m the total of each cell,. s9uar~ ~e;;e totals, sum these squares, and 
diVIde by the number of ongmal mdlVlduals per cell, i.e. 

[(-12 -5)1 + (-29 -22)1 + (27 + 27)1 + (34 + 24)1]/2 = 4585 
!(2) Form .t~e total for each level o~ D •. s9uare these totals, sum these squares, 

and diVIde by the number of md1VIduals per total beina squared i.e. 
(371 + 71)/4 = 354.5 .. ' 

•{3) Similarly for each level of N, i.e. 
[(-68)1 + 1122]/4 = 4292 

•(4) Form the grand total, square it and divide by the grand number of 
individuals, i.e. 

441/8 = 242. 
\{5) Square every individual and sum these squares, i.e. 

(-12)1 + (-5)1 + (27)1 + ... + 241 = 4684 
'The table of the analysis of variance is as below : 

Degrees of Mean 
Source of Variance Sums of Squares Freedom Squares Components of Variance 

Jletween Rows (D) (2) - (4) - 112.5 Dt-1 ==::~I 112.5 n 1n3a 1
1 + n8a 11

1 +a~ 
Between Columna (N) (3)- (4) - 4050.0 n 1 -r -r 4050.0 n 1n1a 2

1 + n 3a 11
1 +a~ 

ltmr lC Column 180.5 (n1-r)(n2-r) z8o.5 
n3a 12

1 +a~ interaction (D lC N) =I 
llesidual (5)- <•> - 99.0 n 1n 1(n8 -1) 24·75 a• =4 0 

Total (5)- (4) = 4442.0 DtDSDS -I 
=7 

n1 rows, n1 columns, n3 replications. 
o1

1 =variance due to differences between rows. 
o1

1 = variance due to differences between columns. 
a11

1 = row X column interaction. 
a: = residual error. 

The Sum of Squares for the Row X Column Interaction is obtained by 
· subtracting the total of the Sums of Squares for the other three components from 

the Total Sum of Squares, (5)- (4). 
In general, in testing the mean squares for significance, the row mean square 

and the column mean square are tested against the row X column interaction, 
for if they are significantly greater than the interaction, this can only be so if a1

1 

and ·a2
1 respectively are greater than zero. Similarly the existence of the interaction 

can be checked by comparing the interaction mean square with the residual. 
Here we test the Interaction against the Residual, getting a variance ratio 

of 180.5/24.75 = 7.3 for degrees of freedom n 1 = 1, n 2 = 4, this lying close to 
the 5% level of significance. 

Accordingly we should conclude that D and N interact, and we should inspect 
the data broken down into one factor experiments. We can compare D 1 with 
D 1 at each level of N, using the Student t test to compare the two means for 
D. We find that the difference between D 1 and D 2 is not significant for N 1 

but is quite considerable for N 1 • Similarly we can compare the difference between 
Na and N 1 for each level of D, when we find that the difference between the two 
levels of N is greater for D 1 than for D 1 • 

It will be noted that this two factor analysis with replication is really a three 
factor analysis with all the terms involving the third factor R, i.e. the R main 
effect and the R x N and R X D interactions, pooled with the residual. 
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(i) Doubly Incomplete Three Factor Analysis : One Factor with 
Double Order Replication 

(i) In the previous example, we had s suppliers each supplying g different 
grades of polymer, and from these t batches were processed, all at the same tem­
perature. Now suppose that the s suppliers, instead of each supplying g different 
grades of polymer, supplied g nominally identical consignments of polymer, all 
of the same grade. The system then has the structure given by the sketch below : 

Sup~lier 1 Supflier 2 Supflier 3 

~ ! ! f, !, !, . . .. l· ~· 1
2· ..... . I 

Cons1gnment 1 
I 

I I I 
Batch 1 2 3 •.••••.• 
Each consignment is made up of a number of batches ; these are only indicated 
for consignment 1 of supplier 1, but should be understood for all the consignments. 
Since the consignments are nominally of similar grade, there is no point in com­
paring the mean of all the 1s, 1, 1', 1' etc. with the mean of all the 2s, 2, 2', 2' 
etc. The different consignments 1, 2, 3, etc. from Supplier 1 may differ among 
themselves, however, and similarly for the other suppliers. We can use the 
consistency of the batches processed from each consignment as a measure of 
error against which the difference between consignments can be compared. It 
may be noted that should the first batch in all instances be processed at tem­
perature t 1, the second batch in all instances at another temperature t,, etc., then 
we have an incomplete two factor analysis as in the previous section, the factors 
being supplier (S) and temperature (R). 

The variance can then be analysed into the components given in Table 11.21. 
Table 11.20 is derived from Table 11.21 by pooling the sums of squares and degrees 
of freedom of the G and G X S terms. The component of variance corresponding 
to the G effect in Table 11.21 is more of the nature of an interaction than a main 
effect, but we will symbolically use G (rather than g) as a suffix to the component 
of variance to denote its rather different character. 

Table 11.21 

Source of Degrees of Components of 
Variance Freedom Variance 

Suppliers (S) (s -1) Go1 + tGG1 + tgG1S 
Between Consign- (g- 1) + (g- 1) ( s- 1) Go1 + taa• 

ments (G) = s(g-1) 
Within consignments gs(t-1) Go1 

(Residual) 

Total gst-1 

(ii) A certain type of plant for concentrating dilute acid was subject to failure 
thro'!gh corrosion. The figure~ below in ~able 11.22 representthe quantity of acid 
obtamed from a number of umts before failure. From the mass of data 7 units 
were selected from each of 9 factories, and the 9 factories fell naturally into three 
groups according to the type of weak acid they were concentrating. 

To analyse this data we form the following terms:-
(1) Square every individual and sum all the squares, i.e. 4{)• + 49• + 25• 

+ ... + ... + ... + ... + ... + 1221 + 1131 = 339,900 
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Table 11.22 

Type of 
Weak. Acid Factory Throughputs Totals 

A 1 40 49 25 30 32 25 22 223 
2 40 46 41 30 so 39 31 277 
3 38 38 32 33 42 45 44 272 

B 4 16 so 40 54 80 64 59 363 
s 49 35 70 64 23 70 88 399 
6 68 20 66 36 34 45 40 309 

c 7 90 90 104 62 78 88 93 605 
8 84 93 73 80 210 137 89 766 
9 152 70 122 143 72 122 113 794 

(2) Obtain the total for each block (factory), square these totals, sum these 
squares, and divide by the number of individuals in each block, i.e. (223• + 
2771 + ... + 7941)/7 = 310,016 

(3) Obtain the total for each super-block (type of weak acid), square these 
totals, sum these squares and divide by the number of individuals in each su_per­
block, i.e. [(223 + 277 + 272)1 + (363 + 399 + 309)1 + (605 + 766 + 794)11/21 
= 306,202 

(4) Obtain the grand total for all individuals, square it, and divide by the 
grand number of individuals, i.e. (223 + 277 + 272 + 363 + ... + ... + ... 
+ 794)1/63 = 254,985 

From these terms we form the analysis of variance below in Table 11.23. 

Table 11.23 

Source of Degrees of Sums of Mean Components of 
Variance Freedom Squares Squares Variance 

Between super- n1-1 = 2 (3)- (4) 25,609 n1 n1 ai + n1 cr.+~ 
blocks (type of = 51,217 
weak acid) 

Between blocks n1 (n1 - 1) (2)- (3) 636 na cr.+~ 
(Factories) =6 = 3,814 
within super-
blocks 

Residual: n1n1 (n1 -1) (1)-(2) 553 ~ 
Within blocks =54 = 29,884 
(within 
factories) 

Total .. n1n.n.-1 (1)- (4) 
=62 = 84,915 
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n1 = number of super-blocks 

n1 = number of blocks within a super-block. 

n1 = number of individuals within a block. 

a1 =variance due to differences between super-blocks. 
1 

a1 = variance due to differences between blocks within super-blocks. 
I 

a1 = variance due to differences between individuals within blocks. 
I 

From the last column, "Components of Variance," we see that a: can be greater 
than zero only if n1 a1 + a1 is significantly greater than a:. Thus we compare 
the Between Blocks Mean Square with the Within Blocks Mean Square. Similarly, 
in general we test the Super-blocks Mean Square against the Between B~ocks 
(within Super-blocks) Mean Square, for if it is significantly greater than the 
latter this can only be so because a: is greater than zero. 

Here we see that the Between Blocks Mean Square is not significantly greater 
than the Residual, so we can assume that a:= 0 and pool the two sets of Sums 
of Squares and Degrees of Freedom to get a new Residual of 33,698/60 = 561.6 
with 60 degrees of freedom. 

Testing the Between Super-blocks Mean Square against this residual we 
have a variance ratio of 25,609/561.6 = 45.6 for degrees of freedom n 1 = 2, 
n1 = 60. For these degrees of freedom and the 0.1% level of significance the 
variance ratio needs to be not less than 7.8. It follows that the Between Super­
blocks Mean Square is very much more significant than the 0.1% level. Solving 
the equations 3 X 7 a1

1 + a1
1 = 25,609, a1

1 = 562, (we have shown a1
1 = 0) we 

obtain the value 1192 for a1
1• We thus get • 

a 1
1 = 1192 

a 8
1 = 0 

a 1
1 = 562 

The value of this analysis is that it shows that differences between factories 
within an acid group are not detectable, and that the larger part of the variability 
in throughput achieved is due to differences between acid groups. 

The use of the first point is that it enables us to pool data for all factories within 
an acid group for any detailed comparison: e.g., for comparisons between 
foundries, in some instances there are 10 pots of foundry A and 1 pot of foundry 
B at one factory, 1 pot of foundry A and 10 pots from foundry C at a second 
factory, and so on. So long as we are confined to comparisons within a factory, 
our estimates of foundry differences will be very inaccurate. Having proved that 
we can pool the data for all factories within an acid group, our comparisons will 
be much more useful. 

The use of the second point is that it throws great emphasis upon the 
importance of the type of acid being concentrated. It can only be followed up 
using orthodox chemical considerations, of course. 

0) Incomplete Four-Factor Analysis : Three Factors with Replication 
(i) In our complete four-factor analysis we had s suppliers working from 

each of r sources of raw material and providing g grades of polymer which were 
worked at each of t temperatures. If, instead, we work t batches all at the same 
temperature, we then have a three factor analysis with replication, the three 
factors being grade of polymer (G), supplier (S) and source of raw material (R). 

We derive the analysis of variance for this situation from the complete four 
factor analysis given in Table 11.8. We have the T main effect, the first order 
interactions involving T and the second order interactions involving T, all non-
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existent. We can therefore pool their degrees of freedom and sums of squares 
with the residual, and we obtain Table 11.24 :-

Table 11.24 

I 
Source of Degrees of Components of 
Variance Freedom Variance 

G (g-1) ao1 + ta1srg + tsa1
111 + 

rta1
11s + tsra•a 

Is (s-1) ao1 + ta1arg + gta1sr + 
I rta1ea + gtra1a 

R {r-1) a1o + ta1arg + gta1ar + 
GxS (g-1) (s-1) 

tsa1rg + gtsa1r 

a1o + ta1srg + rta1gs 
SxR (s-1) (r-1) ao1 + ta1srg + gta1sr 
RxG (r-1) (g-1) ao1 + ta1srg + tsa1ry 
GxSxR (g-1)(s-1)(r-1) a1o + ta1srg 

Residual (g-1) (t-1) (r-1) (s-1) ao1 

+ (r-1) (g-1) (t-1) 
+ (t-1) (s-1) (r-1) 
+ (g-1) (t-'-1)(s-1) 
+ (t-1)(r-1) + (t-1)(s-1) 
+ (g-1) (t-1) + (t-1) 
=gsr(t-1) 

Total gsrt-1 

(ii) Suppose we carry out a three factor experiment, and replicate each point. 
This could be regarded as a four factor experiment, the fourth factor being the 
order of replication and when the complete analysis of variance is obtained pooling 
with the residual all factors involving A, viz., if N, D, and Rare the three main 
factors, pooling A, A X N, A X D, A X R, A X N X D, A X D X R, and 
A X R X N. 

The arithmetic is lighter, however, if we total over all levels of A, i.e. sum 
over all replications, for each value of N, D, and R, thus getting a three factor 
table in which each figure is the sum of the replications. 

Consider the data in the table below :-

Nt N. 

Dt n. Dt n. 
Rt Rz Rt R• Rt R, Rt R. 

At -3 -1 -8 -6 8 8 10 7 
A a -7 -6 -3 -5 -6 1 0 -3 

S(A) -10 -7 r-11 e-ll 2 9 10 4 

_ The row S(A) is the sum of A1 and Aa for each value of N, D, and R. The 
data in this row is subjected to the same three factor analysis previously described, 
except for the following difference : 
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(1) Whenever we sum a set of squares, we divide by the number of replica­
tions, here 2, in addition to the other divisors. 

Thus one of our three two-way tables is 

D1 n. Totals 

Nl -17 -22 -39 
Ns 11 14 25 

Totals -6 -8 -14 

The correcting factor is (-14)1 /8 X 2 = 12.25 
The sum of squares for N is 

((-39)1 + (25)2]/4 X 2- 12.25 = 256.00 
The sum of squares for D is 

((--6)1 + (-82)/4 X 2- 12.25 = 0.25 
The N X D interaction is given by 

((-17) 1 + (-22)1 + (11)1 + (141)]/2 X 2- 12.25- 256.00- 0.25 
= 4.00 

The Sums of Squares of the R, R X D, and R X N effects are obtained 
similarly. 

(2) An independent estimate of the Residual is obtained as the difference 
between the sum of the squares of all the original individuals and (the sum of 
the squares of the values for S(A) divided by the number of replications, here 2), 
i.e. 

(-3)1 + (-1)1 + ... (-3)1 - ((-10)1 + (-7)1 + ... 41)/2 = 256 
(3) The Total Sum of Squares is given by the difference between the sum of 

the squares of the original individuals and correcting factor, i.e. 
(-3)1 + (-1)1 + ... + (-3)1 -12.25 = 539.75 

( 4) The N X D X R Interaction Sum of Squares is obtained as the difference 
between the Total Sum of Squares and the sum of all the other terms. 

The results of this analysis are as below : 

Source of Sums of Mean 
Variance Squar~s Degrees of Freedom Squares 

N 256.00 n-1 = 1 256.00 
D 0.25 d-1 = 1 0.25 
R 1.00 r-1 = 1 1.00 
NxD '4.00 (n -1)(d -1) = 1 4.00 
DxR 16.00 (d- 1) (r- 1) = 1 16.00 
RxN 0.25 (r- 1) (n- 1) = 1 0.25 
NxDxR 6.25 (n- 1) (d- 1) (r- 1) = 1 6.25 
Residual 256.00 n d r ( a-1) = 8 32.00 

Total 539.75 rn d a-1 = 15 

The N X D X R interaction is tested against the Residual, and is obviously 
not significant. In fact, all the terms except the N main effect are not significant 
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and can be pooled to give a new residual of 283.75/14 = 20.2: theN main effect 
then gives a variance ratio of 256.00/20.2 = 12.7 with degrees of freedom n1 = 1, 
n1 = 14, this being more significant than the 1% level of significance. We can 
then calculate the means for N 1 and N 1 as- 4.875 and 3.125 respectively. 

It may have been in this example that the second replication (series R1) may 
be at a different general level from the first (series R1), due to an adjustment of 
the plant between the two series, a new batch of raw material, etc. The variance 
due to such an effect will be included in the Residual, and if large will give us an ' 
inflated estimate of the Residual, thus lowering the accuracy of our experiment. 

Accordingly we may take out from the Residual the Sum of Squares corres­
ponding to the replication by forming the total for series R1 = 15 and for series 
R1 = (-29) and then calculating 

[15• + (-29)1]/8 -12.25 = 121.00 

Thus the Sum of Squares for the Residual is now 256.00 - 121.00 = 135.00 and 
its Degrees of Freedom are 8-1 = 7 giving a Mean Square of 19.29. 

In this case, therefore, we have gained considerably by taking out the series 
Sum of Squares, and we have increased the likelihood of detecting significance 
in the Terms very considerably. 

(k) Doubly Incomplete Four Factor Analysis : Two Factors with 
Double Order Replication 

(i) Let us now suppose that in the previous example the suppliers, instead 
pf working to product g different grades, actually produced g nominally identical 
grades. We still process t batches from each of these also at the same temperature 
as before. 

The variance can be analysed now into between source of raw material (R), 
between suppliers (S), and the R X S interaction, and the two further components 
shown below in Table 11.25. ·The degrees of freedom and sums of squares for the 
new G term are obtained by pooling them together with the G X S, S X R and 
G X S X R terms. The Residual is the same as in Table 11.24. 

Table 11.25 

Source of Variance Degrees of Freedom Components of Variance 

R (r-r as o + taB G + gtaB n + gtsO"I r 

s (s-r a2 o + tal G + gtal n + llti'O'I • 

RxS (r-1)(s-1) aBo + taB G + gtal n 
Between G ~-~+~-~~-~+~-~~-n aBO+ tab Wiu.in R and S + ~ - 1) r- 1) (a- 1) = n ~ - I) 
Witkin G (Residual) gsr(t-1) as 

0 

Total gsrt-1 

(ii) The purpose of this experiment was to determine whether the position of a 
scroll of nitrated paper in a stabilising vat had any effect upon its nitrogen content. 
Two scrolls (S) were stabilised in each of two positions (P) and samples were 
taken from the top and bottom of each scroll (F). Duplicate determinations of 
the nitrogen content were performed on each of these eight samples. 
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At first sight this would appear to fall in the class of three factors (P X S X F) 
with replication, the class which we discussed in the previous section. 

Position Scroll Fraction 
of Scroll Number of Scroll %Nitrogen 

pl sl Fl 12.20, 12.20 
Fa 12.26, 12.26 

s. Ft 12.10, 12.10 
Fa 12.39, 12.38 

P. S't Fl 12.31, 12.30 
F. 12.44, 12.44 

S'a Ft 12.23, 12.21 
F. 12.37, 12.35 

However, a moment's reflection will show that there is no true ono-to-one 
correspondence between S1 and S' 1, or between S1 and S' 1• S1 has no more 
association with S' 1 than with S' 1• It is thus evident that the factor S is really 
a form of replication. 

The second point is that the duplication of analysis does not constitute a 
genuine replication, i.e. a genuine repeat of the whole experiment (to perform 
the latter we should have to use different scrolls in a different vat). 

To carry out the analysis of variance we might carry out the full analysis, 
and then pool together the degrees of freedom and sums of squares on the lines 
indicated previously. However, it is less trouble to evaluate the relevant terms 
directly. In the calculation below the zero used is 12.20 and the scale has been 
multiplied by 100. 

(1) We need the square of the grand total divided by the number of individuals 
in that total (the usual correcting factor) : 

1341/16 = 1122.25 
(2) We need the two-way table for P and F. 

Fa F. 

pl -20 49 29 
P. 25 80 lOS 

s 129 134 

From this table the P, F, and P X F sums of squares are obtained in the 
usual manner :-

p = (291 + 1051)/8- 1122.25 = 361.00 
F = (51 + 1291)/8 -1122.25 = 961.00 

P x F = (2o• + 49• + 25• + 80•)/4- 1122.2s- 36t.oo- 96t.oo = 12.zs 
{3) The sum of squares between analyses is 

(O• + O• + 6• + ... + 151
) - [(0 + 0)1 + (6 + 6)1 + o o .]/2 = 5.00 

(4) The total sum of squares is 
co• + o• + 6• - .••• + t5•) -1122.2s = 1731.75 
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(5) The sum of squares for Error is obtained by difference. 
The resulting table is below : 

Sums of Degrees of Mean 
Sources of Variance Squares Freedom Square 

Between position in vat (P) 361.00 1 361.00 
Between fraction of scroll (F) 961.00 1 961.00 
FxP 12.25 1 12.25 
Error 392.50 4 98.12 
Between analyses 5.00 8 0.62 

Total 1731.75 15 

The F X P interaction, tested against the Error is clearly non-significant; 
we can pool it with the Error. The P main effect, the principal object of the 
experiment, can then be tested against this Error. The F main effect is not of 
direct interest, but can also be tested against the Error. It was advisable to have 
included F in the experiment, however, as it was quite possible that P would 
interact with it. 

(1) Trebly Incomplete Four Factor Analysis : One Factor with Triple 
Order Replication 

(i) In the previous example, the Factor R represented source of raw material. 
Suppose, on the contrary, that it represented operator in the factory. Then 
obviously, there is· no point in comparing the first operator in all the factories 
with the second operator in all the factories, and we are only interested in this 
respect in the variation between the operators within a factory. 

The sums of squares and degrees of freedom for the new R term are given 
by pooling them for Rand R X S in Table 11.25, thus giving us Table 11.26. 

Table 11.26 

Source of Degrees of Components of 
Variance Freedom Variance 

s (s-1) ao 1+ ta 2G + gta 2a + gtra 2s 
Between R within S (r-1)+(r-1)(s-1) ao2 + ta 8G + gta 2R 

=s(r-1) 
Between G within R rs (g-1) ao2 + ta 2G 

Within G (Residual) gsr (t.-1) a2o 

Total gsr (t-1) 

The system has the structure indicated below, where there are similar 
assemblies for subsequent super-blocks. 

I 
Block 1 

Super-block 1 
I 

Block 2 
I I I I 

Sub-block 1 Sub-block 2 Sub-block 3 Sub-block 4 
I I I I I I I I 

11 11 18 1
4 

1
6 

1
6 

1
7 

18 

The number into which the larger units are split can of course be anything from 
2 upwards. 
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(ii) Consider the data in the table below. We have an allegedly homogeneous 
batch of material contained in vats V 1 to V 8• The contents of each vat are wrung 
in a centrifuge and bagged. We select two bags B1 and B1 from each vatload 
and take two samples 8 1 and 8 1 from each bag. On each sample we perform 
an analysis for percentage of an ingredient, in duplicate, A1 and A1• 

vt Vz Va v, Vs 
I v, 

Bl Bz Bl Ba Bl Ba Bl Ba Bt Ba Bl Ba ----------- 1-;:---

··~ ··~ s~~~~ sl Sz sl Sz sl Sz sl Sz sl Sz sl Sa sl Sz sl Sa ---- ----
Al •. 29 28 29 2l 29 2l 26 24 32 29 25 30 29 30 28 30 30 27 ~ 26 29 31 29 29 
Aa •. 2927292 29 2 27 25 30 30 27 31 29 31 28 28 29 27 26 31 32 30 31 

In carrying out the analysis of variance it lightens tlie arithmetic to take an 
arbitrary zero, e.g. by subtracting 20 from every observation. We form terms 

(1) Square every individual and sum the squares, i.e. 
91 + 81 + 91 + 7a + ... + 10a + 11 1 = 3636 

(2) Obtain the total for each sub-block, square the sub-block totals, sum 
these squares, and divide by the number of individuals per sub-block, i.e. 
[(9 + 9)1 + (8 + 7}1 + (9 + 9}1 + ... + (9 + 10}1 + (9 + 11)1]/2 
= 3616 

(3) Obtain the totals for each block, square the block totals, sum these squares, 
and divide by the number of individuals per block, i.e. 
[(9 + 9 + 8 + 7} 1 + (9 + 7 + 9 + 8)1 + ... + (9 + 10 + 9 + 11)1]/4 
= 3570.5 

(4) Obtain the totals for each super-block, square the super-block totals, 
sum these squares, and divide by the number of individuals in each 
super-block, i.e. 
(66• + 55• + u• ...... + 82•)18 = 3534.25 

(5) Obtain the grand total for all individuals, square it, and divide by the 
grand number of individuals, i.e. 
408 1/48 = 3468 

From these terms we form the analysis of variance in Table 11.27 below. 

Table 11.27 

Degrees of Sum of Mean Components of Variance 
Source of Variance Freedom Squares Squares 

Between Super-blocks nl-1- 5 (4)- <s> 13-25 n 1n 3n 1a 1
1 + n 1n,a1

1 + n 1a18 +a,• 
(vats) ~ 66.25 

Between Blocks within 
Super-Blocks n 1(n1 - 1)- 6 (3)- (4) 6.04 n 3n 1a 1

1 + n 1a 8
1 +a4

1 
(Bags within vats) = 36.25 
Between Sub-blocks 
within Blocks (Samples n 1n 2(n3 - 1) (z)- (3) 3-79 n 1a 3

1 + a,• within Bags) -u = 45-50 
Between Individuals 
within Sub-block• n 1n 2n 3(n4 - 1) (1) -(z) 0.833 a,• 
~Analyses within -24 I:= :zo.oo 

amples) 

Total n 1n2n3n•- 1 (1)- IS) 
-47 - 168.oo 

I 

n1 = number of super-blocks = 6 
n1 = number of blocks within a super-block = 2 
na = number of sub-blocks within a block = 2 
n, = number of individuals within a sub-block = 2 

a1
1

, a.•, aa1
, a,• are respectively the variances due to the four terms listed 

under the heading "Source of Variance." 
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Proceeding to the analysis of Table 11.27, the Between Samples with Bags 
Mean Square, tested against the Between Analyses within Sample Mean Square 
(to test for the existence of a1 ll-see the Components of Variance), gives a 
variance ratio of 3.79/0.833 = 4.6 for degrees of freedom n1 = 12, n1 = 24: 
this is more significant than the 0.1% level of significance. 

To test for the existence of a1
2, we test the Between Bags within Vats Mean 

Square against the Between Samples within Bags Mean Square. The variance 
ratio is 6.04/3.79 = 1.6 for degrees of freedom n1 = 6, n 1 = 12. This is less 
eignificant than the 20% level, so we can take it that a1

1 does not exist. We 
pool the two terms to get a new estimate of (n,a1

1 + a,1) of 81.75/18 = 4.53 
with 18 degrees of freedom. 

To test for the existence of a 1
1, we test the Between Vats Mean Square 

against the Between Samples within Bags Mean Square. We have shown that 
cr1

1 does not exist, so we are testing (nan1n,a1
1 + n,a1

1 + a,•) against (n,a1 • + 
cr,•). The variance ratio is 13.25/4.53 = 2.93 with degrees of freedom n1 = 5, 
n1 = 18. This is more significant than the 5% level of significance. 

We can now calculate a1
1 as (13.25- 4.53)/8 = 1.09 and a1

1 as (4.53- 0.83) 
/2 = 1.85. 

Our final conclusion thus is that the variability can be accounted for by the 
·terms 

a 1
1 = 1.09 

a 1
8 = 0.00 

a 1
1 = 1.85 

a,• = 0.83 
We see that there is an appreciable variability between vats, the variability between 
bags from a given vat is not large enough to be detected, the variability between 
samples within a given bag is quite large, in fact the most important component, 
and the variability between duplicate analyses on· a given sample is quite appre­
ciable. The total variance of a single analysis is thus (1.09 + 0.00 + 1.85 + 0.83) 
=3.77. 

It is further clear from this analysis of variance that the allegedly homogeneous 
batch is significantly inhomogeneous, and that the larger part of this inhomo­
genity arises in bagging the material ( a1

1 = 1.85). Each vat is apparently 
homogeneous (a1

1 = 0.00), but there is an appreciable difference between vats 
(a1

11 = 1.09). 

(m) An Incomplete Five Factor Analysis 
When we come to five factor analyses the number of different types of incom­

plete analysis is considerable. We will discuss only one type<'l, but from such a 
viewpoint that it is hoped that the general method of treatment will be clear. 

The table below gives the data of an experiment on a process using a cellulose 
derivative. The final product was subject to fluctuations in a certain property, 
and it was required to find out at what stages the variability was arising. The 
cellulose derivative reaches the process in large homogeneous blends, and from 
these a number of batches are mixed. Normally the whole of each mix is put 
into a single truck and then dried, after which it is possible to observe the quality 
of the product. Under this procedure it is impossible to disentangle the effects 
of mixing from those of drying : to do this requires that a truck should contain 
parts of more than one mix (in order to compare mixes independently of their 
drying) and that a mix should be dried in more than one truck (in order to compare 

(')A complicated example dealing with glass manufacture is described by C. E. Gould 
and W. M. Hampton: Supplement to Journal of the Royal Statistical Society, Vol. III, 
page 137, 1936. See particularly E. S. Pearson's contribution to the discussion, page 156. 
This example is also discussed by Tippett, "Methods of Statistics,'' Section 10, 31, and 
by Kendall, "The Advanced Theory of Statistics,'' Vol. II, page 202, where he treats it 
as a complete analysis. 
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dryings independently ?f ~he material of the mi."l:).. For practic~ reasons _it was 
impossible to split a uux mt? more than ~wo p~ruo~. Accordingly a uux was 
made and split into two port1ons, one porti:>n gomg mto one truck and the other 
into another truck. The next mix was also split and the two portions filled up 
the previous two trucks. A second pair of mixes taken from the same blend of 
the cellulose derivative were similarly tested. The whole was repeated on three 
subsequent blends. On every individual (that is, material from a partici.Ilar truck 
and mix from a particular pair from a particular blend) a duplicate determination 
of qualitv was made. 

