LIFE CONTINGENCIES

CAMBRIDGE UNIVERSITY PRESS LONDON: BENTLEY HOUSE NEW YORK, TORONTO, BOMBAY CALCUTTA, MADRAS: MACMILLAN

All rights reserved

. .

LIFE CONTINGENCIES

BY

E. F. SPURGEON, F.I.A.

CAMBRIDGE

Published for the Institute of Actuaries AT THE UNIVERSITY PRESS

1945

First published	1922	
Second Edition	1929	
Third Edition	1932	
Reprinted	1938	
	1941	
,	1945	

PRINTED IN GREAT BRITAIN

.

INTRODUCTION

PART II of the Text Book of the Institute of Actuaries, dealing with the Theory of Life Contingencies, was first issued in 1887. This work, for which the Institute must ever be indebted to its distinguished author Mr George King, did more than simplify the progress of the actuarial student to his desired goal; it systematised and co-ordinated the presentation of the complex theory with which it dealt, thus elevating to the status of a definite branch of scientific knowledge a subject which, though fully ripe for such recognition, had up to that time suffered from the disadvantage of comparative inaccessibility.

During the long period which has elapsed since the Text Book was first published considerable changes have been made in the educational course prescribed by the Institute; in particular the value to the actuarial student of a competent knowledge of the elements of the Differential and Integral Calculus has been more fully realised and these subjects are now included in the mathematical course with which the training of the student begins. To secure a consistent educational scheme it has therefore been found necessary to re-arrange the volume hitherto entitled Part II of the Text Book and to bring into greater prominence those mathematical demonstrations which were formerly treated as subjects of optional study. The theoretical basis of these demonstrations is now included in the mathematical text book which is issued as a separate work, and certain chapters of the old Text Book, Part II, are omitted from the present Volume which thus deals exclusively with the theory of actuarial science so far as relates to Life Contingencies.

These are the principal changes introduced, but the opportunity has also been taken to make certain alterations which bring the work more fully into conformity with modern requirements. At the request of the Council the compilation of the new treatise was undertaken by Mr E. F. Spurgeon who brought to his task the indispensable qualifications of long experience as a Tutor and a conspicuous gift of exposition. The resulting Volume is issued by the Council in the belief that it will fully meet the needs of students and promote the attainment of those high professional qualifications which are connoted by the Fellowship of the Institute of Actuaries.

May 1922.

A. W. W.

AUTHOR'S PREFACE

In the preparation of this Volume and in determining the order in which the various subjects should be dealt with, special attention has been directed to the following considerations, namely,

- (i) That the student should, at an early stage of his work, acquire a sound knowledge of the *principles* of the construction of Mortality Tables, and of the evaluation of Annuities and Assurances, on the simplest possible basis.
- (ii) That in applying these principles to the more intricate parts of his work, the student should automatically revise his knowledge of the earlier portions, on a sound grasp of which so much depends.
- (iii) That such information on practical points as will be of assistance to the student in his more advanced studies should, where possible, be given, even though at times these may not be strictly within the limits of Part II of the Institute Examinations.

The Book has been divided into three parts:--Part I deals with Mortality Tables and Single-Life Functions; Part II with Functions involving two or more lives; and Part III with those subjects which could not conveniently be fitted into either of the earlier parts.

In Part I it was essential that the first subject dealt with should be the Mortality Table, and in the second chapter it was deemed advisable to proceed directly to Mortality Tables constructed from Life Assurance Statistics, with particular reference to Select Tables. This enables us, in Chapter III, to deal at once with Single-Life Annuities payable annually, Single-Life Assurances payable at the end of the year of death and Annual Premiums based on Select Tables. In Chapter IV, Premium Conversion Tables are dealt with; and in Chapter V, varying Annuities and Assurances and Premiums for special classes of assurances with reference to many practical points. Chapter VI deals with the values of Single-Life Policies subject to annual Premiums. It will be seen that by taking the subjects in this order the student will, by the end of Chapter VI, have acquired a knowledge of all the principles involved in the calculation of probabilities and in the evaluation of Annuities and Assurances, on the basis of Single Life Annual Functions, all the later work being an extension or modification of the matters dealt with in these Chapters. As a result of this arrangement, we are able in a single chapter (Chapter VII) to dispose of Annuities and Premiums payable more frequently than once a year, together with the values of policies subject to such premiums. In Chapters VIII and IX Assurances payable at the moment of death and Complete Single-Life Annuities are discussed.

Chapter X, dealing with Life Office Valuations, has been included in order to avoid the difficulty which Part II students have met with in the past, namely, that they have acquired a knowledge of Policy Values only to find that in their later work Policy Values, as such, are seldom used.

In order to prepare for subjects included in Part II of the Book it now becomes necessary, in Chapter XI, to consider Makeham's Law of Mortality, and in Chapter XII to deal with statistical applications of the Mortality Table and the Expectation of Life.

In Part II, when considering Joint-Life and Contingent Probabilities, Joint-Life and Last-Survivor Annuities and Assurances, and Contingent Assurances, the student will be merely extending the principles studied in the first few chapters.

Part III consists of two chapters only. In Chapter XX (Construction of Tables) the advantage of the Arithmometer has been emphasised and it has been considered necessary again to include a plate of a machine showing a particular calculation, the description of the machine being taken word for word from the old Text Book. In Chapter XXI the question of Tables involving two or more causes of decrement has been introduced in the simplest possible manner.

At the end of the Volume it was considered advisable to include, firstly, a Mortality Table based on population data (The English Life Table, No. 8), secondly, a Select Life Table (The $O^{(NM)}$) and thirdly, the H^M Table (Makeham Graduation) because of its value for instructional purposes. The Tables of Monetary Functions on the basis of the English Life Table, No. 8, which have not previously been published, have been supplied entirely by the Prudential Assurance Company; the Tables based on the $O^{[NM]}$ experience have been taken from those published by the Institute of Actuaries and Faculty of Actuaries jointly; and those based on the H^{M} experience from the old Text Book Part II.

It has been a distinct advantage to have a great part of the work already mapped out by Mr George King in the old Text Book, and to have been able to make use of his collection of symbols and expressions in such chapters as that relating to Compound Survivorship Annuities and Assurances. It would have added very materially to the work of preparation of the present volume had these not been available.

In conclusion I wish to express my high appreciation of the very valuable assistance rendered to me by Messrs W. W. Williamson, F.I.A., and C. C. Barrett, F.I.A., both in criticising my manuscript and in reading the proofs. If this book prove of the value to students and to the profession which I hope, their exceedingly helpful criticisms and suggestions will have contributed thereto in no small degree.

