Estimation of Income Tax Revenue and Incidence

By Curford G. Hindreth
AORICULTURAL EXPERIMENT STATION IOWA STATE COLLEGE OF AGRICULTURE AND MECHANIC ARTS

AGRICULTURAL ECONOMICS SUBSECTION gURAL BOCLAL sCRENCE SECTION

Estimation of Income Tax
 Revenue and Incidence

By Clafford G. Hildreta
AGRICULTURAL EXPERIMENT STATION IOWA STATE COLLEGE OF AGRICULTURE AND MECHANIC ARTS
AGRICULTURAL ECONOMICS SUBSECTION
RURAL SOCIAL SCIENCE SECTION

CONTENTS

Page
Summary 779
Introduction 783
I. Description of the method. 783
Understatement 789
Impated incomes 793
Deductions 797
Earned income credit. 797
Exemptions 801
Results 803
II. Examination of the method. 809
Inflating the 1935-36 distribution 809
Averaging 812
Nonreporting 813
Loss of surtax associated with high normal tax rates 814
III. Historical test of the method 819
Normal tax revenue for 1934. 819
Normal tax revenue for 1935. 820
Normal tax revenue for 1936 820
Normal tax revenue for 1937. 821
Normal tax revenue for 1938 821
Normal tax revenue for 1939 822

SUMMARY

This bulletin presents and evaluates a particular method of estimating the yields and incidence of various possible types of income tax. The method is one of dividing the popalation into income brackets and estimating the number of people and average tax in each bracket. The basic data are the income distributions of families and single individuals in 1935-36 published in "Consumer Incomes in the United States" by the National Resources Committee and the - Internal Revenue Bureau's "Statistics of Income" for various years.

It is necessary to combine data from these two sources since "Statistics of Income" presents information for higher income brackets only while the National Resources Committee's definition of income does not exactly correspond to the income on which a person is taxed. To make estimates using National Resources Committee data it is necessary to adjust the data for (1) the increase in population since the data were compiled, (2) the increase in national income, (3) the tendency of some persons to understate their incomes in filing tax returns, (4) the inclusion of home-grown food and occupancy of owned houses in NRC estimates, and (5) deductions and exemptions to which the taxpapers are entitled.

It was hoped to produce estimates applicable to 1941, 1942, and possibly 1943. It was assumed that the income distribution for a given year could be approximated by multiplying the number of persons in each income bracket by the ratio of population in the given year to the population in 1935-36, and the average income in each bracket by the ratio of national income in the given year to 62.5 billion dollars, the national income in the fiscal year, 1935-36. This is equivalent to assuming that a Lorenz curve fitted to the 1935-36 income distribution would also describe the income distribution of the given jear. Separate sets of estimates were made for national incomes of 80 billion, 90 billion, 100 billion and 110 billion dollars since it was believed that national income will lie in that range in the next few years. The National Resourees Committee's separate distributions for families and single individuals were maintained.

When the income distributions had been cestimated for a particular lerel of national income, average incomes in each income bracket were reduced successively by allowances for
understatement, imputed incomes, and deductions. Amounts to allow for understatement and imputed incomes were obtained from National Resources Committee estimates. A fairly systematic relation between the percent of income allowed as deductions and the size of income was found in "Statistics of Income." A curve was fitted to this data and deductions were estimated from readings on the curve.

To estimate taxable income, one must also deduct exemptions and the earned income credit. The 1941 exemptions were $\$ 750$ for a single person and $\$ 1,500$ for a married couple plus $\$ 400$ for each additional dependent. An average number of dependents for families in each income bracket was obtained from the National Resources Committee estimates of average size of family in each income bracket. To facilitate making estimates for various exemption levels, and either with or without earned income credit, the exemptions and the earned income credit were aggregated before being tabulated in Family and Individnal Tables 6-9. From these tables, tax revenue under various exemptions can be readily calculated. Revenue estimates for 7 levels of exemptions and each of the 4 levels of national income are given in table 10, p. 806. Corresponding estimates of tax base are shown graphically in fig. 2, p. 808. Useful information on the incidence of taxes with various exemptions and at various rates can readily be obtained from these calculations. Some are shown in table 11, p. 807.

To make the final estimates possible, several simplifieations and approximations were used. The author sought some clue as to the magnitude of error that might have been caused by each. One of the most dangerous assumptions and one of the most difficult to evaluate was the assumption that the concentration of income did not change appreciably. In an effort to evaluate the effect of changes in income distribution, the anthor made similar estimates for a distribution considerably more concentrated than the estimated 1941 distribution and another set of estimates for a distribution considerably less concentrated than the estimated 1941 distribution. Substitution of the more concentrated distribution raises the revenue estimate under 1940 exemptions by about 14 percent, it raises the estimate under one-half 1940 exemptions by about 10 percent and has a negligible effect on the estimate under no exemptions. Substitution of the less concentrated distribation lowers the estimate under 1910 exemptions by about 12 percent, it lowers the estimate under one-half 1940 exemptions by about 6 percent, and has a negligible effect on the estimate under no exemptions. This shows that a substantial error in estimating income distribution leads to a substantial error in revenue
estimates except when the exemptions considered are very low. Since data on year to year changes in distribution are not available, no method could be free of error on this ground.

Assigning everyone in a particular income bracket average amounts of income, understatement, deductions, etc., causes serious error in brackets near the division between taxable and nontaxable brackets. This error would be present in all brackets if surtax rather than normal tax revenue were being estimated. In the present normal tax estimates, tax base appears to be understated by something in the neighborhood of 8 percent because of this type of error.

In making these estimates no adjustment was made to correspond to the National Resources Committee correction for nonreporting. It was believed that future tax adminstration and lowered exemptions would largely eliminate nonreporting and that the combined nonreporting and understatement corrections suggested in "Consumer Incomes" are probably too large. However, if they are correct and are going to continue to be about the same magnitude, the nonreporting correction should have been made. To have included the nonreporting correction would have reduced revenue estimates under 1940 exemptions by about 9 percent, under 1941 exemptions by about 10 percent, estimates under one-half 1940 exemptions would be reduced by about 13 percent and estimates under no exemptions by about 17 percent.

If the normal tax rate for which estimates are being made is above 23 percent, allowance must be made for the fact that some adjustment in surtax rates would necessarily be made to keep some individuals from being taxed at more than 100 percent on part of their income. It is quite possible that as the normal rose, surtax adjustments would be made before the 100 percent total rate (combined normal rate and surtax rate) was reached. The loss of surtax revenue for various normal rates has been estimated under the assumption that the present surtax rates are to be maintained until the combined rate reaches 90 percent and are given in table 14, p. 814. A similar set of estimates under the assumption that present surtax rates are to be maintained until the combined rate reaches 100 percent is given in table 16, p. 818. The method used in making these estimates is of some interest since it could be used to estimate revenue raised by various surtax schedules. It is outlined on pages 815 to 818.

The method was put to further test by using it to estimate normal tax revenue in the years 1934 to 1939 and eom-
paring the estimate to actual normal tax revenue. Comparisons for 1938 and 1939 were of little value since the alternative tax had been introduced. For 1934 throngh 1937, the comparison is summarized below. This summary is taken from the historical tests on pages 819 to 823.

ESTIMATED AND ACTUAL NORMAL TAX TLELDS.
(Figuree in Millions of Dollars)

Tear	Estimated yield	Actual yield	Difference al $\%$ of setun
1984	138	120	$+8$
7193.4.	100	158	$+5$
1906	810	330	-6
	319	335	-6

Source for Aetral Yield: Statistics of Income, United States Burean of Internal Revenuan Wanhington.

Estimation of Income Tax Revenue and Incidence*

By Clifroad G. Hudeeti

With government defense expenditures running into 11 figures, with prices showing a steady rise and with Congress having recently passed the largest revenue bill in history, it is to everyone's interest to know how much revenue various prospective taxes will produce, how the tax payments will be apportioned among the taxpayers and how these payments will affect prices, production and the effectiveness of our war effort.

The authors of Paying for Defense (The Blakiston Company, Philadelphia, 1941), discussed these questions for many different types of taxes and, in addition, set forth the principles on which the government should determine how much revenue to raise by taxation as opposed to horrowing. Two types of general sales tax and a broad personal income tax were subjected to the closest scrutiny since the investigation showed that they were the only available taxes which could raise the necessary amount of revenue. The investigation of sales and income taxes involved making estimates of the probable yield and incidence of these tayes with only a brief account of the methods used in tnaking the estimates. This bulletin is intended to describe, critically examine and historically test the method used in making income tax calculations.

I. DESCRIPTION OF THE METHOD

The estimates of tax yield and incidence are based on the tables of income distribution given in Consumer Incomes in the United States (National Resources Committee, JVashington, 1938). Separate distributions for families and single individuals were used since they are allowed different exemptions from personal income tax and since they received somewhat different treatment in the Consumer Incomes and Consumer Expendi

[^0]
family table i. number of familieg in each lncome clags and average income at various levels of

 NATIONAL INCOME.(Money Plguren in Thouesnde of Dollere.)