Blend Pair Miz Mix Pair Blend 
Numben Numben Numben Totale Totals Totals 

I I I II 16 Z7 17 16 33 6o 
z 0 0 0 14 13 Z7 Z7 

27 6o 87 

z 3 12 IZ Z4 10 8 J8 42 
4 6 6 12 I 3 4 16 

36 z:t s8 145 

2 3 g 9 9 18 19 18 37 55 
3 I 4 6 6 IZ 16 ----

Z2 49 71 

4 i 8 
X 

17 ~a 13 Z7 44 
6 14 7 13 27 

31 40 71 142 

' 5 9 IS 17 3Z 22 Zl 43 75 
10 Zl zo 41 13 13 z6 67 

73 69 142 

6 II 18 18 36 19 21 40 76 
JZ 6 6 IZ 6 4 10 zz 

48 so 98 240 

4 7 13 II 10 21 3 z 5 z6 
14 5 6 II I 0 I 12 

32 6 38 

8 15 8 8 16 6 6 IZ z8 
16 4 4 8 7 8 IS 23 

Z4 Z7 51 89 

In the table the first two figures 11 and 16 are the duplicate determinations 
of quality on Mix 1 Pair 1 Blend 1, first truck. The 27 is the total of 11 and 16. 
The next pair of figures 17 and 16 are the determinations on the.second truck of 
mix 1, and the 33 following is their total. The last figure in the row is the mix 
total. The second row is for the second mix and is precisely identical. The 
third row has 27 as the total for the first truck, 60 as the total for the second truck, 
and 87 as the pair total. The same follows for the second pair for blend 1, with 
the addition of 145 as the blend total. 

Prima facie this is a five factor analysis, the factors being Blends (B), Pairs (P), 
Mixes (M), Trucks (T) and Determination of Quality (A). It is immediately 
apparent that it is not a complete five factor analysis, however, as A is obviously 
a simple replication: there is no distinction between all the first determinations 
as compared with the second. Further, there is nothing special to distinguish 
the first pairs from the second pairs, so the pair main effect P will not exist and 
we will have a Between Pairs within Blends effect formed by pooling the sums 
of squares and degrees of freedom of the P and B X P terms. 

We will proceed to calculate this term and the B main effect. The correcting 
factor, the grand total over the grand number of individuals, is 

6161/64 = 5929 
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The Blend main effect is of course given by the blend totals 
(145 1 + 1421 + 2401 + 89 8)/16- 5929 = 740.37 

The Between Pairs within Blends term is given directly by squaring the pair 
totals and dividing by the number of individuals therein, and subtracting the 
correcting factor and the Blend sum of squares, i.e. 

(871 + 581 + ... + 51 1)/8- 5929- 740.37 = 184.13 
We would of course get the same result if we formed a B X P table, calculated 
the B, P, and B X P (residual) and then pooled P with B X P. 

We now come to consider theM effect. There can be no M main effect, 
as the first mix in all pairs are not systematically distinguished from the second 
mixes: we therefore have that am1 = 0. Further theM effect is only of interest 
within a given pair, which is within a given blend: tlus term is ambp1, and amb1 

and amp1 are both zero. If we strike out am1, amb1 and amp1 from the components 
of variance of the M, M X B, and M X P mean squares, we find we have in each 
case left as the components of variance 

aa1 + aa1mtbP + ata1mbp 
which is the same as for the M X B X P mean square. We therefore pool these 
four terms, M, M X B, M X P, and M X P X B, and call the resulting term 
"Between Mixes within Pairs and Blends." The pooled degrees of freedom are 

(m-1) + (m-1) (b-1) + (m-1) (p-1) + (m-1)(p-1) (n-1) 
= bp(m-1). 

It is clear that this is a reasonable answer: looking at it in a rather different way, 
each pair of mixes contribute (m -1) degrees of freedom, and there are bp pairs, 
so the total is bp(m - 1 ). 

To calculate this pooled M X B X P term we need a M X B X P table, i.e. 
a table formed by totalling over A and T. Such a table is already formed in the 
column headed "Mix Totals," 60, 27, 4, 16, 55, etc. The total sum of squares 
for this table is · 

(601 + 271 + 41 + ... + 231)/4- 5929 = 1771.5 
To obtain our pooled M X B X P term we could calculate in full M, M X B, 
B X P, M X B X P and then pool them. We may note, however, that the 
Total of an M X B X P table is made up of these terms plus B, P, and B X P. 
These latter we already have, so the pooled M X B X P term is very easily obtained 
as 

1771.5-740.37-184.13 = 847.00 
Its degrees of freedom are 

bp(m- 1) = 4 X 2 (2- 1) = 8 
The T term is obtained in exactly the same way as the M term. We require 

the term formed by pooling T, T X B, T X P, and T X B X P, so we work from 
the T X B X P table formed by totalling over A and M. The total sum of 
squares for this table is 

. (271 + 601 + 361 + 221 + 221 + ... + 271)/4- 5929.0 = 1274.5 
From this we subtract the sums of squares of B, P, and B X P as before, and 
we obtain as the sum of squares for the B X P X T term 

1274.5 -740.37- 184.13 = 350.00 
The degrees of freedom are 

bp(t-1) = 4 X 2 (2-1) = 8. 

We now want the M X T interaction. As for M and T, this only exists 
within Pairs and Blends, so we pool M X T with M X T X B, M X T X P 
and M x T X B x P. We therefore work from the M X T X B X P table; 
i.e. the t~ble formed by totalling over A. The total sum of squares for this table is 

(27• + 6o• + o• + 21• + 24• + ... + 15•)12- 5929.0 = 2316.oo 
To obtain the sum of squares for our pooled M X T X B X P term we can 
subtract from this total all the other terms arising in an M X T X B X P table. 
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These are 
(a) B and B X P: these we have as 740.37 + 184.13. . 
(b) M, M X B, M X P and M X B X P: ~his we have calculated as 847.00 
(c) T, T X B, T x P, and T X B X P: this we have calculated as 350.00. 

The sum of squares is thus 
2316.00-740.37-184.13-847.00-350.00 = 194.50 ' 

Its degrees of freedom are 1 

(m-1) (t-1) + (m-1) (t-1) (b-1) + (m-l)(t-1) (p-1) 
+ (m -1) (t -1) (p -1) (b- 1) 
=bp(m-1)(t-1) 
= 4 X 2(2-1}(2-1) 
=8. 

The final term is the Between Analyses which is 
cu• + 16• + 17• + 16• + o• + ... 8•)-(27• + 33• + o• + ... + 15•)/2 
= 8278- 8245 = 33.00 . 
The total sum of squares is the usual 

(11• + 161 + ... + 81)- 5929 = 2349.00 
We can now enter all these terms into a table of analysis of variances. 

Mean Squares of 
Sums of Degrees Mean Source of Complete An';!ria 

Variance being Pool Squares of Freedom Squaes Components of Variance 

I I I 
Between B 740·37 3 246·79 a. + aamtbp + ama tbp + 

Blenda I I I 
atambp + amtabp + amtpab 

I I I 
Between Pain p 184.13 4 46·03 a. +aamtbp + ama tbp + 
within Blends PxB I I 

~ mbp t amtabp 
I 

Between Trucks T 350.00 8 43·75 a. + aamtbp + amatbp 
within Pain TxB 
and Blenda TxP 

TxBxP 
I I I 

Between Mixes M 847·00 8 105.87 a. + aamtbp + atambp 
within Pain MxB 
and Blenda M xP 

M xB ><P I I 
Mix x Truck M><T 194-50 8 24·31 a. + aa mtbp Interaction MxTxB 
within Pain MxTxP 
and Blenda M><T><B><P 
Between 33-00 3Z 1.03 a I 
Analyses a 

Total :&349·00 63 

The appropriate tests of significance can be worked out from the components 
of variance. It may be noted, however, that if both the Between Mixes and 
Between Trucks terms are significant when tested against the Mix X Truck 
interaction, i.e. if both o!b. and cr.b. are greater than zero, then there is no 
valid test for the Between Pairs Mean Square This circumstance is similar to 
that arising in Table 21 (Chapter XI (d)). · 

The Between Trucks Mean Square is not significant, but it is probably worth 
while calculating its component of variance. We obtain 

aa1 = 1.03 
CJmtbP1 = 11.64 
CJmbp1 = 15.40 
Gtpbl = 4.86 
Gbp1 = 0.00 

CJb 1 = 10.05 
It is clear that the origins of variability are rather widespread, Mixing and 

its interaction with Trucks (drying) and Blends being responsible for the greater 
part of the variability. 
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CHAPTER XII 

MISCELLANEOUS ASPECTS OF THE ANALYSIS OF VARIANCE 

(a) Introduction 
In this Chapter a number of miscellaneous aspects of the use of the analysis 

of variance will be discussed. The next five sections contain matter which might 
be borne in mind in planning and analysing the results of factorial experiments, 
Section (g) is an account of a useful experimental device (the Latin Square), and 
the subsequent sections describe various applications of the analysis of variance. 

(b) The Use of Components of VariancePI 
In the systematic discussion of the Analysis of Variance in Chapter XI for 

each type of analysis the components of variance corresponding to each mean 
square were given. 

It should be realized that the mean square only estimates these terms, and 
one must not regard them as precise algebraic identities. Thus in the complete 
three factor analysis (Table 22) we had 

31.08 estimates wa1ta + oo1 

161.08 estimates <ro 1 

It is evident that CJta1 probably does not exist, i.e. is zero, and so we have two estimates 
of ao1 which we can pool in the usual way, taking into account the degrees of freedom 
(i.e. the simplest way is to pool the sums of squares and the degrees of freedom 
and calculate the new mean squares, estimating ao1 as the former divided by the 
latter). 

This pooling is of course only valid when the estimates being pooled are 
consistent as tested with the variance ratio test. If (wa1ta + ao2) was signi­
ficantly greater than ao1 then of course we would not pool. It is possible that 
{wata1 + ao1) may be significantly smaller than ao1• This is veryunlikelyto happen 
and if it does then the meaning is rather obscure. Either it is an accident (the 
1 in 20 chance which will occur 1 in 20 times) and we can ignore it, or some human 
agency is entering in a certain way to bias the results.!11 

The Components of Variance are useful for indicating the sequence of tests 
in the testing of the various terms of significance. They are also useful for esti­
mating the actual amount of variability each part of the process is giving rise to, 
in order to decide on which part of the process the control must be improved to 
increase the uniformity of the product. This application was discussed in Chapter 
VII (Section {c)) and Chapter XI (Section (m)). 

The coefficients of the components of variance given in the various tables 
in Chapter XI are strictly only valid when the supposed populations are infinite. 
If the population is made up of batches of raw material, we can comfortably 
suppose that there is an infinite population of batches even if we are only con­
cerned with a few dozen or a few hundred. If the populations are factories, then 
there may be only two or three factories and unlikely to be any others built in 
the future. Under these circumstances it becomes a little difficult to regard the 
population as infinite, and strictly the coefficients of the components of variance 
become modified. !81 

For practical purposes the modifications can be generally ignored, because 
(a) the sequence of tests of significance is unaltered, and therefore no mistakes 

will be made by using the unmodified coefficients, 
(b) the actual estimates of the component of variance using the simple 

coefficients should be multiplied by the factor (k-1)/k (where k is the size of 
the population). It is only for k = 2 or 3 that the factor is appreciable, being 

(l) On this point seeS. L. Crump: Biometrics Bulletin, Vol. 2, No. 1, page 7, ~9~6. 
-- (2) An interesting example of this is given by J. 0. Irwin, Journal of the Royal Stattsncal 
Society, Vol. CIX, p. 157, 1946. 

Ul d. H. E. Daniela, Supp. Journ. Roy. Stat. Soc. VI No.2, 1939, p. 188). 
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0.5 and 0.66 respectively. For larger values of k the difference of the factor 
from unity is rarely important compared with the fairly large standard error that 
is of course attached to these components of variance. 

In the case where a factor is made up of arbitrarily chosen different levels 
of a continuous variable, the population can of course be reasonably regarded as 
infir.ite, but we are probably more interested in the actual mean val~es and it 
will probably be of no interest to calculate the component of variance. ' 

Even in the simplest cases the expression for the standard errors of the 
components of variance are complicated, and care must be taken in comparing 
two such components. In many of the analyses of the previous chapter particular 
terms had only single degrees of freedom. Under these circumstances the errors 
of the components would be very large. The fact that the expressions for the 
components of variances were given should not therefore be taken as an indication 
that it would be good policy to calculate them in these instances : they were given 
to illustrate the general case where there may be quite a number of degrees of 
freedom and also to show the logic of the sequence of the tests of significance. 

(c) Partitioning a Sum of Squares into Linear, Quadratic, etc. 
Components 

Frequently we have a factor at 3, 4, 5 or more levels, where the factor has a 
numerical nature, the levels being chosen at intervals on the range of the continuous 
variable, e.g. temperature. We may wish to know whether the relation between 
the independent variable and the dependent variable can be regarded as linear, 
or whether there is appreciable curvature. If the steps between successive levels 
have been made equal, e.g. if the temperatures are 20, 25, 30, 35°C., then the 
question can be answered with the greatest of ease. 

Consider the data in Table 12.1. The four values of T represent four 
temperatures, increasing in equal steps, of nitration of cellulose in mixed acid of 
four different water contents, represented by W, this also varying in equal steps. 
The dependent variable whose values are given in the table is the viscosity of the 
resulting nitro-cellulose. 

Table 12.1 

T1 Ta Ta T, Totals 
------

wl 6 32 45 63 146 
w. 24 27 45 62 158 
w. 6 24 44 45 119 
w, 1 22 23 39 85 

---------
Totals 37 105 157 209 508 

· A straightforward two factor analysis of variance gives the results in Table 12.2. 
Table 12.2 

Source of Degrees of Sums of .Mean 
Variance Freedom Squares Squares 

Temperature 3 4052.0 1350.67 
Water Content 3 787.5 262.50 
Residual 9 367.5 40.83 

Total 15 5207.0 

123 



Both the effects are obviously highly significant. We can proceed to partition 
each of the two sums of squares into three components, one degree of freedom 
for the linear term, one for the quadratic term, and one for the cubic term. 

For the linear term, the sum of squares is 
(3 Ta + T 1 - T 1 - 3 T 1) 1/Nl: k1 

The T's represent the totals of N observations, and :Ek1 in the sum of the 
squares of the co-efficients of the numerator. Here 

l:k1 = 31 + 11 + (-1)1 + (-3)1 = 20 
Accordingly the linear component of the sum of squares is 

(3 X 37 + 105 - 157 - 3 X 209)1 /4 X 20 = 4032.80 
The quadratic component of the sum of squares is 

(Ta- T 1 - T 1 + T 1) 1/Nkk1 

= (37 -105 -157 + 209)2/4 X 4 = 16.00 
The cubic component is 

(Ta- 3 T 8 + 3 T 1 - T 1)
1 jN:Ek1 

= (37 - 3 X 105 + 3 X 157 - 209)1 /4 X 20 = 3.20 
A ready check on the correctness of the arithmetic is obtained by noticing · 

that the sum of the three components equals the total given in Table 12.2. 
The Sum of Squares for Water Content can be partitioned exactly similarly 

and we get the results in Table 12.3. 

Table 12.3 

Degrees of Sums of Mean 
Source of Variance Freedom Squares Squares 

Temperature : Linear 1 4032.80 4032.80 
Quadratic 1 16.00 16.00 
Cubic 1 3.20 3.20 

Water Content: Linear 1 616.06 616.06 
Quadratic 1 132.25 132.25 
Cubic 1 39.20 39.20 

Residual 9 367.50 40.83 

Total 15 5207.00 

The linear components in each case are obviously significant, and the signi­
ficance of the quadratic and cubic terms can be tested in the usual manner against 
the Residual. It is interesting to note that ~he apparent bend over from W 1 to 
W 1 for decreasing W is not significant. 

In the case where there are only three levels, there are 2 degrees of freedom, 
one for the linear component and one for the quadratic component. These sums 
of squares are respectively 

(T.- Ta)1/Nkk1
, :Ek1 = 2 

(2 T 1 - T 1 - T 8) 1/Nkk1, l:k1 = 6 
For more than four levels, Fisher and Yates. "Statistical Tables for Biological, 

Agricultural and Medical Research" (Oliver and Boyd) give the appropriate factors 
up to 52 levels. 

In this case where two factors are numerical variables changing in equal 
steps, their interaction as well as the main effects can be split up. Consider the 
3 X 3 table below (Table 12.4). 
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Table 12.4 

x. 
Y. 17 
Yz 14 
Ya 10 

Totals 41 

We can use the coefficients 
(T1 - Ta)1/Nl:k• 

x. 
20 
19 
18 

---
57 

x. Totals I 
I 

24 61 I 
25 53 
30 58 

79 177 

and (- T 1 + 2T1 - T 8)
1/Nl:k1 

to partition the two main effects into their linear and quadratic components, which 
we can represent as Xt., XQ, YL and YQ respectively. We can also partition 
the 4 degrees of freedom for the interaction into that attributable to Xt. YL, 
XQ YL, XL YQ, and XQ Yo. To do this we set up a table of the type shown 
in Table 12.5. 

Table 12.5 

XL 1 0 -1 
XQ -1 2 -1 YL YQ 

---
1 -1 
0 2 

-1 -1 

To form a table of coefficients for obtaining Xt. YL, we take the coefficients 
for XL and multiply them by the first coefficients for YL to give the first row, 
by the second coefficient for YL to give the second row, and similarly for the 
third row. For YL we multiply the coefficients for XQ by those for YL in a 
similar manner. 

Proceeding thus, we obtain the table of coefficients in Table 12.6. 

Table 12.6 

XLYL XQYL XLYQ XQYQ 

1 0 -1 -1 2 -1 -1 0 1 1 -2 1 
0 0 0 0 0 0 2 0-2 -2 4-2 

-1 0 1 1 -2 1 -1 0 1 1-2 1 

~k· = 4 

The l:k 1 quoted below each table is the sum of the squares· of the coefficients. 
To obtain the sum of squares due to e.g. XQ YL, we operate on the figures in Table 
12.4 by the coefficients for XQ YL in Table 12.6, square this result, and divide 
by l:k• times the number of observations in each figure that has been multiplied 
by the coefficients. In the present instance the latter figure is of course 1, but 
if the figures in Table 12.4 were the totals of N observations then it would beN. 
Accordingly we have as the Sum of Squares for XQ YL 

(-1 X 17 + 2 X 20 - 1 X 24 + 1 X 10 - 2 X 18 + 1 X 30)1 /12 
= 0.750 . 
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We can now assemble the complete analysis of variance as in Table 12.7. 
The c?l~~ "Sums of Squares" is obtained by squaring the figures in column two 
and dlVldmg by column three. A good check on the arithmetic is given by the 
agreement of the sum of all the components with the sum calculated directly from 
the original observations. 

Table 12.7 

Products of 
Source of Coefficients N~k1 Sums.of 
Variance and Data Squares 

XL -38 3 X 2 240.667 
XQ -6 3 X 6 2.000 
YL -3 3 X 2 1.500 
YQ -3 3 X 6 0.500 

XL YL 13 1 X 4 42.250 
XQ YL 3 1 X 12 0.750 
XL YQ 5 1 X 12 2.083 
XQ YQ 3 1 X 36 0.250 

Total 290.000 

If we had not made this detailed analysis, but merely an analysis by rows 
and columns, we would have obtained Table 12.8. 

Table 12.8 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares 

X 2 242.667 121.333 
y 2 2.000 1.000 

Residual 4 45.333 11.333 

Total 8 290.000 

This analysis, though better than nothing, is not nearly so informative as 
that of Table 12.7. Table 12.8 is completely unable to give any information on 
the possible X Y interaction. With Table 12.7 we of course have to pool the 
smaller terms XQ, YQ, XL YQ, XQ YL, and against this XL YL is found to be 
significant. 

This device is applicable generally for any number of levels. From a table 
of the type of Table 12.5 we can form tables of the type of Table 12.6, and this 
procedure will wotk for mixed levels, e.g. a 3 X 4 or a 3 X 5 or a 4 X 5. Further, 
there can be other factors present, and this is taken account of by adjusting N in 
the divisor mk• to correspond to the number of original observations that have 
been summed to give us the table, as Table 12.4, on which we operate with the 
coefficients. 

In the case of four or more leYels for each factor, the number of components 
_ rises rapidly, e.g. for a 4 X 4 experiment the residual has 9 degrees of freedom 

and hence 9 components, for a 5 X 5 experiment the corresponding number is 16. 
The calculation of all of them is time-consuming and also really unnecessary. 
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Normally the only components that are likely to be of interest are XL YL, XQ XL 
and XL YQ. Even the latter two are unlikely to be of interest ifXQ and YQ 
respectively have proved to be small. Accordingly it normally suffices to calculate 
the total interaction in the usual manner and obtain a residual as the difference 
between it and the sum of the three components mentioned. In this case, of 
course, there is no explicit check on the arithmetic, so the steps taken need careful 
checking. · • 

It may be of interest to note that if this procedure is applied to the data of 
Table 12.1 we obtain as the sum of squares for TLWL 102.01. Accordingly the 
Residual has as its sum of squares 367.50 -102.01 = 265.49 with 8 degrees of 
freedom, the mean square being 33.186. The resulting variance ratio for TL WL 
is then 3.07 with degrees of freedom n 1 = 1~ n 2 = 8, and this does not reach 
the 5% level of significance. 

It might be emphasised again that this whole procedure rests on the assump­
tion that each factor is increasing in equal steps, for example, 10°C, 15°C, 20°C, 
25°C. However, if we prefer, we can make the steps equal on a logarithmic 
scale, for example 1%, 2%, 4%, 8%. In this case, XL will measure the fit to 
linearity on this scale, and similarly XQ and the higher terms deviations from 
linearity on this scale. 

The partitioning of a sum of squares in a two-way table is slightly different 
when only one of the variables is on a linear scale. The data in Table 12.9 relates 
to the conversion efficiency measured daily of a pressure oxidation plant for the 
manufacture of nitric acid from ammonia. Mter 7 days the plant is stopped 
temporarily and the catalyst subjected to a re-vivyfying treatment. A constant 
has been subtracted from all the results and the decimal point removed. 

Table 12.9 

Run No. 1 2 3 4 5 6 7 Totals 

Day 1 60 64 14 30 67 72 35 342 
2 62 63 46 41 42 38 35 327 
3 58 63 46 40 43 46' 33 329 
4 52 36 39 41 38 47 46 299 
5 31 34 42 37 37 38 47 266 
6 23 32 43 17 33 60 47 255 
7 26 27 57 12 26 41 38 227 

Totals 312 319 287 218 286 342 281 2045 

. It 1s probably interesting for the reader to contemplate this set of figures and 
see 1f he can reach any conclusions as to the behaviour of the plant during each run. 

We can start off with a simple two-factor analysis as in Table 12.10. This 
does not reveal anything. 

Table 12.10 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares 

Days 6 1630.408 271.735 
Runs 6 1326.693 221.116 
Residual 36 5962.450 165.624 

Total 48 8919.551 
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We can nex( partition the Days' main effect. We need the orthogonal 
polynomials for a factor at 7levels: these are given in Fisher and Yates' Tables, 
Table XXIII, as follows : 

Table 12.11 

Level 1 2 3 4 5 6 7 !:k• 

Linear 3 2 1 0 -1 -2 -3 28 
Quadratic 5 0 -3 -4 -3 0 5 84 
Cubic -1 1 • 1 0 -1 -1 1 6 
Quartic 3 -7 1 6 1 -7 3 154 

Using these coefficients we find that, for example, the linear component is 
(3 X 342 + 2 X 327 + 329- 266- 2 X 255 - 3 X 277)1 /28 X 7 = 1554.612. 
Fisher and Yates' tables give the coefficients for polynomials up to the fifth degree. 
It is unlikely that terms beyond the cubic will be real, but we can calculate the 
quartic to check this, and the remainder of the sums of squares and degrees of 
freedom for Days we can label "Remainder". 

We now need the interactions of these components of Days with runs. We 
operate with the coefficients in Table 12.11 on the individual results for each run 
in Table 12.9 and obtain the results given in the Table 12.12. 

Table 12.12 

Run Linear Quadratic Cubic Quartic 

1 207 -45 32 64 
2 202 20 23 -79 
3 -119 -65 50 -88 
4 105 -185 9 43 
5 147 73 -26 62 
6 57 125 -45 19 
7 -47 -59 -23 1 

Totals 552 -136 20 22 

It is a useful check to note that if we sum the individual results, as has been 
done in the last line, for then this total should be the same as has already been 
found by operating with the same coefficients on the Day totals. 

The sum of squares for the interaction of Runs with the linear component 
of Days is now 
(2071 + 2021 + (-119)• + 1051 + 1471 + 571 + (--47)1)/28- 5521/28 X 7 

= 3299.174 
and has 6 degrees of freedom. 

128 



Proceeding in this manner, we obtain Table 12.13. 

Table 12.13 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares: 

Days: Linear 1 1554.612 1554.612 
Quadratic 1 31.456 31.456 
Cubic 1 . 9.524 9.524 
Quartic 1 0.449 0.449 
Remainder 2 34.367 17.183 

Runs 6 1326.693 221.116 
Runs X DL 6 3299.174 549.862 

X Dq 6 746.044 124.341 
X De 6 1217.809 202.968 
X Dq 6 156.278 26.046 

Remainder 12 543.145 45.262 

Total 49 8919.551 

It is obvious that the day quartic main effect and the quartic interaction and 
the remainder of the day main effects are non-significant and they can be reasonably 
pooled with the residual to give 734.239/21 = 34.964. 

We now see that of the components of the interaction of Days with Runs, 
the linear, quadratic, and cubic are all significant. Of these the linear is the most 
important. Inspection of Table 12.12 shows that for two of the runs, Numbers 
3 and 7, the overall slope is actually upwards, though in both of these the starting 
efficiency was rather low. 

The cubic component of the interaction is rather interesting as normally one 
would not expect a polynomial of such high degree to appear. Inspection of 
Table 12.12 discloses that up to run 3 it was positive, at run 4 it was near zero, 
and afterwards was negative, suggesting some change in operating conditions had 
occurred about run 4. If we plot the averages for runs 1-3 and 5-7, we find 
that with the former there is a sharp rise after the first day followed by a steady 
fall to day 6 followed by a slight rise on day 7. Runs 5-7 present a complete 
contrast, there being a sharp fall after the first day followed by a steady rise to 
day 6 followed by a fall on day 7. · 

The residual variance being 34.964, the residual standard deviation is 5.81. 
This includes both the analytical error and also the irregular behaviour of the plant 
which is not accounted for by the significant terms in the analysis of variance. 

It is clear that the plant is not behaving in a simple manner. For example, 
run 3 starts very low but its average for the subsequent 6 days is one of the best, 
and in general the significance of the quadratic and cubic components of the 
interaction of Days with Runs shows that the initial observation is no guide to the 
subsequent performance. 

(d) The Assumption Underlying Factorial Design 
A factorial experiment is much more useful, in that its interpretation is 

simplest and that its efficiency in the sense of giving more information for a given 
number of experiments than the corresponding classical design is greatest, when 
the interactions are not significant. 
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It may be interestit_lg to note that the non-existence of interactions presupposes 
that the dependent vanable y can be expressed as the sum of a series of functions 
of the independent variables x .. x1 , etc., each of the latter involving one and only 
one independent variable, i.e. 

y = f(x1) + f(x 1) +... . . (1) 
The functions can be anything, of course, with no limit to the degree of complexity. 