E. F. S.

AUTHOR'S PREFACE TO SECOND EDITION

In the Second Edition of this book the plan adopted in the First Edition has been retained.

The principal alterations are, the transfer from Chapter IV 13 to Chapter III 26 of the remarks concerning the comparison of premiums calculated on the basis of select and aggregate tables respectively, the revision of Chapter VI 44 and 45 and the addition of paragraph 14 to Chapter XXI.

Advantage has, of course, been taken of the opportunity afforded of correcting errors and misprints which appeared in the First Edition, and some slight changes in wording have also been made.

E. F. S.

viii

AUTHOR'S PREFACE TO THIRD EDITION

THE principal alterations in the Third Edition occur in Chapters V and X. In Chapter V, paragraph 34 (Options) has been redrafted in order to introduce more "practical" formulae, and paragraph 36 (Deferred Assurances with Return of Premiums) has been slightly altered for a similar reason. In Chapter X, paragraphs 3 to 11 have been redrafted in order to bring out more clearly, for the benefit of students, the actual bases of the formulae employed in practice; no alteration in principle is, however, involved.

Various suggestions have been received that extracts from papers and notes published during the last few years should be included in the Third Edition. These have been carefully considered, but as only slight variations of the application of principles already dealt with in this book were involved, it was not deemed advisable to increase the size of the work by their inclusion.

The Author desires to express his very great appreciation of the assistance he has received in the preparation of the Third Edition from Messrs W. F. Gardner, F.I.A., and G. A. Hosking, F.I.A., who have, indeed, undertaken practically the whole of the task of examining the suggestions received, in addition to themselves making recommendations concerning various points which had come before them in the course of their tutorial work.

E. F. S.

TABLE OF CONTENTS

PART I

CHAPTERS I TO XII

MORTALITY TABLES

SINGLE-LIFE PROBABILITIES OF LIFE AND DEATH

SINGLE-LIFE ANNUITIES AND ASSURANCES

STATISTICAL APPLICATION OF THE MORTALITY TABLE

CHAPTER I (Pages 1-18)

THE MORTALITY TABLE—MORTALITY TABLES CONSTRUCTED FROM POPULATION STATISTICS

•									1	PAGE
Definition of Mortality Table	8			•			•			1
The number living: l_x and L	- -		•	•	•		•		. 1,	2, 3
Deaths: d_s	•			•			•		•	2
Rate of Mortality: q_x .									•	2
Method of Construction of M			able	•	•				. :	35
Radix of Mortality Table						. ·				3
Limiting Age:	•			•					•	3
Central Death Rate: mz										4
Probability of surviving one										5
Fallacy of constructing Mort			e fron	n dea	ths a	lone				6, 7
Graduation	. '			•						7
English Life Table No. 8									. 7	8
Probabilities of Life and Dea	th:.	<i>p</i> _z , ,	g. 1	.Q.,				B —10,		
Force of Mortality: μ_{π} .								. '		<u>-15</u>
Relation between μ_{π} and q_{π}										12
Formulae for value of μ_{π}									. 13	, 14
Relation between μ_s and color	g. p.							-		15
When Force of Mortality ma	V ELC	eed u	nitv						. 15	
Differential Coefficients of va	rious	func	tions				•		. 16	
Examples	•	•	•	•		•			. 17	

CHAPTER II (Pages 19-30)

MORTALITY TABLES CONSTRUCTED FROM LIFE ASSURANCE STATISTICS—SELECT LIFE TABLES

												· P/	GR
'	Assumptions mad	e for	purp	DSOS	of exp	lana	tion	-	•	•	•	. 19	20
J	Exposed to Risk :	E_{x}	•	•		•		•				•	20
/	Aggregate Tables			•	•		•	•	•		•	. 20,	21
,	Select Tables .	•	•	•				•	•			21	-25
	Ultimate Tables	•	•	•		•						•	24
	British Offices Exp	perier	nce (C) [™] , () ^[M] , 0	^{M (5)}),	Brie	f refe	rence	to		•	26
	Institute of Actua						ief re	feren	ce to	•	• '		27
	Practical Applicat	ion c	f Sel€	et T	ables	•	•	•	•	•	•		27
	Value of $\mu_{[x]}$.	•				· •		•	•		•		28
	Probabilities of Li	ife an	d Dea	ath l	y Sele	ect T	able	•	•	•	•		28
	Examples .	•	• .	•	•	•	•	•	•	•	•	29-	-30

CHAPTER III (Pages 31-59)

SINGLE-LIFE ANNUITIES AND ASSURANCES. ANNUAL PREMIUMS

Assumption made in calculation of mone	stary val	ues	• '	•	•	•	31
Pure Endowment : $A_{x:t}^{1}$	•	•	•	•	•	•	31
Whole-Life Annuity : a_x	•		•	•	•	31—	-32
Annuity-due: a_x	•	•	•		•		32
Deferred Annuity: $a_{1}a_{2}$	•	•		•	•	32-	-33
Temporary Annuity : $a_x : \overline{n}$ or $ _n a_x$.			•	•	•	•	33
Deferred Temporary Annuity : " maz .		•		• .	•		33
Commutation Functions : D_x and N_x .	•				•	•	34
Formulae for Annuity values in terms of	Commu	tation	Fun	ction	8		34
Temporary and Deferred Annuities due :	: az , n], ,	a.	•	•	•	•	35
Older form of Commutation Function : 1				•	•	•	35
Commutation Functions based on Select	Tables :	$D_{[x]}$	N _[z] ,	etc.	•		3 6
Annuities deferred a fraction of payment	period :	1 az,	1 a.	: A	•	37—	-38
		ž	Ē				39
Table of Expressions for Annuity Values		•	•	•	•	•	
Approximation to isolated Annuity Valu		•	•	•	•	•	40
Temporary and Whole-Life Assurances :	$A_{\alpha}^{1}, n = 0$	r "A"	, A,	•	•	. 41,	42
Commutation Functions for Assurances	: C _z , M _z	•	•	•			43
Deferred Whole-Life and Temporary Ass	surances	. A		A.	•	•	43
Assurances based on Select Tables		•	•	• '	•	•	44
Endowment Assurances : $A_{x;\overline{n}}$, etc	•	•	•	•	•	44	45
Premiums based on Select Tables	•	•	•	•	•	•	45
Annual Premiums : $P_{[x];\overline{n}}^{1}$, $P_{[x]}$, $P_{[x];\overline{n}}$		•	•	•	•	46	-48

					-						PAGE
Annual Premiu	ns for	Lim	ted P	'ayme	ent P	olicie	s: "F	(z], f	(x): =	, ₍ P _[x]	48, 49
Table of Expres	sions f	or Si	ngle I	Premi	iums	for S	ingle	-Life	Assu	rance	xs, 50
Table of Expres	sions f	or A	nnual	Pren	nium	s fo r	Singl	e-Lif	e Ass	uran	es 51
Numerical Exat	nple of	Ant	uity	Fund	•	•			•	•	52
Numerical Exam	nple of	f Ass	uranc	æ Fu	nđ	•	•	•		•	. 53, 54
Examples	- -	•		•	•	٩		-	:	•	55—59

CHAPTER IV (Pages 60-67)

.