$\begin{gathered} \text { Olase } \\ \text { No. } \end{gathered}$	Inoombelaus .	No. of famlite 1040-86	$\begin{gathered} \text { Av. } \\ \substack{\text { Income } \\ \text { 1285-5S }} \end{gathered}$	Estimated Do. of tamilieg 1941	Estimated av. income 80 billion Dollars	Estimated © Income 90 billion Dollar:	$\begin{gathered} \text { Patimated } \\ \text { \& } \\ \text { Income } \\ 100 \text { blifon } \\ \text { Dollart } \end{gathered}$	$\begin{gathered} \text { Estimsted } \\ \text { av. } \\ \text { fincome } \\ \text { Ilo blilion } \\ \text { Dollari } \end{gathered}$	$\begin{gathered} \text { Eatimated } \\ \text { no. of } \\ \text { persong pez } \\ \text { family } \end{gathered}$
					(1.2356)	(1.3901)	(2.5445)	(1.0900)	
1.	Bolow 0.25.	1,182,890	0.117	1,209,800	0.145	0.163	0.181	0.109	8.25
8.	0.2500 .500	8,015,394	0.887	8,121,400	0.478	0.538	0.598	0.658	8.88
8.	0.600-0.750	3,789,215	0.828	3,832,700	0.778	0.873	0.970	1.087	8.88
4.		4,877,048	0.874	4, 487,400	1.080	1.275	1.350 1.730		3.80 8.80
${ }^{6}$	${ }^{1.00-1.285}$	8, 888.444	1.120	$4,018,900$ $2,066,200$	- 1.884	1.5897	$\underline{2.10 \%}$	1.818	8.80
${ }_{7}$	1.26-1.50	2,885,472	1.304	$2,2062,200$ $2,425,700$	${ }^{1.605}$	2.241	2.400	2.799	8.88
${ }^{8}$	1.75-8.00	1,897,037	1.829	1,863,700	2.200	8.542	2.825	8.108	8.85
8.	9.00-8.85.	1,420,889	8.11s	1.470,800	2.611	2.8397	3. 364	${ }_{4}^{8.5038}$	8.89 8.88
10.	9.86-2.50	1,049,977	2.368	1,080,700	${ }_{3}^{2.928}$	8. ${ }_{8}$	3.681 4.193	4.012	+1.00
11.	8.50-9.00.	$1,814,199$ 749,550	${ }_{8}^{2.715}$	$\begin{array}{r}1,360,400 \\ 769 \\ \hline\end{array}$	3.3355	8.774 4.461	4.958	5.452	8.80
13,	$8.60-1.00$	438,428	8.708	4:8,800	4.588	5.15	5.727	6.300	4.02
14.	4.00-4.50	249,448	4.194	248,700	5.182	5.880	6.478	7.188	4.18
15.	4.60-6.00.	158,647	4.713	158,000	5.824	6.551	7.278	8.007	4.08
16.	6.00-1.60.	322,950	5.884	334,300	7.270	8.179	9.006	0.097	8.80
17.	7.6-10.0	187,060	8.584	198,600	10.607	11.932	13.258	14.584	4.02
18.	10.-16.	181,821	11,853	136,500	14.028	15.781	17.535	19.288	4.08
19.	16.-30.	58,487	17.881	${ }^{60,540}$	21.415	24,001	96.768	29.445 8786	4.02
80.	90,-2	34,809	22. 282	35,410	${ }^{27.537}$	30.873 39.237	34.415 43.597	37.868 47.957	4.02
${ }^{21} 2$.	25. ${ }^{2}$	$\frac{89,538}{15,561}$	28.227 38.012	23,010	3.878 44.497	${ }_{50.059}^{39.237}$	${ }_{56}^{43.892}$	${ }^{47.183}$	4.02
23.	40.-50.	6,0083	47.858	6,835	58.887	66.248	73.600	80.870	4.02
94.	50.-100.	10,672	71.423	10,940	88.252	99.283	110.814	121.345	4.02
25.	100.-250.	8,336	132.061	3,453	163.178	188.573	208.071	${ }^{224.368}$	4.8
8c.	250. 500.	689	286.373	724	853.849	398.075	442.308	48.539	
87.	600,-1,000..	187	${ }_{1}^{5683.218}$	204	${ }^{695.897}$	788.909 2.848 .902			4.02
88.	1,000. and up.	75	1,002.000	78	2,350.161	2,648.902	2,037.681	8,232,449	¢. 2
		96,400,300	3,102.850	30,439,004	8,008.720	4,397.268	4,885.873	5,374.461	

tures ${ }^{1}$ studies. Column 1 of Family Table 1 shows the brackets into which American families were divided in the National Resources Committee study. It is simply transcribed from table 3, page 18 of Consumer Incomes in the United States. Column 2 is also taken from this table. It shows the number of families in each income bracket on the basis of their incomes during the fiscal year, 1935-36. Column 3 shows the average incomes of families in each bracket.

The estimated number of families in each bracket in 1941 shown in column 4, was obtained by multiplying the number of families in each bracket in $1935-36$ by the ratio of the population of the United States in 1941 to the population in 1935-36. The population in 1935-36 was taken to be an average of the midyear estimates of the Population of Continental United States for 1935 and 1936 published by the Bureau of Census. The estimate of population for 1941 was obtained by adding the average annual increase in the 3 years, $1938-40$, to the Census Bureau's midyear estimate for 1940. The population of 193536 thus estimated was $127,975,000$ as compared with 132,473,000 for the 1941 estimate. This makes the population ratio 1.035147. Estimates of the average incomes of families in each bracket under various assumptions as to the level of national income are presented in columns 5, 6 and 7 of Family Table 1. They were obtained by multiplying average income in each bracket in $1935-36$ by the ratio of assumed per capita income in 1941 to per capita income in 1935-36. These ratios are shown at the top of columns 5 to 7. In computing them, per capita income in 1935-36 was obtained by dividing the 62,546 million-dollar total income payments, shown by the monthly series of the U. S. Department of Commerce, by 127,975,000, the $1935-36$ population. The assumed per capita incomes for 1941 were obtained by dividing each assumed level of income by the estimated 1941 population.

This procedure is equivalent to assuming that the increase in population and the increase in income between 1935-36 and 1941 were distributed among the various income brackets in proportion to the numbers of people and amount of ineome each bracket contained in 1935 .36. This would mean that the same Lorenz curve could be used to deseribe the pattern of income distribution in 1935-36 and in 1941. While no one would contend that this is the exact truth, the writer feels that it is the most reasonable assumption to make in the absence of detailed information for 1941 and that it is not seriousls in error. Estimates of the average number of persons per family in each income bracket were calculated from the informa-

[^1]INDIVIDUAL TABLE 1. NOMBER AND AVERAGE INCOMEG OF INDIVIDUALG IN EACH INCOME CLABS AT VARIOES LEVELS OR NATIONAL LNCOME.

tion given in table 4, page 21, and table 8B, page 97, of Comsumer Incomes in the United States. In an exactly parallel manner, Individual Table 1 was built up from the basic dis tribution of single individuals given in table 15, page 30, of Consumer Incomes.

When the average incomes are inflated as described above, the limits of each class are also inflated. Income class 1 includes families and individuals whose incomes are below $\$ 250$ when national income is at the 1935-36 level, at the 80 billion dollarlevel class 1 includes those with incomes below $\$ 309$, at the 90 billion dollar-level the limit is $\$ 348$ and with a 100 billion dollar-national income the upper limit of class 1 becomes $\$ 386$. Similarly, the limits of class 2 vary from $\$ 250$ and $\$ 500$ with national income at the $1935-36$ level to $\$ 425$ and $\$ 849$ with national income at the 110 billion dollar-level. It is possible, of course, to reallocate the families and individuals among classes with the original limits each time national income is assumed to vary, but such a reallocation would involve extensive calculations and would add little to the accuracy of subsequent computations. People with incomes between $\$ 27,800$ and $\$ 34,750$, for example, are about as homogeneous a group as people with incomes between $\$ 20,000$ and $\$ 25,000$.

Incomes thus derived from National Resources Committee data differ from taxable incomes for the following reasons:

1. The Committee's definition ${ }^{2}$ of income in their study excludes capital gains and losses.
2. Some persons successfully understate their incomes in their tax reports or fail to file reports.
3. The Committee's estimates include certain non-cash items of income and some nontaxable cash income.
4. Taxpayers are allowed to claim certain deductions, exemptions and an earned income credit.
Since capital gains and losses fluctuate sharply from year to year, they were left out of the basic calculations. Capital gains are virtually certain to exceed capital losses in income tax statistics because deductible capital losses for any person were limited to $\$ 2,000$ more than his reported capital gains prior to 1938, and at present short-term capital losses are limited to the amount of reported short-term capital gains. Omission of capital gains and losses gives the estimates of tax revenue a small and variable downward bias. Some idea of the size of this bias may be obtained by examining the historical series, pp. 819-822.
[^2]FAMILY TABLE 2. PER-FAMILT TAX BASE ON AN 60 BILLTON-DOLLAR INCOME.

*In the sense in which the term is used by the Bureau of Internal Reveaus:

UNDERSTATEMENT

The Consumer Incomes study used income tax statistics to adjust sample data for higher income levels. The successive adjustments made are described on pages 80-87 of Consumer Incomes in the United States. Theoretically, since that study obtained a distribution of actual incomes by successive adjustment of income tax data, one could estimate income tax liability by reversing those adjustments. For the most part, this is what has been done in the present study. To allow for understatement, average incomes of families and individuals in classes 16 through 19 were reduced by 13.04 percent; average incomes in class 20 , by 9.09 perrent; and those of classes 21 through 23, by 4.76 percent. This exactly reverses the Con sumer Incomes adjustment for understatement. However, this concerned only income classes above $\$ 5,000$ and since they stated, as seems reasonable, that understatement is proportionately greater at the lower income levels, a correction of 16.67

INDIVIDDAL TABLE 2. TAX BASE PER INDIVIDCAL ON AN 00 BILLION. DOLLAR income.