To take a simple example, let 
y = x1 + 2x1 (2) 

If the two independent variables were at two levels both equal to 1 and 2 we 
would obtain the results in the table below for y : ' 

rr- x. = 2 

X1 = 1 5 
x 1 = 2 6 

It will be readily seen that there is no x1 X x1 interaction. Thus the effect 
in y of changing x1 for x1 = 1 is 5-2 = 3 which is identical with that for 
x1 = 2, 6- 3 = 3, i.e. the effect only of changing x1 is independent of the level 
of x1• 

Now consider a relationship of the type 
y = f(x1) f(x1) (3) 

wnere the functions f(x 1) and f(x1) can be of any form. 
To take an example of the simplest form, let 

y = x1 _x1
1 (4) 

With the two independent variables at two levels 1 and 2, we could obtain the 
results as in the table below for y. 

rr- X 1 = 2 

x, = 1 4 
X1 = 2 8 

It will be readily seen that there· is an x1 X x1 interaction. Thus the effect 
in y of changing x1 from 1 to 2 for x1 = 1 is equal to 4- 1 = 3 but for x1 = 2 
is equal to 8 - 2 = 6, i.e. the effect on y of changing x1 is dependent on the level 
of x1. 

It will be apparent that if we take logarithms throughout, equation (3) becomes 
logy = log f(x 1) + log f(x,) (5) 

and we now have an equation of the same form as (1), and the analysis will be 
non-interacting. 

(e) The Use of Interactions as Estimates of Error 
In our original two factor (row and column) analysis what was termed the 

- Residual included not only variance due to error but also to any possible interaction 
between the factors. If the latter exists and is large, then we have a large Mean 
Square for the Residual, and hence neither of the main effects is likely to be 
significant, i.e. we conclude the experiment knowing little more about the behaviour 

---of the system than when we began. 

There are two possible courses of action open under these circumstances. 
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We can replicate, and carry out an analysis as described in the section on 
Two Factor Analysis with Replication, which would give us an estimate of error 
independent of the Interaction. · 

Alternatively, we could repeat the series of observations, but with a third 
factor, held constant at a certain level in the first series, held constant at another 
level in the second series. The experiment would now be a three factor one, 
and we would be relying upon the second order interaction (P X Q X R) to be 
small or non-existent so as not to inflate the Residual. 

It may happen, however, that this second order interaction is large. A good 
example of this was in the Section on a Four Factor Experiment, when the four 
factor experiment was broken down into two three factor experiments, and the 
S1 had a large Residual almost certainly because it contained a large second order 
interaction. 

Under these circumstances there are two possible alternatives. We can either 
replicate, in which case we would analyse the data as in the Section on Three 
Factor Analysis with Replication. 

Alternatively, we could add a fourth factor, and use the third order interaction 
as an estimate of error. It may happen that this third order interaction is large, 
and so we will have an inflated estimate of error, and still not be much better off. 
However, if this interaction is large, it is valuable to know this, so it will have 
been as well to include this additional factor. 

A further example is in the Five Factor experiment discussed in Chapter 
XI (f), where the W X T X D interaction was very large. If the experiment 
had been carried out as a three factor one on W, T, and D, this large W X T X D 
interaction would have been used as the residual, and no conclusions could have 
been drawn. Actually, of course, the experiment included two further factors, 
Sand G, and fortunately neither of these interacted, so a reasonably small residual 
was obtained. 

We can thus formulate some general ideas about the planning of factorial 
experiments. We have first to decide what are the main factors in which we are 
interested, and the number of levels at which we will test them. We then need 
to decide which are the factors which normally vary in the process and are likely 
to interact with our main factors, and include these, possibly only at two levels. 
We now need to decide whether the combination of factors so far introduced will 
give us a satisfactory residual as given by some non-existent high order interaction. 
To make this decision is of course frequently difficult. With a certain amount 
of prior information as to the general behaviour of the system we can frequently 
have some confidence in our conclusion. but often it is quite impossible to guess. 
We can only go on the general rule that it is not very frequent for high order 
interactions to exist, or if they do exist, to be very large, and be prepared to replicate 
the whole experiment if we end up with a large residual. Alternatively, if it is 
absolutely essential to be certain of getting results on the first experiment, then 
we must include a replication in the first experiment, perhaps at the cost of omitting 
a factor. 

It is probably generally desirable to include batch of raw material as one of 
the factors, for it may be that all batches do not react identically to particular 
treatments. In an example in the author's experience, a crude chemical was 
subjected to a purifying process, and a factorial experiment established with a 
greater significance than 1% that level 1 of a particular factor gave a much better 
product th~ level 2. This experiment was only carried out on a single batch of 
crude matenal, however, and subsequent experience showed that in general this 
conclusion was erroneous. If the experiment had been replicated on one or more 
batc.hes. this mistake would have been avoided. If we can afford to carry out 
rephcat10ns, we should therefore replicate on different batches rather than within a 
single batch, this really being to introduce an additional factor, batch of raw material. 
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(f) The Amount of Detail Required in Reports 
In presenting in a paper or repon the results of an investigation using a 

factorial design with an analysis of variance upon the results, it is desirable to give 

(a) the factors and the levels at which they were used, 

(b) the an,alysis of variance. It is a useful practice to mark· with asterisks 
the significant terms, one (*) for the 5% level, two (**) for the 1% level, and 
three (***) for the 0.1% level. 

(c) If we are interested in components of variance then we should calculate 
those which are significant. If we are interested in means then these should be 
given. In the case where two factors interact, a two-way table is necessary, 
e.g. Table 29. 

(d) In general it is not necessary to give the original data, particularly when 
it is extensive : the statistics specified above contain the essential facts. How­
ever, when the original data is not very extensive, there is no harm in giving it. 

(g) The Theory of Chemical Sampling<'! 
(i) The techniques outlined above can be made the basis of a scientific study 

of sampling, a field that has been not adequately dealt with in chemical industry. 
Thus consider the variances derived for the problem in Chapter XI (f). 

Between Vats = a1
1 = 1.09 

Between Bags within Vats = a 1
1 = 0.00 

Between Samples within Bags = a 1
1 = 1.85 

Between Analyses within Samples· = a,• = 0.83 
Suppose we have one analysis on one sample from one bag from one vat. 

This will have a variance of (1.09 + 0.00 + 1.85 + 0.83) = 3.77 or a standard 
deviation of 1.94. It will then have a 95% chance of being less than 1.96 X 1.94 
= 3.80 out from the true mean (1. 96 is the value oft for infinite degrees of freedom 
for the 5% level of significance). 

If this is too inaccurate an estimate of the quality of the batch, we might 
reduce the error in our estimate by doing duplicate analyses. It would then 
have a variance of (1.09 + 0.00 + 1.85 + 0.83/2) = 3.35 or a standard deviation 
of 1.83. It is clear that this is very little improvement upon our original estimate 
of 1.94 based on a single analysis. 

We might take a pair of samples from a bag, and perform single analyses 
upon them. Our estimate would thus have a variance of (1.09 + (1.85 + 0.83)/2) 
= 2.43, or a standard deviation of 1.56. This is a definite improvement upon our 
earlier estimates. 

Alternatively we might take a pair of samples, one from one bag from one 
vat and the other from another bag from another vat. Our estimate of the mean 
batch quality would now have a varianceof(1.09 + 0.00 + 1.85 + 0.83)/2= 1.88 
or a standard deviation of 1.37. 

It is thus clear that it is much less profitable, if we are going to have the 
laboratory doing two analyses, to have them doing duplicate analyses upon the 
same sample or separate analyses from two samples from the same bag than have 
them doing separate analyses upon samples drawn from separate bags from 
separate vats. 

If we are dealing with a chemical substance, samples of which can be blended, 
such as liquids, powders, etc., then a further possibility is open to us. We can 

(•) Interesting papers on sampling problems are : D. J. Finney: Biometrics Bulletin, 
Vol. 2, No. 1, 1946, page 1. C. S. Pearce: Journal of the Royal ~tatistical Society, Vol. 

--CVII,page 117,1944. F. Yates: Journal of the Royal Statistical Soctety, Vol. CIX,page 12, 
1946. Chapter 17 of G. W. Snedecor's "Statistical Methods" 4th Edition (Iowa State 
College Press) is also stimulating. 
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take a pair of samples, one from one bag from one vat and one from one bag 
from another vat, blend them, and carry out one analysis upon the blended sample. 
Our estimate would now have an error variance of ((1.09 + 0.00 + 1.85)/2 + 
0.83) = 2.30 or a standard deviation of 1.52. Or if we took four samples from four 
vats and blended them and carried out one analysis upon the blended sample­
our estimate would have an error variance of ((1.09 + 0.00 + 1.85)/4 + 0.83) = • 
1.56 or a standard deviation of 1.25. Thus with a little extra trouble in sampling, 
and no more work on the part of the laboratory, we have got an estimate of the­
batch mean quality with an error standard deviation of 1.25, to be compared with. 
the simple estimate from one sample of 1.94. 

It is on the basis of such an exploratory analysis of variance that we can 
deduce what is the error of our present sampling scheme and if the latter prove~ 
to have too high an error the analysis of variance will show the most economical. 
method of improving its accuracy. 

(ii) Further examples of the application of the analysis of variance to the­
study of chemical sampling are given below. An allegedly homogeneous blend 
had been bagged. To test its homogeneity three analyses were performed on 
three samples taken from three bags from the blend. The material was nitro­
cellulose, and it was analysed for nitrogen content and viscosity. 

Nitrogen (%) 

~ 1 2 3 
p 

I 12.20 12.23 12.19 
12.22 12.24 12.21 
12.21 12.23 12.22 

12.21 12.22 12.24 
II 12.20 12.23 12.21 

12.19 12.25 12.23 

12.21 12.22 12.22 
III 12.22 12.21 12.22 

12.20 12.24 12.22 

Viscosity (poises) 

"-.... Bag 

Sam~ 1 2 3 

116 124 109 
I 112 130 128 

114 126 119 

128 134 114 
II 127 114 127 

132 127 119 

116 126 119 
III 118 129 119 

117 132 130 
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The data was analysed as in Chapter XI (i), with results as below : 
-

Nitrogen Viscosity 

Source of Variance 
Degrees of 
Freedom Sums of Mean Sums of Mean 

Squares Squares Squares Squares 

Between Bags 2 24.51 12.25 267.56 133.78 
Between Samples 

within Bags 6 10.23 1.70 427.11 71.19 
Between Analyses 

within Samples 18 25.33 1.40 614.00 34.11 

Total .. .. 26 60.07 1308.67 

Units for nitrogen : hundredths of a per cent. 
In the case of Nitrogens, the Between Sample Mean Square is not significant 

but the Between Bags is, at the 1% level. In the case of Viscosity, the Between 
Samples Mean Square is not significant but the Between Bags Mean Square is 
nearly significant at the 5% level. 

It is thus apparent that there is appreciable inhomogeneity in the blend 
from bag to bag but not within bags. We can calculate the components of variance 
as below: 

Source of Variance Nitrogen Viscosity 

Between Bags .. 1.20 10.0 
Between Samples .. 0.00 0.0 
Residual .. .. 1.48 43.4 

Total .. .. 2.68 53.4 

The figure under "Total" is the variance of a single analysis upon a sample 
from one bag. 

To effect improvement in the nitrogen figure, we need to concentrate atten­
tion upon both operating sources of error. It is not sufficient to take n samples 
and bulk them and perform one analysis on the blended sample : thus if n was 
4. the variance of the estimate thus obtained would be (1.48 + 1.20/4) = 1.78. 
This is an improvement, but no matter how many samples we bulk, so long as 
we perform only one analysis the variance will never be less than 1.48. If we 
performed two analyses upon a blended sample derived from four bags, the 
variance of the mean would be (1.20/4 + 1.48/2) = 1.04. 

With the viscosity determination, it is clear that our main efforts must be 
directed at obtaining more analyses. If we had four analyses upon one sample 
the variance of our estimate of the mean would be (10 + 43.4/4) = 20.8, or four 
analyses upon separate samples gives a variance of (10/4 + 43.4/4)= 13.3. 
The gain by taking separate samples is appreciable, therefore. 

(h) The Homogeneity of Data 
At the end of Chapter III on the comparison of means it was mentioned 

that complications arise in the calculation of standard deviations if the observations 
___ are not independent of each other. 

In general, with an analysis of variance between and within batches (One 
Factor with Replication) if we haven batches of m individuals then let us define 
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the simple variance given by the Total Mean Square (i.e. the variance we would 
calculate if we ignored the inhomogeneity of the data and regarded it as referring 
to nm independent individuals) as ac1

• Then 
m(n - 1) 

ac1 = --~-- crA1 + an1 
mn -1 

where a A 1 and an• are the components of variances corresponding to differences 
between batches and differences within batches. ' 

Rearranging, this can be expressed as 

ac1 = [1-(m- 1)] <JA1 +an1 
mn-1 

It is evident that ac1 is always smaller than crT1 = aA1 + crn1, and the error 
will be greatest when aB1/crA1 tends to 0 and when m is large and n = 2. Under 
these circumstances ac1 is only half crT1, the correct value for the total variance. 

Consider the block of 30 observations discussed in Chapter VII (b), Analysis 
Between and Within Columns. Suppose we wished to calculate the standard 
deviation of the mean of these observations. 

If we ignored the fact that these 30 observations are not independent of each 
other, but are actually 10 groups, each group being 3 observations, we should 
calculate the variance from its ordinary definition which corresponds to terms 
(1)- (3) in that section divided by the total degrees of freedom, i.e. 203.87/29 
= 7.030, and the standard deviation of the individual observations would be 
2.65, and the standard deviation of the mean would be 2.65/VJO = 0.484. 

However, this is a false result, for our mean is not the mean of 30 independent 
individuals, but actually the mean of 10 column means. 

The variance of each column mean is (an1/3 + crA1) and since there are 10 
column means the variance of the grand mean is (crB1/3 + crA1)/10, i.e. (2.17/3 
+ 5.22)/10 = 0.594. The standard deviation of the grand mean is thus 
v'O.S94 = 0.771. 

This true standard error of the grand mean of 0.771 is very much larger 
than the false one of 0.484 we obtained by ignoring the inhomogeneity of the 
data. If we had been using the standard error to compare the mean with some 
other value using the Student t test we would have fallen into serious errors, for 
not only is the true value of the standard error of the grand mean much larger 
than the incorrect one, but also the true degrees of freedom are only 9, not 29. 
This is why it is in general very desirable to plan experiments of this type in a 
form suitable for the application of the analysis of variance. 

Thus, if the thirty units (ten batches) referred to had been made of one 
consignment of raw material, and we wished to compare the grand mean of another 
consignment, it would be most convenient to make ten batches (thirty units) with 
the second consignment. This would then be suitable for an analysis of variance 
as below: 

Degrees of Sums of Mean 
Source of Variance Freedom Squares Squares 

Between Consignments (2-1) = 1 
Between Batches within 2 (10-1) = 18 

Consignments 
Between Units within 2 X 10(3-1) = 40 

Batches 

Total .. . . .. 2 X 10 X 3-1 
=59 
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It will be noted that it would not be possible to apply this technique if the 
experiment had been done haphazardly, unplanned, so that units were missing 
from some of the batches and the numbers of batches made from each consignment 
were unequal.<6 l 

(i) The Use of Logarithms in the Analysis of Variance 
We discussed earlier the possibility of using the logarithm of the dependent 

variable rather than the dependent variable itself in cases where deviations were 
likely to be proportional to the mean, i.e. constant if we use logarithms. 

An example of this is occurring in the case of acid plant throughputs dis­
cussed in Chapter XI (i) (Table 11.22). The Between Factories Within Acid Group 
term is not significant, so we can form a pooled residual variance with 3 x 6 = 18 
degrees of freedom for each type of weak acid. These become 57.19, 405.21, 
and 1197.84 respectively. These are severely inconsistent when tested with the 
variance ratio test. However, the standard deviations are 7.56, 20.13, and 34.61, 
and when expressed as fractions of the ~eans 26.7, 51.0, and 103.3, we get 0.294, 
0.396 and 0.334 respectively. It seems that these fractions are roughly constant, 
and we are encouraged to try an analysis of the logarithms of the data. 

The natural logarithms of one-tenth of the throughput was selected as being 
the most convenient function to handle. Residual variances of 0.04489, 0.22450, 
and 0.08891 were obtained, each with 18 degrees of freedom, for each of the three 
acid types as before. While not strictly consistent, these are much more so than 
the simple variable. The Analysis of Variance on the logarithm of the data is 
in Table 12.14. 

Table 12.14 

Analysis of Variance of Logarithm of Acid Plant Throughputs. 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares 

Type of weak acid 2 11.4670 5.7335 
Factories 6 0.6769 0.1128 
Within Factories 54 6.4494 0.1194 

Total 62 18.5933 

The conclusions to be reached from the above analysis are identical with 
those obtained from Table 11.23, the analysis of the simple data. 

This is a reassuring aspect of the analysis of variance : we can disregard the 
·underlying assumptions with comparative impunity. 

(j) Other Transformations in the Analysis of Variance<8 l 
Sometimes in an analysis of variance the dependent variable is not a continuous 

variable but discontinuous. 
For example, in discussing blemishes in objects, the number of blemishes 

<>f course has the lower limit zero but can go to very large numbers. Technically, 
the distribution is probably Poissonian. Under these circumstances it is more 
appropriate to use the square root of the number of blemishes as the dependent 

(I) Of course, incomplete analyses can be carried out, in the simpler cases, e.g. Section 
VII (d), without excessive difficulty. In the more complex cases, however, the com-
putational labour becomes excessive. 

(&)A very interesting paper on the effects of various transformations in a 3 x 3 x 2 x 2 
experiment is by Thorp et al : Phytopathology XXXI, page 26, 1941. A recent survey 
of this field is by M.S. Bartlett: Biometrics, Vol. 3, No. 1, page 39, 1947. 
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variable! 7J. Where the number of blemishes are in many cases less than 10, it 
is slightly preferable to use, where x is the number of blemishes, v'x + 1/2 

In the case where the number of incidents x being counted has a finite upper 
limit, being able to range from 0 to X, it is best to take the angle 6, 

6 = sin-1 VxjX. , 
For example, if X= 4(1, X= 120, then VxjX = V1/3 = 0.5774, and sin-:i 
0.5774 = 35.2°. This is known as the angular or arc sine or inverse sine trans­
formation. !8 J 

A convenient table of the transformation is reproduced in the Appendix. 
(Table VI). 

(k) Missing Values!8 l 
Occasionally runs fail to produce results : the sample may get lost or any 

similar accident may happen. In the case of a two factor experiment, of r rows 
and c columns, one missing value may be efficiently estimated by the formula< 10

) 

~+~-G . 
(r-1) (c-1) 

X 

where r = number of rows 
c number of columns 
R = total for the row with the missing item 
C = total for the colunm with the missing item 
G = grand total 

Thus, in Table 12.1, if the value ofT 8 W 1 (actually the observed value was 27) 
had been missing, we would have estimated it as 

X = 4 X 131 + 4 X 78-481 = 39 4 
(4-1){4-1) . 

In carrying out the analysis of variance, this value is inserted as though it 
had actually been observed, and the analysis then proceeds normally. However. 
the degrees of freedom for the Residual and for the Total are both decreased by 
unity. 

For a Latin Square Yates (10! gives the formula 
X = r(R + C + T) - 2G 

(r -1) (r- 2) 
where R, C, and T are the totals for the rows, colunms, and treatments involved 
with the missing result, and G is the grand total, and r is the number of rows. 
(colunms, treatments). 

For example, in Table 13.5, if the reading for pH 6.0, 0.20% carbon, gradeD,. 
was missing, we would estimate its value as 

X = 5(295 + 221 + 309) - 2 X 1670 = 65 4 . (5-1) (5-2) .. 
It is wiser to regard conclusions from an experiment with a missing observa­

tion with rather more caution than if it had been complete. That is to say, we 
had better only attach something of the order of a 5% significance to what 
apparently is a 1% significance. 

When two observations are missing, they can be inserted by an iterative 
method. We insert for X 1 an assumed value, say the grand mean, and then 

( 7) M. S. Bartlett: Supplement to the Journal of the Royal Statistical Society, 3: 6S 
(1936). 

<•J See Churchill Eisenhart, "Inverse Sine Transformation of Proportions", Chapter 16. 
in "Selected Techniques of Statistical Analysis", Statistical Research Group, Columbia 
University (McGrawhill, 1947). 

(9} A full discussion with bibliography of missing plot techniques is by R. L. Anderson : 
Biometrics Bulletin, Vol. 2, No.3, page 41, 1946. 

(ll) F. Yates: Empire Journal of Experimental Agriculture, 1, 129, 1933. 
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calculate the expected value of X1 • Using this value of X1 , we delete the assumed 
value for X~o and then calculate its expected value, say X' 1• Using this value of 
X' 1 we delete the previous value X1 and recalculate its new value X' 1• Using this 
new value X' 1 we delete X' 1 and recalculate a new value for X1, X1". After a 
very few cycles of this process the new values will be the same as the old. The 
analysis of variance then proceeds with two degrees of freedom subtracted from 
both the Residual and the Total. 

It is obvious that an inserted value can never be as good as an observed one, 
and so every effort should be made to avoid having to handle incomplete data. 
Where the lack of balance is on a large scale, the simplest case can be handled 
rigorously with little increase in trouble as in Chapter VII (d). Snedecorl11 l (page 
281-301) discusses some more complicated instances. However, in practice we 
can frequently obtain a moderately satisfactory result by discarding sufficient data 
randomly from the larger classes so that we have only one or two missing values 
which can be inserted by the methods above. 

As an example of how to deal with missing values in a multiple factor analysis 
of variance, consider the data in Table 12.15. It gives the percentage defective • 
of a certain type of cordite, the percentage having been transformed to degrees 
with the angular transformation described in Section U), from each of four presses 
(P1 to P4) for each of three shifts over six days. On two occasions, day 4 shift 
A press P1 and day 6 shift C press P4, a particular press was not in production 
and the missing values are replaced by the symbols x and y. 

Table 12.15 

Day 1 2 3 4 5 6 I 
Shift ABC ABC ABC ABC ABC ABC 

P1 6 14 16 15 13 20 20 16 21 X 18 13 .14 8 9 10 15 18 
P2 10 17 19 15 16 17 15 15 23 15 10 17 15 15 22 15 13 16 
P3 8 11 18 8 10 25 10 14 21 13 11 25 11 11 22 10 9 22 
P4 15 11 10 10 13 27 9 11 24 10 12 15 8 7 8 611 y 

I -

It might be of interest for the reader to pause to consider Table 12.15 to 
see what conclusions he can draw from the raw data without the assistance of 
the analysis of variance. 

The procedure for finding the missi~g values consists in carrying out the 
analysis of variance with x andy, finding the expression for the sum of squares 
for the highest order interaction (or group of high order interactions) which we 
are· going to use as error, and finding those values of x and y which will make 
this error sum of squares a minimum. 

This last operation involves differentiation with respect to x and to y, ~n 
which the simple numerical terms vanish, and therefore we can neglect them m 
our calculations of the various sums of squares. 

We need the three two-way tables formed by summing over each of the 
variables in turn. 

(II) G. W. Snedecor: "Statistical Methods applied to Experiments in Agriculture and 
. Biology," (Iowa State College Press), 4th Edition, 1946. 

• The word "defective" is used here for convenience for generality, and does not 
imply that the material was unsatisfactory. 
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Day 1 2 3 4 5 6 Totals 

A 39 48 54 x+38 48 41 268+x 
B 53 52 56 51 41 48 301 
c 63 89 89 70 61 y+56 428+y: 

Totals 155 189 199 x+159 150 y+145 997+x+y 

Day 1 2 3 4 5 6 Totals 

P1 36 48 57 x+31 31 43 246+x 
P2 46 48 53 42 52 44 285 
P3 37 43 45 49 44 41 259 
P4 36 50 44 37 23 y+17 207+y 

Totals 155 189 199 x+159 150 y+145 997+x+y 

P1 P2 P3 P4 Totals 

A x+65 85 60 58 . 268+x 
B 84 86 66 65 301 
c 97 114 133 y+84 428+y 

Totals x+246 285 259 y+207 997+x+y 

Ignoring simple numerical terms (i.e. omitting to write them down, so that 
the equations as they stand will often have the right hand side not literally equal 
to the left hand side), the correcting factor for sums of squares is 
(997 + x + y)2 /72 = 0.013889x1 + 0.013889y1 + 27.69444(x + y) + 0.02778xy. 
The sum of squares for days is therefore · 
[(x + 159)s + (y + 56)8]/12- C.F. 
= -1.1944x + 0.06944x1 - 3.5277y + 0.06944y1 - 0.02778xy. 
The sum of squares for Days x Shifts is similarly 
[(x + 38)1 + (y + 56) 2]/4- (S.S. for Day&)- (S.S. for Shifts)- C.F. 
= -2.13889x + 0.13889x1 - 4.13889y + 0.13880y1 + 0.02778xy. 
The total sum of squares is 

x1 + y1 - C.F. = -27.6944x + 0.0861lx1 - 27.6944y + 0.9861ly8 

-0.02778xy. 
Subtracting the sums of squares forD, S, P, D X S, S X P, P X D from the total, we 
obtain as our error sum of squares 
E = -12.8611x + 0.41667x1 -12.1944y + 0.41667y1 - 0.027778xy. 

To find the values of x andy which make this a minimum we partially differ­
entiate, first with respect to x, then with respect to y, and put both the resulting 
equations equal to zero. This gives us the pair of simultaneous equations 

-12.8611 + 0.83333x- 0.02778y = 0, 
-12.1944- 0.02778x + 0.83333y = 0. 
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S~lv:ing these giv~s us x = 15.939, y = 15.165. Accordingly we go back to the 
ongmal data and msert x = 16, y = 15, and carry out the analysis of variance in 
the usual manner, the only modification being that the degrees of freedom for 
the residual are reduced by 1 for every missing value so inserted. The resulting 
analysis of variance is in Table 12.16. 

Table 12.16 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares 

Days 5 161.778 32.356 
Shifts 2 635.195 317.597 
Presses 3 113.223 37.741 
Days X Shifts 10 112.972 11.297 
Shifts X Presses 6 187.027 31.171 
Presses X Days 15 186.110 12.407 
Residual 28 332.140 11.862 

Total 69 1728.445 

It is apparent from Table 12.16 that the most important effect is the difference 
between shifts. Its interaction with presses is significant at the 5% level, however, 
and an inspection of the Shifts X Presses table shows that whereas on shifts A 
and B presses 3 and 4 were giving lower defectives than presses 1 and 2, yet on 
shift C this is not the case, press 3 actually giving the highest defectives. How­
ever, the most important effect is that shift C gives higher defectives for all the 
presses. Finally, the day effect does not interact with· either shifts or presses, 
but its main effect is significant at the 5% level of significance. 

(1) The Assumptions Underlying the Analysis of Variance 
Eisenhart!11) and Cochran!18l have recently discussed the practical signi­

.ficance of the assumptions underlying the usual analysis of variance. Several of 
these relate to the residual variance. 

It is assumed firstly that the residual variance has the Normal or Gaussian 
distribution. The effects of non-normality have been studied only in certain 
relatively simple cases and in these it was found that one was not likely to be led 
into serious errors by the moderate types of non-normality usually encountered 
in practice. It can be reasonably assumed that this will also be true for the more 
-complex cases occurring in the analysis of variance. It is, however, preferable, 
when we know that our dependent variable is non-normally distributed and when 
we know which transformation (generally of the type discussed in the previous 
two sections) will make it normal, to employ it. 

It is further assumed that the experimental errors have a common variance 
(in the case of the simpler analyses : there are some, the so-called split-plot 
experiments, in which in effect there are several errors involved). A common 

_'Source of departure from this assumption is where the error is correlated with the 
. variable. An example of this was discussed i.n Section (k) where this effect was 

very marked but nevertheless made little difference to the results of the analysis 
.of variance. Another circumstance that would lead to non-satisfaction of this 

(12) Churchill Eisenhart, "The Assumptions Underlying the Analysis of Variance," 
··Biometrics, Vol. 3, page 1, March, 1947. 