RELATION BETWEEN ASSURANCES AND ANNUITIES. PREMIUM CONVERSION TABLES

Formulae for Single and Annual Premi	ums	in	terms	of A	nnuit	ies	60 - 62
Single Premium Conversion Tables			•				6263
Annual Premium Conversion Tables	•					•	6366
Whole-Life and Temporary Annuity Va	alues	in	terms	of F	' and	d.	66 —67

CHAPTER V (Pages 68-94)

VARYING SINGLE-LIFE ANNUITIES AND ASSURANCES. OFFICE PREMIUMS AND SPECIAL CLASSES OF ASSURANCES

Commutation Function: S.						68
Increasing Temporary and Whole-Life Annuit	· aub w	/Ta\	• • /		. 68,	
					• •••,	
Increasing Temporary and Whole-Life Annuit	cies: (10	/2:14	(10)		•	69
Old form of Commutation Function : S_x .	•	•	•	•	•	69
Examples of Varying Annuities	. •	•	•	•	. 69,	70
Commutation Function: R _s .	. •	•	•	•	. 70	,71
Increasing Assurances : $(IA)_{x:n}^{l}$, $(IA)_{x}$.	•	•		•	•	71
Examples of Varying Assurances					. 71	72
Increasing Assurance in terms of ordinary As	surance	3			. 72	
Participating or With-Profit Policies					73-	
Guaranteed Bonus Policies		-				78
Policy with varying Sum Assured and Varyin	o Premi	uma	•		•	78
Office Premiums			•	•	. 79	
Premiums for Instalment Policies	•	•	•	•	. 10	
	•	•	•	•	•	81
Premiums for Debenture Policies	•	•	•	•	•	81
Premiums for Double Endowment Assurances	8.	•				82
Assurances subject to Increasing Premiums.	•		•			82
Assurances with Return of Premiums						83
Pure Endowment with Return of Premiums.		_				86
Options	-	•			-	87
Deferred Assurances with Return of Premium	•	•	•	•	•	88
Discounted Bonus Policies	12 .	•	•	•	•	
· · · · · · · · · · · · · · · · · · ·	•	•	•	•	•	89
Mortality Experience of Different Classes of A	Assuran	068	•	•	•	91
Examples	•	•	•	•	92-	-94

CHAPTER VI (Pages 95-127)

VALUES OF SINGLE-LIFE POLICIES SUBJECT TO ANNUAL PREMIUMS

IV ANNOAL INAMIOND
PAGE
Definition of Policy Value
Whole-Life Assurance policy value: ${}_{t}V_{[x]}$
Endowment Assurance policy value: $V_{[z];n]}$
Prospective and Retrospective Methods of obtaining Policy Values . 96, 97
Values of limited payment whole-life and endowment assurance policies 97, 98
Policy Values when net premiums are not valued
Policy Values at Fractional Durations: $\frac{1}{t+\frac{1}{r}} \bigvee_{(z)} \frac{1}{t+\frac{1}{r}} \bigvee_{(z): \overline{r+1}} \bigvee_{(z): \overline{r+1}} \frac{1}{r}$ 99-101
Values of Participating Policies
Pure Endowment Policy Values
Deferred Assurance Policy Values
Endowment Assurances with return of premiums, policy values . 103-104
Instalment and Debenture policy values
Double Endowment Assurance policy values
Temporary Assurance policy values
Tables showing progress of various assurance funds 106-110
Table A-Whole-Life Assurances
Table B—Temporary Assurances 109
Table C-Pure Endowment
Table D—Endowment Assurances
Alternative formulae for Whole-Life policy value
Alternative formulae for Endowment Assurance policy value . 111-112
Comparison of Policy Values by different Mortality Tables
Condition for equal Whole-Life policy values by two different
Tables
Surrender Values
Free or Paid-up Policies
Alterations of Policies
Whole-Life to Endowment Assurance
Endowment Assurance to mature at earlier age than under
original contract.
Limitation of number of future premiums
Application of cash value of bonus to alter policies
Examples
Manuput

xiv

CHAPTER VII (Pages 128-150)

SINGLE-LIFE ANNUITIES AND PREMIUMS PAYABLE MORE FREQUENTLY THAN ONCE A YEAR. VALUES OF SINGLE-LIFE POLICIES SUBJECT TO PREMIUMS PAYABLE MORE FREQUENTLY THAN ONCE A YEAR