$\begin{aligned} & \text { Tlest } \\ & \text { No. } \end{aligned}$	Av. Incoms Dolline	Onder-statoment Dollars	Av. ${ }^{4} \mathrm{~F}$ ported income* Dollaг:	Deduetions Dollana	$\underset{\substack{\text { Avet } \\ \text { meomme* } \\ \text { Dollimers }}}{ }$	AF. earned lnoome crodit Dollare
1.	204	4	170	11	100	15
2.	472	18	394	50	364	30
8.	78	128	648	65	5	5
	1.056	179	896	81	815	8
6	1,383	290	1,158	108	1,045	104
6.	1,080	881	1,409	1.87	1,278	- 127
	1,807	338	1.605	167	1,498	150
	\%,808	384	1,924	108	1,728	178
0	8,617	436	8,181	297	1,954	105
10	2.985	487	8. 438	28	2, 182	218
11	3,541	558	2,785	298	2,467	249
12	\$,0065	684	8,321	965	2,965	20\%
18	4,005	Fris	3,838	43	8,400	\%00
	5,286	8*1	4,406	508	3,003	*5
15.	5.980	088	4,042	573	4, 3 dea	$3{ }^{6}$
16.	7.428	98	8.454	774	5,0\%	
17	10.409	1,36is	0,104	1.147	7,957	548
	14,888	1,094	12,694	1,6\%	11,065	H*
	21,071	8,748	18, 5	2,482	15.882	91
1	87,910	2,587	95,873	3.578	21,795	
2	84, 188	1,009	\%2, 504	4,rz	27,842	1.400
2	41,676	1,2en	39,002	5,874	55,818	1,400
28	58, 794	8.56]	51,935	7,787	23,446	1,000
4	W,768	-	76, 773	12, 180	64,044	1,400
	150.537	\bullet	150, 5057	85,44t	125,113	1,400
R	-30,	-	$30,200 \%$ $0 \cdot 5,513$		409,608	1,460 1,400
	1.502,000	-	1,502,005	130,400	1,296,50\%	1,000
	7,000,800	22,150	8,008,719	67n, 723	2,454.809	12,814

[^3]FAMILY TABLE 8. PERFAMILY TAX BABE ON 190 BILLION-DOLLAR INOOME.

* In the sense in which the term is used by the Buresi of Internal Revenue.
percent was made in classes 1 to 15. Consumer Incomes made an additional allowance for nonreporting (i. e., failure to file a return); but since the present study was designed to estimate revenue principally for a broadened tax base under which nonreporting should be substantially eliminated, ${ }^{2}$ this nonreporting adjustment was not made. Omitting this adjastment makez but a small difference in the final estimates as is shown in Section II, pages 813 and 814. The understatement correction for each income bracket is shown in column 2 of Family and Individual Tables 2, 3, 4 and 5.

INDIVIDUAI TABLE 8. TAX BASE EER INDIVIDUAL ON A 0 BILLION. DOLLAR INCOME.

- In the cence in which the term in woed by tha Burean of Interan Revenme

[^4]BAMILY TABLE 4. PER-FAMILY TAX BASE ON AN 100 BILLION-DOLLAR INOOME.

- In the sense in which the term is used by the Burean of Intamel Ravanm

IMPUTED INCOMES

The National Resources Committee estimates of the average value of imputed food and imputed housing for American families (they considered such items negligible for single individuals) are given in table 6A, page 78, and table 8A, page 79, of Consumer Expenditures in the United States. These include the value of home-produced food and the rental value of owned homes. Since these averages are estimated for 1935-36, some presumption must be made as to what happens to imputed food and housing as average incomes rise. It was taken as reasonable that home-produced food should remain at a constant absolute level, while rental value of owned homes should remain a constant proportion of income as incomes rose. The figures for imputed value of home-produced food do not seem to vary significantly with income level so a flat $\$ 72$ was deducted from

INDIVIDUAL TABLE 4. TAX BAGE PER INDIVIDUAL ON AN 100 BILLIOMDOLLAR INCOME.

$\begin{aligned} & \text { Clapt } \\ & \text { No. } \end{aligned}$	Av. Income Dollara	Under-etatement	Av. "TReported Income" Dollars	Dedico tion: Dollars	Av. neot mollars	A earmed incoms credit Dollant
	855	48	213	14	199	80
	500	98	492	40	458	5
	964	161	908	7	738	7
	1,344	224	1,180	104	1,006	10.
	1,728	88	1,440	140	1,300	130
	2,118	858	1,761	176	1,585	250
	8,498	418	8,000	214	1,866	187
	8,885	481	8.404	258	2,158	215
	8,271	545	2,7\%	292	2,434	$2{ }^{2}$
	8,656	609	2.047	888	8.715	278
	4.176	00	3.420	380	3,094	506
	E,981	830	t. 151	473	8,678	83
	5,456	959	4,797	556	4,411	\%000000
	6,007	1.101	${ }^{5,506}$	650	9,856	00
	7,418	1,235	6,177	741	5,436	ctis
	0.278	1,230	8,068	1,000	7,008	608
	13,087	1,707	11, 830	1,468	9,912	$0 \times$
	18,54	2,417	16,117	8,100	83,907	818
19	80,889	8.486	23,003	3,906	19,607	1.125
90	34,658	8,178	31,7n6	4,590	87.117	1,400
	62,700	2,005	40,305	6.005	3,640	
82	50,006	8,481	49.614	7,641	08,073	1,000
	67,9048	3,802	64,040	-. 290	51,450	1,400
	95,906	-	4,965	15,546	80,420	1,400
$\begin{aligned} & 2 x \\ & 2 x \end{aligned}$	189,196	-	${ }^{2888,185}$	28, 870	156, Res	1,000
81.		-	457,1883	85,15T	878,67	1.400
	1,657, 095	-	1,877,40606	167,800 300,510	(6, 688,795	1.400 1.000
	3,703,561	27,607	3,700,804		1,068,90e	38,904

[^5]FAMILE. TABLE E. PER-FAMILE TAX BA8E ON AN 110 BILLION-DOLLAR IKOOMR.

$\begin{gathered} \text { Clame } \\ \text { No. } \end{gathered}$	Av. tneome Dollara	$\begin{gathered} \text { Av. } \\ \text { Maderer } \\ \text { otatement } \\ \text { Dollsre } \end{gathered}$	Apt food Dollari	$\begin{gathered} \text { Av, } \\ \text { mpupad } \\ \text { housing } \\ \text { Dollara } \end{gathered}$	$\begin{aligned} & \text { Av. } \\ & \text { "reported } \\ & \text { income" } \\ & \text { Dollare } \end{aligned}$	Deductions Dollars	$\begin{gathered} \text { Av. } \\ \text { net Income } \\ \text { Dollars } \end{gathered}$	A․ esraed income credit Dollary
	109	88	42	18	78			
9.	86	110	72	42			898	40
8.	1,007	178	72	${ }^{58}$	759		004	70
	1,485	248	72	78	1,000	100	0	98
	1,008	88	72	89	1.425	140	1,286	128
	8,818	${ }_{8}^{888}$	72	111	1,749	171	1,678	188
8	8,108	618	72	-146	2,872	251	2,121	212
0	8,500	598	78	. 109	2,751	294	2,459	248
10	4,088	671	72	177	3,109	838	2,765	276
11	4,812	789	72	208	8,568	403	3,165	808
12	6,458	009	72	219	4,258	481	8,777	899
18	6,300	1,050	72	246	4,932	672	4,880	888
	7,128	1,139	72	${ }_{812}^{278}$	5,588	${ }_{7}^{648}$	4,940	${ }_{887}^{887}$
	e,007 9,007	1,395	79	812 800	0,288 8,231	1,756	\%, ${ }^{\mathbf{7}, 293}$	510
17.	14,584	1,002	72	525	12,085	1,589	10,502	675
18.	19,288	2,515	72	656	16,045	2,106	18,870	844
19	29,445	8,840	72	${ }_{888}^{888}$	24,050	8,500	21,150	1,208
80.	37,866	8,441	72	1,136	88,207	4,815	28,982	1,400
91	47,067	2,289	72	1,439	44,189	0.536	37,077	1,400
23.	61,183 80,770	2,912	72	1,839		8,788	${ }_{62,761}$	1,400 1,400
8.	121,345		72	B, 450	117,683	18,527	98,100	1,400
25.	224,365	0	72	6,731	217;565	87,856	179,709	1,400
28	488,539		72	14,006	471,871	88,72	888,150	1,400
${ }^{27}$	-906,888		72	28,707	928,114	183,767	744,847 $2,451,127$	1,400 1,400
	8,231,449	0	72	96,943	8,134,434	683,307	2,451,127	1,400
	5,374,461	30,818	2,016	162,182	5,179,445	1,057,910	4,121,529	18,068

* In the sense in which the term is used by the Burabin of Internal Revenue.
the average incomes of families in each bracket. The allowance for imputed housing was 9.0 percent in income classes 1 and 2, 6.4 percent in class 3, 5.3 percent in class 4, etc., as listed in table 6A of Consumer Expenditures. The actual amounts subtracted are given in column 4 of Family Table 2, 3, 4 and 5.

No amount was subtracted to allow for the portion of income composed of tax exempt interest. The recent tendency has been to eliminate such exemptions, and such elimination is advocated by the authors of Paying for Defense. Past effects of such exemptions on tax revenue are shown in the historical test of the method on pages 819 to 822 .

LNDIVIDUAL TABLZ 6 . TAX BASE PER INDIYIDUAL ON AN 110 BILIION. DOLLAB INCOME.

$\begin{aligned} & \text { Clasm } \\ & \text { No. } \end{aligned}$	Av. incoms Dollans	Under: ment Dollars	Av. ${ }^{4} 180-$ ported, income Dollars Dollara	Deducthone Dollars	$\underset{\substack{\text { AF. } \\ \text { neome } \\ \text { Dollar }}}{\substack{\text { Din }}}$	Av. carmed theomin ervalit Dollarm
	280	47	238	19	214	1
	49	108	641	40	496	-
	1,060	177	883	76	807	81
	1.478	245	1,234	116	1,110	112
	1,000	817	1,684	185	1.420	148
	8,834	887	1,045	388	1,730	- 174
	8,748	4588	8,288	84	\$.045	
	\%.E08	- 600	2,008	and	8.67	207
40	cos	670	8,852	365	2,097	290
11.	4.594	705	3,828	48	3,9\%5	湤
12	\$,479	919	4,600	580	1,003	380
18	6.388	1,068	6,276	618	4,064	\%
14	7.988	1,218	6,068	727	5,829	416
	8.153	1,859	6,794	815	5,075	40
16	10.800	1.8801	8,875	1,100	7,775	589
17	14, 8\%8	1,877	18,519	1,040	10,879	904
	80,387	2,068	17,79	8,3088	15,875	917
	88,973	3,778	25,386	8,578	21,617	1,231
81	4\%,571	8,488	3, 380	5.030	29,830	1,400
2	57.90	8,7x8	54.765	8,206	1,80	1,400
23	78.965	8.587	70,445	30, 80	E0,458	1.40
	206, 563		306,565	17,10n	88,403	1,400
盛	500.014	-	207,044	36,6es	120,004	1,400
8	604,615	-	508.616	0,460	408,204	1,400
	00,238		29.288	288,575	755, 7 ,	1,400
	208634		2,005, m4	431,454	7.6n5.008	1,400
	6,167,48	20.434	0,158, 8 85	00.815	3, 501,155	$19+48$

[^6]
fig. 1. Relation between deductions and income.