(13) W. G. Cochran, "Some Consequences when the Assumptions for the Analysis of 
Variance are not Satisfied," Biometrics, Vol. 3, page 22, March, 1947. 
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assumption is for the blocks in a confounded experiment to correspond to different 
batches of raw material with varying degrees of homogeneity. Or it may be that 
one particular level of a factor, or combination of levels of several factors, leads 
to an abnormal pH region in which results tend to be more erratic. It is com­
paratively rarely that one has sufficient observations to detect this sort of phenom­
enon, and the most one can usually do is to hope, in the main reasonably, that 
if it is present it will not distort our significance levels unduly. : 

A further assumption is that the experimental errors are independent. In 
experimental work this ':ondition can be satisfied by the use of the randomisation 
technique outlined in Chapter I (n). 

In randomised block experiments and in confounded factorial experiments, 
it is assumed that block x treatment interactions do not exist. That is to say, 
it is assumed that treatment effects and block effects are additive. In the case of 
randomised blocks this would be easy enough to check, by explicitly calculating 
the block x treatment interaction, but this procedure cannot be used in a confounded 
factorial experiment (see, however, Chapter XVI (k)). It would seem, however, 
that departures from this assumption would have to be severe before they led us 
into serious error. · 

CHAPTER XIII 

LATIN AND COMPLETELY ORTHOGONAL SQUARES 

(a) Introduction 
Suppose that we wish to compare a small number n of treatments, say 

between four and eight. These could be laid out in randomised blocks of n plots, 
the block shape being any found convenient. If there were to be n replications, 
the blocks could be laid out in n straight rows, so that altogether we have a 
n X n square. It is now possible to arrange the order of treatments within each 
row so that also in each column each treatment occurs just once and only once. 
For example, for a 4 X 4 square one such arrangement is that in Table 13.1. 

A 
B. 
c 
D 

Table 13.1 

B 
D 
A 
c 

c 
A 
D 
B 

D 
c 
B 
A 

The advantage of this double restriction is that it allows the' ground hetero­
geneity to be removed in the two directions at right angles simultaneously, with 
a substantial reduction in the error in the comparison of the treatment means. 

This design can be used industrially. For example, we may wish to compare 
four levels of catalyst in a reaction. There may be the restriction that the raw 
material arrives from the previous stage of the process in batches of such a size 
that only four reactions can be carried out on each batch. If we have four reactors 
available, then we can use the d:sign above, rows corresponding to reactors, 
columns to batches of raw matenal, and treatments to catalyst concentration. 
In such an experiment it is reasonable to suppose, as in the agricultural field trial 
that there are no interactions between rows and treatments or between column~ 
and treatments. 

This condition may not be satisfied, however, when the three classifications 
correspon~ to three ~ndepe~dent factors, for example, pressure, temperature, and 
concent~a~10n. An mter~ct10n between pressure and temperature might appear 
as a ficbtlous concentratiOn effect. 
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It is for this reason that caution should be used in interpreting the results 
of an experiment based on a Latin Square. It seems reasonable to use them for 
preliminary experiments to sort out the most interesting ranges of the independent 
variables for further study. Under these conditions if any mistake has been 
made it will soon be realised and little harm will have been done. 

(b) Graeco-Latin and Completely Orthogonal Squares 
Consider the Latin square in Table 13.2. It is possible to construct another 

one, this time using Greek letters (Table 13.3) such that; when the two are super­
imposed (Table 13.4) with each Latin letter each Greek letter occurs once and 
once only, and vice versa. Such a square is called Graeco-Latin, and the two 
squares forming it are said to be orthogonal to each other. 

Table 13.2 Table 13.3 

A B c D E Gt li y 3 c 
B c D E A 3 e Gt li y 
c D E A B ~ y 3 c Gt 

D E A B c e Gt li y 3 
E A B c D y 3 e Gt ~ 

Table 13.4 

A« B~ Cy DB Ec 
B8 Ce D« E~ Ay 
c~ Dy E8 Ae B« 
De E« Ali By C8 
Ey A3 Be Ox D~ 

Two problems arise, firstly, under what conditions can such a Graeco-Latin 
square be formed, and secondly, can a third, a fourth, etc., alphabets be super• 
imposed? · 

The first question was raised by Euler in 1782, in the form of arranging 
p 8 officers, one of each of p ranks from each of p regiments, in a p X p square 
such that no row or column contains more than one of each rank and one of each 
regiment. Euler obtained solutions for squares of side 3, 4, 5, 7, 8, and 9, but 
conjectured that the problem was insoluble for p = 6. Proofs by exhaustive 
enumeration of all possibilities have been given by Tarry <1> and by Fisher and 
Yates <1 >, and it is generally supposed that the problem is insoluble for all numbers 
of the type ( 4n + 2). 

MacNeish<•> showed that it was possible to construct p X p squares with 
(p -1) alphabets when p was a prime number. This was extended by Bose<'> 

(1) Tarry, G. (1900). "Le probleme des 36 officiers". Assoc. Franc. Av. Sci., 29 (2), 
170-203. 

(1) Fisher, R. A., and F. Yates (1934). "The 6 X 6 Latin Squares". Proc. Camb. 
Phil. Soc., 30, 492-507. 

(1) MacNeish, H. F. (1922). "Euler Squares". Ann. Math. (2), 23, 221-227. 
(')Bose, R. C. (1938). "On the Application of the Properties of Galois Fields to the 

Problem of Construction of Hyper-Graeco-Latin Squares". Sankhya, 3, 323-338. 
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and Stevens<'> independently in most elegant papers for squares of side s where 
s is any power of a prime. Considerable progress for the case of mixed non­
prime numbers has been made by Mann,<'> who showed how to construct squares 
with r alphabets, where r in the smallest value of pi•i - 1 and the side of square 
is m = p1•t ••• Pn"'· For example, in the simple case of m = 7, r = 71 

-1 = 6: for m = 71 = 49, r = 71 -1 = 48: for m = 20 = 21 X .5, r = 21 

-1 =3. ' 
· To construct a ~ X ~ completely orthogonal square, where ~ is a prime 

number, we can use the notation of Brownlee and Loraine!7 l. Let us consider 
the case where~= 5. We use symbols x1abcd, x2ab 1c8d 4• We multiply the8e 
together, and raise them to all powers. with the rule that 

x1
1 = x1

1 = a1 = b1 = c5 = d5 = 1. 
We use the exponent of x1 to denote the row number and the exponent of x1 to 
denote the column number and the exponents of the letters a to d to denote the 
levels of the four factors corresponding to the four alphabets. Thus if we write 
the row, column, and factor levels out in order, then by starting with the zero 
power ofx1abcd we get the first column as x1°a0b0c0d0 = 00000, x1abcd = 101111, 
x11a1b1c1d1 = 202222, x1

8a8b8c8d8 = 303333, x1'a'b'c'd' = 404444. 
The next power, x1

6a6b 6c5d1, by the application of the rule x16,. etc. = 1, 
is equal to x0a0b0c0d0 and the first entry is repeated. 

The second column is given by multiplying the elements in the first column 
by the first power of the second generator x2ab 2c8d 4 :-

x10a0b0c0d0 X x2a b1c8d' = x1°x2a b1c8d4 = 011234, 
x1a b c d X x2a b 8c8d' = x1x2a2b8c4d5 = x1x8a1b8c'd0 = 112340, 
x12a2b8c1d 8 X x2a b1c8d' = x11x2a8b4c5d8 = x1

1x1a8b'c0d1 = 213401, 
x1

8a8b8c8d8 X x2a b1c8d4 = x18x1a4b5b8d7 = x1
8x2a'b0c1d8 = 314012, 

x1'a'b'c'd' X x1 a b 8c8d' = x14x1a6b8c7d8 = x1'x2a0b1c1d8 = 410123. 
The third column is given by multiplying the first column by the second power 

of the second generator, i.e. the first entry is 
x1°a0b0c0d0 X x2

2a1b1c8d8 = x1°x1
1a4b1c8d = 022413. 

The fourth and fifth columns are given by multiplying the first column by the 
third and fourth powers respectively of the second generator. Use of the fifth 
power of the second generator as a multiplier gives x2

6a6bl0cl6d 20 = x2oaobocodo, 
which when applied to the first column leaves it unchanged. The use of these 
two generators, therefore, produces a 5 X 5 square as below. · 

0000 1234 2413 3142 4321 
1111 2340 3024 4203 0432 
2222 3401 4130 0314 1043 
3333 4012 0241 1420 2104 
4444 0123 1302 2031 3210 

This procedure will produce a completely orthogonal square for any prime 
number. In the case of ~ = 7, for example, we use the rule x17 = x87 = x87 

.. = 1, and the two generators are x1abcdef, x2a b•c3d'e6f8• 

The construction of squares of sides 4 = 21, 8 = 28, and 9 = 31 is more 
difficult (c.f. Bose<'> and Stevens! 5 l): for practical purposes solutions will be 
found in Fisher and Yates' Tables (Table XVI). 

!•) Stevens, W. L. (1939). "The Completely Orthogonalised Square". Ann. Eugen., 
IX, 82-93. 

<•l Mann, H.B. (1943 ). "On the X Construction of Sets of Orthogonal Latin Squares". 
Ann. Math. Stat., 14, 401-414. 

(') Brownlee, K. A., and P. K. Loraine (1948). "The Relationship Between Finite 
Groups and Completely Orthogonal Squares, Cubes, and Hyper-Cubes". Biometrika, 
XXXV, 277-282. 
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(c) The Use of Latin Squares 
The application of a Graeco-Latin square to experimental design is obvious. 

Rows, columns, and the several alphabets are made to correspond with the various 
factors. In the simplest case the numbers of levels of all the factors must be 
the same, but if this is inconvenient and a smaller number of levels is preferred 
for one or more factors then one or more levels of these factors can be repeated 
to bring the total number up to the side of the square. Each restraint takes 
(p - 1) degrees of freedom, and if the square is completely orthogonal and 
(p + 1) restraints or factors are applied then the total number of degrees of free­
dom for the factors is (p + 1) (p -1) = p 1 -1, i.e. there are none left for error. 
Accordingly the full number of restraints cannot be applied : one or more must 
be left as dummies to use as error. 

Published examples of the use of orthogonal squares industrially are few. 
Tippett<8 l used a 5 X 5 square with five restraints to track down spindle defects 
in ·a cotton mill. Davies!8 l used a 7 X 7 Graeco-Latin square for testing fuel 
consumption, the four restraints being times of day, day, driver, and fuel. 

The same remarks about interactions between the restraints being liable to 
produce fictitious results for the other factors as were made about Latin Squares 
also hold good for Graeco-Latin and completely orthogonal squares. This 
question has been investigated by Brownlee and Loraine< 7 l, who showed that these 
squares were special cases of the series of designs known as fractional replications, 
in which interactions between pairs of classifications could appear as main effects 
for other classifications. 

Completely orthogonal squares are the basis for two types of designs for 
balanced incomplete blocks (Chapter XIV). 

(d) An Example of a Latin Square 
The data in Table 13.5 represents the results of an exploratory experiment 

on the first stage of a purification process which involves adsorbing a substance 
on carbon. Two factors were to be investigated at five levels each, pH and the 
quantity of carbon as a percentage of the volume of solution. The pH was made 
to increase in equal stages and the quantity of carbon in equal steps on a logarithmic 
basis. These two factors form the rows and columns respectively of Table 12.10. 
The treatments consist of five different grades of carbon. 

Table 13.5 

%Carbon 
Totals 

0.05 0.10 0.20 0.40 0.80 

pH 4.0 17.A 39.D 65.B 19.C 12.E 152 
5.0 32.E 33.C 6l.A 71.B 94.D 291 
6.0 56.C 49.A 84.D 90.E lOO.B 379 
7.0 76.D 81.B 97.E 98.A lOO.C 452 
8.0 93.B 90.E 97.C lOO.D 100.A 480 

Totals 274 292 404 378 406 1754 

Grade A B c D E 
Totals 325 410 305 393 321 

(B) Tippett; L: H. C. (1?34). "Application of .St;atistical. Methods to the Contr?l of 
Quality in Industrial Production". Manchester Statistical Soc1ety (quoted by R. A. Fisher 
in"Design of Experiments", Section 35.1). 

(•) Davies, H. M. (1946). "The Application of Variance Analysis to Some Problems 
of Petroleum Technology". Journal of the Instirute of Petroleum, 32, 465-482. 
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The analysis of variance proceeds as follows :­
(1) Square every observation and add. 

11• + 39• + 65• + ... + too• = 144452 
(2) Obtain the total for each row, square these totals, sum these squares, and 

divide by the number of individuals in each row. 
(1521 + 291 1 + 3792 + 4521 + 4802)/5 = 137226.0 

(3) Similarly for columns. 
(2741 + 2921 + 4041 + 3788 + 4061)/5 = 126255.2 

(4) Similarly for "treatments" (here grades). -
(3251 + 410 8 + 305 1 + 393 1 + 321 1)/5 = 124848.0 

(5) Square the grand total and divide by the grand number of individuals. 
17541/25 = 123060.6 • 

We can now form a table of the anlysis of variance (Table 13.6). 

Table 13.6 

Degrees of Mean 
Source of Variance Sums of Squares Freedom Squares 

Rows (pH) (2)- (5) = 14165.4 n-1=4 3541.35 
Columns (% carbon) (3)- (5) = 3194.6 n-1=4 798.65 
Treatments (grades) (4)- (5) = 1787.4 n-1=4 446.85 
Residual 2244.0 (n-1)(n-2) = 12 187.00 

Total (1)- (5) = 21391.4 n1 -1 = 24 

n = size of square. 

The Residual sum of squares is obtained as the difference between the Total 
Sum of Squares and all the other components. With the variance ratio test we 
find that the pH effect reached the 0.1% significance level and the % Carbon 
effect the 5% level. The grade effect does not reach the 5% level. 

For making a comparison of any two levels of any of the three factors, we 
may note that the standard error of any row, column, or treatment average is 
a/ vn where n is the side of the square. In the present case, therefore, the standard 
error is vl87·0/v.5 = 6.12. The difference of two such averages will therefore 
have the standard error v2 (6.12) = 8.65 and since the degrees· of freedom are 
12 we have for the 95% confidence limits ± 2.18 X 8.65 = ± 18.8. It should 
be remembered, of course, that these limits only refer to two averages chosen at 
random, they do not apply to the largest and smallest chosen because they are 
the largest and smallest. 

It is interesting to proceed a little further with this data and partition the 4 
degrees of freedom for% carbon into linear, quadratic, cubic, and quartic com­
ponents in the manner indicated in Chapter XII (c). We obtain the results:-

Linear 2450.0 
Quadratic 195.9 
Cubic 32.0 
Quartic 513.6 
Total 3194.5 

Remembering that the residual mean square is 187.0 with 12 degrees of free­
dom we would find none of these significant except the linear component. We 
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might therefore, conclude that there is no evidence for departure from linearity. 
We reach this conclusion by postulating the hypothesis that the most reasonable 
form of functionality is the straight line and after that the parabola and so on. 
What we are overlooking is that from what is known of the theory of adsorption 
this is not the most reasonable hypothesis. On the contrary it might be expected 
that the percentage adsorption would rise to a maximum and stay at that maximum 
no matter how much more carbon was used. In particular, of course, the adsorp­
tion cannot exceed 100%. A glance at the column totals in Table 12.10 shows 
that this is probably what is happening ; the adsorption has risen to its maximum 
by the time the % carbon has reached 0.20% and raising the % carbon to 0.80% 
produces no further increase (the slight dip at 0.40% carbon is obviously experi­
mental error). 

We might wish to proceed to test explicitly this hypothesis. We have five 
levels for the factor % carbon. In the table below line 1 will test whether level 4 
is different from level 5. If not, then probably the plateau has been reached by 
level 4, and line 2 will test whether level 3 is different from the average of levels 
4 and 5, and so on. The coefficients are used in the usual manner and lead to 
the sums of squares, each with 1 degree of freedom, in the last column. The 
sum of squares for any line is given by squaring the result of operating with the 
given coefficients on the experimental totals for each level and dividing by 
Nl:k1 : here N = 5. 

~ 
Comparison I 

~· 
:Ek" s.s. 

4Vo S 0 0 -1 I +z8 z 78·400 
3 v. average of 4 and s 0 --2 I I --24 6 19.:000 
z v. average of 3, 4, and 5 0 I I I +au IZ 162:&-400 
I v. average of z, 3, 4, and 5 -4 I I I +384 zo 1474·560 

Total for each level 274 404 378 406 3194·560 

Remembering that the residual mean square was 187.0, we see clearly that the 
plateau has not been reached at level2 (0.10% carbon) but that it has been reached 
at level 3 (0.20% carbon), and further raising the carbon to 0.80% produces no 
significant increase in the quantity absorbed. 

This system is an example, therefore, of how it is well to consider whether 
the hypothesis that one is testing is an appropriate one. The emphasis which 
lies upon null hypotheses in present-day statistics makes it rather easy to fall into 
an attitude of mind which accepts the null hypothesis of no difference between the 
two factors and denies the evidence for the difference between the two factors 
when it would be more reasonable to regard as one's null hypothesis that there 
was a difference and accept that. 

It might also be emphasised that the experiment as carried out was exploratory 
and not intended to be of great precision. For example, in its given form there 
can be no detection of the existence of interactions. However, it served its purpose 
of finding out what were likely to be the useful ranges of the variables pH and 
quantity of carbon, and showed that it was unlikely there was any great difference 
be~een the different grade.> of carbon. This was achieved with 25 runs, whereas 
the full factorial experiment would have required 51 = 125 runs. Having found 
what are the weful ranges of the variables, these can be concentrated on if necessary, 
and it may be that a 38 experiment would be satisfactory using the three grades 
of carbon that came out best. This could be confounded in 3 blocks of 9 (see 
Chapter XV) and would give enough degrees of freedom for error to be 
reasonably accurate. 
-- We can always construct coefficients to test any hypothesis th t appears 
reasonable to us. For example, in a 38 experiment, one of the factors may be 
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three grades of raw material, one pure and two commercial. The obvious com­
parisons to make are those in the table below, and conveniently these are orthogonal. 

Comparison Pure, Commercial A, Commercial B 

Commercial A v. Commercial B 0 -1 
Average of the Commercials v. Pure -2 +1 

CHAPTER XIV 

BALANCED INCOMPLETE BLOCKS 

(a) Introduction 

+1: 
+1 

A general description of the experimental design known as balanced incom­
plete blocks have been given in Chapter I Section (f), and will n()t be repeated 
here. This chapter will give the methods of computation for such experiments, 
the method and notation being based on Yatesl1l. 

Yates has developed a rather more sensitive method of analysing the results11l 
but generally, particularly when the number of blocks in the experiment is not very 
large, the increase in accuracy is not very great, and the earlier method of analysis 
reproduced here will normally suffice. 

(b) Computation 
Table 14.1 gives the results of an experiment for comparing 7 treatments 

in 7 blocks of 3 units, there thus being 3 replications of each treatment. Block A, 
for example, contained treatments TIJ T 1, and T 1 , and the figures in the table 
in the columns A to G are the yields obtained. 

Table H.1 

~ A B c D E F G 
Tr .. tmenta --------:-----

Tl so .fa 91 
Ta 118 X: 94 
Ta 76 So 
T, 7Z 53 31 
T, 44 6s 54 T, lOZ 119 oa 
T, 38 31 37 ------------Total8 170 I Sa air 196 :178 us 1:1:1 

In Yates' notation-
Number of treatments 
Number of units per block 
Number of replications of each treatment 
Number of blocks 

Totm 

183 
306 
uo 
156 
163 
313 
113 -

1+5+ 

Q " 
--84 -12.000 

163 z3,z85 
6o 9·857 

-r6o -aa.Bs7 
-81 -n.sr 

as+ 36.z 6 
-161 ~3·-

0 ··-
t=7 
k=3 
r=3 

- b=7 

Corneted 
Tnatm-

M...,. 

57.a38 
VZ.SZ3 
79·095 
4fj.~ 
57· 
105·5~ 
4(i.a3 

Total number of units - N = tr = bk = 21 
Sum of all N observations - G= 1454 
Sum of all r observations for treatment 1 
Sum of all k observations for block 1 
Error variance of a single observation within 

blocks of k units - = 

(l) F. Yates: Annals of Eugenics, Vol. 7, page 121, 1936. 
(I) F. Yates: Annals of Eugenics, Vol. 10, p. 317, 1940. 
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For each of the t treatments we calculate the quantities Q given by 
Q. = kT 1 - B1 - B1 - ••• - Br 

where the Bs for Q1 are the totals for the r blocks containing treatment 1. For 
example, 

Qt = 3 X 183- 170- 182- 281 = -84 
The Sum of Squares for treatments is then 

t-1 7-1 
Nk (k -1) I:Q• =21 X 3(3-1) (84• + 163• + ... + 161•) 

= 7665.905 
The Sum of Squares for Blocks is obtained from the Block totals in the usual 
manner:-

1 k I:B•- G•jN 

= i (1701 + 1821 + ... + 1221
)- 14541/21 = 6725.810 

The Total Sum of Squares is also as usual 
so• + 42• + 911 + 116• + ... 37•- 14541/21 = 15057.810 

We enter up these items in a table of analysis of variance and obtain the Error 
Sum of Squares and Degrees of Freedom by difference. 

Table 14.2 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares 

Blocks 6 6725.810 1120.968 
Treatments 6 7665.905 1277.651 
Error 8 666.095 83.261 

Total 20 15057.810 

The Error Mean Square is 01t1 and the standard error of the difference between 
any two treatment means is 

Vi • /k (t -1) I 

V N(k-1) Olt 

_r,;./3(7-1) 
= v2 V 21(3 _ 1) X 83.261 

= 8.448 

To form these treatment means, corrected for block differences, we obtain the 
t quantities 

(t -1) (7 -1) 
V1 = N (k _ 1) Ot = 21 (3 _ 1) (-84) = -12.000 

These vs represent the deviation of each of the t treatments from the grand mean, 
which is G jN = 1454/21 = 69.238. The corrected treatment mean for treat­
ment 1 is thus 

Vt + GjN = -12.000 + 69.238 = 57.238 

Should we also be interested in the Block means, in the case of designs such 
.as the present example, in which every pair of blocks has the same number of 
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treatments in common, we can estimate the corrected block means by calculating 
Q's similar to the Qs, e.g. 

O'A = 3 X 170-183-220-163 =-56 
(t-1) (7-1) 

and v' A = OA N(k _ 1) = 56 21(3 _ 1) = -8.000 

whence the corrected mean for block A is (69.238 + (-8.000)) = 61.238. 
More generally, we obtain the corrected block mean as, here, ' 

j (170.000- 57.238- 79.095- 57.667) + 69.238 = 61.238 

In the particular case discussed, where each pair of blocks has the same 
number of treatments in common, the standard error of the difference between 
corrected block means is the same as that quoted above for corrected treatment 
means. In the more general case, the variance is, on the average. 

- 2 GJr
1 

( (t- 1) (t-k)) 
Vb = -k- 1 + t(k-1) (b -1) 

which of course gives identical results in the present instance. 

(c) Possible Designs 
The fundamental condition for a balanced incomplete block design is that 

every pair of treatments occur together the same number of times, say ;.., If b 
is the number of blocks, k is the size of block, t the number of treatments, and 
r the number of replications of each treatment, then obviously bk = tr. To 
find ;.., we note that any one treatment occurs in r blocks. There will thus be 
a total of r(k -1) other positions in these blocks occupied by the other (t -1) 
treatments. Any other particular treatment will therefore occur with the first 
specified treatment i.. = r(k -1)/(t -1) times. 

These two equations, bk = tr and i..(t -1) = r(k -1), therefore are the 
necessary conditions to be satisfied by whole numbers for a balanced incomplete 
block design to exist. They are not sufficient conditions, however ; there are 
sets of numbers satisfying them for which it can be proved that no solution exists. 
The simplest of these is b = 42, k = 6, t = 36, r = 7, ;.. = 1. This impossibility 
is related to the impossibility of forming a completely orthogonal 6 x 6 square 
as described in Chapter XIII. 

A systematic study of methods of construction of designs has been given 
by Bose< 8 l, based mainly on finite geometries. There are, however, two simple 
general types which can be readily described. 

The first works for p 1 treatments, where p is a number for which a com­
pletely orthogonal square is possible (e.g. 2, 3, 4, 5, 7, 8, 9, 10, ... ). The treat­
ments are written out in the form of a p X p square and a completely orthogonal 
square superimposed. Then we get p blocks from the rows, p blocks from the 
columns, p blocks from the first alphabet, etc. In all there will be p(p + 1) 
blocks, each containing p units. Each of the p 2 treatments will be replicated 
(p + 1) times, and i.. = r(k -1)/(t -1) = (p + 1) (p -1)/(p•-1) = 1. 

The simplest of these is given by the 3 x 3 square 
1 = Aoc 2 = B!3 3 = C8 
4 = B8 5 = Crx 6 = A!3 
7=C!3 8=A8 9=Boc . 

which leads to the design for 9 treatments, replicated 4 times in 12 blocks of 
3~~ ' 

1 4 7 1 2 3 1 2 3 1 2 3 
2 5 8 4 5 6 8 4 5 5 6 4 
3 6 9 7 8 9 6 9 7 9 7. 8 (I) 

(3) Bose, R. C. (1939). "On construction of balanced incomplete block designs.'' 
Ann. Eugen. IX, 353-399. 
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The 4 X 4 square gives the design for 16 treatments, replicated 5 times, in 20 
blocks of 4 units. 

The second simple system is also based on completely orthogonal squares, 
and works for (p1 + p + 1) treatments in (p1 + p + 1) blocks of (p + 1) units. 
The simplest case is for p = 2. We write down the first 3 treatments and under 
it a 2 X 2 Latin square with the remaining 4 treatments inserted 

1 2 3 
4=A 5=B 
6=B 7=A 

The first block is formed by the extraneous 3 treatments, the second by taking 
the rows in tum with 1, the third by taking the columns in tum with 2, and the 
fourth by taking the treatments in tum with 3 : thus 

1 1 1 2 2 3 3 
2 4 6 4 5 4 5 
3 5 7 6 7 7 6 (II) 

This is the design used in the example in Section (b). 
Similarly for 13 treatments in 13 blocks of 4 units we can add treatments 

10, 11, 12 and 13 to the 3 X 3 Graeco-Latin square given earlier, and the subse­
quent blocks are formed by taking the rows with 10, the columns with 11, the 
Latin letters with 12, and the Greek letters with 12. 

10 10 10 10 11 11 11 12 12 12 13 13 13 
11 1 4 7 1 2 3 1 2 3 1 2 3 
12 2 5 8 4 5 6 6 4. 5 5 6 4 
13 3 6 9 7 8 9 8 9 7 9 7 8 (III) 

This type of design, in which the number of treatments t is the same as 
the number of blocks b, has the useful property of having complementary solu­
tions. Thus we can write out design (II) in the form (IV), where the first block 
a contains those treatments marked with a + sign, namely 1, 2, and 3. The 

a b c d e f g 
-

1 + + + - - - -
---

2 + - - + + - -
--- ------------

3 + - - - - + + - ----
4 - + - + - + -

--
5 - + - - + - + (IV) 

----1---- ----1-
6 - - + + - - + --- ----- ------
7 - - + - + + -

complementary design given by the negative signs, for which bloc~ a contains 
-treatments 4, 5, 6, and 7, is valid for 7 treatments in 7 blocks of 4. This procedure 
can also be applied to design (III) to give 13 treatments in 13 blocks of 9. 
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A further general class of designs is that in which the number of units per 
block is one less than the number of treatments. Each treatment is omitted once 
from one block, e.g. for t = 4, k = 3, and t = 5, k = 4, we get 

A A A B A A A A B 
B B C C (V) and B B B C C (VI) 
C D D D C C D D D 

D E E E E 

Similarly designs in which the. number of units per block is two less than 
the number of treatments can be formed simply. Below are the designs for 
t = 5, k = 3, and t = 6, k =4. · 

A A A A A A B B B C 
B B B C C D C C D D ~IQ 
C D E D E E D E E E 

A A A 
B B B 
c c c 
D E F 

A A A 
B B B 
D D E 
E F F 

A A A 
c c c 
D D E 
E F F 

A B B B 
D C C C 
E D D E 
F E F F 

B C 
D D 
E E 
F F 

~III) 

A complete list of all known designs is given in Fisher and Yates' Tables 
(Tables XVII-XIX). 