	PAGE
Whole-Life Annuity payable <i>m</i> times a year: $a_x^{(m)}$. 128—129
Practical Value for $a_x^{(m)}$	129
Whole-Life annuity-due payable m times a year: $\mathbf{a}_x^{(m)}$.	129
Temporary annuity and annuity-due payable m times a	year:
$a_{x:n}^{(m)}, \mathbf{a}_{x:n}^{(m)}$	130
Annuities payable m times a year, first payment less than $\frac{1}{m}$ t	h of a
year hence: $\frac{1}{t} \left[\frac{a^{(m)}}{x}, \frac{1}{t} \left[\frac{a^{(m)}}{x}, \frac{1}{\eta} \right] \dots \dots \dots \right]$	131
General Form for $\lim_{x \to m} \mathbf{a}_x^{(m)} $ for all values of m	• . 132
Annuity values in terms of Commutation Functions	. 132
Continuous Annuities: $\bar{a}_x, \bar{a}_x; \bar{n}$	133
Differential coefficients of various functions	134
Constant addition to rate of mortality or rate of interest	134
Premiums payable m times a year.	. 135-139
True premiums for Whole-Life Assurances: $\mathbf{P}_{\{x\}}^{(m)}$.	. 135-136
True premiums for Endowment Assurances : $P_{[x];n]}^{(m)}$	137
True premiums for Limited Payment policies: $p_{[x]}^{(m)}$, $p_{[x]:n]}^{(m)}$. 137-138
Instalment premiums for Whole-Life Assurances: $P_{[x]}^{[m]}$.	138
Instalment premiums for Endowment Assurances: $P_{[x]:n]}^{[m]}$	139
Instalment premiums for Limited Payment policies: $P_{lx}^{[m]}$,	$P_{[x];n}^{(m)}$ 139
Premiums payable weekly or monthly (Industrial Life Assura	nces):
$\mathbf{P}_{x}, \mathbf{P}_{x}; \mathbf{n}$	139
Values of Policies subject to true premiums payable m times a y	ear , 140
Whole-Life Assurances, Integral duration : $V_{(x)}^{(m)}$.	140
Endowment Assurances, Integral duration : $V_{[x]:\overline{n}]}^{(m)}$.	141
Whole-Life Assurances, Fractional duration: $V_{(z)}^{(m)}$	$1^{V(x)}$
· · · · · · · · · · · · · · · · · · ·	I42-144
Whole-Life Assurances with practical formulae and nur	
example	144
Endowment Assurances, fractional duration	145
Values of Policies subject to Instalment Premiums .	. 145-147
Whole-Life Assurances: $V_{[x]}^{[m]}$, etc.	. 146-147
Endowment Assurances: $V_{[x]:n]}^{[m]}$, etc.	147
Values of Limited Payment Policies	148
Examples	. 149-150
£	. 145—100 Ь

CHAPTER VIII (Pages 151-160)

SINGLE-LIFE ASSURANCES PAYABLE AT ANY OTHER MOMENT THAN AT THE END OF THE YEAR OF DEATH

* *		•						PAGE
Assurances payable at moment of dea	.th (C	ontin	uous	Assu	rance	23)		
Temporary Assurances : $\overline{\mathbf{A}}_{[\mathbf{z}];\overline{\eta}}^{1}$	•	•	•	•		•	•	151
Whole-Life Assurances: $\overline{A}_{[x]}$.	•	•	•	•		•		152
Endowment Assurances: $\overline{A}_{[x];\overline{n}}$	•	•	•	•	•	•		152
Alternative formulae by Aggregat		oles:	$\overline{A}_{x:\overline{n}}^{1}$], A _z	•	•	152-	-153
Single Premium Conversion Table	е.	•	•	•	•	•		153
Practical approximation	. •		•	•				154
Deferred Assurances: $ \bar{A}_{[x]}, \bar{A}_{[x]} $	Ā[#]	•	•					155
Annual Premiums: ${}^{(\infty)}P_{[x]}, {}^{(\infty)}P_{[x]}$	7	•	•	۰,	•	•	•	155
Premiums payable m times a year	r: (∞)]	$P_{[x]}^{(m)}$,	etc.	•				155
Continuous Premiums: $(\infty)\overline{P}_{[x]}$, et	с.				•			155
Continuous annual premium conv	ersion	n tab	le		•		155-	-15 6
Policy Values .								156
Differential Coefficient of M.								156
Differential Coefficient of \overline{A}_{x} .						•	• ·	157
Assurances payable at end of $\frac{1}{m}$ th inte	rval i	n wh	ich de	eath o	occur	s	157	-158
Increasing Assurances payable at mon	aent o	f dea	th			•	158-	-159
Continuously Increasing Assurances in	a term	ns of	â _z an	d (Iāj)*	• `		159
Examples	•	•	•	•	•	•		160

CHAPTER IX (Pages 161-171)

COMPLETE SINGLE-LIFE ANNUITIES

Definition of Complete Annuity .	•		•	۲	•		•	161
Complete Whole-Life Annuity: $\hat{a}_x^{(m)}$				•	•		161	-164
Complete Temporary Annuity: $\delta_{x:n}^{(m)}$			• •	•_			•	164
Expression for value of \overline{A}_{π} in terms of	åz	•					•	164
Why there cannot be a complete annu	ity-d	ue	•	•		•	` •	165
Table of values of a_{30} and a_{60} by various	us foi	rmula	e	•	•		•	165
Annuity to continue in any event until	payr	nents	amo	unt t	o pur	chas	e	
price	•			•	•		165	166
Annuity with return of balance of pure	chase	price			•	٠	166	167
Examples .	•	•	•		•	٠	168	171

CHAPTER X (Pages 172-190)

LIFE OFFICE VALUATIONS

Policies valued in Groups .			-	•	•	•	•	•	٠	172
Whole-Life Assurances, Valua	tion	of	•	•	•	•	•	•	172—	
Method of Grouping .		~	•	•	•	•	• ·	•	<u>.</u>	172
By Aggregate Tables .			•	•	•	•	•	•		172
Assumptions as to age an	d net	t pre	minu	a	•	•	•	•	172-	
Office Year of Birth .			•	•	•	•	•	٠	•	174
Sums Assured and Bonus	es .		•	•	•	•	•	•	-4	174
Annual Premiums			•	•	•	•	•	•	•	174
True Half-Yearly and Qu	arter	ly P	remiu	1008	• •	;	•	•	174	
Instalment Premiums .			•	• '	•		•	•	•	175
Endowment Assurances, Valu	ation	of	•	•	•	•	•	•	176-	
Method of Grouping .			•	•	•		•	•	•	176
Mean Valuation Age for (Group	р (ве	e also) Cha	p. XI	, pp.	200-	-202	2).	176
Sums Assured and Bonus			• •		•			•	•	176
Annual Premiums					•	••	•			177
True Half-Yearly and Qu	arte	rly P	remi	ums	•	•		•	177-	-178
Instalment Premiums .			•			•			178-	-179
Gross Premium Valuation .		-			•			•		180
Limited Payment Policies, Va	luati	on o	f	•	•	•	•		181-	-182
Profit or Loss of a Life Office		•	•						182	-184
Death Strain at Risk .		•		•	•	•	•			184
Expected Death Strain		•	•		•	•	•		•	184
Equation of Equilibrium .										185
Effect on Whole-Life policy va	lues	of va	riati	on in	Valu	ation	Base		185-	-190
Effect on Whole-Life policy va	lues	of va	riati	ons i	n the	Rate	of L	nter	est	188
Effect on Whole-Life policy										
Mortality .	-		•	•	•	•	•	•	188	-190

CHAPTER XI (Pages 191-202)