DEDUCTIONS

Subtraction of these items gives "Reported Income" which is shown in column 5 of Family Tables 2 to 5, and column 3 of Individual Tables 2 to 5. "Reported Income" differs from taxable income by deductions, exemptions, earned income credit and capital gains and losses. In the present study, systematic allowances have been made for deductions, exemptions and earned income credit. Capital gains and losses were omitted from the basic estimates as explained on page 787.

The correct allowances to make for deductions were approximated from Statistics of Income (United States Internal Revenue Office, Washington) for various years. From tablest showing income and deductions by sources for each of ten income brackets for the years 1936, 1937, 1938 and 1939, deductions net of capital loss and total income net of capital gain were computed for each bracket for each year. Total income as used in Statistics of Income, less capital gains is roughly the equivalent of "Reported Income" which appears in Family and Individual Tables 2 to 5 . Deductions net of capital loss for each bracket were expressed as a percent of income net of capital gains and plotted against average income net of capital gain. It was found that when the income was plotted on a logarithmic scale, the plotted points approximated a straight line. The points and the straight line which was fitted to them are shown in fig. 1. This line, then, gives deductions as a percent of reported income. The deductions shown in column 6 of Family Tables 2 to 5 and column 4 of Individual Tables 2 to 5 were calculated by substituting the logarithm of each reported income for $\log X$ in the regression equation and taking the resulting percentage (y) times the reported income.

EARNED INOOME CREDIT

"Reported Income" less deductions gives "net ineome" in the sense in which the term is used in Statistics of Income. Average net income for each bracket for each income level is shown in column 7 of Family Tables 2 to 5, and column 5 of Individual Tables 2 to 5 . This is the amount on which each person's tax would be based if no exemptions and no earned income credit were allowed. The present law allows each person to deduct 10 percent of his earned income (income for wages,

[^7]PAMILY TABLE 6. AGGREGATE TAX BASE FOR FAMILIES WITH EARNED INCOME CREDIT AND EXENPTIONS WHICH APPLIED TO 1941 INCOMES ON AN 80 BILLION-DOLLAR INCOME.
(Money Figures in Milkons of Dollars.)

- Classea grouped are below $\$ 500,000$.
salaries, professional fees or other personal compensation) from his net, income before it is taxed, with the provision that the first $\$ 3,000$ of any income is considered to be earned and no one may claim an earned income credit on more than $\$ 14,000$. This means that everyone whose net income is below $\$ 3,000$ gets a credit of 10 percent of net income; those with net incomes above $\$ 3,000$ and carned incomes below $\$ 3,000$ get a credit of $\$ 300$; those with earned ineomes between $\$ 3,000$ and $\$ 14,000$ get a credit of 10 percent of earned income; and those with earned incomes above $\$ 14,000$ get a credit of $\$ 1,400$.

Thns, the earned income eredits allowed have only a very crude relationship to actual earned incomes and a number have
suggested abolishing the earned income credit. Since new defense taxes are likely to be levied on net income without an earned income credit, it seemed desirable to provide a means of making estimates either with or without the earned income credit. Accordingly, average earned income credit was estimated for each income bracket but was not subtracted from net income.

An examination of earned income credits allowed in several years (Basic Table 2, Statistics of Income for each year) revealed that about half of the income reported in excess of $\$ 3,000$ was counted as earned and that this proportion did not vary much with the income level considered. Average earned

INDIVIDUAL TABLE 8, AGGREGATE TAX BASE FOR IMDIVIDUALA WITH EARNED INCOME CREDIT AND EXEMPTIONS WHIOF APPLTED TO 1941 INCOMES ON AN BO BILLION-DOLLAR INCOME.
(Money Figuras in Millionin of Dollare.)

$\begin{aligned} & \text { Clare } \\ & \text { No. } \end{aligned}$	Tax bues with no oxemptions or earned fneome eredit	Pereomal exemption	$\begin{gathered} \text { Earned } \\ \text { Bncome enedit } \end{gathered}$	Tax bate with 191 exemptiona and anrmed tneome erodit
	- 158	745	10	(603)
	608	1,2021	50	(688)
	1,201	1,583	120	(451)
	1,349	1.841	134	(96)
	1,199	081	119	219
	1,156	Ez	115	350
7.	848	425	65	838
8.	714	800	71	- 384
0	574	2\%	6	- 207
10.	475	163	4	256
11.	415	188	4	345
12	358	${ }^{84}$	8	815
13.	2985	50	21	154
14	146	28	18	105
15.	115	20	10	85
16	837	4	30	
	285	${ }^{29}$	${ }^{10}$	- 190
18	248	16		, 211
	185	5	\bigcirc	123 115
21.	97	3	5	8
2 E	8	+	8	5
2	${ }^{18}$	1	8	7
${ }^{24}$	105	1	4	15
3	104		1	120
	\%	10	$1{ }^{\circ}$	9.
	14			14
	21.20	7.811	1,028	2,85t
				4.154

[^8]income credits were therefore approximated in the following manner:
A. For all average net incomes below $\$ 3,000$, a credit of 10 percent was taken.
B. For average net incomes above $\$ 25,000$, a credit of $\$ 1,403$ was taken.
C. For average net incomes between $\$ 3,000$ and $\$ 25,000,5$ percent of the excess of net income over $\$ 3,000$ was added to $\$ 300$.

Average earned income credits computed in this way are shown in column 8 of Family Tables 2 to 5 , and column 6 of Individual Tables 2 to 5.

JAMILY TABLE 7. AGGREGATE TAE BASE FOR FAMCLMES WITH EARNED INCOME CREDIT AND EXEMPTIONS WEICH AFPLIED TO 1941 INCOMES ON A 90 BILLION-DOLLAR INCOME.
(Money Figurea in Millions of Dollara.)

[^9]INDIVIDUAL TABLE 7. AGGAEGATE TAX BAEE FOR INDIVIDUALS WITH EARNED INOOME CREDIT AND EXEMPTIONS WHICR APRLIED TO 1941 INCOMES OX A 90 BLLLLON-DOLLAR INCOME.
(Money Figurea in Milions of Dollern.)

* Claseen crouped are all mader $\$ 500,000$.

EXEMPTIONS

In addition to his earned income credit each taxpayer is allowed a personal exemption. On 1940 incomes, these exemptions were $\$ 800$ for a single person, $\$ 2,000$ for a married person and $\$ 400$ for each dependent. On 1939 incomes they were, respectively, $\$ 1,000, \$ 2,500$ and $\$ 500$. In 1941, Congress lowered them to $\$ 750, \$ 1,500$ and $\$ 400$. There is come sentiment in favor of lowering them still further on 1942 incomes and various combinations of exemptions have been suggested. Aecordingly, it was desired to be able to make estimates for any prospective combination of exemptions. This was done by first aggregating the net income of families and individuals in each income bracket by multiplying the average net income in each bracket by the estimated number of families or individuals in that bracket (column 4, Family and Individual Tables 1). These
aggregates are tabulated in column 1 of Family and Individual Tables 6, 7, 8 and 9. The 1941 head of family exemptions (column 2, Family Tables 6 to 9) were calculated by multiplying the estimated number of families in each bracket by the 1941 head of family exemption, $\$ 1,500$. Aggregate 1941 credits for dependents (column 3, Family Tables 6 to 9) were found by multiplying the average number of persons per family in each bracket (column 10, Family Table 1) less two by $\$ 400$, and the product by the estimated number of families. Aggregate exemptions for individuals in each bracket (column 2, Individual Tables 6 to 9) were obtained by multiplying the estimated numbers of individuals by $\$ 750$.

FAMILY TABLE 8. AGGREGATE TAX BASE FOR FAMILIES WITH EARNED INCOME CREDIT AND EXEMPTIONS WHIOH APPGIED TO 1941 INCOMES ON AN 100 BILLION-DOLLAR INCOME.
(Money Figures in Millions of Dollars.)

[^10]INDIVIDUAL TABLE B. AGGREGATE TAT BAEE FOR LNDIVIDUAKS WITE EARNED LNOOME CREDIE AND TEXMPLONG WHICE APPLEED TO 1941 LMCOMES ON AN 100 BLLLION-DOLLAR INCOME.
(Money Figures in Millions of Dollarm.)

$\begin{gathered} \text { Clume } \\ \text { No. } \end{gathered}$	Ta: bame whn no exemptiont or earned Income credit	Personal exemption	Earned income extilit	Tax baed with 1941 esemption: and carned fncomane eredit
	${ }_{7} 788$	1.846	20	- (507)
4-				
8 .	736 1.445	1,588	149	(186)
d...	$\begin{aligned} & 1,682 \\ & 1,402 \end{aligned}$	1,241	16%	278
6		681	$\cdots 140$	- 418
6	1,4401,056		144	
7.		424	-108	\therefore 625
6	1,036	80	60	402
9.	715	220	71	421
10	801		51	8
11.	616	120		208
12.-	(18	84	81	
13.	200	50	24	906
14.	181		15	151
16.	148	20	11	- 112
16.	419	41	80	945
17.	208	22	19	$2{ }^{2}$
18.	801	16	18	47
19.	192	暑	11.	173
0		5	6	- 115
21.	158 180	3		
22.	104	\%	5	. 08.
23\%	67200	1	8	
24.			4	900
25.	130	10	. 4	158
80.	+84		1"	88
27.		1^{*}		- 30
2 k	18			18
	18,924	7,841	1.270	4.838
				4.213

BESULTS

Average earned income credits were converted to aggregates and tabulated (column 4, Family Tables 6 to 9, and column 3, Individual Tables 6 to 9). The tax base in each bracket conld then be computed by subtracting aggregate exemptions and carned income credit from aggregate net income. This was done and the results tabulated in column 5 of Family Tables 6 to 9, and column 4 of Individual Tables 6 to 9. Negative' numbers are enclosed in parentheses. To get the tax base for any of the assumed levels of income, one needs only add the positive numbers in the family and individual columns for that level of income. The totals immediately at the foot of these columns are algebraic sums of both positive and negative noms bers presented for convenience in checking. Below these totals appear the totals of only positive numbers.