Efficiency of Balanced Incomplete Block Designs 
Suppose we are dealing with a system in which there is no clearly-defined 

block size, as with e.g. animal litters, but merely a preference for smaller blocks, 
associated in space as in agricultural field trials or perhaps in time as in experi­
ments on a manufacturing process. Suppose that the error variance of a single 
unit is ak1 when arranged in blocks of size k and aK1 when arranged in blocks of 
size K. Then the variance of the difference between two treatment means v.hen 
arranged in blocks of K units, there being r replications of each treatment, will 
be 2aK1/r. If arranged in balanced incomplete blocks of k units, with the same 
number r of replications, the error variance for the difference between two treat­
ment means will be 2k(t-1) aK1/N{k-1) as quoted earlier. The efficiency 
of the balanced incomplete block design compared with the large randomised 
blocks will be the inverse of the ratio of these error variances,. or 

1-1/k aK1 

1-1/t «Jk1 

(since for the randomised block design r = N/t). 
In any particular experiment if we know aK1 and ak1 we can calculate this 

efficiency. It will be noted that if there is no gain by the use of the smaller blocks, 
so that aK1 = ak1, there will be an actual loss in efficiency, since (1-1/k)/(1-1/t) 
is always less than 1 since k is less than t. For example, in the case of design (I), 
for 9 treatments in blocks of three, this factor (denoted by Yates as the "efficiency 
factor") is (1-1/3)/(1-1/9) = 3/4. The residual error variance in blocks 
of 3 has therefore to be less than 75% of that in blocks of 9 before the balanced 
incomplete block design becomes superior. This condition will be usually 
satisfied, but it is an aspect that should not be lost sight of. 

In the case where the block size is definitely fixed, the between block variance 
being ab1 and the within block variance aw•, the general case as given by Yates( I) 

is rather complicated. To take a simpler example, suppose that the block size 
k is half the number of treatments. Yates' formula applied. gives 
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t 
GK

1 
= 2(t -l) Gb

1 + Gw
1 

Taking a specific example, the process described in Chapter VII (b) had a natural 
block size of 3 units and Gb1 = 5.22, aw1 = 2.17. Suppose we wished to compare 
6 treatments. There is a balanced incomplete block design for 6 treatments in 
10 blocks of 3, there being 5 replications of each treatment. Its efficiency com­
pared with a randomised block design, putting 2 natural blocks together to make 
up a block of 6 units, would be 

1- 1/3 6 X 5.22/2(6- 1) + 2.17 _ 
1 95 1- 1/6 X 2.17 - . 

The use of the balanced incomplete block design would therefore nearly double 
the efficiency. 

(d) Other Uses for Symmetrical Incomplete Blocks 

It might be pointed out that though as indicated these designs were intro­
duced to evade the difficulty of restricted block size, they can be adapted for 
other purposes. For example, if we had a two factor experiment, each factor 
at 7levels, complete execution would require 71 = 49 units. We could, however, 
obtain satisfactory estimates of the two factors by use of the design discussed, 
which involves only 21 runs, and which gives the variance of the difference between 
two corrected means as 6ak1/7. The complete experiment would have given it 
as Za-..1j7, so our error in the incomplete case is larger, but may still be small 
enough for our purposes. 

The alternative classical solution of this problem would be to carry out the 
treatments T 1 toT, with B constant at BA and BA to BG with T constant at T 1 
which would require 13 units or runs. In the absence of replication the experi­
ment is most unsatisfactory, for there is no estimate of error and no means of 
testing for significance. If we replicate all treatments, making a total of 26 runs, 
we then get the comparison of our means with a variance Gk1• Comparing with 
the balanced incomplete block arrangement, we have done 24% more work and 
got an error variance 14% larger. 

(e) Youden Squares 

As stated in Chapter I, Section (g), in those cases where the number of blocks 
equals the number of treatments it is possible to arrange the order of treatments 
in each block so that each row contains all treatments once and once only. 

The balanced incomplete block design in which the number of units is one 
less than the number of blocks, of which the first two examples were given as 
designs (V) and (VI), can thus be arranged as Youden squares by a simple cyclic 
permutation. The first two of the series are 

t=b=~k=r=3 t=b=~k=r=4 
ABCD ABCDE 
BCDA (IX) and BCDEA (X) 
CDAB CDEAB 

DEABC 

The series of balanced incomplete block designs based on the second method 
of using completely orthogonal squares, and also their complements, can be 
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arranged as Youden squares. Design (II) and its complement in (IV) become 

t=b=~k=r=3 t=b=~k=r=4 
1 2 3 4 5 6 7 1 2 3 4 5 6 7 
2 6 4 1 3 7 5 (XI) 2 3 5 6 7 1 4 (XII) 
3 4 7 5 6 1 2 7 6 4 1 3 2 5 

4 7 2 3 1 5 :6 

Similarly design (Ill) for 13 treatments (based on the orthogonal square of side 
p = 3) and the design derived from the orthogonal square side p = 4 for 21 
treatments can be arranged as Youden squares. The problem of finding the 
arrangements is not easy, and Youden<'l has given them as 

t = b = 13, k = r = 4 

ABCDEFGHI J KLM 
CDEFGHIJKLMAB 
D E F G H I J K L. M A B C 
HIJKLMABCDEFG 

t = b = 21, k = r = S 

(XIII) 

ABCDEFGHI J KLMNOPQRSTU 
DEFGHI J KLMNOPQRSTUABC 
EFGHI J KLMNOPQRSTUABCD(XIV) 
J KLMNOPQRSTUABCDEFGHI 
LMNOPQRSTUABCDEFGHI J K 

Another useful solution is 

t = b = 11, k = r = 5 
ABCDEFGHIJK 
BCFKIGEAJDH 
CGDIKJHFABE 
DJKGFEIBCHA 
E K H A B D C G F I J 

(XV) 

A list of known solutions is given in Fisher and Yates' Tables (Table 2.1). 

The computation of the analysis of variance for a Youden Square proceeds 
on exactly the same lines as an ordinary balanced incomplete block experiment. 
The ·sums of Squares and Degrees of Freedom for the Total, Blocks, and Treat­
ments are calculated as in Section XIII (b) and the only difference is that one 
obtains a sum of squares and degrees of freedom for rows before finding by differ­
ence the sum of squares and degrees of freedom for the Residual Error. 

The degrees of freedom for rows is obviously one less than the number of 
rows, or (k- 1) = (r -1}. The sum of squares is found by summing the 
squares of the row totals, dividing this total by the number of individuals in a row 
(= t =b), and subtracting from this result the usual correcting factor, the grand 
total squared divided by the grand number of individuals. 

(t) W. J. Youden. Contributions from Boyce Thompson Institute, Vol. 9, page 41, 1937. 
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CHAPTER XV 

CONFOUNDING ; TilE PROBLEM OF RESTRICTED BLOCK SIZE 
IN FACTORIAL EXPERIMENTS!1) 

(a) The Algebraic Expressions for Factors 
In Chapter I we mentioned that for factorial experiments of the type 2'" 

(n factors all at 2levels) the number of runs required, being 2n, rapidly increased 
and for 4, 5 and 6 factors is 16, 32 and 64 respectively. These numbers may be 
too large to get into a single block, and the problem then arises of how to split 
the experiment up into smaller units. 

Let us introduce an appropriate symbolism. Let the small letters p, q, r,. 
etc., stand for the condition that the factor referred to is at its upper level. For 
example rs would mean that p and q are at their lower levels and r and s at their 
upper levels. Let the capital letter P denote the difference between the sum of 
all the upper levels of P and the sum of all the lower levels of P, and similarly 
for the other factors. Then for a three factor experiment, 

P = pqr + pq + pr + p - qr - q - r -1 
where 1 implies all the factors at their lower le,·els. Algebraically, this IS' 

equivalent to 
P = (p-1)(q + 1)(r + 1) 

and we can show that 
Q = (p + 1)(q -1)(r + 1), 
R = (p + 1) (q + 1) (r- 1). 

The first order interaction PQ is given by the difference between P at the­
lower level of Q, namely, 

pr+p-r-1 
and P at the upper level of Q, namely, 

pqr + pq -qr-q. 
This gives 

PO = pqr + pq - qr- q - pr- p + r + 1 
and algebraically this is equivalent to 

PQ = (p -1) (q -1) (r + 1). 

( 1) For discussions of confounding see R. A. Fisher : "The Design of Experiments,'• 
Chapter VI (Oliver and Boyd), and F. Yates: "The Design and Analysis of Factoria 
Experiments" (Imperial Bureau of Soil Science). 

Much mathematical ingenuity has been devoted to the conception of confounding. 
The important papers include : 

K. R. Nair (1938). On a method of getting confounded arrangements in the 
general symmetrical type of experiment. Sankhya, Vol. 4, 121-138. 

K. R. Nair (1940). Balanced confounded arrangements for the 5° type of experi­
ment. Shankhya, Vol. 5, 57-70. 

R. C. Bose and K. Kishen (1940). On the problem of confounding in the general 
symmetrical factorial design. Sankhya, Vol. 5, 21-36. 

R. A. Fisher (1942). The theory of confounding in factorial experiments in 
relation to the theory of groups. Annals of Eugenics, Vol. 11, 341-353. 

R. A. Fisher (1945). A system of confounding for factors with more than two 
alternatives, giving completely orthogonal cubes and higher powers. Annals of 
Eugenics, Vol. 12, 283-290. 

A summary of the methods of forming the layouts is given by J?. J. Finne~ (194 7). 
The construction of confounding arrangements. Journal of Experunental Agnculture, 

Vol. 15 107-112. 
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It will be noted that we get exactly the same result if we regard PQ as the 
difference between Qat the lower level of P, namely, · 

qr+ q-r-1 
and Q at the upper level of P, namely, 

pqr + pq - pr- p : 
for this gives 

PQ = pqr + pq - qr - q - pr - p + r + 1 
= (p- 1) (q -1) (r + 1). 

Similarly 
QR = (p + 1)(q- 1)(r- 1) 
RP = (p -1) (q + 1) (r- 1). 

The second order interaction PQR is rather more complicated : we can regard 
it as the difference between PQ at the lower level of R and PQ at the upper level 
of R. 

The former is 
(PQ)al = pq - q- p + 1 

and the latter is 
(PQ)a1 = pqr - qr - pr + r 

so the difference is 
PQR = pqr - qr - pr + r - pq + q + p - 1 

= (p- 1) (q- 1) (r- 1). 

As with a first order interaction, so with a second order interaction there are 
complementary ways of looking at it ; we might have regarded it as the difference 
between QR at P1 and QR at P1 , or as the difference between RP at Q1 and RP 
at Q1• 

(b) Confounding with Three Factors 
Now consider that we have a three factor experiment, which will take 28 = 8 

runs, and we need to put this experiment not into one block of 8 runs but into 
2 blocks of 4 runs, the block size admitting only up to 4 runs. If we consider 
that we are mainly interested in the main effects and the first order interactions, 
and are willing to sacrifice the second order interaction to achieve this end, we 
can allocate the treatments to the two blocks as in Table 15.1. 

Table 15.1 

Block 1 Block 2 

pqr 1 
r qr 
p pr 
q pq 

The second order interaction PQR is now lost as it is identical with the possible 
block differences, for the effect 

pqr + r + p + q - 1 - qr - pr - pq 
is both PQR and the difference between Block 1 and Block 2. This confusing 
of effects with block differences is known as "confounding." 

155 



We have now to assure ourselves that our estimates of the main effects and 
first order interactions are not affected by possible block differences. Suppose 
that Block 2 has a bias such that all the four results contained in it come out d 
higher than they would have done if they had been in Block 1. 

We have 
P = pqr + (pq + d) + (pr + d) + p- ( qr + d)- q- r- (1 + d) 

= pqr + pq + pr + p - qr- q - r- 1 
as before, the biases d vanishing, and similarly for the two other main effects. 

Also 
PQ = pqr + (pq + d)- ( qr + d)- q- (pr + d)- p + r + (1 + d) 

= pqr + pq - qr- p - pr- p + r + 1 
as before, the biases d again vanishing, and similarly for the other two first order 
interactions. 

(c) Confounding with Four Factors 
With four factors, the total number of runs required is 2' = 16. The main 

effects are of the type 
P = (p- 1) (q + 1) (r + 1) (s + 1}, 

the first order interactions of the type 
PQ = (p- 1) (q- 1) (r + 1) (s + 1), 

the second order interactions of the type 
PQR = (p- 1) (q- 1) (r- 1) (s + 1), 

and the third order interaction is 
PQRS = (p- 1) (q- 1) (r- 1) (s- 1). 

If we expand the latter it becomes 
PQRS = pqrs- pqr- pqs + pq- prs + pr + ps - p - qrs 

+ qr + qs - q + rs- r- s + 1. 
If we wish to confound in 2 blocks of 8, and select PQRS as the term to be 

confounded, then we merely need to place all those terms with a + sign in one 
block and all those with a- sign in the other block, as in Table 15.2. 

Block 1 
Block2 

Table 15.2 

pqrs + pq + pr + ps + qr + qs + rs + 1 
pqr + pqs + prs + qrs + p + q + r + s 

To confound in 4 blocks of 4, we need to select 3 terms to correspond to the 
3 degrees of freedom that we confound with block differences. It is found that 
while we can select any two arbitrarily, the third is then uniquely determined. 
The third is determined by the rule that we multiply the first two together by 
the ordinary laws of algebra, but wherever a squared term appears we place it 
equal to unity. Thus if the two selected are PQ and RS, then the third is PQRS : 
if the two selected are PQR and QRS, then the third is PS. 

A little experiment will show that with 4 factors to be confounded in 4 blocks 
of 4 it is impossible to avoid including one first order interaction amongst the 
three that are to be confounded. 

--- One method of dividing the treatments into their appropriate blocks is to 
expand two of the selected interactions which are being confounded, as in Table 15.3. 
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Table 15.3 

PQR pqrs - pqs + pqr - pq - qrs + qs - qr + q 
pqrs - pqs - pqr + pq + qrs - qs - qr + q QRS 

PQRcont - prs + ps - pr + p + rs - s + r- 1 
' QRS cont - prs + ps + pr- p - rs + s + r - 1 ' 

. 
Where one treatment has the same plus sign in both expansions, we place it 

in one block. Similarly - -, + -, and - + form the other blocks, as in 
Table 15.4. 

Table 15.4 

Block 1 Block 2 Block 3 Block 4 
++ -- +- -+ 
pqrs pqs pqr pq 

q qr qs qrs 
ps prs p pr 
r 1 rs s 

There is an alternative method of writing down the treatment which in the 
more complicated cases is less troublesome. We consider the three interactions 
which we have selected for confounding, here 

PQR, QRS, PS. 
We place in the first block those treatments which have an even number of letters 
in common with the letters of these three terms. The· treatment (1) is obviously 
satisfactory, for it has none in common (and zero is an even number). The 
treatment q r is also satisfactory, for it has 2 letters in common with both PQR 
and QRS and none in common with PS. The two others satisfying the condition 
are prs and pqs. This has given us one block, actually equivalent to Block 2 in 
Table 15.4. To get the next block, we select any treatment which has not yet 
occurred, say p, and multiply each of the terms in our first block by this, using 
the convention as before that e.g. p1 = 1. Thus we get 

pqs X p = p 1 qs = qs 
qr X p = qpr 
prs X p = p8 rs = rs 
1 Xp=p 

Accordingly, (p, rs, qpr and qs) form our second block, which actually is Block 3 · 
of Table 15.4. The next block is formed by selecting a treatment which has not 
yet occurred, say q, and multiplying the term of the first block in tum. This will 
give us Block 1 of Table 15.4. Selecting any treatment not yet mentioned, say s, 
and carrying out the same operation given as Block 4. 

(d) Confounding with Five Factors 

With five factors we require a total of 21 = 32 runs. Accordingly there are 
a number of possibilities according to the size of block we have available. 

For splitting into 2 blocks of 16 we obviously choose to confound the highest 
order interaction, PQRST. To allocate the treatments into the two blocks, we 
can expand (p -1) (q -1) (r -1) (s -1) 't-1) and place all treatments with 
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a + sign in one block and all those with a - sign in the other block. Alter­
natively, we get the same result by taking for one block all those treatments with 
an even number of letters in common with PQRST : these are (1) (no letter in 
common), the ten treatments of the type pq, qr, pr, ps, etc., and the five treatments 
of the type pqrs, qrst, etc. 

For splitting into 4 blocks of 8, the best set of interactions to be selected for 
confounding is of the type 

. PQR, RST,PQST 
which avoids losing any first order interaction. For allocation into the four 
blocks, we can expand any two, say PQR and RST, and distribute the treatments 
according to whether their signs in the two expansions are+ +. + -,-+,or 
- -, as in the previous section. Alternatively, we can take as the first block 
those treatments with an even number of letters in common with the interactions 
selected for confounding. These are 

(1), pq, st, pqst, qrs, qrt, prs, prt. 
The subsequent blocks are obtained by multiplying each of these treatments by 
p for the second block, s for the third block, and r for the fourth block. 

For splitting into 8 blocks of 4, the best we can do is to lose 2 first order 
interactions. A typical set is 

PQ,RS,PRT,QRT,PST,QST,PQRS 
One method of building up the treatment combinations for the eight blocks is to 
expand any three (the third not being the product of the first two : e.g. if we 
select PQ and RS as the first two, then the third cannot be PQRS) and then the 
eight blocks are made up according to whether a treatment has the signs in the 
three expansions+++,++-.+--,+-+,-++.-+-,---, 
or--+. The alternative method is, however, less arduous. Our first block 
would be 

(1 ), pqt, rst, pqrs. 
and the other seven are obtained by multiplying by treatments not hitherto 
mentioned. For example, to get our next block we can multiply by p, getting 

p, qt, prst, qrs. 
For the third block we can multiply by q, getting 

q, pt, qrst, prs, 
and so on, till all treatments have occurred. 

(e) Confounding with Six Factors 
With six factors we require 2• = 64 runs. In confounding in 2 blocks of 

32 we obviously choose the highest order interaction PQRSTU to be confounded. 
The principal block would be made up of (1), the 15 treatments with pairs of 

' letters of the type pq, pr, ... tu, the 15 treatments with four letters of the type 
pqrs, etc., and the treatment pqrstu. 

For 4 blocks of 16 the most satisfactory set for confounding is 
PQRS, RSTU, PQTU 

for which the principal block is 
(1) pqrs, rstu, pqtu, pq, rs, pqrstu, tu, prt, qst, psu, qru, qrt, pst, qsu, pru. 

For 8 blocks we can confound 
PQR,RST,PSU, QTU,PQST,QRSU,PRTU 

for which the principal block is 
(1) prs, qrt, pqst, stu, prtu, qrsu, pqu. 

In these three cases we avoid losing any first order interactions. To get the 64 
. runs into 16 blocks of 4, however, losing 3 first order interactions is unavoidable. 
A typical set of 15 interactions for confounding is 

PQ, RS,PRT,QRT,PST,QST,PQRS,TU,PQTU, 
RSTU,PRU,QRU,PSU,QSU,PRQSRTU, 

- for which the principal block is 
(1 ), pqrs, rstu, pqtu. 
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(f) Computation of the Results of a Confounded Experiment : 
An Example 

In a confounded experiment the computation proceeds exactly as though the 
experiment had not been confounded, with the sole difference that we do not 
compute those interactions which we have confounded. Instead, we take the 
block totals, square them, divide by the number of treatments occurring in e'ich 
block, and ubtract the usual correcting factor (grand total squared over grand 
total number of observations). The degrees of freedom for this ·sum of squares 
is of course one less than the number of blocks. We would get an identical result 
if we calculated the sum of squares for the interactions being confounded, and 
then pooled them. 

As an example, let us consider an experiment on a process employing a 
mixed catalyst made up of three components. We wish to vary catalyst com­
ponent A at 4 levels and components C and D each at 2 levels, and we measure 
the yield as the dependent variable. A straightforward factorial experiment 
would require 4 X 2 X 2 = 16 runs. However, it was necessary to confound 
the experiment in blocks of 4, 4 blocks thus being required. 

The first problem is how to confound with a factor at 4 levels. Yates has 
given a method by which it can be regarded as two factors each at 2 levels. If 
we regard the two factors as A' and A", with suffices 1 and 2 to indicate their 
lower and upper levels, and if the four levels of the four level factor are a1 to a&, 
.ru:n Table 15.5 gives the appropriate allocation. 

Table 15.5 

A' 1 A' 1 

A" 1 a8 a, 
A", a1 a. 

With this allocation 
A' = a. + a8 - a1 - a1 
A" = a, - a1 - a1 + a1 

and the interaction of A' and A", which we may call A'", is 
A"' = a, - a8 + a1 - a1 

Accordingly, thf' linear component is 2A' +A"', the quadratic component 
is A'', and the cubic component is 2A"'- A'. For confounding we assume 
that the cubic component is negligible and confound A"', this leaving us estimates 
of the linear and quadratic components. 

Reference to Section (c) will show that with four factors (all at two levels) 
being confounded one first order interaction must be lost : we select A"' as this 
(equivalent to A' A"). The other two most suitable interactions for confounding 
are clearly A'CD and A"CD. 

The allocation of treatments to the four blocks proceeds in the usual manner, 
and is set out with the yields obtained in Table 15.6. 

Table 15 6 

Block 1 Block2 Block 3 B~ 
(1) 24 a' 25 a" 56 c 48 
cd 31 a'cd 23 a"cd 41 d 29 
a'a"d 6 a"d 24 a'd 27 a'a"cd 23 
a'a"c 14 a"c 36 a'c 40 a'a" 25 

75 108 164 125 
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The symbolism for treatments is such that, for example, a'a" implies both 
A' and A" at their upper levels ; reference to Table 14.5 shows that A'1A" 1 corre­
sponds to a,, i.e. the highest level of the four-level factor. Factors C and D are 
of course at their lower levels. The treatment a"cd has C and D at their upper 
levels : a" implies A' 1A" 1 (i.e. A' at its lower level and A" at its upper level), and 
Table 14.5 gives this as a1• 

The last line in Table 14.6 gives the block totals, and the sum of squares 
for Blocks is of course 

i (75 1 + 1081 + 1641 + 1252) - <
75 + 108 i

6
164 + 125

)l = 1028.500 

and this sum of squares has 3 degrees of freedom. 

The remainder of the analysis proceeds in the usual fashion. It is interesting 
to note that if we calculate the three interactions confounded, we get for their 
sums of squares--

A' A" 324.000 
A'CD 2.250 
A"CD 702.250 

and this total agrees with that obtained above. 
If we wish to obtain a check on the correctness of the computation, we can 

calculate the highest order interaction, A' A"C D, directly rather than the usual 
manner of obtaining it by difference. We expand (a' - 1) (a" - 1) ( c- 1) 
(d -1) as a'a"c d + a'c + a'd + a"c + a"d + a' a" + cd + 1 - a'cd- a"cd 
- a'a"c- a'a"d- a'- a"- c- d. 

Going through the table of results (Table 15.6) we obtain as this total (-12). 
The sums of squares for A' A" CD is the square of this result divided by the number 
of observations concerned, or (-12)1 /16 = 9.000. This checks with the figure 
found by difference from the total sum of squares. In any factorial experiment 
with factors at 2 levels .it is open to us, if we prefer, to calculate all the sums of 
squares in this manner.<1l 

The table of analysis of variance is in Table 15.7. 

Table 15.7 

Degree of Sums of 
Source of Variance Freedom Squares 

Blocks 3 1028.500 
A { Linear Component A' 1 702.250 

Quadratic Component A" 1 30.250 
c 1 100.00 
D 1 256.000 
A'C 1 2.250 
A'D 1 12.250 
A"C 1 72.250 
A"D 1 6.250 
CD 1 36.000 
A'A"C 1 36.000 
A'A"D 1 25.000 
Residual 1 9.000 

Total 15 2316.000 

(t) A systematic method of making these calculations is given by F. Yates "Design snd 
Analysis of Factorial Experiments" (Imperial Bureau of Soil Science), pages 15 snd 28. 
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The interpretation of this table is quite straightforward. The Residual,. 
which of course is A' A"C D, can be pooled with the two second order interactions 
A' A"C and A' A"D to give a mean square of 23.333 with 3 degrees of freedom 
which we use for error. We then find all the first order interactions to be non­
significant. If we pool them with the Residual, of the main effects D is significant 
near the 1% level, C non-significant, the linear component of A is significant 
near the 0.1% level and the quadratic component of A, measuring the, possible 
curvature, is non-significant. 'Ve can then proceed to calculate the' relevant 
averages and attach the appropriate standard errors to them. 

It is noteworthy in Table 15.7 that the Mean Square for Blocks, 1028.000/3 
= 342.667, is highly significant (0.1 %). With confounding the estimate of error 
obtained by pooling all the non-significant first order interactions is 24.875 (with 
8 degrees of freedom). If confounding had not been used, but instead the 16 
treatments allocated at random, then the sum of squares due to difference between 
blocks would have appeared in this pooled residual error, which would then have 
been 115.575 with 10 degrees of freedom. The gain in accuracy through the use 
of confounding, which reduced the error mean square to 24.875, is thus very 
great, and without it the experiment would have been almost valueless. 

Finally, it is of interest to note how. such an experiment as this could have 
been tackled traditionally. The best that could have been done would be to put 
the four level factor A into two blocks, C and D being constant. The third block 
could have contained C replicated twice (two observations at each of the two 
levels), A and D being constant, and the fourth block could have been used similarly 
for D. Such an experiment would only give half the accuracy for estimating A 
and one quarter the accuracy for estimating C and D as the factorial confounded 
experiment. Further, it would have given no estimates at all of the possible 
existence of interactions. The gain through the use of the factorial confounded 
design is thus very considerable. 

(g) Confounding with Factors at Three Levels 
A particularly useful experiment in the 3 X 3 X 3 or 31, three factors each 

at three levels, as with the use of three levels any departure from linearity may be 
observed and with the method of partitioning the various sums of squares discussed 
in Chapter XII (c) the significance of such effects can be readily tested. 

The utility of such an experiment is increased by the possibility, shown by 
Yates<'l of confounding it in three blocks of nine units. R. A. Fisher<'l has 
shown the relationship of this arrangement to the 3 X 3 Latin Square. 

In order to get, say, the interaction between A and B free of block differences 
we need the nine combinations of A and B in each block. This can be easily 
arranged. If we further arrange that the level of the thtrd factor C is determined 
by a 3 X 3 Latin Square, and subsequent blocks are generated by cyclically 
permuting the level of C, we will after two such permutations have a total of 
three blocks between them containing all twenty-seven combinations of the three 
factors. Thus suppose the first block is given by Table 15.8. 

Bo 
Bl 
Ba 

(3) Yates, ibid, Section 10. 
(4) Fisher, ibid, Section 46. 

Table 15.8 

Ao Al A a 

Co cl Ca 
cl c. c. 
c. Co cl 
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Dispensing with the letters and considering only the suffices, the treatments are 
000, 101, 202, 011, 112, etc. Then if for the second block we substitute Ct for 
C., C1 for C1 and C. for C1 we get Table 15.9 and a further substitution gives 
Table 15.10. · 

Table 15.9 Table 15.10 

Ao At As Ao At A a 

B, ct c. c, Bo c. c. Ct 
Bt c. c. cl Bt c, ct c. 
B. Co ct c. B, . cl Cs Co 

Each of these blocks can be re-written with B and C as the axes and A as 
the treatment in the body of the table, or with A and C as the axes and B as the 
treatment in the body of the table. Thus all three first order interactions are 
conserved free of block differences, as of course are also the three main effects. 

It will be found that there are four possible such solutions. The one above 
is what Yates calls his Y set and can be derived from Fisher's type I Latin Square. 

The other three are obtainable by permuting C as above in Table 15.11. 