MATHEMATICAL REPRESENTATION OF THE LAW OF MORTALITY; GOMPERTZ'S AND MAKEHAM'S LAWS

. Gompertz's Law of Mortalit	у.	•							191-	-192
Formulae for μ_z and l_z	•	•	• .	•		•				191
Formulas for p_s and lo	g :Pa	. •		•		•	• .		•	192
 Makeham's Law of Mortalit 	y	•	•	•			•		•	192
Formulae for μ_x , l_x and	1 .p.	•	•			•	•			192
Value of \overline{A}_{x} .		•						•		193
How to obtain the valu	1 0 8 of	f the	const	ants	k, n, c	, g			193-	-194
How to construct a tabl	le of i	l _a who	en the	e valu	ies of	the o	onsta	nta		•
are known	•	•					•		194-	-195
Curve of Deaths .	•		•	•	٠	• •	•		196-	-198
•								•	b 9	:

PAGE

xviii		

1	Makeham's Law of Mortality (cont.)			
	Age when d_x has a maximum value	•	. 197	1
	Age when d_x has a minimum value		. 198	5
	Effect of constant increase in μ_x .		. 198	,
	Effect of increase in constant B in the formula for μ_{π} .		. 198	1
	Applied to Select Tables		198-199)
٠	Makeham's Second Development of Gompertz's Law		. 199)
	Mean Age for Valuation of Endowment Assurances in Group	s.	200-202	ļ

CHAPTER XII (Pages 203-220)

STATISTICAL APPLICATIONS OF THE MORTALITY TABLE

¥	Population aged x and upwards: T_x	3
~	Differential Coefficient of T_x	4
1	Ratio of number of deaths to population	5
	Expectation of Life: a_x and e_x	8
-	Average age at death of persons who attain age x	7
	Temporary complete expectation of Life: $ _n \hat{e}_x$	7
~	Average age at death of persons who die between ages x and $x+n = 207-20$	8
	Comparison of average ages at death amongst different populations . 20	9
	Effect of immigration on average age at death	0
	Average age at death of present population aged x and upwards . 210-21	1
	Value of μ_z in terms of complete expectation of life	2
	Proof that $a_{\overline{e_x}} > a_x$	3
	Examples	0

PART II

CHAPTERS XIII TO XIX

FUNCTIONS INVOLVING TWO OR MORE LIVES PROBABILITIES OF LIFE AND DEATH JOINT-LIFE AND LAST SURVIVOR ANNUITIES AND ASSURANCES

CONTINGENT ASSURANCES REVERSIONARY ANNUITIES

CHAPTER XIII (Pages 223-237)

JOINT-LIFE AND SURVIVORSHIP PROBABILITIES

Expressions for probability that							
(x) and (y) will both survive n years :	P=	•	•				223
m lives will all survive n years	•	•	• .	•	•	•	223

PAGE

Expressions for probability that						:	PAGE
(x) and (y) will both die within n	vears : L	0-				993	, 226
m lives will all die within n years		l'CXY	•	•	•		223
•		••••••	n	•	•	•	
One only of (x) and (y) will surviv				•	•	•	224
At least one of (x) and (y) will sur				۰.	•	•	224
The joint existence of (x) and (y) v	vill fail v	vithin	n yea	rs : ,	Qzy	224	, 2 26
Value of d_{xy}	• •	•	•	•	•	•	224
Probabilities relating to the $(t+1)$ th ye						hat	
the joint life-time of (x) and (y) wi			ear :	1 9 av	•	•	225
both (x) and (y) will die in that ye			•	•	٠	•	225
the second death amongst (x) and	(y) will a	ocur i	n tha	t yea	r;		
1 9 TU	•••	•	•	•	•	2 25-	-226
neither (x) nor (y) will die in that		•	• *	•	•	•	226
one at least of (x) and (y) will die i	in that y	ear		• 1	٠	226-	-227
Value of $ _{n}Q_{xy}$ derived from $_{i} q_{xy}$.	• • • •		•		•	•	227
Value of $ _{n}Q_{\overline{xy}}$ derived from $_{i} q_{\overline{xy}}$.			•		•	•	227
Values of $m m Q_{xy}$ and $m m Q_{xy}$.	• •		•	•			227
Probabilities involving three lives .				•	•		228
Probability that exactly m out of r lives	s survive	t year	rs : "p	102¥Z	[r] (m)	228-	-229
Probability that at least m out of r live	s survive	t year	ns: "p		-	229-	-230
Difficulty of interpreting Z ^r when app							
r lives failing							230
Most probable number of deaths .					÷	231-	
Expected number of deaths .						232-	
Joint Expectation of Life : \hat{s}_{xy} , etc.						233-	
Substitution under Gompertz's Law of a	- nvnumh	er of li	VAS O	f eau	คโ		
$age: ip_{xyo(m)} = ip_{yooo(r)} $						233-	-234
Substitution under Makeham's Law of	equal T	umbe	r of 1	ives	of		
equal age: $p_{xys(m)} = p_{yys(m)}$							234
Examples						234	
The second secon	• •	•	•	-	•		201

CHAPTER XIV (Pages 238-252)

CONTINGENT PROBABILITIES

Probabilities involving two lives :		
Probability that		
(x) will die in the $(n+1)$ th year, (y) surviving him : $ q_{xy}^1 $		2 38
(x) will die before (y) within n years : $ _{n}Q_{mn}^{1}$.		238
(x) will die before (y): Q_{xy}^1		238
Formulae for $ _{a}Q_{xy}^{1}$ and Q_{xy}^{1} .	238-	-240
Formulae for $ _{*}Q_{xy}^{1}$ and Q_{xy}^{1} on the basis of Select Tables .		240
Evaluation of Q_{xy}^1 by approximate integration	•	24 1