FAMILY TABLE 9. AGGREGATE TAX BASE FOR FAMILIES WITH EARNED INCOME CBEDIT AND EXEMPTIONS WHICH APPLIED TO 1941 INCOMES ON AN 110 BILLION-DOLLAR INCOME.
(Money Figures in Milions of Dollars.)

Clasa No.	Tax base with no exemptions or earmed income eredit	1941 exemptions		Earned Income credit	Trax Dase with 1941 exemptiome and earned income akedit
		Head of family	Credit 1or dependenta		
1	80	1,800	102	8	(2,331)
2	1.842	4,082	2,035	125	$(5,000)$
3.	2,78\%	5,840	8,870	275	$(6,324)$
	4,305	6,641	3,294	438	(6,008$)$
	6,164	6,023	2.894	514	($\left.4,22^{2} 2\right)$
4.	4,681	4,449	2,219	169	$(2,456)$
	4,529	8.689	1,80\%	454	$(1,369)$
8.	4, 165	2,946	1,453	416	(650)
9	3,617	2,206	1,112	362	(63)
10.	2,968	1,021	, 804	298	265
11.	4,306	2,041	1,068	419	758
12	2,907	1,155	613	281	878
11.	1,979	-681	367	167	764
14.	1,278	888	228	103	561
13.	874	237	130	67	440
16.	2,410	501	275	170	1,164
17.	2,033	290	139	131	1,473
18.	1,804	806	110	115	1,464
19	1,280	91	49	73	1,067
81	1,000	53	29	50	873
21	866	35	19	32	780
8	766 409	24	13	23	706
24	429	10	6	10	403
20	1,073	16	9	15	1,033
82	877	5	3	5	608
97.	159	1*	$1 *$	\% 1	274 152
28.	191		${ }^{1}$		191
	57,908	45,650	22,174	5,001	(14,919)
-					14,154

- Classes grouped axe below \$500,000.

Thus, our estimate of income tax base (under the assumptions of a 90 billion-dollar national income, 1941 exemptions and an earned income eredit) is 14,773 million dollars- 9,607 million dollars from Family Table 7, and 5,166 million dollars from Individual Table 7. This would mean tax revenue of $\$ 590,900,000$ under the present 4 percent rate. Estimates under other exemptions can also be obtained from this table. An estimate of revenue from a tax allowing, for example, exemptions of $\$ 100$ for a single individual, $\$ 1,000$ for a married person, $\$ 200$ for each dependent and no earned income credit can readily be obtained by determining which income classes are taxable, taking sabtotals of net income and exemptions for these classes and subtracting the proper fraction of the exemp-
tions from the net income. This, when done for both families and individuals, gives the tax base to which the rate is applied to estimate the tax yield.

In this particular example, the head of family exemption is two-thirds the 1941 exemption and the credit for dependents is one-half the 1941 credit. From Family Table 7 it can be seen that families in classes 7-28 would be taxable under these provisions. Subtotals of the net income, head of family exemptions, and credit for dependents columns are 32,283 million dollars, 16,144 million dollars, and $\$ 8,251$. By subtracting two-thirds of the second and one-half of the third from the first, a tax base for families of 17,394 million dollars is obtained. In similar fashion a tax base of $\$ 8,090$ for individuals is obtained from subtotals of classes 2-28 of Individual Table 7.

INDIVIDDAL TABLE 9. AGGREGATE TAX BASE FOR INDIVIDUALS WITE EARNED INOOME CREDIT AND EXEMPTIONS WHICH APRLIED TO 1941 INCOMES ON AN 110 BILLION-DOLLAE INCOME.
(Money Figures in Milliong of Dollarm.)

$\begin{aligned} & \text { Clage } \\ & \text { No. } \end{aligned}$	Tax base with no exemptions or exrned income eredit	Personal exemption	Earned ineomm eredt	Tan basm with 1041 exemptiona and earned thocmee eredit
	218	746	2	(564)
	805	1,220	81	(496) ,
a	1,648	1,638	106	(49)
	1,847	1,241	165	421
	1,040	801	164	615
6.	1,520	602	158	140
	1,15t	424	115	618
	975	810	97	570
	784	820	78	- 40
10.	650	168	65	428
11.	Etit	125	68	380
12.	453	84	8	50
13.	808	49	5	254
14.	190	28	46	155
16.	158	20	2	150
16.	461	-4	80	- 38
17	58	28	21.	
18.	331	16	50	245
19.	211	- 7	128	$1{ }^{1}$
0	178		8	101
${ }_{21}^{21}$	1188		5	124
${ }_{8}^{28}$	115	8	3	110
${ }^{24}$	307	1	*	mas
${ }^{1}$	200	*	4	230
83.	1es			141
$\begin{aligned} & 83 \\ & 23 \\ & 20 \end{aligned}$	-88			${ }_{34}^{84}$
88	${ }^{34}$	${ }^{10}$	${ }^{*}$	
	15, 855	8.007	1,383	6,183
			-	7.288

[^11]TABLE 10. YIELD OF 10 PEROENT NORMAL TAX AT YARIOUE INCOME LEVELE UNDER TARIOUS EXEMPTIONE, WITH AND WITHOUT EARNED INCOME CREDIT.
(Fugure ta Millions of Doldare.)

$\begin{aligned} & \text { Olase } \\ & \text { No. } \end{aligned}$	Exemptionat	80 bllion-dollar nationsl income		00 billion-dolar national income		100 bllifon-dollar gational fneome		110 Dillow-dollar rational income	
		With sarned ineome oredit	Without earzed income aredit	With earned lncome credit	Without sarnedill ln come aredt	With esrned income credit	Without emrned income eredit	$\begin{gathered} \text { With earned } \\ \text { meome } \\ \text { credit } \end{gathered}$	Without sarned income credit
1.	1,000, $8,600,400$	954	1,078	1,180	1,320	1,596	1,888	1,650	1,888
2.	900, 8,000, 400	1,085	1,239	1,329	1,525	1,602	1,830	1,605	2,170
8.	750, $2,600,400$	1,208	1,880	1,478	1,720	1,782	2,082	2,142	2,489
1.	500, 1,000, 200	1,748	2,048	2,156	2,525.	2,608	8,030	8,068	8,560
8.	400, 1,000, 200.	1,820	2,126	2,283	8,005	2,688	8,118	8.178	8,676
6.	$800,800,100$	2,855	8,275	8,406	8,900	8,000	4,535	4,602	E,204
7.	no oxemptions.	4,303	5,280	6,418	5,948	6,042	6,088	6,688	7,326

LBLE 11．INCIDENOB OF PRESENT INCOME TAX AND AN ADDITIONAK 10 PERCENT NORMAL TAT ON FAMILIES IN FARLOUS INCOME BRACKETS AT A 90 BILLION－DOLLAR INCOME LEVEL．

日B!	Av． income	Av．tax under Revenue Act of 1912	Income net of 1941 Federal Income tax	Av．毛酸 under ndil－ tional 10\％ normal tax	Income net of added 10\％tax
	163	0	183	-0	－158
	538	0	気8		588
	878	0	873		87
	1，215	0	1，215	0	1．205
	1，657	0	1，657	0	1，567
	1，896	0	1，896	9	1，096
	2.241	0	2，241		2．841
	2，542	0	2，542	0	2． 542
	8，987	0	2，937	6	2，067
	8.298	1	8.291	0	8.291
	8.774	18	8，756	昂	B，764
	4，461	75	4，880	75	6.311
	5，154	100	15,045	89	4.966
	5，830	149	5，681	128	6，553
	6，551	808	6，843	180	6.163
	8，170	387	7，792	818	7，479
	11，98\％	858	11，000	578	10，502
	15，781	1，458	14，828	883	18， 495
	24，091	8，874	20，817	1.897	19．420
	80，978	5，888	25，891	1，406	25，820
	39，237	9，810	99，807	2，710	27.187
I-	00,009	18，739	36， 826	8，543	22．788
3..	66，248	20，882	45,856	1.787	40，589
\hat{r}	29，988	59，751	69，598	7，004	61，858
	188， 678	64，828	68，750	14，867	84，383
5	\＄98，075	204，768	198，812	81.188	188，180
$\mathrm{P}=$	782，900	480，714	958，195	00，888	691，802
	2，648，802	$1,580,496$	1，107，400	201,456	900.950
	1，397，266	2，552，720	8，044，546	832，058	1，712，464

Chis gives a total tax base of $\$ 24,484$ for an income tax of this ind．Similar estimates for other income taxes have been made rom Family and Individual Tables 6 to 9 and the estimated evenues at a 10 percent rate have been listed in table 10.
The exemptions levels presented in table 10 are presented be－ sause of their historical or prospective use．The first set ap－ lied to incomes received from 1932 to 1939．The second set ipplied to 1940 incomes．The third set has been approved for 1941 incomes by Congress and the President．The fourth set was suggested by Miss Mabel Newcomer in Facing the Tax Problem（The Twentieth Century Fund，New York，1940）．The next set is exactly half the 1940 exemptions and was recom－ mended to the Senate Finance Committee by Edward S．O＇Neal， President of the American Farm Bureau Federation．The ex－ emptions in the sixth row are exactly one－fourth those allowed in 1940 and might have to be considered if defense spending
goes to hitherto unapproached sums and brings proportionally greater dangers of inflation. The last row gives estimates for a tax allowing no exemptions. Before authorities lower exemptigons to anything approaching those in row 6 , there will be considerable increases in rate. Since tax base for a particular year is not affected by the rate, estimates of revenue at various rates can be obtained by multiplying revenue at the 10 percent rate by the proper ratio. Estimates may also be

Fig. 2. Effect of exemptions and earned income credit on tax base.
taken from fig. 2 which shows the tax bases from which lines $2,3,5$ and 7 were computed. When tax base is plotted against national income, the line is slightly concave upwards; but is so nearly straight that interpolations for income levels between 80 billion and 110 billion dollars can safely be made from fig. 2.