Table 15.11 

Z=II W= III X=IV 

A. At A a Ao At As Ao A a A a 

B, c. c. ct Bo c. ct c. . Bo c. c • ct 
Bt Cs ct Co Bt c. Co ct Bt cl c. c. 
B, ct Co c. Ba ct Ca Co Ba c. ct Co 

In any single 3 1 experiment we can choose any solution, and the two degrees 
of freedom confounded between the three blocks come from the second order 
interaction which we are using as error. If the experiment is being replicated 
more than once, it would be preferable to use a different solution each time as 
this will allow a detailed analysis of the second order interaction. In particular, 
if we wanted to test the existence of AI. BL CL we could do so. The partial 
confounding is tricky to compute ; the reader who requires it will find the method 
in Yates, Section 10 (b). 

In parenthesis it may be remarked that partial confounding is applicable to 
any experiment. For example, in a 21 experiment with four replications, con­
founded in blocks of four, the second order interaction and the three first order 
interactions can each be confounded onceC1l. 

In the case of a single replication the calculation of the analysis of variance 
is quite straightforward. Table 15.12 shows the results of an experiment on a 
particular physical property of cordite manufactured under various conditions. 
Factors A and B were the percentages of two ingredients which both were arranged 

(5) Yates, ibid, Sections 4 and 5 
Goulden, "Methods of Statistical Analysis" (John Wiley, 1939), p. 162. 
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to increase regularly on a linear scale so as to allo~. a !eady testing of possible 
curvatures in the response by the method of partttlonmg the sums of sq~res 
on the lines discussed in Chapter XII (c). C was the temperature at a pamcular 
part of the process, also on a scale. with .regular increm:nts. . The expe?ment 
was confounded in three blocks of nme usmg the W solut10n gtven above m full, 
the blocks corresponding to batches of raw material. 

Table 15.12 

Block 1 Block 2 Block 3 

000 131 001 125 002 147 
101 98 102 109 100 97 
202 54 200 39 201 35 
011 110 012 130 010 122 
112 91 110 83 111 72 
210 26 I 211 20 212 36 
022 130 020 114 021 106 
120 74 121 68 122 84 
221 17 222 32 220 20 

731 720 719 

The analysis of variance proceeds in the usual manner. The three two-way 
tables are formed for A X B, A X C, and B X C. Using the methods of Chapter 
XII (c) on the marginal totals the three main effects can be partitioned into their 
linear and quadratic components, and operating with the coefficients of Table 12.6 
on the figures in these two-way tables the three interactions can be similarly 
decomposed. The main effects each have two degrees of freedom and the inter­
action each four degrees of freedom. The blocks have two degrees of freedom, 
so the Residual has 27 - 1 - 3 X 2 - 3 X 4- 2 = 6 degrees of freedom and 
its sum of squares can be obtained by difference. The results are in Table 15.13. 

The analysis is most conveniently checked by computing the sums of squares 
for the unpartitioned main effects and interactions. For each term the sum of 
squares should equal the sum of squares of the components. These checks are 
good as they are arrived at by an independent route. The only remaining check 
required is the total sum of squares and the derivation of the residual by difference 
and these need doing carefully. 

To test the significance of any item in Table 15.13 we have the residual 
variance equal to 3.260. For any mean square to give a variance ratio greater 
than 6.0, the 5% point for degrees of freedom 1 and 6, it must exceed 6.0 X 3.260 
= 19.56, while for the 1% significance level mean squares must exceed 13.7 X 3.26 
= 44.66. 

Inspection of Table 15.13 shows that two interaction terms, BQ CL and 
AL CQ, are significant at the 5% level and one, AQ BL, is significant at the 1% 
level. The main effects are all enormously significant : in particular the quadratic 
components measuring the curvature are all significant. 
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Table 15.13 

Degrees of Sums of Mean 
Source of Variance Freedom Squares Squares 

AI. 1 38827.555 
AQ 1 462.296 
BL 

I 
1 2005.555 

BQ 1 185,185 
CL 1 636.055 
CQ 1 872.Q18 
ALBL 1 3.000 
ALBQ 1 0.444 
AQBL 1 53.778 •• 
AQBQ 1 1.815 
ALCL 1 0.750 
ALCQ 1 23.361 • 
AQCL 1 8.028 
AQCQ 1 8.898 
BLCL 1 2.083 
BLCQ 1 3.361 
BQCL 

I 1 23.361 • 
BQCQ 1 11.346 
Blocks 

~ 
9.851 4.925 

Residual 19.558 3.260 

Total 43158.296 

The interaction most worth while inspecting is the AQBL term. Table 15.14 
is formed by averaging over C. If AQBL is significant, we expect to find the 
curvature of A changing linearly with B. For measuring the curvature it is con­
venient to use the same expression as is used for partitioning the sums of squares, 
(2 A1 - A. - A2), and this is given for each level of B in the last line of the table. 

Table 15.14 

I Bo Bl Ba 

Ao 134.32 120.65 116.65 
AI 101.32 81.99 75.33 
A a 42.66 27.33 23.00 

2A1 -Ao-Aa 25.66 16.00 11.01 

It is apparent that the curvature of A does change approximately linearly 
with B. That the change does not differ significantly from a linear one is shown 
by the non-significance of AQBQ in Table 15.13. · 

However, from the immediate practical viewpoint of finding the condition 
to give a minimum value for our dependent variable, this interaction does not 
affect the picture, and a study of the main effects indicates the choice of AaBaC1• 

-- It will be noted, incidentally, from Table 15.13 that the Block Mean Square 
is not significant and is of almost the same magnitude as the Residual. We have 
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therefore gained little or nothing from the use of the confounding. This, however, 
is an accidental result, as it was known that in general the batches of raw materials 
which made up the blocks do tend to differ appreciably. 

Yates<1 l has shown that the 3' experiment may also be confounded in blocks 
of 9 confounding only second order interactions. He also discusses experiments 
with mixed numbers of levels of the type 3 X 2 X 2, etc. 

(h) Confounding with Factors at Four Levels. 
I 

The example in Section (f) has discussed the confounding of the 4 X 2 X 2 
experiment in four blocks of four. The four level factor being made up of A' 
and A", with their interaction A' A" corresponding to the main ingredient of the 
cubic component of curvature, and the two level factors being C and D, the best 
set of interactions for confounding in 4 blocks of 4 were 

A' A", A' C D, A" CD 
In the less stringent case of confounding in two blocks of 8, only one inter- . 

action need be confounded, so we would obviously choose A' A" CD. The division 
into the two blocks follows from the expansion of (a'- 1) (a" -1)(c-1)(d-1) 
and the placing of all treatments with a + sign in one block and all treatments 
with a- sign in the other block. Using Table 15.5 to convert treatments from 
the a'a" form to the a, form, we obtain Table 15.15. 

Block 1 
Block 2 

Table 15.15 

a,cd + a, + a3c + a3d + a1c + a1d + a2cd + a1 

a8 + a1 + a2c + a8d + a,c + a,.d + a8cd + a1cd 

The 4 X 4 experiment cannot be so easily confounded as the 4 X 2 X 2. It 
goes into two blocks of 8 satisfactorily by confounding A' A" B'B". The expan­
sion of (a' -1) (a" -1) (b' -1) (b" -1) and conversion into terms of a11 etc., 
with Table 15.5 gives us Table 15.16. 

Block 1 
Block 2 

Table 15.16 

To confound the 4 X 4 experiment in 4 blocks of 4 is not easy, as might be 
expected. Yates<1 l suggests the use of partial confounding, the ·three sets con­
founding the interactions 

(a) A'B', A"B", A"'B"' 
(b) A'B", A"B"', A"'B' 
(c) A'B"', A"B', A"'B" 

where A"'= A'A" and B"' = B'B". These confound once each of the nine 
degrees of _freedof!l for the interaction. The use of three replications may be 
more than IS considered desirable, but the use of less will in each case involve 
losing some terms which might be of interest. If only one replication is being 
made, then either of the last two sets would be the best to choose. The arrange­
ment of the treatment combinations follows from the expansion of (a'+ 1) 
(a" -1) (b' -1) (b" + 1~ and (a' --:-1) (a" -1) (b' + 1) C?" -1) and grouping 
toget~er the four terms w1th plus s1gns m both the expansiOns, those with both 
negative, and so on. 

(6) Yates, ibid, Section 14 b. 
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If a 4 X 4 X 4 experiment has to be confounded in four blocks of 16, the 
simplest procedure is to use the same technique discussed in Section (g) for con­
founding the 31 experiment. In this case we can write down a 4 x 4 Latin 
Square, where the rows and colwnns represent the levels of two of the factors 
and the treatments in the body of the square represent the level of the third factor. 
Such a Latin Square will give the combination for one of the blocks, and cyclically 
permuting the treatments will give the other three blocks. Such a layout will 
leave the main effects and first order interactions completely unconfounded, and 
the three degrees of freedom taken for blocks will come from the 27 of the second 
order interaction. For the residual, therefore, we have 27 - 3 = 24 degrees of 
freedom, and its swn of squares can be obtained by difference. 

(i) Double Confounding 17) 

Sometimes in a factorial experiment we have a double restriction imposed 
on the system. For example, in a 21 experiment (5 factors all at 2 levels, requiring 
a total of 32 runs) we may have 4 reactors which may be different. Accordingly 
we confound in 4 blocks of 8, there being 8 runs on each of the 4 reactors. How­
ever, our batches of raw material may not be large enough to carry out the whole 
experiment. We then need to confound the experiment in an additional way. 
The problem is soluble if we make it the inverse of the first type of confounding. 
Thus, if the first confounding is in 4 blocks of 8 then the second must be in 8 blocks 
of 4. There is the further restriction that no interaction confounded in the 
second set must occur in the first set, and vice versa. 

For the confounding in 8 blocks of 4 let us select for confounding 
PQ, RS, PRT, QST, QRT, PST, PQRS, 

and for the confounding in 4 blocks of 8 we can choose 
PQR, RST, PQST, 

none of the second set occurring in the first. 
To allocate the treatments, we can first set out them in the usual manner for 

confounding in 8 blocks of 4, as in Table 15.17. 

Table 15.17 

Batch 1 Batcl> 21 Bat<h 3 Batch 4 Batch 51 Batch 6 Batch 7 Batch 8 

(1) . p q r s t pr qr 
pqrs qrs prs pqs pqr pqrst qs ps 
rst prst qrst st rt rs pst qst 
pqt qt pt pqrt pqst pq rqt prt I 

We do likewise for the 4 blocks of 8, as in Table 15.18. 

Table 15.18 

Reactor 1 (1) pq st pqst qrt prt prs qrs 

Reactor 2 p q pst qst pqrt rt rs pqrs 

Reactor 3 s pqs t pqt qrst prst pr qr 

Reactor 4 r pqr rst pqrst qt pt ps qs 

(7) c.f. R. A. Fisher, "The Design of Experiments," 3rd edition, p. 116. 
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We now superimpose Tables 15.17 and15.18ontopofeachother. Treatment 
(1) belongs to Batch 1 and Reactor 1, and is entered in Table 15.19 accordingly. 
Treatment pqrs belongs to Batch 1 and Reactor 2, and is entered thus. Treatment 
rst belongs to Batch 1 and Reactor 4, and so on. . 

Table 15.19 

Blltcb1 Batch a Batch 3 Batcb4 Batcbs Batcb6 BlltcbT BIIICbl 

Reactor I .. (I) qn pn It pqlt pq qrt prt 

Reactor a .. pqn p q pqrt rt ra pit qlt 

Reactor3 .. pqt prlt qnt pql • t pr qr 

Reactor4 .. rlt qt pt I' pqr pqrlt qa lie 

Table 15.19 will be found to satisfy the condition of both Tables 15.17 and 
15.18, and accordingly is the correct allocation of treatments. The analysis of 
variance proceeds normally, all the interactions being confounded not being 
mentioned specifically in the table of analysis of variance but their Sums of Squares 
and Degrees of Freedom being lumped together under the description "Blocks." 

It will be noted that, if we were confounding in 8 blocks of 4, the imposition 
of the second restriction leads to no increase in the number of first order interactions 
being lost. 

Double confounding is not very practical in the 2' experiment, but works 
well in the 21 as described above, and also in the 2', where there are two possi­
bilities, either confounding in 8 blocks of 8 and 8 blocks of 8 or in 16 blocks of 4 
and 4 blocks of 16. 

For the former case, one set of 8 interactions for confounding in 
PQRS, RSTU, PQTU, PRT, QST, PSU and QRU 

and another non-overlapping set is 
PQRU, PRST, QSTU, PQS, RSU, RQT and PTU. 

Thus the double restriction can be applied without losing any first order 
interactions. 

For double confounding in 16 Blocks of 4 and in 4 blocks of 16, one set of 
interactions for confounding is · 

PQ,RU,PRT,QST,QRT,PST,PQRS,TU, 
PQTU, RSTU, PRU, QSU, QRU, PSU, PQRSTU, 

and the other set, non-overlapping, is 
PQRU, PRST, QSTU. 

Accordingly, if we are confounding in 16 Blocks of 4, we lose 3 first order 
interactions, and the introduction of the second restriction in no way increases 
the loss, so can always be carried out when convenient or necessary. 

CHAPTER XVI 

THE FRACTIONAL REPLICATION OF FACTORIAL 
EXPERIMENTS 

(a) The Need for Fractional Replication 
The total number of runs for a factorial experiment with m factors all at 

2 levels is 2n, and Table 16.1 shows how the 2n -1 degrees of freedom are 
accounted for as far as n = 12. It is clear that for n greater than 6 or 7 the total 
number of runs required is becoming excessive, and the great majority of these 
degrees of freedom relate to very high order interactions unlikely to be either real 
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or of interest: in practice they would be used as estimates of error, and it is very 
likely that we would not require anything like these numbers to give an accuracy 
sufficient for our needs. The problem therefore arises as to whether it is possible 
to carry out only a fraction of these large factorial experiments and still retain 
satisfactory information on the main effects and first order interactions. The 
answer to this problem was first published by Finney.C1l A subsequent paper 
from him (1 ) gave a less mathematical description, and Kempthorne C1 l has given 
an account from a rather different viewpoint. 

Table 16.1 

Number of Factors 4 5 6 7 8 9 10 11 12 
------- -----

Number of-
Main Effects 4 5 6 7 8 9 10 11 12 
First Order Inter-

actions 6 10 15 21 28 36 45 55 66 
Second 4 10 20 35 56 84 120 165 220 
Third 1 5 15 35 70 126 210 330 495 
Fourth 1 6 21 56 126 282 462 792 
Fifth 1 7 28 84 210 462 924 
Sixth 1 8 36 120 330 792 
Seventh 1 9 45 165 495 
Eighth 1 10 55 220 
Ninth 1 11 66 
Tenth 1 12 
Eleventh 1 

Number of Degrees of 
Freedom pooling 
all Interactions 
below Second Order 1 6 22 64 163 382 848 1816 3797 

----1----------
Total Number of De-

grees of Freedom 15 31 63 127 255 511 1023 2047 4095 

(b) The Construction of Confounding Arrangements 
In the terms used in the previous chapter the treatments of a 2n experiment 

were represented by symbols of the type ace, which would denote factors A, C, 
and E at their upper levels and factors B, D, F, etc. at their lower levels. If we 
have n factors there will be 2° such symbols, including that representing all factors 
at their lower levels, namely (1 ), which we will call the identity. If we postulate 
that 

a1 = b1 = c1 = d1 = . . . . . = 1 (1) 
then we find that the product of any two symbols is a third : for example 

abed X cdef = abc1 d1 ef = abef. 
The set of 2° symbols is thus a closed system, and actually is a so-called "group" 
(technically, a prime power group modulo 2). 

(1) D. J. Finney (1945). "The Fractional Replication of Factorial Experiments". 
Ann. Eugen., 12, 291-301. 

(I) D. J. Finney (1946). "Recent Developments in the Design of Field Experiments': 
__ ]'art III: Fractional Replication". J. Agric. Science, 36, 184-191. 

( 3) 0. Kempthome (1947). "A Simple Approach to Confounding and Fractional 
Replication in Factorial Experiments". Biometrika, XXXIV, 255-272. 
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Now consider the procedure for forming blocks in a confounded factorial 
experiment as described in the previous chapter. For example, in the 2' experi­
ment, if we wish to confound in 2 blocks of 8 and choose to confound the highest 
order interaction ABCD, we expand (a -1) (b -1) (c -1) (d -1) and place 
all treatments with a plus sign in one block and all treatments with a negative 
sign in the other block. The former will be 

(1), ab, ac, ad, be, bd, cd, abed. : (2) 
It will be noted that this set of 8 symbols forms a group, in that the product of 
any two of them, using the relation (1 ), is also a member of the same set of 8 
symbols. It is in fact a "subgroup" of the whole group of 2n symbols. 

The subgroup (2) also has the property that if we take any element of it and 
compare it with the element ABCD from which it was derived we find that it 
has an even number of letters in common with it. This property we define as 
"orthogonality," and it will be recalled that this forms an alternative method of 
constructing the principal block. In general in confounding the terms confounded 
form a subgroup when taken together with the identity I (in the case above the 
confounding subgroup had only two members, I, ABCD), and the principal 
block of treatments must be orthogonal to this and contain only the identity in 
common with it. It is convenient in practice to use large letters to denote effects 
and small letters to denote treatments. For example, in the confounding of the 
26 experiment in 4 blocks of 8 as given in Chapter XV (d) the two subgroups are 

I, PQR, RST, PQST 
and 

(1 ), pq, st, pqst, qrs, qrt, prs, prt. 

(c) A Simple Half-Replicated Arrangement 
Now suppose that instead of carrying out the full experiment of 2 blocks 

we only carry out the first block. What sort of estimates can we get of the main 
effects and first order interactions ? 

We will recall that in the complete experiment the main effect A is given 
by the expansion 
A= (a -1) (b-!- 1)(c + 1)(d + 1) 

= ab + ac + ad + abc + abd + acd + abed + a 
- b - c - d - be - bd - cd - bed - 1 (3) 

Of these 16 results we have only 8, and we can arrange them with the same signs 
as above, namely 
A~ a~+ ac +ad+ a~cd- (1)- be- bd- cd (4) 
Thts wtll be a sort of estimate of A, the best we can get from our half-replicate. 

Now let us consider the expansion of BCD: 
BCD =(a+ 1) (b- 1) (c -1) (d -1) 

= ab + ac + ad- abc - abd - acd + abed - a 
. + b + c + d - be- bd- cd + bed - 1. (5) 

Takmg the 8 results we have from our half replicate, our estimate of BCD is 
BCD = ab + ac + ad+ abed- (1)- be- bd- cd. (6) 

. Referring back to (4) we see that it is identical with (6). The result of only 
domg a half replicate is that A is indistinguishable from BCD, i.e. 

A= BCD. 
Now consider the expansions of AB and CD. They are 

AB =(a -1)(b -l)(c + 1)(d + 1) 
=~~+~-~-~-~-M+cl+1 

+ abc + abd - acd - bed - a - b + c + d 
CD= (a+ 1)(b + l)(c -l)(d -1) 

= abed + ab - ac - ad - be - bd + cd + 1 
- abc - abd + acd + bed - c - d + a + b. 
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As far as our half replicate goes, our estimate of AB is 
AB = abed + ab- ac- bd + cd- be- ad + 1. (10} 
and our estimate of CD is identical. Thus 

AB =CD (11} 
These two results, (7) and (11 }, suggest the obvious generalisation, which is 

correct, namely, each term will have one alias and this is given by multiplying it 
by the element producing the principal block, with the law 

Thus 
A• = B1 = C• = D 1 = 1. (12} 

A= A X ABCD = A2BCD . BCD (13} 
AB = AB x ABCD = A2B2CD =CD (14} 

For our 8 observations we have 7 degrees of freedom, and these are in pairs : 
A = BCD AB = CD (15) 
B =ACD AC =BD 
C=ABD BC=AD 
D=CBD 

The rule we have just given is a general one. For example, if in the half 
replicate of the 2' experiment we used the principal block corresponding to ABC 
then the 7 degrees of freedom would be 

A = BC AD = BCD (16} 
B =AC BD =ACD 
C =AB CD =ABD 
D =ABCD 

The set (15) is, however, obviously the better, as the aliases of the 4 main 
effects are second order interactions which are relatively unlikely to be real. This 
degree of security would not usually be considered sufficient, however, for main 
effects. 

The half replicate of the 26 experiment, based on the block orthogonal to 
the highest order interaction ABCDE, gives third order interactions as aliases of 
the main effects, e.g. A = BCDE, and second order interactions as aliases the 
first order interactions, e.g. AB = CDE. The 5 main effects and 10 first order 
interactions will take up the total of 15 degrees of freedom, so there will be none 
left to use as error. We could, of course, decide previously that certain of the 
first order interactions would be non-existent and use them as error, but we would 
be rather unhappy if one or more of them turned out to be apparently large and 
in contradiction to our pre-conception. 

(d) Practical Half-Replicate Arrangements 
The half replicate of the 26 experiment, based on the block orthogonal to the 

highest order interaction ABCDEF, is satisfactory for most purposes. Main 
effects have fourth order interactions as aliases, e.g. A = BCDEF, and first order 
interactions have third order interactions as aliases, e.g. AB = CDEF. Of the 
31 degrees of freedom, 6 go to the main effects and 15 to the first order inter­
actions, leaving 10 for the 20 second order interactions which occur in pairs, 
e.g. ABC = DEF. These latter 10 degrees of freedom can be used as error. 

The half replicate of the 27 experiment is quite straightforward, and similarly 
that of the 28 experiment. They have the advantage that second order interactions 
can be reasonably reliably estimated, as their aliases are third and fourth order 
interactions respectively. 

(e) Confounding in Fractionally Replicated Experiments 
These larger experiments, with 6, 7, or 8 factors involve 26 = 32, 28 = 64, 

and 27 = 128 plots or runs and the need for confounding in smaller blocks to 
improve their accuracy by eliminating block differences may arise. 
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Confounding is quite straightforward. Any interaction, other than that on 
which the half replicate is based, may be selected, and then its alias is also con­
founded. In ordinary fully replicated factorial experiments we usually choose the 
highest order interactions for confounding, but if we do this in a fractionally 
replicated experiment we will also lose their aliases which will probably be main 
effects or first order interactions which we would wish to retain. 

In the half replicate of the 28 experiment, to confound in 2 blocks of 16 we 
can select any of the second order interactions, e.g. ABC, when its alias DEF 
will also be confounded. For 4 blocks of 8 a subgroup of 3 interactions may be 
selected ; it is found that it is inevitable that one first order interaction must be 
last. For example, if we confound ABC, ADE, and BCDE, then the aliases, 
DEF, BCF and AF respectively, must include one first order interaction. For 
confounding in 8 blocks of 4, we might select as the confounding subgroup 

ACE, BDE, ABCD, BCF, ABEF, CDEF, ADF, 
when their aliases, namely. 

BDF,ACF, EF,ADE, CD,AB, BC~ 
include three first order interactions, incidentally involving all 6 factors. 

For the half replicate of seven factors we require 64 runs. This can be 
readily confounded in 8 blocks of 8 without losing any first order interactions. 
One such confounding subgroup is · 

ABD, DEF,ABEF,BFG,ADFG,BDEG,AEG 
with aliases 

CEFG, ABCG, CDG, ACDE, BCE, ACF, BCDF. 

(f) Higher Fractional Replications 
So far we have been discussing half replications. The treatment for higher 

fractions, one quarter, one eighth, etc., proceeds on similar lines. 

The smallest quarter replicate likely to be safe to use in practice is that of 
8 factors. The treatment combinations to be used are those for the principal 
block of a fully replicated experiment in which 3 interactions· are confounded : 
the best choice is 

ABCDE,ABFGH,CDEFGH. 
It is now found that every term has three aliases, given by the use of rule (12). 
For example, 

A = BCDE = BFGH = ACDEFGH 
AB = CDE = FGH = ABCDEFGH 
AC = BDE = BCFGH = ADEFGH 

C = ABDE = ABCFGH = DEFGH 
CD = ABE = ABCDFGH = EFGH 
CF = ABDEF = ABCGH = DEGH. 

All the main effects have third order interactions as aliases. Of the first order 
interactions, those of C, D, and E, with F, G, and H have third order interactions 
as aliases and the rest have second order interactions as aliases. 

For confounding this experiment in 4 blocks of 16 we could choose 
CDF = ABEF . ABCDGH = EGH 
ADEH = BCH = BDEFG = ACFG 
ACEFH = BDFH = BCEG = ADG. 
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The three interactions selected for confounding are written in the first column, 
and their aliases are beside them. Thus no first order interactions are lost. 

As the total number of runs carried out increases beyond 64, the fraction 
that can be allowed while still giving reasonable security in the alias structure 
becomes higher. These very large designs will not often be required, but the 
possi~ilities up to 512 runs have been investigated by Brownlee, Kelly, and 
Lorame.!•) 

In this present work we are confining ourselves to factors at two levels (factors 
at four levels are particular cases of this). Finney <1 >, <1> has given a useful design 
for five factors at three levels in 3' = 81 plots instead of 35 = 243. 

(g) Construction of the Designs 

In a fully replicated experiment the rule for forming the principal block is 
to take all those treatment combinations with an even number of letters in common 
with those interactions being confounded. For example, in a 28 experiment 
confounding the interactions given in the previous section, namely ABCDE, 
ABFGH, CDEFGH, the 64 treatment combinations satisfying this condition 
would include (1), ab, cd, ... gh, ... abcdfg ... etc. Similarly, for a quarter 
replicate of 8 factors based on the alias subgroup formed by these interactions 
we would use precisely this set. 

If a fractionally replicated experiment is confounded then our principal 
block is made up of those treatment combinations which satisfy both the afore­
mentioned conditions and a similar condition relating to the interactions selected 
for confounding. 

Thus in the same experiment, the only treatments satisfying both conditions 
are 

(1), bcf, abgh, acfgh, abed, adf, cdgh, bdfgh, defg, bcdeg, abdefh, acdeh, 
abcefg, aeg, cefh, beh, 

and this is the principal block. The three subsequent blocks are formed by 
multiplying this block by treatment combinations which have not already occurred 
and which satisfy the condition of orthogonality for the alias subgroup. 

(h) An Example of a Half-Replicate Experiment 

An experiment on the production of penicillin by the fermentation of the 
mould penicillin notatum was carried out in 1946 in 10,000 gallon fermenters.• 
In this process a mash is made up of several ingredients, and its pH adjusted. 
It is then sterilised, brought to the appropriate temperature, and inoculated from 
a seed vessel and aerated. Mter a period the fermentation is considered to have 
given its optimum yield of penicillin. 

In this experiment six factors all at-two levels were investigated. Factors 
A, B, and D referred to the concentrations of three of the mash ingredients, C 

(4) K. A; Brownlee, B. K. Kelly, and P: K. Loraine (1948). "Fractional Replication 
Arrangements for Factorial Experiments_with Factors at Two Levels." Biometrika, XXXV, 
268-276. . 

• For permission to use this data we are indebted to the Ministry of Supply and to 
-the Distillers Company {Biochemicals) Ltd., and to Mr.}.}. H. Hastmgs and Mr. }. G. 
Corrie, who organised the experiment. 
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related to the volume of air passed through the fermenter, E was the age of 
inoculum, and F was the initial pH of the mash. 

The full replicate wo~d require 64 fermentations ; the half replicate with 
32 fermentations was used with the confounding in 4 blocks of 8 already described, 
namely confounding ABC, ADE, and BCDE. The alias subgroup is I = 
ABCDEF, so the principal block is 

(1 ), abef, de, abdf, be, acef, bcde, acdf. 
This block is written down in the table below with an obvious change of notation ; 
the other blocks are produced by multiplying through by a symbol orthogonal 
to the alias subgroup not yet occurring, and randomising. 

Block 1 Block 2 Block 3 Block 4 

110011 = 35 101000 = 76 001111 = 104 001100 = 31 
000110 = 35 011011 = 118 111010 = 60 010010 = 50 
110101 = 45 110110 = 49 010111 = 47 010100 =54 
011110 = 87 110000 = 41 111100 = 30 111001 = 80 
011000 = 67 000101 = 63 100100 = 32 001010 = 80 
101011 = 104 000011 = 75 001001 = 67 100001 = 40 
000000 = 59 011101 = 90 100010 = 30 100111 = 53 
101101 = 58 101110 = 65 010001 = 37 111111 = 76 

The result placed beside each treatment combination is that obtained for one of 
the several parameters observed. This particular one is the final pH of the mash 
((pH- 7.0) X 100). 