xix

•

Probabilities involving two lives (cont.)		PAGE
Probability that		
(x) will die after $(y): Q_{xy}^{2}$	•	242
(x) will die after (y) within n years : $ _n Q_{xy}^a$	•	242
(x) will be alive t years after the death of (y)	•	242
at least i years will elapse between the deaths of (x) and	(y) .	242
(x) and (y) will die within t years of each other	•	243
(x) will die before (y) or within t years after (y)	•	243
(x) will be alive at the end of the tth year following th	at in	
which (y) dies	•	243
Probabilities involving three lives		
Probability that of three lives (x) , (y) and (z)		
(x) will die first : Q_{xyx}^1	243-	244
(y) will die first and (x) second : Q^2_{xyx}	•	244
(y) will die first and (z) third : Q_{xyx}^{3}	•	244
(x) will die second : Q_{xys}^2 .		245
(x) will die third : Q_{xyz}^3		245
(x) will die before the survivor of (y) and (z): $Q_{z,\overline{y}}^{1}$.	•	245
the joint existence of (x) and (y) will fail before the dea	th of	
$(z): Q_{\overline{zw}(z)}^1 \cdot \cdots \cdot $	•	245
Probabilities involving four lives		
Probability that of four lives (w) , (x) , (y) , and (z)		
(w) will die first and (x) second : Q_{uxys}	•	246
(x) will die second : Q_{uarme}^{2}		246
(x) will die third : Q_{ways}^{3} .		246
(x) will die first, second or third : Q1:3:5		246
(w) will die first, (x) second and (y) third : Q_{wxyz}^3 .		246
13	-	
Value of $Q_{xyz(m)}^1$ and $ _{m}Q_{xyz(m)}^1$ under Gompertz's Law	•	247
Value of $Q_{xyx(m)}^1$ and $ _{n}Q_{xyz(m)}^1$ under Makeham's Law		248
Probability that (25) and (30) will both die before reaching age 50		249
Probability that (25) and (30) will both die before reaching age 50	and	
in the lifetime of (40).		249
Proof that $\mu_{xy} = \mu_x + \mu_y$.		249-
Examples	250-	-252

CHAPTER XV (Pages 253-276)

JOINT-LIFE ANNUITIES. ANNUITIES PAYABLE UNTIL THE DEATH OF THE LAST SURVIVOR OF TWO OB MORE LIVES

DEATH OF THE LAST SURVIVOR OF TWO OR MORE HIVES
PAGE
Joint-Life Annuities
Whole-Life Annuity : a _{xy} , a _{uxys(m)}
Temporary Annuity: $ _{\mathbf{n}}a_{xxy}$, $ _{\mathbf{n}}a_{xxys(m)}$
Deferred Annuity : $ a_{xy}, a_{uxys(m)} $
Annuities payable <i>m</i> times a year : $a_{m}^{(m)}$, etc
Continuous Annuities : \tilde{a}_{xy} , etc
Joint-Life Commutation Functions: D _{xy} , N _{xy} , S _{xy} 254-255
Joint-Life Commutation Functions on the basis of Select Tables :
$D_{[x][y]}, N_{[x][y]}, etc.$
Simpson's Rule for Annuities on three lives
Joint-Life Annuities when Makeham's Law holds (Substitution of
equal ages)
Law of Uniform Seniority under Makeham's Law
Adoption of equal ages when Makeham's Law does not hold . 260-261
Substitution of a single life under Makeham's Law with a change in
the rate of interest
Evaluation of $\hat{a}_{30;35;45}$ and $\hat{a}_{30;35;45;30}$ by approximate integration $262-263$
Lest Survivor Annuities
Annuity payable during joint lives of (x) and (y) and life of
survivor : a=
Annuity payable so long as, of m given lives, at least r lives survive :
$a_{\underline{r}}$,
Values of $a_{\text{vort}s}$, $a_{\text{vort}s}^3$, $a_{\text{vort}s}^3$
Annuity payable so long as, of m given lives, exactly r lives survive:
$a \underline{(r)} \ldots 265$
Value of $\alpha_{\frac{[3]}{2}}$
Proof that if, when Makeham's Law holds, $a_{xy} = a_{xy}$, $a_{\overline{xy}} \neq a_{\overline{yy}}$. 265-267
Deferred last survivor Annuity (two lives): $a_{\overline{xy}}$
Annuity during joint existence of (x) and (y) and for t years after
death of (y) should (x) live so long
Annuity during joint existence of (x) and the survivor of (y) and (s)
and for t years after the death of such survivor should (x) live
so long
Annuity during joint existence of (a), (b) and (c) and the last survivor
of (x), (y) and (z) Annuity until (25) and (30) both reach age 50 or until death of survivor
Value of $a(\overline{x:n})(\overline{y:n})$. 270
Joint-Life Annuities when Gompertz's Law holds
Approximations to values of joint-life annuities
Examples

CHAPTER XVI (Pages 277-290)

JOINT-LIFE AND LAST-SURVIVOR ASSURANCES. COMPLETE JOINT-LIFE AND LAST-SURVIVOR ANNUITIES

		PAGE
Joint-Life Assurances	•	277-279
Whole-Life Assurance: $A_{[z][y]}$, etc		. 277
Temporary Assurance: $ _{n}A_{[x][y]}$, etc.		. 277
Endowment Assurance : $A_{[z][y];n]}$, etc		. 277
Employment of Premium Conversion Tables		. 279
Assurance payable at the end of the year of death of the (r-	+1)th	life
to fail out of an original number of m lives		. 279
Annual Premiums for Joint-Life Assurances: $P_{[x][y]}$, $P_{[x][y]}^{1}$	$P_{[x][y]}$: n],
and corresponding limited payment premiums	•	279-280
Approximation to the annual premium for a joint-life to	empor	ary
Assurance when the term is short		. 280
Approximation to the annual premium for a joint-life en	dowm	ent
Assurance		280 - 281
Joint-Life Commutation Functions : C _{zy} , M _{zy} , R _{zy} , etc.	•	281-282
Single and Annual Premiums for Joint-Life Assurances in	terms	of
Commutation Functions	•	. 282
Method of finding Single or Annual Premiums for Joint-Life As	ssuran	1088
when certain functions are not available		282-283
Policy Values for Joint-Life Assurances	•	283-284
Treatment of Joint-Life Assurances at a Valuation		. 284
Last-Survivor Assurances	•	284 - 285
Whole-Life Assurances: $A_{\overline{xy}}$, $A_{\overline{xyy}}$	•	. 284
Annual Premiums for Whole-Life Assurances: $P_{\overline{xy}}$, etc.	•	. 285
Endowment Assurances, Single and Annual Premiums	Any	; n],
P _{ay:} n]	•	, . 285
Temporary Assurances, Single and Annual Premiums:	A_{xy}^1	n],
P_{my} , \overline{n} ,		. 285
Difficulty of employing the "Z" method in the evaluation of	f cert	ain
survivorship assurances		. 286
Most suitable method of obtaining the value of $A_{\overline{wxys}}^2$ and $P_{\overline{wx}}$. 286
Policy Values for Last-Survivor Assurances	•	. 287
Assurance payable on death of (x) within m years or on dea	th of	(y)
within n years		. 287
Assurance payable on both (x) dying within m years and (y)	y) wit	hiņ
n years	•	. 288
Complete Joint-Life Annuities: $a_{xy}^{(m)}$. 288
Complete Last-Survivor Annuities : $a_{xy}^{(m)}$	• •	. 289
Examples		. 290