II. EXAMINATION OF THE METHOD

In common with all other estimates, the foregoing figures are based on less than completely satisfactory data. Where data are completely satisfactory, estimates are not needed. To begin with, the result of the Consumer Incomes and Consumer Expenditures studies are taken as data and, therefore, the present study contains all the qualifications of those studies. The investigator's plea that these data represent the best available on the subject justifies using them but does not remove the qualifications.

Other than this, the two steps in the procedure, which imply the most sweeping generalizations and which might reasonably be questioned, are the inflation of population and income in each class by constant ratios and the assignment of an average income, average understatement, average deductions, etc., to every individual or family in a particular income class. Other steps involve many possible sources of error. To attempt to discover each would be an endless task. The attempt in this section is to discuss those in which the critical reader is likely to be most interested and to give him some idea of the magnitude of possible deviations involved. Where examples are used, approximations on only the 90 billion-dollar national income level are worked out, since it is very close to the actual $194!$ income.

inflating the 1935-36 DISTRIBUTION

One point of interest in connection with the way the numbers and incomes of each bracket were obtained is the effect of increased population. This is not as interesting from the standpoint of checking a possible error in the procedure as in determining to what extent the results calculated for 1941 are applicable to succeeding years. Population increased about $31 / 2$ percent from 1935-36 to 1941. It will probably be at least 5 years before another $31 / 2$ percent increase is realized, so if the computations for 1941 would have been substantially the same without the population correction, then the calculations based on the 1941 population may be used to estimate revenue for several succeeding years

To test the magnitude of the population effect, a calculation was made for the 90 billion-dollar income on the basis of 1935 -

36 numbers of families and individuals. This changed the percapita income ratio to 1.438941. Revenue under 1940 exemptions turned out 1,365 million dollars as compared with our previous figure of 1,328 million dollars. Revenues under halfand quarter-1940 exemptions became 2,293 million dollars and 3,465 million dollars, respectively, as compared with 2,232 million dollars and 3,405 million dollars. Revenue under the assumption of no exemptions and no earned income credit (the above figures are with earned income credit) is 5,947 million dollars under this method as compared with 5,418 million dollars obtained previously. The indication is that, while it was worth while to make the population correction as between 1935-36 and 1941, to use calculations for the proper income level (or interpolations from fig. 2) and 1941 population would not involve serious error in 1942 and 1943 when both population and national income will be closer to the 1941 figures than the 1941 figures were to the 1935-36 figures.

A step in the method which might involve serious error is the multiplication of the average incomes of each class by the

TABLE 12. AVERAGE INCOMES OF THE VARIOUS INCOME CLASSES UNDER THE ESTIMATED 1941 DISTRIBUTION, A LESS EQUAL DISTRIBUTION AND A MORE EQUAL DISTRLBUTION.

$\begin{aligned} & \text { Class } \\ & \text { No. } \end{aligned}$	Less equal distribution Dollars	Estimate of 1941 distribution Dollars	More equal distribution Dollars
1.	(116)	183	440
	311	638	765
	632	. 873	1,054
	1,080	1,215	1,350
	1,469	1,607	1,646
	2,240	2,241	2,236
	2,599	2,642	2,409
	3,037	2,937	2,837
10	3,440	3,292	3,144
	3,588	3,774	3,560
12	- 4,708	4,461	4,153
13.	5,556	5,154	4,753
	6,324	6,830	6,838
	7,143	0,561	5,260
	8,993	8,179	7,366
17	13,257	11,932	10,608
	17.630	16,781	13,833
19	27, 672	24,091	20.812
92	34, 801	30,973	27,057
21	44,280	39,237	34,190
28	56,576	50,039	43,544
2	74,969	66,248	57,6\%9.
	112,502	99,283	86,067
95.	208,271	183,573	158,883
96	451,982	308,075	344,284
23	3,000,621	2,643,902	2,284,279
	4,987,562	4,397,260	3,806,854

TABLE 18. EEVENUE FROM A PEBCENT NORMAL TAX ON AN ABSUMED 90 BILLION-DOLLAR MATIONAL INOOME FOR THREE DIBTRIBUTION ASBUMPTIONS AND FOUR EXEMPTION LEVELS.
(Figuren in Millions of Dollart.)

per-capita income ratio. This, as has already been pointed out, assumes income distributions of equal concentration ${ }^{6}$ in 1935-36 and 1941. This assumption was made because it was believed to yield the best estimate of distribution of income in 1941."

If the true distribution of income is less concentrated than the distribution used, revenue tends to be overstated; and to use a distribution less concentrated than the true distribution causes revenue to be understated. It is posible to get a rough idea of the probable size of this error by making calculations for distributions showing both more and less concentration than the one used in the preceding section. This was done for two assumed distributions of a 90 billion-dollar national income. In table 12, average incomes of each class under these distributions are compared with those under the distribution of the preceding section. The more equal distribution was obtained by multiplying each of the $1935-36$ average incomes by 1.20083 and adding $\$ 300$. Average incomes under the assumption of less equally distributed income were obtained by multiplying each 1935.36 average by 1.57935 and substracting $\$ 300$. The reader will recall that the original averages for the 90 -billiondollar level were obtained by multiplying the 1935-36 averages by 1.390064 . These three operations each result in the same total income. Table 13 compares revenue under different exemptions

[^12]and these three distribution assumptions. While these results confirm the suspicion that appreciable error in estimates of revenue might be caused by using an inaccurate distribution, it shou'd be remembered that the two distributions presented are probably fairly extreme. Reliable data on year to year changes in income distribution simply do not exist.

AVERAGING:

An even more troublesome source of error is the procedure of assigning to each member of an income elass an average income, an average amount of imputed income, an ayerage amount of understatement, etc. Assuming that the inflating process examined above gave the correct number of families and the correct average incomes and limits, the investigator would still be bothered by the fact that there is considerable dispersion about the average incomes, average imputed incomes, average understatement, average deductions, etc. In some of these cases, the data do not even give the limits of dispersion.

As an example of this type of error, consider the estimate of tax base under a 90 billion-dollar income, 1940 exemptions and an earned income credit. According to Family Table 7, families in income class 12 pay no tax under these assumptions. Yet some families in this class have cash incomes of about $\$ 4,800$, do not understate their incomes, have only small amount of deductions and have no dependents. Families in this position are actually taxable on about $\$ 2,000$; but for purposes of the above estimates their tax liability has been averaged away by virtue of their being included in an income class in which many of the families have incomes too small to be taxable.

Class 12 was subdivided into a large number of smaller groups to show the approximate size of this error. It was first divided into five subslasses with different average incomes. These were each divided into three groups by assuming that one-fourth of each subclass understated their incomes by $\$ 2,000$, one-fourth understated by $\$ 1,000$ and one-half did not understate. This resulted in 15 subelasses which were split into 30 smaller groups by assuming that one-sixth of each subclass had $\$ 430$ worth of imputed income due to home-produced food and the rest had no home-grown food. Imputed food was only tabulated for farm families in Consumer Incomes and the tabulation in table 108, page 97, shows that about one-sixth of the members of class 12 are farmers.

Half the families were allowed $\$ 420$ for the rental value of owned homes and the other half were assumed to be renters. Division on this basis brought the number of subgroups to 60 . Three levels of deductions were allowed and four. levels of
exemptions ${ }^{7}$ bringing the number of subgroups to 720 , of which 234, representing 320 thousand people and 340 million-dollars of tax base, were taxable according to this method of calculation. On the assumption that dispersion about the average is the same in classes 11 and 10 as in class 12 , there appeared to be about 190 million-dollars of tax base in class 11 and about 25 million-dollars in class 10 . Tax base in classes below 10 is negligible.

But these are not the only classes in which the averaging process causes error. In classes just above 12, some families have incomes smaller than the sum of their deductions, exemptions, imputed incomes, etc. In the averaging process, their negative taxable incomes were automatically deducted from the positive taxable incomes of other families in the same income classes. By mubdividing class 13 by the same procedure applied to 12, tax base in class 13 was estimated to be understated by about 210 million dollars because of averaging. Tax bases in family classes 14 and 15 were estimated to be underestimated by about 60 million dollars and 15 million dollars, respectively. In a class in which everyone pays a tax, computation of tax base by assigning averages does not involve error. Understatement of one person's tax liability involves overstatement of someone else's by the same amount.

The problem is similar but less acate in the case of individuals, since exemptions are uniform and there are no imputed incomes. Individual classes 3 and 4 were subdivided into 60 groups each and from these subdivisions it was estimated that understatement due to averaging was about 10 billion dollars in class 3, 160 billion dollars in class 4 and 10 billion dollars in class 5. This makes a total underestimate of nearly one billion dollars of tax base, or 40 million dollars of tax revenue, which is a fairly serious source of error on a total tax base estimated at 13.3 billion dollars and revenue estimated at 531 million dollars.

NONREPORTING

A possible source of error in the opposite direct on lies in the fact that no allowance was made to correspond to the adjustment of Consumer Incomes data for nonreporting. The reasons were that the understatement and nonreporting corrections listed in Consumer Incomes ($p .84$) appeared very large and Lkat the investigators were primarily interested in estimates under lowered exemptions and more efficient administration which should largely eliminate nonreporting.

[^13]TABLE 14. EFFECT OF NONREPORTING CORRECTION ON ESTIMATED TAX REVENUE UNDER A 90 BILLION-DOLLAR NATIONAL INCOME AND 4 \& PERCENT RATE FOR VARIOUS EXEMPTION LEVELS WITH NO EARNED INCOME OREDIT,
(Revenue Figures in Millions of Dollars.)