The analysis of variance of such an experiment is quite straightforward. 
The sum of squares for blocks is obtained in the usual manner : 

(4901 + 5771 + 4078 + 4648)/8- 19388/32 = 1876.625 
The main effects and first order interactions are most simply calculated from their 
appropriate expansions. These do not need to be written out : it is sufficient 
to note that, for example, for the A main effect we need all terms with A at its 
upper level with a plus sign and all terms with A at its lower level with a minus 
sign. It is as well to perform these two summations separately, and before 
subtracting one from the other to add them to check that they come to the grand 
total. Thus (A+) = 35 + 45 + 104 + etc. = 874 and (A-) =:= 35 + 87 + 67 
+59, etc.= 1064. (A+)+ (A-)= 874 + 1064 = 1938 and we should obtain 
this same grand total for all terms. The sum of squares for A is 

[(A+)- (A-}] 1/N = (874 -1064)1/32 = 1128.125, 
N being the total number of observations. 

For the first order interactions, we need to sum with a positive sign all those 
terms with A and B at 00 and 11 and with a negative sign all those at 10 and 01. 
Thus (AB+) = 35 + 35 + 45 +59+ ...• etc.= 930and(AB-) = 87 + 67 
+ 104 + 58 + .•. etc. = 1008. The sum of squares for AB is then (930-
1008)1/32 = 190.125. 

The interaction AF is of course not calculated, as it is confounded being 
the alias of BCDE. Having calculated the 5 main effects and the 15 - i = H 
first order interactions and the blocks sum of squares, with 3 degrees of freedom 
the remaining sums of squares and degrees of freedom are used as residual error: 
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The analysis of variance is below. 

Source of Degrees of Sums of Mean 
Variance Freedom Squares Squares 

A = Ingredient I 1 1128.125 •• 
-B = Ingredient II 1 1.125 
C =Aeration 1 6272.000 
D = Ingredient III 1 312.500 
E = Age of Inoculum 1 1225.125 
F = Initial pH 1 1891.125 
AB 1 190,125 
AC 1 0.000 
AD 1 8.000 
AE 1 105,125 
BC 1 84.500 
BD 1 200.000 
BE 1 55.125 
BF 1 136.125 
CD 1 465.125 
CE 1 1152.000 •• 
CF 1 760.500 • 
DE 1 24.500 
DF 1 112.500 
EF 1 136.125 
Blocks 3 1876.625 625.542 
Residual 8 1057.500 132.187 

Total 31 17193.875 

Inspection of this table shows immediately that the most important factor is 
C, aeration, and that it interacts with both E (age of inoculum) and with F 
(initial pH). Ingredients II and III (factors B and D) are without significant 
effect, but ingredient I (factor A) produces a marked main effect which does not 
interact with any of the factors B to E (we cannot say anything about AF as it 
is confounded). 

Giving the results in pH units, we have that the upper level of Ingredient I 
gives a final pH 0.119 units higher than the lower level, and this difference has 
95% error limits of ± 0.097. The interactions of air with age of seed and initial 
pH are best shown by the tables below. 

Airo Air1 Airo Airl 

Ageo 7.464 7.624 
Age1 7.467 7.867 

pHo 7.437 7.620 
pHI 7.494 7.871 

The residual variance of a single observation is 132.2, so the standard devia­
tion is 11.5. The standard error of the mean of 8 results is 4.07, and the 95% 
limits of the difference between two such means is y2 X 2.31 X 4.07 = 13.3, 
or 0.133 in original units, being based on 8 degrees of freedom. 

___ It is apparent that increasing the quantity of air raises the final pH, but this 
effect is more marked with the older inoculum and with the higher initial pH. 
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It is possible to consider the possible existence of the second order interaction 
CEF if we are prepared to be slightly speculative. We have CE and CF signi­
ficant, so there is a possibility that CEF might exist. The alias of CEF is ABD. 
Examination of the table of analysis of variance shows that none of the first order 
interactions involving A, B, or D approach significance. Accordingly, it is 
unlikely that ABD would exist, so if we find CEF = ABD significant it is much 
more probable to be the former component. 

We can proceed to calculate the sum of squares for CEF. All terms with 
1 or 3 letters in common with CEF are taken with a positive sign, all those with 
0 or 2 letters in common with a negative sign. The resulting sum of squares is 
(955 - 983)1 /32 = 24.5, which is clearly completely non-significant. There is 
thus no evidence for the existance of the second order interaction, CEF, and there­
fore it seems that the first order interactions CE and CF are acting independently 
and their effects are additive. 

It is interesting to compare this experiment with a classical one, which pre- · 
sumably would be replications of 000000, 100000, 010000, 001000, 000100, 000010, 
000001. These seven combinations could be replicated four times giving a total 
of 28 fermentations, slightly less than the 32 for the half replicate, but for the 
latter the main effects are the comparison of the mean of 16 fermentations with 
the mean of the other 16, so the complex design is four times as accurate for 14% 
more work. The classical experiment, of course, could not detect any of the 14 
interactions estimated by the confounded half-replicate. 

It will be noticed, incidentally, how greatly the confounding in 4 blocks of 
8 has increased the accuracy of the half-replicate experiment. The blocks mean 
square is highly significant, and if pooled with the residual the latter would have 
been 266.739. Thus by the confounding we have doubled the accuracy of the 
experiment. 

(i) Experiments with Some Factors at Four Levels 
Certain arrangements with some factors at 4 levels and the rest at 2 levels 

prove satisfactory. We can allocate the 4 levels to two 2 level factors in the 
manner indicated in Table 15.5 (Chapter XV), and the three degrees of freedom 
for the four levels will then be A', A", and A' A". In constructing fractional 
replication arrangements it is necessary to remember that A' A" is as much a main 
effect as A' or A". · 

One satisfactory design is the half replicate of one factor at four levels and 
four factors at two levels.( 4 l · 

We can use I= ABCDEF. as the alias subgroup, and allocate B and D to 
represent the four-level factor. Then the alias of BD, one of the degrees of 
freedom for the four-level factor, is ACEF, a third order interaction. Its inter­
actions with the four two-level factors are all second order interactions, e.g. 
A(BD) = CEF. The two-level factors have third order interactions as aliases, 
e.g. A = BCDEF = (BD) CEF, and their interactions have second order inter­
actions as aliases, e.g. AF = BCDE = (BD)CE. 

This experiment can be confounded in 4 blocks of 8, choosing ABC, ADE, 
and BCDE for confounding. The last element has as its alias AF which is also 
lost. The construction of the layout follows the usual course, and is worked out 
in the paper referred to, where also an experimental layout for a half replicate of 
two factors at four levels and three factors at two levels is given. 

(j) Subsequently Decreasing the Order of Fractionation 
One useful property of half-replicates is that if on completion of one we 

decide that we wish to determine the second order interactions or to obtain greater 
accuracy in the main effects or first order interactions we can complete the com­
plementary half to make up the full replicate. 
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In the pr~ious example, for instance, in which we based the half replicate 
on the alias subgroup I = ABCDEF and confounded ABC, ADE, and BCDE, 
on completion of the complementary half, the further confounded interactions 
would be ABCDEF, DEF, BCF, and AF. With the full experiment, of course, 
each term will be unambiguous and have no aliases. 

In a quarter replicate, conversion into a half replicate is quite straightforward. 
In the example quoted of the 28 in 21 plots, the alias subgroup was 

I = ABCDE = ABFGH = CDEFGH 
and CDF, ADEH, ACEFH were confounded. We can add 2• subsequent treat­
ments in four blocks of 16, the experiment thus becoming a half replicate, by 
dropping the first two elements from the alias subgroup, the experiment now 
being based on the alias subgroup I = CDEFGH. \Ye will now have confounded 
the further interactions ABCDE, ABEF, BCH, and BDFH, and their aliases. 

The enlarged experiment will be twice as accurate, and its alias structure 
will improve appreciably, particularly for the factors A and B and their inter­
actions. It will be noted that, being based on the alias subgroup I = CDEFGH, 
it will not be so desirable in its alias structure as if we had initially designed the 
experiment to be a half replicate, when we would have used I= ABCDEFGH 
as the alias subgroup. Nevertheless, it should be good enough for most purposes. 

(k.) The Relationship Between Confounding and Fractional 
Replication 

The theory of fractional replication has been applied by Kempthomet 1 ) t•) 
to throw light on the principal assumption in a confounded experiment, namely 
that there are no interactions between blocks and treatments. The simplest case 
is where an experiment is confounded in two blocks, for example a 2' experiment 
in two blocks of 8. The factor "Blocks" may be regarded as an additional factor 
at 2levels, and the experiment changes from being a full replicate of a 2' experiment 
to being a half replicate of a 21 experiment. 

Call the new factor X, and assume that the highest order interaction is con­
founded. Thus the principal block, in which we presume that X is at its lowest 
level, is 

(1 ), ab, ac, ad, be, bd, cd, abed, 
and the second block will be 

ax, bx, ex, dx, abcx, abdx, acdx, bcdx. 
Considering the principal block, we have ABCDX is orthogonal to it, so the alias 
subgroup is I = ABCDX. The alias structure of the experiment is therefore 
such that main effects have third order interactions as aliases, e.g. A = BCDX, 
first order interactions have second order interactions as aliases, e.g. AB = CDX, 
and second order interactions have first order interactions as aliases, e.g. ABC = DX 

If all the interactions of blocks with treatments are non-existent then no 
ambiguity will arise, but if such interactions do exist we might be led 
rather astray. 

The situation becomes worse as the order of confounding increases. Suppose 
the 2' experiment is confounded in 4 blocks of 4, confounding ABC, BCD, AD. 
The factor "Blocks" is now at 4 levels and can be represented by factors X, Y, 
and XY, the latter interaction being regarded as a main effect. The experiment 
becomes a quarter replicate of the 21 experiment. 

-----(I) 0. Kempthome (1947). "A Note on Differential Responses in Blocks". J. Agric. 
Sci. 37, 245-8. 
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The principal block being (1 ), abd, be, acd, the alias subgroup is 
I = ABCX = BCDY = ADXY. 

The aliases for the main effects can be 'Written out as 
A = BCX = ABCDY = DXY 
B = ACX = CDY = ABDXY 
C = ABX = BDY = ACDXY 
D = ABCDX = BCY = AXY : 

Thus if D interacts with blocks, we would observe a fictitious A main effect, and 
vice versa. 

A common experimental design is the 21 experiment confounded in 4 blocks 
of 8. Kempthome <•> has discussed this in some detail, and given some extensive 
experimental results from agricultural field trials. The alias subgroup can be 
considered to be 

I = ABCX = CDEY = ABDEXY. 
The main effects are quite sound. Of the first order interactions, 6 have as aliases 
the interaction of blocks with main effects, namely 

AB =CX CD =EY 
AC=BX CE=DY 
BC = AX DE = CY. 

Of the higher order interactions, these fall into three groups as below : the most 
important aliases only are given. 

Interactions of Interactions of 1st 
Confounded Main Effects Order Interactions with 

with Blocks Blocks 

ABC ABD =EXY ACD = BDX = AEY 
CDE ABE =DXY ACE = BEX = ADY 
ABDE ADE =BXY BCD = ADX = BEY 

BDE =AXY BCE = AEX = BDY 
ABCD=DX 
ABCE =EX 
ACDE = AY 
BCDE=BY 

ABCDE=CXY 

Now if Blocks are going to interact with treatments, it is more probable that 
the interactions Blocks X (Main Effects) exist than the interactions Blocks X (First­
order Interactions). Accordingly the terms in the third column can be used as 
error to test the terms in the second column. In such an operation it would be 
best to exclude those interactions in the second column which an inspection of 
the first order interactions would suggest might exist. 

A series of 41 such 26 experiments on agricultural field trials was examined 
in this manner by Kempthome, and he concluded that there was no evidence 
that blocks were interacting with treatments. Nevertheless, in any confounded 
industrial experiment it might be as well to be on one's guard against such a 
possibility, and if necessary apply an analysis along these lines. 
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CHAPTER XVII 

GENERAL CONCLUSIONS 

(a) Investigation of Multi-Variable Processes 
The reader will have noticed that we have discussed two different techniques 

for the investigation of multi-variable systems, namely multiple correlation and 
the factorial experiment. 

Multiple correlation is appropriate where we have a considerable mass of 
data on the system under investigation, the various independent variables being 
at random and at all levels. Such data arises from the normal running of a plant : 
in particular, on a modem plant with automatic recorders kept in proper working 
condition such data should be very easily collected. 

The factorial experiment is appropriate where we can make a deliberate 
experunent upon a system, controlling the independent variables at the levels 
laid down by the factorial design. The execution of such an experiment generally 
calls for careful supervision and hence tends to be relatively costly. 

The multiple correlation approach suffers from the disadvantage that initially 
one is restricted to the assumption that the dependent variable is a linear function 
of the independent variables which are also assumed to be acting independently. 

It is, however, possible to evade some of these difficulties arising from non­
linearity by use of the various forms of transformation mentioned in Chapter 
IX (b) and Chapter X (b). It will be noted that the satisfactory use of these 
devices is based on our initially selecting the appropriate transformation, either · 
from physico-chemical knowledge of the system, or from an intelligent or lucky 
inspection of the data. If we have to try first one transformation, then another 
and so on till we get a good fit the amount of WQrk is excessive. 

The difficulty with regard to the independence of the independent variables 
can be partially circumvented by the addition of product terms as additional 
independent variables, e.g. if our dependent variable lS y and we have independent 

· variables x1 and x1 we can include the third variable (x1 :r1), i.e. we fit an equation 
of the form 

y = b1 x1 + h1 x1 + b1 1(x1 x1) 

However, if there are three independent variables and we wish to check on the 
possible interactions of all of them, the equation we fit is 

y = b1 X1 + b1 X1 + ba Xa + b1 1 (x1 Xa) + b1 1 (xa Xa) + ba 1 (x. x1) 

The labour of calculating all the relevant sums of squares and sums of products 
and then solving the six simultaneous equations would be very heavy and only 
in very important cases could it be justified. 

With the factorial experiment, our initial assumptions are very general and 
we are quite prepared to see any of the first order interactions significant, and 
we have made no assumptions as to linearity. This generality means that a factorial 
experiment could only give confusing results if every factor was interacting strongly 
with all the others, a very rare occurrence, and even then one which could probably 
be made clearer by a logarithmic transformation. Further, if some of our factors 
are at more than two levels we can readily check on the possible non-linearity of 
the effects by the methods of Chapter XII (c). The total computation required 
is very much less than with multiple correlation. 

The factorial experiment has the further advantage that it can generally be 
increased very appreciably in accuracy by the device of confounding. 

Taking an overall view, there can be no doubt that the factorial experiment 
is to be greatly preferred to an examination of existing data by mutliple correlation. 
In addition to all the advantages set out above, the experiment has the further 
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advantage that it is not liable to error through the presence of unsuspected corre­
lated variables : this is the distinction between experiment and observation 
discussed in Chapter IX (k). 

In the intermediate case, where some variables can be controlled at the levels 
laid down by a factorial design but where some of them are more difficult to 
control, the most appropriate technique would be covariance : there are no 
published references referring to industrial problems but the technique is described 
in the references below.l1l : 

(b) The Advantages of Planning Experiments 
It will have been apparent that none of these statistical designs for experi­

ments can be applied without the appropriate forethought and planning. They 
cannot be superimposed on a hotch-potch of ran.dom results. 

The implications of this are rather far-reaching. For example, the traditional 
style of experimenting by trying first one thing, then if that does not work then 
something else, and so on, in fact the policy of proceeding by small steps, is quite 
unsuitable. On the contrary, we require to sit down and appraise all the points 
that appear to be of interest, or likely to be of interest in the future, and then 
experiment on them all simultaneously. We thus move in jumps rather than in 
steps. The great advantage of moving in jumps is that the information given 
by a jump adds up to very much more than that given by its component steps, 
though requiring no more effort. 

To take an example of this, consider the case discussed in Chapter XIII (a) 
where we tested 7 treatments in blocks of 3. The variance of the comparison of 
any two corrected means was (6/7) at1, = 0.857at1, where at1 was the error 
variance of a single observation within blocks. 

Now suppose that instead of starting off the experiment with the full number 
of treatments (7) we had begun with only 4 and had afterwards decided to test 
the remaining 3. Our first 4 could be tested with the design given in Table 13.3, 
when the variance of the comparison of any two of these means would be 

2 k (t- 1) I 2 3 (4- 1) I 0 75 1 
X N (k- 1) at = X 3 X 4 (3 - 1) at = . at 

This compares favourably with the figures of 0.857ak1 for the whole experiment. 
However, when we come to the 3 additional treatments, it is impossible to execute 
them in such a manner that when added to the existing data we get the same 
design as that used for testing 7 treatments. Accordingly the best we can do is 
to select one treatment as a "standard" (say treatment T.) to occur in both experi­
ments, and with this standard and the remaining 3 treatments we carry out a 
further balanced incomplete block of 4 treatments in blocks of 3, requiring 3 
replications. The error variance of the comparison of any two of the four treat­
ments T • to T, is 0. 75at1 as it was for any two of the four treatments T 1 to T •· 
However, when we wish to compare any of the three treatments T 1 to T 1 with 
any of the three T 1 to T ,, this can only be done via T •• and the error variance 
of these comparisons is 2 X 0.75at1 = 1.5at1, nearly double that of 0.857at• for 
the experiment in one stage. The overall average variance of a comparison in 
the two stage experiment is actually 1.07lat1• · 

When we consider that the experiment in two stages has taken 24 runs as 
compared with 21 for the experiment in one stage, it is evident that the latter 
has been much more satisfactory. 

(l) For a description of the method of covariance see R. A. Fisher : "StatisticaJ Methods 
for ~esearc,~ Wor~ers," Section 49.1 (Oliver and Boyd). K. Mather: "Statistical Analysis 
m B10logy, Sectton 34 (Methuen). G. W. Snedecor: "Statistical Methods," Chapter 12 
(Iowa State College Press). 
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In parenthesis, a comparison might be made with the classical type of experi­
ment using a single standard throughout. The nearest approach to a balanced 
design calls for 6 blocks, all containing the standard and two of the remaining 6 
treatments. Each of the latter therefore occurs twice. The total number of runs 
required is 6 X 3 = 18, which is slightly less than the 21 for the balanced incom­
plete blocks. The accuracy is very much less. There are three separate types 
of comparison in this classical design :-

(a) Between any treatment and the standard. These have variances 0.667CJk1 

(b) Between any two treatments which occur in the same block. These have 
variances 1.333ak1• 

(c) Between any two treatments not in the same block. These have variances 
approximately 4.0Cfk1• The overall average is approximately 2.285ak1• 

The comparison of this classical design with a "standard" with the 
balanced incomplete block is thus seen to be very unfavourable to the 
former, when it is remembered that in the latter all comparisons have the 
variance 0.857CJk1• 

In the same manner, it can be shown that one large factorial experiment is 
much more satisfactory than two smaller ones. For example, with 6 factors all 
at 2 levels, it is much better to have them in one full experiment requiring 21 = 64 
runs than to divide the experiment into two parts, each with 3 factors, requiring 
for the two parts a total of 2 X 21 = 16 runs. The former requires appreciably 
more work, but in return yields the following advantages :-

(a) The main effects are determined with 8 times the accuracy. 
(b) All the 15 possible first order interactions are evaluated with considerable 

accuracy : the two stage experiment only estimates 6 of these 15, and 
then only with one-eighth the accuracy. 

(c) All the 20 possible second order interactions are estimated: in the two 
stage experiment only 2 are estimated, and then these estimates have to 
be used as error so are of no value as regards estimating the interactions 
themselves. 

(d) All the 15 possible third order interactions are estimated. There are 
still 7 degrees of freedom left for error : if we use these plus the greater 
part of the 15 third order interactions for error we will have the latter 
with about 20 degrees of freedom. This is much more satisfactory than 
in the two-stage experiment where we start off with a second order 
interaction with only 1 degree of freedom as error. 

Another possibility is to carry out the six factor experiment as a half-replicate 
in 32 runs. This will evaluate the main effects with 4 times the accuracy of the 
two smaller experiments and the 15 first order interactions also with 4 times the 
accuracy. 

(c) Conclusions 
These sections on the design of experiments have been written rather as 

though it were a fully-developed subject like Euclid's Geometry. This is not the 
case, however : these statistical designs have hitherto only been employed in the 
chemical industry to a very limited extent, their development taking place in the 
science of agriculture, where there is now a body of experience available stretching 
over twenty years. The methods are clearly capable of transplantation on the 
lines indicated. but we must guard against an undue literalism in their application. 
In the chemical industry certain aspects will need to be developed, and others 
perhaps to be modified as not suitable in the changed conditions. Thus, for 
example, it seems that for the presentation of final results on which action may 
be taken the 5% level of significance is inadequate, and we really require the 
1% or better. In general, therefore, caution should be used in their interpretation 
till there is a greater foundation of experience, but to date no incident 
haS come to the author•s notice which suggests that there are any pitfalls. 
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Degrees 
of 

Freedom 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

40 
60 

120 
co 

0.10 

6.31 
2.92 
2.35 
2.13 
2.02 

194 
1.90 
1.86 
1.83 
1.81 

1.80 
1.78 
1.77 
1.76 
1.75 

1.75 
1.74 
1.73 
1.73 
1.73 

1.72 
1.72 
1.71 
1.71 
1.71 

1.71 
1.70 
1.70 
1.70 
1.70 

1.68 
1.67 
1.66 
1.65 

APPENDIX 

TABLE I 

Table oft 

0.05 

12.71 
4.30 
3.18 
2.78 
2.57 

2.45 
2.37 
2.31 
2.26 
2.23 

2.20 
2.18 
2.16 
2.15 
2.13 

2.12 
2.11 
2.10 
2.09 
2.09 

2.08 
2.07 
2.07 
2.06 
2.06 

2.06 
2.05 
2.05 
2.04 
2.04 

2.02 
2.00 
1.98 
1.96 

t 

O.o2 0.01 0.001 

31.82 63.66 636.62 
6.97 9.93 31.60 
4.54 5.84 12.94 
3.75 4.60 8.61 
3.37 4.03 6.86 

3.14 3.71 5.96 
3.00 3.50 5.41 
2.90 3.36 5.04 
2.82 3.25 4.78 
2.76 3.17 4.59 

2.72 3.11 4.44 
2.68 3.06 4.32 
2.65 3.01 4.22 
2.62 2.98 4.14 
2.60 2.95 4.07 

2.58 2.92 4.02 
2.57 2.90 3.97 
2.55 2.88 3.92 
2.54 2.86 3.88 
2.53 2.85 3.85 

2.52 2.83 3.82 
2.51 2.82 3.79 
2.50 2.81 3.77 
2.49 2.80 3.75 
2.48 2.79 3.73 

2.48 2.78 3.71 
2.47 2.77 3.69 
2.47 2.76 3.67 
2.46 2.76 3.66 
2.46 2.75 3.65 

2.42 2.70 3.55 
2.39 2.66 3.46 
2.36 2.62 3.37 
2.33 2.58 3.29 

Abridged from Table III of "Statistical Tables for Biological, Agricultural and 
Medical Research." (R. A. Fisher and F. Yates: Oliver and Boyd). 
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Degrees 
of 

Freedom 0.99 0.98 

1 0.000 0.001 
2 0.020 0.040 
3 0.115 0.185 
4 0.297 0.429 
5 0.554 0.752 

6 0.872 1.134 
7 1.239 1.564 
8 1.646 2.032 
9 2.088 2.532 

10 2.558 3.059 

11 3.05 3.61 
12 3.57 4.18 
13 4.11 4.76 
14 4.66 5.37 
15 5.23 5.99 

16 5.81 6.61 
17 6.41 7.26 
18 7.02 7.91 
19 7.63 8.57 
20 8.26 9.24 

21 8.90 9.91 
22 9.54 10.60 
23 10.20 11.29 
24 10.86 11.99 
25 11.52 12.70 

26 12.20 13.41 
27 12.88 14.12 
28 13.56 14.85 
29 14.26 15.57 
30 14.95 16.31 

0.95 

0.004 
0.103 
0.352 
0.711 
1.145 

1.635 
2.167 
2.733 
3.325 
3.940 

4.57 
5.23 
5.89 
6.57 
7.26 

7.96 
8.67 
9.39 

10.12 
10.85 

11.59 
12.34 
13.09 
13.85 
14.61 

15.38 
16.15 
16.93 
17.71 
18.49 

TABLE ll 

Table of X1 

0.90 0.50 

0.015 0.455 
0.211 1.386 
0.584 2.366 
1.064 3.357 
1.610 4.351 

2.204 5.35 
2.833 6.35 
3.490 7.34 
4.168 8.34 
4.865 9.34 

5.58 10.34 
6.30 11.34 
7.04 12.34 
7.79 13.34 
8.55 14.34 

9.31 15.34 
10.09 16.34 
10.87 17.34 
11.65 18.34 
12.44 19.34 

13.34 20.34 
14.04 21.34 
14.85 22.34 
15.66 23.34 
16.47 24.34 

17.29 25.34 
18.11 26.34 
18.94 27.34 
19.77 28.34 
20.60 29.34 

0.10 0.05 0.02 0.01 0.001 
------~ --

2.71 3.84 5.41 6.64 10.83 
4.61 5.99 7.82 9.21 13.82 
6.25 7.82 9.84 11.34 16.27 
7.78 9.49 11.67 13.28 18.47 
9.24 11.07 13.39 15.09 20.52 

10.65 12.59 15.03 16.81 22.46 
12.02 14.07 16.62 18.48 24.32 
13.36 15.51 18.17 20.09 26.13 
14.68 16.92 19.68 21.67 27.88 
15.99 18.31 21.16 23.21 29.59 

17.28 19.68 22.62 24.73 31.26 
18.55 21.03 24.05 26.22 32.91 
19.81 22.36 25.47 27.69 34.53 
21.06 23.69 26.87 29.14 36.12 
22.31 25.00 28.26 30.58 37.70 

23.54 26.30 39.63 32.00 39.25 
24.77 27.59 31.00 33.41 40.79 
25.99 28.87 32.35 34.81 42.31 
27.20 30.14 33.69 36.19 43.82 
28.41 31.41 35.02 37.57 45.32 

29.61 32.67 36.34 38.93 46.80 
30.81 33.92 37.66 40.29 48.27 
32.01 35.17 38.97 41.64 49.73 
33.20 36.42 40.27 42.98 51.18 
34.38 37.65 41.57 44.31 52.62 

35.56 38.89 42.86 45.64 54.05 
36.74 40.11 44.14 46.96 55.48 
37.92 41.34 45.42 48.28 56.89 
39.09 42.56 46.69 49.59 58.30 
40.26 43.77 47.96 50.89 59.70 

Abridged from Table IV of "Statistical Tables for Biological, Agricultural and 
Medical Research." (R. A. Fisher and F. Yates: Oliver and Boyd). 
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TABLE III 

Tables of Variance Ratio (i) 

~ 
0.20 Significance Level 

1 2 3 4 5 6 12 24 00 I 

---------
1 9.5 12.0 13.1 13.7 14.0 14.3 14.9 15.2 15.6 
2 3.6 4.0 4.2 4.2 4.3 4.3 4.4 4.4 4.5 
3 2.7 2.9 2.9 3.0 3.0 3.0 3.0 3.0 3.0 
4 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.4 2.4 
5 2.2 2.3 2.3 2.2 2.2 2.2 2.2 2.2 2.1 

6 2.1 2.1 2.1 2.1 2.1 2.1 2.0 2.0 2.0 
7 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 1.8 
8 2.0 2.0 2.0 1.9 1.9 1.9 1.8 1.8 1.7 
9 1.9 1.9 1.9 1.9 1.9 1.8 1.8 1.7 1.7 

10 1.9 1.9 1.9 1.8 1.8 1.8 1.7 1.7 1.6 

11 1.9 1.9 1.8 1.8 1.8 1.8 1.7 1.6 1.6 
12 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.6 1.5 
13 1.8 1.8 1.8 1.8 1.7 1.7 1.6 1.6 1.5 
14 1.8 1.8 1.8 1.7 1.7 1.7 1.6 1.6 1.5 
15 1.8 1.8 1.8 1.7 -1.7 1.7 1.6 1.5 1.5 