ł

.

xxiii

PAGE

CHAPTER XVII (Pages 291-320) CONTINGENT ASSURANCES

	PAGE
Assurance payable on death of (x) before (y) :	
Symbol for Single Premium : $A^{1}_{[x][y]}$	291
Evaluation by Select Tables	291
Basis generally adopted .	291
Commutation Functions: C_{xy}^1 , M_{xy}^1 , R_{xy}^1 , etc	292
Annual Premium: $P^1_{[x][y]}$	293
Alternative form of Commutation Functions	293
Istaluation by representation	4295
Unsuitability of Aggregate Table for evaluation of A_{xy}^1 .	296
Formulae for A_{xy}^1 by Aggregate Table	6298
Assurance payable on death of (x) before (y) and (z) : A_{xyz}^1	299
Formulae for $\overline{A}_{\overline{xy};z}^1$ and $\overline{A}_{\overline{x};\overline{yz}}^1$ by an Aggregate Table ;	299
Evaluation of $\overline{A}_{30:35:45}^{1}$ by Approximate Integration 30	0301
Contingent Assurances under Makeham's Law 30	1303
Table showing values of $\overline{A}_{30;60}^1$ and $\overline{A}_{32;40}^1$ by various formulae by	• •
H ^M Table at 3 per cent.	303
Table showing values of $\overline{A}^1_{30:35:45}$ by various formulae by H ^M Table at	;
3 per cent	304
Application of formulae to Select Tables	
Contingent Assurances under Gompertz's Law	305
	6 —3 07
Contingent Assurances payable	7309
	7308
	8
	9310
Payable on death of (x) if he die after (y) and before (z): \overline{A}_{xyz}^2	. 3 09
Payable on death of (x) if he die second of (x), (y) and (z): \overline{A}_{xyx}^2	. 310
Payable on death of (x) if he die third of (x), (y) and (z): \overline{A}_{xyz}^{3}	. 310
Payable on death of (x) before the survivor of (y) and (z): $\overline{A}_{x,yz}^1$. 310
Payable on death of survivor of (x) and (y) before (z): $\overline{A}_{\overline{xy},z}^1$. 310
Contingent Assurance payable on death of (x) if he die third of four	r
lives (w) , (x) , (y) and (z)	. 311
Evaluation of $\overline{A}^{*}_{30:45:40}$ by Approximate Integration	11312
Deferred Contingent Assurances: $ \overline{A}_{xy}^1, \overline{A}_{xy}^2, \text{etc.}$	2-313
Temporary Contingent Assurances : A[z] v], etc	13314
Annual Premiums for Contingent Assurances	14317
•	17318
Examples 3	18320

CHAPTER XVIII (Pages 321-340)

REVERSIONARY ANNUITIES

PAGE

Beforition of Demonstructure Accession (
	321
Continuous annuity to (x) after (y): $\ddot{a}_{y x}$	
Annuity to (x) after (y) payable m times a year	
	322
	324
Annuity set up immediately, payments falling due after death of	
(y) to be made to (x): $a_{y x}^{(m)}, a_{y x}^{(m)}$	324
Annuity set up immediately, payments falling due after death of	
(y) to be made to (x) , but (y) 's estate to receive amount accrued	
to his death .	325
General Formula for Reversionary Annuity to (x) after (y)	327
Values of Reversionary Annuities when one of the statuses involved is	
other than a single life	327
Reversionary Annuities involving three lives: $a_{s xy}$, $a_{ys x}$, etc 328-3	329
Tables of values of Reversionary Annuity to (30) after (45), payable	
quarterly, by the H ^M Table, by various formulae	329
Deferred Reversionary Annuities: $a a_{y x}^{(m)}, a_{y x}^{(m)}$	331
Temporary Reversionary Annuities: $ _{\mathbf{x}}a_{\mathbf{y} \mathbf{z}}^{(m)}$, $ _{\mathbf{x}}a_{\mathbf{y} \mathbf{z}}^{(m)}$	532
Reversionary Annuity to (x) for life to be entered upon on death of (y)	
only if (y) die within n years	332
Reversionary Addition to (x) and (w) , with the condition that $H(w)$ define	
within n years, the annuity is to continue until the end of the	.
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	332
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335
within <i>n</i> years, the annuity is to continue until the end of the <i>n</i> years whether (x) survive or not	
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336
within n years, the annuity is to continue until the end of then years whether (x) survive or notPractical Application of General FormulaEvaluation of $\bar{a}_{45 20}$ by approximate integrationReversionary Annuities when the lives are subject to different rates of mortalityAnnual Premiums for Reversionary Annuities	335 335
within n years, the annuity is to continue until the end of then years whether (x) survive or notPractical Application of General FormulaEvaluation of $\bar{a}_{45 30}$ by approximate integrationReversionary Annuities when the lives are subject to different rates of mortalityAnnual Premiums for Reversionary AnnuitiesAlternative forms of integrals for values of various Reversionary	335 335 336 337
within n years, the annuity is to continue until the end of the n years whether (x) survive or not33Practical Application of General Formula333-3Evaluation of $\tilde{a}_{45 30}$ by approximate integration33Reversionary Annuities when the lives are subject to different rates of mortality3Annual Premiums for Reversionary Annuities3Alternative forms of integrals for values of various Reversionary Annuities3	335 335 336 337 337
within n years, the annuity is to continue until the end of then years whether (x) survive or notPractical Application of General FormulaEvaluation of $\bar{a}_{45 30}$ by approximate integrationReversionary Annuities when the lives are subject to different rates of mortalityAnnual Premiums for Reversionary AnnuitiesAlternative forms of integrals for values of various Reversionary	335 335 336 337 337
within n years, the annuity is to continue until the end of the n years whether (x) survive or not33Practical Application of General Formula333-3Evaluation of $\tilde{a}_{45 30}$ by approximate integration33Reversionary Annuities when the lives are subject to different rates of mortality3Annual Premiums for Reversionary Annuities3Alternative forms of integrals for values of various Reversionary Annuities3	335 335 336 337 337
within n years, the annuity is to continue until the end of the n years whether (x) survive or not<	335 335 336 337 337 340
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336 337 337 340
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336 337 337 340
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336 337 337 340 341 441
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336 337 337 340 341 441
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336 337 337 340 341 341 341 347 342
within n years, the annuity is to continue until the end of the n years whether (x) survive or not	335 335 336 337 337 340 341 341 341 347 342

.