Claks	Exemption level		$\begin{gathered} \text { Estimated } \\ \text { revenue } \\ \text { with } \\ \text { nonreporting } \\ \text { correction } \end{gathered}$
1.	1,000, 2,500, 400.		480
2.	800, 2,000, 400		552
3.	$750,1,500,400$		618
4.	500, 1,000, 200	-	878
5.	400, 1,000, 200.		${ }^{50} 5$
6.	200, $500,100$.		1,296
7.	no exemptions.		1,975

However, it is of interest to know what effect it would have had on the estimates to have reversed the Consumer Incomes adjustments. This would have reduced the number of individuals and families in classes $13,14,15$ and 16 by 20 percent; class 17 , by 13 percent; and class 18 , by 4.8 percent. The National Resourees Committee adjustments were concerned only with incomes above $\$ 5,000$. Since it is unlikely that persons with lower incomes are any more conscientious about filing returns, the 20 percent reductions were also applied to classes 1 to 12 in the nonreporting àpproximation.
Table 14 compares the revenue estimates of the previous section for the 90 billion-dollar income level with the estimates that would have been obtained had the nonreporting adjustment been made as deseribed above. Nonreporting on the seale assumed above could only occur under a very lax tax administration so the differences due to nonreporting in table 14 can be viewed as extreme.

LOSS OF SURTAX ASSOGATED WITH HIGH NORMAL tax Rates

In the first section the reader was invited to make estimates of the yields of income taxes of varions rates by multiplying the yield of a 10 percent tax, as shown in table 10, by the proper ratios. However, if the rate for which estimates aredesired is too large, some adjustment most be made to keep persons in the highest income classes from being required to pay tax at a total rate (normal rate plus surtax rate) of more than 100 percent on their last increments of income. For example, if the normal rate were raised to 30 percent and no surtax adjustments were made, persons with surtax net incomes above $\$ 5,000,000$ would pay 107 percent on the excess. All persons
with surtax net incomes above $\$ 300,000$ would be taxed at more than 100 percent on the portion of their incomes above $\$ 300,000$.

There is every reason to tax such high incomes at a very high rate, but rates in excess of 100 percent do not make sense. In levying a high normal tax Congress would undoubtedly make some adjustment of surtax rates. This would involve a loss or surtax revenue which needs to be deducted from estimated normal tax revenue to estimate the net addition to tax revenue occasioned by the rate in question.

If one supposes that the present surtax schedules (passed by Congress in September, 1941) would be maintained up to the point where increments of income were taxed at a total rate of 90 percent, and that increments of income above that level would be taxed at a total rate of 90 percent, some adjustment of surtax rates would have to be made when the normal tax rate became higher than 13 percent. From the schedule of surtax rates in table 12, it can be seen that if the normal rate were 15 percent, surtax rates above the $\$ 2,000,000$ level would have to be adjusted; if the normal rate were 30 percent, rates above the $\$ 70,000$ net income level would have to be adjusted. If it is supposed, however, that Congress would make the total rate ceiling 100 percent instead of 90 percent, then no adjustment of surtax rates would need to be made until the normal rate exceeded 23 percent. At a normal rate of 30 percent, adjustments would need to be made in surtax rates on net incomes above $\$ 300,000$; and at a normal rate of 40 percent, adjustments would need to be made above $\$ 70,000$.

The amount of surtax revenue that would be lost by the adjustments necessary to keep the total rate ceiling at 90 percent is shown in table 13 for several normal tax rates. Column 4 of this table shows the amount which would be added to tax revenue by raising the normal tax rate from 4 percent to the percent indicated in column 1. Each figure in column 4 was obtained by subtracting the loss of surtax revenue (shown in column 3) and the 688 million dollars raised by the present 4 percent normal tax from the estimated yield of the assumed normal tax.

Similar figures are shown in table 14 for the case in which the combined normal and surtax rate is allowed to go to 100 percent. This would establish a net income eeiling of $\$ 26,720$ if the normal rate were 30 percent, a ceiling of $\$ 11,020$ if the normal rate were 40 percent and a net income ceiling of $\$ 6,100$ if the normal rate were 50 percent.

The procedure used in calculating the loss of surtax in these tables is of some interest since a similar procedure could be used to estimate gields of various combinations of surtax rates.

TABLE 15. SURTAX RATES WHICF APPLY TO 1941 TNCOMES.
CClass Limits in Thousands of Dollars.)

Surimx net lacome		Surtax rate on income within limits (\%)	Surtax net income		Surtax rate on ineome within limits ($\%$)
exceeding	not exceeding		exceeding	not exceedlag	
0	8	6	50	-60	57
2	4	9	60	70	59
4	8	13	70	80	61
6	8	17	80	00	68
8	10	21	90	100	64
10	12	25	100	150	65
12	14	29	150	200	66
14	$\rightarrow 16$	32	200	250	67
16	18	85	250	300	69
18	20	38	300	400	71
20	22	41	400	500	72
2	26	. 44	500	750	73
- 26	32	- 47	750	1,000	74
32	38	- 50	1,000	2,000	75
38	44	58	2,000	- 5,000	76
4	60	55	5,000	and up	77

Source: Revenue Act of 1941, 77th Congress, 1st Session, Washington, 1941.

The difficult part of the problem is estimating the number of persons and the aggregate net incomes of persons in each surtax bracket. This must be done since a different rate applies to each surtax bracket. The reader will reaall that, in the first section, the number of families and the number of individuals was estimated in each of 28 gross income brackets for the 1941 population and an assumed 90 billion-dollar national income. Average net incomes were then calculated by deducting average values for non-cash incomes, understatement and deductions. Average surtax net income is this value less average exemptions, which were also calculated.

As was shown on page 812, individual deviations from these average values mean that individuals in any income class become more dispersed as successive averages are deducted. For example, family class 20 includes families with gross incomes between $\$ 27,801$ and $\$ 34,752$ with national income at 90 billion dollars. Yet, assuming that-some families near the upper limit have no non-cash income, do not understate and have low deductions and exemptions, while some families near the lower limit have considerable non-cash income, understate their incomes and have high deductions and exemptions, it is quite likely that surtax net incomes for these families range from about $\$ 15,000$ to about $\$ 30,000$.

If average non-cash incomes, understatements, deductions and exemptions are deducted from the upper and lower gross income limits of class 20 , surtax net income limits of $\$ 17,974$ and $\$ 24,224$ are obtained. While all families of class 20 will not
have have surtax net incomes within these limits, the bulk of them will; and those whose incomes are outside the limits will tend to be replaced by families with gross incomes in classes 19 and 21. It is, therefore, reasonable to suppose that the number of families with surtax net incomes between $\$ 17,974$ and $\$ 24,224$ is very close to the number with gross incomes between $\$ 27,801$ and $\$ 34,752$ and that their average surtar net income is very close to $\$ 20,966$ which is obtained by subtracting $\$ 2,308$, the average exemptions in family class 20 , from $\$ 23,274$, the average net income in family class 20 as shown in column 7 of Family Table 3.
If a similar procedure is applied to each gross income class, distributions of families and individuals by surtax net income classes are obtained. The limits of these classes, however, do not correspond to the limits of the surtax brackets given in table 12. Some method is needed to estimate the numbers and aggregate incomes of families and individuals in each surtax bracket.

If knowledge of the family income distribution were complete, a distribution curve could be drawn showing the number of families having incomes of each particular size. Conventionslly, income would be shown on the horizontal axis and number of families on the vertical axis. The area nnder such a curve between any two points on the horizontal scale would represent the number of families with incomes between the two limits chosen on the horizontal scale. This is analagous to the representation of the proportion of cases falling within certain limits by the area under a probability curve in statistical tests of significance. On a family income distribution curve as described above, the area under the curve between income limits $\$ 17,974$ and $\$ 24,224$ would be very close to $\$ 30,973$, since that is our estimate of the number of families in family class 20. For surtax estimates the number of families between the limits of $\$ 18,000$ to $\$ 20,000$, the number of families between the limits $\$ 20,000$ to $\$ 22,000$, etc. is needed for each surtax bracket.

If one assumes that the distribution curve between the limits $\$ 17,97 \pm$ and $\$ 24,294$ can be closely approximated by a straight line, then it can be represented by an equation, $y=a+b x$. The number of persons between any limits inside the $\$ 17,974$ and $\$ 24,294$ limits is then $\int_{1}^{a}(a+b x) d x$ where u and 1 are the upper and lower limits desined. This integral can be written $a u+\frac{b u^{2}}{2}-a 1-\frac{b l^{3}}{2}$ and can be evaluated if a and b are known. The aggregate income of families in class 20 can
be represented as $\int_{17,974}^{24,244}$ (ax $+b x^{2}$)dx. This quantity must be equal to the average surtax net incame in family class 20 times the number of farilies in class 20 , i.e., $\$ 20,966 \times$ $35,410=\$ 742,406,060$.

This gives two equations in a and b-.

$$
\begin{aligned}
& \int_{17,974}^{24,224}(\mathrm{a}+\mathrm{bx}) \mathrm{dx}=35,410 \\
& \int_{17,974}^{24,224}\left(\mathrm{ax}+\mathrm{bx}^{2}\right) \mathrm{dx}=742,406,060
\end{aligned}
$$

When solved simultaneously, the equations determine $a=$ 10.546 and $\mathrm{b}=-0002313$. Knowing a and b enables one to split family class 20 into any desired number of subelasses with any desired income limits.