16 1.8 1.8 1.7 1.7 1.7 1.6 1.6 1.5 1.4 
17 1.8 1.8 1.7 1.7 1.7 1.6 1.6 1.5 1.4 
18 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5 1.4 
19 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5 1.4 
20 1.8 1.8 1.7 1.7 1.6 1.6 1.5 1.5 1.4 

22 1.8 1.7 1.7 1.6 1.6 1.6 1.5 1.4 1.4 
24 1.7 1.7 1.7 1.6 1.6 1.6 1.5 1.4 1.3 
26 1.7 1.7 1.7 1.6 1.6 1.6 1.5 1.4 1.3 
28 1.7 1.7 1.7 1.6 1.6 1.6 1.5 1.4 1.3 
30 1.7 1.7 1.6 1.6 1.6 1.5 1.5 1.4 1.3 

40 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.4 1.2 
60 1.7 1.7 1.6 1.6 1.5 1.5 1.4 1.3 1.2 

120 1.7 1.6 1.6 1.5 1.5 1.5 1.4 1.3 1.1 
00 1.6 1.6 1.6 1.5 1.5 1.4 1.3 1.2 1.0 

Abridged from Table V of "Statistical Tables for Biological, Agricultural and 
Medical Research." (R. A. Fisher and F. Yates: Oliver and Boyd). 
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Table of Variance Ratio {ii) 

~ 
0.05 Significance Level 

1 2 3 4 5 6 12 24 co I 

---
1 164.4 199.5 215.7 224.6 230.2 234.0 234.9 249.0 254.3 
2 18.5 19.2 19.2 19.3 19.3 19.3 19.4 19.5 19.5 
3 10.1 9.6 9.3 9.1 9.0 8.9 8.7 8.6 8.5 
4 7.7 6.9 6.6 6.4 6.3 6.2 5.9 5.8 5.6 
5 6.6 5.8 5.4 5.2 5.1 5.0 4.7 4.5 4.4 

6 6.0 5.1 4.8 4.5 4.4 4.3 4.0 3.8 3.7 
7 5.6 4.7 4.4 4.1 4.0 3.9 3.6 3.4 3.2 
8 5.3 4.5 4.1 3.8 3.7 3.6 3.3 3.1 2.9 
9 5.1 4.3 3.9 3.6 3.5 3.4 3.1 2.9 2.7 

10 5.0 4.1 3.7 3.5 3.3 3.2 2.9 2.7 2.5 

11 4.8 4.0 3.6 3.4 3.2 3.1 2.8 2.6 2.4 
12 4.8 3.9 3.5 3.3 3.1 3.0 2.7 2.5 2.3 
13 4.7 3.8 3.4 3.2 3.0 2.9 2.6 2.4 2.2 
14 4.6 3.7 3.3 3.1 3.0 2.9 2.5 2.3 2.1 
1S 4.5 3.7 3.3 3.1 2.9 2.8 2.5 2.3 2.1 

16 4.5 3.6 3.2 3.0 2.9 2.7 2.4 2.2 2.0 
17 4.5 3.6 3.2 3.0 2.8 2.7 2.4 2.2 2.0 
18 4.4 3.6 3.2 2.9 2.8 2.7 2.3 2.1 1.9 
19 4.4 3.5 3.1 2.9 2.7 2.6 2.3 2.1 1.9 
20 4.4 3.5 3.1 2.9 2.7 2.6 2.3 2.1 1.8 
22 4.3 3.4 3.1 2.8 2.7 2.6 2.2 2.0 1.8 
24 4.3 3.4 3.0 2.8 2.6 2.5 2.2 2.0 1.7 
26 4.2 3.4 3.0 2.7 2.6 2.5 2.2 2.0 1.7 
28 4.2 3.3 3.0 2.7 2.6 2.4 2.1 1.9 1.7 
30 4.2 3.3 2.9 2.7 2.5 2.4 2.1 1.9 1.6 

40 4.1 3.2 2.9 2.6 2.5 2.3 2.0 1.8 1.5 
60 4.0 3.2 2.8 2.5 2.4 2.3 1.9 1.7 1.4 

120 3.9 3.1 2.7 2.5 2.3 2.2 1.8 1.6 1.3 
CIO 3.8 3.0 2.6 2.4 2.2 2.1 1.8 1.5 1.0 

Abridged from Table V of "Statistical Tables for Biological, Agricultural, and 
Medical Research." (R. A. Fisher and F. Yata: Oliver and Boyd). 
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Tables of Variance Ratio (ill) 

~ 
0.01 Significance Level 

1 2 3 4 5 6 8 12 24 Nt co 
----------1-------

1 4052 4999 5403 5625 5764 5859 5981 6106 6234 6366 
2 98.5 99.0 99.2 99.3 99.3 99.4 99.3 99.4 99.5 99.5 
3 34.1 30.8 29.5 28.7 28.2 27.9 27.5 27.1 26.6 26.1 
4 21.2 18.0 16.7 16.0 15.5 15.2 14.8 14.4 13.9 13.5 
5 16.3 13.3 12.1 11.4 11.0 10.7 10.3 9.9 9.5 9.0 

6 13.7 10.9 9.8 9.2 8.8 8.5 8.1 7.7 7.3 6.9 
7 12.3 9.6 8.5 7.9 7.5 7.2 6.8 6.5 6.1 5.7 
8 11.3 8.7 7.6 7.0 6.6 6.4 6.0 5.7 5.3 4.9 
9 10.6 8.0 7.0 6.4 6.1 5.8 5.5 5.1 4.7 4.3 

10 10.0 7.6 6.6 6.0 5.6 5.4 5.1 4.7 4.3 3.9 

11 9.7 7.2 6.2 5.7 5.3 5.1 4.7 4.4 4.0 3.6 
12 9.3 6.9 6.0 5.4 5.1 4.8 4.5 4.2 3.8 3.4 
13 9.1 6.7 5.7 5.2 4.9 4.6 4.3 4.0 3.6 3.2 
14 8.9 6.5 5.6 5.0 4.7 4.5 4.1 3.8 3.4 3.0 
15 8.7 6.4 5.4 4.9 4.6 4.3 4.0 3.7 3.3 2.9 

16 8.5 6.2 5.3 4.8 4.4 4.2 3.9 3.6 3.2 2.8 
17 8.4 6.1 5.2 4.7 4.3 4.1 3.8 3.5 3.1 2.7 
18 8.3 6.0 5.1 4.6 4.3 4.0 3.7 3.4 3.0 2.6 
19 8.2 5.9 5.0 4.5 4.2 3.9 3.6 3.3 2.9 2.5 
20 8.1 5.9 4.9 4.4 4.1 3.9 3.6 3.2 2.9 2.4 

22 7.9 5.7 4.8 4.3 4.0 3.8 3.5 3.1 2.8 2.3 
24 7.8 5.6 4.7 4.2 3.9 3.7 3.3 3.0 2.7 2.2 
26 7.7 5.5 4.6 4.1 3.8 3.6 3.3 3.0 2.6 2.1 
28 7.6 5.5 4.6 4.1 3.8 3.5 3.2 2.9 2.5 2.1 
30 7.6 5.4 4.5 4.0 3.7 3.5 3.2 2.8 2.5 2.0 

40 7.3 5.2 4.3 3.8 3.5 3.3 3.0 2.7 2.3 1.8 
60 7.1 5.0 4.1 3.7 3.3 3.1 2.8 2.5 2.1 1.6 

120 6.9 4.8 4.0 3.5 3.2 3.0 2.7 2.3 2.0 1.4 
co 6.6 4.6 3.8 3.3 3.0 2.8 2.5 2.2 1.8 1.0 

Abridged from Table V of "Statistical Tables for Biological, Agricultural and 
Medical Research." (R. A. Fisher and F. Yates: Oliver and Boyd). 
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Table of Variance Ratio (iv) 

I~ 0.001 Significance Level 

~ 314 ~ N• 1 6 8 12 24 co 

1 varyiug from 400,000 to 800,000 
1-

2 998 999 999 999 999 999 999 999 999 999 
3 167 148 141 137 135 133 131 128 126 123 
4 74.1 61.3 56.2 53.4 51.7 50.5 49.0 47.4 45.8 44.1 
5 47.0 36.6 33.2 31.1 29.8 28.8 27.6 26.4 25.1 23.8 

6 35.5 27.0 23.7 21.9 20.8 20.0 19.0 18.0 16.9 15.8 
7 29.2 21.7 18.8 17.2 16.2 15.5 14.6 13.7 12.7 11.7 
8 25.4 18.5 15.8 14.4 13.5 12.9 12.0 11.2 10.3 9.3 
9 22.9 16.4 13.9 12.6 11.7 11.1 10.4 9.6 8.7 7.8 

10 21.0 14.9 12.6 11.3 10.5 9.9 9.2 8.5 7.6 6.8 

11 19.7 13.8 11.6 10.4 9.6 9.1 8.3 7.6 6.9 6.0 
12 18.6 13.0 10.8 9.6 8.9 8.4 7.7 7.0 6.3 5.4 
13 17.8 12.3 10.2 9.1 8.4 7.9 7.2 6.5 5.8 5.0 
14 17.1 11.8 9.7 8.6 7.9 7.4 6.8 6.1 5.4 4.6 
15 1.6.6 11.3 9.3 8.3 7.6 7.1 6.5 5.8 5.1 4.3 

16 16.1 11.0 9.0 7.9 7.3 6.8 6.2 5.6 4.9 4.1 
17 15.7 10.7 8.7 7.7 7.0 6.6 6.0 5.3 4.6 3.9 
18 15.4 10.4 8.5 7.5 6.8 6.4 5.8 5.1 4.5 3.7 
19 15.1 10.2 8.3 7.3 6.6 6.2 5.6 5.0 4.3 3.5 
20 14.8 10.0 8.1 7.1 6.5 6.0 5.4 4.8 4.2 3.4 

22 14.4 9.6 7.8 6.8 6.2 5.8 5.2 4.6 3.9 3.2 
24 14.0 9.3 7.6 6.6 6.0 5.6 5.0 4.4 3.7 3.0 
26 13.7 9.1 7.4 6.4 5.8 5.4 4.8 4.2 3.6 2.8 
28 13.5 8.9 7.2 6.3 5.7 5.2 4.7 4.1 3.5 2.7 
30 13.3 8.8 7.1 6.1 5.5 5.1 4.6 4.0 3.4 2.6 

40 12.6 8.2 6.6 5.7 5.1 4.7 4.2 3.6 3.0 2.2 
60 12.0 7.8 6.2 5.3 4.8 4.4 3.9 3.3 2.7 1.9 

120 11.4 7.3 5.8 5.0 4.4 4.0 3.5 3.0 2.4 1.6 
co 10.8 6.9 5.4 5.6 4.1 3.7 3.3 2.7 2.1 1.0 

Abridged from Table V of "Statistical Tables for Biological, Agricultural and 
Medical Research." (R. A. Fisher and F. Yates: Oliver and Boyd). 
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TABLE IV 

Table of the Correlation Coefficient 

Degrees r 
of 

Freedom 0.10 0.05 0.02 0.01 I 0.001 

1 .988 .997 .999 1.000 1.000 
2 .900 .950 .980 .990 .999 
3 .805 .878 .934 .959 .992 
4 .729 .811 .882 .917 .974 
5 .669 .754 .833 .874 .951 

6 .621 .707 .789 .834 .925 
7 .582 .666 .750 .798 .898 
8 .549 .632 .716 .765 .872 
9 .521 .602 .685 - .735 .847 

10 .497 .576 .658 .708 .823 

11 .476 .553 .634 .684 .801 
12 .457 .532 .612 .661 .780 
13 .441 .514 .592 .641 .760 
14 .426 .497 .574 .623 .742 
15 .412 .482 .558 .606 .725 

16 .400 .468 .543 .590 .708 
17 .389 .456 .528 .575 .69] 
18 .378 .444 .516 .561 .679 
19 .369 .433 .503 .549 .665 
20 .360 .423 .492 .537 .652 

25 .323 .381 .445 .487 .597 

30 .296 .349 .409 .449 .554 
35 .275 .325 .381 .418 .519 
40 .257 .304 .358 .393 .490 
45 .243 .287 .338 .372 .465 so .231 .273 .322 .354 .443 
60 .211 .250 .295 .325 .408 
70 .195 .232 .274 .302 .380 
80 .183 .217 .256 .283 .357 
90 .173 .205 .242 .267 .337 

100 .164 .195 .230 .254 .321 

Abridged from Table VI of "Statistical Tables for Biological, Agricultural and 
Medical Research." rR. A. Fisher and F. Yates: Oliver and Boyd). 
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TABLE V 

Factors for Control Charts 

Number in A' A' D' D' d 
Sample 0,025 0.001 0.975 0.999 n 

2 1.229 1.937 2.81 4.12 1.13 
3 0.668 1.054 2.17 2.98 1.69 
4 0.476 0.750 1.93 2.57 2.06 
5 0.377 0.594 1.81 2.34 2.33 
6 0.316 0.498 1.72 2.21 2.53 
7 0.274 0.432 1.66 2.11 2.70 
8 0.244 0.384 1.62 2.04 2.85 
9 0.220 0.347 1.58 1.99 2.97 

10 0.202 0.317 1.56 1.93 3.08 

Abridged from B. S. 600R "Quality Control Charts". (B. P. Dudding and 
W. J. Jennett. British Standards Institution.) 

TABLE VI 

The AnJ!ular Transformation of PercentaJ!es to DeJ!rees 

P% 0 1 2 3 4 5 6 7 8 9 

0 0 S.7 8.1 10.0 11.5 12.9 14.2 15.3 16.4 17.5 
10 18.4 19.4 20.3 21.1 22.0 22.8 23.6 24.4 25.1 25.8 
20 26.6 27.3 28.0 28.7 29.3 30.0 30.7 31.3 31.9 32.6 
30 33.2 33.8 34.4 3S.1 35.7 36.3 36.9 37.5 38.1 38.6 
40 39.2 39.8 40.6 41.0 41.6 42.1 42.7 43.3 43.9 44.4 

so 4S.O 45.6 46.1 46.7 47.3 47.9 48.4 49.0 49.6 50.2 
60 50.8 S1.4 S1.9 S2.S 53.1 53.7 54.3 54.9 55.6 56.2 
70 S6.8 S7.4 58.1 58.7 59.3 60.0 60.7 61.3 62.0 62.7 
80 63.4 64.2 64.9 65.6 66.4 67.2 68.0 68.9 69.7 70.6 
90 71.6 72.S 73.6 74.7 75.8 77.1 78.5 80.0 81.0 84.3 

From Table XII of ''Statistical Tables for Biological, Agricultural and Medical Research" 
(R. A. Fisher and F. Yates; Oliver and Boyd}. 

TABLE VII 

Abbreviated Table of Probits . 
-% 0 1 2 3 4 s 6 7 8 9 

so s.ooo S.025 S.050 S.075 S.100 S.126 S.151 S.176 5.202 S.227 
60 S.253 S.279 S.305 S.332 5.358 5.38S 5.412 5.440 5.468 5.496 
70 S.524 S.5S3 5.583 S.613 5.643 5.674 5.706 5.739 S.772 5.806 
80 S.842 S.878 5.91S S.954 5.99S 6.036 6.080 6.126 6.17S 6.227 
90 6.282 6.341 6.40S 6.476 6.S55 6.645 6.751 6.881 7.054 7.326 

- --Abridged from Table IX of "Statistical Tables for Biological, Agricultural and 
Medical Research." (R. A. Fisher and F. Yates: Oliver and Boyd). 
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03 47 43 73 86 
97 74 24 67 62 
16 76 62 27 66 
12 56 85 99 26 
55 59 56 35 64 

16 22 77 94 39 
84 42 17 53 31 
63 01 63 78 59 
33 21 12 34 29 
57 60 86 32 44 

18 18 07 92 46 
26 62 38 97 75 
23 42 40 64 74 
52 36 28 19 95 
37 85 94 35 12 

70 29 17 12 13 
56 62 18 37 35 
99 49 57 22 77 
16 08 15 04 72 
31 16 93 32 43 

68 34 30 13 70 
74 57 25 65 76 
27 42 37 86 53 
00 39 68 29 61 
29 94 98 94 24 

16 90 82 66 59 
11 27 94 75 06 
35 24 10 16 20 
38 23 16 86 38 
31 96 25 91 47 

66 67 40 67 14 
14 90 84 45 11 
68 OS 51 18 00 
20 46 78 73 90 
64 19 58 97 79 

OS 26 93 70 60 
07 97 10 88 23 
68 71 86 85 85 
26 99 61 65 53 
14 65 52 68 75 

17 53 77 58 71 
90 26 59 21 19 
41 23 52 55 99 
60 20 so 81 69 
91 25 38 OS 90 

34 50 57 74 37 
85 22 04 39 43 
09 79 13 77 48 
88 75 80 18 14 
90 96 23 70 00 

TABLE VIII 
Random Numbers (I) 

36 96 47 36 61 46 98 63 71 62 33 26 16 80 45 
42 81 14 57 20 42 53 32 37 32 27 07 36 07 51 
56 so 26 71 07 32 90 79 78 53 13 ss 38 58 59 
96 96 68 27 31 OS 03 72 93 15 57 12 10 14 21 
38 54 82 46 22 31 62 43 09 90 06 18 44 32 53 

49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 
57 24 55 06 88 77 04 74 47 67 21 76 33 so 25 
16 95 55 67 19 98 10 so 71 75 12 86 73 58 07 
78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 
09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 

44 17 16 58 09 79 83 86 19 62 06 76 so 03 10 
84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 
82 97 77 77 81 07 45 32 14 08 32 98 94 07 72 
so 92 26 11 97 00 56 76 31 38 80 22 02 53 53 
83 39 so 08 30 42 34 07 96 88 54 42 06 87 98 

40 33 20 38 26 13 89 51 03 74 17 76 37 13 04 
96 83 so 87 75 97 12 25 93 47 70 33 24 03 54 
88 42 95 45 72 16 64 36 16 00 04 43 18 66 79 
33 27 14 34 90 45 59 34 68 49 12 72 07 34 45 
so 27 89 87 19 20 15 37 00 49 52 85 66 60 44 

55 74 30 77 40 44 22 78 84 26 04 33 46 09 52 
59 29 97 68 60 71 91 38 67 54 13 58 18 24 76 
48 55 90 65 72 96 57 69 36 10 96 46 92 42 45 
66 37 32 20 30 77 84 57 03 29 10 45 65 04 26 
68 49 69 10 82 53 75 91 93 30 34 25 20 57 27 

83 62 64 11 12 67 19 00 71 74 60 47 21 29 68 
06 09 19 74 66 02 94 37 34 02 76 70 90 30 86 
33 32 51 26 38 79 78 45 04 91 16 92 53 56 16 
42 38 97 01 so 87 75 66 81 41 40 01 74 91 62 
96 44 33 49 13 34 86 82 53 91 00 52 43 48 85 

64 OS 71 95 86 11 OS 65 09 68 76 83 20 37 90 
75 73 88 OS 90 52 27 41 14 86 22 98 12 22 08 
33 96 02 75 19 07 60 62 93 55 59 33 82 43 90 
97 51 40 14 02 04 02 33 31 08 39 54 16 49 36 
15 06 15 93 20 01 90 10 75 06 40 78 78 89 62 

22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 
09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 
54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 
58 37 78 80 70 42 10 so 67 42 32 17 55 85 74 
87 59 36 22 41 26 78 63 06 ss 13 08 27 01 so 
71 41 61 so 72 12 41 94 96 26 44 95 27 36 99 
23 52 23 33 12 96 93 02 18 39 07 02 18 36 07 
31 04 49 69 96 10 47 48 45 88 13 41 43 89 20 
31 99 73 68 68 35 81 33 03 76 24 30 12 48 60 
94 58 28 41 36 45 37 59 03 09 90 35 57 29 12 

98 80 33 00 91 09 77 93 19 82 74 94 80 04 04 
73 81 53 94 79 33 62 46 86 28 08 31 54 46 31 
73 82 97 22 21 OS 03 27 24 83 72 89 44 OS 60 
22 95 75 42 49 39 32 82 22 49 02 48 07 70 37 
39 00 03 06 90 ss 85 78 38 36 94 37 30 69 32 

60 11 14 10 95 
24 51 79 89 73 
88 97 54 14 10 
88 26 49 81 76 
23 83 01 30 30 

84 26 34 91 64 
83 92 12 06 76 
44 39 52 38 79 
99 66 02 79 54 
08 02 73 43 28 

SS 23 64 OS OS 
10 93 72 88 71 
93 85 79 10 75 
86 60 42 04 53 
35 85 29 48 39 

07 74 21 19 30 
97 77 46 44 80 
94 77 24 21 90 
99 27 72 95 14 
38 68 88 11 80 

68 07 97 06 57 
15 54 55 95 52 
97 60 49 04 91 
11 04 96 67 24 
40 48 73 51 92 

02 02 37 03 31 
38 45 94 30 38 
02 75 so 95 98 
48 51 84 08 32 
27 ss 26 89 62 

57 16 00 11 66 
07 52 74 95 80 
49 37 38 44 59 
47 95 93 13 30 
02 67 74 17 33 

52 91 OS 70 74 
58 OS 77 09 51 
29 56 24 29 48 
94 44 67 16 94 
15 29 39 39 43 

02 96 74 30 83 
25 99 32 70 23 
97 17 14 49 17 
18 99 10 72 34 
82 62 54 65 60 

45 07 31 66 49 
53 94 13 38 47 
35 80 39 94 88 
16 04 61 67 87 
90 89 00 76 33 

Abridged from Table XXXIII of "Statistical Tables for Biological, Agricultural, and Medical 
Research" (R. A. Fisher and F. Yates: Oliver and Boyd). 
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53 74 23 99 67 
63 38 06 86 54 
35 30 58 2t 46 
63 43 36 82 69 
98 25 37 55 26 

02 63 21 17 69 
64 ss 22 21 82 
85 07 26 13 89 
58 54 16 24 15 
34 85 27 84 87 

03 92 18 27 46 
62 95 30 27 59 
08 45 93 15 22 
07 08 55 18 40 
Ot 85 89 95 66 

72 84 7t 14 35 
88 78 28 16 84 
45 17 75 65 57 
96 76 28 12 54 
43 31 67 72 30 

so 44 66 44 21 
22 66 22 15 86 
96 24 40 14 51 
31 73 91 61 19 
78 60 73 99 84 

84 37 90 61 56 
36 67 10 08 23 
07 28 59 07 48 
10 15 83 87 60 
55 19 68 97 65 

53 81 29 13 39 
51 86 32 68 92 
35 91 70 29 13 
37 71 67 95 13 

. 93 66 13 83 27 

02 96 08 45 65 
49 83 43 48 35 
84 60 71 62 46 
18 17 30 88 71 
79 69 10 61 78 

75 93 36 57 83 
38 30 92 29 03 
51 29 50 10 34 
21 31 38 86 24 
29 01 23 87 88 

95 33 95 22 00 
90 84 60 79 80 
46 40 62 98 82 
20 31 89 03 43 
71 59 73 OS 50 

TABLE VIII 
Random Nwnbers (II) 

6t 32 28 69 84 94 62 67 86 24 98 33 41 t9 95 
99 00 65 26 94 02 82 90 23 07 79 62 67 80 60 
06 n t7 to 94 25 21 3t 75 96 49 28 24 00 49 
65 St t8 37 88 6t 38 44 12 45 32 92 85 88 65 
Ot 91 82 81 46 74 71 12 94 97 24 02 71 37 07 

71 so 80 89 56 38 15 70 11 48 43 40 45 86 98 
48 22 28 06 00 61 54 13 43 9t 82 78 12 23 29 
01 10 07 82 04 59 63 69 36 03 69 11 15 83 80 
51 54 44 82 00 62 61 65 04 69 38 18 65 18 97 
61 48 64 56 26 90 18 48 13 26 37 70 15 42 57 

57 99 16 96 56 30 33 72 85 22 84 64 38 56 98 
37 75 41 66 48 86 97 80 61 45 23 53 04 01 63 
60 21 75 46 91 98 77 27 85 42 28 88 61 08 84 
45 44 75 13 90 24 94 96 6t 02 57 55 66 83 tS 
s1 to 19 34 88 15 84 97 t9 75 t2 76 39 43 78 

19 11 58 49 26 so 11 17 17 76 86 3t 57 20 18 
13 52 53 94 53 75 45 69 30 96 73 89 65 70 31 
28 40 19 72 12 25 t2 74 75 67 60 40 60 81 19 
22 01 11 94 25 71 96 16 16 88 68 64 36 74 45 
24 02 94 08 63 38 32 36 66 02 69 36 38 25 39 

66 06 58 OS 62 68 1s 54 35 ·o2 42 35 48 96 32 
26 63 75 41 99 58 42 36 72 24 58 37 52 18 51 
23 22 30 88 57 95 67 47 29 83 94 69 40 06 07 
60 20 72 93 48 98 57 07 23 69 65 95 39 69 58 
43 89 94 36 45 56 69 47 07 41 90 22 91 07 12 

70 10 23 98 OS 85 11 34 76 60 76 48 45 34 60 
98 93 35 08 86 99 29 76 29 81 33 34 91 58 93 
89 64 58 89 75 83 85 62 27 89 30 14 78 56 27 
79 24 31 66 56 21 48 24 06 93 91 98 94 OS 49 
03 73 52 16 56 00 53 55 90 27 33 42 29 38 87 

35 01 20 71 34 62 33 74 82 14 53 73 19 09 03 
33 98 74 66 99 40 14 71 94 58 45 94 19 38 81 
80 03 54 07 27 96 94 78 32 66 50 95 52 74 33 
20 02 44 95 94 64 85 04 OS 72 01 32 90 76 14 
92 79 64 64 72 28 54 96 53 84 48 14 52 98 94 

13 OS 00 41 84 93 07 54 72 59 2t 45 57 09 77 
82 88 33 69 96 72 36 04 19 76 47 45 15 18 60 
40 80 81 30 37 34 39 23 OS 38 25 15 35 71 30 
44 91 14 88 47 89 23 30 63 15 56 34 20 47 89 
71 32 76 95 62 87 00 22 58 40 92 54 01 75 25 

56 20 14 82 11 74 21 97 90 65 96 42 68 63 86 
06 28 81 39 38 62 25 06 84 63 61 29 08 93 67 
31 57 75 95 80 51 97 02 74 77 76 15 48 49 44 
37 79 81 53 74 73 24 16 10 33 52 83 90 94 76 
58 02 39 37 67 42 10 14 20 92 16 55 23 42 45 

18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 
24 36 59 87 38 82 07 53 89 35 96 35 23 79 18 
54 97 20 56 95 15 74 80 08 32 16 46 70 so 80 
38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 
08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 

47 53 53 38 09 
75 9t 12 81 t9 
ss 65 79 78 07 
54 34 8t 85 35 
03 92 18 66 75 

00 83 26 91 OJ 
06 66 24 12 27 
13 29 54 19 28 
85 72 13 49 21 
65 65 80 ~9 07 

99 Ot 30 98 64 
45 76 08 64 27 
69 62 03 42 73 
73 42 37 11 61 
64 63 91 08 25 

95 60 78 46 75 
99 17 43 48 76 
24 62 01 61 16 
19 59 so 88 92 
48 03 45 15 22 

14 52 41 52 48 
03 37 18 39 11 
18 16 36 78 86 
56 80 30 19 44 

. 78 35 34 08 72 

01 64 18 39 96 
63 14 52 32 52 
86 63 59 80 02 
01 47 59 38 00 
22 13 88 83 34 

56 54 29 56 93 
14 44 99 81 07 
13 80 55 62 54 
53 89 74 60 41 
56 07 93 89 30 

19 48 56 27 44 
82 11 08 95 97 
88 12 57 21 77 
99 82 93 24 98 
43 11 71 99 31 

74 54 13 26 94 
04 32 92 08 09 
18 55 63 77 09 
70 47 14 54 36 
54 96 09 11 06 

82 80 84 25 39 
OS 98 90 07 35 
67 72 16 42 79 
63 49 30 21 30 
66 39 67 98 60 

Abridged from Table XXXIII of "Statistical Tables for Biological, Agricultural and Medical 
Research" (R. A. Fisher and F. Yates: Oliver and Boyd). 
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