XXV	
-----	--

٠

	PAGE
Compound Survivorship Annuities (cont.)	
Approximation to value of $\bar{a}_{yz z}$	343
Relation between $a_{yz_1z}^1$ and $a_{yz_1z}^1$.	343
Relation between $a_{yx x}$ and $a_{yz x}$	343
Evaluation of $d_{45:00 30}$ and $d_{45:00 30}$ by approximate integration 34	4345
Annuity to (w) after (z) if (z) die first of three lives (x) , (y) and (z) :	345
$d_{xyz w}$. Joint-Life Annuity to (w) and (x) after (z) if (z) die before (y):	
$\hat{a}_{yz} _{yzz}$	346
Last Survivor Annuity to (w) and (x) after (z) if (z) die before (y) :	
\ddot{a}_{yz}^{1}	346
Annuity to (w) after (y) if, of three lives (x) , (y) and (z) , (z) die first	
and (y) second: $d_{2y_2 y_2}$	346
. 1	
Joint-Life Annuity to (w) and (x) after (y) if (z) die before (y) :	
\bar{a}_{yz}^{z} we have a point to (a) and (a) after (a) if (a) dia halowa (a).	346
Last Survivor Annuity to (w) and (x) after (y) if (z) die before (y) :	
$\bar{a}_{yz \overline{vz}}^{2}$. Annuity to (w) after (y), if of three lives (x), (y) and (z), (z) die	3 46
	346
first: $\bar{a}_{x y x w}^{2:3}$	
Annuity to (w) after (x) if, of three lives (x) , (y) and (z) , (z) die first,	
(y) second and (x) third: \bar{a}_{xyz}^{3}	346
Compound Survivorship Assurances	7
Assurance payable on death of (x) if, of three lives (x) , (y) and (z) ,	
(z) die first and (x) third : \overline{A}_{xyz}^3	347
	7
1 1	
Assurance payable on death of (w) if he die second of four lives	F .
(w), (x), (y) and (z), (s) having died first: $\overline{\mathbf{A}}_{uxyz}^{s}$.	34 8
Assurance payable on death of (w) if, of four lives (w) , (x) , (y) and	
(z), (z) die first: $\overline{A}_{w}^{z;s;4}$:	348
1	
Assurance payable on death of (w) if, of four lives (w) , (x) , (y) and (x) , (y) if (x) , (y)	
(z), (z) die first, (y) second and (w) third : \overline{A}_{unver}^{3}	. 348
Assurance payable on death of (w) if, of four lives (w) , (x) , (y) and	1 -
(z), (z) die first and (y) second : $\overline{A}^{3;4}_{w}$. 349
Assurance payable on death of (w) if, of four lives (w) , (x) , (y) and	1
(z), (z) die first, (y) second, (z) third and (w) last : $\overline{A}_{\text{tops}}^4$. 349
Assurance payable on death of (w) if, of four lives (w) , (x) , (y) and	ł
(s), (z) die first and (w) last : \vec{A}_{wayw}	. 349
•	

Evalua	ation by which									•••		•		PAGE
	ā4 321	L	•	•	•	•	•	•	•	•	•	•		350
Annue	l Pren	nium	s foi	c Con	ipour	nd Su	rvivo	orship	Anr	nuitie	s and	l As	sur-	
	ances	•	•	•	•	•	•.	•			•		350-	
Exam	ples													354

PART III

CHAPTERS XX AND XXI

CONSTRUCTION OF TABLES

TABLES INVOLVING TWO OR MORE CAUSES OF DECRE-MENT AND FUNCTIONS DEPENDENT THEREON

· CHAPTER XX (Pages 357-380)

CONSTRUCTION OF TABLES

xxvi

•

			PAGE
Table of Annual Premiums for Whole-Life Assurances.	•	•	. 375
Table of Values of Force of Mortality	•	•	. 376
Tables based on Select Mortality Tables	•	•	. 377
Tables of Joint-Life and Contingent Functions	•	•	. 378
Special Cases.	•	•	379

CHAPTER XXI (Pages 381-394)

..

TABLES INVOLVING TWO OR MORE CAUSES OF DECREMENT

Object of Chapter	31
Reference to methods of Chapters I and II	31
Mortality and Withdrawal	35
Rate of Mortality with allowance for fractional exposure of with-	
drawals	32
Rate of withdrawal with allowance for fractional exposure of	
deaths: $(wq)_{x}$	32
Probable number of deaths and withdrawals	33
Probability of death in the service of a Company and of with-	
drawal from that service: q_x^d, q_x^w	35
Service Table showing withdrawals and deaths, with numerical	
	84
Mortality, Withdrawal and Retirement	37
Probabilities of death in the service of a Company and of with-	
drawal or retirement from that service : $q_x^d, q_x^{\omega}, q_x^{r}$	85
Service Table showing withdrawals, deaths and retirements, with	
numerical examples of various probabilities and rates	86
Probability that a person attaining age x in the service of a	
Company will remain in the service until age $x + n$ and kindred	
X X (X) (X)	87
Value of a contribution of 1 per annum while in the service of a	
Company	37
	38
Value of a payment of 1 to be made on withdrawal or retirement from	
the service	38
Central rates of death, withdrawal and retirement and their relation	
	89
Construction of a Service Table by the Census method	89
Construction of a Service Table based on probabilities or rates of	
decrement derived from different sources	91
Marriage and Mortality	94
Table showing the number of bachelors living at each age and the	
number of bachelors marrying, dying, etc., in each year of age :	
	92

xxviii

xxviii	CONT	ENTS					
Marriage and Mortality	(cont.)	-					PAGE
Probabilities that		30 will di	e or n	arry	before	age	
31, and that he							392
Rates of mortality					307 (* 14	~~	393
Central death and							393
Value of annuity of	f 1 to a bachelo	r aged <i>x</i> :	so long	g as b	e rema	ains	
unmarried: (ba)	z · ·	• •	•		•		39 3
Value of assurance	of 1 payable a	t the end	of th	e year	r of de	ath	
of a bachelor: (i	$(\mathbf{A})_{\mathbf{z}}$ · ·		• •		•	· •	393
Value of a paymer	nt of 1 at the en	d of the	year o	of mai	riage (ofa	
bachelor: (bm.)	E) _z		•			•	393
Construction of ta	ble by the Censu	us method	l	• •		•	394

TABLES SYNOPSIS OF TABLES

396