Similar operations on the other family and individual classes enabled the writer to convert the family and individual distributions to new surtax net income distributions with classes which correspond to the surtax brackets shown in table 12. An examination of the results led to the belief that the linearity assumption on which the procedure is based is not applicable to very high income elasses. Accordingly, families and individuals with surtax net incomes over $\$ 80,000$ were lumped and redistributed among the surtax brackets above $\$ 80,000$, according to the proportions among numbers of taxpayers in these brackets in 1936, 1937 and 1938 as shown in Statistics of Income. This appeared permissible since, in the very highest income brackets, the proportion of these highest returns in each bracket did not seem to bear any significant relation to the size of national income. When the surtax net income distributions had been ealculated for actual surtax brackets, the effects of adjustments in surtax rates could readily be calculated with the results shown in tables 16 and 17.


```
table 17. Lobs of scetay revente at vabloce modmal tay
        HATES WHEN NORMAL RATE PLES SCRTAX RATE IS NOT
        ALLOWED TO EXCEED 100 PERCENT, CNDER THE AB.
        GUMPTION OF A gO BILLION-DOLLAE NATIONAL IN*
            COME, 1941 EXEMPTIONS AND MO EARNED IK.
                        COME CEEDIT.
(Money Figures in Millions of Dollam.)
```

$\underset{(\%)}{\operatorname{Normal}}$	Eatimated mevenue	Lose of murtar revenue	Addition to revenue due to chadee in rate
30 40 50	6,160 8,880 8,609	${ }_{208}^{608}$	$\mathbf{4 . 4 0 0}$ $\mathbf{6 , 1 8 0}$ 7,700

III. HISTORICAL TEST OF THE METHOD

Section II has indicated the possible order of magnitude of several types of error associated with the procedure described in Section I. Section III. is an attempt to give the reader a better idea of the reliability of the method by using it to estimate normal tax revenue from 1934 to 1939 and comparing these estimates with actual revenue as recorded in Statistics of Income for each year.

NORMAL TAX REVENUE FOR 1934

A calculation following the procedure described in Section I was carried out for the 1934 national income of 54 billion dollars and population of $126,626,000$. Exemptions of $\$ 1,000$ for a single person, $\$ 2,500$ for a married couple and $\$ 100$ for each dependent were allowed. The tax base thus calculated was 5,017 million dollars.

Revenue calculated directly from this base, however, would not be comparable to revenue actually obtained by the Federal Government since dividends and interest on government instrumentalities were exempted from the normal tax in 1934. In addition, incomes on which the estimate is based do not include capital gains or losses. To make the estimate of tax base comparable with that which existed in 1934, it should be reduced by the amount of tax exempt interest and the amount of dividends received by 1934 taxpayers and should be increased by the excess of statutory capital gains over statutory capital losses. Statutory capital gains are virtually certain to exeeed statutory capital losses as explained on page 787. A comparison between the estimate adjusted for these quantities and actual rerenue follows:

(FLGUREA IN MILLIONS OF DOLLARS.)

1934 tax base as computed 5,017
Less: Tax exempt interest 294
Dividende 1,454
Add: Rxcess of statutory net capital gains over statu-
tory net capital losses. 55
Adjusted tax base 3,324
Estimated nomal tax revenue 133
Actual normal tax revenue 123

The data on dividends, capital gains and capital losses include all those reported on taxable returns. They are tabulated on page 3 of Statistics of Ineome Supplement Compiled from Income Tax Returns for 1934, Section II (Division of Tax Research of the United States Treasury Department, Washington, 1940). The figure for tax exempt interest includes reported tax exempt interest on all returns with net income above $\$ 5,000$, as listed on page 18 of Statistics of Income for 1934.

NORMAL TAX REVENUE FOR 1935

A similar estimate was made for the 1935 population of 127,521,000 and national income of 58,809 million dollars. Figures for tax-exempt interest, dividends and statutory capital gains and lasses could be found only for net income classes above $\$ 5,000$ and were taken from Statistics of Incomes for 1935, part 1, pp. 28 and 68-90.
(FIGERES IN MILLIONS OF DOLLARS.)
1935 tax base as eomputed 5,762
Less: Tax exempt interest 282
Dividends 1,814
Add: Exeess of statutory net capital gains over statu- tory net capital losees 331
Adjusted taw base 3,997
Estimated normal tax revenue 160

NORMAI TAX REVENUE FOR 1936

In 1936, dividends became taxable. Data on capital gains and losses for all taxable incomes in 1936 are available in Statistics of Income Supplement Compiled from Income Tax Returns for 1936, Section I, (Division of Tax Research of the United States Treasury Department, Washington, 1940) p. 6. The figure for tax exempt interest is for net income classes over $\$ 5,000$ and comes from page 30 of part 1 of Statistics of $1 n$ comes for 1936. The aetnal normal tax yield may be found on page 84 of Statistics of Income. Population in 1936 was 128,429,000 and national income was $67,846,000$ million dollars.
(FIGDRES IX MILLIONS OF DOLLAR8.)
1936 tax base an computed 7,358
Less: Tax exempt interest 269
Add: Excesm of statutory net capital gains over statu- tory net capital losses 821
Adjusted tax bane 7,910
Estimated normal tan revenue 316
Actual normal tax revenue 330

NORMAL TAX REVENUE FOR 1937

In 1937 national income stood at 71,783 million dollars, population at $129,257,000$. Tax exempt interest, capital gains and capital losses for net incomes above $\$ 5,000$ were obtained from Statistics of Income for 1937, part 1, pp. 135, 136 and 162. Actual normal tax yield appeared on page 118.
(FIGUREA LN MILLIONS OF DOLLARA.)
1937 tar base as computed 8,089
Less: Tase exempt interest 301
Add: Excess of statutory net capital gains over statu- tory net capital losses 185
Adjusted tax base 7,973
Estimate of normal tax revenue 319
Actusl normal tay revenue 335

NORMAL TAX REVENUE FOR 1938

The introduction of the alternative tax in 1938 makes the comparison for that year of little value. The alternative tax takes the place of both normal and surtax for many taxpayers having long-term capital gains or losses. Statistics of Income for 1938 (preliminary edition) gave no indication of the respective amounts of normal tax and surtax replaced by the alternative tax. Presumably, most persons who pay alternative tax are in the higher income brackets and most of the alternative tax replaces surtax.

Figures for capital gains, capital losses and revenue from normal tax, surtax and alternative tax were obtained-from the preliminary report of Statistics of Income for 1938. The 275 million-dollar tax exempt interest was estimated from the 1938 figure of 42 million dollars partially taxexempt interest in comparison with figures for wholly and partially taxexempt interest in previous years. Tax exempt interest and excess of capital gains over capital losses are for net incomes above $\$ 5,000$. The 1938 population of $130,061,000$ and national income of 70.096 million dollars were-used in the computation of the unadjusted tax base.

(FIGURES IN MTLLIONS OF DOLLARS.)

1938 tax base as computed 7,018
Less: Tax exempt interest 275
Add: Excess of statutory net capital gain over statu- tory net capital losses 246
Adjusted tax base 3,989
Eistimate of normal tax revenue. 280
Aetual normal tax revenue 232
Actual surtax revenue 255
Altemative tax revenne 277
NORMAL TAX REVENUE FOR 1939

The alternative tax continued to apply to 1939 incomes. Information on capital gains and losses and revenue from normal tax, surtax and alternative tax was contained in a press release from the Treasury Department dated April 4, 1941, concerning 1939 income tax returns. Tax-exempt interest was estimated from the 51 million dollars of partially taxexempt interest received in 1939, and the wholly and partially tax-exempt interest received in previous years. Population in 1939 was $130,865,000$, national income was 70,096 million dollars.
(FIGURES IN MILLIONS OF DOLLARS.)
1939 tax base as computed 7,677
Less: Tax exempt interest 300
Add: Excess of statutory net capital gains over statu- tory net capital losses 120
Adjusted tax base 7,497
Estimate of normal tax revenue 300
Actual normal tax revenue 275
Actual surtax revenue 294
Alternative tax revenue 306

The 1938 and 1939 comparisons show only that 1 he computed results are of the correct order of magnitude. For the other years, the comparison shows that estimates by this procedure tend to be in error by about 5 percent to 10 percent. Exemptions were reduced on 1940 incomes. The tax base calculated with these exemptions, population of $131,669,000$ and national jncome of 74,294 million dollars is 9,464 million dollars. The writer has been unable to obtain data for a comparison with actual revenue for that year.

[^0]: The writar is croutly indebted to Dr. Albert G. Hart who mopernted in morking out the mohods weol. Dr. Hart alse contributed carefal eriticibm of varion sections of the munutcript. Several waluable saggestions Fere reseived from Dr. Gerkard Tintaor and Prof. Miltom Priedman. Sizoere appnecintion til alep extemded the Aswariman Farm Rurean Federation. Whoo financial support wat weopenaitio for the initiation of the iavertigation in the spring of 1941.

 Praject 72I el he Iowa Agricultural Experiment Starion.

[^1]: 1939).

[^2]: Thic delaition in explained ma page 41, Conmmar Imomen in the Urited Etater.

[^3]:

[^4]:

 thencuarbil lamplata.

[^5]:

[^6]:

[^7]:

 ineceme inx rokerna thed in the period Janeary throngk Jume, 1939 ; and pupe of - prome notecere from the Treakiry Department datad April is 1911. concerning se

[^8]: * Clisemen groupod are below $\$ 500,000$.

[^9]: Clames grouped are below $\$ 500,000$.

[^10]: *Clasceas groaped arn under $\$ 500,000$.

[^11]: * Clacmes erouped ane below $\$ 500,000$.

[^12]: "Go far we the writer known, thers is mo aniveranly accepted measure of comcentrutioc of income. The twe most commonly used are the siope of a Pareto fine and
 1985-36 dimtribation and the manmed 1941 distribetion. For a discassiom and
 Principe Prete, Bloomingtoki, Ind., 1941) by Harold I. Dovia

 Thie belice what etrongthenod by Professor Mitom Priedman's opision on tha sobjeet expremed in a letwer Dr. Albert G. Kart; by the fact that Geerhard Cotw
 Tearel: (Tempormry National Eoonomic Committea Wahington, 1940); and by the toot eorrompondeace betreen the $1935-36$ dintribution and tho 1929 diptribation as determised by the Broakings Institation und promeated in Amerios'r Cepmecty to Ooneme (Tis Breolinge Inatitution, Wachiagtom, 1934).

[^13]:

